From 9ab66a2273a414bedefa54f2a88cad28534ebe63 Mon Sep 17 00:00:00 2001 From: "Bob(ArtyushinaVV)" Date: Sat, 6 Dec 2025 16:56:46 +0300 Subject: [PATCH] =?UTF-8?q?=D0=94=D0=BE=D0=B1=D0=B0=D0=B2=D0=BB=D0=B5?= =?UTF-8?q?=D0=BD=D0=B8=D0=B5=20=D0=BE=D1=82=D1=87=D0=B5=D1=82=D0=B0,=20?= =?UTF-8?q?=D0=B1=D0=BB=D0=BE=D0=BA=D0=BD=D0=BE=D1=82=D0=B0=20=D0=B8=20?= =?UTF-8?q?=D0=B8=D0=B7=D0=BE=D0=B1=D1=80=D0=B0=D0=B6=D0=B5=D0=BD=D0=B8?= =?UTF-8?q?=D0=B9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW3/2_p2.png | Bin 0 -> 120717 bytes labworks/LW3/2_p4.png | Bin 0 -> 52111 bytes labworks/LW3/2_p6_1.png | Bin 0 -> 12395 bytes labworks/LW3/2_p6_2.png | Bin 0 -> 12455 bytes labworks/LW3/2_p7.png | Bin 0 -> 63589 bytes labworks/LW3/is_lab3.ipynb | 1703 ++++++++++++++++++++++++++++++++++++ labworks/LW3/p10.png | Bin 0 -> 25619 bytes labworks/LW3/p5.png | Bin 0 -> 29063 bytes labworks/LW3/p7_1.png | Bin 0 -> 6669 bytes labworks/LW3/p7_2.png | Bin 0 -> 7413 bytes labworks/LW3/p8.png | Bin 0 -> 32252 bytes labworks/LW3/p9_1.png | Bin 0 -> 6536 bytes labworks/LW3/p9_2.png | Bin 0 -> 6857 bytes labworks/LW3/report.md | 506 +++++++++++ 14 files changed, 2209 insertions(+) create mode 100644 labworks/LW3/2_p2.png create mode 100644 labworks/LW3/2_p4.png create mode 100644 labworks/LW3/2_p6_1.png create mode 100644 labworks/LW3/2_p6_2.png create mode 100644 labworks/LW3/2_p7.png create mode 100644 labworks/LW3/is_lab3.ipynb create mode 100644 labworks/LW3/p10.png create mode 100644 labworks/LW3/p5.png create mode 100644 labworks/LW3/p7_1.png create mode 100644 labworks/LW3/p7_2.png create mode 100644 labworks/LW3/p8.png create mode 100644 labworks/LW3/p9_1.png create mode 100644 labworks/LW3/p9_2.png create mode 100644 labworks/LW3/report.md diff --git a/labworks/LW3/2_p2.png b/labworks/LW3/2_p2.png new file mode 100644 index 0000000000000000000000000000000000000000..82297a1158e9cd4c639020f05a032f5a93a523fe GIT binary patch literal 120717 zcmb4qWl$V#+hr0G2*EYz5C#wKHb8KlHA)zk1(hncDCo3 z4_AUJ`MG#`xOg~T*}A(s zyNPjgJN(BTTu!bw+)1u_t`ASac2?4Nd-RCF>|gui5~*VFqsNaPDa%Q}^UB!0{hVYu z(-yQnr740_u;m5?+Et-2YvGGepP3c72O+;2lYJ+w4bdmWdE)c z@JqyPGs=Fk_3~$O?yaV`=ycxy9x^e0S6n9CjLD7~_vT?Gg{&b~XjXPGrJ zk(0YS*1RWNRUljREn9Z9(4iY|TCemN~3&9@2V6tl)!)u522 z!Mtc*`$(HF(j^A72A(!GiHe0{xCo_$h!k14+846Ui3Iv`T%_d$AvwvjSZ3H#*eI>0 zwn5)=u#XUkW5Jj%tt_7lJ5~R+Pp(x_dr-{eD=os%LxAd`Avs)lo+ta19{-oI`6&<|B6PL0|Vb=+?ZaaDUgl7rfcXVO$fWALcdkjcF%q zKJCZA^z>dn;+-6QF=k@`TQZ*lrG(W@l%o2}r$bh9+8kK;G3CnlB>MY7m5pl(E`LKJ zHmXIvVo|Gg=^3fKF>V3o#H*cm0LZnEFMXfx%Yh4oBNhRj(BL7TUhK+B0EBaA=G1_8 z6>}tamc|6)H@-{P9^^nzo=h}}Sap)Gp`?L2sz^BrIZLLeLBqUkou9|1_16CsKD^x{ zf3G43GH9TAiP{#yai9*(_1lALmU-X%BE^@uvXF)Cu!|O}iuVA5*ML;)cE?!?7#Dzl zuf-v3lc7C<*JCGm5pJ4__7Adx79O|S&HH63wM6?bR2{W?jjEMm!M%Ai^;)9O$+=EB z#Wz5!si?0oy{6G;(yy{_ccsdRx^McHDjh zX-}3o^cOl0Bg714sQSiE{a6=q%q*^8eZ}18eZF2com5dB^WY{tc+zzDZD_P z>o3xrvfhE)nA_qgH+S$>yQj6@Mea6Uvg1GqHvIJlAj!<# zk_8iHPjP}pp0+)gvUR5Ant@+>0fAiE>{7O4*PK+WekNc7s;@(*1*cytvFH*_VvTB~ zj+#Wdvc&-w<=5FrZ|>`ymC37qyWd?%?}7VHzp>?ZvjzAB9;cLTf$_{AN!vrzW>DxX z?2^I=UF%c6LAARPxw`Svk)s8jBmH5snt&>$y#gojCctm3@rIZCK1ce@WDU@~11*+>32N}(0zefG$ZZkZ~db<^P)mLOx;M5^!iJs0R{7}kz+h2C^jBTrS z;|S|+K&0N;>!$6m48xat(p9oL?_!maXy zHgBv|l7673`ee_J-^j6rm9L}RnA*PS;x1Oa4nW`L5fVnqhYpINp zHFU@&>^_#1>7w^?HiuJ`WFoZ>`yffSD=@9CtkjOevKjiJmuMFM zgpINn7$48=QBAWH=AWM|FT@==?|$yr>9aa^48V6F`-?r&6y$N%+E(RYF^`y1oNpcR z+Rz7wfd;daAr=;^B}@ zpX@dk0j#-XQO_m-=do&^9L)5(42LU!?m zmUv#Yvyp?5jVQkeGNM1hhCyRo>$B}az+#FNv~wlS%0bNdibpt+hMAwW0gV_U;I0m!3xo-V|(3|Mzp)@%Omw8w=AC z3X^&3Xa2A1gH8dCdEA!nqz4#%FkaJXKaWM$gu3e#v?>oMyRZ|sE;!o{3QUtsNY+jp zYJ8Wr6b@T!*;p37ZxOlc0{tyO?Vf$is_{R+EjhYOj=W`K)KpMgq-c-$kRT0Rv9qK3 zI*B$aGM?l&GZhQNL+-Br2#2!^O5vTdFoZRan2=Vmz^~bw_AmIS?mzC>0c(=q}h_ z#$nDp?n0yTMWLu_;D<6~7DwmDN7^|DP&)*S*omu(zu8P+vhWmA?SqlV;!%$vDD;bE zE?T<@QK?4*UhF_hl~MPz1yLWEYg)Ok&U89s6{EgDti0vV`hotvrlRr0#I0aUJva{+^lrp7rQUnq-&53yK~B$t&C*NAm#T zXLgt2T`mIuSl>VMWbG~G$l_Weg833SstE+rpLRA~ib6y?EYyldMP%24)q+BR%zmUq zD?boLPjkze&tl_*?0&Hw<*cPSz}8YoutV)*ik?Qanq07jq9YaVBlXtnI=uWj^s|Hg z%Qfr~P=3`gd3M@dP@M|`0zGXiEUXNl7 zjnJTdy$b`$q5#7S-XaN;9v}%HTmrbs{9=}78d_eLtIf=mw3|v@%>#O&>&Q%8E<4fR zhX@vlYzeuLbm$w)Ay4H`tR}w_mR=}Omy>B`+6WF1YH%Io`-ryDwZkk_?RpEszvwz&U6>t*vE z5N%!BRFF25;5c!rb)7aq9tDSw=CT9{#!!dytf;nsxmw%4)USxsR%nS9TcAO)>KDTe zMlbjbMw1k4G_X+Gg~2iyx2eBa!}YLKea=bute~wd+F!0TG^Tr$=V>M;Fmv@4+QJ=R z*ruDMLzN9Po%vP7)6~sLk6G~5Z$GMa!4x7ZBziSM~lT6x&Tt0nxG zS^cM?31;>gS*+4||K%eQ%`nIhvdy;sAVQChCO?3brd7ST_54xRq3E3N0^b?9Pt}l7 z6E8aj(tpCS^YgNGu4&_TZ2rS9EU%d=OXcDIW8La9C2=147{LkKh5@Cx4gXvR(7hU_ z;5pl|*MQAY>?KWK4L^bot~o4obI1Ufxe2^E5r1_TeSV*$y=i)P&Mk8zC50A*Fzf{4 z?@>Crha?%%hKKl9cOWOOhQmcC2z2Owr0dS9F2J=UbZHVi8tmkELx{Pvd?Lj%)tBZ; zU9GuZ0#f3~aSLn?jCS4=8LDO0+gQ-Cr&OuU!vZqoL{cC*Henu95={J9u?`l78InP# zJ8U0*sl7DiUf-H4Hd=bX^!&eFePCv<#Y^DEvF%E$c=fa$zy8)ZBZZw#N(cFk8WGWPlIyX zu7Vz+GKVYz=bOnSsDZ$mnk}pnVV+9T6rzdWd}!-}b)`IcnBF;<1FN>eO}sHi6kb0- zApgVr)w#3*Ah=Y$zT?$?URV)-_#&6fp;&ZwVCTh+;Pu%X8eb7+lBSd9)k8m*0%M5TxCE2v!&-{iYuo5IDj-%^=$z8z)e_hrh$)AXfClhs;Iq zkxD=cPnSi#9$e9?XhRhH$&FfRbU@PgnT*PNgE8Csl#`UKNP|^t>iK-i)GNzT?v=^A z{SeR@?NYu_v5toFANso2$*P83s)Z@824j*Zy{>dUaEZ@P&0+j?-BP#QflpV%x5au0 zq|O+7L?^my9`Gh%tqZsms+yV9_N4V*+%Bh^l-52}Am4lNd>mY1JAbNd@k-g-BtiZ_ z{>|PdQfp}^HXYe-U|js=wlI+T)2iL1&EX?J%z&K}48#Eh_CDEc3|G$18nBR9!ylD0 z!$5|niJcYa!!#(Zt^k1ii7*TB8aaoXHKzZoa?z>b&#ZI_5Qt9K9bt8rL{MhlX9`%l zs;FwH@Ck)gt+{;*Kg;-})=!QM#WDTtgRKNc{Rt=P>(#_F&~vrQZ1u$i1&kSSz)V71 zXqMZr)MR-VuyeD17Mk_*lS->~Hj6ef-#2o@8Af$tSuauh>VeNTJ}M6o5dR{I<7s^? zAk|3j`+nFWcozfPq@A;Qg-MUIjk*DnVr+|YLlSh^H4(=Y?@X0=f5G2;whO7oj<5MNOKS*s-lRDCfStq#O z?~Wl(WN5J14{XZbBi#QneP`cNsxC2BQ=;2yE`csIgTsz4WtwnZf{x{$JggICUE){yWuO3i3$97zcS_Iu6)=D zHQ~$cD>eM77!1#~*6dxxldz)rXg)3BF;M@)zim^!cdXMIY9*J`ZY}e$Y@;`3VV7U) z_igu;M7dT)gHkFbHbj)vgz=CEwhc;^yB3sg@27}A_-G-0jzOP#V*T$Z^M}P9<+H~- z0%oA}l3wfb5RwV7B7N3}#o7ai{55n2T9Ua@KcX!euc34`(SI_=$Q!_Hi*8>YI<1`< z$R9UFu+J`Z8NqyGe3SH;79#*ph~g7rzce>$SY4ND2#_PN4$tSSBQy42y$(tnsIBDO z9sH<~o6Z1~==c19Y#Vinou4+$Hqm^(>=$XdD%?F1lF73=%^b)MFQ0$?!V4M z52W-yXXoA_a<4O~mJa%5vXZ_x3KW+Oyb<&#__F{&UW=qS=@R6S>9@-%CJFVWvv-J_?o7_+`a1)k0+*~Hzykct* zcyt}rxM>u!^@3cx{zpYE2}_EG_ctrkOGC2%D=<{x{!eoFzc`ss8<%u#2@Ydh3Nr7b z-N)Z2kAfNb#NBQvdZIBuk$W$Jr{&0BG{Vlics~)s3hvcx;TIW-O(aSkGZki;#1`k~ zH6}%#q$Q$QN6vt#i1nk(2qn6IIhJYj>XitXtC4 zF8$mvcifScKQNa)GKX+vVlfSc#?ZoglggY&23bKM=*K% zSc`9yze#b5e)DH{*MAcF)s{#$19G6Lcs8$kt|ZyP6Tq)OJU}v>f9I7KWARR|KpnWg zNa2s!Eiogzklrooip-)uylqR3RFY#HHd`W~N`iJ<1>&8BWl4i7B^oSZ3bvK~Iv{B_ zg>l_YO&$RB*C|bl`4hxD#U-P3y@Yl!PE5!my^-5i+=R~WrUkyjyHzczC6O-{u<*>@ z`$}_?OD^J}*-Zy&tnof4PT-}8Ro*`4LnBQ~iZ^(*(V!h5!FUa_sooVd zEvgOoUS6hI)M4D!`ihM!v-{i99wmT)NF~kuO3XG>6M-~a&`3M~;I|)2@O|gEMPlT7 zD-Dj-Sld%ti;X?kxtmMZf7BKHH$$eBKS&rgp)U|rMVUI1R|pVz5e~_qrVbNf?B-(0 z38&RS$Sc(0Gq(^ErDgqIx3W>xG?N&BNbm^Y9(lBQ$}W7$HDg!d75T1WOEJ8GC<}G? z4*#f7yF#xP#gYtmrw!a@CnV@YzLFIETC`$#W-ei)YMZp+yT++NiR6xw9#)P7+05>e z&zAO2PcU)ViEc;5yNCH{H)YJ$q0|K^T}MTP+~rTOVuj!E_}i|^ZC$+(^P)9S2U*uE zS$9z2fQA008%=%zz>+>jtKH0UQ0?wCntmG_ny^o`THi9FRnhBn*dE_tBRwJrP&qdX zVz${R)&0QCZb--PC6Suq#S2cCXBoF$s~aWf0cS$`5BrE9$W52Tux-i=5^6yZ-1QmE zrOhJX!xS(POtT6CpPRLW>eIZO2+D>#!O$5$(g#j9V@J#>MR#RMSX>-MJ!nQ&xEu!K zxzm+Z+nzXFEL#-UNT^NdLc3Ag70U~zN==gZOiifSFK!+SdKAyuNs7yvq!T!-_9Oal zMNKn9yc~TdF8tyXHkyQ@8TeeqiP9Fq4yv{_WJE-x7F6Rm>sW{)e9eMdGliCr0UI19 zexjA=hQHz2x!xx|L;~~;)Qu*ttDS1hR#}Bo&xm5$G_bBMXeY={p7PzBP+wtUGPQ^ZU57sOoz&fUwkpr~(Wnp|#a97G@s%=0`#+X>BN|0EUU->q zZ;V{4#R~Opm*Yw=#CVMsc(z6jEUGHM1yc_kZ+X1tTLp4w%4*3CJsm&2?!Y(CiCUAMy4c!i|?d zjB3&vuP*(xNk1P~TrTtD`bSC@&3s)iYjVMf>$AU)kCtEUTyK`571I8^j#xyerD#?& z0N?iKd%D;@9}@BWt#%?voPWOl$5*TLc3I@brWmLFy}1-~UzNTb_hyq7Ur8pO?p8w3 z=?&fPzbB|#HjHd}$^59;JwU?D z@1kMtnAoFESvZx|{%nka+k9@1wh-7#)<;5m&$%Vd)x<&LQ*dRAz#@)>2&PDy&KR!* zxwevn?D66EfR|?kWWSZl2zSAsn$H5 zp%~aRuISQELNtISqN##``~zgl9jf{a2EcB6CRtudI^XLkq-A(#n*aAuXQz2Z7` z_*;RKnMDY;?fLFstRo!wUf4xian{#H9T+d4U^qaDC|;KqmL+R47>8t>_>FEI9vGLC zGvF)>J1{FYPP5=-TAF*$V#=!IIPP2Jaqa1~cfza2W$+rh#-8JXp3sSXGmI9ioGk=^ ztlNXJHRa`eurTQZP~riksO2@A#^K;$!ajqP)#xT89|@=$6|bS%2OAQ7*2(@`)o@Hv zmRG&I(#9oNOl#_d=s${HR%fZUfyDOQOJrt!N=8Mn=7FklX!E=W?=q$v1YndNW3Lk&J+p(D`V zkJLPJaO>&Thj7lacg3>T(^#9{g3+yy^$ywrQ^YL=&teUdNHD^xArJ&PV3H|T?ME$0 zW12m-FAWXrHC(WeTFcLpP!xT^0V`X}2y$48a={n(+x7PGCpYH?;k&p`obXw)&UE&8 zXJ~31z?$;k_4yo(uH9X%JZ0~fw zlHIpIp$|+MxQUl|OtDMpdTIkYKL%o;!6;v`XtVc7221SmBEeMxf zIL|upW>(tbZgo!{i+4Bj}#lhB8m#>$_yHabLjw$NL0u{?2outR(Kor z%kEaw5vcEF!0+k*RDdZN9f@cu38^)oqC1xC29d2L3{B>c%6$&3q_vd-nL5rQthG|vRFz?J!{fD&+)U1 z+Y)a_4>j7m?Oz0|mbjnrR+fB7v2 zZzWp_RNd{Ts1*vN+$Cz9)*~~do{0ZASQD-5Zy7VAFLX#YOGLE(EwYH~6Mz0}vWq&gGfv^pl^?Q)-&kqe~36(lzVklQh9kLlfssch>W z{z=p6iSDaW?XJufJP}Q!z%>Vjw5pZZH@ia|RW!wg;d~%b(4D9-)(Dp0a9pA{1Tunp zZQ4aP6rX9%>mz#d&up+oS(pLr2h2gJBi+=2k}HxzRU$*odmTMwb6icS{Re>jGaUDNDI(A7Y z8tf|somrXYvPDk_flV>0X_^Sh%usLs6K;0&1b0a_6`VI)~)97Q+)PUSJt20Z^=h`g^4B6(Zt82h> zJ6@&qRwd|(RBoD|aLszSWqHurJF$1xN4&)P*pik|Y=if_+g2HxX_ZZi+~V~_y=0rn z2>9#KSdk$bj-o}99oag38cDO7`h-xVo4bG1!|zs7x^(0efV-Lz<`xa@MG1{Pl-~9P z6?KT$9_O*7-pSpooP`g7MPCSH;ksG)O~#0YVZbGh=@+jD0b+W5WuDWG&!&SJ{)*kr z&?T$1E@wB~$S9$j`smKVvint!1&d8I+{Ujp`B{pqgjPVNMlkxt`O%XNdm^IQYK-fX zOYGwki7SzwOW-t{;(5Jzy;*x^n|LMfAje4_oHgf;j78-BQa~sgm%_f0FdlM~ZrvBJ zicIG7qhqr|)ZX<7IQgb+%*@ufv;D*Jj15IKuX1gEaaMAoc$%{GZsuHjiY(64t37mX zM1$HR`TbmRx`z`G*y7Yeu=?_;N6X7mz&Ecx=}fyNymcJxS)7lKM%j!Aa{i>6Zw*pe zmAP;R#&Rp>SYKo$WS#G#!Iknfu3YHTCRF_=3;19+iG~pWPmR*`FPjhR_ex!L@O&a= z#_AG>lPyY7MNys`QXHaU!9zZ;y;+hm>?&#EiTW8-k%CZB+YdIY2(8x?KZL7rp+YaX zH>=cOeDk*_*e6CH-;Xa=sU7DcVeY2bM``@9R{_23PCSDb!uOl^U%c+!;IcQ0boU}X zSz#9ZjIwI{On6_reShizQ>+~d6}xY44C3HStDKvUz}2x|u2M3q8+>xVA=i;dKCUr| zO^G7N%&Z5g(sMZUu!P<_)^ongj%2Lv;X8&koWX%15Yc*?W>3I~@CM&#O(DuTpoQnF zSRheGpq!jF8=X=n2*(j~CN^Cb?PwbSPi8FnW25=5v4oyr4mJ6BjWxl`h07_ic)Yqw zs*iFKYh$u*vGuXXnXhMVb|lB^2NMMB*Jd%Q=)d0EdUWMLc&^12V%(yoLucvYfTEO9 zZ_O6ICCO0yL9*JM?ZTDm_Jz|wLtH_wC*L>g!(TUoo(;g%w$#ld9~~2)J2uF?`s4xI zy0-JPgS1sLB&C~4v0%=6gi)=S&w4|n<2e^3TkOzd4Xta%&?DpxM&y%UdX>BBQ?0R? zekZWLxC_5hkTGG7VEdaq933qUa@+l)y;*m@;*a!$tVKD+@(W;zPd(Pz%_erPh<I;*m zbuNu=wmY+cKu(gKNxb2TnRYBa7MtJ>bZTvri>=S67xD}IZAQQSyTsW+e7o8DIC+fv zbGYf}kaOE?cVYR~w79@LSpzg{k3}sTor;>lsKTUuH)xO3__cN#?N4D!3rwtE++-0+ ziG>ys!m3HKy&f8GK)!(M!@r+%@ULkrJ8)J%EV(skV;9LNKdAS#Gv0#_n`t0nn>*(;X$CGLFthx` zSbR}dU z9K%-T&N~671+|D9d-Q^@gpb1l+<*4MPv+Lje3hn0R<@h)!XiTUibNwUYCbatOdQ$Y z`fgu(%~(z$clk+je6HLZBP^o$*GyAx{ltkQIq}16c}HT5LBofym<4_orsm8iDe-)e z!O#g)^KPO^)~|eE+=Y~NIJW!sqK}Cvzp7Z-&zobfSqCLVhbt}i)(^b({VcXO6rVJ5Lb_I^Hkn$Eq03}KQ1ey8h zlRoUk7QV0I4ce6Wy#MtAp)3$a2jY8i#OcdRpZq=5;yfJ2JHF9`){7r89KY~d0WqJT z2Wn~LH>WI^F0vT;M#_fDVkuk6Fp0UDf1yceU@<{2TS!)!34p-NRH0fW=Q2a=vmf;# z4sU#&l`<0a)Hr++!`4z0jgK3jm&7X2r~kNl$}=OzNr1=`k=5n)Tv;OzC07Sc&-TmEm>v}AE5i$+uB{Th9 zaZPa)pQ?mNgFPbLZl{7ab@=cM>Y@W|KVSC6BZ?0`r{W!6N*P^-DL-0EVvA}?vYKS( zVV~Q1Tgso`@jryA{(C6KTVPJwFhf3fH6+}{%K>>7O;`*L6Qv{^m?$vXl=BE892tE_ z?^tkwYp_1we_aB%Fh=dte0qx(oeDbB#e9`TEn$%~aN3`!n+om9f6B)>K`O*nl>|{@ zj?6Zz40p)guX~7QB9e@YCE`r`5i8_FsL)ywrZ2W&5y`X1~N z-rp{1O5el;9(h7OJ9bxHk2Q>&(gTm79jB)B_-uyo#Wr#J81v(9IXzgdr8IUOULa02 zUwlIE!0a@HaZrhvGs6%nVU@JNxwe){N`x)G%m4cl=AkU5hMgn=)@iY*myMB}WX|Nj z-qxEN@<#|oC{Y?EB~3BWg~=ktEPEY^2U}4D;1Y%Z;Fc3`=GYOp zcNmNluKE1vz)5acuBFn&6ys>7qiTW$d}UD~7vm5a=A%czFt1M^%45f?HRmW{4uh>1Y_lTn#t2FY4o9V6nEL5%?c!>s6WWUTaV zX7i&X!S%?6Hh=1#?w~D{$6G&V{Ohi$r-glrhgJcBKYNiASo+>W`GEh3^-YugzpR>^ zKXG2#cGPi_)2kA#hSpgjuRdlndJApciVo^%HP{h~vq{F`ZZq;zf_jNJ8b8w7alyKL zCoYSW5T88e;F%BZ2=+lk^q$s3+HcHF{m3XkbWS16y_9&3*W#GuX;OYpN97W0H?!HN zx){k=jRob~a|5EV>4Yj4b9IqAeVW4EQ%xVsX%UzZ@<|Sy<-*5){UxDG%|%1%dEEJ- z*y%}5R+>kL%++{(>eade&b21L3@xhdyp?#ho%jsy6o6ub+^=LiA9y|hXm*H~AIWMJs6w*3)yXoxw3~ z#-PgIEK6~+l`NY^o!5ni1rTd`^RWhLVWpVz;46rcX_rznG= z72FEZ(|`A@Wqs{Ac%+JESE}v`H<>aG5c>Aa;0jCIW=Z+iNM(noaL+7hz5!i1XK(b@(rdi@O^LI^+bUUrVmbs_DzX#~ znc7Lx32xQcW4;pS#4)wuj(Nz3%Gsy8^;5(4M!fN44EV+4w|UiV@hK^#v%8~(_l>WF zueE2s?XCs_fmQNo1@d|KCBQB_5Ex76`_w$l^@m`8{`h3DB)HQteyeP;dpu=@Li?Pm$ltO{?y2|-`c~yynGL;N$oqP#f^y~Bcbxa z9dt!c*J8`b|3}`zOn>MS+sD_J`*Kl)PY_YYrmi%JC|JPNKNcg!DS5oh2ECqY06T4) z6D_TIOZJw84vkArbIw5*PKRx3K6#L@UW)BV&#$Zh(8-EwqWTnu#cn-cuN-KvL!4ku za?5T8*;}&BIjb^~aj1a&Xp;;CoPWbl+(6ql%$U&4VdoX19VfG{0Nzg$NNJnas+p;m zCbx3{Y4eCtt$X$Oqh@@tzw%l}p&#om3ApYs=dri?O@{u~S0o^;(WG1QYVdkLPHc9ydMP zi7pJr^@itf-)>FWU8KG6?r){Hk1Y6t{PV(^-qT*^`d~tkU;wtF^XV0=Q1qL?ag4=T zrv?PgTB$w0%KI(3slEJ}3*lhzYo^w|1kDMRqXPl31hfF%Vh!_z2on%U8|`;45P&7) zfaOCQL=UbL0;}p^B_p+1uwDmd_cpWl^li^DRJxuqt#pMq6ss!6(kw|sCE?NNwUy4f zvN>R0Af{w5@%M@C6iVcLRAZUSZ)eK2J=D{8&p%=Gq5QxRfi&ob{dv3A?)z0)Lbx`7 zzuj4s4*700e#Lcyj!3y*Dr3x-&z+9aB|!N2Q+0!apW7l&%*x>{rOCC8smP-viH5~5 z9w)~D0f zk|C6y(`P{Nvvv%tW*-fhZ2s|1uf72?VKWx4BWG#vj=Q=IUbt?mb%mdL?Fk+$SNoZ8 zd~gRRg6D-=gplB6n%8C5pQHRI9$q46ZS!1&<*TM7#$eDm^MTA*XCq4(GJcJ-L*CM! zymIn~V*4|f=rcnpQBT~}0dJbm(v|`DJmQha?@Vbw)z>OQg_x>J%Ej5dc?O?>W_(CO zCfGF@dY{xYBUZ!Pw%Q;TG&7m_8{{g=&4~jayG3=w%?DG~bO2aqwz#Q)Xf>?)>AV|m z=)QEIuJ~`C`kx3m=OEn}$V}*N)&^{HT1DX9Hf3fWB|8{SG;dA$7(Br+>XOvkDBoTi zS3A$eLPHdl$J;?srbJ!}|M;e>`u5ghfe zTSJ5$tTEzdLk&wtsA@Nx-4B)%ZFud6&57Kh6Dnxtv9{lS&{m=K73Y2_vhh>OzW9DZU|NZBz*|Ue7)04R$hoQV!zWKwnX9UNtLwmvi z_7ttc2?!atS=m5`wl=B(muf3W#-9EZ96wm?^J1IzonZb8L~;=E3T8JwMC>}M%PQ^b zhW+;|g^pgt)7$-du;8oTJ`E?r2GLFgF^5`HUpq&;KC|Srri-<83KR#@*7Zsfa`2}V z-(b9xBTPm9DU#~_c9&V474X!22xbQlNLC1P6@Kveedm$KW!l9OH~JXrdsVEGCUrkfA$fn+XyT!IbE1m5hm8TT~rDS;QZ} z*vuu$o{Wa;A49CJ4{zy}SKU0^W=mf7ODWzWwhNC`CN)cA{A1cYfk2}7!AKVIPEo!n z=L%%q@9JSoY$9X2`P>DuNLA}G6S~+w6%p?D?$7!PSFPlSkC@FL(BR z_k{-gg{D{oLZi)2{$Tuc`%>1f(svUs<1+7_{1K<{37(VKA4ksaAl4l>zlEPB~ z?IL+DZ&1n{dSTsI<`nWp2r;(s!;{kPSqWrMhj zwgSB-0;y5avE6owZZ(8Xqxqfsay@QUBHd%E3Jw98BYyNyPq~6(tP$D#{CqYQF$|jAvL47=qa!8!UNXl229HR`B&sVfv$R>ZPK!v zn=fxpT)jHG44U}Iuki)kjH zEe2ZL!#m1}^N~^-3vWFd)1-m1(<2l%zP>K-XZ9wbR#{mAnnYOL(LuLL#l*H@;hLvF zLelQ)WMC#QRi-#Suc7rW14a?pzHj#V8Y6ANv1y@Y!1fuD;b3I-~k%$%p2jN zy5EBki9k#G;LMXKhs;Io#BlfX^`FZDv5@s$&T#oXU>?@V(8qXSPImrCmt zwN)du$xg+LmKIBjN>*Bqin1T{x#D$G+X$?~iM6vmw+vbsRUF2>tFrUHPY5FtNx~4t z#)Bu_5uMJVyR}g1v=p@JoX{liY#5pHcRMIseDD`%XW4w!# zyJKDZbG2CxhJj_97luCws_L_$O+hoSb!5st>^BnvNd?AgU6Wo3dJOnS5!*=`)Z!f6IGGF4k%rsRV6p^K)4U75H~bh*`sg>gvi0H$a&58-|BqxaG8!riMC&m0rPj z4>0%9_v>vIRGd=xXL&9aUCzbgbb)JfryWipd4n5NZoa^!UWsJeMjz!^|9GG;8bm3y zH!$KbnuV`HMiRWac#+|jqkPG_`J>X(e~zGCJ*2=(b4MV<_?Vbf>4YXxzZY)g1NVOT z*+=tbqtk}C10im}GO|k<>DFQSXi!#-m6>?4w?J92+r4vkK773@YS3|xK{D2alZYsG zlOgQ5O%LCPvURu+X%=~-=Q(a9bVG}f7J)0vU|aGf#q<|R&e*5=^T0Ag)2n6I1f!Z9 zj?gYqr~w&yQ725mnz>8KQLjrZp|ae!sK2Ef32BLu_)Wl za|bjn`npB1incVAV7_)vEjOOkXtB&NxfPUN;qkpUf9fm;T`qerl&7F(IeG7~zyq+>L%< zf^oH1lmvCZqcH&w6P{#3_zxVymv7Io&z06bYiiBk)VJU`#&6+ELG&^0@BFdj;S7P>;8O7?J zxaaD%MGYRZ_5J0QQz;eqS8S@x*$cQN$()NNfSkoCPaFZPJjdzmC&p7A|gfU z(glJ_2|Y9kJ@kO|1PCOA+|9Z7zT6mr}G(PI62%#3rq}>W|I7_wq8@?8{;MJm3?(!$|JuSPA2;eowPX z26#IoeP(VKv5XZgVU(l6)w6zkKK#ncoWBc%3N*$$?y;;A@6S(& zt}5&Dn5Cx;f7k&rzw*Y^VusXa-9CpeO^SPz#BL4)lC0`C`ZB{yJ zuj83ix1R}n6sDmWcrC$@jR`uhKhRcH_Ox8U{m)d)<1!G}(6NQn^chi_70J@qwW!d_ zd{TtGE8Z&1qvR-+ZGn8*B~3dan4rzBz#v92{hcV?vlXDbzo%LLi(fTO%l3XYPR^ud zrkM82RQE|2t{ScX*5_w4olDN;>$bPWKn;-Yt`pwqeFDYH4Y&I0_?%^)6lq+<%X`ma zyca`*t?-G{+%={GxoRx~ze62{=H9v|3$N+>>m>`jqNnU`KgK4@@uBE9*QO}I z^7%R{ktlhOY{voQXUu0?EfUy?0iuU6%6*@Ki+BxXv{Beg*MWfk$tSPV#KiFXVNyV{gk_3b?U;)>+(Y+Ca0HWLLwL|sr8?4Wb$K4gvzN&6ne6f!Y&Uf9ii;sCe6vkNv>0z^s(XEXO7h2i> zF?=-rq4C{eky<3S@X6pQypq9WJGhZa9PW!MMaZ+yE(X6e>yKXXrNM(a{Lmlk7>Uy$Q zoJPCFL$!LC9ekh+S(1Xz`V8MAI|h8{lW7#9z%x@|MRR%Qz`bxL6f_DJoMCx^X~b$M>WjeVeF^| z-;smSYG!*VjWU~;6BCdzCD3&dd^0Xgs$uF#eAQ8}57=SQT*RiP8AzeNtZZavDqY`S zcU8i(^hE|>x49k+F_nj%^cm{>}UbAP|nsIBeqrR^A&>az0`?zhyRM8Hd&7~_(1JWMn@efE|d zArg_J;>))a7R|W4QDf{@!2>jWE+9r%(FlGCql*|h4-?tA#P=7|OobiV{J`JLDEb$0 z15SfRdB_px^>Go2MBJghof`mY@VTw+sxLKZyC2eIbe;J5!OhTp>)Jro)(N+T54Q)? zTvO|NN;x{Ip_e|;G(;J8Ys<6^gjC`bu+i^X2tH_5cSq?V_m^D z^Q8o3OWgE*t77|1b0E-3Lp=MJ{08dyij)$n%!!TP-){jUJ|!HWy8rzcS{d|#;Fonh z({QtulV5x0MJ6diE=|$X526^zoHv+p2m%V*Gf+ z%>?*_>Ga{kjZ_kq!2M2;Lgm*vCE1Xx4o5C~&OE^Q8R#X3p&ywC?5(T8j1zT0MZ0JAsz3rP}@ugzJ@5-eg5L-Dj%Y747f+ZO;8)-H-zKquOw%F9SWBcms$BJF83j; z?T@|RCJ=?D-V>cxkF-&r+`D?`Bvghj@i@2yi4>xj*d}QJgbjOE|B^Ki55qetM1adY zFJ!MT(6EEwJ9)C0JQTEUeK&`3nJ%R%pl2+}M-E(US@NK`Ig?}37RP}h z2O5U#y1I`_ZeQ-YMZT*el?>%c^~ph(?samz4oeD6^VCe(a=BSeBfVK|Ps{3}vX>lRv^ldEaLQk^jELFAw0*bo90J?l6y&kcj^RC^ufNsq zWtOWbc$WQo;9@iTk?YV*a$@A$3V|>sdU}1zJ2C>BZyGGQ01nDrQm|<@hgGT~k9u6- zkhC9FFlUIcdY`~A))RgBMW36?r%%f4^X>qfK&(!uIB|S9o9?mgEtG%_++g~EE=cvA%dA#P^N@tKo}L4jcZLVduZAN3&Z>t- zo(ms8Kfk5o;N#J27ya1%cCMr|&c5Pg4p9wdle0agdwGKX z@Ji)I-quv;Z+@CWo6ZBxYGdI$yVt8mw9h`I7B3%|GtGStFt;A7JH)s#ikzjJs}RLT zu`U^BQHO__!h3VXirCr*vD^m=ao4?C>dYS2;KjYMfe{lgmset-zB7#nzQB1 zFmJDESzJi0Ic1~8O?uZ9r@}F{ip$}}YL0ux-Glu4@tTjCX~_ruj<4EgzMx+@gfW5i zl3}`!R9k#mWV}fRqhD!0PI+a|==fUgBfp=rR0?>z_97UYPXnWjZr`q|=rYb{?zgZs z=MfhC;V;a?khB8}e0no7^{Tz5Dr9Vve)GQOyA}#^>rne-t$uHs0ZP1L;K9qUzlt`0 zCNsF`ahbb~GYcD;IMX*tkd--WGgoc16Lv0o$u9$?De(&&J*w(# zzv3A}YhYD6rqx^2_zx3(4F{AK&Y7GlD%B7reH77&GJB$7pUo?K%CF!(KbqP|sB^$6 zKB$y6@bOIc!%i+%yc=uKN%*>L!5y+susbC`$E&Jf>hQvdwa|fWt&`_=&lMbX1uGX$ zb+#9o?uAu3 z{A%2*qe?IZA5A%TeHX3~HaP!N#d797wDCLpd+n$F?ZV2+$`TJA-1+yG@1EcN`@RdG zjH!~$zzD^8?)U2UU&GH3>O{iwGn|xT#fS%D;(cEEJ8xCDfy|&p+~wh*&jEn+HKD^!%0={f$%;&#bJmI^lu4N zKf3F4Y;0@~*Xb{=pPQ1Bl2|jY;qG_mi+!nj#DIgQT7!U@KD$-H`nBf3x$DqOjFznd+k zrltnKp$WT6v2KFz_u;SO=Ys4W3p1tQ+sUNfUl9~3?Pr_qM%a@uEGGO61Ki%*;5n15 zdfK6C9nuct)zHxBwL9&y<3+@C7#QU$d^{aQpBg6jzDzcTVpINo04-!)L+|SoeJ}XQ z+M&GQYG^WXr$tOKy}$Q-#8>tfJ9_O%f9&|u9Qp9*@Nfn#)AMD-i=Xu~#;&9o^Czef zTzrY!jRHW^(4&}eOb}E+@aBzPt9fkN%0@}PQ6A)I>ZQNGl#h+<$uUATFGtRY2fWja zNme~cQPunQ#|?OAEGnFY>h0;##h!Og@BT6(rJdN)Za^Rql8qsM%{Iqx^x=8hk7L?1 zJm!8#pZtB+o}~mdp?7BfsNu_#`+U3MWMT@?xk0VV9KCtUp~>EmO{?BB5-~-#{baDW z(xxTZsO0yC>2PBca-r>ZVlx(jbf>EFEoevrhPp>3W>HKkF%WP;M2Yaf~+s>Cv!VBmma2ggD z7pJW?q1w+5|Gi3S@8_j|8vsmm^5J87RnnMhZYwT#xAn7c3a{mTB4M-2_-v8uj9cD+ z-2}_1y3hFUAl|tKbWC!gP6GdXb?%c6U`+oVj1F4WoY|1gir#ZmRc=YNF+5NMC7qm{ z@TT+%D_dB{CqTA9z1xjw_)YTA?rHq|q+r<^oVa6fv^AB|>C<}9NDJMI__vRE^}>gb zKiZw#lIyk!n)`SB-Tqh=R&=CurD+#VOb*>?rZ@}4>Eeb@!$ zA%ufbcQN>}1JDu6395O#y}#KpU|R_l75G73NnXf(`lJ=WtbTRenQfLl$tUB&f1{!J zpm5pd&B~S^0nhvJ@_*c<_aUk$Gwr0AqIN?=L%wEfQ81Z^&SzH%lLKyFjO4Nnf%y7L z^sf3E?NA`S`J@!QKppX8$T*b#a| zdCDyZjbe}ugY&VToU};hU5n^0>N8AUrHDJ9`Ubnra*dpFukHX#2D}@J&OSXwl9kvo zzbLpKdCVAP4Xy>vUPTL)`nx4vqM*@jnM;#xU8Me6MF!SS+$;n?_uanZsvuJg)~fx` z%9n7kAzfL7jp!+}J-lBd>@Elg-gBiV=`OHZ{t|bamT6$L>~eRi!d8VAy@Tcgp5cYQ zg`sP`(JC+bqOTc72 z7EN~~9&PjRq_-L`*FQNYKUREq9V;$6u58&!mWy8n77+Srvk+!JDT$t*o`s8xnLf!m zA7Xy)hJGoX0Cv_A@M??#M%HI5?T8VZ5+-0c#fa1A78HyOoxjUPTGv?}^oG^~p9OnL zR7tKHI^XWOzu8eQ3M&cDqo{GTWI*iS3eO|vEz4nnnW@DIUZHO$pAlCR$j1q*8eD`# zrK3rZLH6yiCC2;*obNagCp1Wa#N4&A?H%6YG1FiOSY6|u?l?BSc+gZ!&@P{B#d`Pi zkfPPfoKP`nO|Z{S#UD2;W&0i_7LIR2%AHMASha5|RLT-!x_N->)2u}W?1uqhBk$+5;Vss7kUTIn)JH8l`>GfDJdH014QUKJDCGL+oCnqpL#HF5 zN3{}4O2TZiUa8B7gnqz&EwsB=Hm|wmCu1SMhjJCWa7q~+PEJneHi75+ux!VJcc_x$ z;&YQ`0Kxs(tV|Ke3%(fNUxSV4?>gH%pQis#9>5CJ9`yfp1J-a|Y<#?E7hu0jCmY%h zC};lM!#B)$rKH=2^kxVEX>)w=-EbYue%rgV&o$@H`rK|{-_V9V1RB_~3%BCu=U?e! zwo9FB3F_Y%D_I@OKdYMsV{)-wVo*~R;uP{XrqLTMDqxh8NFw6<*9Nlz4G1V3%aU4C zc)lFafYa$JQr78jvD3Foq=PXmBK#ClMyTH+?S{7l#_cqA)(64i3;30OK%kH{Y{T}o zrfNWlr{(q7h)y>2v3B!DarVl&JvbfVA|;(Go&$q+-g6)Mt#yGXLHQ^nY}?%~g^N(Y zm0VE34F*Q%rGtYy&bMwkloPy^Qi}TD<;>*nRAcUH!u);-mvNCxp`RSM>Q6y zcwk~++1mHnM$u?7z@=gfXd${Dp^Krz=dZ4aJ~29J&L_&B)T$CC1wZNoVaq4kz%tKp_=Vcga(=PqoJl)ZI3VpS)z5Vg*40?i7CHt|kuq2I@ z825Xht$9Or5PeRySU|0fVTtWzqJ*ld7+|Z2D>l0!=^m5Si{CyHf6+osY!AOZ>lGto z#rlzFTS)x^lSE()_29sI=?Om(Bd;ndB<%7XFvr~rJMQ30vm+ncrK8Wb(P@AP>uEug zynuC^e(pH2W$lDAY(F3y&s}`a-2^3`bJ@69t9rJqD(VgHw^|9P3eBaWq3I(N?8xr9 zL+U5cMsp8@k(u zJ!)*XnLqB9?Ni3j-fcufiKCn0C+XpWz&~65RfjD*KMaz2lYmJWZk=3sZsf7(vzhRe zgz(ele|6uvq&)cpsG%Z}jE`I%9y4ji;e;{lxS4V9d|T-1v+%=btH94q2Kko*8ooDy zG?~y#OWvdHrzH*3_QD}V+dzXIua7N&-3Kqcp*UZBe~IuX7Zxzk9n8wYuL$fy1Z`!|)6`u?K$#`~EEn{Fl#Rw4eST4t)7w2={0U|~2|PW-7%!9pG; z^FFRHcUrWlG`;^(Q*))gbzeFe$E3pWL%h{l zVf|s4Td^BECW;Zm4fP3RT_WRll_JNJp7zIy*T4b{x8MvGdQ*)9!_K)i?Pk2$Bvr+?8!&vv{zB z&RK%9(-!_BHOZ!Rh?#{8vFUeq>N|T~F zXFe@UQAYZ3edbq#dI(Fu^)Xu-TbG=XNA~Ex=46`ryZlBE024sp@3XF~B$K{;a`Me% z2JUA_$nWvxQu13Hc+3^c<8i5$_A$wf+@0S%Q2(fM;klKycBl6zP_gx{0rQKq4T(d2 z;VmxlKVLbP*yW`o{1RY2y=DU3DiEv`5VFijmw;T_%xy9Xkl5UElBC0@hTP%&Ynk!P zYA`MAm_&vS0%Gp8Jwad8?k0V0d$Sa@HTCQ7f_6(OFAj=?jmh9g*=t;pv>A`Z5MA|{ zfv=2oL0Q2zM_bLDOP~@U$$3MF)sZPCIM+7#h!5sH6LhI_%7ba?-Ne9%fvkj@3w-<0kVH(IYg8!iV!@fO#MQU3}<+@@m}| zy(L7aiaj2qW7cRcrs(BcgUe99XbGKBs}J-u4LPVJM9+>o4Hr`yaRmv zw5sXKl7kO;OFCQR34WwpEB^LLuBH0ekQ{HKeGxWra z@T448S4i9pRY?=%NygRKve2TJTbzO{WAaVK(o99uQ3q-fEw5@|w9b}41nKGbzviag zUXDpQ&=Sofx>0g+XA5u>5XpT-uD#$>K@hpvy zZl{}m2}vt$m*F|pm<9)PHegnVG*zZY_y45f=Bwucd~@c?}81 zW`mc*X>QRMP~4BYbjtsy#G9{mG4A*cy9zU(2o7@ygMO%2JjR)h{_-A8rpxaR3t4JV z3j6EcIOwgwK+x+us>u_Dq@)#jPxF^a$Fi+8f_>h3cB!f{eGlej3)$bVUs&fH2M4Uufi% zi0*lu{V{Y;fK+1FnSbCNws-{=wEcr-Nq_gB&eP4w-{{2twg@}f_R^M9JS`_ALRm4= z({JIuGxt!)B)JmpSLQQdeRW2^Je_=Fq+!r5Wr8)bom1x62=2Oq+^b(enJE(fF7=Z> z`|xSmu1Rtbx|U|&*V3ut8IIDKX_cJWeYXJCT0QH~p|zo^aeHDC@9&I%n9g*)7x_j% zldDA1cpXG+|EawyRZ>Fg(+pqs9zL-OUZ!PgSFMm74%0yQVK%Hrliu9uG{Ydc&j`+B z&LvdqhHYVIpP^ik$K<VG?DZ~VMybk`x<=uw` zx8ig2f6E`&M8X|YeNL$wv}Uzkr+bQ5C1!H#8jN-R>$mlH_PmRqwI393KQ1zP^Xh)5 zr<0bZ(r6ho#uPN;Z?cTvI%e)T8wr7t+#YD?X- zGrKE}G&KXgI`JOtow!F~ScT!rYjHGr>FLsqd2v^eLcD{14EEMoQ)7k1LYoqW;@+iM z;WT@`b=S#idrR5LzZojYWyZYBLBo2w{k<(8zHB^Wlt@#;9W2w4JD62yeTIL@c#fM? zWejFy&DmnRo9Yy2*1vYpkyXP9k#y}RB2A=iE9kK&T`0Ucg~FTg6LR+p$0s*`&Mk7U zlMeuGds23ssm+L3!-*+f*?+@K^N>BjgqGaUv!z-U{KtJ?l6yP2R^2TB`{FE~^D8Sj z%QtS$(?TOWQ(`o*pt&5moUFyFNe_H%qEXBH8s$1ZrAintq*HAsUxyjzc8M5ga~xDe zWhk

$2&0KmQK+UdmyOIyl)g&)~=s5ZjSrLbRr!rWcyhh zhl@A9wUzaVwt zf${#$aZH@G-i&KIO|NJIVDF1FTb9XwveADUUYd$cAM7j5c$Rm37_{QfbI&}B;#Ilg z!(Komp8g9&L%jeW2poRhH1;sA4W`Rr{iDL%sm80)fp&E#sYmNj*xjS!o{d2p!_mvr z?GiFYXB=w?REBCX4_)YtRGXavIhAs(Yf%3^!C|<){?w3TrA-)5;)o-5;_`tE4yqt0 zK%1PUJipa{JOAhDB{RttJoj8+5puR86iS2G$&|FHGPJ6$D5oQiuDj0Ww^)lKcIK_T zfcgPy5U)D*Y!1H75ujKRZoVfmi|0T_iTMjfJmXeG+IvDk_R@Gr*B0*6ZVHvBNZc(I z+P_?Xer)6iA88Fl?C%xQYJ`Q{#8hbmwRC<3zVcfG`_5=RsS13Hcoht$6cnn-fb=xF zhWX6cly^D~N>uQ9M`qls?y!3d&O0+iyT5cK!s4}!@mV4CNyTxSY91i6;K5^Pp@bW<>cx6-XyuQA)$hVqLSZZu3c*s}r;?9j zz&}F-$-QgavKs7-Vz=`fIa*6HvhMEQ%N-k+S}TOzwT}FJv&!xRHdR_92Yq@OgYfw1!^BxU+;JT0Q3(o)|cHFZQvX6~nR z)rW}Uzo_{`x59xG4yjWnWTBq(OFC-X6{|FDib4HD{w%1bribr_W6zV->D$P$!+i%S zyXZ`ut}lm2nbGUR8_#${KoRKaJuDES`02318`6J#5J4LjM-z#1JP^)88F3*7ulZWG zUKN><(vao>;AmXb&#v>uzQkEo#BCD}{KOVErGLcpJl^>Qn)q9Lz#^4{F>q0e>3KRW zBWV_8&@0vG(N428Z!6VpZ1+=qad9~9E+S91@3`-oD#gA{P}`e6i}_M+dZ~4Yaq{2I z&P_%1Pq3fI(w$Ct4C;P*1(2be<@agVKD=5uXD#Jj>;#i-PDb~{S2LFts1q4lI3R#m zy|h2h&MI1aWlPoQ14GijzeBbGqpY)fcvR2t{^G$526(Y!j_)Z|+m%hQc)|1M>cjOv z8`8=Kfjr;_Ljy?xF3FkK$tgZ>RS9mR0fU?V*iKg%GFKZUl>IB4+PbWdZ)1;3-1JroVuMoN{)p;j1m@WRDJ!?OB?~J7R>!I)t8RKSS<|z zxp*ks$hF;E)RHnf>Mm^-SECQ7oIgz!L{nC0R*{1lb6?SsYNk#U#a7oFli)WtMBi#B zG@=aZUVWERmk}k*C*IogkQ1|={DNF&^K&JnLggFo%IqCA%`am=Lvw5;eq%zbk+{h^ z#@4D8k2`y z6kobcEYTng$7R2w^1nD1c`!(EM!y6SuzPp>rz)&}w0$#RtnB+l^^$^2@_uH1)MeuA zh+l%5l0vj?BvqW5P$WsvOe#g2AR2F_p_rH0-v4XGG54RU)e%NH+WfrVD`q@A=A2bJ zwy%t8ImQ_ybDmUdIUMwOD8(c@Sju$M+q{NJcRsm{x1>)BWJFjA=tMR7QhGAKb0XVN zdh|1ej@+|fdCJ>H_y{o2)p88Qk+s+Bed?nLLG(!_T;Ug&z6u_|z@mHw{yofk&}bgM zLdUr#m~L4dDneOmd&5#VBKfjyD5;(<{lmaZr&Of*cNQa;nF#NNH$i;KfqvESE$&Jv z;US~g*xmUhaHz84LOo7$B}$*ABe0TLRnl06`3Lg4OYF4Fyp>P5joh_EQ>?TM`=h^M zIxNKCm{?uzxy^TiwroP(c#ppbFj&X?$`UmYI0F6Q?5}~F|7-+*UiNPJ&SzZS*TtOd zLqR~!FG&I*os6OSdWSi$$gFDP|F_6rfF{@fP)`Yna#|k2F?ZUH+o}fH)7ZM#xf9fKG6C3@XDe6mC-6I+P%SFC-;GX5N^R2R&D!7%5=mlqao3-xdP?HNR!QAqWO5LZQ}*J&k+7oUfs0R zAy|e((l}&qIvV#4NL}U*vEM3}a-*C^P{0ZJy=h6~FgAxWPq)bIfL75$=Lf0}X}1rN z@)plI4yviBUJNnOCkea$-IOft6~hd7B<&TdYR&$G;$DTi)SI>_rpvr%bE5CWzw*)r%(T!QvDrIA9VqH- zcw)EG(Pm)oG*5TPgs!SmAdPfit(j9^s?47l+?!WJ7lw-H#%{&P7bL;_v%W~uR#%7; zD0!GSTg;o{`6_E4*n+P*C49)1(3%<7v0U02=8Dhnl*b-ik1Z(~l+GZTnZi)twN9!P zE*xFS9xBi2ayQu!M2CJt-JPkSkYpdJ^|b~3oJY9S0kIm2MRvSm1eRSON_ z5?7KkA^-%+M-9T61HZGRq$5#2UYroIsp5@7%9(NI;$h~EWQqtg1)oq0!DjYk805+% zb4V|(J!NH$wNv(vqaw!`kg@=k$$HDt7x^*?FYB{sTQ=z)B4v$z0)z$zJ)dm2UNPb! zvM=IywtOls8Xys>i40-C&mSR0SzN zDXVpnYLW5CBkE6A|HR+3i-Qde7^!bLSKA^II4lW4bma-!P`tugZlcB z=|mL}uS4Ne>m+JuRx8&a8e1qD9`ZqIv7A)W40U-`YYG%|`#nnqPLdHDXlbbBw4~Cs z?q}FtVs}^>`8ioL0Jq0E-;30`>5y$`yv+JQ%ZEJ^Qee^PGvi@Olc%)mQ_#xVd~ry+ zHXx_bUC=J!$b;hzKx2d4)qgcq7CA{r?e^`(&_Uin3R+aB`JGog$sA_0JNknpH5qZ| zLka&mEn}n<#Y@FJ{heP9?aA4xmfxST33^=maF)qKBfYXhOZ#qqtF$X#oJrbW*KhFE zRXbJ1D0m^I-|^Y-ufv0hnH`C~muS#>LAW2;$D=HcqqR{tL>`|cPp-F;liBn~=HmA< zBt8Ffu~gl$&xj01_oO&zGzopo-^rL_QNkOc z@Q6NX%Y2-$CREDST1i_UU`ri9Y()gUI@ylvqBd>p3-O6O;`Bz;RRu@4iWWesY({s7 zkiv~xg(;7F%Ld*s+dUt3nJ95ul+Kn~P)jXV?bH^=zt~CAb;*ZL3n*y73t4x~M0muv zFU?Du6olA!FdLMT%m0Yu-{vDEA|CK17|=)~srzIfpnigAXg)*z^RVzI?vst0npX+p zvXQ&KGcP!l*bYBcfY~p_{Vg}`W(U9hAhXbnrxoR@t)(F)L@^%3<|;+P3oeO$;?mH3 z`L}49j+U@evQhPLfHO|+r+dof;(Vd_-pFnOj(=jN(7jjPHNBPEl~_`1t)%za0RHQ+ zIv&6yR~cy4#`gW=M%Ix5DJjQ*plcT!{tVna!gWd@sxV83Fi`n3MT^oPfhJ#wudL6O z1;DJ3Oa;9mF@FV1tp|Vc@s{$b%*asNy@eE+ip})?tdCd#(NIx69DwGUG^sw$yHu!| z6gV)?pOfHA!|4}tlf)$2rmBw%Pj1}qNn)fke)JjPu_@CkcCAOU6HKkCncUARpPYVz zpEmIx)TI-v`_tUZyjVXI1Q4lpk^IZJT%|LS?<0lwWAgj;GR6000)S{fmBOoYC@I&x z;2rj%$hHW8dmB>q=6FyQT5DRoy9|C5pZo5(^BAh+q<%8D<^!qcz)g2cCCT2+L1S0Y zlzzdFgd*dDwrR?1VLc~i8K|$8I#tP_NTD;xYP;G07=`$M;Ju!5QoG7(F-hkpKsMd? z9yc>9U(iC&YJi=naC(z<;YZ^@DHWp7Ef`UMz0sv^Fy|u6=vTu>pLRlD3K5iSeK5In zR<)&ixgiT|bm5CJ;ohm>nfcAV48@u}o#|4w?ZHp7pB{#4AnON|TixmZUbEtK0|{VD zTWBepO0Y`XT00~Anwm@ed7+iG_%6|BX?_Y#n~6HhYmllm>%am#<>QaxZ&Af1-FJ32 zr0YA17zkI{r-Odz$v=25;!&6w_CWA)fFP~?e2mPh{GRLXp}G25E<^m?7+=5(U0h{9 z@lieQQ z`jlF^_9)o9m4wYgFm?tVLbo)_W=9KP(${FBClS0nTP-l^^xp)iY%2&Moor(rK`Hg@ zsYI~K>Sr*moE~`K_v@WS29@xw8u|(iKSLbntF2iUm@~$iJ1_s&;VZ($p-a#ssZLH} z#O)zT`2aMZ43=Kf|%-7fIo9oAc z+np=IwQCExJJ?cVvb!y&kw2SP{pJHO&)6`tU`B$%PaGwSmdo2%P7zS7oqluOt9et(xnf%7y<0Fp zJ{-#rL%sQ|)K_BscWwD2uU0+y?PtU=b~AMAPSy{nGK=mB&n6bNnAjN=KKM-26?8t3 z&!^S9`<9OJB{((A4I0S4^e(npOaF@?k1tm0DE;{*gwxkpGrb8l4W9r`gl0|#sU-Z; z(Z*ll_|>Ves}0vD1nsBwc_auF7i{}^z4^y#8(&z>Xt-2Xe3&%a21^a5D^Dlhk(n9c z(XP(oza; zEB79UnkZ0FxX8pXfV`ekvG*g^@dr)jr?4j6 zn(7Mh+3gVx9;{f@zKFv)EuqY>3VgWp%9qJV0kwssP2#Hn+s4yIf9h7^?&X=J>x zS-2cL@aO`fL5no@{go#pJox%3^En&tvnxu6ZF6p;CJZbM)A7-z7@_J2Z=|BR9 z)*BuPcLy!?E% zIZ)2ajer9k{~lU#6>-Y_0jcg7uD1_9zjPfFcmE@3`h)@yHMop}iaGHaWta)2qExKj zCCI3l?3xMfbM{U=axi0hF*Xikx~@g-))s}R^POzSWDj{N}2D9f#-1qyko#wa; zyH(ky1KSr=vzCvXPm5w7dd9=EntKq*9zP=!x7nme0&1Uw1tU>vnw`iOTrs_fB$M{| zOXGwe;(XWZ1fzJfFLXZYVXlVC{sIjorhB=urZ`Q(H%3aSK6$}M6SnjFmz=}&1J_e_ z@9q!2d&(yJf+axzXtjyb)49c!K&a>A7NbG9GQAF@AfhrQGiE*9ZZPiM>YwCfI)Qxn z@XE%rl%l(pA5j-rH#1q{jCqhbKhEpAVwU_wJN4z`i`FT%obk1WY{ROiq9)0GsST7D zPeFxownZ0-8EKXq|R;v{m{WYAi=LbUPN=~F!N}ltDdIUS9`~I|Z@^Kav&C z9~06#;7=v`kOSwp;4CjPWt54iUU!DN!L}+&M}h`rK-%H`w8bVlFZR(8qrr^j`(8`p zp*Ll|<+h&Fate_xn z+i#AzS&bhFlM1A%AER+4x=RJg0%>%$Y<|>Hu$3E}UB^E#%bWD8sIjZ2{--J3LJV#N=~+OLXYi%qf?dZ`xBlS%Tdv( z4)j$mupR)s!j{^9oELYuY3Q;P=Bc18;y`JwshVS~Jta|RqzuHNpUQYY+QbfOe-Xl+ z8~;@`|2Cq5(#0ciJ)_r^T|jp3E&h6T;|oO?jQ3@^eY;vovr>A{Jyq26#9m_qr+v<9 ziCDb!3HuPE{YwHbBOB^T%}C)$xxJnIDZ|j+3WZ8Xxbs?cl#7U)tYA3X>Ib^4-D&Fb zph(}qxY!I-g+*u0ga=USDb45m-wnaXvH4<516H_S(9>9hDNR@KM{8QzPy$>z5wpv=9)1~V?!52e{uJRU&+^jPh+cl=-j)$Hf#21v)h9r>A43mU;O))Drk+0B7H7?h(HX{&5x`gYxpHs$ct~ z;MNvFw;UTejSd{!!Ykj}qD^6x3rg)P&E%Sjg?J$0Y}`9s5=1bZ0!686aB};v92{W; z;<#biM;d()aO`YkyyzU=LDw>*o@uHt8d)D%SsOu0^2-K_gb3m_R1!!68qHcxPR`sk z_f)l#m&~#=e<7Pv*$Qk0Xm3CDAG@|z$RcV_rhJTTI$pu#>F}5UD=Aot;FCzGyeVt@(z8z(>fd(QvE5KXp*oU-g_Jt8Fr~5 zu8T`K@Z!=h`*9C^N}j)rl(d7{SZV(@`dtXJQ)>`yfEad{Pm#{X&9EDdK@jm?W?q<9q$oxtL~HAO)7Jp+X`K0*Yy z?^@$~hUGovk?$xd?QRu>#KoI!Gt6Pz^g8d;&j@U+6AO%j&1924w) zg{DQ;bm*}4nQk5UQJfBUUWO*A8Xzszkb92caai* zZ7OPjhpZ*)m^V4x$gz|+5J0y(ACFhRmBsATYs{ooY@80!jgN8P>8`MFx;;Fr0a>N4 zYNuUt=9Gl|KqPQ|Qh33I4pm-*;XHFJu7-@Lrs*|H()Kdi+jSQn_9=S3m(#&>wq06N zeo+vMzj|RVNZXvy{$CMDK(*oH2DzAKiUym6=R-3I-jT#hf^H#4^mpv{75a0$`?YHawTPoY9?u`{8q*Wsc z!&JSM828dBv|Q{wEIq!!$W(J>CZQnDZ|Pph3+#$=X6`Qu{Y$0&qMqxreNBrp1BIq{ zs6(V0!v=;FTv8L*<@w-^uky@N>d=r20UIRJ`Yt{FM%j})Ln|hrP$w#qGWUjm)l|)` zrHOxzr0J7JYC&|!QI&%@nT_WgI3`lp@C}4h{H>vSI@W2ASS#uufzsp9?f~5X#n@ek zMb))^98YG8q8Moe*&8c_;G>&acupdoxB@sDLuRc&)COIWZZF z!;S6daqK4x_A2xhfB$q*kI}kGSB5IwcE)SUnEFerxfrb5a2{!dx#|5~2lpe1)imuo zRt+IFisTCa=GaTO67OhpDbnOgfqglI9s>>nMVhTIH8PBqYQC7vw3;)MmXfKcB@)GI zE4xZdc-*bN3Z^QLQX@rv4x^Q$n>mi!L~XNN%lPI0@HX}DLII({-W#draXs7{^_eM6 zqC$g){K$ySBWrqT*F|x#Ut!s?&Vd9q=)?A468DBF3E@<;y=X_ZZomHGtGEy9?UM^# z)+5EbRRPGi z-9^Y$}ctxLlidgd9%yRi7TrYYZy-@$eq^Lxdy#Gm`&)Hnb7L@=)%^qye* zYPMBdiNYPQkBTT}w{QHP%zT&gi+7#@BkMg1ilDRekrKZv3x+w}mKT4rO3`00=OzIQX(n22Ebdh8$e<<~d74lM_kQ zK0gr5s!q|ic;eUX6>k-wmt$i}duV$y=qtv$oK&>rCD$}@?@0#KifyFPWtYc*E%1=d zx$R#5`%tbmKFWD;y#&!{+@;7Vy5w>gn_{Pta5>FBNf(Too%?I$!|JB!UgwcUw>xp( zs`Y`u2KN#*p5W0WTv-G#T91UuCB-XmqqCIvmp1-hXDc4$f#AS~-r@Y{Amh}ngR#&Z z1xzsvqH^Kt(BI)A^P1K2pau3E4Rr)}{$(Y*25KudXy~jw2={ndug0Eg&`@8w-1+fw ztn~^qu#4R-@Mf3bZ1`HonD;_Q4DovwV5bU9FW@--){$S-H&3y2D92@_4YTKxs_qv4*;7kek5{ z6T{e0E}p48d{vcNGEC*Eq~n$Ug#5jn7Zu>=&+@t8ibpdi z2|L-sVeNETIv6qVG!xgDsotk=vKTTglrY={%AxIS(JO^uF?$%GHbbyJ~Z z!VcD9>&5hPmAe~aw7D8b+PS7q-Y@rB2mS^Yy4B&t;kaKos)-jp`bb88q@S;!<+=;L z8%nu&uNHd5|9vbJ*Jd2=uHckuhDkF{!p_+hGi5C{2Zxh0ekt3vz6-!tZc2uo(JA9C zpYxPHKdzyDclJU0Zwof?Rj9v?2sC{nKUe@$_WDOqG^Oe&KPh3dnWf!mzpNMQLLYUKp=jN*)j($zPh%>X!ZhS&ZE~g>=YQ2~ z<&l@jtIkh9EO%T66M2pX{3@xPyNh}TO&#~PqrP0|k(h@H>5vc3v?j7SPW;>L50&NT zaaHfx=%$bsJe|{=Dm39sk;22I8Yj7u0&w@k!-aRWHDje1 zk-~9@ldW)ocvL|$Tiilda)+#9eu^tFf1Wv0*p^$KpZN62(RpUagX(?s2(ltdBxaWw z4rGK0=1U9JyhJu!N*p_|a1!yC1nle6Ki?WvA+4&Y2Mzj^>VKR(LU|CzemRDbvIOiX z9M3^C9~J?15Nw^CCO9l2xG2F9=0RKOlh#*QmoH4Tf}W#&?X2+N8U^7eS?OI7uw&3E zBsXlt*!5^2Kk)iu+v&r3$n|7_kw0FuQpjCj0U`+qGd~hs9xcV0-SH_zv83fU#7@9+LBudGzX$CMFfRn+H4BD3x?p3 z(p0JGT@k`qBh|0o#4MaYYLlpn=YI6bP%76o9Ft(PB3ma2<`=u0NtQl=tHBCG`>W8~2wsFuBmfF{yQBdGvUg}GqBqDZ6 zk-*SqBL)_*T470Chnj+or1u^L-OOmNbmoBR3{Bo8QuDeKN@ZyfbWIC3#HT8rZSi-W zwoBcf>HF7jjk69av$LP9I3H`tPt?407pbB+31?)KIlYjizq!OV`cNkklQxq%;|g6D zRCc{xF1Ov96ll*&p9TAsVdEZ~MA775M>>MmyZQD)ngdo?bNiXF@nu2$(MErTYjJwP zw~cUI@z?aaJ^Gt_yzp~K`R$fqOT^Y%OhE@);~*K|RpyQ`U`Iq>x(bVzge?T*at!hv2FymV((oyK{%wYeDCrKKaSjMnfUWt-p{#~ac# zzXXFxY@N4A6I0K{G(?=>*E75s?FMwN#8L`csyE;$NC2#WY-ocB%s&NWuuq?-$^m3(}6}ZN?WvLg*|B`okW|ha)Qm{{_x{z##T8+>d`%=he#+N zvH;w%`f!cAT#ou<5AOc6{SV;orQno;#UAAze3p0l@;8MkAj(~l81>kMtA|2E zYZ)O&J5^==_-H3LCpRUxsSsZ;x!zpaqu;;ieP1gm3`Wy^_KrGUFCmBMrYO;UR5$-} z^b2^ZyzRNCaNUzF4kYkj2dlTbYJW4JQAw#eU*zZb_Cbj0Fk6cUA|LiLnXUk+Gn3=W zmG{9lAcK$egJRMf{YGvD_{@Cyxzq5OBhTs6Xw}mJIpQPnY7^t-LwqN!Pt9$n`T`--vbp@mT9e`K7gL5=JdxOAFO^ zVe>bSI@CwqG#c`2M8Z|fDYFNEpS^_o-L$EI;cQyzm+>;Eq`6ViRACH&*zi|(dC5sn z9>1t@vS;~MhBA?Z>2iZfmHvHK>gg9UdEo-A_)2P*MQntF!XXKsJFl$M-?7{#h;VlAgq9DlACf>z57;#jQ9*#53C0&+Y>PYue+tlyJJ zMcdluIHbF|dneR>1-n;f!d+J`CX@XU<4bJg%Hl&Bb!}{MpLMd}U-dJj+?_a*-w@=M znXGvJurGF+=k&pwuf#oFo*s8vw9fLqk_B@le(v~~dQ{Xx7eFIA?=97#sbLPwY&q|{ z#a=!#Pte@KYC5AN7rHi|db}=^3YCYxA~6rDZ>p^}1TY+l!8Z&io4~LA z2ojTBb{L~G5A^4(bFIszW+)gN6jXyqB{S6aiT-UFNA%lf)|+Ko#E4i%ySafn&^4g0fHB!jqhxo4i&@{@Yowm;u8WKMwnF@K-f!J-HV?P=U*g*Rn zRs?wq#|>=5)Xuofute=Y9!3F5UK6nQb_sJ5EB{v9(%J`qdC@rBRNG^o>P^h z!N5BcvOu-eoD)DzEc)>JLfoF6Q@Hn+v7pVg-0HDzThTa$^|Ul_F>a(ryv1+Qxx449 zeU*3Zm}tE?Xrn(j@w>Z=vDN5Jl1WtU)p0wxi^^v`UTC_1XRW{%2tHeAJ&Ni+TlzxQ z`Ey|3guCHe1qVV_B*FRwLf+y8=+Knct(GG@uoj%SyYF_T)^Mk@3=L z`W~tsvK+86vI375INNJ}vMh%`D7-`VVxvJR0r5?*pc*KP*_>}vEiVC)4PCCqqae_i2=#%0AvFe3&2*@@H8l34ij^37v&$#MO{%OFPIQFim0i8+GGE?7ZR zMse<3!=Y4DV-IZ3@7p`QVTv=Ii=}ED!9pA;2;%o865JnWt!4(oPx>V(vb7_1sDJLL zjhy?Qv(L1-=ue!uk9n|VH~DuPs(YNZi_M`x z56{yBiM8T#?TN*{Z+otWy&*4uZ8Hf$f2VUGWslf(RhZ+}%&U6J%1JvaSX`TilNium zZ6c>n;3AhwB@xm&?(g?ktz9ywU{u#cA$QlyUCb&ULz?u-0y4=SrcH|a`f(B*fdu%# z^MmzIeT5a(G!@BBnxjCJkZ3I@{El4uEmt! zB3@PXTP+0;Qp!J>PiSBqWr*y1lqie&nY)4aK{z{Vv1kPVX~|%;5f5toA$U1ENW~_8YN_X z*&lCaJ*VP*Gm#Rlq&VxI8BuFJWeuvI%TZvIU)00Jdv?@{ST-`w>%Pr-lr8ZWG5+{2 z7P%fj?TP-xJQlcq&n#EzX57T_>(9V;k3=dWtH0LvO@0fCpL%aae5+lgV2p36vyVxfA~!#^cle*Txq#sE(8UJuuH1}ClVLtJHoO5anC@Yfl5 zo8d=K9^4Bf0*`B@*B5;99fk&8M=Mc4uZURhx^t%Nu)TO_s*xoTV(B1j+${<_Vefdm z0KCW1_?^mvKpz^~a(MwBJK@-yIIpipyDEL^gB1Vd4X%LcWFGd~XGJH6EjGhZfeE6k z{>ex9%1u19xVob+UIkJyjSNW!9kWG25C!G80oTyIFz@uphmMr)g^fE!CYL+&=5{2; z5+COCriF}ZVYJ8E2DN1I;~wm?GxL(pAI}GMS|-@X`poHqW*X;lQ1CKeK>yB>P_YnI-Xg^Ml2|{p{S05^W&5l?U*~Fl;0`_m%U21x9@6y6ln-{W z7{mgT;rlqjp}qmLW&xf-{OfD)D6=~!vl%8O?Ww&A9oefsf_eLRbH*RH4^*Vw3|v zJ`u$>EkBhOMm*{?bl_BW>CejdD-uNZe~t}dJnf-o5#}Os-Ln(6VsPr(pu)W?=xQYr zwks_qtK!b)dOaibY5vzEG^1g|9vq)es5b)yfjfv)0728WFS_ZLB*v2+DzPtU2dz69 z2jAeGv}oWUHl{&?N5C%KNjOIZ{en)(afkwk$G_(%LhGhNZWWln=Zcj6e&$%v$LLGw zDsgT=98wsID>v>xb!RtzUSX(f7m-_|q0q4ppq|j6zpn|EjeJSBb%B8TOlRMF9ksLX z?{%0v3c^FuWiywun(K^FB}|2VL3@jVVEkxP>CkWvcl5u(Pg)B2SWh;_6KZH2Y%@zoR(8gg8ljc-VWm{zy3Y}k&kIzo4TX$ zGt3gIe(lK<@K9Ff=Q@L}uyf%upC=uXp4qjgD@i2;WD$j_B!uCUD=Rr~E1gZ+SytXT zbq!Imq9bcT~}ozBZqO% zkB5=S>6dtM)>lt2SUAG%=C17*DxhA;+Nea0&MwNBG83>oW2Sjp0o-`fbd z9ZYb>RTGU&+5QEb`$(}&qO}jVW08RhW#zA`?u41zn-=@GVlN5)Bc5S&9B+cTV*h@ ze`R)MTHimo#!UxMyB^GylOi7YoG*Kq&}v4%{CEjtZMPiau4AF&wG?|z*2JS z0r|0vEUhB5O@#ZngOIG?I@S7^b*m8^VR4^%c6X~#H@gZ&@SctV4#H+oa8+WxiMFmP zze^0({CLngIJge4d|_>J2@nhdt|xEs5KNsi{w)9cZOUK)yh?VqSM4~SqFA{?z?NNv zUrjx2Eg?7OG^@1hOp=>brs~I<+*b!F2X_}c&)spY!S=9&-X4n5XHhE$%vWM(1$!?H zAY>ir8Eu!q?B*|`Zrvh%AiZHrm2GW{zmEX29|@88g>YU_jaE z%@1fR>$v`P*<9(Ab~cKXLW&RdeXl>{ZfcC!_Fd-jHF;OIH+J><>EbMqDVDIGPrE`r z$qZ3)r-XwrmQ$j--wGVeLyi@rk)2 z86+%%-fP1<}z6S5RfY0WpCnWw;rVx97^DCfV074{VIUJxA|=a{4kyeRXH6 zqK^6d)ajj!^Vq9ytGrBQs$HV)c`i=4KOIt}Rl<&5R_u3QWq$mjK@=)BFXik5<2zh2 zxcl!Kd{x;qOO9XE)P0TTUehucnUM`Ja%?*m5To64GMtDRgAL<_ZySt$#o~5vajF%> zLCxC(hSl1_1Jp6e*8b@}9B94K8fRE{(Do7wq7@EegS%>;%PrW`dzz87HCqu+pw{PR zq6Dnc3Ug_lb37{~B-Q!tXo`=~dKO#q@>JJY(zbUm-|pbd?|eRlY06kon>U*TcvA9j zzUP)TT&3}9q6FfFFy|S+L>U5?E5f1$)~$w%g#;DRcWlbGZ5{|;EYL~;x55Eq=cEph z^a0fGq3n&%e8JckVf3(1`Fg^k(phIk#>gg4L-P=&d4?bb9-T!|Dmn-;wfQ&DARGEI zFiWj{deEIL0?lcMNWSY@HytNQ?g=xA4Ta4=+t+f$LwXK|GcYdu73!27#~Eb`^@5V! zgL+0T7|ndc-wkEG6kwRBwJvnz%qt=z++@;JqFck}NFp7~O>1w`vJcs|O1@H`wW?U^ z6p(=qyrhjH7oHrrZ$viJ<-zobV@Ro2!pvlRWz=2PEfq1g?mNh0(XT9W@rNgMPJi>xdA;+$rLoYm2?VC@8V%M-J`A8Kx6S{2jDdj0QUi((?QRQ>G- z64L6*v)Kl0qZgoAh@@I9UFeVI$1jbM5>?3_k!RnOao@+E8jup&_M4a9n^D@G$uca| z(Wp6-ZL-Jd(v_Dwu;JoT?Ul3E+7BXXElo*woebD0dpU4J>n z_w&he>(YP{#o6r&lEKRH;P~-+kC;2rN~`Qn&@QQ6o-ye7v(`E$q-(w!#~nD%#(zfr z_dB+s6{*HX=jA#g`~hFu{a&1!PPz7P&*Yzc zxctjc08=K$I^dslmP$qlZDI=Hs;RB58)<@54VDqQl5p=D(^alRr-RRa8++pqvIz>3 z(Z{ggzG19W!oITxSFNNNrsHO^Chp3AV|qf1D}BGEU4vcci(`tw#D0X&o> z`F}SCv!)K+?gxE1pBiNDNR8ztAgj$z)lul6R2X~R*Hsg~ox(nt+hIalT@ue<28own zfyAD789Q+<7-F;OAsFt_S8F}D5`kVEQ!QMHtbns3ueU3d`HG<1ISd{Xm}k8Gt?U#SI`cJ^csKbv0A zX+1M;BwkJ-ditBaJ`4Q7=XGbk#Y>U({&)-PLQHXYxk^EfkCh@ z?!ZEbK#lAK+Ze}qnrwen9-&@hZhETXd)$4*rP#fn?y-E@pd~xx2r^gp0 zst8{VXW!U4yft~tB_I;~>*&$lAKJgpK4;ZuD=Ju1RUHU&4lK&Lths;v*ZnSC?V6Fz zDK@LsUh|L3<^pk9u`0ERiuw^FIs|d^laQBXWWrkdh|=tJ-k)kTYa`|xBkcX!uQGuJ zL!#06ZWrn1yhBu2*t-QDqM5?j+uO=Bq*k2aTB_(p7RP!wP=;mSpZ5CcfZX$UMC8?X z#^SPD@8Jr;?(0XZ&lFOW*6$8=k;%^t*roTJBJYdt)+j6(4Tn1ML2=0`m)FY)J3D?a)-?+d#R7Al)6j6 zx;#c|W;kkpT_=}EL4kR9i9hqN=!fQ1GhKweFY>767WhxN<&c9}{43g#^*4zZ7pv^X zi&zvj6m+`tGE7#;`3l*%A6iGDg||xn)~(@_737N#0 zljxD;LNnQN1-}qh)6GRP@R(+!BxbGNZJ=1aCO5DANan#8qo^>-k-_Qfm?7#jZ232` zV2bq-*KCwHouxowg-bVyiw#qZJEV%`2i2082A|+c6Pk~{`BAgXS_N&y)?%8^FqVMB zfCaydq%tMmpu49dm*A$pNcvOCkre#(_;niVH!rN=Kp^75OdNplL=v4FPK(3;3!@Arg zAS;6}Vne}wVB!gr1~$8&Jv(uyrGv}U<)jKrIV1x){Jp+$uRq}>z@>(8QXe;KxJMTu zY!}2S^8~w*u308h`03lO6i%N4!;m?w+p(J`_ieQ%9|&$Xy+gFJ2K}H(O>Mp0ohE9x zjJ3c`J^;;|aqpQmFTc6c_~(JR>p%9UWB$1}o$-bxEh{raw>$YN2zKM>U2>4N%>Y}E z8|XrYHSk*x6-YHOO`jq7y~aarCT8<>mEbCHes{{{8`IGj$7X>N_5y8xZIe{l5c?9Q zvgd{=Mhxac4o%ADr0%*hh1F*meelbS1c>2*x3Iq})O{wL)cg#_j7EQm67Zj0LwbT& ze`R+X+}gSC1_&*S8Ff#s&Tc-jeGoN!xF$@gm45ZooX(z*5F0voX5@p_VcW~pvJcyr z>-Sl2a`yHrvLH$AF)2NW*SsNEo_cgTb$xj%KZ}rj;HrtgrK(_L;%BT-CvD$3DotMQ ztn}QkfUSxU`P&KrdLn6Q1yx62M|hhAzG~dT%JpNW9VcyP@P~m4E}&i&jZqu&ETx2d zblP`ol`oN!tJPof5sGR-5TUhSM`C;>5^oQhDKpat+<*D&`xc#y6dDF@@&Ez)jEu|W zq@R$L-Lq`QAUmc*;c~P7l^CClkXgC`X(ReuupJGAa8!){Qd_NTEakag;|4iDU9gP& zMIv|t#%}6_k5%T=e;xi_lJsHVMionX-o5Ngh%U5j(`+`c>85(Im$OWNm};DAwL&hC z!*K_ zD$MWE+gyMo&J?-n6RKxrOA$|)9 z49thhOAVPdXbSCEfM~dVQyh5&$9a*NBO>sspj@U#GgGzD{`2*> ziFb}$BsBYQA&-dKyKCbd8gx;GhUZ4|3LQWNSmDL%uDJ1{>8siDBzu>Dp6ORev?ErL zwo(L3^d|i;yf+2aTscEW7wn8gRVta^N7D4m%qf&2Vq*myYeWk)uMNo zUgrOs%A0uH@4b+i)AY z*95yky}r5j6kiKTEMxxxP&iT&3&qW(un*-Fy}9dP$20qM~T3G?$t zfQgdjy&Qg08h6MjhXH1Q|00n34}Rhd;0?(EL*3nAOjxvD`~`b2q&L%Rp5xmq+o`iZ zk>UpK1Hw2c)vi{EBf21s2&n+YZ+41Jh#Uolq$M}?C_;g82OQx74 zb0TBsYP~qsR94%F(T7#H9NW>SvTJOKA3uJ?xH0b&fJkS+Yx(nozz4AJ4VPSvk=*+N zr0at%bp-?j7;9(UBAYJf_LDGy<(RDUvVdKCMTJ!$p*&{Rr5zU_FfhzZ;Qm=4{wy75 zV#J@=Ykz6p_V)I}9?ig4PW5Y~7!9FO!@A(A?$1Y9h5vMW;185?*vrY1KA>uB3~jpj zU6!=fv|SDE1{e)~KrcxGbOC@~K-0KkujW@uSTT^+H zegR0}UR~o2s!vd5!O${@<~Hx0T7$>YQWdYA^`r4$qMs7m$~frqO9-u zxC)302hbL}>k+zeaQFCl!k_ebAiVuKPjbAzbMu=lK&uE@F?jBJ5f*fgJymH90caL9 z#R6oZ%>g9JYIRva2{4-7mV`Aj&2re| zAc4oZKLaj3d#ozmPJZj$PM)F2PJ+9DTytn2h6Dn#s4Ia8{a!%i;9_J1Scl}iR~&zA z0zoJ`DnmLz@&r2gh&d##5Jn(!wpTr}uN^iR$`4%`>eE_eY_r3Gk2HcrF@>hCq~ zOJg$XC$`5Epnv^m1XxN@(9k5-!cI#5M9}{P!ox9FYArc%GkNt>GXj%lju}M2AFmAf z4m|ZogOY25lKTdyDM9C9LF|7JAWdm>-k%S`4= zTYrIQre=*S2t~#cky8V0#$@YjLoX8EdwBG0Y!qVt(tUtMiRhjs^qjej1gsUP=K?ujFCiefbZM~z@SAjUcafn<)E|u8$%>#*$;7Z zb93NJno=jP{fDH^Iv9yG)z!J1Zh-7{I3p3Al&?_Cir5XtKdEbMq>6DpSZsZ#unY(* zK}yy7a79(@ZSG)_zIz;{c$w^@<`2#1y@NVodBS4CV`yTE95yuz>!#nOBC@ImDV zSpk=)os2{>05#+afiZPZY(@wCXS*|OrQ5xI zMyEeRT24+*FnG;ZD8^l?cSp*BgoK!xn3%po$tfxIHXxi*rP~c|*CzKgw zo&vy1hX30fS++5_q1p2xxs^{E~B=8#jJ7(I_)GI0)49V>pH0eD(Cj>h}`ORwwVcfh+K6 z60k<(U~^c1?gP@upFT%c7ze>StM=7X}a6o1wyXm5RR`mK&$26n6yDq`sIQW$>`WkkA_8GYZ==jdkKUj@brq%r; z*sQtvCAvqqxsu9>(tY83aHOfL!5+ z9uAXc#$3fA~Vu6XS`xY&8tK8Mq6_|$|%o~V`JY2ZF3`!2h#_t8jJA=23yHLdBT)THjN~c+ z2qh@f1-za|#dvjNh^A-Ln@3t)q-z-1Y7O%YoAp2#VrD$dlYSMWcB}!Ij_?0mzsV}w z_&;b#7_IN~QrLx^55^+H7#02p!E^@RLx3Xo5JQ8lVJMD2GjX~zO!stejx$xwipIY5 zO6V&FL;&V(vf$EE9`v493uo<|XS#t~4}io2T8Q)w3epFV6BnN#=q3E1cd&yH-tIR# zhAfzSV)Y2nI3UOB)jy>tYq*Wi+sIZ&l<5*N19~1if0FDNU zVybfIBF!=iPWR_80W==^v9U3L*6;@a3FQk84Xw8kr!tn!089bYW$|5n9gzjpFi6kG zd)Um0sy)Exh(XVw$7g3{UeyU?5C1cP02aqj67|ei|EGG3TDSfqaEiuSu~9?u ze-_MzJY^AJ@c*ut*=qt^p*q#K9Q}HyGK9OqkASuFfBcKze^%N6F{A_#jia%>95ROg zXLUaBuhj=EP(gI|Bex2`$msd=1ThRwJh5Q8c2>lv>@?F-P`D|>4^k6I{ed}p$Mx1E zQ6iXmsO&Vs%HTO_NPvAu`bqUC){YP!|CaPYD$Bn=;=4*`eiX~(eP&ShmcI1073#x# zqu9TdQnje%KmmJP9WlWtT)2xLJV3LilQk%BMn?XCa1%vtFx40_0m5pFz;Ba_me*9< z9G>GQh21{B>?4$pi*Av*i4B3d^4Gsqdg{oH7Qv$W3@wyzaAIVvSyb7l?r6Y&?Y;P}h>MLFLqCQ=E7D72g7d>nKNyVlTGOHe za2sxs8YGsHIjxUJuK9PnTGhcuka@3%o$| z@As^;Y{dF3Ie}EXK~Z&cm-Q==&&ih-&IK#_o9FE&R`;dRr^5R|`XcL{HAp=;yhurp zJEQCswDtk|z3TXbEP4~KtHHW{KcoWkHtU%e7H_rdnkuv~5n&7##-R7i|h}~h&?S5HVA?BTKMUKfrU@8O~caNUaXZXtl=L;I&2QGKF zK1(OLW(OPp>RVi8U?e)9Jg2x&V-16b+rDx@kDIZ(Z;8Js5lE44J;blCl}*S9lwgdn{M?GSpJ)Hdv|gqkW)UNA|;R5AWsG?N4P# zmx>Bz4Xw+UB?)0TdTAG`BTS^9#`Jz&Cdf zsiP%}lEAK(ml{tq^{w;gvmF8K(_ zRNHb^mJHOmqe1MRv!}ZO{BuA|Hdrm+S(>fIjkR`7k; zf|FT#L0z;W^8@~3`t%&*1^vFD$~5l93-7eioQ4`)D$AM;#F-o|L@U?$ep8@-(96yv z_9ritDB6S5={>10YIF{owmsC0Yq$+?4EoeE(kQ*Ym_b`=1pc|FygFU$fL3O5DDmWQPZ0$;BGtmnRjuUC3)z zCvmd#6t=09){Jv{Mg62MYx=BAz9Zts`?X8_>{GRG;Euao(@)EE;Z1#dXl5Ag*Dm>v z{^%DzDQD9&k>cNsz?OqaTF!)rK#0}oTre{6XZdb~Aq$v$`c8oolBR~plh=(O$(wI5 z6Mhuw*ec2Y1MBMu->WvCFi0NLVpt5ceHVKuI*}o(bV(%AcDieqg*PZftIbl!;35CM zLv?_po!EVBKYFWOwcL-ppt;Byx(Kkt^yh2)p>N5uAjwGm<(MFRVag2bKJijUEB7$M zQy=-7`UiJk=2vc_9y?RJ_e-IvHlb&yL zGrKaJk&F1$uwXFRT$rLrBbQY5DLP+V`RE-liPnRu97C$~HL(7b@}5-3W$rbUen>)mW1z@rA@zK#2_% zXwk0JL@W5jVP@;Gtpt(h&?9|sr%Sr_l0)nop21r!7uUnhRs1sU|PP*?#S_yOT@GwwmPTF($ zeM+4);n=zV`ag>xMO}uA{{@{@;s2-#mKgjlL>WjBAqW-CWF3m!;@V=Ntjtep{RZlO z!9&rpg5X2iFN3xob>ElGXH%o;UL{{Q6R}xvcAfO0IC?kLT$$4DKbGLU&gO*=XfEC^ zIHW2PvFvREhTnlcTwf0%rv6GYFZ5M6(526}sYcde^yo-MQ9*CO7Q8|LnMyS77k8|l zxS{y{bBDzzbf+qOU;RDHH~(R~d+vh8pAg^X+qQqY{&l$x0B_L(HBR%7U9+w%Ri)+# z{PKEC_8&yf%Ah48!BvmMNNFgo5zWWoYNFF#Eene-dE!PN|ezH1s$QCs_>*<>+ zGPvkyPfzsoe(<5s)Eg;1S&F8X=IoL3cfqo06j@=!nXMJjO2bge{cr6WWA-7=AvlP! z+VawR>OmG$IXsV~dE!o?u8pQi^+_g~h>x-vLkbEF4K4%JQo-}D)hUsLw&|aA4<)mG z>O~^#o50;`2m^dn5^V-CoYh60hOYgjDhQ`^$>~$f=D6+g_#^5cI;G%DOAG9pfmL$5 zn|udt`SylrgU?5|<4ap@EmP<~?s6_aS-%Mlnb-|V&5EM>ua}e!L$12mapiAAV4Jhe zBu44|)zO!9aj&f;ag`*c+9Rf8Zk6~s1G#SGyDgaqO#2Xiwo>sj(5QbLkp9437711|&8Qsoqz=>{zLN33?KjGUTq_PSp~VQ>I3# z?*0^)r1o4L)D?=$4to?p5?xP9tErIJLNyRDiWlL^)-`-QVBZGjg z>VY+(5_l+lSP)$x%ra&!^^s%$a7P8jmmUj(xNw$qRu%&&_;VfCw7%VkWQR~MRE2|e zxJj%+FxQPnVNNzG60N=)jhifEG76mzZLI`Ca>Awc;#=6=Cr(Y@Tz^Yn{H@bK*ii4}V8OPC1Xet&fI! zs-(pqT7~(`w56Ady_klU{dW7e6InF9jS4~k8o)b_9i+*8v=S-GKtFB|6~#odHCk%pJ*7CZ zaQDvQ-+uOZ`$=qSrE>XW?3tVbD)qQWEaTDMc|Fg`)Jl3{q;%wG5BUptjo^|{PNOVzcv{HMa7}ZL(k6#;u zZg4BQN(cx-fB+&$QKWY%QbP$KMS5?c zx6td!GiT49=iO(1d*1UO5av7geP3&>Yki79IN?xbTJ*D@5n$n^p>}p)&|U1d4O{4}1H-Ilz6$r9Y&Pf0lDayY25()p&JNGgaQV zg`s9YBJ@wFL>hJx^JM_$EMd8!x#|n&a(LxF>fc?I?m;Lfb=m0A4sLngZLKsY^Zd`g>$4W4nUHG%8lJ6AB z>XV9Mwe}GzT?25_<*6FuqPP?2&X8GcW@;8nAAIAIfS@`Bwr|E~2}1o7ti}=3d6(-* zsPFxQ$TN5QOo`7946;SP9m3|ox#TyFicFAJbR9{|wau2^oJJ0q#Iz0=E~C=qsY z`%J!=daC9tH$L`OU)A@zxs!JZhZmkyj7XGWLNkAlEE&N&>&i^~JK+oSXcm=;CRC^^uzS-R}#9|XiT=r_B#q@(;z zLT2lqmchn%EEk_(TGBCc({zZ&_?|D-(ZEqOm!qDeK1CZgxDifq_uq|3|M6x0pHHTv z9uv}ZXx-mg45QCae;OQR%}#58IBmjg5T@DxG}{o?`x3LcBd{Q5G3kD>l}egJk$ysz ze_8L;!*=w%(%tVqj-Oc%!#r2!9b;&3N2Da706)uKa>(05Qcmwq=k&e_w?CMAl=AkY zk88la#SJ`R?ruS&}NajZ}(Ey)9>7wa>D}*5$-=BYp62 zW9t0}DZAkygKM6S(20l%!Q+YKfgVm>KMZ!C!Qw84<+uWw<9~T7mV+_kF;GEq{8UXm zrY-4D;+O?B++HM?69f@Csh`T1G@UcS1Rek!?t!hyI3=3LbFK#Z+JhdS&AGrfLFBSM zMd48sIN7&NW?VIY861i`z|0HnW= zY7XKSYOBY1%cDhnZ8`acW`&4PB z6yr7}&rVB=%Ljks`spy6Nnd4k%r9d%tsAR%JI}Bi3Jh4+1A}fPR>~!tt*gmMlcULt zKGS<3Vur>+W+&wIl2N>aCZV_Fni0m9DWn=;e`nX~V?b-Uy6eVoVLyml zON5n^BuMh-U-A|RN=<|(fe;Z(|78%S<>DmUyE(7&kQN5BOLLpwlsBpzY$?msMSb)Q zTQyIwqHK_U#;6<{=x_r*VYJ(-UnGJNlRf6}aw>jmg!}cveL!ML_?=JFlF#~)5gVoY z|1#1?{|)$B`ah>Thy-v4rIGWCTtVomI!2}vr1VPdoaiad?nIQY3mA;dA8o#k8#5Ea z&}S5+$%XK?`sv17wm#D9{C#U@qS2aQb>Tt}1Agp%`q7X(U(jBQ=hL^q_BQSnmZ2cD z(-KTur&&!O`Fc;oXn5gTKX|Wooz?mBH#}!b9tB6tP1dmYY&z=ISC#N4^J9njH3Q zbhHVt5-;eQ90Ins7O@091Xi5#1D}&*WSUer3~0A?GAnx(b_e@eB2HW#Ztmq|@p$?# zxfew`Vmp+_Iv0a753lIP(tFK=hCNvaw0Ryf<11rJ^de#FWNPnOHFm0CB%5#7R^H5l zxnp(NkX65hAGT)>n6W*Mj0t5KR!NesqL=^_>%E07)vLp6eF?`t4;rEddLE2K!H}|h z57*0xF3K!Zc2x8_S8tm~`f1?|zsNpU%Y9mpNNGG2hn-LjH%wMMSR~-tpI!P*IwBtp zdw)cs+JI*bvhf&v)r@jaw0d~-vmoL`0thU;Rf4c;tA1Rg=Fj*DlTFXuTmG=q3ss~N zc2a%8jPO5(9}JDNM#va`{Y=t?UO9`N?E4cEKbOphl91x3I@{G9Kt=Zx-1!N1yS|Ke)? z$H(^{_v;VbU;**H2-2?A7?WwyY3hBQ;$KXQQH6MR>A|=n zOh>`K*uEDX&|mQYV?eEfso9*-YPy>Q^>bBPbsi0rC~+&LhMqXMAjwgWZo**)XP5DZ zLR7vXcsc|Gv(W3E6PFXe8B%N5a+38pa`INM0E1nwg1kKr{-T-Nzv;Z1tJ$5t z3sJ)kT8Lj9fgVWo8aL#qb>-?`aQ% zW$okq=a=d-ABR~g@F0XYaux}xKUV$roK|lnt4iN4FNrwwjbTbT$;1NeCGu0Lk@3WR zD%l@R=atv(z8m$l*0t+t#TJvsQ9ia;BAcb2qj~Y?qEGx(Vmet^3Y1@}nalhX1Hls6 zJ57bBTveTj($KEYlo?L@mc&GH7c&d>NR>RQwEpv3s#ZE`bBW?-iV!oR%;|CQgu-xM z${&iA9BS$%f8k$*QjEU*IgewO);`gq2GaB-WaYUP7K)WoR>Cvk(7=ffoX-x(dCoLj zR%xXmv++>_v5i5o7wL!$=*Joa6#BUbuD$Q zSrY>G^$sQ0=7YPXl;d0KB98#TpTiR$yCo5;zhNDw{%Ph76A(55p@gWytEweT^t)$)1@nCw$3M&I?wIdIz`{Jm#E73rKG> zvHg958RkWK0`56X8t;}tPlNEyQ0>VM=skuMt9r*!x(FAMh}f@=gMw>!8IC8Yj>C7J zlP(qu(+SxR`LG!A#r~@AyT-<|L#L?d0`+vW#YW~k;WRR4ynAUG9et$I?lU$?XZ6=I zcqGl1fkNXW*vVEM-C~X=;t7gtQOB2;%w=R>e#ll3**y=kt*CPTD;eM_1qln$U|IV1 z_v!Z~(>JnZ#{K3KR8dq*UY!OuOvmaRWQR7)7X_MuqoB(OE@G~lWWG>f@UmtsO8^HrChmuD%d*>h@Z+}u2 zih}spzq73BigmXi-6H0jM785YspK1!3aj5WZEUys`c%Iqt70~)&5rK9Ad26A3y6ns z%nTUwRZvTHy(oX0*FG`Z;VWem*(3G4y6CR5^nk#&bT!RC`wt_JR*|#r7zOQg>(aT* zh5bkrk_7v@jFii2YJz^n3n<0(L%In%rUgh`u>lbm5O}5P*p53@MOuw1!6HC?P8j%< zKjUgiJ~@(j>ibuF{Nl=i;%ZsFdaRkJ_yY>ebYHw~`Q*#P_{`>}W+ zjYIi(a+#HM&z`ooVS4AW0@S%o$V{kWTSQt%iYc~mLhDqXk?Zf8X?eDlVpcp))5oWF zlX#y^H~nou$AC)1$#)m_SuG|w`)|cr=TF^KE7s94+w#*I)6X6}sw1i(vCiT!_+Q=H zYLlTKwgs#Twq8Cnlw+#qTf)khre%N1_Eb0QVgwTH18IHC_Xmr(FpK zbs+TFeMeUY5J+ZRp`hEEvw;h)VJkAHFTAplZ-Zg$U&g;+08F8^v!X{*i7)G4y~Ny5 zes^4RltFW_vI(dH-2LkeHNJn4?S!nluObPeSkShVn2>9NGy7-b@OJ)PgXi&GBPu^?$!2W2vpgf7Qt9m zs`snwR5D8y9+}=D1$vNb@Ap!i74t`I$(3}`hHTfs>unp}&d_wjJHEPLf4Pxh57`D* zOR`Nm>HVwEd9nj}MxeMmOh4eAHfF`>07ra2hshNg!`&dWj_b8{1o2kOdSR~VCHF10 zv>x-AG-y`J2LxVr1;MiX4ufDNLESoVaf_i*N~yicd3{@>7X#;zWL!TJ=%bhTigX(|K;(bo#)Pl4Y5unLOwa}vtw zJxKhaNHbP-?*IB7^9RZ1>XRun8=xD)Dkd?Jh@b!b#J9Ivot5BWT-d%ut+yZBS+^wjxIl}bgdQ%$ z3VpUx=U|v~mV_F;GII3( zO3K%_8fv*EAMJ9xc)pKErjchp7ChL3D99V|h*wd9CC0Nf@XJ7CPUb7+%Oz4VSAWU% zSe^^(r9HQ9q$^ILg|~eO2x%oWW5}9asvGyRb}>w;oMobHTWV!+|B+QfnH4J?WTM|{ zQ*~1q$=+{Us%Iw-WEi#!$T&eMc~YDN)6-5=GAi(UIK_s^uQ-o(jeR(LkYKmk)Slz9>z>A@3vVZydyXm#R@xDeD2S2ILd37IWYLKC3p=Cz|HC9)1?fJV( zVe8_gxFcucTwDAoQzk11U>K+!`Kd2$ZpoE*;b=$L=GS?y&Ssowjm+Djq>L{FPPz%# z{GBcd+2+t1%ZSr0U(|iX7^JCZxgLL{C~`Y}4q(0*uM^+d7uG|$_yH=YS7T~djgu0m z*@d2eKKLrIRM7lG54njh3qw4+@4Kb^7pjU|?zKB0 z()^0&0Zx)yIxCTDo1c!}!JAfx+-Pi?ak-G z;e=6xOmDjH!e8lTDn^ualK*i;*7FZ_#P4*xz(fNA4{yVWBMl?{JK!~oVs}fxDF~P0 zM|T@`5AQ&?oei@nI1iq6&j)}!iN?-C6hOuGCttGCVOp+u6pBK`$yfC8!nlxqX>*2L z2<|+Gde$LH%#RAIHP+#en$7O;J8wGw-$q7x+`nh<{~UjY94Xw^QnoHL+l3CC9AAnO zi<^nwC#l)_-B2-@gVYH)VD}?3Zip;T>>TefR^wW{x|T3TEa=tJKi(ys8;d;iX}n5u zV2IZYf#nuH2$S0|BCB+-wF5U!aDx3tF}I5_Z}bDC5k~-a5d`ws&PxK>huqcK+W^I_ z40&A)xeBd5xd>|Io_B${P4#x7l=y**&x0Jo&$s@`WIYL3tHZKipX}BVEY75u+aww0 zyU<@Cp}T{b2MP*EPL}wG*b!39FZsQqx)aZD(Pv+j!;be@)dSmIDW|yqhR?EEBma0M z$!tsRHxw~kVDC1EkfT6xo&|l2*nhs$0lQr)nsp>Mvr8z}c(D)LrTJnm>5KO>P}Es5 z5Qs(ZHBiUFmCb+H{PIn5NEeqU!U(RcYs+)HSX~No7o1RjM=YqHx$};31h8p+1+Dh02BTM39SD4OCQ4EY%c?p0%#@ z{SO*t?-569g`C^cpV^g-=Dlb=+COyKB1gwrD_-PrShlGXNiT{$4=ms;_b7Ojid4DM z=LPL{R?9ZOaCD8+dlPpl=o=aSe)Ads=Td!AivqFq470(%T>Hfm&Mbx5p01(37{Uh+Zzvb%PT^KE zJ>!26SBl7v#ylg|)tLTK(K(-YBp0V}5lsUMCF`4@a?$vc?hhmY)GJ=7hM%^ ziiK~Lp$0%?&g&=9>YCCSXmnw10ZcQc-#Vh|-&wJ%EhzHF>X>S20(uh#vmF8{ZX_ag zf)*zn-~+#wH5Z32?E=5xxx%ue7(MT7o#`|Ewy~-g8?7f)NS9K*6k+V5ScJ^Hm>0E8 z@OFP5l+KBxEj$t#s+NaVJr=b`AJG>`o=0u#u@^$5Ixz;<_un|bndShv;VNc=lSZax9qy-h18|*~6B267(RKo1SI1Vj7iL@C+wq8mwzgaFxcN4`Ud& zQEPBH!qrb%C_gHe&SMaoB)fYqBtMqjhfG9q?0($Gy@+%&H{h2lN`z_ElcQT_vwZP1 z1k>^4my_5=ZMVOP(gRE7eMpz>j&XzGiMr}SsWf2uF%$ftP7JadXl`@x*@Mp^Xo=eu z-=8y@D&GEC>~M0tp0;GF-`YHeY((Zc-*9h_-okmxZl_DuI=^y2{AGnJv69tR=k=J> zn{!9Pm+}awgJ*nHTcQ8p)q_VjD=qa?We@&}pO>O|;1TLf;wgk*D2GrPS)F3+z=KaI ziwb|{iCnEjs>a!72us3a^Z@GQa^x|UZ;}`Mlb$J^n=!-}htC<{z!B#@TzOby{z&ks zz?cnW8k!xcJg$m z>Lzr|6SUFqs$JEsy=dGbPrH=qOa@|e3N+Pn_3eE;?>&+h;5|RU8we-Q0#?59YT-+u zv@W;o_v8f_>C`>5XSMk&xKyh2XkTV)wMtNjzcxyY$=W9{q6;o#WB{1b(7I2;I%7oY zcKl#6uA+Ct@JOA=+E?ngH?mcEtNo4{=}t73pB(-spk}h0J{(GUf&${QUJ=|imjLtL zxi4;{Q}YhB!a2-^e!3vaIvooveIXM)1K7x#lC}>1aj{y(q7S>}{n!lN(GaX))|)mTFqam$)%yEI z@l}a+0BrS~m@SZSu^TcB`!V?2&$QC)gQ}Z^LJZWqJG-p1ZjKk+JL*Q`O}{s7)>nty z+sHEx6k6+c=6873990co-6q^I6aar1>dy#yqeW0GkE))O zCB#xFC1$$@eEA@p;ux_n=SHS{BD`)+x_I4N9O9D~ee$%yIv&>5PME5D?t^2x3%bcr z471q<^SonK^1s)2s;1^V4C3)hIcIOWbe5d|we>wK#Ai6Um)*-3e2~w)RGyL@Xrf5oY4K;M=d%9uUf{%UBT3sUYM=E6h?C0NBbIb8Aul`=a`YYV zacezB-lS?TiMdo1aF&gSJXed*Jbp5*PLtq%JR+{n2U>(td&8$mQT1 zIVYi~9T!18&zs(L8A+~mY4)Ws*#Ux=AJdFgfV>+HM$OodU2@H)6z@Rz!vf1QzZmcu zfSVQH-@%q%T~IA<=Kp#2Q$=?Fi0s&(Hi17i?)>&~;Zp+ia|5O+e4zCUZHkMRa%%Se zgzKW1DK5|WD8gy2`r&(e^2K^6p7=?QeOLVJrC5nk_7kE2TV(Z5a;pLV+T;~7yo_^aX$S>h<;GI}O#!nITs$pz#PE{Wmw{-ANU?a(Sd_F?soY zM`9Gu5+Ol=KEME~)j!gR2NEP`@MV@i<(t19ZQbS55p#2ol`0zd8PB`z>f&=TLR;?E ztxP?6F;qWa>!dqBxJUV~^Sb}v{R;o7uRYBv!|%Fi=VL1w^d{$;l`n{>sZwR_B_xmt z^R5#W6p%$l&3C2&eZYxOc$-xA+2aInK~e56bDc9(24JEn2x7@A5w&yTxP#4#+OaB^ zC12Cr7RTpr%dF6-=B4~nD!f`8Sj%(cMLvMT6oP5onN<38g<}SiB<`=WPE%$b%j91T z;B<~Vj_y&Ch+7_B^fx&=+O#5z+!Oog9Nm`2{a zjz9dclu!Yg5>$*Ii(No*U$1G_IvEt%l=D@?QpE^ftE z?oA%QoxBadL;UqCd$+ zZ#&m2HJd`nIT>w2PCmqvC97Rg@^M(*-_QITq#KgNqj~#RKwuxyZZHD+gg#36nCf#W z6?i~x*nJ3!+U+0>&uH5vmpI8z@c14{HT{jTZ=NvbWB!eAF z>x2YH9R)3w9z!S%H2<nU2h)8?#%uGb*N3@{9cFVKUse5pPQaA7V*X$4wuudU??s zQny@)v*FpFYd|0|HNMf(PNc1Io7r>PC9pd7B0I(JUCCyBcwO7KuM@WY($gh)?^gV2 zqmQKnUcX~AdoF2~r>Wi;=Nmep7iWJdL9f8PW-5Fz(S3i`89-6MV!HYdBL9qP@d^6ljq?ZKhAU{ z(~&r1-bIHZr^|pReEG^$7okR)c(1=JfhRNMG&Nr|^4h`MEp&WaKv`ZQ>T1xluc_?w zA$~>-aT5~@x#%aZECIQfXD+we7*g?Vf{J|hnb75mXWg1@l|HykWup^$l9F!{NiLbv zC*1}U%F@}+-2Coak`)&KcdG@_~^6wNLp^$ zmrI-eM zp2ro7nbA80SsoJrjOY&&>3I#7L6pf14=1ebJB4 z{uAuaHu_}ARZ?Cg!azn;W)u{G`9)|Q1@jBcpHHJmst(K9JlcsSk{ zoVNEuN1U0Dh0nWXk0k1}(v<58Y6T*QV*B+f-5|n-w^NP+KJN=q46n-~Hb_0|zOT%< zs3GGVaqvq_sq%Rn>XLs2?Qde_uj0Y7Up}4%?7zv~6}5@EB)K>AxX-Ol8&}$X6LQ5f z8vTAQK3CXL1RwSo9lYRpiwpw!(qBA#9ev=+>54W@3^Z|!(;e?^Fl+-XUB4B~G1R1t za99x2lum3mB)c#gy1uH&9Yp>F7fX!|RhRAO^%!HL$c_zZ6Uh2xQA(&sEl;@N?rS~Z zEVtCD%NX}zDS`PTrgY@5&OXP$0Lh5R^Y(Nr`Wd=@A*BGKlN|$)!UQOGY&6~$l$-Nj zjAypIG}vCEwmJ&-G2j^)bUEdvo6RoBr1R)7HEcNqLbpqxrY3!~;OTcH@GQrg+_FT- zZ0~wy(BYjW{C-oI0_4-=n99$gxQsP}%D`TISlzb6^Ss%eEjqtnd(#0nHiicDL%8ku(jLU`i6-+103_-m_T-juw#v2Sm^^4KgQNY1WE!$VBMr6 zmjH#3CS`|#h0Wo__f{j4*ds~;W{##UkHdy>XvY!$%B>?@)QytNFZOj|J@`luo-5U! zTk7zM1+{{nnunFe{xPr}aR3YM|Cmy0;ugGL`Q6cz8szVq|dB z6DsVj?YBPyIt#;Wl7_z7#wyV!6gh}EN^4Cu4P0K4Zh%Gg^qqj&gPI~=EsB{pXnjw9mI~bVj zhKw8(D~J`%jvem=j|-BUe7#@x3DcAL|4Xa@U9E}Ux;473t)~3qA9M!3Y|UoR{wMcn z!|CejAz{O-pPxBcSy?3&cN5r4N7*54r2Z=RSXRkqXy||G4%ZDD@m@~UGTwbXA)k40 zTGvLy_Betl*puz9Bz_thX}5VdrIKx++s}J-#cQk-%o^?@QIW@?D~t%8Qz?UG6@C>h zHB`;+Kjeyn-2eDwLO%MKOkF-=$~YD*jW8h?dSyC&rnrz_rk8H(=ktc{A|Iw@2k7uq z`o*RWRxJtOYcF&e{IK42Kc7A5l2!5?PsNRU_8w%+uiW57{8n*q0HJtm|30-m>Au}# z_YXd}N55jl5gDC+fU9d|*hxacRr1u^5afl5fOvDTBRqR=e~6^RZ5>Dz%BF8Kr9Z{1 zLg@;?R}v>j2FGZfHH^@STJnhb2o8p>)vhEiJdD~lE)oRZ`=r%GYhxD4_4RGI>vMV$ z<``IM7OPX^H)V}N*1wO{aqprDTlu`)=@PgZDMty4+Ka-`?+Y+Qjm??wd|hlU?V0ok z&GqhhrdytrFZc5UKXDV(GccEkx<7wVnFc&CSjCEn!~HB;&*V@FG0YjZ2esVej7G7K zUv~N)jNtFE$fvbLJ|m6wJyucQ62Pf6)FV)gA5_?LyrM9p{isc30?J7wR#BboX-4#$nHF+|4(`!E4j7?9yIo+bKM5H@VJQHVq&Jli)%l8hD06o&TJ9t8Fe79K{eTk~j zlk6K+19{4QPQ(|EoiJ(zn}1w8N)`tP$TnH``?~S)E6*i9=S=NOQLy)vU!`*&NBTAr zXSG}os1l22mAq+gufghZ6;6FiC?$n2O7ZjO@u2m}U^;c$5l zWr1k47~2q8Sy{E)B-MTsp0;IIsUm-}&s1%ZQ)V3bTV~UztottG{wl6Rwz*VEr>=-` zL=N-HRUdy)tS&lYf~~NnR8VbF1JG8savlb;$=Ik}GV_ zJnu(J(z$M6pErpzAIrXf#_FQndSb+J1=j;wyk#C5e`XY&9)F$gwWp`}NIcSZ&4Do@ z=+v)O(uKjHj+QE!oDXw5=GG`|{Fp1P*^-s<@Jvs#bVea`^9M|;r=|HNcMr{&^SFJw z6P&V34VNmBm-)^WfXzu|9O1_A3$b3es1}H&r?tvLH#_gOE8MNPky`h7u|{1dEUC`| z_#JcesTZQiG+Els%UN1B%Y%M~ru{YU?X}$jMy3A7F>P@x#KTiGm}rzTi*a#P_ef zLf1VoE=(?($&T4~WLgrAegEr6aU3>!sV^{Bz#?>vyB}O^p7&-ol8Q1XA5Suqjb5i% z4esxML-nRA)OR)+yffV3#Bg#i3!rWgg3HIRuw-_MgI=F*$zpm@C^2XovA>hZCD8^* zJc-WA=}ocycUWC@;>$@#bG81=_UW4_KG$9D6$;1+FB9~o&-2!4tGd6F**GX`*?jL?5x{0 zjOLH;n2Y_6`&@)2%)c6}kbYsHBL94n2m&U%cvURrk|fr#)ZP)e&SHYeskRN2WU>ap zJX_2{xES~%n`^|Rn5x6E3`Uu5fF%bIwM<@vXBv(84Ew6u7s^dii>R&hbjNm4(>g`5cmpMoel zV^EPk;H^HHJ-A|!-Wu%hJS z*q53QStqU)+dl#QzSN4xpmv4jx|d(2yd6ofH6htSIk8V4?8?}8{aQZ-&6>TZw4rXW z9OI5Sj1<7Dqe0S3tfo=^3RWll>)ULk?WJwkyK$l$+lwEx%b88c~wmb6656!MXR zx>(G`*2!B@C_tfS+wGNDer22oN%xA_jqvAARKG-1kr$W{{y$^3jhRM-(5?0rouZmI5c)C;-w6?wrW+9g>CbPG+ z<=6B5IdhuXO0*>af%%sGC9>2}lI$hnBd&5`*!0|z?Lp*AZYUq5m2pCEu38v2Wgl28 zxGXG!Viv0g3?8PYw+SCA8!0LK$ML}K__#7RF(zs1v{{0L(tA-qQugU#D&JqnR8mSi z$pa5^NWjo7sF3Tys_5~De9+h32B6}8oq_Ule096yulQBNw?94t?=;UeJRBHv4?NFW z8Mo%qRWprvKxf6f|6R-%)6 z$w_8{au=uC;1QG?Aaa4JwId+b$LT(h=Bt@qm4-kbKXY5Yv1ZGhbbK`zf$M-S?ZA(@ z7TJUghk0-Yt3S;VUa!iJ`+7VSQzkU+1JT!I<)lv`7`T3CJqs1e>~&Pst!=DyL{(S{ zsw)b8yM5R;S$|(a*lV}3hZj7YY(axhktFj?g`ew1R*F+OiBp8-ek{SVWTN$!V(r8Z zZKITKm&$6U106ZuxaD!?jmCKbgwMiklaUiIjokE|*CDSj@nt^$?;d>8gRj&~{|oW< z_5J@x&UKrT?p|3vz-J2-R$+kn8WL)o0z zw#ZTnrQhZ{O05n*2BApeprCtDcbD5Mck?j~)tRi*Ige91#r^6_-FP3FlHr#nSePVF zBKlWEUk_7@xmT4CLmBfm4Go@k3?~V3B5QboHYNoIg(-$+L(YPk7k;OXlA%wg&n^#Q z)&0%T;{_`;p7?!{HrDFR4~XmgLM=_=`le~_2@y+hiGqLX8)YkK7ki%@540sw`xSrm zlvBQ{QntD~!jz{~VA9esd+8-#g50o3ZQb1XR;FL<;4G;R&yMWNnF}VdX^wSEfIv`m z@)|0D8bzQmLU&cNA0Hes^Ky4A)Pxi4;BxS}O zEOpE}eT&-z=v$f3Es^iL%v6jo*nzYe{?XJb>h*{91}PF+r(}Zjmv0XS_XzY&?Fka> zjz2c<)e!deJ{PWJ!RC}aD5(uXn72hJQ!Hh=CcAL5u25-u$F((1fqC{Rp_n)Iy;{_JY1US>0x6#r2pUBUvmGK zReHEa zpTf(B)!yT+0405s?Ok;it)EV-=UFTr3WFDZ_z~oh+Z1=onGKD4f*LOBZwQ>naaf{) z$DY~m;m+=?3!ctMvR_X~>-;M2`RuayaGw6kU%ipeq%@!HlKoODPvT7lZQsv!%oo_f zj}2oLRICzY`$(*&*uW%f`_-{dk_@v)@h=!kA?mF2@59X3*&ora^&oxchn9%-->$#* z*M|@3Q6fdleH~*-qS5VX^d@)TQ#BCRx$)?hkRm7awz_qSmIt*YO+^qD%w4oHinK#}`NuPIDeM zIDCe&I~RNYGGp{3w^OI7@VOie_F{AVMjxf(4m%f&!?Lv z_S*`;+dwyMY3m?{*^jK$`5I+Hru&Qa=s-`Qt_SBG^Ol3vpq{@tILPCryDC8xAbZMj4tZEecrPG0kP;Y4<|aSDreg}uO#n&i;J|WF=bJ2 zGi1{9@FU*8f{=GC3-d)jRW}MqI(nA$vTMmdO)(Ytw^Uyt&}TLdOy*&nZc7P8M-RR3PLekAV) zkp$72DV5t$DV1z4ova|_{Hfhk?Zj`Lu3JBpetY4VjWt48uZXoo$FtaV(|c0b6%`Hf z0a|Oi_j%@mxysy@hK^+G1FR}g(R>(D0-OPD^XND3IFK$?zps4HESK@?>Fh%$Vx5xp z$xU{3e8KbfU9sHFgF|f<8`W+%A4C*KVxD5h9Y(`krK&j3;ZLkN|U@F9DTkY(>~GA06toV?|P@Ak&PLS*=80*DE^d7?|sv2GsIC z_HDM5>|xpdciSSwFgpDw`u5S=P!m*h-qQ7^cPZD!BZ~~F9F=ZHYjyZYucj9xp`i98=a6kWN zJcbG0qxOVuJ5Qw#vjZ4pV@)4ToD`euVe zwRwVMZceug67bO@jR$~vz*;R@Qf?2_A~J?CogQezJW2T(`{qbH(bOqu;I@4-Cu)x(^#adm&Wz~NbmU@cUmJ? zQi(tO`C|ox8F0IDkdg>;I%M=6mktnxObncnXs}*}-!~(!ki@TcrjDwx$pt<1G+-1T zoEeXSB48vJn;le{=-;Bw(#|hO^!^&mS1ARMS<%zd_Glu^x7z*^9WPMyJ?bOsXQ4V8 zFrSp{Tj@>sR_#bS+Cm1onyjbAUfT=`f}N`=_D_9XZ~CTAR04KD{k?`UlA-t>=ShnG zz8POrkz~+*e_x$FTN4s*(o=rw$IMLaU!|mXUa*fYN5g!C*P&Vjn?utbL>|Sxlf=+W ztzW$^f`B3M{psaDfDDetyXpH;u<^sx7t#GOo^0=9B~#bG$wRksL#H(qo39;<$y5P9 ziXIg6thwepJo6S43qPU4_6wysj=3z?Hd6ezx=@>keAy~=Yg%$O*uDZepeSu3t!S0` zM4|nS$WFzUpO0?V@gjCwu78G347U$5ll?+DB}*)m;*dqbKP;XuXeIc^N~`2kt6%jH zl37Mt8gB`?ua0_ogB2a34{%>;pqs3I^CayPfK`pzy&(a(_(9#hAa1yC@fp4&sY-4& zz4&g>vJNPVp2-YV0*BOur9HrF*l@R3`Ip`?9!dz#mFyS zYt?0#9Q1)~tTS{-f!Qt!ml%?Ds7BmZE4V_$(w-07xvQ>S-!(mv59W(H>s=~1^HcE8 zL2PeGD%ODSTWewI+TT(|eC%$55wZ&XGf~nCNg3#UKpVBDuod{mk+5qsT*^_b58pAP zTpKW3tq$g~xlbMg{lrKAcpXVMHG-I0R|F0P5|XmszP&kO9NFP^AKLHXzf0c6`Edhc z9rq@q*K|Qm2!h4_4zWZnsniz-g)(YuIZZ%5%8nzH>Zli+-kQrqD?EbbBNp({bTY>J zYN}(j2jx`1TS7l)tFM&irgiY`Mg}#tG+HMSvjRJTXH)^+_)53JdHFz_&XLT$qzCbA zuguYY2v-e}xU%~N&>t@`*Tz2Xk5)>tA!JDqRiIL%l(Fb&hpRU}M;^p%aT zH+Y>B^jcZP%&NB6x#w2?PmCpaw00@)WzM|*4|-ta>oB1!AQqqeUigT`Qo zF7^Ai3uy_Uv6EU(s-S4(_Fr5~9|v9wH$F6e#$u@bHL+6d_1xtHXr>HV_cV?SjI=?r zJ%0c~Ru8LfWXK^4sfzS`lMnAI<+*Q!hkjqW^!xi!9u9qt##Eh(QAzzP564!@Vr1Co zO-qm=^%dPPnx3sFkM+u#Q|-b~>SnQSJxFaZDy`@_Xp_7PX{yj&k~#JxP1bgI%A(fa z_jmNBHBhZ&by~UDkV=k+2gNwajQlCqH~>dO!jv}2>r9#_%IuEIbfD1I9b7Hh2d zPa-DDBqnPHjNWrNY0iDwnkx|6F5b|-zHB{GJRf5ohVKgti_eV+x+eTa~?g z{sV+mfWUy5cB`fm`NmTqWt2gQGFh&TS{ zBu&h<980_vc6jMhePd^b0`LIxv{E+~2RB_Z(M`s%kLgQ7P7rs^W|;Xwj#B@&x!a&txCm{-2@(kL3X$tx}CvB>i3@ z;CGPM$Pr@#Yz2UE;Gd5RP?(MW@jwIxwYLB)d|8(wUqqJqLTJ!Tm^;|165bERVrWKCf>gM3?@rd1t8`7|M{h+ z=B@0Y>3Gs;tqGkMdg^~tlb;G)+gmq+*=3K}XH9>^W9{dull$DC^A*~Tiuw9e^-MWu zoOI6tx6+@gz`A$eW8$HV7t^p0fFk1dm)?PB?`|`M(xCl4;6O@cuk3H%9#B9G0N#sL zHM8?E!@PLRy4P!@4r%3;xqJS~*8uF_v<*A#I?#H$h#!Ea-}8x-!t}9VfMa?e z2q3dx)4|;5oEv!F_}sb{TDDB~l22RE(wOeYnthI@hcws}S!~L&1pOLE*yyMh7|`uN_d+fFx!mSgqfNvraGYFU# zFsmt=19OWfBH%%zMP}eFj6!R)0?9^&^$j$ETZ#oiC7yq|%7JtSgaX}F{%c%F$EsG! z#Y2FResKU$?GewSDX&lTf{yh-U*AHyUc}nk*jSDnB5qOV_*LnHYhvkxJ$v90Ki(70 zXR;mdo~MeXs`db6@t}tNhN!40vFzdA+dm@!B6=?~*;3Fg>^vbM0XF00wIb*mc$kee zI}11aglyY!c8zInZk}4D`<(xVA>e2fkPleF;;E}z0bM{sgYz6Eu3YtggJ|o9`a$;6 zB`W;ZvT$&#TL=eUc?aEiOHLeARwL;)>H=hni)!Vf^#ApE@slhVJ^6N|0gHBN4bF5AZqL9zAvC2*#@*8D@MupaEV?nJtk$*B}V~@gEYO?&G+tWsd@w1 zi%0C(ZChC`9UUEj@*ap?Lx{m&Nl8g@qet@1PBKIneF{n2*V_SOSsZZR8h-Iup8Y~h zgSXCmH@e`m7AY1#A8@*WIj#ya;cea)zyjA)?N%g0C++)AK|yLH^wcPgO^duj`F$!C zHL$oj2E&6LLuKsBKehUu@~-xpEni>krCUOuWsAC|0VV?o8jO!EW@ZMk;_iUp;rLr6 z=5aSXSF-0&3cTNeOLZ+GEL`{7`px${_SPNMe_;IB ziBcIh?|D$bNf0~ z1uw#1$+@&&d0~Iy$~+AS2oMkxdls~h8}zhZ`jr0H?n3h#p{q}5%VF-`=l1KZ_B7zg z+fV)4IkH8ZlSNxr2!WAT7(Kwjzuq1hxCPgP0W=if()CHh+LqbP&l72DgIl8lcCw+3 zP4?zcmM=6k6tf&kJTN_-vAxi&7kJji*!IN=xcSXK0}h&E3?{wZ_!@n4nUDD`Puzd& z`0;E+4a5)vYj(^(m*TnrdRN4GmeuTHc53x&Bt!D|sy4&L<4W)TorWdeTU!a$;$f7g z|0@>&$OvB8GUccWJpR6Rdvbv*sLGyV0L$W%#k-uzzshVuP*f#OwO=1&Huc&KO|LQO z^6{9Z>z$>6Tk?CA-@?{vFRklmU{2Bz_;;NnKSh`PYy44y`AN5n?X5CqP_*rU5DZuY zN&_?v(*7T5{GEKR(U@1j64LZ!ovu+t|6pv1IW=CZLf3k{L>+UG5M&Hop_AjvcnmWV zSP@INm)gyM1+(qAG8)6&@q-%+oHXuR*U?n-^XLLVtb|&p%ZM$}_y~b91{t61E!}<# zL*Hm>{v)*^O$tAvRBQr99IP1s@ns~Bp#Qm8x7q@X+4W$M!JY%~04&D?ZvTMSAQR3xB{xuLMP}~YFfQQj#_~l&Ch3izaA&>=f1RfyK7-VFL2Jo)8Jsi_1Vl|8u&sz@!xLZV1}KUqkiZrK>9{C;$#9)naB^Q5R!3Xq!F&yw9lH4q~3g zrTEA5@lQze{hyFV%mWqcH1ngFB~>Tzrx;+aa9V7^7Nh~z0I&?8__}pcCI5fHjOstZ zOmt5H1mb^G$e8+u9q6%WGA3F?f*HEY-VKOp=;`SpKzxZKXeLyych`$Bv5kI-Xl4lC z#3?quL(_7`sot4-Xnp-z_pN*A>Gkz#JMqEUnOJw*p8VxldfUV^&9qvbWNeg| zwF4!*%S|QfrvRfC_en?kl4ow??tCo(OZsbXgVWrEW(^N11}Ktl?jUw|$-1RvDFnn4 za02lWnW{j46_f+$uuWELkZ%Da*&$Y-r}f4;f<2v0(v;=MdB5tB84-r@Cu;n>(qfJ= zVM%&QFjS z4tKwXEd{)BZ)y^Less?#!5S%*s4@PLoK!S5!pGMJ2jN6yRyAb{CCGBf3HvBh5bM+) ze$`Waz53IW;M~2I)G|MT*@O9H{mCW6Zcs4yk{9R${A&w?1bH+634(bTw*@XrgPL}( z+m{afbTH;u;9J4u-EwtfI4&$Enqgqa)%IxE@SdflXBd>HrSZ-%8)clubzTl{3TQz= z!5H`AmFR-^-R1!6Y`-U)=-1}I7yZw@!%I;8hP}p( z1unXJX`XcSrGuCZ(0a{GO(Eq%8NcYdhnkixBR*>&dz##=F#gu=L&VO^Hb!;LjZ{dv zF3=FXol>^Y^jV=kHx2Q3{JpRGj6#9u%TS&lB3G{V;+0#xv9_k4eBd!;y`ZFCkRGWO z@V4ydpIj=jOmYg8E(%ofTED<`-|+`y?WxcD!M}fvCN`z{5RA0Oa3gbS>BA0UgTVWm&3b zm$fSbd}_W@cB}Y4d>zCz^(k&C+bi;^dsa7UKctNYg{Oa1paXvE_e)0}Fc@45Dp8BT z@T`9?IYsU@d?Sdr7eGvu)fmlS^lpDqrfwV;;H}?Y|PuRuckz@EPD5{Xt-SilCd;!ScN;(7I5)Y=Hn)L zx9q8htgU}ZLxcB>Z{5ZFuzVq`(L_o-HmR;TBT=mZMC|9lr! zJEYD{-paK4fSEUdG_OxZLQth*JxDtI6<4g{Q2x%v1uj!P&n0D65Jgm3;h}MU(M1e% z`Dwpa&i9dgNn8-im%}0}n=zX?LP7+cex3yJK?z}o22EY{;vbbakNB?L_}-fM0c*CrMT=1*v_a3vwQy(6YxBe~pH|hikjpg)4oh)}L_rAUTu2q>1p%Zt% zZ#ik4BL=#QxQ#TWgoPjQJ2EOLES^s`ypj@wVEa{?EqHq7Lx>L53^bFDMB(->dc8n6 z#MB0;v0_K6>sjs5p=--@7eI#wy39RORzoPD+$c0l%3k?_4rOAZ{LiEJvxYD1EGun! zHwkINdB~{fS%&A%ATVgHGRwJ(#Y9!v{F77SkuZ4ek;nREA zetkn)N01^o&9NoC4ZAZ!NW_a@uDpEBZn^0XPe^5|976b#{$?_iX_Jvw?4M`G%wLC| zW#TyS()fA5^8X;~um+DqoFoK}Z_D3ViyiOPK$M_*m7FR@<}=irl5z=1+`&axY4+d5H21QZ# zO!v~3Hb88W+yW6wp`P@F16RZiKY2sCWwY;M143bmfj>^%qa1{$P2b_}LLHO_Euk=Wonivn4fw1U9J}!)(e4>kD200H&aD-(U&SGd zFDyBBlUgIfYW3C+lxqG;w%@Et!f zAvpwROocD>KhCirjQPE`phutGV*QNo+d?CuS5*9TJo72p{%R12e+N`OP66nF32$m+e{AOO)Ss5x0GJ)JKd z#z48flQm#2;}%`Z?v!JpXp;#7cGG$HW-LV1;c!C65hH~nnNabb$B)0w&;opUYk%^Q zxnjDDSWzG}Tu&aj=qHrQ~RnJZdz}P%WZFvOIB?ET%X9u zAnIEAnqlUyFKD6!L=DE#^g=mP_`ppKV2mR)x-#{wz< zK{wfFaXB(>KP&rSj~vzsO0U zIcwo(;t3Zd)Z$6ML|Fv^E=pd8QYxoF$RUrwqUGcICv#(U!-PWTIMpNSqe}FpaPzsk z&1aY+{j(hN#o34Z^Trs|b4_>!u8btMf;8O8@KKZa*KZb`ssZ71?-W=|e9?l_aH1%= z7)2pGkG^eg!I+48W@a8Tn~RB{J`e4&T8~J@L-*zJoQxOe^qa0}-0fI}@4*3GOja$a zPHC1d6QjM(siHU#xW6iVq~7oU9q^ZR4+v_5KB94U#z1sS?<0we|2U2YdL% zbvpRrN|~8&LZ0L(U_kUebM`b;7WjM$f=XTET$R(04#2bIN(!sjuDKCs`*Oy_Mj!HQ zQ}`Xl)E}#V$hvD-i+%k(21a1iNFB8Rl#QcnHzI8puZ?(zlMHD5)OLl-?bfa||Lri| zbbV`LL;j$}u1%6VJlP#Brk63iHvl|<+7iU=ox)CkPPM|Hg&q?lk#;|OB@!I!9`R>m z=)~OqLZonL(pU=sX^)7Exxcl`US8g+-$+hRPibK-h-j|awC2xVC_mXve*Jc+NVhu^ zUmD>(c@}!{6@MNPSp>1g^$#<}d;O&hV7lAf6}93eW^NG&1aiCAU4e6A-^QKe?d%|u zJe%wOWiCSo{JAg)Bea=S0?!ivc9G}%2$A2sWAoYrhSS8cF>(Ur6N|8{yJ&KC~l}!K>?l|&!W>IH7j@iI@r?=%R5x2Ni(Sh!J;#b z@5rWfZkZh(Tm|AEh7wv0-p?gD)!~Z+g$`7!AeMheP2-*46%9u({)w^4SW%%%konWB zq2wCuO5-}5yj$Wtu`a3-!Qzjsojzy7(6wB&>EqXNf}UKU^wu<;=#;CtZeP>=@z=%zF;qJ87(w zlzK~yYKz%pE89;3euL)2z3d{2YM5Diji1ZOk|OU}20^WI)4B<$Mor#`Mxr}l9=G@avhvYo z(_UZ6NX!&i&8yuWWr`k~&g%g-;o;1^)DtVX!;61pvU&|*Q|jD|Gd^SRb1XOh_>Qmf_y$hlI8ZuEkRVR?8VbWlF?%Dy0j z@YRrjJdK~ohK&BrT5^?K!I$u5??mdV5RYLPJU;3uc+!b_Sq+rjU~gZ zk9K<*qyy;CA4rq3O+Qk1!-&7`O|0`z_^Rj2Rk#Muxj<^{YhvBQBoZnCWL=C<;z_O; z4#*tIpW;IMYOJOx$5g79%(dXDev{Jcf4fkfwY4WY4jP8rJoac##`pqEsgG7WcWWG{ zcp(Ns9pH9mn?<26KZ{b%k&kwE4-tT>Q!b}S+9Fpu^u!A_(z0#M7n(5=Dy@crI zY95IxuiQzVT|v~W7j|IF)DBM-6$*+DkvaMU{Qm2~j4$W^E@XeE(@h7*n%L}zfI@vd|5mzKgNWS$c=@35z9gq|-oQTRNM0T5HZC&h zn)!9coc!251^!BY=~glCeCY(==BK~tY+;J(p#YxFO1d!?-#7SU^1~=c1ANm*px0R` zG~idoZ{iY14q2nDLP+MM(_vO&6*S$TU(p0f87^D}8J_e<*Sg{7LSW9Kn05X{R`q@R zyyG%wo9{kBWGR#d6QLf27q}4C*Dux`XPSN)u=c)n5rn?*;F$fhjUvnki$Gc|x6+l$`2(1~97COzrjvM#wZ*2r7;BG=yn~i5-5I{SGz535i+ovABpBR+K2w+1a8F_8Ey7Cefsq zBsvJV@gzsc3lT;^$W;nS0RVf|h`AXx{0pv1jZ&U^t!Wgb$X@l$Owo5D$|=zI;nqX# zz?MDk|1M%I7PzuhM}sP@q)2m) z63$nicd2}6sWbT7X|(R^$V4Ch*H_@iKL*=VCMKxBt#NArvEQ%rsg-Pc1ahkETK9}t zLg?a)V!(67wkMS_hw19r9g(=Y+U#n0A}DyvLcohRK^&GX68BQ-Mc75(h{&+GWwgI) z7TD?gH}6X4WPh2-yPB2+97FMavNA#D&A zQ2GbprkYXV2`F@H6fV7QBVHQ+6UV=le|)lXrC*7!Su`C7qaxkdf%(aB#pTHu`Dz7C zbLdA}W$zp2IcCyy=aKowk~>VNr9MG#@Q%IL5Cxgo{n0w)W*)1d-rCW$2y%KyDckk4 z`QMQT{-Xq<%Z76UsI*(38t-n&g9ewMW`#N}#^L}{9AK;WDI;!M*HI#!H4AlGZSG%( zaJ%-`&b-WI5D0Pb9!h;UJ(sz`hKEeIVzb;|>t5OEMp1UBekvY}_4px<@~{^{=8nU|waX@5jPx>=>*zj3G- zqT2CUEvu4$fZ020J--k?NN=Kxmlb7xJR;}x9S2WcGp+#oH^lyxZm!}AltL7J<2vce zvyXV)g755H_(^;fM3*_$&pa-lO?N6qRb`YLyKgCX$89LulQgP~AaeG(nq#JXcA-$8 z!hT;3?o*pC6;d5@Q|`3=<1!%IQJNQeHk)f#x$zT~GZ2wBy< zPKozT-hnHqe_E~Ckq?J2RTVKzs}#YiWIJvwsWC0Y+zI|-*n3Se=C8|J2sXVT2@LeP zw-^bCC}(~?K;*d?I|_I@<6eMt(mO1qO41AJ;=J#WBvm5VA+Rkm4I9|Llk_?} zIVXEjX0i{-E9_^*4U9JurCrEsU62h8|Od(BmSFmZQaaw?LCR+ z8}r=?$m=YEDpj^2 z*@Gb&$m3Owhz%1ubLn$GG^X`xQiA$KJgtcLT{3*B)FPX83wekSc7aqAI*wa&%f{`E z6b&0a#5j;gdNS6>%w`#2Lj5=YauCP^;}Bj%^!aE3Wuy+NOB`w|${%9s`h*jRFp8Y^ zABs9bXlkv}>6HtPX0K+j>Ar7afeALb$<_i8}(zFyMp67Gukvs+1p@FG8eLogv zvJ})%6@tbnQ&FdhojSvp-xRhRJJav&I{)b4*I&KGWDYzAeA9nIvj`{C)itwbn>Wc# zw>%-a$QfiI$&$ws@l%&rgw(k7hm&?sh*j0(%Q(efj<}hdy`CP)!z=y(hcEvy^Nr2;*|>zdguJJ-_)N!*8bN+)bkuSP#8m~4;r3Ja(KO$W0a%Xcjp74 zVq!Jpg*$ht+H2n{>~(#Xz%2Mf`F;3~OX*jAmCW4Vg`Q+;X{*)sqx1wW({}!C)6#z( z#G9nQYWYfaS|5nG4vILt6hj&8E}hC3#;#PXQ;aW#`nij8j*R^PJ^bm6S*ZwXJ;?Q1 zeDN7eI~It(vlG5|fy!6`z2i-13dBTlJcUz%F7<3dBUlc`Ur;_~0pHE1-NLh_fg8f6 zRE$6tQlymaAsY2-)C0Cs_sZ)bLd_fL&(8eA@%~}BsB5qEQa}*4Wh-@kOuIIyUCkG7 zyg~VyjR|e9?%4dOiw5#lpLeMAqvT4ysX=z>U}c#HSF3^@?|<&$W^nKTllQg{2`Mu3 zvIcjE$$I;;%$4y22}De&5_+3@LI_Bq--dm7?UG7WLovT_akLm$BvAh3VXMurrs}nU z8wltfBZV+tG5H$5`>r49PJK+l%sfNrQ$=#7kE*W_+x;o{jl)hCRC%za4>-jud56|C zZQXXgzTJomc{fiG>2|*Ou|cCWdFYpXb})NkH>8nDg-X$-uc}e^NU_Z}tp3$;4KvhP zf>}}Gi>0rr6xLfjZ2hR9;EpBh)`$?I4w$BT#CalJxV8BujVW97__6wp)TChe9-fg; zm0L-~DOvbK>9uG)1`|%kxf;udVk#*XE7DEK74XMXOMuw#={Mabj1N<>=oiBed3!&7 z8?E?n_kBg<8{u>olYhApolbmi(!7RR0Zh`98C#~sR@zo#Ac@)RMBO3_0Dol?np|32 zGrC|GlMUnMFK(U&o;H)TgJEk*)Y9Q(lQHg1oL4%V@8>x#S7qkq+iZPE z5OGE?+TSU3#~u9a@pK+cNg+Z1vv?YuBZUT zLRUS|zHGq;v3i;0oy8!(oCgH3j^oFs_=siP`wM>$nFw_v0sdjUZBnQo zZhWrc@X)cW@6oeviobQ8W%vT>X4^F^n$%DvS!%Iu$wIl~GFV`u&C{O_9W7W``jnR( z>iY3xw%>t{a5v>PUu41;zTT-eFHs;&tz2nXbbs7Ejz<$Gv~$`H@)7LLi;3eG42QYV zNmXU4&OBpD=>d-)SMO+lzUOL(evO|lWa+aFmeNg+r5!Q65Edio3a2UAxQ-E~Ii_&{ z^1L>$y+xG_+oiCUp57MJCMMrXA;#^DAe%ybfXZpr+?0wp~))ptQ z@}-q@qSp{$g0+Ju<27Qt+vPKozA@kKlxr;e+DjHS6!^s?hf0*FOZ!NXCS^=6Q)8lk zU}BDcObaahJ7ID2sU=bv((-CFjf)>D=;4Jy2uL=W4(z~B0Q8I$?t(O zvYsjGd#c-hpVl4MSql%E+WLq*bd-CZVmPe~&|h4 z?n|o|UjmK{vi}HGy;sP>*T6}zYDps)F_X&0;!#TX4t01~(#AzRL|1VPDPB_Nb-ga7 zz~36H=JDQr5uj1oeC_~YWHO7&1gjHPc{_$@d-b#~FTH%6wUgx4t6|s09uOh@-uMLc zG=bisOTr$ipilx=e<`IPj`6-ZJY~|bRU=tCahUipj}ZiP-27T11Lbgpf1(D`*whhf z_7I*~$DTI@O9|YEd>)`InO+U#tQ1)!-bVl$DnT`CEPSlYJ(4_7M114lKT7^ zqx{Rcmh%7H9gq3o;6;OYUZHLR#yn>-DOTS?&piHyB_Zwi^V#uolEnu_^^QIj$aw2gk%D6EA%Ri}-1c#b3g=^2Bnc9wP*dLen_el07Y^!K zH9ol{Nd({*aUUAw=xiuukq!Q&9T(~7e~p$F${r5CG=T>@mClfmQZvF@55=eAkmNhA zL)Jcdwx2s_;`Rde{7ClZ8i*|?KNth$LXsultqPJFVrA{j@}L(Ud3rbg4TeDpUJ?mK zQeDUUz50Y|tTfIeqObSy?2}AO4@NXY%Q~<~2!^l!M$DyNLr&B}p{L z+l~mw-kz;;B!8BHgDXEq8^zfm+NVBG=Ur$j;NVuv7L8}j%{>|dEs8=eE-pOd)yF=# z(KJw5z}-KaqnCAL>r-g_GN%j}Eo!P%?ck5gBVV+NH4;e$f{BE;>|02}3VxrUwDRxQQjIwf-GC1ke4kAFC|OllDAvH5Zz@k6X~ z^e)IQ<<1{Xw;5niuc;0`#=!177I)s~vvc{s~LN6Yd+uy)$fv#5PNA#_r8Up1xHiki-v$>wzKF< zQ~G0IOv~O8#Eo-3ApGiI&kFr0M;{y7l{S#@f23ER4b8Ti1XoicHcInF29}Kju7_r7 z8cPMz4Js^mjY-Tkm>k6v6o3aQK1gzpu=24ZP;_x&+qozl(OvEIwjDSx_)}P|sf*eDXhZqwF72-z*gMAE@PO6( zC@(`wqJCAttGez16deVNO(DcOrr@;R1>mdL@$LQFaeiOaH?7`Pu{=j-nyvSoR)Nn> ziM!^QzTQk9_&8pO;0OYu<_4-e%|g zyfM+~rmHr*{(i~pu6od-Pz%|&9Xgiw0I=B?DxuR_?9hOJ;0sjK498XS-nj2r=af+# zkdU1QYB_Zh49F1P&fm)Aq`Eb1X`(^WPA6mqAA5S*fS@}WZ{SEM-U!}o!x)+ZOOP|} zECYHCMUE^OE8*snlCLBRDJz?_`aJL^?Mp1+^n!Qb+0by`7Jmk=P4TnyGlQf3St#}4 zlA^*q}TcG zl{f)F|2n365oT2S^n@$MN?1QUA?AM?6#9>R#F3o*e}fL<|Bm}**2F;_NZP@KQg+or1iut6@1#fdZ ztUiwvek)I8DddE02fY`N{u^HKNs#?mS|5HIRpCaUuP5Q5^;u(qfR#Exp3yF;{Secl9a)Nxy8mc_|BBc2P_^vFl2?5bml`SbiH^b}wnM%Ir z{(_DpraiVkD3o~e^PuCMY37Q5h@t;H7t{1L*v|j+$R&d`@z>(;*L?s@m)LXe7d`Vl^C!SE_-1xY4&BL8n{C%M@f#nr0jm~Zg~eF;-DZ2lm!s8q1!ZLC zd>$bvqs|UL80)QfPS^FF35&Q|sI@kVtCsxM-1}t(PaHL2((9DS`z3rD^%yoJAU*$@ zJzIIym)wf6eH&n0U*Q6Ylp%hP!omX@m)T_5sM8TFcV7CR&;S_Kc7BggybdX;WbcU6 zGs0K%Z}{SC#2=gH@Z}T#ThbwvCfWULZmmv)CWAv_V80h1#xXEZ+*^*PEBFMY=&@@|7at zS+Ubyj&A<`bO>LHV@hUb`!N~kC%x#Y_Ct3a3YBXUi=IyH$ycZ{U*wuCFqIXsdO1|pWMP2nz z%$ZB6d&s?>5`Q!-eAZpY4%3Nh$-J7ZM!W;VJ{~zu z7`+){5FFrk>hV|_3(txxvloiqef~9%na%FUT#nGOXcOItnOItbv!Zl#$ueO3WNj2|J_#Md0d3G0e(|ij{G14bvaYxK6Y(+q&kgBC8fhn z`s~Se>nMCY#AA47OTPPPHY2C|D!wU}DtT#8d}l}K$@i<4zRgcG~>Uh_;B-@}P#piCA_aL5iD$q(@v#~F$uC!P7>OxtZ$li_F}<42Cz zt>lFW+7B(1kD>)D#VfTL&^ZXd=!Hg@lv#7;Bb2qT{ozIA9gN4bR5!XJoxvd6j;3Xm zt4NPcX@?kXduT<=gknlMk6PRBnlIpQ@7#dCCZ7sJs}h_qa%}`yI@4_4O=5<)t8Ga9k?G)~Ffw7J=ESge}4tjagpXBfD z@yNX~(S2pen0+UH?j7afAI)50^h_a8d-iv$C4j1lAMwbkBS*C+CHJ4 zuArs0VrCOrTq8+)^ubV+OZBpei6~sy1A%X zyTt+V`J%vGC^Fe5Zju5DebXN7yx43Z**zDab7K$#9TB06mBzd!?ZC36Fx?cr%h&3y z4d3A*4P;k$bn@22LpVXIM&7*@WMvjG>N-JL4Z*o9Mbo}A`Ud{1Th3!th(<+x`jSBg z2Tge>v%#r4WY%xGRo?%?BRtpI%$6^~W_*4r<4U%qlwU7n&XUbAMdR?55XInz#H_s$ z?;{ItDzeXx6hpz~aPw=+=}t#xW-{zqW(G!994)!CEKbSU?pbYKUxu`TySwtCvKpRe zFiHrAH+3j7dgv;P5Xt8ZW*X+OAGbpyK8knyqA<0Q-ZZd3-C>#ca)(#+xAv5svcU$^GaA6Og^Grwz zaVk%O?DqmNFE@D21Dhe@d=lm9)dqzYd>6ho8s{-#_6@I(tHb>L!i21kz>~@*`-27p zqlJ;{d}o>L8)o{-9fz4qLgkbb;IX7F4BGz3 zaT=#S4kqQhD%DLf=Aj;!>6^PjQyHW_pgEHMB0XRDB@+29Tv9f|$~@;XQ9;3yMz8B0 zEp&(*4jx}^!sG(VdgJez=s(}SvKJV@#L&q$fXR4sUOZ<@-s92dY^kB)Q#vUn67F;U zv+LQdFr|@PQoq2!XXN`oCvDsUK3diUvarxT-Cg(upa_n#6DdWspU2JqT2U`a`x^9( z3gHxd87F0&vQ^Y?_n>Iu&5Bc<^C55HkOAYxpwEK~owvOp-RED^1mztuC>fm_>Pe6Z zoJxg{4ms^SdMVm7Ond)5{v`6V ztb~NiNqdyaWi}(S@tf#@A;q%>k3*ZGl${NJX@WCfjW38Y^_YTjirPYd~r&#i{ z2epVojt@rn*|>Nzzso;a_Vq>3oxma)rOo}@1mciF1p2ZNWQzv!d=+m(Q>8O*_A*Z5j18Mw>hHXNA+_kya@% z5#lN(LB0j_q%J*9Vv@7$#+hkhl)(P3qu}(7A>p=KN{Se~^M0I?9^PE^F&CVyoyCtr zLginDTrK8tN|HdxC63NNopeQi?*K2V&=8)?E(|h1oi;BLJQMMlqE#O%+}?q;_B3z&6fw-WX#!bMb;nzy zzSszei3E%>z3-c16*!WfKwH(^*a-RrI61@=mx4%t-b7bBD{q5agVp`w4`ZnmQFWNI zplWoK^+Ds0G(t9uO7j~Ck5R+R7Dx2M$>2p-D0?XFoNC{2vBR`T-W1lO5%)5 z<)XN6T}LP#Hi|hcmwUxnu5Icu2)o>QW8Z%uR@98gO$b7-S01F)^Dcb9G|b)t$XVY6*ETX=P(z_yoVGi2^G@ z8K0XAI4nS7*>P|AV*&svkF%no>ij8ug4YG22rEj6a)XnT_EQ{46+F43xMY)fv84F| z(FoMIYQBs<+3sj_8&}tp_y2SJ1VHi3Hqu%qul0A7<_9;*{Veo_IHv5R#R~jrVu0{O z*0vY%k;m+El{v0z`!N1~_~s@z@zSmYzN|m*z51dX%iA*bgtCP=Baf5TTAvfMTEHpj z1>O6AVT1UEo=7Y$22Kn$ir8lw#yBSlDdqjU!2Lf#JC^%m@l^Laxc^3psr(*7f$3^~ zWrQzqyRVMKWQ2fh>UzEXO}X`{04VO;B9HSUd&up$MCb>BnjHQ`RRes`*_ekJF@NJ4 zME_8=0?@FBHwlF8#SNW&6Mm~N^0Hu~O{Rr6m7m-*T=1E8t$WFG%b!N(*V5t-e=oB~H%tdH3EeO_9n42z80 zlea^`fHU^@v})4Z-yT$Rb05i0VLS`vXTvo0D*PUl zfA=9mUG$2eyZ!nk=pN`L%Ex*5WzYQmV9h^=`@TUJ`Fr6$n3x+{#5+pG0q*U*?@uCn z=eY-6ZJ=ZY4=>s*HofH(a-Oo9;WGqn))r}dAb*u!pZxB6Rz#owLcM+35kRoZ2}G3y zv`h}O)4FCgkR+)i49Ut2E3_bjo(tTxRd?o=aC+SBQUqrebsQF&~Y` zt+(=jC{Lp&lAgJYZT$F{rpdY)#G7BiYdYTKc<=?B81wpx5blfQ3A7> zf4TFDPn9ifsT^Cz_4cQ5FxkZ6IBF)JX$e2!;(y=-ELpw;B1Xpe#xTl}+~&M&kpj*U z^E>MKQUWuiq-BX^L|6qCz_rVlos*|7-sm#ubPwQ|qTVv^y5S8UXvA4A7O`ZUK2g+1 ziwO;Snrx3BOXN+TiJ|I5IMJVv$uetaym-bM&OSFwOUG2z)IZIK2_zrAf7SGZXbl^w z2G3PTO+H#WrTXaL>Fk`|!@EJ$9Q)BJ*3%{!&kCzoGA%eoB(m-4pVMFz*K_DlH!9EfuZxhkUGnn(i?O$ii}LFhzei9| zDUogo>5w6Z?rx9}7(iMihZn=bMEsyFV6pSzhvNI z_FjAMwbowOTHiI#ndASmsrx!j1>@KiVv+`XKVwb*WYm0}QfJiKvB)wtGZV-^A9;k# zp%M3^Tmd)_?lWNB>N{^?@z^9AaH_i>wQ?Q9_LuR>tR^7#b@VHRmG%r_HS!Bon|_h4 z%`_%yRIz+X?9zB%XK8j9iMFt8%#9SFQNm_1Sv@Hl$>`9>4@Ifn8ECcpa=WF4wAyR*Ur<`#7a+$oc0FNNaO z2;}2>j*+4~QBCQqNN1qApy{OJxA3M->(NMQ5kpB|neqTgRC%DUZ6)UME9638Q}Tzv zDckpGq8zLoJ3s3%&Jc9#Y{=#j@C|7D&s+pNc_%}oq$U|O2Ua@3WN~id zzFEZynQcQxl?#}GabH@#Dp7+xuX{?8AeMKOPUL0ZJzWcpDX zd*vC?o-Ddd8)Nue-t-q6)^?1%tUb(5v=5(=+hAl!+IZz=Y<+2N*${HuiuA5nq9~M*L`U#=4?z3fjHkyI?Ik`h~CG!wQ=BfD0qC{Kgn_z4>r{6e+ti zoYedX^i{ee)FiZ@&)rm_Pnvh}_oKBk;-oPss1mjfJIZX!_h$bI>kK%_BkdpDJ_=s< zdXrLFXMF1B!b!H1@@C<^OmvvN@zL>~Z?#$+v9|-ct7Y4DJ|zikgEu^NYFuTeR=g!oy|c~ zk{i7b+;5reCsV!o@;O3EHyof79;D`lA&0^b?jj+EaKz0CvaB60d*GKiOI^4;-YtpoIVpE~N4B!ms| zD->F&xv<(Jna@woBBn>-OuHHDM3RV*DCxnB#TnXD{IUIb?y<1bQ=&&(mGv_zZ3v#}u%5 z&`aOIjq220-4#S-9hI*17#e1U0;A)7&WcGP3tryqp3?MnW(EuB9q-2osJQywnvelT zh=gKBd?Y2n^sZL-CYzxNQLfKs?=X2s@o}ZcS1kQSn{~-A-!(kw%)m?;s(KzFEg(pISCap;?`VvrY>y{r(gh*h;G!vg41K#?f35i zA2l}2q}lK~MqN&aQ2)>*bkPrb!F428*sB@>t|IUo99lmDq9VD@Q@`~?k&9ZCAh-K*DYvj zlI>y2@~M8^w^9JkX^Ty1%JlZw$9LvsK`nO14)^X-)Shw_r=Fk=-n#6_<%W!I$`O`%1Q3L0+00w`n$j)$IcvsX(m*%-yuV;zGLmT1%RP|yv!OLVA=TzSd! z>FrLHXHk96$n1sB9+=@3Ys4^bLH%AiXY-+i5{GK3gNNm-@=N6Jg}VfWIjB_W>lH|$hG1fg z3F}C!oVl4f#^Jc%#-u>_n3rfV+us?wI(*PG$GBag#00O9$D$P+29;VpGdC{TWRy?g z80`Jt!YW|;2FZn#R;D`an^-rOjo33bb2}Tu$ZNxIhUJ!p?EB^~*`~(e5o=dMsST*b z_S{lEzf=(g@DXfv0K6)FcH z%8luu?MCEp58Z-qqPDxxAjI9y!a+~B6jUIZb2xF8HjGYL(rEcAa%UAf=?{ZwgPk_L zSQ-bd3N+QLUi7*(WfCgm;12Si(&6Zm9SS}f@28BBt;UJc@<|$1SYFl8t%p6EzHzfr zcsitne`_?^_2pKdu?zVuE%8BT_KgQ?lBWC;fEEBkr#lam@&kx$}%8JUjAd@I!o|g}R4F?&9Y*l!g?Zl^Pjh zG=;an=ITs(`WghnQinT!61OGv`^G~EK|VPnPlrw*_QYBn`q5dHsse-E)h7J>gWL;3 z?@HH&v^7d-9-tAtc>Mi!YAf!iu&$cG>JdhsE{-)zilg*rmL3|@XwKbt*@{`TQbDH0P<%)`Mgfda*UuPS=rfRF<_q1VyeB34m#PY+p~^AUh@cL zP~6a=-t$Lv;&ZLhCJA>$$4zaihi_ghWk5-qH&1$R)0kMn)Q zU_bWYp>d%zVbO@fu+bI`=DJ&t)>&gX(^{eQ%XcOnu779Yw^@(>;nw}Xc2wSSvjg9G z+$nM9@z~YV&Pk%m=m4CMBe*SyC+(6Nl&=LwW{n&)W&;qdoS3M;jNmegz>0{uV3_s! zZUQ9m&mXWlx60yodm<}lUg}9#6aU1k$m9P-s zZZ9%O^hVtXzH^+*4E?VLAw25J!RbYgW6>EdE~UaZ`0A59ao~rBXeM=~pqy z+YvBfL7s7l8^e1U8@=$mjizb>7f$hvtxF?BY?G+kY)-OVTFp-6RvIObaIkNZOTjxr z1bM>1q&kQ>zC2*+5!8AI)j3O!T4Wuv0F%TFSU=zloLW=*bV}^9_vGhG*{@s&jiJ3W z!?As=#vufB{-G23dgU61a+dxpg^G<9E4tNuQje|-;~dN^=gE!J9z_K!f*AS1(Jryu zCgwU@&u6Cw`N%ny9K~~REZ4|)`qmo_G~&`DE)nd{4#mK9l;pK;FSz@ie`?1Eho-f@pDVPw zWEbJ0<@-jon2o5(N1oVR7iopewrFHF+t&OelVW82e^~tQqTBxs1ki#N?&fhPdk@V% z8ePX8sWR@~gch?pB%{UXy{MLbmV1?gxDHEC=Uvc&`7 zCT3(z#|w9R1F-aCTvI$9xiVCUu&KZctz=XV%A-DJ=Pq@7Nh=67Dx?} z&8w9)O^w`4)LYHID$>)2*m?KKawlO!-@r3}uJMJtLsC1~&MgvE9SPo!G@9VoT<}l4 zN={0^`)rhaF8ulW+(sswo_y8Faqt5!nS62nwVFu>B@=9RL+{R;-^U09kw3hC&8eM( zH4YZ!yotJsRnC#$4EP#XC7G(b-tQ$sil8>csHPEqA1>9{3JsXTLkZ7^7_oNi^dE=v zk+G{j8NcXNP+uDNP|9l#c@-0$_JTZ$4m`U*t(UKnc>Xdg4l)bU&||98dawy+r-~G) zS_~q{O?n#^yS^#o^#rPny=fwHRJ(NfRN{4mR#^&HMV^#>FO)`84=NudYg2hc_7rZg ze^vV{&?OBhI5Vu7@nBJ#O_&g@h*q-PaFeQnJn4B(zngPtarbVh-@4f1J9SSv)6@@r zqcem~+xwb5XtD8Eh090rWvcE}6zjfD%GG~DFbYCs?Np#4>M_0E0~PjTT~xYh-L+!P z(L2XsSHxt}3oW5>UJ;{64+BfydWAAe>0okt`Gt2+;8dvQf_?4Ty#4Ombu-gY5xKsR zpS|%{|K1?rh=2Oy)=I_N=7wLQ)gP?zGTja&iDT~MWI#4J^e!o{;rd?0ISJZ&j3wwP z5Cf|3(aW$mhPo5T>z~fk^+9I4knDl_<@Nffs7?RsU&V*c&L>Rsl|XdV+%i%nfSLdWAwqW2^XF3~sERVa3|D zs&8$!bS$fXvCQ7q4+bVdjPNMQ1yxKW`nPQ1D}ZJlyW@q7IE>Km~Mrf-SPan>#IQLEEqpb zbusqFT}!MR&?>q(D*aU)yN#^t&8ubj0rAY31Z7H%*v_6^_Y`Yq#t)htqC@XIw=IM@ z@>NdPybN=VW*?srkg*-tE9`S#QR;wFTb+Y)AcCoAG=mZK&@Kkh_jW!YPt# z2~g^wk!gSZ1I{F0QttW>zR$C(1ZSue+^KHL(mzJq0a8ER+}yr&&@oqtMRNB8=x=d< zzpoPQ$@h4>w4M9sWOHxS)9hVwbgdFLPdZrI{=H>#RWOMH|GVwN|LrGb>h(tSl^eG# z3F2mZu7sudl;ipSm2Ui-8v#9n6TXZDh=x%YCq?3-bH6nb>Azo{ZjVn-3odg{LA^QD zL=Jo2mBRK)5{l=~3zSn<<^a@VWFP58dyK-`>v77#l2onYAbocJ`$3YtOc;2PFfe@o z9|9&PCuhn(x+K<^BXDaQ8dmXcm++*-r}&Nwj>9iySEGgZI@7GP!}|KwQgIze5G?9h`EAa6>XGNAyvDSiYohZJklchthU7&bOGrEb&e z(Cs>xf7m@eRiQvjzrlfu+UqZ^b2cWmC&)U>jW~XQ;eP&X<&C*pexvAp2DPlQmJbWG+n4!`Gr-an&ZVp4H; z<&nreehuc2IXyqui}7CxV*=I>2o-$-2(~2tS4IBeA3i(~j7CQ|I{_30G!Ve|bsBh? z^0~P9NwLmTNAJ10N&rc_1@H5FatXjsqkfm@(I+V_i|)hm00!~lD$O0Katf!cwl={% zg>YF{bOw%S1ZcojF6&AR&!1#^?=?-gd3&7lsAawV_@Z;F{fv(iHq5QSm~cOLzuV&+ z8Y?WenvpU8TUe&k_b0$FY;0}2AjnMmjmqtc4(i?A-TM#jQN^D{MrG5qivVGZUw4Zy z**khu0OCsKFf8_n9ey`K$a_v^(7(h8u%n$1dr4Mf?k-}g z0DL)FBl)_`>i+HC{=t<0&6Iwl6RnW2@F76rLId6Z4|?JVv+iJ=3t)`$0AZHI(H}ME z46Mb<08>uSzxG?s?PktFQiV@}SNZ*RxSte2h&5RTkk8-mfz*@7dVCv1N_u)J4@|TD zu54>yNHz4%_W+EE)O=XW6(JZB6pxG5eFs|)zGL+ri`01RLl4^oIxa^x{O|Vf z>?70ObQn}ygf#&QJo?}_Gf(furR96-?d|OnzjoW7jOd*^^G!d2kptgG|MSO>7o$~f z+q%GfrYpZ(HSFy{j7zeCjwdGNRw+#Rpmf67qxh zQTlc7lKzqa`p1ON&Fb3?V`&bXJZ1<_g=*i%NCtkGjLf1PpeMI}m-KdA7izJvo3yu* zk7Wqp0qU9PDhxOQuaQ;7*#ghQmVRlgm-Qj2z1hhrD2h%hMu8YC;^5%b!clTVsNWr+ zLS^zxS>-XeC(F8l{8y`cwd}d?y%>?<(EJ2IJ^vmvIZg-aO@yHL*(ze8+`WvU?FwB8qQ!BY8$UfBblMwlfom%<-pQcOfgva({Dr92^|H<#qcG zNtEZ;zVs2R(qiEGJxd?(Tf_j-9U^FAw2Du17ZrswPP`;(HBe@BR& zaT_`J5=~x`a6zx*x4%;QV&mX+9gB$EUaY?T@<_w?N5;F3Vp(xLtB|mblqx?{xt}Va zP{M+g!3zi$Xv>&;FGsfTnL(+3)k@`7DWxy4MwH_=gaC@Tw4Lze z^wbOxxgct%#u?bDUFW`(BA%7A4WzpQ74I1{O#0mCH+Obq080zf_wGcz<))p)2;j4u z{H#@M3XJV{mTupm&|c#zZcDqisAGXvmwAk+?#)yOFuuL=1du`#igjPV9kE)D zr1M?$a``rnW5k|#h0j~U|XprpAy2#HfGI^3xlTe;V{i+4ARG?Q-3T#n#0?0ene19%hi%F0+9 zqgfI6mbP3tex&i;Z&o9p!`^#`=m1!10;Vk2=grN{_lEr5UV9>h7rxwV5RFZUov4R5|<+%GY8kHEMcJ0`;U71Ns>(0ibUg zV`C~{F0AbOl_22rWwR-dZ^$UQJfQkXJnX)iL#Pbhzub^3pciF6RVyjrs$a|_#X|1Q z9&r2t1<#0qfl+DJjqwYB{Z1%ziSAsn@r?CFQ8)v`TrG3-WxJnK6oo);NeLFPl3m*B zqHg-gYrweSWx5Qq2p$jf90JZ>h38tF{J}k7jjz1v=-moI&c(xa0NcNM?-v2igbRSP zel%qS!x2NxjD2@A{`LF!GVpc1Nbx&3;DVd)%{Mh}q}weumn$@Q)g6WZuxTuhxOXdJ z#BT+o#cw@<0q1nxyH(vnQ-HV*rvnp zVZ^;3!SVMVGqcXz?M!*!NaX$^X4S$vSdt02tBvS(kpnm}(69Thp zc~cYpKS*{h7!?1l(|>m{g+l)seUSejqEa#BD)-BOliUASaBDQNz5(YW2xtc(ZET!1 zTg(OmnPXSauy2gz;7y5E@0Z+nj$uU6eD>9d11_^x6adkG#zN@EQHhHjc&Iy9HsYNY zWId@DsPL|GTK-P|uQoNksbRO60H6Ikz-J%k2Y~c713FiWiBR6Htt}8J`q;xMlL6G( zS(Nt{%RoVFt3+ojRJ*zn{lHo7mWoM_c>B2^?nT?f?{XHgnSV{|T^|C|LR z@l2 zq)BAK?JuQ{oav7H(snB6yslYZ{GDnKA3zUv`P=-oK&1S-D~V^~E5H&(nqt$Ogb4k@`72LeeREj zQF%XVCzyQzYUGD_Vj(PVJX1(raatRt5@MZ=KzIj<*e})3zkDApM5UzUW_d7!VenzGgyL${uxcB_&&5@ zzEcE7DC(N-e1>F_;M}5#XR1JrTd=8!>pmJzkPi2ceKohte_mYNVdF`Q$4cb& z#L4b1SCikx=m5Q0U?u|N_xRz3Y&SJJ(YFRYFq>iyxq;Wo zNpRq?Q3e>wf{WaUsk1$V((uMJ7-hn+@_KIa7^qWxa}~)q*vNo?DE_OdmNA5A;I4mF zgUm=Bl?leRXZa!ZrkozS1{3dp_SY7Qbce(jQt8a>G!qZ4STk3l|Pl8<~ zx^J!)gZ8Gsw%7PqYRWl01epP;s)XZpfh8FC@|4zTts@_TPliYUbEd3ASbODIr8y@+ zrZ!qXO?cmh@c6~yz@G_DVB_JT|3(@^!h}z9@k#ygF|b98u4Lgj1@SvSlb&`AJ1thz zFhrc7^#s0ByZKqt4@+$=m6nKbr)8wc27Q*f8`Nj-C-J=P4K(Sy?CQiaNQBdFY_k%t zcN884=H0}TAFZsY%(t(axIcY~df?5-{2HxsK|$2V>rnA$1^zB9qjdk=3MG?CwMXLo zi8^}qq!UV-+`))VwCf%^Q2~{FF=mkO{Hmx4+Ji%OiIzk~PIzcKNp0BO4f%%r5#(Hz zN?av9m6dNI1JYMF*4*M64=VM*y8*8X5p=9QkVu2h4)JDZq|5DZmaZ4mc>PlTae5?e zTWqmdgf_-?@-q7v&8sF#ZnHh8R=VJO$BGgib(F8rCv|%VG)Ti5=8nlPx(_?u)FV_l ziV()&zf(DTdx1Jks1IUk@v9luuWsvvlwfX=E3R_U4?xT*Yx7xo&a2VhU$n}4*f9O# z1)qDkGY)!kyH2tEw;uf8A^U&6dF0`U3f}kVa+W)iQa$*1!LD=_p)fxxeq!9z5=N2I zVpUr^kU4Y9nYNnAQQ7>5IMc8RmEPwWtg}56S{*+mL=Uft*z-=f^OdF-nuCmG#olQG~@V{%#jPb+vXo%<0mrA!>?>2^A=CEgqE+W@1#>$^>66)JAULP z-!adtkGF%DgX$*ZGpf@C?g|#iWTe0ohLh&l=lLGA9Go?@dek$DNMG9v{z6 zu3C_FS4UeSMxBxMUn|Y5*M1;Jv9|;J9xD+&G@nvC@5sh({wP_jh#ugXE89~xax5!y z@$pyl&gL}B%G0&B9jZhaD=7b`7LDHLeFh$v(nLkaB{>U!{T4Yd1~-~mq30k{(paI` zWT9fW{`_@MRYuFK>Od_MeASt&mO@Aw-Gaai)L|F(<~jEddOmWZ3Eva9khLrA+q=xB z>S1ns(iV|1!d|HdNt$J;+trFxf2Lge-zbF5?tJM!F!~NZ|72!3v=ldLddgZnmA<&Z zyaE}~3gLB(_Q4JPajDYlfclb2iCOxE<)>HW+i^4l#BVm)R`10JC6OG$=b@g9T@Ls) z<=wQ41$6KQhUfJ$Sazx|YZ*KXU=|g6!3=%2pF^d7@`U`3`7s=;+>oi3e8lDosg{Q53T1{I(Hed zyxZH0`?y?R2%%F$?2OP+zVk=tCl_J(%dSTER#dCDmY<%RwS0_Mk>EQspP|^Cqwiv@ z*pxC~MB^7|{m&1g>Y*2=4TOT;Pv%J7O!aR$TlYo6Dw*Nv zy#sae)cde5)urx8_Zyuz^#;ar(Zzw7J0p+Lz;UZMoRM)=%JvqXff!TSY#R+q&gV4k z%dYrb>0FP_pfb^@t}kX+M(&&f?+H>JScdmzxsW*@N;6mAAQkERUPh3F3vNyy|4d(Z z;Yqg_F0ehk6RDK!5rt6e)mF(5FC4tUPeBOsnnjv?MM++O?7*2qvc;oeFDuRH7vvN!Gl411) z{{WX|v_ZYv`CzFd3l_)WR8lI5%dAn?G974JD#_)38eK4`O7jMkLPKjTsn2Ph8M!Ty z{soQf;*ka6Iy|$*7Re-!29Fk8caZzK0p};qU!BSP_B=juyU!B1Vkvi*Fj4z!^khIi z-}G>dXpzJ!O&MASl(TL1U$1n1j}4{qKXS&;soHpmUtw4`%lf^b{*_$cCugr@A7}Sk zy;InmIF(2v?{Cohgp|ZW*WL$nDix^-=M`%TKg(s_Y>90QC-uE;5q6L89HXAoXa5W% zX3M9@&0KqHP!CIsWcAojCV#=TmQxgO!7!uZ^+8ALETvEmo^>cxEYOc~rzN`bsM`6= z`*+C7QjB}-c~ZbeXe`+14W3BM@s>O?a>gZ+GG)Xb4W9E!d2L5pw(rW5#XxXKnJU8;5O9d=m7TMWuq+)4=M}ZSA93 z9vGe|&t-c|wjTK!OxyV?=swBacn{)1)kWg3@|N;AH|yZz-h zpR8ZvYXf;JP0>ICtE@%4O=O=71H)Y_C+#W6O!zNy85TX5=U0=SXts(LT3eV0mcLc7f!4m$a9RC6!>3|L zy($s7-_LMNg#gj`utuH4DXNHp*3B2O+hH`|B*8Tb{Jie*3%C?HvjfDoo}=>#chfLkgR-*vNQ3Hf8CeM9{GGK!EJ>Fta!um zeB#Wv?S^ilNqZFT1}m`2(@FHoe(=Pb?fx$}&-PEUr1!eW$7 zC?>AWNLZzn5D;l%faXQeZh(a7UZuZPX3Fmn=I6LiK(m1mc2 zGD1VP@=YFt5_w$O?cOB{DYj2xVp=kt+ftd9k%C%$FPpzs=zKjy^Qs>qv~Me-L2==y zaQF^=0T&%Jl>QI7{r~YA*w&VplIe-HYs{ICq~GbLb$yti6Z80UiK=O?mGZzu6xITl zFq?Qqzlc%?-SMp4U{W)lCwP&xe14xsZevZzuRAEG`^n*+hEwiTJb4 z7$Ntm=#7EZk1mvXiOGhM<6^%PDTW~vdHzKBC{r2q38B~usSiht+lH2V$f^qAan?f# z-ROk7{T$#To!PRW#RStBf(&8>|3SnUNO||2pGSCpm7o0LTh88HmT-9#2#1S+WLT`* zjpFU`BY(OjM%3$CGAi)#(($Du_hL7SBv9!o21Ovyn)q|Y{%hBqqw>6bb33SKq=?Cz zde}5%+T@GE4K03(d4W-KP7#HWtP#r`%v*$U?)%G{sHdmfUvf*$gG9A`(iv|g z)MGbkwxD+nu6elb=I%PUIwXB|9Zwa1(_YkK(lZj}!rp#cH=&p7uMzzr(D#gzG#05^ z%#M(RXL^LwsEl+kDVW*v3TA$PRyE4KNmA&qrkp1kD5CCbb{=~zGPS_DVo@WCBtM#) zq4^<5UYL4n&g-7_EUI{DmSHltvDQ8IJc+g<`tc=46!EZsWef!SKXRDvZ$aE-pgc&g zRrba3xgyu{;7!AW7oUCH&}&RI z<#K!Xm_DOvL&sgGIj%>=RcEbI@f@`^uMKjEo_<%u7oU51?2gsmiW+f?(j`;f{Uy%^ z<`OZ8_Z8D-I-hb7hi*LQ5?0((q`@0NncV43gMAGa4<`_!S6lr<3 zpKy7A3bCMebI{MuYtY-%?r1BK?lB&k(znd40kC5q^XZzL{hnP;?AY+G6cer#<8zP| zjVIfbGxzQI9{CP_Sf44BGF)xpE;h8wZjk61U~DoG1_8x;RqUV6%NtzUY;i@bPMzsE ziFfKNG`8mwVyJ_|1ile*7vupYkl(ARBlZ6(TmTEp?j{EduNHw6yBUJo8Ej5;RVY~zgyY4>oro%yUC z-rlTPCXEcaEgY^L!ZHSqa~YU`)+{pgiLt8;*@@;{842568oHCqpKu`^w2mp`3v}D- zf+yEf)KFD7tr&p{SuyX{O8Kh@K-CY*gX4vsWZ}nb>(Oh&sm+zcpFc^ew~yQQ+yDFv zjfNu5m#JZhlOBs4)4EMI2;KRT^3DE`(o5UXGb7aaym_0G%o!K;U2(v5g3o1ZW~I;f z0H}QQ9c`uF&=(=n?I*Xrc^hSx}b<0*v&b25S$jNfXhfoxAIQLt3>l^&4_Xq*=SWIx|uh7H8sNtkNHe=VG z{nST+i8TJlc`;!Z?L~e}E3~70jE>Pd!+Tg|Z4)rl&+2>liwi%PSB5xI+V~YhyE6D( z`V6RTkJ}B5lHm{yVI<0^NQIDUfgP$yQG1hX`rf^g48W9@+r({ zqO?M39^1)cZyU-bY#hT4(fJ8ZPVqV^PS0%8elm+i#N%sZ*FFQqstn$)Vji_yqMBtz zI?7agPHl@nNtkX+Oq`yuODt%^=JN3*?UW-zmDkJ;*J{)w1XCJdL-gEmDnz-MZcmhI z6y3r}4*}iYR-9K>U*oVpW`Mp_y>U>h`O&4=<)f{NQ!=>!M#I21M!@qZ;}p5oAC2`@ zIjUB~)L+~w!Rq=6STWv03s((J@Q(_nG0UC(HHk(|YWqV&@MVd2#i0~>{er1n``SJM zCnBKd5V%_PiDWZfj_BK+8p-3<{n)>RXI=@pNF*^m!rSmg9V3orw)k%S+}1#qMK2&NvL^-lP5X!w-b1XaOGx_XJ0= z=-lZMKS}bZ`5!CnY{V|$InM7Io z!3t82g;Zv+_QIZoeo;7e}-uDF8F$Nh@*9Z14?V8^dA4ZQzJ%3 zgc}e49iJ?RpQHZK6(r~v&Aa!eO(VKyFPG41ZyxaC&&6JD|Iy_ddKfSnNod;V%knwG zGo&ZAX{ENXJRP4j&{XFWWk9bRxIXd#WOw^&QpT1!R}5hpd?J~nLdSO7gW;!3)TBn( z?9kt#UUiWnW<}7Yl%_%l=YCAkq}|3u5CSu7Vi$4S*{seulJ2T;y7#>Q4-k&Bjc0;J)aQpPpYy@wf@^hlZmSKNG|JK`VPWil)_B*SJgOk&y~|Mg-9*>W;y9lO0n_jk<{iCilWW1noz97 znrR&-oV0m~g%m01#%p3$_i`&%mO3n&_8l-jmmxedbf&RXC$TA8{5pgN2#+|}Mq+|s zhRBFUg+lWO>$&pGc&P6JZHhf5$T|4bO&iKWbYQ0_t}y8lj*&Sz{6G#xjU=e4|DsdBt$}`b%5A%JWk{ex(2>%?L-p-?Z75GVSeCyfstnOxq$=5-D4fXxw`}^lNgEdzh zq`IKqRu7rJE_|Mk9j-cS++&%bK(l!td#p{%#Ahn@ha|?OGLM?<+Oi<}If%|-HE3~@ zjz@h}f$HO-g;DOUfQU`TgCZ9BTaOqA!b2Y6^=5GyuW--Ijs9odQ+>pj!`;n!;HY!j ziSN5iyNZyWS76ocRQWNAfo5r#N5R{%FI-Gg)?{9-madHWDoT0h$&c3RfsojegUwvN^zwM_G* zt@71zmRl$j!NWeG9s+uyaDAP#D3yp|dn)q!Qv!oo4>8rIWbQ${krc~ldzM)E40^Y( zF4?74UZ~+4OMk@#y`ER=hkke70^t`^cc+VVY6U<#xP}_6chEA$UbE0=VlTHf+9IKh zEPZvbo@LztQ$mc9XzN(>=+(h4I5U3doM^%+sqZzdVe0JdpSnUFcKVg5$VG*q<3`0i z&1%#Olzb)s7me7(Wf3QHTi*8^(qXk&$xt8;>N6S;`AqP9p0q_}igtvMs#^%}>}m-X z4EM#xUXuZOyCYU#*?v7DL zd&M+0q!lV>{)#I{-mB(@?o0%dlK&HkvZin6X$oJqeu2Kbpu?XDq3U;zXHt)JO+OJ! zhGM18vDVqY;4lK%ghJnWO?jT!{qnr6p`HRg{MB(m*-nr8{>mbQ%En;?0|4 zs_%MvZ1JrzcdvgxP#TDitMAGiUDd{YF9BaawQb?59Z9(C*Br!gaIhgftRI<^xz6dh zPAWB5NgkhM9K!?s5e2I^8`0rB!}*{j>v!8?olWdKH8)l}*xzF@T1vf3R~sk=Ci>lge%UP}Nyd!v6V6&C0_yXDKn#mxF0z6Moyt z^|U=$ANk03euEQJ(7P&r^eEjF6cqtiB^(P0^Z*Ka<*UbMd!bsKueK%TpZRuWw@rk6 zZc&~r(fC}?pq`GlK5W=d4kAy_$M|NsAcBvOL)ASgY;yk{>dCHq%ATf@fFE=cMY&0V zHo?fA$^`4q*j{fH`a!=hX{Vj=I#_uOW8`!qrO1Ad4&Pd_!tJx+mee!}V|FFV#6RX* z%|9m+t~#2s<|e?~4|g|fY263?kn+uwf-O0zMgOtU84Vj5sRrIHQ-b1cFB=3e$r<`o zKlV=S41aiS6Z+;%@z!BDJN3M|uXsOR`1G#K4e+1}W&0GDpH2GgG)hi3%RNrn>~29*vIqE7jtoS>_eT z)S{fP!%GL^?dKNc{BR*~@%hGGNv%VJgqNo}hkqNLt-|P_4%0B+3IcE3{-&b2ViIS5 zIoMYAh|b4I`CH~84vjR<%Z5k17$OtOJqmcKq0>|A@uPt+L#b*RQ--u6wDa2uz98&6 zC+p(uF`%hTh?V0q7qL`n^STN{F}w$zUFb)bfqI(~!(X)b{r}V0xU`k^K&BC|NDejpVdbqS+L&Sh!vL4C~t|W7DL~E3zvrzLM@Ih-*Iq;mdY; zij4EK7gRI@w9(QV^Yv?%TILXIBol&#ga?t0kq9F#5FMtP6~0?qP%DW<(Oi^;db1Qk zQW7qQIxc$4=%TAqKe(z8&E8Rg(kU$Oj%g9lY?rVEX9(kh%hmuLloU(xS%H_~<-vzm znnGs8)m`h4mn&@$;W44O|6B1OiobR4;4tmEj!vnSm*4HHHq|Kb=CR}Visw5i?7 z8;?z%4WY9I)6q($Ft1lk6qi&BcMLx#aa!7r|bePg2aY`+A z`IB*F8OtWvn}WTs<4N}Km^m+9IN#LEc=hHRwK!s*4#2$!q#*nR&NG4(!fQq+QXxi| z&lTs`g8A~exBM?L$i(f}1jFNWzrC`tV?W#9O|hJ)DHR^|?kDB3JgxfAD(X^fwmzqS zw(b|`?s|()VZJYIPdRFER%Tu(pDHKaF6{g?C#-*7K!Ed{*qu3q@2i41hW3nQlI>Hh zO}tF+fq|a+op0l*Pjhaj7J)nU!%&TKFJHM0gqLj-jR45P7>?axnW6+n{{8{op2_?r zKYwJ>U|?Bk-E}vA{yCJ!cgGnY8EkQT*b14L>(0X+zM%jGKLsz=tPN5AR#MxD$!=DO z{_W9j)f8%;HD+jeax!GJ)7D*GR(}e_%=W##BL2VD?lP*Xu3r@RRuoi9)}2_~7yH_>XxyjSM;oRqS2vcqeR3{EtF-Xd)H)EOa~Ip6G-cPt{{@nKgC@*NR$ zt%7-BcFxm-O<+!OiD9PugQsR6JMB<9@@N}-FMWBI&b1UVoN8*j`b^ic{%F=z8X8yy zwO~`tLKay@NkJp~zsM9Mq?>X-ztOaf-g8d;C_0yscvjb_Q>P=!dZlZcOJ49bV-d%E zB2;?q$e?(81KQ%YMWX|c)8{TmJmCNS<8fEW(HtfZqtM19qtDe#`h~GVvx}Cgc!I&u zx7+6Po4%W#dETdw@i30b6C&nzZv7@S=yhzlRcP0nHWc~LVtgOe`auQO1NR>H=`07% z>n<~yEDsYMI#OK{vf zsU^4SN9I%&j1TqwL;mu+UAI4rY(NApdiV>%_^vRkhexYpTqjF3G6iWI@Bi(gq zCq8{`qgcrINu}z5Ppi}G(@)D{^@`oKcOU4LcK5f4oY@_toe>FMzE-c7mY>~ZPq(pK zul!C7`sHf($xeuQCMQ`%7`(Q|C$Ie?VAbjusv8u|P=c9kac7oc6BWuW#zdWTP3L8P zY_=6!7$>t(s6H6BPa`v;!>`-Yg3??mzQB8vAJ%#z^L$M$HekjukzRXuTrgT%5FUijVd3$d|cV-?p}SD+i?0|NBA+fpuK(4 zn5kNPg&50BuABO)H~wsKxEc$s*d)gq*q}aioRFb1Ai6lk(HFWiOO`36-{^3*pO}p) zut1eu9n(Z?nC|cBy&P}cbcg4Y!!ePipP#bF4JDqw^TPiy_iveb{~z-^!~z8uD>$Ez zb)qBm4~TcJf>mXV!d$x9@aYs3)}{FIO=b}Zjkud1n@&>dvl6{ia^|8&4V&12qo~uzU3=M>NWq;>KFf_o@h@(!cTZ(Lgw*hnP+`60W$XJ26|Vzo?r} zc<3Zk_cm;9sj}bOORbxf(&|waRmxJdHh%>R1G{tY9yOaloQ-IDEjzl3fXZ^%gSkE zjo4^#nJ$mQUReEbpTylQK3o(_^l;c#4f>}~eqFrbJft~!=H!{_Bn@>kUBsE|IQgfY zjC=3bm0Gj}5s%{Ds2d~^C0}@i9sP;Lda;gO@*KHz-7zZvAvu*gkkW}-X>SUL&2shJ z$>_y^k}VIp>u;fRAE=Exht&DR8xACc*!itzl-Ck8bEt94Gh3>~biRg06oETdJt(l5 zGS)AYEY{I}cf2gMFvoCaad-1l7|i(%?Kr)1*kHERiu6i2#pZw)?HAO`!ZY}O5=Tl& z9!YNH(_w8wWzptrbHW@t*4Yb@4}!005&A=>mW;A(dTa$y_+}FA*uCu#SFo<+evr9s z;Y=51{Ggxv1MYZXiOcN$-0DC&>jNJM(`%c6)ed&NvC4E;Gc1?5($aLnQFpfk6Fl9n zUvD^geWJDGM|xPaY?7b3$I>|1r7g#YZ5V{O>4XWXIf%ojh^+Fxtl(fRP|BUXHPo%oe()mJyzrS+fK*YGVr(ApT^Zfjv!Q-{+1BiHW9`tQgwZV?c zJJz+5{B-{&@pmsyOG$pG?z}LX$<|`bKh9&<_iU7!EC z6!VRa&?wWPzEOcXi0Ssoh2TZ^o30gdxUFr7b-p8whYx)b;ddX;diQ5Di%fa&z-yyw zVzwXIa6=aK$&xg@HS%;2v8AM*mRNMbo>eE}bP8oWfVGLtOOsb^^ZqCi|EFVV_ZW#U zsEllRw8M?E_9~NS(1{#7yl3)BwQCYGaY_% znDix@pQq^d5khL#A2}Vb{v9kl_ih*Di=H>WvZeZ+bnyo*Wa8I~J)%vm8*JN)j}XQs z|LgGmDYA?^?S(zjA#Ol}LHFH3+#TWJH{McdyM7|-^kirK!O{4@J74yv&Kk+XXV;hf zw<_Ht`qj9WR?AnM(NC6X4<4$JcwPm({tCD8eR&9Vh2HDi_4(Q54)CtXEva*n6|Y>77G`7T<<$_UXT#{?Y%oxp6_1$gq}-)LH+ zd-Kv9mY-7%m1TGlpZ|-+pI2{Il#yM8_1I&8mqkS7PMv)=&pbf=BtzR`xr4$+uLog&~S1 zUvMCU^hfiD=7x{ty80=VbOJ`Pc(qJp!(y(QJtMv5CAP*l5~j^y3Sajg1Sv>N`_gRw za^q?GXQ3@m2JIeBB&C34^wH9NVb9r+;S=7Kg+I5E(foS)S0c=u+*<4(TlB(R)Vb)8 zrL)R#LGBV<8F=rz%nY2V&cQy7DH&q(b**}SPl~~Gb6j-A95gee`oW)# zgCdUJ=4I!&>-(GN2lE_1uq6gY4}k$9lyK*nzL0+TL0=u=e40J_^pK=vNCbXxkuNI+ z)l0c@2jgGq7kMMD<~TQPDmsh`%`zWEv{*dmADT}qRwX{R=3^ND848vQaAfh4uA3?r zyp-JC+5Wa2sD!)qgGqJ4eNXRb^;#W|DsXpzhQasQ?&582#4p8-R%ISV5p*M8Dl@nu z#cN-+QD>DmKCIn4n+v(c0;K7A#E=y!fqKJHXX!ykOJ$izlcga_$lwOP8cq8La%=Xm zYIWM=y>wBso|fG8r3scF^jk4{1>ev`KQXAtQW6=wErE|8$x1$D=(g=GsnUNw@>w-m zqB~Xa&*P&7=G0w2^4$X>=VFO%A%(V<`cguU#APtEzdhc-R%7Z_|F&4x`_%gAML&*$ zVaO8^#vt{Z)~C3YPcAgECe96O^x{UWUY%}PDaDbEaUb3{;jye$55(#fvyirE!;Rxe zbiE}SO?OpO#J6<`-kUGHg?D055gaC~4)S{MgN42s^9*CK2@^5PY5sn$p}E8d7e?O$ zlNFKY;_oUN$NNP~mEzmh6YHY2SPiK55^a`s4Ul?