From 5ed22fa1f4f81cc86124358a318c3dc66ed06289 Mon Sep 17 00:00:00 2001 From: "Bob(ArtyushinaVV)" Date: Thu, 13 Nov 2025 01:22:08 +0300 Subject: [PATCH] =?UTF-8?q?=D0=94=D0=BE=D0=B1=D0=B0=D0=B2=D0=BB=D0=B5?= =?UTF-8?q?=D0=BD=D0=B8=D0=B5=20=D0=BE=D1=82=D1=87=D0=B5=D1=82=D0=B0,=20?= =?UTF-8?q?=D0=B1=D0=BB=D0=BE=D0=BA=D0=BD=D0=BE=D1=82=D0=B0=20=D0=B8=20?= =?UTF-8?q?=D0=B8=D0=B7=D0=BE=D0=B1=D1=80=D0=B0=D0=B6=D0=B5=D0=BD=D0=B8?= =?UTF-8?q?=D0=B9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW2/ex1_p10_1.png | Bin 0 -> 36694 bytes labworks/LW2/ex1_p10_2.png | Bin 0 -> 42611 bytes labworks/LW2/ex1_p11.png | Bin 0 -> 21848 bytes labworks/LW2/ex1_p2.png | Bin 0 -> 42745 bytes labworks/LW2/ex1_p4-1.png | Bin 0 -> 67502 bytes labworks/LW2/ex1_p4.png | Bin 0 -> 67502 bytes labworks/LW2/ex1_p6.png | Bin 0 -> 110407 bytes labworks/LW2/ex1_p7_1.png | Bin 0 -> 31750 bytes labworks/LW2/ex1_p7_2.png | Bin 0 -> 92038 bytes labworks/LW2/ex1_p7_3.png | Bin 0 -> 105894 bytes labworks/LW2/ex1_p7_4.png | Bin 0 -> 30917 bytes labworks/LW2/ex1_p7_5.png | Bin 0 -> 64341 bytes labworks/LW2/ex1_p7_6.png | Bin 0 -> 75363 bytes labworks/LW2/ex1_p7_7.png | Bin 0 -> 20158 bytes labworks/LW2/ex2_p5.png | Bin 0 -> 86814 bytes labworks/LW2/ex2_p8.png | Bin 0 -> 76515 bytes labworks/LW2/is_lab2 (1).ipynb | 7459 ++++++++++++++++++++++++++++ labworks/LW2/is_lab2 (2).ipynb | 4935 +++++++++++++++++++ labworks/LW2/is_lab2.ipynb | 8369 ++++++++++++++++++++++++++++++++ labworks/LW2/lab02_lib.py | 47 +- labworks/LW2/report.md | 325 ++ labworks/LW2/tab1.png | Bin 0 -> 23157 bytes labworks/LW2/tab2.png | Bin 0 -> 62681 bytes 23 files changed, 21125 insertions(+), 10 deletions(-) create mode 100644 labworks/LW2/ex1_p10_1.png create mode 100644 labworks/LW2/ex1_p10_2.png create mode 100644 labworks/LW2/ex1_p11.png create mode 100644 labworks/LW2/ex1_p2.png create mode 100644 labworks/LW2/ex1_p4-1.png create mode 100644 labworks/LW2/ex1_p4.png create mode 100644 labworks/LW2/ex1_p6.png create mode 100644 labworks/LW2/ex1_p7_1.png create mode 100644 labworks/LW2/ex1_p7_2.png create mode 100644 labworks/LW2/ex1_p7_3.png create mode 100644 labworks/LW2/ex1_p7_4.png create mode 100644 labworks/LW2/ex1_p7_5.png create mode 100644 labworks/LW2/ex1_p7_6.png create mode 100644 labworks/LW2/ex1_p7_7.png create mode 100644 labworks/LW2/ex2_p5.png create mode 100644 labworks/LW2/ex2_p8.png create mode 100644 labworks/LW2/is_lab2 (1).ipynb create mode 100644 labworks/LW2/is_lab2 (2).ipynb create mode 100644 labworks/LW2/is_lab2.ipynb create mode 100644 labworks/LW2/report.md create mode 100644 labworks/LW2/tab1.png create mode 100644 labworks/LW2/tab2.png diff --git a/labworks/LW2/ex1_p10_1.png b/labworks/LW2/ex1_p10_1.png new file mode 100644 index 0000000000000000000000000000000000000000..3684fbeee149d571b2c9e92f3e6fc8679b836cd0 GIT binary patch literal 36694 zcmeFZ2T+vh)-KxWpku@yMU*&zh=PD1IVyq(2nZ4+D>)-MHtmdqwnPO16#*3#B(>yB z8wipG$x+D}8faoe-}N&4oU{M^pE~#7_nx{{x9U*kGz0Y4-}i>Kp7lJ>dLP};P(FNs z=>P_UIjnL`Q5%Dy_9!j@7Zn{`|c;9ie!l>Wzxa;WR;b>?6 zyO))lyPb>kMFF7;0vFEzZtLN3*Ii0b(CNSbg@B8jjo?$aTW)Zb{dcb!xMMK%chJ9G zsq!gy7){bkcPlO)m3s{&|qs+0*Rf;p5$fN54|HixMq`BQM>1 zTzt%wI4#BaytwRTTfgMSlF?zy8_++nyM%)O^)d6&^Q7);tR!`fzdn;Z~AzZS=jQL?gj5pbc}61M8A8hRUH`yxf9=BUs;~( zmkyVnD=PZ=fZ4n@lABrN0mX?YF<`M8kL4UPqiyKVWY@5{_Iq|#IS|VWOotyf_7{&Q z#EA>y*S@f4t-3p=CGP2V6dUjv4qKZxqcPdUd+N>PHp{h?cuuF)tju(~f6-*Yq&|UX zx)u~19DJ+j?wzu&m0s6Q6Yna!l=u_new1MUx#E;>SJI=n)nY1Zc@kNytgNuumVAd! ziMgWTq2=$I5f_^zxSAw}L(lT_^Dmqg@1tWhzL9dfL`Y(NBr3hhYNjhYh)v_Z4?Olw z)(=*>-9@tny^C|D!{O3tV>da}6Xj&3JSL7x&*t3>7?&P=l%7?>`%XRXM18EF;PN-j zD-{RR2^iD3l%HQ7Di=EUr#b8E=v4L{Xm+$Xw$Nk7Jny=V2-=?l(vDx(krIj!a%$bJyJrmBjY?TFYnMpdFq`*%wp#a3!P0;#^tCBUzh_#e=If2n^DLFEY~kFAK09W zM`O|=jPmVu^MlDTM$X+ozU5Tlk2q#mooFH9XIinTqRZ`D##mrr*# z3tS)7WtWG05VC1{scR7QDvQ^O!h*wu;74BfcCiKi|azJh+QUfb>*tDQk9bQzRbYPdK&nUa|G{Z<-2 zOI5I9&HSZjhd~Scs>`jOpDU`ia^dHf&S@6DbRjdJpFz5-Ch%Wo9o%|?|JaxUi9%QVzY5h~x_m?keJ(q#4?W;)I)?G<{0-%znW zhCk_MibghULd^nWc@oPX=!r7hn*%)I%u1kvK97w83ioG4TcKh zCe>Q9OiFFPzf)hHYUjHedJ?Y1oV^RNd*+4fkeAzDj3u@CYBm#2-`Hw&2|NZLk~M#aSQu;ScTPiUGWnU1MKx0m zT9IoDU+9Nni-f^XD*L?$S#cZ7?r+hX{yV;Tg~Hiby> z<@MA~w0J3Er~T4z>OHwhdOpK-W@~jYVs#KNkLLQMi0zF&&rTEHs!XQ)&oA0kC#yuI zIVbuIJ;GvLspOiPX8iWjt#UulvgKAa_~6jA_E^lvvC9x!ll3U=(RO|E&L8jXa;-jP zqo`P!6d}h%ByIaCDzXGDe9Hc=Aw5dTtgsj19D=<`IHn=-nzzdyV&zQXU|=>xt(r(~ zH5kN%R4JP4aCH@IAx7GIGk#IvIkAyD)>u1Vc(LAW+wIWF3%|q8WSu9`0*^B?5<4Z? z+#7_@D)Je7ZZp(vlNd(mNf++a!TBzZ)Vhv5QP$Hn6A%yxFJB#y_FJ7}t*WXbZ*R`m zJUw^QyegQ1T+QrKDYrRu3})MCc$xw0IvTA%mbnID&*Bi1$k`IFS*GXL&x|$3F`}m_ zTj_BS-TQzi-a|WJdwqPGN(v@W(xglhEi&d{L_^VY*-!rgOS0?QE+*DHaV|>HXBwV8BwN!|dituZvA@ zfs;`?9%in)aKMj`*gVyqo*Qf8Wl)fsnwmBk5xAUWn3%iKndZAR*1a;@Ycmg7N^~Rh zR<`*S4MBex1>$PwYLup2t=ClB`zcqr_l7`NE)L6au+mqaS%klzDxA(LwbsuxjP6V+ zE0gKXwx~&yg9TKZWn7$7-MqOzo@nDzGWl+19#7k3iXb-A+BZ_0g(?>7__|@tthhMi zYAti*H@lm2md2aSk_M&c%cA;SNLy)g<98mi>J2Z!?E35C{FW!OU#Hxfhj})cW})>C zZtHnw!2a)ETwL^&GrO|QQnWr6cXM5o?%uo4s%n_uJ<*JyyxKn7+SF+zJ9C`?qcKi7$IBb6m2_1Jc0YPi ztjzB;WtLyB)m&WR$xu;JQldig4u*|}53}Ir=B9X@m|mf657I(3<+nsQIRmM~>^0H) zrUn+Irg-U^c<+HzR~{Y-L-C)yST9&(;@!_MxY1FVwowKVPM4Mfam0l>#7Ih|ETKH) zT6Zp`ZTNYcIxd`CBfsr>-mF4~lT)B{CTFcyGf>-tgyI?b+ZFn%d%N}wL8y0;S^IIH z44J>?;~#s(hpsbKx4pkPoLM*!Ot7SLrqJdI1eB^_RagLOAw$TnzE3ZAQkl)yGCom$ zR(>DmUOvKC?{8>nVco}@!T{3<3skHPp$*8%`39DW>vwhWDm^17-SKfhh(+lFR#_p5 zTQfF?Pw1V$_2G9w9^q-dkpF0o5mXl6Bd5;K$b2s0Ouucz@`?uG?Ccae$%a$V1v!P{X5%A-WeQ9!RLgtF` zX@2Y;-!AL2lO?%_jtmi&~nq?c3AJdI1+a zVl)d7f*{U5I=iO?e)vod=VuJKQpmCE!$eDxa^KxAhnct5#T9X(t`;OO038FVH7@qK zHqGJtkDbx!mm^mmgI%-ncDPw)={gERagMN{{Ge32r!(0}G`s%n!fShmF_gdCZff!` zq)ur<@JN?4E%C66XIrWYobAa^?-X)6(0;$8UXUb{(>>!?IK_9J&vUL%GOJ`N?b$^e zjq5K&&Iy!Eypfps@MTdiA#k}x*|oC1vAnFO&&s z-z^64v@HPeP!^n3sE4qtkCX9VneoGKM@B|U{J6JgsL#DQY#*D??_*8z%=B_=w-HLw z#bs4&Oi|L<;$wuIr-&x6og63DI!W82P&G{1iC``n?ngtCcHUHb65h}M!*;5f&3{IV zLWXI)nWE;Kq7naMb*)4vD$8YhQxZ1&EeaX(rorGBgDbACt}Kw#$zQo5Mlu^V0h5x1;KTSzZ8@k(8)q6ZLl&eSkUk}K?D zj<Q4F!=~um0bvjZ(r!vGf4kxkz=nBc_ZvzUly+jEDCB~~v|iGBqssw_7aJ{b)wPbo z3SH05m+nml4tL@mvWm}`!qOyM<2{F;_aE#XvB;=Jd4xhn57@NbU*eh0`ysN?+G6DE zlWg0TH&VDPsC>(Kr?DzZGbN_KQDGPA;QHR*Oc4zy&KI}o;=)`3*$6=_ArNj=1o-aM zs1Qv$CVlm@j14R(3rAR`6t%P#Q)o7cIK9U|asZ%IhcWAW`kT=CRHXXRpn|rEr+bgN zSFMhaZjbMHygr4D>Q8#vFOyO)D8dlF-+SofV|~$$5QOfFhJyLbYgoNQp@`+0 z?}Eu@mY(@=#n^B1t*?K8p1z*miB4m8b%fP*S6Lx%ImpHWUM_6<<3~x`_(>wH(zN*} zkB;$F1JGp$nBkF`xY;N^7#bo_a@KEU#$cFx6p%7G=*2a{~Hq(G0s+;)0!nEAw>eMd45 zIHIjvRM+_L{BaaH= zB~et>lp!k)@P33^Uv%Om$rh%prQClNfC~K(?2t$CUOnd?9ARaGx-O$f&=qRyCL^Vi zMzP*XG&m301AQ9er2#_>hnoMKI594_hkbvjY*w`9GF95=NgfdK~h0l1r_Yf?& zNA69MJP=n)Cm@Ek^Hz1|+SJ_Clx0{NYfPWQLwFv^Y|He3no}uVFVlQ|aTJw2T`>C= zUmtUzwVURCO3K4_fVKmDLmM{-)}cVm zx!imaHdxv?RO#I?2;%c=?|=k)-CQasKaRN5gzAUa&8VV5Gv0t=K6|T(sa|itmB-9KJK9peZr+YrW+-YOvKGP2tk4^ z0)%7%s6oh~BjZ+%r3w%Q`Epsx5o{=!SHf~1LX}}{6i*ERf}>EtL_jrJ17VE;W;J|! zYqJK}LbRxKl>&HKVKT@-)K&hq|JV?`hNA3^BFe1~w=XLy=D7^YAs(a)iXU@`fh{ST ziTUA^`{dUy&y-AOk%8HfM8mo^krZJL?8~%FEE>?OiU>iVn|*fSjzTEAyj()SV(r@6 zaD>IDKk2lzwSPllwWve&=WK6b1jI$L?X?>DYFHuc#PStGKxwZo zuM|=@2Wh6BrviZ&Vu8D6UY0>P$z!%h6hcYVSL<9?05>BHGrKV_!moQ-Yzyx}9BZo0 z0Wy01H^|u+jDDCfNLoq(P*x&p2Ie*h$Tav8;RS~DgrF%)uVb$IafVDB|J!dl;c`Gw zO#pa){SdLan6Mr+@UYWo4L5(~pH79Si+vKHrKYBKQ09et5(Iq2q@k*7XlO`*exI21 z*zd;^e18qHI-+pr`TZL{>Nqw5!@RRVI+;f2W`@Bh@Cxo1u#;j#!+Hw9hhA-2E=qVL=9 z+=kIVZ;*4kr@)C>Ny+O-mkzJ~0N~6EavKv#gkL`)I{lI;e6%I(76@T1vVO}1xG@Gl z2~TaP>G<@sLgDHM_{FoK3G6$AGQQ_{fD+j#m}?`RzP5DASBsEG!fumw~d~ z5$L1tZFEdrsSgpXkO1A{CD2U{v)+*Vs)2+&&Tmu@3L#gN&F9A-4^I6~ac+5|1iAo{ zE?_MFP)1wz63(IR^(X>5!22bp>kYJ91HmI?UP)M+^CmG1mMth8VwaP7K+n#GQ0bnq zryDxO5u>jkvM~Y4M#r|J%1|;}P7E19RD5~&^L{db0q#H`Su^tIAt9f7$mVAYnOG9| z#TF&TDtN5n7Y$A&hoBIUnMj1tkkjp`qobn;>pu)9 zoNJ>zmK4#kA#<323GZYAY+L4NnV1fRs5?pmbeth{iS@$mOELg`TOfZLk}9xR6jlUG zO4@ufJf}MxaE@2rr=}AA-qUEf73d%CPN#O~WF-oHd}qP76K`%o_%Xei_;A|YG)y=T zNjk&8kfAtSps@v%B5S;~cT*`5lAe%1KObvN=&56jranKJRyChp-~e*8yra1js?!N5 z&e5LLLpV3Fz{rJFsoRnDYN8wie5C!rH!}Jg;p=T1V<}7YsIaVBkb_>z(#PjnI-ihyNOV)LOm)o|X5h!y#UMS-tRb4qcj|F0Idur3TbNW>oxB$HYmGp!Sp3kRexs0J0^O zcrg>I9?q!Rw#m)l#)tF!&dMwuJy6fGlX@0jOvxB0x~qD>xp^OejRY#FKsmUoJ3UCk zqg{w_EYm6-i;T}*8HnD#tLiT$g!a<2_1*aLjxCH$Rtj<6h)h8&!9VgWC8H%M2I}|_ zSk`0tVop7k2*2PqSD<_WJX8%tLOPo}A}_Ac%N|GUF(L|FK^3iBp8P)CaIyJ(o81R2 zV(v*B?LV<2!RcsZMBgde0vZEr}HmSLa(Tv5SCOnfO84d!~Ng$EVu?I;_12*q6mI}d+=nee3^_wNYK@P_|7 zIQY-GP5TA_<>55`$3LRvmiEb*WLj=9s1o7O-m;h5Y5g;Sdzv z{HP%{kYyAV0sQ)%lts_ZtZJ)b?>W;YfxA`TcHBz-5EkqCsdf`So1G&?OX znE-{U8~Z>xqnKxGbDl)1wulihVM0#|KweH&RrL)(AJjDIxdZ39I1#>ELpWn_d!=yr zi833qJix900-x28AltkBaQcG#SOe3Zwq1MnqH3hWcmK+VJ73Unin2NMmr(Xbq~oD9 z1uuc<+#uA&T%1(W&LvL6CE8BBV=y$)Hx&Epe=H@KNivYhRcNpfml#0X9E|97A>sZ9 z;(5R7>I9;f=zv-Aq8lV8%C;mLP%$2b`rURD_36`q&^STaJ^uFXTTs^4J}*MuY;1wA zg2;$@-!I%5_Qqff1plv1W;*O;W)x!x3>_|`k%xw(**Bcr$PvY`ewL%(*)o~F!v5y zXsR*21wug-X)!yb0~GaPXtW)ci$R#^>^hcPf@EJHHVi#CnFrUdB8G>Ih_WL<%-MEk znJ6k!fd-C%n3Oiqj0WP~3%G@+!66~T;-qzTl++L>c~aEAjp-9Y)c*)tOA7Uf>wzRO z1dBQx7@iu)(p;Q~*JRk4XOZ7ubJJ0PA0oOAB3}qHrbw}GLMW5205OH=iWiIPf0d22 z_CT1Xntv#B4#p5;`hGMcY#_)j-uvbjbru9%sLfDy{raIo9Y1JXFGL+q0L%_6n6tY?+w7X7T_yUM1%QK zptsActFN~J@fzWgUJKV_4xr(PxHxa1&umk)Z^b~MO}eGt3Fr~wEtn$h9edNIPhCZ* zK>07)o8S-soe4u1{*V5sf4;z5tp_nk8Cjn06jW7H1L!6Kh=K)C=b2kD(9BS35%Yl- z+ogtU>Qo=&HM*3@G&J&ZXNxy!!?L0Bpu>UN6@Sf;!`&K z;v|5c%q_$?q5>7h8=<#h#K2|l0@nhnG^3++`%Uv~wG zRN=pqqwgFq69x{Vbbn1wZ5eg3UdU(R2T0>ec}~4zz#}svaxx5;0>vS+?V#}iedZ*> zEeI}};wbG%TozhQg?L~)2RCdBc-K}0{4@k5YhB4A}-wX>Tv+!X8i2Et+V z4&wx_FT@19emN{&3E_kdNFIZ63#ef%AjX9wXrshvqGOTxLeJ3a?}b|0BxrA;3!WE* zzLA>%;tA}Qu9;`Rb&PQwkCEJ=K7NW)e2ai%M-^ebLj6^LUmrl{=9{yH5d=c{N)I2h zFcg7CKa7kaQtU=h_5%;3j0%?gm2)5)0L#F{-g}&6m)6VDgl%mAfO_$tv2@cHie${OK3WeRA^oXXcf+VUNut=WABGA^x+%gMudpio*aQMTQBOzcu6F_{=aCKOS zO4OMuh6w0OtalUKnmO%0!Lan8WT=VL|-T=6)Pnp$`1T1{E&WGjU2O;WGA|>7{7)s<kO9qdYOew zd%{kj#dC`tIDkH+gAauWhNGhMon|5%LW(T7cqCXM{$~88y9V<5?a(sdzdMEWrak}dLSsQ}AFB=j zC8~zu5CH}i6u256~|3b^YlcJC1H_{ug2ouZe14SOn;Zq1C6v6xqB}Zul*RbQuI)1p}P%Z4@IR-iV zjsNPLkjKO~WE6;Pejkp&oBzn)MC%K8DkUA}2b~#< zV6LJfiX3F{@Kz)C3$bdQ6TQHAA_05=2NCKKs--rlAkG0NpHsaB07rc>?p;aaPZo|w zpp^e}nQ#9z$j2TS)+dGgtUS?*g7hgeUjgD@N6Ef3XyR{3{JZfpBeyAd&k>2=5pb0l zB5)0X-zfs*r5Z}7nc3Ix=%N_=Z?K?|gXwBG%PGK)DoB|?i<@4adKVEVSS-p;XL;-R zIs1XRGVd#Lb%jZ+7R0aDBWe_h5F0DAMyWUdzFrGlkJ+WnHM52XsMcy6=%27cr|%lLHxJ70kO_@1#OeQv(fMBNZZn^D`41#V{8Nes7ak}0kc=np9Dn&Ok{6i^ zWx%1dv&VNdfjx2Yi;Hfs0~-EGn3!6+>z;BHl_~!>7I^rB{}a9c5xtSs7P-<+0yKpGj&J|C`VV{y$desUC4;g4;*Kv0cH~t6lZRNPM1Y_u>8ObYQUer0&~d z2!fN~dIPVT;U+)Oy{P^N^FcPGit72m)zU5y4(w-)z%&5$w{9UL6wfaK|8C8B^;j<}6k1Sh2S|99h1^6?CADF_zx*3kAGp)W}tE~f9 zgDkW}P%V^M8PWq6qkLfXO9V`O`y48$gqk_vD^6968DxGeV5V%a=oR+I96Yb4$_d57 zP<|)pT)BA8<{a~r+T&hj=kC1S8N0T^#YHe`av2y%T3p@E<}VDD*jgrBY!031EB^h9 zn)Kfz+!k9E!sT4V0W>+`nJ6Fa7SR+7=Hi!bs)})9bf-)${&AyW6mpGva;(LeMW3-kb?0$koBDDO<YjQ>J}&b%_D!1 z%jqVlL~#lfpC0k`l z2e+IRdkcb2nH@U~R~9o%*HgOw{5PS%fXX$pmW;dgpR#IxAR%}MTa^I#VyZHK6exc`?eJCG#QsRPd-@;F<^laPR zaXQSUEkl@&xl%5HauH~KfN67KC*NmRq^{Kr9)%}#b-t+}ilt|`<(vj{l)UTk{K zvA8a`sC4;!yS(nN7ZY1ErI*R+zxES5NVWb=N3VBD7#gW4xQ)r=FgDig;qYRN`^S5P zH*eHEB7wGvd#lC;-k5V)O9TGvH6`Af!P77O>~pM+9@YR3O2jl>k30RW!vTi$>3(Uj zDn;IK{qeEnVQ^KIickVrXP~jo?e)YO87o-+bb7U#8B3z!T1z}s1lWn^j?-aYEsQm& z1W!}R5yk2Dyt5VlIcB4-HQe}v+85BXxEhp*=wBPJ*z7o)eADXVJ!*ZSxL4Hj^)u!X zvXNdtgRt`zai!FNx~F}k0LV~tOG!p`NMmFH4UJ59C{9vzEv1t`9F&wf@a#7QF&2e@<{;;*})ux#W^%bSq#Fxl!#?gcV@qhXc90bV3-n27oszmzUn0YZ`Sw?I?D&DnK7W_l zAP=uD4*hE>Lb~J512X1cA19l*DrvWr34hEm?WblIMyka?NP6#VTK-tGK8Eg;6y{RW z;$#Z8(=;xxS-x4mgJ=e8M4WUAnAJPgHGa7%+?a14Vg$l`)_xju#0%;Ip z%;ZdzPEsFkl>nf`XTH2It(7O?tI4*UjYg%}c4S_G)6&6p@SUf&fWPs3oXeSXUYBC4 zMqD$!)xq=d%kGr1r7DG~Vbx8su>xQ=d4pn4H@j z{!Ch&^tgF(R3(vHjdQN-qFrO$IOAeA?KjK^$v7#|V%5jX-u2!KLdfL&FKgF(;fmQiq-Ow!$0Tx4+_gnA#Zdld$(id zQuFwVW58%MgoD`^e90FruWcNdJZ?DMQQJ8_kref6v6jc(?EC6qGsSt~#js+<&~y^muU`64-~Ib@g0lG@BS& z*MHo9u?elA&bmJa{KXR#q=L{!*|qQV>|%XX@Kp4!vCvb+fiC3?u9I(7rrXZxe;xmE zpJ8zqhKX409`#wO(>N-?*krJxHZYp&>e;OCifD`|xt1z{9PxAq?dQa8Z~XR>73c9C zB7*Jn>y^%>+_TiBDBalT*g?&Nm!;J0@0uu&+Bx-%FfMkRhwM%O@{hHA%WLt$Y*%)1 zc?BP9z}?^UjxbyMzdWO1t1|R1?oD@;=G9dgIr)4S)k=GwTOYlFw;qn{(muhV?je)h4is>NRI^VDyBA+9M&yy(TUibLozb&S{r$Ge5h^r{~sdptnR~HZQqIBZ7_Y6kAZP);S$$sC1CkJ7p`D ziw)SY%B{V+-QJiGZ}c4dg!<~Fj0B_k5te5g0&dVW1;D9f#CAY58(`RscakjF`ZD&SfmJiiFRCc`v-85)uZ%r4gr zLx)-sBE0#1`p(VDsKieW_cdl?H^sUAo-F>|7rDU;!RD_JS zKSw;si~Cc_v9b(MBrueV!KEj5v6@i#v z{9-tfc727I0V%_^&sF7CHwh1`*ZzHmLcgVOZAcuOET@J9M=>bQoVt!EI6%q`)}3d{*Ut zW~$Mf?TVOefe}72W)+f(hdZYP=14d!H|jk8cof zJ(-DHSsSjMt*dWKGt;h^EjWy4Ly0iXu~!Q=C!S{HPJ;Cwq`r^kHiOK%VWGxKp3GG0 z>C_C^Y2~YKTR_Fykv4R5l&+7iK2?yzd{{Tk<{WattF5#K&gN4s;-z`?eW*Y7L2YjE zjNFoXTqe)Bz|jCT50SqoZs&cwa>pXy@wxGliunqxJk58pscxD$Zl-OzRiy#xcql}r zbfsscf=zbuN`oA3#%9+CF+Tk<#@6>0w7Z_TjS+>nOJWdcu(K=0{R?^M5 z{Y~_p<+(YZIHT`di5<9Lb6>>ARuVjo zs3IML(lrc;U}AB)j{@9VGmR?6Nzd~L5HL6s{CFA7cBf5g}3X>$aKDJ!DtY zgd#Ic`XCdrwUzMtO4JFgmMI&+vh~=f_!WaJT3vMQfZ@%QtJHbgnNi z`XaNJX)!dt2al0AtqhC|uG5)?)#wNY)Sii&K{X_P{)JjM(l&sJ=MP-TO{`i47-DNh z52|8W!w2~qjCtOJJ?B>ukvu&}xIhbsM$GQ2(Il*EN+&T^oaSwxo0m1ptXO=(K zD0D9VU_;wtXyq_5%vb$$nTX@x&zquN&#>sb+HXu6Pt@%39ajpNR4bmJ#I2D1nK7-& z8Rvm>w!}{hZsSTQ9ksfQDT#Bu*QWXbnIm5>@=m}+XnUF=Z63Tt*$cFlc0V9cfU#>L zoPF=#L z>y5H4k!!HDHRV>$NL}Uo`^FU-cJ1K=!|uGCtXMd|kF%cC{yoqaB`CW{9rZ$)3V z_?BTXw>r-qt5~*S?@U>6Zywz!-*m1VjpfO-s4?b9ymCYfvg!e=Z7KnZeW<@`dDd$H zI~V^#l^!IQzEHP@)BvqEg2?|1{&;ejO8^(@$^|N<0ti3E{vZ>l>ui2!HENmx9~iPV z>{zjp{=H+y8EZUfn)k9g!+o4!5w2pWnA1Ifv3W$H;r&gnG`gv5A6GB}se}-02V{y* zXXbotuGs8ZJ#2d`*&J~id`+0iVbWSX0|G5WnHN=x4De=C?v>qu=->rZq$y(;n;OP&KoNo9@ z{G@$OL~Ob|uYT@UA~HUqD7Dix59tmyO`#)Kz#n-G*#;b`gr6Y@>nwasRyv(7U=}C| zv4O0(U8(>DD#!T6W<^kF-OT0(U~8?;IWZi&L9%Xcq7#XbGj!*OkBo$cN5nNU^NKk2 zIx)JAJy(g7m*2lo6QQ|#t8OX@Qd4a7pu1*{y*q8o{c>OgTM&yZMnqPy?6L7Fas+;4 z;CkpaQ)YJe>)QJR7JhsVi)d_uRfoMN>mxdwnqW)quSMdF<+bUn|paOzQ zb|s0Od(*sv7PwvU%&hMrv}Q+oEj8B8W)?Ql3$1o>b-Nt9jVoKXp40AvM!Vw28V`>^ zSOaH%myiMz$kUaNc+NOg!R7&A*eE!%)McR}J)JS)?LHc_zjSV@@hYb4DAWKzDQxP> zZP;#S$M8ov^?>!UD{%93XhdTV+$)m23540sMfKj&9xF$)^*VjAk?)tbzFKnnQB-@p zE28>V*T;)-La^Nt^Pn#aTgur=SusZ$I)RIix_^6>yeN6elYybOISTOU?$}P#^y0yS zUdUhMcfXG0LEbwMSc%2rH*Ws6rhj4)!l^Nd(ezr+`Zy11I31D#0~V9fUl)zV)BJza zt5{Us&JJgd;^WYemo@mdhc4$bz9ky`8PFmC#+~+_6sP=XP6$BVk2PVx&7}#)g z+1zDRwE^02pfR}^g8|M33x7cs}@s&uN(5`!xpM!wM z;v*X8Vn$Yap(MN-zPuTwWBa)9^+gKx^9;F$ednN_6;L3M>4yqOg@i&6S~VP)Flc*I zO?Lt;MAgu-XAV**IUnL9@}8g*QlQOyM`t4rCt>Zog&8khJ)Qm*;w@FJ&Zen>LQMUd zxlpt*HBw<(z9@KZ(2j@s*p-|4wpx|<>Cb$s-9z7Idd+4K=e{{#oV-^|;|$tgDw}wk zAY`{i0I`PA%W=};<}+Q%`S#HOBJ+voMxbPwzE2-HB!ypB)6OU;`E(yPwlZsU*_~g{ zwVWl!`%b)mxab_gDlG~!LzMR z9wo7R)ss=05MiIj61!89Pn%DCJDm(|_XLf2rhsQ3x+ex?he9t#is1tn_kLa@*D@c7 z4ho17Y|dUl+z&xr;CKZ=@6s+;$ZqbDIXXRwpCwO z_Xe6crdHn2jFfJI8)sCs{D#wR-sbf834>RsTe*jr2d^0_!peB!JN5pn%(|uJJB=`K zQY%`+=BD{Bal(NzcGxHU=N>uIwx58=`V~%wu-r$lae)3KO=#cEi7@du6L9oI18JK< zNmJg$B6jA4k>bk2m!zT8Bu@XY91u0AW@1ufcevUMoOX~D^Z-D(sO{TYC2=iHrl=&g zr$;e7k2<6D66a;<-OJA#F2#%fy)lzF5=;JT$0sC)?RKSjvHZPd?hC!cOhJZ4%`@4%w*!RXAH2zuVe6iUVYyU+4=7z5Z8uvelPO6~ z{QgY>vu)?B=}#U_Jj8Nx37YIP)P^y(e+dJPT?hxuY?6nQwl?R-S^0q98<3_h_{@L! zVs7>D2;C`mMaA<*1?Q1R9Ua*9G%M*N8Ne0A&O)J{eS6^{8GutYI-CX^rJ4DI8xLYc zGxKJknGHHzz2nW=s?$)v8u+3gvbbG4o^Dx62Id}mdmGx`Yv~j-EzK5oZa;>%8a^_} z2HZP3X)56)*6?ZfIlhpFWR+U`y3M(e>-?{;7Pt&r>UOj!E6-Gvil2OOcIm_ZdTTBi zxkA4ZKaRwy{(?T?93Y^KWM>{C(+I%B zzA;c#w6k+IYrw6BoxJc-@I~W2$u7(Zfd;|krK-lST#@BY=?ty4fL&Y8bC!jD@V!7E zm)h^8)arW%~8TN_9hBDtL#j^!xOJ)m_A2)w{U92F-Dt*FZE$$cy=JhO& zr{$;@hSJg_?SGh+)wuu-4qd|yLN$t@tx*s6{wmt;TO>E$c9v*UZ=Fj{V&6K8Tq@7t zge4>d#z&m`M~8(ghVxO0r<*%c4%!qy5VJY-Wf zR8(9V!}`xg^UdW#RR||_ER638YpG!$-yKY&ri_*Q8x}MGt=7|dy!DTFj=fG?kPqz+ zo&a(Sbe7570AJ{cK9iYxmh@PYb$k1ld+I<1!)Y)G3sZ-ruqt#5ApQ83Pt^U+R1Aio ze@~J`9XrUxZ|v1=e1vk z4zN5%6__h6R$sNcW#Ic3)%wE`JhMFVDteAb*c0;ly_QND@2T^}sRzoNxTyf38E1EB z;e@tWLgKcFc}o0&i*jARAgd@GOaSNdJm$EvIET8LhN0g94vjI$wH}=#7P>GES?;*nm%VYRbO@k>`4 z`n@$17{&H6FkqWyq7L#7`Xr47_BzELWCj}V&3;p_U5>9}__>bA%h+|A#FqU;GMDVC zVi`p*YcNFc%IH;?mXdbkv5NL04#yy}5impA)#{=a60Vu*bl%S{D zfFi>AZChozk10}@5>-O3>4hC;dU{Z3-(gifABCG*dNF0wGJyeZ>)w?1+IGrx>_J|J z)?HI?QqP(%{75zlaNVAowMnR@#7SNps^g0)7>%i2`AyGd&j%q8N1(%>AW!9h{vA;G z{I7;GF~EU0!>fnX5tw8&zI)knYQ1V;!mk_wf|wJdVJn?z$BlA+G_F(xhhXU|BnK6e4{T#!q+4 z@r2k~X_-Je>vUSho*P{mdG-w8xQ1~_dqUcV#wmqE-5k2~*&-+$K1;=+c zY^|uRTow{kiJRI52M@LbJnFg-9r%Yj(WsCB1_s!Sr(Ir!vL}|k);9QRQx!Zi-a*=q zE_;$Q7+75YwfxEMOP<7v7j67-reh~ndX>Nx`N560Rjy%?n*;PC)X{o_!2yM{Wu8mH&g`D{t2WX^ylNDJus4vNiWROEHZdf#<9}jhvr@ zdh?Y-;K?o~(}zdE0DL;LfFF`B=NV0no>Z-Z49xHA{@$(0pdtayfws(0x!Lvhl$#T#O(bE4JN_t4`L+}zlQtTB1hS@jJ2O2-qZiFTm> z<(bi>ND|M0I8z@?)5UuCM<4I>ohznVuu7dyU&AkR_4;IYFEL^r!@;zme@c{d|9OD2 zc+s&k-{NgPy%D{Kil@^rd-aQwRDDkq3_m5RzPOk&7FaqPkX=9DKK~J~t_e@8J3&W^0PXrJK-L04M!ig{n}yGP4BeOkiSw zCNK2@S~xlM+i%zOf^_thWyfDy=JztYj68e>QsZ=D~(hYxg51c^TYNz zw=V-nU$-@wmVQ3@W--l(XnI)Y+C9I5?;2Rrno_IWwgd#{(QPYGru)2%S`7=X7nGlr zlj+`jg@gTGwH+KbjL0@s7>1QJuGI*c{%<2K;eqSH}C)v-%vAyzh~la20RK z^{3~s7p+hKw0>)l%UKEarx(^M^Z8txMMA=Yb- zNT1)&_wbM_9kxxuc7GcjzoE$DZ44v_qmHI*^g*FSKVCR0<@jjSy`!QJs=N9iTlZ| zpPsy_g@tNfWph$9%E^#-PlN2r!k>)4^XGJ18fAjR19W++MO77+=jCH6%Y1L)h2i^G z6>axBKJ%K5yf+C|RqyC%?Nt2~P-h!7$3gDfyg~8h*xp;o_)b?zB0|zV1Eeo5{Q46O5b`8OwLsJ&nbD50(aZr z^E}5J46?tSMK!cl{a@{!2{_j4-tRT7R+C1QLS%}f0ZFDNJPMJ>oKnV&JsC1ptI}Xt zkEB8>D)T&NDk35>%RFWXWz2lO_tRc$pR@P7_u1#&*E#1p*Lhv8R#`m$&;Nhlzxy|S zzFlIQai{wy-YhNBH`O!<+AzGo-2;Js%Ec9;PVS|76))EAYuREm*|l~k%ik^P%7h2X zk!X8I75duB)vS9>8RATh_F#68Z=loHcN&E)`oS>SXg4{{>N-rx53=XoiO5vc!CEMP zi}(qq>ZFGSg!PoLLUyV@!ds#gcxAwOOvU$B#+fyrqxat?7 zWB@x-6`tO{2q>Rkl)#zEIJ%l%>{Rwcuw6#AEVAK^rM@+;2>raGcZ-urjE|Sgu?1qD zF?!pw=VwEAYTq|_kCDDm6)mlV;Lk1-JXX9K%)|SqdOQYFg*$r|u*U9dMh`}#llib+ zN`_$`dRSVo>z!IWCTp^6gK~cjB{`E5%O+BjZ`uy=ql)D3>N{hToTv#hC5dIkGT63^ zHy}NqoyRyQ8zzhl3Yte6j$ND@eLQ_J`Bc8DJdf~is0ZA*#K5X;YMP&#?U&>yh|*Jm zcNx=g(FMC41Gn+SP=+I2n{Qtk?6v31{cMz2l%nacON+9Njd2`7^iB(oo}D7A2X)S? zqb4;w((j)InDwLN-pP(L-6f58qmYVl=<=H>MC4LY;H6{8#UOaaLWEF~=3}g`r39GGiQ_ci^!(ZC{{(+smAB?U)w9SndJL z7h?#ev21j9!hZWUS)6&k!NLCek8}L3kElHy#gv{n5=dY8PYh)iFRl>urHmi^TECZ^ z8q?jS#{_&de|ZGICrTiEwB9(K#dvK|SMj2y-G@rvT)%j2_Nd>DO9kF4&HH2Y$Fee{ z#@}a!HBmJqZ5b+J;9BImhaxLk#N+AL;CwvbLH|VCElRFqspwiZiB8lmoWc%C=XRUc zCm5+B7b>4QqC6LG*@V=>tDpz!OO}dldd5?pW|4k=_-r2z(gr~d?j@{q+(r3cc^<(IiV zNy0S9kBJ;SIe``i-MFo!q@xX!Fd%=PlVe(8krF~}9;;T}D;M*>1b^XZpw=QTpro{0 z^RS5gO0EY*oyFcHJ9IKSOhL#ka^>z<$8RIoq&t7-j>o3Gw9BQUMJ`fTx((D2VXm_j z6XkIB(J>tP(ILuGVcI02rDZqzX?ZV$$a%fja?V3nC^|{}j*HA^esr#i?z`cPGO;Pr ztZWKhcdp!Uc7NH4{9wC8Y9npOov^`31EsgchZ${NtQFaXOG(kNMGo5+V=MMg z^hHuI!00>MFr>%PCe$W_b_<;!TH$=M;_>C5#zEN2H(4H8<;J=1uEwg+6tR9$3) zU77BQ`qbD{yBVTD9vFVv)O>}ntuw%?n`Jm$*AM(UQfIFCoLVN_SsA0pS;nx{cyic7 z$4W_Pkz0TC%((^&-^G3{)B3j6Og_sG9dl>iNn75rXsO)H=&Pc;ajDJ4aQW`K)v3qq znj8uCZD`8qy7dr%Y*S6)j{*LIp(Ee&l36PDx4P?cvJElA3n#?@k(od{E@ZM%7wP;R z=faH@+lX6mml=_*JlhMO)h9OEec`=91!rwCEhF0nDJ}VXaf(~i6ik+VJNoGO@LP*p zY+L|K(Wbjgif{pwUwn@p6L1+-&1bXc-pK{iS|*JrgkAf-v;d8X=!+ODGYF^ld*m^G zV5*?>pa04rVyTyLB=E9!1*ryhCR!U-7z1*-lwINTL=MMp2W!iBZbQw$55#FXOb>Vn z#&`hAIureri;Gc$f0^KFsj6yupR>3j89j~r+xrbvP=-hV&4wN+uRZplb4pl0Fv{Ke zM_cFRk?x|ddIXe6vR>*-8ZUcPDhCpYrEvV0;Mnw*8XYtWY;le|B*7pOb$NgbqyMHj zsRUY#rh7s{Rm1|mvhAaqVau}vql6Bp=g-j{QXVQfdnq4<81xD~en-Wk?<|hU8W(8% z;VuE}sfCBwMVh_IY6<@IEVEPj$UPdU%@y&XA3)-7Nc-=*bbc-eYLZ^v$f>EP0xfjiJKu;tgkg7tvY}zLY)>x%vxsV&fMDI5G4` zKIfX8o}?Y4<>W=0SMq8xxz=c{mAZl!%iNoo)2_Nz>~|kiIVc?P4fUZ?;Oe23)n|4@ zt-Q5#AL-9?yrUe{UJk6qgf4-|@krh1%+fo`Jzj6~z$E70c%Hbyq z7^-5MvwWpGUB?rRVtZiKii^3pxDt^)LI_}V)Puj zJf9{_8v~hk!*<=jt)~UE$cFGFEjHl?iUOo(gl=MsgQc?s@=K&AjiQ7E?>^64?fslI zkbcX{5?m=;S(R=_Is~F^IeO3z`PF6O=!G}el4Vk&c5GJ$(KSOxg+du<>t>O$tX0lk zW;!wW8cF#8%R8r2cFfl;Sb79gQEK-qq|?i}(Tuztc@2+PXCBkF@n&7c4y|vNc7V$5 z{k*+>;c7+(Rs}$&08p^`8Xs@=?vBGKATF%{__RBY(3l=28uQJ&e(y-P8@X#yMJkou zC85#BK0GitNY?fWIc!GbY+uUwvsXR|*pv_R&2zR`=laawE0V7j`1kQYd6xEo{c zb{E^a1NT!`i?>`6Htny-7{d$wmgF=)OHvK(H#c*kM@VMeFP8fq)l2-44O`txbcX>J zkU#ZHV6bb(AX6Z9l{iMda@-Sz1jUyGiiDyAWIPgcZK8MkooD;e;eB<{iha^gTj@>E z0opb;M^Y^*I{tow{n^*-nlq^~EeYpIS7{Q}wDP5;|10~!z|k9Hzn98M{y2m5jGW~7 z={W$c=oYhG0*ye11xtU5Ol(!sPC7mBZl~9FL2uE=7sv4CqxzRCFZj|O9kru<$W7&K zv8F+(Ov+ddmKanR>dYeF-dnA}L)yP(&n0IsFz({%OFpF%JL51ngX@52Ka}Z<>u5+B z6cpD<)t?yoB);SH8W7*)bsf*=^96TuG#K6@nXmQ(Effu{h0a&e?Z-1i1u_;~zUF}O^VZn2gvF21t@-V%y7Y-ghB_oP!N z*gY{S%JS&V3uVe0&CwrdJZn+5$92@k;5wqa8%A+zq6qDEfJ-CxV^eU^ku7$|(ND*& zoA!NyCtYvDeU+x#IuHyiYF_MV)zujrEpDJL6K4@t*2bO5h-uwmU85(qdAH#qwPiD( z~BsGPvK2mnI9EYVaoAx-BC(c2BEwe>8Oh6M56iKR(!5 zJL|0U3FX4nmM2kB&XZlpBOH(mbiAOZiw3Y2d!?U#qKks~Nbl5}r$GC|1 zud^1?zMquwOQ5+9Hs9rwzlx)7gUJA+vSM%PVwsfL@uG-gU*&`r{`lzu8(N zXN$|lgI}f=2U=yP4`vTE)VeG&rWE12I9I@hdqTE77DZpM zJFh$$)z9t5NSFt^6fH%ldeKKJwnvglQ&}ob%Ab$r%gdGG=&`|V9dFpC5nYVi%FUEp zwx2KjSH=@%^ouy*JGM;RU)bQv@6Y-;VpVb{3pQhOK0Dl`VSTwzJ=J}0fagQ;-P>dK z+MJz>r_nlxhg3tjE;rgVl`V<8N`Hm8cq_7`=cT5(%Vv181&k{{KZ zMfS|qo%=MCIl=`x>Aa1OmXHD0`JY5^~1w5K=ut2)6Y>4hHAP=_|MSy=r`$~AP@d_9NG`*bY+b6d!fKcSdqXp zVV0qz_OlzNYCz(tF+mT8<--MZG6A&)a)3}1WAI9eEeF=FjTvxFlhVSswJBaUCN#w z)G=>KNJs#SDl#JrQ~W=fIUrjpN!J_-lZ<`o9ys>%GqVqLgWa z>MYUaK*ItNN?MY;6rdXxP zMOrXpu$dWSwa#Qx419>%&-RJG?lgysz7)RrMHZrS;8|#{ZCVek&_fVLC33<%3F{Cb zvE7XOJAD8E0qgKg;<>+{QX}KJ7?q=fEg1PBFLE;gZ1fUh$N$n4ZFOFM9+0EY&1++B zu+wMpzAYhhvxI6*2E#IDQF(ud?>Gyn5DyeJA& znU+Y2{{R?aJ%j@ItG1Kdz>sWm|5+E|VF4o=l_6zT73SeV0IMjU|Ac-5=@H=-tDC;Z zb*eJB0HeGc2#nr!cIw?WZ%Nt&eUMvL0%L!+z=g)AOdZ4EV!N~X;i z#tajiD#`w2P~f9)x&IpT#J%`GHnsMj)SJR3{`+%tgfl=;vj946B1}}2*ip=yk>J=1 zG6nkmq(V?|C14CPkHO2qM;1xk9ExP=Xhf_7dx`W|MxUHVKZURthQEp40U3}dHOxYQ zy;(8e{f(EMzMkW<$wb}ecEaVzV>}S`adv+6mCVst{VYtI31KD?Vix;fA_gKn43M!c zPOe%{eqS8}kOsO2q$h%O;W$pL0yUdJ!L&I}{zqe~*^~k;lYa^fDCJ5DgxJU>0Og0W ziHrt}0zozt{*EX+sGJY~Vwc|jwv5;%C9xV2Liqcqcz^)#L^;VW2h<>fZbJ!EmJIO1 zf~^owP$F6;e^%mw^m7uAtKYr!*|(Cz{Dc)qczou4BXPru-5GT|4t*e9Yk%?pfn=*m zE8fHPoYcP+6>HLR{#pRv7W(LKVFE#bK`MJDIQ^Jn{Yz2#Pi&v=)3x+XpKJ=_0&_(u zZD@c(>k0ZHCg}gdAijr!&;a{>TccC+9B4`Yj&ghfp|&`HpxFV&{y8W|%zFf5GVjJl zy2*}X#xn|pQ~(hv!{-%DqylA*{rtbj`7%^up7Fw_kV?9 z^tT84za$cetN-^m?Y|{c_y716n1V4&6mtl>kl;@sO4ET6?eOHGKcKw$s#vQDS>x^* zCP~k_2;mJ|@(w{_K5?6yBvuP4JVQb}u9+ghs2?csM|{Sd+h*&0{1}6*p2+9&VT@$c zF+R%syY3T|2x`J^cL=LqX*jL z1WRYM0e7O&-|-)zq`t!XiH`4t{tFzih=!kYfbhJ4_=eBT$fP*Q4KZo| zJBKV)H72QX4G1D1SBOubUy_jS3E0U__tK}M=A#^V?_e@Upk3{+I25X@>gLG*4wg#T z^*wF57YhHL>QXHDsQ)=2VZim>16b)D-4F(YdqVEHav4EJ|G|zDWf%T~9aZ~3VMobn zdAveZ12Z94-a&9on`(fkLx-A1Zm%VH)j#L(t9Q{C&?;hReFsESIY^a1+T6(9^x zMq9ZE;uK31AIcm#3w_3TNHrCrpK${^w|@4U9931d;(O7jGJ#AI!3YJfM ziOL2({>vEse|8U8sV0u->6a^eB1Jeegx^m@SZY4c6V(ACoS~g!u?d9(a{`80C89=F z$i43#=mv$92bthRiNmxSCjdj|RpfN zH@ZQg(@CInRQcx%(ZMG`Rc|8w!1vgtGWyUI`usQ(`A7ucVhzJMa=!E=ZKoglC@Boba^~Y@D?HsVTjMC4N08b~--i;__fp--9eK*4P znE3gx^@-+RW&ZRebKv!C7B?d|;S3>BgNvLz4iD`7VRA||7nfiP`{6z-eT(F34Fvzo z;Vu&1EYe_fRTD5@ll}oU>aT(Zr4rL(#pMZz@dzoL4vCum0}}P)A>7F*&3Pd9__uE_ zdL0YS_-5%IxzL|l1SUKFmKHTEsaw1JgQ91`8WlqEgO0-;0>tgh#)YEqK>pmf);FTk z7x1U!>^1`4J#Fqr-rdt(tX+yQMd)6B2WgKDv(ppaga}J|RZm0VDG*|&U_IG(zVE?V ziU66H3%zpvQFIw45(aGZ66YfFl62iEx7o3O$z-aZvM>f&Q&s)GjzY#i>(D##%0~i$ zz71y8Vr{e}%Xj_F`!2}~Jf0#XT0nP^SrtMWf5yco8UHxF!_BMmWDC(ju}CZx!?QaJ zR__h=bru?Mtk*+l$DT+5lg@RrAs{*vQl59Mv;YW3mf5MXyKp}UO%x|~A?CkM_ZYsp z&`-#1fRh4)b@|z?g#n%`gwnRc-Oz6Umu0!sj=CskB6kH8Z~>ueL)P{VVe^CYrr%@8 zbibTN?lTeaAj3P*Ylzcwf)ECMOz9QI-be^SfMm!Dk#Bruc&a=F3~Go{9;huh8M|7Y}Au?nDsufb8l)|)+cnZ zUuZjXNfeXV`aP?7O^>!u&CPxLV6WMkp|(R;(_V_>ODA%k!LKK%E;(+UnIq{7Bo8Sl zc(_hCvOHEA$itZ&`Gjm{uA~a*4L>{)=9vQjFz5iW)K0hySLA4+hIuHE6${{8#+ zDGZhj_W3Y)$5ZDea}#KCb7Qi#W9vFG~UueaUK1g zMZQh|FiA<677bf7Sg!|$yaMALd;?9dH90vsV;GlycN9opE&hx*NWD_C#Y7Yu)qo0(HVAMydn=TmQ)5rsXBvd4myE<4C9h- zzrK0%#&1q*4pD*AjM%CYP#jqHt~^XY^!J}Ui76>LE~fiSqkHLvlN8GB$UFwgLl}zp z3kc9@YX(rXD&?XMU{^}OWeMF``ArudCJ`EK;X0GnR~s9PyZCz7p4`32X{sU_QVth*|Sxdj&@C%jwkW0CoWug3E||bi2*K z(5it2`tz&Sg4}fMH2#&wM5ELB@z=)X6uKjfzgpf1rIVKM*VIE5^fV|!M;%TGVA4Nw zqkXUf7#Ol|X(yR*-hD?>FnE$6B@WPkiR4r09=<;tk53bLRjaGUD^+Af8?vE#?9G1& zKiE3$Nq$4_B1Hv-U9q*%Iuo)Nkrg|9Yc@?0PwLT;(vp%(RH9bn&P~6-)esg}l=<;y zH8&+ZJbVi8cPLU1R-~e`l7|8#rD{WEuWE?KrG(QvXoGII9VRQjv5K0RRE4Q}?+~M3qZj=e5C6Ji#Yw;m zxJ^M}7U1U(OPE91A?eD5B}EOsS`~swMJnOVn*j-9)|{C>Gc%(O_AoJ4#E^jQJ}4M- z@7_vJR#8PmL&M>T3IE{WU|7lUy1LWRdapI0B<#seVj5fuSw{_W^6~-GIuGWf^j@b_ zYy>I42K?d;Y;4iFxw4Z#euQCWhjrH(cX$hY0NIOVgc^x^d%%@^o+0>(m|0cZuL{mjlK! z_7vKMW?H~=poPNIGDDW!tRnO_bf&`zY7frSZsW!WAKt$&hZt^&6HtDYz*S*Zl%%LcAgB)Fb{U?OiD$p?c zwZ8JlRDUd6!J~%{O%(PVI(*m@(K{=0sZmv~;Jda=Hu*QawvVm1oEU5(GK7HzkaH5; zCL_~gD1)i1J=~k{XM}Ag)Eyqr?pMFX5iG3~3Aw4}N zcD%+$Mxh{WK7-qM9JWnSMMcxrHsP^|>Dd(1&q?97c6P~lQX|dKxuzR=W2}-3jzFja zM{54Daq}J{j}*(Mh_7EQpv6nUJ)&{5iCfEF|7BGL0{K8!4x9jYJUy#Xni)lIK>N|7 zM-sN39?fp^E=!g!)tuCm*n6&ECH}86B%A>HeQaxMd;j;}pFzc2ajNY2+d@O!4n+z@ z70)HvFz=W1#>T{_xpVvW@7yl%V;}FcdIG3p7+4H~yu5O-7{x_JpKw}KWnHnSQ~*?+ zjI&Xoken-!&oJQU=T`t<>Jwr!KR>@0*gr+JwVH5>?|6ILOX%1_$<_&AUv+Km2oH~6 z!Oqu({Fd6~%PD{-#X=4D{jQazkM_zV7>e2R06&e=zTOnZn04DW-FLIZvzqSii$cOb zcR~y2$Nqq?NUSmT2a4Ogjq>&JIq}Q_3-~5?2>9D_c+tG^FJ-~|u3f*ribB}hf_{8_ zd;zm6f#RRy>Ma=ZqS5M7f7wQkb|41Wehr`U*G+* zr29ryF?tQ+t}_mP=UiE)fADMqET6iu7MVXQg*{Okk*X(7oCsH@lJCqfDA0J!qotv7 z0XY69AEU*K7jJZRbtR*80%Iq2buB)IA|-Auu7T+Rx9*4#tx(VxcN?F<^l-A;B&KIe zHa&oZ)1@Cs|JfA=zR`Yt`C>?1T->3_tg_rsuW=52d-{-Wn++6**$*mBNy@P@$O#Km zK)T0^+Z3aTckbQ0R3|MWqK=A#4>wj%_*+*G@G)zlFvQ&yWSDO9iR;z$&M6o{7>S9I zcmdpwPY5aaC}u6$S?R_hQaFwf#fM|oofZm1tx^94>AVQQA*9tMy^hGqnc-$Lc049W zb$C?N@uhIHQ+5Z1pNf2d*m*k=jLRpoGBZVR%P1A40sELXZVYRI5Hw>0A1|*WZ4Mnp z{g@0s<&}Eo%|bZ9X%(~BGoG9GDOWT}2@eHbOvl$jCMAx<h`X9&0sj4jA~xi39R4%pV5Zb2{TmnX%RW4*I6@Sbwek=?lSO@Sejm zv$Ap$;jKNXjK>y#g-Gnc&iVQ>*9-bX5F$QQkCT9lf(=ZaYNDvYRb*mk7owcvb#X(@ zRXV{Qb$175`T;w?B(gdJxj@B?D_j%Uy#n`PR(1S^^k|p%Q8YseKs8GU9%J6JMYp%p zayl47vJa`k2H6(+C~%Zyx*`h`F_Bll-*Gt9u?gltp#QUfLu#TX78cH~Q!3W;u@@Us zls|l3@3GISIjY8n&9o^axiSGsUuo;Ch_iTmiCE*6!+^jR!BeN*4+t=C&arO0Ms$5C zG&MD~2h?D zJoYnoGRs%2DD8jx^eHY%_+*NeahWuyrXI{nS5k?zmTvWegWd-o^m$CaesZhYOw<=P zJVc^7=L+;&hn`Krc}nviaVvt$)S7*%uZq&v)>d3vT8)f&$?QDD1h9a3dk2R*vA0f{ z7zcYyApi~(TA!_noiny%eoch7oO90UL%J^P8@%B{D#|VCC&~T8c$1P1Pp6=iUmX$JB{Dkntm5t4|OelSc{KwNp9@p zL&2%3_BVDC*+5;-t~UIqdMjMg!1Fi>Bq;M*tb+ps(Qppb%?OBjWC{XRSHf(95rm95 zAy`=5IOl5IThEuo$RVwJz6o*!;uc>%E?l^fn*w7Rnb3?>FNeJN>P|F-2nY(=X}h-P zFKfzn(NTN%Wi2!FOJoxioPJEexocJZ%NvIUt&TO2p{U8p-9$_l4rKN*+SJ5QY;JC@ z;zisJ<3ZCjhwtr*eBLeIx2c4J+9Mr7QvvOjwRGxOtD?gtXc5t%W=<~JzR#SU+c zyB7{YHJOi;XW=HkFBh?eCzOi)-Tfat=)1w9ziYjR*MpnK>{o|85;3K5_rgfy+_m-l z;ERTa=cp&gs&Swf!iT%7v(p4}smi{=0O9*F8pNvzxI$-Dxo~_8Vi@t~c$%cvI>Va! z^=-WQ47969w-))ir3_uy&vK&BEL*apd5%3$7l8aG`Q|aA@-$dJ_yKJ(Y(neHii;~C z-NMtPBxw)Be#jBA6nrPBQjwLTm+A1ScccAa<0ss|$S8E;oY1Qye#q0usC>$(%F4Q1 zHfQ22P^M&Dc|44mDli4a$Xar&B62rJ0Sd_IMppq#zX4{3gM$OtpbA&27Rk3z+;W@%MHUSR^=|z3 zTMr^9G?S!mShwyuV)=*1nl_7?83_e}CRK}i@k<)8sU==ef{%I}HR;_$ z#QUqQtu@_jU|=xNn2z|Hf}^1ltn7%uXFu}StEgvaMr!OFs85uSkB^6{V=z_}JHMg0 z%haV=ATZQn<&kO9eP&VmSo8vI@7ArdnBLVme*7NRPe@gj`iqw@HTs}6tf-S}IjbMU zJ)gW)2Y~6M!vGK!)V^GvhfmLi0GOfqMMZJZB9Lw`O`$Cvrh@xJF zS?-RTg*(wXG!%;^m2gIicw>LL00`O9+-=&)J} zccC!B>QB=Z>tNoKMCK=raJCOi)e3)AomVyw%FeiaZn~ zY-=Gx6NZSw#Y%ZqDkj}j$QFc8O=2UQmP}i=SnyuwQ+e{WZ%q&@B(}$gT4K}E#6?Xj zj*vtQ{1}*F%=PciLU-4x6pnqCfh3^>qlU3kMLf;>)n5rmN zsN?b&SrruO01pbaujBAR_{-yN;{f=dnEfqHdsVAP_D&CMjZumZ?5)kM?9K5HSsaaR z?eJEX{Jht$@?Pa;d2DZQZ70UZXYoJ2!E0q}!WU|*X$wa=VvW(VL!qc2ApcP%OC{k^ zsDyrb*&Axk(UZMS_G)b%)pI5)hyOZ!7&CKNA^4(#x^!ytmBW~@%gJYMWImBfxZ-!< z=FUZ)C#+7F*F4+nuG=-n)W*K8|32x~ z*vDJYJ#`iafV@^;qLTLSy+wJiVzl?|y`SY^<)PYpyLyHY{_hvukIG~JeJlB#$oB8s zxSNzydvCp!FW`^ty{$|N%KdBa?SSg;VOirFqJ&9uflQpLiEpwWHE>4M)2!r~b?_#A zMh39C4>`8==keB*(-ChO#GPkp0$;~fZp>)hzyChlq$!=ihD|lD52r^vrd_;vF`erL z(bHkPb*$R!2;osoWLzlb~o|1gy{1Fw-zFxb3fiOaF%%8PCA!hlYl5 z8V-x@d_~nHCG`T!UbQsMYg@CQsg-=gube!25(XS{@zNzW`L+2G)%tLrws<+}rO8fJ z3Abf6P0hET@99^3dU}YR^V$@(n8Wy)72V5s-VWG{q&)0M*RyFVdffa`$=B{kK{uJN zeD&g|pP?M8gN^J-lYM164ioL_Pxc*X{UCG5pFvp3tUaxHZm5Qak&z4|8H@AUZYIiy zEdG$89t%KE|9Ekn;k-W`$~*Vsw=tMc>GjrJyeiF=yDZa==H_VuOcKcK;b;2F2*h}~ zz|>o>&qj(lq(%ywh5xB3pGYrJOHc@tWi}vd=Y2Wkc|dAwF+?d^PJSAWtetS@ z-Syttp?zbYd=4DTbz7PK%aC0u`p5To{B7CB^%Jh&hgY5M?`&^rXWqZzlXdZyU-HAR zeswYEg2q@0k~#@D*6+0w#!A*HP!cq2Z{1v5aOlu;($nZcp(=L+CE!m>QXovFU9B^W z_OeoR@^o(r*Y)cvSy@@*ePt!|f~LeDKYqwcEN`v!$BmPyb~YE93TL`=@iJAXFg~wN zvsZh>aj0I7k@AwX+;j~IuU(sw-rihmOTf}PO#ZxA&|_QAw!r`B`(2oJhs8hlVnpq3 z^XTNa{%(j`b3&oK87h~p;eM;`+qbW^$j+o}Yq{IT(Dwu*WpS(}<{0NmaS}IMH~k3~ z8wkEd7(-1j)3t}PJu4NP^RG`ZiVe$Z5{Q|ZSN+djyV+e})nS%V=GgfxfmLF2_H(3! zTmHWN``P4w{rVLtfLAenaTFyTDTAzE z^#RuQm42^`9Frymf*%c6BJxcdE?g+V@*~?k#e|aSVl1q% zz!C`vl+eGAqr3$Iomydj*`GgqmTW&pu_;)Y>7ThT5J6iZs<=5tjzK$>6Zz-D=*wkg zW&b>-mb@E(+g}atpYiv%_k?@xL+Zk~lJv`5@n8LDUiqX%K)N#lK zoVP8~HSNm96Jq0&7#4yq$P8A$_?wO}JY8>Dpd+<8`&7(vGFc@-fkP+XyzcF__@gwO z#6-m?)4?yV`~m`$)b7CFn~(98zBg@4<3rh06_||+2 z9gpQslUM0u99lOW{`~mh_v)4WbY_V8*80-;&#d_NbUnA)p1v}-Jf|7`hPT&bKEF8L zl8bLqOT6=rOR~K!wj=nGoc-{(lUr+}agkRa_;lr&CGk~kUKfp1_{eJV<`^xn8boZK z$Hp@Dx8qb-f?kOuetx(%6-SOtREmjwUlb;Fn3}qy>iMxD%L1!@eF8G1ve~L*Fp%c; zrHMTFQDIv|Ik)Fv2W_JS04?1vu;mP9q<;@#4}2P|s~^Ux-kM{gEKh-TnP*&oR$isd zb;%x3kxfKsJN2G?Qz_bdLw$~3;7NAy^qgQ)lxqG_;GitD-ZkW(Xaex#lqZtGA@pc%k0B!UIw)3+JXj;&dSHR)?R3MzzRC3cfHa~>7o}=sqyuuXiD)Q9@RDOC+{OXz zYy{8dJZeaV6|dW|fVDJmpS#t=*_^6Qf=g8)5aFb$H=Z7hfBI<>twz~caK)K(JOR0WV&guoh{){*Wfkn)bG*3_|HH8IQ2l7dVH;U zvr}^P=uumf`tXLW&(u=7wmr{}(WZ}%A?FGm?w@(G{}3#&(SQ;I0Jolvm6?j+!l#F* zi=zb1&N}r>74%OBz~Z#Nqox*$hKaSQ`I|xLyT{z%*ZS=q$dN@g{tTm@6XXJ3bX@3; zhJ0}JHOrpD<`{t90@i~15nHL19=qw&>`HLr<*9Cn6%VJLCi9-cIb&w4(Z(2?nll_K z!>(};v$?dghiRJTGRoIEEqR@$d!_;S%p_w&c1}c#+EshBC<=ew+H~r3VORH(M4|A< zxqy&(H@yl7z{N>=3|jg=f1Uyf@>TiHWM>Wldb2F^&NwN96L3l1Z|-*K`Z&q&<;x(} zUfX(}NVHQrWU26hx8B~UrHKw@-UuwL&k$CBdO-zPS&Db#W^EzS3)=m@)0V0}K`06e z3Nms%+p%1+v!(1y%^c3UG~KH+Q?avc99R#FrhH=>EolDpZpGGel#uz)_bIAL5CS-x z8uQL2ot>)>o#4ahSiP*j8jd#^Qr_{)CPpiHyO%tlIxIj z^YAT~zgAa|L$tMJKKPuz&aa*O*rxNDv8kBtFh-YL4NG90T+mlMKKJCw6W6V!4)rou z2YHHyfkzn2tC3E9UU}huce|sq?n4BwYPf@A1^u2OtZ@1AP2vmR)dQQNMRW9BMrhzf zw+UO*n-}nO6`z!bs{O;bG}8ZC`0(L_XB_7gpW}E)cz@kjCIJMW355$H5G90?{C} zp-XY6F0-&m>lNF-Dk;1F$;WK_4KYnYk)vXJoy4nOdPUxKI9TqK`s*CXSamQ=*0DgT zZOm2L3dsS46~Va6)?)%&rc0 z^Z^%TcGz54Tp%6a6oQPMk2x}43ak?wAI!4qo?EU< z<855>D^fOt&w!ILM10{^OAdmlO&qC@m}pH=P1P;RhKzU(_}LxgKNXXuP=fBY>YZL5 z%}i-XpB<%v8#_^*7z#ikfytdS>YCvTrC4ze`MOw%4VsV@pvm`u9U_TNuhjWo2)i;a zkV)dy62Hn&{}X_Y6q})Ho9-XS&T=PPm9O1~=-^nlqe5Y*cjbYcfJK+ufum<$mUvA5 zyk^l~E@6ot{UGCO-z2f}XJe+K0|?3=wYRm?--0jM^wV;vu-;qYfY9q%q2<$WeaCNd z=ImL=uR|UWbWArJXS@)WPu@n`49e;{#zOy4Bdp1`A%5e!(8WqZC!mYv z>a~yY@uz!uK|8gRb&`_eJjHG>{`m9fFI>98K42WOdYuR7Er5+eq;ov?}7uJ<+jP?5(u8G8?47J1=jk=4#8`pt_s3+c` z^S!hm#WKaRONA6b*a!kZ7plKSGM6dIBu=%FCJc?o@9GRD{71Z@w5yTj?A4V z!(f8CrT;_+H4>7yHm+?J;|5f$ebt2Xvl68kobU5TmQNV!>a%ElAydv?k;hfQEK%7IzhAI0X%i{ zBK{q_a%|xYHIw+;$w1~)r#?bfo*0QRXx~dH_qG7-iZ`Z9h62_=?S-^TbZI=iGu9u| zVkt1T3g6=t5)yj%Q9knR+jDsq-9qVFDnM6&lcmCO(5I*&XYDbq5b*}AxW4C_@u7Hm zNuXMO8=i1Mue$0=fRz8WqI^eqY&g6%PAku}t#BrSTZ_>1OZTFPh$f_nI8VUOzql6Q zLTj)A4udP~Y?9TXtG%L2(K{2s6rz}1v>sR9}Dr)!p&4y=xxkrb1x%88LHpg*2mIY$=f8MtwDYK88KoYzBC!1GG zZt{!ekv^cmJu9$E%8evbn%J@+HF2t^CM(5=5r_+;O%qu)Of6qu)1F=`1hgqNUzvp% z;bN)mTW1!v{Sy4e7}!!dU~yr0hiT=4!Cc@DXpr>IAWl()ZNzyjYxPXsi@%)$%OGWW z0WdFc@4AGn2Pz9^G(cX%U`5U;&Yu&pzOO423pzO!zTcH)DCc7c#AIoEV}@i<;b~(C zu0pA~U1aM&Ug!mg^wVv>)|WaAG|JuASmh@=GBhB*PTBi!XMpc94#}?tGI1)0Y9i}f z1g(KNCID$*PoASQFft+{s8l#rLO@m|NiqUdD67~7XP#QRAzxwv;7`~r={CinlV;#%zZjHH1AaUPLwmhTEl6M`q|E2Qlr;H7p8(%tz!Z`Cke902 z%;9u-e|5|9v3uIGUb`tHvjkkE|8BJWy^pd-0O)W4#;SMjyb0&gNz}0_QwQc5s1SPP z!^@Y4dGt#~K5|D4UcApI?B!)zB^b0%C*f6DOj5 z%&One74K|sApXD>WB}9FQPN!#?zVEP zUo)WLguig#%Z;Mbm+$=GDd_n)FfdSP_=1`_c6c;ebFRR?18yN?8wJW1Bord3T|Dpz zo4^j>JzPw2=XXwgkCo5?8gAM%1tjB&xVSE;KZRDqa-h(400kcn;kL{b0++Nzlw2>N zhtTu%;PK)?n^;5EB3f?Epg%Qnf@V0M4TOzo_+Lmd0D*>G57`a`7FsRQ2Lk4_Lmac$ zW^)W6u32?Qq9VgeXO2n6y5?MP^6k50T@7vcS;ksyTQ0hGA*JKRTU&Eu6w8dy3Z(H-nv7{I9%mI{(Xmdpg z=*nV5oz_dX*M_k77W6uHtIzBh%i%wjN7Rq> zAq#J97#KB>vyLriLJ!($x-@+hoPi!o9Ac8jIqht%On}mD9d9GCb&e+hy%Ig&=I=K9 z=@60)5W^1f(1a|y5W5XL&pUN-QWeu>EBfFPT(}{OXO~zVc&c6Ins?iueplf_g2Dlx z=&@W;pV5F+z6Ar<&NqLDTsZ=WNc4iwb>_?&BG7|Wqgq1oLL(YTxJ+A$Dtr2?K)Kgv zdF%%&sTyL?8XysxflcNb)|^1>3PLE4ju2pj0>Uj33orZ+l<6f2^5CFAQ)u z-l)`ye(JqIS$A<>U&I5VUEytV6!d(T3;H^XUf42vctc{TRn@dRpA3GZpvU?mYi~ym zn>aT&w<0@_jEoG;*|Xu7mH)2nusN}>aY+2H=&z!OMP9@4^<71&Ppi5%^M!wS<*}9|woYbcH8nNAuVbuD3kswr>RAV5Od`}&Cdfet z&;J!2(cbi#D4t;-oVy7ICJ13KfMd-YH(t5bA?_DAg}iie5K@5XA!yk+B+VqrpeTZH zeJ;_y-Z>(N_Kt-mjsAjYJmp~?sjOZ7UP2lR`?GQU+*N51@vlp!I_>&F zi3*fSxPve>1$7ju@ALO6=YKie#OMbTcDskfHR1^9gSceovp2{BRAt;@kxlwRYv@mnbVe_4w;XpxKplkbKhYQGRIt9 z230o!%c=!bl{yp)d@ueR&DNrDuik)i2Qz2Ta;B$96|hPjFkP+C`T=r1$od0M|I9!C zyaxxAtk9|Xq4>?e0nPAJUcLae4G=g(8rG-&oD4VnMy6V%HF!g0b&TW zz+K3vEx(9(P-pmTp#!^7Ep0nnPfVyNbe{Wof>|;RP;%|osUK60TvmOhT{$L!y1Wta z6PF7YE+82-a_Tm4UwB!UVYCy2;M;gu1qcCE6z(O0W`$5CqPfZ#JC&Itp%40 z1rdC>$;cE)om{JaN%@O5dv&CLz(G4>3+ed4p+h80@I^R`y;!vDD}VnspkpvKw+Z1K z+z7aW2aHf(z*@q;g{POk-_?%33k!kJfCr6jl#z-`@Qbiucz4dBLmd9-v5A z{RrjRk<)|KQ1W4ks1F<90tNZt!2|FL2?zf^_x_SxfbQJ29k+fi4<6mZt0QqNdnX`p zLkY*5s}?Kn!eDlt9*B!{Q91yJ$F~^P{R}4S5x0-@BG1_7yM{5Px z!HV7SN*GZOiAXu)_WS$0wvV@t$*TZG7P9I~16v0Vi0?XI%Pt6dmedE%-ZqdoB~DqS zN(@PASQZA6Qd%Z3}&OMs%rSCb$JgyUAIW!LDjRr4B%vdb9l4i;s7RPevMtc)D^zolCJ zEZ*-d4-};nplbBRU-9kL8@v%*pERVUz2R8y6YzneCHe9p>o`SNXuM})>fC5Qy&TQjiIIT7o7rXM)dNJG?$ z-@;CeU6C$2bWK8ZX1@dMvRz) ziV$Y++^pz)-_IF9^l-c0Hq-)@0p?D~?UmuZhmk-@a$lP#5R;RyFiLrDzF@XO3}cOk(F13RFIEojjtz>8n&7mM5hPGc`<+KPEi%ZG#F zI_ub%SEo~T3eu6u1us?;#$NcVaBn^+T!iowML>}qp!A>gx$qgdQkm-Ow)4LmNZ|D) zsmNBhNNgfLHsXvx$r`DF7LI!WM+ZDbvIMA=(sWIvvzCd)2*`z3fL0?h-gp)z0OO= zr&pZII=4f!JKTYT!MXO|!U%XJ?4&|{YmlhjqrAt>HwkCx=u+TTB2%SZWSbD{J}<8r zE54Qr%(J2b@pmR|Xn1v3vxj2CA|QWbmgDwTaZqefu06)oDnseb&!3t|WepO~(Zkl| zS?&NzyeWL5FsooWDM0ePhd7{+In@H|X+4GaW)Dx-NxK>bj=3zvSp@6x^CEXa;oFK_ z{5RNk;T@*?E?kN|IJQvuzSzms(eg@MOiZkk>Ga;$shZV3#TO&+jCA-rZU z;wzUvB(iO)KwWNWx@5)_m=L|Bd!fG9))F?r1%v}%$}2j9?tBZR=up@VGtx2p>+`NJ z1imgTh%nZ&rFIv{yuP4Ms1*Uv%N z-U-Te2UilIT#zjBP!}i$p2Io@U%32lGfR*kM!V`>iQ`nUQ5pm^OnQspOgDr;o@MVk z!KR?wLodq+YUWmDOW}R46Xg0v1Fm$Cp86|IdpXaW_P-bQ5?P>w$NuoF&8GjqSL#PJ zK6?0YrhysIx6i?q9WL9q#l86VK4ihay9f!G2I{Kdj3miC2}FBsmx4fmzf9U++53{@ zQ#gWkkuJic!1YQ1(+kab!d(rHhx`+YxWJr}KJR6uSvt^EK{!Z?*wLoA4(QYXVUY-8 zk8_vWsRFe_CXrXSu+nkl4AkOjAc(CmIduK`Uk4AS-u-Y>%ylst zZ0~r`M`DZ=!J=MEXywpT?V--F}FHol4s94R3~(+KG2c(<7{4aG=-W&^LSu&UsH$A(FTG*id~CIb!%W2Zef z!LmKw<2mFnEMQpu_txrAAW%$-@yuzM_ix|66?X5!^(|oeoSd9vH#VsLkEI)5#U1Uw zWCS*#Nk-ImxNz{=|18{8uZ!2fB5WG_$J^fjzX;TE7iUl|vdmGuA>p5WsWrgXVDeaO z=3?T%Ux^f8`F5qGI#k7xDk=a|%E?Emul@WeP&{mXe`7zeeTcrGY3u)4rfN%3OQ7GK zzSPUc102TeINfzwq^Ac?mf@@m7Bpx!UOMU%CzL|G1m+TaM-Q)F|1UC-H2Od#R<&3` z8;Vz2&`!|?o=6f9UpV7lV0qWi)=&TH7>cqgzXv|wQiE{+pC^ZytpB4HP#OafTs)U9 zUd#pNRM-vHP%F3rh{OOSMpDoZ$d>|m3aflRTPg50SFnoI^Gwwl#hvdGpug)f-|)hPv+z(sKcw0>D0^8D+ooHfUfOdO}o%SpGdtZ8e|9f4ciHCA;=B^2vV- zb=qSX&^-13ANK#B1SG2dzZMC8VCB*BXcI3hMqcsS-h{@tNJ)=%!I>N=G4|TjFdjW} zq#3c^K{^nfqmdba7oicn8k442buixrpp+oXSOHB^60?>2i&y&Gpf5{XV&OYKQcp!B z)tP{Q)0(u(0a3=vrN{qTdVhv$-q6KEYugy~(uA>w@#<+qaoe}gZAJo!@RfwBe;1!M zko_XCy`~CkyLLh*_2yGhU9T^5aQ&5Q` zLGB0j`2j@M`8V7n;6&l~T)Zd1Sz=Bc!Z?8)IBLVRXDuRrB_BD?H#X+`t6*M2xXZ%t zHfRz!^@dT*9s_wKLeH2(9*iisAw@>wA|fJ++s$7hm|`yt)c@DR#QMs+D0y~Dh^HWV z8H%Rt=c2&+fPYNimEF6CsPr#z6Om3ga9%)UaLIQS*(D)r1I#vTHn|th`x3pKk`zmU zTE}A5F}}xe2i740FF`9+D)eS5J==4`Py?KBgNnd(M4%ni0f7~%4Z<5r}zbs96tH=>De@n`P?af8PGrrflT<|1V1cM{LEAQN>x$6LqoSSFT*F8bbuGw|yYe zagOQ7kqOmrf}w%r#%L2sKi}N;z(EDF4w{h;z7%Acg|u7{rJ!flutveDk3&7>qCW$B z476O;Igf|>bmazX=ZBtPv=zAvUuW^yof=A@KSP3k8F6zh!LpYqXjW?X;DH}mzt_!e zTrI_1YiuHetpL4bh)_1lHKZAy#iGRe#`-wd*mOxkw^hV#e}Yona-&ANIf-{=M&o#VCc174#`dWQ0t?h&_pKsn}6ylH#M`zLICf$D=g}##9)S zSI@Xsy1qrfNh5cWZkJP&gr9yvW4^E3_h>wcm;KKDHa0l5n5XWO-V)Nint-E|KW=De zRgJww5$zBHE8TUHhD|Z*vfyKuFiy7P%$6iJiMsGG$<4c61x-3F^R~95;pJQH`7cKs zEezR}6=KlXm43dd&X7Un11N8`Uyj{o`eT%%tDAPl;tmQ_A?(<;RIT1ozVe`pmtq1= zNsGzuwjxzXxDlW1Pq=uC_`4y&z-y_|_}hJ*Qd+)nA@j`0@Xj3eX`3kFi0$p}>6vRL z0c=uITcPR^DAZ2AN#Nq_XB85T^6PU%V}>@H!ygtJUhcAaKfT5M-fFwM2v(Eco*NsD zOYmhP_?->YcT*Izu0$Jre73mUP3bG6L>Oo*Le+9iirqx1Was<4_DVTIV{~w=I|XMy z-SduH`4C*kX$CXF*!s|5&&_7^<`0=jVb|P`H36{D=9#=!GX?CE%lh(7joCB`tq-w0 z-@O~#BR?+Se_kC6*D)t82TFDM@@)w71}=}CvWJOEZAI>D!_#noa&E5=QDapO9_X}b zZq5(eoGu{;_pZ)S))pEiXi<3j-Dcd49!vbMn;Qerk+n#{QquMM)_e{mT#zBoT90ka zSR62tK3dvP8>_dzY1e&GKRL)hMuJOXE7yLejFN9ryTcFV^Ao|rlz~qwU;QYQguXe5 zm8!1&ukZTT2mo-?-E;^jD?3%Fu$b2fXc{Aq#6(uO<+C zNlqaFtD`d8ZAI=3Fk()m7Y={)J(H(v{~?6~M~OHARwT;aTVQ++ZooDJl#;kn0r;yhiaw42rzuo>m1uWI?qGY?8I!BVg)=b+(wl=q&N z*Jwh-+X!q%=zu?4prc)`JKkDL2=dra*x4M4saSiI;^n2&CgPUgmb+-KgH?R+fbyp~ z|5mByH3qbozU#79w@`tL-FVGkC~5a3WvqnTWp}-!N3$7^O>|)M%-E;qZr&s=PbJWB zP39Hrp*ci;{(fkffNz<+X!!hS_}>yvye@In-uAm&SZ0r#G-3>^e<}oxw}?Aq}#r|G48!K27x6yvr!8iWd$Cj%j<~BipG8Paq4`JExr-QtVVf zHt8+twg{Z;Opx?Q!&mwoz_nbLIaqVE>?5}paizb2XOIosrD;TLTTR6^NR~oN8T|>S zP$myG*VPC3en|$vj6OGI?fmZw?^u&cUC6Ta>3S65evF{0^QcmE& z5b6||_yC_CqfOlkb>nU13zcuL^_@s0ko(R_^+}q$m};*-Etv^#PY;WAYwSM!xPg8m z6B+>e#2%thtilC4^umq${1qFG=)UA&=`{7Dx5+iNB%kDFWl zlWdLgRe#}|n7aM+Gv7N|E<8$+qh^@s?s#~}yMDL9Nu~Yk>-MD*OTDrDZgaP;SEu{d zx~&Rabv9Pq%(N2^sFSpP<`W`HxpdmeIbTNV`MQ^Fpv^&6Ep)M6XIZ=W{u8HC4>#&NF{m*Q@Z%+-|ndjnQ1o2S?qc7K3ggZ8EK(#2r1 z!A*(-=&WJ3_$oU$NMW$T_?~bX#fFFWd32bnyP9f?742iqQ%mP2YqK3^GH32#CGp|P zih;4#}(7ji)}uaGr#emh~tvBhNa8tfd#YValm&4jT?wISB!yMSNCPP@iXwj*v z-sLF@wUj0uUEs^ZWATA$X?NmpQSsiV~$^M=qm5|H%I)+~kTg6{M;lWdcXcmwQ zRQT+RE$HKfWDAIYhS9=~H)3(%Y5v8BH77{;cfuJtbL$`9v*0UHX057uss2U1l#Ll3 z6}w+Ifr*N^>s7Sk_evQRO)Df-*R>1Ida00w|p3v9xXW1UDAOIIm23QF9~R~^3{yO&35m_m-84UP5E@5*mL#|dXReCaD{(P^QyTw~C{CBE6x z_oZGDV*QyVQ@o-N>tgIXoypLClnA?ckG^tuUP!?CtSs|RVv}Tu=SD-ZWsxgDs#%u*h+z!mAHnJNPqh&y`EPeg*vu-2XI3dn!IY8Ko*P@Tx zVan9siSo2ky8F{yJ>PPV+wvXFf`x*9=u#q{Vj~vxhX*h_@#0XmyfK?taCHg8O;QQ$ zv6(!YWv*JnDuL%kxoel3r1~Pm@p!XHRfRBu=Z@a`z5NjXN+3k9 zG8)Ye^bts;db)Xc)1dJ4lzTGkgU2>9uev*T^@aZq^+v&Bn39<&TXC(C+Uddde2*N_ zHAi`e+Wqno%q8{b-S8|Bpvss?7FmRTI9 zn&diRxqlXoKnP}Lds}C`r3Pm!zFnAW8s@}nh9i*+Eo0jB&HMXw+)i>NIos%b6?^n% zODc$4YjfZ!AdI=!e(zkP=8Gv0Z{h#kwepz)#B*PKOfr0hJ@6N1rPqXZ5xKe7A3W$= zyY(7bpbx*M)fXr6UO`nLnb>>r%5|0X-wZm>@8+jj$Olwx6{@g}wJ0ZSZNNGXF5b5f z_NwKQ*X9`hai4p>B^4#voAm?AxdW{nI`Ud2`C+=jX+3pZ85plEwqCoyoVm3S0$W1x zrKx>T=xVpAWKZ8l8#w)s-k^D9J({8x#^Wu;F4`~-X8aa$wjc4}E{L;l9=UkJD%X`*E%E%`D zay71fh?W(yApC9!VRFUT7Mb&2SBbp(NnxNhjYBb(`_?T{dR}kRC6GhX+O&)or1|NR zrf$83Klf(b$0)cTp8b+mir6Lw_tk?D^{48hggVdK1ahbnuNzNRSQgmLQK3$m?08P> z+x~Wm@?^hIINR$fXU%L`PL0OSRm#x_Y^s4l=RQ7z8KCb zY5y(jE|u44mJ_oRK3M{9)~5Je{`;*P!Y5YX2u$Ip}~oY3jzIJ6=f%+wsOy$`=jfQ*UEZG zLC^dYnp2jPe|t{STAE(qTYiAlvS!s~4C*|RB)oH3h1v-r4UwJWPcF!CyNumSd%O5M zYPq^swS}M_w*7U4(3O`%T@)xj$hhbQ zPodedmV~$GqK+L7V)E2nUo*jX3jtoD3*vuWq#JJFQjFpB*dTkXh7nJ*renrE{ns%W#B_!7+hfEl)dN6KRL=o}DERGc>Q6o#6L$uVST(RxQjFFn^nC5?J;Km-Z(H z?XKxMCD>g=Db8#AG%QGiQFphcLRI!hi{lS$)Q9Iy_3li0b|wc~(43$yhzvh)Obq%O z>KlZy23{7mW2G(@lZ*HiGYu@x*B4FCgd#GWJgL%Ou99a;d2w9m>_03LJEgfc@q)fj zW@PY4*Ix&^w6S8-P?EC&&M~a8j2S1TT*~9g`)Ou>_kYE7sI;+T7nw-?bL^cpv5( zf?Tu4Cr?sL;yS~&Qq?W6oofqyYub6{&wKmIa4p%gM@An$xB3?R8TaISq;YRG+Xi~P zSteCOxhv~)^DK&`LDW{(w7*a6i5o88Sii;D-f{xSVp@b z;@X-YM$2_M@9~ALZM06!lQYr?0W!#a@U%52iJa;_c%&qICYUE`aj_-8VREIP9R2|F z(k`n?xYw(KTs+y{fX=u6V81a1898VC6v{HRn+Ld-T5;}Tn?~PUvBQ+Z=GtiIQqWnW z?~fIyap|GqJRx2AVX#hlFIUsAx26~_T?Iwi7-M%`n?(`X^X{Ed2#&x!wmV#{ymWD{ zhVqWTZ>?lH`{LZjvWuDaK8+9<%~(?V>Ick82DFos>u)-pgc1i*{4Xl+{;r}H(}PZb zSQycd4264HA>jb2v9IT8to9uqwbde1GRo)MkFT@_hZC13rfxp?ovcP~!5Qmyq{}lcWI@_fg}dZrZH!(uAAFj4QX+MfGHsvV{Qh87h>n zj(x7c!)I;j(dZ6zUusxed$3ORTM6={_&#R{6C`aZ^635{d$|7c zAs# zGgzoC-9qQ*`tnlxLG2=nSWo%f3$|7&l>TTFcK^Yj2fnnCEWVErT$i%DJ}E}Rsog)v zIB9=|eNDsA{u zr`XIHn#(;PwjU|xhhH#${-SHST53DUvaGF|S3h)nMQTE&!ZIdjj>QhF>{F6~BLI~i1?22j^q>#FfD7CQ{`Z;21=^q<{c ziXfk*6aRVY9hgorA`cYR$J@j5EpoC3?&H7xGu9+!5hY?R_~{cRK2YH`ZMT_O1aJE* z-E8`ZoJU&xNt6V#J9hK;YZNPT$5~u}zFJjuMz!92KB?g5T1+B$XY|@?x>(hkSybBSXO_=3C4_jGTJ3LdXc+F zkJxaFucr9XBs57yEKldDmpnh_Hkxl47VFuSAF?uSQ9y;+O&;?io;~>+J&wC7u-7Sk zHQ1cAvbCb~VLJv55`BBKvHI91JWW8$XMQBYf-Tc15899Ov@HP+8JJPTToCfzcJ<+u z4>CgGf+Sd+`P%7s=;S`j&~khGVj?lOh(xw#=Bg&+^o0fbZBgA z81v~*qbQL-HSvp&u?mgRV~kdmFWu75^-f}xZro7Gd4%J4*m50v#cn?Ow1%%j6aPUa zVe;c@ZAifLqav@oTz~?m@|z$*-)-wp5AFIYMntFWJ~#60daMMJ2XDO=JIiUU$Eltj zFbE!tU=b^R;n9Yh*Rs}Fk0{W5@8N8h95qsSYrJnk;{8~0NNXZSRKY~SA5?k*CcIE>iK7GQ~4KzuS^An6nujSqZ0fi+KPy-pf`nkvWX}Gl6tpjVA3p(b*dB~;5 zg0wA*YkB|P-pFA4KGCt#7$adudID*2j*h>yck+qA8zjCp?6yk*-qpyFWXX-;(;OG8 z&<5m4fd@W%jLg@nOttsn<%?`_2Y-sKj;NW)cXrVRzI_?x{c&kBef2uSD)mc{oWa9yK3Hi zpp_O~MuwmmceZgFvwd!mt5!282?_V&CkI!*1&1du{>-b_k2-cXH}WlmkO&Q1&_m>; z12%IX+cH6xxrK<>8dX(|j?{OzM{jLRRm9$AlXkV~w#et%EL$mkwH||pjRnBFLzUtj z!6PUn0PnhuX7(^j;AKq#_hZQvd`n)*ssiKs%S&UIwiW^f-0~f0S46z@*C+Yi;Z<{9mz9WitBIT1%DK0j7wN5|i#P-k3UD#(-b$bnO((&fn$XfgYl zO4QCP9g6cb)u|o*Zo@5rD*W<62KFtsA90`2XQ&T_4a|D@HCtZks*1nj7ayOri505~$jiUK{W350<~w#c^B@(2@a0Kcu?Id5B3pBEH8=MM1z7Z3*4BdE zOMBOLIOwt>!E@~^?gJJ6R(qOCQ*3*#$+WJH`ee}$COUlW26{SZy1e_;>b-k_Myym| z5=eIeQ)h&VQp8c(e9I59JP!$K#FvZJ436rqb!SNU+EfLWIlr@c)CzGPm!CiH{P|>m z`&Ofv^Nwvpc`jbkMxBbO9T# zney!8t%MH!9Lf>zKqNzAN&=YjsQD5U=1gzi3Ff)o_NH|eicI)E^2gJYb=GmI_Z7nZTd++Vx+*#g> zj^m44tmA5TuK^G2>W?DlC%K7tFO-~vzV%Rv5`RWXbAKxB{5zWHvnWe=_{y@jL4sd_ zWn8^+Ot`Rxg7e7(7^~|h;j!*2U74Tim<7!q(N43C4c;1i%{SSTf@>gb(DK0r%`$sN z<(?Nb4TV0=)Hihesj&MCTINR717VXM(Xwm_2m5K|p%@F?+QR{MqpJCxMFkBi#bjR` zF6ig&wQEYSDjn~LNK^`|`V5KXS5@QJqeKVZh}Nw5whpjdXI5KN^2g_+tV;8Ys0Lgc z;;b?@W=e;8 zm{zWv^T_?mK5LHv#t_in#|UW0pPHDLNF{_XS-TBXr2!5ivt0+*?=h*Fa`V7U&j*>l z*BchyT?bIS*Q;(okJ9;T51+w)qQu4+Gzoh6>EVeruzf=ip8ZhIRAE1+(w3&B3f(a3 z%^zZAsI*^Xvylv#mD|eQCK_Zp~P`KFYzV^V!sT9Y9?-fJ*184x_7O%`Os$-Sd zE(}xG%>AYxFTob_F@DO&(4T(U(```pRZOb2bWjTwE3!u*?@JtiRQqct-B}Cd!~j^zGp& zA&&c#ng`t15_FT4*xuTjG^GAqo}%f_BU#Wa46M9j9T2~B1L(ZRQkZT-6j!E`RnZCN zaHZH#XxW_{uJxl6tQ&uDQE%w{7n-R)a%Eo`%~dzYo**>$ooi4haf;x@B?VSQF;t7b zRZ=HCGH_er90*Z9GrKlw%P3)LXV#915v$$mvGeoTwD~HzMpVmupEH+egWnRrQ@3DS z)Vu9~cY{t<&b#lu!+G^mp}(lczXBc$vknhU$%A%+`o0-xcl}}4B*6~Po`Q|!$j%{p z=u4;ZYDD&l?AG>?9;@dsUi7V=rb4kQNUMd;^XR31tl0dh>$T%iyIDK%<&E5zd^Be<-z+cHO`;<-Idk z*|G*H@wl@1hhuXS^Hi9#RJ44lmCRnrt7%$wOcfszh(EnijLA4fG?TM*O?~JuK?Zrp z=^jzoUWbELR25ClpXz~%wDR@vfRj{c(x(@*Plo5fq(T^`z?OU1#1jS2kqE2bj;<%? zA`d%&y_>EL2B{UW^W%RsnyD@v$G`@roh*wea%!|dty{v%P7%K`p+ueQtK{6Xo-nS3 zM@MR3EL?Rc@?4jHQs!El=jGL-Y2I7xN5_AgQ@gdOa^PI!4c1J2$i6sN1*$p8p`wKm z)$iYeZH3K#-@lKi9c4LXT{5Dbb(1RocJ0#EitQ~q_Gn%M{c93#bztmR2+L(-CPsh3 z)+%JvhAbP;mZh6BwCJ8WcP<$k@Y&8u+5ZXJ?H}GKov-79ecd&!d1e~&6lgF=hnO9I z#UA@(2c*V`_*q$Hq5mP`&7nhwl4_+QS1F(E{&LqUmOK<6pTO)D3Z?Vkjb--b z_V^Sxry?e|JL!|1TRB(xH*Xe8Qmd-wJZf*qHIRa2E3Z;%Rl)IIh0W~LkFpYrHQD0N zqHh~--Bz$Fy>Of%+`4|{wDLFTxIJ1I3qBy_SmTW^(BQq%Rbj9`e0pPj$Ni1jmg@nD zHKM?M@76pL5K+PP8`+rM=DU#ovSZ)jX;08Ro(63fHU6*{+Y}zwbp)qh4L#FE*i#`- zb`0*fH=T{#C*1`$3&3Pqt;=xmvm^Bb_fr%Z#z52aueK;--8HEw0Z>1)86t|>0f}jf z4Fgs8?03FJz>7mHVUUK@vOYRoU1sG5vav!H=U(N8s^oyeq|6HpG;kPra;THXW6++u zt{WCWSxQ)-JS5O5lRaBPOxW$ufW6!Akf)JBKL)Z@Sqxe=#hj+O<;P(oy3cJ1q%-qR zb3E(|F`9zyTnoP&TDUSwKSH0-7dAdBR0=oPZD$mtx`cjc802vkGJSpBtw1VsOUS6m zZ+vgQ{}3hpwm%WN57^@t19-Gq!}$2hR$|Yb9s&zlr7uM_UtuEFjRbwho?P!-`*-?mdFT!6v_YXlHVT4x~KTc-8B^&|pd-zJk7Mhosnj zD58NcctoknQelqMcSLB+tk9p`|0 zZwi(cUGtjONl1T{v0_W$CrN|vxvwws2)NzH;W%SMpuIgA*__dP;^rl!AnN#7?uDF8q zT+gzwr?Z;*-}B#;FNL>N92nR+aXv^pKUa@7_L=eT@04%BP)BFwrt%7A40fIVop- zF{_srwTZRPYz12;ace<2#m=O*W#H#jxaWFp-%bQCk3T(IjOdVg>8uMvxN7UC^4Eo8 z&^n){O=9QT6A8p9t8jhydtK$drrMI5nQdwNyz60c;-|F7I!(&BGBq;7rwe7^VI0qB zZ=zPqy>{~2T6>GN7_suu(G7hq_;zkF>izgz2@1G&W3cW0g-aWjS>cI;X}|QJ>~jnr z?DvX!eOeN!D6_c8%4){c)rFCx2A&I6Xzc<jxdXYaMwnrp5(>CbdB;|^8&vZW_yIZ{bko=$sqo?F`t zlxX4MMRP=%vEZI&esh*bN4d4GR~y&5WTODr@$`7T{CR;itG=e)iz)J|@u5^v*8K(9 z4)#sriaL2S$yD~`t!|(X_2;O#c5x24K=lgH;L=UWHPxqqOhY$1I2RdU2J# z12f@bq`8~XY|e<5x#52?PYb@W?kk}TRO2E?%8 zi(1?-k*>dQKhX1PQgcnz=>i6lQ}#G$YBXgvQ%_BU#u4uzx7s(~whb(j^C}L>VAFCN z*XkU6c0AXvAzjlYcJb1d@e2c{Iem*pMyZHN4f%Tn(I%BhnIH9>%KmAU#|-qeQVJq#=E9%~s3aNUtc66{g10swJK=V?+Y{qni} zz_=7@MrV1{zLO0ATtDXPQ{UcLxB@ zx#OfB`}Xb3ai7hEO?BaRQH_3x4@<^%Mx5r@Mg3&0%lulk>36;6l0t*+C;w=r;U}oJ z4&)eUD|4DnJ5HaiNHKZ$;v&TggBiMi?$fR|*Kkd>G%FR_;T3)-4FC5LZwKZ`p_BE= z$6cq)xGmHMX5QVX4$Ap!WmkMgltCfTn<7G_i&95+?Um>8df)la=~oAu`yvF-%b|(E z3b6qinj$63C^GB+G`%rf6Q9EWV+WQ9?O;c#oq)*Bc#Zt#ZTh2q7PQA4J!29cStETJ z%FQ|Cyj`0$szzd5P0cO#dg^_&VAmXfd)4u+VV_pvyT69MS8!3HL<@a2g(4cP0=jE5 z_DVeN+bj^GTLc{++ScKr66HL1l+TnJ8i3{Tmgw=8kYln`K1m((+Oyr&r^OwL5jMQ+ zzh526pVw^5Ri)*$Nx90Qvs!wPvXk@14f$Nxx_l_9)ONCzzv^Gj5_P#PZdZ%ccZn2M5GxD9k=?xELm6#8C&ZgaaYl3j;o%*9u4A~_1 zPM5Dl6!M6&$D?KHi2|p?P1U!Zyep^iW*dbb0IJL~6uNF157;F430v$v8um`+7le}!sx{*a>Mgbta}L|a*F5e2;kB_ z*a7a_j{SbkA3iC76;@q5LA%fH{xwu@r2BZ21!XSU^jue82DN9xBvPJH;?@a1*3C6Z z?MB&-!C%@(TTBRi>a}^R8GBq$Wzst4fqd)H7m`3n*KMC3SHv#LK&0b2dn8n>!hFtE z?ZS4kOE;#qQ-3AwUqZjeuN_sN)_1kDt3o7LA|to+p;$%t+eO~_tJVf(Ii@XTTg_6h zU|W9t;mdsu0(!Yw=c9e7d+xWarue=|h+?3AaHt>N?YIQ`w1=Q$SQ;)ie3N}Og?a#xK$DFC*Mh2L98QC5C>4D_ek>cPRbcv0`d2YY~*H&hRvWDnXR*scYel#Ra(79Gh-vyL3;rh$MB{!jIxcf$ilHm~Dd(YDd9IOuuN zj8ZUqIkWd#QHz&iytZ4R*Hn?3t}koh@-0z>LFh3BhKUA3S-O1QudC=pg0hB8{fPNc zuavT@t9cgk>j@JsV+%9@X+^hMUO~q<}+unk=?*&;jOEx^#i255x ztM2IVKCScHL{8PG6l#;!JjHLuDo+#ijILYkmP=o7M2K?&|FFkN+uv07X?f${bt%y} z?$=5G+WVbXHQCtHI@idd1v+20nZ1|F+KZH(-^3p)k7$s{cZ|_&9yCrgb2{(b> zC$0u?G4H>0y?gZM(wq@ATu(k1*J3x$5?#p(F>&bOGFlQQk7 zRg8xRs?E0kV!5?W5%}af$=2B?5!?a5)`MT)&F9}pp=ZxbQac;^o2p+YDliW;CK)(B zh|xHpZIf)XOX7esCT1x%AkC)>(=HrcIyR8VH<(@7QNp!$`@X(9m(_BLoD{N^ zO&@Q{r`i;Gr_R-#RiI1sEz52xlFb93)*sfjGudP3> zqAh7mhzRQO@BP78CnJY>UQ|{dQ?d4AaR5nnA>Y`Umf57n742ddYbf6k$~Lr_iw&z%I|Ng(fTGXvu1bgwK#mh z`mylj5(>wes#l;V*LRoflC^w#yYSOJdVrF`($)1JpF~JR+!4A*qERfTxYpE|cC4!d zVUC+s=;yY@Yin=HKNIot&RR+hueIJl!W$&s;tzL#+dYtH!E$4V>t})W zNe(kvh)Ujpj@^MMU2;uvFg2`_9O?+t^U|$PIhll^*cIjJvJ`J?i?0RgRbxNDvuP*) z_3G@~jmIBneem9dY+Y>$CoJoQ6ms+#IRFBaEkY_2BR%At$Lg*}Fc1psm9rh?(L!T<={g?>5+8cS zhs*=18wB+lKMCl({_7k%UM*e{tnBp2;m-JrExJzfUUOy!px2F5sMWV#Sx&Y&Jz1jv zHJ#OMtoB{t)up+1z{jQBw5Yu%j~~p<)+FtpEn3UTuWQLg@mA#57XVixKF)nW3LLnB zMx^w^oeiu0W@5`x|4yOI(ax}eemA}Thl^K^Z8W4gfYB?T4-ELWD|ez#l$JPEt=$}y zhX%J|h*l|ZPBeM27r=tK!HtZv#lwVQAbBP-xY)qfF1 z>Gf&Vp9Kw049t|vX#W^WZ|MC&@2c><(M_}3XV&GIZ9TD?GE@IZ$T2$3P(Id3(X8&^ zfDU?u7KwFZ-UkeNKdzwor6WUOKc(k)ue7&1YG2Dolk0L@ zPMcE;)$3Yf&ZQzniuW*{?Fmn$AwJGZLNZ0^KI2^m+J$bT{^^#N1?(`Uq+E*KWLP^j)PxI4&^NW+n=UrRh!ixqB*H% zCRdz$7ui>5koJub`$;DkGXa~FoHun)C@ua%F}k(xW17>VGw;{M=iD+p?Rw&#@~@ZY zUgHcm;5L5=ZWgc7$E^UriN z_g`Ne%SyU<&B4L*`%<&kBLY^t%)lTAL#FP`3{xr^NvEH#+H4~rLOJpS<0k-kplL=w z$&T?~`OY$Vf7?Xun1>EMbPu|}q7B7{|G)tdS>?tX_kc-w`f=}RjhojssQ&j@ooYohiTA-$Qj3Q+iTqSp2dMG!QWG4I+fPVN`DCOO0R_x^mQU-Ec%pTkDHu(}LtdO}h2XWlf`s|u?T@bX8Iious!K-p&n?$vL z(6wdqnRZA+DFyj|EZ4RR6t;*vaNn@O1G?2}7X|csE!}@fVQ0N_`@Ei;r}&dXaNric z*ID(VP3B!)GGXsjXPR zytbU&`^Y?mR>qlEDurMoQRLRfK2DW{&7bPQP zQeWna_OSJ_Q>TruixkHI{Q$&)F3;KaF4xfW669mnDb`-qyMSy3`r12k-jj7RE)w~NVOKJ?~@LP9F$9pAJO&BV^f zZfBsxdHvw!wDm{K>+)OF1nzF#!zT0CroUP{+H)2_m?@s@A__gS;7F{seysc^-lNH; z5AJyl-9`^v*xjP?bKRd0Y!^DefUPzKzc8!(oK>`iw?o4eoTsiVHLV>Wj6v7o+=6Oe z1|+SBR0kxuKQB0gQdwWzeRL-omeC3dIU>=#aun<0(mn)f4snqad{T5~|}q zckiBu`V~>v>4xg}Iij+mu%gq-H}3<)Jqv)9I>o#3N zq38D0?~r!t*O3RYunI+c%if12VWNrB6Rk_goIe!!DzW;4q}&{dTpMQ8a|i!k)T#v{ zIP)q{l7K_L%M7#f$K1-g>yyJ0o7gFo8s*fN!dF-&s?*m-itS-Lyi;n#uQDNGWNtcr z_qsU~G%79B8cLQQWTTnF7@{<5xo$)3B$Y7b429)G5ZqA?Uakx zs-}39|Jo*gUfl7EgnD*5Dw0&AJMphaDpxF_6zFf}F=U+Cd&)1_BqQnlEj-e=hLP{@ z&z!jR;o(1{3qgqwddHHDs@WvTVE4SmJBSUA`V<=89)E{EZgbD%0g89Ez5%{(2}>rmR3J%DbgXiKfd z9`}+YgR%Mei?U{&XINLSOwwhysIGm5Q3M;!*dgxb;~UHmLO&+okz1GcwAP?GS*mJ_&Wq<9)xSmN--@8hsUIDf#41TX|}I zt;NNX;AYTz7J9gGS@x(pMhcds_q2W9zzRK`sS%Z)&3dl_k;hV6xe{n@Z%|oA1c_}J z{hr_u4zV<7uv&9$rkGXXH2wUbdadNagWnsa#^q+GnmpQS+oW~6 z>#NjEb~7w%FGw5(#Ouo_x0e6%;xyZ8$X0qeHZ{C&vT{mxUvwn=vz*0CmAoA0xciZ> z*Q^deBm}w?x|W2M0$!6dv`$Hbn@-1Dx+;*r)LL{W==$CaG1h&v6Qhv!g={M~1uIDz zHH^z^fS%Npz-zV@Dt&SKFncJP&7n*L>^T`#qZi<_`9YTb0}-o{GG>1BhWF$BLCr3O zs3a-gC2l`=DF!?A_p(ios#{zTH4og(+M@%E@W)3o9{BYs=s@?HTxqGM4-UDeRwZE^ zwFa7Ol<*XzJ0tA@!GA;QN8J9ig!=QFha6sw4CJRb@mr{M{=mgY8kP&(V>QwKu$nnJ zDaC{g&1N}7QyaFgEgy&wH{#{CsPdniEc}E;{gF|hre?n;74=V$4K?AlUR7$Vx8&=XOFUOU4!(_eVK zfAEoQDGoH@uaEY>RkQz~9_{0C*tLCw^iGWZX(byzke(<|NV4y`l*YejPxRbuyzj`w zVD;&`DkxrCv1rC+1;)Yb|5=b8i{$n+TG4_=zsi!lp!1Z{yMsFm z(p6EpEmTJPRw9ao+muVuvm6{39cZ1GVT#k^Z@PSIq}~E$P|BbfKaYZI+uGP;H_(3d zWs5Eiix#2EVR8DcO5ink4WEQ|-zDBM*(g=|CComo;Dw7+$CvckY$bNIR84+BcW32| zn`B(-cUn&^dASccHPZSXX}wtgigPdWK=e+~rSj&UOuD4j{o?47&L6m=Y*`6WMi3kh zkYJ+B{rs@9XKwcUEqb2E%1(?uxsC^CIRqq|IB`fK2Cl7oCGRzB6p`5C*&yzdsB00e zgJA$YPfd_a#ft-3HtfRIqRx)>{sF4j&EwaWHyqc%19+u1{4B|0rDkzUg5erc?udnQuj@L3udwlg8+gcVppmU63wFcX- zJFT0#PKQ|vcia(FAe2>oTM0sg*E4U_ShX%A>F(BO(U#QfMvP)ogXti}!Os(KqZK3W3b?#! zLc$^!t%%%}!InR+M>CrIaYx5}Db6jR1U4>QN?KRuz-wl-cULuMf){!5eUy}2++zlR z#^Eh{ks2>z=BafYtkKW->jek+hW6u4;8Qg>ZJ9IfJkymo9mT|kHiIRfnwfmLK8nK0doZ+M7?8C(ZOC@0w<> zmMl}(LuR`%k;1N3pD~{B24nYTkfa`y{vP2J*YTW#+9FUDyJxhQ8$DE0=bF@iGt!x# z{br=AyjY;fA;EdWhi&P)g^eFGDY*|4HC3kO+-TaI@{bP6H)Sh=IvO@5?x1l6c5AN8 zf9{hS59g#Z{jlG>EA- z*;|%;7HVdd`x=<^pbJ}wr|-`uuedWFu0q|Xg80mu3PJ=%%NS++xl^yIXfy4bw26wE z&2yZn9bXAJ%ODo?m-|@>=>9Hk^ zEq_`7zKrO20}6gP5}1o20CW%@UL3fEu~>cdsV1^9P@PW2kY1EivwUq@%DFvVXz8wH z?UntDoPJRGqu*M*Gzy%ayoqBN8)HS-a2+{^bi3}IhZKm|x_g*;6%>P=3$yK${xU8J z4#WWYPJ%;DJb(D7*_6HZMVlHjE?)bP!|3x)pvjy(onMlslyhA0Kw^t93YL*ERaYA7 zQkXyAtfmWh2H|pfAES~eAa5_kSp@4J#%%rC8L22{%b`DmS;@-?eO?1<5oSPnhD`{mmyy!hhAau%kYCAn`v^@sxwK2QMYy^?-j4H?YIkk zuUf~ZVlV6JHGvq#6rh8_Wjl!DqY#m4=52E>p;#Usap_oWZqmGm8F85<~G~qhtI(!<0%E0^B--q8> z2LwYy7e(N4q9&{wucZnWR!;XIv>(qyx0pzj6aPF2fI^YYk>~hoofyQYpcUW~Tjz2{ zNOncgF!m>cYTm(A8tej02g7#Bau?K2cwnTw38s%>UxhJh8km2z4(=ZCJO_E z4;+W!@4%436ZdYX>VoFaL-?#gh%5$*&o4n<-3Hn!F+=de=sdBeXrF-WC9xMPhT0u5 z8dlF*M5U^3uuiqj7uFiHoC?SmY0r?(~bH)M}jnWi~b)=GRnC5-M zdrL}!R0_hZUwsYcU)9~HDSr8#Tja8}7&(ag@sVvM#8jfBp#tX%J3}Z>svu40l!s2< zH;DWlvT8g$I?yuj-v%$R7-F{u8xUA&1~1t33Ck`^=tIx%$6qjci1M00eK8tR=iKiY66H@BasWcXS_j3@g4#`!5bT1T) z+pJ&}21hx_0m59&(EUW-`{5jV_wcah^f>Q@5!0paV~=zS?{hu04dIEdmG;=&kPxwX zoB6ewd3hp2PE?0t<4|(-X)Vp0c((Y{J;nXZ4OwZIAgq8ImA~N_I12@&+U&3Rr-eKWwm9hSCztJ;0U1sJr6B4w|>utJ3 zE=QUD)?dGJe(bAkR;JCxpy~M!j2BF7_7i0i(N#1yrZsYr3m2(Y{vLQ8=afcBgGaQQ zN1oaLjvuPnukz|Vw=Txopl^3qTT|@PhZVUHQx%70iIGRy9F*a0 zA=W&&Xrf(sx#8!7FP97$Qw)}+IrDjoJ*WBK21@Lc>sO24T#+sMkx{|@ztEiehXN@8 zVWaNQN#T5Lvq!w@0uXp4T)UN@)3{(!^*Ln(SBOTVY{Q4Rck8!5_zsKKp(5 zpT2(m`aTYhcK<<`U>uq}xk=yE**CU-#)bFLe6t(fOZ|@)`v5e#ZE^UkUs=4$X790y z_5Zg^`G=#(IC;?U^Aiw+EkI4YYyeTqP#G`Jt3e@ygzOApN5#_8vauF+Ob8NrC42d< z7~1`M0z&-xH?Nr=q4djPY{4-Ec?uAyq82X=zw=uZwcyr-E zx;aHixrro%p~J?u@lbacM*aaLB|vD*6kr?72!flP+t$KbwjwshJJss_GBD<1X{*>;}3J7Xo!uQ5@l)UUr%_{;$DI#@jP7w1gY!o&c_i|08|<5lzAUEmvg1oi>n?g-}ntW-Io)$XWh*GbUk*^CQTXZ_&3 zshsbL7HruEoE3PrazWgR8~lq=I%cz%jrz z*X`<(>(YOrcszC^{Pu5AtAg?gDt)6(CDqxQO-@>zr_&!oRR!|u*rrvQ5t`%T?a=v z4iv4_*M>$xJpa02zneHy680`kyeq0%)%w{8@SOs(1ky~;#@{-S3j#H7!k?dvMo_#j z?a#!fa9BO+?R5<+46;TrYj^d;TZ{i|UPU(pw^%;WSb*?N9 ze%V`n8tKSF-G`4V5Pp#QSN&^`Y?RjYH<#&kDJwf61JVs)cJ8Ii7f?j(Q{--4E!^@i;sptGAW=_a$aPq3hD;x&15Q_t2PeFWL|GEKh zP=I}xITJBdO>0cy`mQrKLkCS5GwO`b-~aU%$&ekZyusY4opO*Xu^;>?$szg70c-`(Et9EX& z>*!1Me^j5DaJRc}gVgrrwIRcwb7d!#kU$&MGkSFJUq6k~0#+gSz?ZGy<(Re0nRS+3 zx5H4QlpBPdj9PxHW zSUlI45mHUFto`aAw3byl5w#q7h2Rzz?b&-`s*6ieO+YKqMnHC1tcM!``*pz?*Hp17OZ=a`eC##Luu;g9)S2z2H05E z1i#zjz@mTMoz@IFt=(p5SEqX`LG1xFdpP>}2aPvzE&b!)t9AwgE;`zlap*CO^k)Nh zT?zdKB--(MMmJXd>lS&ZLK`Xpop(Z3Mj8{Zy{U}xd6&b001ggDN$0`>sqKL}%NOeNRU*T=A1lBI@FMg4d8&!3GZgi(08?M?T%FcbT6}ANuE6 z*{o=Ie{u1W=vs}K=f6LRq5;Oj!mA(yvGVu7{(m6sN%Z|De39OABXvb9#9n;!&ZaDz z?~6Nkw(c*JU9h-W$i7JK0h%PS;R$E@c#eaALnjgem`XpaxcK{OqAYYIv3i{0?fG6+ zxZvV{8qqj?f47uT6j0c;pQvA44i?l;K(5>aGc|Qs^;LYQbe%bWe)E5R??;(+6%yM9 ze}BdQ-_#Ki1AkxGe}|UijJTN?G)Ce0b{-GvJd7(~99#TXlQnMmKjz=X%YZeK*Uq9D z5i>E^TM$)C*n`p0(u!RL>mw*vin~wzQXR;!s1cBYM_U$JgUZ~>zyFLP|2;##WW$~l zFX6CFEWcrr_8j%kJ~&!H+B*A($E8b`;4L9Rq@FR(rS#GCcl4ofsA0rQ=l*|HBn*1O z((ILOXIXq9yO$2$mDgSVH#%;HhH#{S?x> z3|g(^bK-_khtz4sz9{3+kZ!)H^-JUTFa3DUHBQCc`0}^?OZonMG&}vCJ$q~C?)Ay} z?{oAlO10eb%7@+aBc6}My88aPYJi2vOvt#G^V6hcJ8EIwj(LMLL zHl1Gb)z$z;qz7ZdZ50wQsR(glxB+m_&(&Kb8X;E{>wW#64ktmUSCu}m z5);c|dT96a>8%$a^aTkl7vFBTo~K;$dhx;KPm{kKeVG&Qu_GZrz(qE-NKW>`g97hMU`|&_mqv2O+N7n=@SY2-rY(cXu*`dqualz$$^m%yBze z!7t++S+yQJ|G4b}y(aGjkCt(Ec#YV89u* zM0&b60G7LwB_V>=N%PqDc650z1|;)8qoFGVz+gK*WwIi2F7*cQLMBsBw~{R(yIyQ| zq(TUOl)agqk2A;WEmELb)^U^7$~0*ndfNWw?j1s8Gr_Odf55#{!pzk4GrSMeZ5Rs| zqy36kx8Q{aV(%6KormDa1mA}VH8&*pOYy~`Kes~^*|oc;C#B6-BE2>bTN3cqi17LRcwct6FD(coOHHn^YH@#G)6=Wu;|#qs~e5pvH( zsn2%LdRd*ytbe)xD#9B`^eZ&FJ5m2N9v@OFVoU8&`khx4cutgi3j;0SZ`%Bm`c_Y$Vhd+tlpjpxA!+ykIk9`X7n6I&?Uj;x+4 zEaU-es}NGz=YHLSWsbs&(_z7dJKXrDdsCE{WM+Qx>F4EqoXel8O0*@Bc~j)XUpwF; zaF2$eU%XG7jLzSxb8(Xq*p72)% z30zQ#)6EuH%_8sx!K|c^nA$;)!WeKWzwaYpsW?OE?X}>)5k6MT$2l0#7oplK&d&$w zLf#+lOi_7xbCK@LKc3guk3{Y&k0|MNS;75FLkH8}vV~hP=LmsmP*DFhd@WR)(-x9_WfAeGM5O4}cNa^l}c#Z)|)# z)iw^udYGQQ1WCW+Z7&^hyZ9e5Uby^yhW5owz3j%nV_v-2yXVARaxxYdZriqvWW#s2 z3BUSyfTY578F?H*P3B$;kL6%JL!pF&tPxDLKZLupG0bVojY4#TVTon}r73xT48$0A zMmUv0LdBmWa<%>+I~c-s=+80qZOf&`4dL#X zP^rByyuQBvRG3J79d)oE_&&x!9a z;+DYiPRcG)fhdG5V|(YlXo)Sp6KXU!G+$ph$^^Qmd;1>tA{8Ym)h_yz_bwyfP7e23 zdr5#MOv49$?@g=G(}XkoWG74h#BuUl+k({ficr5+VB<96hqz32#n=^bh8W&rb9`xU z#;mH_wfJQY0?a|!y%|QAcr#%mYM%DYhus|=!}WadCS{*#UCw)+*?xQBcDqvnE%`%1 ziS3~l2}MZz!gI&!X~$HL7N!8yxyvpiO^VFC8HS*G*7lz^uV}Oi)P4#fi`eKjd1Gm7 zwjbUv+U#sFS!!RK zKcC+(t4%WC)m>#TH$Uz*AA+Z90uRHjGM?^w&fjk+g#5wwNy&34;O=&@gQ)x6UB~+) zJjRIS>B8H}Q}Hm1G%>_@g>#qwwl( zvHugHL3@W=Z<6HH&*wn`OU0v>Fdg2BqD^J2*5E#$W-I zGs&QL=OF$~e!K4(h&LL;4&|z1?P3yTI#MEMEwP&;va+&B2vlw>ys?&5gm3wFn0HW;)PRf9Ew5A8f`Tc` zYCJ(h?DK={nRufRNXhGTZZ0-Oc8~DSqr1$0#jWkOa$7JF)Lx5DG5TIch2o0gS44udn2M z;nPapM;4f4ol(dtwPkGY$&Dw$NM>&Eeg(n+pKjJ6`DDnQnuJl)V{IH>kA{gmnERq8 z0wN%wnQ3bT4XNrc5fY*@({<%My4&nmV4YfwZSTZV6_Dsl4d|43zhx-1+(UqD67oD` zPzgK|p=yzEA8?`j9RW&Z z&I53mygyb!2b?EgomKsMnJg)J|8*WeWl#IIIJeysgKSTR`_Zp&$%EOn_ta;9PQ`^E zfvkSAuG}+NcAZozJ$g~Wmcbu)1UsSv&J^p<4TX$!SMd&DwGYGGJO-@vAc3{w*YVp0 zVTR@eZb7J^N0(w9Y8YGGE+aUC2MNSKd!-Pq97{h=Vm>9#V|I3un^cG2S&a0|2 zDpi!??SYbnMIf4A*yGWy5=jo)SFc{#;)t@YtR?9NBZ(YHEl*c1qCD}~1mwdq3ddET zehYLda~UqPJ}`+9Uvt`*aZ@yq+IR&+f8JqHGx7m8_zGS z3?Y*<{_U;T)|J5$v@s6HU}HereHrQO-eg5=Ejlik#4!?Gh>+3RR~E1)7Q-eMf{C{! zq7n+l5=7BpL=6!VkBD0)N6~P(OeC%d$M*|K$1e{LFgmpp<}(q?Lv;;M2u)UJ?+TlWORgCpMga@Z8XBQJ2v*!tKx+0{!k8bl8`EwoGM+_@eLw*^s3iN;*IUY}szGF#QuPLKM()#3 zc++~7qiD%GNx#c&pQ2%-TxT3c9r`DQ6ij@hYfXM(_si$Svtx~R<+%7gur6+D&HwoP zzH}&d5H|*KP9gavbX*KuF&>#bu6r_=KixE7i*04{^Xt<(Tp2E?!4Nl{?2Q!gQ`HJ{ zM}`=0t@%7p+OrzVGJ4*WwxU1=VOB$qP>yk={>gw3>* zE*z2r%M`aRKR4W1wci151gQ>R7x^P6#YsKcvX zF3g}A+DswXarvnloq!n?vL?dSxVU@w3iX^V1{8CdR+wR$>GlzHKL*zsIS2g>O z_Q6N7^rXzxx1m8{i)zE(+N8|+x#->&oYgZb*=by6c|^N>1_EV>wO)(Z=7 zo!5kHiXBks9%SRETsS)c=nj#LCLcKjd3@wB7DFjhk?%D>^bpr31~|VA&+@Fa@HZ8g?W`!hvQ~s!Yf+{Vt0*5do^MFY+M%p z2uo7DNJed=)k>hk)+AU%d$=aN`QamC zflsg_kPqWM`+8EiCzjN)58F{BL&grNeqk{8NBb6qd8q?5~(XakMs1LId<8gB+^H2ewZ5y#ePv~3ae9K2In&x+-V%NHCcfv763d@3kdUIEL8pC5WWr51S+pGLW$d|#q( zm6Y(FNg^&V>O3~Q7Dy>6(qV4VM*eg_jt!PU?X1>0=fvTrhaH7;n768`DyU4nC(gK2 zGuPF@g_D6BqLouUH8wLJMB|U&or?uo!n=PQIg)XolGNyVmm3UhC9Ro$vKVr%BI`?l zW02Y*Gp`<#uXLv+lnVx$fPQ`{J=}ls*rbC6jh~g>y3q@{M<&v<01i_1VyS9vmofeN zge($ye=M};MZ@dor)u&$8d~NY{YBL^^x*CnFKwNKA`Oh1I=_snFGzBRA_m;K z1Vz@>YT%&D8;!R%BGsioDWj>6hga)Q979lxJpC$$lazOWNEE#mBI zK#ki5R$mbY-yXM@n&{;@q%k-{bo{5LrpU|&}=nmK9&j}ZWg>|JmM!;RT6Iqg+za+3? zavae*x5K>LIDW8=ecqXNh1zyx0(Yq?u7+Cl^wy40HmAmHnk+M$kmL?y#Y+~2N!ZT+V97V7OQY1D0or?J$XKo>wnAoZvdXziJKu9Qw6C#g z!UR>Vz&HR^v&m5$?0TNFK-Dh{=VhLNjd#&d59){~rFr)nSnpfJVfAg5bpF-B-9OKY zbAv{`x8wtW2&?Lzbi?r`C+oC$Y(Ung#Q0GBua@)b>KXOYXscFMR&vNAQPz>311i5u zFn2`R-w+PfRL^-F3&kxppIY)WwuxA3(5QG+vI~#Oyl2Z`wbfcBe~`1R>7&(&ai{#j z{mPtiRS|t%w;o6MzI@zur!WuJmKTlAItKTaWR@BMoTjG5U)E@>UUpPFE4cLBaD&GV zY&yo*^uf*~u{Y9_|I0mG!ZXxp_l+|qVSF!&ayUsVe`OXK`cVLO>W0yeL=^un-h zF)tsh*N%JnUgT*GtyoO)RRFu#FGNAV6h?@tF;3_r_P9XMHw5AifgEc z|Fc1IJ^K*+RIVuYo=25J;gO0tm97Sk=4g-9^ z`6MRqPe3|Q^2|kyaUe5Hw&`8|$Xx2Uqh&qzJajHR7Du;Fd3c!6M#vUkD_9{KrY2I!+>t?Zz3AqzT5nP(>@S8;}5^-Ld z#Y6;?B0xJUb?rekTDDkkibRk?)|{AfDaYcFr&Iv*tB1lpRAiG*j>uSPqY?E3atcT85w1i^hox`z89z57k zr}5HrAN(je@>O;rxe^30O0wM&11HpLYoK>4m^X1LZ}6TqiN7Q}FV4sshenWl&j^n1 zNc>1%piq`1A?MS}IUKO}v;x-95Rz^N`7UynZ~#3lCTB_MM2&|D8~nSs9x^=(gjuE? z9q|$*z~T2jN1l@+gj_vu!kgXqW#*ijB!3l1;xGsj$hZv%giA?g)*gk`1Ki35tPzLb zLA#DGI<8&OF4$Pgz!7MPd0BO}@Nw;6ZJ9Vx2FQWL`a0yE!$nG-2bZ(E+n}u!KpwRV zvJW9x@Xq`^DN{^JT>v*e*2|VsEN2&XLXk*=WdPcJ0>3e)m0aO|NSV|ME32!GvHi(C zvO}HCfM}|z-Hl5S!3<+-aBQI3;SlOX7%GJ*?n4O5TAjb(OaMxu$jMU#Js_By8Ql>V z94uP~paX;7Vq)l);?OE@NBQ;zX=z=rJE<`V{^XbzV2@{Hl{eY39Z5LJNCa|6=;TK; z#-O3x2}A*NW4x1%lgw(y?A@Ug1B4cZ@i3yB@975d}84OuH1ct_Q#c-k>l$*%xwAp3ZCrVyZ z6`A0G+o2~MjqEfw!D@Cs4S!by@OM*Y_bZw$pyGuj2Jku^h&%c5lXK(wk$8r$n|il3 z*P=w9Bm0=t%~Rt8kpj9|QNV{7`zLTG?2&HtxTjF)<^vc)H(vQ4wo8fl%a+pZP1{*oCYA7eDR-ZvX%Q literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p11.png b/labworks/LW2/ex1_p11.png new file mode 100644 index 0000000000000000000000000000000000000000..989c5cfecdda207ca632878646fd5fa07f266f52 GIT binary patch literal 21848 zcmc$`by!th^e(zd>5%S}P!N!o4haziM7oiX*mOuphjfWZhZ54=EhXLE-Q9KP_WRB+ z?z#6o=iYzL^WY=wz1EsF<{0mI$2->-MFnY0G*UDO1cE6mBdH95!1F>NaGfZ~;1dbu zPfx*rFCAW~JG`?tad0-UGls|;IM`TPJ6L`+q;@j4v;Sxf<$TV;{+ykK+RVYh#{MN6 zo7I0@@!ZW861-ojd=T)F=Rfz)k^6khZGWMn zf85IPq1h%)n-v9rZFpGuHTo%*d}7kZg|y7{4_Vn6dPe@MdcC5?v}{Jkw~E5<1NJE) z^nN(hw6wI!sA0pHuwRbp33(+YC4W3+fd&Ny$-Gye#lgjm`c+&_1HOE3U@HN>{MEV~ z0KQc5Z^y*N#mz+vA%i`EfRGnogcn{InipIuIT3cJGWgmxA2&|tbk#L%TOS1J03=Et$p6k@&U(DKLFE1|>S3Ah} zhBvQu?{*CgblMLH1(I3U<3>eAZ4PBV>IfqX^td^{+FrSgRoFs~bhERwi;Rx;5pp|U z{QU)QbD~JEuBhVU2*d5wfTxMfRo8Td1&!?E<&~AFm>AzDa&de@Z;K|3#(uqL4Y#P! ztUDlLQTMvMbeVM+k)N#pRHiolX1iqe*o zj%@dS=bWsuXUux@-G}*I*5rN3R#0qgELKB`&!aNmDTA+3Q3h(05K&7@mH=$3{o^P# zYNG*pNLP1vi^s)W;NYO*o8*@S)(vNb=lgRZTF{!GeG{&?N1aN_%08@Gm5XiIBIP&V zao}M#SZOsA@SW3ixr5C5_j+IA(QetmGOV*JVZ4@q4VA6_5T4Ry5l--WGn0vpt&{5E zQu=n_;T9W#GFIu{Ivqu-yzpOc&06341_2qq!jdZE$Ed?7PJI5OW`UR& zsvRN{ak4S6QaJ2WAjAyZSi7jyoBd8?U!_P{Um@yO@zer;ZdIpAIe*5*wf^0>NVpE2HVs2;qGE4ya7xnyw_#Z!%Y+6UbJzI z{NBy^j5TQMH{RRHlA=gtJqUYMh0?vP8nQ33X)YNWt*FYIM z-I&RKOEtscJZsa2X$X8%2?Sn?-ELI|61TsYpU<+ozTRrd<96D> zV>OLfpc3Nd4Ad2D*TPMijlxeD1oU!0xGeWh^lF!~VVPVRkh(>#9s7>9)9qq95kR+Xs;&DbKh5E{hm zi-UvHmozjqP790-4AVl1kG$gJi9x@*&hLP)h)PI6OYT2=h~BR(DlWz$4MPU@Ss}p2 z%{{h%b9`*4qN=*QSGCYFW8JiOD%A7m&u-(vTwPVqIX~Ek5jd2T;ldu*uqXgwp@{`C zAt@<|P-jlFK-JOrT85-I{Jerqy)+YezLm}hX?c0f#_R1oLL=Kzul6vin~SE0F#C;u z8Zfq+ni|&6DKRld=uDlE;^R{aQb<=RhHUg!Gw7Y%jJy5cDAz`5k)<+Y`W`D)(Q=jUToR8;)JAW)_(Ypa9j7a%1i zwOR1ESQ<>10AYu-u<8EVNvCt6r25DR`0&m7hB~VNar;z{bCU4_t-z-Hv!cz>Ts%WV zLx?(|hk3uN^l(xhyPSeT$2YytUlI~X>jaW+Z{24G;3knb&-UlYCUl&2>Vy+B8$E88 z6RjJ?jEsyz>Z&R$+4%WMN?B(1H}k`(M4-+>JC-PAQ@cl$F%$w$Y1P%lz&tbd_6L7u zWWYxVofD52=^c!ZT4z)mI+YiBm=9oS#6=}1hZSg5EgyJ32uOtzFXfutP%U7e&^W`k zm!y#_whg|togyQ^|Bd})6{Q?J;C5}F0LKm~X zybJDlV0wXt3P74ayjTK3%FgxvhinYke^`*q!!~Rsb@ia0Z)^w<05%>b2`^kX(*rG? z)A5tyDSE@#^QVr0Wl(xv_2@-@|Nf;vS)huq=~G9J&+r%lKd(V6A}%2z0~m^S3a3#A z2JYj>hIKQ{Y-~gq3!Y5?4wM13gBu}oUwye>cc3}z@%;_M(Q3?FG~X6#dfC#%X^nU9 z=u$pke~gNZq!t$!mxL{LUQy%p@^d*98sWRsceXcsRUwCmHn^0O&yg{RsZ9n_SYca1 zpmVN{jfTZJ34~Un2Db}B;HGGWg>`RFvqcCP-=AEP z>oQ}{i`TDT1NXaS$81Y`{G0~S+}u1eG7=KTz`kD+Pa*loTn>t;WBU$3pC3QyedTsgJSuSEU9Cc*o^OJ|~tT7$n!wl|?reT;acS4#;>xLmD+#Yh?7z zY_oQAC{K;;XQGs@s-9NJ!W~l^6i>p_)N1GCVJ?Dwe_dhK-l{t+?HM$GuG=7)4u`Pc zOL^F8X+&xCkQ~}1NSMCP6dw{&QepqJ6@HUSa64Yqwce;FJP74pe0=IBPhL$0;NmJZqlHGf|Ipl0(wO9=LC~B3j+}{Hy&^;T zhCu3P;wwo>xKJV9AJwNhERg1YCDC&picrT2v?`Frz>|cK9g~6kx{5roGSWRoMG}V5 zNYYC&P{p^hn8ZcJeWeh}euo>-I?IYvzv1EJ6^tcgfp!(`evkCtwGyFb`ryalh5X0WmjyA{(G@@76-4abRLp_Zbt<&H_O&0EdI%jE_Yz5I`PmYyA}DAUq?fnjDX1iT9yN$z*RQ#>ZyC}$77-Ilhn0IhubD9@B7;|RWImkk zh3wui7;H2>U_vf!#-7ePZzOM8Zw62rxT?HYeLAC0dyIacKmnSu{wZy2u#v;%o-~gw zg=uMI(^VFXhQ@B9&d@mBNWsRU74CVk5HXhO8E!x)r9b};Wanyy+8te~w}?%y(8AV& zC$yeR15+)zi>njW+`bog2T6Kj(e&;|W1d6&g0oJ7j)T;1l7$f^0V$#q?=sT$w zSEmER7Dujq|6NJVU1=-JrSHpuH!kmXBr#<$_|In9?VwSwr8@>kJWbF1m-9kUP<`-} zK}0(y5(ZcfGc!f2gTCHJ4t!U>#_54EA~Nw;Ue2lH=q=o4L8D&(To}6^a+4c2h2frB zgNOtjT*R!oDENma(UrX$I`1iKXX*bTL(NAyq9ChC}@EzRF`8D3L z!i`lmH4Aw1e!3I-c6Toy-)9oqa3?)k4W&>>zJy!YplbUi@_@P`eTxn0(Ii}0TU$Eq zj)8a?EqDYT93Ly%ZbeVbNJ~z1>=t+CF5=rbg};^n`}nar>%$GHgoTo#qE~DzzA@Q4 z++87ple>k_6h_g!Blox2Z0!4r8;km@V>^}<0V3m{8#os1)O%TphsRX+D3DA2wb%8H z4qx`TW27SBA-DH?U%USFpUX>p>3U)kC?tD%lS7T2S6C?J;K22{3M$gtN*4>os(5!< zdo`#x$EE5}gIi~PhkHHuV>aime_iT>cCOUGsxHbhb|LQ4joGQrv~Xo6o`u-cNAW=?brd;KoqEM^!(>X6FYTC7&%&aSiMU@n zG`irDCSyf2$oRIk)wC=JsANKim5J?B-dSq87^ovE>V<14fDeL(w zhgb2ICQuh9Ui^a^5;AZ8BJ2B1Q#kmDVI4U)ERtS(=;{62Qgf!1=9kG>M@L7MMIe)|5xnT* zUHA>72LNA0i0}yOw;Wr8-|4Bt?bch*V}p?HRE=!^1zY-vk=FO2HDZzlO7+!OOMz4% zhI@ewM<3*@eD>?1J@(EA^I=1o(lZofoF*7f2lIQ!+)|miV`F1ZdOx7rqi^r(lgS`u zzD$wKnzMk4!#`+x5WWW)>~cZXd@IP_INUF7Mn^~agqq6B@ojBwojO4xtEj2DeJli+ zh=9#avl%sImjmnIL{8+f5(oU= z{ryFg+pZ8`O#*-YdOD+~6d56fO?cf;6aVQF|8H0pr(6%2g#Z-d-CHEZ=D0PC1X2|W zg(SYE(+w~~e4h99b0q+S(FqIBuW_Hb3Z1$(NYBXL7XedQT@wtv4i=te)n2QQ`gdf) z>sd9^)0#S1#E|NK+qSK z@1&(cV5}VguW4iE9FE&65K$*59?*GH0Z+ilTyBUwe1YY*S65ena>E7ON1z^HHeY)n z9vhLX=PUGL($*5bqLL#ZA~M<@&8>DhqQyW)fHvJZx!;{luoGiIyZ{j)I%4Vh1z>!G zv+XhUVtu$2z&4y7EKu!C6m4h{ti~E^Ub@fP{`Q+&!X0c^r{p-qeXnl>#TlxQ5f4h! z#44$+B?T$Q;36Xwmn|=Fch1^#{@`oJ@ROambO;>aJHk*=i zIno`Qw~-AXd&Ao?b9G%+2t!F1PuCvr7TiT^apK_SCg~N}ORTaw#>BxFhqo+YJf)@O zHUcq^0NN)i`QtMSlxY)&l)eYPO)tF67?uY#GMm1wgczgHQ}j)^SH`{npT+&(8;kZTAaHpuPtgbd9b zV8TVyN1ls+uLAtESlHjI+Q3zmf3HFZSGfvE|4h$vU<06Uw}FOM84f)BbU3p#4FD;D z@YTP)Kmt^^_ekrPpiw`-Yx5Py2g%5Tk968UE`e5?mjgDRp3j33BZQD;nDDVC1u-3# zRMVJe0b^7^XQV~50gO4hjV2$ilD?6x#HttUQSfAd8-FzJ-EMSza%C1A!~_Ai*clG^ zVL0Tyu!mg>0Rvk_gmo0@IbhzO|MLLYhdz#)E*|YqU~MAdfUgSl4={0+7Qqll(f&3l z2pZIEf%VQiupM)V`=49E_YRmzgbI@Q>Y(>E-UuO}8;?LYc>jLC2qu4(;qOC{!9$_T zVBRvC!RWf=0S4w{J!p%+bx-1R(cW6e!Hq%(O-$Xne+jw;Q>ewf1qY2^(XI{JwY-51!z|Iv5CiK0s$#)No*EYYw% zm_SBOu5P_XNlA(CbNxrvV0zhkOVTTvf)dJ)WcIi^nts17>B&h&kW3nm9~AdM4Au}h zn=EjU@Ifi_ofcQ~M3S%*mi(3>uEOwy&U#vc-5-E;ja8&zB3{54#q(H^supU00i1yL ziMwnx4i(jbZ(NkfFzHUz*{KS#0;TVu8BMnd#%wK|#r)+Y8yfjBg~_7||H6AT$|OPD zfJ|wca#9%+65k0=pD_#G;$|h9b}BhQ%aW~hgtdVZ#@x%M%1S~|k&t=)x)sm{wyRxH zssp^FVL63`l{Xp9Un@C?0%AJTaN#w}P)TX@`95KQaeal7UJ---8_EDsLN0_B7Mafd zJq`B-hI9n%qu0D)^`b+|41i2~ghk#A;^yp25pHgRgT|ZZJeHGQFjl*i#b~nFfa&>j zr>g|xo;aG9FQ?DH#>TGZuE)S<$c0dIY1SEuXTEay7$we1`-EK}r=S*}K-_Hap&L&V z6a4ygl=hgRJvcEVgBH{V9s$-2ioM&@+baoNIJEu#CLr*( zwzdE}4Sps|j2_(|28xJgkF;3w=$()Ps-Su+E74~8H|n>I%`;cYSFff#lonrdeMb9p zgXPB}%WmNq`2=;%m)ZjN!i8=R+lblqA?y9g=mn}f%U|VtO*pZrghN3^X-2D$Uc_iT z(4dcu>SoQ7x#xBJfEd@QG=M^&s1ys0ehO>pjX`p;>mG7{9NObx0$x}#=KgwTFWf&c zkdB9E+({5{N}!BZE~Msp)J|kOV^x)|*Yr6jKmRu%P=Z@q#bM!OWfF zj~|%$O?z4Rounih z%oiffng$2S@B?>H|Bs^^vxT_|c;HGtc^m5=K|{L-HZqxMX{lgd{Rs#+X@+TEJ_aT~L8jVlz6xjH(6Bm>h%;B}2;xg`+!e z-{LQ2%nbnmN`HfSkXwge-)M}pQBbc{6oAC&&UMzHL zq9D2ndA=+SQW+n|&^`b@hH{Ghl#IU9FERtnXf~=g?ZK^mi+o1#t@_gRQSk<-KzAX{ z5GM*Gq9uffSA6W(Nau3jp?OX;sLLPl9>hE5Q7U;7$^}^5Ki!00c68{#V1^dKM9W8jUL=J}?Nvx! z$4m3RccqRI=>4XVwXQsTPT#sT1s%{lpPLpv%H8y1p2Dg(_A!VNPnc+g=M%OH3!N9q#elE(0h z>1tBv32^6yy)P&048WvOc*d`2T&{*b2y&jktiLsT@h4cEI*~Qq@ji5ZJZv_J9@Wh8 z1*AE0(kqZCZu0Xwu@eR}?SsLbVfqzD?zv4I8Kf|ZVxk`t3_t)FgHt}cDzYdnmVV(;CTSLHswR5)k-kc(avFGvA z9tkTv96uI=mDj#Hy6T>eab%_6wW`aJVEDF_1ZGqiUoh1oxY+Cv4c)lX@@1@vG{NGR z&6C-BU9Ix7ng(OZqW9Lj?$tVH zT}*ZzUC#GEPxNAjjepj+wFvQl3}F0=e)tyG{44$D3qnS1oi{yK6v`Jr)`bM(^w_=z zEH3lQ$!OL^Ck7_dl)#PX6=M+2^6AqPHs0~63fVl;y^-aOO3<@X$Ek5nqUg z+PUjutZEGrow!6sVT{4z(wrJ!vFOI!aj>~@geEL#Ydj+9G3jYuo+FYgUfW8)T(}pC zrznW@!(qLdf1m$<4@|3c{m7ee#R4YgvAf7`adI$aBU!bNnVq>_|ZYwnP~cm9*$3gGK002kwi)Lhx7$K9m9P+`GfjUEQMpo zOYP@7@ET^+ACWK`d>I9%qsfw3Ux~F$L4K8>{-#^~}Yc%{QMN z^n^$p-7h1~Bx`FZ<;+dq*#3J^{$7xX;F zt(?PSp06?#eqMLcw!3!Ii1S+a9~nCwG5bBHOG}~?y-lJZshgG8unNqJT~Vz09nkej}CRB4|=5v4<>H2U62hLl8nTy(e#Of;uJ5{N}`uPpMV z$4A~70O%^7=}(`?VY7pr|7peO8&bF6LO9%7hv&#HN|NV#C#WptUm;r9D4H@|cX>qFbX^ z=Y7zl36_?J@Kk>Voj)~BNKr(X-B&mO@TcRxa4^B6rx`pme4jV9#KKD+AgxKXD&kyh2=e&Y&0$)UFhcf3%T7P3 zkj>!?RlNzJTwHrKf=U-2A?NoruhAtAui2ule0`sE+Xbqs{&22--D5nWL&VqTY4WgB z_6*I+3by4p1vX$jWaH~wrMy%yZAEfQG=8cG@gHVNEQ|y5W`U0j0xp`*(uY|r`uCW$ zbpOMCRsW|H6q**x=)*r92k92BhW-!ppM;#zt&!ZIOld0ZjAC~2-<{hC|er>G$g1*esxp!{Y=G=MwGv1q!!lSTC zT|#uYuTW4plC$vk8e}UJq9@b zcly!0X-A=*w3c-X<#>5g_v_Amg?{M4se;_3#zhJ(?LtrDInJL)n57>Ar4ZoC1q3vq zJ|C~%=i#xA|1M!+9J(h^tL@;e?Zw*Jon1vQCZAMX;v3Ap6xwVz_P z_e3yMsbho&xp#slW*FXz8NGRI{)3tGNc66+X(>|9Fs58YF-b=~3x zTtP!zombVyRdv~f_S~JC3<#LOAop#c5o^-Xtcgy;&3xGoK=| z-K?|=99Q^Ri#AwzyZFJC@?&Al@;}A&*ru51rlx(n^{(jP zP}HzFnxcnNcFV7SMZ(*Br`0#zG*Y9+{1Rt(!{ipG{%8!BL#iZ;6)4T_K9C(1|#IcCz&EWXQ= zI>;@ewM*Xja`1wF!FIn+Qs3+$Bfy*QpFKl^flW;o9Vkic#;@!SH-s;&h_%FTb~PD} z-xaJ$^>}RL11?(aqUb4>nEMO#Bntq3ay3tK6UKk`B#T5J7yLQK0YI*F&cO!4p3pnH z^i9U#K7q_6#!t=U3>rlNvH{|l)B$7q1ORV-t?|7dsdeDj*Wl3^b}1#RVP)Cl_hi6- zMs!+Eu?C>h9}6w$<)D=?h5KMr}~ zv%OrSShsPly%Qj#(Qijr_zjonwYa`{tmTeD`?*)6RDLbammfwdUnIh2&$g#9JzW$4E&F*7$2ooevzpoiHzr^QfDC zfXELFeCgsuLqnq`C5177fC!wvb$#f?T5O$C+~;0{2lqWKi%WW?&DK-quv7FWN+0w2 zPAJAciNxxslu53#PfnM1-1ZysWE0E0?S02w9ff(WLHgDF3Orl=ZJcx(?E zE|vkka-t+B%bIUs^AKaKm=RKQn{RBB;V30lm4Z3TnMDy#;lP@OMz_xw{m5e@(n%=V z?#B>3o~JI>&+%&9(hrGKA7w0?Pl@8m`k8cRN5{uunnU#(yC;AJ(G>b$mV%Tlx?fx5 zcgm+WMhM*BK89YOdYFZs>3#~Ux-;^Ji-z|^_p>Cy;k)yH41h*PzDxvw$mQxK@!CdC zhzvS+1Rv^8c%)bpB0`<#0}Ahhr3aipfC(AU)CqL8BERC{-3?))DO8YDwh+cuabU^YxnMSN3Qp$~#;? z2ni7Yf)Ma^GNmL4RnX=HUf}=@s`ZiymqZbk?EC3~7@EXAHI|fzDtJgSYZpP+yO(+W z-)LVxpMN%C;)F;EIx5Kbi55_Y;%3~Dy)Tf99uPsq^J30_7dYVjq{)eQI8*ni%k{B9d)vikI2NtS-hvZ3 zIXPS+B2#CU=g+Zz{`~n|&xnguNk_-(;uS^A|0A<0bWN%kv}5ddQ1{Ki?QPHW%ke{V z%@UV?DCnn)-`+hmanRY?w3$*iJujnU|4+RaNnQh_ZjGyF&dA2yZN9 zx281j2lkfNVd}ATi9nm9-qPNY}6+9*-I1hK^wQOrj;fwB8vB>AHi?H-!rf{pD z#zfP6-@7o3?tKA%6|!rrDzH3f>T;%^+(6XVnA4UD*&XEDwc>^n-=xy88DD*k3 zzFD>KxlYF_?fhS88U^;q(9c&n!Eal^$Tca5XTid?E$F`Xvc8Bg&vlD7c2d!1qodSS z_t}>Xs}!<}vI51H0>~89BclBC>Cb)*d`0iQgWXRQ}z@aIryKvFn*Ri+V9+K;%IX zCI~p&nW#c}c`RHejPd9ob?I!vC0e969G*ok3qfA%IY_8-wqI2@cK5Y(EU-#F7_=QF zdP1coEm^iL%!~I5M3y}tE<78C=~{OW^|Fc;CPhv-ijog7OG%iX*~L*bHYt^^ca%M2 zsYzeo-9)JhNvzwiMRz;jZAra9W&B`j>h_akrpns-%nbq)i-OAe?$--O$FhDqzZm*>pn^PJiXKL|Nx_;~%Vz zgSK6pFaY`~j2{td9W>@!sL5=m{FdkZ0`F}%MUys$ilR}gsm>u#2qOue+<3P)CLK}J zR7xW}PeF&Fgz(0rZgLD6e5TlLEL2Xyl=hCV$VnoZrcTw~;D)f$44nEZJ~*)7zy^ck zunkiqT05@Hf{bo|=+(3%oO?_<_4N%twYF)XH8i;VB}o8cPdt^Wg`tw%tZ|4>2LP*z zx|Yl)Px}M8$nZD!yv%DGE#nU7mk|T-lpwar6paQvvXvT2y;v7Oot38Vp*rs#_Pvx= zh)eV4PNQBvsB!?xJ~4`Ty8a#L7#emDdE}t+q=g;~8h@srCe@r#n8!}tyrF4@Z z2~8VvhZB)7MA-iXqjn6uEXSK|J9P%inzHIbtjGRC#`hc4ApEOSDduS{<7%QyoM(AE{?E@IO|Z4ZMi9umjc8EvqtAG)WF@x= zWL)v3WKq(T$@;2Mu2?cV!&Y|fa#tIrCzCEOWJ7?Gy2w({TaD-Q!KtaI+ZRsCAo#E{ zM{8ie?N^+x#E-+`k7mL}UIgzL|F+O`kEqsV{pJ3;t@yzAnIB3NIH2*CGHjVfam zpYN2d6%bnFaO*X-9t}m^6HRndmgNjzR=^?_Xl;=`2=sx=G~46cySU@gvJ@&WDp=SAGqC zCpi0t_A41q)EDeu6VyUad*~)C8u!DDF+%6*CMwq3{L5VPlNLty8RN)@%AX1N;JQJB z^glV^gKf!L7cBrtXXQcl{rcU5^%NbY$t)6V?cDerk5)XRqapb_+ntRYq0d%fgz-mO z8xi5toh6TQn0Y~dtvhuov|ebg<%IYQmNUaL&g0DPYM1Au-ESKjjH++)pAp!nGSgoC z{P9B+4YS=V=nZ*}?n=pyrv1uSjfSCi{bPOa6;i5KH87cE1Hi>;^^>;Dj?z|JEgwC? z5<#Z0hsF#P2&2N+hbT#5>;{+P5|ni&C$rTmq=vjBrLtOXpD8Y?cU+)pvgDaK}*4G%&q#pCT? z5+yEu7nK)~#i+1-pbKovPo}6tR$?Cxlol;Ic{35XGi%fP#bPbM%cvhkqxBhCQ{cY2 z=?mU2OR95V`K7{~){WM3c+UIH+6_{od1d*wBZ9HSijv+iVkFeVX)^)y!Jd~FOQlH6 zy033iP#*#+#nV$*XMiyk%e&&VpPHS%<_W(MubE~V_-ukeG)1eN8onWA&#JdDzf0VB zhSM(3N(33oj2gu~*A(MG4?K#EPy|_D)O__TBv=6;*$94sS7I-Nqba)J6*?VqDhwP*a7?e;V_ z?h2G(XX>nwSxOtasZ;9l3rB1;8`7SYnFO8?1ngyh8qjnlBrPyb7cNj(jB4-2v<6~k zTowzpf5UANa>QMh<2ik=`w`1>44KtCo&vE`KrhZXP7Clw2Ej|8>=sYF09zO}ckA2H zG!dh|xtEnt;-t%ZKsJm>Yr9ugOASNUFt5C3g2+VDd+*C)2EDCh3E6jXUfcd8h?^U8 zH}4>?kv@bXLu$~28zu$Hc;zB0C;r#*WGS7U%J`?`6NQn+J>r_P2`#8T$FR8>2WhRH z#0IYG>+AVO_py486#g6){`%zX@Skv2*DBBWr1z?NB?z^yjcyQZ=AuTbD9zJ4W`da= zbB;YS3gH}G-@k0*$a^Qjx{Sd%0tD-iQ*#v zPO#6N{Kc-pVs;njy*Runznh0F<6T7l}+SPM{0 zpY9&ZWYL4kv2@qegxy4FD~iwOiP_wo-L)+Qzf&liF}YbKEgCUrI4z&bXEeuv^LBLY zL>$z#BSr`zGr?0!9)KC#rUrOQe<)CTQM`OS6MXJFwIl@75-{b!W-;**hA418e2NWH zTkDZTu=C~_X)9qLmsUjpVT-FYcogW}P63;Z0EZf#Et5-Dm{bAZ0eC8E{{Y<^NfB-^ z)+97eJ7Ys4*d4e?kqBcJgIe~SmDrT6tm@i-r3m<<0oFo(Ww;FI)8#-R4GxY#mj3*n z=ztw)XA)I^^w{2bc^nugnm$Z&p{SVVz!?NT4y?pWb7vihu~(AGuBin%RJXD&xj_fu z%>R}0oxI6#LVFw9?r+8ly>o9GmbdNk-sUF8iR#uR;{}63Q~U?%VE)yK0BxJBY|A7yu?v$w9J#gb`43%C#htaLiAhAQ^Dz;F5Tvw@&nRf*yPZ$3I4zW`JA-Ob9nP zBA|<$Mak#Aq=kL;-Wv~iP%xVm;1>SKN%?;kL*wH6>k!f~93!GlS3K-D%NWm%fy^oCKugZ1SL_mq^^1U|?l?R$>419WygC3YdlP^pBG%wq;fr;lq59 z)gFJBqeXe~$B!SEeHc#_9-tyXGzZ=`aLfp9;8S+TMWB6gBz8s$L=0D_cLhRHZE#6p zwNVW`due6^eOlHH{yU6RUb@qD~@uzXYJVr)43fkieXR+ zPHtIbWMtUfUfRxFMAKjWs##?OoEE6c0pS_$ujLpUPzQ=XyX}0c&d!_D;Bcn)-}6+& zcj}DU8&AjFIDsKzY}yGJ#vm_teJxA6pHm1X9EZytqk4mrZx4Jn7^!1Sz1}Rq zJieBFeN15yzt>RkDj9y3PGlwDnuwN6SxSL~9vq{CDWH$*fj}A@nWST8M#W=P_#H(j zt=Uir&V)NUR?HD06_$t9uqO#3hv5t+$Pc2xwRIcG%*5w8jL5*v|H1T{O6LIzML$4n znfYN9bR&jE!g>Tga=0SZ38kEQgzbG~m-&|PtgJtD+EwSN@B!WtDvNhK^Uf--k5Q3DywWBbHj{F z$v_f#G=NdGcFD(%lg@<;?NnLjTx)P2`iO&22)QY;Tx??!5`qE$LkQmLa0w0&vU^-R z>`s=neN;3yF`1rA#w6pxfGP8X37#De%dzn{+}D3PIo#2Em_GLaN9?1cqXi$tx)_0l zPn;KyKbuO#JiXgNz9f7k-FS`W`#Gy#vImp7j@6q4S1K<|RtL zP9lZ1XD4?-Xy_#Z49nI_#AMh&`irOO2 zJLd;huUb&LXhNcBgHx`859kY#p>z7Y>sj>&qCjK%YAY)W`;!3B=m$=(%DbTe(WfE! z(sEEA{FO5{q49`tLC~gl?kJ$l^yvNf9Szq4RN(esm{ngu>Q;)JkXrdWI_U7(pyb`9 z7@0$x<25E_B(NjnV5#=jRHK^M|0!7VYX$GJ^KNSXD=4fomE$H#Ar2AoBjd=;7P(2&?ye>5r4l`HtO$^Lu;Z)uDrW|Z^h97MzsJ<{UV)S4lpd!_PehQf;x(uOd@lwR zYe|0KtRw#q*gDC zTU>B9?O37c2j6SNef>%U#E%>O$r9ke&+zbY@uw4$*-snE|LFHKKPC*mS5orUC^Jb1 z2PHT-IJ&yJn!(v(Z7h0vG(xE|TtNRvW;n>zN7RVDwi(YHcBdeB#$0ekAuN?XlaZNuROfhu+wr78772#G&np#IF(^V?s(_@DylV7+DdWFw2FXQK z%|_E^;obb+gyiU)moq0aV(-Fx&*8XPeKukxFS&?6tsg%L@ADb9?jNE+i=|iT#vN_4 z*1p!M98X<+lvdzelNnKI=8FKa-jIL`&}G`aNBLpOBlKR4g_KLCQb`$g(;i z{Ag$pc3jy#?(HfaIBMX8A#ZKiQ3*o(BKRINMe;NwrJ4gl>7J2`_ zzH8_I+=Tp>t}oU<^LUrA2WNC;K|n?2h2W;2p~AYqZORxA7K_bfH{(3qZBhk&)w zXvS5S%Z3#QoJ@1{?}1_qY&oup3Xr^jH$BAj+na=>f}`u{;0+Mqgnl_i9q=wT;H56h zMV@zgS`$V8?Yy7hI1~*Enk-F8K?4yHhm@6mD)hJ!p#%sv48{Ym%2@%{&>!zt=(InR0D_q>Q+Vti8Aq^Oo_l#L>NC~+wj22PVjSF-O7VB4Z^|e~!Tpz*)Bt38h1o^ScO$s)>jKPyY9Fe7agfNn z==jSKq^14UCv*sJ=V2KbDpe7Edj&e)U�IXAQcI$JMKEOJF#N(_eLpuNBuB7ZX)S z!dUWY4fP*Q9~<^eQ;{wr1~$N4KwR~(<+;Nz)(@1EvH!3%rKO{T0nS4iMoFoM%AxOh zPlAu~eei%b1hUy>{y**HFF$|CjFeWVq_3KIw7fNy6*FZ(-)%>N^r>+#Cf)MH?>DpV z-@l&%fCnL+Y~QZvk;gNnp>v@CFxzF^lO~Wf8~b#Uz}w)nGvM^6XNWD>?-a%PmR=Ql-$>W-+s4QZ7wOMZT`wu=FuwG*jHJK zFz7ja@$J}5&istm#?r$!o4K6bk~jctX$Pu9%mV@pkYf_28dXbMdzYu@|f{Wj_d3SkW$L5R`UCuoB8GG>w zTYTuWC;sCD^ymMUDraYc4J2JT7$~K#q4D5O_{qWWnLB@oT&n7BpF0Z>k`&fzg=i-9 zSeR4Xw1#wZTxuh>0dscHen(-@K|Txov6M}%Pkif7Q<-#~jiSE6`gGk4rP|i_*3*B! z?bW;nfDR?MQ_DsbegjcWO^hYMhh`Rs4qfcFdscn#o|Ud!?S{n{GtB_zJRMbCk$-nl zN@ZnrP7l?{>3mXR?(Ce^Z8w`qNM(aOcE!z`wXc|ynxX~n?Q6!x*bT)zwH6KRFOXx< zT4DC(IKYj{j`eC6W-;$%Ic_cQ6O!u4BRwPK_dE(dLO_$Y(R z;pMTI<6_|~(}HW)R#UnVxuRW0T#$qVNd%aXrMGtxd@pAQxJSGOs{%++K!>iXMlMh# zB_;pTQ!G^tR-!MkMaj13H7&09{+N{6?!EgQEs-IT|KRA0t>rai z=`KVxMtR7d$s*b&Z*ew<_jt!N&*wum+NFp&+Y*<`HBf40ems8b++hVq{{Bhtklri% z^N%k)^{DXz$V#7-Bk|Z1Vvgp$eSIT1`9eUrNo6tXJ%T^>VCmEO(T#Q{#A0{d>1Gqy zYCy4^MGU2w<8rb6#8km?A>S8(A9*;a!{(==L2n|Cav0+@%gLI-sF0TfVkQZs zncn0JA>)}x^nu2~9X`LHfCg^Ym!Dj3M6Q&^a;}%`!#tzi5HtE82XFV_;Y5^DHJW5H zom7VuDg#`k86|-w@*aecCUpCKW#vS?toRM{6;2L^7I)ie=zX+h3!#DqpymTuqru3< zpBG*UZ+hs-VQrsG7arQTc&1!H3#m~B9w9IK+O1pXOHcfl4AO(kV0 z#GReAVH=@9y3Yw($>sUYuIhf$;PXIey{g^Uaqlzf1-vA~cchTfz6Ec_muC66PY&d)M z=}}UoEO{D)01ZY$JwRQ0z}(R&gv5lSIogF`_4+HGYy=*gsiR1JF&|=)v+-{3uvvyo zTs&ENq*G-H3@FEHA1gsI851}V`dIfIyKG}MJv|w;C`Q36z^YEuXVRo-?1D&KrPZSDobaTwyR$Q|KRFp?HA}43=*xFD0qUC zAe~Oz@9z!j6eB0UhWs#PaW6>j`VebbQ&2mn4^}Kd$=cJy!wP*W z$m2TDhdT4#wsRH0cBb%HuV!M>F+!tS6_cBnz#3sNm&tTbynn9(-!antd!c+2i4VQV zz8dWI?*m@RXcFi};6tL3e`AL(OTzzslgcPZ2)&TFeHol0_)t ziSSv95Kz$6jGMlM2Mbh#uJ2OQ)YL4@xg82n%8l=+Q9df*WHhViJE^$H z3dR9p=qL-q?5t-f_Y(m>L zqsxK#B+-Mut2|6hyJwgHV+u|~R#`gt_?p^U`C9!1F8`fyjgs+)Eg?QCCj%M6c|}F? zI;Ah}1?&j~Fpt}6Pft%Ti()!=i0cgaf0iBkSu5O-)9X+i{YJ`3m4~@3q-zZ7Uv|wr%WkJ%*cN~m!TV+trrzF zb?l5oQ`sL}Ie3PL=()#9#{Lbwe0<$WZKsy&+uI4Ktbo=(Yq;Dfu}6M>el9Bsx;-DM zc$V#qajDS4cNfFCdOn5FKVo7U6xsXe`}Yk)Jad$YM(f{qTykYPacK^X@+87rpWj>3 zP*KHH4~iMQ4+&XOz1UY>31yCqo@?^#^~27wv>o?5B6D+}OG!C2tWX@!qQqDz4V{8~ zx6B#hjL$Z7cMmE8j8ufTdA(Lste3Ojki-u9A67pV6l85XUEx|eoN=Tii&-Bn5MT#Z z-%x@N3!F7{AJ=xrPVTH1WFaVHP6WU$*ajEs9T(!;jQo#R4uHL6pRcAlMqX?)GaSpE zZ94|wj+USU=43i}PAXb+ZhUcIycBS8j%_mr6Oj7qO=E_OnFds*f%xx0{Ea404E@E7>!7Hvqm50MNhG7@td1aOmF$wmx>WXEm6~fl7B(`HroZ?P2i!D>+r~ zn1ymZIXSU-^-78J%kN9a;OIrqT_FQ??xbT8Ki`R>@du#<&O8S~%?&!g{o#@6Y4{4p zpzc+SWp844l>a_6u&dPl0JPT(B2x75mweQA;91)Ru8p~E!oTHgTGZ#Ti^j3}UbXdL z=B`LZTSLnd9VXhYqD80mWW1sWSiBLm!4=Z;-=xdH!01VTXZfIoiY7N*W}Q2|T4iGi z_F%9fJSc!syF@0>`0u4Hbb$xWxxKyZGO8>9Ik3%We)p)VILD-sX9kEde7*|`d5gzb z?@-~YhhFwCjE{SCmq!%25-yuTRs-z@Hu zZhTla%_@l9CPY5Vzl2;wpFU;socFRuNT(t-in@Xch?nPmFbPQrZ<|xhOub{$!RDlZ z@7d5$^vB3Zm6MsPEa{B>{ryixMA(^_T3T8(inNxAjgP*?lbw3EaDr8D94+CKig1sS zgFx^0O%9yk`_~J&c@{zj-_O3w%nUKA{=0D_V`KMAbjmbR9Wuuv1m;;uMfandFU~MY zs=kZ2K~!9(SvY!68*sW)<-GK>ee!%wRy?+(qE$bUU5^RuBxZP6U9Z+QLF>^SAz+Ep zQb_%>o_>J^_DSP_77)%gA^YR8>Wc>FCOJ`Nz`}5G)M>dsk_SRD+Oy5zd_C)2zP#m7 z-)qoko_VxDH3_(pz&1$hjAT$cyY9U9DWnIA8v*C20M6b-j<`3ZVlO~mFcaGA<5}6N z9voDjl~IiZKTKB@Ey` zZ+=|StikUv%Nl_73}6Atr>Pl45*CnAUse>AkFI#aU}|#V6dbV}26bIv7fGJ#z;dZw zK@JVnaBSZBiR^@OfXLr=e3ze8*2|iVV0-@_i`qsPb5y({SBuvC@qlL!$VbF_4K8`t zNlANo21S;90st;CF;xK%P;KK4!)f;ElK6RU^KQ@Mk%@_id#J%AF28lf%WE*$+ji(F zgTGW0Xf*WVzcYSbTAUa^|3j{p{n)-6m z$j)3zFkpra4gB*zAS1BvZHi0(H)m+ve*g#c;(tXg>W%M~a*D@ocP9)SSB$QckNM-a zSrQZ;V9cQL0K+s!L3Z7|8+N)X(AM3=%KGIE30y8xa4}Tvu_y$OSowq97(4>~kN$-8 z;t|qHzz9~Ltf4J*i0=QED#iw5YF{Z~WWw2$v0S#Rts|yug9aVS)UTCuQ~XkCc^_cZ*d0day!J z!t7xy=#nI)yH7~}Iy>EMM83)vIDL;)m~fSZFoe)dMw#Z$x>>T~o6wDl-rnAqvOK%) zg>+eqi!vel95LWE!YEOvDRAp(EVT|F*vys5H%lC8o9;zZW=7a0xuB! z+hCpU{GJ`r{Gze35pq1fNke8)QPJJC+$gL6x-!lu+J9VIxBJ^WV#}|=1ThHRipiB2 zS^AiuAUp^h`DO`#2=e^-^Em(La>xd)`cv<0)(XtOW?o-_?yc~6lF_d}m2Y={RJC_^ zrT2N8m6MYigfYs>%Br0HJUc#_Y~zHW9%e6z%b1gnj&4bu$9h0Z-Hn-#kMG^d)MwM@ z^U{3t8{;J_k;3S%rn}Iz*Z-kfFWHoo@dJfX5qzsHi{reWg51I%?$ z{Gz$}aN2Gcct{sz+mZA?%mo16U*Ge;e?J2ki4v#(kLmUN{+(S@U+>ep3gS;Z6mRBt zB0V9fW#*XcfCkxGKI-BR!?`3qI9#@HOosb}-fmre3xJ@_2NMQQ!QDU(jxiR7!yo15 z=Kh?-VE~%y9Sk^kooaBk{*I!kZGqtQ=j%6a$ji#gn$X(z+W+|i(y#(#UKsDmrk@u& zAYwvbVg(ADV0Aw8JdF(vdQk3VVglQWeKpspoycX3ra{)%)^=Q@2wwwPFLVE>K>Vyo z1SA#Bb99~KLaSVT?u=vGnOTCW6f!SQT3^5B#o$fo*q$aCG~!aMGuhGv91|mG1R^ie zf#JCfOH+3LjGz(4cjGcQH;C-@&*GrUl!x)5*XEPVcGXyvQ+tD1v#XH2klkHC2S9^Oe&c0uYUE+$7-?bkl1w+5*6=xQS2-;#vj{c3A{1sIf;-I1Z}5k?Iw}%W&n&= zfCY3Mkq3Wq-G`n;yrRSNL@2ocu5*}u?3Xe(*cHd`SXslr-Ra1B=h7Pq9afJPTU%R-C3UO zukYqEoXLq@91r$_+&k+rV}E18^I&7V$`gZVINj}q=t3)irizY^75~tf>;i+|zWVy+ zW*n3;tooAg8RMoWmrwTwlPHaS)k#G6)yT;Hp<5`J(|Rq(?7rjjm9(u*g>sh5FVhe{ z_L;7(&~(4UDJZ)KoD>8+lBIQiyEWfpfNsKw0R-*O4BU)~$pwJQE-2$Q{0=5wHfO*k zpKj>3#RA;8`R|c~^ubI>=N9dISe=#d^{eFZ3ReIdl)6Gg0Xb+frGiXKVzYS>T3Bit z%N3k)z?pjkNG&UX736KTU7SDlL>mI%@mc=PaPAbD_pw~(_SF>D=x|+xmvk#wNzY1> zvDiAMM7JXG47&h;!W~`1d%A|s?`FMF87_PM0s`qeefEJ z_=StJ1ybK_fD7{4+Khpbg@&G@G3Vv!AYt!DT^vQZ9E|IRhj!f%m}N{*kUrmDI9G;D zmW&MAFS4Yh9>3#YNVSXkO7V{!8i4>dIc8U21yMQb_1QC2HzD*c^|NkDt zzZQ|8B!iHzwAAu3D$DU`nt+(%BjFko6Nuj<^Ydco)B0r(FLt>um;j`pCLNNN`u~pK zVX(`?kL0)-=jT7P`}2dP;lx85LMOd9kcbdwdlh`523Bk-+#)6&F$5- z(E4mu#?jB<;lTC-Wc|y|ym7TYhg&fqF_``z1>%MB;s*5&2_V7pp3*{QN0j5<=o2$$%XD_8$*`Gxf~I{^e+Dvp z41n@R(=#(G`DqTZATU8Rx**G6zq|;J8Jb0$9vyEY!W;9{ve^kSDLeBU*i~1 zH!cXf`tHVM#jo@x^{NJ(XbP<+n?vLVfE|molY`6^(|I9q=RhRU2#-clsGFw&^O}dr z{8W)~Ale#w)*B@i3dY7+=^oQIO925OCb+PVzXi&JAr!>`2G80JKm_c$e!I%j1;K9! zjsi1Kng`6W7tl`ShU3+=JpD2Sux-!gCAz291L^J9tJSF@Fqm}ylEh_La-bXb`oV!- zP($cJQw7(;u9RsMt*~sltc=VuFw4FYxi|o&^*);f&H7+kb^!{DxBwJmyUPFU zT@V|xv9*oWF419A7Es;zN#htFLhmj2Z&xg0J6DSUD2s6PeI6-({(9<*v-xkk07z8; z@&kurB72OG>uMKJb4vAV6&@voK~ez|lSY}&3Siucn-y&c5A-Y>go~+othyji-JB?k ziwZbhs&ZS`0D%zOw7>yGf{Xi*WYLTg#X#)77lfQNk2?UV30LsFu6xy8uLLu>6}(TI zOpzTPO6$G$$z{P0+nsfBoYh-p*}MGv4QXOHSL=%bz`TWUTh)7KsuYioLd~oz_oui_E<7s=Rgs57X)Dm56nCVA+1v&6nMZF+Gnf;z1hjSvZ?p=-#eh-~`&j%vFH- z-&v1Pi@>r=@*7p2f1*_`w379nmBrK?5yi+;|(ZZ1J4OI=3<}g_EKXDS7tx>5lyItdm{m(~)tW$IA(YL3m z0-v(Yus(eZ2zL&X9QN~qKkh?lSF0b+h4X4pyMwhy6Mi5Q_1(|tthte=&J5d6KkLF7 z=xY6wEQbYQ621VPe*#Py!rUM-k&(p!p+^Gvx(nx>uzW;CFPO+;FjLfJNRm+g-Ki{$ zKT*<5ceSS4~u;ehtIavU3pzQ1d z@d*RRmIO~{H8tFJJp=O^?AjoL+up>4i5s(ZUxE1_f}1hygp z-u>m{W_;?HDW@2I;A6swxdpNuISp7=yRIWf%0!IYMDz+QIpia2J1xZ5RBKb^0xqOF z2hQ%ovc;d~!1kagD5Cv{X>M-9v7!?OJBuMBNDcwI@$ZrfRb=((iKlhJ!Cjci6)>2m zcG(ET*H*Z&bls~;xZB5URhbOfP(}tGA2+x2z{b|{EWui2j2qCq+}0j)x7`ku?+U%t z_a7=i$)pHq$jI>Uy*F>(fE<|V2{_~XN_mB=&p#Z_ncDub_sOk@}WhPYPSU&Bef(HP-Odd(_}6 za^rZxcyO$NF}8d$=jR`^Jh4kP|DM@x$#~q8n-um}VZWuo_PAq7f|QN3_`JEy&d{5^ z=xTNLng_7Je&z;HV&U08&~x>~;r6b++S>OPo}&*fk+Ux%nt{Q*%uR^J_At`I;I6nuPq<~#7zOlIE`u?h^}!Q89}R}UL{T8G}dNqu-uB`<4+?1Ig&rQ@&s zSR;=XJIU(){62D?XoQR=15l{^FxL=5_|J}?=h`9X1=OXVa)B1`w+r&HbPG%F+9aLM}8syx$;n#b+8EHhbLpM^)9l~9}wy8S)N zxUq_4c1Lz4e|UT%hrfL-nSE=G{67Qe!2q>@lY4TqufX>q++gy%qIZpMq;7rlw6#jqZzgY9ZthzsB{HT}kqNG89=D8mhe7?L@Pamwxtf8ZS~n-XLW){G#$n0dtGye~~Y zE`e{&M*a5Hu)AM<(Z_!i!n(SMP|sj;G(b^flyJoS*qHKYk8~Llg-x{ha;Ht65Hd4Q zvw4>^`q1ifkJW=2J08-Lv zegA%S`TLcy7t&onuw-_XN5ej%(8w$9`grlW`q=WpG@iVcT5aTUfOl{@F`fj2{^fO5 zv18<{`=rsx=;-aEW~lDNa5l`)4Zw}L*Xd5D9;GW3t@UdUS@+7 zguV=6-Bt*2|N50I0(23o1PTc_Eufk`vLq$TBz z3Q*aLn1Vg@bQ&PaZjjI(gwVQ#Vq8I)#`5LMmm{RG(CCSjyqrjdoa7#Uj{L$I0%DYL zyGX;8b-Rhu7zl#{<$`|m0MglM-N)2}@XmoAl$V=pergT2>KslC3;lFGHzl2W~D8NmA}k4_+n2x?%R0YG9*K>mUS zhW7A3q9UNP^ozL`$@Ke_IGL@U@vNvIGZqr(n&uBUZES2}5)&zoyH)*}AZiUMB(`{> zNp~LWbV0Hl-~npiJ61v64yuKKeK8t*R8aXztL}QUuiY&@0B?_XeDlDYo}n2~_~Q;P z|0nB?km?4VEW|Q|&X1Nvjj@0$>p?XtFJKmsO6<5iNcZ0`?!F0O;Ky;>%c4xTgBpw& z4huP8$ai~O(G{%DFBN4hQ_X&Uq|&^!0|a*T4Sq@PO?bCgS{r?$ zA-0YHm93r5$GYY5F)?Jv-^EX#3jt&33;>nO7;`p|dQ>Nca*)3Teo|jr&GEzMmUmc3 zd)))sD_Q`@FL!pP6NpadNu|{Id$#_i?dFYb8j1OwAD4{HlyE9ZR$otH=gV3 z#oW$AvrQ970>0KSXu^l7Su|cIYRvz=8HiI#i#oi~&I?^7F*C!vLU;Z4?>o;^w}mnM z*Ro$j*{}WeHSAj9fiOmB63(%ow@L7kNnUtJIoEGT1nx<4c!Ii=0sE$&D+3vu;h29Feg~XR5*gJqNchmhENPRFe zVTIs+k?6`6#2J`lt^yC7P09R8#F&iUdp}py#blM=Rw91D=8;EsWz zQkdo>uSiESrx*e`%5b|&q2X=-+Fl~RCo1@oChW7HUhcrnE1JPD!5B0NOyZgJT>|3j z8`32F+67dUpOhJC*vqdn{%cqeA^$_+D*fxd;K;T7Uj3}l$eDROxnO8AL#_}av_HkH#j0YC&`Je%8X{RQeBZugn4X_T^2@G~%^sMU$=fVTUa zH7uGGN_ro89hxktH(-d}%sBd5qg6e`+^ShgdfdP<9&Gn}x*II-J8PA6QjDBbl8nLl zy{7vEl_@9!f`5aI2Ze6I`T)+)zUj6JZnUpeTSa6tavkX|H^aa4Yi!3%cjV-$vp7sb z4**Wq>vX~sUZ0jSloFYTYzRi+5$RXx(%_NH6bELMC^;B6KClOJmH9nK)7H{ebiU|? z(0~Wh>r`+-xB?gO#`QjIIY?+7rVuf}65Hi+8NN-v%*tG#XF)1huNb0rTD3@fb#y&B z2)_`*nsN~z=!!~F==_vm+6VT+z1eyNTE4K=A=4*HjKomLSaDmI>$q`JmEM%raf*_m zyjyiWbz94h;tBrEJ5++K#E_x6c)20d@hnHeFMF}m>g>-%HekEM?y#F(VHA1lr1lV+ zCa(%D=S8qw%y}!`#zJ6w3lA%%*I1MMxDa2C5KMDh2h`VDlg2mJ5LtZIkzEsInpp+5 z9s4%~cW4&4{E6?jHdV61H1ly?)sH{@OpyXuYgc6Z#>go!~>5}8CvpF&DF)9d83EN5pO*_ zH>rqtFfYX6HK=(+Oonh-fbJtEdwVPP=)6YJ0wMK=U^&1CxUHW)H(E(KOlOSbmwQRrJjn}bAolU1tpIF@tXe2`7ae`Wj z29`q=y}^O7n-m~ZWJhleG!NjZrsKLdDbzMtZU5%Yu-c`2e8L}J(Q)5OP0hGTK}i$1 zcn<^s^3YH33|IV$Qg zc$dg&umD20OE{yK=vG=s;d2!;oQ`TKb&iyJU(_r*Nj4qFi@VOSoups(8dVzysB5n# zVEJUtXK{4g#L$(DOhzM8-xHZtU{sdmV(W4lVJB`;eGUs~oD{^{YazVaQcoN+yXx$9OhD7s^rI>p&BI&`c)>MUp?ocS+1xQ(&lD}+ zauT+4N%ykRhW-+Eq%nS=_{bby{4JZ}&>s4rT6{M$09Il;!uQxh%8R}sfAy=x@7 z4%TYzh2FwBm*-6{{owxUfT%Yoh6k*_cCZ@*Jbni_6^My)njE(>Mr=p?RF z1?_<(oTBKHxxW20&^97P`7s*z74M)iQLPJ$9|zvcTdOj!=yf>L^4$^db(I}DE*Wm% zh+-paR2>Wy>N(25fBSD6y9!`6bfdPTpw2dHFjHqP>yIZJ|9c4idmzo4K>l!ndb|FM zB(NjXMkB`FrDuqEesZ_--IF$vH#D4K&k~;cqhO}dU|&vhY2gKZnpc#R=iDolFk>&< zI_9k6bpH+%Z^?_XY;B;u>hZ zgJ*s1V9u4jD*DG5r$6vO3XSyD_r$)_%E;#p!7>W|qmSxf(rpR|@QW~|&sw4X3 z2?OIT`B=0HhSPY_5nI?y_^S%^2yKT0uYMv*u1;mIl4j@e?V=6uT{{D&SxUr@Qu9Ii z0*pE%JG5N3@W?t9n-&|lq2PID%=WnUG~Iv24 zg1J8iT?$W+xOB@%W^~q`d4S+L){cV1Y)tuqre;KogMG4&ldTzDiVI?5$A_Hg&ATNS z6%kA|7o1VZY=y{uRaUkd)ksiV z&n|24uE00pUZY9|IN-y$E~DJfUlD$LK&Pmu{3U4EC4{&f+LvihK+VB1 z(N;};5ay%KXp?<6q`1!FL@tx(Xu3fYS;jF9jzl`jb>NBTSeZH_wYzc2OZ>+=N@Aqt zFJewbb4OYtHmiQ(!~6i$dyub4m{+*=x?^5{mvPCaG|aj^ynuJm#F6d5u{A1`% z`Ah0d=OW}aOtr6sc|AD@j#c@ZWQ^_Iulf~@`o^~ke{EV)l}0)m zc2x5}21Eygso8Dl(U1q$gb+=+|7e695BZ9(Sx>d_OM z20P8k#C|985s{kW@?xN|M2VbdXi_TK#7Rs6>caYD+;uM*mB_F$KYf^)=`#7oSXfPT z@R#Cj!yokI4N`;0%bjx}>QV2IsIQ-AjF1gOUKRL(FHa*c{+QZn8R<&Htzcx&QOE`F z%`&J%F6(5hz&ESfvX=sCUVvJqp-(+$on@_7@WbTX!-V%{cR#t#S*yPnL93VNW_v_S zPrJ{?cw;xE7NbODg($QlzJ$=Zb837Zen~I3zvy|oNu5pkgy(vwLOA39YzhK>t78A^ zH;_z13(6E!2_zDC;d9rDUb&Ux*oE~TF60{K$!s(B*KB^F3~L5yFQhA9dFRkH-dxiC zBtUP#-5=N3mesCc{ZP57%hr}8yZV1GD=qA0V!Q0?=N>{07@)tyQtKJaG-d26EA`xl zm@UiWZV{_djC#3-ny{QJUIn;UFd}Kyb`fr!wKm|G#i94iB#%dv;_uS0%j^w=>$*nn z2~bZ71^bKW9vmrXUK<)3LNdVCx$|zTNx{ec64^T8R%FX;O2Tp_4vPp@4Zk3p!!0Lw ziKY*OErS!~4?aJAhqg~Qzx{cc8d(AKp-lf18_=fdWt&y$d+Y*A)ORmHXP=dA7D4;B zBpZLXLR_h4qJ&b z6R6cF)vi1SYB70gKV35>h63_a($}wFce0F{Jn|0pU@%3nOfO3^^1R$qZ{fu&R`U38 zEJ0RBc!5|aRTuV9fBUIz6I+kJ?$>>T{*-)n;^Osqsw>M6{@+McVXXu+|Cc6ZWI9@| z9od@4XNx+AKT?owV4bR3fuTj_cmxm_uL;*iY`=qBXn>yt#YxQjKK4|FB z|B=nleaVX{dghAb(IWOo4Rq}EsA+&Ve|5(92^d}aB_-1UT5WPa+8QBw)F7&)ZJlih=|mmS@KoZP2vlg!8E{$3^1md)|gRVv9>KO zf2=>QUu| zDwfzsy*Fv%eAuRKQ|7=k3T=N2mIK5k+YB@bV`dK0>U{>Ge$AMF!bAn7ja}N2UK`@f zdQJaAz8653X3kE{A?GR&`=$L~$fDmiCF6_zS5@sU)~XiVk-JSHpnp7`N)oQ7*68si zmuTh>kLCD^2s|mALN9lXX#yi1J{Iu4{Gg)Pu#wOb(J5d1Xk^sfDE($7=Tlz&WYv1< z({xHbZ|_q3r^nyS^@0_(7eu8SewDtdsu9hW0}(!Wr0hGLZZ1jI)m#p*2;QiVN|)Cp z0~DW4o(vWndN~&K`=y75zM8Q*qrZDouj>A(&-$&)4O~^B$zFfdCzaxA3Qy5&-#S)B z63Vvmq`v_nLxw1ouo&0eA<{cJ!7s$>Xn%)_UI$0jI1!M#qEMBso$8uuSNkEdAx+*+ zhQEYI)h&yT_+naa z6aTEO(~r`2oxGT?y?v2nZJ=6h^g}*x&`hgDV~3tk;DPe5^4vQ9k{0hgc-m*Wy5^`0 zK{r}IKAWt~Z$Ih?O)h~t$@?!EN{w!G_QR&U%zYbZd7w`(T)T-#&#X`wdtZ!Q=~Yngf5>;okjN#JI}4p{#)3=>ar3CN@t3i9$T&6idPRW zuR$Fz)tB~_(@Hz{R^K^h!6UA0I-Q0jVAo1iaAibFwm$Mhx-w)>V$0cN48sfLu$;0Y zjS(bXa|}%ldKT!}wOkJW?U^Dud(iAab8z}>F1?jVuUWa-Zts~a@ttz1z&sz8su9lbfbAA`-&-SdFzo&jgHZ(^D*F1yEs5KlSTk_V3J$_&S#%h@zq!}^!Uct-QQUZs3C{*KI> z+1lSPoLTX0z3P5TI}?Rsny_ZZ$7dp@R4H{$(4$->O0$RM*}yWpr0i<6=3WN4U(|5<-kH}5ln5H~TKgubXXPLu#aGP&b7UygW!1I;Gk`k0t@(JRd z!