@HPr3+s)M)FGc&Af{>{Q=+zOL@ zk_%9Vvi0bHBwFQwB|0*v3zS3lg;2u@tLNX5ULvw^PV|He_h4FAtMaqwiUr2tEqAjh zjcH~g-P@d?-%qU%m#Nsl&lpjNUQt$$HrKwOV7?v$9o^K7l_91TeKOi`7vTKLpOop& z{fjExz{6uVb(6rHihnVW=9;%h4T#*=n^ygEZ}PUyy?ytp>uk6LdUu$wS`;Vy zUcdQ_n$HK9h^pp|U!5K72_A<5-B~C`5Fi-vG;BE36~XG`Nw%@Xp+qXOCH-GzGe%c&5geeg{FL zeC{VrD>dX}Li!xBq-lG1ll;USd5ySF^>8K!FL|)z7{%4uUgENK(imatXSSERAB7Tn z`>`_(P2&8Doqv1NC8oR!dbB0;8BY+0mRi&(lkSRcK-7@5B$YMQa!J+{YJOA>t1=Cb z(6FB1zZa3z{x+`H>@LVJZF@hp>3y8Pi-RqVDj~$m!TPU5@~G^7B3cDom#A87>4`9U zlhfJw1o5bourv-#%rfm|qR$dJabb866M)BHkGPbjN!DiUzJ0?=knoR2NB+y^1re@u zfiBTLeY8Czx?>X*=&XGzLzo?LWCTxpGzE6E=h zehjaj3!7hNNFNxRI8`9b-XFraQnHvC@MS&(gg?mf#gRj{l;qE|tmR2qlfV6Z#jRI$ zWyv22yR7DBPc}A-dr+b4AtzbTnma+xlw8NJW2CnGa_rimTU7A4M?L|e^NLTmP=I9N z76{l12j++M^dGZ#AH3`+qPl%FQ4r>Zgb$3o(4G~6vPoA#IK_*d^)ciYR9)X8$*r}g zv>87{6Xe66b=d3%!A%H%0cnwL)O_5MzHk}2%*N#viG5)<{Q2jqp4|NStdNs9shWqU zJePoHlDGX)058vcm`NOcXo;wx5Jspy9~b_Ebq971d^;oU$9O!=bUvfWzeSbr9|Z~H zV~ ch$&yaQ(@byr&7OGt zu3`n_(D5rQLx025*gQ(>``S$X2eoyz(E^DnWc*miiQ^o0w4I$f3*WoREDeaiBe$_u zR$db^sV~Folq>S>Y9B$+@iEgR7=omq9ctkWdQ1&G&98?)sT4U z5;kcSQ<7I!scr@QesMVLsST1BEGOelz} znzDG1*JNdLRd@ht!Q8fFX4^!*Yw|( zlAMF-6l}0!lRE!YyE7UR3-{gqr-yC+6DyU?y6{6jUO6NSgqTjUEskhI5cY*r23=Zo z)5Zm>!v;FDPOh7>QxUBXF7>R^nfVSN2NC`b^I*=EVU;^|S>>uN!f*e+buxNQN`3oX z&|4YR_(>xtgB$0*{O4<@4>6^86F_nl8pw)z-xF-(vmkvhzoAwdC`;$-MGAif9FW+4oqNNz6JHEcAWi4A$9&M*{NWf=PPlBrjz?AGOs)uJkW&G&os{zDz4l zJRU47z~b6n{}HT3grvC>A^B$yNyRcvw z9fEO2=3dRwc4=o~t)N}WT z_&bgQ61i--iTO8{1+X4}d(T&8i7j z8AlxzDo$#4b#>wQLK3LbPFT`@XH<#WSSMMaualG7h;B)dzjJ+oi#1#7^4?{@U+6PX zuREz>qB&zY5Q29a80hA4(B&(*1uU)Hbpx7HaO<(VovN8hIVGH$uruG%=(3bEKf$zi z)9Nz9M~#doO1w-{Drh-v#M}_dx3hVA7+EQzAJD#(H{_ocjW6#_vAOoCuHVAEdGx`$ zZYHAIN^dk!g1NgS_%cjhZY=7}5EM_?`Caol$;9kgOU!AJ-nFB)9+T<=x@WbTuji{~-p&e&d<(}n7GrytEU&R1dTzHNCuaUaHhhb! z@E@&N?)qsJ1NW{H|9e%hG2!~PCzyTv9zWW7^-2SWA0JQ_Vkl04|Fw(hJUtgCUxO|@?k z*`+k)D^G`CMKoolP5S=n`4YXH*y`)sFS0(lOg$Jvd#$&K9|Nu3_>V7g1@@BL{9q<{ z2e4MH>BwGj{dcDn5GQ?@Axo{6cg~TlNW9GBO&1?L-S)0MvIqF}{D^QBkG65KBPs@= zu26)Sdf~*@cHY)5{aRJMoE#ak4S(P2h5VA^w9$9Nhda!Wk8+d*yV0FKPek*?#**7U zC)EGI&Y909OY$B!-%j4D&1sJ_yn2UM=`&(m#!ZUoC-=(lbxm}mCK#-Ve~nW^RCR!R zz&m!!X)5$+KHbXVPi*I`c@0B|yPB~g!PR>wQQyh_1*g+mBdX9O$M~++Tny=!1M&0- zQ#UGY&&fHK16N-K8wwwEyMwsa4OuXn_VmL4!6g5)lsg0F`CBY{!`pKEwn=R^J*Ja~ zkuj4W(cJ>y!4>j}AQ4H94?JtsZxhm(lfKUz%MiC>Idt8(rvBT^O-0JU5T3CvwczqM z2~CBgHU8m*2aMlET9*+f#)e=$WhGf^m+bCoJ@PJ}tyxI8?yJrTJ4o;r zewDMC-6qdfp*<)5g;30mef7-=bA0NVdxg^y>87}_$6BegnSuX@Q%cX=T<*A}rN5Qc z?GBW24BsNGI~BfC3-h!{HvA3Q!}E1jZF9Gi!E5DwKi)NG?*mWIevwvTj{`zy9v0VP zLobO_UWk`dmkgd3TW(?uYl`jg`k?ckuPq{@x-RIbhjHBM!KZhOkMm7iM1v1DmGGiv zo<_$hWkWSWH>bFBXvYrCL`lj99wFZoGbl?(im+=ZtF4S}p25~ltbUGSTVl)Tw@yBL zA>6$2aYiW#-_k~X1OHqr7&3|~1`uU{(-9H>`x8dov{H+|8+qEsk-M8qvK{*Is z##%ZO+sNW18#jZ8%h4ccb6T*$&0C?QgBy=dnQWqRd z&ovV(LguEO&2PV~4~R7DONx>QZBDHUxEk>AS!C#5M&L*Lye$tZ>dbgQ7J{Gdy^Q02 zr!sf9$faH|G0Wu6S@e1FuFgL7s!3bbumEsak5q_0_y`W?qqgtG3G!nMg#nmVi5>G;)p}g7!k0vX-ysUMaG$A%bW6(^t2Dk3j&O~3D%IU3}# ze@B?FSrDO|bFpcm_#p9xAcQzv$wDq_q}VR_ss$R{96gvY!+Rvl%o*>io&onR?elLB zN-B>Q`z%F+CnfVCq;6I_s{8tB&BqAV1O1rcKcBh0m$kp!+}E`GkU@CF`CLLUdXkmE zyHbCfb*r`|?zvQ`5RcS-O_%+_gs15}t<&1r^EpP(xa!M4xH4QX;Nm4C1uukp`*4<{ zN&d$5J1@BJz$bGoe?4O1D<1JXv#ra*huku}Fi0>R8$V>IeUpiOV^dIPR?HEs!s5_p z_^^m18jPifeDr3wCzmLW?=s8KWF836qj7Cj=pnqWj!2$oPfvCYOzU2PNs!{Udr3RSiM! zL`)!zQ!{3jeia>P!@b{N>vp#O#tnZKol`9@6Y~r^E;%3fhsgtp1N2l(b+;A_OzDbKRqI|Z3rFNuulDiB zyf=ufGsjL()>e-yi8rZ;VCq`d?-^GtFVl4VJ?cvkYPqXmUv zG)w7y>%Z!C=PZ0-ychI%{O?qS>Ugm~e-5Pd=DE&2mfqQRtxI+ zyPBS~qscBsXNFli&5N@GRkp3$ChAG~SM(N!e*DnPNthz$7ELE2p`lj$Fls0)pr*%6 zCM3B$(KuZV^G2TdpS@V6$#iu#v{c9^H|}C_hDWXEa1*KH8?jM5vWEWc0+BC$n)Fx& zkt4u|v)LN9Aw4%w0%p9OY6qDkK)4yYW2=Wgu@qQ}eB z22`?HhoYqHo3kSZ1%030X54&tnbi zZw|hppPe_(fU0X-J}s`yoM(6KL?kj4*tcD`R24~g52WPe&)Rn4Hl77da*9y$G1 zGp$Z#I(DslxjIHc8Cb1se-HuEG|<@={%})rp`Pxmp~bEJuGwMD9x1C3j~DhojoFQ+ zsF(BxRPgr4U%?{UZS3z8x)dML$vS;|Q1oJ)u-y0*8K(Yzm$o7Ax}s%>^?w4;Hs*bs885Wl2CX`hd(PK5TR(EgkTqT)Ku%%?)8XFC*flm761HJ<4?sb-Jf5z+bPAh%8F zs5X3Nd)>esTYP_XgB03U_%6k!gkJfq>{n%vQY%wjM^L6_EQ6OWl#NVnA+p zCDSPmt5XWXGxq~Ul};kxm(j4D71?>lyXPSeF7^_?EQPuyd%(XGEuWToGh-c#873o# z!3iP1C1}AFJ6R*Y9*gxUt-90wZ|wPQ?rX~>XYcdu5tG~N3k_~RU*`XR+Vg))#xnfW z(QlpX5JCk%&i%lQTVIJ}%<~#RT>cCf4UJ}R`c0pYm-`MJ5~Pr=t}De1H*71`2~5rA^%u!_ObXCU!QN3P?7IqkKZ#jOCdq5l`YQz#fFlW ztIdc06mj@J-aLv>g#&}ydC`4l6>RSeT^Dd7#{lqVeh;gfK?OJxhu*?IKB|s4yfR&m!U=LD#>=lr9wXFzMEo-We~k)jC(^djN%-R+s>u1{(KW-eMP?0NdoYLX(m1Vgd} zut3``MjWHYuKrKfGN1FXGXG+zbTlC~aF$WHE|B#cKUGyZqgTGlR7L@hIo|M0D?2+W zKpl>X-T9#;+@M?`cYyK!4J^2Tt382>jbyy|zQYbQ+&43`z@e_1OJ6!`I|JI=%J)GE z!&5*+E4FMYJEBUg$$jU~Pf6TJB=k=Qn!rw3O@b0b6^cOw!lns@*f%bPR8&zFfBia8 zX4t-Dx7@b45O{Y32j(SrFEJ8`c`#tYcA~V{YoI1_1LyT+;8lH~Z48%%m)Gp|rr~Xo z_lT{5Dd2Wd%q1kdgfgK1lcmr??}GJaaj~UQtDrh9?ITD z0_QXnY!vVXAT6nB%td` znKH=R`({WKl-vl4ME}=W9hE`YxBZ@JAaICWv83f}_Q$MC{r6>cif zh%L%);^;0va}BPne2nZ{pOSXx2IQk-2Jp=rNex{`cr6y2+-1Lb46+8-jET;p>f@Rt zD5!6ZM}w>*xt>eb(6N`GIZch_dBaK2I-p1Ww7nULqJ*(BBb^}_rF|%<6=1+WY_+U1 zhtfIt?@k@>7;aBdbqOUP{%B&`BzQj>JZP6NVxi1N_)-jTmEQt)wzjwi%qISI7XU2D z3mFc>Ci|A}>FJqm#;tQRit-rLJ{k^k; z#+elN9T4?;9x(HMGw!K7|4mjyJh45NCm&ruatotk0Z{xZeHVAW1=>0|^a2m~Ud-{3 z9373QzstOoRv<8@u5Go?Q-Am(B#6w^>a3oS#1EOli+o zDUsgwrrdAZVMmeB4aia9L(sg5v<&@u`5YD^-mpA0qVx2=rV%+6ktT^B4UYOuUasfV z`B1ys?6E`B7Q=A97?s4+mGkxZe5YT38K}maHLlMD^f^O5Hl5;PW3K|DnixgQ?p#L` zaRdyw=hz<;#j0sm=tY`wM>Zd{&0p?<3HE=p0OCJ^UM!Bf`|Air8;C z|LZnOB_}G(FE)Fcp6xGAwTpm|^!wnT&$*9+f7O$suam?wCwQl#83(k_S8Rk`FX|WG z1Af^Ubkbh87lh$e;I8^{~#g1m6 zvGB9aw$mS#J)o7^mj7baEE8uV6fWEG5(MiAVv>NoyP2xBhG}?yA6(n0z&e(jyZb80 za)7#Kl+cS}OhL0|0a*u@SJHGH@Rkjm+?YM~7f{{(eUO;~CEo%!nN2^|rS@NBDXO;i z5E;gx^z<)pSkAi{MNuI__!zOsg}Q;Dh{+uNcXYWt_x0=+8t_2-1ZR&8S!vp-=pxY4 z3l0lI&+%OHW+IG6ar-}KX8uL*zjXH=R15l7Ko~G{0tWgj%EJepFDE#Tp8v^|(_&&E zhJK?9J$uWaSAH9`RGqQ>OA){()^neFi%OJ$`Z=V7QS3q?0|WGoS}UMqp_-eU zi_>mIS+WLqmow`qh#zIP7yhz_f=bZc&K5JgK2Ua&W1X)0JW97mA z${Xf#3bWMmR3ljjRg)*(z~?K_<3Zr>Y(eH8@PN1uWZz8C zO)1;jmV%gW0kRLko0o4Y1mK2uCx#>7j#`;iWmwzTa65W+kqx7gNYFY*4ywidXBZyI zzaGfXc*9~20-j~t?MY?yMRk4s%ys46NxPDyWQaUNGJL^xj2Bd00t6_(03*QN8YK-B zqJa5ft+peAU(?fkm|6wH=$?!2={hwQv8dAk1T!2YuK=+eG?SyxCV$%6M4jWRcuzqv zZ_5-5Y?G&Z1_#+D;}aE^m7L*uA*w4_2T2>6nhR*|ZBW%T}k0lWqBX8-^I literal 0 HcmV?d00001 diff --git a/labworks/LW3/2_p4.png b/labworks/LW3/2_p4.png new file mode 100644 index 0000000000000000000000000000000000000000..b7774e5c70f461afc38f729399f58adf9e7d3600 GIT binary patch literal 52111 zcmb@tV{{~6|MnZ(wk9?vwylY+iEZ1MBoo`5Ol+GS+qP|-{@wTe$FrVw)_HSY^s262 z)m6K9*WPvQ&vktxl@ufq;qc%()`(FDMpQ|1^2ydb`Z2+x)RXMpkNU!;KUh_42>?Q7^z^$XP~Xo|=3@ZI-4&q= zrue!5IA0Qa;^vX*6dq%Hc5MY7K3Nbu?x$IZ7`CYs~j^y$CHpR`s zXZ9M_&K2&b{4mRC7;%D3{qZyG0Zf*c!?aHFy}eQ{ySBiR*_Avf(V?CrbF6;!vY-!VGU zN(<*;bkyutAN^k|^xH2-^dp%!-Ak$4ydz zlpTC5D-bH{oHRhgbFGWZa^>g8#G^ost;$=eP9ljPP`t{oM~SPkCS4^T_-bltS%X#x zZ&-)|Y<^jRGp<;2dz09Q7rcY%FL+9uw-}1h(J8Db(NEJTTHu{E$~3kO?L(B7mk8V= z6QAp%1_I7&PXvFAKs`pM$A2tJ5c&0DtMtAyXjAnsDnJWOk|DY8B*eGo=aW`JLV)!m z+Zh#47-M&Ugg50HQc!H1clbHUzAwH;n6Jp+9+6XJr=aaP+oz}eJ!HB0GdX4(^o^7T zU(2eOPV&0(@>kb!<3^N!#&H%j?3;q^&*5%IBYQA7)Pqb7OyQ{SXOJ9zqxH*-l{Vsk zILIRX?`rn1D48*Ax#vUFt#}%WM?fYM(Rw9GX-;e&qE96MPP>^kZ^wD2K+1iXNx!)2 zreHsWH=PU2g{fTF+QKi%)IXOjsUIvTS0lnw>A0FHvZ}GeJsz^Xsk5kzP1@)RF_EIc zba^~h)}W#F3`qNd+NAhrt2uv?Z;&jLe4tC}sgw(tY1Uu-D#CoHaGvqvnV@O6v$s0c z&#uoWGC143cH?NudVvq0M1*x7b&CBYGp_rTKeF34(hJt9U&+l6L22X!%D zc*GO8Y7;q{U&6mei+x5cXQnVx&g_iq$G%?aIfPG0$k}5K==EfTJ+SQimgm;JpL{`O zGdZc?g&Qb@BiYer!;SyB`TQ6ap#%jH&dg)K8x}EWyyJisIu7~9K(&l0&*0HXg2AP* zxUisSVYw2nP1v=JH}BPrES%%eoNdXi(V3`~)ASNBSfP2J=TeW(zmwLL-v?DN49ia$ zO!owH?N)YbRj#I?EbDW<25-%s)m8laOW1W~G4vh{IOe(#!Y~08KApRaakz4iV47)N ziF#zZ81>W_^Q+nAvIZl%DqmJU<5r=dPZ8uc>yYia(UAs3#9yV~u%-_f;!?99<~9Sn z^nGXObei7$VVs7Ywu{rA)kYIUv2vIrFVt+#p=c_EaM0`ZetuMr_Z8Nx+Vhk@wh+FNKgp6jZ}gW70* zY6=%byVQo+PMd&f6OS{LaOWN^lYEo&+FJjc!b3QsH6ix9270i4O3--$Q_sc|#x% z%l9&b90RjR+S!PZ(Ts^zLxxJUKfM>Y&VF4)sG>eyb``bGXV@WWw`)kKPWR!^^nMIo&2Ej7q(2&@6Kks|6=yWawhEbM);RY4m^0 zZ}HW2j=%AoHn`Vmp<>b1Xx%4(tea@UB3kj@czIdn6WOg2M(eM%JddCzSKdzlZb>yT zY_eF;kUyv{kr|VleR5II?EU;KGhLH8CsMcsZUAJ+Oo^k%3CU8zxP5sK}8`LdVs zOC+|cX>`dn+OTdp>~5di!sh;-lRijPWV&^KW!!LxoWem=v=vr5h@8>YOBrtG91*Pj zQFbbY5-WYjuH zT{j16B+cIY-Tap3nt};$OTnKsXPa80rs*`e(xwFz3zGT4?Mq<@VRA%*Qf$b>axc8{bOy64#Eae6^Q zSJzh%R}6ybPV(gfZ*4?#liz>ZZbZZ>p{t0bwrsZjJxb(e{q8wcp}U#ttaRT9#TmutICg#TU#@|IjP<0M z#jcobNiw{6*g>d?eqqvO5M<%XOl=Qdtk)cnmiBosh*?FnFRJ@!wP9G5F`tEVD*5#b zQ|HNH402r@elb^yKIt}~p1kBoU-XJo3=#!u^e)fS?&e|#Ue;jPcAEK9_~l9)SrGbM zi3g1tg_X^mhfl_(ri?nn_Q1gKzzAcJ)RMRF&rS2xvq$`TWB+3v9rVMv!}E-)yl@gL zEXDwb$pjPzb0J{Q6)IOmDBX_pe1InlIgVl9%+aMVDFbK8L(L zZhxITa2~KKpBkrmb3mE!(f*h>Z{sEWxH#RB;K&0pX-@mehIVVXa#KpTDPLy!;fLZ% z=SLdt{vh%sj2sWKcb9u@;IAfy#5Pmgl{MI(ZN0x)84GQKSI&2c>W7hn2hGOw=8%cz zoRTV^n9{Zk9@e*(<}I2MBqPfe77Vc7aig?1y>lkfDZ^y1sH)!IUacl_OCLK_|8?0H zX^9myKd{RR}!k&x6M#T!k;8!R=(@w>4L3@#J0a)@3tkh4$1jlb`p? zh!g#v^xpK#53X|q%eT})3a|Z}Hfj2=jj~?$6sue;do$2a*z$!vzMNEDjl18IyE7;~ zlxvE|_na0wy8ufUrh*kC9?~^dzBzUg$jddHoyT||!Ts6{*IVI(&_WBB+RUtWqSCn6 zo8hjxyIC(Ph8N(A;Uv}lj0^$sD84!8;{#a+$SA*}?sqxf!Mllt98j&wkBm=DnN^r# z!Lu=U6`$W#=)}Lw2ejH{^e2wWUuFS>^8iqb%Cen1#XI%Svoh3$)7aX513J%AkF!bT z1BjxXisX(tAHPQ3;Os~wlR}FF8X`rNAb>D4FQA$5*qv5Uw$18ps%qcA58EeSm{@c; z*=NR5;Hsfz7wW;vzT%MXMuuJXbjslz@e{WmUqfJ-V?VCN{=20>)t_1Yfm_hw4l?O-Pwd}4gYx#^jMnPenxo$?DOP8jNo|ArSm9NFH)F0OB2cMf$ z)wjHBs}7!RdQ+eN4^M@LmZpS~UkY2VuP()Hh`OhvbDnBM+Wa&7q3R&PYr zPY6Cf=v}EaZHK~qw02!?3RpucU}HRBZk@OPy_B8Xvw7G$f%v5OBzE(?q_ax1vS>o2 z$!K|=yn2ljk~Fw~>DsU0N`I8!I_TByqm~+^0%+o;Z zdvVb+yBKy5X`n)d$WyLpFDodOUAQ-zT=2!1Vc|K@;?OF)RNm=Q?KS8weAq6wrO}u{5%AZT{@30lB-QfRAR0d}V{Bz=1i*G$m0WI; z&AFvBoFbe7#hBK=lEB)VkzmsgZsSHI&AA*cC=GRIn~yHhXMCG+@AX627bfw2PDv1%z!uxU;I33_nmu7o2XInJLsA#qV6KvkyWXY_til z{v=+6gz9RM*-Tz&+rMk1mZa*#$+Voy#7GDTm+;|iW5+#}snM~pBp9+Vxug9QhoTxu zlc_plROZ6Va-+vJ20{&@;fYhC{1z_*u4^QxO##u66^$BdtAzO0fMma7*0{Vv|01Ko z0-nBgvV$p;IuovO#%vxR6*q)L-1-~LFeL9pY`Zb6niUpVo~cX{kBP7}^aE@mgA)1Y zL^?Pw`72w_pIzz9;4V~WFHCnUavW=z);_J}DZV3q-{z){^PAMYyC1PuvwNKITgzC2 z?>!?B!n1Iub$ey^D@YT-XE=NK;Oo+qX2BZ0r2N9P@q5a`poqxZuRi2#L|l6HN6NdI zZKoJr@)&}lGswI-sLO~L`Wa9{MOB$$M0@1Kk&+@1!gR7r=);Z3236$9;Ft=KB(g=pCS@93CDUr9RmW`Uy z`*HKyB?MWxy8wW9($Z_}DuNz_$pjtwIn6MFAuk*P1#53bcW-;AOCRS)n$IysXLk3Q zi-GlNY@&w-KF&I$4RguxPV<=We<3E28a3bEWN=AIn>c7qYS&?0iBGSJE-l{$DURvj z6dH;;>R_1II-4n&e2#L|=F?wc8WrM3w@V}lAqJBs+Ssq`_Mb2Ioor=$%>(Pw6~6W1 z7#4eJj%RPvdCT}fS#^i~;Qgsm7_Kb$dopNO^R&?~MjnMfSAo}lr4_#9rsWY=Sifm? zgeqVG60wZ?g;`UNvx0Z~n#cWeHzm&p6oU!mgG{O8Odq{M!KF7Lrplr;u^Pr#-@?66X^OnRTUq2WnMq-& z2v(N3?h@ZaO(wM8TI30zA}qbmPB$YP}yc}i)f=?SUjwo@^$Hn{}a+Mm*% z_q2BO+5i<=xe6M+&y|ge%|-UkOuTMBfxU0CeE?WB|706fVvE}r!nPU$sjVM=`7(7p z0)DNzmKD!ajxOx?L~yR0ZHr0%uWn4DNWPVhK|Ah`{{ zYFbe54fb-hK^Lr}wON9|<4*z-4EE@wXswD9ugt4U5N~`Gew9MKppF=Uv<=o1OI9MF zG=f}7QhNmXIR<2L$9uvKFp#{)>KpS=qIT^~alPq9wn)$m&=ZTHo*hRT9tBMeOajXQn0!j z;i^(cm3FTe4;!57imTHEgJ(g;;2*{!Vt*!8OYA(V6H6Im^6vdCA>D5yZOO^?Ab5C# zL5f(_@05QGSDZY=s1a%879+$nL{5(pp*MzS74sO^a&zd!tvPekEc7l?+x1uH#7aw9 zLECKJsxZ16TAjwBS7$tLg6HQ8pQd3?kNFIeUZFLxzm6Sr=WM<(;YcLnAn*$2eEm)KSbxye-O)Lu z_|5CDT)%P?a{jak6%GB{*RA8Nx5|3EbdS$%YUTB&UqM~A1^t!%$8+=B7vF(@?|E0I zKxOhMo~i6}Ij&g}gHZ=bp$#k$1pNIk9n_VK%!Uz@gq`-dc0tMp?UJm}0>Ft8a&Pks z*dB($n|3E|yK~qwboQF0f3D3`0FNoi(yBLi-NIX+tzQ;8=owG1x7#9GW;J}^0|atA zZx0in+y^&h3Vwn(57lKph=&`hc&)b(RtY`ePVC&$AN2~-t^Pq;7%uKcL9NMxw&MIq znNxpIENw_z-U0HKf$cSIQpPn)Fvk@IqybY|APP1K3;CCFdk(?et;=RaNxdK!)@}L+ z4XgX~jVTq{v|mo}!)t1vp;^gME3_jz&Q(S|>F(rs&z}oeprlq(4VdzBT$(0T9(>!W z!sEGs&eU#NTKXxZTrc}PGeGy-PW!Z*el^SM=XN#%G2ARb;=YTcSZ=4wdg2W-J!!*^ zM^v|I4mG@0tL+DaD@_Xz;}~S_HI_eFF%otIUcH82-%&OeAz@atrc60Auh@ws3-iv#Y@t}vB7vK;r zoY;(UQxROS-=hp&XY}O-{mOV^OuG_cbfwfP2UHgl(sq?L?#C)HZ-OC?wG{|6eQ(&& znCK_URWiD{nW-4xbO ztp+Bmm-@k^rgt(AK%qR#~7ti11Z!E0eX;hfUyNd#^4*+gYivi~#2 zZ*0~m{s@$A+^G1#e*AoI>MWBR>4y70y=;H04lZZu#J`p6iR^O#j4i6>hn6mq>`GX- z%$V(V$KW=7^d3|N+rD-hAXaA#>6a#2Gd-gnr~u|eHT-Rr({73*&OF9_NwBy)ebrsw zevjIpJmJ*_C*jxfX|5*W+Y&6j=A5W?jtc_~Sok$AS%#>;w^PWlZcD4KYd^KUKm6tq z9Nk#C935qGPsca9>T=^D9UUjp+ou|oxuG)g!)fOpr@lcM<|%>3Xmt&7jN zWt-jQbOQ{^khRZjuohX7@2h3YftB% z&cTA5Ce(!$l@p3=%O^0?91;^5q?oNS@vXrueW52C_haI-{Pq_&I^gz5N`ZB&lWskX%0JL2w6u-8v>|&H)yNzNUZ}co}txja$NR4-B!?sP@6b+?+@lb;Jx)E9Zd@DG@sn+Bb}VNjhH9$cDs#NLKd zJr=esPH7neS%*TDSrVr6!kh`N|6}hs>jiyVcIl@|LIgF_U6O8Pfiop4NmX{5myfP3 zZ}^U7Z~BfGQ^xLyZB@?BUd7Z-1Z~8JfZ!=amzf)|UV8Gk_V*tI?R2=HGKeH~Wdp1{ z_P9(TXIv&rAy6c>E<%i(o<1h8rP5vqLIy6`tC0rcRB4iD(|x1Ca)A>$Ey3l;#Tldw zJU(Pg9KY=VO)H{@eXD@sfG_eKnDnV$Hj2VC!8ee!Zvn)CM<$X43*dZ^h_rl+=s~22 z;?#e7gQ#gjR~@#)gUc|KT9hmUt3!`Vg+7tXs)Ek}dBQrbqL=1nJSZV!K5(?LDhD2D zLtvk_BbWAA;uFKkwRqPf@Z$to>>8qxjXYB5($^ zBfP+5{E>G+Mxz5Tp+uG-&JipGk#7}ykFRjasd326=PbpPs9pRai|I$wB@eoxUo5Bd zprn`@4+~Mg<1ca8P^!H+bnxPAz4AfvDrZ^qeT9H0Dpao{`fIhP^ATwFcYnBZGv67~3Wq$P+eGo6L}*Oq&1vXV)=SBBEc z(_95hmh|9sArd)+u1d^EuZON*@W=E^*-om4qz_ms9{74i>HL$@-iKRYXl6fjLwZhAE9SIxCr zO@w7bPgHI~513Q^w942P?@eKi1E@W{G7@GJ3|#AH7_`hoO{ zdx4pq9Q>y7lN2!zeMT4fnwOdRQoc)BRlBtkP@G8BCvqd3T#UjK`1)>t&>f4XTzQEj z``MV_9@TtF!2e|lg4d-z$~$qS0bth*ykzExQqS4F`A*S7FmTU|-VD@*1>dSCsvjPD z-u&S7Xlu2VJP4`u@NX5OV`m=|1C+W=h{)q{b|exH_x{jch}(cU=)MpX3x2*wft#*o zOg6gWeODu1YTh_GYhNtlzDj^>VE;HP*i$fHL(CHB;8fe5v<&Xi6r2 zexrGLaZhmfyOeSJvN!l!SG|^eGWey-aZmVFSG^iFH-Y`OTFJHcZep z&>}WJ(XB?1bk=iOg=~;+$IP`}3{r_4oFC@lo3Na5wGez=U2`n1Luo4h&{Y0J8-~ZL5oItl+L}r*`Lsl1;diutseUT zT&dX$hF*G*j<>493XexPIOHTt3z#{iIk&7!Gz_nELSo2Td)cQ01M z7RFez5BK>uC;OXUSvg>)yI?6LAjxf!{J$s}pQ1w%fc=TNX1&NclFuUVYVf=W^C3C6 zb#^Xc2))f*0Kcr8$4EFqzh@0IKUmT??|ZM)doXdONbr(Ij*mb zuBya9h=6d&Ugq9e>=_*~HpYcNej*0Xk8Dz3GF(l~_$WFD!h;+EUjY?ayzWpbQizME ziW6g%ApNcemzjQ?{pI%Wh}ONgf-l=mcI=~M-;JH*bx@XoyyBE%ucNXyj&4n2O7m@K z?{KjJ##knM0c6!nBRI=!jj=MJk=^gxBbF5w0<%;F!Y&%#u+f;6XE@Pts(#HD8l4`q zVfqt3`=D)hd}Dh15H%^UGAW_<|L*?*6^$IaPRY&8Df4B2s;!)8N2 zn18r9G&HV?zVSm`C>XYK!+tl57l>nT;AY8d4N4u+FoCwcM`WG~qNhx15UM0f$jx6Y z$x24#lXBa7O9%NtG<+0M_z1N;@3gB&AhL)$U&+h!YCvcf!a!2)B|!jX!{k;X%jCgUga5H1F57d{n-5XhZCmBIGFhhp z-Xl0yVmjuU#Gzr+vUwBtQP_3Bh{D3HY;bi;V+;niwow^3`aq(r-F#7cWA52sW?BOy z%R<`I6jk5M%U)Lhd6K`PjO_u{Dw`;=_e(BIu8PERqNy=PrZN|>+Qd^-$L%u6lD;e(6{3^q zvn~WS#*;6>r8zkor}|Ku>tyh?tR!x5c0ltK)anIoF()>&Cvox*Eb!83MM2{ccm&1-!L>Fdz{ zP%#(f{It4Dk)oj7^==B|vCPQ+6hUX*r;bZ5HhP|zaP0f0Mg8xyj(s007To%)mD_Y$ zK4;3F*?HGLBInax-fcR=YESG)JZT3d;`%3kWQxzA5&5AOWa>I8;eaCxF;QEZNjcGeZ7 zm6Z8{2tt~!T*fc%*s3srg@P}5O#@@`s$&v@M&Vm$B`<^lQ<6H-OXDRVcMCYcVwO;b zx{}abhk31bRICg*Z4|G>=>;8e5gM&_#1hABoE?3t*O&|Q5Ga*6a+DVY<3v*mb)BT2(i|V2yu#_80vwTA19iYtv6$TL;J>ge|&1yN@zEJ zhy7a5iuvVTylBx!OudVrizkvz1g2vrqlt@3h&sa+lq8Q{3g!h{+MXrD_cF}huG|*3 zWaHi-(j%{|Q*ECRO-p!Wmqg8nd-&UJhVj>=(;Ye;wiVr+A|$Rz&VPlgWQ@HF3j9JZ zabkbE&}enBqeTa5Bi=iusC=Io=vB|gQH=T{!_(~~*Kfsu*`K?Y+)1pj47QZ~HeB~m z_V?e!DJSK8h~w&P+5M2U0Prbs!%FN=8$K|hSUl23D_^N`iCb@M?B8gOWbQ@{n)h*7t0_12 z_FZVeU~dm0mhV72DJlL06ik#$LT!#-=aY2Wh+SE$jA2~1FLoHjORro=M0Q?A><`8O z!;a^{h`_c<5*(VH$TZFuZ=beMWBc^!yhkSS=oUJ!#2%84SkBNatir2GHJ>iXG-{XE z=e@Np z)@^;aNY?I`uVKfN!){oG$C}f!Iv~m2vqbH?9lEH?MG36sd|#JwoloU-k> z5z5IyoiTM(2)&yvieD?Xr`k5S+l0K+8!4V7r*nOAZ4e!NYDih1fgRGx6V}rBejFOc z@&3niIT(eO-cP?&N3Z6&T^Dmqpbzk=nElDwid5LK*w_~@2A4Z`;#bI&mYwMho83*{ zTm9#uLM?L3Jk@2^8bSP=ZQ*t6*hP@j9ADW3!I)o7vs1e|LnmQF>_T6v58vNr?9F01 zcScc*2jP~_FqHdm19MWk@4Kfj+c2p>xBz`syb~nz=&q; zT0^=OF{>FT%hYk*&^1gK-g(7Qb|oKGb~j~kkfEov;L}xjQ%zx=6=@Hvi$ESaIzvaDm8 z(n$pgR(d^bWjYsr462?hS0C`;x-fJoeOa z_+OeK>Jj}!at%y?EGnnQ`4rIPPW=I!_4;&T7Iy7+;Amlh-J^}dmYnmm@bMwjJ1I*) zewK>?VAWE}j^z&PCH|br1|K?CxPXodQlYd7{29XBFM87*f#R}Z1+ZR{S#nO3Lvkm@ z5^@^gRl%zDTvte}rkqc2aAixy?LW|E*7Ct@tuZ^Qf_Usm@(r~X4NR;F!tRxqipr-? zjhUXT7mpHY96dRL7;^1p&o>%3 z2q}FZMY|`l>oTb`jdbldDINYq;%QBkF6Xjtli8M=v{zUKR8u`<9U=5R1J$h?hJ|es z`cuv3k8~<;4Qp`UOdVjT zC}O?=5!9fI%StSMGK1+({Akp&}`u(w1Q(yi`si4=nsch80CHU=pIQFt}d`e^Ti7$c2Zw(v_sN zYoeqTp`-hk4HpgWKitOz!)Vac$@}FNxjdhE+d(K2BI66BxHKO;Z%?PJEI6t4Te3uXX6qZs&3tfU9Mk}4eBbQ-okrQ}Kill+3AN>Dm> zLmmV9z81f+MIV(BM`yym{Tn-to6EW??EUH{qhmPWflD9l0Y}XfDajA1suxTDL0L6m z9;%j~M5JAsWn$PA4aN`GQ`6GAJ|qNU4mV^o#D4WqeO((?L}S}>q`8mY1wR+ogYTgb z1sCbJ#RugyeaQF=3O8|q`3~Y-itsKv3O~UC>q!AS~8F%~#N{hq* z^`gi;y3(sR478L!#9wBVHcCTtp*PQXe>e&MDH7pc6z)ugZ$TpYZ*p?NDUO-5|xW8r%nz0ZqBEX$FrVt4u3ui^+{|Da4C9QiFc@O6L5R2*c> zQIb;-J4xG0AMzraFXkYc}qhqNL) z7Bm0Zp@xq#2>UyHLJ`;kw{nrE{VOq+iDWI1bDYpE>3RCW5y1~yaR}H&n?RUXgRY+D z;_3qR+aF;uIp9Sjo)6vwY2*_cCh1;0qCmEU5MsD2JakaW0UK!D`oPG99fywS!X4V_ zV!x=w`=E%GEt?y1e-!vDp-X7N7X-)4@(VTkA?}(etwGM3JP$Y0Vn#d|b|DyJR-tJx z`(c04RR!iz^>`5tND8_9riH;Agsexh*MI(H&Yk_OZ0h^J;OHPbtz7`np!A=&F?ds$ z>x?nT`Xe{pGCoQ=O|8@SEG)4?1{PC?sIXiJQ~86xN0faiH4;CSo8~{xTz{=Y;r$@= z11p}pi26@+CMwBbp=+Q5f*>-LP2-7IZc2o}{kO3f`X6KOJ?Nz$0rJ}cq*ztlNbHWSaO;@fg zRP(ocw~ThNa5hG{cr9359}%?|zadu&J_CCj+~ZALl;nf0hTM5FW}kXcU>GMM|-UzLSr2@M`4Pf(FBvjJjhpw=rdey`wk12h6aV;T=0J z#|FVsG|`~msrCoYU-;JliHKe4{C7mm*oFTAoy}2*hY zob2U;UjJVTaxq}8pn_#bT{uqOAR61lkR9i*8_@U6$a$N!EEmWBVo{0Nmg`7^@FK{+*x*<_TCSe-ig$B{MMU&pijMX|vj6<*g;Vg>JI zxBH}@wHpVY?@X6t`ilfg?8dOst{hm_Uew<9!6mpwrmK2?vLTA=)rbgdWq zEyVyM^uKiG%naQBp)-kC(4q4*l3g8B$dpUHSATCXcZ~am7!}LYDe^m2UR)C+YpzB+ zO$FUy1=rKZ;{TnDw+=+z;cGR0!)+Jfd>BAzda@Y}BkPS`%hc3;&Ykaos!2AL!drF( zEWdtDQa7*uPpZtf+7ak&VjC%8v?eu_5g6r!_PY`#5wt`x`i-XWDD*j%tyTm}L4`1< zS8y|5sBl8j(%4{C4o zpgq2y96}ec)Z(E#ODunfulMB6N=e#+8e1BZm*>w81|G<)1ZujV2Qg`#Aw8%iYI<%k z)h~Fu0$ds5-{HAFDSD=AUOAm88&?T9QHjx6%>%>QCWnVB*E~d?Y~cL!qyYiTc5S_2 zOMzRkwayMgqyKMYO|=IRgtzoLU2Ih}7OXq!hlZ(@=e%L3misF`@t6lDBISp( z!(R!eiLW8{IUmFSPM>kPg@(3L8sq@eX96h$a(v`VE`)LLh3%@dcbFF&i2Y5}lJ6+{ z`&2N?HS|V^ZDBLe%~fd$)1ks140zpode6|sl*C48?PSauLbQXLAqvLg|1&7`=z|S^FC>D>f`;8aJ>*k(A%9ZQ+1 zacTEWMrj>3$;(sCv+PJZux7$>@!9{G)MCS3>DGEWP56~>arbZ_;4pz$vYJ;of4P)b z=)ODn8dh_%NUxh(0dgWp3mF`M*>)*1C`e-Uu>Bo8A`kZ?k?dErPV)0 zQfOynE_W%+^Vt}l{0GOewcW;E-Lm?R(7cDzaVkjK%j{aPH<{mcvsS(NkDUwgJAHpz zY&QO3Q?+liRev;rcpq}KWp(DCgW;l$zdbYW2^ck+fd7ZaQI#E7nIBIrvm1K+7l@j+>kdd#Q z*UR_#u2;OS;h9i2)Nj6 z_HTUj)YKg0tLJ%}u>6s^?1(c@c)0isa^4acKUMPI7@}y-7{zFxN2?^@Az9Fog$HiS z1dPOuC!MBGUNyld#{Vfe=+p08JolGRAl;0+>U698sWKPVEbvTHVF_@nyrQzAU1M0Q zH3gJISh9X2rP~oR3$xM57^qWwC5F|}$d*z}mHt7ILQjMIf7Yk7rJZnP22>zSU zsdZC9mubOnlw}=XyJGl{9#h|8z#&;)G|3qP$9YD@4cp9()w)Wwx2^I34frOi)H@-j z3(DT^;;$oTD;J`r`)~36ATH77g0V#8Li1o9#Q6b8KZEzj1IJ}a>_Cz8o5hPFYa*7vXT=U+$2YN#>?PGJw52^Rv8$IRGp>)mJB`LqKpAzeyp1HC_0bH%5= zKo=}4I(jOD@pz%l!xe1k8T1z%J*rLfO6U+Q)K{FYD;A@_d!}kvkp3z5)$6oMJmSPh z(YgFPrr+sKs?a0Dh=B|fL6mZvEBLQEQ*$C2mZUfD5CX{m3d2E{{>7)!OQA$}pUO{~ zvA1M9G3w9f^e7~zVRbaywd5LmB*oA^CJ#0JG7wPkyP8r(hWvlUdVrz-53DBv1bI`H z#fkZMN+*}&j*-$XSM7p<=kIYfCuCN1@bb^9JS8IS-a1DjY+T4 z_3Cd@UtP`zNqx-cIqVjkq)96ULyewYH0pDA_E>CBe`oX-1>y}F;E6jd_-U&S?|}Z{ z>nox!FdS6NX*G6|n!^K<1;bT-Fys z7cW0!OOu_NKvQ6{+EbnKC9PL)$W;p|0|_>-nP+aOtm_#MZc~GZENn)P60>}3(51}+iej*)7`f7 zG5;nQH2J(unN7HDG@^^}Cpxb>c)44c3tIInWVJp11C=W$XqmT1PR+u<;QZe2S zd>Y|h+osHQ-uS6=L5SB>8TJq3wqpQ0_!l5oam}hU^fIZ%23Fr?$%;siD$A1oy+Fxd z=ZH?>!MMms+`TU6i#2!RXT6@E<+hENFL>%`YKnC01RkKRQu;2chbTQpe zC8;G-cgBb`;!~SKeTa%d?&pHe3(D*^cfR6!M%tM8_wU&f5TPPUC|tVTK0+5S`f1`6 zs7TOa;lj&>hOQeVYrQ*%v-L=xQ3~My{@+3Xe7W3NC+1G0jJCl4} z7_JvzHH+Dufan4tQe6$TI_wSxg5WlO)}TV=CiBj0ySF zbvHZl94kZuQnn{<37XWj8PL?sUB^>rclSXI?~3sEcIp;vy#0RcXFpM9FFc7?oa`T` zlWd$Q0^?L(z!0j5QIKBK@eX+q`)Vv&%tg_-9uFNaw=VwkW>I~dNYYyWWLX*)@Ni&i z%L_OGn1lfDE*M~ll^_Cu1^oIPB=9}?2(`{XRsr3Atb$T|Q&znul?iPbb4p82Nn8Aj zaK@Atn{aCLEO%#^)C+KWr$-&6f2Nv{$bsfYphGYR@$XaqtK90p>U?4U$Hf3%^q<7< zbI3nIVDC7Eb)xosPmvEjH{Xr#sCNIAkfn47hBN+G=)zTss!ESeC*5(MHv6vc-}Oqo zL;tB)vH;zcYDJ_l1ui%jeWRQY6>A|l3F+=eK%~1FM;z2RI?B#b89ri23b(FtGX>7Ns@Q%9CC)yX>a`iJv39eO#dKdW z+Oey1#x_ekZwngZ)8_z;;2mhY;3&TEp0H*5di$Lt$!P`&!~RZX>^iculUB)TP*yHO zvCa2r;3d<@c7Ww#tFHpa(^eQHXS;Dfpq~xR@QTxBertpZ(Pp6=-*!$$eK%FFavp}7 zjU}KnWWDn9@+UMf++G_RZG_MGADTcmR6lk2MPTMm2%RvE&upQ~3xOd;%wG}`+&s8a zyAtO-w2pJui*$_JPbVbS6YumC&Ix}-ue4nqK;14X^vU6w;F4c7z(c>VMn0=ZI8>AU zew2Q(+iGkn>MXW?!gGwL0&5J;c)ED*vYm}jJX5;pVy1=wmumt4GD{hAUNUH_2bsY z=#S?Qb;=sEa!0DE=GkK(o^BO}wZN^y9bYbJC{+kD%dtCK1Suo#MG{0u*|^y~b|R4r zZ<6CexgD0ox$I|UTa{~-ie*kH}Mshj2)SWP3ts0dP1K1$rZ*!UG%^;3vE zhlS%gqmL|nY<+Zc(p8N`l~|z)XtH*9*;>aK!HVR3rt5Hn@gy0+1q8>08r zlox5GM@y+hO7>?KyQR;!-?YKn-Q&?w__taxin(}OinLBDl8=rVL?{H2itm^*y)QMU zkBgiyT}@?d2T zG{sVL4(=CG0qA6A?Jp#W4L}JIfwkUu+!|GAUD4^4XeAN%wo~G+30r3h0X620abdKx z2Y9^_4l%`ngJIqWbLhUkJ?tLEM;J9(U+iHdsYqR`}t&-yBZ zLg>HtVgj6KWp}x^C6;Wn3;Qm3D`OT)XlG$KHQp&cj)r)!0k3^ely1nsdB7D4E#I$W zyQJ1JvA|0D!vDn)ZzWqDV2ZEnk@D+NUW9SC7vua z<9nzc%*Sst6Ju`Zf?0D2ah%E90)5WPQ5s7mU&+@Ts-1cWkQr3tVF*#UK34!f2(F%T zPr)@ei?$06oCJk`L3B1Ip6Ntru{JRmP34v% zOVQDGCC*^}ghwH_lzc|dLb^OvWrcH>(C1xdmbg8Y)B=_{aP^E9dx3&R9fqVVrGv8V z;{;PpxQTKdn@I3G@53X&uhW;FG`jgB7Z^+WPPJ2M3sTKW<}w=#mBX{Y0%|-%U$u(}^SxaRC&3rVf zo<(=8mquA!6@Y894ywZsma|)yatamu*Y4G1?G1k*wdq?~!CaD;eXJuoq$Ib*3ABOJ z4*LyX@Txv4lBB}QOo0u3hxgLTbi`pduiIkm!6CY|H1z9udN<|c-6tKVBF$>a?8>P_ z(E(&5a$hv8>Zr8AxqYfz7*%AfP42Q=3B2fcrL{J>j24gFde0zXG3aB1%VXHaWZj1o z#5ep!s0FFob&<$sVhsk-YSm2pyn40hxT719Sb=L056sgF8s<<)I=b}!%^@XazX<*f zdAC8Z%6|+kTwZ_sw?kk1)<1>5_{KQaX&PmhUd2q%F1al8y9Z4MItC@rA%A||7Tf!| z!|S5=sCX7=tGFjvCmEhmr%ky@6tVlyE(W1lXEVQR^h`Gy4JG2;)#3=@Xj)i!B(zA0 zdQ~x)PQvGP8~F7TgrLw$9A+!iMjX613tz-_w%h)8aH@`E(a9;W*|T52|H@cs+bS>; z93f}#yj_0!mj8($Lc^DjV3Cg5kgm^I|q8ZEIkm z;zOff(ez`&OQ8nsLl*}v!H*nt?*b)kp=p-Hw4Hjj`akV=e~J#>5OYuwF2*ybRsU*L z|B|Oo5o~rEbUF;|CI;<27i{-=qn{@F~?I72;NnBzafl?C=a?QIb8P-H??%7N-b1wR3By zffOw8_D?B{cbT$f(Awc z_`WTBp~5gfg1nU$g5vM0mXU?R&=%^_^um)#gUX6lTfqgh#$%??geuxne2p{+92UiP z3A!`tZe_i%`i>r01{8$aoC!HO1r(tWl7>w|SF4?=R;P4c7X{VJh!^FhL3*{W5`_eM zBbru}U&C~}Ck*1^<@KgU=MjB)%Wr~lZUCZoS_8uzdmI6Yz9h3gD}aJ@_J(HYhB+=Z z1Hx#VfcR;%-4nihCYEu$Oe8O4!hvXr)Z4_uSol z5E;!zpHg)`e38sS5l9=p$A~H?>S8H5y(Hp8z#V_Koi*u(?qj$*6EKiT`8>=CYE?a@ zONZPPZ6MHb2a5sw#}lH<>`n!5U8mU=bo?m>J{@t`L1+V~`;G^_By~gTQV)_H@_Zp# zW>FuC22vI;DmC~Eh_2Ke1%KS(5<4S*+%2*)YzA&vdFquxx62nT)DH!p<`MHJ*tf4h z%L$y@=5)Kx;5DD$K-tD^^Za-oyW3#7bp6GYMU9ZJyL2>R;yfXGzIttX?Rk3fi)s5& z)alO%SckZ%sK7%wc{@S32d3(O(E8AyrE}2f@R<*y2TH*2qdR2G7~KsNi*8gU5hrx* zIGDoj6cI0Er6v(ifTu=*oVNwm@y8Y8;Qdwc*9d8V+9hLx%WbJ;G*)7dA{$eBd-@6AQSLGLxGKu=lW4JFTPRC zF8T3%9Hs>L7=?Fk@io5^N5JndJ{;RyZMP%OG%hK>!tOyWsW3?IrBG=V81CK}dItb| zAcy&B3W5D;3b}?j4a9*J>4od(j~oy87Y4qQ>bZqx|hx{eJO5JruJr-%KbyStO6rb;RSl*7IH6W5c8n(_NW( zJvbilOd;vo7S7Vm&fo(p)s~u(f{}*DLc*hFW#k|mE_LT~*o_|0#owzw_h}epv9Nyg zfmhnmaOUw#`M;3maw|D3A6e->g}Kt!#hx8_33mz6!B9qI@ce% z+#g#M7JM+!=Uf{Cpg|~>zq&rip8fZ(4^{qubbV-!iOD{xK0Fc+hfY`?8ySb!j5Zg= z7Orclrth2G%X*tEm9w!P?WTvF?)sWcsifGn_sptS%umDJ-KTD&Xq<@!J&Q}~tA}R1 z#~_5=JJ@b%3vNfx*wycyIK4er?gKSbq}?Bdo-wp`IC)HYf^*)a4_%UKcl1o>d7reOE?wWPY zJ)_^kNTK}57amqD*XO(d$?%1eCDp_Vj#k2r>{3GnNZe@%!D^_eJQK152YVGoQpcvP9$iFbS318{Fucx0 z1SKv%f8n~~lHB;u&)js6Y__rdPYgqiz0ExK`GGxh6$Q~a^~}5X5{~eJ(^>L?R=r`m zjPF>RT8Ec==rR9Y*$4M>b8!UR3cE6fk49|oq%R=+Fm4V^eHuTIdw0T*Zk7eGl0z~p zAE92G?xlwQdHfLdwcH!3=fE`_(b$vv9o^cvc3kJeE^FVCcXoF&0&Ko$pEca;Wn>Ka zR%Gj>I0_Uz_%fz%S6~Y40#;BQb;gGwmM)m5G(6y>h8>1OjHJD{n^uG{8^r+!II`(k zwL$y4uLr!rf@^E>(v$mpHJQa_sn`~%KQHuBIwv$Sj7W$v9b0^DYC~Ze(>T@?U22PN zV4u44EKT$L&v}MLi7z3@WIkUxz1^47 zQ^HiIs?gmqDH6AtUxa`t;4m@#Pw8l0S2my7$rKxA<<&^)QLTW0ZdvfH+T)a5 z+HQY{T>0yLQDI*K1o;sOZYoX&wYUzkarcr_yBZgDGdkRD_T!q;D>fI+bf3#N%#SdX z*>@#m`%@ev;i*cd{~pi4?E)A%iq>CYWKYm7ZS(y)98pjfHUDj_ZhW%I#~9V4&-K#8 zbDV7bCf+ml5nohUD8+Q-5u%W;?1l1w?fIbab^6=!h!A&*e8y=__H%E1NNicI0~>35 zuUrUcK0y%9Q|_L4u=rU1IneY6%)srq*H?%vC{b8ba1d{s=5(W`$}(e#ZWhan7LSBk ze9T>?2AgH6G$>;mqIRvs?Q~g!typl2+?0wSJ%}|I5~y=giW++5sM9ky_i=@9Vr)%O zDWubxHdVj!q6D!_yC_L@%4I3)2zzENn`D6sr<+B;GA6U6$U_M>d+j6QJ~-CnfjAZZ zwpLdYh6M`JP5H&-5ti9WM$N}{oxu`KW!u}DE$U$Z)`KCxc&E&}uX>-0KUMOtb@?4a z{LuhHzCduhUL1SDJhGi9K@__my%Ni+9Cppm#YyM!DZ%B8kW+vlX){>vacO7eIYF3N z!hZ9tq9+~C0h&HpQ;BBPJX=)!4)y#8&OR`^A==sFPDeR14Lba*$Rzx#k-i0I_N=`A z#nrJIT}oxUMUQCl&1^<*k?C?Kq%7>-F6Y!FKNvvJ zjL4e8MW?H9n*$5iA^N)B%?Bn&%%kUp>MZUe2EZkmj!x!k>;@fFqPvos((Z>D0qvTI$o9L*b5g!pI@nFNtQ{ zvBlGSGC%PPP(K1uKL(+nlxgb|@_+@5X#hy|mmC8)I_1h%X0lPi211^ z$jb7!@&z5@xSGv^j%ubO1*U4tV`fZW6btTE-al=%H45h_nVK9Uo@3gVZB0N%-e(IG zjN@AR6piTArA}y-#tq6*U4B1vmaHuHH&rdI5d(er=Hy%@QfV+EwQYx@FldtBVzv@Z zmlnNGrhrpHGH^vRlAxHwTsL%t3YJeZgVh(2G<#J{!?XL2iFsykz?kja!*aDhljpH8 zm;JhP%>VXYRgjQc0=8E3#u4;^*Uqdx=2{Y3 zXTyj7MWA7jrD#kHV|7>d>M%psQ-sgqy)bnCva?O`VG2h3<5={gVZsxs-LBN zyqSV{ugqc7#~z}7Wy?%JZK`LJ1Vsu}EC+!wnjH-{D(&A{h7iFv(y^8GFAum}aRRA7 z1luKlch3&(W%xeFt`J}4NyzXF%pW$cPgu1taXXjSc!2a&kOVUgW2F=dZNHCkGf0D` z(tzKfgiez}Cz_2$9Zz)gxeD-HxuD|XY`ah=;|K>O%$zSOD#V4dpIzp^t$+8Ly~Qild7+>ErPa z1gX8&J~(Al>z&plku7e58I4X3Xc)rB+O_B(E3UOBB-NvSKb5<{C`N#gYK7GTXCr&}oDuBZNJLdey@4uD#5?=>?*($yR%tVD!{EkH`uMf)>u_Kz=5)# z%Z^;_u`sp>oRs1Wtlea*gCiip$K=*sWhDQZGS7bdPE{>t&t%P1c0`oiWM%_{e@^&O zaOAIu3eofEOt$|oiHbV|=f?!Y{4`x|B!Z;WeBS^mV;1jY^@iwUGy3$&cFo+Z$?+O8 zOE-MKWBOr%(0`ezAk14=O@TzSuUMjPB+=I(^Ii)79Eg!~lgVUouS2dT%4KYN#GR>o z2mzbf>{tvnCU5?*Lzh^4S)MC*ntmgpqqno3)IhjiTxEG54zg?0@N$PC{{)}n9$#az-*rM%7DNuO{lW`+ zpRB|F$6EfoHQlVD0aR2}2_s||v?h~8bsIBMXie`N;zii6!xnC2uhTa(MTr^lUyR&H zrm8~6pAy^hz8-4D%ck*dCnsWs4;k+-c|jQE=8ZOtfDzs*h4|W*=$6M`ani99IS~d|wwU>0GOFUrgUzgtx=OgI@IHmgq$NPS*H1ME&j`sQhISL{(+( z81;Fi=wR9vyDgz6OuyK>flMPd=pK~5a|tL$x(DOvKO_7B_^j#rCzZBl7GyAexO-Px z4Bp@Dv!?pZj{ky>KQ)t15M7gTpNL(AhnhOTr~Vrk_==DW<7>Lt8*=nct99KeK5M>2 zf*rhIecM>~z6tcbYRCkB8ap8Q=Vr*yeP?Jt5w`IaE9UVRLY*2Q7g$FRw_em=Y1<%x z^MFjA67hnj2P+8VQqaaZIG?s!arbTG3%F-rK21RRie+uUz;O+3GYoHMoDvQU?p72G ze1HizB5)2w?L=bi#YEAGvaoI?6gH0D5qNYzs9~`A^;Z{o6=KJ2i>i)R5 zx4veK47~u1qrL%?DS41)##viaNa`a{H6BaX{?Rg_%(=K5(Rhg@FTd;bq!>)bN++tpvH@;y1TI`k0@0ofYE zRh81qorzmk+SIRpdBI92lzX#@{F~5d{=Zmu&n(<_R>~4HEB`3Z2b>?{2I4j0e;o6D zlvcSG6P@PVXZ4$xBn75v^A_+K;8v34q8;C(8vzrj?x|(q?3}f6P@BOQJh%+IT|}nd z$p!NxrinAKP|cF(Efs64h&TqfXz#4@O6V4-?~M7Y4V9ZO_72oI(LN-q3D?P#s>Lbq zdgyLDHWp_@f_)z^kM(QC8hcrRG8QXfP-6dF!Tue~VV!$ho?~L^T&yCr9*w~Q{F^`w zdzNpHQG+ii!-O1}k`P~$cO!uwx_^>8(Ny3$%ccq!DC$Gt4YQmV5q7b`14|<3^ICer z1M>Ckq#M1NB<&ANEun2Z_D&i-SVB0((C)bx#!nI@4idWiq;j|&)AhN%0 z8u<<_F!E`AbaUZZg(rfxP{(`9S#99+Qab7x1oJoJ;7@q@6giM>y_89MW*dv=HaA!I z(?TaYS+COsS39nylDFIZB%$k)!}H5P3#sP!Eic|}#KN69D%j8!nl-3(GxR=SyYZQ> zy^h^B5YnM#*qI{Tv8Q4hz!DD#GW+dFdytY_x{7C_t8E@vfMx<|w7UBR%<6W|1iEds zptp`)+?&@whhQ3^t#3~hTWO}^WSnGb2J!LOE31*>lA7I$fxT~~rez1d784s~FjBoL zrEJ$uUbz0Y|lie=)dz6mk-K!lZ)nob=<6qk4|@w9B~PM<7!K`w4VIwJHwI07xiD70;s;hK%B&$ygO@a)OY?xNPs zH@K^`Exf;0_KbHRTF6e_njpDSx<2>m?@EmcN_yxtOYYV3T3c*ep(8e8MW^mmU42{* zOm$ck=qV9+2f2N!5}b$zmLTqd-*^D-ua|Q0Y~&HKm0X7-((yi>9fKLp5SXbdZ`HwJ zJbL9$_>RF7`52x_e`Kb$oM#Q@8DH%-7=nbrI7j%+X|mJW5%gW>LlQ{m^VC)t7q0FR z*+!;llT~IGyf=W2(|M$qqe#UX;tZe+y1{%y1H#d`hkffLDbbZ?4I!!~*43$JTcJw9`?I!4BLG@J`YTdiYoCq^c! zVBc#tQK?PiR*-pWzLae#`)cSH2m#R%@H&wIqswXsL%U4H;Uq(ecfQfb^|;pjGD8#_ z2Bk0K#t$Qiqfa1b_ua_YJp4eTKgRDqLO0!+$_PnGyoH-3-@*Wx?37 z#}UWLZZQAJUNu2tjwet~q?GbI?L=Ej@7=`;LR;2JzOa?}yRErQ1_aURKMfCe(ugEX zc(41EoUI;De}tn8i#NwsmyhpzAAP3X|9dS8z)uiV4n_`w({8p@$Bg0}+LFB)#O)^F zikQc@irshjPzpJ>9{JC=&He$W5Frn490E2}p7bmPgaAv?sW@Xq;k@6C%*vFreHc-J z1>rNWE@Z3$ne{aR?K?(k4LIzrX6UN$!r~lw@hZiS_g448DiZCOa9c1Lk&We~Aj*KI zx-g`{?2=>nHkn)Ppo>6Ll-Xzk1ll`aA-S5?0QU%9C8I&({-Vrm2%q#OX_EKJ&39Y} zvP7{Q?lcbd@M?!?YaX4~h0dp2V(V$^>-CQZqDQN=Ne=eD_B_l+&)g8Nr&1@tix3OL zvlPpdQgN+^Z@Trk)Jk6|3FEZkE2k|(N~HoTym*Z8m7W*|ldWUv^Zf41!f#)4=W8r$pV@ z83`7qBeP;Ft+i%9r{Njj$He3s2^iE{KHxOw`Z~LwZNXWgZe~QMTJ`b;_&pw0*ZJqA z^n$qUo6nxek=wVy@7cEZo*@Zs=*eh;yA!lOAhdF%-jI(k`0s^(J4SC`0C|9Ui>VHK zW9ovB|q{O}sC2 z&M?$qelqjDM3s*G=!A<~56w)49Zw*QO5c5qDcdRFEN)I$%UIfgx9S z^)2Lzcnjql>mFfbEMW`-n;#15PQzpX6Az}ia(C*d;=Th7WCp(RX^}=~rC_@wVb@tn zPK;;h@>LBTbJv&?xR)LBoV)3*&^^*W1yfF&CkI&y`3#d2Y{Z{dWF0=*(e z$<~R~LeBbPw4_&c*7}!#_^L49Z{G|v+tR-2Rn%TLvRlPk=()tj$I5_e#+Tc(ecNAY zENQAW$|cEM#rIG3)8-r1(wHdZQi8*!FZU-MA_wK7O!<#^qsob=c4MLV0>9LMqXTOJ zSt{yuG+Si@HcfVE1uVH=^T37SA`^fuOv!j9&;+LnK&AW2j6PR-txH4+cHHx@&};L# zV__2@sag`(Im`xY%?gBzPQWm<~o$*EI15S8tWNhqEy{; z2e^kPEqE|C&~Fn09rG9#@$I`*?_Ac`^2j##Wm~J!X;I?deO)7k5V>C-xF1kf?Ecx$ z=tB5k3_xx!$!7jD!WEC}^pZrUm0FEx&1ix@a`oknhJhen6b0vfl4r?wUuCQZE` zd8v8%;gCgpEhqpc@wW6p{tJ`mN79-?Bmu2W)C7OOty6s?vUU6Vl=nKCRRlEt>C)i- zQ+Xkpq$L}t<8H4i)0{ZQS|r>WWm5IaG(0PDw+fLxTQ^hGUfuAKH2QG;vh~5Y4A(TA z3YM9d#g?ha(pZ#G(oQu&z5RxH^~$K<5*(Fe&Un;KLouuIgD3rA%?Za_&%0|3sNM>e zB(q&+<9yy?tNO7iry?=Ch4aLls%%e9`?+oNdhfBosq8wBOQ|B&=-XS1CceIAxi3wc zJZFc;L(P#5r*_Kax1P6p(eCrb5_Aun{ik88-LW+nX7y3j(Ws`Gt1zI&DgvWhmz%T2Rb@IP*R!UckYY2DN2}uC z!Mn~%V+vZTag#1rndPpraaaX!evRK(LiWOyb}cG&9VWX}IX&0erGPpY_7^y9*fn(R z(DPWM5qP;~U}Im@qq8%|d^L*0CEHTO7HupFTPJhwDjwY`bCYL&O)2A_L(Knv;q z8;ve(tiLt7&`KL1GrgDt4q`!h<*Yulipka0b4x=6Mt^WriryN?Mi%_ee5^s{N(r5C z0Jh>cF!XqD6~-;9AQ+p|UPjRRuC;x`l@SAdd6Megg!MI2XTS# z2?Y9S-*=6dC<_hsZieF zs0|lC7N@tG+oy&%{Tr<-#W0Nx*78+e17WJ8?-#&Z%vjsMP&7ZgVYFyX(TH|RSeUi! zc4N{FC_$Sd=tF}V^WEK)vQa6uj;rI6x>~rMXMW zczlq37TT22d;O!lBp&N$c}c0$MJ~c0SZ=I(C7X93)YV=Lu)*eOD41+M4`y@nRH-f& zvQ#40&lm{+g~1nLS>Yo4ll#4iiscrE=@r6XwiK3=g?}$2A?>}1VdCj;kF^sgjLfMW zKU$3bVAj6!)u;ctt*ypTG9Tr7fCK5`s{TI}jI02cjUmNWZ9@^>-@%XF?S5U1X|(0? zB=%zTq9o_&z2C}3#zqWwd)DIq>_hacHy7>AU9bH1V^_dDQmUHBc+saoMN`v)outhX7YxCD}?Qz3pi+isGt0jv3K(1v$Zlp(uJ=i z&FrqUWN_{@DZZctSMprNxTk6b$9eZRE*xI;%-j3@2Bd!|;5dtWJG!!nzrxO~^0bAp z7BNm*VxWk%f^-vBo9?*2q86LbscVj2#NDxK@;2bU0XgG6w5^)`+sX@2jO8MiO1UDX z9qO$nOP1Vd#RN4PtQK682~~E6W#qg&H9=sa+~t z^qYYTKxIIpju~?tt#Kt5b@tcsULIB+E%_p|G&M|W%Lp&NBZA~2Sqs$)`5WK@3`|>( z5}en?jScEy6e0KDFnNeq7*4zjJz#2R_c9H>=qT6UWNk7NAG-MtAIj>=G$YygID3@^ z_MYq_!ZDv0iS^e;j+$Q@IY`yYL26!L2xHVzL5XtN->7HP%w8DVbyqAT=_*J1_V zK+W*bOqZ%=9CItvkE=24iPb{Vn`e0^{bJ>heH~5felHu2yRsX?1McVVD$=HKAN&R> zOVyMOg$24s>bT=@3>#MES|G}jDGRlVlm}>fEYk-Ayh2_SDqzO8$yF_vMA+i}aYVXN zz8X_5L=w|Z6CAAWB`tiv>(fy1rN#iilg2GH9ubqJtY*+R0!%s22hwD$7h*d{aP>Q6 zPokRrybGo6Y=x&LDYf}3btOf4FCX8_@0w;)7Lg|V=eM#I<~nbe!j#kUpTgxw;)9SdV1mdfW5-=ij9c(X(++Nur}X)gDwo>PhS_u z%rK^wPvP}>vq|EuiJ?7m-39@_1vymveEF0ixFiopt)o{RtzE|I%rB^^Lv9`cO>&eY z)zgL0tQ^=AoMREgoafN#KN$B&rC>K`#e5?I&BTrV7z`~iRaDjBSY*!=*t2Ghr3dm- zw1LS0C9!Lt`C3gVNlcy1E}lVS5F)Ze`7@lE>oF%6mMiyYN1QrjnO+^;S44)4M@M z)I(7ZB0kR#FTsHHSV}q_7Ef>LxUK)>>-3psJ6f01`*^-J^ar0oNF8A31^s^vwK)C} zYO#X^pcaQVIfs0$udCBn>k++?5l~IQs-Sred3bBq^V%IpJLyGQ#g-5pf+6 zd?gJuM?{T>FBZQ1Wq;KlvFZ2S;MFR@W znURXyC~fC;?4}dkXGynligCXWVs<;?4_ANbo|R3loUSE)iTSHs&n)uP-1 zcUV9KbRyqWDl+%CELD{P*043%F7na))N`vMNDz|OE5aLi_YeYic1%YWn^@=$3TD^2 zR9l}o6)9M`jwlnp1;4sTY%fifmJMxEJuQS(bfBVhw#SdG6zUursw=9vCV^rbw&L<$fP z{{#A>^zJwGg$LdLFVPpo%V>T6zeQgp{%!OH^{>zumq%G|=PSX#5A6f)e$gOO`TtdD zZ`xu~v0;N|OuI^oK=CcDx7zmw;TExC^0^7UfGFJHD3@S>2`cmh_InkZd}&VkNu-NB zhYH_p$RQ!zfamN)F$tnPwYW65R)FCJ6J#%cA4WjUA~$D}TY|%E5sP?!(5b zOL_$86UV(n{@MAkiPitykOKP^9X*(&oabiObDhClvVj~XZ=)>FRI-5-(0WyEduZ0I zuFq{OEx*U~P-bjknydfow9BDE`N|JvgoXK&GGZhL{+B$SZ{jRUw_KrJKWZO*>Cc6? zMhASF3ny33Q`$Eu&AlxD*JzhFTNXvbMQbS=MR!xOtJX;K1j;AEIoEg6;3s{>IBQ@d zBXSfsuVtK*dcXf{@{q%GiDgn$YI`8l=9&CYKQQdW5%Tu9XNN!AllZG=2I6v0(=>AyGRI8K=KeSTvjj1}Fg=Zn# zBtZ!}$>@y?yy|j{mEVUqm8=|;{=RhBjs`Y45pCh(LfAEgWs8MAyFcn)a8z=Oug$N- zX8Zs@fJYo3!5yFYN}a~QjUgd51H-87`~q@+K$w}?=N%+;gutWGn>)z2GTgTOE1o_M zOfNm);-exXemW><2m=FKe~Pcc+_Czdh+{ePm3D3pjRQX(Zp$2Ofv?gGrxxzE@BZ{& zXE^c&tk$mj;J5;c6Mj*j zZ@g|N*S);@CGKfrsO;B5iszLICKxJ3pmsg)8gg5X&F|0D+ERv>F_a92uL)_Zfp25G zZpU9UEEy^z|J+v#6$%$vog(PefV`oR??+_#nw@>9_vLe@n!cJnVj}@3)5Qt05BL3S zrcWad2|8s>a9NFJf)icid-T`Jr2$n{sEIa;ImFla>#2%=a9SL3w|u6Znrr)J8#zb{ z%r|(Arp2gssQB!%a!5nT?T50Dpb{$JKkR4YQCkySB_VS`K}GHD>fD1kPZ7BxGHY~+ z=te^*FnK*v6xOep-XIJN`QPEmT~FD*ucz2u+%gbCj_zmP+<}ENgY%}r71{0@eC0v* zc`}j2hlE6P=si=$i~DFM48?X`lRLfTcW2Sw^uI7Hmz$-BaHqsnV-AWgqYoMRt+@;< zNJF>Q*RPC>flD-XK1n}~+ygfm7hs4S{i6WzNFN)H%>eHEUL0xCrX+HMp-_L&30x}O z7};G92E-R&dVt5cC=mxz7kPdcdu>jZxNlWLKY0SC`3mnYw9Cw_GVsC``l*xF4%N7y z$eqy4*iMh%4ubA;NhjjW7M@NrgsKFEiMJZhOFp3@Ne(JJ=TCc0mrNixhh=;IUvA*W zzPrvF;&2b6KY9J;$A1r~|G9KyT;b0N_4nCDlER}v{K?sU0wx>Y}1nD!4R+$-7@kD9w^G_T)e8g`$5muWZ+6-L(O96v^- zmQb*dM4a@#Xy`v%h-o-Va?K6Ia`scp>C(s6Ba_n9Y$jNh@r z3di&G4%$aO=}=R=XG+q>5vLU@1Q~=m;Xc00o4R3O6{rwz3N>}>8`Pu^g{WlmNuA2z z<2ixRaaev2CrH?7SE_U1)wVlV8?5eg0wL4z>@1ilUd^yMb)ue(;i%nBz%ct-dsFNi!w_Z7_Jv92olcBZ^o{jjnrWV7bZ$K7L7b9Zv;}1x zEp63!?1X!pW}PSzp_Q8Wxzu4I=*&L;rJ`O>#L1T8oXWpeozdn|C)nl58?0GSQ}!%I{TsG0P6M8<4artB5C?~ z_(VpC`dXkia37j7V&lTZ{0?Q%1m2^b>t|2*V@-URR8>96c~y4vqe#|6$^Z587u3%p z)RX!wuQy(pAz%H54_^fEj*{@tVp)bb2rWj!ogk*HQ4cCij@HS zZFYWJ%l+`*R%DD?;e98#=xlo>X&}VS8;bPz6&XUKzgEe%V}_QK!<&7dwOz8B za>35u^+5LPZ7MJf18z;pf0mAfCrkq9RA2{S z`(t9?yZ_G8m-`t+<6bo;Y#Igyrb zX6;dF;K6?J!)SoE6qJKEsMYs#Os0`T&zF?qBd0HhD~3UMM>}R?dmD7c#;Ugr21Xl2 zbwN1n04ab}ne941UkzWlcdoY(@bQv0jb6F(RmNP3;jsX)1(HLqMXUb&w{9s;Jg=vx z>u|{xytd)#Tgw#0I4+wRK}$rc11w%Q;8=#!{~Ylw)t;+YY=D z_tU%^_~#SRCJgR4%}E34;<4`90YXr{z2(2=w;|AUU?cKrWM9SN@avf^`Lh&L9-EzC`E4N9JhM@i@p*c{jRFNBtGQ8HBEWTpAH z4~g-K-lLSZ@^2-0C4ua33Ou~RzUT1;hY(sb2g=)E{SQh~qaZj=bMO9MMsndjlKkVV zZZp17!d|kk4?tTbronklkh&Yt&-Cfql|oBkAnBk3-uf!!dq!GQ526};IxB?$76(}C zml|0w`o$I-eJ}b;;$n0W7JLJN;4#jBm#_#V=HWAao8Zy31HGhrGJEtFaj9@nSOlc9nl0WYu{7hyM%pST8a&O0D6f0 z0ZE_-xe+;Dyk#zQ_k|~H1d?BR-M2Mh8UxXO_474!#MIf%6M8lB1I0l4O4>Kr@pbK<85PWw+L zk~BNN9^7mW0f4Iz$L0exnyvvaR{qOn7|I3lg{{!TNxyN6T6AF62OlqV<8nc?3oWCArfXpXo-p_okH`|sVvNXlm z7Hl!q)hfD;PoF)n3zKruqZAAF9D5Ysl7xzC9Ceo&37u%zy+FvBv1ql`RwDjT8TFot zh(Kw0;@P7-XK*e%;`D$$Cvp-IA9TZ|z}p@t+4JGVVs6MvTDB|pItM(A?G6ig`{cW4 zKEY?;{iA&(@^@j_86Knsj{2~xw9zUw6b(|Fpu^IRivp+2^M{*BA|eBA7&5}I|f^92a3ozJA*>dJh!Sj4sX@8TM;63^$N8w)v7P1{j1 zcg?9M&txtZASFrG7aQR!2bOBUmLCx(sk?0i$qcd>*jA%WCW>>=*do9Ls}J!)Ly^%D zRB7E05cqGWj#w1F7s%_~SC^D1l-XE<- zv(|5f+o=B}zV9CmOZ%tJiL7GzpCxB6r%cV7&Xmv(!_*Tk-f$}12*wd?7!KiriZ`9P zAnz8(YyF?vzA`ATZrc`u1$TG1pur_Ta0mo~yF+ky_u#=Dg1bZG?ldlqTX1)`+xfn8 z&pqc=y?XcFs@H#d(M7M#F4mrFjIrjNPGTt@W>Ev+!Qc3p4>_}pEnBTohG9CkIoP(x@$B0Yn-$}L3o`FF#e zep`C)o{`FYDb2o>joD*fu#r3Bd@nxo@>*&6p9)5wVOE4wzW!}k74y|MCgCYi^tRPvEdbmzc^M_R#yYi7ATSleir|b9O2X%-0In9PQ3OK z_jK*8jsl?zLGwPqzvKEKs~%WsaP9t|$C9};yk=BwH{CPAY|ZGT_nDT_e?i*JgwZ)4 zcWJe;mHIHCu>-d$tJ4ji^L^nl9?eJ7Ek>lwr+fltJjc{8ja^;R6Y^<;yY~EY2?AUJ z_}%YKpYCaZMWnYM(S1Y!z+e^sc5%h2IniO&wI@~;)G{{zZ_m0n*KPvZVyf!$t%#^9-yGT zoRN8flMu}3S;Cb>>hwWioi4btRpA2lho&IU7zD+4iMMh8HVhBaSd@dwGyP|tVN8YZ@gf=28}RH!L%7*=ZO0K zLu^`mMOVESML9aTjpl!0Hq50UA&*uy^5lAB+-i9%8bz6#5%pd}_{Y29ubPmw0bP0L2Vl`_O@-V*H*RvZY4xf<^Qx2 zA_(ulYav0B5~DXy-x+2|FD|((?sONvnqNR_D`@^N)~v*<=7yG&X%f@R;YKpGyTj8& z&;BKs6>R}#jt-cJd7Z$s7!NUV0d|Tc$s2e^49BEE`T0QtD^!&3e=mPHYp|qFPvZiw zS2zthEr6xBkd4x!&0;i@mOQmoJU+YzJT3c2AY`sfCt9F^`rnaSS!a((d~I zR;;a0w@wZ$tKUZj8k?+LkQ+1aM`ul{9>H{`(1Ve-SR~@51AgUxwf$$p&b_px&s^+D1gN#Gf}9M0&7CBNx|Dr~lGx z)}cMKNw;)0&ZvpIUNuIgRX1o1a!gzymHfZuA(4Fl$3udWkMF;vu6J*K=qBF3A`y3+5PveGAMt3qU(zZi{~@T^(gTpJ5sbRR(2%QEH|+v?A5! zx29I~S9iw_;0(`gAh_jSwB4mL}RQQ4{BC4Oj+clnc>m9hQ%1bBZ7wQ*VZo5On%@OOO5|gcd zu!V!*tB`j;G0&9tTykL%4ve9)%_`Vwg0Y{)x{|0ae}2mSB5-y#&)SI#EqeS)yu|l@ zSxWWfsYdQ|QqX{HX&3jU@*JdpF)<%f@?l&TQgG z)Fx$Le(R8WAk^kGXD76Wb@qG}e8w2+fO(KT2o`0NX|(yJ2sj=Ur4Mn)mK>VeY+Eu8 zUvy-3wi{_7Kd9wMZSq7Zh}2i9)+r4YN_;r!C&UH|Us)k}R^C3{ZEq~3w4HZmrJ(`; zmxd`NYk^xe>7OdF!Qhb@OgpK-re_$hZ@1&H#U+fk_iq&deQ$!UqVu1trm>tLarGw* zoYrk?SLhX);Wn7wGUiDYykFIb)OBfb>=Z|I_>#!uPSg{5USEQ5B2Hxb%|Dl?O&YSC zCB-Sr{76v$zC|FT>2Fmc-T%1e=ossDLCr>yvCe8Y@$%be`}K^M_U)+^56Kj;Q612& zFAyoa9?q=;h^ZcTL^&?ZyK>%b4buT&mJjx}^7;c^qR)0Cg>)87BD(cSs45$vW<>+b!9IA|@O*4Qj@?Bu&fI`X`KSCBU{ z^4ZXBH7co1q2!_wOJ>8$yG@$?5$OB(BeuewB#%r|q_Snkp&~vLB1aSv#D}7V>h7cj z0ByLj#_xXGfi`FrBDb6k<#JlB3dcp@TeQz@eEz8M+x9&t_o-N@(?}QlYPF#?4*c2` zydI%V9g!2s7VU1?Gl*Te+3=>g#Yw5)rn&e$R>mhaEkpf5#xOPs8>OM-X?9X|qzVv+ zs9E+d1(W9KlaO*Sb|vYuifFn$KDCbJu9JZJz^AWD?1Fh5WTy z$tk;kxd;SCc;WdYW%v8|Qvp}Ru&W99Zd5_+fxnIBC93nBT#(jj^?%m3Am{}QLD0zt z4t?6!@jtH4nd;)sv+z>KGY*D$OCD+|e0VoaUqtohzVH0#B?$WpDTRzn1krsLnS$8u z6Rrcmqm_u1h)5`6F#9AaMX&R`{iPMX{{2s6Pvx`x&>M|`bAx*gTclq-#oequc(~J1 zDd2O-&(Gyhvtq0SoY1@{WA)e@677a7p(tz!lEtDN;XI11j zq4M}!MTDw`+=E>0^h3Z(hq>OKOD0}bwoZkF;i?F_JZQaD=Ysy+w&%iy+-`V4H)T3 zZlgGB6FMk=v`Gmd$>3e9$@YLdt_80j)Jt$sFy5m2aZs6O%~>mXs=1_P|LiN@ z6Hm|*r;BOO{Be;kWUEyT5EQSU%oGCMYSj+qvKXhIeDWFmaXa*QZNENi%3?q-0&L&~ zE3-G_3^=)Jw>bkYPA%<$+3cns2vW)p=LM&qn!c8#beSAAWl36auU5kS2}PrUeGLGx ztp+0WaqSJtUxAFZ4mK1U33kgsy9dE#kr@lzJy;feVc5X#QJmyzcK4){AB)E9sgmIK z?YaJ;qtMJ+!1vdvJ(Es-Mjyf9ZSP&ol17&XAbwh{-&f_c*UH+WE$3ZBquSnOOsgkP zW?w!UF#-2lnlXhmqM*P>o6;k|6+7)Ciwm>Xz8JICatwz4(0egNJE32@4mq93GJFRH z7)8I0!G8hg6x0f6&I@mXcS5>3SG1qMC7yJ^abmE@R{|Sd^b%O+t~M#uhqA=m4dt*H z&=H^5NgI~jrL&3IL_<#Q@yz(qk-K&d+)X)8mE7_h;F}TOmqHZr8Fy-X4G|n`9Id6W z2&yJk@6fdsNjhVj3W23k?~_lEs=d(86rRaUDA$zppLLi;*B+qi*tM|05nM3IeXw8N{VM%6IKJ01U`}2FMb->eyNf@M80gQLbM3U zQBxvA6cDxI!Q}o)UGS_cnvGcCO8KI=hw3sp4ny(-2%5cz&F=hKuoRjAgH7OZELe_) z)xj0MN;_W6*~P9p>-eGb*N@@`MMWTflYYkwT0kfx#66aam9DdtL5-jdm(U@@Mf+@X7}{=E{iCy zgzp8>^jaQ-pWe-C`#Dg4ctH0`{(Qc*@kGTw`zW-jt*jf|ovz>jIRsU7ECNij5_TqK zr<%I)1+VNNU{X)+6O}9`g`BoA#~MgV=m+CnEJmkr?Fi^=fx%{iHwe~c@{U=HL=iN3lI%PswjdVZNr6+raQINGgysq6cLw0-_2(QKSq%X8adNLBO<_a{>**w?W}xLe4N7D_9fm4nCwKEE!}=TtlL z0ePR9tik%0{(FI`3v8>E;6^RXKE1lPPDuyJU;>-Fnun2U0{+d)wW-bPKFa3AZ>oeg z5S~ub0G07Xfg#)p(Z(h?H1)qUTbaSQERF}^H(8nWZZH z@nN}y+~v$65o<+AHPFy@$%A_>kZmBpw4GF;bSY0^nk&)WiXkB62u897>iaj6dLYiQ zV8OxJRsOmHOkLYHMsnT;f;C_%7IeAmcKW2fCX`tGOqJ(dB^7K7Ghq;5o;4OUc~_Yv^QhpH{)(S z^rN*kyGrc}_{dVyx{!3txLs2}q*bSxik*xR8Hc^SbNUO-Wnl9|q=u~zllBQF4noIh zwk(Ua0x)?F%SpbZHq%ADhARU4>>;QM*^GQ5Pemo8ND~LU|Jxommu5~~TsGaQN$7eB z_H3NupmMfOsV_5wg*7w~?&0y{n*{|f2dQ+T)3T}ys>F2V3q0dcDovMksSNrcBr?7L zaY3B~lie#Mq}Ak5ta8H*QHEP2XeKTp+wV1-lH4*QKojP^kA{7Gqz2LXUE4;j$w~36 zGf_M<#0O*)0OwHFdt})6FXkR+YKzlf>k4AvXR-?iSib%^`R=qA*u%4RMrwsg74iuk z$#t97MqDCoBq)2x)0Uq;s07lJXyRS4_!`q!?XYc)*VotC6zXo-!h{d<{N-qSOU>!c z<-$0Y_zd*psIFOYQu5B98U1Z27|jq)-uaJUkwjKPw&T7LHxKv#s$yV(*3= zcT9#4Dcl#TIdYRZnMi9?)9hSIA4aY!y;pMN+qA=humL5k508+}Kxn>Fk3Zg_9Mn14 zV-&8w*MwHRgpN6E7&_V7>y7mGUVnXgiXP&-UEVX#bsw_iD$CiqA78M6>>Sv5$|v=l z$$Hry^|g#O8DpKB6fc#@JrYwiVm~-0K931vahU2CRt2A*U~Rx*r%#RQJ)`e$nUI*) z?0K$jd2b;nS5WTHWE4Lyh7r$3DXb}tKd9V9@0mE^rS$zxT0J|TjE{30IJN%^t*~ikeJQVw(;##FU07`y&F&(H)@o=ZJ^gAo zhRyGVxOleJYK&H1z=52Iu8Rt7OO(As?TvWJyQ!245W1*Qm~g$8SJUF%&Ue)f#?LOC zLUrm?3^H_N_76({nqUIT?JxXBdES zw5&X@)pC1S-#e=olw{BSUh9xYl-`TydY#l*IQwiz)1Eq<0G}9f|2c$1F*UO?fnCis zn2#Z7>Ue!vrk?Ma@%lV(Aj4&G?NK$UV2D=Y;P(f&AIw@tc|+r>K;Jxj z2AvAC{L<(Ym9rEClyO|jlb5UgCabDB?g~CKr#GKONk85UljW)>f=eR?Ljm%jJ}{4l z2g439TBh!1UJiZ-9>Zt+q1&u=F#kZQk6?10#O!9n{iiP~`yV>d(qy%FZ)5lev!*IF zf&P$hfAF@l28PRj$T#Rew-fb$P6-C%e=ziK4AtE%@FeB1){VF(LG!a$Ljhn)uKUhx zQ9deE2k@)Htv3^6lVrYh+OQAvS<=xc$4@;n3tu@)yl{DrldRn$eVeVX=mfeFTv{Hi z@))d8@E1vZp{*NsbRvJ*o*f@f4Z`+JuK0_P_h{zEl(w$SmKr07*MTCLdCeLstVO^% z79LTP-*icp;BvSR;1@Ma9Qic?;%9{z9HmuDWoE&sO%?7#=aU2Lza%ICVvp{Vcz_OsTp>aOf&G<(qa*1BzNe?>Xk*&{e8lO zj?f_(Vh@C^T}~K>b&}7nG+`1?(?bEBdc*U8ID9b|m{%%3miVRGH6F@3EhW>B+RFD* z)SX}C#umjcslGDTzrKeV?7npT(T2QI z2cZYK2VD#W!9n&+^b4`60&N&pmJ!Q|oVIeCv7Y8%nYrIs>`onX>Xe&HmX=)&5NE5e zLUm`0{+ZTk+E->y2(9vvi?)zZl?V(nj^|x$kx{o1zQXsmCWIu+V`jk{U+Bs)rLl{l5_x0z0unr;!T64f zgolU3FtE7w1da3x)(=?78>}@5#BN2-5H{X$gCwBVBTFv~41Qw2d)5nR!{yKuevCjP zfOy`^nWxtj_`}Wf@xa{N=bGno9RI?5PoQxFynqM7(DSA!c1lK4C(ysCH3AT4Y@m6Y ztOhUsot#&%&Y@G99$o%I6FP$6M300$x);0ZlJodZfs~8|&T?ky6GI&5L|AdDy7!wa zs9pUP*q3|;niB;aMkrVZ!+W1wZH24wWx!_3l zq;-+l)A?ad$a1D&JClvA^uJ!9BR_zHo4@&h<}iFs3N_wOqM@izCm$ZGCATU zX##?1fAC%q_R|bF$#YaTulC_)rXM0E7t}ma`^a75`&``rgTgmAuU!{GUG@JJObj7S z7h43nBf+E_=5Nw1`-g!48DsDOaRR&bO%YKT@sI|3o31Os&!kSuUF(5)azzo!JlF`6 zuW~PTNv`pz`;WqSMP^?C{*{w=e}n+AC}7BnH(K6p02A2lhL>FZ&sqOL>-(w8M+K8B z{tMgg)&fE0Ht9n0gc&CMoLSCb6F%xxLiZ!?u&^-ZYqk=LGq@pDpa253wNmO}A;tG5 zU2vzJ^c2&GWF3I36Rl9>URKQ4w=a^3_(%=vPUvvH6I*r*nRXlqsNO1BKK{VwpR2;= z>Y*KUn>rf~EQxfI3ib|QQSw*^z-j^FV#H$a@hfE>ztpUz7-Qm9`D*Ro5Yx0*>rCUd z9P4U=+o&ZTx&m&$m|u$X2JSMm!7%*THg(&;aAGQ++6j;wjK#a zC)G>L{`TW@{)PZe_QRCJI@y~Eaq)^MVV|Xr($UVeA(%1AZ`7-R#Hil)NcFr}>R()A zCitaQ=zsJ4I)IUd%XflIMy@#P8P*yS0Y1RR&0B0sl`eUp$P0uNhI|Ufp%;RD5t952 z;(=*EI1iIE&Pe2U&to-mTQ;#Y=Y%T~I4XPMkhPdXzm7^stgdXosI|u1BG16;k>|k+ zhGRn8=zQOmj0rEXg>1Ml^k6{gusIjft+jo_4Kstx7|pEp+1{t=DnZPl6jKv^mPYeJ z6Edb>6O+v=(MlUyqJpsUv2MHE1rH~1b6O)Xte8hx1Sw4=c~xha8#_0zTu|e5I#@fu z^at%w3kF?P&xRabGlVg<bA%(dNc=bRa=ftOHdg!=oy z8Vdpbp7Q>aU-0JuAn1ErMXV2++9@Tqk3qZ&g*xNH$tusaXR>{souP)5ZMVD4Gn|P` zZM5ydJTi`*&{V;*twy&o*lPao2>9ZaQd4!d-08cHt}*EIBp}Cu>ON-5Sx>Z%zs$5T zkLQ(rZDhMtm!0uo%fvpvATp4kO>t1gYcZNO}{?X)&ZL(z2BaVEX_A&);usBX+aWvE;``p*&~LgoL> zuMx&ouxrV&Z;SefE6MnVgFc=9BR4uV48BAXuS4h-W&OW4Vx_s?K5~Y{C`QG zl`cHTwFRkXt-NYF0LN>)sZlR(Fa#j`?mZ5y^FbuuRU`|Kq`xNHg~YgK$5-0lbpJ95 zTsAyADRi_3hfICbuz$S6{~dn+hKWdj{~++Q+OXZ6g6*rQJoiKmLH(*O2d%D>ku-}b zGpm6*`K^THVC2iOb0W@nMqT?Nup!ltEsXAg@2?lUzc&sNbq(1~_TdDPqO*`2v4f>J zowU@h3Bw;M zBngVZNiWLt)_W$=#LSLbnH!0td}d+L0Rr^7SE`rqxpyTaw2++f_m9iJVskE$IG_?$ zvXoC7DN^p{1du*@uNS$h2o>lLhu5M=CF#y*D+%);U?pm{A))<%ZYHN<$ z3ky*_hs>c4mjZ2Z5{VUk#Bt~nd{M%Le(&1bMZD&XmkAaDBTyJ7uP%Gl(i!fsuoJUS zpK;`fo2F+gt*cg*RLdm3?krciY{+=F{@&CoOim*yPty?)>Jh|!JYNX0}E3c^yLEWv{|3D)fgh8GngYH zT+50SNTlVkvl>>4nPk`0-8Rcck`ZE;^zWSp%8IP{ZJHHQ*lxeFrG)keHDHrU=g-Y)_%gbV2aDdqOr=eSi7XSa@U)%bawni%pnRS08*~h>Wxj zZBxiHRfBh1KC%$_--<%3La}@JMWdZO+NYDc4Lu=4&?n!N7Eh3ZTdE!5Do;wdjHbPI42J49DGk zp<9W~Zo=o&u>>!YECB7Te@_@a8n+TPb!U3d5X0Y=N+bZ!tqBk7d|-7vq!xK~^Od@N0iyOU?}{4C)H zR39?2*GyS6AzDjq{s;AVhlhM?OQtsrvlq|MYmL&4t}Z|SZoDg63L3@Rafs}Nv2qW& zd*FoMZCdOzOD5@&98O)1=-0+doI1*mv%Wap(O#1@gZ|_iq|v}_$$8^_7?=0n*6P+{ z_eU!D&6=lE5k=55^E|mXK~<9x+$14h8q3{O9vtv3fMEuVUbD-&O8O?ZhNo}#3NNJW zrB>DKxCD1fmG=3#I1i6cFmOV|gPtSBB5XgwDnid7_1wf#DG4|^ z!JYKx9io_>F`m%L{6Pne``JuRtk4Cj`r#1}3Gu00N_WQii}V3Xk{#w?l2f1A@%_&x zI?oF4J`Sp?Q}wIIokJ%797g&<^zdWpuhF$ZT>RZ$LB=TQ(|@k~wOJBL8HK#QsnkTTu3R=|AzVU!EAC+zzprtn+dvB=hZ zo85x#+tJa&F=t_^^%M((VtD0&^N&4 z+Bz+_j537_Z6qXMKhxr(jQl6%gy47ASmhm+%6c(IBPnf+2}$e9@vjFc5BC9!^vP7C zi5fZoB}wE`3?VMbB&;X*(Wi{ce$(6+LSb~t%=$IgTsfj!XXpy9+R_R{ziGQfJ(x0B zlZ^4Tz>%oSK zYb%6l%+vA-bFCwV-^{i+i9C;^VCJpwtXBI;)^y;9%(cZ6$TetlE&e{`@U0rC<^he! z$%dM24pJ2u{DyP$uC95cLia|&_@+f;5G(F)$nS7w5|@&GBZu9nb>6oXbCH+!a;A5Bh%DL?V@s9v>oOa>qZSQJIVgb_(3l~A5(6?> zITH)8+xeY)f;M^9KRv0k#2+u+e!f1XpMSGc08Ae=E8A8Y0hq&@RUXMhPxqaBe?DIx z)|800Ovt#M#oQq9<7Q5gj1;$tIFGC;OS9j%A$!@EwGJfA{aQ!|_#7XnXi=w@c=?3% zaVF2(3B9mB<0Eg|DH89}EK}UagAAx;$da=e!`LMf zGva|Tiu$t*9GW+5HTQTPr+q6G#Y>DB#HB?RbgJI6t?Oqo$J%DHhwSEB*N;gI7i)YR zN5#_K+7t{pYMg}oe8Y0qFXXY?0xg80MW^f1W-f~A$fbFP4h=RPbX*o;HiGsEYY?nQ z*xMQXagWRvAZf0NViilQI8g>~%ixpjG!ExD!`S=%g@`8!x$rH7_|^JiwwqpoU@gbv>#qy_J3ZKz4pimA9s=sAMI%b zDS1;xPy&dpe+~zMxT%=KLUsqBu+jP^QNIm3D>qnXpN)5Na=b4ufYa`|eh+NCEB8rI zaACzWwzluMz0sVmb??$JMufbR`gN@DuXc*SL^tVvm3bpP9Q z?^r$V*2uj87p}N_d_<^xf`6}-A`G*me&@GeS4$UaWGbRsR{|v%?$QA9Q>rk?J#KT+9xOy<+78c z?Iu|MTVomc$(c4ZB{q+<#~1Wn0m+GhFVC9FklXQ~$IXWsNG+5cTW{&x6JArb+qyIc z4{uc`^Nibn&RL<r@f*$sxk?C~f z<;WUkvo!y@`7%CK^kU7YV_Zyy!y_JPepH*)v>}nj8c2~z5B2Jb{qkYHF9jR5S9j~c z+5*!KxEujn8kB-U5{mM)TX~Os;;Q47H;Zp5*>d$RJ?!iL1JjX_y%u=C_$_Hx1oW=} zcFB;mY@w}08>z+W#S@+?3cjnM9Tb$VF4sCA?Cu5{n&{*n5NsA)sWW^5d}c@TGDk(z z)#t=UDzR&oT4;}T&$TMDR29^Gd$}K>UQC6aY#k-W!hbWU;xmzE{YfO;We)Mg z{E#6_k!>iav9d+Fu1z-98h~-Na27k4EK5tvqtheLi19NAu*g}hR-@wi5Q^K$Y{|>o z0W-5AU^*QOI0fWMKgQh{x5J8X%@|uWMv<)-ba(r78+1w`5g$-Mg^2>#Z$opgPoCtnHTyjj)oY$q1pNs}0dK0~?RjRLXasv{ zL=+jl1kyYnA3~u{PC#Vb^1B7nlC%806V+B#WG3RYROi8--|7)s>`ge+do`2|$zear znqsI9*pEbKeyHI3E)JcCzcT___E5!nS}<9hhA*^}7cR&i*gX!I#-0DQ)+f{?Jt1Bv zUNvI1+CrPy|7y}yLPP1%-lyYpnm^o%D_)kX_hSMLGm;5@YBptp;p1h*3ReIJ@!}%W z!3F8?L+1#B%Lu5z!>(B(b9~4IK+zwt3cTB*QpSyBYxxi*J(TsN1Nu1dd^b~<2xGAu zE%x5=17ELqtX%!1f3HG%+FfObxu<~p7c1#TQw{T_vtd4hcg|(Dwql{d0>}QtJ^PQ5 zR*Ji4N6q5W(fl?9zeupoH4cpsJE#sdW9fwCCZAf)VM+!564r70j_z1dGqMHP-5GIV zfIGw9p){p^0$v}ucVMh9%Wvv@6#+RGc|66SvfvdL{-4UdH?aCTq1-NGe{0N^w<67*eR>;7Vz$HG_>OHO{O zt?{#GZLkdPo{-8~{_C_W3VXk725{vXU9GH!{y)4rOPChJGhS#gzKS!lvxM~3I*mJCDzsG%8 zu8IGyid`hlq59{V)jy-i8tLAMFfcC5boy3XaS`apN;84Cl?8jf<5^`zs2$+0Q+y72 zbq6OsdT%Y&w_rxW2qoq9WMH=E2^TSv4r`M)$3aZbm^&Z1-5>{8L>n)2R@m01LvnAw z&7(9iv5kSZ^km!;rAuY(xl9aSYAd@I!FIzD))uC@BgqT|pw>>-5X2io< zx1xUO;&`5wl-3I=RE@_&DX&eK%d_(X>ymny#zyuzXL_XFj+Aorglmh-#m;HzdKBj6 zQ%Dtj7UygO6F)v%e!pl`@{Gqw7FPB`Mk2G$Icoedsv2~0btEUR(HU>0+gSQttG%0Qlk_`xHbd!|QgS5_ zj6l(BP)LCjDry~y4DQJ-oBSA$GuLZXwFTLxvZR=WLW1A@A>PCxIx?hK3Ct2qA~Zc= zPY!5~cGX=E?0PfD5X8$!%=c-=YQ?`(2P82KI+zb)f)k4bcxXoRb*5rajy?xR)&S1CAMC}xOPP11=7M@dM{QE74h}t>bXlp*?H*N@U zzXr1J#BArMnk=S0)rZh(oY#!p$PursUSjBCJ+%a>6=tymU7EhyR(oE&|NGv~YE5i` zW^=?UzqVE2l9}SOz#Vnx8kaSfmo(ScJXqu$XZhArTT*1=^}-XTY-){Y4c{eKFo92- zR*cZ?!gsd0em$?;T=SSk!uFQ_D5%uvoLOz_qB7TVU0#;fOR8L#U7wdD2-c#mXe-LN zDmx^e0Orf~?RcXRsd}43*_(5k4acuc;+rhSy*VSxgv#CWmemTf>L;7X3RYnct)T%A zPub)WO^yaVkA_Nn-HY~3?30*wyV?4=Mf}qd;`}2~f!g54ffz&4?6PiCHjxP6-Bcb7 z8hDzmaG#dU7IPn`Xu?PcV3Z%tt=8n}B6LMTDY-K%?M;Yd0EWPY7Ehofctu5jNoy%pXaEX# z5fp2r5+d{Nqg)m(C6LI}j4GAGAjE#;_U^-Tl9!eH>a{^&AfXXMDtP{Uw9DVfnqGX7aozF#XzT Q0RetVi_42ue%2584-kx&M3L|Mz^~cdswc!=dDybAFHk`74SpP&*+*T9PR3dx#8mixpc$N+Y{~Q z>3;K%02d!$cl2#7b&V71CyxDb%g@i-SMT_7um3zl9qr?G{H4z|AMh^Qyf51NLLibi zMBkgTp;_(_$Z;C%{9jgqNvz=z?_O@QkWX6~ni4$xt?AOX-RF&rreCVG^;cP6yU&k! z8#~ZR(t74#Y^FjL`{wq;m^V{x16PQva;!44QS`wXt5c3h~&#ye>Tw z7vHl}s!gI&SC@GgN>g-nmD|j(**_ZdiRm=e`eLF@Kb1Wk#8hI|T%Jhs{R#5rr0GLP z2;|G#r<;C;{PN)cc{m`2-Ncq^EZU)Hm_Iw~VPvrzs|$e~WG1a|Z1fHd<)0t>6yeUw-g$81eAUNlQoc`E4yLM^Vt6@@fOSLpFv@zlB!6mx zgD4D~bXt1!;MOz9q~=%H!`<%i5UWLK3Lj0mG0VR|LxnL46S37@PcU8|*U)c$ zi^4V-`^Zpe^fs9@(6!IzrJ;Q6FlHpguJ&%_JbA^jz^=?BIXOAOAb5GJU<89>#a&dY z*?Q%`DDKXo19gu)S;?iWcIRfHQWU;V{K%X`Vsn2OLJx5}mnuE0)gTTKmv{Tz z#lr@xoW^70{RF}fGFxA;YEJF=;~ct05SQ*u_r4^(^-6OW!g3-AsXQP$``FwIrFsFk z6L#9=OP%1k=6>_DtL>QDw{wLQN2Fje-haN5Ia|9i4>vM;Bw&pQybjdLL$3cSyRzw| zre@l3H3l`=94p+ov~yd5eWj&-z}G-zh+(P?5;^ip4sv~6Ze`QbR3bXpN+svbn;Wf6 zIa%4B-d=9)`towXq)%n1ocS5Zy{ND+g<|w~H~z*32OFaw?~wnMtOR-Qeq!GIY<6Lx zjV8eggIRe+#b7XbMMVoC+yPJPfqbE2>n2EdT?O=~W@k-1k|%-WHK@H_`DbJq_*q6G zMXr>KLCh?6EuQ?!oui?KtNhn{vJ5lCkJnsTVFVX$*|KG6@;EN&pW!6D*yP9UwV8|1 zVRW#{M~FnCddS$W)Q(-|rx$7uAA&#(s}3-e7Ghm?DJ&qk&n6cvnX6um-Jqn|<8x6cGRm#>TVZT^7+kEM!JcR zaSqK*z_Qo)EsU}Sxv-O)V4O&QTwrHv)5=mXZC5ywR3si5W4xj~1UAE2G6P zJO#@w;1nL0K_(%N#F=q@1YEuWI?+yXZTv4bU8hQLebzx*;oEU_sT$Mqiu7{F;XDSz zvA3ru>7Dv&$rlJj@zVA`AZLF2pB{GMH|r?iulh6Ck5VqKQgGG2Btl|-K8JYeYTF4e zF==$9n$*4rr&ae`JsffM#;k*bYaUga(d`(m7JfK!0h)4Ef)o zyTmP2T!$Z9Ixj|BTwTA!=&2Pw zPdm01yK*Uuhf+QY_OpY2%Zp%T*np<+Se{H7DJkDp3*bfNufkνxSj$d>Az;Wen3 z2F0hj+k?EKOE$Z-p@}O**4(T%H*_&#gfKfY4V`ruOk6^iEA_T{ED#IY*O8L=o}T_` z2L!Y(F5}e;oHn7?`$J#wt@JMrb7Qh__FJi5LA^^^CL?;ko4We*RoWrGN6^pzEu8*u zV0*Lc!a};wC6i44P2Vn<@Cd<^^szM3!_@wA`yOR{+j?QO3gY&xL&|bgOHNK{eV+49 z7(B%O7?u|2;#qVi7Iv=Hym?Q3%+Y6LR8$VNXM@1I0p}-XgtF-?IUzUg|JMGh)MS`-D6Kc zsxv+>wJUi+A6sQThnA;rAGp&{LwfU}2E%F%Z0ZTV+-At8n{~HjGEm0}=-d(R&3KF# z{S~e63Y_JDKpHRNEb)?taKIl?CPb+NN1bHA0aIOFyVrsEFqEgMS^i~Z;0&+b(@dffjGKLX^U7yJk zt|X=(VxiX|ko#s$&KEN*Jv=>=p7cTPx!*i1*s|2DT9{o~X)C_xSVw&AlCu2iz;6%B z*6uongoHTVhTNM$4{hyOoNOrz;P2Iva&M0x%`q+^vD7d9^K{|+eUXB{|WMH{SeRpOk<>cw}8I^Fy&Z3C8!cA~p)YI0my$g^Y?L zJ38MQpF;H=3z^bN?QBoh7yS-T&7GCa&vsh+IwLnA*y%Tq8>*Ed*JTfg@A$z*{OKV@zV5S1OL}Z`CfP$P z8u!Xp??z%}@6}jFnUss5@($k0c8W5;m|ujU|u4bNsv$gi9EfNia zM+upXM{oM8wcXp?j}0u+i;oJcyXY!HPaT-bZXV4N?lRae*d#;+c{d5MM}k~u7Jhh# zeoBuR%QfNVyC14a=#gi_p!m9s}d=?$J6o^-6j45&#> z;>HSveX>_bJFc)ml*ewo$iZA{VDF1gpDot8M0TTXxNV#|mEt~Y@U|H@jNi@VmwdJ) zVBzdsSz#Hk{;;9@EPtV%8BB9k+xt+dg-WfzAv}EwW>VE}g?{31b-=0RZGOv|+q(gh zWwZ2hQ0+9u{KDe7^)h4msCy8|UnhR}V8%FBv6!#v5^8G?V~*$~7EhkYuoP4uk%{#r z#|Su-v>|A`8D7&?=pXOgLM{$#ysCVm2Gz0z))$)k4#OI(6U@Cx9}zNy_A_ey&Yo(D zbIbBGP7s?;R~fIgw4HN6(3XPX?0Vc1by*+PX$fa%#%a}{;M>LxVg2n3>7xl3jY-wR z(Jyfy5$8e*axkP;sGM*5G$mr~&89-V?_hdD^0ixPh;=+Nv@#(vQOYPAaJN~#FuKYE?A)yZp>Gk zQw>&VJbG0mBsYY)KSNIN3BoO#4p(`hJTyCX_Y;5AKiT1kdmGq@;y8}8ipW{?h)|%8ixsVu*D$BOO9`kM5d+$&+Cc=FSGn7 zh}oSfw-56A0cIP^EIIz_`}<<_61ON&DxJj4+Ye*s3f8l5>xYwrrU(g8Ty5=I8#))T zj*Vl`WFS!va-yEFwS(wTy;MmJxxF+Fbh9bGuKbCT0mw9%6e(O?5bBT;g$lJi1!ec3=`vp_U*mGXaa}ES<)Q2W%nuGLFEUl{Pg^NSf8}{VAK*MvjxeIwYD6gpv{A{Bqyd-{Nvs29*&?RvODuf6cJuHMy51 zSFkj}XxrON#_?Jn9^=Jo)y-tY=kuV9vUvX50#eWCz@!UlTn<@RO97xp!-gIK#2 zhaCDLr10HMow1B*J2FRz-4n~>M0GVpCtg}(rn~GUJ?dlIlg9`a1pQk;-C*H^_*)@`-xs* zXcP2;Yqs;?Q=@Y~o8&k@Yq=99O=$Yf{QxX_|CBL)_Xe%HX-|Rk!11;I00q}>0g3>{ z-OpJmHopt%aAGFCXYjKyDOO1)z*G}$uq;5`Y4AP$`x+8TDBZuDJ6-Pj9RjXHfT;SR z!>dwTZ>gu(Cbv=S-};Vh(2kNpAdeZhkn`430!BDWI~Yv+EPbDqHD>SKJ0EK@9w9Ie~e zcF0phQ+<;1Y;iNfK2o{sQ1m-~{uQ6F3dwUlkCi0kobIo0SrnMUoG+2*=HzNnQ3?hg zv&qz`Kw9MPt!88g&*xg<$KrEY_D>H81Cx)8D&{G{{KEp1H;eB{z|#7xf@rSYr0S|S zHEKTDCj(n4ebNI`GLde2?)rt{+k|D;<`0=fk0kt8?eX#Sy_Aq;TZhoKNsrsNt#=z? zC!&oT?(*rV!mGQDoNnjY6e<*Qe}ZIg<3MDkr8|HpQ+8*(VOL+iBiYV4a-R&@VD-!2 zS)~^t@0XlHcYXw#6hLo+Wd3K@5}<)k&lqijWKy=R$#pEV22TYqdnSi04^+)$CK`Sl zF#cCm1$uV2H;?;Pk$(|jUpIxCVS*aD^dyz=`UDxN7MFDFDQ802PVWUu|49+>)_o)4m3M@hn2d zz8xRDM{bd(q`XrQ1fO}SmZ;*=v_n;<|e*>w>jeNX?jGB|EbjJHF zwdsJuPGYriT%Lq9R5~E!XcI~&%dT2m1=HfL_5ev1Jb#l-_uZ51HtS#!w@i$PSVR3? zM?$5cJA`yab!iSgNm!Pu>0Ax7)N^lopyg~6cUtRYo7gnoR6W}Fu;WsUxuLt)HpuEP z|AtPkpeS|(9<7JP-lS|#kA8r=4YzMj?2B$*Wh!P^_65zS*6o(@P(}p2+DY;^4l_Ff z({o!`6KQA?gR;gIjyvf8dE)x4!O006(MoDN;XZy#6MCA8Wy&2Oa|0tA8qAZ<-vt_hqfwb30YI7r1me*(j@*3QBVW&0wfY4Xj2I&9fob2U7wH4qk zf%%$on0tN)zEL#-bib?Vm_=xla6LNx!G1?KB~rci(NP>Z<9U%?P7^M5uW8uE%ZEs{ ze^)@#k5vdpom2v+2rgZMzufyIE=R0Vr$0R@z-YuS5ZjczRL$+i=q4o3TxZXg&nBOR ztLKTWJ=HmrN^b_Rg z50D=?Xt=)(bTs%Du4zlT7Dty6XvoF(N@e<61rqR zNKN1xR#aQt^-j{aHn-huFy@?D6B?zP?O?mRoLat_g}pyb9D} zg}N-{1edVoim~xyI-OqX%e-vB?SZT8{n?_UO(;KYEN5UbSN+Y7^sE;Vv&nGC)+|XTpa-;B_$a zj%i>$_l-wEiK24CcdAu}f7i+B?S%^$db+!{rYx>tFy*pxa#4e-iES#0T%6ig$aU-q zgP(lbXG9kQNanU`QEv%&YfiPbo&%a0-R@q1d6s;^Ea(M(du@k6G`iIT2j|1mFWChJ zmk=b+&bLv9x!|TdDRUD(y0P)`z>}G&nj?0vbLXzw*kmOn$PW9osCjsKP09epsbMB| zt2^@&KHXHk(z%tX82DwALollhpUw_lsWwsCX;&Rku((zuvThUw-yV+_Ujrn1L-tJj zK{p`0&E#}$_cTPvnPV;RRIf-0d!;u=j|IDLO7?fr^pf(c3`LqPpMG?zOSD!qPIIGsBff+L(sx z=0@9ul#id{wpTZy4}N|i_JjNLjwQO$TW|aGmnX+~H@(9i^G1yPE1aLiyy(%IP(1kd zC5{)NB(a;XrTgp5uW+^%0mr}6wd{M5`Qh)(bthclKs8BaR53&eHuDm9tfQj?)a4U0 zhY!H&EkF0@Z#=;HJyUACy^MR?kV}vN+p^(Z+(WgnoL4Hq#+56o-xX_ekWuCz3lgFr zes+$)DdG|UuUro}dhbT#+yo~G&IT4#$gP|<$&F$3_wD-c`I^C%Of}_hnL_$s=eFA% zouqLbp7ui}k6DyXw#KIA7FY)}8T>|`Ry9C^ zOXTtXfYWMQ!mwuCkVY&S)q?WeIN@MB?tn1qCo1-?GP^QnnXl}!RKO%hHOFcE>9?c? z=d-IB--vDJNv%y4)0AcWLQr9Dx65mBFJ~s_)T%5-y_Y%d`s~b8i3L5GaYM5V z{y})yGcdlt&jrExP1jQ~tfDu6!P%A{h3iK@k(`j)b54x1OR+A%37aru+qGz$bPaAp z*kAte4smmQ_`J5mD01IGqY=(1Ke2I#2}+k=}s; z-OMSV$1FtRT!#@j{@*i0=KT6xAual#@dfnCkT3N=E(pED|3C3T;1WklN(w0VeW_AF z^=H7><*uOF`nc=)d3kc2HAUfSV{Ty~ZLI!T831L89Vx34#Q?+B*Vq4XFknz|^++d? z7g05x_N+8;VXTviTX=@-sR`orfCQKvyfTYIZY1dG>vKy|`CltS=!1j)%w$Z;S51KH zJuu1FB$76Hb?n)CZ(-=EDUQyNcil9F3KiZxb?THmkoI&6j?(_;`12L+z`scRRN#zX z4zLBPeJp)TN1M(_exoAJo@%&}Kh;X$+%E%$W4sb54%ii9NB-dh`JY65An^w?>2~Gh z9chC^m{RT+apt0N_An81Q>kjvuE1 zyIjPb{CXtsk!yQWj%a|S!Q0*Sdy)Cdrg3IXpkpBOP&Y*6>8E2HJ=e1o{(}cVvMGuV z{MqCckL%aZsHv%m2%&Z%0{wjO0Z2dpUbFF5OwY(Ll9!jyDt+C_K4tY%b#?NtZbaZp zn{@H8QqGGds;nxI?OkCR6OZ}Du@~m5N0x|fz?6|)q^{u8&ogkWNhu&`CS9Z$We1f9 z4WBy+TdN;(M6pV^XM;6zJoVI`!`+#TjF-5O&o9V_VUJ$o+P}Q^+)#?mUnE9o3Ybro z>fHxVX;>~%VRG{;RAfwg#dIo5XXn7;j%Uh3-_y3=D5?I=A3#N>^&|eulbBHG>uvFu zO^#CfB~4e)f3{MSXcPqL=H#o*A8cMVeqGVOhr6={H*CaIJa_=6Qo(kV9-n}@oLX_A1x(gN#7tmZaP;(C9d|YVzl$VUV zjMH*jmtf!-jQYIALK)O~@M4FS$!KBdQ7L|KWBu=IN=JX3wnSz>Y=@+Z#nQ8<(%P*S z@dX+M2OXvqm3Jb>4OPH%+u5)hIr?FfkWojvC9l&DdMlRAk6I8^E|G(O6+~X%J{G&`abtoUbDuy~z zyr~?A4!p^~>K~}ZtE;cADC|4IpiJ^h#=DG!kYq>c& z7ARC+sDP6i6&ey4c+JbpD?!&c6BGcY0W3Rz3?^zL4fw~Y?vOTumNDonDHkblhw6Zt zF4N<^Qa1K);vKOtyx;$&1bBGtdkGNwCU|W!K5A_>Rk)T~20orOR0#*dxs$&#QmBR? zO@lX!RWkVYUQ7=Z0HPWrM3f{_t^!M=CPpB4CC94koTNee{rj7MBki#=KMd**yGozQ zTWx7Z&qN+HtG{UcVaUJmL23|${OzMS7>K2IVlQaG$Sy#X&jJ<#oEEQ1cn)-aV~@_s zli7KBa}W7|3SwI(FQ5SwPDMZ%OGpE^75)p>e@o;{E^9 zQ=&KH2)UP2$J2Wa%8N(hdrk0hYKTlQOkw9r?TUdz2)9>OM#jS2ochZ6ui@cgku`OL z;;EgNKWZ=|>NGh@*>NP&X_6BJo`czppWS!=-OkM|Ylp(=?7qG}IA0r-0u4*Q+yb$x zU5RVNRC{usKoBZo1rcumYa|CG26M#f%X73s8wZDEVCws|sFi1zmBqTf-vnVap1kLX zl9OZKBiS< zpZ~f7QA0?7Vt1zJN$n5Ac>Hn2=4 zgp}ps4bCotpIA19g2XS)5>q!jZiASq8NAv1O@Ytn1GYcR!%i4_o=Exo-j8-YVTGPqu3u8xT*u*|EB z&pbVU7VJ9RQ5wp_Ba{09w|7uCSC}cOeRA z@8aSj>PHi7P=xwR_=eu{TCSRr#mOnstXfSZq4zR6C#4 zEozy{%sd3jT~Rj}b~4uH6^(M>Xz+F23I!yJH|A&d8Wa?CGN`mCzWtbfq%YEgv@#SyHlm@AkD&U}iRta}zdop%5C(G){ zZodJSc=zkqua{1VOHgREWJT_R zf1^C6BEvL3%(3BN^aSblu-^KeeT~GTqRxZ#U=HawswZEr2KO6SI)$NZB*#nyeC_|;gOK%=JUEl& zi(7WXO$nCKLhYfnLru?Rw1y~xIZ8^OlkSY-rikayZ-JW^;rujn=hKHE9nAq5v({b(pcE8DG*Eomqgar-nTL-?l{tr6`7~xHB#$P;zsQoa7!&n zyj=w|j#7{yr^CAj2UTG}QpYH<7-Ynwvo~57>`QM&19a8Th++npa~z<8g{Z4YWMTcY zy(oaavitUJFRHm?p%S~)aZVCU$eDtIf-LT}%T*`3Rlpu z6^axY{7_yU^j2HKDSDC9V?1m;c=x5B00#6S(7i@`9n!&#nPQoNu9`Byw~Ne4Zf@iR z4jzRed1HG|p&6&aZbFHCe>$x;v%UQ?|En8(PR$v#v~CuWC?NZ*SFh5m{PWrkR_sB> zz$}$-fkE#Xs`P=*v~@P1h+AumlLRdGL2&K5G{Q{9)y5sOP19=s z^PGr6Ub-Va9O^ zroZvEq|A+~01UQSs9+pg3RarGpI=hnDYJFthh7>@m0(uOmXZF4HMf`MKD9w0@=DtE zOhF1QPJX#sz_j98Y4JcH_~{u;1qK8J%zpXsH+(iQ6l9t}YXmE~o5)kgpN?N! zyDL~yXt@(&QulKZXcDs5PV@)MD1gFep@$`OhQ0v#;$UNAGo2BUNZF{S_<}jWfF=TO zAr~o}1RG@rJda_p4;8TPhYKi_5d$HJ8`hYq82k{XmLtEy<4~)iyiv(^UFLl4#%=Im z=M+MgEXpx#M@+qxO$8WN^_w?u-m8|cy=Hx7voXlEW}6}4v<}@D+d9;34rLjFX5%U? z>gjF?Ny*2KRpnr7eV+8uEf3iUzXK(df%jG<6!CKKuPi(&y_) zz9Y3E^Tg_TpXvaXkLd12RW1TdW;NIyVueFfb4X#;-1M}!=(XULd4HsEo#wFHXnrqc z^^x!V(szJP@}1ubUA>>Ek0G`=YtDZZKklcGncq%MzvB;DZ>s@+#D8`kYBXHdz=-}1 z*;sz$*mradH0jPLk=Y`211M!)FPPGy%*e{hik`Hpb-p+7VsGpX*=cx7f9uw*!!Gd- zQy^TN?3yVB(~wdPkTz>b(!6od5H^2*tAccajI68=j-!JccWr$&s-mJY#DofiM9;zd znc+4?Qu0yG40hOpE zT_2RIr-$-cCB?Ifa(~?O_4Pt&DkvcT>x{FWJ}wHeKDT_pRStMvyN!ZC`0UwV9PgmH zt`LagQP`D>rU9=P$1v_=Gl9D+-GSR_j?5qDBOSF)T~Gd9|II7Y_CG4_2}udTPW^eN z_cvtr<3soF91?c2p%}{ZSGK;?mq*5hLt8$}sP>#w{iEmL!yZ9Dqhaik>~fnc-?=4K zN-ysT)!Yc&+1Yus;(YB3;fPiha$I5lS}A7cI}4+k5Y??AuGgr@vlsF~jy;s5>fXUs3NS(udl7$YsE@!?JydO+Z7tNFYnr& ziiwt#w^7t9O{944?+;hZh_5XVF3sZZLiiLJ5#6JP!w=He8??qfX{_C#AYM|XN>0x0 zGQ;(Ya`V3DPR(;+b6T#MRDB;%kJ9Q(4Zqe1!6AMCJj8 zqcm(J{3?}PH4)f8P}eYlCp3GdT{Dq(tBVi58lH;aYLkL5RYj$H6&1c1q4yyS1gPZi zJ#T`M6?t}qoxwTQ=Dgu&$ks|!Si$noGtqyFluua8R+yi9p)lCQ2Q5fW7G||K zY`0$t(Sm&7SD|yhyCvtwppRLWIyCQw#@sWNH81Fi6xABHusg%AqNu1iyAP7M(}IDB zLPM?N^mXOs_uRh30yVc}9f--Ev{{{E724g!f8t%mN=KNVwH>x-*I zQq;C;+$!>rluBG?rel4BDCExb+$p&su);kb1~`LS!tM!5e8n71G3z!Y7g7LFj&}M>$lML zW4GJ&^ZABexufVXPOHKdqdU#pPf^HEKdv*Mjt-5HZ+Ox$_1&!0jmPihF>g*?8=>{n z=Z}tPQvAEl)i>eYL%6m+dv(?L=d7e|u)@)C1}4)T`>5m`A^JQg*3`;k!8(P<9d`0! z8*6jS9rF-}mZOD^4+^HcoE0hxhUp8BXWf<`>1wL}^Qf}oDYMvvbZUUc6d|I>b8=%x z=KR06E&sJ?n;+?}yes+b9zmpj?w!yYIo(2PuX!-8r$!C=nrffd zQd6mRx1F)|mDq(=i2P)TSC+QAZXPIZ%g(7FUMo}H(GviiRhr5glu5czl zEQt8~wItb*prI_D+g{;w_~(xDQGY`qwu--UFeINzv%X~_U7$&dH@T0R2zjMgD3Q{t zIn*Li8ED&9M?}Y7vifwj^cA{D^u!63^+Up=jAxQ0$x(&@KEoWl#WQ11I<{^CZPKok z_SCwNJmU1iJnt*G7sN{?=tz=sDndEwB@S(u&a5E~47k&@9i1Pd7E_9kgQtDD5^++% zuR*p`a&)O!(zWM?coY!0{ET42^`b9gE~dEJG4$&G|F#hPYsLNRyXLIU2QN;+pPw3y zw>aR~h2h$VOuA8;6`W(Kc`YeOeSid3R2~ezbbs^}3Yjw=Z!j1SVIw^J0D~DfeVIOlmlS9ZU#)c5f1#k3^qqZU&DDHw zJVRGgK=E?)cyUZ#c*&C!k~nqhtA$tkk58x98o3p=m(-sblPA_VAQzHewf-JOB#~)5 zS_rTiyB}TPS|cNhafO9O+{fg4jyL?!71i{eE3bHb=^`g5r=tht?|IKrt{zYh$^%!O zwVB__$mOmvhr}+t>kgS!&SmAN*x1;#IhSQtZES3;*dBr0IU>y9C=Xh9V{NAI)*Mr? zEr^q~piS(uCP+g=x#`_;<;VJ- z&@e#NVQ4fvC}DP1)5VwAXEnC4EWA7kn>jkWo81eao*hkAMa1i{=8X~5u2lB-IOAIp zG6l7r#K}-bb=0jpFC1}SM;(pM-3BZ6RGfEFL>v+-`)L~Ne?LF^!mBKFWV#~BLa(i> zqAZiXB7+@J$segvGcRw>zhXjXmY8@?fFjn6Z168ipA7Yg>#wYq)|KeWj()m$!5x7> z6%`6kzdR@b9^}c&x>|Av4;+Jf!K^VWiZ#T;IdelfhHyLr?nE77KWLiJ<$+t-Qk9%4} zP1C)^s6PwC{<%?LS#dXuL{d+r^}`rExV^`%-D#o&)zk{9tIu=BYp}rtiWljX!71q^ zU%M(ZDcAP?{72zraC3%IW6Dcyx>i@oUp~A-Eq*Rp{PCMB17(iIh8MI)N596QRi@JH zMv|+LE+4%jiFtG);alPYQQ{BC-^Y1=Le_ep%<~g1h(PL|%R|x+vlkazX5Djb2k0C#6C|@tasPoR>H7GWKmaOCHwy zj@kWv<&nIMv|F{LWxG+%I46rfbVYK3!1v;A6;oD>g9B232lA_j#PZu-6&DL1JfeI* z8J?IMtHhAA^!2nAl1U6An(%g2;L3x~CP}s`y?|lecx$||rYA~~)Rl2DDj9wKgz~ya z;(VHT{8Mv7e9V33%+1K*@A&VWbPZ=LKd!o1+v7z)JmSw7#kk6uiWzSDknzYXk<+l= zr%at^Lhs3v(u(88S1vJ9#Z*riz)VV=Ze9B{sHr|>ouXfxK7EtuxBNd>Q0|jTd!rNK z$P2SNdNJXnvM`zBqpP^9Tlr&*d>xw|262aAn_oxp~2@j3L`#Wc?sFB=J-S=b40dS77$Z z)!x(64Le^R^3j4Pm}z36KkV__-`n#F3rTHpvT@y%w}Tvz{*+CPH>7+E#5#?XyKN~L z9yFKnWNp1T%x1_2ohmv11iGDJX=%CkHO82hlj5OSN7@6)iSWi8n)~wcA#HxX_ql-V zRcJz|bA|iJxy9kq>Db-e8)xp_xpSw37oy0DSb)&x0~rc-mF49xH$w~z+UJJG^Yil! zM%?|^2FJ&B(hT-M3{A%E_Ey<9?OSIsqQ(!2>wF7_LHfKXZBv|U04Mtgc*Z7fYd zw^lwrJT^m_G$cTUhANg|b}Pl}A6@Bxebp zg1jM<(!-jguW`(U1{eZL=&gx$RCpzm?sg=S;1u#?{raKn)%3dELnPKZjL zdb;>y4No1yi)X!FP+vc5KE`(=tHnR0;O2#keZO-%X_QI|7|=_VXQrOw7+Op9)7B|P zg+@7E%-l>tLy6PbSgTYN z5n4^l%jXZz?cRKLwVZ#Z}exb;tvJ&=Hp|K`Cya!SLZZ=}Ga zH4Bcc_?jkeE-0i{C~?Fuy?34WHr&(T?AVR7o-}R5ATYoeTPo@IXpe9@HVfkoP95)M z&O2YnTe-I*3{LN1SXvEaY)$xgUyI3Vd&(r|D^c#+SS_U~A20MPj?40C*4Cm2LIeSO+|0=*{w zTT4Z(EO7N7KmG|{3V+Ge5tpehzKm_G4|azuY2KmP$ix|~$LW)5)P#+P2TlB=9_b53 zVfvPpJ$eOW{6dDcpX(iDx#k= zS?&c>{-c5a3tyiv6(@T*mwc@Qqulro8FRVmX;CfF4~9LNLD_&|gJ@Z3gX z`Ja)^k7kXnHp#S9d^$?UKdjvcUkd5cez@?-n<1wNloFX_^Z0GB$D5g;S6NU0Tq;p3 zx%&|`AczAz60GF#7;)@!dGJ7k~v>hd7 zgctCR8h$Dyal^E`Ke1d7-7M z?ZRG&;n7)+*!G!nr`99L(dw0Q)qL~9zTQkdJ?Er#6SJ3=C5yQ^shAv`_B|6zH(0a-9oA5+;{0u{*g#c_qf zO=^1aBBctk`F&<7pKX!{i|v52e)s^nydR>o=hXJyVc^nl0Pp}LH>|Cg>*AZOtt};W z$cHucNzS=W^@)LJM^CE+Z+v^UV-ERS`qQ>-bw);pQj{~>uxkfzyeloe84(dtyF_4? zJ9i3KR94bH+~?eCvmm^E%zfMqz@F(^FUW@hXR*KP{1^LNpv;lpC}W+lGXF(OB)J?G z%%GDRb`~1)ii?dwxvZT{MyxTyb{PlvSRJy+xDlI|0Y_%frBV2K$AZ#guaV9V9peS2 z`41X_ndxoS0zWsOHe_xEx+86CrCBEuNn>cE-fzpoFs&^^ecZPQnWo)85FC&-XHA)K zX)h5Gsw5GoT&d*uD<}B+4p7OaryOZE{a4Un&etR~7yu~+@*EKHi%uVZ z)u#zE8n{$!9eNYNU-)9lpWW}guRe4YU3nCI-Tb6iw_QvY*!nxUdl-hAF#YV&vL>Fx z#@MWYQB3-^zL(C7Z~3EIONl|^nw{yJ=i{6rm^#r})(y-+vokeREX;(oGOC07=rwLG zs?2YkX9~o@ZK3eC7w~_r)$$7Gl$$W}%E>8)c$9|KF>6&?=wa2t;i8$jF97j?7te~x zYAj*;x4fW_JQW}sYW}(vO)S58q1EZq#XkA(*;sT`IBbZNJQ$riFE$xnRH5r0D-*sy zHaQ5sbU2l!uBupl<1X&$+8271LEw znuSEizW{aR{v^AuIJJTLf$C1iW@TKovb8e$Lf{igNkQU8L{brs;Q+E;9AO2hRaGVj zbvFb&!|kj;vRx!C?d958K>xbMopFWgg zT)>kHn5;NSQubK!Ov$&<^pmia53DWMmvz*6UMlx>zYBYQ!5I8B5K69@0oPB2S+!PE zzJHgH=)xR*_Mtp7gM+dE^`-24G|bzjM=0buGXyQwu*TD+Bc8{BJb^X+T(i{Fa@ER7 z-;okXZK59NH;dXGZ)zW3XP|rMtaQb0c+?FPM>B<0$+Vj*QXZ+$T{~~!J5+8Nq z{8wwr1vCMNe&1EihZvj2_4(16SFmlmj0JhS_ckdPBbY3G=kVYHlYteT2YP=&APR<@ z?|>amu<=him-G^FWIxvW5MqLWadi8>S+A+3rHYz0B#}t2oyn@S#YNE}T~0`jPCtZ3 zr<=RDHu!B`!7p-r~fG%Tz^Eb!}Lo*FTAd{%>`cQuCK301o971DEWi^+pSZ7?C1Zjk}(Tme|{2g6nQE< z#x#**wPp&0A8%*7#hJ53*#-$R(bw)#Dv_D#pq`~464lI#jEr2ltpvGasi?h&_U+q1 zyu8)g0NhwQruC&xaZIOk-1XeJPG`S%`Ko)Yt#vndcT)@oPp@CS?&s^fd=MaA!5ofq z*ZxzmJ~Im&)!Ef3ovn8sgiU8yADXZ#s+)PU@OIf%fRkh`iU#;XmmhlHmV?~cQsjN3 zxV_v{Vk(mzA)@X!-4fwae+Ksa%JlP=(fH%47oPAd>rC*!sHVc31(epi1_nVX$v1;9 zWqj0OO!#fzn+czuRwR9d{e%MuUIouM~mNn*Rl$@Mw zh*$XWNjGO}l8qiUOLV1FJ3YLMFw8<7_|k`0*GcEwS->%7hkXaNb7&%ab*0$9UA@wQ>2&w5*+~u_%{H9Y@;O z=u}#?n#nn*C0HBvMb4J`A#tA~WI8Ghhh{!l1^WB(Fnr0O8KZ@21}tfzv8JnH=INr# zqTM1HnP(TUa*0az9gH73c3^DD;(=)@4xRBeO-WGIkbB7Te^v!O#kFz{6F(>1lban? z7ZZN#Cu#N;2&37^+kle-jPcGSPz86QIjH22#sSOu*v0Z^x`6UlIK6mxz`?`Y2&;mM zl<#^cT&vf_KQ5-We)f=n;riXnSw^+v$B0LO18Z_10F*5#;#*{tg@p21w9yZnlvXd2 zG0@G1?%>SZ4;aywLPc+md<-qB; z&08N?b;p<_2~){`Ai2#%q^qg-vtvAJ0!}xBPBZTL$n}T!NZL);-{19roFQM9@ANs+ zU}*SUwM_W8e4pm{#SQbNn{dqFt0lE_7o2D|fN3LSzq$*#`l-@|!e@M%2kM-LuTQ&X z12d1)5kobM%j^YZRm!b89$>W-(lyY1IL+BQm`S$bu@itBEAzf7DmrW9KXMmjv2Gq7 zgX=?f#Te#B1g?hNQ?t#yM+0la+eQU)hXzij(>?tB{oMe_4cghHn#siZcB&4YVWd5o zVF!efV%nNP!OI`Hhd_1s;asnk)r7W z0K8;lkSGFVOl#WW zqglS$nBS01?bLHw-&U!Fm!Uh{c0V3~>XTbpskS&)XJN;pSyXsV=&;suq1t!T!A*h+ zhHy?X$%igAUoKiT$p`5+oDH@4Mj zpub-N1}MLNZoj72m%l6BN8Uo2Wzc?5iz?7dwqqE^Snc;V*@}RbsRJV*d>?QU{wqZd ziCv?o80{A8iDOLFCql}wty#7KlY6y6u-rD|?jDwZdolnYg-wbFz z%y_8+dwz8^s{6@nhoz&>YMz9cNmTL_y|-6diCq-sefV%Gk(MIjtTA+GZ6qj)r#k(~ z;gRp;yztQv86o2XR^GtDJRL6T1l6(YQWtAcq9Xj8KI~vSeaOmwxRP)6a`=f4+w&9G zR|y0OkA*+D5B+z;1^-Htety?1w5$E**@g$d@h6;GK`qhwpf|0;U-`+$KYcs;;S~;@ z{Uww&Fjxzk=)78+Mr_ul-eYn6!c#ua@3LnC;(E+IYr-84Q);kJtCv1S|H-I60h7_X zI(w~e`3*Br^);Fz{=ZOtH$=a_)R@o5BT5X7G1Y2#nN!ZyJfN9%%ruJ`{(hPtXrCjqy*j!x88S3F^V+8 zhR-MeZxTM;+Ank?I0AjT5!`O0%A8U#U7#JfZv?xyEeofQp`dBr(>6gFz@npAbd6+* zy;X>`pLSD_?K%J5!zpimf3OSST8Za|;E*evf&g^b|Z=aSN{=hJRd z-kYW1P(?<93|Q&6(4ya@K_lc0@;&ST^uiZwD-}T6^@UDmUG=F%Y<_wcN+oZXFxO*F zKj(rdCMo?&{Q5JiH6+VbJDt1HrzFyb#i%O2RxXrC^O?{cacUW;BXr>j!hYRSFy;}VHEMR{g%{#{x;G5=fkb28w-Bduk}>Uxi*six z-bSzy;^+dmMCFMO`h>66B1V8^_1vk8ZwEoERmK#-1Jo>t{y!*cHO22LN%H1MdisE~&RS17Kg5OuKICD%*4dAu+SC$W=uQz5_6N^f)gh zam$eNUe{}lpfC5i%7Ymmi{uIewr?-0qiX^u*AOkqR-K@&`P}tSM~&ar)miC9p6KOO zA65L58)Sya9O~ai_zkj>`0g}xCsPecX8U|M_65I2>y_VaKW2kjCt!FX;feKUZ(EPkNS@*>;SAe+5rH({bCjY^` zfQ!GZ;eg~oS0P(K%?fL4HTPb8L-A~|v8wVQH6OPtNJ|rwih-%BsJz5^y1L#pHtu$1 z`u%gvgiN7yif}*@gE~0pKv+AFrX9QnCP5Y=wdg(M3dA~PVrS#!@sj_8-iNe+0VnvA zP0U}dPA1&P&&Gl=qgqptu3k0&{DEt>OQncT0yV-7T zt~V3Z4$Jz0(zIZ@25UZj2PZkNHL)4_w)fp&!R^dT8E@DbF&Fg5N1-CQvr?n+2~VX` zDW|3?uSGibY3E3am1@5!DE5o$6jZsoU&@ib;PF{4F(~(8IWF{S3qH)*JQIgL=LOwp zYQda8Kd@vChLnu(WxSP(FNvcHB&T!swA88sZRfhsw`PpF_BbgWwzmd8_9obC2f`Movs=13%_(M#M^&6=+!8jWb;)7Xh# zZj$LL1(i7ls?P=K|1jC~MAfD1b$=+PkM|9jR+7+*JQLG;=6hJ^IdMV38^OVKAUZ18 z+6s!2eSOQFy0&t2`0BI8*B&j7T1|=rV0n9repGbPKQEduyDhoiP|zxz3N% zrK$ZyJ$n(UN>r@|WwAq36195rxBrZO;m#1SUxJtL7WY?3a&TUX1}22R@}`4UZVIX< zHHNOcAM$rpxHNl?LlOUfjiwkTaj+i==9{B9TqdrMJ+@}IyKYBFP$?p8c6!PjdG@kK z9`t#P_g!uOcF@<^?aDmRA%GPYiW_X18;c_F zm~JX*WCWL_?2=bhbR98Ra1(5~T!D0KKeXw#CLxXEgM4dbUecrxW$G(tdv2y&y2pPmVXDMuZ474XXSvXc98Gd#tXac zMh3P^|7=1(`yB7-7I-M@BbWF9gTT<%-d=7B+MG!MC_Eo*DH%^5+x5k!N;sBH!Dokc zHijLkUXNXhfm)`frjlz=xoKfLfpPj$HmFWjpmdq4z?fF0g>JcOuY5WReAr;Lgr08` zuX=!WMQXdheqUkLxaMqt&W|q-)67Gh0gK4w5)1gN4!ty3WK-w6PO?}4!Cya^M-hQh zmv4o`KY+YY%-`QXGSnJp+E`gxS(2aMKAqPxglCM4oW1@26XV>emswuGjAn{kBk@p_tVmcfej^#I>GC@t_h5iIAIP}; zBt*fr@x+CI8-VXPMk0U)f)$rD<{g&>WHG;{=Js*hfDC%|^r6)A-aj7`piYuFppRH~ z4U5yyRwAN$-|8l7q3N+YX-i{WF`;Xj;y4@*mSFAkOwE1xjs0}`;Uq(uxaVSF+uk4q z1(fAA`;9hUn^^dGS7wzGD*k=t)=?k2mt z*y?c6$prP%EXlBi@x8^y*f>fu^?P;NHrclntYo9}ey`jQwi~!Lzc#4e zrv3G*)G81Z&ouxzX409aZ3Rvmy3fhw3wpxzg}Z5`+zRzKKq7JzJc*sfi5(*_ZfS-_ zGc;_PvUUZme-3dDGi~qpvMJi2xp97S0531^)(;}Ih{a?uZQCB55B#R%Ml{17le_gM zCnrZb(0%BiJPrzmiiq1IvHzlRxb!^YsxKu_2J}ubS<>hWF|Aq0&RV|%;4KeOP=k26 zUa&yNP(kbu;r~4y+BDsEY7nIA>_-DSGWI)2{6`8;JTV0NKK6(~|5mmB(hh0j=;`Z* zI7gB23^pMww5p;3voWx}xk?Pd%=cyMOCE8Iq!KVp-?^R)X+JPJsbzeZ-RY@hM^bU7 z`DOwKAESchi0e|kN58HR#rYoov0vSD{KU>iRRgbQ-C|`47`pm4Kfi)6_g+;GTUDRj zSfn&P%y1Tg@j1twF4R&>L_wrH?rNh1OmM*3TyHOBd3pI>=VH}_SXZi+ zddN!i@g^`=@K{t-)Lu{T3DJy#8TO}7G(hV?8vpY*Tzq0Y>7cXq`uJe)WSoWVeBg|l z9g{rNNT<`6!PLbhSkO(ym_>xWZeu5lqQrrd;-s0>R0y|=ot!}^x z_A{_8BygL8U1{1{?4JixQ;&}aOh-)au$UNyg@WyEDwIzOzf|eJNLJ*Tz({YX6ILQh zva_Xl9{gcV2nnnPc%b2h4ySl|YEx6wr0S6M(XM1wSwqPqll6hCjaHs`zc$vgZ{A`I zzs}ZNW~Qoygv6vBi)8m$*|}ps!p*I*8$(A;f;^KYzr_@TM2d!`<=8(bHT0=L|Y)J7fB2 zI~6lrU+7GJ+=QJ`zO;UVCaAJv=d@4AFlS zAVV9v;~C)zue%v`mnlxDGamL_xuFUX2BCcT{+j^I*YR<1nAf98^hhk&*8}vZPSMwI zGU7>u1zr!jNElIH4=Bh2BY-PD2r`O=yk7btNL7^!?DZ0bl5gK2f`Wnun+b7oaV;z@ zhnmy!Nq(Iz8;p*QK3e(}5?0Ku;$)zw$G^9?mz#<+^4CLhg@CI>MaR*u!uh4cwhv^Z zVl01td>BB-z!1|T0qz`-IMgQl)d$pWafHjDy|7J^QsVpT(PCY%jm-7E6ozzTUKZA} zW{EGcWsVH`vxRxT-lggXI5G5~G82w~}m_%1D!XFR)TL)^0qXFGy_F>OMlkY!2{%WEu zeBYb!t*C!CH~m(3`1(Zfk0t^g{;SOy@5Yl{zlqpaTT1`y2V5y+`)Y6U|97pV7zHty zKR6Tpvnkji+5VghEogtdKQQpW-Y-B+)Owpwc-vwjIrG<8z{pBcz0L?hS`rM<`9DwY z)ltx4NVFv&X8tejjN}vk_sbHHx-n0STpF3rHU9Gf1}qo3ETE8I-S@q=;;(@*P*A)3 z=c$?ORAab998^Ol)!9ShzZwWk*+0&j6o5v@8dM=vaPcU< zKc>Ai%U_eoR3Y(yn+@QkZV5eq8~MKmH@EWN9rQ)+I7SKSpPj!K3U?{Yyi7e5Vwn{6 z&xv(ul-eUo@A=34Jhu32>iWnAwuM|^VH*(qF{inc{u;4+tQeVp^}!(b%#St;+N8LD z-hR-#q>{Vh+Rj**_H{w)Ld!AUBQs$kbar*E?d}E$*cvYv2m=$C88jy98{+|!#3w3tNr<)f{w?d{#2Di;ER7$_lH{X8y{{4-IrzbY29f|$+AZ6XTE(=Zq zzc-)xOfe}jv5)(4oj)@F?bD+i3Y;qpiC?i){2bj%oQ-xkyPr(xvi6*Yt zVD1b935O70^AzNEP*ih!+JQV*YfDV4R{5TTBVHCHymojv*cpfhu2OA*U7%E?x6vKS zVln%p&VFY+M}|;9K%lg$3QFhpbgi?er^0-Ou2PK_Bpj-DI9uicv=bvt2=&*%s!VEo zKXtW!h1^?d;Rkzue)hPUQpV$TLuXJ7Rw~x$OXjr4;;?xSmc(Y+zOayVv{1ur(EFRf zr%!Wr_T)Wb_@GbzNMMCpO^IGl_h-Z0C#wes>gg(G%QC+<`uL@(;hAj@Fatxw7&r8H z?_vY9fX+LdtMCuTq=&HCpQJ=0;OYH@%=_kd0|OFRSXiFZR!GtkTPLS%`5b9HJ`b!f z9sbB0>+5on=-{uvQN)Oc;c?2XZ4mvjtm21Wkf9TSF@b+aLs4b1J(vJIYOK;!UV#e3 zttquD7?auK)&>j}6&39C`kL;F%i8)R(h+!&i)+kri; zcD25qo{gOym1?n4!GJ}BfP-qw z1&Gy+jZboNa(PaUT==G@rlch$Fnjv1feF}JK<$U&LHz>*)XWiC;#uuF4556Mv!x&S z`1pW6%rWp(QhFy6hL{fUe+e6fIM)#L{o7>w=PKPQ?Oia7eMY!C~$218YFgn1`lJN{*wVK>wBu{J2 zrt-zRiWqRr*LfP&oq(Zyo#nAnLuQk2!V4ghRJp!0MQ=GkR8}V5Mnor+Q0GERXR8n! zH(#GM-w96*#w%YKH7`e9K_w(4upgz#t16G6SQ8w4E%LeBCx+tWGFon0q4Dtq{;f8iM5_uXauFoeoJTMP)5r;133e&=kYVSr3?U?v1;l=00!Yj8|le9Vs zYd&dbwt`GQq>yK=&XA5+lr=n{Gu~IZ95?gBR~3D&9WaZPDVCWv4V}Aoor>Dfugj6) zx`H^Tr233%w;17QeTRZ;sysX`{H~~>b%~c*m4)s{N5kSE>V*8ph9o0vJx&zl!SeZr zcxP2S0ZwA4XL#m#t`OaI7&L*oCuZH;_S0<5Ve}9hJqhY86`?aBExhnsn_KocZ%f_H zguJs${KRiQ6{$b;kqX_0!fQnr4p>cAG60PTw9Ovf_T%FYLG#`xC z*VDJgRS^k?OM1HGuipjc80O%mx-cfRD!JA^?5dn5^ZPq>5t9nta+S zq?OAQtxiX({#LV9AGH+cZBmY^9;#x&G^wzcmlv?HZLF>7?tP|NPYYk-yvTw_rVH-j zEe+^ou0BlN^9cogtscpST%9isAhRv3!*ZNm{usvSReOth zw!6cqGKa%awj7GDe{gn47*~2zct76cQxWD|<8OOUFR~p1^PYGrs2&l%udgsw!ncUa zsA9w3nl80kB#Vj3ZXV;EHP=Y(auMYqJ$}c}9V)(vS<9|T$|U?WciXc{UU6zHR#v~R zBszxcHYHNVJWIqkC(dLpEzBcBwQ{t!b7lyF-%V~U3*KJvhf-8L_hF)8b5JEXYgzs- z5P~=&9ctW%xfW8_!a3i*|KvNDDMj!kl8K6 z7Xn;-iBs^4$KUJm-OzW3TuNA8Gsr4BM!7r%_T-UP6PApbgR=5_Yl6gEG^aP0{po9- zbzmG*6Lx3hCE{BNg{qm$W5_Hq9~R=yS&$hKTv4gt`rJ-DpF5KzV!06TB0V zoE391lfh<(yaml>mz%+2nVoZ`9(GTWhJlPzGyEpUx!GB%E!?zUXxn;VEfNOi^k<4w z-m(mAm5rTA;>||Vho>@_OWF%V$GA0nsDY`!aDLP&&=@9Q?W*)_+G|>_msd)dNs>6# zGX8d>Rg$k`FuF_9thUv$wxS89!q%5oL@qs1B?JB7UDzDuUnD#dasyJ~TnbM|DB)Aw_aC2-o&K5P_G(7k zbfuZstSZsxEpoX|8^nCIBk}X|lSwCwT3K1e;3aV#ody52U&U zV`y&WhYz{7!4^2IBU?At)O>Y1j`j0EG8)c3mV$jH^%}`s&ker$_{>!pBLnGPo6p-g zNp!{31ZLy&?Ided931h3=^}6#WMt!oYD*yH@&QK8ZoLy$%j2wTVfh3I-U(ceROB+L znPO372>4v+DZ?!LJ3y9jd9)DsnmkVA$W%BUD7|J!K)@|-SZQx>XJX%LNJXO09MANA zmv)1+`jq|A<0^pPQY3rKL1%A9@L6}nzbL6RTj)3P=>{ejeFP_~Y_t*qa38krA9xwt z9c*0-h4zN4^;i}uL(Foy(oaOd92L;WOq}t9I-MYM?xwGAhm^@oF!W~6_>6_k&K_jn zh9s!jczxh_m~0{t#(jQsyicD%jV`PekK0wJpQWE~y2w)nW{?@(j2;#jT8c4BzK{CA5!w%54OV6T2Y509_Xk`G%npHpFTWg9Ji5qf-S9XU|*g17EJ z@iw9Keew)B3;DL(oR>}$p#%xnV%R8}^Kbyo8DUfO^{jq4u;Q(jxOjMZft0VUtu1|V zhDNP2;4Ps?>0~(oD6m=13og|=f=}?kKRw(S-<@x5X@xb6d8t=7D#4`!Lj-*LR%fl< zx6)+n+v%xIBAaDDFiO~b9vnap2=ShQ;fG>@(ilhtnGZ;=svP#@-qC5eM1k~B zuY-v(y&N)5f;bi-f<=*J?RCo7k(Rj?K3L{DipY zPia3cDPTu&H61g2Oxk3;>f0tA;JOmek(!YtLoiV+D$@w2gnRkvk!znBr`EY4a8;S+z8Ff!JXSw%x zr^$UOt+jOSCyFFUMcB-EdEb(pP5ED0k475qF$sn^HDQ#a+Zg5sqd%TT$qesC_+~qA)+@6azG_xNoG3lCGnqReMMXr3y4{K@Y zi-|7cM~5>QunK;djUxI_gE$kx@bnXV&j{Jbmcl_$T)RrbYUO!yo9nXoFGF4O%H_k0 zI5qtpQ}R8DDVVpU`y?%bDVb6;8qj=k?ewzbLu#hA3AYri69m@n#9uA3#>z0z-m-M{ z_ltTs3?*3?aAoG?28K~Q>9diI6Ud|;XqU?bO#Mi(lEUY|AdTWGio7-9ZXe++Ut97M zOm@~;WzG`mc07psHb32(dZaaDDm1C^(ib$=fy^)I1C6NC;6w{lejdl4$!Wxu8YES(E;?)1$-c2MMBgr; z7*t+cEd+UnTkvVh-E7m}Bg1j-3245Idyee0^^$Tv--BS5n&504rXy1|Jk#E0jR#ao z?ODBPB9z(e)nYFnH$M)?01z6Fm%2_0R@NAJOuAC1Bei|al?~8i=@ZsYlqw@#YjMGiD<(g;$1Dm`Ll81)niWjY5mr^CYEF3WaeRQHRtI*A`X7#6 z&@T^z6JnPQRa%9&Yeb*4q&G+K>E2WgfmTixl%z{iU5&NW91>E)Gs{gZ(9Z3nYu(}_ zmliFkgWzH^b7rF#*0?x_vn5d#9T|meS6UU`g(1?glYuFR6KU{P-QFj8={~Rzk@Jg) z$t5QyOI~<9TC%!%Je81^@p<{aVHqLj?g-lCz^(S)?ivk*?G(-z3y{4yoaB&0E4nL~ z)DYQ@N-H4R7udVYfjf^j$cfX`TAIJ<6-Z}5weO3qfA;0!Cy$MnF!Ne5OO+5{*Dn~` zSU87IxN=YZ;oPH#KJW9en9li(g+-bad>vT7oDMaQ;*wntyt`@&uF~MlD zNQ!iHM#d{7h2O%H>b^yE#)$LGX^|@EzPTy-?ZttZQY*B3*`cmbu}5;7&%3BWFy;QP z^6*FBV;Surst-fSi-z9j{(ewH19zIoIjrOU;2!+=u+&Ja zqcTV1qR&ZMakv)z@mC>)+g-TSAvo*G2X&{jXg{G5c7w@57e5*C_aD0b!nbD(Pj03r zT1;ADCbEVN)deJIwfShjEUl;+jaU1pv2|Tu$6jQ`(x=V;(ClKoB24WJ5StNy9H{Y) zoy*Q=HI3?7(Dskv@z(vC2Rb}iSXAMgOS2?&(Jx>;?N=Y;;Mn7I9{f5-j5AaF%onS3 zl50FUsKT>v(l`9sc2`+>x@9X^%Q%5bDT?i`@#&~4qKck|r76y9WxxMid1%F%jHWYz zJ-ga)^E-oISm1lc;V_wH)Ba{{Db3#yprM|>a$e&6=HCPgt2AIGe|FlrK*j-0BLY5`cQSR8i(C#5ERZQ4g?ob2?>25m-aYqduz00 z4J2=KE#CYU#v|G8H^*3^!Z@sEo$@lgihH*M`Wrf{%ba41+~j$SS4w8YPy7M2&Py$> zHB>sIe)|awr}@MUDV*gEZpKSZ`{`e#*;jJmwB)fpah)3X*t8p!!|9g`mgkaX2%R!z zni{N1eZNVa+?Ma9?5D-;xMlOBnC$%qc6&jt{QQ`=oh%8Q_A}fXH@Ms8@C$hlQgm7; zCPsezO{A+)ZFB0)HcQDCf)5Nh+`V z@@aO;Mo+l$yIPlM`(tZ8|zS!`LOyo2AF+hm)C5F@W!=)f5H*Z2;_c z@gMf^G@h<|g>63!uJWt?A~iZg#Rx&?O9`^dK2Y%Qq8Hf&U-_FVpFh#zKOp)N!XH5I zlm82cmd#+-_v{4FmWdSXs@L0o#}@sQWXTMd{TJ?T@H>D(U!lC#l+H$zuc!ZJ^d1BB zQW`!FrJGe+?SMtP9CW)d{vnzXliNTPyQ!F{of#e0~RVqtRZDW#>6s9`+8>3yVs{PK>h{S6F|AWcF}*s(-DL( z!tj{my{X75e*BYrX&VHM56)F{0^JAy$`r+a{j1x)K=@#bg#CjJQcOq0Wn(ZMCjn5X z;)bDbQ1Ad2#SK&qZ*(?$BMb}-N`Yd}EU=7-?b#EFkl!+4i{I*0XXwyPv6H`Q7|BiC;c-TW}wk)@eD z*ozrtdrtRIqu`rEMq($^BKe4eDW~w0ghZvoIQYP3E3!!SS{Vg0RV@95InU(*1N=9~ zw%8%+M%d*8gR*$Db=&&=wFpWcK0a7>8GMuvP96+7bePg+G^hgseP=wpq-B%k@iwd@ zHzr0AE?{a-{cC}kQLq*<{te+_P$PHtE;$ul>vjE0IRRrOUG_Ims=1bkotjD&9(JDX z(n&8b#V?~S_sF3=4OSn(WOZ?xA6vs$`InxpC5VHk{cLWU_GsM7u>EgplX$E9$6rSs z7^l}6ho6F_NP?1Qnk}8uKS1ANvBzL#qSx|1I^TSQ<|*mj>2|CH-fbU`cEAJQ`PRvh z7SEmZn`NokJo%K3T$wU({QplU0oMLq@pG!Htw$2EP(00gvnsgHjMRLmb7bR zJ&2wBz$OjW<@2@Qbw; zmc|0dQhM9kz~8=oE8%bZDZw;r<(-U_C<)!T--Q1Vn)9UX+eH3&>52ztFq?w7?mYbC z&SX0<$-oGZ@m{`6FP$<(y}_DROR0hC%@{1{i&K$urzd@9nW+Zar5Y5~LH>(hA}`O+ z$&0P1{feVQP6+iK`|AM1=kV}Ds+2}6mjWbUl4Y4bXatiAvz~E)^Kh~GrfAonJt$4k zKPfWrkCiFE^YqIuJMy#+?#!I|6nob3xP(nKH3iv zSI^j31R!T_0o=jr3}%Io+8h$7vWKnJm)a!p_iz?tI$u$

G(uDqhc^>R!Eo5zI#7~9A5 z0eV3}!BYSzupQyOIh~Z3QOsWgNTUkV2{H={3zxGlOl&3t7=I-E{82{LdIw5vk25Gj z&r1}5C3ysxmJlpP2pJg}x657GV{vOs*e42!6Fq_-Cx@8|S-U_p^n1nvJkDbH3M%KTuZm_jBAW*3cv0Mcgei%RwNEPJuNXAdFkT=L-*23^y6Y;gvHDo z$9+u3)jjlP^@F}x#bp-Lq@G(LRA75SI#6_PmTnq(%=?sJ94XF28!`hKQ&UsFe_w2r2?z~E93CE~ zK!@}2@DPvHmeK%Abswowj{QBp_fdH#Ld-{F-K<2M`C>hJ z*>^Xj1-+lShtoz+?;?IX_T=zcsh)g{vT&58_;6T>f3R{1wK~p;2;lmc-dtJps37VH zr$&}s{Od5c`YSPAAPr97%V2fH*__C>hem_0DTw9x?yADV2uwl!(Wxn&!6uB3Rfc5lqC^>RazGoaJ{`>3SV?XqCG)JrdMFmd7QGS6p`4>o0*DC1U$=+1vi z8-*oA;7G#R9;RE+Ft%eM+QE$>n9>I~ z0@eC%yiU4+^;a_n14JRx84 z{Ym=OBz=DgOMZ7pik)vM@n@0;X2E4dA%I$Wg^=@=uBPT@Q^Wl+Smxfw6L%>VMp?07IuTP0o8?6o6M zrRLdjRg-@spJ$M%VrvlY%B^j75knE3RlqNffi=K+*;DN*SEGp3JY>C$yt#kiD71ZV zgX3yyO9RkwOh;$kQ}f`JOz3c>)n%Kf@rlmK4r-*jIjofjv6@Ve8tDw<)#^z6R=L_2~Gstn+h`=SS%jL+uk5XV7qh3d76NXpGvV*SN~qU zYfpO-i-Egd5_gRJu+DBC{H39y%ziuq$8zB0WV)m2BRJxGLXH{>urO~BrH$Ki{Wf;{ z?&y-op-W~!oT-_@y7de;l-AMT?moYvGmb1)**FGm>`|WWB9>Y=6bP+!Ai=0mO}!INK3xt-h8NSRV>iy>&( zB&;kK^<39IZ)U1(0F_8iy4YnRmbzJkJojQNj3oix0_DQ|aO>QP##~i7oscUPUQ-av zenj6BnqC=I4!xYBi%TYDm~(T3g4rE+)Z?sS_wYVDz(DKI=bJ1xI&2yi1RzuyUYCM} zz3jPMU?z!4@koO`csq2>X^t>YpxRtbqSy|H&2`{LM(8E<`-tGvR!nPjk15I+C1UJ^ z%`@+va2WxX#A-=y!$TscEAp{Fjwu}Lnmd7c(uh`JAjFr z&XtpX{P?j@tttqp$04%cY!s9<>jCw6rPWd*pu$LEUv>dyMlr_=XE&X;!}DBC%4cS0 zGkHIIyrWTR1r!^uTQSO53_4&!LPCq~Crz)Jiy>W%qLR@3lnKjVJfn|phaUZ;Ud%Aj1cgm>e>KoB}V6leX{! zUK)I8FbVC;8bD{2%y;;i_~j++&}qBZYGAOn$<9e9tJ<3)Hz|Rr&XWnK?$Nuwo!3!b zU{zIBIk>qe^oOAL8aB~E2OfPRwyg{wac%Hj;W9}%-0ei zc7*@vO5?_XdOJX^S7#fR;AB$$+aI{Y--L)<+HwDqwaGD3{Y!|Msi*Kaq2-u&eE%Fu zOuNTTTV7$Ji*|XBKokHvV6W8Ny!Hyk;SnwHukJ=334a?AhF;tJ-#$r)0b;Z+ok^t* zKHy#i{{%^}8BY!;g)6EowEooX{70hsUlooDA^%nw=KU9i-hX?Q5Md}`W+lg0MB;B! z%Y4z1R9@4CYFcXLVjAbBmKJ`1>e3s}6pJx)Zua+tJau+d~a<< z60*0(v@$XwYsFUBF8A*u5{$ammaHt)WLxI>?QviD{KK{98X8|}+k99n4iwF4Ubc_r zI{}4F-NQ4@WHt0UU4bfJ9iMK_(2chfdA9>IG`dlfa^fqHCKi(4SEk=nT2oWwfW?kJ z%ar7w8bZGQSjDl#8*Fn!vp!J+8PJ^Bwovm0_M*e~hDNWiV5oq#nIJrq*~ts9z<7G& z(H7CChos_m07lpunTUC+Ui`-KWyTciYKCtzL6-_C%qdH2MZm$;=F}B4*{5=`;RF5` z`vSb%10l@gg~%`g*gG+Cq!6cctrdv*;UVE9(CVe!+i%+TnHTP=im3VpVF`z~?f${W zc%Sn^LXuI3))7C194y4PdtgwWnfWcXLE1qk- zlx%Pqo^c-HJJPsiA*$|8UmnJ_4%UpE_A_u34Ra@urbfTPoo<=lJvs~{m=B?Paugx8u9#d%7y z=BMYh2JIOVweA>Yw_Djpfje$w*YE;)^|8GV?6j*xv~e7#QTA2cXVyr=T+2%Y-Fq!~ z3Cu)aLKLWh+Lna8;t)Au9xtlaF%nA=O-5z}w|K^^N=04ysIQ61g4HdXo_i$!P6~^O zuHL{^p_Vt8TvOr;Dj>MLP350h<_ecH?EG2Mtob1K~N)phQs@A#e0-|tzQH#V3Bt{D4_!_5y3 ze3bQQt6%zN;e_l!PELjC4}HH7W_xU(g*M@A%wjY!rURkAZFe1y2JQ3h5rnYnEEfJIbs{c?%$ib=`~*0ak?Z*?JdP?evZWESA_zs&}DvAe~l`&OcTc=&|_*YfR2Tc@g z*1r%BE$k#XuJ{oJEb9ipfS@SQf6_zvLPWF8pps|J2MECC^;iaJgMK%)q!9}OQ|MZW zqU;%p0yD>R1T!#>esRyS4aNh6A{#Z9+YJ^_pKCr6q@CPHjd<~OR+1W@UDjO_An|Su zHhH4j+KdCbinXBErt{Fg{S5kE-A{2p|!kbm2+@72y7{C6FENN=_lW?74H@V195D$TfS+_WgZ?hs)C=};s` z@w3X$%`4@F-w5@Wy|A98>|C7}uwT)W3jom2lh5cVIjVRmbrF^cZy#R%eUOyfDBR+! zwE6N1Fq`+N$dze7X$P&%&~8haSZDu*>I@xi<0i?b+zTPNaQU801K?u}yVU$Pqt_Tl zr5aR2OSPm0D`R%h4_VW#sLoutySuwGy)HO(I4B?u1Vq(-7}QD{?2I^U7Fd8Ro640B zP*n?u6AS?Z2JW&E%0AoVej`;N3@CdI0r^P{dWF9X_=b_D-t|S%=)0v`K^@}~{WTHe zz~)Tdi$v&}$`)?f&6;W#XZrTx0kC+w3P-Jku0Y?g@7}up0$X|%?B5B*=~P` z^tI6YxA`(lTijl~UwR-pf4FgUz0Z>1;Mk96-KHyND%`WvW~zuy(Y?<_(m-Ng*-Cgt zEG|WH5Am-Y4wCw#4Rs|6m&-{|<{m)g9J?yD zY|*!ahMM&bb$edMLy1C0 zMn-+aWMtXxjBl%Z+onDZ>|2LbY+R-tay*e2aT}fY2B%Jl{xUwRTZA0M; z?ww_GQ%-Xp6+QcaEnc0+|MLgJ7In4Tk z_HwBGCo`i*=`286aP8r}(QKti%f65}OX2SEbbgi>*F*fNq*Tw#UK-z#_&kGH+Y9e^ zl>jtIKZQqLcWM9uI2&{No@TGpaSko`eV+Mr?l$tul~buxXwLRJo;g?>sh$3PT5;2m zJLRSk;~b#seX96;ZZA2Nx&J))l%%{wH19ZKv=gVuA6ZsD9$6SruTp=aELlsd)ods- zq8OKmB`>6Lq;D|XlOjqb{7yj;Gzk>&W>-aym)x$izGval1a+7D>+l+Zlc!fXURVfl zhlh@hW!DJvM5Mu5X1debV>6%$Dp>BKbj=zIq!Sj$MMa8`%A?qhaNNNgL;R~I{Aw#` z4>$Cf2CXAAalEMK>TCwZz>_CK`U6e;cJDiNbp^B2eKjxj7-NISN6~t|`0kK3TG2+k zr?7UH&E@Bn&99AusdKkW?&Ew2kWfYWKQ zW|YaBH~Er#Vv)z63%2$0^u6{mg*K18s5ejv`! z)h0FHjHXaqP6(QXo}}RqeZB9KiD)qn~}!J@C3H^q=3`V;#6U>b5a06(LxgqcCT zJTU;9sNG3*e?^*s4Whwx$K2iwh+x^4<=`qe3uST#!hE9U5kz(kWJ- z9Gsof8FVKZ+t`goCRlaUq0u$oUoIJBB?-F>rHzKkmV9UQo}xTt;abmNeGPSOZ-<;A zY;9+l99222w1hT|3IcenN0N6E<1Q)9<~{^}B;EkhjED%cp*ekNNw0j21k-KY7$;D? zn&V)m=>i_u^bx1lzT?PsV{qo|{=*=6|m8IPm_dPoSLwpPFs6DXebieogMb>mW?2Qe{gQ=`K*zdXA`BjPCJr;tj-mI7f9 z_~Qc50)Pc)yJp3!U~+KgPZVHa%d`-Eig~k^=n^~O6$bc6{cN_nnc2;AAw6-bt@~rc zL1Y}e>X6xroS7MoJSV^DyXzI6?F@UA>|By{GpVQ52LR%q`DO6XyCftDlD}Cnu*$v#B5earN#pHvm`xAOybU=H`CY zhXC?-B!UtZz+Cyq@=$=|6w|G)P+O@V7r+tv>I4X!zS%N; zYK-7NjjHL1Ea7A7)=dCYKzJ}yLa#bqs@oCijTw)B_=jR!k4Nirc4b=voe>0g4B&VbRSpk|qG9mOT&z4^RKy7!QM;I`%0R}|Cj-+v}Qtx1zph84M^jd|$A|Px6Q(7Nb0+Pub5df77 z@#Du2urD<=&UrJg?(T7g5~8B50|NzRoxtbGRaaN{THXNmHvo|C2Dp2GG^d?2 z`X6sux&oCeu>Yu3nJH%JMf~9l_YH}^DJG7wbO&@_2v`iO^#>SmP=LWtZ!AM-W~qB< zC=@`z%OlHXYU+0*&3D2^l6mzw(ulcQ+l;=0(TJY74 zxRHwqV$(4`G;>_y7d)G-4t5-1BbU#z#frQ__loyF7DYkFlAV^<O6|-HXp+}poW5}@4fKQ zk{XL&;ri$+2%)~Uc3fn*b`i?)*dWn&k5bY-wz0;-<5^`=1=l`eGFw^*h>8;FvtM!) zaIhIUQ?kWS=$mdwHq$B-1#)Pou)>HwMHr?)_3RG(J+x|N}e*RG0Ig6=j8k z;<**XfuGji&RUiVs5f!HfVPqs&q%x)z(vJ0^cT?0ocT$zT@1UnC9)8KWj?SzGK^}w zoT^H!4taXnNwMwi64obERaCAm)olUkN^g{5W*oY0Nsdk@j-Y%=fmcGx;(N05le@Uf zsTfk65TjmS4Q^%V<6e4aeiDv;b3|ibLN1QF?oBE)m{8hw1V1zUkjOAaw4$>f;C$-( zB-4pzn|>I$HdAtN+V${EIs$)QaNT5RUO-IL?z`fRtaH5RV>sQ@&2`@P_DD?BrnOsm zWVHPbcJ_s{WktGYY$!aBn}$j>W}gI-{c?IVH?MBOPTPMFm;?`As8#|# zG=#E^o1)`EbzE7arx+M@zIf%dTN73@bx0o(^775#U>;{{38sm{A=HT%_wz16UgVuT_ker7Akyo zUVY`A@#ScCiaEp$$r8LPr%L$1Bg7}J>!u>H@c-e#s&&U)Qv~2tpM{7t^LtU+w7Kt= zBFL|FJ2`Sg?2JJchUKuxURLKZYfq%1_{uoB=#wh`w5Mg6nejbQwX2}-wZF$@I#*$R z-dNh0o+N`#!!WpS6J>gN%F*xAEi9KkRVt3TiS#z=p<#R0zU5|KXnrBVR29vozl*sA z-7U+vwKczatL+UKL_MFgQcE-!!kRsaO=cN{&O6 z`79{$0XiFPlC4JVTASeiGQZt>c%2o~rx5lUv`$c3cq{-}O*>EKMO6Ye0(2~`x-ei- zmo1o@EYVH_BsP!?`rQbLET-RtK_A|~{{qm98B=E9v!%L_fPj7z$W;Kj2!NL0vRUND z#&iEStg9&2Q~A4`X=YEW!z2!5dfSwCwh~q7;sQOadT8osRG7*FRx8YWhB;wQh5)HB zWTi=(qT$07K8*mjfzb0JjU9nB=}nzOkQZPa56#cQsQ)AcY_x#b*P$nvp%d%#l4kO$ zNoaNf;`B>C!W_l#u=f-5RKZtWoVs{V6Dd*N4KWSR&Cg;Uj;HSlE%^I;#ZYoBuYi=k zzr1|>V)Rp7Z(kW1QN|<5bX)q5hvNoGliVIlav`wv98J@S4;b1lcwjitMq`aqIBot? z7|4Vx9*aD1oUW6gO;*>sX$_7YfeEF(nx>b09Yf32bltv9gZu!Pyk?2R4{b=5P2@@S zh*Bp{UyNKUYq|aP-AmF&6OzOY1r4Eue6y&F|6_n#R}$;$9W)wB?3%AKS1r?n0^Cl- ze0-@FJ0p;*09pzN$WE`WwgCDUuy{iQ|B*trOxiG@ujvAuZLbdh2ImuKNoQ0#8C_l7 zyao(o!=>fE+CQ9Q?at=BbLIU>WPk#rWfxAZ=-ZNZoOeb6(zDcsY8^2iZq?UE4bouY z2Q+-6XEWKp=cLW@$AYNrr=2_(PXT*9y1A$XBdL$gK|9&P<+i^36grd9q6$i@`>G0t z5A2->jE_Hiw#B$DQm23Nmw-;2@X)7qo__3c0P*besS{FNc(xDR=Wj<2Zwu!Wy@sfh z)P0J+wTIiuhF85MM)!(_cVoy_l3IFL_D3~cqyZ4i`hvx)2d^_S%Hh~b5?r8GJzw0E zn7kU%Kg*0&EPn~wpJj|qU`7Th9f(Q*mEU2ifniLs9`DVf7=afDg1S0ydiwETnzwb# z;lqJc=;-Xht;>QJAXo<=Tq#1RvXh#6u-f`0>H9s?tc^ZV`Hg+0>*39*JpB>`qb9<@ z`QhKyB3Vlikx8hV?xji9XIwzGlNWo>zahAN&e!QsZ$5llwp)?FMd! zT&P}cp$nLyX6NSCR#(5o#7s$@oR$A!PE#?orH=m1X+G@AIg1fs1_YmBJySux)I|O%kcel4H z-RIsu_na}_dt-F}k)$Z9YS-Rt?fK35n>Z@IQVaFXXIV-pmOY8Y zVX?FtE-b+uxZcBH>V8467yp!>7Y#-oN=J%(Y*kc-P6mY>9*ND*g_Kk%pnP#7jXSID zKuiF2f$S`+9JM~qzm?Zl2KH@uq3|9$>$hSK*nQ^b$OG(6_~K zW)4{2w(Q;A%;MRA8oV7=zW@{CsoK(4Md0N^3CU zPV5{2)p(tW)pU>kBT5dh%{xhFXROITENzxuejeW^OK(wrA#pM&`vvTiSZ&&i@i!x( zCex=P4ROrsJXsIl*E$*p%xy-GfB!~Ry?ysn4u*-CzQTbjWB%5h?GjOZb>QX07nSlf zNq-Jid2`RPFGe=5t1hQ7{o2#y52C7g9deKHd`0d@W!M+@OTy}T9R3|drh!EKx~L!^ z3Uu`bhjTL9`-uW2h}s@Sr9wbL0-GQ%w}a4*#%MG_@j)U{`GkX<{1rEMlTr{nWlyeX zQv%4F)t>j&50dA4i|0{XpQE|(^M0M>fZZk)-ok(bXJ&CK#WRQJHPfRzJ)1{v4eNl1_+=dmkb9HEoxxch7t{BNw z3XA>avPiYzemf$uRiLW7OpgiU8@rEvYQK}JqPs-m>>jZ`gl(0l&i z)-0BkVJsej=|p!jzM3@NaH`DL){m$fqRg7(`xor0Nq4gm$4}YA6)*m%tG|!V^;~p9 z34ZX4i8<4Zgi^A97sz4IG;zLf6o>QNez%|>=l5-PhxTEyghu5X{XP5p!Ju+fMw0_^ zVuF6Fm-BYjjtaKTx6 zZ6%~4;!Q**giJ^e2M^yqI2Z&BMMq#(6s33xye7lRJWq9p5>-km$a2rNZ~>(2>}KaM z{AON}TK3L7)(IGPSkBAWgUQyDIJ$_h zvcbWM#}PV8G9~KB8=l(TW_{-?i%TDKTc4xW?;iZ&jk6H1ZY<-#j4r+D1#zWWzKF5* zxV3PF{YYf}aSWX2APx!SWe&=~DY=(9drdZDY>Z?Tc zgpkUuCA6?B8XN}kO_?H`?7HTCI%V%o)uZ*VBt1UqYTg{3=k~&-bYgwZcPBMPt^{2V zRwU$YeqKB^0SS16F^G`<6-v{;>vMr!MRM0{Cc0(>f>KR0*)luU=vaD4J_X;fK9?~$@tds zdDBH&cURG`9~<`Cdh#J)@!INpdDqYvQ%+0AD5NemN%F}fsyt`ERk-zVb__21%n{$19DbS+xfM6`5-N=iy#ir8|tJz7#yvJ7N| z_pGcjmYah}n3#fARt#X}Sq4_!jm;$2joZT}>T?H><|QB`WCi3LfQV@u9xf3k=bg0t zZ@IM!{Y`!hMBGtXzSWHkLTV*G?QF_2@8{-s5?ygk)o?6z1~DfS&*wP&y9X)>PJVJ) zCYkm4Hi?pW)IMBu-0tY$Bv=!5OqZS$ayKr1t!P4(8OSeD+WWFhQiE#J&#NHdd7}fH z@2FNcrdikQ+Zt^7Q9j(Aw(rM?fTu$M=Y)HqiI&f>)RhobCj}uKKJiW#qdd0^=Y6@A z;&T)BEc&Bu@~N3^A@Sn%-=-3cH`#`H@7&xBD3mIz)~>59NT8-F`jW=;4m*da<6!Yv zJjyKJD=082*KZA$8#MR?G0Et`y^^uocko0a9Mm*2+KIm(;6v}wts-9yP{sKYqvv>{NWkir}T-%Fepcyb`=(wrZ^OQn)sB>s)KadW&^&hml6 zx22;E{03?@yJGwGz+27OxQ4VuNqVj0>@;F_-i{PC6@|x0YKQrR7@RR(xU^&O1~@xC zn!hp!6-JZD7#IS8Eo8Usi4hIlzW`RC2lkbK?=;fn>dIz&&=2mbfx#0>G;IKK#RQHw z@F(^AoAUr1)|1TJ{@&i!>FJn6KOXsyhQHT~u&-pL=07JCrI{jwb^Rx>Mnd+9DQ5k5OnltOeGw6?ShJR z0$0s(V_kOldV>gXw|)`vqmck1Sn!V!EE7P)&rISQvfiD+0PJC@=%HXboA>_y>JRXb z;xGT#7ZW1p5X%1mnQ7zw2as-N2Voyp`#*?z|IMcbacxow1$-&cC8a0_y6zg6yf&bZ z**&(Jg16P_kqirQjoo0|A$nljtI?&k0799}=)++ENhWop9V+?fVh}Ph7Jj>Nu#6<*Pkj*l(W*4 z=Z>U}oH=j;eV7fHnmbxr+}K0UU=y&G(E9-kfj$#y3(MN-g2wp!4kNB3a(ZAtY!ILfjZzZxs@&*sIg&qQJwC z`=s8dJl9Y`f%CR|S*4J8SB0ZIAQ7oeWuCsocEs``n-HHu|I?h#Dg0Nv?@kn#XF^%3 zpSbv*3j=OO=>a9TCgHwtrTulF;LLoOZ=5aCb3n!jVlO@@xKZ{kuH)%L)BD{vM80Er z=15%{T3~TOm3q1=#KAxd!*^_}DO<`oyLd)&CV_EMn*U-iyd&%t_40Uea(V)_9^=X# z4+b5I$=BJpFZ7c-l4GKd4dPvAX=T?~RJ62*YhTUH(}(e`K4Goz+poM-OU&x*iqSN* zV*CI*(XcMJ^Vl)d**wKMe1`eUuOcwS^}%Z6-u?lY(c_3SPe>#9`9*`WCesY69SnrT zighO^51g(O5gC_ZQW)3k44Uabp1FQNGixG%N~M}AwfAIhaZI2<2NtOa@c>9Vr)-Ez z#Mqbu#@+3(@iqvOj0eFQmz!-8%XU(VY@s-gn_xj=g7%X%L`RO$!KrJD{6vM|(=JAM zys-WiYC_C;PM?11(vChoz)_lvkT6R{<2dsaSWIiRU6=Ltr*GZag)9tlRICE* zI?4yK9cMLZ<{o_aFA;Z-H!-a3bg%iG;?|I?XWWLeo@;KVuQo~^V+I}_N9$(i2L{|S zpn~m+BiFgk_)%p4yfaQkCj*+`y)5e-Cn*;5;^*)5`B(Nj&a&L|KPM4k(&`6zr^BzODqAr@&aq!^^8ws|x|o z>4*m$6+bjIG@0E8;AhjV$M5LfcG1?8zV~e?#lwwj9i*PWa?X1@tWlXCD;eDC^c^UE98jR6WOxvEs&PVj!T4I|Ymp_#w*puh%!mpTV21K%0;>4P?*wR}i ziPScRFNsx~^9Im%lavI-I;K5LO{T{yd$c5>n&ZlBdPAMI_rR>zTBoWJ(f;N*7^MJT zG()DyYVIDcCeM{@pjOZPI-L+oD5UaBqPb@GipW(}PfML77caV6YW63gBg91FeXF;T zg6dfm;74*6$)dco_(SmYM0O%(xpSn~SfHQ%MTg3d#xtM2t&d?Pbe}peAOU$&0$xUn zCTuBkDN$?zT;Mj^2FWvTVK?YYTFcQSx=!ZDm-QAx8?tliw!9Rh4j!tL2BfT?G;17mv zVCmIdY;?}3Wc^P}(?JDdD6s58uE;|ir|{z9;$SjT$@Wl=j1sB5yoE<1j$;nA?#Qm* znNRAw96^ud=>HqyYv~rvHxcCy^n)vMP6zH_VA!B!lOFOFUDc1Z=3+0q`&>LDE^*iu z<{K;6qj zA9TE0Ifz|d_XF$HpbM>YKe*jiodku=$PNWWEa%4@N;n9QsXqjL@{fuwvoZCYCVv7K^^ROh)782 zHCmrR=2gI0CvpLR5Qj8o3mh9mNv`wqf29F!o`9ib?S4}cNb)k6#tik{$IaO&$+Y}m zuiQDwP_JK&wuol_>$FTYjd7y~)HQOfJLM;U)l+RB(=?Lx4&lmn7pUyva zH6>l{QPhNsNEeid;oA;!)U|ARD_2KUGD7}_pWaz~!xrXrP+Wm07I{j|h-QrHQzPca zd+>M1G1OSchIC=VB=2sSuZx`xc;QZ^?U;MDRyNAyr=|Cqch7@H!OGx)W4m@Zzp*W4 zRTljh_-Rt}`#D8w_E#QLo9#{|a+uTbf9TV-nt`sL)&R;nNb;;6L1~ZiI;Kb?e_nWo&N(ZiRzhbo84kUI?w*AFo zZuURso8(ckk{z;G??i~l6~>5S{?6^akgADJJwog)nrP%jvp#Iwp5tZ-WG1;nu^tZM zr#!LKXh8$emFfFH$BHhgu%@{GD(*3|vqE;kxmKEI;9fp$-0UJ1+@wxdGRx)tVmv%m#r+;)D~oM^2v%EvRB?Uv5naN;kou0) zfS^#dERTppWedMa`+}rguHo8B3NdHR4Sz=9|EN^b?`xeF5Q=K~;A4KNhqPyZaA8)- z7$pNru!EXs((s!xreK~Sk}|{20#}Szec5MNI*$+ccL4iGECluG>(@7Vazzk$i468! z0vXU1BZNCZ^iawWSriIDi9<~weklm6slE|_dx;+_tD3HbWC~={WTQCWFXV>7;$k_v ze$CO5S_u5G5lT5bVW+U>4~(?PHj2D;rqehJ20M$%Uoj14DZTNTr5`cQ0@u)zx}EM{ zy)cgG%d{Pk;bWw8;Xze#%%atjw?roYEvb+Kg*tijWuD5U5!tiUN(n9kNsILmiJe4> zJ2qWVDOH@EMqPN!dbYs(QG4kakJ|I+Lb2h#%9B5cwl@t6_rdAQ&Vy+MtFVlOqe1izRTGJU&eY zLvQjf#OSQF9T9)3(bEuV^gxr(E@%KsN*=*3UZr4Z7j?6iP$sP+P zG+`z)%1qLOx6!>|2fp4J9%a&DHp_vYxAk+kN=i3? z#lfuUo(U2~G@8i&SksS!gVRr5RNu;eSTD5>J@Ewr0U-d7GuB`;wu{X^N;64!6H88>_1I-Eo9|l4do};59U}jHM z7-4`lztQutHP+xUxR9l8*IrlgNg)U=4NlWK+O-+R9Tf`YDMy;r*v!URSf)Wwod?49 zWj%-ZnWv_QtL^lKL@ITMZ1J3GW}LXuVFGAWauq9y%g0XEN1sgH7m$E#F>p%`Bul;o z7^NP;l8rrDfe+jZ^}QR;4&ODNu}4no?auLQXGMRo+hd|gbSY{NHx2_!0do;-^n@eY z@V4aWvtM!wIf2S-JM9bBjcYoJ%UdbL#abVvn%D!=y7p}u8mBEvJ^rRVjZ{f0a#g&q z^V7PyI={gTq`7P>HbUVTH2IoIX?dewh(9FmuhklgsmvjY!trq82^%MOBW;AknBean zWRRC?aXJzbRX{*D7CGJagylhR;4Pz^9}pHYXs{ofUTG_U94hIl6CHv+Nb{T8r|!+{W+g~hr#8Nd~ONc&N?bV`_4iX zrN69&5Jd?M2u)%#BARF7j70oWhxGvE9yLNVjRXXXFDB+ntMRYk;CkmWSHyeafX?Kj zD6&CICYJ%LvH>unVE{WQxW8L-)C) zbpSYdk%#-{r-p^2p|vz+z>_iV69V7b3Y|HOnhGfFZSeoV z@aNq6IVZmkkju&nW_a)ZafaT>{S6Bb1d$r5{|RgU-Cr_ANz4z6fTP~-g9PEP1M?*m z*W;ZfpiRhUwER(}I8gadxeva8C8qKILJ2~rOh~{b5syzUE`IX^q*@~>6u$jaCxe_8 z5Won8D=;%tt9=ay&~3oj{P)Kd?OTG4XPXSJix^bOOJD{}SvCix)PR71TptL%>rE>G zkif35uHN9`sp?(>U2viOnSxD}?m%PY)ts4m_fS_8zc%eQfM=FcX z<<1UB0FcK@Qj&4DtO8pA0L_3cw|{*-$3erTD)9LOF8}&^lp52&zJnWhtTtIe!g*Gj z>0e2sIUSh*LYR<)BOdS|fiE!#+{Uu5+)8Xsmyv*!kXw ziInJE4!Ialzj>itmsg?YZp`0+Dcon1lP%4kO3hxpR)Ii7B71MK%T3|-z>9KJsE1vE z{g0$4B4@;>A#W-DIRcD8_r$Kl9YIr@aq(ue-)+9*R3498pIl1e0;3X}1uXS%HDTbM zW0t?EABiBpWz_DH*I3nWt`gzG&CJv~G^yQnyg(xtcUk&8w^&JR!r(&W&9qAYb$ZSv zK%((YA7_J94#qDD$&}Dvt3e=r_hU-1F4P3Vptz2SG8lgU7B~W1Tx*Y(KfBU>%X{}@ zSAUu|uB)p<%`rIGpdVnWMJ8qq&p4P*;Zz*5R@ZU~-}4V3?lxTOltoQzlA&n*p|ek; zru~bsWm&P`!~sZ7Yl$u~SBzBYKr<06_8LN;T<#@S^6w-z9iVh2oSvEj(3R8N0KTzL zAR9mI`h^VXedObhOMv(-IbD_KEW_IjHp1li5YwT?PgCpoCMIWs*=&gk0yFoT0;43` zjRFYFT-bvWzdujHsT>=C?pxAO6izz$66>mnV+>^Q7gq^ex0$c#$QSelq&*1T2I!*C zW`w?57EB#iuDZgvsPe`Zsr3uOJ`TT)BQ(yZH@@-sdK(m4&KMi`QeJ-zU7DmT{C= zF#KMLp|E-m_iZT0031D2F@MtDZzq>;P51B)2bvF8pt=K!JN17!qGzl~tBE*7zlPnk zOCFFLG0>ec>6*&b`oP|Jw7h}^`$u5>Qf9~dV)dpn1I$Zj#D_ro6_UKM^w@U1*p}0h zKkBhpb*@L_Ph0umSj`CbfFUW^E{hvI^%A`o#JKFt5L&FA<2NW@xv{x%&ajteUqI+- zV6jf6&tMpb7W1Y9gw}9Nl_;swH~ilgJgxFI zrxzY#JMtKZJ8s7;2mJv@i+6+kV@m}-?aPvl9Cc`%>$Ef4sp?eddvD^AaucTEW$a3` zqvxW&ZZ$*+#ThM6?Z=v^@u9jL*a%#DNv_MWq23A*BASriyByF_N8sZZiHOI;!K!hd z9}HwIG+Yz!ChY8X2lTJqMFq)(Vh%VLo(1>*d)k$9MsHQ7>etKQ@(IyDS&IG+gdl)%6IY8n-x>Y8 zUoY5|wVyshU|%;`>UqPK58CGq-t{wRZ)~R``vs*whhQ7>wsKdF)m`2khNT)4lLkz& zV3}42&aB_;nt69h!hW*x`lxI4_9-ThlGQ%BqEdRh{ttBA(g9>%K99TAPn)nK7MD~{ z0>BrSZ{F+q-D#E%waz%hg?LAlHoc*F#S3le8Efgg2*G_4j4P<{xBh@Kf483DXh`zz}D zW{@-JAPnYc1^b~GpbfpgRFIdKr+do!Nmh2kPbkZx&q?)QajkMT7w&)9S(I^! znx1N_t-JNPH`aR*E%}#(lCxNXBBdJ@%Wm2kawhn(d5sVCwAhZg_^uTg?mTYa475kP z#HKIna`2=5joxEBa!PRE4sIqrD_M5eEkBHJ-y?46kNxdgM#9;T9OW9OyfAMA12M>P zpcOSug>N10Y{SC*)>Zy6gG0P{R^a{lIX|bB9b-ag@LFVDL*dt!65Ba_hIbfmy-%8Y z%2M-RT+jIi(VI3Yo;?C!&Z@53hH^2Xq(ZHRAu)e`o#&>B zd@^{ve9kOQTqsehx~IcZTjg-@Fm`5{+3_aR=)L96pMwo8DvvDUp7~r9 zYiw#HWiA{PzNtkJ^Mfc#=fuPbt`#L3)KPD3jkXS{RSJ`FCs!F=ltN{ z0Q?yV8yhZK7agC&&OFD4-Dc0Otz91kxJ45=YS!#QFA%txRNdJ!m_~T#Wd$*^Q-@PX zDe&YC)^O0#c|yOQRnOj_-ppq}bHJ^(+YzR;J^vk&Xq@QRUjT5}Ncb59TyTR)=1XPw zdfV(oo&`ob($|fNjvqaWxXt>L>UIGSW7#80f=hw}r880OzPq=WCrj#$bBz_gcQh$% zY*pb+Zwn~`7Gxp zmO1U+$)4P*#{?u3e%?&P;YyUfV$#Qb^wvkFa-XW0dnMvcyRNR0tm?TF40x4(g(g!~ z99;2WB-TAr#Vc2AS;GMa&y*8O^cCj0wIV$=IK4tfHSL|1wSpd&pL|-ge;pXRc|0}s zOeo+-6uMfW0iVeJ@}EEAG?`>k|QkEQn3Tsh%Khq{!w;=H(sq zoviT)bS~ga8%~GYruo)r_f;~gjwhnJZEL^%OA;gIwM2s>G^txZT7|hZ49-eL6(*cu z+PI!huN;rUO3?mI{uP~iWINo$v-WF|%Ql&Bks6iI%W+$SJ}dbCQRXa;+9!NM6?e%#NRqu{_&t0W; zGvaasP1y8SAg(e_)5-aX`22jaL!GuqTr&5@z2idXfckQl$UO2sdS3k`V`#q6M8EU>t;a-%zh5ZJZxX{;+7?T!gJ9nJu= zOLxnP4bs8&{UhaHwDWLL=QpUR?Ep|BTygt2G(gEMC$lkQ$CDVkcUIb$H)@+?M`Nu6 zk0D`DZQjbDyeO-+bV)gGnF^=}z_T=w)bszrvt*n&%qD>7a5`3|0jyC-f2>h4@Oa2A zg-Jy+ubSrPe6Wfh+or<~;vc%)FA~DGtRx8NNvvo^L)L3*8jI@fx$#EyOf; ziAA-*D^Af5`;S=~;@zdIkto(kDitNSeJ7TPY)2r{*!yCtYx_6?0-N6*~pHF=|OeT9bfn_v-D3joF# zP$JvEFD_Z32N()MbV3QruXm3MUw6wo*@Ig38Dv?qK&>4Zu=s#NvgI8`PG0&$1~Bs4 z1jaobFv_yCx2JWyFox8IK_CRZ5#*5eFR(Fj0wM%Ny0P341@J!+>&8Y=^^-oP^phtIlQsaxq)cnG;U^Le}l}W-hpfS}t?10^D7p$do zjrq!icM^F%*~4tI^`TLM2|vR!W}_5mDvxcFd2h)>ov) z0sp|p1{;^KGd{~G_*uM)7z)S1qD)lL1S3yY-G$Db`lEiL-3J`RA}7r>oT)p7H?H_c zInttDYh!RG%mzX%CUx2?8!}%^EB(45@@FL#pbRw6nJ5D*O!_usGGQOQ663su9XBxtTdOI2HS1WJ(n#Sf1PwjTB$d*=Y5pbfn z6%LrvsQFcyGlA@&46xw$*e=y`knArRD?(Z(-*IzV4-4C_V1UeNpWK2|Qz61*VtpAw zfa3fBGucF~C3;__DruP$uvt(fVgJa>ij*8JGM{XSVX55`tWDjREaJF6kUA9Z&>35B zfIXQ|`EGYRE20zm*f<`sUL>pb^TMpDBZ18J4=1f+f5N4DJ3#T`_$jDEV_}uqKYIrH z(4Z}&lIgTCFr9gzk&2phBb!>{$s#bJr)Fj#wKc$^Gk`XVO9^msKy)|-_Ya_@u{->u z)D@73M06X)ffybkr@9PWMd@G?1W062V2KB@clnV{NW!4n{5|Nf1I|E@zGOQBP;nG| zwGxeq4Z(oiFK9&kG6i(LlGZu;n$ihmv6wPhyTtsF(!=f9Y%(8cbE&GrFvrnDF%`r! zhTwodh=_pTGjiIlxw-k$=@9oO_@7z<6taeMhjD0Yfy@<>h5aYay5MN0z#Lt3Czf{`w4GuS+S+nIRBpN8c5*-h2;78k{+E=?e~)OeZ>kYs_h zqCTE0!|`}`8i@daW9_cK5YyFiyFSQO)&q>&-hAC;{P7EQpr1t|@IWNH2(oxgmHo8& zGy%l2=MX!V&(3>#wWy+R&H)e3+oBK!XQe6gTiOWNEPWqcBc&X0s=|ioavn5U!o>Vw zCPzVk`Ujof?#h>eoc5mAYiV7kX4(MaV3T~>lU@E@raCy}j2cp>+wQ88A&>!)p;iV- zKozOna(lNrO*B0M_?yo!{PXN>f1}ED=^wo6euVZDUPSBKvl=deB#bk}Ue{t-lnniR z0&%4^bv!_tGPhP|Cje?)2Bl7SY$A_<@odQDbbvVq`2ULPPv8Ja<{1b8|M)1CSqwP4 zVEPR)N#i>mK`$&U5EuCe1?d7M7tAu*nQow93ikr(8I)gw*e|-A++^rFI0Yah|n& zf67@0-vLC$g37TIAb@^rasfPcF8F3(Vlx0=kQ@;skdJ;(PVNr|4l@6U6=yS8azTO7 zlevuzl|2|mm(STjc!A)|>r+Yk_3H=V<^paX0E##|hW+~WwRE5c1t3ZR6xr?LC2~M8n8PDPcL{{on4u+)OThuyxPCTPNm+yi6e>AqWakUO_=aN2lZA z{uUBH0PhO`l%%Akzwq<(=S&iR_^`6N`t(O|Fd_&k>rAMr$VvWH-rSlBs#iNe6$U86 z)b2?GiDh_vuKKk_FfW62Qm!!qVe%a)%K-a(sNVp^G8oSaskiK5sfH4pQo(upe^`IOs55z#K z*ZyWZO9Awrf>I|SQF=$II^@iejh}S^ zpPO*W2>$otXUW$^m_&1hz7KJ{ z(OH?S{sks6qbQiSWyO4Qbh?c3@G&GnKID(Ta5TEDNv$qwDBPC7?#OrS zThYsf&GvXb_kIkiEaODG_aV))*VVWB3N&m#+L~&@^P4tPtbmQ~eX%v3c%eh*rK#{2 zpHAar4py#6$D4F1>UWE0k5>QFAz3=mXZB^}AW?L#-k-Ev2I>2po3+{arm)BSYsEr` z|DI=_;pifv7U=2JvA)`s(*wa+{V{^1<03VHF?ESCS&WkmR^z%e0(EGQanlWy( z$b1pQj*txl&Rss>Kj;BTwW%sId;q1gv$K=~m)_Xa6-xvBuK|B)ee?tC+d z^=MO~5M)Zr6||uB$7vz8jh3LckqkWVXkoG4sD0?)T19x>8YF6hkUzd-Z z=xji36(x+jeek5re`m&xIvr-9N!?XDwM1^`rJ0{joOD&0_B-X$8eJxIr3F=L*YP&7 zSw7%9&N=rkoSife4d%yhbY;gJgNPq&10Gcpv)SkA)ex)B!C%~dS>v~FhZw4~^!bzE-+YNqD!GK)FkDNyKeS3r$uv&QmX}eEFOrbLFd%7Tm(-=OeDDx29>7(!W5{k=jpS<^-h< zPV?uEjn=TubqnWaGx8A|L57Mu*L7f;iR={L99a|3sas3jT%=SlJVDZtJAGA%kN@x; z=Fq{jT|iFa`B4u>n4oW&#`W3_aUZf48P|}I4%!Ae%a#ADR}%swxt3H=5)xudhbrQC zNK-~hfzUIQ?tUy<0@u>(i z=#+tJ&c!<4nj-h-;vJp3XuK3tHNkV>9KT`B^NF>KHx&kT)gm{TGHxM+0w(~Pih_$9 z_&KF{aWM(F(jntF;1Kfg_J#!)XlQldpa2AMqzXkbV6ls4wfw-AP?%l-!gj#L9t5sV z5I-Kcww&!vhk@Qcg{`8ejwB5qE8+X3{d=WQw4UhCv&K57I0L_JLiS=|k!x zO`z8Cqm=G-Q_Gl*g9CS>s8f0D+SShO^6&pvhqyDKX6Fx5S|Ee-wjyQhI}pt+1;l(C zTA=zqOl%$>3thpYg&P2;i&wbaTU24YojjxQoJ>3t3nL=h+$V<(mw14FkgD3?0E$&D_oir}06-3cZUw_|Cbf~kD`EkLxt5@~nd|O|m+N+qegR+|LMuU5tsj_suE5B08qCnaOl;}uc$In1 z6~x>C>LmkDhA)NYq_tIk5O4gAb&A974`m6lfS2z;1?r)wX?MQ{kJE)Nr=s=XMqnU@ zB-!EbB(W-?6dF2HQ`F6$xDWzW65k_|uaoTt=Iqe((G&rgvLpjPaV2LpfxqeXD+J^9 zOcXzom}=+&f(_4(V1I+U@i{i^(}9`IlXYSIZz%b{cQuBp3OydQBotFW8q8I8zKZDW zP96p-Pske`VVoxUgSOv7z7#X4ZlDa;Aeiw3`8)^roA|l2?EH6xHCCDsSuih4C-mWz zWY2zc{H7mo*k`Heh(XJqH~||1fQcM~?Qz;yQpkW6%-|plU;ERI5a9jwM z@IS49rI(~L!1+vqz_z-f(5|Jm5>vqz@KK`tlae%NPsrz&8d>}DkD1$L*8l7kobN9k z0#`0O+waa^^W(@Fy@IQ<_GdWZ;!_5%!4FJ5;eg&6+*ROfA8Yr04*@wdnV3M_o9+*mCwK_8SdQsZ#I{(jxz7*rdgnDE06{=YX z7}H-3t{tRiRBofQ6r~c&iO5r_A{(Efp_uwd69u6*M6LnAyeZQ*q>vFk2+?JH+2U-vsok1ZBigxO4LJ;i0I;xa67#z(^a zbExLP=;8-*F;7)ksz*@zSq)PI+hiT_G53k zFYwjP%+x4vL2^E#mSmTrU-TiPy3qTosdwTS-wMRxk@!P--k)bMoC$&$i(IJB_ zypi}yMBJsTBq`K$`B~}3D*bL+$2;r@u8@h>G-^MO&44Wl{5Oq7_Aq_eermb0H9_rO zSF0B_b5NlHeda)supkkG+zEJ@@_Db7Ytl1yNTgs*6VQ>hjKQol(L?;-3}I_U|1yM) z1?&VA@CTc@6I?hM)eKF8xAX;KmCn;B*8sfZI@>UY!CZ#`akylZ)@EMnn@dikwh z{>Re6#md(?I8<-}$Emr4k{TZk~y-Q4TIfa6%9^mf?zYlwRa^m|j zD#+DgEc!x|j$kR{<%G>KOKoRp3#)}|&AMnl)3fK8Mmo|GRkRY>@|ToaZ0q88uD#Jy zADIaHeWoy<#?PmIRJ)~&l9)n5*8jr4DIe?5K*Tij$NcnhmQLa9i3rU40@Ww}C|;)#`o6G#4=fur>WnO6s@LO5Qgx+%Jk zZ2JtXE<#<))GUt8k&{D#Jxe$ed5tba*~?o@x74ok{v$IkH)M2VlzgF>+h4(MA_h!b zAoakrvvB|rKnHr#A;tzbH)wDW!6?iN+*7PBEq%%qjlpF7P6Pu3(-XT`ULZc(-UugE z#UXleGp1^aGnJf#Z?EX{(YEEqhoYuD`vvs`G$lkt8+LR8xzafpe+kP1l!;tlqID>_R@0 zPOEP5Iv$tut#d!Q#t#&jF)@Tn6_-`0NQT`bFRAK}={skr+)BBhkDC6%=XYH-vc-9L z!prN~!&!>_*5p$nL5S$g)f*%BeQOS`i!9DcEM)!pN3@HeV~$#b!Qbf9FJ01-;KcZ& zSYU>ne^xj@dGE$Q$6+Q^#8&h2<=EjiMZrGF@lXyb-!;EwZMhE6H6UvOs2YO$TB6AZ zhe6d37!9G6wqR+#xjY;Kx{HOmd9qj>)7_!#V_P@ru>dYQx)&Iefg9Mi&Q34rr!d8! z{FY3vupe{?H zG33s0TLp6K&?jtP;EyhQF35>!WwqK72c;R4fC<~%xG~)N5UZf>O-?*sseQ4_UvE$b z_E~w$PjJhH$oO;8<%(2$Hn7o@7%~Mz2tXmW(4q!--m9W8KS@9Bp8^oQ!^ie7gjPE5 z;fCz^&P@~F-y}CXfxqtU!2|x#;RJ)zPp$p_W{MpL{ngNBC740PRbKO824Z!8Zuk~L z{Dxg)gd-|VC!#w|M_&Bk!Jgqh%!VIX82YATQgHZ&OH)7e!W2rG(-O(q`zWLl(R7R5 zBUrTWJfV^IN?wso_DS-H3qJ0)Rye`muA=&|3o0>)j+63sQC~(N?mu1ve@2EV89ziU zd2{#|zg{pHgx>!1wccR<=L12(-v8SJx9G`a^96x+1ud#h)5N?6bK7V&jsEZ4rEt>N z*H`+X9S3f0uvYcCe@CURe=aT;TI#en+6er+IrfL z`$Ns~T}X{CmKF+Qf){7n=lv?oI8tRc)4q75=@%|q`4Q2IcAV*aQC&T%r_RPan>UM3 zm*R;-5u6XDlFey4KNwOa^fur5+P^?x7#HUFXfQGyW#gPwY*ItsB+>nn=pZZTDZXT* zEL3NwAyrbT-hn>i&&Aj+io$h0vz0yc%i&#Ds=n^I6oqfjjyum-=*dy4Drb?g)ID@E z?cf;TGOen9pqeqbs#m|7oM8KEk&WLm^W5dk#VNp#F|Z89d^TRzm5WH~VM{vrx+vD> zH0%BicO}(e_s@`=rr?L5a)lm?TO7s`!|?wuOrliUtt+M>tfiG10G$TmgLu)?V?O=+g)=!$)0 zhgRy2ek44T7sS$U5SH^8_HSaDsl}ovNXTuSDUL50*H0|o-X-oFc-yi8aZ}LyvD&?oo>gez(zk_ zcd8e|g5@_iDXcoq?QP2*HA+glIaU z)ghU8I9e#rlSU8KTpy->PEw2Z$gzm-T4c0$%Zsgh@$4xjLH`yf9;gr`8XA;GzG9)Z zaCV*z$H1WMR$abd^h)*Oyr+{&U42Wp5hP^6iDU*p&D|amE0v_BT{t0}@4C+Uz`BVz zZNBcl>c*APp_O^Hnf`JARV1~VcoLU0i|qjpNa3UasWF^VDUwVkS3fjWt1AczA728% z+<_+m3+SoiP7lBf3h{Y@!HT-Rz7N1}4#Y9*ovighthc~OBOcGtzH^?0 z+jJYO78Ya(rgznfsjrw2USeYNn14Fqo=#@wueMKjYMvlo^wzyC( zX&>ZVx$}LF5L9wEa*ZSvshTd5HZoVED`FK6-E>hqbTW;X{L_Z>P)k1@6co=pOFv{y z+N~jG>8%prH|QN=iYV`O-G1CEpuNC4ms-DXy$k^aD7?P{45nQ#lJ;TiE8&QK_;9AY{=2TNEJ2zxV`%gc|Ez zbf62|X=^e7H498{6ATv>bf7MaV#=&i$)OO<6n{}lFjOcu2#s=ocNX?xR?nBCa*%N7 z&&-Pw^6@6mGG=vcXX*&b&ncLV&eHBf$rx|sRa;%j35a#&u0gadnk_aS66%$?)O(!h z4>(kNbC_bAed|x{r`Q3i^X8g#0#iFa^YU+EvLV{H|5oD+lgS$?-QkA)zU=eb?O{fQ z;ozWh`69_?EcPKDzDDy!wN7V<#h^TEhh(zGiwEZZ>iRi1*;#z&6SJ#cI9N?Wc+%~2 zej^K)?qSAADlJu-YJ2e&&5^;!3>^ALB_i6JpMWj#!SP^ar4>jcHO{w8z#bEu{^FhM z!yRBU-LSatP)~d%^wso}-@iOo z-^5JXv%U>De)c>)kb4!DnPOXZmz^Sim6l2N#Y+a=&WX6WCe!P6#K%`E0^BLm>*_a* zeO+;KhXRt%pGT`}=BgXuCgo#mM$rZ(L+z_gKmFo?b-I#6Txco@rOX=Uc2Uu%sf8i( z`KO-`jg~Af+hE@2hMN2+cU0ad%nPj5=!W&u4Mtu;6y z6?nj(LEID08cDF;iaGnfPPWR@IF+85z3IK#emh*5RwCyAL)m-BbKSr1!`e#=6!!s-~0EwzxVI)_+5W| z9*@s;74P@!^?aV^aUSP!9;b})UZ)E;S=Q~n`)Bdix*!Mt*^B&8w291d9H$2VC6l>4U!$*F)5{?TJN|79Vz0@F z;6F>YEiwEVBk8hji*E({1N3DyGPKhJkIrzVq@+YfrxF+t{SQAxzjoT@J)~Kwp zu3Cs~%yE5ZndR{y=C@*bqWp^5=`@>HcGSn!2n_H(3q4UPS@hDi=R%Z4XYO0)&;X{POZ)9EPWcgt;F-3B~zfU zKI=UfagOUp(q*s22jA=vuedawX0F7nzU!#f@PKBjb#A+BU|H3~$=&t_F*W=!E#vR*-2ae|Z;`L!Dls8=N6)aB4 zUgV<>`n^;)+*y5wFA{iU&8ce@Jcu}Y6CQd-%8~<5z4+A2lrKQooYBTiJ;;($Om zm(}zar@1>eG_=8btvKOR-q-+18@EA`}6M;sJ-t_&oC(To6hu&Jb|#6 zKWbet%cyh4>Y?LOi-63LRaRQvurt!&Mqz*8J)VlO%P`R8-KDL*=r%gXvb(#=a| zKTx0dlk>xryXNKAP*$*m~dWC=QFL?QaCNF ztsSNgc7OL;;Y~9?(>(@nPdkxk)e9MP`mC0xubl14zM^RKRduVz&bv}24~t*YGTI!| zZLG=~($qU*39odGQ(T{UhOC{we#X#{v^M;Rfq`tA64qfHZ69Q3*lepAFSE{P58rZi zL#(7r0CI&!rk*fnrz&8PxpCvhea5A36lCU&>4>X|ot?7(Ug7)R-ajy*2vH!L-JzBg zyd>I|{gT7$=b94Qd5q?wvrQ~41MFKJ^yhMIcK4_!XRehlibp1)p5>`@$CTVZ zY~Wv|G87TJ<{>rD;Vo5`avCPHiwmP1R~bg0u2l=@Oa8Z*Ch-*AODhx%th2fusu zJ)D|{C{qtQ{?^Z0>eBnUGfPaEg?huumpi6J9B)UYIF*n6{v`O)WwajciNl8vKL$+2a2Y)oBJOi6Tz+x>%b&5aCbwnm zah@Fc`j8}C=qzEM{tv&Up9jxryGVg^n}Ma?HaAm|ZNF2$x<8E^UpK;&z{+2I#2g)McjR~s}XccRQQmj`@IK!l{}6N zr(a-#^p-03%5rf1PA~m{^2QU_sV&$mmJ1_KhL6S118{v1nUHC^1)%1wSP4o@mBwk8qF+GRh<7#aQr0=@JHSKH2>pK{~tEw zWb^;c9}K2lx`+K<8p+Amlar4t**_&*#@^yo1DPA0j!REyX@5!H3RIckd<_0$yx(^M zRT#@uXAPJS3vHjh-BXNm^Q_*ajUJ@t{$%OKbH#tHwToH)Y84I~(WDs``I`FX!YX6g z|BdOm2Lqw zE8n-RE+K?=IpfNZ=ttY7-5dqF6py|Mn@>4&9Ae68QkJq2PO<#99J<7{Ry2_IFEi3~ zi>=4t>T;us13w)t=kwn^C&TXE?6C6b8RjwHW?%a{I;#GL5+A?&8SWT%!!=Z%_v**| z=7s64ra#+Wei-y){nJM=QF+&gH(j$+30NKE%rN0+;Kf3rD_9ps{e|)BMDtn}>UG;2 zHtKD2JN_tPXY}R8tjrC87xZ?Fx6$%^xw?62htk9NhU)K&W1~}Xv(GGO{Yw_RnB%b2 zw$?+kZh`lDS&~fbF$Tk)`@ULZ-(Rk)VYljg7I-eh-q<>VRo?Z=kGJa%@=h(7^XDm$ zN_pDhqD95%c1?r6w;K8$LlK4(QitSUZTQ7k*&8ezZS(L#oPwFcwI?MalM>x&Q zo!cck|KSeGSU-e|Mtcu2T{26(qRtRU{oSgTxySJ8SO-nmW)FL+_i4%M13J8->Z61G zNpZW)xpmoZG1drNYN%Q*%i{Io_9AWB^iD>e-u>(!PVw;z5C2jhZd;`?9Oj=oQ~Ulj zXK-oDBdVR2@28~&2HDsJw+IJbh|Y1yT*I<*H6i4D{a{3Fs!QGAk)fU2)EpVU2H*T4 z-ETP(L~n7?o5d->T4H6Cu6~5SLjFld>HDalvR=y{=|dfs_cy$rSU9}bWv2WMS3rRW z`$5K`cS&kYD$5gBGAgVsKC-&V~ywiqYj&n8aMW5uRBZPcd< z-fh13^MRAO{VlHN&XxN=?B%Ad^mm${Td6UYiV<8G7V{Ky^qi9xP1Y>gH%=2U`<5fW zzk4Trtj@Gqf_BWe^9_yCBNK*$7b!dj7lOBJ_}!6rfSPwh>0_DOuPx$iq{rztv`LKj zhKqZB@LF{$E2OM%N#(4WP495ktnrcifm)^(i=*mo_%fHq22%NM1YB@Ym|mR8x$x0? zIsErr!XNRlyHqSe2L|0@H$w+_2g`>sLTmBK;;Q#Se8H>P-WFXv;kiq}P+8$r zyxJ*KvuL-~4Ag?c1&7>Xvfou^bQDNXhl`9^@a+iemMFhPDgJ_O%{AY9sY;rYE_8HH z(&v;Ze(b+1_3~W&#IUEDCNsKO|eVmRt1M$MsSK?ZmYih|=jm!nWph42}d(nJJ$d+%pw zm;YM`oi6LCG=CBE*{*@dSj(W(+*(q;J2;g@j63CH)Yq*26}}>rx-5k9u*c; zW`C(sEVHqE&ry@_4c7`i)MnhzlxFR`6{fm+K~&7`nkjEhxTp`EBom4tcJ8+~_=oex zewQxK*C(|`2B&FnHcB+U*i*bteKdNAH(<&sHalC*WGqKNjr#TL9pS2%e!kaPT2USJ z!7nVXe0x^9CG21klW9L~)!2Eu!t2$WBkY@^e;#7UKBv?kQ*naMWR#{VGJhu9QNbhU zg}uS_pEjp=w{**r3)yDLKNpgo|Zuf>R@ILTqD(mg< zKk4QswUu6k6^H1mt7|iiZD`jg!xG|S#%W)`H1{j9s?kC~8QXg6 zV;@2duUUN65ss)!)jv5@B5!17X7>H)>zl4Vx8iLsDR6Q6@e%bAJ!Fz2EMI;eQ2()U zbND9Z)?qi^)>kzT1aWs>Rz#gFIM{Kx%WLA^@3htf$N2b9uZTa`a?*a|WV>h7;+(A3 z%jL+2O!=2`oaE5dbCYi~Xfj?lk?`g6o|)ZK*za#Cv&W_6okpqJjxhSQ0!@?pUZ2y-AN#`RIV+ts^YkR==I1;*k@BB>^CkjSLZ2|-|8+Yr%<9u&%im?yNy7zP zdi-}3jl?&3gh&lqcl_KXIQ`XP^7AWNTJG9`DA`m)qi2s^q}chpP1-!Tr+o4}t-$Ec z7j&Ab69tVhJX}te@!G7Bth9^3Tv#$dVRC?Tz&%9m=IV8ah1`rExi~uh09K1Lw2Bfq zchuEmVLDZEE9R#oA3WGmR}SR^v&X}%i4X05-wWgmUk>$G?A~i}!Y#(fY9_?^tMqk~ zyXJkmu~i{lP6y>ac;&dLu8(z)B*kH|o7sokL%R>get+Ae-}iC!aoin#-m0~Y=R2L0 zmS{iRcqe|X$10&+S7O`sH}ggH3=1tcIb3SRpNp^2-+ivzYV?e&zjC`lZslRq2}6<2 zvI^!s&jil5pQq~97PE3U-X)rMsweu$-Qvmv1N_6A?%v(Jp^bes%cf_CdS47b4HvW0 z%C+r9S33e;ML4&+(Nmwh-=!ruVvu7tf5V=YH7#vyf3W(4LplMW^ki!@rBl$4DlX{pgQN)V!Ia_*p_`P@3KA zLeHZKcmEyhgIEQ6Ml@CV~GejY|N9 zqVSi6C;V0gw3m7VSr2wR$Tnfon|7_PJ~EA#c~3W!?82K;^4gMnJ`d5%7exX$<=Vt= zx!o_-J1=hc>`_k2)yf@8XSP}%%PZFNK?6WUhr+eO-+O0N< zG`SFVEP4GKn#H3r@nyZUs1x(0rwBfnk7y-jZ2~H z9e2IBduj{yqi=#N{Vp0pzb8@NPMz@REu}w`a;)yy;7C@;*K7r+qu_5VPYhU^x$8&zv~dI&`P~bK^NOC zmQ%AVXxDlq>O22A;BRGYG3$Ym5}~u;VdaQrORHC}ejmZdjK=)J$srhHvS7Ue@isGo z+ir}s=OZlPO1jiL`tuO&o8BoG;ReY-1$!UKZ2mQQ_bgeie^ba1alM_ay87nwI|B*R z8XudeeAlU|qR5n~nm2>))3r>$)bgHrIMXeK_HU==a4Ejlq-V#UoTN~6I3~9u$HD#c zz&^VO{zuDskA6Jhdi4IVEK`?=`2e4Ip_@U$0$XO4cItVvveuJbkQoqknsycqbPN9(YGbRgVVeEpPpi2g2%R>pp!n zsEhhK{WLZ@3M}()!AgziW*h5Vk5+UDU9SIFv_)RvTKPhKXY9$N8>j-+^X^(y@>&U< zrZ1~}ck~g?=7?ebW8)qvsgl&P`larnbef;^u{XK=3qd(zH)kK%7C0w%kBq2c<@(t4 zw3=hz5VUhYdV0#y+`buTRjQM&jXg&ZAm$wxXB~k{B86zga>*wi5Ruq4&bwBwhNZQzdl#J>9MtwC~22T}JRRzt~-MMoo z$#v#_lGBO7xOaF2B~9^Tj!iLNkI3+J9Y@o6lJ93tL?Aw5%Ivq?b2Ud@hs(u%DIOu9 zGzq}3Nl9Sme@E9#|uk1SucS06kTvB4wk-eYT zp6uJd|E6BPEf#{+g2)`3m`H>HE-gL1pvU5DR)E}JNdd~)(29E^?JHr+u7cB`B7(TI z*dcE_0Yf4pae&eR&M9}%Vp)@o%?vnERcN1a8NL)E=7iV_z#w&X2Z#zH{eUM9o!G^F zcn)tXDte!oDN6qQTk!KR?JgDaDdg@Pw4TD8MFQ|7?wzCU6y06%^2?MyG!s2zvrLV_TlB%*42?ai>3iu1Q=r3fClHlw-U*7A421u2P+1dQH97a zFV11&V;69EA087Wy@(%9l6%hFi0nU;1~OT2hunS)pE0DQ6z}}=i}PDvw*S(;{BxmQC*K&z>glhDDnLWiR~^EE zM;VKeo>PSvO-m|FOddDp1~Q-CyWT7g-sSWSO&&%Prw zD*{j0={qVmoGU4Ch0c8e6nJ)Xao_CC&|{Z=esI;idPvYk&MaQ(U>*LUGNCq^H% zvWy*Txi(;~bb6bGTc8xB^%x_aK&62Fh+%By1``kkO{#)@lucdULs_dA{pQSzw|o=6 z)KX%3;n|~HvyaUjh5Z3-`YP*cPGp;(m3M8eul$ZZz}88JJ%(9S>Zn;$XnGIPC}xH` zTys`lQPk7xP`BJ|%k(wZr2cRLO_#&x);QPU)saWUc#aJ9?w4r3G4_PX#6H@!JkxT< zsjC0ZR(Go-ruA?1Y0`Im$c}TGc-KICqgFg&Y`#mdkLhJ)Z>9_0+__o4qD|Kx7Ed=O zbZyZwD$2O_vFQiDu$)iAQk5w3K>7&{8Y(KP!vgcuE;h^EKVm*PRL#LqXZuQjigw1H z6OZ2Rl<@u0X?oA1Awu0HwT*ANmzUw)!!zvKc8k%~?oN(V_GW%%TgOeBjxs|`(Gw7u zuVz+!wL(5CEHX4k@Q9e)3P4`ayLrinpY&!8C3++#1u^MUV3Wdr@nE%w7 zXJhVDCIL%>f4m#qOCmXUrC#|WxEQ#>?TiG&jot1`VxF(VkMJ)T*MZcD9LFHah z>2KqQK~)8{Tn2|!CSH1l?OjkATajRoH$=_88NlEtu{w(prw&u{!WvaHXaJ|t)0M@l z@WaBwKQRRL{QMWPww+_aEz77RSXB?fI7;f80232aWOOu%>xilm-7he^HVf~^>W89y zh<7dB1#Y8lay*+Owz4=)S8&S)xCPO0?yUDxXNq}V^ZFRMm62yzFIH7W8+6H;*e6{4 z85(OD)gO59kEf~3x3{KoMj8_4CXY|W8|_HhZF|A^`9~MAz2PF>t#_e{J#uo~NYA_a z`l3@kbMB81o4&Hnc%ISwq^=l~2N^8aqZ;PlSwMj!v%0}qy1xwGv$3Y3UvpSQ)oAIk zuvX!727J zij1U%3spVhv6y4`+JJxnu4jDg?0506>n0i-8_O1Ug`Aac-?U|D?QZ5*UJ|P)DNR4I zo(ZsDnmJ?adGbZ)&czo$B-m4I6Ao;p`y$NOz@+qXizI%(+SCu`Tm*mX)hR5=ud%*EvXcMGu)96uH&OAnxhY}sBP=;Dl)q2QDTk}qsyr^^XFPdC zJxomQS5UWGc&sdlh(d%C5qn2Bj#jUqs-M1W8OG}A>vMbjVY@16firk#xs0i zU-akCMcdX4ITaPklK~8G+NN7tqc>5rA9kG_C|k%sn(h|6k6U!3MS_b6$|er0n+nD9 zNBT3%_&122Q^+57tDdOpbAF<~QF&;sN7`6;X~?MH<4PBaFUtkL{-G}D@zg)GZj0}# zwVHGo2x1Rr86D%h*g&t^HP1A^O^$`PqIY1gas)pgZKo86Bfm}FgSg$(A*GYCQ;|{b zc}*$0$0;dyU2>JzEcMv8{n=UTa4uaDzq1Pt)O)QfN`>j7dc$tpNRFCB@aG)-_;_N0 z{-I?9vsaM!+s>OK&lwlH6KzB5tzR)enB-TABmK65@G?Mq=v%bYHGk&SkTn7TA{Vjs zr?yVo^Rmd*KPFH)CthPhf9Rq92gY4x@>QmMy3*}uTaK>u28c%qRE_7&@WisqgMOGj zqP#e={eoW57r_|U^NV7oJS^|nH;1>4RcFXwp)=n^+4wc>`E%~0^*18asZN$j6<#?0 z=xxx)(H*a!-dtI9I3VmyKNF)VeYd&bxZ1bbWdD`a=Tss0tXLr?uKl{;L2)yF=hg6l z#}~eceylgzn6D?wBBK?oGu>jmZau4x&u@WuJ7?$JTi@67Ke{KXm6h=`m^a+};pk3u zBP}9VZBrXl8UGOA)Hbur76kXRPv#fvm}I}1?Q}kJBchT0^EFoO{I*nSC`Q^5; zdHn?N6y8U(I%!_|Uw<1E$SJWnlC4bIw zS=zu0Y&s4HpHjWo7rPb9BakvbU3>6jjuG+TlD?jv+c}Qitt!t9iVlm4_M-rI z9%%d#G6biVEnV(2j6nbAP$+1po%+$`ezWYy?^XI9BV#@ggI#rP@Qdk^Yszl1o6c%C z%uhStm1-b$p=u~1MOT;oR8Bqp=J3tuIU4bD+>v1 zGtYFp=iF&`>ul;QwW#dYIGfgScn6Q7x`X)R1sA2F2y#$p}?xn;ZQ~8 z-tWD;WlI9GY#J3CLL`-#6KT>z%U&$pr$M(n5IvQPQ@>6pBqU(NHP`Uxd=}V%OG>`7 zsDa%}FkI597#aVr0yi*VXwNe4A81NE)_rjaDIpuF*QnIZ+t+uCk&zK4layFxRF>z$ zuqc}CmETIP&tcN7jMmQDn)Ahr7urJB_k%vn`qm8j+$>s_Tv-m2ka2Mm^maa$T;_2s zE_C~Yeo;tC!|*8o=WHEhGXI9qM(nY|riJE?k~aDM(hw$O0rZgOVi+qcv`L9eb1 z;w!8iM^2`Q(Y}(D>1TLBnSFVvxp|bAS6N?tBSqBsfaI-Eq;X97KZy;iks@;u1JdtX zTX$ij_S4KvjV0fQdUruhp@`4Qa)>Tk^|%7hBPEN4-<{EWa45-A#V270CPkh+vE!EG zC=DmS4-wr0bVO^LmAQF{1%FG1DP9u!#`fX~ourqVsC#U-%&6yAh_=)WYG z(#>UBI$J((U-kPx8tb?Sy;bC468BFxA7dN;mikvuN*EJI*1;f^Kau}6GVveXKrjY9 z2=5gB{)RdRKc-;?aDw}l$CAYBvX|nBc}7?7kKqYI|>)&`sx4hx1i-Jd@{WJkKnvij4G@(sSeHZx)f2Z>sY$Y4F| z(#fGqmoF!SA5eKH;*ZS+DVC9*%D7F8l2?*oQ9+g%yu3VQcHu%mkjCden~d zuCe#cS7h4v3-BMPYG6Q_+F9i;E2A^2vnqUAGBAfh zt|Y+e$>A>%@Z}#Ae>)TW?A>YZUGQusq!OZLBy_wmG`yr1gz?7L4saenC69Vht0FBCd`P@N;q?ZN@L;X-n?eb znpmSB97|uffr`Qb(nwLELr<~}j_Pm0n1ONiu@pC~45Mj*zcQVmB_&S1Ddxw>r^L4( z|Kd0!92Sb^81WDt9RRAFXf z@*0vfx+AX7+0_iOjP@X&VUCfsPy& z?EPB%9rU+x{spK^;iV!|bm=GLaq*y)aq{@hDmG#QJ0)y1Bshus2HxDl^sqUO-rBWm z8(&_w`&R1i8y_FfF7D&+-+I;{F89i?9_+cVPW{?d6VA(W@SsXR2fwGMC&Xe^fFq>i zj-zk&_Rc2qyofLxCR)c_s)G_ZPsqvTxQrT+ons&pxz6UYLX(fHdk9oAXyBA2@7@6r zzr=V8&rJ{pD5BYup@r`3>?B_qTT+gI#KfFz(J?ctU+7%yWMW#boZ7H% z-Cu*G>EW6r#SpRp5DzEu($5cM4zb1c=RkRoVNg&I;U}a$Juu#T60Z$n)D*l-ynZul z>-RC@P924giE7)M6~DNSb+6+yD*g`A^Oza64!*Z;w#h2EnKwJDwVt-eSx0obBkJ(Y z+NdU&Z3`ZF>Zy1ccra*9xFq@}sU~ZhqOMI(Pq#E?Wg8~}2&+cyJF;)$j{YiXXu@CM z(s@b?>z5y3>Yv+x3dYkGaO^%o!Gsu+@x`vI^aw)MIw~G{3>GFE6kYOTmVN~H^SVng z-+?JkqRta>gpZ7OfAXOyuK=DwsZ0rKmR(AU0c%j&vW&sGTrb3SAefU{!G?5R@lvbL zG&4yk71H6&hr7|mXiQS1PEm_h!h0go062*P%=}$k`HMa8wi@2sd<>Ci7C`A!w&@zD zzS^eZ3l0tq0JNOiX*-}nuy}K8U36az-hv~3gnD>Mh*~Ew5nOzB?$~i7eQ@E`X*lmh zqP<{ZX7={Rsx`W~7T!9g`kE`=uml=|dzMy)HrM9@hlcuCNqzx=ZfreB!Ffc!J@w2$ z9LF4ZZiCn6UClOSbl4VxGoEf-b`)h@G884)ezE4pE*_mz2`4te>*1-QeEv>-rRwm^ zOkS8`{6L7SUcaTVs7T|vHBoQB1v!%+-kCC~FCZku3Mz&y>e<6*WMW~FboLO`6uk{` zakvmUxa#U2e1@lJ)?vZ~Hmy}iQO6)@6)MZZQJsJt6sxk>ia(6ik$t(0ON%YPTpRB- z#q*}6qjT(iA7tT;pz*iiiSr|2C!;p+d3E;Be)YJc$ruIw{iPrfVXPU?{_Wehw6Ls) z8x^6{&|DG3CbaYe$@`IpJx^rn*nQ||h?DNe5s985uNiHjG>yddkaVn~dP0j+d4QW+ zsXsQTzwY5Z&`U@*=ivI@i&h)%h#fZtIhT$-?{L7I6XdoWIB;MiIy_J!5pR7&hdoYC z6Ey9yLbaW^eyQqlnz`*6STQ-7~A{ht5&E&}p0yU!(;=t9phP z4qe+`Bhru%geu7d5ih+o?kGb^@91b2U5SOgy$Ym`g;+(65YvrUKmqm84@h4ik3yWH zgl*FSAc508^M4AQQ64~{{0>owf*Aju&9#V!8n&~{GY%6(Aax5Jd)7l5o8UG#t`Z}r z(Q+d3ykge^`k~RRyjm$Lxb}C^&(H#(P+eiVfm03GQ*N$dDRvA3_q zL(na_z=#&0c9u~rCYCOKf4vHOwjK{M(=svDhw+?wAI#>fHb2SAwu0VIGM+n8Fae|a z&~Uv4YPjg)Qq|NHgnWa`B3vIQ-2jbAkz>zY4~Z6KG&{Lu7PnyPOhZaaiUupEk^!QW zPMvy?!097^6v2i$9VKrnwor-7zc>-IbR|K}-S|@otDyiNp3m!1lFDW3@ZiS< zG9A&p)L);8$v9mN8o9I2t%JJ1e}4?ou`=A{8r|O2)F?*@*#wXG)zN3VHQ?>?pt*mB zG>ABT5@taO;2mg?^oT&fMK5Bn@WRd6`MFN_Y%t&s7v6;?jhqIWzX`Z2vSZ`p_`glR zwd6EHv89P?JChWcx{TIe7DLSZW_L8RO^#Q7`gE2{H~Vp}Z7a8&2F*E?+Dg#sgd!hv zp<}4!vx_H%hFe?WHeEhg0y>xzT*m5wNUHLm=Qnus{9LHh&!I>z}Cp z&M+`ChM{2RoSW!BLx2}PK7#b|>Nx2#s@=Q8ZTa1~+Hi+>5L>kYFtVv(y-_f8(0Yo@DQx5tYlFZl!euR zdw@JbcturJRrioXY(J(QN4xm2fI#!$gE45Kav+Mq5I%u9$WQDzX_T~wZvcts0c&85 z18GIWQ^67)Na*>4_|4^&A`baKeE87P5aEeKIs9PsDA`2r=H|wE=2=Y2=C*j*4XC}V z5xt8p{#Z@Sg4eFi1~xrpP?hNn>gpE zhn3;*L%Ih5*zFZjd(ZswJR>8sn&48n9HG6eN!;05Gm@kDtT7y3`0}M@!39ICBSG?9 z&MqH<(NC15%OM0CG?u-kmuGJi>&Wq+%5W(NgpwZFzZ-Co2v&eXR{z1>7{>?5D1RD~ zAyu|CO^?811_*(OKGt2i1(l3^2)k;>a~oTU730zEj4n?Ot1%G-MaDd zDkPVanL5~I!3ca(g_uS}1u!Te9a}h!t@f7v>F@8qa`|9fLh;byGK*>|Vm${8D?G}! zREG<2A5inuQ(bo(KOwmU9Oo#=XcRuHhUa%Fi&y3P*h?gJWNO${l`iGoA@k(5F4)gYYRp#8Gz5n26xeQV0T zP2bz22^8|CzJ41E3kyP&f`tVuC|fpG);kDXnm7mGEr@d!e)1dGnjmG__3dmHffX3e zWID=d^LKu81MUF-aGNj0(*nT(ou@vBDDE1ZiW;GY6v8UZ;iR#~oBMu#9}jk+ zkK?hjit!dy!87l69rAx3~cV*JTX#B;FhIRnP0qk7}wMcA1?ar`}60| zgE((uWm6QS#;c&iH&HFiOPVb&FONEGx*9g+-(e}8{)mQA+Jiws#rcu6=d-iykkTNG zH)iUK9x^J%n@LJhSI5pqprk(BPE`83PZTwpJ+7k2#lEj%x4B^8P3qmd-=TY&u3vBn zMnaDX=Ku1-A2nx7wy7+)cG{n;kObU`OJm(~s+vN0K*R~JDM5~?XmGZx-oCvhy|PFR zVF&RpLj<@V5Rd|QWb#u`z&3-pu}Eyy)M{Q<{MEt8z~EO@RMhv#lljUlPA5Nb>rZ4d zh=PCdaw*9}Qh@??te~i{5c2AEK<)4Fknn*sQ_|m7R(e5ZeQ|F5oMnAXdQ0I^DFt`k zjjHo5h}jjg|d4u7wG#vufj{<1jKt%vk}@ zG3p|lQ56)NWZQ;`mo%Nsy#Q5xL^FuJ*)+U*p({(Ho+u3(OW}fnWld3(7XcjMyqKg% zdF9F#0_TxRasU#r!01*`&`u(#N1=PHdqut3Kn;`QO+xvsY?iPU1tD=4r*&nhS0r85 zLsL@-2n%IMU|E?okXtaU+fG5PI{H-&yXQ^fJHG$$vhMl+FwS%n~^^Z(x?Y9j%bQd#}J2Wpj9vY zVu*u&et&a2y7xWYK=IU2Z_&ZbfHZLcav=LLv=i-CjV>y|Uqc%H0W%{!LXzbG;MA|| zp9P|E8fe_FT6s3fu(?XXt<6|@S6#Trzw%^NoKFJQ{1Eowr|t+?N(3_;o@i8 zwI9m0YIv5fdo*-%=F*?<$6>r$jay{X{)`bR(F#x~lvCptvdaU6PXhG;e>shc#n3=k zYvr-d*Yl5$-%oUUD6j})MW`Mtt19v%kX3O2%u)VEhqR+665eDNCZVZB=uP+pD`1jAl^O>QVJRt(ZA9~NDg@@>d*|P5_eXSI0B=nM271D z*ol1jkb39NHwdg^SANriH2bJ`(DR|*aSXJTHeK^We_=MM?89_;}AMhnmhmt~zWF8#6L|}HHAYhbjq=?4v8bjR2D(>}p4vuY@wL%VWVGO&-D-kh25|_O?=T z^QSI3^wr3-02=Qsb$^I()$-&FpXyr+TU#X%7#lZlK7gEx?PbaHuW#_1zstThVTqpU zEtrGRi(aq*Lx`x7jW1ZY(tufsNN78N1u?3r7UGPjz7t<4wrgmJEZl_3?gpm8gFrzC zzE}ZjB*Z0-hnV}k5Pr@=`-eAq})2PP2_5yHr!qDA>C0}c#Tjd6xhWy*S0W)>HR zVQjFIIEnnd5|ESx;CP%s4#WT_M04D!azqzzAD;xgWLR5A;0m=MYN7ZKX1wFvn#u`d z4(x?n$H&JBf==48zwN+y(FbBSLs{1sl^U=fRLV1t- zh5!A48%m?4rFD)_cxd+BW!JC5+YLoI%7d7q1?ZO6S$s_^=fw-1<(aY-F2DtCAV3;m z)pH1FAIk4-4?}F^#G5?>pO*MneDn3-NPxr5lM!M*fZPZJ55fh0=hW}tze91Xh7Jax zD&WSq)qts2+9HTWd=e#u(NN7~B`)ZU&%C@coG~Z8ar^c&9?Nr9=U}C#7gu8oQcDTH zGo()P=g`m-WCNM8KYvc4Hd$=4dd`2c379Gr^bXgfM~{4BV`HgkY1438^%1DFu@W)~ zr+O^0!I~$fjOEZFwXTkT1~qQ5`v?dlJ?RlQTJY2}e?L1Yyz0J_KHlDFW<(_*>GPlu_OW(w zy1gNFUGz1-+$*PTErv4lPqscaEUQL9=2EpLbsgR(!3_JxlyH)Z@b@N$vdVJLe-S}m zDaX6`gfk9g*gh#fn|<5Sc1m!TgD`aP8zIa)j1nwy|D)?WaI8K)JsW~Z#Quuyy|H1b zTNJ_oiIjNuXf`x;njV3VDGq95syZ`~^Wk%H8kb5T1(~5}lNi=b*Li~V*n&U_?=Vv? zC@6>lptArh1UJo3?~+3}W5UbDjh8F)SR&lHahV4Vm*ySZ=kEUg2>a))P@tSGaTVUM zok=A>ppB~%F6WVAjt3B2+9oFyY!k$t2X-K(lz;sii*j5m%jig^Xu-!cjoZLtq=|#i zwTAVZ)C}x6SzswZmOO$fVfQtT2!1h$Hy;&Gusq%&%5CkjI*-SJn`>2|tevmC81U5d zG}vkI7VmNKb>Vrhp`j5yLu{&0%#aQU@-qN^EjT=D;;6O}*JYD6ZGw{kByvpNtVV+{BR^^5H_=!y z;v1MDSP-IAR2BM1W#$F2h+G_N5!ZD0pZ+o-k3e&@sN~{!IH6dt!x14&D+=0H*MnS& z5`zw(a=oB5*G$)B0}PY{B{4QNMTi<=Ux1$iMfnptuZ*n(PDy(hv}j19D}*V~#vJpL z09I+*=~QTqqRRGkcG5e~Ydju(XQK12b*5kmCzX_ooPHix#E~DbBZ*Z8Rq&=7Sv>TF_1)2jKo*2$D z5`6TJ&(M#6f68_0R|D-&WF`5Fs?rV6K46_*tb?dc+9mKEF0Pl?lQCnH;N-jy$;~Oe|9v^5Y_CD{6ZDRL63UiX5X6G$Re@x>yt_-99WFeq zsx}9rkZ<|1t^rfRf2OC~{GLTidzPk9eednP1GWsgpk3vDYRwlnH)|v~l6S!gkm*AM zL&HJXGGm+J0URQEy$ST9dPYYZpl(LdaMQ>fxla(VvsHUDBO{}@%SeooyenFl zz9eL0%_FD&aMUm0HL}Bo3Iov-n9d~tCTn~NO%xAoEyUfCLH7T5rlj-bWna`=&Cd)a>oTcP z_f`UuE;j{EpgzVRWi$ZNhX}sF^mHy1h}}q<=|>Z%3fKpYu3^svyuvhE0{an8+*X!m z0F7Gky^+-tBT5Ao2|4V$hwuLV`;UM1$HA-4Mx(m!`pe>TYAD#O z(GEpB)&!^wi>DE@5vz#cj=(m;0>N4^UZ&|hNe6j=N4+>O&6!?@3y$F3 zgyqu+(I}ZEN!|l|Nd;Czi-zi|CqMoQnLEO%D=aK@qYgU&zpl?`7rdKlyt)j`;8D_? zlT_re&r#LO(kKV4%aX}{aI*9hBweEsbk z6EG71pFC>9NLa-p)B!)pjKpDZXlQXK=Hpogsh;Aa$kKp`e32f>%1{0$rK zS+wl7mgGW@rG=UO@Zkq|X^0M_L5g@lhPhB^)|KYu<{m)vNmpOrPWV~bhiG9Qh!n^L zLy@hCJPoZ)Z1+-?rWSN|q+p3Hv`Q=+HenQE~vdk|M`Sf4-f%OqYNJQxc z&lh^~OHdVjd}jC%hg{Ho-kBtIq_%X;WFI3lwRE~Z6x_Xa4CeC?0N+oDa#-QV|5#D{iNhrC<`Q7{P6N%0%{#P#_ z+^|$yk|LytD+dTom`l=`i+Z(@YLv1JHTs3l!kg$wfWNZDVn9DE{o_0HS&<_Eh3uv2 z-)GU3REAe4nyprdd}O5(p2t|(%2Hrqp%^I~QKN`C_4)O+vB@mpLcT>v6PihBvD{!d zHp5z1clxEXjp~$8x}r7VC!>Y8V9ycgA#aEZFbUt(`Bdjj;>NNQ5fh29d&Y{v6To%g zw|lX)DH-`adIle?9ugGL@$;ge+)@<%VkB*(v2y+uRG`E2+2;KKde&cG3ImP)KpIK~ zn+K3%D?dV@G_J7#wtlETlZ^nc@&*UT@7}!)n6gO#t|Au>97G#darA`@ zHSYTP)!zX2-)~TQkcK^QK{rk%eqRg@tyY|^NLY(d`_VaOr7ykpvnR1AP}*?x z_fs+0PJ$%xg5aWTd7cN&w(=QT$`3n=#h?RQjH!Y+yJ z?GG$(fO00}IsT0|eiI5^C=3iImQlc+MbH8`jMm?{aewJ=q+JO7Z{k5VzjAS?le?$D zETn1^Fr42Nx;y(sbn}VN1W+$7EeSUu5GbQ`AnkC=k^P`Z!@_nUu@lUU({>5Sj;L-> zc0qO1JSQcmcL=Yos1jmgV=wPb-O-hcws|&K zD?-O2k03S%l*&>asCxj}?*Qs#^m|$D)?jP$KA6a%;CTRkYK=GbNP4U7L0(=PoPWaU z;rt>j*&IzBy7UqN6>S*O=>Uz`g6~J>sh~gOM0tk#>pSp&^iO(W+X^%?ntKhzWs=UJ zGBri*Iy*OKGh)KmOqW@2Iyv&!1z4IB$`1UjtvEhpfh4F9A1|+UXv&y?5mAX2^2Y0r z2a^?2!*)7=+;7Ov`b74<9I@_v&za!xvuz)L6+FQjd!bF}=(7BK**MwRB-^6k=(HPdO)Yelt`gzg4-yi3x6LP5`R_7V*>bvcr}7Zn2;kOd)9%9?eYok*sh=-=Zop-M1kEj%Rd$aeB%V;PM0x2$et7=8s;(|A+UFFw?`Xxn0ZcoNe*@IL z9-h5qvhD%clFTZuJ39`zhiKTW>_i_EHrav5G>&LclI#zLg9z{dv#d6Q;S5S z4_(;!P}_g=rcI=IjouI7pO;=HiU$F73T*EFe27FrPwyKQMF)`HgZeSLfu5e;PFM{R zdlwo^Az(D2kpmPHhG6_-V;MmhCBbYM9mn+wDq<*%Z=$9kO$;~rJx(;~+T74k$U^1; zRRbHU$y5*nCr+L;x3H){?7>am3X;3MV)OU@{(FguiJk8?q2*UotQ?SL9W1p3MMGAw zLok4>2gsL5(zGJI*50-(RVb$x=ZCV0sRI%zhD|D{^0;smXmM`YrMn))`rKG?P9gQ-In z<)1!9A*fK}ojjyCK&z_{=MkrC z9iAYW^()$MuX$Q=Pw@N(RGU2ztK$R|A@PENgub^4It=*p_@^5b36L5ATMzXtdv?ie zJRkCRS;c^K2CP-lOx2z+Xjk0Hs*{a(M^r3?XhaH&$A2Y12DKU`B_)wBBTu8V$^8XW_kdj5`+P1qvQQJVm|i&Y3*FU zs;;vzj;>gMjt(T@U^PJ~vJkX7>2m1=au5Utgd+xeTuCAzmyi*0OeD}^4R*#0f)_51 zEH0X8q=7&P2Qk0^g^^P-VHh`MV4)BaBbEo|v(cHqAYb@`7jVw+`~B_x?B{v*-mA*f zy?Ji&XU^TWQ$N^R;PIM`b(+7qA+{(8k=3OC!p+(hoR1B{XB<6Jc&aYJR=pL{P=jSHk~xNQ{}7H^}fth z$??E6bucjX2B1$4R{%Eg8H1K<`YSFy4>|}`QeIHgueXgc=iBu)WO_c`>Zwl=k&NpD z`!S1yJc}Spoh1AYl#CCtK%fC~0}G|ev3(Cv)&d`tO?{`asT9AVL^ zim|fP4PJOC_*QvX_pldc@WjQL3U3C(bo!=>U70=ERy?7SaTxD)2Bvj#H9U z8fjn$B8!^!%hXEUg?5o{gGa7L0SQ8GoS4OjBWBifl%+p4JNrtP1%9Q!A!!K0D0xph zgn~qa766Z%)DKoZ>}G}wOn3#eKv1rA8(*PEtFQ^GH0^a-g)G8%#jY9a97@mw%Ui*8 zeA+cQt>ny^G9xUI`p&fH4PHlQ*UvFhpNh0Qz1(U?OXcq~v0g+*W<4k+qQN87!OJYY zi1Oyg36O~LwO0N-VVQS&7(m~}u$acc%F=2_)+3PW)3nR*{x^TO*i&LIP#;~qar5rj z*dE~Mo!JV@XJbC%>M;5M7oa3Aj72ZF>p$w6RAg~x>9dI<0|ze8Y=uJ!cBf}} zn91bgQxf?2_qb{XZ*hdX714 zOd}(hnwh!4rpC=nnVJrhe5;b|kJ-EiJy7}sc+aFPd~H`l+p-9+Im&Q1I6sl(`}RB^ zfzi^tJpN}p6lbQm_%4<=gf}hl;!aQtmH&89{TMx-FeGrhlacQzpPr;j7=?p@rZ7!3kyCybcjlF{<~#^U0td6gJy*4G|f@dfrF$#j3q*xF>U31Kv5IJ z5KXFLCg!1H!un7Y85z)Bm$fV!&Fj_Y$s2tnye%^|brsDgmr6=(;B@eE8n}5nof!(s z*6}6&fY%5f1b8G^glhQ1NB2x1WTp#IMUv!s?XOeW&$0EkqTt0>;D64~n#_3YgOzwd zZIP+uXHXC!I}(d96wxTQ-NC_uh++h}!A|6%{QKw`2UsG&RTX1rYHDi8F!WspacWCg zm^&AXxBbV?!*0g8o8(EhWM*eC%QQs1(6Ym!n~dzi$5SV)Q#Bj zb`EUgJf1R}-Y2?v4A|T0dusdV_HzD*y*?oshnf3)igTF@c0FsY%Y z5XE_>g@d$rh(ZCbi)De8)tmdHn50B5y9R;Ft$c&La#ib#ElnUf!>o~O;a4x>4X3*1qUNHiu?4i z8jz6=SvR2QrA_ z3qAz4nGLv}lZqcRglN3=%ESymScP92AAg3LX}&1Hdo%&cQbQk-B*^9{ZiWhcV9qn; z(=5PJ0A(1JRGp0CdbU#9tQX%3V$@(^pEXJ-74@?EsD~14$ zrqpX(gp3Dc#5=6^(`)!%&hzRY`P!yzx|;Zo5E95N>{Deb*AceO7KhS%rz|OOR%>LLr!8!1YtdC5yOp?9{TCL9HYuAE3D|Wf}#P&2^5_ zS$#4;zt>rFt)t^!zpRR65X z3kwg=i2QPf^|~D5T7d$e5x%yBu}64KLdhJ=6&uJu@A)DXIAM4VPLut0O%39M;@4_! z?2V7lqag_A4~&k!Utgek7bdu`6w+~PWMmU{httLgsQR3#4fTC!9@|* z@7ElKb4njxfuJ`+U53K4^amjcp{Ov^cK?4Oe|_hjYE$La0+zk^l<sC{_%+&_9j`y$Nu!=)NT=N6{sl&9e3}l3fIH! zrsGZjy0#X_fhf!JVp5xp(u2A3cA?Cn0lM! zTaJ?Aazd$@_)?8f;Z&6Ksj-AiMK3hWf;YU)ib`DA)IX!(2n9V@sV(z4ZF>_R*YY1v$h=J`gdhu7iAUd9oim+?p zu%U+dG1>N*)d`D1Vb`$%gI9Lqx@7(DL~AUW=j{)^PZeGYAxQ;b4yhek8P_k3jvMKi z#}PqP*w0gn2!2Uf;A4N^Uuz@#+^lt$|6B29Gld4|6MvSxl~upR4@Q$(ZModel: \"sequential_3\"\n", + "\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d_10 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_7 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_11 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_8 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_6 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten_3 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ conv2d_10 (Conv2D)              │ (None, 26, 26, 32)     │           320 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_7 (MaxPooling2D)  │ (None, 13, 13, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_11 (Conv2D)              │ (None, 11, 11, 64)     │        18,496 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_8 (MaxPooling2D)  │ (None, 5, 5, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_6 (Dropout)             │ (None, 5, 5, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ flatten_3 (Flatten)             │ (None, 1600)           │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_4 (Dense)                 │ (None, 10)             │        16,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ], + "text/html": [ + "
 Total params: 34,826 (136.04 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ], + "text/html": [ + "
 Trainable params: 34,826 (136.04 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 512\n", + "epochs = 15\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "id": "q_h8PxkN9m0v", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "62f45088-0758-4ef0-a718-e0ab53195750" + }, + "execution_count": 47, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 35ms/step - accuracy: 0.6005 - loss: 1.3162 - val_accuracy: 0.9470 - val_loss: 0.1911\n", + "Epoch 2/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9392 - loss: 0.2061 - val_accuracy: 0.9640 - val_loss: 0.1177\n", + "Epoch 3/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9598 - loss: 0.1344 - val_accuracy: 0.9728 - val_loss: 0.0931\n", + "Epoch 4/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9671 - loss: 0.1093 - val_accuracy: 0.9783 - val_loss: 0.0776\n", + "Epoch 5/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9727 - loss: 0.0872 - val_accuracy: 0.9798 - val_loss: 0.0676\n", + "Epoch 6/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9738 - loss: 0.0834 - val_accuracy: 0.9803 - val_loss: 0.0614\n", + "Epoch 7/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9801 - loss: 0.0671 - val_accuracy: 0.9830 - val_loss: 0.0555\n", + "Epoch 8/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9794 - loss: 0.0665 - val_accuracy: 0.9847 - val_loss: 0.0515\n", + "Epoch 9/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9810 - loss: 0.0598 - val_accuracy: 0.9847 - val_loss: 0.0485\n", + "Epoch 10/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9813 - loss: 0.0578 - val_accuracy: 0.9853 - val_loss: 0.0463\n", + "Epoch 11/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9834 - loss: 0.0535 - val_accuracy: 0.9853 - val_loss: 0.0441\n", + "Epoch 12/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9845 - loss: 0.0492 - val_accuracy: 0.9867 - val_loss: 0.0419\n", + "Epoch 13/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9842 - loss: 0.0491 - val_accuracy: 0.9867 - val_loss: 0.0417\n", + "Epoch 14/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9859 - loss: 0.0441 - val_accuracy: 0.9877 - val_loss: 0.0401\n", + "Epoch 15/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9853 - loss: 0.0446 - val_accuracy: 0.9877 - val_loss: 0.0382\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "HL2_LVga1C3l" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "81Cgq8dn9uL6", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4aa1724a-c7e7-4e86-8738-9db4cfdd8282" + }, + "execution_count": 48, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9895 - loss: 0.0345\n", + "Loss on test data: 0.035905033349990845\n", + "Accuracy on test data: 0.988099992275238\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "KzrVY1SR1DZh" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [15, 16]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "id": "dbfkWjDI1Dp7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "0cc5e03c-4f4c-4792-fb4c-4eaf54d9d7b6" + }, + "execution_count": 49, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 342ms/step\n", + "NN output: [[3.2891677e-07 9.9978304e-01 4.7009278e-05 3.9200216e-07 1.5089162e-04\n", + " 1.8456345e-09 4.2153893e-08 6.1042369e-06 1.2237400e-05 8.7371088e-09]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGXlJREFUeJzt3V9M1ff9x/HX8d/RtnAYIhxORYva6lL/LHPKiC3DSUS2GP9daNcLXYxGh83UtV1YVsFtCZtLuqaLs7tYZM2qdiZTUy9ILAJmG9poNcZsI0LYwAi4mnAOYkUDn9+Fv571VNAePIc35/B8JJ9Ezvd7OO9+e8qzX87xezzOOScAAIbZGOsBAACjEwECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmxlkP8EX9/f26fv26UlJS5PF4rMcBAETJOafu7m4FAgGNGTP4ec6IC9D169eVk5NjPQYA4DG1tbVp6tSpg24fcb+CS0lJsR4BABADj/p5HrcA7d+/X88884wmTpyovLw8ffTRR1/qfvzaDQCSw6N+nsclQO+//752796t8vJyffzxx1qwYIGKi4t148aNeDwcACARuThYvHixKy0tDX/d19fnAoGAq6ysfOR9g8Ggk8RisVisBF/BYPChP+9jfgZ09+5dXbhwQUVFReHbxowZo6KiIjU0NDywf29vr0KhUMQCACS/mAfok08+UV9fn7KysiJuz8rKUkdHxwP7V1ZWyufzhRfvgAOA0cH8XXBlZWUKBoPh1dbWZj0SAGAYxPzvAWVkZGjs2LHq7OyMuL2zs1N+v/+B/b1er7xeb6zHAACMcDE/A5owYYIWLlyompqa8G39/f2qqalRfn5+rB8OAJCg4nIlhN27d2vjxo36xje+ocWLF+utt95ST0+Pvv/978fj4QAACSguAVq/fr3++9//as+ePero6NDXvvY1VVdXP/DGBADA6OVxzjnrIT4vFArJ5/NZjwEAeEzBYFCpqamDbjd/FxwAYHQiQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJsZZDwBg9KqtrY36PoWFhVHfx+PxRH0fxB9nQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACY9zzlkP8XmhUEg+n896DADDYLh+/NTV1Q3pfkuXLo3tIKNMMBhUamrqoNs5AwIAmCBAAAATMQ9QRUWFPB5PxJozZ06sHwYAkODi8oF0zz//vD788MP/Pcg4PvcOABApLmUYN26c/H5/PL41ACBJxOU1oKtXryoQCGjGjBl6+eWX1draOui+vb29CoVCEQsAkPxiHqC8vDxVVVWpurpaBw4cUEtLi1588UV1d3cPuH9lZaV8Pl945eTkxHokAMAIFPe/B9TV1aXp06frzTff1ObNmx/Y3tvbq97e3vDXoVCICAGjBH8PKLk96u8Bxf3dAWlpaXruuefU1NQ04Hav1yuv1xvvMQAAI0zc/x7QrVu31NzcrOzs7Hg/FAAggcQ8QK+++qrq6+v173//W3//+9+1Zs0ajR07Vi+99FKsHwoAkMBi/iu4a9eu6aWXXtLNmzc1ZcoUvfDCCzp79qymTJkS64cCACSwmAfoyJEjsf6WABJARUWF9QiDqq+vtx4BA+BacAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAibh/Imq0QqGQfD6f9RgAojTCfpREGOonmw71k1Rx36M+EZUzIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJgYZz0AgJGnoqLCeoSY4qrWIxNnQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACS5GCiSxwsLCId2vvLw8toPEEBcWTR6cAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjzOOWc9xOeFQiH5fD7rMYCkMML+846JpUuXRn0fLmBqIxgMKjU1ddDtnAEBAEwQIACAiagDdObMGa1cuVKBQEAej0fHjx+P2O6c0549e5Sdna1JkyapqKhIV69ejdW8AIAkEXWAenp6tGDBAu3fv3/A7fv27dPbb7+td955R+fOndOTTz6p4uJi3blz57GHBQAkj6g/EbWkpEQlJSUDbnPO6a233tJPf/pTrVq1SpL07rvvKisrS8ePH9eGDRseb1oAQNKI6WtALS0t6ujoUFFRUfg2n8+nvLw8NTQ0DHif3t5ehUKhiAUASH4xDVBHR4ckKSsrK+L2rKys8LYvqqyslM/nC6+cnJxYjgQAGKHM3wVXVlamYDAYXm1tbdYjAQCGQUwD5Pf7JUmdnZ0Rt3d2doa3fZHX61VqamrEAgAkv5gGKDc3V36/XzU1NeHbQqGQzp07p/z8/Fg+FAAgwUX9Lrhbt26pqakp/HVLS4suXbqk9PR0TZs2TTt37tQvfvELPfvss8rNzdUbb7yhQCCg1atXx3JuAECCizpA58+fj7gW0+7duyVJGzduVFVVlV5//XX19PRo69at6urq0gsvvKDq6mpNnDgxdlMDABIeFyMFEsQI+081Jvbu3Rv1fSoqKmI/COKCi5ECAEYkAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmIj64xgAPL7a2lrrEWKurq4u6vtwZevRjTMgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEFyMFHtNQLqhZWFgY8zmsLV261HoEJBjOgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE1yMFPicoVxYtLy8PPaDGOPCohgOnAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY8zjlnPcTnhUIh+Xw+6zGQ4AoLC4d0v9ra2tgOYmyoFxWtq6uL7SAYlYLBoFJTUwfdzhkQAMAEAQIAmIg6QGfOnNHKlSsVCATk8Xh0/PjxiO2bNm2Sx+OJWCtWrIjVvACAJBF1gHp6erRgwQLt379/0H1WrFih9vb28Dp8+PBjDQkASD5RfyJqSUmJSkpKHrqP1+uV3+8f8lAAgOQXl9eA6urqlJmZqdmzZ2v79u26efPmoPv29vYqFApFLABA8ot5gFasWKF3331XNTU1+tWvfqX6+nqVlJSor69vwP0rKyvl8/nCKycnJ9YjAQBGoKh/BfcoGzZsCP953rx5mj9/vmbOnKm6ujotW7bsgf3Lysq0e/fu8NehUIgIAcAoEPe3Yc+YMUMZGRlqamoacLvX61VqamrEAgAkv7gH6Nq1a7p586ays7Pj/VAAgAQS9a/gbt26FXE209LSokuXLik9PV3p6enau3ev1q1bJ7/fr+bmZr3++uuaNWuWiouLYzo4ACCxRR2g8+fPR1xf6rPXbzZu3KgDBw7o8uXL+uMf/6iuri4FAgEtX75cP//5z+X1emM3NQAg4XExUox4Q7mwaLJdVFQa2oVFuagoLHExUgDAiESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATMf9IbuBhuLL1fUO5SjVXtkay4QwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBxUgxrLiw6H179+6N/SBAguEMCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwcVIocLCwiHdr7y8PLaDJKihXFh0KBcwBZINZ0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAmPc85ZD/F5oVBIPp/PeoxRpba2dkj3G+pFTEeypUuXRn0fLiwKDCwYDCo1NXXQ7ZwBAQBMECAAgImoAlRZWalFixYpJSVFmZmZWr16tRobGyP2uXPnjkpLSzV58mQ99dRTWrdunTo7O2M6NAAg8UUVoPr6epWWlurs2bM6deqU7t27p+XLl6unpye8z65du/TBBx/o6NGjqq+v1/Xr17V27dqYDw4ASGxRfSJqdXV1xNdVVVXKzMzUhQsXVFBQoGAwqD/84Q86dOiQvv3tb0uSDh48qK9+9as6e/asvvnNb8ZucgBAQnus14CCwaAkKT09XZJ04cIF3bt3T0VFReF95syZo2nTpqmhoWHA79Hb26tQKBSxAADJb8gB6u/v186dO7VkyRLNnTtXktTR0aEJEyYoLS0tYt+srCx1dHQM+H0qKyvl8/nCKycnZ6gjAQASyJADVFpaqitXrujIkSOPNUBZWZmCwWB4tbW1Pdb3AwAkhqheA/rMjh07dPLkSZ05c0ZTp04N3+73+3X37l11dXVFnAV1dnbK7/cP+L28Xq+8Xu9QxgAAJLCozoCcc9qxY4eOHTum06dPKzc3N2L7woULNX78eNXU1IRva2xsVGtrq/Lz82MzMQAgKUR1BlRaWqpDhw7pxIkTSklJCb+u4/P5NGnSJPl8Pm3evFm7d+9Wenq6UlNT9corryg/P593wAEAIkQVoAMHDkh68BpgBw8e1KZNmyRJv/nNbzRmzBitW7dOvb29Ki4u1u9+97uYDAsASB5cjDTJVFRURH2f8vLy2A9ibKgXCB3KxUgBDIyLkQIARiQCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GrYSWaE/euMiaFc2Xrv3r3D9lgABsbVsAEAIxIBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGKc9QCIraFcTLOwsDDmcwxmKPMtXbo09oMAMMcZEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgwuOcc9ZDfF4oFJLP57MeAwDwmILBoFJTUwfdzhkQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMBFVgCorK7Vo0SKlpKQoMzNTq1evVmNjY8Q+hYWF8ng8EWvbtm0xHRoAkPiiClB9fb1KS0t19uxZnTp1Svfu3dPy5cvV09MTsd+WLVvU3t4eXvv27Yvp0ACAxDcump2rq6sjvq6qqlJmZqYuXLiggoKC8O1PPPGE/H5/bCYEACSlx3oNKBgMSpLS09Mjbn/vvfeUkZGhuXPnqqysTLdv3x70e/T29ioUCkUsAMAo4Iaor6/Pffe733VLliyJuP33v/+9q66udpcvX3Z/+tOf3NNPP+3WrFkz6PcpLy93klgsFouVZCsYDD60I0MO0LZt29z06dNdW1vbQ/erqalxklxTU9OA2+/cueOCwWB4tbW1mR80FovFYj3+elSAonoN6DM7duzQyZMndebMGU2dOvWh++bl5UmSmpqaNHPmzAe2e71eeb3eoYwBAEhgUQXIOadXXnlFx44dU11dnXJzcx95n0uXLkmSsrOzhzQgACA5RRWg0tJSHTp0SCdOnFBKSoo6OjokST6fT5MmTVJzc7MOHTqk73znO5o8ebIuX76sXbt2qaCgQPPnz4/LPwAAIEFF87qPBvk938GDB51zzrW2trqCggKXnp7uvF6vmzVrlnvttdce+XvAzwsGg+a/t2SxWCzW469H/ez3/H9YRoxQKCSfz2c9BgDgMQWDQaWmpg66nWvBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMjLgAOeesRwAAxMCjfp6PuAB1d3dbjwAAiIFH/Tz3uBF2ytHf36/r168rJSVFHo8nYlsoFFJOTo7a2tqUmppqNKE9jsN9HIf7OA73cRzuGwnHwTmn7u5uBQIBjRkz+HnOuGGc6UsZM2aMpk6d+tB9UlNTR/UT7DMch/s4DvdxHO7jONxnfRx8Pt8j9xlxv4IDAIwOBAgAYCKhAuT1elVeXi6v12s9iimOw30ch/s4DvdxHO5LpOMw4t6EAAAYHRLqDAgAkDwIEADABAECAJggQAAAEwkToP379+uZZ57RxIkTlZeXp48++sh6pGFXUVEhj8cTsebMmWM9VtydOXNGK1euVCAQkMfj0fHjxyO2O+e0Z88eZWdna9KkSSoqKtLVq1dtho2jRx2HTZs2PfD8WLFihc2wcVJZWalFixYpJSVFmZmZWr16tRobGyP2uXPnjkpLSzV58mQ99dRTWrdunTo7O40mjo8vcxwKCwsfeD5s27bNaOKBJUSA3n//fe3evVvl5eX6+OOPtWDBAhUXF+vGjRvWow27559/Xu3t7eH117/+1XqkuOvp6dGCBQu0f//+Abfv27dPb7/9tt555x2dO3dOTz75pIqLi3Xnzp1hnjS+HnUcJGnFihURz4/Dhw8P44TxV19fr9LSUp09e1anTp3SvXv3tHz5cvX09IT32bVrlz744AMdPXpU9fX1un79utauXWs4dex9meMgSVu2bIl4Puzbt89o4kG4BLB48WJXWloa/rqvr88FAgFXWVlpONXwKy8vdwsWLLAew5Qkd+zYsfDX/f39zu/3u1//+tfh27q6upzX63WHDx82mHB4fPE4OOfcxo0b3apVq0zmsXLjxg0nydXX1zvn7v+7Hz9+vDt69Gh4n3/+859OkmtoaLAaM+6+eBycc+5b3/qW++EPf2g31Jcw4s+A7t69qwsXLqioqCh825gxY1RUVKSGhgbDyWxcvXpVgUBAM2bM0Msvv6zW1lbrkUy1tLSoo6Mj4vnh8/mUl5c3Kp8fdXV1yszM1OzZs7V9+3bdvHnTeqS4CgaDkqT09HRJ0oULF3Tv3r2I58OcOXM0bdq0pH4+fPE4fOa9995TRkaG5s6dq7KyMt2+fdtivEGNuIuRftEnn3yivr4+ZWVlRdyelZWlf/3rX0ZT2cjLy1NVVZVmz56t9vZ27d27Vy+++KKuXLmilJQU6/FMdHR0SNKAz4/Pto0WK1as0Nq1a5Wbm6vm5mb95Cc/UUlJiRoaGjR27Fjr8WKuv79fO3fu1JIlSzR37lxJ958PEyZMUFpaWsS+yfx8GOg4SNL3vvc9TZ8+XYFAQJcvX9aPf/xjNTY26i9/+YvhtJFGfIDwPyUlJeE/z58/X3l5eZo+fbr+/Oc/a/PmzYaTYSTYsGFD+M/z5s3T/PnzNXPmTNXV1WnZsmWGk8VHaWmprly5MipeB32YwY7D1q1bw3+eN2+esrOztWzZMjU3N2vmzJnDPeaARvyv4DIyMjR27NgH3sXS2dkpv99vNNXIkJaWpueee05NTU3Wo5j57DnA8+NBM2bMUEZGRlI+P3bs2KGTJ0+qtrY24uNb/H6/7t69q66uroj9k/X5MNhxGEheXp4kjajnw4gP0IQJE7Rw4ULV1NSEb+vv71dNTY3y8/MNJ7N369YtNTc3Kzs723oUM7m5ufL7/RHPj1AopHPnzo3658e1a9d08+bNpHp+OOe0Y8cOHTt2TKdPn1Zubm7E9oULF2r8+PERz4fGxka1trYm1fPhUcdhIJcuXZKkkfV8sH4XxJdx5MgR5/V6XVVVlfvHP/7htm7d6tLS0lxHR4f1aMPqRz/6kaurq3MtLS3ub3/7mysqKnIZGRnuxo0b1qPFVXd3t7t48aK7ePGik+TefPNNd/HiRfef//zHOefcL3/5S5eWluZOnDjhLl++7FatWuVyc3Pdp59+ajx5bD3sOHR3d7tXX33VNTQ0uJaWFvfhhx+6r3/96+7ZZ591d+7csR49ZrZv3+58Pp+rq6tz7e3t4XX79u3wPtu2bXPTpk1zp0+fdufPn3f5+fkuPz/fcOrYe9RxaGpqcj/72c/c+fPnXUtLiztx4oSbMWOGKygoMJ48UkIEyDnnfvvb37pp06a5CRMmuMWLF7uzZ89ajzTs1q9f77Kzs92ECRPc008/7davX++ampqsx4q72tpaJ+mBtXHjRufc/bdiv/HGGy4rK8t5vV63bNky19jYaDt0HDzsONy+fdstX77cTZkyxY0fP95Nnz7dbdmyJen+J22gf35J7uDBg+F9Pv30U/eDH/zAfeUrX3FPPPGEW7NmjWtvb7cbOg4edRxaW1tdQUGBS09Pd16v182aNcu99tprLhgM2g7+BXwcAwDAxIh/DQgAkJwIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP/Bzh0dDQNt0ppAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 1\n", + "NN answer: 1\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n", + "NN output: [[9.9996102e-01 1.2646287e-15 1.2460175e-08 2.6192890e-08 2.9560595e-16\n", + " 3.1950063e-07 7.6320879e-07 5.2810489e-11 2.4268709e-07 3.7699298e-05]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHGFJREFUeJzt3X1slfX9//HXKTdH0PbUUtrTI1ALKjCRbkPpGqXgaGg74wBZos5keBMdrjUq8yZ4h266fsUEnQ7RLAvoFHVOgeAfLFptG7eCAWXMqA1tOltDW5Sk50CR0tDP7w9+nnmkBa/DOX2flucj+SQ913W9e725uOiL61xXP8fnnHMCAGCQpVk3AAA4PRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMDHSuoHv6uvr0969e5Weni6fz2fdDgDAI+ecDhw4oFAopLS0ga9zUi6A9u7dq4kTJ1q3AQA4RW1tbZowYcKA61PuLbj09HTrFgAACXCyn+dJC6A1a9bo3HPP1RlnnKGioiJ98MEH36uOt90AYHg42c/zpATQa6+9puXLl2vlypX68MMPVVhYqLKyMu3bty8ZuwMADEUuCWbPnu0qKyujr48ePepCoZCrrq4+aW04HHaSGAwGgzHERzgcPuHP+4RfAR05ckQ7d+5UaWlpdFlaWppKS0vV0NBw3PY9PT2KRCIxAwAw/CU8gL766isdPXpUubm5Mctzc3PV0dFx3PbV1dUKBALRwRNwAHB6MH8KbsWKFQqHw9HR1tZm3RIAYBAk/PeAsrOzNWLECHV2dsYs7+zsVDAYPG57v98vv9+f6DYAACku4VdAo0eP1qxZs1RTUxNd1tfXp5qaGhUXFyd6dwCAISopMyEsX75cS5cu1cUXX6zZs2frqaeeUnd3t2644YZk7A4AMAQlJYCuvvpqffnll3rooYfU0dGhH/7wh9q6detxDyYAAE5fPuecs27i2yKRiAKBgHUbAIBTFA6HlZGRMeB686fgAACnJwIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmRlo3AJyOfvWrX3muCQQCSeikfz6fz3PNCy+84LkmHA57rsHwwRUQAMAEAQQAMJHwAHr44Yfl8/lixrRp0xK9GwDAEJeUe0AXXnih3nnnnf/tZCS3mgAAsZKSDCNHjlQwGEzGtwYADBNJuQe0Z88ehUIhTZ48Wdddd51aW1sH3Lanp0eRSCRmAACGv4QHUFFRkdavX6+tW7dq7dq1amlp0Zw5c3TgwIF+t6+urlYgEIiOiRMnJrolAEAK8jnnXDJ30NXVpfz8fK1evVo33XTTcet7enrU09MTfR2JRAghDHv8HtAx/B7Q8BYOh5WRkTHg+qQ/HZCZmakLLrhATU1N/a73+/3y+/3JbgMAkGKS/ntABw8eVHNzs/Ly8pK9KwDAEJLwALrrrrtUV1en//73v/rXv/6lxYsXa8SIEbr22msTvSsAwBCW8LfgvvjiC1177bXav3+/xo8fr8suu0zbtm3T+PHjE70rAMAQlvSHELyKRCKDerMVqW/u3Lmea/Lz8+Pa1/333++5Jp4b9vE8aDNq1CjPNfGK58/0+eefe6555plnPNe8+eabnmvi6Q2n7mQPITAXHADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABNMRoq4xTPD+c9//nPPNU8++aTnmrFjx3quiVc8E3e2tLR4runt7fVcE6+0NO//Nx0zZoznmlAo5Lnm008/9VyzePFizzVSfJOYDubfU6pjMlIAQEoigAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgYad0AEiuemZmzs7Pj2tc//vEPzzUzZ86Ma1+prL6+3nPNokWLPNeEw2HPNYMpPz/fc80NN9zgueaBBx7wXNPY2Oi5RpLuu+8+zzWrVq3yXJNiH0owaLgCAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYMLnUmwWvEgkokAgYN3GkFVRUeG5ZsuWLUnoJHFefPFFzzXNzc1x7euxxx6Lqw6DZ8mSJZ5rqqqq4trXnDlzPNdcccUVnmvimdh3KAiHw8rIyBhwPVdAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATIy0bgADO/fccz3X/OEPf0h8Iwl03333ea558sknPdf09vZ6rsHQ8MYbb3iuCYVCce0rnslI8f1xBQQAMEEAAQBMeA6g+vp6XXnllQqFQvL5fNq0aVPMeuecHnroIeXl5WnMmDEqLS3Vnj17EtUvAGCY8BxA3d3dKiws1Jo1a/pdv2rVKj399NN67rnntH37dp155pkqKyvT4cOHT7lZAMDw4fkhhIqKigE/ddM5p6eeekoPPPCAFi5cKOnYp1nm5uZq06ZNuuaaa06tWwDAsJHQe0AtLS3q6OhQaWlpdFkgEFBRUZEaGhr6renp6VEkEokZAIDhL6EB1NHRIUnKzc2NWZ6bmxtd913V1dUKBALRMXHixES2BABIUeZPwa1YsULhcDg62trarFsCAAyChAZQMBiUJHV2dsYs7+zsjK77Lr/fr4yMjJgBABj+EhpABQUFCgaDqqmpiS6LRCLavn27iouLE7krAMAQ5/kpuIMHD6qpqSn6uqWlRbt27VJWVpYmTZqkO+64Q48++qjOP/98FRQU6MEHH1QoFNKiRYsS2TcAYIjzHEA7duzQ5ZdfHn29fPlySdLSpUu1fv163XPPPeru7tYtt9yirq4uXXbZZdq6davOOOOMxHUNABjyfM45Z93Et0UiEQUCAes2UsJ//vMfzzXTp09PQif9W7t2reea2267LQmd4HQyfvx4zzVVVVVx7Wvx4sWea2688UbPNTt27PBcMxSEw+ET3tc3fwoOAHB6IoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCY8PxxDBg8P/jBDzzXDObk5o2NjYO2L+Ab8cz4Hu8s8fH8G/zrX//quWYwZ7FPJVwBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMOFzgzl75fcQiUQUCASs20gJ8fzV9PX1ea5pamryXCNJU6dOjasOGGxz586Nq27jxo2ea+L5+XX77bd7rvnTn/7kuWawhcNhZWRkDLieKyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmRlo3gIHFM7HoYE1gCgwldXV1cdV9+eWXnmtONPnmQE7XiX25AgIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCyUihv//979YtAEm1cOHCuOry8vIS3Am+jSsgAIAJAggAYMJzANXX1+vKK69UKBSSz+fTpk2bYtZff/318vl8MaO8vDxR/QIAhgnPAdTd3a3CwkKtWbNmwG3Ky8vV3t4eHa+88sopNQkAGH48P4RQUVGhioqKE27j9/sVDAbjbgoAMPwl5R5QbW2tcnJyNHXqVN16663av3//gNv29PQoEonEDADA8JfwACovL9eLL76ompoaPf7446qrq1NFRYWOHj3a7/bV1dUKBALRMXHixES3BABIQQn/PaBrrrkm+vVFF12kmTNnasqUKaqtrdX8+fOP237FihVavnx59HUkEiGEAOA0kPTHsCdPnqzs7Gw1NTX1u97v9ysjIyNmAACGv6QH0BdffKH9+/fzG8UAgBie34I7ePBgzNVMS0uLdu3apaysLGVlZemRRx7RkiVLFAwG1dzcrHvuuUfnnXeeysrKEto4AGBo8xxAO3bs0OWXXx59/c39m6VLl2rt2rXavXu3XnjhBXV1dSkUCmnBggX6/e9/L7/fn7iuAQBDns8556yb+LZIJKJAIGDdRkoY6MnBE4nnr3PPnj2eayRp+vTpcdUBg+29996Lq27OnDmea7788kvPNfG8Q7R7927PNYMtHA6f8L4+c8EBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwk/CO5kThpad7/f9DX1+e55uyzz/ZcI0mFhYWea/7973/HtS8MT5mZmZ5rNm7c6Llm3rx5nmuk+P49bdmyxXPNUJjZOhm4AgIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCyUhT2I033ui55o9//KPnmuzsbM81kjRnzhzPNUxGOnzNnTvXc826des810yaNMlzTTyTikrSs88+67nm3nvvjWtfpyOugAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjwOeecdRPfFolEFAgErNsYskpKSjzXPPHEE3Hta+zYsZ5rXnrpJc81q1ev9lzT29vruQb/k5mZ6bnm5Zdf9lxTVlbmuSYe4XA4rrof/ehHnmtaW1vj2tdwFA6HlZGRMeB6roAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYGGndABKrvr7ec81zzz0X177+/Oc/e6557LHH4tqXV48//vig7GcwjR8/3nPN/fffH9e+CgsLPdfMmTMnrn0NhsWLF8dVx8SiycUVEADABAEEADDhKYCqq6t1ySWXKD09XTk5OVq0aJEaGxtjtjl8+LAqKys1btw4nXXWWVqyZIk6OzsT2jQAYOjzFEB1dXWqrKzUtm3b9Pbbb6u3t1cLFixQd3d3dJs777xTW7Zs0euvv666ujrt3btXV111VcIbBwAMbZ4eQti6dWvM6/Xr1ysnJ0c7d+5USUmJwuGw/vKXv2jDhg366U9/Kklat26dpk+frm3btuknP/lJ4joHAAxpp3QP6JuPuc3KypIk7dy5U729vSotLY1uM23aNE2aNEkNDQ39fo+enh5FIpGYAQAY/uIOoL6+Pt1xxx269NJLNWPGDElSR0eHRo8efdznyefm5qqjo6Pf71NdXa1AIBAdEydOjLclAMAQEncAVVZW6uOPP9arr756Sg2sWLFC4XA4Otra2k7p+wEAhoa4fhG1qqpKb731lurr6zVhwoTo8mAwqCNHjqirqyvmKqizs1PBYLDf7+X3++X3++NpAwAwhHm6AnLOqaqqShs3btS7776rgoKCmPWzZs3SqFGjVFNTE13W2Nio1tZWFRcXJ6ZjAMCw4OkKqLKyUhs2bNDmzZuVnp4eva8TCAQ0ZswYBQIB3XTTTVq+fLmysrKUkZGh2267TcXFxTwBBwCI4SmA1q5dK0maN29ezPJ169bp+uuvlyQ9+eSTSktL05IlS9TT06OysjI9++yzCWkWADB8+JxzzrqJb4tEIgoEAtZt4Hv4xS9+4bnmtddeS0InifPGG294rnn//fc910ybNs1zza9//WvPNfFKS/P+fFJfX5/nmq6uLs818UwsGs8kvTh14XBYGRkZA65nLjgAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAlmw0bcfD6f55rJkyd7rnnggQc815SXl3uukaTx48d7ronnOAzWP7tPPvkkrrrPP//cc82jjz7quaa9vd1zTWtrq+ca2GA2bABASiKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCyUgxLF188cVx1Y0bN85zTUlJieea6dOne655/vnnPdd89tlnnmuk+CYjBb6LyUgBACmJAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACSYjBQAkBZORAgBSEgEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATHgKoOrqal1yySVKT09XTk6OFi1apMbGxpht5s2bJ5/PFzOWLVuW0KYBAEOfpwCqq6tTZWWltm3bprffflu9vb1asGCBuru7Y7a7+eab1d7eHh2rVq1KaNMAgKFvpJeNt27dGvN6/fr1ysnJ0c6dO1VSUhJdPnbsWAWDwcR0CAAYlk7pHlA4HJYkZWVlxSx/+eWXlZ2drRkzZmjFihU6dOjQgN+jp6dHkUgkZgAATgMuTkePHnVXXHGFu/TSS2OWP//8827r1q1u9+7d7qWXXnLnnHOOW7x48YDfZ+XKlU4Sg8FgMIbZCIfDJ8yRuANo2bJlLj8/37W1tZ1wu5qaGifJNTU19bv+8OHDLhwOR0dbW5v5QWMwGAzGqY+TBZCne0DfqKqq0ltvvaX6+npNmDDhhNsWFRVJkpqamjRlypTj1vv9fvn9/njaAAAMYZ4CyDmn2267TRs3blRtba0KCgpOWrNr1y5JUl5eXlwNAgCGJ08BVFlZqQ0bNmjz5s1KT09XR0eHJCkQCGjMmDFqbm7Whg0b9LOf/Uzjxo3T7t27deedd6qkpEQzZ85Myh8AADBEebnvowHe51u3bp1zzrnW1lZXUlLisrKynN/vd+edd567++67T/o+4LeFw2Hz9y0ZDAaDcerjZD/7ff8/WFJGJBJRIBCwbgMAcIrC4bAyMjIGXM9ccAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEykXQM456xYAAAlwsp/nKRdABw4csG4BAJAAJ/t57nMpdsnR19envXv3Kj09XT6fL2ZdJBLRxIkT1dbWpoyMDKMO7XEcjuE4HMNxOIbjcEwqHAfnnA4cOKBQKKS0tIGvc0YOYk/fS1pamiZMmHDCbTIyMk7rE+wbHIdjOA7HcByO4TgcY30cAoHASbdJubfgAACnBwIIAGBiSAWQ3+/XypUr5ff7rVsxxXE4huNwDMfhGI7DMUPpOKTcQwgAgNPDkLoCAgAMHwQQAMAEAQQAMEEAAQBMDJkAWrNmjc4991ydccYZKioq0gcffGDd0qB7+OGH5fP5Ysa0adOs20q6+vp6XXnllQqFQvL5fNq0aVPMeuecHnroIeXl5WnMmDEqLS3Vnj17bJpNopMdh+uvv/6486O8vNym2SSprq7WJZdcovT0dOXk5GjRokVqbGyM2ebw4cOqrKzUuHHjdNZZZ2nJkiXq7Ow06jg5vs9xmDdv3nHnw7Jly4w67t+QCKDXXntNy5cv18qVK/Xhhx+qsLBQZWVl2rdvn3Vrg+7CCy9Ue3t7dLz//vvWLSVdd3e3CgsLtWbNmn7Xr1q1Sk8//bSee+45bd++XWeeeabKysp0+PDhQe40uU52HCSpvLw85vx45ZVXBrHD5Kurq1NlZaW2bdumt99+W729vVqwYIG6u7uj29x5553asmWLXn/9ddXV1Wnv3r266qqrDLtOvO9zHCTp5ptvjjkfVq1aZdTxANwQMHv2bFdZWRl9ffToURcKhVx1dbVhV4Nv5cqVrrCw0LoNU5Lcxo0bo6/7+vpcMBh0TzzxRHRZV1eX8/v97pVXXjHocHB89zg459zSpUvdwoULTfqxsm/fPifJ1dXVOeeO/d2PGjXKvf7669FtPv30UyfJNTQ0WLWZdN89Ds45N3fuXHf77bfbNfU9pPwV0JEjR7Rz506VlpZGl6Wlpam0tFQNDQ2GndnYs2ePQqGQJk+erOuuu06tra3WLZlqaWlRR0dHzPkRCARUVFR0Wp4ftbW1ysnJ0dSpU3Xrrbdq//791i0lVTgcliRlZWVJknbu3Kne3t6Y82HatGmaNGnSsD4fvnscvvHyyy8rOztbM2bM0IoVK3To0CGL9gaUcpORftdXX32lo0ePKjc3N2Z5bm6uPvvsM6OubBQVFWn9+vWaOnWq2tvb9cgjj2jOnDn6+OOPlZ6ebt2eiY6ODknq9/z4Zt3pory8XFdddZUKCgrU3Nys++67TxUVFWpoaNCIESOs20u4vr4+3XHHHbr00ks1Y8YMScfOh9GjRyszMzNm2+F8PvR3HCTpl7/8pfLz8xUKhbR7927de++9amxs1JtvvmnYbayUDyD8T0VFRfTrmTNnqqioSPn5+frb3/6mm266ybAzpIJrrrkm+vVFF12kmTNnasqUKaqtrdX8+fMNO0uOyspKffzxx6fFfdATGeg43HLLLdGvL7roIuXl5Wn+/Plqbm7WlClTBrvNfqX8W3DZ2dkaMWLEcU+xdHZ2KhgMGnWVGjIzM3XBBReoqanJuhUz35wDnB/Hmzx5srKzs4fl+VFVVaW33npL7733XszHtwSDQR05ckRdXV0x2w/X82Gg49CfoqIiSUqp8yHlA2j06NGaNWuWampqosv6+vpUU1Oj4uJiw87sHTx4UM3NzcrLy7NuxUxBQYGCwWDM+RGJRLR9+/bT/vz44osvtH///mF1fjjnVFVVpY0bN+rdd99VQUFBzPpZs2Zp1KhRMedDY2OjWltbh9X5cLLj0J9du3ZJUmqdD9ZPQXwfr776qvP7/W79+vXuk08+cbfccovLzMx0HR0d1q0Nqt/+9reutrbWtbS0uH/+85+utLTUZWdnu3379lm3llQHDhxwH330kfvoo4+cJLd69Wr30Ucfuc8//9w559z//d//uczMTLd582a3e/dut3DhQldQUOC+/vpr484T60TH4cCBA+6uu+5yDQ0NrqWlxb3zzjvuxz/+sTv//PPd4cOHrVtPmFtvvdUFAgFXW1vr2tvbo+PQoUPRbZYtW+YmTZrk3n33Xbdjxw5XXFzsiouLDbtOvJMdh6amJve73/3O7dixw7W0tLjNmze7yZMnu5KSEuPOYw2JAHLOuWeeecZNmjTJjR492s2ePdtt27bNuqVBd/XVV7u8vDw3evRod84557irr77aNTU1WbeVdO+9956TdNxYunSpc+7Yo9gPPvigy83NdX6/382fP981NjbaNp0EJzoOhw4dcgsWLHDjx493o0aNcvn5+e7mm28edv9J6+/PL8mtW7cuus3XX3/tfvOb37izzz7bjR071i1evNi1t7fbNZ0EJzsOra2trqSkxGVlZTm/3+/OO+88d/fdd7twOGzb+HfwcQwAABMpfw8IADA8EUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMPH/ADGpF+IrwyGgAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 0\n", + "NN answer: 0\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "YgiVGr5_1D3u" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n", + "display.plot()\n", + "plt.show()" + ], + "metadata": { + "id": "7MqcG_wl1EHI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "outputId": "0510223e-d46f-4437-f188-2eb12b10ea26" + }, + "execution_count": 50, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n", + " precision recall f1-score support\n", + "\n", + " 0 0.99 0.99 0.99 994\n", + " 1 0.99 0.99 0.99 1194\n", + " 2 0.98 0.99 0.98 975\n", + " 3 0.99 0.99 0.99 1031\n", + " 4 0.98 0.99 0.99 967\n", + " 5 0.99 0.99 0.99 937\n", + " 6 0.99 0.99 0.99 964\n", + " 7 0.99 0.99 0.99 998\n", + " 8 0.98 0.98 0.98 965\n", + " 9 0.99 0.98 0.98 975\n", + "\n", + " accuracy 0.99 10000\n", + " macro avg 0.99 0.99 0.99 10000\n", + "weighted avg 0.99 0.99 0.99 10000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGwCAYAAAA0bWYRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfWhJREFUeJzt3Xd4FNX6wPHv7CbZkt5IgRASOkgTFAN2UUREsBdUEIQrBhVRRESlKPVaEAuIBdQfCNxrQ66iCAqoSAepoYQSAgmJKZue7O78/ogsrhBJ2Gxmk30/zzPPk52d8u7MZOadc86cUVRVVRFCCCGE19JpHYAQQgghtCXJgBBCCOHlJBkQQgghvJwkA0IIIYSXk2RACCGE8HKSDAghhBBeTpIBIYQQwsv5aB2AK+x2OydOnCAwMBBFUbQORwghRA2pqkpBQQGxsbHodO67Py0tLaW8vNzl5fj5+WE0GmshIs9Sr5OBEydOEBcXp3UYQgghXJSWlkaTJk3csuzS0lIS4gPIOGVzeVnR0dEcPny4wSUE9ToZCAwMBGDi6p4YAzznp6y4NETrEIQQol6wUsHPfOM4n7tDeXk5GadsHN3SjKDACy99sBTYie96hPLyckkGPMnpqgFjgI9HJQM+iq/WIQghRP3wZ4f4dVHVGxCoEBB44eux03Croz3nCiqEEEK4kU21Y3PhbTw21V57wXgYSQaEEEJ4BTsqdi48G3BlXk8njxYKIYQQXk5KBoQQQngFO3ZcKeh3bW7PJsmAEEIIr2BTVWzqhRf1uzKvp5NqAiGEEMLLScmAEEIIryANCKsmyYAQQgivYEfFJsnAOUk1gRBCCOHlpGRACCGEV5Bqgqo16GTAWgQps01krPKlLEdHcFsb7Z8tJqSDzfH93tdNZK72ozxPwdzYTsL9pcTffebNVkXHdOx5xUTuVh/s5QqRl1dw0XPFGCLce1D0G5zNHSNOERZpJXWPiXeeb0zKdrNb11mVmx/Mpu+DfxAVV7ldjqYYWfh6FJt/DNIkntMu6l7InY9m0bJDMeHRViYOacb6FcGaxgSete8kpvobk6ce3+BZ26km5GmCqjXoaoIdL/qTtd6XztOLueoLCxE9Kvjt4UBKMiv7l94z00zWz750nl7E1V9bSHiglF1TzGSsrny3gLUYNgwPQFHgsg8L6PF/FuwVsDE5AHf2SnnVLbkMn3CCha9Fk9y7Fal7jExZlEpweIX7VvoPsk768uHUGEbe2IrH+rRixy8BTJx/hPhWpZrEc5rRbCd1t5G3nnPPm84uhKftO4mp/sbkicc3eN52ErXDI5KBt99+m2bNmmE0GunevTsbN250eZm2UshY6Uvbp4oJ72bFP95O6+RS/JvaOLrYAEDudh+a9C8n4lIr5sZ24u8qJ6i1jbyd+srvt/lQnK6j05QiglrZCWplp/PUIvJ368ne4L5ClduGZ7NiURjfLwnj2AEjs8c2oaxEofe9OW5b5z/ZsDKYTauDOHHYQHqqgQUzYigt0tGma5Em8Zy2+ccgPpoZw68ecrcEnrfvJKb6G5MnHt/gedupJuy1MDRUmicDS5YsYfTo0UyYMIGtW7fSqVMnevfuzalTp1xarmoD1aagNziP1xkgZ1vlhTy0s5XMH30pyVRQVcje4EPhET2RPa0A2MsVFAV0fs7zKzrI2eqeZMDH107LjsVsXXfmdZ6qqrBtXSDtuha7ZZ01odOpXNU/F4PZzt7N/lqH41E8cd9JTPU3Jk9U37eT7c+nCVwZGirNk4HXXnuNYcOG8dBDD9GuXTvmzp2L2Wzmww8/dGm5Pv6VF/v9c42UnlJQbXD8az9yd+gpy6r82e3HFxPY3Maqa0P4pnMIG/8VQIfnK0sSAEI6WdGbYN+rJmwlldUGe/9tQrUpjmXUtqAwG3ofyMtyTjZys30IjbS6ZZ3V0axNCV8e2MnyI7/z+PTjTB7ajGMHGtb7vF3liftOYqq/MXmi+r6dbKrrQ0OlaQPC8vJytmzZwrhx4xzjdDodvXr1Yv369WdNX1ZWRllZmeOzxWL5x+V3nlbEjhfM/HBNCIpeJaitjcY3lZO/p/JnH1loIPd3Hy55qxBTrJ0/Nvuw82UzhkZ2IpOsGMJUur5WyM6XzBxeaEDRQexN5QS3s6JonkbVreOHDDx6fSvMgTauuDmfp984xpjbWkhCIIQQDYCmyUB2djY2m42oqCin8VFRUezbt++s6adNm8akSZOqvXz/pnZ6fFSItRisRQrGSJUtT/ljbmLHVgr7ZpnoNruQqKsqM9qg1jYsKXpS5xuJTCoEILKnlWtXWCjPVVD04BuksvLKYMx9yv9p1RfMkqPHZoWQv2XZoRFWcrO0213WCh0njlTWuRzcaaZ152IGPJzF7LFxmsXkaTxx30lM9TcmT1Tft5Or9f7SZsBDjBs3jvz8fMeQlpZWrfl8zGCMVCnPV8j6xYeoa8qxW0G1Kmfd4Ss6ONfTI36hKr5BKtm/+VCWoxB1jXtazlordBz43UyXywvOxKSodL68kD1bPOfRHUUBX78GXGZ2ATxx30lM9TcmT1Tft5MdBZsLgx1F65/gNpqmchEREej1ejIzM53GZ2ZmEh0dfdb0BoMBg8Fw1viqnPrZB1QISLBTdEzH3ldMBCTYibu1HJ0vhF1Swd5XzOgMxZhj7fyxyYfjy/xo98yZhjBpX/gRkGjDL1Qld4cPu6eZSHywjIAE9+WIn8+L4OlZaezfYSZlm5lbh2VhNNv5fnGY29b5Tx4ad5JNqwPJSvfDFGDjmlvz6NijkPH3JWoSz2lGs43YhDMlNNFx5SS2L6EgT09Wut8/zOk+nrbvJKb6G5MnHt/gedtJ1A5NkwE/Pz+6du3KqlWrGDBgAAB2u51Vq1YxcuRIl5dvLVTYN8tEaYYO32CV6OvLafNECbrKbgS4+N9F7JtlYttYfyryFUyxdto8XuLU6VDhYT37XjdRnl/ZKVHL4aUkDCqrYo21Y82yUILDbTw4JoPQSCupu02MH5hAXravW9dblZAIK2NmHyOskZXiAj2H9xoZf18iW9cGnn9mN2rVqYR/f3bI8fmRSScA+H5JKK8+2VSTmDxt30lM9TcmTzy+wfO2U03Y1crBlfkbKkVVte1SacmSJQwaNIh3332XSy+9lFmzZrF06VL27dt3VluCv7NYLAQHBzN941UYAzynvmp5+1CtQxBCiHrBqlbwE1+Rn59PUJB7ejU9fa3YsDuagMALrx0vLLDTvX2GW2PViuZX0LvvvpusrCxefPFFMjIy6Ny5MytWrDhvIiCEEEKI2qF5MgAwcuTIWqkWEEIIIapyuiGgK/M3VB6RDAghhBDuZlcV7OqFX9BdmdfT1atHC4UQQghR+6RkQAghhFeQaoKqSTIghBDCK9jQYXOhQNxWi7F4GkkGhBBCeAXVxTYDqrQZEEIIIURDJSUDQgghvIK0GaiaJANCCCG8gk3VYVNdaDPQgLsjlmoCIYQQwstJyYAQQgivYEfB7sI9sJ2GWzQgyYAQQgivIG0GqtYgkoEVl4bgo3jO6zO/O7Fd6xDO0ju2s9YhCCGE8FANIhkQQgghzsf1BoRSTSCEEELUa5VtBlx4UVEDriaQpwmEEEIILyclA0IIIbyC3cV3E8jTBEIIIUQ9J20GqibJgBBCCK9gRyf9DFRB2gwIIYQQXk5KBoQQQngFm6pgc+E1xK7M6+kkGRBCCOEVbC42ILRJNYEQQgghGiopGRBCCOEV7KoOuwtPE9jlaQIhhBCifpNqgqpJMgD0G5zNHSNOERZpJXWPiXeeb0zKdrPLy935mz//eacRB3aaycn0ZcIHh+nRJ9/x/c/fBPO/j8M5sNNMQa4P73yfQvOLSpyWkXPKh/dfimXr2kCKC3XENS/jnicyuaLvmeUcP2TgvZdi2bPJH2uFQkLbEh58JoPOPQtd/g0Ad4/MpOdN+cS1KKO8VMeezWY+mBLD8UPGWlm+K9y17y7URd0LufPRLFp2KCY82srEIc1YvyJYs3hOk+1Uv+Lx1JhO87TjSbjO69sMXHVLLsMnnGDha9Ek925F6h4jUxalEhxe4fKyS4t1JLYvYeTU41V+3/7SIoY+d6LKZfz78aakHTIwccFh3l2dQs+b8pn6r2Yc3GlyTPPioATsNpjxn4O8tSKFxHYlvPhgAjmnaifX65hUxNcLIhh1c0vG3ZOI3kdl6qepGEy2Wln+hXLnvrtQRrOd1N1G3nquiWYx/J1sp/PztHjAM2MCzzyeqsvOmScKLmSwa/0D3EjTZGDt2rX069eP2NhYFEXhyy+/rPMYbhuezYpFYXy/JIxjB4zMHtuEshKF3vfmuLzsS64tYPDYDHr+pTTgr3rdkcv9ozPpcmXVd/B7NvvTf0g2bboUExNfzn2jMvEPtnHg98pkIP8PPempRu4aeYrEdqU0TixnyPiTlJXoObKvdu7cxw9MZOXSMI7uN5K6x8Sro5oS1aSClh1Lzj+zG7lz312ozT8G8dHMGH71kDs4kO1UHZ4WD3hmTOCZx1N1ne50yJWhodL0lxUVFdGpUyfefvttTdbv42unZcditq4LdIxTVYVt6wJp17VYk5j+rl23ItYsC8GSq8duh5++DKG8VKFjj8oEIijMRpPmpfzwnzBKi3XYrPC/T8IJiXDfxdo/qLJEoCBP75blV0d92HeeQLaTqE1yPDVcmrYZ6NOnD3369NFs/UFhNvQ+kJflvBlys32Ia1GmUVTOxr97lKmPxHNn+w7ofVQMJjsTPjhC44RyABQFpi85xKQhCQxo2QFFByERVqYsTCUwpPaL8RVF5ZFJ6ezaaOZoiun8M7hJfdh3nkC2k6hN9f14cv3dBFIy4BHKysqwWCxOQ0P30cxoCi16pi85yJvfpnD78FNMeaQZh/dWVgGoKrz1XBNCIqy8+sVBZv9vPz1uzGfC4AT+yKz9XG/k1HTi25QybUR8rS9bCCHcyY7i8lAT56sKV1WVF198kZiYGEwmE7169eLAgQNO0+Tk5DBw4ECCgoIICQlh6NChFBY6Vy3//vvvXHHFFRiNRuLi4pg5c2aNt029SgamTZtGcHCwY4iLi3NpeZYcPTYrhERancaHRljJzdL+QYsTR/xYNj+S0a+l0eWKQpq3L+X+pzJp2bGYZQsiANj+cwAbfwhi3JwjtL+0iJYdS3hs2nH8jCo/LA2r1XiSpxyn+/UWnrmjOdkn/Wp12TXl6fvOU8h2ErWpvh9Pp0sGXBlq4nxV4TNnzmT27NnMnTuXDRs24O/vT+/evSktLXVMM3DgQHbv3s3KlStZvnw5a9euZfjw4Y7vLRYLN9xwA/Hx8WzZsoV///vfTJw4kXnz5tUo1nqVDIwbN478/HzHkJaW5tLyrBU6DvxupsvlBY5xiqLS+fJC9mzR/jGZspLK3aPTOT/bqterqPa/T+M8r05RsdfaI7EqyVOO0+PGfJ65szmZaYbaWvAF8/R95ylkO4naJMdTzfTp04eXX36ZW2+99azvVFVl1qxZPP/88/Tv35+OHTvy8ccfc+LECUcJwt69e1mxYgXvv/8+3bt35/LLL+fNN99k8eLFnDhR+RTawoULKS8v58MPP6R9+/bcc889PP7447z22ms1irVeJQMGg4GgoCCnwVWfz4ugz3059Lozh7gWpTw2/ThGs53vF7t+V11SpOPQLhOHdlXWrWek+XFol4lTx30BsOTqObTLxLH9lRfXtEMGDu0yOR4JjGtRSmxCGW88E8e+bWZOHPHjv3Mj2bo2kB43Vj6h0LZrEQHBNv79RFMO7TZW9jkwOZaMND8uva52qlFGTk3n2ttymZ4cT0mhjtDICkIjK/AzavugjTv33YUymm0kti8hsX1l483ouHIS25cQ2bhcs5hkO9W/eDw1JvDM46m6Tnc65MoAnFVdXVZW8/YShw8fJiMjg169ejnGBQcH0717d9avXw/A+vXrCQkJoVu3bo5pevXqhU6nY8OGDY5prrzySvz8zpTW9u7dm5SUFHJzc6sdj+eX67jZmmWhBIfbeHBMBqGRVlJ3mxg/MIG8bF+Xl71/h5ln7mjh+PzuxMYAXH9XDk/POsZv3wfz6pNNHd9PG9EMgPtHZ/DA0xn4+MLLnxzig6mxTBiUQEmRjtiEcp5+4xiXXleZmQeH25iy6BALpscw9q4W2CoU4luXMnH+YZq3P1PU5Ip+g/8A4JXPDzmNf2VUHCtruSqiJty57y5Uq04l/PuzM9vpkUmV2fv3S0Kd9nVdku1U/+Lx1JjAM4+n6rKrCnYX3jx4et6/V1FPmDCBiRMn1mhZGRkZAERFRTmNj4qKcnyXkZFBo0aNnL738fEhLCzMaZqEhISzlnH6u9DQ0GrFo2kyUFhYyMGDBx2fDx8+zPbt2wkLC6Np07o72JfNj2DZ/IhaX26nHoV8d2J7ld/fcHcON9z9z8/mNk4s58X3j/zjNK06lTD109QLiLB6esd2ctuyXeWufXehfl8f4JHbS7bTP/O0eMAzYzrN046nupaWluZUMm0waF916ipNk4HNmzdzzTXXOD6PHj0agEGDBrFgwQKNohJCCNEQ2V18N8HpTodqo5o6OjoagMzMTGJiYhzjMzMz6dy5s2OaU6dOOc1ntVrJyclxzB8dHU1mZqbTNKc/n56mOjRtM3D11VejqupZgyQCQgghatvptxa6MtSWhIQEoqOjWbVqlWOcxWJhw4YNJCUlAZCUlEReXh5btmxxTLN69Wrsdjvdu3d3TLN27VoqKs50B71y5Upat25d7SoCqGcNCIUQQoj6orCwkO3bt7N9+3bgTFX4sWPHUBSFUaNG8fLLL7Ns2TJ27tzJgw8+SGxsLAMGDACgbdu23HjjjQwbNoyNGzfyyy+/MHLkSO655x5iY2MBuO+++/Dz82Po0KHs3r2bJUuW8MYbbzhK2qvL6xsQCiGE8A42FGw17Djo7/PXxPmqwp955hmKiooYPnw4eXl5XH755axYsQKj8cx7ZRYuXMjIkSO57rrr0Ol03H777cyePdvxfXBwMN9//z3Jycl07dqViIgIXnzxRae+CKpDUVW13r6g2WKxEBwczNX0x0fxnJas/9RoUCu9YztrHYIQQpzFqlbwE1+Rn59fK4+Ln8vpa8WkDb0wBlz4PXBpoZUJ3X9wa6xakWoCIYQQwstJNYEQQgivYKPmRf1/n7+hkmRACCGEV3D1iYDafJrA00gyIIQQwivIK4yr1nB/mRBCCCGqRUoGhBBCeAUVBbsLbQZUF+b1dJIMCCGE8ApSTVC1hvvLhBBCCFEtUjLgBp7Ywc8Vv9fO64xr07qOxvNPJIQQtaS2XmHcEEkyIIQQwivYXHxroSvzerqG+8uEEEIIUS1SMiCEEMIrSDVB1SQZEEII4RXs6LC7UCDuyryeruH+MiGEEEJUi5QMCCGE8Ao2VcHmQlG/K/N6OkkGhBBCeAVpM1A1SQaEEEJ4BdXFtxaq0gOhEEIIIRoqKRkQQgjhFWwo2Fx42ZAr83o6SQaEEEJ4BbvqWr2/Xa3FYDyMVBMIIYQQXs7rSwYu6l7InY9m0bJDMeHRViYOacb6FcFeFZO1CI6+5cMfq/VU5IB/G5XmYysIvOhMGlycqnD4dR/yt+hQrWBurtL2tXKMMVCRD0ff8SHvVx1lGQq+oRB+rY34ZCs+ge6J+eYHs+n74B9ExZUDcDTFyMLXo9j8Y5B7VlgNd4/MpOdN+cS1KKO8VMeezWY+mBLD8UPav5Cp3+Bs7hhxirBIK6l7TLzzfGNStpslpircNTKToc9l8MV7Ecyd0FiTGOR4qn12FxsQujKvp2u4v6yajGY7qbuNvPVcE61DcajrmA5M9CXvNx2tp5Rz8WflhCbZ2Tncj7LMyu9L0hR2DPLDnKDS8YPKaZoOt6Lzq/y+/JRC+SmFhKesXPx5Oa1eqiD3Fx37J/i6Leask758ODWGkTe24rE+rdjxSwAT5x8hvpV2b2fsmFTE1wsiGHVzS8bdk4jeR2Xqp6kYTDbNYgK46pZchk84wcLXoknu3YrUPUamLEolOLxCYjqHVp2K6Xt/Dqm7tb3oyvFU++woLg8NlabJwLRp07jkkksIDAykUaNGDBgwgJSUlDqNYfOPQXw0M4ZfNS4N+Ku6jMlWCtk/6Eh40kpwNxVTU5X4R62Y4lROLq0sODrypg9hV9hJGG0loK2KKU4l/Bo7fuGVy/BvqdLu9QrCr7ZjilMJ6W4n/jErOWsqSxHcYcPKYDatDuLEYQPpqQYWzIihtEhHm65F7llhNYwfmMjKpWEc3W8kdY+JV0c1JapJBS07lmgWE8Btw7NZsSiM75eEceyAkdljm1BWotD73hyJ6W+MZhtj3zrKrDFNKMjXaxqLHE+iLmmaDKxZs4bk5GR+++03Vq5cSUVFBTfccANFRdqd0L2NagNsCoqf83idESzbdKh2yF2rwxRvZ+cjvvx2lYHt9/mRvfqfDx1bgYI+AJQ6qIjS6VSu6p+LwWxn72Z/96+wmvyDKu/gCvK0u6j4+Npp2bGYrevO1NeoqsK2dYG061osMf3NyKnpbFwVxLZ1bqrfcoEcT6473QOhK0NDpWmbgRUrVjh9XrBgAY0aNWLLli1ceeWVGkXlXXz8IbCTnbR5PpgTy/ELh6xvdVh2KJjiVCpywFaskPaBD80es5IwykruLzr2PulLhw/KCel2dvPailw4Ns+HmNvdW5zZrE0Js74+iJ/BTkmRjslDm3HsgPb1qQCKovLIpHR2bTRzNMWkWRxBYTb0PpCX5fyvnpvtQ1yLMonpL67qn0uLDiU8dlNLzWKoihxPtUPaDFTNoxoQ5ufnAxAWFnbO78vKyigrO3PAWSyWOomroWs9tYL9L/qysZcR9CoBbVUi+9gp3KOg2iunCb/GTuMHKi/uAW1sWLbryFjqQ0g353pCayHsTvbDnGin6Qg31RH86fghA49e3wpzoI0rbs7n6TeOMea2Fh6REIycmk58m1KeGtBC61BENUTGljNi8gnG3ZNIRZnnnfDleBLu5jHJgN1uZ9SoUfTs2ZOLLrronNNMmzaNSZMm1XFkDZ8pTqXT/HJsxWArAr9I2DvGF2MTFd9QUHxUzM3tTvOYE1Us25xPmtYi2DXCD72/SrtZFejc136wcn0VOk4cMQBwcKeZ1p2LGfBwFrPHxrl3xeeRPOU43a+38NStzck+6Xf+GdzIkqPHZoWQSOfELDTCSm6WNv/+nhhTi44lhEZaefu7/Y5xeh/ocFkRtzyUzc3NOmK3a1NELMdT7bHj4rsJpAGh+yUnJ7Nr1y4WL15c5TTjxo0jPz/fMaSlpdVhhA2f3lyZCFRYIPdXHeHX2NH5QkB7lZIjzodKyVEFQ8yZKgJrIez6lx86X2g3uwKdoa6jB0UBXz8tewVRSZ5ynB435vPMnc3JTNNgI/yNtULHgd/NdLm8wDFOUVQ6X17Ini3aPArmiTFtXxfA8GtaMeL6M0PKdhOrPw9lxPWtNEoE5HiqbaqLTxKoDTgZ8IhUbuTIkSxfvpy1a9fSpEnVj9MZDAYMhtr9hzCabcQmlDs+R8eVk9i+hII8PVnp2mThdR1T7i86VBXMzVRK0hQOv+aDuZlKVP/KaoEmg63sG+NL0MV6Qi61k/uLjj/W6Oj4QWWMpxMBWym0nlaBraiyhAGoLFlwQ3unh8adZNPqQLLS/TAF2Ljm1jw69ihk/H2Jtb+yaho5NZ1rbs1l4kMJlBTqCI2srEIpKtBTXqpd3v35vAienpXG/h1mUraZuXVYFkazne8Xn7s6zhtjKinSn1UXX1qsoyD37PF1RY6n2idvLayapsmAqqo89thjfPHFF/z0008kJCTUeQytOpXw788OOT4/MukEAN8vCeXVJ5vWeTxaxGQthCNv+FCWqeATDBG9bDR7zOoo5o+4zk6LF6ykfaAndYYPpmYq7V6rIPjiyrvwwr06CnZWnpw293VO1i75tgxj49q/Ww+JsDJm9jHCGlkpLtBzeK+R8fclsnWtdq3A+w3+A4BXPj/kNP6VUXGsXKrdiXLNslCCw208OCaD0EgrqbtNjB+YQF62m+tx6llMnkaOJ1GXFFVVNStXffTRR1m0aBFfffUVrVu3dowPDg7GZDp/Nm6xWAgODuZq+uOjyIH4T674XbvOeKqyrqP2Df2EENqyqhX8xFfk5+cTFOSeHkRPXytuXfkQvv4XXrpaUVTOF9fPd2usWtG0ZGDOnDkAXH311U7j58+fz+DBg+s+ICGEEA2WVBNUTfNqAiGEEEJoyyMaEAohhBDu5ur7BRryo4WSDAghhPAKUk1QNY/pZ0AIIYQQ2pCSASGEEF5BSgaqJsmAEEIIryDJQNWkmkAIIYTwclIyIIQQwitIyUDVJBkQQgjhFVRcezywIfeMI8mAEEIIryAlA1WTNgNCCCGEl5OSASGEEF5BSgaqJsmAl1jXSZt3sv+Te/elax3CWT5tE6t1CGdTPPAEJO8VEfWQJANVk2oCIYQQwstJyYAQQgivICUDVZNkQAghhFdQVQXVhQu6K/N6OqkmEEIIIbyclAwIIYTwCnYUlzodcmVeTyclA0IIIbzC6TYDrgw1YbPZeOGFF0hISMBkMtG8eXNeeukl1L88jaOqKi+++CIxMTGYTCZ69erFgQMHnJaTk5PDwIEDCQoKIiQkhKFDh1JYWFgr2+Q0SQaEEEIIN5gxYwZz5szhrbfeYu/evcyYMYOZM2fy5ptvOqaZOXMms2fPZu7cuWzYsAF/f3969+5NaWmpY5qBAweye/duVq5cyfLly1m7di3Dhw+v1VilmkAIIYRXqOsGhL/++iv9+/enb9++ADRr1oxPP/2UjRs3/rk8lVmzZvH888/Tv39/AD7++GOioqL48ssvueeee9i7dy8rVqxg06ZNdOvWDYA333yTm266iVdeeYXY2NrpG0VKBoQQQniF2qomsFgsTkNZWdk519ejRw9WrVrF/v37AdixYwc///wzffr0AeDw4cNkZGTQq1cvxzzBwcF0796d9evXA7B+/XpCQkIciQBAr1690Ol0bNiwoda2jZQMCCGE8Aq1VTIQFxfnNH7ChAlMnDjxrOmfffZZLBYLbdq0Qa/XY7PZmDJlCgMHDgQgIyMDgKioKKf5oqKiHN9lZGTQqFEjp+99fHwICwtzTFMbJBkQQgghaiAtLY2goCDHZ4PBcM7pli5dysKFC1m0aBHt27dn+/btjBo1itjYWAYNGlRX4VaLJANCCCG8gupiD4SnSwaCgoKckoGqjBkzhmeffZZ77rkHgA4dOnD06FGmTZvGoEGDiI6OBiAzM5OYmBjHfJmZmXTu3BmA6OhoTp065bRcq9VKTk6OY/7aIMkA0G9wNneMOEVYpJXUPSbeeb4xKdvNEtOf7h99kgeeynQal3bQwMNXta2V5Z/a5MfeDwLI3e1LSZaeK97KoUmvMy1pVRV2vhnIof+YqbDoiLi4nEsm5BHYzOaYZvfcAE78ZCR3nw86X7hj07mLz1I/N7FvQQAFR3zwDbDT9MZSur2YXyu/4zRv2neu8KTtdPOD2fR98A+i4soBOJpiZOHrUWz+8fwnfHe5e2QmPW/KJ65FGeWlOvZsNvPBlBiOHzJqFtNpnrTvakLFtXds1XTW4uJidDrnpnl6vR673Q5AQkIC0dHRrFq1ynHxt1gsbNiwgREjRgCQlJREXl4eW7ZsoWvXrgCsXr0au91O9+7dL/zH/I3XJwNX3ZLL8AknePPZJuzbaubWYVlMWZTK0Ctak/+Hr8T0pyP7jDx7T3PHZ5u19jrfsJYohLapIPH2Yn5+LOys7/e+H8D+T/y5bHoe/k2s7HwjkB8fDqfv/06h/7N0zl6uEHdjCeGd9aR+du6T0r75/uybH0DnMRbCO5VjLVEoStfX2u8A79t3F8rTtlPWSV8+nBpD+mEDigLX35nDxPlHSL6hFUf3a3Px7ZhUxNcLIti/3YzeR2XwsyeZ+mkqw65qTVlJ7R63NeFp+86T9evXjylTptC0aVPat2/Ptm3beO211xgyZAgAiqIwatQoXn75ZVq2bElCQgIvvPACsbGxDBgwAIC2bdty4403MmzYMObOnUtFRQUjR47knnvuqbUnCUDjpwnmzJlDx44dHUUuSUlJfPvtt3Uaw23Ds1mxKIzvl4Rx7ICR2WObUFai0PvenDqNw9NjstkgN8vXMVhyay+PjL2yjI6jCoi7vvSs71QVUj72p/0jBTS5rpTQ1lYum5FHySk9x384c5Lu8HgBbQYXEdKq4pzrKM9X+P2NQC6bkUuzfiUENrUR2tpKk2vP3Qr4QnnbvrtQnradNqwMZtPqIE4cNpCeamDBjBhKi3S06VqkSTwA4wcmsnJpGEf3G0ndY+LVUU2JalJBy44lmsUEnrfvauJ0D4SuDDXx5ptvcscdd/Doo4/Stm1bnn76af71r3/x0ksvOaZ55plneOyxxxg+fDiXXHIJhYWFrFixAqPxzPlt4cKFtGnThuuuu46bbrqJyy+/nHnz5tXadgGNSwaaNGnC9OnTadmyJaqq8tFHH9G/f3+2bdtG+/bt3b5+H187LTsWs/itMy01VVVh27pA2nUtdvv660tMAI0Tylm0ZRflZTr2bvHnw2kxZJ3wc/t6i47rKc3SE93jzEXbL1AlvGM52dv9iO97dgJxLhm/GlDtCiWZev53UyQVRToiupTTZWw+/jH2WolV9l31eOp2Ok2nU7miXx4Gs529m/21DsfBP6iyWqwgT7tSAU/fd+dT1/0MBAYGMmvWLGbNmlXlNIqiMHnyZCZPnlzlNGFhYSxatKhG664pTZOBfv36OX2eMmUKc+bM4bfffjtnMlBWVub0PKfFYnFp/UFhNvQ+kJflvBlys32Ia1G7d4z1OaZ92/x55UkTxw8ZCGtUwf2jM3j1iwP869o2lBS598RUklVZeGUMd75gGyPslGZXf92FaT6gwu53A+j6nAXfQDu/vxHEj0PC6fNVFvpauDbKvqseT9xOAM3alDDr64P4GeyUFOmYPLQZxw5oXz8PoCgqj0xKZ9dGM0dTTJrF4an7TrjOYzodstlsLF68mKKiIpKSks45zbRp0wgODnYMf3/WU7jH5h+DWLc8hMN7TWxZE8TzDyQSEGTjyn55WodWbaod7BUKXcdbiLmijIjOFfR4NZfCoz6c2nDux4Iagoaw7+rK8UMGHr2+FY/3bcnyjyN4+o1jNG1ZvZIndxs5NZ34NqVMGxGvdSj1Wl2/m6A+0TwZ2LlzJwEBARgMBh555BG++OIL2rVrd85px40bR35+vmNIS0tzad2WHD02K4REWp3Gh0ZYyc3SptDEE2P6uyKLD8dTDcQ2c/+dgCmyskSg9A/nQ7U0W4cxwnauWapYTuW0wS3OtCkwhtnxC7VTdLJ27pBl31WPp24na4WOE0cMHNxpZv60GA7vMTHg4SzN4jktecpxul9v4Zk7mpN9UrvqHfDcfVddqur60FBpngy0bt2a7du3Ox6lGDRoEHv27DnntAaDwdHYsLrPef4Ta4WOA7+b6XJ5gWOcoqh0vryQPVu0eUzGE2P6O6PZRmx8OTmn3N9y2L+JDWOkjYz1Z+7eKwoV/vjdj4jO5dVeTsTFldNaDp85YZXlKZTn6vCPrX5S8U9k31VPfdhOAIoCvn5anv1Vkqccp8eN+TxzZ3My07Qvwaov+07UnOapnJ+fHy1atACga9eubNq0iTfeeIN33323Ttb/+bwInp6Vxv4dZlK2VT4mYzTb+X7x2Y+41RVPi2nYC+n8tjKYU8d9CY+28sBTJ7HZ4acvQ2tl+RVFCoXHztydFx7Xk7vXB79gFf9YG60fLGL33EACm1kJaGzj99mBmBrZnPoiKDqhpzxfofikHtUGuXsrD+2ApjZ8/VWCEmw0vq6ErVODuWRSHr4BKjteCyIw0UpU99q7S/a2fXehPG07PTTuJJtWB5KV7ocpwMY1t+bRsUch4+9L1CQeqKwauObWXCY+lEBJoY7QyMpSraICPeWl2t3Hedq+q4m6bkBYn2ieDPyd3W6v8qUP7rBmWSjB4TYeHJNBaKSV1N0mxg9MIC9buzsnT4spIqaCcW8fITDURn6OD7s3+jOqXyvyc2rn8MnZ5cvqQRGOz9umBwOQMKCYy6bn0fbhQqwlCpteDKHcoiOyazlXv/eHo48BgJ2zAzn85Zk7kxW3VrZ2vvajbKK6V5YKJM3IY+u0INY8Eo6iQKNLy7j6vT/Q1eJm9bZ9d6E8bTuFRFgZM/sYYY2sFBfoObzXyPj7Etm6NlCTeAD6Df4DgFc+P+Q0/pVRcaxcqt2F19P2XU1IMlA1RVW1qwUZN24cffr0oWnTphQUFLBo0SJmzJjBd999x/XXX3/e+S0WC8HBwVxNf3wUzz8QNaV43kF87950rUM4y6dtaq8Tj1rjgfuuQVeeijplVSv4ia/Iz893ueq3KqevFa0XPYvefOHVLbbiMlLum+7WWLWi6e3BqVOnePDBBzl58iTBwcF07Nix2omAEEIIIWqHpsnABx98oOXqhRBCeBFXnwhoyAViHtdmQAghhHCHymTAlTYDtRiMh9H80UIhhBBCaEtKBoQQQngFeZqgapIMCCGE8Arqn4Mr8zdUUk0ghBBCeDkpGRBCCOEVpJqgapIMCCGE8A5ST1AlSQaEEEJ4BxdLBmjAJQPSZkAIIYTwclIyIIQQwitID4RVk2RACCGEV5AGhFWTZMBbeGBK64lvCOyxo1zrEM7yayc/rUMQQjRwkgwIIYTwDqriWiNAKRkQQggh6jdpM1A1eZpACCGE8HJSMiCEEMI7SKdDVZJkQAghhFeQpwmqVq1kYNmyZdVe4C233HLBwQghhBCi7lUrGRgwYEC1FqYoCjabzZV4hBBCCPdpwEX9rqhWMmC3290dhxBCCOFWUk1QNZeeJigtLa2tOIQQQgj3UmthaKBqnAzYbDZeeuklGjduTEBAAKmpqQC88MILfPDBB7UeoBBCCCHcq8bJwJQpU1iwYAEzZ87Ez+9MN6kXXXQR77//fq0GJ4QQQtQepRaGhqnGycDHH3/MvHnzGDhwIHq93jG+U6dO7Nu3r1aDE0IIIWqNVBNUqcb9DKSnp9OiRYuzxtvtdioqKmolqLp0UfdC7nw0i5YdigmPtjJxSDPWrwiWmM6h3+Bs7hhxirBIK6l7TLzzfGNStpu9JiZbERx7W88fq3VYc8C/jUqzZ2wEXlR5hjjwgp6sZXqneUJ62Gk3x+r4XHIEjrzuQ8F2BbUCzC1VmibbCL7UvWcZT9p3d4/MpOdN+cS1KKO8VMeezWY+mBLD8UNGTeIBz/yf88SYbn4wm74P/kFUXOULvY6mGFn4ehSbfwzSNC7huhqXDLRr145169adNf6///0vXbp0qZWg6pLRbCd1t5G3nmuidSgOnhjTVbfkMnzCCRa+Fk1y71ak7jEyZVEqweHaJYB1HdPBiXry1iu0nGKl038rCE5S2fMvH8oyz0wT0tNOt1XljqHVDKvTMvY+5otqg/bvWen4aQX+rVX2PuZDebZbQgY8b991TCri6wURjLq5JePuSUTvozL101QMJu0eS/bE/zlPjCnrpC8fTo1h5I2teKxPK3b8EsDE+UeIb1VPGpNLyUCValwy8OKLLzJo0CDS09Ox2+18/vnnpKSk8PHHH7N8+fILDmT69OmMGzeOJ554glmzZl3wcmpq849BHpfVemJMtw3PZsWiML5fEgbA7LFNuPQ6C73vzWHpW1ENPiZbKfyxSkebWVaCu1aeEZqOsJG7RiHzP3qajqy8kOn8wC/i3MuoyIXSYwotJlnxb1W5jPgnbGQs0VN8UMEvwj1nGk/bd+MHJjp9fnVUU5bu2k3LjiXs2hBQ5/GAZ/7PeWJMG1Y6l0wsmBHDzQ/+QZuuRRzdr13JTrXJWwurVOOSgf79+/P111/zww8/4O/vz4svvsjevXv5+uuvuf766y8oiE2bNvHuu+/SsWPHC5pfuJePr52WHYvZui7QMU5VFbatC6Rd12LviMkG2BR0BufROgNYtp05QeRvVth4tS9bb/Hl0Mt6KvL+EnMImJqpnPpah60YVCtk/FeHb5hKQDv3JAKeuO/+zj+oMpEqyNOfZ0rhSXQ6lav652Iw29m72V/rcISLLujdBFdccQUrV66slQAKCwsZOHAg7733Hi+//PI/TltWVkZZWZnjs8ViqZUYxD8LCrOh94G8LOfDJTfbh7gWZVXM1bBi0vtDYCc7x+fpMSdY8Q2H7G91FPyuYIyrnCa0h0r4dVYMjaE0DY696cPeRxU6fGJF0YOiQLt5Fewb5cOGHr6gA98waPuOFR833QB64r77K0VReWRSOrs2mjmaYtI6HFENzdqUMOvrg/gZ7JQU6Zg8tBnHDtSDUgHkFcb/5II7Hdq8eTOffPIJn3zyCVu2bLngAJKTk+nbty+9evU677TTpk0jODjYMcTFxV3weoWoqZZTrKDC5uv9WH+JLycX6Yi40Y7y539RRB87YVer+LdUCb9Wpe2bFRTu1pG/ubLkQFUhdaoPvmFw0XwrHRdaCbvGzr7HfSjP0vCHaWjk1HTi25QybUS81qGIajp+yMCj17fi8b4tWf5xBE+/cYymLaXNQH1X45KB48ePc++99/LLL78QEhICQF5eHj169GDx4sU0aVL9xi6LFy9m69atbNq0qVrTjxs3jtGjRzs+WywWSQjqgCVHj80KIZHOjeFCI6zkZmnz4kstYjLGwUUfWrEVVz5Z4BcJKWP0GJqc+wxhbAI+oSqlxxTorpK/USF3rcKl6yrw+bNqPGC8ja2/6Ti1TEeTobXf7bcn7rvTkqccp/v1Fp66tTnZJ/3OP4PwCNYKHSeOVNaXHdxppnXnYgY8nMXssXIurs9qXDLw8MMPU1FRwd69e8nJySEnJ4e9e/dit9t5+OGHq72ctLQ0nnjiCRYuXIjRWL0iJoPBQFBQkNMg3M9aoePA72a6XF7gGKcoKp0vL2TPFm0eT9MyJr25MhGwWiBvvY6wq899ES/LBGse+EVWJgv2kj/j/Pt/nYLb7jg8cd+BSvKU4/S4MZ9n7mxOZprh/LMIj6Uo4OtXT26ZTzcgdGVooGp8a7BmzRp+/fVXWrdu7RjXunVr3nzzTa644opqL2fLli2cOnWKiy++2DHOZrOxdu1a3nrrLcrKypw6NXIXo9lGbEK543N0XDmJ7UsoyNOTla7N3YonxvT5vAienpXG/h1mUraZuXVYFkazne8Xh2kSjxYx5f5SeSIwxauUpikceV2PqZlKo/52bMWQNldPeC87vuEqpccVjr6uxxgHIT0qT5SBnVR8guDA8z7E/cuGzqCS+bmesnQIvcJ9J1NP23cjp6Zzza25THwogZJCHaGRlY84FhXoKS916XUpF8wT/+c8MaaHxp1k0+pAstL9MAXYuObWPDr2KGT8fYnnn9kDKGrl4Mr8DVWNk4G4uLhzdi5ks9mIjY2t9nKuu+46du7c6TTuoYceok2bNowdO7ZOEgGAVp1K+PdnhxyfH5l0AoDvl4Ty6pNN6ySG+hDTmmWhBIfbeHBMBqGRVlJ3mxg/MIG8bF9N4tEiJluhwtHZesozwScYwq+z0/QxGzpfsNmgeL/CqWU+2ArArxGEJNmJS7ai+/O87RsK7d6xcuxNPbuH+aBawdRcpc0bVvxbu+8s42n7rt/gPwB45fNDTuNfGRXHyqXaJCie+D/niTGFRFgZM/sYYY2sFBfoObzXyPj7Etm6NvD8M3sCV+v9G3AyoKhqzdpHfvXVV0ydOpW3336bbt26AZWNCR977DHGjh3LgAEDLjiYq6++ms6dO1e7nwGLxUJwcDBX0x8fRbuLkmg4euwoP/9EdezXTlKfLhouq1rBT3xFfn6+26p+T18r4mZNRme68Ccf7CWlpI160a2xaqVaJQOhoaEoypm6kqKiIrp3746PT+XsVqsVHx8fhgwZ4lIyIIQQQriNdDpUpWolA3XVI+BPP/1UJ+sRQgjhhaSaoErVSgYGDRrk7jiEEEIIoRGXHjQuLS2lvNy5jrWh1aMIIYRoIKRkoEo1fo6nqKiIkSNH0qhRI/z9/QkNDXUahBBCCI8kPRBWqcbJwDPPPMPq1auZM2cOBoOB999/n0mTJhEbG8vHH3/sjhiFEEII4UY1rib4+uuv+fjjj7n66qt56KGHuOKKK2jRogXx8fEsXLiQgQMHuiNOIYQQwjXyNEGValwykJOTQ2JiZW9TQUFB5OTkAHD55Zezdu3a2o1OCCGEqCWneyB0Zaip9PR07r//fsLDwzGZTHTo0IHNmzc7vldVlRdffJGYmBhMJhO9evXiwIEDTsvIyclh4MCBBAUFERISwtChQyksLHR1czipcTKQmJjI4cOHAWjTpg1Lly4FKksMTr+4SAghhPB2ubm59OzZE19fX7799lv27NnDq6++6tS+bubMmcyePZu5c+eyYcMG/P396d27N6WlZ94EOXDgQHbv3s3KlStZvnw5a9euZfjw4bUaa42rCR566CF27NjBVVddxbPPPku/fv146623qKio4LXXXqvV4IQQQohaU8dPE8yYMYO4uDjmz5/vGJeQkHBmcarKrFmzeP755+nfvz8AH3/8MVFRUXz55Zfcc8897N27lxUrVrBp0yZHr79vvvkmN910E6+88kqNXgPwT2pcMvDkk0/y+OOPA9CrVy/27dvHokWL2LZtG0888UStBCWEEEJ4KovF4jSUlZWdc7ply5bRrVs37rzzTho1akSXLl147733HN8fPnyYjIwMevXq5RgXHBxM9+7dWb9+PQDr168nJCTEkQhA5bVXp9OxYcOGWvtNLr8iLD4+nttuu42OHTvWRjxCCCGEWyi42Gbgz+XExcURHBzsGKZNm3bO9aWmpjJnzhxatmzJd999x4gRI3j88cf56KOPAMjIyAAgKirKab6oqCjHdxkZGTRq1Mjpex8fH8LCwhzT1IZqVRPMnj272gs8XWoghBBCNERpaWlOHewZDIZzTme32+nWrRtTp04FoEuXLuzatYu5c+d6XM++1UoGXn/99WotTFEUSQZEveaJbwhsu8WljkLdYm9Xq9YhCFFztfRoYVBQULV6242JiaFdu3ZO49q2bctnn30GQHR0NACZmZnExMQ4psnMzKRz586OaU6dOuW0DKvVSk5OjmP+2lCts8zppweEEEKIequOGxD27NmTlJQUp3H79+8nPj4eqGxMGB0dzapVqxwXf4vFwoYNGxgxYgQASUlJ5OXlsWXLFrp27QrA6tWrsdvtdO/e3YUf48zzbjmEEEKIBuDJJ5+kR48eTJ06lbvuuouNGzcyb9485s2bB1SWpo8aNYqXX36Zli1bkpCQwAsvvEBsbCwDBgwAKksSbrzxRoYNG8bcuXOpqKhg5MiR3HPPPbX2JAFIMiCEEMJb1HHJwCWXXMIXX3zBuHHjmDx5MgkJCcyaNcupp95nnnmGoqIihg8fTl5eHpdffjkrVqzAaDQ6plm4cCEjR47kuuuuQ6fTcfvtt9eoLV91KKqq1ttXL1gsFoKDg7ma/vgovlqHI4RbSJsB0ZBZ1Qp+4ivy8/Pd9tbb09eKZlOmoPvLRbam7KWlHBk/3q2xasXlRwuFEEIIUb953i2HEEII4Q51XE1Qn1xQycC6deu4//77SUpKIj09HYBPPvmEn3/+uVaDE0IIIWqNWgtDA1XjZOCzzz6jd+/emEwmtm3b5uiGMT8/39GxghBCCCHqjxonAy+//DJz587lvffew9f3TKO9nj17snXr1loNTgghhKgtWrzCuL6ocZuBlJQUrrzyyrPGBwcHk5eXVxsxCSGEELWvlnogbIhqXDIQHR3NwYMHzxr/888/k5iYWCtBCSGEELVO2gxUqcbJwLBhw3jiiSfYsGEDiqJw4sQJFi5cyNNPP+3oPlEIIYQQ9UeNqwmeffZZ7HY71113HcXFxVx55ZUYDAaefvppHnvsMXfE6FYXdS/kzkezaNmhmPBoKxOHNGP9imCtw6Lf4GzuGHGKsEgrqXtMvPN8Y1K2myWmP938YDZ9H/yDqLhyAI6mGFn4ehSbf9S+I5C63E62IpWsOXYKflSx5YKxNUQ9rcfUXkGtqPyu8GeV8nTQB4B/d4XIx3T4RlYWdxZttnPsX/ZzLrvZx5XLqW13j8yk5035xLUoo7xUx57NZj6YEsPxQxfeGUxtkWP8n3nq+bK6XK33b8htBmpcMqAoCuPHjycnJ4ddu3bx22+/kZWVxUsvveSO+NzOaLaTutvIW8810ToUh6tuyWX4hBMsfC2a5N6tSN1jZMqiVILDKySmP2Wd9OXDqTGMvLEVj/VpxY5fApg4/wjxrUo1iee0ut5OJ1+yU7RBpfFLehKX6PG/TOHYCBsVp1TspVC6DyIe1pGwUE+TV/SUHVE5/qTNMb+5k0LL7/ROQ8gABd/GYGz3Dyt2QcekIr5eEMGom1sy7p5E9D4qUz9NxWCynX9mN5Jj/Pw88XxZI1JNUKUL7oHQz8+Pdu3acemllxIQEHBBy5g4cSKKojgNbdq0udCQLsjmH4P4aGYMv3pQdnvb8GxWLArj+yVhHDtgZPbYJpSVKPS+N0di+tOGlcFsWh3EicMG0lMNLJgRQ2mRjjZdizSJ57S63E72UpWC1SqNHtdhvljBL04h8l96/OIg97929IEKTd/RE3SDDkMzBVMHheixekr3QsXJyrOa4qvgE3Fm0AdDwRqV4H46FMU9jaXGD0xk5dIwju43krrHxKujmhLVpIKWHUvcsr7qkmP8/DzxfClqR42rCa655pp/PEmsXr26Rstr3749P/zww5mAfLy7U0QfXzstOxaz+K1GjnGqqrBtXSDtuhZLTOeg06lc0S8Pg9nO3s3+msVR19tJtQE20BmcxysGKNl+7lsYe6EKCugCz73MgrUqtnwIuaXuWk37B1WWCBTk6etsnX8nx7iXcPXxwAZcMlDjK+/pdy6fVlFRwfbt29m1axeDBg2qeQA+PkRHR1dr2rKyMkcnR1D58omGJijMht4H8rKcd01utg9xLcqqmMv7YgJo1qaEWV8fxM9gp6RIx+ShzTh2QLt657reTnp/BVNHyH7fjl+Cgk8YWL5TKdkJfnFnT28vUzk1205QbwV9wLkv9nlfqfgnKfhG1U0yoCgqj0xKZ9dGM0dTTHWyznORY9xLSHfEVapxMvD666+fc/zEiRMpLCyscQAHDhwgNjYWo9FIUlIS06ZNo2nTpuecdtq0aUyaNKnG6xAN0/FDBh69vhXmQBtX3JzP028cY8xtLbzqZBk7Wc/JyTYO3mgDPRjbQFBvhdK9zmcttUIl/Vk7qgrR485dO1iRqVK0XqXx9Lp7f9nIqenEtynlqQEt6myd9Ykc46Ku1Np//f3338+HH35Yo3m6d+/OggULWLFiBXPmzOHw4cNcccUVFBQUnHP6cePGkZ+f7xjS0tJqI3SPYsnRY7NCSKTzK2JDI6zkZmlTheKJMQFYK3ScOGLg4E4z86fFcHiPiQEPZ2kWjxbbyS9OIf49H1r/rKfF//QkfOyDagXfxmfu7NUKlePP2qk4qdL0HX3VpQLLVPTBEHhl3ZQKJE85TvfrLTxzR3OyT/rVyTqrIse4l5AGhFWqtWRg/fr1GGv4nug+ffpw55130rFjR3r37s0333xDXl4eS5cuPef0BoOBoKAgp6GhsVboOPC7mS6Xn0mIFEWl8+WF7NmizSNOnhjTuSgK+Ppp99+q5XbSmRR8IxVslsq7+8CrKy/ojkQgTaXpHD0+Iee+0KuqSv7XdoL7Kii+7k4GVJKnHKfHjfk8c2dzMtMM55/FzeQY9w7SHXHVapzy3nbbbU6fVVXl5MmTbN68mRdeeMGlYEJCQmjVqtU5ezh0F6PZRmxCueNzdFw5ie1LKMjTk5Wuzd3K5/MieHpWGvt3mEnZZubWYVkYzXa+XxymSTyeGNND406yaXUgWel+mAJsXHNrHh17FDL+Pm17wazr7VT4a2UfAX7xCuVpKqfesOPXDEL6VfYzcHysndJ9KnGz9GADa3bl2UwfjNNFv3iTSkU6hAxwfxXByKnpXHNrLhMfSqCkUEdoZOWje0UFespL666K4u/kGD8/TzxfitpR42QgONj5kRKdTkfr1q2ZPHkyN9xwg0vBFBYWcujQIR544AGXllMTrTqV8O/PDjk+PzLpBADfLwnl1SfP3XbB3dYsCyU43MaDYzIIjbSSutvE+IEJ5GX7nn9mL4kpJMLKmNnHCGtkpbhAz+G9Rsbfl8jWtVU0k68jdb2d7IVw6i071lOgC4Kg6xQiH9Wh+CqUn1ApXFN58T98r/Mz/E3f1eHf7UwykPeliqkTGBLcX0XQb/AfALzy+SGn8a+MimPlUu0SXjnGz88Tz5eidiiqqla74MNms/HLL7/QoUMHQkNDXV75008/Tb9+/YiPj+fEiRNMmDCB7du3s2fPHiIjI887v8ViITg4mKvpj4+i3YVSCHdqu8XzHrfd29V6/omEqAarWsFPfEV+fr7bqn5PXyuaj5uKvobV2X9lKy3l0LTn3BqrVmp0ltHr9dxwww3s3bu3VpKB48ePc++99/LHH38QGRnJ5Zdfzm+//VatREAIIYSoCemOuGo1vuW46KKLSE1NJSEhweWVL1682OVlCCGEEMI1NW6t8/LLL/P000+zfPlyTp48icVicRqEEEIIjyWPFZ5TtUsGJk+ezFNPPcVNN90EwC233OLULbGqqiiKgs2m7ctGhBBCiHOSHgirVO1kYNKkSTzyyCP8+OOP7oxHCCGEEHWs2snA6YcOrrrqKrcFI4QQQriLNCCsWo0aELrrlaZCCCGE20k1QZVqlAy0atXqvAlBTo427/4WQgghxIWpUTIwadKks3ogFEIIIeoDqSaoWo2SgXvuuYdGjRq5KxYhhBDCfaSaoErV7mdA2gsIIYQQDVONnyYQQggh6iUpGahStZMBu93uzjiEEEIIt5I2A1XzvNehCSGceOIbAi/Z7nk9jW7qrNc6hLN5YvWqN5fySslAlWr8bgIhhBBCNCxSMiCEEMI7SMlAlSQZEEII4RWkzUDVpJpACCGE8HJSMiCEEMI7SDVBlSQZEEII4RWkmqBqUk0ghBBCeDkpGRBCCOEdpJqgSpIMCCGE8A6SDFRJqgmEEEIILyclA0IIIbyC8ufgyvwNlSQDQgghvINUE1TJq5OBmx/Mpu+DfxAVVw7A0RQjC1+PYvOPQZrGdVH3Qu58NIuWHYoJj7YycUgz1q8IlpjqQUwA/QZnc8eIU4RFWkndY+Kd5xuTst2sSSxaHOO2Ikh/WyH3R4WKHDC3hqbP2Am4qPL71BcU/vjauYYyqIdK63fOvBnVmg9HpyvkrVVQFAjtpdL0GRW9mzejJ+27+0ef5IGnMp3GpR008PBVbTWJ5688aTvVhDxaWDWvbjOQddKXD6fGMPLGVjzWpxU7fglg4vwjxLcq1TQuo9lO6m4jbz3XRNM4/kpiqp6rbsll+IQTLHwtmuTerUjdY2TKolSCwys0iUeLY/zwJIX83xQSX7Zz0X/sBCep7H9ER/lfrmvBPVU6/2BzDM2nO78iPfU5HSWHFFrPtdPyTTsFWxSOTHZvIa2n7TuAI/uM3NO5vWMYPaClZrGc5onbSbhO82QgPT2d+++/n/DwcEwmEx06dGDz5s11su4NK4PZtDqIE4cNpKcaWDAjhtIiHW26FtXJ+quy+ccgPpoZw68ecJd7msRUPbcNz2bFojC+XxLGsQNGZo9tQlmJQu97czSJp66PcXsp5K5SiBtlJ7ArGJtC4xEqhjg49Z8zF3PFF3wjzgw+fymoKEmF/F8UEibYCegAgV0g/lk7Od8plJ9yS9iA5+07AJsNcrN8HYMlV/vCXE/cTtWm1sLQQGmaDOTm5tKzZ098fX359ttv2bNnD6+++iqhoaF1HotOp3JV/1wMZjt7N/vX+fpF/efja6dlx2K2rgt0jFNVhW3rAmnXtVjDyCrVxTGu2gCbgs7wt3UboHDbmWSgYDNsu0bHzv46jkxRsOadmbbwdwV9oIp/+zPjgroDOija5ZawPXbfNU4oZ9GWXSz4dQ9j3zxKZGy5ZrGA526nGpFE4Jw0TTNnzJhBXFwc8+fPd4xLSEiocvqysjLKysocny0Wi8sxNGtTwqyvD+JnsFNSpGPy0GYcO2B0ebnC+wSF2dD7QF6W879VbrYPcS3KqpjL/eryGNf7g39HlRPzdBgT7PiGwx8rFAp/B2Nc5TTBPSH0OjuGxlCWBsff0rE/WaHtx3YUPVRkg2+Y83IVn8rSg4psBXeclT1x3+3b5s8rT5o4fshAWKMK7h+dwatfHOBf17ahpEivSUyeuJ1E7dC0ZGDZsmV069aNO++8k0aNGtGlSxfee++9KqefNm0awcHBjiEuLs7lGI4fMvDo9a14vG9Lln8cwdNvHKNpS23bDAhRm+r6GE+cUln/v+MGPZsv1XFqkULYjarjbBN+o0ro1WBuCaHXQsvZdop2KxTUTe1gvbH5xyDWLQ/h8F4TW9YE8fwDiQQE2biyX57WodVbpxsQujI0VJomA6mpqcyZM4eWLVvy3XffMWLECB5//HE++uijc04/btw48vPzHUNaWprLMVgrdJw4YuDgTjPzp8VweI+JAQ9nubxc4X0sOXpsVgiJtDqND42wkpulXSFcXR/jxjho84Gdi9fb6LTCTruFdlQrGBpXMX0T8AlVKU2rrEbwjYCKv1U/q1awWsA3wj1nY0/dd39VZPHheKqB2Gba3YHXh+30j6TNQJU0TQbsdjsXX3wxU6dOpUuXLgwfPpxhw4Yxd+7cc05vMBgICgpyGmqbooCvXwPe48JtrBU6DvxupsvlBY5xiqLS+fJC9mzxnMeu6uoY15vAL7LyIm75VSHk6nOvszwTrHlnLvQBHVVsBQpFe85MY9kI2MH/IvfEWh/2ndFsIza+nJxTvprFUB+2k6eaPn06iqIwatQox7jS0lKSk5MJDw8nICCA22+/ncxM58dJjx07Rt++fTGbzTRq1IgxY8ZgtVqpbZqmcjExMbRr185pXNu2bfnss8/qZP0PjTvJptWBZKX7YQqwcc2teXTsUcj4+xLrZP1VMZptxCacaSgUHVdOYvsSCvL0ZKX7SUweHNPn8yJ4elYa+3eYSdlm5tZhWRjNdr5fHHb+md1Ai2M8/1dABWMzKD0Gaa/rMCZARH8VWzGcmKsQ2kvFNxzKjkPaLB2GOAjuUTm/KbHy0cMjk3XEj68sVTg6XUdYbxW/Rm4L2+P23bAX0vltZTCnjvsSHm3lgadOYrPDT1/WfQPrv/K07VQTWvUzsGnTJt599106duzoNP7JJ5/kf//7H//5z38IDg5m5MiR3Hbbbfzyyy8A2Gw2+vbtS3R0NL/++isnT57kwQcfxNfXl6lTp174DzkHTZOBnj17kpKS4jRu//79xMfH18n6QyKsjJl9jLBGVooL9Bzea2T8fYlsXRt4/pndqFWnEv792SHH50cmnQDg+yWhvPpkU4nJg2NasyyU4HAbD47JIDTSSupuE+MHJpCXrc3dnBbHuK1A4fibCuWZ4BMModepNB6povMFuw2KDyhkf61gKwDfSAhOUmmcrKL7S/6WONXO0WkKKf/Soegql9F0rHtLMzxt30XEVDDu7SMEhtrIz/Fh90Z/RvVrRX6OtsXxnradaqSWeiD8e+N1g8GAwWA4xwxQWFjIwIEDee+993j55Zcd4/Pz8/nggw9YtGgR1157LQDz58+nbdu2/Pbbb1x22WV8//337Nmzhx9++IGoqCg6d+7MSy+9xNixY5k4cSJ+frV306OoqqpZmfimTZvo0aMHkyZN4q677mLjxo0MGzaMefPmMXDgwPPOb7FYCA4O5mr646PUgwNRiAbiku02rUM4y6bO2rSw/0eKB/Zmr90p/5ysagU/8RX5+fluqfqFM9eKDkOnove78CdpbOWl7PzgubPGT5gwgYkTJ55znkGDBhEWFsbrr7/O1VdfTefOnZk1axarV6/muuuuIzc3l5CQEMf08fHxjBo1iieffJIXX3yRZcuWsX37dsf3hw8fJjExka1bt9KlS5cL/i1/p2mKeckll/DFF18wbtw4Jk+eTEJCArNmzapWIiCEEELURG1VE6SlpTklLlWVCixevJitW7eyadOms77LyMjAz8/PKREAiIqKIiMjwzFNVFTUWd+f/q42ad788+abb+bmm2/WOgwhhBANXS1VE1SnAXtaWhpPPPEEK1euxGj0/L5rNO+OWAghhKgTdfho4ZYtWzh16hQXX3wxPj4++Pj4sGbNGmbPno2Pjw9RUVGUl5eTl5fnNF9mZibR0dEAREdHn/V0wenPp6epLZIMCCGEELXsuuuuY+fOnWzfvt0xdOvWjYEDBzr+9vX1ZdWqVY55UlJSOHbsGElJSQAkJSWxc+dOTp0681KOlStXEhQUdNaTeK7SvJpACCGEqAt1+WhhYGAgF13k3DGGv78/4eHhjvFDhw5l9OjRhIWFERQUxGOPPUZSUhKXXXYZADfccAPt2rXjgQceYObMmWRkZPD888+TnJxcZTuFCyXJgBBCCO9QS20Gasvrr7+OTqfj9ttvp6ysjN69e/POO+84vtfr9SxfvpwRI0aQlJSEv78/gwYNYvLkybUbCJIMCCGEEHXip59+cvpsNBp5++23efvtt6ucJz4+nm+++cbNkUkyIIQQwksoqoriQj8Lrszr6SQZEEII4R08rJrAk8jTBEIIIYSXk5IBIYQQXkGrFxXVB5IMCCGE8A5STVAlqSYQQgghvJyUDAghaswT3xB48+5crUM4y/L2oVqHIP5CqgmqJsmAEEII7yDVBFWSZEAIIYRXkJKBqkmbASGEEMLLScmAEEII7yDVBFWSZEAIIYTXaMhF/a6QagIhhBDCy0nJgBBCCO+gqpWDK/M3UJIMCCGE8AryNEHVpJpACCGE8HJSMiCEEMI7yNMEVZJkQAghhFdQ7JWDK/M3VFJNIIQQQng5KRkA+g3O5o4RpwiLtJK6x8Q7zzcmZbtZYqrCXSMzGfpcBl+8F8HcCY01i+Oi7oXc+WgWLTsUEx5tZeKQZqxfEaxZPHePzKTnTfnEtSijvFTHns1mPpgSw/FDRs1iAs/bTqfV5TFuLYKU2SYyVvlSlqMjuK2N9s8WE9LB5vh+7+smMlf7UZ6nYG5sJ+H+UuLvLncso+iYjj2vmMjd6oO9XCHy8goueq4YQ4R7y4496VzgqcdStUk1QZW8vmTgqltyGT7hBAtfiya5dytS9xiZsiiV4PAKiekcWnUqpu/9OaTu1vYCB2A020ndbeSt55poHQoAHZOK+HpBBKNubsm4exLR+6hM/TQVg8mmaVyetp2g7o/xHS/6k7Xel87Ti7nqCwsRPSr47eFASjIVAPbMNJP1sy+dpxdx9dcWEh4oZdcUMxmrfQGwFsOG4QEoClz2YQE9/s+CvQI2JgegurHo2NPOBZ54LNXE6acJXBkaKk2TgWbNmqEoyllDcnJyncVw2/BsViwK4/slYRw7YGT22CaUlSj0vjenzmKoDzEBGM02xr51lFljmlCQr/0rbDf/GMRHM2P41UPuTMYPTGTl0jCO7jeSusfEq6OaEtWkgpYdSzSNy9O2E9TtMW4rhYyVvrR9qpjwblb84+20Ti7Fv6mNo4sNAORu96FJ/3IiLrVibmwn/q5yglrbyNtZeZznbvOhOF1HpylFBLWyE9TKTuepReTv1pO9wX0FrJ52LvDEY6lGTvcz4MrQQGmaDGzatImTJ086hpUrVwJw55131sn6fXzttOxYzNZ1gY5xqqqwbV0g7boW10kM9SGm00ZOTWfjqiC2/SU2UTX/oMoSgYI87RMnT1LXx7hqA9WmoDc4j9cZIGdb5YU8tLOVzB99KclUUFXI3uBD4RE9kT2tANjLFRQFdH7O8ys6yNnqnmTAk88FouHRtM1AZGSk0+fp06fTvHlzrrrqqnNOX1ZWRllZmeOzxWJxaf1BYTb0PpCX5bwZcrN9iGtRVsVc7uWJMQFc1T+XFh1KeOymlprFUJ8oisojk9LZtdHM0RST1uF4lLo+xn38Ky/2++caCUgswhCukv6NH7k79Pg3rSzjbz++mJ0TzKy6NgTFR0VRoOOkypIEgJBOVvQm2PeqiTajSlBV2Pe6CdWmUJblnnsqTz0X1GfS6VDVPKbNQHl5Of/3f//HkCFDUBTlnNNMmzaN4OBgxxAXF1fHUXqnyNhyRkw+wYyRTako85hDxqONnJpOfJtSpo2I1zoUAXSeVgQq/HBNCN90CeHw/xlofFM5yp+H85GFBnJ/9+GStwq5YmkBbceUsPNlM1nrKy/EhjCVrq8VkrnGl28vCeG7y0KoKFAIbmd1LEPUA2otDA2UxzxN8OWXX5KXl8fgwYOrnGbcuHGMHj3a8dlisbiUEFhy9NisEBJpdRofGmElN0ubTeOJMbXoWEJopJW3v9vvGKf3gQ6XFXHLQ9nc3Kwjdvu5EzhvlDzlON2vt/DUrc3JPul3/hm8jBbHuH9TOz0+KsRaDNYiBWOkypan/DE3sWMrhX2zTHSbXUjUVZUxBbW2YUnRkzrfSGRSIQCRPa1cu8JCea6CogffIJWVVwZj7lP+T6u+YJ54LhANl8fktB988AF9+vQhNja2ymkMBgNBQUFOgyusFToO/G6my+UFjnGKotL58kL2bNHm0R1PjGn7ugCGX9OKEdefGVK2m1j9eSgjrm8liYCDSvKU4/S4MZ9n7mxOZprh/LN4IS2PcR8zGCNVyvMVsn7xIeqacuxWUK3KWXf4iu7c7cX8QlV8g1Syf/OhLEch6hr3tOz3xHNBfSdPE1TNI9LLo0eP8sMPP/D555/X+bo/nxfB07PS2L/DTMo2M7cOy8JotvP94rA6j8VTYyop0p9V711arKMg9+zxdclothGbcOauLDqunMT2JRTk6clKr/s78pFT07nm1lwmPpRASaGO0MjKi0RRgZ7yUu3ybk/bTlD3x/ipn31AhYAEO0XHdOx9xURAgp24W8vR+ULYJRXsfcWMzlCMOdbOH5t8OL7Mj3bPnGmol/aFHwGJNvxCVXJ3+LB7monEB8sISHDfs4Wedi7wxGOpRuSthVXyiGRg/vz5NGrUiL59+9b5utcsCyU43MaDYzIIjbSSutvE+IEJ5GX71nksnhyTJ2rVqYR/f3bI8fmRSScA+H5JKK8+2bTO4+k3+A8AXvn8kNP4V0bFsXKpdsmlp20nqPtj3FqosG+WidIMHb7BKtHXl9PmiRJ0f67u4n8XsW+WiW1j/anIVzDF2mnzeIlTp0OFh/Xse91EeX5lp0Qth5eSMMi9Dfk87VzgiceSqB2Kqmqb6tjtdhISErj33nuZPn16jea1WCwEBwdzNf3xUeRCKYQ3u3l3rtYhnGV5+1CtQ/B4VrWCn/iK/Px8l6t+q3L6WpHUZzI+vhfeYZq1opT1377o1li1onnJwA8//MCxY8cYMmSI1qEIIYRoyKQ74ippngzccMMNaFw4IYQQQng1zZMBIYQQoi5Ip0NVk2RACCGEd7CrlYMr8zdQkgwIIYTwDtJmoEoe0+mQEEIIIbQhJQNCCCG8goKLbQZqLRLPI8mAEEII7yA9EFZJqgmEEEIILyclA0IIIbyCPFpYNUkGhBBCeAd5mqBKUk0ghBBCeDkpGRBCCOEVFFVFcaERoCvzejpJBoQQDYInviHwku02rUM4y6YunnbaV+qu+N3+5+DK/A2UVBMIIYQQXs7TUkQhhBDCLaSaoGqSDAghhPAO8jRBlSQZEEII4R2kB8IqSZsBIYQQwstJyYAQQgivID0QVk2SASGEEN5BqgmqJNUEQgghhBtMmzaNSy65hMDAQBo1asSAAQNISUlxmqa0tJTk5GTCw8MJCAjg9ttvJzMz02maY8eO0bdvX8xmM40aNWLMmDFYrdZajVWSASGEEF5Bsbs+1MSaNWtITk7mt99+Y+XKlVRUVHDDDTdQVFTkmObJJ5/k66+/5j//+Q9r1qzhxIkT3HbbbY7vbTYbffv2pby8nF9//ZWPPvqIBQsW8OKLL9bWZgGkmkAIIYS3qONqghUrVjh9XrBgAY0aNWLLli1ceeWV5Ofn88EHH7Bo0SKuvfZaAObPn0/btm357bffuOyyy/j+++/Zs2cPP/zwA1FRUXTu3JmXXnqJsWPHMnHiRPz8/C789/yFlAwIIYQQNWCxWJyGsrKyas2Xn58PQFhYGABbtmyhoqKCXr16OaZp06YNTZs2Zf369QCsX7+eDh06EBUV5Zimd+/eWCwWdu/eXVs/SZIBIYQQXkKthQGIi4sjODjYMUybNu28q7bb7YwaNYqePXty0UUXAZCRkYGfnx8hISFO00ZFRZGRkeGY5q+JwOnvT39XW7y6muDukZn0vCmfuBZllJfq2LPZzAdTYjh+yCgx/YO7RmYy9LkMvngvgrkTGmsWx0XdC7nz0SxadigmPNrKxCHNWL8iWLN4PHnf9RuczR0jThEWaSV1j4l3nm9MynazxKRhTLYiSH9bIfdHhYocMLeGps/YCbjo7GmPvKyQ9V8dcU/bib7/TFF16VFIe11H4XawV4C5JTROthN0iVtCBiA8upyhz53kkmstGIx2Thwx8Orophz4Xdt9Vx211R1xWloaQUFBjvEGg+G88yYnJ7Nr1y5+/vnnC16/O3l1yUDHpCK+XhDBqJtbMu6eRPQ+KlM/TcVg0u5NY54Y01+16lRM3/tzSN2t/QXOaLaTutvIW8810ToUwHP33VW35DJ8wgkWvhZNcu9WpO4xMmVRKsHhFRKThjEdnqSQ/5tC4st2LvqPneAklf2P6Ch3bkhO7moo/F3BN/Lsi9j+x3SoVmg9z077RXbMrVQOPKajItstIRMQbOW1Lw9gsyo8f38iw65pw7zJsRTm692zQg8VFBTkNJwvGRg5ciTLly/nxx9/pEmTM+er6OhoysvLycvLc5o+MzOT6OhoxzR/f7rg9OfT09QGTZMBm83GCy+8QEJCAiaTiebNm/PSSy+h1tGznOMHJrJyaRhH9xtJ3WPi1VFNiWpSQcuOJXWy/voS02lGs42xbx1l1pgmFHjAP//mH4P4aGYMv2pYGvBXnrrvbhuezYpFYXy/JIxjB4zMHtuEshKF3vfmSEwaxWQvhdxVCnGj7AR2BWNTaDxCxRAHp/6jOKYrz4Sj03U0n2pH+Vs5bkUulB1TiBlix9wKjPHQ5AkVe6lC8cFaDxmAux49RfYJP14d3ZSU7f5kphnYujaIk0fPf2fsEU43IHRlqNHqVEaOHMkXX3zB6tWrSUhIcPq+a9eu+Pr6smrVKse4lJQUjh07RlJSEgBJSUns3LmTU6dOOaZZuXIlQUFBtGvXzoWN4UzTZGDGjBnMmTOHt956i7179zJjxgxmzpzJm2++qUk8/kGVd3AFedpf6E7zpJhGTk1n46ogtq0L1DqUesET9p2Pr52WHYvZ+pd9pqoK29YF0q5rscSkUUyqDbAp6P52DdUZoHBbZTKg2iH1eR3Rg1RMLc4RcwgYm6lkf61gKwHVCqf+q+ATpuJfe9cIJ5fdkM/+382Mf/cwS3bs4u3vUuhz3x/uWZk7qIDdhaGG96nJycn83//9H4sWLSIwMJCMjAwyMjIoKam8QQgODmbo0KGMHj2aH3/8kS1btvDQQw+RlJTEZZddBsANN9xAu3bteOCBB9ixYwffffcdzz//PMnJydWqnqguTdsM/Prrr/Tv35++ffsC0KxZMz799FM2btx4zunLysqcWm1aLJZai0VRVB6ZlM6ujWaOpphqbbmu8KSYruqfS4sOJTx2U0tN46gvPGXfBYXZ0PtAXpbzv3putg9xLarXAlpiqv2Y9P7g31HlxDwdxgQ7vuHwxwqFwt/BGFc5zcn5Cooeou479xVIUaD1u3YOPKljaw8FdOAbBq3eseMTdM5ZXBbTtJybH8jm8/ciWTw7iladixkx+TgVFQo//CfMPSutRXX9CuM5c+YAcPXVVzuNnz9/PoMHDwbg9ddfR6fTcfvtt1NWVkbv3r155513HNPq9XqWL1/OiBEjSEpKwt/fn0GDBjF58uQL/h3nomky0KNHD+bNm8f+/ftp1aoVO3bs4Oeff+a111475/TTpk1j0qRJboll5NR04tuU8tSAc6TgGvGUmCJjyxkx+QTj7kmkosyrm5lUm6fsO+G5EqfYOTJRx44b9KBX8W8DYTeqFO9VKNoDmYsU2n9qR1HOPb+qwtFpOnxDoc2HdnRGyPpc4cDjOtottOMXWfsxKzo48LuJ+dNjATi020yz1qX0fSC7XiQDda06Vd5Go5G3336bt99+u8pp4uPj+eabb2oztLNomgw8++yzWCwW2rRpg16vx2azMWXKFAYOHHjO6ceNG8fo0aMdny0WC3FxcS7HkTzlON2vt/DUrc3JPlk7HTi4ypNiatGxhNBIK29/t98xTu8DHS4r4paHsrm5WUfs9irOWF7Ik/adJUePzQohkc5dl4ZGWMnN0ubfX2KqZIyDNh/YsZWArRD8IuHgMwqGxlCwVcGaAzv6/CX5timkvQaZCxU6fWunYCPkrYWL19rRB1RO4j9e5fffFP74WiFmSO23vco55cPR/c6Nh9MOGrn8pvxaX5dbqLjY6VCtReJxNE0Gli5dysKFC1m0aBHt27dn+/btjBo1itjYWAYNGnTW9AaDoVbrSEAleUo6PW7MZ8wdLchM84RGMJ4X0/Z1AQy/ppXTuKdeTyPtoJGlb0dKIuDgefvOWqHjwO9mulxe4HjsUlFUOl9eyLIF4RKTB8SkN1UOVgtYflVoMkolrJdK0GXOV579I3SE36wS0b9yvL30zy/+Vlin6CrbG7jDnk3+xDV3rjZpnFjGqXRf96ywtsmLiqqkaTIwZswYnn32We655x4AOnTowNGjR5k2bdo5k4HaNnJqOtfcmsvEhxIoKdQRGln5CFFRgZ7yUm2Kwz0xppIi/Vn13qXFOgpyzx5fl4xmG7EJ5Y7P0XHlJLYvoSBPT1Z63d+Re+K+A/h8XgRPz0pj/w4zKdvM3DosC6PZzveLtSvWlZgg/1dABWMzKD1W2V+AMQEi+qvofCsbCP6V4gO+4WBqVvnZvyP4BMHhF3TEDv+zmuAzhbJ0CLnCPRetz99rxOtf7eeexzJZ+3UIrTsXc9PAP5j1jGc83isunKbJQHFxMTqd80lSr9djt7sprf2bfoMrW8G+8vkhp/GvjIpj5VJtTkqeGJOnatWphH9/dmY7PTLpBADfLwnl1Seb1nk8nrrv1iwLJTjcxoNjMgiNtJK628T4gQnkZWt3Nycxga1A4fibCuWZ4BMModepNB5ZmQhUh28otHrbzvG3dOwbXtnfgKk5tJhlx9zaLSGzf4eZyQ8n8NCzJxk4KoOMND/mTmjMj1/Uk3OTHXClILNuLk2aUNS6eqj/HAYPHswPP/zAu+++S/v27dm2bRvDhw9nyJAhzJgx47zzWywWgoODuZr++Cj1pJhKCOE1LtnuGZ2F/dWmLp7V8axVreAn9Uvy8/OdevWrTaevFddd9Aw++guvvrPayli1a6ZbY9WKpkfFm2++yQsvvMCjjz7KqVOniI2N5V//+letv5pRCCGEEFXTNBkIDAxk1qxZzJo1S8swhBBCeANpQFglzyovEkIIIdxFkoEqSQ8yQgghhJeTkgEhhBDeQUoGqiTJgBBCCO8gjxZWSZIBIYQQXqGuX1RUn0ibASGEEMLLScmAEEII7yBtBqokyYAQQgjvYFdBceGCbm+4yYBUEwghhBBeTkoGhBBCeAepJqiSJANCCCG8hIvJAJIMCOEdFFceQnaTBnw30tBt6qzXOoSzXLajXOsQnJQVVvBTD62jEJIMCCGE8A5STVAlSQaEEEJ4B7uKS0X98jSBEEIIIRoqKRkQQgjhHVR75eDK/A2UJANCCCG8g7QZqJIkA0IIIbyDtBmokrQZEEIIIbyclAwIIYTwDlJNUCVJBoQQQngHFReTgVqLxONINYEQQgjh5aRkQAghhHeQaoIqSTIghBDCO9jtgAt9Bdiln4EG66Luhdz5aBYtOxQTHm1l4pBmrF8RrFk8d4/MpOdN+cS1KKO8VMeezWY+mBLD8UNGzWI6rd/gbO4YcYqwSCupe0y883xjUrabNYnFE7eTTqdy/1MZXHdbLqGRFfyR6cvK/4SxaFYUoM0LkDxxO53mScfTzQ9m0/fBP4iKq3yJz9EUIwtfj2Lzj0GaxKNVTLYiSHtbR85qHRU54N9GpdkzdgIuqrwjPviCnuxlzrXLwT3stJ1jO2tZ9nLYdb8PxSkKHZZU4N/GbWGLWuD1bQaMZjupu4289VwTrUMBoGNSEV8viGDUzS0Zd08ieh+VqZ+mYjCd/c9Wl666JZfhE06w8LVoknu3InWPkSmLUgkOr9AkHk/cTncln+LmB7N5+/nGDLu6DR9MjeXOEafoPyRbs5g8cTuB5x1PWSd9+XBqDCNvbMVjfVqx45cAJs4/QnyrUk3i0SqmQxP15K/X0WKKjU7/tRKcpLL3X3rKM89ME9zTzsWrKhxDyxnnPpaOva7DL9LDitVPVxO4MjRQmiYDBQUFjBo1ivj4eEwmEz169GDTpk11GsPmH4P4aGYMv2pYGvBX4wcmsnJpGEf3G0ndY+LVUU2JalJBy44lmsZ12/BsViwK4/slYRw7YGT22CaUlSj0vjdHk3g8cTu161bE+u+C2bgqmMzjBn7+Xwhb1wTSunOxZjF54nYCzzueNqwMZtPqIE4cNpCeamDBjBhKi3S06VqkSTxaxGQvhZxVCk2ftBHUVcXYFOJG2DHGQeZ/zlwqdH7gF3Fm8DlHQUXuzwp563U0Ha1t0nkWSQaqpGky8PDDD7Ny5Uo++eQTdu7cyQ033ECvXr1IT0/XMiyP4h9U+c9UkKfde9F9fO207FjM1nWBjnGqqrBtXSDtump3ofsrT9hOezb70/nyAhonVt65JbYrof2lRWz6MfA8c9YdT9hOnn486XQqV/XPxWC2s3ezv9bhAHUTk2oDbAo6w9/WbVCxbDtTzWXZrLD5ah+23+JD6ss6KvKcpy//Aw5P0tNiig2d9rVRopo0azNQUlLCZ599xldffcWVV14JwMSJE/n666+ZM2cOL7/88lnzlJWVUVZW5vhssVjqLF4tKIrKI5PS2bXRzNEUk2ZxBIXZ0PtAXpbz4ZKb7UNci7Iq5qo7nrKdlrzVCHOAjffX7MNuA50eFsyI4ccvwjSL6a88ZTt56vHUrE0Js74+iJ/BTkmRjslDm3HsgLZXs7qMSe8PAZ3sHJ+nw5Rgwzccsr9VKPhdwRhXOU1IDzth14GxsUppmkLam3r2Papw0Sc2FH3ljfOhF/Q0utNOQHuVUk+7r5PuiKukWTJgtVqx2WwYjc4Htslk4ueffz7nPNOmTWPSpEl1EZ5HGDk1nfg2pTw1oIXWoXg0T9lOV/bL49rbcpmeHM/R/Uaaty/hkUnp/JHpyw//0T4h8JTt5KmOHzLw6PWtMAfauOLmfJ5+4xhjbmuhaUJQ1zG1mGLj0AQ9W6/3Bb2KfxuViBtVCvdWlgxE9DlzMTS3VDG3srK9ry+WzXaCu6tkLNJhL4LGQz2z1b2q2lFdePOgK/N6Os2SgcDAQJKSknjppZdo27YtUVFRfPrpp6xfv54WLc59sho3bhyjR492fLZYLMTFxdVVyHUqecpxul9v4albm5N90k/TWCw5emxWCIm0Oo0PjbCSm6XtAymetJ2GvXCCJW81Ys2yUACO7DPRqEk594zM1DwZ8KTt5KnHk7VCx4kjlWXkB3eaad25mAEPZzF7rHbnmLqOyRgH7T+0YSu2YSsCv0jYP0aPscm574iNTcAnVKX0mEJwdxXLpsqShA2XOO/Hnff5EHGTSouXNW5DoKqu3d1LmwH3+OSTT1BVlcaNG2MwGJg9ezb33nsvOt25wzIYDAQFBTkNDY9K8pTj9Lgxn2fubE5mmuH8s7iZtULHgd/NdLm8wDFOUVQ6X17Ini3aPArmidvJYLKjqs6PENptCoqm/2Wet50883g6m6KAr59nnfzrKia9uTIRsFogf71C6NXnviMuywRrHvj++dRAs7E2Oi610nFJ5dDmrcqLf8uZNuIe87DGhMKJprd1zZs3Z82aNRQVFWGxWIiJieHuu+8mMTGxzmIwmm3EJpQ7PkfHlZPYvoSCPD1Z6XV/BzVyajrX3JrLxIcSKCnUERpZ+ahVUYGe8lLtriqfz4vg6Vlp7N9hJmWbmVuHZWE02/l+sTZ3vJ64nX5bGcQ9j2dyKt2XoylGml9Uwm3DT/H94nBN4gHP3E7gecfTQ+NOsml1IFnpfpgCbFxzax4dexQy/r66Oxd5Qkx5v1Qms8b4yjYBx17XY2qmEtlfxVYMx+fqCOul4huuUna88ntjHIT0qEwGDDHOy9OZK8cbm6gYotwWdvWpLrYZaMAlAx7R6ZC/vz/+/v7k5uby3XffMXPmzDpbd6tOJfz7s0OOz49MOgHA90tCefXJpnUWx2n9Bv8BwCufH3Ia/8qoOFYu1a6oec2yUILDbTw4JoPQSCupu02MH5hAXravJvF44nZ65/kmDHrmJCOnHick3Mofmb58838RLHxdu7OgJ24n8LzjKSTCypjZxwhrZKW4QM/hvUbG35fI1rXaPQmiRUy2Qjg2u7JfAZ9gCLvOTtxjdnS+YLdB8X6FrGU6bAXg2whCklSaJNvQaVvzVH12Oygu1Ps34DYDiqpql+p89913qKpK69atOXjwIGPGjMFoNLJu3Tp8fc9/UrBYLAQHB3M1/fFRtDmJiAZG0aanwH/UgO9GRN27bIc2HTtVpaywgn/3+Ib8/Hy3Vf2evlZcFzgQH+XCMxerWs6qgoVujVUrmpYM5OfnM27cOI4fP05YWBi33347U6ZMqVYiIIQQQtSIVBNUSdNk4K677uKuu+7SMgQhhBBeQrXbUV2oJmjIjxZ6/bsJhBBCCG/nEQ0IhRBCCLeTaoIqSTIghBDCO9hVUCQZOBepJhBCCCG8nJQMCCGE8A6qCrjSz0DDLRmQZEAIIYRXUO0qqgvVBBp2y+N2kgwIIYTwDqod10oG5NFCIYQQQlyAt99+m2bNmmE0GunevTsbN27UOqSzSDIghBDCK6h21eWhppYsWcLo0aOZMGECW7dupVOnTvTu3ZtTp0654RdeOEkGhBBCeAfV7vpQQ6+99hrDhg3joYceol27dsydOxez2cyHH37ohh944ep1m4HTjTmsVLjUj4QQZ8iLikTDVlboYS8qKqqMpy4a57l6rbBSGavFYnEabzAYMBgMZ01fXl7Oli1bGDdunGOcTqejV69erF+//sIDcYN6nQwUFBQA8DPfaByJaDDkuisauJ96aB3BuRUUFBAcHOyWZfv5+REdHc3PGa5fKwICAoiLi3MaN2HCBCZOnHjWtNnZ2dhsNqKinF9jHhUVxb59+1yOpTbV62QgNjaWtLQ0AgMDUVx89azFYiEuLo60tDSPeTWlxFQ9nhaTp8UDElN1SUzVU5sxqapKQUEBsbGxtRTd2YxGI4cPH6a8vNzlZamqetb15lylAvVNvU4GdDodTZo0qdVlBgUFecw/3GkSU/V4WkyeFg9ITNUlMVVPbcXkrhKBvzIajRiNRrev568iIiLQ6/VkZmY6jc/MzCQ6OrpOYzkfaUAohBBCuIGfnx9du3Zl1apVjnF2u51Vq1aRlJSkYWRnq9clA0IIIYQnGz16NIMGDaJbt25ceumlzJo1i6KiIh566CGtQ3MiycCfDAYDEyZM8Ki6H4mpejwtJk+LBySm6pKYqscTY/JUd999N1lZWbz44otkZGTQuXNnVqxYcVajQq0pakPubFkIIYQQ5yVtBoQQQggvJ8mAEEII4eUkGRBCCCG8nCQDQgghhJeTZADPe73k2rVr6devH7GxsSiKwpdffqlpPNOmTeOSSy4hMDCQRo0aMWDAAFJSUjSNac6cOXTs2NHR6UlSUhLffvutpjH93fTp01EUhVGjRmkWw8SJE1EUxWlo06aNZvGclp6ezv333094eDgmk4kOHTqwefNmzeJp1qzZWdtJURSSk5M1i8lms/HCCy+QkJCAyWSiefPmvPTSS3XSh/8/KSgoYNSoUcTHx2MymejRowebNm3SNCbhOq9PBjzx9ZJFRUV06tSJt99+W7MY/mrNmjUkJyfz22+/sXLlSioqKrjhhhsoKirSLKYmTZowffp0tmzZwubNm7n22mvp378/u3fv1iymv9q0aRPvvvsuHTt21DoU2rdvz8mTJx3Dzz//rGk8ubm59OzZE19fX7799lv27NnDq6++SmhoqGYxbdq0yWkbrVy5EoA777xTs5hmzJjBnDlzeOutt9i7dy8zZsxg5syZvPnmm5rFBPDwww+zcuVKPvnkE3bu3MkNN9xAr169SE9P1zQu4SLVy1166aVqcnKy47PNZlNjY2PVadOmaRjVGYD6xRdfaB2Gk1OnTqmAumbNGq1DcRIaGqq+//77WoehFhQUqC1btlRXrlypXnXVVeoTTzyhWSwTJkxQO3XqpNn6z2Xs2LHq5ZdfrnUY/+iJJ55Qmzdvrtrtds1i6Nu3rzpkyBCncbfddps6cOBAjSJS1eLiYlWv16vLly93Gn/xxRer48eP1ygqURu8umTg9Osle/Xq5Rjnqa+X9CT5+fkAhIWFaRxJJZvNxuLFiykqKvKILj6Tk5Pp27ev03GlpQMHDhAbG0tiYiIDBw7k2LFjmsazbNkyunXrxp133kmjRo3o0qUL7733nqYx/VV5eTn/93//x5AhQ1x+AZorevTowapVq9i/fz8AO3bs4Oeff6ZPnz6axWS1WrHZbGf18W8ymTQvcRKu8eoeCOvT6yU9hd1uZ9SoUfTs2ZOLLrpI01h27txJUlISpaWlBAQE8MUXX9CuXTtNY1q8eDFbt271mDrU7t27s2DBAlq3bs3JkyeZNGkSV1xxBbt27SIwMFCTmFJTU5kzZw6jR4/mueeeY9OmTTz++OP4+fkxaNAgTWL6qy+//JK8vDwGDx6saRzPPvssFouFNm3aoNfrsdlsTJkyhYEDB2oWU2BgIElJSbz00ku0bduWqKgoPv30U9avX0+LFi00i0u4zquTAVFzycnJ7Nq1yyPuAlq3bs327dvJz8/nv//9L4MGDWLNmjWaJQRpaWk88cQTrFy5ss7fjlaVv95FduzYke7duxMfH8/SpUsZOnSoJjHZ7Xa6devG1KlTAejSpQu7du1i7ty5HpEMfPDBB/Tp08etr9StjqVLl7Jw4UIWLVpE+/bt2b59O6NGjSI2NlbT7fTJJ58wZMgQGjdujF6v5+KLL+bee+9ly5YtmsUkXOfVyUB9er2kJxg5ciTLly9n7dq1tf7q6Avh5+fnuBvp2rUrmzZt4o033uDdd9/VJJ4tW7Zw6tQpLr74Ysc4m83G2rVreeuttygrK0Ov12sS22khISG0atWKgwcPahZDTEzMWQlb27Zt+eyzzzSK6IyjR4/yww8/8Pnnn2sdCmPGjOHZZ5/lnnvuAaBDhw4cPXqUadOmaZoMNG/enDVr1lBUVITFYiEmJoa7776bxMREzWISrvPqNgP16fWSWlJVlZEjR/LFF1+wevVqEhIStA7pnOx2O2VlZZqt/7rrrmPnzp1s377dMXTr1o2BAweyfft2zRMBgMLCQg4dOkRMTIxmMfTs2fOsR1P3799PfHy8RhGdMX/+fBo1akTfvn21DoXi4mJ0OudTtF6vx263axSRM39/f2JiYsjNzeW7776jf//+WockXODVJQPgma+XLCwsdLpzO3z4MNu3bycsLIymTZvWeTzJycksWrSIr776isDAQDIyMgAIDg7GZDLVeTwA48aNo0+fPjRt2pSCggIWLVrETz/9xHfffadJPFBZn/r3dhT+/v6Eh4dr1r7i6aefpl+/fsTHx3PixAkmTJiAXq/n3nvv1SQegCeffJIePXowdepU7rrrLjZu3Mi8efOYN2+eZjFBZTI5f/58Bg0ahI+P9qfGfv36MWXKFJo2bUr79u3Ztm0br732GkOGDNE0ru+++w5VVWndujUHDx5kzJgxtGnTxuNeyStqSOvHGTzBm2++qTZt2lT18/NTL730UvW3337TNJ4ff/xRBc4aBg0apEk854oFUOfPn69JPKqqqkOGDFHj4+NVPz8/NTIyUr3uuuvU77//XrN4qqL1o4V33323GhMTo/r5+amNGzdW7777bvXgwYOaxXPa119/rV500UWqwWBQ27Rpo86bN0/rkNTvvvtOBdSUlBStQ1FVVVUtFov6xBNPqE2bNlWNRqOamJiojh8/Xi0rK9M0riVLlqiJiYmqn5+fGh0drSYnJ6t5eXmaxiRcJ68wFkIIIbycV7cZEEIIIYQkA0IIIYTXk2RACCGE8HKSDAghhBBeTpIBIYQQwstJMiCEEEJ4OUkGhBBCCC8nyYAQQgjh5SQZEMJFgwcPZsCAAY7PV199NaNGjarzOH766ScURSEvL6/KaRRF4csvv6z2MidOnEjnzp1diuvIkSMoisL27dtdWo4Qwn0kGRAN0uDBg1EUBUVRHG83nDx5Mlar1e3r/vzzz3nppZeqNW11LuBCCOFu2r+NQwg3ufHGG5k/fz5lZWV88803JCcn4+vry7hx486atry8HD8/v1pZb1hYWK0sRwgh6oqUDIgGy2AwEB0dTXx8PCNGjKBXr14sW7YMOFO0P2XKFGJjY2ndujUAaWlp3HXXXYSEhBAWFkb//v05cuSIY5k2m43Ro0cTEhJCeHg4zzzzDH9/vcffqwnKysoYO3YscXFxGAwGWrRowQcffMCRI0e45pprAAgNDUVRFAYPHgxUvkFv2rRpJCQkYDKZ6NSpE//973+d1vPNN9/QqlUrTCYT11xzjVOc1TV27FhatWqF2WwmMTGRF154gYqKirOme/fdd4mLi8NsNnPXXXeRn5/v9P37779P27ZtMRqNtGnThnfeeafGsQghtCPJgPAaJpOJ8vJyx+dVq1aRkpLCypUrWb58ORUVFfTu3ZvAwEDWrVvHL7/8QkBAADfeeKNjvldffZUFCxbw4Ycf8vPPP5OTk8MXX3zxj+t98MEH+fTTT5k9ezZ79+7l3XffJSAggLi4OD777DMAUlJSOHnyJG+88QYA06ZN4+OPP2bu3Lns3r2bJ598kvvvv581a9YAlUnLbbfdRr9+/di+fTsPP/wwzz77bI23SWBgIAsWLGDPnj288cYbvPfee7z++utO0xw8eJClS5fy9ddfs2LFCrZt28ajjz7q+H7hwoW8+OKLTJkyhb179zJ16lReeOEFPvrooxrHI4TQiMZvTRTCLQYNGqT2799fVVVVtdvt6sqVK1WDwaA+/fTTju+joqKcXgf7ySefqK1bt1btdrtjXFlZmWoymdTvvvtOVVVVjYmJUWfOnOn4vqKiQm3SpIljXarq/NrilJQUFVBXrlx5zjhPv646NzfXMa60tFQ1m83qr7/+6jTt0KFD1XvvvVdVVVUdN26c2q5dO6fvx44de9ay/g5Qv/jiiyq///e//6127drV8XnChAmqXq9Xjx8/7hj37bffqjqdTj158qSqqqravHlzddGiRU7Leemll9SkpCRVVVX18OHDKqBu27atyvUKIbQlbQZEg7V8+XICAgKoqKjAbrdz3333MXHiRMf3HTp0cGonsGPHDg4ePEhgYKDTckpLSzl06BD5+fmcPHmS7t27O77z8fGhW7duZ1UVnLZ9+3b0ej1XXXVVteM+ePAgxcXFXH/99U7jy8vL6dKlCwB79+51igMgKSmp2us4bcmSJcyePZtDhw5RWFiI1WolKCjIaZqmTZvSuHFjp/XY7XZSUlIIDAzk0KFDDB06lGHDhjmmsVqtBAcH1zgeIYQ2JBkQDdY111zDnDlz8PPzIzY2Fh8f58Pd39/f6XNhYSFdu3Zl4cKFZy0rMjLygmIwmUw1nqewsBCA//3vf04XYahsB1Fb1q9fz8CBA5k0aRK9e/cmODiYxYsX8+qrr9Y41vfee++s5ESv19darEII95JkQDRY/v7+tGjRotrTX3zxxSxZsoRGjRqddXd8WkxMDBs2bODKK68EKu+At2zZwsUXX3zO6Tt06IDdbmfNmjX06tXrrO9Pl0zYbDbHuHbt2mEwGDh27FiVJQpt27Z1NIY87bfffjv/j/yLX3/9lfj4eMaPH+8Yd/To0bOmO3bsGCdOnCA2NtaxHp1OR+vWrYmKiiI2NpbU1FQGDhxYo/ULITyHNCAU4k8DBw4kIiKC/v37s27dOg4fPsxPP/3E448/zvHjxwF44oknmD59Ol9++SX79u3j0Ucf/cc+Apo1a8agQYMYMmQIX375pWOZS5cuBSA+Ph5FUVi+fDlZWVkUFhYSGBjI008/zZNPPslHH33EoUOH2Lp1K2+++aajUd4jjzzCgQMHGDNmDCkpKSxatIgFCxbU6Pe2bNmSY8eOsXjxYg4dOsTs2bPP2RjSaDQyaNAgduzYwbp163j88ce56667iI6OBmDSpElMmzaN2bNns3//fnbu3Mn8+fN57bXXahSPEEI7kgwI8Sez2czatWtp2rQpt912G23btmXo0KGUlpY6SgqeeuopHnjgAQYNGkRSUhKBgYHceuut/7jcOXPmcMcdd/Doo4/Spk0bhg0bRlFREQCNGzdm0qRJPPvss0RFRTFy5EgAXnrpJV544QWmTZtG27ZtufHGG/nf//5HQkICUFmP/9lnn/Hll1/SqVMn5s6dy9SpU2v0e2+55RaefPJJRo4cSefOnfn111954YUXzpquRYsW3Hbbbdx0003ccMMNdOzY0enRwYcffpj333+f+fPn06FDB6666ioWLFjgiFUI4fkUtaqWT0IIIYTwClIyIIQQQng5SQaEEEIILyfJgBBCCOHlJBkQQgghvJwkA0IIIYSXk2RACCGE8HKSDAghhBBeTpIBIYQQwstJMiCEEEJ4OUkGhBBCCC8nyYAQQgjh5f4fdJzv522ycuEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания." + ], + "metadata": { + "id": "amaspXGW1EVy" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "\n", + "for