$`v*LHF;clb)vTaJu8N9}X8PRYt|5-<0+4v-X+EsvmC?lZk3#Mx%MlYBiqVUTDWm z%)G=YmuFQCKUlg)Tq7QTM-m>Wp>f<{Jm%#rU#I9EVq5_GR`G_`?cO~blg(PL-QwF7 z+p4&4fyLo=HuNPn=xu0+N`EvAiu!n3p_0io$hop^oB{~fen!L-nyay!; z}R(% zL~A8Nq=Ts=5Izx7#k9vRnD8&|w>-z}aUL-fI+zR17>~4{W^d-^G#9wKD>pcozP;Pf zh$6gF>V9R*pwoUPQRR_q?l#v(Ln)Ch-&1-eseF9UvqA_%D!7NV4de3WsPrq%T%ude zI(}Su5%lXJ^FsV8kdjWIQ0ez`P766#oNQ+o&?@{}o6mDn@2CAtDXzXmK@>D^TUb~u z?)3LXGo- z0`fPvTJNM9xVlz_lgjgu%;GMdGo;e~E&dYv+n=0X#623tDq3(AaXy?nO=P- z6VX{7xgDJCR`rx)m#{WDjs(_~5hnCmuWwYzJFQp*byD0~mYEiIJSu4`E$ z9kGh1^8sy*wYSnSbK`lO5`$)L)kMsNrUT6C^_m?GY+IFSSTU28<8HUc$5;EHc7ae1 z8`R@hk4$n0yQ_GRiW}av^1bMES8)*$vgB#3{b2ayd4*1ygszl*`)2)%tgyOOU(C6` zJM)?za+cy=nLwY{{SA*|xWGFhkG*+9%Nq)BTCf^_wg@;N%wgzHtETc3K+LG^W+{Z%MHu=cyIjf9YSf&PQX7W{V64<4o z_@!$dP`;F~)fy1Ku0ZhdMCj1BuZ|ycoa{9?sr0R;s*}xeOiQoLBiq&F=KDPgm*PV& z3buM_#mxgdS@}91TZ2f20>A7{=aR_RG*jQn z<@&;sw(^6)JokF;L*(esDHM8}nx4Yz55XqCBbb!Fq-j$uhdL>2TcL!5vUWgQ&5M(7 zyZPhklUSheCv1?>w2`cY-HDUc(JlQ8q%`#ieS4QcPBT#z*D>bxQ01XIDXL0majxx{ z%=;?`2J!uDn2yTeA9JYM>E-R|#&O%ML%(0z5hIplUxX&(xY=;bkM6jq=ombdz~+1J z8x-^rkdp%GH$Jo&#-YTW_iZFEPFPDZ$y;2tQ~TYLNBi8@{=@B^y8bh<%}G`N^nL$7 z{#sk%*)=8^no7B7SCp8GLx^sqdFpn9`dLTOf{gp8Ua?-qWa4nk*p9>E^USUdpPMUE z(UBu;Gn5RBvGavGsgh1(f$T4}zPCO|(yUE&7`iQxynoFhC-T=9Su4UTQWPAiuV)t= zYw@iO)Vv&&?B23%hCfl?xIZA~iO!XoD8FHx_?bF`GS=eC(YW-m?62>;cD*z8NhSVO z4x~2eX)+hkr^@@JiW$z)U0raRdtw$9!wiKt7()3XIp^kTbB zqmrKG3A{MpFyaSWz426)7~v0&Cca4cap!!#%mI4#C%1S4=r%3O*X6RQxm|Hqc;dQP zm%xgfbuk3j^{2FIBMIKwuAOeB9L^+3g@{RUk z9aRF`H$ATD@s|U}vj%>a_t3r_U)GZ)QME#@Qs@?4fLgi(933)Wmo50LrDhryAxG&) z5k~{vcE-Y7*Os45j?WJuQ8y~=Lr*dh_JcoMotXU(K7F62ws|yjcuD;xGMD^_sY{m( zuHAU$k!ewK2qnvF^;*nXq;`hxNu9Ll;Ex+a%>%CE#d5kywfaXRc@zE%RUO`$p?7M8 zQL8=~H11_fHJq*a4SzEXa{V$^J>w_gH^48EMke^3BQ>4pogAOXW8LaoGU;6hznUi4 zcl@og=ekL;j%K}a8(n6=D_!h5TA=uAg`SGc#y;Xg%yjc!xL=laF|vHU9)X>nZy5Cn zm}v&388>xgN@ncx5!peKvdNM+3&dfF=L=QSF@s>XriIncGkHXlWD5QOPy& z_CD$=>WgZ@Zt*0>m#3bHey&}oFTCvR`At@4k$}$h61<@F&~L)NFP>QS@TE(<$EK&l z*s-9Bd4S+Tb%~f9g7BLvA=eSrgs~?FGbM=acZ)eS25oJd>5KbedO-M#rFpog|f7I+uWlb5_f-9cqZ?3eD0+YfUI zs(24N#QZ)>UTLkzz7xg3d;AJ=HT-t&t)G*Ou4@iE>>2)GFU_vIljoX_Y9#hjT%t|l z<#w)X0e#pMVq@E8WJ95ml&?R5-mQ2FUB1zRJt9Lbn=6lOYNgwL3%(jkzt7t5vH<8h zb0*WehrgDQuUc)}Tt+Lz<7F+I_zo@^#1A;f`x(|?qIn0Li!a4B>oya{vT9h}s{$3* z_{4!dc4btiYX@zqiA`Mx(sd**kz?C0>%bfD(W*qruLb`ZqeP)G(+(Sk#`egOl3GQ@6)INsbz&SQ?8vOD(M6GyPN}0vC6lu}wasJ8Ws87%$c; zZ8$zV8}8N7a-NYL^8YP-KmD`2@lRLro{qN|4P?~2rNAp;{Koo}&YCpgiTu>kI_tFq z*r;!B$wx)4@_k;;y``jkC69*?nfkhsdBjp^-QbZ+ktNBBd#nwlg}<3lC2N*WEeh4ao}6B-4&- zF?ovNeqvg4Vn-xbxdyh+l!P+z7}-bW@NXi&M??m~orAB>jmlJSg$mE)Og5j_tWKT} z$#_W<&igPlPN&#s`ekCh@>Kw-HB}oIcBQdelQo)c892^v=bte4~ME?BL_y^4_$9y6%{*8jWAy5r2WZdIYs2vxnveC^&fwwoKRk zB?qFK`T?awH(P4p-n{d>BJ~_}WZ17I7pJWF9)D&Vbk@0;;CLrgp*6{^39Bj>@SJXv zJ6dWl;rInyJQA2q#@=stI|CK}?NUIZj)Qsv)$e_x&I}5|$*2}tdx1Tn_=77pg)W58vI9p}yH$!esSlcjl?fv3}d!l93 z=u}wR26er!KV1iCF0C6LW!5OOs+I}f3;r5OHxVWGCH!{8NZR)+4(eR61K@LOl36Q> zp0cxZ169*)dYN2thS7>6B%?!X&3U{0?{m9oKf%HI3rp9bdn&Kn-+b9K{FEXG--zoqD~Tb2}+# zYdNW$mcK=4tMzKyz$UiA$S4l=9p`sGT|0qk{xy>_ZbZ5(h>}w7R~aGML!R)zcW7L2 z{~?t>YkyhpcD)HPXrB0C?o!ZEQ#G^x!vUTsu$>LJksUA+14_9^*#T`mP_;c%54PFU zG}T1kr#Paq)b)by+vl@Ft`B8szQ4*+$=E}>M!Z2djtH@+2)p&#&DRyr-1Tm$V8ada zdX@VHF8{LbhWayI9u}0OXdUYJ3rk>A(=r9x_ML_C8A%e@P7o_ImCr3k^FLrQ=tD;u zo5^~f7ovwRV$KfJSib{!m9?p|WK_xI>s`Iz@k5VnHbbYyAp^S?tg|vEw<*XZ1Bl+}5B=ds*mUgY6~TxVk61l zAJ2O2N!8h>y+Cpdprpv$El6%WaGM7(QB$9YGA0G2#+09PiZuO;qkLMkIb5s+ zBjr9m`jWAOS4U=q$+E*=T&O(G6WeGl)G7^}?e`*XD%=&ze+5@%-fc7?7to&cuMix4 zzR2pWUpcUSW&W4-G3XYLrb)=?XPOTgM{>1KOgI@YdTo==ZC0tbr~eeiX!l)UuNltb zzBCE97~oBJHW&<5X4Tw~nWNmC(CZB0a3Iv}{LK;Jk@6mi=aIO;rDt@#D~@gZ%5CtZ z!2f(fVs%7;#$rILHTcjDvDd1sNM)~uFskb$Q8{&3xMRgoGM(tPmw#mgwCFcGqHrY+ zZ`6Cl|4(s)9$W1$*0w&v*;1%5-k)>co2XOj+7u*ksP_~!rVQ!pGZPrDN2sjGsSS0# zN+#1yaHDmx!3@MyBYeD1b(=}x<=U9E*4FOF&I~@Kd}rUz&Wi_y)eohu3*4O< z9rz^!+U8T9dDZta7HhayANjKx=sT;|mvn)}LqA-}*IMY+8DEsJj9cldTM(m^$5dC- zyDN>XD%n;@Vl%Ld?uG@mj-aC*wH#N_dXcYe6{U7!NsJuM&n@3|c!tyVYE|^{*=wD- z9Jmkq*Ch-d$y}q3_+dF`I%diHIIJ)?Oup{PONRf0uJ?*-qI;u%V*v|_FDfD(5e4be zq!*Rmr3na#G${co0U>l$6a=J$ROvnR5=vA=kP>Vbb|c$ zF)F`9v1)TOp#4#eViR@S;BWmnKmQAHx{J3Dl?=xe_Q zd3&aH?kI~~W0>CLW(dDP9xq(z;AGduHq&iqd&cpS;AZ8xIBk^dj_ag(P9#k3TEd6} z+~>|216r^e1>4Hy+h~n2VLJTO&Ch#5UsNl|uSBfb2tivcG3OHpKB&z!E9A*I#gd%v zmBm%>GTw9W0j8OONj>r|YvBc#Xxk$D(+zg)M(+p*^T_eC!T9)hdqg+ZnAomOcYHCB zT61Z}*`km;7*ev9Y`0ZDNykfG2D4qHJHgk4TN?4;d`YoM!P>INz2@0&*gDm?9IQ_Gp#VCZVj*OaxVkvI?>zqyVMnjDw(Uyv+|6I9C~)V8SGb-KmX3B4(8 z%JpR{oUd~c+3aUvAja>A8gq6U&WnIswgHzVxf&TAE@|$1nj`e9I$g#O&Xo;TpgW!2 zT(kdo&?HT;i2~ZO>jFfR*MzPzPzUbzG%cIhpYP_znX$Onw`(4u49z=dBW67q57f#- zTg|@h1>}HMBfZ~{YlJmX_(4L@mEEa70!FUo<3~%47stC_wEVH*x`X|wXvzR2*K3YJsTU# zzDI0mSJ_SB@$MAy2Jg!qOjT689bIl~OvPnPIrp43sMT z;bUPZTs^;4TDFUD{3Y}iFnu!CrPJI})Wi=8jL+X8aA}fCC1b7tAwGVtWU6DX@ zhawkZ${(v(tXR<|=!j@qganhkno1uRDr~@u_syN}So};Q?X4vQT>4D4ZEJX-UbUhf2V?gRns>2G zSN&iPS9p>oxy0AGA9DEET)8Dse`W2TI9M3RXE}w%!Z@u-d@VMjct+)-VQ1Zs3PUA2 zhU#BU?8Q#g1feNaooAa<37B#F@F|txw63Yy-SP2TweD6@DvvVz=@LCJ{eCgh?bZAB3D+;fW2(9An)Q!s7)qRZ$@g4?$k`v zC(G6e_^qSd$tk)MWm8qTgBK1e^6my5Db%XSsZ3A{if`=+GtcwgV$@c)KAv(#h2%@% z)z(q6w0Bh;wpbao>N?uheueMVMGadzv43NyF&dW2BJ^3ax1tvKBW=t#4sf`Se+65i zU~sjSor8+Dbot}#tIlZ}NZ6V+sKlX=|MaB)?;2idqw#532rPkeH@Mx?+rFT>*HYhC;2*Q#^ZYYS+8}(%| z!tE=k|L6|QxKsvK9(a$~Ba#SGV%)VJHqC}!qehRjzD&-xaF3TE8H^F}oua$R63s3T zyZ9c@ipkcAzKN_1!O(r*PrkJ=b~!m8?(Z1=H%2;=`Ii|?{=0eir(yE?hb#jr=bW7B zkRb-(O$uC*IiL8dbOqh{IaEV`@SDcd{P>yK0S&wZWp~AxoXU)?rXsF%;o2e>ciIKiHGiY9cWG9LL4gSGV zUY*bPKjTAS`a#!omzM4Sq=LlVyCw8;8Ax@spx!6acx}}M+R$k0){nXEI{0yzb z&oj~NzKmhnT;s+5hD6AsAhkyPaf31hV7Lm^H%Py1RlG<@-CW`2W-TN z_Wq?5E!CX*#sHqobL^oab4LD@G>gr)*ID`k&k7SgW|oz}gbH{zq!=Y@^##8l6!Zo9 zS>e)LDd^)??r9->CZjb1pu$9Fw&2nqhDIM)2TU4^1(zkwWZcXX+Yt13#*qaK-R%#Q z6O8xU;tHF6rk(unXh$jiYintx1#mipx!jbCjw4%7=I0-kezzUD5;2mJU*S$jcV&%ydB<$aY zm^}7D^MUrkt-MIfS?GlTtIE}OUG$!9KyC(B@l>s8qvZA5nhN`huc+>LMd11h(AU?e z0Ljdspm`JpgBlk|)}r*;9C@{)P^b>K>DmJTX);@A^Y>mGdY|&IrmUymLw*Y@7^x)d|!%?@^U`+a|{0l7n8zr+I&x4owZL4GkV;-5mjTqdX z`TpzIO9ZCY!A0(@Y*iDq4lQ##6hy}t1(UyRGE!^{=GOnOh2vE8#v zqgh$(*;>@kSH2x3x`HlCyo&W65w^5ue~20s8d3cY+P0WA#Y=zxl(C`?aGO<=V2yM< zXC7%~{^2|VHav>N27H1UO;woWlHj#@`I!Kp%0|2AP>P{oMb24sCD`qXgGEI;2{#Ich1JHXRxbxOZDN>FLREvSK`Q)Tu;bWk+!P3_4X#*|J%5noPE;$8BaGW}6FryT0e0$s}N5IhtWPi*c>A zB#h>_sPk_*-^WVa zf8;8hVF45zYz}E}#Q!z6%FnM(R`&KX`|Nr^_OPJ=kjskrEMF_g0hFRz|7}Mg`&#-t zNM)K*`D1Rg&4&COaJ!?!eJYkq=Kuo;DT07QH&`|WIiL6FQ(X!Z2|9GNt;8FyXIc0x zrfQc&K4Wbw_gKYd0)4DKV!O?nY&yN~)i~MW&AU)1w@H?ZV3ixUGD#m@LdZ=4+S=MdT~Um?m6lBt9?idK-M`Rs-Ayz*FB!Ao zQn{I|$V2_U$jxBS=g)q>Q&tfXFL6?bgl`je`TL`6seF-R&)Ih~ zVIqQTYOBJOkO^9Ul{unJ#fOdeDltO1`7pJXA*txDSHWgU()Fd*h{^oej$%>07lfKu5@5XB{kWDN2-y+6k-g}uY7!bdVc=o+8zzd9CxA7)by$zEg+29 zqF&>A-6#RBh7Iuy0=oOG3;(q&#je4w8BaERlx&(E=om6PR5UWc&)Jq5^KX5+6r@3wa?Z`oc>$_O zIseVj@H<*u_@ci15}E~bKQ5N#H?!YDP0|SUERjNx?@OfP;-Q$^3n6ogj)$?IstKYS zp3l#uZFW%(=kIOY*D%jI)7EQ8#7Z!+Y1MKiwZF*2#Ikc|NOiS-Na{YRZ64xih_Zwv z8H_zSh>wpyAa#)14*(Pp4~}g^0p@JKpq1X_L@zw~-~b1hVFqJO=+oXKVS%sBfA`tT z3O!u96-Sf5_4h)tsCOgmW5)IR=4=Hg)bQQ0lGuEXNc4eoJzx5^c%Hl6N9+mGEJ1>a z6`jtbID1xt?mM*zfS zRn@#0rRl$mBDbOhsPHnN^?;nuA8P9RFUX_#vg0fHa-C3VSW>|S6=>fPs`=)N;HGvh z?zOa%@rRA>4Ql2Qv7gjnY`fC+#n+}txqEOMlGCfX@Ac?Y=pe&Vow-5n)FP#>8=F!v zUyJ7yZOtT1T&e749dacdC*|;n_G;+jJGKJwizQGAOh2eVzdlXgtmXYoDsj^K z<*(NT4yS z%AB%(vC%xeTBBvA#b&#T=9L%NcfH%PMJ~5j{L`{oc*m$dEHjBG6LZ?MD0_r2qlpsNc9iWp{q8yqX!*_GJ zOzecQ;LoI$`+HAk+mN#Ud& zTY^>6qOYJCWKovQEkfpt$LYT9&HFSonoV*#qD(MOnOo=TO=v%=5WctMkPj*b4U;F> zVC1<$n`Y4f_7ZyjPBw2OZ6N=Q!SIC64H%~=lZtF^S{3{CQG+-a2N|;tLvRne@8Wmq zzRnL~%AdGS>IFd!KHE=5TUyYS(9n2qLZ6@%1F(ue7U5;;BAtSn#RtAth6{s18SU(H zd6QuaH7T!b=2jSgzji*uk1>d!(D{|(6WRib4}5t6)=w{MVwYDmivu18T9ZBZ+{$&o zr*EfY+tzcpkbROK*^Dn@VqRk!)x1aQX6Q-BCj3{Tr~RRkWVR~~a}gyD+FucKJVG8L zq-}VI710p)*}uZ1d}6_OLnHWT#|2}K9*;e+%0&kHBgQ`@;iTxfWPmwXX6RSc?&na( zvkmo+mFk=_Qs;{vC~(W5>K8XRe=;C)4YBePET6nnT?rQPE#8$O@R+YHO^CWt7c3|* z4T8FmRT8*yJ2T(o8Hmt5xo#faD|)UwBgAc!VoCKNB?Q*2{15d^8XDeh%sNx7y6R6@ za(Fl72Q!tpKPWm=tExSBruPjOyMc0Qmm`bN{X#h_++F^;zEoa6i$8UP0Sk}Z$i50# zy*C6PYW=*uY92>`N6DE5T|zoo>c^R!ao)<<`q>a;P41abwZ>jYs7|+y98+SG<=w5O z_)4M!o~U2EJU0k9gUhfF6Z_)$P!Y7BiUqW1c^e-8h!j=}OqW-|C4h~omiQDrP*D4l zCm*vPGlEXHQ)rZnm31!KecOx${L%_VoCDC!6ytNWY$BuW%~=W?|HcJ zB3m&P@HU)5oNc<7(p($X^k6)ZGL_VlXubQ~Ch#mjYGKd+2RvgAvnDArO>Feq>tHnW zzO>(#=Jf>rWAQM3e4mF%3>PJE5xoT=&r2 z5y4tm`4Lm%i8bKe3T0cFzKh$aUu|%#IcqZGLwvfL^^w!@e1!0w<;^7R_!mtQqv@^g zs%?G5!0geUx4Vg}QpI-%x`JZ=wAuuwq1Io%$2hpUXCF$tnCBO1mCu{WPC%ddyJ-*Y z2R;34@!%QW6o1?Z?OUDwxL4m$-Gn^#;bORt@+n|@iyG6^<{r>fcc2XF6o9_sS)M^jxmPY^HFca_AKza$%LeNY&W3!sxy zqK@7My0M2LKu(1Yd4e_+mV0cFr82zsa!Z!>>ya)~S*`w8z1M%p@>o77GY@m&0JnHg z%R<|pgKK#Y66T^b>faXgz95x>v1kCFmQ0fbnC2g@bo?DL8bij6>@%fj-tTZuR5WL? zK2hb&RPnV4E0@#cU)O+oSg}A_K-`Y0Z<_qbBp~+3a^;Yi$D!}eKbd~ko1q)O4aAc( zGZiR&@F%Tg>F(g{^+|LP2Dl<-S$qOZtp{)DWDLS7jJXw{1DpA~D>a*Y5^8{5C|`0B z@hTWS+dy9YvN63%8)l115?38#p5kqnww+8?h@7z!W@Nsqs+c`%?2z-S{q53Wo0jTw zWm83n$D9j$Q(2rDwxoid#R{?|;F`^}n@Mg&*-*OlNq@#?-K^Sblq_Lt#%WRrJJV|h zK0vMS^(}K}C(XJkX4NTxf|_hoVNk$cmO{Rs&XjS%zQk#a6FQKsyrv(0Sva!SW_gqM zgo=GK;x^1U5U9BKJP5FjaXmdJgnQzI@)Wod-swv6+dYi))uNUOCO*2%nwMD4$^AMV@02rM-sb$svm^c9;Kyk9;X-EvCpq9W4J_uvqr0(K}npSK|#*kx_i1vw@cq{_sYE(2^XBl z*x24);7@uy}NJ4E4lg=U0gGeE`fec9Scxv@>e{$*|bhLW$k5b zU3w$CO4yS;x{969IU#AQne z2fSiFIs||-@sFha3He&83vv&ZTTZs0--!$j1ddAjBARm!wgFDO7vQW-?pe=0goI3; zta$ca29XW6sOU4dE4V9=3b%t$qOcU64}SuVdCJ|%S!P%?G_WbW;BdZfxTV7)%i;`a zUXCHDiRvLqb|vpUM|h0UqGh^SG&wmMV_R$v@8{6@S_9Wn=#c;Lh%4thn+7i64_Aej z!?Uu;N{ew~>uElI&!pu8(4<>VWcGivNk7gV>H;74smvTg|#1=ImTg#-9 zzk4QPYp$)ipmLvB90N3o-M@qxq*P%@sV$_INcELS|t(u5fHtJkl?L2QeiKgj) zIO5TS%wF4V7l<$>zj$4mDVvybXFgxylnZ_f@slO#h`sG7>;FH zx%Uf$qymn)8(iZ9G5J=Ln-Vjs(YKYXn_swOm8YrwR}`a4VM7Jf;m4sr64q9HQBL_m z*u!JNz49uobk;~i1nz4A?B3RYBst|t-*ZU-5tn-|OZK5=>3m9?oSb>T$Igrzyvv(> z^kY+|RnOe79 z2tWW^cRek54=6MpxU2`)w}A zzZ`F}uj`u`mo&WXm*qeHU>3QKzmhKLx~T9ba$G03$mZ%$R3{CE~xRo~i^g4J$xSabsw_1x~D-5G@uEzgq&E zGGwuu3AdqKxD<)FheGPWSt+;~D-N<}+7=J9!*+R}kY!PDRTOfaT5$cCmn!Lk@tf2% zOAS$IX>#qm2J5z&4N7#JP?;i}twX{3sx`G)$Tzjv3)9aTnmRbQYUuxy+z;u*>+KbJ zMBDK4643gypKtf+nU9I#hORAc4wit`V*Qy`bbI)I0Z=(e-MeQQ*N(g4JooKf@X}bS zP1fHaUlt6DajY8ocID3-E>>?UPr=JxQATGzR%9X#+m#mUov#cI-~PFHCV@-i5|EB@ z{U|ZGW;U|qd-AY1<94E~uP3(P3?WWX-87+})6c^!Q)>0_5Q@R=y1<^n7xvN5Roox@ z?q?~*^p-v2nZb7lBlyx!d#*_&aI7eFa?q(V$G90=CzEeFuWJ8iRhy-w5_IES_znb= zvi(afxC93T*7;?t&5M>Z_bTZVK4WM3}YY6@0@SX5)iHNa4Pk>ZuXoze*72 zT7O%DtM`GUp0G)GPxG6CuL zW`3ZMH0dyL!i^(u;$0La9;}x5%r9zOf~r)4;>CvcktgOXL$+Cp3%vcCznRpNw?SR=Xxh1PyFj6QL2NkNTCf}^w`)QB33=K(Xp9#pv z%1Q=g85vmO*8d1cn<@Mq*UguW_7>z(2+nI$>{T4h3o5zRB;4s{-%pufD5 z8NQ`aH;`=pZ-yv4r%fT>*)86=fo_|~?)x+r)!lVHOutfQbxfP60{ z7m)k*4|sBNd~-8i*Z1X(HcBO6TO?xwxUWZ~*6!Y@y?l#)MG*jzZvF@g+5S)nn@uof%gL zu1q&V^J2lOQ3@({(?IZ`g>l8SXxkt~!;dxeqE;}sa(Auc-jecD0cDldjOfWyA0GA&I znOtwd<)IVN!wJL=%RIQY+1m5C>d16X9ODNkbCUmQYn7bz37RNAZ&-wEC_1PPnvtBx zdF!XC`GV&vXRD3(F=be`6^Y>eR7w|Y5WrKoObWc<0!9|D zPs-e1ujmD3i+8hBdV5c{_cr2ZQ>ugoq&4C8UlB(m*{*2?^J;1jXJ(3y6x@)_y09|G z`SL#eLl_zGT+Q32WN#;K3RvLK9WB=Z?WEz&+^c?mxb2Bb z)7%X+l5@Qk{9%20-$5X@v9QavUN+hUzEp49ipI=T#E-A8z9U5?2)i3)l`;Fl_A8Xc zq0aR=Xg$0_!iGR{cg1Amn$)9;K9a!n(|I3P5z#BaTW5Tg(r4L~TCL|?iG=ZgJ$>rt z&6tI5;6Q$P|_53}|h6|>H6WSu9 zh^&auW~oo7bR&so?xT{)RRkJGpnc1IGA81Y*fC}jd=6hN8eK*(Y`+u{9=40GWH2K; zQ4W5Rwvg8s%}AQE*($J7qe#=@=m*^MFmbVGa|?4V9%q|(pWY|G^LF#6>5x6$>5k0Q z_G$l_%FB+S>sJM{tfks!Ue+4sJ~nK)f6FbzG&}2K0VZ)(afgl;7;LVqax&L&oH+-M zP(|ipAIwFLl|Cr%?7G2=LV61G711$o|G)7u_ zhzdS)j#vE09i|R;XZ*MW5Y~E_VY>3Ud8~m(B@vrRHWyEo&CcF|GpwN zlx(9ayJQ)!++TWGrj~`y4w4)!2YvSehBlWKNd6wIOO+){F`8wW#H^~Z8|saG8go$m zWHd`Kthu!0cz^ABZnXWC+;WT0I>i;Kd|HvFT+;*7>D^oOf;YpL;||8nM)nAWUTyvKx~>%eIg#i-nT z(5CiVKx}0NEXR=y1{k^s1_%QK9fi09Lu{pKkmceUFMhT^y&ihohu&1ja142#^(^+T z)qT~Wl3MY~ya)uoJ~0O!fe^*fMt*2$}!vVOQ4CzxWGmT*( z?ANV+8M(D)(UoTvQFh!htq!j~J(#=p>-xzLLZA@H!awrF;URYR*cR)io`tC_i&+;X zdOuZOes$&He1PjBl^3>07+%mO$!r0-XI5(|e~vdA-rz!kcGFWf_cJCGHkN|*^0EGv z8;W9iHthlDWN$xYnbc2%U5(nya`L!D8le68Ez{@o3sqbNmpo#)qx#M#+Z<5sG>qJc z1KU}UPGS0#*=dI#@62oM0E7vCO}nGBnR@$~H;ewY6%XvMese~7iYexS;~e;L@>*|C zz*b;7#^n<(d$u^`Kl zUuiks;dG6Oqb>Y%b(k$6O3b$4`k1b^;c7oPWbUzIzxFM5t#k60oirj_p$zrgL&_t1IxM~8js_Dd2>RwFwlqDx}Nl!96 zXwaxn+K}kQ3Z^E~H&ttm1Ou7yXE=W1XT2SEdofTi1yrcwE#xqtEErpkk9w%{La06S(zQCm?M=E|4XRV2qk;0tk(`X@j4HBUlivYB!Yt z{0)dVChHqN)rn_S}z)m5YB6rSB_V} zb>(8-ufaXPN1K5tzB5XdV-pfH2(ux?)_rA`(rH`t-MvivViyxD$mF!lUG^{8*-ul= z#*g9-6w5?@+7HyPD|@a7Fr4^&8qB?`v6})@MdpgAB;BTZqpv2#CI^LaWqSI;3H6UG zO&S-f2_`)L87A@JZYcFB*)#<>@VfJF%Kn#9M&aBG(#Z~9EOJH4Lh4li6_2k*on!B+ z$I>8AorNFyrZ5TBA`KQR`T!4wC#xkTv6NogxXFgGDPKFoJEIl(buLe+w}o#YS2S8u z*bQmJMH4Cyynf2g>DA%TneCHvcQQ!x8PM}iDNP48_}X&Ut+I)t!s((P2txN9XBh@z z7FFZ!+}+;J4O)1|z6*J}-{3;8M6r2-MXM#Uq-o+6W5>BYR*;kcmZYx}C(kz`3pL&_ z?`vr%Ff^2`NZf$m=asGe4L0I6e{Fy|x^4`3X0d8*GnV;CDbHmYopiv)011fTg_2}3 zAu#oZ{bFB$iZ~*^z2Y0QVYFP?^ZR=bSr!|4*{_i-P}T*N&_%H7*ts^W?eZg`G{ieL z^GriiuD4+dGjG`|p*ng1y46tw7}V-o9G}$r03U0pqL8O>63;n~z9h$t0)_R<*M%)4 zYQ&B~@%yp5FQu8Xt)%Yi5zNG;)7rdj_8m~7GAAKi0$>qmkXNxDWBaI5SI2qaV_DL! zSbb*!;SO<6TI^X&cI(AU`t8Ja`f!|pGknw;7sg4FlI?R_YNLh30OTN-c#PVvkKUZ| zr{U*m!Z%ZqM*cR~ishP1CiTS?b@a0iuFx!&_i&0Xlgch*LwgIJ8(%78_%{m!5L!U~ zb@&AB3dseq%g~31kCOV57UxQ?;jE@0MVs%G@x9O+wD_vhiBF3lX^Wc{p$Q z)`ThE^Rjaz1LN*^$-r6~g+YSC6Kxzc7Ym2g-^D_0KFV z#E?3JxUIJ(??D$+9$OouQ_*m1&uc!jY9`*;IgFHRiln|=@9Z)k;SL_zk86A>+sJUw z$b;c}qq_;>l5+w#_}{|aL=X4d2G zW1%`TjdPfhL#2gp&NR2d`YJy_3mL@U)E9KLQR;zG%a$AE{P zKuzWa;aVVWSyxZ~&qHcJTbk{=cqXe+>k}r=mvCvBZ=AK1|GOvjcv86pp>L1Q4D8Fj zk{I`iNBUA^KHl@fRn4mPO{KqIE>VL?snM{z0ahI#S>_)+j2Z^q57Ov*w-JDy{x2%b za^WC_3RC9*DYMiRwUwG~j>JTLMVT?DgiZHG?&9{7-1VM}8l5_3BlSNk9+8*Q6fi6b zP05mT?Hk?yVSj!1QH(ud1s;118HvHvkVGn_jFYmaUVOMlpTTCEP|5ce}dFdWcc&J>^spb<$;Pdw-#Qqu)5UerA}0l8{qI3fzuzh@eMZDW?# zyx-xXQSoiW*D9?MI}K7JU4xEX)5)S91q~pBtfNLQ1Md8Clt9%75I(92)<{_IL24)# zkl653^FKjA?GLJ63M58S!B^ytccgKLr6x@5k z$JNS5KpAN||8nW#Ac>QMBjwkxUw^tm;0iV76uhf)f9mLV3R?6Af2dehOfA(ji3+%2 zIJj=7Mf+4ZA6p;-1_0ww(+)ZY{XwkT3N?K?KUP-jUvernq1Ez!aJe|ZaPB;H`7i5r z8`Ea*vjuzhp%trQ^WN<#ugUF98B^tRlD%WGVR?7G^pH?DH@A_Vrc`PSAT@;zgf4Ck z9v=>Z-VWBmSQeuEsNWnah)ALcl5{8VXQc5yXg2X;6^Xpgnw1Kyma0A8G}hasSxLr# zqb0Tg1lR3)p=Gc=V6F+kNt?;zdmqL+xVYni%#RO7_Awf z6WZFS3rH%|@R{j`JE=pLDszdLmd zlCgTJsa0U^Qi1<{k%~JvK#H!(8U*0^Mc~Wbl(aEF5Az944)S+;(b}2g_IA^sd}5wq zxqK&L^}01QoDdO3CT$)NmaRj>)~pC<3b79JN;pTX=e)D?7Ern3GBQ+G(HHN1EX8!ZljX;o1t+@OBo|c3 z5>WNM&qg{m1w{n_Ep zhNr>AL71$=U+b_Ia3wP6Q)*$eDd)X}&~sH62I z#n(xb?>Rf&B}S{L0N;Y+U}Nkw$R%9hkF)e^ovQ!g5^WCa=*&)B%)ZonRrH$-eXp^S z!C(@RG3ip%(^F5AN}8VaS^|sgc*W;0P#=l**vbV$it+p#&0>tU%&qoY#*4SMw`m%}){Id#ZCZ=+dY|EY)O)JQ^Z|zt#agB2f0BpmH{)`}OWWi! z&1q)2HlcvpfHMc+AhD?uc_27v{7!n^J6 zt?Ya0Cj2?QKCX#H5>v){(6^)6b7X(Q%we&`+rNVhgImqJWHv?^!)|60Y5y~iY|i8f zE-26)eNV5xo>2-0z`bx}xLT48M{FOuDEZqcdl9jl?h3-s$6Y3%!?P1r1C4BYWg;iL zWOx}uPeQ_h30~A?IU&B}aDJrT~ zS68{D^K7-oq21FTm)nH{N|B!#uG-U%C+h+Fsr6|suYT2Yzw2cEFb-Z-^N0s%PI=k0sg`NG)46c~%0Rdm`HG zJD@BA7XPZ_#R7)hGf?=fFT-uj9sC7))cf+hdXhY&4C@)?m;Y|1=*bF!(Q6Avp0-7A znf$(&-pGc$^o2;}edoR?lisT{W8HVO`*WYqV2Redlx?_dyXNF~dI-F;L zP?N+p`j_J`F|wobU>p%A^Z3XXsR4$`E58`+uibU!isfTkU#yQ7JrO)X{%Tbu?@`W_ za)();%?v`dot+nrtbQ3KhLw-r`dEAI0n1l3v;Ow>Tq)6EjwvS1ccWG$>>1U9W&b`t zZt)MEEu$V$*Sp2%%@uDJP`gm_BAulA-xcxfsZ?cu@F)pAi9|nm6L6d0y4vJ;Gmh?F zQDsE@y;vH^Z7N^>_1f>`$UEejg7^?4hoE2IzZu%HzYv6ozU~$Tndk;reIY*%Cw3f6 zPqT!i7TzaSTFjmn{aDj%-Cn@N{AkPW4* z1>^aZRNXjlSH?gfZ-J-_^0Y!?6TZPX#CW&I^;?VRG?nJ?);u~X-OFZ!=Q<jx1U5-t5^@Kxkb3^ zJM>nTZ&{xJG{2LO5A5I$gvRI1lcf2cZ_%xNrS+G6KNX;P`GYLeZIC|C$>4qMP9M2r z3fXuL5_$w4mXPmJwO?TdL(5D=NBA87CL+t$e@A@bo08<>(i1-}ghF zc`y6^YLOw6Pr+{P7F(9u5F6J0Jd&-oC$bcbDDf}BX#RE2$p53triNc*t=N<;eTxyM zb+USUsl2&YTDKP#JYZW{Cki-Qb&E?)>%w`PhKCnVbDNLdJSp&4cDF^tJv$KDM7=aJ7OYnm4_2D54(}YjkHO~Be2RS9H$?_B% z&;C{8)3mYGnBm;_%$3?wdG+%1ADxeTET|uDe;m08GzOu{{c@`F#sfshtk>t*CchZh zw@9o$At$@Od|c2VISoHm1fW2JBwAyz?}9k2_1yF*E3)~({4;r$8uiL*42m$s^IX=r-3I`_UkJ_I~@xxO#A^KQl}wzyphR-y#re!z+>_r&Px z$jO*xhL;X9ILk&m)7>LMOUj8*_hx-rh{WfhM}5)p4|i)zjAEzlS;jfLX&?`~!3$M6 zUJPBR`dfpWte7tNXtpo7zX;~>Ty5$E7c2M)|HnmStm%7L%+>39YfFrlPnM8a-Rs*g zONx(@VlfV}HC?+`GXM#72QxYMgsFjEs{0qjg2v)vm*f0>LA{{@jN-ep3!qP>_z0FE zhd6Le`t&p);{+s&nj>`o8Hb~+Po~m_@MxwCH?S!M&99YoK)=$DfW)PE1E-(kZ)3?k zvD}<>=Jket6q<(Uyn1Gc1|2ncghrLHfz_Pc@7#?42E+Gje~OhWE5j?kdw``RzM52= zL7EhlYeQLKs0on=pERJf5FhIEpeF{m-&q!Z5`Ogs6(DMYy_uR+Yv{BvPDeo5) zEt-Vqq;Rk&r<03Im^2~(mJGRXox>u9S4w)enztSZl?QQVgPcWb+Qsfzee+U@_`A* zV{h@(*215)bi5+o{9YCltS>=WS`h{n-mz8$gHe&tJr48QYFU#Jn zq12am=xH4~c^v_d$NiC6I+LGYQS5J9VT}HpP=Y)aqrTF5>OXhZZ@sY{$#ZueQ4qCN zN>?TAUFF#nI(tI-43OMGRDIIPtSQbbs&=ZD9*}*p28Eg6HZ#IzT8&kO;?Fa$!Q^7Ldf_+UlIhf9f* zcOgDhKq2J(n_b#1qi;w*cO!LFpj`nmcy`)wTHN;ZUCr~g=P;3h>20wm z{w?SsA3oOl4AnKSn9U;Jvp$uxnH=pD8u+h&2X+CH1(s0|v0sc&lWv95JsOkc8|`tO zx%pNTFSbc@8jDv`yM9B}?l!^>vi1u6mOk(!Ao)5cGIR1KRj%FaLu$am(X76=hyJ%C zucpD9w15BgWMkb^&VNyqTqf2h)c$#{6OT<#8_I5|(m(5yz9(79@T~yGOgb4(_6Ln} zpa?}V-w--dZRE0T%%YQ476ZSH(6PTX*C`axMV}wMYdA&^AC8zJV0cf;#`~yQ!^+F+ z)&4ViKhoVE`ZI72c%L(*?%sD1*ivm&>un<_n^G@n>7VnWnO`yncE+YlvL^CGs>d*{ zG~SI`s&hT%n>W*(H#!UQcRWS7Uba{9K_%Yh+1S%PT7{merN$_+2;A@PW`5eAZYQL? z(&!6qba-^fy||%-PH-CI;iUEUF*$J0O_G@NoiBT{JH5>Cp!tMU*uK3gs^?lkKZf4^ z9k@~w1?192g-ji=11 zOOcC=p6DF*r&nttQtdOMF29sHHUEE>wdJ$jW$J&TUS{54Rqg1R&`57$@6r1I4eAWN z<02_AhC8T^aF!G3^bg~Ss%3M6Kor2% zL7^iX)pq6KRIY3PkxCJoHaUgTU`(-<46(MzR49dv6%vXp zGG$n_8xCU0RJO59MQK7TQ(H1_N+FplQ|4i_Br2ozU%v*zt;77 zz3=lr!~NXP@44^aPfwvpdX3t6*W^=!St;B5d=j_V6>>Eqs8Ss;ThjHgJL?6WulQ}D z$zDOaf)T0MoYc1lrD1)vw`)DwY2i!((Hykilh#m8XMeoq~5^5&6SASCV%f&PS|oitXxo zJE)Dt@F)ULaZl*@9s9^=kYzj>sWx%oLHp=T@??N6h=Qv_7M_zsPpO}2N`*h&g-OfS z+zmNx!Lk7SEcACcrN#l9`U%iI?$5Pjxd>Px!itlOgDcZ)KU$>>?=lLbv|sE$(g~t; z%okP%Cdh{bqC4FvM>Xc(MHw+Ga`VeA3*EY9qCiS=u9v;oyks3T`#iM{6yisiK~+^% zaDb)G_5~hw_=>t;JxGV|$sbvPoIhJHM|$DWd^N2u`#{0)Rw;Xa6n{NPTVru?kkm9t z@%_3Q^u5{4p@9${F|uIbw?pNVls_{0%M9?WHBP$r0Bz;Z%AAE(mS#lLK-!{Vkx3o+ zO}RG~gCirYx!hMLaGoR<42O16R8^HRxAwS}XIO;u4F|AY3u0)5~yob=_=t zr-{v#CVV)bcG&EYN}ONChBR(86T6^S(h16-8J3UgZG5`-4J;WQq@Tbl;j%^D-ko#3 z6U9Sf%()s(`TVlkL?vbA^1-zOyeml;6#O%Vg=n&pvuX&9i0r#Pu^)=`!EWc?@<5P> ztY4yi+ec}`vcz6xu>;;G9K{r7kH@njPj3-Ml636_FogWCF5K(4MuTu9YC^bVtL%?wro{s5C{$X zuiCwP!>B~8jmWH8sE0KoKsvYaJWfu%Z73fN{QRd>RaG;xvvo0it1_DRTw5D6_a`Y4 zA>&&SYo|Ik#Me!9QwE+?3B&;GY7Q!y@umB@5HAoF98d1%oBv_hKd1esM~ASSTvd?n z-bg-Fo9gY^^8O7h8LP5uJ!2rrH{&fPcefc#dr`X}`YJRsTv2=jN(<#cRQ^xguPLj# zu;h=Yor~Jk8KRpBit=GJ8hOyF9~#HD<{DK2ar_n%L1#RT;?9!%HPqQir+aeMo81ar zTZ4<6VEH5P&`W9~MK?qx^JT5eyLV*l2=6Bi)PDmGtO(L7!nOXhr-1soCE)1mdg^f6 zI5!~(+v?1|%ehZMrAoy!uO@>z5@mIb3x$Qj^fyrr;&Y%go}W&XE_M51CFr){)ykmG zJw&c0fIbwr`b)qXM5?nmAOIfEw#>6ZFNq*ijgx509u%^}Hm zU!JrGs}GiFz>zf@ z!$U9cK*$Z;65cQ`ZFJ^oypD#2?lM%roulV%V&XN0etz|+V5Vv#2vQ4!*+vEt1O>Yz z$Cja&&_u|DxIBz`Mie%Pn*pvuY5gw?%-A_Th;$436ZFuQhavQhgv~URKNm)aKah6e zJ|+pd6qFi*Xeno}Nq7u!8N|goJ3kE)T+?qOfzS*lmqx@^po6<3xW*z1ydqg#CGszp zM>8sdC0e^dADx7=lMpI?a6-F;@~GDq--RJdM9wYOh=$;;-sI#qP`s~yxN~wDyqY*V zwz1<`wSkARVrUAD{;-z^kq&?)GD4O&H*dk&F^TA-?)+sOUhpG6Uw zE|-1H?zRgrAVLQocF6t#=YDz>jT<>aL=`BPXMMki@4X<3J^3%!V}!zrxpk+<4LuBx< z$VXx?P)&-#*&PuctAzh~b*qa6i?!i?@+P;NUjPmVbk<*@?#u6eTPaH)Y|m8GdKMrcj2df*%Xyvgxj(l}DC z@B>#LU-&-F;K$qLc<%ru@jrM-v@5xsIAAb5JRChc>+S6Bp1`CIHO$jT15<S zIZ!QWIExzIiP!kvHCX6C1&%0z4(H~XKMT&J9#)! z>eKwusp-T?7%?Vz+jn+|7E)?&en z9vv^7O+Qny^tZ3C@8UF|NR3G;QU?QCcXivHspv)mKWYcXCqK`&%o009f*NyazdJ-AvyBh=B+Diy zD3kFz;X-xkH^dTkpK>8W$Yt-a3mv}#M;<8vWTqxNp6kjN_pkS34kUn(`5}LQ|Nd7z z;<3-0R1LMYZ3CutoZV8?KWgsXyERHxq#qIuz1gwgaWAzvv|TG zJsE>754-WE7)m|%7;yP-RwB6Le>Fw^Pv+U*A7VKpPiPyVm)yJwXWj$W>v6>iA|I!- zMWa?q+mOpaCw<*Iti9E=lk=&ubwI)c?X`VM7u^QN}+D{Uk>1U{*%pF zr*CETOV_0;{+713c%NhB?SFU~>6$lM_bG%o(+WH^Tx{@pDU^S2tTq+>4^2^yP=V;p zn_XajS~@zUaZCc9QtYv2_K}_d>TeMS5lY$@dECqB@m*f;j~;(yhRJG(U;ipuFBm*m zwZ)$G8fCs zHSlDq2@YaYQw=kZNAEO@cd#brY%CDPGm#Swz^~l3)vCxXjxt$p#U4&&>uXT&HvfK; z93+`dl#I$V=i4jfSu7T@`UmscuhroLcb!t|UiRxXK%9uQPxs{n8jZGGV-iP>XwKi) zyd4!pyFb(TV{`32op6VD_jG2csY~kjZ%Z6K)A_1AaG@VI%h|a7h`^%ba6;8#=LNNo zPtIIjd?(I|UWA=lJn%AE4m;L zWlXVn>{$c01C2QuD<5)m324lHo-e9kjhi%=v1U6*VU*`oKwOJ-0`Dn47amZ)JIP`M zO)_?|#y`2{KdM+_O*Y>@pdZ#1ocuXnd0*rZjU!>Y& z_EeQ%yD^Z!%maf_-$ECk{L8fROJ9D~4_+AWWslDTX-EoDI=WD5ymENlJ@^W|-QBq0 zLakAkw@H5cD1=PVMSeW@p#p+&GRz4M68dU6?W1&P!eY$M<;81`A~LE>ADPAAWx2C$!Of`}0a z)Hpid$zGV;1GezIkdAi!T5 zuLdmwvjCUjfxm@VyG=TF&8e_X0kAdzIc!%1%bK0+ZE2ACqn%;T3X(0RM8V-p%Dn-m zS;ndIqiv63CMG7X=U;)D(m$lRRNMu@CL*9I9Nr?pW&mf-%&6UxWzdjMkS;tkA~Lf6 z2XpJ6O0IBeJM%cD1{Ma;bM4~Z8>tVmiBhZ0?XZf#}5_YM!_%utX~c}Llrai zvNMH6Wfxm|du9uZ>SXgvZy%l}N9T;A>ev^e)-Wiso$^Spx#aQb6-3@_38cLPctkGF zKxd+qYJ|7S$K^6RHtE;wNKQ_E=FxYU+0h)dD|PO*WdC+?=1m%d0ZV$fPw#HYq)VZT zZSE|ym6_U~?!CCmzj=RcLOE?`G0d}p;q26Sm}L-eyf6@Mw|MqV=5?22pI+IqTJ7qv zZ{s=C6xY^fRy;qFJMgSQK4$P-`MD#7uI=*0gNd&F6rjP1J+eBM2h3$%=PQW+lEJ}F z5RCLLa*a@tXyYA)L;Kyjr0|;EMQqqj94~0Ezs|q8MK))6rm5&gPm?;ealS^AJzY6e z3S*o;J3Bj%?aQ$T*?-JJ~m9g4i#wC$*_HJ;!Uu2M$d;2C-P6o(BHj#C!G(g#9%D5 zCUt3XXcV9{k+{D+taj!xYSiCzeaHCc!cMnbA1|*Dsh|`HHd1NFLGh0myK2*%3K7h( zw)Bjih$PtC+e1fenM*2gZLf#OE$e{kYLPh3+xc%?S0$p&5WKa;KXAi0 zpn4}vzrM(0$DT<5PA9i$9`OJZBhX}&3k%!$Kvn$bVN$zUf~7EF_}i4v#O2ol6%h8>W+s=|lQYV}ROPz~;x4b9c_7lP@4fxu!-uiW#AEud zMqmlh5vq0alh(sL;DlJgwDdbw=3meV;8VcGFbvy)JNvvFNv+Ekm9s0ihIZNbz$_Qf z7D4qX5-d0d;9=kOV;=p99O-doc8sGqX&c0J1es5AN{W~tEMGOkmwmw%%#OGtux3py zAd)hI2Wci^I){1h6bJC{LUhWb=o+JJGVmFIs;3Gs+zlA~F*O>Dve85tqenVfbz?Y1 zw3OCjNSvvYjMB7ydiGkL#ZxUKO_tYSy3iepDBzFBp_*<~UaHX7 zvQ2ivdkWmthB$LuX-xIy2pD5RvFA|zK}OeharV>=Pr1yV#F75{fC|9oX+?ZDY<&NJ z_g5rB#e8di|IO`@90as4_{!MRnv8;ilVX1T(OV1w&6@uGNEs^Pe+66(&LaEKK1v_( z)FiJKeH@loXAVy(4TrnaF$h62!3zL0A($zQwMZSPgTKwdKsB(kvg)Z`hSE$h)Y$A}z89lP vP?TN)aWyXg$p-fCjx}xoDF4RA|GLEOdgpDB414Q&e5bySk@jP))1m(bG;eIP literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p4-1.png b/labworks/LW2/ex1_p4-1.png new file mode 100644 index 0000000000000000000000000000000000000000..4b7e8c66724b0491a25af5387754f1d210ca223d GIT binary patch literal 67502 zcmeFZ2T)XN+a=n7fPo-_l0i`fCFcyHU;;rzNzx!7IW{>5QHg?xHXuk8QACiObGDHv zIZ6;D2cgN#vpvW2{eRUz_nSL2cdBmHbe(fNrSuN(e%|%0wVt&Nx~+1J{3ydw6beOt zoASN1*RqGB9I?Bu?SMj28X*4?yq8NeM-iY< zHx%UWy2i~9yF}9{Zj&xAS(*5;A62?aLm;ml7)(HOvi@;Eydj}#+x$;@?_kqbcf&gF z;P^*JFOuB8M0Jv&nVzcI-0#U(jB}cg4~>jE8a>=4BvmSOY_x4{nO`a??VVBgpzXaa zvReL23V%K?Prn#PquBoW(EDTm{E@=T+jM#7{`^VuvzQlHulT7EtpD(FhHfVqG=SzVnj{ZJX-l$f&yNFH2mI;&h=6AE9A^}fX z{pHbyXN(i*GNR7DY$N}{2X%o|PTRw)8ys-p)ox6d`nGT`(}1m{IH9ft}fF(dbT~!_7Q$P?IZ}V@V^I;^*{h+K6cve4 ziML`!#kVFSG41lC#JTf1IXUCnbqsEk5!aSyQo;#QEZ&<2y<@^^$+JVnLZa3KhfsZ= z4X*T^Mx%Ge{3*G84ptgjqs44lwl@|S(@s3evmQJpI0%@wGFc6moJ2j3jSUImtDvLiPzmLE{`~H}^jCQEHaMU}b ztV|kpsV!bcz-Ql6*sMLV0mq(9bVW^#s$z5e*x(wg=d%1ad0c_@;8n*(tB&L+6P9FJ zC#X970+C0ZOw_(mI2uMkMA8>ed5CZmuGg;XmRM49GNIokl-RH%H3>PxRUC`7 ztKAz@LSCIb&P`XiK{BoL&#BH{{kElrJzvW|zFL0w09nV>)Kru&d?_&_gABFY%#kow zPphw>qoY%Yn;*#Mx*E>HoGWPZ@Zs3|l&~61BXht+m=wjQ`-KgO^8SVeo^VMDwE{?e za&lg{aHLn)fjr)0v3Sfu%4M8L>(u|=3;jcOwd74rO^5gQ zaD0_@*}~tq_V&jn-k#I24QwiX#wbS8hLKI6tPP-S{A^JBDC?sUx}mn?8tb!{G|n&1 z!onT1T!(%0Ffu;gCPu<#XJY}w{VZNuDU0cD(T~@bR=KNT%u*Vqq2uF*WvgGf=!DIV z4;0#lhlY{~TlSEZyRX-LDjW$O^*I<;*PdJw|+vG-#VdPTkyDc$7{!0-7 zJkbJ1B)p~bf{s5siRtO-ku9Slvwk;}MP}f{d*|dq-t^WtQiCS?BPC8;EKpKRQ2u5E zc^4Q&tpXQ^OD75jZH}p&o9O=avkTL29F+uzhsC`VD{5``#z zCY^-(UfEr1n+O$Zy);;09T5>hHS|=*W1|jAC6rdrm4H#yYB{fr)n}JVY{d1f`^J0_ ztjSp!8D{Ijf_f+ve)nH94_qv|0crdzZ|S*^vU+}YmW!8gFyZ$0R*>CYt{uBg$dTYF zDCx2o`Z2TQ;^wx?s8;~&uWq+u*mV?+W$0`0^mJB>o=;6pVYqKBY;FwNuC)2=Q%gul zV5hk*UVNUA5dMlwa~v+cb}C9g%w@!_aVc2`4Vyyw1cz0^{fky{09vdaB! zF7Lf{&9a02ooGp?i#i2X^j%Bw!saKghSK>xdPIm@v+T*Jel23jZ_+}i9L-NK9q(b& zH)^+#-#ZR~m?NDK8R;Jv$JFv#QcqjpVT}=_CY`VN8e}fiPT~d5iv0_(vXlMMgZ5%&8;BwV6f1ZGBb)7U6Kf0LwqLD z|9M1&-|ns_w|)f^muBXn(}HK(#3#sF-bm5@{P~k=PgD#VkBsc*7|}U)_V1e$;n(ns z!&HY4@w+VQX2A3HrJGoq{g~D8@`AeIM!DSXGLcQ$%GJA?nkn$)#i2|hUcGuk&M5le zM@!86^z_Tx+VuPT_)4St;FIEjwaif>R(DKG2s@Dt*&h&h`A25ZBBISt3 zWN?QqYBVCP-AdUS0@^tS&#N-qD!MQNV817zJB5~*F$ie{zsIq{f*^(*i=WM zN3)_j6ytt35=oQeR8(r^J(WH_M7{)7u24J7qox(4zAIg-a>cw3Utf!0@!>2olIM-z z^8l(+dLQg8RW5Chz=Ow`eS5FAyyvyEA<~nHwscc^I5_{Mqm!i5W)6@xaVUokPO zB{y%}5O^(YZs@r+6;*(L6%}=DZ7no_)mwagohvKyM1#>&afq~gFU?e5~HkV(T0rN-Y@lK8F=m_ zs0pZV7PE%ujl@g9k;!|HJ!j*dEYxBQss@Lc15W{?bC*XeZ1V+As9#5hN&jQe_nfI(ACp8>%?<08Ym_xE;s?|eY2PirGrK|2lLF1tn}ON643`E^@4 zR+RkKYvJrN4(Q7Oh8)mx7R%ODP*s*$h00V-Q%cdQ02k^XVtw*1Lj zs}v=Q-=OAD+1|!rL9<%=$B!$^wUnd>72lsSE<@WH#P+7&<5GStd<4MGoXQEqyj> zq$u0^5nF^G@i6)oVxbCKTy|$ZcWiW39E)nN@bVy|<3|aZw4hGs@LYSwFy*!dcUBL* ze|Bq66YX>|Om5$`Z3)Qnz^K4)CVu!3Vbj;I^|qCJPfg?9NC4i5P;cM99V^F=gqXF| zY^_aSqj_AsvsgOEZ59JPN>y%8coPp$VR}sKi%sR8GhinPfSJPS<5dWuO-t||SeN1j zHW*FZVaR^=EK!>bUROD)|LqNGUB?bZ*NJCh$X#UUg|#SYm3qLWioNpIht6UPajZcr8G(at${ULF@38v1!~ z3P?YNtf=X37_po573PGt0FW_);%;5QMyxBf<3Ilxa%fWoF@uhBoBfcM46UFKfc>tq zhSN+t!CY_FH9b8RSpXYd_n)a$d`8ueh^zZ^NGX^CH9qM)*;58agfvW8Uj{CX4A3Zk zbL4&s%hjZ;hgkKU`;7+#O!+D{4TtP;Je)i{^?)t{PP5~?FPr2hg)R^bjw?wVM}rweMXiVO*+TT zW01@6SSqI-^}@fIrf)w>f1>JEq0MlOiq<*P{ns(}*<pb4qtgnR$YXdKm}e(>rFI1*x$>~&7`KHiV*w#pqYK2lF=K+q`CkR z(JHh-f4+~0JI5g85{iv7?0cbHAFSFkCQapywAVXmj@6B@S2-_UysV*to!Ft2oJo9- z)4b1iq3hcRb3SkcY2O$jQ^UofVtz6reeW%HU|CA2OTC$BwMgiLxchsKHfiNX&qAU zg4@wDF?pBPrXaQPR;BhS`3fxOMCHL=7W)`QV2}amD;Zs&Y)!4L4F`Lp2T9Pd3PK+} zdc+WQ7F#_zaN32u67&sv)Z<5tDVvlOqi;0lO%~cHVA&Rwzo{Y3w^A2d=pH=LPqcM) zL+3I}d0SJ1nI**U-nldWQ)qT4E~jgQbO~As{{ttuSHu1s<07CYcAYmkl0bTcruAe0 zO#5;E%U)1f_$w^deLJ+*tK(x{p74+tepsv0TL#Om{YX>KjTq@=?4>1nc{B%5jhF%R zw0^=U`^0_ygKbUz>&(rSAav_~iPd)ko%(Fiojx{7DYwh-DVs1+`SRtq-h8AQIu#jg->M zzLsLHsJ=XNb!*xWBj#`y%PX)AWxN{ZcG!$nm>dVK3k`NRSNcFgo#N4XY?)bnels3X zfTFd)tv>mOPdymkPktxgSnM!8-X?bts%8$W*mR`vx04eK&ctDkH;yN~cNWA@Y`*z& zEzw+Uk}|d<(m*)RN=Wpt3+0-&6?n?B3`fn)N=;>x)!w=ZP7?Ew9Oopc?V}_;y1!oDXaEJeSq0^j(=h{~>fvwh(f$(AFcxif% zjd_CK%`!^gyBdI8X0H^4l|OE4^kAPh7o!Wd!u9aqkG4}1)MtB^e&yJxs`QEilM*!} zlv;gilpe$G4mb`N<|xdsnGUTAPYD!Ndnvd?mgS+6h_N6$Qeb`mlb0&Uh)3bWkD$1h z8eqFD>2O{1a^C1SO#zLHs*CSn49k`*Z{#hMK*7Xr~zmdEjUE3p81W05h(#I?%=`f z?{00vVoqqi?sEkZ^(ZoR7bq%XH1uTY+q$Vj|3^#$(3(P(kScw0;?5iq8&dFJ@qeAcem%VCJ>v&*f@2{ z3%T9)q$?{x-br(PEG-(tm}lCPh!!h$Y`C>PSFLz;rKuLS?0UCKO!tjA00B-iZHq@K z_+~@Lj^;ObWaMmMW5YY*y<^Sf&?2z8T_w!{NAYqtVYK9DXE1V-lZwsczSFCLr-I4f>It zdj2uB%KI+Cbg=6}D3~Q5;IKU4WRjM+EQKLVf#-e!Ss1k|7;)M;*HZ*MH|;_hM2`CG zZ*g3_c+sx=p62%tY4J6P9|>MhhE_Hk9huZ>(^&zy(xS{L1t(za2CI|Jo1n2!D4=3Y z4Wab@fJ=!$x)ErA$HDP3Dk?=Oinj>l`pS3+AK_=`j_|AA-m<`Mo~Wf0&RkOM8RZlF<^1W8OxOf`PUvFn!jQ zc@%M>jAFcfJmt`i=mZ~Lufrh=`p5|D4I;#KZ@rgCr~wBmE(8uEk~|g8B+)5|EB*OZ zY_twYpSha~`D02JX*zRrbL=!CmWP0UQoZs6zfbKiCpweGeI{w_oHQU%L%7_2pdS&b zWQ7kDd$gQS#q^YzdFR_!BK;^m_ut+VbQ21&1{LnzJBciuwM!dZ*Y{zU(frUx&E6M4 z`Ct)@phDkgWGJYpP=Ggd1?TaUl2vaa(b(NxvSRB8V;s=U>Z+dE?vDuZ!|kX@{ygUi zo5B@%uf;E~9WJ1Fz_Mw;53T~qK#1zgHKj!C6xdj-#yS%A?^C+A&e)L;dG@%ceDA#%gf;utov+DotzD)u(+HyVR!{0(y=O{h(p z8lKfLmB(way#~*7NkUh&;4!;kdX)lXW4iKp(2e6iVr{Rwxk=o-c@q&sp>zV5cSe9r z4VsuxPJ__uBH?kcw+9(`r?)M=@xzt`5R2{L;ab4HrtYz7{|?~JW250R8(IK*QgDkb zhy`8-zL7Z4_YT-+Z&Oo~ZbY63!A6RB`-mF?W;plV4(TQhGWa2X@DiArrJNP~ zNywka#f84R6+7N^HoVTM7aj1kD{TTu{bgt8f;quhusy+aBZIwLyN4eQ_ukt^sKj+8 zr7Ksjl0fleR+~8{fELhJfbTTlmrVqggp2M-Bdbp+6dfJ1EMV8_n~D)>WN7&*hMXck z2+Ol9y1>PS6AY~ZJh0Re1}SYnCPY>n=yC@7G`Na)k@jrT7Eg|fmU7_*Ww$Ag@Ss4> z{lAAX!I5wg-=ANhkauzt>Fn&hef#$D-lW6G&zvAG4FE1kMOE)-Kvx9PRSk_MM-|N^ zhtPdS1~~(NQ4+RfIu8K*~KkT?P!VF4Y9)l48$fV@fD-(}4ID$eLjByPYd^eeh`8RU| zBJ>svrx04chVlB4{46oEb`%s2T`o5iQy@)TV8CA|08?V6TT|ZvkW8!Cp51wA~Swnw>+IR5+s>vc^GeqaB^#Qyr4DYS^ ztvzqVvM_z)bn1?}`UILOnTR4>K6!HjbDhRVnj&aCr17-c?!r=|0XS%qjx)zYbBhhy zJJ04SxoT+icr)g;w6rK7|L1o5IJ+c^zrsr6#B zVezkZdHI|!FGCT;Pag~eZYn8J%N{qQLyA7z7Ud>E({HZCr%5k=4* zzdy*tujfT)=N-g^1b^17Cxf0r*vuCUn#bgaNeBtR3`&8o44sgGLChu;rao+9 zVo|^O*zfZnNm0*Fgo0ydXEz%ub1Ofrb;onlQ&!l#^U%qYCzp5jR(L7?9!RRyJZR53 z1>O?DaidcwiUl|(Zu}BZMJfyV%$|U&;8bhOdRtfR_4u#f3v3Ge*O~s^aFa&!jg$)% zWi2wpYAWn!efp8Yhvv;dA=WuvC#7nKRmV zf+eEsxl)g+n;(EdNKKrC!{>+1ClIfH6Z|e@*4fxb$sl~VzrQ~$tF-*;-({_^Qk%%m zo&k?XN06W3!PJ*mGozJq&Wl4qh_M~Xq3XQ53&JM=NW(XqGk@-x^GBad-0Uj==J8gk zr9&v?1X*TSH4N{ctD>rB@WgnH$6KMEpgp?=2?FT(9IB*;0 z%%xa<144xK0F7b7)KNtX8s8kId2X2b`SWoU0={s44aLHLu9?PiUD8YfW{_p;J@>0y zq&SfN4U;ouQen61iDQ*xFW2 zrGylt*5||?+&LjrN}rvDLILPQjYvHBVbTZ* zk8SbPsW>>5I7oyV5}xUn80xsPdYG-A2Gg*4MF>_Edqb~@Duzm zM(^?YV-q}Ak05#yoIwwFAK*ATg*Mi1nII{fFwKq#ky!zyHxQp7YR!P0qmqxEofyu@ z$;*2cDE)@aGYZMWH=ce^`W3`s*DlXFLR zpM>EAHTY6hWo~P~r%>QaI-obK3x}UZs>=4Stk=-(J$;R^EpS4;x29-ekJgupzeK%L zO<-AKJI=g}ASi42mE_HF0YKuNIgFN$&g@qCIU`cJgM98Np zxM8T(4VK-QyGXA#Fabp5XpbDgknsVG>^7l=3fPTZLa1#RuC=9wtn}0Pr?Rr&!xG>! zIv;n0*kvn6!x3Tuj_9P;Ck0H+e`*1Pqv5sJPc+S<+wH&CJVDSlOyWoMm;($RHlbu; zN@;fY?%lqUeiKtuqv_T+*lF0rKl_~MP@P>}5imIRkQEUTnO6akP7WLsT;2z_c{^h0 z!%d3kUYBJ~E@|TIfmIv*>`ZkX58_w`8++mlSC&HL`CB!-LTUh$)zfQk16eawRbGC7 zwWj~HuyoC~H|GPx8ejyM?YU*o4JPJh7U(d9u_H*dP~^)I@5<)AyK)WZ0J^O)h$CK0 zv;G|&gM|G#(1`vB^?E|97x=H%%-H~Un*+>mru$>mls?o&N3!BEWDbY2TkqC1nrw=w zZbP0SB2AGQ&Mt%>T*1}(O?}RF38aKMOJVZu@m2EikFm2{uX(nU!`d4Y5C+inJC-nkKvSmt23 zI_WkbGh5hOA5SU$lW*zh<9mb!C&zJ*5rq&?Bx&NLemdO=niaCZ{4k9}SZEQ<5Rlu# zdAw73Gg}gx5+)h^Pwz-Rl&61)=fnO$5hi7!7!nXj!o@(&1E${Jb8x)5GPZPA$!`7& z%kL~T{D&mY9^>E43c=0)aT@Ty5YqVzp#SGj75ou=RwR!AEV+8RA&mK0LYwJU)XSHT zGcvfDync1iL9qbkTPRXq&s8}vX^o>-)BbAzj81^9gjMNJdx%GfjDiXh7eLZ1C`5q+ z7d8NYSS#n@5hSvJ_zW`x`5z~yNg;DGKX298+uaL8CR7!FDBa8WKaDCG@*Dq0nj-_> z5~%ni&g7)?Mus*+MI9S4FJ7DoWs*37_%Fx~e)Hzp_u2p>FziKm!Ib#@>F^61uKh4_ z0hxN7+V15kv`ZlTNj_x?yGI*Ih~=n1WO2sT~6b?ej0D$-RUJ#@$)J1hP= z9fX?!cp?bFfZ;PSstJdyMIs1@C-?V|&GJ7V4%3;Y$_f;(u9WT+*uy0^q?*C&1&4Gt zQQ^#w`R_1^5(SkJ0AtVZuQc^AdoAW^Z+>j*z=c6Zg7uy@@=)=kK5}%Q5Bb8N_^zrR2uzM(pNXP=+iY1-r-+PU;lyUR%g>Sk1iM26br^^eCELqfJR)OvfIsmd= z&tJZzi~Le()!!*vF-fcM>8He3PLtrheF2FQ3<2M8(#urPmitrKJ6u=w-|KA+j_yB2 z&W2iUze1Umn0UIC{STxiYZgnDH% zQgvVibbMQ1L)}X>^k4D0jNC^)l+2Pe;3!MCLb@Rij1nXoff@r!13A9a#{L*KgjeLDmNM(0B^1?<~yak?+EGsUb=GOFXIR>9uBl$#3B&15WV(>~|RGzHU-d>)9gf~Sc27|>d^rW2XY zwx=urX0PJPpPd`{o@Caz{f-9o)g#pB6W_i)1k^5hVh8H9b9DiUvO~n*yxidPf)1JQOe3u)>78zr&~tz zAmaHla-hf{7trvl@J|U+Ei8dufq{HaN@5}kly>IQr$Tw$moGQ1M#|_R(S`V?BVKqk zVknA3%CFYDX9=GISuQ$JD>@cP5iEE(#$cHx9l=_)>3gNaikLv4gMk&E|Mw;kOm2T( zFw?dz4MrKAgL|5Yn7dHJKyHH(%Nh0AZO!By`;!;f*H%}T z|IR=n-cJ~q#4YhMgI$|Z{~YXYA(WYYOSC{{R$H7z*D4<9Tp+Z8>{I`$T7~SK(a`^Z z-8-cJyAtRBNA~$&;r9P~D)5f~SKbczzYF-kX#ruwtv(YQxdf1kT;miH158e4+jIe9j;dP1*Dm3E%f^m0?B3d$usxej z`ClQe93U-vUDT`?&=pxF#3u)(wG3{+IM^q>6=ED5q+mQ3NcWaFS%T^j=RH7j&j9Hb z9^T-2G_|y3Xn&{fgCP3^`cN_v!+$X|$Z9k&H~%n=?-@)qhF}z8rO?pOJQ%MFqLcL$ z_uk(!ZLBhW`(JriT<1q4t^=O}Gb{{&UN9cO)9xS$_%Hiy`+W1fVmZ0ayZ>H0D!~6o zXDJBL%u{J;X^@m3-te@rnDs9Hw_R!7o{i#$JjtEf5iwxWNrEsW??@$i) zAjY8XPK_byrs+0#0q5_}Gk5yDA#lwyE4D3=85}Z{f+9y+U7XvG7?dwUg)dxqsW6bG zF9&013K&tL7Ap_D9Tx^pg8aOkrB^<_PW=xBYLW+r7Dg}Bu)Yp?t%3N`$rnm?&FoR% z?)-Bnft(r}vA^Fh`RiL|2UY)~s#O2`UXA+y8~7zFOyP-gO$c7STH!qc`HDBI^iK`y zN{_G0!{$SLa(EZvp|LSIxdPMp9f+t=LPnvnlv9B;0}NsaA%J_JKq`#b(~T3ivt9UZ zYmf+=p@eN&mO9%Be$z=vY$HQqts*;vvXB!F5p}(HX5TB{rJS6eHiA&!3NOiT*!uA0 zi?8+IIQl3XTl(2DH+VcZUW;0P@qfe_=BgR{kIVUl>Ah7iulH0U5ec$GxnQ4z6F7km zEdsUu2nk96Qk?~R6~|>YEmLbv4&FN$+{&{6>$QyQ5MLWjHD(J$?NFM2oRa& zBSEL+J_b=Tvk|6fLG}^$GnB{}I(bjsNrc~B7=l=A)X&(~h8(KCysE`J_*9&#&Cyg3V zg~R7rTz(S%T4Eht{U*jJ`j~|e%}{Coy!6xkE8*})1M;i_nDQn!gMVKdn=K(hVg{L6 zU;CEK)|Qh7Q!u#+yl>dC|1;j>ayX2ty{F!1c~-PfTsrMNbvn7OX7RgI2=&TwswbLS zFv6yIXd1%8sUnUwE{ACuRfHzIo!~M=u=`8BOzDo8NgIhxC9_t!x7g?K`W(>`1A~!+W*UXP?M(7xRg`QqSNWJC&NNs_c;rG*`nzpI>Uz z_)-_7!$>7E?2qa(0OD0piP## z@v>J#qVeR5$SdLWu-@v-hj={7@hmS)TaNociL|F&`{b!w4s|WjpG{;o?0%3He!@+_ z{LTzUC2VcSFvgtzFiOgW(0ZWGCgx$S5K}~CtPSBney+1XDp40PZQxjb97apyRORY7 zVhIo2LXEzD6M^{ZQ%HDRPopRaa1kcLqL$~f@>iMHN&K;I*BTg;ZQOgbVPC85(m!?5 zT`~&8c-wNfB~8bj4Xf=)F)CEfftNcEqrTw$N*4)PJo&$g`^@pI9IUl9X6e%Sq^4FC zjt(S@j{0M#rkvJfj2eSuJ``F7E!cPS=BB1*qrGo=ZP43&6{*tqfp~LB<3wX)>0OO^ z7CpJo9^&01TSHYVCoNh1vDx>~N#8x|S{8qg53A;Ag zuzQR)OL`9mgjf3FHX|*NNCW}cU<7<+r&(C-5Az!;NGn|ldYgRtV0WJ-FC*mi=(}5N zTBImOvEX2rjQM_}J*kKSO?d*lpQ+<3OO+v+SR6J8wU{U$)b$FTxh%l%JSIT)p!;It zeX-L|x)onE$qSLRTd;DBV@&CiIa&+?+@v(ix6UuO2#sUrda9n#5~53cZ0IfTV=!e( zmuU1IerO#yOQ|-b-x~XN^=-5f)C;N%uQ#(|noys`^wKqs*D45GOl#@1vV-M0CW9>{ zY^dq^)Kf`q?qNO3;$G&S?<8~Xj;5!CS#!)ON@b6oADkBpVx+6EK|*#&PUj^oT#tOME6tGx9m>}brV^qd3dRzVFpnv(>Y`aC9^VfS1#(vEfRdnaAI5VR-Qn|YGp zd6eD>pI#H%UkVgDCB!J|3n@Gur2z-qAETL+SX}om-M!yyk&CaMZ2n$pgtr-6#rYlV zPFJN%F}$_VNIB4R@XlH^eVnH&cF%*&=gi` zH%^`lIb^}C#&*2|uQ!$wUdPH2&qO5d zL2NDudsPSf94xFZOm_7rMfBgPKj7)`$G&<6v&T!L6+Jho9m$BaijL0=(VO+(k=A6C zuLxivtk}M}%gFC5uk=P?)*_jNhwGy6)|wx+%JtAOFh7D1D)%<3C|-77)l?I?j@CZ% zHchJX;76=q5Ow{8y6VYVrgJ66IA4E?@z8{h2l&a7RFZMJJV$H-UznxXj*)NHXZ{iP z)4^F~(sQFu5$5zE1@%~-q!oU6d8{Yn!W+ppyu}owsB}bdq=H)y0O6FLm}YH_77$`b_N|KKTTclDsBR zx)j>=dgi<;NtpBr@n5%hHVbLu-5pX3JW`mN8pW!Vao6AXYe?=Gy@{7sl5A(c{LWZ7 zh%{C#fJLaQlgb}E$t@uvife8r!1B?Cv$~xV#f6IGdlc!M$#{lp-M89xrFx4s9i}+s zJC{k+D$^^wcs--(8NQ{Zk53&t6NCNHmqC60u}_u+ee2?I6|H_?V?NcSC1grn7l#JW z0kg8$>+(v4r`6erdAireCY#57+{nfhFsDtuyRSNDGW-gE8^QXq%=ryEC^%soJEL0v|rn8kP=w{MtG-SB`||*wJzHqfL)Jr?JUMqbSEK z>q0T=Ikk-ga5Yys{o<$!4A9 zdWa_^#Lu=OD8nFfhTKS7y3p1pQ>$>LBtnf=9(VoGognc;p|RU}35|pOrbKcFRz4L4 zbJz1_sGJ(gJs+{y0q?V<$(Bf zom5v&^5xwEc*%BcZ)&QFrw~=SM-u1l?)k+oQ71=%?Al4&?}9u_B}(%tOXZ|x>)7@D z{@fJCJIbFtt~xOF1TdB#NsRC2{-9DndpeymxAo~U9l?;(?k0tqTWeR^y6ednvXAQY zG{Raazcv(=?e>yA^~%Z(>^4KDuLH>=m|JfbPKGB=iS(jqby2%}OCxgX36CUJq_0u3 zaQ7^HDr}hEu{28P9~I)cASvZMlaRGAkyYUDIO<9CYl-sLqV*`ATHXuJ;M9;%vgCF| zr@`MKkb7#am3ktpQK!rwiy!6l9{iBjU@9K)M(Rqqgqy{%b~d5-wwZuw{ZR1=k5W-$ zYJVizXG%ZnPg)OkUT~1suZyYSzW#2+K_PN#C#|!YA3hA|(`g zP~eiaIXeAu5XfnriNrc)!!F+{;*h{sFLb#FT?h)RlX>r>MTIg)OJ1H}BU7B{*B#T@ z+TuZ)tcCk`PL!OX&aznx!kW{=oe$cE2)LybpV1g3pC8htIxdADs(Wq5g|&buQ(&8@ z>zcG#nSRuD?d!l^rrEcmBRq3(^9)I|@yl7PnAc$p;S5w#S<%H5jF*_m0zBr{!U zi;WE)--%bC0|qv08ZBfu`s$VYCU|#NE;?R$Qd7FFF&1r9x6Eo2@1tkszf?&nTrSw&<3po@`==nqcEO0Y=_8NjmF!P_e0t5RsVC^XnYI>ZgPCrr z#^`WAzpu~1{X-@#E4j1&!=;K7_bV*vkBH0|ih7^@DOhCjijFq-JVBh+u=%I(;o9y! zkrz*M+|)FE^tpM{X9X>VQWQUxo$K7NKjzw7AC1+^9i98VNXj_i=xgPIVdfXk2k4YD z6#eRKlDj`B|LS1(nxjm-AhGLW@eEcCP42mV&(N{D>%+o?Z37u*t&mr+=#IMOffU=l z1b?gtKA160--oAU(LLKP={=EqvBrn#cXlz@mD#;}gM%5LZ!>WK-B@?&P|V-)vN3$~ zQ%jdjdiQg*cK?St7Znw&%C$=ZKC;ULmQ~~RRT9(Um3+rhi^bQhh_<{|3&PIH8!qXM z)l&K`44&o7rA|}E3AG-d+Fw6a$eWd-QB{Df@gtyB-!ODC5yi2Os((~S{ zc)LQW7uhzPf?b_4y*KZ%CDeX_4q`CAy1Od~Hsjb;Q!5v{g&XOh)XRi7M94&`V__XEEBG{>`n}%i+U>fhyJ)iz}#Z zgqJYd9(qbiXSX^Wt-ildg8hNpyH6Y?q$>nz#Ei?RM%~HEFp|*1+vv^aITd6orI> zuy@(ws8h7LTb=~M?(%ia*Xo(!rhG;vo?55rj0#oyxTtAM4P;2^c zUguAdH@tobc+zg)7XR9-qM+?qOiWVaY_Z!9WsG&jzB}Gn*XiEO3ZrdZhM9o6W=!kB z=CuW%YdSjcpSLHBHlJO8?Cf-BHUY#AKYE>QfuDK5o-pc7B4L?HN zTWOZ_wS1_>_?_{Bz2tOLV@r$>!9p=+pc9pHGYSJ{ZO%n91YBMocylgMv+F${1BGUqZ6VF!e(KPJy-%-RZ3~9eQ!|`xSSlo0cYHNe(iFXF*uggD zb3pxU?ijC~k1cn@Lx-a}?qBml9l7Hc2J5vXEr_)W51>dsdza6cY)piYV3*jt?Dst} zRO!v)vZc;RxXI>a>(Rv##VhOKK7nVBzEe3lNFONOb%#RdwZA&>wp4DcJZ{|36zvsR1lp$O)g5oH&gdAKTE3f8^fSjkb%xjKBKM)I z;iq0rXsP>q*t}YzI$KwPuOiA`NPZtbXNXzQ2p|nQXQtgd%x5H$=xrTAbY#|TJ+G@S zf9s7)S-5;uAT@Kh^E+eoMLyc;;9fnYxEm*DCA$PUNL^PH1!R-V_dS6zE%yp7hqk2>Px4 zoeopQFEQ3no@B@R3f{3OSJZSV+R(wEi}52(czvg>l7+V>I_GO1N;8TEZrorqX^br+ zA$v3HKRaD$Mb(>sy+Y{J`bY_x4hdmZ5vJ%%V_r$~@j;3^MlkfX>X$oc=E2}n&l+wXr~QQ=&B`u*8a|rILlO~;-QOP_N$|Y0 zw&cK2*lxLT>+Q40KD$>A&3~JkV_00>bkHLT{eFJ@0{5Zqjg#TM8B~6eW(u)9!XC~u z*%D2q?j7WsXP)El=Q3r-2VN7Kf5fd(tA=WoFYdg9@&6vorJxA!io7;8S4_$D$68Fu zoQlDE%RP^`+1qJ4t7yE4A61+v5dF~T0xA3hQeW-d%i*k^$6cpRt`xoJ++Iv5nG0jc z$arVLDSj|itv2znVJ@Poaxr2lQ8uZGj>scD*(R{97CHJ$Apz+J1*7K2` z;^eOqc|CSrcUCE7#eWsLD=!SsjkF%7&CB>?rC2EH*R|DcEk#V&Z$CuN_u@8AM;wzh=^ckh3>|AG@6p@c9$|vOYGOd8mrnhfl>@k zepSmcMdjs#g!xvfD`-N~7L-oGp;kG4AMd?+p$IqHOeIhB=JJ&t*DoQbo`ii+_!-O! z=6`Nm@cKa&(RMG9UwdDYW$)8WO+CC6`kisC=muWICgY$?2Y1(R!F9Xe^pIJ2*4|=(vvQ6XvvSbpV^P3#spaL~=0uN8a!Ix4EtA?? zy_|Ow)cI})$*MhG6#IFxK`AO&dpC|@SS1FlS6J#UFj#^1)PHMam0rm)5TspWtkV!Y zu)I++JozQFILwkEPdK#Cg_5$c!rr0YSu}Tw>kylWIeYBwy%bML#irXn%F#Y?C0 zPp^ZW-c13|bDI7(Tn@X(yRwfrtNi@aSAmMDLMLWzFJ8zNO@FgNAO6g1bUGnq!Dg{A zN}spFsD;k*td2`u#X-fM^gEl_XN)qhY9qBwb!KH*Z+!kF>W{6jH&o8EtvDi+W@4@2 zUJ56?$o zbpm37>hjF1jKZ}O?pH{c7_RU7in_+4sjM+&%=Y&)Uu6Te10 z%G;d1Q3iOsqbq_DH-u}9Pd7a3m$|=~IaB{tEaYa~mka7R=@{ zF6Q_I*qqWr<7v^xJbbETaXgwDJL}Yy#;Xta=rFVP1y)qFB3Xmz^5|jrkMGUO_e&0+ zdaq5Tt-XEpP06!wiSij>!!Q(~tzB*VPLr5Za>xwF6J*2&re!D}5_clka~r&?8Iq`x zQ5xW(4KH1t&lz7`_06iJFwPe-KQSBpUGbbeF8C;ZtzoS#K=2NQ6dAlO^J7@ckU39! zjvEtKeo)~(e-7O{dFk}-b8;Kx#S1g_D!kiFOJ0$SV!Y(%nc&7WJ16m%SKv z1GPEFCy*52UYnL&Be``;JUb(D#=EqP?-Xr_Psy31Wun+`V-dw=y?WHz3cli+>pv%~ z-Bb!}Nl7SAg^Sse?CFjp$n(2NqZ81kc538IOlD z(Yx#FTx?yjcyp7Sb77dP)kTlU9r#~k*ap7YuLb%QdVOoY*L=O`w(WC?H?hghdBQ#^ z5-*i+1$?@|b8^CogI$p&@8!bKh1n88v}l>lo#*dv)jtd1h(A81Rj8u;jz;NwNx;WJ z?#{$i_gnX~3Be@^CAJ6)$lRb2g1-PrlGN=(K##DU42BIxLL1Yxd=%vDsrDu3zY%Ax z6AwQdCm~Ok;^@8F-g%)*uygg*%RsNwA|l%p@M6E>@NL<`lKhk1MvzQVc-luX!)&pEhCVhqUjevwhX;Am%2RrdEW2;_On!LchpT#r;DrEbdL)WdrY> zUmK_vq6Z32(rT}%#EoVxo#N>tw(QNqdmFsuGch+$lBz8(-u4acLf6>ID`lOGv>UE9 zdMQ7r&N!lnH6CL;WhYBJa<2#*_gc)_GrdrXF-BudwyOB-9wbT+_on%^sNlEgK zU~|;vs3haWu{i3(fn>QqyB3z#+<78!Krh&$F-zr1zU;?i1&pUA#=eTJPf2Y}wi`LH zMvT&C&Q)~TW`~;9q-f}J9|9M{SkYSfhS-~UhrOC$S@%rQikLBu-#u$x- z0b|>4oKsPXeYCb~_8(^vf1PWy^7)h@v+NB z?Gi^Ie{cSLXF$;W1zlv$+e1YQqH~rO?~KVGVJqxjEh~o99hACARbKmasn?`ka0Ci{ zdzIn#)-0F6P)L`^1ttf^k1?3SAvVGM@?hgP3SYOy$o9x@p??(hN` z8ZTAu^VDiW?M~CnCST{XaFu6udy*Hoiw%iiylGeo0c=-4E>FHIZfw{6?$V_p8uxAU z?1V-(Gi^N^Ilfu<5AWydGc?~1`s}%njUE)}UxVCNiNgztcfUwk14o6tN}>%Ub@6si z37B+$iEfFZM|X^ktBU^{QRf{__5c5Wl2j5UWNRRV>^;gTS=sw2d+$Sbl2MX3LiWhs z`*4h-Y{$wv8OKQ+>u^qpgJXQ3{jTeC{r>2>{1xYQp0CIAG4A)N=qn`+XsWQ>-|s0{L24EV`Qy zD1n`C|GqfcTy=h?xgrmG8SsdLCX=V#^o-V2Q`*v=5EqVVq*6SuF$ zMz_o4WIGc*60c+fq>#{E8tJl>>9-eLxxTrlFMWytfo_^m=I%j)I+sZd{JymS(*A`8 zDh){gvX4N*T-Pa17>B82nVfj^UDqELP_y2Lg_=^J&wd|ReBCIj3zm9h7yG*1L3_Q= z^!{*PQV^a^334)DPw9kFJn;eVpqW{jHD_DEJZLhY?h6y*3WM9}g&!lMX?l-Z%lQra z6LGSjz@P3be?=Bby31#5OAX2$o`@gu{p+_H4T+8=_>uA~HobuOUR4c;M;GW6-rL-0 zoMP{Wzl@MQ$O#-ZgoR@|f14lf^xLqfBPpn@yluB^Bed~zjzqGY5v=q#fi!3V)e!4$hv8^JvaX{V_20mz0{KcuQ z==3>{M^UVk`b=z`Vm#u1pGRK0tNf6*>@Ib{r__FF<5qj~MenChzq>j^)%>jrzd5JN zI)8RM^6^%5Taez(ANDh@xgI~*7Ep7WB+de<35VmClx_TJJ*WBo8p?RCFu_IAJAirK z^`O!M-6<5UGE4htGU=_`W6eEf#9#d%f5t``$s;2uvT5&I*(xS!Au~N0F?%)PfdYPJ z=}kTy6@5<|ZOzN=CqtVhOU>R*7Qg=x1d0Moy)D(BUM3q0j!?e`(kspQVfRu=Wj}@+ zR%&`V@souXF_e^e>V+b7BT3zWAoYY6-R|z%Mmp;ipXA`pyS?Z`P7O{PjU>!DlJolOJcRL8~ zPEI|$pDN71%^0<0e@gaZ=mp0NC+oDq7|X}^!#ZthD9>Wt=fJJdZ!1=1iYx=JgQ{T~ zYpqh+Z?DJ^04iv0DHn8e3NasqJdyFbuSC2$Jal~fxTq6@BqRmfYvpWJS@Q4AVQ<|g zZ3=iI%SQ6-L4~-(v~3p(87->&a>HsQ??;NTprD`Srl{aO8uQT%ESS1G_b8k;wm4j4 zFAqoKT7n>=5tzWImU6(SpslhO#RP`mufKYLsQhA#&&hd)7(lp={weACrDCcpolkfy z?4JI}a}(tMy9-BssGqlvFd{s%_gt3>3tv;4%i3ot?8YkO6@xo)zdfKvVOd~~)gd>G z|6oTkbc?y|$3;Qxoi`v}_0)r3dX8Qi{ox@diG+qjb01NpDmxVuGVBCpX%LjL7~lo8 zVRI-66-&yTQ95S}vP?D`b2fACndHEa?NUH8`Zcr#sy7IRI7qSYrUcy91U#ofCk z$oDMM+005%H1^H7Rb0AQRY3Ch__$T*-JEz<72ZV@q=713@q`Xg;3~&bQp_5j+CT#q z%e)Ig(r5A~dCeT~3u-k&ez*Hl2Y* zn1R2Eyud;iRBW5a;~it$Z)r^_0y)FC6lLO$L%|6`!;8oc;(Nl(U-Ctv{PAmi#g`}C}DqrPJ{Rdw7$O1%hM_xzC0X5l0ret ztl!@L0BXwtQ#yYr+C&lY;vQ=IcKixY54cgVXZvYieu$?&*4)26#h$E_QshNW2|FDl zBq(O$U>H^7-Wr7ZL2IM<8tS>`KElBLBAgN*eLZRn_wz~kDOO=pl&+RjDMI-#y1;(P zBaeoa=WKMO=@XUnT$AQ-&+#!1kMtu|>HK3xF`|U5Xk(u_9?o33sOmp>a&(MZ8~&kG z!-1*;VV`EP;O^=1@IY;iK@E-B-rTZ(n2&3ZoEZW#Tq+mVerRDO4EKE<6!d^3!1x$R zT-<{|l-V*-)}A!G>BA4xgb`B#ul};U6UA{C6&1`^&vIM)pYH!YH*3h^UHkB^{koW# zt=NqOa4`xQuzDe)2|w?A+GxX1Pz_^`QPU1 z{-z3V`dFEJhp8W}iI||a#FbcepB(pD{YrXYt;t;5h4`?99;4YsZ{d@!mR} zCpTM8e0E+FJw#^J5;$zs>jf=T)k@thf{S|MC&>mN;3Cm7w|Zd+qw(LKprV=95IQc%GvrMqEUcY9MaBT6E_tX3Kt7lee1jOQ5{x zTBFzTI{Odfd7AA&T+47UPfZIZa6ruX_%{@SKVXh_kp-^uWPaQH{5#5a{lzSe9~&p` znB+}sX@VhCwa;(HU&nj8iDhhjxx(I}g5B}%3__ElmQfzt=06l*k16Ve_V(18V`T#S zpK_}Cr!8)izyZbSxIYBs_4xgz|&oXJ58sK`aUrv7nEYJr#YA5I5;-Gq$cyUA~@+t zqnzPnF`Png*;e0uaLndDu+AQOjyoJ%eWCj1b|*H&HLL9`BO(^e{~>{D^7zT83m+%+ zBK;%YJn$sq7d>8Hn1N=eGl%`;7WRuE-)~j!>U0D5e->Nf?8)!AW7NnP54V};eeehK zg?Ae8k^(OL4ydx^J4knm)c1%;=?GTyq*K;h^wdO467H^3t8dA(0X^6^(Dn(6OA|svJXJGDEglNdtT_YsbH`ks2zKW^ z{v8nVH&Hq*y<1Tlycy;5CdMDY6uWD@Q2dk>x3n^qNl~}Of!}*iR#3)6{^J=>w@Az{ z=Q;7eSs{WSi*o>{H8US_K))|Kx%*GR`VXZITzX#t&gY-ie&*ekxsU(D7ThzYItjaL z)-h0Nd4(+?>uhBAz05*ykLLIU+eZr?Dv@dY*lzvGR^~IIw;m~xbDJDOChIG8K3Scb zqYqEdf`1L%i=Y;wL*KqGb8&q_P5epLOv0xiJqa;7P^3>utYSZ;FI+b157HCxLZ(I$ zj$I|Y(uA52GmU&+V+#3kDeVgWTeSpMiEIUVkdn7P*(mZUbzLZ9uuj3Z5x2Z+$X*XN zKIE%YB1|cFZi#}1t}0n4d~Qx#4bRA_QCu{qAU~lVE&up=%=H=3(ufOt0h!h-g@){8`gi_yIOXIF4&~$SxZ%B(oIj$*5jc! z0NtMs2Xon!V3d&FDju!&MrlFfG4DdtGeyG2sER|^O}b<;nG`9IC!`ToZGKW?;5;k@WH!-Y!zAtDY@*vNim$( z>WH+m5~)oC0%Kt4axQtF8ML|b%45YnGf6)H-JQ)dtcNVjkd+XRmg0K*dsUm-%sc~n z0oD<`jau>Ae_fJiuO59{YVN);k@KAH{RIGL*BSSjtsl2V+dWjY9uX5HcMX0Dqg}7J zo3<@4yno`&{3$35glf^7yRGZLBC|25mbz0J*!$OZ=V!1|;URQ2dEx_~-|rUzG7x1k zY*)>>FV8mE$y`z0y{UK)b_08yWB|sVk`pnU=8iuWYad&tO>fg7@k`nnrW9}qGynT$ zdk$WDop($p^SH$X1^)@zfgz|5z{uVL#+?m-H~^@}KZoLro5gJqV`D~uqP}qg1FjfZ ze(%$l$VR_q#zsSeXmEOLN$G&%=nx#5AGxq$qi4)``j}mNd_quQr+rVAr|4B|b={_$ z|0dVm>e=zp+V6%22Qv)9r>OG+AT9j%NMRN~JlPunf%(^$){cc4TeYa$2K{W}^S7#l zTNW;R4Ka$G?#AsAGyU@H73;Egqn?v{%l*MMTf*ZvV8ND zh;D7gGl&UW-GfH3mki$TJkgg29HC!jC0UNAsi?2=iyw8o>m=wktNuh+$Y%u9WlF&u z_84zTgZ6E6!@SiV7~`&v_zK79*xTEsrzZ2pear#6Yemo7UE$}hxs6=L=L z9B^(9AXn{6ZyK~@@~-ZblR`j0N){gNs~y#j}xN1L$$aN-3b`AFVO1S+AHeSxhrciwC0@$8JBN% z?nHlSI^IY19)xX{jR(81H2TeB6wjm$VJ##N@6oC3v5CnloRDRxT0fuDY-u8tbqF`E z_2F>+>pHJFa3Ka;bpXZ8zVVGO{swwWkhS&=9`EdHY4-e{6v7cWChMsHlLS9Y&8EfM zLJ@aBuQL$g$Ew-pX-)DCK8Ov9NjnbW$|LMFy{-$EbKP_B7E=r8_~Bh1pnkK_PnH8D z8r_D2%bRW9ZD)g5$P&Sgn=(5Ojfy(v$Wl|YL1O|-ZY$o+V5MGF{MlG0(PEvfh0K=g zpo$rR*wh z2F?4yztpoTt_)s3*uJ#wrANWdr-7{n_0Gu;8rriY-LulljDM{> zA0OnMk8CNHaQ#bjN6eI2d%V8g@?)I;$Hmt}N%A;7J83BWJV7s_Z0Vlz7EfTR{3yxceQ z@Hv7L@TUJ@PnKzSGU0wV;zvzEZYl2OM>7I`81a2w1DQGgG$$QEZCENb3MK55A_$$6 zh_UUtMu&Lm=&b14M`JtD%!aA`izSg zcyya*rV;0miyymx(6oLHBDs@H6U(1Prs_z#``|T7zCtM0hHnhg$FLWNcSwSTl7W!1`-DCl<35DZZXS4`jHi^z@pBAsPBl&v^ ziN)Z2$}`hZv_Nf=0lXfD3|n#onMkH5@c{Aj55@y_jPwIZG{8Xf{oR^1AT0t?rr|R= z)1^-OY78MpiBT+!=QgmW>W$Y2%}ZV!-hW|u@rdq#>6WQ}L-NoNmsEDS=JO}H65Df> zXy-2Le`<`&*7imIj#U8rtFQ5%+y19D#KW`F`S4)NTam1g%X#|zlvDqJQV_smN)Jeh zhUQmGJRjwRGQx{rL0{cT(l>~#VGbr1ls8Vn@%;R68O*I8N5CkiwkFmR_4IA{tf3H& z3t>u0AL7`Y=5!Y6Lwy#s}xn|bfY}= z;T1?@a@gTFIAm|{)nUjt!u9*ylqhd~J-t62>SpP-M`U^YN}Pk!)1x>ADU^&rapko# z694mv$m>s_%YFIKHb>eEL*7P4`WLzhF*UX0yX}aA3mWsyGMw~e0P+<%&nrWBxmv9I z(UW=ic}b)Q#7O_GU0UeS17X_GnMajtz4W?%eDQShJlvg0H@91Res;_Up7Znl$Vt{V z0`7W#;eZ8VJi1KPrI^9F`9 z;#K#Hs_SXLRbknE2~VNO)XN`PqHc9x&Q72ppYP1aXGUWPEeNo+=H-3ve3#k!m$nic zm~-{|81>*^Il=#lyE1-c6nwFd6n@74ptjPWW}m;`-EVK?St>8RC?a6GeBA#LACwU( zvZgmdugi5**Z-DO+^WQlT?<}(S|R0D+b;FO(oMj1!Ybg7+28~5=bCDP)K{|-e$cSK z0oymGd2_oC=P_iaC@bjWh@VUcTR()p@(a@{Vqa6c%{#~~Rv762avkUT+b(kn#wSdB zRxgUAd3Z#+KuP%xvxOX~()(IiUi!eaZs~w+v{ZIdwW%D7qLGdArM0VU*%m_f)6}9*j7`nG7}@!PfY4%r!ZJrN5r$< zBkaNgggcnvtv{_+C-zz+CkM zfrc%U!K0%bSOcQ4Csm#c)_OrZLmEa4L#S8x9*cL7XcS^D_IxC^t_e#`t(J+* zS0o5ORP}k4Z$CR782Crf!hzJOtasy4pik*_1rN6JoZ!)>1x5gD@^#PCpuf$>_pRPI z&|Oombgt!w2Fg02aAWeuZAG?euo$MygfbkU8ty9omw4kCe{wP|F<1t{9-w=BXO_K` zZVeL3iI0)WTyOrt;Qj$8gJfvBX#SyWUlTfrp&W{p7*g$%6I72=jUjpV1Tn-*`PEQ zhJ1t?6q_pgj!zV=Q?;doB{~yZZjCuowD4fHIL9${QatOOwLR@z=^J6_7M>514UQ_4 ziCqo{6GhT8+>{zdM$f=v8hduxy!`6SDMiH?lw`GeRI{9ams<`gRY*;v2I9ouu~tH> zs65*VMd4wX@qU#fEv$Ct-EI|F+E7RE9a`QF|D`9DU_XTwqj2Ai8zG!zCrvNO&%TIK zK5ajhgn!|6*dW#nj`c5H&$R-+m!EuSHCg}Ot6!e}o-60~OI~cNvQ}!GXOhGE!KI;*zbHKJnPOP#)Po+B(Lf0tqg7Fy{^#XR5ol5UC%2&q$( zbt;n?bRPAIT*mm!ie?p7$BZdG1uWBF;x>eXCfB-WvS;SPrZ451ch3)1NSPr3sf`z? zdFh$JLH1^nS2sGS@Tkx&eY?&7)lw&6v(AV60G-^=>6jJ4L4yCf1#^#6A9`JaTpNB& zEVwI;wLLrDhCSF^Fe8}*k+1hmXTQw!v?<)_#^@}OSS{gN`!&#ap!F#d5ambELl7be|*rB7Q$?s9p&-WI0t1RkHJ;PO&1ube1~ZT}tOkeyXIa>V4 zuxear0!$F{5gkq5q>(5dCf_N-3%&gHXmeUxZ7*cEqUQH}1ci6R=MF^Rvid`V1DYeL znhYsgR`X`neoE?x{jtMLmtT_D16~ex4p&om*fEoT<7)IAH!=3e9v36 z)|>U9&#xM%r9LsC7|xVq3I!aP0#ilz2KbhqzXz~0kLJ>0cmn?&-<@HO&(bO z@UZpBK{Jo^J#?9PWL$j$|2o8-BDzbqg59yAg-q{T~X?cCuTPXnoVLw|BbIHlYywr~5PCjII5SO(n(zFX_8x zzL`WFe##&drc^&uL(4%dHlyb)7+;#RcWDi2#lj&?zP#lI27+so-xY%2?x(F*7(0)V z7q@Dr+2|TET(@eWbIIsiO%V`Wdlx<5ymSq#U<6J&;C-*d>^1+etQE>iFc>fjUjiY* z{PAO;@8;hjiFo#Y__YIb{I}m`YKQW|PoFUbQ{RmuX-ABV2a{^YM7skXa7!CTWFfaO zOAbRTgKx%Sgk)rzgM0%gi@y|a3FC~bzCWIabr;z-@P-Roe^MG=wqJUJS}tlg6SI@H z6XwN$c?w79t!ZXvQ|}Rp0fpUX{aC;cv9ds2e1isr!y~YRW$!Ar;Qoq|No7~=L>P1- zH@u+gblF@fd@~uDQ(xbSv5tAlH1Zm@>kgBh`fzp#GKC36vSWhnrv#3B=dnUhty4-|2~O zC8zxD`QtcUKa1vJADUB;Y3NPmN7^GSIzn2jI;u9??Bj}P1T7?dc_g=RcV4eg6s7L< zM>7c2ZUPE;M0a6O16ZflA?bO2CV=ea-Y(WjEI>$<%+TJB%ifyRi%_inN6Lfk;nVb2 zFX1t=kLS%A#(@UPO#yrBOR$$tpv(uD+m&W1Njre`X)A|7 zyj>^7*PJ%M(}@RUF=oJ=f4}YvptXH>V%Titfk$=@1pt)szdw_%31n%O9O_T_NnMzk zW@;=kboc!M^t_G0GVPdce>z-lWOLNp8+~3;^Kob-vkDP#8q}@ioTRru=b97dh+Sw^ z&vTxPor%X=?<<|Xx~Q*jiCG3dv2l1Hu4-I1_*cXqB&X!Cfy{-CjhXG8n(+7Ae}CHE zI4@Q%(NV|t#jEd2prk!G`!UBm{i)mf3SKYQo1_+NQ+HBKJ}SpC;z`S)#P`_0+pKf` zSnTiCe3fl`!XmoVvZ3!!_*rXbh|-ypVQN|%fwjVzIij03!6_STv@$=3G!OqdCxm}P z2;>9}mEtiX@p zxvuQsQ9xmFkQ~QM4J=hkO6oU;Z38i+bXH4{qof?g`5pd=Mcf;QL!CGex22E=R}?wK z2TEBK%&q%ATK zCE{pUOr`(5AN$8u>*-Rxe0SnlxHclA?>k@BUR9WUwhxrPLSN`jgs&U1m84k(8-CS z-k+~6>?u`TdiRI)8daTd59YB4G8B(4C3{A=K1>z)oy@n|{W!1b73_niV}ef0geF-&;)I*B86>UeG+#hMa) zAkBGC%;9zfq@xmHA=_`9>u+AG%?5ecUk_)VY# z{+lGDv?$x#L}y$(zc%6tqscy1>%= z=_qd@N~5|`)yJj$b{lpj^vE8#K!ZT7@XcHCEz;*1r_K(^-Bz)Xk>UNA{K=y~e1y}H;q|BW5u#xz=DfxzW zvKE@Fewq||(3YQ(<+jjHNT zuiJ0!pCp=_yD)FbmbqKp*I3Ij+_`i5UEDTAzMJVQEPz46+A^qrQXIm3mRseg@bl)UHz~LY)lQb_;nCx6kYI$TR{2 zoA=Z{1b+IF{gkawX}8IPW@V+z#PHT!j(%V$*mSUljTo*YWMO@(_fyhh6j?n^iXyMq z3o1Ed9^GP`kknxjdGgtaIbjOs$ESaGAocRlOXSr%q~b*~zKAzCGOS_^I&>PR#{O|B z+1%6#6aIPsfo4)dOtX8{8a-7fsNVcPS4U`U&%JlmgGwa%6Z{wY%7CQ}XJejmd&N4Z zeRIa5_s}th!zKHNsg=4*xxE}uN~$@LX5ajUu|pfI>^ll%0Z5xuKS3+>q(d(q%rS~k!*$qq$D|NAX^#Z2FfIq4+K8|}?ZJz-+Z(_EEyG5gjvv0P%=OX&*LLr>{rJT9}1^Ev(D=|Iw=kv`4 zA-i9eZ(2L^>8I>$B~_F^!4%2$mlV6yyy9yMh~ca;7P|z~HIwQr=ihF6%3B0C4=Jhc ze4%fnz$^WcGq?Pc3BC(eq*-cNR;G+hO||V#ON=mdu73=Jt4j}prdF!xmE`&cH8h_X z{R2UoY=Vshvi?5ygTNb|>^FO3u#Qy$0s6Iz8c7~mY6(dmZGzHYp%YRVu8mC3p2P4A z$#SeOyR2z+!Y&kFiGf|c`d<*CHT6Q#*pWi;TQgD|*@3qN@a5Y)~LM!I&lr(Sm zn65kazVn>bpqg4f;SnGGXwjt$HuC}`)8~&PwilAJay_kchOmdv78`i~1~v&=8%Nuv zNxFZ)c*>RVYCzu?HoHf9q&?@vANwfBIRoR++}e=bmc|;WFRif_s!!- zQ2%?KagYt}Zmp5&hbp=&NR+)&snagnIf#VvcQv22KP#(_t|RP`Tu=CtFowd8v{Kh7 zV2eQl|CW~lej5c?n(K8)%lAJNop)!w5FRO!n z?s?Yx@9ZuK0t>+j!ozC)f=sZ#(~Nvg{Boms|B##N)VIITmAK@EFYZ4dh5XlK`;>HF zRJ6ofaU{>Gk)FjJU7p**EvS91cuN(nJFISwOr44NNG@_|stE;8Q^}5{x-0?mFnag7 zcbCR74gH~Be>9T6>(1#xIF7i+6oO38g&x#iU%?c|L*?M?X}bZLR&L!FGauqklXX=e zSz;Nz%-c=dJwCOjWw>-~a3!N^CROF()H916czZ9_O3P}?OtjnZ&L<+iiRyi`J3Yma z(otc@HJ$kxOApWr&e{#e_PeMkS#~cFXpKC+YioJGE1uMBdH;H1vR7oaXQ3Lx^E)xE zV#8xw1Lo1?4vRXg-pJd4tn)Z}%gtb~B(!TWUWkQ$Z3~ld;(9ys#%Wk?n|4*i$jmu+ zeRUhwdmesD8L|@v+a)^)#W<^bwzh8`UA?@`3UMGDl=Cc0u!ng4yd+O1!bhHmaQ2$g zJ9zKClIbDl82wgQSN>J#zb5pl(n6hy{#}P-8mYkewApU$T~mUOLZ7^@?8seUICv`c zSDWjXd}pmjHD~F3;3%7jo)!cW?|CgIJGQ^9`liRhp9y`^ebrs4S?EZ6-{vR-TqD#j znp`Vu{fwgv&e5HnJba2qZY}BT|JKg@OU?;}kToedd;Js3nQHo?o-bY)<(u3H2zK< zyMh@EtCy_LsSXP7oe^82K_6_P&GF%})D7GFE6_X~ix6s_fKc+=o{E3vnuBZC>iK%@ z8>2jJMgQpfkNo$ED?~^DyVtNtSGm!FJq5l$CM2W`HFADR>-7wBAul)fX=k6LD)d|LuXmK9qv^N(xx zZypVLWB*W#D&XJ01(#r@@@EaXAODDn0Ni`&JZ!73|B?Hgc%?Oh10Zw10}%52f4f}3 z!kxH&-Dl6hs8Dtn%rdXmmOVy-t%f79r9RZ=L&I@xlN$5jn*U3)`>f;0;XzmNC9o=} zWuYJ{IC5Y^Laf#>Ir*y)vS--K_qTX(i^2FV@EcH+s8F5m4iCk%G%mDBO)29R6+$SG zhNkQCk*)0~&mtd!ld6Q7SQn{psEUvWb1vW14X>5`PS1tW*x?Lr2c)=w&RRB8My~-k z6_8P;z#@d4n5$o{F#@%Q%}QPoydx*nI2>ik^h?C$2<)K&NdW%$=7N7_G2FnUqznzg3+3R*?065l-m5l-EQ1>>JH9GofUXq5KUR>I44oL)MLd^>d`e)P!jRZ zKAUH%O2Apz26r&~OSG&=-Qem-*FGvH`y=HWs6up`&KLV>iN)!)Dc=<55tdLDtL&9- zppRLjM%z`rpU^+uUtHkS)a-?W%?%mhX~|0GjY=@jq{=Ve87+L4;X1eD$`NdKM}A+K+P~*xm`y zSxISSm)FpD?tR*G1fGebjOj+_(kc@}JHh^g?Yj@m4eyKIO%tTZ30M3}TBr`y&Wz4g zSa1_oPi}2-O;fywUJ%CO@=wq|8tar!#^?8ck^Q5DdbaOe0@>=LmtAClP0Djf01KCB zIvv3#%Aa?#?f!=cRS5dq1vW|PnVQDVHaIT->CP^`BJ<}Rjd@NXYqXh)LV78a@m?1c zPKRVlXBJcSe^*S+M@9frnVveEs4y9iiHS`irz>O>mtvue&c*h7t9Y6MV0aNWW2Iq< z#qaY=sPu-^fE}RD&g&#_=hk>OB>8^7Qecy}{MngLs0jIaA5+jWlRhjP%HVzNa&2mvt!NdFF0~?B?tyC4v8VAm@P;Umo zLa?@rE>_-AheECO8Hukt4mO4gl8DSPcii2~o9c7rrcTX(L8S(XO@X5*({cQ%>8UV` zP&AM9w)on|izU9Va5D#aSj^caFuof%%J5f9)8IG2G3%hGr+3?js#0Fjjk)|;>}huMQVrt6rC@C^Znlz2Nf`xCHV9`d^@5i? z88xyxa_qD2!3B&`(dr@z`I|0vW9Q49cMs3-ZTUp_wHjNq1PR~^Axa$u3??_6?8J29 zxf};64!XXuWQn7o58tM8bK}!fWn^ru^3a-NkDD;Il#HeqyK!#l`gb@0yv~ik;aWm*LrKjw2UF6)jHU{9+@$ z_6HnBp15};-NX?M1_7XI?w$C}-b8qd`~-o6ns_7A6PTu#;j;PGHxCq3BP_a6xPgUP(h zPO$7 z&gJ1%6GDe$&5JJ}u?Tw!M`#S9`RCui$ktD~`a!L?F^|iXxm-uP3BzqDd>nx0<}ZwArP$qSfPZ|D z?G!`qHPPM*;-%$asq^@RYjF|tRw^;gYkq3w7RbX|Bp8_DuEGu8Jlp<$Q)65-1HT01 zsMsxmY<9VJd-DvWM1l-#iSN4z5$Pm)=k7?MS$$7V(;Bx^;6{;6?(wm!YjbP{`c9_! zApA^B^scq8)Z&9tD;z3#%%ifrUW%u~pEeCyfh-V18PW7LHl{y%e1dS#^o?#aC_>n4 z29MXb(uYOz7OJJ$z4wo(4h<#LdWWS^OP7h<80}3RyHAjC;=`Gc|LR7Q;>*P)EKFJe23#_%;9tahM zgiO*n(1Rk=EUd*)4U^g>3c)>J-o3fZf~y9l7P%C9#WKeUd~V;0z%w5l$6{N+`c8(# zvGU_w#e%h{G2YGl6qih`O(K(5y*Ig?nDGigLcZ(o=epHqe{y`1n9E?h_g+Qm<@i@^o?GWrjpEnft1O4Bqfm~$*2XEB zNqrL(v-G1A{}iQ?R4Kl}qrKH2_?GC-dF`tixU;qx*w3fh@y+?frUdd*XN{p`xw-V& zLJzs>ynz+b;g5L6#dkZ)z5B`>zk6ISy)0x7U+N3=m=nK6_2^nCyW3wU9LB*61gWWP ziUm%Ib7U%#@V?#SzNWqNPyTD9~Jda zE{`vS+rNHjEi`f7Ey7FMxyj`^uKannEa|>y_>o5w(7>?Wa+hIjN>pZ2l<~2ql~i!ecgk1VKva7U^v?ERao3Hkp%EI+ z#`a$qc9_utJcD&yb&^$SjWo@_uARNi`eN}@PFP79XNPDwd{@|}11mbgD* zb}uf%!y5u>eky%!z4Eh2^NRHF17|Ahu}^>=3@h$(QU2hIbQm6i39OF-`t?x7 z8_(Fp`p$v^Tbu5X0I9|kLEaHGi?J|v=!jknM+^-7pd1g_A`?O^9Jf)B|4OyULaBMz z!CX}f(cP}E^l!yYSMiJm?ZlkZ4i9v<_Uf9S)SXWX z#%vZIwsdex!Ayw;9ie=GT3v0LX)3I2k0-*ch5_9cQ$1E;JWKR$xc(2nx8LNt9UP?>fz)BfoUzQUB5t>US zLnF$uLcpqrx2=~1yQrL#()*RgZG|>2y$e7#UhL^)yZnwn-wJNpW(AVprMJ*G>;7Mn zb0PxI2M6PS?_o?3a7Fnk`^X0CM^usZ{ zn$LH|#oFEFE1rSWMcQLTODILw@EIcPZi7iE!koB)u@)b_CsTv8N;HCq2?8fcnlrP& zW)H)gpVh0a=j&f1bd?y^w4I}0qcHh1d?UDB-rS!UoaBuJ=fRsdUQSaADxF(ioLcbc z`+^gpt4#%t;6!e}-NF1dko>8~SJJ<{tzJ40UtnkgDjqBAs^DwvEbvjXyIp0OFN=6U z40r+dnW!X8eV-KLN^npeP0B@eJuvs$rCeJ%mb85 zIo1tJlG%MfezE8p{KTF}C3w%-_scNrL%45kVEljc4ZAydBfUiF16vWh&pIvsz6}nG zeFdrMP(Ik3Dv-&v@yJe_B`7I2c4W;BC)$~3FbY-bc}Yh-)+7T^i~E8}BJ?g3(x-Si zk+1|jDMKn@tJ=`H?6j~mq&0Ln@wbg<1YP#jR0b`bFm6gC>-Mx8uS~EJQ{y!lWMa}) z$|*gYz5Gv>U(&k6ufB&h2E8v9)m?~x8pUsXzOXf`%+qw2PRJ=e@eaR4q9NB*T{)R6 zkLJU-v-&)c)>hq8`kh-0?}egVP)cUFnM9zXUo8A@@iEn&nA`xam=9O&2^9d~v3 z8hW(*qPSuZR9tZ-x!0?5Gp@OKh{7zyZHce1fVB+H?tg|lk9a~DJ7u$C+I5dk^EE7o z2djqb!Yj%v8^TLU;zIY@2$e|Wz-6V1@=T!X&zog48IkuK_zHUZD$a*9O`F^oDkKgoyQ2C5cxGivo z)c(8#Teumdz0Kiqw&*m91CyJBwS~S$Elp}@Oa~tR^P@AfCfv6@iza+na`9$r~Whq1+r`EaQNI}7zLSj)}HbTH?t!knsu)+YBJods9o%&@YpOSyCnTX?%f zEs(p5U(-XKoCT8t3QOi|P;b73c>Y$!eM!>+=3x)$rDP!|zFaA+mZr>$rDpaK<;DCM zS;uyY8K2-QwUW*@R%;SfKrr3EHc7R)a$IJPkg5@@FV^11S&fQI5^1?>*DMfK)ssW44QeUmK?mOogrAImHDA zj?PO0n_B}@WZJ*CPBp+sIQe*xQRvpZb->8wwEN3ZlRtBdi?#33nrFE8K7+^LqU%KF zFS%qJouLyi367jT_Qcwh$NB6)X}y0~BOnWPGnCiAgR^L<3Ov4L z{)tyib{?_r>!cV2vS~F1OLGZzg`aI$2EHKD14GnoRfQ&#-qHuV^CaZ{f^UKRZc8;h zu71+ANT*O;GYXvX^i)Cz)22|tWIC1XMTA{n^QI9rP2?lNxbz9~6;-!s^f{K-5?Sq|7vf#d8X*09YE z_~L(utG<;Z)NqSaCnd~k`KiZ)pluF(p}pn~X-wYW9L@r=6`bh);kdh})%e7H>$WNU z(&lTA#Bux3^7K>(c86(xJ*nAtvnfXwiSnbZrEpT_zNc`yy9dY;$CPLl{I43fQcg^< z+A%Qv&P|63V7y-N{vI5@)eWzNxMyp;MhW5KtJLBu%^+57b7EV=p`~zhyWdE9-}G)I z*+J0w%3%J>r=TGiT2cE#$s<@jTJZ&^2Aw)O)q{Sg6iVJS%0DJ~%@nAWeLu{fft}(u zArruX6CPuUe{E-8PAaHgbb+{%g#rNINFK8BGessO+KE|qYR;mluxDPv;tW!g{Ai=T z<1~y!fdAF^-s>tmwVlxw5a@Pf$guY6rpI9XP@lLR*(M3sxnbgyw?UqAiBv;J6hS?(A;M$G&2T zeXJ?Uz;H)nWIzP%6&ZR`l&_+ua(Ct~4e;YCmnZjDnsfI_U3q$nZxq+N(oRrJ)Yuym zzy~;H`{8)rvQu%g!QTXqfOyi7K(XEf`V`u~)QcCrX~Ai33jhIdsKGCj>BEX$Xc4;5 zLje6HbyrPkqFSXqnno>fWt+=naa6&?PGi8#2=Xjo`z>(8s>(0bcMWe>J2*&FmS;PZ z8KIisW9xldG-=K_QR|4`v-Q9p&@{xp_pn0WeOiIvxsz1=R(<|n;bhbsp9ta~;9gW87}^yit*Jg*YQyg5fwum%YG(#fgWCTk`1GI4pbF?F zkSK?3qelF;B=NS$R2xpov8bY=#h|CE^Z;zun7fBWZsQ6-6Lyg?aiLHGmSAATql95; zJUOuNzJ9($wbuLrwT%5~TZIC($^K(a!0v4Y{o+&)Gs3QyimZcfQbsJ#B+$b3v}7Sp zi^CNJN9OHf9LDt(s0Og!E=n@m(GLiYoALDBwRq%m-}@_!&~Kn}x}#t`czvG@vxj4tV5t;mTelE^fdGmkyG+J67Kw${_EV9^fWVu zl%`M}y}d^zIFg*3HuPySN=|SjSnZoeA#n2_y6KQtEm(Trtf{^ZRnmHXlOaGDgv>P7 zHxAqab9qHaG9`J~6q66iZw(@+BlR05svW>POE`NB;=QqX)&VmJ?B=ZotU&oRC-7$^ z<304NKWoxp$}dwWEtM*xdzw%|mg~$q6_%=i8hj~)@HqY7e7~{B z*n8~L|KwW-3Lv6puwEJKQ+^>>zG;`Y>)7^175e&QxNeZMRM0#@$E z1O*aiIA~8Ukc>Nxj0R8LV3G@yz#_t5nRx&xwVBREd|dP)DZ^zTsLx6UdMq+Zp4>e2 z1!y5JLxdkBrPxzI*ZNWp0ud>ZH?ySveN0P0wj{%3pcPdek+ zV^a`IGPAmTdO|#;*KaL5H(H1M#BJ|vBj=znXnnsph{TQy@mP2ZNf<|0DLZi&9j6U& z90V!jKEmW0h_YcN>Q=>nV!h`Zx*VQsdF=QxJG%RP15JFuA>8VsL*F+esv=*!!bs?T zzj(ua9}p;9B-#>>BoyLQIU+=e7G8aMvl0Y%A$i71j-}GLHREScao|y3oo|w;X7}sy zX24y?LDZ_cnWAD}P?`TR^xUJw%lNf|4c58mYx4>-D4v$d6$FI5Yi)q5!2#9L}N&&1N{|CLRT zTZl&~`pyJbNC>ksXn_8>cil}ah5=&A6$i{Acgu#gV$D3?_2;J|plmv||Mt*(z5K<` z0@=*eoP1dO%?qNKyFRdy2l%&F#V=gly7Qp*#O2s^=THvAM=P=y;P`qf1GJ%%k~uT7 zjIo}pn+$GNcBTrAxm8!U^ljSTJ%DvKJ$|Dzs4YrK!PI4*Dmq|f_zXC?Yhsxc(ys=B zT_>#Z@{Q^wXpdlJdQRnT_9qGb;8=S-1d zi3H(VN!*0>R1myL!c{ReU<$1_sGTOii5M=$@{#r|Y%J*)Y$Z>yB~IC=X~~dK zb62)=uzf!kH=WS{S~MAn?xYASFMG59TwT4+vp(_M^O(WgMTl=+{^x!q0E5*xP+~xQ zTwpIV3&rnSx*IYH{hPBy0HHNb z2SiLP_)(dQ_dMTkLaL+gDf}b^Q4o91+y+JopGm)4FHMh*_ByrBOn5~d2v-P%0+2>l zoWf}4+xpP#I8iLZdUTD8VPh&{TXykFkkN(XW4uCLh{~oSeN+=ZiNohGn9&hHS?!yb z2NtM)XgP1)dUtnMVJr=$zz>2jo&bH3k#wkZr7$T*E^G~pkGCy?J#_buq%-1M*g2lD z+7%LZf>HE~>+zO1{R}9T-VWY(I&7(Z8R9y)^DC%~igzSvYj;A7Y)$=4-J zdAUTMSVw<#gV1#c0kwaa-ZeHEy6NaBEONm;7yGV0e?~m$?aiEdi+q0xI#riNQr=Al zO$X?n8Pa>78hY;8=4W<8GId2`LXA}t2UZgjFm(4|k(D5*^h}A7r|Ch_aY7Tf_e?Q% zs;#x5yydw3$Jrk9!=6)mDKF;-&iO}c5072{M5^&AVp^}96~DHiy}@I*)M`GE5FT`s z*7uV+7B=cbjJQ*XHk#lonp8hFAFkw}?Khv0hR^~g?5stl6kATS^WHZ#sS2F0OGE4(e5DzIb-&|Gk(YOqM@F_@G~mPedh*KT})#}N!=#rz;ANYHhKan*zjB{%9eqd zrcAHB7N*gD=17qweeD^THsaBSgbE+`h;=8UIoO;XMGxf~6m3}FR)Pn4xe@xrX-a++N>}`g6^x?e56FFe$~77TznwgrZ8PPvP#QiYs)+@!lv-*Vekto4n*6{qg~C0L*lEsnsqzzoCkCl*#UFb_^oq0nMdGt z_T?2X8pTeY;c5-WU+w4n`Xt^jZ#7cd3)V*(DV&*|qXN6afuqV2b>pAT_*;PNb|%q4 zC()R>=~>T$!xSCt#y=^0Zd2qR)>51llM?O2!4rYq>sh8aq|e7yuRj`*2a)<=l>Ata z$Hun+Hct(BQG&I5>*s&c^~>HAq!af`^fVg(!787a=s!mK;wLg95WZfIfaV0^LZrZd zDK~B%uU8XCWIrz}YlfAcUO<0x9M`0u2h#W4v?ksBZdN+?>^p%qPw=ca3ti+!OD)zw ze#1JQvpgk6-HJNgd0(``0->+_TnGht&db881?~Bm4khd`Oo{#nNxRPgoGtfxS(G6+ zHa8)fv@u=E2hmW(f`^DsXJ$xoNt*<&%WIQ*6zh}>6ciXCnV+fO*^iLiym2mj_^J?- zJ5|4EF>LEXx$CP2qiJ-xxA93%o{o)0&UiQ@(Db6)E4%zWb*p>==JJ{cg(q3@vTOlf zD+s<*2izAev&47skhMt9nsjETAm{l8B|(`2+~iryl@$){Ko)q)U4DZ$(A#kf>Yg$is0dwQ#E54?o_4R5=+tzuouk#m2|8T18=+4cw~i zN0eWU7LH^tE_5^FR80!job0B@n;2KwrHIy_@WsKlV6~`9^Cvdb9JNwqP{U{{_v+Lu zRHgU?lK}6P-}=pIieEvlPpUaPkxah+YG%31x-NdTC0a7hD7N5@a4~Ds`6%9vyt&^TfP0Yn#pLAxf||4p`$ntxkDVMVh{_8|TL> zK*zCEHB*`8n)8Flh7)hEZt}rrzq)OJv#=l?HxjPe8=j$NO1l6c(&$7!a?44hHfM|3 zAo5E|YOPhbc>%hbZC|PDRemuOh>*~RD8UU`aB}KP2t7!OzjZ9mJ}u$FoMG128|6$6 z5ZC1PyWU>-Uc1;zC>@IqJcUf(jce{zN=e#qr-!CFFT)Ne7d_H6g}|N2Oe$0%-#^K* z?<;0NNnKJNzy9)OP<#R7J9B{zRB8LHBl>zzfA%=@g6v%kSu4ucK>Y! zEv1Bt0+2c1X?Vj`??2JIg}&qms9{ny`Y;dI#2cyw{mcabz9&eeQritacH1^cwta7IFNEMe-Irg!^YkzONxzXp*UpI!VBF0K9# zprbcqStI~qwz6ro8?62l`bibx*=uRx;ceA5j_AG8md)lwTClCn(&(Lakj{^@u1&CA zjlZ-e+(7Z(KB-YwYU^hn2{_!9spxWki5>aL+eiL*p=Z{wSA-vs0R`#wGV>9RQ7 zlJ#phyqvsgUJkZ!?1vTvNDqblYDvs(jFrIkQ;j{E8hIQoaVOhvtPM1mc+UfL^2hUF z7bHC71Lv}}aM5=3XA@(|lcetvW%vYPdv-x$tKJ(E2-7A9V4##r@5hf*FaA^4_qJnZ za~dSM+-r`}j{qPjOq5U&r*VCQj|VD7ai7?$2jMXC;8CcSqnowrGjdCezFwn-8@o=k z8DO^h*dkRWZPkBko^cH(<&I;wx(<*9k1xVNcmC@D&IgyJIq<_EO=MpYzP-^esiAg~ zKaZ9+#*nB_sim#=+P3QoCHWHWh?0OIXck1V4*oNc8(a^2q_5>_<@^xbNbTBnSz{ras|wo`McJ~uUQ-J-Vk~y<_?*jXeI z-SeI@i_l|ni`RtfteYxEUV>z^3i;u&A|8XO_HqAeIm6%{e_7LUoT&}DDv^a_fWd%9 z*!GS~mA>@eKF+(7M`-v|5!M5rOBQxY7X#rQ)r<1Z8s($_)F>$?3v0l9Mc<1Y%HW;b zUCT*gb*GTUaSwIgXH%H|n1Ew~9q-g*iRY1F>@m7U85?7Kx|lmWd&n1n z<9#RwSFyY5obHM2yPTP*+4!z6!{jNsuayN;nWRY4@a66Zt zhxD?nYNin#T2Enc9=6(e!%s3u<;QA^- zOv{O-wjkl?7}OuwLsowv8^mKuCam}gWzL<%Kl){{5*I@!JPNzTRwS%ueykEou*>?^ zwqxq4RQhE%9Ydvk<=+kN4utWA!9JS1`geD37A|XtsX>Ug1Z=u9*)~`_St3|%XjJM; zCi@W|6$Y#Gli=iZ(3=K$9#Xv^b3WtTP1XujNX+-;<%)q5;-1N?1oBQolMBrU^T-I2 z#R=<(&0gd^j(03OGFd4!re%-BA`eO5yD!ytpZOK#tZOJP z_h;eE&d=sDsQ5fFDI&E1w&K94=AY5F*1NG6oYNI1>_HWVYPp2g_~y(JVU-I*ZMN<= z18OXsk>C~=f9^an139ADNBz{ur$j6YgunzMW6eD-KNN@%;yTU zxCZ%inmDfNI+S>hJ}l#Fsl8nnNj(^P;^P~>Pv;GHR#A!etH;cabe;hMBW9@l_q z3Cie6a0D4g=<;?NF{vBqzBm8OF=n=x@2^@gdiL9z2@%}E$Av+JTiC{XZz!8r$RhN? zd``3kpHBVxPo$N0>|F@$jaD5uY{hUMWMvxn{rC19Er6D3&^q27K#zryQ7-S}+o=PQ zTsF3t%ZW)e&?WJy)uVvpjkzuzQwETHII2=3%#aEA$=nj#XjWgoF>@3N5S1$CO@4kI zb%H%c)dNZ&8(5 z4e5Y9Nn-!$h0?L%_*<{JlSG;B3GzhdvM#3!k>2p2;2?UV(GM_XXlA(*hF(Dd%~NsE zxvwP&4+~phJ8kZe$?qAi)|iX0efKVxwNE)wFoHO5mz1G)tiMsWp_4il<4T(Wy8(Y} z+{O&)vwITno7GATA_yzh>C8#96qV-zyDt|;Mt?eN9r~fWGI)uA-(dO3(>Q^|^fAML zjsd4;&8>~p54qyC_(-oLv5>kJ|Zm)x803ZZ>r(iGfP-MFKA zx}AHbU$9y8<~a;eau_HRwE=H2%=$Wt^8h6 z(wDCxFQq*<*8_NMMlLI?Jr7YI0VPjc)OzY9rV5Xli8Tz!f;R)C{3W=h`5q$l;RkdV&D7u-EP*Ji|Q zh80I9O#KAh&V+rLN70|*Z|*+y0yRjuCcF@pNxvA&5nc~BZ_y>zZom^n>#8-WG74Ip zDmc{My#9WBDA7r_10?xeM62Ikkc;ko_VMO3P>s1c3w!d9D8T1jqzXt8L9hP^xwe7# zv`5HS%g{a|TI#=WSvM9ia+&1aYh!=Ll zuZ|&X53bpPNb*|9@(cbC8NHT9(u^r{tejgbt7%2?<+JqV}(Jwffla$ek+?tRv3$P{6Uui2~e_|vo zv@_$mLDS@NX@-X>+k;Z}#2JSTJa4|c^Oa1k1k}aH#oR|H0_uVL7ZwD=B+pqnBpHoh zH12D{^3(|1X)!nYQWLtLB2ktEXW=g-UKy_qk*SwVMAf1oL{&Z`54amw*>z9Pn#HUZ z+^HQ01yL%uX3$wv@={#2>TH3$D3xrtu`4sKoSa9eeNvuYNm>&{zFw>|{(9bsuU0 zj`^v6n()M`xM6!h_VGdc*`n!~7hd{TzvRY%l90&eX8~sAqj8Hl+ENC-S-AIv5~(ziuJixWW?Ys9`bZ}sKr z!OA};zjK}wL}yqrbluxtiwW8FpEudtR7_;oyq_2-ooReYsIE%K=ToBCq>aCq&CGU<#DL*m@l5qg$@{cpHf`i zuUsXH;{{TnreLb7#1ih+viMuT*R3ph7;)$i2>9{~B52AO1E(b(GG(?qi$``Zj~*`L ztcxzC2By${QP!X~L1{=n)1^1{;XENQ1T@?|?zcVuV+C7W7uTyE&4e}ZdRF^xQqD~J z63`TLvUc&8*HfL}ovF8XJ94)PBTK+XB zFXcsfmaD|X`qMXx9iZ?^o68GlXAK!i(~YjyfNTbuZ$ zKdpc9+WvE~0dbR0-*Z#5;NW^L85q#*+OZa@!}3Pc#FDLs`g`Szr8>%W;~ZO^ z8ey~2w)Rl+KG#;2IAZqsINc+{E5~W7B2>A1DbHEyl*VXr|8a!*ai{aa6aizOPA6s} zWN1hbz`(G2CCSL&T>IZqoAPH===HReBh-W4w!bgAM-P81%A*nf*%Eri zUB<40`T(2OHa2Z6Bu_3}R|yb$mPCfz+Ye1@ot#4J^=)mf;Dhx}zm5*ldC-oNvnPEI zdY)xp4IR80o2%p0UM33X9_pTH?xTt&U`11YO1j6@e#rN2I1T2|&$0xpdyu6xO8iWL zfCX`4w55$LH5USbcgQ&`#n6xf!-OoC!TZ~~;7h#3-L=e}P6{^JDQg<;$kQ(-XgFN| z0L@%fbT*ad-t3WF`qlIf?$To@^jAn=X*08=qlIN!3#;T*3&eX)-n<@e&T~myyZ5mI zm+eq|k}byYbZ;2dndv+(TjDP1NvktZ6!q%WXAV`2`Pk~F)q`65l(KaZCy(@`y4M!2 zUrtX>V&gI&mR~mJ9l_=x;)I;)4V#^t&wWECNl(uRY_di{NkRjUZ~>Lu09;U+-1=b4 z27k-9(*}1`pso^l6h|{nM*B+UU~iahK(dxyE#4XW=#oxzoi{z`Bib5!eRN$F$Br(H zG0XsTb7Z6}FPz91+`r$p5>-7Gb5}?5qw$v4~ZWM$7QOC)6V>0!WI}NGA z{FP&ud>fyR?xMOpY8d1|`>Qui!F+D*ezO6hb6hM$sp{(0b?TI%eg+s8_O-Q$%643T zQeaHN)Odfb|5&V`eR*${O?KcjrD0O;7f0T4?@VZ8?kDr>g%Zk4CW8EZfvZSlF&;Pq%>Y z3%_H>ZdQ4;3TtaA@?L?t1l#vigaZ!!<4h!GgcRQxSU89>xtFi2cMM~g>n1#72h{c z%hvb1C$D~=^cj;3eyek@r(c9`LBvUk z7dN77yNZf^JIi*C=NbQ9)p77dLuM7LfTh)h>w7|`#)84pqhMoTp9Y%Y+kP@YC->JZ z(;qJ_hcV>Twd7}lWP^wR=GG?`Q zOPV|ocsv48hxuLYk@b)VL3Vp9;SLlUcG+2iSLH1-zotKSvt8D?(Z&c0TI#&YDNDXE zrG{Vce1T;Qp$ky-*-nJtIjSuydr_h%gcKoDie^}9v+JWhukz`%#4f!Xbvhe`0Q_A+rrgZCJD1alap=@_5`CKm5d(--P;*>gjmRkqzFPq8?1LnnUU?<|NthGifGQs8_o=5=j|2&;Fw&hjn}S2z$K z^YbjF7MGHjbLGNF%(|K!C1)Hm^YSQa!g3teC3|q?4{Z-$0>Um8m$uCJ3*{vSaqLxB zc-U$l>h!?-d%`BW;k7+=!~LAk>ywm`i1^;PW@U~3r~a7ZO(Eo{-B`cu7cwP7Bd8)R z6guM)F|oFVWK1(ci-o}TlakIn<1NI0)h_s%^Vl=NZgV5t?A+JVq$NzBrqLhZILH}c zQP_j^nk9?X)g@WnjJH#3k%{E*;CormHE2`S->33=Xh`-=j~U{04584;uzCQ=+_c7Z zZh42BzxjK5fX^>i(~g6J&d@`=0Ww!!xYPj z*z@`+^2w(~e)4o!g_Yx=qbV$`M2p4M7cc)uc1+h6BJ25#f0bj&br0|3_c@pr%Fj+;Vn@~9V+0If*-*&ABUIZ!O@lsagS^9cQ z;0F=V`XM@ycXo`8MNXqps5Vn5bSqq`G+R8>%2FkaLQ>XRx}eN-M*M-x(Nu!F*=m<}F6=`~K{{63}|%ga0wP`{r{fVas*Eeba<8(isX>oSOgA z=EUO&^43PsPzm0!qx22z+hM|ZfyNeWWMYENq8ZwA!y&``9HU>#KQQl0h;pzgc22kh zQ}8KEOgBY!cArh&lT04d)<1Zm)Pi4iGbTq5mmmhV#@dhSH=R(dzYkrjgW-9#2(slC zR&Y9jtDj_N96`-|OFNE<7mzP`w3ge?@{KxSY)z>6C3 z`V-Q`A40>fZ`<0gKEiysg{|@~eR@x~Uuw7|;#Q=5C>(G=8Kvl#tp#SAPLjnhQbN0` z^A-)QlQ>lAM2|cVtI$I`Yq2-hzK+fd7+s#!tJn+#wZ3UTP)`B1qI;pESSlQjj`J)a zIAEp&%{@5Oai`dE-GA`)4u&gZJ9ZN&2g9vVgZ=^E_D*oR^YaoAbz-|}t8p5{iB-|I zN!%}ofJC~ZrElqI%bE1nuyT+)-h8Gr=!)>$kEe6Yse=GIj z5maXPqj;U({#qXPMCBRzjFH0CX{6Y*RF)8obwXWxZy!&_prC#ks6amDsK3IVYyqvc z>yU#SZ|`h2UocWu(1}(Z&Iy~ag9sAROqwP544|M@wX`(WH4Drn{_C|why}JzZszWX z<#m9wot0O6J8O9GsXC9TnK#>3?MB(S#VATJUUNBhb~>2MJ*v$nhQ=m8_o6y_>DyVW z``WAPX*c<@`XO@rh2cxJvZs%nX$t5f^-3i0V?i_A6t!g)rW@15BA>l#4ODdI5JHs0N(UK-_7^LnRirbBe zc)qH#v!zkB%BML1JsILlAi1IH)b1!!#)rE;Wc%g7+>^3rvRKG?TcZ1+y$#J;RFd=x zxo2pLIVifawY`lSL5)&>J6O$eNY6?}=mD z>Ui3QY6@%C<9-UUH+WQV=dOO$WuBbdfNr6H=o=lkq4gy^R@Rv=idFex8F2R2I}%%` znp%y6NKzaF%Zaed zJgq&US9vy$8+I_TcPc6ZMx^b4WxLW9?K3xm5`?#|$I|ogXo=*daa&m@s^wFbx~p+- zw)jx^fJ3NiMct$r*_)xG{nGQL9hPQ!i3D4uBn0ALbMCPQXaS%YZuh*qv{Z`F- zv45WDM_2GYOTBAy2&7;jFCIMKudnXu2~KMzg-qel?X6yT23EtGvgmJZkW`_ z&k@h^*$}RYa04V0a=?N5ibvh%%B&vCp%p&iaH(up%C&e59V>y32L68c9Dyn`67@<{ z#E0t_Qu!Z;kC8Hdo{1}OR`>Zm8;cBTRjdyE!!(6ysuhp>P0ARLv1~4#>Fi+!c{_$^ zamgd_C#j{fDX@t15ZKg`)RGA+GS3DIC9%Mcjg;D=#qo!cr{ll2FRH@~?i_4%%VeeR z`=2r3+1zgA93kv?6oMIml{(zj9J%QLxKcb9wzZ+v?>|Zzmv8b%R!)eo0E2{wL4HBBb zjzB9Q5041#Y0>jB#;M-~fotU}D0mW0y507rG7R1kwc$7=p>c;&{XGo-5?f>KW%=+~ zDQM#~YT$2iO|>})$~rT}7`n~4UAJ9?4_4~|woYU`=TK|=ObGQ+V4Wsa_XIAWv`(Dk zz>%Nr`-!jgc}ruY5B50OzW011&NaA6D=FqhR5;;ex4*Mhc}eDV2eGSQf^w8($JY_f z<+RSQM2BmDSzuSNYMopk(-G+}xvj1qmu`AMcf=6AHz#*A8AdzTh{1+&zG1-v1)jhj6t0<2H%PZ2%-Wkus6(VwZG+;#}HwD+v<2A&tR&)U)1un=Z{@Ue4$G7 z7{&ffH6SXtpY$3uRsg}h!CqmIz=aAWe=F1xI*h7@P_Opz^;PZHIYpa5hP*=HX%b2E z8=+S#a#x7!ozF}c-GlhFv#cl*drxb|Abd%0KU3kvtLdPp3k%AU9-pU{3o=3(es;B; zKO6b%p%46^`9+!S;Pd$*b(D@i0qX=WFcLjS$~pe=Jvx~jrj`QZIwy(6lDmjw#bw`^ zWE(+EUBVmrPL@)(nre{m_8ZdR`Zw*22J&27zE0(D9AlI#e20ho>{me-Ge^_I2%EMs zEZ-=<;*|>E|v#Pdq zy}QaD!^2aCOmfB!2V~K&H5~LyT8UPkow8h`7ZU8f1{Zhjo#kuErg0iM^S65Sdu+qY z%-G1R9Z|_GDOuTU+mLbiQ7F~O4z9r692U42)5y3}mo0wkw(BQ2-q5Ul@)S~!(d917 zTf9K=8Hp8f>`jVnKdIgubL+X})){(6e*YaO-nC${rw{Eok0do?=P7&Di%AxSu={-2 zTf!v^FR^A?lE(mVXlLBFHlfaBtb%bo1=c}alhu8R`ty|Dqx3)wnIoK=)0=z90&4Xt zzSYPpw-l*~>*K`^1S=K|F;zA zUcAhs<OnnNWmCdZ!8@*O}Rq0PNbsbdDmOf@G{C91b2>4)dIt^*d&9RrYCX*WP(xAV-7ngq*Laa}Y(&wnf!kW6z z#R~=n>1TuCdd12BS%=^Qb3q#}buS<7pT(JekI=cHYia?N+56-jhnnZ~Uw>B7tLFOt z4U!?Qyj^CmdO3AI@IGDmlb~L76WU*)6bgk#-`-|uGXHU-CS~L81uMc=)HvS(mA5ND z9PESR`xU5nk${S-KAM`FO#=e)741x=cQxKJ@9{N6=0tmxF3NM_;hU#NN#|c{9g-#_ zsyrNBQ#+N7{a!mDdul~t@2#3)=+bqbNl<7;pZ&u}Mi;{a?3euKg#4>YmGgD(R==GG zG{E`VDW~p;SF&04fZ4RBv&OEk1m&9F^JRvU>K;F_`0*(=qqQvST?jm@$*IwDdBc4+ z1l6Cm^lPRs`B2t+L)D3q8(R(}z2zE(tUM;ILjrEqLShc@)fWOui73wnku2~{`Ji*J zJG7IaP}QZ+%4YtS*ZCQ*AAfAEy3Rw*&2O|Xede`pDg@j_e784HI%MAivKe7Ll(^^e zEJ|JFQm|j!pUaK`7INx?`snO>WnW&L6~3!il+x4Z2yQZ;Rc7vjAt$AX>*!&g_c zoSeTy`;x83#(}EX%X*mmWjEz{uN7mN7a;i2oBVFZ4TVZL3Uvcl(}TfAy4=Uf3v!0c zmUn*<1)u82Z}2vLOZ^0Bg?F41oIH22}9(Z!0=DFvShy=~7 z#i1NFSt=;pB!Mdn=~PR{|7HEo;%!{qX?*-(oVh}0+j%i`G?ivM$y!xi7mDC_(pT=V z4klB|e%cd%%he2bZ;F3f(`H3;*A*abPi@CeGxPL$_bz(@Y)lmDC*iAfvW2?TS_+jf zWa)V?1I)?R*6|V*-^9c$ewWJ*0^tC9X^38FBd{V_IIq?Bl(FPNmZd&?!iNwkntO#x zm7%_l!2<#)IM_NHbqZf({v0mUS|Tr~Xooks#SAsqiyx-Y#S=WN17+(&;j?w9h{Xnc z)vaeXpqJnv_-KX2_3qnOo$)eAza61A}8!{ z05_!6r^1FB?!hfQGy*9+2?0yp3*RePm! z-f3bn(0>(%HnXg82U>-V%!sbLLn^c8TMDu=g>HG|jadx$# z!I|Nt@6DY2M-;}`wE_O%JWwy`yAs&>dY z@PDlsI-%e+#9VXf4CDpM9Jb*<;P9f?Z41sp}qt=APKgpf;?`kY#Zh!lK09 z^k^{%4!`_%5X=}p)A_dg$Bzft2@IHsfYec;_`{b^-cCpho0iTH)6f;VR55Z;(P-<* zA8b}(uodlXCp|YKKS-fV0rFq1T|$|AW~+=|*%~I?b3I=p5nU$KzFSR}7aKdb`FcxJ z07xW+JAj9=PxGp3=}qC7d9C!)cfrK3>ae2v*AnqlCWQQs@-tzhNO~D=AT9cP#^oSR zB~+r(k{9Dc2diHe>L?wp3+;BPND)*(AzJ~42rJ*~6YUng&c>9~s?~P%^F*9-%sKFP(8Sl6Bb|U)+w%`D)Ot3C znwm^1#adl)897SPc8fm~Vso( z;g1PhAJ{M)zh;^teC-aQIj6@+LhCPHHwvW(+nd=Y$(B96f#>-1?`O3e)Ggb0<%A}9 zi?0}e>b*JhEBHvKEjx*xB0*8tny=PwR9jW`gUs=|P%Ugm;@9B}XyA7OJ-|{7(dk}u z;h7aRuFLA=cljT4a&k&|@4R}X@WgVsSZ}53*}F8&vsDe$huc>5y%RO_IwDM_Hn!o) zUQ#Hhz?2njCQ2Jynm`R{wi$PW9km4lNXg}@oKcamsdk2CMB$+(EM4*BgIUp~v^h?QSaVW3fNu%7w8H zG=#=JdiDOWA{&J7Tu-`!Nc->{`WfESVzy}RB1?$tdkUh*>y%LDi(Lr$?_W)vb>-cX zh;Cee3enXcErBrlvjUrb;#5lC1cGlf`r~vnE`KJv!59qoWZ8w=11!;>EuOb+D`rE8 zzma6Iy>T87qP3z>vUFKWT9S{fYWdywGq$`{-ww^~QE`Q6D{)0YZPpF}Zsoe$w&Ut&zm%FQp|R~W7n!Q3_*QIdGprdvd@G}QkPfe*lW6Tnfk8-s_E zskqtxdKnBS`p@-%(ZGbwamMa?xL&JIHsk{JL%`cdQ6mLD)POA315d~Px&V0bOW$!) z*?kQR>D(w-3qlojj)TiBZ>mA-En30#qK!t&;EY>jmcWj^SNvbcn2l?eph0vLGEgFp*wCg zTjAR2ZpQgYmR#7YyP<37vXW+eTeBMD-w8hcPU#NmX=#xnrx(*iM%{~Jr3t;SGTGu? zBjSW91Z>gOt%`>sQASKJXl8RQ`It>j(^6s+FTyWH(wY@cY5Pb0gw< zSNODtG4Mnyh=d$9l%wPy4QM-`6%`e=-GQ409OfxTGn7rinxFX}AB=`maez6wxVr8q zwx1|;hEW&*gWN&p(!WE!xyn+!IU6l~@cBCMgrku;C7=k;Ebz28ie5ZBh?K&PusK63 zWc87C6+l^zl7rTeuV0_)RhXJkfWECdCu})Dx4ilMzYpS;9;C+;A7|%32T{DQnN&Ws6)U;j=7@IfhA+h<-Qu4vB=}Qt)0tku`zDa-Q6I`H{wfLTr zMHeijAm8$~7vkmj4~0Fie{a1|(FU6|h&L`Hqhfm=c`S{tcQOO)2feQk!E?KP=gv_8 z--8FAUU@_kJfbUMj=+Hj0`Gl_uV+?q% zQ=mTD=6_5K&k(fykguLbyY+kSdjz0oxUFaS@3(mKbM5!`eAC$x&K=Af;MB7$RBP2E zJ~HDzMu07Ck3*N;ztCf&mMS(>VQKZ`$=hTR$6^`(qxd7GXNn363V&7~k7-SS!{IA) zL}j#KP&EdL#e8JxVp^JA=q$@LlcF_Ra3bp5Q4 z!Rfl{wVrHWJ|sM5Or=uw_s#J&U_m)`^1){KhG2^MuZAGvDlbGL$O>vL8eZOe^H&}y zn`(ssNECu;Y0uxCOB9<;#^bxULWy(vJKmdI)--AQe_uTQt^i;?|8srOyUg?VGYwa> z*#5rR;6F<2&x>DN|8r;Kkinb({{KzMjsMXJw}H<4_bPw-zk~i~CH{9!|7T07YKOw@ z(WOJT4UDrCBWZz$Z8K4Ac|Q@-QuID=Re}r|L%IIdw+By)t|5+__U+Svg4X1(J@nsIX8Oh`85$_TIYz`5%5yym|Hb z-o=~IKL1K1?lq=QUbkBr6n7e>LSNi{%?+6bTC#QL=R=@!9uHdn(aYezMXt;JT-@9v z^U<>9*69Fy1YI`ly_~k(&=2nV$bD_(4U(GAv=m&=Z!`Y;4GM2XG0K+XD%wrMC>Zr4 zX@#Hi8gV{_Z~(+!%^It|y_sv3~M9Rb>K)zcjIoa}7o#l^)UPdr8y0)e=_ zexn-p{}P)%(%cUoXwEdbcV6Xr2wdM1UXvyppsJo^4E*?^si>&=r(&e3frUAs5sO|C}dAE|Cm{^dtWY4JP;K%aGXR8@wK01BN+pYf$$!Y z#J9v1M*lk;5!3rzGM+IYZ_}lHj{+EF16o*Z$17hz8=SL%P|Y!E_Bc$JeLWX^wpSp# z3Y49uzCOHPnqb^|yxAO3@psRBxfd&lXjzDb+_F2%47o;qbSm@W>&0iE`S17V{S}Wl zt|fSY#-e|(P5J+oQvX?r|CLhzBc=YYC_XkI>%h5L`S7q@Ge!Udd$7t=j|wKbEA3JsJ&(nD=ys(uXARd+%IfSa?1ZEyEEST6!*zU}&W zRnuyI%HF}06S6V)@1AE)NM0e9&jBKI4IH=eo`DomjmE~tWO3Jg*40!1pfXu&52nJs zzcD5H|FosZcvupEfot08bNC+vH}amO$cjWrNC=R2d#9#s>%6 z0dwqM>lH|d93Uwh5`>3#c6M%>T+GzYx&E)k{6{R`0p@4R2Pj1}qb$QgbpkWuW7oHE zD&c?=FD(AjrAu~`h@wA!0?C_z73rkzoEKz$dww@L#RO|L5sR`{<^KIHG{$WL5bqLJ{_3 zyed{>o4__bg0~+6X6lW4tR3*9kLDuy_O<|27I5)K8eY%e)bjiLNbds$*BEf>c*+vZQD z9q@Og4z|V5@IQ7fS?A@W6A-+)H#X7m+JYYP*K=jM6I-44*D!qZA>w~+!2hh<|C+%6 zcRc`A?JzhnyYv9ZM|@IJQMpO;8Zf`EH?4yWytwUkat7M`;TE?4H7r?d<$9=1y`Ib? zqsKrXX&;zW#lXm1o2sukz+)NR(tyCQ8Az9I3zYQSKD$s;7!&k<*FT%zX=Q zLuzYlkCYhjEiNyUn&4N4a_lfIjUOT+{)D+!GtN&6CK0yt4Gu3}WL>>>&A*-c)-C1O z4gwLg(U@cS{}-)^NPaSwD9i8&5CAUu6Uzb;V-ysgVdtsX)doQz1%!v2-nj4V z?(T!&((1J9!02pe*nR~7b@*eO10VH|oBn38KrJa7r1D9m+Pt=3T3T9uKe+IB{ccZ# zAcybke`f7-k5peWBjuhD2Ch{lLC zK@AXWKxopWD7J+F(vc!TKq&!4SVUlVEfGuv(N#c^qJ$!KMI=-gB1#t!1QdadBGMG3 ztV`!U4>5BymtSUXZtiC8kKatjAj0muPx*d7?R}qLBT#_d7S|fbs+nM@d89|&LZwSL zPS8%CGr5XRafMVx9DWQ3NxDc)H(Bpr;O)R5#ZXDKN4$Kxe&kk^t^`i^^vCyRMn*=~ ztSeDbDVM}Gaa?Apf3UWsq@IX~$fZGxN8uG2i45(s_kZs{t>`~yrbdsh#>Z#l3`@7i zzX-A`G5UF=Ot)UU9jigr$GMg!C^S>;^fUWL=Px<* zX3|Po2CtaY4?s*xHB4S!x?ZRNgtvT1T1zNRSjpFzrcIZ}ad3yI`iZ2E=$Xw%nuc*2 z)FxoyJFQu^G6R1p3db+sznv@oP}5JdxA|hy`sPp6 z{omC8-|&B7f&YJk|58*}^^-$(d3aP0WZ{AKybSHRiSEm_@`vv2IhH{CO;JgyCEH$8 z)`49TtH0vU{khSOB4)$>@Q_awyzyJ(_)KG+S#!W*0&emc^YqFdotY1MD@BzLsCEVX zy2GpE&f+D@T+2=`ZZD#Gs7L>$gl)#FbTQ^<$yURmBe$`=Ji1Cw)zs89o&B6|eKh04 z@5`w#T%!8{sN2+gV}Au9?=KmvZ;n;>ttou-saEW!82T+v^m+a0OV8(bcYz6yYeg}c zi2%-9Z~&A~+{{cc@LAVz4uGXQ1dvO$LZ4)aX;flq%5s7A2T>bEbk0n#6%_1;UOUB^ zpG&SvP>cNtEcH7hVRpz#O&WaxLKGA&GB|V*A<@a|;Tr$pzsBK}yzG z-<#MBNufE#kc(@wQgMHF;Gd)iWq!T=m)4^_gzMYy_}BIOQn!Y>y82hL2@9~AzqAsf ztRU_7)jiNawmK&-Vt)QNefdqGwGE#ED=GGZjFy%?se``=ZVQeO6cX}4A%_Wcvs(j# z$C&M5CVIbhBPeOybjfshssEY|RUcO7%Ri6W}ucSls!E3>~j z)d1%ZzTd&^d#a~&tloTnZk9VU*5CnMDMp7u|L@iB;H&T7wdWyQExnQ=U-DtM?BNn? z#`H^$UvJ#WfiR_d9J*5b49#{AZK+jtRTZADe053Dqa~X+{8uuuUu*j-g@-qsKCRJ3 zH5AiJZl4(7t=9|QBl(E`D9!HvJ1{cxyK;JkBk|MbXT~Dq;_?+zI3kh^igGMR-tt9h%XzQU(K9APquW(d@^U)X_K9qcfXz&mV8l;z65s1>s~@ zVu8-g0(BI<3K26;H4?YTvax{Z)QoqbHHd}WE*>f}Ko>Pfe}YLQPXi92vwZ$2Tf9Fd=6vA~vvac+eou z%CZ2OXn`N`o>Qvxbng=8Kif@{Q6j2dv4-ZyZ)#>B!aIW=}4hCZ1;>gkeuMj6Oz)>kDsFmdEeNN z`-Sh|7HynGX3gHP=zu8-g+jerH@~F3d;?}Z)aRvVzDUR}@ufB8;wL*C?fjnZ-IX9O zC$|H3ZJ3DC(FqAnxL{ZCbgZ4c4qvFT6%Y@+4k&6*zWJJ?NCxxONI=*I`ot#s`Q=+L z%*{@VmCnx&&q@>zq-TWver~x~$S$p=uML?aHQQJd^azW%pov$Z;eb|8hGWMsX%2l? zuQ8aZ#z-91GpN;n2T`H@uH!lEhMu79($ae$1aeL3boyro%gn!rWE&-ghGfgU?^wP} zP*8BP<#%FfVot_den+j(^Jp_7rC7EZOAI=PEByH$>%fht!X>n9W~X_)439O`)tgtb z9(;_^I60K*kzKftJJ@CgEeFqkjF^n)NUC5G6{Wfn=NoDAuGk+X6!fO*4eBYY-0`cg5BNI;RqXQEq(ZbIOtfS8q@D`Et2&G zNo$*jRjrJRrX)&y*0bG`>IGY`=E;+l0V{`nTW?!41z}!YJNL=Z#0YpMUi{2l6f1y1 z#md?uFK-NJK@^}ZXdD?BNIY_IehX#bdCsrDd3C0r8hcB$=P%{N52}~IYbYJ96MisKA%^p6 zd7xBZbGp&%G@xL^hQ5uMsY-;;y68i{MaVv z$a(Ors50ha!E=tnB!h7HRF7bmU7_NwemZ{gT2$0qtL6EyI*1@Y@B@*zTx!>qE+MLt z`?EV=9slZ!GEQ>z;dJ=lWUSZ>kfm187n+V4*1$m5gJKvZL%iqF4)nCQPi`785t4|! zdbQhX72k>#q|%iJ2J|&<0(AO4zpf^7n+0rdyjfIv>LTV#5YI^FYev5V)&XYDfK0!v zB{kbN-^(WVXgEl6aP6C(p8m|-`t;TI<6U4eSMwZ7*)RuhLaXfv9(%G6U??ndo0TY*q$-BxD2(POycu+j zaCB}_+SIrLR)lj2x7BtZN7`3WrYDjdJ!;))!Dy1Tvm7ru|r^eQ~Q= zcbHNbmV-2Tmt$C=`w)15xgJms78*J-S}QLGO+w|{@2~%18xr`%Ba;6J3l~!r6;t(6 zmJ%V_MUGGRJ}1DR5XVO;_2L?SRnRKVC^%QGc7jn=G1j2t?d;+rf^$_}3mIJjo9_QK z(x|se1jS6Lsku2E{*mwo+PF#L#iiz7FxSs(;bBE=7y8`fvF-@Q%&$J}ZmA-N4jroS zW=z{UK|!Ij#yU@OM1Y)>(k-*xA%M0`G$+hC1J_25r7qsOEXb82zV!7lPEuDzL-TNU zb`~ZWUjfc}Y46307sDx6zZF3d`c6?%G0Z^z!853_z$o+J*JL0>03cMc>>R^{6&|YL z5$~ty{2Sd+WQFrP{ck?aJftM4q|^+TF?pn|bgpGHlxkT$t))i>AMm<-OV+L5@#A$z z;hYTLo2uSBw&uG2+$h{uCl0 zJ}^BA+!OAK-217D5$YNjfGqZED*i;Z!;fzKnMk%9k3bx1gX|?ou_^LP!~FH$ZH4@N zoosfBDHLh+`P72QukafOjxKoqCc=u&7o^f|-O^>Tr`)XvOJ+uE33TR6;b#_o_UDy4 zR$bmS8nBc3aQK^{_oDG2Jz`!3o4j0zfW{PGxX86Q7$^-L#DLjFpY|k(>&CO@ zcqvNh9GBGsW&5-XiA#`1h=pf%^k@orK{8@t9s|$PNUyT)vBBv{UInj~<>8n!d^qwm zs3R)J|In4SD>#T)TC@}}&q-X&z>C~e?@nSWR^*S**}_063yM|q*$sE{F7ZjwK)0ZY zp*9!cBXQs5Hl!C6sJTvttlA(4IEgtqz$6Bw=1_qi3``S$fB#2L9vb1*lK__kO$PD^ z=W)&R+%4j$t%qX1b3BVk*XnVqT;ZEFu!rqWR7-E-c-LIp!shwDrg`BDW)iO}$au*z zeq!`2{GxBYIuL3M>v2}wXiqJ5vL|{v%A>O=4^mP#;N(xU`4exh8Y{atZdCDXHz!#s z7#oD2%CjfF$>f&8fW;;!rQQtVWr1rU!-CLR8yf$)>|^r+MBe)0_s_WRUYKDs9n{xf zp%lAh(djA?Ow5IvnaQ!0ln|+I=`l%zzS z+*DPC?ih|zx-4@ZxHNJqpGVqb@E{<|!vgSyvr!p9x)qqN^$w{B`h`d#Oe=vA1k+%* zkrBif732NQDbi*o zgTCxiR1`+ZqzFeqMc%lvrJ7-RT&AlR*grc1&uQlcK&B-i41I#glcLxr@j*lCB&rsO zliawdi+XVVp8|uDne{;JUCg4*O!#0jn%kJU$ZQ4TXSpPVh#?Ndxf!Hcg9laR8=<`C zp}opl-!0=khXk?EYZ+KOAG8?beJ1vS{mJa8ApE`2gY_T&=hjCOwjB!>IRL4x2_<-HO{QQ&o{6`V%4gC1x7)j?nz*ZoL z7lFKNT)4qjH;T1H7Y-3IgqACW=Ohy}gtvoG*=1TvpOvBjYu_g8^-%6nJcQx}ti^;V zIs0_Hb|1+welBFUkwSD$+!PvdK9~jm){n6!X+SO-j2kGs&4a+ap@MD!Vs#>?ff%Gf zyUhuZ5yCVr;NAH)Xjw(<9KFzm=d)$uASv`xQ{WHeEFmhV;7sGt?X_SFw@-3tR;80q zyl2=;hI^s4eqozvX0~Y2X=nfUd2LfRS7{@Ug)Y_p*j4f(zYdILHXipXYObX01MLjM zXVT1`Cp`;Sj+WWxz@U|lVH(CB%z>DMzkYqBvTe)u?aBm@^RDMb+PTTDpP%W~nU0!$ z$(dXCAs8T80VRr~hyruGOtA~HaTvgy7>eqO$@t`)CHD|B84#+?+8w0r*%ex!9^VGfW-+aNF9r#+wyFvT zFRt;7=X-5Cu2kfmNClCmBrxU*u|d8bS3x{}eX}CO1n#aSwjLX2VDnat)8fYAPlGf12iJ=} zI}B|B@t$qeLcqYKG#1hR5q)%N>?O&;X*wM%X*NCxUW_ya=%0To|7sGUh5+ZxwTk1j zox^mYe9zU37MaWa`Qa|d#H5p;5mQ}~2cLg7-T{c;f4EDwn!n%FRNtsHGph?kL-;%2 ze69o560H`!x{Wth5iUm4K~DH_&g}7ZK-=8e4qW5qTAPIY>|^MFRCFB09p|TYfZqHY zdovfm2J}2K#Wuq5*4=7Ai{AFSXLn>FqzAB@l~ci?0^--=0C{)`*YgMk>&i7BnwX~u4vi2)4J_Ar5#(we7M*1&=v}ztHZsn zGIzhMJhNnZuns~EI&bc^deyXYGc(WFWdhHBPOBGP7aFtiPD$;Wi;B@7X-O$5Q@d>k zd0$<8-_Vqx0t~ZUfU;+oIZie)x;UT$tK{8T4ilcYt~KJexBTC?yVXX?+T3&g*?XoG zpP?UhG|JiE7*<*yC$M$n06B5J-SBxf;A+mc;I+G{k^(~Z7o23;hs%p*NxZY@ZH&i5 z8x|&KS3-9XUO8tWAh~)8{GJxfd^Y~y4;b8rYMF&8eyr+t=|N<&6z3-ura3|vcOF)u zZBEgwGeI`mPrPp$EDi*1{qw(av&w#3MgIMq*nY#YW0ZVrIX>zavU~uuKDMZG3hH4QUUT z4Y@LYxEFblJtg#ltnthpjjOedPX< z#$Hv#>;Yd6jLvHl(1*~i{x9@t?6eC)3zI4A`ur|wozfJ7<_PZ=+-7-zDOdcCgvaH7 zh$B&x3guX>Apf$u?pJ*Pa;)MZy;WLkM*_lug4hXse0=BR+S1HqIBM67ao2L=x}TvW zJw=1xOmRm`v8#L$Chg5fL^H*{BvrCfAeq(VT05%a9t7`o$7T4|ZT~R)u5%wA62-%u z%25LGfyd#&%FxdPT3=Yb09wNWicbqciZ2?>9{c=)5s0O)Vhn=K2bkKh6@b0uoOy4c z&h=wdRt1FX%)DB~Od?Vm^w3@94T*_~r>m_pZ@*UM1b;pL0GVgMW#i%XtIw1q$ciAZtjF|&d7y=7D=cmxZ<}({s|m!_u4^w}E!+U{;-9e~Y{q&U zqMesDpzO0bV;E<1-0xuyvP|wJz_UkbjXX6-lEANPPXOkfwss_`x6{It@4Xor@810= zu6|+ulIdvW_iu_fzp7ARytCLhE!Lm8Bc+Sj-X`?ndYS)S+19VBlT zIQB%9crXqDeL$qj$RU#LK@>+~D~IaL>>^kcvJQKGF6hDh+;rejVXq%*l?S*Dn|f2l zBjsDem_FQ<04&0lS8;3Fb1aS;#mWf6trfxcsdz-a9DyKHP>fVuYSwzbxVKkwU)Vvw z$ULV?0TRszfMH7EN(}*`e|hDg$|l+?5Ff!;q-W7#g4m;a*3{JznOzxLif2c`0(Q}! z>icz%P@6G?FYaV-LIx06jG9kkkzaoz;`;EF?7;h*(1RmUEOC>{vdowGth0FBb`!YC zIQbRGUl4$<(ecd;(9i`~1<(M0$AN^s315KzAr-8Mdq)nAERdr|2QY|K5dA^OUgKH> zi);nm?9%`wMXJ6TUOE>9-UE`|Cfm)eNap{MlbN|4(u*l7`!nnw=!+p2J}XBi%8W77 zy@8B`{i&Wvdcy(>zpSLGX}irb^B~~ZI1)mx{Y}XrcWz~a)Zs3Bh>JF+Po(1Dd80yG zM%(+}08mdMXstE#5WAN&+T{`fy1)s??Ok8o)>}?|+kQU>k&Kd5#OKH1-sjkUb=ix)QeaQ$p+B_vpi0lp=xJR zZoP&93I`ei@dc=0pB^No&kjD-s2~U#A_Loh5WBIJ)Iuzj&9Lj90=E_^F0YjeNK zXZI~zufn|s(Q+0E+BEZ0IxRV6St+X%_XK%%l^pVYTW5kOKXD%rEl9%@k^4JHkd|oW z6eW*>mc2su3tJSF6#~MQrluyuTlE}-!A0`FExNF)6MK{Zcq%4}gdFrCl>rB;`1Ktm z3#rZiqUYXATM literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p4.png b/labworks/LW2/ex1_p4.png new file mode 100644 index 0000000000000000000000000000000000000000..4b7e8c66724b0491a25af5387754f1d210ca223d GIT binary patch literal 67502 zcmeFZ2T)XN+a=n7fPo-_l0i`fCFcyHU;;rzNzx!7IW{>5QHg?xHXuk8QACiObGDHv zIZ6;D2cgN#vpvW2{eRUz_nSL2cdBmHbe(fNrSuN(e%|%0wVt&Nx~+1J{3ydw6beOt zoASN1*RqGB9I?Bu?SMj28X*4?yq8NeM-iY< zHx%UWy2i~9yF}9{Zj&xAS(*5;A62?aLm;ml7)(HOvi@;Eydj}#+x$;@?_kqbcf&gF z;P^*JFOuB8M0Jv&nVzcI-0#U(jB}cg4~>jE8a>=4BvmSOY_x4{nO`a??VVBgpzXaa zvReL23V%K?Prn#PquBoW(EDTm{E@=T+jM#7{`^VuvzQlHulT7EtpD(FhHfVqG=SzVnj{ZJX-l$f&yNFH2mI;&h=6AE9A^}fX z{pHbyXN(i*GNR7DY$N}{2X%o|PTRw)8ys-p)ox6d`nGT`(}1m{IH9ft}fF(dbT~!_7Q$P?IZ}V@V^I;^*{h+K6cve4 ziML`!#kVFSG41lC#JTf1IXUCnbqsEk5!aSyQo;#QEZ&<2y<@^^$+JVnLZa3KhfsZ= z4X*T^Mx%Ge{3*G84ptgjqs44lwl@|S(@s3evmQJpI0%@wGFc6moJ2j3jSUImtDvLiPzmLE{`~H}^jCQEHaMU}b ztV|kpsV!bcz-Ql6*sMLV0mq(9bVW^#s$z5e*x(wg=d%1ad0c_@;8n*(tB&L+6P9FJ zC#X970+C0ZOw_(mI2uMkMA8>ed5CZmuGg;XmRM49GNIokl-RH%H3>PxRUC`7 ztKAz@LSCIb&P`XiK{BoL&#BH{{kElrJzvW|zFL0w09nV>)Kru&d?_&_gABFY%#kow zPphw>qoY%Yn;*#Mx*E>HoGWPZ@Zs3|l&~61BXht+m=wjQ`-KgO^8SVeo^VMDwE{?e za&lg{aHLn)fjr)0v3Sfu%4M8L>(u|=3;jcOwd74rO^5gQ zaD0_@*}~tq_V&jn-k#I24QwiX#wbS8hLKI6tPP-S{A^JBDC?sUx}mn?8tb!{G|n&1 z!onT1T!(%0Ffu;gCPu<#XJY}w{VZNuDU0cD(T~@bR=KNT%u*Vqq2uF*WvgGf=!DIV z4;0#lhlY{~TlSEZyRX-LDjW$O^*I<;*PdJw|+vG-#VdPTkyDc$7{!0-7 zJkbJ1B)p~bf{s5siRtO-ku9Slvwk;}MP}f{d*|dq-t^WtQiCS?BPC8;EKpKRQ2u5E zc^4Q&tpXQ^OD75jZH}p&o9O=avkTL29F+uzhsC`VD{5``#z zCY^-(UfEr1n+O$Zy);;09T5>hHS|=*W1|jAC6rdrm4H#yYB{fr)n}JVY{d1f`^J0_ ztjSp!8D{Ijf_f+ve)nH94_qv|0crdzZ|S*^vU+}YmW!8gFyZ$0R*>CYt{uBg$dTYF zDCx2o`Z2TQ;^wx?s8;~&uWq+u*mV?+W$0`0^mJB>o=;6pVYqKBY;FwNuC)2=Q%gul zV5hk*UVNUA5dMlwa~v+cb}C9g%w@!_aVc2`4Vyyw1cz0^{fky{09vdaB! zF7Lf{&9a02ooGp?i#i2X^j%Bw!saKghSK>xdPIm@v+T*Jel23jZ_+}i9L-NK9q(b& zH)^+#-#ZR~m?NDK8R;Jv$JFv#QcqjpVT}=_CY`VN8e}fiPT~d5iv0_(vXlMMgZ5%&8;BwV6f1ZGBb)7U6Kf0LwqLD z|9M1&-|ns_w|)f^muBXn(}HK(#3#sF-bm5@{P~k=PgD#VkBsc*7|}U)_V1e$;n(ns z!&HY4@w+VQX2A3HrJGoq{g~D8@`AeIM!DSXGLcQ$%GJA?nkn$)#i2|hUcGuk&M5le zM@!86^z_Tx+VuPT_)4St;FIEjwaif>R(DKG2s@Dt*&h&h`A25ZBBISt3 zWN?QqYBVCP-AdUS0@^tS&#N-qD!MQNV817zJB5~*F$ie{zsIq{f*^(*i=WM zN3)_j6ytt35=oQeR8(r^J(WH_M7{)7u24J7qox(4zAIg-a>cw3Utf!0@!>2olIM-z z^8l(+dLQg8RW5Chz=Ow`eS5FAyyvyEA<~nHwscc^I5_{Mqm!i5W)6@xaVUokPO zB{y%}5O^(YZs@r+6;*(L6%}=DZ7no_)mwagohvKyM1#>&afq~gFU?e5~HkV(T0rN-Y@lK8F=m_ zs0pZV7PE%ujl@g9k;!|HJ!j*dEYxBQss@Lc15W{?bC*XeZ1V+As9#5hN&jQe_nfI(ACp8>%?<08Ym_xE;s?|eY2PirGrK|2lLF1tn}ON643`E^@4 zR+RkKYvJrN4(Q7Oh8)mx7R%ODP*s*$h00V-Q%cdQ02k^XVtw*1Lj zs}v=Q-=OAD+1|!rL9<%=$B!$^wUnd>72lsSE<@WH#P+7&<5GStd<4MGoXQEqyj> zq$u0^5nF^G@i6)oVxbCKTy|$ZcWiW39E)nN@bVy|<3|aZw4hGs@LYSwFy*!dcUBL* ze|Bq66YX>|Om5$`Z3)Qnz^K4)CVu!3Vbj;I^|qCJPfg?9NC4i5P;cM99V^F=gqXF| zY^_aSqj_AsvsgOEZ59JPN>y%8coPp$VR}sKi%sR8GhinPfSJPS<5dWuO-t||SeN1j zHW*FZVaR^=EK!>bUROD)|LqNGUB?bZ*NJCh$X#UUg|#SYm3qLWioNpIht6UPajZcr8G(at${ULF@38v1!~ z3P?YNtf=X37_po573PGt0FW_);%;5QMyxBf<3Ilxa%fWoF@uhBoBfcM46UFKfc>tq zhSN+t!CY_FH9b8RSpXYd_n)a$d`8ueh^zZ^NGX^CH9qM)*;58agfvW8Uj{CX4A3Zk zbL4&s%hjZ;hgkKU`;7+#O!+D{4TtP;Je)i{^?)t{PP5~?FPr2hg)R^bjw?wVM}rweMXiVO*+TT zW01@6SSqI-^}@fIrf)w>f1>JEq0MlOiq<*P{ns(}*<pb4qtgnR$YXdKm}e(>rFI1*x$>~&7`KHiV*w#pqYK2lF=K+q`CkR z(JHh-f4+~0JI5g85{iv7?0cbHAFSFkCQapywAVXmj@6B@S2-_UysV*to!Ft2oJo9- z)4b1iq3hcRb3SkcY2O$jQ^UofVtz6reeW%HU|CA2OTC$BwMgiLxchsKHfiNX&qAU zg4@wDF?pBPrXaQPR;BhS`3fxOMCHL=7W)`QV2}amD;Zs&Y)!4L4F`Lp2T9Pd3PK+} zdc+WQ7F#_zaN32u67&sv)Z<5tDVvlOqi;0lO%~cHVA&Rwzo{Y3w^A2d=pH=LPqcM) zL+3I}d0SJ1nI**U-nldWQ)qT4E~jgQbO~As{{ttuSHu1s<07CYcAYmkl0bTcruAe0 zO#5;E%U)1f_$w^deLJ+*tK(x{p74+tepsv0TL#Om{YX>KjTq@=?4>1nc{B%5jhF%R zw0^=U`^0_ygKbUz>&(rSAav_~iPd)ko%(Fiojx{7DYwh-DVs1+`SRtq-h8AQIu#jg->M zzLsLHsJ=XNb!*xWBj#`y%PX)AWxN{ZcG!$nm>dVK3k`NRSNcFgo#N4XY?)bnels3X zfTFd)tv>mOPdymkPktxgSnM!8-X?bts%8$W*mR`vx04eK&ctDkH;yN~cNWA@Y`*z& zEzw+Uk}|d<(m*)RN=Wpt3+0-&6?n?B3`fn)N=;>x)!w=ZP7?Ew9Oopc?V}_;y1!oDXaEJeSq0^j(=h{~>fvwh(f$(AFcxif% zjd_CK%`!^gyBdI8X0H^4l|OE4^kAPh7o!Wd!u9aqkG4}1)MtB^e&yJxs`QEilM*!} zlv;gilpe$G4mb`N<|xdsnGUTAPYD!Ndnvd?mgS+6h_N6$Qeb`mlb0&Uh)3bWkD$1h z8eqFD>2O{1a^C1SO#zLHs*CSn49k`*Z{#hMK*7Xr~zmdEjUE3p81W05h(#I?%=`f z?{00vVoqqi?sEkZ^(ZoR7bq%XH1uTY+q$Vj|3^#$(3(P(kScw0;?5iq8&dFJ@qeAcem%VCJ>v&*f@2{ z3%T9)q$?{x-br(PEG-(tm}lCPh!!h$Y`C>PSFLz;rKuLS?0UCKO!tjA00B-iZHq@K z_+~@Lj^;ObWaMmMW5YY*y<^Sf&?2z8T_w!{NAYqtVYK9DXE1V-lZwsczSFCLr-I4f>It zdj2uB%KI+Cbg=6}D3~Q5;IKU4WRjM+EQKLVf#-e!Ss1k|7;)M;*HZ*MH|;_hM2`CG zZ*g3_c+sx=p62%tY4J6P9|>MhhE_Hk9huZ>(^&zy(xS{L1t(za2CI|Jo1n2!D4=3Y z4Wab@fJ=!$x)ErA$HDP3Dk?=Oinj>l`pS3+AK_=`j_|AA-m<`Mo~Wf0&RkOM8RZlF<^1W8OxOf`PUvFn!jQ zc@%M>jAFcfJmt`i=mZ~Lufrh=`p5|D4I;#KZ@rgCr~wBmE(8uEk~|g8B+)5|EB*OZ zY_twYpSha~`D02JX*zRrbL=!CmWP0UQoZs6zfbKiCpweGeI{w_oHQU%L%7_2pdS&b zWQ7kDd$gQS#q^YzdFR_!BK;^m_ut+VbQ21&1{LnzJBciuwM!dZ*Y{zU(frUx&E6M4 z`Ct)@phDkgWGJYpP=Ggd1?TaUl2vaa(b(NxvSRB8V;s=U>Z+dE?vDuZ!|kX@{ygUi zo5B@%uf;E~9WJ1Fz_Mw;53T~qK#1zgHKj!C6xdj-#yS%A?^C+A&e)L;dG@%ceDA#%gf;utov+DotzD)u(+HyVR!{0(y=O{h(p z8lKfLmB(way#~*7NkUh&;4!;kdX)lXW4iKp(2e6iVr{Rwxk=o-c@q&sp>zV5cSe9r z4VsuxPJ__uBH?kcw+9(`r?)M=@xzt`5R2{L;ab4HrtYz7{|?~JW250R8(IK*QgDkb zhy`8-zL7Z4_YT-+Z&Oo~ZbY63!A6RB`-mF?W;plV4(TQhGWa2X@DiArrJNP~ zNywka#f84R6+7N^HoVTM7aj1kD{TTu{bgt8f;quhusy+aBZIwLyN4eQ_ukt^sKj+8 zr7Ksjl0fleR+~8{fELhJfbTTlmrVqggp2M-Bdbp+6dfJ1EMV8_n~D)>WN7&*hMXck z2+Ol9y1>PS6AY~ZJh0Re1}SYnCPY>n=yC@7G`Na)k@jrT7Eg|fmU7_*Ww$Ag@Ss4> z{lAAX!I5wg-=ANhkauzt>Fn&hef#$D-lW6G&zvAG4FE1kMOE)-Kvx9PRSk_MM-|N^ zhtPdS1~~(NQ4+RfIu8K*~KkT?P!VF4Y9)l48$fV@fD-(}4ID$eLjByPYd^eeh`8RU| zBJ>svrx04chVlB4{46oEb`%s2T`o5iQy@)TV8CA|08?V6TT|ZvkW8!Cp51wA~Swnw>+IR5+s>vc^GeqaB^#Qyr4DYS^ ztvzqVvM_z)bn1?}`UILOnTR4>K6!HjbDhRVnj&aCr17-c?!r=|0XS%qjx)zYbBhhy zJJ04SxoT+icr)g;w6rK7|L1o5IJ+c^zrsr6#B zVezkZdHI|!FGCT;Pag~eZYn8J%N{qQLyA7z7Ud>E({HZCr%5k=4* zzdy*tujfT)=N-g^1b^17Cxf0r*vuCUn#bgaNeBtR3`&8o44sgGLChu;rao+9 zVo|^O*zfZnNm0*Fgo0ydXEz%ub1Ofrb;onlQ&!l#^U%qYCzp5jR(L7?9!RRyJZR53 z1>O?DaidcwiUl|(Zu}BZMJfyV%$|U&;8bhOdRtfR_4u#f3v3Ge*O~s^aFa&!jg$)% zWi2wpYAWn!efp8Yhvv;dA=WuvC#7nKRmV zf+eEsxl)g+n;(EdNKKrC!{>+1ClIfH6Z|e@*4fxb$sl~VzrQ~$tF-*;-({_^Qk%%m zo&k?XN06W3!PJ*mGozJq&Wl4qh_M~Xq3XQ53&JM=NW(XqGk@-x^GBad-0Uj==J8gk zr9&v?1X*TSH4N{ctD>rB@WgnH$6KMEpgp?=2?FT(9IB*;0 z%%xa<144xK0F7b7)KNtX8s8kId2X2b`SWoU0={s44aLHLu9?PiUD8YfW{_p;J@>0y zq&SfN4U;ouQen61iDQ*xFW2 zrGylt*5||?+&LjrN}rvDLILPQjYvHBVbTZ* zk8SbPsW>>5I7oyV5}xUn80xsPdYG-A2Gg*4MF>_Edqb~@Duzm zM(^?YV-q}Ak05#yoIwwFAK*ATg*Mi1nII{fFwKq#ky!zyHxQp7YR!P0qmqxEofyu@ z$;*2cDE)@aGYZMWH=ce^`W3`s*DlXFLR zpM>EAHTY6hWo~P~r%>QaI-obK3x}UZs>=4Stk=-(J$;R^EpS4;x29-ekJgupzeK%L zO<-AKJI=g}ASi42mE_HF0YKuNIgFN$&g@qCIU`cJgM98Np zxM8T(4VK-QyGXA#Fabp5XpbDgknsVG>^7l=3fPTZLa1#RuC=9wtn}0Pr?Rr&!xG>! zIv;n0*kvn6!x3Tuj_9P;Ck0H+e`*1Pqv5sJPc+S<+wH&CJVDSlOyWoMm;($RHlbu; zN@;fY?%lqUeiKtuqv_T+*lF0rKl_~MP@P>}5imIRkQEUTnO6akP7WLsT;2z_c{^h0 z!%d3kUYBJ~E@|TIfmIv*>`ZkX58_w`8++mlSC&HL`CB!-LTUh$)zfQk16eawRbGC7 zwWj~HuyoC~H|GPx8ejyM?YU*o4JPJh7U(d9u_H*dP~^)I@5<)AyK)WZ0J^O)h$CK0 zv;G|&gM|G#(1`vB^?E|97x=H%%-H~Un*+>mru$>mls?o&N3!BEWDbY2TkqC1nrw=w zZbP0SB2AGQ&Mt%>T*1}(O?}RF38aKMOJVZu@m2EikFm2{uX(nU!`d4Y5C+inJC-nkKvSmt23 zI_WkbGh5hOA5SU$lW*zh<9mb!C&zJ*5rq&?Bx&NLemdO=niaCZ{4k9}SZEQ<5Rlu# zdAw73Gg}gx5+)h^Pwz-Rl&61)=fnO$5hi7!7!nXj!o@(&1E${Jb8x)5GPZPA$!`7& z%kL~T{D&mY9^>E43c=0)aT@Ty5YqVzp#SGj75ou=RwR!AEV+8RA&mK0LYwJU)XSHT zGcvfDync1iL9qbkTPRXq&s8}vX^o>-)BbAzj81^9gjMNJdx%GfjDiXh7eLZ1C`5q+ z7d8NYSS#n@5hSvJ_zW`x`5z~yNg;DGKX298+uaL8CR7!FDBa8WKaDCG@*Dq0nj-_> z5~%ni&g7)?Mus*+MI9S4FJ7DoWs*37_%Fx~e)Hzp_u2p>FziKm!Ib#@>F^61uKh4_ z0hxN7+V15kv`ZlTNj_x?yGI*Ih~=n1WO2sT~6b?ej0D$-RUJ#@$)J1hP= z9fX?!cp?bFfZ;PSstJdyMIs1@C-?V|&GJ7V4%3;Y$_f;(u9WT+*uy0^q?*C&1&4Gt zQQ^#w`R_1^5(SkJ0AtVZuQc^AdoAW^Z+>j*z=c6Zg7uy@@=)=kK5}%Q5Bb8N_^zrR2uzM(pNXP=+iY1-r-+PU;lyUR%g>Sk1iM26br^^eCELqfJR)OvfIsmd= z&tJZzi~Le()!!*vF-fcM>8He3PLtrheF2FQ3<2M8(#urPmitrKJ6u=w-|KA+j_yB2 z&W2iUze1Umn0UIC{STxiYZgnDH% zQgvVibbMQ1L)}X>^k4D0jNC^)l+2Pe;3!MCLb@Rij1nXoff@r!13A9a#{L*KgjeLDmNM(0B^1?<~yak?+EGsUb=GOFXIR>9uBl$#3B&15WV(>~|RGzHU-d>)9gf~Sc27|>d^rW2XY zwx=urX0PJPpPd`{o@Caz{f-9o)g#pB6W_i)1k^5hVh8H9b9DiUvO~n*yxidPf)1JQOe3u)>78zr&~tz zAmaHla-hf{7trvl@J|U+Ei8dufq{HaN@5}kly>IQr$Tw$moGQ1M#|_R(S`V?BVKqk zVknA3%CFYDX9=GISuQ$JD>@cP5iEE(#$cHx9l=_)>3gNaikLv4gMk&E|Mw;kOm2T( zFw?dz4MrKAgL|5Yn7dHJKyHH(%Nh0AZO!By`;!;f*H%}T z|IR=n-cJ~q#4YhMgI$|Z{~YXYA(WYYOSC{{R$H7z*D4<9Tp+Z8>{I`$T7~SK(a`^Z z-8-cJyAtRBNA~$&;r9P~D)5f~SKbczzYF-kX#ruwtv(YQxdf1kT;miH158e4+jIe9j;dP1*Dm3E%f^m0?B3d$usxej z`ClQe93U-vUDT`?&=pxF#3u)(wG3{+IM^q>6=ED5q+mQ3NcWaFS%T^j=RH7j&j9Hb z9^T-2G_|y3Xn&{fgCP3^`cN_v!+$X|$Z9k&H~%n=?-@)qhF}z8rO?pOJQ%MFqLcL$ z_uk(!ZLBhW`(JriT<1q4t^=O}Gb{{&UN9cO)9xS$_%Hiy`+W1fVmZ0ayZ>H0D!~6o zXDJBL%u{J;X^@m3-te@rnDs9Hw_R!7o{i#$JjtEf5iwxWNrEsW??@$i) zAjY8XPK_byrs+0#0q5_}Gk5yDA#lwyE4D3=85}Z{f+9y+U7XvG7?dwUg)dxqsW6bG zF9&013K&tL7Ap_D9Tx^pg8aOkrB^<_PW=xBYLW+r7Dg}Bu)Yp?t%3N`$rnm?&FoR% z?)-Bnft(r}vA^Fh`RiL|2UY)~s#O2`UXA+y8~7zFOyP-gO$c7STH!qc`HDBI^iK`y zN{_G0!{$SLa(EZvp|LSIxdPMp9f+t=LPnvnlv9B;0}NsaA%J_JKq`#b(~T3ivt9UZ zYmf+=p@eN&mO9%Be$z=vY$HQqts*;vvXB!F5p}(HX5TB{rJS6eHiA&!3NOiT*!uA0 zi?8+IIQl3XTl(2DH+VcZUW;0P@qfe_=BgR{kIVUl>Ah7iulH0U5ec$GxnQ4z6F7km zEdsUu2nk96Qk?~R6~|>YEmLbv4&FN$+{&{6>$QyQ5MLWjHD(J$?NFM2oRa& zBSEL+J_b=Tvk|6fLG}^$GnB{}I(bjsNrc~B7=l=A)X&(~h8(KCysE`J_*9&#&Cyg3V zg~R7rTz(S%T4Eht{U*jJ`j~|e%}{Coy!6xkE8*})1M;i_nDQn!gMVKdn=K(hVg{L6 zU;CEK)|Qh7Q!u#+yl>dC|1;j>ayX2ty{F!1c~-PfTsrMNbvn7OX7RgI2=&TwswbLS zFv6yIXd1%8sUnUwE{ACuRfHzIo!~M=u=`8BOzDo8NgIhxC9_t!x7g?K`W(>`1A~!+W*UXP?M(7xRg`QqSNWJC&NNs_c;rG*`nzpI>Uz z_)-_7!$>7E?2qa(0OD0piP## z@v>J#qVeR5$SdLWu-@v-hj={7@hmS)TaNociL|F&`{b!w4s|WjpG{;o?0%3He!@+_ z{LTzUC2VcSFvgtzFiOgW(0ZWGCgx$S5K}~CtPSBney+1XDp40PZQxjb97apyRORY7 zVhIo2LXEzD6M^{ZQ%HDRPopRaa1kcLqL$~f@>iMHN&K;I*BTg;ZQOgbVPC85(m!?5 zT`~&8c-wNfB~8bj4Xf=)F)CEfftNcEqrTw$N*4)PJo&$g`^@pI9IUl9X6e%Sq^4FC zjt(S@j{0M#rkvJfj2eSuJ``F7E!cPS=BB1*qrGo=ZP43&6{*tqfp~LB<3wX)>0OO^ z7CpJo9^&01TSHYVCoNh1vDx>~N#8x|S{8qg53A;Ag zuzQR)OL`9mgjf3FHX|*NNCW}cU<7<+r&(C-5Az!;NGn|ldYgRtV0WJ-FC*mi=(}5N zTBImOvEX2rjQM_}J*kKSO?d*lpQ+<3OO+v+SR6J8wU{U$)b$FTxh%l%JSIT)p!;It zeX-L|x)onE$qSLRTd;DBV@&CiIa&+?+@v(ix6UuO2#sUrda9n#5~53cZ0IfTV=!e( zmuU1IerO#yOQ|-b-x~XN^=-5f)C;N%uQ#(|noys`^wKqs*D45GOl#@1vV-M0CW9>{ zY^dq^)Kf`q?qNO3;$G&S?<8~Xj;5!CS#!)ON@b6oADkBpVx+6EK|*#&PUj^oT#tOME6tGx9m>}brV^qd3dRzVFpnv(>Y`aC9^VfS1#(vEfRdnaAI5VR-Qn|YGp zd6eD>pI#H%UkVgDCB!J|3n@Gur2z-qAETL+SX}om-M!yyk&CaMZ2n$pgtr-6#rYlV zPFJN%F}$_VNIB4R@XlH^eVnH&cF%*&=gi` zH%^`lIb^}C#&*2|uQ!$wUdPH2&qO5d zL2NDudsPSf94xFZOm_7rMfBgPKj7)`$G&<6v&T!L6+Jho9m$BaijL0=(VO+(k=A6C zuLxivtk}M}%gFC5uk=P?)*_jNhwGy6)|wx+%JtAOFh7D1D)%<3C|-77)l?I?j@CZ% zHchJX;76=q5Ow{8y6VYVrgJ66IA4E?@z8{h2l&a7RFZMJJV$H-UznxXj*)NHXZ{iP z)4^F~(sQFu5$5zE1@%~-q!oU6d8{Yn!W+ppyu}owsB}bdq=H)y0O6FLm}YH_77$`b_N|KKTTclDsBR zx)j>=dgi<;NtpBr@n5%hHVbLu-5pX3JW`mN8pW!Vao6AXYe?=Gy@{7sl5A(c{LWZ7 zh%{C#fJLaQlgb}E$t@uvife8r!1B?Cv$~xV#f6IGdlc!M$#{lp-M89xrFx4s9i}+s zJC{k+D$^^wcs--(8NQ{Zk53&t6NCNHmqC60u}_u+ee2?I6|H_?V?NcSC1grn7l#JW z0kg8$>+(v4r`6erdAireCY#57+{nfhFsDtuyRSNDGW-gE8^QXq%=ryEC^%soJEL0v|rn8kP=w{MtG-SB`||*wJzHqfL)Jr?JUMqbSEK z>q0T=Ikk-ga5Yys{o<$!4A9 zdWa_^#Lu=OD8nFfhTKS7y3p1pQ>$>LBtnf=9(VoGognc;p|RU}35|pOrbKcFRz4L4 zbJz1_sGJ(gJs+{y0q?V<$(Bf zom5v&^5xwEc*%BcZ)&QFrw~=SM-u1l?)k+oQ71=%?Al4&?}9u_B}(%tOXZ|x>)7@D z{@fJCJIbFtt~xOF1TdB#NsRC2{-9DndpeymxAo~U9l?;(?k0tqTWeR^y6ednvXAQY zG{Raazcv(=?e>yA^~%Z(>^4KDuLH>=m|JfbPKGB=iS(jqby2%}OCxgX36CUJq_0u3 zaQ7^HDr}hEu{28P9~I)cASvZMlaRGAkyYUDIO<9CYl-sLqV*`ATHXuJ;M9;%vgCF| zr@`MKkb7#am3ktpQK!rwiy!6l9{iBjU@9K)M(Rqqgqy{%b~d5-wwZuw{ZR1=k5W-$ zYJVizXG%ZnPg)OkUT~1suZyYSzW#2+K_PN#C#|!YA3hA|(`g zP~eiaIXeAu5XfnriNrc)!!F+{;*h{sFLb#FT?h)RlX>r>MTIg)OJ1H}BU7B{*B#T@ z+TuZ)tcCk`PL!OX&aznx!kW{=oe$cE2)LybpV1g3pC8htIxdADs(Wq5g|&buQ(&8@ z>zcG#nSRuD?d!l^rrEcmBRq3(^9)I|@yl7PnAc$p;S5w#S<%H5jF*_m0zBr{!U zi;WE)--%bC0|qv08ZBfu`s$VYCU|#NE;?R$Qd7FFF&1r9x6Eo2@1tkszf?&nTrSw&<3po@`==nqcEO0Y=_8NjmF!P_e0t5RsVC^XnYI>ZgPCrr z#^`WAzpu~1{X-@#E4j1&!=;K7_bV*vkBH0|ih7^@DOhCjijFq-JVBh+u=%I(;o9y! zkrz*M+|)FE^tpM{X9X>VQWQUxo$K7NKjzw7AC1+^9i98VNXj_i=xgPIVdfXk2k4YD z6#eRKlDj`B|LS1(nxjm-AhGLW@eEcCP42mV&(N{D>%+o?Z37u*t&mr+=#IMOffU=l z1b?gtKA160--oAU(LLKP={=EqvBrn#cXlz@mD#;}gM%5LZ!>WK-B@?&P|V-)vN3$~ zQ%jdjdiQg*cK?St7Znw&%C$=ZKC;ULmQ~~RRT9(Um3+rhi^bQhh_<{|3&PIH8!qXM z)l&K`44&o7rA|}E3AG-d+Fw6a$eWd-QB{Df@gtyB-!ODC5yi2Os((~S{ zc)LQW7uhzPf?b_4y*KZ%CDeX_4q`CAy1Od~Hsjb;Q!5v{g&XOh)XRi7M94&`V__XEEBG{>`n}%i+U>fhyJ)iz}#Z zgqJYd9(qbiXSX^Wt-ildg8hNpyH6Y?q$>nz#Ei?RM%~HEFp|*1+vv^aITd6orI> zuy@(ws8h7LTb=~M?(%ia*Xo(!rhG;vo?55rj0#oyxTtAM4P;2^c zUguAdH@tobc+zg)7XR9-qM+?qOiWVaY_Z!9WsG&jzB}Gn*XiEO3ZrdZhM9o6W=!kB z=CuW%YdSjcpSLHBHlJO8?Cf-BHUY#AKYE>QfuDK5o-pc7B4L?HN zTWOZ_wS1_>_?_{Bz2tOLV@r$>!9p=+pc9pHGYSJ{ZO%n91YBMocylgMv+F${1BGUqZ6VF!e(KPJy-%-RZ3~9eQ!|`xSSlo0cYHNe(iFXF*uggD zb3pxU?ijC~k1cn@Lx-a}?qBml9l7Hc2J5vXEr_)W51>dsdza6cY)piYV3*jt?Dst} zRO!v)vZc;RxXI>a>(Rv##VhOKK7nVBzEe3lNFONOb%#RdwZA&>wp4DcJZ{|36zvsR1lp$O)g5oH&gdAKTE3f8^fSjkb%xjKBKM)I z;iq0rXsP>q*t}YzI$KwPuOiA`NPZtbXNXzQ2p|nQXQtgd%x5H$=xrTAbY#|TJ+G@S zf9s7)S-5;uAT@Kh^E+eoMLyc;;9fnYxEm*DCA$PUNL^PH1!R-V_dS6zE%yp7hqk2>Px4 zoeopQFEQ3no@B@R3f{3OSJZSV+R(wEi}52(czvg>l7+V>I_GO1N;8TEZrorqX^br+ zA$v3HKRaD$Mb(>sy+Y{J`bY_x4hdmZ5vJ%%V_r$~@j;3^MlkfX>X$oc=E2}n&l+wXr~QQ=&B`u*8a|rILlO~;-QOP_N$|Y0 zw&cK2*lxLT>+Q40KD$>A&3~JkV_00>bkHLT{eFJ@0{5Zqjg#TM8B~6eW(u)9!XC~u z*%D2q?j7WsXP)El=Q3r-2VN7Kf5fd(tA=WoFYdg9@&6vorJxA!io7;8S4_$D$68Fu zoQlDE%RP^`+1qJ4t7yE4A61+v5dF~T0xA3hQeW-d%i*k^$6cpRt`xoJ++Iv5nG0jc z$arVLDSj|itv2znVJ@Poaxr2lQ8uZGj>scD*(R{97CHJ$Apz+J1*7K2` z;^eOqc|CSrcUCE7#eWsLD=!SsjkF%7&CB>?rC2EH*R|DcEk#V&Z$CuN_u@8AM;wzh=^ckh3>|AG@6p@c9$|vOYGOd8mrnhfl>@k zepSmcMdjs#g!xvfD`-N~7L-oGp;kG4AMd?+p$IqHOeIhB=JJ&t*DoQbo`ii+_!-O! z=6`Nm@cKa&(RMG9UwdDYW$)8WO+CC6`kisC=muWICgY$?2Y1(R!F9Xe^pIJ2*4|=(vvQ6XvvSbpV^P3#spaL~=0uN8a!Ix4EtA?? zy_|Ow)cI})$*MhG6#IFxK`AO&dpC|@SS1FlS6J#UFj#^1)PHMam0rm)5TspWtkV!Y zu)I++JozQFILwkEPdK#Cg_5$c!rr0YSu}Tw>kylWIeYBwy%bML#irXn%F#Y?C0 zPp^ZW-c13|bDI7(Tn@X(yRwfrtNi@aSAmMDLMLWzFJ8zNO@FgNAO6g1bUGnq!Dg{A zN}spFsD;k*td2`u#X-fM^gEl_XN)qhY9qBwb!KH*Z+!kF>W{6jH&o8EtvDi+W@4@2 zUJ56?$o zbpm37>hjF1jKZ}O?pH{c7_RU7in_+4sjM+&%=Y&)Uu6Te10 z%G;d1Q3iOsqbq_DH-u}9Pd7a3m$|=~IaB{tEaYa~mka7R=@{ zF6Q_I*qqWr<7v^xJbbETaXgwDJL}Yy#;Xta=rFVP1y)qFB3Xmz^5|jrkMGUO_e&0+ zdaq5Tt-XEpP06!wiSij>!!Q(~tzB*VPLr5Za>xwF6J*2&re!D}5_clka~r&?8Iq`x zQ5xW(4KH1t&lz7`_06iJFwPe-KQSBpUGbbeF8C;ZtzoS#K=2NQ6dAlO^J7@ckU39! zjvEtKeo)~(e-7O{dFk}-b8;Kx#S1g_D!kiFOJ0$SV!Y(%nc&7WJ16m%SKv z1GPEFCy*52UYnL&Be``;JUb(D#=EqP?-Xr_Psy31Wun+`V-dw=y?WHz3cli+>pv%~ z-Bb!}Nl7SAg^Sse?CFjp$n(2NqZ81kc538IOlD z(Yx#FTx?yjcyp7Sb77dP)kTlU9r#~k*ap7YuLb%QdVOoY*L=O`w(WC?H?hghdBQ#^ z5-*i+1$?@|b8^CogI$p&@8!bKh1n88v}l>lo#*dv)jtd1h(A81Rj8u;jz;NwNx;WJ z?#{$i_gnX~3Be@^CAJ6)$lRb2g1-PrlGN=(K##DU42BIxLL1Yxd=%vDsrDu3zY%Ax z6AwQdCm~Ok;^@8F-g%)*uygg*%RsNwA|l%p@M6E>@NL<`lKhk1MvzQVc-luX!)&pEhCVhqUjevwhX;Am%2RrdEW2;_On!LchpT#r;DrEbdL)WdrY> zUmK_vq6Z32(rT}%#EoVxo#N>tw(QNqdmFsuGch+$lBz8(-u4acLf6>ID`lOGv>UE9 zdMQ7r&N!lnH6CL;WhYBJa<2#*_gc)_GrdrXF-BudwyOB-9wbT+_on%^sNlEgK zU~|;vs3haWu{i3(fn>QqyB3z#+<78!Krh&$F-zr1zU;?i1&pUA#=eTJPf2Y}wi`LH zMvT&C&Q)~TW`~;9q-f}J9|9M{SkYSfhS-~UhrOC$S@%rQikLBu-#u$x- z0b|>4oKsPXeYCb~_8(^vf1PWy^7)h@v+NB z?Gi^Ie{cSLXF$;W1zlv$+e1YQqH~rO?~KVGVJqxjEh~o99hACARbKmasn?`ka0Ci{ zdzIn#)-0F6P)L`^1ttf^k1?3SAvVGM@?hgP3SYOy$o9x@p??(hN` z8ZTAu^VDiW?M~CnCST{XaFu6udy*Hoiw%iiylGeo0c=-4E>FHIZfw{6?$V_p8uxAU z?1V-(Gi^N^Ilfu<5AWydGc?~1`s}%njUE)}UxVCNiNgztcfUwk14o6tN}>%Ub@6si z37B+$iEfFZM|X^ktBU^{QRf{__5c5Wl2j5UWNRRV>^;gTS=sw2d+$Sbl2MX3LiWhs z`*4h-Y{$wv8OKQ+>u^qpgJXQ3{jTeC{r>2>{1xYQp0CIAG4A)N=qn`+XsWQ>-|s0{L24EV`Qy zD1n`C|GqfcTy=h?xgrmG8SsdLCX=V#^o-V2Q`*v=5EqVVq*6SuF$ zMz_o4WIGc*60c+fq>#{E8tJl>>9-eLxxTrlFMWytfo_^m=I%j)I+sZd{JymS(*A`8 zDh){gvX4N*T-Pa17>B82nVfj^UDqELP_y2Lg_=^J&wd|ReBCIj3zm9h7yG*1L3_Q= z^!{*PQV^a^334)DPw9kFJn;eVpqW{jHD_DEJZLhY?h6y*3WM9}g&!lMX?l-Z%lQra z6LGSjz@P3be?=Bby31#5OAX2$o`@gu{p+_H4T+8=_>uA~HobuOUR4c;M;GW6-rL-0 zoMP{Wzl@MQ$O#-ZgoR@|f14lf^xLqfBPpn@yluB^Bed~zjzqGY5v=q#fi!3V)e!4$hv8^JvaX{V_20mz0{KcuQ z==3>{M^UVk`b=z`Vm#u1pGRK0tNf6*>@Ib{r__FF<5qj~MenChzq>j^)%>jrzd5JN zI)8RM^6^%5Taez(ANDh@xgI~*7Ep7WB+de<35VmClx_TJJ*WBo8p?RCFu_IAJAirK z^`O!M-6<5UGE4htGU=_`W6eEf#9#d%f5t``$s;2uvT5&I*(xS!Au~N0F?%)PfdYPJ z=}kTy6@5<|ZOzN=CqtVhOU>R*7Qg=x1d0Moy)D(BUM3q0j!?e`(kspQVfRu=Wj}@+ zR%&`V@souXF_e^e>V+b7BT3zWAoYY6-R|z%Mmp;ipXA`pyS?Z`P7O{PjU>!DlJolOJcRL8~ zPEI|$pDN71%^0<0e@gaZ=mp0NC+oDq7|X}^!#ZthD9>Wt=fJJdZ!1=1iYx=JgQ{T~ zYpqh+Z?DJ^04iv0DHn8e3NasqJdyFbuSC2$Jal~fxTq6@BqRmfYvpWJS@Q4AVQ<|g zZ3=iI%SQ6-L4~-(v~3p(87->&a>HsQ??;NTprD`Srl{aO8uQT%ESS1G_b8k;wm4j4 zFAqoKT7n>=5tzWImU6(SpslhO#RP`mufKYLsQhA#&&hd)7(lp={weACrDCcpolkfy z?4JI}a}(tMy9-BssGqlvFd{s%_gt3>3tv;4%i3ot?8YkO6@xo)zdfKvVOd~~)gd>G z|6oTkbc?y|$3;Qxoi`v}_0)r3dX8Qi{ox@diG+qjb01NpDmxVuGVBCpX%LjL7~lo8 zVRI-66-&yTQ95S}vP?D`b2fACndHEa?NUH8`Zcr#sy7IRI7qSYrUcy91U#ofCk z$oDMM+005%H1^H7Rb0AQRY3Ch__$T*-JEz<72ZV@q=713@q`Xg;3~&bQp_5j+CT#q z%e)Ig(r5A~dCeT~3u-k&ez*Hl2Y* zn1R2Eyud;iRBW5a;~it$Z)r^_0y)FC6lLO$L%|6`!;8oc;(Nl(U-Ctv{PAmi#g`}C}DqrPJ{Rdw7$O1%hM_xzC0X5l0ret ztl!@L0BXwtQ#yYr+C&lY;vQ=IcKixY54cgVXZvYieu$?&*4)26#h$E_QshNW2|FDl zBq(O$U>H^7-Wr7ZL2IM<8tS>`KElBLBAgN*eLZRn_wz~kDOO=pl&+RjDMI-#y1;(P zBaeoa=WKMO=@XUnT$AQ-&+#!1kMtu|>HK3xF`|U5Xk(u_9?o33sOmp>a&(MZ8~&kG z!-1*;VV`EP;O^=1@IY;iK@E-B-rTZ(n2&3ZoEZW#Tq+mVerRDO4EKE<6!d^3!1x$R zT-<{|l-V*-)}A!G>BA4xgb`B#ul};U6UA{C6&1`^&vIM)pYH!YH*3h^UHkB^{koW# zt=NqOa4`xQuzDe)2|w?A+GxX1Pz_^`QPU1 z{-z3V`dFEJhp8W}iI||a#FbcepB(pD{YrXYt;t;5h4`?99;4YsZ{d@!mR} zCpTM8e0E+FJw#^J5;$zs>jf=T)k@thf{S|MC&>mN;3Cm7w|Zd+qw(LKprV=95IQc%GvrMqEUcY9MaBT6E_tX3Kt7lee1jOQ5{x zTBFzTI{Odfd7AA&T+47UPfZIZa6ruX_%{@SKVXh_kp-^uWPaQH{5#5a{lzSe9~&p` znB+}sX@VhCwa;(HU&nj8iDhhjxx(I}g5B}%3__ElmQfzt=06l*k16Ve_V(18V`T#S zpK_}Cr!8)izyZbSxIYBs_4xgz|&oXJ58sK`aUrv7nEYJr#YA5I5;-Gq$cyUA~@+t zqnzPnF`Png*;e0uaLndDu+AQOjyoJ%eWCj1b|*H&HLL9`BO(^e{~>{D^7zT83m+%+ zBK;%YJn$sq7d>8Hn1N=eGl%`;7WRuE-)~j!>U0D5e->Nf?8)!AW7NnP54V};eeehK zg?Ae8k^(OL4ydx^J4knm)c1%;=?GTyq*K;h^wdO467H^3t8dA(0X^6^(Dn(6OA|svJXJGDEglNdtT_YsbH`ks2zKW^ z{v8nVH&Hq*y<1Tlycy;5CdMDY6uWD@Q2dk>x3n^qNl~}Of!}*iR#3)6{^J=>w@Az{ z=Q;7eSs{WSi*o>{H8US_K))|Kx%*GR`VXZITzX#t&gY-ie&*ekxsU(D7ThzYItjaL z)-h0Nd4(+?>uhBAz05*ykLLIU+eZr?Dv@dY*lzvGR^~IIw;m~xbDJDOChIG8K3Scb zqYqEdf`1L%i=Y;wL*KqGb8&q_P5epLOv0xiJqa;7P^3>utYSZ;FI+b157HCxLZ(I$ zj$I|Y(uA52GmU&+V+#3kDeVgWTeSpMiEIUVkdn7P*(mZUbzLZ9uuj3Z5x2Z+$X*XN zKIE%YB1|cFZi#}1t}0n4d~Qx#4bRA_QCu{qAU~lVE&up=%=H=3(ufOt0h!h-g@){8`gi_yIOXIF4&~$SxZ%B(oIj$*5jc! z0NtMs2Xon!V3d&FDju!&MrlFfG4DdtGeyG2sER|^O}b<;nG`9IC!`ToZGKW?;5;k@WH!-Y!zAtDY@*vNim$( z>WH+m5~)oC0%Kt4axQtF8ML|b%45YnGf6)H-JQ)dtcNVjkd+XRmg0K*dsUm-%sc~n z0oD<`jau>Ae_fJiuO59{YVN);k@KAH{RIGL*BSSjtsl2V+dWjY9uX5HcMX0Dqg}7J zo3<@4yno`&{3$35glf^7yRGZLBC|25mbz0J*!$OZ=V!1|;URQ2dEx_~-|rUzG7x1k zY*)>>FV8mE$y`z0y{UK)b_08yWB|sVk`pnU=8iuWYad&tO>fg7@k`nnrW9}qGynT$ zdk$WDop($p^SH$X1^)@zfgz|5z{uVL#+?m-H~^@}KZoLro5gJqV`D~uqP}qg1FjfZ ze(%$l$VR_q#zsSeXmEOLN$G&%=nx#5AGxq$qi4)``j}mNd_quQr+rVAr|4B|b={_$ z|0dVm>e=zp+V6%22Qv)9r>OG+AT9j%NMRN~JlPunf%(^$){cc4TeYa$2K{W}^S7#l zTNW;R4Ka$G?#AsAGyU@H73;Egqn?v{%l*MMTf*ZvV8ND zh;D7gGl&UW-GfH3mki$TJkgg29HC!jC0UNAsi?2=iyw8o>m=wktNuh+$Y%u9WlF&u z_84zTgZ6E6!@SiV7~`&v_zK79*xTEsrzZ2pear#6Yemo7UE$}hxs6=L=L z9B^(9AXn{6ZyK~@@~-ZblR`j0N){gNs~y#j}xN1L$$aN-3b`AFVO1S+AHeSxhrciwC0@$8JBN% z?nHlSI^IY19)xX{jR(81H2TeB6wjm$VJ##N@6oC3v5CnloRDRxT0fuDY-u8tbqF`E z_2F>+>pHJFa3Ka;bpXZ8zVVGO{swwWkhS&=9`EdHY4-e{6v7cWChMsHlLS9Y&8EfM zLJ@aBuQL$g$Ew-pX-)DCK8Ov9NjnbW$|LMFy{-$EbKP_B7E=r8_~Bh1pnkK_PnH8D z8r_D2%bRW9ZD)g5$P&Sgn=(5Ojfy(v$Wl|YL1O|-ZY$o+V5MGF{MlG0(PEvfh0K=g zpo$rR*wh z2F?4yztpoTt_)s3*uJ#wrANWdr-7{n_0Gu;8rriY-LulljDM{> zA0OnMk8CNHaQ#bjN6eI2d%V8g@?)I;$Hmt}N%A;7J83BWJV7s_Z0Vlz7EfTR{3yxceQ z@Hv7L@TUJ@PnKzSGU0wV;zvzEZYl2OM>7I`81a2w1DQGgG$$QEZCENb3MK55A_$$6 zh_UUtMu&Lm=&b14M`JtD%!aA`izSg zcyya*rV;0miyymx(6oLHBDs@H6U(1Prs_z#``|T7zCtM0hHnhg$FLWNcSwSTl7W!1`-DCl<35DZZXS4`jHi^z@pBAsPBl&v^ ziN)Z2$}`hZv_Nf=0lXfD3|n#onMkH5@c{Aj55@y_jPwIZG{8Xf{oR^1AT0t?rr|R= z)1^-OY78MpiBT+!=QgmW>W$Y2%}ZV!-hW|u@rdq#>6WQ}L-NoNmsEDS=JO}H65Df> zXy-2Le`<`&*7imIj#U8rtFQ5%+y19D#KW`F`S4)NTam1g%X#|zlvDqJQV_smN)Jeh zhUQmGJRjwRGQx{rL0{cT(l>~#VGbr1ls8Vn@%;R68O*I8N5CkiwkFmR_4IA{tf3H& z3t>u0AL7`Y=5!Y6Lwy#s}xn|bfY}= z;T1?@a@gTFIAm|{)nUjt!u9*ylqhd~J-t62>SpP-M`U^YN}Pk!)1x>ADU^&rapko# z694mv$m>s_%YFIKHb>eEL*7P4`WLzhF*UX0yX}aA3mWsyGMw~e0P+<%&nrWBxmv9I z(UW=ic}b)Q#7O_GU0UeS17X_GnMajtz4W?%eDQShJlvg0H@91Res;_Up7Znl$Vt{V z0`7W#;eZ8VJi1KPrI^9F`9 z;#K#Hs_SXLRbknE2~VNO)XN`PqHc9x&Q72ppYP1aXGUWPEeNo+=H-3ve3#k!m$nic zm~-{|81>*^Il=#lyE1-c6nwFd6n@74ptjPWW}m;`-EVK?St>8RC?a6GeBA#LACwU( zvZgmdugi5**Z-DO+^WQlT?<}(S|R0D+b;FO(oMj1!Ybg7+28~5=bCDP)K{|-e$cSK z0oymGd2_oC=P_iaC@bjWh@VUcTR()p@(a@{Vqa6c%{#~~Rv762avkUT+b(kn#wSdB zRxgUAd3Z#+KuP%xvxOX~()(IiUi!eaZs~w+v{ZIdwW%D7qLGdArM0VU*%m_f)6}9*j7`nG7}@!PfY4%r!ZJrN5r$< zBkaNgggcnvtv{_+C-zz+CkM zfrc%U!K0%bSOcQ4Csm#c)_OrZLmEa4L#S8x9*cL7XcS^D_IxC^t_e#`t(J+* zS0o5ORP}k4Z$CR782Crf!hzJOtasy4pik*_1rN6JoZ!)>1x5gD@^#PCpuf$>_pRPI z&|Oombgt!w2Fg02aAWeuZAG?euo$MygfbkU8ty9omw4kCe{wP|F<1t{9-w=BXO_K` zZVeL3iI0)WTyOrt;Qj$8gJfvBX#SyWUlTfrp&W{p7*g$%6I72=jUjpV1Tn-*`PEQ zhJ1t?6q_pgj!zV=Q?;doB{~yZZjCuowD4fHIL9${QatOOwLR@z=^J6_7M>514UQ_4 ziCqo{6GhT8+>{zdM$f=v8hduxy!`6SDMiH?lw`GeRI{9ams<`gRY*;v2I9ouu~tH> zs65*VMd4wX@qU#fEv$Ct-EI|F+E7RE9a`QF|D`9DU_XTwqj2Ai8zG!zCrvNO&%TIK zK5ajhgn!|6*dW#nj`c5H&$R-+m!EuSHCg}Ot6!e}o-60~OI~cNvQ}!GXOhGE!KI;*zbHKJnPOP#)Po+B(Lf0tqg7Fy{^#XR5ol5UC%2&q$( zbt;n?bRPAIT*mm!ie?p7$BZdG1uWBF;x>eXCfB-WvS;SPrZ451ch3)1NSPr3sf`z? zdFh$JLH1^nS2sGS@Tkx&eY?&7)lw&6v(AV60G-^=>6jJ4L4yCf1#^#6A9`JaTpNB& zEVwI;wLLrDhCSF^Fe8}*k+1hmXTQw!v?<)_#^@}OSS{gN`!&#ap!F#d5ambELl7be|*rB7Q$?s9p&-WI0t1RkHJ;PO&1ube1~ZT}tOkeyXIa>V4 zuxear0!$F{5gkq5q>(5dCf_N-3%&gHXmeUxZ7*cEqUQH}1ci6R=MF^Rvid`V1DYeL znhYsgR`X`neoE?x{jtMLmtT_D16~ex4p&om*fEoT<7)IAH!=3e9v36 z)|>U9&#xM%r9LsC7|xVq3I!aP0#ilz2KbhqzXz~0kLJ>0cmn?&-<@HO&(bO z@UZpBK{Jo^J#?9PWL$j$|2o8-BDzbqg59yAg-q{T~X?cCuTPXnoVLw|BbIHlYywr~5PCjII5SO(n(zFX_8x zzL`WFe##&drc^&uL(4%dHlyb)7+;#RcWDi2#lj&?zP#lI27+so-xY%2?x(F*7(0)V z7q@Dr+2|TET(@eWbIIsiO%V`Wdlx<5ymSq#U<6J&;C-*d>^1+etQE>iFc>fjUjiY* z{PAO;@8;hjiFo#Y__YIb{I}m`YKQW|PoFUbQ{RmuX-ABV2a{^YM7skXa7!CTWFfaO zOAbRTgKx%Sgk)rzgM0%gi@y|a3FC~bzCWIabr;z-@P-Roe^MG=wqJUJS}tlg6SI@H z6XwN$c?w79t!ZXvQ|}Rp0fpUX{aC;cv9ds2e1isr!y~YRW$!Ar;Qoq|No7~=L>P1- zH@u+gblF@fd@~uDQ(xbSv5tAlH1Zm@>kgBh`fzp#GKC36vSWhnrv#3B=dnUhty4-|2~O zC8zxD`QtcUKa1vJADUB;Y3NPmN7^GSIzn2jI;u9??Bj}P1T7?dc_g=RcV4eg6s7L< zM>7c2ZUPE;M0a6O16ZflA?bO2CV=ea-Y(WjEI>$<%+TJB%ifyRi%_inN6Lfk;nVb2 zFX1t=kLS%A#(@UPO#yrBOR$$tpv(uD+m&W1Njre`X)A|7 zyj>^7*PJ%M(}@RUF=oJ=f4}YvptXH>V%Titfk$=@1pt)szdw_%31n%O9O_T_NnMzk zW@;=kboc!M^t_G0GVPdce>z-lWOLNp8+~3;^Kob-vkDP#8q}@ioTRru=b97dh+Sw^ z&vTxPor%X=?<<|Xx~Q*jiCG3dv2l1Hu4-I1_*cXqB&X!Cfy{-CjhXG8n(+7Ae}CHE zI4@Q%(NV|t#jEd2prk!G`!UBm{i)mf3SKYQo1_+NQ+HBKJ}SpC;z`S)#P`_0+pKf` zSnTiCe3fl`!XmoVvZ3!!_*rXbh|-ypVQN|%fwjVzIij03!6_STv@$=3G!OqdCxm}P z2;>9}mEtiX@p zxvuQsQ9xmFkQ~QM4J=hkO6oU;Z38i+bXH4{qof?g`5pd=Mcf;QL!CGex22E=R}?wK z2TEBK%&q%ATK zCE{pUOr`(5AN$8u>*-Rxe0SnlxHclA?>k@BUR9WUwhxrPLSN`jgs&U1m84k(8-CS z-k+~6>?u`TdiRI)8daTd59YB4G8B(4C3{A=K1>z)oy@n|{W!1b73_niV}ef0geF-&;)I*B86>UeG+#hMa) zAkBGC%;9zfq@xmHA=_`9>u+AG%?5ecUk_)VY# z{+lGDv?$x#L}y$(zc%6tqscy1>%= z=_qd@N~5|`)yJj$b{lpj^vE8#K!ZT7@XcHCEz;*1r_K(^-Bz)Xk>UNA{K=y~e1y}H;q|BW5u#xz=DfxzW zvKE@Fewq||(3YQ(<+jjHNT zuiJ0!pCp=_yD)FbmbqKp*I3Ij+_`i5UEDTAzMJVQEPz46+A^qrQXIm3mRseg@bl)UHz~LY)lQb_;nCx6kYI$TR{2 zoA=Z{1b+IF{gkawX}8IPW@V+z#PHT!j(%V$*mSUljTo*YWMO@(_fyhh6j?n^iXyMq z3o1Ed9^GP`kknxjdGgtaIbjOs$ESaGAocRlOXSr%q~b*~zKAzCGOS_^I&>PR#{O|B z+1%6#6aIPsfo4)dOtX8{8a-7fsNVcPS4U`U&%JlmgGwa%6Z{wY%7CQ}XJejmd&N4Z zeRIa5_s}th!zKHNsg=4*xxE}uN~$@LX5ajUu|pfI>^ll%0Z5xuKS3+>q(d(q%rS~k!*$qq$D|NAX^#Z2FfIq4+K8|}?ZJz-+Z(_EEyG5gjvv0P%=OX&*LLr>{rJT9}1^Ev(D=|Iw=kv`4 zA-i9eZ(2L^>8I>$B~_F^!4%2$mlV6yyy9yMh~ca;7P|z~HIwQr=ihF6%3B0C4=Jhc ze4%fnz$^WcGq?Pc3BC(eq*-cNR;G+hO||V#ON=mdu73=Jt4j}prdF!xmE`&cH8h_X z{R2UoY=Vshvi?5ygTNb|>^FO3u#Qy$0s6Iz8c7~mY6(dmZGzHYp%YRVu8mC3p2P4A z$#SeOyR2z+!Y&kFiGf|c`d<*CHT6Q#*pWi;TQgD|*@3qN@a5Y)~LM!I&lr(Sm zn65kazVn>bpqg4f;SnGGXwjt$HuC}`)8~&PwilAJay_kchOmdv78`i~1~v&=8%Nuv zNxFZ)c*>RVYCzu?HoHf9q&?@vANwfBIRoR++}e=bmc|;WFRif_s!!- zQ2%?KagYt}Zmp5&hbp=&NR+)&snagnIf#VvcQv22KP#(_t|RP`Tu=CtFowd8v{Kh7 zV2eQl|CW~lej5c?n(K8)%lAJNop)!w5FRO!n z?s?Yx@9ZuK0t>+j!ozC)f=sZ#(~Nvg{Boms|B##N)VIITmAK@EFYZ4dh5XlK`;>HF zRJ6ofaU{>Gk)FjJU7p**EvS91cuN(nJFISwOr44NNG@_|stE;8Q^}5{x-0?mFnag7 zcbCR74gH~Be>9T6>(1#xIF7i+6oO38g&x#iU%?c|L*?M?X}bZLR&L!FGauqklXX=e zSz;Nz%-c=dJwCOjWw>-~a3!N^CROF()H916czZ9_O3P}?OtjnZ&L<+iiRyi`J3Yma z(otc@HJ$kxOApWr&e{#e_PeMkS#~cFXpKC+YioJGE1uMBdH;H1vR7oaXQ3Lx^E)xE zV#8xw1Lo1?4vRXg-pJd4tn)Z}%gtb~B(!TWUWkQ$Z3~ld;(9ys#%Wk?n|4*i$jmu+ zeRUhwdmesD8L|@v+a)^)#W<^bwzh8`UA?@`3UMGDl=Cc0u!ng4yd+O1!bhHmaQ2$g zJ9zKClIbDl82wgQSN>J#zb5pl(n6hy{#}P-8mYkewApU$T~mUOLZ7^@?8seUICv`c zSDWjXd}pmjHD~F3;3%7jo)!cW?|CgIJGQ^9`liRhp9y`^ebrs4S?EZ6-{vR-TqD#j znp`Vu{fwgv&e5HnJba2qZY}BT|JKg@OU?;}kToedd;Js3nQHo?o-bY)<(u3H2zK< zyMh@EtCy_LsSXP7oe^82K_6_P&GF%})D7GFE6_X~ix6s_fKc+=o{E3vnuBZC>iK%@ z8>2jJMgQpfkNo$ED?~^DyVtNtSGm!FJq5l$CM2W`HFADR>-7wBAul)fX=k6LD)d|LuXmK9qv^N(xx zZypVLWB*W#D&XJ01(#r@@@EaXAODDn0Ni`&JZ!73|B?Hgc%?Oh10Zw10}%52f4f}3 z!kxH&-Dl6hs8Dtn%rdXmmOVy-t%f79r9RZ=L&I@xlN$5jn*U3)`>f;0;XzmNC9o=} zWuYJ{IC5Y^Laf#>Ir*y)vS--K_qTX(i^2FV@EcH+s8F5m4iCk%G%mDBO)29R6+$SG zhNkQCk*)0~&mtd!ld6Q7SQn{psEUvWb1vW14X>5`PS1tW*x?Lr2c)=w&RRB8My~-k z6_8P;z#@d4n5$o{F#@%Q%}QPoydx*nI2>ik^h?C$2<)K&NdW%$=7N7_G2FnUqznzg3+3R*?065l-m5l-EQ1>>JH9GofUXq5KUR>I44oL)MLd^>d`e)P!jRZ zKAUH%O2Apz26r&~OSG&=-Qem-*FGvH`y=HWs6up`&KLV>iN)!)Dc=<55tdLDtL&9- zppRLjM%z`rpU^+uUtHkS)a-?W%?%mhX~|0GjY=@jq{=Ve87+L4;X1eD$`NdKM}A+K+P~*xm`y zSxISSm)FpD?tR*G1fGebjOj+_(kc@}JHh^g?Yj@m4eyKIO%tTZ30M3}TBr`y&Wz4g zSa1_oPi}2-O;fywUJ%CO@=wq|8tar!#^?8ck^Q5DdbaOe0@>=LmtAClP0Djf01KCB zIvv3#%Aa?#?f!=cRS5dq1vW|PnVQDVHaIT->CP^`BJ<}Rjd@NXYqXh)LV78a@m?1c zPKRVlXBJcSe^*S+M@9frnVveEs4y9iiHS`irz>O>mtvue&c*h7t9Y6MV0aNWW2Iq< z#qaY=sPu-^fE}RD&g&#_=hk>OB>8^7Qecy}{MngLs0jIaA5+jWlRhjP%HVzNa&2mvt!NdFF0~?B?tyC4v8VAm@P;Umo zLa?@rE>_-AheECO8Hukt4mO4gl8DSPcii2~o9c7rrcTX(L8S(XO@X5*({cQ%>8UV` zP&AM9w)on|izU9Va5D#aSj^caFuof%%J5f9)8IG2G3%hGr+3?js#0Fjjk)|;>}huMQVrt6rC@C^Znlz2Nf`xCHV9`d^@5i? z88xyxa_qD2!3B&`(dr@z`I|0vW9Q49cMs3-ZTUp_wHjNq1PR~^Axa$u3??_6?8J29 zxf};64!XXuWQn7o58tM8bK}!fWn^ru^3a-NkDD;Il#HeqyK!#l`gb@0yv~ik;aWm*LrKjw2UF6)jHU{9+@$ z_6HnBp15};-NX?M1_7XI?w$C}-b8qd`~-o6ns_7A6PTu#;j;PGHxCq3BP_a6xPgUP(h zPO$7 z&gJ1%6GDe$&5JJ}u?Tw!M`#S9`RCui$ktD~`a!L?F^|iXxm-uP3BzqDd>nx0<}ZwArP$qSfPZ|D z?G!`qHPPM*;-%$asq^@RYjF|tRw^;gYkq3w7RbX|Bp8_DuEGu8Jlp<$Q)65-1HT01 zsMsxmY<9VJd-DvWM1l-#iSN4z5$Pm)=k7?MS$$7V(;Bx^;6{;6?(wm!YjbP{`c9_! zApA^B^scq8)Z&9tD;z3#%%ifrUW%u~pEeCyfh-V18PW7LHl{y%e1dS#^o?#aC_>n4 z29MXb(uYOz7OJJ$z4wo(4h<#LdWWS^OP7h<80}3RyHAjC;=`Gc|LR7Q;>*P)EKFJe23#_%;9tahM zgiO*n(1Rk=EUd*)4U^g>3c)>J-o3fZf~y9l7P%C9#WKeUd~V;0z%w5l$6{N+`c8(# zvGU_w#e%h{G2YGl6qih`O(K(5y*Ig?nDGigLcZ(o=epHqe{y`1n9E?h_g+Qm<@i@^o?GWrjpEnft1O4Bqfm~$*2XEB zNqrL(v-G1A{}iQ?R4Kl}qrKH2_?GC-dF`tixU;qx*w3fh@y+?frUdd*XN{p`xw-V& zLJzs>ynz+b;g5L6#dkZ)z5B`>zk6ISy)0x7U+N3=m=nK6_2^nCyW3wU9LB*61gWWP ziUm%Ib7U%#@V?#SzNWqNPyTD9~Jda zE{`vS+rNHjEi`f7Ey7FMxyj`^uKannEa|>y_>o5w(7>?Wa+hIjN>pZ2l<~2ql~i!ecgk1VKva7U^v?ERao3Hkp%EI+ z#`a$qc9_utJcD&yb&^$SjWo@_uARNi`eN}@PFP79XNPDwd{@|}11mbgD* zb}uf%!y5u>eky%!z4Eh2^NRHF17|Ahu}^>=3@h$(QU2hIbQm6i39OF-`t?x7 z8_(Fp`p$v^Tbu5X0I9|kLEaHGi?J|v=!jknM+^-7pd1g_A`?O^9Jf)B|4OyULaBMz z!CX}f(cP}E^l!yYSMiJm?ZlkZ4i9v<_Uf9S)SXWX z#%vZIwsdex!Ayw;9ie=GT3v0LX)3I2k0-*ch5_9cQ$1E;JWKR$xc(2nx8LNt9UP?>fz)BfoUzQUB5t>US zLnF$uLcpqrx2=~1yQrL#()*RgZG|>2y$e7#UhL^)yZnwn-wJNpW(AVprMJ*G>;7Mn zb0PxI2M6PS?_o?3a7Fnk`^X0CM^usZ{ zn$LH|#oFEFE1rSWMcQLTODILw@EIcPZi7iE!koB)u@)b_CsTv8N;HCq2?8fcnlrP& zW)H)gpVh0a=j&f1bd?y^w4I}0qcHh1d?UDB-rS!UoaBuJ=fRsdUQSaADxF(ioLcbc z`+^gpt4#%t;6!e}-NF1dko>8~SJJ<{tzJ40UtnkgDjqBAs^DwvEbvjXyIp0OFN=6U z40r+dnW!X8eV-KLN^npeP0B@eJuvs$rCeJ%mb85 zIo1tJlG%MfezE8p{KTF}C3w%-_scNrL%45kVEljc4ZAydBfUiF16vWh&pIvsz6}nG zeFdrMP(Ik3Dv-&v@yJe_B`7I2c4W;BC)$~3FbY-bc}Yh-)+7T^i~E8}BJ?g3(x-Si zk+1|jDMKn@tJ=`H?6j~mq&0Ln@wbg<1YP#jR0b`bFm6gC>-Mx8uS~EJQ{y!lWMa}) z$|*gYz5Gv>U(&k6ufB&h2E8v9)m?~x8pUsXzOXf`%+qw2PRJ=e@eaR4q9NB*T{)R6 zkLJU-v-&)c)>hq8`kh-0?}egVP)cUFnM9zXUo8A@@iEn&nA`xam=9O&2^9d~v3 z8hW(*qPSuZR9tZ-x!0?5Gp@OKh{7zyZHce1fVB+H?tg|lk9a~DJ7u$C+I5dk^EE7o z2djqb!Yj%v8^TLU;zIY@2$e|Wz-6V1@=T!X&zog48IkuK_zHUZD$a*9O`F^oDkKgoyQ2C5cxGivo z)c(8#Teumdz0Kiqw&*m91CyJBwS~S$Elp}@Oa~tR^P@AfCfv6@iza+na`9$r~Whq1+r`EaQNI}7zLSj)}HbTH?t!knsu)+YBJods9o%&@YpOSyCnTX?%f zEs(p5U(-XKoCT8t3QOi|P;b73c>Y$!eM!>+=3x)$rDP!|zFaA+mZr>$rDpaK<;DCM zS;uyY8K2-QwUW*@R%;SfKrr3EHc7R)a$IJPkg5@@FV^11S&fQI5^1?>*DMfK)ssW44QeUmK?mOogrAImHDA zj?PO0n_B}@WZJ*CPBp+sIQe*xQRvpZb->8wwEN3ZlRtBdi?#33nrFE8K7+^LqU%KF zFS%qJouLyi367jT_Qcwh$NB6)X}y0~BOnWPGnCiAgR^L<3Ov4L z{)tyib{?_r>!cV2vS~F1OLGZzg`aI$2EHKD14GnoRfQ&#-qHuV^CaZ{f^UKRZc8;h zu71+ANT*O;GYXvX^i)Cz)22|tWIC1XMTA{n^QI9rP2?lNxbz9~6;-!s^f{K-5?Sq|7vf#d8X*09YE z_~L(utG<;Z)NqSaCnd~k`KiZ)pluF(p}pn~X-wYW9L@r=6`bh);kdh})%e7H>$WNU z(&lTA#Bux3^7K>(c86(xJ*nAtvnfXwiSnbZrEpT_zNc`yy9dY;$CPLl{I43fQcg^< z+A%Qv&P|63V7y-N{vI5@)eWzNxMyp;MhW5KtJLBu%^+57b7EV=p`~zhyWdE9-}G)I z*+J0w%3%J>r=TGiT2cE#$s<@jTJZ&^2Aw)O)q{Sg6iVJS%0DJ~%@nAWeLu{fft}(u zArruX6CPuUe{E-8PAaHgbb+{%g#rNINFK8BGessO+KE|qYR;mluxDPv;tW!g{Ai=T z<1~y!fdAF^-s>tmwVlxw5a@Pf$guY6rpI9XP@lLR*(M3sxnbgyw?UqAiBv;J6hS?(A;M$G&2T zeXJ?Uz;H)nWIzP%6&ZR`l&_+ua(Ct~4e;YCmnZjDnsfI_U3q$nZxq+N(oRrJ)Yuym zzy~;H`{8)rvQu%g!QTXqfOyi7K(XEf`V`u~)QcCrX~Ai33jhIdsKGCj>BEX$Xc4;5 zLje6HbyrPkqFSXqnno>fWt+=naa6&?PGi8#2=Xjo`z>(8s>(0bcMWe>J2*&FmS;PZ z8KIisW9xldG-=K_QR|4`v-Q9p&@{xp_pn0WeOiIvxsz1=R(<|n;bhbsp9ta~;9gW87}^yit*Jg*YQyg5fwum%YG(#fgWCTk`1GI4pbF?F zkSK?3qelF;B=NS$R2xpov8bY=#h|CE^Z;zun7fBWZsQ6-6Lyg?aiLHGmSAATql95; zJUOuNzJ9($wbuLrwT%5~TZIC($^K(a!0v4Y{o+&)Gs3QyimZcfQbsJ#B+$b3v}7Sp zi^CNJN9OHf9LDt(s0Og!E=n@m(GLiYoALDBwRq%m-}@_!&~Kn}x}#t`czvG@vxj4tV5t;mTelE^fdGmkyG+J67Kw${_EV9^fWVu zl%`M}y}d^zIFg*3HuPySN=|SjSnZoeA#n2_y6KQtEm(Trtf{^ZRnmHXlOaGDgv>P7 zHxAqab9qHaG9`J~6q66iZw(@+BlR05svW>POE`NB;=QqX)&VmJ?B=ZotU&oRC-7$^ z<304NKWoxp$}dwWEtM*xdzw%|mg~$q6_%=i8hj~)@HqY7e7~{B z*n8~L|KwW-3Lv6puwEJKQ+^>>zG;`Y>)7^175e&QxNeZMRM0#@$E z1O*aiIA~8Ukc>Nxj0R8LV3G@yz#_t5nRx&xwVBREd|dP)DZ^zTsLx6UdMq+Zp4>e2 z1!y5JLxdkBrPxzI*ZNWp0ud>ZH?ySveN0P0wj{%3pcPdek+ zV^a`IGPAmTdO|#;*KaL5H(H1M#BJ|vBj=znXnnsph{TQy@mP2ZNf<|0DLZi&9j6U& z90V!jKEmW0h_YcN>Q=>nV!h`Zx*VQsdF=QxJG%RP15JFuA>8VsL*F+esv=*!!bs?T zzj(ua9}p;9B-#>>BoyLQIU+=e7G8aMvl0Y%A$i71j-}GLHREScao|y3oo|w;X7}sy zX24y?LDZ_cnWAD}P?`TR^xUJw%lNf|4c58mYx4>-D4v$d6$FI5Yi)q5!2#9L}N&&1N{|CLRT zTZl&~`pyJbNC>ksXn_8>cil}ah5=&A6$i{Acgu#gV$D3?_2;J|plmv||Mt*(z5K<` z0@=*eoP1dO%?qNKyFRdy2l%&F#V=gly7Qp*#O2s^=THvAM=P=y;P`qf1GJ%%k~uT7 zjIo}pn+$GNcBTrAxm8!U^ljSTJ%DvKJ$|Dzs4YrK!PI4*Dmq|f_zXC?Yhsxc(ys=B zT_>#Z@{Q^wXpdlJdQRnT_9qGb;8=S-1d zi3H(VN!*0>R1myL!c{ReU<$1_sGTOii5M=$@{#r|Y%J*)Y$Z>yB~IC=X~~dK zb62)=uzf!kH=WS{S~MAn?xYASFMG59TwT4+vp(_M^O(WgMTl=+{^x!q0E5*xP+~xQ zTwpIV3&rnSx*IYH{hPBy0HHNb z2SiLP_)(dQ_dMTkLaL+gDf}b^Q4o91+y+JopGm)4FHMh*_ByrBOn5~d2v-P%0+2>l zoWf}4+xpP#I8iLZdUTD8VPh&{TXykFkkN(XW4uCLh{~oSeN+=ZiNohGn9&hHS?!yb z2NtM)XgP1)dUtnMVJr=$zz>2jo&bH3k#wkZr7$T*E^G~pkGCy?J#_buq%-1M*g2lD z+7%LZf>HE~>+zO1{R}9T-VWY(I&7(Z8R9y)^DC%~igzSvYj;A7Y)$=4-J zdAUTMSVw<#gV1#c0kwaa-ZeHEy6NaBEONm;7yGV0e?~m$?aiEdi+q0xI#riNQr=Al zO$X?n8Pa>78hY;8=4W<8GId2`LXA}t2UZgjFm(4|k(D5*^h}A7r|Ch_aY7Tf_e?Q% zs;#x5yydw3$Jrk9!=6)mDKF;-&iO}c5072{M5^&AVp^}96~DHiy}@I*)M`GE5FT`s z*7uV+7B=cbjJQ*XHk#lonp8hFAFkw}?Khv0hR^~g?5stl6kATS^WHZ#sS2F0OGE4(e5DzIb-&|Gk(YOqM@F_@G~mPedh*KT})#}N!=#rz;ANYHhKan*zjB{%9eqd zrcAHB7N*gD=17qweeD^THsaBSgbE+`h;=8UIoO;XMGxf~6m3}FR)Pn4xe@xrX-a++N>}`g6^x?e56FFe$~77TznwgrZ8PPvP#QiYs)+@!lv-*Vekto4n*6{qg~C0L*lEsnsqzzoCkCl*#UFb_^oq0nMdGt z_T?2X8pTeY;c5-WU+w4n`Xt^jZ#7cd3)V*(DV&*|qXN6afuqV2b>pAT_*;PNb|%q4 zC()R>=~>T$!xSCt#y=^0Zd2qR)>51llM?O2!4rYq>sh8aq|e7yuRj`*2a)<=l>Ata z$Hun+Hct(BQG&I5>*s&c^~>HAq!af`^fVg(!787a=s!mK;wLg95WZfIfaV0^LZrZd zDK~B%uU8XCWIrz}YlfAcUO<0x9M`0u2h#W4v?ksBZdN+?>^p%qPw=ca3ti+!OD)zw ze#1JQvpgk6-HJNgd0(``0->+_TnGht&db881?~Bm4khd`Oo{#nNxRPgoGtfxS(G6+ zHa8)fv@u=E2hmW(f`^DsXJ$xoNt*<&%WIQ*6zh}>6ciXCnV+fO*^iLiym2mj_^J?- zJ5|4EF>LEXx$CP2qiJ-xxA93%o{o)0&UiQ@(Db6)E4%zWb*p>==JJ{cg(q3@vTOlf zD+s<*2izAev&47skhMt9nsjETAm{l8B|(`2+~iryl@$){Ko)q)U4DZ$(A#kf>Yg$is0dwQ#E54?o_4R5=+tzuouk#m2|8T18=+4cw~i zN0eWU7LH^tE_5^FR80!job0B@n;2KwrHIy_@WsKlV6~`9^Cvdb9JNwqP{U{{_v+Lu zRHgU?lK}6P-}=pIieEvlPpUaPkxah+YG%31x-NdTC0a7hD7N5@a4~Ds`6%9vyt&^TfP0Yn#pLAxf||4p`$ntxkDVMVh{_8|TL> zK*zCEHB*`8n)8Flh7)hEZt}rrzq)OJv#=l?HxjPe8=j$NO1l6c(&$7!a?44hHfM|3 zAo5E|YOPhbc>%hbZC|PDRemuOh>*~RD8UU`aB}KP2t7!OzjZ9mJ}u$FoMG128|6$6 z5ZC1PyWU>-Uc1;zC>@IqJcUf(jce{zN=e#qr-!CFFT)Ne7d_H6g}|N2Oe$0%-#^K* z?<;0NNnKJNzy9)OP<#R7J9B{zRB8LHBl>zzfA%=@g6v%kSu4ucK>Y! zEv1Bt0+2c1X?Vj`??2JIg}&qms9{ny`Y;dI#2cyw{mcabz9&eeQritacH1^cwta7IFNEMe-Irg!^YkzONxzXp*UpI!VBF0K9# zprbcqStI~qwz6ro8?62l`bibx*=uRx;ceA5j_AG8md)lwTClCn(&(Lakj{^@u1&CA zjlZ-e+(7Z(KB-YwYU^hn2{_!9spxWki5>aL+eiL*p=Z{wSA-vs0R`#wGV>9RQ7 zlJ#phyqvsgUJkZ!?1vTvNDqblYDvs(jFrIkQ;j{E8hIQoaVOhvtPM1mc+UfL^2hUF z7bHC71Lv}}aM5=3XA@(|lcetvW%vYPdv-x$tKJ(E2-7A9V4##r@5hf*FaA^4_qJnZ za~dSM+-r`}j{qPjOq5U&r*VCQj|VD7ai7?$2jMXC;8CcSqnowrGjdCezFwn-8@o=k z8DO^h*dkRWZPkBko^cH(<&I;wx(<*9k1xVNcmC@D&IgyJIq<_EO=MpYzP-^esiAg~ zKaZ9+#*nB_sim#=+P3QoCHWHWh?0OIXck1V4*oNc8(a^2q_5>_<@^xbNbTBnSz{ras|wo`McJ~uUQ-J-Vk~y<_?*jXeI z-SeI@i_l|ni`RtfteYxEUV>z^3i;u&A|8XO_HqAeIm6%{e_7LUoT&}DDv^a_fWd%9 z*!GS~mA>@eKF+(7M`-v|5!M5rOBQxY7X#rQ)r<1Z8s($_)F>$?3v0l9Mc<1Y%HW;b zUCT*gb*GTUaSwIgXH%H|n1Ew~9q-g*iRY1F>@m7U85?7Kx|lmWd&n1n z<9#RwSFyY5obHM2yPTP*+4!z6!{jNsuayN;nWRY4@a66Zt zhxD?nYNin#T2Enc9=6(e!%s3u<;QA^- zOv{O-wjkl?7}OuwLsowv8^mKuCam}gWzL<%Kl){{5*I@!JPNzTRwS%ueykEou*>?^ zwqxq4RQhE%9Ydvk<=+kN4utWA!9JS1`geD37A|XtsX>Ug1Z=u9*)~`_St3|%XjJM; zCi@W|6$Y#Gli=iZ(3=K$9#Xv^b3WtTP1XujNX+-;<%)q5;-1N?1oBQolMBrU^T-I2 z#R=<(&0gd^j(03OGFd4!re%-BA`eO5yD!ytpZOK#tZOJP z_h;eE&d=sDsQ5fFDI&E1w&K94=AY5F*1NG6oYNI1>_HWVYPp2g_~y(JVU-I*ZMN<= z18OXsk>C~=f9^an139ADNBz{ur$j6YgunzMW6eD-KNN@%;yTU zxCZ%inmDfNI+S>hJ}l#Fsl8nnNj(^P;^P~>Pv;GHR#A!etH;cabe;hMBW9@l_q z3Cie6a0D4g=<;?NF{vBqzBm8OF=n=x@2^@gdiL9z2@%}E$Av+JTiC{XZz!8r$RhN? zd``3kpHBVxPo$N0>|F@$jaD5uY{hUMWMvxn{rC19Er6D3&^q27K#zryQ7-S}+o=PQ zTsF3t%ZW)e&?WJy)uVvpjkzuzQwETHII2=3%#aEA$=nj#XjWgoF>@3N5S1$CO@4kI zb%H%c)dNZ&8(5 z4e5Y9Nn-!$h0?L%_*<{JlSG;B3GzhdvM#3!k>2p2;2?UV(GM_XXlA(*hF(Dd%~NsE zxvwP&4+~phJ8kZe$?qAi)|iX0efKVxwNE)wFoHO5mz1G)tiMsWp_4il<4T(Wy8(Y} z+{O&)vwITno7GATA_yzh>C8#96qV-zyDt|;Mt?eN9r~fWGI)uA-(dO3(>Q^|^fAML zjsd4;&8>~p54qyC_(-oLv5>kJ|Zm)x803ZZ>r(iGfP-MFKA zx}AHbU$9y8<~a;eau_HRwE=H2%=$Wt^8h6 z(wDCxFQq*<*8_NMMlLI?Jr7YI0VPjc)OzY9rV5Xli8Tz!f;R)C{3W=h`5q$l;RkdV&D7u-EP*Ji|Q zh80I9O#KAh&V+rLN70|*Z|*+y0yRjuCcF@pNxvA&5nc~BZ_y>zZom^n>#8-WG74Ip zDmc{My#9WBDA7r_10?xeM62Ikkc;ko_VMO3P>s1c3w!d9D8T1jqzXt8L9hP^xwe7# zv`5HS%g{a|TI#=WSvM9ia+&1aYh!=Ll zuZ|&X53bpPNb*|9@(cbC8NHT9(u^r{tejgbt7%2?<+JqV}(Jwffla$ek+?tRv3$P{6Uui2~e_|vo zv@_$mLDS@NX@-X>+k;Z}#2JSTJa4|c^Oa1k1k}aH#oR|H0_uVL7ZwD=B+pqnBpHoh zH12D{^3(|1X)!nYQWLtLB2ktEXW=g-UKy_qk*SwVMAf1oL{&Z`54amw*>z9Pn#HUZ z+^HQ01yL%uX3$wv@={#2>TH3$D3xrtu`4sKoSa9eeNvuYNm>&{zFw>|{(9bsuU0 zj`^v6n()M`xM6!h_VGdc*`n!~7hd{TzvRY%l90&eX8~sAqj8Hl+ENC-S-AIv5~(ziuJixWW?Ys9`bZ}sKr z!OA};zjK}wL}yqrbluxtiwW8FpEudtR7_;oyq_2-ooReYsIE%K=ToBCq>aCq&CGU<#DL*m@l5qg$@{cpHf`i zuUsXH;{{TnreLb7#1ih+viMuT*R3ph7;)$i2>9{~B52AO1E(b(GG(?qi$``Zj~*`L ztcxzC2By${QP!X~L1{=n)1^1{;XENQ1T@?|?zcVuV+C7W7uTyE&4e}ZdRF^xQqD~J z63`TLvUc&8*HfL}ovF8XJ94)PBTK+XB zFXcsfmaD|X`qMXx9iZ?^o68GlXAK!i(~YjyfNTbuZ$ zKdpc9+WvE~0dbR0-*Z#5;NW^L85q#*+OZa@!}3Pc#FDLs`g`Szr8>%W;~ZO^ z8ey~2w)Rl+KG#;2IAZqsINc+{E5~W7B2>A1DbHEyl*VXr|8a!*ai{aa6aizOPA6s} zWN1hbz`(G2CCSL&T>IZqoAPH===HReBh-W4w!bgAM-P81%A*nf*%Eri zUB<40`T(2OHa2Z6Bu_3}R|yb$mPCfz+Ye1@ot#4J^=)mf;Dhx}zm5*ldC-oNvnPEI zdY)xp4IR80o2%p0UM33X9_pTH?xTt&U`11YO1j6@e#rN2I1T2|&$0xpdyu6xO8iWL zfCX`4w55$LH5USbcgQ&`#n6xf!-OoC!TZ~~;7h#3-L=e}P6{^JDQg<;$kQ(-XgFN| z0L@%fbT*ad-t3WF`qlIf?$To@^jAn=X*08=qlIN!3#;T*3&eX)-n<@e&T~myyZ5mI zm+eq|k}byYbZ;2dndv+(TjDP1NvktZ6!q%WXAV`2`Pk~F)q`65l(KaZCy(@`y4M!2 zUrtX>V&gI&mR~mJ9l_=x;)I;)4V#^t&wWECNl(uRY_di{NkRjUZ~>Lu09;U+-1=b4 z27k-9(*}1`pso^l6h|{nM*B+UU~iahK(dxyE#4XW=#oxzoi{z`Bib5!eRN$F$Br(H zG0XsTb7Z6}FPz91+`r$p5>-7Gb5}?5qw$v4~ZWM$7QOC)6V>0!WI}NGA z{FP&ud>fyR?xMOpY8d1|`>Qui!F+D*ezO6hb6hM$sp{(0b?TI%eg+s8_O-Q$%643T zQeaHN)Odfb|5&V`eR*${O?KcjrD0O;7f0T4?@VZ8?kDr>g%Zk4CW8EZfvZSlF&;Pq%>Y z3%_H>ZdQ4;3TtaA@?L?t1l#vigaZ!!<4h!GgcRQxSU89>xtFi2cMM~g>n1#72h{c z%hvb1C$D~=^cj;3eyek@r(c9`LBvUk z7dN77yNZf^JIi*C=NbQ9)p77dLuM7LfTh)h>w7|`#)84pqhMoTp9Y%Y+kP@YC->JZ z(;qJ_hcV>Twd7}lWP^wR=GG?`Q zOPV|ocsv48hxuLYk@b)VL3Vp9;SLlUcG+2iSLH1-zotKSvt8D?(Z&c0TI#&YDNDXE zrG{Vce1T;Qp$ky-*-nJtIjSuydr_h%gcKoDie^}9v+JWhukz`%#4f!Xbvhe`0Q_A+rrgZCJD1alap=@_5`CKm5d(--P;*>gjmRkqzFPq8?1LnnUU?<|NthGifGQs8_o=5=j|2&;Fw&hjn}S2z$K z^YbjF7MGHjbLGNF%(|K!C1)Hm^YSQa!g3teC3|q?4{Z-$0>Um8m$uCJ3*{vSaqLxB zc-U$l>h!?-d%`BW;k7+=!~LAk>ywm`i1^;PW@U~3r~a7ZO(Eo{-B`cu7cwP7Bd8)R z6guM)F|oFVWK1(ci-o}TlakIn<1NI0)h_s%^Vl=NZgV5t?A+JVq$NzBrqLhZILH}c zQP_j^nk9?X)g@WnjJH#3k%{E*;CormHE2`S->33=Xh`-=j~U{04584;uzCQ=+_c7Z zZh42BzxjK5fX^>i(~g6J&d@`=0Ww!!xYPj z*z@`+^2w(~e)4o!g_Yx=qbV$`M2p4M7cc)uc1+h6BJ25#f0bj&br0|3_c@pr%Fj+;Vn@~9V+0If*-*&ABUIZ!O@lsagS^9cQ z;0F=V`XM@ycXo`8MNXqps5Vn5bSqq`G+R8>%2FkaLQ>XRx}eN-M*M-x(Nu!F*=m<}F6=`~K{{63}|%ga0wP`{r{fVas*Eeba<8(isX>oSOgA z=EUO&^43PsPzm0!qx22z+hM|ZfyNeWWMYENq8ZwA!y&``9HU>#KQQl0h;pzgc22kh zQ}8KEOgBY!cArh&lT04d)<1Zm)Pi4iGbTq5mmmhV#@dhSH=R(dzYkrjgW-9#2(slC zR&Y9jtDj_N96`-|OFNE<7mzP`w3ge?@{KxSY)z>6C3 z`V-Q`A40>fZ`<0gKEiysg{|@~eR@x~Uuw7|;#Q=5C>(G=8Kvl#tp#SAPLjnhQbN0` z^A-)QlQ>lAM2|cVtI$I`Yq2-hzK+fd7+s#!tJn+#wZ3UTP)`B1qI;pESSlQjj`J)a zIAEp&%{@5Oai`dE-GA`)4u&gZJ9ZN&2g9vVgZ=^E_D*oR^YaoAbz-|}t8p5{iB-|I zN!%}ofJC~ZrElqI%bE1nuyT+)-h8Gr=!)>$kEe6Yse=GIj z5maXPqj;U({#qXPMCBRzjFH0CX{6Y*RF)8obwXWxZy!&_prC#ks6amDsK3IVYyqvc z>yU#SZ|`h2UocWu(1}(Z&Iy~ag9sAROqwP544|M@wX`(WH4Drn{_C|why}JzZszWX z<#m9wot0O6J8O9GsXC9TnK#>3?MB(S#VATJUUNBhb~>2MJ*v$nhQ=m8_o6y_>DyVW z``WAPX*c<@`XO@rh2cxJvZs%nX$t5f^-3i0V?i_A6t!g)rW@15BA>l#4ODdI5JHs0N(UK-_7^LnRirbBe zc)qH#v!zkB%BML1JsILlAi1IH)b1!!#)rE;Wc%g7+>^3rvRKG?TcZ1+y$#J;RFd=x zxo2pLIVifawY`lSL5)&>J6O$eNY6?}=mD z>Ui3QY6@%C<9-UUH+WQV=dOO$WuBbdfNr6H=o=lkq4gy^R@Rv=idFex8F2R2I}%%` znp%y6NKzaF%Zaed zJgq&US9vy$8+I_TcPc6ZMx^b4WxLW9?K3xm5`?#|$I|ogXo=*daa&m@s^wFbx~p+- zw)jx^fJ3NiMct$r*_)xG{nGQL9hPQ!i3D4uBn0ALbMCPQXaS%YZuh*qv{Z`F- zv45WDM_2GYOTBAy2&7;jFCIMKudnXu2~KMzg-qel?X6yT23EtGvgmJZkW`_ z&k@h^*$}RYa04V0a=?N5ibvh%%B&vCp%p&iaH(up%C&e59V>y32L68c9Dyn`67@<{ z#E0t_Qu!Z;kC8Hdo{1}OR`>Zm8;cBTRjdyE!!(6ysuhp>P0ARLv1~4#>Fi+!c{_$^ zamgd_C#j{fDX@t15ZKg`)RGA+GS3DIC9%Mcjg;D=#qo!cr{ll2FRH@~?i_4%%VeeR z`=2r3+1zgA93kv?6oMIml{(zj9J%QLxKcb9wzZ+v?>|Zzmv8b%R!)eo0E2{wL4HBBb zjzB9Q5041#Y0>jB#;M-~fotU}D0mW0y507rG7R1kwc$7=p>c;&{XGo-5?f>KW%=+~ zDQM#~YT$2iO|>})$~rT}7`n~4UAJ9?4_4~|woYU`=TK|=ObGQ+V4Wsa_XIAWv`(Dk zz>%Nr`-!jgc}ruY5B50OzW011&NaA6D=FqhR5;;ex4*Mhc}eDV2eGSQf^w8($JY_f z<+RSQM2BmDSzuSNYMopk(-G+}xvj1qmu`AMcf=6AHz#*A8AdzTh{1+&zG1-v1)jhj6t0<2H%PZ2%-Wkus6(VwZG+;#}HwD+v<2A&tR&)U)1un=Z{@Ue4$G7 z7{&ffH6SXtpY$3uRsg}h!CqmIz=aAWe=F1xI*h7@P_Opz^;PZHIYpa5hP*=HX%b2E z8=+S#a#x7!ozF}c-GlhFv#cl*drxb|Abd%0KU3kvtLdPp3k%AU9-pU{3o=3(es;B; zKO6b%p%46^`9+!S;Pd$*b(D@i0qX=WFcLjS$~pe=Jvx~jrj`QZIwy(6lDmjw#bw`^ zWE(+EUBVmrPL@)(nre{m_8ZdR`Zw*22J&27zE0(D9AlI#e20ho>{me-Ge^_I2%EMs zEZ-=<;*|>E|v#Pdq zy}QaD!^2aCOmfB!2V~K&H5~LyT8UPkow8h`7ZU8f1{Zhjo#kuErg0iM^S65Sdu+qY z%-G1R9Z|_GDOuTU+mLbiQ7F~O4z9r692U42)5y3}mo0wkw(BQ2-q5Ul@)S~!(d917 zTf9K=8Hp8f>`jVnKdIgubL+X})){(6e*YaO-nC${rw{Eok0do?=P7&Di%AxSu={-2 zTf!v^FR^A?lE(mVXlLBFHlfaBtb%bo1=c}alhu8R`ty|Dqx3)wnIoK=)0=z90&4Xt zzSYPpw-l*~>*K`^1S=K|F;zA zUcAhs<OnnNWmCdZ!8@*O}Rq0PNbsbdDmOf@G{C91b2>4)dIt^*d&9RrYCX*WP(xAV-7ngq*Laa}Y(&wnf!kW6z z#R~=n>1TuCdd12BS%=^Qb3q#}buS<7pT(JekI=cHYia?N+56-jhnnZ~Uw>B7tLFOt z4U!?Qyj^CmdO3AI@IGDmlb~L76WU*)6bgk#-`-|uGXHU-CS~L81uMc=)HvS(mA5ND z9PESR`xU5nk${S-KAM`FO#=e)741x=cQxKJ@9{N6=0tmxF3NM_;hU#NN#|c{9g-#_ zsyrNBQ#+N7{a!mDdul~t@2#3)=+bqbNl<7;pZ&u}Mi;{a?3euKg#4>YmGgD(R==GG zG{E`VDW~p;SF&04fZ4RBv&OEk1m&9F^JRvU>K;F_`0*(=qqQvST?jm@$*IwDdBc4+ z1l6Cm^lPRs`B2t+L)D3q8(R(}z2zE(tUM;ILjrEqLShc@)fWOui73wnku2~{`Ji*J zJG7IaP}QZ+%4YtS*ZCQ*AAfAEy3Rw*&2O|Xede`pDg@j_e784HI%MAivKe7Ll(^^e zEJ|JFQm|j!pUaK`7INx?`snO>WnW&L6~3!il+x4Z2yQZ;Rc7vjAt$AX>*!&g_c zoSeTy`;x83#(}EX%X*mmWjEz{uN7mN7a;i2oBVFZ4TVZL3Uvcl(}TfAy4=Uf3v!0c zmUn*<1)u82Z}2vLOZ^0Bg?F41oIH22}9(Z!0=DFvShy=~7 z#i1NFSt=;pB!Mdn=~PR{|7HEo;%!{qX?*-(oVh}0+j%i`G?ivM$y!xi7mDC_(pT=V z4klB|e%cd%%he2bZ;F3f(`H3;*A*abPi@CeGxPL$_bz(@Y)lmDC*iAfvW2?TS_+jf zWa)V?1I)?R*6|V*-^9c$ewWJ*0^tC9X^38FBd{V_IIq?Bl(FPNmZd&?!iNwkntO#x zm7%_l!2<#)IM_NHbqZf({v0mUS|Tr~Xooks#SAsqiyx-Y#S=WN17+(&;j?w9h{Xnc z)vaeXpqJnv_-KX2_3qnOo$)eAza61A}8!{ z05_!6r^1FB?!hfQGy*9+2?0yp3*RePm! z-f3bn(0>(%HnXg82U>-V%!sbLLn^c8TMDu=g>HG|jadx$# z!I|Nt@6DY2M-;}`wE_O%JWwy`yAs&>dY z@PDlsI-%e+#9VXf4CDpM9Jb*<;P9f?Z41sp}qt=APKgpf;?`kY#Zh!lK09 z^k^{%4!`_%5X=}p)A_dg$Bzft2@IHsfYec;_`{b^-cCpho0iTH)6f;VR55Z;(P-<* zA8b}(uodlXCp|YKKS-fV0rFq1T|$|AW~+=|*%~I?b3I=p5nU$KzFSR}7aKdb`FcxJ z07xW+JAj9=PxGp3=}qC7d9C!)cfrK3>ae2v*AnqlCWQQs@-tzhNO~D=AT9cP#^oSR zB~+r(k{9Dc2diHe>L?wp3+;BPND)*(AzJ~42rJ*~6YUng&c>9~s?~P%^F*9-%sKFP(8Sl6Bb|U)+w%`D)Ot3C znwm^1#adl)897SPc8fm~Vso( z;g1PhAJ{M)zh;^teC-aQIj6@+LhCPHHwvW(+nd=Y$(B96f#>-1?`O3e)Ggb0<%A}9 zi?0}e>b*JhEBHvKEjx*xB0*8tny=PwR9jW`gUs=|P%Ugm;@9B}XyA7OJ-|{7(dk}u z;h7aRuFLA=cljT4a&k&|@4R}X@WgVsSZ}53*}F8&vsDe$huc>5y%RO_IwDM_Hn!o) zUQ#Hhz?2njCQ2Jynm`R{wi$PW9km4lNXg}@oKcamsdk2CMB$+(EM4*BgIUp~v^h?QSaVW3fNu%7w8H zG=#=JdiDOWA{&J7Tu-`!Nc->{`WfESVzy}RB1?$tdkUh*>y%LDi(Lr$?_W)vb>-cX zh;Cee3enXcErBrlvjUrb;#5lC1cGlf`r~vnE`KJv!59qoWZ8w=11!;>EuOb+D`rE8 zzma6Iy>T87qP3z>vUFKWT9S{fYWdywGq$`{-ww^~QE`Q6D{)0YZPpF}Zsoe$w&Ut&zm%FQp|R~W7n!Q3_*QIdGprdvd@G}QkPfe*lW6Tnfk8-s_E zskqtxdKnBS`p@-%(ZGbwamMa?xL&JIHsk{JL%`cdQ6mLD)POA315d~Px&V0bOW$!) z*?kQR>D(w-3qlojj)TiBZ>mA-En30#qK!t&;EY>jmcWj^SNvbcn2l?eph0vLGEgFp*wCg zTjAR2ZpQgYmR#7YyP<37vXW+eTeBMD-w8hcPU#NmX=#xnrx(*iM%{~Jr3t;SGTGu? zBjSW91Z>gOt%`>sQASKJXl8RQ`It>j(^6s+FTyWH(wY@cY5Pb0gw< zSNODtG4Mnyh=d$9l%wPy4QM-`6%`e=-GQ409OfxTGn7rinxFX}AB=`maez6wxVr8q zwx1|;hEW&*gWN&p(!WE!xyn+!IU6l~@cBCMgrku;C7=k;Ebz28ie5ZBh?K&PusK63 zWc87C6+l^zl7rTeuV0_)RhXJkfWECdCu})Dx4ilMzYpS;9;C+;A7|%32T{DQnN&Ws6)U;j=7@IfhA+h<-Qu4vB=}Qt)0tku`zDa-Q6I`H{wfLTr zMHeijAm8$~7vkmj4~0Fie{a1|(FU6|h&L`Hqhfm=c`S{tcQOO)2feQk!E?KP=gv_8 z--8FAUU@_kJfbUMj=+Hj0`Gl_uV+?q% zQ=mTD=6_5K&k(fykguLbyY+kSdjz0oxUFaS@3(mKbM5!`eAC$x&K=Af;MB7$RBP2E zJ~HDzMu07Ck3*N;ztCf&mMS(>VQKZ`$=hTR$6^`(qxd7GXNn363V&7~k7-SS!{IA) zL}j#KP&EdL#e8JxVp^JA=q$@LlcF_Ra3bp5Q4 z!Rfl{wVrHWJ|sM5Or=uw_s#J&U_m)`^1){KhG2^MuZAGvDlbGL$O>vL8eZOe^H&}y zn`(ssNECu;Y0uxCOB9<;#^bxULWy(vJKmdI)--AQe_uTQt^i;?|8srOyUg?VGYwa> z*#5rR;6F<2&x>DN|8r;Kkinb({{KzMjsMXJw}H<4_bPw-zk~i~CH{9!|7T07YKOw@ z(WOJT4UDrCBWZz$Z8K4Ac|Q@-QuID=Re}r|L%IIdw+By)t|5+__U+Svg4X1(J@nsIX8Oh`85$_TIYz`5%5yym|Hb z-o=~IKL1K1?lq=QUbkBr6n7e>LSNi{%?+6bTC#QL=R=@!9uHdn(aYezMXt;JT-@9v z^U<>9*69Fy1YI`ly_~k(&=2nV$bD_(4U(GAv=m&=Z!`Y;4GM2XG0K+XD%wrMC>Zr4 zX@#Hi8gV{_Z~(+!%^It|y_sv3~M9Rb>K)zcjIoa}7o#l^)UPdr8y0)e=_ zexn-p{}P)%(%cUoXwEdbcV6Xr2wdM1UXvyppsJo^4E*?^si>&=r(&e3frUAs5sO|C}dAE|Cm{^dtWY4JP;K%aGXR8@wK01BN+pYf$$!Y z#J9v1M*lk;5!3rzGM+IYZ_}lHj{+EF16o*Z$17hz8=SL%P|Y!E_Bc$JeLWX^wpSp# z3Y49uzCOHPnqb^|yxAO3@psRBxfd&lXjzDb+_F2%47o;qbSm@W>&0iE`S17V{S}Wl zt|fSY#-e|(P5J+oQvX?r|CLhzBc=YYC_XkI>%h5L`S7q@Ge!Udd$7t=j|wKbEA3JsJ&(nD=ys(uXARd+%IfSa?1ZEyEEST6!*zU}&W zRnuyI%HF}06S6V)@1AE)NM0e9&jBKI4IH=eo`DomjmE~tWO3Jg*40!1pfXu&52nJs zzcD5H|FosZcvupEfot08bNC+vH}amO$cjWrNC=R2d#9#s>%6 z0dwqM>lH|d93Uwh5`>3#c6M%>T+GzYx&E)k{6{R`0p@4R2Pj1}qb$QgbpkWuW7oHE zD&c?=FD(AjrAu~`h@wA!0?C_z73rkzoEKz$dww@L#RO|L5sR`{<^KIHG{$WL5bqLJ{_3 zyed{>o4__bg0~+6X6lW4tR3*9kLDuy_O<|27I5)K8eY%e)bjiLNbds$*BEf>c*+vZQD z9q@Og4z|V5@IQ7fS?A@W6A-+)H#X7m+JYYP*K=jM6I-44*D!qZA>w~+!2hh<|C+%6 zcRc`A?JzhnyYv9ZM|@IJQMpO;8Zf`EH?4yWytwUkat7M`;TE?4H7r?d<$9=1y`Ib? zqsKrXX&;zW#lXm1o2sukz+)NR(tyCQ8Az9I3zYQSKD$s;7!&k<*FT%zX=Q zLuzYlkCYhjEiNyUn&4N4a_lfIjUOT+{)D+!GtN&6CK0yt4Gu3}WL>>>&A*-c)-C1O z4gwLg(U@cS{}-)^NPaSwD9i8&5CAUu6Uzb;V-ysgVdtsX)doQz1%!v2-nj4V z?(T!&((1J9!02pe*nR~7b@*eO10VH|oBn38KrJa7r1D9m+Pt=3T3T9uKe+IB{ccZ# zAcybke`f7-k5peWBjuhD2Ch{lLC zK@AXWKxopWD7J+F(vc!TKq&!4SVUlVEfGuv(N#c^qJ$!KMI=-gB1#t!1QdadBGMG3 ztV`!U4>5BymtSUXZtiC8kKatjAj0muPx*d7?R}qLBT#_d7S|fbs+nM@d89|&LZwSL zPS8%CGr5XRafMVx9DWQ3NxDc)H(Bpr;O)R5#ZXDKN4$Kxe&kk^t^`i^^vCyRMn*=~ ztSeDbDVM}Gaa?Apf3UWsq@IX~$fZGxN8uG2i45(s_kZs{t>`~yrbdsh#>Z#l3`@7i zzX-A`G5UF=Ot)UU9jigr$GMg!C^S>;^fUWL=Px<* zX3|Po2CtaY4?s*xHB4S!x?ZRNgtvT1T1zNRSjpFzrcIZ}ad3yI`iZ2E=$Xw%nuc*2 z)FxoyJFQu^G6R1p3db+sznv@oP}5JdxA|hy`sPp6 z{omC8-|&B7f&YJk|58*}^^-$(d3aP0WZ{AKybSHRiSEm_@`vv2IhH{CO;JgyCEH$8 z)`49TtH0vU{khSOB4)$>@Q_awyzyJ(_)KG+S#!W*0&emc^YqFdotY1MD@BzLsCEVX zy2GpE&f+D@T+2=`ZZD#Gs7L>$gl)#FbTQ^<$yURmBe$`=Ji1Cw)zs89o&B6|eKh04 z@5`w#T%!8{sN2+gV}Au9?=KmvZ;n;>ttou-saEW!82T+v^m+a0OV8(bcYz6yYeg}c zi2%-9Z~&A~+{{cc@LAVz4uGXQ1dvO$LZ4)aX;flq%5s7A2T>bEbk0n#6%_1;UOUB^ zpG&SvP>cNtEcH7hVRpz#O&WaxLKGA&GB|V*A<@a|;Tr$pzsBK}yzG z-<#MBNufE#kc(@wQgMHF;Gd)iWq!T=m)4^_gzMYy_}BIOQn!Y>y82hL2@9~AzqAsf ztRU_7)jiNawmK&-Vt)QNefdqGwGE#ED=GGZjFy%?se``=ZVQeO6cX}4A%_Wcvs(j# z$C&M5CVIbhBPeOybjfshssEY|RUcO7%Ri6W}ucSls!E3>~j z)d1%ZzTd&^d#a~&tloTnZk9VU*5CnMDMp7u|L@iB;H&T7wdWyQExnQ=U-DtM?BNn? z#`H^$UvJ#WfiR_d9J*5b49#{AZK+jtRTZADe053Dqa~X+{8uuuUu*j-g@-qsKCRJ3 zH5AiJZl4(7t=9|QBl(E`D9!HvJ1{cxyK;JkBk|MbXT~Dq;_?+zI3kh^igGMR-tt9h%XzQU(K9APquW(d@^U)X_K9qcfXz&mV8l;z65s1>s~@ zVu8-g0(BI<3K26;H4?YTvax{Z)QoqbHHd}WE*>f}Ko>Pfe}YLQPXi92vwZ$2Tf9Fd=6vA~vvac+eou z%CZ2OXn`N`o>Qvxbng=8Kif@{Q6j2dv4-ZyZ)#>B!aIW=}4hCZ1;>gkeuMj6Oz)>kDsFmdEeNN z`-Sh|7HynGX3gHP=zu8-g+jerH@~F3d;?}Z)aRvVzDUR}@ufB8;wL*C?fjnZ-IX9O zC$|H3ZJ3DC(FqAnxL{ZCbgZ4c4qvFT6%Y@+4k&6*zWJJ?NCxxONI=*I`ot#s`Q=+L z%*{@VmCnx&&q@>zq-TWver~x~$S$p=uML?aHQQJd^azW%pov$Z;eb|8hGWMsX%2l? zuQ8aZ#z-91GpN;n2T`H@uH!lEhMu79($ae$1aeL3boyro%gn!rWE&-ghGfgU?^wP} zP*8BP<#%FfVot_den+j(^Jp_7rC7EZOAI=PEByH$>%fht!X>n9W~X_)439O`)tgtb z9(;_^I60K*kzKftJJ@CgEeFqkjF^n)NUC5G6{Wfn=NoDAuGk+X6!fO*4eBYY-0`cg5BNI;RqXQEq(ZbIOtfS8q@D`Et2&G zNo$*jRjrJRrX)&y*0bG`>IGY`=E;+l0V{`nTW?!41z}!YJNL=Z#0YpMUi{2l6f1y1 z#md?uFK-NJK@^}ZXdD?BNIY_IehX#bdCsrDd3C0r8hcB$=P%{N52}~IYbYJ96MisKA%^p6 zd7xBZbGp&%G@xL^hQ5uMsY-;;y68i{MaVv z$a(Ors50ha!E=tnB!h7HRF7bmU7_NwemZ{gT2$0qtL6EyI*1@Y@B@*zTx!>qE+MLt z`?EV=9slZ!GEQ>z;dJ=lWUSZ>kfm187n+V4*1$m5gJKvZL%iqF4)nCQPi`785t4|! zdbQhX72k>#q|%iJ2J|&<0(AO4zpf^7n+0rdyjfIv>LTV#5YI^FYev5V)&XYDfK0!v zB{kbN-^(WVXgEl6aP6C(p8m|-`t;TI<6U4eSMwZ7*)RuhLaXfv9(%G6U??ndo0TY*q$-BxD2(POycu+j zaCB}_+SIrLR)lj2x7BtZN7`3WrYDjdJ!;))!Dy1Tvm7ru|r^eQ~Q= zcbHNbmV-2Tmt$C=`w)15xgJms78*J-S}QLGO+w|{@2~%18xr`%Ba;6J3l~!r6;t(6 zmJ%V_MUGGRJ}1DR5XVO;_2L?SRnRKVC^%QGc7jn=G1j2t?d;+rf^$_}3mIJjo9_QK z(x|se1jS6Lsku2E{*mwo+PF#L#iiz7FxSs(;bBE=7y8`fvF-@Q%&$J}ZmA-N4jroS zW=z{UK|!Ij#yU@OM1Y)>(k-*xA%M0`G$+hC1J_25r7qsOEXb82zV!7lPEuDzL-TNU zb`~ZWUjfc}Y46307sDx6zZF3d`c6?%G0Z^z!853_z$o+J*JL0>03cMc>>R^{6&|YL z5$~ty{2Sd+WQFrP{ck?aJftM4q|^+TF?pn|bgpGHlxkT$t))i>AMm<-OV+L5@#A$z z;hYTLo2uSBw&uG2+$h{uCl0 zJ}^BA+!OAK-217D5$YNjfGqZED*i;Z!;fzKnMk%9k3bx1gX|?ou_^LP!~FH$ZH4@N zoosfBDHLh+`P72QukafOjxKoqCc=u&7o^f|-O^>Tr`)XvOJ+uE33TR6;b#_o_UDy4 zR$bmS8nBc3aQK^{_oDG2Jz`!3o4j0zfW{PGxX86Q7$^-L#DLjFpY|k(>&CO@ zcqvNh9GBGsW&5-XiA#`1h=pf%^k@orK{8@t9s|$PNUyT)vBBv{UInj~<>8n!d^qwm zs3R)J|In4SD>#T)TC@}}&q-X&z>C~e?@nSWR^*S**}_063yM|q*$sE{F7ZjwK)0ZY zp*9!cBXQs5Hl!C6sJTvttlA(4IEgtqz$6Bw=1_qi3``S$fB#2L9vb1*lK__kO$PD^ z=W)&R+%4j$t%qX1b3BVk*XnVqT;ZEFu!rqWR7-E-c-LIp!shwDrg`BDW)iO}$au*z zeq!`2{GxBYIuL3M>v2}wXiqJ5vL|{v%A>O=4^mP#;N(xU`4exh8Y{atZdCDXHz!#s z7#oD2%CjfF$>f&8fW;;!rQQtVWr1rU!-CLR8yf$)>|^r+MBe)0_s_WRUYKDs9n{xf zp%lAh(djA?Ow5IvnaQ!0ln|+I=`l%zzS z+*DPC?ih|zx-4@ZxHNJqpGVqb@E{<|!vgSyvr!p9x)qqN^$w{B`h`d#Oe=vA1k+%* zkrBif732NQDbi*o zgTCxiR1`+ZqzFeqMc%lvrJ7-RT&AlR*grc1&uQlcK&B-i41I#glcLxr@j*lCB&rsO zliawdi+XVVp8|uDne{;JUCg4*O!#0jn%kJU$ZQ4TXSpPVh#?Ndxf!Hcg9laR8=<`C zp}opl-!0=khXk?EYZ+KOAG8?beJ1vS{mJa8ApE`2gY_T&=hjCOwjB!>IRL4x2_<-HO{QQ&o{6`V%4gC1x7)j?nz*ZoL z7lFKNT)4qjH;T1H7Y-3IgqACW=Ohy}gtvoG*=1TvpOvBjYu_g8^-%6nJcQx}ti^;V zIs0_Hb|1+welBFUkwSD$+!PvdK9~jm){n6!X+SO-j2kGs&4a+ap@MD!Vs#>?ff%Gf zyUhuZ5yCVr;NAH)Xjw(<9KFzm=d)$uASv`xQ{WHeEFmhV;7sGt?X_SFw@-3tR;80q zyl2=;hI^s4eqozvX0~Y2X=nfUd2LfRS7{@Ug)Y_p*j4f(zYdILHXipXYObX01MLjM zXVT1`Cp`;Sj+WWxz@U|lVH(CB%z>DMzkYqBvTe)u?aBm@^RDMb+PTTDpP%W~nU0!$ z$(dXCAs8T80VRr~hyruGOtA~HaTvgy7>eqO$@t`)CHD|B84#+?+8w0r*%ex!9^VGfW-+aNF9r#+wyFvT zFRt;7=X-5Cu2kfmNClCmBrxU*u|d8bS3x{}eX}CO1n#aSwjLX2VDnat)8fYAPlGf12iJ=} zI}B|B@t$qeLcqYKG#1hR5q)%N>?O&;X*wM%X*NCxUW_ya=%0To|7sGUh5+ZxwTk1j zox^mYe9zU37MaWa`Qa|d#H5p;5mQ}~2cLg7-T{c;f4EDwn!n%FRNtsHGph?kL-;%2 ze69o560H`!x{Wth5iUm4K~DH_&g}7ZK-=8e4qW5qTAPIY>|^MFRCFB09p|TYfZqHY zdovfm2J}2K#Wuq5*4=7Ai{AFSXLn>FqzAB@l~ci?0^--=0C{)`*YgMk>&i7BnwX~u4vi2)4J_Ar5#(we7M*1&=v}ztHZsn zGIzhMJhNnZuns~EI&bc^deyXYGc(WFWdhHBPOBGP7aFtiPD$;Wi;B@7X-O$5Q@d>k zd0$<8-_Vqx0t~ZUfU;+oIZie)x;UT$tK{8T4ilcYt~KJexBTC?yVXX?+T3&g*?XoG zpP?UhG|JiE7*<*yC$M$n06B5J-SBxf;A+mc;I+G{k^(~Z7o23;hs%p*NxZY@ZH&i5 z8x|&KS3-9XUO8tWAh~)8{GJxfd^Y~y4;b8rYMF&8eyr+t=|N<&6z3-ura3|vcOF)u zZBEgwGeI`mPrPp$EDi*1{qw(av&w#3MgIMq*nY#YW0ZVrIX>zavU~uuKDMZG3hH4QUUT z4Y@LYxEFblJtg#ltnthpjjOedPX< z#$Hv#>;Yd6jLvHl(1*~i{x9@t?6eC)3zI4A`ur|wozfJ7<_PZ=+-7-zDOdcCgvaH7 zh$B&x3guX>Apf$u?pJ*Pa;)MZy;WLkM*_lug4hXse0=BR+S1HqIBM67ao2L=x}TvW zJw=1xOmRm`v8#L$Chg5fL^H*{BvrCfAeq(VT05%a9t7`o$7T4|ZT~R)u5%wA62-%u z%25LGfyd#&%FxdPT3=Yb09wNWicbqciZ2?>9{c=)5s0O)Vhn=K2bkKh6@b0uoOy4c z&h=wdRt1FX%)DB~Od?Vm^w3@94T*_~r>m_pZ@*UM1b;pL0GVgMW#i%XtIw1q$ciAZtjF|&d7y=7D=cmxZ<}({s|m!_u4^w}E!+U{;-9e~Y{q&U zqMesDpzO0bV;E<1-0xuyvP|wJz_UkbjXX6-lEANPPXOkfwss_`x6{It@4Xor@810= zu6|+ulIdvW_iu_fzp7ARytCLhE!Lm8Bc+Sj-X`?ndYS)S+19VBlT zIQB%9crXqDeL$qj$RU#LK@>+~D~IaL>>^kcvJQKGF6hDh+;rejVXq%*l?S*Dn|f2l zBjsDem_FQ<04&0lS8;3Fb1aS;#mWf6trfxcsdz-a9DyKHP>fVuYSwzbxVKkwU)Vvw z$ULV?0TRszfMH7EN(}*`e|hDg$|l+?5Ff!;q-W7#g4m;a*3{JznOzxLif2c`0(Q}! z>icz%P@6G?FYaV-LIx06jG9kkkzaoz;`;EF?7;h*(1RmUEOC>{vdowGth0FBb`!YC zIQbRGUl4$<(ecd;(9i`~1<(M0$AN^s315KzAr-8Mdq)nAERdr|2QY|K5dA^OUgKH> zi);nm?9%`wMXJ6TUOE>9-UE`|Cfm)eNap{MlbN|4(u*l7`!nnw=!+p2J}XBi%8W77 zy@8B`{i&Wvdcy(>zpSLGX}irb^B~~ZI1)mx{Y}XrcWz~a)Zs3Bh>JF+Po(1Dd80yG zM%(+}08mdMXstE#5WAN&+T{`fy1)s??Ok8o)>}?|+kQU>k&Kd5#OKH1-sjkUb=ix)QeaQ$p+B_vpi0lp=xJR zZoP&93I`ei@dc=0pB^No&kjD-s2~U#A_Loh5WBIJ)Iuzj&9Lj90=E_^F0YjeNK zXZI~zufn|s(Q+0E+BEZ0IxRV6St+X%_XK%%l^pVYTW5kOKXD%rEl9%@k^4JHkd|oW z6eW*>mc2su3tJSF6#~MQrluyuTlE}-!A0`FExNF)6MK{Zcq%4}gdFrCl>rB;`1Ktm z3#rZiqUYXATM literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p6.png b/labworks/LW2/ex1_p6.png new file mode 100644 index 0000000000000000000000000000000000000000..0bc5253cc2cc1584ee00bbbd85e3dd1dbb2d8e02 GIT binary patch literal 110407 zcmeFZXH-;Mw=G&mj9^BQWI$8|l$?X8y?U<^!`0`doUQxep#7o zsu;`;b_`}~^RAunFGg(!KJbT-_4V7ef& zMy$AozqtBQUku~=8x`oP8sdq{E=C67k2CBk3Ww7 zf4nsEp+dNbR$Qo+S60izlPN{ZBgRHX=P4mv26Ck8B>CPlZ#K%#GdJGI*tC$knBXBz z8!gZM$c=54;C7GhqM>pB<3G#ndZR`1Uuf0cM@s5ob< z7LDkfpKU9Sb*-P%?N?vLyKO`!Ot^i|D=(J@lD0X6J>y`wli85VJ<9r;&S1Xvu&U_l zRLL?q%`L@czD0U8B|ALNc04g$)XBKlo1awoQHtDLysjZ1$l*N&_3l0fkkwv%MXlQ_%(yxTL z@I*CbQH?@J^3R<2-CEmD={~_R*DfziMvPVswwdLp^ej;^IY(;hI2I|; z#IwIU3+>ja4CD+v+hNnJv)mA|9?hYXw>^AtAjCY?BsKROeje^ARq|qggROVBpd`VnDZu&9yR`Wd&Z`M zB``oQMARvZ(f-eqF*<|D0D}uh=0x^5c9(=Z6k_4)8iLpe(i&&DUwKFRN-|lEhK8*h2`}gONx^Bjir4Br<)? zW|Wk&y4qqGQT>^B9gD^O^bO+}+VZ73;DXxEm7EtZcJ5~qy93=}qjYpO8?BbWPO)sN4-HOU?gw>|cpk@gw8 zd~q_zvX_1^{XxYc9h)W%I<5yV`F`Ks2G3VCNg?84poGz|a2Bs-+|*94yyyVS-MSSQ zhl7=&HrZL&R96@IQOa}Y@|&2OEw#dv1v4gtVRqra&X2)nADUXCy>vTLoU&Bg3PatL zrYCMQ(kQ!s|9x+UYV;HxKiw38}1@)fA)E!;_ZZY~>>a}w-o|uaB|U7dXsvJ%Uj6 zt1b>gxW$8UTB}m8qbIV?o}dw5{j4O=y}de^H>rm_Fz}H5_GbxL;o+%;^H>I#xnFtH zWhcE?<^sGV-KDC-NwbbOCK#43gi2zF>_>csqtk`~T#>HhW{n`7}& zY;{V?`y{{8%6N9fMD8GC^OkGhu(?(-H@xX$PMQ~_Z#+qKq5ZKV{MH(l$4GiPqgsTR z%YB{sZ8Rd02hZFvf?FL;bAynuJXJztGh59+8bMi&D_SU=TylL8u{LJ73>!vwdO2Au zlgET~NtCiWn>XKTVnbP5C~tL@b)5Q2#cS2~!^`ZjoLq7D%4Bhx+uEpJUXK^sPY-j! zAU@MzAK?js^1D4%LEOBL2NXot7klZ1ZIdVRMmZp8=~}u5sJFYWjQ5wv-0iOso=k@L zcMFZotrTpG@I;PO@p4ldm+?nICwDRB6=n?P>1mV{>9sQ16y**#@LBwk2y+}s@b}WX z%j7)uF!{e$e{d<>VW6!w^3U~c_7-AaBB99+}X=8I+ zM~{ebTh9%5o~iKici<1yb;JpBTR~80f_U5%B~7Ck#C08(KK0xQ8i>`9_nLDf zNojIcOko`+N9G}BTtm%7i3#Obw4;dY%cCait4j=W6vL_yH`jIfS{@uWEhLkc%lL~v znswyizCPXI2pe(^g0}3%hgTUbzHD(EjtOienlwv9R9Duztv~LtZ8J575SN-ik%)F3 z1Y&f_93%(1i_}Hd?Uv=G*sUwy4=WEvzf(dHi?7w_%y`kt#7I+8pcrNKvFO@d1D0s~ z9?z+l%0yW#cU7v{P z>ra1WA8ff`AAz1-DOjSM>hwSfY_Hh$wUs23=2R@f=&jh=oLb>*jd1@H!*+x;U=0*M ztO>o4aQr}6|%8`bu{rsYiiVAlWh{c{qDG&74Jlm)p-lQvd4VnS##yVEi0^4%})Gpn3A zf3`N`%we6(SeJOx*o6)NZn>!30E+@TkzKqt{tae_E!M=ugzb()|NEm|3*5CLy?KvD zt<4~9^?DgBjJ0G=!G$SxB+{)b9r=?*+C$B0dJe5`&q(Lh%mQXhyghI3IvYY=yat!< zrDCvFDK+%bUpXOUZRDWq$>eH(ud~3xr-5Css9@^H8Q&u)>y;OCYGp)!h7k%Jw5gM% zIw}T$fVzSGPR?fwKna0y+R)}bdyieR2#q7>udmM5O1YH@Fu1Kw_wzAWem{8BErib$ zTPpS^CA)JbEW$>+!!W|-kTEg;s|QtJAO%(%C%Jzc<^U@ffINxk8cDZ?2@OhY;*+qB zeS}8N_b&J{iR%K2;tfYP*Mu0pjd;Zig1eqP{?gmCrhsi7SEtK~WppO$3Jt%1$3vt{ z`uI^YO4=8HR>x_ah=AsJkPfRX+C)PiJqdum>=v~{TV6^g!@@3Saw|ZYfZ8q7&~1G# zPMjRpHQ#2Q#u{#aRoj&K{$X`+%xG%9l788nn`&xmeOY|`{3Z}Cn^C@Nx}}}cV-Cqv zXq?b62kje$P5u6C2dqe+E}P?QnyHN_-cGtMi0md1DD49ep*mpp-9#XJ!hegT$ zk;a4>>pUV+V=(lw($dl^*6?`9Y{@07BrQV*(Wx)nmTT;a)M`F?mprZ&WlhLQg~*>; zVt2bfMVp_&dFrds;vWwNiYuf%qnW-6f3Fk82wwIwYXab{2lx|*Kr4WT1_;D9Yvg9l zeY@Ui0x)Za1fk|?HeRmkkKhFWKpBLAqVH$*_Xp~kiBNpS*KbGN@a76%|E=%a1fj@S zq_CreMm%}<;d22Ifn0aCVB&B6gUxyDChn|3UTbuWh!w(Xbmb zCf)g6kC%tz;*JsSe7^ex!t=z;tUO0PyPAo6G4S>H@;eT2;(mFVEl1SHH=+CC1-KF-Iuq|49lVk$Gte#fS`CwwT?Mbtok76rh+|?1{dJxgGeMDw{ ze3`X}6#p~IU=oTmtYMgqb5|xxix6GwQI46&pEL&i5zfDT<`1k)HgU0$_$d07P*H^4 zMiSzTTQUrS5vYeTY#%?Y36&R=O`qBqhFVS1QY?GR4BF0PF!v>3tT5J}0a1*=jPtl>p*_0co>4avEX7|MogvN&{x0Ms`1xQ!N)&+`Js}DT9}*c zDqgjRZE9J z0GK{<1-`p%+;|?9i~e3g-GH}304s!ACSfoyJ?#d0Fqp`5uu^e(1HmRgDH8>=N+`}i zt&&YBp%#|8xO3>m{*$rF;%hv;q_Q|3jIa8bdEGM?q2fPx7A878_%GdyH4WxA^g%1s z>WdZP8h)qilObxGzyx8l9t8o%pnm=c{C9C@D9*&>bxew`R;h)YVm3*-cPUb3HnU!Ax&J-Je-dfgsr2 zf2j)L*2P}m+8mAP^qrn~4jtn;#uaO`798D)sOljgsq-AI_6%kHj_WI-zajy0nD$8kD`wZec<;7Z>y|YU~ur zwEA_OR%74HT)FuAP1Z1L)fenrG0d(gNk}|Lq>84Vi_Ov!T13)}4rfb_m6l`AnYMaH z+C&BdJJ4udXVvrlRew2z47}lqg0qTYLcGK0G{VGOmIIiSBg8s}L}MFvXwV4^(H1X0 zM@v94LQDtfh!;0}=(WNJAe>KJ{zlFlP1SaNw4c=E6)#ziRx6Xs+)ag)-4j3A(i*i4 z!!%r7A-N6%STcP$z6Ha4VGakSg^kPe0<_pNB$@`qk-uW%=LRKV zlmh`dyfe!iJ||o1N(T#cZia`n&Y)-Cy`$@EoPvSYvR;N&zZ^mh{e#+OxiOQwCRv!= zR?`QnLs%1zFBS}adhKuYDGoxdWbryVt+G}b7#kgnuR9X5w_)6Q{7~!ZwWKi-JUD+w zNDgCkhu^{WmeR?$eXl-N{EO3r08|u!O_QZ1D7gZSR@$u*oADbr6_~@rmlZ*`{GLx7 zpayTybK3XBOUrMi8K=jYW&nEEp4BHqA?Ug^4VaN_Jqv~hzs&*SS~CpN>MCWem@?SH*$Wh8lwGHTwCa_} z1<0Br(|kf&kWDLni&tkVzvDA2&V>XpIqgUotO`H$lYGhazayZmg-o09yKQg)5KIGbUl1*Rn&tvxv3gqwgpuk7U#kfb-F9gj zU{9hnlM7D?>3c6!KpZsqnP1XOxF3F}5CL^D7Gg{TRNaQ&jG}p~tpNC2@9_)}9zo>m zF9-BxeSa7aRs?xXIham|KI76%h#4SRt*osjr0ateBbMrfZSsD*6=-GAH2=%_< zCRp|V^co(h3W@@xb_X~jE5Q~1#2{`%dj4ZQgl6YaSOiV>j38?Be;v2Nw>2^maw0w=j+ePM%2zD$Udf9DfVcj09!#qeh*i1%5Mnv; zr5K`hlTJy!FlyGZV_&GY`?`a6D8Fkhbwo6_Yl{b!kZ>8t{c+klCbL93N>VS;)Pc@AgE||-DucK@PSd&9k;){~G zRs6=x#!&g^!CJLh>JLnU@*6n2utr3{0kfy)LVn)~d((?~?U?qXj}SLfN}Pet;1z}W z7y9GAZ4Nf02`O1?8Nf#}#6u(Kqgq#yi^lmQh~6xutgkFXhN#@4m~D21T71=F4eFlv z>iY(YU<G!a0Ml!@5DH>q!V8kf=NO&P+q){R~1pQz9_1AFLu`fGLOo zw4dj7ur~#&V0|DPFV?M=zd50H<>w0U$m9~H_0RNkX2!<#2u*k?+~!1?{5n$%2BUr$ zi4j4?vf;_ z7}TjB0l3$C$EplPcdh6`V~1T=3NT_<>Sv5Kq@+9$E98Cr%2n7bfoF$D(~3zbo_Y;u zL1^r7qpTe*j_GwH{`nOFuP}{Mi%t{b8NRZBdZtE_98E4qZCe-IAb!aaZ%YDX^nt|@3+9J?y z%@^WAKLL4QG+ZBpL=E2i-*=VcfHwMd?}4p2RHn|?>#RW7z!o_>EIB~w?|@-Bylv+` zW?;hNv5iMSZBPbE{`1a#$5mWi*Ovwje+Mt3qGuVnj5)xxTBsRF41nZngeoV{V^Y+V z1g~=z&iPN|^!j)ye7@AS0@!01xTHqF;z=+;qHov7vVPy+Tevh3lDF9Nn)mJ(45GJ2 zT8T-BB4>anA46+?h(IEgx^+M@ zY1MoVh|a7LO1l4r4VvyKjY=hq%#TEkq&YzABTySzuL3#OVFRn?odMv7yCo7LaEV0K zF^~sfQK=v@0N4!C>L6}ui18XgG9s>!J-b~M;e6Nm%m^HS%*s5dPB6Jrb@eLR+940C zK751~qyvat zZHJAf4lrbh;zvYz3Je3#1#k(HD{~B$3B0eto)*8dPb?$Ek6WPyn>I zH7JrseLvp%M?+lE^%a?UX_ni6EX-jbh#_{eBj2uc7GkQrsN>vaYAjyv8$3`WQ?e4+ zg?P<0UEbWA7>9DcT@QT65By+kJLSiY9!kz&2(~V~{a&*2J)7nTD1OZ!uIT?vzG$`qy$1k`F}%0{5(DJ0zz9w(K}OZGABV%es#|ux=n{)veI&tq_vH4B za@)-$fk>c1o1sReD5kr5i>#uHxtd0+8C#--#ed-HI3NjK*7uH|R1X0saQ!f=(xqacX=7g#G5& zqR)Y=8V|8@^+Ug+P*B-_{IUcB8ZcT38wAT?afqxauX{5HXZ5)7cR6RGdLJ|o;nxpQ zFo4h0O`>Eaz+2VF1698uS*D)OaC#V$O8j7in=XQb#}tt* z0zP*mjXm)GJWwn{ZvHuK4kd-PXEP!$j_!H>OuGpLUln=z*HF%?>SZOsl136A+pT03 zNFk)^1P4V$Mcx*E;K|`5L7ymO6l8~}N+`}^fGq46J8=8_5md`6hVUtF?BqBO>+x0% z82yBbUqcYO;PZ*uD98`4#sLmB1}K1ZPT=5^5)v+CZ~2;)#mBCdaShSwo*9nclL8#_ zk$4Zl$N$dJXc_Z8NvZL|Ot9||hED{0qUKO?6Je5|kieF8=z^#H0&(8rGr6|fthzCDui4-(xd z>tLm*1DW<`8q(oljE++1PM!oUgA;+uA&xD6~DE&FamtAi}l05N)Ec^$BEym?nqs@uXcau&cRL#pmjZd06c zgx5X=Sx1n|HcA1&PM|`$#z0N|oxFym5kM;ekIrm1`hf7ylA9U`-=h%e&vWnFc39Ge z?WZ?y`Q1B`C9wulDW|M44)+UbnPz|ODLpsp4rv%dsPm78R74(bVC^Mseu)_-=cbL^ z+HF+hX$;ncasTT(WfCGU;BwbcrK}!gyQrv^m7rmoeU(Uw+9XS(%)(y&*%@Pkm7@HpYC4D<%tM z5;bXh%V%d3V4VO^1VmIA1KyA8K=^+`;$-bY1jK9r^D2AT|89}cUD$^#{WHem&tX|Z zUg0%%?AJ24`E z&#~-phPjJ-@#2M-8`Ky`IYo{K?-SfNASzpi#jO>ZQNjU#Ntm(|O}@W8*e!Nxvwv@_ zf97p*4?#rW%QHTHXQ3K31_bChT}sP~t3QkU6G(X{0DjIda)WYzq%Avbv}@eW#K_3+ zEX3&JSa5*A$Nlpz?CI>~xnZ@pPcFzJ^&50crs{A}Z6qtt0rtr$q5#TnjFj~7H$A)g z^!w5d0*OBnRtKp|-v6A!he)6_-e_+|EBBm(glkPLP)f4MLKqC@H`nc33Ih*Kf4xP5 ze#8g0ScT!KaEP16u-sZ7WmbdktO@#Db9(MipFePzNz5xpd zdrEp4-P^X!J*ASi3;Ss#U^#tt!mb#l0O{~9aDMSx57k-K)pz>Fb|B#l0w9v>)zWke z&&mRa+zj1{lYMt?7#O|=z!9gj_ii*cQuiRC>IYC4U{y#?4uSl4UOhlIe;9@xxN+hU zY-1{q zLZD5|L3Q*`I(X?GX>bEn!Rr)Hu~?l4GKx1HZTea*uH1;=Q`?!t5+zio{Y&d0^{RR7 z-0xMWbJCRXws$n9suIe^??nn5y?1xKTE}$;7pS>{2>gUpGP?;^iCAS6Kq0zU z(gU`E0YP5|yY}?cMh?I=#iys=L|g}0$F=}BsOoPGr0@nE3HOpY2#MYp>0i1h!B%+V z&GGJ)PGoOFM7d}4-se~2vw%ZYbX)CZA_Lp~YkJak9DG76geQE3Q*S%#T^9DJ$2GB61W)7<^Zq+r+?iGY8gtd}P#Zh{%)g58bq zCPaWFq$og)Gd3})%#%$8g?0`St1*PpShvz6)_{4#gwmHbzbA0Y*#9Yn`gX$x#4P|G z93iEg{F~Y^54>vj{u{#E>@X%5iLo1>{|OkBgVGaBGFb9tmmXpYkzEI%MCs#Yz%WCN zYRXNpm*b!qF@DXSRR<)gnlby|d#iuu>h^B3WcnA0g0|K4}u(n?T>4lfSqjaCZo`d;M@4@-)@obf(|USJQPKQ>_Q%Cs(jpL-yr@NnX{1j8Tw>hBRD8f1iac66bhD> zAVd;?*dF<^jb?65HR&eQN+^pWOG@U=EzzF;L#^l{d`W{VBt9?F;P~IwYz=gJd_sb3 z{#eHAqSYCB9q?zRN>(D)5bRM5x|2YZDyH(V5Z9O73-teovbzJy?%2e=*!kfGX{g3P z?6xf(1u6FyFuDv~nUF0}5IY+42hb@ISy0e8gCqJ?)?Wg|J-00RurTw+1aCAR3a?DCmccU~Y>= zW?`TWNwC=}qh2xDwOc|Nqu{U%J{PUof$9bzt7Cn|mSqsL0sh$g$bF~f^0!37a3rRR z-0=r#RR-}zFc(><)evlN!gq`uEW$a97O#4Hk5B)GEUW^y+YhcFSet-@QM1@}4cS+R z-*DIb82KCBFcvr8OUldA@frt!sj+`C8TS{40B@QC7QoHlS=;o zx>tT5B4`Q;e z0b*+Gu6&VnpMk#B7v3a6UqhJJO)>YB6w{P~g5m6M{58lBQYgcM6+057qr%l?bGH?3 z#6~*;btPOdh%`sgWs*Uw&_$5RAW$b3g58F38C-N8)D00(Y6(pi%nB8_0-qNTiErAK zd1JaTk!9@KSqdoq9pktYuUqKoprrji2!C%30`}1@HAt~X;eLI&xp?I1UXG#5YyYB3 zAv@!cfD3%-&`Qj$DB$!IKU|gsWPm^(pf(jd#JZ+4Y<8~{nB+84c8MxW<|`m~|FbOP zJ@5-q0Aj0XvOgjsARjk_X-$BAf;CrWXX{4Tk0fy<%5n z5I;K%j+|!XH3kE*0ys4!J^O>Ms6$@J)4t2+%k;KE|~FAjtn3ECO@*_gnuZuKeG6>5nA*vEijb zKopr~p!+0jK)K|TH}@Z7$42v#Zc8ET4+VFInbH_wCj!6*6FAMF#lIt78*#{B8O$)- zsnQH;2&}i(st{IoJr0{m4)R2pjfn~sT81gN)32f;8@4YwIpk12^E6TE0&%wn)Yv;v z^_Xe4L1gFmSH^G_SLGeWxCdCwx<|5HB7rTNZx6Fnd(+OpIz?R>UHn)xXTEKu8QQzr z>Gz+5s@Rbn@>cLE{(L@C(*ai|0a!u}6ozVmPTW-l)QD4?Y6LYMT`M?;!gYjIXi?L& zvP&GxHC|9s{nMZu69(%6|Iz8((ubwp|&oUmBE`$3N&e)aXIF zH9S)p11h*N)Q7x8-;JBt0Cfkq+%?>!8Pi?z+LxBypCkWL+kE7Fht+HA<>AtDmt~o9 z`gf*I#tfTHZ-6#LVntUiR(dNrYf~BGnVNN)*B8r9W|~MBZbR%ng8f1 z2J`SdjWP;8FPn1*<+f4Dr4ZrSWZ;?W?y%t`d{e;eZur&Pi@{%t-aEVkGABSl%I z9JC_`u=*lJ1nTJ!q`e|j=8egGa5VyZfDWRaYmq>hCPFZ) zN+Ct|#l91t(vlgHgg$T?cqxIVh0Y0GARd8l#~%#vjN2SS4b!?AV8`orvxY{((FWrX z)2v^>n5Q9r9PB`rF3O-(BacuRn8jKjyi-(t1VuOFKy~HdbEC�GB1DxYKTx`Ju|V zpiO*%2FcUKsA>4Wz#PJG0E$>6G&*D`z7hm>V!>Ji9)5l}C7HYGyrGalN+uEr*H*VL zsVyrI7hBwozwq5Irh}qZ5x%hpEV`s}rrJEg@qt>+xbf^jJbOdpU_@Y6r_kszmQ=dz zk}_}@YK3d6wcQL0ZVV^GF^*W$hvr=4cIv}Ks~92e@GJsB#+hH{KpV5MR!O49QOVB* zse{BKhMh}yG*0|a>tZ-6k%ly4I8VuiEd$4^O{c@4jr|%>Z<;{yY|YNaDtx$nYV;h& z#@qDs`s&^9yJS^M8k9#XpfId=UCS`7qdc-}P;9lHeONt%8EZb4MEJuY67bo|uv ztc+AL`Roy|j+N}vG+m)%X;FCsfLb?fv3f22~+_-S=BhDFm!Co7!H=D*eiom296*$ zQ_q6%^6&gWvN^OKKQpt!pJnINp>n>l$x%zA?Vi5DLZ3#1nL1~sQ1khOD<5rA6SGRr z+9Vd-8EsEcbM-kKk9*`1FFWsIT+=*_-6R$0U&aAZ&52T0vmOM zIk5HU@EH$sv=>jhQC83~EF@Z(=5)Wn@xd{0LkBwb($-@_>{KfLackzOIhrv*!2Gu+|yMa7yaOP5{bOjx?k{y{6 z!eD|b)GjkCn?4bCWqt7Kb@65dOi$d81*YmPa%R_vtvrI0lJdxy#t4TaXa0!jIZr>Q zJDJ4w_6Ww^x%>19iQQVi{{|=UT?9nmjJknqjKAsQ<^-~rXcv?)Ig2N^VP%PX7_?r^>E#VOYmb{*8_3Vn5mk*wgVMDctci$&ZKc zQ}+H%ToTgT&tVo%MdC%^+!M3dm{bxqN_;b?(^yp;K|DcE|ELknpADaJJsM?`=y~ z`8D0_z=Ev363ePT2<_`HPBy|pr&89g^(;b%?W;?17eN?tUsPe#wfTWiK+S4O6(;!-nB6V+yZl7pn+GC9G zym=96VDl$i5?_CtGUCF(iZ1xKXD41U3X01wexSC+;@f_2>uH8<(D=ApVJe!I=J^7KYm)Bv!?0K=Z2!RvbRg#-sY~T zh{mTNT&AC>!<_SGF1;p(twI58J~19Nc-sz*;45c}mbOX&qZeI56KLD1wLHc>Ijo{_ zbq71zPv}%OI=j-_1;O!S1QaOC;Hn-FjDRx97>zc{%bK2-vhhx(9 zGtKtTMCWP=jb0k=^^NhM{+Y+S>l2Z)T4vRPNLETKNNepFG+OhvA z*aCY)I5E-VlWu_%`O1#7inu zvO&Dt1PN9KBzB40O}81t<9biEsAEDcq|WHb?qmnjdu=+iwv1m7BNH;b{-*ap#8vs`2E}2 zJ@kujZ-kZg&+9Cl6_G5(Ozv1o2m9(o)Q9V1KkgdPV3k5{i9e~jDhV}cvi3omr}(c2 z3CYwBSVI-2cqLg)Y!H5IwgFC`)hB9bWp9mVAVsqDck{;lZ4P4uc4d8xD$ASCpIVeB zBrAISgMPF(KfXpxcoct4x{gbL<8IPsuVAytu^CkqofWlfKV_Qp5!m4ED(*S39Wzhs zl=52CKgE8{qmRIjI)Mkf*QB>xv$Hx$!>$vy`_sJ{rqc9@EU>&^)6Tzc`q;XV9&eWH zR*^)Uy?DfY5AB}%HgkE-!T=i+_f`q$;K-5wYKZA!qg`@as$*kg&%ef~n2u3B&EiW4 zUf5452<;nB>~MHF;fZ*OiskM+Cxyj;)b=8|~V`zBe>J@>sgA zw7&R(M&mkva&(@0H`td5IOF{r2M8mWlFN)P+m#Kq8s$y-ut~I7}pZ>dc``F zUn5LKvJzNip@D}O!EY6Jd6fFQo2pXQnhtH3x=Bp-bZDhmoYL6L7q^=QNyU9v9PLe$ z@M76d3Nm-H7tX(<&rYOvl9jkWHzm-7t*d7j&>D|O>QtBa3nK54w5+$$6qt=Df7 zw+GG66&~JPV~M4S8ui8NEQNEbB=!WQ4diTKy4NXLC*xY)IN$I)d>Ig0U za-SwJ?6Ae^0QCrJ5&!@5oPN*>&s|kz!`s zG~?7id_Mq^Ogzz)*L04RmVTqa(rWAZO{K+MRRw%O&E0j+u7egIT)CDOqVux#Ma)KC2<`C#Xyt75YX4E&HaI3a|bck1zV!!Tf*> z%ba(Ki@k+5?p)(|Kg|415S-M&uaDk7fZq6n&M%?^tS7i18Z}acPP-s25xpd)y1E)` zN^G(Q7w;$>cxi;9P~yv>rK_<9&c|QI@u{y|Pgq;17#*ybEj=$;IpP;*6HAvKP9^PN zpXV>4G_}&S^C>J*_@y?%dh0WR{?TxnZfz#8`0U+RBVQ}-@eq#@lAE8{C%OoK zj`%WYBTC3lYAv>l_O&@j_p`)9KTKZJpFcYX7f~qSs=TvDvT$#GoWY%yx&mG8#z+Wu zOS6OW{(NnZxSMf&aN=^N7Y@p>Ro(Y{e*HDT=IFhgebGGBz9OgB`dI6=%?&#I=N_CO z+{sgi4G{CVMt0p@eUvJZAlAj6EptX%4o>?{I*&_M7VHR`%##!?WrR z_Mo~V%O;!+$XCjQvpMgX7RKB7p@C1zGHd)(i;ET?crrvw(Nt$i;$%mZW>0w@p%f2> zFX!$x7C#Vu;+f#2$nZ$gYv1fnEO>N=W}}rW`xL@1!mCS4%ipm=;yTh*FwV;6uxBU7 zo%8!o-f|YPyx-q7W4$#XF6)a--2uZY;2*TQ>h2Oe#%KD10ot}*D#RhCb);Z|Pp{(G

zZszR#V9#qyVb9J6fj z4A%kWJH;1*@J+dIprwu#4ZBssTesS+D*aMnWZVo;C(^L{uzdW|5mYMGc+NCuB?o)O zS4RlWK+A|wbT95*2u@WwuOb$%NnXzXeCGAJ%E%a-7FjCxq>ac&#SVkN8T)uPioQ6b zUD%z5I)fwRJFJS^*?aq~#r*mOw+7)QtOGoo33ZZ{Td5Qp4>>v5(~sH}PW&)V5eZeO z>{DUvycynFVOg}X$|CSzwHDMIS`C{L2~Y84|KvXbPu}-C(wApc5Uv$Qi4?>>--FGv zeEJj%Fsa}YRnMsgE-@l0&Vab8>man{r<(R3pRNmZTGV9Sz@akKBne(Kz@ z8+-0OPV0PQZFNL|W$cSR`$KmfEq%*=JB@W_zBcS(neHJ;`Rv0jSc*$hp@>Lr5MK8; z)tUIS&Et-@nRa7$2HMtTFp{J=VbdynT9X{mdhLSdL4CY!=eNuSTubXnk=TbvljlbL zUFcSb(g%|B!v)l~Mf>!3TW;@6WRW?PO{gp}&%KT{7X{X`g78L-NX0(fz?FyQ+J89= zoK8JOWH<;K--hu zhwX~rEtB6d+B1*hnfJ~s$XB@J&$kZXIRim#S|(*jpWrSC#6=Wq+QtR;`Udi~$~exq zSWKpE3r*OfT8;s-useopU4Mm@>{VL1)-TAivv!5Z|jq_>Kz7y6!l*B zcay_$E$x@Q8Q7{rFTk-EQi|lU(5HAa$!lpRCH2eYIE&7MEt1DLV1aAAy!dhuezKUe z!#R`3B@e96U%T{Juaa>NaEPV6gE|aeCzoD(_+XPs#6Bg^)s!BNkgtV5u{V|?2Cnv_ z%`?fT{N&r;&2tKxC|L=E7~3z+1Us0r_5lBjG*GPg4yWbxDWLxopTG`w#r(yL`Rlmq ztsq2B8kF5+Tqiew?NalEIt-4N-QoRCUw7IlNUF(E^~lct?&*8X;jJnr{oM|&jD@ZK zakiv}E0Mv|5F9rH&HD#+T-Dp38&vx1l_hGZ26A*Z93Ui%(o@}=Y*5`3h{Np{v7Hzz ztPH1y_Ur6Z;;uaY=bD_NdB@rMw%5)-e=S4ef65 z0x?;g6(V7gial)Wi2zSc{&}gFNh0lzYjqW@>c=!A@KXS$m%x`)+CklSvvB9T3pBp5 zB-lp5xS+D<3WYw5N_B@U<&r2ZSW(uyqBJ$bPt$HS`-;TBpRq8h%WztFfWLQ$hq)nR zzHwPlaP>Mn4QKj<)ap~br4J*u^2ew6l{(q;#tg7%N^fGB@Z>*WOon%28CZeKRSCDM zl#;T}I@y#+TIiRx5USzlHE6&)s<8EUZ)XpCz9xF|WLulgWDwp#s9cKgQ-G&-w%e#v z{dpSCgF-V~qJ3CRVWW(YpNdy1$g=^kiEXVc8E3uduv`cSqbw8WO?gd{2fsGS4d@Z$ zOJ}AEcCcrPNbkybBkolHL8!{x@dN8OGnK=|et|}Lzoh(^RFxt7LknN2YJ^L&_=XD? zLX`!KmrmEp5;pI^14Xiw6z;S8|L z!1ZBsE>FjP=a?LI2o_tdyR>+4ZlKTW==(F$XFgzeAJX=~i#ndoL@_ptAoGs3e8K4u z;gRO#;1=9%qMRdT&3;~7Hncb>z*9NoTy+FfmxPGq&ytS&JDc*vmBII&lN7i9YV`(9 zmkB2raD<9nSEuW3+m2GQE7hh>DLO!$c-^*zh*$DkUsA@+R>!1dn{i%|>tP1tSv_7` zPI%(>>N+5yD3P#&z65rq8@?P9Zs1u=*7i>knG+Yb`~*i->-mc>u)w7H>Z;(G}4b5o90gm!arT!<-HFwYE4Vp{SA9T@WaSg(A7BG`1Il;loV`tWHZMpw@ z?@@wC_x6PkTbw}+IZK(bNcdp7G*kIL4OpsvitB7Vl>>xj9Y$UGV)F|_+@`@`D=RIR zbuNlnCoEE=nPh84-iHkNTudujX@AGTV4AWrQAs!vB;R9~p@&)4IRN(2ba?-S ze6tR%o0I=W52J1zrMRt(-{<=f$Xvb@sCzM7T=q`#^Y^#vxP~7*7YX!ab@93ER)l!2 za{V&(b#H~rAvi^nMAU%Sc=YrNJjDm<>8?_qP<^UR`ktm-dB*3w*`PdL#%;|6y7k`E zX$QM`Zp>n_S{0@U*eF{lpjafA6Mv}romGSmaXH!x#2oI5cFQh(T|uzEirFE_a4+uuJdI17^mRg{u+xSMc`G--3|-x9@(|H2Pcx%ESlQ7ivOZSl5>D?DG6j z?{_6(pW-*dc6zOM#+rJYqnhb>wFfgKqjrhpg|7Hp0E>2EgSS_NZQUzNRp@`*z1A^Y z-oc*49&hTh=ceWAnG-#u`#h!znEg!sxZS;VIE*n8oJj#kFRkAkQ8Tdpz3 z9lE~eFU`mg*Sg_j6?QMUuDl8&U+YOPk8U$p9#m4V2RKhDYKWE9)M0U%zW#Y3rYVjk z2wyW}ZE0p+IT%6PoDjsFiSwn+o*Yj~^D+qm9nh?mkYSOAi!_`^qTSZy!5r#r8u%cGg{{iG&^gz-*Sp@0a*|Ro z-u@IH+uwbUs^?Xdh=_9AO`oOJLlXP2*l2T?q{YRAI4`RFg53a#lY;P63}*{xec;88 z^^FN%yC!X~%+9yf+ZAg&7g#62>q>vM4##zJvoEwMgPY|(X1PJRx=S<31v@ajkVuN` zH_Jcj;oe&&YhLhH_T8PMdurNNZ%QBa74FEV-PSKFG<+5+J}=*pkawe*)jq#Uq7t&^ zV^7u0SU{Rhg4~w`$s{RVLph+ZZ^7&yV7PV%LCudaH{fSorDWDVEd-*`z?X5{H;`SQIXu!$K4fj- z!gytuGxu87qUB0wxMSj?TfL-Jg6Q1~vY8KA@-MML+Y_E+R9ZnO*7TRGBrK<8PfGa< zk)Howl)ZU4lzaR)e$FYCR61!>S_j&&KUBBP;T-WcfS6qEs15K8%ka%6tkC7nC>E7YnCaBk+QeyzpBfxK zj!G)h>Lq0rG_zMx-D=jAmnA*Ad`rn_DqtSi4FYcT;G%DgMbyj9ITXE!ybV#zyPQ^X z$iv8(QUxHKtKglyWt8oD_~FRd`2_qfH%*$FA~`Bm`gm!}{m)HJCqhePRN{+L3E1t3 z#id{vt+HF$>CtZDGtdZe{L!~Me8x>B9$YI z7koo4j9XqIpVo%TgpRo(L~Y$GS6b}0O}wq@W&0#xQw6sm(*jq$?5Bpvtl9lR%wq57 z{m|xACq=eoVpEsSARRF0lMAX=Phs8C4*6O-VdUV8XH{jtS{U&=TPY1Kn&6^EG1CZI zInxmn}zbt1T9heTcUxNAIFI?bQ z1fkbPQYAk)ntC*x(E5f5og6Wr5%l{CM)fW(5RrK;KkrQh0W3SkkceC=$ftxfj$TN- znb2hkOl<b@wox&JO*DFT;&F{i_VE=T;(`T3@OST#le?g_0@RZ_u-8{pA`lKQs%w6|q=5 z*Zbo%&PK*kQZk_1d%1U5DzY_%v|v^G9wyxUqM3Ka1WReDhncy)q&tmcpf(Qznshu7oDmt!oS zehe;9b0f=6X0X69S%no#o1++mlww}&^cGWNQ;uM0W)*0Hs?M7hBV&|ByRKc`X+(996@33}0+tZj@*HbvJYymJ2GnW? zEN;CJGu1H?Wat7elPggDgW$azEcFvQJg|8A4%kIv!Tr-Gh`xXb5EF1uHDrZtt|eO8 zL@xMV_OVwLHG64Bbsad->~%%z0&z;S|Kf#Xe}pceR{f#R)Ik*@_-fytMvC*;?>O zV?wN-iyEUEo|Mx5XCu;1NTpsD~pP9tsP)LwW#!s zZaYp6y=)u>quSD9w#BwRta>$(#mkbLJhq{-(zAA-|GhH(363_ovO8BjzPV8(>g~Yw*Q>qql9=Si%3Y0{lrtNHeva zyV%vcc8CJbJUO$zH>d<;^30MR>MHZijkiUVXNBfBNOed)fe=^~%Rdn+<>fAAgulQf z<#$b0Z=P=_xP$$K-bqlk7;Z~)VxCQLtR(qXEA{t`WJIMatg!nOOP00vm=qV61ZXXm zNtNDgNl%whHCG~9R<(1&``q%V-EN=J`C5D z!a2;(0|nV%^9Z-7*cSm3hRTog;%Vth{YleKboNI^{oC%ogS?91x0N*48^%#Ho4qCl ze;M`VUZnQqzkOyi>#t0b^c>pxFc9B#SVKd5`&gIsFT?9r>-eLkwUxinwh^iZf$o}~~ z{q;)b)pKFG8OLEv))8ga9_3WpjcxtE$X`O~fZ7W}uEARe)^rrqwoC|>o7G_ngfLl- zO-eWjpXqJVO*y+8a^Aa^Hdp7L&(Pe*kh|X^rKFmWlT|I?#y!dpu6LQg)37$;bL88} z(Lz;9QR!wtzf&eeGRzSugN7E_F5?(QBx?mF`mrFRJ86WBMi!hS+J zkHbcwJ8#f==>6?6dWr@rc!TZL#AS1<#<#1KhJi+8UEz_R`>>f|uhX8=u$5N%w|Axd zAsFGYqd^~A_EW$r1EQlAR_8J7<$lfXh4oziTI|rV-!zRvW|*awD||_^GA8eYRHy^V z^ueinA9ocy2eaPJPxcNKTivDZD5OJ~{D(?6*!+GxG$kSQTc<7l^=|7;LL{%+uOal# z`>n;ZV6aI$l#RzMI(Mk0kwf)1?oY{0KiDpHJ!;vskyf6CJHP1MS+v0|cbsYwW7l8n za4W%nIcQkdl~wGg+$C=cKGd;>;~hSe+GE`@gc(%>emx|Z&FD5PSA;Fhx2#KVXGW%% zEKW1(2s2XXtRge-k+E0kSfM_sEYsqMEZxdU4V7L|51MgL8u(R0cMX5-%MvwQJtNis z)AO5i1w@-v5oXvFPL@FwgIhK?V+D?{>{pBK?tZssssbm3-Q96K=4qd$zjkH6cwJ)| zc{7W`Um0$sKbyqaTUotqskF%sD+#sUTjp&u=}^=+;zk>2z9k z_HtP+)6P{vQI=$vq+G|eB3Z5O;86^h{o)Z+%cZAqilI~-ZvdlwPSfygH*}*8nNe6$&twpZEHTMX=T`ryVt!c@>^rY zOjeJno={e-7}?&A)_f>gs#Lt+^Kir?ArZwasf|(grOY3S?a!5my(;RhtvU_OZQV8d zm+cBWv^@Fru!&*u)p$6cO zU8vZj_trfOC8f0R!MARA?H-(mSd~xsNp4Kg`mIm0JCNOqJ)~vo#r#h&r`1v_?~0>Bj1AOnbD(!UP;ux%%T2;@8io_d(93T zQ4;bv*yYWmvZsRrN9e`FUVV*SRM(|@rCsUYPXBczH?qG6udBfIwCJLr+c(m8h3414 z9xO9&WjSNF`$6iS=xcWj&CoE82ztLa|9^}id3U6e1TsTGGYr0-XOIIfI4)%=nX(~E zjlClEX8d0}Dg6=m?Gu_ofiEtf&UOWyB<5ZCEZv&%)dAxz2G{HRv*HN8>*OVh#lAzR z6}Ivj%QLr44@u$HI(A?_c6}p1b33V#ATq2BQiu(YN@P$qkNlbl7$}S)vaLD!%jBqB zjUlYmEO`6_IdYnM>LD+ltKu-uPD1x^{A6%_d?{IL;h=?XetquZR-w0yaAXn1@ zLb*VsX~h6>W?hW(vwM*-6F>U%kCf|F!Ti%>2Kd zG9Z8W0(pNae-(BcY2J-q$-FRtHYQ_73D3#TSsTB-l^Zb#*axf`(_G&fvyC^46+*BU zcZiYhy0f}3q%nQ{|1)O!)HC|4%F00H_G{8anPN0mM@J$!b0q);7@ngpuDCEU@RFR;_)+fW9IG~H4eKpfu!HO>hRAjw^i4msOs6*R>`7nmLm7K7?cb`u(Qb&jg zF}54Vt*<0yg=*cb3vYwCf!-U<>`t|Xf>PIkfaL3c1Cmgw+W6R0D*i(ih6+>sElG%J z?1}qhGyC-SfQ3x<#V({+SABe1WOA%Q{5mIj+n#9l^!bc80JwDIuFQtHZ0>H=`3VvztON0&;1hHWa7_OgV-D+ zs_n*0oxrX^XRg^%4cY>Qp9H~uX?hkz&e^wFJKG8+P{kGnndTdFFnR+?*|%UWIp;g! z8tUGw2uX{RShF!T#9~R7Is)|IK^tC-=NIY=L>4o59RZp?J|!~wcx)okEE&>;A?(p1 z`M`OgKb<>%tYU6)6LWx3+lBe~Tzap+ftRvHJbq*H&ee~8{X&N1s4Y|D<4A7N($6Ni z;)WIPY?UAQKVj`FQ=3NNeVxHp`r?y71A5U$^VZ&*!!97q>bEQ%UW_&L2xIX$5tZs# zujs=^{iL&`<&Oa0KC|{f0fZYzQVGNWnWi0SSaFMATDOK`J_=r_lT+jF?ybu{XrQ6L z_;i=S91 z^W3cp2D;I#lv%IACHX3eYS-+sZX5}1G@W%1u;K_~&V%KpweXS1Z^7L?GM5kJn^EiE zC5sagh@{|2%EC^z(bqK;!$J3Dzl7XOO19t|PZ2+)hKE4(~>< zRd_|LEDcg!@I>jq~IVb-nABlA7R=Z0C`QiQF zNe}9Rj_8jpz3ft=^^nY{$S^5j7J-D;H`)^8fFTCQn*jB2Qu|@~E{txbj{E^qw0+}p zBGwWRV*IdY1|4;5@sdwi0{Pc{`9C^IzQ$WG{`jb7L|s3N3oLhifgJe?+^%nTRk z>K*8CzN2-0qVEBgm=Dw>0Kt8ZQ|^gvGHp!>yD&Wk`4u_8N+bZdXz)5tv7cN`76L@m z*q*ynsr_6C0mOR*toYPTQ1lE4PmON^-k$6_NAvD|<6xW$#VTl2xp)Owz*%a!j^S6Q z>*eo5vim}@X+~6q+(_pu0DQ2tW&k$F_1^n>vO_USEvTBti6iGY9!n*7Wb3hV00(C+ z0KU}_c=5PPYBIguO`?mosn!L8CMpT7?jqh2!eVt$tHid46X31&Gy?n6Sl47m!1WbY zVZQ9>!ad5)J@AcBp@0mx41Qmf+xK7xlbtYQfMBH(fFv3&SX?*w3eKhxSwEws3&caA zHmL+a3Fi(y)*SEiyimDLR_;c^7-&N5;y9@*BETUeRncnfO3lBn4ot7pfV z2BqI=J+@=vcM>Cm4P)Qey0>^8L+jDXZKzEN8>YE!Kt6ZPeD76o?N$?=8n@gAtV67F z%C{Rmxvru{WtmSig9Zl`;yP}2W`r}V7aTBpi5i?Hd6Io#@r*~b1b9p zkxpPzB)Jj=XA;bRlYu=lm+B3i(>eCj0}u~6s4kuxs(=M8{)`er=@oYq-GTXvsMO_H;nWQm5X#nM3mAE{wv((ndvu z^%1^WD+x{L_xvGOxbRbF`^5aPeBg~ZoJs$XqDhu=M_N+p;^r~x_;c}^Dxg+&!TBQf4PkyJVnR;12NR|Oq*4BI<IG;Hnw*@RVy^l|?yqmv;qmXc{!NDEcX8jw8YWlU6d>x2*UiCm&06 zjGr1uEs353edmbE$or>2BRnxcxXHR$3TTkTNcmJOHaph#i3U8>6y+uv=~UlGo(PGG zg?}BS95C>HosNQb*L4C71+}Q~yntEinX1I?BO;M8;3yDiw~)xf9NADz71bD5-H+U; zdI;RJ&HeWJ#K@TwG_@{yOQP)OzJzJmra*FRfVCY-1GeWatFD9QX=&G(fDy)+gBCIa zgeztXkL(%gOAB!=ApW&wN%Sr=tw;RfkDVlcL5z`<_@ zRSNyr0Dv$iV&t|kckq3Em;3E!ItJ=S#_SodPCdo*q5*{SL`R#HjWGv|dGg7A5^TFD zC(L<-sAwAY#A$l_N}4G1>cDsn3rlMh5Jch5Ng3k0w@BkWEl&xQ?mr4z7hOA8mU! z3hnPyxnoa~#ihxX3$~AF0sKMdo^yv#Qg|1Gu&7FdjmyuHZ~fVkYQIT5paf@3z{v!! zc$GQ7USI~@T)&0oU>RhDOmBhX7_4d+v#Y6u(grz!3M@;a#M&sOB)hMl3Ehv*w3T~q zq*>Oj5sqo95%)FF7=S@{_Hx(^t?Z2Yva!2R@;)`s3R1A!&!|b{2#}s{2YQO z(oViuSmul+sMKFh)9nqhF*nnfwf0Zt)Hv+hG9SXLgkvf$sn&lr%noWLwf`7ubEq-R z_FMDjW9#eJ-*DE1U|c%aL0a00k%LlVW#yGAu4lf!V9Z}TEAjY(w}C49cq{Rv-$M3Q zze0Eu?4Z9LDwqQ6Pb2rB6u5IB&2x^n?iic)$p^PuGjlM49KXaU=#fibRc&JZNn_NB zYg|mzDz1(e64{t>uMDYKF_?^=m`t{b-{g5#aIC$bKyXoW3%mX}80miMz3gKv7NU(Q zYu6;RIv0w=w<0Wx;~RObiAiCxJo)Th{aV+E%<5%z2N=}jLoxB#6Rfho-*%A46hjxD za7Zwtl7~xlx*$UGFuFqx7Gd3v#Q=FDApdMtGyO61^Kk4;9b3{f`2D5Do3|CeYi)+{ zE$UNG9N3b0)ctx0^4{(FX%>C65AW0Ko0*|+HRMT|m=raL^Qdjb=@xjiUQLY~@@stQ zq0KE(hl~r0ryG!}mHSBT##4{Q3aSv+m^I|5-5E(rQOuI-NOIZs$;@fcVb{M0_fbAF zWT0$f_aU(>+b5o9c*cp5qNCBq)ltl^nVcwz*Y>z-)N8x$9LF@?4at-ILy{o>LZNZ0 z9Z*w?(iDC@juo37`2KEc?>$!PcGL=%0hRMC2Wta=p%ay$DB9Juf|(LjBzU8T0*D^& zD~h6=Vd3q&$5J12w-#n?oA9dpw_IKLcFP|z%P)Nwe%JWwlG(V#E3lTF)8+MO3Ig`SM;Vc=>s6pC?zOB$GZh|9LhCdkn}_oZgrP0eR$ zKAH4-vP_QYd1#EX$l6(jW{5B%=LW5vIzr~3|GcGn(yW0JBM z4f|zow4|h;wB(6EqHOeD!SJvX1GOgs<_*yCl&kOYzAq-&Y77G~f~`%tPCAuvMW)7P zYt6OqecQ2`j+kx28vXX&0S32m&ODrtZt#wl7#{kWf$gA2MJw>L|)pf{OQSq zVb95>pw}i#*ug7tbR`xq#HOujaX_Gq8H-mDB~$IQ3HXU!FRL4}J}P{-`*v#JcUc$4 zp=vECqDM(24#YYtd{|EZ2<_YrqNAn|qIjh5Nwqq{#6SrO%EQ+$E4GO?gcDH7k=wyG z=JDUu)k)HTuQpte?^mm_Z9=#_8UxRs>j4%WqiqvU-mB{U`vCT>Pe$6Mp_px_TZI?W z1+?_D6&YyWRyZ!@cwNV@AKpr)FJZCttU_q66eylUEgP>=_j^_KV{I&BBqcTCT-G@X z)VAP%D2x7mE+N#;}YPpDW=6Ij%`tQ`0GH&imPjk(f|ahT+E> zl39Qg3iMZV@wFmp7wq5{00b#O5+X0`hG#f7Rf9yj8YX_sT?LUaaw=ly_T@za=O|3Z4S;2hTVQ*R9qmTDJwRs5i-eXoz$ z^I=jWtN?A?*YZj5q8BGe8ZIZ2==dIqfD~s8rlNZSM!64_{g=RR1umEn$)!D4bCT5E|S;XOocRc71K^GFIGA94~*x$RIM&o#@yAqu(>htZCtMeMVGF2ViPR_)QnV$v&V+3LwSlq&wErvwOdKY)QN$cr~O=iP9bcR zGyT)J&ca7X$jMy-bpe*PF+3sr3_h3mhjclIrPvcQT60R@LWZtSwBQ z^dV~azFI1@#qmu$I(mMN_k6w(u+bTRyS6jsmKdDwG=-<>nxy3ldZ(Jew{RwK&!^{| zGl^HIO`!CuWg9Fqm}lkrsLNzmeU}%R3)Qj zv0eK4Q`88+9&2(coOi?7SHACrdN>r--G^^$#nyvF62%Zz%cOIyFnM#M9fUs~Qh%vX zf{e(Dyo|OcrYx-oAtH;q(io}pprK+;GZrL2W8TK6s{cT_75xFn8A;F&$+ zQ8Uo9b)^zu=YVB~o(NXoEwhbRCq}b(9O%Na8z3wlr9HBDjz=`$-vUZ%VseXUqEq`t zf1KRJClV=)ZJ87aNMz&uqoqj0{Zdl+>ZKvKq%iG4ZEL?II7Ww*J!1vB!)%=^a5m1w zq$BldSJQ&-d2^7_&@`h_dlfGc^ZVhPODpu;$c8^rGwD$U+Q zT}bX-?&5aIdmdpaU*GgsWrA`v53I-`&Y0=f$dT6wFL0W`+@?V1@HmlSrLW;MgfOI! z(*jlf_bI(a5e#4!SnKmAa=um-F=)e5l+9ZH#%SMsmw~!lc7Oe)1EyC`eL8Rs;fzV! z6`pV%SFQhwrO8(=H8lR!xE0r+f}41<(h_Tsb}RVOd+>iYQcD|u=$M#8{pEF-lxP-F z^2N4IptcGIb48k3?9sW6HC8OFJCi++JPyU%&Ba*>nFPlcjtpJ50Ys!t=2VBIux@z1 zbp~uW2+`PuU;v?@ja$gTV!iw6uX#pf;{qJq249TFf1rV_F;vAE$+={#xXkVN>%r&` zsaSD;tKH?%I{6KoX&05CHP4xPb0cYSSwx|z(!6Y~&ixu3h_MkAcXT^y3|;kbmqax5l%2=w^FMl`j^d*p_30eNjdNu zX>FwFBP8D=rSCT_c`FY=&-C9`-!Jke@4(J+H3VSVWY^Z z!|@R9CMqT=sD1XXp#4dRP;QWLquC^Yi0g+x%;`ss&t zfR6v%@7KyqB*8dR@n_))T2Iy=wor*scMB^MK{EIq;Ak~gPyP_JBgqG*xTeR;(v$yv zbVCx>Z7M9bFLJLZSJu{M#ul}$*&D=wG;M&_32ysH=vw5+H(dn#y+iKy11oY>tpQjV zr_Xlxu!26tqAUy?Firxzp}F$DW9DL>c%G%k4b~ zb%p3SvSmJyl?_cmuvxcbUsTylgdDrVbn=FzWXma?RJ10s;mc=lK!)e~UI!GXhwRdWTBlykkuWtk-C zs}CR2${DYUh5-tjozV}-K)(>JEh%a7N!mI4(LLdvO>Scy9dp@DOr-h~KeyKSZ^^&k z*k?rTneo@_i_~}Cc~x?5=`_ej6QHQ}SU=B}o*9rEzSTWx<>TYctZF^&oB{Chq#N{6 zUe?aKtgd=Io5V3RrTVPT+LZ{8zySV}o`Hg48+GX`$ZIj!g`$j=~hf{kT&|HmcCfLqn z6;r);U?*EBF4fd{(0LYn7ki~3Gl0-%YYVQHK(Ov@MM&Xq{us4dALE1!|Im?2@B`CG zRLf`e&XaCnS##Qeg1ZA#n~Jpj(Qh{7l)jSgLcD*r!0%PD$xyH-<0w5Y3qKUL=D{MX zGCji*AoC7GdNoO+tS5abOg>Utr!t`SzIM59qKfcMZ6XfdP{!JFzi~ql3Qp+T3`ztC zj5wHoK3Yq9?5=ub7c|0O>x!cD5ahrv)r+{*DAh~MqT{Sux22=eeN%+a(=-?wHdURSrfJH9-(2Tl&5m)1o&CQJIjYYjpMAX91bPvUnF!{{uYe6ZC z7lD%4Hxs*(Bfv=(18==n6D-ok2#7_V7>&?lCpvZPG|YZ=bPfPi>Gsw5r=$Q;`0JS0ePtF*tIT3Mn+aWjln=CiXI$cC}(yc}*@nRXdE z?{|`~o}`ptq6RPkhto8R=!D7@eo()yd#;J@jaXa+Q8olMm@vz|_`c0R>h>$++j zm4;tdnxV9Wj&o?){vn9Y_^;I;ekW;&KQ7SVwaOo&YQCeE~2WuNu+SCr#4)l&H%nYBG2qk51fcJah=4EziSnx)TJ9OVV=cIJ1 z$NXY1sSY#dwuw`#v(|@{UBc8HFRiB%%vU_*Gd_eyycmKvrlhNnZt;}d0E3_b&YL^g z^O$N^@n(4FsS#HihD^JH=RKBWSA>h@oir@tU^SqO*ig^z&rLj!xO^D@&UdT*==g)Y zXv)+ae*bWqdeRX*9=y?vK%s=u#)>kiTeotj8M*^Zy|*QNyUw*D+I3@`&X)Oa2cbO@ zx%$_*>>P;w;b+yYrrjDl4)?R~93g1{iQr}dxd>mPWVpZfsJH@ZYD5J?cEujdBZR0n zi&l<-uRcb)m!@)8y2(w_5?Y={eGbYD`I}@%H0LM6o;CY(CFf2sNvn^aH*qb z*G4l|IC6CA6ZuO55UNP0Ypv&|;NrxA=xQtWwAH?HK~(eziL@EoZ{0A%TCSzl)8J38 zSr?;Ynmney*b$iK;mj{F3ilODZ+pk(RJN*(#xSrb?kb}a$>hvdW&hN@;H3n>%I7BW z$MS~+qg>oCf5okRb8KSub?`iK;AhgsRm~}z;I}74OSy4hdUGYwTjW<(aG@VHfM+lb z5qa2lRld-*6GpXXhA!9ze5t>j=3X;+$$9v~lh8H6+YXFXXa|h>g`oN0hA_$dob)%) z=MkI4#Tg3&Gc^}Wg%5^7)x$yw*G|4$s#x;*XG7=A_DiL-BAKV*SM(YT+!75CCPT2X zs6BDlgoXu1yve(z*KDmV9YDm9y2=tmQxYCM`bzb-U(kadA!8VKABzk8f;Q%^osFLw z$1kn~jWRs3;LVsu$^c9%UkQ4K{#WBR3;X|FST{whAxvi6SxSZi{%Y6bG=TYkhf1n) zQTQA@H(3{PIR$1Sf}uspgRXJz>ab%bR@@O3RQ^K3Z$4N{svI!p+QV^Kzx2-6J=c}v51 zRw~tFLRr*|`!Nz5M#Al#LJql0OMua*IZ7!zxv`*(V*e#4pKhYf^hvn%pbRD<5lotc zx-RODp89F2$NOIGye0{qpxU$agSeVKg!!L{b17osD-T zrEKGB9dO14TBR@jD4feRu>igX99OhCk%{XH7vb#ZrK#j3s&9Iq@iE})0AX9gj~Vc1 zvQ_8YF8v97b)7QE5?Hj<=!=XGh@ZM%cen~=y=mCf&M|NzX43H2#V&Geh`Zv&;aQ&L zrTLOV)8YHeT(q7G7FNO0{l@V8O!IRxts$5tf)J@{d36oRx*xa^vwVdMZDrYBXBeaT zvnyTj!7c6gxWPr}&Z7wfo#;!HOgs#v@na#huuYqH4&-I;_YY!@=cnJ*_5vui#-R0T zd@5lDJK~Y^L7b#45erX36kM3MpkaQJ{0$ZdNu>Pmo!(cI`$5U_PNCpmdlbVblvfGv zUWtes`J8P4dU-DWgz7`$LbRS|*l@jBD`}k+4Y3Nv9X##TuCTmcx8xO9xr&62+XF9h9KY>?cJB*X{NRw?6>roy9h6JU4&XL!hw)dOYgTQ)qlseSdl1SRb}| zEok!D$_&5jmmQlce2vQ?l&&^W8ZbU|bqi=6Ev?zwN+H4$HwS%i^g)mLb^#6br0 z0o%GYCv0hhK$=BBsN34a9YvY~-qlJXJq4W(Jkev?I}*M^YDzC4-Z}X^zhKz6&LCIP zb6}8`tVE6=KHbRIy9C;atheHl~e7bO| zG-iMox7`f+2dl1h%_KLzx{B{AtdnZPj2zs4+S=+OV+jNr|Brjy2KBBrN<@hqk%J;m zE%yhs|EOq`cg-gBw!o}(m%_zC4pv-?+S+zvhq-st?q)uaIVz0< zVU}KmNbtd9@WxTTYg2;zn)gJHruKv5ZmWu}kgfH7eK%rwQ=wI?{rT}Ifd&AMQFzy9 zRaXxSGuiU_l5ib;{qP?ygGQjfW6~$!WXJFj&-%}&qEI^eoB70qv)+;-Da!_JGXYaXrqxt2h@`R!M&&vUHUVh?lHr6t3b$dJv^zD?BXX*5E~mvN zIA^3&DP@*yv#n-2zDF1kD&LVMjA6UMC&b@cPjVbz>x0?Kl;|i2r(RjdiDUzLGFkuk z_kO7tVx>hzJu|*XQ%je!0B^wpFI4HXOAYgSIOLM0rmU&E=n&fqnxp|`c`iNT)|sHU zd=)SFrG5fj==RoGk)yEj-oj=c)6hCEf-$FlA4hGME^misSbxO88f?ubD@IqyHxfiT z1r!9{@R|{x2Afo7BNhG~LF(7IH|d+u=Fs4JH(H+7v$XAY#*YT%2x~cy+QfS!6hB83 zG*$UOBicxnez&?N>tno)znwh&=w@ls?5Or2PADPbdeK9a^bVyMo@LzR?VDI93=wDm zpplHYq-Z4<6wy%#lDdtRX=EB zUi5=~W>}oNVw*4Y51Af6K{0|2+H%qqwm6+G^~rsXM>!(<^DHGjSf>BFXW_N)RVa$a zLWzWtj;4#PwT9hIpvh}pogL~84pJ&T8i{8*#$ogCsv{~s6)motPRs!e%+%}LH&;&p z%0V0w8U#i4DX{X90KRBFfOHAivHklMKOuqG{P=v(?$8C;E5Dk-4FT%F3ARsYJzQ6A z6emW)VN<(~UM^~eYRp<#FCqd=1B-fF^2YQyXOjd^=M@n!IJTd?8YSoc*#uq#P$g{- z1Kr&4z%(lWk4Zl259=30Z7NQ!@mSmiEp6v&IsN&iIR92t!A{m1JLw{MN?-?UIcfY(5-d*t9LpCfZ1( zY=wLv?*JY=2l~Fc$(=A;ZcG7+UMeA2dsU#q)IL|~zc+7Ve z$yP%+F%|6nwOL{$-$NI=dx}2{7^u<=5Tiq1ld#x*q@}_=3p)c-j!89v`T{rE#~gY; zwkKgNNhTA7Y90kuIMDt+0Y*<1^j@>W_I;phrDvl0FL^xC0_{Y_Vf}h5@&w-jBL}F} z&<$t+;{JV@T=w6(eE3&cPA;uAZJ7t9IGCpbOcK^&H~98VXnjupckXyc8lZ{!R*Z9B zKxur*l=afdwi$E`ebBrCE2iaQDFTb!$hcsoADR$3Zn1Qi$+WmHCIM}E&8V-k=z=I` zpEEI^j^yEe3SiyUA2~XyB--T$>byY}lmmufBLc|CN<-i>7OM)m2*>a=rT|;T1^lSIY&&(I!`*l5)ZYo)ElwFm%2wQiL6x zIfqX9^5O!c)5<9MzQs#JF8%1GQ%2u*$vGz zpkU^0a^|RHV?A0AquO(QOo1k}TPCe&i|L}bq9}izIbksU{KCkLV{!rXZI^~`Lq0Ae z9|BF}`{lH+^j)C{S_K-szUf?9Xp_~QF7i2HJ=e@C%{;>>{Ts!sr_i#w5VDeic2>}C zSOASCY4iLEQAj9fOeJUXoeqIk7Pd$@G#kQIIg|^nm$ZRB(;mG(;*1NGqrv;FZ8{R( zfnCC;0+9-#1AN=EGeJwA+bA$BS$?p2c;#C7)2=FZoiQcR9> zD1VP0&5Kw$nJ{*A@|TqHXnYCkH=28w~1v+ zi@Tjx74_T!B}&dEbp{@Q$BAvTLon|@xsv;|lrx)p3rOrkA~PA+c1d3Xs}YL6PTyFQ!i{Mu-BkH>NI7 zp{xu+Uc=j#r`q=DWXGX`{AEw5WO_mqyedtKNV|?YB4Dg$b+ELq#D1H_VdsoLtiwX* z=fgIS^L|E36r9*U!l_xpGB#>abtcp%Gd+{_7Q?5pU`|^Xe7Is(z{Xlv^Rk&h2fso$ zd`t9;gEdAo5e4p7+Q=B}?0&;{-4ftH@(H2M=0k^)Ga)n&6w1?ZKM~KHzR5YI_*H*{ z9Q;v#rOxA?Q{xb-fTS$k8LIqiznI)b`HagUBLf5Y5~rbqt#?5#+HY4mR`6fgf~esw zNTY@$?k0TH5XX+kRmVu~eP%9LG9@%bDuur)VTAUS;ziGf#6rFn=cxs=o zfjLxj*~RGtX4lclQ+^AKrGNyS4p09ztc85O9S|h-;lXx74bqhHM=Sj$wTg`kKXXzE z`Tyi!M+!$rFao^BA4=FpLDoZjvdscMo4&GKU|4A=WjJ;>)$0_@T01cq)pmMdQ?QN4 z;BWDq-AHE8VXeI>Ahb>?N`b*DpI4&4cV88^k>vMz|r)Z-2KNDM&m5d_nGmKo+A#zRKbNU1%18}7unH}mhrb3R$Zw)rS3XRSlmEZ<>G%yhp8lAfsC)ojYe_QRd5LBTa z*U4wRf_bsLT|KW&yb>eR7ep}r3krRo0FJkEdfv)yAUFcv74Xh&K_Yc40xCJ?JRoph zzwVp5)4^Q4&;dvGkxIS+K9>hW|44_Ybk-ELBVrM^8|3fFd8f`ix{)~f*2@1HLzBz4 zr_4*hh=KXzoA%zWiRRBBW1pp|QF9zYhdo;I1l^Y;{q7pM%e9r z#QfS`z*sl@Yiqxo)82Se{uG=MzJ|OAoLQ}Xc^0q=sphz9kcy1u-AZY6USs-6%Tspc-1@%zuuSA= zDc4nR_K!kOXrj7;CZ|fb9HZS;FW|jweP-ZRQ%Wl*sA_lZFy{V-xYVuYUJ2--)MF_1 zU@Dl42SQt=-`&>J8!gm5rv!(EG-T%};n%Du@#gyNosWQ~2rcNdF%F|`P(x_T#*pVw`W1u~0+-G9?4c+J& zjExxX)Ne;c>$`|g-^MPC?Mqnx@a-@4_V42$7p^O&dSzcf8yW^8l9hk1-;y^JU=|{~ z1YE-~$|ue-Y5Iynpp-}xtdniqX5Hu0OZ$-tZKPXO?Hl@b)y3Jcrzb=goy=&oB7b#= zJKAgxPhg!lZ3ZtXPKI~KJt^_P2g_& zrev;2dU%!&*ZA1mPZ@k_G!%Y{rtaK|_^fgQfh==WvKkNF?0uN zaqBq@DiLj*5JA=l9|Lgc0I&joB}O7`?{$Nvty`?=!dME%Wd;f{{_edFG;XjXMlQ4* zAl@aQSFfg-4|Rq+7^Q7PMC|E12(x|bvu0@HZH!*%z&B0VDqFOrHXpjKgF4#0n5K<` z_|kL-j4q--4_QAHL8#2YGQNb~hr~pHce@vU=5a|&7;rZI<_gl%AO246xxU!d$w23eb3;brtnGu~(~g+9Uvk!39Wblr(DzXts@C^>{~ zj@XD^m2A9c7Xp3UrF+F;QFT4<9cpYGyZr_4reWkT{-eyl?w*nTP(P6)O834kNx;1` z;uxztubbJgH=O$&(nMgn5yeUEZy?Z5-4If<|M#;mhCnT#NgXgj)-oSpf$$8B7u6+p zy>}Z@kiTvYog>y6;{@Y63Ks~m<8oW(bwW!ZYLcfC2f%+{v|>R~L61*Djw59D)S6gy zKwuFtI6Vdh?SHiLb-wSX|w7QW-VqIQYH<$J!|?X=_Ao6^#dNKdCh2g)?r|@8YB-ICiJg-Uv5|p6_pzd zH@_0z8+9<%j7i$4s&epn{NO}Ga{N(!K_w^^5V#9=5T7L&wJh($W^s#4svqCR7^atO zSOH)>36;Vv!MrFgM&~c!0-pw88;0hiY%d105uvLuINlrOzc;A-c<+R1+$e`!UpNt= zds7>*JFt;Xa7SQf@hD%6jR!oyrX$k|_m@NfZZ+NWQt<2_nLaVWM_G$7e=g)FKcz6& zX6h*Nv7s2~Iwiax!$Ix`$tI;!TYt~Hs|BL~Z3et*Ve8l61hWYWoa`cJs^M0bL<>0j z;955`EBGn*d+?kW-VCfK#l;L~%)y;KCkifdXOD-jzvhrYw9aLfX8e|ipNcYq#}ZDk z4ZU%!V?o~V6x&Sk84Sq0C)gaN@4?3Gw{wRC`opfUSpBCn(suCl)&TrzcIS8MDHY7? z9bC;!ZiZ_*a_cqBjd=)bMc&u#&0)sLav)xC79Bc^5KSJU{7qT-33_7+yJrIqI2&?P zW$-w|{ArELqcwoD0F7`)6puH23hY`F|Em!wzKgVN$5<*QIb$o%4XFHrV_eTc0cjuMhLjcSpm^fey;D4zrXi=d)LDt=5;RW z5@)y*Zot^IvpR?>sw}WhFchILSL~7u2$QTLGmHy@9ADQ1V4|x#Y-HEh0wKHhJv9Tf z55N?@w1n-0n`j2w5_K%(qD0layg)Xw?Mt(9$pBi6^9Nd{lZ=!WC6(MP$YCmz$@XjGtzDtG%jb5Oepu$iuxn3aL&wXQN zYO$kr^Pus1Q?Lks-C2fG_2T+pcG`q7j25Ukc%hK(k)q3>;k_lbts(kg+?uc+0R zs$j)4+|t4Liqyrok2+P&T>Ldbt)#P6 z9?u4ZUw^*?;h4s8vJ9B0`8SlmDTn0)>Ls<8%I^%u{DJiGLI60%AC0$;X5IhI<6S%E zjB@>r@U|ucigCdC)Pb!FQW%Y%3{Xo+-@ zQBNTNW<``F>q$Lf?{OlUu1`~YvZdnuZ~ClG~!emp$;9XNxqeOfP`A(xAS z^EbMTTi(z#Fl4bC03$DOpsFKAj(I=nf%N(>u@jTBNG%uHu4IBqM&qEPBF7`ea}w5` zmJ$^O;#}-{AW$X;kJD}3ip|aotT-rO({9@u*yZ~h9hMBI^j6^ zHzEEHC}EwmG|tQ%WHnt)9@IH^S>G%3syY>{=sEC4ndO1Z#9;Ew0dy1%f(|Ca2eBzn zkB)%~-gbsY1UgFp?2#MbhOb6d0Ia|qkLAa@={RXCpMNR!do>6wvVbO{!9a(HZGSQk z1@AB8)lb&p95L}p;F#-d+U(nZg0{9QoGjtgHX=nk>uPPBYvnoW$2v__*HA^t#{jXF zF3tQbvVYc<=dVKIo_(DR&E`pR$G^FeS=Ts_!+}C$Nz{!R_@)?RzOQRY;ORa0$6$`B zHHFabDLM{}B#;D%t(OIq*%qIx0OY_ifBBjPY%$AwK*?77k?%BO1U^q0!qh7cO%t!` zxHa?i?|q8$H%}aJ(bperBU$o8}n|N^OL11I3aYDW-(mUAKq+fK!o;b10vB z=W)m*YjlIT2lwWPa^ogwPVE|g$CEJv%;$!Rfh7LmoGPu8I{*|0f#iz>-3`*AoAmn-lvFxE4l1C;H>0YICnWM@!4<-Gss;EyE+U@GtIK_NNN!V%}^uK0+PetXY8 z&&2hK184(st-lBE;7ZPdPvCv+0X0&K*Bfpq8z?>|nSeZvi$Mhl#}t(2XGgb9fRG6Y zdN;jcwLf|X4`}}`(*Iq2X(BOOOXUpkbTZM_BLHUO;d-FQbjcsLx1{c}Qj#10M&SS$ z@EN7(&1w2-8ju@~rWrQQj4blB4zvdR)R(M*a)R#IP2d5V8VDvy@PZaCUVx1CK~`eW zMtg2D2y9ndgNUm>%7d>`b(t&IU#8BqtyA_ zKLp!QY~YvhPtf2zu~OxB9u2xA8xi2OLF)8dg-YXQDkP(~c>w8f=vDHYegawya+$9v zUC*++YDoZ$r7VO5*EhrM51PcIE|7M^b^C8I< z;oc8^fuExQNXJERZ=fA$*&{!C@<8M7-VSKhG+22kS<-d^thX1sgQ}_oK)d_@?1h^` zbXE6D7Ep))E_ZD%YBy>QQ#@N3wZU1cF}#NCO!CIAUXI)>o<$ZjViTAfq2FduwmF zvauN*1LUlZTu#ImH|@6P2Qdf`*8kH^f_1J-V^1=DIyN>lI61kSGo0_6!_4%7alNR+ zO6?HzAkeo+fT>lObI{=dNFS8T%!ivaC-b`U>GB&{a2XSjo>)ZVk%zRw>s&G8{CBn9J*`l1cYP4k&;!Hm@CXO|KDr12 z#?OPQ_kk)n``EX9j&#oVH4DSKx{rM zi}~FXfyNgEu&tUrF#LF$T*tOaphNT~bb+p90bT3oRQ4Z_U;F}#Sn(Y=_!A1mogEgk zKSx`^zf{f`oHbsrS1ab7x^1p`HI0ujZdRtCdxbG{QG%RovLI;LEm!%vjb95vN2l!$ zLC->;_{5bcU^Dg3k)T*<9Dr)PFx&MMy7t;XJ~@P+&RomaZCR3ru!{+d%?N_~xqh#6 z{`9QWc)F`<59EHvFluo-1GAk*XQK2rAOkskmFf+Pq~WyrSus>q!fWjB=6P`flnkfh z0CNd+xawAZcPCOiANaP$)M?MC%pS}3FhMCe^ zQQJOM?zeYV^S1W+;WBco?1=Z|raB-i z-JF@T$asuBA~`;v@MV!Njkqf1uB5WOB1bV`+@_9XlyBhx2y>Rs)5o5Ez@h!@@?vGP zL;M+c;U4v^mqheE~G&FmjocH_KLlig1T_t>@O4Y2U_$b=#(C+o{xm z0+3PsJhOCYbZCFx+XXtMG24OVb;{dq$qU%=r|hgTc6iih2$e6)Xno(gno^p0WKI?F2pv%_ zS`X&RfvM#e0N1Wx$lZHK^}?ECYh6txAfrCDyDI#7*AU_6>x^cj=P*b_wG}Kd9;lf|YXC@mC z%2pj#Lj=x)AO-M|EWua-;`EM?k;v5Wf6Df(sopc{bzDF_ZAQiRqVLx#ohe!EiFZg0 zasxe_ZYgu`-VP{wN#e}|KkBVNoaLn&=F3NJjrRg$zVkp8HUvDs&&0336y-5TOI*zp z9Is9u4cM*_Ow|f)hb#7~15r}4d6VE}5QxJDs0i>L>G{ZYd0RwjrLq@y z>|NR&rLw+06;L)`=gtBxnTx`M`C^iho+BoahK+TAbq)fKAA2=v^i-gzRR-t_AZy6d z2Q@*?ToI=8^%3ku-8U+kMu7B)2AYvuv-9EMW`ZNG!rpg4Tg=TOgV%RQG<6wnlR*Jw zHCli2NemIy0BE`8P3BXn?Kt89=Hmv@cfA0>3HZ7E@BP6@rezGeHpriXJ9TQ@NK8ku z7BnV;*3GV#{Rf~77*#)R5p!8;89#Q_bae#`c8`gV+#pY}y0{0`*8cK^-3Z}5s9nBF zRL!1VTWr@ZEU|($sH@5$d-UjTAic8`J_CKA!EHaR+y1mcta~g|NkCcQlO{54`5 z24~@cBz#g=*|&F9eAL4w7Vpg8pA?)DSV9XOd zgS4$4qZUu9yKkTF9;;Mr)6=39hvbk26tn`xzC9VB+#>WUU@+EYB4PIy-cng$d@M2+D#p)c+<1*FA%R56`NJ{4QRwC!2>J zf;NAXS4cy+*C&(e<<<^QS=~#D>A{hULB;`(cC@oGHAlH%=Tg?DjK;R}z6>io zDGsBCbmQ=bl|_Fk8EQ}-AsdTEI<1Tssc8Q_Lz^yyWTO=aMJFG#$Y{bkM~E2rarM1_ zNQ39@td+B%w%w03fRp<%LB$HVUO+7HNY#h$40nIZLbJ#J!`uCv9K5n$!SpC>K667j zU)X_^I|He)Z~xeuX#R`RxA_w^S`${RuaNS(bd@=wCq94#_a!XHEJj{|^|`to3RQ#< zRC(0F80yf|Vn*Da;|&`b6itQQDUN19F`zcX+x@Hag7^Dw7UCVO^DNFIC3s(6A^lrc zDm8Tin#AT8mLo=ucl66)tAnhG;pA@mDg1Djbzdy7iTpo&!0Z9sj~EpdwZUM9prOo{I2djjRUWlYRnvPY9thbm z87YUXf=;bVXA5sUvTR0)l=i}%mItDRVqig;IhBjS<-qFjtGdkSCkA6XV`9cR!FrB< zK{_n!=h6q=<({XIZ4;%ud&WQpUWPW>#ZK}$R2osT4^PU$#FVL;OTpB}6~O*USf2Yh z`8su6;P);_JrE8WA35TX8f62f>}WoSTM;_$P+E=|TIUZE7}%Ts(wwE4t0Mu$bW!pI zeOGb=k5z_vtGfPcvzun&GINo|b%ZcW0_5(T9Sf;w?aaxHjs7WE$g%kD78VNktAm~217OL(MD{4BULib-G#Ao0k(8mjc0V5j zuk&A2U`%QKb)WAQPcImew$X6D_1B?|YPW9Yk_e@SA0@gc+sV?$5$IE2mW7TZe2P-z z#@j8OytvqDnUC_iujMzQD$o5P#Z=s4K@E5 z(yR0%*I9|{{B%WyB$Chzpb>fi87{(xBw;Y7J4@S-)2NkoN`qI8LF!8t^6FCzfVAJx{v#CSB-V}41KX8 zVKo&1POo{7XuV$UsM(ljxo;Irg@;Tli4mp>q5yX``YN!?5GD=3Vr!sO}%LU2vry4ax;JRPz ze%;uvk=bbDO$e8PF`7}Qo1x5V?u#Ch?97Kd&%a$H)|RgS!5shl^h+Ry`+jV#IO%hn z4CGLa(_LcBo*&-Fs+o6r>VcqT`bCUB4MQecuM7u_y};e7#@4RY5GTD2UNw%SU@n*E z2RpmAaA0Q$M(&{&<|#`ApVi1$ZT9!EO8gJ68hkE2zFXW$e@tGhIuLeEO94tVXnd9JKZ-lOzg;t&co6WcR0eDiSUo z7bZPthxK;t-%GjZ464mdX0q@vq8oZuL?}M1U!E4LdR59#D)HsPe_XF=F?%ggFdwf6 zM?xfUJPuwK|I{CU9=QD{;g!QwZL*wPW_fwC78O-{d{?u53zrUWkq-6%m-^a3_9Jt6 z&(k;(IN`&5g7uN%MYH^D>@>ZL4Kb?qQEV!zPIuvniCc0AnXUDIA@x>Qo-?oJ#;sJT zg-NIY$S;~<4+|&5*0m+CK^itrSBnoVo}V379Ddh+-JlT`CoLlrTspO9G$CK3Q4l9t ztW6IQY&~38Wsaxad`d<2u@*ZLlD^5gYpkp{qzHaF(fBx+7!`cSP zNZW&rbLr`ne9sy_E6aJdCyK96uF(Ah4_Dj5yr!Q5!chN*QD57q{ymsO(57U_~$hXdvd5{eSM;Ka+)fn{yfxz{j$< zZ`*GatagP-FK#tZD8(`wa~&(@ef>-}TC91LgcaMUNWr$WKipvb>Z#6R^@}VG_BY#L zCGsTGossg*KBBK>ESNf5vkrc~z7)gy`txTlq{%pVSiCW_5yx`f^a~9(?gI8ldEMNv zPQwKso+#?FEbX^1IZ8HuO%{mjYQBn)Y0!9td?n*4a!=3j9@bJMk+Z#-&Uk;G^xoBP zVpZXTep!*iA&REzKS9I!Nl~STVVwKDy~>M;KD=HD$)^hWfnFSWsk-r6#q{yyE3`v59xtj>Aul9>^s^(laHq`5E+<~%v+C#d;B^cq z&D<~RdMmt|)4spdtL!YhCWU9bbqlLiv(WNSdi%E3=%nt zdX?eiw}<(m>z)ehqoWaz%PM=az?QMe6b>^dIWffkrIR>NMN~&qZVE%Ff^cBc52X>qA zJ_aT{%)NBVc;(Yc5+@V!?WpHl?^r6!z7NnIw_$9mZb6}Z#tBX}Mz*1>HKdVLAIF|D zzn1azR1(>+@#m;RGO2Sb8Ud-U@s5 zBZ;$tD9d6AKz98b$PPwiQD9xxbilxwa|hDI7w_!tipz;@j;HVz_x}MG{={DwBO@cE zHEwOk(=9~Z#|gPAZEd$LIs!6$sn1ItzUzmdZ~r7)%4M|XHn~IeAZKBfDdYD}jnfP3 zmgC5yqvVrUl+{MJ&Io)}7czrs{-i4)jrIv=Xp*>b>85=|_LQ-9{s4DWFoVt-Sk?cP zd(b;MR{mpgDd7i`+vO*VjMl6pSIRcMl+$sm#KW2E`6pY`0*2m?>tOZR;b!1>#oBpc zV@2y$-sjYJc}yBX72cDpLWbnS^4gj9bT2O|%8f`z%;U44pDeWh^z2Ow&!iBS0EgkP z>2i0n+ntY9=H0)}^>nCeomo5xw$duxUsR6mAXe)U?$y1ag(Syb&itY#xvG8@bra;NV5=X0XGqw8|9n2-x=EvG?*Lm02u&Q=|Gt%Tm-s{~tD^ZV`snsg)P6TyqmUD-tj zK0=rk_EZU)KAvN6I|XDX&CKw%$3o0|np13S{(7A`M?Ac^0tGQ+S6zxbN*NqpB{F%6 zO~Ot7QbUblTuV)OsvA@XJGwvjJnSO;FDpmWQL z5RGp{kFaq6J)@oiO?PcItu}T8J@WI>?*`DHcE2OY9}Mu7G#or~)vmbrvwHpJWgN88 zl;q%Hk#=W99jANT!*e`drt#+8^KNRRS@=}Rk7m~m$_~uGg=B{X!oky;|GB?Gd*VIN z{K-8Mkst}i`LgUsnfFM!El=H=9m`8^zS0vcX}l7y)Gosbpa)ykr3;x^H-G%V4*cVr zM_Zm?e!>rr{T{ke*Yh4buJ-|F44_YYVcPcsyKTyq0_)jvC)YCS|v6@#@%xRlDh#zN1?d%0zh#Z76vF;-$WoYK+8ZQYqFVAja z@gw$oWM|k?GQbVpya5q^dA-y%pkhBmFqoHpax@`mACQdR$)+)0`{id;bzgX-L`GMa zqSAN0D7j{pg0nGV3V#)`kr`aNurY?Yx(bz{Y5kgDIMS<Z%6IgxcjH`jPCW^TA{;C z!}*)eouaDgX8uAgg^4CiYxu6BE=5qoUYLDDz5Ui?yC4>pZeL<%Po01P0#}52UcbTp zMf%?d94XUoGoBDTm89EPiDh%w4i_zVM?xX!3ge;gI!}7_4D0Qmr`uSyj07#!EpAq^ znapRB>Ai((fk7G!V!qb_ka?cT3S6h<*-wPVwxBitufpDj(_pUgundj#NIBNd22Y<6 z%fRUBTo;mMCF1#VPf|d__;|nfT(i6c4pyJUIlC)xS1Ws`f3%wCu7grL-iTU1eR0 z$cNEm0QGR~d(O1rwNbOlDM2GA-U>KHNVy%Q3b|Jl5qfgM0-rBN|6^9kh*YVXX($uN z|KWP+p$NBX$pvr7TR_j#ZCSCNsuHwpKgSb~8E3nTC@JZ*U28Wu*=4W`8B#19R5qweW)giI3xOkopz{TG0aRy~&E@n!X-w$6_*|r~Uuqd|poNt9+ z=-O#E2rTXM?P~d$xXLTq{|>}wo^;V#IyVlc^soO&Ib*hx_QG-g^`fDd>XTliuC?Fu zx*-mlqiLtUap~Fj z`Ixk2)vLsXv0hwm$M@k;d2u<$@K+8VO_<kK-aPAzZv~4RrcZMEI14x# zX^Fd8!SmxJdw+5EOX5*J$d~zv+eb8G$!5(Ur!tqD!kPh*SYswhPVsYD@2|5^iJ+iB zEz4}7iCt3#AD$8}>VyP9gzqXr*HDD#KA&bTavgtK^ra6U8|NT zDEK*&f7iG1~*&P8te|#-M$qV`QoWF^$@`sOegmF@0uLt$ zX^ItJ(Th!36CW(Zv`D&A@!hLaOl8(cx%Dd(j|%5L73{oazBT6rBC)|`WW+VRG85Yu z3_gW=f}k^}e^Qa3h3d!Y^1#_8aF>dD6%3KF4Pdc~+L}Tw8CG8&by^I2pGJv4GN7qg zFJ=abE8nQ6+jdM4z zQ6 zi`+E})>%yHaDQgILZ`>}3zLsm1Dhwc^avq+zRt8d zSUF)%VeN7N_zXDl0Z&^eugSnsZ5l-NAlSr_Hu7g zO`h|wTkR63IXkD>k#i{OU*_FUk|$nbg>tzbe25F)CE+dYoA%6R*NzJ9f6Xg5{eHja z$Jp;sK5@~u2uuh2-k6WbLQ_4BPPwr_tmYc~qy1Xs;Ao|)`r~HR6zK#tg8tqkm#Oy6sVHL`SBCw z!yoo@Qr4A8){W18Rg4;hXIx*bxSz}g|48wVwz9F2W)m30`nbHj%%KCv8rtAm=``bI z>3)*ZwKR*PSR7m2L1Q~Np~3uGF8qaWf$@DZ7cz^TW{A^}i|z;gljBcA zvvta%IT!bv{N-cbjYOnLtDi(#Yo~5BI!^gKr@8j;K5NaS?$(cNca$+c-DMDM#6x z?Udv^ccxmdgvql)*Vj&^azSkuS^=u?HcJ#-%obqjdtw;@79MT?`304UQ+y z%;RLGnKYzd^D8P~1~HZT%n3_~yUgoa2GK~_zhS~OG0GP#Q+zIi&%{I>|Gu?2U8kaI zej&wIOop>PcK^eK4TEpeg#}sksbftgWPbXEA*=NE+a3_{2Glg@s^QK z%jRZ2VP_q(b&Go}G2&ZOa_e}u>XJ*!Ir%j;jGUH#`bztVhj1;g2fnYaCp*FPQX`8cql6pMM~ zMcHoYTV{>o!jYdfYAh#8{I=xFEa`{?Zl z%X`hwdKDDEtZ#fzs=M9v$I!{iDQEi4bldy#ocy;hllqA$$QieXqVaaoXtYtu&!aHP zEMn>c9^2GO?e(?7l0RUop^50uFYG7Kzb~f$s%97W3jt$h`557lU_xD&2av-+-q70D z1Xo<-NhaQD3+HN~K4o@4n2)HIoAYpKGB~C->~iyhR~+{~{rskAW;QgWL3MYeI9|jU zvamR4?CBx6^ei0^6i&h2ah~D#7a5GJ1;zB> z5IsXGNtD0o3Rk>R%o@ut@5M*V4RTII%t0W;nFe{m!HAbaUsMk$akE|}{1sH1M;;E; ziql)=1*=2mUleiX2J?r^e@$mhK3bjQ0PM=}D^swB?CzK;cv0Uqq$xmHPH89fHti@Ut1-?za&A6h6WzdS%E;CM=-L@JxCEp|P5!vr(n7=bCVn6KRh5{Vo0J7szotvEC-1bACR#s5NU7eLP^UyN_*olg zipVLw@o!g#kP#lqMI((b;v_#idI(ZPT0Uawe5FJF_}(yn#0FQ0Jr-nP@C&l`R!;US ziMcW{F+CFHyGfy`-_q$39@PXG%<$@5?r~x?vS6@9NmfkfYA5_QIb2R`H9AUW*xVUj zNCqcg4qXlG&S~hvFo}qzmcd(sV}GyCdCla~?JNEXER9^Wpxfi zMT4^|W=5+*M|o;v^ssKo-r31>%&TYlz+Q(sm@8?aV_s?gz@9qGk!ZneJ#+IZbD)Hn zsDBVI1n*<4ia2>VNYfy`C$HGGOR?&<8$_txXZs{VnZrycK~?7uf>`~+*gKONC0#7;#PZ?tyE~6tnnact@JH;eKi_rE*TMMm*h&U1x~m zT5io<;TvXYaV3x=9{Jq^7W76FHf~*yeTMkXhBDK`l;!7F5_Po8jk(C54;MMTmY1`n zc;O(Ko9w2x(!(gPAP+OW+tnYBQA54qQ-yVIxuDS2w!k+$-u@38l=xLk3=+$}372fv zpMc}R6~D{cQ2Q}N;)3fGhfnx*?7LxqX37oca7NbCxn@zl;a`Bd&X-rv$1`BkRBfAp~hMEPvTq7AO-! zyb8GU|k~vS%$m6--k`6hgH89CYV-+|I9N33eWeCG)fYHoScpN0TSxOrwjVat&xIV zQEKO~O7G6qAt#WD+#2YZ)ZxBaG?(SM!Q5M;1_T$YD!&98@!54^zN;wcBtCcUY^esK z3PXKBKAMR`^X2JvfjZ!%f&t1RuP|kvW2-LDYxo5!rOyJ*&snNjxjhHp>`K53PMkvI zosk2+Q$l$s#Du!{xUb;otXD+RurHNb4_^W-=aV;-7z_&G{u8K!yHnf)T{N9`RB#+* zyH*GN46l=^4enCGYn7b{s$Uuza)}&G7VU#bHmfkJVqeS6Uu4_eHPX6UNMjQ2a zReDK)Hf+`y@u^3g^a$WN8B(|f0!f18D>kSY??`QaAYg6r|DkPr*>923xyp{0=Bg zs1)Skt6l{;_ao3Pi)STJa2BFDQMmb({`a7Oov5Nf%@YFom1ef#{y+RBn4vBhGxK1 z)-pl?<0!aFKl_Oc+@pRXTi<>L`_h28Hnv~j#k~s`@)6~-h!o@)esdeO*$#%H#UKQ? zIn{ASfjtQbnVL(W-T9Yo-7P%oC*E&xJ1GxyQ$9}Em3S*3iUqRm+aFlgo(3Fcz%XgG01mm zfbwnVmz7tDr+^e-9M?2vD<}N>Qmo&n-zh;y`~q)_l?wlOrc;T`CBs-n@l%$|?+GrQw-L0qGC96n{s&O*`O#*UoS(lddjS zhWi>XZ4P-d8oyH{fFdbjTijQ5C}xlsLiPnod$B;{0aPatq@R@Qt!4QxdZ3Ze1G*A^ zMOJtRM+CDs5rlk>1Za|8gQ)k90Zy&_spG=@>|nMrq!h=J3=Ka+16c#vL*&QgZc>}# z4ie?8b+9XFJgqmqTO0$T8PopDm2sm+EA`1%hgh!th%PG7p{x*~p zZ0I0;K)v=SHu9}*>C3AW7E@X>pZi>C38m48d=T+(Dl`ORPgMo}w96`Ji9=oFyV#?V z+YP#x7adH?@E!TCyQ1(_)lVO87bW)xQbpy1&XAi3mx}pj!^A53kTh4CB+nM3%6h8{ zIWTWyM>ezGoX3!n5Z94l{r(XUo1oAeV?1ZNnGX)B(2iy{?gatvF(B%&LS2XBbpeR7i(^0E(pRAM}9Xf3N>~Ic39C9ZYc(3kg<pS~ ziLqg73A!b+rTx>e$|%0+6GqMAmWdQ_1Emb&s-RbmrX*d+p$k;{tF`=(c# zN69%dGCq&P2afoC8&c7x6ZYdd4BOnzq};JOkC~mU_1(SChQzaP$D>Ka+N6dXL$@F$ zDJSUr4@c;dqU6&MClH?p-5IaUQaV=W3M#S`Zig1275&k?pW1r}jez_rDY#Ap#t5e_ zc2s37tm6OQC4U|a2tQZRLk(CMX$I|IR;aWHf0>{Qm3uzP;YzO559S5|d=P%lI6dA} zeO+!*h4!CXjCDvwQ4h?xqfoM+3ijY|E9!J4Cgw9!cL@?X?$MS#y*%gToyw=6j7(BI znSazI3MW^leZ9>v0nJ^sc`6P?w2zmpiK{QAZq;yI0IUb0O0vOR=VO@0qq+1c-^TsT z+Eu739XTb81PTlOTd&&rpJ*&_;lj^vzJxl_yzxXrm`3&q+O+Kl5J_=(!OT_RaCsPq zfg+^vVRws}z4492YRG1OSHA1&vNhbzhi>A}k}9dJ0>E2}r+rt-_)!eU*6d>6xcDFm zJ%s=#nK`I+x9GwOxO+bzl`wo^IgQNvG$Q@;dla4<4 z_KYd{w;E7xea)E|fEX*l)SgyA;Vk1qUs_pW&&&H-HDQc%gWU8a%mH*}4_gZRzU2j% zo8{0!rHMXkibKKXiBc%tH7<4eT;i6+o7~I*@2Fx+2a2|A<=@PW>st=S)XGWL>KL7p z!4{Srv!C(EEG|v^Of=3v0`FlvITq-tM*;|~c?