name_image in ['1.png', '2.png']:\n", + " file_data = Image.open(name_image)\n", + " file_data = file_data.convert('L') # перевод в градации серого\n", + " test_img = np.array(file_data)\n", + "\n", + " # вывод собственного изображения\n", + " plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + "\n", + " # предобработка\n", + " test_img = test_img / 255\n", + " test_img = np.reshape(test_img, (1,28,28,1))\n", + "\n", + " # распознавание\n", + " result = model.predict(test_img)\n", + " print('I think it\\'s', np.argmax(result))" + ], + "metadata": { + "id": "ktWEeqWd1EyF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 912 + }, + "outputId": "f4bb8d7e-3fe8-413c-94c9-63ae905fe5d8" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGPRJREFUeJzt3X9MVff9x/HXVeGKLfdSRLhQkaK2mtTKMqeMuLomEsUtpv74w3X9wy7GRnttpq5d5xK1LkvobNItXczcX7pl1XYmQ1P/MFEUzDa0qdUYs44IYwMjF1cTzkUUNPD5/uF6v70VxAv3+r7g85F8knLPOfe+PTvy3IUj+JxzTgAAPGTjrAcAADyaCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAxwXqAr+vv79fVq1eVnZ0tn89nPQ4AIEHOOXV1damoqEjjxg3+PiftAnT16lUVFxdbjwEAGKG2tjZNnTp10O1p9yW47Oxs6xEAAEkw1OfzlAVoz549euqppzRx4kSVl5frk08+eaDj+LIbAIwNQ30+T0mAPvroI23dulU7d+7UZ599prKyMi1dulTXrl1LxcsBAEYjlwILFixw4XA49nFfX58rKipy1dXVQx7reZ6TxGKxWKxRvjzPu+/n+6S/A7p9+7bOnTunysrK2GPjxo1TZWWlGhoa7tm/t7dX0Wg0bgEAxr6kB+iLL75QX1+fCgoK4h4vKChQJBK5Z//q6moFg8HY4g44AHg0mN8Ft23bNnmeF1ttbW3WIwEAHoKk/zugvLw8jR8/Xh0dHXGPd3R0KBQK3bO/3++X3+9P9hgAgDSX9HdAmZmZmjdvnmpra2OP9ff3q7a2VhUVFcl+OQDAKJWSn4SwdetWrV27Vt/61re0YMEC/eY3v1F3d7d+9KMfpeLlAACjUEoCtGbNGv33v//Vjh07FIlE9I1vfEPHjh2758YEAMCjy+ecc9ZDfFU0GlUwGLQeAwAwQp7nKRAIDLrd/C44AMCjiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwkZKfhg1Yq6qqGtZxb731VsLH/OEPf0j4mP379yd8DDDW8A4IAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJnzOOWc9xFdFo1EFg0HrMTDKtbe3D+u4UCiU8DE9PT0JH5OVlZXwMcBo43meAoHAoNt5BwQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmJhgPQCQCjk5OQ/ttSZOnJjwMT/72c8SPuadd95J+BggnfEOCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAw4XPOOeshvioajSoYDFqPgVHu17/+9bCO27x5c3IHGURPT0/Cx2RlZaVgEiB1PM9TIBAYdDvvgAAAJggQAMBE0gP09ttvy+fzxa3Zs2cn+2UAAKNcSn4h3bPPPqsTJ078/4tM4PfeAQDipaQMEyZMUCgUSsVTAwDGiJR8D+jy5csqKirS9OnT9fLLL6u1tXXQfXt7exWNRuMWAGDsS3qAysvLtX//fh07dky/+93v1NLSoueff15dXV0D7l9dXa1gMBhbxcXFyR4JAJCGUv7vgDo7O1VSUqL33ntP69atu2d7b2+vent7Yx9Ho1EihBHj3wEB9ob6d0ApvzsgJydHzzzzjJqamgbc7vf75ff7Uz0GACDNpPzfAd24cUPNzc0qLCxM9UsBAEaRpAfojTfeUH19vf7973/r73//u1auXKnx48frpZdeSvZLAQBGsaR/Ce7KlSt66aWXdP36dU2ZMkXf+c53dObMGU2ZMiXZLwUAGMX4YaQYkyZOnDis427dupXkSZLH5/NZjwAkhB9GCgBISwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiZT/QjrAwnB+4yiAh4t3QAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYCLhAJ0+fVrLly9XUVGRfD6fDh8+HLfdOacdO3aosLBQWVlZqqys1OXLl5M1LwBgjEg4QN3d3SorK9OePXsG3L579269//772rt3r86ePavHHntMS5cuVU9Pz4iHBQCMIW4EJLmamprYx/39/S4UCrl333039lhnZ6fz+/3u4MGDD/Scnuc5SSyWyUpn1ueGxUp0eZ5332s6qd8DamlpUSQSUWVlZeyxYDCo8vJyNTQ0DHhMb2+votFo3AIAjH1JDVAkEpEkFRQUxD1eUFAQ2/Z11dXVCgaDsVVcXJzMkQAAacr8Lrht27bJ87zYamtrsx4JAPAQJDVAoVBIktTR0RH3eEdHR2zb1/n9fgUCgbgFABj7khqg0tJShUIh1dbWxh6LRqM6e/asKioqkvlSAIBRbkKiB9y4cUNNTU2xj1taWnThwgXl5uZq2rRp2rx5s375y1/q6aefVmlpqbZv366ioiKtWLEimXMDAEa7RG8FPXXq1IC3261du9Y5d/dW7O3bt7uCggLn9/vd4sWLXWNj4wM/P7dhsyxXOrM+NyxWomuo27B9/7uw00Y0GlUwGLQeA4+oNPvrEMfn81mPACTE87z7fl/f/C44AMCjiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmEg4QKdPn9by5ctVVFQkn8+nw4cPx21/5ZVX5PP54lZVVVWy5gUAjBEJB6i7u1tlZWXas2fPoPtUVVWpvb09tg4ePDiiIQEAY8+ERA9YtmyZli1bdt99/H6/QqHQsIcCAIx9KfkeUF1dnfLz8zVr1ixt3LhR169fH3Tf3t5eRaPRuAUAGPuSHqCqqir98Y9/VG1trX71q1+pvr5ey5YtU19f34D7V1dXKxgMxlZxcXGyRwIApCGfc84N+2CfTzU1NVqxYsWg+/zrX//SjBkzdOLECS1evPie7b29vert7Y19HI1GiRDMjOCvQ8r5fD7rEYCEeJ6nQCAw6PaU34Y9ffp05eXlqampacDtfr9fgUAgbgEAxr6UB+jKlSu6fv26CgsLU/1SAIBRJOG74G7cuBH3bqalpUUXLlxQbm6ucnNztWvXLq1evVqhUEjNzc366U9/qpkzZ2rp0qVJHRwAMMq5BJ06dcpJumetXbvW3bx50y1ZssRNmTLFZWRkuJKSErd+/XoXiUQe+Pk9zxvw+Vmsh7HSmfW5YbESXZ7n3feaHtFNCKkQjUYVDAatx8AjKs3+OsThJgSMNuY3IQAAMBACBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGAioQBVV1dr/vz5ys7OVn5+vlasWKHGxsa4fXp6ehQOhzV58mQ9/vjjWr16tTo6OpI6NABg9EsoQPX19QqHwzpz5oyOHz+uO3fuaMmSJeru7o7ts2XLFn388cc6dOiQ6uvrdfXqVa1atSrpgwMARjk3AteuXXOSXH19vXPOuc7OTpeRkeEOHToU2+fzzz93klxDQ8MDPafneU4Si2Wy0pn1uWGxEl2e5933mh7R94A8z5Mk5ebmSpLOnTunO3fuqLKyMrbP7NmzNW3aNDU0NAz4HL29vYpGo3ELADD2DTtA/f392rx5sxYuXKg5c+ZIkiKRiDIzM5WTkxO3b0FBgSKRyIDPU11drWAwGFvFxcXDHQkAMIoMO0DhcFiXLl3Shx9+OKIBtm3bJs/zYqutrW1EzwcAGB0mDOegTZs26ejRozp9+rSmTp0aezwUCun27dvq7OyMexfU0dGhUCg04HP5/X75/f7hjAEAGMUSegfknNOmTZtUU1OjkydPqrS0NG77vHnzlJGRodra2thjjY2Nam1tVUVFRXImBgCMCQm9AwqHwzpw4ICOHDmi7Ozs2Pd1gsGgsrKyFAwGtW7dOm3dulW5ubkKBAJ6/fXXVVFRoW9/+9sp+QMAAEapZNwGum/fvtg+t27dcq+99pp74okn3KRJk9zKlStde3v7A78Gt2GzLFc6sz43LFaia6jbsH3/u7DTRjQaVTAYtB4Dj6g0++sQx+fzWY8AJMTzPAUCgUG387PgAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGJYvxEVGKt6enoSPmbixIkpmAQY+3gHBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4IeRAl+xa9euhI+prq5O+Ji9e/cmfAww1vAOCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAw4XPOOeshvioajSoYDFqPAQAYIc/zFAgEBt3OOyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgIqEAVVdXa/78+crOzlZ+fr5WrFihxsbGuH1eeOEF+Xy+uLVhw4akDg0AGP0SClB9fb3C4bDOnDmj48eP686dO1qyZIm6u7vj9lu/fr3a29tja/fu3UkdGgAw+k1IZOdjx47Ffbx//37l5+fr3LlzWrRoUezxSZMmKRQKJWdCAMCYNKLvAXmeJ0nKzc2Ne/yDDz5QXl6e5syZo23btunmzZuDPkdvb6+i0WjcAgA8Atww9fX1ue9///tu4cKFcY///ve/d8eOHXMXL150f/rTn9yTTz7pVq5cOejz7Ny500lisVgs1hhbnufdtyPDDtCGDRtcSUmJa2tru+9+tbW1TpJramoacHtPT4/zPC+22trazE8ai8VisUa+hgpQQt8D+tKmTZt09OhRnT59WlOnTr3vvuXl5ZKkpqYmzZgx457tfr9ffr9/OGMAAEaxhALknNPrr7+umpoa1dXVqbS0dMhjLly4IEkqLCwc1oAAgLEpoQCFw2EdOHBAR44cUXZ2tiKRiCQpGAwqKytLzc3NOnDggL73ve9p8uTJunjxorZs2aJFixZp7ty5KfkDAABGqUS+76NBvs63b98+55xzra2tbtGiRS43N9f5/X43c+ZM9+abbw75dcCv8jzP/OuWLBaLxRr5Gupzv+9/YUkb0WhUwWDQegwAwAh5nqdAIDDodn4WHADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARNoFyDlnPQIAIAmG+nyedgHq6uqyHgEAkARDfT73uTR7y9Hf36+rV68qOztbPp8vbls0GlVxcbHa2toUCASMJrTHebiL83AX5+EuzsNd6XAenHPq6upSUVGRxo0b/H3OhIc40wMZN26cpk6det99AoHAI32BfYnzcBfn4S7Ow12ch7usz0MwGBxyn7T7EhwA4NFAgAAAJkZVgPx+v3bu3Cm/3289iinOw12ch7s4D3dxHu4aTech7W5CAAA8GkbVOyAAwNhBgAAAJggQAMAEAQIAmBg1AdqzZ4+eeuopTZw4UeXl5frkk0+sR3ro3n77bfl8vrg1e/Zs67FS7vTp01q+fLmKiork8/l0+PDhuO3OOe3YsUOFhYXKyspSZWWlLl++bDNsCg11Hl555ZV7ro+qqiqbYVOkurpa8+fPV3Z2tvLz87VixQo1NjbG7dPT06NwOKzJkyfr8ccf1+rVq9XR0WE0cWo8yHl44YUX7rkeNmzYYDTxwEZFgD766CNt3bpVO3fu1GeffaaysjItXbpU165dsx7toXv22WfV3t4eW3/961+tR0q57u5ulZWVac+ePQNu3717t95//33t3btXZ8+e1WOPPaalS5eqp6fnIU+aWkOdB0mqqqqKuz4OHjz4ECdMvfr6eoXDYZ05c0bHjx/XnTt3tGTJEnV3d8f22bJliz7++GMdOnRI9fX1unr1qlatWmU4dfI9yHmQpPXr18ddD7t37zaaeBBuFFiwYIELh8Oxj/v6+lxRUZGrrq42nOrh27lzpysrK7Mew5QkV1NTE/u4v7/fhUIh9+6778Ye6+zsdH6/3x08eNBgwofj6+fBOefWrl3rXnzxRZN5rFy7ds1JcvX19c65u//bZ2RkuEOHDsX2+fzzz50k19DQYDVmyn39PDjn3He/+1334x//2G6oB5D274Bu376tc+fOqbKyMvbYuHHjVFlZqYaGBsPJbFy+fFlFRUWaPn26Xn75ZbW2tlqPZKqlpUWRSCTu+ggGgyovL38kr4+6ujrl5+dr1qxZ2rhxo65fv249Ukp5nidJys3NlSSdO3dOd+7cibseZs+erWnTpo3p6+Hr5+FLH3zwgfLy8jRnzhxt27ZNN2/etBhvUGn3w0i/7osvvlBfX58KCgriHi8oKNA///lPo6lslJeXa//+/Zo1a5ba29u1a9cuPf/887p06ZKys7OtxzMRiUQkacDr48ttj4qqqiqtWrVKpaWlam5u1s9//nMtW7ZMDQ0NGj9+vPV4Sdff36/Nmzdr4cKFmjNnjqS710NmZqZycnLi9h3L18NA50GSfvjDH6qkpERFRUW6ePGi3nrrLTU2Nuovf/mL4bTx0j5A+H/Lli2L/ffcuXNVXl6ukpIS/fnPf9a6desMJ0M6+MEPfhD77+eee05z587VjBkzVFdXp8WLFxtOlhrhcFiXLl16JL4Pej+DnYdXX3019t/PPfecCgsLtXjxYjU3N2vGjBkPe8wBpf2X4PLy8jR+/Ph77mLp6OhQKBQymio95OTk6JlnnlFTU5P1KGa+vAa4Pu41ffp05eXljcnrY9OmTTp69KhOnToV9+tbQqGQbt++rc7Ozrj9x+r1MNh5GEh5ebkkpdX1kPYByszM1Lx581RbWxt7rL+/X7W1taqoqDCczN6NGzfU3NyswsJC61HMlJaWKhQKxV0f0WhUZ8+efeSvjytXruj69etj6vpwzmnTpk2qqanRyZMnVVpaGrd93rx5ysjIiLseGhsb1draOqauh6HOw0AuXLggSel1PVjfBfEgPvzwQ+f3+93+/fvdP/7xD/fqq6+6nJwcF4lErEd7qH7yk5+4uro619LS4v72t7+5yspKl5eX565du2Y9Wkp1dXW58+fPu/PnzztJ7r333nPnz593//nPf5xzzr3zzjsuJyfHHTlyxF28eNG9+OKLrrS01N26dct48uS633no6upyb7zxhmtoaHAtLS3uxIkT7pvf/KZ7+umnXU9Pj/XoSbNx40YXDAZdXV2da29vj62bN2/G9tmwYYObNm2aO3nypPv0009dRUWFq6ioMJw6+YY6D01NTe4Xv/iF+/TTT11LS4s7cuSImz59ulu0aJHx5PFGRYCcc+63v/2tmzZtmsvMzHQLFixwZ86csR7poVuzZo0rLCx0mZmZ7sknn3Rr1qxxTU1N1mOl3KlTp5yke9batWudc3dvxd6+fbsrKChwfr/fLV682DU2NtoOnQL3Ow83b950S5YscVOmTHEZGRmupKTErV+/fsz9n7SB/vyS3L59+2L73Lp1y7322mvuiSeecJMmTXIrV6507e3tdkOnwFDnobW11S1atMjl5uY6v9/vZs6c6d58803neZ7t4F/Dr2MAAJhI++8BAQDGJgIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADAxP8BMVNd7vzBO2YAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step\n", + "I think it's 1\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGjVJREFUeJzt3X9MVff9x/HX9deVtnAZIlyoqKitLvXHMqeM2LJ2EoEtxl9ZtOsfujQaGTZT13ZjWbVuS+7mkq3p4mR/LLJm1bYmU1OzmVgsmG1go9UYs42IwYoRcDXxXkRBI5/vH36981ZQ7/Ve3pfr85GcRO45x/vu6a3PHu71g8c55wQAwCAbZj0AAODRRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJEdYDfFFfX58uXLig9PR0eTwe63EAAFFyzqmrq0v5+fkaNmzg+5ykC9CFCxdUUFBgPQYA4CG1tbVp3LhxA+5Pum/BpaenW48AAIiD+/15nrAAbdu2TRMnTtTo0aNVVFSkTz755IHO49tuAJAa7vfneUIC9P7772vjxo3avHmzPv30U82aNUtlZWW6ePFiIp4OADAUuQSYO3euq6qqCn998+ZNl5+f7wKBwH3PDQaDThIbGxsb2xDfgsHgPf+8j/sd0PXr13Xs2DGVlpaGHxs2bJhKS0vV2Nh41/G9vb0KhUIRGwAg9cU9QJ9//rlu3ryp3NzciMdzc3PV0dFx1/GBQEA+ny+88Qk4AHg0mH8Krrq6WsFgMLy1tbVZjwQAGARx/3tA2dnZGj58uDo7OyMe7+zslN/vv+t4r9crr9cb7zEAAEku7ndAo0aN0uzZs1VXVxd+rK+vT3V1dSouLo730wEAhqiErISwceNGrVy5Ul/72tc0d+5cvfXWW+ru7tb3vve9RDwdAGAISkiAli9frv/+97/atGmTOjo69JWvfEUHDhy464MJAIBHl8c556yHuFMoFJLP57MeAwDwkILBoDIyMgbcb/4pOADAo4kAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJGQ1bCBeCovL4/6nO3bt8f0XBMnTozpvGidPXs26nO2bNkS9Tm1tbVRnwMMFu6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ9wpFArJ5/NZj4EHMFirVA/WCtWpKJZVtyVW3kZ8BINBZWRkDLifOyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwASLkSJm7e3tUZ/j9/sTMAniraenJ+pzKisroz6HBUxTG4uRAgCSEgECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABggsVIofLy8pjO+9vf/hbnSezV1NREfc5nn30W9TmBQCDqc5JdLAuYpqWlJWASJAsWIwUAJCUCBAAwEfcAvfnmm/J4PBHbtGnT4v00AIAhbkQiftNnnnlGH3300f+eZERCngYAMIQlpAwjRozgJ18CAO4pIe8BnT59Wvn5+Zo0aZJeeuklnTt3bsBje3t7FQqFIjYAQOqLe4CKiopUW1urAwcOaPv27WptbdVzzz2nrq6ufo8PBALy+XzhraCgIN4jAQCSUNwDVFFRoe985zuaOXOmysrK9Ne//lWXL1/WBx980O/x1dXVCgaD4a2trS3eIwEAklDCPx2QmZmpp59+Wi0tLf3u93q98nq9iR4DAJBkEv73gK5cuaIzZ84oLy8v0U8FABhC4h6gV199VQ0NDTp79qz++c9/asmSJRo+fLhefPHFeD8VAGAIi/u34M6fP68XX3xRly5d0tixY/Xss8+qqalJY8eOjfdTAQCGMBYjhdrb22M6L5n/rpfH47EeIe5+/OMfR31Osi96mor/nvA/LEYKAEhKBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJFiOFrl27FtN5o0ePjvMk/aupqYn6nMrKygRMMvQk2X/ed2Ex0tTGYqQAgKREgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEyOsB4C9LVu2xHReIBCI+hxWtgZwG3dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJj3POWQ9xp1AoJJ/PZz0GkBKS7D/vu3g8HusRkEDBYFAZGRkD7ucOCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcJ6AAAPpry83HoEIK64AwIAmCBAAAATUQfo8OHDWrhwofLz8+XxeLR3796I/c45bdq0SXl5eUpLS1NpaalOnz4dr3kBACki6gB1d3dr1qxZ2rZtW7/7t27dqrfffls1NTU6cuSIHn/8cZWVlamnp+ehhwUApI6oP4RQUVGhioqKfvc55/TWW2/ppz/9qRYtWiRJeuedd5Sbm6u9e/dqxYoVDzctACBlxPU9oNbWVnV0dKi0tDT8mM/nU1FRkRobG/s9p7e3V6FQKGIDAKS+uAaoo6NDkpSbmxvxeG5ubnjfFwUCAfl8vvBWUFAQz5EAAEnK/FNw1dXVCgaD4a2trc16JADAIIhrgPx+vySps7Mz4vHOzs7wvi/yer3KyMiI2AAAqS+uASosLJTf71ddXV34sVAopCNHjqi4uDieTwUAGOKi/hTclStX1NLSEv66tbVVJ06cUFZWlsaPH6/169frF7/4hZ566ikVFhbqjTfeUH5+vhYvXhzPuQEAQ1zUATp69KheeOGF8NcbN26UJK1cuVK1tbV6/fXX1d3drTVr1ujy5ct69tlndeDAAY0ePTp+UwMAhjyPc85ZD3GnUCgkn89nPQaQdNrb26M+Z6D3XpOFx+OxHgEJFAwG7/m+vvmn4AAAjyYCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYiPrHMQB4eOXl5VGfk+wrW9fU1FiPgCGGOyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwITHOeesh7hTKBSSz+ezHgN4YLEsLLpr166oz8nMzIz6nMHk8XisR0CSCQaDysjIGHA/d0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIkR1gMAyYSFRW+pqamxHgGPAO6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATLEaKpBfLAqHbt2+P6bkmTpwY03nJKtZFRSsrK+M8CXA37oAAACYIEADARNQBOnz4sBYuXKj8/Hx5PB7t3bs3Yv+qVavk8Xgitli+hQIASG1RB6i7u1uzZs3Stm3bBjymvLxc7e3t4S2WH9gFAEhtUX8IoaKiQhUVFfc8xuv1yu/3xzwUACD1JeQ9oPr6euXk5Gjq1KmqrKzUpUuXBjy2t7dXoVAoYgMApL64B6i8vFzvvPOO6urq9Ktf/UoNDQ2qqKjQzZs3+z0+EAjI5/OFt4KCgniPBABIQnH/e0ArVqwI/3rGjBmaOXOmJk+erPr6es2fP/+u46urq7Vx48bw16FQiAgBwCMg4R/DnjRpkrKzs9XS0tLvfq/Xq4yMjIgNAJD6Eh6g8+fP69KlS8rLy0v0UwEAhpCovwV35cqViLuZ1tZWnThxQllZWcrKytKWLVu0bNky+f1+nTlzRq+//rqmTJmisrKyuA4OABjaog7Q0aNH9cILL4S/vv3+zcqVK7V9+3adPHlSf/rTn3T58mXl5+drwYIF+vnPfy6v1xu/qQEAQ57HOeesh7hTKBSSz+ezHgMJEsuqGLH8RebMzMyoz0l2sSwsyqKisBQMBu/5vj5rwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBE3H8kNx4drGwdO1a2BrgDAgAYIUAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMsBgpYlpUVErNhUVZJBQYPNwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmWIw0xcSysGgsi4pKyb2waCyLikosLAoMJu6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATHuecsx7iTqFQSD6fz3qMIau9vT3qc/x+fwImiZ9YFhZlUdFbYlmcVpK2b98e9TkTJ06M6bmidfbs2ajP2bJlS0zPVVtbG9N5uCUYDCojI2PA/dwBAQBMECAAgImoAhQIBDRnzhylp6crJydHixcvVnNzc8QxPT09qqqq0pgxY/TEE09o2bJl6uzsjOvQAIChL6oANTQ0qKqqSk1NTTp48KBu3LihBQsWqLu7O3zMhg0b9OGHH2r37t1qaGjQhQsXtHTp0rgPDgAY2qL6iagHDhyI+Lq2tlY5OTk6duyYSkpKFAwG9cc//lE7d+7UN7/5TUnSjh079OUvf1lNTU36+te/Hr/JAQBD2kO9BxQMBiVJWVlZkqRjx47pxo0bKi0tDR8zbdo0jR8/Xo2Njf3+Hr29vQqFQhEbACD1xRygvr4+rV+/XvPmzdP06dMlSR0dHRo1apQyMzMjjs3NzVVHR0e/v08gEJDP5wtvBQUFsY4EABhCYg5QVVWVTp06pffee++hBqiurlYwGAxvbW1tD/X7AQCGhqjeA7pt3bp12r9/vw4fPqxx48aFH/f7/bp+/bouX74ccRfU2dk54F929Hq98nq9sYwBABjCoroDcs5p3bp12rNnjw4dOqTCwsKI/bNnz9bIkSNVV1cXfqy5uVnnzp1TcXFxfCYGAKSEqO6AqqqqtHPnTu3bt0/p6enh93V8Pp/S0tLk8/n08ssva+PGjcrKylJGRoZeeeUVFRcX8wk4AECEqAJ0e32o559/PuLxHTt2aNWqVZKk3/72txo2bJiWLVum3t5elZWV6fe//31chgUApA4WI00xSfavE0gKPT09MZ2XlpYW50keLSxGCgBISgQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAR009ERfKKZdXf0aNHJ2ASIHnU1tZaj4B+cAcEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJhgMdIUs2XLlqjPCQQCCZgEj5qampqoz6msrEzAJBgquAMCAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEx4nHPOeog7hUIh+Xw+6zEAAA8pGAwqIyNjwP3cAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATUQUoEAhozpw5Sk9PV05OjhYvXqzm5uaIY55//nl5PJ6Ibe3atXEdGgAw9EUVoIaGBlVVVampqUkHDx7UjRs3tGDBAnV3d0cct3r1arW3t4e3rVu3xnVoAMDQNyKagw8cOBDxdW1trXJycnTs2DGVlJSEH3/sscfk9/vjMyEAICU91HtAwWBQkpSVlRXx+Lvvvqvs7GxNnz5d1dXVunr16oC/R29vr0KhUMQGAHgEuBjdvHnTffvb33bz5s2LePwPf/iDO3DggDt58qT785//7J588km3ZMmSAX+fzZs3O0lsbGxsbCm2BYPBe3Yk5gCtXbvWTZgwwbW1td3zuLq6OifJtbS09Lu/p6fHBYPB8NbW1mZ+0djY2NjYHn67X4Cieg/otnXr1mn//v06fPiwxo0bd89ji4qKJEktLS2aPHnyXfu9Xq+8Xm8sYwAAhrCoAuSc0yuvvKI9e/aovr5ehYWF9z3nxIkTkqS8vLyYBgQApKaoAlRVVaWdO3dq3759Sk9PV0dHhyTJ5/MpLS1NZ86c0c6dO/Wtb31LY8aM0cmTJ7VhwwaVlJRo5syZCfkHAAAMUdG876MBvs+3Y8cO55xz586dcyUlJS4rK8t5vV43ZcoU99prr933+4B3CgaD5t+3ZGNjY2N7+O1+f/Z7/j8sSSMUCsnn81mPAQB4SMFgUBkZGQPuZy04AIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJpAuQc856BABAHNzvz/OkC1BXV5f1CACAOLjfn+cel2S3HH19fbpw4YLS09Pl8Xgi9oVCIRUUFKitrU0ZGRlGE9rjOtzCdbiF63AL1+GWZLgOzjl1dXUpPz9fw4YNfJ8zYhBneiDDhg3TuHHj7nlMRkbGI/0Cu43rcAvX4Rauwy1ch1usr4PP57vvMUn3LTgAwKOBAAEATAypAHm9Xm3evFler9d6FFNch1u4DrdwHW7hOtwylK5D0n0IAQDwaBhSd0AAgNRBgAAAJggQAMAEAQIAmBgyAdq2bZsmTpyo0aNHq6ioSJ988on1SIPuzTfflMfjidimTZtmPVbCHT58WAsXLlR+fr48Ho/27t0bsd85p02bNikvL09paWkqLS3V6dOnbYZNoPtdh1WrVt31+igvL7cZNkECgYDmzJmj9PR05eTkaPHixWpubo44pqenR1VVVRozZoyeeOIJLVu2TJ2dnUYTJ8aDXIfnn3/+rtfD2rVrjSbu35AI0Pvvv6+NGzdq8+bN+vTTTzVr1iyVlZXp4sWL1qMNumeeeUbt7e3h7e9//7v1SAnX3d2tWbNmadu2bf3u37p1q95++23V1NToyJEjevzxx1VWVqaenp5BnjSx7ncdJKm8vDzi9bFr165BnDDxGhoaVFVVpaamJh08eFA3btzQggUL1N3dHT5mw4YN+vDDD7V79241NDTowoULWrp0qeHU8fcg10GSVq9eHfF62Lp1q9HEA3BDwNy5c11VVVX465s3b7r8/HwXCAQMpxp8mzdvdrNmzbIew5Qkt2fPnvDXfX19zu/3u1//+tfhxy5fvuy8Xq/btWuXwYSD44vXwTnnVq5c6RYtWmQyj5WLFy86Sa6hocE5d+vf/ciRI93u3bvDx/z73/92klxjY6PVmAn3xevgnHPf+MY33A9+8AO7oR5A0t8BXb9+XceOHVNpaWn4sWHDhqm0tFSNjY2Gk9k4ffq08vPzNWnSJL300ks6d+6c9UimWltb1dHREfH68Pl8KioqeiRfH/X19crJydHUqVNVWVmpS5cuWY+UUMFgUJKUlZUlSTp27Jhu3LgR8XqYNm2axo8fn9Kvhy9eh9veffddZWdna/r06aqurtbVq1ctxhtQ0i1G+kWff/65bt68qdzc3IjHc3Nz9Z///MdoKhtFRUWqra3V1KlT1d7eri1btui5557TqVOnlJ6ebj2eiY6ODknq9/Vxe9+jory8XEuXLlVhYaHOnDmjn/zkJ6qoqFBjY6OGDx9uPV7c9fX1af369Zo3b56mT58u6dbrYdSoUcrMzIw4NpVfD/1dB0n67ne/qwkTJig/P18nT57Uj370IzU3N+svf/mL4bSRkj5A+J+Kiorwr2fOnKmioiJNmDBBH3zwgV5++WXDyZAMVqxYEf71jBkzNHPmTE2ePFn19fWaP3++4WSJUVVVpVOnTj0S74Pey0DXYc2aNeFfz5gxQ3l5eZo/f77OnDmjyZMnD/aY/Ur6b8FlZ2dr+PDhd32KpbOzU36/32iq5JCZmamnn35aLS0t1qOYuf0a4PVxt0mTJik7OzslXx/r1q3T/v379fHHH0f8+Ba/36/r16/r8uXLEcen6uthoOvQn6KiIklKqtdD0gdo1KhRmj17turq6sKP9fX1qa6uTsXFxYaT2bty5YrOnDmjvLw861HMFBYWyu/3R7w+QqGQjhw58si/Ps6fP69Lly6l1OvDOad169Zpz549OnTokAoLCyP2z549WyNHjox4PTQ3N+vcuXMp9Xq433Xoz4kTJyQpuV4P1p+CeBDvvfee83q9rra21v3rX/9ya9ascZmZma6jo8N6tEH1wx/+0NXX17vW1lb3j3/8w5WWlrrs7Gx38eJF69ESqquryx0/ftwdP37cSXK/+c1v3PHjx91nn33mnHPul7/8pcvMzHT79u1zJ0+edIsWLXKFhYXu2rVrxpPH172uQ1dXl3v11VddY2Oja21tdR999JH76le/6p566inX09NjPXrcVFZWOp/P5+rr6117e3t4u3r1aviYtWvXuvHjx7tDhw65o0ePuuLiYldcXGw4dfzd7zq0tLS4n/3sZ+7o0aOutbXV7du3z02aNMmVlJQYTx5pSATIOed+97vfufHjx7tRo0a5uXPnuqamJuuRBt3y5ctdXl6eGzVqlHvyySfd8uXLXUtLi/VYCffxxx87SXdtK1eudM7d+ij2G2+84XJzc53X63Xz5893zc3NtkMnwL2uw9WrV92CBQvc2LFj3ciRI92ECRPc6tWrU+5/0vr755fkduzYET7m2rVr7vvf/7770pe+5B577DG3ZMkS197ebjd0AtzvOpw7d86VlJS4rKws5/V63ZQpU9xrr73mgsGg7eBfwI9jAACYSPr3gAAAqYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMPF/FQeeSN9YW+AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step\n", + "I think it's 2\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6." + ], + "metadata": { + "id": "mgrihPd61E8w" + } + }, + { + "cell_type": "code", + "source": [ + "model_lr1 = keras.models.load_model(\"best_model.keras\")\n", + "\n", + "model_lr1.summary()" + ], + "metadata": { + "id": "DblXqn3l1FL2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 209 + }, + "outputId": "26b7ca21-8bda-4673-e87c-62a050edde72" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_9\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_9\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_20 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_21 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_20 (Dense)                │ (None, 100)            │        78,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_21 (Dense)                │ (None, 10)             │         1,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,512\u001b[0m (310.60 KB)\n" + ], + "text/html": [ + "
 Total params: 79,512 (310.60 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
 Trainable params: 79,510 (310.59 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n" + ], + "text/html": [ + "
 Optimizer params: 2 (12.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X train:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "id": "0ki8fhJrEyEt", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7f68607f-562f-4d80-8aca-5aa6de683947" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (60000, 784)\n", + "Shape of transformed X train: (10000, 784)\n", + "Shape of transformed y train: (60000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_lr1.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "0Yj0fzLNE12k", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1e47e205-8f77-4a6f-eec3-dc6b004f76f6" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9474 - loss: 0.1746\n", + "Loss on test data: 0.18537543714046478\n", + "Accuracy on test data: 0.9453999996185303\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:\n", + "### - количество настраиваемых параметров в сети\n", + "### - количество эпох обучения\n", + "### - качество классификации тестовой выборки.\n", + "### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений. " + ], + "metadata": { + "id": "MsM3ew3d1FYq" + } + }, + { + "cell_type": "markdown", + "source": [ + "Таблица1:" + ], + "metadata": { + "id": "xxFO4CXbIG88" + } + }, + { + "cell_type": "markdown", + "source": [ + "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", + "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", + "| Сверточная | 34 826 | 15 | accuracy:0.988 ; loss:0.036 |\n", + "| Полносвязная | 79,512 | 50 | accuracy:0.9454 ; loss:0.185 |\n" + ], + "metadata": { + "id": "xvoivjuNFlEf" + } + }, + { + "cell_type": "markdown", + "source": [ + "#####По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества." + ], + "metadata": { + "id": "YctF8h_sIB-P" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Задание 2" + ], + "metadata": { + "id": "wCLHZPGB1F1y" + } + }, + { + "cell_type": "markdown", + "source": [ + "### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. \n", + "### При этом:\n", + "### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000\n", + "### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов\n", + "### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. " + ], + "metadata": { + "id": "DUOYls124TT8" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." + ], + "metadata": { + "id": "XDStuSpEJa8o" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка датасета\n", + "from keras.datasets import cifar10\n", + "\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ], + "metadata": { + "id": "y0qK7eKL4Tjy", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "be86c640-a56d-4856-852b-7e0ebf26aaaa" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", + "\u001b[1m170498071/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=15, где k=4 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "wTHiBy-ZJ5oh" + } + }, + { + "cell_type": "code", + "source": [ + "# создание своего разбиения датасета\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 50000,\n", + " random_state = 15)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ], + "metadata": { + "id": "DlnFbQogKD2v", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a87bf7a7-68ed-401e-a39e-a08d63fbd809" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of X train: (50000, 32, 32, 3)\n", + "Shape of y train: (50000, 1)\n", + "Shape of X test: (10000, 32, 32, 3)\n", + "Shape of y test: (10000, 1)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Вывели 25 изображений из обучающей выборки с подписью классов." + ], + "metadata": { + "id": "pj3bMaz1KZ3a" + } + }, + { + "cell_type": "code", + "source": [ + "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", + " 'dog', 'frog', 'horse', 'ship', 'truck']\n", + "\n", + "plt.figure(figsize=(10,10))\n", + "for i in range(25):\n", + " plt.subplot(5,5,i+1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " plt.grid(False)\n", + " plt.imshow(X_train[i])\n", + " plt.xlabel(class_names[y_train[i][0]])\n", + "plt.show()" + ], + "metadata": { + "id": "TW8D67KEKhVE", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 826 + }, + "outputId": "670357d5-a937-414e-e95d-ecbad3b416e6" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XeUZNd53gu/J1aurs7TkzEBwACDQSYJAiAYRVJikBVI2/ws6V4qLMkyqbBEai2KErlk388WJUrXsixL5JWoz7JN6VJmkChSYAQRiIxBnJxnumc6d1euk74/uqe7n2cfzEyTNd0k9f7WwsK8XVVn77PPDudUPc9+rSRJElEURVEURVEUReki9npXQFEURVEURVGUHzz0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK13Gv5E1xHMvo6KiUSiWxLOtq10n5PiBJEqlWq7Jx40ax7av7vKr9T2HWsv+JaB9UEO1/ynqja7Cynqym/13Rg8bo6Khs2bKlK5VTfrA4c+aMbN68+aqWof1PeTnWov+JaB9U0tH+p6w3ugYr68mV9L8retAolUoiIvKf/vT/J9lcXkRE/vJP/xDeMz9xFmLbNQ/NTz2JYFLydieA2POLEN9y86sgvvnWO40y5pstOmYH4k4YQxwG+LrjYB2jOMI6x2Yi9bm5OTqGA3E2l4U4pmNybKUo2jh/eyz4maCD5y0WnifXKZcpGWXU6TyCoAnx2NjyNY7CUJ56+GtLfeNqcrGM7ZsGlvpQEIbwHkvwWxbPN9swn/UhDgLsb3RIo39mfezTbsbs4xYVy+0uNAbabbyOnQArUcp7dEDzvKIEz31yogoxn+fMDF7nfAb750BfwSijHWB/mprFMhLqoFk6Jl0eKZYyRhk9ZfyMR00XBMtlRFEsBw6OrUn/E1nug6+440Zx3YWK5bI5eI/r4rWanJgxjnN+YhLiwf4eiPt6eyHGVhfJ+NhuBw8fNsrwMliP4eF+iC3q1/VaHeIGzaHZHF6IfNHsH76DbSEWlhHT2OJvRbMZHJtuSj9vNnA+mpmbh3hocAiPmcW2qjfw/e0WVUpEPFq3HBfr6TgLbRuGoXztm0+sef975zvfLp7npb7H+LtlrlUeDyoemAm+btkYxy4eM+27bYfmI76SMXXqhN7PX5jzfYNlm6XyvGvbfJ5Iu4193LHxvHjOTKsHz3kxnVi7jfcWLvUtO+U84pjrgcdYuc4FQSCf/ew/rOka/COfeFC8/MJ9WUzziPlLh3l+Cc1oRhdNeMajay98D5kC3yxZ3L8o5s/T63ydOU7jsmUkfM93eYxyuZ48lC9zPB4zIiKejf3eTnCO9Nzle/JOoyZ/+1N3X1H/u6IHjYuNls3lJZdfeNBweEKmQWjzDZZc/kHDdrDx+SbN83ExytJCLyLS5tamCccKsAyu03fyoOH5NGlRvf3M5R40+KY57UEDzytOeJHkTnjpBw2uk4hIx+eHFawn30iJpE0u3ediGbZtL10vY/Ghocr9UcS8tnFE/ZE+wv2TP8+xSNqDBi+SGIcOlRFfpoyUccUzDLcNL2jGJGhdvu34T5e77nwzcLmbB5G09sXXeRG+knp0i4vluK6z9KDBNw7GTeoVzIH8Hj4mL7uexzcrl2/Hi/W9CD9ocB0u18/5eCIiLp8rP2jQ+y0aKHxeaQ8agcv1pPWBrwcfk16PXLM/8bk5Lp87HmOt+5/neS/7oOHT+shrwMLnecn/wXzQ4L5h3M/SDS0/aKRd19U+aPDr5oOG2cf5GFzztHqt5Rrs5Yvi5RduLLvzoEFX5rIPGpe+rgt//H580Lj8MS//oEHxZY6ZNo48m7545wcNz3youJL+p2ZwRVEURVEURVG6zhX9orH05nxB3PzCz+YDw6jJGj2JP+H7KU99Ln07smHzJogHhlAD2FsZgbi/fwPEZ0fHjTLaYRvick8FX2/ht/YRfYPgeygLiCP61sL4JSHl500Lv1lq1FGawD/rZrP468L5C+eNMmzjG0D+5omeZum8IvrGplykb79EZPPWnRBXqyj9yKz4BSnotOXxB/7JOMbVpN0Jl74F6pDOKUtykbSneeNbLPrWtNXGY/IRwpC+2aBffERE8kWqB42DDskDwwBfj6i/8XkWM+a3mfQjiORyKBnhvpEv4C+BGQengXLJ/LUrruK44m9+w5C+oeEvSqkdotC8PiHJs7L07WszXG67KDK/rV0bbLn4/YxH7ZbxWf6Tcq2o3nxt+JvYgKSfTZq/0iQe5RLOYSyNc6ld2008hu9iHW0H69jpNIwyeSXJ0DzKShaeV6OYvzU059mEdRYUdqiteK7msZf2xaRLvxbwLwAXfzmN7ct/A3k1sCwLfuFdifnNq/n5hL4Rdh3ss7kcfmPp+dgesXXpb+1FRGKSf4YkIeJrG4YsX7607InXNhHzl+Ir+cxK+NfSKzFXX+4XDD5GSHP5lZRhXuOV0dqbspvVioRhWUREghjLjywcK2l9wzJ+sbjcrwUsM/gOvhvnX8j456/LvM73DWkjnxUVl68S/7IT8xsMDDUN/yLRhV80XAcl0Y6FfdZf8YtG0Ljyc9ZfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqjwaQVvkojS7WMJtGXMF3Io2V8RYRGTr1u0QD2/YSsfAY7Jme3p2CmLHMatfyKM22KIdnZII9aA2ieFc0t52Ivx8zHugikjQxm0Xkwj17H19uL0k65Hnq7MQT09PGGXk8qir73HLEHsWamm53g5pcdtN9I2IiGRsbM9rd+6GOJu5YenfzWZD/vZTf2Ic42oSxpHYi9pG18Nn5GyWdphJkQ8G7ctoZEkDnsvwLjd00JSdcVgX2aAtORPSmMYJ75RDu2qQXpR16CIiLm9ZSefBmtMybUeX0BhpBNh/RUSaweX17SvhbUHZi9JsmmWQHFzytJ1wp71ie9uUHajWAtfzlnaPYdm3T7uy+SlbfPPfHN7Vh84rpF3y2u0a1ielo/f04NyQ8XDsd8hTxmXybn4ObRXdCc25g3X2vL2xbWPb2NRH27zNeOpOJrybGvnU6DMBeQUcmt+4ziIitSb6T/yQruliWwaRuQ6sBUmSvOyuN+zXyeTNbYhzxQrEvb0DEA8O8BbBl962OMODVkQ6NLbnZ2Yhth0cODOz0xBPTeE6z94G3rVRRMSxeByRz4jmep+9JzQH2pY5drkeLfJLmTtGId/J7kXMSl9hlLL+XG163XHxvYUxQsupBC72t8Qz+x9NZ8ZOSXHCOz6xD4a9DCm7cHFs7DrFuzdxuDrvTdox2BPEV9rlNZpeT+sZ5q5TGJr+qZSDrCzTTlmfbNxe3Yppi2Yvv3z8Vfgk9RcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj0anHYmzmL17+3bMudCYOgfxNOVgEBHp6RmEOJtFT8a5c6MQ53Ko8+3r66MjpmnlULhWq6Gmmfff59eNLKSkb48iUx+ayaAGmrWcbdpHnDNqGtky0zKf0nkVS+SBMfRyWEaePB5RZO6/3yLfRrOBeuWNG7Yv/buRMfNwXG1cZzkzOOeKyJJnI07RUHdo737elz+bweGQZW06XfowRZNLiTVlw/BG/Az1jfFJ1Cc3Wqhvzkse4iRFn5y/jM7fyDlBWs5CHvXKbsqlZV0rZxvnHCMsIOVsxq5rjt08XVNOR75Shr32O8gvUOzJLuVWsGj+8QvsITA/z7mEYiHdd4fylZD/plbD1zl3h4iIn8M+0+6Qxp3Eu5yDgK9VsYTHm5szxb8B5S+KKPNt1qX5h7TWIZ23lzFzufA+8pwlmLX7nP+D1wv2xyz8EcOgw76uhf+nrQNrgeO4Sx4hrgP7DjZswLlHRGR4BHNVlYro58nlcF0pkPeS+zRnY1+oGF7bZgV9ILaD9R5uoi9kdBTvA8bHMV/WfHXeKJK1+5fzSzA8n6XBx+Q12cg8f5k+kpZRmcu4VJnficfju+XgN/+7OP7CPN2k6+z2YJ6zfff9qPH5lov9KSRPRkzeGL6KV5JBm+FraxyB0/Ncpl3TM2FfOocN5+ziqYnPKzU/DfUnI4e6zV4UrifP+ym57vgz1P88b0X/CzSPhqIoiqIoiqIo64g+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSdVZnBoyhZMn329aGBK5dHU9nE8SPG54eGKHmZoBF200Y0r5XLmDyEk3Q1yKwsYibRcRxKgEamscmpSYjZC1OpYB3abTy+iGnY6pCxkfzmkiVjdjZLxscUjw0bzdgYWadC+LzDEOuY8cl4KyIZSs509tw5esdyma1WU9aaJLEkWTSPRWSqtsnI7bmm0ZOT6IRkWA1jNv7jMVpNNNDHaab9BNt1aGAzxNfuxOSN+RyWcfD4GMQPPvoMxG5ifjfgkFE7JqN/xkg8SMY0bqrYPC/uL3EO2zIwksDh6zm6PuWyafYt5LEiEZl7/RXJ6aJUQ97VZ3BTIn5mob05AZzrkGH+nHmtOM9gtsjXAuNSGc3e45PYJvkizk8iIiH1wbn5OYg5v2NMps44Q+OETIOFIiZ8FBHhqdimBKGtJvaPkDZrsCnxoOOZbcfjlxMJhmyOpgSKvF74KYbzi0b/i1jktb94fSxZn4R9rU5ryWjP/S9DbV4smNcpm8G+wf2NDfWczJMT+PG6JGIm8nIdrgcekzcqKVEy4HweDcRHjhw2ymy2cSMT3jQjCjGmPV7EIhMyzz0i5iYK2RzWm621oVEmJZTsmBuyMDwKVm4mEq1D0sjG2IQ4i7uF+D5txtCgFpgzk7IW+jdB3KRNREK6JeWEfja3csoyYPNnVmsGp5evZKUxkjHSURzqcC4bt/nzKYXGdO8aURmGOdxIVIiv8yYgIiKeg/d1Ft0j+d5yKZZ35Rsu6C8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXWdVHo1mq7mkmcuSbtL1UPuZyRaMz8/OoSeDNY4bhjDhS76A+uPp+VmukFFGu4063BzrKFmnz1rO+DJazpRHs04H61GlhEID/ZiwKIlYB0t69xTtZZu8J1GA+k5O1sRJ2xzS0gahWUa9iW3HCV/mq8uvt9fBo7ES1hu6lAEnDk39YEzCx0aLrj21u1MkrSdp27M5bPOFeuAxH3/scYj3P40HuXYHalZf/crrML7tJyB+6IkXjTKffuEoxBElJqyUcWx6pH+fn8frzknKREQ6LdInU8K9gQp6tAJq/lwW9ePs2RAxNaUtqsfKZHdWmoh1DSj3+pLJLtS9t4xzYH0WT7pUSkmml8F6+2SYyGawTw0M4Nxx/Cj6ptI08j1lSpBm4xwYR+iXCDrnIY5Il98KUGt97TWY9E1EpFbFMkZHMWFrHJAG2cW26unBPprzzfNyYvadYT0tmgMc0iB32jg2vZw5R4SC82qWfBzhYsdmffRaEcfxkv+J/RVZY801F6tOG68lt5HwephhQw954ZyUWwg+ps/eN0rESR/3yQ+2aSP63Obm0HMkInLm7AmIWSPPyck45j7P62daRbmMhG4OEvZJ0rqf6jOzuG3IP7XiGJzAbS0o5iviLN7rZSy8J2mEOK/UJieMz28cuhZimxq1Q4tsQq+bCfvM62Sk6bxMIjvjiGnX/lIFXMFnHFovzYR9fEDzGDF5MY2kp3zPZ1/a/5d2L+vYuP7YdMzMCt+b45r3Py+H/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdVbl0Wi32iLWgoZuy7YReO21992H7yUdsIiZy+G6a2+EuFisQDwzOwvx7NQUxLyv8MIxUDfdJk2qR14Gn/YVj0j3yPkAOE+HiKkV5r3IgxB1v7l8Hj9PZbY7ZtvxnvA52nvcMvZpxktbJE8Nn5eIyPQs6qr5vNq55f3Q21ewB3jXsWRJzMjyVrKsSDswRY410mi3yUiQ5X2hbTz/TAY19ynyeMln8Y/5HMazM9gfz0/MQvzwI89C/H/89Dsg/o33/5RR5l/+9y9C/D8/8zWII+p/Du0Zb3SFlFwdiYV9sr/n0vrMiTnSD1MhqZpW2kvcz1A9VhySdbdrReyFEi+eeos6nU3f2xRyZi4XHpeR0QykZ+9c6lURW0ydtmdjHyuXsUzbx36cRDiXiKBnh3XUPSUzB49tY1ucPoP16ilXsEwXXy/k6NqnXN+ePB6j3cLGaSZ43vki5fJo4bw7ssnMM8E653YbzyuxFvpxbF35HvLdxPd98byFDpjPoyejVMLziVN8eLV59A9aNC4t8jSyFzBoY5u7RhIekQz1L87pZJHWPKG9+oMA653LY3/buhU9GyIis7PoB6g3MK8UlxHSwDLzZqTkSKJFx1j3aSwHtK5zO7iOOc+2yQ9FqXkg90FaHoSrTba/IO6ih6Yzid4ucfA6jZ9/wfj8Nfv2QBx7OCYTufS64vB8Z6V4NDiPBt0bsReQvTZp90arhfNq8LX3HK7TpT8vYuaCiYU9G5THifwuxpppmzcwnqAnzY7xeqyst5XSf18O/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKoxEmkTiLWkbek/eGG/dCfGESc2aIiIQkSN6xA3MGTNFnEtKkZUn7aadoFF1Df4xlFmjv+8z4BYjna1WIB4cGIeZ8FSIizSbWI0O+j5A0p+0O6jBtOqapehVxWABKfpcwwmO2WM9HZablOQkC/EyrjX6Uldecr/9a0Gi2l/SXnota4mYb26MZmPpkzi/h0/7uhTz2Hd+jNqdTTknVIbUqlktbwkull3Ja0D70xXIfxM89dwRixzO1wz/9L38E4onpOsQPP/YkxDnSw7PXKZuS48Ii34ZLnZS9Arz/O2ugwxQdbIY0o3nK99Fprmjb9UljIEl5XpJF70VA7ebnUN/qj5rnyFpdp4D9pX8bauJr02fwAB6OyWtvxzwsIiLFAua4iUmfnsljPeMOzj9hA+eGmTr2p6PHThll+h4eo9KHY2njFixzZgZ9IK051Mx3KB+SiIhTwv4Qsp49g52idxjHmks5S4Y39BhltGJsuzMn0dNQqiycR9BZn+/okiRZ0m8b++KT9jwITK+fTd6SRgPXOx7XkpCGnnOwmJZFcWlwulme8yh3Aq9l5CljvTp7QETMnFy1Op4X6+5NfwXlYEnJDxKwEZAwvAE0P7gWe1XMY4TsAwlevi264SVYLb0bt4iXXWjrc+cPwmu5Eo6n6tSoeYAO5kBxe3G982JaZyi/iS2Xb0P2qxoejcvk4ohj8nCwXyKlTPZD8DG5bzgcy2XKFJGYPsNXP+YbFG4cOmaScv/s0Nj0QhwHK+9nrFXYdPUXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKo9GK+hIsqhdTEgf6Lqom9y6aYfx+UK5DHGD8kXUSQvMG1NnM6jz9TzTL8HayoT0n/ksajlLtBf53PwsxCHpmx338vv3s17PIeFrzPp10tIOVLCdRET6eisQT8/gvuGzM5gDIwhQ42xxO5QHjDIcat8NIxuwDv29S/9utVDLvBZEUbysdWS9IV0nK0XjyHu+ez7rcrGNPJevPeU4SEw3DefvaLdIr+xjGXNV1BJXelDnevI8asSPff4Zo8w7bkWf0b9+15shPnjkRYgT0mlHIZ5X3rTviEX7m9ebqJ3lts1RPpFOSPrSyPTQJDF+JmjzvuDL9bTXyaPRX9gr2dzCXMd7jnuUWCXeih4CEZGTx7BP5bMoct+zD+fNx792COLN12yBeO+rtxtlRHRtfBvn5nAe6zmVo36fZ0096qpnJmeNMnsr+JmhSi/EPT6W2VMmTX0D55Nzo6bH79wFrEeGPBZF8sjk6bwb5BOamsGxJyJiZ1B4PD+L9RoeWBgcHXd9OuBKnwDnfGJtek/ZzBNiC3v72FtFe/PT2hSwDyHFLNWmMtiv5WbJE0S+D/Ybshfz4viDv5EvstnE6+bSus3HtDh/TYr/gdub7z9Yd5+h/tih+50a3+/IQp6Ulbg0p6zMC7YeHo2BTdvEzy2MgbNP4PnblEejUzPHV20CfRuDG3ZB3KZlwSFfpcUGiRSfQULXMhb2R/Bn2KPBZVKRKcYQo178GSMvEK1t/PmU/CAptzQA+4y45lyF6AoWUbaprrQTJ5dOeYJlX/lbFUVRFEVRFEVRrgx90FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6Ner0uQbSoCyS9l+eiYGtgwPQAhCQyO3P8GMSNBmoWed9p1kQWCrjH98IxahDHpP9MaM/4nEe5E0i/165hnRJj92KzXqZ2Fhsr56M+2aH8AZt3bzTKmJuZgvjYWdTd5wro6+j3z0Ncb2Lbbxq52SjDon3Zc5QEwlmhh3QMzeHVx3HtFW2J55OnHBhOy9zkuUradYv25PYpR4VLe0pbpPEWy/Ro+JnLaH9Jc8pJU06OnoZ4bAp1rtuvucYos0m+EDfBPj88hFrt+Sr6eTpN8k/Epn/C87CP1ukz7QDHRSGPY4LTwBQLpsAzn8O2ajawvZMV1zxtHK4F20v3SD6/MH4zWczJE8yj/niijmNURKRNIuTeGH0Gwz3XQ9yawzly554b8P29mItIRCTMYd8PGpSbw2V/DfaHnkE8rz23Y46k6Ul8v4iZZ6WQw7m5dR7zgdRPY9v02FRH31yaWJK+aQuOhd4hXHPokNJTwLncMqX+4lA/3ziAY8eJncX/r2IT+S4Sy/L++VGEDcIesmoVPS0iIkEL26BUxGsddcgn1cLYpjkwRSIvQUhrrkXeBsF1Jaa5vN3Gz7tUSC5l3ffIe9nq4PXxKT+DTfp0h6X/KYJ4j7yWFnkxM5QPy6LcQo06ek84D4yIiE/9z6Z7g5X5FdJyLVxtBjdukUxhoc84Oeo75BFw6fxFRCZPY+6NTbtxPsv7lIuIpgHjjL0M/0VCujlt0XJm+ikuncOC3+0ZHg8RSpli+jponU/Y52HcTpn3V3zuhg+V6sBjk4vkvBwLZdC9BB1j5e1y2vz5cugvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6qzODN+vSWTSDsRmYzaKlHjQKiYicGxuHOCTDLiegiR1O2EVGtQ4muxIRmZ7A5GVnR09hPcmIPTA0DPF1u3ZD3GqhYStKMTiVSmgYzOXYrIZtlc9gRrThIUyMJ5ZpdB1/6SsQD8bnID45gabhW/ZiPWdLaJTce+MtRhnnL4xBzEmLPGfZ7BbZq8jW0iUsaznpjJF0h3xRuZzZtetNNBlyzjg2dEX0B483QDB9aOJE6PoKOngdWk08ZrZIZr8YC2k2ZiG2HdOAHseUYI1M/NksGuzquF+C0MvSbJhl5OhcHUpYxm3p0eUpFPEPfkr3YYMmZ+WrVlcmK1sfM3g9mJd4MWmaRSfRaOO1zhYwaZ2IyPDGEYjn5nGTh+kZnBMbNTzPcgXHcb1jflfUIpNpHOI8afdhu4ZZHBfSg5/Pb8fznKmayfTmj81iGTnsQxMncW45dRzN4S5typEvmklLvQJt+OBjp7M9TNJWm8PrUa7g3F9IuT4OJbnr2YBzddxYGAgrE6etJUGSLGXuisj9OV+dhXhuetL4fJGS5bk2jSMycjsRmd5pbUtosxUREc5jGtH85AfYpg5PpLRhRruFyWcLJTMR4Y233YmfoXn0xBE0IbcbuF5y4sFMJmWepT8FEY69Tgf7Yxxjf4xoA4F8AfujiEhCa04c8f2G9TL/Xhv6BgYluzg2+4ZwLhsbww1oSgUz8+uFU0cgfvGRr0Jc7qngMYq4OOUKeF/p5c37TI82xumtDEHcjnjOpHa8jMneS0lSaRvJ8uh1KjLiIi+dQ1BEzA1VOKefS2sy3yqwCT5KSQoY09hz6LxW5sW0zaH/sugvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6NMAzEWhR+2eTRcCnm5EEiImGAGsYS6e3YczEzhxrTZg21mvW5WaMMO0SdYORgGSdPo1Z4ZhY10vv23QHx4CDq++ar80aZ1SqK3vOZl0+yIyJSyKN2cWgIyzh2wEz0NRKj9+TVe1Cr/eA4CuY6LWz/Yj8mxrFZRC/muWUyqJ0NVuiSg84qBHpdIkmWc9JwSrmQTAIF38wm43soWgxJotgJ2JPCCbESet3067QpA59FPqOMj+0ektfApsxRjo/xwUPPGmXu2Y5ac9uhxFE2aWVDej1B7XC7mXJebU5qhK+7NN4LPTgGOJlT0DE9FlFIbUPy8JV+F/YPrRUvnf+aZBZ17vksaoFj8ku4JdOIUt6I/XT6RdT6Hz+InrK5GUy61pxHf8TRR3G+ExHJBzhPSgPn1SIlocuxd2kex/3E0ycgPnD/U0aZnXnUvMchnleNvEnTDXx9sB/LLKckjWwn2KcGN22BuFDCuT7rYj/OkSQ+kzN9IImDmvCQdM7zcwu6+3aw9vOfyII35GLfr1apzQM839q8mVix4+MJXfQbXaRIa5PDYvF2jUJTm26TXzOmdT4q4rX3aZ2xaGxH5BuJUjT0196ICWj37N0H8QvP7Yf4maeegbhTxzEyNYkeSBGRVh3HnkNeypDnJNLA87zMydFERFotrIfvYaddmWMtJd/aVSdfKEhu0Xuxdft2eO30MUwuWiqb4yugcfPSU49AzPM6r9mlHjxmvoQJT0VEegcGIX7rO34U6+DjZ7jMhMwQxlqX4o25XHo9m0waMVtMV2cTWSjTyP1LiQY5JyDF7EFdqAclKbbY97H8emTamF4W/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKo5EEgSTWgjCLNfoWa9BSNNTsVajV6xA3m6hPbDbo9RbGEWuRRaTQRJ1gX38F4pfmsIx8MAHx0edmIb7rte+GeGDrTqPMc2dRzxnwXuTUNrwPeIbyHoxNYL4REZHqKOpa+wqo3R6h/banm1shvn7brRDPTJn6Xd4bPqJjdjpB6r/XiiSOl4SGcRjRaygYrLdSNNQWezBIj0gax07AwkkMvVzKftoOH4M+Q16mhPdJJ92jbbMO2Ny/f2x8FGKLyugE6FeJLaxUp0P71gfmeTWNvAFY774e1BK7pAWPWpQTA4eyiIjYFh7TJY9MqbQ8TtYrj8aZ88fFW9xjP+Ojnj1HOQosx6zjnINt34xxDjt87Hl6fRZiLzwOcXTS9DJkKNfBxHmcT07vx7mjVMZ6787j/vjhBL6/NzDH/iTtv35hDsdfvY1tEZCnitIeSCFrJqmp05ozOn6WKoH+ikKMy1uHxlrvVjxPEZEyacAbIXbU8qaKiIi0MEXCmmHb9pLeu9HASvguXkfOnyMiMjeDvscTR3G9LBdwbdpz7S6Ih3uwjJg8GyKmbt7ZgGtRnNDc3cG5IkP5aXIZ7M9exjwvh9bQPOVcedV990G8dddeiOs1vC84dsT0wj3wlc9BHNH9i+3ieXRojYpJ/x4E5tgVG49hU5wknRX/vgIhf5fJ+47kFue/Hdu3wWtPWHg+UUr1HMpjViEbm3nfyEZKnANmzp02yjjxzGMQ33Et9r8N1+G9kEUJJxzyr3L+ttRcVnyyNJ/xR7hpOEdGmkkjTtj3QX5Oi+uF74+pkCBlDeW24HRl1orrlawilZr+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXRqM7NiruohbRi1B/yPsEsPRcRcRx8Tz6HWstScTPE/b2o9fRdrG4hY2rlDtyPe77vKaP28tQwCstuH0LN4JFT+PljRzCnxb2vfatRprMVjxkGWGYUonbR9vj9qHludUwd/umwD+JkDPV5pYHtEG/ccTvE89VZiKemUKsrIhIKeRjoMdRbsT96FK2q63SFUj67pEt0bNQbRqQ/dD2zb+SLnD8CO6nv4zm1yLvQYSGlbZZhk9i83aZjkMY0m6V2ZK1nQhchZfPqY8cxx0oQoc7apXwCHo1Dm3Pe8AbdYu5d75Ee3CIxZ3WWzjOH5+lnU/aQb1DegwzlQoF6rcMm8iLSaLbFjRbOtVbFcZunc7Qcs47zM3iO8w3UuM810A8xPID69Pg0eqvaKV6XiQb6PiZmcf//CzN4jNw89Smer+ja5zzz2rmc/8X4CgvPO6R+Xgvx83OJmQcnGcD1YmTPBogzNq4XFvm2ShnMN9NTHjbK4KEw1MF8RdaiSLnZWB+ThmVZYl3U+vOe9zQmcllKHCIicQF9RS8+h+vbS1MHIW5S/9y3G9u8PYceRxGRSgXbbKqK/WmOvJe7tuD7r79uN8ReBs+jXMbrKCKSJ1+HxZmWLBybmRy2Q2Rh37rvjT9klEHpPuSf/v7zEAdtXPcTY33AzuWkrFGeh9cwWgcv5KUoZBzJL9537dqxHV7rLWEbznbMm0CH7vmy1AQuTZls2eDXw9DMazZz8ijEX/70X0O87Q70ufX0ViDOUcKd4Q04T1x/421GmbHhj0DsyyyxHKeliTI8OTz+OTcHzQd8zJCTeYiIzesqX8IVy5GdYjF6OfQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKqF9FAViLWppvRR9IWLqk3lf75ER1HsmpIFvNVBH6dMev5W+ilHG1I2vg3j0xDchfs0wPltVPPRDHA6wjHPnzkBcq1eNMnN53Hu92UIxHOvb2YMRU5zNmdrabddcC/HeG2/Cz+RRnzw3h1rv8fOYa4H3/BYx9y8vF4sQ91eWtbHNprnP/dWmWHCXfD4u+XNqNdSy+rbZ/4pF7O5kMxKXheUkrAxDLCPmzf9FpE35IlptFDL6JD2vNfCYIQkpS7QffJyii/yxn3gPxN96AvMLZMs7IJ48fwTrRB4O1zZzkORp7/pW0KQY31+2sX/09pC/qmBuwj1HWu5Gg/ZlX6EpjdI2aV8DskVbvMxCPRLK05DY2AhRZPYPi9q6sgPf45Lu9jYPx+C5l1AzH0TmteK2aZPOOyDvQofaeXIeteYturgz82b+IpvGTsYjT06I/bpNJj7boWvfNMtoo01NTs+hvyCXxbGSWDiv5mL0Ltl1c551HWxvK8G2ihcHYLuZkqdnDQjDaEmbnWWfFOfoMXbrFynSnH7ddbiunDmJ6x3nFfFobWrNmWXUathHH9r/AMQzc6ir3/FvfgzinIdzjZvF6zbQP2SU6dIaG4V47S3yPlj0/iCg3Fce3nuIiNz7ujdAnM1jW375C1+AeHryPNbR4dstczJnvybPICtzW3Geq7Wg7IlcXJKyG/H+bWTDIMRjJ2eNz2d8vJYFl3I9UH6dToTzCvfxAuVsERHZsgP79PkJ8qg9+jjE+SLWKUf3tju2Yb6dvTuvMcos9KLPKKD+FSc4//k0No0MGGy4EJGI/JpmxpFL55YyfB8pZdi0/sQ0b3uZ5dfZs3Qp9BcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj4bruuIu5oBwSG8YBJffVNf3UdQVkHZ4vobazU4bdZZV2qeadW8iIrtvuw/iFwR1uxfOHoJ4xkGda98N5AsJ2QtgblyfJNgWM5Szgrc/nq+hzyMkrWUmj3vni4jkMvi3chn1kK02auabTaonae/slBwQDtWzSPuwZ1fk/0jCtc+jEUkksqht9OgZOUc5MPwUCxGnNfAyeO3ZE9AJsUES0rbX66ZGNqa9qSllilAqGKk3sQybNgov5rFMxzLb/fQJ9Fw8e2AK4htu2ovHdF8J8ZkzxyB+xStvMMr4N//m/4B4/3PPQ/xHH/84xJ6HYzMkQ0wzJQ2Bw3uqUyKXZm2lR8P8/FqQzyXiLeYAabKPgPqXnbK3eqGC5+Tn8XpyjpO5kzjnnZ7EOdJ2zIbwqCF5j3bbwmsT0LWpN7HMTnBpf4WIObYcunYezTflMs6zpetwfrswgTp/EZx/RERmKR9InTwLbgbXj5pD825ofs+WJKjVZ09UuKghD9rr0wHjKJJ4cS5vk6fRsrE/xhnTB+XTtd68AXX2e3ahn4ssKnLm7Gl8vWPOR33kxbzx+m0Q91AuhV27UFMfZHFt6xlCTbyfN/0TnEepE+K6n3EunXOALX2cO0ZExKN7nlfdcw/E5R7U6T/8AHpTXnr+KYjbTdPvKeRRcAXvmeIV5xlzXqc1oOSKXLQ6euS3uG73LoifOvB14/NWZSPENnlp2KMW+Xitc1ka4ylflQ9m+P6J+kZCXiaKKd2WzI2NQTxz7IBR5rX34X3nfIjjjG+PMzQHO9QBU+yfEnCujVVefu4vaR93jUQlGOZXDKuqmeroZdFfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqoT2zWZD3PCiRhXFWwntt8v7Qaf9zSPNbUK6yJD0ik3ybCRzs0YZ2QD1eRuvuQXiYMuNEJfLqDNMSDN46BDq8ep1Uztskza4mMU6dGhfe8dBHXCrjbpr9mOIiPSWcBN5z0edayfEY+Zpv/OYtLlxaHpqCkXcM71cwH3COys8MuyfWQuiJFnaDJr3iPdon3Q3RbyZkH+iQ1rzKMRjtCkfSkxazkbTbMM87S1dKlGZHao3GWMGB7AvFYqUk6VjijdLlEPFdU5APHse+/Ddd6AO+x2vvwviV99zt1EG7wue9W6G+NZ96Os4evg5iC1q+4xvnkeHNvqm1ApiSbTi35feM/xqUe7JiZ9bEK739bMfh/pcyj7lTeoztoUdxiGNcvUc+iWqDTS3cF4OERHfQ/GsT/lgbPK2JWTiqLYptwt5lThnhoh5qjRUxKd+PnI9zrsbX7MZy0zxQNg5rLdl41ix2YyS9ELYIN+a45vj16E8GiEJo4PF9cGRdTIJJcmS6S+g9ZTXzzg01+ACXTveN98hf89MA9vs649h7hJJyeNyzytwbnjNK2+FuJ98SRbl6MlUMG9BrgdjyzbF4SF5KVttyr9AXhO+PfFcHIcWd2ARQ9QeRtgfr9+Lc+Dmjdinv1zCPv/8M5jPYeGg2J7jY5iLI1yxbofh2vfBHl+ktNj8bPPcez16bdzPfdn4fEL9ZWLiHMRDQ8MQV/pwbUtCnA/bLYxFRCwb+5dDxkirg+PeoftQl3J7nD2Gff6R+//JKPOVt+6DuFxAb0lCuTnYvWeRNyLtyoZpfXLlMWgsGzlYyKOR5vFx6Nwt8jattIymWBBfFv1FQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1ndWbwekMcb8FF1SATToeM252OaRKLyLxU7kHjXURGoeAClpGhREBcBxGRKiXUc8gSk82gkcwpovE6JIPM8CAmNKqlmKDblEgwV0IDU4dMebkcllmvz0EcpRm1C2jutjkBERmBSmVs22IJ42aDko2JSN7FtslSe3c67dR/rxWWWGItuk4TMrS6nO0t1cuH7wkD7I82Jc3xPdqcgPqGQwZCERGfrgtdNknoGH4Z6zQ8iNdgeprMbymJ7kp5POY9d+6B+NhJNIcfPDIK8S17MSGWlZhj94nHMdHlufNYkc1b0fh44Twm9PPJtBxF5tRjJfieJDLNrMusjxm8FQYSLyaw8xMcx46DF7sT4iYPIiKdmDa0SHCsWwn2qbaFbUB7cEicklhMLHqTh+OYk13yuAioj0Yhl2G2vW0kCby0gdwhs2SuVMHXi2b/aNRpLAS8iQaep0Xn1VNEczjPoSJothURCT0cC+3Fa2+nGP3XgiRJlkzfXFebTP+dlCS6WTJSc/LF6VlciwK6rm4G+3i7bs4VBbq2huE8j6ZovxcNwOV+NH/7Pq5dScrc0W4nFNMbaDOCZh3jTB7bJS0ZmpEfmM6LzeGlHtxc5XVveDPEWzZsN8qYHkfz96OPfBXiM2dPrij+0ubgq0HJW/gvjet3bIW4r2Cuj7O0gHHSZr6vyNAaUKvimM/4ZmWalA3Wz2A9srTZTkg3C+0A55kLFyYh/qezp4wySz04t2zYiWvqrh2YzPD2m3FTIr734HsNEZGE9xoxzN+XzuDHSQDjlCmMu5Rl0yYwK9rqUqszo79oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidJ1VeTTaQVucRaHihYlxeG3n9o0Qp2mHORkQydKkXOZEdYMQzc5UIW6k+Axa5NvI+6jPY13r7BxqUvM51IP2VgYgnhs9Y5TJ9ciTVpibwqMEMi3SFDYpsZSISCaLn2GviW2h7rXVxmPYlF2nkDeTAjqkC2QN4Hx1OVlhq5ViFrjKJHEs8aIO0RXUZlqkmU6TrzZbpP+kvuGSjjchFaJFno6sKUEVkklLu0WJEiOsWLGAcUAJmyg/m1iheWIe6d9fe+/tEP/9309B/I5/8XaId27DsfvQt9FfISLym7/1XyEOKVvP3r07IY5i8sNEWMe0ZEEJtQ1/C7IykZLFydnWiCTKSBItnFubPWWU3C3j45gUEQk77DPA+cd1ST9MCZQ4aVO7Y7ZDjj7TJp0z++lY2st92DaKSBlclJTUJR+HRUlNrTIeg+fAOEhJ6EhJ/No0lzfn8Xr4lBSS57NM3lz+ONGnReea8RauqcVtuEas9GjElOCyTcYEXm9FRDoOJTOjNrkwgXOFV8C1bNdmXA8lQD+GiEhfnhNG4uuZMnoyvJ5NEEcOHjMmr02rZbZ9rUZjMcHzDAU/w/NyvoRlGH4MEYmpL0Q0cCzqO2xtypA3s3cA729EzES7r3FfA/HXv7HSJ2n6Y642eVuksHiaCSUBLo3gdd21Bf2tIiJPnsNxvmEj+nFC8rvOTk9AnM3gPBKlJKWszuOcOjiIfZbrndBallDCv807r4O4fn7MKPPR549B7J26APE15IvcvX0bxMOD6Ot1UnxwDvvCjASlxkfwZX5/qsXn0gdZecujHg1FURRFURRFUdYVfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdZ1UejaDVkHhRaxuQPtbiPbxbZp6FIGCdJHk26P05ylNQt2sQOyk+kAzpJDMZPMUS5bhgHWsux8J70vmmSNhqddrPnfJPxAnvt43tUKuhptBzTfFco4baRod0qxLjMWPyEwSUo6C/r98owyZharWOPo9O3En991oRh9aSsSdiTTi1WRyl7PVPemTWOMc25wKgzyf4emzkFxBxs/i3mPeQ9/A69fSgnpl1v0L60baY+uRGC/tPM0Id6733vBLivhL2z29+6ymI/+GfcO92ERHfn4V4fBz709h53Ec852K9m21uq0iYiK5HLk97pK8wC4Th+uTRCIKGyKInxvNp733BOa8dpOSaoWZwaY5zXTyvwCffkEOvJ+ZcwfulW6RJblLbhQHGHun4eV62U3S8CR0zQz6Rygi2VW471qnVppwjvGm8iFhZVAW75OMIac2xHOw/tfoMlhmZHoZSAftxQv30omcjXiePRhRFS16ThNY/7glRig+qWsd1JE+5HvoHUWffSbDNr792N8TZFKNaH60txY3o3yoNo+Y99vD9sUMeR5qI56s434mI1OqUU4S8Tu0m+jstC19nL46ZO0ZEbJpzyBvH7c15DUJaMzuR6TFNaA4ZGUGfw4037l36N/tR14Ls4n8iIrFF80YW23TfHuwrIiKPH3sEYodyqTXIo9HTj/0rRzkxRkfPGWVUetAbZ1yHAK+DncU68Iw3vHUHxMkGzJEhIiJUr3qA4+ylM5iL48BRzMUxMrAP4rRUJd7l0qZcNq3K6vOuxMLeu/R/Xw79RUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrrMqjYVnL+Ql6e3sv+d44MjXYrClNSNPYpNwMWfI6FAuoAewpm/vUt2lv6WIR3+N5PsWohsvRPtYt2pvc9cxns2p1FuL5OupB2+RNqVOejLkaaocHK2bbtkl/bFMSkmYT/SthiO3faKD2sVxCba6Iqb0+fx73gg6T5fNot9deH9oJoqXzbtOe+h55ApIUHbnjsiYb39PpoB6Z29jOUP9NkfG6Dml9SeOcpXwo7BNptfCgAXlN/JxZ6IHnHoe4XsM++sr77oX4medPQPynn/wExBNTuJe+iEiZ9pnfRZrUgnca4jDA8262sV3KORyHIiJJjJ9xyHez8vUkbaP7NaATtCRZ9KMFIY4B9pRwbhcRES+D9WafGTWbJDnyeZDnp7jB9BmQzUOsBr6nuI30xHNYaNLCAyTktwhSUujUa/iZCnnIvCFsi6SA59UKZiF2bFP779I1D8nH4VNqIMelOYI08o5j9sFOiPMor1HR4jGClrm+rQVxEMrFKiW8xpJP0krx7zRpPZuk87tmx3aINw8PQVzuwdwPaT6QIq3L5RE8ZrbYB7Hv4ZyYpzW2U8drUp3F9VLEzJtBtiSZq+ExhgexjmRhlE5KkgDO+2VT90liHts0jqjtk8D0aNTrOPfOTuAafOrUcr6GdnvtfZLO4n8iaYp/HPO37ttrvMP/4kMQz1EeM75wOR/nVM6R4XLSHxFJyD+c0HsydB8ZcX438mqyt0Z8c94wjuHw/Rle+2dfOADxPbfegHX0zFtz2xjPPPZW78G4LHyT8x0Wob9oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidJ1VeTR83xdnMY+GTXq8oIPaunKKf6JaR01is4li33nSXubyqKXLkDbOz6CHQ0QkJE17Tw/mzahWUauZIa15RBrBToe8ESkatTrl0Thx7iyW2cDztEhbmyEtesk1d1GOKE/GHGkV2wHqxVla55Lmj89TRGRsdAzi6Wnc+7m0cs/1eO018kmyfF4sV3Rpk2nbNrs252ngHCqs+3eMfdJRq5lEZmcIOCeBTz4DyoPRJu9C0MG4J4fnkeMtv0VkbBav06lHvgVxjfZbPzl2DOLJeRx3QWR+/zA7i+eVJZmqTeOuhjYlsaitOyl5MMoFPNd6E4XSK08jxQK2Jtjiib3ovYhjHNedDuUWSkm6k8lgwzlWiWLKl+NTHgf2aAyYHo1MB9vWovwvm+5Bf1Y7wHq2qtjPLcof0DxhNv7ZZ2le9bEPeb3UYWKMQ8qJEdtmGQFp0iPOcZTFuEW+tJC02y4nHBGRRgf9czbl4rBkoS2CdcrjkoSRJIvnbdEkz56ysGNq+Dn/x8w8rm/zzz8P8cjkZog3bWYDkNmGW6jNGrTmunTv4JNnMWzMYhF0m9JK8ybQvcB8m7w25OFwyD8V0fVspRjw+FR9fgsNRZv9V/NYp/lxXG9FRA4dwfZ/4YXnIL5wYWLp39yf15rLyfWv3bXT+NtQP96PHT55HmLfwTabGEePCl+WAvktREQ65IWZomMMbStA7FDeoITOLCQfkmOZ7R7HnFcO46yH/evw0aMQX5jENXj7Zsxns1gxghMmmR+59OdNjEOk+Ay/E/QXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKo/G/Pyc2It6tlOnzsFrm4c3QJzLmdrhpIa625mZWXyddN5V0jTWSCTJeTZEzDwZvNd0QBvVz5AvxCOtp0W6V9Z2iizsbb6SyQnUHUb0POeQ5q+3H/NmXLNpq1FGPo/1qjXR7+LGeCnZe9Im3SLnLBExNZ+5PB6jv7Ksr2y1zH3urzbxCpEha9U75BGyUgSJEQk8HdKDJoZmG/twjXIFZDJmH49ob387Ih21xT4QLDOXp/wDVEQQmOfVpj/Fgv6dp55+BGLLx2vPfpZGg3I3iIhPe9vn8qxRpz38WQNN7VBvmxr8Up76sMvHjFf8+yrsGX4F2OKKvXiulKpGQj6nFI9GQh/yKdeDODgGPcG8Po6L495Lyetjke/HKWI9rALOiVnyiGX78P0hSeJzdXPZqBfIP0f92Oml8UrTT6uOfY69diIiEVWE5yc7wTkyjHCu57XAssxkCRFdH9uh3DqLS2bQXh+Pxko4L1V0BcalKGKPGPpYOA/V+fO4ls1Mo/nq7nvuNsrIkT8nonwRYYf9EljvFuXTqdewswRRitg8g+NkYh7PY3gDek3abfSFeD72V/aUiZgevjiicUDrSSxYh8MH0X/xT3//t0YZR08chrhB61q+sOzp4hxMa8+lv6ceGBwy/nbNyADEJ+g+0s2gZy1bQD9ZjvKi8RgQEXFy2GYx5ctp031OgebpDk/sZAh1bLPdeV0X6iuZLM5VE7O4Rj/67Iv4/iL6SETMnEt8j2OTp5Q9qAYpw4i6MKfmkUJh+TxCufL+p79oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpeusygzeaDTFXjSYjI2Pw2uTc7MQb86jwVlExHOxOMPQS0Ztfp3NfCGbdkSkpwfNQ6OjoxDPzaEJp1KpYB3omI6LhpqekpmI8NZ9N0Nsk0nmhSOYnMWmBDE33LAP4qF+00TV6pCxkZIfssm902TDLxmDUsyWLl2foofZ4Xx/2XC3Hj402142J7EnP+AkZSmZFdnYdLkENgElYOP8SGx4FRHhZm51yIBO7eayEZfymnVCMqM6aHoUEbEp2ZTjYuza2FfIfy4zfJ6B2Xb5LBkdqTEaAZ54bBg2cVy5KUa1NtUj42N/zK849fXKVdUJ2pIsdqQgwHPipKVpSSMdB9/TtGYhzpXoWkY437iGAdpsiIiuX2kLxq6L16ZN9W7V+TpgmX7BPK9ShebiEhmVKfFga5rc4GS4jFKSYbbIgG0Jj0/cPISTsIWXGScLn6Fzs9hwuTCWws76GHFd112apy9nBg8jM7FdhxO70lrl0uRQJdd+vY6bp8Qxzi0LYBlBBw3kjQZetyTBdYbH0eTkNNXZ/H60SUlGm5QQsr+/H+IaJSnlY3KiRhERmxaQOMI5jHJxyvw83iMdeOEpiPc//ahRRkz3PJlyH8Qr74nWa0OMZbA92JftpKxVN+zYDvH+F9D8nu0bhLinjPdz+Z4KxJ2OuaEDm+QztGkQr9E+JdV1KW1dbOGcENtpyRwvnfw3prXAyuHr//AA9oVvP3vQKCPDiQVp7qfbN8MczhsEGVmPRcSlzWxcwfa995XL97r1Gs63l0J/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6q/Jo9PT0irMoBKv0ogdjvooJcDr9FePz7E1gf8Q8aeMM30GHEvjV5o0yOh3UhxYp8Ukcs44ay2xRIjzWZabI18WzUZx55823Q+x4qI2bmUPN6u6d12IdA1P/6yfYFnlKLBi7pqYU4PNom0nZGk1s3wyJTt0VOkM3RX9+tekpZsRZ1B36GSy/VqVkXlmzPRyLdeDUF0jkGLSxzR2Wb6ckZGPfR0hlUG5HQ1dZLpFWmL0PZokSUZ926Fq7JEpt0Xmxn6KV0jfYkxOH2KddyvTDFo1CAa+Hl9J9AvKzcPvDQePLGGyuEp1OU5JFg1BMCR47LdLhSppPiOtNvgPyDfj0/vJWbPdM2SwjyeBnClupD7G2n5u5g9cqU0KtdWzmkpLsduzYkYsHjUjPHlHSNp5nOXmriIjr4rmzR6bdxH6b0PJGuerEy5h9KKJyfe6oF7XYRnLPtcG27aW2Mj0apAtPMdKxT804RkwJIymR3dwc+g4ujJ02yqj04HVybOpgtJa51Mcfe+xJiB96CPXr2ZzZAfM9qO2//e7XQ1ybQ59HltqhRXYWyzET0haLPRBzgluHJvfxE0cgzlA79PWj/0JEZK6BFbls0rXvM268YQ/Eyd98BuLRQ5MQj506AXGZkgBWevCaiIj0D2JfKGboXoC8C8ZaRPdSMfkWOrxoi0ibvL18b8GxRcdoUqLMsxPmva1HxtR5uv/Nkn/P8/H+je8LkpT1ib0m0iJ/1YoEn+2UpM8vh/6ioSiKoiiKoihK19EHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nVWJbTv7x8Q11vQfQ0OoFYuIQ3u/Lyp38pkL51Hg+M65YpotdB/MTExZpQxP495Mm644QY6BtZrago1gfl8/pJxYiRjMHVt/I5tW7dAXKR9wT06Zsc2tbWspeU8BiHlW/Bpz2TWZU9OTRhlWKSVdWkv8ZX76SfrkEjDd0UuSlYt3qeaNPsWb+otIha3c5tE26RxtkgT6WdZ6262AcnGjTwZNu3JzW3Ong5OFROE5t74nHOgSfko5qmvZH3aD75NhaR4T+o0nF3yEhRI9ByTWcXPXHrPeRERm86jQ42Zyy9/iHMirBX5QkG8zEWNPJ6zZWE7p3k0rIRz/3Cfo8/ksYzKbtojPo9eLRERj+Yjh/K9WA56GbzMpedhi/xYdtFcNvwd2EE4z0lCCWQylI7Ipj7XbJh9MMedhpqyQ+M1jLlt8fNxjOvJQkU5bwYe42I+Ivb2rRVRFCx5w9iTwd3NdU19f5LgteN1g2Ne/zYO47ofR6afa3bqPNZDKhDnMnid5ubwGC+9uP+ScUrqBOkZQF3+lh07sEz2mkxgfi2vgJ/vGxgxyuBp0S7hMacnT0E8duJFiCfpfqUdm3nAxMM118jFszL3QUoehPXkSvJ67L3xRog/9Bu/BvHoGLbRqXPYl6bJCzw5Yd7HnD/4DMQB9ek5uq9MqI3LJfQf5/OYy8NP8YU4lGuI7zWMvF40R1s0lJ20tYPuDXI+3Z/lcKxm6R6Q7yGNhCIikpAnKJPDMsbGltu7k+LlfDn0Fw1FURRFURRFUbqOPmgoiqIoiqIoitJ19EFDURRFURRFUZSusyqPRqlUXvJo5HKoDeZ90OfnzX2AB7O4b7RNejDW+Lm013A+j/u5p2kC26Qbq9UwNwRrTj3SREYkim+Sp8PzzGezkLT6GQ+1wI0GHmO+ij6SiakLEBdS9gn3SONX6cH3RKRHrjdQy9ig/CCS4i+o0D7hhQIKqVsr/AGtFK/A1SYRa8Xez3gdCgXWX5v6V4s0iaybbLNXgXSSNvkS7JTndM6twIk1iiXywdAIDCmHSpI4FKf4QjpYj1YD31OtYbxhGNuK28WxSWAvIiF5SaoN1LeHIR4jS7p/3sq8p2jmOfFdPI9qA69HvEKTzDkU1go/64i36EeJI2zHPAltPc80ojgWzj9hjPNkRP3HIh9IaQRfz2ZwThQRsQTnwHaIMe8L79HFcY3cERjyOBAR8X3sHw7ndKDEKomgbtqitsul5AVyyHPgC4150qwH5NuKAzxmvWlqjK2Edc+ka2Yx9RoTJ+GS344sKWYukhSfmktjjH0c7D3ZsGEY4u07duL7Y7MN56cx10ZWKDcV+ZLGJtCzeOHCGYiHBosQR5ysSERaIe73/+BX/w7iJ3O4ttVruH5VBjZBvHffbUYZe/feDPHmzdfgG2qY8+H8haMQHzyKcZySi4p9XZawr9Vd8W/j499TpPW/3p4KxG98/WshDgLsT+zLbVOuEr6/ExGZncX7qxp5Mk6cQx/I6BjefwXk3XRofQxj0yTUbOM9XoeMRPUmvt6k+8ypqRmsQ8rc5NCA51RS87yO8/01HS81JxfNKR7db7id5fMIgxSz1Mugv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NHoKBfEW9wvOUI6FJOJ90M09ypsN1MqVC6S9LGIck843l8N9gdsdc6/rC+dRbzcxgXkyNo7gZxoN1Pjx3tYu5T1IIlOXltCG7mMXcG/ns+fOQdxqon/i2DFsq56SuU9zuYh+CT+DHpmA2mq+iueVkPY2lzW13b6LmmeXNH8zc8s6wnY7ZQ/6q8zMfGdJQ2yTXrGQw5j1yiJi6KvZ/8B5G5IEdby5PPa/tCLYQmHbfEx8Q0R2CI9NGxZ+3krMva+rVawna9XZi1KrYx/O+Fhm2v77NRrPGcrF4Tq8F/mlzyMxvCwiPGU0m1jPZMU1D9Ypj0YcOhIv+lHCkDXI7HVI8fBErMEmP5ZFXiqb8zhQu9umD6TZxvnF87DfSoJxwLkQaJwECV4YL2O2fcbF+SSK8foHZOlqtbCOnOMikzXzg2QoV4tv4Xt4W/eQ2iGxUSedQbvMwntizt2Ca5Is5kpxnfXpf0mSLGnf2V8YUvKSOCXXEevm2Qd5OZ9HPofXOWybZczPoueiXkX9eWYSfUnHTp2FmPODVHoxr4GY05MEpJtvk7eyRnMkzy1n9h+D+NzpA0YZnuCamrFxrGbo9SPH0bMxM4ev+wXTixl12B/3PW7EuARpHlruXz752HzyhxXJU8vNkQjmdRExUuEY/tXbWzhRsN/PsHdy+omE5mgRiWO8brwyBDQBtgL2AtNax4mIxPTvsB+Ul6MkZl8cvZ7idQro/sSmvE+5FfcStVpNvvqlLxjHSEN/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6q/JolAuFJW9AlvbordM+wo2GqWObmECdWrmI+jvOk1Gv0x7JEen3CmWjjHYFy7DoWWqe9lj2M/h6Twk1uSHn1WiYHo3xCfSFjE/hPuK+h23VUxqgOiKOm+YvQD1drYb7htvkmWGhom3Rfukp+smIxIn1OmppDx89tPRv1hyuBbVGe0n36RpaT9RrO5apP+xYpGGOeJ9p7F+Oi1rOfB6vfcgbWYtIs41/K+TxutD22oa3hPWlQYfyo1TN/BFNyjfhkX+i0oNtY7Hvg3wkjmOeF//FpfFfLmEZxRLv6U25PlopeTD4mmZQv7uyveN10i4nQY8ki96lOEIPQMbH+axew7lGRCToUNvHlBuIxn5iYR+0yJvkZtLGMXtFyBdicX4SmjMpZ0oSsofDzHERkg46iXkO4/wN6BNJaCzGKRrloEP72SfY/kK+kA7l+mFfkJuS54T9KZzrqbM474XR+ng0LMtamgPZk2H4d9jvJSIRDTvea5/zTLEXb3wc17Zy0fTSsBdhfg49G25mFuJmGyfFAnkUjXw0ttn2MeVlSco8r1IOAvKUlks016Tk6ZmZPAnx6Gk89xnKh3Xy7HmIberzabdfGcofY3MOhxXXPOKLucakeTAu+xmety023PC8wT4Dc20y64WxS2tPKc9lUB0SPi+MHYt8WyIicplrQZWKkkv7J+yU0zTajuqZcGKd74CYamKRZ2PlvWlarryXQ3/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoStdZlRk8CEOxnAXTlU2fdFw0kXQ6ZkK3yWlM3NPbg6avShFjNr9w8qC+vj6jjAIZzKcmpiBuNNBAGIRURg4/75E5K82D2tPDpnRKeNVhsxu+nxMvFYum2YjNt7UankcnwDIswxhIBlHHvPQWGahPncKEQ7Ozy8kPw9A0xV9tLMtZStjHvqdmE42RnGxQRMRx8OJlfTKH0jHjGI/hUx9v19McW3jMDiVoYxNpLoMmMk4C5zhsUDeNkIUCllEsYr1zeapTB8vg88xmzU6ez9Fn6NQtMpDz9WFfahya33EYRmlKNNhe8Xq4Tgn7ojAUe/Fcs3Y/vNZq4IYYzZZplLXIqB3EDX4Dhg62iU3GRjc2TdMemeibISWui3ijCEr8RuZcx8U5MQzMtg9pcwiXj0nVjEN8nTcL4DlURKTdJhN7iP02k+ENCNBo36ZEXa7N5lwRcfF6tNsYX9wvIwoub0q9GuTzuSWTd5syFHKCPl5XRMx2ZkMxm8E56df4BTQ816tmGyZ0c+DnMdksdT/xsvh+rneG+nOaCZlN67weJkbbYJn9gziWO21zfTt2HJP6nT9Pm75ksZ5OFhPyJWzejc01io3vCSVMW3nu34kZu5vw/RivfRa/LuZmJ8brxilxgtMrOWd+D61NlzGUcx353aFl3jslbGrnY3ASQcMMTut+ynna9Df70p71y5L2dpsuQEzrUbzCOB+LOb+8HPqLhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoStdZlUej2axJGC1oFx0SiPkkwk5iM4FJLoOa2YmJSYhd0r5lfNR/sr40TklY45E2v6dMCfgC1FHzMVjHGzjsrzD9E5UKalDzOdRmhgEKlP0MJyrEYzquqd08N3oGYvZo8GciSjTYS0mQfN9MVnXw6EGIT5BHY6XQnpNFrQVhEC3pUm3SY7PWOEmR8FukG89lKBkNXdp2gH08X6Kkc2k5ejr4mYDaKetjvROqaBRRuyY0RFOSVVV6cZz4PukqaSw265RcjYWxKYkIfapGo8UJ2jBukWcmRwdop2jcOYkfa85b7ZXJqtbHo1Fv1sRbTEbXoGvFyd0yPs4DImJody2j3+Ib2A6RL+AcmsviXCIiEoQ0x3Vo3iR98Mp2TcMmb5LYpv/Od+hcI5wT4xCTuHXI05FxOHmmWacwprmZ+lCSYL3ihNqGxlIYmDr8DI1Px0afzcUyrZT1bS3wPH/JX8BzsJnAz9RQ83zDOnv2RXESQPa5BSlrMCfaLGSxDdsdvPacFNehMjmpW5wy9G0Ly2CPHkvo2evEU56fTbk1Yo8FJQHM5CgJZYLXo0PjLEnpQpHF2n1Oprp8IoZHYo0x/RREiofku7WVXNp98TLvMawk1DfYUHiZr9+vKFnsZd5yOUdaWhXWwpFjlJG8vEfmyvwyC+gvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6NrJ8Rf9E34dBe1zZpNdP28GYd/cFDByBuNVDHu3PrTojzpPWsVqtGGaxHz9JnigXUDtcpr8bs7DTEjod6vnrTPC+PNH99vb14jBL5V0gny3u1z03MGWXMzmIOEpu0tJU8aqQjaoeEtP2nzp40yjh+4ijEIWnQMyvaIrHWXh9qW9aSR6MT0P7idJ081pWLiCEnpre4lEgjiOjaN0jXm+JlYL1nHKEeOQhZg4vv572yW23OeWEUKSJYRosk9BG1Fb9uU507Kf6bgMwCuRz2ac7bkpCHgq0nfDwREUoLIDYn64G2WR+PRqfdkXhRmx1blDsiQo12zjVzDHgeeixCyifBGvlKvgJxFOP8VKthniAREZvyR8Qx+9TQmxBSXhXXJ12+S9r0EI8vIlKt4fxkkT7do1wcEmEZYZty1nimF84mr5uTUK4EGls83n2P5sjI9GiETfQXcM6H6txCe4ed9el/c3Nz4qZ4+NIIAnMcc+4FlxPccB4Xej97Gzhe/BCF+B7fxz5v5KqiOTCOqf+ljH22dXA+Cp7s2XvCJg6jXcT0RLBPLCDvCa/RRv6GlKbj9FYW3aJ1VlzTtPXnahMt/pdWPvsv0vJomP6J9fWZLPDd+62MszCMIfQ6jQluu7RWWZeW4nwgKyq6mvroLxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrXJF06uLPW0FnWdvQJMlRq416jFYLt1gUEWmTZqPTQa0Ef6ZBZfBPxs0mSo5ETLkP//TLZXC926TfcGJ8FmNJkohITD+7chk2b/1L0qkOldlum9tHclvxz7L8Ga4nb2nJxxO5/HaJThgYr63FT58Xy1hZViIsKbp0LCISke6IdlUUh5QGYUQ/fdPrEesqRIS7B/+8zr/Ys0rJlkvXMa3MMGSpwaXrwJIS3qYwSmk7s335mFRvkmAEIb0emvKHkNvK2Po3Nv69Vj+9XyxnpWQmNn4Op3N20vavxL8FbXoPS1uo00XJpbcAFhGxHX4Pvh6SlC40tok19oPE11NUQ2GbJDf8Jjpv3tKUt/q0YvM7MK43S3FtknPy2OGthNO2R4+p7VghevH6X/z/Wvc/Pue09yzH5nvM7UX5Wl9aOmVIKa7g/I25gy+20Z9oPkt4fjM7IG+vbdbrctIpPjGjCFM6dZkyeY2ODEmquT0oy1i5IivX5PVYg+fn55f+xteB+8r3j3Tqu+e7lU5ddqvg9YJOY+XW0xf7wpVcQyu5gnedPXtWtmzZssoaKv8cOHPmjGzevPmqlqH9T3k51qL/iWgfVNLR/qesN7oGK+vJlfS/K3rQiONYRkdHpVQqmd9wKP8sSZJEqtWqbNy40fx2qMto/1OYtex/ItoHFUT7n7Le6BqsrCer6X9X9KChKIqiKIqiKIqyGtQMriiKoiiKoihK19EHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNR1pHXvva18iu/8isv+/r27dvlj/7oj1Z93I985CNyyy23fMf1Un7wuFxfU5TvJbS/Kt3i5MmTYlmW7N+//7s+1s/8zM/Ij/7oj37Xx/nnxBXl0VAuz0c+8hH53Oc+15WOrCgXeeKJJ6RQKKx3NRRFURTl+5ItW7bI2NiYDAwMrHdV/lmiv2goyvcwg4ODks/nX/b1IAhe9jVFuZp0Op31roKiKMplcRxHNmzYIK6b/t16kiRGgmKle+iDxgriOJbf+73fk127dkkmk5GtW7fKf/gP/0FERD74wQ/KtddeK/l8Xnbs2CEf/vCHl27yPvWpT8lHP/pRefbZZ8WyLLEsSz71qU+t45ko30+EYSi//Mu/LD09PTIwMCAf/vCHl7JtsnTKsiz50z/9U3nHO94hhUJhqX/+x//4H2V4eFhKpZK8973vlVbLzC6vKHEcywc+8AHp6+uTDRs2yEc+8pGl106fPi3vfOc7pVgsSrlclne9611y4cKFpdcvyvE++clPyjXXXCPZbFZERD7zmc/ITTfdJLlcTvr7++WNb3yj1Ov1pc998pOflD179kg2m5Xrr79e/ut//a9rdr7K9wf1el1+6qd+SorFooyMjMgf/MEfwOszMzPyUz/1U9Lb2yv5fF7e+ta3ypEjR+A9n/jEJ2TLli2Sz+flX/yLfyEf//jHpVKprOFZKOvJl7/8ZbnnnnukUqlIf3+/vO1tb5Njx46JiCmd+uY3vymWZcmXvvQluf322yWTychDDz20NMf92Z/92VJfete73iVzc3PfUbkry/7f//t/y+te9zrJ5/Ny8803y7e//W04zkMPPST33nuv5HI52bJli7zvfe+DefT7mkRZ4gMf+EDS29ubfOpTn0qOHj2aPPjgg8knPvGJJEmS5Hd/93eThx9+ODlx4kTyhS98IRkeHk7+03/6T0mSJEmj0Uh+/dd/PbnxxhuTsbGxZGxsLGk0Gut5Ksr3Cffdd19SLBaT97///cnBgweTv/7rv07y+Xzy53/+50mSJMm2bduSP/zDP1x6v4gkQ0NDyV/8xV8kx44dS06dOpX8zd/8TZLJZJJPfvKTycGDB5MPfehDSalUSm6++eb1OSnle5L77rsvKZfLyUc+8pHk8OHDyV/91V8llmUl999/fxJFUXLLLbck99xzT/Lkk08mjz76aHL77bcn991339Lnf+d3ficpFArJW97yluTpp59Onn322WR0dDRxXTf5+Mc/npw4cSJ57rnnkj/5kz9JqtVqkiRJ8td//dfJyMhI8nd/93fJ8ePHk7/7u79L+vr6kk996lPr1ArK9yK/+Iu/mGzdujX56le/mjz33HPJ2972tqRUKiXvf//7kyRJkne84x3Jnj17km9961vJ/v37kze/+c3Jrl27kk6nkyRJkjz00EOJbdvJxz72seTQoUPJn/zJnyR9fX1JT0/P+p2UsqZ85jOfSf7u7/4uOXLkSPLMM88kb3/725ObbropiaIoOXHiRCIiyTPPPJMkSZJ84xvfSEQk2bdvX3L//fcnR48eTaamppbmuNe//vXJM888kzzwwAPJrl27kn/9r//1Ujk//dM/nbzzne+8onKTJFkq+/rrr0/+4R/+ITl06FDyEz/xE8m2bduSIAiSJEmSo0ePJoVCIfnDP/zD5PDhw8nDDz+c3HrrrcnP/MzPrFn7XU30QWOR+fn5JJPJLD1YXI6Pfexjye23374U/87v/I7e2Cmr5r777kv27NmTxHG89LcPfvCDyZ49e5IkSX/Q+JVf+RU4xl133ZX80i/9Evztla98pfZHBbjvvvuSe+65B/525513Jh/84AeT+++/P3EcJzl9+vTSay+++GIiIsnjjz+eJMnCHOd5XjI+Pr70nqeeeioRkeTkyZOpZe7cuTP5n//zf8Lffvd3fze56667unVayvc51Wo18X0/+du//dulv01NTSW5XC55//vfnxw+fDgRkeThhx9een1ycjLJ5XJLn3n3u9+d/MiP/Agc9z3veY8+aPwzZmJiIhGR5Pnnn3/ZB43Pfe5z8Jnf+Z3fSRzHSc6ePbv0ty996UuJbdvJ2NhYkiTmg8alyk2S5QeNT37yk0vvuTi3HjhwIEmSJHnve9+b/PzP/zwc58EHH0xs206azeZ33AbfK6h0apEDBw5Iu92WN7zhDamv/83f/I3cfffdsmHDBikWi/Jbv/Vbcvr06TWupfKDyKte9SqxLGspvuuuu+TIkSMSRVHq+++44w6IDxw4IK985Svhb3fddVf3K6p837Nv3z6IR0ZGZHx8XA4cOCBbtmyRLVu2LL12ww03SKVSkQMHDiz9bdu2bTI4OLgU33zzzfKGN7xBbrrpJvnJn/xJ+cQnPiEzMzMisiCHOXbsmLz3ve+VYrG49N+///f/HqQFyj9vjh07Jp1OB+awvr4+ue6660RkYX5zXRde7+/vl+uuu26pbx46dEhe8YpXwHE5Vn6wOXLkiPyrf/WvZMeOHVIul2X79u0iIpe8T+O1VERk69atsmnTpqX4rrvukjiO5dChQ99VuSvn3pGRERERGR8fFxGRZ599Vj71qU/BPPnmN79Z4jiWEydOXP7kv8fRXacWyeVyL/vat7/9bXnPe94jH/3oR+XNb36z9PT0yKc//WlDR6ooa4HuQqV8p3ieB7FlWRLH8RV/nvue4zjyla98RR555BG5//775Y//+I/lQx/6kDz22GNLmxh84hOfMB6EHcf5Ds9AURTF5O1vf7ts27ZNPvGJT8jGjRsljmPZu3fvJTet6MZaeqXlrpx7L36xeHHurdVq8gu/8Avyvve9zzj+1q1bv+s6rjf6i8Yiu3fvllwuJ1/72teM1x555BHZtm2bfOhDH5I77rhDdu/eLadOnYL3+L7/st9AK8qleOyxxyB+9NFHZffu3Vd8M7Znz57UYyjKlbJnzx45c+aMnDlzZulvL730kszOzsoNN9xwyc9aliV33323fPSjH5VnnnlGfN+Xz372szI8PCwbN26U48ePy65du+C/a6655mqfkvJ9ws6dO8XzPJjDZmZm5PDhwyKy0DfDMITXp6am5NChQ0t987rrrpMnnngCjsux8oPLxf7wW7/1W/KGN7xB9uzZs/TL6mo5ffq0jI6OLsWPPvqo2La99Avb1Sj3tttuk5deesmYJ3ft2iW+739H5/G9hP6isUg2m5UPfvCD8oEPfEB835e7775bJiYm5MUXX5Tdu3fL6dOn5dOf/rTceeed8sUvflE++9nPwue3b98uJ06ckP3798vmzZulVCpJJpNZp7NRvp84ffq0/Nqv/Zr8wi/8gjz99NPyx3/8x6v6tez973+//MzP/Izccccdcvfdd8v/+B//Q1588UXZsWPHVay18oPEG9/4RrnpppvkPe95j/zRH/2RhGEov/RLvyT33XdfqrzgIo899ph87Wtfkx/6oR+SoaEheeyxx2RiYkL27NkjIiIf/ehH5X3ve5/09PTIW97yFmm32/Lkk0/KzMyM/Nqv/dpanZ7yPUyxWJT3vve98hu/8RvS398vQ0ND8qEPfUhse+F70N27d8s73/lO+bmf+zn5sz/7MymVSvKbv/mbsmnTJnnnO98pIiL/7t/9O3nNa14jH//4x+Xtb3+7fP3rX5cvfelLIElVfnDp7e2V/v5++fM//3MZGRmR06dPy2/+5m9+R8fKZrPy0z/90/L7v//7Mj8/L+973/vkXe96l2zYsOGqlfvBD35QXvWqV8kv//Ivy8/+7M9KoVCQl156Sb7yla/If/kv/+U7Oo/vJfQXjRV8+MMfll//9V+X3/7t35Y9e/bIu9/9bhkfH5d3vOMd8qu/+qvyy7/8y3LLLbfII488Ih/+8Ifhsz/+4z8ub3nLW+R1r3udDA4Oyv/6X/9rnc5C+X7jp37qp6TZbMorXvEK+bf/9t/K+9//fvn5n//5K/78u9/9bvnwhz8sH/jAB+T222+XU6dOyS/+4i9exRorP2hYliWf//znpbe3V17zmtfIG9/4RtmxY4f8zd/8zSU/Vy6X5Vvf+pb88A//sFx77bXyW7/1W/IHf/AH8ta3vlVERH72Z39WPvnJT8pf/uVfyk033ST33XeffOpTn9JfNBTgYx/7mNx7773y9re/Xd74xjfKPffcI7fffvvS63/5l38pt99+u7ztbW+Tu+66S5IkkX/8x39ckqPcfffd8t/+23+Tj3/843LzzTfLl7/8ZfnVX/3VpS2YlR9sbNuWT3/60/LUU0/J3r175Vd/9VflYx/72Hd0rF27dsmP/diPyQ//8A/LD/3QD8m+fftedkvubpW7b98+eeCBB+Tw4cNy7733yq233iq//du/LRs3bvyOzuF7DStJFjfsVxRFURRF+QHg537u5+TgwYPy4IMPrndVlO8TPvKRj8jnPve5pXwbSndQ6ZSiKIqiKN/X/P7v/7686U1vkkKhIF/60pfkr/7qrzQ5pKJ8D6APGoqiKIqifF/z+OOPy+/93u9JtVqVHTt2yH/+z/9ZfvZnf3a9q6Uo/+xR6ZSiKIqiKIqiKF1HzeCKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK17mi7W3jOJbR0VEplUpiWdbVrpPyfUCSJFKtVmXjxo1i21f3eVX7n8KsZf8T0T6oINr/lPVG12BlPVlN/7uiB43R0VHZsmVLVyqn/GBx5swZ2bx581UtQ/uf8nKsRf8T0T6opKP9T1lvdA1W1pMr6X9X9KBRKpVEROS/vPE1kvMWPhK6MbxnOuhAfGqmahzniRPnIX5xdhri//PuPRB/6J134wHKWF0naRllWNVJiF0JIU4En8bDEM9DrAjCTuLg8Xo3GWW6AzgAYyeHZTbaEF84dgpie+4CxNXA/Mbgvz+Bn/nH/Uchvmkb1uumzcMQZzIexF6+YJSRXbzOFxkfx+tz/vxy3AlD+fQTTy31javJxTJOnTol5XJZRBa+YVnJlXzLEseYMiaKsW9YFvbhRh378IljJyH+2le+bpRx+NAzEHfa2Eff+Ka3Qvyuf/VvILZdH+JEsP8lVto3B6v9hgnbwbZCehnLXPgblhvFOE5sm9LxRNiWVoSft2w8TxERy3HoPTw2l+P5+aps275zTfqfyHIfPHPmzFIfjCJsA7MPUv1T/8afucy1TK7gWltcRsRvoGOmXO9LF2D+6TL1SizsHzHVqR3iHDk1g3OPiMjJUychPn3yNMQTUxMQj8/i6524TnUy6+xmMxD3lHogHupZmFdbzZZ8+P3/fs3735/8v49KLl8UEbO/uTR+vJSpwqG/WTRuHQeP6dh4TJvmH4cPmFIvx8W158ypExB3mnhd9uy5HuJjp85AXOkrGmUWi3idXnj2JYhv23cDxNlsFuKE1gburyIissphwhnK0mYD8zM0Ti6xztVrVfnhu25Y0zX4D//4/yu53ELbdSKcw/PZXoiPnjxmHMfxaA1uNyAOI3z9FXe8AuKR4SGI63XzPjOTwTFsUx8uZbDPDvi4Vvku9t/9B3Ee+cwXzHXfpvVx12688S4VKxA/8vjTEBdKZYhvvAH7q4jI/ff/E8RvevVtEN91804s02lCPF7F8/zLL3zbKKNaw3n4Va+4BeJicXnsNZst+dUP/tYV9b8retC42Llzniv5xQeNgB40sjSMMq45Kh36eYUnJP5MOYcdRvL8oGEOXSvESc2lRfHyDxpYR+NBI2/eILkFnLSMBw0qs5HFY9gtrHNimwsgt41NbefRIpP1sK0yFHs+likikvOxXhkP3+O7ZndZi59RL5ZRLpfX9EGDu3CxiA9nWbopERHxqZ2TGOOLk/RFLp7PRfRBY+V7Xv5BY+lPa/Qzflof1AeNlcfo7oNGJwyMYxQKOP5yeZxns3UcW5kM9bEYj5n+oEFzIK1BuTyWsdb9L5cvSr5QSi37ih406FLzuO3Ogwa9hx408gV8UKAipVjEOZHfXyiaNzb8txx9kcbHzOa+/x80LvW3brPU/3LZpXHnhPSgkctDnKGHORERlx80aK4KIozzBb6O/JBptiqvy7aNazA/aJQzOPf4Lr5eKOB5+b65dvGDRo7OPZfDuYqPkaGY3y8i4tH9GJdRpHqWqL82IvxD2nl4Hrbn5c5D5Mr6n5rBFUVRFEVRFEXpOlf0i8ZFMpYtGWvhqahNT562j09TzQR/DhURoQcqiQP8JtWnbyW84Y34gRw+FyUt8+f1iH6GtTv481HSwW/SkhCfxnx64rY8fOprt81vOhL6Scr2sZ4ufZOWpW/aJqs1jBvmt3lxhG3FP0EWsngeG3rwybOfnnZrUcq3wzmsV4F+qfFzK7oLfQm+Fti2vWQ6slN+9QFSvpBiWRx9WSfPP/c8xN9+5EGIJ8dRmvHgtx4yishSm5V78Cf9p1/En/RvfOEFiHftug7iSu8AxPzr2MLfkMu9g183v6i7/PcPHn2DPTuHbXPghWchznrY/67fc6txzFwG20qsl/8K0bbNX5PWGoe/Hjb4Tr5p5M/wteDXUzv66uLL/aJxJUVe5jMd+sXi3IWzED/3EvaXFw88Zxxy7PwYxLUazvVcTT9Pv5CRJMKYABb+SG/hJdKi/68tliRiLV4AswY0p6f9ykR/42/Q+Vt44w8Wvz+tM9B8Q9/K5+lb0pGBCsRT58ch/vpn/x7i17zpXqPEyk04d2zYhNJhl37eiUJcs40hkXZ949Vdc26Z+ArGzWp+0eDX1oJvfusB8RfVEE62D16zBK/r4ZOHjM8Pb0Dp05bhYXoHnj9/079xBCVJAUn2F8B2mZudhzhP39r7Ia5dPl2o2oWTED/x4DfNIi1cj+IAyxzsx/M89BLeBwwM9kO8eWTQKGKUpKPnd2yAeKofb8ryebz3nZ/COfixh75llHH8DLZF3EZp2sim5TLbnbS2T0d/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6q/JohGEk4aJGMKbtUqVQgXAqxG1mRUQ80qsX51Fj23RQ4/fs+BzEbdohKghRgyYiMntmCuJBqmeZvCQJ7RZQqGAdarOoa5uZxq32RER2bsT3bBzE80x88jrQrgiNDp6XlzW3no0FzyskzXMSYVzyUU86kKNdpzqmyeLcLJZhJehp2LBhWTfY6pg+kqtPJBd30ElIy8m7hqTpVxMyljzz9OMQ/8MXPg9x0ME2bdRQr5jNmJrdXvLGuLQ72+ipwxD/P3/6hxC/+S24/e1bfvhtEHu+uZMHb/rAfSOkHaBqdB7s/8lmcYyIiFSr+JlGE8fm8y88BfGBFw5AHHVQD/+2yOw/r3jVa/EzIe14s0JTn7Lh3PceqRp5mnKN3W1YQ3+ZMtJ2obmsz+OSRRpEEevEUw5BnqmJadTZP/rUoxA/uf8JiE+dxS1Pmx30rYmYOxx5tJsR76LCdbKoHVzX9PnwVpgdmicv7jQWx7yT19rguJY4i14TYxtZOl87xePEu0zZDo8xfr+9qjitXrwblu/gdePdDc+cw76wuYDraSXFU5Rp4hxXJOeZS1sIJsmld3NKG3amRWN1ng3eKTINXre4fVfWcy0SRTKJ5UpiLcxhB4/gvdDO3bgl66234ParIiLFHO4a9e6f/NcQ845PA2X0geR8vDeKnJT7EJpTXQ/9DkkL73OkOQqhbeExeR6xPfM68t1UaLGnFuNf/D/fA/Fm8hT1lM17wBu3oSdjemYG4qOnMOVBaQuu49UOtm2etu4WEfF9PGalQrtiWun/vhz6i4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErXWZVHI5BIgkVd4hxJ4+bI65Dfco3x+b4W6rw3O5g3Y9ZCTdlXDuNe67V5yuScoiU/fgC1wX20f3aOdLmNFh6zbxPm7rhwDnWIhaaZu+P/czeK1bZkUS/a9PE8222sw4bNWyGea5n+iSQ+BXEcoQ4xl8FjDg3gvsx20IC400CNvYhIEly6rVZmsW6uYg/l7pHIRfUsa2zDKF1LvRL2ZPztp/8HxI0aen42DOGe36Nnz0Hc22NmqB3oQw3q+fPnIW7Vsf+MNVAT+Y370V8xOXYSYj9jZubMUv6TWhXLGJ/A/ANTM+T3Id12pc/cw3t+DsfumTNYr01bsK2sEPvS6Gncn7tcMcfu3ltuhDibQX1utEKbHSXr0f8Q3vPeyJCaIvQ2PBekB44T7IOWhfp1m+LUesXs86DvkwxtLY0VPg/qH9W66Z949kXMg/Hwow9DfHoU569Gh+YjwXZwc+Z5cttFVK92gsdweHkLKSuxmH3It2l8cdtdrMRlzTNXB8te+E/E1Ehb7K9I8RBwH7VIz87HMN9/6VjE9AiF5Oer1yhv1HmcV+fmcG2Ks+ivODuOmnoRkaaN60FsY/8p9FJ+ozJqz69g6KZ7rrrM5bIsWyt8GdY6eDSy2ZL4i3nAein/yebtN0Mcty8Yn7cdvKeYmiPvKJ3T1DTmo4gjXIeiFK9fhvKUNUOc3/wE18cbCi2so4/zQqONr7dT/K0J+ZCCDvqP5yfxPnLjzddDvHsE552ZKbOPD1EG8wa1xUyAbTE6i2vJWbrlG9zAOUxEPPK5DQ4M0DuWr49jaR4NRVEURVEURVHWEX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6TqrMoPbWV9sb+Ej0zU0uzxz/BjE/bfcaXx+U347xJu3oYGm3IdGlAlBI1CjiuaTjIvGWxGRRg6NrJaDtq5ZSmKUlNE0Nt3AZ6+Gg6bq1971aqPMkx00/BbPo0lnZBANXuRblkYHzUr1Jpp+RERscullyFTl2hjP0/XxYjRfipnzSHIdbKtOgPUKVyR6Y4Pf2vDyZnBOoPWtb33L+PSDD3yNDofXZfQsmtdOH8fNCHJZvAYt2zRDNSI8Zr4fDVcJJYxk81utje369HMv4Os1uo4iUu7BY9bqs/QZNJznS2g8i8hV2jYzU4lLyTS3bL8O4t5eNMZPX8Ax4eHQliPHnjfK+MpXPwfxXXe9gcpY3qghETTofU+S6uvE6zvfwHlzbOIgxL6L1yqXrUCczZpzoO9hf7AsnOaThIzWFl6cmMbWqVNo5H5m/36jzCf3PwPx1BwaLrMF7D9OhhKR8XRim0sTN2dCf4nIwsumzZgSvqZlnHL8DL0F63kxoVpaQtC1wLaWq82+YSO2TUszJx8z24CSk3GCP/pq0nXN63TyxGmIz51GYyubwZsNXKvKJezT7iBuNDEVmuc1cQbnG5uSAs42cN68bvdmiIfZGJvS/4y+QIksL7c/gJVuMcdjsCmdutnKl9fnW+LM4n8i116H5u+d1+I934kjD5oft3EeOHQOr31EN0fcOx0X5yo7ZQzbtC7XG7TJi49z084RvF8r0T1jxuWEk7SYiSwlMbzIQB7n7ZJg/6tdwOR6rT6q8wXcIEFEpNPAe5xeMsLne7DP89i0E7yvvGbriFGGbNsEYZaM9a3WijqsYnME/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKoxGVChL5Czqww8dRh3liFjXT7h5Tv/6KO18JsV2n5D8efubMBdQvOyV8PZdFvZ+IyE237IN48jzq7FnHy3LPwX7Ug4qDeudzc7NGmQefQ131aA9q6W7Yibo310VdYpaEmJZjJquySLvo03v8GE+kUcV6btqMiVeKlnnp3WlOXIPt21qh3W+sS8I+Sy6qNjtNbMNvP4x60L//7OeMTycR1rnTQG1mbRY9Gh7pQRuUJDGMzevU76G+uFgoYJkJJSgi/WfGx2NW51HPnOvjBDoiBfJHNEk6OdSPPqNSGfs0a6QrPWYZQYDnns/hMeIY+6dD+tCNm3AMdALTh/TNB/4R4mMnX4T41a98y9K/63XTq7LWsOI6NpLxmZ+JBPvc0XOPQTw6il6HDI1TK4f9KVM0k0b6Lo5bQzuekL/LweRlnQCv5dETOA+fnsLkUyIiVh6vR15wTrMd1BOHnFSwRWL0yGw8i5JiWTbGEV2AiDXEVAT3WRGRdhPHWydHibhyC20XhGb/XQtsyxZ70Shh5FUkvfqVeDQ4QZxNMc+zCbVxtYr6dxGRpx9/AuKpKfSIeS4loXTIF0l+iiIlo2XduIhIq43Xgz007elZLIOSBF57/bUQl4bMZGaUz1ayGU5o24Nv4IF3JZJ2c7C+7CGufvpAEy/TI97ieXs9O+C18zPkiUoZw3auFz8zTz4Xus8JaIzaNt5bcX9dOAj1UfI1NhxM6nxHGft4i4xIId3rhCleGyvG92zqx3l5R28F4g29eIx+umd0Q/Peok6+WquE4yCi856p4Zyb9SnJs5/iM6N7npjOtbVi3W6HmrBPURRFURRFUZR1RB80FEVRFEVRFEXpOvqgoSiKoiiKoihK11mVR+PR8xfEX9ReP3dhDl5rtGlP8xQNv59FLfBLhzBHwEAF9WEF0q9bPfhcFLUwz4aIqZPM57dAnM2jfvkC7fc/2Iefb4ZYZr1p6vMKlF+B9wn/ymOHIR4pYFu98fY9EPsF0nqKiN2hPZCHUOt4+1bUlF63AfdxzvegnrTaNPV5Nh0zT3rw2orzqrfXXiF6YeysNGoL2scHvvr38NozT3wbYqttaoebdbwuo2cwP0AP7fXPOVhaHfSwDAxgzhYRkSxp6uszqMkv59DDkfCjPumqMzmsU4Z0wSIibcppUulFTwbvTW7bOM5yWbyWcWT28XYL+1+zgW3puJyjAHWv9TrOB3Fo6qyzNh7jyJH9EI+PTS7Xp70eeVwQHkGxhe2WhGYfHD37HMRjY+jvSgT17CHlfmi1Ubs7lzaFG2YRxPdwbkgiPGYrIC/cIM7D1w2bvpDGPPbrdp3aIsZ61kg/PHYONcqzU2aelDbVi/OBcM4BzqUQ0xWLOaGRiHSapDMPsK0u+gsiF+u7VriOJa6zMF55BmaPhpsyRdvUR1ni7tAfjp/EOfL0CYynp801mP1TUYjXskX5sDoB9gWbzqycxWtQ6THXx7k5rEdA19b1sf9VyQt3fmwC318289OwK+f6PZhL6K670IMaRd99HzE8NE76v9eKTLYsmczCmjQ1h9dxbh59L9mm6aML29QXptAX6ZIHg1M6cXtYKbkckoh9BdgXeskPYQuusVxmm+5lOx3Tn+Vwfjaagh3Kh2SR9zdx8F6r2Gt6NFzyVLTbGHda2LYJrdFsLfEtc/7j/DEudTJ7RWxbV94B9RcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj8Y3nj+2tIf3Xa9/K7zWrKIez8maGuyItOS+Rxpa0iP35FAL3CBtnJuyT3izhdrwbbt2QhyQkDf2sAmKpF8/8Axqql9xK+bpEBEpD6NuvjKLuTsy06hd7LNQSzdSxPO4kOJvSUjveX0/av72jWBbDRXw/RaVyVpcEZEZyvFQn5+CuFFfbtvmOmjkP/uZ/y7Z7EJbH33xKXgt4yWXjEVEqh3sGxH5b+wc9sdyBdu0z69AXCyZeVziNo6D+YlpiBNqd588GB0aI739qEcO6uj5EBFptbG/VCrotclSPpSAdOjZPOqRw8j073gZ1JQ6NHM0W+gtsC3Uh/YNoAbVjihfjYjMzE5C7GewXsePHVn6dxCsj0Z+JZZgHZoB6rxPPfek8Zkjjz0AsT2MXrfMIPZJy8eY8+d0Uvw0nOuAtfsO781PfoOEdPyR0Fi3ze+nKj00n5TpDQn2Udavb97SB3GzZi5NU7M4ti6Moy5/eoY04az9p7l+aHCzUUZIc8LcDHmRNi/Mu7azHlkMRFzLEu/iHGLk0cDYscy+YfNnKIdFFGKbTU/jGjBFcRyZfaFYxHHbbFEOnjzlcaG8GrkCzjWzdZy3aylfj/ZsHYF4voZ9I0pwzquH2BANaqpgzvSezJPfLke5hG6//VaIXe/Suv002IMghqcmSf33WtGo1yQMF9qyJjjfbR7EQZ/LmOtjUqhA3BZsQ5eurUVGI5+8NWn3MRY1dEhzzXAGXz87ib6jC3P4/tDB9fTW2+4yymTfY+ihf3P/cWyrjR28t0h6OfeROf+1Wzg263TPnffwmDNt6h8ZXIMrFdMH1yEfqkuTirdi/YmdlDwcL4P+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXRuFCPlnSBg5sxP8XeG6+H+IXjh4zP16dQ37llGHWVtTnUsUUBasyGB7dCXCyYOm1KYyAbt22DmGVrkY1+iv3f+CbEE5NYpySDOkwRkexW1PrmK6gbvK4PtXVeDXX7vMd3cPntjcUNUbfKenGH9h5vx7SveIq8LqF9r13S787PLLdFo5NSyavMgRdfWtJo1qdm4TWbNOBBlKY/xEYs92DukUhon37aJzpDvqMa71MtIjHtA94zUKF6YcMXS6j/rNUx94KfxzKDMCWPSw41zw3KNzDXwGMODqJ+dJ7yvlRr2LdERAb6MTeH73LbYB08G/WgrXkcA43qrFHGHHmChjbgufcPLh+zsw79j4kT9IydPIe+oQMvoB9DRGTqpeMQD/rkp+mvQMwejTjAa5MEpp8rjsmHxvrzJtbbo2vJQmmXvA1p+6ezXDxJoku+wfWwjvksaq9LRbOMygBq/0c2Yzw9i2N+5gK21cwU9vPEMsev5+L1iGOsVztYqHcnuHJ9cjdx7FicpXwzlGOB/RepeTToeKRxbzRxrpiYQe8Vzy3ZjJlvokrH4GMODAxAzH6dULg/Up4Do0SRdszeJpyPcg4ec3oU/RYuvT9K83+St+3IkRMQT0yix2zrNrwvCMgzxHkNRESSyxo5kpf599pQb81IEC+01bnJF+G123fdAfFIzybj8508/i2y0aNh0znxtTamKjZ1iEhMPqMG3dc0aZ547hzOh72DGyF2eq+B+M0/frNRpu/jeUyOnYT4xPh+PGZC+d3mcX21HfPaxjSRNyOc3/Lk3wtzeEwrh4137Q6ss4jI+VOY16lZR6+SY4cr/n3lv1PoLxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdZ1UeDWk3RRY1nY9962vwUrkXPQFF39xDeWYM80nYtH/21PgFiPsrFYj7Sui3aLTNnAIZ0qlNTKDue2Qr+jxeceedEFuzqEmdeuAbEH/hi39vlHnb3uvwmDuxnkfaqEHtzaA3oEB7Q8+1zD28axHqCFseamMn8qi7Dwu4p/I87UXu0fFEROImnnuuD/fFLleWczq465BH4+Z9r5ZcdqFfPfiVf4LXpqfGIO7pNbXDpRL6Bhzad7pJOTBaLWyjkHwwKVJ1KQ9h3os25Tnwae/1VkL+nRKOI4tye1gpAuUc+XE6lG9m6hyOu2QO61Ty0QsxTL4SERGLCp6fw3EVRqh3j5qzEFen8Dw7KX08W8R6Z7KoH18pvbVl/fNoBCHWd2IK92NvhTieRERmGpTLZZJynAxhn8y7eG2sqEGx2SFCyqsSkmaZpfsJ7ffvUn+IQ9SmJ2ni/wiXEkpbILzdvUtia4f6uZOSB8cnY5lTxDJdj/IZFbFth4Zw/B87iv48EZGxMziPZD3Uazc7C36DVsf0gK0FtmWJ/XJ5NKiRnZSvEY0pi/rw+Fnsw9VZ9CjmMrRWzaEvQURkZhpzw/D+/76N1ymfxzmxRuv63Bwer1E3vTWVCq5VG0ZwPaxX8XrNncd7jYi8EZOzOL+JiITkj+ujefLb33oQ4twbXw/x4CDmDorYxyQi7LuIDZfC+n43vGPHNZJdXIMLNFdVMng+5aJ5DzhJeczCgO7hEj5/7LERrUNzTfMecOzcGYhn52chnp/B9XD6As4DfvY0xB77mNop3i4H1+DtW/Eer7zhWqxTB8/rzNPo99m8DT0cIrLU7hexYjzGsy8egXhkBD3Qfb0ViDsujkMRkZ4B8q0GOG4sqa34t+bRUBRFURRFURRlHdEHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKjP4fbtGxFt0mGXI+PP8M49DvHunmdTEoiRztSoaG6fHz0NcnUZDVrGAprHKkGn4rU/jMQ8dxARZh154AeJX3IEJ+HbtxOQsFTJ8PX8YE5qIiBx4Ho85N4kGpYRMxdduxEQqt1+Hxp/ZFhrwRETm83SuGTRiTfah8adKRvrJGJMERmewXURENlbx+sR5NAu5+WUzpeOsvRn8x37yX0q5tHDeUQvdpg898BWIcyXzGbpNSd6alHAvJiNeJocGrzDCc04S0xR77CCaumarWMbWbbgZQYuM2z4lvtu4Bd+flrCvRcnvghATZHmUfGp+dhzihIy5RUqkKSJy8jT2l1oDx2apjFNJ1kFDcXUex0ScmP2nfwP26eosjuXZqeW2CdYpYdpKIjL6BwFeyyRvJtOzt2Bb20Norq2G2E7teTTNlz3akCA229ElQ6VtkwWYupBHy4BDBsxWE8+Dx4mIiEcJptgMHkU4HhNK9mSF9LqXkhTQxfEWxNjezRb2F0mwbfuGcDyXKtuNMvr6cOycOk7G+sUkjVFiXtu1wLKSpaS5FplUOX+WlWLaZ2Pr2Fk0vl44hfPX1qE+OgIWEszPCZOt8LqMZboOmaDb2MeH+jGhX1awj88lphG/lzaO6M9g/8k7mIgx2IjXeWoa18chMe8tWpR4sOhhmQeew/uAoT48j9eROdxJTbiH8xpvwpGsyEhsWWv/PXEx1yvZxXVx78gueM2t4UYC8/Nm4tdWBieGIKT5jHdYoQzMs7PY304eRwO0iEijgf2Jk4dOT+Dro+N4zEwBx7ZF/dOycG0TERnq3wBxuYgbT+QyOPd4Hs5N09N4z5d1TSN9MU8bhVCS03naNKFGiXpvuHEvxElI86WI5PvRDN6Yw3uFkyeOLv27wwkoL4H+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXR+Nk3vUIKmQV92hmSZz00hXqvIwdN7Vw+j5rELdsxGVKliP6I8fFZiE+cRP3oNh81giIiloUaQJvkoG6A+rvDzzwF8enRUYjvfPWrIH7dvfcaZSYtLOTooWMQ+znUHX5t/3MQz5MuccNG1OWLiPTffAeWGeF5TGfwUkakxbUGMFmQN20mupkbx0Q20sAynPyybjBM1l4j72Uc8bIL58mJe9qUgLAxa56fn0HdY5xk6XX0R3TIDzE+MQvxzDTGix+CMKJkadMxa9UpUVQHdZW185j0rd0x2z2IUAs7NIxJA33SLzfmUA9aHMT3z82Y2uGMjedR6EUNar2Jx7Ry2LaZHHpVNm1GTauIYR2Q8XOk7ZZl74gVrr1HiPEpQVw5h96WiRzOVyIi5Z30hxyO2zaN67hJ/XwG+3kph9dBRMTPYB+LyceRUL+OA9T6ujElCbQpiSSbAcRMyBewfjfBY8yQl25qGpNm2b7p0agMoG6+0o/tn8viZ3xKduiT7yPxzYRVGzdgGXVK9uW4C21nu2n6+rUlIS8Ox2kWgHYH+9eZM5jcbGoKE/AVy9geFvl9hoZwXVmoB8a8Jse0drTb2Kdn5zCZ3tQkaeRTklRGlGRSAlyTsx6Os00b0D9RLlCSypS2CwL8Y6ONXpF5Ssb51FNPQrxz93aIt11jrvMJmZvYZtNc4ffstNbeJ9RoXJA4XpzbPfIXurh2JY45NxWK2J/iiK4bJVxu1LCNjx89AHG9ZiZ+dV2a/6hNZ2t4b+CQR7FRxTHQmMd408h2o8y9N2FCvoF+TBhpC841Hs1vpQK+nvXMZI69RWybLCXP3L1jM8T79++HuEDzYy6LY0BEJGrje8p9uE6fP7/sZQopkeul0F80FEVRFEVRFEXpOvqgoSiKoiiKoihK19EHDUVRFEVRFEVRus6qPBq3be2Vcm5RS3YaNddODffb7d1o+idi0tFX51Art3MXCpgLPagdn6rh5+s1c5/m4Q2oKeNcB4USnvJG0v2euYBa83Nn0bMxMW7muLhtH+5PfN+r74Z4voXaxdOnTkIcUH6GwxfMMiZC1KUO9WLbTNSxLcdHcX/07ddsgzg3zPujizQn0TOT0F7x/dBd1t6jUcgWpZBduF437L0BXnvksa9DHIupccz4qBOfOI9tNtdAPejoedRmdhp4TDcxn9MrRfQmlPtx/3be7L4ZYJk2PfvXyWsStM29rwtl+kMLdZb1KpbhuDhuHNJ6Ts2Y4ypu4jF7ChhnqQ9nfBx323biuLSlYpQxNor9LbGwj772DW9f+nez2ZTPfPFLxjHWEs/BueSGHfdA3FdBzayIyIlzhyB+5tn9EI+OoidHSM/uUm6I4UHs0yIivQP4t2yO86jgfushXdsOeTo6MV7LVscUsPfRfDR2DrXTDmn7azR3N9sYX7Mbcw2JiOQKHsX4uufj6xHl/5iZolwuMe5LLyJyYYzzlGC9o8V5OA7XJ49LkiRLXow4xjp0yH9RoLxTIiIzM9i/Hn74YYjPnT4J8dZtmOOJipRiEa+7iMj8PN4blMv4no0juM4ENOdVKTfH9DzmuLAd07+TkEfRq2MdSpQTKopQX35hAn0hnY6pP58Yx7YLaGx26JjJaRwnN92C9wmbt2A7iIgkZKxhv0GnuTyXdyg/11qQyU9LZvEesDKM9zX5HM4TYWT6JBMb11Sx0aPRrGFfOfwSziOtOq5lvmfmioloLWo3KX8b5YYQmu/aDax3h3J2jYyY161YxLHWbGPb9JZxsurpKVKMny8WzFvzwX78jEvjYIBeP33iMMTtBo6rLRt2G2XMV7FPb952PcR33/vWpX+32i352uPocX459BcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj0ZfT1bKi1rH6CX0ALTGz0NsDZo6tvOUF6M1jVq5PtKzu0XU0NYmSfPXMnX4A+TRuObGWyAOmqhTK25Agft9P4S68HNnTkH88IMPGGVmXo3a4HoTdfRuAfcrvv0Vr4b4zOnjWKe2mSNgZPsOfE8Wyxw9hrk7NhYq+H4L329VTG233IC+h2gGvSLVFftPN+y130f+ueeekGJxQes4QfvuF0qo9ZycQl2viEipiNfa9fE5e3oa+0ZEGlzeH14SUx8ahqibDCJsd6E8GkGAZXCOgnYT9aGeQ/uOi5krplnFirZbWEahD/XK83Oog8375v7nzTr2yVYdCy2XsT/lM6i1rVaxXarz5h7wto17j7/ph34Y4ne88x0rjleVX/mN9xnHWEtiupY9JfKh+KYH4KFHDkL8/NOoWZ6fRw0y97lyHrW8VmyO43m6/o6L1250DLXm1TpqvYMQ44yH2t920+z3PRXsD5MTOHeUyqiZH9mMfWzPvhsh7h8y+3m+B9cLP0v5GOo4vsdOYx0KWcr90jB1+GdOT+FnisMQu85CmVFKLoe1h66zg/2Rc5uIiLQp90M+j/0nQ7lFZmZnIQ4oP0WS4lObmcHPuJQboV4nDxhVdNMI5qMZLmH/C1LyuPjk55ycxT6ekJ7doWPU+Lwic31zKReHR8ccLON4D6iPzM2ibv+5Z3EuEBEhK5Ps3IHeyrC9XM+ofeV5DLqF61viLvrvrBzOE20H53RLaO0TEdfm3Eh4bZ94Au+3LpzHYzg+zn/zcziviIh0OtjH2y28H6tP470B54Nokad2A91Tbt1oeu8unMP7kccffwziW2++DeIf+7EfhXhyHOe7rDn9SU8J/Z+Wka8G/9BDuTkujGLb9tK4EhFxyevU1495cnoGlz1bGWqnS6G/aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSdVXk06nYkzqIgvNCHerCgivtQj+1/yfh8h3wDto3FHz12AuLBYdRs95OedDY0NWJT06jL7d+Ees/ERc3fS8fQazI8gDrLvhHcR/zmO+8yysxVyNcxirk3tmzHY56k/Y1HKVdHecjUALbrqH8cP4yejBMHcH9+1vL3b0QtY2HIzKOxcSv6arJF1PBNrMj/0bLXfg/vr339HySbXdAdXriAnqBSCds4k0F9oohIu4Xazd4+PL/BEdRjt8hGcO4kljk/id4GEZEW+YZC6qOZLOosxcb+GNJG9XGAmtY4MfeQb1F+Dz5Px8Vj9FRQ5xpTDhY3ZW/yYhG/k7BJmx1RfocxlKxKJ8T+ODS03Sjj3vt+COI3vOnNEPcPLHu4MlmzHdYcyqNRpVwQ33zo28ZHvvaNRyGemET9sEVeKpLhy/QMjjvHMfOq9A/iWLDJT2V76BnL9lEOlAjnipyD824rpenjCPvg8Aj6JfbchGNrw2Y8SKFEOVTEPC/2A0ycx7F17gzOif1l1Bf7Ps55zz6H7xcRaXdw3vDILhct6tDbHdNjtBZUG4FE1kKlEsMnQt6slHwnk9M4Zw1v2ATxpmHyGTlYxtgYz7tmHo1rd6OfsN3BccHXtlTCvhJOolcuOYIeRotzE4lIm8xMPWVKLkSv15vYdzZtQS+E2bYivlBOFfLwOeThKJYrEGdy2FYPPPiMUUaWvJfNOntilufmZsPMd3S16XTCpTwms5TXzCL/RS5lntjQtx3insx1EO/ejvdCFZoXZslPFkWmT5d9SI6La+7GrVhmGNDcQ33lDa+/D+JnHjN9usePH6A6YB/fez3miPNtnFgGetE/lkm5Mw/JE2FfxqP1yjtuhThH9x69A+Y9YKGM9wYB3XdGVvq/L4f+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXRaPi2OIu5B7Zdj1rO249vh/jrz5ka24FtuyC2s/icc/7COYhnpnCP+euvvx7izZuxDiIiM3XU510gsfjeW3A/42wBdfq+S5q/GLV0u66/2SjTpcc1P4f60AzJrudrqInfOIzeiJeOoU5RROTbj6Gec+IoemDy5D2ZncEySgOoyy5t6DfKuOE2zKNRIA16NLd8zM46aJSPHDklvrdwnlOTtN99AXXp/f3o7xER6atUIM7kUGN7Zgz9PSHpdK/ZsRXi1gD2NRGR0bNjEM/SPvSNNula6fMW/cXQCsdmjhXOtRAa2myMWw26djXUfsZ189pmaU9u18c+3m5jnCugPv7u214F8X2ve5NRxo7dOD9k8ujrSJIo9d9rSSCxBLJwTY5R/ptHn0T/xZNPP2F8PkxwXOZoK/NOh3JaBLjHexSRT2HG9EqFFl6LLImlbcof45NtaPs2vHYZB/vP+dOzRpk2vWf7TpxfRraQYNvBYyQWrhdJTJUSkVNHcT46dQK1/IMbsIxMFueEhx5CH9v0jOnx6yX9P3umrHhhfMbx+uTReOiZY5LJLei5nZi8NzTOXTHniunzZyA+ceA5iHuor/RX8DocPIDrzpYt6GEUEdm9azfEtVnMW+BSkoBNw9jfxmfRq1m08Dq1cmZ+mpkIvSf9Ho6BJMS2OUt5v/r7sb+GoXl97Qzp10Ocg04cRc9PoQcH94bt10L84nHMCyMi4lF+j8lpPPdaddk/FXTM9edqk1h1SRY9Qg75Cz0b7zEyFq6XIiJxG/0R49PoW+npw3XbyeG80EeejM3ktxARaZOXIaJxElJf8GycYwd68TpftxvPw+rgfYKIiC04r7/6LlzvfuQtmBOqt7cC8c5ryB/rmzlIfJdyKNHNA3tkOD9IQu0gjtnHq1XMP9Og/uevuCeMnCt/fNBfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqjwafk9FMoUFzWbRxX1/X3cvaspOjD1ufD4qYnGVzajv/PYZzGlRJZ+Buwf1o1k2R4jImWOYo2JmCjVnroe6yd4h1MYFMeraGlXUAQdt03tSKeExo4D2eqb99TOkwzx0EOv83MFTRhlzM3iMqRnc6/58FduqQnuTb9uI57l1p6mf3N6LOtWzp9ArcuLgsiY9IP3fWjA1URXPXehDLvW/WhX1yKdPvmh8/oYbt0O8vRf1oBupjeZr6FVozKIm1nXMjcJ37MY+PTuHfWPsHLZpq4H9KUOCeYc8G7xXtoiIR5r7JIexl8W22bQJy