~A}pZUJX0}UK5T!;P5zPdROWJP~^ z`?;~~%HM|Rdtnk-B5mLCM+c=!aGK*?5`~5 z2V*>B6(=hat*1MxT-4RxlE~71E;BMfS>uEVH)yQE0Y3f&gNZuJbCowoL6TL`Q zP}ZUYj&;JR?!xohD6KCcvR$RU$=^6w!sq~GIJ&xU(aJFc>a8*QJ^;Kps6cQkaQt$6 zI1n~e=@L#(EeFoaU~bq15Xz`4mN}FHIp6XeNU~l!8yEus!4aWxn3#p`Udhfu{Yzu9 zVO0RqeFirm#M@5+Sq!*k2DDon@P>g_DzoS*M0($u7=_M4$Xqe}xSQ!H-*WujX*%1I( zk{A;Mr31=bb#>7UWF>gr08~_AVrruwPRXdk#!q}=mRJ<@)Q42%*r2Di9Jhz_7+mJ; zK>o7ySo-uic6=$`KVnt=^pr==Wd}7t90YdDy-#m|d@~-&Xh}E56X(-$hZ}X$!f-y)EpFfYi86$i7CPBclinmAKWwD?_~$4 zZBFuJDh@sLu!Yg;&?B9iV@&{nV27I>6qX~au=YNu5Qwr!@xiX?jDvwA5z7S;01lNo z0P=Fb2~?9)zBz(1WuY%MbHPcy$I|->nU`te@=~Aw@Et4{n0d3@;PBxJ42BQLA~XAf z7~~b6$}3RSSe9}905U=^nA$`o0T?@J$|zD24MGoisoT#L!QU1!Z((X@%md!E7&UWh zgOUJu@e^?8fhExK9)9Qt@Nxm64R|v;zGlL~vi|7r31A5%a>3K26$bSm4uT^@8iy=< zfuhb~Fr2ZLRVY|>)I*`V)3jr9P|#b9JdjbFGN5$5`QpjJ;nNf6Xhq7KsPpv=93Klz zYw~?ojM*Dh@e6?5A(9Y%l4IS|!V+G|+tZ?d3bedP_1yk+t)?K2uvaifW9q9(r;52G zV7>}|Y?HVRyqp^FO0{4kU80jn^u;W;05~wFAAWuOC&rz#G>9=Dh(@Y(g%bO{BDw`U zJD8v|9t3}#R9u7=!J;>RDp83Ny}eP-0~kx(8GTl$Qg@3DSd!f?fO8T+JULU&MT;&! zF=`HEe&{sgJxu(=<>Vio(T4VHc?RF{RDK;tz-Pos9LulvFTeVH-lZt(c*e%JKz!a# znVNXRZdVwCYYGtM8$ShhdPUZ_ux6K2{CIjpu7D=lfD^T}?IQzGK;1-yE`Fich?rbV zj6CcQ&}7Pii(8EH!RX^8l`g5wgMFj=J7edwt_dI8?seMIHE?Q^`-2B!-R_H3Vv1qdib4V37YYBVo z9Fwn|L!6om#LCWa>fQu=5&YR6tK{U5k^zgW1Pkx4L4vy0jZpmBrE3uSILlypP6HFe z*@D>rXjApspd2LAq}rF~S`zBAUD5WcEKu;+aSeF}@(Ngq!jG#DFdsiWk{qF-@?_t+ zIyYanzttfAnTF<~@xpO--OvqmNr6yk>p1>ld5%^sR^W@rzvr_Bh5p>P{A;CJSM#tl zydHU_i|bPgWW1v;mQ?^%BN@tv7uVCrmTk1^Cja$O?ZAet4>vMa@$W2+-vD@A2Oh(b)Ss2 zxm!_rCua$R+FBk4)k*cUU>O?1D-Cc9SA7a)@c&j4T|{mws{m{|l|fcMU6L`aQp7Cg zB|;$KyBpqgeSJzZo9a|>T=0xGo#4|~?=T{s_$J^b^hOO<(A}cB>wz+Rzay^@buUm} z;jt+|cBk-@%hkNX(Z7A{dS8&0b%n-Ez{hmhipHBhQr%+uA;$>T=~oJ=T(t8o@>R** zDw6{AqT8^J*TEN2b|0pSe0;$}4aC{U@c{R~$3tHVY2U^nMUN&Rg0mmT*Fn6|k49#B zeO)G#XnH`U{Js!Pg7PaOV=Zq(cejkKn7vIpFSBW>z;OQ_R7qijx&$&9<)U+>_>4FI zanbPs{teD{^CpEI`9SMq7XFC>=fHw#Q>35Ma>xP_xK1bd6{&OY+f$LZG;6>+{EtEE z1yh@j%0dr4XEzznUm4nM06T@XnjezzMKBjYgzlDw7$m6S6h7d60nutLp(Rw5>&kp} zxSRBnuf(CEiQPXRQ627%<#ML!(qDma=U^%!1Cn>^^H3g(OlD}~4(@C>j~}PE92Kc1 z94^dh{CvHX`jskVDbKdfh{v67s!1djn_t^jv;P$FCLhJ}To(Q!!QC){Q1>p4ptb>Dnf zAbP4v!NCiGpApr}Du4ME!LiqbnS(Oc>ze>x1%&u!f5+F-(Y%_lKk&jb`xts&MR2b7 zS=U6v^jE%l!It;;Jf8DFEC#;-vHoYnyvpntB#=0l)%fRA5XECKyxu4^4{_)^3awG( zsWkV0aPubL%#l5ripRuolZPn4h$!CuWTb<-5J-V74W>a`UJ+4#gY@Be`KW^IA)G!; zMPV4!+8*YC+WC~iz*e&SmnzymYGBly(-@v1+WG%j%YmVmbM^AF2fcCpOHy$1pgAe{s->TKS>nhSB%9Wo z#x_-0t}(SOi0-f94Q)0}sD! z;PmssJMyBWSjW!LLz{v>80Ure?LX#%jD=uON);B?jzs}VZJ4rw?iN4Ocq9pEqygy= zxv~^I|6U$7NcTY{?5o;TB5TGez6%n(*5z0A0T%$VNUth^vgwdp-kOI~xmPOKB3(rD zs?Up6y3opyydY2v(P1@Hzc~kBS^vC%sEp?^RB*9^!N~&f=w}9*P09m4mzoZ6A@1 z?tTi-5AQ>PmU%eKQ(p~vg(EC1aqG03M}kY~t+sO%fbwx!q+#mYoxTEz2cCK$6Bv%^%tL)o2OT&pta)I`%TH5-Fx>c< z|3}ny$5Z|9|I(23MI~BJQ4%4kkc@=vO>&SF>DZMDSq%{-^ORk3%#1imwkWIeb%e;? zBayxRo~L{7>u!YI4i&`Bh86s zJfpz62%n^ zPfNFYYpEFmm>oNQEpXvZn2WO#qll-+^l4O}Mizsf8&-+!N_M^yux*igSWj&!3kg2aP&PKJ!X@60$|5?-=NraU~ z<9ny3$;KPG3J=G`YqHAD_wH{$lAd(&W-_3}p~6YcOS5g$)qEvSsI5+V3x#4Y_m*ed zb7hvXyi2?@QYqBNfJ)wqDN&O&AC|EOqMv0(UJ)OKD2) zm}@EyKFNCY`Gf5beYUJcUgz+1Cfz3{<1XGIsI|{nIFIRI7&TsSNpW8EZqCB4hRfMO z*c;VW9%sKca$&q_Hs1qiVSd1FN9nI@92J%QEF_g_QdOi+cI}p33{sO%WTHVPJ-zLk ztA45nUyPw)L&&=G(toJQiPS z`N}hx-W3vYx^^bz(@8o8s74_MYn{lrR4hBC9q3uGzZ5Hk-$v4*Tjj#m58~I@#wThP zoGia0lDfa^zn??E(baV>+-f7&=tQ3!WA!S_zZeI5!i` zb0=I>Zet4ke=6oZL0gT0Kp;)F`>w@RFR7%2y?oK^PoMLu;`zd;bK!A*g?#0V`_^wa zU6Z>sfiKjaxqVY}Z;Qo^{X8L-w-gP|*-F5*SnrW{1Qt>@Cn-|Z;(I?eVv5*FXIikK zZt9_Wo{9VJF==1UpI1Lx6qgASvHrEO1F4rYUaR8;X8Q1S0^>sKyros;@upFcQD zs_(8fl370SV>~I5h7X`;zA-VK;Xigv<$g5Iqdcsb zlYV@41Gsg42kR+%>w{EYY!;yK?s4c?(Jl&Nz(%m3`p`m$TvTcb^zrS|$3?aSC57i{4s!L6@alj(t< z&Hw2u}`K_0;P=bUgc`b+5s~P|0G{=~?6l;xLF}3|ruCm?AL%ya7rJ#N zGCe&~K*$aPu5trn1fl%3UO_cmg;Z2`z335Okt{cvu9t2osZ(N%1tMyn#WWs0=If~! z?lbvvj*8)lbuvJe=%;>W-U|JvV&GOWEcf@fiDt#%OD^4@P}#YkJj;02wYPYusq zCHZ>P+nIvN@}~JyJN!*pepu~Wl+aLC3)(HBzNf)%Y-%!MFu2IEZb)f9Xb2n zzWeJD&P1PlAXoo3@3M0!^GO|JMQ8i|52>o?nYHx$KJtRoCmo_@#QLRS!xBZ#s`l%^UzuzYd*M;F6F-8UBH^hUH%@^k{6(%C%Hg(=mJTeW*+Stj*Wm*9*AyZ(46hu{!nev5N#VDDD$V z+e^b}qQ4eLT-datiga@}b}mt?ReR>(v{X!xo469<+Hu?1NZL1MNA+mi0$H8F7tsKHg8$fjbcPrqLtn!8Eh*&Ot?pOr59^iZ zo+q||=+`A?Ei+kmjiF{9_}ed84%2Zy_)1Y4wkE|}Dsv2etP3LR!)i;dXUFXb*4t|( z8o;>$Bb)BeP-Y6{_mty~U5ta`F|_+n$}s~9a-4UW9){cp^s7pz_ptDi5#HhBI1>(;K-LOz z`VA;9K{U*DQQ8~pKV)cSAkgd!7}JAV&H4;0fF_f(5h(=* zHTBR29JJTQ0=ecgcfi|A9JlN}+Z)=-Nz zac}wS`^m~L3E;B!NKNk-QdF&x7_&J`^b^Z4*xV@*Z)t*k6-KsQz{ga)a{mj6;eYn5 z*k2)}>k=cr37wWqaY^)x6@Bm9Qx9~tWn#lcyqvv_?C5f0TNLW6^;#}cH%)4()^j6L z-FIu&#$5I9hz}(nQixCemZ2ROsq*thG(+8ZjGL&o-S}pSCVaLwxiBp?%v;uL9q?n& zj4ROlMA&e~`y)&KR4|T~U*&o8^Te8RyI%aW-=wzxxczhZqyTCDPesX*4Eb<~f2tD5pG?vus6PA=CFW6NjkbG11G1m@q3; z^|QxY(y_~khpKSEpAYD|n@c4|$ja{YcL52YHi_g`n(iU;r5-T@VopvQ`ZqGL$Ej?{Rlr69zx)3z z(GIbMJ8pcN{>5#|6#$@5pe-?G_i}r7qR0J89;R6Gv?!~CJ$ayKVfs%f`M4DWBjIpS z1z0!}RC@|Vm7C5c#{cM4dCKbL8@xn z)o{@0{G-YK#~C9Su(Jpv`%@zHF`_yu5>wcv&Me~tx0{~K36Jm@X(zQw0_yehTs|`A z(erfe2X!M0%h9QEgVZnV-M`+wIU?lpuuoujwrwcctM$asceE`1;KZjyD<{&9($7*- zQ&vpn;;eVv*`C>~jx+AtqW(gAxxLjS%}jDbG?T^9`EZ{RH{#3)qoB#*)iwo^OWUpP zk*s5pT86K~A({Q7q85JbEH(L}!{qp#jt!p!(hBYWo`VDm^?O4igkg8V0k=!FzGg@* zoVYdei?ti@DeAm_{R_5)hvooJl85U)zjfmHAFXO3DKB%SCFh+$rCRa%>(=6|V9FqO6=0r6x}B z&p9G4?^l<6Zkx5BT&xcV9x33adiwO>%g)t56{#vUXXVTY2hM#L&N-VjQD7|I>9wx6 zSnspm83zJ^$Bshz)pmF01aM@qONI6KH|R9XDec>^M-{;q-xc2-0cW-H^C4B;nB>xA z+EDxbgT6$2va;ItSh82trY$um)$oC7#{yjD6geAY%ItHrHCYWy$<$sbc#%BuEq33M z_oaaiZWo0vT-x^x|C$n)0q=3V7s8bYeB*(wy50K8aYW;+o);Lx4T8>iqPcIVOH8!} zkA1nBiWl#o__%X6xaQTl69MG^rv!ihT>AUl8&ewxf+lYFmbWY2oT;%I?#Cix2r)Y* z$5$6+I|Jpv&*Ev1;SPf_yHx6y8b!)yaOdCppMR5z5>M_gV|isfhb_g|Rj;em_?cVC z&OrCqO#w>Zc-KUS$=>oFBw{d8Ea!|2Wo%7VbkoXbDh8qx$J7ohN7BnFT42&Npv%^7QqFq&ArZ(y_5!Yw@m~voy5O;XV#|q|WobiLz<#k9g@E=4!uq z-)v3gfC!h$UhDZPzIT7tymOJZ3UJ?xhJ}aH_u^Q|-LVaOgx*B%+p50I>$iVTc8H{J zMVQN+*$P9HbKKIbE9{ zi;+%^RSdZW>`9Z9e4MqzDt6ea-a8xE80-BvTGGRl!kVZa=_h+E>RNWID?4>nvKf;2 zd4^3OD&4s!l}@0Nq&TC8Tx6t;ie0-@6k5FHlMPZ*&zTpPg7`TX-&nui z_;O!)$PS9->dJ{&GJc=Gi!4Cbq=jR0OAy{VY)6o}v?jAgxX$K#ZrO~G?sLrRmWj!U z=Jbpj-Qk$0T591g&a=NuC3uFJL&R8FcZ~Aj{x(#t8GWDOaWRi7MkpEmF{ny1I=p`6 zj?b350dKTxwjPxgTsiq~UiggVrMgBpH4g<)ObyKE@K-1OIjs-#@>?WYzTo#Cr7c)14r8b58SdtA8hheh~wpN7LZe z3qkOcWd`v_OB5l!y5~(W8CnGkS%0^REJk&mu3)NuIA=8s&bMQqQwweDuEq17PWMGj4TDmGYY>0@ytgjy3KA+qEw1x0e4>y3YT=Ks_zI%xhUyETAD&^Yc*Jeo>$kwX-xQJzNolDsd^+uV0Nnz~ z>o!)7Jr8?rE#JJ+cDF^mWmHa;yx6zwK7L7Qlm64XJFafxL~T>8Ie~@up?VJr^mhpf z{aLV&tS@VpEPZ~5j)NGTl5UOkvD%CwUW8FC5VJB=Ozavfb8TM`>EpI=xHeyemGOJ+ zcYpe6X3w$hr0?ELRK!LplbJ~C8}X;5O-|IkL{A)beO*b(y>2JJGjJ$ufRe>pH>y!i zY8r_@qZ~lU`)^DY`KEa$Y(KUuDMiFkxkV~!xW|Azkj0ehi#)0|2JsYY^Ekbo+A3<8 zMZ_Qd^a7@l>VQKN=SC~k`(Tplc0HLIKPB%lJRzD@hZZa6C;4bK zZ~NW0_+wqd$S%3nTk6ZDqEzD^VQ|mBd0M9S0=`p!7v$L)d=P~Ex@T4M+)y^VtKyVU zln-cuzN=OGBvO6TK?sHZp-}9l`)E>90W{iYsi@J4h=}g58!(OI4BlW?i6v-CV*#S0 z#96ieBR^6yrDo@IqasMs@!6`KaZ2>lt%EuaY|Jra zmzAB(X)f94rE?e}4agw!9_QM=E%Qm!9nb8tKu5Z={1rwIX=%4X?LW8nU(nZWVaT|_ zkvy8U-wFuvPfFd6;lKZ83|V7Qan$&~N}$P=4?R?-J)ov#>>Ev_NmyjS)h>S%(R@z1 zPN#U}oRXHZeVCKzQvm_*O*Ym`_ITzM6B}TeLv3{8*>~-k7}mHs{h|#}FU%Kg@1vw? zsd?1N@d_EHzw!9}^SzknE~m(ik`G7EU$y2uYtZ4ue92vz7f&DQi z0XTb>c2}@z>PebOw#v7|YnXyY7y)sBTy4r?I-+Ge7)t)ISHu>kFH|GQB`{Z_S|=8o z7CgQLgpuX6Z^pV4G^Qle^;O^RO2)sUe(9EzigQ+9_&Pn(AR}a8{&*qwgo>I`Y!F#X zEyzVe`=@LsrfQG=$*F~p&m86pT+{VfCmlKRa_pG>TqM9R_(J)BW+8Oq6`PJAgdui_ zfCG#%{V0VFun#OdM1DL6Liy+znQTp1s4rXhKS`U{8>$6wD+Jn*15VvBJy0K>I1Ew+ z&n|(1!unz06N~QgKg!^_7#Ts0$LHajVwjl4827}6@U3Z=4%g;--iS*@%eNh^Cux++ z5VRyBamuYKc-ShW%Grcs`GO@{((s+J24F;QyA)es5J8pG&@h$Mb(-QH&bJ=A)DLntq3f>6*a|68zg$3 zfXV->0&)3tXH&z@ZvjW`>`JmMORZ99+t@-#n7Gc$6}!|XKGV1o5l^xGCH_a2@DWsF zIjfx&-;Lr`>2qyPdYu(b2^lJ2x>VoWe%tvGH}O+(hNA^918TtTU=5O)ihZe1QmIem zi4)hw#SKS3V-c;QHxx_;EY0IK1}6iVj>izCvdtquGBa-tw6NwZjZ#bPcWpeMrP5`O zlL_I6mn{TVYY7_BCQVx2w|j7Bfm_VeVr9#WZfZ1l_-{D2o8_G-Pzz=WN`)+A-J zL2tG2j6R8fp$$#1V%}rA{s^Bn(^Gt{H5@!;GN-d@-$Ql zPQJtM!N{lB{OW%$D2!g<80($B`e3yF==M%JG*Xllh*`ImXNwsRX@<(~QzA73mR}R` zO`5at$3JCHchYfW`lesj^nE!}c~*Akw1jk2Th*&G--mQGM9Zwie+s%5T4^2M{uLLR z;TvB*d9%!yGZ90;vmngangF`A|ABp1MTBYiVIhOL5i^92Pi$WU8E2bV68DsA@-#hR}}|5fW5q^rvaM!H^7I?7Z^+jl!5uITjzbuv|I)$M)P2UN!eb95yB zM_E>~UA_r>nPRk{>!sBMRIISpyq9ve?p(-bmp+inSaAQz2G5AxEuq(AYkll;k_#&! zG(O3=ZmQn}vZh#%-8)Zgf^ci$ILNS=7yKMwzmyq4=N@ttiry{J(M|y37I^lU{c!7E zWHdxgF|Omkj4?)Kks80ZygvWEiyQrViN&qI#%z8w|H9G()|Mc$%HHzrkLJhAsOt{f z0U-fDe7za{H9~9Ox#ZeVphC23b6$0ypTuc>G@rgZ->KT3VEglSLzC?pGXoi0g}*IP z*0-pWZ`buEif4DBLZ*EC0^Z7khhyM`hz>e{fSp?l2@yWpjQ&{o=R*EUXW~f&3}Lzo zzPcP9UF#o1bDHN^KTnPS-T3w|bb{h?O<<#M&-u~wKY{$Z6BE*?TgpZR01_=rQqG&0 zxE&j>kM;A+*7-8%M$FSErYPfNUp(6GDXT5QP!&iP%@zgu3dZ(m4I2}zvBquhuhde^Ju+P_qAY;FG9QecoR$6S(ymIebC(@ZWN6lEG zT&_;LzD+uhAEFkvdX+#5rfWE?T|PiH=qBV>5-{y%BHDda2(E=GM-CjQ-#wRADPoMz7cPQDSy5X27;y77mj(SlmH+gs`&d27S$k5et3FGx`p7QZFtTK9mgGbK1ufaMi`z$?=_1HG z^tizOdQo8#f5e%qilp%MB&J+xZUgp2!He5DxwyOG^FtLDAMF?CwU`e3CsN~RWDb?J zduw3^(>;0bQ8}rurEK_kI!M*yR$5x z%NiS7a*}{)LTC2CkNV}li$s{j>%Zqh@g`q&tGK?r|Ht63w`e>3M(GuSZYiCmo*&{Iw;#ne5^V11W7qNN?#fL^a+{034S9R1H=DWi@N77aK_*Y>lLV z*Tg*qAJ(`7!Kydeo;?N1Eh8OQ5cgZ*h#RpHf=&n|AIt*Mg^xt@Z=?2WY8!w z!D4Y+J=YkrTIr*cd_0xu)t(0m|3WuW?bjA|=Q`W76b~Qt!o!C~K*rTwRzC6jpd7I! z!pA4&$o6ja{zaC|1N6w%L-Cfve20K-2;Fmzr=-ID8F~`+DttaG8A9PnoTy}v8MlRK40Rz zPY%hx_c&1gz5wpz`ZCMwdAh_Fdy}>H0G6$KrjGJtUl5aq%IOnAc9AZr%d0~F=qMz& z6bP5D5`ITeolXYq*nIgfpsm;!SeuI922d%Uy9a2_E7T((Gy=BysoJdDws_tnOKhcB z&}0$$!N!F=$+D&g2?ov0{jdHP`6xZ$VZ}Rc&%Z*-qA@%V9Vh~A)5qA&8@8$fb~PMDMJ4>ZrrpZXzCEj zs>3RKI-VU&#{2WG&LE|;RQQZ%lP*oFDwt?1yESl2+Rne7|5>M#pBvg>IP(F~s4aWT zLom~&p%bBxgStWFtQm4Behl*_T+g_OBRil0@|y2@BdV+w0FWem#wP!Za3aVajJ=h%Rsby+MV)mfcz@g~@KD3oq~PClpPpf;};5 zJi1pu+94SI0;!7N`r4Hfg{sMvQ9btJp4(P@j@A4nFODtT!Ek5~DSjBM(F9!s64q~gbPjoEo|NmIZ}7lc*lv_UfFQwYuB z|U7IJ*?6`^@<3^YWIUgNCuJBlVoKfRO1U5dsm=Jm1)9k~x+!5jF(+?}-v})!j zUk^o!+~e?UtuHe@BBVHW&6Q0HK94oy9jgr4S09%JQVu-CjaRhqSoFcfq52#D?w=lu z+hAgnq)t8eOpH}a3ARA_o7wPxy+UTVTmsc?n7@h#&c(GU|qla@N9Vb#`E&Xy=tkY7gu_R`syoW z1^^61Rrq(W-K|6#0*qo%TD`#8d`=!CgJzW6*2jY}8+ywnnd|0RaVW4eBO|B#{`{$+ zI#r*UCb@LpEAiRK@V0Y*cOlZ>wd=|WMo7Kg6>CRqHn1Q|jK`NvQo`Se~4cc5Pt zxssmp*MrJo;#<#LE3yit(Y)C*h<;hu_Ic%xu}lc+t2~mJyVO}BoAAj{SV^lrfBtGd zm%hxHf=k$XQnG-S$Mfaf9k8 z-2SQI<^YGgnQSL!1x+cP0+NU|yW{e731`uMtq1%Tej|0S?`60PxsJw%cZDBQ>pj^qgYU_+Q2T=*^^uuE6EuE&C7Rj&pbUV`n>I(fKR;LG7Vs*B|x@cA8g* zN5R;9r@MHhnCZHX@$H&xU_Njaf-UGV?Z&kANzyA&aA%b8eJ1)!J#*S8nN6!n-MGIw zfTq6I+m}`A*K#j_x+V5hAA9G|4vxg|nNV^FLpR!3th%gK_FoxTdS+1_r+3_*vE<^16 z6BNp6RQmSF!$L+UPHq@m4vAfJr+wE8ou$dx?z=sN@&lNRl+|!28u9qIQ36uw#zy*5 zg35FZ+N_rF(O(UC-#wQJ*_E}wit;6d%vN15o&7MHbJd(~-Y8z4Au86k-Jx69muBAU zZ0A9cc+J)WJPs+!rIJWIp^qNA^-=} zUx!P3*cp^pL%>Lj=^A28pDBg20T-cvpchm_O}7gL6G5PJb|r-HZB_3{1lO(XM~w%I z3)@_xd1>CQ+~JfFYW296BMzp;!CSy5wNao=T3n<<6${jBr^|8O4l!((#O^ujcN*Qqe5Y0pJAO zLh`-~TieFODhED|y-qQ7BVNd4z8v)UFx;wbiMqrIW?q99%cAb2-eCKzbiK%-pu6RXPnN~1$%Rq?$ zglhdbxCZCh1TA{^Mry$bko3J1XT<0SX&wpqa&%Q;b?G@0{~oPd*GR8wBY&*;s1hIb zS%!#1nBd~u!qefP)1NOGOdq$`K^e8OT+b(Du;&5y$BFaTH|2dbt}EpE@g+?DV3%kW zeHph{#PfDsqd(4Y9Y~G6sED7Wpfz9Prg+{F|M3v5YeP)0)I4$6He0OUmqG2FJmmlP z#RZPIJnlVDOp!wq*;>v`cguKPyw0AWrr*)+Z#gu%{;%VU8;TA!gAnj5@^gUg7A|FOf zf(YMU-WI=^xUv=(l%m&7Yk1)DKc!$7Hy4E2+6)-TEo5?)wm(MmJtVjn#(s4$52f}Srp0NGH z30zQ`jSyNVCQ~i6h+iUTSuj**Rf$9j=fr%1{=F*EGF;0T9Mc=Ok5sT6>1JlUM?oJ! zVU6BXVh>lA)5E|Z#-+=_wXcz3^t?~phDB)N7Dc`VIynKN6+yU0sZmx3yS4s-a}o@Q zvOnA`SPONzA43DBOULCA;$lUJsj1>*F>lXcwrI@K7A4dj`Q^f9I@(L{KLoR9WAf6XJyvoAN;&uM$0nZ51jD4n=3-8CaWTR zD!7G=zGI(}S6~6a5-;ApnZ4wmjco?OI8KVlj#FxpsSOzS#L^8jVNrIqQ%M#@@LSM-dz7xVm+6EX)$%?!}#Bq3~Ki?UT($ z&~EY=xFRtmytalD(p1Wuqbl&KHAxj19(8p^(g$pOc~a7?zLZ=h1w=jG8Z4q1=Tvi-$6oZyN!c`=Q-O27ueT_TMuRLLuqr-9gwOjN2Af8O;%rC2tBL9V^pJqG zpxJ{jDXG9IzVE#8hClQ-6qqC3aM4IAEgPNo^(oGAz4ez7MJ5lVess&llQ-MA{0_;t zF#b7+T8cLuf(~bmYcL(k@xX9gF!5MXS4PP2jWTF3hM{*Fg-eNuUQd(S0`G|{+=jOZJHgwa$OoClFvP+x0#eB^d8>wkF98RzcbD!-w27u z993#z@TK6&AJ%#4X%W_e5%Z2B>VWTfyycn<;J|0#{o6V_HGZSHZK%sgj8%M>Iz21} zRmYC^m)S~I%uqKD*= z!5il>bNrTx+fMz5%;(x3dD|}S;FrjXr&@&FV8@QzcOHTe`B!YQbdywyudYsU{r7{j zJ^W|s#eT87Kh^r?^U)E+JOv!AFZFhr`^0Hj{A^F+Gd-(q0v{*(et#*u(|T;KBT=hU z=7Ep8L84wIog?p!XPzAAmQRT-o(OAk1_TVzJ`Y1MU#Ef#^brNGA2b@e^&i)PDT4z) zmT*&jdXm*+|1(*%2XRls0AGncU-09`m09FuAtoUSC{F&J zro?-ne&?@y-^yTe$8;Iurqgqxy!Q0kL+P`8-oSEMGzn9|$;XI36h`Q$%Iy?h3oS^ic}ZDrIlQpQx zRjW%{BIo>IMAGeL;8`ClE8e!gU?HXXv?UTuJe54$>ZLPyw422a>3LMe>s<7~Ub2KbD*`_o4j+fcWwz>9MuL=UQ*qU2IyF~WCV2yD(B-BQx zpCD1ER@8Ha3h4P?P zge1d?G3veC=PnQf0w+Ky=$etnOk+KtSX=C$JL}GA1 zh>iK30?|;A8ssBB2jM3ZO+Vys(8(bYa|Xx3S9KjoSE|IF*KxD<(vwhcgcP8?nEAyN zb%!8wBfj~p7-Zy=V}~It*5(&#z8!!1UsWqYQHMuq>=wYUgZ068%yX1IvlS(|_^gqnrQP_~AWjZUx* z#99`ohLUZXs=uZg^j(U0mX>C){k9Pyv__{mMM^>D@(6vRadF-xb2MZMfgNiB2h-UH zjWe6GTwQa&l$*{-Ev^XMiV2{8=U*fmH}nlGpuTzv<2k74EnEH_NQ`^?oFcBu=gQFKKse(>+hbi+xd_wE~q80)q{^3f*B5bEvDk(Y2-j&RG5*k) zue5dXVh4rOvM7qn1;W3mDr$AJbmR3T#wA@bC3pfSCs}lMn{t(}8~ho-^w&Ya`#c1Q zUUz*KK4U>ve!Hp~L0G(ypYi?Beo4W@n$G`U1nk-46pxOTscpb;IlsXS938Zg{2{1g zxz{qu-uwpw)dA=Qlk))AmI{$39U~QUD^K_^qzrxC7)W1L%9g$x1sjgo2!ukN+L%6{ zi)o-LU;I+>Pb8#FPC2f`Kne=hDpgFaTm7Q}-y#Ox=5E^eXrIl$xOd`3yG9iL45%0z z?u1vL!VpP4V;B~hj5qRTpJI||<1_?k&umP{E2s;ykmUInx(I;CNodBTKurL_;6g_X zU2r}n6Y*H#H+`-r#aO*c(K8ZZwd!Hx`Z1_Y+VxoNc@fqv$icHY8$PziNa~3;FY#ln zV~uGt@s>z-F|f1|*sP1AMQ>!y8N)y9I0K#r;i61w5-I$8^m^{7Dgk0)M*RF^0X6?Y zaXq>zy_NprR)%^)ZGS#GXE&4YYs&+v>?}!ctvuKdXEJ_D{0rUz_hG0?6okS$vL%hj z+w2Qiq~tzD(gih;)%dF`WnUuvzCj}qGv=t{O+E1%Fy4=_|IENk#xQNAEa}W2N=>8% zJIMEC?V>*(Ro#E&(3N|YTn`32w}K3XE&S0_9XhX0x7EO_00j;PApYrkNQTG&Nh;74 z`upZWVzeEb3hcAb+k1l_GBen=7Q}s3sZPihx-haSde1-bNTdXE;}6x@otNbz@$Vc+ zu4!rdDJbFl_@9;0xu^3wFx+_U3HV&=%U1t98+3rB@DSH^LkN%%?s9_lxdzJ|(>|@= z2PuEsLdEkCBCR{+l)LzQc;MeBYWlLEK|&@VzVcrX4%_yPeTlzTib()ZyD3sEX^elq z8!nX>L^~74`H0v|KE{p^cvjJA=zti#_yOpB5@UG@o4udAUo zLzBnT!=1Ll*-+OROm#}5vh%me-$e-9}6|3?98b5&C@!$CjAMW0hV?)z5(EMdmaA&Ng!=*+Fi4IPMb&#Gq zWHi<|3KhPk$0Qxk6Fu)O?v!L?viZMlqd;ZqrV{3(TUKIksE)@P65d9$VhIHfIVZ6b zg#k3F)ReKT%V|C|w^Y1(#Iy0U)KdBOzS*Qhwq5ZC2~q4C)@vl!?!iNB-y#^QzQmyB z`5z*=nWTejb9JnhZcwq7m|LAKUO3^W4Ib@Rxz3)Xzqu5<=8DeY7&SIXgna(fW22(x zQFex1HpA=GL}gO*=;U}{XhV>D)(8xPdFY&c8HX=4yg%wVUfM0;jQ*B8sXY82_3z6Cisw+!wr+iB z&b9bi+}g9I4-qn6?lVCZWkuNn?xK`F1H-yWiB#;BSh8r67=wk~wZ!QAtA-}rEJ{)w2QBKt!v@Tam_uPlnfTvXbdaZQH@@!MW^BZieW*HSv)?TgM zNbr!DE3P2aEzW;xd(6i$R&3UGxO;0t7osG?kKY^fl$}HP+|p-puf&*b6&nt|Mhb4g zHleJ4HX50RP`njQ{*sk3QJr{szIcSAD^J3u^{#_}o4HxIZfGv`=3E5Sq zmY-Ul*1sXS()^t%|8K|F@O4}E2^aAR9s%K$W0FxUqdaMPrw*Bvk|AK10UZXcc0Jnj zQ|u8dYkzRZyykeDQ~FDWu$RA76Me=q*TKf4E&jf(QSc%QoP7HeW}03f;m(Ly>b=nr zP1@hmJYID3aC~2uWy6^F*)$i&ZSj^rf{?ezQ2Nm(((ZfyKBO1iY5yQux2fhVFig0f zZa*?6eyI|UcGWls@<%9neTaHO20)Nsu6`SJ&o3MmRa@H{NapEN){W-{Ev&3ZV)~c0 z`}!+ttL5{~!a2obilpXdBjeRaTapD>oX7q1FBW>Gz27Laa=}gZbX|wJ&+znFxwMCM zcCGB2OYc9%`?K_bn9Dri@zH1vPdUPxr}*Y^%RS-3)4vbLY)M_vMk<7Ny8A?LJ_{rv z+i5g(9zI)B3^)bX*yr&tMDmluYc^cTJFM~bYe{;3qYU%EFs0D8ZQ5jOB-^tYa)PWy zrxg!*?a!P2nvbz1g&4(|u@_ZJ6?l5Ov>t+%N0hZGnJ_Q%(Z#J14lhg?eHMAg;Ez~e z-s}AjsVc+s$H=b;H9&!qKaOf(7r#og0& zRpr9D0@dhfwXEM4x_OSEK1`pBdf@C;l698Mfo53L%MfGVOH5Lo@RgNOpd?aN^XN{3 zr*)cc&)f29I1~0I#X~`8bYdjdevhXp-@BxGd+58(FP?9W^k+%wh=`t|^(J|Wg0*Um zWB13hb3u4#)*wZ^&T8`y=Z`b=Po}w3K|#EOj26vwR~0*d*1+ME1I;&6JkpX?q>mv1 z7p=;3)8`a#ZyU21+uevQ=iu4k8?fg5R;nlxu=5ryTwfT2mlohL#UHPCZM+M${EYO~ znrbo^vw{0-aKQdQPX;5MF}nl`qsU0oa;Pu;SzS6B4#8@NF}v6Zr+CzB|H}7J@$jHS zd>nO<-Z}Zj^m(rZ1tCz!tNI`rO&#K}5RP(NgE(A*a1BDae49mOu#0n240{mS&69GY z=jvtw(hyI^$2&J(2?l_9bN$8^L*4Q>h-KnXej*xB1b%KiiveVq;{(E6jRqdxK5!Bw$>XA8+dp_bH>J`9)gMZmNFSf#NKKPl zL+_H;r6U3Jpb!r4FdQq>WlIwKcRRSOzRxNHp8E}OWZ8) zZ-VT-ceG$Wp<4*sRITw?F5mtR*{&gLMZWQXU^ro*mN|x;M@@r0nIflrl^Uxs+ma+- zS(=Ynd2i!{vM$feqOtaQHtAG#OOg$R*K*(#KM+n-OlGMdnDQvRx2|(Ss3*!o3Wo%+ ze;rz0dc;fE*?aDs0L`0NkPCK;&e7p(#Zq@2KXJ`d0#g+ z!B?F1R1L-|UOGG@BElo&a`GNL*s0WC9kT8;T711j^ znccKUofO_O)RlwpM>}F&5vpPWNE7Wiaw37)JTDBf*G-4L1)8;aszuF_z4Er9CsGuB z@SRj&1=bjJShY!>VzSxI$BL^JsYJm0oAc82fL=O5!*86xt*)Y`r|%(w2n=!{iIj4nrkmMix{ zEICxgQkrgP;|5w06Kb=>PM`=>tPf!{cUK)Q-VhKAW!xPZ&6dK_#RwJ3DstH+xcVqza>zJn^$pFLr#_@~@Z4s*{yL4YfU=H>~2Jhji8V zzxT%oB3d{8HZnZG87V5b24ldwbe1S~vX1>Ygd%iQ*Ryc0h#CrkOsZLf%pNFO1E^GY zJ~${Efovo#bx|nP^(pS$BlV&XOo0B^SUeZ92rCjQIAUc4e~srqS+Xe25z?D5d(Of^ z(YM@h6p+v7gDqq z&>?4#2NO4K@iP?5O`U~eIpH!rs6vdu*JjVo`jf7M9R9CmcW2W*H2rY8T#A>mvp#R) zh;uz!ee||qrW_4kpXbbZPE|kUQ+v`hD|CXQT423n&@&6E$WVAF-sl=jg|c zUiB*}s(IJ6F}f%E&bhHyzi4{qsSy6~a0(ZQ4EEk`-<8`F&Z9c6R1*Ws5a`%a!0bF6^pn8@1B1(9)s`9{6d^=7=QYve^{rP!F$*y~vXfgx+?=Px z!;Ib@w%_5@GczE=X#0U8VYg(p!(x`}=9cmB+Vza3c=pR)MNQ`d2#QJ#oeNh5@9p=G zoF%!G{ZqnW4CgjR7RoZU-n!=gCl2E^ciMP0ws*CS`u)YVf!KI*!@iNzLap;y}RbFLifum%(lc-6^J`1JBkt6zF_?4W>~t#27Doz=Oz1 z%~DK#^8Fj2$Om~x=rU~YvzeLQW%(n*of9>$o9H7n(yN87L*hP#Zo(ZBu}u#gTZ&Y# zspG@ihji+EL49S)(a&Y>eKFTm7u^B#@c^hx@Hgp$^;z04XA{v+0_~y&r=&2Aa24<5 z3}Z#!FGcv_?2|o=c&v);Jhy_+m&Y{qd-knGza=ky+k3rbu2vvvVln2f*PV`k#LP7+ z)*BT0Eu6-$3_z&0GpYZi*%FV)9pTKeqSD!bfMK&ueykt2Yi_E(oKa})d3uz(pXGMl zQN5UI-`tUO=8rEVj^*a`1eAOUhp*poOsz)BM2Q~oXZSP>ZeQHTI~Hc&LlBrQy(BW; zdh@d4AEf#_6frGzb52YRFMM*vBC4vL5!`<%2rR``ss->`t45(6Bj;YjUd)dZkn{~V=rDr0`li-8R7yXY~>SU#$68R5^=MaGMa@Qorc!5f?O|3 zx^Jt>pip-3PpWl{*ZtIbv4qrSjB(}Y>VGPq1 zR?r0m2hF>CqWRIRd6Cv+Ig#FFq@HqPTE6OnA z5sjo641X^4&}?$KaeiYAHU1kXe(7X^X~@ZOJ+voM4omAdY;U-=77F9d@|X~+4@B=+ zw~xU5e>9zUJk|gE|0$AWlp+bKw>^`UnVqbx>{XznX z`MdP_egEuMan5TzpV#xc9*_IuE&}+WS=mw`0vky74AOeHFb!^7J7rMN@hSlPp_xgR?>9OVwn|~TFvp)kV_(^(& zFRFH@$ezBNX(Co=g1-puoVRSmhseKQlAeK0nZA8tI6%A#1LR`rx93p~p!EiT-lMx& z(8D&iW@55|CM}5g==1a6Q%?0MX-TH<4S-FSi!7eM)QJU3_E(ze2uez?f?Aa{8X3*y zK7DxL&U)nEsm9(evX@*URyn7DDhB+elr3-Zv=SqqtB&R>_4<*#gQp!u&60)pP%V{a z9)m)4q(~yECnJqf?hXv;;bYj@a6#p7qRcnmEUYIF!?zz`>I;or8Oq`*5kH#ohnK@^ z06!5HXpS@*i+|=FTb)4y*piTan!AB!{fj_V(WsG=2Ww)+vN)A8x^PnSttMV+jTGHlf!6;mV)8b0Exquz&Z zo^zQDfhf7OrPux3#%t@ZC(E;?1iX$K^0ZC=PjXfl|9#Qw6|ngGm|QK!iXQ}cH@On4fOtEq95n|~6+ z=O3p9f@}uBlK|eMc|~(Wj_zCo!qo0Y;$pT7iLv;?!=>t`-smP<;sKdRe+|Zlv!>cX zBoh3f^wRI2Ml3>_50!0Z0;v0;bc0q^gwsRksgL69aF)Fl6me*#Dj!jSo4V1jgm&^F z47rir7j{1c!d`}4L4afZTw};pb9v!0WO&#@s0iGgX=)}QyqMrDx8M@qxTNlDa{h-v zp6w0K#o6@KYZ%A-gg%y<9n!Lp2%!|Tlydaq@U1?WA|KYa!LQl$Vf)UN|8z9}hSt35 zb;Y+S^ybHV{SNZX2(p;(V?+wvcvDcoK+l|e z=LIbIrQVc4#N}iOaRL#vchuVp-q7IvW+(;SB^;fTe?04aDZ|Z@+{~txko4x2 zgy?8s5_bmy9FuO4^@^n)M}boSb;-WI!lCB`J=`+GI8!lJ#6MndZz6bH{l}7lH`kSi z(R`_=jf;QWOnv#hXY1!c`jY|0pT|Y-zdulEYDMJe_JvZxFemh7+=sOKR>Cq+Yt0%Y zun6iRG8+?so0HpXeZm8(}vxk4r!!t^>91LIDB#2vY7 ztJg$YJH8UJpgWEP_^>v#=)W=sI*>g#&bpH&J1>eEUmjQDb=P@MH0hOJA=>49!FgXi zEf!L-o8R1$I})&_P5s0%Aj$qC+cB|}tBYLW`0 zM1%eu<2H^f#&el~vIm_;wvnBo+w@#qNk7%am6eIDWqFNg-6)$~YHk|`;}K%;X=*+i zX57G1naLB}=7!SjpKr&D;)yo-}~I&ZRUx zx>sr^VFV|-MYRWQ(!lz6CzPFU2N~ht{NAa<$UrbJYn=RAP0wHsb&OX;S&90Nvy4pl z2E{x_hqeSAE%13@}w4t)yr=`F`+$9Wp6(;V4x$kz{l@nqzu2Y7wxl`;1#URs^qZa zQFuY1_}(lJ!Q^s`2fIYXnVq5}J4fdA5%P&~B-6HXpP*o>iE|x|* zz#nCnDKR48UYUE}N1@E)ch8P$KC(HK^lZCIs<-Ztw|IB#ZMwM$HAZNqCKB&Txaj46 zkg9NDvR()@bszg-Z)SJ%ZWq^Kjhau7s0h;Hhf4MmvA=&6q2fYEITk%y{O*eutkIp& zBWxbyE3f*8?d(@*I z-DLUNpHGkX2Aw@#Oy27GQD{IJ-Z_X0>e0?$s6IRrQx`r$+r7Or?hwh(w>wAX{UUa0 z_2$C0iPO@jQ4r!99Qkd!=#=RHY2fxfwsd>rn##%0?d1PN%8h$p z>K5&o3ax4j=|O;V$J_97d1EOYgxo_h<+6OOT3t7{#%q4ZAu*QR-`fT~3xkHAKl!Be zdo)jrt2RScWU1{j(_WI2TAAI;5#4P$Ij%ERDHD@T^6Z^x>#YCGhEH8u@0^Y$PfX;l zidh#v&V00{^JSy&S@_Kfb(Ps;IXBrTkz$hET`vFPSNST-VH3p9^%Sn+ztCjWD8h=5 zkH072X!-Yerr!IB&4R4)mNs(!>*4PZHx(NQ!lo1@>@awY|EY$`#lstWc-X;qroN;k zX2qFJ+mD)Ds6eNZ!~(+LTi9!(wvknbVkZDRh z+XvHBxO4G@LUsK9E_gqdAXj=Bn|!#$qBba=NBhKf>&?xP&7-to-9`ZW8w^a8-^<4r z^v8iXk|$new(P-7QH>D{%8#P(MOIkPDBN<=?o30%d+JU7z!Mw-D_bvp?c~J7nJe(&SG$I zN8P!!lvLWeuj6bx-H&B&LQBIetkB8&0lLJdn1iW+rlTnwDt%hw;lp5pLd`UXDQC96 zcSf$sH>tW4Ly&-PV@L^U329|AGkdR5^FZp!0gG1g4TbmHR-MCot-4-t-_7owuUFn{ z)=s(YfU&uY$EHsLJWk+c{HFM}5V_M5YcVTE+ucfX zqm7AMZ+yL0IGJSBY<=RTtK(8Rn$afzD1hXTME<(z!Ibko2K;CKAq%|)f4#3C2=5Yg zba(TnXW{zb@A>BCT-9^NKfz5fVT*d~+ErxKx%r>L>gqEK$`-tQ_aa+{1QG#ZNa=m) zjd-#^O_xwtA(#Dl zvu;?gpnW(a(V3uA=m=|0=nVCaIicK?Y-(=GMj9J9uF5OftBsj%WJj?BaB7*nvPotPq6^ zH*@+)?T)3@mlCo%cp`&d>bWktG zNNcwL_^QLyn>VbS+oJwTRnuN~GBW4A`R>5eUj3s6pOH5UU2Ou!azY`#JRhH!w%lB0 z#dY4yDUckxmL{4+yWV#CW+?Zi9?N~1gyq#H4)5cZxjNOHUx|(zr`UKOj{AtDtV~i` z6J0p^6a)qA7{{<#kxt#;yc^rH?#=}f3I}%SY%6EH7GgX5ODxbo^htMTL1GqnSb)DL zA&8=EGXc4$>QZ4&!A;IvsAMe6dumxljXW@$b}cQ+f3sEJ^m!!a6}Ld& zpRR9g2&|Va3yS$h1~^RKb{?M=@un=vHPV$Z958+MLu9^#emk6Oa81 z=Fq}y4j_e`-}k}mTw7b4S2D?Aug7K+lXGf)9t8+ z1J=D2HT*eLf2vh6FchB&rcK&2m4Zx@)0Mn|b#H^JI_jh+l7T!V(Nfo6b{U!!0>ZD6+V(qt1>#v%&y{Nt&|;2=dU?6 zGPswvKAAIb*G65u!TDCwa{3GPtb-dmehj7Ugy0NbD+xG1PoWAu7Dwnpg6Au}{POgP zt*-?U-k*^_m7HcfJwMp4X#A>`B}M3@<9L4bejJnyK6Yu_Cu+5t#FB`U zwG^|HuBSP*drQjXEl9LP;>PIH`{=RaSr_#mq9;N{Zn`7a7JA_(&NGDyrQVE?@xC?~ z;ed{QGT&F{xm_f5acYh5rTDuvWz{q}xUvxc8JpZrPxkLzl z=iq^H!V+}POg7Gz6qeRPayq$|)Js|U7N9ZvyDE`GLOU|nf-;Z%WL<`wf7(U)o-SGh z=krO`pT?Yn2N3bN@mNZ7rAPRj`ew#X6LAh=`b|L0wu$>j^@no+?#&0=^f16Z@U=## zO2fxVU?RQPj{1-Qaf; z2{M{LKGx38&d5osi+ge_nTmsG^KywXwYwK5(~BT)>EQdlHMw!4z#+j>w0w@VmOa~~ z!Cuflw@CYuRf0WPqRzG*TVmN?-gp6qoA)G~`;}@U)i9v67 znskC1KWFW@RhZR5+ft<5bxCQd(m~tRjq+*`*Np=EF=>r= z&9&!WwcmwWI*g{>@5$9D-k|7V!9VwRKawfm+3oLKv#8NnKb=4)+Z}9oBJ4JEfBrQh z-{r4d>!lc1(xS$aG+IbVjiaTif7gpdRpAKD^;`g@jf6UU`k>AJGioRa8mI zjWa!N9-fqE!FsuYkLW_t3){%86OI~EYm6A)M6z;GOu4E@b{X+sY7eG95dFbf*D!F2 z(!SymnxS=gy`6`Px`3hb0lFZ$+}XiI`2E;n*|93pVqtRosERXiVd0(in05JsnDWEz zygZQ+?R(EY>ji0>n4nCt)>5+6RD>V9WQbxSeJn;rW$pXU=ZTfDajby;Yj-(4m9+pFu0>3;h7ncy?p-ksY% zs&YCeAN&t7I`9ZIKYTF5-?lqh^W@(MO!s9<>8SR1R(Wr3o_-{U{c7=die?D2YuM`! z&m~gpBNsV1a#CeJaEw?P>UNy?RqQRQ9DaCUUB0b2&=aGj8L{?!06o~$?4$MGJiS^b6t+J7Sgr9q(e}!dG*~9)2ALkp10#J zh#ln=T$^&I;yp1n_~MgJYeW_IR)q-ZGx~~H*xt&FLy4}uh^V-^P1`rIx3CtbGL~IW zM1&6pl(my%y!L5C z<VoyW2FTL|ky(#fI-desWsF<5DtBC+OLf|Lc8l0L3@ zJBrJ98HuOJJw{oj%OFY56L={;0tq|)A+s#gmv~BoUkZmR6g9WJIDRb>y!kHAPTzAZ zfpZ#tdy0i+KN!W}yU6~KqUr6kXsK(KkS6J(vG^c&=Q}UsMhDK;$Fpp?Z%ci$fN!ax z0jSMQ)3cP@%=v_~OTA>DzeNNr@dvco^*gm4Pk;DugFsuKI_GMHBmG7`|8+6@*@Emi zAg}!Nl`7{0g@m!6y#8Gu7H6t{V#TbtIjg!L&6Qh@S=GP)P&d{Fe)bw~SBBWawv??U z0UpKCLw>=yY9X&D{s~-6d{Te<89t;G_1791(K88;N;gVBW)}NR?RpybdYHgyPkbof z2yshfkgBaulKj8V6gkr>QUGIB*t7fItWvzfrdbI6XcuxPD<*+2(V!FRO+-I2)Ay@^c7 zX)wbXNvA!27(>$+Mp!xp5{QTFYfXk9nfG=rYkro{u-H61OOCwK(a-{F+9n+(>ccWl z16*ktAz_dnl?W>FFdSBh0BC5R+=r;&bBuPhDp*Fds8^YkGEJ!{HH|^>-lHX;uDnNN zg;}2N6mi(eX>J>0D;DF`oyJQTnQIb~snR&@=hEmHfyZ)rTQA*7xmk}sv-39ybljps zXF06JBs_{<(Np_;@gZKo$Lg*n zH=!?nj#~nkO!c>vM=VFX-@+m}ydEPyBAH`M3U_oAg+&DgAxk#vvG65_@e`fhoOCe> zplTp3R%K1{t3&>Ab8dL#z>#!Z(e+yi6Rb*eKD}FK%F&dHwevA3PS+Ym1;WyAC(G+Q z8NT7azogE$(N!Ij3Nf?2$*p{ z-}ZE+gE0lo1>{5^Cat73D?o-r#Bzy1l0b%XBc#{ZU@{BC$Nl{eXFnO9YNgSP8v{O7 zVi-oh%7b(;^2!nxxb#BLH)Lo;MM8Xbcao*#C1DkQJeV++zds}efwXj{R$NCzF-Q$X z+?y*He`SdSrX{>QpzfvySqY;~w(%TeFnw>pf~?Ck@XOfI9^6SYDmAbBLS1)ygo!Bc z=H9mTKhBU;18b;SMY$wvhMH677>yPVxP$#KUxFiEBO4b;>-c(eu(?rJxtLt_F#V-W zlo!dZ+1uvSwkwUm=3`W-w8Lvq15VMUp2%lz!9WdS-a8}Tgr+NLI`!Rt?j071VOft& zI^%`MN_5^r9NOqhC^gy?VgL3c4`C_cFn4ZQIu;CYVBiJ(2^U?VtYH>64X~dKXDP~d zj`UGI@)$c9y7e8fWYPd7ee?STe1v~;vq;PAC;$aru$X~v=imqp9RHl<{+47EmY2(` zpj#0R!wm7_dorbtz3538ehqv9iH9^8LBn50q6V_W;T8nJ+!8N}jgCyZa|q|R^GZjQ zsOA;V&xfZ+b;%Nda;@i5tdv#)mChvuReRr@ui5(g@JktgGL%WNm5E8!kCxXECpK;C zt&sNI!4v$}45By2%fui@g0|zuLZRG_nV^bUOdS{S0$b@MAa5HF9H#4EBMo^=>Nnr3 z{Jo5LkUuq>P4Vbks<{6jrt5uhNyOT}adClZ>m9qi>+{z8AWw4GTlh1}ZrEG+{fj*K zX?mD^82$*JJMR62WtE$T{wRIh&RA4)yYPtwggx~GSRK@Jr85s>i%hpR8Zy$B4j~K@ zYj^Jw$Cus#kITZ&Zk8cqVjT@zH3{I|zbdto*{;lmJ*KVpse5S9`3;kE2% zDJjiQjt7%t#$vV-JDY`5Kyius8fpSg%aco%=eS3%aFm&$B3d=OMhp_n#1V+fZ^UYM zNguI5&Yw`a-GNVP+VZne$LXRp)Kl#Ss)BzJu@{_WMtOPINlTjqTn^sI2$#PlmIhTvohn}_YXkFprp+JLQ9Qm z$gxWO5($cw%c(lo=laO-Wu2@Wf@C8CQAa4O6qyeW=2Bwcp|D}xtR=)m|)X~2_+1=d>`I105Ue^KO!rPVm56yNg z;jL}Zocf=^GVY-)obBtm!FQl8Mgoyn1wZb5S=d22BZ_ehIu!6 z-{ydFPGZ(2H?Jd*hDG?Gd~BM*_4|A3yF$i&R4Wq?Hm&^nOj1ysR!r0~c!ZHCQ?sC{ z>FP=s(cX-$-Ts_Ji}JL6H$`5Tv6`)*W%Tq}{{Hz&evVts!u_XUDgo+s6tL@$u|_wl zM(>YbJKoI-lKT33|DeXz6JMxzD~(OHpmHCPwGt~kAf4)Q{^TXD`-aiuun~mNVl^gjXvEVeHk1X!(;Kn$#2f`2dZ*`6c?@)IQYZLIU z7LM8aOuIum*ujR2)bvH?aynEm^tCYXJK7wrXiv7#Lu%ilf6-Y4n9fIv;OHviU5K8! zupj@O_*;Zj*vK0Xk_=iY$z7(LOf(NGY$uQzhtN&=y9atKus+CfC#Ct`mbz{)l=?DY zwQ}8!v5%Y30rJi~SW1YdW~DnZ@FC@}@rnBFxfyTo&l1l3mQA;2Phb~;^jq~}#^_a{ z?H9WT022EO;hRnm;4ZPW`&z37br>pr`o zBbQg}1yvAIcGI!}ch*uIk#sIu-V3>?aUwmxGUj6}4Z4Bk$_sQu?8L~@$!pBI4_w@i zjAqs=Q)zRwc@10J_Lk-8);4E0Z4x?;xaw*Ei1fzIuM!B}f#W>L1v{{=cYMK@ z0jg7npWeeA1n_9|x2#&o22D)M6~9Kp(`xQn7Z!Q?$okN-{EbJ5GX$J1^?MQuV+Hf) z@4JOEhV^EIKK9H=xB^{B-s8ow6GC2$vWxSF8!bUsr;t){+~lwPY#|>CwzL8lqZP9P z-8%ofgByHrLg}azT}d3b+uv749kh@6yquPZ7aB6S+6E7o4qk}cF^6BRobUS z%F17>8X5`8J)6-tx9$lG{S#yzOybB!e-FM2+i!A>$ZLlRyMS~(?vSL+K~*>1a1~AP zC}83i@ARmK$qht-KU_rjV2QZP0NtgS@q`6rHXD#)%$NB0B+_*scXuKOT<<3j+loM|9LUAoL52EK zU2{8IS+vIc|+M~+E`1or0~x1FW|(vs&|@v z{LOsQLs=eoKo|zzYL{X`94`tfx8Wyp;3`QT20Sg#=BTLhFf6i6@V+NTo*uv?+U=-w zuy9Xm0_)O7ltypc7&MUL$b6?4{TVLvo@>f87=dteshy&xN@QUb#htj$#PAg?!Fhg9&Y;=8;@hRBMB!=0nW zg&-KRgBE)JmrOkH<$N_uCFZRblSIa09k=4X-cXSQAY0X}9d^)L8tiQ-SXijM>Y&L5 z<}B#1cNxV%UMfmGf~E5_Jrc!fHwV$?5cJA$)(vO&%5_Fs7SJz4&H?}}+V|D8%*h7m z^6`O34TJafTOMmS%}7QbNk{^?Bz~hl7otoR2zfl;`>FwZG#J7!+?K1sF;x^!4G!1A zD??bP&r?1-cc;f@_g^UksOK>%5Okn>K-mxj^=_qI%7ID5aneg0W#x!_cyk#Z_)*iU zq~B5$8&XOvK2%@`BFID+^umDy@h1jl=qh=|J{(CV-XyL~;||Y@-B}4pfu*iNO?bqY z@tA>OZ=x7k1|ny9nlO-4hFj_E2Quqekvf*V-O5%S?Bzb6$OL|bL@Z$ul3jQzRy}aj zY8Y5GUO_9-u%F4bN`u6z==k}b(FbK=QJ^%zeg>ExELqTu6)usRHIn8H8zS>p+yNFd zm)}`&1M%&zh`|3@-Y_tpMK%>uONjF)tB@6Ui^|`5Jp^IrbimN&#JtE2^hl1e+&Yqp zf9~J+l?2iL$VK5LT4B#B#k>BwG9?EV%?*Y{QOIP|BVCpQ-E!|I6xJdmS9ZaRL5ovS zFU@zR=U_gT*B}vvh&QL6R9#r>;XZ+JA)h-a^JQn5!I&3E&q{)!)dg zp=GssKYmXD=`ULVGeq>rXo41YW-KEOMEn`3KyT0jsQ?3<2gDps6ivil%O6DTz^Rv& z{S*ZAuoT{ezu+}v=`sdP2*i4);*tUE;N#~+Wzvs#@wm;GT@>!RMNeIdg%@EOyS%2<7;QeS5k(NC`UwNL*NqVCg4|iFTXxw*eZy>eWhv?ff z$jgiLFLQ_cnlg;SQjIpI?2Xbzhad$u+0z%y-GVQ=2L$56hT%l2lO?5sNT%lnF978G zkUB-wM8*iSk~s4DwFIIdm=@e8iIJ;<29!kxO06@JAf1n;Ejs?IiC6+o*aUGh#KV}F z>}d$qjv@owk1#7LzS5+nWhuzqfCE`L(vO+qe=fmg?rc!IR78){0740zz?Y8n$Ik(Q zbBe*T!fwiUTM_5G*5SJ#lx)Ai151!TQPkNT$l*4Du!W_C-y1%!l&2HFX=IoMtp-uzM~-? za6LYt*QWNnETdU_06v@SECao0~r z9%-30eSZ8=p7YU3k2fEkO1GjZH;3JeE|0nTOzZ7vfjyxX?ZjUhJ_)KV-g0lTV zPY??EkXAFA@WG*q1en%zBK)^|Xn)t0WP`-|iC# z^sj(oiID$6$y})2CO5@rdS;yphIsRhsRcwRP)Q+pMNPPp1E*{LFMsxck57)bqirh9 z*SbQ0zd`{oJIMJb!sz4Y9PBuHJv-Vrd$cU0`)xzY9alPE13YpkLJG25ekBd|KH?(a z!e15CctU908CW0%zLtvZ@izg>=x*+S^Pz%7t+Yy$v^29Z@qjxW4L%_u$zRe;hej`B zN@QN@Dg$qrb;Nd0{VNa1JpmOe3x}T}P2YIsABj2;yiPE%j}PX9Nbr~^0YOUxcB4ZO za>;okqwX*|&=#FAFzx{N8W>+Lj;6w?*~GLfvAK{m>+1C(Av)qV$49__R>|uqXAwF4 zY#pd*8FHxZ0XpCaB=5~<5o_0nM^b~~0}cT!xcHgZiaxWBKY?I4P>xc$0TQHi>;~_i z$_}dSyH-{E6gYKn(q^9>V+tRKR_?aRo@m2zrW9OM1Wj20IwB0BSxp;wp`yCk@4S>Y z>udy3C=@*)em+--qX%m|$OUN^KsTs&e7kTyQiQ^FF=^QjAiF5cFP)evQdh?<^r|7n zZCLKPsjKD`()ic@$v(E*Ht}9H1P*LI3wP>Ph&FxE2_8fHaTdRWvbp5ia)<=%*chJ< zcBABF_uJ{=_XG%jncMkMy?YceywKc}oNm$R1oG3`P0{10$;ZZTDQhmyMW%deT^F7f z_r4j@v7Ko@3rYp441j(+vu{O?soBl5G53@n#yCvcseOs; z=HW5nNryembF9V_Fs9eD?e3@|G%PO9<}P&@`lp98J3&0J3pyu+qCH&ATPZxP=Dd0x zCa7x@!R_5RfGyt#!S&4RzpvsQOguewIotbvV!QJn_XOOvi?a<8=X>nWg@n>jR6!RUgQ{5`wwv%v${PW1vKI@)1k3)jr1yt& zJbI--sOIyvQ?*r7r#3Z)7?3B>5K?qgLR-1iRB#e10QIF269>ztYN~pTuqef&J102! z0}>c->8Uh1C|I_1;X#0iih3OHC*i8UVh?X;q_Ra_O>nubUiNAN?Xy+(9}B=I2xdk% z+^L8UMy_^OojiIeO!a6bbw0uQ+L_qFdhr=G9w}DY4bwAr>a3B2lkKRhp$#+jzc-;# zu3q?XOkVa&@74YcHM9le>6(Qnk%x}WP0E{H@px57?;aA(=4m^^?Y~m*@@A=T=4r89 zbd#}+W`eEKEA%yj|9t+y!4dKut{1MAsF$pj&~KC`PVU^<*aB2-01U7Wx1r* z({Kj{fc*&~!^CViekHxDc`du541Euya5PJ4Znrl}iKT+(r#~GHPcHj7B0|d~T?3nj zOSAoLOat`)ky1sq)#~#ez1au?XuU6#QSVj8DT20%*dRBwlj5cuy9Zsc>}i*pNIxqxN=mn=Tag9=IzS3p zVAF?m^bVGrDN_JB&wQltDOFl#U&vn~n%PBBkmb%QZYNRE5qSs%)*ARO7P|-)M!xE% zI4q<8h07)xc)jiQL%w%o4fBu_IvW|(0@CX$WSK8h8*Rm<&=_F!GJPB-@v>lNkH7sN zD})hxya)H|sDs9Nvz-S^0O2n-Z9{OP2v(qxBYz9z5;hIL2S$^u9j~Z#GFLc+z=@c; zvlMvcRwA0&voie|X#}tX+PeNCyv*HHdj5|%0#RbCojnmKS!G0fx-vE~h_nyDH~N>< znorp45k#`a4Dm;qaTAOP48z#~YRH8@%tb(x=)%uL*d{?UT0ZTenh(PY8>IXy@eo0g zvXg%&O#HUZA~eB9PiDVFYIyXh6%h=S^pq0cLM+{eYzwjHtV`T|58L$R4&J|LyB;mM ziD+-2`Mns1VRuV7@dAF!qq_+=;Xz83?#zv+tTENt`}y+Oe6~FFoLj)EK^vknvKpN& zZ_OS595Cr-@+JeG0ERW9Oeg_phzo>kaEgS%{s%TfC{O)X`is)iUQ<9%C^c1Q;iSi2 zj5Sz6W*D-8AF-??p&~rDT?ElOAhm{-1iqf>Gb1SIz)`LS?qAcdkwrq(EC4fc9C(T^ zOEA0S4}kIBAA8735?dpobS+8gyrg{|Zy- z%RcHu0GMZ@`f`*5~M zd6ntv3obgd>#rVCZq1DeOu#>&_J=bCGi$z%S2vS=0{l=22%PV2d&PEXT;^DT^9CUK zVXNNbFZr7hbiW`cG?E*U+JzUz{Mk(*29;{c>Q7V}Sj1V7_n1SyU-15I4kbp0wD}mW z;$d5FTd2{c!y_vW8+)Rh8jQiSerWr7ol7;PeU><__EqKr4?o$L=5L>n5QeBKOh`^k z_*lBH57zI*$O=oN-heM8mo})P4RP=df|KWNiTF#PfioI@MnMQhm2LpuzvfHYhgC%e zmPV&KHcq&*w6v3^nqrx!_muOl+wP5A8jHYy%emuL{P2> z5k)%SI}CiYYGW97_m6)pF31ekQ^f{9ba4_}+I=`EO&ufZwKm;7=Y@}^(u z4YBqje@F|*H^vBgZ#lgA2u{j7Vcb}IIy%n>esqA{kJbcq5*tsy{e?gR|Au$dR@1J{ zi5i8&t-)L}q+r)+Z+T)KCvekV@f!*}66_&8YPZ~L2@nh{I0S(UnEY8BlY44|dqYFV zPl&}7L z3@kedC@eq;5UPEVvt{sJT>M>!L}Onaj$l9?9u@{ayLLEBI@tS)milB3C(ecdXy==C zS5c@!eSVEeQTN4HGhs3w|N4#`Au>2Rr-0~B3Au*XS>Qqw{pEox=OrTV1TqZ*_$-y* zNO52HJ8k)as61ZQ4}EHIWz(BVd}G`IXQpDsxe^&=7^TbDTT{K#d8> zld~8OO|bqkUMaa#=e-H9K;d+{o3VSEG>~zX5UWRs|Gn11v;v-*kB4e%DS9iWGanb#B7<$*DF;S1!< z-*A&gT+*(p8+lm_WPn{gw|XV%`{1@qq>o(jqhIq;A7s-XXwG$H%mbn^&>ecGb4iR- zaJXk3;EsUI>1(_*7&DuVo-%Afq*4zG=Tnq5DV^xSFpE*`gvr10psQH?OVAP2f?w8K zDd^luAVS)u9N=Mh=0nX~kCqg!a-9DX^Q1a!W4#$$21Y^vCL8jk_6hi*1N5-u`EW;^ zEoRu1$27ZVzPd|s^~_kPX03qM2@lo2&|Cs*V?DRA;5xo=)=M;mI|w@$Y%-BF?I&$)yv zV-#dy&O<5nKym!s_Iub&?MXb+Nqofp;)9-nw>E1u`!IQ|*=y%K=L3BM;kT0PNA7b$ zW6qg&hF$k&_J&i2&8rk$ERu)@qAJ&~)SRv9E0R1~oj%+b1E4hh#mO!vrE~6n1>`jj z%R{QdGH~IPWWO%J03)`DwYw3yrw{D{%&Q)B2`^|(iT_%QxY^k+cV=YamZ2$Kql-?b ztz~A)(Yw8!%W?S6)^3AIn&o&uZ<1O1el}9%dib#dETOf)dhS9u$2KNgO4wxAdxLB^ zsrfFcsn%+L2H()6rMCvJ^hxkvornoLwcUe8f}Eaj=2bslzAid9`+0>lm8KR+mi!9C zyqxCnbSa~_c8hm!V1^Ah6};eIC>+G>J_4JiOax+Zv_BGb+r_`R-{Y^L#2{1oDEV^^ zG?pkKsmp(zhsNG;%dAAhOuYzKzmM2%5K_*-Alic_z8rx-WUZ-dUkoIj_B~j4+aWID zoqrc|jq=g#=wIYRNDyG`TWpkjktvC3;eSJXye7AY&dQQ#gE&fJL>}tkapGDDOEMC? z!MKNDR?cRL30$ez1Za%8(7Q?S%yqNHBYE#yq3H*ny-JP6%=dO$7HT&&4Z0u?sDoh(y6(!d%;&?& z_f#1Mn3oa`*LlT6yd4@=L>8Z)@4@GE{yc7mGTvs6c2JLm%fz?81}dRZA;kdLO<{AB zW-iGRH-H0RL{0TA>CXHs36S)g?3xH)DU>uD8+sv^9EzJ(r(8KRFsip)aPqCD5#H|Q%WmuEEWZ%eI=Er>{b<)+$S$dn|E2dc3eRO*(9 zRF5lOyIiPwzO3296(J|W|MZ6ooQTDMN>-40Zm}SX+lXBx4u}8e;&*<2kO^J#fgVdI zN8#je=#60>{pIND)vaFbGq@5frZj?vA$x?hO$u0fiw1mKF*kB+v`XJ2+gcX>qitub z)rW>{8z2@^1N#dG8U^C$7{sk0RXzP2BWvSo(+*-O24s1CPnq%5QjI2pR2dQ9cCWF9 z009uuN0%m{xov55w{P%k6;-@KR~W zrBaw3&5Ta1a9}DXqsoV@jV!{o>I?YJ910Nvn@YGNA99utLWHvMA4Bm0xtNz1zs}xw zn6}o=RRf-b%4DQtqR?-*1Ud{Oy96#PJ0D4ioXRFaMuSbBJjg>Ak+s|khEhRnxh!=2 z-XXrHvzD1bSySW!%MK)-UiCpSN2R3Bua5qn{`sD=M`*(fb;qZ^ltx1XY7bh>mo;fn z&kv=R|CYPH;)Wg>f0#1k+4V&0Y6_~HO-cg&hSV$!dhZk zQ0kIPMXK=8hO3U(j|_Zdg-7{{0vzsymg-_=Oex{K0i8H znGj0*C3a6po7v}KEJ{Yndhag!zwAs;hmX5q0#|g+S=$rPx#J4T%Ju-BgJ$aL z7Y-&yV{1LyBkFeb(V}*@;rYs1UtRY;He}k8<>i@w{EvQT?m^k2<_zI7eZh>9#RW zdN_g3p03@?TRelNp6F!PP${+8?!nc%RO!K997^@GIKaaU>gkT0k8X<7@l<*+Z`58+ z)KfwtqcCHAsat~YPBV23gO>RC8_QJ^QeE{km%pL2&K#fmz8Sx+ElecG=U-Dfn<&t; z#jIoV8?}BjXa)IG%0LL|c&YoR+xPJeraWkyK{kLfm8FNk1OHf(p=owJ#pxb%p|whj zT^`6y*8pV*Rv9ge!+72?a#nl?tsqo>d~~`qe~?x^0@+yo`{mM@7V`!+M7_f`v^8px zRE?ihg?G+y`KJXAwCywv7yUDQ6WyHlb}mjsTzTQg3C{&CqYGS`T{X2mbdm0~`8 zI5aQsH#SDW_c(!PuQqqr@T$(ZEyvC3_nbhH;^jn~?JxdTCM-3Lm6aGSTYXD&TPPse zIyL|g7Q%alcVB&G$~k3NVs4x^7Rz<{Z3uR(f|&1XcbPGP)6*UAqc1t-J~`-q5Bl0! zA`!7q7=YLiIOE)0vxpT2g~GMBhaF$ryR1w_xCq^k5i`B+CDXfH^_^^2YtPIgh?G31 z3uji)&(JC-O8e*NL>#vZ=NSOV0L(I)XTrtil_a&{e`_9?bs&rGay>fUJnF@Hdz`Jh zTYl$~PqZRe66eGSIK4vJ0I^LPSE3NynoVr|b#48<4>MIe%dsS6=O@$pW>$Yg7jW{f zK(6|pkYF5R3oMbuFimR22PMYzJMx*~+Wcy_39I@utRN7Inq* z_*MFI+1pS%3!iB0Rdxu(>FmbYD(xOXw{q*za_8~h)%+UG_(&mFkHib@SVN9Jb^1Fu z9MLw3jU~i%$zKL_oNts&@r~tcq+PXmGm=Mc*?hMi9l)BctMDc)_Ypv?pUUj|Ef)r- z+G?oDwsMo4ok;Px8Gb*!?7~{lLICq|u&~hKoPp>i{wZMLU4>)i4e_J9YSs3A(#2;_ z@0Q28JoT3t!+Qg3*tF}UsiR`y$vP(T1vXg7hc~p$aX(&Rt9?)nt_ts3qCfYLgQ|lj zj7CckZ{;qKX_P0brUJO;-^Jfp!l147Fe<0`W5@kZgg9<{OebjadV&9cR}3?;oj5t+ zw)8R<{Uu}pg%ff3PtLj=79M-Q7c%{m3R41c*6w|lPsrH!YEuDydo6QqyyT|#1Ixdm z6oq!m^Q0_Ge7Q=}g?M)GFQr~bMCP|}cP#z!D07iL!%Vj$3X!ft2qaz;Kbn789r<71 z`dp=#g3RPS4fbw8o92PlKt3 z!Wk z*;PA%l7RD52jIAl2CpMuS?p{|u8spCuQIH!h$)OENL`N{A4;tcvM*yHt-`w##&q)k ziaf}d;kogd6h}jeZZzyZsLNKK)cwREbR1|EsJbOBqa*ya6N>4OmaD~i8UKWs<_y&LyE>7it}e}7cZ^144Rr}L!Y&+jlchVU`luSa6l!?xt) zhG*&76h^9uC21MD|7)%AT!XfiVN%R$2Bf=E0_x}v>}e}sS|0UFR6kY3j_90%j@Emu zzDGIVhq`kiV0B^Dg@1lLwR4LepXmxpXx^8E!ov7dr`P^O%q{DbR! z3>$?|1qWhj9C+-44@9_s=MC2}iQXrkA~(-;tJ!M#JE!~ymM*vRX12cvYgIP3$wlY{ z`z@nx0hirHMl0k}+EQyG7Ya4NnrRBCr3j;1w>s`|tVFh|UyvrPEvrXfcB6Kh@HZ9sj!@^c8FtvmD9ttqDY0A@$DGE5c z+0L!sNKJbmD6sf_=HfHmwF~H*EDNgX$>GWD3bK^NG-}((?LCdfp&SLsA;%@_D&~W! zLW&;lN%zp}8C3uKUfvgKJxnY=LfdBqZhP|(5*DHp>TG(k>C!fSD!BG@*fX=6Y5uAY zp=7DG=$G>ZuQjFXoqHTuybJd#521l>iok?9j^h%I{%n)&Y!{!?K2{`Kfg7aWBfPW; z93hc#)Y$WJ2&Z%84N~H|ypk)r&iLw8_jvyjo$&T+`=tT5pDB9_szRf?vF0~mS7&$T zwmkf^eXSC>KY0m z;#R2NdQYow8z!DQ4%qf1_3KBR)Ex!TG418OI`Rfj|IqSCx>`Dk=}TntlWo0=D{x#N zYhAB(XUF+~z=UW&%Ga;`nAOfM@+%>eooILRWPOFU%c*ftAhTR!HDfe|glFnru5_au z21VbZ+K8J?xZL|*#~n+$k+yp@Ax+Pp3A((kkAAWzFLGC9))sKewY+VBLwx>R68UtC z5w=OlsliTT<{7`qd+zwtQFi7-QSD0puCr0VIVTT-TM}Mp$M3s4d!XB50M(i2Trjb3 z4!@iLfo(_AE1h``0@XMuk`moCgQii0oLhNPI#>jh%P3YV@JGq*8X1eFhinCgpcwV0S*SGUrk0$cHZ4;TErltTwTB0}M_kOC_{k69A zX*d`Y8ycFlru-3kCODB|@|cOgnbNw@jb#V9v#&vKsIV3(Sv`j8=pVH@A;q{(rT7cRbbY|NoIyiIa-VBau6V$lfcIBr0UD z%HHGHWM_qp5ET+KlD&oOWMywM;~2*tzt^ezzCYjJ@B91y`F%e;9FOBYuJ?7l=JUF) z=gYJuOGfFt!msK`2rhy@zHqRe=nnKy``KBY+kG~!a8rTk(Jyrf$O)(yu87f~VD0pn z!ufGISv6vk2sVxG0xf|J{>VoDmsh0UvcC#^x_0l=wI4OP0cjU=V1bt916IIiqn~{f z6_tfK2uk4nPIDRuvxk*ckLN1D^5pUX7oh-Z=jak@@mEhbO!GQC3*C%Dks@KWSY(ke zTGXr#ya)e<0?8-o+=Cfer3DJOtpJdph7rSS6*MF%N%WXNUEzk7pJ7TVMs{Z-{^IBW zEwIS^?mOBbGCNPW;Iinbs&=gWSR*iBH|-`!?X%XY~eB+zCKJ5 z3J|5lj)}TY%c{XLmn*I`uL~daIriZ9-uZI3Th!eMDv>~`F0n|8C{D6Umz}SKal~tA zX5WudvAX~E5ZwGtmOz2Dw?(M_Ek!M?_7BPzk5r|g&?V%mD3s_gG5hM+J@SX<^uX=GTwf*`{lb`+KcI9hW#N&OV1=nPN`(xdz7E{_>&1L!c6q%en@H78;;@+o?~`x zXal|zxEIBD3WX_FU5!VK9G`FRIb1nItqRZ8F)liC?e0Fs)2-<0Amn#`ywjbCijOV6 zP;5uvbxqIqCdLbt>(miv1p>s|b;m>qHozb)xe>fupHwjakTg z;fcYY_(J02dFV~S?yXw|#Tf@50%z|NhUKYXVT9*)1rEixJk^|RR$NAn{>7({UEJ*L zb=T|uL3uXTbc_2|;&1+JFV7b>SZxOeTY`KWgEz$+9%x|`b9^x2#k-|~+uE>k&1?>l z1(n7K(bJ^+PNPAfd@xV*rga;i?Bvj469c}MHND=IfhrNq*6`ZioLs^Ubov$gntghk z4n7t0V7X^)+y%)-!vfWK?hA@xT4bhm4<&lDFJe|IYHN;3-B;|bzKq0w4+7fW1>t=Q z;5PFyByZf^SZnA}p02GYQ)ICuB>)~;X8f^sR;4dIvZWL2PbL>?XJl0)_G+CZop0(g z`%5#9I(_S(!^7{^b70Pa%>k_=uJ2IOOu2_O3^4E3Gb)VzUt7^xx|}cMb~r~)C_!i6%>&X%#kzFqmKtnp%`OM){t{78S8EQ zFy3!q4v-PKr_>Mc4IDp-(Kk0X=2NbUd2xP6`?nDk6pivVW1LY&b`oiyNeU~TP&!fI z+te)!6rm{8EvA-W_f&R{hbtmL9?Nf1C|())^9&dT1N_xIt7$30vqMyq!|Ajb$10SW98@hcabOmTwBCeZIpZ1ZA4ry5 zID!Vd*20+WvWN=+%jP4`9KgIQlN;2kb^2cQG&Ux-nro|>Eox-m%mJ#`1RjW6qmp$n zhnD8%)3YV=dskx?U!OppZ@`+KLSJS-1s&IJR!(!Kx)IHcKQ1Yz0anDK_GZN zD|qN9c{Lm!)T60gVEHh;^0}fW{}9!P!ouvnmNm_aln<_N!7yz__K9K%ivF*DibT)D z;>ru$$%FD4p#zP>{&vOW6v;;zS|j{C}*!ajN((BPVTTl#CCQ}7r(sqRd0 zm8Fek4x(+poT?psid&mAVk>`up}B<@&D_1XdbA@y(SE}xr-ZCE>csd(H)Cp;quIPE zvHxn=rlP-&TuK4P!gys{}YedYoY*+*x)c?ignv^e`qJXtA}O`t`&7AQer zKW>?(vf>8yJPtP--VF8MQK}K1is? z4^Nl!5kOjBgWQoHCk#tQxco$(r`fD&a&nR!NxMJ6?s^REOrF3DP)!!3+|KUYxZU;@ z5K-3wSim44j>f)rGj`-$X&XA_&glvs)rk%ThwUXE@>U-1_}M}iG_${)HZ!`rU=4>$ z)1tfWrs0{&WRE&}!gQ7=Pm&5|Z}DxL`qJvKXr0a#0d017%ConR?kH3r86ldxmjU1cIWz! zl4p;;ou@<5GSS#ZN?zfR56kitUz61wnEndu3uugC^N=tsfbrbE-L`yLF)_D^LGRFg zA>C0iAn*jPVA`_bO5&`G5tG5(>+F=z!sCydd~}>L^@M5Ys5x{Z0s>b<#YD?l!Ua$4 zz?vv!2|~`w{ISei#CivYnCf)ZmxZK}vqzlS(Sl&QCRJ^53s8ND@Qx3;u3OSzit@U? z95qRJCt95#lchAV^#%<&c`!M2f5SQ*uxn_Ko@necO^Rv1wwlQ%( zz}Q9Yp-))A@zKRntlGqY(dWbr@LIk1YdyB{V9K!SeosCon>xaH;$kZ;1C7eyltDP` z9GXjV&A6;Hv$1%~Ozp4RlEtSUA|uki2Tha1=2--=#O|aTHlLlykSJ1&Bc^APldW+} zPba2$N2(IBT#FsSbvdq-d@K9X>(gRe!(2NX`Emj3nkZ7zacXOKlZKn`0_D{M$0gSX zsJdceVo`&HU=bly3k*Ez`FeTM;E#tHr*=c5(Y*{1X~B6xi6+T~7LfjtAFg!Ni;0SA z?DW9LM@Y`0^)RMLWW-+mb|Z{l!E%8Vk+PK}??G(D zxN~!f;F%z$aIZ!G4uL$+qn+u!^!oaGrV0#gD+(otOT7aFY0>Y7aJDxsz3FR^99@K{ z=^)>AV+HKS!7f%2{x82Zp^V(dne66Ri-b|l3t|RW}qeih#K^Szjy+V2?;lX$z8l4v0 z=_S77)y|Do3M4C|%kLDgo7?Ejv(^+9?S7^xeVM~y zb+zEyX4^VK$r7u&r{iOyQ4QFB;^V+Gcw3_aJ0smEmdl=Ec9-<>l*>g$X-I zRa3*p5&e-;*Ng@xjynkip;UMlMGqylUC|cTN;mGp(peu^2;qEt6OECANzsFVsHU&J zat}UPR100VXUTV9&EJNgGc1s!c#sG}6aCrS`kV7OVGMvm+e5<;m>4zv5aC1VP+!y` zSpGzO-Okw2h%F8u(pU5(;lvx?#YAyr1QD*51zfXh$g<43} zD*3vwy0?i3@;{b|!6+cXIuSrM53(as8d{O%d#e}F_pV!LVCE(xnSlo5y)EqC*;&i{ ztEoPfyvtjw3ukHm9Oro70Y>`wkxJyLHV5|W_tE7zfgHsAeaxRTG5P=UzOElt0Oykk z)R`=ITnf+uwjkgJV@>b<=a&EZ^nD(1h2wauq{d)E`#0=D)CURkdi}_ zx$^kc)8snVjHG9uJH=_aY7Th9C63T^UI%OF=`aD+yJa9_zYlqt+H8Ih``^c60NggO z=ExOjL4^dDK7PJ#H={7(3S1^#sl+R#(`1u}H3zd?fDX$~X^rnuIt`irb+FSU@ip0P zC0Orxub(wz zy&E3bBu6|>Bqq9u94Di_Xkkhb$LUC^CSMk6*NzcwpBR1%u61(wO`!Z?SKshtYYaOc zV%F}Fo3%_-tYYjnDd5N=LZax(#L*c2_9UVEJMGU1N&L3CH1Z|U$1&=A<@_haB zp;QL1%>I5KWJCkE&6|q+yMlE(8vl$wisGYo**TB>t%qYhFVY^&ChHqWHTXo;WXhj?b7SO1_(r57N0x(I&r+Va@!@v#qWxW`0R4@YCN}s zt>4ts&CQO2WZD$!qAsofE(4nUgun;8#R&x_i zmM`VjcgZt^RjibgK#9sGYrwT!s{{U#&HsE72ZCTiHyU5lt)!ATm_&ZkuR8&JQY+{Q zA7Zw^U+u|aw7c#P70Oqu_oukLc1fyXJ^6IS_#tQUu$9Qc{`m1%&WdH#JoV-anp#@6 zgHR|oz5(1o8vZ|$^GAN*H_1QWWH-mKJ`KhBivRaW^9$HCUHC`0|MS`9hzlCWQLBV(F2zfn=nNI4imsD50_iXQBuv}5-jQeU;C0=c_mT1?n#8HDu&{8qI|VX= z(@)Pj7u5AU9J}*k*+fmtBBw!EXjzn#L)$nj&Tv(2o|6ls@jrE*MZfFaP3+x-K>7OV zwI+t9-MN&Ar?Bt!{`)&ppEMfC<>`EYtxSDocdx%D+-FCPmy3qIb43q zUgPZKG&P?ZA?M~MlI-%6dIT7ob`Dp)A{dS^fmrkvWJEwC32?@ZL!DmOLp*x9-vifa zlqsHjtXsp@61)Ne(?|QOO^Mdk!ArRnWQY6Pc_a4NKJ{t!nmr1uDy*95_K5vFY{X`{ z6YuS~^yA^mD_+xcPk_0S_5ORPthZ8sURl)VcsJ!Zvx(gW%}bYCzQ{IW*T%7f&GQN? z0g8Kd9Y>1X>OHd&Fy=9C?joBQn-F*_BX9tv3-1&CYAQ_Zfo!-I_qGQ00h5gv^&0s4 zwSC)Q!l~x)m-TtCn%;X`10R41C4L=xNN;xx%2}a!j1_==E$^dImM8?2;6@%0-Sa$H zYigUdE332^EU>e;x8GfX{ox}Uz!e>X_cB8%QH?XMZML|$*iJl!3vA{ayH402uet)- z>~gq=U8wdBl=n59ZH<}zRXm(4`ndJwx)d?}gKDqIu;Ywl?@ScnDg#w^ zAgA-#?3(5BSWpCR1Q^G*Xci^5xVCC~S2QyzV%F<$NiSwKcW4A|qP;R+<7Ir;wdG3O zOJ`W??l*o_44pnJ7rM3OR0(PTV(tE47@P}*-?!JNnj7w}&mz2)_y-9Pn5hu1cN*8^ zh9<&AR)TVhhqAhfpf7&AY+qtz?#K;;F9aXK(%*Q}uE32&p~6BoIwcrD2OZLK@Ty5& z(P=)QbrMu!uDs&gWt|4!-$)G@MTo&HbIC)`6h3oG;6*uW8VJs$ap02?)31EcDLC0- zHhFEji7BOXx@<04arH68Sr_(KD!71Ah`bVZ03p0VLnxHRuouFG7q234@191gZfP}C zXbOui@w>XaRm+|NF*+LT#Tt;_yx-(+d6zkM3iE*>7HBKKef!odeFg#UF!a@pr$1O9 zqEI^L(^XFat2H-HvLVjkM0gXDP`&{sBN*L~5fN~j*KngA@gXdr#s!W3VB4?bJeeM+ z`vp|w-bNyBgj=S4fj}0-;u(&F2WOOZAvS}RiFz`MZO0|ft5PaD&UCdkByB6}st?A_ zo{h><;iloe{pm^&p9xFfNmUAiPt#0ta*R1NcY@zHB(UDf(YGiJP9VA?hyNp9igqTQ zCFn7UaaWe*&HJ=3X_!yYpjH+bViR??8D9|o*g0%pZpS9uuLwD>iZLAsA_;rVih3jN zU~e3H&Mz#Oz5oH{c9_4nCG*Y-z1DcqcKR!6C=K7~t*xz6k9~fA%OSs=9W+8;f_d@j zk41a+Ty3d)_g-}Im3ME(8J6jBo7|G^MXCY0^3afGlAx{On?&i&T3BFl90nShnxB7` zEynCkqRggb_ku&bpzUSPjl^*T0;l?LK_&Kw*1haL{1M@I#P!u4`!5m`L#o`i4cp_n zKjh}h-M)R=-NR!L8QlEd)^!KJeRPx_nk83}2Iidts3!4y+1{I1&US3qP%`tuJC?2+Op| zxVX5sq~3}DoSydWN|mQga@*{ZhrZB5>=ZLR+H>h09v(J{ZvOV|E-ycS0mC`R`UF06 zoDvuURSy*Pl#-S{p?d%RCzp*Uh~+@p!wyZ46{#Je7^ybmc2_@HWrKNnYl;KtVy6qZYEbXtr>}c1pIPsY$VE*;m$sT~w5A?%V4dg3d<= zE(AnGClJq`J)8LT%kn$YdZg6n`Sa7ho&&wT1YvSav#gw)0e3U%XIi57Cpm*wtOcyc z{9eDF%sYbq{l4IU7(fQ^B^K>zYiLk~(~AUzhm)}?8yGOkh12a;#nX^^R|HDTi| z8Fycwvn$iK7%IGVFwJm$wydn|OH0eGnVA^{7hShse3L(avXG%fuL8lOJ-6GI1^I;w z%s^9mWi~iGoDzcTvlJ8*Qw_oAr-&tXd^Ga)>m*0cb$Q6=sF6rWNUVXs3@I-cj!a46 z8W|mJ94azT7lq;c(Kj-3Eh{Ta_Tj@A#3jI-$Ah!7*lZWNuQ2*K?g52eG-iGM+^JKi z-W3?-nT9S9&o5iJ4&f|CH?CZnfL*+QV`V|A`;`vf97WwgRs z(FNDSWUnI^oco`gnPE=$*m|U*r)O>RI^-hPbLiUB^78VND=VCyYax0;;o;$))wJ(c z11o%Eal;OKv}6q7anhL&o;MXF~G-*o?!jZ|zoRyW8eyW)lR8&-^M#}7oT&njL z*>R!cEysQNQj|p4Re39!5W^cQ7s>{P<2Q&Gi#aQ9?ZJPP_XW>SV=>J?LR_MNK*KEuKKNl`u-2Slq zSBm@P7@aCtM~0#oxM$2Cef@nC7338bmfKB2LPBC}`(tjauPVPuvT|_5Jo^9=jXz5F z`=N+Gt;A}e(Sj(?9Rq}2hy0Dg;IqBr&1SLIGQi{TU zx74%gPfNK7h>4j%_Ys)5ngc>oQc}tduie?Wt88p15O)&!Nnv>8T#mrq8jV%DoIH8b z`*!-X#6(&gUADQJsvjJrW{Wv3B_$OU99##=ZL{%H2~i7- zWsK1+XQ`=KW5Pm1U;Zdr-di60-1H$Ff(DE6YWm2?NYGht>9^h`B?3=668w{r=;j@S zKmSs^ef!xRmU<}Vf``Cju^J^-^j|}%@zvG)QF%G0W=h|{%QLdEorb)?#=)VXIg;s< z(=Sahvw6Z2gLX|OicCJq!8f{hYFLa$nloNMIaB zCX-+cT<_v!OC@i4r0hQ8ETZ8@juywyj`sGK>qiU9UOWos78VzJ-YZ3SD|v{DiQRN@ zDH~kUt8h}1y?OIdB@yD2+qM;>-&sdT$L;p)lo~}Ho!3-+W-l9g?q}Sk(DT5?v^Zt; znc+!-Eq}hgZU+{?>Opl{+D!7eM;yFzt$)+iy7nx+Y$nvE!vTgi0Cvz8a#_L z@aRBB6y1N1Eyi%X+JkbH{l<;^f`WqamVtLz&Mz!1u(T~o_yUbu2xQo_G3wcUluLiX zlgnx4f2%E4Ra=|x0UHIPUZ+lJ;kL7_Z5^1O^bLS>;>A6LpNE7PSX)Pc22>s&?F+iB zGlw%sgexWT8w}(dn3$NT=#-vb*5s{-~|!E@M7)Z(SR zfB&VwU!84wZjKlltyAH2YtHG{5V%Hj4A{)@mt)=C&pv#(YC1CpU;_s7?6(C4=k~W( z@(diCm+#^)!bkilNJ8W99Az^fL57L`Yj zf}yU5pTEDqz%x`yJq%Zz^T@+-@K}0f&0b$#Xt$&A>!65;xOK1&qgR#t6%-L)8XIpu zP*>ObxS_i_jFhb0Tg+w|<}>?t?T=D{g+KcOdNPY@$potDp62^!m#xvE40PY zk%BGec3N5*l}<)c(LAvaYVe2>s)uL!u={em*{frf_=1N@)H_xnuSqmXhK$A^6yGdo8)4 zp&^(Xw#G+*abwCE{GiMdZLq)fi;CZZ3ZXw-Y)P3{24+nZvivHu2-df6-)hu&R<$@) zK{ki*2K{>(7pIkT*FGsJDc^qX?f?X_NhKvEO%PNe5CHUnZLNijUn_dH&x{W-0qImz zzn+)nr)q&QG(LpFa&t^fOrIPUR1wZUDl6RzXKAe~eIRVRlO#w^%WrXgcV%F3kWoa0 z_ICO?4i1hTOg*xr*r*|hoMoI8MB!bs;cp*1FM?jo%t({ex3c2&J4>_xAuHewt73yVw?l=?Q-E9^NF$MNW+(-TR*F(JA`#-`}$IY~mN$ z&wcav^{p4%=4-A|uHem#D-5P!Zsk2+8ce+jCqx z<$lLU+cgO9!b0AV)s#Cd(PQd|+pAXK*={7t;dJ!;pU}cXKK6Z3Vj>M00{nVaR-U=> z6@)f;5aE?yMEs*&0|Qs--CSKY+p{H<9@Qj?A9^Ph2?`0lQtClcY7JfbP%~^8#y`H~ z0@}rDl6@@taqVc-5_+?$oCPQSqwUAHVsWuV`D4JMA(8P>%Wgb6+)u|I155~UFmmGC z<_s<)df9`N1>nT%hKSOR)zQ(>4|8`ejRd(7og`@su__PL-s(7jE1@nMKOM7^K7al^ z$SbZ6VpTx-C*J#biJP0;{KrQrD7pj#=Ql8*K__S-0SEC^Ms4_XMT2RibcEx5jns)5<1a{;snV6T$@hv(ChwN?&NEJ{3FKtmgKsT&m z`MqAyh7@04-@0=I(0{V{VLkP@Nb}<*adBOm$Fb4T_!GmKlVoIM5cd11yn=C2Xaa9y znz!fy$z%GoQByd!)ZJNrVS%`ijg9TvPcg^Emo0Y1?R|X|2%Ez_$B^A`DH7uh9Sf0= zc{w;aB`D=(W=a7_hNzz-r=tt4^CiZghegu3(Nq5uc_ua1C-NJY~UU)BS*h0>gy4vT8=d#3cQ z0Mhj@2Q>h9`0{WG5&;UHck&W8)9KLq~W$f#V_33__^cnPoS3zEEid~~Is zsg>;Pcn}jXcOqkEmesh>0zKV0Y+YmN5H{NuhmQaaS5;MQCz22m77pdt>q4>}E$JQe zXqBjDHUPmos6M$U6I1=wh_feJT3Wh)O6qJoNx(A^h{BQ*CJ~Y0t5vC~_%QuYm!nm( zS7AE34tPm?5{s^yS^(rPCrZzwlX*>}q+B&MX_kNedfT&bmXbkC%##=c8YF<4)W9-Ve?erw%|-HM$0K6deLEZaBO%6Eiab z@WjJx%vXS*)&Ss~?o-#hsj3?FfdA4Z1gJ!*`z{ZzgbbKUqnYN&?g!3*Dwr;A;`HL+ zz+Jo41`i@w++C*{LnZ-ffK=0BxR?}Lgz(PKzkW@txc&LK)wnA}735S@L5gvljACN+ zFtGIyJiS%TwAtG<1+V@#E9*3%xpe?05to+{q1=|aA-*93kD{Qc_!~NfjP1gO3;KW` z&Mz;PBSknjm@CGoqB@94??ay{#0E`|5F)z-dOAW1zR-|9b$j)X5 zgycGunMx9KqlEaVxvlL+xh|wt;!yo%-|R0_e`y~`C}id3Q;Uiyw2Ce2VmY+Z9H2@8 z)T*eFH!@1?AmnI@V2A)P2!O{gGZm@#uEOf8RYNe@ENvNSX|<5nu(Go5>@DR*zIqkh z-hLt_kM!Dj?c~iTb@O))unF_!GR2fqyeO~M8w3zXcreoVPP7W;XncM;xxWYlWV=$ zn+XAJI?eiJOnWMZExKPf8r`B5}m*p5^Rdw_RVf y$Xctp<6`HkWu4sM8?{C^o1SeGExy=zXdq+Eo6%PwO{GGq^cb@k=yJ@7&v-j9u z7!1avt8?812HPnKF$G12Y)A+p+kVLr%!;V+uf5v zPW}itA8%>N%ad{9U9H{crn&RrdJmSR!CBJ_qO@jy$zo zHy8}^yMo=I-<7-90@%o0zFPX z+^%Rc&kN+d-o$v@?_d7({mRojxVxmRiU^OGebL9RbN+kap9g0jdwRZdN~a0Ga=C&& zH)D{%oWc9QG)NEroi37>bb#`_JqKCj$O_-TnV|$w@4CW5+|zeeYGCdrzdeq`!1H+S1)>qcK*Tz-AISYRG<1isGo2PTam^~55q)6MAlBA=j)j6Er}QOjE#L5 zQM@j1{ce08U~G*rI#Dy^Vlvp5*{xf@rV*jrn@o%fx-w2>@>k73`*c=N z%aql8dP_9I*Sj(T2E3}KR!8HRHmdI3dFGThsj!88wth{A^$ZL=R|26+rvD5#>gnjX zl8(Oj+FWN?Rr|gx!cU7arn+*QCe|9ZS!%XHeNN!|?&Ybjz%P45^Kx=-Y;Q3eWPPa0 zUesDkW95bG13V{S9UuPfu;Q1i94b2{_*3T zeV)Uj(JIVAgyMYdQes*fZXzRG^`1`Ez}$NH_WZVNFhMD3wqxk?qY59I>W7@1O4r%f z&kl;NZ@f)R%vRf+GR9o>d*60-^!W?2()~Y~sFhiPg}JXyO`IXU`!A#t`7fnr68b+n zMio_$>~(T+nVGAi^+a&&P;MX$M;9WdBSpUI!by&wg;^u`n z_4K0K)V4!xQBxnRKHk;(bopJ+-0z8r)=S(fOFyL(2D`A^z&_duAvx04yh6%(z*{WA zALwwvDKh>v^0mqkBL+g~H4_2T`MJ}1S#h1ew1sivMb+1yJb9wp{MPTAfa37ugUbxE z{mf74cC&aPmBf^kd@kXTOG6>raVLHOcarh!y#yS{?NbB?ek?(Md6P+#M~4{Ynl^0C z`6OX5SZW>G12|-Vg@;8)Gm=TC;D2L064TR*zJ9$PdqTmaHCc*peYMD{LJv9U7j;Ei znv|u@2ZzHsRdSss+S1mC9`OY<9k!T^7BBh}GSqqO5f`5~iILiBrMUs^YeH?i#>B*A z`Blco^@POaS_1GFu3pE`#5^_jtff`Y&2^K$cv(KUhx z{n#crxSL$OCpt`xRmKl?NN7g!lHMvHuGxXTZeo;>MMl6m8Pgm#UOR#?u(eI& zm$1q{r5Snt^5t9L#Cp7{DCcs!rVuuHA_7}8%{cOK_|}r}CLP&e>h6vOUYQ>wRe$@# zhYzY`SwmCc?(w^LPvi-ypeBLgyMGf?cX*%aY?kRpe?MX$a;ovtGVn?o$An!&SRH`7 zmL&01)K!kmro8MO>iY_Bf4r7#?yR&0!wT&*3#TCm@7`v)Zht0;#&n%02-wLAtZ>Y^2P+@{K{I!cK~V@NNRAdWW$C( z5hJS)wzwP>#x%yXV1FQ2W$Kl z(+rJ1+tv7gfQ}aOJ8i+h#7J&|_lL#JU4Op0tP#)GV<3L&lm>6qnc2C3$E}hC0|f;I z{Cqu2SvVTN;*EhSA2P|p9tThronz$#uuC{}`DHto`e)C9O2cG3RK9cD+k63OXVm{Kk#Qvu=H*PU}RUuq=J4y6%JNON)!kP)LEu4*nW% zcol>}%`OnVO)*DiKz`~3Ru@f5PG*JZNJHjg&6eSpJM{yXi1IU|@oGIIO)(6jJk1pZ zk_3wT>=cOa3IGr?;aef&6B9G>;Tu`dQ`i0ZvM=3{j-QdFAlg+Ra1Q_;=r;N-RuQZS zH#O~g-`qX2E#yDw*E|KK#^}T15FqqS^a2y+A?K-hu!41nJx8YQIasEp>gKYkX+jNf zr!E=8u5tgA9bCLJ6F*Z%5razewT^mMXu!WST9LE84tiHI!q(l|o#Y379|_D#tR-34 zT^31!Vy=B0va8$C$Ql6rU>#{SHQMu-7-^8y?J`E?y!!9;&jn?)Hpd=!(Yvy}PHsR+ zA{5h{0elcMHfLSZTVG4rdxO83Y1k6KVP+zJ)MNPyk2K z?j-HfCd0*j^bUQXs(qptfc_T)BO^IJLB)F*=h0C#upde?=Ib-jbXU9J@uc(&AHtkm znSDc;vzHgH-A~&2=Oq!&O~r|~h==Kf@^YD>t@0iKAxHlxV${OxFZ_5b=VkS2;j>Uo zlDGvX;U|+8PDAu{8LN5eT>)n>Tys%LNolA$A>n}Z<;%ZnK`5ytbE3Vp*YT*am)c;% z;>EQiHM1a5{q}1XJhD9BWDnpqxRFQx@kU+i_!We||4&4lLi3WMtRZvM|L5iAHwQ(H zmTgu#H2FA{cM)${TDs|7k*fXk zO_c7Fs_i(T;D4_dAjV-Io0J5r zNoZyaU1Zl^8YES8MG_P4S z8FqDpIL!X>O0-qRFoWgarZACLT6*QqH2t}NbU^nlZO(Am=GgeSTUU-DM$QW}Q3`%? zqt%CM9IuCn003wXdtmPH>s4fG5rK}6Xss2FIinrt3a(jSh!4N0`>!Ed=`LGGZAau&QI4ksatNm7| z%j@RekB)G#(!+=U=yn2118^eC9t5Il^IAic&P%nN*LUVmL4cKzkP!0vN*$xe8W_a> zdZ-vIQ}zv=7e>4ZJ`FE0pMuhAoS>3&az;?U8|3p)VoD2L>GKLgb8>RFeE+_CH-~w$ z&rJB81{Pf@B`5#w+qan$&*I~mYr#XG9&mJ}o0^ya!ZWe9#+q*+gGh0zirO;P${rOz zfBps0x$DI#&5*d`sv*_w?I2-d^YS_l8Y}->dOS#1_gQ;;^9h8(_k}eyV1M0ZF2;f& z;QK4RQqLmQPbl9nF)zIR@1;#uNl7E%+fP?F1SNVyX$|2G{E{|#VE3HL=1ECOhUtio zObw3Y582sywY9ZBW^OFv#m=Aa05|?8E+zo^7~(qsC~lgYzcx}~n5BW_gHa8|Lp6sk zy@B(GVC}X1!a_4WJ-zEyN8&2R-r@21rU~B~8`SbIZAPzSyjydepsMgPV{U-Fv?)!Et*63j$%f zD>r^(zD{Jr9@(?xSVu2Ju;MSv%E}JaJYT+Cv6H0)U2x7gy$~>ayBL0ngt4s%IcaHA zm$X20#JmtpX5T467-krv0_iH~a(9v#&ZuI0s6DUZ%<-E`I}z`?1pSH`@kxJp!FpAb@O(bQ}Ki zBmooVi4pHc-!={9`Lc(xMSfkJrXy^spT~Rwim;icBlg|vjG4fZXQI>Kb|kQj@dOe! z7YE8}VhJd(fGY;$KcdlqwpO4R?wjLM;lFNa3y$a0&CJYJPaG-iKQtYVDl03i2%58k zTUfBn3K}+7tlQ^Bf-%*Ch@Y2_$$8$6p{F(gaytp~y}6f{m%2!O&1h>|+w0cxMY9R8 zd(Q=h4ANR%eSJMqycZ8-eF|BK(-+Iq9d4L zVZLdu`*e3cHb4ItL|P$^TSY|`xaimV#v7W}gP702E`oY{%)dsNaO8G)Gtdvx+G#fd zff5rFQx2a`ARM4?Q!M}jsi0S`FITUYwQW+6w6&ky=OrX~-i-fx+br`Ia2t#K{Cp^{ z7%9!k2r35XG^{pBS;>UKTzOUZ?u^(is2Xw`_*^Npcc_-+um^c23s7UmbV0G6|F*G{ zjm=wX_;zT!)5{;LXw?{((D?ATyW8V=; z?mXp`9D$Ne^Rr4eL^4smlP8f6`eFkc|j|z1JxjKvg2KlLIXT@Ih<0wBPQ6MO{Wk-C6~638|mnD zJpK2~Jxq?fhsPO|CuU@OcoZtsbYsICCeo1U*`LT=;hW@e-Gp}km%vkZ)-oZ#kVw~+ zarm;cskwOuP_eT1(ZjP9f>VzDhX|A+kVU6_!da<6sS-%LKk|%2IvAFza#NQpVt3v8 zbOE-gXvOXR_#9M&vz02tHKw5#SW_SaOGQSKU%5}E)qax5YdWvid0H?P*Vt3!+>!{M& z*ehA6`~yydEiCMQbJ-E3ID96l3#2Q1z_;TdhqOh{RU89cU}c_G4614Ox&Dg&hVbw* zdej&-Yx6_0UFX+l2UQMhhnwaY{DRaez!(99==#s^*#wZtsj>z5?aJd?$N}LR8V^K6 z8n(AskOXyB7jkrE_$Lwl*RBA#P{1w$-vnG_SYa|vK<>&_+sqdV`J+MV=@A2H53%Wx zbQx0IOed$0E-qzL@_h1Ltbf>-)Nmn#28$h!gv|&)( z3I&h-tD69_?ki)}eBD>)+(03Q2WCqGdI?}5Ga&c9Y#i?JD6Tt~zc5dSw6DV!Ht$wf z?;EBoTY>>I$^#CsuDr5>Iw)MTL@BIgi<3^@qv=9Xn8px6x2pgoI-LDgHEwNeE6`Ts+?gT zFfCxZ?;(s34qJWa()#t4k)m!w0PqgCZ_fo#0K|b>$QCrfWBmfF7Q{&6zjqm!`umWA zpc>LejgCtdDA9YATDQ+ep~e-acaE`=Cu}UO5yz4GL^xN1MQuPh7I;ZDna|;WXEnq)6Q&UsJ#!DfUjs--hfqPy$qqq(VYO3I^j&4Ot?lPk_6r?p?cm zHO&Y?tquMSy!ze>odN|xZZL3zlz70^K7Gsx->L})!2TwbwIX});6dW-tmhKo8uDbE zH6Y3FwPJq${AtkTT(+hx)Pp#dkF&1AknPYoh5LW*NS`|Od6q(`3I;SS6^Kq5L{JOd zkK0$tIRMDDC-2cqpOk_2_!HEIlnszKcL*(g&`-ud(y0p51%$%y+TbN{el5;wa$AMu zE|7-3fC)c1&r|D&iHV1nz8&|G;S*M!MR(l^xuFv^|7l1P2g0!@BeP z!O-PjR#o1%0QvQ+Bl`?9R8{&l zIXYrX&I!U`0eSk8HP;{Q;^~CgUrUP~TaW^PF;M3xyg$FVeqApkbR`7>93H?*OmmH5 zS6;vZ&O8o)!8+an%s-(5kQYk$(=#)GVD1KNHTvY^Hw!@Dv4!g0NIu~rP?Se{Uflzm zdm#It-Ho3AyWjEDyXqWe+&@1rPp1yeeC=@bmk_%(k{KgyXi6fHK#B5#$X{3bD!s8gaYZ+iQ79stTnm7IYm%Rm6uPoP^Zq$i-3qZeIaFx#dhBq_I_=+vaX ziSu&<;kVDAGu}OZ&OJA6dE^(ve*V=(bjEev&Penx7tZQd-jZ!q~GG>+>Tdi1*FxMRkg>v`J?m& zn47`{Du#%lJ8+W4@B00}7R<+0ial{R+#W*fF0S0g8BJ-z!4=+*0V`HlD*b{oEo@=+ z1_rkj_*;<5O3$qugeT`=cfjr%znwC9*easwTpo4ca1J*~Akv*DwR_h<$U(53ryTEk z%FxE)xmaG8Y)mK3v7LfVPtf zoD23f@oLwHQ9g?c6-Xb3;<{@-;dg*3wipMG2Su{t?RUm#L5Z@%!dCmCk6xzE^yNeQ zfj?~hu(R=IaaO!}h>1yg)Is=yu5M}HoTAO`yt5W{yv-HL?gRb4HsF+bY6_;a%C8{v z2>CW7tMS?7Qr=$Kuo-?*l2TGehVY!jKQR1-_G8O*D-EV&?;ziG5AttQT`t(k$TbTR zF2~=KvM0TP9Z7EwQL>fqV?zW4TTf&FG#!V%L!) zrAmG~y8R<`y_{7Ib^HRZeXevr{$Y>aRk70T@^~pH6(v|EOYCPmIkBuQ@r;5c zQnKE@IpdN^U_~Ixh1d`o?)sLJrnFSmOr6wp|J;f}muD5CiWBOK zQf{8L9f4e=-#WCeoMD|xZjY=C^C+L`W;#alCOI7KuXNI94XTUxVN?Nl2EgfzS+;ke z*U|r9-jP>*)vec0vZ*PBM=g~{t%~NAb0W07?akF&?H4y=cmad?uPY6{khdGv~H)oedvec z`VEtD7PD%m7t(ZKXJvz)<>sG&WuD;?JXgomvW*HvCTGt&#*-RUH+14veH-|x{xNzh z^joxUvslIPLn?oA)$|j#@SZ6`HB6!QK*{tW@5#kx(bsO%%Tsf5a*fX!@FlN8ELQKw zj~{p+hKt^GpEyV_u#>+%3;mH#g$a_z&m=EoSwvnbJ?FkOOtF&pte(B_EWuTb3r4Yx zU$;s_RqLhnJvx-}=Fr^mbz9uh)1V`>-7eY+0p}&D6G&}rK_FST5pHRDA*%7;6=fhk z!eFX}Q}e>lg++1=V-3ew^cyZHXZ{$7u`GZv$^owggY9m?Y)OK!)+&1c!n#81VGH=3 z;TeF!5id^nVI>X}x`6P#!cIhI=dtVMu>&EP7OlG>`AQuPJ%6MfKzt5Cv32saIXu*f zzV8@#3}B|D;g+Y9c!kP;1DFRxPz%BIQzfQ+Vau86jRo|62Z&K3aF z`euU!Dtq8Blq9+YJ6czg+>=#qF?IpWfL(te`}Y%Q3(}rxSjUf}k@afWDwJSh$MBag zuJPxvHaYpWE7uR7WwIYN9OgL8uv z!{ZQ|_*M=aG&q|w`xeC^Di&8Xn7^^H;mUUy7Qw3pJ?AY)PR4(EI^3-Kh9%eRv4+4H z(L5+*DV*#lgO^}Yw}y`a^!?^Txdx!K0|$kQx&Z(OmT@?<2t;g0(yyz)iN8MAsdUeR zyjVOd0sQ}6Uc+$^*KjkE69bAR>}LeUu_ege|x`@rqm`yUfty;89U4R$Y-FyKJVcMIfT>K6PYiC#!0S_|vWyQMf+ z-UW>iK&^4mIdo1P{D!NdVrifao1RgC#qOR4PQgxmli2sF6pD3*YADoS2V7NRa-PMU zFCH1Wo6!o23Q|M(_KOJv1B1lI;XiBt08X{Tx`G3S$Gq7)1$CH#{$9+nW7p2j&BI(M6LO3* zimZL=NQe#4rv7^r%8O6yfgC4syF?wLub`9m&6NUdzkde=J(FVZ@#jLxMYd3508sWs z(Erca7!w6{iw8f8>Gszkay=`*wf_ss%PdH5g?j$pptCeSHZ}?D^lOjk+x<8KAdz>U zD&-LxGAjL27h48BNYZgF-K(7v5Y8h)!SyUD2%?G!Rl}U-6S5N}-P4V-6RF zvVM!uO?dpy2STupf7ub=8hx*zQm4>pDl26CAow_2(S+fZ3$Us|w&~~sxneBp?Co}5 z*yMRO07~3vhnMyj!lDu6&FSn_21;@o0Lq;C*Ih+P1N^q4YBStjUq>P z&D#)s)3K=k$f?x@(}Ckgz_!}xJV1_~L&HrS+~zm!QxaQ`HvnM+1NeFq7870fp%PJz~(pf={744nu$jQ#=a! z|Fu)lO|ENH`HwV%h+t=?|dC-|w_#U18Zp17t;=2{9$u(|;6jj9TD_cJ!psAP$*Bb4G6m&4epuAV&CWMCH6&6*oV63Iv#8@6OrY2 z0(?YN!&Ct_xemr5Ktx}WN!k%n6vJLibc}bJK3`Wb{l6_Znf>=Nlh2rzTTsq|$R5Z- z&|?P(vJXWv0=laQdn7I36tvH@*s#fSgBq00O;B=(`5(T}nDnl&@YykYyw*%4k462W$VYQQ*!w5! z4az&$rFMhj2$&f?LWa^buR3(Ox(>98V2ngBSY`ifrny&_oOhS%1leSm zd@M!wR@~y=d>fRZXV)&6*8^yCFwFSa?1^?}7FXJVrk9{vV4D+I{07@6Aj?9>2majM z33&q8(cg_hmy~cG2fsL72`ZFwzejp}CrlbBgbIBV((ql?;pf!%I1{0b&r46DYEj{{+@0yzX==uAsMKpCG`Z~6CU_kZ0x4#&aU z!Y<52*n*r`@SpknAWTsN@_QJDxOZ9{5!K@M3apCF^NszF`pEbuL~@qcPtb81umKJ@ zuC_A zL)=xX=(JPymBb|3Tci3_u9TAD7K{3`phB7KXK(7{xf0;}>=W4UxKZUkFtOg>Wkw%a z-1|^5LQ=x{+By*DrNCSy7`u6*4AL|-WT|Qo+QowMI^aeDyFCizbQKkpv{^Rx`UyAq z6t#{dTU>WDgLQ1(y=%B0$#c9sV9F%+m@M{(Bj}A)diIU1^<8?ta^e{HGys-!(@D!< zeq*vlytup6sWmYnp>u2@(jgCY6Vr>AmzQ~uim)%7lbSxY8F}2h1I!2&?>TtxdcX#d zJ)jg{Sa{L){_vCj+F(TQXqr(j7!nGpXMg6Y)-9f?0&`sFx7gzq_ZLQ<#tDNSEg0M= z3f~wNMuC1T==jJu|2ztmW%02hzjxohfoVzhE;@4F_gtj| zMb{K`g8_$9NhXoWQ1_giAfi7Opa?j?k(Cn*3k!mT_E?@pg{Kf;e z5LZ^P@gkci+CrE#OU2nHbnDZ-dJ~I5Pg5Hi0qgko-dtB$Evy!dtYibe_+^RlNO(gX zYPkWyE9Tq|{1`7IRnDsusOyS%zJeW1>TIz-On`_X(kU&9cgUb>>y;8zPd-$khXO($ zG|IVZ(*wj+s27Y_17bN))~77X!az5ZJ(mS_grlSPLY+{k2Ms2u6hk(^!mi;xVN>D= z`wq6eVpYIx5$W%FCL3oBu>lXBW}t<19KK#hKwnit(z`)}S6M9?%#!tc6qBGz#~YHERt_PhPGhHGcYnN`cBce(`T}FM z4EsJ-k;@T>@?1ofO>=j|e<$+lx!UY_%{^F{|5kRBLdZYiAgJ!b20-=Pdyw+Po78m< zV9*CFZ)O)%q`@*x%dpcPqH%kzLHM_wbZ2KenAa1KTLKRM4Q3}0coA(-vlfUfO@#cn zOshbEDU;lPLBJnmUv(EY4N*@%JOw2Han}_k7Q~B8%#{fUmAS-QT#QBliCR>i_#CnV+L*$!i<6Gc$(i^8n=4wf~NK z`};JW(opb|nAD^!)SofJ^^{xp?-aJnGL zJcHk|PhmX-I;5!`$qGU^$K$8GD5tgE@pc|pgFr{))^X8@qG#;K-~Sj6NA@4O33pjn zideY@Src~cPx=;}EnR?u?%bVqC16u)b`FO*j49^qG9$(8C7*X`SWf-21Jsk{7uYzh z$YT+@>^;zsKd4G3V}ItE^>7d*C5vBtmGgpG#j|bs#=_)iF_*KG2R+*Xb;rC?Z|`W< z72bk;n@h>lI$Uu()h+%Swfnl2Ksd@FQV%JjlK}oTIrT(f?y4BYRA-3(v`2`=rfkrEg6=dW%Pez3eP?*GwEM}q3D~5;-yB22C<)dn zB>7ptO;r63hMohqJ*6pX2Rk?dG}xvuw?bU2f(syPxS8#CNeefN((SXmAIK&^{{m~@ z8sHIv-QC?q0VxKb7l+}c4o*#)JJkkQJhYM2luOMAmpL?JUc(El(=WO%vA!k-!#+kr zhpc|23u81X(Kk{k()G*QO2DT;ozm~U0F0au49TUobzPQ#EWnoEZktPjj7{PO?E+W6 z_h&%JUrUua zR(_o3)a?YShnZE7jzHa&#Fw(SQu*e4@D7bm#(wP=k1F5yMRN(9N8!$uT zfAxezyc3&H9qH^en*7|8C@)%$GS;S9910$azoG6Ew6b`=r6SnDRRWB9#zu=l;eLm z@tZB)%szI6r|Fz^kQ+qJ-|_f}>u^6BTX1r8R&q|`(uXL$R$jM6$A<^5NW*&zjHDFS z&%d)j-9>xgou}Z@nGYe_s#|eB8K>Z*pYvj1moY!2i zb?4;8Zm-CJ4CUVWYq8CEqms)q6}dIYq1Ohw^cUVob2>}^Ve0$1WmQ$)SGD#B!8FJ< z`r+fuVnDlxg&We6PuGM*&sxr~j+z`4IqoLLb@DtL9eJ!wabCqsRvP6sv2E8VImo1e zk`ys&%B1B!`X(W9*@{Furs~mDCqBe%J6ec#;pQd0R_8;B%TZEQuM zxiML?6W;?3NNAV0*YO}H z`j8Lq)q5|i%(u!7UNfJOf(s?=sIn;&8|tz0o2OaR^iBHGzulw`N(^*zDZowMoa~Yb zkwlUPx}~zrMV>5J1!?EBtW^6H%tsuv^>@_$%52DQ{>1X*V=9+7d5myfNcNzd%+(8O zY7OYSCp|6uXYv3~@g=9SN_TM}mVL1bgn6@LUe?@0(~xt1a%tVd*WMO$ENE|V^+0(} zqMD47wMDy>`|dBpjV>j=)2+MFq2W|v#bv>pS>SNyXsP>`dvlLCuZHZtSt(j?$yDog z9NMndz7ku9vpWcVvKFVRh2QKHX({M0x`oMv^!C4%4FFo0E?epR%4gjHE}GYL~2+=xKHiK!JnB`r!0l{-?!*HL)hLT zQk(|`*8SoGj-jn<&lUFV<7=paFWFr!+h36c3!f4KvtSXTOiNyWKhW;n^OEqgc+3!QxzO!X1#r&Y<*I2S3tbu@AtN-P)m1B zS;7rz`o+aT=1AHeckbz&PA<~pw>d)IZtCkNbHf@uqt;!>>o)S8ZnIu%n3AG-I&9us z%p&#nJJ6j<$F7gfHCd%~Mqw2@V%e#6qufcIFOZs(V_kLjx^$g-KEtQdRs?34^+Emd_6~cF9U5LKwPPZBIg_)aLAITJy-bh+AnhA@?&YJmO#WMp{YBsI{Ju-T%Pm zp0QC#@Zul_5l+k>TIaeael}H7)6LR|vUpFUSEatrN3GjxHdJeY-Z4MS+rBZexH zu#T5(6cxOf5ZdsFbH%qXkoNhX(pIOu>`SXru!N8mwW<|mKK{Gg>*E}VL0oB&)bxNdPg~YuA-a+W)%%( z_5Gah#7Lk2L0s)wXlS_eW@J`U;KmZ6Si65JWbGk$Lj;`|YTect$(<_TTeHoSOnzsP zoTHbJ^HY*x1JHLmZDfE!LEC&5lHcY#6t_KmifHXFA?S*#{0H{+0J|G}T_aC+!Vm{% zPK4IBI(_GN!Pd9kq;b%v2Ec(_E2;@1MbQJiWf5h^%8Auw-(4h7XP82>ucJG6%I@;q z&Zoz!rP{q)1CWz`!zZV;TYGZVKB+t1c{PDXF!R%@5a zzG0MYFXXh|tZVIfRP2+a^4Zp@s^^(C+|{Fhy;SK+onkdQ%H7m2NIElR065|y7i50D zWUnIPN4Wix&i!ItW_>#~mUhwn`^v@%jXT~kzkLk@hkbB-4N_f0k@I|E8_yET&Y{AR zGuq`m)sbHVKfQU#@rDoCWNcB-AIn`sYJrsP318yy z>9iH0DU*oT0IQSE&WWi(+Q4DK^Cs*{XNW3Q_g5N_BdEaAcCZDj$j4R%lAL_c-^DTQ z)w~U*iVHrjsPhRG;WFoW$@LlvzC;4+z6U`*JU>MizqarX(H5^6c`A7RWqN}7#2zAP zy#AFEPvf7#++_{f_03Yj(&kh#si5$Zo2B9!d_?b!l95y%l`lo3Oj?F&r|dRy>I=<; zzS*hm=0v}#;AH~1>*2#iw*ZR-O@om=(~ko)S$EhJh5IA6Ay76!<=w*KP1E5=xL+%@ z*1-cs!EZ$Z@5DL}T4r+Atc~&Y-4L=HR9vfKHE~!>iH;S9`Cntf8+M} z?0$-wlXCC!ny>Wnehd;0jR^cD{~SO`vpt>!38hC56m=?%ww*R^4ivw%E}v9(EG_BK zxfcG31WTXu60LQ~_ZyyD)l7fznD3h-UoH9-6K+7BT*7WhGUkS;=grEha~e^hX@&?< zo_+q_nv%)+3199rTJsnwD*K-kom)y$uGrqtTn);Yf7jQ?VMx6O|HeGLCKr`@g=Bh`I+6L8cVfVW5NEU-?J%_y-= zGEUp>RJ_5c5dCwT7v9sV{u3n=9JRnQx4DQaaDpPs+hbj8w*G2y^l!nj9&MWNZ<}gI zEmhV2JW2@FA`UdvR}^CLT{%DiHXM&AB3?4=3Kud>HiyGM0F{GMwJt5fm_0l<3{KYj zY(ib7@S7yTn^Q?+H9xV3n)__&j3K*bqP11W&9s%n)q$9N)%-yGXt9zE(!{9IDYlDT z7ayaXNr;!_Hl=S9JX7z`km|85`m_EdR?lmY$ZYE}b$Qj`FLt|pE9wtFq&|vcJTz*?z`yD`@}RE z0~JB9iis-LMrfxyDL_3w`^K1Rj;C?0%Z&);co9moUB)wNW%&#D+<;&R1*Pk7w?ky7 zwcJWa?NX%N&Va76Fj`NE*V~E}+9iVzP6`8ct?2VT%ScG@68-rShTqEu?{eww7uBLH*Nox@{n{Xk-_;nwRxuMz12Ip1I;NTrkX4u))-~_|zWC)h#nyAfy@s z4jManN97 zs4GTRoRmsIBM=hX5HU*TcDBx z3lcn!=2!&w;qF;Hw6n!v0Y?HwV#9kOENV`Lhnhinv{AvFeJxQmHH{2S`}dNBib)YF z)n0r3W)*oAU9hhfNk%t1gLn(G0VQYv@!{zVn!Nc)oy(DG;YY0PkMJsG%goX6`#LN4 zyAXmN;VW^|i@cd=c8jwka%0Cz{rlBO*apqRaoIBM&9IwP!u2~#lSJ#}?o2O(+5L;)wmdSit>!o-L=FeXVzz!(OS17-{(xt(8_$E#TtcGz%tfm_T2Zb(rLuA zt~NTm1G6z&|D;WClcH40L&BV2ETts4<@wu(G+rG|dJWHtq75Ef4mNDXGTgC8R^L65 zXzP~U7X#k7p`MTP<;^^Ei2{`MfaC9uRaZQ@L;O(~T?m&=9`q=1q1Gw6BCc-#_6BM| z;I;wtDquawD-Y>=R!h+bR-3%EILKw*qP^o&kKAQ8jkaf2JqAxhULdsL6m&2tfLSv# z`%?b#Qaw*{YlkUP)?2j7$&rtuPOggq(fq-wTtJIvK}KxUU`*%v`Tq+ z z?e(vbpQmxAH%{jW8NH>5ScHz^w*btOFP>kt^uNR4DA_U;9!p#*8Ln8)^otGy#EvmT zB^$T;@9INRHf_2|Izh!ztptmR@T#rK7htf4@7rJb{_o7jP4k}Xu~Pr3ZoO9NdeGK> z$xym9-j?tbixq>$)9XnY7xG<-UHL#Y6p#rBE!R%Bd0859SeUMf)8z{csa{fDZS|ZR zm{T(9O4LJ&-e0*9Uq+DeaeFW!C-f$1u1ZeDWVp)JgEdpJJQ$nYH)5lwTY!*{ZuOtW zaMGLmS!)biQJ=?Gb6K?jy{1=OmUh?)M-s#5>MPP|g6p|IB}oPPrpHyUFL*s9caq_z za^`iJphlPZAM!$h>H2pt%W;$IZpZ(n!oG&MHa<4zVF03iSa81t5%-fziOP~&=k+bN zl>&6e^zh33oh@Rd5NffFJEf@7j@X;-P&>|@svkK_)stwWNBhcYxboH4!vRgd{b`(< zw&vw0Y3vdv{xwzd%;Xm19j3S9Ni1AS2TcDRv^BX=%6XMrstVu%CCeovT0bw{f?M}oor}$m=TWr;|l~%#*kE5sA7fngN}Z4T=pe9P&|6)4X#H{ zfEW;Y^32Y(FttiFc$Fs4d`lg4G!Qn+N{I=Q4S4I5|C;#EeUt{o7lSn&6__%s9{l`M z%+{dQ=gqE@r9Oe=Drb#sClYW$EsgjJ3=HLyh9rLZbW=(|Y~a=YMMg)D;1J@!X3>)R ztD^p+#dkv}DL-K}Xa53uj4bf>c3v7%fG9D`R|Z~|k@ z2LptPs07=E(!Okc?~8k+BR>ro(=C7ya;(pj+AQbu(+NGo7!mGLp$yN=cv=Oab3EnT zsGScZz3AEHk<-B?6F=)nX=I_xKp# z8`v7VJ54A(Lz_?W1JP%PI*Z*kkkPa<_v-j`WRFGNL(iFUqTq5!!E7vdqnXuf>4%%& zA8od|jxcdfb4qmHZ&F*ACBDx+F6y?R$5;gWJ*06zxCt=qiOL^T>ydlk59gH3*Ja?* zdmhd+faWues11iPi%YoBD#~>we$Rkx@Yq@EC9ET~#26B9r7aJWe#>Q+^~j>-(_^wz zFb;?xKvcp+wyb6 z2^=&~p{Clj?f33S<&iZ@au7tz(;S)Tzis%F9{7z$A8*DU@6Y&xTt5Hls%_ID`8t)= zM0%>Q)C-BC{EBI>5BVj6o`xaT)X4l$!e;IVd7D;etg(A6EsFoaXO++wrYz>U?<_xw zfmfMf0uNdRoCo`^hSq)P>N%5gfDdNE{bU(>y#{6JhAgIWU}A9SEHxgnrt+J>yG%~@kk}#9G*fi zR~>SC(jOgJSxUVK#yyezC#_YbE7Q*lU4k3uCXphAGGs$HL44>WxS(t6I2SakzQ$xb z62iL_3bJZH;0X0QCTs7W&W66{ML$`Rly@uZi%?bACJK7T2E2ye4F-XVz>6h1M{EOL z)`OR3c#mBG=5JlIaDcpIk9U$Fx@DoU(0XaGPF9 zMe?Q+&89yc1C_EyWBro1Wb&yRZsV-#WsQ2_pvS0sXUYB#F8t0qlA4jkWzTkVlcU1f zd(wO=l#kByc^C3IVGyDEK=?lkD*OLq+VUnCaW4;yIgvkw!VULAJ=+jFn4lDBdV_aW zG=Meg&l$Yw82bob3Uc`52S(-MRKc4WFUXev$CMjRNE+A(!RaB?14=9*4CS^K#o|!$ zvWAgBWH_V0&Tf6!eogM;Qc+9)NOt`W_wJRXc^yod*87Ss8j+tO>#%edvlv(+2y>M$r(oT4f~B4A9EhZoQ{cB>8YreP4&>QrmGX&Hj=B^xx9Dg>>1;rPus z$f-KBh2zuC{={dsky^)SFXFMX<%55SzZWA*lUVEbj;Z{gP3NZ$k#3lO>oirtD}DI! z*VX}008Dj$Pz3XR)`5-1wTsb`;I*WtCfRycH<=8+i3q$`tdM4uL1Vwou}q+Cw&m{F z*jQU)fXRwUFr@H&G6>8)Ccb@J$TAPl$xg4c3WP=+0QJNDukOwRs_A@v^TCE95F5jY z0y<)41PcKv0Tf3Cq$o`~h}6(~kzxbK5m81!L691x1WMV*WnWIs| zlZU^a7AVNwdIL{UBXMH$=gLwDt;f;UuE|n0OSrK*onJ&51V>u7-TOmbFKeE&B1#I= zNFG(eb#Wg9mUDCkZ4~}4o9@0bc;@3{F=YgQs(*fZ7Mzy^FrG%s`MCbVsSiFuAOyUu z%PL>669kDP`(%NHVS|x1Sbk-|P-fyciEFa7sD9W2qv1KpM_<|Pe1`;Br@&144d+X^ z@jbDApIW2PP5+FEEl*;rVBaU6dkAEpysxf6p?)JagIQy7AF?)NJ5=>$9-W3gt$c@Xl~uaE z#w*+yvu*^6R}-IG?^M+DZvRbfdFAJI#YU}Fo%dvjIPQ*4WxQa%%(aMZb7xjv=1nNy z+=ec1?APB&VKE)(^+Ag}uHmr-v4#UzZ#$cJmu8d)uCJijWCw}q6FR7T9?H-@Z-1Y7 znJ-;Eihh43YtHaC*FM(<+HF#NydrW*!$aymc#nV6-I;N0wQn zR7mxV0ejaB+}|5WCGbo0_*W;31z3ZgA9S3&*OeS^JXqzd=M29#OTVk@ey5+Wdp`$` zd6X&EKVX~tTtzuM0ybp&rBF*&vN=(3hQ+xhAq=OjCyFPZ$Q8^O59ZbVTZT`^muADt z=T_e;C({ej!gTB{fm8IvZ;N_O-glP{!z|moP?;kxM9I%ss5X}FsR1^ zRY??w%U9$43eM5sW&Lom(uq@undab&RJRT09>WFcy_CEe!gssIq2$ODVd9lk*#09+ zi0WB!{S7P9c#&1Ts21v!Nso-`8ct{NCaQ%{KLy}?J+BPS-_c2Ra3QX+%DJ;2-1M`p ztM*WPDe7QG5-Ux+25Up(a>2o6;r>boX4xt!<4UF5$nma7!XWW|p=X0k5c9ytFtsK; z%ZTb)cN|TnKs6bb#E!vX#s0iHX9WA!t58dQsgiA5lB&L_r@qXpnbW2@(5QV4!4?i& z@_1Qy!-O+_)60eaHD-ioJk3w2{f0lZ&Vhep)WM~7Q9SjoTy2hzUJH5E;pW89L{<(5 zb#?xi8+Cb+6G>1LdQcQ@0(6eDGC7{TXL9g0aP^vxUh8$6*D#&S&PnCX+_HJR;7rD6 z!?LnegFTX3t~jbq11iua5RRi&Sx&J4rN~chSh7C&M}eX^SxJdaW7XAuYN1Uf*kC$? z`}oqlnGSPnWDd1vK6}xr{reuj)b_OG6Y@7wdIJyL^I(QpS#y#eFN%lVcc;n*F^_&! zS%}6FHls5Tu%twJ+MN<-M=}REil^;wqtG>!eN*~8U{#Wfzj>LZ&03BK91Bee67$i} z(5Oqd?Gh~?XIu;O`pLHJ7;9dm-)mLOUsFvf%4@X-=R9{#=Q;UuL7GdRGR+- zjV$&4vzl=yYzDN@1{Wr!u_zXEZlU>INx;DTO@+ssY2I0{$6riYgh%QO&ANSR>uh^t zhjU8H-$Wi~%!`M?p6|-QSxo$Q?#P0o==?;Tz>72P(NkSl!17t@G`Z+&yc)QiZ`Jgb zSpAXa%4G3#|0*)8Oxn_VBwPA4hd_;1iR@VyPu30$K~&c81(eUvLrql2)cRG~8TpA* z8w1}8Yz{6lc{RKpGZ4nsgzT|x%p1uVNQ-fNMf`c4bg&WVf-N)@WunLH+* zIiN;0R7AJsDHX}aAC`Eba0SL%3e-U34U0NDyJrR%hL&McIy#g-e8Yj40&(F?q13uz zW;jhYMfYt6GvV0hK}w92m!RK`&W!9_AA$Vk!L-}K7u?=j?}h$J9QN|W7Ki@#p+RsQ zY~j>9oADJ&!nqjmAoT1pw&RW&B-Vw{+T^bBd$ZyOX`@^Ux-54Wf}OvQOBw9v)Qarw zw&t2y{Bn0($^qZ!fQ##0ls>t{TNt@L*-{$kWIM!pC~Kk8mJV75Nk-N87#neRLw|Du zey*_KZ^cSUtM0ChvbV%K!$Gols@Fwt)d7Pqu>ACx#519iTKo>@aat`Yq4(y{@fOmhqS%HM4^Su`}wjennNXYUxsjOoXYN4oi?&}(CXK^itU9puQ?gKfKDIOQ~%?$l=?>;G6*E_LH`M{@Ri zuM!V~$Wj?c0!O;E2J8N`r>&J%q6U1UX*LAgjqd$^68=J#> zKFmDYN>$d!T?O_`D(dPK{|p7Kt4$_s*YTK$K`&XhOPi6GY0%_D8mG_}9TqhTJwx7Y zcy49EKc^t4v(1?r@EmuFI}J+6sVYL1C;0eLzj|bMSlvOqTVbiHFEs3>I^^2(=7@7T zSmHRN%bs|(l>oOpnaHSP_;UGDodtWU@YM-%FGpS^<#u12WlQ-IRcps05&{agFEDLB ztVynJXehUXoj3`9IbQY5Rbx`AxB=$c8f%bwtMuwg^G5` zr|KQ3TGO-Sf;|q(iZ;v8qtm{+X1ud<5xc50pv$b?s?|#HKQ{TqK7}HL=Suuwtm74^ z;4maP96{0YRMpvq9W}O8?B&Wt=_p zf#0j6V;bW1n(zRRu5=AG#7BH_HZLXn?mDjpmmC!F`Jk|WA$c_0j`V;nUX%b6uo}&z z9vZiI*pieUeUU-2z8+RJSJsrw6tvEKvU5!lArF*de>i`yn_A0xMl zRnBy~*t*oP`mBI?Wt(VbK3zR#9ffTu){>52zjj{MZ|F5>Ff1CU=)Px}ZiS8j#m#s% ze|%+sPfoGByRUK8Q%}~@FUx*Iv+c3Z6F427sSvKYkqh^ktO)P;W@lvT=)l2(v!@dk zb5&_)(V5b;j1m6vG+E9IGw^T+^v`}Kew-i%tezi|nJ)e{*ryyTxe?z!#GkcJ$S%}Z zr0t`uC^%~tUzn=iGZhsjB#PJZIoO~Lm0dq^>yP7qei9nj#JO#>kVABN~TM$D!(Q6E}s50W;oQnF3a=+sq~za zWLyR8ng&z%+Kp*WnMSbig;0s8A5|A1(vHravJVxOc}86P5@JARw zSq5EK{8rYX&XXNqmp^n%$4x=0kS(n@KM!6S_Cel}BcD)O^yHKb`{izapl=bEW6rT` z7K@497~OV{N*256?RZP0Do-=Lc86Tys3}>}p6T%k$yXMVDM!3@%3m`|ZEJIb%UoX? z7o5=&gVj~=;k|}o=32SC&fz5!?%HjWf_7R8))h6b$R!f_AJnJ+FfH*mw>AzuapW0k zSiDK=7dL&J@P2(s3~mI95`0saA3McIHZ{3;dTlPOmbUavgMWE!6nr^KyFcepSz`NY z)jGyvwZ|y2&c^;$XYgxJUQ;P;Aq6rCYWm5v*8cTTg1a(!h zwIl2=U1`gro|Vlr)5?J+m&a=T#QOrPuh+dpTd2v63P+??_F7B9TA3#ct*hv@%sua_ zvYiU=Mw1`>yG7EIN~c6%f-uh+awXUp#N!$5Uj!U5kUH1@V&_g2c-WiIZ8 zTWuY~UOq#tuaT0EUc-7~_@L*;?BK~JFZ9JPmm%T-(WiYsxKhFKIJVj>C&gklt!+i`h z_2SLW=!JfT zp2}Cni&?7HdnDtH*#pq^YdQF4GHZU0_v70DQ&37PbvO8t--fbj4H^ulZm) z^y*JNboR@Ug4;69^n%3z?;OWH^V4^9DOLLA`>K%8_F>LqfS%=K)XH0LFU{&}W+7O57zABpHWm?vk*=hRM=Xra#Y-MJ*k&Pij>lQZ7inbx|>I< zb!SB6aQnT^2w$}-Y_*pRIsaa?Y<$cqd*(iSwTi-b71@;zv`pJ?v@(Utu_*na)5J>! zC0om;93}34C8cYCcmq7+IF+4Gou5)u)73ROdwAFEfYGH`UoAp2X_iKr2caiaQ@rOj zeqx!lIp9>b=1Udf{Aml@%uJt5wNF=`ED>p&W=t>_$qge{$#t4giv@iysHrq6q`0*T z&Uh7mgVm*u>0zCxC7iupiVn?(91`R!r(Z4zGf&Q%6p9yHb2V>kY)DTBhvZx9g;Fn_ z<@{iaEeu6Q3!01fJvirKi9OsG$5k46QhZISWrq#zsu$-HlJ5MLBv5b% zdZj&no>KE1!R<>VW+o%qQs2UP!Mz|PrZin%MLk9vX+_iX!C+=7n1k>nPzFLy^POWe zYnvHmE#vOxu-WqZz|aNQ)ZC8ChPtCrfLq4sUK-yF+}@xwpdM41RDl*6EN$thd1#BC zcQg{bRM*H4S4P)l6D(B`o7xLRLFSUSDxtFZZH+!j?+P=&glogDg z?`HL$AIvW7NH+A7O=#RhmsFz0v1Vq&jkm;++u=Gv%_0rtJ@lOe2X=cEEovP0#29Z! zk7Imn-f)4*;B9w9Ct=V}l^xW!_L;Js0|BUimG)e#@fHJlg{s^~RD-~Px?eYL50edl z#KJW5u~A9!vH2JCrLI}e6qLkX5}+xUv+4qu%cP>_i&qjmVG zs_tpoXjmAqgzdGW$_e&!xLdBhdZ)65#A>_@Xa@1#lPBZ){WR8xiR@a`8$HN!{{r$S z1HSa-?B4JArV1RNa$;U1Mi6G3#ch%lEBij@)^yVIO|;#qPinq&Vd7KR=BsT=(Y@a{ z$iDKGawL3^n5LKrQ!k?3)>8RpPs!f?&+Z;gGWl?y%aFegIN=J+x?iZqQpm&X%Y-zW(TKa0Oxf0=JCz3mSte~W`)S{B9lFpr+4 zWy)UOi(MA_zoOriRHC8?ts6ggb!Pg)5mLS2u~fC%41)~hrCsxGY3ng>kYu)TteIUS z@*8PZZW;r5-IrNS#-EfnOVoN?p1li3zduYjY=}l8AW`sO%W_5+6O$(^Q{yF0)0qWL z@1&bQ>BaKZ-_2Jdw`I1iV|%olnKFrPa@SEG4%8?6*uGTLT{lVGmMY<59ov_Um0R`- zZOdJ=N>y!Z=GZ64J|Ya}zaB;chxkvQGNuV`rxu}g+j1vbpfd@BY!(58zmo>6xE;pf zutkHd2kLy3u&=ZTiaco9`@^=i$`;0kA1ujmX8zuj(+2hks4;%`{``S=N?3Pt%?=)K ztbZ0@FPa^PbdSIt;X0?f1}fQlR&e?qT0vtllVWhgh3B1OZAAV^G#CAqs^$D+TYpO| zyRL<4HeX6b2!-b>ylb{T_Y+g&Q-87y))6aqQd$Jr`#FqaNG`Dgq{Gobk+2(fJSKID zkhpi4?`rW(&+G9PL6L16*`0sPd7Tx@)cGYjuoYer*s{%^eQE!tX?*P~|E;h5&zFGB z7m-6QgbExCsoEb>l>qb&1|aXaeU<>lc>p+t2yKO*l>&J&D&d~Y zzN0au*IlM2CRu<9)kTmQ$ooLxY`{Uw-$;^Xe~iq|D#!)sxifa@UzEuJ@8gi^dp2AG zNg59r#n3PFG6x9ATza6j=Lrk z8SIto81MBg1i8QjF%PpR3WOX%VstYX|UbS9)6C`^=vuB9x+j zLgfb_8-d3;&EM}*__5Q+a9>_sR)+TUj)nvd2ezphUhsb$?1WDLf6s{gzaKL7pE{Nx z_2Ge_pfVRN>BIEs8n*_I= zMdvW8@}W8Zb?D;)$0rAH#@V>N5PLLW!^>yG$5w%3WI~NiYmMolbx;fPU8{q>)3mNqtK1~ZliwW^i2egLf~TAxL>PG}+;zzob* z!l3zJPP!tJtAYYIkLy#tOT(>%#Du*voNI?z^7PkSH@W^WA$OHs7uQJ$qjf6W?tf>8 z{5i(|XJ(53M?VDyv;`Q%v#umvfc&ucgU&WHV=V~tTV*neIPicAOHED|K`?9Ip-?Fq zn>=(HF?rdqf@cs$d1Y~`)B2@9QA1%_8({l?PC;Xz{~ai7;0g3)VZSk#DA0Nsu-1ss zAT2EoSomj5h)F>K4-k}drFjVbH5Q20(Na!vj}%tCj~nD&f@~Y;EGu({q45h7RKS0l z(8^#i@&W2EDCe!2bTN$Aw?0HT;1$3;z8N8c_82h3xP44g+ki54?4>w*8|L~In8t`| zG3^<8;xMPsOBh*g^o|Tf^N+6qMz|hu!Q`V-Qd0?luGrsH;r;nKsG9{j-V89 z5+YuO%nVkAFi?~Qs46l|m+5-ZCoO`@R~8tOva5&-1|5YaJ>Uq(#3E7+9PJHw>QJbX z`4bsF;{8M8YV=DM0ws&p-d{AZvr(kLfwv zE;_yfu`n;xt(*Hph42QD-t)EC9+YeQJ9E~~>htsY;Q>I-wSyD^0STMOhyxD^OAG+Z zcfeG2P#M9fA)o`uCD)Z(0ShMK*mnm1<^2Jf)upfKH2MSP7lES_eWci5YO@p8L4b-w z@0*+GP6C$?a930S799!T=p%m+!LF|YAAAOV6QJdqA+3t|;>BJvNbXPoS)vE1q2Ldj z)9_gcmfY13e791LC?s4cnRrvzV|$+cg7X^nB;>q>fvI$DAo#yGwEq7$S^SrOkzXEX zbIawnry_#V?)z#FpoLg-q#dtd%YN(7bgVGtY^oOLqrF!<-r5Pu-Mob3#L_Q$c;toL zccj1P@LI|HVsj>V_lGOS@3V|cpGHLRO`5YWddYJT(Sc&)#KcLeSaPY67~stjx&9RQ zfu5@I9YAA&7pK5$pgjjp1i^=+!eyH(3GseI^PJfn(*icpw$VV>M^RMv1=AUgrBrvX zmTHyiB6E0zE7);yA9C!#IF<9uyx#qz(JSIiMeU14bu+X19OK;Mri{vy^2n}Fyt z+P@O_R@$^s48ANWKm_0^?y6DIqes*3TzFV82f2y_KoA0N0{#>LToB@a=X4HERS;~M zgdkQ>)+CI_QRd&5j1yzt3DqnrcJh6I|9&gW64EI-nnu^)k7b;BP(?K-L;6Jt1Qdb_ zRv0N?(@CU`ZtIsMh?)y7YlHw0ME*x!_{gs=PX&g^MY4h<&DJ%5s`5HyZ^70GVDg|R z8Ua$%lv}rLYOGab9KMts65{#Yhp(#;@D&4_6+x*Z?nQ_x4(M&}1zGsg5a(W{7nONP)NxD>nB9MwjJN|=jSWSzIevxdcA_^?&VZljHlYrY6I`_9>5F|i?a!>wvk)MNmx8y|k*eD3`a z5Z*H&7T{$aL`~(xlQJjtL(i4urd8OP<=>olMdLH-ShBZ;SJ&9!B zlcx-mBn5V(X!0YOkPQx8c(~d3M>tG$IAxsf_&?ZI=2gM>AC3CQGuZdnt*qg^HuW~x z`6j`%M}SL@!aJ)U2?G3cK?MNgyl3KAL6if@2d<-BG$aGhA!s&x{IswHv6DTi?H9q9NXZwrMep3h+K+Ja_WRYSogv>=gejE>bK$UQ`Z*u^_ zdzk#fD+s(3aQ@>It$1U{`s5cUPOs(2bh_#L`;$?=%5nWS=OH%}629a+2jR}L{XnP` zhRdtEMgh%v+;n(~gH#jke%CUZh$8IJ*+=5cN75tD4rQPAov{J#e&gsH_^Ee|EADr- zhr{u~ha(6Vz(Dh=HgD$R51u@P88CA#o8bHR83 z?0uVZ*jA4Kxzs6OuG@M9;xWt*9X$9vM#||?wXve;@*p4!43}E*W;o*sp@TmifSnFli!#Y>5CPJwI-SJ4( z0&?FOilLM3$KQSqhl{`)y(ln%k6#@0$G`~Y0Lc!mK*)vEQX=5nmOmX~Dy&_J^K&uvB&FF}Dw;I!34vEolVUe<|l>_U6KY8kM zn?w?RGZa@#3mmEG2sT$2dAtp{tw-7G!g7epL-+iaEnBV#?FT3=;^1Q>#!=SCcRyZ3 z;!_5^sl_tNn246H$-k;Um}`d8{8i+HidQDu(lc`#uNoP>K({R9({z@AcO?=3Blynt zq5{GF_Yh!{0ecP;q$HMf>^o9Q6`I`70l492G^?J!0a=*zmZT7b>xEPXHn_=M8CCfd zf2CxbW~10i_}nNEt_!gP+$_Jp@bn@A&7VW%gS!wdwBHyqM;1D=15!|64y-nx%Fln= ziE^rbW*@67D%1w$pfLpn@|gzAr$Exveq|KwFwz*Cf$B)8WGc81PQYe#0`ATLVApo( z+h<>Z)y+as?Qf%A$W%e6)1S=&Tzk)-OVw+ra{b>}qqx6{l{S5?TAzO!T2B~^@=xmL Jv(A~_{vQ%^SA_ro literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p7_2.png b/labworks/LW2/ex1_p7_2.png new file mode 100644 index 0000000000000000000000000000000000000000..0e673a98dd04809ff601d8db18770b9de5f14b0e GIT binary patch literal 92038 zcmcG$Wmr}FyEVKB0g(o!Ls|ssl14&61QbO=kWjk25s(fQR0JdiK~m{%5QFY6>F(ya zr{{mpbFS-sKfGVweYy8mz_sT5%{#_D#<*9g`h7)wTq;}?3Wcw9SMC7{b%`E@LU+Ky zg0HCJl?}lEZac|8ae8R`!pYUp;W`c%8(|NcUdA?~IBKYz&XyDJK>=|@5^A^pscH%uXs zkuB+p(M0t0(FYTrgfcQR`vj5y>-s)6X-V?o8Na=$m7k)TAhdaKpcqXjvAI8LJ3AXK z)%uo2#cp#-#xuB$CxUXU+MU#&;n_&Bxlnh4kTn&iO#Pn(Ve7QE|C~$2>2$lIg2S$q z%b(#OeCih)c9f)g6%LmosfAlN>Mo)#ld>|fvSR7vU6aF%R0udfI~f&|gY&3we0AkI zj%+9>~4u8YU2nh%j?Cc67)BgKR%`d}O&De?F5J z)9x&L%Ku6sL;2liE46K$*V_D_ghRLiYZ_wXTLIXF3J)HT_#7{>6`S|APE7OQG4a~g zoe7oNjE9w24yNgr*(~;D$26=kDMmG)og8fSYZ+W;W^TT(!G|}CgWU2}4o#k%wXW1V z-<+0uWTQg9u@Ms!i@0qvg#4IDgZMm#Kez&kWsz6snxOfxDErGU~?}0o~Y|OO%#o&|JH2VPBT*znFgHba(~WN zj|#WpkJs1T{=U;v|8Am$swb2>^~0wYN^#$rrx3J={lxT~qE%xmrUODQBK<*`%~P+# z>EOe|*=Sz#9_HW4Qj=4Ae}8?Lg=>)iaO~vzv@VFm2%gJHFZ@zC#*3k!G;mewtWo7Bs`FL|0 z)Q&BWIq1KYu$z)@ztt}3doJ#=zZ%+;q0-dSatRKre(0O=*5Q_MfJ<8xEe0wuD2S1R z1J}pL$Iit?L0z3Fh>$)Cn~*NVx`|&TnF4O*VBPh%)bg3ZoLVsQ>c^Us6)i ztTz)M9-a~3`RC8fUT`H@k8-Y!jgL>Stwr8;UVip7_QsFjzl#^UNsc@7eUcZ2U&+4w z{`^;(_sRZ@=`FF*QtLaKnq(YW`JAm?#pVy;qFYRU4-nDNL~z%glGxkZQ%HJ=pcsUN zt~CV{27mZK{%jhWe!!P%*mL-;5TBeln5WvEx z3iLc!H{6_Rpb&TCSs$+oUR*Sbpybc&nn@6}yhcEKI}m2C8d1k9goND1B4|@ka?JX&h)bB^3JmDs*3eP#D5{U<6Wq4vLfe(z{QAH>yE)xtHd@Ms zj*gxiR>N>YiCUkmi-rq&*8Y}db8oLjY@<5h{-@j12a~>vMKAsoI_=kFAuU0rz8Ekf^izlg${#~6H8 zdC&RsL3XkDmR{jp(MW-T)bDt~D^T_t%k5{kcRm09yjpBKNtdDWp|zmy9G9D$d#i*^ zEh)u*w)Jo>Moqoi%^r_h2oGMgY0~#15^9q1$^IHv?aa(fSE1pZdkI4L${8f^Xxma` z0@O3_Q6ewjnIsVq9UZN4;pXW{?VbPS{wG{|dU}it3@p6*zU+rv)4}wN;^H)(`>QfJ zkMlO6s8SUt2$+-H(ku7VGVs1?+!`SR<=gIP`?=G`1nm{_Tg6@r3yrU@-|5O!rQWh= zyM8B#K~j=#XQ5O0Nw*wogS1M(aK-jJY}`xCPbQxM5ds zV!67yBF_chkZ#_oNJU=JX#$oQSn+EDX|O*3Gquvp#G{=fIQWNUHg>* zE<8GMiu3bxBw&@=3Yfb?8w6_4U%_<>e_*v=>K8Zk``4&@)XQdq203Ld#TJUwBkd z@re_QQ|x8Z-~!u1zbS+!g_sK`hh`ST{AiJ>TB4NigvtF(_K0}2ZOLo25*}o0qh-Mb z1>Aa1pCY$@@6+w8H*Va(TI={E7Ch4uo~~13p>Xn3^FrL`lmc$*&elwe{rZ?_z#!*Y zE-5i2Z)B!wLL*#0bhoSr8Mr|Nv>XHa`rgl%hten6hJ_6b43HGLIGMbNFgiThsM~@b zmj2>T{O0~Xv=nN6k0qAhiK3(*KYnDLEhT%W{OaOt!&g09GbAcX!NGyASceOXfF@*a z&V*C96c4%~pT{IbKhf2zm*Az{JUo!d2_~R@%bdx0i8rEotlT~Tr49k@U|r;U;e#%H zCzwF+sIsn3>Jm0K^$=XJD#~ncxj$`fsv!W=@9U!+h0B*Or=7LOu#u6F$f6dZBPvuv z4H4|Yl%AfRR@mR%wBy^;sPH+fe8a`hAEQ%dqpFy>F2UG@_ci|bE8HPW!9AWG7K zUhI-79aPfxPS1E9~uVU>ihMDloSSB zTwIci_5K`kw3J%!6DqT$+sHT8_+(O0sk6%H+nXWqxV*HOhrEw~t-R#u#s zu&^FvKgeJg6ns?dx-t-n>cXb?dN#KLohkO?M{~Y~L}$|u$?J?d)o#3KDMvdC)I$YN zt6t18-MA5o#KQLeex_+>(%-M|XwT019+i2lPt>SDUz(elG1@)q2(56xHW$~z6JdP4 zrJS3cJ*2v(#vE>9W+3|^Te>|xF|_=29MsXtN$+BJy7}&6H*)(ZGx!awa|XphiFt1j zT)G^zs|)~cUGTJTz^kCTpwPxxu4g**T9UPvcWU06U)9QctfHZz0WqSPEelbUp^>hj z0V!}96-h5Ok>U+E`;JTZJ*G^`t*4b;&>^zrLP<1hz1-2IuV263SL5kQ#b<(ZbbS1l z0jK!+uWK0eAGi%NAtH!TVG$9ZLrK{lK-}V>kmJ8)P;14P{Nu-6TpXMfUgOrTI9_9R z28MbQsYPEg_IJt_eOYh1&$UafC~v$|jwyMqODkYKqDjMMIvIT2Dbt&&+CDm(5HD1P4X7N0`A=2X55{nCaewZ);t_WP zRKP*uQ}PAYo^Gq4OP?L@@el6<#-DLTii}y$XQjRhM^gtEmrNn+kvQ>zx~$pfFbFX# zhRK*M^<>--5a_Fav8-YbiI3?AKVmXx49!!4l=lIFtfMht7goYJ59L^P8HgFI(#AwD zai>Khv=pcrlr`^TW94dVYv-1iIqr)u8T0o0LY34^mAyoQ`4SFX&J$4ZT_Vh|&`@G) z=n$HfPUalCrMV5yvfx-)9r;|hRn=@xL{C20LUYR29o*6%S3Nmvv& zp=?(Ag^o`us72q4ljQcpm4Q4J7M1s87ed0mDkuEhyL)>p1$87SsCu6cN8m7ijE{c; z7{uB>myVPMoxI11(x*_;@%LkN@-hnxdA2tR#O3b<&O%ktM<77bX z!stcv#wO(!4*H|7nxTAreD`YEgmXW6oi67TG>`q3kwV?JoAT3M`}5I@nK546oez!S zow7U>oX!$jKzDdCq>@XV1u-4N?tA@Okq+(FZ_SUk|6=;3rKjW9V)XX*-r(bVi|T?> zE`I{qe;LK4U;U&Qnw+Ni8$r_!nr=E$(mVS4`eZ~z(%RbEX-}o>ORa|a0-o%$%{%z` zuAH#K(@MD@B_UxK5Qv4uhP0vh`!(54!g)FNWgP&5a5n8fAMcKo+cTl1K$QQzeT3r& zUEgf8_Gy(1G0I~p;{)F6zbCcBv6+gBN_v&+233g!j1=x39uEL<;H{R% zc@@uNdicx|NOX61WBReG#+y8Ycul^HdX%sCQGiOd*5`9Rr9@_wyhTYo6uEZD&yGY< zrV&A^NVlzKwq!4(IZJq2pEWtMp*YPf+&J<1`TO^00248?sXXzUY~N3dYVD?F(WSX` zO9kRKnHiOplv3NG=@Wj7*3D|$v@HORB0?>XRTRBE8_3heY9nME-@rVxjewCcu8&vV zCng#W2}w|N>5h&Ld*lvDdVCg90{$2o#4HSTLnXIyv8&CScbj=nco9-n=ng&G8fk4!F*-?SrSKlM(q ze+XWZO1b00{pOaI>$h)H-M`;CSPIpW7&UcvFsW!|WmUVSTa>)l`PtFgS^mWfR>*p* z?b40L+&5Aer=+M&7$!e@oj-yEfp*DND?c)F{yQ8{L7IH{wHe&cFx5kj!blU_ZQV3n z;l7jEK6X!HrF*3FD+7+(!Y5bM;$y?X$)0yfNl^fqW`BR=H-mwXO2F*d?gWI7bb2>~ zgv7W>;<04UEE*bub7esD7^WH~){Th#H==}0f%DMrl1-QVh zguH=zo{nI7RaLlifp4E*c4gW7@^X=_(v#o6@15@Us=YmWK@r3o41WSpI5&E~&g>5m z0#j>iTqEJ++)*&Xqf6(PMP4I&c+*2nRMc>&(6Gx)V5rWwuKge*GqZ7cxI*3NC!tC) zIhPJ5At52Be)Z6lSl93{W$za?Y?Redp-l0`W)mU1ezgb!?MC7S%>6$Y_)wzo=pr9h zI6U879VT_%n7CT!X**dP2~0yeMF6+N+0Ap%k@3m8&v0b_vE`tXg6+`jg1YAb|oSQ)m?**fT!_Sfz=T9powL`p@2Sw zdbTl9^R^{LlcUA^&6_tb0V5@xs>Z_afXPY)+^-Og;koliSR+IEYP%5!?xw|H#Ohro zB^e!^`1XYxbIiQF#JH~-O?0KCq;UNGnw#a?jer06Aq~wLCdpSY#HSe4`5<=;h_m@B zttwYN2{m1?~hm(q{_a+MTn`bVbkP>_V&v_Oa#K6h`SXwoG3=ogj$c58t%;hsgS%-j4nAD zh6&xcElS?Vh!FtE2ix^w$2VaxVWLpixb+iFtDtj*=HMj+WSp7bf-w@I?d+x-FCmN- zfY@fh6Oq?!+dJ}f%Qk@}NuVtgOnwBc8w|s#fOWH;d}9QFYmKUh7f*!?1PbExc%@*d z)>{mLwVV3h^fW*VbfPU3nRcSY3osrAIA{MjO3yNBf19OMkkr8MpCs+7SNhlhvK*_t!EOT7>YiuqT>wVMhJn>GOeA)|}q{BL5dN^XPNY7;7;uH4_m#j*SN z{(V)WcDwTGo;%VRmfnLfA|qj?ct}8=IOU zlVZN8vv=ic^Pj?mg(Ok;x#dW4_8Z@tKYcrR@03}B@F@MYi(VK)3t@kpOHq4%Y^j;A zM+wI$bn_g(F%8A*5J(U^h&{d0{_KayILbN;*G`X&n0+}~1=2?=$<%RB=cLXLF@OVW zLh^Al_l5LZ1)Y{fY?Y&-VJ882`83n^tMbc{_LEf0xub=gGB$6)H zo$XTt-sKz!7e%i2u8PVX2oKc(Px$XQ(@wfXN$(MpwYW3}LF46$sLXwH{gZUBqiy8T z=Id4X11%M>@DZcZG+hm5)k&|N$OhX|U=oSo5*1+b=&JMeWvYAcGY}IKW53kH0=HSw z#o7ZTAj5hQ5OmMrZE!AMZuqPegE#UV(!V=Reh3=+`PqR1GaDPV_`;)~q&sqfosuW_ zPCcQ+&b;CtuJAhI>*?v~N|V2me&q|$ZOG9#H#gtC_949~COTrZ++~dlMIj+DNY)Z| z71|fVPOAeR3qXb{X*oFaxH;bSp>G&Kel)`58Tt77M7e!>dr^M<4x0VlyCL!(!Zu^l zFz|=qz@u(k9WMIztN}fON|0l+Nc{NJvFay;elXVBu4%#U{@94A)GQ|sI`UMNVpyl! z=zYns38Bx+!Mo#6Y|PB~14BFmy{)CfapCp*_gK=xciTnVE!KSYp^!p{cpV!X2yppt zg6F>8XW2TbP8j!rKviBJ96J~I0KtIJjZm*H+e}o4LN=s8dtxmx>LaD2v)SG=@6DuC zRn|GthDrR^{Uq^F;EU3rA_E-0oNrJ^00}ATIRET$b2>}Ah*cqi;$=t(PC!G!#3YOt zyrvzAUI#DFYuwMW*x64GHpsC*LY6ne+w&MUVnVT275{bmM|cv+z(eS9ksVW=kY-{o ztFJkeAd`%sMZ%bl0YiizOrk(;Qp4T0!oa}X3mQN>zT}eCJ(>HrSGuDq9iy7=ZS5{S zBq9dt@56$U{8?bmdGqINrP8skvi<`#nfsaX9?=u;M=$>sp7bJ3_S(J-)HcGm8bh2M zt`>DVJY`@OE3=(!g-6m2*jdHO*}&9D1+Kml~5W29>ph9>E<`<#Ogd$R?ts zG#7X?24m4FFy#>0GQfc&p_iq}u_gRDmTjJ#^NAmD&PdfS_dXFqdLO`3il>VylTxC- zql@i%wg#FAlkT!;+m;1CRcpP{myLm9Ws}}51<4D!2U&-*yE5%?SJ zjGH*&?!!#~jtN6?g+6;7=5HCxI@9gO7g+W&h~;!!T)q)7-ACLXnLe(XL9~b8~l3b@=Y7_qYa{M2<;W?BciiBETR2Xe_{1O+XP& zEi42><3vM^l-WjuB+)cJP7BOy8yw)~desJ1b)8HA77=E{swCXHB&7EK#-weG?i+Z5 zuMlmCyJnX}$aaGBelvOT`k%iL85Gb!fT?fk*YVt2eg$!53`LVwOInNL9bl`sE%iKj z#%oFoi9^eucL0DDnzWO6?GKwGKyRefI$`Am*P-WQNJ_tjJ!k?EbP`lr`FagNTm0Tn zt)u!)V|^wGrHt-w8LMBrs;^~5a4DCi3Ptt-F9w7WHBfhhEQ5(HkK3P=Y0nD_H^Rd z=Ars=EVHt*8Ud6*$ZN>?puRp$RHfpLGl*V9e7L1w9dh;N<7daaOUQ|N9ISJhiz6ol z1)GS7$nVt^awA}2Ha9oxp$A7irX1Wz21p!J``f*FC>#?}0c7(Y8^g5$iMR-%RJ(?a zM}d-d4Z3kM%n9O5(x2|KHza4|n{SvD@m8TDGy@$BlPD0#mV^1P03E_nX)&C^cNj!P zhZnUeGXF_d*$-F{D50RG0WvV7p* zwyo^+^b!wgsIuLTcW*#Uo7!EID652GAmMZLm%P0gP9q{P5R+4<_{UUf4rl{9i4--? zEAJaTAr*+}>ACO6^5Hd+kx4EkiVY+>l`4$>`gH|i!J#$Wo4Az_17vbjXD8vs`ANYr z+vkpCDMHlDyM$w(+fIwGyASw@r-6#YTKjHnk-TDkOvT#*?au!E)ZOcN>C579(HHH` zuVP+@Jhd0+o)Of-1VEboEIWe{&e-9B5K@Q@q90@<-R~QWyr{}5%3TEX19{>GQ~~}( z%-gsA!0G-?P&8DB;tL}*hKgGJPH#_VB`A-GUO+8u zGc>nv2m*?nfFLTF=~>$E5lMq z#e+Ixw>2Z*m#a+*aIpy)}bmEhiBu696cB=u}}x+1$lt@w+MM01CiQNW@-gF#(k!=TKD z_WiA=VL%!o+MwB3Ij;Z}J^+)q8J}G*E4?N%&Bu+XEh=)@Fgk9C{jtFdqN7xAC za?8Fy!xRMTOArGXnV7n(Ty4EJ8?em=^J(F2v3-4gk(m2D0Lcy|lNcryAlb%_ze zV5*!JyU;djPj11)_zI}k*c%U9=lBh`n|jWR17Ro~tM#S^##YE9#YyJdZc(Mzk;4`x z&%C(t{4ef0xsQC$kz5RTxd4?g65f9n;TwQ^gef@;IMo#3N)VU{KWoK9dAv7hfXq^H zlHRwM2lB#QC%wrLfzZT+865+ItMX?P+3_V)P*Q@*CVi+uHf)6Nc7r;%rOgYJV?bG% zFmjbh8rK|5G+7qZ1o@mDfAq2|7er(c;FlB**2jsjUVXl)0~i=-Im|39hCn)ENrmYY zo4qV97AUqHB%t@+C6+u{<=?_40gXLlQ^|CvaPBid>T^cMG)%rhF)^gjKA#VGDn!#o zLWQW_8_-qgEW&isDtqp0^AtuC1WX0A%^(u>jL9}MjvF8%)HLMT7Wg&=k8}EG)(YMCe8aDCb$wPMg;sCa9724wN=ysT zSz-A5^T=y&+9RRl*r(!3zzw#7(xDEa45J94bi;OMJ0RN#D{y{5!OCv9YzLSVPIYkZ zT~ldF;r$dbF)=34=RyAhDm|#dvdU$x5z3kdP!`qOKW|=Zvr_#Nrvm*5xRS{J94+cy zQewl#z{@{={%ov&iGe@C?|tk9HKs@4Udwq`I*LN zVkU(Y;Fyrn156tnBTx18x`6iq9*dG@2ledl&v%Gf#N^x6%gnmM35Ms8&D5BFpa8~L zCIHPsilVyhlw}42^_RzaI^BRT@70=uu7&9b5|{Pv2vAsA0Bq*g*YATe*OwxL0pa&3 zzjD9^>flxHr*%G`DxFsldkKjkOdjkOCbrao?MqvsAT=N0Q}EO;?g7c)eY2oi7TV&U z8q#}q`>Wc^6E$M*IJMsbg1dC-Qa79}5Uq-=qsgLf{dYqF1 zVkjx9(rM|f{MOP6tLM4g`!!R>wEq&Y_zGEASh_(Rl7`yHYHDiA0TdI6VK3oUUXZnc zE__9k38n+#%>xLo9+;UxsJYwc0~9Nw<~W@mZh?%2uX55$c62Ys%D8`$BoY8WDbmr= z&CSm%fE6PJ=AYh+^8+a+{1P42hne?M;WXcdhhK5`^n3_J(h{&pX+R&vh$eg$dw9Zp z@)%@sDEf3|p6j@>>8BXepHZFDPo*%4Wy^ ziCiGH^+0_${~gDRkhA|0xnSl{1CgJ12&E1cHewa1c97?wAl$Z}!6aUa@@{Bo!1UAi zJ#+pipg=Sr6f$@u6xtdg4<16`T}JhTy$57Xi^8S0SD@0T0EZL0(d*0Y3&;m~tz)R? z=G$}aGegTDF?E(nfh3^dyfVOoBBPugyH8)g9(TU%QT z;0RUY1wsMC{b+9w9UB{4?3B8Q1+;7c1MSD-gAFwZ2nG9dfTfszUS3{iU|kaM*foPt zxb}`+!ykMX5w$rxqgt7*qVADQj?@LTl3sDp>y$DcXe3K|BhrwOI6Q(hU}n9XRf);T z6`{Q|qxzr@26%5kVj|4Uf z&Ndo_0sD<|Mj9M7)lsLl6e49p8bYVOU#tzQ){LE~`DjY7(y+NN$gKjq>MwXCHZ}KtT&X~f}&|>==kGlr; zL%bcvCbmz1oqL93qsN3EvJnegkI3cel%xTKj8V>D1V|7T5|RSqV9#P;KgTIp_1Pf8HBeE@?eBG>}!nFZtq87-|UB8yw(9DIt8 zSB999goJtvF05BUK|KKL{^{-?j2N>)_kD5nM{?K&;HU>Mx&K7<>1i3{l497@l)V zy>@nYKSRn;9{sSE8n1Sb0mEB1@Sw5p-aX%pXGwMj{TjH~f5|2;E{+Iyh>{I#cRJLF zgx|ws?QN?GFkK?|3(*$Anl?K#gE$m`G81)hcFy>q?-2^D?7hJP1MbZ^V+92)q%L5} z{MacQ1J4%@YHzW-son=nF;G9rk&CRV5)-r@i6x*Dk6XD!$-V5R&A_)s#2I85f#6H% zt9g}=guomHHOM_b%2Y|Lf)6O4-$@eGD}x2XmG6qO9CzkbHM7(ko(UQUeG@*eOuX&< z^-$2?3DSosKY>UQ7kY_G~#YubB^!-u2!Wi z*4e_;H&r<67UZr0?~NEP=h~zk-8I^N-QOqhGo*P1cp`p}$LS#+jR+AK4BnQ+kOI#N zrLzH8(L#s6%9;iGv=W~C#ja0;+F+Ogl}#Ra*;QKH|LczZfrXe}`P+{Q^;Lcx6;An= z#*hN=Yk^sHYI!*fF)sna7SwsQDxU)GfSDQoe_mS=p(u|Yz%Lyy@{BBP#1JFx8+7EA zGNr-H_-lKgJjf6Q7AbJ!^uLHk?^+QVxjF`aQ`EjM26~h0`(j$;8t$S=?Y#M4uGgR& z+u)LvL z0cW2e_}>q-8in9Mk75VSoD5g;!)nN8Ti+(Lbw#u^NkTw7 zdT%bj-6JZ`lu%W7nT3^=k%vc}W{@W;ScLU#NsMgAt}OIL0ik4DW~WqP=(Uxr_^Jbr zb~W0+j;cQFnIL~_AcjDtHJy8GF8#dpy-`cpu+_Fk#)IK|zx3mC7lu6cyG$eoVygc0 zc582#Ci7RyLyR8~x{~ee7KUd2Y;S*|ldB~lpxxQ9cZj@b{=XNcb8JmNea-N{&kT&d zugKSb{!m{@@^j?XSLXnp z#jm6;wrQe;t=q!HJF((z-PvgJ&%Y}HQ(>+P!SVf%m23PD3z-QjmaZz$4D6=n?ae*l z-_Pn!zZt!Q$qX-k*=_s3!)6t{xx*CPTNfjo3^GFqW!GqW7tUU7L^8AC;9@eD^w=W^P>A@7#rG zTP>VQ;T2X*CyFvIG=@LFOWjAgx^Ko2s?5Cppg-Mg=uSVPqjpQsIGV~kaXF$`{QV<# zjS=q7!Hm{!--kebf@wy{ixz-^nCJOqc3UQ$k0R`#VgK4d$Bciq(a223Q{28x0+ znO30f#@>2L1qMCw%k6ONWO1u8Q62(RXjd_kQVrcm7@7L*Tzn*zmgduBEGpfle&CN1 zV7@+aHMH@`=qj2(o}rrBu}G4o&P>yQheI}{?#k7JpUwDelX{cFc5@VCcH2TKcW}cR zZ4u)ml<=UoF}&F+sHwLW+327`;JdmWpwq&`00p4Xsi9pxW{*aD&UZPqZv!im^_xC%(!04G%MgvpFxU5Mhfg_V zm%C5mn^WTA_}gsv^lM*1f1T9yzJ`kdg~OMVC+ecIo4bcR+`gFG1ePaV|GD%>yJ}Yp z-U}SLySm8Oee8KaC%Y{d;<;K_cOwJ`yn!L%;TR}7NB)QaP(E1U!Ot`shmx@1uBv5g zHum>F^8YcH^WTqtU?6b%h}_>s`6P4ntm0}J2`vO z9zp20I&@;UyQNdrQ#~%>)3LDQt)e2VhDTc^HR?ObUzEJl>C~Zr-+WzBB73&5l+Zel z?L+)G#mMV6-ePi7tAzUUjX z6PI8}LtVSgOL$m8g4Z;MMNf~s!i~et6^@}|MU=ysOU**^+e4#u+OhJDsA4>=t$~g< z3)8?@-=Ldi60hIxpT6%r#59#gJt!J>D7}O^7V0dRlNbB{l3{cD>5l@EWKw^eU9(oe zj;^50Gy~G-U+(~NnGFZMqtz|+V(`V1kJ*K1FUHno4mYs)ir8a5~BBc-m}bMz68ZM^W%ESl19LhI}-n zn3sPU?G`a?HBn6oT2vr#m;gyMz!3)xessc+_uuu42*?o?yzNQv#<6?w_RS|8JNp5u zVaFZau2T8-V5ZjJ?z$UI#75w1aMze>ZzGR|>3J$rc)|}HoS^Zm12oxP8zm>drN=Yu zGt(Rj+#p+Zb#)>54*{rR!yMBRLd;}EBl@pN-|Ln^UC&h}v3SKSbDc=@z79L4Y{`@< z`%=thEmJO(KLZiUzbfZi!}EvJ>+wzNX|Hte>qeE{{%v_PTc6-WO)5_z01KT;Kpn!P5HE zV;y2V3x$h=3P;}%YeKrAkQ)ytqzCgKb)~%YBW_~K&DYTFyLW?LU-}hfGq%tC?3Ev2 zJpdL5v9=;UV`S|BjK^Du7zS!QYqs(D?fjaCnr z$mRA{ZS4O&Ye&OHB}zq^W2loyEn9znZm3sk-tam)GF?1xMSW&%ssGbrM||y7NjRmMB+Ql&3ARAh6F==Z+?1Fhl9tLc@iR9O>{eTh& zbVzjT)~zhP3cmN;1_XHno7%$Q+cNOpyNWo9%PT9>G_xPTnnhk*xR1eHsl1#V%1xj2 z_zx`h6x8ffz4#r6_H&DY&ifqngI|Ka2)w(&dCitU&LSQ?+Z^||t^r+oZC053$}gt1 zx~mQ)%nbXX{5Dcf^3W;FN-Fy~i*<~vZs_ipW-lohjVkAT7(aiKcf4VHr_On~6oncq zcfO*N=jU6%X8a@0JnQksRk!1#^e4m8#cN}`}T0C2?XGmYN>fl6oqKsa6^4 zPN5zczMm??M+u+W&-})~Ns_FvA+{EynA_$Nq6<*0#;?PDG^Nu>*uNs&;{SY-dd_=k zo2&X*hb=an0-b!a2L~_jCEA^~+10umMpoDav_Vr#0q-n*g~Eo@i={kveRYc^+_%YQ z*;ExuJPPXJYt=s&wY!G}(laTe+2Tjz|8sYY)#a{fW) z_s#PI(%a5!Xk{eN)xUemSM$2ztdDs=BQof#7uHDgy40*!!%D|A;8jN8|Ao+IqLO7q z$ab9Im6ko{$%~SPt+~lxT3t1^zK2*?O(lW!us{_C0~ZyoD+vh+kIk3}WEZj!hK7c= zI9VqJxF)i-J5%UvBNXvO4AoRucjf5{2TX<<{Z0^0htbB)(eVxt09&wKGzHo*Yjilk zONqmuZR8R3zNf@62%CXXr+pBXk%GX?a0+^V+8W5zPinnHp?mTI0 z*ma<_ftp(E$+!Z3;y@T9WwSNIHYN)VF+y-aTPk56fSxb~%pfAp!e)^jjMRv+688I8 z>*V(IYCNvOZ^3)n28<6j*u-<6d_xB^qY+v^;vov3`4NeD_K>u!@z~>WUe<(6%!SQ5 za5vP03k8u{P}1Ok*Y`PkZvVCrvg;584qnj8m_geG{rgYWHR;;cyyAQQ^BK^cuwzpX?F?DfL)C)@Xb)RHcoaM+szvsM++T7XU4_OKzl#~YT1<~Vx37tj$ z2s|xvTj{58Al@)m#2g_L{5`|1>A^>Z=Fupe`U(ne_II%OS)b&qJQH5wYIl}I-NUDM z9j8*BgD&S2@q=^9{IPv$<#^fRHZ~Cq^w;r!-WPE(Ox@4TfeEnhm${m9_ZeozRy{sl znYbMNm(EEv)ZyXb%%m=z$WiC>)5;UYVyj`=8h`)mX6r`nVSOGApawPD`S-<7u$noEsh^MN+JJ(rs9#lM3saZfb^ z<-?`ma?o9koKHjr1+QXY$<1_p$_ZJPK+ibiFq*8T=Xr5TG#0I@Q0J5WCO%Wz=mAx= z_fO+`zq^_o8~#kbEzizcS<3Cjt~oBOHyfAm3tXt)m3W-9$=)#hY?2twoKo4Io~1Rp zael21Opxn~BYEg_Qc*4Y*1w1+N-;`pC9pe<&`_A-9?N*B@`E3bBDCu+(4;@DGLIym z3U_M2p;H|G^2r=?*m%g1L?I);(2 z;SxPOaMRL9XS&lpDTLe@^u}&Z&t*&TT6U0)Rg(tapzruo_TrY_;T2&U{X4UnlhUb9 zGU4-2zuE5`ERLi{%luh9S?dTOE7!k2Ac64+)zi}p9jdxUB`&ucfJ$c%S$S+;?e^F1 z(Qo-E6gjz8?voS~@;MBm{HM7YY zw)2rX!j|w83R?cCe>>~^LiW)c3gle+cA-0hMC>`Yo922q% zF;rwq2)3A;$0y*%LCQ}ow*eh0MV&n&Uy@%QG-mlp4@4I(w>Ms$s2N>UQR{3DC4B=v zM36|+K@~;$!A2*n<04y`yp@byR3SLPaU!0=Es!*2iJUNgA$00CxzZ>H$pS zfM5t56#|J+en6WdWfdS(6OjEoIheE_mWaSS0Q?|}@K>R9z zog8sB!3)7kQ3`1MV0dZ)r9B$FMPb$pzdr_mktYol77?G*@|VeA(so)Izz0)3Vn>Bx zrg?C_<5M`0)zeU%WI!rtJ_8y%3{*iwP`7aK@S5R_zP`3%W_}xMW?|<+{>|TQyA~!8vPiitRg-f z`dYuYxwo~UO4!VnH8q`)z|c+j=>f#}Q9bPLbdNsl-4ho0J8=!t05jL1puWZvMlZko zr)XM(V`tYi35o6<9@@&TE0NHNd-;Qh2$tB$Zfg19l9LPfeI2E|VU7#*@fF=ty_d47 zDCy0upR%8V0)XQdw3@8NwXGGsl)Z$zI(Ec`6fFB$)>O6R&X&>w=eXlZ9pvs^}UA8P4=L# zk1VHVqs78KoDE!LEp)DdXT{fOf{?x{u5FY!UxbXHQCQ21~XN zL_3v`PaTzQ?a`aXD=0p`PoZPZFn*3M4n zawM4kIow8#xxucy#CxWKG zZ(pFlO)}?konY4ds!96mLqTx3iYjcYKw$%2{!0pFrbNOO#(W?U-cMu?)X)FNk$q{&e6IKX8V7@A)H(h?DE}U za7tGq5{*fU4_(_iZ|>2kD)gR6zN=QUhHDBOH44SeT_8TXWT1BM9+@?aOhjySXvlUu zlR`v2G=BT#z8ffM7)%f@Ay>ETzLhHoJBbpW15;PB!Cnvi)*S_fiB7S0$?G3JehdY< zEFDaUn_!#;MK^K;eD5IA8^Q<%cC|>6EgTe!a%?@Y?OU+9%OoTur1sPiEZ71@Mn+v< z)aa4LS(u$dqNCfua^Cg*xeDUtL_RGd5J(aRK0XpT=F;%!Xhm2jO97A1*#~mONHJMk z<0fwi@-*Ujf%_z&B64@$jCPTdpK;S1p`o0 zJIi=86F7T_s1INzF$os$TK@j(Y*RZquzeM+rUZ7<&b!=oynzg;&w^Htt3%wdxqzo{ zIj$Hn+^+O$qDGO4g@y9VeafUnul;+Go`iJM&7t0~x?$Rv-Ft8M)7GTPc9E$P$biB_ z4y|bAGTD89bGpr5zuu%k-i?3&-tB^-C8_s|4lN<$tPZ;0oJonyXtUg`JyMl}LP9z= zcXBw7VKx^SDP9WTH;rNt)fT=5MS$O8&<59bW5$i*1k<9V!?Y-AugSsI`APUUvu-+0o!wF2Q95Y71+1g<@;=rH zLTe})BD=-c>$h@z&qX7KhN|G?wDKjtZ(Ia_Q+xgPt;y8ROiPU0HZ#F^RWuRXrAug_ zG-LP&@Hl4w4y~Gajowq$>=HTku&Q_A@(xNm^m|mjTDW-6u3Ov;h{0B3W7X7I*4kg#g$M zYy*Qy@!8VARYABr9`|h%1T*+K|C>AHNj;+#RmX|a{*kBMmU4dKMFUgI71gINY^$7e zg!A>fpJuDgB6t)qnmxyg?Ewjk(v~XD&&S-hsu%WU<`zM#UTc0nW2&LqlS)C)m0+${P|Y8vZy> zIbnBiPDwB6XZ#w0gS29jHrJTg1P=KKy-oZ&|Pn+~0v3>BSfQFCYKTP>2iy z(}d)1_%HD~3ypZH{@J z0XDJW&o8~ae|wi$XQ6Eb07ngGTGpuG48{|Y$=+U4XpeWm6om?j4&@V^&(|s80KjNu zVoH&@Xn4@B2oB);xF8F|4}4Jne9^FT1NIXGifN_R0+ox_J^pVDTr%nX-sbvJ zq~Qi1&LcZ!^-GnIkCR{rUk!XbOoC|@v=-zehFZdwYE5>kSVY9YBG!g9X;|Vyd~hJI zD*~WJ76VI{hQ2W&!vS~gAv!RS^7*xZjaeiY3gJUO5Jryy2Z)2RZdn$;_0lOowsW4k z6=aKhb%!%o`tqNSnoz5$sUcm>Z~bxL7%PWkmA5z>@+lJFP=KYMC>Wh#Rz$-x6?gpZ zwq+C;7#QNq#>#rlErs{_Pcm>C8iI{*v0ud%>kxqalfq|cLRLe5V27K6KVsRNm*@bL zr2;=j?aKo2{V~ECJcB|utWgj&Ha5P7hK!i02XeLT;L{=8omqhA-2Z zE^Ij!>|DF&%ftS}CUp>?IIg1cj3sy6$IO_ipzX^0o|r(maN)JM$LcFWPxsYRWOu=t z(}4F1+(Q#va_%dT9G)wG#z0MYIpQw&nd35oT6YC~b3dyi&A?TQODO*WZ)e^+D2g_n z*J_9j=0kFuTlLlMvkcP4DVI@AL8=OW;{P=3fpqHT>0~N$qi7+`QtYVd75hUWO{;`= z*{wtN5-AQnWoNb*B5&FyF;QCNU#atec*RN z-LmAJ7}h<3qmLra%c%GoswgT>9QGf6R_zcs;P8oh&y0IM|Buf2Y#Bgm98rbnn~}JY&#w1Z}HB&u-;ye z(=hA(nqgK)eL)7i8_Ex=WWw0wgF;vqLsiP(1yp$wQb4#v6x~>Q_uy4a)5>La_Dj&eP-MzzgavFv0#N{mo&iM# zU5n>t|PLItTF0)aYl~9ODfYsEUBev1-2zb2Dz6kNeklF57&}aa5ATX3wUO7Yb&Vi0AUHi z=~=OU6N-D%H%zCpcy9e_3WNoR@%bD0SrFX}+5AVG#E5tTfA);y7xoKjOSc9x0jd;*{(GAE%D?&xN<6-);rP^=E4XmG zjz9kZ%A5ulVNFx8Q2N%d=_j>j-^>OrF8v?gz5|@=zHJ|=P)assWh)^hnIS79R4SX2 z%p`k7_DqBbWsl74mCVTATei&X&Hwt+xM$CEzxVt8kE7>#?