0gaeB6ttnltHdL92za23avvQQ3q7a94JcS7duLe+qUe0yPE+9AngvWwV4wbx16f70gOnTggxcXx/tVvfhVee/EQ9rl2x5wrciU8RzeL3pcoxGsRkg68WcM2iVP2+683Ua9ea+JnXAfn6iTGem4cQN300FbUxLM2WERkwwhez0IJ6x0lqNMX0gsHbdQfHz9s5qg5cgg9e9dsvwbrOYj7wj/5GK4n587geC73mvkYEjq3SPAznrWYU2QVe8h3k2Z9WqJoYR7yafXOejgm4pap4XdCvNYDFZyfZifRu3DtLlwnfvInb8IDpnSGLOUwGt6IuToS0pL7Nvb5rfvQBxnsuxHimmuWWYjx3N0A44Dk6TfuxfNOyHMTpORn8DLoLeEcDjPz2MdHNqGHdPM1GDs5s/+Nnkfv4egE5ierzi6PC77PWAusxBcrWbi+JR/zfdkhzvGjx02f1Yk23k+1QzzfKKJOTdctpvuzKE7x6pF/z/ewfw304lq2axvOXVtHsG8M9JFn4+d+xihyfv7tEPfQ/VdfL/pXONfV3By2Q6dh+seiANuu2cF1nXP71Ot4j+i62LaDg1gnEZFTp9EfNTOKffrCmWV/CucruRT6i4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zurM4Jmc+JkFM5xt5+C1G25Ec+jr7kUjiojIZ586CvHIdjSabb8GE/1MjWNCmxkyRJ8dwyR2IiLzlIgnoORjBxNMOLTjRjT6tOYxGUtjHs3kYUqSnFIBTU8WZVBrzKJR+8JZNHufOokGnNDBthUR6R9Bo3KcoBGoTud97523QvwTP45mpTz69UREpDOLhqSpE1ivybHlhIqczG4tyOez4i0m7CsW0QzOxqdG0zQMTk1hf3Jc7Bv5MppJs1ksI9uHJrGqZfbxhJJkDQ5hQ8fkShw7h0kqO238fNZDA6JLsYhIQKYsx0Xz2/XXb4d4+zVoBm5MYJLB8XHTZDjXxqmipxeTbL3q3rshvmEvJqd67umnIK70DhtlbN2OCfu8zKWmp/Vx47509DnJ5xfG56lzmKArtrE/5QrmOLZpyrXJ3N8JaFzXcM5jY6OVMoWHER4jDCkBY4scli283hn6/ikIsZ8Xe83Jo1jBuBNgvYMOXq9mDY/x3JNo9D78Es5FIiK334Xj87obsQ8+8TButHDyKJpCiyVKRJhJmQQtbBueZ+ViIsH1ydcn1/UFksstXE9OxOjYlID0uNmG0zVsZ4fmqyBCs+3oOB6jTvNTo2FueFDuwc0ELpzHtYkTiQ2QKbUT4HXLFNGsm/jm96NzM1jPmPp0TIbzMarThg1o1A4CM9lhnGC9C5Ts9/wkGrcHKSlubw+uJ/1bcL4TEek7h/cfRw7i+C6uSPS2Hgn7fMmLLwvjJpegGfzcKK5NU1Pm+hhZ2K6xhdfasnDODNrYp9u0UUnMuzeIiOfiGN65De8zb92DpvWtI2jcHujD+7k4xvnzxRfxHnKhTDz3sSqOsyOHTkLcaKLZu97AtuqkGK1DSt7aCbBt4ogSdtJ9wK233QLxQJ+Z1HhqHPvfyTrenzRXGM7bwZUnbdZfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqjwaSeJIkizovig3iLhZ1H2/5jX7jM8/doySgYxhQqXXvvZNED/8ECb9O3oYE2LNT58xyujrxeRSPiV0KWdRA9iqohbuwihq1KIWaudKBfR0iIjMTWJyqYB0hJMX8PULY+j76FCSmnIPagZFRO64FT0Xxb5XQey20Ady4ybU3zXmUZO6/+BzRhkz585C/OzBkxCfO7/scYjJh7IWDAwNie8vaCFPHUO/T7GEeuv+ITNZ0NQEJp/pNFHHmytjG4aUkKlECZa2bkKtp4jICfLfWB620669OyGObewrJ6jNE9JEO6E5ZFk77Bex3tksfqbeJJ01aS1DMRP2FfP4ncQIte/50eexjDaO7RPHcaxmM6Y+NLZQ57r7OvRsJSsSMa1971sgSOrSSRa0sbk8znmuW4HY8/F1EZGQ9L4WJX3sRPTdj08JqSI8ZifFK2ALJTYN8TPRJM5pPvXBUgX7S2BRf0j5empmDsdOp4n1npvGir70PPaPo4fRX3HzzaZ+/frrboD4hf3Yp158Dr1GhQJ6MhI6jyQx54iwjT0rocSChUWtv9VZn+/otpQiyecX2paTy87X0C8xdR7bWERkfg69M4UK+iMqwyMQO1lc72q0ttUapp/LzpDPqIVxEpLunrrXdBXrOBTimp34ZqJUsiVJ4GAftsijkbg0Nsn7Zlvm9bUifI/jYv8Z3oBegEof+irbMZbZrmECNhGRXkqgeBMlK6y3lhur3azLPxpHuLr0FAcll1s47/oMttGxo9jfopR7hAwlKJ2ZxbkoTvCYWUqSmJAnI5vD+z0RkWIer7Udk8eMrHNhB19/4QVMoOzSPH7ypJlQeZYSKDs2foa9XiEliEyorZLETERoO3juGR/b0qM+nc1h2x2k++dP/cWfG2Vcf/0eiF0PG6vcv3xv2mqZ69vLob9oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidJ1VeTTcbEnc3IJmKwxRQ9a2UHM2tBn1iSIiP/b6OyD++wdegLg6jprbndtxn+YzR3H/4rBp6tgyw6Sb3Ih7rwcN9GCMHab9i2085sgw7oW9feMmo8wjBw9BPDGNXgCJUSt3x+teC3EP5VrIdcy9yXcPohYxauG+4RNnUSN/8FHUPD965CTEh+fRNyIisqlSgXhsHL0kwYq9n+N1EMm/5Ud+VAr5hb3I/+w//9/wWsbHruzkTR1v0MG9q+fGUVc+R/lOfNIn1izUDs9PY/uIiBRpb+oWlZn4OE42bsf92y+cw1wfcRM9RFFK/oiMj32+pxfP3SVdbCPEuOngvveBY55XXwXL9X3Ke3DoqxAPbkV/xWwdO4xTN7/jKJbRmxRTJ7PWJ3UG0AzaIsFCRRzS7kYJ558w56eIxOQJ5S2wPfJrVbBNWKMcJikmjZDKmMGxbiXYp4ZLWOZG0vqOXkAdfq01axTp9KGW3/MwZ0BPgn1u1wCWce1G9C4N70DvgIjI4YOYp+DJR8kPJVimQ/6omDwa7TaOTZGU/Ak0z+WchfPstK98D/lucm5yRnLZhXp3QsqjQfPVwCB6VEREzo0fhHiM9OatGI9ZmEYfgU1jkPPAiIjMVskDRP3JoTlsdAz9g03BcVOlXB1JmLb44DEppYA0I/KhUS6PQ4dQlx+n5IlKQiyjQ3kNXBfH0cw8jpu7e9H/MjBiejEtmg8ki/cOsbc8jixn7Rfh8+eqks0ujJFWiPcgA33oYWQ/mojpXUionevk+Rkgz61HuSE4d4SISF8Fx4FF/ojJSVxj//GRb0D8xS9+DuKNW/A+9Eff8Q6jTF6cZudnIW428d6hRfNHp4Pn7Xnm/UuphPPbRa/MRRwai/Umxvff/08QP/Tgt40y9u27BeK7Xo35sZIV97LtlFwfL4f+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXR8DK+eJlFjWCG9K+kFU6ROMq+m26CeL6Bzzn/9OjDENcS1P3u3oV5C3I+bYgsItt3o57Oy6F27tBjz2A9O9gEQ7tw//YkwDokbdTxi4j4MWrVkhr6QHptPMatw3sh7htE7d3Zg5jPQkTk0AHMe3H4CGptcx2s133XXgfxgINlPHLBLKMxj1rGrIv60HtuWa53EEXy+acPGMe4mtxzz2ukvKjjP3EYfTFf/vJnIb5m2PQIxdEsxDbpYcfP4fnOzGAfz+SwU8/MmvtpF+dQe1kZQP9DYxr1xgO0j/1AL3qK5nzUkWcKpq63TDpev4hlZEpYh97+CsRN0nJOuqa2NolJYxqhztX3UJ97/sJJiMcnUZv7kz/2FqOMjRuHIY4oTwDIsK31yaQxN1+XdrCgIa828NqwXNhJzO9xHNpLP6SJMiYPRkz7qScRzjWFlHYY5JwAAZZRKuJ8VKEcNJUWzomz0/h6e9oss1FFTfF8B30hGR/L9C3KBxLgMV94BvuXiMiJE+cgDimXRbGImuWY+o9FbdVum4tUkzxRnE9h3lmod6dDXo41wnFLS16MjId9JaC9+K2cuc/9xo3oITv1FPokj55B3b1P6zr73NL2++c+O9iPXpFKTwXimRn0hLk0n7VCzgtk5j9p1bFeuTz2N/ZcsBdndBQ9jWlpomybcnN4lLegiHOzncdx4/rYl3zX1OEn1Ec5z064wieShFeex6BbnD1zbimXVRCjr2Djdqxrq27eK3kO3rMN9uLa1G7gZ556/EGIKZWExIGZ86m/H30dN954PcRPTmO+nb/4y/8H4vNjlE/sBbz3Ghg0/WPZDOY/mZ9Dn1IUY3+zKa+LR968fN68t7Vd7D+1Os5VIfXpmRn0Co+Ooa/yjlfeZZRx5izmQpmcRF9cp7U8FjucTO8S6C8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXWdVHo1WvSb+4h7XrMyMSdSY2Kb+0MqgHu/Vr7wN4hxpMz/3lUex/CZqEgc3bjHKOHEW/RGNOsbnjh3BOrVQZ1ggvXJUQj3oufqsUWY4j1q4zSSjb02h/vPAVz4PcbOG+vczY6hFFhGZrOJ7xmuoSaWt8OW6zejRqPSjNlcsbAcRkZk2tsVNfaitvfGabUv/bgfBmns0MtmMZBZzQrz1bW+D1w4dwTwik5STRURk4wi2QT812hDt7X/0EOrEZ6ZRd+6RFl5EpDGPeuOsT16mHtprnTTPOfIU2YUKxNftvd0o88596Pl58rF/gHj6PO5T366hDtaKMQ7nTe16i7SzbeqPvLd9jeaDcj/qZKemTA3+w488APGOHZhbYWho2cORpImo14DNG7dJvrCgn3UcnCvmm6jLlSDFqNZATfHMHOYpiGKcWWOKCzRf9fC++yIy7OFnygHrvrFeST/245MXcM48PYp9tjpjnteZw3g950P2hWA/D8lrYpFe3SbN80JFcS72SfPOfgHWQRdLqN1utcx94Hkveo9yQPgZc8yvJfliUXK5Bf/B+QuouR4dxzgt506TZNUW3QL45MuzAmojHncpHo2EvDFzczgntlrYFzq07rgtbHM3Q54M37wGAeWnaVCuBN/B84zI9+GQF8Wyze9gLbqlsSnXQTaH80EP+Q9cen8UpeXZYa8rrR+RteLf5ti/2mQyrviZhbZ84Zln4bVHn0I/RRzidRURyfo4rodHMC+ZZeF1miP/TpNyqkQpuRymyVOWzVF+oyYe45oV9zUiIvtu2gPxw4/ifejR48eNMvfuvRXiQg/ONewXS+i6RpTXpVqntUREZunewkqwrTwXz/vkabyPzGTRp7tt+zVGGZOTeK9QzFN+suxy3DYv78uiv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NKwkFmtRyxjTPuKdDgm2bFNHGUeotcy4qEu76xbMk1Epoqbsf3z+EYifPGxq5WLSoY2eQ61+ibTA974atXUztC9zyULNZCNFOzdx9iTEs+O4T/Mc7bffnEF9e6eOwtlqivy8Rvu5B6Q/nqT2/+uHsK1s0pw2LFNnndiojZ2vopZx//7l/aSDtEQpV5skWdIIb9m+HV76yX/5Hoj/74//X8bHA/L49PeiByWXw+vW04fvP3YY46kLKT4kuk6Ohdd+ZgL9Ou0Qr32hjNrOkHS82zZvMMp8/eteA/GR574K8cEDuC/4pEU+pOal9coiIhkP9/Vuz+E4iUiw6fRjO9RbqPt/InrSKGPb1t0Qs8a+p7ycq6PduvI9vLvJvt17pVha0Bn3V/rhtQszqAufPI97kIuIzJJnTGI8D5bAOzbq7D3yW/htU+fdqqLvI+ngfBOV6Ji92KcmSeN8lOaByXHs0yIiGcqNkCFvW6GPNct43lFEOn1zaEkU4prTU8FcCWUaO66P47XYQ3v2p+i7uf1d0vYXFjXmrdYqBMpd5NtPPC2+v3B9HBfXuvkats/5ceprInJ+DDXYIWnDHfJ1dGhvfn5/Wh6NhOaPeh37T7WKa2gSX9ofUSyj6THturXJb1OrY5+3U/wq8Drlq7BT1uDLpe5xXcqFUMDrIzSf1Zsp50HzKFlJJJLlY7TJr7AWxLElcbzQliH5d8I29hXHNvtGrYo+onN07+RncJ3Zvhv9EoUC5rBwYrMMj7xbF32dFwma2Dd6eysQ8zwyMIjezrkqejVFTE9FGGC9jDwa1JdiGgOp40rwPY5FOZYSHJtj5zEnRl8/5rrivEMiIgP9OEdW53AOKa7wR4WaR0NRFEVRFEVRlPVEHzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zqrM4M1GTTxrwXASdNB4YpOLLuiYhkE7QXNenCMDFpl49u1Ek6L1+lsgHjv1v40yjk9S8rxBNPzedi0mPPuFn3grxJ/5HCY72//CfoibsWkqa9dmsQ4n0Hw73SGzrY/NHnrYLo3EdEJG9ExoWWgu4modrWOCNcrRJS3fPA+bEoyNzZCpNF6ud7QeCdMsa+E/EUnI3Hfr7XdA/IY3/JDx8fs///cQN/vQTFrswz69YTMmFyoXKxA/v980+05P47XOZdFYFrSxjGaLkqll8drnKmjOum4PmuNERCp9wxDvu+0eiGcpud6FC7MQJz5e95AMoCIicYT1zPhosEtcPM9KLyYD2nMzJue8djcm8BMRGR7eCDEnxHMcL/Xfa8lgoVdKxYVzDciUyma8KMWsGVDyslod27VFSbgiSnxXI7NoUDU3p6jaeP36B7Cfl7b0QRyW0bTapmoHWZyvcoN4rUVEiiXarMIwd1NyswJuFuK4aAItlbHOIiKWhWO+QSbjiJJitWjDkvoFHAd8PBERj+bifA7b5qKxdL0SRh47OSbuYhLBuRq28cwsbTLSMTd1cHjc0mYTQYuSdwZo+IxpE5A4MZPGJULJe1PWzJWkJcdbydwsrumS1vRUhEPH5DqZ157Mt2lVpr/xMRzu4znqwzat+yn7qSSUsM5i1zDMw2vfB22xxVk0pO/egXN8bOP5po0R/tvsPPa3Jm2yUCyj+dunTUmclE1tHA+vfRxjPE+J73bRebi8EwVddzvl+/kcJfJsxrg2RGQOb7dw3m61cOy2muba0engMR3aeKZN893J45iUuVjCjY+iyFzn2Ug/PTcF8cpNiYKU+4SXQ3/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6Tqr8mh0Wg1p2wuauICSs5RJyyopiVScDumJ8xUIA4cSiNRRm7mngnrQn379jUYZn/wSJgJzK5jsJ0sJYU6eOoVlbEFfyDe+9SjEVt8mo8wde/ZBPDyAusKjLx6CeJT0eBOky7ZTtJvZgD0x2P4NMmHYpAflhEVubOonXdIy1hL8zNgKD0e8Lh4NWdJLUn4bI9HPO3/0J4yP16ew/339n+6HeJuLCW0ac6i77Klg++zeY2oUXzqA3qTaNF63vh70U1y3F5PUdShB2947b4H4zle/1ijTy2Mff9u73gvxa9764xCfOo1JAy9M4BiQMMWjQT6jGunjr7kWz2P3dejBqPRg26Z9xxHRnGEL+TBWaKJ9f30S9uW9rBS8hXmqN4dehYQ8Ak6Qol+nsd+MsL80JlATW53D9w82UMPcWzDF5Ll+7A8hJaA6QskWm7OYgGq+jtffI110kjPPy81ivTIuzg/9/XiMYgH13JxgrcOZykTEoeR5M6TvDri96f0xzYG5jJmwqlTCem0YwvVgw+CIiIg0G6YHcS0YuzC31A6TM9hXOCFcJmN6aRJ6DyegDQOMycJh+i9SloE44eRj1EdXuXQ47Ke4tOVjsUwqxKgCezbIA5lWD5t9krSmkr/HJz9Mq22OG4b9AY5HfoEVNwdhsPY+NdcKxV1sK0dwzJ6me6kz58yEkYUi9skcJTUsFHHuajVmIW7G6BsNAjNxZjaH7T49QUlzJ3H92zSC3sAK+SJduu7HDx80ypw8j8dsNrHMDiW3S8gf4TrUl2yzB/oezmfFIs5VDvW/TgvX6No8zvNTU+b1iSmxIN9XrfSFRCl1fDn0Fw1FURRFURRFUbqOPmgoiqIoiqIoitJ19EFDURRFURRFUZSusyqPhrjZhf9EJKqjNq7VQG2nyyJ6EXE6+FwThaiRDULUfNkB7ZPeRM/G7dejtk5ExO99G8SffwT9EUdeehbrWR+D+J1vegPEt9x0A8RjbTPHhZtBneGevbhf8a0jqMt/7uB+iA+NYT6GiSlzD+UwpP32SYPKlgvb0Mlivd2UZ0yL9qSOaA/v+fZyvF77yF/EIX0g64AHN2wxPvMLv/YrEO+5fS/EX/x7zMsyNoGaxulZ0sf34nUVEbnlFRWIz56dhLhc6of4Na95FcQ7dqG3YeOWrRAXiqiZFBGJ2OPjolazb2DDJeNYbsbPGyWYhKShd1za/52OklB/jFM8XCLYRxOLdNSwhfz69D/f88T3Frw7pRzmWUnonKIi7nsuIhJuwDmrnqB2d76J13L+AmmQG3hMN2derUwfaoxfGp2FeHyO2i7BY5TJ0zE4SHk2OqYuuqeCHhzXw/HYamG9z42jPnhmGrXXvmf6C3JZ7PuWjetHJovn4WY5Vwf20ULGHEsDvXgeg/2DEPcsto3nmOvAWjA1PSXWos/CIl03VylJTB9Tm/w3Ae3XzxrtiHx7vo9tbtvYxiIitVrV+NtqsMn7wBaNtLXHJu9JROYSm9aHhA6a0HxlZ8zrmy+g9r9tJO/AMFPA+cGmtuuk5CFga1Ji/GG5zM7lLR9dp5B1JLPYNnUPK1DK4flMXsB7LxGRk0exv7k+9p9CCcd9SMlGoog9QuZ9ppEiJcE23LwR7w3Oj56DuEq5juZm0Qs1OXneKHNmhnJqsUWI7ldcC9dozjPkOua8Hri0psY4vr0Mzm+Dg7gOsN/l2OEDRhl9/dj+DtcjxT98JegvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6NXN+I5Bf37rVt1JhFs+MQJ6GpD7Uc2mc6Qt1u3EbtbxSjnq9KeyaXy7iPsIjIq2/dAXG2B3Vqn//yNyCeHEd93rMHnoN4383XQWwfQ0+HiMiFadTwvUj649u3oe73HffcCbFPe+sfPGFqAF8cQ3/KgclZiOuU1yCiPeVbpG3sWCkadxu1jBZpUPOZZY1qlCRyfDZNZ78+8D7oaRuhZ2kP79e/+c0Qlynnyhe/gJ6NGu1bf/48XjcRkUwZdaoDQ6jTdaiNDx7CPC3tDvad6ZldEG/ecq1R5tAQekV8H7XnYYh9gdvKpn3Cr8T9wPu9s26a99LnPec5z8uqufItvLuK63riLnpgWK/u0/xUKuDcIyIilO+mHuMc2CSPRnMajznXwnaPU9qxdQa9RXMBNlbPQAXinIdzdbGIWvSeHpxn66aFTFoNrHe9hf0hDLDf5zKU32gY44xv+ifyefSKcN4V7mMW6YvZo1Epmj6Qvp4KxL1lvIb9ix6OrGd6E9aCJLGXPDU2+e7CDvatdmzm+nBoyc+4eK2bAfUn8u2l5S0w4cG5unUikUv779LsWdblZq2Y6mR8xYqvsxdARKRGfha3iH0jQzkgiuR18i3y0tlmu8TkbQ3Ja7LSq5kEKQPxKpPPFiS7eB/QaZ6G1+I21mdDrzm+JhNsgzbdp7Rr6I9gj0accl0Yw6NB8dgo5vvwaF6IyfNYncd7r21bTW9mqcTeBhybxSLeB+Ry5C8jr0rGN3OkcG4NsmyYPkmH81Cx78j8nYGsThKGON49b3m+MPLjXAL9RUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrrEoona30S7a4oJMt5VFjNttBfV5twvQyOB7qbl3WjtO+0A6J61zSoAUtc79utzML8d5rRyDO5d8I8fQU6u/278c8G/VR1CHmbFN3OH8eNX8nx3FP+ELfayB2YhTCvWYT1vHm3duMMmaaqKMeb6J2sTo7TTFqHav0+Vpk6kNDG/0FPmkC+1bsC97shPK+Tz9kHGO9YH12GjHpdC1BXeQdd7wa4pHhTRA//MA3IX7isYeNMuZm0Ks0M0X5AWiv62gINfrfHj0BcbbwIsXYV0REdu/aDfFrX/d6iAf6hyC+gqZaNYY+nvepX+e8K11jhUbeIX9ELlfgNxsfjxMcY6U8zif5DPbJHOWCCMiXNp+iw487WMbmYdQUl8mHYJGGvt5A71FtDud2zokhIuJ7qFev9JJenTTKPJdzf8nR+iJieolYz55QMiHWt2eobSukqRcR6SNPRh/lBymWFs6jmsO8UWuF62aX/E3cZrHhxTI/n81QHowYNdjNBl4X28Z1Iwopz0bKOmJg1OPSc0FymdfT5nrOJWTMRzb1FToEW/zMP4jE1qU18Nk89vECeYA4z06q2YT+xvmibG/53iEOv0uf23eA72WXvGmVMo4Nz8O+NbLBXKtqZPCamsb7lA7nZyKvQ4d8vJ2OmYuEPyPUhjElg3DoOmYyOMfuvhZzH/VVzHkjm8Vz5/XO8DSS94nnpoyfcm15vou4r5Bvml7n3FdRZCbFiMhDEyd0z73CI+Q4V55UQ3/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6TqrEvk9uf+AFBa1s/fcugdeSzzcjztMkR+GrL0MUF/nOrSXdYv3pUcNdJP2XBYRacxjrgPbRu3bnl2oV06290G8awvGTz93EOIXDqNnQ0RkQw+eVy6P2sVmC/W8X30WdfdjBdTO3bJ90CjjxuswP8jrb7wGYidG3WAU0Hmyfs8394EPbdTn8a7L1gpt9nyz8z3l0bgSbNpH2tB803DYfg3mUNkwshXiweHNRhn3/+PnIWZt8PQM5sk4cxLjwUHsf+0WaqRfPPSEUebJUych3rULc28M9A9AHARYJ8/jPbu7b+K4Eg/Neh7vygu2l/TbFvUnz8UxFVKOAhER2+I8BviZPGl9c1ksIzuEPrdczvSMZTMbIC6S32FmFn0d1QbroLFOveTxGOgx5w7eR75UpjwZGbMtVuKQhtlxzOvbpvWA+wB7MhzKo1EmzXyW95kXEZ+8I4Ustre3uNG8xxvOrxFxFC3tXx+z5p/ag/fVX3gPziczMxcgjij/VSK4RgcB5cdKsxnQHy0jZxPGplVh9R4NPga/w04oV5BtmDLo/WYdHPJtWDGul8U89nFeX+rUdGm5OrhYI4fIin+3ydO6FoRJe+nezvawsmUf7886oemfyBdw7hja0A8xq/5dD/sw+1zS2pC/P08op5M5dCkfDY8B+ryRk0VMLw3n+2BvScI5MVyci8KUG2ib88vE/Dp+hvODBDR/zs3NGmU4lJzDI49gvKI/cq6sS6G/aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrrMoM/v9+4X7xF805OzaS4ZCS8XlZTl4lUidDTM7D5xzfweo05yghXxMTSaUlC5qcPQ9xOUGTTaHIiaDQUbVppALx8PDdEN/5ituMMjsx1buDJpnP/+9/gPjZziTEmZEtEBe3oZlXRMQaRNNUy8a2ieuYKM6jxGAWta2TMa+Pk0Pjj5H4xl9uK99dByda1yEDILVRSGY2n/r0G9/8NuOInov967FHMKmf66Ihdez8WYhPnMTEixs247jq6THNvwUy+05OYf+q1uYhLhmJytbJWP39iOUu/CciNrsKaT5KUkyDrsXJodBA2t9XwfdfuxPimBIq1Si5nogIeVTFpmRQNubMkqE89gc2dvf24gYFvp9ioqZElGxEZAxDL8VpibiKeUyklcli21lk1vXJYFnM4efdlKRs7BO1OQngYr3ClPqtBYVSbsU8RUnByNxup1yDeg3N34UytkHWx2vdNPoXlhnHKWZc49JeuWk05eMpyUDN68bdicemS7c6CW02YNFmBL6xQYaIS5s/9AzhPdC12zDBa38Bj+H4fL+SNu9e2vC7srlb6zBvnxs/K5nFjWQ6bdxUgjfHaLXMZKKcuM6nDTM6ZFhuNnEys+meJEebNSzUA+NOB48ZcZ9NuH/R8ej4bspGOpwwkpMC2tTfOrQRUtCh/mpsVmBWLDI2g8DzCgKsU8D3hJ65oUVEZxu08DMrzeBBcOVzoP6ioSiKoiiKoihK19EHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nVW5dH4xsNPi72YaOS1d94Mr91+DSYFs1MSqczX0VcQkt7Yj1CvFzVRW9euoeYvskwd5dFj6NEozFNSnZ4KxJVe1O3GFunebIyHh1jfLhLbqJH//7P351GSXeWZN/qeKebIjJwra8yaVCrNQkhYEhi1AdOSocEDDTS+BluNTduoGa657c/GF0PbzWqbyfbnBjfttkTfXtCGbjCfDRgZJBACzQMaalDNU1ZVTpEZGeOZ7h+ZlZnPs48yMkVUJqD3t5aW6s2IOHufffZwTsT77CduoeHLG64cxjJnsI4929CM7+ZXoy5ERCTt4TGdAI0JYxvbxhHKS6QcQt8x9S1C586eMeNTi7n+lfr65Chf4AUZthkfWd4YyqE83yCK6HXzOf3mV74c4r5BNG/857vvhrgZUQ7kGFZyuoJmj6U+zKEWESM38zvfvRfisTE0Bbz++pdBvGsnGhMmte26GeT9GGOzgRd1MI5FRNIpnCt6bZw3edBlBOen2SYKLNyMOR9lMqixcMgUcGgjjnOPtCWsG+E4TjAz47z5MCC9Cr0/5bEeiurgmnnQBTJszWQxPztHGg7Oc3ZtLDPpWzabKhrRmA/mk+YdZ1VLZ8f4/f/w25KdP0+LEvhd1tTF5hk2fdRceB720QxpE5rkCsd9nk3ERERi0j3a3O5J+efLsJKph+cnLsPhq02vW0YdE+ZAOi+HxnI6j+POS5GGiMuIE9ZguidqssnskvauzuLasBZE4aIUzaIxynqSVIIOlMc9zwuZDL1Oc42p12nfORqkM8jncZ5gPQ+b63EZboJ+h+eiJuuR6fUGaVHYCDPpvFjXwSZ/rB2ZmcH77doSw2WRZA2X8DzeYi3uYr3iVfxOob9oKIqiKIqiKIrScfRBQ1EURVEURVGUjqMPGoqiKIqiKIqidJxVJZqenZxZyJf8f77+bXit8JrrIb7mks3G54e6MWfPpz26I9r31zF31IZo1tymWUbHSccxcxri/mHSS/RifjprMsIA6xS0aBN6EZkoo4dFis6jj/Jgr909AnEjh7mcXoB7nYuI8NbNVr4EsU151m5Me1zTXtKsNxAx9/2PyYPkwKHFXP9qc+19NOI4XsjZ5NzpFWkIjNzy5TUaUZv8UGMfaxERB5/d9155BcRpyiO/777vQsx55rxveHepZBSZyWCu8JNP/hDi2Qr22f379kPc1zsIcU8P6kpEXmB7X0S4PmvF0j4YsG9GSHunJ7QR59VmI5wTix4eM0rRvvMO6RB6TC2DR7nTYcT1wvfHCX5EcDzKSU7SaBieRpQDH1MCt0f75zvktZCm10VMf4805cDzODCtOlbwvRqdm81zwHxbeqn10ahdfukuKRQKIiLisBaC57PI3CdfPGoj8jWwYszjjnmchdwfzT5eIP+Iah2PEdI4MftTTK/TmEhau+gYMR+DP0P6lYjWvihhbg8Fr3nM/Yl0OxYJfui0JZukA6H7j1mfr+li3KS8/rXgyiuvW9Ab1BvksUJ+FKznEUny4MHPeKThqFaX904zvL5ExCePG+4Lg4O43tVquD5WKqht4LUulTbnJtb0sIcF19O4lyANbfJcxeMCX+UyeJw0SKNhOWYZIQtt6JqmluiSGo2GfPHvvppQTxP9RUNRFEVRFEVRlI6jDxqKoiiKoiiKonScFaVOXfhZculPNT5tR1hr4M94lRr+TCMiQru7iV/DdJ5IKBWhjses0TZlsw3zJ9S6T6lPZAU/S8ecofyryMb3t+gnrTihySpVPNcUtY1F9a42MW44GM9Qu4iItOhnMsvHMqMqfsaLaXtb+pk1MXXKyKnAQpemS9Xm/52URtFpLpQxM7O4ve56pE7xz7xJ5x7HeC0t2np2lrYkrNc5/49+fqafQz3PTJXhn5P5J1L++bPdT8VJP0e322ZwrbnQF9ai/y0tZ2kfbFIaZRDgGGs1zTnQD2nLbkppnJ3FVAFOHWiFtMWhb6bweC7+7UdNnTK2c1xB6pSRVkafCQOsU0R5Jb5rpmbydsEtSl/yfR57/PmVfK/G6Qmc/jJXz9n5bafXuv9Vq4vzxwtLnaI2MlKnsD+2T51KqGuE/aXWWG3qFB3vxzR1ircC5dQpTh+MqF34XkNExLJwzqj6VMaS1Kna/NywlmtwfcnaUuf5bQWpU0aKJY3pIMAOVae1LKLP8/ooIhK0SZ2q0Zpbr2MZRoqRkTJttjenTgUBb/HcJnUq6kDqFJURURpUswOpU0uH0YV2Wkn/s+IVvOvUqVOyZcuWtgdTXnycPHlSNm829TidRPuf8nysRf8T0T6oJKP9T1lvdA1W1pOV9L8VPWhEUSRnzpyRYrG47t9kKj8exHEslUpFNm7cuGoDptWi/U9h1rL/iWgfVBDtf8p6o2uwsp6spv+t6EFDURRFURRFURRlNagYXFEURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeO86B804jiW3/zN35Te3l6xLEueeOKJ9a6S8iJC+5+y3mgfVH4cecc73iFvfOMbl33PyMiIfOpTn1qT+ijKj8qdd94ppVJp2ff80R/9kVxzzTUL8UrGwY87K/LR+GnmG9/4htx5551y7733yo4dO6S/v3+9q6S8iND+p6w32geVn1Qefvhhyefz610N5ceUO++8U9773vdKuVxe76qsmN/93d+VO+64Y72r0VFe9A8ahw8fluHhYbnpppsSX2+1WpJKmSZpitIJtP8p6432QeUnlYGBgfWugqJ0lEKhIIVCYb2r0VFe1KlT73jHO+SOO+6QEydOiGVZMjIyIrfccou8+93vlve+973S398vr33ta0VE5Dvf+Y7ccMMNkk6nZXh4WH7v934P3B8rlYq87W1vk3w+L8PDw/LJT35SbrnlFnnve9+7Tmen/Lij/U9Zb7QPKuvNl770Jbnyyislm81KX1+fvPrVr5bqvOu1iMjHPvYxGR4elr6+Pvmd3/kdcIDn1CnLsuTTn/603HrrrZLNZmXHjh3ypS99aS1PR+kg3/jGN+TlL3+5lEol6evrk9e97nVy+PBhERG59957xbIs+LXiiSeeEMuy5NixY3LvvffKr//6r8v09LRYliWWZckf/dEfiYjI1NSU/Nqv/Zr09PRILpeTW2+9VZ577rmF41xIcfqHf/gH2bNnj+RyOfmVX/kVqdVqctddd8nIyIj09PTIv//3/x7cztsd9wJf+cpXZPfu3ZLJZOS1r32tnDx5cuE1Tp1ioiiSj370o7J9+3bJZrNy9dVX/9j38Rf1g8af//mfy0c+8hHZvHmzjI6OysMPPywiInfddZekUim5//775TOf+YycPn1abrvtNrn++uvlySeflE9/+tPyN3/zN/LHf/zHC8d6//vfL/fff7989atflbvvvlvuu+8+eeyxx9br1JSfALT/KeuN9kFlPRkdHZW3vvWt8hu/8Ruyb98+uffee+WXfumX5IK91z333COHDx+We+65R+666y6588475c4771z2mH/4h38ov/zLvyxPPvmkvO1tb5O3vOUtsm/fvjU4G6XTVKtVef/73y+PPPKIfOtb3xLbtuUXf/EXJYqitp+96aab5FOf+pR0dXXJ6OiojI6Oyu/+7u+KyNwXLI888oh89atflR/84AcSx7Hcdttt8BBbq9XkL/7iL+QLX/iCfOMb35B7771XfvEXf1G+9rWvyde+9jX5H//jf8hf//Vfw03+So/7J3/yJ/K5z31O7r//fimXy/KWt7xlxW3y0Y9+VD73uc/JZz7zGXnmmWfkfe97n/zqr/6qfOc731nxMdac+EXOJz/5yXjbtm0L8Stf+cr42muvhff8/u//frxnz544iqKFv/3VX/1VXCgU4jAM45mZmdjzvPiLX/ziwuvlcjnO5XLxe97znot9CspPMNr/lPVG+6CyXjz66KOxiMTHjh0zXnv7298eb9u2LQ6CYOFvb3rTm+I3v/nNC/G2bdviT37ykwuxiMTvete74Dgve9nL4n/37/5d5yuvrDljY2OxiMRPPfVUfM8998QiEk9NTS28/vjjj8ciEh89ejSO4zj+27/927i7uxuOcfDgwVhE4vvvv3/hb+Pj43E2m43/7u/+buFzIhIfOnRo4T2/9Vu/FedyubhSqSz87bWvfW38W7/1W6s+7gMPPLDwnn379sUiEj/44INxHMfxhz70ofjqq69eeP3tb397/IY3vCGO4zhuNBpxLpeLv//978M53X777fFb3/rWlTThuvCi/kXj+bjuuusg3rdvn9x4441iWdbC326++WaZnZ2VU6dOyZEjR8T3fbnhhhsWXu/u7pY9e/asWZ2Vnx60/ynrjfZBZS24+uqr5VWvepVceeWV8qY3vUk++9nPytTU1MLrl19+uTiOsxAPDw/L+fPnlz3mjTfeaMT6i8ZPJs8995y89a1vlR07dkhXV5eMjIyIiMiJEyde8DH37dsnruvKy172soW/9fX1yZ49e6Cf5HI52blz50I8NDQkIyMjoJ8YGhpa6I8rPa7runL99dcvxJdeeqmUSqUV9dFDhw5JrVaT17zmNQtajkKhIJ/73OcWUsp+HHnRi8GT0F0slPVE+5+y3mgfVNYCx3Hk7rvvlu9///vyzW9+U/7yL/9S/uAP/kAefPBBERHxPA/eb1nWitJmlJ8OXv/618u2bdvks5/9rGzcuFGiKJIrrrhCWq3Wwg1/PJ9mJyKQovSjktT31rs/zs7OiojIP/7jP8qmTZvgtXQ6vWb1WC36i8YK2Lt370K+3QXuv/9+KRaLsnnzZtmxY4d4nreQ3ywiMj09LQcPHlyP6io/ZWj/U9Yb7YPKxcKyLLn55pvlwx/+sDz++OOSSqXky1/+8gs+3gMPPGDEe/fu/VGrqawxExMTcuDAAfngBz8or3rVq2Tv3r3wa9eFHcdGR0cX/sYeQKlUCsTaInNzWRAECw+zS8u67LLLXnB9V3rcIAjkkUceWYgPHDgg5XJ5RX30sssuk3Q6LSdOnJBdu3bBf1u2bHnBdb/Y6IPGCvjt3/5tOXnypNxxxx2yf/9++fu//3v50Ic+JO9///vFtm0pFovy9re/XT7wgQ/IPffcI88884zcfvvtYts2pBooygtB+5+y3mgfVC4GDz74oPyn//Sf5JFHHpETJ07I//k//0fGxsZ+pAeDL37xi/Lf//t/l4MHD8qHPvQheeihh+Td7353B2utrAU9PT3S19cn//W//lc5dOiQfPvb35b3v//9C69fuLn+oz/6I3nuuefkH//xH+XjH/84HGNkZERmZ2flW9/6loyPj0utVpPdu3fLG97wBnnnO98p3/ve9+TJJ5+UX/3VX5VNmzbJG97whhdc35Ue1/M8ueOOO+TBBx+URx99VN7xjnfIz/zMz0Da6fNRLBbld3/3d+V973uf3HXXXXL48GF57LHH5C//8i/lrrvuesF1v9jog8YK2LRpk3zta1+Thx56SK6++mp517veJbfffrt88IMfXHjPJz7xCbnxxhvlda97nbz61a+Wm2++Wfbu3SuZTGYda678NKD9T1lvtA8qF4Ouri757ne/K7fddptccskl8sEPflA+/vGPy6233vqCj/nhD39YvvCFL8hVV10ln/vc5+Tzn//8j/RNtbI+2LYtX/jCF+TRRx+VK664Qt73vvfJn/3Zny287nmefP7zn5f9+/fLVVddJf/5P/9n2AVPZG7nqXe9613y5je/WQYGBuRP//RPRUTkb//2b+W6666T173udXLjjTdKHMfyta99zUiNWi0rOW4ul5P/8B/+g/ybf/Nv5Oabb5ZCoSD/63/9rxWX8R//43+UP/zDP5SPfvSjsnfvXvmX//Jfyj/+4z/K9u3bf6S6X0yseOlv4UrHqFarsmnTJvn4xz8ut99++3pXR3mRof1PWW+0DyprjWVZ8uUvf1ne+MY3rndVFEWZR8XgHeLxxx+X/fv3yw033CDT09PykY98RETkR/opTlFWivY/Zb3RPqgoiqIw+qDRQT72sY/JgQMHJJVKyXXXXSf33Xef9Pf3r3e1lBcJ2v+U9Ub7oKIoirIUTZ1SFEVRFEVRFKXjqBhcURRFURRFUZSOow8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHWdFu05FUSRnzpyRYrGoLq+KiIjEcSyVSkU2btwotn1xn1e1/ynMWvY/Ee2DCqL9T1lvdA1W1pPV9L8VPWicOXNGtmzZ0pHKKT9dnDx5UjZv3nxRy9D+pzwfa9H/RLQPKslo/1PWG12DlfVkJf1vRQ8axWJRRET+rw9/TDKZrIiINBsNeE8URhDbCUdu1iYhdtJdEAcBPhW1gibEhS58v5vOG2UEgQ9xPp2BOJ0vQFyvViCuVGbxgHRekQRGmVEcQjx97izEjoP1LA3ggHU83GHYtvF4IiIxfYlgRS2IG9MTENdm6hB76SweL2FTY8eicj0Hw9TieTSbDfm/P/6Rhb5xMblQRiptLfk2BRuEn6hDum4iIrbgSe8cxLoPdHdDfL6G7dFsYd/qzWGbipj9L6YH/Utf8jKIt47shrhWq0F89OhzENer+LqIyPHjxyGemhqHuNXCvhJRO8TUVLZjDl7uLl3dA8Z7sJ7lZV93HM/4W4r66I5deyHOZhb7XxD48p17vr4m/U9ksQ/+1v/nTkmlcyIiElIfFAfHS/L3fvjX1X47aA7bpM8vX4ZlUaekySXmycY4njm2jGpwx6c3BHQm3CcTWyWifhsvf4y43fu544tIGOHf+DOxzL3eatbk7z759jXvf1s25sW251rHx6lGWi2cr1Iu9kcRkTjA82n5uJ55KXx/oRfXrokZXPdbTbMNowjr4dB61pPHY3rcq20s45Zf+hcQj/t4XyAiEhw+BfH0GN5r+PkcxLXyDB7Ax/mobhYhxSLeO4xsHYL43Blcg0+fxHm4WqtCnO1NG2UMXdYLsdeN17B2fvF+JQxieeb+8pquwb/zf31G0vP3gLzmOhQb84yIOMYcSXMLfeRCX1885vLr/vyblj1GLov9z03hetcKsL/ymh4GCfeA9Bm+weJ5xJyT258XH6PVpHXdWMcxDqjeMb9BRByaM/g+aunYbjZq8sn/76+vqP+t6EHjQiNkMtmFBw3uICt50JAIb/odeghwAuqEPpZxoYNfwMvg5CEiEvjY+Bn6TCaHn4lpUmz51GFW9KCBf0ulcQJxHHrYoTrxgwZPzCJJDxrYVnEDywjTWG+P2voFPWjQMURWf6P0QrhQhmU9/4NGu4FrfkLEoQnIdXji5OuCr/P7RURiusHi+62UhwtamvpKGOI18Oj9vmsOLK6X3aYtjJbhvrWCa9rup9J2x0j6PP/NpXN1PfPhZK1+xr9QTiqdk3Tm+R40sL76oPH8b3A68KARrcuDBo7Pte5/tm0t3DjxEOIbKo5FzMvCcwUf06E5rt2NX9LfzJso7gtcR3w9lcZx7yWsj5bHczP1aZfmdnpdIqpTwvTGbeF5ND+1aSuzrc22c/k8KHbc9u19MbhQRjqTXZj/2j1o2Ct50OC+YvRpfnj50R80sjl+0MD+5dANue//eD5o2DbWO6L5zqY+bn4JmvSggX2a70f4SwSRFd4vtH2HoiiKoiiKoijKKlnRLxoXyGQyksnOfRvvh/Qtfo6+mZ05ZHy+ef5RiCdm8XdaL4M/TfIX6GG9D+KBzZcbZRTyJfoLPm3NVjBVKm5gqtTM+TGIz53F1JXQp9QqEXHSeB61Cv6EGoX45Jnvwl80gjIe0036NiWFbVOeHIX47IkDENuCZQ4MboU4xb+Ri0i1gfUO6OsFN7X4E1mrlfDb8kUGf9Fg6NcH/sZKRPwWvsejNhUXf+2qTJyGOKI+H5b6jTI27sJ25l8krn7pjRBfcQX24Yi+Uf2Z6k0QT02WjTKPHjkM8b5nn4b40Ucehnh8/BzE/O1JnPBNr4Hx7Qp9U8XfRNHHk77N4zd5KZxTUqnFPrtugkTXFpn/edmO+Vso+oZoBb+qJb1nOV7ILxom/C0hv87fdNG3w4nHTP7r8+Fw6iOXkXAKocVlLP8rSMy5BNSvrcicaD36xpXH44VvFaOE+WUt8BuLvzpw7WP65jVIGMcB/WJfKOCcl8rgUYMGvt9uYpunuI1FJAgxqyCbol/fW8t/s5ot4Pp4mtKiurYNG2W26Nf3Qh6PUaNfBrx+fH9QxfMoFUtGGcODmyB2HPq2V/C863VMX7YtXAtcy0ydmhnHdTVDt2hdw0vSR1uRiEwZx7iY2J4r9vwvObxu8C8YTsIvGpbxq9vqfjEz39/+m39egznjxKgj/TLA0w5n84iYv+YwPI8wxi83Sb/4U8y/8BupUTT+Q4qdhLSjdvV8oegvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB1nVRoNy7IX8vA4l6tOOfv1saPG5/0mbjkX+Jgn2ZjBnPggRVuWxmcgnp0w8xO7BrfhMSjZt1XHbe0s2iqvWce8y1r5JL4eoMZDxMyNS3mY99rbizmlXohlzpZRbxHyzlci0t2D55WysO2KXSWILdoBp0bnHbYSdi9yMecvplzbifOLbcE7MawFoNEwUsJ5h4+kI+CHjp/D7QfPjZUhnq7hNotp2sbtJS9/hVHCZVdcCTHvbLV9O2o4Bgd7IGbtTKOB7Tzdi9sfiohs2oT9a8+ll0E8O4tb4o5/DzUanAfLOa4iZnOHEfZ5Q6PB18PYxsW8QLxdX0g7eSzNY10Lk7QkMp4n6fncWGMH5TY6lfm/YrTKVP+Y2y1BGhEbf+Qyzd1G8N3LLwtxnLBtqhGTtsF4B+mCli1xvl7GDlDLf4o1GsYOUgkaBs7Hjmibpmj+3OPQnKPXgrrfXNi9qJhFHUKWtIKNpjlH81gvFFEI2aJdG5tVGpO076vnmR24twfnSY+2zJydRu1Ckw7htvAPzzy6H+IrU+bucztoHj1LW3qfOoFzXr4L8/TTLsa7tpo6kBRpMkYn8X5kw0a8HjMVbNvqDGk6EnbPClt4bvsfw63yB7Yuzv9RcHHy6ZfDtu2FuZd3kOI4eYbmXaZWp8Ew4qTtwWgML9X2JeFTXzF2WuKxnrA+ttMMrmSNbVeGsZsW73IWs75sdXVcSb2W7mzV9hyW1m3F71QURVEURVEURVkh+qChKIqiKIqiKErH0QcNRVEURVEURVE6zqo0Gn4QijOfN50mz4vqLOolGrOmlsGlPMhLLhnE49cw52viPOoKyAZBpidMHcjkGOZiNmjfb3HYeRnzWNm9s5jDfNOUb+Yndw9sgHh4cAsWSTqRKMIyXapTo2F6dTQjzLMXd/n8yFoV9TDpTBfEXgrzSUVEWs1piOMQj9mVX8w5bbXW/hnVsuwleYbstInvTXQlpXzQagNzM6uC16XewuuycQD76969e40ytm7eDHGe/GVKPd0Qe6TJYO8Ii9w/+TqLiLQKOBYdGmfXvfQGiI8cPgjx+XOoEUraEzygPNWYNBqtJiaEsobHofxRO8Fd2vfJp4ScTJ0luqOLtd93OxzbXmwfco7nLsf5x/MfalNCuzzaFeTZ8ieM3Nx2epk2zuBtayASsgaD8nnZVT1aQRm8v72h0bBYg0GaGZ6HE53BsZ+zXYY776XDTtNrhW+FC9fTt7CuuRzOJWFCDnWW3hPFNMbovNhN2CM/ioFBnM9ERLq6cM0cPYPeVE0a5xFpm4JZ8juhebk2imu8iMjl11wP8ZYenBPHJnBNHR/D9bR/C67hboKO6dRp9NQKHKxXroidZWQHts3kGGr+pmxTQ8O6jVyE8//U4erCv9n5fi2wLHtBe9ZOP5HoGk+xqbmg+xq6z3FZB5KwVoW+6dy9FF6bzLWN+x+SVGY7DUY7PcOK2o7/RjErfiz+Q8hlJM1hy9d7aT2TP5+M/qKhKIqiKIqiKErH0QcNRVEURVEURVE6jj5oKIqiKIqiKIrScfRBQ1EURVEURVGUjrMqMfhS/GYV4mhiH8TFnCl0clwUaAkbdLVQxOO3UDwVkpjPc03DG7+Ooq9MGk1zKg0Ut/hNPMaGDSi+Cn0UjbkWHk9EpL8bzX3SDopxJ8bQ9M9yUZBXnkEhfZxgxBOQULvp43lOT6GxT4oEwZdeikZyqYwpBn9u/2MQZz0Us2Xzi/VuNtG4aS0Aw752Zl0rMNVhTVdA4rpiNwrob7zxRohHRtBEUUSkt7cP4nQah1iKzKYiQ9CHlSoU0Pyx4ZoiRbfF4jbsP9e+5FqIT586DvEPvn8ffr5ljt2ZCm3M0MSxGZDJZBCSiSWbJiVcn4iEuCzaW2qAl2yGd/GxbGeJYJFEgyz+TqiiofGL+U3tjQ2XP2DSn9qJvTsAnzoJsY1ebgiz8fWk0e2QUNaOcP2IY5qTSOxt0biIAlM0GtK8augv501MrQZtzrFGZHpSYs/3s3oFx2DKw7kmaYzwGLNoQwNeN4pdOP9EtAmEJHg/nhvD9axaw+skLtYzJOF1EOD7B7vzEF+ywTQtdVt43fIO1vMle7ZDPHqerrODZTz7FM6RIiJ1mhez3VhvP0AjQt5sgOdEp8schym6I7t8xxB+ZsnmIEEQyX0PmhviXEyWrsGGSWfMG7QkzDP0N+6jhvib+grHiesIlbFac+F24u+VGN8xfIx2bbUSMTib4lq8wQrPybQ+OQlmh3w/wpuuOEvan6/VcugvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB1nVRqNIGhJEMzlZfnV0/CaP4FmNqmc+QzDhjUFSkiMHdQ/jE9hzm0hj/ntXXkzPy+2ML/TcTHHNEcykclxrGcYYd5ZsYCvVyqmNmH0KJ67ZVMOKhnzZHN4njHrQAzrFZGZs0ewDAfboqcbTZIKJdSNeKTJSBdMrcmOPVdD3PIxpy9fWMxjbdQxH3UtgPxQyvFmoy0j6VsS0jnt5fMib7gBNRk33nQTxIU89i0RkVIJdS0u5TGyWSOX6XlsbMd5lWZepIddwTA96u1D3cgVV18F8UwF9T8t0k6JmJqc6Wn8zNGjxyD265iPbJwnazZEpNHCMji31l5i7GXbK88P7SSe64g3f02DtrqCFeTZGvHy+cDc7xPzhY2pt41Gw6g4G+O1eXvCIVmDwfnE/HpCprX5lwaawFot1A2xgZ+hf6K2jXnOEBHbRo0C1yua1zBEq8hP7iS9paw48y6CQRHHUK2GYy7j0sQgIn4F5+1iH85XLTIp7erCMqam8fMz0wk6yRabruExUmmaC9ggjUwDr7sS9RWXbMH5TESkRdrMqSlcg7Mernc3XInHqASoxxudMs9r/BwZ65ZRp5oj2U6DbhVqfG/Sa86BzSreI+VJw9Xbtdi2vr8OpqWWtaCzWImugGGtAq9nrMFgHYCxhCfokFzSKvkJmkM4Rrs52dBCmOdpzD1tDPr4ZcPsNWHtaGeQGNExYtII8Zpp6F1EJAzb9anFeiWZIj8f+ouGoiiKoiiKoigdRx80FEVRFEVRFEXpOPqgoSiKoiiKoihKx1mVRuPcqSOSTs/lqPZlz8FrZylfseiWjM/XZjBHcTrAnEdWP5yfxkS2jVsGIB4ZNPPJpiuYKFmpU05gAffLtizMyZ0qYw4q7zWc78X3i4hUZ/G8ajXMs7QoVy6VwjLSKcpFj039gxXjexwbNReFwmaIvQK27ekzT0Bc6jL3IvccPOZA/wjEmfRi29UTtAIXG1ushdxF9rwIycchySrAoRxFzkfcvvMSiF/1qldBPDgwCHE+T4IfEXGpXSLOeaT8zjz1x3wOY9ZLcD6piIhLudg27UtfLJYgLpUwP3nbCOZAs65ExNQOTE9jvvz4RBniMmk4AtJbuJ6Zn5xOY/9rkY8O+CLE65CfLHN7kV/Yj9ym/OmYc3kT8of5b2aeM5VnGDmswGeD32OkC/9oPhpxwse5CIv+YuxN30ajEVoJS5OD483KkNaNPsN5zhGV6SakUcdkDMF5zhe0XyFpAtaKuOJLPK/R2Li5BK9FG/D80iHOJSIix59Bf4gUJXbPzuK4Zi1fIYPHjFOm1m9qBrUz+QKumRkPy2xVscxtm3F+esnlmyAOg7JR5sDuyyE+M4P3Afk8rg/bt6ImIzuEurXNV7/GKOPz/+t/Qjw2egDiZgXP4/x58hrC5UOGbFPjF1ZxnqwLxpMzi2UECX5bFxvHsRfWOGPuaqMhmPv88joB1hfyzME+MIk6OP5bmznW0I9xbH7AIDI0aDz/kZ7C0MHRvXAd+5KISDaLOtwUj72QyqC2iiLWxyRoTWhODMPnf72NDAXQXzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6zqo0GvXKWQmbc7nV3swZeK17EPMNt+7CfDIRkd5+zL97+KFRiMtVzOvuK+ExXdpv++yZCaMMm/cOp/y6acof9VK0b3oT8yobTcwb37F3i1FmZQY/Mz2N+aHjZ6bwmA3c79yjy2CFZvLbJZduhHhsfBLi6iyWYQWomUmnShBnbfP61GZJG9KD9axXxhb/vQ4+GsvB+aJJ+aEx6ToypId4/etfD/EVl++FOE/+J8WC2YbZLPbZls/KI0x6zOfxGF0FzB32s5ije/z4MaPMUydPQpwhrUOT9hGvzpQh3ji8AeILOiw4BmlF+DyvvvoaiCsVHGcSY18KIzO/2KP9z83Efjv532uI6zgLOcqshYnZ8yLpAEY/baPRMM6TN1xP0lss3zZxvPzrfEjTRyMpL5qPQd4IvM98Gy+PKOG8Ihf7Nb+DexSPdwl5r/sErw6qd0yJyOF80rITmD4La0HUjBckOI1RnOP7BnDuyJewvUREws1DENs+jus0+fiwrrLRwPPOFMzrlKI5S1z8jOthvbbvxvnn6j0Y52zyT8mY5zVroR/IvlNHIb52F553z4bdEGc37oH4/BkyxRCRy6/+GYgfni1DfGYC71+EfMKyRWzb1rTpydUcx7ZLZ/F+JkgvHiMIfjSt1QvBcZxELyeRBI+MF6DRiEhraTnL6+BCFhGIiGWabeDrPFO00cGxnkychHmD5lybtQ28NlAZQYx9Z/9j9xll7LriBogHCjshdmmuSlPzu1RvzzPbLnB4vuN46fVTHw1FURRFURRFUdYRfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdZ1UaDXEzIu6cRqO7Cz0tSkXMN7Q4P1ZE+gZKEO/ZiXlrY2OYp9a/AfPXWy3MF52omjqBKMJ6TJBewiVNxsAA7tm9YQPm4ftNzGM7d/iEUSanLGZIJ5KlfcTDJuUd0n7HadfMkZ8cxzgUbJudl+B5zJYxr7VcpzxD19zDO1/Ec2/6uFd8tboYNxrkcbAGLM2X5txp1mgkwTnZl1yCvhmX7sE83XQah0ehgG0WxWaOI6Xcy8R59JsZPX0K4quuuQ7iUhH9TXIZ9Js4fOCQUeaX/u7zEN/+m++EuNHAMVCeRm1TsYi53YWCuf8+59JyXus111xFL+P1efKJRyFmHxQRkVaT+xS+Z3zs7OLnA8oDXyM8z5WUNze+Q+pPEe1LnrTLPe/Rzh2G92xn/xKjnyd1e+NvrIdo58VB18bifp70/RTXm8tcftN1Hs9JJxYb3huUr02HiOkKRHQeRu61iAjrbujlYN5jJoxMH5i1wC4WxJ7PWx87h4uCHdNClDa1DNkcrk1uiOO6RY24eQTXldFRnM/KFdSJiJg58BbpsQb7sV6X7kJNxuYBXId6SPNRoDlSRKRKuo+XvfQyiPcO07zasxXiAyfx3uPACdQ8ioh09QxDvGkLrh8nT6JHiW+TXxb1raiG9zMiIqkAr49fw7Y7t0R7GSXMoRcby7IWxnacrEKD97b7G4979o3y0tgehjdRopUIvsfl+YrazdCBkN+WKZwzNSoO+e9Mz5yHuFIuQ7xxM/adsI7nPfr4w0YZW7aiJkM2jEDoRqiDzOfJI2cG7+dKaXOd98gn52yMa/JSGW+YLNVJRH/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tir89GoBxKGc88m7gBqNPpK5LnQRJ8HEZGpacxZ3DDcD/FLrrsa4ompsxA/8tg+iEs9Zq5my8d8zrMVzE8PQsy3691IvgWUc3psP+Zq1n0zr22wD3P3Z2uYC5wl/4WI8vn8kPQtDnmBiMj5cczhy3ejjqOQ64G4UcH3nzuH2gDLKxhlpD08Zo+FOpAw8hP/vVaEYbiQ4xkl+DAsxcz5Nvfw3r59B8Rd3axVwDbK0P7thbzZhq6Lz+7fu+ceiO+757sQ3/H/xv3ft+/cBXFE59FdMvv8pZdfCXFv/yDE9RbmVQ8MYq5xRLmdSXn/jottl81inx4bG4P4zCn09vBJ02M5Zo574OO5njuDXj0njy7qo+IED4S1wHXcRb0KtZvtsq+G+XmLGpf3nuccZjOnmQ+YkAfNQqGEWuBB6WWqU8rCucRNSIyuCY4NO2Y/Ct4P3xBU0PvNMvgz3JYuNTinsEekG0rMcecGZmnbhZf9tfcwEBHp3bFR3Hmvi4kmrhstyjWvJbRh0MA1uDaJ6+MMrZctG4+xaTuu2T3TppfQDOWjDw/jey67BDUZeSqjO4vj6JIRnM+aTTM5PCY94a5BnF8u3YVzfdnF83juOGrfWqE5P+Wonr0lvAdiT65oFtuyOYv3BXFoXp9iBtcU1rI1W4vz6HpoNKI4XliT2krBEtbg5/OluUAQ0pwakj8F+xAlVZJ0bY6hu2JdHL4ekvayRfO855raJ8/Gaz96/CDEzz37BMTb/jX2R7eBY3l3ggdJKY1tl7LwM56H9RwirdPZgDxzEvpPzsV+P9yHx5iuLd6b1msr73/6i4aiKIqiKIqiKB1HHzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6zqrE4E4YijMv3jlxGg1JcikU0m4gsbiIyLnzRyGeKuMxRvZsgtir43NQo4qCr6FhFNKKiBRKKMrZYpEhkY9C6y1bURg7cRaFs143CrqyeVMM3gpQXOSRoKZBpn8+iXAcEn/XaqYRHJvDWWTA98zTKJx1HBJn2ljvsXP4fhGRkMSWZ8fwGJdfumiCFIZrL4aMomjRLOgFGPbZDvaF7lIJ4q4uFC1m0ngdUymMu7rN/ueQIHPbDhR9TUyhMdTgxo0QN1so8Jqdxc0JNm/dYpT5uv43YB087E89vSWI9+y5FOKjR49AnCTiS3koCmvU8TzSZCyYyeA4ZLO1atU0fGw1cYOBRh3jpdVKquNaYDmxWM5c2Q6JDuN2xk9iGvZFIQr0Yhv7qEd91jjrFRj2tTP586iezQDnmpSNIsNkkScJJGnjBYfmr9jH8w6oLd0EwaXEgfm3ZWABeiRtBOliCkH5Hc783B26q3Cr6iD57py4qbk+YQ3hxhCzNLc0EzYFcNIkEJ3E9Y43Khk9hBuyTJDp12ABjycisnMLib93o5g77ZJBLYlxe7pwXrXIjG9m1uwHKdqcxPMwDjy8P6m2cL7q7cN5eLZuCrUbU7ihisv7BpDxbhyQcSHdz1gpsw81yFSySqbE2d7FeTVih8o1wLasBUE2zyvtNrYQMecO3tQl5pjeb8w9SZthsN+e4fGHcypvdFI+i/dGp86hSfPl191klGnTWMtOoSluTw03FUrZZNZI6+mGIMGMeoY2denGzZOyaVxzMynsS1s24Dg8dhyPJyIyOnEY4lwex2LsLm46FPumWefzob9oKIqiKIqiKIrScfRBQ1EURVEURVGUjqMPGoqiKIqiKIqidJxVaTRSVktS86lojRbmZ+0/NAPxTBkN5ERELHqu4Zw+m/QU2RQa4XGOrk8GJCIi/UNoxPP4Q5hf1z+IhjjNacyN23sZ5q+nC5gH26qiZkNEZPI05uNNT2Hb+D7msbpFjFt1MhUMzNzNkEyy/ABz+c+NVSD2Mn0QZ7LYlrFfNsrwSXdRm8b2PXNqsS1bLbPtLzZLNRqMqdlI+DwZJNXoWrKhXz6fkCe+hEpl2vhbikybbnzFz0K896prIN5IGo0gwD7eapLJDuVhiohksvi3WpVyJ0PUQzgxxq6DjdVMuLZZ0qtkqB49ZHZ43Q3XQ1zsLkH82CNPGWU0KU/VIfPD9TCoYhxv7j8REZtN6ChPN0rIkU+5OMf5E2hsGDg4N9g9qMlhI7wkjUZkL99OLuXhp2LMH87kShDvHBqCuN4w9TWTVbpWVcz/Dapo6Gg3xyEeHytDHG97uVFGqoA5xnHEWjZsG/b0tEknZFlJWhN8j09r0oU1yAlMU9W1IB2G4s3P004X6u4mz+I6lEswFcz3lCD2iqiTrFdI/2Djejk2htqHnoy5Vu3agXNBbxGPGbWwTbvI+DSfQ42Hm8U1OBWZZnpVMh7M0DHjbAniYgrvT3ZuwzKPHkdtioiITGN7OtR/cjm8Hl4K6xQ28f2VpjnPplM4jgIaq43GYluux3xoWdbCGmyYiya8N+nzy2FoOCi2OXbM/hc08V5ISDsnWbxHtDx8ffzIfoifevR+iK9+yUuNMl3S1g018NqnMzhfRCHW0aqjwXU2Y/4GMHn+NMT1Weyjg4NbIR4fxfkgRYbM53isi8jB51BHPX1+FGIvszgWW6QnXQ79RUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXjrE6jkbIXcgh7c5hbHkWY7zVVoTw5EcmkcW/gQgHzIsuUp9ugPaT37LkM4uEt6LshIhLZmDdWotzw7SOYR7llE/ponD6GeW8Hn0WNRzph7+uuIuaM5ihbMZzFvFbWljQamHeYzmC7iIg4MV6qMMQ8/Aztj15v4X7neQ/bxYkwL1tEJA4xrzW08byqM4ufabXwnNablfhosP7h6FHMRzx1CvdJ7ythrnFM17VWM/eRdsj3IF/EY/T0mNolKINyULmO58fMva+vuBzHRb6A11ECzKmvTGKup3Dea0JTsueAQ1oD9g8ZGECNkE2bmT93EL07RETKZdRomHYNa+/dwnieLd58Ti/nSMekdQktcy/+VAr/dv11OyH2fRxXRyZprghZM5DglUB5y7ZFHgMWjoPxM7h3eh/5yTQm2CvBLDNN84Ffx/nluWdRk1OfRU1fega1Av1dpl+M27MB4jjE87DYt4RzyGmDfd6zX0QkIu1bUMXc6UZ9bl5t1Ve+h3wnmR2fFtebO49cCa/TVA37incS6y4ikr4cdWeDW9Hv6vSzmJMdkbdNsQvH8eWXom5GRKSvhGWkyCeq2IeaC547LPLscT08TycytQ1jM9ifRjbjuAppXOWy5K81i/3VC00dUi5NmlJhvRSulxGNw4B8gcIEWxif3uO52HZha1GXtN4aDcPjwhhvq5+vDZ+MNn5ZTsJitf+phyDOZLA/7brhtRDbDl7HfAP7wia6p8xZZt/IuqRzbOL91/g0jsXjh/dB3NvC/tt/zVVGGbkR9OQ6ex7nzCp5MkUN8nGhe8gnnj5glHHg4DMQH30W4z2XLepTgmDl94D6i4aiKIqiKIqiKB1HHzQURVEURVEURek4+qChKIqiKIqiKErHWZVGo1QqSnp+P/1cmvwofMxba9RMj4HuftRH1KcxSXH/U09DnCKNQEA5kOdOYY6aiIibxly5LVswHzTwyf+DNBjTZXyd95w/dQz3fxcR2bQZPSpyaYyDPOVq1sjXgPQVkWXmvsU+7RlPuYpp2ta9y8P8vL4Sfr67iO0iInLoCO79HPlY75a/mKvYWkV+XqdYmq7J6Z8ryQeNYmyDAwcwR/Gb/3Q3xFXK+73qasybzOaxP4uI1Gn/bIdyN3NZzF/2PByCJ06iTuR/fO4uiI8cMbUN73zn7RC//OabIK5MUS5nja5zRDnVKc7JF0mlKFeYrn9AuqNWE/NaT51EXUhlBnNYRURsytXmDGRraT7uOllquK4lnjefoxxRfUmHks2a3+NsKOH17i5iu/qkS+uOMLc3btKUnaADaUyR/irGa5GhXHO3Xob47HmcE4/Xcb7K5LqNMl0+JmmVfBv72Lky7vEuTZxrehyzD+aLuOZYlJPcIC1SlfKiK+Oov6tNmOvHsYOPUPwkxPXZsoiIBCF7eKwNx0+cEnteC3TJNXvhta7BEsRnj5p6ruAcaTRIS+WH6OuS9XCNvubSbRDv2oqeBCIiKZqLC6Q57B9AXUhIbenS/OO38PXqFPUdEcmkSX9D36GWaS7vI4uuJs1XQYKAIibfjKaP/W9yqgwx69IyOWz7ZtWcxCy632Dt61J/hQSJ0RpgyQWNVkyePoavxgvQaJi6KtLFkO7FVMyKHH30AYgHh1GHe8WNt+IxBa9jl49r0yUFvO/0AnPtalGfDCPyUMngfDh1Btf5gT04rrr3oJ+biEhs4bg4PYb3osf24dgtZrC/nTqB8/qjD95nlDF6DudI18V7nN6hxXr6vvpoKIqiKIqiKIqyjuiDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tir0mgMbeiX7PyexC3yaWhVMAcyWzATCLfuwLyz0aOYS3zyIHoGWLyHspPG2MVYRCTi/f4zWI/hTbgXO+8J39eH+Xi9/ZRnGJBHgYikqRWDOupTCrRvuGVjvdkjY3rWzAGszGBOfDaP9RwgL4+Y9mV2M5jNmO9L8Oo4juXSdvvSbC3mQPt+wibga4ht28vGnD8qIuJSfmeF+uw//MM/QHzouecg/vfvuQPi3ZdcYpRRp2sX+5hz79Ge8j09mCMdkBbn1AnMuzzwrLn3daWK+aBBg/bwHkV9xGwN2ybVhd4eYZjQdpQ37TTxvKwY++cFv4ELnDiOdajN4udFRGzKz2XvDhDpmCYba4LnWOLN58hHVN+UoHdQOIn5riIi58fwvA+OjUFcq2K7eZRnmzI8Bsws5elJPCZrX/wsJqj3DaIn0gy17SyNJTdBQ+ZXUR9xeAznwJ+/7RcgvnQn5iSfOnEG4nIL5zMRkePHUD9x7tghiPc/9TDElfM4dmbHUbMwUzV1hI06zgl5mtu9C2K4hDGyFqTTmQXfifPnUGPSN1SCePy0qUGpkAZx+1a8Dg5pHbYM4nW4bBfOFb05EgeKSIH6ZBf5ZbHWplTC9fH0aewLx45hPvumIV7DRQY24jFSfagjsnKoJZmYQv1OKDjvxrY5v1RobI5NYI78LHmHhXTrUCqVsE4JXag+i8dI0f3L4NDieQZhJMdPmvPoxSSWRXkc6yc4jpK+xzY8m7id6Z6PvHEcGwekFeDaJyJSIo+bjTnswxnBz/iNMsTRLOotsjHe65w/hb5DIiKtFmnrNg9BvPuK3VhmL/oEpYqohTjeMjVgZ2itmJ3G+WtqCvvjo2fwfvrQwf0QV6bM+a9/COu1+/IbML7i+oV/Nxtm2z8f+ouGoiiKoiiKoigdRx80FEVRFEVRFEXpOPqgoSiKoiiKoihKx1mVRqPRaMiFHLqIcrJTKcylc21zr/VjxzCnqzKJeW27L7sS4v4BzHPrLg3S8Y4ZZRw9vg/imfl9zxeOObgZYkoBlGPP/RDrOIN1LuRM7wRKTRS3iActlDAudqFGY+Is5mUWcqZ+YiqDuYvlGu793GxhQmhXCuvZmMU8w6PPYc68iEiKPB8cH/NDe/sXr0erheWvBZZlPe/e3DHtxW7k94uIY5MGgPJFGzXM7dy3D/vSf/2v/w3i3/iNXzfK2NCP/T6Yxb2mUx7mi87WMN94cAj7+I0vR08MP2H/frIwkMP7cO//po/nOTmBfXp2FLUol115tVFGHC/fdq0G5ug/+TjW4ejhYxDbTsLUQ3vGs+9JLC9gX/YO49lz/4mIZNI4PuqTmEt+4tlnjc+75Efi0vwTkxdE1OK9+7GNnC5zrsi52LacK+3QtXRoAgtDGhd1HOuWY459P8Bjjo2h1uHvv/5tiLf/9jshHty6A+KewOznp5+9H+KpJ/4J63B2FOIcjfdde1GL4mR2GmWMj6I+oId0gF3dc/qCZsuXhw7+s/H5i013oUvc+U7D17VU6sL3DphrsE2XLufiMYY34DF2D2J/7c6TvivByKDUXcIycqgJ8iO8tpPlMsQTU9h3WiR2yNHxRUTiEO8lnBDnuIEB1JZMUD67RDhPh4GpfWg2cZ0ePY/9LQ7ZVwI/P0Xn2dtTMsrI5smDpJuuz7ZFDxLfD0UeNX29LiZRFEsUzc0PrKnjG6EkGV3M5h+k0eB1myUcrAgKa5PCFJu4jvfnaAyncY6tk97Yp3vbDGlr4gRxTf8wzi2pDZsg9rI4T9dCnKOfIy1mtWl6VEyUUVNx7hT5HR3B+5XTZ/GYefI/uuyqlxll7CRNxsbt6NWTTi2O5QZpYZZDf9FQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpOKvSaJQnZySdnssxr9UxX7G3h5I1Ldz/XUTk+/c/ip/pxs/c8BLca3jnLswP6x8egThdMPfwniofg5jSdGVgEOt1+hRqFUbPliGemcJ8va6i6R+RymAzFnowD79RxnxRp4h1GNqC+4qnHVMHUiatyOnzmG9Xm0JPkgyZYMzQPvd9g2ZybYE2jZ86iQm9S30nWr65l/7FZqlGg/fs7h8YgLhUwpxcEZHz59DXoNnAPNyI9A8cP/jAAxDv3GXmeP/S616LZcyUIbbIy8MlX42A8uM3b8Dzet2/fI1R5szZIxA3xvDa92y5CuLaoWcgPn0Sczkvvexyowyf9vXefwDLfPKxxyB+5oe4h7ffwDqx78ncH2k8U5q+vaSt4jiStd1Bfo60HUranqtYjvZj338A9yl3EnQo3Tn0wZAIx9EkbU1eoT6aDjF/3SMNmojI6CzmEHspzFGO6rhP/NQkzg2pPNYxmydPgpQ57/otPNehzZiTnCHvhPHzVIdpXE8qNayTiEi6C8fC3p95JcS7WtiWVdrnvUlt1ZM2z+OyzZhr7cXYT9PZubapNZoisvYajfK5MXHmfVxi8pVyKWd+4yZsLxGR1pkyxJUx9NrYuhGv285hXIsK1DdSKdPLyk3h+pfvxmuf6SpBfJD8s2wHP1/sxv7XNWD6aARVPI9p8lApDuyCePtW1H/W67ReTpk58tUy+rCcJ42GRRoylwSgDdKcnZ/GMSAi8pKX4j3Q4AZsXy+12B/dBK+Fi00cRQs6C4u0YJbhe5RQP/pbGJCuhd9P82OG+ngkpudYKodj1itgf+rrJc1QHsfJ2G70eyvQ3JXeZq77zQCv9dlJ1I4EFdRXVKo4r58bR4+Mc6Oo9xMROX4UtZRnz+C9a4N0kpu3YD2vuhr1ntv3oCZaRCTXi2MrIs+3pf5Bjrvyxwf9RUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdZ1Vi8NHRk5Ly5gR0fojCk1JuGOLz4yi8nfsQChkHe1CQdeIYCkzZE2735WgQ0tdjmlVlPBT4RVkUG9kRinC2bEVhdhBth/jIQRRZz4yjqEdEpE5meHUSJTYrKPryBkoQ91B85aUoSBQRiUj87GbwPCsZFEV1od5JKrMkQrVNEVWhSMIzD4VXU5OLn/EDUxR/sRkYHFoQEW/aiMaLL7nueog3bDAFg8ePH4e4VkUB6qFDKLZ69hkU90bkQPTAAw8aZdz00pdAnCLzn1YDBVwzYygCEzJTS7dwnOUj0yTHSuEwHtyMIrBUN4rdHOqf2zZhf6v75rUdP4dCyMcffRrip584AHEcUX91UZAXRgmbCVD7ei52YnvJGIhi0zRpLZh87B+knpkXBA9thdfOn0ZBam+vKcadJCG238TrW3NwTpto4rUtkhiyeeawUYZLRpvpEdxUw+7Fedcng6vrf+5GLLMbTdxcz1w2MmRI1aA+Vq9hfIjm+gcffQTiyXHTiKvRwHpatFuAQ20zPYtzd8mhsbS53yhjy9ZtEHcX8Nxbzbnz8OqmWH0t6MlnxXXmxsGJ03h+tSqK36+70dzUoTWN61+V5p+9N+D59xfwWju0eQULt0XMtSqVxbXHI7F4itZsifD1yMLYj8yNTNIkTJ2ZQOPF1GkUnA+NlPB1C8Xf9RnTCG//M2hCOjaG7wlp8xCL3ObcLJ5nsS9BSI/dTTJ9OAeWJxfvoXx/7cXgy8FmfFZsriMWfbcdkMkhm7Jagq8HNZw/G2W8ziIijQz2j/E6bQpB9y7pXAni/suugXimivdKvGGQiMjEBJlM+njzGgU4/50+g2LvYydwHj97Es34RERq0zgndpf6IL78ajTgu+yqn4F405bLIHZ5YxIRCej6hGzUK4tt5zgr/51Cf9FQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpOKvSaCw1aymSiZMEmEcZNMxc8qGNaHwiDpvhYc7sbLUM8YF9aAp23bU3GGVccgmakHz/B9+D+OEHnoX4quswl7+3D3PSqptRw+F4Zn7ouZOYq5lx8fmt1cJczOoE5smysc/x51BLICKSzqBx0rYdmMw5m8E4rGM+X0RagfqseR65LJrc+c1jEC9Nsw7WQaOx97IrxJvP5922FfPjd+0cgbin1zTs27ED84+bTczLvfqaq/H11t9BfJLyJj3XzLHd9xzqPC7dgfWqzuK4SDuY/5lJ4zFrs6gjsdiBUkSGR/ZA3D20BeIjz2I+/N5hHGcD1+CYOVs1rfCe/SFqMo4cxJzSiIwGOT85ZvMm0mOIiLg2GUDRuQbhYt5rvE4ajeqp/RLNG9btvBy1D5mbUZ/TU6Q5UkRqlMfcaOI4ylK+cMhTNOXIR82XGmUcf+Q7ENezOHe88tZbIPZrpFvbPgJxKoN9sp6gTyhPY78+dALnsP37DuLrp9BQrUI58fUK9nsRkSqZjvoB9qlKA8dSTxrb+rZXoBGXa3ZBmaHx2WziMVrzplj1hmnothZ0FwviunNz93YL53Cuu1Uxr1OhQAZ8ZJi2rQtfz3u4luUKmNddKJjGvPkc6nVmq1jG1AxpmUi7EIQYn6/hPPDED7EviYhcOYL1np3FnPn0FOb2b9iMbXN29BjEP3jwPqOMx574IcQ1MpV0aO6203h9+rbgfLBxOCFHPkI9wdlpbN9oSVsG/vrMgReIaQ6PaDxZsblWsWEtTfnSJNO5C+aUF6jV8LpOTpDGUUSyG3H9azjYhidOYP8LyZSzTDqmCZqLpqfN9TEMUJNxfhzNHM+cwnuHUydxfixPoN4ql6V7ZRG5/ErUXFxy5bUQb911BcRFMt+LLexvYcIayqaLDq1XS5tqFRIN/UVDURRFURRFUZTOow8aiqIoiqIoiqJ0HH3QUBRFURRFURSl46xKo7Fp0yZJp+e0GE3a379B+wYPDpk5ZjMzmI9cyPdCnCIdQkR53bzH8iOPPW6UsZVy97fv3A3x5CT6GLR8zIkMA4wLtI+43zLz8uuzuNe1a+N5WqTBaFJusV/HnL/jp7AOIiL9fbgn/3YLz/PMqWMQbxpCzUwui8+UMxPmHtwNn/Y3p/3P80v2xfYTbBAuNttGdkgqNdf+/SXMA3Ys2m/bN/OThzcMQtwiv4hiEfvfbbf9PMRnzuCe3SMjqPmYOyaOg3qI7Z4mLc1S3YGISOxhm2d7Kae6RButi0imGzUXxw7jHt2zBw5BvPsa1HRs2Il9yT1r7iF/YgN6L+Ry2OdnK9hno4jGLuWDWpaZvyuUH+oHz+9VsF4ajROzWUnP+wCMtPDa9m7aAXEqa+av52guYD8Q9mqxLcxXt0j/lUpjnxYRmSD51HNPYU57ZOGc5uXxWj57CPvLxCTmDx89gfoKEZGjp3FeHZ/EPjQ7g7nVlSrqCeo0B9am8f0iIs0G73+Pc0AXiS72DpWwDmPYn8bZw0ZEUvTVmx/i9XKdufHJPiFrxdTU1ML+9XXSrPC3htPjZePzg304f2wawL34PRpWLumk4hDP23PMcZzycB1hXVpAvi0p8gGyHeyPjQBfv/+Rp4wynQB9lfp78bzOncUc+YMnvgrxt+7He4mHHn3CKGPDRvQK25zCuXqScvntDHkikSwybJjzWx95Hk2M4bw6eWbRzygMf8w0GlQd9hUREUnRvJ8iT54GrSMeaTpadE84VTPHYf8O1CpUQyzj2X2oWQyoniTZkBb1+fI46n1ERE4eRx+p46ewjPFxnA9t8prZsRXvU/deg54YIiI7914Hce8walFs6o/c+iH/JTR/Z7C5LSzWaCxePztxDU9Gf9FQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpOKvSaBQKWcnM76nu1jE/r7sL9RaWjXm9IiKpIhbnCObYWhbmdnYXUQ/B+zIfPYa56CIiBw8fg/hlL8O97Rt13Gt9toz7oZd6cK/ruoW5w6Wi2WTONtyvuFHBMkq9eF5nTmGOH1tSNFumR0W9jnmCzz6D+zAffg73ht69HXP+uvsx13G2bObXnR9F7w2P8nOzqcXzcK21f0bd4aUlM6/RyPVSf2N/k4Q98h0P89270pxDj/mIu3aNQHwN+U3kC6YO6RD5SzSbmPNYKOJnrGn8fEApp0EO+4JTR02HiMiRJ56B+JmnMIf+Z3dtgtjtK0E8M4n90XXNvrGV9CiXXYFtMTGB+84HtK84b7Ke5MJiUQ4p6zisePEax7I++clHw7R4855BU/c8CK+lM5Rrnjb3yU/Z2Ad5HLVIh+bTd0EpF8tIO6YfDusjThzF/vAF0iax59HYFH5+egY7aaNhelzUmqSxoPzzeg1zrxvkQ9Ei0ZefMAeGEeW8+9hfiuRjcPLkWYjPT+Ac2Zc3NTRdGWzPAY/fM3c93HX6jq4xWxdnfl72AxxTF/STFyhP4zokItLTjfoHx8Xz80M2Q+C5gLRWCc1gs27Dx2vdncYx0N2Neoqq4Bp89ihex4eeNjVCPQWsyL96NXoitSZQo/F//uFuiB98EtfTICF/fTvpP3dfimtsi9rOHJo4BqYa5/kNInSPM3MKdYGN1mJbsnfR2mDN/5cA6c3qM+Y9YJp8Wopp7I+2i/PGUHcJ4nHya/MtUzNbibF/1X3ydGrRuLBwHpmu4Hx3gjwvzpGflojIxHnUqPGl2bAB+85lV1wD8d69eJ86tA37loiIm8dxElMHY2sqm66HG9OcmnAZber2fMxoyYBnj5Pl0F80FEVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROs6qNBqpTFbS8xqNgQHc77nU0wNxo1kyPh/yPvm0L7pLCWEp2jP+DOUrplOYiyci4jcxN/zokaMQ52lv+1QK897ylFY91jqGx2dBhYicG8OcP4fyBku0T30uizmr9TrmbloJuW9TZdRPnDldhtil3O+ZKrbDUAFfH96AuZIiIieOYxmcJ12pL+YE+v7a58gfvu8BSTlzXdbqQ41GaSNex92XX258PqDzSXfhxY5beF14cORylA+asJf+sw89BnE+xP7mFNGPYijGOgyN4HkcPoW5nwdPmfnJE0EZ4kY3aobyuzE/tFLDnPwq5cd7WVN7QnId8bLYnyLO/6TvMGKL/AgS0jvNbblJ87DE/4H9J9aKdN+QpC5oL6iDzNbR+yFumH44eRf7UFeK8mwjbMdak31ZaI5M2Mu8UcMc4/5uLKNRRw2GZ+ExRzaTv1EK+1PS/v2zpNGYrWOuNdfStrHxpspY54kK9lERkQrNOZw/nCXBQCaNb+jKY59tmdv8i2/TNSvg9RqbmLvGzWh9fDSGh/rEm18X3RTOLT98BvfuTzg92TiM19aQZDiko3QxJ96ysH9mM7i2iYiEfFAKc+SXVW1i7zhZxvX0mYPkgXEU7wNERDb14XV69StQo2ELXq8tW/D+5dFncF6NE76DPXGS2tdCrdKOnehPtH3LToi57WdSpt7u7BR6u/DcfGJiUU8XBpHIs6YO52JiWYvzNE89Ls0jccP0wsl3Yf8aJp1ji3RYAznSBMXoA9M/gHOTiEi5hn00Ii+IyQnU/Bw9gb5BZ8/h69OTdF/UNOf1DQMbIb7scvS82HPF9RBvGrkE4kyJNKeueWse8oQXY9+wSd/jxXiMOMI4SlyDsYzQWF8Wx4XtrPx3Cv1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeOsSqMhQSzx/N7droP5rlO0R3kma+7vXurB/PMwi/lgVdq/eHYW83RdD/PZ0ykzj3fn1mGIJ6dwL+cC5Z9v3Yy5mrMVzAcNaK/2ag1zkUVEAkztl9k65gR253hzYswh7O7GnNV0ztSepDOYK3v8BOaHzlSxXmfPYtyVw0vd02eWMT6JOX9ula6hvyRfL175Hsqd4olzY+Lac3VqnMLr5D2F7z13EPe+FhG55Sh+pvjzPwuxT+4OGdJkNGYwp/bBr3zdKOPwD56AeE9qB8T56/oh3nUVajaeOYgncugAajSc0Lxudh/26aFt2J9sa/n99jnjPmg1hKlPlfEzJzDPv0vwmLUY2yogjUZsmXvA26Qz8hzS0CypaBQnZaBffCYnJsSb95OpkC9LTLoRtnYREQlTOMZYt0bWCFJt4TiL6LQ5p1ZEJCCNmEXahckGXpsUbZ5et/D6p5qUC2yZJ9YknxRf8D0Z0qZ41HYZ8ifqSqPmT0TECfDkgwjbm3U709Q0s9TR63VzLndJevHUOPmDzOsJgmDt5z8RkaxnL2g0JsqYA58mHxE7QcNYreG1jVg9Y+N1iyLsG/ks5sjHMY57EZFz5Mfk2viecRsvRJP659OHRiF+9AmcE+PQvG5Hj+DcfuQoHmOoB7UkA6RZHOzGuWa2ZV7f3kHUxFg2rsGPPY5eQseO7Yd47+WYl9+3c7NRhpXD9r/q566FeM+SPt6st2T/vf/TOMbFJJZowcPIIe1DKY91z/WbHhfdeRyUuTSOaZtEsqVeXC+jFN5shaG5Dhw//hzEp8gH4/xZ7CtTZVzL2Muqq4j3rVddh54XIiJXvuTlEI/sRI1ody+u8zbpq4I2fjUiIjb7TNF9pG2Yh9ExqIwwoYzYxmPYLAtZohOxkszKngf9RUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKojj96DAAANbtSURBVCiKoigdZ1Vi8GatJta8+Ob49AS8Vq2VIR4eHjQ+75EgsNYgcR8Je0ISHeYK3RAXu0zTudFTKPzZuBkFV9k8nvL4ucMQHzuGBn91HwU09YZp1MRicNtCoU9Mzij9/ShYP38ehWszs6YhTC6Pgt9CsYifqaIwsFFDoc70JIlxE4RA2TyK9gpFPIbbWIxjNo9ZA9JWWtz5PuGnsU2bZHp4YBT7p4hIZRzFej+7H0VjQ698KcSpa9GA6cgTpyB+/B40+hER6Y5QdDhYKkG8aQduPvDPjz4A8RMPPAnxZTtvgHjzJbuMMo+dxnoc/f5BiPeRqP2W226BmPtCKzK/f2iNofDx0gjFbekiDoIfTmLbTtsoQg1sHCMiIpaHf4tI+bzUFDBeJzF4LNGC6Ljlk+EWie1YrCwiEpJIvhFiW4ckom6FbFIXLxuLiLCfHmm9pUFGqR7VO0XzcIoEwil2bxSRJhkN1gOsxKyFx3SozAa9v55weWtkXmYaTtFcTQJ1m173suTOKiKSJgO6GBuvMG9SFbSaIvJP5ucvMo16XcL5Opw9ixudZPK4JtgZU4w7VcZ58tQZnCeHSrgGeNS9ugso0m82zbkincZ1OopReD1Be00cOXMO4m98G+fEyQms43CfeV4uqVZ5aGbTeK+wpQdF7ZeNoOHak0dwEw4REcvGOW5wCNui2I3z1+gYiox/eBhP3H/2h0YZmy7dAvHIS9H0b6BYWvh3I22K/S82xZwn2fnNaoZ6cfx0Z3F8TQlu7iMi4pDJW7EXr0MtQKH/Q088DfEjj6Ah7oMPPWKUMXoODR1nZ3HtCsl0udiF/XX73kshvvxKXIN37UEzSBGRnuERiL0s9jfekINnbceY140iRGhtsCy8/jZtssAbrkQ0HyaKuWlSNez6llTMFJ8/P/qLhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsdZlUbj/NhZSc+bADWamPfWaqJGIAwwFhEpFDEXLk3mP2kP82NblNdLPmNSGsTjiYh0DaI2pDuHeb0Hn8H8z0MHMJ+vVsPkzhnSkUyVSZAhIh7Ve2iYzIGGsE4DJYzPnsXcf7+JOYQiIn4K8/OmZ7F9x8cxH9IKsbG2bdoO8b6nDxhltEI89/Eatl2jsViHwDfreLHJBRnx5vPFOb+wP0u5rBnUQoiIHAhRv/Pl51CP88uHz0K89zp8f7QZc3I3X4mmPCIijVOot6mk0Lzqe49+D+LvP/oExJdtRYOma6+7BeKnD9xjlNmsYV/Y7I5AbJUpP55GfSaFubZNU1ogfTnUCI1PY9/Y5OBYnM1gHz8d4jjzEoy+jlHurE+GRJklGg7Wb6wVzVZTwvk8VZe0C6yFiG2zIS3SJlgRa6c4j5azZPl1E4c0FGzq51K+MBv2OXRQHmtBwvdTIf2NTSJdbhvS2FBTipuQ/pt28E0+JTKHZOhnGYZ++HrCNGsYZ7kRDpYLKcwBiwDWiNj2JJq/Xh4Z9PlNNLDdPYLrq4hIysG/VSbKENdq2GabaY0NyETzmTOmnnBsHOejmRnUJoxPYR7+wUOoMZuawjlz68YSxD0Fs/816XJU6A+5LjROHRzAi/+Sy3E+GtqwySgjsLHeJ8dQxxG72Hd27cVjnJnA8xrsJj2QiGzowj7uUFu61cVzdxtr3wfduCruhfmPdFlnSe9z5pSpczl9Gv/21X8sQ3zqxBGIx86PYTyB9zmVWdO0Oaa1IZfDdXvPLly3r7zueoi3XYoajf6hrRBnciWjTNtFvQT777HmgudUnqN5HZg7Bn+G53ljkqUy8f12gulyzGsaa0eWaKECN8GR9nnQXzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6zqo0Go7niuPNfaQrXYLXJs5jrlymYOaHDg2jp0WxiDmK6Qzmf87OYA5gtYJ53pZj7tO8aRj3Ep8cRU+B86dPQFyexjI4V/jsOczLnJwxc8MHe2kv/AbqODKUFF9pYK5mqoi5tpNV2mhcRM6exNz/iSls7yblDG/ejG3bP4x5ivufM/PzzpexXCuH7xka7F34d6tl+olcbHrtHvHsubasBJjrOdXCXNYhG89XRGSzXYL4hIfX/m7SCBTufwbiq3eg/8nmX3ilUcZ3HsJ6PPvIUxC3RrGMqI7t2FNAbcPBk09AfGrM9O4II8yjzmfx2m/bg/nJbIMQ0HnXa2bub9+GXoh7tmM9m/tPQjxS2gZxYwr7Vq41a5QxxePExX3pHVnMo7ZkfTQaYRyIdcFbgSQYKYe/tzE1GraF5xhTnm0c42c4DzemvFrDy2Oulhiy5oImuYC0D7G//OdtKyE3t82W6g3WU1B+d4vOKwjNA/r0t2bIxySNBn3ealNHERGX+iD7g1y4PuE6aTROl2sLGpyN23E+asych3hjn/n54UFcH2fLqE3IZchLibw5Dp7EPPz//tX7jTJGx3B9i8kjJZNCj4GBHiyzr4TXoLeAn/dss+2tHM55Dz72OMQ95LlVojV3aAjnt4GhfqOMShXvN2bIu+n4ON5bdA1iD7xkJx4zlTJ9XJ57Bn296mOopcxZi58JggQx3UXms3/1n8WZHyNZMlmp1nBObzTNObpew3WgTvdKfh21vzH7CNGakMmZ95mbhtGL5Iqr0Adjz2XolzWwaQTiVDf2ecvF/hna5m2zbdG8bUyIy8fsSRElGGmYuo02ExpNeLbdXqPBs6apA1kSBCv3cdFfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsfRBw1FURRFURRFUTrOqjQaWzaPSDYzl9uYJT1FMYv77PduMHMcPcrtbVYxp7SOcgjJ5TH/LpXGnLPxs+h7ICIyefRJiE+dQq+EegvzBn3KUzt3BvMMx6awzIopn5Cmj7mbEzN4IidoL+yI8n5nypjrGQRmbmMrwnoUu7H9L9uEeYmveMV1EJ+bGIe40F0yyth7zSUQV5tTEJ+fXKxXq7n2Go1zzQlx5/tQJNiX6oJ5u6cE+5aISIpyGgt5zL2cJN+Dv09j/K+Pot/Jlv/2daOMy9JYLy+Dub+nQ8xBnUrjtX7o6e9jHQs0rgpmXmQqTXmt3fiewgbsK3GIebHVBl5LPzTLCCkHtWsY63XsOcqPpzTqQfKasSNz//3BGOs5FWE9a+HiOIvitc9PFpmbwy70QVM/QXuOJ4gCeGwbvhmUR0vDXjgtm8ucq5fxF4hCqleLtA02aTwi8qMIY3Pscy1s8uYw9oCnOKLvvCI+8blPQeSQtsRou5DmUW6rhCICv928Fs/Xb336n+XYYs1rgaIYB9mmjTjXhL45xsbHUEu1bRNqqTyLvJPIj2I/abHK53BdEREZKlIefQqvS578IwpZnG8yDuonLDrPBmuIRMSPcWH2m3hxv/3d70K8fSd6XGQp179eo5sREfEDbM9MEc+r38E5kftn4GOdHnsQ9RgiIqeOovbSi7Et3HhxTkweIxeXA8/+cGHecy2ey2g+TLi9tGics14sRT4tpQH0w9q6Ez0udu+9yihj05ZdEPcNopYp24X6TYe0Mg5pMgyDpISv5x2ex03jjGUx9GSJPwGwOUebImghYG2mI6bWjnUcLvmDZJaY2VVTbU5q6XFX/E5FURRFURRFUZQVog8aiqIoiqIoiqJ0HH3QUBRFURRFURSl46xKo7Ft2zbJ5ebyL0dP4Z7RXgoPVZ0pG58fPYE5iZkM5cO6mPM1PYVeCaVufH3s9DmjjMOHsAw/wFxLP8Jnq9FzmAd+fhJzb2sB5QWnzLy2nh7cozuXxjJ6urBtKCVaCmnMWR0aNPeGzuUwV9MPMW+1rwdzGadHUU9QxdOULSOYtygiYlmoT6mXUVvSaiye+3r4aDSCQNz5/PKMRXtbx9io5RB1MyIiwx6264CP/hMtwb4yTlqab5GG440zqGEREbk5sxHiy1JYz8OUD3quhHU6Qf21QV8F1BqmSKhZwbze/HY8r5jqXZnC6+qlsU6uZ2o0To2hh82j338IYr+MbZFxcZwUPNJnZTA3XESkMjMGcbWF+/Evze9lv4m1wvf9JbnIpMmg2HXNHNaY031JLxGSZoxzmA2dAucPi+kXwW0Vc243lcGHdMhbQlj7ICIRnXuKD0JFuvS6T5czSPgKLOD8bvLR8ANOWmYDkWX2hL/wtwTNy1IutB3no68Vr7h+j6Tn19rqLM5xmRjnjshPWN5DvNaNKl7LRohzXrOF4z62sIyXXIHeWCIixRzOeV4K27QR4doR03ULmyxEwjrnCji/iYg0mgH9BT/TCvF6HT+LurZ6DeeaFgtGRcR1sa2CHPU/0iyMjeE8a9s4r54/bZYRB9h2AZ1HamnbRpGI4HlcfBy5MAcZNh7kL8H5/SIimQzeKw2RfmJkx16Id12CGowNm0cgLpZMLbCbxf5h8z0b3koZ3mkezQHskZFkyOO00cW1s7zgdaCtqENMvQvXwfXwejj0hpRr3sum6X4lncbGSmcW49nKyh8f9BcNRVEURVEURVE6jj5oKIqiKIqiKIrScfRBQ1EURVEURVGUjrMqjUa9VRXLmctDzOcwr3tyAnMkx86ZPgYe5Yq7mFoumQLmh02XMWf7ucp5ep2EByIyNobaBcvCPMHJGfzM2BTtGU8Jez1FPM+BXlM/sWUI8w4HhzBHMFfEPLexMcwH5VzGEnlkiIhkM3ip/Ba2d9jCHD9OWe3vRR1IrWnm+p8dxT3R+3qpHtUlbdsml/liEEWRRPOJ1YGNJ2jTM7MnZht6Fu7v3mvhdZoI8boEEWpWjlLe5HfTpk7l1U3UxpSaeO2v8bAOdQfrPUl5lWUb++fRhLzXsw4eMwrxmOdHMc/aHsT99kuUNxtyrruInD2J+cbVFp5XoYTHbLo4TmoWXo/pwGy78enT9BecL6zkzcXXlDCKxJoXWQV0DrwHuW0nTK+kJeL8YIs0ZMZW+Zz6Gyfk8rbTGVAcLC8DEZf+4DoJ14HKdFkPQW+3qRY++VIk2VSEpDWJ6Nxj/pAh2TAazygjYi8U9vuYLyNcJx+Njd0ZyaTn+lWd1oQmacZaLvo6iIhU69j/TpxCb4j6LI7zWus4HtPG9shlyXNARCybxzb2lxznfRdw/jp3dgJin8UAkdnn2dcrJP1ORPcB1Sa23alTuPbNTJr+INu3DWJ8yQ6InzuO89fxw6hj7SJtSTZhfhjehB4Pp0axLVrx4rrHfXUtyBX6xbqgr6Lx1N0/BPHwMOoVRUS2bd0O8aZNIxD3DqK/SSaPbZYiPatH66mIiE06A5aYcezReXCPdhK0DIwhB+O1oI0+jKfUpKXOEtZY4Il4pMHIZEjfQ1oV1nCIiHgJ+sylBP5i/3Ptlc+B679yK4qiKIqiKIryU4c+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonScVYnBZybGxJ837Mh4KMrJ5zCO45Lx+RSJdGamUHwrMYrXcmkUX7VqZAJWNAWljodit1odRcNRGk1yegfx/XELxeQuKYdKRVN8lPVQlFXI43uaPpki1bBOPX143o5jCnJYlGhbZI6TKUK8accGiI8cR0HwQw8+ZZTR312CePc2FKY1Woui4WYT22ktaMUtCecNjOyYzWowThLJTocogC+RMLfbQgFzNUKhJEuffpjg+GXbuNnAS8gAqz/AdvMbWEaBHv0HSDDYnyBMm8qXID4+UYb47GEUdKZcLKRBJl5RaArpzx5CczCniAaRjRjHYiXA8/Z9FJlOzbLwW6QZovjeFhoHS6/p2usgRUTEsu0FMaTr8vRJQmJDyW14j4khk6Y+xQJoQx2epAVPcqJbgkMf4rmFiwyF5sgEESr/LaDPGDpsElOzYV8z4fr6JAKO+HuyiM+DNhOg804SdAc0XkMyJ/T9uX4eJmxmsBY89cxR8ebH76GTZXjNo50FspmE60QmpEMDaHi2dWQLvp+u29kxNMmtN8wNWaar2DZdtK7kbDL0S+P6V+rDcXX8JG6wMU3zm4jIlqE+iNMpFJxXaLOUxiwa3TVbuDPNyFYUNouIbN9Gc14T526hNTn0sfGqZKxaypnf824bLkE8MYEC/+na4v1LlDC/XGxe8ZpfEM+ba9s0mc92D6F5Y1cP3j+IiOSyeJ+SoWvvpHDOt0mcbLkcm22YontA1yERNF0nQ6hNZqIOfT5p7WF/UpcMaj1aK3jjEF7WbS5TzPPIpXEckfZbXI/Oy+HNNMz5z/dxPLdaGNdqi/dQ1dmVm0XqLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdZ1UajcpMVfzmXP5lK4N5cA7lzqXJWEVEZHIS8w0Dyu/MZkijUcB4aBjjJAMvNrFp+i16HeNGBXPPz54dhTgks6AkryovlaUYcxdjOkZPbwniTAbbLjbUACIx51XTW4olNF2rkyHfgw88jXXMmJf++usvhziXxpPNLDFnSsrNvdhUY1+c+dzvOOL8Q6xrWswcxyZdhwnKy+1KYf/qIUO/2Qjf30zIcXyEcponHMwVHrYwr7JmY56v6+Drmy08j8EmaoxERLbVz0LcM4vX9kgNx92hSTyPzEbU8wRVHNsiIlPHTkIc18jokhJXQ8H+1/LxPCsNNKISEQks1iE9v1HS+tiliTSas+KEF8YraQIoZt2QiGl255tOT1geaQFYQ2AkB4uI08Z0yaJ+y5odNrbj2E7QNvB7WMZhmOWZB4DQ0F+IiE8mbCEJCCwjZ53N9rDPBoHZz/kIRh78hRNbB7M0EZGpmdZCHzp+FnVPGTLR3diLc4+ICPvrxQ6ex8AwajZqVdRN1U/gtT98Cl8XERHKR49c7MPVBvbhDM0lzQbOHQ71z1zaNM3ly5GltmgJ1sEKcf3auhHn/mLRLGNqtgzx+Hls/83b90J87jjOy1GLNIJ5s4zaDM7N3XlaL5Y48c7NuWYfvphccuUNks7M3dvx/Zebxvsg1uSKiHgu6XNIA+vS3MUGcq7L2gdznki7y2ssHNIy8dzk0BydIb0Fm/GJiNj0mVSKzot1H3SMNJnppTxz7fPS+LcM61dorgpDHKusFa4n6GynZ1B3MTGF9w7nzi2aaNdr5Li9DPqLhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsdZlUbDcjyx5nPs3DTmf2azmM8+Nlk2Pl+eQD3EYC/us+x6eEyf9uLn3DrO3RQx8/E4WzmgDds5BzeXZ58MKtMymyxfLNBfSK+Swnq20pgbNzY2BnE+b+bWdndjPmeK8vOiEHPrHnrgCMTZHOZG3vDSK40y8rkSfiaNea75JXmGtTrmm64FfuRLOJ8XGlucr41xt4OaFRGRrI1tVqf8d4tyvtM2nn/d4j32TZ1KSP3jqRivyzEL+1dIuZ1Z8s04YmGdSwkioWs9/MwI6XNGjqJfjT2G4/B4H/psTGXN/hcGeMygRR4FDo0bSmOt0efLgZnnTymlwqmw6NWwPjny1dkZceZz0NmvwnGXz8sVEYnoPex9YGgEyOuFNWgxzZEiIkG4fN62RWMnYhMLi3OSKRc76ZgU29SP2+k+ItJ9BAkeAQHr1FiHxW0Tc85ye+8LwyOE6nFhjmCdy1rhRC1x5+fAgV6c40K6rn6CGUlIadlxhDnYjz+5D+K+blw3ij0liKeP4edFRAoZurYO9sdyDdvObZHOI8J5NUfrYX8BvRhERJoRaS9bqGUrUA58dx6PUangPH1ixtSe8JQVkB9WXMd6j2xGL46xE6hzq1XM/lir4nn0dOE4Gl8ydUdtZE8Xg1S2KKmsqb8VMb0iUp45U6RYY8EeF/Q6a9o4TtJosMbCofnLmJapHbneWfL28HkQScLc7+BBWXKRJ7FUPoOx65nnFdNaEPi4pjYb2J9ma9gfp8rYx0+dRQ2RiMip0+i3dvoMxmNji9pKv7Vyna7+oqEoiqIoiqIoSsfRBw1FURRFURRFUTrOilKnLvyc3FiyHRZbpPOPtI2ErbOaLX/Z93gNjF36TctMnUraZhHfwz9zBWSxznVoNPnnTNre1jJ/jnZTeAyHtn7l1IMGnWeTykxKCUvRZ0KHf9LH82628Gfdlo9x0va0KRd/iuPsACshdcpINbgIXCgjWlKhkK5LSNv8BbGZPhLE2AY+xxG3O7+fyogStse0uB6cEoKvh3RMn87Dpy0EWwnnVaff0Kv0ngYds07XtUlbprZCc2u9FqXjhJTqYnFaGf0czecdJaSeJP1tKUv7Wjz/3rXof0vLiZakKnHqFMPjXkTEppnSspY/Z+7XYbR8etCK6mVsI2wkbOH76TySjs5/i2w+z9WlTvF5ioiERuoUtV271Klo9alTsbG97VwdLvSDte5/wZL8Qm4jTp0KE9ILOeU0oC2D/WD5LTFbFBvb/4q5rWZAxww4R5LjaPk6tRK2Jfap/8ScdklD0TwvrrNRhJk6RfXmNdanenJbS8I20dyHg5DHSWz8ey3X4Gaj9rzvCSntKQrM28uIbBACSrF0OQXJiLGMIGEbWE6V4vtGm3NyeS7yaVveFsZ+lJA6xe/xOEWM5q4A77+4zJWlTuF81uLUqTrWs8pbVSdsT9ug69uiNOyl6VL+/L30SvqfFa/gXadOnZItW7a0PZjy4uPkyZOyefPmi1qG9j/l+ViL/ieifVBJRvufst7oGqysJyvpfyt60IiiSM6cOSPFYrG98ZLyoiCOY6lUKrJx40axE7657STa/xRmLfufiPZBBdH+p6w3ugYr68lq+t+KHjQURVEURVEURVFWg4rBFUVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROs6L/kEjjmP5zd/8Tent7RXLsuSJJ55Y7yopitxyyy3y3ve+d72robxIecc73iFvfOMbl33PyMiIfOpTn1qT+ig/vegarPw4onNg51iRj8ZPM9/4xjfkzjvvlHvvvVd27Ngh/f39610lRVGUH3sefvhhyefz610N5SccXYOVn1R0DlwZL/oHjcOHD8vw8LDcdNNNia+3Wi1JpVKJrymKorxYGRgYWO8qKD8F6Bqs/KSic+DKeFGnTr3jHe+QO+64Q06cOCGWZcnIyIjccsst8u53v1ve+973Sn9/v7z2ta8VEZHvfOc7csMNN0g6nZbh4WH5vd/7PQmW2IdWKhV529veJvl8XoaHh+WTn/ykpr8oK6Jarcqv/dqvSaFQkOHhYfn4xz8Or09NTcmv/dqvSU9Pj+RyObn11lvlueeeg/d89rOflS1btkgul5Nf/MVflE984hNSKpXW8CyUn0S+9KUvyZVXXinZbFb6+vrk1a9+tVSri46xH/vYx2R4eFj6+vrkd37nd8Rf4kbLaQOWZcmnP/1pufXWWyWbzcqOHTvkS1/60lqejvIThq7Bynqjc+DF50X9oPHnf/7n8pGPfEQ2b94so6Oj8vDDD4uIyF133SWpVEruv/9++cxnPiOnT5+W2267Ta6//np58skn5dOf/rT8zd/8jfzxH//xwrHe//73y/333y9f/epX5e6775b77rtPHnvssfU6NeUniA984APyne98R/7+7/9evvnNb8q9994Lfecd73iHPPLII/LVr35VfvCDH0gcx3LbbbctTHj333+/vOtd75L3vOc98sQTT8hrXvMa+ZM/+ZP1Oh3lJ4TR0VF561vfKr/xG78h+/btk3vvvVd+6Zd+SS5YK91zzz1y+PBhueeee+Suu+6SO++8U+68885lj/mHf/iH8su//Mvy5JNPytve9jZ5y1veIvv27VuDs1F+EtE1WFlPdA5cI+IXOZ/85Cfjbdu2LcSvfOUr42uvvRbe8/u///vxnj174iiKFv72V3/1V3GhUIjDMIxnZmZiz/PiL37xiwuvl8vlOJfLxe95z3su9ikoP8FUKpU4lUrFf/d3f7fwt4mJiTibzcbvec974oMHD8YiEt9///0Lr4+Pj8fZbHbhM29+85vjX/iFX4Djvu1tb4u7u7vX5ByUn0weffTRWETiY8eOGa+9/e1vj7dt2xYHQbDwtze96U3xm9/85oV427Zt8Sc/+cmFWETid73rXXCcl73sZfG/+3f/rvOVV35q0DVYWS90DlwbXtS/aDwf1113HcT79u2TG2+8USzLWvjbzTffLLOzs3Lq1Ck5cuSI+L4vN9xww8Lr3d3dsmfPnjWrs/KTyeHDh6XVasnLXvayhb/19vYu9J19+/aJ67rwel9fn+zZs2fhW5IDBw5A3xMRI1YU5uqrr5ZXvepVcuWVV8qb3vQm+exnPytTU1MLr19++eXiOM5CPDw8LOfPn1/2mDfeeKMRv+i/zVNWja7Bylqgc+DaoA8aCeguAoqi/LTjOI7cfffd8vWvf10uu+wy+cu//EvZs2ePHD16VEREPM+D91uWJVEUrUdVlRcZugYra4HOgWuDPmisgL179y7kxl/g/vvvl2KxKJs3b5YdO3aI53kL+aUiItPT03Lw4MH1qK7yE8TOnTvF8zx58MEHF/42NTW10Hf27t0rQRDA6xMTE3LgwAG57LLLRERkz5490PdExIgVJQnLsuTmm2+WD3/4w/L4449LKpWSL3/5yy/4eA888IAR792790etpvIiR9dg5WKhc+DF50W/ve1K+O3f/m351Kc+JXfccYe8+93vlgMHDsiHPvQhef/73y+2bUuxWJS3v/3t8oEPfEB6e3tlcHBQPvShD4lt2/BTr6IwhUJBbr/9dvnABz4gfX19Mjg4KH/wB38gtj33HcDu3bvlDW94g7zzne+Uv/7rv5ZisSi/93u/J5s2bZI3vOENIiJyxx13yM/+7M/KJz7xCXn9618v3/72t+XrX/+69j1lWR588EH51re+JT//8z8vg4OD8uCDD8rY2Jjs3btXfvjDH76gY37xi1+Ul770pfLyl79c/uf//J/y0EMPyd/8zd90uObKiw1dg5WLgc6Ba4P+orECNm3aJF/72tfkoYcekquvvlre9a53ye233y4f/OAHF97ziU98Qm688UZ53eteJ69+9avl5ptvlr1790omk1nHmis/CfzZn/2ZvOIVr5DXv/718upXv1pe/vKXQ47y3/7t38p1110nr3vd6+TGG2+UOI7la1/72sLPujfffLN85jOfkU984hNy9dVXyze+8Q153/vep31PWZauri757ne/K7fddptccskl8sEPflA+/vGPy6233vqCj/nhD39YvvCFL8hVV10ln/vc5+Tzn//8wi9vivJC0TVYuRjoHLg2WPHS3yKVjlGtVmXTpk3y8Y9/XG6//fb1ro7yIuOd73yn7N+/X+677771roryIsGyLPnyl78sb3zjG9e7Koqia7Cy5ugcmIymTnWIxx9/XPbv3y833HCDTE9Py0c+8hERkYX0FkW5mHzsYx+T17zmNZLP5+XrX/+63HXXXfJf/st/We9qKYqirAm6BivKjyf6oNFBPvaxj8mBAwcklUrJddddJ/fdd5/09/evd7WUFwEPPfSQ/Omf/qlUKhXZsWOH/MVf/IX823/7b9e7WoqiKGuGrsGK8uOHpk4piqIoiqIoitJxVAyuKIqiKIqiKErH0QcNRVEURVEURVE6jj5oKIqiKIqiKIrScfRBQ1EURVEURVGUjrOiXaeiKJIzZ85IsVhUl01FRETiOJZKpSIbN25ccLG+WGj/U5i17H8i2gcVRPufst7oGqysJ6vpfyt60Dhz5oxs2bKlI5VTfro4efKkbN68+aKWof1PeT7Wov+JaB9UktH+p6w3ugYr68lK+t+KHjSKxaKIiHz0ox+VTCYjIiK5XA7e43kexKlUyjhOV1dX4nEvkM/nIeadd8MwhDjpyTqKIogv1Pf5jsFPYtlstm0ZzOjoKMRf+cpXIP7+978P8fj4OMS+70P80pe+1Cjj93//9yFutzc41/uFfAvBn1naVpVKRa644grjGl4MLpTxzDP7nrc8PrvI+ItILNifrIT3LPf+Nm9fUb1sPmZH4FJ+OnesXjq217L/iSz2wZffdJ247ty0WdwwAO/pKWBdGuUJ4zh/+Af/AeLu7hLEPD8VMjiPBn4L4plK3SjjsScfg/iSS7dDvHnjJohjcSC2XJwzxcK5PRas49x7sM/ZNh7TGEsxLj04a4uEkS+M6+Jc3Wo1Ifbo9UoZ59lv/D9fhvjUsaNGGZPlCsQzzRrE1cqsiIj4QSjf/Ofnn486zYVy/sfffUxyubk1KvQDeI9l4zyQTtN1FBE3lYZ4emYG4mwOX6/XZ7EMmmqchHU+ooxsv4X9xaX+5Lp0DPpytBFin48icyL26Bj8Hu5/gSzfdnFkzqG8HjoUuzH24iLNB7zONxrm2G218D1+gPHSe6J6rSF3vP3/WtM1ODeYWWgrvgrNWgNiO3SEsS28uAHNJRaNYf6enC6Tcd1ERFwH+0I33XfW6zima3Wsd0CX3kthfx2keV9EJJvHsZbJYnz2JN4j5vJ4/zw7Mw2xHZttl8ngvWkUYH8rj9N642DrZfL4eccyf4VwIloLsjgf7L5qx8K/Az+Qe75874r634oeNC4MsEwms3Ajzjfk/GCR9KDBDxKFQmHZ19fjQYMfoFZyg16p4OKUTuPFuXBj8nxlcswPbSJmW7W7uBfjQcNxzM6/Fj+jXiijWCwaD6sL76FYHzR++uCxLbI2/W9pOa7rLoxnXoB4zosSxnGRxnFXEWPjQYMm+oBurvkhQUQWbkQXjlHAebWrC8uMaRn4yXnQwPbmBw0J8QYiS22ZTpvXJ5XCeqUijFseLcRr3P9yuazk528YgjYPGpmkBw36mx9iO+foQcOyec3F463oQcNb/kHDc7HMmC4j37AmP2ikl33Pejxo5At4L8EPGraTcJPs4UOV72P/S7I9W8s12LKt533QWMk9h/EeWf4zRhk2xwll0N9sh++3qAyOaTLi15PugxzXWTbmOvAxjDryIBARh97DUyqfFz+VGfedCQ8aNo1di8rkNU9kZf1PxeCKoiiKoiiKonScFf2icYFcLrfwS0YQ4DcC/KTNv06ImN/K868HzL59+yA+deoUxD/3cz9nfKa3t3fZerX7VYSfNPlb1KSnNy7j0KFDEHNqFT9Z8i8gSec1MIA/17Wrd7tvF17ItyBLy+BfadaCRqOx8GtPJk8/S4f8TU/SdeJryU/49K2WERsHNMrgb3KNb1f4VxWjmstfl4QvwYxjGL/UGJ/BduB2SRJ2md+k8TdP/Jk2/ctK+tVl+bE2O4tpHOtBsx5K6M7VqzdL8xmdkuuZY2Ty3FmIu+jXh4jmpzjF4xwL4W/5Rcyf7fv7ByG2LfwWmn8Viamj81yfpPuLIqz3yVGcq8+fOwdxI6DzpGNm0mbbDQ3iHFieOg/xpg2YThq1sN7VSUwTqkxVjTIaTfwVpE6xHwbz/0/4VWcNsKJQrPm25l+3mFbdTM3JF/EX4YDOrxriMSszZSyfvsxtJvy6kM5hGTVKqclnce6OYixztooZAvkijpFs1ry34DnL4opS/4rC5ec8K2miJfgXDZvGAM9wEc2hVsJAcmhd5c8svR/htWYtsGNbrPn5IU/zjNC9UtIv0II/2IgVUrsbH8BjcFqUkzLniZjuBRotHAepHB6jTumodpPLxG/xOd1VRMRxseaNaVyrUnR/lqV7vqaDfdyLzL7hOZSd08IyXONXFax3T28PxFXKxBER8VuYViYBjs1atNhWQYzz63LoLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdZ1WJ9tlsdkFX0Wxi7hbvqFCrUa6XiBw5cgRi1lycOHEC4gMHDkA8NTUFMWsfRETe+ta3Qjw4iPnJSbthLcXcgg7zS1lPkfQ3zmluV8bu3bshvuGGG4zPsLYkaeeD5eAc+ySNBuepcpk/TjR9rFuDmjxpRwVTFpCQQ7r0VdpaMGhirmcuQYcUhliRiHYvcT3aKYfidvIKl7fEEBGP+oLRN/iYdO3L5TLESdop7uMxV8No7zY7XxmCFzEuEPfZpXHS7itrQRBGIvO7LqVtbJNcFq9lT87sg489+D2Ih/pLEHfTbnK800g1wHYLHXNnoUwRtQyTM9gn6zXsxwHPDQ4uC6xH4P4mYup8zo+VIa7M4noR0CFaPr4+PUXJ3CLy3P6D+JkGai4ae3dCfGQ/auXOjeL2j37T7EMB5YzTxk7ipubGRmytz9yYTbmSnc9L78pjzrW5u2HCGmFj3naadkZrUT57tr+PDoBtNuubbRjRuOjpwTU4pu83QxLodPeW8P0x9gXLSsjLN+YDXu+W3+lxJTssMoZGg3QdDcr9D0nDESXMkTHvgER597D3asKOSxcbK4wXpul8CrU4s9OseUrSMNLuS7QOhLRlq006A9fD+c5N0LkEEbZ7i+63WOiYzbAuBj/vki4uCMy5SWgL5pyF29V295IupIHvL3i45rqWOa97tC436B4714VrR4razklhX2oGpsbLztD1oR3jGrOLc27gr3wO1F80FEVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROs6qNRoXfDTa6RJYbyEi8tBDD0H86KOPQsz75HPOKedR/u///b+NMg4fPgzx61//eogvueQSiFnDMTY2BvH0NObaXXrppUaZX/nKVyBm/48kXcdS/sW/+BcQDw8PG+9ZrUaDc1bb5aQm/Y3jpftiJ+6RvYaEtFe2H2JdvYT0VcMng3JIbdp7fWZ6HOJZ2rd/aAD7jojIUdIhFbsxj3rT9l0Q83mY14XdyROcYQ2L0OXdVx2bvGUoL/b0CdROiYhs2zGCx7RxbDYbmC+aIu2J4U+TqOH48Xc4j61Y4vlr0Ghh7u/MLLaBFZk+BtkS5rwfOEl9apA8LMZQh7Dv0HGIKxUzT9anPdifPYQeFuztmspgPnCKtCZsnGFFZplxG78hngPZYTZNzs4NH89bRKQ+gznFExOo2Rsfw/VlfBTP26Upi/O9RUQ86tfDPeYYFxFptXwReSzxtYuJI6E48xohh74npGEtbtIcT18tpug9HjmHZ8lzICTdmsviOBEJyKclR870EWlHGuR34jqsB8O+4vvm2hOzE7hhL05zIHvHrGCuMe5H+A0Rz6vLazWthDXcWkaXJiISLhln4TqswWnLXlhHXWpjO+QWMW8vWd+Vy2NfaTTZPZ3vAbHMXMIYjj3yqKD5KmNjmbaH84odYx237kAtynTTnNfrpB/edf0QxBt3Yfzsd3FumozJ28g2z8vm/kf+HtkCenHUpnEOjVus4TJdvtmXyc1hH7aW3K9YhnfZ86O/aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXjrEoMnsvlJD9vUsbiThb7bdq0yfj8lVdeCfFNN90E8fHjKHS89957IWahdj7BMI1N/P7bf/tvEJdKpWXryefBJoE7duwwyvzGN74BcTsh5LZt2yCemUHRzv79+40y9u7da/ztYsMC8vUySVss35J43uCHjfCEjLbiBDO+kEy2QhIIGoOBznd6ahLi4/ufM8o4M3oW4l/4pV+E2GljisivG4J8MQWELRLhBSzWZTMqG9umVUMB3vT5slHGZAHNzgY34YYF5TK2zcwkHuNS6r9JYnDL+N4D3xM97ytrh+Pa4sybaLFp5PkpHMc5mmtERI5X8fqNf/8ZiIsFnAPJr09cFkfaKAAUEbGc5YX4OY/7EBk5kcA3JDM+i8eemEaVKTKC8y0y3mITthjb0rXNDTT6BrDPTdFGHafOYNu16ijy9Fj4nGDe2gjw3Fzy5ipPzq0HPjv5rRGFbFoKuTmhqGHCSn2F21REJKZ65zPYzg6JQYtFNAlzyOwsM4uGtiIiLRJm+9R/yHNS0rRzh0XzcuDTnJgw+h3qb5Ysv/lEq4F9wyFjvJVslmJu1NHGbZU3W0mYxCw2oGNTvqXxOhj25VxX7Avl0sYAGboGkSmXF48mtFJXCWLLxTE5U8ExzkaZmUyCGJxE8nEdxdtpGhdhCy9EM0bD0yuu2ArxedoURkTk/m+dhvjwQVwPW2SeZ5MxazhNE01kmgJatPlIKovHDFu4GYndwPP2irTph2fe/lsuzZFZGntL7jWsaOX9T3/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tir0mjYtr2Qt5/LYe5mkXLOknLnOFeYze/K5TLEvo85aWyE97rXvc4og/UP4+NousY6j2q1CjGb8hw4cADikydPGmUymzdvhpjbqlKpQPxP//RPEPf39xvHvOKKK9qWu5R25ns/6jFYv7E2xHIhL5YNA0MjHTnhfC02P+IPYf6yX0UDyaceeRzigwcPGUX88tveBnFxcAPErQb2ab4snHdtajaS2p1yoNuYPnmUo3/yNOqaps6aOaj7nnoK4p+77V9C3Esmkw8/gG01MY1t+bKbbzTKYIMr4wrGVvK/1xDH8cSZ10k4pJdIkdlbjcynRETOko4jU8E82kH6SIF0aPkuzKlPGtZRiPnnmVwBP5PC61/z8f1+C/ODDWPLBJ0Q91MvjXGDyrBJ4uDQidgJ+gI3hefe1YtmmOFJHI8+1btORm+BbxpvzZLupnIO14+Zibnca9ZWrRUZz5HM/PhtZ2ibJKlrBXjtHDL9SqXZiBPbyLKwDb2EMkiSYaz7TX4DazLo5VYL+04QJGg0+JA0TbJurZ1BX9L61m7Ni2gejllgxfNywhplkUbGplu0pSaMrr/2fdBx3IV2aIaksyIjxlwqQT8R4wTXauIxsqQvG+pDvYSQRqPaMDVCMdUrbZFWy8ZjdBVxfiSPVBnagvdz2Q2mPuuZx0l7dwbXu/ExvM/sGdiIx/Rwnk8l9A2b5lQri/NhPsS+EmfwvnPG40FiFCG+g+fmkY7DWjI4LR6oy6C/aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonScVWk0giCQYD6PmvO+28UiZl4955T29GDO7a/8yq9APDuLeW/syyEi4tFezlyPgPLAW5SPPE17s7/0pS9d9vMipraEc2c5Pnz4MMTso3HttdcaZaxWc9EJjcZyx+zE8VZLHC+mubK+IqB8wcgy88g5h9ZxsW8cP3oE4sfvvw/imekyxNt37DTK2HPFNRBXW1hPj/aeNrZaJ+1BbHgWmHn/7S6FMe7o9e4e1AQd2H9AmH1PPwvx8TOo63jLO94O8dDAIMTfvQ/b8mduMjUawvvv0z7tYbjYFmGCl8NasFSnxu3K+7f30D7nIiJ5yrNt0vyTIs+ddBbzbFst8rhI0ApkMuitwVqSFmnfuA4BeS1wjn0SrNHgXsZ6O4fy13lLdr9p5l7n0tiexe4SxIUixtPkadOgtqs2E/aqz2LbVetYj2ptLt87Cleen9xJGvWauM5c3+e+ksth3U1fGhGfdCpRgG0Q2qQRY7uiiPpGglaK3UlarIWjsctDmf1popgNQswyQxp7Nuk+WP/lkq9BoqCF4HcYtTB8NNpoZhKMNCxatzwPz91dIooJ16EPRq67IICJ+fzIiySIUBshImKRh1OT5ppwGsdbuh/XkVIJ7xEzjjmGx6eOQWx7+J5CF7bp8CbUklw7hGX07sYePX0c52QRkZtedRnExw+h79ToMdR6TZ9BrW9+226Is2mzjHKEOo+u7i6IizSQ9p04BnFg4zGTbhtC0rOknF48xhJvoiBYuUZIf9FQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpOKvSaPi+v5Bry1qFZhNzu5LyelMpzHVj7QKza9cuiFl/wXm/ImbeNMN7Yacpz3VoaAjiTZs2QZykPWGdR4P2dubPvOxlL4OYz4M9SZKOsVoNRrvPi6yu7ZLa4eKz6KPB+alL8/dFRKKk8+OcWMoxfOiBH0DcqqMmKFPEHMedu/YYZbgu5ns2SaNh83UwKsl6CqqzZeZFmqfKfyCdEvk79PShRuOmV/+cUcZLf+YGiL/77W9B/P/727+BeNswjpt9T6Cvxt1f+5pRxuDGrRB3d3dDnEot9r/qrOmBsBZEcSTRvA9ATH4APCaKKXN+6yafgrqLc2I6jf3Hp37epLklacx2d2OOMeuXOLc2aPF54PG4BDspR57K8CnPnrUk7Afjkf4iSJjbQ9IDRDGuMT29OHefPY96uyDAHGfHRU2DiEhsYz24jAt6gXWSCIlrWQteCnFImpMaeUKlTI2Qz/MkiWOCENs9l8djhK0axHHAigyRmG4roph0HfT+VoX6NHkppIvoMZAkTfBpnvWpbWareH8Skxai1INzDfsHiCRIMOhr2ijEPzgWtp2x/LTMPu6yb5KL5xEs0a2562AlZNmuWPN1dKh8xyYdVtI9CY2nkHR4uS7UHbTq5OlDt0ZF8sAQEanWaI1NYZt2b8TPOBvoXmoYO9j9Dz8Eca1sXrd8Afvohr3YfwY3YP8aO4rr15kZ1HBUmuY9oEVjcTCN81etjLqQ02dPQ9zdj15XqYT5QcgLJZ/FepTHFz22VqMR0l80FEVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROs6qNBpRFC3kBHOOP2sfkjQAK3nPUjjneSU6kHZlcJy0D/1SWIuS5KPBedJnz+L+7fk85u9x7jlrNJLKWO15MSvxOeEyftyI7Fii+X3eQ3pGjjmTPKE9UpR/PXHuDMTHTuDe1jdcgz4toyfRZ2NoZJtRRkuW11iEcZu8xja535aRMZ/gxdGub1ic644vpzJm3ms2h7mab/jXb4H4S59Djcbn7/wsluGhFuoHj6BmQ0Tk5/5FH8Rjo5hjOjC4+PpsFfUza8aiTMhoVx7XgwMbjI+7pNuwaKizDi2iqxtFrLUy50DPwxx30zuI5zTsUy7th2/bWGfHNnN7uYuxZoN9DiLKT3dJv+e4Zu5/FJO/As0B+QJqU4rdqD3KdQ3g6+TbJCJyZnKMCsW2cOK5tgiDQE4IzgdrQcZzJTuvH4jYK4LmliT3kxxphJpNuk7UV2Lun7REhAlLBmuAXJv0OdSnC9Tna7w/fxO1J6wxExFpVFA7Up6uQDxVxvli4xb0QPJ4zY3MMhwSRfBYdvhuivQvrM8LEy6Q3yL/GNIwWEtii9+7BqRSqQUPHPb/in0831Ta1EBxzr+XokagPs3am7Ex1CFkC9g3RERIJileF65nFvnNVJtU5tkpiIvdeGH7hs1FOqZT7esZgXjPhs0QTx07DvF9/3QU4kM0DYmIFEmjEc1in6/PYF8ZzqAHSbNGnk20XomIpGlKTNmkqw4W13Grzb3zUn687ywVRVEURVEURfmJRB80FEVRFEVRFEXpOPqgoSiKoiiKoihKx1mVRsO27efN4+d85ST9BL9nJd4Oy5G0h/xqtQvt6sTnsRJtQ29vL8TZLCbwsZ8Ie3kktfFqNRrtfC6SXv9Rr8fFJrYiia25ax5RBnKziftS25aZv5rPYa7moWefwtczeF2ylDvsxThcunsxB1xEpEl7S9vstdBOhNEGx3TeSID7Ar4a0obuMR8zaZ96yrlP0x7cV13zEojv/sr/gXjjDvTEuemVrzLKePgh3K983xMY/6s3vn7h37Ua5qeuFZZtiTWfR9xurghiU8vQbNG1oc/UyAuhQnm41Vns111d5n7r02XMTw/JU4C9EtjPiPdHb7UoDzo0+6BFfSpFvhiui/OXTfntNo21tJuwzpBxgethMnYujznHmzaNQDwwhPvIzzbNOWKKfEqaeWyrqHeubZJ8PtYCT2Lx5ucQ1laxrwHPPSIiLml6PIfa2aXrRi/b5HERJMxHjRBzwZsBtSl5I0Qhlpkiv5TThw5BPDmJ/igiIjXy1XGonuNnMel9W38J4kxAWhxuTDG/lWVfDF4/eBmPfPaSMa9PQF4UPFcHzuIxHGflOfKdoljILmi4mhG2eYu0DlGCTYNTwnGfIt+gwCc9WYR9p9VEXUhfFwkyRMROo99Vvg/f09WNMd+f9fbh/ViuC0+k2I3HFxHp7cd7PiuNnj5belF/2CdYh2Ob8Fqea5kaxJ4SeowUatiWlRjn6S7SVU43cV1o1VHzLCLSsxnr7U9hf2xUFj/Durvl0F80FEVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROo4+aCiKoiiKoiiK0nFWJQb/9re/vSBc7utDccvgIJqDbN6MBiUiIjt27ICYjexWazqXJJrm97BgfLXicP58Upn8mR4ygmp3zJUI2NuZ6SUJ45djJWLw5cTh7cTmF4WlZmlk7FMlcfAzjz9ofNwiI6jHH/o+xL0lFItPn0VDv64Cik2zaVMUFgXULtxMbbTcRpvzx+2EvrHKccNi32gFAnXjGIanJPXPFArqtu3cDXEhZ5oCnqX2PkOGfS1/UYjWClBQumbYsnCqEQk1Z6ZRwBfaputStogCvXod+22DBMotEh3bZJYXtMx2sOhaFanMKMJx0GjiMdjEtNlA0SAbsomIxCQ8ztAGFx6JvwskYq+SsnkmwbR0oA8Fl7kcjj83IhPPQWyrBglNT42isaqIaUJWnUXhsRU35/9v1m8t8OJIvAttbaOAOeRxHJnXySLTQ5sc9zwXr1udjPBiQQFwzIp0EYmpDIfaKktrmUObozTIRPDIswcgZsNJEVNgXiyW8PWpcYgrp56D+NqdaK7puuacyoaR9TqOd9fH80rTHCg2zbvmJCoWCahDait/ydhLu2svBi+VSuLNG0aGJEZn01w7Ttg0IsJ5oFrG/hXSfFYuo3le/xB+fngD3oeKiGzZugXinm5cazJ0bQf7cVOXwWE8ppeitY13ARCRruImiMfrOE5mx/A8Z8/jPeL0LAnUM6ZQO02bYQS0VvAtYuySGSeZH7ZmzQ1V/Drdm5I5ZrO5+JnV3HPqLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdZ1Uaja985SsLWoFMZnnTk5GREePzv/qrvwrx9ddfD3E7czzOCUsyBWRY29DuM5yfzHTCxK5dHVain2hRLiOfp+cluOW0YTUajdVqQjrBEomGWKReKJVKEO+5FDUBIiLliTLEe6+8BuInvn8vxGkyAbz+pldAnOHcTRHxqXs49CwfUcz9zbgGdPzEvmH8ZfnPGMegOieVwfX06fqfPY850Bbl6F965VUQT0xg7q2ISJoMr0olzOPP5hZfj2V9cuSDuCUyn6sdRJi/2grYGM+s467tIxBzvzXnOJyi0+kUvW7OJTz2ea5uNzewgR/PLUlGTRHpfhwX6+XTfMX1dsg4rtUyc5QztMZwrrVLWoDpOuYwP/HMPogT5E6G6V0cYD36e+fyvf3WOhn2OZakLlSSzt+nYZsk6+PzC3luiLANa9NlLD+N78+kzVsI8moUh3Qftovamlnyg3zqAGoynnkGDfuGyHhRRCSbwTz8BhljFrI4l1gN1OKEFZy/skVTf+dS42VIghEL9nGPNDIe9flEjQbFrNFoWYv9zrLWXqfmOZ5483OS18Dzafg43lh7IyISk+bMr+IaW5lFU7kmGZh6MV7H7ozZyXdv3ArxwADGpRJqLVkv2NWDmg3Wl01Pmtq76hRe63SInePZ46MQ33PfDyBujOI80z1k9r90iGOv1kCNRcBrB5nqxnRzks3hfCoi4pIxr5PGa5wrLH6GtZ7Lob9oKIqiKIqiKIrScfRBQ1EURVEURVGUjqMPGoqiKIqiKIqidJxVaTRSqdRCbi3n7fqUe9fV1WV8/swZ3Cf/scceg3jnzp0Q8/7vnFucSsgBZA1FkLAf+3Isp0tIev35/raaMtp5ZKwEzu1up6FYSZmd0KN0EkuW5LC20R0MbthofL7YPQDxjl2XQryhF/e2fuL+f4b4/DjmWe7f90OjjOGt6BXT34N7cjcpz9KycQi6bfLhrYS98Z123jCU+RvSfucB7YXv++aY4XFULpchfvKJJyDOF3H8V2dxz/knH8CxLyIyeuogxDXap37pNV4XHxcRaTanJQjn5sDRc8fhtUJ2COJLd+N8JiKyawTzhTdvxj3ffX/5vOuV6NJStH+/S3oJ07dHKGZdG8ZW0tzRbk7jQsh3gz0Kkq4v18smPYFHPgX95DPBVbrvB5gnLSISkmcIDRWZnprL7Q8SxsiaYEcLfgw2XRePxrnFggwRsajNeC5okadKg/LABwZRH+E65nwUhOS7Qte2UsE8/O985xGIH/0helxUq1iHchn1FSIi2Q14rxD4WOa2rTjuujOoJ2hWca7x61hHEZGuLszlT2dw7nao/zk0d7vUDlbCMLLpGkbW83uS+PHa+2jMTpUX5pNWHa+zTXOTZ5tasMDB/sdaU9/HYxYLOJflSaO2YQi9dUREcvkSxE6GNBl92BcKKfY9o+vqoJYhmzf1E03/PNYzhe8JW3ivcKaG9xKFCD3ligkeXSkf27NiCDhJk2HhPbnj4Xl192K7iIh0e9i+NQvHSWHJOAuCUASX7OdFf9FQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpOKvSaKTT6YUcYdYAcA731JS5T/6xY8cgfvbZZyHevRu9D/bu3btsGbw/vIhIPo+5br29mMPH+9a302CsRKPBtNM2vBDtA5fLe92v9vNJGo52uo31zpG3Y0fseL7/hZh/GESU22qbfcNJYQ5pi/JBr33FLRCPT+De6vd+97sQv3nH5UYZPYUS1otyuSn9U+pV3Cf85D7cQ75neBDijVswv1RExI3xusV0bcuTkxDnujH/07GwXYLY7J+2hdf79Ams56nDOJbDJrbtP/39FyEeH8O2FRGJaB92L4v5ufGSesZWe63CxcB2IrmQ+h+Qx8LVV6NXyNVXXWl8fnZmlmLMN+/uRm0L+2jw3JHJmv08naBdW0pMefkx6SVY08OaDDdBJ7LqOc9ijVX7fHM+hk0OMjHNCewRsXsHjp1azcz1P3r0KMQVqlZtPi99tdq/TmG5S+YQmkuMvpI0ndM++V4K23R8HOeKM6OnIC4UsW91dZt78VM1xBbsL4ePoC/G1752N8TZLK7ht95yE8TTCRqNNO33v3F4M8Sei40xM4XHcBw8r5lK2Sgjk8V50/Ww7VKUA29o50gLlzRieOx5PFaXjBvPWvs1OAzDhRqm6f6LNRr1GmprRERmSHc3Rlq/PPlidHdhGV1dqKeIIrP/ReRnsnHjJoj7+lE3adN86cXY/2LSVZb6UespIhKTlqbC5+XieQzl8RjTszju7KzZO3qLqAGsTuB6aTukt6J7i5KDOqZNPXg8EZGY1uAZ8oqy8ov1stg0bBn0Fw1FURRFURRFUTqOPmgoiqIoiqIoitJx9EFDURRFURRFUZSOs6pE/0ajsZDH385H4/Dhw8bnR0dHjb8t5eTJkxCzpiMMMQ+urw9z7URM7UGjgTlnV1xxBcQjIyMQb9yI/gvs5ZG8vzvlDq/SF4OP+UL0D+20JCsp48fNN8Mgnv9PRMIQc6T9gM4n4RLQtvPSaGGOfZo0ASG9v0U53fUy5lUmFduM8C9pSpw+vu8ZiL9+110QX339NRD3/+v/l1GmZLGPzkzjHvD1Oo6BXG8JYlbrZNKmfseiXM3D+56COCT/h0YN80PPn8WxHyT4RVh0TWer2FbTU+WFf9frdePza0Eqk1rYR37rJvTJuPHGl0M82I8eGSIi58/jfusB9Y9WQGMwoH30WZvVNK9VRJoLTgaPY7yWDM9fPJ35CRY9xszBc2IbjYYI568nzEX8GZ7DSKcVC+vSsC137jB9Tq67+mqIHyFfiZl5TQ2vd2uFm3bFveDfQBOa7ZF2xk5owyZ9hj1VXPZxII8dasM6abFERKbOTUA8RDnyd//z9yFOZ0sQ3/Zq1GTc8jOXQTwxUTbKrM7ifJBO41xea7FfCM6ZtSae17GT6PklIlLoRt+BDPkp+HR/0qK2coU1Rub1cajPpiwabEvLCNfeR0PSkch8H4l8rCvfn9UC04tkanYa4iqtTV158iohXaVN6+fZE6j5EBHJe3jtdmw/C3GJxv3JcbxXjQXrsKVvF8RJ90lhgPPB8WOoWQzoPIczOCaCfjyPLGmNRUT60v0QjzqnsV4utv/GPGowak2as3idEJEMeTCNZLdBHGYWP+O3fBHB+5fnQ3/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tir0mg0m82F/F3OgWyn2RARGR/HvfM5143jFO1vzGV4nmeUwRqN733vexDv27cPYtZkXHrppRDfeuutELMPR1KZrH8wc55X/3y3Wn+PdjqPpDzD9fDGWA1LJBptzzdI8AlpkV6nQZ4GFqkVZqqYY7p54waIDz3zuFHGjt2XQDywDftTRHty2y3UJQykcEj2RJgjbiVoG0LSVEyRb0Y36Yz8Bo5NztmfHMPcTxGRR39wH8QPfvc7EE/TvvQN0lD45CeSlD7Oea51iluNZuK/15TYnvtPRAYHsD+k05jb2wrMcd43iPv7+3SOTdJkcBq3F2HOcpRg5+BTP7aTGnuZ11kfYbOvSmjOE6yHML04uA48fnkONetpvMd4A/uBRMu+zr4GIiJ7dqKX03P7D0Jcr1/od+vzHZ0d1MSe16MF3FdiXJOjBK+ZsEVeI9R/HPKG6O0vYfnkleAl9K36TBnL6BuGePTEGMRv+ddvhPhnr9+OB2yQJ1ePmb/O9bJsvNZODu8leiz0MYhjnFf7EvxB+grYvlny5kgX8XWLxwRrpcIELyt6jxvjBXKWzCmtNuP6YtDb3yvevF/I9BTqLcZJm+OH5hzdbJKvFM0tKdIZeQ75aJCGI58zr1N9BsttVXEtiqjMnjTO4/uPPwpxMY/eHZnIHFfj549DPDON9xZuCuudCVDD2JPH8+hKoZ+SiEhYwz46OEBeHFW8HrwGT06gTjJrm203QF4d9Uk8j2lrcSwG/so1QvqLhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsdZlUbDsqzn9Vpop7cQMXUdTdqDm2PWebAW4umnnzbK4Fx9/szZs7inMpdZrWLuXBBgTiFrOERE9u7dC3E77w2uE2s2ktpuJe37o9JOo7G03nwOa0Ecxwt15OtWb2B96i3TZ2HixAmII9JoDG/Hva03bhqB+Ox+3DO6NUu5wyJy9OlHIO4bwJzHVB/uhX3kBOZ2WhYOyUoFz+Poc/uNMjOlXogPU155lsbd2ROowahVUNMxeuaoUcbkOJ5rbRrrVSljfij3D8PbIaH/2PSekMaetSSn3lonPVHYDMWaT0098hy2093u3RCX+rcany92Yb5vnvZL7+rC3NxcDvfqb1LOtgSmSMO2cd40vBKo7Rwjv315X6AXNPe0+czKfH4w5rnZJ/2S79N60sLXW42aUcbYSRyPtToe44IuwtBHrBFWsyWWN389bPYSonXFxb4jIhKSCcr0NI5bzrtmH4OTx49BXMKpRURENvRhH67OYDs7QjqjFq65UchzCdZppmHOHTMBzpuxhXq8fB4r6jn4+vhZ9PDasRnz30VE3BbWK+1hveIGfW9L44h7NPsbiYik06glEZvG6pJjWnaCQOsi05XqltS8NrY0iLqDXIh1PzeOmg0RkYqD5+PmsQ0G+tCrpNSDZRTJyySbMfUS3UX8TIHm1MoM1quYRw1RfwHn7QMHaU3P4ZouIlKdwbkllcUyXZq8tm/H/pVCiaOMzZhtN34SPZgu2YFaplNncV2fmUSNadpDTUYpUzLK6PKw3sdbpyD2K4tjNViFj4v+oqEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJx9EFDURRFURRFUZSOsyox+FKBZztTuiSxsOticWy4l8mgOQsL1aamUJDKYsCV1mMpLGwsl8sQz8ygSocN/0REjhw5AvEtt9wC8YYNaAjTrk4rMfS7GGLwdix3/deCZqMuqXmzoCcffgBeO3e+DHGZzIRERCZOn4HYInHoxmNoprb3qishHrn0GojPHnnWKOPpJ5+AOCRzoMIAlvHAfWgo2ZpAEdjpGgq6vvnsAaPMbBZFnxFtolCdwWOUz6OorJAjoynH7H9VMj2qzqKAMyYTt5jN0CgM/IQxQO5zlkWmW0uEkc7ad38REYlakUThXOFHDhyG186Noeh1cNNO4/OWjYLJHInBWZg9OIjCw6uuuQY/nzUFv3wMQ8xN18J8//KNayXNT6uej+JloqQ/iIyOouHU2Bj24yAkg0faMIK7ZHkCPy8iMnEar6nfRLHqhbZ8IaarncCx0+LYc+tkRKZ0MS3njm0a26WyOOfVKjhPelnsn9UKbpgRkMDezaHwVkQkl8PNUJoNEn87KEo9M4lzydgMzQ0+tvXj+1CwLyISuXiuUYzXrSuLx2jRvYVn4/tTMW7aICIS0eYBPpvE1sik2MIyXQfn2SqZuomINKhf9RSx7ZpL2r9WXXvT0mZ5SqL5NTgkMXDaxTngiksuMz4/23gK4haJ+PNkXFfowti1yPg1Nm9hS724OUqm0E/vwGPOkNFdIVfCOp7ANfeJE8fMMj3cSCabR9F6FGMfv+yaq/H9B56D+Mwxc6Oj8Rpu2pI/iffP+Syel9WDfccX7J/FNI5TERE7xs9sKA1C3EwvjrM5E16cL58P/UVDURRFURRFUZSOow8aiqIoiqIoiqJ0HH3QUBRFURRFURSl46xKo7EaknL42+W1NhqYJzk7izmMnBPIucUi7Y3tuF58zFqN8qwHB5d9XUTkm9/8JsRssvWv/tW/gridYd9K9A9c73bn2e71pHqshw5kOeLIlyicyzE+cwS1MqePoRlftYK5yCIis2R+1/IxPkP52WdOYS7w4CY08undtMMoI6iijui73/42xHGEQ642hZqM2MNrcHx8HOJ6FfUWIiJp0j5tGMA+OzOGue0i2P/8kEwCy6a+JRJsz0wG65lOYf4xm216HuZ+J/U/v4nXw81Q/m5xsQzLXXvDSBGRtGTEtebmnWaM59iVxZxXl8UQIlKvo+bLjrFd2QiuSRqd0yexnyeN0RRdC4/6h2toMjDmeTWbRe2cz+aLIhKEmDvt0DFZw8EmgjbpglaigWiRxqrRwP4TcQ45aQAnJ3FsiYiUSQfIzXvBjHW95kY3lRJ33tQtJk1TtYrt4VmmoVa1if3J1NtgPE1zQUjXOQrNNfjEqTGID43iOj5F9XzkKdQ4RjFqDzZt2ALxmSnzvHwLr/04zXmtCtZpYxfORzdefwXEdd+8vuxPNluj+QpT5qVRJz1MDfvWBa3NUizS9HkBj7XFuFlb+zmw1fQX9HhHaS7KduM8Y5PeR0TEpfXNpXUhQ59Jke4j4+BFcD2zDVP5EsSeh3GTri3Pd36EdfRs1FtMzB4zyixsxXPf0oWajalpNIruKqGeIiVostucNPU3uRzPXziWt21FPZ+fo/vpFq5XYYLpaLWJWpKhAdS3VNKLbdeiNX459BcNRVEURVEURVE6jj5oKIqiKIqiKIrScfRBQ1EURVEURVGUjrMqjYZlWQu5qZxDyx4ZrCG48Pnl4M+wliFJk8FwPfgY7L3RztOCc83Z60PE9NqYnMT9jrmMF5Lfyznt7TQYq/28yOq0Iuvho2FZgdjz+2inKP3TtvA6NWp4TUREZmlP+FYLc2wtyqk/eQzzJsfPn4J40wbMiRQR2bJtG8Rjs5hrWT57FOLuri6IM2nM3azR5zOuOa5SHuec4nuK3bjHPF+7mQrmZXpp8/uHAfJzKJVwHKRTy39nwbngSf2Hc+o9aotSabGtvNRFk5ctS77Qs6B5qFRwnNfreK1aY6YGoEG+DPkcXpsu6g8ejeunn8L91SfId0XE9CfiOZGFBzx3uB6+f2BgAOKZWVMnVK1iH+IyuQzHYU8l3k/f9Gd4ybXXYhkpXA+q5AlRr+P45vWjUTN9DFo+5tWznuXCGpW0vq0FYVyXC5Y1foxr2SNPPArxxi2XGJ/v7y1BTF1WQlofmwGO21QW89VPnTXn2aOnjkF8cLQMsUs59C1BTePRUdRB7juEff4QaUBEROoBzietOl7bNHmOjPejnirTh2PVsc37gsYs9qdKGcvoK+ExbQv79IH9qEVp1M0ytm1FHWApj/2xp7Q4X9SaK8+R7xSTldmFMTHbwjGfT+E8ceoMawNF0h72r3wR2yxNujwrwA4atHBuS2VwjRARGd4yArHjkmaN1hWxsUy/gW3eu2E7xNt9U/9Zi7HPNhyMPfJQEcH5I5Mh/6RUn1HGtIXtLRF+Jk1rbHdXCeJsiK/PVFAzJCIyW8P25mPMziyuN5ahH3p+9BcNRVEURVEURVE6jj5oKIqiKIqiKIrScfRBQ1EURVEURVGUjnPRNBpJOdj8Hj4G5xbzPukpSsxfyV7rrMkwc4WdZV9nL49m09zfmP0/pqcxV5jbYiVak07zQjQVy+k62mlbLgphLBcSlGsVzIGszmD+YtjCayIiEvn4mZjyPznnO+3gORYpv3SwYLap42POcm8v5pq3KpgfOjWFucFFH3NWRzYOQ5zLmVqcJvW/iIZ1OcR65vK0h3cax9XEhJkDnc3hWOvvR21BNo1jl3O9eRz6FIuI+LQnf0g56PFS/4YEL4e1oNYMxQ3nroFP7TpZwWvvcQK8yIIHxwUqLdQ7NClH1nFp733yQOkuYH67iDkvOqyXsFmjYS/7erNO+ouEabdI9bCEfHuENGX0edZHXfDLWcrRo4foL/iZJulfWEfB85nfNOcIi/aW76Yc8vWmFjfFjeZaz6L1cMM2zO8fHTP1O2fHsb/Va9gGto3HPHrkPMQV0nNNjZl6nekarn9Nyk/PlzCXnzVA4+OohTs/hmNgnPyQRERiGlfDAxuxzCzOedPkufKdJ09CXKuZ59WooSaiWcc455JmaBbb6tw5nOtDcwqUmzzMzfccPEYQLPox+P7a64RGz50Re35+KBTwutZmcH11YrN+IyMbIO7dgPH4efSbkBY2UiqN2sDhTaaWoX+oF+JsgfyNPFyT66TJaAWk3UzhbLVt8y6jzFkf+8t4BftTUMZxViqhljNDa/LmPlP/GdZxXc4XSS8c49ht0fw3w/elxiws4lIfDkiPslRDyhqk5dBfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsfRBw1FURRFURRFUTrOC9ZosJahnfZBxNRgsEcFazg4LlK+bFIZrKlgncdq/SdqNcw7TNq3nn00knQcy7ESX4127c2002SspMwfO41G7M39JyKVMl6XybEyvjUy80OzGe5PZMZBOd+lHuxvmwdwD/netFmGK9j/ii728cLuHRBXyth3qtMYh5Q/Ojpu9r+JSfybH+O4qDfxWhUot3PzZsyT7ekxPQwKRdZHUX48aQvqdcxJ5bEeJvTPWh3b04/wPcGSnOTAXx+NxmR5ZmHemaa5IfYpn9gxdQYe5bXyHFYTzA9mbQPHUYJWJY5wbIcBtn3EegmaC2yKm/byGo75gyx7TMcmLRydN49XrrOIqcEwatFGtxNRfwoD8/qwPUulitcjn5vLUQ6C9fHR8CUrLZmrQxjgenriHPbHhx89YHy+Mo3jNAxYP4jjvE7j+uQJ1E84tjlX2KQja8bkHZPBcTI5jhqMSoXmDprPUlnTyyqk9ahcxnz0sXM4R9bIA6DeoHmYdEkiIn6L5iPqPn6DtSM8zjAudpltVw5prFI9wyVeCEGw/Bp/MWj5/oJGIwxoPc3jdbnyip3G53ftwb/lenDt+cF3vwdxponah4H+EsR9g4NGGb2DqFUqFPshDmkemKa+Up/FvuDmUItSLJm6rWwTz708eQ7i/ZOPQ7xxGLWXjTrWKan/bSHd0QxpAmsz2P9aDexLk5M4zsIEjUZXCduK9SvOEr8jexU6Sf1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeO8YI1GO5Jy+Dnnn/fWb+erwXneSRoN9trgMrlefD78fvbISCozn0dPgXbHbKe3WInnxUqvw2pop7NZWq918QKJbImiuT7ikbwilcE2cy3sOyIiLvWn3l7UXGSzmIvZlcO8yxz5OtgJ+4TbFv7NovzkMu0BXyhiHTj3u94MKDZz1xtNzKPs7ce9xbvpujZamP+5cWMXxI5l5qBmMjg2fdIhVcjXJDL0PdTnY7P/ZjN4fWxqi6WncRG6/4qwbUfseb2BTXuO84wXRea18ql/sOeJZfG4spYNJWGuYP+ILVu3QLxr5wjWgd5vsSaDG9tKyM2latg2ntf5c7gH/IGjR/H9bvulyOhTNJfH0fLzrEFCH6xSXnPLx/ztTGZuTuA877Xin771lGSzc5Nfk7Q4h45iG8/WcF0SEbEE/U7qPs5HddJwNBrYxo0Qj1mZNdshIl1HK8L5Jk1td4K0DS3ylqnSec7UMTddRCQMqS9wbnmEfTrga+/gdY8TvoONYxoXwro19gnDcRWEpI+JcM4UEckV8TyiGP0V/CU6MN9PMOK4yDius6DRGOzBvnDTTVdDfNX1GIuIbNq4G2KS5cnBp5+BuEG6o3qIa5PtlowysrkeiC2HtL+kLxSL7iupa+RSeB/QCEz/nZD8aKbO4Fjcd+QwxPkuvNcYFrwPmJ4pG2VYKfLkoikzdrHvZPIliHuD9jrf3n7UzLg2aZlai22RNEaeD/1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB1nVWLwOI4XBMEsquY4SdDM5nkcs8CYhd0scuTPi5iCcWa1xnd8XixYFxEpFFCkc/r0aYjL5TLEg2Qys5wx3kpZC3H40nNfDzG45YhY80qtoWEUhbkyhO+NzPaoNVBYNkCi6b4+vC6VMRR0hTMoUrRypuC81UJRWM7D/hK62IcbFTTRYfPHUg8a6PSlB4wyaw00CWSR+7aRzRCPTZyFmIaZxIEpMvTrJAolMXhAY5PNNtNpFL+xeZqIiNDYSpFQ0HMX29t1lx/nF4uu7q6Fc+vqxf5jiOMSxrEx/wiOIxaUWpZNrwvF5nzE8+JNN/0MxL/+9n8DcUDmeG3NQMXcBIFP1fPwen/7n++FePKL/xviVBZFyizsnqsYhsbcLMtvZrESogj7vmHqd0FEnCAkXwsef+q0pFJz48Cn/vbQwyikHZ8wTb/Ya7FeZ0EyiaZ9vNbNJhtvmrcQkU3iWhKpWq1RiDN03SwbrwHb3wbGtgtm/0uz1ptO3OEP0JQXJWx4YNGOB7ZjfAhDGlc2l5ng+bh1Exq5ZbtxLp+tLl7TuWvxoHmQi0gYRgsbe3QVcOHYfSka5Q1vRHNaEZEN/bgxhU/XpY/m1B/uR9PJdBGNF6MA1+S5OuKYtWhtCkPuw3it3RTOXSHNp+aYERk9fwLipw88DXF+Gq/jObonDGM8j60ju4wyJmZwnc+4OGeWNmH793ThPVJlBu9nxqZxowsRkTiHbXFyDO9lPXtxc4KWvfI1WH/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tir0mj4vr+QE8z5r2yul5Tny9oDPkY2i+Y0fEzO807KT+Yy2pkAci4516nd60n1Yo3GyZMnIWaNBmtPkvhRNRgrMQVsp7NZegw2W1wLXMcWz527nps2oinPYAFNnzwy2RERqZCpDvlESWUGcy+bnJ5NObhuy2wDy8X+5lAi7nAJzfFOjWLepCOY9xhFWOc4NMt0XezT9Tqe2Pg45rU2KeeU9RKZtNl2LdK3+JS7PT2Lr7O2IJ/HMpL0VUK5sg7l+YdLzp1N5tYK3/cXdWp0bW2XxS7ttVauyxoNm14nsyl3+flJxJyPcjmcV/MFvL5huLwuhN344oQceTbsc12sQzaPbVPMY36x42GdkuYXnp8CqkZE/YePYc6h5vUJaHzFEZuuzf0/TBiHa8FM05FUPNcHSqUSvLb7EjRDO/pP3zI+32zgOYfh8msyw2uCa5ltaJjjsSsbEVKZFuk+uAw7QX/HZo42m81ymSTKsITXR7Oels36KlofycCVj8G1DgKzkMos1jvM4jzZXGL42bLWfg60xV7QQuVJA7B55CqIU129xuerLmoRhnsuh3hgCDUcaZonulK4tp079qxRRnn8DMR9G/BeoVpHrUONdJKs9ZqdwddPHztmlPnUviexDjXUR20fRO3NYBbvA/aNPQ6xZ5v6iVL3dohbpLU8evYUxM81cRz29JM22DPXDjbsdHyct1uNxfNqtdFDL0V/0VAURVEURVEUpePog4aiKIqiKIqiKB1HHzQURVEURVEURek4q9Jo2La9kEPcLp9/JbnD/JlMBvN0OV+Zc2zZZyMJzmPlHFTOZ2+nZZicnDTKYM0F558fP34c4muvvXbZMlay/3s7P5CVaDKYdn4eS7Uk66HRsJ25/0RE8tSXKiH2x2bN1AC0mvieUyfPQVyv4fkWcrj3tWVh/4wC3uFdJGyipqJFebi1OuZejp7HOkzPkiaD8pVTCXmVnLdv1InaxnFwXLHPS18PnncSnKUfkh9EQPmb9Sk8b9dJ+I6D9jevNbBe1SV7yNdo3K4VzUZTgvn980Pe/5/21a/OYi6wiDnfODbOYbZN15ISuy3a3z9JuxXR9d6xcxvEs6SnWb3eIEGjQXge5o9PTGCe87PPYG61SxoNXl9EEuYj0mSECZ9ZSrGIOeW9vWYOeRxz3juVceH/66QROn78xMJ45/WUr6OXMn1+AvIF4e4Tx8v3BZbv+H6Cloa0DLahbUC8FP6FtQusvUmsVxsJY8x6CuP9tPYlFMnWLha9yYq53txf8fOO0RLmuRr3BkvmB8du3y6dpr+ne2H9uOZlqMnIFnEuK/uoPxQRyWVRk+E4OO4HNqDnU0R6n8kZ1D60jqIuQURkx7EfQmw7qIeYLZ+HeHwUj9EIcI4ePYmvj54yz8uN0EttYykPceCQH80J9MtyfNSijNewjiIiEY2TnIvau+kGHbOB4z+s4Xo0OLDRKCNfxLU/aOCcWZ1dXKMbLGJdBv1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeOsSqMRx/HiHvKUD8txUu4waw/a+WKwDoDzYpM0Gvw31oqwfqKd1oBzJGdmZoz3tPP/ePZZzEd+1ateBTG3QxLcdu3aO8ljZLXwMZfWYSU6kk4TR5HE8+c9M425muPncX/uRmDWb6qKuelnzoxDPFtBfUSugDmNroN9abAH8zDn3oO5loGD12lsAj0tKi3s07UG9sci5Svnus0y/QDr3duLeZbsm1Crs5YA2zJK8Acpcbk0Loo5PO96nTxLmqhnyWbx/SIiYRNzY6OYfEuW+IW4zvr4GIRRuJBkzj4OZKshtVpNmGqV/UawnSxhXRp7WJDPQ4L2ijU593z72xCfJl8fPkaK5q9cHq99s2meF+tCHAfn4VOncG/7KdLsWBaO3xVB81No5OHj6zxn5vPmWHIcmvNoGr2Q6885/2tFvV5fyJH3WQdF+p/Nm3HvfhGROF5ezMDrYZPGLWsykvxsuF48VxgeOuQH4ZIXURTSfUGCpsghbZNx/0GXyxw2tH4mLG98zUPyWHFtQ/CCdeQ12knSaOAx2d/D/f+39+ZxllXluf+z9z7zOTV3dVf1TI80QjfIoAQQjSioIBinKLlgglMM4hAV7kUDRL0mimI0miDmZ2smNCrEKHAhBBAaaAabQWh6opvqobq75jp16ox7r98fVXW63mdtamhOV9Hwfj8fP/LW2Wevtddew9593mc9zqE1yHdmXqMBLwaMrv1dB+W68dzO50XszJW6BQCoQ7+IX4jINXZgQMZDNN/VBeStFpXPXgCwc+tz8py9pHss03PAgPSjGMjK6/KG5Xpal7C1XfV1ci4Z7Jda3mxEjoltXfLz7n2yTpEWe24adGW9/KQcF3PmNIqY19xCSsa9gXz+AYDuLqkZzdGa3JycU/3voqMaDUVRFEVRFEVRZhF90VAURVEURVEUpeboi4aiKIqiKIqiKDXnsH00WPvAuoRCQebFAXb+J2sbOIc2m5V5u6wLCNMJpChXfDJvCNYy8HVNRXvCubF8Xdu3bxfxjh07RLxwodw7mr8P2DqOsHqMZzKNRtg+9ZN9Z3yZYd8/0hgcSrUtUl/KFQKK7Tzeg71SH+GQ/4QTlW06QHmWHmQf7zlo5zguXLhAxFHSDA0XqD+SjwIolzNL+fDRvK3nSdfLfM4oHVKmcxRyMtezUiYdSV+/VQZTl5F9tEJllId57MrrjEfsPf6jUdIhDchzRMclTkfDkqhngFg0Cm9Uq5OJyzZIpmROcipt5yj39PaL2M55J+2b5RVBx4eNQ8qb39kh9RHP75Ixz4n19XLf+eUrlou4c2+HVWRXl9xbnv1AeK52ab1w2GshZH7j+cmjPuS6Mo7GZZ9rmTNHxG3tbVYZ5bzsx/k86ZdGhTizkB0PYESWMtY23Ka8BofN542N8t7yOSqsg4za43Q8haK9zhcLrOuQc1qZ5m7+3HXlGmx82RdYNwKE9C+6dgNexyfW83A7AECJyq3Q2HUDHqvk7UTXnW6QHgUAwBKacpE1Wf64z0gLMwOsWnlctU90dkg9RW9K+lckt9o6g46SfPapGDneenvleEMjtWFZ3gO/bM8THS/IdbnngFzHk6kmEecc8uYwsk97Gdkfh0u2niy/X2obguLEfT6aIL1nq9R95Eu2T1SRzum4sp7zG1pFPLRf3p845Ngvh/hg5HulBtlQFxscPPQMVWIt1gToLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1oajUgk8qJ5/JzjGLa/O2s0ODeTc0z5HLz/dpgOhHOW+Zz8OZ+Tr48/Zy8PYHK9BNdz27ZtIs5kZC532HXV1cl8TisHldqKtSZWLm6If4iVAz2BV4a1F/oM41A3dDx5/Q0hfhMVp1HEwzmZ75minG4Yef2d+w6KeDDbb5VxsItzhWmvf8rBN0beB8elfdRdeV2csw8ATU0yNzMZk2Xu3iV9E/oGpFalublFxCedfLJVxuKlMp+9kJe5nHt37xFxNCn738CQzMXtG7T1LamY9PvwYnLsRqKHzulFpzV11YwgMHBG968PKvJe1aVkn2tumWd9f/ES1iKAYv4DeQo4/P2w+Vj2GR7rPFdwmWnSlixaJDVk+/d2WiX2kj8MX5iVQ0/6KNc2rJgUnuOs+SsmP0+Qb4bHZQLYR14A/QNyjohERq6rEtjrwEwQjcYQGW079gFhD6lQjyjqXn4wcZ41+zqUy7QehsxHsaSsR0BzWCQu70smIvub68jPI6TvCluDuf+wprHM6zx5dURJ78N9C7CfVww9S5TJO4jz8odI/5NI215CrFXiOaZQOJS7XyrNvEZjYWMG8dF+5tY3is96Pakr6NkitREAEG+R7TqUk3qHCD2vLVmwUsTZ/XKeGRwKeQYsyHs7TDIjt0Hel7wntQz9kHVy5pD2K2NraFuM/FuqW65lpizvYyUr1895i+T6Opi3+9++oqxXfpg8SDLyc+PJMuND8nhTsJ/h6uPUJ+kRMD9OL8W2MROhv2goiqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5kxLUek4zouaBbHIOpGQYhhgcjM8Picb1w0PSzEVG/oBtkBuMoF5mPnPRMeHCb/5mMmua9euXSJevlwaYvF1hv2N68ECORbDcTuECupITDlR2w2RsGgmcJ1DAqRMRvavVJoEhCGGcOl6KbjKZqVRT7EgxXW5nBRLDQ7KNvUiDVYZ8TgJ0cgcj0WyDY1SfJXOSOHjUFa2cxDY/XVoSArLShH+XNbBof5YJsHnEJmUAcCe/VIAXC6SgC47IL9AYt/mOdKQaDBrl+GQrjSdlGN5fL2dECHvTJDP56vjuaNDCuB3keg+FrPNFWNx2W95nozThgQROt61BPJ2P/doHFsbeLBQmz4fpv7U27VfxMa3N4mYzL/TFr2TyH2SORQAfJ/NCsv0OW0WUuZYjp2wTTfKw7JfNjbKMd46aqzlOlNQqx8BAhMgCMJVmLwOhYnBs4OyzSYzwS3kZRvymhBld1DYAnHD/55JnSFC52BhdjRKm3SEwEaX3OeTafksEaONAhw6Phazx1U0KvsCG55V6FmCxeDxghzL5ZANBbIkji7RZO6PE4ez2edMEAQ+gtF6ZxbJOd3vlve1PmXPE6uWS3F334DcFGTXvr0iXta8VsTlBhqzBftZqbe/T8TdPdKgtFzpFzGLv/20rHd9o7wHpYi9dgX1sl5zBmXbRCu0QQKJwbsOyjo1Lmy3ysgMyvFdpnEUp81IzFzqHwfldcRS9riKJ+SmQyVqX7906Np5/p0I/UVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5kxLo+G6bjX3kfUWnPPP+grA1hWwjoANh/J5aQAzmfkeAKRSMuedzfC4nn19Mp+PjegmMq0bg6+L24ZzZ/ftkzmD3d0yTzFM38JtFWYoNB7WdExWJ8A2JOK2GN/eYTqSI43nuVWTrbY2aVIX5GQbDmVtM5oK9ZcVy5aIuK+3X8RdPVJ30Nh0rIiHc3YbcH/yyEjQkBNZfb3M+y1Qn4+R5iOZsHOHfcN6GTmO5rXNEXGRctkj1Lc6Dx6wytjfLfM92S8vSqZaEU/WM5GqF/HCxSusMrKDsu16e2X7jzd5Y8O3mWK8Tq1Mhln5iszRDs2kDxl34+E5rULH+3TWMANHBFwGxyyYmLBKtilgqD5B/s0yFKWjXYd1JGxEaFeK/+a5shNyLj+b6vlcx5C5PU7an5ZGmbPsjOqZHDM7hn2VcqVqFMcak8nWTwAokq6A1wVeZ+z7wNoa+98qy2QyF4/JZwEug9fkSoX1FnLuCdMlRagv8LiIxdnMkMYqXYcTIn+I0qRXrlBbRmV/4qZJuGTiVrI1QgX6W5FuYWXcGl2ZBY2GSQAmNjKOcpDrX2NU6hLa18o1GgBiEXlf0i2NIq4js8dYnYzjEalDKBfk+ASAREIe09gsyxgk3WTsgFzvug/0yzJIa5OZbz+fDWXkGuzG5bhZUJGai/nHLBDxPjIiHBq0dSAxyHHTU5KGiJm8bNumZvksPC8hNaoV357Hs6Tn9Gj8p1KH2rtQnLpps/6ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnOm7aMxlnvL2gXO5QzLsWWNBZ+DczVZM8DnnIpXB+eD8t7idXUyx4/9IVinYO1JD/u6+BjOux4YkLnnu3fL/febm2WuI2Dn37IGZjLNBrcdty1gXyvnAA8ODr7oZzOBD6eaoz5nwWvEZy3zZM5/uWTnUBfp+uLkUVCinPtiUcaxGPW3kNx21q5wO1t9g/Z/L9He//EYa3Ps/uf7sowy64xc0jZR3n+U+paVkw+gXJb3O6D892hEniMa41xvyoEOGUeppPxOX78cJ3Pa5lf/ezZ8XAA5R/H8VS5TnwvRMjgu/Y36kEufR+mAqJGxQZhW5ch6PBjHHlsGsh87bIpCuLxegNcP+zvch1wqw1TI84g1GSxNCdH4xUhP4NF3SqO6hzCPipkgGo0iMtrv2FekUJT3JZ2ROdoAUFcntVIB6XksHYw3sd+EE6KVYomQ5elEegleSwzpXzzytOD5CkBVt1Ktly+vo0JtxV4fUVdeR4RFaLD9GQp5We/6tNSDcpmszwtbs9l3KU7ak9I4r45KZeZ1QrE5CcQSI+2f8WT/asvIZ6lkwh7ErifX0Fhc9sdUvWyz7l6pXahI+QWSrU12HRvlfXBLst2HBqWHRWtMXodPj8V7ya9tz8EdVpnDtD66juzzifoWGUPeu4iReovO53dZZTS2SK1lQ4YaI0feagl5Hfu6pe9T2qPvw/7lYWCIPEbGzdPFkvpoKIqiKIqiKIoyi+iLhqIoiqIoiqIoNWdKqVNjW6GOTwHiNCf+yZU/B+yfmznmLVf5HPx5WHoWn5NTVyarA5c5WR3CjuFzWltW0uf803HYtoRh7Tmeybbh5bYK++l/stSp8XFx9CfcsPaoNWNljE+XydM2bIa2KwxNnaK0JE51KfH2vsUKfc6pMXZd88Py3pUrlDrlTJxWV6Y68s/jES8kdSp4ialTtE1iaOpUZbLUKdr+tszzA6dO2Y0XBPIcOdo+ODHu/udGUwxmov+NL2f8dRtKv7DrMvk2sCEFTXy0mTCcWhkvEU4BebG/TXyOwyt54jKDCT+frC0BezxyetLYvDn2/zPd/8avAy6l0fGYcl17DuSUtclSp/jyrNSpkOvntcWjtCTQOXib1gCcQs1p2vb8xKlTnJLKX/EDXv9462Q7LaRM9eR6W5/7fF2yrSohW1PzfM+pe+M/H/vvmVyDx2+PHMnLNTdf5nTqsNQpelaidQR0X/IFWQYvf0Es5FmJ11zahTXPzzW0TatP/Y9TrstW3wHKRe6z9IznyusAl0HPHvx9wE7tLtEzToQe54sFuvAiWzfY20QznB41PnVq7HlpKv3PMVM4as+ePVi0aNGkJ1NefezevRsLFy48omVo/1NejJnof4D2QSUc7X/KbKNrsDKbTKX/TelFIwgC7Nu3D3V1daG/IiivPowxyGazmD9/fqhAvpZo/1OYmex/gPZBRaL9T5ltdA1WZpPp9L8pvWgoiqIoiqIoiqJMBxWDK4qiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxXxYvGrl274DgOnnjiiZd8rg996EO46KKLXvJ5FCWMN77xjfj0pz8929VQlCPC+vXr0djYOOEx1157LU488cRqrHPuq5Op3PelS5fi29/+9ozUR3llYozBRz/6UTQ3N9fsOVGRvCpeNBYtWoTOzk4cf/zxs10VRVGUGWMqD/YvNz73uc/h7rvvnu1qKEcBjz76KD760Y/OdjWUo5g77rgD69evx69//Wt9TjxCTMmw72jH8zy0tbW96OfGGPi+j0jkVdEcyquYUqmEWCw229VQlBclk8kgk8nMdjWUo4DW1tbZroJylLNjxw60t7fjD/7gD0I/1zXzpfOK+UXjjjvuwJlnnonGxka0tLTg/PPPx44dOwDYqVP33nsvHMfB7bffjpNPPhnxeBwPPPBA9Sf7G2+8EYsWLUIqlcL73vc+DAwMHFa548v+5S9/iTe96U1IpVJYt24dHnroIXGeBx54AGeddRaSySQWLVqEK664oup+rLwyyeVyuOSSS5DJZNDe3o5vfvOb4vNisYjPfe5zWLBgAdLpNF73utfh3nvvFcdM1m+WLl2KL3/5y7jkkktQX1+v//p3lDHR/DI2j/X391ePf+KJJ+A4Dnbt2oV7770Xf/qnf4qBgQE4jgPHcXDttdcCAPr6+nDJJZegqakJqVQKb3vb27Bt27bqecZ+Cfn1r3+N1atXI5VK4T3veQ+Gh4fx4x//GEuXLkVTUxOuuOIK4VY92XnHuPXWW7Fy5UokEgmce+652L17d/UzTp1igiDA1772NRxzzDFIJpNYt24dfv7znx9mCyuzzc9//nOccMIJSCaTaGlpwTnnnCPmsOuvvx7t7e1oaWnBX/zFX6A8zkWZU6ccx8E//MM/4G1vexuSySSWLVumfUN5UT70oQ/hk5/8JDo6OuA4DpYuXYo3vvGNuPzyy/HpT38ac+bMwbnnngsAuO+++3DaaachHo+jvb0dV111FSqVQw7e2WwWF198MdLpNNrb23HDDTdoKvQor5gXjVwuh89+9rN47LHHcPfdd8N1XbzrXe9CEAQv+p2rrroKf/M3f4PNmzdj7dq1AIDt27fjZz/7Gf7rv/4Ld9xxBzZt2oRPfOITL7ncq6++Gp/73OfwxBNPYNWqVfjABz5Q7aQ7duzAeeedh3e/+9146qmn8NOf/hQPPPAALr/88hq0jPJy5fOf/zzuu+8+/Od//ifuvPNO3Hvvvfjd735X/fzyyy/HQw89hJtvvhlPPfUU3vve9+K8886rPrhNtd9cf/31WLduHTZt2oQvfelLM3qNykvjcOa1Mf7gD/4A3/72t1FfX4/Ozk50dnbic5/7HICRBfaxxx7Dr371Kzz00EMwxuDtb3+7eIgbHh7Gd77zHdx888244447cO+99+Jd73oXbrvtNtx2223453/+Z9x4443iQW6q5/3qV7+Kn/zkJ9iwYQP6+/vxx3/8x1Nuk6997Wv4yU9+gn/8x3/EM888g8985jP4kz/5E9x3331TPofy8qCzsxMf+MAH8Gd/9mfYvHkz7r33XvzRH/0Rxuy97rnnHuzYsQP33HMPfvzjH2P9+vVYv379hOf80pe+hHe/+9148skncfHFF+OP//iPsXnz5hm4GuVo4+/+7u/w13/911i4cCE6Ozvx6KOPAgB+/OMfIxaLYcOGDfjHf/xH7N27F29/+9tx6qmn4sknn8Q//MM/4J/+6Z/wla98pXquz372s9iwYQN+9atf4a677sL9998v1vNXNeYVSldXlwFgnn76abNz504DwGzatMkYY8w999xjAJhbb71VfOeaa64xnueZPXv2VP92++23G9d1TWdnpzHGmEsvvdRceOGFUyrXGFMt+4c//GH1mGeeecYAMJs3bzbGGHPZZZeZj370o+I8999/v3Fd1+Tz+cNuA+XlSzabNbFYzPzsZz+r/q2np8ckk0nzqU99yrzwwgvG8zyzd+9e8b03v/nN5n//7/9tjJlav1myZIm56