&Em6{rtY)&*vKFb)M%X zwLZZp8MJiebws^+)-%d2%ON9-kAhDk(p6!I-2J$Z=C#`VQS^-%l2I5a5zG)cqRr2Z znq0#mJwQPp5q+{l)OVX zo@Q%RG7iqXq#YZYN^bGcSHZhXaMIo2V4biR+2MetdXd*^q>}iHV12_wE|8BwAEQB0 zS*7ws=#8Mo0kvqo7M$zFr#WuByUq69n#MEH8-w!TqK(Dj(><$#RmZ~QYN?N4p*G?o z$&bQ@gV6Q(&T-+5c2}Xx3`+7HMioWpE4BmF`eN=g!1b5@I(kE`OOJ!?95%{lH74xA z)a#eMC$rd=qr$(QQ9(Ok#Zm5~VvmL*X>mVNw~?IzAKj?oEKHIf>$KFCTroD)Q53any+58pU1uV zcAfAH5sTo+)XdkefNEkM4cy4hySJUt~e{WH6U34=-nt!5N>B*mMP%E^QMTWlbP+9763nK0E|FGd<0=^ zfpG}9jkVYq9cgC=LK)opa}5$-H~(mmvxi;D}q zzOENC$u8eCx`@_THyX6UKhav_WWSk z;Q%HbFTH3P7%%`AM;c10l{fMU9Cw1Xp|BOrA-OAtgI)*<>CPf+F0hEX`>Y4Z{hok9 z6Rid6334Ue07Vf9AP$3!Tr?GCGUBywfX)Y*2qUcfW0z4 zm~eu*fbd{c^x4P{ zKBDmVnKnKQ@jo|Dmo25i;H=G@n%9)c=KG}D$BLiV*R@~UyyRG0*A|=~cp;DFoZc6} zY~8bC#C!P`Gc!JxqhySpT3q0vId93j7P#Mr=SclmaCfEM81XHq@-CkF9C>~z{odvU zUJDBfAb>RW7n#t2q_irKqMdY|L4}uW^i%Yk0AIsW860)_;}+y%<15VbtQQDF?K+t% z6;tk>Z%^4I1+_9x&Q@9GxV4dAe6YpuX_tV`zwY41SJE*Uv+>gGSN`Z$qKPmf8Z%Ke`o1g4L{PA1oUxRpEtK$sCJ6TC+d5(YpM+kAl1E9i~v%5E#+l20dVXqsEmq#{g1yKmhZYaSKx;~? z_#TWt$^k_4gghAqurUS(1|X8FX_kxHytW(o0N^^`Od=Qwu4vQ z@r;a&ax=u&V%HmbG|1&h)j0?znpfW2Z6h5f)TiX2ZHG`$yvDzc-UT%Dhhw!QC^+=E zi0zOK7&K@q1MVX(BU1^=;-}hmkB^^-06`;S=muzYB-8~kbrOat+Rnxl3*>)I7>1!d z0s9Db1X}7$qeA>AL4|rb`Q|Wmn8=Vz2F#U=c4=v75W`U!8JRU`CgGRSU09yB>?^kI z`D|vs?a1D>I*-iP2JAMm5d$Twr3q9Bb^5)zCm@3(Mw^|6h_)I2-LwZSbfA-~Q-5Do zS?Mu@7_9*(UmYr)A?9V3{Kp>vmqQFG0Tnw4iZ2m>qY!x}3>gtaLc}%>#*2+W_CI?o z4Fxo%qF_;o=vqOrhM2x>Z`@ORxnLQNDBHDT2Zy9LI+2Mb1Y0D^AWC=`S|GBZ`7ZXZ z#krQa<51*CjTvD9q7M8mgf*mdngRuh#_)K@HtZ4@C-=CUd$c{~J!I(!>d1DC+?E& zT3V5kCcXJK*M(WB(0DurYqaLx8znBz6oJOEsSeVjB`=Ww>@Kr~^tpPN9s@i1DClLB3oTA4Wg7~Mi!%hw(w;CG z=bzDc zy;nH`Sg=Ll(F?avdWRNz%yAi2ddyvjtkX+Au}K4TC9B~J(|nK6WF%EK&w8WXL7Qw( zcq&QoxZw_;@es`p?+#ZcI?wt9`rtJY!PehAbRF=pSghGfL#&W zV$zj~odK;E{V)<1DVjf&*kMn?XZ=`AU67KzvT|r^ebIvWq$fqr6y3>!$6nS5*yzUl#>(`@oWb+~j@9-o5yero$_FJ_-tZ z4&$M6-X5Fz3Zjvj8EJZ%S06jn5EC%CoCPN1$51J=?u1QQ%PS~+fzT2V5~6Fo6^rQ2 z&IJY>?Y^*j{LaEkYNo*~ML^(lD)-$&4if~#$0s1Ta_>_hEtqmaMf3*LOQ3CjRlNe9 zX;Cna_Xm|CjQ!=G9>Ugvxn1655kxlhCvbJO&1z9}5SP9IfT?3(T!$zf5E&GN>j{{w z$ACy=vN^`H(-2$~(Vu_YUu85J)2R6eaJK9}QS=kJpe2l;x?;QZ3JsLcALVJn2R_Rf|?Coy& zCiCXhM&TnnNS#)9Gkx9NU}AQ~pgWTaRDR%g7YC8==o__O# z5ueaDX;a1SwJgp@PFrIu#YE{)ni$V`Rzw=>@>M2!Y({kEEKduOaoMm)ll#xVlw&f7 z@g~IJ(Pus$R3^Na*arU-=&-%jb@oz3S>U@FcRa;f!!t3eGMlXlNf;;wy>&R%(gKcxMc*DMjiAr3(ls;vy5ilAqOHj_k8X1X>Ja1>WbZ5#i z)1c?ZB}@6MJZ8%DC>(ZMXQ_)w+Y;rTZqyx}c0JY`hiX)KxxzDu=0(j*CPh1U{tcZM zm;2voGe=LhoqQH|pY4%}Nz}sV8HIu3xyJq?jcW3{3Y`P6cP5telQI5fA zP$WTnHQ;qsju8$mJ^X3RGKovDkLbT%+29Mpu=VwIIaf1-3D>z|f}U%S(D;gNpZ1e) z5UvNE5kvgkKF`S>*btT5N}f72!@%uuXvsVB^@4+_nWW6?1b;f>>HAPLBm$=n2&lf9 zcalG_J%sW2^*9-_N5;lfKv13R$zkb()@DG9-Z#&4Pq!g^=`4vamI!WN0|P2_HHcmu z(KN&KH&mY;#vurJ0qqB2YT7#|FgyX<5aHyT<5pMiL1+R4YX>X>rV(qxo>Pzbd+G^0 z@36DIZI1P9ffa(xY>3wm#lv&(%~G|v05jizhpM;23WgfY!Jm2 z72wV9i##%8!nub@DlZ{TO!z9*YZnw26qI{PA992qGTltgKXg1*5+#FWM+_NK!^}1# zbxlu~Kz%ry4J9$S>*gK4Dcf7Pu3JmdzGe9c!BttevfU~><)xrN-%NKNl5i8z13xV< zmzK1e&>cbh-9zYJe(8&7%YlsK2H+85zJL(6poIg$A$Z2ggoE!xr|SD_<)9}-+_8b8 zGz6U+T|{10r!SZ-ARb~D@}&d!2-u>Adt6-5h2`0~atKTI;r{ojXxZ6Ke+$~IW&lu^bms%3a-}X!$-Ky1f9L@2s&28R2kwr zK@OPqbe=g#2i^s}B_O7Dg$NIvr>6w(JkfwukBmEu%Jw8fqCz9ARygKN{rZoIigShfU+LR+Z{LtFPWoQbBw+yOFX}xB+ z!D}7}CI~;=W^*QoK_S+wNccHExRyaz|EXVNPyRwpwLf&XHA9%(AKzv_pCl+j6dE$AI74ZP`>Fxs za?&hTA9?=5HDY*L4l48%FC!~pgv$o}S!>r1dmlZ_Dn)VPX}TOH%99wS13>HIVcLkJ z%*9iI*F`GF-l=epvnPr~V5om>(Lr>fUC{Pu-p> zdwy{wp5F9S`^vr&$LCg5U?qISFviyr>Yq}wi^UOwa zXRN@>b-tpPC)ch4BpoS3$$`FY^%#u1M->fE_6L$gd_Fpo%glaXNw6gBmg2kLG5*U! zzMbC_de;*#CLZD&#uRtaxC`W+G1Qlf(P}{c7hhWg-x`pV{nP`U&j~WLpya=N@Hh+V z6UuXfe$Qh|>JA$M>ApWaB*i{ldDdV#HMHe-a-)sa+utNGVsGUVhAj5g1s-U;W7@%y z4l0TTfoEi7^0~W!yuu?^%Ic+DUE9iMEtYV-8_{MES2mqM?+XlzlMQt%VqPy7v-?3Ma5ly_Qb^KcmN;HMVfqwi8S6oZR2vR3Hg^IS5D?1% zZaPhNtc>;iQ#Y8Y4-O5L9-x9BA6pWfpGMDEjXAz+COQ*D@u5l#<@2$=HfePFxU<*t z@xs+44x(7mHyBhJaH2HV>WAj^;TAcrgOs&Y?+! z6e6k>9$`Cf(vPpGzvNglBs-$$O}LYSrO&H;$XrY1#OJto2TCgWTmT>L*vUA$ts0?! zQ^{mHaN;j-l6(a!$~z*K(&z3*S50%zdv@uyBSt&V*TC!6rUI5voIvznpsRxB8c`t4 zcNw;yhfGv`tmIMKH~m-CBP6iij}J8Y;oMufLV62Xr9;5j zf{}Mt0$myF0vv_K%ez}uj_SS#(vmrEH>5*Zce`~Nx$2dtfN@^CSX0%?;oP;dW%H_F z%pDl#p`gg%(?b%`sUJ!UNJMavYYOYyv|!r)c;X;rQ9Km+q_zt!US3|AF9VA}xQP7d zYOA;O=Aez#=d;%7mTw>*CK0`}WXtg9da(`jM$2%~X1q+irJ0EhhR|W4vHwOf^xOC` zSyGGXx=2yn9SjaljLVD4p;>ewv z0YjhTeG3<|JI=TvV!lvSjdBg?eKFs#8z+-#|JVd`AF29+-*HG}@{wuC-j}_2ym*>= zpLjC3!Dr6!;%;CcE=6{`zvo_57%MdJ<3fnJph^4o_qD{_9xIt4BED^f*G(AOUCi?u z@QT(RmIrei)%Oru0+Sd2!f$kzLVuD9%{-%d8}bNML%X|fo(kixnG)kN)({fUV-<;w zZ?(9>$6u|xsOc>kmcwneaZnfDBNm?B*!QU3=?=q@1?8EIiJD>Up2fviTR9jCeF%Bs~^RQ^s0R0H!&ktgTA<$))0o3$Lc#-^ry%#l)q2{NV{#ALuj^5w*j8UZJLG~l zGegG;I4jV`$V9ye&KX2eGU{!hPR)DY**r zVY$fhe|?ma+mi4SV*|>p-DIY-EzZ;o6z!>Q_v*;*?QFdt19D`H1uRid#E}i;Nb5bM)S&F2<}d$ zi^kOV+$n;;h)AbEF@z1zmN9K}xs{EL4Us*A#>fpi%b}H--s2C!gzhl-sodMMqeUzt zN{<03io6ZR$WH6;45`09s55>!{q?Y~hrle%MjxDtVU+#!n?D%r;5Za=!N3E27W`)@ z_-!zt7&;IN)*s|xEs-Q@WpxQ$ma#AFy>((2RDE{xgA3&TxL>lTbvV$VIuVRIQJbN( zmw@M?`ZDQ%mBY8t-UG)Zx-=z6B}cDAX3HK3y2x4|^n(WnfvZ{t#wxUkkINzcoi#0L zYcLOdEuTQs^wAfg*TN9wZ*|%Cw6(iM#;=qR4$D!lvN1LuQ6z$?x^N9U4a0X#}(L+%4Bdb7QmkX>w*yC!K0lkD>yA}ln_)~{qF~-`$Czd8~3qx>a zAe5B@t9<6=q5V)j{2DGnzJgwv+0=`5?`xk+XtpKiQU^JotV}}W7lCs4WzGXl8 zXmvtxGP}_7H%00%v`^A~D-ULzq4$cd>?+mgi`e0?qVJ;dR!CzGWiRp|`dd*PNO=L0rOVc{*O;o$7SQtRC({${iFE5MKQSA@hwJ^^ z+?Gx)0!&V@69A8bMjiBb(}8Pg(B|4))U18QHO`z<2!Z3R13krlnjx-~*(*hblAqBq zpgYz`9B~$mhl=!u!a2%XDKHB_ci6*`E+aKj?-CaEF+D^o`R$x72Huf%ES3)&{c?a84z8?c0a1;3C1FR_sg_5){@8y)cg2lwpUf0iUBvu`&K}^T; z8;c1HKltmS)UPA$u{cOS{NYgYNcO{TYWd-3*+!3!Q<_Ng=B795Vd7zI1}kGR4gH z@u=~;nf3KsX^hxW)+!g0l3T6XH=w)Yo|GVS&HDLs0xWwnMB(c$IQ}^N$SFw=Y2`Q= zXoy|1@8Dq*ju#9K+LKQ8WrN!q)$*U^KYVI?7vB4SR(OxziehwK#R=3ZbS_l&klqZ1OAr`<$MnrOG*JovrA+yHKO&HXwgNrcYL=6;BCm8u^z|aHS zKJtp``S{4beEBjo0QBX9K5*NSZ_9Y8(?kkV{y&SMGvb^ziX!KwnnWpU)`@TRJOtAq zWGfpKIwvBM@IZ%-a9ChL2;IOUxa}i$lxyHT3GzJTmjdHM4d{-5q|3P;4yw07n8aSl z$T8?4WO^Z)VY4sW?SO7~8f^BC-yE~hRP)@lg zHYUaobRs#R-ortQ-N9BG!K-MQOE$K*PCLJjkr_NL zK^1(Tt3fRKpg~N_pKWxI&fB)%M=lELAd@PU)0fhFhW?OKbaQ%Al=c^IkaQxrEp(%Z zQ>ek^phxrJfQ@6@*K}phX@UK&XzOX+n&Af%Q@XUkx@{IKU3W?VsVxnVXJ45F_ci(;X^_ zYZ&M+{0XrfuJO=dCdDcX2ERmL6ttIpzXM0Vdock5EI&TOzu7u5-JvyxQU z;bz_Zky?=#QD_kz%V;70975!UTPR{TJGD&3RoOhia0_v``guDPQj(6GUl18^MZ;xy z>k(2a)EbSG8U3jFnNXvA*fmbR{sP}gr;z(xRj!neSquKs#Ad&zmeb{6v4(=Bu-o(m zxGfYD`u79ue(0YaV9Ty?pMr9K-z&F%bc^?j zKJPzDz~-Um>lz*YIyaq@|AayJAr%t^tBc>aG3<&`E8iaM{d7;}pejAbYAO zI5%lAvxJ_%#=&5sXU0c+VGl>=iIb z5<#I;wB*ZQ$VC9cvz-AhO-1K^1rU-Yh%RQZA01x%Icey0|DGd$Ae@9F-g^#y+DkrV_!9bjbSj11tPN)<6k6~RG}d@FgnlfU z#pu_`JS+cr19(8AmbsuB8WNJ(k+`JO!s+Ev16G<0cvM_Zy2(t+t}T@^1DQw+Y-oVC zdT4YT(I#YVj%dNgXCNLsuS|Cd1BzpLY)RDTlmrl%S<{LZ>v@)H z&ZGt>SNZ$Ct+HD9olD~ArB1EdGF2^kL20y1s4f~h%xL8??o8tEJi~XiG+VS0xzl*_ z(qB)@n#X5|IhiCVnB2zdvsO-)*mx{-mXiNyS9Mq0QjkqiKrW4fognMk2B6$S_&9&N1|Kc4PvqPw%wyg#J+ZFG8YwFp#+p%aA|oz_xV zOO8RVvto~j*ufRfLHtROHDNP5?&mMFTH$@vXVfT4j8Vt{O-WEiMPQlfB`m6ANk3s3 z_eHZ{(if4(`!dqZKPgNPXfNQLC818D zZqN;*Uq)05R#y2R^iYsh--Ym!kOdPWJqUFGS;-7ICYJNO^DAf;#ARiPc4efbMAX$O z_si{@7%xd$fV?){o7eKU-*cZN((@Pr?pA}B7EjRYXLm0eVC`;{0RAG1qC=shfGdx31?)YgL)ZGXN``T3Mu+}Wr8H?DmtZ%WLme&NTO zId_%h$dx*Uf7CuRW}{KupqT9W{1)uG{h@J!HFsV>q<#aYJ#JoJ<*?Iih8PjiAtibM zV=WuwPXfRqMZQL!%VhP{`{4{)S^QCVVID{omOC>eBTldhM-ygH*+)F~iyF%} zY0JUa*NmFlr_J@xe80qN!k1Wnk6N1aA8ddgb5m=J1FE9^461*~Z}7M_3SgFhS<@TU z7kq~4o|gS@QmE6OJg^l@!cmA4oJOxrjj`F!+_mUZI%{{}OmKC?d6v5%!AEvN5q z@9KYDo>?XTv+``lSUHqu7FU+PM)1c?vHV%-P&>Zv$%wj+3kHg=@)Ca-9EUERD+FLX zo$NPnPQ;#1=5Hs>fAuf?t5I`QEAqDX#?9&2h25O{m$&SHFl`2~BCE>STZ6dgC;p23 zw8CrOnnZnPY{C*h0{9T9j(LA)%$%2U?&C+ie-CHF3CKIuG3k`ZIQo@bb*8%#fBBSW zM)*JJ5v$SvS&#ULI|Vqhb!6u5^b`hCat-MWQ?~&_J&4%kAb%=j+FKLw{VuxkQS zci8Rh4J%EC!4wH`S%uB^2Z5~LgTCk44Y}|3G#g#mk2sf@^pD~k^6|(S#Xn{i@fSF1 zmM#IZZxbHI#%iUjx)ac3w# zPy{T|NI*J~MXP4hoer?#1RRL?gJD@hfMiVdYIIy2xOu5;@vyPUHLrb}cvKy|K6qqd_3w7n0Gb0}~kPafsjE-?5H- z?`@X{m9L^@2I>C}D^c@M#mkw(7N(BBu--&|mRaxKSDr70FX zUtmuIY^lP4LRT~=87#U1fUYS~1-ms~n>E-3NAl3j>_YSY(EjQmZRy_SF1vX45j1`I zM<^;NN>E;ZPdAO)nCsoYqbh|iW~=mD@xXERuR2)ad=(}k#=waNwc4HD$&OTCgp~rP ziY_7u3{_Ju})d3qguKl zrO52NUS+YoaC!7svu~g4QI70UrL z+~ck+y!bxX|E)#&O*Othv9Oqpw5?Eb+)YwnA(fIVb!bItt>U{72ByWPDXt-tf8kk*EW@-v-`#&i@@9p>yCVKG~&KXCitcXBof9k(y z!$3svv4V3_$@`mTxBMfy`RB1oR1~;D*-caM6FsLbv-<4McYQWhnz}uVP*@Y`@0~jM zZJ`H}+-rK8bX!mOLKpbE?|$olfSEE&R&f@eey$;<4$RX!O#ryipTK{?;yTdo;h{VQ zxg0NIm!v8dSg2C(xaYG?Pr`2Cc+x`(%8KRbFvvIOae8_%_sq`FL%paNj zI-x(J0+0LrSshe3H=#O&RWVIq-dR2aBYnaL^CQ%MZhPP;FQ!)o<6rYfVa9B1Ud+1b z4j1W?vjB~=dUzi%g&$$&3z<}PWZJH3<&5V#`jb|&WXU7yO&BvABGlO2YaC>;AXoXF z&{*7U3U)>tD>Gn}b@R2w{Lp$f5jra3JHZ7U(32v_RucGwe{UM5jv$dBi+PSHQUWB; ze=>AG4x3{tKowDIi7-C3_7b?3TOU0#wEPaLYG=s;i2-E#ApC6t#kO+pL#l=q1eueP z;^_R=_|Wk{i8z`1vifi7Iwt)-FZMbaDl?Ub+P`BAfM@L6J6T|W+2(jBxe`EnWUV87 z3|RJ{Lj9^$d33*i-7^A^Ct$EM;kMhl2+A#;zolYoYsX4IR>ghaGPpZGvAemxZhdGKaGmNM)!^2;rGr1l=XHQ@@m zy~j4a^r_k8&&YV*?5q~Bwf43Jp~=@4mc$I<+hE;M^qkQhIZllbbSlovQl2AQxp1O!%N3Wm^k)V9}tX6eEVCX33I-7OF zbeDB<^^_&~;zjLyquVwtD+OmfEBdW%$$+t43C_y-GcC={j)8%JA3LzIv5DC<(a{{h z#Ps|SxhsLBq~x_bcP2ePouRk2+AMt7EEX{-v$3>dIrzAxqp|S`d=bSC_G*s~z2@Cl z1)s87QWW(!272S=QRkhQyr=TK&5X36;CGHKb|YE*nY z2Dm2J`PzcJnJ+lo@&s~GIpGLlNRa2!(eC{NE2h9s>|s(;(!2NW-HU4gI`oLI{gxKU zXdf_&Dk+85HZ%l*6guu6i)=xxFF)t2rKY%ifBqs{)r&XyRGuyQbm+-DSltdj`OMi8 z^#O*$hJsKtPVCv5;~(*QKHZfo&N4g0=9F9cNR8fhzC6v}Rkv7VwMT^;@S9bEJ=y3?&H(xPMr^3zb8tWPwJCya z!+EAtH!Yz7$b&|Q8vpxK7s>`rm{h{i5y{)|G5_T#s5<5kIG-gGU6 z+87Gw3Kmri`I)A_J$k-}bflmibkTUl{cIDA8Os~&R@lM&;;698(GQ?HM2zRvVG{$n zwgd+9w4c8eNtLKjbd52y!7FH>m$QCMX~U2CPFlnu2d~T^f{E>M?aSe@TyDdnN-{%w zr^l6U{S|yQpFZ&vbruvBo@(G*RUVlFE%k7eFTc>$t4BcH?eczWl!bwb>5+h(5b_z% zGjogRum{*%{H}>p(kEfQd6w2{NbdsYNOK~Xy{gXGq}R%ur&k8!ig%KYsj3u4y9j;}1oLuHS=!mlZg#!!aE9Y+q7$x^f9;Hf2@9mIK<3&C!gyn=~`6KMUl>~YA zOYQM3!|gGmo27;AOWhY3%?+})CC0M66lFGEmDO7Xg!-N<*+p%M%WpVBZ@ZK*8!c-T zK_qj7$XZ0Yv;zl29901;c%k-ol01BF3q85NOIo`jvuL_^asB#`rw0A;EF1UgvYj6{ zv))(9mvrXHVs{45!01@i>2IGBr-HY4;)bY%GVL!7ElRYKlVL>2-qHR2S)Lss;i9r7 zG33Yn_O}N&wJzaeVZv#k!p9Blo+*C_5#T7933Bdzcq}WW#noKCpG*sjQqG9AY=Qz8G z#S)nj`vM#^eH_>8|9^Y9CQ zaDaSAJ{tDzMp~5Pg^Dd%jcb`SruC9Di;lkGI6Lt0O-!-OrlvQ1TLN2|@e@-&-jIxs zQXJ{br$tgKTSupeqGVz-A2f3;az)vQN%%#6#_7H#%k*%ndfZ|cwB-y|F3KZ|Xb_^8 z;+&$Xq;3aLJfqJJs*beLL+-q>_pcvq(0EpCN47+so}O>SUDY4iC~tiNZHt1{Ht~09 z@49KaSSyVUw!;&A)|e-Z4X^x}VyL9JZHL$%VCc=XYvT7zOub?$Mk2tcpkUr4PfMYFuF z9UBIujLNBm%)D14VHezs;GeTPR6`pJ_ky_iz=s*mgnxA|;o*Hn<#eLqk$h!V1WQwS zVQ(oc-A!xVEjuny&bQk8bk1g+2eaO5KRgo@-ts>euGBL1po2$I@s^=4p;kpK$vv@t0h_9RxD@qb(Rpx(v#cUB7iWxl1&huKVYRRI%x;p} zwj}tYWywo2f}y)MH~2iMZXSMmnFQoW5nwLfx$uBj<^x_7+>YM`!^F5FxOx^@bOiB1 z&UvV}gNdHGu*L|`(m-a8+iI9d=Wn1t&(>M*`gg0152nK2IkClXo?i%7(wk+oo4R46@=MUv!(CbeZI*q z9t!Z5)9M9V^3H67lVB_pwPK{NUoOqn=Y+iS@i6o7dkwHv_hE;M`ITZr9i0-et4jm_ zsSd&^F#2L(W;U%Dg&2g?a*#JyXCzv_h7yFTETWdMjMY7C%UdeGEn$o85AUu;T1{B^ z0BrMCF{b5FO_gwvW)-=FQW9`qMrb)MnE28Nz6|=IH(7OV-G&$ss6;WJ$a~s`Emjbf z$&l-=CONWCD|Kfyc>hzTEQ;s|o-x!Kh+I~sK1wwx%cg+0Sq{zgkJ>TNq-`2CE!Lxs^qGGE406X($A9RL#*3$V*TE zgT(hpb*fuN{QO|oSQNoA3jU*IpV=1o0!29wZXR8cL1h*3vr8B#567`x3vBEK6CWfM zwMWE-gPS98pS!T$ld}^H?^LDpTu9D>S60p$xOwS| zC%sD;@AXC6)4sP-ezay*z4@&S<5?*)(y0dik2>0;e`doM`QK{EXT?rVB|9NYAMHa8 zX5zwUd4heE2)!$dpMGJzw*-Arw{MQ|z~5Hbd%;c7pn5E-lP2Nw5rS{o>_6nbfs^LB zVbAV5{-~wg0%jt7oP^N0Z%bo1JH?psut9Xe6|Q;(byw){to87*9K7dJ4}X-uIRE+( zQz#3IXOx(KFa1t5%Hz`im6bfGGxNY@@ zuIHHyFe(Zd^7wC)(iQx#*5BNz%VyY~F&g5xuhZO9P#Ci3GAE!$0mEDFu1w|~^l#U2xI`18T%s9?Y507Q*G*bx@ruMnZdTDJ_0T@)}=jF5Q|Gpd# z9X6ahGBWZ6$6#=b8Xi6Kv)HbgLt1)i1XG6nZW&_c>T`>maw`+Z-WFI=b5UYa-JztE z3+{1qEEFXcDvi)A#lh8DAWa|JVZy(o4_O@JL0+nVv4v)5wJ@jJ=>@mZAC-1oRq|DD z2sksOXfCK;BnNt}k~-d}W4MzQBj?c#H}jBEy7{7=jb${saK_;%9Z}S+gq@G8{QaAl zHL3%sgLu!V+-r!AtJinm?kunrm`wB)mc;C8-)Sf}ZL325O|SP4-UbPuc6t_nHeBf` zk9Nlal$!?CqBBhnAFFjslRL;hJh_hdPs*!T9agz6_Gn{udIJ`xSSel9&O0$ULX&XP z>OVILa5Al%IkvPbw5x`k=TzS&@soEcp9&PfH)*eT6ln8BUeuCbgvKdDuPrYeH2=A9 zHx}PkEqK@(*)RR(NEi=!q_C8<9igjw)zZAFO}oq~WdGeU8~!KIefCvTbx^R2sF_Q*Pu_=Rh8noXH=;KrpHPfjE*E^&v6z3pfO z9D_4T%li_yVVG{f;+^9iX}GtFUzzhirx9FXLvwh7PI7I6s2K`y9p&J~U&oK*J!{XIbRGU5$#d_=Z>)2Um~ZTGYWgYLH6&$h zC0kj3`gj9Qm^dN)#ncm?Bg|@Qw4VkNeb2<*egCZlYw%n?Y8?2L6aU}Wm_;gOnh%KO z2?->+S_9Swq?J>f?jPovlDl_-0_>blqkaVDVNn&o{njwWDBwS!(vO7|pRdoJJsSW5 zu6Ltwi=ZJNgjR8&E7W(?sO{6}Y9SMRL5>V6o%>Nn>wKv-dgYOZTtsE_V$lRkxgUsA zBSL+v#}`WzCN+IK%Vszkah{>Y;6M_ID8TAEmQVm*Viy#(%v~aUg79{o*4A5ADod)vs|IY>_$_ z>2_Pn4Ub39$88vpooneCyx{b#*i%tYo~nEIeZc*08-Dk0STV9F5o~Z;w;+rdid^?M zTJ_L}AsE$+twZ-6oJeMu4$N1)mbl=CM;&fCMsk$od~`=KVld!qw?u8TJ*8Gf8>H+A zPo3=G!Gj1%S*0crN9beMV;i-oE^Q%65=%9$;CA&h5b{2>)831}_5N`3hjtmZtpvN; z+dM~*ixoL_gmrz^J$O-hyzZ(7F|mEiE#)Hh^OXY}7sl#JziL0|isDIIUEgM~etfvS zuQ2_p415viAid_V+voninXEI;Sv~mZk)T_)Me({tk3o(`cjklK$;2f6?Noty+JoTz93gww3szQK^$X-MmW)BH=Ib+oX(hZFti z0b=&p?M4!z$5+HHSHko6`~<*`q!P{qvWO8j#%KVW+G0Ar%4+MSAmtNqj@k#62dn8L z%9(R|o3(ZiQ`q2u9CW&wA2v*^ZO`&*D*mZU;{G&cROl=hBm5tqm zNY&GLDwJ2|)p^9P_%2Sa@|>2&qnO)9kCV-|G0o2sd7rsMEXQ$bj(p9PT8me8ksB@I z!t3Ew0V?$KEFVi6dl&P`qD~ef?N$oZNcGL#-5x<|b|emhC_wv2x#&;A(h*I~vUBWF zM)$7YXq4>X&(|AWFDFnbKfcUva|q{rGGLH$)|t56w}XC(LBbDjPtk}>xVVPep|^Cq zvfiroojJc9FoJTSJxDj`xd7(fcXslCy^iz?$abEZni{0rqN1li499gcd-uO>zf1y+ zWJ6pA-gZuh%n>bWi`euPEgI|eTN3l#qao$jE5DCzdQsB`E%?5j>Kb}VZU&AbOK>lv zVZ{a?gSG8p8k*9A7efIhBlaO~jr8@Pz+%Wd4h{}VcJ>wm#f;(Qkfr3^IT-*;JzS0?)6Ilf&R=0sq2_4K3qSiS{3pv;AAX4mLPLQ8 zH|D{LMH)8Br_kq3$8rF;W-e6q=TEmp|C?q9aEwngO`6xq zCCdQDxbrKR8D8q+E&ALUV9VfauXslW9#xFK}d{+K!`UA$a zuAs`yyo~WwqOaDfOVP!&tnP&eJ@;Y7&!fY%vY+T^ETMC=n)A==%#=n!i+?NO+CYB- z3-hi0gNxY$=_eKYE*#rDCTgU%IrKH2jYi(ML2Dgy?=O3jwUj}qwR@k?)C_lxX@P^y zxq|5o83XW$EzKJbKlva6cA~%+O}kqSBx-0USz*Vn@}p{6_>v#4vJ^Ri4f$|FT=*kC zdm#)tKM_L@Q=7s|PYwm}X(YDY9K z+NNGJ^{zp7*6ycTXpM63HR(+A1RqlnHOj$_+O{~k`uBsQ(L%xjPG#tJ&HEn`JH>n5 z5B0ry(Pj;d{%VzO$c9~V24|%qAV(3is-qyB&w=e(^I&e1Sl8RQLT;qx`Hb48Wf{Ya zO@q5rxz$8Ii?>b5YOl@hZZHYsl8nbi!Tou)_VviCtu6d!mt&=QL}5?6WYv7lRWIUH zk7o?Yb$)$Uhj9VDp!|V-w9?XAe0G>X(7R3Bels+vlRIP7;sjjDFYsVeRbPqhh#pGf z`M|TY>G6F4M6!NW+vpEiWSy~+`(?Mu+=r^qO_2dm7}G6PRUc^o&n+wiM(7n1LdwC# zH4N#w;jtY&Wd@A zGeuCK_9kO{odcx|nLryY1!IBX+H&A~4UFr>4^g%cWevR4i6+JodVEQ+ax%iR&90~@ z=sAwi^yz=si+IkFx*U(E61f*(Hyr}G*;KO&e`@COgV&2uA6aqoqU1189oR!{kj$Ji zXNfPUx2R}-%`WRcV_j`8b$8M7 z?#z!qyAYq(CLjfXjiY#-n4Xuy;7iY zy~y+aZeFkfo%}}J=WQ}qN*mD;vS;riii;Hlnp_Nbw_aUj4&6t#=yi^f_CBMjDXW9y zCV>l&!!ui>t1rw?)Wc!t!8Q+BiabXYicw0Bx4$X<@JXkO?*`4ahg&v$J1DSGCam0K zs)Y4PeK?2UQ@RJ@7Ta7Ns4N>7E|xmT*xO|l)K|P3&lh-G6)`zJc-{#|EO)h9S-+bO z1@(G+blJE+hBJEmdyZ2*5uM&ih9_NZ4@c#s+8SH565}T1j;GsPwGCUUzyp*qaUIuB z?Cj4rgwId~+K`aN#qRx3DEVRUw?92?2oEc5`b)j|?vsFX#*gU7KF55uGhR^~$=5 zo3*EQg@>GH1kbLuU^qgptMEo)s2|SrhcxIb9noStJT|Z(>`!40+kbZRZzotamUZiv z25o`*y_RJfIFVSrHZ)HEkGJoDr@C+dKU7v^q)28&8l=o{%t8vKNp>YED|?-WS++`c z8PQ!x3fb8dGRh`-DoTgI%*3uHzMMHhbC16|c`!4x6Au<3)xN-XRC}kQ1<7*I{>UYtT~8gSJ+$v$KiE>X@aRp2o;lZ`5dk ztClqVwsr>V@|@yB=dG+XT^ghB3fnAjRJlY;kyH-#)j3hM3m%Vnn?d(alf~c;uUEWm zJMnLy4RwHpM=v?h=lG!(XW^yCiK(`4&I3SjB}UG-;>wx(dad`Z-kXi{U&nf8Ny$|2 zwfivTyL50r+1}llOXsV3HFLKHR^7ccms?1vNOEpG4p(_W=AQSNjnWyCe^!%sFJx>+ z^956#{G^9}mgbn$BQqLq;+2h$_QrUH=Zf+&x-l|ObottPq#a<1eB2qibP08mH`BE` zMu|(CgNdqld`Bw(_6C`rPlCcmtR!oWpZBf10msP(ocSj293PYz@Cm+k! z?gSAaxfH*9C(BADdFW8B)&1=^{rqSEYESzz2@!dl!gVyy_|z4zU5D`1sJUE>jOKx? zq{I##{_F=rYwlo@2r#KrHjFm&{ybalCFj}pJJ)KuD7T1woDKDzmEr5}x6c@#F-#tB zbZ+f9+(iE>+*eo9oN~EAi`97uIW-Rt7LCEe~e%vRqG@0Z4ZNKsuWq1kyqcc^|YwpDT1q z&?38BO6lX&`uP}=rnC^vVo_2-5 z(T|On<)U|-T}Lk>BJ|?eC~v zAKV(T+!AX)y?au*0&A^B8z5z+rVwRCdM6{}{N;|ZD@qQIrDF>>uzC7f_a$CdGkNxC zHcinEhbg5DTQ^ui>jhxi>?J`qjz>-N=XnILZoH1#X;=lVIDo?gS`1!8%7cX`Q#|vs zZdEqcW(kX3CU-y4G;t;i#?SveY+pXA;PNt(q>287zt>5YPGHV=7!COCgEHfM2lXWk zai`q{flI<4>8HvII!40fO_DWyFV-F{h_^B?HBwI5z!J7`c-p3s6oC`FpLOZ*JNe{) zg`g@t{vJW?xY{)RlY{@SJ@u&*E_tl7n}8KW!WN|tkd{}-4yM8@`%TY}91AHlD3%r5 z&&0JzG?mx)$zZ{vQt*FNde;FTv$D0iAa@`PyQi^1jxMV@DaA^LMp{0@4V%qtc_8C$ zkAJNA0V;I3$Aa^VlyC6$?o_=YMYqHBnp~13Y_dlIHqkz_q(Z``9YsH6b-?jp(N#Ge zHy(+BP2j&=_;gomPD{^p|c39PDfMf#pq0NaOt4b4Rfu zAP@`OoaAhLoC(y1!wJ%l3J}7V&rjwi0zEJb2aZPU&3)b)yc%h=>o@Ptfias`5wqPh zU@e_IIrAaG(HZ7|pMdm~3r2^gFnmr8;)3q)B+>Z|y)Q(FNokd`$sc{B(zIC+Fs4bm zj&D9Fa?2+^;}=fF_ri8 zTBAWhK|cQex3=uR_zAQ$=G>yvBz?gl4yZfif%1LfHdU|o7P$FwViLEbCvUC^Sy1y{5GZLM|38Ugx5j|L+3Q!P{_BF zh8d$Xogs*&td z>vi0UiS%Z0u4>XV<0hGneU{Qu=4JDfPpXGz57%>#gh7*rj4MuLS);Cf9N!=>?Z=ex zakcYgLKm2~zA+&Ehka*vOGff#MZw{Ww!I{#TiLqm_1Rw+ z0cj)=;#ZM`yeChdJm5E=0R*JFW8UI`8KlB=c!>_X%{hjCi<~VSd=U{r2+}gE&(nDS z=IObu#yT|@I?hcnS?gQ9LmLE<*jHWu*ey6i9L0Lgn#f7#;gY;KTEaY{kt=qKX;4;M(7PCpe1Ty_ifKu<7PxnqHyItIpIg~*Nu zizvur63_`-w|?`d`1Il1_RYZKgX~#ta9fVw^HK2|+AL@KNTdJbHlbaD>D}`M8C&>f zw~bgl6Q9s5dRfSSZmyY;oY~*~uYlIPv0LG5Bx5|&G-kx(^F6(~jMo)~9$V_$GYE|r zt;X5wPw9?WmN!!$ruyNzj|eZf5Seu76$u$%v`DZ*-xvFgie2Uq4q%4t zNXq{Hev^Vtr&)oI0AXt|5FkGF?97e3cWIrZ+2q6^C0Opzp+hm0&;nZ?$f~WpvY&1H z`!iNF#>P)%XK&XMkRC}}Y%FHj-!yPSV&YK(K@~NcNh6kc}!w^nYS%90E?(5G)#Xi%42z#r7ec%Z7P3c(uH%$$tZTTC!1*w=WVKLDS_ zzd0sPuQu+@DY26oL|l;S0=%P97as4iDR+qTi<3jc_;| zm|10dGh)XQ4dj@I$l;zmzD>quq?yU`R4m)^xr&(pB zNh-ZzOo3eX)1{XqjKm0Yo>VBe-7C_R`JmOBm%T7dbY-z(-=IStafl^by|6-=e1TB6 zM_%gI+t1;WM#^S!toZ!eD*%m`EBA2MI{7%oD}>jHMbwJ21mAK&uD6|((K@p(>wh+H zpY9fbM&?ObQ4*b@J_a^E-L&mKZiFSA8|((g=5osgWTesEgBu<^K^rxmKJCDmojDAe zNE-$=;fW0|t%Y#|d874jI(#05VR-p5_2l8L#F)QWD8dCCEn<~wmu{7BbyMXEI`B$? z+t<`Ft;1%cbWIU3KQfiOb*lvlNFKi6WI~6_?%;U76x~+0ly7v-qEUEIls?m8=uTc_ zp^tolxOW#I_CH(SmhthQh&aa9MhhYgz%!8@oDrj>_RFZ8n~0(QR2o73*!93+D#Bv= zup2o5cVuJc&d(2d?OfRZKGA9*0!!_Z6Cej#9+){#rye^yS+UM~;uJ?N^y?zrh1Nv&q6@MdCcA9a1JH^Ki>ROLmDOne)I^X?YeIH>|SU z=KpzG%K83~gT1j<6OY*qX0yE5*a-nM>yYgd~5aidFg}%4D^~Z z90jwi=B<1J?*--@>y@&O!K$vv`7zz3&Qjfp5s!w2!&NXh&{Zuuyx_ zbQ&hRJ!gU_qHiK=iZ_<2l^qlUV=sQ4oNT5E-wWQB)1Y3FoDhDDvvGC)_0Jb7S52j< z>X>)>{dRW>UW!9iF0h^eQfbo?s(6$0W{s`qmX-%sD3W!irVLHTXP(Gs z!xftqYO|g^Tylc0Ia{&Pz_M*Rl}0G7{dRYHf0zO?Je70!>Z1KAAEBz}IS>+%Ir96C;ZLR{ zFS8{s_Vf$!EsU=>8J|$q&`nvZMzeS46d&NOr^HGJ_(|9la({sq2gFlw#JS^o{;%G+pZ&fuy{u3&V9;?u4&VwpTzvakhh$Moc*+QW** z;gJ4k#RWh!E#-ztrw({dDuDtG8NzVpaNpu5p8B?s{r#fdddjTvEXA`=@}gTy-rSu} z$W^TsyYs$JrFH|MzNKz8;|Femn4d zdk#L>B0hq<;|7Gz_xLBO--?TUy3~}JPpf@t*k-1Zz4l>0?}%mkm~d~%jbi5NrGyeD zUp99b1R|&lGHu7Avso^959h#+IiyqwXQC)c>6wx@2?m+;bJ@E4+1D_Md2z*v z->ERn?oIRt`VU-9I&jJ!Gj{;-o;dZjuwZAG3WoFr8&a)Wxq5ij41d^k8~3~dMyl^E zLlOmAdjtlXBsdV}(aZ!#*BXaWCXkMZ6o`8G>S_=8y)bI+5ni5TO6-5D(t~_{KG|u7w?zhcPTcS(p099K6~j5|UVohG%xH5L%t6 z@TWrOu0uylF^=!!ZS?~HVF`oKHB!$l<%n1AS;(5kAD{mK;qHefI zeXL*qrxS#fiH5lV7d=3@;KpCxa#7yZ3|9(Zc}B#~S%=$==*g+6H<(NgDYLSr+b5(? zi&)y<%@n9B^^}*EKO#>un4sXjkW&8nR7c)r9xL}JCp+1%*ezVy3SOvgd3|;S)UiL7~VtSv#i)VmLce^z|e`8rYb!Vcs7QFnVUj!=IdQIR7fIoq|O88+(BI4|f; zps!$}7HWqc$wF+M+a!R6UNq?#x`0>S~g`+ut-;*YxOwI zjEQ@jzKxV^%(r-I$EW6?6QxiJNweJudB*7^oqPN{B9c4Sxsg z6%Xgj8b>S42jxiI!)4>-2u40e{Wqt8Y7(ge?S0^HSq-0C7D`qr8^})g~WKo^ES%Wf^`o(u!NMYO<)+2yH-UVGFYrnBg&fH8r*ORaG>z zX^$QmGe-f=DSiwFg7a$yXc8ZITjr-$ANu7@>n^% z)@%v@ z{URcgj;c7DC2qjrn526x!C_mBS}ilN2ev52ltef|hDC=&UdD1h)k1E$@GJ~Zr3f)$ zu%jTqDsE`Pb>o@K`q3$tPT&X6+qFQ$L5;C77AcHrTANfRdl*OSq?95xLk@(T=e{yX z597Nr4$6|cOdZ~qb17TPrpor(_SSC2*RKfDdluBtK7oOKw-pZ}52YnRAzOX&1b{t) ztHh$Y)|r-6oZ(Nfj3?0HNtGZ{zs&oCXsC15cfCS{IY5bm>aTz2iIXRFAorbbI|&L& z8Pd>Ticf97Ew8?VHuq^l)@?BOiHMF~ht}#Tnk|>WE%4xi7V7oG+ZHA&Mk*1F%j8Hn zV@x8{JYwcz^y?lC&&yY1%SP37!ZOEZHpxvp+*Zb7Zm+PTA0%0BZb{Q&x*fke2WUyD z&#Y-%Y}!!JUwX6E--7-6u-YX8Y7o*Ck0JzJu$ow6o~M>>FDilaaxrM~KP_V~mm31* zdernvJ3XARF-HP#-o8!t?A&XbYu)eM)dAT49+kQfaF7{=c;5qu61nrX0jzj64_rjs z%Yi`Y7YHay%dV%1HK*yf^$D@1%UBAtUR*e;$0uyJH(qnE$oS%zkf$d@UU+{>4IC+3 zmEh(Y`I>vgqW$WZ+jn@s(7t<$8Vi$4hvbZR>%ofyjlFN^&^ytrs_JUf`U?RTm$&j? zqACY*pZxsSV3tw#qUDhgVQO#m+zuqK7jlbqr-z$ohKw--@=AD=nS$x@(q?C8XX~Zep0OSY-0QbDfrDSX zCD&VBUHV}KfK%7&FY3x;wPB7pHrAr70)@e#gQEm8CbAGRmPND$w4{C2)``sPXtMEK zpgGhJxIjbE-c&KqGiG~o78ARu4iY+tNxpEzT}te9C(3mliGQjB(slh$M?|pIkP%Tj zi@P3PsWgWIXa(VFk6W~P^Au?@*WI3rB!J&P|E2S31cI6D^OXDajuSc3CUyF9h(oh6 z8Qs^;Z>Z=Ur%xv@!KQDAeui^}d&q>o@#_{e$+n6XKSn9R#KrXg&pgN7d6^8M;v8t=h}e~6~AjHJ9PE~=g#-VTf>XM zFa4)MF}6z1O?CMZ)5C&r9ktLjmmThXyS4w=sTP0HK0l>kx4^vpwi$VR3-t2{X9rH% z*JJV|?pp}lbDIv)b_#&{XNh*Bix0hjt((B~=|}H%)9=ws%fI~zRV!#hZHD%WbjWq2 zPxL_-!Y$R@QYj?7Yh$05qKu**74QJnf*V=OvP`+6e05nn7AE1lbo-F?H+Pd zCE>2fdL#JS;L;_@ix)Xp#k}|bxpIj~2EJv=R(%*eAQN-|iR6^hnS-pD&&#*Z%!jLw z59N-SZZ|rTuOfD>TPbZVOd8bAUmF9)xB2Y;qa0sKke`|efS7~@byw`=K7(4rlHsHk z7Xd#f^OQGd@I;ozr88soR+G+ZGS*#VwHZo{0>|g(-&-DV@=8d3#x3ClN4Cep7HVm? ztzwBbvR_v>|B5yZces=AIy~G#+Gic>amBDz=jl_l7XsY197EVuzDw!>cL@l4`!crZ zxJ6m76@{^-i>56zjGw8H>ZF1)w0CmR3v&qQ1Vq#5z&l49*RozO4Kkmxr+MU)gLK{V z8`DicTgX|empPkt;XQ@y6y_&V+8R-b%6Je;i{Kcf;j3J{rN z>^s2q(}yHr!FX@=e(ldA)$m>_c5c89THu!xC23B+x}VHdcWubT5+Ho^fwTwxLltgR z(lj@|KxM=?hra9Me9pzg$+@j*bQ|A1fCe35tA&VT#3t;h(LT%o-Ydb=O zqa2wh=w9m5s+5S+O3=(p7*5!<|9r&jtS!e&jf9wQ?8h8})m6jtr0BD<{T(&e4aTz_3%w1;vAgInTy86xIc>=)h9u)TB_TR}Z8s()L6QpVcW2m3b& z8ycT*!xoi_E^WyK@+o%u0^xGGFme-csTk@%lfA+PIvGGE4M&(ct)`U-0w*&JC`r>3`q1PZ+K~4u zJM5!@s^CJ_k(U;3Z>*$fq-pYhhq7|C3@9rxR8>#2DG06mpTvyTs4BMsjeIT2gISy* zd+tNRXdcVb^TwsPxVSSf&XazO*SHfY=ePN{}=}{ucF5 z6KXrlvB~nHVPTNtjcVbhv}XF0F%4aId9IX2nbR$I8jaHTRADP{3l)f-!Erjh_3Z5m zQ5G<}qJX#H=O)Th?Hb(%Uy}-5*=2sIdDwn!no%snXVs`xUnAg_SA~ugNN9<$EbD2d zyhq-eleNsoW~+X{7;s`0pr;VNMzOB{n9r`SIM`$p41Z(ybOi_=@?<+kc;oob7}%P4 z2DX=xBuGvj92%Nt>wHyqIF$tpb<{jj1rKQH6bHbM5J!V2S97itAYwi{kH)V|*2+1K zz#vC@Mk(8C#GVn(sf!6|%!nKTsaNw74`pO`s08?rBBZ7mrI4GFwW{MMBGN@gF33Z# z@~ODCO~z`a%k>ozi){2%kd`0!i=DbO)03v|fA}*x>nL3NJxlv1;*-aRYp<~os*5Z#hjRLp~(YOh6qjnRCINghRAiZKh~Fw)_t$Rl<3>=tA>s_dvS;H&jr zMvN>S^xr@_$){;9EYJPDn>KBtmvGGZVr~_ll(AH(PH$14`T&ClW*czmp~P=fp3(z8 z;mkr-@pQC7dq-yYr^%Adk|g%r5{0!@JW{9Lth==Ej5@CDs=UHc0*?2iXV(A(St!m) zKv3T%8*Iz?M*DmbJ%A^QQoZKt^VGG+Bec{o9y=H|=+J8vaz)EZG8Sy7qtiCA1jbRm zc-W=yWOsp9=mWA5wULq)hR3zZuE&GYlcS2r$>c>nG55h5>~L>G3Zdk*K#;taJwmCu z&&y|1m;JveH66*yB<^>3NZQ90m9Rm#n09V(^m#e(>il#)c!GeKa&FQ9Nt}ZzXN3e# z>{NoLC*lbLHftJl%#c|lF<)OXn!BDC<~WKxuh*W|u-Js8d_!iVQHRxZ!aD$-fL=XW z*^}sx)_3no92kbeY*~8UKN)LUB)SHdYRDZ{H+nq9dmAnrgWK4Gi4*KjoRr<|t&tLb z*^|f0ENpRyg_U=htHT;1${eAk3yg(jJcoNDYwZWsFfo65zxL_nuoWkp%-~!{NY!gy zt03y)vt!AKNz>Y*?zC0oWD8H$Tv1TV3dcy~`v(GcVzZ_L$AG0X8C1*sIn>V*ZG~-C}2-u+@E&G-jrO;eC76&IJvmFBU zic3oR_#AOdi;&S=*#|guCpn_;fwd#g4U%%7<1oPxh7kcvUv)EkiTKrg0inr-0OQlt zIW_?ycUDOII-fofAQRpdDNwTN5^SloNGM1W#FiKkv@Pz<%t$YXQ>@&|I{3p*KodHF z>kQI^58sKhx{M;F@ZvPaG6 zflDCJd^N*D%p!g?$Odlfel!O`$9miBHKMh!IFmP z)86MXpD&^~3x`qSIG>JtPG^ip096eZCW(3T zE7J02pQdd8TkO!b438ZS%js@a7Geo^z}9PKYiVk>^bNRg9?LbWqvTm5+ zhoS9gpvrrX?Asl5?0V?a)_z-|hp4q{&lmOFT^G`9O^f32scI#D88Ul-;n96;BY$3S z1fo8Wz>V{!Vr#1pT$L33AkQrDzWK5G^yzmNN`pz;>_P*k4XIFxyl`hb!SXFM(x;IcReM* zS}uxcNvwHPt)Ye9V;`}|qd?cXCJ-16jh+QwT&G}ypVc_6dU)dLtqW)iwqw%r;rjm> z>`)7^gND=K_`7pIwYv;YvR`%+=}zr{QUIY(geqs1vo!QQzYoCY=;UK9?T`$%@oNAN z>O5>LE2{B0@sdB;+(EXHGkw(Vocq>DtRl;OmvE!7TiIgIHwkpP9&k`5xq%$}Gr@%s zpnip!Z$@Ky_LQ@_$q28JNoPgP&Oe4Iq_-hpBj{MzqCFTt(m0+Fv1cuVK3GGOTrYWQ zf%jpLH?vDci>OyOZ*aOjuZ79Zn^RKiA`Cz^HJr|R`RLYYHNJB|otqyp&=5K<8gfQs zdEA(TkiLem9|1Lt--s25Q)478LVr1H0?K_?FaTk1@ZBeSAf=jhMsf6 z^u$^=EFhtc6sX%g+mge!rcL=O?!(8iV`IZg&%Ce>uw!rir>$d}oWebjg> zPWQbCr=$0o6{`!!zO4IR(64O^Hb1+LPJ3L4tNkte6v&=7$W3D!W_#B9m`V{bpbdIy zpT=!>O1o7wR`K@mCm`44%ZW2`vcDg4c}$h_Ua`CY)=F;Aben&vUTBuq>1&M0HL%ff zAG72 z94QM=HPG!SB{0mOt7ZPmbcB8}&sW%S^xA3>)^&b8LUBV#Ph9u(y_`3r3E0-UcrxC8 zIbn;IWLu!0zEBY9Bgh}OsPBoTcuOEdlq27_FrYwk1GcosT=?wFNLK=~U(bhxw}3s; zS9l{*R#^j5GT#U1EsO zXuHj0b)1mq>Knnk3D)8-j;Vp!1HDgR!**=_NG!lE_x=!efo0)YV(7sLj$>AMf@YOm zqFE~W`#d|=8^sVSm8bs+2wvMpR2YTQNk$gBG+?rkQC+d&t+9mZfs9#FR+^rgG1bv% zdf+6ztmggzfc&GlcnTVQr8YDekC@Ms`crf#BHUKo3!W~9tqJMhU~5urB~~UANfv8 zFMIDwlZ?^V7m=(bq`6MMmM~uA&Ye3N*FGE9hIFZKj42JBSE`@8n|+ekc+2ahT^V%j(TPx27$% zIf`3#5$EiRk4u&)$0SgDq&Up(4gs}zMs=|nOCg~|fvOl8 zKf6>PCOq#|TAa?leH*U%9LwPNnOCEvIkKG_io9OGB2w=tb*GYUIwY-)IcnRPU6zcs z8vLF%`7=(}Wcc4WT~UZ>In0h8BnfSb+jeySO{-w$lSEMbA zPP;aEgoM-jzNpG2H)HBva8jdM5>j%EUBU^BKA z67SLAo?8qAv6dSZJ$W!OK35(B*8vZFTv4C@o>0MAfEqV|@Yow@Rxw3Ki!TM=f<6kg z+&fs)7EMvjEN&Y)?XMq|OB2lmqk{wOQ?`F-tptUGAZG%f*=0et=C(e)T1eao&C<-U z<_oj!=gyez4yG5kH4j(V_E_U2`JD0a;RxmCT*A5){|Dh$^g zx3jUJ>6^gMzCLc1encf`+~N^zoV5iaObcRFHDgiAZxdx5;eL@%Y4PFfqleo-dEBv@NBgPCcu4tY+k6gKU7 zya=~je(M1e%v_Q2XueB;tvyE1Y8eUa7NctvWx?L$7I{0;vQSXG z)^#!6X;XdXOttqoISHGsxUdVAbVlLOR4f(v%fiSO42N@j{J(Yf5AHZsLKhe66E?aG zoFO44W56YifDHzkZ%G>)5u=R6MXFmO*SfU9?!TdF+Z4;>6o37k)f#W=!ovDZyX1> zkCDs1s2vDTV_*kDUc&4FbKLmm#JbOfbYUmuPbQ6~3+?I^Z9<~Bb&JHK@e0yz`{65U zh@}u&y^AMCJpxQYmGZz2G*^Z;>G%&KDC8M5Qzr?e^+~LX65#xQ%*>GgxkaV-;cVh19Q4E?q^J>RU0-&HNAROtGq8^ znUGtGe*ilapsqcUWz7l`w@RW;k68vs>wz-~s_afwMLtw@TK>$l#z}FDYbzayt4-fV zRDxWe>9I$P(e^|0V}d_)CE8=t^J=*Rca?IBSxy2Gr$&#i4(fRr#c8u`LS4&%kxBUz z7E_!b?|phF6k=^e6|r}j&9xa!4Lv5VxtIW#$M3Fu{ZgO&5Anm@d?W<;;u-dZn?A{( z38Ve2KZ57YrGk$!|zZsb7{T&PyPA3L76snI6 zm?Go6nAtmG)}s%f#mC>rjj`a^79F$gp>azaYOSi;R^+*r3#OJkwJ?hovu}u5ipR&z zX0eUN>Xt-=1f-JiKQS)U_x_<+jCW|l4mDZr?8Dbd_?#O&U*xb&_kUsT-x*pPq}hm| z37L+5HY+54m^!8F75lK6P4$0hb{qktOg|A3k#R@^<}2!1F?y~zn>yPohTqwE17|Lz z=Bzj;!^*nu2)B0W{vPMU5S6ABZheFyS1tV&eSzTIfu1|OV5eO(zMYeD{)>;DgpoL6 zrwtd;+hO~FU~h#%p!%KcemMXn3gC>le! zFl|U3hKabP5s1ryoS6VkTT)1yLwA>l-ud|Pl-Ov_n&zc!$~X{>giLz3S|Vh)@@lrknJI1B!a(_#+JpfbA=RvVRbcYT1c2cm*Np-?3VyN$0l1Or2$@~X1xQ= zb}Ip^#fx$sZz%onk_`2MV|2s$gZJR+oK;n2w;E~L(^C=7TOm3kcJ}1S4_8~8n$C&n z=9AQa{J7b`Zn9FYYqlr6Rc}Fi?~XM$Bs(Wy_O70_r-pkbcFVWXM^k)sG@>ut~VQsX~O zmpEPy$}uW^u#Y^G)h4|#f@5%pBsJM!De}O1Qy$iv@|tP;@vTW!TUJ063K&|20-kH zarr834IyK+jOpTArX4E0>(gz{#l^bHHQHWIpOG@H-6o< z*{1R!T?sHSN*>9$mV#NZ+-BS3heb@=Wo;(PgskQQg<7m-mH-^^A8gIeepgcB3zpi$ zljWh8V3LHMtNAJq5(&n#ExH46n0`Flva$PiR(2Md2WE5mdR0^(8{!IfBv;n{kRdV$ z21JA9R2j z6!{_3WQA_|IoWR|_Q5IPk!0rXcNE3B8P_2hV3C^*u9nSR#GUR#7hddWRYS=4=k$IS zzyV8sxt%y!s-f<0yK>hVq0>;f+=Jib$su@z092&EeVf6rcOMT#_~*b0_itm}kYcf- zgg(l6*~}AaelZSv3Hcw%cz4c*cu37{#y1)G;_eTtMTccGkhu-`*(0(?yw8ZGJg%*d z|23DRsZ1Ns$vsYY^;;Q(o0eVJ|IxnV>loSP;G#~3tQYIH7~DE%dcSE3bvR&;dBH&~ zv(KTYsE7DKt*?e3NavBy9`+lyK(Dfd5`58zaw}R+ks~QP&W&t)C_l$0cUa2(Re%Gck6WWx~j*aLp2 zSC)o+x35nAxG;cUZzW^!1|SG`|7Ex(GU>%1e7V(SMM!}SDHO%U#o&=jgcL~#d0HHc z8GhZv>eM@_aP+7JpC0~7^g9y!oSCAPvg)5xS{YLgqq+1TX(A@ryS~025&2^W>u)uu zTXoF0;?M|d6wp;>3@1DL8U(HCL=?EMAMhbeFcJmM3{CGp^aq1Oax?m&%OsPS_)uDE zYHD>Yk_>@#5<;!^8-X4^jMaCd62>h|G|PMATUrj0sBYKh%v(4Istht@=5Pd>Jn};gIWAHFfndK(*Odqd@ohFN5r~4{mx$4UObo7QP35AyKr&^ffNV zn`=5e7jNx>zzKpAD0n9XwV;6bE%v>RL&Gq<)T+9L%cumaX62AC&6wcx zz$Y~%)(Fv(J%Z%`#j(`Qq;1I7U~^cPQXAO@G_s;i|71?Ta=omEZl*|Lw1Wjl&*Csiy)>nT`|y+v zzdNWr#{jwiGfR4;Ae}M4Qe`zdnK+P^cHmv$eqz}C+>pn343>4AdP+O7#0&xI6KHz( zdhDN%)N-8N?ubnaZv&z*BF!)KV!8w6>6*wxp5vE+$pX(qRu9e!h!_2DGO?CRtFUm( zA;A@s#VPaR@4TWvCx@>l(*Dr28QcbT*dQ6r%iw1J?2Y~SZw?Nyzjc+N#S%^uz71HD z(n3Z~ue~_URq631H8;ik)O7AjxaW6Y^S@vx#3fW17F6wx+P%~7#S`waY>dB+LvJ#2 z=^(ky*(UIzKg?~mdGsr}%@B=fL*WA-2gy%geHJqF!EZ5=zJZ^ZD#0Y)-J@-S;MFTu z1-#J|^6Vi>cainSqZY;U9x5coB?Jn`KO?hpe~8S^&1DeL6YaftWd6~94v{vz;XIuD z*1si+ileMBMB>{z3~Ea@tfGF)>xzSjZbQy7GDsf$CPUsfjrExS=zozU=HQ^Y>%I%y zg=4;Vj~;c$Ee5|EfY4(Y8UDNaMzfyx7ZQ{KgAA!faZ|{YUU*A`n->bKbu~iNQD0&T zx5>`Ou&=g+QQu}mBJ8m3`&=rBYd+rO;Qm}h%j8bq`Uynq%O}mo%0L z&d1Ai0$@-B8*C6>Mg^0ua0;Ff5EGd(6|g z7@)Z)MN9t}Q1|lMKNkv+qj%&*dx7nV(*1v)T@TrrQ#NsD7+mfiJa}ACpkQKaGeb!R z+8mE`^>ynR7(7{ctF^R^l38rW)2C0nFbhQ(`RrESRtRb~n$I3D-DL)DGvh$>A77kq z4e%DnKA4=f9|t}Ppg=3&>*pc|fnF!Q=>80PW#|!*Je=oaR=Xb`=|7ClS z0}dr>DJrgqQNsa;<=r6?43<$hT56+^!l!5352*Ot^qiz6l{Ubqz%_gC-aSy}5#D^m z3ii6AF%pZUP&o7_Vu09l>eOba#Xn8Vj)LnEQgujqFG2?5P3QILVITRgbsw2obd)Qk z@&uyH-Me>FzvM)Gb*a8ePEKp@+qJ5dy130jWnL?XK`C02gp_+-6>;*TE_3lJq7BI( z(Xo3jlRqSsbdS#RnrnB1XyGn<(qi_ zGVY3&aLWL|Lpz`{g8hqFndUwcJhCRWwM0TE={g~7ks)Oe(3XdnC2YAp#?y3y7$65750dt}?vdt{og+M z$o+aRXS~Z~s9dg{npE6Ml`j=FN$Z1S{y3dh78M4X0B#X?`6 z(qwigqc`Htd2j*i1m#^9@O#+Ti*rYZ2%APAL_c<|R=bhRaZu{r14lkHWLN~7)vTk? zGdZNm9=b4r&kP1lVL;P-SE1_9?4AsjUt{-lWDv$SF*ImXTvQ2 zawKdVe5ocVuj8XH4FT%_6o6x_eNQ z5r~L<-AR!AnMhPkE4&t!2MLn~5@SIeT-^A46vkC6WykeuTzm+c9s9PeeN=e2Wht4xCFg>r^<`EAL_goSMw;9F+k>MKglUsJ%0fW z=~I}gZ@m2-)#UHT=9c!|ZHCB*?An?adwE$YbPi(<%QNKOJvd8XqiYwqyENq^k}F$# z<|nxV(4?K(4XsARHtyh{ue*)cv%Q21>*>B7kirP8hQprX#&z1g(bu^vLg;q>2c3;g z!)gHg|9NKvqT4Z;{Yy(p5$xNy&&SvI211BVz$_YiFNQ;Av3-wd>l+_7nZ4(WsgPS7 zFh!HkFz}!A1^<2sw)Yv-uAs$c*RHWe=Qq4E?MIEa4QXu{p&C3Q>X3|vqL5;oO=g4rfki}nu0Wy(_4PYFKKnNjJ+HY?RuLsm(mS|YItQJ|6eWl++3`;j(p#A3J!-~`R%yH7T?uFeADr;MKu+x zC(oYcgHs_DIg#)E`(O$osNG-lcsb6b<$lSHr(?4qZw$OF0Zoi9&Cd zk=t)~t=3h~8gRQV&8kC! zH^jpyZ1OFagEt_4`^lECqfHtG_8;isFnbZSXZD$j>FBK}4dgz0#e8(;)FoP|{Lddf z>e-ZOmx2uH#YQqFb}uSU0K=mbR(fZa!@TWK5#EsGC>I2t4=>M&PU4~iW$_FcU|kaq zSvk_@E>CL0Y5W4T8dzassW|jem$tEYAcQvyNiKOC@IY)(3xE+wnDG+mUr3#b#bX(^ zcg99=1MJ*ZS1ktpSCNyjFiQ&53Pa*{qF#}1iQo1eyLaaU{@pTAAvRvjjto)oI4zQO zo(1_U-XWUwOUQDEyaj{~{%~5rU?$=0kAba;okW!^6+$c(%k+oInZ?$HZlNs&Xl@`7k+KRM(F~ z)jTKEjQMi83^rztO}-pJl5<=o7T9<)My2@$1$Dt$1oA_Qz_W$`1*(53Xv*&IK1+z2 z0SjACt;PP+h$R6}){HKrs3ked2NoTWb}9;`@Lz8-A4pwbCzPsZDUQ+x^Y$8MCO7aw zZnABrCYKjT{H0VZ{P%QQvbO#74zUlud+%ObwX(!PFiRsNBO8TIo<;&p2v8^_yS;!; z%LAfpH=sZj?sLClztIbU>#owA6o3`C}_;|Hp@99XYKsOFdzlC63heaTcaPn-yuYszbQCso3-vM7t zH9JDR6_j$lvyYMUD!F!&hJV+MeN!r8RTF-1Lf?_`QQhNlZSvSl!-M}GFf5+X2NZXA#F%C`l9)>V_ZdXs-9+=9iUZb@eld`ILE;6_!U;9mxJH04KdD!|LPC} z-sv*&@%9{&-MRW=nSWm2*=)MiONsasB83eMF2tGt#rcjG$-_^yQ~#mKI6nv(s4y}u>p-4U-6)qExwEq3j5-JfBkb@-Qf zZ^8*voAv5LN6aRU9mC@>-WvM)`g(m;(RC2LW;xR02?PK62WW=_P*(xPxTeM_B!qD{ zL`?RCW3t}X<2BJf=VkDexSt4@dQOr@NQ4=oH`CGSLCIEJR(4QRlX){F0>FKW06ooE z1d<*@yxJZJ7;c`M9vLx9#uw5Y^(s2z4FBo`jC^-v|05NWtwKimATrzwB;KO-=18oaIH()LMGsIjH(1t#gA4N>rS$S8N6tT9lJM)ssD{*BdprS3Ta;L4tJ*XY2S zYB;rHLlcB991 z)Ff-6Eo!^HKM*mMgKvLeynTd~>**%cXl2YAlbyYJ4{NA+(jIO>uOSKi*ce$5E3W1q z^6c%;lFE>+W%B=;`wplmv!rbtbHXtqSpfkhDbVDgq68%eY)-fPRRzOLO z0wRdOfRdAnWSSOcz;oYkDXz&kw6YE+} z<;^I*FX!6udqAYVAkfqlFbf#8cj4e_+~fC^2Y0(d-t$oapgSbczNu|6 z*MEh?)S`&}5?Av6*5R+re((a6zoH#-hi%PfDQvS4X`yYViy%y5NP|X=x@?d6^lilR z|01PuewU}7-+v~9o&qP#R_i0hroYpY!ptbo`ub4gLFw7{wOKb;aHw|l@Lhkz{>B8V zwq31Ja#&uR3s~mi;c*yk%R_%AZg1uFpJ{RQYstBu{3<>^ZMsUrhG#ZCQG(uFO}64=Lc7cT6Xn-7pDshbQ^!lg_^sReGS#W5K;jd%(o zU(Fe|e%zB(Pa&QsO3vtX4SGSyq*~6)Y$LI1*)ILG-RbN{?V6E+ar-y5n<*o97vxW! zJE8L-zf5Eg=>b3NWi> z|1X(UG&s@yY1XPEO#_V_-;y|fl2)BM{IAlg&R!{$x`Md4Kh20;Txrf(Xg^Z^`er*x zk|X)}t`lCzH(eI=eBjWIJ;!c#y69#1A(8Y4>d)R(y*cArsJd~_w#xxcTE}r$tkzds z$Z%Ts#RUBluxrn`wOc%H9rSNJ5Hzu^CVZU?i)ios(uv)>C(?6F^+zOKr3FF`58?-1 zNUdREUdE3SCF ze#Ek+A^TrPC|;6(pshnouomX1af8lQGV*Z zrz~Tij;D=ND3jDhF8Y}jTm4| zMj;oz{8<*%8D$ZKayL>*Kmk1G;luCF^5xyt(8Cr59NP_3e16g{hgmmYD6xWrSw(pE zD)VSkaXxF_?=hGClN=MP1hflFMJ`mnc4jb1eg;eB6)j)Vd9L2!=a_Ogp9Q)|S8oTQ z0<3mMY%IHGo^#rVqM|bB*&;5%!Na2jB-*E*MmTI{1%_?#jg5@VoppEK1t$ZAK7iYs zc`+Q9mQDZlX?}Px<(~C-PLwQ!kbl!%ij(h^jCZHoY_#r>Kkc5#eZh@S{Ab_%?p?a2 zyzIJAg$K7=$yDvfH=BQIU7cUi^DM3M33fZ}coU{Q09RXQo3r7T+rsogP`3t<+EeCcrn(rQ9ANSaFNu*L&<^}nJrhsy9e5y$}+9)CsFUmvh#fbeF z0l}p`pVU+a%WI;C&RwjXzOUR%J0NFWu(!#lxL7tmF3w*!=UUk-&DUK~Uc3X7`k{t~ zhR=bpC8Ts$JU&axcN0$}axlX^Vg!D;(ThuuO$P9-lwm(?H+^_V`MT;BumEpn^YjmVL>*AeU;#8Pl@0R<8 zW>!{1V+F<#%))$G`vwID9uOCA_I!ryS~d1<8ScWJ1ODgl8-zHGncr@Fa?~~S@(mM4 zy|5hSH4$i030Au$1z`hf!Bo^u4DG)k^4(MnU|ozUrlS6$PY+GCe@51P`XIC_@5~`B z@ov~ocNdb1K{FQmaqWRHbR88EhlR`qL~c{Hr<5=iLif9|Fw)`%=u$6dU~mxCAd;3w zuG=WzLDoy6d>D7NWAXtn=~|xK>5!4m*1AjSv1|O4c^jOP>aZr3`)Th#z^eNd4q>i> zHO6!nVJy0H^WMm2CEM$FHYY`gB?vRCgp2$J@$VO47*3rzvjxscP*bEY;-oohs;Al6 zbW$YY9j3k@To1(-PXtVL2x1D*OIli`O zPG&mfg)ZK}$T?v_zy*XLX6|=|rm&o4G6l7wBfvk}PTqG~UxxafX`4Fn1H=Hp0n$ zrJCd)t>wiqNp!_^x1$bn(>3LH)V#Q7{OL*Omzqh&1`Wfg-y9Pwyk4Qp1ep>=y!HQf znR;R~{kO|-f0xz+FaSt(sVda7GO%ecarXt+ThMD=GngV@g3k#Fu5Wo6mKeO8#K}K@(L?K-jrG_t-rh2465_=M zJ#=Dd$B%!ZOLK11(~NFu$V_&+7(K_+*kzrRKOBngxz9D-&UrmkLBs_LUkjkuMO9@EPQm(n`%S z)m3xVFE`i4igshb+2CZQ!HKexn(a~)S3N4v$9;Hz%ul##4(90a;n6mA?*NV8w2S&R z5^@5{By4-L;Ac-fe)Vm?5uSc&n`Xisokd*0aoKafgq#>RH}Le??5VP~!sFG`a97jU z-ld!@s33VXVs!$oF^H!xy&+5Pz#wLk+n*o*bvG!1ce$MR3jHhH=K?n+Kl*$GZe!O+)BrRMri zo6?jU#V6WaF9;IlrOPvPk=NdtC0|p8OY520dc<$)7K!h#SDpo~I6Cc|yo|GjsSX-X;)juY-pRK;s!N*8XB1JI%>Jw&(eH*c|R6|e57?EX-Ex1(lVp}^o+ zQ_Iq(K8d6k?y;UfwT}f0Jlu1AY;)Kto2BgELS#~N@{~P^`ErQc5IyHw-(SNJDmRsRdYVE$p;+;p}&- zy_B1mLb2L|FN?p>Zp4z$S5x2|7=E*A79B?dM*hs1li;m^IlK-eMQ$^Z2dGy~O-*@4 zMI@zWQu*XJi0?MaDxzVjK6MXw;pf&x?*O3$3SC%)g=wHzd=1D4*!5J>wm1(a&O)J% z*peb(SrbC&z1&<028kQLa%m)e2*p^UmM5Yj4rn$XY&bF*O(5QQvu}&Jyh@@RXH5S; zizXt$9SMWxn|VzvYS4%hN1-jnd1y%o?fT+sh>$+Iwn6tgBW~;t^JU2H%bcp$wg=!9 z_3BmSy8sGE6$Fr4_n)(!$82^yO}l(_6ICB1v%cs>{abAFruLPWm)i}eH6Sr9q~#9n zBg7;MQc`w;Dm_m@QetA-wU20+_h5$l5z!G@@bOFICWbiNZW zIDX~i{$`E9eyKKHA7e|pvA!+`-CnH-({$vHo|sOFRO(xP@U4AD=X% zp;mJn#fYw}?Bv{tURieXlNZjbZ(|=}O{>D+0SNeJ%zNhECgJw-$>XHxd1Nd(AC=VQ<k*?O!8d_Qp(D^f8!6H8p!}mZ_pc7#m zI2HEFa_mhPzX_F=H@AALh9Yo>YEO3hy*A;*ETlJNC>r>zm#e}=2=5w;zC7#7C0b|ZBl%(M+L z537K#C#V0152ws6EC!~@xpSr9>wa{2@fNS;bRDCa_s;du z{c@uE*L~X!=6ZA^SpbebDrTUGj2+F)r`x?f+)`K12tkcR372An#qUr9*VcCFE7UL? z_r8-m7iUHZmNImEdwRYkX0)L!t%naE+AYr7GeEBpI4rOcHH8zMCz3ALDv~*r!%++h z-87>-77J3mOZ0_4In3~oh9$1xDeRlsrKrKo06K_sR13Wf zdvYmUg!*A(B3+kTQk!cfktla`{|BUr0j07aBc zbbj=9?G8$>W!swz+QMI9Z0t$trbTZ#%V+-XfR65-3{C2kwSaKy%yvHC5a2!FlG@KD zGA#UOvYg51Pl+vt3R!Dah=Sk_vQ^qR#@)N`AX^BkcJR2ePEMF$K7HSKBiUf!It}mysNQ#6JtWVQKrPX(e?8v#`w! z^vj!6?Z$HINst1#drr&!U`$M^Za{>JR*}Nnj8V*nX-xa42^ou8O(^K zZe85XDnm4cY6X%w0 zmm5m9&v^aQ6*=Cs3X{D;Bgf5n_I&ckYx$j%uldX1#B;-m1JTrl{DbW^>r##x%nH66 zs}#!>x-R{TnBQRhGxMmQ!ny>$sDri;ReqgkJLl7nZFAc4qZEO&u;A9Nxh2Q(cu=fi zK;kvBB}EbmB?i;qZHYsho)*QHj9WKU`>3qaiU`04NHW}508o6{&`-{yK16gY|`>L3#NAt5EAaMLfePWyv3H%791_-rnGvDw|U zz9TJbVdqCI3TSr!)NU}tZ56_5dpEB=fS{e2K2NybZzZFNYp8Nn1%C}HaXuiK#J*YSVy!~?qcbbUn>C( zv-{BTJg2#`sYxp)Cg#BYZ7e{XMvV^!J$iHpw9DjDTgq3X$sgwMDnHQ&$F7xC?e|OK zR~u&TyeQix5pe%Y5t*^Q+{GI*2buZ`^I651;An6lhH|1bD2;A)CJxx z)H3OWn%Zu}h9EF3V%JXPJUx`Tnd``r_YL|tTPFrV>6GQyP3=iJBMugg6gYUOWkl}r zzZt;_wSVy3{mb!mo7R^L0%wD{17c#>M4bi#lgK`QWf!YxlqaKENIEjxF}q4PojD-D z364JH*g*(#X#@5KJ{q+O-l;k7i+23(pW_#n^L7P9(DN)j==sVot4foP?ceqb)%;|C z^nw5i2A~6XO@D!+u#iwxN=k~ZthKfEI#vvTDFNRe6n+0g46f(sn>kbC7!}M&p+Aqr z6}CNySz$_)$?P9mX;R~T@=$n_OZob!&e^st{plM%PLgs*e&Vno+x@JD{;ifA-}gtV zTbRWnfH88KGL=f-M}0p477IuzTQ#REHJAe6J8DtO={nnSKXbatQe48cEf@Pln)EqR z6Y*SKcY&0?(*E{0n;onc2zU-DfW6}s>+hEf%9@+~D6^vj312|7@7NsAWzcJTFhjb@ z90|3dFM7ilk}EM7%zlX*M_(o+1VH)1cxH~;D&&QJRkbP1n@0ZxlGk8aZUaxaZU0d! zsYv2KG05zY$jK@FpCc?go=s~a0V7Dfw5#XHgQ(0M^a=`%2RMtm9tDjX0= zq8JMJbN|4=yTELAg64+^WX)HILK;jF2+udWUF$9nLha`5I_}Yki5gMjNR}Zv1K zz{bYb4%1saKQ(Aw;es@tVczMX-KH!gZrE4wWITn?xPA`9#m#*;)*Owf6(J!${seUA zgrq6I+1VRLCME;(E45Z_pPrvZSB7vQ=J|7jVsBbAGqc~VeNi|FsvLIx&mXfKJh%qh z0MZLteGGaGCvFCX?gvFhX<-SKR#g?FTUI85>Ya4{Ox~yggy$axw?ik;x*$WL3(7ci{~L{AO%mqw87pWS0DWD8~CXyi6hGx#I1Kv+fSNr6DHD$`E02x8;l z$oOpP%Peivyr_(q_{=^CdFp$ivK$606;1OeEltgkZM6KS;4AD}m6iD>>@dp&MZK5>Ej>N_Hb${G1g({Vm4yOjqTf}*euCFkeb!M!=_aOy^Me9; zwU1Jnt+_toY87J}oK-XC&+qJYQJs!9O<_(GQc1%J4%kSg$G(^oYshvQJXIq&2T5zz zWffIb!65>s>7vsgcB_;^KBcLM%BikzezvJ!6uQ=Cptb{ql=IQDWhmobd!nkYww4Vh zYND9lwlTN?{sNvMcrTZF>5iMTGHPK_ZMhKKDyXPDPA*t(y5L@&3kB<0z#lX-ymlc> zj*|5Coco^(m5k()m9wBfprY~gNUOH`t4r0x*gG3{q#LQ#hBa7$5EH*?6@&JKdZN~$ z!-o&YTGA858=&%o?eJlR2K^_MCR!70?DdDNW}@y2cnE#HH~iSli|uELH1xQe$J|$oMoE4OD^v>)L$~&Sa^M zM?xN`WG_esl<;J$Zy*L_|059cJJUJ@K9idY%?^RKD?A9$oFJb4p~y{ig%Z0N-}NP>nr*RAXRm1 z&02pv-WTMbcGT6?Mc^%qLXSO^+jDq2I-obA;_OmfnHZBPu&0mq3v zehgu7UYmynI(Qc|Gau?UVBCYZ^jD7DAl3+O!LGwNIQf!&+bEQdD;LLjG;99VR$&VoF7x#q2#n3(u?P) zO7An{;>0TyO=1R(A(hmj?xIH8(9YH+uIGDQLaQqsXN7zzSrHz$~`(XI#;o>V4V75z8E3yCp5#8QvF&$B27F8VX{zmT!B6{vy_!N-lG%@!2u9Ovv#zC zEd~ve_4jyp>E2wL8piR~fP~0lPfySE#1Ipp?t;MqpM2l(y9CUHLwAtIz_OJkd^0F= zv5TV>Z(0`{C!G9w?GA|p8Ewu9hFAoDy74X}DVR~vhDHk;un#7}P_U-bSu?{%H-}V6 zrG?v(VIviKI{QUPnU%>m>uiDx7_u~(c-7RPMK9_QQyGd$C|ofqio7E`p{4fhGwbyf zW=XU*Ls;5|0L)zD{pQ_rzInGHxzkn2xIk(0cmc$P55Ny=PY7sD0@YsxiY*;83+Dm; zLz(Q`-oa%Dk4;PvAH34ephnthb^zJ0E`)%^v}()EBBVf2(kgxDgBcUm;($iMd&JSB z!pW}EfNUv4_E8YvD*+(-JM8V?WH@?gfrMd{{|~E_JCX#R^FCahm4P~gLHugpuLxph zW{Omh2L=b56Su>Js3wb>Bp;*#*m?ki*{h_aG)sjyZvy05-T-$N-w5U zU}6rWwjt%_+0B*Z^qxfBoPF@0nJdc+O1=9Dg0J;JTdjFyW~?-T)gA!00TD0BW0{vG zKP~t=cxxCxkjJeXL<-r^)L^QHTl8R z{QP{dBl>>N$P9qQL+tFbdN(@Oi-K%BXxsGTp67(*A{e}jhKA$jd`)DNYiv?d6?jov zEJKT;o|97=+o3~cpq9st02{Q0QktJ0<|>#i;wJ4xntS3+n3Su}WcGNEriy z!sc{Q9N6~>=v=Mo%OJ`E=p(5GYK0w;n&Hi5a- z>Aj5bK<+!3dEtT3?uN?Bhma$#cwJ9Ulgg;>BQ?RW48sy?T8u^Dhmw-B&d%A~I+?#$$aS)oK?0a} zWtgxEGRq3`^8Qfq5+dc6Jt8enFbW2gzgI)&Ah=Wq2#m|&+_4MFEwU$Yi=E6B;DQeE z@+#*~CEAw3ziNlx^-YBcK#YNuRiKhs?gB8rJGFxM5#as))|?C@Q`55s2G5eX1+Wld zWp1Mrl!xN+E&u_+_MOFLAa!n~4F=OR(v6*}DctmK_3E@(?|IeoEfN!dTt~nM!8Xg4 zpGgBbpR>^M9NmJdnws%MSDAJGQpo_uP>}Bvz)U~1ouU`6y+Md5aafLEzFOOfs|hqH&SudbTP3(roW1k&?XOHI3baf2<^FK$ z|I^X=yRYds=we1&QLawvan3#O`>Lbup|UDnlxeke9Gzo64?q{Kp1ZZgxikLE?w$57 zzrs0sJM8iOQm!J%W4Az*K!y61U4huUG0TwyhEs>>Ao|*Af$8W|F)Wk|d`va2IBMG_ z0cz#U#>U2(gGo8RJN7CAEYG+vi*BTM4f-%0<-`6S?LA?(?xay z^vqSefe?|$pa(Zffu*<&@druy^A;$r)Wg%$-i5+fTxBu<^5sa!R#OiTZeX;Mp8?_m z`GNP4Qr9tUhkjF^L?I+^U3ibqXt>|N!i1H)Axy~nJs)m-E7e=^(cHC4H9AbR=uske zH2Uodu$YC6oPg6{*N;KCDlz#H*tyuS-vQ^LI3P$v&)&rhJkJ5EMudovqr4wn0DENo17OdT9-?Ri;Q zt^Vf~EH-Ep)-bd>8m@w4E1_YJLJ>Si{=@nxlxc>-LZKu@A1k}WEsZ&Q$nH`!tq-)1 z-@SJ4@in5<9VV%Uk9llkaNN7Et_WZJj~}At2EjwO|Mzq7lC(g= z!~c5atLBWfLE8U%Qk09jLGV8=_xGQR>FIZH{_DwLS;->#|9oS3rN5=rTg?Bu8+g)C zNpb1=e?3VV8={~1-}g8a_CL2siKoaA{v)0*GFv5Qa&q#eaPp&Mg`dSn(x@|M&z1$9 z$HvaE7?~NZKrSKbM8hL_F_;K$$Dc`x`(fIa#bl;d3JutcN?x_wL@kTT;!?-PIb-SXSB8-5qj)fIQ8#+S}V( zdA5+pe&*&9t)O5+iAiU%VaqkQ?S&^p#YRQN#ogBSvmNnU0(y6gALjg6@xCHl!?-eD z+m*)+QV9Rz@qo{r=_`&0%tx zoSfWavz_}Ag&-Lt=LF6+^Yk9sm>N!avI`x}2mk`;bUPU`oUE9sAZvJ0RP zB1eTwh0|j`SW+X)Q^%}XzBcAOL4pzTI630!Oca_;^g4OIKG{IXs2VU-V$xG;))TO5 z$`0@9Q&7N)VpPpda^GEv9!a*;`_mded`e42RcPFP>ooyI!t-TVrf9pVMk951VM9j< z6iQNLt&R`2rJV$vop&$I1xn=f<*219W)+r|J;_qOMnTaT^T6UJuY+m!jy>|Oc_vFf zkH!e5HvY7Uhcl=Q)?wVUhlwFD&?(*#)> z#|F-7{i$Fj`VS=))vFw}f?}%?uAP;!wla%>n-9#DBbav5#hjWYXPiz?Fw2A)a&mGt zZrg9+UNWl&xy`z%o|T#gFS(t^C1i7valW*)v_z*{$N%{8-d&TVgcOs$ChKpa4FS%Ey)t&b|^dF`}-sKT{jd; zjAe~G6J(W@l|!1)Ge1ZKPmk>15;4Apdv5LSanHe$21hdgk_n~xj6uRf;J}blZ9<8*8TvU2iZuzF9q-2~ODd2`yJ3BkM zI08AJi?JI+H33UUphM8 zYgMA3CJUbz3nGtSB6<--AvBYj=$RrL%eA+^|9fuEKQE72M@OgBwCg48&xa2m^c*yO zg_CP_DINup3tTD=T&evX(xwMdCJv=+YU=DGQ&T#F#(-qyEX9YsydjKgEP@Af_xkg- zW2f(%S&ozkiUr>K{rmR|AD^=j_Xf=$?!vB|Ls3vr5aK?0J!Y~t-4Y7-bl$rop3lI< zL_C(u3Z-7}i3!#nl0vNC)Ub-+FYE1Zq~(@I^b-Iel0MXf;R zLDlinP>ITo8#h|YZAwme)G>X9(<+PEGvOKul~2b-^<@oZDo2OGb1S{kzbu8qvmel2W?!twfg}$7~B|)`Z_2(OvU1PftlZw4fBNaB8d;2oX zEviWKospD~_~|J&4KcY@lF$L^8pU&%bl7gqJ&j<|ZiUD*cX*pM+nJ~YY1)w}6a>+yi`gb3<+h&g%~B%cclmJj zp4hKnzdi?&a+^X5K7an)ZAABz?Tary7eYUL@P-};>8=l-E>6HbqW55=tYB z+Jho}X@%8!eewy5PK^Y>9~6Rr1T*%fvYMME7J9S3!S-Q&RL;649l`V)%4?h;CI(p( zD6x|OF(xtPmO~-$h*`TUY;=7D7d>5}$h#zFQ4dMM-8A!`o*c4%`SJzTo2?@4Zgf0y zQ_$lfG~aWdp+rCzu-}-LyiCsD{Q1S%qVjSYCZ+)6_87a9BUhhgl>!s@Y|RQ54&xs` zXYxOPeiXr~E4RJShc#I3%zAvd%RP89+3;>@yjJt@I88G2Qn75k=dmJ2D>yiq(`Gyl zc8J4m%M|b-59WXq8c4d{mzOAL4hjWU+CoQbXN8WpuA`tB>;L}h8~4!eC9)GwQ^la% zi$OwPGB#z){PgKze}OK+qs9KbqLPxcNlwed!-vFeOnAbEmn%)6BY%dq|Ku>QSiDHY zsxz82*AI{sU|K`5QQO6f7n96-GKQrW#ov>)_~H?xq5y9_d3U34go~Fq21>_u3W^{o zF?>!-pC=}CZQ^e|F#nmO#=0_5Z}T(Jrf&cB;qL0x@^U-G&31+;YHfEn(`uv~7V@2D zh4uP30wFfn4a4OPsDr@}R?r-v0nzH#dAN-Xz-x4B-Qc6V_VMx2sjsje!~N_$foXyg zkAKi#<7(d+L{V^@)Eviox2dVg4*--oMFFgJLP7$++m=7Tfv#MQ62fIx>H=SA8?oCW zTo785+8ORb58E+QoG*QR=EthJ8N%Nt2)HBIv^F%0K{dA-vZM9m)6^(-BV0hJ>GFw! zgseJb3KN~!cOb954-zmjO^Oy@ZUG-)@nrX_=#()vdX@3OoNJ<^i69$=h#!1QzyJJ__-f|4hPywV>wW zihx3DKlvS}7Nh>`8G3s`#iz6Ek@l;FuG9-qkd3~+!hwz#)0HYdH9MQBo#`;&{g8*p ztbTW6Ln_kaIw7H`r6m)rWhV58;U-3v>{rlPjatL*!nP%P9<=;Au?LjeHEy11+Lb~k zlIHG%bf=}kFPpQSSjVCHgt+Gc5f~n9&09{?#lwgE zz~{VTxVyXd`x~KAQ9wtmu%S5G2nnc^C-3N#GGvN%2`B_PtB&J%>`U)vz&i4K?0vu- z?yN(D1uAYw+Sk(c`gSKeWZ)}oZ}+h}K!=OT5w!B;%cs|gTW&Bv6IEBg2~GHDt4AKY zgvJ!139PKF*REarf!?u)ehbwDtCxbVJ)TdE)o-r2s7R9C!if6ceNCs|Lb=hNruD(6 zFWv2ix)-gJET0P5xV1ENU15TC1xlb>8xgK=mvCY})WKgXEAOS!yA$ptT&0nV`=~b8 zL-(wd4w%Tf-dzS6OQ02^;^Jo)I=3D0FpyTgY;Nf(JZ5N%FE7vI3(_uir{g6hNXl$R z>!A@)k-|jtN+JQsrptvnxh|4x*Myti-<}_@<%9S>a~`)45&4V%GOBUtTl@lG0Y@XWZGH>$(RWI}=m$=*1b-(e8v-9KS1jgVk(H=mkL4DAfWT zS?GJ&2MGxPj53+|Z&l-z%@jeG1hy5Gj6n#o=-+N z3DdLY&?hj5?=uu6BrZaMLS2%tI#X7#_+>?WTR6GJ$|5Gz2V(8G_< z%CdJhPLVq5M?jIHK&M`$@7q=4gX%~S!29^kZ-q0O9w7sd1cWL9F5~)sosL`~l#a>S z2gzm58$Rs)`}aNee)}Qi8|e-6-PFq-OO1oW!`=DXe2)Z(Am5&l@H)^zh{~*!jL#dv zMti%p=7&&A-(q3~j^V`cGAyAlF=Rk^GKb0+LHwQ$LepqFyRH-6EM@e{C=V)vNh8GY zb@h0_l{fPpT;Y4?*xT>J zis{&J<$MRGlPd6gY!uo2c=p~wNwumV3O=WRSZ*7d>P{j?)ik5ll=y*-z5n+dszIt;y1 z#wFLy8Q5YLGU)zuo;R4(A8pRGV|{YpMY<@`jsUs(F{os-88lw{`t@sfZ&O&6$9{47 zoEgKpFR^Bq-;)cpLI|}F(?Yoyt`Qg`@OKbO!@WV+$%S4N+49`P|DiXO>*VC>lkH% zVpgwahO0F{KYz%mUwV4_kj>N7WS-z`%b{YL%>JdpqEsg_9D5lR)>mxpd-znqUAy1k z=KJKh7_oDBPyGEAA|l_~T1-_%Iu1PmX24u*4I|Wb6}r%3{uTry>FM18HY@@m0`V!ADA*2-avw@< zsgh|r_m~2Q>CZdZ__xBQ51=AIb2KaXOo$|Gf0}!r7BH={(}Cj;8Gz9}4wozFhjqo` z1LMae%df#}*ma?qm7bo0DAH|JpRvLmcMa&(jMwQQ1qz^e1~6#lT=ihUw+1#g1;;gW zsX>C1&=%0?>bJCN-BjG)#RFVQGp&KB`}WChYTVq?_X_>rIJpXKAsyb-yXwjga0(XP zx*s3zil`Urz38$U9UF69`-KHuNzTzdrX&xTD7{AUwB{IXV_#o5^v9lRXPZYD)m_kP zTHwuHx8|-gs^zBvI~5aB$az-A03Wk&hnkJ;gSR&dAl_F%I;LY)54Zt1?!Gh;7CvJ! zkT1LK1iC{6K^g>$Ka=(9cZ{}d|? zku1e@TW4q5hYzEmdvC(M*P68}-GlZ8VvuvVo`(lN$VeA1aSQ;CLT&f{xp0|`jc3_t zlJQJQF~E_{>6Ys+U%m{{lFw3J(7tQNVpb`&3YkU5gQgOfrDqjYr9txOs(||r6&>A0 zJUl$ekPi66A&^s$)r4^1H1BQJivRs+?kMb$iDxGZ9m<7Rq$kQ z%3+b>Ga$E0uTw!3$Vd;M3rV1luhYu0nRJj@kJq#S{@7ppM$l6x1Yz<@f&y?lLJCj_ zzXv_gB64VOP$65H{^WR97xFSjL;GAWkK7c96jHnTx?+jR%>NXuTL3Pg78pQ)z`Yeh z3K(@&ASqTXVHdie`DpWKyjk%bvQG%n;J}%qnun;i zB%+}4)|~Y`n5T7G8O8Zr`25>Pm7E)(a!w-T1=J+Kdp^Jr7UHok{{-v_s)dxHAr->b z&SGDZu#1I7G@1LE{85=<=1255&`i5GKcKcRSOWQ;g4@ojt3=njZAWq2kn1Ioa#(b@ z6qlA7!bMv;1ayIRBV`Uk2DzPoBax1Q;cdQlwRxuJEhr7Dss~<*n2i?Nqr=sD;O)Mk z1kk#A8QNznWnO;&{ynT3o7ag4s24}79L!Y4CMKE3UNSP5%FD~=%WVw)4caE4C>o`v zSAkvxkZ`=Fk&RIR^~kV7T0#OT#SRO-l85S`Q&xH&^CF}NWVPOojA&7o3#? zKpccOEH?9Ay34nD4U6MJW1hq4*0|UWms{a|27Vna;O-Q1T!T3*fBbkYNa*AaCui?8 z*Y4`XEX1MrN$rU>uunr>tevHy)MKwnjN6%(Fq*S;wJWu*ut>V?waUSBs{X3>L?#qGM|9nHA7I25qT3$SE1 zA%|l{1{a7~v?O*~FWuDJIN`Ljv*QQ7Qst0UA<28^6sbgL?SE8< zj>$iN(rc+@L`Bab`o@lZ6kIO|WE{YXmuj1UE$7sl=Q*#A*LduA>y1ERSZiagM=gw$ z0mgq){o~s=9|#PrLhCW!)Ybh=x%f#475QQ>*Ny3}adDnX%h0P3mKg%k<}gYSlUEk< zJVIEkjFYaQpx`i5#Eq)+4M=M@1?D)6x&n$J)Ya$=C*Lbs_tbW9g7M+T1E4QcS0~ig z3ar-dChQynxrBLyC}aX6!D*CWTUb~uZ@_kJg2c)WMZ)v+*csux(DuvPmY0^)Yuz5; z-{QQ(&K?4<>PeR-1}RSxAnltsZ+^p0Awnt08@JA71It8!7HnGs!usG|BnR@f=~c1` zA*T7gPU3);lvoU~Tqb+?2+{^}&&TNy#tlESlxSnPtfU~Gk&2g}pO0we(BU~CKR{?k z?QOKNmW@FE1i`JZogA+AWUDZOxSPxTY`oqp5#%?dHexB%dF(sH>k}eD0YW#fgzLrb z+-lI##hLS^6qKM--PGES`j?*OW&$DOcUkj> zpj%rS;y5}!HUmz|{H!zy`o=T_G$11=ON{_!K(HZ(feZ+I^UIks(d-@|;{Axa?*kj7 zRHXj|BziHBCP25*gE9@Bg& zaMd)>8Rcx{H&C;cD$z#J1P5!~xq*p%?db{i_rC~D_Xj(X8H6n0R_tElt9yHUFs=ge z*}%X6XfG24QwlH#u>tqJwdZe(qu#y41LdRNeF>@*;BCp(B9O^UPwUNkXlgZnv_`VZ z!+=St*XwREb@&xZXEN2QaSvDIdsYn(na(v z7RA^KK&{Gv;Zz$M8mOyR;kwzQqoaypMvzTB2oSqL{rWV*SMCnHZ{>cS@nUQskl5|JEBJ+m9E%Vpj%H>;ppi2 zpehf3^?m(18y3t4t;x;J-G@y2R!^bUaaAP(V9y~0YK(!qRjt-R^UzcC$bllN3b@ix z3>vw@_Iyv%v|VL&bq>T$I)n1Z54Z}L{XdanBkMam{nnw+02_B%^Eoc`DqD?!h(VN8 zTwJUu;JP7t_-Vy1b1Mf53ie?=vJ5-Pe6NM4McD&0ukiE+-xH4##PFhIV>pwc6N?R$ zl$9BQ)C`PmW1)``I%)ud^fN(~7_D-A2LweSRSbV)x&_!PH46(1f_$;gV%vfUn0g41 zPsryZoj?3{1#wae}DgUTVxPm`a+j= zeWdiT`Oc2G?XBGfsEJAf3D3pNEyHERV}HYJl@=+Lu#4SgHh+;C2>?n^v+1=yvBAal zp(9w1*F-~CWkXLl6KWSB`kM7b9l{~9KvRR;`!+m$%iZ1G1A{T^&m{pQJp*qEl17td z)8xuZ2W;kGu@RotaA`7Vl(2aEFjRm+is?u>Gob9gSna#%2>d4yI(pQXtzzfs*eCZT zJmFtpGJ=S1kY5_rPR#Lq&KWN2lfVl}K{kM}{HR_;37}*Oz>8LmOE7%kn@iuIen47n z4Cs1wLBYo*W(fcd8@3~iRW|{)6b+;|b>z&aswy;y-cTYXqS=iKOG>`Aw7dbP&F-?M z2fBBsI0YtbsR$u?AjbBjJi&uH64){MAsDa+)an@kENL)m|5RD|96k;(_kGaaA3_6% zxl+FzW?^9=W(6bBMwswsASftk7VbuNz!T^0C3)h7B-4P1mW+z9bILz27p}GFY%U)d>`T>2q^t3=V?-|XG=*8fn>DK@4UZBJSu<{FHh>%X< z^V|mPg<`dn70{zBkhnAD6FYv9g&SDwkA#(#Aq!tZ;F&l%`(BBb$^S2#Lop)y{aRd%o#y4@;$qUS3WH`~tWW@x znDGB`I{fpN{!COXEbkGS9m<^DLN7gp-$fi85Yn+gYFQX4=!E48tf+7{c2>Ch34xek;B|Q`9|UZgdiSUM9Z!L(uaqE3rGa#~Qg) zf5iN_7&>Jt><5oss2^+UP32m;y2{%F=99tMMKh?h5}DxJ6E2 zU`0h+HWeJfrAV3izUj?{yGQ69a)eDl<&pN&AqA+z$7MOFSAHx_x@t^H(kCZpI)&^w zgR;co2@89qG1&|klgR#=d}A|%&UO+AQ2u1)>o}MmHR0v1hf=&dTR;N${Ro0^X2;N%FE<-xk9d!Ul&g;Yr=US@TY*B z;%OhFGiZ9(LQkq%69*F5i{vE5yp%^Rm#H#F#40`V=LN~%j7Y3J>}Ds=vbsl&-f(%S zuDQ`RzprN?QN$Ym&pVF) z9OdY0AIC;%GPYe>^$BPq)p*X2MEC#PqkkMQ+Ic!gLiV)6t=Go>AI9^-%C$8`-Orwhf`iLRK; z3cpMzq9Yt`V&%t3c8U;u)J!I9i-|OuDOz;#qqE(jdsM1KUb5BjAdz-_oWY9pYSH@E zFy=j5_2|-Z6}i!7<(2pjtF-SaN);MTj3Gmbed#tt6NKA$nU|@k*Im>{)PKjUKB+2y z9M{fIgV(p8aFgJ+dSWspuyjM&u}1bCygfs|cSQ&aP_ z)=7ZONi&UA=QByzSH0W)jW|6%ROjK_r!;Gvl-Q(rcpJRK`pMq2Pwi^n2GT~xKgchi z$;w&Sdqc~~%hJ~rpU@duv@WsACDT><+uY)b zgNJZcke@XvJB_zS(M?S=buXppA)H>`^4_2_>uiWr? zvQZJ!LjTXdYyaN_WGM~q4hUCfVH3+=k`_y|*I7|BeV?xBiRR+cS&HH>2P7Wf?f{gSd&Oa;PiWu#wbU5)j$0Q*Vrr-oiK!+sp2hTP zRsu%OZ!PU-o%t+snL|3%KiH3FB6X~~94n**9!zPQ-m44<@7KE1P-l4VP_=RR8{X=u zoLj?Ne|2hSk$ZN9<=;EopV~zCEuLy>sOy;+B|OSCyT?Rx+2{;m=hUlI*@N=%?kN{S z^7aycb^iF}HHUHzO+HCUSdpB-Y182Vd4;E6$9Tq?&MG>Qv6IJeg`r?S^-LlUX78pm zF*CPUd6`X(S>8(>Zo#pl3tvcd+Ul-*TfL6 zw7{idY>5u!fpc+ZVj6eF6i-Z`=%`y^59xP{nouTunJSj4+b{ z-7wu%C<7gVRLSqv47F(0xWKazs8i-9@sq-Tjhn?0y)$R%cc|}V5 zKRG(x|9>?A=NBHg63##}Y2+i#CHDb2dwBML*K(4y!N`D{MrWLb@1=iuK^Vbl$UpvJ z{Xee*>VKq)vGX0q>a{IuR!V)kY0F@TyHm4w-6q^X#bu3n^hPwO){(T+IwjhDcM2dYTd!KD!;sQ>#Ln^+Wyd0!54c-H2d==5P#6oX6hF1g{gH zKwl)|qZON*8NM1!g)(pLd;ALe+Q!l(Xikje}e0K1~8;g6U;c@ z2`49k`0%~4@z$7Xy5iFU9RUFEAQ!o24{xupKTcM#o$a`tiUFZiE_(;8!5Z+uzo(0)GujUk+FL1}P$ zL;HoF>n*~#?49(&EiuEmYbX;^6*6Q-4`X!fMbJ7E&tACv z3p@~@N=D(-5(@h-HIb1>Ukt`bG(u=>1|#n-3-3-3o8h1FQ;oL(54z~=5TDkpwDj{V zHNSEPn}OkJ^eI=oBGCuv=Z&drrj(op`k_2RRqW)HJir9O9QPI^BMy)X!H4-6I9+KQ zaPJQPtM?S>2w`4CMob(jvy=yJISN3yKr*D!B#Xe{Lf|oFAe9Nux-~2V8aKL8$B6OesE7e&@ZLEDqs_tY zsywJ}9F>`W_jpKLk;G!K@Hz4h@IxQ-#r~;r9reT zTMrfnwMQzxThR_=^6gUmf`0|K?3=DX8I9=UM7~RnV1a(IgSn8jwvlRZ`T{1^bIXe` zD{CAZiw6tlyg+oEC4wJ89bWV@ zF^8i+bId){y^+0-!rqVx_GHB~eQvC}qGemqdSW?`J>qLy5bg;Dsdhq4kqnE0?1`Nq zEbnvBP_RcN8(a4R9zfW_fSnPt;x7A}>D(Wk8gPk^is`ucf{T{u+KP7Mcg16kh-s!4 zjgS&iF*j#c?Vh{7b=;i3g7PMOlVLc+Ifv}eVDR&C`#HXrWv)U^owwzm#)-iEYJ-W# z!(00?b8|P})~mgeC*}U7VSCZlOg|S+J0< z&RgR3+h`WXB0G6jcpY)hcgJ9)w9%cB&fQ(&a~vf#?$?;l_|MloV%ht^-; zdec&l%o3n-h=WXtDC9S89Lx$JM+HE80NnNn=-d7;9|D(+X&f-C!Z^uqeX0qj;Wulo zU;=ImdJOopzJO&Jd?LT*=UYJ8`&VY3T`Z`_PJ)rK+ejU_wP8v%H8&>#!t_=|U#><^ z(kaN@RN(7H!TA9+=$**$3Ix|m+utvpNIpZP?eC1(tZ!_jfNeoJM>P;e(Q+#5`(&OLcc z_#39uG%z>?on`|@Dw*y=zTnFW?fe!mc2c%Q?j9Sk{q6g@@#^M_d*X=qIAMSD_v~Uk z3klw@#&~x!0msJCF>c$PB@LD%_vnQ`(u)Eot9^^n5k*cEygyh=#z$jC*;NmWa;J47 zvy7Mw0zpz_hrVwJ@QPi?l59HhE+mH4h^-mC2hW7NvI>m`xcRxg2xn zgEhGZ%^%8e*xD@*Ovf(s0=4nm-mVC>uOg&xN=M^ZKN#~JNP zy?*Dy4|I)QGN>p$iEur|Amfs6w^X)P?Di-*19pzF3uk{`onh8(_)w>N(`MK4TTJET zgDE?gRTk`cp~Muyv`Cl$qrq-y%&OV)`T4!=jFq_EHYvbySt@1hFPh}jG-ERw6{C|T zcfZl@AGLWNRXQ@(_vf|}#}AuTl$4hnPlfDr&Ue3~w&4Is>KAQk0*2uukf?g| zG$X+Ss&ABjYGDgC<`UV%4`3uNblo&Y{Km`0ppwC0;X2F%q(QpK0$0701`K<6(9;)* z7?hFW3E*hc$cCn-5`(78%e#n^%WAyR-VX`Il@;s4OTD|5Jr6wgY+=+;HX$x5ssLJ6 zM;y<$4B1%Z7(i(ovhEP?+cUQ=fM9hVq+)Q%3m~IvaKpy9wRY!%10EoNFJueiD1UT( zH1P51x48rGZ#XOs27~Ai)3?tcWfqkxpB`z0jTOYvt7J^Ol2<6xi-kL`Y52_qbcZ~d zxTn`a;MO)yV-U`w9rFx7Hl}R#k8~DCzlo#8Tswboe?a=x!sqs{y)LSxniI*z?fX5! z%E=NGKmGA5phG=LD58%c!fTdYRez>gUF7v8$?~yY_J|^QFKQBL|4Wo4(o{4cG)*(L zn`mrC6zK0SnYp!r_|hRo-=aau*S2NGFCEU%07io{UC8JAmDXVCxXtVE3(g9FMK2CS ztgfWTXTkm-l~JDlb60FqSl8HJiN=WZb09?u;Aygo$if zPBrLVex|88A1H2J9pI&XgHFNwz|nkjr2n>Py;~OZmT%2PqxOhAkM1Ov@$&*bWwHha zS(V}w?hR6GM>(umQAMWFU&@`F$}RELe_SAHy>HOPPSbhZVoC~rU45uANGSoe>pCCb zw}FGfB7>({%1k;n>a1ih+)h?NeLOoSYh(){4W^Bk@$t7|e$;~}jskTY4DysJo#N); zc~`7;b42-=kx4}`nO%90f;mc_z-x%rm^>Tkm*2o5=ndx>*zHp0OZvbn{NrEp3$|Gw zE;6hzX3Yrj=0)cv3QsFXN0*59Un8a<_-HRCmBwkntX@ue%oi(Bl(L$x+1P67Tg#sX zb^y|fl{*iqL=RoWOqlS;ihjH$S%d>RAw@Dj+ttB!3P-3uPgeolk??{aEG-%u_e_Xj zCbar9;>-0+yTcU$5Lee6SPap+ zF<%vP6_2qE!e8pAei00lx=e8zYjLVGxn6Q7B_$OW`lF66v&;4jbLfbeXm&wbKqG^6 zfOrm9Vv+j<*3Rmv*tX3fR^iqFzNpxfb=gkqb4L+^_Bj?*4`gROFO_!J2aYoP6Qn3 zFs1rFKAtes9;l0x&4V{TSj62Uv^1Q4xef-K4Q*|VR`QQ-`TF{<*Pk8-LFN7Z>z7{X z1dJKMJPk9)M#zpgZ{NBdS1H%C73kEOm!HVOX{*9QHWavc8(|7z`ZMW8mm^H~vG$fq zIt$CWj^an*7y28YvZ8mk;TXT*p{ta;`^8+Wd3GMq5xKl zdgGjNE{yK%U=RdHTZ|mEThxWqgy2WybZ%~F$$``AkMc2hY7=To9!5u`<1qBR!weMY zHudyC9`I$W6?DKj1tv1K8>DBzp#hBb_sonjIv$Py>FbY=%Itvti#oEM=1pL6>fN?8 zS;3jIdG?NXP@5xPOma-hDSLShJEO9z#!&c^Ct4xd5TLH zpX_^{W`@Ymwly`Hpv8_<+6BzW;9_9YySax}Ue|)&%p8*YyzVjhY5Pc^zBK0@Ub=Kd zlE{esewy9A&|^uNo*R$)TEpozYHkYU9jF{$Xs#i$po8BUTEp(4mu-fv0&1-t4h`R~ zSV%iFQPc(WzxS*5!GC_=&dtDeXGXx*;lbd<%x!m!1my_yVCyE7jM2VhZr13y$N^I7hz(L!fr|m z=5w}&SzFl);CwX!%^F2TMZ>EP>gDsX>%X?p%tvLR%NnJ!DA`%C(p$IO-qSBw^#^w! z-fpT9tfb?O-hSZqqmjy<)kyZnyFLy1ia_x%3nj7f+FCLz;=AjIL4B2J-kF(Q+j+Oi z?ArcFNqporcyj1!F(N-ofG_Jcd0iR1jdTBTI=hzB{)|=C_94wsfYHLI6(LVtZ=aHr zBHERpl})14gMFE}BG_w%d}Yb1G7ITN<3QOR+WYNw;S5BGwOtvi^SJ$aOy*R+Xg1u-tWdA6(sBYhrGF_VR0^$I0 zBUwbi9t?x9M^52UR;&8et5;FOIXYAZ^BfUHFdl7yF(3odEA>|b&WDr)1jmI7*sD&i zv#E8Q**4LDD{*UfbPHVGUYGvcG-1%QZ)9Gy>O&xS=gu8(Ky90Q>jrQxKpyr8@d$Tx zv?P|XTMn|pTn|i@buEq=a`EPDk-Xm5KAp11Nct5-kM@u7g@g!97QXd=PrXIQ~mMN{?$!FJNZqBALq>648<;;4sJGjdOh`GwA$6ha*RFkX z*FByAz@D`m=eIz3$ob`QiPrT&;PK)xpu+MG4EzJ7^T=`Oq1SD`j!H)EIXJu2HA_>Z z5U-!8n4Z#ZvK;l$jeqlMzoq8-dwA4zE#JF$4{?owZi*a}!E<(Yd=&8h zJvg8k!T$fcQ}8eV+|X0=`!f}az)&mQwi#ejpA61VV4j4uw6riI2Xja|oMUjaN_(Ak z^76oOFj?dR&|!pu%nuY$K<7XXCv7eCAw&3^mZ>;#00TKHb=!L{SJ+I@u&{K@ZIlK) zHc$Ig*_w^$xSU=|cp@ahCB{FZzJO^MpM16USgZJOcW1}gZY<$@t-l1iwzXx2-lCF> zFd=)}hSol4`qRK_5NL~`qZKp9+z;9N^=e0wgS9?6QlKno)j|)uFj||>yN?U$LKhc3 zT|V->|242W(s+>Ux_UYAJ%`qf6wlk=sXtzd*gkU8dkf&tlZJ}Qb}`{#aEc5)pJ$LQ zR3UP&EV@~}k=J(b=7q}?Q-ckR^d0Ik<(yMnW}1$T&r0n`Q3T`y8Ja-}T9b+E^) z?jCRZjn1^HCwV5an>1E=9=l~v;3>rxA@CXovsV29L=+T>_s~A2!Mu=eZT|l+>mp`O zW2PYQx=XvVmrab@G^(0_KEd>3n#t@Q^N;W%_Oii&PwTNIoUIYeZ5Jp!yelfW>yLLx z5#=ppL=MiufQE7X=1o(FeEmRhF0g_BczKsqw=PW~S=d9Jj@xLHM0Lusa%S^;OXJ&7 zr+%}T?)!}PrR7wh?5CDdU*_fh)kj25Di5QMkVRAVnuO5dp+;PS3q3tI)HSmUJ~$MX zQ^EM;d6yj>;fEx}-TB|Oe5f#1jUUsV4ivksi9s-_zH(#h``iKRw{K-8a&RizH0X&v z|KM;KHmST9Hr- zd3d+Lo%}?rHg4CW28Uwjwn&q#{?3+Ju5P)64TY1ZAPPK=jR7Pg-hES*VoANFE`fJ)nRY8oCU!k&Fqq*2nYF0#MOW2Fo48h zid9kqZ4(&Pb8z`V>*TRe&eLy^<2DSXrC7Pl<-#-a+#q_sB3O>Qu98f#G+{>Id(Y72 z5vupPp^pW~EJOb0a%6m&lfW2Pf}ny)u(^>`%xKWcl&`=hI7@G*h`bEQPkd-#_FiPO zE^CAUzumo}BryC7dz;$M@Km3+)A06*WF78o@eY$WK1^SQo9{CZ`U1ER+K6fTAy5E z3W<8~ToC8eYzlNa|v7OhD7 z-=)CMCve;)iqYf+@9CD=K&vH>bkFM1 zy4G@TXsvS`&7DfV!C&!)kKB}&0ID{1HR3|L0U5F@d=;80clKv@{p*(FIl=Lds*dkZ zFfXk}oY_`#STFS-uUFus_S}eR0QC(Ube&7vJ4b}WK=*qkAT=<3=O!x7k_rDH3D@iT z2Zu-jXl1+`xmqNZFW}{y*RiNI_L@W2$+|Oae<5YC@T8VLVM2CK&G`&k#@~d*`IDiy<6|lvuS)3qVdG(a1!7M$C6XzBP4s%Q7=FA3r>! zUSb@mae$bm;Mjg3c&WgP+FPz&sP`DU=VLgTg8*AFBo~YmUIguUCQ{e)H+Z8B;7|~D zvL`sYjOPoktm4}LVKSgle&E8&O5sW>_cWCe+2uUu7Au?hRJ3XWm7JRt6P@C5!b;S4 zNtKwdfuVsaA&2GV$_2A}R#_D~KNkZWmtGxsQU;oP>Vd=>M$ZeGv}Rv1j2Wq=_L<08u&Ykanjdz=L(MKa z{p`7Icjy(Ca$?%}eaF%G!A{NY@?gvtgU0JuNqiZ2U-IX>;t$Kp^hC^vW_aYwZApd| z;Z{|e9vb8>ryZQD>P$Xxhm3S!I`+WOX^Wno^h*y|>rEto>n%|6`BGbzq(IlKlznrI zuhd}X<&&+Y!T0Ef@w0l5f;yH4YlFrv5ENNY8P^7=lqS&{Nk{zp`iGHB5FJLdeH4o6 zKq0ITSOc{|tuccESaI1vo(C-rlyH9;z4!mojza^(|H(m`)4^zFlUgK{Bs<*r00K+s zYAkFe0F<)ZoRP&Pq|-yk!&gbXfFl#dVESWF>#)9l+3pS3{w!lsnM_b^TxdP8TXy;dYPER>!@0Hhk+56 z-`j3>t>@nUv16xWN>?q~^(ZVYod)YH8K0e$%}}|(;lABGZt92tZqQ8PqVr(sQ%w2O ziTvB+*%VbyD+K30cYVQft{9~m=pj5h}6Zh5fPivdPYA`(Vlac-8}ss#GII?~7`QKOi6tPBp-Uht2cI z#fS9fE;y}0-&y1$wp zJaJ#9XkwWSFnu|G8V7mFu|+4mp29X7iXd;Fd~5olTX(BDE+9NEpjrLHMiHk;fW#vMs6}al1GZPdxdP?5e*}h!q6e+LjEC3+uLbcuD=_j<3fVi`a43nDmxPE8yJ=CQ|6E|G>G2z6-*n3{2(Ruwjk37o@ zo|!uwZY9Ym!1(`+c%)Wt6kjNdF1`esseW#2#`rsg7R)HGpD?`CHI_{-RBP=JW?1^u zvQ%_${(%dXz=c4)iPz!$oHWJiab1> zAWAqdWTJjLuAIH`!YL8?ejym*9UbpZ!1sfIPKgf$77lXYAcvXg=;+2~3=+7kZh@HY z&HDi{#WJe(+E;|TW`S=SNCg)u_<)fUW(Y`&H-al%T(7-ZP?1-hpG@~ch#05;f;2r4BkR`1>hBS#l zzPQP7V0*jY>v}Eet*rQWyossI10t0E|A(@-j;m_z*8Z^z1f`@^1f`_A6a}QDOORSL z0@4i@qNIRyiF8PJ3)0;w-Cc{0cTD#_&-$*JU6PxjM z>xQ0*O{~Hs1BXObv}Xk%IkK7N#>@KVJ~K<)AI-+fJt87Vq6AG^lPmZ);H025Mpbx~S;b?nc#SJ7D3elaH=Q%R@H zC1VoG85Rpo>~YN+A1ieZs$*z2G;YuaDURXUwyfX5+h(YaQRA?ht*(sBEt3qpS*v>5 zO*)ism`eDCZOUSP{IQT``){%vM2$^8l@WYx5q7HoTm6f9&8<@M^R;;*^Z**R*i6QBO|(&fHW)d#UVh%_2-N&By%H!o0j+ z&_;(PW((b~xwTPGvGn5*+J|xluT&9@2y&7Ir61T0U?MGlC@w7!e*qCgm9*gT2aqYj z6Qc5h_|#<%_zP$NL5mw((|O|pY-AW=w|cgxn*y=T$VS!QymhMqq<+rJ`0Fb zBD6dg`ZVuYmPCf96`nLM- z%Tw8I_YnC;^PsF%jamERWosJM20~WcUWsv_j9v|8dwuDUxjjRarsyTTF0QaFAyL=l zDaR6A(nSYNhwSi7C)?hKf!;wJ&_HN-VJTU6wo%pmv8B?3FPo7wV_DfhS&;TO&>H>~ zc&Xd8?FP7THuwc<*qDeA=|TQOf#r9Z$|nk~78x|Z@L%Up@^J|KzUES58Xs>T(kG;8 ze9co#EH&$E^h)S=qnbLow=8c9$^8(fLG8zNI(_Llr_w%0(|dNLB~!9-u9VJK9c~mE zndX>Yd^I5H_qay2%$~XRSkO6bjyB0hRL(SBpHI%IEL>0yN~4W|O!K&fLqbbOf6i_mcEO+E%v$!yxg%^tx`U83dve5U%j>o$;et^A=^NsdrL#S zsSU^$HCXj_1H_)RHPKKAiILO+q+?`MGk5M(!603*FTE|?d*_*Dh~_^SA$!%O$7fku!eaAFYbEazjrJ=( zeOE!uB)sUy^0~%(`jX*LG_eamz~r{$>$*#K6JGa4h@~Xa;P^pG9t2!a%OUo-z$DIK$&9PRzH5KVPW5xR)#3R8+#ndXy$W zqcPTFpJ$}cWl&5b>{4zNG5r2Eu2lgP+x$e0_1t6r5Y4y5P3u^w@`=)tGYf5-?jaxR zQ{;nOOC=BI3-?f0?mWHN5Gg%m^?*jV%s=R=gsg=)9L`wFT(F3+|AUD>ZVYl+xMy*P zavR<2Lc{>@an1|v6czIOaAadC!@fNgduPgj3z=kLV+TC`HuA@!qL%&NbO<8kPo863 z*JSL1@NyrX{YVcr%F&5=xqxG^DyGw7^@T{>Lp04N)K5 zC5ZpB0YvxcWj~+$eAF8Mfon7I((EMo!+i!UN`MIapHO&Q16#Ba@?HVb`Y$%@KY!{8 zfZRcU|03ACNPWNPW68xvxy#ix}^O5iXUgAKl}ED*|{hEPr$eLT|ff^gz8A- zR2-p%0$>7{ZdYi7eVIT0KbiAqFm%qq4MoUw>-r~&azXz@{@&vq2Kaw_SE?;5*YN17 zM2Rk6&mWfW&j9`NYzm^iM@5WTl`L8A!Vu26Bu``lI&AP^=}sr210fX%KY_iw>jArEkd4Grb4yI0 zms@7N!$<9_QQE$tm$0)pZP}0~B%<^syt>Onkyf@RDXVd&^epxk+XJp%7r6Ts;|(gL zrs?q=A;NV};w3>~i69SPGx81G5Yp8O+q9yf#dHHK;{d^eg|7da=*h_mqWyxoa1xw3 z-|`cJ_{Si_o9aWuiR1SCPw?lvjEVUb{*GgG8{U?-=QO>46o?2ut%q_E|KNWf`qFHZ z8%&3e&Dw3lq0O6l-E?6zBfoLx#FQt2=eC&kf=|(T^dMDV@YO#+;wM>ZUGdVv!L9@e za9m_V)<-ZMgPM#;>GJ;8obyI4AqK389@Xwrr`hmZ*NB1M0yPXXm^ljUPvb)C^0NO$ zL`)+F7b?fguGCZSLt=;B!k|QOVe+RRGo^=k$S+NoQStnwcoX>BN90awM1J&41;a+CWW;DTsNCNM<%7r`o~u6MfwqMup$CS?8Gm;8t|4* zv4qB%yELy|w_2jw{Nd`bdES(N(aQ9J_1wuhXYrt^KxqNy629W>9x}fpUyi&rUJQ6& zWQW-I?mRvfFNHEHQRYoO%sOr$4t#o>(P3v63L6gF zJ)<>U)SZnO8yg#de@24Z8gLt5DC}IgMi3A7YKREGRAX|?NzBD&ZS-Yn6c~j5v@|d< z5dZq%CrIszK^Fhh;{1gR%;uwf;cQ0lpo0Ymf})}#8JN7m&gr?ebsZr+uk}1)Ed~Yv zh{F>`x@KkcnCl@H=sOW$XSnLUjA%WvSRo9Dm85>t#*rT==MEDsk-AC?CNEj$FPD{nY9Fxf0BfU{T~;#dJJ(>`FG4_=mRtDz|^Vlz|W@Yri& z%jS+rckP136c0nF-|_o_nf)xc=8U{pqomW{m&8G-5I*J_aHH$2u6x z(tZMSJ~rZQ37Tf8Aaf(k^bN<{8=mKg z0~I1FfNe*--{0l5Y|7Gyjawg4-hRoKR1ajU_OtCCF`0HHdg&x^jDj7$mEBksOlZaH zYkH|6{inqTyNfnEWNne&`G+0aNO7vP0)&Z)y6GG5E45pyGSLNBu3d|Rpjf-y?Tz>?M+Qh;~qc1!uh5vS(fr6Cehg{_`HK) z9SA~yEu<8*`aWA|tW;cnKDV&oS6kEFnyV7T;t4k~%*`pF<&*ZmfQb2=kNI6r?qc!m zXzd?J?FHG#97shZr84?kG$}~otIi(pA_y{;i9)B^sj%U#l|wA#R=22Cc;112R*6gX zl99a4oTuL>MHW^qGGy#|`QQ^N+Wi2bE)Wz3qnnEKQQV5=i*1huGk$^v@e4&dT>GP^ zCHY|^Dy}23yi1&?&ucC9h&J~lSo2|^3>N7MNR@2sG=`&#xOg{e=C!GZiC8R%1v7tx z3vybnMWge3!6w^F$3T&Lwffg9*KIbmaCTOUNK$jt&S7Au#y8H z5Qvy>AT%lfg5bZ}`OwSH&j1MQp*7r?a-`z}JeW7wTy?TKfw@e^?lJJJXtPC<8#f*U zjs+$Xm_W!*re#)iJp`}5n~0AdK%b6>|090b0>az(aIDx`NQz;xPCk&Vgo0rgI5xkx zk@)%m*|WgH&*yT`Grs4Jlc?toOX)?aI$G6j{RKP0pktAZIq~oNVa}MPudDN2TfJV-@<%DxbqBQAVyw`gpLY>tg;5CHd!C3pT$H za0(y&bFBQ=z*~dG0%}Hxf*ZD5VLUdejU=k%Kp+BOxxn8CPbuU;0=x!^yMEDH#lTic+&`*C%qe9&r($jK~q?zaty0ntqxd|sb^Hr-7jk~WpI z%~EZMdtI|cF!l8ch}U#XQ>q5*JVTfljreL%Q$87)68i_O$HLa?0ZVmtX^hO+eh#_q z4O|HYQT2?y%3?J13>LYC)b!N8S^dXMeY@OreK&VlB6AW(lSJF2`CQTZ>HJ=M8;Wa; zp?fuw1dQ0xt5!ihDm;YS32M9K z2<0tYdA?&Im*e8$OBT0>D~_%|y@i`)28O!J4zH6K|`2E}Jvnpu#*E|QzJ^Cj{ z``~~X2^%nd`)urQ0OfssAo~vbLs}*#%}{6gI)S)*H-C!6Cpnz`bz7>fg!t&{{fKx} zVpA_MU4myr(fO~bc;qr1I5$GJ*IxPDN;ufHv1VCHQ=nZr5L;0TtktpU>o%q2d%^#l zKq>eSf>zzTbj6A2xjRe3t&U7={|)m|O>w~VpB(IJPft^XR$5=kC+6rS7hPWBK>2Jd zcgO6VhkmV;t4s=Jh{NH5&Wc9WcyW$}wa&qS>~hL*DAw?aXr%_f4|#uDfA`Tnm3a!M z$&+~j&5bKGPNVYTx#o=RXL~G@YwLdShH~j#UNu_`#C#(3L^W5BPHM5gwzjd;aJUh@ z&}#K*hwJtXYQN@tf;A9R^gmPzt?#t*qIK)O>kaVoFmIaPUJz|>91>Xpf7ueo=L<;L0t2I5-UE3N>?D)ZGe>*Pv|vFaX&o5=W(nEg>IVB< z1XBYuY=GwHR|;XrhTO2ghKBz3&rQ=j;W5mpE=rW%wuj7ZXcl>E{Rc5cEAtKG!e&wS zs^5w?8OH!Ux5O^jBTE7(g}@9H0F_af^`Do{pFb}HE=urlw}1)+fn34D3x>&{7Gh)b zg;7(WydD_WdQcQd7BItRsLqeGZ27p|M0#&4{KQtGZKU&X^uGYAXRC_^%Xa3K_pVur z| zq`V8%l4NnIPnZHrcUN!V;hiTZU!3~v!#U{JG0$0B`>Xzh?JiJ;bwl#BLCb>90kAQ^ zAtjZRl=L1Y8AhuWN(l%uR`;5F%hF1e+pxW*WO<(AlH0c}fy)tq+~nN>wZdcX@}pZFADXb>Mb(-JVQEsPG*($d))B@<=DFz_fNUg7<`Ra3lRqqFl{adx2m7EVu)|uHvyBTo&xZTy+ccT^$qxN z7-sHV!^WQLh0m2FEu>huf)!1)+*Z(7z%!a&5}(R)u!Vaz#!+^W%w>7pJy{x&h5o8gmE^Dz>V& zbwWZ)WRf+y((x=qP(DWGW?BwYF~#qCyW@oD*<_8HI+6ZNrOX?WCvS)C)>2ss$cJ{M z&_G%c6O$Pf(ccsL`;NXEz%^t+y)3q9p0?n3ieikZUtAkja5M9Olf0~DyOa1r^mHFA ztKf#buRUn&xGfVCnP)jed^hg9;ZSNm?5oUpiv^6LpGZCIFDsDa3Fb5#o5?&iBWhG( zGVOZ>3wZ5^Fsn~;DkizshSsE01oWucbns9tVzQZiwJJ*eDBhJfHa0d=!0im63Z7rn zbn+z!IAc?H_1ZN`dioZv(s)A_C3SUDpsYBGqk#biV5obgyhEYx z?D4Lem2NuRLX6o~l`pJ0V$Y4ASO!}V`DX(?1>3zGgSM_CO@LgQR54oB3bpG;UH&(` z$^x}=3a5^L;#DPih_6sNYqCa#vskQ<`(Boenc0V@I5+Vnwk9ute4ML3(?mcz@>P0+ zsewQcnsJhRskZ*VCd9J7R?|$eeH3FSx=f)MT7iyE=tY|8k2{IXF?FzEH zhV69vf*0xTk)<=_FBuJG%TzV@o6|e|whTjRAP^^VG);V|NJ3*S9rwX~lHz^bJi(l`VIn)tp)9dBMp`Z*!0G?p;Z8=$$sHXU#z}i?cl<5ox^efe0sy|T7;aYj&CY~#Tg#f7rQMu>R z6f!=<#89YlnCr_>pxdW{r6L~4rr+{0Ry0^UwKXp6%F39zwjKWE56Ng zqUM1t9KN!0%pE)3)3KpkGK03r&oMCv)B~d6^-9;Dab|Js3>*u->9N+NFp>Xu{wSVs zmzw$`sFv;x?n1=Miv5T4{1?7CZ+zdIwR~pDi=x*|Ijzdck-7Eil$IkJ<`QTxWfdxC z_9u8v^u{7qc2IKyy^zS-29#bPi-ZJmK@41}1T!%(1zOoc7qE4U-5VW)p_A_ieq_?T zh5K*LoI@z%r7-^JsOjHc+Iz=&y+s|~X-M9FI zM^TF-gmIC~>~VngNjf`21RKj>%r7=mVDG>{pGus7v5rEmfN6F~0OP2_0XIP$FHWlb z#rf5f7+aFxC&WvE%;D-84yFnE^gr&_thegz2^2By?kn$f9hGbSWs`R%- zCz^Wc17d8ork~0Ztj`B)8|I^g-N4f*9q%W32g@!d*W5c-;-QSUOomER}XzRLQS%I8JG2L|*6^ zIeju4!lc=Dc3VRkY0QX0qoJ!>ortbGX`=^txrd<50xFKv`ypZtg`7H_mZAP7))r_6 z%=or`l%HlT4t`9Pe{{aoXdL5zXQDo| zZyOajLDBiCZn|w)pijb20mTXPvvQMqJ|C}7fdsKA z`m%P(Rj(tFd6nmkSi-xvg|J2-Do)8Hl^zlnQ)Zdmz5GAZ+t)r!sAwawl%yq(Q^ zVw-@*u|6gl&sPA~ zDL_iinc0k45yqU{uCXwfdmo`%fmA$#I0(>D-o(MFf;tfrg^_PHa_vr+U$JFyRFt-e z;kt%~z^1Kqj$r3=hayu`F*Bzn(x6 zBv+3P2jD`dfCp?Un4htDRysQC=5*{n?D&HiVO@1065c;Z6_O$JF&j~c5mQK2X`-D2 zdc|s{j=}7AskyboK=W%Mp(kg&HE1(89`J?3rpBIU*#FQbn~^_giuO10wx}> zj0O>1cDsO4U8oUJOt!a}Y28qvD;2w%&F%SptId)m0Te?FKbF_MHII{zv*%*B+f)(} zql9>OXik89awgrEK~Q^OnkXPQ0RH|*Np)L3bA|$3av=?A5)=~%OaR!6wvmw-dbLmqDERE+eIz0%GZ*bAMl>MvzN{B=rvv#aHd-OFS&{lRkHY@PaimVR@L zm|3M+gd_3WaQ4)sVS8(%?wfBuH9ULwMB`p*1HW zur~99fq-#fyY#F)oPEGy9H-g!Sjt>5dVfo{K=(?urZ7&HskEn?z>!Jsd9As(Pe8E8 z)@UOyzO@xwe8$cabl#V$V*3p;&Oi(c2FOs1j%L#+bg29Pkx1s-a+J}94HX^UVHN~-y}gT zMlK@TyV2V_Xao_>;XAd5n2`yb`({wzE*F(;OLjz8>(cLx6CF)Nm!Bh1huHDLoo4x@ zOCS3OFa~QOr9YHo*o$R|wmAce*l$pXbKV&=K%C&AL8#``*93V%d0Us>AAF2OU^c`_ z4Se-cu4*OSic*XbYq+E{OKZq z5JfVcJ6pm@wn!nez1A&^#oT|im7!hZAVkc{?d&%@zg3Y!Y`@QLOF|Tn{ucl;a9E>! z>y0~|(mAGh<$h}tzo^4=XI@*suKLZeP;D#cp5XeMrwd>h1beJho3mbsU`D{p+(2By z)6$m2{4|>J?OAV@-`S*Hg(0K1b`*TmrB~!FENmx3ROQhR!}^Z|H&D$6Y5f#zu2u{qj(7YW3P|s&z`=C!tE6!PJ7S(LLOHKVSjnNI zf0Zj?*#^`*j*rN?*kQx+5u7a%(2R*m#{3w%m`3eSn;w9HJ`yDaVrnpxcmjPqG#s!- zLZR4-*kn5HEE~Pf9eQ`++Sz;D2BkQYJ}oV(cb7hSd7;*e8leEGiC)wWb~OQwWTkIR zhgz_DUCHS>^HxY2s}caBT|cB#8dby^8@z)8vf1qF!hv|i;J=7v5aF+`OOJwJnn-<$ zeu+ZwAc8?E6nGX$!Wu&KlqI+WZ2SHld^F-?7wky9ck=ckVmyh6{N(*c$--3U&t3lP zNlE)$ESv8+y?VJX#q7gz=z-eLwATkL;L4Z9IFqlYM+tfrXu8%UFXXD0?_<+`b&WCj zd584i@E-KgwhjBkubZmj;=xJx7$~k!pM5$b#ttX-&?5r|4^NucX;`=Wu$_pmS9xVI z0nYe%Sl=f_p@41G%*=YFBO2eNuPZ~8(bz?XsNLD2*l~*kVQf3ccDgHmE*;n|<0+Yq z2toXa@Ad2SFLQkpO!^jnSWUI@WB5k$)Yws0Cb`T#v=63Ih|@+qLD%A=oDLS z5jb5ZJENsi$rup1^QbWE>saIKHj~V=`-2t6DUB=LUR`aUH$cH*`Rj6GdsuzUa3Kj< z^Ph4tgb&U$zvi0Ayt}8@hj-P|iyDxZa7Z{JlC>%6K+ z#BF_9u;s*GiN7*F*^je!Y^%1nHtgHnoygO*tL^V%Skv9iJwu$V`bIqmyA8V%2;EMt zu2+VmQ)E-_!hEzjt;$50sZKTTa5>eZQJVc5FL~`I*A22vHWh=RJR>M^U@SVcF=~`G zz`TsH2WwFN5?H-%^(t#J+pVgD%eW{g`Vco@_#@a72zrB=JOGjj^V|~H085TH_)~)8 z2@5Dy;+6~(A92~Q-v-Y2J7`*l^uXO#AC6+k?hX3T{+#9-U=RfM*^)cdJwjz({{$B; z57BvjB|BsSBGyn?LK%T02alarV-q{uQV(SiUE48jgM=x4Q2=TY9B?FJ82ZDD7<<{#h^m=XZ)k zV+z|;X#8KY_JI%;+78}-Pkf-Xk_*hOAm$0^Bjc6tit`=?dDfr9MI=?1a&U=(rmc-u zp6iVTGsAn2{j(jFy%Opb{2TNABh#5|l4hqrLNOSw?}Q<$aiw$@b}w;T20w^;3-6OV zY{nbMv& zHokv@cOy-A%J=05_mm_la6Msj7!<5(<=riEm?Nj)G}Fm?1?$o>-?xhC-{9yvl9ADK zoJCyD<1A82ASJcRYN5SQrZ=m;oVLGj*guUTR-_M`R#|+JrNe&7?^r6ZB!6L0z{ZWs zWi*xn_{LecOV_i3Q*^XljX&NGT}KmI8_u^M&7^VJFP}g3Bd-_Ietc54s_@`g0GWDA z#GXuA?}UK!fd@yX9(2Nv4(d7Dj_txw1}AsSqxrrvDh32&2|kytw63q|tm`t&Hs4+4 z-1?>V;ssdkJqNma9|=0!Lmk_?9&LysIyk6?{{roeJ z;A|l$Wqf*C*P5S@kPzBaBA~KF;$Yy6Sl8cA_y$}rav-Y*(ujURI@u?0g;RATjpA$o z4!6o=B$|&U81#sUTD{w6TK+EOP{ZZI)sfoPR-blW*Sc}Wk}xV1Kc^)NepRQu0hi;V zcc&hpWPu`B_sz963jp&FCc388?fY`*Fb;eU@{KpHXngi`fibQsC0-||?5Lmq2SGfX z-7anv~D~6G{|oySX3{EADJ+bbS}{FhKIWU+mye zkvtzbU4k5VjMK~d&?gEGlDua7P9v)s`KvCATA<8J&*1Oa6oc+>9 z5g0mE^e$%U?69r)ILTX)hHn_|h*^0OJp2{gY7%J5s#T-!h)LWAnqQ;U(+M>}Wo{$B z029iDDgPlMdq)A~#JVS29$x@jaFE-te`2hTsM{*P{+8t92GV_`+^Jt{@!j^Tny>68 zeH~y!|Hm31MPIJ>%i=Fa@vpi{icIX;;NZdCns>|8KpBFs^VHIkSJdx_F}LtYn`9>` zpQ@4~)yC?=YU_OyENuXX{_ksFg5Co0Ax_=e=Pe{_v8! ze2%UdDOsysgvYicBU?~*S1y)3lr>Z2lYCWK38uYY1q2Skwg=2?#Ykq2DOs)h;A1X~ zGzbp!DTnof#U3Sh^A|*jNjdxsc!!{C-u`rlEiI((6+KN?mAAuab#?QgFkOwB%x$q( zQB(QW@F7e=53Jq(V*dU`aSevy9kx8XN@T2>^2J|c%73^wD24K(NfQ6FlwVWKTZh_Q z3G2(j;fmlZ)^#3&4ZFMaenfJS8&L^T0IKt}F929=6~J6!&R?gS^qP2S@yF`R@?%Sr z>Q<7J<5GJLeB++9r;GkQckguhhELw|W4kSbeY7v@YGD1C&_s*%a@5tuNwL;&H%rkh zE=diKke?3=&E==ET(pmO{|kv!mHr!v1d1`go9K^Q^7PZNpj@75I%s}?XVe?;0KR=c zK?Z-9lxe1Q$86=tCHujUKNZmV z$NUbyH>Ld$LOmcsf=zyCXLC~rvV6c+T0s6!0`CW=kd_t|7(>qJUgaLhy8Ewh-v@5# z{udohp1r4pf8u6P@?x|0QSH#P*snw#R$o9?z07bHxbZ_iTRAk71Mqg7M2YF z9Fpp|zO~hyC-CPMg?a%AfD26F!qdVp6IxN+6r&P%rof=}OA6dgfFS>MBayq&cJB`; ziJ6}+*8paMfqy>wfBT8&fKnFTbN}-bV48R%N%G5vz1073eIi9YUCbXN<09b;;DhIG zbFnDZog>2bNoOHP7%ha^`s+?p|HVW0jP)O{%mJ?)fXDLZmD9ZI5fey9{_CFJ6xWHc$^P*+MyY^kyg;Ly ztQQ2#9x=9)i3CEaCSbFWn>YM-uUq?m6~w;QEB-3cF1f&6u4(t3!}^KNvQNHK#qY7C zNlm+dV8fPp^`o%1iQd~E2^V6`J3p4HnIStQ$5Obo4aV+Nf}En{W!_Ee0)SWEK{!%w z`N>FpVzPSBdFVv*fR$&eN%u-tdyX4rA^@oC5JV!f?opS z{Ris`D+FPR_>vk~A3|pxB=Q%K_$JuKg4pu8Y$+JffcJq1Frt>gJmH~f*x87d0Mh^m z_($fdA_nQes7%ew2*WO!%X$5s0V)pH_W9TEGUYbKVhoksoS=U^W9q5>fCp z2{5G?| z1$z0bZ%SkR&kKh?#7V4+4KyHPv%O0tjyG3Tf)5FIh?{s|xKQ0cfm^BLFG6D^?QuFX z)L&xV6UtT{RM>3zOb?xF`s41)<-EG^b*Ig7>c+_;{_jiIp8ynL^UE&f1cx?%bY=sm zTK)gsmNU7K-r{F7DI}>wh3n`i_-)asWZec^Aey07Q$L1$5K6a#&pi@wFy^uw)oBCS z2h9+B1dSJLh%CpmS+@Yo zJF_-Naw0DY!+TWxkrsIz?Q0|6hLrg&VcAb-p+mCRlPvPq*#X@rMvJ1dss4&{cWQ8W zcnfk9I-vK7SewAU6Z|jWNC2it&{Mks0t)CF$sKEl7vF1B5l>(d9uA`uL@c|Ycl8=T zC}b#rADX%oaW;D<`~{;rSgjL&!tLau@muZ%{G=skA^ywmn1#K@vk8XaL}8Y^FaB+wNDKjV=;< z$ZN8hIOVb{H`URY%eFLfPO$R3qkDz-4j(Obtuj4&u_O2mw_xZIt!&=2@Ppg#0_?4# z#TMd#cLYTZRY$)o+0ai*TS_J< z;;;4~9tj-`C&ValrvMSJ3NUZbT_YN;hmAL|PxSzW$>+Zmp-_VsY&N8I!G)*pZw#Uf z*=gAUYagq_9na-hMN z(8VetTJpLRhZ$_33uVo+a>&nN)@{JiL7^6)PzeE1j?EC>)C4AuG#X`GkfYiduR+}8 zNt6cgHj;t~Lo`%9352G3=40S2ic_&SdF}lSc+5`2^t5+)xYf$J;HKCIW?7g5?Om-Z z0Q|IfwCA$aAa}IriJdqhW3X;4V;W!}9~u?}_QuaaRQA@Z5UCcb;$Je)>60DuRBjU zBJ@3M)MgbEC5fPCmc*Y+w}^J(V;d6{5$OV7zs0^E5fd)MfIkAGf`sit`R{)3u)%aT zlnUh2lo(DRe+!|?Ez2Q$s0$Q8&=e5%Bj?XkUNEYVhKw_CDg>;FMe5joPllfzvSr=9 zAHrvE2Py}65K3s%<5U;92iE%wW?tgmxs>C4EV4316b1&i3kHx&hAd5RubC|-pRPDmW|DSi6u)DF1?x{R!2N$@<5$^APKs2wWbF5u&HDJ>>w!6L9Jt&bzKMO~s@=#l zc>y^4{~vIC&-j2%<|O=ubv%X$82vx24q!Ph?aV`d#qyf%*(3!2kD^8$Eko4Ms!12JBTa z%8EVoz+_5<)wRw$id(sKr03R&&5`*>Y>MYdY7F?~1L27f=C;c!(SmLnFBxy&#&8$X zew}$)=5%6peEbcNb4b495JVH%K+&AK@@6~pZ;0=T^Q#2M7T9;lg0L|%G7?FkX>a!f zjyV|S1me61h04eL34TJcOht^BlQpGbrl}blqX2sTm8oe8xHllei4&Ka4J=H|ry!+U zTQkpNkZEVkka>WaNX3NaLgE?o+XGXkifmViT@JQ8qZ^kN7n>m0<`-b=k~?wW$1#)} z;{!B5IXDgu6?6{+Qj`MOn2<2i-8Lrx6*FH5*aQ`9n1D;k=s|dP8K`hDDk>^qZ?<9) z->-lT^Z^FbzIxJAV?U{W5YLJNDP>`2R}VIR&=6p?nw1RfR?j#4O&la%3lhp`-54OZ zKl}M%L-R#vln?FH4GU_q%@P3|wROj<-a0P%k#IgYAHh9sF?Q95XS5dTAQ-QiEZgyr z@&}S81g<1|VEfb>p8Ir`IXL^K8xg9_J7KBq_!6i)y!F$^=N7%uM!Tc>V7qq^*hzG) ziox!oYjnm*9B%?q^V~T%M@%`*x4D*6Yw+{0cj<%y$1v>4Xja>$nHGKkmeJzw7h}d{ z6KOdF)&eV?ZNl@GenDpu9H`g_^v5(s_Z_#-H@S_F?sh3=qg`TPOm(d`n{(T&3Z))q z=}!>^PT}F=KFJQJxW7;A>+Px2)`gFZr;#<~>b_l#X!03E>{ z&IgRj0YZX+Gork>Mxwe3wl(+9VUE~>5GRCW9=)EZ23#xvm;r&K^(TmWB5sW{d_-%x zoTKQcv%l9yjLYszrrifun*9|2Q z7G&};>`A@>7$G?PgA!91tU&hRCQ0r*f#C#R{;*^5S%n1q#>UyAJczW`1}hI0H8oa1 z{Q$p@v*S2MvM?bPxp77L#|z{-zJ}iq^(L@u1I&KHdL=HSr9mZeGj0}?RXD(m!5jMp zqw)$C7W-fUXrYl_%(sewHP|m9Nqlg>&meO0z|2aB{RJ=3Cx0h1!7~Q@ffZow_xzN% zc(cH0K}4{y z`5~}YztLSMeZ9lQhv8-ETXCNklPY=i#o|iwVj&twE_K^t7Z4rIA)51O*t!~|Lx_S1 zL_i1EDQb>A{G`lw*EeuKN=Ax=IZ9bPR3fkcu1BM^g#r;#Q?~r+t#k@}{91@dOji0q z46@^D*epOnhZVd&%G(Rr0uC^#S#zXdKi(B-+Ok0;|001Z0v2*)gN6Ybl=xkND2+lh zvBg|LscflOnfQIzUx~URwoHYRl?Iy71veVXqXCG>0G2ng3=&-2_fb(NK`%k9gM`U8 znu2*`8MBeliEo;;{ek!?7Tx-DoI~?V^6mX(GGn=!jx+Yr!oRfiw2x|zzJ0p2QVGiT zGf=2GJwrfFlIcR9@H~oNI!VK2o$i2qDVX7ooVHZFze|}EN!>xZM1q|3Z=&6jFE@Tj zJ}bbQS+dbAtLV(3$=+Dh5d#~&&N(_RIkI5>k*#%YAL3s$xLM#OF(mY}PO#wYtz|dO zan0?0Tbxd2=CZk^CsPOLE7z|~bd25Se!b0AxpqyrWp~VE7?DWAOFb53(DzoH*{Q~ z--t_wTQj&t7?w-_Mzhac=g_=TF0Uct`$@GXCo^jG>{Y_;>fur*{N|83RT-S5wy3%J z6xLV2PYESv+o+CnL!er;lK-4 zWfN;_eh{evY6`^UJ6)qZ9M&jV7`%8Zj5HGy6V4D)d;a3Z$?55*5CyotzCI2-Ihgx~ zLWMiWZcPJDkn4S>RM0Q>g&E;~aT{#)kc}^xH6vI#>|c=RQ82HWhlG1%QC00Yhd!1< z8jS0E&|j2urU=Rd+ZkOrf+!@*yoIy=2Rm z{x(vMR#$I`5j=$z0P47K;z603wj%Lwv&Zo}18lye+(L08J`h&<4K`BF&@_hNK32== zXYUtM*${LT;_7Q)g$Q*1Vc2#n4OV6#3aUWb0vyCRII4rngW$6z663ef_k#pZ@aKEn zp3Qe1kwOA3g`l7yn5Jvzm;&+zr{+O0M1$5TG(iI*6Ara2sSRFYxw;2Rbur7&82bdt z3G1q#6~`?k_4ZUYKJ~FbjwXzAi1B0{TN3l|Jy)i-eJOWr zBCebPx#$!0Un*E0uL zq{}NQO2uc*iY+(h7g(>yaJB9?D-UjZxCI{>MZ^vk8AONx(i>>^>-oaTl3p! zIm_CDkxM#$@>02fm%Al$j(-bdYh7TjY;C#`Vf~|>H^o3GncPHmIRf;SfRJe{Fi+S) z0EYRPFXXX)D=NALI=LD+m-+_=zK43*1k{8OH5-H)pOavBlUERh7BXyGeZ9RgkpKv& zHGg?_59vn1KHwuD5;|bym6es1Y?Gb}82MSXf>*MK=zxHm&`u?W8k9#+5PpgE0^;BB z>({Sw@c8-(WsfW%QN`CvZ*y`I3ZCqt5)#tAyu7kuyZtg+oC-F))o>O;f?T~xIIlC7 zt)G3US%F9=AqMh-u_ocooA01tRMXRg2l?0ULP7|U{|zw$P#KV#n_^S)Nyu=;yNsTK zq!PsO8ycaPpyDP^;sy@%h!Y1q#2+|E?ax6<#xrs8YUurDT7G``=)i6fdcN6CyJm0# zy9){FZEbBxFeBh289CPpNx5#Dp6A;cKwZYh&fK=CC2k%WDHGXJ)yc@cdzTS4Kfu}1 zR>^K_c0it}#PPzVE~_oT_?eATt@C_ITY#Y~>Pm4NqteOAzVor)z|rCLy~0;-ZBKqo z%#Xiu`uv&8b`jGzn#=w4?nABpBW`hv)Pstfqb5-Q#B`fb4Ql5mvp8c1&b!g4q7s5N zi&%m`;nTlep{SAnT{=E`eDBC+o?@AQld+Hf@H|SBD0Z``TR`KTx!cIQ`=z#Z-_Ep; zzp%zUIoaj%{Sfslm|atQe(T)V(cH2!K1@f0tIwmcL@9aI&KJ00X862(y&{6ycX~up zuy#n|V|2S-Kk=pH514j<*Ry zr{eFGZFfl&SUW`bcq2b|b@{ba^;pDhhQh8IwLJkM;5Yjd^ z^?_weG1cnj%a>@LJ{W5);p`Hb%ssu=q5qkuVSLGj)i~E2P6-e~@viCnv!J?DzO{hQh6syx@Zlu+;V&lLPMRku)1^T@i*9o0d ztk6;Xa*)g&6s{Sc^Y{)MO`gTd5IbVJ%%E2AD>YM@GHC>po0#}=uTQK|3%if(!Tb|e z`6u0Cds+&;q>cVxZ&N9k^oUwfXtqS1W_R@~vLAMJcQf0}(&LHWvxm(48>FQ4r93-O zObrD~rGk|sT!x|Z-O51<^j24gQy~HboZreA&=w~&V$$Qz5Dl-na#d7R6x8FS$bIc9Rxh!>l9-rSK7$2QY5Gul96A>%=BObv7>BH&H_B{*1V!De)H)E?gQ4FZCX zd3kxXUfSAc%|XbS^SKQ2Y)RpWQ_Q-!}fC=Wx5YF$f}(vf62_XrmRgixFx+_{zZe)MQn25 zk*ny7T0TvzTIh5*pXXL4XNIpy>CC7&=Pdq%%z~aRugf*Iv9S?>LVZ6*RaLP1i&rL% zx*8Be0;M1#QJ>nn=`ts!sG^oa*k^}a? zKcSYbo2jf^dD-tuyX?^mc*>#t`7u46o?g8O2R5||7WCGBA&=&x z7X~S*XB5GHnnw1Zq@-R#T$~9Co1tN0NT2MPm{^K6In3F=;4$mWMv11Y7t0x`E+Xb7 z<-4Ob$+B@s7W?3C6iz!lPy_@7NGAD@L{XNCMtm| zhHR#(WsX813NwTk3Y%7(n?Md7o(*Gr1&MFFtndU5ooQi~9nxUHhltC!tb4 zai7hk4>QJPhv-FN@YoH`j}jUyW6~+$l7N{0)r=KCI&6 z;#-2QeALp>={;N!aDN9}9dzduH8gycHC^yQfA|xctloYC2hVI}J(wtvTcy*JEGym$ zjVX?512ZXOl1J#H;8gpPbW?>WO;=X|XoacGkOoqRFJerTr#?4j0cjcpYU4ri@138Y zbOMiZuY+P_P50B^BV(|&@DC5CbrSrrC6}I?dUu39^$cJAJKNPR!Si=-vfhXe z{cNW3e137}o>K-2mys=p%_BGeLQ5|_{$ACKgKMpWLubtjx*C@vzu&|Q{`#}68nb|4 zh{27>Vu1y@$H1BEEPX_073QXG?z4ZE?F~J%K<=XIUi*NC&Lb}W!c__Jd|&N@ zY|1?P!qt`@1qAxEV~o743l=S{t-W=Md?y7APW}-QUiB0v9;$0)3EO1?FV8WXZa$?y z)}eA8EWu~2*!#X5T5W+}e<#b$+CB0L#x;3d(Cs~HaEcxukeP<$(Hf`h>m-O|u8i@X!cmpWo^|Tpg8&h{ihgUS!JL zEeQ&v8F|H^r_8S?z(^=*?}8_AxM+e=b=aLa&aBznY|$1apTX@6~7Q?!wM8KisuI zRl!5lnXMt1GzC>rV(9xU28J9OemuaCkPM}(WJ*9lfaaw^<$V`{^nHNh7%KHhKm)nL zD!in6RK21b@u|uMv7WG~=p;Di6a&Q#wyW3=E6hG(FqmfLnm!Z)ah`U_It};s-hf}- z08lUoGAHne)dG4I0B7Xl5g~FIh=_3^!ka?T7f{6tGI9}; zz3@f;Gl}^8Dk>@w{EnOuDXAZ*TYrpH?fcp+5Bq?rXFL!A$c*}z zu8XLL@GLV!_3EjF$z^qixx3K<&Lr@Xu=^L{+JV)~dDTV|5*ivO5zdIj_U&;D$Bu#P*P(JC zyF5>#8cIa&inlSn4KL@&NK+Oq;WQ)>>ajB-7217alV6yz9`RUeT-PLSz5I2divpYS z^HlzT$*FHH18;|iUsxHR5Z&mIIX;@+QBbOr`sjbIrLxMbQrw7Pf-jo9=cDh`wTrQq z+hM;$D_(^eQ9T%Yn(df@ncr#tej{DrV<1f|na9cFllsP=)aiUoey`{BqLbZYx^n3Q z#MX}R<{wF|I9gv^x#E_#v8?O&T}PvlM#JSCYFB@soo`|#eY+SP_|GA-gd;m$BB^^2>NWXIp04 z8a!;jNa);iI;s*pp@dFwso{|vlOsd+w9TE+`-h)ayz8PLBZq~Jjm^{89YFOpPy@|% zKCnT+D1eBJ^#B2_yB@xUZj@4i$i{|AN5M3#r{0~ zz*y&Fe0gO7wcyfyJxIKpT3Zo#kg!g-3^1^&qXP#S>HzOL2LW}s%wFEaA3Avucy9n5_zs#Nuj9qfU^C!u#%VTF6SU%-%Hus;!3fxcs z>R|`xeguooc}PdD0bdQ}f)>LM0OHA@P=O@<@G`ZR%L=J!pHh`ikjDdH%;{S(G9*Bc z3{F8+PGp;}ejg`@k!A}r6-riCJU~_snYnI}eJVYvxdjMG*+}k)4K6~Wrlwh4Bd!EI zyu8{lku`$7mO{|mL+<|B(00opd&2@quF-|V7MrfB`gY&hS@!qwI*1Zx;OAAP_I(kDj?A{kD0@8gRI{ZZg>;mEj*b|v{WM9< zRkA8avlATDHDUtyT5p`%+7U8A*ZjP$jgy^fdZ@~mjK>oG6aJ=*)V0YWE}a72R(UELqFaXJq=EyjV};RZ*XJ9w7{ zznbBEb|}QGetiC6@Vt!R%H1Eb{nC zgEAaDwm|F{4;5WO$fD1W+;eol;|%+Ym1r6zLdam&>kxoh-|rO2u%`5x&sx)hm^th zq!LfLLFLJ2WfW6W^Efd%xfbFfs1-z^C!o6_H!n|)hnA;Q$5L{B(eJKS=S6A%+R2Jj z5q;k2Io@XxHoJl6^aSDr8hU1Tk8+v0*hCy{ zFC_6#G+X|n7$ndjjQtqM_v93#21dBGFkSrV6Ol(+x0_p9ZojxjOiGcxeMHL?HpK192l4@V z0p?(3T^mqLXMyoE#t;ypZt+3tMS;oC4Yy6hlj36TOka@uT>V^Db`!YEw{i*6vM^c) z9E9DV{PsQ4xpW(j-rGz}ILO?<#UptIMMW>j{z*}*;IW;?CkkcsPB7;J4{ltDwV{kI zNM#(dBcyRyCE-#Kr^53B{kX4|@&y1C21bQ}df;|BLM$5PE+qn$dT2lQ;nz|Xn1TAleB9;qC63} z+wC;BqW;ZLeN};s!za$PtkCE73z?p#uCitwRlZWq=H42~X~(;gb?kY$a*j9a8#_dz zFQCfy<|XK2PnL^im2(cU>KY`BGEiS{JSD7DxanVl&BtjdAqg23?rAs~DGsVdCaZ^c3zWQ@R*OIj>@*#} zAj{sVZHg=PnCG@Zp&zKesqXYHJwUl7I@%T<6XT9@)o%=)bghvlPlCWr>MSML$PK(MeTlXEDNlHu{hkP&O$nju%DFS@H<}2k_ z#=`GwWz8QI6%{qWhNK*lR=L%!0Z7Bc3VryTY#BDFPe+bNhf*}MCtRRpZU|@xjMbE2rUa&MtXoqQZ zs*u_;qLVpUyz=r`B|oyBo1UIVlqnW)zsnos(GOD6pBt(^AoA^ubcSx9^a3p{7;*{u zryt;F^qvqzo-06tUMD2f0p$hyh67p!?*?YCF7w; z(`vR?RCZpQ^Jm!D*tj3?ewIJ5iP#;aw|ki~pPtTvyS*siGkeDEd;V{#C9U&bf`X{< zEU}5Yl8YIGIhWX|mDIy`)!(yAXEC*{%15lE1yG;6_OpxtHp($+(fitOn&`5qy- z!i63^NNL3HU*96s|GkvDS;jWQG}-etnQFo%eo$xncdEvD5mE`oOp(L#17-FNwOtOS zqaz|$X_88*mK%BWm;wS^+&91+w@^nHnU198?R`ms5*Sbz%p4q^2?;udlQDeua*AcA z)}^e`xFqNrf=6yvW4Wi!oJaZr0mcYJCV2w)u&uxt7xC#6CJm0!m)?>jL0jv27Nt3w*5HxV z;MEcEz|h;yPFYS-V1Qj_yHoK4$oYMNtt(s^(QrNTL~=ivzd7GVK7ak5|+F*K~9qGO_842)f zT=+1SYK`gXA4na{-ICQYkc%N{kzvit%iRkUe0fro!`uj#l50J~JM{dvoy}%BR$HZX z;mhCK(J;{JGS*$YovHeqyu3OtKS9NVvR$#Q7ek6YC!>eJsD*~@Vqdv}R*jS-(0W2% zpY*s8Z6Pga9m_#YO$|6sNL18Ij-Lbcq{jU@r{L)lff&IP{D@5DF7>nST7>rrPp6HTZ0&_d?1cn)73O&wlRfDNjyy?a8ff+pMfC!<8EfTP|4E zVKO@RRSPbH-ZvcLUp)!dj}fOZmgsMGm(Hk1xow*m_RXdTD(m?qv=2h;C*e2T)i+w1 zNVxck<-%N`izqsE{?K~*S=r|4`5}u-<|aqVp&e3Et|{vl)|QerJ0F?3E}+%|8T&_} z+Gu?2EY`C|-aK__18wpgJ!<%vAWr?GpsT>|j#v%ro1PtOAOIf+oRbn>h@pcVrvbit zdbCbg(tI~{1Kb)x1hj+nAC&L>o1=>mri=#*E!|`)Y>`%;3$HhKZNvC8F^LQ|nHiTv8xGxF6{KAp@{`izFO@i8jqIr(lSu8B9>jVVV z&C*BS)+#E*+A9Ksq}A0)gL|_BnOLfOPx}@aL#|IWWDarT+2D!QJfqy-CTn%gUMI+k zynZ7*&1CbaOoz*cg736#UqkCl+-$#{7jas8K8d~Nj6{}_{2O5Tt1pw5JYs-Jb zSW+E_J$sh)C3&jC}T?x5W02qVCbsKB_qqcG{X!%-EZ_@QYuvo+-UDh(pVUjN8ML zK2hRTmdZNIr@4VM>g3BgxkX-3p%YLoI^EKnk&WgrJRDjvr#WW)?I{`DV^MkojtH7h zcBi3Jxe;nut00`71j9lgJ!B3@v{)r9c&tn=tu%r!Rt`9!8di=1Cx|#iz^JD{m;!=> z2yu2v;-1-qrd=yp3+ocv)^Q60ZkIqGDhN1PxW$J46j1y@%BZm7R-ukLm!^z+(n1%X ziCTLQP$_%_?gJ?x0uy#VyL_7jsbDIp+b1>;-io19Ns&(`81 z5{fuX1{Ic^dO*>fgn8fhmo+7D{G(`fUo}8+&o8p8P!7r zIeh^rvOin(J%%zTAZBmCFrQ)m5fQif=f%sr^V$j0d>8?(1RY0u%VA9585G~|>=B2$ zQF8KPi-oJpcZSh>TN#Tt`C41g-ZIfmN$6KL)K)r5vW1zR7*ZA%a|?^=29ER}!zv}K z<;3X@8`h7y+lHFjzk3=@HJBSNDlR!mI+@&|F5`VXm%HL}e8sHom?$=L#BE?jQn6$) znyx;n3rEZdi!BsWaq#53-Hy)OCuj*OBFbW9oE_SDB1tSrGG;pHJ5HRxHWph+d$j1_ zDBkD)%rRnZw!OHy{^_vVUe9;mJ^dwZn&+l*MZ+Xq4fH}6Y8nPF3%QTgWJn7(W>F+Y zeesI9)ac&LZsl^wa#;MjWN{`TMRI=w*J0^#=2Rt{8LqFdZ?41IAziqg;qh!hZN!7z zytb^umqtc@Krl}NmU#n3T2S)5g`ywWr$1j({RxxCFMNKXj1D)SQHA;x9F1so`};4B z1rKCniN3A-O!i?l~s6>9GTbaj4Bq|YH zX5AWzOc<*uh?9so@v&Bc0h-)OwX8yAvB&*)1(C z3swyRJo8^o4lZ#Y7A-LOldPZi5}+SRw>?mwTknz3EB8LZ5Toa|xOAor2~M6lofde0 z!0!~rQ7`s0ZS-eBNjUo$muYIH{G%8oHX)@j=nxRtpQQpJBoRKfWEHGR=JqnHTCY5M zL=Bge6zlVA{+=wg2LtO9zEIfg{A#8VnhW|%A4ntOK!4Rkz5qDwWlJEPub^$&Cx z$|NOq0zzPFnS%>oP*PHYz7s;|Q>un}kbVHqkQSk4*JOcx9$@9p0r5@(*05<9(Rn)89__j^?)Q}TIj7T>KXGANbQy_%h~42^Vl3_SFETl2VV zw+7|J`Stab+RwcOxqLBe2^~F}jJ-qox>vucs@f`4B}N*kheb3GY(mKcztO~)8O_sH zR@EPLp19^2(KvlI4(?@%bacE8aALUFnl$s!iCsXWU&s`;PXv$UmtG6h+_}-M+@jQ3 zKclXK0$zyQ`=0+SVe)=leJio_}b2Zfi1q4DT7# zY)`qLVm8ivCmAXvj6iO43I_Ykx(KxOm^!JHFLc65{j1h)0_KF zay3e=T46*)YQB@dvpqLzuE)#(r-w=G^F5a2YxRLy%ejjAPP0*Lf{$M*ayFE)W7oz~ z+;Tk3FQNGCDa{t`TkIA(MsLPC+TDVG-zm{G{|iHwxpca*%B80F}gYV2Xu97pZCcti@wOnZ0Z%xVoATI24|!l@~9YYS1seW649 zRq?{fvcvTjyWb!6fKqoxq5-Vo1T-2deT(jelE5kP?1HpZ=#Z%%7$Ao7)$T?|vtZ!4 zbLaB5etNF;gyifkL8szoMS#5sXzh_n8XV45*7eJb0IZ6KyVrhTCdZfB&G++B2}TI@)a zs1c~F@i3I?-W>KwA3{{m>v{$NjYG-hufwz!=q^TvRoD}RojC@(Fhm9S8T1f&f=R+eb}OSa4fbYt9vY;!H^g7jDrruM`l=gvX)8qfXLE~O za$?d{lPe89zdG4UyM}+w<4cP7Be6)M(sm?VD$LAKRc5YB>Dwc>5T%it0x}kD>N`zr z9Sn6{g#}M{al1pr>Bd}uyBgp$0GHJ{X|>xnbW%!{{O z83p}GFh9~n#JANg4{-1*Xwi~3Ng#v{koiN6$*+0p7^;Z86zMER3=a?XWs4dhVlFk0c0?zIjEozrO6xzK$p;^k2_GSROJ04Oj!+mxw6v{XXk(C zdys&>OI&Y5#p_O(=-5WWSlyCcEr)uVyS3s-O1^@91TDWS1;LO(NO*X9bY)k#>6_)7tww9@w4CmLTTl$PeblRr6J zMj^Mp+wkQDlkU(#QCS#diMXyI$_5~Yd!{ZXg)wQUFAbjkvBDP^5ArT8I2aMhIwGy; zQ-0V}CCMzR9Ng}yON9%PO6&%k>5w*gU@2uy{Onl>5#VN2FZa5uA+a*Jud#YIG@FU;{?8{m z-z$@tT3cJqp%XQlmo#g$u-rRvGX08Rs_(-s=j>%AS?O5rQ>YyC zX|7^x8pUlp0|QzxHOKY|3@dL63z<#q3=jV3Gdnx`G%#7PwQBKYmz2`bUW-`=j{beM zXXCRz^1BZX^W+j%4l;*U4?dmYAjd+rDsR#nn;7R9cD}%La6r-R!3UaCLC-kVie>h) zYF1ax2V!3P(y5yWKm!ss3HwD{TwJ;+c_haLZd6N4D{kGC%0xw383wI^;IcW3_d=rU zA^6wb;@}{F{5i#hFU;-phKNot`_xARXv<_J4 z92gGxR4GLI6CW`=GPR&OV1e$tr`cwM3Z)cPK;Bvj6d}6^dhUv?=H53yk&!aAG=-1A z3ibqmaNWS|>E1Lrr==sZmWEyECV2Sh(VMOwAJCxL&5+Hlv%|Tbx!5dL4b2Qc02v?^ zhFF(u!TwQ%{@#4zO5G$d&gfuSjN$RNRQX*Q>0R+(G9oC6BS*alxzD zljWs7-Y)L5;`}lXByfrp=I)E6`@`tZ62ZX1s?`e*x$3nyZ@26BmA>ZRI_fpKNB2Ja zSx{(<``S-IVMUu~n8w$ebq0%qB))GtHmh@H_Klp5f9M^=0cj{M>EagrVJy>%+|v{9 zrofFa>xI5sAwbKx>`fDbmRJXb>BUZad0m!%zP_u=-&QE$E&*0798A!G6IdVW(d2w~ zZU9n~{P>^&dhPh2iysfT<`Ft2pC1huD4bA$86Y6w0W_6q4%co44Mi{AGZEzYfaDfD z3w=cV*vFpyNPL2iw3^%7+ar=&V?k9BfH02Ri=D-FeQu}DFq;l@!zd$zGX3--Fc%Ya z0*VRg#RMFbxXJ(0(9jo__7W#2CsLz^;1{Y+-+gP$X#=ykp|T1ht@Oj8&qe+!I;RHv z*r2x#d9-u%I>?h^1EKCoj^MlSaHXUpuj`h~uE&Q@U8yclsld#ct{oZVk!g>n9a{hV zW&Snh?ibOqo>`)dBZY%+f!LmZB33uGjQ4&~gN!?*9dy5yV=>*=C>e;lnmw`O2q z$kA+Ihe)O~9Ab-0Osq1;12W&;ojQYP9#`3EmR^%Rg1F?6joqFd!HMDemK-x(Z!Qf| zTF0_lom0qBY|g}TiAgHbxAt0IGaNxm$Sdg|_0z~8QkoVF#&HUl`|GL2+ld&-J-f|% z*)Q1C$Vb=n?(GhZ@;5>DSa4}JCyo`NVIS!f3qETW_V3@@YIlh(Q7C}`PEn)HY4N8) z5%L#7C1N~MaVFNa{5)intK0f-R|KACY*|DWmrRD6DQfdFT1}@~9c;oCZ_7TEI9~aIFW%Pfo{#Y~PHm!>?V=dpP|DKUPS&``uMzRN zsj0bUQM$6Ksha7tg!eX}oa*8}(TU{D%JH6YAG>{@tX0FwfZ3tkV)JPdgoz+9@_ogi z>P6u?<^xo2|G=R3hFPT!{GsQcQHzeW-zUc>-<8)V9O<&Hve~zzA7eYM zy&Mj})OHLN=>W3|W96@qJ1(;5>LKD1QUoD@F#+{KRc13NjNd`ZHV)vT5&i@UIPc#Q z5FkhTs=%313!X_thB&nz9_h5%DaP%*&yGmjf$E3@A_r+g1s`psdmDVz7KcmZZA4^D z5Z(gqBFb{9BE7_g8gw~@#RW(nSaH?@B?1xLnW&!M}( z7N#ETDVVit&LY(|$R6E6LqIOz^bTaO<3N$wfueG)OM(e)p8<#vZ8WkIxesKk#X|2N zxi4M#03w2iZ@C7tNyK^-;n2=s4Ke#90GdcJrNsuYQw>N5OI}_cW|mI6;|M&A;w=1@ zFgiF$(!sxT6T+oCSj`WFI(l()k&==Eo@N5(Mc-S zN~$)Bop974ii#wDMjEL|4>&53?}U6<`tk4) z{%Eb0t)psG-2t~#FV^|XYl_ooI8Z=ILG9>T4}4!U1B0mcv)gxYjJ0&KVtK!OVTm`i zBgm>SKGLDNk-e*$&Cy$|Bu2@Zzpf^Ka%g+m6K^`*!$?&}>gEPX#ZVc6yVwOIHJ!FY zT^^TxXBzTXuWH(RZ!EYTUx7bTpv>p!^_ZiW%;Xw#v)7qE`eyiC#~`7IqxVD1nThGn zvxM2|Vly*d)s@!t*TX)3e*VC<)j8S5@vPZk1(wm*L*J^#(?7cNFSSaxU9+UQ8lI5o z+FkL3>7x67OSo*LfW_&e#eU406LK*>@{aNE?QiZe(pImr&1f3wxO0h?GkkjkRp%)A16w2Y@;DI7 zA^RH4SOP%`NCprEe9{}>#v`NhK&4VUH1vFKc`*_?t*Vel3Mfcvf-(Y9=WAdM@+La^ z<{@~G++$#<1J$5)SBfF@?;h_1%>Z;PBF_dzLjWW?wLgF2!$Aj?jz8@ab@{XalFRZRk4vrWrbURCD+&}kFlJynloI)0b=L2v0-ash&*v%z{Bk9K!Jbv|-9sJ&) zt{C_=j<^OoX2!#Z(gCYa<#GoOYRL#U7%0*!sJc8Cu(LT~7oU)iE^-wHFeUZ09bYg>IaFkgkJoln>lt2zO+&{UH3|G7E^0r$ovy z2z?9?1Xld>`c-+8o}@uh^OaG4@J&Zii3QZbo2)s%__DIGAvH@BN4ga9Ug-Iwq@+9z z0h+tiX6Z6?trnM-YC~@;FX;^Mi%6RQ-&!4hWb6y9!S1VohuEGj$vijS?s*U6>;c>} zzlz*mxGL5-Ec~M-VT+rt%{U{oGvi6yPGDLlkjbELs%;r1$zAKBu8L3+)r2XSRZ=bA zpHz=S=UYwn$nN6MiUk5W`&}>E6mi;>Ix0z$vt7=&OUcMScng$XrV-v>*Qub=ZAW; zYSL@Zqv?X4wluFDR8+ofiTE`=lde{C3T4`OciiU1>GNgGIbD5M4;^n_IOf0l5GwGC zv+wjA1blq5%ik(_Uy*Z^d|1+%Y#1o;u+-_%s$+g|RJixJlGr_|d4&SwcFCLE4mb4} zg(q9K1jlP>Pd;Fb`f$dyw;Jv%pR}w%OWf&2W0TGUpR8T$5t5s{H07+{tGiy%NZ2|! zuvf#(Io|~(Mykm!wC*dt+J-?A6V=^`lF!L3&XZ^DID?tIWmOde?#40-`MGJB{~90T zhF-&7Ma9{{Tz*BSPl3HI6@`Y|h1(nT7tEx)clmBpj9%sJ&(o$ok7IWpVy0J0%018# zpMeT9oQ$^ zu11jLufj7P_qQKa2uK2C16Ea4sWzTMIXXHb6>`u>J%FOUFC0=-AkPHBsy;+HC`e*} zq%a&tm6k%*#o}6F^TGdZFqK$59BoKwfIjTE5E|kO3a&$+#v>poR)L&oA`xuZhDfRn zhjJb!vaMC&WDWda+##RBgI6~sKKXz&lnl5~0qEoe))P@*fz0J$QTIF`9mA2uGj6t{ z_7@-_s0Jx)8V7EYpXCC~f^YxC?+5cx!Rqn4>+v3qYJvV6X@R}75QG&p#*vMY~$VF{{XwT$`{kEv9Vj!DD?OS#CH7(?3JRz5B!ymT}BGA5Q(%} zIX9dMnNje*B_UN+65wAa!*T}(`)7~nbWKKl{JddI@Tk)fL2ER-IunOt zsjpuuYFu~MJ{nsvd)=rfGdHX?=E}}*m;SGg;ffqLZk0cNt}G`vM6yt?B{ZQHH=qwP?BF*gro z%8b0-{zsPx9<7ir^jDX*sENtAO6HY~?A5V>i;E8&u*pqL?M(VL8JtekGKS>rQ={g0 zSC^jX&!yYD61|a@HxoWA$1>tNc?(I*#O9vgJvv4&?>?8XnYJtPs}cdc4cb~q=tgE zY3aZ?Ax1Yak<%SgZYn;$n~>%$FE8tlmhnKJocsa-u>!zC9MQnu;}xxm1)r*ePZZYhEbgpz_{;1 z-(83yQhfak^7cQ<9}pBMtEj}mhRr)lvxcqZ|6B*1>~cNQ8ERE^0PheEeBk(<`}x$9 zkLvJ+5HTU_C_0I7t?d|whEHFrc1{=3jhd#`CgUp7U+arNSx;9Rh zim#`T&Bj#OJ$jhWo$~-SzG0vLgX`YKbk{*7uuN&{6EWOp7@u1X_)IRX2^+$0&QlLv zv7Ihr+4&`jqGG7@%0#dd6r2NQ4z?Q(gHr9%p3gk(_zKDLr&uoSv9Sxe)-xL1t}u5i zTcjF(pB<+~?JS|U_H6#qkFMmBu7yua8|+!fjwt%d1KbNjC$-f-m?NS-)~5SBXb2$k zdXilkzv(0`Ee%zm^GMJ^01}wcOu=ad)wws&AU^7_a39RNulM$%nL4vD(0_apVQ4^n zHtWPk0BRfrjDx&G3}f^G%Cp)~rslR;Byu@9vJD9dscLK#OKuZ@tRRM5Iuu&%Wc#ib zzLd*aIcF(C4XwHX0Rg)%;sEJTW9xMKj8~_KsDhzUdgeWg5Cns{6y%Gp~#; zaXp~Fem$I0ARVRn`-?tI+W8^oTw&bzy z(F14G7}1!!&ULBcEM5trBAMaK{@)yNT%@-VYORG6KdasTqGJvJ#^J*P_x zxpO-)AQK^l8bV{x=TE%$*$UG-`&|UP4oeOhhgK}3q=IR^EDEWn0ynahF(UMpvJRE$ z_(DTY3br^BYOX73&0-ENxY}$R6Eic(TXoJ-vj>;;8m?*F1jRl~kV=1XRWV#4rV#=k zOw03!aHly@6ZN-}Uz^@9yo<9?4R7 zt2EMVJ~oR@W1>qlh`IaX%JNLc$%6w!JaGS2(ZQT+a;>~jJW$*ISa3#`P$wlV7yf0( z=hiOghUo0o9!GUrJj0BU=dN#UqqZF!D?J>3LqA%Bw^^C#YV@uEuE(z9j;u@Nw$hcp z`jz|WbzceG&`5V+@H4|^vQqcuVwt`2pzTm6#+%WI0qRsCVPSMVD%vTz$Y9;+X;0W3 z0G{WZKW3-RCN!K@)*2|b`MlM03-ffmcbFJZ}Ee?Pic#D5;Ip#WrNRjE(ilY5+D43bj*tmobKu5}l5CL3ut zU656STIpM$TPC5{Q4h)nr07BHDBi;gz!bt+k3;rdwM#fSjTO!ZNa`9hVxMkAu#mBN zNXbn!j$`lKc#Dz}?*n97AVe`(yq&5Gi8VwYFxy#xT(a*wS>e76;A=N)P*TV`*Sv}) z&kep!6DBIE>Vmt-&}I~aqX#|UQEc)>i*JhPe(TgX=68y>q(67CUh!oLb2?2yu@ufI zms~NO@MU-7kpkBhfR@mQ(1;WRq4|l}k-G=R-D@n-FKrpXlbZAOYa__z{Q0j_qByd1 z>GoeAXBhS<3ue9u=)Hd^W3P0RGTuulw;@u%nU{~BAH#nq6lr{IlV)Y@RlXzIkd|Me zQXx!ZsUj?_z`=R2`3{3k%fim;+me{xqZ;vX_6|kB)$NF*_FsnOqG$ni@{A+(i%|7r z?i#p~YS?Ssr|8@&Cbc@_o??2iAw5@d4d^rgIvnfz^I3oZ8vBKA$;o{nkq8B@6yB!W zLX3;cq5BwfPJDqOjrgBWpl&qzoy6~56RLml=NV4cUv)p4n&|076t!4TpK~z;8`VzC z6kt5_=SN{?PFwI5Wf}#%mgT>%m2_Zim6DQqp?DRa$~aJ|Z+%VoYgSV%`=!8h1wDI2 zhLM2~o>6RWkm4HhdzFUaP&%ssQw_;E2JZpLhQO2Up^QwBdO#)UfVp{i=BE3tgI5Lo z>??`ly>5Z%vME;ava73WLS3wY1s`j^r9WO&ia?hwzdU|MF18;B+-x78T%!+28!;p& zgi@Ke8afQLBtecOY;RxE9@z0J_G)hK9U3oDuOJ*!EH>yBq|6L!(dZRcYZVJz9{G{x zEEY49$+>sYVgAxt{w?9mMj675M~O^G&A$zrxK1;}_>k=Su!!wCe0T8skd+d~<4|}c z&HtwH%mZQ*;`F%>Z!vh`DHZ>}AL=v6oZ}6*eU>a$iR2-HVN@?m*_eu&KYVv3M4PI% zbFk)~jwY4RGZunY~O`aL0+OwW&tlQ)h7kt~xDJ0x|&(7nYD_M!q7_}J5>LG97V9&^h3yaId zl)AN5&_xguppue;Lc&rHc}a<1YwPR2yG?-#Qop4oP~~(F5BVHcseq4Bny(Z$#?m9_ z86cyI_Yx=X|jjk>$M%mDQU1QF^mPBy*&fkr4O-R6F zC1|qi^>6pRAl$##gmNcv0)UO)dWy8|&}OBz!-Xjg-&vvcRIX3g(y6{`3Q}1G^7Pm5-!(%+-+CJr(0U)CpES|eNZ4b{4-VXjxj9w5 z27NmgYyxkVIszfN^?P2z@qHaZ`>XaXL|3@ZSMj!7+eGV)*sfRc7gu)OL zd0x>&^;{lpwk`Z*y7yhId`%y!x)huR3`vDPm{jhz5SwcZ(=82M2nGOYcrfyhrNu*%eR(j(pOeNHJ|{QDWeQFRdP%$Zu@J< zBC(xcV5t51GG;pH2G)yVZ}!Tp;+0>gA`CwnXERlf5xcX@8)6I9YsJ(P`D+amfjp)s z6AMDu+m~8bBSnw=EKhVNw}e>ihFb^(v6s$1kmxZR3;S{J&}K{E@h5$suiy6OtQhP? z?nV@I;VDt*#usBd_}osJ=j-)soLtENYK>R{UJ55gp--Go zP+-(tiCx-9tgBx_$r4JctSv3N8H3aqZc8^z@uz#Y1jXDJNMRY zMAZV$h#oMQh~2PT+{{9}xwSPzQQ~PTWw*+-?8Dr`Gw>Jb#=Dm)32iI7$V`Tf1aTYS z+ck0f-_9cHlgnG{-L~upJ5^w(62gfd9_^OB^!Flmw+_>qOK5*B?&m3_%HVt7MAlF% zb1gn?fBhhag(xAbfmz{ZuZn*)Q3EDU3WNRtVL{-2%(vJ#rvzh#p<~NGF#rMC)#f@cp>#&^yG$VKS5~X29a-fOym0;{Z_#np7qXW zR@L3k1Vv?qbE9RO#bk!)He`PiMc(^8)ztr~|2lDYcp1H%HF>MIf^(ag?Eaa$#>Rw{ zl#9K+`$HQ{{QPR!je6J?4XHRRAQQVrL4gC4RNa4hZZ@8Edl@(XpoRceLMrc2)8u(Z zcrLSOt)EuPpQWG%nJ*DFbw)msJBxy54BAy00!sWnjj4_KmKECuP5)AoS{VyvJ(lx2 zL|k4Kh74J?pU>5cHdJ@=Ynmku(PtI}Q_(hTT*mlQ+bEu=IP-b9DWdPWtI|sa5&yl} zjm84SK66KG=4YF+Y3NI_|Exwc8;Au0=)Ot8v5M-G!#pk6 z&1iyMFT&76o2Rt^j{;ENuWBtVZO*G=WUg;?Li~3*@|v&tQYlqq5p!8)cKmU0E(zQ zx6bJvn+;sK8~1--nS}+e3`&A}=!g6P=Ee*vd5O(40-&PkFSVuzBMWaRP)x!95v_4U z09pDr2c)`qKEm58FggxZbv&!f*A$xK)KMw*I%oCGqbcG#`J)fd{L4Vu+R(6X$bnO5d1df3M_p(C9>RHurpcQqkTIYA@=@ z^*BGG!G23BV$_eC?>A5zo!8baXnC+u=3w&^L-AY|ME&Z4(!vc|8NBqo_X#l!Tk@|O zUi~_QikGw8eC^brAMroIncGG|A!Jk=g_O1byrr7gj|FztydgX`!doAnK&`eU_bu2& zU4hJ61Z>EmUl@VaK)Ph87Cv1vQp{GzK#e~hjyw=EBepy_rX#$C9U8^vw_!d`qIV}g zZVwZDGqpNizjxw%`#UQ*P*y1? zs}ykh!sfNBozpHC2*5YkE~j1Fzx0NX21gh)@&L;q0wNU)us|Fb{2l3=05utZ5{}DY zfn5z6?KhD6-@bF_EO-jkKnEDQLbNAT28`K+Vt+I0&tx5n3N(GtG_%5cVa&kNKXxYU z702`GO}iH)S;^D!QQ`Qd4m{|ELXo7G{e&OnFKb;EjV)EsCT60oFVy56g}Ez-<+~Y)|67Pn=hxIUiU}KMHH6>gK#M#q=G`N< z3#3l{`5d5tH@rEe`Ao{^NtCQl%79ff%&|V+>#EgC3ZuKB(j!aYkaQ9d~$MfAuiV-3PEA%pBCM!R!RGH zhvUONM8rw`EcznK4m=mZ&&3;QqKSB5%P1*D&qa}uk)in#U2>cGZ?i7_!PlG%DqLpa zswwhHj?xh%Dn_S#e9_B*%@SIa7#7*vtW~M;1DGKm9aBFW)wV}i}SYDpowc57o z8u;Y1KsjmXj7^D$qtmC-QDh}%MxjI&8#-M2jvL!}_V+=L_BAI0TZ?rMfB zd-Ts{SN>o~;ck5+c!DT%00g*#&=n*ymkaz5(trvgf;0u9QxBmHDCxAgow|vs%ykmt zr4ceKP78Il$5c~>PdNkpmr`?s|t@zT%l1L7RByq6W-@U7A(r*(0HWqB+!AB4zzU-#M%G%($p5l2gaiF^-@V1aw3d5Iz+g?7F5FjIPN__X2|L6L`4F6oe_P^IR0Z00KYJ2QJ zaz;c%Xo4eXG1MrAhliPg6#$>|0?|go+BzP9$UAvh5rJY6IJCcoo?*ks-4_}AdpV){ zKbOOnQfRCA@#6>GiHWIc0K!s$e_&w%K~%8!NAK*s;8PattSC)+UA|H~9yW^B3#i`- zlsYr+@8$)B{+t2AS1v6eAe*(Q`2mXS8ol(Gb^^|%K19h6;Jvhz5rOmj3~D1z9Deuz z96ywlYlb;(0%jLTIa!5&G;!Mso^ecoS5H0Q)DwW$3%wy)fAlAd`}3d4Ud<@ypRxMi zMZGSP5T9`oxI{=QfpQBinczx#B>;=X^V=Ocl>YwA`<@?K%rAl@1smhPy?m8uaYZYH zg_+`YtM|=~e_hr3iMz=*F$t`YFUH?J!Lh2Vb#=@OdC~30f2S*IwJN%2;A&agRPGX~ ztQ4>Z{@16o#)@)wXb|;^CL$qz|6cC*6z-pG@t^M+U)ns}eOOgj zd`Yi=El7N+f13cmHkHs*_|WlPtf+@iKb_U8F8}yv@owL{$H-wP`JYQtc3okdO1V|P0R0PhcjoUO|oQB&NneB}K{d+hMtRU0pVc}rS`l72NPAcu*NXQIW zz&pBsoh3QEvU&>tfByz5JX3spHa`LIyjS6jpuIRAfK+zq)n zCo7U9o?@mro%`!wchbrobjEls$S#Io_~*We``rCchA%9f_~3T~`9n48Fyx_0ta~5$ zqgdf4MoI_v5b?ja#HMFk1<5}b(*6!R_)M!e<^OttPm5izTLg9cKoh_RT&t9ut1=>6ft2lYl8Sj2i!5FNZ(Tow?5od_xZhQrtDkfUIL zl>hhNazoT?d;0fpZ7@PXyi~&&ROF^DU12OApVRI&Xu5gp>1l;G($}YyJ%#_zTC{op zeH=rS;VGZIz5OQ)rDSRUL4exYo3F;87Z~vkK%5eFEDGTGL~K?N&<5>R=fI@D4661K z97Z=lgQ-v$A{S-0&7fSF#vxCcv60b)w-Mw{J`t7AR0^Cjy&Uu?9 z>+>bQ6SE!mY)CS6%HsTsK(D~9J|#{{S{e}NtL^VNa1M|@j_m__zNrP@?2ge+iRiR$ zc8VUKxGU(rAJ*8`9z?Dq;x+GcNLw#N;5;(<4^I283fTyla+Z_FzN2GPj3I~#^Aio* zr)AS&TR(-8P33Xm5zt|8{gWnMVe&Fxgpy!+J<1Il$^X1X2g&`aiL5!EIs3pdCjRmN zh18}upsCFdiv5U-EYb%6B0Xe|NZG;iH?VYk)7*!2sDZk-Yf9xBZg7#q*8Dj=y`vEe zyX9dXm?^7f*2tv*Nhgx9`1x5t>l@-=R9*eZ%wnDr*+W+(K&b*#TN1ub^?8@RVM+70 z4s$^07?K;1fyGJer{((hE`Ec#1yHW`g}QcAFK3^^&Ao#IM3bMJo0~@;3&L<8XwEGdLu}T6cs~hD#dJ#1D?b<)AKVf+N1x$ zVx6CqC;C>=Xw!vXltNWo_x1C@7DGbZ(g3*hpE@?BzAhb1O zX_NOCqQM^_IPijB!$;VM=C`k+n2)}PDIZEc0J0?l$E2sx$!gQQZniNBeXs>r%%!4x zGW8dyu?tY93H%GEeG1OA#*ugYb9Q0M2xn&+Ft+ z6DVQBR+9ruIS|C-fNVn60dfZ-C|aVwy|VB4#J>ho^myQ7zI^F=pbxXTKzo{+$DGEf zHF@|Kr>RW&Yz(UY?e1rP7QOJZ?;?`Uto3NGrRP)k0Aj3uju z8k%mlJ$P=dtxgCbB4}#r^H8jA1mglk%SZs;RB*j1#(mJk5yPBKAs_i>0 zKj#3;zmH(wl;uUX#2W2q(O5voqukoU@q+HsYW+Ea5qSLH^BzrNoNv}MFeKi>WVnhy z1Jv#HP{6`+>vt|a+XIe_$xU zivP08!PHlZ2DlQ$($Di-FouaXY*a=!)V`%eJ(Ryd>K=FsAkiNLLF4uB_c*|NW@e1_ zLW;E`xC!O|0DrH7HFi5EfJ5~N>G2vWLI1%wxaiDk&IA8P*zn{^3f#o0@*EVYY!QYn< zl7#yv^9Xqgnje z-`4W|-rA|(Lb%Af{p+q|0p=8fMbHC0(bNcDPqT)J(SH`}`oFPwY2B;XfOlF5u;Tgu z7<&_Ns@C^?d^gdcgcMtCgcLGQ68cBW*`JVu5xWXw$FSs{@* zGG-|Kp0&58bI#}c|GTcwb$!k`Yp-_=?|R?+x$paVo+>BH6RM-zu3-=Sb(isUaF;HG zyM(Vc9s&J?c;@%~>c5_o`J|HDstLj3^HyB1T?mT8Uze@hGo7|$^RnHXP-Tg=_6QjK zlN&pV)62z_6GSsV$DptkWto?w2QwO2wAgp#3qF(~Ki{H9atYPNoLgYgLI|$K ziS|ycF&I$c9~9S``}+DUA390EbU{8@M*6WCV}zbSU4wNAUSzq`aU}9-xKv5QB1j?I znLzw{If-Ad-ZhKqEvU0V&y=jsoIzyGVe2D@5AQ#67^@UCmPidFKd{B>Cn9 z;=mL8$LibJt@$3}?-N(HAiU8&!Th?{>mEL_oSg_^Ct*tr)+qPH4fcjWnl-5T`e2c? zywfGZXrZUK6$(-JI)ejHJ%bgSNcU9Mr{RjI=f1oo zv2GdvI5icVT4*zi1k55e(5itSD+WdEp?52ii4FBw2=$}0YB0*{PM#85JtdB=+ugY% zh`Q!%!;2Y_>nKhSAR>8jF)?*io2QK}Kyt&()`Z{SEWcN4=$wv!lm2laWFhP_F9~u9 z64?cd!-p@Q4;(Iuj9m~8Q(>hS0Mbnli!gLC(z6d4t=|y7>e#n6&-;qWB~KHi{}Q#=p^FN1o@&mIn9bj{BC+qGAGXoE-o%1 zwJ(Ud28uL8wR?ByKl0$ggZ(r#9?t6=&c0{gzI~3~ z%7+k+)KmlDTta8Rq<|{@BuRBLrb}~@`0s%ca^svxtLD|pnFTHrsoe?guA^7pT~)SH zQ3Qr=>(;Gb`phz~BXx_S|AJ)Q-=w6NjgE@&Q1ur@v~)Jerdbi;*n89BL^kqy<{rAp z?GSvEEq`@M2u*3yPmZOD6Q?4b_LfCfTQZYjPoSV3J>w>>ng-w}t6L;gu{KAm8(ph8m+HPC%bM6H`uL}GmX4G+P5T8^bS%`O>#Q!%5$;n_8>)>!m&NavpX#X-YQO;3`s(Htq+@{o z_3bj=DPXR@2Iun!o{3GC?5$XvxR{PWj4MZ9C zr=fk`o8;^2y8UTbSp7yMRN98RUW|Z{!ODyz1cJ%=5o9e)a2#W8N+7T=*r*?$_#xQX zf`Sr#G)`oMEtv=aY4tk@H?nsNk<8*(6j+CRq_l5ep+55?sJ1D0YYvbTs0P<}W-Gk-R+32N3uIP&^cW z0fxUIn;Z~dpYfO8=<<-Gzf~4!plMM(wFFiI@WUUQH{0Gjvdgb ze4_aC5q6dvMQ_;z8k?Yo@cw_Hh&BvBpkqV`G-C)<7ydt9Q)dOZbvy}h#W4Kna43Ab zFa<)h{u-$Uj-kDaK$-$l2TGI+2t~xN=5Ji1!UwqKJ`vX-QOf^CgbKhp{fOh9y520Y z$%2NK*8stW%!ofQ-^A8%+-YXweYiU1+S!#|b0&}TAp(P^t^Ux%c#ePDo-hf1<(V~ENG846HT zD_^H3!IOBK;1*$KNqAesL}X;ERn!UJ+|ew3A_Md<rYEDjW&M~Dm3f8ZPnT`esy1owcI4zfufZIMb210*G+ zD|Zcu>so0=6Iv9oMsENi^McfS&MKu`pHi`(D127>5#u$_*4gRs)3$7g0uH?^^r40- zI{F9Xf|vF8AAtf|#~=Yj%(pp2h8Y?GWjjON!fmK!Y1ZL$84~>ssWx1%Q800aEQ}u+ zJ891?^`4Q_#UtOCYjr}`_)4GfU9N2?NV@azjKo>3+}RBZVk<}|O-%fp)X<})rMa2f zB{wSuFRa>1h}R{Ql)MHr2S`yOGc(B{PN=YE_&oF=whh4BQe-)v5~NUV)UZ{v(c(mF zPA0weX{;qhNhFMpe_BC;a&Twpd+=4?4=3LroER<4O4YW65f_Gs$wAQB!N4(0!&^;$ z=;H^&TOibj1n@0kn0S)Ta@DZ3kp|9#n@@koAY?;4;nem5D>ig7WP-jx(DWKw69m_f zMMGsT@YUVLGV^u1Ek4>Pj7PiX@ni_K&_k3T6wRtZA;I;d|t+y9}b&fkvg}m zUHK@p42;wsFkz=yNKlAB7fG*uH@BA>5GuHNK$V7^w#m;cw!v9b=>-bwNO=w^{qB+f z0!m=KcpXOxyv?pH-_^>S3W9a?;;ZPzudeJauC8s!f0P{84*AqJ2)hU6T%g4Vfs#y@ z6k4)Wh$AxGc&y?<^BXv;bVn4Ojv-=g2DF?M>bbR%1DCwG#R=4JfJ zVFbY~Yy1P1h1QkafrR@?SPGy;RW|Tn@po^BhKD2lWRTt}n~a!RFowQA>lFBmI~|LN zaEyP(LEx8asSr8S8jScQN+YDs$)Q^)B;;H9Es5@e!36B}@C z?7iGAfy+A8Cs8eCWWT<=@-UU0z+Dr<=nxWV@}&jMUh<<93xiJlx9^f2A-#FOz%b6V z3Yj#c-ve)S2tTW~He!)1$j@~??6s$@)udH?*P z)EqaEBxC4s1_>AF#;}Poivwo|YJt6arphEv?- z|3rOulHi4Dd#Ca9mjq%(LZXu;kr7EHiXyX-`62}^NjPrz&%qy4 zEz3`DN=Ko`xYkgpND^6zb1Hvns+2hortJmSJjh%dOQe7Qay~2n7OD_^0$$BugWTD5 zs4J^g+JM1)`MxiiB#?2y%6P4QP)hxcA{4c+_trl2#U9;e@}&{`%eR9_$-iW-j&`if8^-GxtcA zrC7J1s_o31U=x4qzSRU9;7b|)le9?&MiHO9MQA-ytTn)wjDnwclRrVB{$@|A@qftB z_4RVzFh|aBvsl)=@&Y`oQc~bHgGiXWo`%RqnXl4}3|1c3|HXMyz9!{4(@Xr#|EJRI zsq3H#KIY?MzVI|(^cwGn$)aj*fRJG@bN_VMR;I@vKQu8Xy#*UGe5002 z6St;^_IvIIOk9buVQ5;g&!7;Z1?G3{Z?m<;$E2R|J%@{^55CH%#!&hv1MNpjoa~4- zt>mczs?7B)J=_TD57M@C2Q?k;J-iBDfS^8z5X{f(DoREFUjf=rz{;Z^hnG16H@u&C z!#h{=!vcI6Z~EjZvJ*JlKS@KqYFG@G|B_a1UN-ka<3=RC5|$M3@iT&{8;bPg43TK= zAWreiZ)+gvZLMso|D}vWl%-gq+`S1?5uq}k9==jld_fi|3I)wqSD?lQIDOpNqQ^dd zd;stz7KkB`X(}N*0Fpn*KyVfL`reuZebbPd4w>`5y!$}1W*d!rotL9{oA9j=xMl$n z+hRftNy&~ZXKRd4q;yTE8RIHhQg{86vdeIEehmiiBIp{pbLY;pP?LxP5~z^Wen_A~ zhJv(*>M|)eh!crezT3x3c`sMa1uhNUmV4LbxhH2I{BW@HX(Wjwu@p`oGiv$TW;+It6K7g-cJ$MZ~w6S9;+|ed94?G zJl5eZI(jOy9cAbY6C~~T=TJ$mntZvjz}q(K#`xXhY5myl1%pse z^&t&Mkv^Px!*sm=n>Z9EaA2DbJc(z)!^ z?d?!-RI9WJ_Gm~HtZi(p0w@aUePl?6CR{gLv=}sbg2q|m1cxNjB?TAu`dQ@N#(`RJ zviwaA%IS*zg`Wkyz!SO6W#HotYs^3BMa?C3x96YN6Hd?8AA8y1ac>stdf) z;#`FJz-a8@poQ@xt@T(@$Tg6KUAs6;} z9?c(wBjVU4s=UeY5LBx(az?SA@hGA7z9=_2h=#HNxBVscl70S66q2_uUfFSG3s=G*hz>J06&KbpkhR7%|erZ6B6;XoMYYB+uOuq2x?|Xvjpq zvb|)7vh`=@Jb;kHCS^uFo##SC55+P&0{c9QWG8H#FH!59=ygH!#%x;EqtC zmwqw65gqKc7mJzCB<`=sTwlNOz9{pOo=Q-N)gDFZB&5O*VCyIyJ=9VX7Vd3PRUfD_ zq!$R7+@ArzoL%!hPIm0juow)o_0Y7=a1dWsfyLRX z<~p2jh`zK6 z<#fcAiRV~~C#43kMtA;nzB*oX1fd^!1LLjKul(+Ltlq++3q;-g9=;#@{Kl%dbE0B(rx|ipZ{zleua6bfms%n9a9HF;rdnSqI7?ndW znvTY<#WI}1@cd|WkMu6RM2G8S4hnS8mz`T6c=ps2 zaF!xPvmwzDDOU=QB@4_JMQf93jz>s|=RYy3uQMz7G+V6g17f2>^!V7qzdVnVTN|V> z=8K-sT0=rG`a$_BKRi-<524XopGreGG#|h|MPqRmFgOL>h1=AG$bf)#neXTkglvz= zZOBy~THRh!B^B*YheN`s?}H+7m5FOLDhtYJ#FO5m5davANcllZ(J$W1)^iiMvW9$T zp!8p_E~{>>IX;)NaXm+2@2}qx43Z05=KkO!JM`leF5Ot{Em)~2?Pdk>zf;V7IR&<3 zUco2vm5=eiNI}NfztL>n3Bk3~`}(%>?V*eFc{oWgxXuRm=I6@-b72^a8PmR(wxWDy zdm>i%Oa2SjDrD%zHPhTZru4naD0=JW_5BhEe*;{q`PLQ1--51;rltu69S;AZReG)3 zXb>^+AxUV7e=Z)+HS9D_SS2sY%;zem)gw@!*4U~$E@9CCAm<9hnCm&{j%g$qeJ z8p(bzHT*4A>#6Cek)e*)D*%Y|#qvHT5mRm?8YdxgBI>@sq5zq<09*Yr&IeE*T1O29 z*I$2+Z@>3-^r2xg~>UzuOy(eI5z^ zS*uE07YH)-FPj1Lz4LKgv)9QWey6*67>Ol1A(lvM8Zcto1}@g076qd4{yU_L){EnU z4^E?}5N$~K72;9-nzN^;cKFIC=hatiN z#{xUzfz@!_2x&(sBGiq^Yx{ zpy>{xiSrLZz%vx^9iWoUsD*YL_$a-66JQ03^^6SuOS#yD*OYu&{A(y=DTGL}%qY4X z;vChitjYwHQ1ZWSqOxtgLADr#@%b5e{}fhJz9BHw{J}2IQC*1Rf;Dp_QD-Yk z*g@1JhzDkvo<2z19d_mhGM))p2Y%}mOn+VbQ#3AXOzoNf6=}_i<`%dI9=#j|JVdsX z7eJFn-lG2>+6l9fp4sB6tuy_j0&<_WX_#P@UJdq>6m+y7O*kZ(A@YH&3o!4JqO5*@ zqcU$Rd&Y+`IEi4-#NIro)!T@b8hZPhMq5Kw3#2L#tWGf zI0SWc%b;w?HP~*RQJCTpi>kmA$S63g&h!ZqEA`=H|Myh}v0T-tk)rpEf9-x zV8BGw`N*192_E`2FGWS*Xq((qX~4v^)>yMD&9ggu_9*L;+;e=A98jOAv%rTHA0BMs z@u+>_qiQS(c^v);_v+vF_&A}?s+jue_%%afom}<*a zEB+EWQMGR|j-cnPEN>W);^H|vW4slmq)(of&IIxN7X~9%ulaUlg^3^BE56qM!nA7t zXdN$AGlO8P(ePU$kRKZ9r~35ita+trWKD|^8Kjn)kT(l5`5&~C7~|P(tyVb z&6Z*SR({SR=Fb3nhrF%*`}aTlKhe9RH?$OLd&Q11U7oG&-(3W zDtk#`A^Nt{0ee9I#%VCG@ASS<@iOO&_Lsw7`VIp^u0cK?m=9KhFK$Xik8|xBC#iwbnjon(oJhi0bI5`7Ex)!LH(( zrr-<Dil>c=)JW$U1jgOe<7&luPb zhJIDh`?fOo{~wTpm$?iQDZ8v72S+8t9ZSr>xss;O1)QOM>|)5bqJf(Rc!geiPtYM~ z`l^*Dth6chAZO;yE%n)$@I3FPuMF+WBCeuCyXERFKl)-j2dFNo&xRB_jq^&Wy3*M3 z&MyX#SJ9|KNX>}1I(hQYr6}#8p&zjjFd*^+us&&dvF`G(AA8^GAtx2k=?9})b)i41C>iN6QMLEkxKs1 z63=8Fsl~WjJ$o7-bNtk(0>n-!A^OS{zdR3K^B8sTGT(Uj>LgMcIq;24G_d;!whs0s z6Yo1fi|5p7ax~#E5x>EqeX*_@D4(=`jW%k)Sm&Z_PU64-J}NE&Jh7?Aq$5F>WL5(- znOs7F#yODd?-#Z=1GFtbO+?!*sjW#|=i{22s_223FMrW7PFsI1mw2Dhlp~SI}*-EA6qM(t*A#u z0T4Wc0KqE}>uM*f`C^@_`C{l5LEd^{4^uh2aLy z>yQ$J@Q+A2v4_60B9KM$1T{CJU)IbzgxI}a@CtoXbppQlF`h_(rg{>SGE>RnZ7OPC zR@17K0*JV%h`R4f303__g+lkBx{qK8L-+X1fPts5q%WD;JluiQjj-%&L|XKkSnLvctlE9 zR*@4#DmoF)P6hL26NE2=FhZ}^Jw85Y)n4L{v?a=%fY_^7`^5HDJqksk(xjrKXi4dC zO6Rd&w*&WL!Y5e;*HeG}oD>C?v@)l&BEK!Ll)}u$y(-f=ArJ_};oO*;;z{R2> zmerfI6|fyVDPTV#^=I1Kf1pd0vBiBAi0+@Px6E@dUzV9x)(olWtod`uh}1A*Rdqmw z#{9qYfqwF>v4v+jd|BXHD+9<=OM9l3f8Jny4X8n6Ci)S+)?5CN1333z&_BU9M@GoQ zO}?j}GfP1PhE!LukW+`)!@zd@7YVFq%3(MlRwoth0hdJ=jsuic23JM1P@bRy$uOPq@zRcUoTw72PMN$0qG)O2=3yE0V z$BE)cmaBueL3j{6{7!o8RID7by zX#t@7$pM53Z(dn_=9U8SircD?NsBKT{ClFE#`?r>JI&AMaTLI{zNar1NjgGjK+YRo zM|JygtE!gT{mS|#L=J&h&dFu&%(lc5EeL?TWqU`O!pHaa>VDlUEtQkKb>^KHM+P z^bkVVzjERz#o*2=TgDM#Fn7fng}V4n8sdWOP*w)9n!{)N(|YskyZy-eq&fh?86*II z)3*zC&D6-`3y%k6gL&mzEVCRtHfeoW0&)ErwoS5?tr*XMv*C(Qv3EcGQiW-VeGi3`2==M_Topw6Fcks{`Ku zAz*oUNVxwTH0O^&UrFiKoV#*O&va!~0^X?%HB_&I4DBlDG|h8+L^MY!Dnu>(wA< zwKgFBaya>+?Xm22lkx_O=^A zK#rIsB8u+D79IBR)p)Mz1FM==O^ZZ8xa-LHkr%nPj{>`u^Y5-ogDFAUWA4kqE@sK^ zZn59^?Qko6kW6y@=1pIai?)-H=yj&5vPIuAF+qx#4!`Wy2^4(=4GzJLyptRwa(Oju zv(T6p9-1u51VVc$lOo5wSDVEV_}oaUs;Y$Tzc2tp{NclgXL-VINSeO~Ivbo&71h;J zw`wxUm+&!q9eJlOs0$n<wM<_jB#}Wm zKubvd2mes_I8EPEK4ZVOPGtc9H@ebk*ZA$uow4gL_W!LC2w%DKQOc3C(BV`}T1a4% z-tp4}X`!CSORnJs*D+f1Jzm`LzN}$AniC>!g5V&hhQpOm&HK-Ykb zTaRw#eZ4;1;=_~cF?ZYLkQ=GJ=~7s~qGu09uxrRR5gw7U3&RTv$Kt^^au_MChh&(& z63_Tq5umz-fmjIuae8-#oHmUY|>A;Zk*x(6*ikl=bD zO=wA08xK?Z5NHlBK;S2NWf2=f11W|y3u6vW%e}_q?+bDe{y%PmN5u!2go)H&^YprD z8(iH`;==-VRo7E|u$jKFT2x+*AW90ZL;=G7rM|(jC}6!C(WMv^Ea{IA{vhW_k8J5l z(oGOuv!M_V^r>t={}HLEl7ioQ1Tp-PpAZ0kBsjy~@ymxTA|fJ$=HZAM zq3aWOMzDtY$oDS@EJjMc2;Dk#_;CNWoQ(oEx(Px&bZb5KA|X1Or+E`)xr4<}cutBw za(b6KkDDOT;gg|t_f04BB~`Z3ih=s`V>~K~J{0p3dm_i;^uT5JaJ9B-|0Ac7kf4v1 zbj7w|cr%j%%lYZuBWN@Ql-~V=eJC#c!1gg3>n)1F-dVdUZ9HKxH2cun!es0%qJ6@AI`t zXSy@#p~Z0QqQ)ORb=iDS&!q7fVaLVei3-u2cc-C&7*Y)Kd5yC2d8WAH*ALVEuirQy zH@jIqAxBEe7Hlrnz-)C!33s#bjEE~K)g!);#~PkPV-IC0er`dwge@p`?IbXTl~Gp| z)1-87?()T+IpqA(7mH&*QD2qtefaWKNL+eh8sEQLNuoO5HYYPT_dp1jt`ub3*i!cV zZvzppNw)~p41uKTaxZFjZloJIcv6A9UIB-uEpOr^lIo0Pbb%!jNh0BpMZ67o|V^}RiR4k!_L9eIDOI&X`<&6AJ5!d8V$8? zzQN{<41?6zM)IwpFl~m40qujQXj%ZUO!R-4DTo8gP$Qy03~1~_9MF~=2K4eRDJ#FS zlr2r~U((?uttSfAOOc#DZa@Xl?X8V_o07P>ug{BX{h!aNX(KjiaqMm8DkyV8hI+bx zyaGHh%;)u1RvEw@t3(XD1PEalC={t67sSXiP~Q4>{fpK9&Y&*4Wq*PNAI@^&Km79h zFJNV^R(|>AbY?zgz9^eQ(3+r{8ZgYak@1zW#A*SI`IR=OX?l(`|qSB#NK(=pW2^!=bf&)n&#!K7uxUS z?D90Pq^wb=yuSR>ek;d?4}0nvkJmEp_1blAr|a=kl*bqgoSn%6?^5!HijPLE^YLYl z4g1%`xrP>Chu_g=>ZtPyp-`x60m>{>nv0&2^pvCxCHu2#UxacC3!TK<%|>OE7q{!( zBk>e*lCRrl#51(C1&)Vbgw-nyUT>|5CEw+0sJm0cphuo2BK#>SeS#c@8^0@)oNyG1 zYH!hq+Cdx%$J(Xfbh`vjO7eyh2I9ei?!F>Lf1fk;TwLj-oc2N7tG519rB6w-`AT%2 zN$&4RxoN%0!goEio_|3d6xCK8AUDs=O#ZaWwHr(($X}mct1)~3clO}vZv`Yex7qiI zN$hASL2V8seP!gj8iw2Z-OsDat%_|Py|Ua_yjyE@18Pc@cbRvfLU)~jm>5_w{NqAOz| z^s1QYV|HT(@^EJu?8={mRmYNF((4^_mvr;33J8&P;CQbRZz8^4prm`0-1*oD@sXmQ zzExIlik%fXh_ggDlq?`uuVL`my)mRFP{^lSC4`reJbae}@mf%cXB3OvB%?JJ83i?# zJtf`5s1DMOTwiE@h*x6SeE4NH7me9iWK$09H9%ezPrzaW_8_ew;Xo#GuKCR~eH3r3 z6HOJFXO(UHkmcMMi(>}G$ z8_S#%uf6>J<97uOgIXWS>N-a}^NBP&w8LX}=6RQbea?!r%M`=`eLj|shugpVp_(_7 z70sGGE}ng%&v5XCkIg|^5)R%wm^06Xyc$?!zset$#f+T8aCbH7C%v?pV$8#D&Qzae zZ)^tg0A^(1hZVXQcyBIMZH-(v+g)sCjfIkyWIR`CYb&HMf>iS^nogN`3fc(^`W=Mf z%XS{)Sknrl(_Gvl_t8){Gm3*(UV}qBG&ts6%|5G7WFyy^ke5=%v5|?7mM?w#d6;CFqg;31TlaIkzEW(P_R6`_-MRAS1CI>PV+K|M=?M4R-S-D2b%& zyc*)1LN4}=yPB2!2=V)DE-;!G#*3K4l+JnjWert$lolBnCDdZPMaC$RV{N%aK=-0? z8ndhkE?XZ~6-oNH!;{&!pv?&Eu}?T(PxJa7Iisc^x)cOzQyk=&+u5&&=s3#$_}2Ub z+SwXS1YF>3h2B1y$p0S``{CfDfI-8YRwfzanmNft?(Z&!yhC{h97@}NT=XE^^p)`( z6f=9^LEMt=;kL4fa6O$tcS(Brj*8FQR``X4%%HV!YG$T7#0lO6B%$Pb zr#o5!Hbu+nC1)H|Iu;(Ezl+hXW9mScKX!kf<}i)bjf)vgHdXlSJswfc-*GsYxifmB z(!WNb5`C!zyBw7~(?+{RNVrpfb*5V}TJ@?X_*$BBLs^oVWdgh|b)KGI>5yqcXQhh! zwj9a4`8Y`UyKGVS7tuR)6MSpWit7E*mrAR*u(lX0K16qT)SOP5ES^1?Bqx}=Oi^w> zS#KL_@2kXxPQE8z8XHIdJ)`~I`lx|wOA1RvN)y&y1&^zavLfy~Nko{hy4E%p!_)5w#Zcc^n zPFj!<0c>>V(9P1N=eJB|2Z|lPFLetTy`{PNK3@@>IjYdWFPx-y@MD$t5;U_pvw8r9 zl07CQq<-quDZj3s0_&uVk~LG)?X4Xh@lcF0rLa&7B3ZvqPw7ivH7IchQ4DL)Q6y&L zd*pftUSix?PxT>|oqLS~byg&{nK#Z&S@g+NLkWav!NI}EkIlN$TcKk}64Isws`MRt zzYL{U)&{K3+l%|y)6onQesEf5;_j3Ar z-p8u0W0flk4*JsfNO$AWG)w4!+=5&sQuZnSn>WNR9_gEXP|78ulb~Ibwsix?Z@S$& zdms+hGXVxs)ja%>*p47SF@aZUwx`?STteiLmnCs=9CiL^Y@{gu#t22a6!*w=Z#B#n zIdpVnAi<7rGTknYY5HUZuk(9$l4)&E>GY)kHa4+* zrES(0mg!cqxyYN;8L(5KyTBf2rBY@E6I|&7cIpX_W}#qBD7}3^{I@qsjfLhfjv0TA zgO`;7FH8CMnork(U{-l&%2@$ePL$zgnXT1&3(T?^AM~ORQa2e&JSvT$^AKF)AiSO1 zg-!6tf1k8!&8t(leM_j^b(A}^ZiWfR)8h^n#t-XiTPi~7y(D^l23e$5 zA`l&r)^h6m5V>;;)ZEv%DJ*mH_W4dN5GKm`?xi(HuTuJ>aIe_xT92SxmiG+Rq*}@g zl)o+5f1Q~?zh8eta_S(0POh<0>Cm4|uQbEM#(nKHeA%AWdE--}*UWpoOK!}aT$?Nv zj+f2LG|w6L7DzgXJIi0N7LJ3e)h*BS22!EnN9wCrYM>b_L3K!I#m*%gCgxlMiBO3N z7eeF$poMx2WJZ~^#mhot;HN+)rayUd@cRg>nAL*G)fct)*PAKSo36h(TH#vmur88; z=^6}{|8-d|%9IH;TTv+Py|{xe5;d{SYIjYenNtQ|OmM7S6HyPrQBzYR!$Ha6;Ly+% z*zKR|mg)!%I^{5@q^HaGzkXNhWDm`+5vFwwI*N5BDbNFtd4a2VF#ybUV{Lrb{D+!h zWNC-|`yxe~yT0%V3c}_~)e4)h0mqto!fWS*Lgl+Gvfte{9C_582%UAMH5!(4cEz^r>!K7(GMHkc1^ zvMYe~zka0O>TX|?%|(VFS+b^!_4+W$FVgij2d_~&tne}Z5ka`fqD}o?jGqDQOS$FG z2nbp9QaBCI6S3j%J4u{==yVXL*Xmwbp3Sv=bAY!5@cp#rXI$dqskBZ87he{e88hm^ zZtHKavAm=FXob<64-q2fBiH}Fgp}LIaM6;{4c;YTfp=Aw&y}#hM1ElVK+>(zwfvMr z4-tyX*ZvuXWzUE@Ruvud#$Evs-?uQD7u;v;!M;QoscdtkK1Z0H^N&vfO0_7(5}#?y zL2qpMt=8_lWg4I4*Gkxp&wjk#+x;s9diM*E(*%*e{WvrjYTx-V$mYua% z_g-K=_5}C&MeU0$jqK3JH2}Pqq^t^MA@$E>w zbd>T?16B+k8pjj!#1X573-9=0zY7TJVqzIZ;wLV=ck|emocuY+=t2I@UOCz5%dys^ z-%6U4H4QHb38Nb0MKa#jw|v&`FSy3;(DQ8}|K{{H^(NvkP)}z@V#HpIQ+Z=6NgA+O zwO?xV>Ws87Q=^|w2(T=3Y0ke0eY_bwUgL!gC7{DTF+h?Y4wq?DNY&g7y`JMRPC;xx zL#|_Ix;2uT@#aCy2;Mn};{b7Aws=|}nUDTMr@G}aWBw4-ZeGCx07pC950 z_CmKJOK{lA0|BH4 zt#mDl=A;@U`J3Rhn8Hx*}!jgEUba{3#Gbrc)ZkTRx=j-M1jpEmi-#lK_ewp9f z^i{p%#L<2au3bU`G>Xr0px%dU*dq6X@NVSQ}oAw|@_ebFC>>Apr0P%+=aYhS8;?qejnlinW%O zmf%+QOkkmJYzsWil!4-HKb}O@02woE^4TgBqQfG~c3iY` zt@uHka-W7$N@!g1Ay)0|1mQ`62dn9c=eVX%#ikFK6k2thJvlgM(qXoJ_*8fLp|4L; zVh7^xvVOWzF|=EHGPk=#DtBQ#S&DmTltR|`T5ZKaSVda=&6pW z6n`!Lq*CYBg*|#0zUk8r)pxNq3@(N zMX&B-_h`2@W^*(&Zkv9WrvQQT>ATD6NLUF4HcX&l)4AC^>#<9?RcIjr9YAfMJtb*T z|7Lt4y#N)vn4u0(8uUh#HiLGaIqg466f4po>V~*b+1BUwv5QR?; zmX_+{qj!E+NH=XU-Z5%}XMv3u6^q9<_@Ln_WN@vc>F89|)DkBrO+k>7g8rHjg3z57 zI$qc~mX`ilFYShOqD<&9n%w@*b}{fWG#+iSWg@+C{s~{><%ybrNt}nn=*MH9nF;J-Oh)kGDh+=c|m7tON*5*rtL+hu%$whzjgZD!Huc5K~W{ z(UEK-rsPy*t}fE`Ua; zq0#|4vqv*1yda1C26Rd5*cl5UG<0zzi`imOIJqeHC0(6z? z1{#I#3l^3G$4|lPivWfm|Z(lChJ3UuUH4 zbeLs~2tH$k!j$mg`-<#S=}OUER@qCt9?~j&#~pdIWf63-1BYK`TBUal-@w4z=RXrK zvSxPzd6itVXHp?LqYxGRK$5qXex=%AqA#NCM@?qh{GJN}Q`zNV5&d|0S+C(`T?9fw zOIZaIh^ehZBM%B*mTk>SOqg9T-=39pisAg@o$wN&xg~HLK-_Almtd z>;h|(^eO6t6l{GfFGjDt4J5y}A1OE!i*gCr@G#G8?qKT;Snq9jIBn~tA{9^+t zOrq?v2*NF0l8eXgL7~bHz=BU1O5C(B7UB$BB%_t(?0(3xoN>;8om?g^QR3G9oy@z{ zopWwM@#w;(t}6ndO>}m3nIcN_@#8H3-&tg#9%eU0LAf>)ZGvB~Wa&Mc$sgXQ4Lv3- z4xc#=8&D!yQ^?;GGo8az_Rt0HPr&Ud$1ZEa9&Qm^v-L4hdt2s^4O~+45fsnPgcLKE$ciiSsg%!;X%OP6R0@klXV#)I9)uKd+(XC5#RML;w32Z$sTf zfcfAUi}M&D-X7OD{JN1pPUQ=S5l;n&1uPOd>$5fQoBlB*-cZ+7!@xe2S6GM*$c2EJP~iaJV(OS2(F$+Fiw=Z$aL`pz>F6IP}*fs)~0Y(~m$%JdZ=Jmwd7&u`>aG}}!)d@U% z4zJC64`W8eeFE(Y$mHq#CT!-e^B4V51y{wuv3|aicvU72>ER(s9YH;%5w#UY=P>|- z-B0|KD%$zGBH_(4?@t_Jgox6x{=@r9k(J}B^DYouA@iQ__w>fd$ol4W>?cl}K=+Wb zt9%X-#{W2>a)R+lzEX%J{Rbb61$~*p&!azA6&t25M=+6#&%1=2a6qVH!r$2|9BZht z7t?!OHe()p0l_?(0JcfdzT1N@N3P3YxY^0`{?KFSKX72HbGE^Gzmbk{ti5lJ>uQe& zp6oGm|Ctl+B4oA0&&65wb-E=IN3Os5BZ%1+QInl{gg8&@DjMt>E4k2U7TF5EHiVTH zadL8Sx`)LZ7%5@?ikKKcYgq-X4^JjSq{zu(Iy1R-+Nzf)b5v0>+^yTwS=4i3G2&z^Kk#`Bs0s|+^5m!j*`{7 zFj~W4ix>43QHK}Q7g&`e5pu^gk z>AqXkAvxoLnh&iHUKkm|i@ZILIqPJVgYX|R28)`g7M{V_TZ^4yN`vRr3vh=SCh~!Y zf&OgW(1gvV*D$0mo1+*Kx5LiZWnjO35!be=qCWJ#Br8i1;X}Y!lMBV@_R2y3E-&D~Lj%aEzeyy~&iMAP`#+)uD&s`;1*_JJeu{`8se{LG-Spdn1(U z@k(BPpY;$1;}+Jg#`=S3hsq}NSkvYq)-pDlLmaQ>=!@u5zSwS;DIyUlR&eXWw=_T=uJ z)z%rBAc`nU7E6D7F#{Lt%T?_XexZPI7b^=;$Jnpw0QY}A;ZUS1fN z^S%7oU0s-;IJkSUcud6~(k#*B`+E^9+N01(`1or`cpH%k`iGjBd? z-u(c}e#$0?qv7@f3Q7*z#5|J*bzZtVtaub?QYx#tx_%X(EUtyCbqC+?GCT3Dl< zVo5RfXMc?S_(p$HD>u1fokOQc16oVx2P$kqJvKlB-@w4(8@|xVb8<2*Gf`^)#fuj~ zTZ>FhOM{SjNF&mI`m0r+ii zh{?7AM>BAov)g4+r5}68LrJ+%x>$T|GBVR~x0;1Mr%ytX2Z-QlWeZgiq>P|XvFGCXekE;|WOviuv)$0{*B z{x_UI{Q;iFj+q=xu~B+8`6S(URu+>hy<_!U9G!@6J-%@W)Fmrbcl1zqzVqbqy`RHp zWPFQRQ*#k;PZ-B6=zl_Y8YFf+w>PPBzQ76R^oryW_bpG?TlXlv(Q{E}aBB0NmZ>$j zzw3)AD=XVVw|BXKMETHID1K!Em1iBn@5PmW^Uj@Djvz3O>hFV=$eC2Emy%&INl8gL z^q%$P$%`f?he~4Jh6^hVhKsN{DpWRa0`ErJkmofSN4gyw(@ZKzBtD0!e})+Q^{6VS zIXAyI*)nP`u)Rmee9@t5S|9y%SDtk;cT9H}NO;BOIGpdbW~KmD7*qtw1uyF>QCCri{tw#TtJ7K&0ls&i0r2HX@!wg{Zp?@- z+?YZucD1#&jk1P(y9o8?qMhbF0S#-Ff>oE%(Ab#N-0wXYB0$!r=qz^-c6zt~^t&Sv z?2P11aX0Ip=$(A8(qUwYG26saLy{Ol0)qyqu#3P4KS1zseq*QM;Da4|at#}xfc+EG z!4jMnl-u9Ed$*Pt`X=<&fqyzT^%)xM-orryHOKK7cPMSfSPZauZ9>60m6YD8<#|%e z36e2_pgVo)JO=j1`5WE@qsX|I#B3HUV(mpgXP(XdkUF=&793Wuc!!5elBEFX7yvCXrbv_AMHnO??U>|G>L3Ho34;XM$$PGec^j&VJATc_?G^MkN~fn1Du8ZF9~gwxOwPh-_R?QKWa zbn_ShZbo@p4aPbWh@cf@Ey z=g{-pn1OmWrLimtCK<#i^FySou|e5XZu*BR>pu=-I1PtwAsn_qgcj#EUnUWQp=_ud zN;rwb0W6NPZXB_~{523mApi*%`)b1dzIPR2p7;sp=5HVqWAi*N<9fY^7~x$~k&GQ1 zY3+G`R5msF>x~9ncL3q>(*HaVW&DLFih}#5Wm9bPcM)JFkp)b)tvK*@?L!e}gxC9d zMr)1bN1o*cK!+EcaB%wk>FbiDcpS5dy_DnIW(EQQNC35)hkw`(YQZ(abF)ywKv2hj z_v)RuQ|pi24$gUYJN=Gsa8ugE*(f~W^kB{oN4IEdh{Kpx>dFjs-g=-kAKn;a=HMUaO^ z_48r4Xk70-gd)C0Waiga&^zRQy7Ti=_g`@GF(##n$osU6Xb6vLz)P_ip8}B#^ylVa zdJx;3Ax^KlidO~~vhGASkE|&^ym|@(i$5k!nKsAzH}1_#3ZD)0YPAEZ0>0g!~ zR2hzAy-A<&ATMDAbukJ9+&aqI^{x;e!b-3?;x&>dI6cc5kfA`T*bLzQbT^?8zW0Ba zSvDRW(z%>x(ck9;Zj7`G#>AHfW6gg#icDX)FYd@)$cJ+_HU{~Mj!h03%|SAO8Pq{5 zoX&25z*EO*P7>jc>F=$?WaNMJ+BX{r{Po9=AG^ftrn*jkTq8aWv0r{Bq5#8y$?r$v zTIQpOSa$6w1huduTP%zvMLEi?uCDe$#ojWK6o{13(C;zCEF>bM8!t3%Y{_X2o)chU zPl&GvBJ&x)TnllZh>QJ)-%K~k#q+B6@~WAIMHk$cs;+KkQBjdgURqk3@}*0DumJNr z%o}`POcLAMBQG298|48RYC&9ZIxldC)3r|xU!_kKPz9oXIP_xHzlykpPHIPC397g1g=wXgA2 zmAc4A^K|I_VVm5a`Z~M+xC;}mXWaw*_E6Mx@N`P4{GHmFcYKVsy?rLUOSJIE0>K(u zWmkQHBIMM3xOSwHn<-*bj-`clL_|ysvp`iY8nk~M+(rC!C%dyf+R1itf-Zw6miYg` zBb~AYn=z}N^FYt z9lm5Pkxt&JDEABPVEV+JLV1Rd-6Vs$Wd@H)L>GdKgLJ5>ezx1Z!}h;GRzoLCKYIEb z4mi`q#>7RIF)!kz_LSGoh?bFxoPJ^VmpY1(Qy}z3$LAAjxq?^=7hn@ennh`H81sk) zcBR&Na%v^*kFfA?wZn%OZwcf1)G>5^5_f{t;gl1}N+YygmYzv$-@y7qw5Pg3(R( z6(J2ok*P&k`>Rd>tN)`dVtk4P^2S|vS22`<8I+%X48D7J*~;d>$92hGJK33%8MKIQ zYa(c8?lDz^X`1t>X3QdAmt|W0r8zwWs$Cw_1#;WSXn~)Pa)Lq`tL( zU}`d#+tBL6lqB*fch)DflJ&OxSW)xv#BC+62SB3xv4Me`K__ZrE6X*Kl3oxn2>7Y- zvG5ip&L&6Ofkd5M{`BZpMysRLiOSQcGmAwHOEwFJypq2;le$&RO_>}H3L!I? zYmCYn0`P>H)VCvpTC`SNU_sidrAv==)EctB-01(j%B8;ieBeb)&)1*zU3ARa+q_Xx zusZJonI()>1m!iw90+hLA3rkCp1=I;@r_^HI$m;wO-0?7C*CrzwhYUM!}I2X61TFS zD!vH$KB%*Du{3Bj&G$LGOUVhcbDN%(SoKnl3Kl zOxLM0-9$)y)bv+z&qB_`JtE`=n2*I(=<7)u-?Qr?R|zB+V|dO@x(sTPGnZQUQ%>k_ zzDYnNRerr#-WvAKq zig-L6If%fE9_^R7_yP8fuPBi=#o@`iduVTAOkL2PVhV2%WMVfK z;5=PMct*|*6fZ;MoRFmJzi{Bj|A3)JBygUC;6$el0~c6w2?7{(J_v9!gbTI`UZZ3eok@cUXY5;XW;`u=y6r#64Mr`YNg9A=hy~cGd-XG{8Vx ztSH0?#s*5Nh->=8?^JfzY6JzkjI~Knj)sn#`4mQ)K|Q*G|Dm75B9NNxFXT|SkdSyE zl58SV`-@@~tjCY9g(uG{=S(^uWl$z4+_ioOQBiqj@XB&mSag@{>};JB zhlGa4Mz0$;=5}^_8`l%_@jgAhD3_sP7hXGQj|>ryjDr5!TetX?^L1Y=*{flr@EzS1 zn3a1M+=pm*K<8ei#8n(K6DYy}(N#;6U|+%QAGD=L154!B{)- zO?~l(@}EK-08B3O7b?A^47t^joBX{NBx!paKel&84;l7NQ8mfEz0aS{h&L-*4xl1l z-VCHjR;>0if_JeEdvO{oA+^J=^{3>aVIS-XYaV$|az6o22GLHndxuXzU;H#{v$7Q7*~*u^>p$mP3#l zNVLvRR=K7fHQBd*JFxj|BEpe*psFI0lB9?=SC!ruY~V7~HJLu=S!j^|Y5vs*Pp{dd zUT7Jk{UF1bklbPP(CoWjQd-)fNIaM}ymcODp=p<_0uB4;6n)Ka9k2N{w>0x2roRdC zR2k~)kg~a9ozYuYyYSC$y(CXX=$-W|JdPAiJVV@5B7CuKp=JqvuWEH3pS)X>?Nh77 z>;FAHHAZcYovEt)k79Gcc-jx*|L$0&Am!Ir&RByN*Rxper6i5EkIdVmrmwFrLnq}8 z)cnVw5A@;lkJz<2rK=m8GVf7SyNV8Y{(GAc=Tq1D@aOXrs#cU{s~BV7^;Fl<`riFr zRxgbwB;PLLI7Zi2nj8GNN95NsS}btV+X`B2pqj{EI;z(s26}A8l*@e9sIYAYL=_u; za+J`|7P-#c2Z3_2$M&c$pStmHSIIf7pAO$iU{axNXDZIMPa4AW? z{JnFVKEJQ67ss6W^x5MAVlMiS)!KORjDm80+oev9&Os0prWPmr1<|JG?2ifGI#@&v zDl^HTQoingtg&IfFwp_Iveo}_}HhoVK=&_e@v5 zF}@+5r(0tr1~j6y^6Jax&YA@i61InmKa@FRf@<}G@wEoc6KXa28e3nlaU-CCniw0F z@_94PEy*k-N1r~4GkAhm+P-y4PKp%2?-Sw$<-Bywa3+Xn;>)74rtRbL3dp^4xoIk4 z4-Ja2P#?iYyYDqwO~ZG%Hog|#Pu8oTm0uveap$p#h)dNAkFTwnk~7&uQ`z(IWkDqh zi49&o3ptPbD)|js-5Xtj@RqrCi0NKPXmnZ(3w$+a^1{+bWccmQEdak|WZ6RWM$Dcg z!6-s5jIv2F;6=7^4twB>-Ip`%w;J{=9;R7Fs4@Y(6=*W@R&vw~1HYD{ph3t8N23qF z=A>VJ9UYUqzll5S8wR~N;>}PIKXNZ|I9fKAEcF1?$u7TKL-qoGsJz5 zVd9I3;5%Pc9ZFI3MC!wxgKS5>wdMG%)QP_hf0DF^A9MbT&z`}ftRYAB<>AS}7hjA! zfV^8~Rn3iurt%IEa1<)4yvdd4EJQ|6y6a3(WWQ4<-RjzRfT3;lKCqkwn=AK=j`|{( za39jq6XKf=e=GOva^ihsubhB4V-x2)Kz)Xv z6|lRSCYv>6gM5Z50=#N+bE(I1<3)N;M_AX|`s^)BM3o_mEgX6GztRh-1 zoYXWQTeFb9*ODi;k@xQHM(iV~CdV%lbs5%n1K66DFa{suO|O-@uo>>ZuHKyZ>EuQD z$mS$Sa?UDFNUHf_=e)N|mHBU973`2ys;<~V?&mkg2PwB;>j-GezAdYZz1Q=NZ|H}_ z8D&6+yuF9O0HA`Y7HsT~)<~4AVC8Gp7-bq!CZWE4`^9y~KmF>}F>><1U%^b+zpkL4 z#J;x5Q>(*6-)fJmf(OXXmr%F(f7>tr^rM}OpuNm(rd)Ahp^|6ma{8TXHr+jwRa8xl zl<(pZUz#bci}0VaC3os(0H@H%c?;JBEKU4mGUTY$LuaaeW?JC z3(Fe=4T4fG-`>8qVE=%NqU*0&~?Q$1;^^?zuLd^qrMYgH_a- zTkx8{-Ut*RSW?5f`WQi5=himGkP%%d~z z5W-BVYFIP8NYC>9Ul;-r#;Z4x8@LJemfryr< zfUhkmyfYN|#dqBejfVZk`ma3fzs(Sp`^WGfci+$NquW_?XJ&uk9kpR>Ry;91?Q(Ef zZCi(3e*H)Dx7GqcaALFquZ-_t89`VZtDBwunAF6f_bqNIXi0V>OpVb>^QS~+@m5BS%+*bccH@dX1UMH{xL}e0Fq(^sDgN=EYRqRZFWW8rA#+I!`c)lW(m%Dz8?xGnaZCVb)Etk0&$MJ@Y16wY#)!pJNOpr%(J-m%&_Vbl>_|&eIry z)R{Psw`|_;-k+RBk8;^?3jDLg$ruI&ZFcPCOitE=KNO3ZBDmsgI9=5pRie(=EiS|B%r#Zz+N8WvTCWrQQL$q_x5 zif~{(0`m&z^};ORK*A;g!+jOAcE*RR2(C|y-)S_y^VD5B=jE=wP{3Z31LgPSQ&RO3 zy*rw%ridIi&469S)EkLukoTuJxPtMuW0?&?`cO1PxUCtVW)2q$QLmms7`q9z;mhLK zntoh3|K(mn?sNCDiCh>sEsY~_&d03J1vF#NRpopLoNEs3&H`2SwZJ*bQVFw8s0B#; zHvA&b&dSm?`y6v14962i%I>Bo_p@AkkucgEGR15jFy$3RSgu8h1%G9a{`T+5$r%%b zs^*QGIX-~}cNC+gR_(vJ%o&rjQh&SoTNrGNl42gQDTAr0M~)zUlB?wLJ^hF{*892R z@!o{{`W%-QsDME}BRQ3i`zQ<}VBxEAO_Q(w;--W1Sn!3DqLW@Zc6G$P>CS`BoVerH z!ZlC_ImquDI#YDrztdTK3pNC#u^Q8uXx=T1)?F{#@ka8pf8Oa$E8VPy32gFMi9WF- zFo>seIvErwb)75geMoUkoHTi|O_lq4vzAYfr7X+k&nC)Q)m)NzTs?ziMz)-pa$?YF zF*)-eUp?2@?Qnt0(%{i^?IUX;`Q$+2Go_?LWI7Z3I@DEV?_wZ1R+g%-sdwVV&x!u) zj@=5`>9bgw1U(nXLOIvLf(O31YtAHK=J{$1aj<<@#P_s`jFZB*iKCxFhaJVAK1Cra z9+{eI0P~ibqu#fCl=c0bf(iyQTW_%dTpDS6>-YlN?krm;evND*4O zyC(C@~dx7*uQ0;BUT|VnAn5Tc4DV1Uv#=D2B+v%@A>ALt(!q9~8V9+ZG z(??&0uUAD4tXr2@ht)tQd<2I*vY6$irfRX%FHqQuwO-3NqGBe5DJqpalM<#T849}P ztJ_4}$;;dEN@N2W)Sf7;?YI)W#mk0-3cSQM%}SH)^<`}KTh+YD10f{fIH*-PBIHfo zP(ob>#n^d~?QZ?2x|UfV`4=(o%oCc*F8@5xE96mFta`giiFeuR;WJYR&dS$wY3`pK zm}^ZECN7su%*-MrQaVAATwkUhZ(c01(lAvomp*WGub>>q>@+o?cISfd)}4Yy{U&8J zZ^ABpHeVsz#uOy+65kW=59mw2w#|+_W3}=_zh9$NO3l7t+U7VizY44>Li{AY(auYR zHfYnS7kE=KfdAR)Yl?V5MOIbj{FjY($J`JO5P)PPg;jTTg&u6xBW9;fC#{kwzhL5} z%>0CnKL%-pru+jP#oJ@%G{Q%T&gBM@Rj$`=cCSX7<8x}vP{Z#(a?SiJddDYd9yZ>3 zZ1;SLvT`SvZSD|g97sZ#OHDa|DY(p9XK3>3d5!@Y4A&^}>c@#W&D2n(HZoKp zP_Ql3r7X369>Cg)tP3j5sA=hMKQlBX$M|Kro+sAkaK<>8gUP;=OsM5A7b#p8YrfxFvC0F`3C62` zWHr8$b)-BIoHUS~=j-zuiE4bMgM2L!2_yP=k%rj~{9BT}y~@t>LuqHoTtk7vQ9n+A z_hBbL4;7{$hNN{H{ADGi zYq}U*=n3-@TZTxTFQ?QAbVzdEpZXes1jD93>%&O7TF#BQpEze004#bGfccLAuwf)l zX~5j~shmpym@xrh6wu{ZrG^33);v_Rq)Vz3B$KiuGbo_*`a18u@QnQz@*1OrK93qE zpVH;%FC~9i%nO9zb8T$69Huh4FJs6sDu}UT9-vOo8ZnRmBrDH@ApDj4(q$eX%}J4m zW&>q)ryh0gcbst(MnQm$&+xLKw}((wSy=_rt;q%T3fa^4`NbwQ z>V#x{r<_**erS#=wPZ>T7+x~{XKofvm$zGz8YPCB%UIFGLtk#+S%f zUhox&5-6=9$|U*w5Bo|r)B5+Nu=*SSt%Jv>C$;ug7kTaq9j#k~7aZH5cLyarf6#CI z-BDa1zEpO0=fgYP`hro#PpZcOq?U~SLA=UM+!?Z*VCjL^%4^*e&?PpgZ}68Jp5 zng91*v%&V<&pP)%=TaqB9_g7|JdrqTdA<7g$>~YC%VVO{{r8%Dc;i`MBC5PC)J(wM z$xPG)*}^;HX<-$|c|*$-uQ>TOaD|k490OIwPyH);Z2sG=4lb?;`&EQJX-SIga!g}& z#gew0Ms%|Zl$x|xzHk_9&k)!s&BL>ctN9suq#?wr&*&<;EbF|&>>p)6p1HSH8=dLz zv29VG`xTusj;C@aL&K6l2lnAII{#YlsX&;E4=^_es zNmqYdyD+lK<;wR)C@tE0iih$G;cYIyYu-3pFg8D?YM%goSG<|^OUP zxXfCTHlC|r-KnF5y&6B&T@mpSn-~rubv~L?p~=HPdmazBKtxo*%X}5mxRHloX_8&T z(|=%`fG|s85*ntQmeW3bM4k|cqzfz-Es4Diw4omNBDv$@kqjcy>u}pj@7bbqi6GI2 zOCy0qk`~1k^_BOZEyaPLu#G1{l^0W158082y3Tm)jUqeH^kD9%Q`mZU?qFd7-imhU z)fHC{e{b)Q`1r|ZqdOK~F6>$CkyJjAYQBQYCC$yFd5^J8or~2ZZX+NpUc2nbBZU)d zV%a8ViKj|SVU>X0{t%<$A*nU*+8woIM`ms*!mW!-d zS!+_<;*%@dgRS~P-RG~zWBQ~ub$**w-t*7%3tJ$zLGWtL4|pifMPGhXbNn8T#Q_;} z7=8=+KB6kZ=G)o_YFS7el>0w5QFegYWF-3kLS^-L&I;y(mk;%457s6%Km6GFT0Axk z?0s5awndWD9Ly;pydXZ-FYYS;#OaUd{hbkC`TRZw)+n9_8rTQPaI$h#BJob5%drj* z2P&~mm?`c%qVp00&c`BE+jB1>-7q~eKe~JtH_QWX*6C9=sDPY7Ara5}8)F-B5KZ|T zF=^adw;_#jv{qZ;FE5MS?VE%I?cj;|$^O31H#qnkiI9+kP|9Rc#@ zm!u_%+kkiJqawRsySqWajfzGB${&pV=R@`D$gUi+XUD58WYKaObPpYD_P>&G86zb&q*W3! z@TklF$_7{%SL!G2MN6(aVk+=P-j!~7v<3a$n_7F`Nah~-^yq|&s%kL=m(J%xtleAG=~dG(xAK9af6z>yRl7L2UEJ|gTT=+w4}kWQ_s12Nz~tg}`ohNY&` z%NZKcI(HQX?YCZ>vyym3p#I-svs&3qId+F!M)e!+*ZmjKcdotgycb5~5ue7#SyMVZ z(sqLB2T7a1C$Cy6F1{VLDonJPf2?4XI=0G^| z!!;o3_&fK9mpTs|D`E7M2$YuoLy4lbo&RN2C6Y4N>;w(U>3miXV*^4LeiR8B+j+Uh?=6sbyGZjEr9Dt%2^c{j_E zys^6O!=v@_8$E;3``>__teGf#)K{j~Z2kQXLnUQHeu9inH5(YcvYQL?^RIiKstB-! zw%A`(wnAsOMzH&B{)cS7lhAU7|YTapq_vWgGGBX9QM-Z-80t5g{U4hks>!m0d* z0@v=cS4QvU<_jT9?hDHm%a{2Zv~Pe+pmvaCDt~B>9fy*hv4l_A0cpTvE25iTtBq66 z>83gWAD-CqN4K_q9GXW96b+*6HQg4rS&pwcHldMvkKgm`X9y^rE|!9$ zK9?i3lS;rI_#qyw*v@X_V+Rx)IPOIBjbGNm`YrJf)cmn{shHT^uJ%A?feUZTW5k=FZSRVT%i1@X<1&5prI3bTY_t&EX zR~-?h&UZ#0_3z@0_}3n}aya*PG-5)_mz!|ZBw!BEIE;VIrMY^XCy-WtQ2-@Okld=< zGRi?ODC=+p`ycAWA5kmJH5xwVk%ED*{cGsac<=e zXK%Q0Lu`h2Ct9?GzYU^^Vm4l5MA#P`a5JZBgXAo^(=kshIt4h>F*n0T=ImjE)X^A& z2f0Ws64hlAA&OZwP0zG1bFRctqu*_nj^A?N)mt@i@? z-t&FSz7C{9b|)<(owwuIt;4KdFMMPw{zkyZsEU5hV#PqxD@sMgAKK;6uA$ilOCHF)BYl3Zy(poyfLGxb)V==h=E$h1 z6@&p>E+NsRIuz#F9Bd>c~-03MaAh4cGAz^**Hf_w?DVmrl-wcmKm+pO>aV-nO~=vkJy%;%R4> zJ0VSrRvNVBl%eR$lki}}gB!rE{K<30L=1RpP2d7$F#Ql26XR`tU}oV>EGz3!!^Ez`l zSr(R=pq;^6)ExgFXYt@j-lFX@3{lC1N|1K1r-s<@!(Bnz^9o456&LBC?2vX?mFih> zk!qFZ{I0iBJU{kGj}|o4OG0@`*yN=PC;SNd<4EXHsi$usjqR9%Kki2;6aA=S#v4$2~q`%>?(xk7{G6CB{QNq|S{icb(g zP0E+o;trMPmq?}Pqtyk*7>QnIWb1=0-gsWWdUX@;b1KphppcBy?6)&(AbFa^y%#_F!K}0vO84 zEl&=odYs$TxIr4k?YOQYWQX7AE;({@^^p?Cb^s65& zukdC7kLESKe?YUY+l`jwhtR|{z?7nB-NebMB=;OvbS0S72~O?I4hl^|EP6I1#@Cgil`?)YqR~T^YIEBTE(t1C)TEH z^@P#P=~>#v8-~vIp|roVWj^s=P4<5()2V$YMWHV4O+(zG=q;%2#aisqnY2R<4-V!T zZQFB}F3u9$Od25jMAiMhmda{~+SENDzba#MReA-pRDL6=g)Th!I%M7u%XDZ?D3(fL z?AzzH&%mIx-=?!p&HSnBIA-9si-8(dB>7W>%hreqAa1G<{pb*@CoK`flu@+)6GTm1 zx*`n|Zo9DT&0%|H-j;PFn`R?H{A1_bOgF{Uwau22o${Zn0(i%wi zM#EzKbF!+aO)6^lwb_0CY*PkKi3Z3B8^}mH@Z&KNX2D6Li;0ObQBoHLfAve0GacXS ze>S5kE@YRV8KO#A1# zvvQYo-2DfumoTwUAlkPbvZS1P?{&f3_W>#S8(p}OV6ldoRL3Hv%i9JGA(4+Bz3Z=a zVVOjNhhgGQlujPPeHe|UK?bwch3#k#_MN%Pr7z3XmIBS@9U4+ zS|7J4oO@TfFf;;tw0=o!>X@t2kza~o^Dv&f?By$0y6drj;(D~N{O zoUWMd-Md%IGYUHwOi0cy8_X`#N-R00>(fe_P9L&BFVTbf?=VeU(Y3At>MI&E+Uf`z zPNxY21a{nQ$Ciza_}4FeyekX&kyd1i-OxJ-^W~YrM-@yvv{XeSRT!7u6X@rN$GuC4 z-7a)2wMWyXOOpv@W^=>=ZSSHq7Z>7FpX~6&*Vp%4+1t(06&+ZdWjZv)W#D#3y?!F% z$a79Lqu*yBmg zsKJa~?n-6bu{O?h%)}!Sg#qM@(`}_Se2Hh$V(@$}!1LLo-Kllw;x>=jW&-_DZ&Avc zXCkKVKl`GfxTh5M1gJE`K3?A2{JkzQG!}JfRTQ@0$qmfCpuyW8RsNT;{?ZCG%S94O z&gXcNGPapebKK#PVf8FlD-@f9AXQ*yW;V%zjWSo|e1NkbIO65b^(BQhj)p@GnqAo6 z>a0`F?uK~Vnm6;nY5eKrzuQ~}gC0z+`K0FQjFY#e*_ie(nqAv|ef!T|R2NQ7O-)!) z?`zG}Km-sHS<8D!=ng_L2?|`$ahGQw2iHWat6IN)JsA|#7>pE%5SyjcAN?JTD}Z!B zSY_oweaGemwP-a>%}@|cB&EO&gD!9s^z2Eg=HkB~jUaJ*Idr)Z$wb1=zfS4j&UU?H zCbkca!an2;WG5C}Z>S%0+8$m#EVzqTUZs?NQ7|h?P`ps8Q=9zq+s>qm&ym%5WWzI) z)G~-KIG=BVadEb?K>rH-ikf`$gNc~6$LBBi^VBAFgx*1b;xLkqTI``Rwm=a->iO@T znKJL->^XCER<2yhgyI&3?Pqj7qaZljI+USYnX01hpSf1nu{$1gYEg|NHHu+=`?FJK zb96x|BxMWzlbK=~TefT|G#gA~_pqa2W=>#DI<`TMcea^3CP-~lQ&XmGYKH)l9&br8 zYZQ8*wGafjtizjiKk9SV4PEm74xM!el<%jqhguc8>_0(gBIdKGEoY}{Bd*Fsk!Dn9 zr?ogPbvc9HUndfY0HB77$^~@#o05*Bg?`I?{S782DqxT=dSYu42@pxD^AZlexDdv) z!+0BoXECoI8@@*a88vo)v`9ooI4VfdL!ryQ7aOHL_dL}6E>0u@?NZ4rv+g^y2g-Cc z4eX5@8`r*5EyX}Hi) zZ)$?TZ7h|{5WRU;_qn0W;M!S#1m#YO&J83()uhmop(^tOXQa9;*B{k;W1_6LF&-u( zf2@#3X0{)S@2%*-*wq?`lEgkZ?#)Prsdq-zc{6uOlN>FQG%gBKs0mt)0Rr8{(w zEQu#?NZ8Z{-cV-i&|s}xBJPwK3H(0mj@=*6CwO$IJ25SRT!uzKgan04zaAifLoHHG zP3-`BVu~9|Q=X9F9vcoZ9S{PE0#f*yRPDvlS-nQojQ~?<6q3_As3V`~5Mo*S_V4Jt zPoIu5Ai^`@cswFI)LEbbaGYRT5E900L(Rw$L=qR*DT;5^scL1lv_?h7BrOkq0Aqn? za@OnD*tkAwU2MUT^@>*u+vdJ@#8k2fXrtQx^nk$(W%rom8@;}C#s>iXiM?0(^@l8! zmeK}aY;ikXUiVy$3SP)~;KpgZnQ5<9@Njohl4Bu8A&Wa0h*? z3;N#lZHD0LgXurB?+<0A4PL|)IKML$V`N{V%fNbZNy!3epqfgFdfMytaL~2Kw4Gz@<|+21y&g>harX71Cwv(qp^HqS$MF{BHB!L1JpLfr7F@rwWK6$p*V& zfk4&Q_d_?|0b(;gAbV;9?eEM12p><%X=34BXnPd0@wY5fT@+q1v*Fvbj%nnBkCaVB z*DDbZ>t0*^J`1I=k+c3s8Zch+j{3O2qpQe#JbNN$Zg1lkAsLf2GK4T|U+ke~ZO^z| zm2^RIUnx2n_VlAS`4`Q35Y=Xxo!UVvzLAm^4a_Z?x(|?xhRS;q<|a$|=ESm?mXcMM zp59+ER6aqDS`(3>uL#RMH~J|A+c1v5t8s*IbUf5QV}Y`Oa{v2W=Ma<_?!hv$0Kiu| z<=7*dMB3oVW|W)*d6^E~!v3(wA61NRe*Zub72@Y!clEZuAR^-ewq`3;ust20S)@0dIewyurp3&xN(pRyJ8`99#ikh5X%-~+aZZ{ zX=&*O+L$(F?wNOl7&13G1kjMQE}9aU$==mJxn~IQdXL@6xKum6#Zg(5fT?;VTt1-M z1#M-0O04-aj`NBp9%_8RMc1PzUSowr)b0jh`GYDv63=2ISsfopnLJ zsry2lny#)nfw9rLZH9xDbE#)lVB^Vj$Th_19R<(Az#jvQfsbVmQwKkez?=EaI_6pusa@M1;MY;C+66+6WkHk&+D@P^^=S)k&>O6w;eI@CY%nm&EkW%E+sQnVFgOZFK0n7aFYE z=Qi=K%;zWeye_omP^%*nW@tp-b5d{P`>TbZyY6GXc@(qAOR^LqJyaz7Ik8vhzLFXC z*46^cRx!!Az zr49Mo4@DCm>#sFG?PDw4%r;u!-gC{;oXlMH9c^>nYr-PA%ON~wjc~w(kj38JkPsc* zLl4OF^sq1N?2-StgbjoCz1zJhyhs+ym4=Hbc>Z~n_CGC%N>+%c=kg4z5@>Fl74x3U zHG?`yU*^qitHy8SeGmSh|7eB+s-#lCc*WMmvKnGPIHh3^IkJBP9=eA7OdLezT#8GU z1ed&Z`}(Z=D-!v}@#LMv;&$h)waRHj%@%0?l2OhlRF-Y40og79H+MJP3L!Bd?=NEv361ysQ zOw4&0P&)Y_<&m}6Cpyui^nwTpO~^La7@R8Mh2&~8!5`Ta?bEDx8P5QN!z244DU z%uDN9z+653B@HcA)?lT>gM+t{HiVBEI9R2L#5={41AXf4?7_oAuBSUdwACjy#uQ-a zA-x95`TnfVC1ff4`5OL0`YO`Cz+-})BI}krKj4$!3~BLFOG=MHi3@uusp8E1cyN1I zk*l-24B4N*{gzvQOv8cSk-;k6VW2sYoI-sZlxHy53k^9|yGMdW86D)&>yjVwRnr%a zeAqdZ_wdYki9wQPRkMS5{ZZ+AjMWlpI1~YFl%Xh$qdI+_qS5DpMi2b+D~9gT;eX}p i{)5Wz+54R5#)euPhjd!#K$=h?%?mlV&D+y>**8d>3082 zu#vb^c&f3d

xN?>4T?=E7SU7pkT7MhY!F(x*|@zyv%G3(J{F{!fCtpICg)=dwbd?r}c}-2FeE zk6v>^AEFG7bnk&alpoYkhW=!czpl*&{rTnMKfqGpzrlTH1$IBAodFlQ|Lf}E_Dq;c zf1_(aCX%XjIy$G+8Y91k6AD{+c(}2XO(^UL-LEQmeSICb^h?YUc37ywg^=WMY8a1% zm&9~m4i3}blPv+x7{ z5vNnPI?;dsJ|Os!Bbj(_Jl#AaY^g<8N9Q(!N|f^+RSe%*r^ND(oOVe+x)h9W2*Jw| zeyxw|{cP-R{gwlVcl+5fM04;wp+tIQuq z7z>M{xwu{3UGVT5gvgzb25Is|Mpa|mAQp?rDPEJm4i+_IL zX!V>=7^!bpW`<6l-rg8!=nopOEm&IeKXLr{RIiCqpE`5h zD3(_ab=|RcxkDwWU2Y&G!VZt95=72P5&fD4c(2}zqAY!V%%(6^w-d3PMxOfIDq(Wx z&Yj2T%~t!JJ6du4x9{J-|F-FfhnPiKZ@N-I;6$PYDuB`vt43gMlbO?hUP_wZxs!0w zAT^iUQ1QB%nc2qQw??u7llrCh4R%H_y6MURP8QcbXbt|cuJ-H#wxa(ML%R-Fx>?nQ zd~$A2Ju&N06{;04XmuE%x=ccf8GsWoss6DK*$kn+6F)LjkwKliX)6+|u1(Et6wc`7C*9Z~ADR2k; zI#-_o?3KmE$NO!}cdhNBYiqUV(1%uuTK&+_Py`Ln=mkzgpp`Z3AiRbvb(oAuCQswh z4`bF;|GeRd*+{yKLe}Dg#PED@;>9nb?kI?IH&}R#PlLpa9 zw%ix>JLA=N27fP_nVZi{rump75IC@efuvB1+ve*0bs@5VO7IjgmASKXK6ngS*UmHI zR+X2h#%lwo?+}5@{Ay{r4Zdl1`}Wb5^dzs5>gn-#^?s*h+k9Z2w&jOosBtC)s$8-+oS+Oz25Z{IXB;H1!* z&YZ{6($ay;?FzHt@6TN`HXpLG1@;&yh^VXE>*(nG`uVdHn4-$Loi}S-ZF5d0BYbse zrnl(rFvbUc^!%+UGIIw*a8v|-sB;HxhgXe+bJ%`l0vk^M{`wd(nc@<*7ncXZEmbWX z@pG0&thJDFZtHx0DYGz6Kt)te&djknu5Z9TQowf(*rM$E;{!$Eo2$BddOb#w8z$nG zpL4&)8(gl1)B1&zZ9eq&ng-1eoAneJ4FD$$k1HxF>Kerc^wq+BgoTBnX9i#pBPu2q z9>-pFp)qp1hOWHDXkeDAZ;f&38W~vt{|p>^%7ZE?X`|rs-Dc`HsV4D)u-^J`B;*5D z4H4mAyl!l~k4A8C z1-{;|LaY0jBIDxT94Da0E{3UAGs8n9psbdK=g>@q$u@VFr?lwfc1bsYLCZv_Y1dEgL6)=h8$g zyF08O!cbb!S( zAd^&3u)sX=uKY;~q!3LIVm3bqjKbx8NF@VyNCO`Guulm3OkP65F_0x(zdt*=u{z?D zn2{l_V^!mu6T#dh&jM^)dO`sfo2ekE^-Lt&3obfxcR-H5wH4N$reFlUKa@k}M=%76 zW-8+3w*r*z`hnGJs_^X#PXy4_KXDzg>vt8bYG0*QrcM?4;pqW*iD4% zlWE~`wjh5%KnD`C!bbhxYj}N@YmdXg-|{a6fMv^fOU-YckVdXdIT&WC5h*ncawPfP zgL>x9rdqPk(B~iT9suO1$ZUlmUuMvH$pejd)|IB!($unACBduoTs<7nlWzd7GudBi z-43$H^3EoWq2x`(1v!U>)e$Dn-+FabI3;p(gshqj&^Hxe-XuD5+k@cr@}#)5a0-)d z&pdHeBDu9MdodgsBLBiNZnkV$iMrG(sUVzE;oQDtBk%OGEUP^&zs$MuQ#-_%Tx+odO#q6tS^^gSU`{h%s}dGLP8tx_JM$*bxM{GClo)}S)`}NCp#lb z20W86F<=YN5NX-km_-}(lx(WhPo{c=#idC(MuVpV`CB!4ooQ>mMQfld^UJxvBP<7j z^pWQ0=Qp{ty=l-B*ucrn&D{=i_c}iuM8*3AUi$lJB$vqL%U})3;fxH*XB0}b0yw7{ zWx!lme$---_ceidWmvmPi)+FoKG&syrtwoYzIs*414qi40cG7_M-M2i&d@EZL^2 zeTE9We|3JO3INt?3X1lrh(I5(r!7~|F+SVdR?M9-uE+%?DqvV|axa$Rne#r8vofvY zD?LWZJ=3NR4mlU5K_mc9n&@4(cq?msi>#UZQ^-WGobg&u0(+ySrA19I1(-=-o`kO@ zshwcyG}VW*MIG=}&alD-7D0>d1#lu@9aIe;v;;$Mh?$pkq9f?Vg+x1W_0JU*tQt{$ z6C)c!gF+E&*Yn*_AaPtLynX%p_i_M8-+S|61$lXHU~w|DBDWT`fDP>z7ju{($U<*JayKT*>R;NTqYTftMEXQA|}?E5=PZT;`tsH&N+lXLYDu?d)L>*~(a zV-+l3T3SL7hCqoF)e0C}C3si_ny+ORRbFlkQX{9LL^tuMAY$sQL8huD7K`Oo4lL|Y zqVOA}%IZM3zQ79~rHdG)51m6a%pba!*_u{l~H_yVtbL|xJq%MaK9imrd; zwY0ZyKUQ=o7w5paSa_d+l9OYBgrvDqI(8QmL@n>aCSXQL4Mbs8Lswa~9+fE~cUThy zY;b2BamPW*)WSzbTLzc(z)X=zW^P8F)l6dcJH9dRGU(}jDOq0#*t{Ef+dU1E;^KXv zXyOwnDMq1W9lq@=wXHR$)h)*vDvmw5l~Hi^5s?8o7*sR0rN{(#n5-40J96Hn{Ch9GrPCem+8MBbIkzw=o&-QOJ0$^Y)_K&}Szr ztbd-N>f#Oj&c-Z`ikqF<;>;d8+Px=x&q+zUl2@+|8z}_)pzD@i>^?mm9cfk@Jg?f9 zvAxOIU0*y5mu z?Rg*ium@VsU9=d$ZLZGS%KJYKZI25vJD(jr|3Pl@nj#9uR^y-T?-e$@3 zXCx(!$Pt^R`aLV5L~9wob6ueHvxO6bp!YPjvO=BJjGh9iegIm73b{KbCbQuja>AZg z5Rrt@drhpW+!LcY`1*g(Hmr2(DKEFl(A#7PYc}h8!;IghZ}vZU;c#R!EtA9$CTxW8@5^`|3m$B;`_DS&23MJP!3f59oFRzlvIREXtO zXOZ0}w14llCvp5rA1v%bZ&EUmWq_T1h(hyu*Ib8q_bj?WqGek>5x@sfCgQ_7mVtNd zOCK2~4>Kd(2_WnNVHdw!{)MsxR0M+b;l^ck5@4FfHa6*#Z7JNwp`eVtw^^#a1?die zyRdqXD7$DjxomF^I>xW_Gm;y&eo!cYH0=r#t&$D=mCDl%!X}z`O^7ZX>8BS)4KkF? zK-s{7OSHQH0rd7ZEph-tkb~S8pQw5Ry=4O|LeSd6SQ9C>yu>}1>G6f>7ndjH*yIY* zXl4U<3qCkv?Auei-N1C<0sSGu&!5J@!PPG8}1Kq_9Dt-W`-~h?m z9mG9I?tOiIM??2P#A1`AaXnT!ul1SX^=s`Aju|1u)e938y|1Q z-qFx_BpA8nm(?sb=%LcxT&cFWxR|Qw_hDx-K5`06$?O4D=c%i2*;rCpLG|_wTA4Cd zHqJHKx}{)H@gPtV5bID5n#lzqbQe5m&EZC48VOGawf=z;?xfML8vY9Ad@|0j{`~m^ z=?HFHYm1Oi1_9dS4x|a?>D;#~fR^epHyfD6Y2LUN6S+A6xgavth!LCf!?>VgiJISg z^Kx@tTa&~g#!eq0@0f#%*tK&zL)I+;s?n#pBG(=RBwc{>Xf=i5uk4ZWINu-us$_lduM zr|g*<$wtg4chls(QlTGt&V9*!V`X{<&;S5#bD?(M%rJocWDCL&Q;^W3b15Si=mIl< zP4vz571Mv7kJnCsO0kFyw^#uc^T!7`y3H(X^U~A#=LbJ&0-&o0ph0iq^U+3a*6wO= zU|mGcp1lre98~Pfx^-U&2hK@1#DLJjKv@icg(>TS!<_)c0>2%+RER?9LiyvfQ)}4j zeg>S1rObeI)(72YtTDy|)F41V^ZTN_1eHmk-tBfP$jEPN(}#*KtMYpfK}A^b?%i=n zlq3PvfwVWsrl6v;E;cV+@=OT zFbS2gwQ^u3cq+(H(%@OzN=mLQ0}qe}^sV_oJniS3^OLklCK3n+WzJw7+ZM;0({A3p zc^%^pa6}3XRgww{0|B+?wc=#65HlhKss2?R5LE2zVIk@g32iQ!p%?#3LHac)T0pf1 zi;vOp{CW}XReKKBAv;@*L;0jh`HWTH13Ce_Vg#tFCV|7d0`XvI4yw0+I*|s{n?3OX zh2n!?iFtfGz>2*Gh3LW-zdL(1sMpdIeB_&B`CO_!20HYOj1+vZ6DJ7)E7Jv8(P3AB z2GtIPozzPife9%I3HJeS{HhA@q3u#;$hqHxVC}louR1&$0_;sjM5LvywN*wE`}bJD zj~6G@ngPogXlrSa65xy>j5~OV@D#=JDWrmsmIHLO{rmSDGQz??ROc&u+M0zTM^zCk zg_N3m*5!~S;0(~bJ$QaNr640X736Mg%*YI(F_UgW3i%lE#L65fSz*NA77gfz&(*2^>f$Su^Ar-p16DyY!xXpRS2y6(MqepS0~4@;Ch4T2f(`gLb7a=opRlF}zZ&fkk~v$k#kw$=6G zgxG!9aTc$A9-yyr?In=+pY7JPX4kJj+*qC0yB1Rl$q_&WMT3CPz00-#8sE26&=l$X za8dt#b|wrt1H?9SP#QxFKO96ztoJC}jS&TM*he7gX+V`X4o)ir&>-8dxwkVK>YrSD z$qS$!LLMmZ8y1*=T+s{o{XvcLSdb`mfMkXS1qB)iJyH)Eby!?EOLYEgvfO?9f9S(J zm&aTrPWTtq)Z7&j5s^N8zQ1v|K~w1uG(iBSO*+BgK9n*)2IgnYe{Uh5=Q?X1dsA=%*+ zV)Jcead-@8X6q&wf8q1D=yw;kSDVOs3FZ-N4lm~%^R6?#$;gh|^(uT{PEer0+Zo2eB-Q(CSQZX-#}eI zzxIGM{Km=~(8;TG&|Dt9#(n!=AO3#BCcT#ylKkgS+i+Ikz6S*2>5p2o*hdXB z3ptv58hnaM`!&w~+k?D6nG)Gs2)Bo8(})ATGR#7^)sb{YverbPvfL_9!F0QYecz;k zy6ZTDJUz{{%MQ@mx|4tuqWjeESXoDG-A-5`Dv+nr&<*|dcw}0TCy)mqgMQb~is+89 z?~|Q94v!3N7AS};-7t+;TZ@_;4NlXA&zlac1aj=O7_IzvjMq!psrJng#4^%2|%@{D$4m@VHnzkNFgNPg2Kw8CX2Vc~ycFv{@`(xoa|u*lfZ&Pe!z zFyw_6wxOmfhcMGGgNu~;lYcMQeq`gE%6z*~TvulUS`H3`#y~jqcr5?xj;ri@k;aV! z2^7BtRf*Ue|8`+z@5Va(lr;cx;Rri!U8v@NL!!qt@uQnmTKKnB03>k-bcN@TH1rAdX8WOj4^Y~QpWb4J?r?4SMW}E% zNCv~$fC9?wTO+lDp>t4k*YD2_gB0nTP^$wX$`CKw0PNe!_xtXH$;Q8rfqIlsgPe^r9qC1TSP!^TN3p!p51s+C+4<-^G!MX%9r|50m$}f$1wghR^kNId z%4#%5s=e4l=TK(FvhKZ?vs#;8o&IQ6Z2q*)(8(!JR8%yqe)oRmAKyo>Kx`W7IPROz-$i%c#NEWEwFO=-I= zdX}zZJ+IY*=kD5uE&kwD4Jn6i2uY8d4BCJ?C{PNCP4gIX8E7dJENky(j}P){MN6*Oux)Op#xR=fgtlEkuAK*|JJyKk|Yp!d(-ve=gNsU13 z2&71@>FMc>ACeI{pmlBvJ}2aYmS@XY;U>QWs5PxVKX?vg012o+J~M(r+ac%WGJL-s z{Dj-}5tbXV4ypO4XRlZ0zIbscXr@<(5rMznA|e8q0d%+QL>0vED5_FX11N$L0a;zW zYhC&;cx8+KKQJ$F?n>9(g_i6e-|G@0 z7Jgs1_4{!G>MR1qc?L$>on;BF2he1F?;UhG7TE>>oko_FJ8!oZ$JW?;-5*M#%PWn2v~qz z>jC5O%W72)oXQ5!j*!R#5)Bv; zQT6Bt(x_bqVy0-Oryw4x=GT`g#X#L3un91D87~A~Bg(bnhuUj*n*nk)!60TXMDy9hP-6@AG_+DIB^29B6S<_IKkx3eb{bRz9t4= z`Lc%?a3?Ymv<2kkRd&u{?*acf^d;GZMhnRP2tfto~!02lo=1%^A}5>++`u9eyY8ZS0P?Xcoj$coQO2 z&-NB0s4zUf#ufX5>tu2FS-fJdktdt04EKO%_b`m+UVcmDlWm=mSw=SJf2rZgQ8$<1 ze}78ZtwEGaPbi+h*G6Z*2)ZSPwCtm%1kdU}+gtM*LZMo4bp#)~SH;V{j_47}8P2}M@PGE;|21&SrwCZbBeoMo)~iR>wOd@_8!cTWJdq< zVJi3=!_63jzO(42^CXC+diRx$dul&h2<9V5$9K%=f^J>2(MFGz|GSfG&xfJJj3|;U z_;FVh`nrIFKvc$VL7O&V3o8(-4ZpD|#Wj!}m+#Lq7Y$k4Dp4Dw|2C|c66oZE|0Y+s zoVgkC2c%$H>UKM#-Ws1_@K$bC`Y^UpoupNWtlQ~yw^e* z%E+eTIk>QA40Pc*x39R*3J*qPX_LPDR;s@uGVS@7;Hkg%lnX#MQM~wc_7~~3S5ILk z#@5^{19~8+pTrWUL=SRu8IipqYHEVjZ@v~gcSpla;Mz+ltw%Y&IMF%%izJUtPdG1u zqa5yso+j!pRER`5K9a+S1Lwni#$3<4c@Pn7Sgl(vEK=c;SC(p4@@jOZkaWPhYEL<< zRtW@7#zMsiwTOV{{=n0Gyy$h1F9?)~sV8C6-v}_~(mfNsjNV-Uzx7rGd`@#x)x0BF z$}#)cY}%M;?uE>I!>8a1Zq_$fyb|WRkEQFDFz}8+^O{NDKqpLrcELx5TxqJmuJB00 zOhoW$(V?W?D<))d&%Og^%%PC@k~HJNsYM^P<5d=b-F4ckE?|EwIQ#6aG}0X9iTq$A zp~)Fjv?6HMezJ4-hfcny0^4{xfjF#hAKS{uG$`hB?IA|HV*eTi#XPNZi#KhDi5vmnr8pz1j-<6Wcq)uyRzHatE+~+2QZm4 zN+u(G)UO^(d-nzu(n(4A-hLc@0)*)q`qj-^H)d|8wt2OBv6r< zp<*=~KL?@4iLA*?%WHSp&gf`y@pr;5(Jg?;10>-_K|N?OzQ1Cutd2fjRO<^!ZIm-~ zRLN1uePex<)YAp$(Gpy9JlgrOOPthD#1FuvOJiISxci?+axr2OR%O6mi2h9OPQK<; z1l70ZlAbbu{-#UA!Zb0rR4R7#8!^IhRo17?OU^tu{`Q5Ee1A#KY3@!_@4rnPvWcvn z_e^&sr28IK`OkBQ`MmM)Lbv%8n3$Q>yURU+Z1kFtB_p#m6Swh z?tV-*Q4#xOeeAk`>*HN{z*G2cfTD^|X}?W-TdF^)spK^L`#Qjb2qw{e4*m# zY^6BetO(DF!T6dn@=H><;6mr{J_bXmcI@VZ?dekTY;(f#AgZ6XBW{2wkfssatg^NlpHmNO2UmTd>u>Z);jqbR>_cme zTy>YVY$n0gvoDy;XW`zQxtfssLSTM{HiDd;+wb8j%68^5qzpwlJIKZGfxL2F!P|H; z`q+p#iSbg#0|dTsVlu+c5=mo-1QtWMG0Oyh=o+u#FN5nTN2_GR&ssO&adVv z>)~#<9|_i7G?Hmr?b&|29K`$^mPOuVmsew63^KolX⪼f-CVwG8WC^qOUtvC0DRz?D z@r7NMH6xX%Q7-+K9;(2@p61d+HC5)Ln~Z)&LZyp~?PZ^-l>l(lpz+{B>) z%J}Dprt3?~h{dvF(cRBzk>T+V8RLS~&}U5^e+t}^U2hU}6TOXIPy7FLQ0)7tSF}M> zm?*DyAF(J}lkG>b?hc7Z6@EfJ$}H_0o+zyO37^M4AWZt2SIPI9E+na;Blk1tk5|vTTo=M11l>iLvnf%Lw92kJktTQdpa{7G{;&I<+$%ncFk?aWS>r zSyFXt^;Y}V=FxCf+(%IX>X0x1r#?7Z7BH1qvdtgMi+i)@cNZ+R4e3!e8my$&Gcs=j zV_4V&4^s3gZ~bulYx~dA{Bda zCahBw3>b>}ZNxGKp8NsxielMy>U~1ET+ss(ffd{K4y`}7!%VOwZ z3hs@eWBjDYH(Y(+o}HBw9%dPp_8yG7*&Zki-4|bgtGmd88q=)<7D`kVr0Jr*pb7CuV z0dci>FyCcvr)OB0f#vs;z@|snJ!Yh_6HNx;CoWE{V}}r~?vh47Bb=^B52UW(xb{4P zdGDAl-mLiS)Zd|Tc_g!tLfI%w_Gybb(-mQ`Zv-Vil2{4|j9L#__-Ow_`CTe;gq1$O zNqm3EyD*BMhn8S-tFv5aZgfneq*Ww~K4)&W^-v@fhp6_sw`ynMZAP5!HA81*&2HYU z`+P=o@gUW0VMplRKIG_D@gM)b2D^F@p+`4fGR?jEbT)}SWC2#;VhF0U+Z_ymO|G%C zVfAchom@?=Xr`RiV!Vn2>{Z_m(#w5iqcEln03waqMR zWF{N?CqP9~)y0iEcxlY1EBM$ilm0uS&3v3D6az8#jl0@Qo&@I%21tRGwTfq_#)Ije zWUk|7ncO(H%!Wy;;Z9?7lOH@WD>+5{olUz;|Na@%JmtIhIGdGs`U5saBuK)It|1J% zwn~O%YQ{WICm!oly!7mBqr(9kDih!8G(~?DsM8(V^GkI=ia-BOcUWybGG1(Oe3JR_ zTU3@nf7@P<>1*2+C+5DRP!`I^jUo2>1f|@0p!_1lcMoWkDxrN!aq6^jTM13z`W?KQ zwzahdKD42fQ~vE$t*3E4*uJ)Q_fC1>^I26>L8HiW>(yjol*GMFqagI=(8{59G*2#) z7oQ@b8N>CR&8C?*xvx&b)FO;V`-r85SE}s9aHEQB@*T5p1&iEvN92# zhHqew#f~m-=MZ+d8{hCFw+d>sKFhtQS1=dzTVMA$P30&kh^lqjI$`>sTbsFh3~zj^ z^{-Q|LB_b7_$@kLlfh6Z&SJnyE(Ya6lL^fF$u|pjZ>ix~c)kY9lGpR=N{_zq$4>gv zgT{O$zNY?~FWWK?XK=1~_N_Mgr3~W|^Zl=R>`K0!uKhbxpn~}YJB3CGsF;S8-vzD- z+x&RmpI&Ol$T}qC9$S5)li1!px~HbsgSS>C8)@{B!AXivmy65h7#=ktYFadJpRO_( z9c8o&)269$ipgcE6C@sd0FJg2+<0_wP5j@~M381-7R~Oc$9Qn^Ojk0rllRKO z$VeZssI?^{BH(Z0s;BOiQK1gh2+8yB{#wux~dMj=ACIfe1B7WC~8zm%N~Z@Ia%mNL{2&9TFV?H&I|X0mfO`Hj_=!Clqxj zGLE-SBlDhB1?SuO7~$nD&{YcOfq8SH$${4I@?+4}1Cmd$*=} zE#GH#JVx6^9>|xFw_baEw{IB~jc_oghEus+0QW-wYV2-4&&J)E_64=mZ>qCshgC4W zcewi2NTg(dUd^Om(uyF}c&oG5&Mq0(Sfx_A>5n~}l3&YP-*DwRDW|^jatlp0h%!oLDneYkk;Cst6(^r;?^q?K;e)LjOlxnBlz0+SS2y|>6&|!lRt{9LUb_Gh z?=$Dj>2=QbdAGbrvjOOfN-ULT>YdA0xLv606aKKP!OiMc+2&mjv5J~C-1LNPtwo<9 z99`^bJ+_g|y(%JxR{kkK)rEo3-Qi3BNWbfO@=W-zZo% zY-{hNIylU9E%9KBir%f35c`WWd1{l2mEF|)mM^ngOjqTHBiU{-@3}qQ>i%#+>5q+c zMzpj)5&0b6T9(u*Vu1IFu^+EdZrw>Ja-f*5+471;#jr1oDS7axN>$sx4&d|0>H|Up z(FLPI&Ze=ePKx>|5+8#(@S9=F1rz%-Rt4uC#}R+j3%%NxrbZU89p?VKCtGQEU9`tg zlxf=$6IlFbZH#8x;(+)IBje5&z-I@%TP6c9OOW!G(c;SoAq%+8gsZ$uH7`}Uxbha> zqo|{7Lv8SeEgcGdP*>Z+mN^orROuRA?H!IXK8;PhUO=r?X;*ni`uOXTsWm9T+yJR) zzf$ONiU%c4Wq#EzpI#;nc(h2+ScV0m?DmfbD5G?i_N}~K-asJ+A^=y{2FWR&xRQW-|sH|kKz zl%;~VSuj4Hk#&-0Yl{(WiFQDkB@=Zqmu5izX}@yW)Y*vn0#P^fj zpA|Q3%$G>*&Ck>NH4%9EJf_>EixWn|k(+L(O%W2@v+;Q=)+)PtVXq&L>{MP*2Z*R4P4B*JL8M8&F&@Cf(bh=KQ$KDM7xuvyG` zb}|Q^1D;4m=_3_fUcOX#Ol_rNIT}ryI}8apdS#pY{7_2atKsFl9v#ADXTN%kR|Ww; zZ+%~dA^eqh4f@9zGU>8NnEf6WSJ7Q27ck@TyZ=R^75lWNUnJW>jG7BbeH{)50R9IrT`jGIxAbGC- zx>7?TmUxb1mO6eorf4}ovB>Ms)m(wl}i{Sf-L*s%uu<)NjkqyWgWICZ^(ffb}kAB4x3XhsR`l?UZD37>c z)jVG;u`jJ`qd#T9R$<}sL*GZ_TW)WVS^hN3{cnE$EL}0hm6px!Ff$cO^`*m#x1C=b z&IA6xA(&;%xco}7c`L0^ysp^W0C(aXp0z<;?7f{*@m<0w@nhy~TtTk2 z(47z?ILN{MB-^i;tHrdihsh#8CrEXXJRzLLX$VEXML_6-W;e$F*y0eup9l%8#avNz zA7_HDnV?i%l3=ev7j2k`k05St0D#W4WG6X-$|N^cRD?7;wnRPgn_Q~S8=Y&1ir2z5 zsE7ZsDlHAM7%KCen2hWH`I$r4fY8fV)jUa|Xw3)j`F;SBK`Re-*}3qSup-N^3VP~Q z-IMk&4x%huPx$L{ZOa?g!q?(@Wb-}?JkP{;mEIH8d2Fb}|G*2U&a4^?a;O^H0~-w8 zZt$53!av<$$*$h;!le!GhSI36Eo?;Kg;3o^0!{N7E|OI!?aRn&rrRf^)_t!pj7%$< z9U*cSyZvsc;tt@?J+u3#tAsw(sArcu0}g!bSu~JwbraMCr#WW;HKVV?2_C*PmxZfe z4y?5cBjides@=t|3n(^85utZDO|njr3+5B21;1Rc=ehrBot@$dmoguRD<>6XSk zzs|$ZkqT=qa2_#0Pwu5J7xbCM7$lFS7|w?i0}7I+!N{Jpt@*a_U18j(8IP+2uScGf z0C_%JvC6s+pgLvp!DidLg?UAxIsW>Q2FuOTO?z_S>0dufdtY5*4+7>^9SFuAZaJ}4 z2lBz>u@aP>O{Gn^0Bc?>b(&_{_t23C5)?ZpWu0Ci%f070yso(fxnufMlR@&ExDxt`ikGKdU*Y)1&xJ0 zK*?)9xl1a3ZAMZtk+mJm+cUPsRpI2ZGXt*MfFwG5?eI$Dv6Yvv14ktknAD#5r_`$t zs4XjB-qj8ND)kA8dkHsMja5*!>Cq2yri z<){SjsVSx$pY4BY9oFR78$86YPksHyy0qAZhYi;6zIO_5^JhlsVGb!(O=yOGWZrE7 zXvlr9d-dplUaRTShDkEp;l{Q6wlzKtO+FH53t5|YG3}pn(2NJVaxd^%6zDYc#R-T4 zO>!o8d$^uft|q87C^J!AdXVSOxlf?1{VCpF;?-Bj&}48C%$t`M60K!^(pWKY56-+1 z?!Ug;+}@WtWTL-}(0WUC-BQf_73<=?2H!L0^gBN{JV40B2Dpx8DETYqrtE)OH8QGm zx~gya9w7x;tb&FO+E!U(M9OJjpfXV?OXM)FJ(G#WBTugp-akt!<;nW6QZ^4$=bBxA zTSz_-HK_%aYl7yDMXBM5yjZ`-5C+oh-~lM`=mAg8k{N9I< zzv+PHCyD7hkdf*^jAQ%Avki8ysR4D7Eb+N#bKsPaVpdg_eVUM-d#0!i5iwT34Ox+l zzw@cp7KRSg2IYKDej^ssB%fW;FPD5$7*XnhZb(TT^TqPzr9`jJ=^N`>RdLR-n?0}U z7#NK9>2g)(nOSYjs6C4;Q<$paxve7O11y7hEjmIp0s776Qp z${fzZD}PaNd91|Jd=aY9qGm$R%U!&OeS9x*KzK}Slsfs~j%^~b^I`bnQr00mh5hOY zQN&Ksx`rmhr&1B*|JOkoC-{M z4tZtuw+YTC^s{kX%|<^;OYZ`*SRsgitat)ow~-zip9Gl6if99u_}<4z0DJSq#LKki zAVSBDpjJ+sj;rfb-1Ka0MzvteyAYPwp2z?H8`^VzU=+6p%%4CfJYBIj+G&jFIzARrKdq)KTc-`Qcj6;KswUm<OuUSdWpejy{z6 zs1@X;iJL5WqJ^rTUX8tN|FLeEW!@BQbhTCv$!=_{7D1 z#AA{Paq~L{l#;lmBv*JioA2D`AE_%~M720O``TkRE>7g=e1~eVcE>UyM zqrar<;HC6VjgR|TvgtLxcN-rx79tm7mjO z8ivv+Gvm5=cK}WcT6{~BFgLdgS`cG(<-TvHqaL!5T?RI=irdtHez}`Nd^i|?4g%W+ zJ-~Jn=pc&8j*Mck@y7M*qy1;mCZK%|=4-MfL8#c~e*7e;k#=8>i{0XB6|P~E_7GIu zc5bKT5L4~3h=o`K-eALS3DX#WHzo{VO?}Dsu^8Pfr{WX@JqaWbab>R2lk>%GBV9?!T zw8oED&fOH>TxL}z`nv|&eA0(9JByY98=S%TPs?&*TH458DX8QzEuVCNiqf4*+&xUK z;&sqhaoYFfHUlvo6G`FQi!c5hr{5WN{GioDQ1bgrw{y>6(m*141!XLOiUHy=;f z$1Fc@T7dylE%H(QG-@QXRLY}oTm7GM!SmIwti#pMG{GG1N}BZ*TbwE64q&G1oN@#> zmEl)g+Y0uIjEo7`gmox118g_41si%Z(H}m1xEKo#o;ma0*W-nUdm46Af$QyG?m0-0 zP-?Otit9XEUbe*RE>_Xxu3h8ZQAOpjrFhRkdE*;~;pm~L59-{dFvVl9n9FkO)IZsM z^iZ>6chIwi{x|sGO2UJwH{^9gJ_3-!#f^@G6102yu9Z-n z_Cuk{H3ekruVPLsTQ0M__y;fL$l~jRA2_bD@-`DAncJyg-v_j94eWp~)Jv8yz>PuU z)?lj%G^0n6F6i0aqso5riZPhG`|~G^oB}rRn%=qdC%{ri=Q;SCDti(@XVX&Vq>a_P zLVy*2OZ+Z_b}s0h^~zrip!w9hnpaOYRJCx|*QLF-Z12*=3}iIAd!FR+`DJ;&@9900 z6j-q-4tAYD2vQJGS(ROFWG#Mfv&}J|F2@PGDr|2;gQMl_WyMC&MK;8k^T0;qp`_8T zL-3i}38=Yw%ZFrL^b}X8*3Y)5_Rwsm-hb|~0i6H?ofq)yod~a@Z}v$En?kThL17~r zoaIsk&Nx`N2?l#eroq_(1K@aulSev*-3H4Ypi>zL@?NdUk^|)qjl3|>EQ)HnEUw%6 zVQ5HH9L4@K-z`KV)a~{M{T|GDK!l795|7h5R&ap)3@FX?E2-f7RbBp?Z;VC zD_!4_o~PG+h==-iY)3V11&d1R@@<8#&30vr4?-svKxaXKCFukwOvv8*!t$eeGxI(; zP2gyT7&v3&-bf|b6jTVdWn{Kq0*BFnoj8P4Iyi4(carDt8!cIIbdNZQnyknjY$lkH zi5>-`j8PYnpcU^@TzPM-Tq1kGEMokR0q7}?ex>#o9FhYqOdt{<^6y!fh@#;?h*$Mb zbDAK7qpcoO>ph$7F_+b@Bc?E+XCKuRS!ap9YZZotc@;XQetTVUYv#38spg624)M!E z7KP%!4>!I$-=V%XuuVEjA#oF#^=lS{$3B#kHSf+Ol=g1Ld$@nOn9b_Cpf>&V>C@f0 zBXG(Lm||2vldIKJ?KSe(w-;Xow)fdUCr5ydig_y38ci^{(+9TYGzmgF>rG2r>}(CI zolTvdM8Vj>DWKmT*31-{wICFweVfCp2M_>%V6v< z`-PIW848T7b3%s_{aNU4#^3C~n3p%$Z32!Q(w!YZTObe!Q?})=Y(h`AEfXZb870t| z>216%Fnn}5&fmJv3#bg3bVxj@35JCd1L-THqL5^2wBL5gwzVE^q4A|Rq{X(6Xu&I) z+@tcWUnp25sJMGMV75c3M0x(13|&3)*DC6#Lb9uTSuxY*Gz=BAXdrC0nykMb{Dcu1 z#)`o%?+hRZI_YRJPr!#R(<)9pxaOo}3 z?l~()+>sF}2_R%8@l@x13^)GRZ#%}0qIqcO^pL(}ja+9Up z&lN7+HBr`g;+|O?hN-cbNu7&*Z7r8(v}8~j<5{_4+aA3_9vP3c)v_V3k1^;c6w71x z#yJ%WHq1)gESN8I)l4Z%6j~uj{uP zxm|(>*q<VN!YoG9=7p}2~j1|P1JL+C0f3N;}rTtO<`2&7$BOZ8- z5$Uu?LZZ>J7V^Vn%Ew8Q3@BpiYduwH!+%u#ZVhX*A{N1slMSKBL*p1S%gs8_U9io|c9!7r zt33m!p)$N-G=Z8{MNK&l^wP5RoiMpfYnl zKjjv^2*;DWv({TN5qf9pAkeiZhKUz((g4WsO$l!Q`%~Xi*V~pog#AEh(>&4>I#(=hC^pngGQs4nI3DkDadn95KQW(uJ8xu?CiIq@P z({AgSmUAUe_O}e7!A9t*NNZR!B=fP;=WStkrR$|sWw5)nEzY?bZmcG}uCw|}W^x(L zb$Y7dtaQ#68Ehymi0?Zg>3DQc4R-hGq`qg4tCShOMnTFDB&(T$Bf`BRMAjItfzYg_ z6Sa$O2O>o~s#n-C(G0BLwhM)HqNnV{d`H9N7<=RHGpS}YvH4h+*vAuua5GBA#75dG z#qCAh+!TZ#CG1#`w0_nW5_^a*zP!lZ8-jn>uX>jaS6cYhkII3C!DTdSpX)p(dmCzo_K{4h+wl_rl+abD^H^!J3#y?nh_{C!`uj@*#j>2ll) z)*-0ke&f{49b0VA@9m@9rMmHTPIR>>L=u)SPdh2Jd}BJt$rxwrv|_*U3wQfy6N}fI zEmdZn*x&!6`2gK?(&{N>r)_ zPDl;}UuIkQYMrx|T>-~M&&J-=?o?>?4RHy8CzP2XrSNnX>i6;c_&#9`UUv34lPKUR2a1%bXL>`W-SjK2mG62?Y#gA3SaXdw45t+-P-+tK zK2_3BYymmWWzs^3mB=KkSryfnzr`cqkuL7sO}4@AI#aqdY`#c;82Fs^%X9v@tSpq@ zz^6VVy=Ift^N-uy&N13~#kD~<=Mel_W;v~t?>f~=2~Oftl4WgW#+5uyXwipe(n`zv zRZniHNaUKfQe0o2HEwvE2@@)Xsx=tVLG-ItyuKd$E@!2s#=tGez^9_hE8qzEk;^0% zH?R`2b5TNbOUhO4q>=gMEJ|=qMffs^F*4loPj4Fy<>bFSspZrD=s7L?xnM(-MylrX zflYPoHoMgA=Y#d%sz`>$z~g`;u<>$7TRc<{5{Ds#=e zTu2W|+}=g8qZ12K{SOA2w`vIKwXP^zO;_gHc5!0m>z4?(?Dt4vnyOJJTOc>NqoIGb zh0t?GzR*f94|Ij77W$#sZsw|YSW{1OgYpr|%3j!04b8F7^IiKRrZhEf%3H7p6gkPaqLYW(2AtV8u=I1k~~fAv}=^3(iY!__y9g-&V$IT;IOaD2i$VO@NY zErSG_L*oZ__LNHo9IviA<92fpdlg~V3M;s6Glue#|YWVu9_!FYxm)DGqGzFet)>#V#g%&{n~3! z+8;SnSe73;cVHwqP}SR6|K`ogVy7%aX!U6IUwRrNZ`$KINk%gGZ_!%6tH(!g;~#G5 zV(#&cccty)pQJ-Ll=FM*D@=-tG)z$$+7xHgaP{^21`QA$&hkGM z?xOC=gt9o~ja@+%;cyJ$@)dVWzJqmVaLraz6ApWri%1E3s+zil+2)M2U!5gD>Qist z6Y10}w`ABRlAcM7TC7f3i^68T5i1QEh0`geDlb{)tS>Iqj8US3?&#OXZjyhWlaB>g z*U(9!=eqI-71iNLPHwI9WUk}FyM;?>#9|$HR_M~K;k%PFMmJobbCuM`NV4_C&{=o& z+{pB+-TBeb>lVEyEZ7ZmmC+_Fv>`W>qx}fzmfF)YFX==Of~i54eY_sn3L>r&o!Em+ zVmU3zH+QUPfODJ z_5>eQeN|@W2iew*cD1F?-9b~G6><(wigg667PMD5=r8cOUC+BuZE)Dgx{rGl$%SNejOmsS#ab_oQ8a*#axP%0H1<%$rDh6T<1zh+CUM z8vqhnfX5XMqN&s9Tp5kI+K!tj*%gkEQJ831kX(f2dmvmnQ0gY;ffR!3s-*^M*(glKK@WuFsc?>xc ztvP`hCaoc8=P|&gR;gJz+UF>V9r>58%LLm4vG!5_j`9n^XNhjp&g;0Qd zC8h!g(9m4caae|8)I@9$p#I2L+B)4M-_ttdE|`@{+yK8hp~WcMAfj+y*j+tHPxYwy zVb#Bj_@50rZr#-1@eZK~0_}Eu#Jgu5Se@>o&VB9O-@CcYkXed0Hl65Ve?|TFH_k5! zBQwLHPe`7*k@V;vAfzY6Sp=j9RP5`~J1=b!4EtOT8LxE7nZ(orR$sqEeHO>og5BRy z1I+%|Fe~&tO6RKyeEnF6*k#>1UVraTR_o;4wlW$&LLx8*8k=~Gz{irBo;90NPG1#o=@2*%vL6YbH}T~^zMXu_kg<;-YbKTE7?tef zo0_T_$9nT*7L?N^d|PZkn8-h^fVLAPtje~by9Dx#l?aY`_eE=&7pQ0EB)|t5!UIe3 z{F01kFFecWPjIlS*PRlD>SYjR&=F?qU-J5MQ=SJLy$}EDJ-#+K(+hnp4ZNx!=0@1~ zypq3Tox8gP+STO?W9MFmo6NLm8RKUhp`kN?0WqNA&+g^^r{~e zi>%N?d@FvaLunB7AB9;bpq}fzEa8UbEsZ&v@gr;$>cI=y(sauwy-_S~O->(JF`kS@ zsk{swY>~=_wviDQLy9YCgTHmn5E{&QyF$e}NOMfe4;n~5a+S;u^^9~yic{T2Vl6=q zRIG{;MbAg*y)ADAH@#nN^ZBS4>t}by`pMa%HQa06AK{*_6)<_6Xu%DvUvK70y|SHy zTR-L`+p_Vi3oax1Os8#{WFQ*enF9f-Y0;EMj`ACop1sU-1_K>~(sPTU1WB#{3Us?npeb5Bl2<9b{H{QGG0QP_E;7r`54vR6Oj} z(ecOm)jt2n{5#KwEj&O}UV6=(vkTQ2baG)ed!KgD5#;))M?`>BqM~xv)*gnyy-a+R zWD$JWw(iSIBtaRGgu|uDcRn?sjuII1_vPA0!@i%~G&T)dba!VJG4YF>&={_AjR|FkOC zJ}+Z|2%&UU73`+b#Ce>nmcUtwr}SA*uQ|Vxo1+I(PFCi7}8Qm-JK|bNIzNevQ-6Uz)&9bEn9$42|)TtzK&%l6~ zTIFlhrYd^HtjsVr6K_V@5&J#jd=1{~Y5TQEA)L(6$mJ<}9!*!)PBDh&_hU8{v=_Pp z>*O$ZRMCf=JD-<&qt^fj9d;NUW%QnXnP&~!IECd!J|1k08`p1R!fa$fD0J;5%kFDy zG{ciJXw5%lwOGd04yrFkTb_dybPgtkOF|fukiqGnHh@oNbeNtl_}QB&DygUkEkxsP zpBkU`h?^-kcVdlcg!Q;W*>=OqoLGpP7Ry;dmNd=IC}MaM0VveIqyZOJ?w@I=aykIJROYO0k;9U1o~XA zmF@ur%L56_e|wi*Z`;ht=Vj6=S1*O%Pmg1sX6VK-(T};vIjGr0vB)N@S4Ql~xGY8h z1yoGJZsV4&!-TJcdW!V8-b*s9{Sj0u{P{gjm^%0i-H7=B7BroK*oK+gX0ss(tAK6xL}o!`bGsJq8M9&{p+;Oy31g+7=cK% zdh<8fx;cGHaNC`8$HDBF<=o+R_78Fz*biu8lGc(7u zDYxn}eah%O&tF3krBKB*c})Ypx+tr*nRxaRV^~BJWcLQLFq$K|?KjLxH=p#+9EVny zr-O3njaxHEFiBykukvd3W-<6}yUppdUYX-E+<8U3fy0bVr}&VbL7!2^W7R=D17h?i z=rrwMHp^mixP%_oHur(daYH@X%<(*C+St@;n|mse`S*q9vC%RYL8PLjHME>H{&*i* z(6qyp?QcDU_x{K#R@3oOEhO)SK0?$AhB4brG%yn~ZVY!o7yax4+VK{1Il=q#;`p?z z@6O!2iF);z99+;hTVX+tfBrx#-t)HHI41$$Fzbn_XWUBoCb$u`JEn~wx{F1zqgrm= zxi>|o0@bpCc8pK0dl;;LTqVaoEwi`S_?`TYYdI`$*%|ZP0Kp)CrbrjNu$dSHTo09h zyS?4)FpV(z_=pWw5+lWUA~~idVm~CFVk?#@PgSqFjk^^aGH-JiXB*R2`js5#_fy@u zhh)HD{PzHDpI6@V8u@!XcxPDP+6z1~Il_d_cW<^CO6Wig_ zRvz=g)$ALF=6axJCjv3}G#oNLb&SRX#R>=iO#sHRHQ`LqZOg-e$OpdY^zyY`7c|&- zFqpkHw{iCx>*rjBRSi~*hZQS&0xW!lV94hM0jva$AeWZ?5Jn!6N`QIFdop=XaAJ0L zHUs(La2Ki^&?Z3ECvfFujzGS#0(W;CW`%rSeY6Lh#{!RWjGU;#D|OBI!*_Omh4k`r zg;H}dw%sSs1puo3EDK&8;Q9J+Tstyy|Ni~-@I7!zzS;ZcgU`CQUC=AF3G$lj_QlIj zd}7+0b(O!Fl4F);T@#ER#&}2mYjhaQwpZrFXg=UeDM{xa0N20@8rmm-x!FEFP*Zes z1wS|1Bshv2u8&Cr!l1;61xFAV3!~>`($5h(~97%z$OavUL}OKL~`FGZC8%p-@-f_Sf3fN`+A< z<7uLG4GUsT=NogYp0JHC?;)Lk;^i(wdc*9%22XJXeuDT0^P$4ByO!74}Y{ImSJxkgrcx=z}q zSckpv8=0EtvEU%G89?LBQ+B=?t)cRm8Xsv7n~QRR#ncy0=sje^^)VOYVbsfw8qQeL>e>{1Kz!ms(}U*B^1-*7Bd;aP{rx99K1^*ufn3>AC~Z z`3?y$CX5kNLicB7QY(~wC5Zl5b@=@g#u#~{_;A(#^*5>h9(}RsuF4`I2)|?x#-g)l z{~&0!hC}CINW&{|4`YeLU>GJm@P~f^W%ysz%>UTk=>PKv3yTa`!KkzGD;NX2>>?0k zKzT9?UKAk}4FEkwAQTZ`%LA7(sTX8=+`OV_Y+~v~QukMYZvejk7VGSLo-3mW_GDro zn*#s80-^&B{PKSyc6kpnKIL5eZ-|rkM03gmuqZ&rC+nA~%^Jr63mh^FY%jc+Jb<1N zx_bgSI-DEH{XO43Xp}usuOfF8U5Bgza*!|o9BDi4v`8&uh{y=Y_WeMoJvJ&1z}03z z+xUqgO0Qv#Dc8^Pf9BczUXqac48&hB>d5)Wk_3{j%iuxKX#4WzOW?E^eVAzkWgzTf ze)Y5^B#J-zlwc&hO2zUu}GDO%?TIgr4 z08gq&2-Am-9zLu(GhF{f2${kF%9Jb^p^yYd4US{YDT~W9jqpQgzef=tUfZ}J*8!zg zG%#8{!t4ol{K$!(U93mlLOM;l6b{dcI?>yI#J zB(UwrAo+feKN8CH*OwHBjR=&pyv6P#b($kdIJ_qBqbdr#{v+y8FdN~P?Uk2a!aYSj zew>KJ!H|rn)A9dG-fUGET3oBJ_TN!niQ5G`(O%(S1z+}nwHytVE6nArg)STl(}7@` z2bKam=Vf|XO>@;Onaeo}#lS*>-CGGzFGG0ZE#b!x+P?w~Q{ASkzij!puYGK46G({HtlG*bfqTsn`ZDt)A| z1o4LfpUl1}zq;BL?3T;a%WRqkf`@rN&Ky@~ z<=}^%LL9JmCvr*#ItD!Ciom7~xkv$@YzuxX+_sreF4H}FVEZUo;ZWf6*R56t4Zt@# zeZZdn=ATgX3wAA0v9USd!{sj-nP0yPA(8v1aW8YUm{L3Q+k9l!ks9N|0EUBU-~Pet z|GdJub8N3a(mYZHb_S+}4v$$l__F~4iM;E0mHbNDbFbtA`nRw@bh{`@`(fSom>t!{ zO?K#l=}RUH``%r%#;dDlX~E?z-W(48V7gkKjw0ax`>xAE#=^6NWxNZ&}C+ zbNYe}gz;iK*^wVdgGZl@u$o{9xLBvWng~h3pKgET@a*T?UOEuG2c-oF@0LmDBm);5 z%o-NV!Tc}@cCo{I4@B###03Ow+O%o$qxQ`ttr#iEmQix|4o=RtG;IO(W|#(GW8;Ku zAcc<{*(md@YOOtEe=bu%IqTl8%7t%Rz*x}f!=wFipI=={Q(7Dq1n-5@kR;rH@L;Bt z9iEnkjV1G{w}6AiU)asNeo8(Z4sz|ug2!4Ua5Zewqp~Hh25}0}tA5qHenCXhxcD`&d58fIgkgvn*KPu>emL8t;LDvm>)nBApI@@Y z;Wk7oz;ug)2LRs;ki;dx$8F0DI8&ZNtoXSJO5HcHgnO$Cb;{9TyOUUI`BvlHs)$l8wI@hXa`;yt_>QDrip{hr^E@glss-fvHb_fNs{9@b|GT}Zs>U~3 zm8iog49LLZ5IWN|JYqy0=RAC=6*4D;BD}Kvjb{<;7oNt&i9rAuw)$PuW-J+jl8h_{ z)4}M1gg^bycW-wF0h0_q4q7kZpbpG~Za}&@-XKqV*z^Hvfw5a#BAiSS^3QxKyCoY!xDv&HSh%@flD8n8nGVD z>iPVFK^_MfevCA5&u9ZY~0z#}4atZ~TY?$71HcjM6hcHaSH(TeIP$Yc=OA$0xx z{IWyVV@_u=daSlRKL3Cl**12*v3*eN+Q&aJ0NZe3hI(!e+1p%rxGOOLjCYW)s*pPJ zqS#s!`UBmY1>+nx4>_uUHu!SYQV-1oOe4o%+Q&74osPf?_}zrfkekTek2%LK* zV5JB=D37bdBqu-IeX0-$jzc3Ob)JDxn?1m&S~iCW+)RHgs5&0Rp+r7@^T(F>K5%cl z0O&+bUslY%`;4tSN+A$c9$x=5dg8y|sIMw(M4ZDXdc>ba-=cp0(mBFetK0ttBtA@B literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p7_5.png b/labworks/LW2/ex1_p7_5.png new file mode 100644 index 0000000000000000000000000000000000000000..376d12cfc6cd199d694c7bceab260d0813a228af GIT binary patch literal 64341 zcmd43d05Te`#pX#l|loG(kP+Qph9yJDGex15(-6Wo@W$kBqBqiP)Q|e(j=NSAQhVD zl;*k9@LSvSe%{~T_j6sp>-zlp>v}wfiS%{7_z_({g`pn;=~%>_r7v-amHnr9ttt!x~vE}HT?qu%QEm!g!Yapov$EyGWtT6{@N1 z*L8jTr`g3*r;bWHQlt6aW#_I~|9huy$shD%jb|-fRv}!bH+B4&(tf2;+8uPe&sE$? zS#z6LWW(){FK-#>ig$k&T=~9Ft9m%>p=B-qf_ldoUD z(yd+VpOPZ#KH2Y|YF27m|Ju+X-&1-Wmz>4m5c6$j>!vIkwQwC8mr3aI8d)SFe`3W(l*qbGc)#C^jMDb zWueLN0QGD5Tu+VCFCD7m6gOR=_uAlWJJ)Tgm9(^-SV<;jgB&3hl|!;#bCUQT|Ngqf z&OblXY#klHC)8#;n9t7*r2NRTi!GF+-CWYO)lj4Aq14)zeiuBn0QZsj`1l=Lr0rJ> z=Tk-2hpC*u%dcjTY0b$lY2n-c=|-&PqdhxL=gU#rsKW)NJynms=6iVrbL_3Iklz;b z?dtZZn*s6fF8zA9Q(=DOK;=Uz2Aw#q;+TU$@1C4azqHYNVNySL>X)U494m`W&P$e^ zJUk!Tl70;|q%6hxn z>^fBB+$RnvwjgRK6sP|0`(0i43F^jEWMyS%s8qA>@yD`UhMySgC+U4^ZRIvGF)1r6 z`@)fVD#!UvYU+L~D`Cnfs*Xd>B33uOLbJJM&YB_5XG!5u7+1)px>tqO)$6(|B0eRi zEUye<+ZTA8|>(pwX)+M4fmEaCVzH^oqny;|l4Y?7x6A4*xi>*t_)_ozB} z?%Y6cT;P4GclOf_#?PbU)-K+SRuBf3|NQ;>d{`i@gB{j%R7^2 z`ESObt9|TPKV3$R(o|8={pLB-e#7G1^VO`PCa=>=3MU5|Mu&2SKQ=aU25IF&1VfP0VJZG3FVwb+}uxiX$i!PFJI&Pd}S8xx282;xgQFFo<>68_!w$ zyF&Ww$XmU48n~{wG{1iESNf+=PFeaoQL{fSc^tb=W)$H}GjG`vd~^NwnElsQ8N7Gg zX_RRlvR(U0U+&9ev4@OGulIa?cTp!hbmwrK_y&6amebEa-xs}cJVDay(^|3aG?_CW zD3y=)GM>z|E^f3bh_cB+hV1+Hg2B_%b7UZ;;A36g3GboN&Qgo!_fiUrGiI*t?xsk5 zeP3f~wW4JFrv@9%8j?>LT`n#zes=!zy+~;XfxGJ44u!D$W9ef|ivuI~+HgHl@S|FZEil*>mZMSb9HsKNLRG@!c!S3zMR{8hWF~#t8ZL}P5k`)+Qzy+8%@5{iV6&3 z6YVHwJ6+_rdi|F~eNp3V`<3z@Q$^w1j%c*bu3E#bu;tmaXJd7thheS8F~gs@H-?3V z9y)xO?(yTtOq(_Z;4R8(ii?VP_U+pg8X6j}pTd=Kx$$LY2oi`oS&Z; zv-%;{^xo-n+tl;8IJ1hoJL8Sg1-ES3auoY6Z1`5CS8o`B+MAQ79j)M>late8R`|uv zcIuDejtKRrJr2=Z@?1yx-aGzYhQ-Os%4$PAl_coIRc0(ayn%OEwrtr*&m)`u?=_W` zQ( zOH0iM0u)d>kZ{G#q`GTNOF8M%_Q}3T*VQp<~mCl^uxlkE- z<@z)4=&72whs-h zQ&m-!wD>}C=&e4er+2T#`%y)GJ!`Ay_*$#Wm&MPOF+G3&Tq#M<47uX4np$B+gi!n7 zVAA;e#!Q>7a&lXcEUzJxA#QB@zVN0^Bxo?JTyS2PbD~l5yMCShb(+tTH;q#8CUNEA z@%;RJJ{}&WL@RurWxgci7(0)&?Wa-to^(>5pP#?1JB(YAHQlm-l~RPbb?m5)6hE+C zfWo|C!*d<34IB6;ymXUK<-F9n7ZI_|#QpcSXS#yLIMI{VkD{Zat23(b?Gz^J^l*b9 zx1_}_3QzLsg5=CyX7Rd$IE8Czlu$ZV2ePMIJhUlH2X3sZ`^`WZ9j{TetczCk$*1s` zcuk(j{)0sIv83eC3R>EMq9>9U!znz@gTJ=jM@43!C@1Mz*41s90?EG%_{Cx_R^FF$X(4yN}h?T8_glr-q$5=5pzt z`EWm+Gpuu^4rZ>Th`S6K^ZE^WzxS9eB!mPUzFRp@x{?K&wy2|(7n7*SeO z)c5Z8C^iaT}PC3U+JnH4(B)V7?cvfP`RnSyL;O!y(B?Oz^`=6peOPkfdD^2 zNc*eR!i$hO(|={zcL$PXr>GbhL`LpDALu$+r@xYdINz0QoE_uh@$utFKSUTQSmejZ z_;@Ws90TP9-F|u2HJr4lw-Ke~+0)N@9KK{+K8Z6X@+;Fu^rglF zKCGL6NJxmSy**25828@KQ+nI?-{2llU z8M|?BZ^^KxQXOOC$8rkm)~#d3-!ps7O)#s!I1V&%6DfP3IXPF@u9EKTOimvP?j7nr zoOyA#v2$OatF5O|0*+I+3>H+WcKuaYxc{AXv(fXHFE0(oH4WDwD2j1!JYWkDosup)e5?*i9eU^}e^;#V>dIxlo5arew!B9TkMN=OzkWRs**p+6ngJM* znVtRBbk3q7r>Mm2;S1)W`{TpH!s2z}LiHZxpAJM)Kx87JI{liNYP4};5%1aJ$Ntuf z>YR5vk{w_&2D!lK{5=f?E*Zze6sDBivA}8vVE-6o*pFBsExC(xF~bX=D=Jv(UY%GU z&VLhFD|Qy`h+XkwlHGP_UL*BViGii;nUy!8F>K3Um; zH8K87BwP@{f$KPB`UZPDii1{CMmxh4>3Qu}_2a?Wr7i_jR%+y>h(CW*UMgBJf4pUn znZ+t4+I3sRUge9ItMd9q?z#Ms!h@Po+??aGw%!cQ<5-7UZ@AMp=}flMp2y5juG#iL zFUe>dC4l$9b&G{{m1Sj2XV0Ep=DW{r?76Xm_q;2OlJLn44G~%QiFi*w%f|R(%azj~8h@D*A&d(o!E`m-iT;<%k=hYdP zSd!zkqw6oF*mahSsp*-qsGZEPVy391U8q_kz)cf?GiQ-!jX+)IYw_jj6+O4JnTjbU zdG4zz9jFoZhVJg~142UT5P97q+RXsg9;>2m5UG7vZ8$W@b9WoPPaE zHM@b#(NU*=Izmx9ds+u&7ho^w=#C9Ct9^JimR^ejwNRKiWu3pPyVCQjT)Onib)xTf z%Vm*1YUP*d@!}x1m6We}9xh2^07I9&eCTeEyIk$D2}b+f7ZR(zzr6I%AFHpgP6*K` z{rLHFwW6ZpXjl3AJSV9}X^$zZq_GGg{fgGr8VWsamm75Xwr$%6r2OoI`@_an6U}>S z(FRhaGgS?)Uf{|`CMhf~KA3Nus~W~dvA3SCI+CQfRa~4zmO!!5I}7Fu)sJt6DK2gT zpe;pz^HeV}#Qm~2^{~U|qwel9B!5mmzOdAN!OZL$K#DTm6#$L$ZlrEsCS^;Lj|i5n zA|mS!Twik~q{_$gB=S1?l11upCsNAFsRA*op~Uv6YuA>)ef#!k+6B$LOs|t;o20$x z_fgu4ZmxIlEl}6i2JFl&&pgaFwNR-I_$1@l$CIM;N-r@Lv4Uo5plQ$J#t@FZ6V{LN zv$+_kh7tU$38MFXeBy^xrsMf@=bm~@5AAaq+JXvk1NgNschBzKEP@gAD8%m61h+8B zOu1+|Hx^~OcQ&nD85tR?GIMs+r<@LZAYpDgH}Si#HjYt1^PwNG_%mc3qsfkrj*)8F z;iuNk?~&`n!#t{Vm(PV#KL!Q`-Lc83si^pCF%dncI-h(!SVq0lWC-#kG#ODKe-w_m;-C4Cz} z?bu+$K>(w-X=&X**l|XH2p^o++tU#$_n@zKQ#4oJdAs>PwD~diGtQAN$0p z$b*1IYCnk7*KLnJyhee#X3w5I?gcdjBp~UmQCyg~Q{Ss?hN3$&+Z&zg`1?31GBP!f z<_wqm6H}h*3Z|kLjN15=laupUva$4?OnJqJoj+@9brN&I8_3k|R}1$;4^N>i&U7-S zP3}+7t)TKrNUTQ}`Hi~w*o6xM8P?78+}zwzzdy8ij%$8@b>g#?mmovdFR6%q2?+^@ zwY3{$qm@n6)YOm&+z0gHkJ5zm^X}YP{>Q7bvQh<{iB_~i2*T{l2Va_zv9YTF61g$4 z`6~^$lZi z&em&dXx#m5;yrs_H&G7^memJjzOy)`QkL~f;rwej_Gk=Dnw10>0uQHNZrpQie92;i zvm*K@(#rtZe*Eaqz|b^>rcMN~eH8`EDBS7}^c$hSdC&EP;kZ=Ne2qnu=cE(51` z1vvb-a7%b2f>YeGUO1L|DzfI4`iqYU?)ILZ>j*%zKR;3_zQ9oXlk{To)68VUY4TAB z4jxE)vgXSmAaJ&aYK=DOS9fSHkM%{qkMne0E@-w9z z=Rw=qvGb4RJ@m|%(l0ma#d&Ey$e&#kp}y@pBX_9Vc+Xip4|<4C`lr48!8>)lxNoxi z)zWxR)h9g1C|JBs?A59Psf*uMfO>PMX4gs{@aw$D>;-Y>emb;@} z{`}xQJrmxDa(C;=lTdc9mtj0oi6%eAMl-uVn zEhDPE%4C0Cx`~aAP1rSB#*T*5J_mJmH+-wDrRiF8d`!TQAtzd1P7a*72LJZ$X6+yS zS6X`vT^47nS_}>hR7T%d)smcwV+Y_HsvaSDc6O|r96J>0D;KIB{>}?LwiPgYcwEA~ z`n#Gs>r~ntSe-VIjdTs?aej7O94y-Rl+)a?s$qw0ZQsDRWP zK?s^1?`6wkluW4_4hxL=Rp3(~SLO-6pOiz;>RSZ_4k>(|$If=5sLXWT(RQqEtBI0j zQ=A{U_H!=HuJh2JrtI}8`E!B-+E0S9W)p*rY)H(XTJk)qSZ@TBF+FjtKXLa?HTy$x zvlhEZ1sts_Ov_w`n#!l2#|X5)k`_-8Ex!=(GP!4AXGOWLSIXDBn`NHOgQDpGVl5$r zd#254!vCe2*X+qsI&7V3-Tcu!+Uq*Dikz8>>3*XFjdwDANC_G~hR8bxV3G6|rvj|Q zI*Ppr3rLiEp0r=_4{V2;r1MJuFe=WUv3-1Y$87wtYhCH_?O%4)S)UEttfN)Ae0Ew^ zMur_}Tc*4e-^RqqB}dNk2-JXz?KF$SON)#+O`q`6XuP@ma`(RUt`F)gnkOxj-o1?U z^n>U+wfM4ea%M(Lxrs0Uc9)iL-s$NPOV=fPZ_Wbob>a-5ub}`^_#<;XLt7}rCSx(B z-BNH_a!p=ljUWVyZJ|BR!64Mw3^LX32vDBxrHR>T*_4%<{a&D!|L|ne2d|ltv)58; z`RNxuIA*(YN7dVvm9$wMGh~&3*M2+Z90%{`CsK znhezm$BGx^*+ zJUa8HTMmG)d4n1z&3yWMXNv)1sSxY~DdTSG^`LH^lC?+hOeFgz>k0y8Ro2t;#e96? zSe=-qC4*AKPS7oKiZ~9RWB>Q^wt+zVZ-#U<=|&+xei#IED{_Ib-L%*G@z={1$*Uv; zGA=|TbFJYs*QDezRwZ=AR zv-ouXHA>gxvlU)@gwVYzJc>;)(|UON1ETV)Ab1}hy%dwAX{piCQ7B?t!BgG_pHePB-4k5hr_`pT- zfa2ofbPNo&*(b69pU5^%{rPzf9e1qf?3j%C4UH3#3y&La@gBGp5#djI!BY=?7U$hw zpDy5f^5n_Ep}1#R5LRYJJ~7&jb{vfA)zQ&$TD77?Y;r-ec%=PP`|sa3ae^K$uw^Gi zpWt0VI(;{hV^xM1s_gDlXBbwmF2rk-8c9UWyPt*hUI!pYc0weXLC=}q;uC`HJ8{Gets*2PrcV2 z$biZ+&;lIx~3AO&oF0DaWs9ozT>1)n(Xc`dd*ieY_YUEM}RW-%Ixq-p1$xo9Si zJyTw3obUOwZ~bvL5n~EvwnDRt>In8Xso z6L#n)Z!z&4J($!0?x_RGai#T*Z3g`-+|i+c=V#iyd1u&fd!Y)K17|}wn{{U@TDRtt zqoSK)a%$jJDToVH?KRjFQk0>K?6GMHhPpwvku(ta6X;oM!2XlsZn;iVM{xl7i8L@M z>n6gPj5+V$^9c*DSx&pI2<&v%#XFL%g{R&-etpni_;`EI3Bir4*0TGd?}1LYYG`PP zfE^^^8?=mEWwnYIzXK?Odm}VQ^$&w2J+gxr22L7&=-L{w2{q~vq$gVt4W9F(rH85( zYLidNLWW%jDUTHOQSeZI)q~Ro3IuUM1sdRVylCB7xj?b+2`oFA{6G%8S7PNY*NVZ6WVkqp(rf(}h`!F{-&>BMPx}IpTxzwQ? zB2etHZVCVoZ3+=*lZ<10E@Q)M!`SJJXZReJoU{OdtB#JO#!8!j(N1+6zW{0CDLM*5 z*NR{K#!praj8eQoYD|mtS$flc>P3=kpbatTCmVl#aP)n=#=`4lqjdEr%S$4qFAym- zaHA064ULx9;4ILCBq#xn4nya17HnjsoZD`E@*6;$o#+Z1)USKvt%w4nurQ%RGVvV& z&5r~Wy?G<1n{d4Nd7|9JSK)mUC=i6x98|Aeu|zG1tlgFWrgm%^=4)N$)k7 z?smZcLpRoOPE_BYE#Dq((QFbG8M&i%-J@1&>$3y2xg#GLY@M8n(V{W@*eXq=UjWhH z!hB|jm6fmN9`!FF9}q46Gw+2ti~84_ePb^Bn1BzEIS(q=b*$@V{c76?b$?)&-+A^~ z`*6nJLxBTp&dkjn29no8KGVF0YaRg=Z4_Rh>cn!%xRQzDd8&~2sAXy3JL=UqXd zB|73YTyh2jQqkUXJ4H-#1E9K9)N1dOk@@)Z=Vnyov6<%5Qd$N!k)jtz?mLF6;@G3# zy#n-$=kFF`mICzdmaeZlNXHxf`is~Erzc6{)44kosDC83D0*)}1KD7-;o?N!*S;^$ zmS^1|1Pg3&xnWzQo zGy}yHk!EiQjhk-uYGwkHTN+-U%+vx6UY}I!W)1KN*9Ggx@^Upo*@K=6KoVjPKKbLX z$esa^D&RiR$BQ%39SNHAwpmv)$A%5(9D~tmmZxw)39BB5JVg3UQv~1j))n&A(Tbw( zQ-5|=+!qxEW$Ry1P(XwY_;#MP%z-ejeRcYU`bKg02@AX77Wr%9-!G*jYrLZHEG|-Q z?##tWTie?dFufc!=k*(zo@T@58J$O*c3fjrU;^;j;Oy-D5!6WTTz_H*vYpIAq`29k z+o8Adc`egj(B+Clvuz(97A>^~{Yo?;Xd63hscXe27rw(uajL+(`3&a)>SkX$dirlv z_9}(S98o{9p)__54k75qDmZs4piS!?W(VUClO_}<5PG3{ZlFp@{v$-MUs@V5%4{G! zJn{z{B+U@5;G!ZGaj!W?=1rS+K(`=rum$k(OkZr6%7qIrTQ1kTH2rSep3RMF5o4Hk z!4#Gu8LxdFQ?FfTyYKr$(?fi3ggny$pi?&Oag@7iv4Yy%4UQOE{g}K7Vs#}Y)#~T& zY+-3>!`#XGlQF<}L>qdS^s{-f^qBHj zuM^OEyhA`Ek_Xy0{vO15o?VXPZ@zn?r;{fsJOC;$bW9TUAPW%gP36!bu=M#<$kZz+ zU*QQF1$i2TE@AbH<2$j(3FD`-;Kv~?4vmteb&~-R=LVi_W?RQDc^Ivjj(1eg^cb*h zF-l@FsD*7H*aX6oNaK?7VcHDQ5Chz_%oi%-mz&KXlxUQQv}f7+s_v4s_Y3uiB4jY) zxhjUG=C2^cuf_si`rbfkNl74HlmV=K7?*qz0>M8sGm``iMJ3ODQU#1VLVv5@{rmSR zJoyV#CzJ9`@;wc$V{w{I(c#AcA&$9D1IigqN>O(S3v0~G&fZ+TUce%6$<1epgDR`j z8YwXS!wc=>%8bO>E$_gZWaZ=pA#DW_&1Yo97L3-`Eu5UiD4SJp7amUABWakneYk=g zU>FyzxHuC_;gOS*D*_-ZMzSOnp+BC7Zr!^2*;A*!Orq-xGAY7m02O*t&6(el&C*f?KdSeP8xlw#xpauCe{N&eS7)VM1K;$s(LGe#a9C zRcnfT@mJeJgh7G$`Su0i^PPc12M?}>@bfi6XM5Dt+QB&B=(CoVLSU4-b|X1mN;e{6 z8iffOvMJt~yaK5dFsNt^$O>m(U9A4{=g!loJhPGB5JS5M8P}}Y@cZ{~WjbCEtp`8f z+tpq3g9vG0tjU^m51%nxy8i7?O73tgntHe?qKHM|u$ET6TNRMOWN0+%l#r*F7t{tk zlekmAE>RuMnwxJYykVZtdili8^DqzwcMT7xj5B;Pz`;1=#mjy&-y-rYfqpH4&ErP;^#vaBvW> z7I82@1X>&Q{$WP#w{JzL?xI8!heEFc+*O3?=5Lf#|H>v*Byd4Cy83UQ( zV^x(V1hODJmfcvFTH57;o@YmQr~qsoJbXBS*!>*)eU=uc$@w7Z`L5_`6S6}Dh-=bs z)E_%WSF81u$`$A3;-?H2HXEv{Sm#F7$p|pZF}g zwg34e3=@q?l2LjQc-3O8?1Xh%YI$iBqq({Hu{bSGBJW12I6@UB$Rgf2`z?$oOl#RC znGhuF0SJZc$HXNhbV#~59DaAW)gItv1BD#ecNI1*xjRV&;nes+dA4ZGNZRK*^0bg) z_mjHOxBPxj)ZPRfR)y1S6(g5%{K@mzu3ckhV!Acl@A~q)Py(sUgnoat=kmAgh_u(l zNBQbR;>+}h;ze~4*n}m%kfHrLb#6);pOBert?6L7h@WYlJ zcH2H6b+D!UYLHP1zuQ>XYSPcr($eP6bOeD$^RE^>SF=o1RMc&BGn}e|&FTYcy-=Px z(gTxHC-Fj+S75#s4EOc*WpSf2Fw@{sNNG&fT>12-&adP)0ltdFcTXILTJmxX2bh_e zA1v?vuO&BTH&~8?BO@bkex14j~9%<>#AV;q&7dn)`U@m=*Kh=HsU^kanPk0z%tl=np z-MkhbB!(}?i@FE(2)`9v5vm6NV!W`}1-ZG(ZQQ3$oucXbvt{qzOw*e`$wt$l^GT7x`tLgpw+eKMo2Z4AyS|Wp zB4ui1#^IJ@{d-b4SZ#C4MCm!X5~1JXn^PQ1(++8rNPwt_ea!#grTE`lpIv)cAB#t* zzfjiG)4Tl(Vv8~q;Ro)zyZ`+lFQlG?gses9$mYhw7h`G`I=bViyU+CQCzGbTxjGFc zUM3~&x~u-e@E0H7fa%y*3hxSHkA|&|FH;KMR**4yeNlpi|9RBPZ(Fnzbm0o1Mfa$o z3`k!b=^#gccc?Wl*gPsSxYV^i^mlvv6*MdMm72O0;UYQEimt&9lBEi=^X zs220<_ysxsr$3#(`*&?z7DDrhoSW%jG80Y=`8u|`xNGZXl%C6dKT@~iQK8{qMV9GE zt5HaE&ipqZ;{8m=MmLksY4_mV@T`!ES~PdI-$Ba#4V^g$vQgS~&b(BpKpgUdLc}FXggw-MqU``XhJpZE3BsmLu(ie) z+#DYyZbBEJnIcsGH7BW3brXR16%@kW6WWTPNsUK))XFsk06k}b!YRv}#3j&KMAD}3Veq<088$C?c z?ZSA4P|8ziS`=THS=Pf@g9Ivy_f!NLYpTfGdW71#v`7oNRM_ARh1g9|+}G4sdA;r% zhfLfKp%6Io{%2y_MtLSHfHpwkaa2^*PcOtGjZKbsiRa>M?_o{NV(k1omN3duXoRng zvsplI*FF3^3bYpwPKA6bEOO!3ugt`PjBct+2H!!LNnr4&>m~N=VO4*@g7u}Lkm7+Q zlbPgK`v~7scQk6@O)!YD5dMj8`~H14RFM}FV$!y46nqa7bl2OmvctI(-;SVfAg_7# z+BG{M$)pA_IDd^VtlZowwTzTa3Z7Xl3eo%QmJuT|*mz=t-LSzA^g;jk9EaX@#3&CM zoY+olU29Qq5Fn zSy@An>y@7!J%e*${}b!Uqs9W&M)dwcRaN2;?Q2Mht{+&>!a_{;U^7+%S&=pyMElBg zqofnspsqfP7N~$sZ)ia@Nv4uC3@}aXdj4(FDcuJ-OAZiMwqW- z)|0m!&s=>=!e`MkC2tj+wt$FSHo2p#hMKZtPsE)r@J4OC@osB+Y)>@G{;#4jY-Z+#FK8(2Fz3Ql*kgAxNn0%3u3`IO9`k2XX zW08oa0n%Uwr|<@pNX}Mo>Mr!Qz?Q+tJ8Owk9RdXnddvcED9}vGPkoja1tz7CR6sZ$ zfM>70xAz8+>KQ;R(oIp1=yu{w_QS`3&>kV9LFMH{BOspdsiEc|VE6~$84nO0;&14J z9)b^=26heb&qSEp=Q$&0lwq}+LdZh`bfwk$1_whx=5IvTb^v+=8fSwu!pOvgKS>9Ntx)zXz8+S+m}HG;Vp&op^E-Ky#x8{#6T|?Y_cTSr9ynHV@XC*L`6k4 zI|TO5^Q}BUgtxahB#~>69&v~mXZd2(pdFMjku5b_yv;Hjj!%RH-4i+WNg}_4zabm4?ub6Q&2ET)ClLFH4yJY-KFq^ZDfeq z?BD~s#r`LzMb4O;-vF%{`|FE2*zire&(V?jC2)b*Ia)GFWjE1xjJO;Cr76B(#$pgE zWOf1)Bn^C2Q5mR*Vi<8CM`n|_sh_bo3jVu`wX4uZ!|Y3snvr_;(<=B&IN@o(A6KWY zrnVm`aulc64Ee+YBTyJ-OZAwxE-ERB0kdLcHuN7Zv;>`E_gg&WrAaj%MU1VW#%?1s zZD19jVo{A6TfyCVW=028h>ZrTX=tE{f-|sC=HkVR9p7FY;oG&VN?1HLHn!@U)-f{y zetww9akOUhGeCVT^M%U>o--OH3KQV|tpTVXfnYcT0RsaeYGCATmp63~d<+=_Ga8h_ zINFMpE6WubH}6)_O)@&MU4%lWijp?DVMyWhGGD@sb-n$Eb6i?n053pzL%>u7#8u<% z*a%lQx0~<^l%EInxSm41l*Usd?FXW~>3Cs4dP7RCk6vP343Y#0OkF6yNecRjdYYub z+5dcV_LBJZUmZj&y<*^(ke~-`Kj~c$B%$J+qEyHH>R9c#7w|u34zwZ z-R~|Fat?$cADjcBZm>_Z_xB4TmB&rG!}ydjJXcGf%;v%eoRoE<0w4fp;OWn?T0&a8{JTSqI$=;)+^K5 zL2^MmUj#5WX zxe;i^ZEt_LmO~7$ zA%kNQ&VLM!f!Up1m|d7|#bUx(mE`_#aliv^{$38Eh7xZwz+3$p&Z<2YQx{!bvrwW~ zV1%@f!USTu*-#VJ^UKryfBCa2l#q)d2P7mU{E3VDbU}VVU|{&b!bGh$q79ttJCh}h zn4$gWAr5%>b<#_6;l^OuD5SRmqHdkEo{aOK9c0RYaP4owG6cYcvLD{KBO+A%`xO-A z@O4r70~`*FpeqN4pEjW;@Q%IQAi1yrKFu*haeDdzwl2tQ=q>4cHrIG+Yz{M;%oxbM zfAL7T--i!M*Cvr_LdbwjZS8u{x?tJ&BawthZw{5@8%d6;mg}e|7_2^(`YsDlIVw%GIlQD-g-Iv)@3WYjJJ(|4vR&9 zI5z);aujUY#6SZh(bHvC!9xL=bPcEsymmXftTBh!Lm|p4Dl5F_es7OzoXx!4DBxr5 zFx?ARsV_7WRA>qX3G@cP8W@f1)ftDwb=wpwY`BU1hBANMDCwTf@7+#RjFnos-z$mz z{hQ_2I~oDaWqQe#vzeM4JiDr77GOBLl9{;|4Bb_ji4pEAF)WDL5m5>OzVrvHqlMs3 z0GoUjLr28>E#>_StqJI~Fvx3tMLQ}tb=*Jgy&n}my(j7&Oe#bHgP9Cf>{1;pk45;! z8~EbpA)&huzf}X-$xhpy7g%$b;K3#@;mWKpI05Fy=Paz)SXg4DG9>tAWjTzT1x6>uQW{Lh9mC3-`QV2hEk4 zgChuDicOxHEz?Tld+(RPU&D+L!GZgP;SP~u6s%>-m!}WyTW&u!i!2aKtQm+ldpC7; zdb|>8UaWq-Q&Z6MeJp#6fF!~+4rD{ZT#}yzk~RZbKS;?dlzuiWZ?c$Yt%*3 zI1mhkjkl<(i?iW?HBDrxpohihz(SRWM{LsH zB>HYZa4_0-_tyJ}+77g>GHPmTtEMm$^%SrQUIgR(g*^v{%t$8%F#+X+*7xIOMP{sN zO@*uD_yw28vb6Da(u|aSF6%IMig~S$;TiF$1E0c7@^|1w`Je>b1o3i05IpeW zczI2Ce)Aq!5i!(UKJ6tzCfkld=1Iz@EQM?v*Ya48!9zp^E-P^A_XDZh|4tfO!?I5H zoV=Is63$lJJxeu{J>b2x;39`9STdIi#I^N4$`Kdr&Fi7zRp;CMe0x5hp}I@Tx@jLY zA6hc!hvANM69XXK$?Po|&g}b{wjGrz2pJ3JM@^dr%u=v7F|t4G#4OI*HEW76+v8Yq zCp`Sty?fWe7?e49!&|ulNb&$m^}EouJm$Z4@~(KP9UY3qF)*lVY`g_30=(Q?!){b< zn^wS7cp=;$K^UW?>}Z-=f9$8(WLGQ*HMDLPy3I}c-)TM&a~U$*pTcx-_|c{Nsz=>X$#EW{@jhio-`wh*Z!p(}K8>`B*ss}oS)WBYykYn0x7jI5!et;z zM?tX=rvnggDfF!_wdYdrod*Mvv^sDuN_(SytluO-Cnz7^0-H8FfXglZ)qpT{vJWQl zl4KtsdR6r;vfdL|#CM0nW;l@430etr5j2z**Uq)qZdT+vyxas-$A+Pcvv@NyY>$58 zxrEqfO^K%sKy!j)N@n2B0R~EejJqX1+`fIAm{N!%1*u@`?%l_G8E+61JJ^hTy^|QV zBg1C>vDsD8irgXWQXnK*i3y^Z2+B7OB%!`iFQPj5`{b00( zRp+Sk?P>ihtv&%l;JdcC+4y|G~m z-yS%~Lv0%{*U4;%+#^*fEg~tIQM<#!DsFboB+}0CIJkEeG!_hXdnu7pmaO@6{X#H< z=nvPuS-DxpamPc+i&s(13DYoJEj8TM_S7N02WfB=ox-Cn`iS$b0Q<)FYrXxOK)@f_M0ihX!0@abO@MXk1CJ1m`V z4K(-!PrZKPnd?3&2nKHrdO*yov4geQ5B(PtDR5?^N2_#yarZ@2!99xq@$mIwl&444 zvwU_vGoX&b;%^G~EuqSY(J-O$T*8Z$w?BCOhftP2Khmwvj@PPo|=k4{Zphv-u11sijh z#66|zq#j5%pHT9ET*Zk0h-BN7HhKOCW-|Ft{E%dKlIk)o;d~=TxWNJ}5>b&)4C4@f zLU&p<^}xFR^@CjZ^LV=3uu2oNId(?ChNQJqNNexZBZRxM&(I5Qyfq-w$kGkmpo;w; zMPFeVfy`>Li|05-Y#)QaGBoUY@U0AYFW|<6hU{h9689=|UcJ4*n-4qQO48Ksv*jW4 zAhYUf6f%5OZLni{S%~jwqow*I_MRG9aid`caXF~AA zu_z<6iyfcK%9MaF>p!sz>P`C^ZF^UNq8eByADGTPoHxw{ftF0|%)XKf0S!T}IT;iD z$_|d{5HJ|XVS)QEFzpU<1$HMsB+Hj|)zIMypfe*X5ojeaYBBJ2E-n&M3=?b<`8P23 zIiP3B(_3lZ(zwR{4*zP5^6e%)B>6B#jTz{JCBbQyWg0J+R!c%*ID?S`jD3G~Tg2%d z+k->992l>Gdc;Jh#sE-=IMhk6CdI9N7HtZ-BLUGL|4(A{5F0LmBYPMgWcLgD9 ziL(mYHAcyzYZh!^M>z$s5NSw3($eMT_ZxAJQ~>}-!HY%C&ovRg z7GXx_=KY`09wP)0aAP5Q_jf(HOE@=#Ux)=hxBm%9N|H1jV|rS`J)90o=mp3M(z>?|wQ6@sa|_YBKh+D!k@I;f{o>_Ib}Lw^vq_#NlVgbX zk2N)n#9fVUYXlRAo>&Z+{l*47Kx4w@y$X#EIsPz_j)LlML#-s_85z^xs4bB_g3t36 z+&~hI#(rQA{!C(p#ON!tG95x@IT+buw1aIB!r<-7HX);H!#KL5u>PBZf_25aiNk6K z@Y)7X-T`IhWiU(e7iit#p&}-`vUMeI7Ge0oBFZTgjS_Hm{^Fda8_Ou{ryYc@1M@xt zCM6aCjZln)KtfCq$$$bUq%G;xfT~nbg2;6OkdFz4v(Nd@Cb+N}JeOElSZo2q0rALW zBEh&+&!IsOHuvfWhaTQ6b{Ou2503$Ko-AQ6C;ICcaIwXYx91tq{E7pRWw&76Y&(ip zLqgpM->VUI0Y}I_5C0<|o{(3bM;5>&Uq?1+2QgVpevN9h6}%*R%8zK7MgUI8Ffw4n z0d(4LTt`hGqm2ZrBc5_(A2Jpi)p$YjA1XwMQ_`#Py^|2U|2MIyk70Gk`BsI+uPfW! z-o^*5=NU7zSQqN#u>{?KprB8fqj-6zj28Mbo#WuIy0(F;q}PAN*1zg)+P=;Q1N5ST zPeyl~nT!11)On0@G*Jiin&OY#pPYawF{mScH@5Tbsh8V6JGNVrOG;9&JQ2(WrWZHk zq+h{&8xO`QV9eP{nm|yJ*@Nf?VnMi(#sJ2(Fj#B1f{G+GGaiqLg@rF{Ejib7cON`R zs58N{AI0{dMW7?jc;LWM6b@cKzGdWs6C%Unh6pk~<2pYhjxx9s6O+cUtCP=-2x!C9 z1Au>p9em?)>-FibU>+=KaEFBl?Aw}`(%y6`S7ljXH~!&OK(!Dz;@A(ZXgpyddi$1^ z7Wc3aaO2FaUelaJHH3{Pdua)J7CCQGbGW{TU=lkFmXHz;+L90_^-((61KlsA4~-Ai zwzZuh_ClD)SGAVn?df2NHzsIwaenw?h9`KA2>}`NDkl1%u~AA(9-iUXqZrRO17xO-hrbSsR4C=em$0_&0KUdj3f8zBJE+~YEfAe6Qsv=bNWJVx5CY?8PT9FIxD+ydMXwgX)1 z3zySfEzy)B5GP~JHrde)R{AY9rLdPeO{Fp^<4_vmf#_l0AqF%sX(^NW^0)+x_>FM= zj`4sKAr&b_#Qj=P03RJtst;Q2zaBV11A0XGG4KcE4kB@%MbFz0W?OrCWMxkhfs{{7 z>?j!$hnz=rivZm6_1h}*f-KxO$>WcEBEQI4Sy}yidk3-TwhT6G5pv6Hy>&HzJBSH- zt51(B++hm%kMkf%!UXe@S2{Nf%E1rdFXp9jX=pT_X=NB=Rn<|s17;Dq$aclZ&qC<_ z_NTT3CyF!?AlzQprI~A!&e3nirfCda+(3~Vs4~Z2WFh6& zrKhE>hi~c2=5Y)Rs1Vf#8qaD7ZN%?L?xqTa@v6c}(kvV)^LLSxvokB?%iR|}z`6f> zn)`^gTUO-T-VBd+e>TSwXSeAD%+~(BM55QfY?h-K-Y%{IHc69)-0daxpN}{M_hf3X zl_&Qm5z<-5g)p!_kLY;G%@GH2xcu_+@<0?kCWiv|2t-6H;`TEN&z{S_o=?ggFl!-p zY_fUeCNq(sn>U%!;cg(DC`QX;P<_bN02|RhlH4jpOjnY zw@>VBZuno9N&lHJ4V^8W$9UP-5yof)+jNPvn=iUzus3bYTOQETCj=n5EBC# zKgEq0*Kk(|_$CZ0-NBg>Y-kYPkcx3K+{9OwDcASNA?$T8jtv>dW=Ma(h1fdmI$ZC< zyixY{wM?%Wu5!c49|bY$iYYI0K^6RUxU&W9gLQb5P~|Ro=Rupx2*u)FpyjCh!qv%l zxNuTR(P^h%sA9)G8<&zIPqD%gPTbhPnt7lUN&NRM9(p#xV3%Lh8>Rc>uK$tv8BRG@ zCQM$D$Yq`ssZ0k<$cGynP`BjTwTTxg9+WSEws6Osv9W>2u$OP`l=}F6g-&@6 zIJ(j#OW-sU5@NV{^Cnt}D{yu`a934Pd7g-|6$;OGo*+RHkz@m#vq&J^#5eRy9AmCs z!^(Vud6AxyWMl%6AGf=agc$T)&v53OdG24b|A>PeYTeA-9E_S(!h=}G-&@sKkXBZ} zH{$j_EQSbPqydwd2*!gDc>r#w&9(LQ_w?mhBA7K4*w0iKnp|8WFUUH4>%q;gC)13fy1p#h`GoghoX(KOc{xPE6n{*}nj<2G+ ze#^8a)!{p&sY-+R&CTpGg#V-Ifes|~=l9yx4DW}u;K0OmsQSv7+hlE8#a z^3J;TwsPwD`JAC%!PqDvcd;d1rC{sU)XM{=;P0o97PM|)lciDrtyz~Ucff1~;cF>vwm zz1@>G9pW=knK*^BZ$K zXCpb_LzNh)x9eQa+eL4F@2>P!>Moj$25_!R{KBJqEtD2(YilD$va@_%9Dj7&UXsfed~i>&jSl)Nc+FfE=OpTV*chj{iP?g=ETLD+YU<(B{r5%)B@ z+j^r%N+eESZ2E7KTxo71kMp86?hA)&`aUIYICyT7++HZlZ!Xpf z5HA|H=LiizyFXAD86v9xwSqjPVDW$APdHJ4JJafCI2g)xTfXcZs7oY{tn<&fNU(iP z^XoiDzWuY{F^B(?c8~om?D{_$*>J`G<)!@}>G`jDjeG_b*8l(gqq~t^ofyUARU<|i zi#J-}iir)7^v?eed2bz8<=S-%FF{mLQIQZ3Pyta=KtLJ`rMpWBQBsgjMG&Q3lr+-4 zXrxu75s+@A8>FSryg~Qg&wk>(-+SKk$M-w@v)OyY;*RT@bB-~`9M>n*>4Mg;q1crU|H%;d2A1 z5b43b!i1Jn3<UR%9E?L82@upOWBid{lTR=cNAjV(4HUjMF!bZ# zjE{%+8K(U_Ft?E(SZNq~w_i{?5aK8SL-6a1jpF~eA>i7^Um}!@Hrf}cJ~!yd-!RiI zTLm`E74rB;kh+2d{}Uj0@0FF6;VGK^-SOmLcZ39c=kcOYNMi~pM>0^LnU;b8@*#}m z!WbwM(j5j!j?kL0Gqix(WnB&0f8Cc3UUx&&w30vq4CXrT?JAeraRAs@PPYfJjYzIQ z!F3xZLy+kqC^x|sJm!BF6V{O?G0bv}zUT*S*ALL2M#C-rt{xu#+R?8ROp6DANJAWw zAeO~WuY-^QFcLxuUUU@#f)`u{-his^<9EZq)C}^YPOxv!KmuUB3jcgNcK_C~hu$Ay z7YPHylLgIvTg?byV_**E+`f-fC;+u+@G^kWTTaA}8}vm-&t4Y)h%{V~R;MGPy+o*z zh$T>eed_4wFzWS>04Vc0EWu_1UUR-(VmGR9&6)&#bIo!PuR; z04Q0Zpx15;=SDq;juyfogNXT!gJ(U={huKwPOyHkzrq8ken*#-F9t3g+Zkz68L3Qs`lTr%ury`=m@BOmv*|re}w%}!$%OKd0^!B zV}khqQ!xQZ>ub=@fLah2k$YcLN*BSb&v`YI1d!eLp|4?q}`80dcXH{yJ;~c`=b+xsf?eWAJz;E zMUf-bDwGV;U_pV9lY8sVdq)FB^?qptM0$HZ|bL2TNe33~~=QG_->xZ4tE(dwUQu*83h&}~GpyJ}!>#fdFGcu-i{rj;hR@SVpYIZ#$n z0?~2{)EHnqPam8tPY-4t$Djpu7sTvP#CI4X*cm2J)0cos90s^m)6n1wtdrzdok`OKL6?;z0Q!VX0DJ_TNJP#hpr8K?)4uHW%krfi2ouVo0B9hgtY0xAme zYaZE`HNdJhG)6d=GlAN_mQ0WWN%++oSR-s1}lK=ojlaB%^24eK_4}N4^C$INUSf6Bs*qi?T`X4_~ zI5c z{6P@5ppbt3FA8bE`^vSjC=pLNFc}S3Ck88Xm@Rr>L5|3Jfo9bP9odl?Alv>C^%KW$ zUB>+{pnmaxUoIqg-Am8^-T(y@B1nb(Sf>a2NobLMhSnw2crd^bVoDAn7?~7;ZUEIw zORz-%TF^BAA4?-W6{Zas3b=RY?%gMWCrQ~3gXuPGCG!_A`7Y=`I7dX}2BA$YB@B5t z@~;l+Zs4KB1d57^VgRVC>cPAps1nfiu+fe|wtzzEDC!63fe>evdx-7?l#>vS&%=Qb zU&2hwRAzVRkR90K`#VxVxo{2^gUhYOL6<(n-Uz9>pqEzxx?cGG3g`_>gD!(%4UO!~ zI<|uX0S|MBmg>~`8-5E-h}8!$EuR1H75_0Zs{ov_M9|GJzwf!`i9DdlUvM}?>CJrs zVPRoy&@w;n%6u=gY6=`Zl#z&hhYPwN|s0VIUr)>d>WG5rx5xx zDGk}$HAO8g&)tr{FdH%7l@M#y3Mw{{4_LJHzRE>Qd4{wJMzf(8_AA4mZiwVB{Sz2p2zRNs!OUI`4n>EK;J?*uiIW8b5zFfr=-PPJVup+&t3L zV-sUEBK+M~@VTE~c+oAC|7B98f@pKOVdK7I=lSt&@TlrLp9$ntln^k1hyl7rVVH4{ zS@k{7?E+zf3?v2|JXJsfUfZwXL9zQ0YWPVj4_Jvr~x_mu|hz5N>Bm>I<;ZZ$vRoCq@@x^jKba zy)M&C@RfnK8{aak9-l$p=mv+FEC9(HLqt~s<^Xs-3VoWzKGHjKH z3=yJHs3bR<;O?HJp}7r0UxJ9e^j@NmCe$^^=^n}UH#TGV4 zFI5=(4)MJ@B9lr>B?Tv*fN&n{m*kn{lI4+L4l_p{US20afwWNw%x2#QGi)$|G7s4t zY&`>9HZs@+15fYIRs*#OWiHPc5~l7TRfCF_<)D0$JX$g2bkV9jJ#M?BoEd9Xe6!`( z?jvVNs|{*FX21)EXrie`&>ubq;#Y7w$va|;f-_2z`~ z>m7R=(&>!OWOWP}--&?lkJj4lCe`3z=Splo~r&I*!_U|WW2zKVp( zOKeAwoY*lj8C~^_z`fv-c0WLTM%KP0EfSbn9zWEzh$(b*9P zB>h3S2AVvX!ppVIiSG#aAa_po5)6vCQ}b?IIMDQGGMk@1epQJj&iQLkWGG^%L)kTD zdTKPBEF=z}^;;4Dv&Lz7REaMb?rG(wdS6<9B2C+oxrgYspl##i(z24qAr#iD87zXs zG=F?RnYKHX=}3Y;79Hj{=aW-tRgEhe-%Kw@?=?<~C12el$jp#meiS%_l+OxS2K7_SorU9lkhpWDll~xyHN2+LLrmwPVi@AHto$ z6k(wbpXh{8^^P-*2=4Km9P+3K=B?|E7AW54nSDY$F_5pi&OBa8Y5Kfib47Z$0dtW$ z+jDZA=Zy)i`NZwbqh22!kH2rild}Ehy zjp@c~(<85PxjtM>iN3c$1YyTekRFLtzr8b{!8rG^G6+h2W))Bx0~LvhL=_{ z8q%(6m2gmuY^lHX*WYO8NGOTsOe2Mzb52cCK4_ocQ%o$hV}(zP7>!AP$<%1X>)Q}; z;@ITnb5UO|kCt5CDz{gsiFc*T!d2`cLmpRl?YEoh))xsSHg^55sy0n1b#^VG&ttCr z^&^#<+dbh%%pWZ@a=80k{xmr?ap-+Zr24(2!+bk@9;Vnx$x!E)YvDGKx`;>b>tXik zvxLHODOPhp{&9nf&_%r7S66pldtebW9~SmGe4fH{>&gW-D&%y*nrXZuyKk*cxAoUd zBwVsYFt6aLpgR=&1zrq1Zb^N}YH|pohfKF$P=-(#m)h{}aQPXDoxXZ>XV?;K%f|k3 zr6v@-zsi+x(y)?2lssYOHtOAV+^!F2ZrBCDf-MzoaAE(0_k>|fP}v9pp9kH(L!hBS z$UIPXGnPq$&xYn*4dbHdRFbe2gJZlT_V>|;-Mq2D&H-0g?Wo#`zGf1N!IQWABTs%? z?7whAeNZWq1^v2)5E93?9FsqSPEDPn5EBgqpvq>cNQO-HW4Hzvhqe`z!dZ05L(O%1 zG8Ic=avzEcx}w?)zV~rIsKhg*BE93LbScBZ%ggHv^hyDn>?$QA^D>A=4F-Y0W62%x z3@)(lFMNGZfehXg>G1}r-CX7%i-ij|rZAF;7tymYB8s!VNd_0|PaIrpYDRv^&I&2M z533iC9FCV2ieReM6OF%?tiHMK{A}=pb}gp|ujXRGA@$-TF|zg3wbdX9hl6*hK=D=u z(&y!L^7H4@R+o_$9!MPE@IY5={!5n_SRdt0xu6|GQ%ROnsjm_~QYq~@Un_fw-X19n z>ty=5i0A|36cS`blIFuaz!_XPa3X}MdKh+e$*?JQlBPyMcv5cWrg0}2?A?T>5{UM+ zTV`BOcNLgY!4VNIpvxjn3x4}{Uu<_2WE8%S%BuRzn>v$3*5=fnp4KlD^mROrKMWh$ z!sKg*dTH0tT=>F@APFUX8&e-nZ3Lr&e(FV6KmT}`hCs-PE7difI^UA4*a*?j)4j>? zM54{+bkic7vOb!N5Fq>9fHwBw#op$C-#c4w^P&i7hp(H2=S-fEc|wc(o&}@HhuCbu zNezU6l#rvjV0N91%ft)Z_(&ZjfUE^k&H;vcgP2Ex9GXMf8CvxR1QJj!4-D1#ls-U3 z5Dk;kl?3&we_GREsH-KTHFw4TyAFS;=Bq0`%|U}2Gqm|s(G>e};@MdP z4wI-t&xQamXQcw-%x78m0xt(HuE)1N>aKEE8hLBOf?MdkBZ5A>E^6{4LqT(ali1yv zIf}lu`bv3c1H(Vj%D{__1isp*mE-vazEMBkP>;A(su+L7WZ>DCRtws23i%(HfFtoS z-*a~=_&N^>C_L$llJUO;{uvbdBcHHJgPI*>2=pV6iW_4Q>H7xNBUi#xP)K)`* zeG#NF&@KtAm!~I!p(s~qHr46BU6#Erp#Yp$ z4oiy5Qe6V%>;sd#E%f9tUJua+@dqn?$>-Q+0DcZ^jNk4;%D$cRw4ow(@pYGtsN~X^ zrZJE9$W^`)GE5%ITN7>aHZkg`tLPTTEm|ZMeyO4PqS30+H9nfa{$Zt;D3-*J^^qC5 z&N{YI{bl+c2pTc^Dyl_T#sfxgkaB_^2P$uJr<4=-h1%Np>i$xr;A_6(^D;N+z;**DHhEWfI)J5iC5bI|^ z2{5C;(gj^=@WjzXNCx^hj3I>ej`o(9&`6a~Dk9*h#4;YADRW`UDOd;9IB zl*AfdiLAJQr>oN9?-hGH3e2tM?QpYjYebt`x}DXT!jg;-SQ@FvVD)nda#-6f7arb; zh94WL+}4T5ww0_7s#3{BlL2!fm*?_voZ?gN`&EV9ri^q6JO`v=H(f7QnACZmbVHeG z@pQ zG*Jl=N0o-76~~;{6p{}2(HC7pURKfKxvPs(L&I|?SoX}1X?33^aVnu%Pjph|H?lJ% zZ}D%j?5Qn`S7WnD&A+-uYg+nq_TJA&&BPIQs#~9gvi)DzAuBB@t!Teg_VZT}Y7BKo z`E7+`WUsDtaL8-+83$Aegyo!!L1+9yxd7Xb z!`SCMYD@*`nKDA@vK62DDbEZ>R<*iIcT z`PcNGgxTPdRo54G8*@i5(Ub2lr@Q+wuIJg%F@7!#)VV2J3B%f6o-$*V{lZUXbGUmi z&`)_h%(4RY0)A+mvI!1tr8!++Tercn#ldzjGLUtXHutR~@4PI=G7G`bvrs_ezQ$}Uz03ixvy3#Nv^GlU# zt*m8DftT`->mhCG+mh5Gulh2g%`Q)d)SL3cgqN=>N`GcrC-RowQL6sbPD$Z@v{pnw zO3>GNLaU))dMN+)*}d{F`r$GdIsMePn>S7}=|3LSjIm=-q*3fb*P7taBy)_v{h6@1t=gXx4^FtEzLev(eqcCd zHdHO9y0xGhM{*>ivs~F1DrJ&jz!>PCW93$JZ}zGb{Z7KBc%USJm&G z-S%dy-#OyG#MhYlIzJ=Gb4jVFFYhZq{{7167wR8_=>vu9gJp{hHXMjFDG>LMpn_Hs z6Ci=f)hND1Ij7we29!|r_afW+L%3M7Z+ouAQ+0Ugzi~{&cz>=^I|wIw(+_XyvLZSr z{t;O6OPZ|8f@zTh4AfM?)~!#f>&wF%(>u_I+fJk$g8XCibnN21aDQu*>-M_kRkN#I zKdLUr@rl>2dsLerinMW9eq+Ul``Xvm^JG8h;#n25#?J+Uu`~{hPr7pYo zvo3P-r^)Hi6{FWa3r8M)-z@VZ#7pnI3&Fs>b9hW4k=E_72$lnuW3!_s31s}&AARyH zGGf~3xS999P^0+D77wFup>?xdEIcvv6>}t6t1dETEv)3pblHRw<-8HagCjof+(E6dFvo@* z|K_(%>}I?9<0|vEjff`SxQG$fv|Go`Qb|j{r{FE%TfW8->H{F>X2 zf<@{{lPj{I_|KlFXoLKDYayj(v+mG24KC}A1A0jGU=?}k&m*fS<_k5w$UXspdPN*8 zLp|lh<`kAArOz4);8%TsT1pv_&j?p^sHTuf)!vMhBfyIDgWZMkLDxv3HmTriPj71-%Oe{+(c=OM&mx1d z?KJ(1fS-vrPq~>VCY&)z4o|u9A?dAZ20q3QB$vPSpjy>DM*hA0_gVZog%3oW9uAmE z1c1{UwzLr0VfN$@ zzru%;=_V2Oc?(eb>&ELZb|B%9eig3c@$w@vgwB$^8Z9f*^;1l5J8PEaR@L=R`oSM^ zdO}z+8N}+4L7rn@W=fI!RYs_24^A0Y^eqB`^Z*N;=7OwWbT>~|-J9aU@!6N3g)h=k zz6e)KW?3lqfKZ8}S@`ou)IH+)bmsRR67$A?n53)l-IHSx*g8{2nu~+Y^^_H% z59s?9XMa>cuuO70Y-!c#Q43rW>x%z`MO~AYB@XHsAzTahg_}b3`{m`Y75i}B1|rrX zv2ivYLIK=oaeO9}lGFa0|Jl)yn(H?@V>!CHdoQx{pDlOFCi$nT1mP}to+%lOYR;+Y zP8daui%K<~L|V4--TTCmTli}%(7jJG1@G<*_8rF~OHq^Ux#I1Z-(huD<>hBEe7zKd zPCnR+Cq>ZFnKGm5Q$I0%Pwt6aoGR&1Ws7<=+}xsbV|m9`o&WSppkj0eU9h|OhV8FU zwV$RKFgc3)`E2Oo9SAwF%s28v+smFYJkB$PrxDWD-z=rqp9xtxa2=Dd<8;*;sVl1Gc5_|gDEU4=^C(`ESp0Q3!#ODvo|iyGeJaB_ zYBs*L+*R=X0zCD*l0ws3b835ien^!1=Q`p5#mXd>AO*$sY$zo~2=1EvB|kM#NaYBf zlrdvqEzm%YT|zj21kEG5MoYv6A2~)3py_82AZI-tx+NZdBTIQpBVr4o;n&w8+Y@)yinb%fx?S# zl8lgMPu->81mxHuWtCV9T#2#6t1dFfJ-ru32qNb)sY}l?F zz1yR*0goEw+ziA#3#QVG-@%B$icwuL%2PV|p^oXxSuZ0XXK)D|uu5eF(nwLAZk7}3O_h&c zN74d$BctLMbRnPcRkG%UlTYW* zUvNb>^~=9hB!2{gBlTRrXj+`kuWHPGXLGI?ziT;VSef&sthMu1;RuDs*-v+_tGI!F z|4*7l_PY?~+FvAZx@+ek`@Ma1D5y^f4@+n`;!Yej#oqa{BO(`p^!i$!a)KzbPxQ+C zyun)|i>-)_>+Ff;w;r$d`mMxS%mNc5BdGED-ng?N)f z4-0$)5mD~RMvT82$OaL6zwg^TFv{}Z*eO9Q304CoKweH_?DZ-;nEh(|Y!lm- zB-L`&GA6+12#4&6GR{kzJmsC|njRyad#ka(HT8%+*+F7ovfRkKFKmV(LOif5Q8jwG z3K}JC80h#5$<&Zdxls9?`KQrhzP9K3?oUlO54xrqo4ImZ3JtV|bdH9l&2_8lO8(%* zYdn;wTms9tKZ%)|2aR^PUUlmbKb@91EA=o|$e;M+8J@h@4ec3LYt=!vosjSAp|;40 zvHks}%G!aJf69mT$8F|Rb=FCW=q@%qfn5cSg~oEFua-EOGoN1y)#A{*GBbc%Dqe3lnA6{{IhN2M{~%HruhJ-T?y{(Nm^zym1iJ5>75o< zp#D!g?ulacWqK3E;(tk?Kr@nI)$8?S_u}NZPHC!~;rML_8xBfQa@x;ID<3^F^X~hw zJA?^8Nz7Cbib&@@R3H`26}nRAJf;SNPY9;X{&LV0$b=>e@j)YKv^|4k?4YSilsh@5vjO1^rhc_!AY4Ukw1Az&MuDp93-D5- zd*z_EhGSb1CpkC|HphnR`Rk;BdeNrO?Jql*G;Ho3dr{tT?^a;?=jgrFicK!gi}8fC z7ijewKeOS_<4gBkS-ifR{HbV~vHz2D`ggKP0nBldu#5B+`xjpY7hkZ|{~2jH6m%KX zoosKa4=8%2O`LF2Zu8-s&3K>nW>4lFzDtIge>5OH_Do(B+pjZ&eaxjjKA2R6vpK22 zaPtO?PZHSy65WJCX$b1a4lE=pxNe|xCDy~=iE4@2d&RqlA>nK-U4@ojz2 znonO3HJvi@8Q%&04m4EP-q^#JmdhE>nM4SH5McuwVk8kHqYrqq*9ZNKF@}NbW40LA zKgvM!YDS|2)~ulv3h{?;Z0>YOL-W)2sG+Sh{;^{<)_TzL)PHmN%}*N6LkDaS{WY1( zEZ3fmy{}yy&fxo!(%DJPPJ5RAoj!hUOp2@5nD92_jzMPqyszJ{^_`{MS#NZV^|nCqBO^wAu$7 zucGL&p~IYqKtc{y&z618j8AM9is^T}1JD%~7eXr>v|mZ-tO;afMPD~LxgvGQ$CHlB z5<=se4}_^iu=?nWFD^==2PW9%%$cnjah=Tv_joft@}O^h_U}53dY%~N{^^dMKjld? z2S=K0_FVrI5~oe_uN7fGrjd3gJ<%T}qigu8H|?+1h<|;1H#frta(Y2$j)~D!Ap~L@ zY7@sJ3nJYns0$XvHR}>0-fbHOPDo>lfDmIox2nXGaVuSp?6wjZ?BstV@jNcTBFfL) zgnbQnfz8E^#J3R+|3wYAbC7f(EzgDCxMOZUQI#)3{OK zS4AggjZ7#cNoVw%xyU9vW-BBUUJewKZH&F1CquSnlsWOoKfXpYi3@=US>}!Wez#=poJ>4goF00YGNFHzuGk3w5${(%$h2wM7L^U)y&yBKI3W?E*t0jF`q_{6;}Tw^FlOg^Pwp}77= z_^bByQ_R&wHf~qX>^R$7Q&B0{PVDVDJ|aL1nF!Hh;XalzAv`I4nybfyLHUg5hm5vj zvh*S~`gE?;UN=RhX4%I|Ghd~SD@woR9M;w;54x1Z_{l~4nD*-|^f7uamj?_N`)Fv` zI~RO!jEJ-O>s|&S0u5$jgw@x*(ERIa**Fa)iy-#|91BM$UT$6>jGyjb&z8+d9jtfV z;BiD`A*OCHGIZED$8pq;hsYw+wBAbVk$%-{T}sKZZnN22-e+d`29IzEl`J;gL*2g> zn@E&oUU_s^UqDqtcK$~h8Gm}T!r({mC!3?|9eGk3@#}lrFZO1>wc@Grw_fAmS8(I< zZS9&7p4lJ|o?1S2TTm-&LWJLP#dCg@r0wIxeJm7;2JK~m;bf$5{fu_t-_tn;?YUG;6D>u8`$SQpJKH?Hm9lC%UpOBdHxRzr#X4pr9 zE@iT?Bkb!>&V-Haik)orAg|8HBgBJ^;JBPQplMO2?{efHyJGgT>TcW#ea$RDcMI%T++JHfHj#C5bZ zF{?~Q%tNzzcN#mpZF~FONl#9LkKH?#KRv0_t4xxNGl%481(ZC*^d-1kr=FltC|8TL zfp|CCjg-E~|Ci6U9{t#r?;W#yeNyV)9Q-Z>BYZ~b}03wNb6iHcRG)m;<=P#icwUu z%&(kToZb<1K5a1zf0*D?mR)dTxn($gN{((ohCL-kLOjFKNpHG(4zns{1$q72InE`U zw9Gj%#S?yv$=L}zWlX(}ArYk1Xxkfs`qf#-IfVI^f-=rWpY*J|BJ^1iUQ_h(8UMjz zg&`Tdoxac0c~q586yJ=jn4ap0+q!J<$(p48Szl|>%Xkb!mX=we#-{oDC%=Lu_o7Wg z6zYN|anNXL43C(mj!3qyZZdqwC3xfW;JmTH01mhMR!1nK2wG;#Q7wOqjd%YI(Kq?% zkQjK`jKZ}(c_<=K@VG*8*6JimqYK`BUBg$Sos(y``#x7~3eOF$-QB(%gxbXC7TH^B zwpLgTE_Y+(TjP13xO9(WkAvH9@todzeakWzb8D!3=aYIdHSkQcwA-!H+l|ONghGX9 z>PSfy_J4Bbwk(#oGZ)mpEta9ZC#&p59mC6 zQO%XBvk~v7oXb?sE)+@+ZV%j-_^|a^kyppLa4VXzpuOsfMiZ>Z%{e{K)k+^{*SV2i z1&7c5BOIG4SP~!XOFSZrh1~@(hL$Ca)-!6|aKFP(HUo<}%pXUn2ffuJEo6+9xjnPe z;Ha>>)<$R=Hb?E=mK^=^U%d)%GS!K}4@WYOH#r=BZgSzN{;V{_i=d(*_5@$ouFBr( zz~Po@TfKsQ4^EJc5T+YoW&a0C{*J4RO_j2wQ6LsniRaP)_GFvG5&Rl z-Z1;0HdI%1*-#I5^<&K6!fwn4Y1Jjusk%cwnMq!$R1X=D_xY8hgKHY%=##yC?Ed*e z-xp-$p}7;KO}e_Ojx24<=dn%oOw&x`PUFIxGI%Ib20M6^BdA2;tKo-q4iz*FwHTU~ zT8yY&rD)^Rne@$9hNsTQmi}$`dXDR#^DOb0W<;L1M(5n@M^lQ^5%^mEJKg$G-Q1_Z z^-wEFZ>o`Z!6;`CJVZIbh6#qFXJD?s17s7%5hN%JOSK@=lRbqhXkC$R?CjfX3%0jj z*{#gJf4gTM)bgxl_=eop2U&FOXIBJRf6IjO;UO zTekt5BzYV(D3f^XL&2Aj=ev{Fo^$Dtg-^tc%o~oY&qvvAEF|$o ze&+~h{fZHy^d-tR{jjEco|<$b{7O`BCw^CQMP)TO0!_OMZodajc!Klx2o-DCN3eLa z1gG#B0N{!+{?aqM)urS61dKa2oA$P)BFw5t?chky)vu;ba#DPYcN)gAQT-B05n-j2 z7#}L*6NT9Mi|6L-tbOZ(OgfVHu3wSN$#vIL;hE?$O<8zCm&bGDrucGw?`R-v)!vEw zS1lGh)+0YUp?I1yem&$6r!f=n^Qv^gdI6!sf%R-;+;NgPT6ro#Z{d56T*;$3h(Mi z+9pIgZ9b6*VT*4)i`Wx07tgXuz!}x$KPy?_K4DB`MsRmT(4~jDaFk$YO3E2;EArK= zBOKSS|11}ZA=<3i3;=NvTSc;L#j39lc%>1<@I5oD=E7z z*+N3)cu@tafh#$tED;=I;!rgF^nD>SsfNME5x{1XU*wb*L`CR#+R1B6;9c0zjkC{t zC=&vS$FMpwk}TZ1P3w-TG8$8@mDV|@WZJsIVC_EFJ8+I-ioA>R9qHV;w+$7wCCXIA zkDcM3b#h3%zOp5Z-7T84AAUn;(WzlQ<;C78Eh_qSX9-Tqp8IhFybD@k9xe|i=#jkx zhp@n~bnFV)YrmQu1eYf!aLz#%X!%@0`A#|@#8{Bw^Nrd+YKlyU`P^KCsOwMAvT`Fi zq(UkxA>j2y63m#$Rx38oN5@v{nZ9aT8q3~9)@vd-vYN7%bK8KgBd*PhP;c#P+lx>Z zi*4oQ^iRwM@tZ}jtc2g<8x+_vl(#PX+|g%e5=rzTkLzD>Oh_1!$Zk{D5w90-{rC-= zMkFtaqGbsCp2e)RW0-AFoWCTmOzE*i&5AQ-d;%hFR@h zU2tN%Vsd`IVt4oZsHUFwN&|lStjn}4+)Lp#G%QuN`Qr|l}GT3fceW2`rQ+A;ql}lu1`{)<6H#zQjb5(!OY*&x+<&r(PS zUx}oeW={&oDNHL=;c_~Tv8{54i#X^yVhIdoQE#3+9gu82$Q>g`{jW1o})x0A9tDm;pa5VWAiVw`xJ|J>>`_U zY_}#%8Y0F!05tSuJEZzhnfS2^4_wB0vF@s6$B(Cq)I&~%npHmEg8i;YwC6*}9Hf5& zY*C5DIz3YF^RkI9m>$OZ8u*?}HBo;))c|&}{r7WotH#~)^|K8~?nvh2_0hPF?Bd^b zve=3mHWmtfD{6b-E3aC?Cv&xFOKquks+8b@7%0edZ42~8J?|ptPZuhz*gQZYvPqs7N@W*H!c8=60^%x;`XoVyg}q!*DgW2+GL4te(2cJMQVbo556HV6c*lwW{2Fn}^_s1hqo?wzMtIPMEJ+YiDKcM{fi8 z_~9YtQn86a9!aQT&5OPHD8+uk(92@NQ$-Ws9;(8&AF#<*KdbL`a+*AY|Ebs7X1>w7 zp4B4+Ez3tzR5OQ0J!Je1P(N&*$&UdX-!B9qsjB~4)!u52Gq;*^p>rPoe6qqq$$1UV z34+qSiBmj-bbEe!dF8AUO2o={j0_$dlu7VEAIlHuE>LPVo(L9gp9JR8#L`&Ha@brWlO*jD=wLHvV0G3D;? zYjLi@d7ezT*S7>qc-3d6xNqJS%lPJ6Ty40bfD`(3-G+$2`Vl*T^Rgoo6oJ)e)os}l z+I3RL7L_ke* zy^9~7aJz>>owjbp^rgSOJu{l^B`a5At|E*8%kQb2^=$Bc?5mEckgXKe)svl+H-zo~ zjyAs{D;a)f!}{xy+0X2-7Q?3e2YE+{97~tY11!xG$fl<))ABXFt3!25`bR|X1L@Me zlkMX1I;fr~S4IkU-0o*;c$KYeEu{dy#Nm}75AS3n?=;J$zkpB#3RkQd|GRvg)qP@C zc<~IXD5+|*%Fita2r>D>VeGjWqmV@u5j7)Nhw|v*_J*7o_U$?)XavW1qdUz;d=&! z5{d!*i)T-(KDH*#FUwcstf!U)>(o)lBF^-I{ewrjI(OJk(JgB`&c^HjD)nWcddP*q zQ5+l-dY#Zv2BWP4ie^aTJ55(kl*E{>mT;hH-Fi){AW04r&xRlBp0?iw<(OoX( zw2y2xB+w5Mncd!Bpc%KGdyMjyv zEhcLeh$iu;|E;ZDNJO5mU0{fsbop#d-%3|*U9$`HscYX9kF~Ov#$sx{#Z)QDOn!M^ zN^S$C@pzH!*>yn%O<$#Id`f@T%eoM6HqRlD|NHz)Ren=%0C9>sjymD`$5E)}d zA~I0*r9`75JI-r>6jEf(!codtq_mqbRZoCds_~a39g70~fuQbtN$ir1OD87~Q&^Cq zYhXqBoBfTT!r9;q41sXsU6vwrcAgRwGx6CpZn&3pt9inbOyFTshMh%9e(B;{Q7W|s zmXAzV?QZUEjRdzp{rO>AEa+pN7_YBuuIjD|r;j9+bLejJwA4A zXFtd+Gj~;;+snBCTZ*6(fSciHGY=3~ZG;&0pl>x7E$M%ze9iWP?~~qJ+Krc`DE_B) z20ydwZHOxV0aW;8jH(I!S;?e`EG_}94C{UsfZ%S7_pVC?)q4e&&!pI=7MhIvTy)6MuG(+II!;by<4sW*IR3llTr8Zx^LV-~ zxhGrC6AtS8maoTs(VW;doc(*17~bneLss5S~_0HzNUmz zlrh}D=P2cV>ik=py$K%k@2>~;mXD@q;8Q@I638InxB757=Yn^2?na3?s@8k;%5z<- zv;m?u(GPWVA$D;#etUKK((q!pswVFbeq8%&FX8SM1Q1FkfzKvB#8ipmAp|R{2r>uf z4{+>Z9o04kOU2ENCg%+BBNjtDt;AAI!GTiE;FX?+T)kNcJIaFNB4%ZoOmFPb^p6+R zusgc?-}_erT2>{Jujm(@v)3Hw?c~RNn;=XAauag$={4IB6qZqd^_%P z!#&^XSU4JE28`kWyqxGxeEp$Xk(Movc7*4+GkZxaqV&kDJQvN%)5 zu!9w~@s76ylc8Y~h&*55;crs(C?)!K7@Jy>SYiC_rfLR#Yh<+t-&0JBHU<^QZgKW+ zzz-n>JB0Zn-453qO@z<=XH|VS2daUjLr6p=D1Az*&;`l1I_3W@7IH$-sH=`mat`$) zu&z#&h?qE~tV|PZ8o;A;ZI8AvekP+>l8A^1z{GA`t0b?4VMiK57>q62xDY>k@psDP z8Ijn3piIbDxA?s&AxR5)uX;oHQ<%>zGfynq8RXK$SQ&4KSD)g#9~95>l{q5ZHgpMZ zGj)EMhlA2kR@BZzH|};6Rm)KTerP3K}&4Sgkf^Mp#5bMy+;BX;@bHYO{+YHV5uEUOxEaB_mJqC!e~x&oZV zr_NT)R@@mYyRPn!4&DwKt-N7cVdqWG%J^tR!KA4z(Y{sBi-=jK<%UX-%%fNL+%B`SJ-F>%AW=la_YuC0oJOY+3a1McF zdq>AK&~z5jm zctFOy9%wCj;-jij+r6YXogE*BbYO1snr|(!+38P4nUJMsb^7G5cFb(7YqrKa-{Zzq zB1e-3`1{{pWEGy(^cC%YCLyZ1q>m;UDLIa}T4$=dcjl6+FX5>ceqa2pX^)ae9ZJq0 zjLQt>%|$Q((64ZCY7sVR(VI^!;kAdY!kY~A6k{Y^#XxN7WZ%=U0OizR^ z!Ybx+AHU|^CXLw0QugcfuUKL0A?34p^R{EyysP=_cUGk2LmE{EX$#v#5hw!R{sShu zE9`%Q(ltBzAlTJ*Jl3~!#&|i1NJLahN=Z{Ql8l^uwOVjjW^ij@efT;rYSQl3ycIJa!eX;HzA)V4RR+cBWS|9nv zv@S0^I-g={|L+RXua6#Z-ShO#dGxgf;g!L9H#s9iva+(0o{6a)j4x zrrMx0FIn~hw@u_UwkP2F7|L&-U!sX|g1Eu6!HT+&?AABO^MF0*BLlS~PTi}Dlk_YD zF+fn^7hPIPyQ)9^UH?tin_KhE`yKDwj_{lv%8bhi6ONFYSR3sp9RLlb=a~fHJOeHG zyFJC$7;|%Td1>iru)3K6Be)=%IdF-~c<#R4+1WWWV874~Mh3_U36NS0A!{3(C7ROg7v267Tm*>-JnKIIytx%d}KI>?P)n=B9bAfjM?n5tF3XqtJ}X@vEQ8kR@xw6yzVDT zrM1A~p_uVAy8Q@`08^CyM#bJbwnBjXbpIf;e<)3GZ+psxyTx`GmcnV`*#eUwvYd45vx;jy!o>Cf=$< zxC8Qn%~t1~yGq;B+0j^|-(FVd+Vm{%#w0g%y49JM@ZLY$RC-PKCNT>2@d@wRN!XEQa;izWW48m_i3K7yjjZ(EVyX_e3kJMR3#OV{g3JF%Dwo&NNfPjpFB zsoL7^)u*z|EG4GaqA5~=V9uLN{T$n-ew_n)#Kz_MjDz&`V|c~9oCtV5z~v>Atd~EW zrWN@Y4W~B%l%h3sFcj&(JI=%FQ9ebE?yKt*d#|^>A9@6oQKZI?dt2Z;E7+XS&dNFg zu*l(m44E5uLI;~E>cwPnf7iNt&8g0|`)aD?P5l+LO^Y3;Qu6y0mle=v4*0r{Odi#I z*8c9(t~D=kZfPT+YOB49&3@#X4BX}wC`tbhJ2l?