KKLjvDVKDPF+PllbB7r6+urfr5p0yYDwOzcudMYY8yPfvQj09DQIM6xdetWA8Bs2LCh+rfu7m6TTCar/fFHP/qRAWC2b99ePeZjH/uYSaVSJpvNVv927rnnmo997GPTPu/DDz9cPWbz5s0GgNm4caMxZmQeXrduXfXz8XNuoVAwqVTKPPjgg+KaLrvsMvOBD3xgKk2ovIx4/PHHDQCza9cu67NLL73ULFmyxFQqlerf3vve95r3v//91XjJkiXmhhtuqMYAzMc//nFxnte97nXmz//8z2tfeeUVwQ033GCWLFlSjc8++2xz0kkniWP+z//5P2b16tUmCILq3773ve+ZTCZjfN83g4ODJhqNmv/4j/+oft7f329SqZT51Kc+daQv4WXPK+YXjW3btuEDH/gAli1bhvr6eixduhQA0NHR8aLfOeWUU6y/LV68GAsWLKjGp59+OoIgwJYtW15SuWO/mABAe3s7AODgwYMAgCeffBLr16+v5iZnMhmce+65CIIAO3funPzilaOOHTt2oFQq4XWve131b83NzVi9ejUA4Omnn4bv+1i1apXoF/fdd181dWaq/SasnytHB4czr03G5s2bEYlERN9raWnB6tWrxb/8plIpLF++vBrPmzcPS5cuFfqJefPmVeexqZ43Eong1FNPrcbHHnssGhsbp/Svztu3b8fw8DDe8pa3iH7/k5/8RKSsKkcH69atw5vf/GaccMIJeO9734ubbroJfX191c9f85rXwPO8atze3l7tby/G6aefbsX6i4YyHU4++WQRb968Gaeffjocx6n+7YwzzsDQ0BD27NmD559/HuVyGaeddlr184aGhup6/mrnFaN+vuCCC7BkyRLcdNNNmD9/PoIgwPHHH49SqfSi30mn0zNWbjQarf73WGcdS38YGhrCxz72MVxxxRXW+RcvXvyS66gcfQwNDcHzPDz++ONioQVQfdCbar+pRT9XZoeJ5pexfmBG00wAiBSll8r4OQsYmbfC/jaVNK5aMTQ0BAD4zW9+I/5BCADi8fiM1UOpDZ7n4a677sKDDz6IO++8E9/97ndx9dVXY+PGjQDC++BM9jfl1YmumbXlFfGi0dPTgy1btuCmm27CWWedBWBEJHs4dHR0YN++fZg/fz4A4OGHH4bruqFvprUq97WvfS2effZZrFix4rDqrBx9LF++HNFoFBs3bqy+FPT19WHr1q04++yzcdJJJ8H3fRw8eLDatxjtN69sJptfxnbc6ezsRFNTEwBYe8DHYjEh1gaANWvWoFKpYOPGjdWdVsbKOu644w67vlM9b6VSwWOPPVb9178tW7agv78fa9asmbSM4447DvF4HB0dHTj77LMPu67KywfHcXDGGWfgjDPOwF/91V9hyZIluOWWWw77fA8//DAuueQSEZ900km1qKryKmXNmjX4xS9+AWNM9R+KN2zYgLq6OixcuBBNTU2IRqN49NFHq+v5wMAAtm7dije84Q2zWfWXBa+IF42mpia0tLTgBz/4Adrb29HR0YGrrrrqsM6VSCRw6aWX4vrrr8fg4CCuuOIKvO997wvdHrdW5V555ZV4/etfj8svvxwf/vCHkU6n8eyzz+Kuu+7C3//93x/WdSgvbzKZDC677DJ8/vOfR0tLC+bOnYurr74arjuSzbhq1SpcfPHFuOSSS/DNb34TJ510Erq6unD33Xdj7dq1eMc73qH95hXOZPPLihUrsGjRIlx77bX46le/iq1bt1o7ly1duhRDQ0O4++67sW7dOqRSKaxcuRIXXnghPvKRj+DGG29EXV0drrrqKixYsAAXXnjhYdd3queNRqP45Cc/ie985zuIRCK4/PLL8frXv16kHbwYdXV1+NznPofPfOYzCIIAZ555JgYGBrBhwwbU19fj0ksvPez6KzPPxo0bcffdd+Otb30r5s6di40bN6Krqwtr1qzBU089dVjn/I//+A+ccsopOPPMM/Gv//qveOSRR/BP//RPNa658mriE5/4BL797W/jk5/8JC6//HJs2bIF11xzDT772c/CdV3U1dXh0ksvxec//3k0Nzdj7ty5uOaaa+C6rki3erXyitBouK6Lm2++GY8//jiOP/54fOYzn8E3vvGNwzrXihUr8Ed/9Ed4+9vfjre+9a1Yu3Ytvv/97x/RcteuXYv77rsPW7duxVlnnYWTTjoJf/VXf1X9VUV5ZfKNb3wDZ511Fi644AKcc845OPPMM0Vu6I9+9CNccskl+Mu//EusXr0aF110kfgXE+03r2wmm1+i0Sj+/d//Hc899xzWrl2Lv/3bvxW7oAAjO099/OMfx/vf/360trbi61//OoCRvnXyySfj/PPPx+mnnw5jDG677TYrVWW6TOW8qVQKV155JT74wQ/ijDPOQCaTwU9/+tMpl/HlL38ZX/rSl/C1r30Na9aswXnnnYff/OY3OOaYY15S3ZWZp76+Hr/97W/x9re/HatWrcIXv/hFfPOb38Tb3va2wz7nddddh5tvvhlr167FT37yE/z7v//7S/qlTlEWLFiA2267DY888gjWrVuHj3/847jsssvwxS9+sXrMt771LZx++uk4//zzcc455+CMM87AmjVrkEgkZrHmLw8cMz7B91XOtddei1tvvVUt6BVFURTlKMNxHNxyyy246KKLZrsqyqucXC6HBQsW4Jvf/CYuu+yy2a7OrPKKSJ1SFEVRFEVRlNlg06ZNeO6553DaaadhYGAAf/3Xfw0ALykd9ZWCvmgoiqIoiqIoykvg+uuvx5YtWxCLxXDyySfj/vvvx5w5c2a7WrOOpk4piqIoiqIoilJzXhFicEVRFEVRFEVRXl7oi4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzpS2tw2CAPv27UNdXZ3aqSsAAGMMstks5s+fD9c9su+r2v8UZib7H6B9UJFo/1NmG12DldlkOv1vSi8a+/btw6JFi2pSOeWVxe7du7Fw4cIjWob2P+XFmIn+B2gfVMLR/qfMNroGK7PJVPrflF406urqAACO83dwnCQAwMCno2IyNHHrPA48+kuZ4jx9wVDI37cJqAwDffuuFeNb0pg8gE9U+8aRZKyMH1z3Q6QSKQBAEFTEMa4bUGzf98CXxwQl2b98+nwyDGwLmoqhMgKqF/VHz6dzUB0c+pcCE7XHgE/nKJUq9Lk83nXoHFRGYOx24OuYLtxWYaOS/03ENfKooHLougqlPK78wZUz0v+AQ33wmr/4EyTiI3NdJCbnvBjFQYhFkaG2bmqeK+J4OiNi/pcivyDnyIH+fquMocKwiMuVkoj7+odE3NHZI+JsVn4/EpHXMZiTnwNAsSg7WTwu2yIxOm7HSKbk+uDQeA1MyPil5qyUK9Yx4/EiURFzW8ai9vIXi8l6xeMyHuvHpVIJ//Yv/zbj/e/0U05GJDIyfnt7BsQx+XxRxGFDlufNIChTLNvdUFyuyPvshizJXlx+xwlkO0dd2aYer/OujCuO/H4y3WCVmUzKc+aHCyIulmQcBPI6eOyWy3LMAPb6wRZkDl1HpSzbtkwx9y0AiFKf5DWpOK5eQRCgq3vfjK7BEYTP3cqrDwOgAkyp/03pRWPspzLHSVZfNGC9aPCgOZwXDf4CP5xMXl27DB0WtYJb0hjMyM+oY2WkEqmpv2h4IQ8qFXoJcGv/olE2clzwA7o32YsG1dHx+EXDHgMVqrfnvEJfNDz7wXKmfsYfKycRj1VfNKL0oHA4LxqpZELE8VRSxNaLBl1uqSAfoADAp7nZq8gvxePyISoWlQ/k/LDDLxqRiN0HuY/xMXzOKJV5OC8aziRz+2QvGlwnwL6HHFv9eIb7XyTiVdvW8+Q4nlr6jDXKuCQR8T/UubQmhxXJ/8jjUBlcT/ucMg5ovuLrHvlbZMJj3LA3ogmO9/2Q46lPTvai4br0UsbXHdJ4XE+eQsK+M5NrsAN9olIkU+l/U3rRqB4c2w/HGVkYTUBv/KVlMg759SFw5L+kOREZx5MyLpflOSrFRipDLtIAYGhS0180aoczfpENeRA40gwPDwPV5105iTv0ohEYfhEGDD2n+kV5DaWS7NOVCr/McN+yHySL9ALEgzBO/dOryHOYvKxDQIt2ISYfngCgRP/KWCzIF3j+xYNfxvnBwAtZlHkh5usqFuW/pvKDo/2SGvLi4kzcvuNfdgol+wF7JihVArjeSD18evFJ068R7XObrO/3ZvtEnB3uF3GFHo7j9MBeGJa/JgwV7XaI0q9eQSDPWaRxMKe5XsQNGfkClR0aFPFg1h5bw8M5qufQhHGxmBaxQ9edpF9EAFhPXVHqL9GErHcP/TLjOhO/5AFAmV7ayzSem5pG7+ms5akfetRL0PXyQ2mpZN+nAs8v9CWe8wJ6s41G6b6EtEOlwr/iSiIejX06hU9tbgI5t+QH7F/UIoHswx7NHQ1JOSaG6Nef7u6DVCf7gT6ZkuObZzD+tTpKc3WM4nRGjgEAKJfk3J2jceOOe6FSrcQrB36SOBJ3dibKeDF01ylFURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSaMy2Nhu93wXFG8kJN8IL4LEr6i0jczj/0Xbm7iRuXu2a0tMmc2f4umeOcLbC63RacW7n7msZ4hHDspL8jTD6frybGxmIkWI3KGx22I41P+ceVsuwrw3mZ+1si3YHrsVDPboBShd/d5XcKlHPvUS5whXYIMnQ649gbKJToOnyqF8ecQ82CczdE7Ds8JHPwEwkpWt66dauIFy6QWyGmk3KnmGLJvo6ArrVMO8OMj0vl2dFo9PUOID6aa13XKPPCFyxtFPHiOlujkYjKOa6zV+aG9/XuF3E6Lc8xNCz7ZLZg5+EnI/JvXV2kC7G0C/L72Zzc2aqnn8octsv0abOAmCf7XB3tRJROyZvdkKLcf1aXA0in5XyfzDSKeGdnVsQHO7tEzNeZqZM59wCQSMn7UxfIY5Kjug7Wc80U5XIZZqytafrh+SgaJtonEb5f5F2oWD8h5y9rw4OQTSIC0oY4kP3HGDl2WVvTRONqcauMkzFbQxYhjU8sTOMzjp4h2cd//7ycj3gMAEAmJcsgeR183q2AtHEezbPlsmwXAKj48n5kMnK3tvFzPe8Q9nLjcDQks6kjePFaTOHjaV7rbFznlMoIeaapBfqLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs2ZlkYDvg84IzmCJtghPgrc52Xs2fv9G0/meVc8qdEoBtIlt+yfLM9pVonYYeMxoFo/5ZWHXxyGPybS8KRGwHFlVzYVW6MRsLkZez+UZV6u40/smhtmyOZXyG+CNBrsXO9TbmeJvQFo7/Uo70EPwCUXW/YLcClfuRiT58gbeZ3P75VjGQC27thBf5H1zpDz89rW42QZw7KOZcfOcee2qLBhZ+TQ584M64PGCEoVBGPXTve/ngy6gkGpSQOAeKJFxK3N80U8+ILUuuzp2CniCuS97B2UcyoApNNSH1eg7yQzcqyUSW/gRmR/WLtGeiR1H5A6EgAYGJA6kJY6qXXIpOV4TSZlnbKDUl8RTdn6u6Y5rSLeNyD78cEe6fcx0CM1GhXSffR1h+T6U/7/nLmyzDFtGLs8zxTFQgGVUa2Y67JJHd3XcshaSIna7KHD8FzCefeFYVvL4JHOYPUqqdea394o4jnNUoc0b458DojQ+UzFbvuhnBwHrKEp03qwYtECWcfVK0W8e98Bq4wtO/eIeN/BbhGzrsMh36Uied4kEraPC2tNcuSbM94yKUwjOJtYK9PLrH5HFDZvpI8tH6nJTncYVaiFzuNIaUX0Fw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUnGmJwaNOumrY50OKrSr+NhGXC/Y7jHGouLIUcPW7Uk5UKUhpigMWmNtCNJsQwbhyVOIXhuAHI6K+7DCJR6PcN2xZU4VNtkgc6tF7d9QjcyqwEZ4tzI5SH/ZIIhc1LFKU54xFpKjaNXLMOMO2yZPHYnASIQ6VZFtt2vqsiA/098o62bI+9BfkWMvlpLBxwVwpau7ukYLhtqY5Ik7H7M0iHGp/AzYaPCToLE4iYj1StLQ2IzEqrs80SRPCKDVbPttvfd+QPtdLNYu4oV6204E9T4j4YLcUOHsJ2xh1YFj+LUcGakNZeS8LBTkPs89bnObZZMTeaCFC1Sjl5UYfvUVZRiwmxd4tTdKMNd4gRfMAMFCWFevPyX49lJVxjoTKhgwgI5GQtaFAZpYk8mxuHqnXbInBTeDDjHb9VFq2WV1GjqmDB+zNCAIykeMNLoyRsUttZHiDBteeK+a3SnH3H77hdBEvmi8F9l5EjvvBoWH6XHYuN2wTmG4pzO7aL+efgayc41rnSSPGJYsXijjp2PPTmuVyM5ptO6Vp8f88sEHEPTkeV7SxR8ze8CARl8c4NGGMX8ICE4C04jOKR+aNC+fLNvQidhtO26mOjq+J4JnGdNnjDVtkf/Qsobe9BgeuPCZOhzg0TAp0n61tG0KE9LwRg0vH8BM3+zk6huc2qwgcOEAbaOTkPB6Mr8M0xP76i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNmZZGw8DBWJZcIiFzzObMk3mXew/InEkASKZkrmVjq8xP3n+AcuECyle03IZC8mQpb8yYGB1A+Z3OdK1UXr2YF/nvmSKGALFR/QCXHyFdQVguZ5yM60CaoQIZ+AVkFOV5nLtp5ydHAnmOOOVuRqjmeTYWpOPZnKoSkpTrxmW9GhdLw6snHn9QxJteeFrELc1SF5BK11tlgK4r6sj84sHCkIgff/JxEZ+x5gQRr1u12irCpbYwRsaFcXqWfHF2tFf1c1qRTIxce6petpOXlKZ0xQHbTK+Yk/ev5EjTrkRa6j7mzJXGYrs7dot4zx7bWCygcxYrpBuinORiWbZzmYwqd++WGiAv5J+nkmQk2Ux6gVRS9pemRnmd8TqpN8j7diEV+nex7KA06MtmZT4xzxKVgOaIkDJcWg88j/PqR+eM2XKMHJfNbQJ5nwpF0n+VyKAUgF+WbWAC2RdcmhPHNHFjFOn78aT9CHHG2VKTEYvKe799a4eI2xZIfVfroiWyTlGpW4uG5P7XNUhdyBya0x5/5BER93RLzYZH8+723z9nlbF6zRoRr10m63mgUxr6/W7rLhEXA9nfSqWQ9YOy9etT8tozcw89M/m+j55++znrSDK+laJxOc8cf9JrRZzJyDEOAEHAogtaqScxvnPpL6Gj0NIOkOkkfeo4UsvlOXJcOb4cI1knRD9GbZGJyftWicsx0EUCCsdQnw55gLGef9kMmHRFZZreeLaLl+35YeC2n4g4m3tKxGbcWUY0lHYfDkN/0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak509Jo+I6BM5qb6njyq81NMkeyp7/P+n46LXPImurkXtade+k7RuaQeQ7lszsyJxoAfPIpMODvcEy53uxbYOXFqYZjtoiaANEQXQQAuJaews7hj3qcF0m7Vwey7zg+a4Dkezn7agCA67JvBvW3Cnl50CnKJZkvOky6ETdq7+G9fJ3UP+TJo+K5judF7EVkvmiMxnIkJP+8LiH1LdmK1BpEKVdzeKhfxI4rr7shaSehJsq0Lzj9M4g/7rpyBWvn8Rkh2diCZHIkHzdKmoygUWrQgrxdx2G6xoDuRTQlz9nYtkjEi1b0i7i8e69VxkBB9tvSgOxT0SjN3S2yDtkheXznfrm3emDp2oAUeQKk6qXmAr7st/mybJt8r+xPsZSdh9/ZLdeHPXv2ibhUlNcdi8m86SCQ64kfMpU45BsRo9zq6FjMnXOG8LwoIqNzm+vIOuRyUrNieH4DkKT+VSJ9jkMb/pdI5+FT/vtrX3uSVcaaVa8RcSfpiowj5xLXk3XiKTJJ/S0S0vZ9vf0i3rlTznl1c6Vmo1SUep4BartI3O5/B0h3euoxK0V89plvEnHZe1TEm3dI341oiAcOaM2JsGZv3D0Nu78ziWEtBPs2hHgd8dLC3hCs2bCO5/OFVcxhHQefk3STVM+sS9rhaJuIh+qkXwgAlDNyvmtqlDpJvtcHB2Un92kdYK0YALt9+bqor1So8QJ6ts0Ubb2nH/svEZctfcuhMqfzJKy/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScaWk0HCcJZ3SP9nxBfvXpZ7aJOHAo0RJAsdgv4q6DlPsL3i87Kz+vyDxKvyLz2kbKlboPeDLfGK7c7x9G5uQ6fsOEn8MJ8e5QZoRguIBg1EvBJ01Akvbpjzp2147myeOCchyjlJZbjNE+1ZQbzDnSo38VEftgRAPSOpCvQoHyJutbZe7nsa870SrxQFaOk//vn/9NxJy73lInc1DLOcoLht3Hj1lCe8b394t4qEfWoX2uLMOtk/nyg3l5PABEKWe+XJJtEYzTdZSLtlZlJkg1NCI1mufukOanQPual1mnAADkPxJJyPx0n/Kuo6Rja154jDxfWrZz2DnYX6FI/SERl2OlXJafpxs6RVwp23N7PCbbwiWzjQr166GirGOEPVN8mrcBdB2U3gf7O6WHSInO6dD4LJMewdrTHwCnlbuuvKfeqJ4p7LszQSKeQiQyUocI+Ul4EVn5WNzWqXG1I+wrRY8EAWmKVq1YIeLXvfZkqwyf/CHypBni3P79B+RzwMGuHhGffOIp8vtlW1zTuf+giHftldqlxeR5UfHldXZ0yuPLQ/b8kh2S/b6nu1/EzY1yLL7+tdJXon9QjoGDffYcGJDnTaksx0F5nHeKH0zNw+BIYWk0OJzCELHOMekXpn9OS6NBgzxPfWH3kPw8194u4mSzPeca8tvZH9A4GqaY9WM0dp0QjanL2iTWori0dpD3lSGvjgj5LY0WzH+wjzkM9BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmjMtjYYxGQCjOcVmnvjM90kv4cr9twEgoHx1A8qpjeTkF5ztIozEZZmmbJfhoFUew3loQb08PuA9ljnvUcbqojF7xGAQH70DDuUf87b7kbKd4x0z8r265MovPfXCThE/2yXzdgu+vPvNdY1WGU3t1EcrMi88WZJ9PlMn99duP17mEi87Se5JHw/J+1//V9eJ+MknnxXx/Lnz5Rc8mWs8RDn7QWDnZfbvk/nw+4dkHnVuWJ6jt1fuU7+9q0PEXcvXWGWcs1xea4KkIrlxfhD50uxoNOKpFOKpES0Zp9GWaK4oxux98n3KgeXZpkJb47sxqVtrnrdAxMkmuV87AASBT7Eshfeut3K9aQ48ZvVxIi4W7LavUMVNIPu9a3mzyOMrpJ8olu2Ztq5Jzu3z2uRYGxyQ+jvWpmQHZU58Pm/vI88ajTnkv1DfMLJ+lEq2TmVGMA4QMj4BIEb+OQF7+AAolrmDyXNVyvLezm+T/esPzzpTxC119nzk8f795GWVzct13vHk8XObyfOiJCeCfDFEI5SQ4ySelGMvm5PrwVBW1uGFDjm/IW+X0d4i6+U49PxCHl5NdVKPN69FPnu8sEf6iwCA68pHMpI6CZ0Rj+tXI1N5HmNLihIJlbZtket+76DUAh8bkX0nt8suIwsaB2e9RYQDcfkcWu/LSiVpzvZc+9HcY71wRPYvHv+pgPyTfPm8nLB8woBeR47/IbBXy6E6GOsJ/sXRXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzvQ0GkEd4IxoNFxH5gobZCiWOdoA4ND+7qAcx4ByxorBVhHHIvRe5Moc+hHknseOWUZFLpKHG6ktcchnw1hZ1LZ3hzIzZNIxpOIjeYkeeRjEaM/8eMge8oOUH3/zo4+J+L6nfifiIc41Jm+OVMzuC6290nNgoE/uEd/e0Cjiyy77UxGvOu1EES9YJPvrd/7mBqvMhx98RMRzW0gnQm0zRDn2g7l+Eb/jjedYZZy1YpWIH938lIifObBfxNs6ZTvsOrhHxPua7dzuclSWwd4KEffQWPQsLdXM4EWi8EYNVzifP0/7t1c8O4OY84Xt85NXS0T2OZdyfVMhScq+L9tmurncfEqH96G39BZ2H+PrND5pOPj+UWNymQAQUPuyJ4RPZfikG2EfjVKIHwhrRQzrW0aT5vN5WwM2E/T1D8Ab9fZomdMoPouSEVCetBAAkEzK/uMH8r5l+7pFPL+tTcT1aamFQGDrQNL19CxA3lNz26QPQWtLi4hL5GHx5LNPiziXt3PLIzF5HceuPlbEjU2NIt70xBMi7uqRep3GuMx/B4BYQrZdhLxj8vk++QXqr/UZeX/mt8nrBoASjV2XRuPQuLaxn01mFh6hdhwyT1iTC497Ot76t3B5gkhgj+HAyLOUXLlO78vLeeFAaqmIG1fIOJgv71N8gPQ8ABI5eU6y9EG6Ip89YuyzQfO875DoFPZ6k6Ln5xYjx3tbILUmDVGeP+222+rJsWXfj8NDf9FQFEVRFEVRFKXm6IuGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzZmmYV8awKgYzG2jT9N0rP19B2zqxAfI957AkQZLxfLv5fGBFJgCgIEU7jjOCyJ2I8fTF6TYNghI7OaQ4Fcd+2aNxqiLdHSsj5DpGMVeMml9f8Njj8v4admfEukmESc9KcgyJDIzvi3GS/tySJ2w7mQRv/tdF4p4xcrlIl60WPbHvXulqPrxDVL4DQCZuBx70ajssz4ZFQ6SedWSlkYRn0+CdAA4fo407lq9UI6z7qIUcO7cf1DE9z4l691WL8sEgNaMFGDGfSmgi3iHxJi54rSmrpoRGINgVIUcgMV1MraM8ABr/jDWRGkooj7HZYb0QZ9MIiv+xAZ+VhW5ThS6bsi/T7H4mz5mE8FKmUwieTEIE7lTvScTh3NbuSw8dezrsMT4bJw1eu2VYKpWVbWlUC7BG2t/MhB1aH5KJmzDyCSZjA7n5LhN0wYX6bicAwsFOXekmqSwGwi5DyX5nUpe9s9oVBrhbTsg547OLilqDYq2YeRcMj5dtegUEe85IAW8jz4mN/4YLsk6zWmSawEANM6VzzyJlBS953KynuWKrGcsLts2yo6fAAq0yUCMROlNjYc20fB9H7AfgY4oEz3+8B4RtvkxRgwnBbSJBE0kAZuLurRZQ4hlXNaRG410GNlHD7TJNdZ7jdxAaLhOrnU7SEweb7P7n2PkfOaTUL8pKu9r0shzmLh87sw6tlC7OSHPmaFjMrTuVyqyHcr0KBuLyY2PAMDQJju81YM77n6NzK9T25BAf9FQFEVRFEVRFKXm6IuGoiiKoiiKoig1R180FEVRFEVRFEWpOdNLdDYxACM5g65TLz5ySMvghKWwUq64Y2TxxsicRccpyO970lQH/DkAJ5CGQybYJQ+IPi9PGT1NxEHhVPl9ynNzHDsnbfqyDdsSS5mcOhhkxtouIvtKkJKajB5jG0k9unOziAuUs9hUJw2Z3EDel0Je5lUWKnauZioptQsfvuwyES9beYyI2bisVJS5nj/8hx+IeN9uaYwHAHNb54u4SKZjAeWiRygP+8I3vUnEq+fbedf9vftkPcnsp5GmktNbZN71OjIBDHz7/nikLfAp/zYYP/Yc27RrJiiWivBG+x7nE7O2oVS261gp88RImowwcds4WF9RqdhllFmjUWGzvInL4NkoVGtCeJRv7gdsxkp1IrM8NtsrV+wFpEx59MWSvPYSncO6btZVhOhbWH+SyMjc6YZR47dCwV57ZgQnqN6g3JDMsfa47inSGwJobJDzUyEnNWA+3RePcrCjHhn8ZaWOEgAibuOE3+kiM0/jSB2C8WRcov43PGibAacpR/53j24U8TM75bo/RHqKeJzmyBDD18YW+czDuqMyjfch0sLtJ+1JOcQwMk3rmEfPG8m6Q3N3pWLPoS8nQmcZejB0rBx/0uXR50XSbOyOSeNoAOiMyfVwOCM1GF6TjAPSzhRJl+WSqeWwa48rQ/Pbgogcmxef1CDiypB8ls1RHXbssdf5U1fL61qWlM+mQUSOm9u2yXHWVCfrsK6+1SrjTjL9tBSEDn02xYdf/UVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5kxLo+HAr3phBJA5ZrwPeoiUwcr9Daw9kPlLlAAW2GewyqDcbYd0IX5ppywhKvPs3bTMUQtyr5Ofl2We20gtaW9nh7Qn3Bi8R7KRZer7XzjxxjrEEyM6ilhU9o1Mi8xtHRq29RNZ2nc+TbmWMcoPzZdljm0pkHnZA8N9Vhn5UqOIW1plf0mTV8Qw5fF+/3s3ivjX//XfIk6l7P7nUE5zxcpll21RpnzS7qK8jmSTrRma48q2KeVZB0A+JhXq81HyMPDtMpyS7PcV0nCVxlUhW5ja/t21plQsI+KNjN9IhPO4SaNRsvsg+0ewNqFQkN/hPHBjaTRsLUOJtAuWXoI0GnzOgIwQOPfcGLtM1yHNFB3DOg/2+uBzhnl9DAzkRDw8LMfjMGmo8hTnhuT3yyE6ixj5RrQtlHnRa44/FgBQDPFymAkikUhVi+FQvrpLWizHtcdYLiv1DeW8zCWPkRnCUH+viE1ZttmBgz1WGXUJmW/eRv4T/f2yDobWv3ntMu9+MCfXy1KIRmMwL59HerP9IvY8OZek07KOZZrro1E7+byhXmr4IhHZhx3IcZInT4x0mvQ+ll4LmNsqtW0gLVwiceg6wjRgMwlr1Hj+sx7XAATUv/gcviP7wjBkmx1wZPt01a20yig0Sg0Ge5G4pAni+c6jWx9lbVfI41mB6u0Z+TzSSnoKl647S/qqpgXUDwDMpzl2Xp30cUFKfn5KtlHELSnZ55c12DqkOPkIqUZDURRFURRFUZSXLfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas70fDQQYEwXEbBPgeF8L/sdxtoz2Zligle1DPuM1iEOH8HH8P7tHSJ2vScpXijPV7b3UHboWgPShRjLVGR28suPdtINaWSSY7mPsv/FM2kRZwft/NUBSsmOkbbBo87jUw5sQHnl9Wm7L7TNk/nIUcoNbm5oFPG2zdtE/J+//JWsY0yW0dYmzw8A3T0yT7pcIg0QDYFKRX7+u2eeFnHX28+0ysjEZM6pIf0B733vkFdHxJVtGXVCpp6EHOA+6b5i464j8Oz80pnAVHyYMV0ETXFBQG0S4rPiBORxQj4YJcqZz9J+65a2IcQLgjUZ7NUylJcDwa/QxEr9paenX8TNDWRAA4AbI0v6CPbuiFIuMOtA3BB9wZ690oegu0vWq1CgtiRPmgLlzFu+GgAamqQGqmXePBHHRvu1Caa5dtWIeCxW9SyZTJMRhPSNHOkbAtImLJgnc8Ob6+W8OtAj70FrU5NVhkvPBs310penbe4iEWdJr3WgW+pC2BcmnrD7X3+P/E5/n4x5Tc6X5HU3NMh5dmG7vO8A0EJ9o0Jz4HBOjt1oVM6Jzc2yHRz6HACSafm3OPkaJMZNgsXS7MyBVWiIWvY8/DAGWM+JFU/qXgYd2UadSfn81d1MPlT19n1yo+zXJtc7h5/HXNKscZVJLxaF7V8So7VgyJN99Oeb5Rqd9KlOEbkeJpL2+vhcb7+Im3qk5mwl6UHXNUufjDkpeWVu0p4f0km5ztfK4U1/0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak509JoBDiUs+UamVsHU0dHszcEYJwi/2E6xU8JY2WVUT6dSzF5K5jSLvq+9N2AO9cq0zHN/BeKVZNRC1LIIj26V7lPue3RvMx5LB7cY30/yA+K2NTJHEZE5XBwKAd6TpO8zxd/8I+tMkoFmVN/sEvmCh93otz7+r77NsjjD8rj2+fJHNWgTPoLABHSOiVj8jqilNNcLso61sdof/jAHrs58uYYKsky2JshQ5oMkngA0ZD8Yho2vJ+5Oy5XO+rPzr+RBOUS/NJYjrxsJ96Ln/sCYOeb8177A70yhz6blXm4DnnyWLo3AMkI5+7LtvZIOzLQL3PLSVaEgV6ZXxx3eK4H6uplvz64f7+IWU/Q1Chz/4tl0nSETJkDff0iPtB5QMRBQNftTLzPv/Ux7DzzFOmwkumRjux4tV+7pkK+UKz6aMClcR6R/XEob/c/hy4w7ck2qyd/ifq0nBsGertFnAnRqZUK1Gfjsr8kkzKX/HdP/l7EfkKWOZzNiriclzEAlEh3VmDtE+l3uG+k4rI/zp1jr/MePS5ViqzJkm3b3kZ+Djl5P9y47UFS8VmTJfVU8ei4cWaJIl5u2HM0rxN7Dsi5p9upF3E2RnPqns1UgoxH/ijLLVCZLvm3BTQGPNJLxEgPmIjY1+WSzoMliB20JpfLUotTpL4TocdrwNa1kW0GXpgnx+LzrXI+mENjta9bPg8BwMED8vmDV+lAzKFT73/6i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNmZZGQ2ZnyZxcB3I/Y2NkzuMIdn75S8POk3UM7U3tUJaZ9RXalz6QeWu+2Spi111glen6GfoLNavDCcf8fjc7+b5HG5v39iAdH8khjkPm3LbkZVJjOWfnJ8cpFzPHngaUcxilPcwd2jv/4N5Oq4z7H/itiHsppzmXk/nLv/jFrSKOsZiBdEwV2v8dAJobZf/zIcdennKJk3E5Jt5y6skiXhgLSRClelv58IG8H6Yox/r/vNAl4r05O886kZbX7pdlLq03Ls4Xaz2XTI1ysYCxVFmPdCaViqxvLmfnwBZJ65IbkjnK7HMQJU+CwMgyyiHt4NAe7M2Ub857pReLMg+8l7QQCUfeWy+w95Hvoz3eg6LsL4bG3lBOzomDpEWJRmwND/uB0Pb21uc8z/pUby9EZ5EiP57Wdulbk86M6A1cFrLMEPFotOqj0ZCW2ociaTIiIUKXKOWv16dkX5jXKnVoEWqikk+6hDKZEwHIpGSbeVGamyty7JfIQ2V/N/kC0XWVCvbc0TynUcTROPn+BLI/BdQ2wzSOIl6IxwXpOAxpZOa2yevsp+va/NxzsoyErYVrork8SsfUpw7VoeDN/BzoYpxOl9bLgPqKH9heVieeuFbEfRukBvbhh7aL2IlK3xaXtAyuCdFLRGW5c1ql7qjRlW1qKC75ci5atkR6xaRcu28M9cl5e8lCOTYTcdk4GzvkXPRCh1wHEknbK4Y1ozHqf/kGGT9t5DiKkVaqMGhrLPbv7Zdl0rOsO857yBgzZfWx/qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc6aXaOqgmqBnyDfDwWIRG2PvQ20czln2rWOmR5hGQ747cQqficjcNzcu9xZ2KIc1qEg/BlPZZZVpCgvpD5x7ycnE3Oyq0ZgKn/3X38Ab9QSIUK56fUbmx3ppuR83AGRdeQy/ZZdKMufV0F7r2ZzUR9zyX7dZZbBnwf/c96CIH33scRHnhmT+8bw50tvDow7M/RsAhgoy37PkyxzVSk7mj566TI7Vd75muYhjnc9bZfT0y1zsvcOyrbb1yv2373t6i4jv3CLHUV/RzvNPkkbDpXFRLhzKD+cc65kiqJQQVEbugevK+kXIxyA/bOuESiXyFyEPlCG6d3sPyBzlA7TPeeDb7XBMm5ybh7PyXvVTnvOzO18Qcec+mdu7dJ70PTh2hew/ALDngPxOC/lk+DTFDRVlHfoHZFu1NLPuDZbxRYny6g3tl9/YJHOr58yVY2vhEltvt/LYY0U8f7E8ZixPmvOlZ4pEPInIqEajkJdjMiD9VmuL7XGRoD7amJH3trlZtlk+K/tbY50co6mY3Q5l0oRF4vJepurkPLx06SJZ5o5dMqbnBDewtQnDg/LaCzQnOuQIYKKy3l2kjTrY3WeVETmBPFXqZdvle+V3nnn2CREH9ByQiNrr/nzSUyVZazJOI+O65Es2A4x7BLR8PDjjf+0Jx1nff9tb3yhi38wX8W8f+hWdU977KEkX+L4CgOPKdo6SZgMx2e4O6XGCgiyzs3efiD3H1jCWC7IexUD2BYf6bG+/7H9xemSMhFhUGNJFltjHJSXn/UUL5Dy9r6tf1rFia2h4NeFnoPG6nOm4uOgvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak503YdqgpAAimM8hwp6oEjTXsAIMAe+kvOOmY6OCF2IY5DAhkW2dRJwUwk3UgnkKKdUlGK4dy8FAYBgCmROZVl4MeyGRYwsShsOjKbVw/9XgzuqNiaxcB7BkkA3XvA+n6EXquTJCgvkTlaW3u7iNetWyfiBx98yCqjs3O/iB1P3ss5LVJAmE5L0Wxjg/x8OCv788CwbZCVp/5S8mUfricFXX2DFHz+4233ibjngN12fTnZNvsLsszOsoxz1KdTmTkibkjZYzcWk6I8h4Ro+cghwWcQ+ECW55MjTzziIT5qJpeIy3ZNp6VIcLCHzBcBdJJovkQmf5179oq4mJdzy+uPl+Lkpjp7Cq9PyXq9cFD2od8/t0vEtP+FJUzs7ukXcS5vi3HnkHh7aFDe3xL9m9a+Lmng6JGA03NsoWw6Kdeck047ScSrj5Pi0xUrV8g6tso+mEzZYukymawNF6RI3YyK9cPWnpmgu2s/3NEbZkqy78xtlhtgJBO26Vc8IvtLggzhiiQo98kVsZ4E9mxwCAC5Ydlnu2nDi+d2yXG7v1+alfUPyDESow7a3CRNBQGgv79fxKRTtuaWPBkN+jSfbdr0e6uM1ia5mUALmRse6JEbIriOLHPlctkfEdjPP54r+5/jyPuVaWqs/nekYK8FMwmvwXV1sv+duPYE6zsJMjltbZLPY1GPrj8q1510UvZ5E9imh1EqIz/UL+ICicHL9JCYTsk+3dUvx4Tr2BuZRF25bvfukZsLONwfk7KMuhhfl31ved+PYbr/EXqcL9KaXZ+U7TI8GNb/eBOF2qC/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScaWk0HBg4o/ngDqL0WYuIXe8Y6/uBT0ZghnLELBMkSkrjRDcTYtjnkLkP5aC69ZS3mpF5lJzb6VJOK3w7d854lMcbyDo43MxsKngE/PqsU9Za9mFmXkkSj0SqGg3O3w/IiGo4L/MqASBNfSEVl+eIUx7vssVSd7R04TwR9yyXRlMAEPdkn125Sprh1ZHh1VPDlJ+claaWvi/7zkDBzo/PVWSfTFKO/vxlMjd4z5A8x6+e3SbiimvnvXo0NiOePCZKOpA0jVU2pvNcu9NXyECoUpFtGRk3Fv1gdkwuk8kEUsmRexiNyJzXWFJqNI5dudL6frwgjZwGuqWmp2WV1BG0Lz9ZxPPmS+1b0timXd1bnxbxcEa2VYba3q/IeXhRo7yOYlbOZ/k+mUMPACtWyrEyQFPeATJ8bJsrr3P+fDmW5i+2TQHbFy4V8bwFssw06e8M5ZAP5+Q8PTwkxx4AlIqyD5pA5iz7o3O7H7xUs9nDo1AswB2d+2KOHIOFguwLhXyIKWa9nOPq6qROJTvQL+IU6Tx8MiQdLtumX9GE1Ou4ZIh2sEfqc57aLOcfdmWLubIz9Qa2Psb35f0okpkja038sjw+Qs8z3f0yxx4A7tmwQcSt1IdbW6XZXkuL/NwvyfuTTNpzWIaeR5K0Zo33bJslz8gq/Kw0TAalnfulZgUA4hF5zcbvF/GKxfQ8RpqNVJyM7uK2DqmuTuolYlEyQYzJNq04fE45JlxfjqNKxZ43DPUfuDQXURnlCk2QdC8dxzYipC4O9qytI41gLCIPKPryhi1otXXUD+ym8d0/kXZu6k+A+ouGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzZmWRsM1hzQanJ5lHJmXGbi2RsMYmeMOn/bBJ+2C40y8VznnCI5UUl6SF5P5doby8I0MLeMNpyDz3vzAzkmFk5Uhfx5wIUzt1Q4sZ+H4cGAtyUxrNBxz6Dr4ejxqdS9E+NJUL/MmP/j+d4p43jyZy7npd5tEvGPbsyI+5w/Psso45ZTPyDqTP8C///TfRNzaJvdm//0zO0VcKcvrcEJu5ClrV4l4kPYNL+al7qO3R+aYNtAYiURD8kPpnyQM5TxHA9prnIZuwOMupPMEgfwj513LY2cnR75cLKM85uWSI88B6oNzW2R/AoBla6TXwwuPynx1BDKPO0H6m+6dsn8kae96AChQan7hwC4Rz6+Xc2QMco6rq5c5znV072IRW8PTVC81eotXSc3FKldqkxJ1jSJubJbfj4bkXoN0WYY6UW5A5tUXaJ95jsN0XIWiPKZCfdBU/z47Phque8j3JEJ6iVJZ3vjckH19TaTJiNFYd0i/kyCfn4DK9OKy7wBApp48VYqyXutOWivip5+XfbpAWi32qxnolestYNebVyef9J4uXXe5RNo3156g+vNy3jwmI3VEjXWyreY0ybhQ7Jd1qtj6qhiZPc1rleuDcQ+1RW7Yvr8ziUf+Jp2dnSL+zZ3SnwkA1h63VMRzmxtF/PE/e4uIU6xZIf1OPG4/W8VIgxGLyGPipC904uQ/wVoaj+bLqD03ddGaWvDlmhtNyu945LHS2MjzuP0bgKFnGoe9ifbK5+lMUpaRpfkumrY9cPY8J+/Zvj3bRRyx6jW1p0D9RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmTEujAScY+R9gazRYh2Ca7a+T1wYXb8B511wIvxfZueSG8njZigMFmf/p8n7FFVkHf4DyQXPdVplu0C9ix5Fl+JRbxxYAs+MIcPThwoE72lrso8H522H7ax/okvnwA4PS0+Bt575RxPfff4+IOw8cFPGC9vOsMpYtbRfxD364XsT/747/FvGqNatFbMgXIZeTcV3Kzo9//3suEHFTk8z3/Po3/k7EPV2yD2do3/swiwrfI+8FT46bgP7NguxELA0N59cDgEfntLxSxutCZmnQDA7nUR7VksTIHyBHed7DBfIJArBo7kIRL3jNa0W8Z9NvRbx321YRDw3T/JVsssqYv3SBiBPNcg5rcGQ9G+Y1iriuVWrpWmi/9UyjrT1pbpeeFpkmOdfzvFwh/wX2PSiQ5wVg6yUC2ki+ROfMU04yazJ43/8wIuSjNNZvTWV2NEJ+UKnmansxOV6ipJ8ohHju8JpqDPlJkHahRB4C9U1yXec8fQCIxGSbOdRWjU1SA7RsudRzPv2c9NXw6T67EXvdZ41GOiXzzzlvf3CwX8T5QPYFN+S64iRUM2XZn5yyPEcmLY+f0yp9NVzYPicuPSv0dsk1Kj1O/1Iu2J5eR5oA46ZeGtNJ0kv8/kmpcQSAju3PiHjVcqlzWbJEarva26VGxWmQfQd+iP6VvKeK1KY58p9xaG3r7ZP+H42kg0unqA4AyiXy2/FlXwhIw8geTFl+zgw1V2ONhoz7u3eJeNtB6dHkkNZk2Uqp7QSASkHWeyLl03Q0uvqLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs2ZnkYDAQ6JHjhDi/LeAjt32IPM9TXg3PD+iYs3XF37PSkwMlcuoLxch3JSMSTzHE2J9BV5ylmr2E3mOTKnD0bmxlqZmA7VwcrHU9VGGGXjV7c3dx3Kl2UPBkucA2TzUu/w5O+lL8a733GO/ALlBu/bL7UNQcnO8R4YkDqQ/3eX3Jf6hV1S53H2m84Q8Rmnyz3m7/mfR0Q8XJT7dQOAG5f5ns1zZQ79vk5ZJ0q7RoU9Vyp22wVl1kuxkQlpNibR0IRpNDgvmjUa42NLozND7Ovqqup/TA/ptShP3HXtXPLh/FIRH3/sySImexLs3f60iNNL5L1NNEs9BmB7H2TmSx1Qe1HOcU5UeivE6+XcnaY4GpeeGADgRDi3X85xRconZ01GiWLeyx4AyuQTUSK/hRxpLoayUiOT7Zc+G8W8nePe0iq1JemMXKOqBj6hJk5HHhdeVafm0fJHQxAmxGvGp7FdIM2iT5NBxJU58Any3CmV7DYc7O8XcaZB6jpKvry3qxYvkd/vk/nq0bgss2N4t1WmR3n2afItyA5KX4MKPSeAUv29EA+vCvlWDNL4X7Ncjs1oQvbpaEyOG88y8QJiNGe0Un8Mxj9mRWa+D44vkXP+F86Xc1FLE2tyge3bpP7mwQcfFfGTT8o1ee48qdGY2ybP2dJiP2fWN8gxy9qRBPlgsH+TS/P4QFquudHIPqtMj77jkbaLVyteH+2Rat9bXvNcS7MhvxNPyv7W19cr4n27O6wyStTHQ9w8Jqzji6G/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScaWk0RvbcHsttpDxf0mggsPN4PUfmMAaQ+XWBI3NorfcgS6Nh70Nt5aWWKNfSl3llFch8UccPKKZ9x2HnpAaurLcD2r/cSmXjjDzO5VaNRhgjPgrOuP9+cUJ9Gij/dahP5l52duyV5RVlGflBmQPe2dFplZHIJES894A8xo3KcXL8iVKT8caz3yTi7c9/QsRdXXJvbAA4bs0aET/9tNyrvJ9yptMpzp1lv4rJPQJc1k/wAdT+vnW/7PvD98ynPP/xn0+ljkeCXbv3ITZ6Dxcfs1R8tmzZChEvXiT3hAeAxsZGEVNqL1JLZH9Y1CzPkcuR5iwm9RgAkEjXiZg9BFjeYthLiPRPnMOcD9m/v1yhfeQpLhXlPFskz5ECfc5xWLnsi9HTLT0HDu6TY6VI+cfNzbbXU2PzxP4f3qgWxY1MU95YI1zHq+aQ52nPe5/qWp+W2gYAKJEGkYdRNCLz1/0y+WzQHNrQIr0hAKCQl9oYQ2O/xLpJ0tocs0B6ssyZLzUcgW/PHfv37ZHfaZLPFpWiLDNboDqQxsgNmV9ijnymceh5JJGUWoAI6UaiETkOIyE+YJkk+yTJPl8ap5UrlWfeR2M8ZfKt2bFjh4hTadI3AYiSv1WOxmT/gHyW6u6VuoKOfXJuayJPFgBobmkU8RyKm8gXI0prcoq0DUXShiVi9tiPkECK9YaWLwsLrFjfF6JBnI6GEQBiCXkdDc1yrJZDtJjsVVQrFZD+oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSaMz0x+DjDPsdhwTOZzxj7HcZFI/2FRKmGjXhssbeAje9GaykOITM81xKSTSx3MSTyMZa5HuCToNy1zOL4O2X6mEXvYWJwrudkgvHZMZSaKSYTRoV+hwScew5I87ynn9sq4p5BaRxVovsyXLH7ZzeJ2fqyMi6TYWSOBK5bdkhDo72d0hwok7Y3WWBR7DPP/F7EPjn0xUmQ51lCNlukOBnc/izsnkrvZfG3JaCb7AQzwKUf/gjSo4Z48+bJzS1Y2D08LEWxADBApnFdB0jcT3Na8xxpWNVYJ4WLFZ/mEsBq7IDmYhbT8jkqJM5l0WclpN/z3ywxeIkN+WTMotDhXEjb0dg6cEAaUXZ3STE4d5J5bfJ+NTTbhmKOJYSnPjk6B4RtNjETBONuLi8TbGBYCRE0uyR6zpPoPk0C8oA7EwvOG23DtEhUzrM7du4ScU+/nFcP0hhwI/JZom2uFLE2NkhBMAAc2CvX3Da618aX/e1Aj+xLrifL9EIMX31f9o2eHmkCWCjI77S2tIs4kZQbNwz0kdEvbCPBwZzcsMQbZ14YsPPqDODgUBcoUt/Ztk2un2y0CAAGEwuWQSaARRLxVw7KeSE3QKapAHoPyPVtf50UpdfVN4q4kfpwfb3sX4mE3OAlE7LJQiop/xaLyf4UpTHhRiZ+fvFYLA57neaxyEuivQGLxPghfTxkbq8F+ouGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzZmm65DBoQRgzv+c3EDLgcyVc1mjYVWH88U4XzQkB40P4ZjrxLn+lDsXOLJOQcCGOoAxsh6mzG0xca6cLacIy/+d5ByT4FjvlC9VBzLzSfKBHxxKTLZypNm8xv4+f4M1Fv1FqZfoZ0MwypcdLNmmYrZ9lWz3IhlmdezuEPG+fdLgr7tb5vE2NUjzKgAYJEO+jhfkOdmoMEYGRT7lanIMwGo81+McU+5f8guWwV/IDXLIwGqiLPiwoT8TtM1tRWY053ffXmkSliNdQZiWgftphHJ5mVJRniMWpzzdED1XhXK3K0WZn25pLsoT6ynKnPtfsXUhrK/ha+d87gJpkwazlLe//4BVRk+P1GBwXv1xx58g4vYFC0XskIiGdSIA4FLHClhrNDrX85w/U/gw1akvQmPOozzwcohGI5qQ+esl0udkSMMxpkcao0DH92elTgEAdu+W42LL9udFPJSTRoMNlEMficr72nNQajhMSP9bukQaWx6zWMapqLyubc9LPWiJ5rxIiCkbSyvLlAM/RCaAB7qk2Vw8Lvt8ImXr7UxM3tOmZjI5Dg5dhxOT5c0Yo/2PNQNNpHWoGFvrV6D1j9fxKGk03ITUPpTKcsxmh23TwuywnGt6B+S6HYtKXUeCDPqSKVlmKiXHQCZpm6TyOEnROZJcBhkzRqLyvrOJ4Mjf5LhwaT4zlqaR9Mqsowwx7OO1gVcX8yL/PRn6i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNmaZGw8WhdxP+Kud72RlcvkO54ZB5a8bIzx3yp+CEsRCrDiDg/fy5lrKeLuU4Rxzeq5jOH7J/ugOZJ+h6tLezoT29A7kvc8gOyFYZ9t8m1lw4pG9xwDl/YbnhnFPODT6+babZdWpAMuJV9Qacn8hEInb9InTvYhEZNzc3izhB+aJOXvbHStnO8Q4o7zETkfc678i82uZ0o4iHhmSef5S6W3urvfd/XULmh+YHZT0zCZkDHSfNRoW8Pcoh2gLLN8DyfpExazIYN+TfOAwJqoIwrchY8SH55zPBluc2V/NvuY9FY3KM8f7rgK0TsPQwVrPJP5RJTxGmAylSni3nNZdZgzGJhmMqGg1Lg5GXc2KB8tezpMnIUb9PJGWfBYDXn7lWxCtWrxFxivKkS9RWw8PDE8YAkB+W9SqW6JixPmppkmYG4xwaaj7pRBxacy0PDNircoJyyX06okR6n8Eh2T6czw4AFVpTBwZljjzf++Zm2Zatc+Q8nKP+duzqlVaZHtU7lZDr27y5ct6c29Io4v29cs02IfOLF5H6lkyjvPa5C+Q6n2xqEPGJrz1dfr/enst9mosTSXkd5eKhtshmZbvOBONbmeeyaFzOf0EpxKeB+oZJSM+KVMs8ETtxWrv4GdLY94n9ZMoF2U75XtbWSZ2RGZDamqgjdZKxkGcL1j3G4vK+xWKy7yQStFZQ27HXVdg5PaqHE2E/LFqTSVPjhPhs5Eg/ZS1Hh+kfpL9oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JzD0GiM5nmxQMLhXLmQ/FB3QMRBsI/OwftCUw4Z710eki5mZ4bzPuiYMPYr8joM70UcktcGyJw+OHLfcPYxMI7MS2TtCpyQ22Io3zugHOZA5osGlEMcgPe0tve4hsO513RPx93zw0zVe0kkE7EX1WhYGoIQ+N4lSD/hUP6oR3qdKMUHOu29/ue1yb3EEwn5nTjtk7582WIR79m9V9aJxkBdWvYdAHBd2V8qtFd5nPJHPY9GCeVyehFbv8PtGwQTtzfnh052vtE/8h8mOsOE5z9SpNLp6p7p7CXisbdISBsYajfH4flJ3m/WYLBfBespAKBIHhXsi8F6Cj6eP8+TvqKQt7UNnNubG5J50WXqk+m0nL+OX/taEa96zWusMhrnyBx4n8ZzkXQhFcqzj1AOsxex7w/vNc/+MGM6CNuXaGbwjcHYZbMmg3VRYUsV+4JwPnvUyNxw9rRgH4SSb4/DvZ0HRbzvQJeIY3QfWHfU2irvc3tKah16Bmzvjr3kR8Tz5hD5fQTUNxKU/14p2/4MJV/+rW2+1FgsXCj1BYmM1KAGdH9a5kqfFwCIkm8Ed7NS/pCWKZKw22FGGL0MbsMCaSHCZHRORF5f5pjjRNxywhkirm9pE/HSdtk3ckVbJ9k/LOcr9isZ3r9DxMW98nmt2LFdxL0d22TcLb2uANsbxpB+hj1HeH1kSaPtSxVyDl5v6PPJ1iM3ZA1mL6hauaXpLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z5oajShQ9bqYxPvB0mwAgekTsXFkbOU0+6RtMBP5Ooz9bbL99SmPlfd1rnDeGuVAO3biq3FkXn2F9h53nZ0yjpLewk1SbO9NDl/mNJuK1AK4nswXNWDvDnm8pXcBAIf25A8oV39ce5swjccRJjBlOKP1Dmz7ADrWvj7Ov84X5L296657RNzbI/MsE+RH8fjjT1hldPXK/E2ffDXicXnvd3fIPb07du8WcTQqc6ZfeEH2NQB4cMNGEVcsnZGMK5RrzOPKce17a+eYsraA8sUn0WgEoVonCZ9jvD6B7+VMEYtGEIuOTJs8U4Tl1TKcI8/xZD4ZrMkI84IYJk1FiT0uWJNR4M/l99njYmjQzg1nDUZdvdQSLTp2iYiPWSG9EJqa54jYibLvD1AqynqzTIj9PritCvT9UB8NapvAl+eIjOqbOD99xgjcat+31hnqfuWQtapYlN8pxuT1eVEZt9fLdSNHXkJPb5H57gDw7LYXRFyoyLkjQToz48k5sW9Q3pdSv4y3Py/XUwDo7ZPPEmXSjuQobz87RH2FnjUcT3qyAEAsLe/5McsWiDgTlY9T/rAcNxvvvlvEu561ryNd3yji+uZ6EQ/l+qv/zbqomcDBoSeogPRiBw9KbY7x7fkwlpR6m+g+2X+6eYyTF0l3i2yPQoiPUD/pI1pI81OicW9IW9KQlvfRmyt9XYr5fqtMf1BqRYaojAitn7x2WOthmP6YdKm8Ajr2gkQhPz/bhQSVovW3WqC/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScaWo0xmfoTYadw+o6Msfdc+QeyhXIfLzAkb4bjkO55YHMrQMAA9pX2crlpncr8gMxCN83/VBs71tvLL8PziWWeftBWR4/ldxuY/hWka6D2tZxZf6o48k9u11DPhyA5dXhOHNeNDZmmFv6iBOLelWtgKXBmILPgxOXed8Odf9O2v/dMVKj0tgodTClot3/tm2V+7lHPJmPXJeWOaa/+I/bRFymnNPmxnYRD+fsVr/1lv+Ux1B+aJRyhx2H+5/83ExhjE+mkWDNhu3DMblGg48ZH0/l+0cCx/WqGhZDefq+T/X17TnQp3Zgr4ci7QtfId3BcF7mmg8N2X1wmDQVBfpOnvrHMOV6+5T7z/qcljlyXgCAxUukBmPJ8mUiTmcoL590QRVqu3LI/vjcLyvUluz/weOA22oom7XKKBbld1ye26PuaH1nevYbIfADmNGx5/IUZ015Ia5SdAyvPeUS92nqr3Sftm23dQaOJ+fZltZWWQbdJ9eT88/evdJfa3fnfhGXfHvsR2NSy7anU2rZsqxnIH1nQOdMpGwvocaWRhHPnSc9HnxHfof1LKyV+v2mR60yliyRvkoHOsgrZly/Yz3RTODikBaA5+ACjTcnsB8vy3k5nw31HqQjZJvso/H3e4rD3JTsYeFMEtPx7GlB2ghr3AFwJvHxYj2V5SPFZYaNXZZBW6eYuA58TvaIG/vrBNU6bPQXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScaYrBfRwSefM7yiSiawAIpCjM4DQZO1Ks57ps6NdL5+u3a2ikENIWv7EwNjrh556R4l3HEmUDAAl9wIZ7ZIAWSHGmY6RAyhj5OQAYh0xmSIrNpmyB+7w8gbuLypDXNfJHKTCPe1KY5nmrx32/gJKtiz+iRCIRREaFg7bYWIrE/BCzoIgr712MzPCiMXnfWLBqAlZshZgW8jAgQTmL1CsVea9d6ivptLyOIESEOjREAlZy7sqQEJfFvdZYDducYBIxt62Fcyb83A8Rk/M5+TrGxw7fixnCD3z4owJuNkb0SfzNZntAiOiZvsNmehxnh6SAOZcNE4PLv+UoLuTlOVnYP2/ePBEvXSaF3fMXyo0lAKB5Lm0cQaaPw2SYVinJflwic71KxRb8soiT2y6Xk3N/lsTe2UEZD5OhGmAbVrkOzzMj11UqzY4YvFyuVO+XR+pQl0Sr0ZAxxhsWuC6vh/K+dXfLNZdvS9hGJoWCnI+yg7SpC83V2X5ZRjolNyUJqI7NzdJADQD6+2UZFepPbIzJhrUOKXzdMLNDGouP/O73It6yQxoVzl8kx0kDz8NR+/70d0vhu6nIflYed48LIRsmHGlcjJvZJ9YeW5uOAPa9580WqAtbm/MEiNLnYZWY2EzTpe9Y5nlUB+47ljHeYTC53+wUhNrWs4ZVCn086e4RRwz9RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmTFOjUQGc0bxjI3Pl2PgOlEsHAD6ZzBkjc+QDR8aAzPX00C/iCGzDGgOZC2xlCVK9HY5JsxEYrlOIURjne5IZnmO1hcyt9Nl8LuS6QPoVuJyfyfngMu/VGD4+xBCGzAjLZODnj7vHxrrfR56Id0ijwXnlnC/vuXbXZm2CR0ZRnPQYcI69lZxpt4F1K6lNOa8yEpF1sEzqOIfVtXUhEXCeNRkMkdZhss/D4Nxuzu+0c2sl7J8YZvjH98cyNZqwhJmhVKogGh3pF6zBYI1GWB5/gUy7CnRMfhJzvezgoIhzg7ZGo1ySZbDhVFubNBqbv3CRiBcdI833msigLx7jOdE2gypQHcqUM19kjQYZEwa+fX/ZPC5PbcmaDDboY21KOeT+cE48m2CNGadWSrb+ZiYol0vVseN4ctzyHGhC7hPPeeQXaZnP9vVJ7QOb0O3aJQ1KAWBgQPbRCI3rZFzWa2BY3rdyvdQypBuaRLx3rzTjA4CDB7tEXKrI+8Z1MKQtYe2ACdHClUqyjz/w8O9EXCQBS12DvI5lS+aL+IxTT7LK8OkesjlcfXNj9b8DR96LmYZncNtALuRZib7EaooKrakGvCbIE4SZ1NlLC+kiweeQuLRY8YrLhn6zxWRGg5OtkWGXUQv9SRj6i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNmZZGw8G4vK5Jk7nsDDCHiuOcMhdSE2AsHQhpPMJyAEmrEJIJTuecODYO5b2G5EXa2xnL63D4nKxVsZIKw/aBlnmqlhiALR44X9K6XXaOsUPXFvh0v5A+9N8hXh9HmvE+Gi7l2EajpK0JQvbht7w3ZOxTzj2fw9IVhGgIXI/1EJRzOqHuwNZsTFbnMLierH1gnQdfVph+gssNa195vIw5vz7sMnifb0O5suM/Z8+AmaJUKiMSGcnfLrNGg+Ji0Z4rhsi7gf0l2NthmDxSWGcQpq+Z2y5zweeRJqNtvvy8saVFxMmUnJ/Ya8EPufeB5Qcir71Ie/6XyISnxH4BJXsOLJVl+w6TnoV9NCxNBnsrWLojwFA/5Tzzsevk650pxo9D1gTxkIjHpYcPAKSS0iuIfX180srwctnX1y/i7q5uu44Ux1KyzLBxMR7WNhV7pd4wV7A1jHwdkYisuE8LZMC1JM8Hw+IV2HO5G5XX5ZOvycFeqVXpG5S+YN10XQDQXC/X+cY66RnSNu9QzGNoJghw6FFjspUo9HO2M+HPHR5/sk1t74gQjcYka6S1dExyIdbHsyMPtLBWwGkuiUdKjxGG/qKhKIqiKIqiKErN0RcNRVEURVEURVFqzpRSp8Z+rjXIj/vZiL9qbQIWcqbyJEdwqgSlLdEWrWH284ZSguwjuJ78rsXbqVEdYG97Z1eCf5Lnc9LPtNZvXmE/y/PPpBOnrkzuNh+2PSP9pG34Ho/f3jY/+v9H/ve3sTIq/qE6c+oUN+HUUqfklzgVYfLUKbuuLibeSnayVKjpHh+GdQ7eitYqc+Lvh5U7G6lT4xvcH+0LM9H/xpczPG672clSp0pFe67g7WsLlAbCMaeZcByWQsbn4DKHczIdKxqnbawpbWQqqVOGxs5wnlO+ZB2s1Cl/8tSpMqVO5bntJmnbMt2PSmUq29vKa/WDkbl87D7MdP8bX95kU3zYGOU+a82B/JWAthHnOTLk+ietB3+HU1jpeENpTWHXZdWD1tjASp2S8DapYdfF9bIui+s9WapuSOoeb1HM92v8uCmNpgLO5Bo8vqRalGqnJU33rNOvxUyN2Zlmpi9rrLiptOeUXjTG9ic3+NTMpqdRYdYcWPsiDusLM9Imk744HIEypvBxNptFQ0PDEaiMLAMANj698YiWoxx9zET/GysHAP7sQ5cd8bKUo4eZ7n8+TPWJgqwiLPelbHePdZ7n7/ntkajehHSTduaopd/2rHkpDPQ/X5PzzOQaPPOqkFfmS8Erian0P8dM4XUkCALs27cPdXV1of/aqbz6MMYgm81i/vz5UzJ8eylo/1OYmex/gPZBRaL9T5ltdA1WZpPp9L8pvWgoiqIoiqIoiqJMBxWDK4qiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aizBBvfOMb8elPf3q2q6EoivKyR+dLpVbs2rULjuPgiSeeeMnn+tCHPoSLLrroJZ/n1YS+aNSIa6+9FieeeOJsV0NRFGVW0DlQUZSXI4sWLUJnZyeOP/742a7KqxJ90VCUo5RSaQou9YqiKIryKsbzPLS1tSESCfeoNsagQi7sSu3QF41xBEGAr3/961ixYgXi8TgWL16Mr371qwCAK6+8EqtWrUIqlcKyZcvwpS99CeXyiE/m+vXrcd111+HJJ5+E4zhwHAfr16+fxStRXq4EQYAvfOELaG5uRltbG6699trqZx0dHbjwwguRyWRQX1+P973vfThw4ED187F/Mf7hD3+IY445BolEAgDw85//HCeccAKSySRaWlpwzjnnIDfOjfeHP/wh1qxZg0QigWOPPRbf//73Z+x6laMLnQOV2SCXy+GSSy5BJpNBe3s7vvnNb4rP+/r6cMkll6CpqQmpVApve9vbsG3bNnHMTTfdhEWLFiGVSuFd73oXvvWtb6GxsXEGr0KZTe644w6ceeaZaGxsREtLC84//3zs2LEDgJ06de+998JxHNx+++04+eSTEY/H8cADD1TX2BtvvLHal973vvdhYGDgsModX/Yvf/lLvOlNb0IqlcK6devw0EMPifM88MADOOuss5BMJrFo0SJcccUVYh0/qjFKlS984QumqanJrF+/3mzfvt3cf//95qabbjLGGPPlL3/ZbNiwwezcudP86le/MvPmzTN/+7d/a4wxZnh42PzlX/6lec1rXmM6OztNZ2enGR4ens1LUV6GnH322aa+vt5ce+21ZuvWrebHP/6xcRzH3Hnnncb3fXPiiSeaM8880zz22GPm4YcfNieffLI5++yzq9+/5pprTDqdNuedd5753e9+Z5588kmzb98+E4lEzLe+9S2zc+dO89RTT5nvfe97JpvNGmOM+Zd/+RfT3t5ufvGLX5jnn3/e/OIXvzDNzc1m/fr1s9QKyssZnQOV2eDP//zPzeLFi81///d/m6eeesqcf/75pq6uznzqU58yxhjzzne+06xZs8b89re/NU888YQ599xzzYoVK0ypVDLGGPPAAw8Y13XNN77xDbNlyxbzve99zzQ3N5uGhobZuyhlRvn5z39ufvGLX5ht27aZTZs2mQsuuMCccMIJxvd9s3PnTgPAbNq0yRhjzD333GMAmLVr15o777zTbN++3fT09FTX2D/8wz80mzZtMvfdd59ZsWKF+eAHP1gt59JLLzUXXnjhlMo1xlTLPvbYY82vf/1rs2XLFvOe97zHLFmyxJTLZWOMMdu3bzfpdNrccMMNZuvWrWbDhg3mpJNOMh/60IdmrP2OJPqiMcrg4KCJx+PVRXUyvvGNb5iTTz65Gl9zzTVm3bp1R6h2yiuBs88+25x55pnib6eeeqq58sorzZ133mk8zzMdHR3Vz5555hkDwDzyyCPGmJE+Fo1GzcGDB6vHPP744waA2bVrV2iZy5cvN//2b/8m/vblL3/ZnH766bW6LOUVgs6BymyQzWZNLBYzP/vZz6p/6+npMclk0nzqU58yW7duNQDMhg0bqp93d3ebZDJZ/c773/9+8453vEOc9+KLL9YXjVcxXV1dBoB5+umnX/RF49ZbbxXfueaaa4zneWbPnj3Vv91+++3GdV3T2dlpjLFfNCYq15hDLxo//OEPq8eMre2bN282xhhz2WWXmY9+9KPiPPfff79xXdfk8/nDboOXC5o6NcrmzZtRLBbx5je/OfTzn/70pzjjjDPQ1taGTCaDL37xi+jo6JjhWipHO2vXrhVxe3s7Dh48iM2bN2PRokVYtGhR9bPjjjsOjY2N2Lx5c/VvS5YsQWtrazVet24d3vzmN+OEE07Ae9/7Xtx0003o6+sDMJKOsGPHDlx22WXIZDLV/33lK18RP+0qCqBzoDI77NixA6VSCa973euqf2tubsbq1asBjPTLSCQiPm9pacHq1aurc+OWLVtw2mmnifNyrLyy2bZtGz7wgQ9g2bJlqK+vx9KlSwFgwjnqlFNOsf62ePFiLFiwoBqffvrpCIIAW7ZseUnljl/729vbAQAHDx4EADz55JNYv369WKfPPfdcBEGAnTt3Tn7xL3PClTGvQpLJ5It+9tBDD+Hiiy/Gddddh3PPPRcNDQ24+eabrTxSRZmMaDQqYsdxEATBlL+fTqdF7Hke7rrrLjz44IO488478d3vfhdXX301Nm7ciFQqBWAkd3n8Ij32PUUZj86BiqIcrVxwwQVYsmQJbrrpJsyfPx9BEOD444+fcNMUXk+PZLnj137HcQCguvYPDQ3hYx/7GK644grr/IsXL37JdZxt9BeNUVauXIlkMom7777b+uzBBx/EkiVLcPXVV+OUU07BypUr8cILL4hjYrEYfN+fqeoqrzDWrFmD3bt3Y/fu3dW/Pfvss+jv78dxxx034Xcdx8EZZ5yB6667Dps2bUIsFsMtt9yCefPmYf78+Xj++eexYsUK8b9jjjnmSF+ScpShc6AyGyxfvhzRaBQbN26s/q2vrw9bt24FMDI3VioV8XlPTw+2bNlSnRtXr16NRx99VJyXY+WVy1h/+OIXv4g3v/nNWLNmTfWX/enS0dGBffv2VeOHH34YrutWf2E7EuW+9rWvxbPPPmut0ytWrEAsFjus63g5ob9ojJJIJHDllVfiC1/4AmKxGM444wx0dXXhmWeewcqVK9HR0YGbb74Zp556Kn7zm9/glltuEd9funQpdu7ciSeeeAILFy5EXV0d4vH4LF2NcrRxzjnn4IQTTsDFF1+Mb3/726hUKvjEJz6Bs88+O/Tn3TE2btyIu+++G29961sxd+5cbNy4EV1dXVizZg0A4LrrrsMVV1yBhoYGnHfeeSgWi3jsscfQ19eHz372szN1ecpRgM6BymyQyWRw2WWX4fOf/zxaWlowd+5cXH311XDdkX8HXblyJS688EJ85CMfwY033oi6ujpcddVVWLBgAS688EIAwCc/+Um84Q1vwLe+9S1ccMEF+J//+R/cfvvt1X85Vl7ZNDU1oaWlBT/4wQ/Q3t6Ojo4OXHXVVYd1rkQigUsvvRTXX389BgcHccUVV+B973sf2trajli5V155JV7/+tfj8ssvx4c//GGk02k8++yzuOuuu/D3f//3h3UdLytmWyTycsL3ffOVr3zFLFmyxESjUbN48WLzf//v/zXGGPP5z3/etLS0mEwmY97//vebG264QQjNCoWCefe7320aGxsNAPOjH/1odi5Cedly9tlnV3dRGePCCy80l156qTHGmBdeeMG8853vNOl02tTV1Zn3vve9Zv/+/dVjw8S2zz77rDn33HNNa2uricfjZtWqVea73/2uOOZf//VfzYknnmhisZhpamoyb3jDG8wvf/nLI3GJylGOzoHKbJDNZs2f/MmfmFQqZebNm2e+/vWvi/myt7fX/K//9b9MQ0ODSSaT5txzzzVbt24V5/jBD35gFixYYJLJpLnooovMV77yFdPW1jYLV6PMBnfddZdZs2aNicfjZu3atebee+81AMwtt9zyomLwvr4+cY6xNfb73/++mT9/vkkkEuY973mP6e3trR7DYvCJyjXGWGUbY0xfX58BYO65557q3x555BHzlre8xWQyGZNOp83atWvNV7/61Rq30uzgGGPM7L3mKIqiKIqi1JaPfOQjeO6553D//ffPdlWUo4Rrr70Wt956a9VvQ6kNmjqlKIqiKMpRzfXXX4+3vOUtSKfTuP322/HjH/9YzUkV5WWAvmgoiqIoinJU88gjj+DrX/86stksli1bhu985zv48Ic/PNvVUpRXPZo6pSiKoiiKoihKzdHtbRVFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5uiLhqIoiqIoiqIoNef/BwVhiuMDkqQMAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "d3TPr2w1KQTK" + } + }, + { + "cell_type": "code", + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (32, 32, 3)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "id": "iFDpxEauLZ8j", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6b7703c4-3ce4-41ab-bd25-aae10e34decc" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (50000, 32, 32, 3)\n", + "Shape of transformed X test: (10000, 32, 32, 3)\n", + "Shape of transformed y train: (50000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети." + ], + "metadata": { + "id": "ydNITXptLeGT" + } + }, + { + "cell_type": "code", + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "\n", + "# Блок 1\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", + " activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 2\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 3\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.4))\n", + "\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(128, activation='relu'))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "\n", + "model.summary()" + ], + "metadata": { + "id": "YhAD5CllLlv7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 984 + }, + "outputId": "99c702da-644c-46cd-c2ce-3f0f0f234531" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_1\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ conv2d_2 (Conv2D)               │ (None, 32, 32, 32)     │           896 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization             │ (None, 32, 32, 32)     │           128 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_3 (Conv2D)               │ (None, 32, 32, 32)     │         9,248 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_1           │ (None, 32, 32, 32)     │           128 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_1 (Dropout)             │ (None, 16, 16, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_4 (Conv2D)               │ (None, 16, 16, 64)     │        18,496 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_2           │ (None, 16, 16, 64)     │           256 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_5 (Conv2D)               │ (None, 16, 16, 64)     │        36,928 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_3           │ (None, 16, 16, 64)     │           256 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_2 (Dropout)             │ (None, 8, 8, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_6 (Conv2D)               │ (None, 8, 8, 128)      │        73,856 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_4           │ (None, 8, 8, 128)      │           512 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_7 (Conv2D)               │ (None, 8, 8, 128)      │       147,584 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_5           │ (None, 8, 8, 128)      │           512 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_4 (MaxPooling2D)  │ (None, 4, 4, 128)      │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_3 (Dropout)             │ (None, 4, 4, 128)      │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ flatten_1 (Flatten)             │ (None, 2048)           │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_1 (Dense)                 │ (None, 128)            │       262,272 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_4 (Dropout)             │ (None, 128)            │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_2 (Dense)                 │ (None, 10)             │         1,290 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n" + ], + "text/html": [ + "
 Total params: 552,362 (2.11 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" + ], + "text/html": [ + "
 Trainable params: 551,466 (2.10 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n" + ], + "text/html": [ + "
 Non-trainable params: 896 (3.50 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 64\n", + "epochs = 50\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "id": "3otvqMjjOdq5", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "dc91afb5-d8a9-4541-9104-9dd6cce4d8fe" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 26ms/step - accuracy: 0.2649 - loss: 2.1252 - val_accuracy: 0.4706 - val_loss: 1.4156\n", + "Epoch 2/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.4601 - loss: 1.4764 - val_accuracy: 0.5836 - val_loss: 1.1330\n", + "Epoch 3/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.5653 - loss: 1.2306 - val_accuracy: 0.6386 - val_loss: 1.0458\n", + "Epoch 4/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.6361 - loss: 1.0504 - val_accuracy: 0.6950 - val_loss: 0.8850\n", + "Epoch 5/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.6788 - loss: 0.9410 - val_accuracy: 0.7124 - val_loss: 0.8396\n", + "Epoch 6/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.6999 - loss: 0.8709 - val_accuracy: 0.7282 - val_loss: 0.7933\n", + "Epoch 7/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7321 - loss: 0.7877 - val_accuracy: 0.7426 - val_loss: 0.7512\n", + "Epoch 8/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7522 - loss: 0.7415 - val_accuracy: 0.7510 - val_loss: 0.7512\n", + "Epoch 9/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7654 - loss: 0.6900 - val_accuracy: 0.7766 - val_loss: 0.6617\n", + "Epoch 10/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7855 - loss: 0.6378 - val_accuracy: 0.7578 - val_loss: 0.7086\n", + "Epoch 11/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7883 - loss: 0.6206 - val_accuracy: 0.7872 - val_loss: 0.6364\n", + "Epoch 12/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8030 - loss: 0.5865 - val_accuracy: 0.7576 - val_loss: 0.7369\n", + "Epoch 13/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8072 - loss: 0.5700 - val_accuracy: 0.7958 - val_loss: 0.5959\n", + "Epoch 14/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8219 - loss: 0.5243 - val_accuracy: 0.8142 - val_loss: 0.5654\n", + "Epoch 15/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8273 - loss: 0.5082 - val_accuracy: 0.7914 - val_loss: 0.6319\n", + "Epoch 16/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8374 - loss: 0.4829 - val_accuracy: 0.8262 - val_loss: 0.5276\n", + "Epoch 17/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8353 - loss: 0.4944 - val_accuracy: 0.8072 - val_loss: 0.5965\n", + "Epoch 18/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8428 - loss: 0.4644 - val_accuracy: 0.8310 - val_loss: 0.5173\n", + "Epoch 19/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8506 - loss: 0.4382 - val_accuracy: 0.8094 - val_loss: 0.6068\n", + "Epoch 20/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8534 - loss: 0.4367 - val_accuracy: 0.8204 - val_loss: 0.5567\n", + "Epoch 21/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 10ms/step - accuracy: 0.8567 - loss: 0.4203 - val_accuracy: 0.8298 - val_loss: 0.5206\n", + "Epoch 22/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8572 - loss: 0.4125 - val_accuracy: 0.8096 - val_loss: 0.5871\n", + "Epoch 23/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8659 - loss: 0.3902 - val_accuracy: 0.8352 - val_loss: 0.5270\n", + "Epoch 24/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8687 - loss: 0.3854 - val_accuracy: 0.8294 - val_loss: 0.5306\n", + "Epoch 25/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8686 - loss: 0.3820 - val_accuracy: 0.8276 - val_loss: 0.5693\n", + "Epoch 26/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8730 - loss: 0.3675 - val_accuracy: 0.8400 - val_loss: 0.5132\n", + "Epoch 27/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8741 - loss: 0.3597 - val_accuracy: 0.8352 - val_loss: 0.5377\n", + "Epoch 28/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8762 - loss: 0.3631 - val_accuracy: 0.8426 - val_loss: 0.5101\n", + "Epoch 29/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8864 - loss: 0.3382 - val_accuracy: 0.8150 - val_loss: 0.5927\n", + "Epoch 30/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8881 - loss: 0.3253 - val_accuracy: 0.8390 - val_loss: 0.5130\n", + "Epoch 31/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8867 - loss: 0.3306 - val_accuracy: 0.8406 - val_loss: 0.5136\n", + "Epoch 32/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8869 - loss: 0.3284 - val_accuracy: 0.8464 - val_loss: 0.4983\n", + "Epoch 33/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8907 - loss: 0.3224 - val_accuracy: 0.8490 - val_loss: 0.4849\n", + "Epoch 34/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 10ms/step - accuracy: 0.8962 - loss: 0.3082 - val_accuracy: 0.8292 - val_loss: 0.5812\n", + "Epoch 35/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8938 - loss: 0.3085 - val_accuracy: 0.8318 - val_loss: 0.5522\n", + "Epoch 36/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8937 - loss: 0.3166 - val_accuracy: 0.8430 - val_loss: 0.5358\n", + "Epoch 37/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9012 - loss: 0.2844 - val_accuracy: 0.8552 - val_loss: 0.5092\n", + "Epoch 38/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9023 - loss: 0.2928 - val_accuracy: 0.8456 - val_loss: 0.5474\n", + "Epoch 39/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9082 - loss: 0.2685 - val_accuracy: 0.8500 - val_loss: 0.4935\n", + "Epoch 40/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9040 - loss: 0.2683 - val_accuracy: 0.8526 - val_loss: 0.4914\n", + "Epoch 41/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9061 - loss: 0.2696 - val_accuracy: 0.8374 - val_loss: 0.5551\n", + "Epoch 42/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9074 - loss: 0.2685 - val_accuracy: 0.8504 - val_loss: 0.5127\n", + "Epoch 43/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9081 - loss: 0.2675 - val_accuracy: 0.8508 - val_loss: 0.5055\n", + "Epoch 44/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9132 - loss: 0.2537 - val_accuracy: 0.8540 - val_loss: 0.5132\n", + "Epoch 45/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9145 - loss: 0.2426 - val_accuracy: 0.8568 - val_loss: 0.4913\n", + "Epoch 46/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9148 - loss: 0.2461 - val_accuracy: 0.8560 - val_loss: 0.5101\n", + "Epoch 47/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9158 - loss: 0.2474 - val_accuracy: 0.8514 - val_loss: 0.5321\n", + "Epoch 48/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9197 - loss: 0.2367 - val_accuracy: 0.8450 - val_loss: 0.5670\n", + "Epoch 49/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 10ms/step - accuracy: 0.9153 - loss: 0.2506 - val_accuracy: 0.8492 - val_loss: 0.5532\n", + "Epoch 50/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9223 - loss: 0.2278 - val_accuracy: 0.8478 - val_loss: 0.5545\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "Vv1kUHWTLl9B" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "SaDxydiyLmRX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ef0cce59-50d5-49e2-a03b-debe3f83cae1" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - accuracy: 0.8587 - loss: 0.5093\n", + "Loss on test data: 0.5083962678909302\n", + "Accuracy on test data: 0.857200026512146\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "OdgEiyUGLmhP" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [2,3]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "id": "t3yGj1MlLm9H", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "3d281339-dfb6-4df0-d3f1-27d46f513581" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step\n", + "NN output: [[7.2646151e-05 3.8818748e-06 5.3400207e-01 4.6440233e-03 4.0224893e-03\n", + " 3.1369660e-04 7.8649860e-04 1.5578480e-05 4.5613229e-01 6.7981441e-06]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAL9dJREFUeJzt3X1w1fWd//3X99zm/oQQyE0JFERFReiUKs3YulZYgf2No5XZ0bYzi11HRzc6q2y3LTutVnd34tqZ1rZD8Y91ZTtTtHWn6KXXVqtY4tUtuAuVQW1NhQsLFhIVzQ25OTnnfD/XH15mGwX9vCHhk8TnY+bMkOTNO5/v3XnnJOe8TuSccwIA4DRLhF4AAOCjiQEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAgiFXoB7xXHsQ4fPqzq6mpFURR6OQAAI+ec+vv71dzcrETixI9zJt0AOnz4sFpaWkIvAwBwig4dOqQ5c+ac8OsTNoA2btyob3/72+rq6tLSpUv1gx/8QBdeeOGH/r/q6mpJ0oyGlg+cnH8qmfDfjERk2+REusK7tqxyhql3usq/Pk6WmXpna3LetdX1tnXPmlFnqq+uqPKuzaRsx6fC8CD5zT+8auq99//9nXdtfqjP1LuYLJrqU8Wkf7Gz/eageOwt/+KSMbmrstq7NFc3y9Q6U1bpX5zKmHon02lTfVTyP579b79h6v1G12uG3q+bervSiHdtwvlvo3OxhvveHL0/P5EJGUA/+clPtH79et13331avny57r33Xq1atUqdnZ2aPXv2B/7fd3/tlkgkvAdQIuF/cSYiw4Vs7Z207c5kyv8kj5LWCyjrXZvK2IZbOltuqs8Y6jPGCz9ruK/NGLfTcnySSdu6Y+OVl3T+/8EZB5DtvDUOIENvy/6WpGTacE0YB1DK0ltS5HlfJdm303J8LOuQJMX+9dFJPGXgw/6MMiFPQvjOd76j66+/Xl/+8pd17rnn6r777lNFRYX+7d/+bSK+HQBgChr3ATQyMqLdu3dr5cqV//tNEgmtXLlSO3bseF99Pp9XX1/fmBsAYPob9wH05ptvqlQqqaGhYcznGxoa1NXV9b769vZ25XK50RtPQACAj4bgrwPasGGDent7R2+HDh0KvSQAwGkw7k9CqK+vVzKZVHd395jPd3d3q7Gx8X312WxW2az/H8wBANPDuD8CymQyWrZsmbZt2zb6uTiOtW3bNrW2to73twMATFET8jTs9evXa926dfrUpz6lCy+8UPfee68GBgb05S9/eSK+HQBgCpqQAXT11VfrjTfe0O23366uri594hOf0BNPPPG+JyYAAD66Iuec8ZVlE6uvr0+5XE6z5p7l/SLQdNr/BYbO8MIrSSqrrfevrZlp6p2t9E8rSJX7v6Jckqpra71rZ8zwr5WkhnrbK9Yrs5YXgNpOx9pK/95Db/Waeu/5/cvetfEbhjQBSfOOdX940Z/I9/R71+43vpj3NcOr4cvKDekDknIz/c+VGTP9rzVJqq3zry8ZX5xbKJZM9XL+9f09b5taH/njQe/aN7r+YOpdGB7wLy4VvEvjuKS3Xt2r3t5e1dTUnLAu+LPgAAAfTQwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEBOSBTceklV13u+Fnkj4v3+7c7aZm6ys865NVc0w9a6c4d+7ts4WfzPDEMVTW1Vh6l1dZqvPGN7TXpEtiieb8T+eVQ22fXhexn/dhZcOmHp/9tXXTfWvH/GP4imc0Wzq3dsyx7u2qqrW1HvubP/8x5kzbVFW5eX+MUyl2NRaxdj2H+LY/7ztqaw19S44//Nw2BisNnTM/x2oE4a4obhY0Fuv7v3wnt4dAQAYRwwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQkzYLLjuzRYlU2qs2lcx6902n/GslKVNW6V07y5B7JUnZMv8sqxm1tpysWTNy3rW5Cv8sPUnKJv2Oy7sSirxrk8YfiaoMeW2RswVlzW+u967t6+o29X7yjd+Z6t/oP+pd25v0X7ck1c1q8a6tzvpfD5LU1NjoXVs/w5almJB/NpnVcMHWe2ik4F3r4hpT76MV1f7FZbWm3pEhZy4ujPjXJv1qeQQEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAhi0kbxpHJNSqb9YnPSSf8omWy2wrSOaktcTs4WJZLN+q+7Kltu6l2e9o/Lqam0xatkEklTfVwseteWZWyxQJVJQ8xPyhbFkymLvWuPqc/U+5n8YVP9m6V+79o5Cf/9LUnn5fwjpHJltvNwVp3/NTGjynZtqjjsXRrH/sdSkrKG80qSUobyoiG2R5KSSf/rzWVs+9AZEodKMuzvyG+08AgIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMSkzYKrqJqpZMYvhy2b9s8PSyX8M9IkqaLCP/sqmfbPjZOkcksWXJlfLt7J9M4kbT+HVKeMP7ekDNlxxry2ocG8d+3MeMjUe07NPu/aTNPLpt5rL5lvqt/1Ypd3bdqY19ZQU+1dW1tbZepdX+2/lqqs7dpMFP3PleHCiKl3ZMw7LBmi5hKWADZJ5Wn/u+lchf+xlKTYkEs3GPlnwTnPbDweAQEAghj3AfStb31LURSNuS1atGi8vw0AYIqbkF/BnXfeeXr66af/95ukJu1v+gAAgUzIZEilUmpsbJyI1gCAaWJC/gb0yiuvqLm5WQsWLNCXvvQlHTx48IS1+XxefX19Y24AgOlv3AfQ8uXLtXnzZj3xxBPatGmTDhw4oM9+9rPq7z/+Ozq2t7crl8uN3lpaWsZ7SQCASWjcB9CaNWv0l3/5l1qyZIlWrVql//zP/1RPT49++tOfHrd+w4YN6u3tHb0dOnRovJcEAJiEJvzZAbW1tTrrrLO0b9/xX1ORzWaVzdpe4wIAmPom/HVAx44d0/79+9XU1DTR3woAMIWM+wD6yle+oo6ODr366qv69a9/rc9//vNKJpP6whe+MN7fCgAwhY37r+Bee+01feELX9DRo0c1a9YsfeYzn9HOnTs1a9YsU5+q6hqlMn4xHmVJ/81I2JJelDHE/ERJW3xHyhCxkc3YemcMRzZra63qjO3nlpER/7ickjHm5/964v/2rl08Y8DU+1NX9nrXnrPUFvWyvPGTpvqnGg971/7id4Om3pVF/+2c3zLX1NtyrkQlW0RNIumZ9yLJOdtdXcHQW5IShaJ3bRTZ7oTqcv7xOgXZ4sBS8t/nb7ztH8UTe97RjvsAeuihh8a7JQBgGiILDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxIS/HcPJKsuklcqmvWozkX+YWTphm7nVVZXetRVl/rlxklRZ5r/u8qyxd9p/O2uyttyrmkq/jL53lSr8jqMkFQ3ZVJK0eN7HvGsbEp2m3qmkf65WJt1g6u0ytuy4hXOqvGs7//i2qXfXb3/tXbu75zVT7zMWLfKuPXvhmabehaHYuzZpzWks2fLasin/u9LaKv9sN0kqFPzXUlNl287+Af9reXDI/3ooeWbp8QgIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEpI3iqSgvUzrrFxNh2Yhs0j8WRrJF4FSWZ229M/7zP5O2RWxUZP3ry5K22JGB/l5T/Ztv/NG7Ni4MmXqf97GZ3rVVskWgDA8PetcW0v6RQJKUqjpmqm9o9j/Lly+tM/Xeud//eD7/0m5T71mza71rU4kzTL2d4ZpwCds5PhIXTfXlhiieqKrCtpZ8wbu2b6jH1NuQBqbaSv84qOKI3/7gERAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgiEmbBVdZVqZMWZlXrSkLLuWf7SZJmbR/91Rkaq20YfxnkrYsuEzKvz4yrvv3v+801f/XLx7xrh16+5Cpd03G7xyRpOqyN029Z9f7Z/s1NZ5p6j2jyn/dkhTn/bPJUpl6U++qGv+1/MUnPmnq/fHF53vXZi0XhCTLz8/FYf88NUlKuthUb4h1VCJjy6Osy/lnsNm2UsoY9nm+6L9PRvJD+rVHHY+AAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEFM3iy48qwyZX5ZXEnn3zebsuUwpVL+uygZlWy9k/7zv6LcP5dMkjJZ/3WXZMu9sobHVSVGvGvL9Lapd2/PsHft28P+65Ck3//e/1zpLf3R1Lu/ZMv2i/N579raKuO5UlnrXVvX9HtT78V/9M/2O2vRUlPvppYzvGtTCeM+SdjO8aThmkhHtrvdkZR/wltDfa2pd7bMPxtzpOi/jfmhAa86HgEBAIIwD6Bnn31Wl19+uZqbmxVFkR555JExX3fO6fbbb1dTU5PKy8u1cuVKvfLKK+O1XgDANGEeQAMDA1q6dKk2btx43K/fc889+v73v6/77rtPzz33nCorK7Vq1SoND/v/qgQAMP2Z/wa0Zs0arVmz5rhfc87p3nvv1Te+8Q1dccUVkqQf/ehHamho0COPPKJrrrnm1FYLAJg2xvVvQAcOHFBXV5dWrlw5+rlcLqfly5drx44dx/0/+XxefX19Y24AgOlvXAdQV1eXJKmhoWHM5xsaGka/9l7t7e3K5XKjt5aWlvFcEgBgkgr+LLgNGzaot7d39HbokO0tmQEAU9O4DqDGxkZJUnd395jPd3d3j37tvbLZrGpqasbcAADT37gOoPnz56uxsVHbtm0b/VxfX5+ee+45tba2jue3AgBMceZnwR07dkz79u0b/fjAgQPas2eP6urqNHfuXN166636p3/6J5155pmaP3++vvnNb6q5uVlXXnnleK4bADDFmQfQrl279LnPfW704/Xr10uS1q1bp82bN+urX/2qBgYGdMMNN6inp0ef+cxn9MQTT6isrMz0fcqzGWV9o3hi/yyetCH+5p16Q21k612Z9Y/ByBjXXRgpete6yJBlJKk8azuWrRd+yrv2Dy/YngX53y+97F2bTNl+vVuK/bdzoPCWqffbJVskVDH2j0Hp7R0y9U4P93rX/uHNo6beL778kndt7cw5pt6XrPw/3rWX/fnxXzpyIuVltuMzYkjhGjEcS0lKpvzvhOKCf2yPJJWK/vcTIyP+kV0jBb/YK/MAuuSSS+Tcie+woijSXXfdpbvuusvaGgDwERL8WXAAgI8mBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIcxTP6VKTzSjrmZUWlfzzj9LGkZtN+eekZRK2jKeqjP9iUrF/DpMkJSL/tWQzttyrWuNbZhx+zb/2+VeO/8aFJ9Iz4p+n52K/fKp3xc4/JyuS7fikIlteWyHhf46XjD9XWqIAs5ZwREmx8w9Jy6Ztd0eZhP9arNd9WZntPyRi//piwZa96Ib9r+VCydhb/r1jwznuW8sjIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEJM4iiepsjK/qI2k84+fyKZsUSKWiBVD+o0kKWWpL/lHmkiSJZAjcrafQ2bUzjDV/37IP0ZmqGTbiUVDBEqpZIvLcYYYmcgQaSJJkSHmR5IU+9e7yBatZNkv+dh2HmbT/muZP3+BqfeyT3zCu7auptrU28n/nJUkGXZLMm899v5rccZzPBH5Xz+ZtCH2qui3Zh4BAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIKYtFlwFYlY5Qm/XKNyQ95UWca2ySVDqlqxZElgk1KG/DBXtGVwxZZ8r5GJW7ckRYYMqapcnan3cPFt79rBwSFTb+f896Flf7/DlkkoSyahsbdz/sez5Gy9R4r+P+PW18829V7w8bneteUZ28/acclWXzRkNUYlWxZcIjYce9ulrIThWo4MmZu+6+AREAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgiEkbxZNysVKeUSgpwxzNJmwxMi7lv4vyBVtcjiXSJpGw/axQcoa4D0PUhyQNG2OB+gby/ktJZE296+sbvGuPHj1q6p3Pj3jXjhQHTL1dbIwziiyXqu1ciSL/eJ0o4R+rJEl1hnidBQsWmnrX1lR512bTtru6obwtcqg0eMy/1hjZFRmOZzppO6+KCf+1WO4mSpHfmnkEBAAIggEEAAjCPICeffZZXX755WpublYURXrkkUfGfP3aa69VFEVjbqtXrx6v9QIApgnzABoYGNDSpUu1cePGE9asXr1aR44cGb09+OCDp7RIAMD0Y34Swpo1a7RmzZoPrMlms2psbDzpRQEApr8J+RvQ9u3bNXv2bJ199tm66aabPvDZR/l8Xn19fWNuAIDpb9wH0OrVq/WjH/1I27Zt07/8y7+oo6NDa9asUekE7xjY3t6uXC43emtpaRnvJQEAJqFxfx3QNddcM/rv888/X0uWLNEZZ5yh7du3a8WKFe+r37Bhg9avXz/6cV9fH0MIAD4CJvxp2AsWLFB9fb327dt33K9ns1nV1NSMuQEApr8JH0Cvvfaajh49qqampon+VgCAKcT8K7hjx46NeTRz4MAB7dmzR3V1daqrq9Odd96ptWvXqrGxUfv379dXv/pVLVy4UKtWrRrXhQMApjbzANq1a5c+97nPjX787t9v1q1bp02bNmnv3r3693//d/X09Ki5uVmXXXaZ/vEf/1HZrC3jK4pS3vlXzvk/kIuNGVzOknsWG/LXJCUS/nlT6ZQtmyplyA4rGbPgUgnbadPU8nHv2v37XzL1jocGvWvrDblkknT0zTe9a48N+K/jHbZfPiQi//M2mbTltVVWVHvXllXUmXqfe+5i79pzFp1n6l1RlvaujY35a4PDtmuib9D/2h8uGPPanP+1nzJku0lSOmnIgjNkV5Y8MzTNA+iSSy6Rcyde9JNPPmltCQD4CCILDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxLi/H9B4KcVJlWK/DKSRgn9uU1zKm9aRyvjnH6VS1nnun8MUGWolW3aYErZ1R4ZMKEk6Z/H53rUVZbbev/n1/+NdOzgwYOo9NOR/rlQVDJmBkgaO2d75N5H2zwObOdOWeVdWVuVdG6Vtb5cyd94Z3rWzZtvW/UGRYO/VNzhk6n20b9hU3ztY8K4djm3XmyULLmnNgkv7X2+x/PPuSkm/NfMICAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxKSN4hkaHpGitFdtwhARkUraoipSnnFAkpQ2xKVIUjbhv/tjW0KNEpF/PFHSbzePimTbzkTC/xucv/RCU+8ZM+q8azs7Xzb1jir2+dd2HTH1zv/RVu8i/3MlV91g6p2pqPavLfevlaRzFp3pXeuMcVP7ut/yrj1mS+JRfsj/+pGkgiFeZyS2xTYp4X+9pYyxWqnIf58XS4b7lIRfLY+AAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEFM2iy4/uFjKnjmmWXS/kFp1g1OjfjP6MSIrXcxlfGuzSRtK09a4tpKtmyqZGzLyUrJ//hErszUu6nl4961ubpZpt5VtfXetc9s22bqvWBhzlTfMm+Bd21VnS0LrsKwnalsual3ZXWtd21X91FT77eH/APe0pkaU+90bAtITBiuCf+r/h2RIa8tcsacubjgXVqRNFzHnrU8AgIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABDFpo3hePfCKMlm/WJbaGf4xG5XVFaZ1VHiuQZKcMaLmSF+/d+2wIXZEkvLFondtWYUt/maGsb6+0rAPc9Wm3iP5rHdtWZktRmbhgrO8a3fv2mPqPX/hQlP9eZ/4pHftW/3Dpt5555/bVF5hixAaNkTDlAbzpt5R5L/ulIzxUQlbvTP8KB8Z7ycShigrOf/Ynnd6+9cn0/77Oyr41fIICAAQhGkAtbe364ILLlB1dbVmz56tK6+8Up2dnWNqhoeH1dbWppkzZ6qqqkpr165Vd3f3uC4aADD1mQZQR0eH2tratHPnTj311FMqFAq67LLLNDAwMFpz22236bHHHtPDDz+sjo4OHT58WFddddW4LxwAMLWZ/gb0xBNPjPl48+bNmj17tnbv3q2LL75Yvb29uv/++7VlyxZdeumlkqQHHnhA55xzjnbu3KlPf/rT47dyAMCUdkp/A+rt7ZUk1dXVSZJ2796tQqGglStXjtYsWrRIc+fO1Y4dO47bI5/Pq6+vb8wNADD9nfQAiuNYt956qy666CItXrxYktTV1aVMJqPa2toxtQ0NDerq6jpun/b2duVyudFbS0vLyS4JADCFnPQAamtr04svvqiHHnrolBawYcMG9fb2jt4OHTp0Sv0AAFPDSb0O6Oabb9bjjz+uZ599VnPmzBn9fGNjo0ZGRtTT0zPmUVB3d7caGxuP2yubzSqb9X8tBwBgejA9AnLO6eabb9bWrVv1zDPPaP78+WO+vmzZMqXTaW3btm30c52dnTp48KBaW1vHZ8UAgGnB9Aiora1NW7Zs0aOPPqrq6urRv+vkcjmVl5crl8vpuuuu0/r161VXV6eamhrdcsstam1t5RlwAIAxTANo06ZNkqRLLrlkzOcfeOABXXvttZKk7373u0okElq7dq3y+bxWrVqlH/7wh+OyWADA9GEaQM4jZ6isrEwbN27Uxo0bT3pRklTq71cpX/Cq7Sv4554N9Prnr0nScMnQO2/L4Dr8x8PetccGjpl6lww5WZXVVabejdW2LLjy4qB/71rbWqora71ra3K2HLNczr+3Ja5LkvIlv3P7XQcP/9G7tust2zleSmS8a1Ppt0y902n/v+8WCwMfXvSnvZP+mWrVxr8zz2loNtVXVlR616aM54ol383nPvpPRQn/v8LElgy7yG8jyYIDAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAARxUm/HcDoMjJQ04vxicIaH/N9FdbhkiJOQ1DPkHyOjlH/8jSQNFP0zOQrpClPvVJl//VDS9nNI58GDpvpjf3jZu7Yq4R99JEnplH8s0NDQkKl35BknIknFUsnUO/uCf3SLJM1u9n+jxqqZDabeUcawloQthqmYKveu7RuxxROVSiPetXWVtnXPef2oqf5jjU3etbmqalNvF/vH6+TzeVPvkRH/fWipzQ/73W/yCAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxKTNgnu55y0l0xmv2kFDDFcp5dfzXYnYPw8sUbTlzJWirH9txn8dkpRK+feOjGdBuqLKVF87c4Z3bfHtI6be/cf8M7uGh4dNvePYdjwtBoZ6TPV9x3q9a8trbPswXVnjXVtK2K4f1fjn0qXq55hapyprvWuPypYxOHT0LVP977ve8K7NRLbMyLjov/aS8ZzNZv2PZxT5P14pjvhdazwCAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEMWmjeHrSSSXSfssrZfw3wxkiaiQpPeKf85Mo2OI+lPSf/2lDZIYk1Tf6R6AMDB0z9U6mnam+KvKPwBk8ZotAiQ3xOhnjPkyl/SNThosjpt6DQ3lT/chgn3ftsaFBU+9Swv/6KcS2Y18262PetU2VZabeqeRM71rLNkrS2wlbXE7BsFti491ENl3hXxzZjk95xv+aSBnSwIryK+YREAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACCISZsFF5dSkmd+U8qQ81QaKpjWESX9A5CcJSxJUtKQBZdK2H5WiEf8tzOTsWVwlYq2ffh2z5B3bVnRtp2J2D+zyzn/XD9JcnHsXZvxzC3837XYttMZzvEhY16b0v75iIURW5BZ6Vivd+2RF35j6p1O1fjX1jaZeg/X1prqU7U5/9qySlPviqx//VDe/1qTpGKPfw5kquR/7OOCX9Yhj4AAAEGYBlB7e7suuOACVVdXa/bs2bryyivV2dk5puaSSy5RFEVjbjfeeOO4LhoAMPWZBlBHR4fa2tq0c+dOPfXUUyoUCrrssss0MDAwpu7666/XkSNHRm/33HPPuC4aADD1mX5x/cQTT4z5ePPmzZo9e7Z2796tiy++ePTzFRUVamxsHJ8VAgCmpVP6G1Bv7zt/YKyrqxvz+R//+Meqr6/X4sWLtWHDBg0OnvgNsvL5vPr6+sbcAADT30k/Cy6OY91666266KKLtHjx4tHPf/GLX9S8efPU3NysvXv36mtf+5o6Ozv1s5/97Lh92tvbdeedd57sMgAAU9RJD6C2tja9+OKL+tWvfjXm8zfccMPov88//3w1NTVpxYoV2r9/v84444z39dmwYYPWr18/+nFfX59aWlpOdlkAgCnipAbQzTffrMcff1zPPvus5syZ84G1y5cvlyTt27fvuAMom80qm/V/HQIAYHowDSDnnG655RZt3bpV27dv1/z58z/0/+zZs0eS1NRkeyEYAGB6Mw2gtrY2bdmyRY8++qiqq6vV1dUlScrlciovL9f+/fu1ZcsW/cVf/IVmzpypvXv36rbbbtPFF1+sJUuWTMgGAACmJtMA2rRpk6R3Xmz6px544AFde+21ymQyevrpp3XvvfdqYGBALS0tWrt2rb7xjW+M24IBANOD+VdwH6SlpUUdHR2ntKDR7zVUlCv45Xw5jXj3zRiy3SSpkPTPGisY89rShqXkh/2ylUbru9/0rs0Y110a8s/3kqRE3n/t5RXVpt7lZRXetSMl2z6MY//Mu4Tzz42TpIpsxlZf4581FifTpt6llH99yZC9J0mFlH/O4KBs+ySVrPKujTL+54kkxWnbNTFS9M9JG+73z1+TpLjon+03EtnyDosl/3M8WfC/n3VkwQEAJjMGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIiTfj+gCZdOSim/2A9L+ETJVC0Nx/55OamsLe4jyvhHoLjYFvUSy3/dRecfIyJJKrP93JKZPdO7NhqpNPUuN/wMlTHGlAwP9HvXJvL+MSWSpMgWl1NeW+9dW0zZLuveoWHv2kLaGGlT5R8hVIhs6y5F/jE/GWPvrPwjaiRJacPxtJ2GimP//xAlbNdyZLn2J6CWR0AAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAICZtFlycdHIp51ec9c+Ecmm/fLl3JWPDLnK23sWEf322PGvqHclz30mKnX8WmCSl4rypXob8sJEhW0aa5RQeSdhCuOKE/z7P5WzrHsjbssZeH/E/nsWiLTewkCj3rh0y7BNJilP+12Yxa+tdiv1/fs7mbRlpGWP2otL+2YtJz4zLUSX/8zZTsl3L5ZH/fikV/XvHxRH5JCnyCAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMSkjeJJDg8qUfSLiRg2zFGXrTGtI13mHyUSW+M+KvwjahLG+I7hwQH/3sO2aB032Geqr/ZPKVGZKk29ewr+kTaDSVu8SrkhRiZbUWvqrVrbpdfb5xNs8o6hkm07I0METnW6ytS7lMh411quY0myBCslne3aTKds0UoF57/PS7HhgpAU5f0jcKqd/3kiSRrx753v97/uo6LfdckjIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQkzYLrrpQVML5zcd02j8VanhwyLSOpCG3KUobd6fzzzErDNnWHQ8c865N5m29y0vG7TTs81Jky8kqlvmvpZjyzzyTpKHYedceHhwx9c6n/XtLUr6y2ru2FNlyA6Okf+5ZwniXkSj6Z6Tlh2yZhBVp/+OZyPpn0kmSSxvz2or+90HFgi2XLi759x4cMN6/5f2z49JF/+MTl8iCAwBMYqYBtGnTJi1ZskQ1NTWqqalRa2urfv7zn49+fXh4WG1tbZo5c6aqqqq0du1adXd3j/uiAQBTn2kAzZkzR3fffbd2796tXbt26dJLL9UVV1yhl156SZJ022236bHHHtPDDz+sjo4OHT58WFddddWELBwAMLWZfqF7+eWXj/n4n//5n7Vp0ybt3LlTc+bM0f33368tW7bo0ksvlSQ98MADOuecc7Rz5059+tOfHr9VAwCmvJP+G1CpVNJDDz2kgYEBtba2avfu3SoUClq5cuVozaJFizR37lzt2LHjhH3y+bz6+vrG3AAA0595AL3wwguqqqpSNpvVjTfeqK1bt+rcc89VV1eXMpmMamtrx9Q3NDSoq6vrhP3a29uVy+VGby0tLeaNAABMPeYBdPbZZ2vPnj167rnndNNNN2ndunX67W9/e9IL2LBhg3p7e0dvhw4dOuleAICpw/w6oEwmo4ULF0qSli1bpv/5n//R9773PV199dUaGRlRT0/PmEdB3d3damxsPGG/bDarrOE96QEA08Mpvw4ojmPl83ktW7ZM6XRa27ZtG/1aZ2enDh48qNbW1lP9NgCAacb0CGjDhg1as2aN5s6dq/7+fm3ZskXbt2/Xk08+qVwup+uuu07r169XXV2dampqdMstt6i1tZVnwAEA3sc0gF5//XX91V/9lY4cOaJcLqclS5boySef1J//+Z9Lkr773e8qkUho7dq1yufzWrVqlX74wx+e1MKiuKhE7PcALVsY8O9bHDatIx37R6DEZWWm3oWCfxxLquAfaSJJGvKP4inF/pFAkpSP/KNbJKngGakkSanYdnzyrsK7thjbImripH98S2/C9tvs4cj2y4eSIXamaFxL5HmdSVKxZIuRSUb+9aXIP3JGkhKxf/xRnLRF6wzlbdFKsWG3WC/lOON/vRXiOlNvF/vv81TR/37Cef5yzXSm3n///R/49bKyMm3cuFEbN260tAUAfASRBQcACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAjCnIY90Zx7J54mNsQ+WGI24sgYx1LIT8g6JClO+EfxWPM74oIhpsTZonjiyLBuSSpa1mKLeomL/qew9dgr9t/nsbPFyMQJ289+ruB/bjlD/M07/8F/LbExiicy7Je4ZN2Hht6x7dp0hpgfSbKcts4YxeMS/uetM9xfSVJsuTZLhvvk/7/23fvzE5l0A6i/v1+S9OqunwVeCQBMLT2hF/Ae/f39yuVyJ/x65D5sRJ1mcRzr8OHDqq6uVhT9708tfX19amlp0aFDh1RTUxNwhROL7Zw+PgrbKLGd0814bKdzTv39/WpublbiAx7tT7pHQIlEQnPmzDnh12tqaqb1wX8X2zl9fBS2UWI7p5tT3c4PeuTzLp6EAAAIggEEAAhiygygbDarO+64Q9ms/xtzTUVs5/TxUdhGie2cbk7ndk66JyEAAD4apswjIADA9MIAAgAEwQACAATBAAIABDFlBtDGjRv18Y9/XGVlZVq+fLn++7//O/SSxtW3vvUtRVE05rZo0aLQyzolzz77rC6//HI1NzcriiI98sgjY77unNPtt9+upqYmlZeXa+XKlXrllVfCLPYUfNh2Xnvtte87tqtXrw6z2JPU3t6uCy64QNXV1Zo9e7auvPJKdXZ2jqkZHh5WW1ubZs6cqaqqKq1du1bd3d2BVnxyfLbzkksued/xvPHGGwOt+ORs2rRJS5YsGX2xaWtrq37+85+Pfv10HcspMYB+8pOfaP369brjjjv0m9/8RkuXLtWqVav0+uuvh17auDrvvPN05MiR0duvfvWr0Es6JQMDA1q6dKk2btx43K/fc889+v73v6/77rtPzz33nCorK7Vq1SoNDw+f5pWemg/bTklavXr1mGP74IMPnsYVnrqOjg61tbVp586deuqpp1QoFHTZZZdpYGBgtOa2227TY489pocfflgdHR06fPiwrrrqqoCrtvPZTkm6/vrrxxzPe+65J9CKT86cOXN09913a/fu3dq1a5cuvfRSXXHFFXrppZckncZj6aaACy+80LW1tY1+XCqVXHNzs2tvbw+4qvF1xx13uKVLl4ZexoSR5LZu3Tr6cRzHrrGx0X37298e/VxPT4/LZrPuwQcfDLDC8fHe7XTOuXXr1rkrrrgiyHomyuuvv+4kuY6ODufcO8cunU67hx9+eLTmd7/7nZPkduzYEWqZp+y92+mcc3/2Z3/m/vZv/zbcoibIjBkz3L/+67+e1mM56R8BjYyMaPfu3Vq5cuXo5xKJhFauXKkdO3YEXNn4e+WVV9Tc3KwFCxboS1/6kg4ePBh6SRPmwIED6urqGnNcc7mcli9fPu2OqyRt375ds2fP1tlnn62bbrpJR48eDb2kU9Lb2ytJqqurkyTt3r1bhUJhzPFctGiR5s6dO6WP53u3810//vGPVV9fr8WLF2vDhg0aHBwMsbxxUSqV9NBDD2lgYECtra2n9VhOujDS93rzzTdVKpXU0NAw5vMNDQ16+eWXA61q/C1fvlybN2/W2WefrSNHjujOO+/UZz/7Wb344ouqrq4Ovbxx19XVJUnHPa7vfm26WL16ta666irNnz9f+/fv1z/8wz9ozZo12rFjh5JJ43sUTQJxHOvWW2/VRRddpMWLF0t653hmMhnV1taOqZ3Kx/N42ylJX/ziFzVv3jw1Nzdr7969+trXvqbOzk797GdT6y1kXnjhBbW2tmp4eFhVVVXaunWrzj33XO3Zs+e0HctJP4A+KtasWTP67yVLlmj58uWaN2+efvrTn+q6664LuDKcqmuuuWb03+eff76WLFmiM844Q9u3b9eKFSsCruzktLW16cUXX5zyf6P8MCfazhtuuGH03+eff76ampq0YsUK7d+/X2ecccbpXuZJO/vss7Vnzx719vbqP/7jP7Ru3Tp1dHSc1jVM+l/B1dfXK5lMvu8ZGN3d3WpsbAy0qolXW1urs846S/v27Qu9lAnx7rH7qB1XSVqwYIHq6+un5LG9+eab9fjjj+uXv/zlmLdNaWxs1MjIiHp6esbUT9XjeaLtPJ7ly5dL0pQ7nplMRgsXLtSyZcvU3t6upUuX6nvf+95pPZaTfgBlMhktW7ZM27ZtG/1cHMfatm2bWltbA65sYh07dkz79+9XU1NT6KVMiPnz56uxsXHMce3r69Nzzz03rY+rJL322ms6evTolDq2zjndfPPN2rp1q5555hnNnz9/zNeXLVumdDo95nh2dnbq4MGDU+p4fth2Hs+ePXskaUodz+OJ41j5fP70HstxfUrDBHnooYdcNpt1mzdvdr/97W/dDTfc4Gpra11XV1fopY2bv/u7v3Pbt293Bw4ccP/1X//lVq5c6err693rr78eemknrb+/3z3//PPu+eefd5Lcd77zHff888+7P/zhD8455+6++25XW1vrHn30Ubd37153xRVXuPnz57uhoaHAK7f5oO3s7+93X/nKV9yOHTvcgQMH3NNPP+0++clPujPPPNMNDw+HXrq3m266yeVyObd9+3Z35MiR0dvg4OBozY033ujmzp3rnnnmGbdr1y7X2trqWltbA67a7sO2c9++fe6uu+5yu3btcgcOHHCPPvqoW7Bggbv44osDr9zm61//uuvo6HAHDhxwe/fudV//+tddFEXuF7/4hXPu9B3LKTGAnHPuBz/4gZs7d67LZDLuwgsvdDt37gy9pHF19dVXu6amJpfJZNzHPvYxd/XVV7t9+/aFXtYp+eUvf+kkve+2bt0659w7T8X+5je/6RoaGlw2m3UrVqxwnZ2dYRd9Ej5oOwcHB91ll13mZs2a5dLptJs3b567/vrrp9wPT8fbPknugQceGK0ZGhpyf/M3f+NmzJjhKioq3Oc//3l35MiRcIs+CR+2nQcPHnQXX3yxq6urc9ls1i1cuND9/d//vevt7Q27cKO//uu/dvPmzXOZTMbNmjXLrVixYnT4OHf6jiVvxwAACGLS/w0IADA9MYAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQfx/aIhDLgHL0qgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 8\n", + "NN answer: 2\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step\n", + "NN output: [[1.9803477e-11 1.8675040e-14 2.2670738e-06 8.6696136e-06 9.9992847e-01\n", + " 5.8956124e-05 1.9674586e-09 1.5675565e-06 2.7082836e-13 2.0201145e-12]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMBNJREFUeJzt3X1s3eV5//HPefyeY/v4OI5jOyZOmhBKoJBUyyC1aBklGUkmISjRBG2lhQ6BYA4aZF3bTC0UtsmMSi1tlYY/xsgqNdAyNSDQCoPQGHVN2JISpbRdRPILJDSxQwJ+OvZ5/v7+oPFmSOC+Eju3bd4v6UixfeXy/X06l4/POR9HwjAMBQDAORb1vQAAwEcTAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4EXc9wLeq1qt6siRI8pkMopEIr6XAwAwCsNQg4ODamtrUzR6+sc5k24AHTlyRO3t7b6XAQA4S4cPH9acOXNO+/UJG0AbN27Ut771LfX09GjJkiX6/ve/r8svv/xD/18mk5EkLV0wR7GY228I04YwoZa6tHuxpAvOa3KuTcdsj9iGCu71vzveb+r9/3p6DdW2NKamWbNM9UEs6VwbqVZta2ma6Vzrej6dNJLPO9dm6upMvfsHbMfzzaPHnGtnZLOm3i2NM5xrown3YylJ2YZG59q333nL1Lu/372+xXCeSFIparuWe0aGnWsHyiVT77ePn3CurYvZ7tJrSxXn2vLQoHtttapfvv7W6P356UzIAPrxj3+s9evX6+GHH9ayZcv00EMPaeXKldq3b5+am5s/8P+e/LVbLBZV3PEOI264/0zGYu7FklIJ912UMg6gctW9PmFcd+wDHva+n20AxY1rScTd6yMV2z5MGo5PzLjuSrlsWEfC1DsRt116ln1u2d+SbR9GjdsZJN0Hln0fum9nYNhGSYqYrh8pUXbvHzdeb5bz1nptxi0/7xn3iaQPfRplQl6E8O1vf1u33nqrvvSlL+niiy/Www8/rJqaGv3Lv/zLRHw7AMAUNO4DqFgsavfu3VqxYsX/fpNoVCtWrNCOHTveV18oFDQwMDDmBgCY/sZ9AB0/flyVSkUtLS1jPt/S0qKenp731Xd1dSmbzY7eeAECAHw0eH8f0IYNG9Tf3z96O3z4sO8lAQDOgXF/EUJTU5NisZh6e8e+Cqu3t1etra3vqw+CQEEQjPcyAACT3Lg/Akomk1q6dKm2bds2+rlqtapt27apo6NjvL8dAGCKmpCXYa9fv15r167VH//xH+vyyy/XQw89pFwupy996UsT8e0AAFPQhAygG2+8UW+99Zbuuece9fT06JOf/KSeffbZ970wAQDw0TVhSQjr1q3TunXrzvj/z2nIOL/RLBN3fwNbrfFNYMX8iHNtxPhO+4jc193aUG/qfbzP/Z32hbItfaAmSNnq0+7pE9k623bOMrzDvWx8B/rIcM65dqbxnfb9hneVS1LjzAbn2qYZ7ukDklRbV+tcmwxsSSJByv353Wx9g6l3LOp+3tYYn2cuGa57SUoa3qRZLdnOw7ghEzMwJlWUCu7neDnivo2ub+H2/io4AMBHEwMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxYRF8ZyteQ1Z57/j3l8Ycu57PD9sWseQoTxVtUXazGxodq/N1pl6X/Cxec619Y2zTL0Lxn0YhhXn2rnzzjP1rqvNONdWjcfnyNHfO9cmAlsESqYha6pP17hH4GRqbOdKxbBfAsM6JGlWs3v+YyxuuzuKxd0jalSynbM1xkibZLHoXFsetsX8VAvu0T3ViHu8lyQlEu6xWoWY+zoqcjuneAQEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLSZsGVygVFVXarTbnP0WrjDNM6CpXQuTZtnOdhqsa5tjZly/f65MfOdy+OxEy9MylbTlZ+2D2rr76hwdS759hx59q6hkZT71ktrc61QV2tqff8lC1T7a2jR5xrZ2QbTL3Thuy4VNq27pThHK+vuGcGSlIk6n5t5gfcc8ze5d5bkmJl97UHhvsUSXrHEEiZK9l616QMWXCG6L2KYy2PgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXkzaKJ5cWFIprDrVllKBc998kDCtI5vJOtfGI7Z5Xsq7x3eUQlvERrGQd64dHBw09Q4a3PeJJNUk3PdLvaFWkvoM5WHVFvVSP8M9tilvOzya2WSLVqrkR5xra4wxP9mZM51rM5mMqXdfn/u51dTUbOo9Y2aDc+2brxdMvQtDtmsiFXW/K80k3O+vJGnQUB+P2e7Sq6F7vk6u4B5nVKm63XfzCAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxaTNgosmU4om3JZXCWPOfQcGbZlQsaR7plo6SJl6N9TVO9cmqklT74HckHNtpt6WS9Z74i1TfcaQv1dTV2vq3TS7xbl2SO7niSTFa933S6xiy5mrSdu2s9rc6lxbHHbPjZNs52FtvS0HMJdzv34s2W6SlEy6n1cjw/2m3m+V3LLMTkpE+5xrWxsaTb1TCff7leND7te9JBXLhvO2Ygg8rLrV8ggIAODFuA+gb37zm4pEImNuixYtGu9vAwCY4ibkV3Cf+MQn9MILL/zvN4lP2t/0AQA8mZDJEI/H1drq/jtrAMBHz4Q8B/Taa6+pra1NCxYs0Be/+EUdOnTotLWFQkEDAwNjbgCA6W/cB9CyZcu0efNmPfvss9q0aZMOHjyoz3zmM6f9q5tdXV3KZrOjt/b29vFeEgBgEhr3AbR69Wr9+Z//uRYvXqyVK1fq3//939XX16ef/OQnp6zfsGGD+vv7R2+HDx8e7yUBACahCX91QENDgz7+8Y9r//79p/x6EAQKAtvfSAcATH0T/j6goaEhHThwQLNnz57obwUAmELGfQB9+ctfVnd3t15//XX98pe/1Oc+9znFYjF9/vOfH+9vBQCYwsb9V3BvvvmmPv/5z+vEiROaNWuWPv3pT2vnzp2aNWuWqU9YjSqsus3H4X73uI9YYItjqeTcY00yWVvERiaVca6NlW0/K8Tj7tE9dXXu65Ckd46fMNVXR8rOtbOj7vEqktQ0q9m5Nla0xatEUu77sFJx30ZJisVtv3aun+F+bpXTtrgpRSPOpZGI7Txsa2tzrq0a44wKI+7XvSK2u7razAxTfXOL+7lVrpRMvVMDp34B16kMFWzHPhp1P54ZQ9RYpeK2P8Z9AD3++OPj3RIAMA2RBQcA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLC/xzDmSoUiwqrbtlQ0ZJ7tlJdwrbJDYm0c23amDeViLnnnkVC97wuSZIh9qxatWWk1dU3mOrTSfcMqQUXXGzqHdS457UlRoqm3rmSe77bcNWQSyYpmXRft1UlacvTq4SG2ojtPEwl3TPvykVbRtrgwJBz7ciw7fgEafdzVpKShqzLkZGcqXc04p5f2Zq3bWfBcI7Hqu7HvuyY68cjIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAF5M2iiceiSruGEExI+UeaxJJuEeDSFI25h7Fk4nb4jsSUffdX6y6R2ZIUjrtvu7aVI2pd8wYOXTo9cPOtWVjLFBN0rAPBwdMvRVzP6+Sads+jEfd41UkKYy7b2epaIscqquvd66NxG3rHi65R8OkA9u1OTDsHsVTDQ15Q5Kihv0tSdGo+8/y8YQtKilquCRay02m3gP97tdEJOu+D4tlt/srHgEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvJi0WXC1Qa2ChNvyIoaYp5Qx9yxadG9eGSqYesdSDc61qbR7LpkkyTGLSZJqDblxklQcsW3n8d4e59p3Thwz9W6Y6Z4flohWTL2TgfvlUY7Y8r3yA+45ZpIUqbivPW6L01ONIZMwlbblteUL7tdP2ZAbJ0nRiPs+iRmy2iQpMN5PREL3nR41HEtJUrFkWEjE1jo34lybSrqf41HHdfAICADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAODFpM2CCyIxBZGYU2085j5Hk4bcK0kqF9zzqUb6Bk29W8+b61wbjRszuHLDzrURY35UWC6a6pOhe/bVsDEL7p1D7lljuf4BU+9S1D0jL1Yzw9Q7lG2fxwz1taHbdXNS+YT7fhk+fsLUu1B0zw1M1NgyCefPmuVc21eXNfUeKtrO8ZFh92y/at6WpVipGrLjLMGYkrLZeufawZL7umNyWwePgAAAXpgH0EsvvaRrr71WbW1tikQievLJJ8d8PQxD3XPPPZo9e7bS6bRWrFih1157bbzWCwCYJswDKJfLacmSJdq4ceMpv/7ggw/qe9/7nh5++GG9/PLLqq2t1cqVK5XP26LWAQDTm/k5oNWrV2v16tWn/FoYhnrooYf09a9/Xdddd50k6Yc//KFaWlr05JNP6qabbjq71QIApo1xfQ7o4MGD6unp0YoVK0Y/l81mtWzZMu3YseOU/6dQKGhgYGDMDQAw/Y3rAOrpefcvX7a0tIz5fEtLy+jX3qurq0vZbHb01t7ePp5LAgBMUt5fBbdhwwb19/eP3g4fPux7SQCAc2BcB1Bra6skqbe3d8zne3t7R7/2XkEQqL6+fswNADD9jesAmj9/vlpbW7Vt27bRzw0MDOjll19WR0fHeH4rAMAUZ34V3NDQkPbv3z/68cGDB7Vnzx41NjZq7ty5uuuuu/QP//APuuCCCzR//nx94xvfUFtbm66//vrxXDcAYIozD6Bdu3bps5/97OjH69evlyStXbtWmzdv1le+8hXlcjnddttt6uvr06c//Wk9++yzSqVSpu9Tm21QKplwqrVsRNEQDSJJ1bJ7DEbSEAkkSVFDYkpuOGfqXVfr/qvMeFBj6h0a44zqMhnn2uKI7fj0vefXvR+knOs39S5W3Q9QpMZ2fKxRPEHSEAtkObEkFUvusTPl4oip9zvvvONcm66tM/VuO8/9BUvZlO0cL4RlU30u4nZfJUnDJffYHkkKDfdB1artvKo1POVRm3c/x+Olkludc8c/uOqqqxSGp8/5iUQiuv/++3X//fdbWwMAPkK8vwoOAPDRxAACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4YY7iOVfS2axSyaRTbbXknh9WGBk2rSMSdZ/R9Q1ZU29LLt1QLm/qPWvWec61Qca27mjqhKk+Xevev2TMsio4Zk69W2zLa0snAvdaW9Sh+t92z0iTpMqI+9qrMdtlXVvvnjMXrXWvlaRyxT077niPe66fJFVy7r3rZ7V8eNH/lbLl0jU1z3auzRlPlhOH3P9GWmHIdj9Rl6l1rp3b5n6fki+43bfxCAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWkjeKJRqVozK02N+wex1LT0GhaRyoaOtdmszNMvUtV997plC2+I593j+SIxRx39B8ExrWUKxXn2sHBIVPvhoz7Ph8quK9DksK8e2xTMTpg6l0qlU31lUrVuTYaT9jWUnaPhEoZj33S8DNu0RiTdXzYPYpHCds53jDfdj9xvM89Wun3v3/D1Ls86L6d+Zz7sZSkllnNzrWRivv9bKzidtx5BAQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwYtJmwZWrJZUrEafaSMx9M8KobZNDw4iuusd1SZIiodv2SZJ75buiMfeFlwxZbZIUidpWE6Td88MqxrXEE+69g7oGU+98zj2D68Rx9ywwSSoXbZldhaJ7bqDlepCkiCHvsDawZcElEu5rCQy1klQouOcdHjtiy19rXrjQVD/SN+hc+1ZPr6l3XW3GuTZquNYkqWK4Z3mr95hzbb5YdKrjERAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwItJG8WTGxpWOVlyqk0kAue+kdCWl1MsudcPj9jiVaIVw/yPJU29FXGP2IgZI1BUsa0lk613ri0NuEeaSNLAgHtcTizmfp5IUjXqHgv0ztu2eJXc0ICpPjRcqlVjcFM05l5bzLgfS0lqNBz7Qn7Y1LuYzznXGlOyFA/Lpvq6tPu5FTNcm5JUKrvdD77L1nvQsA/fHnCPmyqU3NbMIyAAgBcMIACAF+YB9NJLL+naa69VW1ubIpGInnzyyTFfv/nmmxWJRMbcVq1aNV7rBQBME+YBlMvltGTJEm3cuPG0NatWrdLRo0dHb4899thZLRIAMP2YX4SwevVqrV69+gNrgiBQa2vrGS8KADD9TchzQNu3b1dzc7MuvPBC3XHHHTpx4sRpawuFggYGBsbcAADT37gPoFWrVumHP/yhtm3bpn/6p39Sd3e3Vq9efdq/dNnV1aVsNjt6a29vH+8lAQAmoXF/H9BNN900+u9LL71Uixcv1vnnn6/t27dr+fLl76vfsGGD1q9fP/rxwMAAQwgAPgIm/GXYCxYsUFNTk/bv33/KrwdBoPr6+jE3AMD0N+ED6M0339SJEyc0e/bsif5WAIApxPwruKGhoTGPZg4ePKg9e/aosbFRjY2Nuu+++7RmzRq1trbqwIED+spXvqKFCxdq5cqV47pwAMDUZh5Au3bt0mc/+9nRj08+f7N27Vpt2rRJe/fu1b/+67+qr69PbW1tuuaaa/T3f//3CgJbDlehUJSqoVNtpeie2xQN3XqelEjVONcWDeuQpCDqvvujcVvGUzLpntdWW1dr6j1cMeZk1dU51/a8dfpXTJ7KoTfedK5tnj3T1Ht4pOhc299ny7AbGbbVx+Jp59qy8RwP0gnn2lQmY+pd0+D+K/UjR1439Y5W3LMXGxqypt7lgntGmiTFIinn2taWZlPv4QH3tZQdM9hOKg66n4exqnuinmuteQBdddVVCj/gBH/uueesLQEAH0FkwQEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvBj3vwc0XmLRmGLRmFPtsCHPqHFGg2kd8YR7TlYicM9fk6RIzH3+pwL3TDpJSqXcs8MMEU+SpHjcfZ9I0oxm9+yr3DvvmHofOs2f+TiVZI37PpGkXL/7eVUoueeSSVLV8dw+qcFw3lYdMxRPqlTd88Nq661ZcA3Otcm4LS8yM8N9LTOam0y9czlbFlw16n4RNdbYruXo4IhzbSJwz6STpMKw+3bGi+7ZiBXHTDoeAQEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvJi0UTzJZEJB0i3ypZJ3j4ZJ19Wa1pGd6R7hka61RWyUKoYIlJp6U+9yoexcWym4r0OS6uts21nXNNO5tjA0YOp95I3XnWsr7rtEkhSNuV8emUbb8QnSWVN9Tdo9RqhUco9MkaSw6r5jampt109giOJpnfMxU+/MTPfzMNvaYuqdG7LtQw0NO5cW+2wxP7XxiHNtJm27NocM90FqcD/H80TxAAAmMwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMCLSZsFp0r13ZuDMAyd2+ZH8qZlNCWTzrWxpG13losV59qB4SFT74Zkyrk2GnPPmpKkoUFbXltN4L4PG5ubbb0bG51rY4ZjKUlB2f14Nre2mnrPv3iJqf71gweda4/1HDX1ThmOTzpry7BLN89yX8fxt029I1G3+wdJqsnMsPUObPmIgyX3PL3arPv9lSTVpd2v5bDsfp8iSfHA/fppjLvn6Q3nC051PAICAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxaaN4Thx/W8m42/LyIyPOfROJwLSOoQH3CJxCpWjqfaLvhHNtMlVr6p1MuW9nzJYMYtrfklTIue/DxkZbZEpj23nuxSO24xNW3CNqCgVb70NHfm+qL4buESup+jpT70TU/efQiGKm3kGQdq4tx229jxw45FzbPHe+qXeyzrgPa93jqdJ17vtEkspF9+stX7Jdm0GN+/1KZoZ7rFLU8T6CR0AAAC9MA6irq0uXXXaZMpmMmpubdf3112vfvn1javL5vDo7OzVz5kzV1dVpzZo16u3tHddFAwCmPtMA6u7uVmdnp3bu3Knnn39epVJJ11xzjXK53GjN3XffraefflpPPPGEuru7deTIEd1www3jvnAAwNRmeg7o2WefHfPx5s2b1dzcrN27d+vKK69Uf3+/HnnkEW3ZskVXX321JOnRRx/VRRddpJ07d+pTn/rU+K0cADClndVzQP39/ZKkxj/8TZbdu3erVCppxYoVozWLFi3S3LlztWPHjlP2KBQKGhgYGHMDAEx/ZzyAqtWq7rrrLl1xxRW65JJLJEk9PT1KJpNqaGgYU9vS0qKenp5T9unq6lI2mx29tbe3n+mSAABTyBkPoM7OTr366qt6/PHHz2oBGzZsUH9//+jt8OHDZ9UPADA1nNH7gNatW6dnnnlGL730kubMmTP6+dbWVhWLRfX19Y15FNTb26vW0/zJ4iAIFAS29+YAAKY+0yOgMAy1bt06bd26VS+++KLmzx/75q6lS5cqkUho27Zto5/bt2+fDh06pI6OjvFZMQBgWjA9Aurs7NSWLVv01FNPKZPJjD6vk81mlU6nlc1mdcstt2j9+vVqbGxUfX297rzzTnV0dPAKOADAGKYBtGnTJknSVVddNebzjz76qG6++WZJ0ne+8x1Fo1GtWbNGhUJBK1eu1A9+8INxWSwAYPowDaAw/PDQsFQqpY0bN2rjxo1nvChJikTjisbclhc1PIcUMz7fFIu451PFFTH1ztTWONcWq1VT76HBPvfictnUOxF3z0iTpOEh9/6pdMrUu/W8Nufa3+8/YOpdNWTkDY8UTL1nNWRN9XNmzHOura2x7cPf/eY3zrWH3nDPX5Okme2znWsvWrTI1PudQ0eda48ff8fUe8kVy0z1g/nchxf9QWlk2NS7Errfr6TrbZmREblfy5WY+zqqjrVkwQEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvDijP8dwLsyZP0+ppFtMRNkhImi0tlQyraNqiKmJh7bd2TSj0bn2xGC/qXc8asiRMf4YUhMkTPXJuHv8UbVsOz6DQ4POtUOGWknKpN1jTZqamky9L/jERab64dyQc206sEUlNc1uca59+60+U+/AkE7VOMv9epCkpX/yaefa199409S7Uq6Y6mfMmOFc25OzXcuB4XrL1Nkinix3h+8MuUcIDRfzTnU8AgIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4MWmz4ObObVdNKuVUWzHkTfWdeMe0jqQMzStVU+9UzH33N2fds6YkKdTE5eOlA/dsN0maNWOWc+1I3i1D6qT+t92PZ7Y+Y+rd3OKekTZSMmTvScrni6b6Nw4fcq5tn3OeqXf7gvOda2PBEVPvYsV9O3PFnKl368K5zrXliO1n7V/t2m2qX3jxQufadNaW1xYJ3e9XglSdqXeh5J4xGDVMC9daHgEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALyYtFE8bx87phHHyJdoLObcNx4aonUkVaLuEStV2aJ4IhX33s2ZelPv/pEB59p8wtRa6ZTttIlF3fdLtWSLqAlibnFNkjRzji3OqBq6R8MU3h429S4OFUz1ZUOkTbreFscSjbrvw2K+bOo9GBt0rk2kbT8PV8ruEVKxuO3aLIzYYoEGDBFSYZ0tiicZcb/PKlVsxyceuF/8QdX9HKxU3O6TeQQEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLSZsEN9PWrmEw61aZT7llWyYRbz5NSmRrn2iBtC1UbKbjngaWTbrl4J8Xknh+VitlOg2jVPcNOsmV2haEts6tkyI5L19gyuCqG7KtyxZbt9lbvUVN91pDvNjI8ZOpdHHbPayvkbBlpdTXuGYblcsXUu2TYTuNppfq6tKk+HnO/3ioFW15bJWq4lgPbtRwpuT8GqTrmu0lSpUwWHABgEjMNoK6uLl122WXKZDJqbm7W9ddfr3379o2pueqqqxSJRMbcbr/99nFdNABg6jMNoO7ubnV2dmrnzp16/vnnVSqVdM011yj3noflt956q44ePTp6e/DBB8d10QCAqc/0C8Nnn312zMebN29Wc3Ozdu/erSuvvHL08zU1NWptbR2fFQIApqWzeg6ov79fktTY2Djm8z/60Y/U1NSkSy65RBs2bNDw8On/WFehUNDAwMCYGwBg+jvjV8FVq1XddddduuKKK3TJJZeMfv4LX/iC5s2bp7a2Nu3du1df/epXtW/fPv30pz89ZZ+uri7dd999Z7oMAMAUdcYDqLOzU6+++qp+8YtfjPn8bbfdNvrvSy+9VLNnz9by5ct14MABnX/++e/rs2HDBq1fv37044GBAbW3t5/psgAAU8QZDaB169bpmWee0UsvvaQ5c+Z8YO2yZcskSfv37z/lAAqCQEFge48LAGDqMw2gMAx15513auvWrdq+fbvmz5//of9nz549kqTZs2ef0QIBANOTaQB1dnZqy5Yteuqpp5TJZNTT0yNJymazSqfTOnDggLZs2aI/+7M/08yZM7V3717dfffduvLKK7V48eIJ2QAAwNRkGkCbNm2S9O6bTf+vRx99VDfffLOSyaReeOEFPfTQQ8rlcmpvb9eaNWv09a9/fdwWDACYHsy/gvsg7e3t6u7uPqsFnVSulFWuuL1KPGHIMksmbXltUcML1eMx96wkyZYFd+StY6bedTXuz6vVpGz5eMUR94w0SYpG3I/Ph5xi7xOJuYd8VSO2DK6yYTHxlO0dDYOD75jqmxtmOdcO9Nl6jwy4n4cR2fLaqobcwKF83tRbcffrLYjYrs1IaNvOQs797SO1huxKSQrL7tdbYdi2D/NDhhzA/OnfTvO+viNu6yALDgDgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxRn/PaCJ9m4UT8SpNqy6x2aM5HKmdYSG1Jl80RZpY0gpUW1dnan3SNE9XqVkiASSpHjctp3JID1hvWvrap1rjWksKuQNMT9RW4aQdS2WiKLcwJCpd6Xgfv3U1rofS0mqul3CkqRC0RaVFBricopl92MpSZXQVm+5hmIR27mSiLjvxJEh97gcSSo7RuZI0vCg+3k1nHfbHzwCAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxabPgamvTSiXdcsESMfc5mq6tMa2jEJaca/NlW6Za1JB7VjVsoySVDBl2kaitd7XinsElSYWi+2KiEdtaTNlxxu2sKOFcO2zI3pOkWDow1ZcNoWrRqDGTMOq+9nLEduwjcs89i0WNAXlyz2sLatwzAyVJRVteW6nsvl+ixusnFnM/nnHjXXqh4L4Pc/3uOZojBbdrnkdAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvJnEUT43SgVsERbzqPkdTKVsESqlQdi8ObfEdprUYI2oS6ZRzbdkYI1ObTpvqFbrHyIzk86bWQa37do7kDflEksoV93UHNbaIp3jSdh7mDVEvoXu6iiQpaTieUduyVZupc65NGPdJsex+rgQp2/EJZrqfV5LUPzzgXFs0HEtJShkipEZytmv5xIl+59r8sPv1kyeKBwAwmTGAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeTNosuGQyUNIxG8qSfTUwnDOtI55y30XZZMbUu77Ovb4adc8lk6R8wT0na7BsyLuTZIwaUzTuvg9r62wZXPFEzLk2X7StPJVyz/ZLBk2m3ul0rak+Ivfjb6mVbPswWWvLa0sn3OsLI7YcwEq+5FwbTdv2SdBgu5bLoXu+W6Hivm5Jykfc1x6tcc/ek6QZ5811rm2suq972PFY8ggIAOCFaQBt2rRJixcvVn19verr69XR0aGf/exno1/P5/Pq7OzUzJkzVVdXpzVr1qi3t3fcFw0AmPpMA2jOnDl64IEHtHv3bu3atUtXX321rrvuOv3mN7+RJN199916+umn9cQTT6i7u1tHjhzRDTfcMCELBwBMbabngK699toxH//jP/6jNm3apJ07d2rOnDl65JFHtGXLFl199dWSpEcffVQXXXSRdu7cqU996lPjt2oAwJR3xs8BVSoVPf7448rlcuro6NDu3btVKpW0YsWK0ZpFixZp7ty52rFjx2n7FAoFDQwMjLkBAKY/8wD69a9/rbq6OgVBoNtvv11bt27VxRdfrJ6eHiWTSTU0NIypb2lpUU9Pz2n7dXV1KZvNjt7a29vNGwEAmHrMA+jCCy/Unj179PLLL+uOO+7Q2rVr9dvf/vaMF7Bhwwb19/eP3g4fPnzGvQAAU4f5fUDJZFILFy6UJC1dulT//d//re9+97u68cYbVSwW1dfXN+ZRUG9vr1pbW0/bLwgCBYHxD80DAKa8s34fULVaVaFQ0NKlS5VIJLRt27bRr+3bt0+HDh1SR0fH2X4bAMA0Y3oEtGHDBq1evVpz587V4OCgtmzZou3bt+u5555TNpvVLbfcovXr16uxsVH19fW688471dHRwSvgAADvYxpAx44d01/8xV/o6NGjymazWrx4sZ577jn96Z/+qSTpO9/5jqLRqNasWaNCoaCVK1fqBz/4wRmuLC4l3JaXiCWd2ybitkiOZNI9piQesT2grK91j80YNEYIJWPu627INph6p4O0qX5Gxr1/ZlajqXcycD/2w8Z9ODjU71xbLBZNvbMNtu2Mx9wv1WQyYeqdt6w9Zrt+olX3OKNyxP2claRkwv3Yp6z7JD9iqo+5b6ZShnVLUn/ePaIok82aetfPcD+vykODzrXxpNv+Mw2gRx555AO/nkqltHHjRm3cuNHSFgDwEUQWHADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAtzGvZEC8N3My1GCgXn/1My5GBYo3jKVfcZbY3iiUXdd/+wIY5DkkqVknNtJWLbJ2HVGGcUd481iQwP23qXy861wyO23rlh93UXS7YonljSthZTFE/JGDtjWXvUGMUTul+bhWHbOV4su687ZkzcL1TdzytJqgy7r6VqjDOyXPtR2Y59wnAfVDZcD7mRd2vDDzn+kfDDKs6xN998kz9KBwDTwOHDhzVnzpzTfn3SDaBqtaojR44ok8ko8n9+Mh8YGFB7e7sOHz6s+vp6jyucWGzn9PFR2EaJ7ZxuxmM7wzDU4OCg2traFI2e/jdDk+5XcNFo9AMnZn19/bQ++CexndPHR2EbJbZzujnb7cw6JHPzIgQAgBcMIACAF1NmAAVBoHvvvVeB8dUsUw3bOX18FLZRYjunm3O5nZPuRQgAgI+GKfMICAAwvTCAAABeMIAAAF4wgAAAXkyZAbRx40Z97GMfUyqV0rJly/Rf//Vfvpc0rr75zW8qEomMuS1atMj3ss7KSy+9pGuvvVZtbW2KRCJ68sknx3w9DEPdc889mj17ttLptFasWKHXXnvNz2LPwodt58033/y+Y7tq1So/iz1DXV1duuyyy5TJZNTc3Kzrr79e+/btG1OTz+fV2dmpmTNnqq6uTmvWrFFvb6+nFZ8Zl+286qqr3nc8b7/9dk8rPjObNm3S4sWLR99s2tHRoZ/97GejXz9Xx3JKDKAf//jHWr9+ve6991796le/0pIlS7Ry5UodO3bM99LG1Sc+8QkdPXp09PaLX/zC95LOSi6X05IlS7Rx48ZTfv3BBx/U9773PT388MN6+eWXVVtbq5UrVypvDF717cO2U5JWrVo15tg+9thj53CFZ6+7u1udnZ3auXOnnn/+eZVKJV1zzTXK5XKjNXfffbeefvppPfHEE+ru7taRI0d0ww03eFy1nct2StKtt9465ng++OCDnlZ8ZubMmaMHHnhAu3fv1q5du3T11Vfruuuu029+8xtJ5/BYhlPA5ZdfHnZ2do5+XKlUwra2trCrq8vjqsbXvffeGy5ZssT3MiaMpHDr1q2jH1er1bC1tTX81re+Nfq5vr6+MAiC8LHHHvOwwvHx3u0MwzBcu3ZteN1113lZz0Q5duxYKCns7u4Ow/DdY5dIJMInnnhitOZ3v/tdKCncsWOHr2WetfduZxiG4Z/8yZ+Ef/3Xf+1vURNkxowZ4T//8z+f02M56R8BFYtF7d69WytWrBj9XDQa1YoVK7Rjxw6PKxt/r732mtra2rRgwQJ98Ytf1KFDh3wvacIcPHhQPT09Y45rNpvVsmXLpt1xlaTt27erublZF154oe644w6dOHHC95LOSn9/vySpsbFRkrR7926VSqUxx3PRokWaO3fulD6e793Ok370ox+pqalJl1xyiTZs2KBh458RmUwqlYoef/xx5XI5dXR0nNNjOenCSN/r+PHjqlQqamlpGfP5lpYW/c///I+nVY2/ZcuWafPmzbrwwgt19OhR3XffffrMZz6jV199VZlMxvfyxl1PT48knfK4nvzadLFq1SrdcMMNmj9/vg4cOKC/+7u/0+rVq7Vjxw7FYjHfyzOrVqu66667dMUVV+iSSy6R9O7xTCaTamhoGFM7lY/nqbZTkr7whS9o3rx5amtr0969e/XVr35V+/bt009/+lOPq7X79a9/rY6ODuXzedXV1Wnr1q26+OKLtWfPnnN2LCf9APqoWL169ei/Fy9erGXLlmnevHn6yU9+oltuucXjynC2brrpptF/X3rppVq8eLHOP/98bd++XcuXL/e4sjPT2dmpV199dco/R/lhTredt9122+i/L730Us2ePVvLly/XgQMHdP7555/rZZ6xCy+8UHv27FF/f7/+7d/+TWvXrlV3d/c5XcOk/xVcU1OTYrHY+16B0dvbq9bWVk+rmngNDQ36+Mc/rv379/teyoQ4eew+asdVkhYsWKCmpqYpeWzXrVunZ555Rj//+c/H/NmU1tZWFYtF9fX1jamfqsfzdNt5KsuWLZOkKXc8k8mkFi5cqKVLl6qrq0tLlizRd7/73XN6LCf9AEomk1q6dKm2bds2+rlqtapt27apo6PD48om1tDQkA4cOKDZs2f7XsqEmD9/vlpbW8cc14GBAb388svT+rhK7/7V3xMnTkypYxuGodatW6etW7fqxRdf1Pz588d8fenSpUokEmOO5759+3To0KEpdTw/bDtPZc+ePZI0pY7nqVSrVRUKhXN7LMf1JQ0T5PHHHw+DIAg3b94c/va3vw1vu+22sKGhIezp6fG9tHHzN3/zN+H27dvDgwcPhv/5n/8ZrlixImxqagqPHTvme2lnbHBwMHzllVfCV155JZQUfvvb3w5feeWV8I033gjDMAwfeOCBsKGhIXzqqafCvXv3htddd104f/78cGRkxPPKbT5oOwcHB8Mvf/nL4Y4dO8KDBw+GL7zwQvhHf/RH4QUXXBDm83nfS3d2xx13hNlsNty+fXt49OjR0dvw8PBoze233x7OnTs3fPHFF8Ndu3aFHR0dYUdHh8dV233Ydu7fvz+8//77w127doUHDx4Mn3rqqXDBggXhlVde6XnlNl/72tfC7u7u8ODBg+HevXvDr33ta2EkEgn/4z/+IwzDc3csp8QACsMw/P73vx/OnTs3TCaT4eWXXx7u3LnT95LG1Y033hjOnj07TCaT4XnnnRfeeOON4f79+30v66z8/Oc/DyW977Z27dowDN99KfY3vvGNsKWlJQyCIFy+fHm4b98+v4s+Ax+0ncPDw+E111wTzpo1K0wkEuG8efPCW2+9dcr98HSq7ZMUPvroo6M1IyMj4V/91V+FM2bMCGtqasLPfe5z4dGjR/0t+gx82HYeOnQovPLKK8PGxsYwCIJw4cKF4d/+7d+G/f39fhdu9Jd/+ZfhvHnzwmQyGc6aNStcvnz56PAJw3N3LPlzDAAALyb9c0AAgOmJAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADw4v8D9pGWPqfmrLEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 4\n", + "NN answer: 4\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "3h6VGDRrLnNC" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "fig, ax = plt.subplots(figsize=(6, 6))\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n", + "disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n", + "plt.tight_layout() # чтобы всё влезло\n", + "plt.show()" + ], + "metadata": { + "id": "od56oyyzM0nw", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 888 + }, + "outputId": "7d2fdd35-f04a-457f-b746-0ad790ff36d8" + }, + "execution_count": 36, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step\n", + " precision recall f1-score support\n", + "\n", + " airplane 0.90 0.83 0.86 1015\n", + " automobile 0.94 0.94 0.94 933\n", + " bird 0.85 0.79 0.82 1010\n", + " cat 0.78 0.67 0.72 1025\n", + " deer 0.79 0.89 0.84 998\n", + " dog 0.77 0.82 0.79 1006\n", + " frog 0.83 0.94 0.88 1010\n", + " horse 0.94 0.84 0.89 1005\n", + " ship 0.90 0.93 0.91 1001\n", + " truck 0.89 0.94 0.92 997\n", + "\n", + " accuracy 0.86 10000\n", + " macro avg 0.86 0.86 0.86 10000\n", + "weighted avg 0.86 0.86 0.86 10000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAIvCAYAAACRJhT+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA99FJREFUeJzs3Xl4TOcXwPHvzCSZZLLvEUKEiH0ptZXSalG06GprSxXVqqpd7Vq0WqVUN62t1aKbVhctiqKK1C5BIpFE9n1fZvv9MRHNL0FCJhPN+TzPPI+59857T66ZuWfOfd/3KoxGoxEhhBBCCIHS0gEIIYQQQtQUkhgJIYQQQhSTxEgIIYQQopgkRkIIIYQQxSQxEkIIIYQoJomREEIIIUQxSYyEEEIIIYpZWToAIYQQQlSvgoICioqKzL4fGxsbbG1tzb6fqiSJkRBCCFGLFBQU0LCBAwlJerPvy8fHh8jIyDsqOZLESAghhKhFioqKSEjSE/WPP06O5utRk5VtoEH7yxQVFUliJIQQQoiazcFRgYOjwmztGzBf2+Ykna+FEEIIIYpJxUgIIYSohfRGA3oz3kZebzSYr3EzkoqREEIIIUQxqRgJIYQQtZABIwbMVzIyZ9vmJBUjIYQQQohiUjESQgghaiEDBszZC8i8rZuPVIyEEEIIIYpJxUgIIYSohfRGI3qj+foBmbNtc5KKkRBCCCFEMakYCSGEELWQjEorn1SMhBBCCCGKScVICCGEqIUMGNFLxagMqRgJIYQQQhSTxEgIIYQQophcShNCCCFqIel8XT6pGAkhhBBCFJOKkRBCCFELyQSP5ZOKkRBCCCFEMakYCSGEELWQofhhzvbvRFIxEkIIIYQoJhUjIYQQohbSm3mCR3O2bU5SMRJCCCGEKCYVIyGEEKIW0htND3O2fyeSipEQQgghRDGpGAkhhBC1kIxKK59UjIQQQgghiknFSAghhKiFDCjQozBr+3ciqRgJIYQQQhSTipEQQghRCxmMpoc5278TScVICCGEEKKYVIyEEEKIWkhv5j5G5mzbnKRiJIQQQghRTCpGQgghRC0kFaPyScVICCGEEKKYVIyEEEKIWshgVGAwmnEeIzO2bU5SMRJCCCGEKCYVIyGEEKIWkj5G5ZOKkRBCCCFEMakYCSGEELWQHiV6M9ZH9GZr2bykYiSEEEIIUUwqRkIIIUQtZDTzqDSjjEoTQgghhLizScVICCGEqIVkVFr5pGIkhBBCCFFMKkZCCCFELaQ3KtEbzTgqzWi2ps1KKkZCCCGEEMWkYiSEEELUQgYUGMxYHzFwZ5aMpGIkhBBCCFFMKkZCCCFELSSj0sonFSMhhBBCiGJSMRJCCCFqIfOPSpM+RkIIIYQQdzSpGAkhhBC1kGlUmvn6AZmzbXOSipEQQgghRDGpGAkhhBC1kAElepnHqAypGAkhhBBCFJOKkRBCCFELyai08knFSAghhBCimFSMhBBCiFrIgFLulVYOqRgJIYQQQhSTipEQQghRC+mNCvRGM94rzYxtm5NUjIQQQgghiknFSAghhKiF9Gaex0gvfYyEEEIIIe5sUjESQgghaiGDUYnBjPMYGWQeIyGEEEKIO5tUjIQQQohaSPoYlU8qRkIIIYQQxaRiJIQQQtRCBsw715DBbC2bl1SMhBBCCCGKScVICCGEqIXMf6+0O7P2cmdGLYQQQghhBlIx+g8yGAzExcXh6OiIQnFn3qtGCCFqM6PRSHZ2Nr6+viiV5qlh6I1K9Gacx8icbZuTJEb/QXFxcfj5+Vk6DCGEELcpJiaGevXqWTqMWkUSo/8gR0dHANYdbILGQWXhaK75qF2QpUMoQ6m2sXQIZdTEyWKNWp2lQyjLWAPHvChq4C9kg97SEZRh5e1l6RDKMObnWzqEUnTGIvZnbyv5Pv+v0+v1LFiwgC+++IKEhAR8fX0ZOXIkc+bMKbnyYTQamT9/PmvXriUjI4N77rmHDz/8kMDAwJJ20tLSePnll9mxYwdKpZLHHnuM9957DwcHhwrHIonRf9DVN5HGQYXGseYkRlYKa0uHUIZSUQMToxo4KZqxRl6SlcSoQmpgTFbKGvi5U9S8BBIwa3cIAwoMmLf9inrrrbf48MMP2bhxIy1atCA4OJhRo0bh7OzMxIkTAVi2bBmrVq1i48aNNGzYkLlz59KnTx9CQkKwtbUFYPjw4cTHx7Nr1y60Wi2jRo1i7NixfPnllxWORRIjIYQQQljUX3/9xcCBA+nfvz8A/v7+fPXVVxw9ehQwVYtWrlzJnDlzGDhwIACbNm3C29ub7du3M2TIEEJDQ9m5cyfHjh2jQ4cOAKxevZp+/frxzjvv4OvrW6FYat5PCSGEEEKY3dXO1+Z8AGRlZZV6FBYWlomla9eu7Nmzh4sXLwJw6tQpDh48yEMPPQRAZGQkCQkJPPDAAyWvcXZ2plOnThw+fBiAw4cP4+LiUpIUATzwwAMolUqOHDlS4eMiFSMhhBBCmM3/DwaaP38+CxYsKLVs5syZZGVl0bRpU1QqFXq9nsWLFzN8+HAAEhISAPD29i71Om9v75J1CQkJeHmV7r9mZWWFm5tbyTYVIYmREEIIUQuZ/yayprZjYmJwcnIqWa5Wq8tsu23bNjZv3syXX35JixYtOHnyJJMmTcLX15dnn33WbDGWRxIjIYQQQpiNk5NTqcSoPNOmTWPmzJkMGTIEgFatWhEVFcXSpUt59tln8fHxASAxMZE6deqUvC4xMZG2bdsC4OPjQ1JSUql2dTodaWlpJa+vCOljJIQQQtRCBqPC7I+KysvLKzORpUqlwmAwjT5t2LAhPj4+7Nmzp2R9VlYWR44coUuXLgB06dKFjIwM/vnnn5Jt/vjjDwwGA506dapwLFIxEkIIIYRFPfzwwyxevJj69evTokULTpw4wbvvvstzzz0HmKYtmDRpEm+88QaBgYElw/V9fX0ZNGgQAM2aNaNv376MGTOGjz76CK1Wy4QJExgyZEiFR6SBJEZCCCFErWQwcx+jytxEdvXq1cydO5cXX3yRpKQkfH19GTduHPPmzSvZZvr06eTm5jJ27FgyMjLo1q0bO3fuLJnDCGDz5s1MmDCBXr16lUzwuGrVqkrFrTAaa+I8u+J2ZGVl4ezszJaTzWrUBI+rAptZOoQylOV0ArS0mviRlJmvK6gGTqZYI2e+9vG++UbVzJhX82a+3pP1BZmZmTftn1NZV88Rbx7rga2D+eojBTk6Zt693yx/gzlJxUgIIYSohQxGJQYz3ujVnG2bU61LjC5fvkzDhg05ceJESU/2WzVy5EgyMjLYvn17lcRWHQx6OLLKgws/OJGbbIW9l47mj2Vy90upXJ15/u/3PAj72ZHseGtU1ka8WhbQZXIyPm0LStpJj7Tm4JtexB+3Q1+kwKNpIZ0npeDXJc9ssbv7FDH6tXjuvj8Lta2BuMtqlk+uT9hpjdn2edWT42O5p0869QLyKSpQEnLckXVv+REbaVfO1kYWrbvA3T0zWTQukMO73MwS01Pj40wxNboakwPr3vLjSsS1mB4amsR9j6TSqEUu9o4GHmt9F7nZ5v3Yt+yUzRMvJBLYKh93Hy0LRgdw+DeXf21h5Jmp8fQdmoKDs56QYw6ses2PuEjb6zVpVk++lMjo1+L5/lMPPppv2Zt12tnreXZaHF37ZuLioeXSWQ0fzq/HxVP2FomnZaccnngxmcBWebj76FjwnD+HdzpXawzungWMeiWM9l1TUNvqiY/RsGJBC8JDTXG8uuAsDzwSV+o1//zlzrwJ7c0ST78hcfQfGo93XdMkhVHhGr5aU5/gA2541S1gw55j5b5uyStNOfibp1liElWr1iVGfn5+xMfH4+HhYelQLOKfj90586ULDy6Lxz2wiMQztuye6YONo4G2z6YD4NqwiB7zE3H206IrUHBivRvbR/rxzJ4INO6msvyOMX64+Bfx6OcxWNkaOLHejR1j6/HsH5ew96z60r2Ds453t4dx+i9H5owIICPViroNC8nJrJ5Lha06ZrPjc28unrZHpTIyctoVFm86z7jerSnMLx3DoOcqPpHYbcXUKZsdn3tx8bQ9SisYNTWGxZsuMPbBViUxqW0NBO93Jni/M8/NuFItcdlqDESEaPhtqwfzP40os/7JFxMZOCqZd15tQEKMDc9OjWfJF+GMub852sLq/YXZpE0e/UekEhFimaTs/736dhT+QQUse6UBaYnW3P9oGm9+FcaY+5uTmlD99xez1RiIOGfLb1+5MX/d5Wrfv4OjlrfXH+V0sBvzX76LzHRrfOvnkZNd+r6LwYfcWbmgZclzbZH53kcpiWrWL29IXJQdCoWRXoOSmLsmhJcfbceVCA3Du5Ue/dT3yXgeGx1L8AHz/EC6HXoU6M14rzRztm1OtS4xUqlUN5zPwGg0otfrsbL6bx6a+BN2BPTKoeF9uQA41dNy8ScnEk9dOzEEPZJV6jXdX0si5GsXUi+o0XTNIz9NRcZlG3otjcejqelX0z3Tkjmz2ZXUi2rsPau+avTki0mkxNmwfHL9kmWJMdXXP2juqKalnr87LYAtwccJbJnL2WPXrp0HNMvlsdHxTBzYki+PnjBrTHNGBpV6vnxaAFv/OUFgq1zOHjXFtH296b3eulNWmdebS/BeZ4L3Xq+qYGTQ6CS+WuXD4d9dAFg2yZ+tJ07TtU8G+3+svpOHrUbPjPejWDndj6ETqyeZvREbWwPd+mWw4LlGnD1iuqP6F+/60vmBTAY8ncLGtys+qqaqBO91Iniv5fqGPD4ykuRE21JJT2Jc2QqxtkhJemr1fB8c3ete6vmmlf70HxJP0zbZRIfbk55SOoHt+kAqB371oCCv5vT3FDd2Z14AvImdO3fSrVs3XFxccHd3Z8CAAVy6dAkwXUpTKBScPHkSgH379qFQKPj1119p3749arWagwcPsmDBAtq2bcvHH3+Mn58fGo2GJ598kszMzFva77/3/d1333Hfffeh0Who06ZNyX1erjp48CDdu3fHzs4OPz8/Jk6cSG5ubpUcmzrt8ok5bE96pOkXV3KomrhgOxr0KL99fRGc2+qCjaO+JAmyddXjGlDI+e+d0eYpMOjg7BYX7Nx1eLUsKLed29W5dyYXT2uY/XEkW0+dZc1vF3hoWKpZ9lURGkdTVSw781oCrbbVM2NlOGvm+5f5cqzWmDJqblLvU78Id28dxw84lizLy1Zx/qQ9zdpXzXu8oiYsucLRPU6c+FcslqRSGVFZQVFh6V/ZhQVKWnTMsVBUltWpRzLhIU7MeusUm3fvZdWXh+kzuGzls1WHdDbv3svH3x3kxVkhODoXVUt8SqWRe/slYavRE3qy7PuocYtsGjXP5fdvKz65YHW62sfInI870Z0Z9U3k5uYyefJkgoOD2bNnD0qlksGDB5dMFFWemTNn8uabbxIaGkrr1q0BCA8PZ9u2bezYsYOdO3dy4sQJXnzxxdve7+zZs5k6dSonT56kSZMmDB06FJ3ONOrn0qVL9O3bl8cee4zTp0+zdetWDh48yIQJE66738LCwjI36bueDi+k0qR/Fp/3DuD9pkF89Yg/bUem0XRg6ddE/mHPh62bsKZFECfWuzJ4Ywx2bqYTr0IBgzbGkByi5sM2xdusc2Xguhhsnc0zUqhO/SIGPJ1CXKSa14YF8NMmd8YvusIDT6SZZX83olAYGTc3inPBDkRdvPbrdeycaEKOO/L37uovmSsURl6YG8W5Y6VjqmncPLUAZKSUvhSSkWxVsq469HgkncYt81m3tM7NN64m+bkqQoLtGTYpATfvIpRKI/c/mkqz9rm4eVXfsalJfOrm0+/xK8TGaJj7Unt++caPcdPO02tAbMk2//zlzrtzW/LaCx1Yv6oJrdqns3D1cZRK843u9G+Sy7f/HOKH0weZsCCc1yc0J+ZS2X5gvR9LJDrcjtATd86ILPEfvZT22GOPlXq+bt06PD09CQkJwcHBodzXLFq0iAcffLDUsoKCAjZt2kTdunUB0zwL/fv3Z/ny5eVejrvRflu2vFYKnjp1Kv379wdg4cKFtGjRgvDwcJo2bcrSpUsZPnw4kyZNAiAwMJBVq1bRo0cPPvzww1LzNVy1dOlSFi5ceJOjYhL2iyMXfnSi74o43AKLSA5Rc2CxNw7eOpo9ei05qtc5j6E/RpKfruLcVhd+nejLk99GoXHXYzTCvgXe2LnreXxLNFZqA+e2ubBjbD2GfH8Ze6+q72OkUELYaTvWv2m6nHDpnAb/oAL6P53C7q+rNxF5adFl/JvkMfXJ5iXLOvVKp03XTCYMaFWtsVyLKQr/oHymPNH85hvXcp6+RYxfFMusoY2qvU/TzSx7xZ/Jy6P46p+z6HUQflbDvh9cCWxlvkENNZlCaSQ8xIlN7wcCEHHBiQaNcnjo8Svs+cn0vfzn79eS26hwRy6HOfDZjoO06pDGqaPu5bZ7u65E2jFh8F3YO+ro1ieFKW9eYPrTrUslRzZqPT0HJPHVh/Vv0JJl6TFvP6CaN1FExdSsb4UqEhYWxtChQwkICMDJyQl/f38AoqOjr/uaDh06lFlWv379kqQITNONGwwGLly4cFv7vVqRAkru+XL1/i6nTp1iw4YNODg4lDz69OmDwWAgMjKy3P3OmjWLzMzMkkdMTMx1/86Db3rRflwqTQZk4xFUSLPBWbQdlUbwR6W/QKw1Rlz8tdRpV8ADbyagUMG5baZ+I1cOa7i814G+K+PwbZ+PV8tC7luUiJWtkdDvzDNiJS3JiqiLpZPCmHBbvHyr95f0+AWX6XhfBjOGNSMl4VqfhrZds6hTv5BvTgbz08Uj/HTxCACzPwjjrS9DzBrTiwsv0+n+DKYPbUaKBTroVkZasqlS5OJR+v/NxVNXss7cGrfKw9VTx5qdF/gl6iS/RJ2kTddcBj6Xwi9RJ81aabiZ+Cg10x5vwiOBbRjRsRUTBzTFyspIfHTNm2+rOqSnqImOKP1jNibSHk+f61+yT4jVkJluTR0/8yWTOq2S+Gg7ws85suHdhkScd2DgM6VHxnXrk4La1sCe7V7XaUXUVP/JitHDDz9MgwYNWLt2Lb6+vhgMBlq2bElR0fWvO9vb3/5w2Iru19r62glAUTxG/urltpycHMaNG8fEiRPLtF+/fvm/PNRqdbl3Ky6PrkBZZg46hdKI0XDjXw1GA+iLR3po85Ulr6tsO7cq5Jg9fo0KSy2rG1BIUmz1nEzByPgFUXTtncaMYc1JvFI6Sdv2YR12bi09FPejnWf45I0GHNnjYraYXlwYRdfe6Uwf2ozEKzX/5JkQbUNqohXtumUTEWK65Kdx0NO0bS4/baqekaInDzoy9v7SHdenvBtNzCVbtq3xwmCm93BlFOarKMxX4eCso32PbD5dUvfmL/oPCjnpQl3/0n3P6jbIJTn++qMI3b0KcHTWkp5cfZ8HpdKItU3pbgS9H0/kyF43stJr7o8VmceofP+5xCg1NZULFy6wdu1aunfvDpg6M9+K6Oho4uLiSu6x8vfff6NUKgkKCiqzbVXt96677iIkJITGjRvfUsw30/D+HI594I6jrxb34ktpJ9a50eIJU6dybZ6CYx+407BXDvZeOgrSVZz+wpXcRCsCHzJdaqvTLh+1s55d033pOCEFK1sD57a6kHXFBv/7zNNJ9Lu1Xqz44SJDXk7kzx0uBLXNo9/wVFZOr555Z15adJmej6SyaGwT8nOUuHqYkt3cbCuKCpWkp9iU2+E6Oc6mTBJVdTFFcd/AVBaODSw3JgBXjyJcPbX4+pt+Yfs3zSc/R0lSnJqcTPN8/G01enz9ryWxPn6FBDTPIzvDiuQ4G7Z/5sXQiQnERqpJiFHz7NQ4UhOt+avUXEfmk5+rIupC6fmnCvKUZKeXXV7d2vfIQqEwEnPJlrr+hTw/J5aYS2p+32qeS0I3Y6vR49vw2g87H78iAlrkk52hIjnW/Cf87Zsb8M76ozz5XAQHdvnQpEUmfR+9wuo3Wpjis9MxbNwlDu3xJj1FTR2/PJ575SLxMRr+OWyeRHvk5EiC/3QjKV6Nxt50uaxVx0zmPn+tu0Sd+vm07JDJ/LEtzBKDMK//XGLk6uqKu7s7n3zyCXXq1CE6OpqZM2feUlu2trY8++yzvPPOO2RlZTFx4kSefPLJcvsXVdV+Z8yYQefOnZkwYQLPP/889vb2hISEsGvXLt5///1b+jv+rce8RP5e6cG++T7kpaqw99LRamgGHSekAKBQQXqEmtDvnclPU2HnqserVQGPb4nGvYnpC9LOTc/AdVc4vNyD75+uj14L7oFFDPjoCp7NCm+0+1t28ZSGRc83ZNTMeIZPSiAhxoaP5tdl7/fV079owAjTpc5lW0JLLV8+LYDd31pm0raHnzbF9PaW86WWL5/akF3FMfUfnsSISddK/Mu3hZbZpqo1aZPH21+HlTx/YYGpo+zv29xYPtmfbR94Y6sx8Mpb0Tg46Tl3zIHZIxrXuP4+lmDvqGfUzFg86mjJzlBx6FdX1r/li15nmSpWkzb5vP3ttZG1Lyw0vZd+3+rK8lfN33cmLMSZN6a2ZeSEMIaOiSAxzo5P3mnKvl9NXRAMBgX+gTn0GhCHvaOOtGQ1J/525/MPGqPTmuf95OymZcpbF3DzLCI324rIC/bMfb4lJ/5yLdmm92OJpCSoOX7I9QYtWZ7eqERvxqqOOds2p/9cYqRUKtmyZQsTJ06kZcuWBAUFsWrVKnr27Fnptho3bsyjjz5Kv379SEtLY8CAAXzwwQdm3W/r1q3Zv38/s2fPpnv37hiNRho1asRTTz1V6fjLY+Ng4N45Sdw7J6nc9VZqI/0/iC133b95typg0IbqmTDwqiO7nTmyu3pn3b3qoYBON9+oCl5TGX0bdrzpNl+8V48v3qve2ZxPH3akT727brCFgk3v+LLpneqfl+d6pj8RaOkQAPjzJ1f+/KnmnExPH3agj28bi8Zw7IAnxw6Un8QXFaqY95J5Zri+nvfmNLnpNhtX+LNxhb/5gxFm8Z9LjAAeeOABQkJKd3j99405//3vnj173vCmnePHj2f8+PHlrtuwYUOl9uvv719mXy4uLmWW3X333fz+++/XjUkIIYS4XUYUGMw4Ks14h858fWfWuYQQQgghzOA/WTESQgghxI1JH6Py3ZlRV4MFCxaU3DZECCGEELWDVIyEEEKIWshgVGAwmq8fkDnbNiepGAkhhBBCFJOKkRBCCFEL6VGiN2N9xJxtm9OdGbUQQgghhBlIxUgIIYSohaSPUfmkYiSEEEIIUUwqRkIIIUQtZECJwYz1EXO2bU53ZtRCCCGEEGYgFaP/sI/aBWGlsLZ0GCXeivjb0iGUMaOheW/0Kmobg6UDuCPoEsu/ibUlKR0cLB1CKTe6h2dV0RsV6M3YD8icbZuTVIyEEEIIIYpJxUgIIYSohWRUWvmkYiSEEEIIUUwqRkIIIUQtZDQqMRjNVx8xmrFtc7ozoxZCCCGEMAOpGAkhhBC1kB4Fesw4Ks2MbZuTVIyEEEIIIYpJxUgIIYSohQxG844cM5h/KiazkIqREEIIIUQxqRgJIYQQtZDBzKPSzNm2Od2ZUQshhBBCmIFUjIQQQohayIACgxlHjpmzbXOSipEQQgghRDGpGFWhDRs2MGnSJDIyMq67zYIFC9i+fTsnT54EYOTIkWRkZLB9+/ZqibEiNv59Dh8/bZnlP27wYM3selW+P4Medq2sx4nt7mQn2+DkXUT7x5Lp9XIciuIfHDMadir3tf1mRtNjXDwAG55vQlyohtwUa+ycdTS+J4t+M6Nx8i77t1SFpyYkck+/TPwaF1JUoCQkWMNni+tw5ZKtWfZXEQOeSaH/M6l4+xUBEHXBls0rvAne62SxmGricbrq4ZEpPD4+CTdPHREhdnwwpy4XTmosEsuIyfE8PSWx1LKYcDXP92hmkXgAWnbK4YkXkwlslYe7j44Fz/lzeKezxeK5yt2niNGvxXP3/VmobQ3EXVazfHJ9wk6b//+u/9B4+g+Nx7tuIQBRYRq+/MCP4D/d/m9LI4vWhnD3vekserEZh/e4mz22ytIbFejNOCrNnG2b0x2dGFUkEalppk6dyssvv2zpMG5oYr8glKpr4yz9mxbw5pZLHPjJPF+I+z7y5e/NXjz5TgTeTfK4ctqBr6cHYOeo555RphPFnKPHS73m/D5nvp0RQMuH0kqWNeqSxX0vxeHkWURmog0/L6nP5y8G8tK3IWaJu3WXXHZs8ODiSQ0qKyMjZ8az5KsIxvQIojBfZZZ93kxyvDXrltQhNlKNQgEPPpHGgvWXeal3E6IuWiYRqYnHCaDHI+mMnR/H6pn1OH9cw+AxySz+MoLR3YPITLW2SEyXz9syc0ijkud6nWVPLLYaAxHnbPntKzfmr7ts0ViucnDW8e72ME7/5cicEQFkpFpRt2EhOZnV815KSbBh/Tv+xEbZoVDAA4MSmbcmlAmD2xIdbl+y3aBn4+AOHa5e293RidGdyMHBAQcHB0uHcUOZaaXfFk9NSCQu0obTh80Td9RxB5o/mE6z+zMAcKuXxqkd7sSccgBMiZGjZ+mqT8guVwK6ZOFev7BkWffRCSX/dq1XxH0vxLFpXBP0WgUq66r/hpo9PKDU8+WT6rPt7DkCW+dz9ohl/o+P7CqdvG54qw4DnkmlaftciyVGNfE4ATw6NoWdX7rx+1bTL/1VM+rRsVcWfYamse19b4vEpNdDerJlkrLyBO91smi1sTxPvphESpwNyyfXL1mWGKOutv0f2Vu68rNxpT/9hybQtG12SWIU0DSHx56LZeJjbfny0NFqi62yZFRa+Swa9c6dO+nWrRsuLi64u7szYMAALl26BMC+fftQKBSlqkEnT55EoVBw+fJl9u3bx6hRo8jMzEShUKBQKFiwYAEA6enpPPPMM7i6uqLRaHjooYcICwsraWfDhg24uLjw008/ERQUhEaj4fHHHycvL4+NGzfi7++Pq6srEydORK/Xl7zuZu1etX37dgIDA7G1taVPnz7ExMSUrFuwYAFt27a97jExGAwsXbqUhg0bYmdnR5s2bfjmm29u8QjfPitrA/c/ms5vW93BTB3pGtyVw6VDziRHmE7ccSEaLh9zJKhnRrnbZydbcX6vC3c/mXzdNvMyVJz4wYMG7XPMkhSVx97J9F7JzrBcFeTflEojPQamo9YYCA22v/kLqklNOE5W1gYCW+dx/IBjyTKjUcGJA440b59nsbjqNiziy3/OsuGvEGasjsLTt8hisdRUnXtncvG0htkfR7L11FnW/HaBh4alWiQWpdJIj37J2Gr0nD9hSiDVtnpmLL/AmkWNSE+xsUhc4vZYtGKUm5vL5MmTad26NTk5OcybN4/BgweX9L+5ka5du7Jy5UrmzZvHhQsXAEoqMSNHjiQsLIwff/wRJycnZsyYQb9+/QgJCcHa2vRrLC8vj1WrVrFlyxays7N59NFHGTx4MC4uLvzyyy9ERETw2GOPcc899/DUU09Vqt3FixezadMmbGxsePHFFxkyZAiHDh2q0DFZunQpX3zxBR999BGBgYH8+eefjBgxAk9PT3r06FHuawoLCyksvFY5ycrKqtC+KqJr30wcnPT8vu3/r59XnZ7j4yjMUbH8gdYoVEaMegV9pl6h3aDyv+z++dYTtb2Bln3Tyqz75U0//trkjTZfRf122Yz87KLZ4v43hcLICwtjOXtUQ9QFu2rZ5/X4N81n5Y5wbNQG8nOVLBrtT3SY5fvzQM05Tk5uelRWkJFc+iswPcUKv8aF13mVeZ0/Yc87r9px5ZIaNy8tIyYnsPz7MMbd35T83JqRbNcEdeoXMeDpFL5b68mWVd40aZvH+EVX0GoV7P7afN9T/+bfJJd3t5wyfcbyVLz+UjOiL5n6N42dFUnICSf+roF9iv6fAYV5Z76+Q0elWTQxeuyxx0o9X7duHZ6enoSE3LxPiI2NDc7OzigUCnx8fEqWX01cDh06RNeuXQHYvHkzfn5+bN++nSeeeAIArVbLhx9+SKNGpuv5jz/+OJ9//jmJiYk4ODjQvHlz7rvvPvbu3ctTTz1VqXbff/99OnUydRbeuHEjzZo14+jRo3Ts2PGGf1NhYSFLlixh9+7ddOnSBYCAgAAOHjzIxx9/fN3EaOnSpSxcuPCmx+xW9BmSxrG9TqQlmq+8f/pnN0784M6Q98LxDswnPsSeHa/XL+6EnVJm++CvPWk3MAVrddlKUI+x8dz9ZDLpsTbsWVWPbVMCGPnZxZJO3OYyYUksDZoWMGVQY/PuqAKuXFLz4oNN0Djq6T4gk6nvRTPt0cY1IjmqSceppvn3JavIUDvOn9Dw+ZEQ7n04g9+21PyTbHVRKCHstB3r3/QF4NI5Df5BBfR/OqXaEqMrkXa8NKgd9o56uvVJYcpbF5k+ojV1GuTTpnMGEwa3q5Y4hHlYNDEKCwtj3rx5HDlyhJSUFAwGAwDR0dFoNLc2uiA0NBQrK6uSxATA3d2doKAgQkNDS5ZpNJqSpAjA29sbf3//Uv1/vL29SUpKqlS7VlZW3H333SXPmzZtiouLC6GhoTdNjMLDw8nLy+PBBx8stbyoqIh27a7/QZs1axaTJ08ueZ6VlYWfn98N91URXnWLaNc9m9efb3jbbd3IL0vr0/OFeNo+bKoA1WmaT3qsDXs/8C2TGEUedSQ5wo5hq8PLbcveTYe9mw7PgAK8GoeztGs7ok840OCuHLPF/9LiK3R6MIspgxuREm/50rlOqyTusqnPRfgZDUFt8xj0fDKrZtz+e+J21KTjlJWmQq8DF09dqeWuHjrSk2tG18vcLCuuRKjx9bdMBaumSkuyKtNfLibclm79MqstBp1WSXy0qeIZfs6BJq2yGfhMHEWFSurUL+CbY4dLbT97dSjngp2Y8UzraouxIoxmnsfIKBWjynv44Ydp0KABa9euxdfXF4PBQMuWLSkqKipJUIzGa1UBrbbqhl1fvfR1lUKhKHfZ1WStOuTkmE7eP//8M3Xr1i21Tq2+fudCtVp9w/W3qvdTqWSkWHFkj3k7X2rzlSiUpas/ShUYyzn0x7Z5UrdVDr7Nb94P5OrrdUXm+nAaeWlxLF37ZjLt8cbV2gG0MhQKsLax5PCYmnecdFolYac1tOuWXTL8XKEw0rZbDj9uqBnVGVuNHt8GRez5tuZ0xq4JQo7Z49eodLJYN6CQpFjLHSeFEqxtDHyxuj47vy7dcf+jn07wydIAjuytnmqWuH0WS4xSU1O5cOECa9eupXv37gAcPHiwZL2npycA8fHxuLq6ApTpe2RjY1OqczRAs2bN0Ol0HDlypOSS19V9NW/e/JbjrWi7Op2O4ODgkurQhQsXyMjIoFmzm89F0rx5c9RqNdHR0de9bFZdFAojvZ9KY/fXbhj05s36m/XK4I81dXHxLcK7SR5x5+w58JkPHZ4o3bm6IFvF6V/cGDA7ukwb0SfsuXLaAf+7s7Fz0pEabcvv79bDvUEBDdqZp1o0YUks9w1OZ8GohuTnKHEtHjmXm62iqMAy4xpGzYrn2B+OJMfaYOeg577BGbTumsPsYQE3f7GZ1MTjBPDdJx5MXRnDxVMaLpwwDde31Rj4fYtlTmBj5sby9y5nkq5Y4+6j4+kp8egNsG+7q0XigeLkrOG1DuA+fkUEtMgnO0NFcqxlqn7frfVixQ8XGfJyIn/ucCGobR79hqeycnrVz7FWnpGTLxP8pytJ8Wo09np6DkimdcdM5oxuQXqKTbkdrpPj1CResfyl7P9nMJq5j5HMY1Q5rq6uuLu788knn1CnTh2io6OZOXNmyfrGjRvj5+fHggULWLx4MRcvXmT58uWl2vD39ycnJ4c9e/bQpk0bNBoNgYGBDBw4kDFjxvDxxx/j6OjIzJkzqVu3LgMHDrzleCvarrW1NS+//DKrVq3CysqKCRMm0Llz55teRgNwdHRk6tSpvPrqqxgMBrp160ZmZiaHDh3CycmJZ5999pbjr6x23bPxrqflt63mP0kMXHCZ396tx/a5/uSkWuPkXUSnoUn0mhhbartTO9zACG0eLtsp29rOwNnfXNm1si5FeSocvYoI6pHJ/RNisSqnL1JVeHikKY53vrtUavk7k/zYZcbO6jfi4qFj2qpo3Lx05GWriAy1ZfawAI7/6XjzF5tJTTxOAPt/dMXZXc8z0xJw9dQRcc6O2cMbkpFimcqDRx0ts9ZcxtFVT2aaFeeO2jPp4SZlps+oTk3a5PP2t9f+315YGAfA71tdWf5q/eu9zKwuntKw6PmGjJoZz/BJCSTE2PDR/Lrs/b563ksu7lqmvnURN68icrOtiLygYc7oFpz4y3IJrKhaFvvEKZVKtmzZwsSJE2nZsiVBQUGsWrWKnj17AqYE46uvvmL8+PG0bt2au+++mzfeeKOkkzOYRqa98MILPPXUU6SmpjJ//nwWLFjA+vXreeWVVxgwYABFRUXce++9/PLLL2UulVVWRdrVaDTMmDGDYcOGERsbS/fu3fnss88qvI/XX38dT09Pli5dSkREBC4uLtx111289tprtxV7ZR3/04k+ddtWy77UDgYemRfNI/PKVoL+rdOwZDoNK3+Ifp2m+Yz98rw5wruuPr5tqnV/FbFiimX7EZWnJh6nq35c78GP6z0sHQYAS1/0t3QIZZw+7FAj//+O7HbmyG7LzMC9cnZgpbZ/KKibmSK5fTKPUfkUxn934hH/CVlZWTg7O9NTMQgrRc3pn/BWxN+WDqGM691qRIhbYu7hj7eiJn7F18DjpKxhE+/qjEX8kb2ZzMxMnJyqtp/n1XPE4F2jsLY33yVRbW4R3z+43ix/gznVjOEXQgghhKhW0seofHdmnUsIIYQQwgwkMRJCCCGEKCaX0oQQQohayGDmCR7v1FuCSMVICCGEEKKYVIyEEEKIWkg6X5dPKkZCCCGEEMWkYiSEEELUQlIxKp9UjIQQQgghiknFSAghhKiFpGJUPqkYCSGEEEIUk4rRf5jK2RGVwnz3wamsmnhfssdCkywdQhnft/e3dAhlKOztLR1CGca8PEuHcEcwyHGqEENOjqVDKMVg1FbDPqRiVB6pGAkhhBBCFJOKkRBCCFELGTHv7NRGs7VsXlIxEkIIIYQoJhUjIYQQohaSPkblk4qREEIIIUQxqRgJIYQQtZBUjMonFSMhhBBCiGJSMRJCCCFqIakYlU8qRkIIIYQQxaRiJIQQQtRCUjEqn1SMhBBCCCGKScVICCGEqIWMRgVGM1Z1zNm2OUnFSAghhBCimFSMqkjPnj1p27YtK1euLHe9v78/kyZNYtKkSZVqd8GCBWzfvp2TJ0/edowV8cTz0YyafJntm+ryyZuNcHDWMmJCFHd1TcezTiGZ6dYc3uPO56v8ycup/rfPwyNTeHx8Em6eOiJC7PhgTl0unNRU+X5+7eVOXpyqzPKAoXm0m5dDTrSKM8scSDlujaEIvLsX0XZ2NrYe1+4OlH7OirPLHUg/a4VCCb69C2kzIwcr+6q5g9CTL8RyT+9U6gXkU1SoJOS4I+uWNSA20g4Ar7oFbNx/otzXLn65CQd/da+SOP5t+AuXGD4+stSymEgN4wZ1BcDVvZDRk8No2zkNjb2OK5ft2brWn0N7vKs8lqv6D0ug/9AEvOsVAhAVZseX7/sR/KcrAC+/fol2XTNw89JSkFd8HN9uwJWIqn9fVSQmB2ctT0+M4a5uGXj6FpGZZsXh3W5sWlG/2j9zG/8+h49f2bu8/7jBgzWz61VrLP/m7lPE6Nfiufv+LNS2BuIuq1k+uT5hp833f3YnxnQzBhRmvVeaOds2J0mMqsmxY8ewt7e3dBg3FNgym4eejCfi/LU43T2LcPcs4tO3A4i+pMHbt4AJ88Nx9yxiyavNqzW+Ho+kM3Z+HKtn1uP8cQ2DxySz+MsIRncPIjPVukr3df/XaRj11z7UmWEqDo52pV7fQnR5cPB5F5yDtNy7IR2Ac6sc+OtFF+7bko5CCflJSg6MdqFe3wLazs1Gm6Pg9FIHgl9zpPN7WVUSY6uOmez4woeLZxxQqYyMnBLN4g0hjOvblsJ8FSnxaoZ1bl/qNQ8NSeSx5+MI3u9SJTGU53K4PbPH3lXyXP+v4zhl8TnsHXUseqUNWenW9OyXwMy3z/DKMDsizjuZJZ6UBBvWv9OA2Mu2KBTwwOAk5n14ngkD2xAdriH8rD17f/QgKU6No7OOERNjWLw+hFH3tcdgMM8X+41iUiiMuHkX8elb/kSHa/DyLWTCoku4exWx+OWmZonneib2C0KpupbI+zct4M0tlzjwk3O1xvFvDs463t0exum/HJkzIoCMVCvqNiwkJ7PsD5naHJO4dZIYVRNPT88brtdqtVhbV+3JvTJsNXqmLzvPqvlNGDIuumR5VLg9iyddS4ASYuzY+J4/0946j1JlxKCvvl8Ej45NYeeXbvy+1Q2AVTPq0bFXFn2GprHt/aqtOKjdjPz73tAX1mqwr6/D424tSX/ZkBurpNd32Vg7mLa5e2kWP3byIOlva7y7aonfZ4PSCtrNy0FRfMG63YJsdg90JycqF4cG+tuOce5zpRPTd2c0ZsvRYAJb5nL2mBMGg4L0FJtS23TtncaBX90pyDPfF7ZepyA9VV3uumZtMlmzuCkXz5pOrFvWBjBoRAyBzbLNlhgd+cOt1PONKxrQf1giTdtmEx2u4detPiXrkmJh44r6fPjTKbzrFRIfbVvtMf3+jTeLJ1xLgOKjbdn4bn2mLw+r9s9cZlrpU8RTExKJi7Th9GGHaovh/z35YhIpcTYsn1y/ZFliTPnvt+pSE2OqCBmVVj7pY1SFdDodEyZMwNnZGQ8PD+bOnYvRaDpx+vv7l7rMplAo+PDDD3nkkUewt7dn8eLFALz55pt4e3vj6OjI6NGjKSgoqJbYX5wTxtH9bpw87HrTbe0ddOTlWFXrF7SVtYHA1nkcP+BYssxoVHDigCPN2+eZdd+GIojeYYv/owUoFKAvAoUClDbXEiel2ohCCanHbYpfo0BpbSxJigBUxd+TKcfNkwBrHHUAZGeU/3uncYscGjXP47dt5rtsBVC3QR6f7/qTz34+xLQlZ/H0ufYeDj3lzL19EnFw0qJQGLm3bwI2aj2ng2/+vqsKSqWRHv1TsNXoOX/Sscx6tZ2e3o8lER+jJjneppwWqj8mAHtHPXk5qmr9zP0/K2sD9z+azm9b3cGCl0g6987k4mkNsz+OZOups6z57QIPDUu1WDw1NSZx66RiVIU2btzI6NGjOXr0KMHBwYwdO5b69eszZsyYcrdfsGABb775JitXrsTKyopt27axYMEC1qxZQ7du3fj8889ZtWoVAQEBN9xvYWEhhYWFJc+zsip3qebeh5Jo3DyHV56866bbOrloGTo+ml+/9rnptlXJyU2Pygoykku/ZdNTrPBrXHidV1WNuD1qtNkKGgw2neDd22hR2Rk5+44DLV7NASOcfdcBo15BQbIpE/LqVMTptxy48JmGwKfz0OUrOPuu6RLl1W2qkkJhZNzsy5wLdiQqrPw+DX2eTCI63I7QE+WffKvChTPOvDu3BVcua3DzLGLYuAjeXh/M+Mc6k59nxdJprZi57AzbDuxHp1VQWKDk9VfbEB9j3n4Y/k1yeXfbGWzUBvLzVLz+YlOiw6/ts/+weEZPj8LO3kDMJTtmj2yBTmve3403i+kqJ1ctQ1+K4dct5k1ob6Zr30wcnPT8vs3t5hubUZ36RQx4OoXv1nqyZZU3TdrmMX7RFbRaBbu/tkxsNTGmipBRaeWTxKgK+fn5sWLFChQKBUFBQZw5c4YVK1ZcNzEaNmwYo0aNKnk+ZMgQRo8ezejRowF444032L17902rRkuXLmXhwoW3FLOHTwHjZl1i9vOt0Bbd+ERgZ69j4Udnib6kYfOaBre0vztR5Le2eHcvws7LAJgus3VemcWJhY6Ef2GHQgl+/Qpxaa4FhamK5BSop8PSLE6/5cC5FfYolNDo6TzUHnoUZviueGlBJP5N8pk6pEW5623Ueno+nMJXa8zbYTb4kEfJvy+HwYUzTmz49SDd+yTy+/d1efqlSzg46pg15i6yMqzpcl8ys5adYfqoDlwON9/lmSuRdrz0SBvsHfV065vKlGVhTB/esiQR2fujJycOueDmVcRjo+OY9d4Fpjx188+EOWMC0DjoWLg2lOhwDV+s9jNbLBXRZ0gax/Y6kZZouUv+AAolhJ22Y/2bvgBcOqfBP6iA/k+nWCwJqYkxiVsnl9KqUOfOnVH866zXpUsXwsLC0OvL70/SoUOHUs9DQ0Pp1KlTqWVdunS56X5nzZpFZmZmySMmJqbCMQe2yMHVQ8vqb46z4/Sf7Dj9J607ZvLIiFh2nP4TpdJ0orfT6Hj9k7Pk5ap4/eUW6HXV+9bJSlOh14GLp67UclcPHenJ5svvc2OVJB22oeHj+aWWe99TRN/fUxlwKIUBf6Vw97Is8pOU2PsZSrapP6CQAQdS6bcvhYcPp9D8pVwK05TY+91+/6J/Gz8/go73pzNjRHNSEsrv19DtoTTUtgb2fH/jvm5VLTfbmtgoe3z98vGpl8cjQ6+wYn5zTh11I/KiI19+HEBYiBMDhlT8PXsrdFol8dF2hJ9zYMPyBkSE2jPw2fiS9Xk5VsRF2XH2mDOLXw7CLyCfrr3NeynkZjHZ2et5/bNQ8nNM1aTq/sz9m1fdItp1z2bnl1U/krGy0pKsiLpYuu9XTLgtXr5lR89Vl5oYU0Vc7WNkzsedSCpGFlRVo9TUajVq9a119Dt52IXxj5QeufTq4gtcidTw9ad+GAwK7Ox1vLH2DNoiJYteamHWX9HXo9MqCTutoV23bA7vNHXcVSiMtO2Ww48bzPdlHfW9HbZuBnx6FJW7Xu1qShyT/ramMFWJ7/1lL+tdHcJ/+VtbVGrw6lp+W5VnZPz8SLo+mMaM4S1IvHL9jsJ9nkjiyB+uZKZV7699Wzsddfzy+ONnH2xtTUmj8f9GehkMmKWKdiMKpRFrG0P56xSAAqxtqmZahVuJSeOg4411IWiLlCx8oalFPnP/1vupVDJSrDiyxzwd5Csj5Jg9fo1Kf87qBhSSFGu5SlZNjEncOqkYVaEjR46Uev73338TGBiISlWxEUDNmjUrtw1zys+zIircvtSjIF9FVoY1UeH22NnrWPzpGWztDKyc2wSNgx5XjyJcPYpKqknV5btPPHhoWBoPPJGGX+MCXn7zCrYaA79vMU+p2miAqO9sqT+oAOX//YS4/J0tqSetyIlWEf2jmiOTnAl8Nh/HhteqQeGb7Ug/Z0V2pIpLm+04+YYjLV/Nwcapao7bSwsjuX9gCssmB5Kfqyr5f7FRl65I1WmQT8u7s9i5zatK9nsjoydfpGX7dLx882nWJoO5K05j0CvY96sPMZc1xEbZ8fLcUJq0zMSnXh6Dn4miXec0Du81XyVr5JQoWt6diVfdAvyb5DJyShStO2Wx90dPfPwKeHLcFRq3yMGzTiHN2mXx2qoLFBUoObbPxSIxaRx0LF4fYvrMvdbYop85MP0A6f1UGru/drNo5++rvlvrRdO7chnyciK+/oXcNyidfsNT+XGDx81fXItiqoirfYzM+bgTScWoCkVHRzN58mTGjRvH8ePHWb16NcuXL6/w61955RVGjhxJhw4duOeee9i8eTPnzp27aedrc2rcPIembbIBWPfbsVLrRj7QkaQ48wxnLs/+H11xdtfzzLQEXD11RJyzY/bwhmSkmOdXWdJhG/LiVfg/WraPV3akirMr7CnKVGLvqyfohVwCny19uS39tBWhq+3R5SlwDNDRbkE2DQZW3SjDAcMTAVj2ZUip5cunN2L3d9eSoN6PJ5OSYMPxAy5Vtu/r8fAuZMabZ3By0ZKZbsO5Ey68+vTdZKWbRnjNn9COUa+EMX/VKew0OuKiNbw7twXBB813AnFx1zJ1WThuXkXkZquIPG/PnOeal/Qpatkhi0Ej43Fw0pGRas3ZY05MfqoVmWnmG5V2o5hadcykadscANbtOV7qdc/2vIuk2Or7zAG0656Ndz0tv22tGX1lLp7SsOj5hoyaGc/wSQkkxNjw0fy67P3ecvHVxJjErVMYr44nF7elZ8+etGjRAoPBwJdffolKpWL8+PG88cYbKBSKMjNfKxQKvv/+ewYNGlSqnSVLlrBixQoKCgp47LHH8Pb25rfffqvUzNdZWVk4OzvTy+VprBTVM+S4IvQZmZYOoYzHQpMsHUIZ37f3t3QIZShq4OSkxjzzTtPwX2GQ43RH0hm17DNuJzMzEyenqr2EefUccdc3k1HZm2++JX1uIccff9csf4M5SWL0HySJUcVJYlQxkhjduSQxujNJYmQ5cilNCCGEqIWMgDlLI3dq1UU6XwshhBBCFJOKkRBCCFELGVCgMOPtXQwWvHXM7ZCKkRBCCCFEMakYCSGEELWQ3CutfFIxEkIIIYQoJhUjIYQQohYyGBUozFjVuVPvlSYVIyGEEEKIYlIxEkIIIWoho9HM8xjdoRMZScVICCGEEKKYVIyEEEKIWkhGpZVPEqP/MH1mNgqFee48/1+xvVNjS4dQhv1vNef+dlflPaKzdAhlNa5v6QjKUKZlWzqEMoyFhZYOoQyj4Q69xlKtlHfuPTXucHIpTQghhKiFrlaMzPmojNjYWEaMGIG7uzt2dna0atWK4ODgf8VrZN68edSpUwc7OzseeOABwsLCSrWRlpbG8OHDcXJywsXFhdGjR5OTk1OpOCQxEkIIIYRFpaenc88992Btbc2vv/5KSEgIy5cvx9XVtWSbZcuWsWrVKj766COOHDmCvb09ffr0oaCgoGSb4cOHc+7cOXbt2sVPP/3En3/+ydixYysVi1xKE0IIIWqhmjSP0VtvvYWfnx/r168vWdawYcOSfxuNRlauXMmcOXMYOHAgAJs2bcLb25vt27czZMgQQkND2blzJ8eOHaNDhw4ArF69mn79+vHOO+/g6+tboVikYiSEEEIIs8nKyir1KCyn39uPP/5Ihw4deOKJJ/Dy8qJdu3asXbu2ZH1kZCQJCQk88MADJcucnZ3p1KkThw8fBuDw4cO4uLiUJEUADzzwAEqlkiNHjlQ4XkmMhBBCiFro6jxG5nwA+Pn54ezsXPJYunRpmVgiIiL48MMPCQwM5LfffmP8+PFMnDiRjRs3ApCQkACAt7d3qdd5e3uXrEtISMDLy6vUeisrK9zc3Eq2qQi5lCaEEEIIs4mJicHJyankuVqtLrONwWCgQ4cOLFmyBIB27dpx9uxZPvroI5599tlqixWkYiSEEELUSqaqjjlHpZn24+TkVOpRXmJUp04dmjdvXmpZs2bNiI6OBsDHxweAxMTEUtskJiaWrPPx8SEpKanUep1OR1paWsk2FSGJkRBCCCEs6p577uHChQulll28eJEGDRoApo7YPj4+7Nmzp2R9VlYWR44coUuXLgB06dKFjIwM/vnnn5Jt/vjjDwwGA506dapwLHIpTQghhKiFatLM16+++ipdu3ZlyZIlPPnkkxw9epRPPvmETz75BACFQsGkSZN44403CAwMpGHDhsydOxdfX18GDRoEmCpMffv2ZcyYMXz00UdotVomTJjAkCFDKjwiDSQxEkIIIYSF3X333Xz//ffMmjWLRYsW0bBhQ1auXMnw4cNLtpk+fTq5ubmMHTuWjIwMunXrxs6dO7G1tS3ZZvPmzUyYMIFevXqhVCp57LHHWLVqVaVikcRICCGEqIWMmPeuI5Vte8CAAQwYMOC66xUKBYsWLWLRokXX3cbNzY0vv/yyknsuTfoYCSGEEEIUk4qREEIIUQvVpD5GNYkkRqJc7j5FjH4tnrvvz0JtayDusprlk+sTdlpjkXgGPJNC/2dS8fYrAiDqgi2bV3gTvNfpJq+sGv2GxNF/aDzedU0ztkaFa/hqTX2CD7gB4OOXz/PTI2nRPhNrGyP/HHDlwzcakZFqU6VxGJL1FH6Yh+5IERQYUdZTYTvLAVVTawCMeUYKP85Fd6AIY6YBZR0V1o/bYjPI7lobsXoK1+SiP63FqAWrTtaoJzmgdKv6AvITz0cx6tVItn9el0/eDATgzfUnaN0xs9R2v2ytw/uLgqpsvy1bJvH44+dp3DgNd/cCFi3qxuHD9UrWDx9+hh49ovH0zEOrVRIe7sbGja25cMG9ZJv58/8kICADF5cCcnJsOHHCm3Xr2pKWZlfeLitFqTQybMxF7usbi6tbIWkptuz+uR5b1jUGrp5MjIwYe5E+A2Owd9ASetqVNctaERdjf9v7v56WHbN5/IVEAlvl4e6tZeHzjTj8u0vJ+hGvxtHj4TQ8fbVotQrCz2jYsKwuF06aL6b/p1QaGTE5nl6PpuHqpSU1wZpdX7vz5Xs+XDt21c/OXs+z0+Lo2jcTFw8tl85q+HB+PS6eqr5jI6qGJEY12IIFC9i+fTsnT56s1v06OOt4d3sYp/9yZM6IADJSrajbsJCcTFW1xvFvyfHWrFtSh9hINQoFPPhEGgvWX+al3k2Iumh78wZuU0qimvXLGxIXZYdCYaTXoCTmrgnh5UfbkRhry+LPzhJx3p5ZI1sD8PTEKOZ/eI7JT7Wtsl9NxmwDeS9mompnjeZtJxQuSgxX9CgcryU0he/noDuuxXauA0ofFbpjWgrfzUHpocSqmxpjvpG8yZmoGlth954zAEWf5pE/MwvNR84olFV3YglsmcVDT8QTcaHsieHXr+vwxfv+Jc8L8qv2vWVrqyMiwoXffw9g7tyDZdbHxjrywQftSUhwwMZGz+DBF1i8eB+jR/cnM9P0fjp1yputW5uTlmaHu3s+zz9/gtmzDzJlyoO3Hd/jT1+i36NRrFjUhqgIRwKbZTJpzilyc6zYsa1h8TYRPPzkZVYsakNCnIanx13k9feO8MKQHmiLzPNZtNUYiAyx4/et7sxbG1Fm/ZUIWz6YV5/4aDVqWwODRyey5IuLPHdvSzLTrM0S0/978sVEBjyTzDuT/Im6aEtgmzymLI8iN1vFD+u8bt6Ambz6dhT+QQUse6UBaYnW3P9oGm9+FcaY+5uTmlC1P5CqTE3rZFRDSGIkynjyxSRS4mxYPrl+ybLEmLITclWnI7ucSz3f8FYdBjyTStP2udWSGB3d617q+aaV/vQfEk/TNtm4exfhVbeACYPbkZ9r+kgtn9mEbUcP06ZzBicPu5bXZKUVbc5H6aXE7jXHkmVK39InSP1ZHdZ9bbFqZ/oitnlEhfaHfPShOqy6qdGf0WJMMGC7zgGFvSmhsp3tQE6/NPTHtVh1qJovcFuNjulvhbJqfhOGjIsqs76wQEl6ivneU8HBvgQHX3947r59/qWer13bjr59I2jYMIOTJ00TwW3ffq2ClZRkz7ZtzZk37wAqlQG9/vaqa81ap3PkT2+OHTLd3iApXkOP3nEENc9gBwBGBg6JZOv6xvz9pyme5QvasPnX3XTpkcifuyo+9Lgygvc5E7zP+brr9/3gVur5J6/70XdoKg2b5XPyUPUkRs075HD4dxeO/mGKM/GKmvsGphPUNrda9l8eG1sD3fplsOC5Rpw9Yvp8fvGuL50fyGTA0ylsfNs8/1/CPKTztZkZDAaWLVtG48aNUavV1K9fn8WLFwMwY8YMmjRpgkajISAggLlz56LVagHYsGEDCxcu5NSpUygUChQKBRs2bKiWmDv3zuTiaQ2zP45k66mzrPntAg8NS62WfVeEUmmkx8B01BoDocHVX6ZWKo3c2y8JW42e0JOOWNsYwAjaomsfp6JCJUYDtGifVWX71R0sQhlkRf7cLHIeTiX3uXSKfiwotY2qpRW6Q0UYkvUYjUZ0x4swxBhQ3V2c8GiNpqsN1v+qDNkoQAn609oqi/XFOWEc/dOdk3+7lbv+vv5JfHXwIB9sP8rISRGobfVVtu/KsrLS89BDl8jJsSYiovwk1sGhkPvuu0xoqMdtJ0UAoaddadMhFV+/HAAaBmbRvE0awYdNFQ8f33zcPAo5edSj5DV5udZcOOdC01bpt73/qmBlbeChYcnkZKqICKm+S+whwQ60vSebug1N7/2AZnm0uDuHY3uvn9CZm0plRGUFRYWlK66FBUpadMyxUFTiVknFyMxmzZrF2rVrWbFiBd26dSM+Pp7z588D4OjoyIYNG/D19eXMmTOMGTMGR0dHpk+fzlNPPcXZs2fZuXMnu3fvBkx3Ei5PYWFhqbsVZ2Xd3sm4Tv0iBjydwndrPdmyypsmbfMYv+gKWq2C3V+Xf6KrDv5N81m5IxwbtYH8XCWLRvsTHWb+alHJ/pvksvyrk6b956l4fUJzYi7Zk5lmTUG+iuemRrJxhT8oYNSUSFRW4OpZVGX7N8TrMfygx+ZJO2ye1qA/r6PwvRwU1mD9kOk4qCc5UPB2DrmPpoMKUILtdAes2pp+zSubW4OtgsKPclGPtQcjFH6UC3owplZN3fvehxJp3CyHV566q9z1+37xJinOlrQkG/yb5PLc5EvU9c9j8aSWVbL/iurYMZaZMw+jVutIS7Nj9uyeZGWVrmI999xJHn44DFtbPaGh7syff2+V7PvrTY3Q2Ov4eNt+DAYFSqWRTR8Fse+3ugC4uptO+ulppePJSFPj6lb2zuTVqWOvDGa9H4nazkBakjWvDQ8kK736TiVb13ijcdTz6f4QDHpQqmDDW77s/d5y3035uSpCgu0ZNimB6HBbMpKt6TkojWbtc4m7bNlq+w2ZufM10vla/L/s7Gzee+893n///ZKb4DVq1Ihu3boBMGfOnJJt/f39mTp1Klu2bGH69OnY2dnh4OCAlZXVTe/xsnTpUhYuXFhlcSuUEHbajvVvmsq/l85p8A8qoP/TKRZNjK5cUvPig03QOOrpPiCTqe9FM+3RxtWWHF2JtGPC4Luwd9TRrU8KU968wPSnWxNzyZ4lk5oxYX44jzwdh9EA+3/2IuycA0ZDFQZgAGVTK9TjTFUyVRMrDBE6in4oKEmMtN/moz+nw+5NRxTeKvSntBS8m4vCQ4lVBxuUrkrsFjlSsDwH7TcFoASrXmqUTVRV0m/Vw6eAcTPDmT2mzXX7wez8+tplhcthDqSn2LB03Sl8/PJJiLn9js0VdeqUNy+91Adn50L69r3ErFl/MWnSgyV9jAC++aYZv/0WgJdXHsOHn2Xq1L+Lk6PbO1jdH4inZ99Y3p7XjqgIBwKaZDH21RDSkm3Z80u9mzdgQaf+cuTFvs1wdtPx0NAUXvsgglcGNiUztXoupd37cDr3D07jzQn+RF20o1GLPF5YcIXURGt2f+N+8wbMZNkr/kxeHsVX/5xFr4Pwsxr2/eBKYKs8i8Ukbo0kRmYUGhpKYWEhvXr1Knf91q1bWbVqFZcuXSInJwedTlfqDsQVNWvWLCZPnlzyPCsrCz8/v1uOOy3Jqky/nZhwW7r1y7zOK6qHTqss+fUVfkZDUNs8Bj2fzKoZt/63Vnb/8dGmE3f4OUcCW+Yw8Jk43p8fyIlDrozufTdOLlr0egW52VZ8ceBvEmI8q2z/Cnclqgalkw1lAxW6/aaqlLHQSOEnedgtdsKqq+nSmaqxFYYwHUVf5Zf0H7LqaIPDVjcMGQYUKlA4KskZmIrS9/YvEQU2z8bVQ8vqr4NLlqmsoGWHTB4eGsvAdj0wGEonFedPm97zvvWrNzEqLLQiPt6R+HhHzp/34NNPf6JPnwi2bbt2I8usLDVZWWpiY52IiXHi889/pGnTVM6f97hByzf33MuhfL2pUUlfoahLTnj55PPEs+Hs+aUe6ammz5+rW2HJvwFc3AqJCKuekZjXU5ivIj5KRXwUnD/hwGf7z9J3SApb19Splv2PmRPL1jU+7P/R9CPt8nk7vOoWMWRCgkUTo/goNdMeb4LaTo+9Y3E17YMI4qNrbsXIdBNZ87Z/J5LEyIzs7K7/JX/48GGGDx/OwoUL6dOnD87OzmzZsoXly5dXej9qtbrcuxXfqpBj9vg1Kl2urxtQSFJs9fwirCiFAqxtLPfJUyqNpv5F/5KVYTpGbTpl4OKu5e+9VVdhU7WyxhBTui+OIUaPwqc4odEZQUfZnoMqRbmjQ5Qupg11/xRhTDdi1e32O16f/NuV8QM7lFr26uILXInQ8PVnfmWSIoBGTU19MNKSLTtyR6k0Ym19/b5OCoXpIN5om4pS2+ox/t+xMF1SM/07Ic6OtBQ1be5OJSLMdAndzl5LUIsMfvmuwW3vvyoplMZq/Ryq7QxlKrEGvQJFDekxW5ivojBfhYOzjvY9svl0SV1LhyQqSRIjMwoMDMTOzo49e/bw/PPPl1r3119/0aBBA2bPnl2yLCqq9OgdGxsb9Prq75T63VovVvxwkSEvJ/LnDheC2ubRb3gqK6dbrsQ/alY8x/5wJDnWBjsHPfcNzqB11xxmDwuolv2PnBxJ8J9uJMWr0djr6TkgiVYdM5n7vKlfzIOPJhB9SUNmmjXN2mYzbvYltm+sS2xk1XVKtXnSlrzxmRRuysP6fjX6UC3aHQXYTnMAQGGvRNXWisIPckENSm8V+pNatDsLUE+41kld+3MBSn8VChcl+rNaClblYv2kLcr6t/91kJ9nRVS4Q6llBXlKsjJNy3388rmvfyLH/nQnK8OKhkG5jJ0ezpljzly+6HCdVivP1laLr++1Tq/e3rkEBKSTnW1DVpaaIUPOceRIXdLS7HByKuThh8Nwd8/nwAHTSMygoFSaNEnl3DlPcnJsqFMnh6efPkNcnMNtV4sAjh7w5qlR4SQn2hIV4UijJlkMHhrJrh1XP2MKftjSkCGjwoiLsSchzo6nx10kLUXN4f3et73/67HV6PH1v/ajyMevkIDmeWRnWJGVrmLoywn8vcuZtCRrnNx0PPxMMh7eWg78XDUjLyvi713ODJmYQFKsDVEXbWnUMp9Hxybx+1bLVYsA2vfIQqEwEnPJlrr+hTw/J5aYS2qLx3UjMsFj+SQxMiNbW1tmzJjB9OnTsbGx4Z577iE5OZlz584RGBhIdHQ0W7Zs4e677+bnn3/m+++/L/V6f39/IiMjOXnyJPXq1cPR0bFKK0PXc/GUhkXPN2TUzHiGT0ogIcaGj+bXtWjnRhcPHdNWRePmpSMvW0VkqC2zhwVw/E/Hm7+4Cji7aZny1gXcPIvIzbYi8oI9c59vyYm/TCeEuv75PPvqZRyddSTF2bL1Iz++31C1vxRVzayxW+xE4Se5FG3MQ1lHhfplB6x7X7vUYrvAicKPcylYlIMxy4DSR4V6jD3Wg65tY4jRU/hJLsYsIwofJeqnNVg/VT39tHRaBW07pzPw6SvY2ulJTrDl0G5PvvqoaqsggYFpLFu2t+T5uHEnANi1y5/Vq+/Gzy+bBx44hLNzIVlZNly86M60ab2IjjZVZwoLVXTteoURI85ia2vqnP3PP3VYurQ5Wu3tzyH00fIWjBh3gRenncPZ1TTB46/f1+erzwJLtvnm8wBs7XS8POsM9g5aQk65MveVjmabwwigSes8lm27WPJ83PwrAOz62p1Vr9XHr1EBDzyeipOrjuwMKy6e0jD18SCiLlbfJdAP5vrx7LQ4JiyJwcXDNMHjL194sHnljftimpu9o55RM2PxqKMlO0PFoV9dWf+WL3rdnZkc1GYKo/FOvQp4ZzAYDCxdupS1a9cSFxdHnTp1eOGFF5g1axbTp09n3bp1FBYW0r9/fzp37syCBQvIyMgATKPNhg8fzp49e8jIyGD9+vWMHDnypvvMysrC2dmZnopBWClq0OWvGvhWU91Cny5z0/xc8yaDy3vEcsPpr8dY37InwvIo07ItHUIZ+vgES4dQhtFQ874LahqdUcs+w3dkZmbeUt/TG7l6jvD/bC5Kjfl+FBnyCrg8+nWz/A3mJInRf5AkRhUniVHFSGJUMZIYVYwkRjcniZHlyKU0IYQQohaSUWnlqyH9+IUQQgghLE8qRkIIIURtJDeRLZdUjIQQQgghiknFSAghhKiFZB6j8knFSAghhBCimFSMhBBCiNrqDu0HZE5SMRJCCCGEKCYVIyGEEKIWkj5G5ZOKkRBCCCFEMakYCSGEELWRzGNULkmMRK1mKCy0dAhl5D5YZOkQynj/wm5Lh1DGhKAHLB1CGfoaeA+EGnlfMqPB0hGUVdP+74w17/6EtYUkRkIIIUStpCh+mLP9O4/0MRJCCCGEKCYVIyGEEKI2kj5G5ZKKkRBCCCFEMakYCSGEELWRVIzKVaHE6Mcff6xwg4888sgtByOEEEIIYUkVSowGDRpUocYUCgV6vQwxFEIIIWo8o8L0MGf7d6AKJUYGQw2cc0IIIYQQoordVh+jgoICbG1tqyoWIYQQQlQTo9G881rWtDkzK6rSo9L0ej2vv/46devWxcHBgYiICADmzp3LZ599VuUBCiGEEEJUl0onRosXL2bDhg0sW7YMGxubkuUtW7bk008/rdLghBBCCGEmxmp43IEqnRht2rSJTz75hOHDh6NSqUqWt2nThvPnz1dpcEIIIYQQ1anSfYxiY2Np3LhxmeUGgwGtVlslQQkhhBDCzGRUWrkqnRg1b96cAwcO0KBBg1LLv/nmG9q1a1dlgd2JevbsSdu2bVm5cqWlQ6lST76UyOjX4vn+Uw8+ml/PorE8PDKFx8cn4eapIyLEjg/m1OXCSU217LtlxyweH5tAYMtc3L21LBwbyOFdriXrXTy0jJ4Rw13dM7F30nP2qCMfLGhA3GXzDFB4cnws9/RJp15APkUFSkKOO7LuLT9iI+1Ktnn5jUja3ZOJm3cRBbkqQo47sO6t+lyJsLtByxVn0MPPK+pz9HsvspKtcfYuovPjSTw0MQZF8XdiVrI129/0J/RPF/KyrAjslMWTCy/h1bCgpJ0vZzXi/EEXMhNtUNsbCGifxaCZl/FpnH/bMVbkOF1jZNG6C9zdM5NF4wI5vMvttvdfnqfGx5lianQ1JgfWveVX6v/F2sbA2DnR9BiQirWNkX/+dOb9ef5kpFibJabyKJVGRkyOp9ejabh6aUlNsGbX1+58+Z4PNeEGoTXlu2nAMyn0fyYVb78iAKIu2LJ5hTfBe50sFpO4dZVOjObNm8ezzz5LbGwsBoOB7777jgsXLrBp0yZ++uknc8QoLKhJmzz6j0glIsTyow97PJLO2PlxrJ5Zj/PHNQwek8ziLyMY3T2IzFTznyxs7QxEhmr4fZsH8z4O/7+1RuZ/fBGdTsnCsYHk5ah4dHQCS784z9gHW1GYryq3zdvRqmM2Oz735uJpe1QqIyOnXWHxpvOM6926ZH/hZ+3Z+4M7SXFqHF10jHjFtM2oe9tiMNz+ie33D+vx5xd1eGb5RXyb5BF12oHPpwVi56TjvlHxGI3w8ZhmqKyNjPs0FDsHPXs+9WXV8JbM3X0ctcY0FUj9VjncPSgZN99CcjOs+HllfVY/3YLXDwajvM1DV5HjdNWg5xJub2cVjalTNjs+9+LiaXuUVjBqagyLN10o9V4ZNzeajvdlsPilQHKzVby08DJzPwxjyhPNqyVGgCdfTGTAM8m8M8mfqIu2BLbJY8ryKHKzVfywzqva4ihPTfpuSo63Zt2SOsRGqlEo4MEn0liw/jIv9W5C1EXLx3c9CqPpYc7270SV7mM0cOBAduzYwe7du7G3t2fevHmEhoayY8cOHnzwQXPEKIoVFRVV6/5sNXpmvB/Fyul+ZGdU/Ym9sh4dm8LOL934fasb0WG2rJpRj8J8BX2GplXL/oP3u7BxeT3++r1sFaFuwwKa3ZXL+3MacPG0A1ci7Fg9xx+12sB9j6SaJZ65o5qy+1tPosM0RJ63591pAXjXLSKwZW7JNr9u8eLsMSeSYtVcOmfPxnf98PItwrteYZXEEPGPE60fTKVVr3Tc/Qq5q38qzbpncPmkIwBJkbZEnnBiyOJL+LfJwbtRPkMWX6KoQEnwD54l7XQblkhgpyzc/Qqp3yqXh6dGkR5nS+qV2z+pVOQ4AQQ0y+Wx0fGsmB5w2/u8mTkjg9j1rSdRYRoiQzUsvxpTK1NMGkcdfZ5M5pPF9Tl12Inws/YsnxZAiw45NG2bY/b4rmreIYfDv7tw9A9nEq+oOfizK8f/dCKobe7NX2xGNe276cguZ4794URcpJrYCDUb3qpDQa6Spu0te5zErbmlm8h2796dXbt2kZSURF5eHgcPHqR3795VHVuNlpubyzPPPIODgwN16tRh+fLlpdYXFhYydepU6tati729PZ06dWLfvn2ltjl48CDdu3fHzs4OPz8/Jk6cSG7utQ+Sv78/r7/+Os888wxOTk6MHTu2Ov60EhOWXOHoHidOHHCs1v2Wx8raQGDrPI7/KxajUcGJA440b59nwchMrG1MP42KCq99pIxGBdoiJS06VM+JTONomnU+O7P8QrDaTk/vx5OJj1aTHG9T7jaVFdA+iwt/uZAYYUpgroTYcynYiRY90wHQFZmOh7X62iSxSiVY2Ri5FFz+ZYbCPCV/f+2Nu18BrnWqJoH7t/KOk9pWz4yV4ayZ7096StUcm1uKKcMUU2DLPKxtjJw4eO0YXYmwIzHWhmZ3VV9iFBLsQNt7sqlbfNkzoFkeLe7O4dhe52qLoTw16bvp/ymVRnoMTEetMRAabG/pcG5MRqWV65YneAwODiY0NBQw9Ttq3759lQV1J5g2bRr79+/nhx9+wMvLi9dee43jx4/Ttm1bACZMmEBISAhbtmzB19eX77//nr59+3LmzBkCAwO5dOkSffv25Y033mDdunUkJyczYcIEJkyYwPr160v288477zBv3jzmz59/3VgKCwspLLx2AsnKyrrtv6/HI+k0bpnPy/2b3HZbVcHJTY/KCjKSS79l01Os8Gtc9SfPyoq5ZEtirA2jpl9h1Wv+FOQrGfxcAp6+Rbh5mb/Sp1AYGTc3inPBDkRdLN3nqv+IREbPiMbO3kDMJVtmP9MUnfaWfhOV0fvFKxTkqFh0f3sUKiNGvYKHp0XRcXAyAD6N8nGrW8APbzVg2NJwbOwM/PGZLxnxajKTSicg+zf5sH1pQwrzVHg3ymPi5rNY2VTtN+v1jtPYOdGEHHfk793m6VN0s5hemBvFuWPXYnL1LKKoUEFudun3e0aKNa6e1TfIZesabzSOej7dH4JBD0oVbHjLl73fV/9xuqqmfTdd5d80n5U7wrFRG8jPVbJotD/RYTX3Mpq4vkonRleuXGHo0KEcOnQIFxcXADIyMujatStbtmyhXj3Lds6tDjk5OXz22Wd88cUX9OrVC4CNGzeW/O3R0dGsX7+e6OhofH19AZg6dSo7d+5k/fr1LFmyhKVLlzJ8+HAmTZoEQGBgIKtWraJHjx58+OGHJTOK33///UyZMuWG8SxdupSFCxdW2d/n6VvE+EWxzBraCG1h1ZxA/+v0OiWvvxDIq29F8s2p4+h1cOKQM0f3Opd0QjanlxZdxr9JHlOfLNv/ZO8P7pw46IybZxGPjYln1uowpjzRAm3R7f/fHv/Jg6PbvRi16gJ1muRxJcSebxYG4FLcCVtlbWTsx6F8MT2Qqa27oFQZadotgxY908rMittxUDLNumeQmWTD7k/q8umLTZn67SmsbasuOSrvOHXqlU6brplMGNCqyvZTuZii8A/Kr9a+QxV178Pp3D84jTcn+BN10Y5GLfJ4YcEVUhOt2f2Ne7XHU5O/m65cUvPig03QOOrpPiCTqe9FM+3RxjU7OZJRaeWqdGL0/PPPo9VqCQ0NJSgoCIALFy4watQonn/+eXbu3FnlQdY0ly5doqioiE6dOpUsc3NzKzkeZ86cQa/X06RJ6V80hYWFuLubvkxOnTrF6dOn2bx5c8l6o9GIwWAgMjKSZs2aAdChQ4ebxjNr1iwmT55c8jwrKws/P79b/vsat8rD1VPHmp0XSpaprKBV51weGZnCgIZtqqTjbmVkpanQ68DFU1dquauHjvTk27qzTZUJP2vPS/1bonHUYW1tJDPNmpXfnyPsjHnL6eMXXKbjfRlMG9KMlAR1mfV52VbkZVsRd9mW8ycd+PrEP3Ttk8b+HR63ve/vljSkz/grdHgkBYC6TfNIu2LLbx/Uo/PjSQDUb5XLa7+eJD9LhU6rwNFdx7KBbajfKrtUW3ZOeuyc9Hg1LKBhu2ymtu7Myd/cuXtgym3HCdc/Tm27ZlGnfiHfnAwutf3sD8I4d8yRGcPMl7C8uPAyne7PYOpTzUhJuFZBS0+2wUZtxN5RV6pq5OKhJT25+kaljZkTy9Y1Puz/0VQhunzeDq+6RQyZkGCRxKgmfjddpdMqibtsel+Fn9EQ1DaPQc8ns2rGrX8XC8uo9Bll//79/PXXXyVJAEBQUBCrV6+me/fuVRrcnSonJweVSsU///xTahJMAAcHh5Jtxo0bx8SJE8u8vn79+iX/tre/+UlVrVajVpc9Id6qkwcdGXt/UKllU96NJuaSLdvWeFnki0enVRJ2WkO7btkc3mnq36BQGGnbLYcfN1T/F/SN5BWfyHz9Cwhslcumd81VRTUyfkEUXXunMWNYcxIr0FFZoQAU1/pE3S5tvhKFsnRbCpURYznvETsnUz+apEhbok47MGBK1HXbvXoPJ10VVLVudpy2fViHnVs9Sy37aOcZPnmjAUf2uFTB/suP6cWFUXTtnc70oc1IvFL68xt2VoO2SEHbe7I4tNOUlNQLyMe7bhGhxx3MFFNZajsDxv+7h7hBr0BhoWJNTfxuuh5FFX7OzMbc/YBq+J9/PZVOjPz8/MqdyFGv15dcNvqva9SoEdbW1hw5cqQkiUlPT+fixYv06NGDdu3aodfrSUpKum6yeNdddxESElLuZJmWlp+rIupC6TleCvKUZKeXXV6dvvvEg6krY7h4SsOFE6bh+rYaA79vqZ7+DrYaPb4Nrs294+NXSECzXLIzrUiOU9O9XxqZqVYkxdng3zSf8fOiOPy7K8cPmKej6kuLLtPzkVQWjW1Cfo4SVw9TX6bcbCuKCpX4+BVw74BUjh9wITPNCg+fIp58IY6iAiXH9rlUSQytHkhj5/t+uPoW4tskj5hzDvzxaV26PJlYss3xn91xcNPhVreA2PP2fL0wgDa9U2l+bwYAKdFqgnd40vzedBzcdKTH2/D7h/WwsTXQ8r70247xZscpPcWm3A7XyXE2FUo2by2mKO4bmMrCsYHlxpSXbcVv2zwZOyea7Awr8nJUvLggipB/HDh/svoSo793OTNkYgJJsTZEXbSlUct8Hh2bxO9bLfNjpKZ+N42aFc+xPxxJjrXBzkHPfYMzaN01h9nDzD/CUVS9SidGb7/9Ni+//DJr1qwpucwTHBzMK6+8wjvvvFPlAdZEDg4OjB49mmnTpuHu7o6XlxezZ89GqTT9jGrSpAnDhw/nmWeeYfny5bRr147k5GT27NlD69at6d+/PzNmzKBz585MmDCB559/Hnt7e0JCQti1axfvv/++hf/Cmmn/j644u+t5ZloCrp46Is7ZMXt4w2qb8K5Jq1yWbbl225txc6MB2PWNB8unBeDmVcTY2dG4eGhJS7Zmz3cefLnafD8WBowwXapatiW01PLl0wLY/a0nRYVKWt6dzaBRCTg46clIsebsMUcmP968yuZ9enJhBDuW12fr3EZkp5gmeOw2LJ5+r8SUbJOZZMM3rweY1nsV0elR0wSQV1mpjVw66sTedb7kZVrh6KElsGMmU787jaPH7Xc0vtlxsoSHnzbF9PaW0rdRWj61IbuKY/r49foYjTD3w7BrEzzObVCmLXP6YK4fz06LY8KSGFw8TBM8/vKFB5tX+lRrHDWdi4eOaauicfPSkZetIjLUltnDAjj+Z80bNVeKVIzKpTAa/78LZFmurq4o/tWDNDc3F51Oh5WVKa+6+m97e3vS0qpnThlLy8nJYfz48Xz33Xc4OjoyZcoUfv7555KZr7VaLW+88QabNm0iNjYWDw8POnfuzMKFC2nVytTJ89ixY8yePZvDhw9jNBpp1KgRTz31FK+99hpgGq4/adKkkg7aFZWVlYWzszM9FYOwUlRff4SbuvlbrdopqvASZFVRVEdv7Up6/8JuS4dQxoSgBywdQhkV+Dqtdkat7uYbVbf/vz5XE9Sw/zudUcs+fiAzMxMnp6qdQfvqOcJv+eso7czXOdyQX0DMlLlm+RvMqUKJ0caNGyvc4LPPPntbAYnbJ4lRxUliVDGSGFWMJEYVJInRTVVLYvRONSRGU++8xKhCl9Ik2RFCCCFEbXBb45wLCgrK3KbiTsoKhRBCiFpL5jEqV6UHXebm5jJhwgS8vLywt7fH1dW11EMIIYQQ4k5V6cRo+vTp/PHHH3z44Yeo1Wo+/fRTFi5ciK+vL5s2bTJHjEIIIYSoYgqj+R93okpfStuxYwebNm2iZ8+ejBo1iu7du9O4cWMaNGjA5s2bGT58uDniFEIIIYQwu0pXjNLS0ggIME1a5eTkVDI8v1u3bvz5559VG50QQgghzMNYDY87UKUTo4CAACIjIwFo2rQp27ZtA0yVpKs3lRVCCCGEuBNVOjEaNWoUp06dAmDmzJmsWbMGW1tbXn31VaZNm1blAQohhBBCVJdK9zF69dVXS/79wAMPcP78ef755x8aN25M69atqzQ4IYQQQojqdFvzGAE0aNCABg2q9/49QgghhLg9Csw7cuzOnMWogonRqlWrKtzgxIkTbzkYIYQQQghLqlBitGLFigo1plAoJDESdxa93tIRlKGs52vpEMqY0LyPpUMoY9Tps5YOoYz1bVtYOoSyDDVvaJBRW/M+d7WSzHxdrgolRldHoQkhhBBC/Jfddh8jIYQQQtyBzD3XUM0rVlZIpYfrCyGEEEL8V0nFSAghhKiNpGJULqkYCSGEEEIUk8RICCGEEKLYLSVGBw4cYMSIEXTp0oXY2FgAPv/8cw4ePFilwQkhhBDCPBRG8z/uRJVOjL799lv69OmDnZ0dJ06coLCwEIDMzEyWLFlS5QEKIYQQQlSXSidGb7zxBh999BFr167F2tq6ZPk999zD8ePHqzQ4IYQQQpiJsRoed6BKJ0YXLlzg3nvvLbPc2dmZjIyMqohJCCGEEMIiKp0Y+fj4EB4eXmb5wYMHCQgIqJKghBBCCGFmUjEqV6UTozFjxvDKK69w5MgRFAoFcXFxbN68malTpzJ+/HhzxCiEEEIIUS0qPcHjzJkzMRgM9OrVi7y8PO69917UajVTp07l5ZdfNkeMQgghhKhi5h45dqeOSqt0YqRQKJg9ezbTpk0jPDycnJwcmjdvjoODgzni+0/o2bMnbdu2ZeXKlZYO5ZY8+VIio1+L5/tPPfhofj2LxvLwyBQeH5+Em6eOiBA7PphTlwsnNdWy75Yds3n8hUQCW+Xh7q1l4fONOPy7S8n6Ea/G0ePhNDx9tWi1CsLPaNiwrC4XTtqbJR6l0siw0Re4r88VXN0LSUuxZffPfmzZEAhcu6u1X4NsRr0YSst2qahURqIvO7DktQ4kJ1b9ces/LIH+QxPwrmcarRoVZseX7/sR/KcrAA89lUDPh1No3CIXjYOex+/qSG521U7Ab9DDidUuhP/oQH6yCo2XnsBHc2j7YgYKBRi0ELzSlSv7NWTHWGHjaMC3Sz4dpqZj722663v2FStOfuBC3N+2JW00fiSHNuMzUNncfoxPvhDLPb1TqReQT1GhkpDjjqxb1oDYSLuSberUL+D5mZdp0SEbaxsjwX+68OFCfzJSqyCA62jZMZvHx8Vfe4+Paczh311L1ttq9Dw38wpdeqfj5KojIUbND+u9+WWzl9liKhNjpxyeeDHZFKOPjgXP+XN4p3O17b88T01I5J5+mfg1LqSoQElIsIbPFtfhyiVbi8Ylbs0tfyPZ2NjQvHnzqoxF1EBN2uTRf0QqESGW/4D3eCSdsfPjWD2zHuePaxg8JpnFX0YwunsQmanWN2/gNtlqDESG2PH7VnfmrY0os/5KhC0fzKtPfLQata2BwaMTWfLFRZ67tyWZaVUf3+Mjwuk3+DIr3mhHVIQjgc0ymPTaSXJzrdjxtam/n0/dXJZ9dIjfd9Tni8+CyMu1okHDbIqKVFUeD0BKgg3r32lA7GVbFAp4YHAS8z48z4SBbYgO16C2MxD8pwvBf7rw3LRos8Rw+hNnQr904t63knEN1JJy1oYDszyxcTTQ4pksdAUKUs+paftiBm5NiyjKUvL3G27sHu/NwO/iAMiMsMZogHsWpeJUX0t6mA0H53igzVfSaWbabcfYqmMmO77w4eIZB1QqIyOnRLN4Qwjj+ralMF+F2k7P4g0hRITaM3OE6Xv26VdjWPDJeV59vBVGo+Ime7g1tho9kaEaft/mybxPyvYlHTs3hrZds3h7UgCJV9Tc1T2TCW9EkZZozd+7Xctp0RwxGog4Z8tvX7kxf93latnnzbTuksuODR5cPKlBZWVk5Mx4lnwVwZgeQRTmm+ezViWMCtPDnO3fgSqdGN13330oFNf/Y//444/bCkjUHLYaPTPej2LldD+GTkywdDg8OjaFnV+68ftWNwBWzahHx15Z9Bmaxrb3vc2+/+B9zgTvu/4v030/uJV6/snrfvQdmkrDZvmcPFT1iVGzVmkcOeDDsb9Mf3tSgoYeD8QS1DyDHcXbPDPuPMGHvVj/wbUfMQmx5qlgARz5o/Qx2LiiAf2HJdK0bTbR4Rq2b/AFTImBuSSdsKXBA3nUvy8fAMd6OiJ+yif5tBoAG0cjD20o/X7uMi+VHx+vS06cCgdfPfXuzafevfkl653q68iMzOT8l45VkhjNfa70j8p3ZzRmy9FgAlvmcvaYEy3aZ+NVt5AJj7QmL8f0Nb18WmO+Pn6MNl0yOfmXy23HUJ7gfS4E77t+283b57D7Ww9O/+0EwK9fedFveDJBbXOrLTEK3utE8F6natlXRc0eXnrg0fJJ9dl29hyBrfM5e0SuptxpKt35um3btrRp06bk0bx5c4qKijh+/DitWrUyR4x3lNzcXJ555hkcHByoU6cOy5cvL7U+PT2dZ555BldXVzQaDQ899BBhYWGltlm7di1+fn5oNBoGDx7Mu+++i4uLSzX+FSYTllzh6B4nThxwrPZ9/z8rawOBrfM4/q9YjEYFJw440rx9ngUjK5+VtYGHhiWTk6kiIsQ8l/pCz7jRpkMKvn45ADRsnEnzNmkEHzZd1lAojNzdJZHYaAcWrfibzT//xrtrD9D53nizxPP/lEojPfqnYKvRc/5k9b2HvNoVEHfYlsxIU0KRGmpDwj+21Lv3+u+TomwlKIzYOBluuI3a5frrb4fGUQdAdoYpZmsbAxhBW3TtK1pbpMRogBYdss0SQ0WE/ONA5wfScfcuAoy07pJF3YYF/POnZS9l1TT2TsWXZDNqcLUIZFTadVS6YrRixYpyly9YsICcnJzbDuhON23aNPbv388PP/yAl5cXr732GsePH6dt27YAjBw5krCwMH788UecnJyYMWMG/fr1IyQkBGtraw4dOsQLL7zAW2+9xSOPPMLu3buZO3fuDfdZWFhYMgM5QFZW1m3/HT0eSadxy3xe7t/kttuqCk5uelRWkJFc+i2bnmKFX+PC67yq+nXslcGs9yNR2xlIS7LmteGBZKVXbR+aq77+vDEaex0ff7UXg0GBUmlk08dN2fe7qR+Yi2shGns9TzwdzuefBLHhg2a075zE7CXBzJrQhbMnPcwSl3+TXN7ddgYbtYH8PBWvv9iU6PDq6QcG0GZcJtocJd/0rYdCBUY9dHg1ncaP5Ja7va5QwbF33Gg0IBcbh/K/ybOirAj53ImOM26/WvT/FAoj42Zf5lywI1FhpuN0/qQjBfkqnpsWxYbl9UEBz02LRmUFbp5FVR5DRX04vz4Tl15m89FT6LQKDAZ4b6Y/Z49a/sdTTaFQGHlhYSxnj2qIumB38xeIGqfKvrFHjBhBx44deeedd6qqyTtOTk4On332GV988QW9evUCYOPGjdSrZzpRXU2IDh06RNeuXQHYvHkzfn5+bN++nSeeeILVq1fz0EMPMXXqVACaNGnCX3/9xU8//XTd/S5dupSFCxdW2d/h6VvE+EWxzBraCG2h3Ge4Mk795ciLfZvh7KbjoaEpvPZBBK8MbGqWPlDde8XRs/cV3l5wF1ERjgQ0yWTsK+dIS7Flz69+KIr/6/4+4MP2rY0AiAhzplnLdPoNjjJbYnQl0o6XHmmDvaOebn1TmbIsjOnDW1ZbchTxiz2XdjjQc3kyroFFpIaqObLEraQT9r8ZtLD3FU8wQteFKeW2l5ugYudoHxr2zaXpU1VfrXlpQST+TfKZOqRFybLMNGuWvNyECYsieOTZBIwG2PeTB2Fn7TEaLNdv45GRiTRrl8v85wJJirWhZadsXnrd1MfoxCGpGgFMWBJLg6YFTBnU2NKh3JSMSitflSVGhw8fxtbW8h10LenSpUsUFRXRqVOnkmVubm4EBQUBEBoaipWVVan17u7uBAUFERoaCphmFh88eHCpdjt27HjDxGjWrFlMnjy55HlWVhZ+fn63/Hc0bpWHq6eONTsvlCxTWUGrzrk8MjKFAQ3bYKjmL+esNBV6Hbh46kotd/XQkZ5snorMrSjMVxEfpSI+Cs6fcOCz/WfpOySFrWvqVPm+nnsphK8/b8yfu+sCEBXhhJdPPk88E8aeX/3IyrBBp1MQfbl0H4eYKAeat676ysdVOq2S+GjTL+Xwcw40aZXDwGfjWT23kdn2+W/HlrnRemwGjQaYKkRuQVpy4qw49bFzqcTIoIU/XvEiJ9aKhzYllFstyk1U8cszdfBuV0C3N8pPnG7H+PkRdLw/nWlDW5CSoC617vhBF567/y6cXLXodQpys63YfDiY+Bj1dVozLxu1gZHTYnl9XGOO/uECQOR5DY2a5/HY2ARJjICXFl+h04NZTBnciJR4840eFOZV6TPKo48+Wuq50WgkPj6e4ODgm17yEeahVqtRq6vuy/LkQUfG3h9UatmUd6OJuWTLtjVe1Z4UgelkG3ZaQ7tu2SVDcxUKI2275fDjBvdqj6eiFEoj1jbm+dmkttWXGZ1k0CtQFi/S6ZSEhbpQr37pKomvXy5JCdV3act0DMzTN6c8ugJFSbXsKqXSWOpYXU2KMqOs6fd5PLauZePLTTAlRR4tCun+ZkqZNm+PkfHzI+n6YBozhrcg8cr1f1RmpZuqjW06Z+LiruXvPW7X3dacrKxN72XD/x0qg77s8a59jLy0OJaufTOZ9nhjEi2UvFaaufsB1ZaKkbNz6V8FSqWSoKAgFi1aRO/evasssDtRo0aNsLa25siRI9SvXx8wdba+ePEiPXr0oFmzZuh0Oo4cOVJyKS01NZULFy6UTH0QFBTEsWPHSrX7/8/NLT9XVebaeEGekuz0ssur03efeDB1ZQwXT2m4cMI0XN9WY+D3LdVzorDV6PH1v9afycevkIDmeWRnWJGVrmLoywn8vcuZtCRrnNx0PPxMMh7eWg78bJ7ROkcPevPUs2EkJ9oRFeFIoyaZDB4Swa6fr1ULv93ciBmv/8PZk+6c/seD9p2T6HRPIjMndDFLTCOnRBH8pwtJcWo09np6PpxC605ZzCkeheXqUYSrpxbfBgUA+AflkZ+rIinOhpzMqrncWP++PE5+6IJ9HR2ugVpSQ2w4u96ZwMdNl8EMWtgz0YvUc2oe/DgRo15BXrKpk6zaWY/KpjgperoODr46Os5IoyDtWidajaf+tmN8aWEkPR9OYdELQeTnqnD1MPUbys1WUVRo2teDjyURc8mOzDRrmrbL5oU5l/l+fZ1Scx1Vteu/x1Ukx6k5fdiR51+7QlGBksRYNa07ZdPrsRQ+eb2+2WIqN8aG1/pZ+fgVEdAi3xRjrGWqNBOWxHLf4HQWjGpIfo4SV08tUPz/WVDrs8Y7jsJoNFY4p9Pr9Rw6dIhWrVrh6lo9QzPvNOPHj+fXX39l3bp1eHl5MXv2bP744w9Gjx7NypUrGTRoEGFhYXz88cc4Ojoyc+ZMwsPDS3W+vvfee3n77bd5+OGH+eOPP5g9ezZ6vZ709PQKxZCVlYWzszM9FYOwUlTNyWbZ12FEhNjd3gSPFX+rXdcjo0wTPLp66og4Z8cHc325cOLWh58rrCr+26B152yWbbtYZvmur91Z9Vp9Zq6KJKhdLk6uOrIzrLh4SsNXq+pw8XTl4lPV863QdnYaHSPGnKdrjwScXU0TPO7fVZev1jVBp7v2Zfxg/2ieeCYcD698YqMc2PxZEH8f8KlUTIbk1AptN2lJOG27ZOLmVURutorI8/Z8vbYuJw65ADD85WhGTLxS5nXLZzRm93eVmyRw1Imz5S4vylFw/D1XLu+ypyBVicZLT8CAXNq9lI7KxjR547b7y7/U3O/zeOp0KuDidw4cmOlZ7jajL0ZeN6b1bVtcd92//Rp+uNzly6c3KjkOo6ZF8cCjyTg660iMVfPLV958v64O/568syKMWt3NNyrWunMWy7ZeKLN819fuLJ8agKunllHTr3DXvZk4uuhIuqLm1688+e5T70rFZdTeegfy1l1yePvbS2WW/77VleWvVl+C9m+/xZ0qd/k7k/zYte3WfrjpjFr28QOZmZk4OVXt9ARXzxEBc5egMmMXGH1BARGvv2aWv8GcKpUYAdja2hIaGkrDhg3NFdMdLScnh/Hjx/Pdd9/h6OjIlClT+Pnnn0tmvk5PT+eVV17hxx9/pKioiHvvvZfVq1cTGBhY0sbatWtZuHAhaWlp9OnThw4dOvD+++8TH1+xYdbmSIyqRBUkRlWtMolRdaloYlSdKpoYVafrJUaWVNHEqDpVJjGqLreTGNUWkhhZTqXPCi1btiQiIkISo+twcHDg888/5/PPPy9ZNm3atJJ/u7q6smnTphu2MWbMGMaMGVPqeePGNX+EgxBCiDuI9DEqV6Uvfr7xxhtMnTqVn376ifj4eLKysko9xO175513OHXqFOHh4axevZqNGzfy7LPPWjosIYQQ4j+vwhWjRYsWMWXKFPr16wfAI488UurWIEajEYVCgV5/+x0Ta7ujR4+ybNkysrOzCQgIYNWqVTz//POWDksIIcR/iVSMylXhxGjhwoW88MIL7N2715zxCGDbtm2WDkEIIYSolSqcGF3to92jRw+zBSOEEEKI6iEzX5evUn2M/n3pTAghhBDiv6ZSo9KaNGly0+QoLc18txoQQgghhDCnSiVGCxcuLDPztRBCCCHEf0WlEqMhQ4bg5VW52WmFEEIIUQPJqLRyVbiPkfQvEkIIIcR/XaVHpQkhhBDiziej0spX4cTIYDCYMw4hhBBCCIureXfQFFXHaO4LyP8BikrfFcfsdNGxlg6hDKVNDboZcbHPggIsHUIZv8X+ZekQyujj29bSIZRVE7tm1NarIjX0z37zzTeZNWsWr7zyCitXrgSgoKCAKVOmsGXLFgoLC+nTpw8ffPAB3t7eJa+Ljo5m/Pjx7N27FwcHB5599lmWLl2KVSVuGF7zzgpCCCGEqLWOHTvGxx9/TOvWrUstf/XVV9mxYwdff/01+/fvJy4ujkcffbRkvV6vp3///hQVFfHXX3+xceNGNmzYwLx58yq1f0mMhBBCiNrIWA2PSsrJyWH48OGsXbsWV1fXkuWZmZl89tlnvPvuu9x///20b9+e9evX89dff/H3338D8PvvvxMSEsIXX3xB27Zteeihh3j99ddZs2YNRUVFFY5BEiMhhBBCmE1WVlapR2Fh4XW3femll+jfvz8PPPBAqeX//PMPWq221PKmTZtSv359Dh8+DMDhw4dp1apVqUtrffr0ISsri3PnzlU4XkmMhBBCiFro6qg0cz4A/Pz8cHZ2LnksXbq03Hi2bNnC8ePHy12fkJCAjY0NLi4upZZ7e3uTkJBQss2/k6Kr66+uqyjpfC2EEEIIs4mJicHJyankuVqtLnebV155hV27dmFra1ud4ZUhFSMhhBCiNqqmPkZOTk6lHuUlRv/88w9JSUncddddWFlZYWVlxf79+1m1ahVWVlZ4e3tTVFRERkZGqdclJibi4+MDgI+PD4mJiWXWX11XUZIYCSGEEMKievXqxZkzZzh58mTJo0OHDgwfPrzk39bW1uzZs6fkNRcuXCA6OpouXboA0KVLF86cOUNSUlLJNrt27cLJyYnmzZtXOBa5lCaEEELUQjVp5mtHR0datmxZapm9vT3u7u4ly0ePHs3kyZNxc3PDycmJl19+mS5dutC5c2cAevfuTfPmzXn66adZtmwZCQkJzJkzh5deeqncKtX1SGIkhBBCiBpvxYoVKJVKHnvssVITPF6lUqn46aefGD9+PF26dMHe3p5nn32WRYsWVWo/khgJIYQQtZG5b45wm23v27ev1HNbW1vWrFnDmjVrrvuaBg0a8Msvv9zWfqWPkRBCCCFEMakYCSGEELVRDa8YWYpUjIQQQgghiknFqIoYjUbGjRvHN998Q3p6OidOnKBt27aWDuuWPDUhkXv6ZeLXuJCiAiUhwRo+W1yHK5csN+lWTYipZcdsHh8XT2CrPNy9tSwc05jDv1+7l8+UdyJ48InUUq8J3ufEnGeDzBdTp2yeeCGRwFb5uPtoWTA6gMO/uZSsv+ehdPqPSCGwdR5OrnrG925KRIjGbPE8OT6We/qkUy8g3/T/dNyRdW/5ERtpV7LNy29E0u6eTNy8iyjIVRFy3IF1b9XnSoTdDVqueu4+RYx+LZ67789CbWsg7rKa5ZPrE3baPMcnL0fJxmV1+OtXZzJSrWjUIp/xr18hqG1+mW3fm1GPXz73YNzCWB4dk1xq3ZHdTmxe4U1kqB02agOtOueyYH2kWWK+6uGRKTw+Pgk3Tx0RIXZ8MKcuF06a7310IyMmx/P0lNJz1cSEq3m+RzOLxPNvNek4VURNGpVWk0hiVEV27tzJhg0b2LdvHwEBAXh4eFg6pFvWuksuOzZ4cPGkBpWVkZEz41nyVQRjegRRmK+qtTHZavREhmr4fZsn8z4JL3ebY/uceXdqw5Ln2kKFmWMyEBGi4betHsz/NKLc9eeOOfDnT668+na0WWMBaNUxmx2fe3PxtD0qlZGR066weNN5xvVuXfL/FH7Wnr0/uJMUp8bRRceIV0zbjLq3LQaDeY/XVQ7OOt7dHsbpvxyZMyKAjFQr6jYsJCfTfO+lFVP8uHzBlumro3Dz1vLHt27MfKoxa/edx6OOtmS7Q786c/4fe9x9yt708sDPzqyc5seomfG0vScHvR4unzdvQtnjkXTGzo9j9cx6nD+uYfCYZBZ/GcHo7kFkplqbdd/Xc/m8LTOHNCp5rtdVz/vmRmricRK3RhKjKnLp0iXq1KlD165dy11fVFSEjY1NNUd1a2YPDyj1fPmk+mw7e47A1vmcPeJQa2MK3udC8D6XG26jLVSQnlx9X4LBe50J3ut83fV7vnUHwLve9W/aWJXmjmpa6vm70wLYEnycwJa5nD1muiXAr1u8StYnxarZ+K4fH/5yBu96hcRHV08F8MkXk0iJs2H55PolyxJjKj7PSWUV5is4+IsLC9ZH0qpzLgBPT03g711O/LTJnZEzTPdxSom35oM5dVn8ZQTzni79ntfr4KN5dRkzJ46+w9JKljdoYt7/20fHprDzSzd+3+oGwKoZ9ejYK4s+Q9PY9r73TV5tHno91fo5q4iaeJxuSvoYlUv6GFWBkSNH8vLLLxMdHY1CocDf35+ePXsyYcIEJk2ahIeHB3369AFg//79dOzYEbVaTZ06dZg5cyY6na6krezsbIYPH469vT116tRhxYoV9OzZk0mTJlnorwN7J70ptgzLVIvKUxNjAmjdOZst/5zg0z/OMOGNyzi66G7+ov8wjWPx/1Nm+b/B1HZ6ej+eTHy0muT46vvh0Ll3JhdPa5j9cSRbT51lzW8XeGhY6s1feIv0egUGvQIbtaHUcrWtgXNHTYm9wQDLJtbn8fFJ+AcVlGkj7IyGlHgbFEp48cEmDG3bgtnDA7h83nzJpJW1gcDWeRw/4FiyzGhUcOKAI83b55ltvzdTt2ERX/5zlg1/hTBjdRSevmWra9Wpph4ncWskMaoC7733HosWLaJevXrEx8dz7NgxADZu3IiNjQ2HDh3io48+IjY2ln79+nH33Xdz6tQpPvzwQz777DPeeOONkrYmT57MoUOH+PHHH9m1axcHDhzg+PHjN9x/YWEhWVlZpR5VRaEw8sLCWM4e1RB1oXr7gFxPTYwJIHi/M+9MbsjMYUF89mY9WnXO5o2NF1Eq79CfTbdJoTAybm4U54IdiLpYup9F/xGJfHfmGNvPBdOhRwazn2mKTlt9X0d16hcx4OkU4iLVvDYsgJ82uTN+0RUeeCLt5i++BRoHA83a5/LlSh9SE6zQ62HPt66E/mNPWqIpady2xguVysig0SnltpEQZUocv1juw9BJiSzaFIGDs55pjzUmK908PxCc3PSorCAjuXRim55ihaunZZL+8yfseefV+swe0YjVs+rhU7+Q5d+HYWevt0g8UDOPU4VU073S7jRyKa0KODs74+joiEqlKnWjusDAQJYtW1byfPbs2fj5+fH++++jUCho2rQpcXFxzJgxg3nz5pGbm8vGjRv58ssv6dWrFwDr16/H19f3hvtfunQpCxcuNMvfNmFJLA2aFjBlUGOztH8ramJMAPt3uJf8+/IFDZGhdmw4eIbWXbI5ecjpBq/8b3pp0WX8m+Qx9cmy9yja+4M7Jw464+ZZxGNj4pm1OowpT7RAW1Q9yZFCCWGn7Vj/pumzdemcBv+gAvo/ncLur93Mss/pq6N4d3J9ht3VEqXKSONWefQclE7YaQ1hp+3Y/qkna367gOI63WUMxcWmoa8k0r1/JgBTVkQzon0LDvzkQv+nzVfxqkmC9177LEWG2nH+hIbPj4Rw78MZ/LbF/QavFKJipGJkRu3bty/1PDQ0lC5duqD41zffPffcQ05ODleuXCEiIgKtVkvHjh1L1js7OxMUdONRTbNmzSIzM7PkERMTUyXxv7T4Cp0ezGL6441IqcbLHDdSE2O6noQYWzJSrfBtUPayyH/d+AWX6XhfBjOGNSMloWzfnbxsK+Iu23L2mBOLXwrEr1EBXfuYp1pTnrQkK6Iulr4EFRNui5ev9jqvuH2+/kW88104P4Sf5ovgc6z+JQydVkGdBoWcOeJARooVI+5uwUN+bXjIrw2JV2xYu9CXZzqaEks3b1PloX7gtfeTjdqIT4NCkmLN098mK02FXgcu/1f1cPXQkZ5cM35X52ZZcSVCja9/9fSjK8+dcJzKc3VUmjkfd6Ka+z/2H2Bvb18t+1Gr1ZW6Qd7NGXlpcSxd+2Yy7fHGZu2UWnE1MaYb8/ApwslVR1pSzeokal5Gxi+IomvvNGYMa07ilZv3f1EoAAVY21Tft2jIMXv8GpU+kdYNMF+C8W+2GgO2GgPZGSr+2e/E83Pi6NYvg7u6Z5fa7rVhAfR6LJ3eT5kSxsDWeVirDVy5pKZlJ1MHbp0WEmNs8K5nnoROp1USdlpDu27ZHN5p6uSvUBhp2y2HHzfUjOqMrUaPb4Mi9nxruc/ZnXCcRMVJYlSNmjVrxrfffovRaCypGh06dAhHR0fq1auHq6sr1tbWHDt2jPr1TaNlMjMzuXjxIvfee2+1xTlhSSz3DU5nwaiG5OcocfX8X3t3GR3F3QVg/Nm4G4QIhCDBG1xLcYoU91K8WIDg7vbiUNwKFHcv7u4W3DVACIG4y877IWQhJUjb7G5o7u+cPYfdnZ25O2Rn7ty/TOJBNyLMkNho/RQZ00JMZhYJya5Knd1iyJE/krBgQ8KCjWjZ6yUn99gTFGCMi3sM7Qf78vKJKZeOf3rUmPZiMiLgpQnWdvE4usaSwTlxf7nlTKw2BAUYa2VUT7cxT6hY9y1jOuVO/H/KmNgpNiLMiNgYA5zdoilf+y2XT9gREmhERudYmnq9JDbagAtfGPGXmrYsysT07ff4ubs/x3fYkadwJD+1eMuMAVm0ts2LR61RFHDLGcOLxyYsHpsZN49oqjV7i5FxYj+VDxkZgX2meNw8Ev9/La3V1Gr1lpXTnHF0jSNTllg2zU8c4VeudrDW4t7ye0b6zfDl3lUL7l5JHIZuZqFm/zrtNDl+ScfhLzh7wJbXz43J4BxPq75+JKjh6Db7L39Yi9LafvoqMiotRZIY6VDXrl2ZMWMG3bt3x9vbm7t37zJy5Ej69OmDgYEB1tbWtGnThv79++Pg4ECmTJkYOXIkBgYGyZrftK1O28S+ClO3PEz2+tRebhzYoJ8feVqIKXfBCCavv6t53nlEYpPlgY0ZmD00G9nzRlK10RssbRII9Dfm0glbVkzLrNV+M7kLRTJl433Nc69RLwDYv8GBaX2yUfrHEPpNf6p5f8j8JwCs/M2ZVb99vu/aP1G75WsAJq+7nez1af1zcHCzI7ExBnxXIoz67V5hZZNA8Btjblywpk/j/Dqd6+XeVQvGdMhOu0F+tOj1ile+JiwYmZkjW7X3txQRasjSCS688TPG2i6Bsj8F026QH0Z/42t3HP4CQ0OFyT2yEhttQJ4ikUza+BBrO+11PD72pz22GRJo3f8V9o7xPLppztAW2Ql+o58KTUaXOAbPfYK1fQIhgUbcPG9Jrzq5CQnU7+ksre0n8c+pFEX5RnO6tGXGjBnMmDGDJ0+eAFCxYkUKFy7MjBkzki137Ngx+vfvz9WrV3FwcKBNmzb873//w8go8UcdFhaGl5cX27Ztw8bGhgEDBrBu3ToqV67MhAkTviqW0NBQbG1tqUg9jFTyo/wclXHa66ekJOhvdM2nGJikvb8jdYz++pR8yr4XV/QdwkequxbWdwgf0+GF3ldLY6fCeCWOo2wnJCQEG5vUHbyRdI7I5z0eQ1PtTfeQEBPN7TlDtPIdtEkqRqmkV69eyeYaOnr0aIrLVahQgfPnz39yPdbW1qxevVrzPCIigtGjR9OpU6fUClUIIYQQnyCJURpz5coV7ty5Q8mSJQkJCWHMmDEA1KtXT8+RCSGE+E+RPkYpksQoDZo6dSp3797FxMSEYsWKceLEiW/63mtCCCHEt0ISozSmSJEiXLp0Sd9hCCGE+K+TilGKZIJHIYQQQoh3pGIkhBBCpEPv5lbV6vq/RVIxEkIIIYR4RxIjIYQQQoh3pClNCCGESI+k83WKpGIkhBBCCPGOVIyEEEKIdEilJD60uf5vkVSMhBBCCCHekYrRf5lKlbZu1pjGbtIIgEEa2j/vqAzS3s9SZW2t7xA+YmiS9m4AXD1zEX2H8JG+D27oO4SPTMv1nb5D+FhaOlYCoNJ+Hx3pY5QiqRgJIYQQQryT9i5NhRBCCKEb32hVR5ukYiSEEEII8Y5UjIQQQoh0SEalpUwqRkIIIYQQ70jFSAghhEiPZFRaiqRiJIQQQgjxjlSMhBBCiHRI+hilTCpGQgghhBDvSMVICCGESI+kj1GKpGIkhBBCCPGOVIyEEEKIdEj6GKVMKkZCCCGEEO9IxegzKlasSOHChZkxY4a+Q9G5DM6xtB/iR4nKoZiaqXn5xJRpfbJy/5qFXuOq0/YNjbu8xsExnke3zJk3LDN3fXQT03clQ2nc6RW5vosgg1Mcozvl4swBe837dhnjaD/Ql6LlQrC0SeDGeWvmjXLn5RMzrcTTrMtLylYPIkvOKGKjDbh12Yo/Jrnx/JG5ZhljEzWdhj2jQu23GJsoXDpuy5wR2Qh+Y6yVmFp4PaRFl8fJXvN9bEHn+t8D4Jwlkg5971OgcDDGJmouncrA/Il5CA401Uo8KWnS0Zd2fZ+wbbkrv0/ICSTup44DH1G+VgDGxmoun7Jn7mgPgt+a6Cyu5Wdv4uwW99Hrfy7LyNyhWVJ9e+oEODMrE7e22xIZYIRlpngKNAqmdLeAFG80f2C4C9fWOlBxqB/F2gV+9H58jIo1jbMTcNucVn8+JFP+6FSP+a+advOn/RA/ti7OyIKRqb+P/o60esz8LOljlCJJjMRHrGzj+W3bfa6dtmZYyxwEvzUic/YYwkMM9RpXhbpBdBr5ktmDsnDnsgUNOgYwbs0j2pfLQ8hb7ZzoP2RmrubxbQv2b8jIiIUP/vKuwsiF94iPN2B0p1xEhhvSsP0rJqy6Q6cfPYmJSv1951kqjB0rM3HvmiUGRtCuny/jVtxNtr3Ow59RslIw47rlIiLMkG6jnzB8/n36Nsmf6vEkefLAkqGdimqeJyQknmVNzRMYt+AKj+5ZMbhjMQBadXvIyNlX6dOyBIqSwtk4leX6Loyazfx4dMcy2eudBj+kRIUgJvTMR0S4IV2GP2TY7Nv0+6WQ1mNK0uOnPBgYvj+TZMsbzcR1Dzmx01Yr27uwMCM+a+ypOfkFGXLF4H/dnL2DXDG1TqBom+SJz/391vj5mGPl9HHiluT4ZCesMsUTcFsr4X4kd6FIarV8y6Nb2rnw+DvS6jFT/DPSlKZDsbGx+g7hqzTt+po3L02Y1icrd30s8fc15fJxG/ye6u6qPiUNO71h7xoH9q934Nl9M2YNzEJMlIrqzT++etWGi8fsWD4tC6f3O3z0Xubs0eQrGsGcYe7cu2bF80fmzB6WDVNTNZXqvtVKPMPa5uHAZkee3rfg8W0LpvXPgVPmWHJ5RgBgYR1P9aYB/D4uK1fP2PDghiXT+uegQPFw8hYO10pMAAnxKoLemmoeocGJVZf8hYPJ5BrFb8ML8OSBFU8eWDFteAFy5Q+lUEnt/x+aWSQwYOpdZg3PRXjo+2tCC6t4qjXyZ9Gk7Fw9Z8eDm9ZMH5yb/EVDyVMoVOtxJQkJNCIowFjzKFU1hJePTbh2xkor23t5xQKPKmHkqBSObZY4ctcMJdsPEby6ap5subBXRhwe7cJP015gYJRyCeDxMSuenrSiwiB/rcT6V2YWCQyc85QZA9wIC9Z/8pFWj5lfpOjg8Q2SxOgL1Go1AwYMwMHBAWdnZ0aNGqV579mzZ9SrVw8rKytsbGxo2rQp/v7vDwyjRo2icOHCLF68mOzZs2Nmlnhls2nTJjw9PTE3NydDhgxUrVqViIgIzecWL15Mvnz5MDMzI2/evMybN09n3xegdLUQ7l2zYOjCx6y/eoO5++5S8xftnNy/lpGxmlwFI7l8wlrzmqKouHLCmvzFIvUYWSJjk8QjQGzM+5+UoqiIizWgQHHtJSEfsrBOACAsOPGkn+u7SIxNFK6ctNEs8/yROf4vTMhXVHsxZXaPZOWB4yzZdYr+42/g6JzYpGJsooZ3+yRJbIwBilpFgSLBWosnSdcRDzh/1B6fM/bJXs9VIBxjEwWf0+9ff/7YgtcvTMlXOEzrcaXEyFhN5YZB7FufAdBOJc21SCTPzlgS+DgxcX1925QXFy3IXuH934aihj39MlOi4xsy5o5JcT0RbwzZP8SVmlOfY2Su1kqsf+U9/jnnD9lw5YPjgT6lxWOm+OekKe0Lli9fTp8+fTh37hxnzpyhbdu2lC1blipVqmiSomPHjhEfH0+3bt1o1qwZR48e1Xz+wYMHbN68mS1btmBoaIifnx/Nmzdn8uTJNGjQgLCwME6cOIGiJJ5YV69ezYgRI5gzZw5FihThypUrdOzYEUtLS9q0aZNijDExMcTEvD9ohYb+u6tcl6yx1G71hi2LHFk3y4nchSPpMuY5cXEqDm78uFqiCzYOCRgaQXBA8j/ZoDdGuHmkfMDWJd+HZvi/MKHdgOfMGpKN6CgDGvz6CkfXWBwyab9SqFIpeA1/ys0LVjy9l9inwd4xltgYFRFhyfdZ8Btj7B0/3STyb9y9bstvwwvw/IkFDo6x/NL5EVOWXqRLo9LcuWZLdJQBv/a6z/LZHqCCdj3vY2ikYO+o3X1U/qfXeOQPp2fjIh+9Z+8YS1zsx/sp6K0x9hn1U+X9vkYIVjYJ7N+gvd9bSa83xIQbsLSaBwaGiX2Ofujzmnz1QjTLnF+YEQNDKNIm5YqeosDeAZkp9Esgzp7RhDzXfpN2hbpBeHwXRfdaubW+ra+VFo+ZX0NGpaVMEqMvKFiwICNHjgQgV65czJkzh0OHDgFw/fp1Hj9+jJubGwArVqygQIECXLhwgRIlSgCJzWcrVqzA0dERgMuXLxMfH0/Dhg1xd3cHwNPTU7O9kSNHMm3aNBo2bAhA9uzZuXXrFgsXLvxkYjRhwgRGjx6dat9ZZQD3r5mzdKIrAA9vWpAtTzS1Wr1J0z9yfUqIN2CsVy56T3rMpquXSYiHK6dsOX/ENsWOrKmt25inZMsTpdW+Q1/j4qmMmn8/uQ93r9uwbM9JylX3Z//WzIzvXxDvoXeo+4svilrFsb1O3L9ljaLFQkNG5xg6D3nE0F89k1Wr0rLqPwdy4YgNgf7aSzTu7rbh9p921Jr+nAy5Ygi4ZcaRcc5YOcVRoGEI/jfMuLzcgVbbH33yb/jKCgdiIwwo6fVGa3F+yNE1li5jXjC4eU7iYtLO/6UcM/9bJDH6goIFCyZ77uLiwuvXr7l9+zZubm6apAggf/782NnZcfv2bU1i5O7urkmKAAoVKkSVKlXw9PSkevXqVKtWjcaNG2Nvb09ERAQPHz6kffv2dOzYUfOZ+Ph4bG0/3QFz8ODB9OnTR/M8NDQ0WVx/V+BrI57eS96h0feBGT/8FPKJT2hfaKAhCfFg5xif7HX7jPEEBaSNP+MHNyzpVus7LKzjMTZWCAk0ZsbWm9y/bvnlD/8LXUc/oVTlYPo1y8ebV+9HUQUFmGBiqmBpHZ+sGmKXMY6gAO1f2QNEhBnz4qklrm5RAFw5k4H2tctiYxdLQoKKiDBjVh06zqvn5l9Y0z+Xq0AY9hnjmL3lsuY1QyP4rngIdVq8ZFiH7zA2+Xg/2WeII+iN7kalJcmUOZYi5cIY2yG7VrdzbKIzJTu/IW/txAqzY54YQl8ac26BIwUahvD8ggWRb434vfz7yoySoOLYBGcuL8tAx2P3eXbGEr8rFszInzwhX9UgB/nqhlBzyotUjdnDMxJ7x3jm7r2rec3QCDxLR1C37RtqZy+EWq2DK5G/SIvHzK8io9JSlDbOKGmYsXHyE4hKpUKt/vrLW0vL5CdFQ0NDDhw4wOnTp9m/fz+zZ89m6NChnDt3DguLxCaQRYsWUapUqY8+9ymmpqaYmqZeJ79bFyxxy5m8eSpzjhhev9DNyTQl8XEG3L9mQZEfwjizNzFJVKkUCv8Qzp/LMugtrpREvju5umaLJpdnBCt+09YwYoWuo5/yfbUgBjTPh//z5H8D929YEBeronDZUE7tTbxqzZIjCqfMsdy+rJ0OvX9lZh6Pi1skh3c5J3s9qUN2oZKB2DnEcvaoY0ofTxU+Z+3oUqdostd6j7/H80cWbFychQA/08T9VCaYU/sTK16Zs0eSKXMMt31034elWrO3BL8x4twhmy8v/C/ER6tQGSQ/c6kMgHeHt/z1Q3AvG5Hs/c3t3MlXL5jvGgcDUHnEK37o81rzfri/EZvbZaP2TF9cCkWlesw+J63pVDlPstf6/vYM34dmbJibSS9JEaTNY6b45yQx+ofy5cuHr68vvr6+murMrVu3CA4OJn/+zzdnqFQqypYtS9myZRkxYgTu7u5s3bqVPn364OrqyqNHj2jRooUuvkaKtizKxPTt9/i5uz/Hd9iRp3AkP7V4y4wB+p0nZMvvGek3w5d7Vy24eyVxuL6ZhZr963RTqjazSMDV/f3cLM5uMeTIF0FYiBEBL00p91MgIW+NeP3ShGx5o+gy4iln9ttz+YR2hlt3G/OUSvXeMrpTLqLCDTT9YSLCjIiNMSAyzIh9GxzpNOwZYcFGRIYb0nXUU25dsuKOj3YSo/Z97nHumCOv/czI4BhDyy6PUCeoOLonMTH6sd5Lnj2yJCTImHyFQug84B7bVmXlxVPtVdWiIox4ej/5oS46ypDQYCOe3k/c7v7NTnQc+IiwkMT95DXsIbeuWHP3qnaTk79SqRSqNQvk4EYH1AnaPcnnrBzGuXmO2LjGkSFXDK9vmXHpjwx81yQYAHP7BMztE5J9xsBIwdIxHocciX9rNq7J+6oZWyRmVXZZ47B2SV7dTQ1REYY8vZu8uhgdaUBY0Mev61JaPWZ+iUpRUCnaK+toc93aJInRP1S1alU8PT1p0aIFM2bMID4+nq5du1KhQgWKFy/+yc+dO3eOQ4cOUa1aNTJlysS5c+cICAggX758AIwePZoePXpga2tLjRo1iImJ4eLFiwQFBSVrLtOme1ctGNMhO+0G+dGi1yte+ZqwYGRmjmzVb1v5sT/tsc2QQOv+r7B3jOfRTXOGtsiutckK/yq3ZwST193RPO88/BkABzZlZFr/HDhkiqXT0GfYZYwjMMCYQ1sysma2q9biqdMq8Up9ygcxAUzrl50DmxMrMAvHZkVRYPj8++8neBzurrWYMjrFMHDidWzs4ggJMuHmFTt6typBaFBihShztgja9HiAtW0cr1+as35xNrauzKq1eL7W7xNyoqgfMXTm7cSJJ0/aM2+Mh87jKFIuDKcscexbr/3fWuURrzg1IxMHR7oQ9TZxgseCzYMo4x2g9W3/16TVY6b4Z1SK8o2mdDqQ0szX9evXx87OjmXLlvHs2TO6d+/OoUOHMDAwoEaNGsyePRsnJycgcbj+tm3b8PHx0Xz+9u3b9O7dm8uXLxMaGoq7uzvdu3fH29tbs8yaNWuYMmUKt27dwtLSEk9PT3r16kWDBg2+Ku7Q0FBsbW2pqKqPkSoNlXLT4J+aKhWbIP/LDGx0Wzn5KjH6H434Vwlh+hne/zl979/QdwgfmZbrO32HkObFK3EcVbYREhKCTSr//pLOEYVbjsPQRHsTZCbERuOzaqhWvoM2SWL0HySJ0deTxOjrSGL0dSQx+jqSGH2ZJEb6I01pQgghRDok8xilLO1MBCGEEEIIoWdSMRJCCCHSI5nHKEVSMRJCCCGEeEcqRkIIIUQ6JH2MUiYVIyGEEEKId6RiJIQQQqRH0scoRVIxEkIIIYR4RypGQgghRDokfYxSJhUjIYQQQoh3pGIkhBBCpEfSxyhFkhj9h6mMjFGlpXulpUFKbKy+Q/hYGrynXEKA3HH9qxgY6juCj0zzKKDvED7y54vz+g7hI/Xcy+g7hGRUihri9R1F+iSJkRBCCJFOfav9gLRJ+hgJIYQQQrwjFSMhhBAiPVIU7Tbdp8FuAV9DKkZCCCGEEO9IxUgIIYRIh2Qeo5RJxUgIIYQQ4h2pGAkhhBDpkcxjlCKpGAkhhBBCvCMVIyGEECIdUqkTH9pc/7dIKkZCCCGEEO9IxUgIIYRIj6SPUYqkYiSEEEII8Y5UjIQQQoh0SOYxSpkkRlrUtm1bgoOD2bZt2yeXyZYtG7169aJXr146i+uvvisZRuPOfuTyjCSDUxyjO3pwZr+95v2+Ux/xY5O3yT5z8agNw9rk0VtMAG4eUbQf9BzPUmEYGik8u2/GWC8PAl6aai2uDy0/exNnt7iPXv9zWUbmDs2ikxj+qnbrN9Rq/RYnt1gAnt41Y/V0Jy4esdFLPGk1pmbe/pT9KQQ3jxhiow24ddGCJeNceP7QTG8xGRgotOzjR5WGgdhniuPtK2MObMzAmpnOgEovMX1XKpwmXQMSf4fO8Yz6NRtn9tpqdZuR4QasnpyZs3vtCXlrTI4CkXQc84xchSMAWDPNlRPbHXjz0gQjEwUPzwhaDnxBnqIRmnX8r60Hj25aEPLWGCvbeAr9EEqboc/J4Pzx7/Wf+K5kGI29/N8fnzrk5Mx+O837LXu/pEKdQBxd44iLU/HgugXLJmfmro9lqmxfaJckRnp24cIFLC31+2Mxs0jg8W0L9m9wZMTvD1Jc5sJRW37rl13zPC5GuwfqL8XkkjWaaZtus2+9IyunuxIZZoh77ihiY3TXOtzjpzwYGL6/JMqWN5qJ6x5yYqd2TxyfE+BnzB/jXXjx2BSVCn5sEsiopU/oVi03T+/p56SfFmMqWCaCHcsycs/HAkMjhbaD/Bi/9hEdK+QhJspQLzE17epP7dYBTO2Vjaf3zMhVKJK+054SEWbI9j8y6SUmMws1j26asW+tAyP/eKKTbc7pl52nd83pPesRDk5xHN2SgeE/52bukRtkcIkjc45oOv/vGc7uMcRGq9i+yJmRv+Rm4anr2GaIB8Dz+zAad/fDwSmOt34mLB3rxqROHkz+83aqxGhmoebxLXP2r8/AiEWPPnr/+SMz5o3Iit8zU0zN1DRo78/4Vff4tfx3hAQap0oMqULulZYiSYz0zNHRUd8hcPGoHReP2n12mbgYFUEBuvtBfymmNv1fcOGIHUsmuGle83um25NsSGDyn08zb39ePjbh2hkrncbxoXMHkidlyya5ULv1W/IWi9BbEpIWYxraIkey59N6ZWXDjZvkKhjFjXP6+f/LXzycM/vtOH84cX/5PzelUr0g8hSO+MIntefiERudVvZiolSc3m3P0D/u813pcAB+6fuSCwfs2LMiEy0HvqBCg8Bkn2k/8hkH1jry5JY5hcqFAVCvk7/m/UxZYmnk7cf4Xz2Ij1NhZPzvT9YXj9py8einL4CObndI9vz3sW7UaP6W7Pmi8DmVhhIjkSLpfJ0KNm3ahKenJ+bm5mTIkIGqVasSEfH+YDZ16lRcXFzIkCED3bp1Iy7ufTk3W7ZszJgxQ/NcpVIxf/58atasibm5OTly5GDTpk26/DopKlg6jHWXrrD48HW8//cEa7t4vcWiUimUrBzMi8dmjFtxl3WXrjBj2y3KVAvSW0xGxmoqNwxi3/oM6KvZ468MDBQq1AvC1ELN7Ytpo4SfFmMCsLRJACAsWD/VIoBbF60oXDaMzNmjAciRL5ICJcK5cER/FUhdS0hQoU5QYWKafAIcEzM1ty58nLDGxarYtzoTljbxZC8QleI6w4IMObYlA3mLh6dKUvR3GRmrqflLAOEhhjy6ZaHz7X9OUh8jbT6+RVIx+pf8/Pxo3rw5kydPpkGDBoSFhXHixAmUdyXEI0eO4OLiwpEjR3jw4AHNmjWjcOHCdOzY8ZPrHD58OBMnTmTmzJmsXLmSn3/+mevXr5MvX74Ul4+JiSEmJkbzPDQ0NFW/48Vjtpzaa88rX1Nc3GNoO+A5/1t+j94N8qFW6z4JsMsYj4WVmqZd/Fg+NTNLJrpRvEIIwxc+YODPebh+Tvd9V76vEYKVTQL7Nzh8eWEty5Y3ihk7HmBiqiYqwoAx7bPx7L7++s6k1ZiSqFQKXqNfcOO8BU/vmustjvVznbCwTmDxsVuoE8DAEJZNcuXIVv3/TemKhZWavMXCWT/TlSy5HmHnGMfxbRm4e8kKl2zRmuUuHLBlStecxEQZYO8Ux5i197BxSH6xtmxcFnYtzURMlCF5ioYzfPk9nX6XklWCGTznMabmagJfGzOkRS5Cg+SU+y2QitG/5OfnR3x8PA0bNiRbtmx4enrStWtXrKwSr27s7e2ZM2cOefPmpXbt2tSqVYtDhw59dp1NmjShQ4cO5M6dm7Fjx1K8eHFmz579yeUnTJiAra2t5uHm5vbJZf+JYzsycPagPU/uWnBmvz0j2+UiT+EICpYJS9XtfC3Vu8uQMwfs2LrEmUe3LNgw34Xzh+yo1SJALzFV/zmQC0dsCPTXf5n8+UNTuv6Ymx61crFzRUb6zXxG1lzRX/5gOospiff4F7jnjWZCF3e9xlG+ThCVGwQy0Tsb3WrmY2pvdxp7+VO18dsvf/g/pPesRygKtCtWmEbZi7Pzj0yUqx+I6oOzlWfZMGbsv8mk7bcpWjGESV45CX6TPOlo2OUVM/bdZPTauxgYKszomUOnXV6unrama4189GmQh0tHbRgy7xG2GVKn87fQLkmM/qVChQpRpUoVPD09adKkCYsWLSIo6H2TToECBTA0fF+ed3Fx4fXr159dZ5kyZT56fvv2pzsNDh48mJCQEM3D19f3H36br/PK14zgt0a4uuvnxBYaZER8nIpn95Nf3T97YIZj5lidx5MpcyxFyoWxd00GnW87JfFxBrx8YsqD6xYsneDC41vm1O+gn4QxLccE0G3cc0r9GMqAxjl542ei11g6DnvB+rnOHPvTgSd3zDm0OQNbFmXiZ+9Xeo1L11yyxTBh81023L/EHxeuMm3XbRLiVDhnfV8VN7NQ45o9hrzFIugx7QmGhgoH1ibvr2njEE/mnDEUKR9K/3kPuXjYjruXdNd8GxNliN9TM+5csWL6gGwkJKio8fMbnW3/qyg6eHyDJDH6lwwNDTlw4AB79uwhf/78zJ49mzx58vD48WMAjI2TVxBUKhVqdereQMbU1BQbG5tkD23K6ByLjX08ga/1Ux2JjzPg3jULsuRInphlzh7N6xe6P7lVa/aW4DdGnDukv+Hnn6NSgbFJ2jpC6T8mhW7jnvN9jRAGNMmJv69upnj4HFNzNcpfDg3qBFWySkl6YmahxsEpjvBgQ64cs6Fk9eBPLqsoif2NPv1+4ntxsfrbmSoDJc39DkXKpMEzFahUKsqWLUvZsmUZMWIE7u7ubN269R+v7+zZs7Ru3TrZ8yJFiqRGqCkys0jANdv7qzFntxhy5I8kLNiQsGAjWvZ6yck99gQFGOPiHkP7wb68fGLKpePa6xT6uZgCXpqyaaELg+c85Po5a66esaZ4xRBKVw1mQLO8WospJSqVQrVmgRzc6IA6Qf+drtsN9uPCYWsCXphgbpVApQbBFPw+nKG/5Pjyh9NRTN7jX1CpQRCj2mUnKtwAe8fEJo6IMENio/Vz8jx7wJafe7zi9QsTnt4zI+d3UTTs9Jr96/VXiTSzSMA1+/sqrLNbLDkKRCX+DrV0EXL5qA2KAplzRuP3xIxlY93InDOaqs3eEB1pwIaZLpSsFoyDUxyhgUbsWpaJt69M+KF24mi1u5ctuX/VkvwlwrCyS8DviSmrp2TGOVs0eYuFp0qMnz4+GREaZEjz7q84e8CWwNfG2DjEU6d1ABmd4jixy/4za9U9meAxZZIY/Uvnzp3j0KFDVKtWjUyZMnHu3DkCAgLIly8f165d+0fr3LhxI8WLF+eHH35g9erVnD9/niVLlqRy5O/lLhjB5PV3Nc87j0hsijuwMQOzh2Yje95IqjZ6g6VNAoH+xlw6YcuKaZm1evX1uZim9cvB6X32zB7qTrOufnQZ/ZTnDxMnd7x50VprMaWkSLkwnLLEsW992ugga5cxnv6znuGQKZ7IMEMe3zZj6C85uHxct/slrcdUp21iv52pWx4me31qLzcO6KkD/bzhbrTp/xLv8b7YZUyc4HH3qoysnuGsl3gAcheKYsrm9/vIa/RLAPavt2da76xa2WZkqCErJmbhjZ8J1nbxlPkpiFYDX2BkrKBOgOcPzTncKSOhgUbY2MfjUSiCiVvukDVPYgXZ1FzNmd32rJ2amegoA+wzxVG0YgjNej7E2DR1ztS5C0YyecP7ztydRz4HEo9Ps4ZkxS1nNFUbv8XGPp6wYCPuXbWgX+M8PL2nv8794uupFOUbnYEpjbh9+za9e/fm8uXLhIaG4u7uTvfu3fH29k5x5utevXrh4+PD0aNHgY9nvlapVMydO5dt27Zx/PhxXFxcmDRpEk2bNv3qmEJDQ7G1taWScROMVPrvDJyWKfFpsDOk/CS/XQb6G+7/SeoEfUfwkT9fXNB3CB+p517mywvpULwSx5H4zYSEhKR694ikc0Tpn8ZgZKy90aHxcdGc3T1CK99Bm6Ri9C/ly5ePvXv3pvjesmXLPnrtwzmLAJ48efLRMq6uruzfvz8VohNCCCHE3yGJkRBCCJEOSR+jlKXT8Q5CCCGEEB+TilEaI12+hBBC6IS25xr6Rk9nUjESQgghhHhHKkZCCCFEOiR9jFImFSMhhBBCiHekYiSEEEKkR2ol8aHN9X+DpGIkhBBCCPGOVIyEEEKI9EhGpaVIKkZCCCGEEO9IYiSEEEKkQyrej0zTyuNvxDJhwgRKlCiBtbU1mTJlon79+ty9ezfZMtHR0XTr1o0MGTJgZWVFo0aN8Pf3T7bMs2fPqFWrFhYWFmTKlIn+/fsTHx//t/aLNKX9hykJCSiqtJP7Gphr72aF/5QSF6vvEMR/iaLWdwTfhLpupfUdwkd2+p7TdwjJhIapyZRH31HozrFjx+jWrRslSpQgPj6eIUOGUK1aNW7duoWlpSUAvXv3ZteuXWzcuBFbW1u8vb1p2LAhp06dAiAhIYFatWrh7OzM6dOn8fPzo3Xr1hgbGzN+/PivjkUSIyGEECI9UpTEhzbX/5X+ejP2ZcuWkSlTJi5dukT58uUJCQlhyZIlrFmzhsqVKwOwdOlS8uXLx9mzZyldujT79+/n1q1bHDx4ECcnJwoXLszYsWMZOHAgo0aNwsTE5KtiSTvlBCGEEEL854SGhiZ7xMTEfPEzISEhADg4OABw6dIl4uLiqFq1qmaZvHnzkjVrVs6cOQPAmTNn8PT0xMnJSbNM9erVCQ0N5ebNm18dryRGQgghRDqk1f5FH8yq7ebmhq2treYxYcKEz8alVqvp1asXZcuW5bvvvgPg1atXmJiYYGdnl2xZJycnXr16pVnmw6Qo6f2k976WNKUJIYQQQmt8fX2xsbHRPDc1Nf3s8t26dePGjRucPHlS26GlSCpGQgghRHqk6OAB2NjYJHt8LjHy9vZm586dHDlyhCxZsmhed3Z2JjY2luDg4GTL+/v74+zsrFnmr6PUkp4nLfM1JDESQgghhF4pioK3tzdbt27l8OHDZM+ePdn7xYoVw9jYmEOHDmleu3v3Ls+ePaNMmTIAlClThuvXr/P69WvNMgcOHMDGxob8+fN/dSzSlCaEEEKkQypFQaXFUWl/Z93dunVjzZo1bN++HWtra02fIFtbW8zNzbG1taV9+/b06dMHBwcHbGxs6N69O2XKlKF06cTpH6pVq0b+/Plp1aoVkydP5tWrVwwbNoxu3bp9sfnuQ5IYCSGEEEKv5s+fD0DFihWTvb506VLatm0LwPTp0zEwMKBRo0bExMRQvXp15s2bp1nW0NCQnTt30qVLF8qUKYOlpSVt2rRhzJgxfysWSYyEEEKI9Ej97qHN9X8l5SuqS2ZmZsydO5e5c+d+chl3d3d279799RtOgfQxEkIIIYR4RypGQgghRDqUlvoYpSVSMRJCCCGEeEcqRkIIIUR69MFcQ1pb/zdIEqM05smTJ2TPnp0rV65QuHBhvcRgYKDQso8fVRoGYp8pjrevjDmwMQNrZjoDKp3EUOuXV9Rq/gqnLIn31Hl635w1c9y4eNweAGMTNR0HP6FCrTcYm6i5dNKOuSNzEPz2624SmBq+KxVOk64B5PKMJINzPKN+zcaZvbY6235Kard+Q63Wb3FyiwXg6V0zVk934uIRmy98UnuaeftT9qcQ3DxiiI024NZFC5aMc+H5QzOJ6ROadvOn/RA/ti7OyIKRWb78AS1JC/vpu1JhNPHyJ5dnFBmc4xjVPgdn9tl9sIRC635+1Gj+BivbBG5dsGLWEDdePk69GCPDDVg12ZUze+0IeWtMjgKRdBrjS+7CkQCsnubCie0OBLw0xshEwcMzktYDX5CnaKRmHb+W+o7Xz5MPGW8z+DlNvJNPSCj0T5rSvlLFihXp1auXvsPQiaZd/andOoC5w9zoWDE/SyZkpkkXf+r9GqCzGN68MmHpVHe61y9IjwYFuXrGlhHz75DVI/FA03noY0pVDmR8jzwMaPEdGTLFMmzuXZ3FB2BmoebRTTPmDNHfieuvAvyM+WO8C941ctO9Zm6unrJi1NInuOeO1ltMBctEsGNZRnrVzsXgn3NgaKQwfu0jTM0TJKYU5C4USa2Wb3l0S/9JWlrYT2YWah7dsmDOMLcU32/a1Z967QKYPTgrPevkITrSgPGrHmBsmnrDrWb3c8fnhA19Zz1hzsFbFKkQyrCfc/PGzxiAzDmi8frfM+YeusXkrXdxcotl+C+5CXmbvPbQot8LVl65qnnU0eExNUWKov3HN0gqRqlEURQSEhIwMvr2d2n+4uGc2W/H+cOJ1Q//56ZUqhdEnsIROovh3GGHZM+XT3en1i/+5C0cxptXJlRr/JrJfXNx9WxijL8N8mDRPh/yFg7jjo+1TmK8eMRGr5WYlJw7kLxitWySC7VbvyVvsQie3tPPiXZoixzJnk/rlZUNN26Sq2AUN85ZSUwfMLNIYOCcp8wY4EbzHl9/00ttSQv76eIRWy4e+VQlVqF++9esneXMmf12AEzulY31V67xffVgjv3p8InPfb2YKBWndtsz/I8HfFc6HIAWff04f8CWPSscaTXwJRUbBCX7TIeRvuxfm5HHt8wpXC5M87qFlRr7TPH/OiahXVIx+gpt27bl2LFjzJw5E5VKhUqlYtmyZahUKvbs2UOxYsUwNTXl5MmTtG3blvr16yf7fK9evZJNWqVWq5k8eTIeHh6YmpqSNWtWxo0bl+K2ExIS+PXXX8mbNy/Pnj3T4rd879ZFKwqXDSNz9sQqQ458kRQoEc6FTx6ctMvAQKFCrTeYWSRwx8eaXN9FYGyicOWUnWaZ548s8H9hQt7CYZ9eUTpjYKBQoV4QphZqbl+01Hc4GpY2idWGsGBDPUfyXlqJyXv8c84fsuHKCd0k939XWtlPSZyzxpLBKZ7LH+yvyDBD7vhYkq9Y6lzIJSSoUCeoMDZNXv0wNVO4eeHj5DAuVsXe1Y5Y2sSTvUBksvc2znWmeYFC9KiWj83znUjQc46kUrT/+BZ9++UNHZg5cyb37t3ju+++08ygefPmTQAGDRrE1KlTyZEjB/b29l+1vsGDB7No0SKmT5/ODz/8gJ+fH3fu3PlouZiYGJo3b86TJ084ceIEjo6OKa4vJiaGmJgYzfPQ0NC/+xWTWT/XCQvrBBYfu4U6AQwMYdkkV45s/fdXX39HttwR/LbhOiamaqIiDRnbNS/PHliQI18AcbEqIsKS//kGvzHBwTFWpzGmRdnyRjFjx4PE/RZhwJj22Xh2X//NMgAqlYLX6BfcOG/B07vm+g4HSDsxVagbhMd3UXSvlVtvMXxOWtlPH3JwjAMg+I1xsteDA4w07/1bFlZq8hYLZ91MF9xyRWPnGMfxbQ7cuWSJS7b3x93zB2yZ3DU7MVEG2DvFMXbtfWwd3jc51vn1NTk9I7G2S+D2RUuWT8xMoL8xHUc9T5U4ReqRxOgr2NraYmJigoWFheYOvUmJzJgxY/jxxx+/el1hYWHMnDmTOXPm0KZNGwBy5szJDz/8kGy58PBwatWqRUxMDEeOHMHW9tPVmgkTJjB69Oi/+7U+qXydICo3CGSidzae3jMnZ4FIvEY9562/MQc3ZUi17XzJ88fmdKtbCEvrBH6o8Za+k+8zoMV3Otv+t+r5Q1O6/pgbC+sEytUOod/MZ/Rv6JEmkiPv8S9wzxtN3/oe+g5FIy3E5OgaS5cxLxjcPCdxMWmzkJ8W9pO+9J31mJl9s9GmWEEMDBVyekZSvn4gD65ZaJYpWDaMWftvExpoxL41GZnklYNpO+9glzGxLNSg8/sbm2bPH4WRicLcge60Hfzio2qUzmi7H5D0MUqfihcv/reWv337NjExMVSpUuWzyzVv3pwsWbJw+PBhzM0/f3U2ePBg+vTpo3keGhqKm1vKHRW/RsdhL1g/11nTPv/kjjmZMsfys/crnSZG8XEG+D1L/O4PblqR2zOcem38OL4rI8YmCpbW8cmqRnYZYwkM0N2otLQqPs6Al08SR788uG5BnsKR1O8QwKyB//xvIjV0G/ecUj+G0rdBTt74pY3/p7QSk4dnJPaO8czd+34AgaEReJaOoG7bN9TOXgi1WjcjQlOSVvbTXwUGJFaK7DLGEfj6fdXIzjGehzdTr6rlki2WiZvvER1pQGSYAQ5O8Uzyyo5z1vcVajMLNa7ZY3DNHkPeYhF0LFuA/Wsz0rR7yn3F8hSJICFehb+vCVk8YlJcRuiHJEb/kqVl8r4bBgYGH93zJS7ufUn3S0lOkp9++olVq1Zx5swZKleu/NllTU1N/9adg7/E1FyN8pcBHeoEFSo9X8iqDBSMTdTcv2FJXKyKwt+HcGpfYqKWOXsUTpljddbx+luiUoGxiT6v3BS6jXvB9zVC6N/YA3/f1Ptb/efSVkw+J63pVDlPstf6/vYM34dmbJibSY9JUdraT3/16pkJb/2NKPJDGI9uJVZvLKwSyFs4gp0rMqb69sws1JhZqAkPNuTyMRvaDX3xyWUVRUVc7Kf/3x7dtMDAQNFUlPRBpU58aHP93yJJjL6SiYkJCQlfHqLq6OjIjRs3kr3m4+ODsXHi1UyuXLkwNzfn0KFDdOjQ4ZPr6dKlC9999x1169Zl165dVKhQ4d99gb/h7AFbfu7xitcvTHh6z4yc30XRsNNr9q/XXbWobd+nXDxux+uXplhYJlCxzhsKlgpl2K/5iQw3Yv+mTHQc/JiwYCMiww3pMuIxty5b6zQxMrNIwDX7+ytGZ7dYchSIIizYkIAX+rmqbjfYjwuHrQl4YYK5VQKVGgRT8Ptwhv6S48sf1hLv8S+o1CCIUe2yExVugP27vh8RYYbERusn205rMUVFGH7Ubyc60oCwoI9f16W0sJ/MLBJw/aAvj7NbDDnyRxIWbETASxO2LclE8x6vePHYlFe+prTp95K3/sacTjbX0b9z6agNKJA5ZzR+T0z5Y2wWsuSMpmqzN0RHGrB+pjOlqoXg4BRHaKARO5c58vaVMT/UThytdvuiJfeuWOL5fRgWVgncvmTF4lFZqNgwECs7/U8RIZKTxOgrZcuWjXPnzvHkyROsrKxQq1NOhStXrsyUKVNYsWIFZcqUYdWqVdy4cYMiRYoAiXcHHjhwIAMGDMDExISyZcsSEBDAzZs3ad++fbJ1de/enYSEBGrXrs2ePXs+6oekLfOGu9Gm/0u8x/tilzFxgsfdqzKyeoazTrYPYJchjn6TH+CQKZaIMEMe37Fk2K/5NSPRFo7LjlqtYticu8kmeNSl3IWimLL5oea51+iXAOxfb8+03ll1GksSu4zx9J/1DIdM8USGGfL4thlDf8nB5eP6q6TVafsWgKlbHiZ7fWovNw5s0G2H/iRpMaa0KC3sp9yFIpmy8b7mudeoxCrN/g0OTOuTjQ3znDCzUNNz0jOsbBK4ecGKoS09UrWvVmSoIcsnZuaNnzHWdgl8/1MQrQe+wMgY1AkKzx+acahTBkIDjbCxjydXoUgmbbmLe57Ekb3GpmqOb7dnzW8uxMUa4OQWQ72Or2nQSc+TO0ofoxSplL+2+4gU3bt3jzZt2nD16lWioqJYunQp7dq1IygoCDs7u2TLjhw5koULFxIdHc2vv/5KXFwc169f5+jRo0DicP0JEyawaNEiXr58iYuLC15eXgwePDjFma9/++03Ro0axd69e/n++++/GGtoaCi2trZUNGiIkcr4i8vrioG5/jv//pU6QndzM4l0QKW/fkCflBYP8QZpY7j/h3b6ntd3CMmEhqnJlOcpISEh2Nik7nxpmnNEyaEYGWnvuBwfH83R8+O08h20SRKj/yBJjL6eJEYiVUli9HUkMfoinSRGJXSQGF349hKjtDkuVAghhBBCD6SPkRBCCJEOqRQFlRYritpctzZJxUgIIYQQ4h2pGAkhhBDpkYxKS5FUjIQQQggh3pGKkRBCCJEeKYA2Z6f+NgtGUjESQgghhEgiFSMhhBAiHZJRaSmTipEQQgghxDtSMRJCCCHSIwUtj0rT3qq1SRKj/6Cku7zEK3F6jiQ5AyXtFSjVaWwfiW+d3BLkqyja7PH7z4SGpa2YwsIT45G7dumeJEb/QWFhYQCcVHakrYxdbksm/uvS0u8tLUtbOQgAmfLoO4KUhYWFYWtrq52VyzxGKZLE6D/I1dUVX19frK2tUf2Lm1qGhobi5uaGr69vmrkBoMT0dSSmryMxfR2J6eukZkyKohAWFoarq2sqRSe+liRG/0EGBgZkyZIl1dZnY2OTZg48SSSmryMxfR2J6etITF8ntWLSWqUoiRrttv6mwcrg10h7nT6EEEIIIfREKkZCCCFEOiTzGKVMKkbik0xNTRk5ciSmpqb6DkVDYvo6EtPXkZi+jsT0ddJiTOLvUykyFlAIIYRIN0JDQ7G1taVKgf4YGWoviYtPiOHQzSmEhISkuX5gnyMVIyGEEEKIdyQxEkIIIYR4RzpfCyGEEOmRTPCYIqkYCSGEEEK8IxUjIYQQIj2SilGKpGIkhJbIgE8hhPj2SGIkRCq7fv06wL+6T11qiouLAyAhIUHPkXxaUhIZFBSk1zjU6uR3NE8LyW1STEKkOrUOHt8gSYxEqksLJxN92bdvH1WqVOGPP/7Qdyg8f/6cwMBAjI2N2blzJ2vWrCE+Pl7fYaVIpVKxdetWOnTogJ+fn97iMDBIPCSeOXNGE5e+/56TYtq/fz+3b9/Wayxp2af+n/T9//dXPj4+RERE6DsM8RmSGIlUpVarNZWSO3fu8PDhQ+7fv6/nqD4v6cB59+5dDh8+zKlTp/D19f1H63J1daVRo0ZMmzaNpUuXpmaYf0toaCgdO3akWbNmLF26lLp162Jubo6RUdrqVpi07+/fv8+IESOoXbs2zs7OOo/jw6qMj48PP/zwA/PmzQP0lxx9GNPJkyfx9vZm1qxZPHnyROexpHUfHndevXqV7Perz+Q2JiYm2fM7d+5Qu3ZtXr9+rZd4/irpliDafHyL0tZRUnzTFEXRXN2OHDmS7du3ExUVRVRUFL1796ZHjx4YGhrqOcrkFEVBpVKxZcsWevbsibOzM+Hh4Tg5OdGzZ08aNGjwt9bn6enJwIEDsbCwYOrUqZiZmdG8eXMtRf9plpaWdO7cmYEDB9K5c2fmzJlD48aNiY+PT1PJkUql4ty5cxw+fJhixYrxyy+/aP5PdOXDv9t58+Zx584dzMzM6N69O7GxsfTq1UtzctVVXB/GNHXqVF69ekV4eDjLly9HpVLRt29fcubMqZNYviRpv1y9epXbt29jaGhIjhw5KFasmM5iSNpXgwcPZteuXTx69IiaNWtSuXJlunTpovP/P4CZM2eydetWtm7dir29PZDYrG1ubk6mTJlISEhIc8dDkUgqRiLVJB10xo0bx9y5c5kxYwYnT56katWq9O3bl3v37uk5wveSrsZVKhVnz56lffv2DB48mAsXLjB+/HhOnjz5t+NN6sMTGhqKpaUlYWFh9OnTh7Vr16Z6/J+jKAqGhoYUKFCAyMhIMmfOzP79+3n79i1GRkZprq/RjBkzGDp0KOfOnSMqKgoDAwOdXuEn/d0OGzaMUaNGUaZMGWbPns0vv/zC8OHDmTJlimY5XcWVFNPEiRMZM2YMVapUYdu2bfTt25eDBw/y22+/8ejRI53E8iUqlYrNmzdTvXp15s+fz8yZM2nWrBm///671rf9YVXt999/Z/ny5QwcOJCFCxdiYGDA4sWLGT16tCZOXSpbtizXrl2jffv2BAYGAhASEoKJiQmWlpZpIylKGpWmzcc3SBIjkaqio6M5f/48c+fOpWLFipw6dYpt27Yxb9488uXLp+kIrC+XLl0CEq8wk/rbnD17lkqVKtG1a1eePXtGnz596NixIwMHDgTg5cuXX7VuQ0NDtmzZQrly5YiJiaF+/fo4OTkxYsQIli1bppXvk5KkE4C9vT379u1j6tSpBAQE0Lp1a96+fYuhoaEmOYqNjdVZXJ+ydu1avLy8ePXqFcuWLSMsLEznJzF/f3/27dvHlClTaN68Oe3bt2fChAn07duXkSNHMnv2bEB3yZGiKERFRbF371569uxJzZo1KVmyJGPHjqVLly5s3LiRKVOmpInk6MqVK3h5eTFy5EiOHTvGhAkTePr0qVZjS/r7TaoUnTp1imfPnjF27FhatGhBixYtmDFjBrVr1+bPP/9k9+7dWovlU4oXL86RI0c4deoU7dq1Izw8nOjo6DTRb018niRGIlVFRERw6tQpsmbNypEjR2jVqhXjx4/Hy8uLmJgYxowZg4+Pj15i2717Ny1atGDWrFkAmial+Ph43NzcePXqFd9//z3Vq1dn7ty5QGJn6k2bNhEeHv7F9QcFBTFlyhT69u3LpEmTmDVrFsuWLaNy5cr873//03rl6MORXZGRkZiampI/f37q1atHly5dCA4Opm3btgQGBmJoaMicOXPYuHGjTg/SSdt68eIFL1684ObNm0BiE1adOnVYsGABmzZt0nRO1VVshoaGPHnyhDdv3mhey5IlC+3bt6dQoUL07NlT83eji6RNpVJhYmKCqampZl8kJfK9e/emZs2abNiwgZkzZ+q9z9Ht27cpVqwYXbp04enTp7Rs2ZKOHTsyceJEAB4+fJiq22vfvj1Hjx4FEitGd+/epVy5cowfP56AgADNci4uLnh7e6NWqzl16lSqxvC1ChUqxN69ezlz5gydO3cmPDwcc3Nz1q9fz549e7h06RLHjx9n/fr1+kly1Yr2H98gSYzEP5bSMOIMGTLQpEkTpk6dSu3atZkxYwZeXl4AvHnzhgsXLnDjxg1dhwpAjhw5+P7779mwYQNz5szRvG5vb8+yZcsoVKgQDRs2ZMGCBZrmnE2bNnHt2rVPlr2TTtwhISFYWVkREBCAqen7u1UXLlyYLl26YGJiwoABA1iyZIlWvltS/4ldu3bx888/U6pUKdq3b8/OnTsxMjLi559/pkuXLoSEhFCuXDm8vLzo0aMHhQoV0mm/GZVKxfbt26lfvz5Vq1alQYMG9OjRA4AVK1ZQokQJJk+erElGtRFbSsmWra0tderU4dy5c8kGC7i5uVG0aFGqVKnC1KlTtZbcpvRbMjQ0JHfu3Kxfv54XL15gZGSkWS5btmzkz5+fY8eOsXPnzk9+L11QFAVLS0vu3bvHDz/8QI0aNTS/r+PHj/PHH38kSzj/jdjYWIyNjSlfvrxm23ny5GHPnj0YGRlx5MiRZImio6MjxYsX5+bNmzprQk76f3j48CFPnz6lSJEi7Nu3j4MHD9KkSRPCwsIYNWoU3t7etG3bltatWzNw4ECpIqUhkhiJf0StVmvK2M+fP+fp06ea9woVKsSxY8eoUaMGTZo0ARKrGJ06dSIqKkrnnZHnzZuHn58fefPmZcSIEeTLl4/Vq1drKgDt27encePGBAYG0qJFCyIiIggJCWHIkCH8+eef9O3bF3Nz8xTXnTTM3MvLi6dPn1KyZEkeP37M27dvNcsULlyY77//HpVKxZIlSwgODk71g6BKpeLPP/+kadOmVKxYkQEDBmBpaUmrVq3YvHmzJjkaOnQoP/zwA35+fly7do3vvvsuVeP4Uoz79+/XNFXt2rWL/v37M2fOHLZv3w7AypUrKVmyJAMGDGD79u2pvp8+HL3k7++vGb1kbGxMvXr1uHr1KosWLeLu3bsAhIWF4efnR9OmTSlTpgy7du0iJiYmVeP68Ld09epVrl27xrVr1wCYPXs2WbJkoXr16ty/f5+wsDASEhK4ceMGgwYNonz58kycOFHTRKNtSd/70aNHmiQtU6ZMnDlzhtKlS1O7dm1N/x6ADRs28PDhw2QXC/+UWq3GxMSEBQsWYGxszJIlS1i3bh3R0dFUr16dLVu2cODAASZMmKDpHxgeHs6VK1fIkiWLTvr0JCX/W7dupXHjxqxcuZLAwECKFCnCgQMHcHd3x9HRkX379nHt2jXOnz/P9evXuXHjhn4600sfo5QpQvwLQ4YMUTw8PBQXFxelWbNmSlBQkKIoijJixAglV65cSokSJZQ6deoopUuXVgoXLqzExsYqiqIo8fHxOonPx8dHqVGjhnL//n3Na/fu3VM6dOiglC5dWpkxY4aiKIry+vVrpWbNmoqlpaWSN29e5YcfflDc3NyUy5cvf7TOhIQERa1WK4qiKI8ePVJy586tLF68WFEURVm0aJHi4OCgzJo1SwkICNB8xsvLS5k0aZLy5s0brXzP+/fvK8WLF1fmzZunKIqi+Pv7K1myZFHy5cunWFlZKRs2bEi2fHR0tFbi+JJevXopgwYNUhRFUZ48eaLkyJFD8fLyUhRF0exTRVGUTp06KQ8ePEi17arV6mTrHzFihFKwYEHF2dlZKViwoLJq1SpFURRl1apVSoECBZRixYop9erVU4oVK6YUKlRIURRF6devn1KyZMlU/dv9MKaBAwcquXPnVjJmzKi4ubkpbdu2VdRqtfLs2TPl+++/VxwdHZUiRYoo+fPnV3LmzKkoiqJs2LBByZ8/vxIWFpZqMX0p1u3btys5c+ZU5s+fr3lt2LBhikqlUlavXq34+voqfn5+yoABA5QMGTIoN2/eTPVY4uPjlRIlSiiFChVSNm/erPl73rZtm6JSqRQPDw+ladOmSr169ZSiRYsqMTExqR7Dp+zZs0cxMzNT5s6dq7x48SLZez4+PkrGjBmVJk2aKG/fvtVZTH8VEhKiAErVHD2VGrkGaO1RNUdPBVBCQkL09l3/ibQzbld8Ez68ul25ciUrV65k3LhxJCQkMGrUKGrWrMnGjRsZPXo0xYsXx8fHh4CAAGrUqEGnTp0wMjLS6ZDxQoUKsW7dOmxtbTl//jyZM2cmV65cDBgwgMmTJ7N27VqMjIzo1q0bu3fvZt26dQQFBZExY0ZKly6Nm5ubZl3Pnz8nS5Ysmu9/+PBhfHx8KFeunKYK1qFDB16+fMno0aO5cOECbm5uBAQEsHXrVi5cuECGDBlS7bsp765OY2NjcXBwoEyZMjRt2pTnz59TpUoVfvrpJ/r27UuHDh349ddfiY+P18SZGlfwf1dCQgJnz56lSZMmhIaGUrZsWWrVqqWZL2jhwoW4urpSt25dFi5cmKrb/rDD6/jx45k7dy4zZ87EycmJP/74g/Hjx/Py5Uv69++Pu7s7ly5d4syZM1SrVo2RI0cC8Pr1a/Lnz5+qw6yTqjy//fYbixYtYsuWLRgZGfHixQu6detGkyZN2LRpE6dOneL3338nNDQUlUpFz549AThw4ADOzs6av0ltSmoG/eWXX5g0aRKVKlXSxD927FjevHmDt7c3JiYmuLu78/btWw4cOED+/Pn/9bY/PO5AYjPjsWPHaNCgAePHj0etVlOnTh3q1avHrl27qFWrFtbW1gwbNoyGDRsCiUPljY2N/3Usn6K86zC/ZMkSevfuTdeuXTXvJf3NFCpUiAMHDlCsWDGMjY1ZuXKlTv7vPhO1lqs632bFSKUo32qtS+jTnj17ePz4Mebm5rRr1w5IHL1Vrlw5HB0d2bBhA1mzZv3oc7qcuyMpcYDEZpOkeXw2b96Mq6sr9+/fZ/LkyVy/fp3mzZtrTjYpGTt2LI8ePWL+/PmYmZkB0LlzZxYtWkTOnDk5ceJEsokJly9fzokTJ7h06RJOTk5MnDiRwoULp/p3O3jwILt27aJHjx5kzJgRa2trevfuja+vL8uWLcPKyorOnTuzdetWzM3NuX79OtbW1nq7XcmUKVO4ePEix48fp379+sybNw+VSkVMTAxdu3YlS5YsDB06FGNj41SJcdiwYTg5OdG9e3cA3r59S+3atWnVqlWyE9eAAQPYtGkTK1eupGzZssnW8fz5c+bNm8f8+fM5efIkBQoU+Ndx/fVE36xZM3LlysX//vc/zWsXLlygSpUqeHt7M378+GSff/ToEdOmTWPdunUcPXoUT0/Pfx3T5yiKQlBQEHXq1KFOnToMGjSI2NhYIiMj2blzJyVKlCBPnjxcvHiRZ8+ekSFDBnLnzo2Li8u/3vaHF1J37tzBzs4OIyMjMmbMSGRkJHXr1iUkJISBAwdSp04dTE1N2bVrF3Xq1MHb25vRo0dr5hHSNrVaTfHixalduzZjxoz56H1/f3+cnJy4fv06pqam5M6dWydx/VVoaCi2trZUzdEDIwPtXSTFq2M4+GgWISEh2NjYaG07qU36GIm/zc/Pj9q1a+Pt7a0ZBaIoCq6urpw8eZI3b97QsmVL7ty589FndTl3x4cnVicnJ7y8vLCwsKB169a8ePFCUzny9PRk06ZNTJ48+ZPrqlq1Kv3798fMzIyQkBAgscIxePBgHj58yJYtW4iMjNQs36ZNG37//XfOnj3Lli1bUjUpSvpuW7ZsoW7dujg4OPD27Vusra2Ji4vDx8eHLFmyYGVlBST2nxk/fjxXrlzBxsZGp31RAgICePr0qWbflCpVivPnz+Pq6qqZODFptOKBAwdo1aoVJiYmqRJjcHAwp06dYtOmTZpZyG1tbQkJCdEkJUkzE0+ePBknJydNv7Ok+MPDw5kwYQI7duzgyJEjqZ4UHT9+HEhMdJ4/f65ZJiEhgRIlStCtWzcuXrxIZGSkpk9PYGAgp0+f5urVqxw+fFirSVHSfnj79i0ODg68fPmS3LlzExYWxtixY6lbty4dOnSgZs2abNu2jeLFi9OwYUMqVKjwr5OiiRMncvHiRU1SNHjwYOrUqUPRokUZOHAgx48fx8LCgj///BNbW1smT57Mrl27iI6OplatWmzbto2FCxfSt2/fZKPVUlPS/knq2B0cHIy5ubnmnn8fdvh+/Pgxc+fO5fnz53h6euotKUpG+hilSBIj8be5uLhw4cIFsmXLxoEDB3j79q2mqcLFxYUTJ05w+fJlZs6cqdO4PjxIfVgITfp3ixYt6Nq1KzExMbRp00aTHA0cOJDMmTNz8ODBFG9iqigKZcqUIX/+/Bw9epROnTpx+vRpIHEyyy5dutC3b1+2bNlCdHR0ss+amppiYWGR6t/13r179OvXj2nTpjF8+HCKFy8OJCZBJUqUYMeOHcyfP58ePXqwZcsWqlSpgoODQ6rHkZKkata2bduoVq0alStX5ocffmDQoEEULVqU//3vf4SEhNC+fXvq1q2rmQxw+/bteHh4pFoMdnZ2rF+/nkyZMrFq1SqWLFmCkZEROXLkYM2aNUDi/0/SXE5FihTRNLUkJWZWVlaMGTOG/fv3/+vkNqlDflJSNGLECNq3b4+/vz8tW7bkypUrHDhwAHh/AWFra0tERARGRkaazzk4ONCgQQN27dpFoUKF/lVMX6JSqVi7di3Ozs68efOGSpUq0aZNG3LmzMmNGzdo1qwZ0dHRODs7s2PHjlTb7qlTp1i7di3jxo3jzp07HDlyhFWrVjF79mx69eqFv78/Q4cO5eDBg5rkyN7ent69e3PmzBnUajV169Zl9erVbN++XWs34k2aub1Vq1YEBQXh4OBAx44dmTt3LsuXL092Ifj7779z6NAhTcVZpF3Sx0h81l9L/kmKFi3K+vXrqVmzJp07d2bJkiXY2tpqkqOnT59iZ2en01jv3btHnjx5gPcjoNavX09UVBSlSpWiY8eONGrUCENDQ6ZNm0abNm1YsWIFHh4ejB8/HnNz8xRL7h9WL1QqFYcPH8bQ0BBDQ0NKlSrF3LlzUavVdOzYEQMDAxo0aIC5ublW+w48e/YMY2NjfvrpJ81rSQlJ8+bNCQ8PZ8qUKTg4OLBr1y6yZ8+utVg+lPT3cvDgQVq2bMnYsWNp164d48ePZ8aMGZQoUYIWLVqQIUMGrl27xqVLlyhevDiTJ09O1StotVqNoaEhmTJlok+fPgwePJiFCxdiZ2fH2LFjadCgAc2aNWP9+vWak9fVq1c1CWYSRVFSpV9YwYIF+emnnzRz+ySNRlq2bBlOTk6UK1eO3bt3s3DhQuLj46lZsyaBgYEcOXKEnDlzYmJikmx9lpaW/zqmz0n6W3rz5g2HDh1i2rRpZMyYkblz51K9enXi4+OpX7++pq9anjx5yJQp0yePF39X2bJlGTJkCIsWLWLkyJG4ubkxYMAAatSoQY0aNShWrBhz587V9P+qWrUqW7ZsYciQIZQvXx4DAwPUajWNGzemRo0amuqpNly8eJGbN2/Ss2dPZs6cSdu2bXn48CHt2rXj+PHjmJubExERwZYtWzh27BgZM2bUWix/m1pBq/2AvtF5jKSPkfikv3a0TpoAr3///mTJkgVIPMAn3ZNo8eLFmuQoKZnQVZ+iAwcOUL16ddatW0fTpk3ZtWsX9erVo169ehgZGbFjxw6qVKnC+PHj8fT0ZPPmzcyfP5/g4GB27NiRYtlfURTNCfbt27cYGxtjY2PDjRs3qFevHsWKFaNv376UKlUKAG9vb+bNm6eJQZu2bdtGjx49OHHiBO7u7pph6CqVilOnTmFoaIinpydxcXFaT1BXrlxJWFiYps9ObGwsXbt2xcbGht9++43Xr19TqlQpfvrpJ+bMmYNKpdLZ30Xfvn15+PAhfn5+3L59m8yZM9OrVy9NwmRqakqOHDkICgoiJCSEa9eupfrAgDFjxrB582auXLmCgYEBGzduZPny5YSEhLBjxw7N/8+hQ4eYOXMm58+fx87OTpN0XLx4EWNjY53f6+vixYv06dMHgEWLFpE7d+6Ptv/69Wtmz57NnDlzOH36NPny5fvX2/2wk/SmTZtYuHAhPj4+9O/fnwEDBmiWO3z4MHPnziUgIIABAwZQu3ZtzXsf/n1pe7/Fx8ezePFiVqxYQY4cOZg3bx42NjZs3LiRtWvXEhISQtasWenXr1+qNMWmBk0fI3dv7fcxejpH+hiJ/46kpGjQoEEMGjSIy5cvc/nyZcqUKcPOnTuJioqiZMmS7N27l+PHj9OgQQMiIiKSHYR01acoZ86cdOnSBS8vLzZs2MCzZ8+YPn06mzdvZv369Vy8eJHbt28zbNgwYmNjadSoEW3btsXZ2fmj25Ts3r2bq1evolKpNLf5qFWrFkWKFKFu3bo8f/6cAwcOcOnSJaZNm8a5c+cAmDNnDr1796ZgwYJa/76FChXizZs3mvtRGRgYaPb7pk2b2LVrF+bm5lpPiiIiIlixYgWrVq3S3PbExMSE0NBQSpcuTUBAAEWKFKFatWrMnTtXM7Lp8OHDWmveSLJixQqWLl3KiBEj2L17N3fu3CFLliysWbOG0NBQTp48SZMmTciVKxfVqlXTJEVJM0ynlpCQEE1T2KhRoxg3bhyPHj1KNl8RQJUqVZg1axYbN26kdevW9O3bl0uXLmFsbEx8fLzOO8zfvn2byMhIrl69iqWlJSqVKtlv5dixY3Tu3Jk1a9Zw5MiRVEmK1Gq1JinauXMnFStWpHv37ri7u7N69epks+ZXrlwZb29vzcSm8L7Z/MPjjjb22927dzVNsEZGRnTs2JGWLVvy6NEjunXrRnBwME2aNGHlypUcOnSIhQsXppmkKBlFrf3Ht0gHUwKIb1DS/CTz589XsmTJoly5ckVRFEU5fPiwolKpFGdnZ2XTpk1KVFSUoiiKcvLkSaVmzZpKQkKCvkJWnj59qvTo0UOxtbVV3NzclGXLlimKoihxcXGKoijKjRs3FFNTU2XBggWaz4SGhiZbx6tXr5Ts2bMr7dq1Ux4+fKjcvHlTsba2Vv73v/8pEydOVLy8vBQjIyNl2bJlysOHD5UcOXIozZs3V06cOKG7L/rOkiVLFGNjY6V///7K9evXlVu3bikDBgxQ7OzslNu3b+ssjpcvXypNmjRRKlasqPz++++KoihKhw4dlFKlSinZs2dXunbtqvk/CA8PV37++Wdl4sSJWp/LasSIEUrZsmWTzTvl6+urlChRQvHw8FA2b9780We0MUfRiRMnlHz58imenp6KnZ2dEhgYqOzevVvx9PRUGjVqpFy8ePGjz2grpr8jLi5OWb9+veLh4aH88MMPmjm4kuJ58uSJsmrVKuXhw4epsr0Pv/vgwYMVZ2dnZe7cuYqiKMrGjRuVihUrKvXr11d8fHySfe7SpUtaP+58GNu9e/eUUqVKKd7e3snmR4qJiVGmTJmiODs7Kx07dtTM6fbXz6cFmnmMsnZVamTrrbVH1axdv8l5jKQpTWgMGzaMXLly0aZNGyDxSnfu3Lk4Ozvz66+/sm3bNtq0acPs2bPZvXs3x48f1/Q5+LCDcWr1M/gnHj9+zIIFC5gxYwajR49m0KBBms7YRkZG1KxZk5w5cya7JchfXb58mc6dO1OqVCns7OyIiYnR3GE9NDSUFStW0KdPH/bs2UOmTJkoX748jRo1Ys6cOTrtWKlWq9m8eTOdO3fG0tISMzMzDA0NWbt2LUWKFNH69hVFIT4+HmNjY27dukW/fv0IDg6mX79+FClShKZNm+Ln55dstNXQoUNZvXo1Bw8eTLWO1inFpVKpmDhxIps3b9b080hqojl06BD16tXD3d2d8ePHU69ePa03t9SoUYP9+/dTvXp19uzZAyTePPe3334jX7589OrVi6JFiyaLX5eStunr66uZjydPnjya2+Ik9TFauXIl9vb2Wo1x7NixzJo1i927d5M7d25sbW2BxObj+fPnY2FhwejRoz+qzGrzuJP0fU+ePKkZEXr+/HlKly7NuHHjNH3A4uPjKVy4MM+fP6dx48YsWrRIb1NjfI6mKc2ti/ab0nznS1Oa+DY9evSIc+fO8ccff7Bx40YgcURMlSpVqFGjBvfu3WPIkCGMHTuW1q1b0717d169ekXjxo25cOFCsnXpc8Ky7Nmz4+XlRYcOHRg6dCgbNmzA0NBQ028kKirqo46sf1W0aFEWLlzIhQsXWLVqFVFRUZr3bGxsaNWqFS1atGDx4sV4enqya9cuBg0apPPRJgYGBjRp0oQbN26wYcMGVq5cybFjx3SSFCUxNjZmw4YNjB49muDgYK5evcrAgQM5ePAg/fr1Q6VSaZKkRo0asWDBArZu3aq1pAjeN53UqVMHHx8fzTQMSU00MTExVKlShfr161OnTp1kn9GGwMBAjI2NGT16NM+ePdNMstm8eXN69+7NnTt3mD17NmfPntV6LClJOulv2bKFqlWrUqlSJUqVKkXXrl3x9fWlSZMm9O7dm8DAQNq2basZhaoNgYGBHD9+XNNRPzw8nCNHjtCxY0diYmKoVKkSsbGxeHt7f3RzWm0ed1QqFUePHqV8+fLExsYyYsQIKlWqxIkTJxg2bJhmWH5kZCTFihVjyJAhjBo1Kk0mReLLZFSaABJvsDpx4kSmTJnC7NmzUavVNGvWTNOx+M8//8TKykrTwTE+Pp7BgwdjYmLy0YR4upJ0QPfx8cHX15c3b97QsGFDsmfPzujRo1Gr1TRv3pybN2+SMWNGXrx4wfnz55k/f/4X1120aFEWLVpEvXr1OHToED4+Pprh2ra2tri6urJz506io6P5/vvvtfxNP8/V1RVXV1edbzdpqHK7du2YPXs2ZcuWxdDQkA4dOrB69WpatGjB4cOHmTdvHkFBQWTPnp2JEyeSK1cuncRXoEABFi1aRKdOnQgPD6dp06Y4ODgwd+5cChYsyLhx4wDtVzgdHBzYtm0bBgYGZM6cmSlTpvDLL7+wZs0afvnlF1QqFYMHDyZHjhyULl1aa3F8ikql4tixY7Rs2ZLffvuNvHnzau5t+OrVK2bPnk2TJk1Qq9X873//o2vXrqxdu1Yr+0ylUnHr1i1u377N8ePHmTdvHo8fP0atVrNz507GjBlDs2bNOH/+vM5GWkJiJTooKIgJEyZQqVIlILHvJcD+/ftp164dXl5ebN++nfv37zN16lQcHR11Ft8/JqPSUiRNaSKZS5cuMXnyZPz8/PD29taMrpo/f76mEuDk5IS3tzfZs2fXTIiny9t8fGjTpk107tyZLFmy8PjxY1xdXenbty+tWrUiPDycUaNGsXz5cpycnBg+fDjFihX7WzdOvX79Oi1atKBYsWL06tVLM29M586defToEdu2bdP60Om07Pfff2fmzJlcvHhRc6Pd58+f8/PPP+Pv78/kyZNp0KCBXmPcvHkzXbt21VQKHR0dOXfunF5GekVERLBhwwYmT55M0aJFWb16NZA4qrJy5co6nQD1Q0OHDsXHx0fTiRnAx8eHKlWq0Lp1a6ZPn058fLxmEsds2bJpLZYlS5bQv39/EhIS8PLy4scff6Rq1aq0aNECc3NzFi9erFk2tZPalNb39OlTcufOjYGBAcOGDWPo0KGaUW+RkZH88ccfLF26lJcvX2Jra8uaNWs0zaJplaYpLbOX9pvSXiz45prSJDFK55JODB8Obz1//jzTpk3Dz8+Pbt260axZMwAqVKjAmTNncHV1xc7OjgsXLmj13kNfcvXqVX788UemTJlC7dq1sbW1pX379ty6dYuuXbvSrl07za0Tdu3axbVr1/7Rj/PKlSu0bt2ayMhIypcvj6mpKZs2beLgwYOpPqP1tybpXnknTpzA0dFR04/n+vXrfP/997i7u9O/f3/atGmjl74zSV6+fMmLFy+IiIigXLlyGBoa6i2Zj4iIYOPGjUydOpUsWbKwd+9ezXu6vGVOEkVRaN++PS9evGDfvn2o1Wri4+MxMTFh1apV9O3bl/Pnz+Pu7q6zmJ49e0ZMTIymuqhWq6lWrRolS5b86PYoqc3X15dz587RuHFj1q1bx44dOyhfvjzDhw+nevXqrFy5Enh/MahWqwkNDeXZs2e4uLh8E5UiTWLk2ln7idHLhd9cYiR9jNKxpLlvIHFW3tDQUNRqNSVLlqR///44OzszZ84c1q5dCyQOz129ejXz5s1LNoxYXx4/foyDgwM1atTA3t4eIyMjli1bRp48eZg6dSqxsbHkyJGDAQMGcO7cuX/8wyxSpAhr1qzBwMCAQ4cOkS1bNi5dupTukyKAMmXK8PTpU2bPng2878cTGxtLsWLFKFiwIJUrVwZ033fmQ66urpQoUYKKFStiaGhIQkKCXpIiSJycsUmTJnTp0gUHB4dk0xZoOylSFEXTHyYwMJDIyEhUKhV16tTh2LFjHDx4EAMDA82+sbKyIkOGDFhbW2s1rr/KmjUruXLlIjw8nJMnT1KvXj1ev36d4v3HUlNcXBwDBgxg+vTp9OnTh19++YUff/yRTp06MWnSJNavX8+wYcMANEmRgYEBdnZ2FCxY8JtIisSXSWKUjiWVjEeOHKm5bUOVKlW4ceMGxYsXZ8iQIbi4uDB//nxNctSkSRN++uknvZ5ckoqc4eHhREREaGaZjoqKQqVSafol7Ny5EwB3d3ecnJz+1TY9PT1Zt24defPmpX379jq9ek7LPDw8WLRoERMnTmTo0KE8efKE4OBgtm/fTrZs2ViwYAFubm76DvMj+mqySmJpaUn79u1ZvXq1ZpZmbfrr3Fxbt26lbt26FC5cmJEjR2Jubo6Xlxfdu3fnwIEDmmPDuXPnsLCw0EtSqygKFy9eZNKkScTFxXHp0iWMjIyS3X8stRkbGzN//nwSEhKYMWMGXl5etG3bFpVKxc8//8z8+fOZNGkSw4cPB/Q70CRVKGj5Xmn6/oL/jDSlpUMftqMvW7aM3r17M3nyZGJjY9m2bRsXL15k5cqV1K5dm/PnzzN9+nSuXr3K7NmzqVKlil5iTqkZ5u3bt+TNm5f69euzaNEizevPnj2jRo0aLFy4kHLlyqVqHNHR0XKvo79QFIV169bRqVMnHB0dMTAwICgoiAMHDqT5vhZpgbabGP39/SlTpgwVK1Zk6NChxMXFUaZMGfr27cubN284efIkuXLlomTJkvj6+jJnzhyKFi2KsbExN27c4PDhwzod6fihmJgYbt26RaFChTAwMNBJ82dcXBw1atQgMDAQR0dH2rRpQ4sWLYDEUa1r1qyhe/fueHl58dtvv2k1Fm3RNKW5dMbI4POjdP+NeHUsB/2+vaY0SYzSsR07dnDhwgVy5sypmbsIEu8Mv2PHDm7cuIGrqyunT59m7969jBw5Ui9X2kknjrNnz3L27Fny5s1Lvnz5cHd3Z9OmTbRv355GjRrxv//9j7i4OJYuXcqSJUs4c+aM5tYlQvuePHnCtWvXNPem02YHXfH3JM3NVbp0aU31NKlJaMeOHcyaNQt7e3tatmyJra0te/bs0dysVlejCL9El/OjxcTEEBQURIcOHYiMjOTXX3+lZcuWmvenT5/OpEmTuH79+jfZfKZJjJw7aT8xevW7JEYi7fqwY+eFCxdo3bo1T5484ffff6dVq1bExsZqRu4UKVKEihUrMn369E+uQ5d27NjBzz//jIeHB69evaJKlSr06dOH4sWLs23bNrp06YJKpcLS0pLY2Fi2bt0q1QohPnD58mW6dOmCv78/P//8s+aGtpD4+5o+fTr29vYMHz5c+s+98+jRI3r06EF0dDRt2rShVatWjBw5kqdPn/Lbb7/h4OCg7xD/EUmMPu8bbyAVf0dSQpM0RLhz5844OjpqRlmYmJgQHx9PQkICWbJkISYm5pPr0BXl3Y1cd+zYwZw5c7h69SqzZs3i7du3DB8+nPPnz1O/fn3u3LnD77//zqJFizh9+rQkRUL8RdLcXAYGBpw8eZKbN29q3qtTpw79+vXj0aNHTJ06lcjISOSaOXF+t9mzZ2NjY8PkyZMpUaIEM2fO1HSc/+ap1dp/fIMkMUoHPuysOG3aNFq1aoWjoyO//vorgwYN4smTJ5oysZGREYaGhvj7+2vu7q0PSQflV69eERkZSWxsLPnz5wegWbNmeHt7o1arGTlyJKdOncLW1pbatWtTsWJFMmfOrLe4hUjLChYsyLZt24iIiGDWrFnJkqOffvqJSZMmMW7cOL11uE6LsmfPzuzZs+nduzd16tTh3LlzmolvxX+TNKWlI5cvX+b06dNkzpxZM+leeHg4y5YtY+LEiTg4OJA3b14MDQ01d6PX15BmgC1bttC3b18MDQ2JiIhg2bJlVK9eXfP+zp07WbBgAUFBQZpbCAghvuzKlSt06NCBokWL0rt3b81Fh0gfNE1pju2135QWsESa0kTa0LFjR/z9/TXPz549S/HixenXr59m7iG1Wo2VlRXt2rVjyJAhxMbGcuvWLdq3b8/9+/cxMjLS+TxFSXm6r68vXbp0oUePHnTo0IFcuXLRvXt3jh8/rlm2du3atGvXDhcXF5ydnXUapxDfsiJFirB48WKuXbvG2LFjuXPnjr5DEiLNkMToP+j169cEBAQkawMvWLAgM2bMwNDQkMuXLwOJE+6p1WosLS1p3bo1Xbt2xdLSknXr1mk+p+tyukql4siRI2zbto327dvTu3dvBg0axIQJEyhcuDA9evTgxIkTmuUbNWrEsmXL0uRcOUKkZUWKFGHOnDn4+flp7mAv0hmtzmH07vENksToPyhTpkxs27YNY2Nj/vjjD54+fYqFhQUdOnRg9OjRTJo0iVmzZqFSqTSTyyVVjlq2bImPj4/mNiC67mwdGRnJ0qVL6dmzJ9euXdO8XrZsWXr06EHu3Lnp3bs3hw8f1rxnZWWl0xiF+K8oUaIEe/fuxcXFRd+hCJFm6K8DidC6sLAwBg0aRJYsWfjzzz/JkiWLptNyr169MDAwwNvbW5McWVtb065dO6Kioti5cyd+fn46P2BaWFjQp08fTE1NWbZsGSdOnNBM0vjDDz+gUqkYO3YsI0eOpEyZMpiZmUknUSH+BZmwNB1TK2h1emr1t1kxks7X/yEpTYDm6+tLzZo1MTc3Z+vWrWTJkoXo6Ghmz57NkCFDGDt2LIMGDQLeT6QYHh5OXFwc9vb2Wo85aZtxcXGo1WrNSLjHjx8zaNAgDh48yLZt25LNYH327Fnc3Nxk9JkQQvwDms7XDu203/k6cOk31/laEqP/iA+TooMHDxIeHo6BgQF169bl+fPn1KhRI1lyFBMTw7hx4zh8+DAnTpzQVF10eQf0pG3t2bOHxYsX8/LlS/LkyUOnTp0oU6YMvr6+DBo0iP3797N9+3bKli2rk7iEEOK/LCkxqmLfRuuJ0aGg5d9cYiR9jP4DFEXRJEWDBw+mbdu2jBkzhmbNmtG2bVsA9uzZQ1RUFA0bNuT58+eYmpoyfPhwTVKUlB/rsllKpVKxc+dO6tevj4uLCzVq1ODy5cv06tWL5cuX4+bmxtixY6lVqxblypXj7NmzOotNCCFE+iSJ0X9AUjIzefJkli9fzpYtW7h8+TJTpkxhxYoV9OzZE5VKxd69e4mJiaFs2bIEBARgbGysSYp03U9HURRCQkKYMmUKQ4cOZc6cOYwcOZKzZ8/i4eHB3LlzuXLlCjlz5qRfv3507NjxvzHTrBBCpBWKktgPSFuPb7RBShKj/4iXL19y69Ytpk+fTsmSJdmyZQsjRoxg2LBhHDp0iJ49exIfH8/27dspX758siRDF0mRoigoiqKZhVulUmFtbU1YWBjW1tYAxMbGYmFhwR9//EFYWBiLFy8GwNPTkzlz5pA7d26txymEECJ9k1Fp/xEODg7Uq1ePSpUqcfHiRfr27cuoUaPo0aMHdnZ29OvXj6CgINatW6e5N5oubgibVI0KCQnBzs4OQ0NDTp06hVqtpkyZMhgZGWmG5ZuYmBAbG4uZmRnVqlXj8ePHms8bGxtrNU4hhEh3FC2PSpOKkdAnMzMzateujZ2dHQcPHqRAgQK0adMGSEw4WrRogampKRkzZtR8RhdzFKlUKt68eUPhwoVZuXIl+/fvp3z58kRHR2NkZMTYsWNZs2YN48eP18QK4Ofnh6Ojo9zIUgghhE5Jxeg/JOm+Zvfu3SMkJASVSkV0dDT79u2jZcuWmkkbUxrWr03x8fH8+uuvdOvWjdjYWDZt2sSPP/6IWq2mfPnyTJ48mf79+3Pt2jU8PDwICAhgz549nDt3TqdxCiFEuqJWg0qtvfUrWly3Fkli9B+S1FeoU6dOlC9fnrJlyxITE4OZmRmNGjXSLKfrZMPZ2ZnSpUsTHh6OiYkJYWFhmjjMzc3x8vLC09OTcePG8fr1a2xsbDhz5gwFChTQaZxCCCGEJEb/QaVLl+bs2bNs2bIFGxsb+vTpo7khbFJVSReS+gfFx8fj6enJ9u3buXr1Kt7e3kRFRdG5c2cAjI2NqVy5MpUrVwYgOjpaZuMVQghtkz5GKZLE6D+qaNGiFC1aVPNc10kRJFawTp06Rc+ePdm9ezd16tShaNGiREVF0b9/fwwMDOjYsSMGBgasX78eV1dXypUrp5n9WgghhNA1SYzSCV0nRUmcnJx48+YNderUYdeuXWTOnJmuXbuiUqno3bs3jx8/JiEhgVmzZnHz5k1At5NMCiFEeqWo1Sha7GOkSB8jIZJTFAUPDw8OHTpE/fr1qV69Ovv27SNz5sx0796dDBkysGDBAjJkyMCpU6fIkSOHvkMWQgiRzsm90kSqu3z5sqYZL6mf0YMHD2jQoAGmpqbs3btXM21AWFgYCQkJ2NnZ6TFiIYRIP5LulVbZvBlGKi3eK02J5XDUerlXmkjfgoODqVmzJhUrVgTQ3HLEw8ODtWvX8vz5c1q3bo2/vz8A1tbWkhQJIYRIMyQxEqnKzs6O9evX8+jRI2rWrAm87zPk4eFBwYIF2bt3Lz///DNq9bfZ/iyEEP8J2rxPWtLjGySJkfhXklpi7969y4ULFzhz5gwVK1ZkzZo13LhxQ5McQeLs3Pnz5+fAgQMsXbpUJm8UQgiR5siZSfxjSf2Htm3bRo0aNWjTpg2VK1emY8eOuLi4sGbNGm7fvk3ZsmVZsGAB3t7ebN68mXz58pEtWzZ9hy+EEOmboiTOTq21h1SMRDqjUqnYv38/7dq1Y/Dgwfj4+LBlyxaWLFnCyJEjcXFxYd++fRgZGTFv3jxOnTrFjh07cHV11XfoQgghRIpkuL74x0JDQ9m8eTO9e/emU6dOPH78mO7du9OwYUN27txJeHg4c+fO5dixYwQHB2NoaIi1tbW+wxZCCAEoagVFpb2qzrc66F0SI/GPmZmZUbVqVYoWLUpgYCCNGjWiYsWKLF68mLVr19KiRQuio6OZN2+ezFEkhBDimyCJkfjHTExMqFOnDmZmZqxatQozMzNGjRoFJDazVahQgTt37uht1m0hhBCfoagBLY4O/kZnvpY+RuJfSbrZ6+PHjwkLC8PS0hKAq1ev0qhRI+7fv0/WrFn1GaIQQgjx1eRSXqSK2rVrM27cOE0F6cKFC5w4cQJjY2N9hyaEEEJ8NakYiVRRpEgRjhw5Qvbs2cmbNy+nT5+mYMGC+g5LCCHEJyhqReuPv2vu3Llky5YNMzMzSpUqxfnz57XwzT9PKkYi1ZQpU4ZSpUqhUqk0s10LIYQQX2P9+vX06dOHBQsWUKpUKWbMmEH16tW5e/cumTJl0lkcUjESqcrAwECSIiGE+BZodXJH9d/ufP3bb7/RsWNH2rVrR/78+VmwYAEWFhb88ccfWtoBKZOKkRBCCJEOxRMHWpxqKJ44IHHOuw+Zmppiamqa7LXY2FguXbrE4MGDNa8ZGBhQtWpVzpw5o70gUyCJkRBCCJGOmJiY4OzszMlXu7W+LSsrK9zc3JK9NnLkSM3ULknevHlDQkICTk5OyV53cnLizp072g4zGUmMhBBCiHTEzMyMx48fExsbq/VtJd1T80N/rRalNZIYCSGEEOmMmZmZZh66tCBjxowYGhri7++f7HV/f3+cnZ11Got0vhZCCCGEXpmYmFCsWDEOHTqkeU2tVnPo0CHKlCmj01ikYiSEEEIIvevTpw9t2rShePHilCxZkhkzZhAREUG7du10GockRkIIIYTQu2bNmhEQEMCIESN49eoVhQsXZu/evR91yNY2aUoTQmhF27ZtqV+/vuZ5xYoV6dWrl87jOHr0KCqViuDg4E8uo1Kp2LZt21evc9SoURQuXPhfxfXkyRNUKhU+Pj7/aj1C/Jd4e3vz9OlTYmJiOHfuHKVKldJ5DJIYCZGOtG3bVjMzuYmJCR4eHowZM4b4+Hitb3vLli2MHTv2q5b9mmRGCCG0QZrShEhnatSowdKlS4mJiWH37t1069YNY2PjZBOrJYmNjcXExCRVtuvg4JAq6xFCCG2SipEQ6YypqSnOzs64u7vTpUsXqlatyp9//gm8b/4aN24crq6u5MmTBwBfX1+aNm2KnZ0dDg4O1KtXjydPnmjWmZCQQJ8+fbCzsyNDhgwMGDAARUk+pe5fm9JiYmIYOHAgbm5umJqa4uHhwZIlS3jy5AmVKlUCwN7eHpVKRdu2bYHEUSoTJkwge/bsmJubU6hQITZt2pRsO7t37yZ37tyYm5tTqVKlZHF+rYEDB5I7d24sLCzIkSMHw4cPJy4u7qPlFi5ciJubGxYWFjRt2pSQkJBk7y9evJh8+fJhZmZG3rx5mTdv3t+ORQihW5IYCZHOmZubJ5vo7dChQ9y9e5cDBw6wc+dO4uLiqF69OtbW1pw4cYJTp05hZWVFjRo1NJ+bNm0ay5Yt448//uDkyZMEBgaydevWz263devWrF27llmzZnH79m0WLlyomSV38+bNANy9exc/Pz9mzpwJwIQJE1ixYgULFizg5s2b9O7dm5YtW3Ls2DEgMYFr2LAhderUwcfHhw4dOjBo0KC/vU+sra1ZtmwZt27dYubMmSxatIjp06cnW+bBgwds2LCBHTt2sHfvXq5cuULXrl01769evZoRI0Ywbtw4bt++zfjx4xk+fDjLly//2/EIIXRIEUKkG23atFHq1aunKIqiqNVq5cCBA4qpqanSr18/zftOTk5KTEyM5jMrV65U8uTJo6jVas1rMTExirm5ubJv3z5FURTFxcVFmTx5sub9uLg4JUuWLJptKYqiVKhQQenZs6eiKIpy9+5dBVAOHDiQYpxHjhxRACUoKEjzWnR0tGJhYaGcPn062bLt27dXmjdvriiKogwePFjJnz9/svcHDhz40br+ClC2bt36yfenTJmiFCtWTPN85MiRiqGhofL8+XPNa3v27FEMDAwUPz8/RVEUJWfOnMqaNWuSrWfs2LFKmTJlFEVRlMePHyuAcuXKlU9uVwihe9LHSIh0ZufOnVhZWREXF4dareaXX35Jdt8iT0/PZP2Krl69yoMHD7C2tk62nujoaB4+fEhISAh+fn7JRo8YGRlRvHjxj5rTkvj4+GBoaEiFChW+Ou4HDx4QGRnJjz/+mOz12NhYihQpAsDt27c/GsXyTyaHW79+PbNmzeLhw4eEh4cTHx+PjY1NsmWyZs1K5syZk21HrVZz9+5drK2tefjwIe3bt6djx46aZeLj47G1tf3b8QghdEcSIyHSmUqVKjF//nxMTExwdXXFyCj5YcDS0jLZ8/DwcIoVK8bq1as/Wpejo+M/isHc3PxvfyY8PByAXbt2JUtIIHXvvXTmzBlatGjB6NGjqV69Ora2tqxbt45p06b97VgXLVr0UaJmaGiYarEKIVKfJEZCpDOWlpZ4eHh89fJFixZl/fr1ZMqU6aOqSRIXFxfOnTtH+fLlgcTKyKVLlyhatGiKy3t6eqJWqzl27BhVq1b96P2kilVCQoLmtfz582NqasqzZ88+WWnKly+fpiN5krNnz375S37g9OnTuLu7M3ToUM1rT58+/Wi5Z8+e8fLlS1xdXTXbMTAwIE+ePDg5OeHq6sqjR49o0aLF39q+EEK/pPO1EOKzWrRoQcaMGalXrx4nTpzg8ePHHD16lB49evD8+XMAevbsycSJE9m2bRt37tyha9eun52DKFu2bLRp04Zff/2Vbdu2ada5YcMGANzd3VGpVOzcuZOAgADCw8OxtramX79+9O7dm+XLl/Pw4UMuX77M7NmzNR2avby8uH//Pv379+fu3busWbOGZcuW/a3vmytXLp49e8a6det4+PAhs2bNSrEjuZmZGW3atOHq1aucOHGCHj160LRpU80NL0ePHs2ECROYNWsW9+7d4/r16yxdupTffvvtb8UjhNAtSYyEEJ9lYWHB8ePHyZo1Kw0bNiRfvny0b9+e6OhoTQWpb9++tGrVijZt2lCmTBmsra1p0KDBZ9c7f/58GjduTNeuXcmbNy8dO3YkIiICgMyZMzN69GgGDRqEk5MT3t7eAIwdO5bhw4czYcIE8uXLR40aNdi1axfZs2cHEvv9bN68mW3btlGoUCEWLFjA+PHj/9b3rVu3Lr1798bb25vChQtz+vRphg8f/tFyHh4eNGzYkJ9++olq1apRsGDBZMPxO3TowOLFi1m6dCmenp5UqFCBZcuWaWIVQqRNKuVTvSOFEEIIIdIZqRgJIYQQQrwjiZEQQgghxDuSGAkhhBBCvCOJkRBCCCHEO5IYCSGEEEK8I4mREEIIIcQ7khgJIYQQQrwjiZEQQgghxDuSGAkhhBBCvCOJkRBCCCHEO5IYCSGEEEK883/Ry7Y64cwsUAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85." + ], + "metadata": { + "id": "RF4xK1cxamBc" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j25iOme0l4El" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/labworks/LW3/p10.png b/labworks/LW3/p10.png new file mode 100644 index 0000000000000000000000000000000000000000..d5332a6361af7e94b9ae382ab7174d39264fe4a0 GIT binary patch literal 25619 zcmce;1yG#bwk_INa0u@1?