$96n-z&}tg|!1#D#=HpjYpn(z! zAFoFeSy(<)Q@Wk7Dk^td7gxiHwTaRWfcLo^uzg<)+Y{y zU34&KrA|K3RNtU!{i^TEXvU0{f$_#r^n%+=Z^t=`xfwYn#*=QmZNOj#_g^M(CX z=2=i}JRbxAo#)(ph*W1gEbpg@!kRIhk63P<>RxXX_IWQacks2k{-lSNMn{St*$16ffO#qEi!TKBo|f<7)ihx6 zg82pk?$e|K!;WmDKj3~CrgV(R^nFi!vr=mwm+)T^KgfSDd>Ia|{h(z)Z3Bs)St#AP zVrjB>OnF*DTp`EfS)s9&rj9p>ki8To`|CquM8spu})EoQkXx!xw{*RjYMBO=WCMaZMd7(fpvhM=-NM8 z03tzNjL;028b5mPXK$&**J28H!@>QIfI<1+L;&#ceSfv$ks^4X+t6X+3g$Mf3xPL# zvpK!a(LM5y%#hDtx;C9=tB+`TqMHgR9xG(#>ego8(x()7`o)=i{Y_%{g?a-^66-F8 ztIymgHci9uEdvw0au*BDy-TgGD_#3v)qMw4RoB+_P5d;m$EZ-DmH$=9+7+wZ5iYGSf%K6U1uvBMv#UlpB$aDOVS(2XT(i;rHL#fV;6Y%qr5I z%gz&yvSz21Cjlm*aa&6XS@`1qbF1L-#p|@&Oov{r4TVotmFTmLvAqzmGkTJ$W&q0N z@wWD51JQ*Z)GI|Jjk)&KcLY6aMH9v{V>>SE?hkT4vHtZ*ulvLAECa>@PJg5&UiEud z*%jC<22E0dQ=@(Mcbqu)f*Hbr@%6jGlPi+eSBx)zeq-lnIRH6iUEyDgdJnE%J!-xq znB=5z(D!>6`UWFwQx;-x^|;}w)2f3<;hm;O$608L#*HC{A^AL(@sfyZMg1PlYKRJ` zZ?Ex1nK4c?uJUD$>-G5eX4Uo_IFKJ1l_huIHEwjxf#?$sk>?_N}qnA!eDBs_Aia0nXAuxeT7K`_q^;7IC{5J z`oQ$%5Z8jf^8DxLr%DcQxY%cq$?(qZmM&VeYoLg=I-@l)?gLl8RI%GUnKs39Ts9}0 zgVnMHCq|A|OmALipSgGxDPW-wY7s^gT2jlVPc_9^w=JMhy7WHNo%9b*^t7oS)9FTM zkc~EC%c^*{d)LFlR#BB{Qfu%iSx4ELYj%wErC@37NQpnC$ zZ09pMQk2H(?tE4KtZ%Mn&7?%`?Gh79Ibn0Nno9}eT@4M&KOXzQ^f{Kww%LV^c=dSTt&4yTlA z?$M2XYo?A?C>{Us+qvn+hH;1`+#I4eWyxnNi12Q`vC6S`Key8NA8#{O*^mL{s`QL+p~Girz2WqozA!fRPsH>!vnSvTN?#QCn_)SKlo1fhETtdjtfboV)D*?hgIy;Tg zRbeN}SliXiwqZxWb@DvMvbE)6BU?@i1;mJ>t zFGt6&P0*hWOFb~@?s&BC<;cz7z}x-|(l&q5n6+Gp=!?NY(^D&duIz85e0LpeQ>@N^ zNf&prbIdw#K}%6tee9Ra(-BCQ45}EvuT=bYoQm<9Js1G&BuTj*N`iu{ywDsimC=k* zpOK7Fm6vJ(0E6_mzP=~4=l}4HeM#`PPw?M${-|eNLw;Ily3IW4AFD$tX@8-$4cAKD z5otf8bV)3-mSgQ-&ns9*gghR$@jImF!X-%)M zaqJPy7kM^fXkc&{8C6Cv)D2eDSW0OCc%jDe>1FxZ>yrkIa{o{`h3te6;D}@IXyVVy z#;x<%V7*LLvW`14+BS+$=B&^i>AQcZN#j0vV5#hQ=0k6{j$tOzTekeWvfM|`3kMx< zpF5_a67}ra?y8y^Zb3mM1ckonjhQ}x4lEUz!xBvzo}iFvalJWWLSI3B#pn@81h|BS zcdq~Lj;CjmSYGUHInDE(Vs3JpCNYk^tO2&wukX4VXJ}SASj!@NbjR229!M|uFq`JO z;0-00yw*q^a0lb7$S|R^o_FWy25UclW}(}cd3$^eT>8t zbQu=UChp^@5p6HqZ}l%^*O;;ikH$x?E6KnpVYDJXkd&14s<`;pK|N)?QR=atK;xrB z?ou8ZYdcL(#+_roS{v9pcp#|1sPvYkCv-~5irtR#W;Hc^GChqwp8bXi8a)@j;5&(S zIwSecamPYimyBgjI+8sXFtBd0wJy~n!pPW|UVf0z5YtLkQ_KR2C1`~r&7;pZP9HYU zo=Q$OGrh?E>tRP-a6zZk*Yu*pUaF>TyXO-fG0#scW#9X(V7NEWJI}K4aJo$AvfgND zLb~)v)k6(Cr{y=sMpgHZ?p&NUzy9$yA~9vW%B!MP8$ek5n@xOj*yNFUmVM8n#WPmY zCojfzmrL!zw-pSuy|#??sG{PsoV>O17bUk^l?Zd$<_F1XI@5T6uH?=(oRYbIQXCS_ zv6Nd%U>luzz3(dvL8UsI2R@E}YcOMX&0AFOFw$*B5=@EBUxbGtx!0|luI|${ZKB$b z%{z2flRfVFCKXq4hk7fFwzmXFeb7DEd0i-sMR$B2TZPgg$<-s0GPgFAK~FLK$Gqi< zI~zqRng3T5R$BzrWB01)Hs*3T72-u%2r8T zN|%Uu+C|HmB>P9uWoRWF8YeCGwttYt{`jvzj#))6+LRvyK?ZdlU`DXo^OI)O&52EF zzm$=5^$vRKS6jBL+F>|+HiSGvXiBPZ_m^FmSXU0l#|q8q54v0TH$-91(t=EVs64=T zXA+_3mhdH%##|x+XRTKD(#`j5ao1Hjq80yI^H%|X$W0ImJS2Ou`4(T**@yfsCKQ9k zSQCx>Pe~*8x%ubGz9_CHk$RbBQA)eMnfO9sP`Ng~nDA^7j{C|K#HjW3mK>-0Ne9SK zqA}3-YW`cv^ORtfyJOaFVOT9USca(la- z@;331_N$`%%WvH*q4zv1N^6OAJgzFEE32v$|}Kn+;h-pWrZnMnS7MfH$Gf6ejzA|QI{ z-Kaky8KC!4v@#?21+L;M-ikIIB4WwkI8rESeHah z0Hhf`f4;feN%s<-8rh!#o+t~WuzC|)CwgjnYfS)>e>^(N<;>qIM@Ss&-e|`q4a(f= z&3o5D%4;&(x#0U71>L}@-`z5Q?gtceIQyyn&k{%|?>+rdsg$RE#f0FMsuOemY9YQ0 zxzZkWEB9Bw46%aHA&N`$v%)^6?$b_7*;dj0No9Ljd#_(-{q+U1s~S+^fC~i&Zv9oT zWIx&L`vlzC9OE@pv@&CqK4tQEyOjAz{OEQV^cSvRC-4=I7cQj8eEf&?bL=V8c9y%Z zp2uuggH~2iU=dSAc)X)mZu|{$=pKBBY(% zeyx<*FgUTN{;>vXJFJYD5*vLw96Rk{>XjjgU*o=|n=kr~Hw6RArR0f&9l4bq!Ju%U5Diwb=T z%YGKl;YKyodD(zPs)?UuTG$@CK8mhPrNQjil4$0AEq(8ek1M$Y#d6OKVI2-ikvtnL z7JW^uYVwud^{=OAW2gX@PZ}#D=i;`nZv6gnMUL%H6K(6@2&sEUrzgb`g~yZuv+Ald zX9yKep@O#3o6Zd<_hMFkWN@%FCJX`yoH%_tMAM#LCDLqxid#%k+yg16G8_+PTR-sR zR?aod#e;PnAQrU$R#p12?BI`6ZH`xa-CB0xjV`MFAr_L3_L0Jw?=^c;Wri;4yy^0E z9UB|-m2%9&*nmyi&X~V_4^7IApjBq!KeIP_8Z*ypFw^m2LxVb!%LfUsjzJy|&|ogl zaR{F(OMNKwm8E`OkA^s-`rIdeM)mQTOFD9%!dfYWiuriTp?))C78g}V&Fp1n{ZOKJ zie)y(GM(>njT!9Nv~ErprGK%5kT#U8oav|kC4WMxCx|e3iMFT z$srNpfv}9E&1i=|Y^C-|gT+(Nd2s)Uh?yEUE0Ve{)6~R&h2YzwUif>>XX>H7gBLI$ zMu1i9{9Z&eKTTu|z2ZhHwGtyKEQj*9^gc`|F6VO`J7_Br_^4GxNC*Sn_w3@sBLs7% zf7B*2ovFfMzc~d8gKV%98w&U@?bTnWEkDutPU){u>dP$5Rjk2Gzk8Shs+rPg?MDXD zHCor3rcI61TQR0aui2HLhnKK^vHyuaWb=m@Np)tJW`$OW>T@*Dt{HnvX5`P#`kI&- zP3GFx)u|#%%i~PoPM8a&+-Cu0QY{FeCCB?-zAL>jrD#%`l^u~(p}CoBQvcm+VuVvO zx=0z`SGH4O_7ke3Yx#GxNIcn7VX&rCcxcm#GHT`ahan+PD=RDS4h@|bwCIqxD3{yf zgShLq{k0|Q&OoDW;Opx-$DhNOcA#0|#MtMJ#5gCsGeF0iyUw4KYBLQr0u-;O~|8rzwM>M5$Vq^}Ft< zr?xV}uuSfi4|vpp-DfjlGcJ%>WN=tpV*0V=L|^%E_tE`V6Hot^cs3+aTZUG3E6e)F zGBHg%ll)%#gOHG)+D40|7snbQjgJm&v<~?OPq6ngBG-Nn_Qran z=kD6{g$a`X@wJYQtW9J4@U}}Yp)B#o)D`GRj$)dxtd*4&^6e)K4WlqTf=6!a)~!d8 z@59{hEpp>!t`1?)9q+bjICsrq$Rj8+JbZulWILY~#(eBRYK=m<9R`CW{b&xKOKJ$W z%`phcv*sY2lY4=z*D;lqV{5ZUZaKd_HscNUmrIVy9`qK`qQ5+TOZEgT1Eyrh-MhD` zuQ6R&OiXO+&p(&Wg@4@)r^g&iH*7zQE~?cUHjVc|PPDhTGsV!3Q#FoabP(Z`+b@`p zHP>92r>oCOvdsuMD4!`WY}5Www?p8nk}cCp$-46&-M5d{SFKLJuG4NXcn-5LOdYZl z6BCcC!9I(aH5gPln#rFXEbQlR30TA6_Z7YSmHX;hknp3N@0U5;*-{*{bY@i^p%lMs z|I-3`ai*%5M;?KgcwYY2x7J8Dk*oOS=i0hkl9IwGQUV!}zNgPM`(#{wTvIsEh*wx- z?zbl9=1aEF?h(Q8%;qb)A|v9rOCWT{nNlXf9+Iruij{c8|yuA5L9Y&?^<5 z1s0Seq}Gmr0f-h*a#xq}b!klsdtaXmDp?b?EfZP04$M08OObQR=w`*ev%ch`^!Kwo z@Ijs-_JTG17T=yf6c&cprC(JjU)t6+Wvm|0j zTyVcko&EY6ipG4BuO!!z8MWBls>r0&-h?=FnY#M*C`K~K>oV9;>iKEaf$w@gCZk-A z?l$#p>8&ptNgfvuSW~o?)%2UR@1f`<*N@?V4ZAhV*2tmIcueET7np|jPFsL%+^9%@x0TGlr-V=R#LTa?Z;_)`_F3-R~w!C%7G6i#=mRv-M7oDlk+v-1a@@U-E z_5m#Ox{CjnN}LFM_s#?ssD?2It*TKCz6Gq2LlD zDK|VGz%;`cUtgBht5!v#3~agN@a-l$ngU9ZxG?4CABx$Ow8vGRae4FDR{UDu+jobEZx<`*ZcM^Oix?u6cb?BiAuLE^&0(gE_>HxG-MTQXpdi{_wKCj?b#~FG(AMC&CQ-US{isVYo=H&Y4E`xsQ(;Y!d%8YgAHQD*T zN6{B+c3;{*#U`Vf_$DmCA;6NMkL=6K%kOx3{g5z*pefjx&}#9U=UURYegSb%`UFx{C5Wslxn|n0H3NyVdct4=h!LRe$dC zw*D!L^zeqvJ}Tx_lMh13;_2ZL3QRymr>Gf>=P<;m((|cVv94s+-gt`RgeYdW93r)c zs7)QNRx|G|6fCjqA<^uQH{#*eU)-4qvq@bjq}WFI+6vj{Z4OU-tWjV5yD7a-_Tm#P z+pW-?JW%B+V^di5;JA&pZ7U>)Ub2f66Cl{Q5G<3dIzmZO;q|D`xM2A=_SrF6tftGW z76e;--#;5|BDz^HYojR?lU=h8hjNK$)?HF4kLJ$;1PUdY&^FBLj~`~8AcgXpWTR#- zwU3U0a%%Da+)Y8t5jFCnMT_ph=E62Ytl3kgthKbB|VG%xnA$KmV zs7;}idIBcl>6LGKy#4zKbc_Gl%MR1DAmb13-}aP+UOVydWXQ(JH{ZM}Dyri2R&V)Z z3%;GS0L01^$|*iL0gUrrI8MblHB~$oaM{}P@iv%Ty};f+kJZK?-<=cWpd`{NaNN$= zywGob-{IrR<|;!9bTOnIrGT%^9JQUXQ$sO&sr&L`-f!#UAf^Q&y@*Pj5KnCqo99Un zWX}5w1ajAI*>d==0=n1JgvT!^AQfi~W+@I6_02sUe&);S9luCE2yYGwk^Juja-Sn5 zIn8%_6WN5985-C>p zi(ASbg{!4d-VuENFU>~Qb{eGCX?@A{i5ExBbaiwLutUeE1{~v})_GaN8|Ggdft%&tS%97KBEl38S}| zX;X#@Ty0v{JtrYF)q|(K@(!}X2gY%kCyZ-is|cXLu%(_I&0|E#xv~?T(*WS03&eSk zTeao+Kgpslcl@xYw8rTNp7M>14>B<-3HzbXOfFuH)zw%I>x%_PxVxn7Pk4!yT2dA& zL+aR9DsKPDBnX>iw)a5S;fPLr;-%QUnKlV{M_OL|x!c8l{ZgM^jmcCyhMVfm(iN}) zPaHq)Szb}GXT%56Q^1Le2lnXX0J@;BvSA0-MIQM`r-NQfK5d*ffh&F5+`PMHe;h0{ zHZiGua6I~$np!k;!cTOp33RyMpNfL|F~NLxzB0j&)&Bw4t3z{7FI~DcJUl%2j<>g; zkD$Jk+maSWIGqJ4$nNEQ|3Xy2OcO8+G6m>CyHJgYlekHS32Z{Jk8e zdbNy+A>c888Go_ED)Iq+?W4|p}dQ?Lr;HHz)aqJv8n}hE7 zs#u2zd~-Q>2YR$tcQ#`p`?$LLLnQHzLzeBqp{u92RZy@Zz63YD)b`@jzWjTVfy=v~ zeIOfKpH<31U0K8GcH7HP2g+p(sBfUIHEuT@Wy2` zn=iF)fJt5BpWHqMMwI_e$Nlf0`zwGlf5}Kcnu>n#U^tF39w$z(RMJ)PVzVDE`=9^? zEJb7XYvPO*mXy>?j?t2AX?mXC-o5vnc*{|$frGyKF$1Sf_`>^Bq`?g4MmW(-@G?rP zK4XI~oq6O6_Wg-Hj>Te~UH%ruZX8AaVuHLD2#=Wxky**4!q}JItb4B={VY6*>v;K<{{Pf)pz5lMW{$N@&TgSjF$0Dfb zEMi(02C;_xA*_IW?jfdIR+Z1irj@SIhAshJQvgr-WNgxx<@C}QNG>P*;&l}1Z~pYJw< z%)J&rA?6^rwkVbCyDPK%?iop?GB4>G>Hilo_nf2q&sY!BEPW^fSTMR1-p6XBR^J$N zMbG*2;A^F^FyGM#RQz{?g5t(#oyI^%Tlx5E_N~zfL;45%ZL1FB?;0kZ3lt+a`ufw2 zw(GuHg_a5`7?f3ptcb8pzdG!z5uDpk6H+6uwb4q{eVQi4P}285ca_cV{Vsc&AF~6= zia+~vQeTqSO7s<$Z7)|Kl(_nihOR)yEiZ2DGWAwJf1}A^qVJz1Unr&a_qR*_*&kC8 z*;#e?=wE%8Zr;2zz-}mimnm{Ak1^7FjrAnFgCT~}#MH%QjT_w$54ScOVuc+DM=Kc# zUKK@Mckc#UMICn;&3pPYKjsR?#mDpWiZx#O69@6}xXTZn+446O!cP-$&%P}!Ey2ln zhVnKHZf4ES%4$OXV_YlUx=+Ae-qh4oUP?v{jjq2>`P|*-v#W3QQC3r1KT4M;(xA$_ ze~AUqO6Qi=*lV;D3UI)Lw=hzbR1vN~eHWiMT&Z*@si!_pOUfQohIg3;IZmgJ(|fTL zv;Nq+9PhPD;IlvW{H4Thc#xV2ZOOM|nV{5wq&7$PA%0&zA0|JgW4mfnS<>8*v?q@!QbC@iweB_ARNPlCrzyAgRP6M<& zN&C>^#3{GKrvFX>ou1=^xmJO2{#FB-qdodk6Fx|0-eZ z(XayZONIRO;6X0+|2`WI{{Izy`=jFv{NV;fkX)jo%A~JZvT1#F{{)=zk)`WJ_uNJ_RL7LN+O4Lu=f3Xq<}Xv%-gKqoH6t8uDHTf2HY11~D3rlt}ZChwCsmv0Z) z_Qs@GV!!pK^~QQIGq-6Vd+6x3^LnQiUXCTt%**jSTw?byCI-pfv(FZup74iUkE!K+ z^@>9d!vjmvYEIa8s0}5~EG(8tzM^sts*9Vf%px~z+pKNc&gZD#ySLG)Ryg;)sInu4 zuYUFzW_+&EqC`?4H!>h@2C3AFTJ_PkKu=c z%oN4iS0w;#i%i65q*wdH26doVPy|DzgwerU@68{-cKrGc+qbp5}R=NCqi_tF>b1Ea|hab7dA;%?4wv_4&0{M-d8~PrehgF7?%I>DR>)}yfc9|YDTVFXj9e+`BCoBjt zx=Ti?9Bjt}^h&e2uwv@7TDFlT`A|W&z($D+he_6jh!Xw%{S`~nCBYt+|MBZQqIiH7 zqdt(NIlfGGWYC=XA4Er2U|e|Hd9m?t2Y7S9HdIbk|6|O(I-e@^lUe%ooRj_T{q6xU zQmV-&K5Q4>{3=2sPaNQw;};bb6&t3nxQ7uIp@WE^l*7gjw?Te*YOnrqC| zn*Yg`$<%}*+;-s~&p+gF4;o+<+)A@CeM*3DHJN4<>OR)6d$RZ0d)(*Kz2Y$kS4YV@yu)Pv#fn_hkIlZn10;+$7?E z()EA_!{$y#TM5VKjl@wRwlLxC5_~kSOR-n_R^W?}>tE96W$iazNqz%}?cP`O7QB4C zjkK*aN?<66HgXg^R?S4?i_-@KIV8v0Jj7d_1@E}Ig+LA3J=PgCaM+80^$cUQ=eG{uV>B&VX+ z+euTwOW#&dzFJxRv~knZ-@XxsL#GckYe9X=B5rAL?UrGpEk@2nUR}CA9J3dRO2Vem z${RT>(+Ou67Z>WAU%#=eGmPMpl+<9CxkYFv@jEGh&G0#b(wau+yyFpp)Cc&`P}iMx zA^rxm0|yQWS-(3;?{8Ggq|zZg2u-x?K3YE%c(FhAM5p)gux0%ad6Bm}6AO6L3zG|r zC$ka>E2QFef5$*ZLXksRV8y+ncZIe*z8TVPfi?GvoJKN!FxAvAHpT!$Gy0C5b|2o0 zG*|dE`^eJ7FKX@?(w1al=`DM$zq!Eo4&C5UajZ;ezI?K9lt=Fou4&_=)uBZvU2}Q) z-d2Z(JE^3ezdwei9%gt>XAT-%S4u4d5J8Xhsw2F2;leHcr~0!Q4r)V$toOx+O@JIM z!G6M;1~+rJuuz`%iaXBo=K=SFy!?nYAKJno7Qxr(Bll?n?pbHq#+@5RB-e|W{9=|; zKRI5LEwa(>{jaH`O&1l6j2@sDVIt=MK#(B%wuGU;!)dI(d0Njbt$VYFhljTHK$Gdg zz>>U;jwVAxLxto;W6VgU^@NOHO=;;VFkr^ybI7Fkozow*!IB%n!AYtOO~1b;br;*8 zhDNea?Is8F^Z=2=p-SqAP49o)CpbMEAtgL-!IEDb#|pFx5&9H?pH=e+3^YTst0o zGa7ma*Ll_YGFR_0hh=`y;>m{HpaJ`Viyi2vxY%e1Bn3r;VpbbcMM6bDMMXsqsiow0 zWLMYsmKqlZ&N{dU#@#M9njsJoo$Pr zv6t&&(Y@3HT@+voHiuM_gGA zH4nN<3|-HE^{S_o@ykBHbxzIRNPr0Hy!?&^ZN48;)+wonuUCojxEFfe!z%h>6;(NG zH$iO|=@a*<79>9WNgDlWjbkX)aZ0#3w&vv#w;Fs(wvqpRV;4;V4AC z+AZ1mw{hX>(DLe#PFJzynKnom=EF!cD6W( z0o*O0E!^^Z-#^6jrdUI9>To3aMe3n2+vO7PFP*oruqxn5+3UZ;u!%b^;~oM}B77yG zd$D-$wy7cS>^pg_@to-IP+S2;+LU+Y!0Y%uFq4&_-`R_M4fLKgSHL~X+(A#6IjT;# zLn6D~I@W0?>J_nIt1GNgKl`hx?X~3_tMTafkZ3TPDH*%Do!dP_dJZh9^&)G#PEfB4 z8^G8qb`j@^&O})OwVNFoKQMQoTU$;`#t(9u+lq~`30QtPb!owJwueN_i8yshz330w zf^KbJ1>{f@X|_C^71YGgndKc%g4trvm#-E!%s?!`+^X4F{bbvPd1d7hMXTOw`HsG; z)dsG%MdW2#;0K8wWRyWjYoS9;jY(Z%J_#!JyN}^aZF)t!AVK!1af(2Yudflp;@|25 z?S|w${QQg$Y95q=a<33puLwTaB!8k;i(v#~GwHoSX2QGURtMt6!m#`Ief-R`YDpde z1G9aQ3VB)>C|U0%q3vu75)7;F-nL|DmtX#dG>6>lFJ2<(`c7$U|wp;)}Y@s`0r z+@1LC5&L{=kA`(7F`a~yP+UT1lEE!~coA$5A*2Bq#t;M)!o|r$xwlTp;I^1$*Ws7b z0aF1tg!m3`n!LZR_>5$oGu_~wpof*hD{7(&4uG59=2l;!z>f!j1^?NE_BH1->YWzt zOIp)I-W@Mi9umUNPi{v)m`Y@*rGDY!;>zu__5&`s8w4Y~|LES5hF@~;c2`9BDJhEG zZ)BW$VH96emLUziEC`3rk7VTvT`QphP-sk(hzA}{*_Zyhx2qE~p|7t)7;k7~G?XGa z`TjXE#mQ}d7gApTna{ltyr~~JJr?f*UF@KBK-8&7S;|wX)NAJfvgH*NT*yYkG%uko z0haD4moyr+FAH47UWAQA(n%(@k8>o3OZRNvvL){!0@&mXX;8MJXa=OZH>GN?-{=5i zdY}Vaum7xKqEEn>eJ!fW@{5X=ip#vtEOpu}c=*$+=%88Qv?yq9D>2SpOKbPm@&zJ& zlyWAgC;K;6VojVRw>!}d1c_}C+HA`-+E&(*EDCzTIww7HjXzp)V(9BLq;EW8yZ_bM$XMX4!E3$Q@BoC9Ed_2A9JqoVQ|rRJ`A*d;i$cLC)SkovWrShivNqbj~S66*Rv z45Btb$HzNV;{PJ$#NV*{_Vp+X_y4k#!qGo9;8d`p*2sUikcSdiUXa zun{g{%NVY^Ic%H9t5Z}Zy$#XNh3xy}=5;~%ET6`7oAr1&(rw09utXx^`M^>kbRedY z1?wAes*;NjwcVN0aNcRG*d}XbN=9^S+ADR7BH`o?sJ32{EibdtUZ}@kRxotT-WH68 z+SHD1`HX?HZ(5#5B)~@s*ncwVLP7AFNd`k_tTY!B6b2b~;q7Lp9LI0i^S@kJF|x4F zd*4xod<%8dJnBFnY-XaRhY%)d_8tiw``~HSTip$peluTCReY1M@NtMV&Zjq$*dlA9 zaRACDq)b=jE?s9B~);DLTBInan~`6RwAXf(SFzs(zWcE zv@}&x^?Tb721v&3qm79ZU_y+F7vSDQ#5C8YMjs@=x_5k4c1DsVU4qNDI?th4rQ*nLF=9yMY6`H0iUaYFB@`086z)jDFHjk;wfa=M} znV%^z?9zDvGd=M7TXJQ~b`?*@0jE5-TcLkVY8cIOt zXGX-v7JFrQZA#rB;hTZ13W311){TtUCiTfh4^PHF17+&0Ro1p&pun zbtKhj3X%q4V@;!3`t|w^PtJvo;ZF^c&6~}L1keKI*gocVt?N6$uA7LOBNwjMm}b?{ z>MF&g!iWL#()A&+oX!cn8AfvmhCuoe;7KeH-mPU9ZJ+OGf!1_6aWHxaBs+dvzVjEN zF(mHjkknKnk1e)6Kho|Z^(p3}exl|gHR={Fa)%BLyyxL}>lm}^RcjVd*0Q&{CLr!d zz~^DrrcEmfEL35*m=N=*zKwz@-^@`$gprO`>I%@mlNByP>{N(|i)(4iHwhLlR zH8X@!d@YRJ-7lyg?|T3I*UeIT zbQA~FcibNg$cM~82=SE&d3#tYQOu|lLj8%_HO3xTUVM8o#I5qsEBqLszNk?QN5)(-&EyGlCeCogEO$ilP-E$k3hP zj~ghXZ z?KT9AZO2h8EcUOtmv78f?UZ>EA!2^-JKH{T5MUid$r_*sIyo52(x$dllQa4EucxQr zdM851pL@$rc5v2FD+M;+>?OsH-br ze_u%M#maoHCqpYJXW9TB)4Id`(0p@B7LI}O5a=)(f|Sdp2jG-L*7^>jIX3VkJqRwXtS^(lC};i!v{gSYsE$#KSh#X?B%!b2 zzAtClJ#eF51HXA{Js7C(KNep=Tlum6@Bfwz^8@3n1Nt01yDd1i@pu%ueTsWy Jcb~fae*nO40OJ4v literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p7_6.png b/labworks/LW2/ex1_p7_6.png new file mode 100644 index 0000000000000000000000000000000000000000..2bcb8d03cdb9d0318e43a38d7f027f35377b8f15 GIT binary patch literal 75363 zcmd432{_hk`!@O`q(P`85~3o6&>)HiDnw+?n2@nDMaD!aBt=xD3}qfNlp$kLNQDTI zA<7sMnfH0O-v9TlZ}0Ee`#bjW?c>GOF)RMD*GWOw>Et;Jr;DZz=G1Xhr}MVwoNTR5^SYQj zI9i>vmlWM0E-EgzGleN&3c@rSlZ#NSlyQ@uv%&K&0o2=wb0gdoAR&es0wwL>Z!Vsp^=I(cXMA}Mqa*u z{lt145qrKt{_wwl?p56J{P({fo?fdq$@=e~-jlK|NB;eiFtxEWJpX=$`u^AdTi?X( zgoA^`T`}XE1CJ8I4AUP31Oy1mnW^%{76k~* z28;_%cRm_^AGyQKp|Bc}Jy>85{G685Mo7mX?z%S@}KF zyyot!ogVq4vgW3l&p{PAJt+28s0j=&!81=+jXPhCCz`i5y^qI#r+`SO)3oo1gl8hg+C z?{lA|sMcJYYdg#;A058F`qtYs;=6Y@TiMywMoF*9ws=QNG5X#Twlm2?*j0PZPW`O< zGuAWq?d_TbtDj#>s_+LF=4YH!4GY(?32VQqPf-4tZde#~?(E)&vTnZ5%xh>V4^Pjo z{{DM~Ow~*CY+Lx|<+g00Z+m{ODs08#c-jk#3!Z;w zXDi;lW5O0+dB}Z^62ST&YAyOb{math&nV4v`}XpCl9uOZCakcyolj%D%0u~&oS*oi zzE)UU#d28Mb4H4i$BvgQE)-U;@jztmmHGIj#@UkHLYR*)_RCK9N!z)(U+?RGA~+6T zTeWfY-R`fY_4TVmLqlJ9FYdp|CGG3uL&>_1QrPwPcLZi7_~gEAHgsQ@%Ww3z>MHji z!=u=?w^xhv0Pnq>|t^GSY zP3V>`HN&srbewx)P0q{ifpP5zyX?f>#?O4ocU6Eb$Ea2cFlU4u~^|lhYpDt6|FyXb!Az!%*FG=tvegj4NndJ{@l`HE)>YY$$5IT zvn+C#9cOjewm9*3Z{IGnx3@q0IdhX@FsJ|L&$>YycCW(2ygR=!cFr$?Z8dAJk8*@) zSJ{=NluyS?_c*nf{ge;BRL{)sLFsx1V`Jl$oKi>oO~T$ZHm zYdpslZ*pymc9p$2!i9&7;J4$i-i~apDZk9uM>|dbz}7ou2yS*UBTbo%kdP3m&a~&x zpI5uZ#>HiwdAnN5rfKCC<-3Qm0VekLs{{lDg1Dqtvx^#>C|vmV?Tl^9GkP4LYiViQ zgMxxg?CgTER;K;+2?2qD4KKED+O+A%*Ah7)?NmldNy+saHpC$^&bzo&k`4MZY8u`y z@T#h+qN-{s&VZnH>iU&TOs3}M{z~COkB>jtrCZ>XRK35~`M^pUg}`+Rg)YM%l1>V& z-KKHaRNv@Cn*Potna|gldHNh|PzA=BE#t0nL4VW`F#N~n6pqkiJVt%=Cb!MFETh437S+3$HG z-9UPqS~$wW$jHd(uV063ZBxtV2AYPye_wh}WovM=z*mcD9z#o!e@^YMwsR%NTDl^P zy$DT11GKP+c!TBNsD;*Bb|fI8CjQpTRRQ6 zvatzi`rNz6L6*_d@)}NTcZl4Aypqz5YIAdmds0R`l&hQDHuDF_EJ_UxH6{-qK1Axp zyV6k}bAMRn7Uv|BwbPbkoptr~V~^e0`Z>$&TBY6UjnWQuX{VkmW}SX*Vr_ln2AlBd z?pN1cfAuj@r5``CO578vs^lng=v_Y2UbvJZ$22H7_+ze(4poZ0EY;T&)i*G(oYz^U z49oJ}-YmfBIB%@%HgWM26feb6^zx--?oFKxqh(D^O|;ZwgM5ebr)n`_efgfVc_y~D zA{5KOrxXF~h0wb-EG)dAKYu%Z<_CVsn^Wwz?cdPsr?4pTLmdH82_wL=R{y0aQM(vjTwH7&vtinKc4o%#Kl2ZM^XZ4!9+rw}2Ec11lR^BiCB%fB*L3@gdHLi1&A_B+t5RkamdI6yCh~@YCD?hYdf6_=QSwUi^_UX({e~m;BV@ z6t}6U9X%?aVf2!Phld#vVf(dsBLl;YLv9QV46!&^t|*%mzkj31USG0w74PQFbU4wa zc$^Oj%Ix8WDlfekxq~@(mSaIo&z$jNcan7C;| zOa2nx-$HTN_8yc}^2V!p_6NmyFL3O%X{xRNm68^BB!o{wLc==n=$yB!>mJpIviJDy zj=jgX9PMuqpyb1av>ftx67X^|aNYL!#TYqnBdZz2@K{fX9N*Th3^;=oq+E}GJLc!- zX9CoA76p+q0X|Ubsqw#hl}}1)?M4|FI_h(4t5V2yxz-!O!3y}V7y4>BD4*bZ z*AO|K06TlmcT$x%H?BB!>Qq{D3zCrE)vKp}e0Z#6cXu%>JGxocqeX`&@^nzR{n> zj)yo8SCQzB<*-i5+UX%toh*?NdR zzk0OFVb+$PHEFB2LM>v`|HFq5PTs{H)3FYQOBhz(YRa{I&)q+Ep{Md#$hps%2dwg6 zyx3FL)TB-EB65;no;F~i>uSliR0{b$@JYGgcK^q?BSH~{Uh@S`pJsEc8rD9UpJ-64 z4?lgbqe%VKEWpJ<2Zv_|3z?Xhatj=PB5XLH{>_ogDY_#^j%?bpMd6aHw6xwOuR`a+ zCl@x3>%`b(ixs(!@tw3AZp}^6wEWre@}B-uKnAbS7MWS#@9o=h=H&dXfDe5A{r#nm zw{Nt-=C7d`FI~D+{?dIa>`9F=Yx?n7t==4$kUe@TS0sEF2t3E*r-$PQJS*c_c;T zF2|7&?(hM`+WwP+ywz&1&q4%4ZZofHT}T`h?f>=t{Xx7NQcrkz_$WZ&CSG27R2F2? zlTTHJB2GQGkIorELt>sdAHpNI4tax~B7jz^PR6Q!GmVdljZMnvpVG@q@ZopvoV;pX z;xVl;n7+hmxV`XV{q?FG0ZIA;EL&9~Q7%wgv>5b5=V-Rsc}c7pog8Tw-u`oFD0R|@ z7khIcwB?Q`VD_!MgJ1Hq%X5sqrWGh&z_VpzV`J9Mp^=e-_?M)2jC%W8rn)MYmNhnN z&KQxDdug`*)N|f%9dGylQ;TywrXBic?WV_j^^CqEKofo&7C0Rn_84b>W}NS^rNa64 z?c4DqM}T@#r3`fhW<5MS8q=R*nd-9&a{AuKh^6)X_!wv1yvh55j%w5pc^pbU^Z9d~ z>Rr#zeZAZI%;Ftq?%;>KQ?Ao7L6;U6UN*i=Lftq&Kl6KK#udR5)7=jb8`DgS?&as_ z|A@@zdg;GYt>qhb*`CP%f_P8p#nweWzF&27;~}(PD#wq1d~$q4@ULA~^>oze zz$al@_eqsYMVd((ln?sVPUH^#=DfT-ML;o%0@gmHp`mfL^NG#GC5pZ|BQb%~KI~*^X-UbSIkTDc z;^N1@C~nxWA-L+(%;fNc-&d`-Nl2{5k}RRfYqzy&rs=ccDAC@!BrE!Svw%Px-q3Ys zVjE>r8N_kk!J#^LlBIX;!y*3arGO%v;ybRVj8%R7s6M=Rpeb#|xpU{JQdE`e5n{#% z0d$+2*>~;QB@~f=p@+ezan#h>`u^ix#)U3S^45#rP#dvG*50kp&xviH>U+1Le-XW| z-{Z%d&@X++G(GepKi?GDy3zbo$i{{5-*2IH5P{PXPE`1bDQ1YAX`?~9Z`E#rK{ z^G#y+?udn$sHh-xha0F&`}V!T(?_=6F~z4)Yk#S^usU+x+WS!TK-u4VQ~0gwN8t7A zZ|e*2kSy!gF;JXp6Er?|?yLcnrlAn5+V@2nX_24^84`=F&&>ra8bjW%i=M*1Bk!vECYXDp{=Hw)b2{ z$wGO>HRcAxrx_U;+Ik}VDDhi^zhcYX=a9NN^dAbAbidsnoACy)NF6}Be~M-a17RMl zzq40_xLz|<^t*P=vgoo;`J?i1VVz36y?V}B_03zhbm8O?k|bFt<7W5kz#cFbucm)} z*Gjj*W(aKJp)F0~;3h^$id2ZMmasI5_SlanpapI)|P! zvv_7;^y=?2&wf)gdg(d4OL=f+wCl>mBA&}8s`Tdq-_MQ6r~qOQc=U+( z)$7+*20E7-vXw8f*VV+lQdU*fj@-I`_v;&M4KG%CdV2cHCM$RQYwomelt%&7s%t=s zNIJ62POPX}6-oCs8c3RWqtQIj8?+4-^y-&ZIuz0z4s%3Ta1}}FSjp0*OZi1bS8d(8 zwZ%wzNJ8%C;}*|ERbDn6brwyc}+&% zjhi97gs?#nKM)LfAZz3k3L5CTPb%SYE9gT+PbL zMn^+KQ@^-jr}gG}>kcAF3~P{BvfMhmsi_BdOajgva8?U$5f%` zT3fL5eL$>2pwgn+PtmgY_{~K?@jecHtuHR{`!ver*FD^qlGj#~bCIsk94PZOvJML? z>*EW>=;QrmHal;Tyx0%^ld-I+#n~_WK^@F3%>F!j^k^xdaQ(3R zKK^9QBwrz|C@A3t%?weAkAL&Auee zX;XAEDuE|yD6qYXIIQaUN(Kc^%YfYdz$70$bSS)-vHi=J^N37r&1paukk~;@JMm}Y z0CbGLJ^*{B;F?+iMmwvKG_Hk&FjMU-YekI4;xjTr2#?V=<$-LR z>Cmf$>}@*Ol(tufHyi~FXXIG>DZ+iA`N&lzR3Dqvg$oxz{AD!$Ztz>S#>C{&9|0{w zaH1XQ1U)r6HPyUl|1;5@cCBkIEGz=9UoQh;@d43oyD{SxIJg<_g9mBBkvy|&PyUB& z-)L5K^EEmrmJJ&MNdsxumZyL--C!sRGy>ps7=<&TN4q}lzj|N2a6NF~fa~NC z2lWW4L_he*94b>M^1tcy@XPU*>6~&uNMxC zDmZ79q_M?mu!)Jvv}qORSiH3{eoe*=eF8-xh$*suM(g&+dhjC417oRP+z;|`?x*+S9WON%6%ul+8#b&Ugd~`k zt5>hqPoN;1V6AlXY&lkO?eW1$iZd?ps&_IoGb5xW$drAj&CCE}R*(bpqcLd>8u-v# zw|uatUEsj>c>KxKc%+|g!9>b3N}K82pD{co3vhE_vQ|nt(hreW@WzDlh}!4A4kWiC zXq$xI2xvKkpf)UYIop)VfwW5ta*0S4__`HXJQjBLrM$U?n?Is{f5@>q>GA8`?jK+B zCBd3*kIwN}n3G=k)5AQ}@p1!o0+fR7@aeUvg+I_bQaQ{Ax{DC#gdHT5ZvPo8{njC% z-_A}SK7|`cOVlF8Y0w&hJSZaEI?8U!g^l^rO{gI1s!9)@BZUGnEJY<>fwwszFYn{@ zEY)j%=5yi2jDzW`!v)o8PvzMjz>|*6{I&sOzX8nW*@h=fWPKtd18_b_Z-keN5%!D! z$jwLKpj(QMZ>cAq*aU8XmefrI%np3)%IJVQKNTIJ ze-N@5blR4UhaJGw6%6jkj!Yx$GPjr*Arxo{&sttl(KRq|11Xyu1kzyu1rsZ)>u=s1 zC5jBnd<8VLP$WQPC85-(;3L<|dC4LG{7`bcNo7Q*PDtR$$n{)cXZP>le^gbK^mPR7 z`}h8ynD_vp00FujQqsXV#b9y!FMBi-PtcIS^qSkFonaIVR9n&1w2qlu_C)?Zv@VG! zpROV@0`|WG$_09++v5+>(UtzMh9@^;*6NSY%11SdVf2rcKXP{fk(21t}EW`0!zOb;MG>C0p zM@ZibdN_aKHOqZ@LEWoEV!PXFj^4`;S?}1_MPOf{W=F_{&}Nbhu0f8GGQK2z>;abm zqi^TnV2Xsyb+rC|(4A7+MS%gk0M!lx#ekN%wds&%Q|NmUj$F@K7poSxUw!6hThM5N zCtI>)Nf&~nzGu8GZCDLa%J!GV>T-^MS9qA7sc>ww&?Da~SF!-0DR}^l9k!pv!+&vb zaG2t?;t~?&I4&Qbs_~!+7p`qc))JNlR>T7BHo1$is?Pu zyfF7mjle`uYKr*|z0e?*Lx_VCx{`@gsuY=xsMfX}MS7+!NLU1p{P>i@Zv83QA5lqk zSN|34iXa+xAR~Wyabbz1MePaQbbv0#<;%;Fozx0@14L*aO@|bGB$T1*L1lhXYRRSS~a6g=v7mNd*6ZiD#QtS!{TLzHK zmG};s*gDA17pjr2M$r~e}S zwgRVqUvxPrs2hnY1EA~&bWc_Uf%#{$?Ht)5lII~9{sFQMZ+Z+-7YC{fV2YF=^(QJE zv?Q_vCseY~6?(@bR9W&7C&O;F#7lmNjD5Ff}7|M`iP-3-_RuCEkT z;ll3$EqrrckX%omJb@N;7`cixF?;sx`Q~!+x*&7szke6G$zvd8L$=sI#M;47J_X)8 zZygGy@g8CHzP!BPk3b22fF3y9=kYr-8xOX8RbOh6zcfVVM3WC%l`{jXlP@p*UXCTM z8@3=tch@D(2E8& z08wS(L(9wxjo_%{3eMCr&eTw2>u;LTz9)L1 z;q}Hx{_BtPbq?up45rAm2)H;yQ%-LIT_1QaF5_eXdfzzwyW9eKswgcx|UQ=^z?Ynom`hEB)MrP(C z(5{=h1OZpkmcLgzS#tmXyx5P?el90X1Vpn#Y9SlfeWL?;jWm{6tBxHEjj{Qrxv|NF zsmUaGPUDKS@OSfzbu&100G8MM{OHo!PMnxDCjU{N|LH&`10HhZ(}!JVR@L;$qjkkj zXf?aR;(cgtJ_3+ydipdi3I;lo;F`B*B;c?a$g!hOP*nY7iVt9FdLy>eAzAf6B0*7* zj_}_P!cJl7{G&wXXKZZjC~@d~*n2*?0zu%G^zUDb%yzgb>d=Iak-P|aVm-()aVaU4 z-DWiOmW$?i?+m>6DjPiFH>2PQ32h5U8nwxU9-tb$%)n&ZEzx|l zZmYQ&wMA4o9l0T3{AtiP+J{38v>CqSl{0EC7W^a`@Wn3veQ~HD|JUCC7p}js1NOTg z$w#*6^*>%NePWmLP7Cfg=_K#4_N#i;=+)|y)MfnlBiPm#WrsZTkBj3!BXO@u4!*V8 z;jL@b*C8sf;X?aHhKHH%sayrR=|K<+MSvRvfVrl!_0ZzNyribiT&mmnx9iorKo&?H z8sz7z9*oQiC>C|wX_jQY2J~Z9l){9wXC^}rTT#~d)ey&f~T}lqOmrIAriq* zMOrng{wD}a!jA$;->uoc1>06FCuN?BZzgF*cG`Tk<2p7vY@eIbi4!LZJmXUwes=7G zfdu3p4TK96?t{Pj-etK@*@ypnA0>U#&U?_y%L~sYlreA#tJ+!|hNPGYx(PO~bwD`& z*RL!^hK>%D%{`3=Sfb9Jo;&^X64^wk0b|<@08Khl$^v2uh=LpkVgrV1eFaTa?1&L6fm@LnjKXb_)TkkEWgvA_7{; zgAt;JEZp2T0j;~x;E?tV%8gTpg}1kN?LEn*E-o%aZ5n9KAgsPYu?NS=Cn{y|IkK!@ z&xnj2Jb0{4XAX!f5IXUXf@vkf{}Wap7*NA?4is5gf5TH}4avBSgoh8g(HvYw-#7Fn ze+_y$U2JcG^VL-wZvczOdd^OM2Gck(u{Oh9x7b4(U+P*|*xJTqtrcjaD+qxM#Q=hZ zX;Z4+AMm7Xcdy^LLAoqfF0Pe8`JiSg;1gmt0zK}JC^q@_CKTppW@dkLIq!uad_ozF zZ6GGJBAXJ``4c9eTYp*(!`VNkCeopU)FoJ%F#Y!#;zuH23{kyUQfogmGxHfTTU1n3 zCd6LS9ixv15~_f$5lu$2Lq3dGghB#1Bs3|gSy{7%3Rn~I?DS&l(q z#9Ccr^-864CAETD95roi4{*)}nN8}d=c8Vm>DB7#l|?B`8>T-TdLZq%)#Ba#gi&1x z8|QJR!hgZwK!fxC8iXZ=(}W1?}%egi{8=T;Xeq=al~FK|BTI)_#iir7-%RC*pB9+jv) z>b>LLY|>VQ65su}aqd~R3xV)b*M9D)ekUG)gM5%Ie~6$B5U)|H$IctU=$ zqod>eg$tMAw3JE%f5o_J)m3PXlRv*^oPTYgp|KhY)zRIzb!+KU5fTJTqhKb z&9=Gy;2iwtrD4rMgUh&VSs9SSj?=Fgt?t8XBWhHX_@Q~vqatIMfyQI)C+}JjQ4kH( z4p1K}dG>S35B&Q2=)jWjUsY9AaqycFYMAtBF#7!%99%+?_(JDG%6LnMYOL=K>A-J0 z%zA@^z-;;=5-d_>Z)erlD^zMcH@5Ik4%%r_N?C}+a+L=uSnaUv4gP1JTP{lnj%OSE ztjxxtcb%Wfomj)gmFm&~0(D}jWewJbBnqVn(O}YJf>N(7TX#nkwV3wke0@VDdVAQR z=&^l-y?t!shsZJmNTM{(l-f-hyCm+C(yr$Y}8!KDeAOu1j@}_RiSyr$4-#XztiM1ElBMxjCVFH0z z!u!T1C$I7{;vA=GOfka-UIjQuBmY?V3S#3l>ZbUvU6n9zgcVeZi;K&nx6F0tlOSjC ztLM~4O3=CIM1m4q!g;#0CB_z?U@J-|7VWtvaZjpTof7^1>l|k}L@Jil|{tcv85a&*zwi#`9^KZExzX#ZC?d;f|z#6w+ zKsBm#abZfXHgd>X!nAd=yx&g^Q4zjw^P6C95b<#`02te8sYTIPwKLI`S zSV%PbNs6clFt1qUzHHe7Uq5+6(ByC+BtL71-U>3Ky3y;NR>{JQFaRzkKTz2XNTMU1 z@q&47w1Qb^@x!6B=7PE%7;koH$JA_B*yhP}J%kik}oSgw_x1vuUXh4Kd?N z6z%8T$%t8lCGbg?#UHyv5$oDP>`~{yzZ1~>z=If%uFCyPW2LZ0V^oYqK6C3hV9D_K5RAg4YMtIf}wV0ct zh6Ungti3ES4f{w7%bC_y%Sfm2a@Cx!1L~_zHQ3jJ)VA->^z>tm1SRC3ov1bbD7!t# zrGgsqM+<5&$H9S;diG{B%^4HRD6iPr!qUoAj%EH zqqZRWx#sQn(aVShG}_4L{w7TUSBp<4ikKQ z!3*jal~i`pYk$_wKlJS{F8qzNA~0qk>sg^?Yt`|rnjJ3ZN1{o?4t)}q#;8C_Qg$a9axsmL$0FnOB+_WU<-p7s4UH*x-{jy-v{4d|4 zF#&QSL9omIO8^e5)hF))UF9#uWO@rcxrW?lkTdId+jBv0jBm9vc06uJtFd$xehv}n z1QPT5UdV+?hAYYbLUJM2SrqXr#N`1Sh$|*&2+IsiKu{;V>ZB7RM^XHP_$|&LN?uKk z8DZrA&}gRO{#Ac};z*}7N5f0o{4&P0X-COKAo7@02%3U}mK@#p7sy;dc>XxEaGl2j${0{N6r6^Ke`qgP_(=1y-2qL(jF zR@C8Gan$pj^S!M4zKeEeq|AoVMu4ktu&PulH11bA@MbH0(*J!h-gWu8z;zn(85&1o zDgU(RE6i0pycay8_Bts zW+n(kqN<=n;DfOb*V${=UZ5o~yk$mT+|u)9WL9LB&(J&F z?nUS5EY98bD}6YW<3-Jgf-OJ?=ELEksKmO`sBn-gJ1l8x_3pinQV4rF-uSloeT-ZW zCJqF(lEYfv0NVm!z3zbq39{a0Ro+dfe$XrH;q)Xu^1wiHUQAC8!zwOD$bJSTUK>eD zdqF>mDikScxyq+eSkfs8lYwCJsvxMwU)EDNa+9m7iHHF7YYb0 z{*J9N97vOg$ovjaP+H-MH$k<8eT0v^|VDNgbYwclFrDg z!>2bwc!f%OI4Rnfw{yI=W{>kg*o1DHe(r}XvmN(ez`WF1o4aF63~`gvvuf68D^OBGv&_RaFqYRr!wJ3H687TFJHN zgt=TH@Qxx%dAS+%A&L+xD)%H5Oz*q?uEflgIGQnHC_%ppCZ#NZm7jFcQs+9jAfH^t zIM>M6k`PQM0kd-m$$b$}iKGCS4l62_qg5c<8djLCk2Pb}N_2ovp9+B1dF-@d?BPCl z(iBrk^HG>}Q=6fUk#&2f-Oin8W@#zVu9Tt7;kI1?<``IHa8y3$Slww_5*q=@4TE&V zoc93=4@?&N%hds)|56SiJRz$#?tKJZnJ6?OA|jv?FQb>?1Cd-|KP$x?dEsj1Q>H_?%lPEh-LMIiw$aW$9|c+l+@k;SJj2(SAgzFnu&yd z;>U&f1A?OqPCm4ikMZVkFDSNTnJvZiXdu`Lf;frb-cjNmf-(SOFfha6ZH=o#t!wqr z1Z4&7#QG*&2qr;;qba!ELWDLF&|8?z@h%#r$ZWx-jQNQu5(nXg@q_<<8Fu&}YMsCL z;=IoNk?w9jS6A1gB{F;VFj8S&ur}wWbFi^t`U%ZJee`b31-)?meiLM1MCiNKbO%^4 zM{ujleB6;~EEhA8pZ3I%SxB2*n5ca0&|6&|#3AW7I(k00=0?VIp^GD5SOHJyph=dY ztHhWdCq<>d zv)ML2HpWUZVr8}R(}CsA&IQ5J5lqRCj*Y3`U&qNQL`Emk()p4ZGR%xDhitkADSXSH zKYtj3HrLV}xKN^W^e79MCw^iMAm3s+o6u&k>?=^n*J89W;ThBT`|DS(T&eCq%``U8 zzZjR1Aw~cpOvGzIrzGUq!f}^r)$qh=swT+mVWRa<4A;?Nv=5$nMr_8(!i`W>P+c(< z0?b{GbF;Q@1rrk+q**>)J-uaMQV)W%^Ftn4hUuAl_deu2p|*JYl4@1yv6crXotGaB z28R2q&}(SiRvr9yq@Y%BKw`C{_GGh3Wp#cK+xqo_c7f>W;TP4z4{TGR;{~tvfK8GF15=s8_K6E|QPq&c6}%vPwbP z?JwP^tfR~Sv+>Q*%IY^4F9Gw_Fs(e|mI1NkZ5?MfyM8Ont&g0bxP1{S+P`jeDeUL% zSMqY-r_2A{CZ7Grvp7XXtK}Un*JALyk%ZEo{JV(sC7ArsT2%*)_pm0*H;YQz(!aM8XqtdK=tsB?#Ybyz34 zj8-~%nF{`Y5SQ4TdE^756I$* zxsp|Rkgt|sym%3ViwnOp?@l5L>WcF9mQRhLTNO`2_{t$U^YO`=zAVtjddm z<$Q-3Yv^7hBP00Ng<;o5b`FpL>le^SSSUa8flTP*;4!m)T3ApZ!OQCTnuz;E1b_$a z{Kbn$@Q;74G61VeLt(b>&^?J3_fK0PIaLNJ9KKIjdT@6pl~85qpsCgSfmB>^lSG*G z6U_7IVgiXW0X>4U9q|NC<(2T0`lGi7H{y_To$TJUDvAc#75kcXY@fHUs2h5(oL%wWfYs$`Qt~T)OKJEqFurNqn>B0hdfwH+#@#4m1sFI zOqy|_4X*E<_Ro_i18UCbc-M93>0o=0-9=A3!ERF&`?ZGKCyJy%(1FN5DpqoPdj-);s+5iGsR`15DA7L8?y}lN5k=1hrlf zCJ7VFs1QB6t&ONZFl+h46gB&zpt=3iCoQW>a7LWScQ6ma#Q*z;+d|xc5@>jMVpM)c z6nx0GRC`faNSNXEvaaHk3HI;vOZVNWsi~Quz5SKt|$j@^_Xu9sgbB3FHX;k@D)lm}9LIH_dkdbF-Rjr(f*RgWsA!n3?uc zdCxlwGlOD;IR>ab1YKkdoL(II*cV>&d%?}!UGpx1O9M_K=oI>0S*TlyQB#QMAFa8< z=#bTk>$kt29-dir5L__uuYd?-+nRIiyWJ#oA@H1JRve(1P{4?lQk)ZF?c>_(#E6a! z{YCwYhdG|F7xA&MwELz%$oPf<3LK`^qFb|;~ZvsCL*R&th z0q`FW?4!vI8Zd*CyHcPPG3?v-dXSr3%mN1%6g+yUN(Uj`jbdJk4#TG~WJT_@S?9Gd zZRu|gtU`v%a7^KDV1eDs2f&itErAg0!YNsgQDCYRrajXZ05mi3I^vR&Cx74~9uO1p zjSHyZkI%flP5Gdi>c(>u^Q_Cz=gau@V+}ry^A0f7_K!qJ+hN3t+*z`UTb8u@rl5c* za-YJs93D#PuE;V#6sst@>EWf1F4)q?W^8m^m+<=kBK+7R_efvi2-E~A_aD`#;8m1@ zn_+s)kR*udOOlD%fXGBqS|gxJN7X*uw*g!h4s(Jw&yBFDEdl~dC>V-jo&2vP`%Fv@ zpCSS#ND|UDLBZQ%3JpDga7!oL;sCEbAflJmxSZu9tBUNli=3g4fMIr5uR)W1ih9 zfWQj0q0njSa}ZgZ_Uu`YE(2b+l5#dj(q_2~MNYW4dd@;{{`~wL4}?-pqn0&rmyOQC zK(}`CJ0wL=ue@N=0CHcWy@n-QaHlu!GvBM8s=I?+27>|3e~4dv z%R|T*VSQ;xZ*y~VoimF)o8#NP_%uTPVZHgyFiy<7XHVo`wKc~nG^=qqq5wipm}F$u zQEqsH-ss5!5hd8v>V-A;&O~~GjmC923a}p%V{Q2JksHvP0^rCMlx>2z3~#XdumrrY zFp=FUXYMrwmO~3Wk&|Uw!EjhX0oa5Cwi=xuoR3|GTZu!MA_HeFUq4Iz-SA!(YVCG? z&4OW1BxUOe_HzfCUD}-A*43eNaU!1dv5|I}{;~g`$T|ZWIL-+p_Hespf|)X~TB?4a zGD?9D2q!cPY~IIIJxL3Z?UGFh%X?W8mpKBDPB}$`OiZ2ot7eOEgRZV#hP9389f!6QQ}IS0W33jT<4~orL$dX)8I;A~ zfPPHD?>BOylhW;&nhpOIsG~x3AjD&R4{Y!{EvqhUpgOT>N)1Luu8*@kNxKQT*#66l z%aF~X!5(6vgD}MVJ5aOT<@%LEFBox6ALa~)dLMt48PoAAeS4NR^h~cmT}!$4oF}~Q zYfx@96nbKKsYHl56VzKu>fdT7zGcgnh79xb=QHaqX{c0#{MF%jaD8hedsi=vKWUz&{}fzrM_|7R8Y~xr0|94 z?%D59AL>2uJxDFUx%iJYVOtu%v@{2tWKA!OEuORw1jH=0YL3XOL@B-Sw-xt(ldhMo z*!$@OpH^GU-9Oi^CQqGnd0Y2g==tDUKhAD1mA_o{Y}~}ZxafrH>)@KFJo<&qa2wAu z!iEFVIo-{IL22#ecEdBNm~E#%*j3W{fG?r_U|313VeDvVk(x8TPq@)sSxUMoljJwZ;;CbO1$wf=<_Riyys|u@`7tBtEzg?bCFv$+&;bXZZs|n z*U?HmaUf+HLPgGfogz7euR~C!bT4h3gN$q1`PTcQk%!>j2vkcIIt1)yt#7YI0s}9TB(Liy1)hs=Rh4Ib(Embi7cu zaLlXJ^S#bl0xK$;Bpm;f~PWFDl%i2-EDzYoe$cfxA=p-CXzb{L z2${{pfdZ8hy%6JvJ#^>1LYHJW;uKJ87Z8{r7-B5{|$JHLil{Sk%{G6W01RVn^e9qb^n z+C!kMLhHuHz{$Y7Z|a}<`>PKhx>Vf1artmjurU(NEsSDakPX6xW0g2G3ZU&@kh2{unA){mXgQJP>#Oh+-;P+!0LXq zPz<*&t#G-d^UmD=&uc?WvL%RZqUs~<2LdiX22gHk+B(J@49w<#`MP8|h7>T|D=wB%joNb=IpL^rDvnmzOf9I#OsB!$sE!{oIEhA-3+j@l zZV0fxbz|aX`0(+>8iRSDtU2YajfbH#*I&vXYJBN_k-AmDOta7?W@l$7nQJ^iZWP!7 z%5t0E4MTI>Vs#p;k9wFA$`c_EscjRr_&ZMZ@ckW@p#dC$94pX~ZCNmG=14(lK=kH} z4YdHc{I&FqleGn6K?L(v8|7bm_7i(Y_;&(RkdkR20Kx^fnhXx|{tn(OH+mLdc@%w- z8HiwVBOb;d10iobY2(?^>xoNm%HVS$O(jg8Y3CMsFdzwBO)fI5jh4|dJzs zWT7KoKr-^louZYpZm-Kw05B7ApQ0hY=?-nc56f%$WBLt|eQ12jZMKg@fDPy95OXGt z92gJcsRFZ243+-K3mGL&R>%bgn7y$buK!qc)D)` z&>|XplksnFNe|`60dERCb8yX75CzI1cZ1p(Q<`e)ZYhdL4#4*f>Vbm0@tu~T6~?Ve zbVEZ!Wb`d9VmopG>F`kKOd+`v_aO{^|FJ`E0viD02E(b3s@sZCOM`LUiGLM(78(jS z%_&_Ozp4vuAT36Nd{g+MFv$k3D=8Xv3+?047dsmD zt~v?76oqGK?J{2q0?gqfN6auZw0z#(MgucAnAcqkZBHJnN$!N)b{O)xDF{k36}Z>w zhY#uBVfP@eeXNCjN6~dq^(ydrK$m!#qYB-HIPYK!CHM3|uUtaD0+2K#CdJ`wsb}}H zcn8rQS)S6EmBuYm;YQxm`-de9jR$Uk@x~!0Tn+^0qrI}H*$FYAi!o9NoLi4OUc7h> zFCmUtWZ*d0v2Mc0pmcCboxOGP!GW-IaB53xS4uRYt$PGoUmP}QNo}t;x)5v>jvi%% zn`@P6B_BAds%IKIEUnO@Ne4RkjE2Jqx|(7{^6#(Pz|JlJ7VZe{1gtq9y_A{z%oDfi zysO~3!T0}{Sb_gLIeC}+0rVn59qSc&+aloYoj07V%MBkS$U!uDeL~d9P z&5#Y@Lt2&l{8_vDP2nwny#7%@Fx4y)|iCw91hi%g5rXO8RA!m~DiJt@mqt_;gl(BY`5sNipJ-j~8rQ&x7sJb0*9 zw|g+PCTI)e;_xZx5g`68M5c$|2sv}qz=H6dLm1fZJM@e3I!iH|cyx>#YxSgcu8=^f zcQ**TQ}vAGXs0b19+S@$DK_uBh)+r6~Y zPOB=|d#}CLoMVpBNAG>O@S0HL7uyg3_W%9~EH0|ygm-Kt)OI(3R>7~bwDRs&c2x&x zZuNK#akfH*`3!9}&G3W3`=wOfyy+wHuaBQUFO^oo`@nG|KORb~W5kzeITm5a5-08; z1eL30N|{y`P%Emoe=8<9?~2m~NP7R2S*+OVqzQ+FTYY&h1o!>x2kIlDg>#L@j<}Dq zqeE0*KtKQpO%T@Bduf0C-9>q0Zo&h&@#*nKpzjtj)rW8ul?OVGu&iFxGQ|_!yK!_< zMus3k^7Y0@_rv4>?iaY4#N8CR`H!nR$w!(%I<|J{|2`cH*c;p3`v$@S6gIw<>L`Et zW4-HlfUO1H@ug$Q5YqU%As zcI`c|?&0<|^zFm4=-%n6DdNBiA%&(lR4~%sj}MPPbV#7+(G)aZ@Xy2t2_4Tj%5oc) zlLkE!Rv-^$xAlkS{M-ib0ba@hVv07v~Loi9efNJl4zJ`@a;Kd?4IghT#ZhK_@@bS zYSJ;*QS&xEnc1{ala^|65H2<#VnDW$gZN&o66YH<1T27Cb=|<2}Wq4+Iu_ajLH*7L`Ou0S-KV=T~_Wxm-3@=6A3>PyvWv_rh-S6S96vWZ);a zyD|`)Z{(0SklDjK4(*=@az&cdMy^5_EJ8i{2{)9}X4c$oBqZz~Jz9kh11Cy2$3qFm(hUx9Y>BEd zPAznTu;C1jvJJa-IUo-qOe&oWi?PA#S!d9XiWI$`tA&t<<$4F~IT)31<$(-YrhY#x zE3wobK6|zfT{YvBv3g1GJ|vHwRu&EdWnb%$fQg;&KM8zwvfV@NXV$_TE!4-- zc8A{(wlXoKM&qY@Wk~uB5QEV%l$nviDf-o5uO=~oKp{p83d)Ud*?)*ufx7+-N$|&- z8ahPe!iQToNy*W}!x`=R!w}>W)B-sQ^CjAK>vGVQ*yB?0)?!2p67^2=op>#wJOge! zaJHy@Gzk_vYlxmC+0ehi0>^TkPSrt5HVkT92bL1cm^c9cge-EcGgGvM669 z(vQWq$gTQ&2=3Ohe5_g5^H{#1j9%*w2K)^eJHbnQ9dYRR^y&A9-N--*SM)O4I*#&R zIup}9F!7WHTX5<;VU&Yf0)fAqI~Qwg|Uq zZdMUt7eLu@Ty1{N?U2N{3P2!y>$6}>^OPQk3uu&5@_Mp1kr{AkeBMAzw26VwYxfSH zSw`14-*AuV&=+|E=G1juQzbwRCL%Jr9DH%(mHQp(MTw!BF5e~lD~#Yy`Ky&e+m71QQh zoz&2grzI;yzW(<*9?eI{-8+i1vW({zF%2Tfxdj0a5WAWagJ^JZKuk!|ZG@p5QqrOu zas*B8M_0YMGdlwIKNk+@zTgHJ;{%%Az$npTgKs9C*Kxz=I9nop)cTm@Wo>)CrfaN; ziq2>)4&wjMD!NM&ru7;_-81>~J4%P`6bjs?o;1YF0DpaZtDcL<_QA6} z3sdKBaC-xb$2XCRM@j5mAc+g93j*4J)=pF*XCjG6khKM%?Smte2CzSIDJdnnsE+O7uagb>8ZdQ_j;h3#mCKhC-Ziqz6PDvq zh5Xp^H7N@r`u?fbgQy^|Vh$4P2I5Wv7y*7**(jc5O)Ue%o9u?S-y9~_4`D}2YU)R{ zq`{vdS4{L~z?WD{*ljZLn~10tPzbQO6u71yxIA%!vV7%AT`T{k+1Ml;=0C4>i>e}} z;(<*j1Xc2l&vBKa^1_kBIPJG@-+uFJe*6vC7raqQW&<)|hbX#)LV^K&8v?;11D^E9 z$JtiBsnKp3$|)S|2n@mfpJQSeASxjXd@^vyLp*J5QH6BgNbygNzuK8QsOmQ z-XyM(eT&kKv}9TGJNPk50RHYzu%kaOs}So7w8x0kKY~5%?^6#ia%z=C_CdZP8mz#? zfP+fu_xDW;)Sx=)&63G2Lz*J#mY?v+;T=?0;1P$MVl12Xa#AZ$FD-2HIbbjYx=BrG z(7>0ExWsS31996w;-Zl(gX_i%N3qxA)biiwXAWgBQ5$XH8clR+*Az&ra0>BE-i`cHTm?iV=Tl0h)Iq`gyRmwI7TvBqWq zRXlJ}quhqQ%0ufDY4!#cCVi48>q7?;*jbJD33OcrLVg^4*+jj%^`u>e?i5d{_lp-4 ztdxiOSoOGjQAV$zJ?}Q7?h%f?c3D*RFRB73b(uV)fGH7fp0lz#Nl-ONTZkJL)@2UK zi3SJRsV_st&|xP1ZvZ@(QTdRyg^DS~YKjY(?mbA}_Hb})z^dI*=aLjVi9o*%YO8YU z2=^z9*T9!2uKR#ZE+d6bx0%~Pyag?KxhceE91Zgm=0A6%av@?~@?dZa&tuP4z$@^U zVJ84zAUaRLBp{PBU^_=X6&Z#-kQ1@wuxCX0>Tff>hPbzYvRna!SMm{fV4pz3z1>sI z40`=>C5b4~ZERb!V)xinZvdVY3W;x6^829TB8WeZqglm5FnDbiPXP4Gk%l|k^u^mjfV)WGBIPpTot12By3)!G;-T%_a=b7Ujd3g z8vBHMi5ip`_!BENka2FH%?wv?xV*}^>*+WH^aW_B=L3ryL4p($<_I7Za*AOildo+v zJ9NPZ9?|`41b0)dHp>n=Aq~+Ld@ia5e1T*&aMJyV6qz98s4Pi}jxZ#}Z*&C@&D`9a zSlj{}d^sKh)Q$MbfCF1>?2Qk?bEYLiU-V0=dJDReo&asCNTuq1`t&IPvjA?^#~(l^ z;1Qy5_}sDxbWsV<9Ac(0BejjO+adO%M{c_oM>@$_aH`;e-}m!t9RrJ|hFG?ZHg$df z{+dI@iV4vEE^?lL;!;z43{DNG4hTq#MI(RR>lmNd{54zEGO%xD%emx`EE;uJ9w1JT z3o|VXgtkfvA3P_1Xd?-!PjFNRA-^HBJy6yya#uhlBc8Sh=|-UaKh(6Rp}&VSDF{!S z{22`m4IwrYRW6!u`H*Yl-1TcuS`vPUSbA4W*h0E=HQB%sNEHc$V0Aq}kbnWz6S$=9 zgVj9x13UE4p8@Y&9dVS1eP`$9cuh}xzMSx6LE(8GF&3U#k0G)l6d|Aq=dWGcO$bDN zEm=(9o}NcsNmLEvx1FClgkzc5i<1csU=95a!$_WiTGTOQ$_#9YwBEZPgw&sSv^I2u zu+fF3Y&zKd8*m~Lg|Jy*9F`5S?pxah8@#<*x5YN=`B{2&3gmhU`8hc^qQ_BMDlXLu zn=L)A+~dTZY;Onn$Qp zQu{kDfUQS5R>&XmHn9!U^+RS6cz_^(M%1)~BmZ1Qfz`8YdoB&MqS@KIW%3h-jZ0gH zST&&&70?ckhh&=o##pz+!tFXT7%X=ZJxJYzmhfAokudhIpO0h zI=<(zN8FxA!u4PGWQ;LFJ(<`62gct)(<5DvEi6}7<79ft7OYzy@CVNV?p`@|0sfwx zO(-u;gP;a?a4M1c5FD9p;B&;Rvwn3&$95SxO&)JTD?%j%wZHtdLqc3!g^m*J5d((y z+n8SVV1U{q%B3$r4~+~%ENx)dskQRvNs!7D7}n*W_+lkR?gUCoUdBEjl&(ajJ_^vJ zsmfX%>J%~UiLtRU+0qfDN!@Bw*Ea9m8978NDGRuH4IpcB*g(Ac2@8O1hj$~|q4uH2 zv_tI8H9sNE;w@!2Z6BJSvwS%9iNBT38kh%YFsUEoZ=7;gLy>AmdMl)!H0@KMq38OY zf8*vIJD#EyN$QKk&{YAy4A#tzJpZStkoRJk?>MaHbu6nS63`1IM>$TmhxtK)fgE@X zLhOW}uzSqx6v{t?>}TLH(>^U+615uGZH$3os=_zKQbmXq!3SIV9E32qcfe1`;u(D))}M7VXt zcm_U>*i(=^9NZdE3zqHXjY4ErM<6E46yq?M83HOtZCniNP`%MjZ^mLw=Q;HgI7~>4 z{SD-LP!OR;+(u|skaz``84k?>hz}dL*dQE4C@~!1KOhlwBLMLdkO|yW^Aj7%a4SrO zSOts;-{TbIufaONo<6}>j$oc3tFSINj8jFAjD%MLX#t*i{&5r)OB=evE-?c|#oA9PA@WADU$64e0s&Z2}-#R9|2J z8Y^%T^*iBTIbK&dY1au>9m8j(l-qmeC$bipOBylC!vux{(*{?lbb+1;=$gI3WV;vB z`Co8s5w`^5x6teJ4n{7sNJ~YXI>EG;dKLcir9+7RZ;Q-^;W7_4Zn-mO&Ln9@5m6D= z2)LF@(fiz!k<_XkJImFY>H4xCpi3TZlUv?8P^Rek%?2F6yKRL4il`iT^zq$D$pV4P z7WXxn_<_JmTCdobQr!W`EWj{zC%lQ*B_!o;nfI#%Fbc`es8qst+od6=EybSEywgyBQ_C}ouh ztAHan6KWt>3fWOJ$8CB@>vpiDX|P7LqpL24g`Op^5Fp{AuDpVM#z{h!Rr&f z=ohL^qs=>enu~fEF`R)2sL?v2g_i^@-&ysEBLP{R)lrI@5x!)*+^3Og6CNT&M1Q~| z5E7{J1Tc4n%@6$WvO^EO%2(2l>wQ(E-(z0POv9HNb|1Y6?QzZZtW1jtQbMi8qn9 zJY$aNOl%|ak|+zBQ4lg}PnyfALgOoF+ zAx`u#=WT^t`Ygb=%L!WIle>^(+%{&fCru;!{1VMfCZ!$wy~V*Y4M179!c_D z)Hdf$On8XJIaU#~vfU`6JbVrn8e(uma9PXHBPM+0MG9**nV5$hiP)9knLqki5a*z= zbBMR#Qqq#j7AERT{VV!vpvPg0#|&+kxm#JZr1g&5%Ui7j1M6{pWNsc>IyzZ$?^JYJ zw7aDy=23MJSw(Q?*{^K+S!d&o9W2r4xXRSFmEGj?XU+j!yGf%z^BFb^X#7Z3^&Lvv zN_8N}A8`RSY?~Pw+0f*c!YRKQA?G2`fVD`kHiH+BU&2_Fkh+9HFGf#{bR&~E|Ito` znfgH%x5N%PoQzzdZsS?TE1t%DN|fj}Q1+tqn@>Ac?K>UVssyeKA@Q|_S&nl}ZL zV*Dc+l*SJyhYgg~NW!jM-D>y3)C03vk|?K;u*)eLB0Ins74-PlHn#TnN5>O65rEsJ zln)?1>og#8V`d7```qpEi$z|!j`9GB-5Vda)%VJym5wj5dy77UWBqe)*j>~~t1$#2h;qu4 zN5{FgcX+Wih#E;O+5V*LOh2*(T!6Q?cVQg|C#Mu9uz6BW5foHzFeh=Q0C4njsJKB@ zx&(g;Q8Nnw7fbAjuiC@>ntpX1CSa>BNmQJRqP5)j`SX&6i60h=VU zmhSeUOF;}-VW{CI#Gcz3fi~n)3OQ{n6H%Nmv4dk{;NsDQ0aGmbhU zwK$0`zh6KQQ=#l8ab7b6naZ14n$5j)Q1g<3H^{|fIIO_}$9n>_W0~O8r))sYS?S9z zB&3Q83r`3E+npZRT>;aUKn^I!DsI3?iQIjM-IKInvD5jKCxMv z=qusQ4L%2K@)Q*mZn^SY4gK5kwv=eWe^4-O$I3_9QkImZSSIq;%-FzGD0 zm{*y|F#O4ySs)!Fbl}m24m!ko6?fl5SGkt*0C=qq?*i6o^}um3i(kY$M_5mSuz|Y` zK=q7?Nn+lPy;FlT5V>9lMvj|-Gg)ln&e5PjPFW``X52usJ|1HVj~ALX8F(R3m$m-B z=;GkBkeEtcJ+CtV3Qc&*DU2O_P}pxV)cTOL+{x(5X|}sRznxAU{Ea%ONp)g}4LM~u z`YqC$>n$+?2Yl4Mr1ecYQHpoKXjw|Rj>4Ly7mHMR&$g$r7T{VwAk)r(|H#bL2R{it z=`t>u0!Q=iF~;KtK6zuXwKzlB4eEnp`zQ{qH55|XYrPTog1O1P0G|X&VOHC)LYWD(2+stRY&GvHxU)RcY`68)0&|-#wBs$CA-`b;A`yTMU_k8wx9B1M0ib_)?&lD<~gvMAI>D zn}{PG=27x6$ifx?CL`*k!ymI(nyRb`o+O!1BeoM9pe>Zu_~=b=fpiPS#DjGJX(1jY zqSH3|f@6qX*7j*jIfXl&3E^*sx1-^Mi#X)_sHA zr!UXV!;i!ZvpNp}0bE0zZ@>Hsl1egA0zOIvNk_+}GVTa9aY|xadxNJnKr$i*#xb%E z_6fj4FSb?V|KFsi!XMxUNr;KxHn303qN62ZW3*SQYdL{pgOu`7QZ*-rc7C7gk{7BI zl)Z6=ZHY}DPe5d(#jv(zvhv@wl7G4D04L5v1w{l#K+(E&(-FKPRgNK}vzz908}>ru zi0ss9Yt$dQ`H7ZO!y(nY$|!JMLlHyT;Fer2es&3z*y{lDfZX^9oihT+V0Dmjt)e3b z_wWCP=s--xIMKrB=2eE0fl?Ct`WSLWl2@Y7cnuIgODFQ3)1b{D&v#8#EVutc)keR9 z=>ARQ16Xbd&o*RE{Ei3n05_4GlEnP>6j)NO9o)RUWTYhc<t&DwIZqMKBU0DEt|-vw_%Q;d%)ud?J-Eptd9+4`INzE3C%h zh_p!XHa5z``C)4-D>6lrjNbB2I-dcYM|Oud(pGse{d`LGBKFxlFH$q|q@%AtHZ;>g zOr$Liyh|P2LyTZ|*9`=lg!sgP6bx5)$!@mo79iezL@vaEmLst$A@JJhsH;#_yjK_* zEQ4G;2rpV|w(+xo#qfR#QD?Dah4F6ukvaehlS!(I*;0C2r-IG?{)pa7F3!c^hDdqE zB8NMCHSsV2D~MC}3bJ*C1E$k$%AJ7S2IWoJVJMrC;x5G@Z(@1~8E`BoSc{MZEX5*{ ztSvH>)4hh6iA?@Cn|=iYmJknv_Xd5;l!yK=Ahy7^#%HS zKo?GLSPn;b(SC-W`UAoYZ4#0()V6v+2O&$=Wu&JQ&J&4yZO?9E8Z`(W5TD+_vGjg= zxfb1h=eS|xzi)a66 zZ*M;^Rv(QS9mF*nmhh;-%Ijy;F)@OSe5{&Yr6l&xyEP{F&_h1c>|4Q-DJgd{Y+5U=oy)Q zBF_eKKY27i4=|sspOuRTFfHU?02L*}i=sz?$(?@9WMgz$MfOvt($~5_s*UoAHy?P! z#8?oB=vtN7h@P!Oz)&f6=r4r`*kgk~s8nyY`>43*dCM2*Q;?UQ)!g=!bfv~U5@)x#UIVh)aOjw%xx2PAXh4~QNdI*ZbZYWq8whptJTzvRWU2BpQa7yJWiXlnpX;bC*B znD9(bY~#cA!a~;-7m7;k@@E-jzxdzI+dn>UB;8Xm6QWJ7KTVwo^9%!y{o#>kS z-ow^VqZVh|5XNZ|`^&hU_L7<2z#=Z2^fy?;(OMZ(=NWH`223(D+dnc6>Z5H zWE8UU>>f-T%{=}iO{cWa$jzaHbttf%Aoyg|M=cd!*`BcKKHmx|MB;iITo1>5&v=>h z@gfFaFaik#1M-f<=8R04(GirbCr=M+LdNTOvXfERp*o3iI%etRII?BT0SnWBBV5@A zq4Pr!JV!qv)1wCz@;g!`k^z%p=P*b>UM>ARSy+JMF!ScK_oAcqF{Q4Jl;yCnBGZt7 z&3!!HVzmq$Ucj=gh|fD>e~SJR5@-x8J8iT3$K<3rIgJ4jlTn}G_EgQCDS3k!`yII* zvEC#4W3+e)`3E@w8M*D2$#KWq{4FY{rJ!??A@rz7Fr|szkrTk)GptNviHG@rACV4A z0mKLI;VdSO1NA+H4i%T6(Dudg;oy;<#wkiYmfeQ~W*It^guhJ;MR9~c!+Ws1@RaN) zBLh@b?%y}BMeR~aXV|mSU!n{M)lVQR>R6R0&_qfti!-N+*R(>nGLL=Sh1L!~yb@Ku>!DgdcsfOKo~y z44_MX!>}?~D9jEQv4h065|Q;jDh5m#R--uOAdyN{B zTbG#UqeDZ42z;Bg0^nqWXI=EOGsUWu1vk~M+WL}8=_cA?dL$%>H7oXNzuZem%~5aU zqIVzxfcgt*w>{~%pxh?@@?;o2gKGmU{mEq_J5&ctfHbgC)(}T)AbY6juY-Z7SSW+j zB_ADL4)8G^#w|^#!uwpt9U;^42!coCAp}W>zE#(wpwRM?l@N9{5XTA{b~W&y2(|_n z$D_p32|d%0GzU)^tSd6#*>NO--;Q;m`NahK%H0yH#X-0s&XL3hqs>?Mh5%NX6Sjk{ za#-jxC*1K*czmQKON7XHuUuN;*?=M5lJ%`ks$fx&9viSE@T|$-q+kqA&9Vy;pK0kM z5x__a@f@CdSfg%jHXYU4Z#+@WXc`*Ej+?uG$+?e-)qrLF4V|>xAGXQ2GH6&3Z}!iM zFz!7K3bd?5BgVK?3XNjNz@&}=Z8+?hO?M{-e#6{W;?9j@6OKMxknOvLd<{H0G!uh6 zaVCHo;9-y#5vwtx(|=f903NDUlf8zN$QA9$N;k!k#@Je59X%UdWYT z!@0%Sl^G77xm@^+s98=8EmPf$qnM0sPQAM?8uNN_-Y&f;m>tWCyfz1E4jDfPk|$dLJpWZ?KecRy*PO6h=LunOlYuxU2+m>3IS^o;YH56=%oh-03faR z;Esr=9s9GHZcq+)h(XA9K5Dpdm44do;-}yPh&1h`c9kyyYUrL?Geb~KXpF69`jfwa zDpVO?Z}e;dSTY&X0*{oNG{vpi<=F0@Z@=LI28NDDInGUBM`ZF8*5!FbrfS9wMO`xz zbVgYqtE^dm8p$W@fy5fp&_*dHP!pIhzw6NBNrf!AmwOdGtt)HKKug=rI0@s$_=d<} zbb6`;>yr^E$mkoqrF1>@)n_mfu&zM&&H)0(&G322HJoR}P?>BSh^MdN4B^j8kT`jw z4b6E3Ys}^(jRMmAK4#eL02nu1P$z=5bqSrgyo&BV?#6=y$vr}mWMJrUjF1$l@MK#N zh_1aL6S>tMG@j9U{RD5i)w`*eN3r;CKx9Yu8DQ9#1xMw?g|wfP>7X)zUcuYSKj9)h zx7>$f1-=rD(;!qIY-Xd84sp_fB|UAN@|0jxi)EO<78YR{7S$1sr2hJcdn+I`{DeUo zJf*B1%=+ushrsPokf2&0Kaw#agh@&AZ+yo$84W@LBd)11RqYPYZ8$lGY33K39u=)y zyH?ubTLQXO$k}oLe8N$?pC(zh#u5%@ewPOA6i`MJ^FowwBwuVxZ@nW8@a~98JJyW_ zY3d?uoC9Qs8Z%_VI|kF4=s`yV)Qj$_+xo2~(52(^e(%y+K?6S(t4<4(Z6^+mxYIfXl4rfxovx{hUt##U={PJ$}24z zw(=(Umnc?0^#CDnsMNUSJ*srL1gg?exsZ z$dDG4&6nlDE}$Wa0|HU_Nlte;d^ZYdn|}h`E-_|Vu;1e&kLwRcqc!mzXgU#lvB8sZsHhdWGjdqH!;ITSSu^T5AhPT`4Hg|q#NqUH(=CB?8`7x1;qIsf;Q2rHWX6x zRk`Du?vt~a?W@p!!Yp+Z#XixrKxIIxY2MOElmy^GES((urmY1ygdVXPD|_AU)k{Go zdKEGj(uv)mkZQtA6yhLwcHb#Mn;F#Lr7w^;`+nV&pCKYDS~zZMjo?F>pHb)M=1S9V ztqXH36^l>VAm1}rPIbDk;0KT2k>8A3hY~U33aqqp7GNk6rO(nO2%>vn znojB$zEIzjLk~XUbGWUJe}=hQ@H1UvLO~cOXl3Z;E0q>oUZUgNS727aHi(-=h;>kK zaZ@*l`FV!Ldr5JrWAVULYdr=l{(i85AI zN#%4UH|lACoZDf7@&S-^NIsEgp~m=zq(U^qnqV+y90Nc`+wbPaF(k-<@qcQjj8nXA zcjtIZc+Yd>!$mbUylRYPh3oQT3GV})V{`&J^7ZsEXT$c#5m}!0t*19!v0>{H#iNH4 z%6&9_H12*irMA$vwzb-<(wI+q3We#dF99{Pt>#u(Srt$KzZkUFEm*Tu$76|LT>Z`@mu6WKhaT48?r-a3*aeIN+e-MEDNLy!4K2 zbHHm9JG7fvl&|}uON*}lMHLY(4{&cHXVu4$E)&_cUA4>gy+b|tv(m#y$s5iB8dlUT z!(|aO_@Ao+_@Uz_)(v*mr=5U=MDUcM!l#>7+7^=0fKhngiT;kje#1XdHHN)4?Z1kI zJtDpFq7vqrNniHlxPH&1h7X;=GCX9EnErs`L&P>%+Z{r0QsK-_-NCIp*G|U`SOgv} z7m{eTgm6kBLSBd0<5iXJAK;LY3JNr@MP23+8%U9(hwUDo1pkHDi2zB;Ar8-X-^rtg za#B!`P=i6+WLELz2l0{Q|ENG*o9l)@MXunUS@rZF@l*km4^8~=;oUdy#>eX;XrNwU zAek$^21~j-nOB}^$YTWKB4uTtk2Oy)4((-(v?>y=O1Ct`7gC?xC-Oz)JfgkDF`Y`g zXapkH(zCP z7p=1UfT@XRo~YUAn@UiakllaBt;YH9U1*2a2Rl|-rjbeF@x z8{(r%W~}2&iJHx$Jx8VufVcDqIvhNV(dmfCyWkboly(B_CIXUyJkHznEGfQ+n9F3@ zWPF^F55^cUDDDWnh<2%{zy6JtiZB}*ojYTZ%$2UDe_p(=qa7H=Gc0 z`acX0*GWoZJqq>&*)OjO54KL2C@6U58NE*sElx#JT4`Z;uv_yHz?9Bc>R;(!hNTS^ zOa6$xxk5Va78pu$=6(34+mGGaPWtJ@ctE`%K&Ti4 zNZ2OSL8OSpl?5^&v?-PoYyxe;AQXV`dC5ggSXAc1tiAn@ZwMIKu!uyP2<}2;dRZLy z_Ct$#Sn8rrcbfzI43U~PL}_XQz6{nW`vEK1#*G|&qsCTgH% z5y1|!*P`K+<0Og2TZ7i;WSBX%k|;Xh1V!9(2rmF!CV&qvF{=yLVvm4QyAj<_0w|Dv zH9?>to+02O(Xb*?eM8Dq-_TzG>UBBjl@R}mM^51=P$JG2f5Ok7NCAe_H~`%V*aZBJ zP7}x}f8d2dSf4xUY7o9?#%BB!36KKu%`@2bNA_ufFMJ)BN(u%zp^#oF5@R_pGWi_f z0Aa8|J1Yn?XX3YlbUYB?q@u1jX4Rq4dQPu=b>r6NU*d0Lq1joNPGz9>XnUQOk@`m{;>KdKD?}mdN-VG1!>=HLdAHKYi=2~Q!>@C+?zaZn%KiDn==Po z%9YQw?BRE#)@@;adGE%i4VU(;h^l|^cDZxG8Ll-2b2Il3Zirucr_8#=rL!$Hg-zSI ztaI$uCHLf!!eZZGaE@-G+$kvy|JiS7t5kM!!~uIGu+bnbx?98($7pKJ$cDtwm>3CA zxeTXg8>F;5j!35YI6Rxs;nj)~^NwS*oi#!_6J5_K;Te}XKNhP8aCEvap^OKu7H}j) z!7Zymf*vy|@=;#Z;#}5D(;yFMH^1#V@wR)-hrExyr2>Q1c$QEHfnYyBnJ?S}Pl-BN zd6ke@+qqtF{i-f7SqFn3-vvIVO{AemGrgMim>as^O0#9=N~l4`YLyJTAylnf#bgzL z$Iu(Y`6NowYC{Y(3N1 zQY&dYEi*Ulf$4KE_t9blJFcdXO*-#)`g1QBN&uu79H*aDxy zqe?nAH&;|r(vUy7oLn20Zf|64W+g(1tgLJZtH#~7s74lNBpOo25stE%@WZf@flK< zv&7tEUW2bE`kOP9fGJlUP5v5)%%TVOxiyHH?_ety>%$#YVLRVx8vzf_tm&Fq6ATj3 zLEm==zsVcaoZx0~_BW-;YieqWiiuU#WzCOmOxrhiQ5JceXBl(jjS%hGt6GoAf?OqqRH7Desw~`nz}S}N7!Z058mh_^L@6JOPP8uQ%U+`3;sVstjKNGQN7d6DL0t?2>E*a5B`7A_qF zLp1oPcW?QVmCSgz>oqICq=vSMmTAg&`<+K#F~oRQ%X_kIOVp%WpC+I%>aP9jT6Z z-BIO~a?+KL!_b>HDy^MA{fG8duLk@^dZP-h^s0Ye>tQFC+yddPX zt+~bCer4OXtjULDqz)L#)eygO7^HTGh6*MoE##FohRj;_zpL{ySiqYlPNrmKWf66h zI@pIL1Gd_{HU?~&h6ux4`{_~f>raehdFSDn`b{Jc>!GPnol2$V;UVZL<844)4p@9O zkbYuC<>;YiQ~yHa~Q0b9lEgGZ!qtR%Xh%@ zN=gye*N+~GRGTXVYuuF_(q!^a-tnv{@iunbsb?=eJhU%zp?m1n6dE-6GB3Z~OD~4= ztAW`wr{hBQ`c28$eA%8LGe8m`yl?mJY+|)UT%Jj(mxuJ&>$%?GNL|WvOfTbv`lSsA z$Ku5z`s{3(8!&SOJ1WUSxS>H!sjjZ3hCXYq-_SAEx?k@+CRT3TvPFZ2fxp^Q*ftZb z&gaL3CG~Y?84HSv^oHW5r|<3)6m0Sovc6l@c?dp?@H!0UG#gNEi%xFl($&-Re%_L# z@4crWrQKbrp;&L0{v8q_xma2n8XlBn)vcxs*7GC7!wyVyT^I5YjvTS?c7W1-9!WfL zCnC^u-ZnL>ig4@1&#ZxOJ{fVk6mZG&7@Xset6qi=OM#|aYOs-+w&mgaEyvN zLK4!FfyUgHNWT>F-?4e}k~7DSlBaPVb0RRN{915m=ngD^ew&PAsXY;qWQ0dhXlR~! zcZdg#$a!=!9g$5XrG)|4p?7w`vphbNieBF_M$0};Ru(h`ggZ1#>r>#f#At=K0H9fbP6Op6--@NK~L^vvhB?Awus0WF1YCE0Do>G;MgJTTB4$OFf5Pj2oI zrtJ`csNVE0lkv_4>_{>g`tD+lAzswuYGl^*_}NVBwAt@8-~jjEYn%rSZNlj< z$+Quep2N{-Q};px#Md$ohdV9mSjm}vgK?|x?jMk%4>VQAV{@A#6s}>k26_Ytk z^W{CAUpX4)Eh;N!@61jbwLLlH$3gZ6Ozr5=;mHGH;keT5VKO=e6~u(2p>?m)d4S4QWkD!)+R|F)VqW_B8C;Q-rKULL%^1CY-jR}&$Xf=~oZi$UVVi7zBbAep!UWHh>))0gA= znXrj!`fX(j_7%pZTzYvu#j{_!f}Dg96@+KM(~3_mRKpS7Y0kE%y;#8>whKP(-gn$z zm1*+Y_%~DQRP-6EY8N79uUy$KJX2rhfDY(RvZ~1f!D`zH(r)zp`u?uoh>R9tNB(J* zR5Uh-`hYwdvg61N!L8GlrbW})N9g<3iCT%CjlTv!2R@x74>Y2s3IGAKNCBUp<*N@^R*R?JZ0w zG^tMzIeq#MBb7@EQxz2@Ydnu~`t&fC~zf)y2r;QPM5K#84qALwu(P9Ife zZ1N&`90GZbUTj83Mb@eJUr@`w!?xKvQBuX$euw(r(zv0Hj$Xr@JHM<<5^SsJOopgK z?@Wbv*!mqsV*vSiM(`L-&SfB~kj6)m;}cm1$r?>iqa2@m7mK)x=zK(w*;ok~!u$o2 zna-4 zhR(<#OCyB5XuowiE>~x)&?Jux2*_6N6f5GUEPo12O9}P>GXcP5oJJx%rCM67&77Hh5T>TwI{qDX&lPAeTqmL0n zlD8kjleo07=bIx9h0^y4w+-n|>{yARjSMJ@qdkog<{xQoC(n-c)sH+ad-sD`QBmxN#n_}~e^Rwunk4&y+K_(-(FgwDJGoCos19eu&2$AEvp63jI zE6UFUuGZO_kDor3Mz(~^$n0G2$&q62wZHw=UmbV6$;3q!kceE1JUu1V8ONP2iiBxY z2$2iZu?z8c1w1s6e0t1!jB7#6_!5`yigRI1jv`W9ssI`{$DHyD$~En6r3&bxUA}b5 zp+-r!CTp%SOEKf&dQSBZ&&}D^QLJ`qGTo*JrQoX1&q?F2NWgrBOcBpX`WJra)(T3P zd2e*`ei1wow1IlwpYAA9zBL}6 zq5S%}yUlMgKzop92a);pEMCNmXnoM?DWHCTCs^ojb5|@xP?SC_S8z@oL@yXHvQyju` z+3S<&};$g(2BKLa21cK^1YvRY-_9{1^s(mdlR6w@1Hw}$bgbpZe-vCQ<1 zTc#RG;=Yg_b22kCD_?&3U*DSYjn38j?|-p7D>Y7CdWe4og>s_IC1K;8trSW&2Ix^J z0Tm&$Y+-$Rko;E}*{|8CY+VBn1^KRmbo%t^Q&$gHIx< z7uVK zEugRW6cTG5um*ik7@Y|T31MMo?yl~KZQb>0HOVQ_Uw_Z#LoQ40^Ua$#FN=sg!8NxJ zmhIeXeimO7978%rMw?tcSj}AzqcLoMae5`a#)$*>`HE&v@@ezNNJ&cvqOoo=ZJIee zCbp7ZqU6sDzOHg!TRTe3cipT5+xXr2zeBgm@XzWmZ=hN5&u>W-X>ib`0^u_pOUn}Xdr z;q=Xgd+yV4MHO`wJJeJtm+w%mH(P^TaLe}XU&7TT5k4S8m6>Q`{q={RZdaXn549DNg zl(JsaJKhjM8uzja4W$Obf%lz$RX``{K(GhJuKR-U^hsn;`gOs0F+8b{bYA3me7GDf|^tGZK~Xshx{2=2%6x!`pR5 zYW4D%Lcn*Y<0gpUSd+RFU(gR$Krgf!Q7H@z2I~>;mg;-fSKO+IbTXjrCN!$6cgYyilwkGi)CODz&oos;ueyqxW{)+weE~M3W zG5yfZ-MzMB2*+s+)Gk+*g+X1w?lW&SNMwN>`sRa|IP|U6{@xKXT*$ed6Yj4v zn+K8|@gk$WSRtR^YX7-wWVk#N8sOsu8Po@j6mk z<`Ezvy#&Xs1GG|vn8hiyFngyB8932|Xq=q-;iBIRH?zFk@0GCar z;p3~X9niq&+;V1R zHTE7_$dCAqS|1?WZ8T9qaYDGe1mH19RswlK&(!;npZS@VndXVn^0Txe&LE|PL`1O6 z&15a4*#NRAYRPI(b6&Y(1@qyqzVxyC z!%pl745E&LBn|nZ6k$fge+NLGLW&q!+W)$cpU0Hktm*0L`&9>;GtzLv1wwsoZYYC4 z6SCu5hgH0beBW%{qh%DN9lw6EH~w>mQYepb&i?fq%C4vJw15B0?ZbsafB#GN>;FSu z)aYuBgbT2d|JEZ4+ zt_XOtwJ__A0#YR+4H3#VQ=HP@PX2qD-k54MFNIbT1ix~4E%Kin_cd$AG2;y6G7MW& z2d%8>Ty~q+@G1IVMIiUgctg}j4KVnRkB{f4&LZ~@Ct0W$x&_U)3)a>^&F+p?T#%KQ z55q!Ayz55!V75cR^i~xWiAh7Ib(*UA_Z9D( z3>IN;eX=q(Y$)%WM&S%H$|XE?oQJnwZpLy!HZ(G@8fjI@VlL%*pFHv}FEuq=K;Ln5 zajEJ{g*sIiG#RuAuRr^6(HWB#-i(f#@bd6{Zdv%+y^@xJKNuZFxmEk{E;0XJaL;F> z*REf;t_lc`_gpWufT%g6LDmv=mX?;r@WH^)#*@RJ_wid#Cw7$i$AaYDjRUNT-DYSV zd@RZ$(y#`v3H*B@Y1FgM@CQNV(9Q0*UkCO}4WNhFj0Q0=gRPGY%L{N7;@{2hYm##^%Eni?93mWrrOonZ^YHh2qPJNv@FzP3V1eDcsgY3gmw|3d=C|F0nUU!zP1 zXKecLQ{-D-b8v!goee_XV0pz;V|L-NPkOKR#RJ(L2_YHk@p-9 zg|4;#B?l_wpvj5&398>sAnXW)(imz$${(nox{%H3jZI1lP5llx3OSVh*rKFR)o;mE z0q3#~AeB-^$zL!+ouv0Magdt*(gjL1w6t{Lf)^S+DE6PpC%RIQ+Bg@rOT+F}hfe}C zS60%G7n4jD2`Z+FHF_p2)()M&cJwiI`mM}Ij_@ENli~ES-Kk0j?{k5|+Jx1;iH_!t z$(+_DgHrVwL1$J^QH}|zNi=mFoYR|7UDvCZbty4EgECC8;QeOc0)lZGd%v42dt!^EA`tIb$ zXf&tarJY9yDkf|GE{V7LjKAWDQ~yqEsDXdq@z3$`hHy>>jHzSV1o=MijZdoq^uNvd zaFPG`C8RAk;h(6bzZtJH`j6LPdi5n#A-7CbP{-8(-wN%8zZ&q8NQ88eN*76?aMFAu zr8u7CD1dZPoL%TsJW9{B#i5^e<3G}!(!)oNxMpS9R<&1FO3(d#BwP((dkY<12pa3% zkRR8+t5encUj&XRK=Y0^$g<51&*J@s?)@ve=*}}RA-VeXll}bvuE0@vOtS^<3GLXt z@M1IRnZyqJjB17)fmAiz6p8$QWs0kk4$t89PJ}zffrAH4dnRXRt>#9(>59-mw@a(4UVbwGcWT1dmUDOCE^!zaO~EfSlpAf9jn;(C*F5XUU=gGp1*i z@Z=x!1{?m7h1c#_>ro;gpYz7v}L zdA6!Hza5!IPSxLKmFGjgB0re3$D$`&RXgDZD1tvfioPgbew>buP6tGo26&aC`V%;r z85p=&z9edu?7-!l@oPg)Fg@gC`_<%qdb%=n=9MTQ40_)3qm7U;QY!FQlnm0-i~{Kd z*ImA^t&P{{wxJA{YO_p0^wfb=f$Mf!hkOB2r1B)0stniumdS=OEtGCR zaai~6{g^oB`;_k)4OgEx>P*5V1c@$jAjU|vYqOSU-pnJX-Y5F+L$%UV4yozXPlcAA zLdtc5?>=ATuiWdEm1e2vT;pkSU3R?#^1m+(=`+f!s0Mr#)LBc@ADhBSTa;y)FD$>4 zZlUcrH-`G~uE@~HvKNM`puA(wytFB75hi=?6NuE&+S&bid;1$GQ8+@6PYJH{99!%@X^-{C-tu zl#pQA-0agXVb!@uO*K87?fDZu>w|H*N-_?{g5MR48z2tv#fYe{xF9HnmHHX_r<+8E|8YOwv8Ytb_5IgR_Mmm5}7gB9P5{1uOe5`xyJFFT21%a z9d|lY<(>&;iyUE{0Zz;VcPFhnpx82S(=Ogqz80DM( z7Hdl1gTEscvc+l29R;~@>UjVWpnOC(ucRch?pp{>>TtU}y5#m2f}&9FAm2RIi$5Lt z646)m`SZ<*;apXVcDkzZr4-+D6|1t>{BsU61a&Pd&h@8XlC4=NboHQ!*U9}}_)3dE zH&>ivx+a9oE`_EjndwSxR$->dkabkkuOj){*)7&~W|zm8WFPo-HzIeg{QYVM-Jh?{ zc8@4phl^l;-M7q6tXyGKkg9htPX?337k{EzzPg;RSY^IOlZj$d`S2W5XBUzw^3$+& zdxL)j5_x1jG@n&R*e7kk=X;!nWi_NW743=GqZaXsRgdw7a5aDatU7^TS`UW2i3z>ryk*M{^?rMbcL31;5UJ5$Uu?WiVN}*v zD7Y(yS=-NL4A=bm+fD!a?KW$lAljQx;%QHL zoc;GrEawA~p1S4fudB?SKRj($njl`E46)PH)RYdW@A`}*nCh)NJ2`~9{t9v_UQnAd z#vAmS8~0N#V1<>-Vxl^QvRL^Q;}I!);p{x+{Lc}cWT}j<-YAGd%Gh$3(cEpeo=_>l zXb=>@HQ;X!gfuO^y%!guLihJ(%id+mJT1|opR|8l$}ab;_*g*TcRGqI5a^I|)eOXe zY*DFV))a!8l!Pi$xk2>t4s11`mv)1em|P$zT!g`)i;^izi#1qULBbu;3VPgz^8>`t1z89hB(B%$3mFMpnD@sdTN zLwP{1QC3BDzX-s&kFI0v%9fzChH75?l^{suAUIxne~9&xl0fXJ!~X8MoP0N>8xp0N z>YC2QzJK70w2=6Dso66@^{Y$llIwdyH8hx*UH1DH&xlo>tfv2M>>a;Nmt=&XOyGRZ zU~PC{Kfi2ZMveMT|3j<-sbUuO^6Bkbh0h11>tFizY@|Atx-!b0KX0$Sj7?fu899H~ z4zyG`qSm&&y?$RVO5rt_4H%EAhmOt;G;#ba2i^l%F@BHynf1>kzS}Ho#y1nxq-2ZP z|EOv@GU5;ZKeLR0fK&dq^Y3+f+bUN)_?C}8$Y;Q-u4ThnLLvR z{t5(&CrA{v|9y<(KwJOUpaxH+sK4_P(X~m;!o7+eQ4+&$e9s(8)k}3Tsgr=k2MvoA z*$0`+YiBq8mNH;-Zj>puXLu>yfQZbso3^=*77B==u_uBinGE0beU^AQP9KfKng3+- z%{Nuy_o5>rnPp7AZdozQqOy_Mp$a_L-O7I zZ8u~?)DD~VE)^WBmbr>y)XenGgH}$!n-sa-H4WR||4*vE@=*_oZ6lBsm%r|u*EWP? z0VF+HU0q%894YjZkYZeVPfO_=ENI-sqwUHk8Fg~HS+$=%{E9}g`52R_2R`PC)ivM1 zHiNM*-)_j}Jz;O=)z_z#Ang3K@2(rI`r>&}rnZz-Fv#(J?qaqv6+G0>{wjf@ycTC> z^R*72cL_gTlR7*O2QHY8J>DL8*4FaOYwMV*E_&N56WN!YG+gPlBXM`md?$hTiujf(RXxLfD?oHi45y3r$D%ow)TPJYmlpl?7j#_sr-MR;y>wX+E?(8CLgL!sN-ZceGzfIt~;=-YS>ITHoaKeo6g#<3TXib%oCWiB<2?o)?{K0R~T3KPO~8c_@?*^c0X)u zyAWCg(i%ZO@g{1_81X>90s5q)zJpfzA5~DFo}m3ZKA$*^<@Ho(=N4<(u=R@0>sr(! z77L_ZWvV$meW8br)-PN9 zt#T-mfXL)ufAnPs{s<>xkoK%p)6z3X>R0{wNA|`0LZ(MPsLL7t%0}KEeVRGK#x@;w zLVK^(HhhY5ApXQ_xWAXKce)tvbs<-G?~mDk!Wyp89?L{SoJK!HR-6c7|dRGLu%5e20e0hK0QrB^XVlp@5f z6hS~iK|qSqq!W!GMT&HgqDXJj5d`jBdsEbubN>I1d&l_3-D4b1-1V(%%{8C-%t-)| z1h(4r&O8RQIaMaqR&2Gj<9k!u$9>4hxfedJd1CmSmzcYl>Lq{_-u-icA<;XuUj)y_ zq*sEd5xzVBeFlD^aXlTpSgZi5@p`KOHD)htae_=4r&}oF_&PwA@8&Q`>G$cYoz`$# zuuETmv})@F1zSLwe{B(7`;Z=@(wgr?z4u~~c8V_JYNz=11oAM?ze!AZjg#H260XFO zGcto5?qW5oAV%Qzn8S`|LK@t&$W4mTj;D691X~XvbI zxSht*o0Kp>`dNRIqk`kvVYF})`yC$^RC&UAEtE02x}j@1F_N4ujwB+E!8@*h0l7Gc zEY7*ly=_}1x&w}CTmbH%-b=CY@KLds)b>&7_R0KrSG~ZYl;={$l@Z!n=W_eP^r-i` z1~)3*E=qknqOP!jS~7zc<)r&3xWq=LrKw}>yTfz}3UKLHSoLzJ+U!g>Z9I3ncR1uyi%Zn_`tqw?;=fbif9!oznkw5ib-!{?=-n*kJjN+8Zva@) zjBroZmX~Z9($$l)*~&LLII3oC=~v*@qo~_+kjeF?-&97Pz}|!<(p_tR2={+8_JI9@ zN1lKYmw#(B(?9Se;R^kltO#cZvy?a)+(Au*SuVYzgB}TmeJ*x!UHL^t70~Y=(V$mS zT%GvA&=4e9UL{rS>+k;nS#jl6?PT(XmCL4V@w>y)G7f!EE9rWa$4bK^ z`M-^)o=Nef3o-nYvlPhYx;j}D6_W^TNTwpJY_2Kn57`cC1)wvr$C2ZRv#e;CYXJ4Q zeEd;-)m~?@0UrkK0Q&A$(Ra7#eXb{mbmRr$2bhnU&o)fCcbFFssXd>uJ)kFLO>WrB zBTSW+nPtZ!upm-WQ3%JP27{4PEz>LlS<4i3{2afO59gSbZ9R8>$DxK>D}7cwZV{j9 z4h-gpkpS(KVCK{rod^_gxCgC+K;t~gPLxdT%TJ}sZcQr8ERENZl zZ*ZC!?`V(W6@JYVCP3!>w~M>?T6tv^zU(;kVIZ?^vTtf>zmU4<#w%Sl;#y<2xtG0I z>}7B;u|;WXvB!|Ba&ty}*b|F(*68myNuGhRB`cFB#Zogb`ZWvNzbInv^F)K=QJpds ztBK!oU#IrDdt?>*0MWGSiPcAjmhjBZtRPxOo^wX}_AJKQ%ZDU{Gw(UCo6rrVa3u8V zLYg5|YA7^c_rrrH!=qwiD$$Y_Fg=MnT^$@PU=uB9`CyMZ+u|HMe(#%IB}=^3GM7{0 z8Ro&m_)7Y`o3_MN{V`+n`41YI7e`SMjY2GX=OFaYR?tXxPjttrK$u91D4OUYC)7O8 zYYvKVzKDEOWL&Re|8M)EQ@)}k=gyPEvZcqgWy;3*Ry)1_w{Pa-I6;~+z{}g)@6->C z_1{sX40$FbN0+PYw|r3Ltb7L3ZqBZSG1Uz#{2Rqp%EyK=i%Zo^_&8BY)c_*`+t|0p zuNQBeo#~e`Ew`fHs}tZ@?X+vl1aonft>~&OH-l%3b~iqk&{jR>QmHXJe-yO9hRX|csir%JdzMAd zplyzgRf_#$92byRw8y^59(f)gmWKPdxVKK2;2kLgn5ez>Eljks&sR!>WU?}j@4^eo zz%=wvCYJC%m&ZCoS{~y&kfaD}2Q!Wdz}qa^D-}y$E%PTF(BV$rv~Vcq-lWx*u(Vg8 zj_L@kp-HfuM(8I1<#Z%48~+>5rQHGrRMBI@ce%rQ7M~RUY%erb3GC@+W3(i@Z}L~W zf2SM#&`E&aPjN1s*ewpsW>~v9bPJSlYM0UsHwZyK5Q1xa7nq+{Pzgs;Md;os3!x&H(oc{KiDiA zo?yj!qO9w(thIqfx4_t4wBZnK7*v;M#-2d7b%3xis9X}U5PBz@Dx4N=m+SHZ<45_C zwmK2;7uAu*I9FtVHey*C*sc&Zd(7bwU)Zwf#KUsECTP_oP{UW)b=}A3KKhrrA^2@* z5t|;@X>jPzocNv5`A&)0Yy$p>0vymO`Od{gO(?MabF>VYwRs`!4j+HugOVaU66b?Px;jeWV?)-aNaZ&GfZd z3L0z5TL%XRx$F2SCAA-)f6EeWY2(qL z0abqXVMJ~wK2hd<^S9sb^fd&IT?X>&9NxQrmq{tClWyVy0CE9~BCV6_S%x!J-8F!w z40|jht@<;^pkYC)g)D3+%F(I*=L&dRX6TkLxT4W~^q-c(;@+%oqN5I|dd<3Z26YpE zMGs{_xvP`)K1s%P3K|$4Yf04G5RrR|e9#f}O4yL2Y4KnMIqLvoDn)+{#JYyLCz(l? z94d&4ii$Up4p4b|U)RIX(2dBB)h1~lXV1RZiz#D*&xg@ywF2w|Nd~MIdMFjHRKi!G z3wop-b3(+?e9|u8mp$Wr)XTdn{)~l|^~`Z+w-q-Pjh?z3y0-qi$hwKIGi^Ga$SPHH z+1Xwg>1MKg&Qw1nlbC%^en)j<+zbB!)*36BFYwzLDNu=n3Bi>*-lE~CUiwpi8n7rc zW5ULugB;a6bDiR@4cg;%9M7DgBiJFV1G1Kw+L7YSflzyY>LaiquO1JLycoA#{>`!- z9Gf=vqqyL=`x6icC?_IFZhqb0%9I2$cIZgAw?9l@b-E&NafxP9_`sfo7d386-F|r0 zwF9d+MZ5DM`zJk>RYQ*Z-9BzTtf1t_lGRf$BTvU`4_ulLjd%sVe!Iab_(jK|&N4Yg zg;6=_X?L%g@UQF-I*5eT`9xse7(q|n8Hf^CwX?7DIkHV02BB2Naa4%(rph@Fu7a

c4Pc)#-Zikf--`dlo1tsVbAB0~f8_z0xZae}AsR z4@P$j=r{#bm@cBU%Xu_AJR~>wU_i37x^)&S^LlfmT<~#uvw)Cu=pAj`(G02;@U=86 zR<|4iwaFYJ;K6iGF1o~^wcl9_^r2?iJkz9FHlVOm_v8JzGFz{#_s(JUB2rC0`j+p2 zC#>%`ZIpJG9*>nga(Kknm7PU+*cXeWoqDF0+k$u}N!kt+yqWKxE`yU^>f2@-G~|q^ zwIb~-@W4t$V$Rx2*V#EZI1E8ds>h%Fx!j6e;_~vZ*7PrNF+U#?Q=K>x($UXZkksn1 zN>mxcCnt^Kw+)UkK!3-nJCv*tZ1KspG@JUz+Vg-4p z^oO|qMNbs5Op_6YYqf5-^+teT0Asj(x(8|s!C{nZYyB#RJ zS1uSZzDBWG>Pi^VZz#fJt-KYzV#gt(CSQ67VAB}J_4aV<(O^)c9Mfp}QF`z3*6@zS zCmm=j_F#kOw3Bz16$l8d4q$WfO^e}0`l%lURtEk^qr9k=&@Xp@Bp)btrR$O!t^7N{p*jOL- zU`J_>*=I?Dk1N6w_Ma{1zo+wx}-WlyoD+7TN3-;Tx`id4Kt*;qx)x6E>& zzi5xdE=+@~okBYoFH@|QZNd*ySJ!L`2=xwS)Y^|DQ8jlYC=y`QRmk-cMA#f-Lr6RdX5dxt!S8qCzoT3 z?R>MY8K|oVkg1oIH5P>!3>KYe2R}13o|d*(6tefUiLU51h(IH^4|o)<*E=Y3s0C6= zbaJuyAtG^?*y0tm^-d614VN^*7XYwp{hZK-IA5{d=r81GK5H!FveOCm;UWp8a1 z6_n$&VrIr>rbA$MdIzS@s%XXa6PxT2;OpPu!l_tY38d}vEom8|Rrc<1gI`SP&s<$u z32y0^{W=+0OK`A9bqs6$AR0#lWH|r>a8XCC%Svzqa$oNjs8*7AU$%UDGGXJu9mG%4!y&=iMK!ZJ9VJ zmAuD58>;+9+m_|v&S7~PS*Zgs2x&{8<~sCsKrNe?8oQto>btdk@srbb_YHdhEKb?GpUSAkYcBYm9?RyBD)dl1$KU>VwDvl9 zIca&N&UN7rAr{n+UB3GkS_N8q0dE}&MAc5!)#1C3lgsmBCw&&%CjT4%N-h6X30?o7#ekBB65ltwR|O0G3X>^K;3yYIW{fBux!D^@FR= z`WNskfIb^Vp4Bjl!cyUAh#0Do{qUq9b`^*UNG4K5Qiy{gkv#gY6Bc#s|5KaCaMp?c z4Rm<>MGwKz8=s}jfkVS9az8HiD_n>Ei@n}^=)&x>5q|$iCzH`d!}ZfozbB43y_qak z;V%k!1i?Cb(UnwHx1bscd3zT+7%GTS2P!Mc&mSSAxPtU6PJJl3;0rN5*&l*bNP{rQ zKn>08r0ib_OzeEt1yXnfZJprQ`1EYKuP{vN67doiU)h`Uq>NP)_wap~*^+&5$zd+5 zXMl)o-_`c$ptgL|D)C{Zx2AjV2aY;z`AC1`eihxKaqjxF>xlveHLyf>Rnk=XOQ@G!ZR&&ig~%!UZr>? zU;}rrz)%PkSWC_nUPfsT7&31tO4E)@_^|>h%0kA}^T>*?ZCTTmEGoLF^dSC+AC?jN zCaL$Z(ObE>X(k@%htk+kA0fv^+$_*cSB56eok#@|ogQx?41C=Q@hw{pp>aLD7t?H@ z@Ge;k$y-Ce{t?#STX~Us_~i!H@}3ipH1SKBqxbEw{<5)AqYKjaH|pd@&%~$4S{9lT z`n2p^O2DosSphy;;{TvZGedjqVHh5LJdu z4|Af)tB_P4bg_FCtLo2-f`M=;->!o>pXfAP;y{Gik1|{5ON2!1q!o({i-NiX);Kll zD?^4uy&u=3fv(rSCoL^VMA?m^j!W#XOmmGmjx3nu7s@^-9ejPA;F5FJ3^iDd z_^_jayP#?2qX(n0krAPJNuwFscPrs$FoN-WE1V-j9e|xMMWei;iWz~l%+bm#1fX)s z_1$2XSTUZ)0U&t!zFrgTt?H+2k*JwanDY9(2PT-4Z@nnv0iGXk)CH)Z&UHuT)ZFw% z(UvH)(VFgS_woDi5NjMWu8)-TgoZu9YB%N}flD#~33NHjZ@pgyN?R|V)ur%fU=#UDJpfQs?kN!4^F`kQiG0h7WyE|mk{ zyx%%|=E!(JSWeobM&8P9kwg=UYrn4pfO*e!O`=I5W%C&kpdH$yGzv088o=oXJZN48 zyt-Rz?zQBc(rFrJ3GEh7{$&~pvjyoxd+ck6R=_{Bp^aym$86K6S>wD)usu8lnB(gkP7>4+A0{Gl0s%b}Xa=nlafWn< z^coMCgTK;xEl3f-*Si?d+Er{>1=dn-OO@HM;w!2e3f_aiH$rb}T3djz?hiCuAdDa~ zAx@*WV$=K5*5+lyiU>TvX__N~%&xJDs*k<4@D@s0p2LpQ-n@stP|5>RY6oa1dLy6% z`Qf{T35h*2va)8@cA)Zz!x20r)meT+x@cw3Abf}`;9B!Fd(INV&>7H|b7aeEB06rM zQ2WsX_v~e|ctn@$12{2Z--6O!;w~P6i--!k4o!xBNU7hJQr|$t!XMqomgWdF7H?D5 z>SWS;7g7PK?@`wCeeW`HD`mW$$5>E|#}!166f}M{(#v$O{%u%NS2>?>25fxv6#dpk zzSS*mHA~V2Nk_dG^@{I^+RRf=>My3@t);%RI@!y zz3K4k_6SEOVe$Hl_UT#{6(ud=6fmYa5v225Okcm3@k$`P{r1DXV+pOgjoQ53sW(4I zSKW$b)?nZod;D|T^NCPPYt*MdRgmKY7992mHN%?Yf8J}|vCZ2+F@2C-+9%>X07hEI zzRM1;R{v0^z2jN`ap`Ganc}l70-dXV<;^3lDh12my?eK1>sD#>j$zzXvbRqI#BF@j z%P$}>k`(83lnmaRkNB6io%;fL`Hw{f!RFd}Ou}`{;zhiiBs@Dv>+63mh@y2F1<`C^ z3=HT#K`&Q*y*-bF1g%;{YM1XtJ7mx|Vk&^bFzH-*W=3RPb&qte7URtxaegP&AoS!l z+O@Nwz(w$fZ2wWdWywMNoh@M>SF&u0>^a*D)yUL` zlaK5#|EsI`)YO`qm)Yh2k%&9;^6K(sudXjm+3GFT(oUoFy5A4%4sZPFV!)1vO&p@E zS7eopjJ4e0+8F_!&h}(=Ov`7&FVmB>#=KTr<6@#!mmKrn&Ji}C$;8UU7Uy=!A&@#i z7p{*MFzD(N0U=@iAYx~35PwB0vM26HQ6+U>T2b9gS&@62ur@kes=$07&Hv4@#i7)X zG&$>!(uq&k2L3MqpW&W4z<2v|Fc)ENu(P65@pok`r-*(8G+m0FNo|=N=Yh2gAK6usGD8ruY3Z2f5m&8j^UgvlHAQ{+O;dx9~&a8GFKh6|yu~^C@ji*D&3Gki8 za+&;#Z`~r5XcT{qte;ZK#ZL(WV#_a3P-*9v`n?9QRR)9%nt?f|5-5rBTk=JmNNh=_U!lfe5C5!{iFZ=y_ z_qG6cMn*=yG=oRCItkBODCC#-5xBMc z3I=!>P~Jo}`R&`&#JvJ-nE2i*xD0bhL-95^Wf=SMvnrr}1lVC&=3A+~KuP4+|f=NHO&UzIp=zR34waRJs<=ijZgXS3H+Db-Gk7&|9#= zTgpl^vs!@uqoq6WmJ{SHd3X!qOj-8!jhqmET-Y*D7<45wm`)73i~_f`fwOAfV!hQj zJZ9!#M3ix6u&I!>y@-23bY}2!+5sb2d{HAo-@tx6bdGdv%swlqrguQqvV417JAH5N zSV3Kcx6;VH?|YPaOg}UpLF1y{jaJmAbvc}Lu;%gI{D-8S z6QlL-vxm(kS@Cw!b#{qd*?S#}X=Gr`ah}>`vzGv+jtXT3RJ5GZ?i=1)dDtwrB)HS$ zv%}>3v7v;UZ%7TgT+@k1x=r5HXcS#SE57U+SB^dy45#mW6H%6Itsqqbx+QPL0Jm%*&X;L_M5Z17;f?HxtzE7EGurd*(MYj zNFxSXrZtFk1x*JX=XthGq8~j_Q|r;`%dcL&LXUK;@{)U>xAzJto-~LHrbkq#JSsX5cm#0kfwL$}!U`g*uV)RiwOxQN9SG}(d zx<|UQ_6I#U-~IcJc}A|R>rpyk=R@&>CU&Jl_ z%5;^{MmK}ZlT|9+#msN~`~ZoP*1Q z0(@*ykPn!i=!CIqlJiKkb|mygl_P(z^^aG{MG5#JSm&C=5rm6ILO)Hb;dYd+@Q#Zy zFHOJV)oE!JL%ovsK)dA53iF}Q>bjj5HA5W!eWI$2e->&QIXJtGI_z#aeU0hbEhw=d zK0ZCN^xKM{XA|7+7qciIsVY&i=RmAbOvZ{(}`}X+frnKfl-D1Yo6hGKM9!7i54#7REBmA?VR_xal*V2s*(Xv>_0fwtd=9g+hCOfk!TI^5CMgejwRMBW z45)G#&djXq|J}0+-pd0n#8OFLjOY2UFt zig?lR>DbKQgxVfT2r&v-eO(uz{nm$}ji>oG_k~o~D{#EnIazpr83}3Eb{x12o-80% z7)fvN*QndzMY$siI;TnQrg7oeX6v+$p~TjD#xDHWOLsBz$*2r zKMqqU(Q4{6h=wM66?huLUkBb88(~(lb83wdn6f0kG-@=Pd%xMIvJV_w+jaS=56!7Jo{Dd`-wsf;X})S>uli`mcL;U;umd2C;0Iq+7N#cZ{BjgN|hD75&q-+}#jza6hKdt_yYY^e?n zbhQ(mCI2XCUy)aTq}Q;M9nC{gh@G=4(IyR(tow;NP$ERB{mAU|F0n4q|BJYU_HS^X zt>jYP$D+9p9rnC)eW?q(SWR?)Pxg~C^XwL#BwdP6j?kLqZd^I|>G9wIvTf$)X>vZM zHp4Z!8F{Eg<3Ia3(xdt0;3ouV;pn`akn$V(Bo(B!TtmQ}fwevhKj$I|cvUKmvq&qD z&VE@>&fh^QyN}#)85_mLv-M|Cu*-a+gZ@K_raibkNs}#wLSxA&@nL<+u8bRYAA@I7 zg<$oGP0zLucSXk;RXtRrxp_8NRVUd8qDIOhVjJK27=@sein4yL-RN^ zaS*6ubU6cmcVdH7*0!BP8V+G*De0Z(Q38@0Tb|Qsy*4slK@mj?E1UhEXf!LG zxE-p`Cax&IRl4AXxSfQ9iJYXf8~fHL4nhrU*r=<@=~y*^iu@QXuqDxH%5L=vU?C#6C{hd+OZ{Im_|)r(o?+(0ab}mO*eCERvGY zltJwDE9>DbsR%Kd@wqAJ@K=9#vN2lc3kXt{v>@NlYfXiB@9H&rjnQ8@{f(nR1kKT4 z623{FIvU*i1dCYbKY{Ffp0o;!*57VWy9zb2VBP;fRnA%xPnd4(OVbOR_&= zeBoOn>@WYba7>f01+BJK<r`>Ly^%tB4vrtv+b^K&o0ytFac4I$UD`FrWnS9NpDR|&?aTgDM;da13m+pi!O#j*gW}S-#BD-isO#OTJ z?;G~j?0(54_(I26pLJ^`nzp-KYqSnuT~S$AvQ*H**3+<^;Y5hSJ=i`F02LV$SFL@a zAu(xDq8G|sYCw}Dq@mm*T)SLOM`z{b`L@0Fon9j<-JewNcdR?2SvT zCx8u5cH768#+>J5ik@nfcK`_uFRL*4S=_MsH>D9O9MT_t)B;+Om)7Fpi+2A&leD() zAQiS~wTXf(Sb2AP3HOx}TYcCIpaPBw`3zc)srTmOPJ&9*VO;H9-P$v0q&ox)ys0jg zYv7?H@!^{+nIOA#|}z5QgseJ0ZZO z%&Io5bq#At&YHD&@b&9uJ%i@XL+hv7gtB*>lcF?}VYY~7=QuZ#?Pgj{QGKyOLi>|7 zJ%tjCB{*d*>NqNIV$1n#SV!%7X9waO0gT)^UqSXm7V#3Tm0Bh6bfP_MzXlazdkgZ4 zKh0asOc>OgC9Jt8$fQLkK*+j2`^=sXXGKDO%gxU(51dm;QBI1wi&27TU7B+zHcf*` z>}>NslHO5$!r~gkvrf^*bJrmuuAE?RA%(}Y6e|B0~;*IH$l%TB{r_w@Y`9T%sf?W6=lmy`RxY97MQ z(z)?`NMmkh?xADhdv8@>lZKyWS=CeXt3;1K0V^UEUVy4d>GvXx&qykF_ah z5+QjtG-l(9yvdHDY~>Si-3On|UH7H-o#^IF#P ze<-N54eJxPvVx!mi4INxB6*gOp=FZaV3Nq_fwjj)1TLG z+-cOycbB-IPW;J}=Msa!Ys9e-^PHnE$6NU>MCP$N6jgZ6FKLZj<3!qMRKUD2W%+Eq zh<~p+GPzi?23rpk%{5Y5_yu*)#YCKfBAK!V{coI#V?ak85md~nlYO4uuC)7Pm;Qbg z8l5*eIVr><4(p26wl*#V9K2ivOH`UVq=$uqzRR7&?MHwpy5n>y@8N(>xy^$XXgHV& z3U1=!Di~%En0d9qMUZ|-DQ%#V9lf(F*FRA`aNs~f_KCq^LJ7|rSp0vU2jDFph5NG` zz!G*+Rg?YMan)K5M-2@Pl^Y4aS-(JaQ%*|#ccKYo*9;?k0AHCUkC-NMr$QanDctnI zOUVY)RF3Z#_vWYih}kCYqp!b*`HeZvOPI!+tC z0p>w;-b9Be@INWQqt?pi`2Od>yf}1_AUZGsR~E5|Lx>-AY~>!pnDNd6fZ;3XN=Y*3 z3e66-sNgAETPK^P_wFLqcPQS?N5(xp8AwY_9r94bKD=9nOv6J>AKQdT?h^!&IE!!u z!MDvW5RQZAMQXsO94s$PQmnRlX=gh-B@~iE>NLF4i1Hid^c_}l_^j-g3lv^O_@j|V zA!r&8A3oewVG2oE7?hu=+eg170>}Aomqu<}A2;aBrC>U-Nulsw`v(!ALW&dGZIbMU z^x?Lsjd+U~Rs{Zj+LF63XH9RWD6v^ZtmK>x2TaW8Ovz!h3dw2UJGhasvYM%T(c4z1 zXh!FF58<(BybfHt(u`&;TD$pauB)&#C5eQRILrg%E#B)9$(D4 zOl)X@Y>~mQuyQ!=!GjmS5z}V5hRezb9}G;J)$h>_5E}~yF5`WzK26=S&uPw#g`YSx zVx(ZWMBGb0*$6W5{{1Kg1MIe22BdS`2}3Ao6cZbI9rWLJmL=pw&EhY*mXAVtveVbk zX`L}l+DC)mt(znRE=fBB$Rr_5>uiW+rpbafgYr-x01wnq!?`>bW~^4ZxVUZx2gl+P zBa$mBDZ|m4I>QfBNruZ*|IBn87G`VEJ&kctnu^BGHHZbNox--num9pIwt4%g8Tv)(o z#b~A{H+UO>!%Dv$;>mp=k3!*iCVlW{#SrsGef+%RH=h7*;lWQ_B;c41tqtBnf9zfj zXg2p~J_aB+_aMOm`03fl3gVG4_xPXnAxsCDC%jrZ_9nG zn7#j3vQH#cM8W+rt8-AGL?p~0*iMqjHu?GaGcw6-tg%oz{FFrYxDt#w118r~&~}2U zq%mi+F7RF^HpL6`Hzf$IE_e(5@jvUH|KA_SFvw!rL42>_vrLN3kn4+$H(#DI1|Bub{ZN$~2`R9Lq$*ndvEXSRgaE8&!r% zM(6j7NtHQ3)FD~FBshk|8EQ4|!DW}ZAo-)8z<2L-(I=ouR-I4>hGQ}#^~rSWUZaum zf9mwLYsc1&(nf~4MXZTMaTZpKq<@T#VvI)oi8(WDpJ62o)45pu>)uPNPtBeW)1g!e zz5A9z@e2o^|9K}vN~66Dkhy7e9xIH{rzS>>tu?cqr%={U*PL%DV9b29NNj9zVv^G$BCfCDyMhRMtWkNr3uE#)uoHCeBYYNh%EL^Rauq=ilAK&)v z$Kbf`!;a1fS>k|$%xv`TG`y_=pz4O??`5p8^T#I>n1k9Tpu&e}VX!A06Yd6jF2m65 zN{VvUken+?DA}=oj&bGzhQ^Z9)VcwM<~m1hOPpHbs4-8W8xa?OxWuNlcnR->KRDvj zwup*qLi0n++}XFz`)&HLla(YHGJ>5()rjXedX|p?`c1>USrzJZ;10UQ`vUGDuGMJc z;o{|0K6vm~G(ZucN^(-Eis%EmFf+s_mH`672e1iAz}=*SC^of?nY19lBIDkFT3C5> zBlU%~0bSB4Z(%AF`n1rnsXi!SRv&~-+t&_$2>(xi{11jF|G$PRU>a!3(tsXd3la{` zWfIRt+~BXIz>2Var{nlpVCl)yHlb_Boqz+_Wml#>wO2XlY zbtRftN3NMWhE>)(B9Djg&m?nKnuJ*NWsYe%O>{OF91 zNp?logc={fu!b8=@Ki#%bP?}1bU0{;HuhRaXJlm5iespZMHV!%1i%zZ3k7O6_`&tm z$Y%D)yLW$vHxRLWM&El`-=h-onGENN@{oe<3_+p}${>g0u|!oDweEa%Up?7G&7&K3 z&f&<~@b1YJ{O{LTH|S*?-ErlG%nK~Eb`W+6=}LPDfU;r=f2rzvROI9PXC#pDxT0c3 z-?{o^Qvn!H8KB26cl_f}$u+Es%YQ(%cmULQvb`fj8VG<5m_~~U6BUaoz1)T~)PKZ7 z=y>}pJd`(!hiGvZ^lS@z3@fzsUYjN-6=FdT5B_@5QBvg}%Ni3EMP?559)iDdH5{Iq z?w^SbnfcgGB!|WK=mQqNX+N$4YrQsF2Qbcp2XWD5c>3_n9+VXTfD`A+nFGbGkaq{S{E-Adgg99+moe zH$Pd~Dwxw76Wg1Ky6UWOtlRg?i46Qo^i^MTkn6$ovl{)jNoKi&B7{h-&i*)9X#f8A zB{coy%jpS2G}e>MDU$yT(qN>sTng3}Bvm;j8Pw8AOekz*_w`9^#!Pl*I-~pBtd`x=qTW*5j%}Ct`FpmNY^NPN7?_p_ z8vWrWKwZme8X6N&qr2Jd_ajHTci-FlyiQRd($pj(H`$e1vH4ZazC5>IPb&OA@!k7H zs|A1AxXr(-rt@DR@h_gGTu3|?yu#W~^oeL=+^wl+7B=GPeGUC$gXtRdL6Nfis~exL z=XQJs=l-8~X{1}X3G?JTNCa=$Mi1K!@=Ud$MWQp&Kt zres_S#%$_%JX>}Y9ae|Id^lpHdW;gQ;h8hPNwL};G;7N0Jr{_DU@EwX?(=O$Oy|-Y z20@sNy}1syZ=828@x-<%C2I%1r5z>jF-%!sfaQD&2l6EmCifGxJe}tQA3S(qeWAFZ zfQtM_h2QYg(^tI6M9wk{2CUg*!s>Bc7|c~Y4z;hW2m%d3M)|05?}Ct)ApxPIDS!v9M!Ey8RE0f-$<4CYom zAy2NggQ06h0r@60)6Be5DdtVSaPqB9G*n3GMvtHjEXX7BHf`LPv3I-2)nBh%x$#Da zjNK%ltRs5Eg%|Iu7==Gx6cYCRM%060rV!6zd?(q2wEe$M-dIA`pc8!0*0V%wb51HM zX*mu^U_`n8%P(J%yvH}DV?DK-u%dqqBSJpbpKyr`m40^FHD38iP*91a#213u7n)0$?gTNA2ILGuAh-WC)A6+`~Erx z)+7fJOrc0V-nwxkQWJyvG}N`Uco7{-MLtCNEf9^=;NZsAnD2V_yY|mz7SfLRV$E)E zFOIk3CEWa9YvIzGg};k~%V?L7`JkT#ZI^>(l#;R;XIt^GF)nsf_Uq;FAG43D|91Sj z*>rRiYLR1Eqe*enP)dPd{D9QEirxumOjd(bLpLc^_zgCvMK#8iVt^8DA5C56E6qSJwDFKfU%lV1k) z$HB`hi^x>H4{&ob)sQ@J;F3vQqBO2$P6*%lk;{j0@1ZBtUM#}8sN~?v=EcI2>hHgW z&1v|0-U!TSxSPgvg>;8I%HEz&)desR4Nj=_#3&BwP-?%TP;I^j+>8XvZp79 zvOv-7pN$*W3z_u{pSZpI-02i1{kYUx2JV(`9T`OnYm9&OYSmyVG+H6*5iC(Mc)P4> zUzeIw*`tT=N)v9Eu}tJ-LKkZaNfeg3hTZAq)=`Q-Lq#; zLo5+atHho#1cz+26FSE7@^aHc+o6|2f{36=KvD^cXf`0$v?pHqA!j>NGdBC|oBc0g zItk=<298C%=&z8185iO#2mQ}M{9={fFah_wZX{<}LdnYf!w(N2sbo!gL>)pxtp@Ju zSg7PCY7IgCU#Rz@NjnnqtGglMelwu@P=CYj zv-=Vf5=L-~+Yh{zXux%q)?oIsurOiUCfv8ro;|D2tb$FvQMcVk2qKJ9W^iyGpcaN| zX+3|DR=*ee$*gegAmdii3Bl<{wFjl0Kgtz%w}V^ zk*7SBoWSJ3RIoju{J4%znCs=soy5}9SQ7sr zuH#Mi-P@eHA|n_W&qxXY&EEy-PJ)Y=8{=v{5n2?46sPpOo~%A{me33HxB*U3qyD@a z$wkLpql|ESX910h#;#*yGq>9(5K#6Op+-?=HSxbEd*UcwgGp49cmfj(sh~3>UcEzn zv7~^#MJ94RBayQl(uaBs#)|shz(e;kpNlFVC~z@(hJQh-T0kNnA{LdF7n_JB7n zkIuh*sh?OGh(mfQSTDn%?2%`;hnL*KvB>xY3x4O| zD{jRjuxA^&oznR`)I?hh)Pg=Vn2I=%ej|ak~ z39)hG$~9|R&jleeo{V92qRF_6_Sg?Uc+;|zT7DeH@!&6iXv{s6i{cPFa0oGue3o~5 zvkvY#G7e!u$!}7#-43Rqx~P%7s;JP_$b~aQE5^(i?ba;IPU^e1wt`Rz50k?8!>^%| zJ?1@WZe&Eo44UdRnasXNM4A#`hOL=XN* zo!!-sHaxR%=8t60#uNP{bxKyYZ>Ox~^Df)do5MDR>0sF6)^WSV5KaG+549{inyC=> z$&DfY1`vaHw|ZuqK0oF9#rlK})vU@#o^7QGID8NLmRAH`7B#oc`l#Ra|Mnhn+XeJilGF`3(F8#gL(3|8e}>OLX}?c(A1bO(mvGQBmSE zA4&v49)Yt`JU9$rsFV?rtdSUVk~$fOWnf)J#XWQ(;Jim+6~>yf2hM*hnD`HZsgpc- zumb}R1IvwDa(we(EC8~?8;4dy=J>wKKI-I|r8xx7A7v>Osfrqnyl&52g zyf`qEPCy>lO&lhWFu!WmDyxbI$L--8#ao?1yAxV}l{;|PV3lK%$pO>g3KJ zf82+i&&|#4f*ZTyLHmr7!J!iIINU6vE8b=X^#}x%S78yb6Y3rW8S80aP8PDnP#F*y zSU=%^>lfW&5kgE{L(m<*q$-c_16?SCnilRxboz?*yN-}v2a>~y$(Xzgflsx*=X&b| zk4j6IAr>JL<1mpYAj0hqCVSSDNVMlHTgTghCj}wc?+2+x+OfU!boKWM1eW0puH!vX zN~NyES~!}VH8hx;ygbv5K%pW$hdAWzKYB+(9k#UA1(jy<`dhDDz#N z56XG`Hx6J#FH1-(zGE<@jUj#0o_{#(tL%NVt#~$1PDiAss==yIOA{8{)%*yOjRrKY ztEs7(@bC%@2oQ-4fjk3Qauw*39(mG_CK6e>WVVmZOE4Ezu%-y!D1XZ-{=tpxCnDh( zV$64 zZ{7X7ckd=^j;+P%D1!pS*uo+q7Q)N^>>1~0^_$_r1OZlki+v_jsi%ITEo#NX*QHno zjB=4IcT^K=r(PyNh*!`ekm)tjDKLM#MW)61^LsPH58fLQtQdAWArkHeD7=EfeM zq3y!Hs`>GIeJzQ-Bg%-H)0*au2k`Z+zy9(o5U{=TwbDn^g(`b}Yj3Z`$l}XM{unh` zJ`6rz7izF4q+HmSeo0^GQPn@MPKKwiO|0R(F6A|OJvPZ)&>2p(=&dy`Pc`pF#{`QLwU zhrW$gl9TRhn<$;`gSd>ry#DoT9;{mojuYws8k$jXi9aFD<`k6UN>>uq_D^K zG{=EIUaOwo^{hbkbgKwP6J>t<(M+}K_El6?ws$Pnuw&d2c=4j?oe`eBzF5XZ(`QII zGR|jps7jvSe)fZW-pacM%l`;&Enz7Au`*iAp%xWsze8q=A+XR5xuZ4jfF-0`@_T(sIM+bhMS8k@xg;be#lHlD4x2K zQf2G3N{sq_RPPB!q#;_^ovT-?;q&QC?a!_-8e^nIexs5&?6{7~$yG!7w~d>7$d*<4 zyp}_+;BxdOicb%C_a>*>4TYOBv5X8W>2Wh*H3qm59<35r1*`F?_sS$>(QWYajh_7=I2bjW{$-2CrSc`izp25387?>N+0PJH#+UE8RM#kl`P( zXvdj5w3ANe@#1zyf}1L<_H}--5W!^OEL3aLoU>@nb=g89&WoCHI#(1VoYJrh;k;z( zB<1D|>bbtxdxEf{a)s|1!~x;=?sa?^Y8UOxj&}06s;{q~94mmarYd7ChL|ibHgT;> zzx-l}z)jKVK_%`zm|!%`K$4qvrzTdGyXXtHfa2H-SH|V23}U3~^1kp<$6LE3nOas_ zdIyWG3fMClLTi@${COwlispf9MTd!Xge=@)FI~E1g>`%yT-c_-1B*^;kc=f}XiG55 zPx!<+O5pxcZ@QXZcLA#uzr2b8!HPhdg#!tt$NkC7#1x6X*Z?1&)^jt;{J62h!X&S~ zf>8j$E@Xux7c63E>>AaDT~s<)7h_=HTHD<#ohPItoVzN43A0Fadzmjw>w^@m70H4z zs*B1Yvvc!iNwU`{c&6#*Q>|0%<68m(U&iwX=ZuvmcxFn{aM!~*+*J}5bMaNeM5vBh z{#}fI;+8y0_R1QI?;CuO$$LztPd~S-6Fz3@q$)0NT+A>>4p3a=FdBYR(0Q)=sV?Qn z|M8cyF)OoUO?4BR%!dsv)p6Q>7$Mal3lnF70g;QvJU5ub%d1p5E%ps1UPeOV@(~nd zt@~bY1tMMb{dL04$Oi4@Ks)}8J9q9li|xk_w%;YPciSbR%UoFe(WhkNJm8`I0w|;v z=Ff)t6R z;_2iinFr40{R;cFE{&&QNTj{@!gR(FTv3GMz=HIqi;K&&7(3pX7dE#Y`^*`-`oUD1 zk7K>e4KB&87T);&r5MGz9TzsgP2Y+9k`h0nLOytK8Y@SS!q%?# zP57F#3xwzJ+9vFw3I;}980I_%5VnI>3s$-Zus&^7$(~TUzy_+-MQ7n~u5e7iR@-6C z$}S|NLXI9bXzlmcwPz-(AHy>NhGsXw7>@NX!hY`ljs+!#9N`W%N>2_hk?iBBJEBiU z{@Ae}VW(|2W&_-HGdEY#>>~E~GqNet60!$l_n-Xbe*wxc{3-wd literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex1_p7_7.png b/labworks/LW2/ex1_p7_7.png new file mode 100644 index 0000000000000000000000000000000000000000..6aa4f89cf9cc65aec3c2f2ea03cb3b54f3d3fbb0 GIT binary patch literal 20158 zcmd43bySqm7cM*q0@5ShFrc8ch?MjoihzK0hm_#Z-95CZbb}yBNl14$(x7xoNOyi` z^ml80cinaG_s3nI%VOqz-*eu5_IdW+&))llC@RR{<51y1AQ1c)&*91t$Sr;d1g#Sr z6MQ12?D`P=Bjg~h;qcnp)WO-%&IBTF=wM@I?Oo`@YmUKQj2^6g)y+AS@bE*{j;oF-|xeo~k7sm131>MXE3B2~J*E;H)T?rp~2Nms4 z+*1$O{a8a`Nbu{8B%>ob>OVRm?f6hAv>PXk8U}-XASL66!{N+q>akemX?+u#rk4$36E|E6Ve}#cJ8spjN&t_k&uuu2nteS z5z@6ym6`Fl?9L3hHb{$$RZ-j9Ld$rG~Mw{N>_SFdfQeo@OWv0ZwW zv?QB7ym&#%riS{qa@r2pX=`#J_Q^*NZefo&wld?TjtG~f2!5NL`jf?I89E7FUE2MF z1KUno=lQvtYySHR$-gTG8E=#Ei_W(M;!ZYti-}(DO0jEvgMgtls_n8z`}f`Z`}?u+ z@B$=X*F5I{aBm`V{59cbJ4}tmInx2+q(XC(~rQjHL)8?2zw1zL}Fs%ZX59{1|A;h z+wW9)d3i2pD{+R_2dB=nu2__ml)uOF$I>Wdc%DG-apqDdUY;PLXkrvu;A%x`8*z{Hg#vKNlrJOl~z-Js6`PKr2~WH78h5# z%V!M_D{uX(Bm}D|w%vH+HF7g`2)DDdi}Fgn#47WjGW--BZKyN}5r6ZBxg(Nxb2mDU z%Xlz?kd>9SDV&m*h=KyCS!QZ@b$%q^@S6xx`=^3a-?G{7c5ZHN(?E*w-bv%l%p#u> ziS3}siNVSCOgz6e-LnX)Kw4p^`EHi9w)Qacy_@T~8{U*!(|)R_SBE22I}I1RyRC#v z`zyVtBWc$GH)m-#%_YX2KWd$=N2>Yw_^LLGYPpR&@TP&bp8~;$WWS7CTurj>SnmFa z1`$dj0H5XwBcK;$zeVJ{J^dgwlXc_Bjfas@LZ{q3y4|(bd4~)Q z3I47S@LFiO4fUzA7`Z=E5{OG4dVKxm=66;U9I|LXC}L)NX(o1&z>4kXa=fLfL?T^M zRi&ZwFlI54&yszBjh&rD^e;SNlD3K{mHDQ&@qr;D5UM? zqVcB8B2KS(NBN@R>R21B7Hyn6jgVJ$)86~p2EKx zz{Ame`d!DJl`~lv{Ru_I6%+{IO68~QVB)#?`K?1)G8|r};AOy$j=S;}XJb)F7B@6x zH0@6`5qe@d&aP8!*S;-2pPtUJHC;WjYB^Kms8CNIEr?qEtgYOlq7HPzr#@)tm<9le z6~6bz?UsBZA6a*pEH%NsFBk8FOU@Y|8AT^TRb01^gHq?T%Vic$_r?z&?zXkJgFWB3 zc={tlO1>DqDS_9FAruDQa7&McfuU*fA|L=G%Dx}w~~qw*~$-UB|Mq&O=V7gu5nEbjgAJ??le&2(Se(Ugztm&0`#V?F=ul~`otz9_N@x*IRvjf zrB6RsXuUmTlGgn93%7bY$SyEAH1?}~CGHAZT8Zr^1GBCnnMm);C3^F>Z(F_@wp!^G z7Zp7-HqK&~3jEx;Wy7UE5E&awhC)iPCQXsF!rVq}NQ7?Zuac@gBVa<1k&#dO6}e9q zg6WMm#|uw4^>0G;>fL}9zU5;$#A4qeeAhm*h5f;UJ89n6f>cyg?Atb>p`mic=-l`} zsJRUwh??~rgy$1We@y%q{y7i-@o}}J+RCB|E^v!m{j7tGnZx;^Mc5{#nbdCwp}3Ry zt(jW#m6a8j)dVv+=ip}m#7i-L^ozUbi(DJT6KVBMH*5dlbt0lXL=9}ktyR`$5u>*N@y zJ(+cXhk2V*w?+knVSIE{BiWM1;pFmQP@873zyCXhgEI;q@>D_r`uSKirAF%&S5g@8 zBc=sxPj?rd{7K_Ai;VyD>CJfqoBu6g%Q*nO$#f(F&f7XX+}w)n?Cj;Pa~m6PN9H2@ zZ_Rn%cqSceCGcCPQrx`@y9T)Jr2p#03+PVGCg;crST(4Wq-1hU1r&?qqeve?uccGA zr`=$r44o?+gJE@TP1vykWl!SHCmOE8PSypek*@PoIJ6Sr_5W!Vy;_bEDRN({Wb#K6)&SxYhtXMe7%8|^75 zC}^ap_2S#6iXl}N-+=h64Tj7h+%x4nN) zWZU(gaS?c6?IT}aB@NgfZ@(nLcTNVwkz?UeFkoU}AW`;b(Ce6YZ@SuE7coaDcFAyk zT-iv<#KhDN9>BxGBE!zcR`zQ|Nmcb8r%sikoSfX_dTTYc*wgdP;-rD~o|y?OdJl$M zL~|}n_`z!cpJXr?8qPQJbG!)!;s@@C*V!!it(!%>e)Gpu^VQnDn^s_JCVL}`-h|U& zXR_{fu>!^e-=?`cJknnN(PJUP%iOTtuN$2Y(f`L@#m%awP_^mLn3wbkDS1kV9cHxe?1bVBIPV*R+8NVZ`{m*+#{jSd}FY# zL2p%^1Zs9fSN^Hpj=Zux6XtJiB1+l_AH8~rH~vGY`PBjzhE6r!WB$y~-Vs4o&3;+wuZGH+vx0C8Ax76Cz10Poy_IGmnAb7NdU=D`LST>6c}V?QR?XGG-k zEk8d9q;PDEm0ao+8QSFwQHpx*N!`Mf1)a=~8|{z&#AfdwBBl4m;+*QS3Z0~VKOcaZ zmoqe9FgA`9vHdbSgFqZy?BjXk=VjlhYXP!54%NccQr5Z}mgxvjo}3B)GbF`HCD z#St17R^QOYgMaIAgwCWEV~PG+Q2av|Wgh|CKT*XTn`ARKC7?sE4VewJaqD%K6=ilk{?eI?o)Z@ctut3(>& zL+@1;c}MK*j#urQytcx7Fzbc>sph=-<*_P0|BEZckTuE`@IIo)2o8vk{6at-q-no; z3*vS5+ZqjWak3qg83JDptP>QTw3iZX7Qkew&F$i%lV5j8bxljOocMN8HpuPVT+H6m z&06PdJ@_~PspB_g*t8hr(E$|ruy7}4u+&iKtqJm`7MG{iX zSbYR9fyBSWb8WNm3(@X+M&A-ju~~9o=s4MSA4K!Vk|M%L7V-S)X)Osyv~PWD2a^ds z8pmt+=2lYnNp?Pm(Tz1`F=D5kdaiaygz5aS`SiudUA1d{+xoojRY!%h`}z~hi>IFLDY*i=gvbH|(` z_Y98k_QH3Lx}b*yeP>so6N|)M8$g3J2)o{8iK3V3|89w}riVI4P8o*0Zth;&>XnrO z`*@KG|K{v1IyK6UE-$~apkBS@Z++|7>lbDU0iu5MQQTu222tT%K0QxES~V`+(2bs# z$na3fpB$C*fnwKpAiKvw_%0^>_Bm+@qCB{e-QWp+27azVUi^Eo;CR|tjG|VCO@Js(q*S>3h6NviWF>7e`MT&}-I=lmR zVW$bLefi+;K8x1oC4xo+Z+71mpqkDP`e#l`&;h!G0X}jhvddm$`aL^JbaO%}Z|eDB z7)$zH&mUhiKL14kU@KM10G6Et=k{SHa-804_tf1zAN=d1M>3RY&_^UV zd>5*ZYz&^ zRNwx_0K8IUIS!7FYA%t-(L<7lq!@u|n89K8{_XhP&qfaUevq+8TWPtxP-OivjU3;2 z%Zed}pGys9VHfjr7ieYVom&G(I8x@XIlNfeKGyJkuronC*P2Fg5BciF6#}t|iJ_U9 zuwb!+>x-SG^)G49fQbO{#%>EP*Zdc;tGwDISy9QJS!(QCvTlJHI(QQ4dW6ld=rhBJ zeq<_E6?O(yOW2KMDlXcX(_^eV_TiJS1TBm3w+0h-uBCY+&h@hGrauEa_m`BZb>i4= zxIkFV)=`e+$fH~)9-}twSC8ZBl5H(9AAAYi#JKIHxUUp0%)|d20heeZlK&H?D2HfTFR+i}j;G3}>)4Sz>N({>|OX#N-~} zWY{Cy+uG7gONSTS3v_GA78VwAird=YabB4FqROvuSx)xh2uL3RO#i-xEwAhTo4#a0 zVhan4u7QCLK=&zXYok21L6e;l;K7cLjU_bnTzWjNX;j3*GSFLa{cDzSs^eMg&<&i3 z&K?z0)sF(+WZGdwUcmjhU}nPD*cf zbLcg2XP08s^(2&(plXF$fj}Xa_#4k6ROo%{D6q(SiS7N7LQLz%dHefzsJqpR^`uo) zNVe+^6g;kuCXk__w;-QlVFcq^o=i* zUj_P>OyI61!n|omCMOfP`cx6mHdY1N<7o$J#3ItaapxsTEj!nIpw{DC4eA;TA8C1A zgccI<@QtT;qOlF&b0fh{oCO9bIroN!)I>Pi4xh$f3eIfLj(C0yyr&-zeQ+n(Y;yPP z5&h!eW4-SK_|dhG<@M2<1TcenbCJm9a1s7x^(sDeX!K=C6=S14Hw*d!&S2JGYX(AB zegH3CEV>`VmcHwk09bpT0}x4naU2g0-v+1-kL|0bCDg>dRSx zrNGJYtH_H+J>wBDvX^=__sKWrA>m?<$^Ydu>|`u*d2To%{| zEPz}5-%yjK16+8*0%}fkor^(TasabXcP%f0&o%#j-T^+xLCx^&3Ajxy96hWoEcDbo z6xoFZ4eKAR3an|A*1L|PYva*6-W0x<7Hj(&fihYOy^Vq?GqjotwQU&cVa$3881 zx8$~2!12!k8Fan)dlNOdN$>$!5Zv?DF3yK7Q^sGi5d^>o1DE9D{xvBtHq?lqN;2TW z|5YB~KM90P&gT=$i!OiEb@JkoU18vDHef|6a`5FD)a;<@5AVbF5nv)UT~*3^0N1LO z!6eDS3XkG%)ic8O^-$k2g85{2pc83p348-j=|#PG4)6!#)m`Z1SJZ(+3WX+sOvI>s zhsDC*+c?2(Za%1YuOkEkqnmFs0%j2R_zFJsGB<58WDY!kl78A1%>;PE zXKrpa>+uR-TI2M+LMHUw@wE!cWV1_KEio`K=3})H%^+Vxo0|0x*T)f=k>{(*u+R6%}sOapW&Q*e0YBM0seVhHUvMMUbxatq@ z%F4>3NPPFYEBG-@U$^+|HZLnS9>#}{*@#GX9$^5zdL;u9OxfAlimX3{BbKL@I5>(PB2%q}CAzR2#N;m6RajO>+sHjwP{<+_j#PS>l;J5Rr7hW749bpp^ zb{=R)F|abLY^=V=3$)UW6z~6!@A&fTX#bvUKOiHox>SI*l*k%-4q`EivZaKjFHjP) z`;PX=O9gd1seMNTayjR}1#OXF$9#Z*z0N-``Wg-&23uko^P+T^XfAgV1rB$B*4v>k zmG5q4!bB56$i)qGA7KYD*>lsu{9)rm$Ja>YB`WR5zmVw#9T#gnp z!qf%bw;ZC1GeQ;ZIoSD8BRm5ZSX}!XMn9iabuN8$xOo!Q-tzbDo69_UPNNC=yt;K; zV$?Vt0BT&p-H$&9I30v{m($UDxeBHJe> z9@-z;_qKvCx9(KO5EHrigq;Ei6f~eQw$Hq_FaK(pp-OT8PE{zl0few&#j*Kw=>XHo zZ?@2mQAjFiKxNFESD(JVu0d^ojFVkbt6+16qytE}%m{>`9T96Ny}Z)rF4q=I78g-c z(y5nG&V{QZni+hm5!!{Gm{Z)m_p^9%Ol}$d=iBlwLH)qw1J!t&RpDHJ^rz?7K`TrI zOd#mI_v`5?6Icy8qh!hQapre2Qd2Xe`SfUgd)FZ`7YrIt8scG?ByVKF8 zCJdlrFe*s!V5&_FsndLYrux+3Gj?#}1vP>92|swgj!;L3=3ml;&S!GCWp)-ZA5RS< z1UvERwF)(XO}8Vg*tq1}M&V+kb^Y%5;EQ2LdUpg;N3PiZ@+UCIcvfoeMLh83@(QX# zi*Wgx`xA#NcaH6{{%Q82Mm@q{5Fqn!$EKK2h?N#?@K`5qiNONH#rW0;+v zZGpVh3M1IHyU(p7c&nRdleYg_gz@IjD(e{&xDcP-72nBnA%d6uvCpSvVRp~7BgmFs z(aMBjbxf+nV$53)3dK=_%>ryK$_P3tIVPw|WbtBrEGoQuP^`z5{#6CPoHZuy!ar;#lBN=xxIDWqP{C!Hum5&7f$1ELgj?3@PM!W?0) z1B7|2L37%Y%bz78ZOqK7DvIvz?qSd8u+ok1>r-U7tJSvEPl>42+N4Ms61{Hv%UX9e zWX0vY&Fr#nq5Gk87w9+Djy-nJ&pnKGu2J0Pn z!Fp*qJkSoF0rCMZL04G(tDEgRo6|owZ|l^PAU8^n=e%{P8Cda*-+g)rJxJwn7UHi8 zd^rJ-t29%wWq11G8Fm6MW~}l(Ng}-B2^C6H(fEO(?>82-PO8~&w`j#a3=W3Wp)@+t zvM3{Cp9pM>^`Y+t_N}L1Y~@nHG9KHdTio)?CEr~SVhyX~zP8}vKNLbN43mQGT>wtdhn=v2NV&$1Cu8wqrA zikILAuc!BtW@WpeQ_cHdf^PliRR$+JZuO9Oas~dDR~bashj-V9gi8_@;LD5yayL$& zsNZo^bk+`dIRzY9NYBKGk0{AZF|r;K9pPZ(h-6}dCp+2n;diIjYvS=-eOKen{F&zc z>t>ctrkL7m+)XZW?^R$6H|x}?T)lpqs+?QqH#YhZq+3&hZ(F3D6sfsL(y-&ykYbjk zoOfaWQTUQW_!Kn7KqFL=cm!EM$|CH_b%P3*{OZx%VtF$$G*0SRRmaiZTzSff2>G=N z*W?C}^?7f@ViD}k=sTjpb2B3J^=|sBKS|+qKVsJBj_q2{tLnGR%{={$caojlQWl>T zD_(5+L0CU!=HYj2X*4pBdv{$Bx3p{sUE*DbMrC(#fz56N_I#4r2msymQf5f;rBL@{ z0SzKJ{2oP)yLPGWlNnoI!>SQ~}<`SRSiLB+t*Q1sQ@Rpitlu@XtTCGqa!mpQ4i>o%O5gvWlhfzCdt z*mFxH>H1fhEm=J~PBzl^WIX+#XtgL}1d4&kd9fU}bv2-c@U!^AQZY8#Ys4U#F)Dn< zd3?|oPyMjBvZh44%CNqmtg}ilmJfuW6XE`t{S%)7ZtgaxW&TN?nORQ>`o_C0A`Nfo zcOsT+O_Pl=FS{RUC>XL`Tr~`yX^60?wCO}eqPzrDBz+ZHieC@;Z*>pZ9~NyA|MJVG ze))sH=)24WBWzu;2fsDT%DsB%ikeB)2l=~Atrqu=-M_o%+-*z(+eMXQHz%t6d@N&p zbH<|dT?FoonG|VmryxHsTu(zFt%nDZf8)tj(o`8>qsbd9t&KsXTx_kAKPKBcUPfQj zOXL8ya^CPSUHE(C(_Ymi1t$*v8nr`;FJ8hQX@LQ!DZcvpa^eIF0MyRZ_O02JS}u1n zd*c&*C7&XBL+3dCrrqf}>y$`mJvbf851JFw{c`cbF~_oc=zG$=W-FP!$WnhAFe--o zrkaDQnX}cOvcf*+v)iZB$z8A6)$b4d**kJer9NJFT#c%tF~br>#mCQHx!DvX5VAhz zOyOKiy&cCfpbU7SmV_OhaT5i2MY3i>)rC$9b;T4Ey5zD-q6vH=jMhZbu^c`&9cL_4 zu3d+BICa&J28;|0Km=}{`!rxR(GrA#cK$^La$D@~mNQkHVpd_FfA;D)PiUgvjgr5G z_+7-QQQHT?tzG+O|5KLd}0%{E$%G z>Mm~b0HB!P^m}~Gv0b;ji2D3A|JcrF#?z?$ozV8~OJ*MHetg{|A7EX+brU$+Ku}qk z@Bm6OerE0Q*L)E#7-M5EeaQxos>ku8%ePig?@*+IkzT0E zT^LL{RebwkLMK2uyRycQ#jedR>cK3<6wrZE(}t6mz#DRS7gS5v^rPL9^{r10n=kOt zHo7f3V?skdo25__78NuFk?xs}G)n*e>Epd3BQcTVlg`a$^OSe9^i{#iC!1Lc%|#!h z58uI#W1rD5s%h1HI_1$Uisq<(OUZdj;brmbrYy@D@c?BLZAD6{4OEV8N=lv)Mtm@> z$ci8JwMg&LoT-HPpA~TmcMEv^my0`aY&D*-$Da7*w_pCy;U#HrZwIw}$2LiIxbBE9 zE{CVQFKl+5)k`PXn8hb@nt*?xiAOXY7ZU^=N-Q$sYDH(SG@-Pi-yzhD7gM%J$_(TE zWwaU|6K4l><{wW`TUsjP@lzJ(Kil;KrDFG{Coz}8@zSr(1fkU^f*ZsKU>oDCCr)$T z)H$1C*{m2boFv-$0A-Fj8`Oo%dAF81ETs)Y4e&U@joXw`%Wg%Jk4K&gKdnxz_Uwxo zaFMqyL(B+)ss&JfP|$iX3+g5CC?8>f%FHTIlvncZ*OS4=@82|^vR|$InKK3me;9J) z;L9{?9*puatxVt87&aCeJ1NQlQ=b7~LTV+0?p>lqD(z5+GTzVnXi`}b4BzS@%3@Xo z0j*HL<)z2xY{yIbSrq9CYLNPp_z62BX?Wtikp*=qI8EN z{@}5FD;;3VJ35~ArHW8fKd}-AgiG)mD(j9a&f8u7_{!+_j|`XNDYNL*)JVWl^h*`q zt3FfrBEh)hg$u7Y6rWH2!bUWrAGYy`?@3`~nPy2mjj_{vUJyJXtyPY4Cpr?%>|0Bb zciX9nq5E7ApBd7yJluA9=|K0dsA>(Po=*?r1#FGJtkDVBG_BTcZCTL>G&RSKI(Ec7 zj|j7Sv9O|lFJXM9M6X1H0M~9zRkh~N&prY>H4u}=9sYzUF9-d(06~D24s?fGI2X6Q ze|Mp^1klHE4QH_&+BS#3l>j?Go_D~;#s(!OHnwHIe;+d@CK6pGe=M`1VRkXBixtEH zsXKZ>>mvA;n-s12p6!eOh_uAi9vH;ZPf?A8Fz64&|KR>_IHQIs_0WuD)08sdXar^essaxcKpChQOCqE0? zc+{E`6UH*T}?O9LE+fH>R{^2iF%@LFH|82r-Mz(S|CjIwj3x|3%d7f1{X$R34Io-^bfCVW7A% zN-SpH;+1NIfYP(M;J1QvDsgK?~ zFE6$J$zAI7q4kw6R3L2P}bC21lbk^U9dp7 zfU_d&r1RL7K<%xUah!q57Q&SrfMTn4`coRe4+>or-k6#SdC-5?!vC)I^W8?bJBU-` zolcMHjwNL?NHQkwAh#xPn!c60%X#-wz6P=D`^sM@>JPU+PSWGz%yxRudJ$XSoEyRk zWqoao|D1xFD9Jn(p%iKeSY0K}y9VEH`?FBu()f3I6~^x+y}e`;!%@xNINlOqS30Ou zj5~>a_~1cvFufPxNU#CVIF?gotEQnr@hqIe(3YK<86!G6I%f$Gf}r%5Uql_18bQ&5 z>UyrXL0xJyN+VBq4ePGYH)r0WpQSa5P-6{l)0?mf4RH%U1bPUtS=_-W--3|ZJ}4$M zZvG3odlm-e@Z)jmx16y{%aMP6lhQ>ld@RkFShvah-3Y3hW#e$MO|f1q6q0hJfP7nw6^;vtVG(I4nu7g+uElcj`C=eSWSx zgoTf$L%RDrstMD#PAlUp-r_$pt=c(>os!so(-*l>Dvr!#dGgb-FP<9gs5e7lQnAT& ziUlLO#+t0VY%uI5-gE(e#Bnvyaa5Wu+`n)7Ed0s@NAECSZRu z>q+^=2?wdLoRa`=5U<%H%1{X*I%K{tI~JL{U5CF^Z2sgH76R_#I4ChHkdLWm!cJXwR3=&D(w`>T&{Bb+XR#q+hRO0e76t%Vo7ZI70M^pGUL6~W? zPd|3W3C7WGn|4K1#10HHqk}gg4-d0>KoZ2Q%nENioG_Z@B~@fC#5$|_xNy$J@m$hT zbB%g8&mTQ~%)-;{Kn|wAs^bLN9v}!*jsgy506Co#r|=~$7?ye!_f+~``8@E3LHNu1 z+Yv`&r)twJcEZ7FuP|rb@`s`;c0b?5q`MR|bgisa7d|pfs#7&62y*XUtyS1@w&JM^ z1YH8@ll7Zwtg0}Fcel1U8pfu09e@LOKlzLR3w93aMp)269mRXLxCe?ztVb1fy9vBI zQo)kpm|WO9^m-aWCguVui&!>p1CxX8XEIU2yHL)>hQAl_5Kz3j(@$UC6~jlW9Az8Qx>Aj%&Baq8|+_CS>n77C! zsNF*eA_i+sF=2A))-0y1d{q&`_vB(CVdP?0v)h*5?yl|Ye9|bF_??i`NTi2I8C8A*>pJf(s3}( z+kVdWJ38`+!9M880J=>lf_#l7iFSto3XsxA(!#}|NM-%qfPs?($jhGb9UQS0(9>#O zPpRHI6uSM86C=Hb9pX1;f-&I2u&)_uk8UIFWOeCD(;!R|4q^ku;r&W-**=0bn-q{L z?KoolspW%;Y8LauTwI$Wtg7eKmeUlGXty$Jd6t^Xm2FGIl3p;|OG)zXIbGF)EMCpB z+v?^lMMqPvuAQ#2s7`fmN6^Y1Suuqje5i11R|YVDehWiNZyL!ao$j5yS@q9I=b3iZ zob4A$&>zmGBm{I{uDj%2*xmrggQ}~KOq`7sl6U&9>aS#EW{hXhM^mY5p4`^EJalKD znf$)BtBwlPRR1xeHb=_oDe5!z##IO5Y^3&S4`6HeSXiX6@!H=1kfSN|o-mo(S2S%srd!M zg0l-ZCw!RqXM#I{S}Tb~gq_ufDa0u&LD-wg(4$)@f#o6`?%VtKZ5s~apK&bl+8=mo z{}i;xTK#PXDB~bLM4wa$n)LDoD)81Y4eqfzO)IOm1=RvzdZDyZL7-!*I_b}QLV#bD zeQ61sj*hwQ@T6WS%hCafyZA}#yQ%D>o9A5bG{7$5PY zVO{rPFaBDquDt)7j0&LqB5PCeJG1U;aj#i$mP#}8i*(~()COtOg>9_f@&pxDOzg)` zFr*I`nDPKY|9Q02lmZ2fWiJfNWj_Kjd=aHnBxfsKdT{W96uX#GhCR zLgw4g&=F7L*0$^6c1B$MD3+_vtXE!y&rh;V1ea5LHOOGcwqjuiSd<}_irauo26={w zmFXXP)`41iro|DID6-L{A)uy&`V?^ViuT6*HWDa9hE%X>$0cM*C=4_fX>CSDbS%X( z3q8`Uu5rESB^Hh}V645SFO0BPD2g7%IwLz$S{!d($I#z~{HbQd$>AU=c<>2Uq;|;8 z?}SI`x3Kk{2c#~%20gwysajm5M6u%Ja=te1Pkxg>7WSt&gm|Q}eR1u`t-0Ktt8y zg%?#^kk)B$z!QB*S=M@u(;7Qcw^m$@9XR|=F-`g2V#Zh>zB5R=K=CZq|0P_GBIZk` z%LhLAxDM*Tt(5aEdUAM>s6<4Kf-@G@-RK?eL4ubR)ftw=?-RXfxva&)D#+r;%R<6U zz*Im+QR5GnY~08&b32 z@qRoz$?WI0{KV`Mb<7XHU^VT5f(>@znvc{nn{(~&fAkgIr1zDq1zo1@xt^`;i-!rb zZwf!ytbKT}{Tt}w)2h;2Lm`ETclm|~eJd2+U-7XdC3#L`RVo|kqjm5a?vc7DQt@0+ zlg<`-lY1l$#QBP<_<qJuHXyOjE?P38C8yRjB&cJd$uTQH!*G*Tl)(! ze-bnZ6yb-PCgYR4_kMG?J6{DwJbi3WqjL81Q(dKClz@D7Y{ZfS!?o_bUou(-rzwB@8|XSzeG`?mlyqYI z`lh7)&PGZ3KtiiXZVQ#~hQa9V{)1;Ctul7FWLSTzQ_kLlEb2VKc=vZg!1RKG$6yBNWbOp_|%O63pJCtMy%dn)9@y(_k$_ld4E7_hqqjF_1SflAyz0#(yrp%zx zRuQqD>U;nwF#ytpgJmaRcDnml&XygXIm3^Mq3M6{ztidQVamAIlUh$deP91X_piJz z^`1*I>(vX=@p%R_a@&nn3}B-MKUW3$5wpX_5EE8G*F6|YEB1rWn9H{4LuvjlOLJUpGK*IYpAvoC3Vnd#=FUw_#V9^#C{@L zJLvHQO@I=wUlTv#<)uxXn4Cm@{>;pL|Gp7u%MozgPzjzGd;1;L;d%;#x!S0s3MwD5 zZ&w08!o0ZB?TwPyQeUnvfA-=>Umiv2+$qZu`45Dwob2pyQ`7s2Nl8#Ds!-6tV>J2A z&}k5K{j?`pH-rFLf(nv_l{ozlQ0!x~G5Ua+nR)Um;k)I8(b2}(_9Zra*>HOR-)Bl9 zNanSfWjS_OJ-)HCXPBpE#hSy3ZA`t<`tfGr>8lRKfYRJ`9*{6p>cIrnO{l2a(b4g5 zD{BNbzY(aLB=GOiv9x3hBA^Wg?X?S_aP_-;q*{KU+OGyt4G$uVKy$2&W2qQArpY>LPg0auyej9;Y@2 z(9@p>_giWO8Xo-IRwQNjz0caT7(eMwLNI;Jq;TPs&Q{InIw)^oz<^0ehX?8E>OvJ{ z?Sh(Gn3!1ONE$vib`wYCv|pLopwLs9LN%$vRo<5{L0jj)!saGmZ*crg6Sl-b&b65T zwzKR|=x(WFwc(FlA4alH{SEX0oA8L2F8%S;O!a!!ww0sM6oufH7D-frX@4OMX5BH( z;EeME*+x$+r9}4A^jv5Ji{ftLRAGt0&&|Rrid$iuF*6#0lj?5z^(mi4_(9E7D`@{6 zYV`Jg{P;17o0u#!BLsctXppYnUMUZcr=Tti7lLZQvjKhP2D|gkxrK%8FS+UiKtJWv z%iUIGFFe>j15iILJG)1rO5v|yMn4G&!X=DH?*Rb&WuElsvMLF{ER5?h@onJgF*6P? z@^#Z^cOgID#Ey-Pfni!fBQg;kT_n&HQ1puqy1M>Vr)HS%=zPt~YrZ@?P}0;40Tj@i zH*XAXuCEkC%ve6~7Ak~+W{>ymjxVR9swI@aO=KB05JZ-taG4F7HT81I6e#C$IjBer z2oAOv=jrYMn>4yonCNy^u<>aMr80l#0})z9_S?ozHsU;#DI!i(30OD&<|`)(H*)49 z{Vu%5$id4ZH{vuZMLD?0N6@ix`^qj{Y%Bg|6A>o6$)x$mnTpcKL0B- zEQX45;CpENz0MC@*9XdNn(A5(%=3qUjfBBo{Ixv)lS3i?FTN$4m zx^nxRoehfZ#IuG_O^Bc=duP||f0Fzl{2q&}L;G9gZDITI{d*tB&G7|LsQJ_@wY2y*LpQNPj zI09ykisky|CU9@x*t22IeR$|-zxDRNFZ#~uoUjK7_h)LaZ*K$}2Y1spDJ0htRrk%i z`s~YyA;2Nfl`Ls$nlochKqKG-2zD)+UQoLadZ%gh)c;HJ0J+?(`=73X<#u_{H4e@w z09E*V`TAEl+LefQ(AB(^stvFLbiRif^YHM1!vY*!u7Ifl&9KvlG4b)ghmVP)*Q$m2 zA*NW-Tp#PIUH~%%y86Sc8_qBruaAm(%m!#K!SM@@Q%7+e+CeonLL=&$nhCu{^6+7s zzaS0M&jId)udgq~Qx|Rs0}~T^Fad1~s{a(Ek&^8HU!4NQ|0+suU(oH2 zC|EyoGykqtTWkV+4AA3B)(H+mamykm72sqb$xVxvJ(aRM^T*} z?#Elrz=ME5{*m6Dpdl6w0uF0vsj^+#?O`i600|ycw>UT#A$&sLTel}l0#4U9jVgrI znpRO)XX4@_jN{am1hqE9!^7WS#hjLX`Rak&sU@F^u3uiw#qOKv2F*oBX#o z_RviPw8s*Wkzq;@>DcuH0|#8V%z^?us)&wz6Nk4ir>~Ey(Iz~dlt_kt{P3x&5@021 z*mIa3n`*v^yxb`}uy^O=zuYeQB$;9JD<$(;)?WUNLBwhGRTP`3yNgRznAQ^Ib`Qa| z^RjnZN?PqjazFlDl?hlSnB8Be{jY`L1c#)Q*saLsj=cq4S4#iJyt&>gS{=NJy*{5h zs}?z_zCwuepm2~H#G(I-lY4TKP}SeR5ViQAS{j@(&;jzUHsB8_s1n?w>Jx_Y>C3drc zWCrxZmw3W{PFs>is;1+N;twNBH;A-xF9)hoZa!piIv|A$Jt( z|IB4q=I{Lj4w>)+XCy6x_g3a_&w3U`7lCRv0EPQi4(oT-iuEEu3U3iu577PpvBp)j zcdpdGx_Nq61&G?#7bKWb-+A$2GV<|}&UsyMY;0`of+H7*!HEXVv-R#Kv?}269u1JD zLmeywj`#qtqy)~Fd2%Jf!GRA3ex|H^7j=XKNWi~pi9LJb-TPO-udAE?kh}c`El&8N z*QdrF;A|iYaK;Ac8}4fhA?5+6#w@R`y__MbJVSxizpkkfo)iTv38HjG*7UKr9C{yX zQThc=^=Jc-nT-g21-kzEQ+R3Dye4Oei?2==7ZcEF)<}e%g9@7LKCk;y)O(}V6bM54k+yak7QbY zG#hxnPDXZivbnKfWJ2B#;D$9|8Kj~uQ%r+?!qor#>wz;+dbR0#z@y|CJYD@<);T3K F0RZ||*WUmD literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex2_p5.png b/labworks/LW2/ex2_p5.png new file mode 100644 index 0000000000000000000000000000000000000000..d63f641adf7e0642d7c3807c742e2b151efa1f4a GIT binary patch literal 86814 zcmeFZ2UJv9m@Zlf0*ZodLO_BFC@P>x&b9~?If{UQN-Uy4fn*SK0whXCNs=XJ5EDs2 zikwk$Rx(AX_iwOg?!1|M@65e#t@qwqx7OY~o6bN2rC|9|1%=c$^C-2T0cdodWy zeyqHV1_ra64TIU$K}`vtM03na!hb~ZSFhtW?ac6ZZ#kG^lyBkhSli*Paktr=O&uI@ zcD9#zE?(fdaGuQqkH6z6%FAo>FW=y?b1>%(cDU{UXW4T{Ue^(Wp}U3tA$up4jKh#& zFj$$(S}sx3eNIKk+cv9zHyJ*qd4Q=Zm%dNG>o5(Y{2L1zuHC*`0Y`1_ZQbG0h$~Wz z`@*H-L(w4}KtX+Z*XKT4hf_K$E7c||jg8Ua%zfc~>s}J7G1Gm_B4UnTE7m2(Ome!c zufflw*Ma+~2{b!zF>wxm`B3bw_j^(YfH(@R5`?{^j%X`B5|Qf%INNZXCbY` z;`fB-I$EBd<&S8YQy)E|#1hbH4es`7r)8E{O0H+`DV7N{bW35M`1zdI zc|SinE`N(SWkpE91}4OM5o<3Fh6Yoydb}T;v#VH>W%b_3rrdWdK<(+iCW)0OuZ73~ zVJ}I$e({D#AyxQ#%52dP?M(Sfe+g-8J%6@jD)fCY1|#E-rowbK;0kTCo>fK&sWd-d z+i|S1?J=v@yA;i2g}~9q=(JOQ!hfquECpw=4bzHE4^G|lOpbP*H@ri|Te14~==tkx z*vWy)N?CuF3>ch8hCDugw|@Wp;zpcE?kOh?-lwCamCh_4ji`WArROL#<3yb%6B>jD zZZO%EWfK=C;;jYK!Y`Ryw!Tx35WAbnKC#qc)R9>_n+ntC&&H04OGlv>_bu9sIKc>W zUb>>MufGK6og5BQy>{iweLa1Br}^5`R^Q_;Pqt@7CY#c+h!+hrxW#%d>uxOtoVY?Q znN;)r%@xJ|6=M~_NM)1qGg9b&LU|0%Vkf)v(?YrRIk9fj+0~14-X#5KQK$LxZ_0vQ zGKKwaR^vGt*E;m4xyjt($M zdbmi&Gh=)lWYB8ZyOJ!mi8Uy}*OE3H#pc+rNBoS4h?vhxOD)nS8|?f1^w7dskrHS8 zke`^!l}Gz(y=`Zh_!_=348n3Z{`vx2AdSI1_+TJ`!5qni0N8!%gG#KVL=~a)lE0u8 z?SbRo8^32{!9kXa&--=Puoj0~6 z6Pz;@>$4Dy`C6Kq=!l0j^hdvmxi4Ew{Q5vH3SpcFYdBRkRx&jsqfOylMnZ#Nk5Vq!q?vkXLs$&0?kRZbwF8 zzup17^X)>T^mZff%?Qj_`Wd(!KrJ zR`cqV6FOa=Q-?M>-B(5{i^4wV7MsGpBo4(;`LpTu>P|)%?#|wTCGFI09_yJm8ex^H z7{;^a*;(oB&20bqFO*akVPIVK`lqrgGo?stO=tz7A!>{kvuY6NXpOsk9}l-M8hKtH zB|=i)w;tR3`vu=;RNIv=T{~lal+lt}L2CL|;7 z8%1hEUtezD&A{gD-IB2wckz{bTnuE1=Q4}_=H}*Brx$y_GT?0lLDU?~rFkQ{bZs=! zsa@B+D^x;AgIGA=m3HgXBV1PbGU1S__z&E#eNv1}Oim~+V%%rBTq@tZxeN(2v)^;Y z0L`e|Qkza&q1}Ld$L4fyljZpLH>qi9=UhlVc9m`DWb3n~s;ZJ}30_NSMn^VjPsg~t z-C7?Y9W9e`994qr)|@L}iLou65tLZ?cIj295udEGB&;`@63&|1nNL}jTY4n;Iv!@f zNU$ZE&-9s}#Pao?4}&ilF7X?G-S_g?#lLk7oI+UKr!PWW*{XYm1iFmBc|4!xc&{2h zP}y8x=_s-vYK7%4$Konu9%V24H^-vwY;SSIC3BUnxxAPBv=|>&RNY``b^VLCz7tG7 z_>hS%wQ6!Obm0Cu5Y0F=H{s|P+@XHUYiDs{@tZ`XTeO_kN}J}0sH>l0nz zi*IuXYOFQ+iHshLzT58__`<9cM<;ETtGl^5=iS6wIh9$O>D+ni@dL%(7-?!<3?_gP zPA7Lwf4nI1oC|zDH`&t&m!HUV!0FT{PDq_ zE*1&5;bhheH>H=?=PG$$CnY9wxNk0Xn5U(t&bOchWq%{dRllvZ)x>>eHrjJE+`L=4 z&|__$&4}0i_ZRy0{)$l>4Nc9UkYEW2&fMqpygaWnv$HSu5D0;!b;!E){SNiqT~PN$ zdEBQvv%6*r2P7*uAgA=&cT=&ruu1jVS2LT7HNeG&$0k9U(8YE!J9nNC^V(SToq#f& zE7b2|T(#^4Rg$^GCZ@60Z7M_O{p@UCsX1vOmSh5jnrpAR?#h`~C}6 zS$FmH^mK**ZsMKtA*ZcTd41tcAKuBysVhiTQbei`aMddVC@M324L!uwD--%>mtGY?H>El-QA6T z^6)y54D;j=13+J`_oJg`2#u^&x-U&8#`}rZEo^*xOxMv{>?on?-DMh<0_CZq?$}q; zFoPr_(G5%Z%4C=R*D2Y#UdzD+LW#vemd&T-_0X7`EA$S08-?2nMLA8zlE1876zW&=XOY+|Sr0$9x!AGi! zrgA~~z_xPJncJX5i%xPi&g|RkH?SHtq2Soc44jdy59Mxw0`iK~(>oW>o>9Ks4cITP z-(_e&R`%#HK*TxMwE=HZxr*2fe^U#qOjMGfNNQSHrJ(^baB9=eoDznFbdu)D)kLWDCClAbrwq*I z`pcc5lx*`2C^w66(N^``g)dCHbc{UnjR%$Zd=rW>CYhPCKR%Gt3;EU?_QnS201eZ9}l9FmfZOD zsRS@e_wMLurC3P=6p&-{)|H#fF}nh6Rm6YG^x<2S;m6(IjX?IIM5XSGjtuNU*{t-ePg&}ro>KG15tFikGIFR)Mm@c zc6jp4>vd9YP_0QGRFN?%o(N(4+of~XEa@XUmBf&1dN_^_Q<#!jJ%C;UuJgmvrUiQD z(N2qyXDq9Hce`!;u67!JB}X*;dOFr4kafuw)n&`HjBEH9R2(C13c?{uv$86P3Xn!J zt2X&vepOK|WciCup6QX)^B4X}9ql%mqE~`XF>8oOglQD`?f4T7Bddkk+Wbg_q-TjF zar{(6tdtR8%vdOgnO2#_Nd~f~F_@8U-h0Fr08hsiItdf8PV7Z`BadvJ;^Dw?nj`m` zq)6fUkoi)u72VDc!ZDAs~*MBRIg)G8zkjvS9Uw8hS@$e z3sGhK!;r<(?Xiha{Q?;AHY64etvN;6cHAks46f zd*bnNjSJn=Wv&a0pXj89BUPFr1QekhM{ccDl1A3c(kP14Phj-`-HJElLQIVr2?+{X z0*^$AVrUU@gcw z>J~S&W>s5U?W=avj|18#yi<=4ZZKQ=cByGR+&tzLyG>3lXE)&XJSad@arbF+m>=qC zcu}}uiID0R0UNLKRQv9x@%6lSa1DrIBweN*9FbY|6Jc#u9}lD_+^q7IX82-1*_slB zR*FsWNN6{tP$A{oV;(-Gak z%D%U$2{@5?pE)?Pckoi6_{uA@=*;VJ8CD&cTQo;6Wtjrv^z##+ukrY0U%u4dqOD_) z2$!zflC0W6NK|Zt%m!52T2MdWDZFRI>h|R*4juhc(%_V?UuYXMx~E$wJ{oHA6x8+h z%B`g=-@#&&ea{?7n=4b}@&4B;y*3wNG7KQ~S{1%1DJl6r@`UfgaVj9F1Ej5$%oa%S z6_XuVvFyeH?2b}7xJx%bU=TJ6e4*6p4KRC87&XRc5D7tQZ=g7w18{vZmRT1v8I&-t z9~xJykB{r-m^@8(O>Yq~eW~s1K3ja6)uS6w!V(PkIKadfp3>>J0`1qY7?e75QxmR+ zEM3QbbF!WwB*u*X)}t>+1KlVxc6@Vn$e;0&*$Z39D$GF0cI!4l;%$Sw;+-iTi<$8a z7>!#uA`v@0K6Euz-Xo`yB}TtptUVn&4vedjR$59*?aDgW5lY?`iviD- zhDt9OjYH=_wfcdysW@L$q38zUd)diR6#;o2r5%0BnqeU2NOSlgr@EttN z|5)-GeA4~0wTw8KHf9t_ZWnUW8e{uY&lLxd3Z~YWKqFW|<nBf zl}RRNXRG^55-qmol!f~8#^pyuP!%3+ish}PzHR6_5@LV&Vjd*#VWX9ameW;%AcxT+ z(1gc~zDlot!4N+d>n&OQQD!)-awAdn?(F&6@wxZc&CH>gvbYT1+ZaGgCVj*a0y=EN zs`Q@fTMg|t=SZFOwO=U3yy~*Q6&}e_xkymFx~}N~`TJlk`{q)XceJ;JReQQ`)ApdK z*~0iD9p$91dCFvVBN7mLBLWVbh)0*`5m|Yt*Q8chuOo@c2tj;+F~>f^z|U7@@kr9#5z3_`NPQJ3E_g z;X?YOM~{3j-|1Bf=i?x`0m3`Cnhqdabm+yUdGA=zM=K_y1>(XrQ{AS&_HMXAxZ14r z_3dNeV`oi>1!mjtvCvRcZ{F71J8h*F_v6#!DOi+7TXT?a#rzuB1b{t4Y z?I4dl?yRTANZ%MI2c3=fHmF_*X)btn8F;OYAmnT?#vtiY1eY}B%G_7t)B=^0DK*N= z8t6Kbpq&7PqD9H-wfaV|53h-2hHi`ams)TEND^kdVg(HLERG=q1l%|%U2>X9O3eTm zx4}K!v*tjB=fdXX%==HYySt(u?UzSx2=wgkQC8c0%$0Bc9c z^?^m^Q|@OB9(Ts3AqK%)z8DA!j0lzh*S9UJkWdJlepLn7oP?sSP`Vg=IO3nl(!F4^m;Gn#!i5wWmgyl zEOmTsEVctJ9T1+em&_Ym?Y!6Zmu7l&#Afn>h)Yw+P^N&-O~EU%{1o6}{o$y0x4GYH^~rB-Nj7LYK)Bm?!r5Jn509+JRr z5C@`>l@wavTAxFD)0!R>=vbo*dc`Ib^t_cD4rspg92*2+W$EMKUz&xseP|N)9O4{@ z+;WcEVP&dA6=0Z$NtF!