(S~EgS)%C6P)1g5ZtY?;O@aaSa6rdok#w?&wi)s-uvpj zdR31q=+)hPU31B|));fl(UD3DQiyQ4Z~y=RQAS!^1polw|7btLfPehm-L)|JcmQ)z zkrD;eOyVDXJb|f_*FjG#WA!#YZ9xc~sDu77{QHq41U0RWRS8F7)Xp898< z$d0N~xfiP)N*cDT8f*E+tfoqze~8#b-J(-&XgzQ9`zXb9K5W2z9eg0!=T$a}@q-Sc z`|-z(#!30J08`|j)FfsbGHNs3U@gR2cJ=cyvL)&ShwLVgMMG=fgid25&B$~k)B_Oa zS$x!S;?>FdTw?4S(F$wx<%KHkk!y>>Np_)2TledUfk$n6PL9M!xF0`qS?|Gqf4c_& z&>IN@|7j=z0!_jGwtfHrqyM}o3EmI{7I7=VuNhA z5=H!sG|VtAbN9Z0BO+)~8@R$dk_h+(uIG+kH+!P*&`IzJkJPS(`uFNzk;7|aq)C+{ z;i4pBl|?p|^Jq7n#2KL6nWZ$FIhd%rdrzLlPh*{(BA5-HRcZAnU4#brO{OlzAsrAO zm-pz(kZ5U+>#VRS1aBeVu+ux-PG9yZxljt%TWN~tM!+T)G@V?wo8DRrYDVZ@1Pq^K z!PYAYrVpDT$8>LM8`SJx#LQypoV_v2^};~PDl4P-r%A&QCuKW3H`I!>D{stso@ zb(#dZzxU(Z%jC2rE6($2(UajjX5FiSd}u3ms`>~TuHqZcd!JKIm=0zyl&uFAejZT4 zb;vNl5e8=~{#YZp5Ku9w_=8+lQEb6~6JKm7YSLNF1Z1P}tDhkFtckL%psLlSTFtme zcN#JLWq@>$pC@*})S%7w(V-%MS8!uaMFCl+b(~+c_Vaj%p5mmgycl*W!v!09{vvL` zw{6uFwYH>loL;L*sP|SRXhGKU{nKjQ`S^z$xysD;zT5ByK{cUvld)Pp zgF`EGUvV-iSG6|1s$}p>u6Wn!`V1%eG*|{sQ)cZ}9L|N8hrch!xzB1v69E!Y63y0+ zcGc&h&+9`6dsgf9E&V*bljQ714&||$D5#2T{4Pm5>2|d68Ngyk2dk!>FDfBa)on}J z1x)eWeZ2|r41Alre6Rbm%+hZ`6GHyQT@g2cY8p1eDiTn?hTrbrwE(zM1e(IGw?}Pi z1O!-6)O=ej)K_?1;y8IE4>`XfJQ-+8EGn7XIRFRCJ4nV|(jqxnb=M7_cmekFf9o#d zb&cfgdR=#W(GRJ+W@un)BRjZvU6fWD*_adR?~0Fs3%0_0qpq;37*`DT`(;NpmS186 zPGr*~v{g?~qt%|MxHC!M5fLFKI4&uW1BSNXyaRDa26T`WbJh5PBONw1QFd%($TmtLvX(zC_CkpB?U$Y`pwz;{rr--VK*OzA^0y(mne0->v9 z=UXKB&lCj778|DK^0Sz4h&=6Z=Vwj&YH7I}kGPkC)6oSrHg3(MSYOa2&VWt)Yk(8U z$Hk8ML_U?LF3gjWTP^D;?07x&RthqjW59sU+*W=Uj0{j2NOdqhRC#`1oW<=r9iZM6 zK`D;9Sk*)?TA)l5`a|UA)?yQ(ln!cs4SA}W1u;s`E)Ulinj+vDU$+2`Y>FB@F2+CXSbV8$87L3Zxa5W>SW zJQu+cqkz@#kkyvbpt6<|o;R>a#flnTB|U6pdizpI=W%>~OD(X#FC8i1wwW>}f)WPV z3MsH58En0s%a18~O8hVHqj^0tTVP z6A>iD(C6z}NiIl#dj!}98wD>S28s(?W4eC(^7j>KSZU0^j{rEprP+TW47z{g3BZ5e zi>LqRpU?rsTK_bt0sjxcB;H6rb=S;4&mY(Ckz!TB_@v?RiD=m!^#rADf-`BkY=imi zF&Qe+6Dfac*&KDMVwxyX{cEh!4SS}HPhEi8w>PU~J1VeJ*ixCmx$I%9KC|#S@*b-` zD^zDXI#z~dX!ZY!_&-sR@`g1w_hjG-!T|zBDJ`q3S)Wl(gTj_^O9@;~X@e?S*;uxZB6u>k#yKSE#tYRB^zN?{?0 z?p84&upf1g43#A{Z>jH)a2cC^3PL~MP@Xd2>i!GKna0x>uRcy4$UQ24412cQ=FUNK za)1NDD`a5betT8s?>D_SG-^Xrx6K1CbeqR1^uT}5=U-I{>ji!Zz=)xVhcarn|VyVj_HOfCcoZ5O*h1SXNWmVYn%hG^vT^s@s(!%WyO+ zDlG61lESi)Ey|JU9)iI$^0QV?%+!dESZvH4Bi2g;G;RAdznoO0?5?Da%Xu_w4i9YR zEIn_6p3JZOxTZiWMO46sWFZu@rpZ&dAQ?2xzB*bC*`vu~|G6-s>75huiW7iYT-|sKIKmg!n4k^2=D&4bn+nV~ZJc3|k)N6;bdVdgg z*A~op?V!kFcC~PWTWupuPKSJK5#%Mu2vWiPI|Pl&OIKhF)cqp&GI|)Bzf{$mZlc2p zXC1aGXA6g%25Qi7SuTnU$}H=n&NVY0AG11tLaOHRm&d|lUZ7+uHf0dTCq+oYJ*Mz= zY6G>*NCG57SlsI-pF614yFVttj*-gA+03uqhtjz*eOlAuB&sS$*8J%kLd;VDWN3{hDDo>bVCNYu6)V9AcN5xTXUn1`)K3<>e!!@ zBN>n{Xu0Qpw6J+2FjEK_Cy%9UHQ1mbEd39BITN0#Xzd2QX4ih0K|Lk|Hb`Ym7&f%& zVCF?D>tqE8BOumbKNuyzyNtPg6%P$&!}8y!XffzO{Isbj1hLAwds)e$F@B!}PRr3F! zT@4gyX-T7%dRYu(Z_q!T5UFp+{U{VF(UN>Vd+1GN=R8mR5uWYlpf(ZI9t9x za~>0L8GL6>-~!gVW4~&GSt=U*nl^&P@t!7G6>7F_!1eV{+>bd7zGW0Dfn_2NYt3#{ zi-*)p7t)W?joyDz|Go16JF9qMdURL1=&``;eZyb3=uq z`&mlD?^ha$ekT*04VcySr4g+C(8A*5AM3+Hcphu}0?${cSE$3C%&+-O;8ny4(im8y3cQ^vO*Rz<6E!x&+~K0T$lz<*=Paz<}#k=UUX1&f=P8D{3e-{XQ(Y za^BU$NX;9v;)1l&A+X8dVJiB*>tN0`4jP;YcT@-$x79mKab)CIMB0n-#C;@Oq_RsG z;ck5720ktxq7nZDt8ZQVeL`>yY*o1a^VDcB?i)OcK8k6~!LXx_{q`9yK8)VE8``k` z`I?gj3=Kk>v`UZA;!<=#uZ5S8hyljJ3l(Xxlpy}rxH>?SJV;}BRG^HSDN2iM(XN(U zzKnU;EO8!aj_hY?i;MaJFf3tQ!uU~?i`1xeA6oDD5Kf#%JkGHOJ|}*Qo-#ML#?_}p zOo}fo)(u@PRKGW^P&YXuk!r+lJ-cItRU@PB0DqJFq~fV}9Oq+SoI>^K(&WrznhfN& zI-2n?<;E>4ZFLyM5BfwQiiSyNRRJa(yLNDzbCKvR1@zdvvYCHW zUUTtkx<7T3pArwe#s+nUR}MLm@{`6_}z@NdiAW2#+KYtCdM!Z5IC^nyxj} zyQNpMI_9^FEYb3I;Ti>Q*SI47VyhPvMpUwrsAq+Ch=63Ay97B-*4?2CBgHIj33s(~ z+d|5y1e9KciM1a(p#9M{4j4N@@pm{Z2CxPvst3N8F0XdkL$@r%(V8Ji-#V0U7=(3b zbN8J6a=T%M^Brfr`HX#=iRV^7B<@BQWJ198xlmNH-3)l@iRs4O1a^J<3pLQ@D{Ub< zHG&L$MS=l!mPJYvvkMO*Vuw+WJ|$Q<8!a4(rHU$xKgjN1el?wBxK6)N`@Et_`RL8a zb_rP9uc*;(S`nfgV@8%d9}KaoM3+eyiU@Q6;k-~yqqRh7oRWpF^=Z7^reS@ls;!3< z0wn^8IH%cghAmL>os*CRClM(xlrD=2zy=!=K zgIKhOBl0vc(p$BAT{4L0p;slVW?P&I1xO`sjKYOKaXTt4Lm$m-5*Jo_xI$Ui8$t1= zD>j>0H+kQ_*X1>$E}c4&uT-#>ZejrKyOXpJ<< zbQcK?K=}(=RUz_RLAhxjr)}Ny?%cj?8C9UfA&60XWHxs{nxon;-KFGLhLYz8RhO|G z+OtBUe8Ia+iT)%tNjLBk+3Qz5WJ&b;d>oZ!v8^xoGv57YpcEi5UwJf((fo;N3oV(w zt13Uu`b?V^Zag+FVI6V+maFv(X6L}RmRwHA`Gy=r;cVeF=XN0#xJ}9C2Y{CIwO4Vb zl3rE)pnx6MLR40#g&M>|#0fS|kf|ZCNSb#e=&r3u_R)99ptV+BQNlga6#k>!_xG;P z*o4kxBSO@`rcqwY{qt-W`9aypf`S=WujrLdDXE&dLj=zNkqO#j$=UEwqjeQ4!?+Gx zI~46_hNpq|vbb|hF>x+Tz<}X-3)uT5g{l~=Dsk_(4V0?<;!OMBXV^y}^1_sI`dK^f z0T;|~@z#@)ck@@UP(6hW!0DkR@p=(TEu37Orsf>^vShRN`xKO7_l^bL@6+C5WYz?L#Og8(p;U9>me2_zo&DTyPca< z{mnYO&Djo=nS&j|g1XI$b-BtrbjVsZ=y^}Vu>Jvilw6Q&BT6{)S1lbG=Utahk*ajv zIQ7*e%BAEfb6)UHhUZ^*k%keQJ8uZXGyWRCGe`QCcI8PmM#vvDrK%j10)jjrs08_U z&Mc|UzI;{Fctlr8nW1_+u(M-~&7}eC#)aSH>f95Aehnh}a&JT6>Y594IVUT)m?%IL z#-pJF4H`(Nny=q~{nRn&@rg%&D30Y~U=ib>n^Oo=9H^wDgmBEz(Ud41Uw3UtbHuxf zwHf+_=JzuyBSC*5*-vh28*iH5u?epu^MPh&mIJ@q121>Ytj`L@aJK`uUl+oCSum%( zF&G3tZuDoZUg5EVPXav43ChlO9aAx%??u|8D!NS4-34;JLR|%Fs#v;2+D3xYbUeH9 zbIBc!FGs>n&(6l+nzyk4^q7fQ@|4Dwusq1KrE#|uSvSCE%V$m>luHt6+Qq~3E8i$ z)Y&Mt;upe-D@Uhw^M~Bc9RCA5apSyC$HgaAxC1y9#V? z^8LX*VfkvWkVCZ-`)VORFwfCJ{SyXI$321&TYnCb0_Q%JxN&n%5^ltXNE6ena6J7T zO_sg%lb)oYprrB+)M`E)uP`r!ip2U>7fZN^NP`M~b56ycgMXx~&lp?$S9McgPE|68 z#!iRXWJ%eC6qV3v24XS^pLRRwWdz25(O%vMQo^@{;gvJ$cY?qgRF}fe$2Czk&awvcs@UJvia`&}nRs^AjAq7fB(ieb4pzep$X?sX zgw~xBWZkN5tUr-fcj5R;RO!i5Lrn9N9O)|cUBW+CochY$d}(|XsW=}qV-e-es|S9+ zJJiVK&6o;CL~M?S!c7>v8AmhoYAO9o>V-*?M1Ws(_k?P{T;{>YeqESmTWoPa!RJPw zNW&MRp|kOmco~bBoeevm=|b11zZTX8?F?P9&V|p!Is!(RJpB6=4{#q4=?$UykzP{O zR5hU3qQIeKr(aRJdy)6$M*m6qWJoU|JqC~^H3{BZ|JhOhhl}s$WhD#UgrFpr1#Ahu zr_rMV;8N%Kb}tgGtzYTBDaKwY3+JPLu&pnc@xt^Y|)W9 zS_jc)VGYC&-mdfqvg+8{N6fpO4uFoiLFOz_Q!**caf|)AaZ!DxsXx~oCrTQ;>iheSg&mbWvq&M4bED)_S++mdhhe zONe!MeS$~8gFVBz3WbsRwA{F24$c(~o?BK#T%tFy0{xgByx5W>ZF5~G zNRVMPT_U2;VA=0bH+(9-(jLOdN$MN50B_4M7tDh9Wt2E-ApW6S?7@CDj~0V$jb+6% ziE$OC$OqX zTl5WA&b`4-5@`za0?=6n#l1+U5~1LuDil&;GAWsVu8{Ps($=y{p@y$2XRAT%OpjOA zW@%dMYCuh@UrdWPa6H}y5j2?bL4(`36Ir?R|UdK(6zb2OThMB@KJFm^|hIrOJq*6!P%cuQN)GgAoIFQJ! z1>94$YCG4f;`^-g6KOj~sulGjl~CZ@_X#!hTx} zK{VS#^gLYw@!LWZHI~>7;D()w%T`FxMalsY_@xO%YgjkuD~r;ziWV+rHpU!JTJU&H~$*2PA9`HxuRp+~e& z&H&(?1jZyy=I zB)j6(3%zLV{+4u&tfTBHm&z;FS&c`siIYAOa>L4BkRGQpa?*)nv^QBb1{Tks4n55d zi&()I^~_y}e-Hc3uHL^e0)*2;w?rW{R@DlnTx$3;bSs{AvmSMXdIQ;p;T7K$5H`IO z!2xzbqKkCAC~p6IVdNH(Jw*j$FUsfVt(InItX$~6a!Z>G&9;1*k_}W&ErQ!| zq>iSK_!1M*;bSZl_C6as(BXv5m%Ce6mpK!lOz-8^M$a9h{&v=v|X`ZIp-<7 z{FM&52%f(7!$_FY!8zC@p%rs`vKGx%;Ugj7l7dS@g1%F+4caUZ-Mo|U-M*F0_ei{G zUn$Igfi$Z4oH#1b7X*ZL(I{e^>gNjN|8T5Y2d)07 zD8Ex1+ZT^rzhh<3U!RvmcaqAV+l5?ESWxE)W{oXnR`fi%k7NZ ze4a>>+V>yVyH{NyAs(HhVBoNj)=+l!_{KEe0gMTBizMVC-I2UEN`Ir{J6kIP-5GAgagNhtezx94{4&Qaeh3DeUe{WVi}d~tTY#kk`3a?lhNm4 z{cTK4kYyyST0bI}E#kx`-n7`j3;VygRB+KmVSMCEIY1#jRa%aQV#^T}bO!n}06NMwrs3X*OvF zQi4=Ic4hGwWaW*KQd1fB?4eGhQ`o2Z~_7wat)J z%P@=cBt09Eeg#Dw8@Gl<-z$MAjR_T(43g;D@01s=YJbTx39drTn)a9kmc7L`N#6_q zu?ON3c#_@GOKQAEeT2XK=_{!J3M&I?&qHik1c;TKur6Q%R_R$*gdK%Gk zX0l5z60!qExXR_}#pz)9<(R*E4e;zHvW&iJ9oS^J`$n2UU-);~2-!o_0y}WpudQf> zzR>K5B{N-Fn~@YM6x7siELyXv3|R}af=@ftWR5p3Zm1jeis$G=?m(Flu9VEsLGm6h z<;Nj3mZV}Ak5U4|BWQC^3ms}^1Tz;#)Z~I!a>BOF z;z?V5?qJV7fqkKZzY}Nxvse3E5s-1B(WJ=6Vj(3CWIIbESMr#@2DG=!Y&w#TN{Y7u zdk&^=LxowchxUG^xHU&}=TBW~m{^<1Ygd#wqh1Uuz|H0Eqr2o9^49Q(w#9Gf(1av3 z^7Pmh4Tb%2EHBJ0+&S`yP8JCS&fBAD=l2bRISta6z?a-&ai`lsKd{^S2OWD<*ZR*Q zOFTNK=BwEF(dQJ=2Qq1P2+qJD7idC_kwW$~Azlz{@y`;AndCpsFH0-iG^i$z8kj84 zJg|}mPF$DswodVOCiYNh-8~kBJ`{v(KF1OQr^z}dgNJFl<|%=U|zrp9)*_ zu~FYk)h>i-mIgHO4?&jtXcrI2fT)R>*IN%|kayb8-YGfoczXEIsui&%d}XE-QbB^; z#R>&R`yO;aQNjK%=8V#M@0qk2k_L*=tn5sv+(2SzaCNsN)fvI;T?}Y|99ml=2?2Pg zaA5*gM0Da_iv~&?Z!b7hm}7aNDPasKm}$F#mw}Pil!JoWIt``!eZu0fVe=(7)H#Hq zd7*oxxj&PUH>G#B)oK*{OFhMCpw!p^Mo101B}Y@lX`8ggcR4PaZBi819pK&&0(`OY z;OQy->X-c+q{sHdg&wMEdIW&*x9d20ox6aSzCpZ$cd{rzU{J{k)MG&Z!u;?DA@~Hj zDqDFv)rs*CP6Uh~XVuo~YA47)EB;_G!dus87XsnA&l@dTFaWrm*#i`B!iw@?$U)ws zhbavDc)0&tjQ&5DyZw*kY18c2#SfO{47BT;Q!HfaHeHpm^~2PAhxibt1w>m`%u(?c z@Ja;ofWoL#BsVy#U$(U{o`U1-sFeQ)dNd6k`dL5DV%G?*Ry@Nr6x|DWkBMkcMNKmo zLN9H4k4eydgl=4AIom&@QQf5GZbvx^P9XLVQ~jT5>HnW7++VvJ@L^S-}#sb(C!JR;HRzK<*-7{`4-LHT~Lf$tr5cPLuOwwhn*@ z9JKgvB+eCKwz2P5u^Yyz@(IBQbv7h875b6bEkPGjD@Sj}qU?d#LYFOHu0RBUyhL5& zw2ZL6{07hlFCV71B|H9QUH~-IE zEfUIJe#r~b`LLH979H}d`+T8%>em(@%70)ZC-CbZXe0OLJ{8{<{U6%8tX z|2zNk?EJGI)pMGl#2C*cE`8N0on=S4`$@3}Ed`w;TpsQp4i*W9pMwlJNuD-U0CSg~ zL+z6`Jt!ISe&_wI+RU5TJeUT@Gyxm+-2>)i_qAMwrH>#fhU*9zBit4qziImoh%Fs_ zPr#N|B6rx6mk<9w)SR^P&NPoIW*}-7ymKG$t;Ati1?@Yhk;84$(&iTF6N}7XXTh6)3TYeTW|wEk!7`&m<{1m+x~_Tkt-i}(Rz;F1%DJh-sh)ej75mF z=@Off!BsZ{n=~u4GJZwHY zBL&XjNk_J9enbD=mWuRQ*R?qm2^r_>rNj;(eolB=D^fEh6$0VssZnIl#W)8 z`nMPNdtW(hfTm%y?m!>u#940S(VtM7qSfwDsEp4ds#rn0$|J*K>`Yg*TC-WPEFD|D znDsh!lMx;vZl=Gk#ne}S2(P)teo~6RCdmgc<3VePjTlkKzgha4b-hK4=eYVR-9Wcz zCOt7v6j2%lQk}IMc)PSnu)&+5=*t9@68fdu+lld336K`Q&+CP#lQHCl4B9cY{fx1T z8ckJcz&nv6f}W5fhRXG)QemGj@#0k{8>e+u{vqKRA#a9}sXG;fw}hrQ>%mkaH;s0v zzALi$h9hcFNF(TojN`P@Lg_qLBU$6{qdd8S+F%VYPjt{M;f|UmI>4)^sS8`62jnz> zB@ej#$#T1ZuC0d2Qh;!JvFW;Hh2`HP<7+N1Bz{ejmq@{Fc@S^zVZ9>`+!85K8eB>k z3u_~vLWX-S5mWSzMMX)drtYYgS4h75;}U{y`MnwrbLy68MZWb@aVyBzzLN%_>ARkt$(UEV zrx-JghNP)dfAra;Gm=c`xL>cS?dPRHG2z5gIc@97_?m*lb8v%HFEhN}RobN;Nz=8% zTq!7)co@#(!Z+%Nl)fW!4m=wf4U|n6ad-3w;4dm2z~^ymS3v$!5(2|&*}ODyzx1PTwuf~_zznsN zUQAiM4XdbX+Of#&X;gQREq%=iN5zsAM?Z*RyJ&TXzGoA)hi&G?uv1liJY~z2`FPM-B60tUQL+BH4s>t)44V z(2T;Uc99RUBbQbT5`O}iX*k$4;n0|H5aUSj4@ahVRQCl%^0uH3!;kR;^{_jG5|%iqC8E1pC7&(T$ut-c z?Zr|TMwa=oi2COOuv(S|6;Ym$QJBE$R}x7`q>BR+v8BQM8p%`vMSBwtpJ53@u_Xux z!eHb#C5LJg_Oj^HBbx@4mprNF%LIo)bdLg#h;GQ1S7s>kyqL*j4i?AjXTB@U?b881=w|)ZSaSV@IM_f2lct#g87A zj8=!2e8BZ#hVL2x1%{(E#Iu&cF+LQa*kNN*CDHKnw0-5^)t>&Q)|uzNPeYCTr|0EN`LwF9s|NIaj}=m#Uns=n-eSL2TuX&CN#YoDo1g z#Eh1uRLrh>cW30rveWf~z3)bWNtV;cF1*-OQY#4L(+;3JPEU*rxAgyI{%0wi%a;2E z1s=cyLg{kH(`QJIx?gD}LZ6-izczeYn?&TBl5bE#iYMSYJ$;LYN&^see$T7t$r;Zk zk=QPLl_193Oes@`$4N9@o3(*M; z0SR{D9D1&_!BXCHs7ozB)vCTx^!<0Tpw1W_BdL!Ix&G6(m8D;_T$6>5Z=5rUr&H{W z(VOE^hVCDEG~z3~dk4YxjK5vfO_d2@k+F9P@dU&NLF ziCgA>LmzM~x^ElDva)TnE^p=z$C*~#QFZbpmfm}slQiR|KWOlP#t1|yotNvj>aLROC`4EB}GaWNSbjRQ%o*l!Q z`dMZFRlgco4CadPSDgd=&)hx#n|S{x6{|`xi4=xv<52h@pywYJD$DAWN}nKl$V*S{ zy(@LkPXK^s7{Bo->yAKSEz^=V#0RfCx+E-TedZ{+k@IF$otI3SEw60~N`?R!wkBkm z!rl$6@Igk{-s%0@!xJz40XGAg*J=z|0t1ieDCnLv$h+@04Gnq>c+O&n(z4&O2hGKP zV)>+e0PaZsygWvkq=TN}AOaym!}@|=kIapHW<mMRE6{e`y=~)4F1qS2~e~ohospeCnFt zFBT8Vv^!E26lUz%Mzqp{Dy?btXf(Tdv$ns&FU)!0WYUDz4QBrM9sN7}Q7TEPtiTbrD4C}}_oB!F7$I9*E(D7goH59R2 zf^TS;G4S0lGeZ>hVEVp9-%HqlW_E;{$dPr)aM+I1Dx14VE7kAVV@V{3N`T+=57ZoKO*;{dKNi zxq#KbZAJJNBDuB0e0Pmr79-}KvlV=nrCFfM(iMF9ZTg9QCsHNzQ~BS`B&Y<0Y&t?D zR=x1QD}omjBEG=NFY9Fb>{#b0S3cstrGs)krm8tJyNpl81~DmWu}ez3L=Q)|%j_WY zV}6%L%>;vJFtf=tlVRu?A1Myq9i`j(0GNQ#102*c6G$%Xx0||JMHs z@vD*bE&%6zX|P$Q{+Lrs{`D7qDRRPT*fe}Gp{j6Ni%43$zn0Q=>)Y#J;r(}^qad!{ z+@OElpKep?K4_nEgEB4ASeH)c!eOHH!u_dNicpKDWe!T4(m<-%fsUJ8WpXmz%{Zj`O=iXxE7uKFuin)oMA^8wOOcij^DR*lUZY*@3@5 zK?%ToZNd*_RX*6cyawb`80$Y1M0poxH#2C{wLS(U>iIbqkVcNTj#gLd3`A5DZ8s#HqGeWtrepgyS4p}ob_|bNf!vE$El*yHA=AULmx*Cp~n@q z7GX%)>UV3osJXSpL1Mj7t0A)i&YHTqnuv1J+T(QIttqcdB;LY z-{@$T%{|ML?S_7uEWH*t_b0p==0)HrkSFBr)7W_Alu@wSo6rCLwveb&BZvcvABBLW z#2ibF`eJuEgu2h%Uak2+z+&5aI5tB8#pYLRipE2((dC_BJ;@CEjBQ<~alk5rY@w#g z^gH4t(z3BR-B`(Er4ghjy^_`)lGd6k?EsaK(l6dAuV)qzR%ns zqD5%+PdOZkMD^BkFyL@kgGbFBW5w1Z!+;i>HjOMwj2%7gfS=fj4 zro#Lo#?IRD;#%DNtk1(XT+0YYk>~3gc-je6FY@|yz_TKCBdhn~U=}L-&9}{R^g)3L=gb==cF|~q!Bom=#awdHmW_tT#ceTvrrdiB{6>@W z!1Ax_mRj@5%1pVbqd0*S-MQtAT%T}E4|Cf_+nTqY%DQ5?E$1OMEC*Un<~48&@%f}h zW19fQqFikZL-tmry>25SHlXIX=r&zUQ7mJ%1l(SGen3Y;YeRf^Up&^r#*4xqIbd3) zqQ{E&x^DRmM+-+lvs)r&N~PF-R6-}jPvLsJNGRfmwOi89u_3)6ZHpSRu-Qz_kk3{s z0d}v|QMO~4L#`1ocnu+Np zj(>=>xxGiw0Kgv*SuKIsY-SBfc)2>s9sxHwa13I-KMnDFx{%brD&@2~W}xy@%u2?o zju&U_{A(L{T$>{#D$4lQxb_W)RU2DY-2)Mq5>l-dbltJpZopw^xOifhKyNIlUd3Cd zjxEdf^jaoy6GdwECk-kUWz4R~E4UA62N^pNB-X|E{GAgzeLFRJdPM; zp2F}aGD8h$LHFrpJ{=uYL9y>oxAgow(!@cf`9;YwKj!ZUu~_^gH~7AM*qUVE-Rv<& zuY!JQ__QpmprBDi!KqVumo8!wKp>Ngp4;VFN&ookJp9<%tj)mSlJTBTE(*49Yl`zV zm^mc3wc*ibOM~-vh`xO24)jdIKzbL;iz(B*8q+QFh8%dHd7OL{Fs4K+*EDPA!*~0K z1&Vx})nZA4_kpLE#Dhl3#eBJF_cWNti-ZY+Kecrdg#3Zmm-!dF{#A&@&-mZnS%1O& zhYjC^L5ts&G|u&;LEPf%4@$Q-;w84&c}A7X3?o<2;_nczZy)yq=C@)Btv)e=J-Alg z^0QDU(w;)-N==|MFdfG&4Z}2d)0K|+y#SUvg+@3^3- zak>7Y$P@CxEy`0|hbBUX?AwE1sKI9enC#!^P?^DIeZw$uNr}nTWf=H>Lrg6;GfViI zhrI(1)?J9QKcYQbmp>DfCKs**n$z~T#$wHR-{p{l%5xpRQuAx(zzRi|a^E$;G8v~- z7I6XT?6xGP3!dpKf0QF_-_y>>uWuwLS;Ky0pruXZ(oeu@ocRTHf)#PO zF}sylIj0T-KWoml;cpcgf2$0p7Mnvlu>>>h@b^|m?b++fp7?!A4;cf6=9F71sb%kA z5Tg2r4UJ!V(Q7}_;b0IWt;0&{bq)l|#hkSh$JAw)Vx352px|dStvOgSs2Z3Y|79F_(J_&XEUX-%EWglq4le8;_~M2a6l|a z5hJ5IT0-ArNF$}gEftXWo`_rSteweQo#PX~NG#qvj-QDS#H5Qq<5TE~vX&GK z2va_5G$NPsU41F@*h!VWlW6{X&xD1>)91fkcLGfa0}KnEC4eedBSHpLGopBW2N!%w zA>CFUF-hdC3p9C#<8?s|A72{4JlQBE#!B#F84@><&Jfpl95OETl=W}m{`1cig2(w! zwh;6%ITQcv>i?^dvyO^t4cE9wQA$BVq@-(Lh@l(lZX|}1?k;IXnt`Ef0F{)+5ornG z&>#&%N_ThPjh=JYz3bk)?)iugV6>6bBh#R;sI!z$xL8 z%bIIBf|SG5k{K4bCB+j%=7NJsKQlV}b(}|p;IDp3on)M7*f4{8)v(q#U*V3=nlY7M zevT`%EuzWVA|ch8Yh~$Wn8@P5A7(-ZUwNylc=N4KTOMV+n6!UW7zFQnGTUaVF0<6O zfi&gj34n)WEBS};1QXM2N)))7%eNkl=wOKG^=gw-Md^&^;131TX)w}*U|MJ;7hB21 zS#KP~x2$~Jv!7hZ?G3lJY$I zf{8L6s7ECITD3flHGRnrar6HAIUAs0I*TWQ8ihX%>e)sxKp1aks`t^YW^~HhP|Uy- zQ|<{a+~}E}?)aZ^ry+&9f_IS>am5MT^Cs3;*JD2EEd5pQp+b!qA|GuCo2IT;8CAy= z1{MDPB<{LzfPOaI=a-(YgTq9p8p|rJXtt~=H9{@*_0|8tDc}_nN*0Ooga)olYLYZ6 z2oN}#wg}%@&&SH`BS6IT*x#OuOrH&_LDx}F`*`&9&NZQrd{;9Fi_v%0528Z(P*VvK zi=qT{&~jNSF6uzBV-yK!klD76Djb7&XFTlGe@feRejOSlzNOELZF9IX*#vU2f>obuq}`WBa!6Nfh6Np%#D`T%9g2#f&9L z254lN`X>GpldB#&rR)po?Bs+!S=WT+%fnB@8@dNMdWFBQ1lL8Kod{l}S*m+M@LGpq zO6Cm+1?ql7L$`ptD6M9UFMiD&PW9!UcYjOq^SgO?y{BC?`l=Ts3;UCWCNDjDmsihB zA?%V-Zauujxfb8-x1pp;Jx~&XzvRs*`?%W4$Fl2NZ_VQ#-!5(6%$hW?j%MUtE1O$C zl8=&Q(C?^1>)qUtFIHv?Y!=(ta2$V%;#+jMly7YJr%Tf%*8L_GP5GdSE_9+Ssjj*!eeK50Hp z-EInXrJM5A>XL(;A*p2zMS!Cz)a`G)3&Gy! zi`%&g0EyyDnT-d?QYQ&Nb}OsGLC1_T+0k+8ED^CeoxxNbE8Iw*+qi&~&RmW3(f`Ph zeVoVnCHFOuz_LwR?yJcn85M9aDn>3c5^me=7(sYm&#qfoSSP`*Kb#m(Ji_l z_)3)|1t9^v%R3q2N=W-sy0T1@)fSC~wlAt23Te&on0CM+>jWG!rc1huw6A&7m9gSY z{ND;w2#50W34Ft!&YVh;0n!wv@@Ygh=?V(AE+lp`kVDY`d4h#?xnIk+yyiA=o%4 zOVf(Z<;UB44@7-f<1@-==tRc6+*?Km(y)mU67|kx`i$X54v|s@7b;T)=~?p`zPZqz zc6WvuI+dx;PfBE1(Nb`*$V5*mSXvo}?~rD?rU)L+maaAteHm6mCpDjL3$#M2>cmH( zvyuE;HZa$F@^e1KqZUky&C>13u#d$ZMsc?Os=$=?g91^f!w8BRz}~rFY)2TG9%Ozz zO$&VxgsGL?*qq8>9)+-ALkAL-2%^6WlT$BQiT2IQ>IfCWaUMQTj{#m76!a{XR#qs6 zSafGea=s{a*K0JogY)%x^~Dj=l$VKM2Hi|851L`MNzAcik)zpmQ-i@Q{7@K==Lw!3)=vd#>-pVEGYBLH9WT?{ihKL+lRja?ki* zfW?0@A^uChBHkDPb#Z=`u9IKQ=JHl^)h&J0Nol^2aNp=k{Z0)^K z%MnqfQ*wrOc&aV6VX#kFyUg(YRUVSDBY7FOtU1=1{ffLN*fqYuSxDuzG7VX(I?9DA z@sqoM7e-@8*V&UeiRY)WNXzo`r;RlsNvH z>d589h)(qyN{l1|I6^=}++?qV;JPb##onN_SxI*1ZN0;D5fW+dp1iel%id(h-ecaw z6mh+|oh&>Xa(p8Zi&u(2YnY1hoh}6bc=G-%(30_Nbi!)OC;i%9oSwoBByUIj__lp6 zs+qi`#|@Nx(~r`N=g2B;yL=Ls9kN_5d(5qtjaWKdanKDd4S52&4~CvkO}{&HtOk$< zxGJD=W1^X+{eJ>6=EWTU=3!I=Ro>IwjY7oN2dBnFD8;wuTSB6oxoEy7QI)bHyK#8} zs0z}?=_#<&SUj0%;1deLL@pX~Z>L`mJ=Zrg}mXGXcy^N!BiX-v;M&$VNw zszX?XZ}AtrAgv4v#B=c>frXI zsBGgvgbw(jML3iGSJl7EgS;~L)<5_!Sd*|Z+-u9`aEJgy73zVmX_(zMy!8KD^y{3H z>N2G(c4ubozO$^zp-dd3REfIlFG)BBs&gBX)*BKW+ZqG=v9H3PP1d!sQ6n>u&L$Gf zQW~srsdCK@aN`~R2{Q&?!A=ry^b9$a+H(ZUm>o5Cs1>wQK-Sy?8WKKwH%Ui9xk9JM z+jykGTJ|wx*C?iV(lQ{RSNL6Q?#f75Zt>r@^Pr(|eAje#OvON(nW@&BW~tMtT*`J4 z?jIfb5379&-%W>3rDK3n@hAwKW+`|5e-^A$;G&7_4^&_8!1l9o>-nN%2pkd1&4Uzy6MgSF*p%L#jj$< zJ1B#7)zL->oBrh@vM(4YCa`xmy@#roI$$Is&BjXGRB$XH;SAZxvbsU=xQ&Yr-zC58^fxu(PzkKd>=U zbZ=}K2>IA04xBV#f|W4{-6*+maL>Sgzn843$a5~rC-FXNgSNI4N*jz_D~}fcG7zJ2 zw5Eghfno&ePP^&kiZtj6f9zjBPc>-3t`)Cd=u7ahdphYCj)nKUv#~zQ6dwWN~R6$vPp;eaZ{TZx8)SV;JMXe`^~fKc4Q=~Yn2w5=x9M`Ntx@?gdLTq zRpUGq?jxbISLiIYyK5Lc>GF+NsodCP0Do~K$yu_e8P6C<49NGZy+4;EU`GYKQ-UnY z8o_z&FN&I$EH@mZ?#iggm;^`FqW!}0Q02;_52QW70xYyb2C<`H;P zwefH5i#b86uyFglIoMWBeEG;Cj|7%=y`N}_o_=M#!@(sL=iF&7P za@Qg#|7>A5KJ;2<;es8*$`!P_%&F&B8i9#(gijl*HLP4`&2dfw&Csv%3OaHn>_Qp@ zeY3Mk((&|zt&o`E*bP2BpUX{|xx}{B2Jys;()PxJLM*45XfJ58ybVPnvcFh?e|^~d zjbuo!!mi_6S#4MU6LPvec>DT#wQwJuJAi^I5o?KWb20d#*No~Sm!x3GpN7E+pqA6j z+wLt4Y<|It#QBUf(4XB`3r$-4Mb(75|NcE7JWhJ`kWanP7Uo?LIp14V5e*|H<}dxyB5Q0 zIRa^5#n3^E1u002srYFVkamQQr&Zb}kN%2x2VbkK7EUbjll)tWxPQVWN(l@^9n!W~ zjCS#-By(p=|5qIaoj-p2~K zxh?G;RxV6|y%mV@-smInA5lWq)brvw@6;CPFb*ttkiGwOce$Ikbe+^S)%KZ2BV2~2 zSa?9h5A{)Q1DWSh95`D3-_Z0 zjFo_6^Jo#?1ns{a-zRBEhkWww9IJ?VOxJm(Ee1lW0& z)ydH>RX(mLHRpRAL?(S8Wovr})HB zu;Pc~?*}>6ubmxNA@@xv(-_$PwcsFpw*~@#M84X`H&B=8@WdY%_;S+CMJjo6SojA8 zmr9bgmq6m^9wGP;fa1NR7QcL3qvAi${!!UCs=4hxAblRtVOPLD3vekJC>4Dbl3+DS z9qx5jk=(f3dX%x?W@Jz)T4GbgA*F!%aW-L;I`Cz}CvVvS-3fdi-us`!+<<;3BH;Wq zw^;WUN6+fZ$7?@8EF=@bb&GywtYRG){icVmb zi~8%p0sHB?4G}9TFVBs0q<{%3U9>BTQA$UcO3JePIeJe579PJ74c%g(c_P^p`Rz4F~JM_@nqRKLL0S{tHASik3PbdvSK zOGDTAm_gZRYokxd0-Sfah$0VwNL=h0yv~bZhH+^{;L48Z4CY5o)cd2n%fI?7;+E%v z02nlqdO++-H#nCrDtqA1lb-rly6P4p0>!ze8YQ9v{5qA0fI@O$z#_ZzUk&r@>4E#G z2jo}7yEiu-+@?Kbw`Way>kadx#{MU`9i9%<2(p`^^J#u{F29EfL2?nQ#nDVbb&=ZC zLO*XdrXAz=uIBvQzwKJkq*rYTbi^G6XDn_$GNPuZ`m9CacT!An>A4qHXCdo$I_i4{ zX1dysovvvrXsR~pF>X4Cqe4iGowof>Ka^)(Ldv(Rwk{CH{&-!y^VYWuVw5)|-$l_H zk#yhAz6T16H&vaVuQbkm(Yl$GnK%gC@g2T?sQhvDY-5fKRC{TqBRe}?o3`Z(E~34i zD;D$h7&rbUr*vg=FnxIpK^~sYHC!+fC9p`fTp=e8WQlrlL{LkSdY&F`4Y z0-l;NH!+I*!yv0qoOVH+ZXs^3)~5AY-RF(D-Q>$1PWykA?$y-#s+^oec9&k=#eV)s zez6hfftla%w8M~dp9V8kvTG5-tjZ0X$#qL@{vM-J@7P<%39mv6D~T#R34;C@5!MqS za3?{-NOt{89h?CEMaS_2#;lk89HtJlC`fxy=U{%5Qs53W%=1H%uiVMECNoAO!qe{# zqmwvc?7_5?v5<&DWy_M`$2#cL$i?{nTn0{4V##!pvmrcBe zqatqU>ZDAE;?PQ+650suM1SJ_3CMf3l;44?D>|3x^Z@*qd|xqu|6=8BaP+mnyTNcX zDB(@f&U8KpT34+v$GlH6FGEzvwlJUClg5{EJQ;k-z`4#}R?KwuJRV3PsJb`F@v*2p z#wG3Qt_#2!XO7DVQw9++m91yn1mh|*lT(jQ_>gw)FVIp{q%y`z`FFp^eMY$zR$xoV z)eJSL@lQm@O>Qq? z&2|^HnVuDKZ}pQRTbN9{%}ilTro!99(-+N*c*y#8d3@>7oqh70%_oXvmwq!#oGQ*z zXRzAB-jelns`?8?;i^_1yK|mo66t!}Av+{$PvaqF0+*(-GIeF?83|GEqb98V9dBiR z%3pqGDjGwY{g1seB_m7Y*nQxg#pF+_Ji)Zi!V6dA8twS{%db33pUf%JiSiAVT}nO= zVn7EDuzS5>t}M%>1uNtyhDIe$pH^){F8^gX%7jjziEP}Ka3x>h2k{LArOTq?w z6aMm7Vkfj}#bF%N15Z?8J?jzk51Bi`9rkJeRDZLl5ID~p05{$=1!vK#{`P9A3krf3 z@^i}t40*h*7E~)=&CD~G4bkv=XE5lzMxp$}`oAH);^QrgnTzQtXU7gM#whr_jJ4g` zENL`Ap<4d7k8g*<@;R@{``+F4k7@1_a76uBUNh_}4!QK!4!ma6Lu!Zw`Or7J=}E2c z#3du=7|i1P^uz9Ftr+0+eqy}EpuVmXbA6cH(}+0doC4MkthplADd3K)qf-N_b!2_A zP-N$zo{RTWCwr|7STX_@?>LG1!`^qXr_tKJ7+nFbg^Dlmz)W(a>w2i)Nt>16BSah} zw2Si18HM`ue-kzE8}a)RxBo?!ZHEfiW9XByK5k z+DE+7G>u){&LIf}=Ux>N09*9xjk<~meyCfF*i`R9#InXJh6+Q;29pR8-3Cdfi3Gr% z#8SG(gE=3THq}BV#oF9fH!y7Wo)<3d^U%{1=dvoICc`uI&@9=$t-YYuvPHh2Hk8Bz z@;E#?C>K-Xr}%s;o;k2x>2x8lGetGJ)|6j&RIS-$+kQYu!;}?=7UH_bzOerFpI|YR zON|J+;@ir}r33Vw8Rx?jBhIjN_z*+8s-vST(`ayIM=ptuxQA@G&&V2D%5j?8aq<9czj=f z@u0BOOs>0IK9f5je^fBNYYoEp!z6wA&RX~J&#iBQm;aP(WVhS)BGl+=N|he` z*c;YC3;ACUkA&QITqENoHr1-hMppzZfuP*Iy(I=cI`(uWsr29s^g^Lfg&E%Pzr(tZ zxHfQm+=jEYe{oxQYqHyPrvOl^h;-&E$GOnC*8cY+j1O8ZQIRTm`CjomonT)hLeD_5low$3G@DyE+(Pd4p??>kqGJ~{Ng%t6hKfwy>BS@dv6h8JyTt9| zvVh%=MWXX9z?XjgU>^KUp;n?$R8ICN+|-WV1-1-`YrhZPQVmPKXMdlC@D5Q*sg2zx zVmt(#_xm5B1fq%4>y26l#JOW`4Epd;M_6R!!7ex$hsh*H!&G6S*=Bnpl2MK+wXRKsiphtL3fD|JY$W)#L{P45Z zPEKR{@Okml|4)j?YWQ)iLhc=cOHBgTJx?o7WWEMG5S~^jy6!WjMzUU&@DB%Cg-|QF z7Di0EXZAg4y%?_Y7STgqGg39brJCNzD~RpziZNLmZ@GK3^X;fow1$DzvuKN4j?W)! zsQb`7bbd92cIlNk#@W2#u+%OTAgHj(?2WFPgmKDco15-byMF)4o$-S#l#(LJln(Fi z2`2b0m{+d$@6zpZBs!E}uI#K&`=XGS_#@`oU;Y-BqtNV>oacJ7yfbm9a@)9W@g(nY zJh#O`5Ox*@_KwfV3+dfmh-IPDdn+yBxR=4m#;}pqP=m`Vo;s|w(FFxAz9k3v(qM{> zvU$&kVlFpk;T@(YcJ@8h2>`~4>L(D``^}}k_uAy%zhI&NJJYUvKy`HcKz=vNqg9CT Qw_h$Vts+$>@jB=~0D)(1VE_OC literal 0 HcmV?d00001 diff --git a/labworks/LW3/p5.png b/labworks/LW3/p5.png new file mode 100644 index 0000000000000000000000000000000000000000..f3dc68143b6aa451fae4789f8aa491af8fe2991a GIT binary patch literal 29063 zcmcG$Wmp{Dwx|oi34{>n1PPGfG;SfddpFh%2?W;w0YV_Sy9B3^#;u{z2ogMj;K40; zaM$2^i*N0<_ILK#`#jG*cikUQvx=s=YF2g4cf4cF4%bjqBqpRH#K6EHR#uYJ!oaw* zh=GAwgntLvV)okWJFviX(o&ScDDQi`4y<5XNkgSEFh0fHy)?lA)(PG!={jLxJaE4K z!JM_EbHl)Je5@=d4RKr}Tpf@m<^SZyirQ zmecdFgpqJqeh)JUVEN6>{5>od~JvkIapo^NHb^Vg6y*AD_Wr!_CDdbtRkb@3s41qws*k!We)XgKw9wxp+XgOMyoz zwZxuBGl*R!3P|6&02qiw~P|fn8_y#@D*K?%sn2}#CRx9tuA*&;n{%h z6RlUC7}^cH8_oJ;=m(sL+T89>Bcu~raN_s*tzGlD=xig0q`es2mN|CuDyE!+Tc0pJ zedl`ap&X{wO@mW@(xKJM!mCQzRd3nMlX~`pyasGw4^q}*sNCG~ts^Yt_Vp%V?~AZ~ zCJ0kb3s}HBqZ==qj}itC5x*XXZhV{ z=NdWtMN_+nG7ipf59SmSJiD5bkpYTZ-Qf*Q{}O2>|515%Z;f_lPVcPoC3os0l414A z(DmWPz9>Y2yJ464e#J%cm-lBJyTTV2M|R$d^3TmPY3*;6OZC1UxO?;NCI@EN_WW_^ zlC8GvFP{^BF05^f&7$t|jH@{Qr_uCQ!$vXaPF~8FySrSRy??SH2hSj;@4>mYW^_5` z?mY!DB=>eoxiyk3Z@wO-^u?;*#Yb>tRR;Z;S|Q*Y@5?l(9TXmmP$pWEnpyOucGhHZ zHzx-AL6#t;`z%dpT(7Lk)8NczsUSoBOUFX1Xb&GNhqnnhfz( zq2`g6X2!>SH*?I}3knOx4HI($A5`MoClf-c`?@Uyohx3E0K3cna`!)BMEsO zV%msI!7~ZFE)_~J;dIj}ia+(;)LRXeoJwnYANq2^}OM7&qeP=vhw5^(V4DZYvMA#?0#;g|+%*X0_ zW_2f*O1#*Kvv{w5??kfh^AS_o2F0g49ATeJ*LA|n&+_)Xf1pg<6L7_qiXGbb zo-8DAN%=AA;c=GJf^_|aO`k?4E{F36S~5(q`Bq*BgF3s0!rRaFNT4m4yi%?*p^;5h zb+`JVgx8qoI|I31pxZ}Jo}XS}g&1PT?Xo^Dd8BW7bN;f7Z-LI&Wsu=hwpM3p`#u-7 zqOFVjqT1?2j212VhHCXaM$C+pjMv5m`n3KG+0#?ofwyG z_%H%b*@@{FaebEbwZ}iQJs8<|{mbVMJoXi&1AgyXtuXY8fqTLvHR60@tZk})cA$Yp z_xra(1LYLN?R)aDMxzJe3>68)?w(pbn7G<>Rfaz{<4QO~@!>*4clpF~$A z$MdLlQAoR#=;X99mtv_3#CYFzqgd_xg)R#}ck9F6F=ogrY=<=>63(<)+akjc> z{TyzcDH&NGLK-wxd!Eu=c!k7s8iN~Wxi5qg=# z@h@Nt9_segi0=NEp#$fy&3-F)V3@$4rJVfHzyc$?_8a_mIiUYvMxNxyFvlCOnJI@7 z5(%z`Jc-kn@SBU%*2&!w7P{4u8;RNdE9hcSaKq2*<2k^YAC`htfT7|dxmx@iSz9xmIyf4z4#AuQ6a3IoEWcyr;qKdOH%X`@UC z!SP$iMBQ1qgL*(Z3c<;f#E`>P@RiaxK4f8Tc|nG{^X(7=hUth23nxfXk*o`K}WL&|<+4{R11ql+`MFsK~x5bTU`O6fe~8a^q>C z%mM!+ySjE`n3{a{a`xJg6Ej;!!2#THL1&p&T zrc<5H=RrIv#2cT0(TYUvK8MJQ1@0IoDQ4VE`Ridw*}-`b30EW!U(?adT`d$!qjG7n zh~htdhchR#@q;Yq6`b<0u9&;Gj#v&DESex4RtylPE^G$6*R+p^BNj6xyO^vbMe=o5 zev62=l-)!ge)1ft{q#=9`}@Jxc}8FYY*HoTk;p>VVwtOT;9U9cLt1g+>%;hIi|x$W zogJe*=f_K$KGQigeY2Npb{y`xe4e|+S^fo6>i4QE-d#x4U(RJLGS&nnu!vGW8imbV zw)OV0cf>T;yX%xURQ|~WP5_!HgkUj0C&iR5^E=vlJf2tk)(5IkYqA^yxdR5Z zdkwrbxZ@&<+M+hbG3>)$anqTNRoR<*7E#5nuaJT%8@W5+3E!OOBQ5|~3iDwEF33S)_0 z=K*Qg33bFsnorICN*?8|&7jn*FW)v7jB!wKFU%5al6H+PN_Ewat+MYwi=-Ca*vUKh zvU?$(b!ol&d$X*dW~nKyjaKd6HS^9L9}G7aSiWZWHT7%o53$r2yQe!5>8~16(cR-C z#TvH1M8&6@SjRVi`hM&`@iYa;)UwO)Hf#SB-hLL>Wk;-?6}qDxbEA@awP{wr!I)pG z%>c#i>03l;)gbEMyaNVGEy=q=bR#=Ti2jz6`1fbO1d7nV_8N`n5Q3@Q*UWapzGY5Z zbpb+>x{>Bc!ni{Z4;_M}o31nAiRP8*{YQgNFgln8_|E%CPKV}){7rA2++PGo{eaUt zxoQ7&5J#|k*Q|Dzdp$cIw^E+-*lb2K$ycbI+C*C)u2x>0hQO|ob3g!;uLzHYsu+Wl#%&oCoY-cukt)U$~XV6+ME9(kYEVY z#NO%kx_6zV6zFw6y>qGPsQ{s#h!i6EZ23d-_2`vHBvr+xGk|$Zm)(87KdvUlPetE{ zb4`;oXAeP8W9~a{4}4fWM44qjUoo zXHH(fBAbEB&FG*^xrodxv5zfY>LiTNsf1f7gGpNiiiBS($;?OCfXRF;Kw?*Rn~8 z@PnnzeC77~=y`c`Oc-;=I{eT0TTAYW&f&a9gA%>gGlZQ_W2^ZS7~5fH_mEwGO#6Xq z#TWMEW#-ALstuyjxk7_ku_^bM?k}E6KGzQK6?J?Cra*BVrgwvB1gfJ`((z z`pjlsNq8owxJ=CVVy|-i%KjqWqh*+y`Ko>VH}kqdZQh&vw1$PrqI&FEk$CY-%M=sa z9KK@6F*j(Nrvt8A)fcWz#T)M*Mwjc2!aIBQ<(Jv<4&agK{-!x$(l#-lhF+m6YjBM_ z$En-R`L6Y{r``+b=GMxUtd9(qAb&3^*L2SAY-+>do+#a(IQ$#@aB8*E)6EyQEgXx! zfB2#IPPR8e5f8&N&|Q(@^X?B(nO{A`fuL_C|t7DTp%iPOVhrMElkymS+$aDHvxN`@} z3FdDd(|*WDl~1nO$?r6-D^~SA>}pK41#fhHR}cb49$KLqttzAoGol zB`%HuFAPA375hxre)^ohQTmu|+!uRouiQiN{c#L+{hW9`r|)p*n?aw6W_R7Ihw(pb z!GBaY>BRedT-FZX3S9~3+SZ5O>{o)^Pf%GqgUM6Wj}mm2%FdX)J0-{A9)&CyLL>c6 zokp2%@1%_Kc%Z=!?r~eAX)#AeGJJisSTJ;q^)rOw$=>kNP9B~9j*>8|G5FwkLieUj zzgO~}v$IiV`*&!t3;O(vLx5M#Mc0_r4LUyOkEO3Ht&@&VObNM-;vbgZ=kQYc zbm!SZ=jCxh%%Wr!6d%zW{uF&kAtnR!J6I|o^LK!%vMPoHJ3w=;#UV-uwr?!1xr|Sg zqQ<6-FsMi1@y!=b;#bGa7)O{eG)+qPOMmnaxmKwB4cFXD!#>tOu9ykK^z(E_!<3zH zHQJ9Q^A2o*PyhB(CRnY!B-MmX1^}r<#1`N`J!u=o=EEeDc_2XYi zdWur@<)z;%S=`dFZv&@Uf<9BGw=5gaiwVQ58qhJZ`Be7MuWNbD_lCO(*>j`Fscant zfV6^)89=pqerP#4K^W!C8VQCmqk!cho}b>gHFdcnhl6tuRucfeN&XGMP4N@XH|z7t zd(Uy6=IDFqd0&09Wa*Wf_kp9@)$SrqKOM80ZfDPyQG@RslN7=8ru*AvehAe00L@^uBGnaOLnp#|B$;q3k%mH?r}cAJjv zei9NB10oSK)>qkADz4>(0THR`tI}J&k6QTs`j1fASaAPHIxf)v)_4Ags6ytis6qg^ zhX05vBIGiI|4e0$zi$t`q>iN~8U6XgAJ>$gas$2+A#l?WCdo&sH7iw;X6s6BaU4U4mq`YlY*F5NT7!pAb} zbRp}oL)VyUuIF9+kR+zDeq!Eor#LtunWS=Az@1Na6;J(F!Ve78g3e^)i^fz3Pks*@ z$sVR{qfz}~x3k{qpO5%$HY$yZ+o&X~Ru6<&duMHszaR0J^p9#~G*+Cy(TH9xv9@{l zP9=xVex*dbNL#^Hn@Jva1NT}uYI?ES2SQ#`XRaby^}4cE1lpvv1pOl+ykKg|_=Rhn|qM2q5* z*|qRzAfo~cSgL0ZS~(CZU;RS3(a+-SwO;Jg!(!|>3eR4jKyGEZM%Y%AowU{Q8o^L8DjrakM0Zd<~iZ=R~#3o0I z!^qp_Fd!e1cctvGl8`z3c=d7E#S1s1DR?}SOTWsgo*y%P#S0K@Uq|m5;&^j*+P3P4 zAY#;E`9Wssa*5=LVN>6j9w)L1tlBJ5L@?GM_w4hLO~l=*tyD@4n1mcOPJ=gaFktDY zfvB>XRL(D48yTHRIf*wv(>lxg-7h={40`LJ!P*QZ3yM?Y@%>Bd)=FmnN{iwI{`%iS zhl3fO&|QDfrG|Z;NSYmcM#qlh@8oP@8Jt%&BIs&%j4>lgRHVu%dcu8&E?4{(fxuB()L?O zjl*JSiM#(=C}h^bM6#-0*@D6}heamn%cCDku{>n+54|K=RG<0ZqflQB4bis+2Q)R3 zU16uF2k;i{jovvs9TCm^R(R3P!>~*LupS&l>NqkkWMaH{iXe>Tjo~Hc#mu zz^~;nD;4a0RlZSq@=kt&$ysny5Ofom{G*yUoOb?AD9${LM-Ab;?Wwu;afPoQ2E_Qq#px5zFkToWZ6`!N+qoMSV!h|PP;)vVhZIQ>G)G= zBY_yZL(`Uk+DIjNcpr5KzuK@S^Q#c)`0VOC&qdgbZ5t+O@ zJxC)|+FJpXX@iI9!m$X2>Uk<*6~YwDL3DGNJRBtL{>2~K*88efgJ$xVm(`fe@z<}r zXhzj@WQ0DwToAl9>1h@Ue_Bq43q)v^9qzW9-GmJ;GXXQwc~0^~-H0R1m7~$*RGV?S zU~f@80r}q^;ncs;U7vTZ?zjocFSv!XFv8hU{;=3<rxlUp@gkO* zx}(i~Pgu&%$!9-TS5%*B(-qwFm7;!vtCR1Es#AD72N3;Xm?3%6U$3!6^o zC64pzebo^QmMo=u?UxK%)@!!l;ui|}4vnhR1LXdQu(X<>$Kp7>fjfCas0T%rNof43 z6f&-O6zT&j7NiOcd&XX1B{9A~4HiY(Nl z{6AaS=@z8mif!bB^21Qix1AFF(L|4md338d9LZ8g>nQ+x<*$X;Ub?x(OUST%je6jg z{nYxcQbIQ$gA=_&vuW7}N!@Lt4eG>ghN`3*Xri{ z=}OPe-Y6{8YGr?i3xIqJsvyCNUd}Woy2>nhLo3LLZ$7Wu`o0{5EWD2?_?~%~l$iIm zUQF6u_R}-DT;zMtp;;Z1gty6siCoO$m{!)v4YS8wXqkZ6<2y25;Hnf{ja{`Xku}1GijirBmqXX#5MdY}xL3NM-dk?RA+d~y zYTuWSiiGlj@D$UUt*f}aP%8p|M@awyDXuV|@bR2uE!@eI?WR@x9 zRx=k+xudis8Lot`&2)oebvc4%^L3XNd*K%80Hl^6! zq%HI!QA}(efGtyz=_TggNSZ%=O1m(-qcjJsbT{#znFW(dhJ{q5u`x3 z=pwRk^s_4|aD)s3ApRf?IKE!B0$v`fw`jlXfs8HJ=)3KgJMkC?Z~1nHoG?rTcfgV#oCuZh$(xFP3xT}3H+^=} z=RU2tm^v91*c5*vqplb64g9~{Y-BEHn2*D69@_ZXZFB)>$_|7OkH z$ppuxKVJQv?{;t=H4Z;))H*R;nrD@?<_^m!)rDk=xiV*bayIILWAk|zS_K#DhEspM z|M?D_7nDk=_;vz5S>fqaG5TN}uG5TAb^DxDaXsyMCi2QQL&#e@=^7*KNv|F2`>aF9 zJCuVNvtdI@px;S#&FGInXS{HFFC9#*aCeBob(=8?({Wmp-#9%MNrBMUxscN*1a8{* zY29Z9OpX+_i$g>1gHJZ%e0*g~&PNDsIhosb8R>@%+wNsVgb_|9sy%2ab7mc~a_6y{ zh}v>m5(43DFYtntwFDR>$4U`&WU6dlU&eAGr3xD%dwHtXc-8r>Qa@fykUhz*!oTt0 z4md3(@VB6D=a4@acvFvRq54k!YW?NlOiIDeuUY_8{I$1u5^b(-yXq+6%_?FXrc5)i z7eJbA#bQ-YY}IgJ`vfIlMa;pT&BrTR{R7ZoiNg5rD^ItAG;tG_@~?7*{?Lnhf-N$0 z4sGK=md>bnUR_kn_RC-oK3rok^gH^Sja=1FZvilDz8lKPQDti)R3lU2;*eOU{EMh^ zOyB9QP`3?Ka{F~+pX+o4Dwk6L>E<3$`6cd!7Qc$FsEz<=HT|Sbf-6BOd;p)+v8|a; zkL9lTOU%qb5lY!}e@Cc%9S(Pn+=s&|bK#*);&P$m7yKah)u$B)Q@D%If$LtH_X<%+ zTbvr<$xez^4J;ZLTz_pIYmkG6CcrTdM1-8tg|BZ zEpe8zJ|F*N(T*hZ_V?=c!Vd#C+A2vlEG49O3d-K~X&1QsaFsbAAkSJTFZH6Y^QFgX zIDZ^5T#l_lD7KFH6>;_MnR0^UD?th3v($n7)1P@r^cvnMQ>#c(y<-G9pB=&$oYc*@ zq|THb$PrD1(P0F~PqsaM=nhw&6P|H&&; zMPSYQiL_={$Wa)bI~LRXsnw7N5q8ES=BRk$^Cj2y+Mx0kC1~)ZDAt8qHpZK~a$Me! zHnj*MsZ4w$qU^jh-ELw~0aRX+KR|&0VdXSFi&}~1ceq%=rm7??=XF^?Ipw-8$6*&? zYlFY5$ur$C(^`CLjMPv?X;#Uk`y;ksd-ZT3$1(Dmd3_kcAsP~m4s*H)@Q{YU1~25X zOP_E&7Dlyn)eR3onew`O{A$T5u6Sn^N{OlF_Q{h3nbMgGd#%Ad2-G*!!88RHQVeDS z9SkV(WO=(Zo9!D(TOEKNkPbwdhTI^b!Rj(0EEXcU8Kq9;-DweG)E4E;q^wPrU`oAw ztNBjTFASJqo>yu6(b3U7K;OjD@qyTn$8Et4&(gfudKg5y>QF6KKWnp`N{j^m#kavV z+~b8>>^P8u;~E9Rl!#wNE6HXlTbM$Do-qf}%hmnFOypDFiZsRD+cUJQRYJ>GIw4F~ zv8Hnb)~xT-nPbHGV<&j1E$qUlPS25x(;AwS@blSA=jSX?A!_IH?i50cDw+BO0~oQ8 zk7}h7w}PV-giYwuZ}mLYsS)2=BZ9T5K^6mjM;+A-@XJe)_7Mb^w{DJ{$OrA z+RdJ+g$Ja`wXaK!+HWq5=jh@^$e4+bbbdvA!PkZ|IeR|LDMk}%{KW2npWCV+ta2Pl zfvdj+8FKYqi_Wc&v~g!B`I1hm;0l8%>+&jZO5-iCaNcpWkE zTOb{XaLxQ|UTB53?%IX|T&dYqm`l(5G=6kaVsiHD4Wj!{(!+y=eM>=3vS@0A8A_5< zgF`-P7f<}5@c~?iP12*fmsvtnASz$@cY<+(;6vS{rQpP_hjtC8*&qi?{u?c$O|%MOE}# z6{WO`?5L7FY~QM#4@A2^_&&&jDdPh_pqTGm*nvd*H=c3Ow&>z)u~{pxdq=-Hh`uNq zL;a9{D(%RO_+`(IdiPnZpW{^cx{VXeMl=} z#)^7##7)b;O&!(r5`?jK^T?ag_J_?0QR)yqFdq{5&JB{nA4y+eYU>)SMM=kl6qTlgTzfE0^)#_|cyS0)RMdtOM>1?)G z*{J2M10@?p3DQs;KTDvFAj}38(D53B-mHk`8ODdlAFkzs9(x@&A#h-r#>js&>i!*> z<=(>v-7oBpzIOz>j^NQn0yOUX@*?AWX)*nLu0s^y@tFTZ8OX3swmOa<8qXX2glnMi z0Vx2&82HA(iZPfJP?`Uhwr1}?V<0Sy6ffGc4C@SC&-@jP6lePk+p4~&khbrGD-L>P zceBvK#6VfhFmQT5a3D9=Qe#F_xUGeY@5XYo!6m1r@(m9x2F++K?(u+&SHyXQRa z$rM0c25(yTAPp%m*}L6OKqjZ(@0;%fbDIDaA%g8q)#K3FX-NzCHv zY3;i>+;p#dtPjjX`baWAvV>zo+R7?DD?Iq;jx7&Ie3Dcrn~Q6i4`7}!xwKO>@E@(vJX%sGCW!ZFqItQ57cD2bJ{cxmpwwME7y=kH756_o#eNLs=8A~$q z3)xS09{A&2+EpVX*2!fi0I=tI_ns$=q#Gl>h49JhkYo;EEg0WfwkO9H{Q(ELAn1Ml zIYLH$t++q+g3zE1R#hf%is`be1pAG#)$ z9u(h+3@kw*jZknp<2dt;uK_G);Chs{>f$Js5Z%Awg!rnLA{A#`ex+Z%C5R-%qfnG~ z{!Fnl@g_G@3N;Bout~0pwN!PNWqv%logH1YGMyHjgiVV@$fE+wxt0wcW!8HAf}#X| zT_kA!H~Z?_2H00e(tp|4p1eQt5h(g$=P%N^*|rfq#bd35*V3HiVap}zQHHUV8N6`3GY^OSF?Z^B+v9H!k^qh_KN%Sk1Qh@3m}IMvxTO@7DDe(pVDT z_R=V}i8rbawrMel0A)c~oM&xLhPc!T3D(At(osu1t_6>BXsA7l{pa$4{H3%ADca5* zozw>ZZ8Rzueag<6);(L%SUbY+49n?9n}2l27c~JSuCR6UT5m&VqF%vI{zM4A zraU!R*IrwEq8>CD3u3RQ+&~~2HT9RCO=Ffpnd(p90m(8r-fMLb1BHmJj^rHmgMi~l zLYYeMkoSLhOhFnQBvsGb>6X~>OMTm3i!$WpTKN5WzzRO7M4N*TNa7=jB3n#5=xMU61Nr}F>gVx0R71mY|rxB0Bq zN3Zh>KHdK1QztVOYN5nHAMbQycy*zXCcLLOjcK~D0uUi?!} zm7zp7w%y3OhU8H@vr%tfW-JpTfjAY^gW^iv{?NB~$D&8zUNleZ-r~as$2UsE3>S#N z#4;l&8N49|Z1GoC;hQe;W?r@&QL83iVX$&%c6w4xhGXX zx_hb+u%3(|=HL+{de8p~uVjz{j7+Sq2k1h>FTS*>2L#uX@`9-q+y*BB?|+tp0Oj{w zHxo`mNH+XB9yBA&_yb*iq#8rfJ>$RMhV&$Ey9CP+8g1j zkqiX8e4J$Yb<`mUB6DBM-`L1X4MD2(^&tFDfLzEGBzRKglYdRdk#)q62q2gK70N_0 z-s@_~X&w`Kk*V@IzXILKBqOIJ_=fVpI^r9YaY-xZpQc=|6|N+4Txmje;|cDHe+*+2 z7-RSXKX(op+hcaD$YyoGBhQ7?@5$IXXG9P^h^~AUY`}OF z1H=)9gO&zGm~rqhlr}VY$5k3JX*dWkCLe}yR(zb70F`*#^YMUuw@vSMJsf&w*=FfV z3d=Tv%1pUA;2E(H(+EI0z1VRm5or8G5gtnes~AlRwi6-5H!R}RAXy|li87VU{Q_ib zaoJ@vw5Zj<_UUiVwfXY@!nxKFM~*jE8azWS`N!*NTk*Z}T_$duydTgSD2_%=-(1@0 z%CDQMd`N7~p??jwf8^#AC+MUCWvX!@_&jcH&F3*mfsk>8@!Hc@xNqVeJ^n8d6KelHGs=dR=51fke<_m{mkIAa5GlsqXmc>kb{JWo=d7UD)PMnjDXqW zGQ&o>5q<%AKzv1^D-pPIxOtaf`+tAPN!fUy4(Dcr6g;@<@NNgn*8f8iLf`|#CSh^n zg5624--$8~NI@9?mHk~#-MXa%fAzw@lEAq{Fj(i{idV_|d49n{-U6U{G!dW-i~$aS zk^s5^#G#ZqkpS>}QEJs*uJgO%E;Y{I6r$X15$~OU=)`|p8!iOOsF~BD^U`-y^xpea zbbYcPS~Z7Om*_*^csG101xkW%GxS`5nAL!g!vak2X+Y9lZX3BN@qBhT=WvV^kAXs< zMAjQj>OV;L|AR4x6g2*_;hfdt2kM1a2Pad3@UM=OWR7ANK3~wnh?m_rvuMxiy;>;9!AV`7M?L>YXi|!&Bz>v)EOE zz175!=nq0=QK2^W0KMZOvB9**Ok?kXpek*(*H#SkLoX;Ud)Ua4EQ7!1_# zm%T@ac!4NUEuqxv%C-epU5qIa#d@u^N4R{TI+{KQbuaO-%$N4R=>JLzXhn&^&~!FN z58kyZ3&V1>@)M&4{$C2&UIJVm(0JCd;gMz2cJCVciX*wwSKFy~;cNrQ!LL+`7)K$9 z*mPG4kM)sn3b#iRW_uh~E*0|)=dIVS0?-0?8{3nbNsYmy6glXWr$MH!A zW@LhjEt%}U$#i;Xx53RVAAbj)9L+nujXJ9OFx@L1uK6y#rgNv=<;^!`?`IFSba+{l(oDu6 zFeU!v1lD!VWPD3meZezhCF)7l$C2`2 z2N3&VF$K4)x+J-Ouas@CV9ndS(y_zgXoYpJjFk8;1Fi#Br) zVh!?4e|19W|8w$GIDmqKA@kK3 zc*b-TLR@Is38GWrCahftt!uPLStZIbm|eIBm%-4s;qJE3H+jH7@eO_~LF0o7VC1m` zD8fcJu{X}6284{1>L|$2}8_(Cas&rvgh>G6@U(F*c}N zI(RbCX7)}yn^tF~b~*YbI3f1cRWXnmlmQ8Dp53?qJ{gCMs9=zLbk78QuIG*DP)(OE z@Sm4HoIeaE$}IK3WKs>KQ-|peZZmekWg;la09_fIs`51IcnBYsbKLjs*#p9F)ly4C z9q_IEPK>4Sy*3Pyy3~TdWZ)q`gA%{lcVuo2Hx}^0Be5|9M|(~NVn<{l3FU1;&b>eD>E0TnjE@(p9IQbc>zny$3^|(PEAo!`uzOzB|V^=p9TYw2gSEpRra# ze}a4U>hL275`1qX5;JoziyGXWMwk^uq~7f;Cpxi#T1a;h;gqMYklGi7bq&yq-&K5= zMnje0yKVJ%kv_)JUAqgvbnT@&+!qh&OqxUGCc2=i1UPR@jMmUqly}^Xd zZ}%LbiEz%A##aqu!6Wf+j^W5yWW*KWT}Z)-CpNrw9iM!ULc`IH#Gp4WRptC?TXYk- z^z!`lZ=`G{p8Ycut-!9h3 zMIL^BBuz4vggw9!YEx^`98HF^9>-gk&*}JOsn@&_wLlme47kbTXy?~P?dLiv2e+dA z8$U!oQPpcK#QO5K3;{^x4ZI`~6(^r!`cOCw*neT z>~3!Yj(VbReHTywd7H2tPeJP~*7nVsa!Ltd<3}Qu@7ag`u2;2^(osKjumgus@o7kK z)!b87-QG`q+_j;{t(+Cw8w<(WJNBWh&FI&dDGZg9eqJ&pzd|wwCI#NCrV_H0lp)q% z1G$}1bEQH@qy0&Tm1!py6xWAe~Gifo8=-@{4^&0jSIJ{mRX<&R|pQ_Os{Y35jF71#*v?wCxw zFX8IsPzC~OuLo~FXUAJ88!Dx~8EhX>snzeXSjhtFB`$T}FtE%&L}Gv4Ps5XN>+ph+ z?(K-x(#O+`xZ>NY2o0R5uy7ePq4VQ&)QiVi_W5lWs>VngpD}dW7g3>KgRg(S1OhgR zy6BIk`3a89PEdK{<}%Y&-IIpzwjs$tbz~ejsYWGckfh zm)`{3oAa`O_%=U>?0)(7XZH7xD2il%`QpK|LVkUwYWaJ%5fgD7KjFo z@OTjI&X`HG*=+4^-`P<{%t<;?_N`L z2JZZyg{~dBfHI{U^C^@#dtL|tbssQy&g?1o7vEX{r=@r`Ap{Y^QoN2p)hayBpG3K&8MTP{{z;%6~uS^CON;ORC&ddx5EMS&Ft+dRAk!XkiTIj906AWls1o z$G4SdY5!2tSU_a*&kEFA9}Q4FJyxFN6E2=}GP0Z!g8x*}KYqADBUtkHg;JpOgm_i%-_sQ=mLgD3fdG5!#y z5EW5SXNeeR3?U%e{m`eBjG>CIa<>kf$W@nJdxsUe_K|DpG8+zeRBj&$E)`Wf zP>hPM{4b`|a^LIyN+hL|-VAIL*I22G52!{RG8f%Wwy|#ii-XgViorkzW>LE0)3QU* zz-SN}-jlP1RbeRLvG9qC)Eb<1IFz)ujK#(-Ogn&m0L6*<4bA_Ic4OyE?Vi31g(B_2 zPTN@{`gQ)`jl{VUKgJj2Gxp2rVrER>GN1*an4 z(63*c{QQAtgAC{}+1Xa-(Oh;?lY6jpByTp-BnqiaJWo>i^bzdDCxvmmV-Fy!r!Ks| z8+N3->oI7HkrssnYH{Olt2LrmG~EK7jl`j_kk9XgrY%&H|F4XDjfM&%GHgR zrOF{ZA2`r(xpHe*$w1erq)CmI|?wL>?Ul&oozx)sVM|UT5Hbr zdkIDc@*PI_fFN(o2CRnf3T66DY%f|Q|NI$<^JFsGnVkw}*g;Kn!UH1z(A@gMWI;Wi z&nn#2RYtxOo~Rv*K5cxuZr_#7)Gc`^hi~v)e{?_`1#pLR$oD;kQg>`;e3ii5sW_E$KV6`z6f&AuCAC0jjK+p?DiPxA8+H2R9;EGO88`LQfG8h-2}Cw}iB(M!#w%j>yhUP62hL*n!9{y1-|Ga$`88iKHt4=#s>{PDKiD9N0~%lfA|J>7G-k)<6OYSPyrH% zFiL>N6-j}~+@RSe{j6?{Sal!oSsb(sXP2dV0RbBQtK#Fg+ns&;3$tQDneTvJ{N;+% zwkv~LU=9BCV;=*`ePXkM&d-43kiFqq(f%KktIN)8m=z$6x z+p-fEoOj{JxF3?iT=*f1OfUi+y_x^b7|L#UNohyUa`PHpQ|Np?;NqFgZTck=UmF>L zH`{fLuy#`eu4%~I0?waGkl>%+J_h|!ZG!~w7L~H)Q;P~$THxx4tdyokU%PPHMof>f zl5QKKaN;N?_*D$Bd$P!r&>tU~hs2qI8$MN6@O*$g;ehcD&)dh3yfdd2cr=)>e7RDa!xIB7) zXQMn`kOe5{4e_#_(N8$GHTBcM-Et0SyR{YDGB$fFIUB)5-?<98m^~LGdjvRl@o`w5 z&ofc1qZ$7x18M9_^9jfVyMVv6lVN4G)p_I-y1smCnI` zc&l4D4=~VB#VKfx!WHzaBc;{v9(nG)jc39HUp|4~HLU$W@>hZv*%nKsOR~rh+9;(` zrj&LBr**Tk+mRL}=lVENseLwk{vIB?CJM*?Yp@X@rmdsBUZ+V$L!h$4CV=(JE2;Em z6_~1*v*BTl`bFyW0NPE z^#L__TYCvi!O2c}zJ1#Oz68KxlJF2vZAU=X_XnT=>4ADj;LCXaBj0-a9RvT4Hjo1P zj~>UsNa+7(mFr`SgudJIR^cG@^XHS7(0|xe0LK269tSEozXQ{n;s6_Y{}IJic=+u| z|1U3SYC3|Vk4bL9OM;rWoZ0n@^20is#F_y&K3elfPL(yAdp+=X4Nu2~1D19K`v7Ut!DJDP+cIsC zkA7}r$}5cuz^x01|83e#9(38Fp5e-DH%+(#9UJLJ9O42=n^`RhDSbP9iO^eD59*_B zmkq@PN+>C6Lfps6%^pC4+wVSzUmT*@@z*j|eajnN&Qg*Ukl&SbW&&;>8OkIV!3s=? z(BC=!vF1>-Mpj@9JVrvQ#71?j-968wm_8#*Gd#0(C>?T5`9{3+?G)5d$=~=H#Kco zsyL=+y+Qoi70*T9%p0O8f;NTxEXyN@k#S9YS@+Au6(>n1cd!Ks73C0PzO=z;0*!uI zo8^z)NL2vXBc?n(9ebM4OD3m?v)3Ui_--2>?ASTRj>e*K4A))3Z@ ze%4Tu`PdDdZ(*rVYo#er%vbBR0h-m?;CL%9oexRDoyjUI)%b7af#i%HFtYP+gp7{X zA0boQjSt+NT1@$(BZ{lCCe}8qNA8bV7OrWLPD;}O-cq1Ak-y5u=tPlAL zWJ9<8=sQ_RhqLLSRUdtul1mxK)Gkys=Bn%yeEbu())&Bb zJm}TxfC=$x*%^Hb#Y+W0^=hR8f;71iDTlszb>=%jH*kt1j{rzi`;|BMF0l^gj6MMF zrA@dg+{<0E+Ohqx#CP3?6(~D7;9-6fq@-S+4ygBhw$dX5<@}d@Q+^SmXfjjyjNjG< z6yJ<8iM!um{WlKBCC6{SAnX=El-VbJhACYSfoZi*T-H}6YYiN-y9=jVfZTHDUnh;d zYx4t%d!&MU%q0n-acOznbh_E$xa!v0|5d_(%RSXQ{N@z4nB$@`ilb(2RwkTo%Fe|q zq;{FlK=Kc-!+6id*>DCWO#J}C{Wc|hwxc^cpQQc<@9-_LFsjHNnAGuVN>~ko}SGQI3`Y3`OQ}BDbvP9IE0yJ0+fTnUtr?*uSNS8YsWoIdhKVXs} zO**HT@!=~Zd}E9+$l)`LMt&Cpi+r0Neqzn&@`kG?CnVR(I;}ZLsK!`38MSQFue^T_ z3{z-_yDQhZ`)Rs%S~{N}SXt0vG$;I^2FD&UTY{y-ffq_iGX zDe*<6bx$1sV*Tj(7=3Aac#@9l29#V}GaB`tS|4hI%fhrF2PY1X3wm|VkvhAZ>I8nt z%5CFxBH*wLE4u8IS&H#CcFGe$!WSq*qc}jUrtsV%MG}obs4wfiv8hP=lPhB zbV|+W>qo?gdu*E;z)iCq_C!V{zHtupJTUNN6_6g+V;}hK?wKnf-Zz2%aJ#J)ZYdR=38ny*Y&*dCe{N1IX0 zk^o!)`wEqhVKn%FzBC7Ub^GFjZFQv042wJt8Jnp6P798;%c*&@%7W~zu%Nl$zS!OS z*Vf;E6$Ap~pe)_v@loPcGm1aIILC}+63)7YR&-^BfNC*nFoBg*6>GK?`ECb z9gRuMM79sFnXO~_eTW&NPzEdSVnrk|i?UoP$xtUBl3X4zx{CbH=0KPG^}fvL!>>0R zfvM&V3t#}EiFZ_H{6f16l6Wl;oIuND(>yj?HV2vU!&cmEJ1IL`My2efqP1Q#?cdih;6{U*?@7aLhmaFX_- zUY8#ZHHJQeoAyqeM(1JRim_>jo1fz8Wae8J&`{K_V@j_A7WA1Q@VyxL3`ob^ zYi^DeKx(hE;S0QkZU}OWO~FVxGRq2q&r8)%Po0HY=gs%@Hr58R`Aqx_tdDZ57>Mnx zin9LhFlimjp`;OpKZVfeIJaLsJ94#u4ScH4Fa;eCpgD{OSPL&}9Q-Gh;|0D#$gO}; z+(Yg6&IOAyW;poi;eh)P|2FPHHBFAbL+;WHPn&LBqhEZ~;YV^&iooWoYRlNhYJB7y zFw$aS=FVGGtnapcyAUuu8_)U}sclyl3SY!OZmx^tzO2RhkFWNlDXA-E7mHiVS%SbY zgq-bqLYTsPMukXTgJCThjSTK!)hu*_SO>HlAf(2Y*^DwqJIU-C?m|_?WzcHM7mSxK z2w$j|!?v~GbZCR~>C4jLgy$z5I2LmAycC z?j3NYw#afp7fBdRl=XE-RV!;wkWB9vbgO=q?VkP+^_k(JO_-0zFe4izZ;EOyrC30( z6Yvm;ZVJghC=7oW6i*?%k#>C>=_*#YPD^=TRQiPdUJ4J8Jd@!T+Pol~E{^&LUb?

N zLK+Z_>_=Qj&3Sjlffj~rz&MWs(AkJ!1>)O% zx?W@FD5>NYS*lNym)>%?OS(5J3^|+qJXW|#HVzYS>WHd(E#(@<#&88?-I#^|@#aS3 z@2LGm)>%BP*Be+!Qd+Ki3$+P;hViZci0Hk)BT#%U zAK>s-SG!qnm7lCQO5ASg?vU+JO*40Va}BK1(D2j&+d~)CO}FUg7K~T9E?)Xcs3p~M zK0Dg(jT-!EkAB+85`Jr8&(t92FksfZ?BxJcLU4p?DMzSU9ix+(w_2J0S6|QfXJ&3| z(=u?zlEj9;AcyrN9oOhy41UMP;!*aOw2(*H63;(zjMA<)S2+bsE|p4g-ot@}cqv;At4coiV>UBDqeqDfVd-6KUQOJlO{TF*N#Rqde1e=qJjMemU&R|7%W<*iG^~| zbo#>dh|IlZp-Il~wxQ9G+i<1V4#VDg@~q1WPnfJ60740XuT9g&ZMRP5WtjZlPn~&^ ze|C8P(BIfr=NYu#&7;ZV=h3seR~Yj*;phzpBdeou<60(|;)-VXG%vmMQE!oQC}Uqp z-&JB@7-V;QA-jjneMai?cz3myo*D1%Y>`|$4^qRfiJ4Vh@g&rZ=rZFBSKV7vw@~V0 zCv`ZQ;WYHT87Nqy@71@r{0&q%`!hI7V-cXzi-cq3m*<>9P8L_ zVMZJ2P^wzQADuvQAeYPZRc`;sU+Zmbb;-kDsMx+%`!w*WqH= zV~il)GQQ+=JI|-gL;(ubBV8v?q0oibsuEh`Jkv)fNtR1d3%Cz~8Ng39(fHx(-f6yy zr(M6*acWGdrF=d;O8oh@;N`Tiah_ZH;O(0(4=Q_}UzkFD6YI4K5M{TslZT7zWcSWA73{rUsv`?Eg^z8~{-QmO z@lv~wQ%b=w3uCxKd=lc2Ib-aODUYaI`5gO1sxJ-sLn6t0%E~`K!AgW1765(ri9OV8 z&*{Q|Q>}Ghmrj6?A);!*fb$us-~rITx0!mkDP3i1`rIs$x*oMp0ZX2bTJKO-G*MW> z9+^<*EiK`W$4BOo@)K+!mndk$jCioH-o=V9K($N-S}NwDCqvHue(o#3YAl1&FQ=o< zY-EDa!G+%zJba4g+RxH$SDYY7%&zn4JmmQIqQ}#uU+p{sXZ~x;uri;<3x*bPqt7rg z+O?IlM@^!knZz&~f|TBo!P=-D-UQif(c{S#k#l@Cxw{J&BkCa%l8p(wk6c>bO{sCc z`so<{`H*yPDh~UA_{7~sEhT)5HH&IUZ?<~4c-db2;NcT9v#MW7aLI=rkCv1GsB-u=+-{#*m z`1j;DJEc7mB?kno%CiBnn7+$_zRhD@7S+ZL|GMf+Bf~bIx#W#0r@ts{PXqW1UwNYg zaU1}-27=M9z&*`0gn@XBE@pAOv!06Jq z6fya5=?mNSz6kof9s_Rm-_Y53$8LQ%6E0kTA+(FZ9;SW~@*wUG8O1o~XWNg$&`QGQ z&qI2Wh3|yQ+8ET#3*w z`SLhed=x;kH~U6@)n|GwoCXdgaS9!ldH8FT`s2Xo*|<;I`PW5UbDuMgJ79et2dKPJ zif@-c8__@`%O)15tbqz84$L52YXEgIz_S2;{^suYk+&3CT)5&itKPWfN$};SDHS$W zWP(j9__%KiLpfo?yEBf7B2K~Qz|pxAY(?z;Xi;qm>vfgpAPifE@=@^`zk30|Q^d!C za)w-z)jV#IOF!>*4ui|4%S1X}_D1}4Y@8Q5WE|o?nb_KoN#sD)wg@;c5H0LNH*SRs6ji{ zX_h2uX|az9=e3zKF05gzY^4HTXW#qEtuOO~S^%Q3!zJ|^i=QY}hUE10$KuQTi{~AX zGvb5ai^>y!@pnh>+_U}OBC)|ptK9{T4S;hD5O=Y7fi)Nwat7uN^;>+3CvhWsq;52v zF%B0diCyLrR^A%921>zsD5N;21*xsFTv$g` zPFhFEOe|$kqIUXl+kIA&Z!j9ToUz|pfarf!-mUa~%0CfV`{n$Qy@s(4K@A{u>b*6> z{fUF~~Rjf$0#Bs4<`UY0l@m^WoH9j( zGevSd7AFdm655@x!~l-9oS}O7=YrchB?T=~WHTem3$Y6euwr!Kh)Iuv_D$A~#J2uB zMjg!~Qu+1@0A}|1AZ24%B+yEYjsy$K!Ga1o3d{re+C=l-o6A2ldbF2D{QG4-wFu%@ z9r0sG^m-~PIAKMd$BCXLRjcY8<07)1h^$;wpl{0!pe+Xu<62L5AE#P-+2-nFsmH(F zExiJbAIVC6N8UEEM7_tONErI6v<9QF+E{9L&*d8ZS+SXyYBK+E% zcS()%PaPLQ-2T`%991L?K_ox4STd;G4sWoYPoRDn_2^)`V7RYYQ{vxHyZ zeSgAJWgKge;ZVIed(E=vu~ZsAKg9azbjodz$+%w~{P97e;Rj7u%*rIXLWw}{WlIso zp=@5P_nVVm6@)Ye4VE_Ba`Z+qrN`m5gwS4+1$<~+GjESU&ZBe^DZv;?ed%?adG}Y` zJ~m9&5XD23ScCqCt0E@qavxM}3|u2tz%|k=;*x#)VUmphWFZ4l45JF5Q(e$c*%+@7 zOh<;8XoAI_o)$QmHwD;GFeaE7V+p$6H9>IS<+5SQrwLd^G6bJ3l4Xs)*ULTX=Jm$l zDgRkI{@BG&gSEl8zSFvze2s`FG`KMxU-!y@xdh#NXHpcUj=>EYWvy&O5d!%lh;iIy z<(c`&Ka#>=3A?8>)l^r<=p6>hB&{{aN3d0}L`f4^^yl3ImSc^>%caXOytFPec;&v> zTY3i1YEs~!a@k@`7(_N1WE%aGbW22i$+i!0ib@^;_*uFn9}oG|-cvvAIDpGOpHDad z?-4a7rL4a&se3ge)!5Q=!f63ow7`_SNBP!!Y;?K^tdIE}J){pdd!|YSl=L)IF%j`z z!AW?L*_Soe4-J3OysoxXZk)dL6|ZAe?>HpYh!k~j3(CSvVCy)XR{Mvpko9=925}&55~kIm2Tg4 z+K|sGlq3O&1@42@5^dW_IT59Ofe*?9C+(9(VmBk;U5TXgIqBhAIxM>4jgxxR#gQAC zfI4S>W(91&xIniYD%1D^BH(0Zur=Wu`Z26LYi8u_WC^a6Gvi%o59DZ~sl0Y21V*%) ztm|?sV20&kgc5*^71bxWh4}*Wj4c#yaDD#bxM3S-diRyYR?CX8t)flzZl4>#`_Hhj z(asCWc6zpVuspqH^r%ITx1^tk3+`*!zK7C`!9n3dyq?~py3pbj<84Amdur=emVZt7 zrm@7u8zgC2aqssdRqY*BPJxWgXLhAU7=2*_d5y;foI$;S!6)zfLsz!ZApYPNu!VvO zR|kUgTdNiIdQ4r)iJ=vK97z*T8oWqX>{3Kb2%PdDbI>6+lv8E*^@t}hjvQn{K6YE3 z2#XJx9|B(A(6F1eJ>PdF{B+mYu7yZ29?

lai{+tvy1&DW)+kq~OALEzISvy5;1r8TJg=WOb4qn*QoVjE;Yuj!wjPi! zeSix}2XAdFht_lpA$GOaI(rQ+nFY@&9sCz5W?gyb{N3LB>0HL8>N>tW>0H|8{SoZS z$WO8PZkn;-u~*|EPx;Bt>F#k2&re*OHFl{21e$~pmMdNo4KYMeT6A{&CZi=gBZjL?!p9{m7&Q_+tqW06+Y4Z(ir*s!&7m>kl^l4~JdZ;6VFuuK*^?C8HfsPP(cVx^Z)#`|?(V;F*jywd!1d$6u~rs* z?70Sb3Gv0@ayV2iD6R!xHzv9tFU7o5dypNHJ{OBsVg&5jW4)6ItM`$M2T^=u7gL|~ zg&IEis2H)?4h@!veu1qneDh*E+F@|w?wth1S#>vY}6YuYp zgO#Tf(Aut8-5bm1>cr;h)5(-o@BtyRW%r|%RFY$Coi{=_tc)3+Ef_*{^qY>j3p9+m$sh-L%#<^7lUk)Z-9F-ye zsc7(3T&2@ppJsGEf46jSa;4Dgv35e9H%a`PtfmuqS{)vF!Vr}S*yB*5s7Fp*@pb_8 zjLUd_=Hzt0AfQDvKmgi<>sM@4n1a$gI%p=tp?%x$Zo`1I4etJs%pORPMaQZpE8+6N zfMJ6dk1`Cp` z&ObI-1lxA*-waG3yJ5@rZB)$L6uqmexgrqK{#0geq_7xeck|Ya{oY~LH7(yB6fpDC zeKt6vXJc&odr=jqo#e(**A{a!H{lj+u4Y${L3+}ZBXtbWRKFHWKl)Bed-5L839i!Kz_YcRZXm%LJm1GvkTyOT- z)E?A5;Fr^yl(&vf(_*?s5wB*?V5L()`FIY8uhx7MWT9aL5IKX?d1Edab-O>8oCh^X zpm!(}^gck?9q6#`k@-xW?`G=od`1)Ck9?`+$XJ z77p4!L@5?j^`|eiSh+Z_<`{2WWPt?^j66ZUljXR#f&=IOf@@zqTWo?jAt TtoQV<-4RvArwSEv=0X1h3wFWV literal 0 HcmV?d00001 diff --git a/labworks/LW3/p7_1.png b/labworks/LW3/p7_1.png new file mode 100644 index 0000000000000000000000000000000000000000..0a1629667b0851e3b28b19944cd2ad7f5be296ec GIT binary patch literal 6669 zcmcgxc{tQ--~UOA64FK~oG40JLiQPzHTzQbz3jWO4KpJZI!H+=*~yY&$i5R%im{Jf zh{0g&lVx~s=Q*eM={@J^eV_AO*Zarsa?M=#+`oJIY~Qbkn(B%S2TmS%TuY;GBmYJTU-0Te0RR^jlE9bG(K!<1})_vKFq1oYTGraUt*g5ssjEV|r z)N-4m*))2yj{%CTOF_pso|Pq6Z&!Jdhq4zJ-BFthjfT1AcYh5H^&D#m_mMsYaWa>R z>sR>X@m;#afEgqZh`a6vWMQ%XUs3mJ6Q9;w=ILX1o7I}nC&9^9=)DNaoQX+^>s5Jq z`H}vHuoEfC$!A1GM5J>uE-tuhNt*S$AnxiH`zD`iz_iTF65hUjd&U{x)TFJb*hssf zck5OYap?gIIe<2xt#;GI_0F9;2ln0@>FVybmN^WWv(|5tY3|&hMQ%vA_Z8zX2Dc%0ujBPJ$h-U%G$o6JltG#ZWNV1yngj=G<{ zKUnVV0QR@uAXb(1K9q%&T|A_%p%GEFO(i#ujQ}X|^3xbrqbs*IhPUnU@iNnsldXiR zRnePzdhq#%-B8WsxLb<^=@*#5(E}feO9l}%kdJDuxn^c2xCAi_%PGhlapottOm_&X z+5Nvk;s1FMKptei{3bg)d>!`S!2_+~#<2xC6h}RW&EMQeghz`3(}Hi3rV=axk30y~ znU|n9JG;6VrqC+U{Nb~lDXN03y7ul%|SGsHy*gyr;J}QwiqIo!9;_ zGoSIVU+a7-_{;m(QXR~$V<{ry=(Lqqd~B+U>ynv~rbCf-t+ zX)?`w>L87sogH$nl-SwXDe}b&N8rN|*vLW<#HBj0&EA@ARNOf*fSs9{@qr(OIPca= z%i^lm-%OK8D`d>J5oUX1xX`-!WcX>RTLP8K+E|VQ(Bm4*Exr;5LeA9dXw&xQS7M@f znvPb^zoVD*Tg9fSzC26{25ia&Z2ItoD{t#LbXXP~-3r~kH#l4|I}Pm@L)U+;Gd}^> z!xGFH`+{ppkNsf@E38nm$UAhD9P2dCE5?+o)!1Wc{v@j3-~BV?1ww5j zQ%`(w?Uyxw7)dA~Rq)-`(xZp3RiYJ89Q@|?T&xE#h>Ci)&VGNv!wg!)#OD*)#--YK zWo6kT6dNNrB6{XxJK|;hqT=GRm7ku=%*asE!TE~9OLeyQkgp=KC9VUAV&>?ma`FW}J{9mzLJ$KRyNe+t+a5CIAbaW3B_LOtT3TA)t|Z{o!N~vtKIoG$ zG-UeVT2ja!NC_>(psA=B%zd7Zk8gApi^a|t3B18#qwqv}Tx@Kt{-fOxYtrZ8JwT7s z%mrCZot&JyxoDuEtE#kLDH~^%O&CN}H7yx{&Je9x1sMr}OfhSbkQSP0U&M=FMlO7^>&W^0F-G+wfxz)KrwiVQc3l}WmbfbZxPj*2H z+}{oN|AdY2gF@EFSRv`EzCJ?|vt>?B4*&Fq>m5>C_}?W2SR{LgCVz&3zCP=c1oo0i zStoKgH*3pI6!`wqpP}~0LB?T6zr`jQ>lc7qU%kgV_AZ%~@jG1qf{Qtj_{#6SZ}8_6@e2_`}sgBxP+{V%wUY@g1Yv4I&I; z^V>qm?5itIk&R;y_4#gLL;ivft*BdA{iM~^)p<$(Z}V0R`ynNm7EmH(<%c(J++Z(@ zAdsF7lQ|YOp@6R}(S!hS=}|9VX7=XWH~=D*`7TW)Zh&83IC?<-A|$&Q>Km{#pZ73I z58!dV3x|HazK(nr6_tU*xztbr^v9Rh-tqD9@a$k)Au$89hr-Kt#gT5?cc{WQ29Bw+ zZixj(A$iHDXyz{UQ&UrcA7$=$;jiI6L@BnwzYw~9;=~Dn|C6re|3rk6eUp8K4q!!T zZ}aoVs9?dn53k_9I1iQ`bGy>f-kuEX@4SqR$<)+TU%5A~JKKn-dKfn`VO_bkPKptA zcn;#1m83YtnJ0fbafygmG&Y;gC%9a39>}2G$2hq-{%L)TV><(&4+O$XW>v=U?KS-P z3erjp7~zPUkan2Q_0nA1wyL2!bH=TGuOx&m$(=-jvka$l$_D-i6D9qV^mAtb)FXIV1ouQT{9QZw zF|UMay)G*9QlhX;%d0BB{oMsF9yoaMFKl3!u7N?OeCYA>XV1#NeEHI_5?OeXjg4y+ z2>GKMDk`GBi??M~I&}<-o#P~>q^u-GAkGE(V~IO>eExiTrZ->Gb2w|9AT0~Og^rn&bp{XGO|l&;Ls~sJ8_|Et=Xl)*&UL-=7%K&0LF6f05B3U@@@~v z!Wuhq9X0X!Wr|%#T4qv`MGd(P1RYJ@qj?bY(d7fpG?`2QYF>Ez%oju^$(BSP*&bwoinzyCSupl4cy*osKTJ!n|uq2ECWim(!_`3g~JoP zYiOV|a>o(@=ai81C(ZXUv3I7az2a7`28StP{h1YHI&}~)FYxnslhKs&7YFGfC3fR5 zk&n8%x^k$5#l^)QrX8iEJKgkNiRNI~f8;!0?0b~0?^8)(50i|0k>sJux>bE>Z$nou z4a9Z$-!COBV^^S%>?C8={M=l@36F!;yi34*L{{%Xf{ovG{Ac#?XQsa!i}mQf?r+L_ zG!jqDXQzecU;Nn`{=F%GERdOR1^|c^+P0l}otnxkEUW|a{w*sjtNNXKWzk2P*`dG4 zN$B)R=<&DY1DYsQCE%Xt>Wo30q~{IF++YU~&aRG*BYDHmFBx?X4Y8X7-w2&*g#zlu z_+#R-va-0Ua^Aerwzf{=H!evG3=Eu~)sSAe4@wNjbGsq#*NsR9Ue<#*BHKGUxSTQM zN=np|CrNIXPa@0%l&A z^^Syr4h{HhH`YLSl5$=^z&ld^;_=XDxA|BP!V0*qGqx5v^$#phb(k0#^!O2>XD(Mt}I)Nnt6knbwa_c|1WVRg05cN!pkgA6Je9 zRj`Q1#OHlQewC)al|xBkG?0?H)}9X%>3XKV@{Ny9>zJ6txqEnU_$B~jQjP?s6)eID zaY_J*YH!y*Es0R#QIFNUapPA>Nl9*HSc1mWb86Zi9{G%?B~!`%M5!2Q-?#i`Rald9 zugt_mS>RX^pWqP0c~yR?EMo7P%y8|!eQ_Qwg+)bWfq}cCm z;OY0?o2V|nou_}Xdkm*YouO=E^cBK1dASqtHotW^_T0PrIxUT{EY6|!@1^@c!}UjO z{nmW>7lXn|APFK?5rXP#K*uDa1Of%4Q3M2q+*PDXQ%abhS7B6dpUgs^p3ntI%ND+)-E z;>wX3;qSi~6Cbcao$`kbb5Tx!1`jP1#<=6GXOeb(T|wS7HRZ<<9Athy|IaT`NgWd$ z9l8%etfvo81FwE8{o~&DA4#NcP)ILr;@f~8K8ub{kASUzK&D#gX=(iu(Rd^en1Pkd zt$`g;2KuebdFXNDSlhx_BUh0WvA_n;e#gefp*>X@gz9#X)189CQxs1JgD@{Mzp0;R z`Jg%1P5a;R#PD;EA_P26fr!cB19R*zYPKD{dsZ%B2(yiv9jY`MA0J=;HWpC`N~dEi zETo2Tw(b;$a$*9;bar-jWQ9<@)rCwgAx%xS1@56Qz-({P6qEalHC(ExMMJ*C({WPX z>Kd@M)Sb2#D6}l%MXK06PjTD5|MeI%KB6v|iD~Tqf}WWf4!}K5#_v|TdR%*@AEm&5 z%^g%2_bI)F4$-i0UuaLuAaz$(R(5)G-8m)>;+`|8mt&mDMn#SfePA>F#dzD%t0lX0 zeHJYB3=L0il>q?&2~E$yz)rkto)3_m{`kdQ_PQu;Z_vS-CxFgW3z<@Gw!Kam=`SlQ zizSdegPAz4ym0mLUl1234uE|QzPXvDI+5o-*1*8?v5P>EBF=4>bHLFRQpjanp9IX- zQi6Jl<$-H~QsLyu zlOkR-`lJQRoa$<`oys!utcr;DoUt+`f$7LORZT-f!}_X^oBphm;!5q5DvFF+0?Y)Q z0+8kI2+XFH=#?we0+_YXk%A`*{sHrFP<)TT@d9(?H7Tw4ay#7dnf4Wdqq3DOt9|D7fkn|UerFS10lZ-6EEfx57f2L zvG=m5n3x0LSe?v7fWjv3%jL_L!Loby4ZUyg?LA*T>>|?j;qmk5X~cLxbu~4$?vxj6 zGZHmRV^_gtX(}ivXv5%Oc+yiIjW;3&l3S397{g#bLWU`)`S~$o?3_SVXr0z>#Eqqc^{m7%jrKP2d8&tpvP2N-w zVoUfsv9ZvBfB-v8MWV%t1y+rWr=`49(=`%qIXgSouY#+$2elnDKDePl0qFa=uB8#J zMhnhpev`=5CoBHBXqNhDx33?Vi7QAGaIqVW@U4*|=fUar_I6{?f>^Pwn^uIcKLOtB z0kY(r3ufaL--QeApsJetjpXlddV3d_`z$2yJWsz4`7fz?FO14l61F!RC5QvyqEw=v zKc7&K6(0c(G;=H4a2z<ChUx-6kdo)mk5fj1Im&PVZF9Xg z37+0_19|K+)M@O2P2iU6@=stL_t*!CH;lr-eJ${{T zw)Xb!@Qq&lz}gbg1T-_G+(z%e60!>7!Ik_Y0)WrJqOpy?mV>qe&(z&Qw=o6c0JYe%dZB@hpO5d8Z>4E5 zfDECh$5sk)N_s|o08k0keFJJQFTW4xfDZu(4?6X}Jv+6<ut$Z^^7Gr~_x-%ri8MCUW@F)Hfgp%Y=gK7$ z2x58-UMYL`fGuWUGsVH%IUlVXKBgXyK7Kd79Uz07KAvtKK5j0zj`})yBV0V-a#FG~ zQZlEHI{Wx|BF;%myZ^a|l!v#I^mFeU-ry|zJg-j=d3PTJx`}<#(r%h%y5LD1JZXF)G7z3 zzN8ATiKvl~m8eQw*=W>+wYf$EH5su3vVWRkp$I`rYQJbg5ZA5)(8pa&yC9kK5EG<- z;4hnGzn0&f8K0Qw=&wY*K%=En2~K2o=%X+-nVnzhwehL+l9Iax2otHWg<2503(j}AqbsEoRZ(XeS183wuYIK z`vgmd?ERIx2@C1F+F%8h?}op`!-kt)&}M5nuHCqiRaA6lsuwGL1iuqv)souhNI*}C zOGu;@#0aX5UwHF07lToEaaZE^jpJe66E6E%TZvzNkg$H=j!8h-`;v;^w3&;Gi;sn+ zWumU0UT0gIXWz1#n%bjF$7OdyG8-pU!>VZG5&~+0W;h&9_6q`m=xlHI>RayY>}1)s zqrHa96Y>m{31xxTJ>q7GsBLd25*^8$ko^IXjg_#X;$nqcpZ6kted|xpOir4~@TkI3 z)fDM!O6urY2ojSTG}lbijv?k*6q}iva@i0`q|C%bUhcz(MFahyuw&w4a>q{FRaxuB zOLf*Aw#(}-cACh}M4R~eVc}(i5ARH}Lo&NgoCw2I(OiSqhT{WA-$Zx%^E@TcsP^RdPy^#GqXb1G_ zXcz>Y+Zt@o%YNyK0o+M`b`+*&wubwU z>5rX-0#^qkh8Nau)t9(*a8~j`9}mPoM`<3m^?%bJKuy`4x+8*3grN6vaje4HPryp+ z*JJlUtXw)c<`O4@;DZat4A80;BpbgJODikpz7Lt1+Obze93kjo^?hdJt5;)*1$G7b zR#?}mo>EsAm-b|3gwMdoyCK*D4CeaL1HV2206JNI0@7reSEgE@@oVes%-Gln%D1hw zR3!U!cuk-J1HW~2a0LrQUfO$%6}2JQCJSD(hkjpaTDpe7(}aZV{ZeI`1_lOn%*r}_ zex2S3-w8dv6~{nnGII!;ArQs$^Yd|)65!Lt%|hi97`&OedFCc#rJ6>nW@OYw9fp1W z^_TMH9vIj5PA_M%168Zv_uHVRN_(n9tLtNg3cg6;^?N_KcdX70{l3#;#DNL`sPMpI z?re|gJ{%f0zpyaWL!z%xW^gCbe9LpH&T_8bP7xI59#IL4Yt&Q}CSWANNtINwHj;#f zeIH}XoW8?xOy)5E-?P!bAgF(A(!czutWK_WjS$K}5EP8m*V3tp?{7B*Vj|5|x%@tq zl=x%Drlyvxxe7|;XEqfDRbmX)IY6`_J7XD3}C2d&NFNG0nMs#st#T zJ^r&$;c+2DoD%4SgyQ02@Dwx{a~uQ(Ij7dgFuUx$s;YiO%Ui7|Rnq<1n*@b$F%1n0 zqJ>SdZvZ!PmsxPux}&RW6n8mp8b6~>P{_TWKX3i)mXNNDbJ>ocgzqP+iQA!yDKSd0YaAcB-uOA=F44gB+n(f`s?^ zP=Z$iFah(8qH3hY<>f$3P1|fepNBtY--8QYQxfRLD|2+O-G4}wKl^JMEzl-l_yx;@ z3-fD1JtZ!t&4JWp!NAdD!^6Wa&97v|B_%u2YADW5X~_Q7EWak1OcpSFGDi<=L7kVEmzF;^Hg;8n zGx7)&HYoju39$Atou-zSXbW^w5}(bA&F}gm>-GKfr4PHHD_2L1YVvQqzcA>jbgrkT zC(mjJ#Cq@k9%C7v=OTaT%VW&CR5hjG@#Dv@m>?boC$Hx2-Md-#gy&>uM@mIqI^I(i zjDHjr#f96#H+4;{ES#AG{7;Nlo{^!2_nk7ie*NW1gT!=|>9UJ4>a?s@jm;qLg9k@z zn1#$v9sCNWlCxV8vj25~UsJ_*vTZotPB6GKXw6&a>(>mu(hzze89`7RpPnX4V*B1= zFj6+Y-3~y8a$A*#9)Cu%K|J$8t;$a1&seSFzwF+@G;!ACQz&CWh@jAsX=HRklx~Ih z&8H^z!ts*(QU-j^glzZ|6s}#n<~0SI`(B5J!7Ju26BNLeXRYN9-me|x>L)3NvakdF z{b?x9Zg{cssA{a%aHx`4M}CY%M@NT$kRIThYhD$cIXySG!M8DCw>ge;lyQ1*bi$hH zzj>g)o8!Mar9nivGHQ6`K;)%^dw1paUfDOd(Yd&^6o7GYb)B~s)-laAjLv1}aYImB zqjTXy_0a%NYir2$DJ%-J){)BifpaW;PhgHPzC3@I+9pXXX!6w+%Wh z0Nwe0n`*CN7~DzPlGb6H^aMF4*QV!UIr;gW8*2+Oy&=H!SylxFEFwiXkKKm`*+=L zPW5Eu<(+nLa2Si#7Hp3@p?8pVPiJ3W9%>q=O-=DbH#IeJ_9#L2&i{-(dJ8=%Loa^I zGW1lUu(tk#yTPK09b|E-xwo4}p9$SEnq?R!=pve+OwCJL{qQ@>U)JRrZLHynq!u6u zXf-rU#D%sv=GDm*K2^EWAC(JlO;$$3sy62JfFf61EJ3Znff7mbv!~8hsUvEB5(L{& z5!n#N#VWbD^lyf?kw{eB$Ye2L86e=ng9m6B1Ke^$sWhumLP7!>b{5_@igWC*2tdQq zR~c&V-9>eX7UNgl=Z^fe)PX5A?TS|HAH|Ktgl?o!6Tw0e6yoHaTKNeI`j^iIwWO$! z5G}wttCI8+guYJ zROdc(0fw9GdXI+L29BKoqHbQWY~9h@JAvD?`79w}3^xLpcG=qW`t=dqNkJe0m~tWd zs5Tk~oFwoMo`0J8pT4tgN0Pg3Jph9rCRH&us2ae7O}=mV-V<*gqrq5xJ?SJ9Eu;a= z32<#fq$-yE`_)Lz338&CV7792wg={<#e@acwMp;?evcx%- zmyhrE2j!sELLjLM@IIv!B+F7j$8Z2bY$5%VoK4hbf8HI}LSYqKR?~GD0?!6zzL^alQzMlg}yJY%sj3&k4 zTAG^TM5g+1rj?bIz$Qe)<=lJZ4HD&b*x1hP`>z8 zPvLewtB#4bcEsfv!Qeh>BXwjXCoL_FGGl6EldpO7fB=`M;bZIxAiJD?(6#H=$A@Ax zh`9w-fx2vY{}6S686DKo<>>)?0D1q9Xm0p&ZqTeHDoe2VaI_?fEQd-v|WS}JyI`I>b#?LWh1S63F1 zczr8ezPk;)$-o#3$j&BwXWiOHT9QD37pyGc+Ph2Mv6%;mGsqMMfZK3IMMckJW8VN# zHmIwsQ)Oa?eg#WQ#MnsaBr1B?HqRp`h-0*gf_M?NwI9zwgzf<31%gN#h~;YQlg0a7 z4nZ!d>laU-Q9TfGaSkqg^?E?|?sqDInBI@^M1DF~&* z0Qu~f2_ltB$U)B=M~)oXiE)xr`oCmV$J)z%LF(Y_jn72E zybs)ERwX@;k4Ir*)8~d7P?$)n5-U*y4+4V-rktR$*@tLJi%}oPy{oJwBMe}$Tqn=3}<^@@IKHKJIGc-FQOR$jIE#@W~-b%k=vC`d98? zj6_ojhvi;MTD@$02V^HT6WY>O2Zsy*=XY32h!wzC-W`@(rHUgjg9TCDJs`YOgL@SeJ5}14zKy_vlrrdX*ecmti=CP1gK@* z=}=%`UZkYtACYr(26BAPXS6MhlJ;l1Hry#?s2wASG`IG8fCoUm{ZeCdV*x%v%!jW` zlczJ{ZM{M3^~9>ee=dyT1X?9S&hQ$0nTOpV%7`|{mhE)zE^?3p8LYIlG{qASOoM3S zwzM;52WzGH*|oK;tdiEw-a^@De0Bp^Gd0}B;F|;g(k)(7?Y;A3=*?=Ju zHDWTeu*hcPJL|kK(z5l;0ndnt9oXv(vWzPnPJGD5w^*D?*9X3_W15Ud0>6-xo_+}= zO8q7w2$H!JfSXBU>Ze)(=0mjN00)?xn0yDoPNvNGZJ7)F`ZV5%rapiL9&=$u@(Ae3 zyvB#_XsicsYTPinEW&y9=z&5|6nH)YY*Wn*OoZH`Oxw^SM?j8YCyrs5fUPC@a3nv$l z?Z+o4<;Rtjs|a4N6g~RAsI^57Uml;EraayInq-SI_!2L@^*NUYBZP7a3ylE=d$1m< zNLcvvr~T4qC=|-4Vw15>lssVrN=jf7N*!AgLr4XdrMgBM^b#~`TG^daW#fbncn2)4 z&+6>p`DuBap)bEkHV6PC8~(#D%=f&n{gL~3w2{`^2kN$-B8Mp3P&yK%WS5!#%JT7? zTvohc#SDU9WNakKk>KFP(W{499#|uhr8mvPJpk4* zg@tY9Y^HI2_0fE31?x1LwG5Ask?Pzf9}9Ey_=R=)^b2!a*-=l=pcN%0Y99!>=Xmq>XRTnfY!}0KR=%+nE;Bw ztJ>Py&1=8x-DPHG=3|K#0z9-ujNh_NkrVk?*G&c;JnL(})1gkB?{r^we}Dh0g`1%G zNR)T^TBt5mh2pQ8oBtv$p`v0X=h)o#h+6`%uRyo&n{N8m*VYc$Wk( zZ!DBczxQ`BjZH=GNmG+<@Wxz2W?gU_*O5`BKJPD*?FG{1qsO-zA;!kq7K=U?Gu?x4 z3CY;7^6c*J=9Rtm*~{p?kFT#d4=XS71@9R-Ib_Z5!&%wcjpf{Ol;oYsLJdi(0Y#wV zj~HINdhJ>Uwm(pBrgFu$xdFQ?{QTCJ3pO@3vb`Lng`2O3+ET&y89KVz3&)0cIxmj4 zgR<$RtE=nVFEknrxU;nH-*45nP70{{8-ub9MBZX}o&Ndrckk8MgT;@$1gfaz4#vjn z_bBO-&`rioWQY>g3|te~hH8u5$OaLeYo0~m$~Jgk z9TV3S4x-WdAfbXPS`L_OI9S=~XGZE?*go&5FU`$90s;cWe6}14V;PJ2@PSxbQc?!G znN&q@(}5N^vEDO3A4>6A@ebF)4+ zV8Ia!mJsVXc){G*c%X_wgAKKEOr0#um{ zO169}qgOyWJAnf=x3Zc5gO@hc_U2-{JMa`Epqu*9AG~6Nz1_fWZf!jYx-2$;dcbw> z-kn^*Q|PTzUGHnRZoMT*5f3aKJ}!=PsP#5mB;?(S1DsP2tbAiMi25yPwO$YaTFNud z`z>{v;{o?51}-}LwJKA~fGzI<5^sTh;RBWv{miHDM!8QmV!A7>i$i_&^_P|wWJooo zB~^o>aQ1A^*_2(P=h!3I1-wB_@f>Q1@k_fL?G1)=8t{;y@21Yg3_-dP6#G);EhM|p zsgQ*vN*M^0z0m?HL`mCDK}5Q{ySrNiL|R3TboG=-=lQ|5-@9(+SgL*WStCkOrd8wqxU@iOuX3eN@LUiwasnh<ODs;a>;n&H*ZjdWXhij z!@YcmoRcg1_APWtNy(P|K^-40Ep0}9{oMNc)%CRwGp^aoS3|Nz;ofNElBif%Sq|9X z2sxNA)X0dF`kozioQk|fS3kOb?IsW`;aB?#uy+<+nRKTID@5za+2rPHcb}qEu z$1q`17~a65iI?Cc?~jc9uN-8?@ldl-QJt4}OUA78(s(uzsC-ccs=rB8=-Dk>aI=nU zy0tiCi@<_6ou6<~Inr_CSsQ3dk%wU-{B8)*Kc6_NQ*Jp~SPqf>ZoeXJIR*0_KdkdQ z#-gln(?`D>OXRPQh>_v){0~W-N;H`O+V$bZ0R?vKBg>_(9b`~ zpb-|fR>Rv*q9sfB892UQn3T{jyh!7gYMGmoY`xEDU-Z}*P!#I2-*f4Bcc4hLw~p{F zO38Y}t^@nkoSXC+Ui<(7iR5!k6H4&`fNV zD_8V5FQn1eiDPs-n%xOuh9jkd49g>mWY0`GZ!lV7J0B-j9KO!H!3)nKTwGF_%^_Pe zft;!7Cj$DL@QQ_~!Lgv49Yn*p7`SADF&W<^5bmsu)BLEJj_!ra3sX5fHwx)604r>#Lsvi{^(BosbZhmqqJEUxlH z)Y{qaR`CX|s1 zGsW+k>-~gDmx6Y5B-890*>Qa3br&&jEKXYyp>5UU#HzmjVa79)+1SG-afpr7*8RB4%Od)TJScnQ zr4_mtmIRld^L*nefST&VK!0NIIe1FV**(3JsNdW*DcKj=VXon{;gFb{TWq00ykCo1 zXOO^>GM1x0&WGhQJ-9INpz6OW!)>!DB7V+BCMCaE6}~@|1+R{SOEnPgJ*nvyqSN;I zcvui+q)>xvV=y6T+I*u8h0orkhW8-?>-OF*!xT-AGIPv{>!KyzJx2p$rzc*`PHAhm`B70}_tm+2=Vqa9`kC{FE zj*hIXaUt2+6j{eIGBSI!RfqZ8SrT!b=_28|4eq}(9bMh!zf@r73n6rVh@h3a*0a>@ zQbf2ljM-wX`>*AAAa98&7O>G01s>n%}xTR~+szf8@^J~>9>nL^e0 zmTJ1`S~@Zf)gi=9bx@Vs9{*}yJgN_IusuE7zOnu*j~e&p2!Rl^Ruincp(FHv9g*Nk z9HI|_&~DNaYiy?N^XJdE&RrRqm=ZdT3=Llp5O_?S!TLb^v{+AE<;LGkKb433P%LLJ z-nF14{`mD&KwSlX0==(>Y|DaD{}xh5wBG(*Nss?(-<|Pgf6V7MCR$g|zZ$pE%ac0! zqts=^d~h!g{`mNE{Y%nN(9*Vw$=;$4nL%8Pn!kY#^X#>!P4w)$u~ zHgxUPShdrwskE=hm!zgIhD_d)+;0to+YjEb{Z2 zL^w1bA78EGes8Wq9`+k;C@9Ce1cf|B2HUj{QBhX3@>6Vm?@T^FThxx&+U+wreFtCL zYx%hPYEft}&Omoo*^BA~L%hUshFf#x=eG2+4$rM7n@pnCG^I@6a>i>UsyyA03cZ0+ z=}&DI-0WmN!yl+~>Lh}RqWLu|i_|97BEG^=>lqS}o>>Q+8IPsmrZ&fgq~D z7uS|t#UnJWZ%Ii~(qG+NS$I4Ori!^@KQ<#45zx~Vk2QFFR?`~~+)x^>J8X>0&!^FJ zKNezSWZasoVWL*dXSaF}@WN!asmK9+HJ8Gq#8rHE(;h$3sDsjgBGt-ZEu)^e)|7M_f zf~2Gn2&(^7j*}hxn}_N@NsQ~rX&5sNf2<>k{O{>qTe#(*m8Ur2vl=t;p9$XrHg|&f zyEjJE=cP2~!Cj^%t`d!1)WK1%$}$Lv_#R0kzxsWs!LD;yUs(yr)%`S!uz*!}mXU!e zB>S2L58i>JC;xLE^BqoT-D8izIlbc{2Rr|pCdluRS4?}KA-+lLzM1xSr3t!pMb#Z3qp4?pFti(jR#~Xr?CF?O^NIF z3W~IP`L4tPL*D2YZO4M0sw$1ta}|elKZWKIYfeXKR2?bExMzCXUk)fYy;3f7mJHvQ zZ(2G287+BQzA92ZxI2ra?jT0jMjo%dY&P=x(o$%LkVFnM;|0Fv@=2*!kOSzoI%_{y z6+9OoMqhpAbxQ3uxVt^hOebJ`W7DFupphUj6n7GHQ)CDRN?Y;MmE^~JtkK6wKJ^u^ z{MsE!>#wvQab%g2Pwqy`w@)Iz!gjC|>zoh&vLI}*la+%lUa6|`;AgwpSSS6yEaB(; z`vup+07Hhm1oN!Z({kr#CcQ^P+=;n;gE8a?bo#|+_b_uG#`LxKXDZHiC&Q+ul+lHj z`{bljU>gLy8vpK#W<^o8HT(ER_R$oQ>q7?fQjzQYx4!!{ zrfpk;ai=3U*4r_!53Clo=xAtKgC1#&$0(IHOP9U+#J^B@wsYPe;JO61J7zFT(inAL zh5v}y;wUY0Jecc35!YWIeG_`X_Pw^NJufZx#d!LsNCL4zzB0TTyG4!c0Y2E{k$!B? z^RHa&U-#t+5;0Mn4aJvYy5t-Z4(z)lQc_0GqA)NpMgXKNc-~q_OdPJ7Wf^qoRu&@K z2g@n=S?oSCnXFI_kA5iBsCqR)gV^#tuglUusSzoqUOq)HtoQLNivIWE8yR;;NpD1h z9H#P*nxtCc1FRQ2X85v8-z5`E9Y(Gz342UACGuB>XG_>}v#7^b;%tp&p?KV!jhNrR z)nPs3{Tj7ij{}(Di2S=ua}~Ioi`- z!Xp_^Lkm59`CKuRMx69b`bE$&hS2&qk?p-1;|=4$?K`Gwk-rale(!91KmS;kap`$) zZ*Q?OjijL94sGNR>o` zC~T%g+-dt8-lFAZ;RmU-1aaUMoG8)vs*qiQ8;EF=VV_iBtlsa5! zproaB5N86H;&`|)&>KOm(&)}%Hd$zJb+jCMNQ;TcHfIfUe0*#^UFzrc>vmB*p8cE4 z>Bcz4glh!Se?ZB`=t({X=d(M@%)a#}p*Df3qt_<_7v>`m3^AqOd*{=}IQV9BC-br| znxs~_izH=ACTB=WsCwi=$5uPt6Kl#iVoW~Is2)8zJ@eS4)aMGAdEF&9aJD_>AEo6P zqh{4`o_{E>U@(!d!u{*+^z3jkDU^WgOB{HrlDxLNPn!LV_NRp+UsA)CHBOo!(0s4!7rlzwev92FqfWcGk%JIE*i1&$TmZ+48?CF+!cY?bc(uunWV)91DmU?)`$Cda?kcz6)!m6a6|?(^U*aFI_Ao}mz3C?nYE2c#Fr9D2_5c65FnvGVlur= z4&l0-_hXE;0ORG$5)XsbfvsxW7qd~Q)79!_(fVBDP0rjbWJmq0Ikl2boNK*M@d_Fm zii)QfFZ@x6$VfIk#C_>zP5>;tJqPRN-;4{{b!>~w@?u?yWU(BVop(^uc$>a+C1pQR`JRG zTnqH{`31EUF@(Yq;$qy-j-` z65n`veEgDzrr#vi*Vnf!(&naaczD>fBh7?ST3NZf#pfwO5(*J-KR_*bM8q_cv0ARF zsDUu;>ANqgT9#Rae(p}XZV`)%)=tmZ=I)1vHdrNTHajlE?pB!#I3wPikNrgaQtay5 zFKfQCn6w_Ff_~@W6t7BO3dVBwqUY8A6H7t-BIy*{Rp6q>FjnD zW-a5-NMGN_scC5{6{Zn-@g2IL&_sSsN(%k;$B%cKnuKbV<~HJGuIHvegaX~pNxaN) zUzLh#(Ee$I?YgLHm8Hf$)uU`9WH`WnUv5&1i@)yAR+V|&IxdMTT$Si`Nu&G8q`f}| zy|v7Ini0%VctmZ=oTMR4nqS6VHlWbSAHF7Y`N4Lr2e8(al-**tZT(C)=-cTa#QiZ~_AZ zv3cFuU0ht$J+IgEl}jF_9rwE#VA82~cYhVV%Sem*)kIRhU6RJRb z$G(9Tn-*S@F~>6Mx~bEyBKaCLXH6zWsg+W+{!-+2Ck z_4r)tD+i*Jsx9dPZOg*ZiwfId2I+4o!i&c*50wZEa1a_( zP(2GmuJoySy$=GeH=dSl-!2io>xh7{X71>2olKj$)BEbCsEqtS0C=Y9YtG`5`2n^~ zU@@rh+{Eio-SuQE<47~9=2#fRQ-%zVI^3T3Ck!ixW3M^qdN^X?q1FN&(yY2EKQ`Eq zE2l05f*}QhHrcz;&&1D257`I`vVPbd8?F12O;2;og_ZXA9*T{kJ0hL5#V3y*`}CT` zKC4PS&AV&7`yp^m>F1l3uYTvkQJ|Sie2GPHOMX>LyOAH>=+4ga`5Rm1N(pbl)Ug;8 z+9uJ<#t26%qrHFTV%7oON7Xx#>Yt_9TUsYmMGoczfAYM~q!A@$uNTne^jAy>+;;PN zmQz>Ju+@7kf4fIPhk_iD+0$HZGFH9zT@2{K>7er>VZZtKFMa=Gl@mYS1J3vwx$n;05-)!brB(@TC+@`XD|K`rJ+hlXC4Ma8jqK2(QG2q)!r*;iLH5V|Ya9sD_&o!eUJ;9b6}O2cqJ z(4Dhwu8z@O>0p_=XzPtHRme3DlR^zq(Bix?s1?~gG>f&NLvUGi`yy%8UDhLTh1NCP z?_L&%CzQMJMx*r|Bl_oCIVd|)fX1e>ZC1?xdf|;SKv?$uO|R$yJ?91QwwOOkFZ{Nn zu-fAs9UTKqH+^U4}|za+Itf*H9-Fb=fW#d!`?VCqSCy1kYT_J%}-2n;u-ESkN<4Zbvz>0p09Ce5ne-86^3EG+fk;%}p3oOiahY!@k~L z3TiI9W)+%9&ValWGoFf1_w+ZVB~j1MsGuzrUfoVn&ZQ;KP-nq6bxN*2rJ_H8wlG(& z-0fE05&Xcm=_+9Ma!>N2E#5e58;))K`Q7%_OPDatMFhL#5NgZ8&26?&hK)*0!f&X- z@v)Nbak7cH!ved~?^xb-Ml$K1z=L}5gHX(7!qK|(i-Qe@o{#gEMnAJ<&i1CmgXn6v z;>X0}SVKg@$;NH;k&`GTGsf<0%{#QIA2ofL;_AfGL&I2(ly@ zSY1g+<}9HhJ#R2)cI)4v*a)j0lnlbkPxnYBcleBwX-KuNnMZuJ(pz`b+Q5n6sF)bf zdg&lJL3dq=q_;ZLq=phu%xHMQ(2A=(i! zZ1UA}=L2m2S(l94wb@Y-PkbLrE)#{Wpuj?{IRd}UQH|U&OT9|f$eD8}oQ<{r$*RHg-xrv6pmPq(cN{iZ3 z;~KT`0ZX%16%_thlS57bcSg$fwFl!lpwvCi$0b)chmwYtT6}hSi2+L>N6MqgOPv1Z zApzq)5?lzwp&o4P+&;lQN%Q+R*|3Cd8$s+))S0ipeNfG}qJN8U#6A4u>9K#ArLun^ z(+BX@AAXTncjGR8c^ORdM;RoAQ3z-KFzfZ4toNzZInuWI zqZExRXZ&tYrR-f;-=>Ef>igTvEUU#vC}y*XU@5-)9{|lCYPchS_*9+AS^*I9WA%%>+28aDbaUvx3sj_A1)-E z?@q!Ld)~VW2ngT@K=Bu8HUNwV*OxL;8Sqf??Ie#26&g%L zi<$DbMU#4E)6t9u2ry5dJtih0f%yn=gs#Cg;4d10V`a;bWF30AyTc(O+KJ2I{pHS^ z64TO#0MVe!2zVib+mUn{y+CDv^c_&-7~Nj%2jj8?0s#>g8CPCuSuyC3cDu#*zt~>*eZs` z>Uc4-wdYg)8_|ZBb5N3Z`mddmP&l=!^~P#~hGhBJO03>OJrQ<4LM|RV>y)i+h}NQR zT4lDHaVk7Y-?u;YnLhJ4LP=feg=UY{)nDF~F@HF|BX@VIanmQ`vFar+6vA20;Jh$r zJ#G1c9ZJM#iaBPISbk_K&{5%JK5jp;vZ8CxxtZzW+CW%0|BPQi;1LKSK&_;n-J0BjmH(d(SZqkG`Sel)_yJgp)mzR_|nYoc>gatpK6*9 z28#7j8F|c&2~}I6sf3EiK4BHhvdQgWIC#9nDCIJT%T45Fs;q`8EoPnfD<-iS_2B@Y zy)pesq3L;Tpjv4z0-B1x{^$`%egG_o`Up0(T@7JlG@p6{Y+*6LvLwQxYl&_LIThsa z{Hs~;8~rhYU7-X7LUbY`BJQ{QRSvjq{{xxhIYZjU^h&3R+4?3Klx@xE!-5-1gG190 zzSK3I0c{RLmiHp-p5zI0P2rE>2}QcNZ^Av4JY8PwcHa+;b_XWK>KbhMQg zHd<++mgsq7@^D_{bv!CY&yne}5o6@MSJDMh0;1Gy;r;yl{wM+07R#-EpuYLMTUZwg z8KQvZ5D!s1XB?qJ#9(8YOs2W?z*;xpys$jpY%^idPdKu>bqxyLr5qSVn_ul0 znx&T}t=Hq2p1uEa=;rvyh7P9*S9%|TG{*J8N$xd<5a+AfA7cjQyblZ)ssRcY8t2YC zj+_!%ay6-1gs^1^4RQAs&$?QGG_RUZELA59Ew$*hDK~kK^cWVF(QJYSzsnmIWj$F?_AbJ(7I4?;LPM(fa&3U9t3l@JHz?|z2>rA{=0&TvjLJ*qc$GN-VZ}1 zuX#Tc-sIK;Cz!39_$Q0}Tun{S+rtD~w@(!?Z&a&UdmHlzrRF4|24;S|+1>TI!rA+Q zz8%e7j??wbSc?xOnSv@zT-0dtJ(IAUcx=aV&aGtipdKed>9jeGW_@&O>Z|YHzYlT@ zfcpnP#SzKNYeKHNYlFx~xr*Dj%}v5w1+D!Q<@F0x{ncJi7gc{ni(G;|3D6Qaj#q0;c3+zAgb zDj3F zK}^ifWd8pe0GY$>XnHqwuYypz zYB`20HrzwDZinD#&O=EfcjsnU+9VOF+;Tn^%vD^38Q9FmsBRZ~9Gm5^J}o0t#kE5& z4`^VYFimmWwl3a!@u`1O1LZE_o#0ft(x%^=yK``4%`MtaH3cB+rH2Hc8yzfABVasS z&4+y%Tp!nzZ10E|Q+<}ip%bxA`D1hED6GI!_E<`PQ9;UMN)jsYQKP47;=KaIz32+L z=C(7kV;n1|Z^@;ck`L@0Ja5ZAK-LXNlyIwPexbZCDVfh z1&*h~s>d;;f=s3mx9=($qk%LJA69wNEJt24y_`iaXl8JYA%x)9H8_`mMK~E=H~F+l z8{?NUUI7t}?&Tc+qc|0KWAoL^Y42#<>G+#h6r3qp+*&DD>4f93HEz@>`yVq|-R~7X zy)b8PEc7jq^QqC7C2WMI;?hKX^=3p={&J>H?4l9~x!e|9Jj@5L;}oBMk2vtBZ0=;K z+88Mjez|%m_VYDic0MksMbyc7f$$9x_j_dvQXlcGXUxoZxy&@?1=L#dD<>HzBHbm- zTNa&Upd1t%s!+5nvl8NmzcmK4`#f1Eia0U7S{)a;R1oE>%uhB}L@(d`eD4{GQpa|~ zl&eL3VrRN})HA)_xAXRS=+JEDQ<$%BlB4@FH%Bg(1@cJ|;xv&`=2A&Y%{Y{rF8$NO zpg$&*!EoHI$8d#XR4GnPgz&AX;VtD@N zD*fIm<1pP~>xAT^V{LKNPj+A3z5ot~bhtCr&Hq<__)U&oXh?iulx6|Rg}f&?Y?kGSSh|i;YKK8TLoFfV9()L9RiVn)sf z32-o5|8>k~xhtw9{J)R%a)%8fx4QgS<-_$MOHkpDjtnvkxrzn)+S8>5^y-#cxPD=Xv!>6iDVSC zv;_t1zc-RK(=kpqjYpa?XN43jxNMf<{QOWkIXO`EN3DqNptUOqlOgrbTwZ5S^AAcn zWguMv53+seP@F9XOT+#-uaTY>#b&oAc5PT-Xau$e zh-DQi`k+BTvO3XKK&2kZNoibtT z+PPAbUAlTygq~cLOtwJo>EL`Ky1|uA)8K?gt5x&XOldAx4Mm=`sir0n!5Jy9>?kT}}t zm}Hg0dT7cxQr;Nj1@A_Xsn5ls%J!AXlZOHY@VB5#rJ4XNx7DJ9IMvGTljp&;HKeNt zBJU2<7|+LmHNQ_NcG3QeLn@eZH=UkHGDK%Bq`)~}irVq+MKb`{FIEatxZz?w{1K+= zj7KX$^o+*C#G_+lCA0hP57(RN>FGznoh@^}K0$n@e{;4Cv5LtPoj-v(QRB$g)D)=2 zgi+(Jy5d#HLxvrxZyL2;z&7udNK~J3A~qZj=xnRWAoG%`QQnn^3dgA^eyUSUd>$KG z{H^Z&%Tqqr*wFm?uiJOc^ec0H+1-AldI+>+D#um|HNjWp=K3@va_-VC^sPKbxKguD z02w(wJRRiaA`fOH04nayph|BZe>8d+a?usXQ{;>ir-^>vHURDt5R~!fi!^#9D|*xr z^W;~*dxPTh6bwnHz&8eV`A`sjV>fV`uWxpXY94NO=_$TQ#IYV9)E$ljGYc_Rt2!#I zC?S#{Xu6hem_bqjqp|=oU1L)B@JkQu6uLd^<_IT@a%BR?+chi2Dd!4$HLK(G;XYTY zlZO{}aM7_j@i(ge1=#Y``gcnHR?(vTT$isOB~~9k4Dw|&exvFhOEMB&7P04y$h+Cp zeKR{X)4pDVLwzy0Lq&>=i&yjRcJlH&zYO)E=q|F%M_fP_l!)jNU9cWpI6^Z)d#Up-Tf%3SXX@isj zvx)3|CtVO0z2WXe0l<|U)v++}#E+y2bMdOtV2Z%)d?XbP8$fvZZ7^h6fFys-(ByPQ zj8>PivqgwVwFEK1&J2w6nNyq#VZwggL7y4G=_a>Q_P6e$QyHrQlWv1NP z^&tgK+w2wM!r>_ui~CjN2X$lr%74^WK=L1hd_G5Tf3l@f1pk>WwWTW@f^^oSHWWD- znHKOM17q_gIk|s>+of*RtjpE1e_lg;c{y{U^9nq$M8AwEH@qVAY2lZa{yIiHH>8@f z+I(nOtFF0(okc;FKu@nfglR!2HO5HRP{a7VSe4kSA+$Je$m2PE-(xevDRB~IlF@;=q+#sxT^U?h2F22@l9XkP6dSR<0hmwR&58{N za6RwOm4JV|k3CuIV7B0XDp6Ry5@+*D zOYPwrT0O|+z;Hv7m1#FnP$TY6;r(5JAmv*`7&|7$7A3vIwgV+rKiaQNZidYNB~EW9 zO~X)_t}pf8AuEK0dskOi+d0zdmrZ{O2`RX+Ev!4>1RnV|^FfL~VJaATf(f`PC0{^) zR7?=Px-{~~Pa=x3fAkTUT_+%PvHSY-4eHqc2y95KjJzUKOKBaMcI{lr+UT!p5mQa z-674Y$!+1{5+9WF`l+Dgsum7LS8vA5Yl_4xzRduJ|3QgIcT8@Nly>j&tQnKDO$TO# zJwf_FJb^O;vP8ggz7{$n1fIxkkD)V^pzk9z3>|xPUQuK0U;>v?T@rLqhX63^DVs!xOP8nGBIPawimlmPPas3D7)rc1sy!kn+9SJ;gi>A|j&CNH{CMkxZaE#GX?=!;}=pVVqb2XtADdTAXt&EA&^^-+eJVUdx zv%h>J5gr8^;@$l{JTkHaE`*-KUh|+TLU@O1h`ViPJP#JyO7qEWB@3e?+L5=nq`tt=0AN^aTN^`+ zxc$~JBxJ(X_>ZBtzV4nLouy{)$4{O-fAOMqI7N_>hQ{8(jy=bQ@oRK+_i~#*wDDLb zvRD+|6Dlzz$)@TL;7CV~H8nNBYD3e~(rUcFPy-3HHgGq0el}VH{Rspu;%e+ROLf{{ zLGx_S*Rf?}7%e>J_{Tt61+H009z3Dz)=S5|sTKt#jgGP*Ua=<6d*|JPs_g9SrHV<- zyzwQ_zF$=3x}?w`(sy+=`^HexA$HW)uhxb(xxK*Pbq0X4z1YMDMdWqI0Al~{pk*MD zu)X=ZDB!Ucn~aeO7d2TmUX!uS+oKhMI8=xx%#jpi>|6_%IsrEU1|mO$^iLOH(5Xrb zJSpzucLk40!GWErf;v{1e?&wi*wq^JMUE7xu^rT(O5(DZzKf#Ma0asn{vr{tdvtIx z5)ky)v9a*+#erz4(&WhlwL4iv{`z(MH#q+F3Z<;E5|Fl0y_KMAdPT#_n>cG(7XmVG z6YseJ2m7i~R8JW$4XuM2@i{*J9yZX79S6@dGBX*C2JwLu*aIo1zC0&!zB}%^1}Yd- zcXu}wF%?y>Nh6T9yPQDmiP`jL_qH2&;#*r=@yC9CHdR0aH=}L_kz2zQl7VJ^XJTR^ zNw9~5^x00*sA_h5q5u!T_>*LCd-rB4g1}vKRUc{uJwem!{@j#STn1eP_FcmUs94PF zIx<29=5?)<@<7B|#;)SbSVvk~y25ofBp@I~qs~!sb*9py4+!6|{PyHHTkV^BmJ#$OBa;&Z)ZJ)+*jAUP&`!d2!(@ST9(c2V!N-6&J6e|H|vA{j}+6CXG^W1p(3)u<#|C+l3KC?)qa{`f{=s zj1pZwgW=~h3XvoL32+b&;F2^OGjnFDR9nAQCaU_8|^>8-x4$=#1la<}uvx6r=DZR>K2;1v^;ByR0)=F_#-#Z6w|Heh z|3Ez#1|vlxuy{Z;ZBoODprfM$5|;qN97GHz1apg1`<5b>1O3{daGCLRO7xL2HJU%O z-hH5UL0jrSm5ijBeDinOtR6&nKH1f_P=8l*KO0HD*3L;*zKY1_a76HwFIoRo!t#!% zpzEjR+k))7!Xu-I6Z_$(AHAIXy1VSJ-Ya4{VOmt$?P*=u(bY|NMfBxZ{Es>kYXL{x z;+x)GlFQC@X{~y}rB$~DENGi#3Isr+>eLvJs!gsX_=RbsCjh=p|pCXu0045MMSqo_QlkERLYr`#ck5 zdLsAKZ>z*r^irUsr?)J2C2tAM#&GzlU<+=N^na?Ls&t2|$v9AzxP7V+35UM6y=$J} zMc!2%Wqp3!46Dv4y-Iz!?L?QP2!J2VSJM?{SU#}Gxh_z=yzhjCmCR;JOBsd9g{7}g z0zQ*b^nYG>dQuwiBw<;JVnf@T8{K!S`^b1A(^o}{sC`H~EB!;)TFL;sBY&OiCU`_# zy`IPkcY7{|YJK`7g{|BuM>!4eX=5a1MK8y}GAk)<^~9sOhW^4uE9Z)w^6LG#1bA}) zL&J9{9klzVHz)SNsa+x0hVcjhPLkbSdjJ}sihLWWr_b<-Sy?gDMn1^Oz5o>VZ4W*Fvd4|otCc!*Sg zj^hssE@(YbZ*Je2EM)Vcue-5oM1nX+Q*Uq+IdBd+6+=5ks z^Z}HwTYICYyWq_9GphNAmK)x8E=F}vR46cq7m+wLB<%TF@6d8h$R#6wO5R0(MKqpr zMfD>|no?cP<(SXC=#=SBVsU(VabKMA>t#k@4jT50IW3`Kt0N+)`jhLIS;s}efqLt* z`!6&(I){ePhN4m(0bwZCEwvez9RrC2@cmN(K|u}8YcQ`$0LuOn7PbkxCuIFIB*$$u zMEHt?WQeP&L-!>+sL-~pD&etLA6NT^|B`vtj>FK^7Yp7ufiDeA>%^ zns$A-d~*&rPtnvqa%A^>&bkd5FnE>Xzm*nH1fk;K^sGl|4O%tbD;B(ii1OL++o9E_ zERE~cTd6@GBqT^*zHC{Kpx3OQS~q~q{jDr4mIbFkr8xyzEFeMJN+xm#02}kK!izKv zBT=qG3>LVc{c=(~9TIHwkDGxczVef{BsZ5L@Y6u%e&2ft8rpp)gv*oP*VhKgHSUvc zk~={D2f^Sg7JN}1@@IOQxBZ_L*6vVMJs|;GR|hc@=c|U`qSo$4WI_;qR)huAVLy<{ zO~-fY;onMzvK~HQf)CpLa%33an2e^Exe}v8xCthQEL%0?yEn*y_`eUqt)a$*T!Y8& zGV{QQe+Ch9KxDa)q~Bqp9a2i1Y}tx%=(_oX!QbU))pu4Hh12@U6!@3%&MSD2=%)`{ zctR|9@+Ucc%UpENbJ?O!L?J@$oh4*-p#U?@UzP(Gh(<;HiAJRl{NLad7YKg;{VDJ< z{@dChfSlbQAL2Wbyh!eUuaP|2glHHMe??w=fM(y57w-MFQRN&Z7 zhkq9CcixIa-NPE$b$yZZ6;g%R{Rx|R;idEWA~dS_tCg=lc&WX-6!r_me^d22b7%^_ zI{W1ICl>m{)lAK2#%zDlU8li%obgx`;VkO40tIPwxc!XLGaQVDIJPwM{kmJ>q&4p> z#)Qrc0_LM51q(nuMcgJ_U zEj$XGzqIX;2C}%CUh$lB5Rm$#s}5C+ok(y!Q9}hVe=$s z7?#9u1k8$5OP=Zz^YA3x9yTQ%9a)2gX#|}1+NT=>4y6ak)IQVYoL|uVk<+tqmEVwj z9(_e%QHwd=bCXy4_qQBaN4dqe%k%tOeD5rQd2bkIA)pc%SEO(MYBwjDdYzh&-J1z7VWK-~4P~IBE4=P+7iJgzTht)|P2P>LFF zsDLKpKo}&MWvlQ@9m$Z(jqP^w`bOw}^B-3(wsljDcQ6#rK*fC;JgRcQOSYbk(NET9 zGOv5zHTb|8DlSvJkq}dPgUT12_qYjQB~km_dCE%w}?} z`9&xzM#XZn>3S!_hJZuuU20lyANx%Y-|}llo;E4`jZpVHC)ks>K3>8RXs7nrXnR+m z+lZ*q5xk!2fe=Ou&&xATuFsv)k+5Bhqa}PQDf?ZH=sfcJK337EwirphqdtM=Pn_Z- zcx)E;XE%nZrDEAVyZM#V5DthETJp5;m$W7;Q_?>aiHIjwC%oGq1_4W8@`0RP2-jhK zI2cYwGQ_YJ+zuP4vXWRWaDn$3`jU=ra2*o7I@&rfaIUu!i}b>80q~S&B4#m*1Sb=> zbAv4vFRSvaX%&_yj(*(6^qas`NbagRnrE8m*0{DMe9ELi-?U?(BQ^R@iGA&c67X0} z(4s6KX`-o3JU+gI33&W?y1G;=aUx}0Eeo>z0epQ184Pd+`(v2=K_z`M@3hFE+YU$Q zb!WqSvz2Bi$!9so4r*5dK~>e*K8Al{rJ8#6We*w-S93+UfO5_dl#t@@aTyvf)isD# zJK2p-y%T~aXSd2*CF}eg<*Bi8l^8tGj^Gt2CGzs$ABB7jY*OIMQ!G|(W&^H}p47aP zmxBKBvU9HYl;O<0_oV;+Sr`}sBbX&%LA?m7bq1hxWB^n`BI1n)G7N*$!JM6>)f;R$ z1O!`L)40@+MOrWmtF0FQwC3?RzN>I&2YWKEnZESomF2a<%e5W5qB3r@d>13SGiU+@ z^Ct*GZiC`_({NKQzg}Ios}fx#jF^+KHpa)xHO6*G6IF(1#qxS^{uS=(ss`W51MCoZ z6cln|;*X%*OXwHh>=Fqh;CjE<=)n*-0F<0B40@f~6{;l@`}~ zWkWmq_b4G;J(=U)`Wd%62*ox71uph`G7!UlSN~pt0TRTHH=#f$P?FTWeSvUt1~wBB zC&VB7AI#&2g(g`RMASkrLZ29ZqzP+n!vgbzd zReo@cM{x0b#X!U}`~@>ePTX7r&ly~2wnEm6hx_T5U7NyW2~bP7q$%|``f>q1K6SJTeVfu?A$JQ)?EJ@#@Fb?H58Fm=-ev z=AG7r36}5{yA0Q>ynua>u2JKfn>~l~sOLlT;>}eV51Exa()R-kYZt*FXPyKy$)@Xw z{lhBHDgz-jA(Bc2ORzJ@i%uYB(u^!EEv*keB+>#mDga{Gv0x=jfjr$NthTxi-NtS^ zTdOnOd2qH_djNW%h~wNx&<|?BXB!FU?)&!(9NQ98Q7G-mH4qjjS`zUA4mAw@2Sdmj zAbC9S#Btw)76``bKd$ihhX<9P;0*`Q3Lrj>WK2)~o1M#k_}@*k`zU2LlDxY8OlF*I90VIrkdxO4fuBOxKNwzh`!yG)wn0)m2wK#UFz z4+lMLoKN4xgaLf7Sa3{_U$Lv2Y)(l@W8bZ~ju*_p=U@aM%iV#Ber{x~2lZcM`}@j@ zaR*90&{;)AMaW@>64XyD2y5opjw^tkx}*{q#;Qq7N@~{`;*`}|zUvi9Jz~FZdegw* z48@JnKJG`Am6Ah4LxGDIA0IOY(2=)~&k0h}8lxa_890K6-*BM9Lc&nMMi_a3f7$@l zdoW@zfa^OXCPvp-)aS?^zHDCUD#%ogaQOliQbyp8OUcN13f;yfjOe^jMc4ESk_Q0` zFF1I;;X8sJVfbydzTo7cy?19noDzTEX5%g&wKE8x$dB|G5P9Q3kFRTbz86=#%7pS8 zmXbX3AFc+CSVq*lkUcI30MqvE{OJ^A9r*iYDkx3#zxwgbKava_cUqd$MQ+z`-xG8m zpV^i|9p2}8%%ADN`PV%IMs2z1J?7dTM(mfr?K1rUUYTdVr2*z&qQVeAkka0_CV-C2 zf5j3+;g$aU@=7zi|M(a45ICqXV}U194*A205M3kMEXZJ7rfrC-zHyG1YC{)Kznr3~ z?{EOW|H!L3pT2cda&}QtlG7H(!_Q1I^iM!W{x5=}3}pVAdlgbTzH(c#dxds0@Mx^7 zyhuD(oEh-FnVh7xYHaQP{4@iP<`3n#6a&kTh!}A=DY>5*Qf#TT_ANr>rzSX7s z_KkqUC5!T+w`*gd_@wS&8d{|QIqZ~I+!{n(x1o|4!a1Vv&rssXsoHJ#>OVL_TFFQ#T1NTDiJp} zWs^W%g?*^DQIyiN>@C*2f;*HomwAoWIxf!1|4kR<3utUBBx#@Jwq*5r8dj0-j*3{Y z)Yu%E%~#;4txO9@^goIED2%5`kIr|7ysdJ_&4_d0Sg0{dlTldZ9cd{f4{S zZ2pYa$4>hPzetT;a)c{%$!)+JxIKb8Q@BMhpv=GXvVr)4m)I-`qoPU|y7>PSY8KLr z`)a5qzv;rQTS;x>lWi$&kZFOFGRjur7ueSyT*Vr-x^rJaD+BUbI62J~r?crc8Qn!C(yx2Lz`;QSG-O9K(aJ6ZU5(5dV1TxeuO=$LdgU5kZNe8MXyF6oHp% zPqT8?JmLz=$|eggsSCH_JUmp^D3!{jbjb3yJ=?|hgXZjnM?=wK*A_tj2o4WNLslw1 z#-y*<`sr!$o<#_s7l$6#vRVF|ah%x9o|=~WCcWU*=xZas+yxU_QeYP?s_dPoOj&(! zES$``@nUyhU&c9yA0;G0R-yl$NGyK}MT>{3sJH}6jSgYwSzM!}h8HQD+=4kqtUm5} z@^;ZTWZTulxN!>#Z_2fVhz!WyQlY~FqMdG8wUl#~*DL&iGhtzxct&%o+luKG260Xt z$B%}iNAqdj7O=tTNhcss*kDG8cMy8f3J+QTR5iDZwa_R&HTzMD^+>snYJkMCM9m5isTYRhZ=T=`zU zL4ddDSYx$m;nLRd8K-+b1#rYTdKW0U4k|2oBj zG4+R0pHAuP_Dkcz{uXFu7BFW8n;KhS%%#+RpD7j2OB#92QfY%+-7EN`95dF)EzbORS%wKUJ z4%t1=t>c^YUw7GsKAUj9(muoE}$?|g)c-s+PC?F zJNU})q8S;fy0mq|3819yQ4)@NF;>tm{4AI`;v9N3r?S@iw|B*}(4P#1HkC{8VyoGI zF%u&Wk3HdzCJDcq<@eeo8+l#Vb_<{{|3E!+z5`*Ed7nfw&R01~yx+aM0B(dDu+_-Q z$yrAw=jVq);2r!QhYuYZgldhEm$%I<$_O3UQe>t7(S#QXn}d-;E3;E4Kz+Zi$|;j* zuZiNnBdee=29_P8uMJ^pYHIKi3o5CpjYf`>?wu4YdLtHL0T+hW9?gk#~;Y*vFn;e^~n?Ad7z~lS|Ia)D~ za&vRdo5JJci7seqQDTAbFyYlJF9eg547LAJFjyHwD+Mb4A%Q4~NQ^81`c6_rYItM6XiR*}ne5pL@WqbJvWZZ=+u@r6xb{!&bIGa|`#k&h(q9&yveB|Y1TmKtt!;MfR?9Xubl6*R%*Xep~OXU?>Fqe}4GjQ{6tv|Xx( zsd%%(4{3*wnQF(xk`vGNveS_qzx%a-lgJ>CMa;wF?E5UU_vQ6Dq+`?lc~V5s(HrH9 z;iRGzwmIJz&N&Y42Oxp+j;BNJvZ1lDzOm6ZN&+&O@LM#Whezq)@_1WYJ06fFqnqjw zZwQ<#8A5!)JF)~(vxLr;ycm!L{+L*^&)wc2ZbR^uIaV~roe>PAPVXdlezv*IwWt>~ z<4WiM2Az|Yr>?!l>C>l9V4XOF}vN zoKQgQn5ivOYBGVR>fx+f1?Cw!S=oCV6_CeS+t|o8?_fa}gNp+^NyzCC@!HJvm4tw9 zCY-EYVnYvi1)@Uv1PsXoPp|GN6{7tWeR1&zw<(WN9ia&(ras!LB27+g`=2n!d$`U$ z`V$IENfAHm(aa<5BB3r-B;RBAJ=GiG?#U>E-cH=stUEb1Ny_r5qi>iewjGXkP`$i& z-I(WP58aA0P0K?yd3MYR+e4JmX}e+zb_YSqHuUh5hxJ{%4l#!JKWp9|XnN|g%5~LY zW_Wg9Wx{rVc1}A|G}W`;C*jd*8kk}?2X?k-{mI$Sa&bKaqZYs~nV8ec|3TCyzzsq5 z6$Q?*=j_)D7l69^JT$b%IQ$0QyQ6}A7s?!FodzG^BZ1`s_f?u^$sIBHdL5{^RE}%C zgqzUfM%ZPrNgw!>q0K9?wX7;&+2@3r1VBcNj)e}}3mt!HWwq0hp_r@ylfdK%bBhuP z)kgfn*tj;5$|+_%fcvk~?6Rvgqq+|07^1c!mbV87l)u)9(bVC9b9Dht;8Q(NMX4#= zRKHH(clyyo$S$3)Y97+YFBt1Tw# zrvVrX?sXwDG6Km>#*gBxnbP)K1S7(>V^|0*N;Du|(nI1QJ`vs^SmZD7`IJ<_Z4Q}p zXE=A9YMWYddBLfV0UMg^l`GW)1Mwj2a65k+J+e(R{>qH!6C}LhNkN0j-mC*fCh9OV zI3DjY1|B}q@nvZE8$sL6(${#;pZ%@f(>7_4dNDNOtWhJpDjdivB)$5W9v!I`oiZaj zR6?BcS(rx|9e8s2rRJj5!JC38(s^~Jo`aG8q&*(ymz6Q%m8j|#GZD9o2~Ce3>|{P{ z=nlOb5$R#iAED6x!42r#g)-muHY04I{9gII&ezNCXUg=>AGFUDQU4;7_#82&!jG~B zv*D4Eb&!0_dGqs3qX@-*%m8SW99#(x^|H|>dECYgqx-8(H5l|^+M*Pw|J39$VA-l zq!^ro8qvS2rv+b4VOUb{>*@eB$#m#UWM_-sHVA)x-?D`Xc-(f3x@0qXQ%67idTR0K zNu^BbVQWys|F2ZL9RdPQ(3qCJK<|7-1c51jq+$OczvL~$6-Uwb-5#5;GC8cRI7LtK z-0aKeudOa$IXgJ$`~&kJAGy^eWskAA7yWGsVt)Z1N!P0xO_eB4=S2Nxe*8BURlFWFx zOg>T~-Y#Sb2I|>F zm*i9cT2NHRoVgW!{~_!3s)}Da`W6aT;wVE>_RD+|QSsmTBe1Rf*>rHnQIL`Q!GCMl z+CYR~f}ml!0`0Kz}G=fCRjY-nayM(tVy)!X=xX$H3dCJ9c=tBqX9 znc$$=1ugn!7EWO4(e+6OKVXp~;z7#heJSw^0vS2Ki~5*96GX1DU;8Cw>8q*5gZ~n# z&>Mehg8&8I|EC6;|5y)sSy~m>d+wL>3VYc>eCYWH@3qIh{p+znCmf<7)jTcb5Q66> z*!sz0uX(Rqh$R1FLdi51REaVZkN=`%?jJJB{H{uGed9wW82pP?qfv9+jSz(Hx8DJr zy#K8pBEQ_@D*t4X97AN${VzsF5%NICzh*@Cw}}XjFcE=ePj(gkJnMPH9ryF=_y>5? z|IgB+NamkxmHfW7Bt;?6^xaXV(sjJfk?@>s^EvE?JKi~_8l*3qjyw~y7L6T~L$@^% znY67|Nj~vQck^xj#XwM#sE(AluGcSP%xTDk2M1(cck?e zT70r0SL{}^MtD{!efSWG!kdKx(_q)4v-UyHnf+A`AItu99?7md(#H=2QO^0tdL3a| z=}}twfUlSnDHD?CujfU;+juZeqo~d3zJAY~@SN4%S|fLzoRM%W28^VXTe=ElGFXx? zlB|qoceNP$1t{zk5XU6tuIfWV1LAyrZJ640mQxoSsm3K<1isCB&)NFkuR~Fjq?m_K z37V_8xVT6+WNpm}%m7Fz2{urmIs8^n{;d=R3&vkG&&wfB@Ujc0HEK5Iy}FB8B0i4b z-QU(fbiE6wwbVApgxh)8;Xt!!+~0`}06XIJiBTuG7N38jUA^`*>9EXa?z(@*JTST} zcJ~JITE{BIK;z&*@4=|Dv>!TzH8WJh5fb1fxsMy8B z7Boz&w%)AvET!MIjW>2!DC~+W~4ujV~qig{%o%uchy9a4(42cGAG# z#@!d2v}4g+X|6RW%yZ1E>>R?fCka6)ZzAspIxUoP?ux258Fy#ASvRLG92mYh)hNR9 zEhdF?=io8L);2@Gqp{x$lwU>h-QiVIQK<$yd!44fdu^De-r;v};zeSDNUQ_N;b|{H zBtRK}3TtgG#9gM`10jg5uZEo3;0haO5bGb?6 znI_t4k)T@$ogGcvHy?1}_Y@D0xgqpdBg;DpW>QLB+yxPaBcE`@uV=5~zV!pJ z1gjb^2rn%Q+j8?2sc{$O=DyA5e9`3KRhE8>t@S3SSKUSNypFf19_1TOOS|GqQ}6>& zIiSny1b$-E-a>XHa*{GZIrSy;PXeyJV^n*+93gejk*qPf zA=vw9xX?U0c6I%@b;uR}aDK~+FHu?j{a2&0SJxnYqNE;H7jV*ui!wsoRRGj8PLckS z_dJw@kjW7~dNk;Nsieh`e`UD!)*Iv|qA)?ndn^e2l6Q>biekli zo1*wh$;fWzXg%@u9fE``v}AKIhJS*-*?Zvg|F4=XReeu6&0+x{^B?9yDR+2vs4_)zquNn@?K7r$0Ov%G`2;uqEAMrQoiaVcUVc| zD5OGi{HI$cpFtaQdwUyPO}ow(a0rWBcick~Ukq#xk{7{#2S{S)mHK3RaYavEAq|d>tW@VeRi@+l{ik zmyDK-3*{q!@rm|`AATh*UnnIcP?oEY9dB@`45QFzwAgHwAQ*NvMj;W|CU~Cn3S~z1=_q58CFW0hP#Ld0g zLj_n}FkoU=vdtIveS#;`lAQ9+qup~}=2Cyz-NynnqUx_R-gtSet~~$+c`_1_$U>}rgyEO>* z1H^*R%7X*NmY!5Wukwvl2Gb8g#yn=ia)r+T)JY@2049qGWKc4!=N*e|kBG+kHlM)!yhx}M1K@3+xK?IKBe`%vCg zhmNla$uHQntKqm8$#wGp5Vc=}4zdjRZ1|~Uh(b?jzryO6+fcfg{q{RGaFj=o6ek2Y z0LM-Nk{@_6CLYl`4NcicKWGaO&QL3E5Ar^K`-8vVrS}>d6E`_oSWr(>IH<=jHT3%nRcm>+2^VZPQGZrO$fczyX9&Pc3+}8izq4#;G&EySp1) zHLqU9=o_6TBdZ1JLO1ZWK*#hgFz3I3u<(I{2bFc*Rx-c@%)t=|e-Px%{~D}?apWN> zwFik+?d9Y*l98!o#%U;*&XqCU*9TUvy;Z=2!9dr*-QQu1 zhl}g{QL@jBSarooM;^u-$jW!nbE_*_)Q)BmKd9uP4gkh}QTBND*|TRqO|RTCF%b!9 z{`m2{h)Ah|kua^<1t!Fki|DTK5%1a}toNq9fLxPw^VaS3u3b^zoAIQ$3m;ezUcp7v zb(wq(Cjx&6Wg!{E%!{^X>)*vg*NTKeej&A#);G;XjGaNzAOC#vRB!|eO=9#-4RUsZ z+S=OXYs3Bsm9E70wnm1QwML>;CbRj)xx3nMgg8D4}B;p2&7O-gL zV;B<2R>TuqTnUzzmbRN}_l0NVdLHGrIV}C>85x(rsFnle8_+q5haR0|Vqs}zOJ=wh z#pS+Xhs=Qj<);Mj`$!J6%n=Tx$(5j?kO0)1gGSV$U4#@Noz;gh(!2)^EyGOgj~UV{ zrlzST+z=6}H#?cBTSDv!o=4TZ2m~e*BW#O=LJ{^LugOQmt5OcC4Pe6lkFpY|9A`Tk zZ@^t(Zex=>lGkLSYGh>80nGq2$_^^e4e$?{(mX;W&NR89z~cc@R1D2gR$v%$TiBx*mE)Vk#~_i*@`W2iW_G*4IbCK^6x$llm`>aNYaZQLHY@6IGC}{9NfF ziM6lPB`d~DMAhEfEe~(6EL!nI@^M-dXDv>hJ~Z7nO)u{A8)a9vO$(}c(g>aoWQqgKHRJ~P$Th=_bSSlh%ge<;Xvi=-)hzLYjojY{bf1@9(@?_7NAmc9 zQOcZL6%0=xS0nd#zD4f~Fu)-~EX+hu1kIPv|7tNNJp^0X7KB^Kxi+4g+kHKdo~mzd z9!Eeeh+_$E@+f*7NXUvU){tcAmgHgv0yV-azeqze`8m7|5?b13@SjnM*rhUXch5Q? zA9H(}DmL;N!}~D=04EGeLLfQt*rGGD+cN{ft(JRlNQ#_Y=MtihRJe=6H90FFpwTwF z3=K6dxIdt7eX5r|4*jw*@brS^jXkRNyzY2M{RMZIw@HlqZHwFB&??xTnm95vK0aQ2 zai}HA8sG)gz}}D|C#Iwwzp?5-3iYA)4jkMM*`3YW9v z{Ao|b%?L~pF8e7p7)HPW&4CX9Ly8cziZkK<$CyVL-WG5Nyn}+ir_=$m4^f+=1T3!X zt7%AOaq$sh3ttwjqsP?M&H79E@rh2~0(lLncy%Ls^{nQy(`YKODx~uQ4~E*x(vm9Y z+hvs%SiIZ#;-IaejEkX$ZvlyyaX(xoK=fwIiJ?#^__E3)BO~fCL5-h>N98TNx^}=f z>E$`0Uachhz*{Y%CLu}OSYJ_5ji=Q_rqN8dYVW)SGXXh=~?d zoPO30|3m?|9Xd#vFik;S9gOuGH6)6u&~{Z1kV%Y+h)9KcP>-FJwT&+eraPqi`ud{c zqUz4;GG=ojp_=j-&7$2QUf#Q+mv`4+MyBrSSW-^HyY<*_8*;TY z-0ddsJh20t;SkRcj~;4C=>EneBdIhUCueqp+5RA??>sPWRTj*bH~gkyW&~{2url1x z353KBwB(Pr!kbnm#g$e*WhEE`VK9yKj@jvL@JKqtQ53~*Vb3uLKnKg7%7BZ91WOj{ zPDVl#1@3jXr6xhxHAkkW8zCr;i7G5FKP4$ysiSQLaNkTe2pvuNg%Uo&Yc$}3X!JEV zH?eavPhUcz$9BDtP)Idj67B>Ti-BBmELfHL?7MEj=n|l>%Ye;U*k<&JQ6vmH1Rb1& zm{Pp(@1u<<~?FN;dKvuLaDQY?9`=e8=xA~!S67mrBh(;(|s55;X=ai z0gTUqM><+|&VZe?D^j;+#^K1BMGQSS(OOr2-=( z(c>_o?|E==_5Nrgm}!O7)$jy%W?o0bdM^dcF<=8G8dbn$3q#xlLyu{{A)#@=BtzqJ zF=*NyR@rrkf!d9D=dQa;G_pKgv5^-UZkWF0xXKbV^ zJMs{IpC8bNXQQBZb_(9V`opT1uv4`K&L=`Wu802vc7;^1Dr?L-lo{#53{7*M$lb>Z z{tJK>ly75VCf6!ny^^wMP4YDY?Biz7Fg$N$N>HLWV}ukdvqS_1ySTIR^VRsHo2IfW zx2O1KA@$b*aS=`U8Z>a8=z%RdWgZ~0uARBt$CN7Jb+c6NtXA%1LR`CJ(HU^cD7|dW zAX>>e%2jY;phRL7#GSt-!IA+`CtLfLSJDcN$i3g5lyn}x<_bh-SzcQ97G^fA5Wv7= z3%pAY3m~Eg2M+*vyt6E_g}x~_7&g$W5NWz+&iKX%eeBq2FY^D z4m?}Iu+55AEG;f3K=p82oh+shc7|maam^d{>IEYba9~A3|G=hD7-?*5oP>=R3$DJs z-@!A?%xOK-LKZMT5y6kZo~5j%^`yg`o{8y$Srn}Ht;N-A9TYxEmNCNm=Vpu{4#Q-6_-w z_tJdE=%wtgE}aa(@&V0{PYX7Zd;q`nw86by%ch;{4JU(Gdq+1Nd3mtr-yLjV&BkGw z_bh@M8#Yxp%%rH@1TyddDwgG`j_Hhf#c+8z(V>gs0^a1J1gE%G7(D@m1MK-8iNO`T zFS--7>5tfRKuoR+qMfI71TT1AGE{w($fRijfzF)Mdudl+@WjI@u)SRkTAo^oD@W+W z9`l_c9ae-2^ZePfUeMXi1GV57j7mcGLwK+-iz8@k1l$k-`4;{A>-4a5jQ~k^3oUT~ z{6q-%8sQql-@G=8L^v{M0Pi8KtOY~K;FJZKT4G8{1oO}oq9{>+nby4q@aLaP?ODMb zo}8%s)H*CY&cKz&L}f|)lOz7CKD)MSh!GAsJ5IJ#f#eW@ z0EgC>#@it4i)2~J*|Y|qs2>_yCoMp|P(&JFFii*n>Hl%h+}(KhHr&6>DF4fbyG?5s XGe2&TYcm9c*s8hpdRI8fn31`OJ-#MqgH=LW@4u zBeM`e6)aaUnso1yM|2E1)HwItlGd@O;Y#u_07r7HW+W= z+t8Akf*?bs57fm+TW^q)-~rP) zS<2pHx{u@HXtAbRm>1(KCHtWWJ{_EvsbR3z+T>x6;TlT~Kl%rkWL#!R$q({~nu~pf z2&3k94oLrS9Orj?<-A6{)Rw&+9FmX8%KG&5^yrAwFiEjZSBo#@o7ZcS33F6tI+3de z$E+YFYGk#wwe>rVw?tYvJ7SLHE}PTSH@Dt-)jzgV4f0ohO4(ZJF?bS_By8*9;n91T0}}r+eN*E_ZLMac#3_3* zF){BbKQ#J?5YKQakun!YnKNA$fr6FezWHfCd-g0|)idd)o10VA5`&RfQDL=b&z`q< zb*SOUi}VcCX?-9@ptfv*8q(US38-G3Kucv&OC^yqaV|*dOcM2|z;@o6;dKQy za3Jh&(t0`=f~5ad?xSOpL-;P`<>rd^dVAI_S-oyuALS1+Sb54~GGqdIm3qJK{0F`K zslY!U3M8q!z?-b~(#*HsIZZpR)K*?u$xo{?JM!r3aX1{lLn8L^io0i(k2N{zaBru{74qmnn?5;F?vYvt{hFkmHO|KyX`odwI|% zUQFZGc_MRo?n75sDm6LC9)Un`(H#(o0!Jkg+veuxx8ggXhand>=7M1w8kQF>q%uaZ zrnKGyf(zEuvnT+Ib&@!nW`5}Iu5k(n$8yM;pY~CrhNO(lS+eG0M0|Wa_Yj@I{K8;b zz_}sGcj@aCj^QeAop~isf;I_Og?2gf_f%rK|APekB15A;$;< zHSOWyVcBEHx|85o?xA`t16jAZ!5kp?6_JwQd9C8u^G0zBmZqlUpF+1n5eJc5q^d#I z`&(HomVyvZwI2nix_rsSC2Nt%qJMgIhyPnb5>?$$?#bJ8F1^%{=5uIFk{`tlmP6sX z>FR1OC1~#K>^xKKsFc01;G?3f%Qv>GQaNi_sg|moRjOO|;7i;l z;bph}Z(bdht<0ne{3_(8#abrbf%2D4`@chle+vqT+mX?+!6F`o;c5KTg5Nv^@21;GXFPIlCEpzJX;1xT?HPuoNazIYx zySn_BD%_tvk+;1?!L8$oXHwq33}s90=&HCG0+G0|xTxaRE9Ws(W!_ihAc3ZgjM(d? zb^an8@fW$dvaI>2po<E<+#34JmoGUvIj#+}c%s8?ZONZO<XjNLd_oRY?P4G^Gcxpq73|EA$U+|!s@$zlp}@Y*29yP`;42S>f^ZR{57wT3TAFZ~*}ULOVlMFbmh<8!O{Bbphot z7%T>+3^{%?I-GTJ)rOxepaqIJ~F!bcZX&TKJ zfOdgRx$M*(;6UoCoPdi_F?OK0qDa*wl1W^2^yp48n9v|~k$lQ8#!g44kqe$h#h3_& zJD2=j3K_wgEv34@qJ(Leog;>6?F*xi+$r%&HL6#XWcZ1KNv(I~b9Qo7Hpp*`w#DNX^= z6)J&OOXaBW7?dV2Ud<~g@X#f1gG9und8sdqpP!tX>`a5<*2*$X5=F6^LOfH;vxCz! zGZ9!};Or@8N0dLIfUU2xHbx`Bl+i30uKTD$BsHK_9c6L3Vv`vJ#}Vgrk~;aa#RAPw@<54jx_Qf*}2zYeU>Mo|O82txDvuPf^`+Ja#NhW+>e- zb_i4@0*hsG5xM^@r`H4>>U8B|>8C#d<9|>BS1%EF?GecX+7i^dKGqa=^ywB6rvG0g zj8Pfj==>HudgQOiKFA8nn!aYpV_-(@cgAewnI>;Xv zo4x<&*44oJs`4w1A?Z8$AQ6@z4;w&VkG>=&sHcs$M$v%eZAz|%)es2d%eF*(-N4|W zlN*CRY$zrQDXkeBT%$U*K4`|(0*3xVrP79~Q8r~a%xC5eW2KJ@@qF)c25NY!oI1yW zNs=*ad-pC9yMBjX%go+BX`zoM_=Fbj@sN{ z5dFXmhZ0t_M+dESCl7&XcnYAg`sCuwP<6KfbHNjX)SQ64i|=xRYN8bp3*+NO0d(b*m7(7_DcDs>8Um6( z&>IW|7avW5?loQ!Q}fb3`{022ty>kK{H2bH@B(}^0&Rv}SoMs$IoE~HZ)^PLQ!Cs* zrs{?7b)^qg|5`%2^>b;b>q(WK6fH2Y78Dd9J5%)(R8`ryriz+4&zN}bxpURGp=d#q zyiR)}w>P|5bX9a3MVt$|Vz|Ha#>H2T?*n+DhV7VNy5%kW-UI)9f$^Wn>kl-jJFxW) zm|Zy`$sHkUfl0SGrl+S%#5tgcTfhQ?QLT(^@1#(Q@~n$wH8gCsk`#? zPAk4Z2Lq=~ePH$d`}YBep;x|+R?U*sXZwqF?%lfwwk#LGxU1k$?|#CahtF5s9`off zwlE4n)blGA=`}Sri&U~TkPU#Y@~h1}Dko32%yxHor+KO6zm1il&9_SQP50#Wbaq}* z_P(k42ID_^PncdUe$u_)QF*>WU+3w-=c?&+Bv>N2 zf|U~&l2V7Q90}UQ%?=Z+UC2p2PEqj845PT*tSst5(|8-5#BGMTxw-cVT7Vr_1Z2+F zt*r$Bu_vmd^jo7O`Vuw#%C5Z?^!4*=UH(|&9Imyo;v@z`8-R+g30TUtDzI@@^Id?y z!8}Y~qV=^R_z8YgT@mnVw(Q%9bboz)2Of1sl9~=ntkBBUMwcxj&SRp zp$~X(QZ-?7&;>A?PUz0&<<<2?a-vk<`}dA2*V}L`O*QI}ACZY*j7x0xBeSd`MjbVh2>g0`VPQepg>(Rzqp_;zNSTPInJc5wfJpzl_1pVXo2#a2Iqr|*;@mbj zSn(=uPk=eIkruwWzF32viYX~AEoeQlD@<3)wShL??h$n#Xbe!%xr~gAn@D6YIcNhV zZ(DJmkB?9E6ux%J->?sq7Ss0T%})ez(f#{-1_of6g`p{= zM(v+_$doVq5@qYWq}KXZ9rkd%!D0@d+L-5OOy?EVBqSUF!$$sDY&L!&Hn|EYtgowU zY-72SSl!lkE-o&PT8JQAhufS3OXq6fAq4Pf7}Dz)BPc34*>4kMApu3ITO?^H$jG#c zsrxh`YW+LwR>r~$%gR0s*Z8*kFMO_{U?!)heLQRDL)>oM@RFC8r#FS|raz~wXJXf; zvJjw)E=?MidXMW1^KyeNS)!Y#XH>y+RnL~?k1wy>d4AF(UIVj`&ivMGiqO-$m&d*^ z*lGxjA8Zcj!o-z(KmW$aC|twm^H0w~71@^Eh@SsE4{R#|MXw~X3fLjqJ37$p^|cEr zp;&w>#kTZ% z;0j=r><7vm*qO-5(BKD^gf@C2=WUUB-h1D^eTC`iO$81_dOXzljIdEZR`UQiJqOEy`_`YU`9wnS9S*vgD$RQ7d9krtD6 zN|sP2Ml-f)Foy4$&U-rNJ>PfUuebm2H$O8x^KAEhUH5g}5-iP)Hf<2u071|u6J!0~ zAc!RwymGiX!EbDOiuQpY8o>sqg01~71c#mtbcf8&2K!&~3%=xaPV%yQV33!e??EM% z{Yv{4Bt3(J{ev`=m3@AUQ1T1(P)-j#6$obG@i%q|f*}60%ohtQzN{9JVH0c5|rm zH6>4`l}(MGk5YJYp}%^MwROeaQwmu=XA1g-E0W?{Z*1{DH0Pp!R0>6rKr}7bSyHGj zBblUyTiN<#^$t3Dsthkqrp9!r6WO5_Nzn`15cIKIKN^DeaBqfM*jZSiEJ-~G+RDxi zow*9JKqog#LeU9Z2G}C3TwPI0PPMsw}^q#}o*PkD)WdkdGjr57lN{WzGA(bQjp# z*c4jmEPuMvHSxh0N);i~h+)TA7uV<%?}_%L!N#x(9mb;dn|p^$-QC^mVRPqpBl)2H zf_3a!nxWW|;^GZakqeV%nJ5&6^-4=5eiLVmxqv8mK5QPn+WJv@y)lI@_LfQ_gv`8C z$+&YTPD1qXrK}UCrv2~U!3c9rO-&nOk8Kf!B&pA}^-xi3b-p8wn4zJe_>Q2Up#JXe z0K(iAJv|+ia^oD&5eTN56}16dUw^vw%>G7jK!+4|NSHlfJzVeo`}ZO`5w#kcno{DF znVIxa3XTLTC&-r*L@6o|WTHe4)hjSe>X~_8VQX){9Z_0dZV?g^vQJ4Vnbyk!#i6g2 zUV9WUVOZu=_nRwykf0h$c50#yI8Kwv1GHvZlfIT1bcXwcar7N!SM2&44L4Znbz4J2 zV=<#V!hnl!XDum)2Z}bz1d%PhUTeKqFbz+v5NCsCQ?It>9yoA-bI5N^?g-RUknl%T zd05$@{YU?w(0?CvE4Ba871%yy<&>4|uODhU7M(!s5~mtHbF{+`PX|?BdM`j#2e)B` zV%sQ0{+Sv7VcDk>*+B!xhvWn|bP^XFQm%0AKUHGGKd_-6v-gf|jf~xhVFY{3QTOxb zH`bywL1O;=5&m58=B?cqzJC2`g_@wzx9;Z|FDojNoetV3FJGW@o#Ujn=*?TKP@2I1 z4TS%=-gD!;`T6;*F8YVjH6fzOOn+aWeq@&iDpH85enn4mIw;Lqfj8^ng9kEa1f+R| zq&OgH8Dt{xKvcwEvn+ z;YKOL#E-JBtPojl7lkE9C-OAF-#t~YG#B`kOpa!#Z;M-ac=)yrvAYjLdeb+R_}N+Kmm|i?a&sj|q*$Od%ON%!E2}(81X1&z zdeFm{FJCSaaBH@i%B}-k5)p4HbN&7O8#rUe%F4cUC4jt3Juk3Ei^e+D^}zZ2Qa|gSmy?z z-mn6rl;j0zMhOO!u#yd~gZ<=zMd|lZBcW$idivVW6++R4`oEa&Ql(tcO^S}y&w^bf zH^;B+w5#Uy7Y)_>JN5qDhEsyN9QXr@EcZ&I@E+QnsRC&;x|9YOpy@5CdaY+HckI}~ zMkez8mD7K2VrG7-JcWbW^{}yV2+l5vt!4Y8L|AcsnH_68UF)AWzp(Im4ptdT8Hs0f zsrw98nuLXg0gAQu^1_&-bi~TTSRlFG(@;ogsP{mr!(g?KBaU9 zr+D$G)qsqQ3`|iGG4DDDRG5s`y=DoL5u`7IrcPWOaP*rh(q&+T6i-W=z==7b>G$uK zG=!NcoUteF?=yncPmgR`%SvyP1&G=h@t6#2K`~R8hZ{X6PRK|NpuOe{L zn2L&n<8xhIU9-)~Ak$yIcoF{&f-uThmVF8efb{L1ot>8+Tkb8CGD=3*)*eAJvwl2( zO>ihf-oCG=M_{eKs>)W@JloRF?oNA(L^-HTr0uw+SR{N}Zkv$MbduVLB?8ebr0lX2 zU&jI+cj{x&fG?t5U}Lef1W`5LbZKUV0AveiPzn9R!)1rO2foaIeg*&b-Xr8=3rmu? zwg$qQ4T{tHdr|}gycFnoQSUbUFBwOPMSgztW)s z!C;?1f3`y1o{@JX^!1%eiQX0Wi~M};Zv_l?=COi8y*B}i#&^Dcow$rC@lYaQiFPybm>gDN}WO%(I1i!#ej3 z7#PUQ%TH+W_^bVxSRVv4V(F2Pk`sD$H3G<}ufq*$=hlmDOTeLaSD$K*Wrd7=thmq( z4UQET-t<)aeBjgq$a4Y(YfSNu#5)e=pQE_*^7D^v+qR9S)lQ67PlAEvmpwC{mwCZ|^QUvr-e4JM;BE+kJ+PcN3ZGEM*@E=Hr@zPYbP*Vft0 z{erjbetM&7QJdmY}MxPw^{_E;cG!4hv!y6f19l9H0DfQj~5LY`$j zH%p6@vJn#OQNc3*K%CQ2fixSXZI1IoM z@^5*?Bk-zN`0=X2=l+d-BLr;pUAKolU?0R8ZKk zanFyW{0GthPbU{AW><)ho99^?>!9%P#9bv#P1@5ztB5GpJqf5&LPG9V-HzuRvhC8U z{YJ&9>fe=OU4F>7nfGY?`zP+EC-Jt9j-tI`wKBpR_en{)wJ?4hEdk9c$jz?m(X|uU z1$kLnqnq26?SKq_rlPH_U0ht;lcnOe_-w0%Czxk?W+svJ7K+YOE`|=Ns-laFPnemR zX~1T4eTQoEICzBshBPBy$88c_9J?-YkwzZA=;_JyCzZidJ+=JbGifCO4U}{IQhjx` zow~ZZ#^sr;6DLl96rgtKu32e@lKa$f%Vs7$$zqy|pOvE=zyd2P1e`do6C~8&@g^=X zRK^6PZCW7^CR6Q6qWcsTH%T1y8B|S@&~-^lN@A>u|J7ma%x!MgDRafSEKI)XU7YHb zF%c6J6FGD-{lLM4Qps=LysgpVb zT{+eP0Ra(vIHAI8XmT_NL}d`s92fzMsi~11SE@&@j#= z?DMv5+qW+O-=ud9%^DmYi6)|=bjIhzG%tJh7u%*4j;?*H0p2kSK>p##hzqFyQ#9Oq zq*ELa0DMAHW-2D%%C{PC0MS>;$-Hw1sA_S=UsiSBwRW$CzQOzr_x@49A+l!#B*Xd! z22Q6$BmB93)(ri?`FGr$QRxw^aDR0Njpt!!<;h}Cxd$FJ9#dL+vPD{W-=AvfzmuV` z?4T}qyk_jNUCR+VB;X(U<^C61{t2KzwUQOb-p$;eUD@g~jCVsu zt%ZeYA>)0%4ps$-i9q`o4YuXR#c|r&+JZW1!o@G%mn5oId8U;Ws5zsZHE`<1s+yYX zHD!)9?IE5}%UiYG_hR^W9@#t>;^R{m7#JAL^xf&{*Ce859(R1A(I*b>f+S_M`@)&R zG%Y=U09#&+-{31Y@ri9&QZljRel>GCg|HzB7#_3I%GJrpYDdBUjB4(;9wRdJ-ygZWu7j z+TRLv)9^xVeZ7WkXH{k8Vgs(Ir~{0d9T*t6fare5e8dqAuF?5${x8)bqyew>H3qX{ z189fh-EQ8vA#DPD&ONQLd1rc)OL?P2Uv^kP_?M6n|rGd|tQ&cqb=*sTy%F(2j`9+$# zwI_CW-j=O8+r|m*&2#egU7lqw2-;}X-AE~5X~x&Mb?_0hg8(dpWMpKNo7yR)b z_9~%}Hx*HBaYY@4Ffb;r{37(B6oqGCb=7tm60g}Jwl7zkXX&q$+#OF029 zXbpzd^40i@`HpD}9Z1I>?}_AQfo460e*=Ouy6@jn;U$8fAd<43mc&+B#P0qwAN`oZQ?B z`m=aw&q*J%gGQIy)rR;Hvuq7{;(9%!EY3KDb4Rim@U~t{kI%NnVJa(aK&6kn{r*Vg zN+qzuhrD{En-+UaHA2bRRO5%I9UVa%am(Dw>~h4uef!|jt`bx#^<`&gcOS;u*1-W| znyKWFl5Y7gHk2`8$`GJow#>n^4*T2#9ud`3eqGt+`iGH7nzOryhxf|jR52Di&|hM& z*e+_>qiDEd@b|_g6}7(F;ki%Lz`&rmtgIib)ITzU1z=&;i?SBTz7)iw)FCxBl5*7Y&9TZ`X*zmK zC}8Mk%K_hE^7D5CNu^{iRbiP>@x}5cx?VD6nOd6UBt%JzSpP==Ze4tAUStngVu-!D7vyKYtFgpds+{4d!M5 z7)VyH1%-rwK{IO9IhL22yi;U7R9xZ(U1%9CTw-}0E6VZ9tgTB0eA1- z#TFE_!7Gna+a%WB_7eyVz*o^yqE_2L+q)i=*U-6f15&p@aY@N5FuY_*+Jw?-0Fi@uU`j)USSXjVem~M#XwNa$bduIZ+8%yu*U&ghg19Qok3=J z`}l-_2IVdKv^{Q`*})+6_PS}qhivTZG*EcrG>PO4nvt*uAQG0cs=NvHV4;TN*ZJx| zW37IC{G7d$)1@OJtHTtH%F4=G6l2DN4E`g4t*Yt=>Jo2uPqh>O=&s zVYH4pgH?fHU0o2d9&iik7UwVsk+X{nQWWUu@cB;J@1IRgZ&FY3&_FCTO+tO-?XkgK z!z+8giTX8;1qKD>5J(}wkA?!pU42}(r3u>xz%&f_X$bThhnZ|}jc4o7bbpC8IjU!c zPR#stdFI^~ok?&BWWW&3^q$P-PvYS-DnN1w5JpCP)q+`vC>q(Cp