-6DW;@RodaV&w1+Tq!+5FSjS-?I)FpX2ycSYBH*@Y(NsUz zS9-Vh{&h$R2_<*uGSNuqnl)%RI_AQ1RPNynK|&cQ5c=P}4N^c1o&eXN0~Cr(pk7G6 zqLWxutKtWD;l?<|1eE0^08R*=*HEP(C<+vSUa7F2r*s@rdxykI?;%Ui5b#H~{}(jv zrA}jiET8NtL7|r+5Ct)=qv5`uy4J(?LizdmlfA{cjEs!z*oCns-eX<8mY}O3PQ-jk z7YNxEwAzS3%hQu%+!R0uhFrrvZv5R6JQRoHA5b}L1Mz(R{s#{@W`=T71bCq_jdaAN zqjVy}0n!X*;1U$6h>RTOHmbOx7<#@L869BMbgPI#q&S~?LGK7``v?Ua2o#86jgF3P z@HO1O+9fjm{u3T}dm)VpKm}U_7{1>_+y_KIPsxRuoO&L|{nDY&$?3$^kbwf}G7FHh zI#MQqW4Gm7b$DpjL!K$PDKp5<3}u4|RsbH7!32zS%W!QFu%}o%TZWL>&1rMu#zK=5 z`WtY!b|fjn$S=V}>)RG5daaZWOcYjb+B7$R5-R}#X$mq$8w_=p`&_vWTCs?sK$_G= zW`!Tn0A`?rhzog{m||n(ObT+_^{jCHWv*_JEEb_&PlB%72I3n(q&diUspd^F2-MDZ zDeDZRxy&je4E1%8 zVB!#He93T07UrsLex#n<+Z@QsyZ%-1S61uGjT04~#tj>mZ%ng<(;v^ zU}{NI<)bLPPbV3`{*qDPtiWYEu;SQvT)~qUa0GT6$aj`FoH{THEghXO3rBDGLf*~8 z)^Idi0xWrC1%QGam;mf2c<>Yk^I`9fDM*iUFp~bO|N3!SCF&jgonK1B8MIL-3Q-zI z|AG^=9eaR0);kwn=S|Q;76pc$2e`}Fp^ZN!(65f@b&%m$L@p3q}( zw84%$$-*xrGz9`n2Y?XUb=Qte11G>xuQsVMn448>{BVAs=ioO?0)lLT34dch^cB|_ zC4y`zJw3hFWK~uhAY0uK8%{r;p0<1`&@Nw61V^Q`oFESXITZ0fx8>;+CC(tcJ$w!? zpPax3vwWA|w==*3OHFlPHA}i8SQP_b1kF4;;rSm^G&mm&Bnwb$OMf_JDaS=wyz`wM9rvu2N))g{QSFb`#|!gz4mWxPtdlW z`~0wE_c`7^rV^p=Xq?fNANXIlbkXq#A|n!L)NG-Wf)mx+-5r5fKMr^xB`Ha^K8#mK zQBjfbCB+4xDi}G+B`{0ql_G;7#G}+0BcTs~UfENPH?kqssM0F}01jWc65-3l0YHuE z6`t#<$S9@Xy?q#)Hnp_dd;ElkayTDCzuN(wZ>0m4aI#=g2QVX$;g-gmuV`!M<@jsz zoGJia90cGXcHcijpMg zvkr0!9Z>FGr{1}NGaS1DSQ7Iq*Tf1oO@V>Q~2Ka>q~9 z9y{R%<}y+R1kAo2+xBJv5axrBDBLJz@tqBFX47xS!ls?01J3UXcwzv^gof`F2d=ls zejE2$wV#i+|H^=9((y5=xv~ZRJA)rwXm*+ae6D||V0t&J~a9}MV;5XJ54)N^Y`O{A*#ZPtfEMBq0yy$`Vu3Ur`E4-eNlgYDl zcFYYy(a!>@_JJb#_UAsr7pRpF7YrCih+LY`7&c{Jsxu3zHF>7mn-vQ*FguLvw9wvV zKu{UT)qxxwgP3H8>oSNV)lF_Ivl);FWN#>Jp9~`dvwzsEF*r$CvE;C8_z@D}HVjok z)ps&-N{i1={+jG7Eu7l8Pq|+MIJC9Y6u=gC)17IQ7N?e$tvVqb8l0Xm{cK;&+j}(! zgCR6#k%PgG-M@c7qm)+}a!QdB=}l~jU4)We-00o!I);OKogH>)=Ng(%VHh4B6uh;3 zvZp&0R6n$s>$Erq8q8r51Q6(5iSZ)hm|cfoA)PB9RLUtZq_IhNc8-6dJ>SfQmq*|h z3}SIC;VQjB0+9R%iaQtTBYeO|=5`~XA7pq(2-(Hh7X5gX@chqs9z%ac&Jzu9nOYzo zsvT0)5aZu|smIgFvri@jsSprYgu;0lMB?a7u!WslZg?)W%@70l*HL8wkjDE}W2aSw z?F`JgmW@qDX3@{RVE@Pz_BuRAv5}EecXoFR;=`Hso#31OlZX-ylgZ26{`vXoOh1z- z{vC8s=;8Z8e^-!WcG4;^uu=0T zQ`5S6a!X3OTS~whciMkk_`9R7lwSw3TlwrMK(P>ULdg72{$d1L zCfIFps@fEEf_^=0q^yS4$PacJEs^3jPItHXXXvi4RjHMQ*xXJ6k2EgqZ>PKP|~`P2e&3Z=tDlARS1F?!cPe8Eq*?vnpa;Glz`fP zK!CosH3use7wy#E4Bl9>VYypzrWMkQp{Thnj=uqwTV{phHmH*bDJ)HQX+j=npGr^V z`+8{-ln}4T(E=S<=1ZW%72YHwSOP9(EATHT5IH7+gW+#1gZMya#Na2QvM#8T390by z`hfpPeOMaEhuxklef3G1tIZH6a7&f|?X_)eYzSX2@BUN$@3}oJQY$<_wF3?OViPiR z_DSoZ4hUjblUEW@q)xB?Vn=f)FuwcNfm>XqLu!&K9|Lfjk^9!TuzJ~VA*I3JdTPsT ztwaiX9Teeib%~Xvbt&*}0Kr)1^vSiG61kuEtgG9_f;9lgsxGBQX%knjIK0z;f}qF_ zhWWg6F@xr$FgclwClCP0YSlA-DGz%jfMsWG1>-1(0a(U^d?Algf0Al!CQ@qwI56^=$P=#Krz_U# zo1C-+&MLGxU(jX7#0;d{4Foj~ETU>vV-jwQXI4uAL{x5!@PgG~vd!wD17;Dp-6Yt? z1mH3m*~ZnV2jflsPLcoqD#R4y0MZov%9GKC$YfA(wM%D9(qvyUjtEEa5uj`u2C~mo zlD1wY*sy~6DLNc*WuB}CkbJQU3H3+73U!03yx@76=lXkT(8|KTf~E$)WdN1lYusT6 zPU1}gsGB`bkqu~c))-vY_X z(3&+Z+5}R;#Hua;>-;-EK1!QT0OLmbobNr0Ylg0-$mtfHd>6miZI$&;V<2_PdGY|< zC1}ea?!#XMLeO(_+=q;u|Mur6ZyTbh_A@3xe(Umr+F1Buq#M?O&HDa6kgPbKdhR5` z17y1b{<^c*kE2$V(xex$Y1DZZ*!ul@9ME7ZaHNT#`YwS3nPMS3VEA?=T7R6r3d-V9ZoLFpbSbH4*X}j0FVFO3N__=GSP!vw z)Qo{zjzmX-H5Cjq`K_6@PvD~eEjzFcX zfCYR9TLZP2$Q1PUKIv{~Xn4i_r)pRIhh_8C`MUu1L)l+43GoDu?93UPFwsZmt%~Rb zyMg!S5^7?=gBd$fcP`6Xr~xFMzDzo7F6znYhAx45Zz!=pN}!J~4}5bApmrKfF%lfu zjvJ0Iuj!hG)Ku=2K}^(Na8kguPG64bSb)2Lq-;Dek9?Ygz#IRR*S)&}!i>C%fqpIm z6`krbkJUCdj%T0nrQu=w)4-{An}Y4Hr(o<9xZ6RG4x=dEqS+PMVn}?S>2EU2y;lc` zirxV96=Wt_OYvUI1SlZ&t7PZ))SjU3qwUwfYXC)`{#UB(3Cx5#^zoHY%Zp6z;16kc z3byC(QuzecfmVFvxZFK5DWBQ6^K(8J6Lm;fz%sO>*L(0!T;s~Rj2#S&rp6i9LK#T2klz^}*BQ*D2jO#sz$k@23wEY$f|8+1AiuoyIm zBtz?xCX)rY_-On>d5u&Y2VbKq$AjeW@7hvXHCf3iJ96LWMCZp^D_ma}&kd~Qw4P>ek`~>Q!-F`iNdtZ9z9p*pRx{JR2 zUz@odDuDSP^#lK(lm4GE{hxE+|L?`A<}z6gbn)r|_eX7lgsXq@-A(m&vKnN!fVxcp zej9>U|8w!3?|_0|ZtLhk{%bp^yYb*Ze01uDPE5!d!z9CP%A1mc1%R3zdTCGboYvEU z{k3nlr5*&6g#T3sy75lG=C>vlUzfEYldB_7;x%`4PNr>(CaiMLlf@vq|4j>h!Q6+1X^zbHRbiW!C;Qap5u zTfuRFbe|`?B6SCZ*h2Tpf`Wp#bfF3)FL}y;m8t#>Q1y-7G;$`ZQI*=%0t(R%9%h(# z7VrQN9{g;fPZr6WAmmgX{IfNoh6{cX1pExJ19Aq-p)JG^^?V?2%GZBqPNbg&8(?xk zwMFgBd;6yV_n?C6Jol%d%3sqa?4UUyZpC#x7fM<*9`kcQgogi-_~1Q?<{xOfaxy{YU6O72Is%VIta0( z_Upzk6P^bYDG5e4a2h<((1*2*bR~$#rOCE)6F+4#VPT`T!NIEg|8BXs2Gr)2#|Wzf zoBaGtgXiCzdU*9|Rx<^_)VTO5mr6MZ%(w^tC?uGFxBKRM^Y(W!7f=3Y_Tr3>@8~A~ zk9}KOPVNwL06stYzwP=#qy6uqF)ki-Bn;+fK0XCMnL-%Y;>^!uH(-n#2E>I9I4Fxe zITr)hMEv^9*QwY|CE_R6KyEs<+a_QlVeoilC_L#n<)2s1A}L<%fZ4OXGQKwhNeRri z4!^cOeJQ0vasss_&_vvXp+kq7|a=F$~Tv(P z-#^h6qG6SmtG}Pgo=8q5lGsa)x zT*2*DSy=N}n=)JLVB1peu6fLbyaI)l0bXrwY&EN@;~MoVGPuy~`|}|{6MsQR;Xup{ z5jD|KEAGn~i*6hC6Lj7ID&p#}4=6!VQ+@kRv~ui+5^ycO$!J!jCl2^1Wr3LG?zzxV z8xp^3`<~xv*;R1aWIxRN@raPF+t{-G;hE2y>Ipk%NWD)dxMgP@ytSq}Hc?asUIm+& zz|H`j1xL&#OJ6T483r+ds`?ZrZs(li)V;op6yiRMgD%s@YH}uBgbSLh{*188nO%X# z5?jJ7_v+*@jLZknRQf24ERj9-p$dpAdb`OFCg=mXJS|y`-%~cZ>QC7QES;)5fcks0eeQnt$DEzg)mQ%I z=luNOw~q6%k+Dfo)Bf8t$YbPBH&(yeUb|{3W&OgA_u+61yAQj>!i&7NYXpfEc7s4X z8#$lg&Nc2TWU}1FBJD6vo@0EnrulcmQm5qfg^7CJM5(Qd6M=Cb|J*l$s78UOfK|gx zM`nSS{^thaNHor(n1AAij!mQ;lduG4-&xG|*!V%j1so^-2cux&+jp^<>gM+S3JV%< z?+uKLA9_O#BOxC*bfV@V?RFCQGdjxe$uP|SoO5RYKBZ-ad2Lz^4Fqyv!zeK~@9zZn zpTYdaQ>x_lWB1U2X&8qABPPUm!TwKBoXrwy?7c}|djiAIFE*D~?zPf4Tt`;)qmzej zv58@4zald;-PL~?mh5a&GZ~06^Jp(1K(a)n4giVk22}xV0yu4O9>QSJ!M*duAQ}5( z$O5>kHL8neLEZ($BLks4w5d*VZTJunc|%dy83DT{iV~hfJgRxQ3}OO7e$ca)ViWdb z{rrw|Vi$$|_sdjAHatf{bhi6}p%<~W(wp=^VH-XHYvSCYkPQA;1a?JkoFLW&tU zrKs5@-=y{++CNdy!Vh5P&6^XX73le8M~DzKwX;|eMXr_Tv%gDEh-`a!2w&|J2z1yF z>p;KFvYRD8X(A#rB6w!7r;cXw$nECN>vzNj1q2mZFB+w`wdZ9CL~1KCSXZWo9@UQA z@*67qD00rgGN)@ppg2EYKwv4aZ!I~=<@LM3scRxJs)57Fw81tQ7@*2lFcH#`yeQ|- z;s#p{7NL=#*SQ<|G!>xR3Rk)!_u|+a@EpGww0?eZT!e4pWZW+G9nV?+|6oi#$-HD_{i za2msj$uC68%_+--`k6}Rc=w^!`>vEPJJOK^q98u=R!~k9Gzo@irNhPTY zZL~dalS=e%i@C~{|DABYf!WH+QkZ2k)sjg+UqM4##9B&`^Lo_S;YQsFO)w_w+$L8x zH1ljTs3jFN8is2}>}~5!=6Tcj!nJ0T`F}gwa@DK9pUEpIIBFsS75zi}y!8QcElSxc z+NQ%7&M=K!H`9`AlzJ$va!NatApqH%w8Dd!3{X+^%3QKpT!;Sx4O1WODhuLagvz+~ z;~vVy@^Qvz9vk<#Nj}pM@$gP_IPdrjX|c=GUC7iBfSq7VvwiydHu)i_zZf-LVClhp zjN7=goo`L}D%Km1*_3&cOxjh=w5vngH=EW@m#-)73Wg*C>Y-u@HPqjUv8BttRJ4#X zhx~^w9_Q_uE1gSF77{S@XW z;)6qhT;%HvIGJ*pe;|YS9Sq8AF>6#ud3&-_Qf8bK6&FW-`)^XQEqo#-5eXO&ISykkQ)zEq4fA09t*NUom=#0F$W(s5Rn@iX*3iY>iHNQ3} z|7v;vvPF%O{d7jSQ)~U=Y~)_l00od_=w7_|ba67jLjt~0gph}W)U5tyk8@s~>G~@& zhL_gYN=6xn%8E>|ghVdy5r>Vq^C2T=5So5+fbRInt^Trtj!WhWu)X+(?g8dq0Y5^F zzaAv3u@EPffwcN{D)sC{w^b0gf24zOLH(N-iJzCB97Y|Z7-nWvTP=K}(-VBdrpGMG zR&V!A_1LLq9v`XGqucZ1lF(U&&YXcDZ^bCibeE+-!>Au*rLs_vI*o$ry%a< z^b~BL&Ly8OigMse*0oB@>vJYVSS4L5GV<%;$EinoXIAK0T3j$>^|-Uj_vUsp6#|Nh z^F+3)EBb4{OPXwpzpRo*BZtl@cJm9JHrVAoPR>_$fk6>#Di&f)Im~1yZ{&pwmf)`P z%xU}h6k;Saw4kFt^x-+x?mLox;KV|O^!qS#;w6){R-i*#lZkYwA!C6(W8ENhqhrJ3 z${oIWDF>Ztl+sRmA1HEc&-Lxi{^R2=7FRg93W-XX9OJXq`)c_4sMuO6lv`Y^~K{&r>>d$V2zPV|d?Ki$wR0U^c8)rYVXjqs43(}0mZrFYU%ZjW?C;)EFA-h#V0y5+>th2X!JM-7m9WXFARcAQhkK>X2wuBTklTm+QUiC4&|Ca0wUxnH*e4%4&YikZpjDqcnUrEZ!(1lSO%JJpz zC9-1JMJntSN~3a3lL6!)0yj6^-@p7kN7H)?l;ytpywDR_Cco~-5P%C?_O#KR=+O@9x%`fV+@?@J5m{*JN`M9qX;a5id)4~;2g**l*Xb6wjrkq( zQEIuHKvy$w*6*E>L9p{W)eyrivHTjgU)P4Dz0NyMZf_#p?~%LMQAx=g6qIM3d;3X< z$lk*~9^mhtREWN3=I5d8*M7g4 zpJP8=-1zyN(07*!d%}HM-Gj(KD>PM1N=be}f{yWthx7_YELjT0+;e3u@>|983b+_@5%F=hArifzyqv4=osxobq9v~W zhfYet%Hjl}_B2zL)VdP!x7><@OdFMnAk!w@eH?Z7sly1iYdvdG31abVbt&ImhKFIW z>$AwrwduTk{B(e1n3}P_BFgWzy*AF}fMckPCyQvSuw+)LO2ox0lO0X#WhkXoOS0Af zKBn@?dEx9!Q{~$SB2qMa3`vWc>rF$GVuT7rAkv0<#sRYRau_|6F!nq7lvcXI5MZBoN2y2B z2KUO)^=bq^*F<3O%g;~+=y}_rOEU!=CnMB~9(0zH;A?aVgAt*jSJ+%vT%S3;pD7fN zBMenh^%%z5%NCh_IpR|`D>|W58A!P=fRQO)mvcIC=JI*vz>2JWkuSsWYl?$M zq8{;S?b;PE`)oJc&^WoqGnnH7_4jtgS49Ug@l&TJ%3 z0b2u$*L9SGV_k0Nm|}x&)BSZz#z~Xp?|qEa6vgE^kL9md(lan1aJ&y&emunpM)8(asf?99T!$xBoKe#j zY!FY4C2fo$6AC>>0NiL5w5@&eyx1G4i)fn}JmkQ06F_<^Z1oChFoQk!Mh5m@j=ZU$ zI3E$A)z-?+Z4`sYmYoY@+Ko9wAEk3nHMoI7@s+*linNA;x<_)4Z4hzsBC%JA$(O#d zZe~Lc^7kb5dhy{v%fDH#>0M%rpC%`qos?u7VyqE-Ci>;K&ADG}{HNsnT2Z$%dNe{{ z&N;zfptcD(PhW?}pj>eSZLKZKNU9tjtRV`mumZ3jcLNVQgG13?fX(0j-dfP1d201+ zO-h%CBQw8iPR=HgA^K(*IjtH7(|a|XO!wK8ErF~?TPH+C%An-e$H98x8U7*CV^$TT zyBLZ)gy)={U%tTC>Rdm`6OYYOFP*muJoX?7;01PxtgH99t+eFnTPqE39xF(ZiWf&C z36^QlL$dd;aTRB1`$R51JnI4m3yoK~`(1#DVx$#Nx09jMSsRJW&~_UOyRqQO4Bz2# z4~g&;7IpBIMXRcXhgJAS@akO2IlD03pqx~*^3IeO^4moG?(eZ<^27iqczZQX*j|!d z=QibVnJaW-ap*r1=3p+9&vhuxntlS2Zpz~t0`a$aG3t@cf!%y;eIak@G(0)qP*wAuqLvI7N3{HR%P!26at?_bn zeX!4)2&(O z*mNWfjp?bDmb(gxk93egkvKmRW|Jl7XH9a|3?i9^PJNQ;rIs#OnJFX;ka#?axQ&&A zIGWc98R9q%+m(=ZPZ9Tmiv-WZbXj)g9MN}U_)Qg7O|Nn_67_l3r6!Dp8@i0Wf~O>| zq)g(nmt>l$68c1cQq$^n9MZuMY@(?-)G+g~)mwr*H%8C)2@d!2hB*OLGHK z*Z2G|lB1JWi8|9~|JZ(k67Ur@fhwV8DgQ8F2l2zRWx0!4-dMn_lnL~>by|C_!np~p z{%qq<+=Xv0cRQ+1L|7#ZY;gAGyglmli(6^H4L3oa)4C)$fw2HBpyXUZYpoF@SKY><2iM;pUibPUk&>{=n$)uVel}5@+5XNUuC+Oaf<4Y!qfK`1o6T~+ z(@(v7SD8C7!eJmcU8gqbsFVo6E{L7-4cE1-x6}_F+xTt{`4iUX=#B0kWC(bo6^Ait zc{ZvAeX;ncBoG7EI$#GgO%5YPTQhk;t{DTVlH`T2r||K+Nni)*wc9j_+d{MPqo420 z@}Ti%X@z0;Z5o`vL;@A-zJdykId?v`=c+*ka|gl_D$TXXY7#2tqTbSag$xxudpluu zY>_NHJ&%GdsL>}%tmD{4w+@3u*vfg7H(F)NQv(VM(2BEc%_ zh>>bH)tk#=9DAhSein5DjrKz&IqikUFS+K5bmD`a6}N?O;)61$>-Nb@#qQR|(Y4^x z>iMfOj~lLAE~RB(?A@?e&^$El*G-imAU$lli4%XEkga5xz=2`7$|kOK$a<>Gag1?p zrqJj&u4UsCjrBvuK-3bWvohOvMK!F}WDy>N@tAAxHzeVGyj~$*V%l7-g;xkCW7u6u zcahcmJhN*;^S&u5((g*ih?|8S>f`}fZ`H~vx53%--epdoVn+Pr7?BwRw zP=5DIny=1&KyhM^bSNJ=fv(iydWYsS_iqVVr;l*9GK|9B9Q#f2j>T@95^F)lLo@FX z$9y1?CF^QHJAd>P+Rc7Hcz!mZYs+JG>C=D$YM>SgE zjz8dhHsu}65a5;c@*E^ZEBW0ty`iTg8)WC{E~11c|J=dtf_$k%z0YFlw;QZ#8a+M^ z>gl|xqOS|wkMOZYb8Je)Grkh3MYl?bC0XyAEUIStQFjX-loLd{_ko8z=XFuRj5p~V zvwQkQ#vG#&x7b&q7!#;<<>{wuF$uA=&jRSrkmuyzpquye1+9{eyU6^BN-!Ck-jGoB z_whtqnBmJrtEn?9`e>w`I5IC=L`3*DG2LzXDh#9VwE4T=9Wc1;pz}+CXR5JZ_tmhs zw&j~HdM&iK~s?u7F#7Y(trI>K#`dT{n5eo{8po6a%mN zIwdp^-0zyaDvo1%z?rhIrlh2xW59FFdn+%h1FjSLcZZg`trXX%ha}5mZHik|G(5}k z1D=F$;pkd{770|TC{hl07**%?)B32tKc_xR#$h8=XM0vaj0{t!PVkieXjm*zMazVU z+C)MSfcGUy)z*pkC}V6W2`k80w~zXX<8}PVbjy|lH;&7^Z7|5v&U_(B5x*->>B<8g$)|1@r%u} z)%BPIiFr53>n6&goN-M)N}`=3S{*e$i$ba#;}#47uw0#-)>ksfY92lM8Gk%7j3HS8 zAX%0JaJTpu?Q8^pDFx4Uw^%9eF@ef4=B(-!LSj{2P*4&?&vcrql+DyA+vyaH$&INQ z%&y&Ryv4%@O;1+5KIHR4O^#MNwB>HatSG`(oR~dv4!d0sD4o2iMoVDv$upyPVBb@`Hrr6XIGI=quaq43RMXzPDW_@K}9r?-dc_4zv;8G)^gB?|2ZF~ z*u}mmM@xZn*v_kEt6XE>-&YPz%kQ@JjczbIwf^{t(=f(_kyjcgfD1%k$JV;z!QE%o z^(fzDyMKUEjjQM0^vB~u8yMrwY%7ZSovnY31P4LFxu0H7WD8jQgjY%IH$LElZ~u!t zU@ZEyO<6W%NSnEy-E5yi;mWAk;w6v1rS4{r7KqWJOmHf{WLBg~`g{nAMIMJ^!btCN z9m)g&%!JVRweugY*KLneS8jR6slB5%H+9TnqRDB3$pE_8$r{kgJjJk=2}8Kn^S<T5i;o&BSk$KKZX?7Kv*{95!28^7skHH?G5#PXAp<4@EC zgVbdenm#3iOr_WqbusVeWrvX`gyC8nx?ApZ%+?9QaT>vA$#agCCTWWpQqgBGw5Zy^ z<0yciI%wD`zyEYT2+(_*40vHkdxBU2b`04De+>ZEB(=~D`M)JV2!^=4?xNQ_*U6NRE0K{j zg3VtA2i-Jai%CcN`VOszw&^vB7r8k}Wq}?LqG;-mrc0 zxz_FFN;-x(6Y4PE0h>ddx`EEjeK7sYdEhsq0egb`f zLlh|!nEBZ1;duig7GGXo11mNP_Tc^)7}3(fxEvbwI0ngC-Sm{x=SZonp4p9snE`(> zay}@BgiZ>v@fBAh4#@$|{URG56jjQ+Rvaq(-5cs?0?9-?iY{Ilm@R$G+L_wQ5THWF zlni-xzm(}Sg8CAT^~`_E)5UM|r2KIGUdJeDbE=v6%9lxg%mO2jdtNzzJR zH2`D66>)RDxI##Xp0`EcZjDES?eZlyCdP!7fxEOxT>@1Fxz^zqKa8u(G2AmxoM}4vTRyl6ZrDuFkoPYgem%m$P z!d)IdUxRP_gjcKU$*TGxHF8*{qNP1rJQ*C|_BteT@AB1JTboPr=Rl6o{EC1`Zh!Iv zG?tTk%e5@zF1|Wm5_0((fh-Q3z{!6`z8^it67y@HhM~U^X6F9>k0VTbP$KBPQ?LIq zPjHvy*OC}OsR#3&~L6*$2)oDs3oIXoZtgT-+aL1m$bnTGi<|@`MSfIy=$Sr-l;k7sQx>} zpa`|%hdVEhfM)W;p_(R&6@Emo#rc&$CS9r@`>Jhw+@DE;dYJ6F>AyNl^6n_?KgcOW zUJsWX8$KP`yzgV5l=9`(i8>vFFqPmhH`8x55x1LzItYcgnR1B%Cx;oDc&L%m?k-7d z%_D)g+)XSHx5VLvIh2Xtv)R99b50rowO`e1_~m}xRVbGhCuOXlQ8Kx7ENQV|l=>xj z!AyLcAu_;~lTlHfFUjh)BtqUcYA9g7-n&!fl7@x?!qti6V+BqS>RPV`dDRO~hbNgG zUPn2om@k_(Pr7iyEWl85@tJ+{_4BgylB>7vjoM_&mH*ylVbEOTOoD`c{lW0dD;?+s zS*~*9BpWntADOLK>fUoEg0OWN+JZjS0K)c2Sr&XrO_Y%|I(&hWoXjqctc5;zKrA@L zVPEIjw>-VxDxySFW!8|JHQKQX3;PbU9sHR_222jZOz+@w09#^miPRyCPj@W;LnQ?j zHV)}&7HP6*F#pitk5_b@i{CD)O7f4${t<6^_fSI}Zhz{m4t7>46{=Jp-{-gZr=B&j zpw3M6)I+GEt&QX}O5BzI@EY2ZV@cs@xldSB)MlA;acrUu#K~eb)_?C$sF8xWLB75- z+w35-G&zQ^A=7a>L*W$2u}G=37|+%4ET?XZ?DxU2%+7l-rF`7x?YHPozm}#32ys(W{3qO|B(ONyL6Y-kum=*M*RTg))U0mxIiaG!tEkHSPB{M_oXliNdP#_p7QC)V*{b2z zU4i?%tAQ*%<{%nDZI2d;|2xLebS6xtQ~o$c2Ehs6f#Q6c6#s-}UD$|~1a2lcLmnd2 zp5=2#mDatYt#8qDDT|mj&4I|(r}P)q9w8jA95s!()$CE1=>Jj~ecx@j59)+2-aHxw zofR@L->kd%2d-|Kk)tM}Jcoh*OQc^!IZv8RS8aH~;3rvPd{03(*CBK19l zYeXQcD3#bHuFjM@%dg_i#NV##l|t2R3Bg6Ip%Ur|;yKo>Vwh`8e^r_{j!w#|CKU2> zCOO$k@y{Mh0)Fb(P+MdB@8Z`w6$^clH8|NNq>e(4Ycfu-HFY*2Pzq$Z`DUWk04)QPmVag4F_QUVT zO&gWnHLtg4W)c#$B$7?6Efo#|DM9^V9NYK>&z26P2UN{!yil~|WuhbpM8;!!Yw+rv zNmdtfo0+7qE?&3{w?!iYU7rl3>MDK9JYHbrI z6vQ$LuP(Lx{0p2_W|q@sb@qOoSlF%}Y}8Bl{q?TX#|wKalzsJv6#pSbdEpTFU8_zH z*=eVmJdY^e0H$2vuPKOJv#%%B1+D0l!~agE<204UHt0@`NgPXhc=U*Qr&O{+tH8eb z`-PdSc@g<IQE>b>l~`lAv8V|GDIXSt^FMe%#olD z&)*L-W^{6b-lF{{YO^u-q$c^PmXsDr?c-h+Z;kCeI z-o1cADJVerX|ipnUeZl9_~Hlwb1yK{nvJ_o>x4dUcdiuy4@A|Z_x)8;3nk&;?(>S& zD&SYmrK)`>JyzkLza$TOT9_{bNrT6E#YZe>5pHIu8!+(u&KHj6*ff>)y0d$f=h%d> zc6Ph~#09~*EmeRE$dc2Wc9*a}EnVPAp1^XIu0ZtpP5Y2$6XUsU`0yxi)gc^wtGCct z^@yG5Ay=P!`m~h?<7R5?Pq2rxxbk}4m*F@5D0)q&(nPZ=!}SLnNKB|)Ju~278@XD+fjvCf#q*xK@D$z^rVGTu_r@j zBPf>mZ_#-iR=<_KlKj!2a?nIZSz3q~n{u>L7SY4_f)HzGT_ZYmY?#UuXmK`P(c$k* zidI%|CZS4jVjK^uadWzyNl5D0US?OkdkAedpaW_z^HX)-5@xGQ(P7z5N*zGM|iQe3}lQA8t{^#f#&j9^->+ zP27i|pE>NSG2qdI+m@mLN%5na3#OQwC~W$eTE*XX+6`b&Du zH;ixZ@jmKAW-Bd`{sQuwJO2(O^ z$N$k6*%!3H3jPUyL$~MtfQ$K^Mq^p7FajU5ty(&I)ZaqqI6*>IdSu-Hq+*;L_Ep3M z&VR6ldG6f{FHEea&I?bMK;?KYy^~Ps38lsC;P}Th2-V}kc*oORb%@*%`B5>1EBfIZ zcIoRKdh8xeh+H%cZQ+ywzht-qAmXAryv@>?+c8{+7F`nE-X~PlwsQ>LKv_k#(1oth z^yu)9(oTQ&mb&1Ss-euoaEHm^+Ey{$4c|um#wH;G;v@H{fm|DgU4R>#Bin|0saP(+ z8yV+wI&Fr6^px4lI5?o%IBM?Q9T1{V^7fzc5_~R@c+|z1Sx-yx)4&QQ)fL6*hUE0@ z=rQtW0Rz(gw;)O#j^S%85BUC%ePqggY;!mj$|Z>R;pENB&v$n!!!Kai)C))@7EbOw zfU`>mmyYZK)`wz~4k&vu#+$ErO~SF8Md6S5k(-OaTA*nGR3dr3Da@JFxSutW(-ZkO zVhUu?nm_$drwQrGx&{gLZVbP^7!R>qd+*)VtBY0GhX%jX@I%9PTW#){b(7IAN2nbK zWFM&|`0@l0oOe~E#ew$Lc1K9|@k=-O(3X{lTdA5BNMW&i->}*m)*{i68J9NpexG5) zrh1^D0_^v{*zIk&YU{th^GQXmk~AkbU(XhJmLfFS;G1h1>GJ8(r`7jDQv8GR1<;?L z_`pL5xB&|3q}$+LQDu#>X!+vQ?qBfd)(n>{!qw8NQee{RSW*fx?%(f1I|7_K5@~3h>eRq$-13mrz;iNseSNvS$)+J(?%Cu() zsnRWT4jG{~#DIe_Y~V2~bSiSX0SbH3nIK~|?|t{C*$>q;8=U8ff^~vS^^p79;lz6A zL6)|;B5Rt+!8)T=BH0tF6d-1gYUJb)_SI{0`L^jF|Gt6;2IuDe7-Qji`n6MveZTa2 z3gwwjTJhZ{V(hhIDF}y3r4r2{W`{Q==L%dk{gpPVvkau$25x<2;(R19pu|s1A^JaH zZ(9E=x6tM#9%4`&IN7ayIJI+#^UBjxx^C4(Lu8!@J=}UV z)K!#Of42?Q8~HkpZyP$quuPQWajD}dxYbWsZ0cLAwc!#rg{|eVpajZ*qL6Nrb*@*N zWl)qW_vcLausiHK^CbJEdflI2AaO1L=*|@x2RGVt?nb%|GtrA3zE}g{bepb=eHvf2 z44+7A0(g7>SZ&Aa-UGDpIk^9fEbS)45uz-G}(EeEx=*;&W%N@`>w$w$L@4IZ zd5$eb>q?S&Wq$WKzQsXB+{y#%QMcU$9F5GwfoDbk(>-p_gw=UtNkDvaIx~1hWm?3H z>~Bq8TX1%E~j=%b^>Qd@d}6Y;K;uEx8(og5n`KZ{}m-wwL?0p~n83z`c7Da8khFfo~7Wu{SfPPZ^^`(hkkB!6moho0}fI z^ZW5^cz2mvOb;X(c^d7Mq&oLp7!Fltu38&J^LtNiFTXHfR635CVBftMbN*17=4T-v zCB3b6j5BG7pT26La&2Ky8BLy7o`dWE2<)!a9=tOx51cUW+roR66ISAg-Z;-r)@@Gb zGrHWMT<=S_;dnskDx7STA9Ws9yy0U_eP~&@T(yVAi;yR;Yz0TSnY) zWZk=U*qKR(&tt(r^d>bD(=-&v80!|kAe$x``MVO5LFT2fcB3#Ng0kE4`rRb8BR>}E z%*xi&(V&|-4pq-QBlOAKkDTUiE=*2^huHhM3hL5z!y+Lz1(z1`=P~BopFB0eTl)9| zYWzfTIdUc<$aVKWP*aJB(MuKzOggBjJwNKqg`hQ#<lQTlwlxeI7#;5NRIC`9OZE1nSgI(0YU3H4{zz z>~4BV_tPAfN~D)mM+`%E;VZSAp}78K_jg>Zy<7i{&3m~#s&U7vLgE7DCEzVgyc+;XmRj}ZD*@f7XKt|hPs-V zjc>l%A@sl3EijoZ^aalPsVaW9YYo$f)Myo>PQotm#v!$no*@kS<@LIP+WC1T0&R|cH> zE8QlamV@98{s+QQ%O;r$Q&>KKrd$geSX2b>E@D33xehQ98u61iK)s9SG61zhWB=X* zz-T_Snz((7a$_)}oz=74*Gx|yih);a^pejZO941^No5j|8x%}P)U*Xeq-E(5Z*#jI z2~`+&ZOA;FjWa1hry@OV8cPA`@VG_YI`wO*7JVIrfVR7Zo}U91QB-W@P(4a7{Ik^xVTf^SZf}?VF)+C|*;UPyleOc6m7 z1nF2g%;G46A~5seEBozi-1G_!EIy@VgY22n@o6ldH2rX4AClrOn8D9_VJ3xFh*L+{ zd7vh{buxfF%s|~50hKESOH@w042eBm!ExYT@1JA9@}Fl^q@-pea{cEU`?(#VF{sLX z1hEn4H@2R5LEiyLf~i63nCSqOP(7H@YYaRwF`S{&Y7p=$KZU#Z>ZmoY9TO6FwJG_05`aQ z+2}eHBJB+Lj3pW8dadv9z9N)KaT|M6&MkaY27Vl{v(MfS`1rj7T7TsBJ}??T#q`}mT>FgVlgMXDRWW^ z#fKddaqAg=Ob$tiT=}LeK&8pL$IZ2_6b=9WzBY1HoN9la?G3f+IZal04X4owBetOfX`BA}X-08b6BnXf2o4`wIYLfZb9(T9WIZs+`soM zB)cn_P9Eau(`nln%#yxUJtKb;${%1h>bR?>%pdWy{W&A@!oS+>g#i=<2V47ycuxDc zk_!%qyb8LVnSho}%>@NJL5@ciIB{sAV3kn|4YPsRDYkCVBV0k?w?j{FaV;-qeG*O= z5GsJTHGdJ-p z0R?E{85HedNPlFU8#MOea{U&K7f!VFElY>?QL}KIu;EJ=1LoG z>y84sUw90QgEfmydA0OiE%H-{U7ag&+!cLg&BVD~wvDV1@%8A1-T^MiA|g({0mN_$3$L%Z)agpq z*}TDp0=;2+UwlaO)u6yHc@g&J3Df_1{2j9{tC zr9IJ_VwT~>r@0xe{p#q3h3d30i-3n!1>E5P06G~ zO3?|BJYDK%0&V(7$K&3L6E?g3pvrH5gVwI)hrAy7Xu{nvE!}3h)#45C*v-fZCIEx{ z(;u;_I7tpUA3^S0IObe`8mh}5!byYwWB<9gbn0?IVdr(=*sj2fn<~L7@e>GnBf3)N ztPa%!+ltyC%HiXCPMhTTsWh49x{f(XU{lwf0Sc)x;%MmUx$5S7?LdBn8NW@Iv_a|R zxF{lUoudzH-?q&gq>LbQF`6th#+v+RJxkb{@{~|8f02eoXLGaHxhe*T?<;EijshUk z!oc5uPQ1o?qC7$@o^Rdi$u5bg900M|k%~)p{`H^h=Rd$dGOk1m`yRRjkQiw2&~?Y~ z$sU{~P=-VyD!x(h>gwGrZ6n%E7=j@E=H)O_{6-|Mx`4V5k40M2sGGY=Y_9grehJEs ze#a_B!E@9B4GNtwr~gNDvJlg|XIBxa5I;{Ezb{unuGRT15OwsSynr|O?Q;McVUGe@Q)t6h z_hs10soH~H$YVhziQZCHeqL{RVzqHe=v<^UdZd^9p>#Xz%leUm%~x^-)KvM_@0_M2 zBPd+sd?uh|Iu-1pC^NRbc^@wb;AQ`E3Y{x?rFeh}3JizJw%gGjzRJr#p>)tn2~@-Y zQH!sY4?Lw)0h9eze_esD6b~@f8sC6Kd0SkrB){_@S?=5I=_{!k&xeI%hl6Ii0`JrH z+&GqGMa|#z$(RJvvGFFBPNRug58LHa8C>D;Y)EiQLy$A|b@)=PNDd4KV;kRm`5O)Y zCn#@L=?}#};`v-%qHcNHZAk7w=}&?6mUS)87xZPGBYrL<*1_BC4BvxdhL#l*O-^?{ zmk-6MzuNWVs2R>A`%d+{e4Z!Goi4b_fs03-_O&MbYR{irT>%6I7%ESbDgJ$nAU|?H zro|&MPYXv8$y}(_EhuHdbd^;UH9N5{)n`uZui95b1OPzUYG4Ca3#D79PZ0Cw1pkbz zac}!B!@v5u(Q+13J=>xw>+Z+sw6;8UKjFfyxWiIq8x695E)OVZ*Suh)A1>yzJ~<<( zz$DC#0(}=4K{85W-xo7}J30eu2X{qu!TrB^AE@oa&-$c~6K;pY1L#IbnAtg8oZjAc z93TD>fei-sVY}9qs4VBg?onM-M5ZM-esRiy;v?Z?_sl^>uaOLe`v~p_JyX>E1*gFj z%vAo4&ptrKz1L(SkY{V)?ND0Av3FvR_qt6aTD?3f3q3UeMxy<(>KL{peiCYlr4&w6 zVC5&Ce0de`X_vV!hkXG%h=1Rz0}Q)shcX``k)D|g5Q2$r-NWglBSB8Z1xOgful$c8 zMa>@jxf2#X0Qh#=dS-@Fb?Yg&wqwhKtCIZLf&Waq3XXZyCcF9eZ}%^D%S>TT0AH6v zwKXk=7U0PP^sX47P_?ckc5X+U~8yg1SJCewYwl$y+|VKe;i?pvdui<5eDq0R3hj zI(K{g6>4_O;?M)SuqI(>p%dx4wcU#)!^=33569mgX~{C4Fj4K_HcW*f%F`dPw7JcdBl6~okcL5is}-U3Aeid&hCT_k414@O z*_WLGP73@|v>5eDe}7fVwO?ko`dta()GNAF5?J*F%r}%9`gle0lIi9N2PdYP9pKkG#@Bzh|I_Kk zlxuvSGbx7W(l*{+S!D`vdfLx(>~L10Bjuo~b}6j*>3$WMoDa3%+JK<}(#g8ON|N)P zy~vUQUUY+xgQRD4(G(*;cIVTLL62Hv+;!e1D(sBNKB!+Tz5;&V(HX5b^p01U;zE1BazQxS%{q&m&agE}Yrr+FIz)^w(Yj5rQ z=fdF0L$@Z!AWyetnR`o%;REhAJ;90q%SyKI^ z9p3NbSJjWy`dZ)!>$%&oc=m){MnKk|Z@$nb*^QZU(R|r6pI^|)hc|D{_|8@F%m%Wm z$jT}>s~iCAK3J3vJmEklaXwqBYjRna@G8UNLEL%U{cGnt{3lA0XBtckdx#VF<%^1@ zj|!hK)UW0swb)+YL77H{%2QQ~ckjak-o)I5>3ziij`bN2l3zG-|3`OZ^Qz>+r;y#n zP7MOSAU@Ogz*nkzfrL594ej`?KEm!;`M$)wmOOUfU~hphexjp{a3Q;0 zGldSe&T*#(p_Zix0c_JAQ^*FZgqX$NOlsuKr8hrFF)%Ei-B8l&XOaE$!rNMc{q?8I z*#QS7P>2~L({Ue2tiPH<%lvMJsD;!1)#O)%Y{^n+uILe|9mWG5;~}pukzDc@x$3ooBQA$)fNtn8 z{AO?ev&)Fo6oE+;NnS>|D!sK(c+Y-n@b<<=7smmwtnX)yGtpn+VBl+&Me7FkXUF;S zKvJgo4D^x(aqO{-g(p0OrSM#f>34Gx~vta?> zsZb)~Q|R!4P5dF<(*!{6E- z4|*9$Yg|P&Gx2AK8gR*$(5O%zuI(N*%niT)v2R#f8mg^*j2l`D<&go_yy>L6Mp1EW zp^ckGd2OB!1XB~+mGyKlOv|aw1>eVT0RLiy`(%vRq*3BqdG`mFbMrb5oW9_f>Wtc0 z1VLT2hmZNf14^)uydXf9fQEB{%OU>_1V}`gFw@RIBmF{tRj2gt zMZRomh&Km9BOGHc^guYx-;&1Uep=KFcxz)x@ChfXrxp#@vZ*EWIxtDEBguO;r1;J-` z*tMegi$^Zhv8mVTSF~p^_mhGfl=L!$TFB<#Lu{iz>%z;5*dJ<5kJWh9Tv{+nr~bu- z)#a3x|N2~bT7CBS)niHde90tW%mI(?2)++Z&9vu;;@WR(aYg-%=w2Rpa3L6{dO4KX zZep>UJ*ewjeFR1x0Vexg6Q$`eJ~TJZ&8SS*&Cii|MGL&Zj?Y&g9CL6~+D)r-&tu^4 z1>(pIDA&ct!D!h$5r{89wF2BpV>l`xj#PV`v1?j{+^#&BmW-1|P7 zsYOt~$5D3q{?Edj9>xWbPAvT2F=2h#HraBVd4hA6YwujOkK(BohesBJsfGobRHAdU zIC(~2J4uP3_Vg;ktR(Bok$Nb=vKt0BBui4xEwBIQfn#D-NrUYntuh*bh7i|`75sa= zPQZuE8)o2#nSweUXrU~;SWRTBL20l@VZ&xf-evk9sDN>Z`*GeuNfBUOViY^f%2U_9 z_M?=X;_9}U7X5K|lM7w@kN-{!x@fEhLyDZ`Ppu6=A~z5x3Ue5?X*s}M;yjhj3b4x; z?9coV61)Fv->j18Mfpaa3wam&^E^N!GE6Ekc1@-y?6|JE9Az2#fY~u}`1vrO=|B=!0*eAA<@?Ci?_er1pCj3^z#OLe@P`y0{Fe13&0@+$e~a0C?QpMAWIk zbB0Cm{rk$k$B|)FuSVDYlwYuG*kY%9=Bc!fWjRDD^*h*m|12?6rK6FzC+!=%yUIcq2st329g~PmG4(5-UR|k`iP~NwqwT(w9U}X(5L9 zW^=mp1CFZ`45>A%F^Bq=L-oFH)$cnj#RQwv|)|vR5{N1zLGK~0=^7UKXeY$MRtX?;=sTclk zb)2pV1O!6`VF30zJx1__qM9@QIHGH}pD3-pjha~OO6~wc^837d`K;_qn=6g$N;$g= zA0I9@vBg%-c^GSsyB9LOYxs6-;l?$#k{`7YXOH3#o!RjvNto~0dOwMhRlb*2&WoIQ zan!9>v0#2mAUKmjp7miuFyp_SaEM#c&{uN9p>R=Tx_baIRxX zN4DO79o@@bRl@d1q}y>gQQLH>k6;qboDp!FiEqhh;(33=0cm;s-wTHU^PbAnHhDro za^Zq=OhAfjZh?~=xDZ~~`I-)YhUWwT zkA}O=LXPYn5+t)A78Ucl7Jr7lYdv{v>hAJhjT+`*+dpQbfOPOvxUgR_P6MqSU-*qQ ze|12<-7lR-wTmN!ue_pjEuxocSojJD6J`$voN#0c+8XA=?jR)pJmR2V=GbTf0u{X5 z@qUtDT0U=e0>D(2a~5T|<>apnO$Jrp-zWWhy5P*q<0_q{kpFZqD+WW`?SdFCOHIaw zKevxW+wI>}VJ0f}>U|V)K}bU532uQ3-o-ikH~#~%fS>t%jqC7$qSoO-z=osN8~|mh z2}fP8*(GAN-uDnz*2nXCXCUy75@3QUQz>M7>=QOK91(Cl;cf+@gq(v)J`>cCuL1kkcUGC6EeUG*PMK!7b#-Ym zq+h&(swkw~|F(oPDLecs>jlwUzg46ig&)^rE)VAzFu!|df5xMnjRV?3KxJw3hnfZ1 zYt3aKieHk@qXo(k6-vP<-*{dw{-vv zG;vs6D~o3rFe0o6nzQfsicopJw-SwE9Oy}%m zSaIBX0xwdoUN?I#6c@M{xwQdA6T98%=tO}>@r+PSudWMsGl9J0rok5AL)jPbxjh7u@W^K zQiJN%PE+M0`0&p<#>u|B`_i*DCw|;uM6K?1V??TDDqQQtT9|74M-q92p^fz09)nRk zj&P(EObEW7ZJfm<2VHy058#vznheA@HL@9>k6C{KB8itkuF|_VQ_HY;U;i80Ou53p zF>_D=1~ z8hSTvmGv4NRTOSLnqtg-2?zzuof@%uLW;MT$Ts?~v)sV39jp_*hk!|m=XV$l-)Rf{ zeG436Y(<~?OgV>}d10%}6MKMhSfDUa1|xw(f3_$?38t(XXEYr~p zJ!I;Ud<|2}vn4#bQCo12zI{WZNe@5_kHrc9K>Td^p>m39~UCye$*3Yrj!tz6t;+llDisQQk@uG6IinJonLzKC7sy{!og^& z-mwglCMv-gb&CZpR`&+y9(J#Mjp9nWfb0w8U-7A4_nF}JV-c{*mf$|hb1}uH=R(Z&-{%3^>O(NE`P}ovl>xb+ToGS90{V zGVl{tawS@yI;W!uCJkRMDczA4HL6-MIk`Rut0HlO+~Brjqj2wBsXEB~+zbqbPdztq z_cUJH8l4%1WpL~FsKZ)}uN+N7#WluCOLtvrc4_a^(i~cNq~&CnCh#9BD`!JdX=pJ+ zr(K^^y*i!vc!S%w+xDlHoMhx=3gL>(*2qki_{4<3iW_sgndPym5(273Y1hGcHXyr- z8!1E*?(UT(RkfsXaa-zbjp^v@Zpt`U@3O1FmXtP>d&8E2@%)2m^E#Za81&kXlDqa- zwysN|O5DH_tEgyne|rK(;djzzn|afqS;3_HA1+JF$UafPbMWw`#!(j9bF?XIjDq&% zxXEU*w6yfwmOoFV82=!>uSK3+T}VlZ3d?YHyENNP3U zVywOIwADXWFrW|`c(Ao2?7uK}Qxwxiz>&Ew9VY5P-2VdlR z7$POQFJ?=QMPV9YoXz2wy8`KDBsmh${%CIi&MN_euJ2RW5 zuq&EqHDu7`Yo4AyHawc!7sc30HY*2`!3rb#TLxR}yWA}q-`7>YP6{o%86VF` zaZg?BrHzGrAvcU@V2XO`Q{+8jJka80%g<3Ga?)p7!WCSNcS_1rR@{uu)^yUjxvzlE z@}dKWxad7+cmqUA+mDW(vcS0kCrP&fC(=mGlX|c1BG+9X2RQ#}}Gmw6U8N`-4gc_e3J7rLxysD4V3g;)&P7TrR<0-j2ne5uoRQDx!6PNlnGnX4qMr1V%&&Lm8vB_pJ44p6O4NsPqnTqX&5YZ z@tv4Ebl7s~zxo${^_sF`c_L5Y6WFc19~y%nsa<+LksY@2n5iW2)tuqey8Ji%8|5s`2CX1Aj_jOO}wcHC<7R=3kab} zb-yvN(nGo4Gx_v$Nbf?mOPNbWtM2~+z{7jC|hyYEoFV%sZW6xZDz5e}Yt zR4b2^T9|;YUuNe(dU;E}Bgi55KUo+l)choB`UFQ}q(9U-jT;3Seb>@QcM}DZ5826IM+&ica?>QC30tE4689 z7uRGXT35q+yh@4PT31yc;n_dHV8X1Y$DRc z-pJ{#mkPCi%hTeGzK|WZSLo!oR>F$i`NyKMY^ox+Ot;)(ASbLVVNCqOQhyL}ce!@& z&GqR4$21c|$*8}>cDEWruo}f>VzGCz`eJdZ8Ehzy|09LHQ$zxr zp?o1&H|zd?UB2h~GK(os*e1C6LX)sDZnTMAv3JrserAeQ12AYI#M>%jN3_Hs#SQ5vBBn@6%_;W7eB<#_lGL=ZlYs zS~lM+Hydb44?7HNyP1j~xuP-VoOw2g6YVI;mHL%rEG)V`lm;DM(ov0iv~e32N`@qi zWPsVQLa)(_qXl!Y?(ptW$$GRl=Z5uEFl~Fk*LtnyRTXwWkLUnq>RdMiD{?WBum0X% z0UyEe>#2H5u9P_m%&f_j9VukBIjBjj&Zu)!WRosrZK`bkL)L7Q`|odUMO<=a-)NQr zQ+H(Y(+M&Y_YI3f_K~Va%6l#c{>#(mgE((05hK#te{(Wq@K&BohJ^PRWj;HiWi}FH zQLqim@w~Ib$g`&Aj%WY>1wDj1&PN*kLCcHQ<#Wa8Wlsm^UNOwqbNRc)JbTZ$Z@Tc*Kt7T2W1Vf+4y5if#hfe9PB-rNy zD=qGztErK6t&Jj+5m?&sm56QSLsx4hL#9p5TOn?BmdD#2v0&Nf7~m7mAZtyz;+kHH z@nMZCn=Q{C?;d+rY0q2mDz}9^V`yG!UDO%pooOOj)y+&KKjWJhQ_T9I{x9iOs~g zo9{(G`JUG;D@gFtBH8wxJ)gmv*^qPP4lU9Z?j zo=t3Yker4c?KkzjFpa&{sixdONEM0Bo<0e$S##v`l*3?V0Fq)w86V&GH9#zLKc2$5SAU&IE%Goiwv9?PHhw%m@s6+5oZuIpiqR8z_3WV8 zmIcLV*6OeP_{C_@P#LmTQC4(0VjN4i_g5+oCG(MSMds#4j=MfLDj6+3;$SQdxE{u&;YvyQkmPSZ9tv}g%h zy?&S@tW~uAwN$%vGe~E7Ku!K~bL&JP=V(t((HUtS(GOauy1b0FV)f<1vIs@{x`$KF zt@(A9YDPKAy*^o|CY7ziabgw%yxxy~N^zH9EaW1(g4e=l-__c8E|b4VOV=FX!hO}c zy8aVo#DR1fW8lsZ8j0 zu`2LyKt&g?R>f}ZE)OT0V%EPZJhkwW5zl28U{HQ>XY5&B_6s4{A(h7?JQMm(8Vznd zx$_5@2Q{^J%?Y15QBEP z$aIPj_YMJsX~Zu26$57`B`5K@-pKS-Vq>v4_Lo3if3uQ9dY$)+Ro%NA(_^L_2SjH8f+l|aUFI9kWG26Q?aRB4j9eF{|HIUG$5Z{s-@8UvHj!jq4cYo2 zGh8H6h)A+mlD+qJGmCIj_NvGZ+4~}Umd(YL8Sb_Bb@{z~zmMPV@%y(&*84u+&vDLq zp6A!@bZ9Yp)_Y4wcT4HDfDN-lJ$H}Bf0WVCa-xVSo*dEd9EzY;AuiXcN_`t?(k`>AMqD;5% z@rjJK_@nd{;L(~D6PI?foqo5aD@lx+2`Thk1PxJlPp7$#JYCJLvbVdY^svS2diz9- z3F=lPkb*4s*oXkDevH(Q3c}m5-ZJ-wKA@Dg8<_PYdgcS&-Ee)n6%mL&Z5AyBMO#Ef zZ|0_sukQOuCH_%!A0mC6a8zPe>tB-huqELG{#g%D?Ro9}8A^55C~10gnqK&LvWW3k z`LldT*KFf=G*Pq6&Qy^9#TTqVb^pUyI!QFP`13a|3jg*w%eN2iU3iN4jv02KCAug` z#FK|&gYjXBI;9H_NW@Bn#9^B?3v}S5>BZ&xi-XNO=Uml$(IXay;;?eV)z#dYl}Gl# zqzk}Dmgr?8w9&+sSl_$J+Y61hnJ)njW7i~I)6eQ*2F%Xr6@}yp4u1(=Y^dcXImNRH zf^5U9UtzQ^(vBg(pE$+V#4Guu4*Td%2zhcV$1_(`WdCHq*xY;8?=nHHnkhxv$oIb{y&7q`b8arQ8-iu7T+j6umMx}K4SZl-B5pNknlKu8p zZ3DQ?{i@s$6QmMBr&;%U)tolC@vIJ5T5Rk-U_*Y8yV6_y{^M|n=g*NnzSL!nmXNDD zj^#jPjK=V##?Sg|18a_zW3C|M6XND~75ex-GAE!G0ZcWp;~QE%x=X8-WnX-`DPUca z?)RO~n|0IE4iayZ#ct1%pk~ezJ{0|7H4{3scQe*3{p57O?m-09Zxltsn>SQo7mr#@ zn&!pdRP2fOm+_xrH+2Cj*iE@8GgE}|oX7;sM%b+3mdmN2I6f~ zr{DjB`qkF4gN?@J<$r6wOq!+Q$*uU01d*|v$yc>RTy+B@?WKjsK;I8mChISSH3n^C z_6)@i^nb!K?x~c$xRl+wO-Xgsxcsu0>0z$cpEIO6i+*^9r`dP#elm=WJcwRxjT&APm2>9AKb9lsm0JOjQmu&Cb6xLwlOB?6YY*}H_+yJM`@=gr08&+` zSvo1BPT{|+sU3{9i|a(X`)C&&1K6Iz;haOnbU zTKWA2M4K~-+o~>b<02+Lrb>V$%XJK;K$7)HhQN7C;hS;>Qp8Ilab0_dSN^RJwKqE5 z-wxfjQdLnoy2=5VYtv$a7WmV0FiJ6DUy|!wZQu|2rAPx_0BWi){=8*R&?~XExe8b=1xZ8JBhIBU^cUr0nd~6_0ta~=%Dt2Ue^m%h+q#a7MS9c zVB`-&IwUcna%#ZiuxuJIcZ{L#gdw~vJ6Nh>I<+?T+%Ud>6O6&DpS0%zgIkaZo>{HG zNA4!e;tSvk0j!*?ktBv=PM939>gmm~7&Ehy>HK()Z;76a9JYJmi()_5$*(@d2wpRQ z$)B`+Isi-G|3l2L-u}G?HfE&UVXq~PfyJYAd^^2;E!aB);toW+Wce(|1GY5x>-*D% z8vPg24X>YlRb29?_gXgifE%mr#XIlki;M;4$#>KnonG^40x5*miml?O7)6CT?$%R@ z)q_@TZWMqJ30xPSG*IoQoghB|)u+rWIO41p+}&*HxqZy-p#G+Q0FW{4^&qjg#DRse zliG)@;PdaczW9^tn*3`wXEKzlO*k9^F-HwwF8*p- zWx+8>0(Sl{9C704KqiOS9Yz%z0mX9-*scd_vg3Gt2iaZPvSZ5?5Vw!Nj20V4S#zVP zhJ5QyCewPD44x4Hx9oniJIpZr6XVSfW~Kc_QcxX*wn>|YlaD|(0nBjlp69@mC0ho3 zJ&9OBYCh0p(UU%sXwd?-skXK%5$dA|czapHM{KA#35OS3z?sQ_VhIJY`ymc~c_-|s z2+48gd5t$3_&s>Z0JpOPj^*21wvFN68!vlZ2mQ{g@3rnTEBv`&D~5YL5(o}<$BaOG z1r>}<1QHc7f0T32IN(l1 zsNMdt2Lw%f-PeIS+TMWk;(v&dta@UI>b z_HPFI-dwP>rBn}g9tj7uRU)F0E(u^0(``Kz4@q9fh_PPTDx>^OlH3NJ(qFo(z|AU^=v%N5bLVPDu@fDoPnnom&2R_?Rk0xsizG< zhw+@j>KWd2k2u%!3~G47$?2*-2o3%Oe&KinplU;^tqg3B(~7oWF6>&Y;R@#sgcUU| zHU|?^v>DLCdL3rlQNa(^ZvQCLz+g>{rrTVF7?6F`DEp|9-6^1W2fjcjs~!Jr;{Yl? zBpPI=Xr=`uWmuxy7E3JJWKY3-aEDf}02j0M?CJ(%PoUc7}g~-Zk zYl;0HkE6Cjo<4PY`+Zup4Lr2ltG`t+JzPM)qDc5pUHt3axD8M^R7NSGrax|t5fQ}dt{N(G;#O{xbI|gbNrh9;QPJ)yptpK?f)wKYS2u)$u+7a1)OYjtEMAK5 zGpwuFB80EX@)gla37wku_s?z+7Wl*=UH8R+3I;e-t$-6Xe-0yt17uvW55NL{y3>&v zVv<-N*8h|btk1n;oK0A$v@`LnJS>|ET)ypNm$94`n+^PQxnfSiHSE(;;G*1tj^J_= zO*P_1nFUx(zr);966tsuah*L{p=dS;8`!k`%C34Q+rA_o7@c5t@Mi}`57EGg$eQ80 zKd_T|Uj8bKJM`6bO%-ETzu(^7GjIFgbTHO?EJSy>a)tp_4R12AjhQ|I;eM}In$^g} z<736{fMXCVVZaWo&bK`_=Xs4aUAlkKj;}6p%uM6b_E-0+v3`HSeVU6+RUjhacKStg z#$-#9HBAm2WWZ|%WF_`LSR8%V*0Q;SXflD?Or5P0h(_8jnnp6Q=0^SXM|bRIms44r zF4naVFFoQCWOtfqx}A{dcug(&GJM&UrQm@QP={l?YUF)HUoJM#R38RES!m-Y6H9f( zmi$Ja=}Uhr-LF?oXJb{nv}l|82+GM^bpLtnraf^~3W!%%1{1ZUm4I{cc_4h&*A}yG z{n z(2l_!L9p<*e)40|-m9~1B>(SNEm-*g#-f>E)R+-la#N(N>86lq>`F&BuDt_VCSVM7 zJ1g_0p#7)(<>et-<#Go@g1h-hq|J^l|#oB z56Az|=fG?jIB!~EFX#i6m5x(s)qmHotSZ)NRDP6t< z8%k<=E>K1bqmUZkM67aQZUZYGfDG7b!{z$!P_Q0xQ(*2lddik0hnNNYIXH=tOB-Km zOM&5BaB>t-u@WA<^nDL;!4ybUNHO^I6wf7Hzd zD6k`maZ}7$V<~XzzZAqesA~gXesSR4KNwUjkn3lf50nO*Hng&n^5nw8tI?vqpoj$4_ZEWyxEA+VSb?6 z7XF2Df;w`dK6t{$)!>gltHF5W42$Qu>2DLF#n;PqH;S26e-=+rB&ag$%$YhNg4(9L z(_|hEJkok4=AOB^;;!h;yR`VkE$&f<@9ZH9MHj|tx1>YZzm!sNWI4D-xpcfF77JND zMa5G?vm@ULyAzJn(K>^ioX~7+Rft;JzZy&2tK+lWd>L~O3Oqq zEcUK`DP#_PuGvJAzm6=*>xw3GThcfWT)92;F8Jj_$4*-8hLxE*o%$#TO6gETGxe34 zL>|*C&RlGNip^lJYSUyKlic_ZRy@Y`AS)PHHXB42$}h$1^eiC|3}^ z+zR2RZlUx4DSh&9D{%V?3?kQ;V6iy<>c5$!j*lv=R5)`(wcK7B7Z@u#rP-R&Rsv&VERY>x9)O z=dTZ@nVvFC5dPleD|)p2 zS-tF&emk(grPSPA_DW%v%Hc!->rT14G*<>&I(2;yszg|q1GzeSJ(MPyOpFfVw)@ImzqH-%+rR6#;2o|aZRuoU z|5BLtl8Ntbzn8qGt4v1 zRe+z``hhE0Tou?tpHEtja-Zi_Ii=~B+Kh8|YntU3kPUe-UN2clwg>S-QtMagN3ft! zKRjl82&x?QzZtoDVMPz_MK@u$FwX;)6f)fv3#Eg**HoF`r-Ep+>Ff|3eZY)3tlzW$ z#4~{qF;Hv^^zHla;MdnD0nvUN}VtnLsMUR?e16IIl4m{jN=p}j|6DI@Hq(+S!f0F-^-PTm)ucPyk z(D2vvDY7Vn)cQXrUUE#Jital)bvQms(g_0GFnD3!S-!&S9ie2p4^BtNH^U`fXZrS! zUj`HXLlF)zH(@M)YB;HJS_t6!HJKqhS+PUI&x^WDMVz3E=S1$iuNk(E77qL=z-i7+ ztMRAGrTXORoVK5YfNAIb-{8CW=gm5!_tq_$VD78P5k{E3{qT5lo(#;>?P0gmzfVHo z@>Ei??1S)pJ90(lUE-dAUAQRJq4E2JxAj6FxEF?qNZq=PI@>)-=dJpHk zn%cEWG(oCyb*Ck098;s>XAu}MaKu6ZylXFfGrh3Yh6vIP16!{1HKk&ZlG@?cO891dNiEbfbkA`OK}-x!GQuY zzX-v>G&|PQWbr%x$;xiu1ib18Oci=zDK+F>0iotA!;s?@MS}A=Pzj&waH3>Mt-pqulQm~QI@{H(9i4Z9 z*KNDQou>1=(0 z&Y!D6!aWgWZVL~OPXt&80%UJJ-mMU2 zow8zjZwbk)I6Q7fHmH#5t4Zyj_KTsKO!sQ=58cp*x5y0cvuYGJU>WIRZXSQNI^kA+@^$%|qY+Ou3vWll+Dl zrsc`P?BC#q_F0WdfIFODomocXtrcXS8f8`HwQmc^J(ZQOLuE+2;h{|%mV~!B4irLa zK&ey10LjdWqGmm*=FTPCA#9fCs=DqYwpEu2rKHwLyEj3W=dj`(yfUeYiXj`)qf>WH zT}ii<3v1*94>aL3M%&>xzjBs_vFhuKOctnq*}tEa6Gd{@zv^&@JHY&W(1x-Kclw3I z&Z>^8O8u$pdv<3%XF&%#^%8q<+J!{%JWWP;g8>KSB2gd+`51wWW`W)$a%reV_lUTW zKad-D(2_TsHX8G$^PHIPjhlBQv_Hz^VIMZ+LiZ5cN&CtPISCXQH;NF^L+wIP0%w zgq>j}MUq;(GVubZ6wU~puS-Y?VsA+%nRX{+b@b8~?qEFPi%Y%1Op*tDZ4v1({UU=* z7neFt_+rU#y3n)E^Y~ACF75-yvAXZD7L>iBD;*GiDpp??colGAzGpG?ndEpWak95f zShnu+GYYvkufIQ;aC1@qp$GCH|5d2*{{jUEp*Do3Ss z_b+m!-I`9l`6`)c?X45r!^hOOcD8;sD-g(YHS!7~rN{}Ow?Jj%Y#NM1#3UqQ2I{fIfq`_yfK1D}$7-B>zc7>jbJER5+w-k|yzynK zS`qi`N1AMdi1)lnv)xU`SYWDIkU3F!&+@AD#FNV?(;J%Cpw`Bu*;w!IH9u8%7Z%3$>CG-E;>%!`NppB8rk!o%wI3}j+;do zX?vxea`7ULczoDc{vjoXwVFVFOrmSKg!JEx7J;ux!yt3@o4DPMO5n0W;8+N02lrf`I{|}l? z`*!5f{fBnAUJ8)v(`fs0|Op!>w_s?P_ z#BU+GZz*m$B?<${7leD^UZ2zNQrED$hMC{Nzwq1cm-;*QDZLjlPPZZ#%ro(aFPsBa zm*fSPeIT#qNuh3A8$gBH;MVKy5li<(P|^=>)^P?&&0d=YzS1LB3(QGZ^7Eda_aPk6 zfy;z1o3~2VmcNm#jwbBRKqu^c^*W41D7s4N)E_ZkzYSfyqCH`8emHG423a*OpQmZL zsf?VGD5j~8xZU{K3viKbi1aObM@~kvQdKffjO8==B{sT#tfQS{5l~qU>({+`J zeKA8j{72taEV;q^FQc1rS<-o6+WSrh-)6+SH+1Tpke#lZZrNT{#=J5+h#HE6`%zZa*BI$p6S|H^ zu`)qf_Zd=M;8*?V)Q5Q{+HuGaMo5|kH)Js=N@L$bX^I;Z~tV8Cq{$# znTdt*2*s0z)BIEwSEN&r-fh&P>k0r3|_nk2%N*3+b+xGCMm^cdbY6AbJ8w$gl z*Fk>ny_XEqIX^^KKkx9mmBkeg=su4Ku)l)m{h&C&(EIH6&pG-z3gW~B-esx?-DkQ- zUf(c%=6PN*JT!b->^=~!qX05N>m-WjB(NK*<1SYB5yW;9aI`*nfj*pljrmxrx@!_@$r$x(o(fZe~?G z@8o@{d3nInZe7U~ZD2UUU>A8NmX;<-8xmh+uOU4$dk5sTf7gtFtX1${&QVTrr=WNx z>hhLE6k!Q`TxxGP?)F)z(gGprkfk6m= z%X*$djqko-F@pnoko7h++h?OM*{WW>;pA^MzDDp}he>EhZL(*kw(02H%s+$~4d>;{VYjRkp#t*q484>4GKru;xU*s=&%{if4b{?dtKJ3%gcnP0_#@C?%zME}S4a4D zD0mK=cHBmirZekel3|D6FVdYliS*&L$5%>|hT?V5)LL%0eUWVE9wDMCN6TzZrgGPi zd-DlKttIPWkD%G&lJy=xO`M#pJ4e%p%N>n2tui&bW0lYduQzFQoDCG}I-j@QCnCEB z?p3F{Zd)F^A@MzX_L%4bbt-G>=m7-dIAe*bEEbJ;aNMF&l^IS;jZM5I4SU8fE(7EI zMu|E;o7G|fV;18uow^A`%!&0+NAzC`bFFY^3-1o-RvFx;_nb*>!`bFknDp zuj838rBi2&kBBsug}L8`*E##>AzuHft(Dz-Dp&E}8>51ic0*f8HP%V;NyF1E>K4hj zs|>hwFH&A@Iw#vyN2Dm4{OrV_d;@d$RttnbQdH~-$cs$O$rd*hGu$_s^!xM}VGAAz zdr&qU=t~dZC(WxSmL9&gFm{oBr<|(6;y~haWFZ%{h&|tEEW(NB>e~Hzz0~u1!EsRj zt=tABx{1a%;B)+{NmdBRnZ_z72bJw>2qMz3d@r`qKd4X^);IuVfs|D+U%LzQks(Qv z9Ys4zeS5v)&C&MMzND&sUZmiLp&m5bOoweUsb>HAm!R`zC;n>IMRL!qH6+cHH!mmZ zxJjFzsfIP`V~snU7yK1QiaoznjKP3Qo%n{&^Rq^d7)1AA(nGoQ*YYWi|Hm;}v+Ht_ z#FtXg><@La=kD;8047YgC*$==*LY!8FqF!v0i=W&6OFC?BmvEyi18tcF$U9;D_Tp~ zUjlgdN#lU8k*O0lDVE#0dUwJqc~@UGPFq38NUQRO<$pKoy^`ow{xhU7(*J;Bq3L3M zlo$L%0KSZQ#JHFv`4`#uorKMH!)OMeGOnPjor*3qH3r#EKC!(2iZ;2z5sCEK(VUHH z+U~|m<}ZVXUQ<$moa=vX5?^*wu<214Rc3n6+8MNiKKXp2@aosgZt#<^Bmc@((^s+b z!HKCd!(MM?$S*;!tjZA2#Jw6d-K{YgixM3XMde8pc-1Yd#**lOv zI&RI!D*{gKz0kB;>3 zG60=-(IE^Kn#YKM_d_=Gm%U*wc72>|cR9cMjy<-5q?UNFIxb6^jk{j7j%40;XMhGe ztu!2M)O#$(^+EU_zOJqQJDTG^qYyac`)#vf*uVBm)y%uVy^~^xQ2~Pg`WBvE92gdr22o)7)%%NO$6MaZ!^TpUy0OO!5yCA zok2XumH#^YN(u1051{_nA_BcAUVaQ%LhiMG2J=`Vfm&5RAX2vmu75Gr$_As}*+F!T zwO9WBdf-#k2eA{tNdjbL-mkKaxK+>0+hfSf)@$<9bdbpmxI9pasZq56Ug16i z-IIbERXZg4F=Qy4Oe{W5j_&beyab8h^9hRdZ|1V(^mej2^T3(h$$p89Cxh zg9`xGW5HALnjQr^YEw=Wn!QF0<(rZroR1pd-H)f;moPCe`Fb7;eb%q@st)V{=M|O* z^jYsg8vXe}j*NIL@&~1DH>SY=A9qjRM~mHn6Vi&ko)^K_&B|2;K1 z=%S|7tYVnMpRzr-K)=$H2yaQs&a3_Q{3Qdl-9CI zF5r+{c@Yl!51=Vp>A0t#SOgo!582%ZXpOH;$3Nk$n(9IP-Zkpn3k$l(~YF*zuc&fQgT(hQO>@bFgmMRnYB2Up++ z$40C-Z^m0q{pLXFV3-bn;w(mvb*cgh|8AsQMDq!|)TM})!f=swCU3@+07_H=sVd4y zU-jMa?IJSW9kMKzQOIO2{Z{6=wKf1Jy>4EC+0+WAJCawf78&Tqu~Bg@Y7E4KgW340 z$>C`V1aexxgVe2?YAaQajnt>_7RAZyEA&J+ZOGn& zf^Rtm;aAwJ6Xi2yZH;Dsn-#M&`*4W7tCaZX0u6I^`cM7Py~hpS-va&ho4c zkM#Kc;~y75VxyE@;ZC(SH4B{WoJEfTtTA)YU~IT?9F{;P_9m|+B$I5YG1lI`T(P`I z=9y_m0A$FTF@>*F^*N7>`ZPmqH~0DLTt6Mp(#3C7RrN=vF8~;raxHQG>@I)yLy)3m zK5M=&y{R^JF6Ti~HE~1Uq?)PfsCL@YYyxqxMp5CEE~B~R?k{rEb}0JdM(eBOUjEkd_Qe&u7!d* z;99pg2-p(z7^Yaj6=1WNC^=~MM!QkMFAdQ2U}+H(HzX`RhA~3_-ls_}m@0ZUV+=Kc zF8-*V(zl#ZRc<&?Gf5Ak6Tc%ITudfLRTjt=>O@)Pj}QT2>NaNRr8;*wyE}W8A@hP} zp(Sp`H*!F@Hm$5ol2t*4u>;k-vBeemLoCVQphLl&vvDY8Bs_ExyL)SK*0t>NR0 z?GsZ2$D99NBvZ9CEzr$@QGwO0Z@{7;66aGh9=k(49WzSaY}}Eo`*XP^fydtL-hIh8 zlvNXIC7T+P_gV`b|Gdxh(~Nx?+OgTB^qpRI;bB14gx#ISU6p%lw+C)W%-7YeXf_4C z(BzvIRDBn}$$>ImuYHsP?h5%US>mg)Ic5=zun=Vjy)6J@dsBK%SaEbfR;3lA_@UW0 z5TFD!pj4QDw|BpU=z8?Gxs%(!dUb^2O) z^>e2FLZ(YmlKQ87Aacyf*S99MEdcw1*9562a|RO2vBrs$;Q@9Nkti?v@2#Oevah=E z+tbM3eu;UZtv|DfAn+4O>LjRORl6=3WyhWs*i2*<-(d>;)iPj4$qY%3_HRs%P za9(5ZP;NuON_oXsof($trx9qL#_KxjF>zG|5G4?3k0MD{)%27)E6goHVj&n? zkay)h>UeupXzt%HwIndg2-Bn-mYSt}l9nXX|5@cJfcf^3E1pG?PJPS*jTe|^)DxkR zK%bHBV?M2@>%sWhgv)<`C+Bbp`h3>k2wp`}YyMXFO9Ro%?FCERA_eXw9z)W-11yTWP?~d@A8Mo?1qU+dit4i0@P@_)1u?4iYq*&3z82; z5bY=d_*x{p(t?BmY4%#}RRBhN`WNi#C(yD3fLnBT3M%$fC(Ud9M{}t~vkJZM;T;e} z{=~dajnkIrV;Ka6&d12l-_=nwLETdZjTzv*jwH;i8-L`qE%B$;snM0^DxmASlSxh| z+vPPBxeL~yn~HmU=LW1eLNUyD9j=w`kNF+GELf1&f?7YN^eTM5I$n>9D{jyV_@821 zPZ>?6!@WUN*8Ig_Kv|V~>oTgg3&J*5$?y92gJjD8nG0zNSsrjOR^fU2c_Wnh+$ZyRQWH8Ko}J_EQZN7eL@$Tj!lrAbWk-4?G& z(*W1y`|-P9JniS`gGz^0`cszBMFd~TKB9(ar6bkk8^O8bmBvKsD`zDdC?C9mewxok zu5`_OXF;xRD<5$;7??0y-2FH=tqE}U>AbqWX{iIys66Zj^cD7Vp`J~H{2s&IS5Ip2 z`Q{o(JTnqnt>a)md!NM0`zF#n*YHhc0K5kh0Z{L%RuP7Sp@rMhYgmgWlNm zV}=!6=H2)0#Ieg%qvCJDh?hvRisRnq>G(`CS@k0*Ri`UaWmJ%RGw{%+?snUBmW|D- zaU-IO1NFm*>=Unz*0aF5T_X|PuhF&9$>FwE7NwC(k{BVK@9xcrYYw~O%Heh;#{>KV)*h+)U;V(Jh8FZkIUGdcI%H?GlFm|dgltv zvuUNU5YIiXa7-?}_jG^%!INbq^I?gWzO(KH?b{aUHa;3wpYM&`y8Q=YccY^=H!%=KVh8#K`@u=Yvb!RTGZ!s4-jaGl zA?enJ#)0X`sEt`vaSf^T0u7<1#7N2?+pwowMUo#3I%)Uq0;&;EB*i=^)SJCD0f4Z& zVN_z8yqgyI+( zDZaLb1GS?&G2zMzJ$DBGSY)ri3AIOCUJWP8w5IwBFZ3rJcp z#Mdey1{qaKf8GCAhkg;q2T$>WFW&%7y7W9RH=v|L`+*j8`PJ?#^QE4D_@wL$Mi(R5 zUFW$G0T(iis%@Y0z|hb=OE z)1{!@GsXKxXM%p3jJ_hhSKiOM_)6$NKcWdB>G8y@_}wjieVcljrsGT3WF?G{4a?UF z`_GMht3}=6Jsnw>fi(=x2aRixGBx^LFr75)Ux5*);w)szz!HJm*lH!vsd4m_`7Z%9_zOOA zz46F$+5hJzFPMa7VIjY3XaAkO_!dP_km>X6843K{6RW1L-|UT@RAi|8<5@wrN~#&b znKRNDP6-08v#d3+yN26?sBFnzK(Z=S@`+6B5oz{-re!fF3RsFnz-459#KA7w?Z|~O zXDmxF*$^YcR8=K+fhHvi@$IYy>R-a@p?MdN)MNav8D>5{7B2XY>1a}vP zr%c84d0u@8d~eP9K%#t7x-(U+L*7;Ej^CpZ(1*8|3Z@UHX#-#>(B<%Z8PjX*ECS#3 z@N*)jbzr@O%(-cGrU}H{m7vHLh@nxT_Y4L>=sV;E&HQ@45UWSvlwwQSuaupE5zI^p&9;{#2N2!nYhWGBl z@|>MK033W7#XEeQ_inIYmEl{cd0`A1#%lD`FIc$?EIJU%p@9Q=55Ux0*Qs-C{KE*N zBRN08Fs}c|P|~v?Fmt!9~XR^k};h+nrc354%u*yFz>(af6n1+eM+aU7(D&G4t%bIL-|(#{C3ux zVE%Z!d)9QikqMksVB2P-v8V0oSDK5Yd;G(li32MpQAxD zeHrNp;xBqX#kxu-M*}DCr=BLY=@~!{qcon|5&ib|V`L|n$_%g$ar_kxS~vlWqisq3 zO2#B!)f3*d9X{n&kAKDLkbIANBG7yPAPdkuiNmh&IvIk)7c1bDgJh2S4FoEhpnYPw z4KY6_mgnX_Z@GH;)9z$Hqgq$uaDK4x^G^f%|4X}-%viWF`G23$SvuXtp92BVN;&j> zzrf(q($Ya-OgH!YD4Gj)=`sY!MH*`tnFyr7rQJ^kwtE}ig$G%L_$MM9GMt^PM?ulXFZ%8kIIn8KfU*dZL-?APTPHDZH7$G0J<{z zS<}7#Q5PIK7ttV zr|Bi{(i0#|n>7H?{bo{!Fr2g&NUTnj=$^8|+7Z$0P;hFgJLuZoB_xe9&OcM3D(bvp zS1dQe^WXa7l9W#9!-JOxv$rlL$mE5Vh%wbZA_!T<0i}TrRBimnocc-j1#)}SQL_I7BiBY z*|U-g01J7c+e%1@_8d*G|APOsLY|))3_?~vWCrN9G%Z~<|J#aNO_#N4lHwWZF>a^6 zN^a0B&T~O}a-J5e0tm1c)GQ}>$jN6xh*)H5i|-sgPzz-JChr0|7r^@DP*qLjgosOK z>7{*`2S&tYTkAdK>LuIrO-}h6q9s7$5o#VK1N-&-isRG>;kppla6!RVtF6BNGU6%i zw!@gvF0sh4`TZSI(FRmTj(fl~xd}8YT)txoc{-el++J{0dQsU}I({m*SrH}iJ~+ni zTex`?c>O%a12+;sPY_DnSN1B-i1>4hX@3Ao)e0!zyke!QN1?vmG=G43%Xo9q5g=s` zSzx`rZ&m0ZB8?L6b-0&n-X&7DF(ye4X94?7^z6%uijP3+bciRrl=ow}vXGbt+*$ut z`){=z{B-T8@2ND>N8+X@CArgFFR2vWgoDy&M+x%8Po6$nH<8HSd5Gm$#Y<<$+Q6a= z%-`|QicapsOe_OXfcTvG5?E_Hxyrd+8WmEXAU(J?er?dNNQZH*_a;nQSOW5(UHzx9 z=*O4PpZ#^R=5ugD+SX0JC$k>l`*?kV0lTIb-3nPT46GH}n#&@)SDpa`H9g``8K}&Z zOE;U?uK}+EL=uC8cb*Um4|>&M;z86CBy;D}VsdputTWog(ZrB31=MmKcOC&3+8lx-0+KUoQCrf5PFV&b9EHG}2zB?aySlM1=;;nz)R0kMXc~Ow`QwJcv z<0j2r9}nDr@kDeb)}Eh%O7r0N-OOIYJABYv=20DoGfI6n54?|yTX?XDf{UaC(!0v z$#G{kx;XTE<7CU!YHab?3aq+xRbYY+G5#$e%p862@}x3To#h_6T%I;>VRhtj-1Gx} z&P4!9K|TYHdfAiG@A87MmuT;pV+l z0{lPS@6)l7;wnA`WLt|%%NXXs3&U^2GZ3JatSeH>0mZwB?uN6*U;I57Tu4Y%g-YdM05baRNQ8 zJs9AuOwOVh@dgmG2O(qeL>CRxi(#-v8(d4tGPr1Vog4n3b+fnuBw)d`yV43_3%>;z zz1GJQe^}_)K_1U}bY*k!AT}t;8!j8lxo$s}O_2!PX_i;$&eeZ)DP4)oy<)4av4we*00Ew%q%Rm zvksTo$N&g#w^KIKqEx~sRI8jCbOPCBztv#_Q)0+;b7zb#zR?SaJY-y{7v>{Ry~gtw%Y2J@ zBWeOD9d2ZcY=~an<{9?o&Uu-s@)M-kFq^m=@B&^Qz=M2#&j8GMHpA^-lUkR*nqAoF z6@6Ph+mm*66tc?D4&lFXfPLUJ_T|l(>FH6{`DqOYxGP3i^zu8pA4p5v-DSau|Cs^T zcsL-m#SnU}!vh<5aBkuSX`r(9{mW%FKo+v$3#z!Tnhz}#EZxd;L??N;y`bag zrFfxhM}zIFKoy7khp899>hH-)P6)1H+s&pY!3eG3{t~3eQ9yMJ-&03=2)xg5QTF-y zm}be#N*73bsl4)Q4^0f&02%+rv2fPNPadx3iS_-sE--<>FKINZgT_~o+$bK9Q3Z>n z0lS)nGn>uEQHq0(GV^|TWf(DSus zvFj-$lMS`Aw!HvHA~`w(-EXQ?C!iZK55WKu!A0eipAEWf1$#C>pCLf5+N`iImz znSE(o5?&3<=cnZepR|iq-WWOIw)(xL_7{hMz@mPj4Pi{iHbkMb&a?UaEKx?7AE=78 zZlfcX^?F2<4_0%%wA$`6@*;z{Bqsl(6@*7B;wav8$p$M;FgQen!{BQbt7+cg;@KqP z=;JMj7&jo7#4I{v!7H9zI1^ot<@RYl!S_PaWQVV%wELnOs3NeA@=Ad3d0AF;yq<`w~qDY3W5 z3nb#FAj7%-C7%SLx8?$$aoi&(gkISr41JGEXV0&YNFljAQM=gFyU#rby6Tyq_BSpN zVbZLJtB&KE*S2qg*&*?Y1}}qO<>8F?3FsWalrvjLZRvp*a0b?d_tfajMQ{4&9s2*H zJmCOlK|~deYtTiRm9BAN!QQKT7gEcpQE7r}uW%zZOa9y)c(^P4Y&&*m6+cBmjoKg< zxu?^!2jdwMN!Xt6b>)&6>RPJxoUWTSZ+AjP(KB9uPL^kjKY(V*R0gL19s^k|9eqxM z)R)6&ql>u(fanD=;@NQq79^b;AYcqRlAzx>cp}VN5x^r0V^^lEdUx@lJL6zIS9vaC z_u03h5PDL_DZm<856W%cZ#>v&WIdXvHhOm-SL&luy5IqiBm%PP{8;B>SYrXh-qyN) zi!e&fKb^7!tPcR0raN6Qo~6#!XWZoce%?XpHFwiVncG z9v1bejLfybR|Z;oeFJk>YlPAz^$z04ZJ*J8C3Ar2KIc>QtT!cHL_#ifIfL?092(ug znck2Qlb18k<#EEi4B`JkwiC{d1mItUo0N^sna2L1ls(y@{kx3JHvxY=UDlXDmkl%%Y^K3^YuN!4?sbG>OPe! zbEVQ78y&`KR@78X1^PtG?h=mVGp>k2Dt4QrWzy92N!Ql1(&V=X3OyLFay71plNRj>%8nW5{nTZlRF zQN-6PK>h(ld6so=)4d01i+*8WsCjQpF9bSqp6RbO8?y`hx_NYhC5i zw=T*VROxbL^&3>D1nfzmo7E5`IhF&J|CzY3uXqMIUDa;sC52Zzm1@b+rk>sqYyAQg z)Az_R%mw&l0p(u|4!cSJLVN=MxPrXI1>LtD;WJvu`#~E+bz>jMls~lTzi3l>Qd~R~ z;}h~3jEaFD5Bw+_cD2m=uFVye;0~4O^MT~`S6z!9C(1RJh11%M!P7Hr6X}4ReImyj z`8(jiaJj@&=V&<uH~g2MnPT+((A!SNyyp@lGa`O9@xVYLt6X}w0L<{JZ%W$mMB zZ>$RjoSHfPwb#bJarw#!;Z`p|52=jZ-k^~5}% zz*nPIbH%Wr-%69a3j>hLB=z`9#@;4dZaJ|f?~Z0bJ-4GuXC{%o1t8BZo{2D^CaJp^ zj8=6Ab(Q0?*IRP$B4+xNZH9MM8n>MN_LdJ zQrSCMCnK`6w~Pp7W^W}zh|FW}aqR7c-{V}@_5OT+|MW-EIj`}2J|E+DzdzKG&PH73 z=?6PKZyaXP=KEQSsD5Akxa=T{qZ_gpX-5>icNXT*{l)Dm4@`nqkobVM-|eU4kGkyp zCD>vFBlM8Uc`*e{ye{dKg_CdtJBB%}nhCboCh#ld=dp2KBi45c^U<5BTP-5D9cmsC zTDS7BxMn{acDkAfy^I;;4c@(mv;rdV{1^^sPD!>Buq(Nc*vs|E?LhTjPuep_Y1a)~ z=Ck^JU^6@QCsr}TN1sdA+^fUC2a=5}c9i4wk&HNY#di!F z0LVlDxbMF4{)2}UzZNrJ{r0W`O=I0=jU>K-kBTB1=hW<{xj-O1_e!hyqf>O*nlsl` z#g4|SnN`CNLn?tThyB=XOyERxlB|8C%m#6k=COMamXAX}$V$fk4UveC_$AN$y(DLQ z{PG||Sr*$#dZ(w=M@i2x6nBW@*&~5n5Sc_OYHW^fzr%zkzn&4klTxPa42Jfl9unQ# z+~w-15_5%02uf$nUgkOchR{2o@P;8C4@F?O65Ci!w~G*$U4bs6P5|i@!AZ zN0^K@qSVO}voId^F1ggE;=CcpdLWnOWDry;9p{lZxVLOO`T29c`4Ti8ZY>`G!WR$y zKcfAMstG?4=ZDFL-FI+Gf@I_QwxOVK?TT1wuLX;TQHMN6e-U}%rB&~T-LF5w299GN zARIe+-#jTpTh&auk5!czRM(j)ihZRfg7($%SbnS_ST!-D0t#ixoICn8~4L6f$ zSuBJyOw$|B(#VwPlZ8;2`2n51Z;xS?OF>FSs#pGYajN`7PzbaQ3r!|02Qu?FGSr71 zOpsKjLHV~7-H~DvqzTFDRe_i%gXBVxMOe7cY895r4AHp>C(}8+-9;?#XzCDc6Nk9o zTt@D`=2ENn4q447iZonSHpk6Cv;O_yhrTHTP5P6=lZ|-=lE1RW_4rC#8Cg%toag+8 zb3MgaQoY5GKdt$$^&+Y^W$%~>#6um|4+WHkNC3IWcW>rF*jn-zNAINGCFDw>KLz&0QL+Zxz)(Ly@m|!Sk6VI z_n%y?{%MxuRQETIbS2s-;T7Na3K;*{f&P_*=+Cj}A+J?+*mt_a`EnY>pJeg zppwOFG3G&Yy(DrSTUTsyC72_*$U5xe0?^$6wBzxW1neeh^>8Z3OdDwnxZ2=|(uwyv z%}a@Zy%TbM7yl2Xg0-S0%skZ}Iy(LU2%G8Jdv^?^aUJ0Smoka6i`)T&%U-R>xGKHkZCP7M18upD z8VYJ(#z910a3P+Cg}4acv)=?4{OMQ_9-(KOer~^&8G&s)XAq(VDibou(K|ZOYl{$u z1$H#loOxp;`wfQh?xM4>Z{GIQwVOi$sddso*+UbJ8P?J(^|J30aHZ_9==@7it}kI38~2RZ3uuG0 zjs7+aVG4^caVHtQ>6zR5i2M?=iyIr+UZfLfR5N2l^f}lhwv*=aKqC)95HQ`I!Y0#V zm;nuCF4?ki*OwyP7HuljEEY$yQQ_PO$9|5fXjLT4hwV2kG2tPc>xi8m4Etx9b8^mA zphj6A#T%uiaT1$Ii?a^%;2Riea8G@V&n(aI`&?RXOV+->c5CPNgij+cu{g$h!Lih9 zqL9&kF?D~Nzs^`y6Hb_A+#3cjL(*%Y`?yc#G}hnxx6Y7U7#ktETEzaUKVAU5jB2KS zfnfUDZLvqsSWYN7zIlyLzPx@UXxe!B4sP5HgrR%uqll7MB@%qVk=}DpAf;;k?$H6( zAG-~I@_fHMsI=WbTOY5F{|)y&^8Sd_>-Llk8B?3W$P=~sd(O1;c&W0|GEynYKfdCK z*rtr^%OCHRefu1Lqa@^4Rgc(63A7RE1G7fRqYpSa(xMR?k~Sp@nP^gtPmY;_TedXvhDaPCk>gXR8Smfqq;4hRiM_EQfORHFw?KP6RLstmK}!qg zTcD!V)po?l=R~mGXnv3aY$^$X@O@>Le4{Q^sZ_G77by!0Ym}j);g3U4?aS-IvW4PT zW?Q<~lZ`{~pOEtOZ9b0sN?w!8P~wJJ3Zxyl&D=P_jE!oyE|L?wxV#+7zZ%}2mcu4} z`q!yy>$+jc_k)3f{b~VYr02;e?c#4xax3H)@PDo6bv#TaI6|5OdGDm9c0E0f55DMz zcy-pZCAFyuk2ME}4(^ei@wTg7egTJ1eneC<7eI-p(s6OPZA>H#uRfd||4JGe(6bQ18Mmoc|0VKi#~nhG z3oRR>jOQ8ZjJls~5^&j;Ka!qer9M~@?(GT@? z$G!Hf_(O5HYjq(J6-}2&pA#fBr!bt!>=4YvNxYAsGqP@oaA@J@cam4GAP0r6)Qtx! z$e8g@!n1B`PdE0`d?c%E=x556TEEQySWWtL*|&bJqPmkbTSH0i#{>S6md!f%k)6Na zUl<@XT%>|bt0!N>B(%Waox$5xL(v9TEm#k{QD5>)3l!5`9xphLv)%TF{ctxYrSvXOpZR&|syu$M(zsMp`e)t5h(@Tz@bCXF|2>kB>(0$)z0n$hTfw=Tp27#@mJeT%cy*ZFI2on|MPOYbthZf{i4rb~fL3<`fj)!m3? zq3%cG0z38bI3pQ;29$?2t922vIz;;eI+i4 zEbVzV!_-nl3U{^!4&YKjCk6A&b-K=AfX&~5)*I31&RmHjV)mBthbLxjVciCLCmm@r z72|h3o(d3QYjol}7m87~zeh9h1TTvokdsTq7`)M|l%{znkH`2?A-p?Y7j!i)tLR91 zxAL#WRd${#{t8Qvo6iv|BD(+`Vu8lXc=t8pNOn+n#WhWa0rWlc%Z0~6iW*bB))Gts zvT7cauVgds!Y=tIBik+)pRoxX{Ru=Ge?(JhhnV&vD7dougkR|TPw4%(1JoF~s4*9GuV4C>6rfNTK|5fx=@X*z6F z)oNv{#retaK2gPvq!DyIhPbrb>OPw~4hOO=B38$o%8E2affAUs_F2F9s6D0dsk971 zql>d#aqC91J_xfyDb=O>pA138cV4kVU;I)5RC0t_6r2ks)LR40A_yKAowKcCt&PYB z{u|aj?wkVMvKLIib$TBxMsz_U|_~h8Bm8L1_PE)Ge=*IZ$TED6v25mnbu#eX~c^W4& zzIw@D>dj1_mIFj?-xKt4nkmHX9sxZ z1DVM{k#Jfuj%(hBAD_Jl?EC8FnsL`AGO^(zyZQl-6ZY}=h1FWoPsDdWtoM;U;B#_K zg4xi{GI@UFWRv0Vn7v8f-^87Z;od*9sn{yKtcnn%{inhUZH%QLd$+NS$p$+06zHWR z^z2eacs~)Tu!^zx?Q2uP8f~EV!=WDlg@4i=c4*WR&VSILfpMJD=jLDCcDU-)!QHfv zQnVvfyU60ShNRxv-rXpgJQv9w6NEY0?SDfqi8JBBe%xc-xUk;Qxt^kv?!(l; zNEi(wRpxw*uEg>4V`z7^^#GWKucwH-aBS$kDTDFJy63tSn+#F817j@nNECxFW2;Pl ze>#^x4a+Q#>}+LE-6-7ByodrN^2d)&;bPAokwoK_szJKbcIO>#HeeDzy@uNf)fuT}+A<6IJjvRN z8gO49>>Ks?qLNv$^NFjD~p6CZOu#-~DT?_UIMCMQId%R{D=%uRgq zI~~`XW?DxwRWBhl7H&WE#qx>HViMir{f)mswd#EFF1{EuRHui|d#J>w*7_XERaHDR zeR7JqyW*zACs#bKrITwAsXX(+Z?1m_BE(sjA^=cJBY`}VtgIY=ymoosgy;=Y(@of4>>@8IjX zUKlguJujqf5_C*Kt5sdi$~r+5dMTsQyZ2J?4AK)TT7L*UcsE`u+iftAc=5zlcXzm? zf~4ts`cn#T&`7$XNI~T^wr`Gx7WSCa{@!tx2;uk!Gaz9(|G6AHDg+ksk7|znJwag<;w6T-TXp$ffify2h$qi3v+!Af1bJ&CW8D zm-E+(j!v65QXP9Shb^NstwHZ#;mtkp520#Me;l{w%MJBpI(-U;nkCV_NJS z#5x(2dq2SP=d$|JB{A9rNdud4EuL2l`5tJ{FYPgzSn-&=- zr0)(+!zK%(g51)<5y;c2Za!+;?|_zAhelb}r|%p$KG{K1U?IIbo?qPPwU> zmGStm_wmy_sSXbs-*oat^Y_=+^43V4zFOFQ%Oh>*S#lzQs;jOPOJIMCTQ?IWjg{=? z!=fuNE+Bdxu!M|}u&0IXXzv-4b@+vRhFm3^Rd31R%JuRJUq|KF??FjJ#{-@CEivl^ z#@Bz37EjOr9Zzr!#!?XJXE->YZ?1C7Y-lMcKP>>on zi}<^z7${rch+n#)81>IfF`h|af3gQw9l1RY#QpQh>RISUmhT%V_H;`J4ei*J`@8HE zSnU`@CqR94cKpF_kB}_2OA8m{s}^C=%$qVxVMml^v%eDKfm60ojhyi%b7iTZad(Qn zjXdkhw@12!=93LgQP+M~kPh=zfJi6ZJ9y%;7N{wCTIzYAWDHs8+FmNf!ruoUkyb?m zdTlY-4vgBth~?o%gjD9hwRo04X5D5HBkl}RhfNRDGfn#t^yi8kvO#A6-C|wehUC%m zvbHx@M&z7(-C?4H_oVZ?*=fl~im|_~Ka;jMtZ;d~s^b$wubyPtHBehhXmMJOvVK?|GU! zm-*Of#)2$Gyp2Y?94QVc9^Qr(>|*p@9?_>IK-uVeyw};Sd5Mtp7Z?_((V&IbJ+wx< z%JDSf%X%uDdR&%q#rI-Pk7X9EsZyS_Qv0q&0(v=g;yR}AyhTI9^sIMx0r>Efd0bHz zWds)KhQQP#=_Tdmws}Bt90|>-^o@C{(citUO+35{sPoaQ4>UjHakztVO}MXz94!0| z;YV-Yqmfr1a3-qY;UG{Nmkc<%pkrXMsPuB|(y(Lat}`Pn$`@-mcs7^55RNFkX?a@L{5VtvPaU&uGUD(c+>buu)6Bro!d)Db^;>B7Xnn3 zIEf)I!v!A(8WYlF2uwc?#*2-7w#6z_XY$L1$W<57m+GXscUa4P4pExVGiE6Sg>1Mg zj*>e4`V(35<~SO;-x7r17((vap#R2AdJ%#R#Os#JmC+1!nI?C=H^IsC;mxy!6TDxbMNyS;7i8=n^#6BYG}5lVY2L#z%`Oa6m^ zcwWE$t^68B{afkoC^3dUzhG^1ndLp_WMdkqIzz3z`hA_w5kaEX}Zs#-h_nf z_YJy(y_t^dYiBA+!_%qW)DTF6u>YnMQ@}Nd{kDXcLd&y7Sx5|!7ch9b4EU*KaN_DL z0Ml1?keox%E=z_D6RC=Q(7Px}0;L@_?1O=3P_{1AtTR`xNxw_4R7pl>A}lOUmA_e# z*H?dfO8*u@DD_YtYQk((Y!;jJ{ziIYQSZsok1!HLDY8sSbWCi3#}wd<_%rp7mW27f z_h@NkrrjJfCvts~n0B#UhC_OAV0rKQN(qtU=egPGvHD-^#F2~Xdh@sHY1a^>8s*FI0YUj4f- zr-QT}e_C%tgXkk^d>+toU+lJB2(K?n2 zm{S2^*>1vywN#*&6hsI@x*nK4hrCVW%S)W-ZE{e}W&}zj zyZbZU5ium7i6nAW2=KY4!5=k+yg=;qtIbdM#f#(1iio}|1GvOc@uTVV6W)}bnvY)_ z(zE$k=_Q2_MDJyO{nI_0{6N-|@TnL&QiK&wJQdGLm-UpR1}~2(08rx%aZmqRp1DBW zT(``DnaD5@!zi|K*(8295AXg)UU??}NRnRnE0J#5xvJ^6n`;Gqpf)(!d)axfezIb=YAh~p>qx;q>C)T@1tXjSf zJolhmB8V?m4Zo<}a{>%T@AlxAH@A91|CC=KUVg*Xb@ZpyVgUoQIf){3WQ$eBNC90C zt8QCSkTa@iHbZa+1rqM`R1zkpip=x)$rFHe*B&(-;cVITCNOdL$hl zfr*0CG=94USTlm$7o$(%lH9t46klZUcqlq;W&+-4qWGBEi2kATjl^S`IqkX0M9tx1 zgyxcCGO3~;jfAY?Fl%(g`4Be<^p#{8WVjwXm#oM3&g#!HDf` z^i5%!C^WKe3Kx?xetsG{r{Y5vQqr$X*zi&H4WQnAuqj08YXhJKP@}3+HXCJ+zo7Gf z%7^Cz*S_I0;P6z5T%NTJv+8pk?Nu~Tn7YQM0(Iq>CK^|Xt)%CU3`u|aRPPhH%3U;y zvX=tu0+JB~chsDN0-{emVAtzGyB)UW3i#kX8tL!$4-#>-pXSHm!M5Rf7&1&AZCz=w zfQgDiuYvICQ34LMqc;EUOr+nT6Y{5_c?K>lM9tlF>c{GaWY&%Kr>{A>Z8)>}Uh0{$ z;t06N>LLV(Kudcx1Ll&N$QwU+hEI+WlipTzyjBA|2Pl4O=#aRMw0fV^PJYZ?oXy}1 zhd762&TT4bqFxoxG)u;Z-7d4Z@NfE-Y;_ot%3^dv#*4M z>G7V#L4uvsjW2qE*U|lvN*|FTPRJo6Ldeb~48+ruZojj`khN|%G0l$-=8*P&&GQi> z1*p)HuV#DOd0@>fB5W{DOlST}>AQinisKnXA+<6RjVE?%F9wS)GVn+ri|tacfhH{@R2%wXMC>F!3qeVTKaOr3^LRP z)AflXA;h_BoAT%!Gx+bgZP>3Wn529C*>|V#BeW!8n|Wo8f@!oP5v2J;H>1IU_RK5V zoX{LJ3dp_L2*_+kc8=6itdnlP7YiN--nyqkyX}PraaEqNV_l^!>E8{X#C~Eh4$H&H z0vhadb|pcKPI$NXxlOqh;SIwJe;1`(gOiH2v=LYC4zK0)_O`}ndscq6enF?}SoZ7g z@{l6Kd(>$H$IsbdIN7iVw~}lFX^{HN>x8ul1Fw;e`#Vrx#cS+B~b+5Ud9e?8$79B^u0V-C$W_q+~o z?G>|J>2LAqv_c1A1w;(w0l>9bBdq3>>?(!1Z+tf!EVufL0)qissNrlUP5HOA4R})= zku}o_c=0Ze(tvTu?!imy<9&i~alz4V7^t>r>tNNTquVAMG9dw;irI(1KhtlHT2++k z=N@WMDVK_+{{N09D$p$Ns8I&OmP`}|jr0a5>Bl;q1nn%j&n|&%wPb1F`YU>=r#4t3;+qnll7xUU{dVyCDyC-^xbNwz!HhxE zp94*2q)*lkK=Em4X{5%MQy^(G40$!4^m-#S5m`j1jojs7%80@%&CfrSEgnbFVgxLR z?R#Zjt_hQKi*2N&RXl(H)MAUP3d1l@=Ta0yWD6W_Fm84@p5S?aBryWYP`PBLQogH9 z)SM=A@si;8LhE!A!W{00;Rmx3gwUZP2>nulyI%9)Wb_%XCiwvzXSAZE21xd;t$mbh zO)|G;m$3gVHeT9H3;Q>o&xW(=9|1%bRM_Q^bs&3bV|>FTA(&g>Z>$&RO>`G0#o?_% zlW{N0k>`NXR{iEmG-QSku%*`1Rim}QF%teR{f2CI5on}CaZRABI*~#2wuDV5FA0>V zEs}_5zIkeZXAnkm2!4WH#51IwvM0AH_{h3k``Bf%J8|cDw?v`6lP|;)|>vc&}jZyxafN?Dkwutw)e&WVt7Tc(rlu3C~r35`?#9f9{rU7kDI z{T%SL0~O$ZyW-sdVI#LREmQUDAPn4(jdx5Epa<#xb$2!=L7sB!IL;0Mwyd|-s7YqL zRZ2B^$%2>luRi;Lqpaiyp_!bbVs<+y)&~u#3C&;RjgqP}fX>rki_SilXLxg+ zHwE|a?nOxY6?~S2SGe4ljAEc!#4}Le%67Y&xH*nd2+$31Ag1W^gbk$=NWn&0rebw|)TVB4&%AzqgF_}A*Sz$_67Jl2&TND92=S=NhDdX@hm+U* zDJ+7QxS0cgrG>?>1L-y1(?lS?-RkZi&6I2wgG^-F8(Tsc#dZ$CqtAW zAA-n7!B$J1Xp>6(dvaq`)Zg=w>kay@iHx`sc4-C@w;)=0lHM{U{MbUf&Tq6Zzf_LM z=oO-BiS0-b;=$bXG;e;Z0y)C727ejwCa3XTn>W8Onrj1~2TC-3Xq;1%JR=x)Zt<#O z%Syjukqx83qdW7yJV(UM-L0e^opG)TD$px3%}oGlR*++=_`%rjYO`O~!N-K>OMuMq z8Q!sH3Ggxf=5gWH!*sGSw{*tyGD?Uhu_8A1Sa>62$3ks=sXlqoKvfl~<+T|khF_c6 zLZ&ieBjnx){qE4$a!Y8=E#ZRQ+?vseQyD@8@P+Z}=bQPs5oA&fRT$ga%gcGW&x&r@ zG2L`9wNG~j>B8OVADT~m7E=+7mKo{KFVjL?#>1~TzSXu`{$-WnHuv2N3`-I{T0|A# z2+-_L;iN_+&Qm1VzQU1>e2;Z3R)ArB@Uz5LM^91SM#mLOYdNR z${p{xUvA3d4c41)p&tUr+D~{#<%#aH(6RXa2-ln2yBrM~M6Hg(OA_97o?SNOG@H3n z0Vvf}vCdq*xJEoda3cetGR4JF=J;KX$@}uzfrBc!c$EqC{wm>^cdcg{H;~;+e&Gn& zE*V7M4VC24YO@Gown+(PCTcw*R)45pDky6>N#FD0inxle7Z6OmL(c8Jrtrm=@$t>D ze#8^a*~Y@!DK#yGM(j;@(%eU}szrIfdl2;6N*WS|qA=3%A7Mc3TJk*(==ivQz1t(k zpQ<$(w!XOew84F6$>ySL-Sm;XBSG6`_%tY{aVbN@OYK0U1_rcjV9;~>wSozy)D{=l zLr%!i>ho{K$K#ckzg)$gn3XRluHZ3|zf-giCOL~hDbEJ19D|2dZI8nOjJQEZtBy`{ zL~|_f$(66v^OepTLw>a45<@XV${5M61EC9iAiV0=M1B3bzgZVNUg=B%Ykxw##9~^o zif)rxn8^M3Q96R@4}LfD3wn-1pcBe2C>j$(VOqR>!cW>!1i?gX#|d zkQwZ0&|`zb7q9|`QYjUxBCXyM7QyseG6HQMH74aX@~r9DnN80N5ccF+b9MZXi`h_@ zC1TB1no8B7G+nE?KIpP++DO^@X|1yIY|^9X#AsfoTK%d=wIY-HhCjAtPMEFBey@V@ z$*B;`DZrF{(sChVgS!R?*&`_nTyrhL?5<`WJuo;Zb+OuTf#mQBSvv>`LD5-@`r{yu zp#&TGgp!qAvlT7lwWr2o!sW~&zL9$)T6~>aJYwV!t@|hVnO^xx(|DS+!9)RH&K>I> zuc6^PWZOW0huIS+#ryR_T>!}&RY?SNqr8i@Z({a_n&ORe3T_t|gIJ4LUa(mSSaqJ) zly`wxl#Yv4@Oi$4a!ueFwta8e(Egk945Ucy|?F z>=7YsuES@9eC~4EnGIX{CUcqfHjk4pwq0#1T;LOh!;MN-X}ZMQtHDDW z-q$%scwz4wC3HgX`TR9kENCbB_D|c-+ShB3i^3yW!A7FMc<2v~B2%Jar9~&& z!W;@KvQK$vCJ@|jjgu*`mN}^M2aSg1Jo@Pm12O?lb`@h0vgt_Mn12|3-b4L7xcyeV z2S2!C+-wkX_b=2R;PN*RiJ#St?yF>JgrU5w1IY+Z58I|(Rpy>MAAC_|Hr_Hd{>@g~ zSFwaNZ|7qD9>QBue6~?6=Z%pmT^`~;c|BJ3ch4`3LDZl3kgM8n~7bKe_vvQ+FgaSJGJMw{f9M*+Jz*v zJMh0A`(0^8j-iNK>&3vs4!M5-qm1)2Y+3h?q_RVq?ZoDpJh~deG}X0s4M{E)bI`BV z;;AXZ(j$EJsg#!E9q2%LF@1eu7O_D<;)}Y&=*zqA2EeWVr@r!nGjbjFMs!`-iK3F+ zM@>${ETR`v)N|2Yb?!U%o6Uq-nz@gZK5D$0=qVrS1?(>_=2cPFRd%h%&!m*VuSp^2 z(J$LuU|2Rl|M)5KZQB&@baFz_^0^L7{?1x^F=I(Ddi&%UiPy5HZ0$69d&8nFbc;+i z?6U880iFHPeB#bHuEkgaadY?z7-1wi7s}Gp(2QV|KN{Kc)o|^2X@vBCwIR{>@%rlh z2|IdV1oP+T`-1JP5O7d)Xbdq+$3~mjZBz-N5s5o@yti5c^M9wi#WuR!bfO|4BaKu1 zO`-|zn4Fy1exOf6*FMrMLP1})ng$j@Ue#%$C2kudA-dM?u$QUi*EjM5!@-gGgGsx< z;D$}v*M`uC)>owd0ik8E$iWz_)|uT;3eUB=>0%w0I5Ur`eWT})DWZ2!=Py}GIS&f_ zb7vjU{Rm~H+wf)>JO^8vjWq0j;(wcq7`#{xH>WR2dcJC?Rll?p%-{{?havQ(Y^-b! z=OYCx)uC@zTKbT1E=T34$d~t`gt^I1&hcD1dO6op=V|=;dKuj8pjX!LWscVfH93y7-`wIh_I)s(t>SgY??rU)OxOCiqFfCrH7aOZoy>E4o zS%W(UY+fqhU;k!DCM6|>9wiG|OB+c0tZH!oiH)_mV4mAZpI%Twn^#j4I{)&){g_9{ zUpN{A1ADF}t3rrD)tXNzJE^8pH9^a8XYaLzU&VDl(l+UZay3RU85MVTb`meOMcu6r z*Re53bv(0LSy4Mi>F%->oB`kHQ26=#vxv2TadLpG5TEvr#_qVd&@UpBpPC!02@MSl zKpRnu$1F9eMl?p3_HTA}(ywH{0KMr1i_d4M8tzv{OIEzs&C=#qEXNmq?P2P^I?VRE zy2tiR@4A%rrXPDBhY7Vud{knLyz{oSP<`g^jqCQF@7e}=xVISP1aC;!Od>vHXR@t| z=JPHIsf|qr_$OpuYKz6Z*4EQo^{BtLr5lNS-mEYI0Q4B_+%ff54%svoGD1C`PB}wL|*)_2*l-%U1?Q zqo{fU(aS{*!HjYIZM5qz`0M@UypF}Zj(0^+N9*VVt0sz`)?ZG)@zlTm z+KEf$-f`n;KpeA|zjxt_ok@2>kLn3K2zz6rh`Sz0{iXOaRH!gCIWcr{e0{LUh&=si zgYHS=83Je2z00W1{CtB`Esw$N(|uH^+4j%H^x2ChQZZ+LZ{4e!2x+@>VW8k~bE<@f zIFoIh_a>rYdpPG+XinoU)xJU5Id8<*CnuA2B4((9!7tx%Bi5?p`$ynWRXEJvs}uAR zbroJ>vEG^q(f!>hC3-_&SITE_ta`XM=Ui#Q4?Pk(Q`I3%1b7^!pA4pZ4Sta$8LD$X zJEp7g+9IgfUYnb8)C3d9*bGmhibB2Xwu4KpHpV|bC`mRyMv>6XG)jtapA=pv zoAf-Bpe30#TUC{6bzN^br_XFLYqiPWXs%CkcW`hfcDeueY}c)ley;-)gLpo!@hZx& zQ;bnh!^zTRW~;|VKN|H>BikYT#r0MriB1c~(MH!CqFO`gZ*7kgX!uk2S2-HV(eXa@ z-_X|l6RFFUQ=$-s*GBV>B%F7VAHeEn{fX!_lnsI&B{*Fh|-;u-mvM`;%dG&#{O zqc4=svv%MejBw6+jT|jzRj4w@FgiW_vCDY8uaKW}4(eq%Y8rYWIo_=@IA323byo%{ zHlCjR9~eDeRH}uEj;p*A?1s zOBruY?1sK1_gRM4F!Nl$zIK;PoZ`+#ec&LuzE3xVtLU zML+ZD{o&kenmIT|K4E`8$n1;yE=|=I5t4T&89mhr>_g6KYCL{R)vT;L*$t&WJVLhe zoo=q8!tRd6#~gDsH@1yxQ7as?ihb-ej`Rl$Aby; zc}weYoTRNUUU6MMkNsJ!ju!p~P$TeVb8`;j6XbfwEvFN5_0zxLw~sB3*Pd0VNl$#= zntg+^EAr7RoX*}7o$S=wSHQUj(pj_TyU(Yfg*-H5Kv(dkjH3KG zyb%{WqPlgQbJJCcqxIB4bz80^ya1YLhGyFjOTu}hjQ+c^sk1$fNv+|wG|&$;GPbWp z$!}$;U!5xchC~+szOg@y_iE-mX3rx2V{QZkeO)0amV$|=ru^P?r>-5yXcu>O)P*bt zDX5KMo;RMrP>sDbez{y?*CNA_&X{<-jRul2N0QAczf+WkLT+!M?X?M~o>*0>zxL9t z0V$mTQv37DUId?+j;%;ur>Qs6(Hs*e+c1-blbNuHABHO0N;qJ6`duOoNGivu5=1Um zZAebdgp@4?f>dbLN-g6?Bin7@Rf&FH;|TVq#2(&CTuOvr_QP&>y z=4)SfULE9(ka)mil5dRBu5$^Y;u*-*uA1`wnzhk!-G;JQlT(`LOPq#A=0wB?0KIUt zt4I$>Yb+3ez^4H9{g?784kzaiR}_NTdug1m(Hop_aE2WeF+J3xEpONHI;t0OR|mmS zgP`uLVWI}vh*SMaV6zFYNttuGvf#msyvk4f;hYDOR0lR{DV zvIa}Xfe!-CP4l3W+HGyLKkp(#G65k_Hb9zc=n$0q5agSthv>YAe+6V>H5#gFe~G+7LJZS0_+b` zJWKz%q>)Pgn-;;|$tIg%uK!z=LjBPBFjwfD*) z5_LSkIUm2jWj}xYT%^Q4HWz!i({-!qV?1u{2HEa0mg(jifst)M|1>AiP4|y7^-$2VNTE^r(TqmiyS)BZCDeMifImI z)?sM=9Z2?3g3^=n(w+Ofwe<B7wRFmF^U)*%Ki! zjO*g1okQZ!Ro@;DTE#HNd(Ip6QQq~9OTB%*YMEo|?Ul^EpRC-t*+xrWxptw$My$Q$ zrA~j{1pL;ahxL<8DTA$EgRH$zV`@-u;8+?`Cy2}8UJ!kV%^c?bN?~nazAn$N1&+dw zfAi*$e`sLDixa8>8Ex9sNkc;j22MH#1fLB^Qk)(g+Ejt>>3M&U)q#Pj@8>X<+@dQ| zmUe)L$$@(~*s>jNUb!L@Bvo82jsM@r;DDnG+MkkTyv6VE12`Y$i++OP5!%cPt!p4y zFzkn^cdZ9CCNU5hT-U+1Oqp&>Q8xG5UdincxV8MJBNs=+yY9qiNe$EZj_r01xU8}c ze+xtrq~p{^M!?^Y^5T2U{+M$4UXsyI=YZDyrr4ZhNInT^AEVfq?CXAu#81*^sQsP6dcnPuw+S?`A^f8oPGIvE08=9@t`%D+ z8Yut$qj?K62TCoosiu|!-!;Wczcng=PW&&=A>x)!z$+bwL}QHu(2*UMvz3CT6p^MN z%H~edpq7VVetQ+&zgG45-Q^707dxc+4)nz`yy|^QUdmas4yd4$3pw#p#}+i zbjfL~pG9o`xG+X`AruV>y&<)T1#B|BSnO4n6Tj9AV~-*dyBDSPDytXVoWKtd{D_>; zCDO@vfBr%w76@o*MoWbK@2ZsWIN$IP3Ec1XEBs7c2ond3R`_wi8SQv)>Gz6PuZ*G= z(P(%)4rtwB`HJsfx@pU>In=l!#-dWKFe^WpYZmdvr}`*dY;)Np&}3&o2d{P`?OQnO z6PWx(Vf{qcnF_wb;4h#Zv$dNao2-7hHEA~*Qy&WYoBzAaoA|Zh^2;#FCu5>)Psct5n}fP0PitMi9K4j6f_rt9Nnl(PXZlx?U48Fr&(m8y z*-pK<3t;k2_87Yj!je(uI{!MKv*ZJ&mlr_bcjq%Hu3rD{xca3T)dkujZD7f;j*#c? zmk6}JmU z*vS?vj8>>L+K!8Qcn=jOZusS!bH35v>`Mi%F~#qi+tD-7eRIw*PZzm3748sSOIH@4!Ydz`k+TDS`@v6bj~Fvy0V`Z z!FC(wO?YB>H@n3~xTzoRUMD)ZRbu{JG`@!J|Py(SV~WH7EA z|5|(R-&c!O83^~1i}ym+z{-XLTWl6fas75~ui@R&Tpr04U&bFIH0&vNKz3sBz<621 zctj9Fr+GFyP>T)@9`_LL7ID+i zBub59H-31PmEM5y!0`F2JkN?8s`qP0U6#p#dI$!{|YsY53?|5dwQw)rf;Y=gyN~Wu`256lYZ{4BMz3jm8pN|N? zM01--Td74r?8JF0FSl=F_S4IBXt4E0P|rl%aR|=%Z)=E>UP9h*Z6TtzOtsL7K3V3R zI$o`h4`GvDFAb?DZQ@&^qGc@krg{Un4>v$pq0+&ueBW(y{8Y2q|Ij>%J?KdQbk>%K z{LZ=aFHWSdx3F`7n!oMg0-x6kckQRHRyxetrw?$IO(zGIk3zPq9|i>~Q?o4p?|8Y5 zZB2=p$bT#qoN6ZY!+x&hQ8uqXm{&0P)ES<&%+T?Xyb3gKW9|A$tR2|`rEL%mBV(_Z zwF(K@zE|du{xOXlvt%}I@kh^xOOBqBP))nMe;3B#uT6PT;dvCbugd?{WA;A}>s|i< zhvd?#b%73l?ImR`=kMXLZ!xfIW5K1VA|HaBhdjK@Fg)94l$E^ zqv12iE z^&<>V)VY`drmf75#}UKGG;lr%5E}!2_g+}b-h&_9x!EC@3k=T-4Wb_U;ww3z$>=j1 z!%Ur|E37!vZP^ITQ(_l^LOMA{mzBYY)c;!q*jw^YY6*hdHb&0$`0E1fvG+rSU})-O z!}1VjW20Ul5Qt>EbD&Rf9sNmm#L*fCBL^-Vfknll5f*Ys*%k~Ly4<_!taq$QD0wOR5Yvvar8n@r2?K* zE;~1vrl~NAULmNQx&}N=8O{rsR^Ln}d!ah#fA2+K6IfE9sk86|*Vn$jz`OCJ&;C0j zRZod)NI2M1D+HW0s=-uC1ay!7-S9Mei>WP3G(kOdWurX3+Q+kV|+6>%Zuy`m`<} z&57>*dpu{qX{JD%=Gsl}u9o$LyXgUVl|j`uOv)qMUvmd4_Dz+OxE^a3-WWsiBlern zy?te0wYTGNN+U~SE%lut^8dFsfgn%iP(ikays4Z#2O^CL8+9amzw+jz&)Vc{ zJ}O7$&HJn0iqa!?@jcUBNp_${qy9K*BmDAjP$=Rf?bW%+`S;1}V%dFta`YyF$6*M_YTsENn%A8zzbf7yvx zHQ~XIgbi1vEk964Wn|m>XO^UA5w6!JYJHv@L^>3{mW=KK4VL5mMF+&j_< zS$w#EBl5&>%in(g-huL8EevPctOr)i4A@N${DqkDu4CK(p`P<&`|por!EgQl(+f-g zUt7Qbm)gHn>;E-kdHIa#z06=Xo1Ejwf%E6rFImCqo`&n;T6H%6bD2HTx2rS!`mimc zSdl}=gg8zTTh3oE5yEfwHO^pB{OJZ4sK1i z6xe6htUfne#^<(}MA3M+L_$Jh$WE&4%a<>0A$qO_bFJzOvHZh1E!|;DMU!^dr>D~*XM-4DiLh-uO$g-NTy9((E160; zNTbHyJs$b1;hp_NPgF#83i*OFeYE}xm742B#ikk1r$(i|KRElVMdEM% z{Jr@)3d!N4cv)NC99=Xn``2-bdLpCC^jHbXXQAgGz2-lIF+*dFJj2-5GW`b<@ZdLk z`=xv#5YNY!pw;Ve8TsE{rmTN};jfH<81&kW>o)yudH557IDSW^`G<&){rvy6ZnIoQ z`M1HQUgvZ2)w9XudRA{9TTc1eiB5l`eb*Y?6AjB=U^%YTykZHE{iRIN&e(1EI6il3 znSfHjk(WpBRLAMaXgl^qzKMmPqOPxVA`nG#xUSn7Z9-Q`c!FBF%D z+BRODnCy5*)Ax;-`8Qc^=br^X zzPx2S^A^Xq%uf1GzApXjgvwpcSmW~Z=gr+pEc0D!kX!qtTJ-kZJV^@6kZa%)-g8puE)2->_-<%RVaUR0S?)1(2 z6ZnqUmFi8f`p(D@-NGcJ3X9rPlFyAQf=4TwEs9pA)5n@DtK`OUjt$e5=5%qdl^gMQ z-xtw6mp^hsTFj5c4VUOT4=H|pD!Ixy+~Kmk{MutAx7pzcONhj`U~1O6#dxs8(l$w3Rl-BdbnhNAsEa<&P9j6%!A2U?#uRca zYJxNjCQh%bXq7@TNqxAxDov;&>9tCP*~149)OV>--sp7=WDTZ1ksx0-g-p`;+y#B1 z<{Db2DGwzKOIMI1T*eYB73Q2PlHjB4x1M}-u|K0bJbake+e?85QkVQ@Z%9v0A=hg@ zeE5*si6dk*f{lc=Qa>_Yq))fb;ni4-q%&_HVB2wPX}!Ze^`imYSHm28-*VLkNOdeF zLo0%fEVb`ikPdazLUHCv;iR_Eb6bs1L1H2QdJTBhBgSqqMu936&t7qLFT&hm7hX!tBxa1!L_r~6mX%oYD0rFBJOd{81 zddi5<7oyfZ%jFy=SsIg zBS3wXUas?gHH!LO@zf`h<^c?gmR$0WWf#`G7@}kQR`2qU>gU^c?0`-#zdo+7Y=BMt za$;nvkTZfS$=$Big~L31Xo=SPc0iqBXK?L5gn9hNqI|mGk}&$^k`1MfytrTTa@sIHgB=Ak^WNKDNTB zTtv)&BcSH-e`%*8@6;;vYVlYa~pm@dW(lvQ}w~4KcH$F)2Xl~Y_ zWuftTvm3f2+~kRFp6KXkXFKn8Yap2hqYxc5Bhy(()$w`?*>khg>D}Q@7B$DVeb2Ca z^#_hfi^BbHfgOouyhUS8=7C#I1Y=|(2ck}gNyVW7@-W)4j^5e8RFPx>4?$p!d=0|h zv-GPmtmvDB&NPnorIv+9G~q$q$D+DlYT1>@00B;m|7%-EUPL zc_L)0hez5vA3iU^w!hK;drN0D5KoO|_eX)1fu3l(fqgePbcd;`sd+(wAH!rg2waBn z4+V9?68Hx2$h@!{{Ki$A+GHlU{M2p_)RKty2~@FTXI*Cz z%8M~@e_lC95-`gYIIXoickZmtb8`cVh;h}_(c!uL>51o!Ma*4^#)2P!Wr(@La}@P` zefRmDah3lheR^EU!NH+4eF~0msP2MZU0@8pZ_rZ{$)zV>c_(oDx*)HDApXM%);(v0 zG?HG;n!{oWFsNQVEA6{tD>m$1%I7v?S(>bZPNbGBJ7y9Q4k5z#oLUO>5jJ)q^&s(7 zYMhQAghv(K<1}{dOI@9QzB|MIiFJZkXVA~HeaDCFEh56giWn~m^Ivkd^GaL(jYpE^ zye1|ly&;bg5>mfj-k1z$q!i&L$fD#tGg7M}Zq;=%8C4ZSd8lC#%eGK=gd)*S*IahenbaV4)A`5q1}Ny3#lAz8R;n*=Hje- zGWtE$Y;02M0Jmu!exj++gX=T!tZSH*2`|T?YhTa^$4DtJKTd8kO-n)e%=MpyH=!by z>!+Bvej}FJYXz5q3mh|71vWFzy*nDnYbtTIrr3l^d2Ca@BT5}+RPnuR6H7-_gliHJ zUt_e=%+$`Ge^>_^pEjO1=TcfEQ?_1JzcO@x&2;qr)6yT3gseJ$wAi(#j5S-Spp&Mi zw>jgT4eYYJSKyv(n`B(DsNR5sf`V~n=+s}B&F7^1pADO(Um@sUZ%JgH}`xWB!N7@mC)vph?R` zTjnT@fV1MGLBA7%La*Po!VP<2WCnDa60gG%atkt#!5Z6NC9o(pQJ>tgM)KqU>+h_M zwD99M_5dqhODth0xx>!bq3baS z`C-*;7*+|b8TYrDE689?l?Yh=fnMNh7fuAbVuvltR(E}PMl8Gi|FWOL?7mksL-2% z@>9xJ=~XBb9LLc@WGnt?SSquU8{#BlLGPEh^YcwJ54?A8ty(XU zZ2HKv&#Ouz7D0ZwJ5zpUe`=F+NX}5{Mp_8H3FqgDn}2#DLB-NsP|zC#o{=HX&P;~) z$Lr=aZrFXv$9yA+!p!Gfog`GDnd|J(mNf7kO~HC*rdj=|xwJk6K`KE{Tvbp(LcQF* zF2~7^_yNLeCQ&2y7@uy-wR?pB&>fNbB?TzV+E=-nW_%B(0@H|^LR-fYN$S&m?*a$M zww`)&t~Gpx@wZpU?o%Kdt+(fnH-^ZKH55%DRgA@=kpYgvUF6XT7K@YR>-p;{iKIoUT*9L^ibA9#@T3CmJfXy7ZI~ zc^Z7nVuBO^K=UHt7<7ws|8+t4QkI+1(`+X@)?jGg9cK3v0K*XBgoHAf zGu!=bDy70{%{M^<@DzEkDnm9+;F1n_5oY2kQa)n1Ka8r?P75)v;Hz=O9l${S@&`NA z6D~4zRfhSoux)*ol(crEq**agkgSeBk}m;~oRKrgTd?Wat{Bnb&f`7C9btCg3J~Uf z0jCPVE?9k%Ad+8~>D~H;i$8|$XY=O1u3Rc^Aul=aZ+B0s9hmp+_X^*rzUGF;EBZOZl`=J>d5DxThGhZlBw9N5W z@MP~*17VG%V!NjY)2CPEXTo7e(xt%@2$9q@G#;mz)J0Q_PReXzP{$fv3U*3NO{F%v zjJF7r)ZhzZqoa4yfXm;T7=w`-WrZY~RWpT+i zgtfdfG{)+WR@T6T)WOt!cqGcZ=xf7#z2mdzZ;~mfRcff1ji%?6v8koDrD6^)I33ex zAl2j2->LCIQJp-b__&~A7m1{zK({_Rn~y}e1IUHxq70uo(txTNoMW;6N^5RTd0Dvu z_H#_o^yZe$hZmX^cjmFkGwHOrEW!*(`51M3Qx{SauQ1!j9p~IGjSRN(!74J6^$7Nj z^ei=%9SNyq>M79;5+)vSrmG?&Be`l%oH$|Gg-tOef{IKvZR+saXciRbhAf5wM_vxf z%>Z8KHf8m^eu}iio6>`3%~CGoP=@@KFCDez2*7IVC0?~T*^~r-qMq6;j zma#0FCBx|rjb-PZ&~0+7BuUqrAoB@9`EJ{$_k z9lT9DtYQ3`6&Qk})Ar4lWe&daW|p{HL_soBhYO!6Xr`EK3F~Ip2?UXV+>u!%4G6T# z6x6|5Z(heY-7{xZF0Wj!2Mm18cH`2 zrm%s1fj)G7NujKO9&wYhl12b}?~1#DvYkLgAT`|7I(BSIt-Svz4FrH1lgW51t4!Y? zd40a?clGLt>Sm|Uj>3Z&jTL3s1I*L(R&k2u+i8qDk2{({&u=0;KkjKZzlLBCKHO~3 z26XIicA=E2W!}F(9#l|c#pGxPlHl#Tb`6KNrkU#@(Fa2Qcp2C|E7O`fD%bP$I*sPODNGg zhj4s~PJ?%u6rr&)*~WL53dcQuq5ASDMpPKDXBnzJUUDSjR)CU*hDHvFCeORIG(x!| zSom6y!4*Kv;LSD*?UYWP%{y-Xu@%aMEX3Fb*0~iuFZQM(;U1~A-EoTqa%I`R& z{cAwxRF#N4GDehBAd`>b3kR9O9ZK)Dmc0qQ?c5a9LJ6?v@Q6I8-O}Om zhr3)3d$;gs>N>2x@71}F5)(75Q>jDRz5@hqjh(BhscFveXBXM#&iL$XS%HrcgoX>Y zilGaaQ1y#Yz0rYq!to!Fp2^J4=6|u^IQX4;`6W&q1y+uz8t%UV70i3`izqrlj-^; zfOLFoWsJ(#_0M>L<{gcfG;98mp*=TCrw#9u2NM&1x&R4M``f5+M$*VYiwrgU!B)%A zml4jtZW|YbAp3xC=E~>`UJIZ2HvY1(At2Ide3AsZ_ZnOL2GJAItm?$dr`Z8(TKA-OuA@i&?vY;g- zPAQ8`m9oPpZ#hZof`Pp~(2~_jxDx`{VAVT)1OkX+pZrAIqGljl^=x}_0+kT-^W=cp z5}E#FwqRi`uUY!EVMp<8q6CzHtzsu5XIp&U_80bRg|U{0V5Rp$#{DM$@k97)vY1Fw37jQ;w zK;f-b^6Cnv1k9vRMzo^*5$!iy zW_7@2NsTvKB_cR*JN|giHOvdT-?1PGPowz74staBS;JD~3_{^9V_zv_OIB|1Ac%ja z^J_9*ykHEJ{k4=8_vldc@_32angNVYO(OWFLpq?;o)ohL5e2Sv%T5chIm%_H6&0Cy zT_^NcaEcwsoJ9%9olp!wlzbpyAHd*jn98n4z4c}U|3FwSI2%T3n_ds(3)X!NiMkCu3a-w%SwB7iXa^8u z#%de_SNeylDt7D0bb>K1?kMrI>`N@0igN=7X+tP4BNEtyx0XD|WD)WX10y9us-5oz z0*mFwn{S!t(b=`kGK>P`*Uv}j-8*)j^s**IM)*nMA655%UlP2w5IPpVQM?4FKmGIT g%KwKxE}dKScE?I{-=17a68;=hJbfhY(8Zho22i+=Q~&?~ literal 0 HcmV?d00001 diff --git a/labworks/LW2/ex2_p8.png b/labworks/LW2/ex2_p8.png new file mode 100644 index 0000000000000000000000000000000000000000..1727b3d7ff793f638a1fdcbb63824e40c4ced0ac GIT binary patch literal 76515 zcmeFZXH-*L)Gi#FC@3h3*eFLqDFP~p0@753(2P_mf{JtkD!n79C`b_lC^blvE?v5! zfFLzAArukmB_g4Qz?~aB@B7~SedCrfzCYg>H)EW0IDzc!wboqEe4b~{wVz`&l=d(k zVM3u$d(g^PHBl%AeiVwfXXg%hC*)5~Bm76oQSqjumc6;7%bka2DD^vz_igPRZLRL| zIGa6mu(G!k6FGZEfMuZ_$GHs@Py8zS#rz;-AHJRVf#q5WsCGD>0JZyI_UMQ_1G zWv)dU?yH!+7Q>}$W1AMOl!tvvnz z;7y(@CZ6+8L`r|L%~mcCW@Kb&^0HY`N?hmfRtGS`mprDW;X|R6zkSa$C0_n8ol`C{ zIotGJWW(gagFJWgMB>X6N>jw4jpDh=W#g`{E;I3`j+?h!hoAIrvhm6+G>J(~;Qbw2 zWtJy`M5~l-*5wn+$D(cSE`8(PT&cGjQW6QFD=I2-pReU`qAvDKH;J`&(l8#w4_10) zsz!+jii+xOZcxuV&)mG_(0tzD{cVNFY6cYQ_6a;a3KegI#dbvs8Pe*+K<{-B*H&8JmyN% zL@LReT|GS%8Cw+Ua_$!rETQkZOP^Jm)sK&lu-qlZ#n#ld#b{ZtvPe-A5wtSf1;%$*mOkT)D5KrMo*-0p7O0jHi@(b6tC#-8(v5xD!-3@G_jS9X|mNtar7J zT(0tRFezPaZFu+?b){ae`|+;*+WPu$2wn-Ee;VTTR=vpWN?77}tOLt1Z`f1#1Rh)d z_U&b9=NU_iXDUsKVf`b2R@s{+1I{sZq1?F;fQB!XlLxTYHa1RhACpT&`zYSZwW-Xt z5$?@*2^-`zeK}d!4S@oKDAdObii(PBgUeNEL)1AJY=U8dd2qb@l)&bW2-W5bh?@C%SzPh`3DTOO_H;84KjKJgE?QdB(2XOn^@ns~4BF`Ln#!Waf`(4kO6 z5fKqqxs^-S6xY$l2-%R6XB~zQIRs8ES1ngM3(=o4e36oqqv6v3AmF6hYrKO0j`WHO zBN>mS&ML}WrmASAHVJl}is@PIZxS9$wznSCviG?Rd39y#i7Fo77w6n(Wkr3ll<~F4 z#K(&`o>RTCR;YI+^jebppN3OTpBOkSmj_(*mgfd^jE!?X`7=%zc4&0av0lQDjg8^z z#9ii$sO#f$J^Pf7B}PX_7kA+(OS73*SR}6wQ3jXEAL&@XXcwsv-rxDGxn@|Jw-=LY zs+OFdj)sjbM>g49H0gs#($UdL$+=Z-z4Cil3gUnayF~Cv@X7VThF7PA*q&R$`>=BP z_t1ohEb8qInHFi%CAfF5T)ZeSPSnD*T9u3T=Nc!8fW=Xr%j|_i;};ahSr|G z#J)o{@^pKlRY#w!EU99F7d^Dv;zC|X*fbIr7DiA5xsT$EMjp!gLMyRYNJxmt5Q#$Z zIML(a-+P-f8oa4%s~5w+Tnj#u0;r{uf3Ws7>`z{+{tplO99m^e?QC@YRR||SFTI8T zD-r%8C?e8*Ly0qG--&DQAbjjA7j=oPa%PPOgbfOnA=(U@3YYJBZ&HRzbS}*m6YT(1 zaDqZYMS%Gck&&s3V&2n+Lj)wmmWO;yxIKSAO8%93;*ifhoH^ z3YEVPFi-jO+4^JqBMw9ypmybYN06PDu)K;UKGa1Pk^_wLY{@1pY zxFu}Cr0cS)_sWSddlr926nz#mO;V_oTSeA7h4w>L*ddpV)o~@g9HZVj=S;oa5M+U@ z%LlwEvm97EyO2_KEiJ9W)YQ~j2?$}W!o0k*!y|Uz-~Y3=T)ipd{!O@qcimmeC)4qR zWL>K)<+Q<#8~Y*-1YbSgj;u_(dW=L-`9RGR<|HLfCvBo>ydwd~Y1I%Hr+cm=QHA6h2o?1N@3nL; zkD0S^PTl(0k~h*WcElm_*AtQ;goh(4&V44AU6S7 zL(R1uP(}xd9b{j&%555nR{ZuG^dQM_dan%Yuk#MN0=gF6{zQw`HOpRIj?7~E0wIwO z8`7pHrwh0SUhBHd`B6%1?StE^e@2g7a=jl=A_>vCIFS_U>@JN$wVkC^L7{$>LUzqI zsWt}i2(hbLHLu*T!Tlh{4uCN9(jR4F zeKlo()c537s!+~{%WyvlV@+?8kZcWe+@*eDpmW$X)@|&~uFq)EY{QbA?2@}cx11ng z99=0tf8HH%9SJ@n<6g)+nHazoxGQT$;HM_#iLzf!_Su$r8AHI5Xx>S@KMUcy_n%iR z_CrNBdelEr)t!>#u_qeV2A=$b7w4#!oJ@YDt);bpVX?7MCGJ7pVQh)Vk4KCICjLrU z7Hw_qiLn^_ZkXWsc`x9bjG3-wLtRf;Jy4BuP$F<3{k|(b`X7U1%43Aty zHndxYR7J@-a^wiFK6RHgvr%ARAQ@()dUgczU1dkTa$29bp0V2~`*{fom2eF?DjDZ) z!3B#m)mN0sJ2_i26tWtvAH1|SoofS#A`;TgX%{@dI-X!pl!a8KX>g13VI;(c7_vFQ zaKp>1asw`2;$@rDhdt+E2Be{&@52Mrmiq3Ou&fB`U^fA3JUM~$0B!9F;goiSaG&_$ z&#EDG2%zNo4F!Zp^yHez$*lbFKP;^KC)0!~Xr33yvkLTqSgaI$B!Y1Kh!U6Ey{2WQ zq;{4oNV4TES17x^MxMkHfm1yP8c8Uu@&Q)YSBy0@ye;Ya`!<59(PvGc7Tfl|-OA3u zh8DB!y;PAa83@IW2O64+`?%y*Z9K3z$Zs=jub4w<(j&wI~n=;W(}n9QBX5WZWlOeKs7*TkZQl+$iaP7=)ye z>5)*m?$>8c$-v$x9`DzU3@<~vgfFT<#5dtY=ja*j@y;E zv+KEijM8Es2AX_!ghV^tR~*2?8BJK;eN-X~TMon&^1hCflM{i+c!#O5l$JuYua3K+ zGnA?x(?_d2LQoldaoi}efr2hJh!bn}P7HAbA zIi<4xLrJUU9>Y&K2wb1xBImfO^_nIJhBlT;UM*b{78E3uj>i+bk3(>BDNEwXnz_c6 zj<6Tr`D|_=;4?Kn?KD?9KJ`tsdgi_fENR2p+M_7cuYPttqeQvQ)mH2#gx4Kpe@4rA z6ti6XfkNvZa%qtqN5+i=?9$JR;dg6FLcR>yO?PK=4psqSr#>pRg|*NhQgU!`XsY)h zRhF2y#%Ci5BGujk7^HbiY&y}dTz&sZwYIjzD^9@q%&9AH?wh{o-Iy~lFvwrqFfy!k zFG|&j>sy+48;|Q5o^75SB2{lzjkUzZ6y%vr2MXo1eSLX?PoLuik{1({=uz^n`!Jw1 zhi0l_a8gdzhE8U{mA!xabFW+yTy})p!+HRt74W*gJ`1YQh*L}Cb>bAZWFXa2JbFp4 z;9+MsMDoCcdQJo2-7uS}L+fJ~q+qY#&FIw4x|s-h{d-BRN%EJwO+%hfDjnUlAM#obUiB_mJ7)>ISKO}uLviSk+c+n;5*tYw@)~93@znNdn&i8Z$tOzGA&xAgZ;pv$I8l>%4$p+Y$%g z-|-JUL4)GyN949IY37NdZI6*daA?wlRs}}R&SL5Yg_I`F379$*yt<*S>*Q=$7V5S# z98iMwxS^t6>A#hJ)CR6rt9PVidNC)NjW zI=^O-TmOyQ=w((BHmNeoty;@4k-MCxn{CilJOFH-TZ#7XeE7%+ z09AVa%l`d?*TcjmBZ}+H#dehzpWnHKRHnDLR<=D7m})^etbknJSg}4T9VY} z`ht$3VGO~vsJOT;%UMKUNGnY$+od<(3`_K)EMb=y9epCTOV8KcNV;YP$}~I~lJrFR z5H;t>(W6>rLv?j^k277DC)%$lDs~gsou<22*)%22pSNnn31GQhiZ5zhT3AAuS6Yx_ z=^faGR>D%`Zzdb(%-NSZuFJ`Ae5OU=dG^9a@%{K=sShNc+{zES%9Wo%vLSVxKq0Wi zyOImztvw)o$z6ITwf(6;MtmR%i(3(ri(A!WFPNnr`>@NAdaJfc4U+ioHGjmz!V%h$OwRB}h3*YbeVbaqJ{`Iq>4ad8BA3xKWU z6}QF#LF3#weO->~*f?xr0sJJ+Ww3YYm>W$D3*jaOY=&6# z1_6e%S~C03`iE(2>+06gGnazuD4ztf)CGu}85wy{JwbMB^daz#v+zp<&kgM>*|i2- zzU)(Sm8x@1x)x0M@yWl)w)b4NL6HjLsUS2C5vChYVF%q*bD9t-pLvVuxKjz9`G8Kj zZVO{pa2rQ1-p3;(P1bAe9q3a83cxT)RSY`lbn)pEW{xQc%s1Xk1qoJP!~W@m?L*99 z1r*6XEM{&A*#lc52Lm@1ypKiv9zj9DLeqK{$T_MWvqe#LA)J{I;f2)GBlV%7Z=S{p zmehTK#56S=z}>BH5tlMcESZM&=s;97*bC~6+@9~<7pGFz*4z<#3P~NU5`njfeel$q zLL4fVnful7>ipd=J3)yR4~%si+N)D6G$JI0J(^yhML43tkjaf3iS}O8hVH*VF%suU zz;wL{#B!%&uP@lgBR<|O_sNtaXYW2<8uYMVoa#~qan@I8^$KBrk`7~EJX^uSN(UH_ z9<2u(b=Os}q6qh!&emV$Q{>xH9(>`xhz^APX>6UN!-((y^I1 zVgz~(yX>+_T}~s*fTpl5G^zHE3n9fiv^=*X7H5B^oU>05+WH0fc<6dJup4;Ss{pN) z>VuC){TWJvzi$Wies)Zj3n-H%FB^K25)>Ht77RKxqF^RlAA-T<=<35M6Z-0b$BTAL zaVa1U6aNGp3;#m`b#tdZRBq$quotL)$udyp&MVaUrtw8cksTXx-(mf^7y4Hb2cVs* z7AI9SD|`H8j^}&CY+QxST`?c~W0gz`@z z;yT~#8#o0gBXGEPE~LRDk`I$vWXKpmX=C7JSi{@(&S2(QcV*~6%FY;sOxX-H+{9}! zLc)IVGZ6H0vuh(}egD*}6nN76IIrOR4@Dhg4dBm z4XH_9VZ&lItu&1;Fd)g3X$jV#I+5=MUZV}xQI!{E%9oC%4ODniL5q}7YP|po_0@;HbPzHH@r49PE{S)f<9>lBOdJQ3V?69@E^4W(Dm)73qR{&#+* z_hHJOO`#p1j_=$WnEYu(sBgWh{z2dadHp#0U*CLe@pRA8RAt_`;Cq&M+5P#|5P0?Y z*-d0-!4C0fky6$(@ha-hHjE<6j#OXht+wh&9o=BuzLtC+l2m!nx5}Nn-dMy7G#IdZ zHH7ma9+-J^bPAYGCSdYKA|4HyatfScScy|qcO{eU`SSJI$-i$WEbQ5ch;VU>mSda_ zO=l6-4x&9_0x0=)0;zf`BU9XY=6gTO-#Sx{Y2XD~8z89d$>>+SXwmBRd}N`y_HB=@ z|C;=Bc_QRWJ~XgPP{K*AN!w*9Um|>)CB#N}GB^lbot-O}j%VK2trY|+}PHZWH9>b>#mGX~%;*W7jju7!YR z8Q|*h@^uh~RLb)8l_CgJy}IpXL@n>bxbvZ1$5P)VPqZ+p^!TZ;)(QW|tfQ?hE!!Yt zB?5h(rY;Zlu==cAfxFtA`c26#n-UD>l)#-7@^S7fN3yXAMDl&3%bd&jw zW)*F$t;OB`{CeFg19KoXomGI?O_q?_%YKEct{*HJ33r?= z>ahlPDjWLuM(s}Eui|fcEp{PZs)X%#JkY6T((v}DKbq0wb{4|85Gw}9ONF{sC+M^P zT)L~QD)fV_-oNRn!>m4S;QJvgbE@vBy{$`3jD1z-w*qdS3ZFc~wno(iPs z1iI``qtN0^LF*KF5?x5qE<#9eirjI1*{yT?{!l-kJY**!cHP(rQqTiB7;4`1IuQyo zlVFo~-~_Y~BLW>hSH0;CYh{esF(DU!?v#7Fd;1DJk1#uMsX%mP)+Um`x{0|K%9YJ3 zw~m3$BL&q%q8-$QJ*)w#U{kvjeDk4%xM$BEEO$?Lw@NsW+)j86AA%o%J9I(y4TK(t zcSh6Ir1s)X>M_P}D23{XAJGAJ9~cw_Y3AWqSvyDPbyS$)OpyHj_j0tKK5guzSE?d~ zrf(P}?%@YFObap27Z(?iS&Ii6ic~$KL0OhLPQC?7`=!4MD4Ic~yAy#@KA9Th2=&<# z%6ezImX5xD@9<3(6_w6vA0MdsrUP3`N~l*y$}}E3mEVGM0~NkD2&MF~G4tvGI@XHy zKi|ArX?(wPJmNv}7?S!zJO{YJNRB7WUOtMM1Ac*gH{xN{b9tz77~Ov~24zmz=SDFv2| z@G{t7RkC_v9x&VPppl$vcAa`xSl9_Wh9T&`rqr*?)b{wq{x@wqaFDm!!GY#Q2ON9& zOcqohb@I9o0b%rYb=MHenHu;IM8FhS-2@60ZM5|D^~+nMA|svG=&h`*Zt$|*xN+lU zVBor;%h&jBY$(GgEp6>&W!`YY0@LcF>hpVd|Mv?s2MeR-_UbMu-3(ZK`pXaoYGx_C&2Pk% z>W?|R=+4qlN?8AOY7L~$EAqcsE>YsY4Sl}TuYU%AL~86H>Uq%wu>Z1vJ|HIA)~jS6 z=6KuEkdF^q6Sg0ewO%h$VIrKc9px!YGN(C2jr-?3fL)}5_Aoec?F9xZ%Jf zkZ#sj_eN*+klhSg(wN|o2P;=47Sbm7Iam5EN9h&PYEx~J0vSR4>cgJ6u`Lt(2!MH zTxy4gbha@51+T#Kr*0i7ZPvqC+?#(<0k)u8LxZq#ONE=B=yYF_0;LA@T@# zmczzH&}QaL4#mi*Ku450`=r0uo8N%cm?5B*YB|xCST+(OEwvtR8Y&|(*@Hx8bIb(` z@kofhDZq4l=2Lv>7OnARKtddsdM&0w7X8bkzS7d9C_#l+y|sqrw0=JCo%d4Ko&4$` z=sK)A!4kzl!D7F6Hh5Vh4>;W?5+NhXm$#Atgu}lK9oV{C9#wiA7y4j)sW1mS&Ugac zf26ent$F2&f7QxQW<)|EW~ukeXKuvr)(aT&>C(|d{G^;vggow&v)9w^?&&Gtc)fK! z)RV`)gcHVUuj~MHu~>w?>S!OxVd#VG-nZ!Q31+7wX#Yvj+3jG9J2vn|xyt6er*dt_ zV9ir9!y_lK-KR4$bHaIVfsN3YZx+;gVw*Z_^CyH2?$~_@4?AZ9{1As(?^*UwF)=Z> z%CB$VLvkpPDP4X2bd!xgQQ^r*CkCSOg_fl)+j!6f5T!xX4&_{tsYtyXREj6D9@*=5P&4L)z6q(h41N0s;IeBrM#u=R!Z;p+!;&@l>HU*C}$*54bSwUX^Cu-+kGLQQ2#ga(iwIoPYH1!VK+neVg zO$u{hV3vugsw%9JLR)X^K8oZvx4=v&qm3}2jDYCQe$V?%O62)bY&VcWAZUVpvnI10 ze!lWNct-`u2Owb}zg=eM3-8M_4S*h(|3PiiCPH7(uOQI8*7HAWfwn$Jj3S8a)+_HI z-$OYjqpB)i;0w(@-~a@|TO`#L7wbaBGb25H-s3M$Ziy_BTVUxB4;!#Z8%|8Oxj$(Kx^jy4dl_R%Z zSsRzzOb2y6-KllGOVnpoRR?^5icp{f;Lt;BgQ1}i8ZtK!0j-d0b0QwGcMgk&wf?_3 zK5C2OfxzA^L+Znk!qZyag{nkIiqlY*wxg^gX$Voe6sEV%Yae-YxG07*Vod252M5oxtVv=SNG>1+TM(DuvF z0f@8@t^N5XS_Im$h~oa1sS#ShY@i8|bA#3&>ElACRpa6?{T7rR!{hTnM0~8;NzX_* zvG>?asQmq3l#QE)hM6$+8gz}A>+@A00vG!oS|`EDoIyJ3Ky4X?hws1vLP39#&GIUN zKxmUusJUp)WAgvJ+VsZjsn!FHzUPhvPvw6T>3DTrHXU3LD`*jm^KQ-3FW^Pf?b!Ww ze&X+7lLbN8eR;kgA-zbw1ZY12=m;MgoJl=J#U}?vjNSqLn1B{5UFecngn|pwxzPzJ zxe!XUluPb^FI0?hSdetQNXkE(00mKs6HHeI7}xI5V?wT%+qeOx&<-%@oazo+Ohnt{ z%-<>e`{D3iX7atgWwQQ^tlgjuhui;}8mN02Uy&})trx%1zmWJpWShUg|L;@K|9$iS z&eB#4{Lkr(Pf@W7sY(djKe4QgLdo)M8;>i~-G(VALUGWhX>CjP5J#axx9aF9)cRt= z=FLq}b2JLsS!QO5lu z5%v@Y^Or_$oJn&DJvwf?A44mz@K-ymeBRA}{o<$IlX!YxzsuXc)bDyfhL$B7MrG=n z{{L_RA%3M7Va@|xea5Al8M(_AYA96ezk|BNh#M$Zt@MzlN#PYXp7|E`pVQ}>o2Xz= z*4f8(_Hy9WyL2k4ZgldW{*K7ie*SKHQCAuIjL$T+F$Jd{uWf*HJ1Ut^Aal1$rpk14f;FYLBsbSdyDBBZ#lm# zbIdE=#lKHHJDU)FzI$nDme60i5yJTO#9z!I@nzsoi$p%%Q&3#JrV@BfhWlVx=U8)| z&MPsCHHiZ}|CUNBEMSmjXfKLXLP?sNJ@I6=;W+h!@4fDvVCrjMw)=mJD<2Kj)w=}; z!;Ab}cz=2Z%fg6OKF0pn->XI{3k!D_%Ty9UBj5vb@v-N>F%fC*f&IG`6xmm)r?BSo zrIs%*jL>NAh#ll<{hzUc)T%1u{iigv0n59x4KE-~UgA z|1&9YCsge82*aPlkW&BpK{eVHw-pSF)H>P{^Ssstg>(qzCC86S@UM00S&vDMNG;Vj z9mq8v$Z5=6^k?m?A??!#)9P$jf)I|ztOAN@%Hbdy_|R*=KeK}Oo(!#7RkIREwfyPs z!*8J>_tb8F`?ATCx1fi0R#p!BD}lj`S^g@W2P#03p+`yom&6P$#xuQBC(}!_)LMPk z^NPMdyQ7wCJXLzfztHxLvFn9)6D>G|5-p{m`4)-xAkB77Ffma~qn&q5zm)YlaQM6moC-i|He~5*`n`#km-^%6 zqqb_J&Qly~*T9x|FwZF9C$ZiZB}U z@vx^-)!uBiTY!wkdhtOWAP3|nRMl>A+;V&gRzR|Gr8{CJK~?+>SeJ44A8pk)7=8{1 zq%03bBL)3DDiIL`S&A}r26-*LDKrhxzA-$s;v2?nChrC_q8tvr z7DpFWk!lx*v1=kPaymp0JXXZ<2lj0VogQV-*e$~)0DIT>xR zq3_P5uwht^+@l5?7yzp7o~KEqa=S81c7bpLJaWeh4oXnjS z>_S=hHS-1If3Qm9Pm4zFU{Ujo31_pKzzD^zPYKyrV|jlL9D3v`&GGdm@8YB>6*{E> z0}P2`7Hk+={hem4TLnU8pph+0e?~WglfsG$m6T_o3Ss+jlsp1IIpJq!GU~sq2#)2HqyOhyQ5zG`*@$zHd2>MGQ9X`RS=U4 z0WBtfeT7mt2ix1b?345TN&s^e!ugR~ULv;kZTw^o5s*K)l|#bhim|WY1Oc6*{6u>I+x=ZzY5LC<(+b|kOdn(n%G@-4 zBt1^PZu|DRjXi{yOxG~Tr>YGMQ=Twq&)#y02n>?mj354-y%{AE5gq;Tf&~7=o;{k_ z>>^HXjPvAi&ilSaGWPKf(kQDfmLTu#y4dwSG#!8S5)>hOGIR(boZZeA9p%_1aZ=<# ztKR(n7t9lC`5Uh!9HN(%xJSJ&$#We?sFwT+mUvPg7Np+@7CeY)aDalXfIv)I*_l9Qlt>Rn=qcS^eDTl4a+gZJ` z@rsRxuP=y|zbE_E)HL<5>OYMV_+&pe@5$5neh>TfivB*JGv~J0jPLItlAJ)hKih0A zBQ6}++VTj$HZTk!F}zx*e}3{+sR z={t=X`nkBHrS*{5y=U5m3xyHBY~E)%8qnGb0<{_o8^1sI1DCk6eSalZ9m$rReeq{L ztzM$x`^m?|uirpC+Wu}ohK1Yi2`+ttpm^lcceumHCQ>m!g&`ci!f+reYno@|R%h*{ zfpR@lVo34n&U)aznXW-9?(L|!V26{icXqldudQS25emH*I7J*BFWZ14Gb^^(lT zy`jDYIp%{GiIY2UNRH3?wMP!_`^HNU=0AzhG}l>_S)?w%D|wq?3>V#fBJPq?Bx8;1 ztSs+L3RpbLj(eu3XF;`>Q{tsn$-S2^9}@iJ;g1XDjAo=k%?A&D5)W{wGIHBuMfKT; zC2aC(TOqdBc#J&vU?gjEcIqIl%IoNu6xe$nzmx^o5W-cdApiV*;I%lW#(NMg2-v>Z z;y1%)J8<=!@Li0!7zuQC_F(9)PxmxPbM05AdRk#>$UA8GYOIM8R`o14(s91wR)g|@ zN1zn`qR zlTMT2gUdag$^&KkL}($&eM4iGAj>)A{AFi)SsxN(gzXr+pPzY(FKsjVs{HdWKj|7D z(Zz-O%QjPjM6>p8RBsYVFYlQTNTnBd_i4Dem)u)qF3RNR5REi2FgkjqO~4^9rbUoH zC@}d7OJ1>FR+w&f-#m}y4SWrkU!-IBM#aep#zD4 zEkQGLtjR=^%{qJt=8QOXb=}`|u6%If@5u6%=u< zsykrM%QnWOvfyTWJ%VNb1=_~p&v95<71!s!Y`^KZqxh8mCK~?t`4dUJxFP%F2WIZD z_sz{&8(R)Gyv#Z?kn<}+vcrIv>E8g7ZCJam0tK+UoWkMz$?;EDH5Cp&|Dt<2)gLw) zy2S4s+k*`Lo~&IP^9(z8Zc+Zns#>qeV=>)JzBB}5k6Q0IE}Sy2EI#Yq{hArP9wxeV zbuDj)wYk1vTq5GBAY3DG#3^J?x*Dk%CfMrl zMt1DB&mKjnFqi+hz7RTAw8ZHdqAE%a_^D(o`66<5GH<{QqW!rW0Y{KSz10F`;v z_B)TT{?9oGv8_X!zQ0{5SR1JvoU40D^V}7*{4T?rLi{6{zUlZvjKVI_dq)to-a+{L z#}iqb$;~YME;H{B9;T6E=GV*m?R+V{F^x$@>~_9Qwy$WU2gYr?jmS zypo4Dx=AllpKimh=ZaZ(9=j|_PJE2Jh%eN866t5CaCnIe$9(YSChHMi9bI!56SeuL zJx#vnU|j(j!%l8pX{M(-Qg+j*Y^m@2D;xY?IMVAyepv+P2sjf?_p#&HIx6nug(kjy zrfqD86|0plk-+A!k(e0iJWj#9vLV2b0!9OO_nt#kA=bjLh})m~h-v%F7|m1c(Z**WIG z=dDI8QEhJCc)@q8bT>a=s@sX>{7FbzA~S`y`b#4;e-6>``PMj+DhZ6-%9|?zhM%L85o%PU5frW0+U7YgQ@vVe06~D-32I;@nal*XId}9HlM^&Io$UjQdxGySyE@ zzZJJU@)h=fP0O4DG(K$nye9Z`_X9`(k60kg`PIxn+blHl?}g(oz9Wl0akDL{ESIb#qj;u3odi7eA$fiTlb%PGboJqXOt$Y zMw!cT@gQ~$T-AT|%=s9lJ9h#v{7?q?1(e+Jpid;+u)O5t*))Cofhmn#OAq&w1365M-Q8bk%nk|im)JRFwDxDjg$gW zeLg_?eJ<2VU48B}ZhyD$!*7vaXt0L{%U|DlaahniGhY+QjmCvvD=7>=&C2CNV7Hc9 zM>wg`h3!R_5is2k&a^Eh7?!k5Chj;8-ec@g94akRL`u(z40NvQ;=}KbS_x|lw*K^f z2d<%S|KmhILTrom(y)WSOtVK<#`j5zZ%kAC;u~E+!39XH2Bqi9&(gR-%HFZymvo(YD{DTO-w2de5My(dqJji zUaq2v(N}n*F5jRsh%gwM11A^m1u&`5zdQ_GEdd3yJx7UMnJGb{P(&vt)GG~JW1R%~ zJ;-4!vKJRgMRY2H{GV&5eYY~fh@s6&v*%p2&NFR{6p@^GHRl66CO`Z_7#qOElT$}h z{MbHO z!y7MXo-}0f9F;g-3FB+D#F=`DtWW6?HaBt+;Sj<(H;~)Ij?=W|ZsgIq5#8z|hTr|U zw#!Ht!*$=cfco8ZZt%iwF%OJ+fiep_PG0346HM1cB8bUJ=&QcIvWT>2LDzegNZG_& z7Lo;YLQ27@UF3|Q#kt+6uWIWtYiBANlP^o2}LqqW#Seg<;$$fFhyM7TmxOikEpK|LDP*D^mImFa(mdl%z(-Ptb+a0nHqT*a1E)hjMPe1o6H3d zN96GZYfp_m^A_eSm&-N}`5wlYYbo^RCKP;Shbhq{18}TS zOSs&rmUc^9c}W{x+ZcMDC@JPhsk^$E9WwY>v3i5-OKKc*%{?7_s{N&{SL;7qX5s&A zpa5=7XWMOT`G60>d9GAb|4k9~hyScUmd6lqFe#ujMRjah%V_49DKy51Lr%fC0ug8f z^%C!)l9HmixzSzk9edG!;0Vzqr&!mZ@GIp3{tWwNdGOL4+Y|`%^{Os|lgpNxQ9&?F zdK?+wWGq6t-sip;-g2pXpK581Ogz5vy!hdPr9!}k5 z$NR`*UJJRBilP>)z5Y~~2QRnw=w$Z!gjfy!4wS5wHu1o;#0s20uTShT7Rojukz6&+ zb_A>*!0br(BX|x1N@m^VCNnh}<@~^|ePWHBt)>dQg!z|FWH|?x3-Hcws(8vl^~Yo{uAKsx8Brb=MH;P>6iabxz8->m+9{y zYDH1Px2~@4O@-?BQ#uT0yljSwZbM$B9;Xi+EYba4{6;~B9d`x`M+mG{mSr>$fs1iv zi<_XQ2Fo(l2eP+3FO;b?JdVFQJeBn)`^24H{LM@%4H+76lnW$k#!r(AdRg!5;=tJD zuH4DbH-53)+w1;8qr5a%Vyl@TKe7A=ZQ9!61|`mUm%Kzj3qQ#1bJEOa(Skx=T+cQU z(BuLleQ#dKmFUNY>0^(})H}r@LR0cahQHv=PtIRlICF*+nX$Bl$U)c73G>OvWqE9@ zthfu!YhG~Z&A-;@#q}I?T#MCj%ZG8@o(IHyJ^Tqggkx9YvgG6 z(o`2=p>=#|9&@M(VJG1y;83oTsVVV6JX7Oox<=(kt)Yy2VS8N-tIhp^Wmb`wbj~VJ zXXmTHD9i8%1*Hsa4z8{zqjiY^JSya}$!j`cUYA~wG#Y8iU@vfyW)yvDi{M|D(5m>>7>g0xO*0C*;0cEc+MQ}E3B&$SuA|+ z!p+W!v3&-oUL3phePFU_Y2jV|xz*$J3Yqws)A-#}wOw`B(gZI?QBSFl)Jumh)-ZqC z`Ffw79a7bh&be}bVB2`6r!#f+b@ccS zSH4I~OQ}7qwYi}i(YQfTB~_jhHnMy|87Lq3KE`ik{vL<^V96-GXOHfCu0pQsW3-ZV zJ1!ETkAeI%s9V-`p&3Z3KIJxsm#IEK8!w)w6GJn)G}}!|{BUuBQY`e~GZ!Wr?%#`a zSHom6!;j#dwf}lys;j8}@yb7e=NFHDeO#%m!FzmhZnniMn({f{j2?$)G&?3DK*N6t zDNo%4t8J;lK{ZInY4nNHbgZJ(%>7?@|JdBt_}S)*m=80z1qQ$klm7nFuQz~TwAyDo z`hIzkP|IORgrnNI-lMZ0q(*81_zpg{!aC`Gp5weXzZ?;K#&63xHNgKjcolwU=Kr|Kerhe=`n9gIr1qmFb~*|M=!%P~@2*PDA<6$O)-=3G5HSR6%Ph;%A38%j@;qS7XKOF2i2gk@NEy3Kt6@p{liVb^OJ_&r$;-(TfbzHwWEmeJR!V5lud zYt(P;B=-}(E`YiOUjoZ@0Iryrls95=Os78Lu<}+*5BF#>q}+=;1SWdXK%XFW#$qry zQ*3NH)r;0dk3(xucyWjze}P+^gq|O1#_b-rgP%h(;KAhRG*x!m9FyB4EO%CKW%F4 z2}g32$apykgc`Z8?7wGfX%jQHx8dUc78{|p7LfS86Hdg=1(yEwkd{5A{d2l}W zO-BW(GOC9?xphuXppAd3v25DtPTF!c|pfF#XE-ZMh zT@aWb38`rDCdr~P*O3iHy|#Iq3x?@sfYI3ncJW)2=O;FH)~@q!%o%E%{_!X zmIryR2eiE#LJ0#}N1|9{S8fkDcBuEU=>==+>7|)ar}U0U*uF-NW?Dm)1bPFZ)vg^{ z9>cm=X;1=ULrr>m()Q$Z{Ntgi=@iAFtXY|5wF-m0)w=FXA<}bNm4-KC1O2DrnD^N7 z=2%RgR{7?9XcLKfwSE@DScZR=sqyE}UlH(Vq!XO(?~16CX@p-5@w>CH05nTGUwjnn zm9=mJznh>kxI{X^_Oi^Sq}bnBq0}kUp=Q=;6RqXR&KDM9#DEAfDx|XKT(}44Soq<1 zq8SvcypgA*h}#cdg03j_m<#sZ&=c&`e7>sdnW_@@=oB;P;w zK9m^bxkzwMObni+96Bt6{wh8+ocb`aG=hEvQQi z3JW_eGSc|scr)>~R(BZgtYj8IS$wHsA&|X0hG-4_isGMRU09dRxyh&((@|c-+L5UE}K=mre=aKFok~7;n+x zWozeKI+{!`Qoa5V4UbRULKQgZbgEz=e{-2Lc+&Kuq)@Qj*IG&A(lu} z6g}kyBs(ff?4u5zR^HrbhDVXCJcZ72Bv=R|p=mxoU**OQkkmXd&eP_?@+TN_{Rq4H zwbJppEDXVW*8S(M<$7G;ntPf{v`l2;mF!Ku?C>K;2-U54dH{sM5`r>sJJVpePP+A` zvELy?3u!jm=EVjdO<5jv=o7{Nc5Mea>X+Z9nACE>9>!~S2&{OwMYqSjd!<|8c_GAN zcmlwL8qk@3i>F~aI`CJ|nN(JQz8LT-=o=x}B@N zyK(a*@1E5)f7VnNpRd>Lv@zF?Ykb^a=u5Cm-zzmFTv9@*T9N5{4^dHJLI-kGz+=s@D^EO>4&psDl>|q>M_YKgD*GM^dQBh!b8HFZAINlgjt0so0)FB?%V)MBI???d;@5XPg@n|1xQA zG&+~?Zi*JQE)Rs#vVkr0IC=^;_%E#d8-N2t37Szud&$I4k9T$BYCp3^%`nGyq|VoI z&e7vE@6$Cpf~IL2@#XFaYkuD*%l*|k@fgKbSNqqo|HjmJ$5Xw>|EH3o(oLuoC35VH z2pOl6z4y+}&d!!nH$ri2$0&#FO?C)58D$>_rxY?z)-jIpd!6q0`+fZWyZv!F$NTen zjpus1?Vd(7I%3}Zi;Mo4HpL(QE=+izz0{)4yW);=*G>@HGuo^5#PI%bL88~7RzH0R zV#56eSkKE!0)Qq0C`YjEdEX){3VPr=?7KiWL7D6Mj4ijpZ{t_!O`Yt0#&U3(qf3S5r((lAp6Xqvs@M58k>kfRhE%zrxk*0>;e2=;HkR@S(gc*u+rtw3FJ4 zv=za?u&P+$<=L(=%;vAJ%Qv-M*YzYlZ}D(^IJRb_XM)(N&1u@qrUY)(~`lV+L~` zs|*v^5e3c1iVm{*&%R0b>&Q8Pxo8wTe%S2UwGkcd#y}9yVaUr z=@hg1*E?y|E)lQOfEoSX=>{MO zY%S*#c|_#atRo)mIv?e(r^Q0Y7|qWwr$?+60oX!33(y%7iuGVYBBVgZ?<{Rj;^$*_ z`&Ihi%IkmJE^?c84Lp8Y@UXJyfnjyw8cF7}#>}hJlDwsl7=?~oo3U#6m=9vTe zcj|Hy4>g@_RfVC8txngX54(_l&m%G`F=H>F7;4-u+Z$=#bIB|09)o1B2OB4!)p)?q zLC{T$ic1Zo49v-LZ?k14mn4#e3KZzM?)gY%q8d&i8Vhwbt`BifBB3}NBa`!ZOT4O$ z_;MeOLL;BktImBI-*C14T<1NgwJ1wD+}POsd^5N=YeEDLDR#?%P`x}~?>!8C!$qDv zb&{!*E)^QzSuPgl4b@s1K&|T{WP=hwOw5=UqdXjRJwJL8rz5$c>lCnL3~2y^ov(Id z3*eWR`V@ISxr*M8i>)G}5{&WikdYQ1a!jeNnb(OnMsnpHLnWKP7J}4?cr;;>c*t=6 zaYW7bB&Q;?K~E+p+hOd=PxQ#NIHA%w`pSWy8B&Q2+bU0OD+PRRX6dNguO;zKSnb{B z3ctIo&Huu|?o9I5PkU9fP^=#M8ry}JBHq$-XSmLhG3;0}!*4Xupp~>Lk=gC_QoxE5<3Z3d7d)<^n0P4}7nA@=GasBh7y>nI-;XV#vFqWzdMQeh%C>xNBG$V+H=tuY7k$}Ok?wi}U z(})4T(|$wB*DgSzd|$es+zR96f$zzJwO-F?HW1%021o7!>(F3TJf$Yb&7Dm(4U$2x zk5n|jA@En(Kb2ymgER|A@+JuF0&d+o^ki^sK5cw-hz1!H7t{Ktmv&N2kOv{|0_NSq zrD&Ly8yzNnz9`#J3G}knfvdqL=%~}yH11a);&kmo*j0A3V7&t%^W1P z=#{yBIEh~Bbv-`~cZsb)Za5#t?)ZnKi}<`|wUFkfZVm(VBRA&JsGhzuWX@Ji4022a z)inP^E`un%Qu1Ds_7D!5PDN4G?2i>9jR^$^#^g zz;_`s8z4#L+{=5WmlffO;Gv|BfeJGptb-JznpfK?@%O$oZhYWW{ZDGS)XPi;1Jg|$ zBL|iJU#aEo8q24PJE_C26NBZR7TkHo`Zjnmc_*i##s2-a{eN}iyU_*zW5e9{YjTlU+?@i8yvrbES7_rah8zlH{$o@=K(ZXJl)YNM-%v z%KhFWG}UA&W<7mL+1VVmxr4NC@0F|F4DM+|0wy+u?9)up#(mHF21QOm25 z&QHq2g=NuDfE<_mIhU+Gu`wc#OW8eVdFq^#Q&?Dvk~tBG_Ed4H63q1U@PS{QY|f6S z?Kw?l?ZI|)KGzp$@TtO0DdwA_dyC}HUvyHP0Z%1 zqw_&qNv3-ZN?jcBD!fxJIN>OKZDT{VKAY@81IOHlDJwlC$H`J;A8|L$WR&gOn<>ay z#P;&ertWMEnAnAMoJKk0b4rNglQ#mYC%w1*c$JP29^ZYjJiZ_J^M24!i}k&f)D2+r z7{$e%paA}^;;4~!UbVr+i4*dQhjY$#G?Fb}IFwM+aVXIh*Q?Vt?Jao)zY<%F{Nc4a z)58<5%N%t*$Q;8C{yVqD@kz+S@|U6^tJa;)kT&sgSuMy2DSj>*fInqeasQoTP8`GY69g4ts5EInB>!EOBg z38|V9QL$=(3Aa{NE?0O4bfrn`h#u;jHTRtP{Tq#sG&Wv0I@IwihxG+(zBQb)Qa=e; z!II5|MDZtQOJd5@P0Q}s##Z|-Ykt(1Vjdr(I@=tfQy#4=;Ms@?aCqC=E*(A8(SwCz}UVOCL1tB6-N3y5C=+#-j zP?uTxG^oF|c$9oi+iKlu5ppjj{boJOb-ulS3+0d9+dDt6L}QQKuPGW5j3=2x5RbKKq&S&ftJWeFF9Az>*9XR99>-n-aXBWfFQGdfx1<|;8n zVkkF^MTJei%6a7_ggu;y3Z}~j()vkIa4@J4)w3U6#&&Mz^JB{P)bE{>~vj^=c z){L_&jlDAwk6MR!cRS;tOe{a&Yn40qmc>I?{dEOd?QD$vk&73{_R<-aV&2fpJS6)Q zp3=K+O3TwRD@z4*vDJ05M&yt^FYf*Fr)N!DCCHq8sR)dY(pZVT#?sGe&kon{t9gX< zfNHk2-R*vj5FVwA!xg#5XufY>63XE@Ew%IT)QOKt7KltGB6S`WuN}Wt|yk`a&sqZ*^-Cm8TdwNymJ#KTxpN)m=j~F zxT~*0y}dn?WG&gO6}kve5(W8!7c*HjlaCU25N6l=e+uYOu2;O`?b815M<+F2rL$p9 zohsX_EdR9s@9Cw&lc?;sK_o3L$-a2x)9hMLMx(Mj7*5V*1CR64Ny^7g%?Cb-eM+AI zC-ml_F2*A8Y82~b@`f+LWg(s^`34drm0RxR2vZs0FEx|eHj}sGgI8aA{mw#%SX?5t zpUE$&VG@ti)zyoi+<&83V%|So6yZE}?$vB-Z$uYt)pbn*0;M5ngr zr!Kx$I^uC?`H5>F0^3t zw7kLXxj54*TJ6l-RR+RkVUu=~)%{H;kP?LhB;uJB)ADqWML_`Vlfu9web6B4mR{0^ zJpH%~)RXZIbSBpCK%`yOLp$jLMvLL0AqNOjNU5se@P`a9N@_rYfEiq|APKOz>;S}j zRYJb_-z@(b@#Z|pCZ`CtFB619cN6$BMJ>*St=?w~w_G;0ml^`hs#eAih#1|&sNTa^ zW(%+C&KS3Yjp#JLoQiT{8~tpdrS#$J0}r?_Nd0zjjc#<4Ei}XHUxu-AZmYWM9J3T* z!8UYwZ2nm%K(L-y3v~5!Z+6N&dO$8AGis6+=L!cKtmJoMQcrnew$r8YA&pK3xsEae z@jVlE$N09ZBWjAW@6{~|&;FF%>uN5$BHnNk(Q_pOzH^MxxwiklZ*Q7}4kfzc^q8M8 zB^Tl{kli5Qa?*q7D@c^QM~P9a1d4CrZKOayWY)c{ne^xVanAJ+^``<_Y;L-C*XK85 zdv6rVn+1P~gNUM#&#ul+xq%k(<%^C}Kqg?Vs7rvjDa1no9a|=VT~-fr2mjumFj7p(+M-0=H^Xo_pV%jeI;8zmk9wLIoclSJb8PL6f|bUv zLpq)n15Z6RCkD)~w8118axl1K0zlT@rC11hE7Oa%+pwtv)_Z^1 z-|x=sBx<&pmPrlJDsz)=ebUE)L%*97E96WMZw5 zW?)3QtZoe*IW)x~mFH0(=3!sT;NYTX)0?(Pq~D$^C`mgbI59V&?Ro^8bG;xW4P|_w zlq%g*UnW%DY$pcX6jwT8XwVR^A*6i7(5KYzIwr30wkO;dTQdG!qk|U?1`j#>Aa4!Omr@?Y!hD+MO$)L{ia_&t?W4_E*#RGpjK@YuBds6LGAW;q2f+Xw z{MX3{#{QUK4zrNP1G*C*x(aBOfp*L8lYu|e>x^=vD+*Yb8^QW0%5S#^u> z-A!spo0)*Ay=!{{G+^r@8!A^}E{{5Y744s2)fia2{)quxWy>qV@Vl(H08l1#o`bcW z@;T2e3>g%?{vjCh2Cj$kakLxt`}VZFOlamP&+1$*Zi21#+Qbdn&j4}&Y;~3zC1Q7r zJhZhkr(r7&%o1DRjWsgzR#HnWi%!E@Ee+O$Ou`4T95bEqmUCbeG%>LjG`)I|OvMR@3VH%VFa)r;RUSTCae!Ux zBa2_J@zX-qTHft`aTG;81>$9S*ZVOE+UVg7C||MO{l=iIq>;$ z1nL+!+^Q$vEwvqxy7A_U+DflHJr+(!Ur)mFkv$^{&HwtEl3AVML3Zm2AaV$b9NX-+ zIMR$)+_tX(DDIRlN(~!dQjeVs=&L*b;*ZD?tm$SZ%CM{cby(gvyEr=5v9njJCn0 zk)n0Jz5=g)o#pjoh5|u3bJ~d)Y|1oje0#I9!<}#b9ST@=vZ#Qqr~5hAb<`i7Il9s;w@xOksr1_H;U>PvCKGL*VyU|>_V)L zypaj7TE?=jHfvz%V2K6ET59^7JvrW>yjk`r1&Dg8i*%qt?d{l(kTOF;xIWSAm_2>;l=1s~o)RyIzJm{6Xvvz&9M5O~CjKA#*ahzn(WwEeL-bKT0n<{q`} zRlsPk9#+oOlz-Q6almugFIz;d+}EvO_E*(NhrT3^&h!~NNSiU_PJA02XFpeljc>;B zrhD->eF^+g7vi=~&F1U%p0K?RRjf9DS?EZ(7x^bV(QZvRT(1wX{>^)75fu&thSE1P zYNY{`k_P@59rxWC6r$QnFDqh>ac8P}XQk-^rKw-odp&b;pwl>0Wp#NI-#^vBtW*u~ zDY6Aaelx!V6EA+>7LaSv=re!*dLaPOfd8^k7k4axm}w!wPY_>>r*tK&Y23%GiWzG z7oD=IO&6TsT;kpc_vk-`SXdaam=jA?9)HWub&tf8IbPoGaEhUt7Mq{nD)mhaADun+ z^kRz*>HFq2Ft(JJY9fcc)DpN%{jR&KaT4)|`IsEmzDs>b+qDN0Sc`C{a zv}(HiIIeP<%N#vv4*W8lMqH0ZECkVk<=$jxgFn^Nl9`J*k!lMk&>TC+@~=E&NE83= zdTal&eX0y<`wJY$eR>ehoCw@KdA9q^H;O7Nm8Tgvid=0ZuF9#C>mktXGx8TjK7M8t zxlMc+;S0RhNRek4{*KX=PF<~kUeU3AP9NcYtfEhEMQ*&thzf6)nO*E}cVwml>y_M( z4|_gy>jP+p$VO6mPDXl=&nmGjH$de_#>|9K`->o}Uslw%6?;}9Zt3EB%zqThX){53 z6L}Z{Ao#3=yz_5P<4+ESnIe;yfh(YWGF5<>NSSnD5xxgL%&~N#wu8B-&!=jjIdc73 z0aZ;sMa^K#11#h8L?*IV_4&Q-ktHvS+@4to&+#Ylw(Dyb8O7~y=JF2FVx5DzTzLjT zin7*9LuLCRnF?b71%zSIZS+Cak2{v7ya=!)!et^KK}Z-r6)lyvRMA)6+SRzZycMwO zaM9MDOV?FT^P)6jgjf+%^{xM`6oz@b{p8Wbg74LD+2=y`J83zV#OuE#7-d!2m}LSD*6I5oOPB{57L`sGc7ENZPHED!mk0!dymT5u`o%yw)_BB^*`( z-5MTbemX~W=Kkt8Kd6Ecr+RpsrIStSXL3xO0}#Z1cDy;M@SQ{7@FuISkk;6vwm11d z!BN)!LCRfl1zjy4N+)U2Q+-FH1Keb^;d^iE$;dbQ%IShZDeg)5oAWQvxHbTKytBxK`H* z2TOs=zu#2^EWTx*6`G*E-aVHK3UmdwC0z})pB>3s*=Etuem<~iBdf3=4(2LH`tSNT zt%@NeK||KXMV4GBwdt@4iMn3@`P}I-jrU+gpuZ3<{5Ky$QabHZb$R4YjW3{upeqLX--gAEZ1MYuB{;cq3 zR`Nn=9+x;VY0Es@`Y!P=HV)&ll$PEZDqE}Mb*QWT7DrLrz=A#wXKaY0wCg9|n1z-? zS4XYU>1vh$f9GX(um7sc$|{=TGS+$bJYAZxD6g#PzFcy%HmJ&?E?iSf``wHEH1o3Y zLV_JO3Wi(n#Sgz?*A1vN6q<@>;QE7JQliC$1MF1_LDd6 zy)rPKUo0?(7vcOcum-q05_6{GU0%qfhl6>aPN~Qxcby}`EagM;?KVKZ@4io3+><)n zRV@3s4yd`?Gh_}BKvCY?D?}zKd75y>VQim_XLZka!Oz|9!y_tDQ8(etD!iBGb$gEil5WvFZvL89 zxH*RR(Tm2Ak--n1D+s;+CiTC6UL<&fv=>E*r2_XssEF|kYpU=l=Z97bR+q)#f1F85 zq>oSLHhjHRuF|01DX1_q4wHCGp5TUDaSWwRVl*o%8h&dVTTg`{#KS#7 zl0muSzhxaNVvc-!=!(Cbgfz65M)ZUVe{1jYI*e5{DD<)B+)9^5m$oj1mcOILzGcs? z8!e%QeI?fxnFXGlq$#u@kjm!j#Dv1xn4myl`)@$QJqHcVgW~)ea%A zfg`}FuZfZKW^`a~r6xk@({|1E^CcNO&O1lcNcReujS0+i#ye1BSg0^K-oeP^Gd>^n zw64Y{`UaYi-M$-8gR-SJJnPPqEcZW}Gf!RcX(N{f0gWh(#QS_~_Hqa|b(ZgZpQ#!_ zDIPd53HZPF^qvJ;S|h!!HBzrZsvwgivs>1VzDk#@QO6HGpuK&P^Z<*3<1b{Kybi;( z?gvH`kk#DH{+cONwgSMhw!k_OQ3vHkCr@Tm1OydxUt;x;$qRoz2Ak)2AaVPRTj0D1 zs|gPk-rY66(rHJtE9LXGv+~UU{qasAz@JK)jzE$?FY9G*YA&pie^yOJq{Q6Tc-wk6 z9naK>a}q4rxx=2>tuV*8`kJ?v7R0Nb>GjA2w;)8@Ma>Qae>)T8oPO!KKBBq%%=*F& zeOTuW?Wt_#!#&@!ft$-Eb&aesJv!$r=WuWd%rpFl<5eYLk3-HW3^DRPHi4SkM+}XX zL4}9YVzci&nxVSlgi~Khup(-O%L#Dj8elA#IE}!Jld{Ik+KisPe+S)|ym>aNW4{pSr~au;cWRu<4LYn& z;V(18|L+Wy%k-2j)9%l0uuIGk{SNku4p=T`Q_~68yB*az1BTH^v~r>I)0Z0yXr|L3 zHjj)*qb2^GLjU;Q#zCOSNhf-&bME6*%g9unh8_kg*|2A&2AV!%ELYQm`X|ONdN#aD zLb~vD_EKJv1;1Z>io)2dHRYBZ4!EA_%GIFSR_WF}9Wr!YU?p|;hg%+EKDU{x)= zUeG7re+AoL&`5KzLUK9bg97`@0>rpEN9Rez+}-5nFij-41Q(?2C~a&c6Jl!RqEm;= zYMDrMi0UOg25uMF8{gUZ@i2+#Lyf^b?e77BpA}d3`ZdMRdeoQ;J|JijrWC`%@BBt3 z6Upl)Crzkr>!@sV3R3IC!OW=B(AF1)v%_WnHyQtZQ5TsfB4`&Za-dK3^bG4_ZaQQYxvxmwxhOncVFCtw^^{B z_Wg&^jGTF~njGKfH#0B&@8EYWka4nlYi^?YhU(hsF9147Y=e3s#eb2LeE1INhuquL zV7C~`AK#GjDF_peiw!!(UU&)qghx?tVDwInN$iana;1hPRRUkTGog&z$XwrPRR!M_f!X6g zi3Nt$ZRz&^tRK6$+)-@=v#PH?q3D7~Qy6&Jm}k24ij}7aCrM{S3~0w=mP@Nt&ULTrJoO&q}qn zjc@KIP4P>RzhUER3&Ip`j1u4cmc@bp^EGkYumx|UzIIyW_-n^LKC)ACn&HTZ6xSWd z)i@{BLmto=Xbw3VQ+u%_V~^`6TeId7Y?(D0J6%f3g7Kx^H}UlCuiJrNL2Un%PDO6c zmJMsl|Jqt4_xLf+%)&f(e~VN-B#CJCF?6s%LD=X_N71ZShD@)|>zv1ABc#JIRCvQ* z6uPa4$O;lswyMfcO`Z4l%Odsu@AIXXKhWn6w@vZQ=hB5ovaVp}y2+K!`)t@<1{7lh zL}qkJX2FW-6wsUYr?Hk$-Y)TjV4pE6$MIVl!9b0|>3b&YGwfo>$~ z8K`h_?!S5h_%WnnP%v{f5NSZkY4WTOTm5<${dA7E#L!?nOkgP8h}5O86Q}o2^69ms z(%*>5p~448Z9$|;%dj+$1W$Ug*#v!f!vh$=<_q?tt}$eUEISkH-4??EimRwEdAx0m zbYOkq;qBqnl%C`Ns#K#6gUzqS=8@s4Ga zEQ|(_Np*z)m~sM2@n?q-9=Hp(;H15v8RI&TxDw)M;Uj5LPXqA{uJi4yii{`>M!nry zj0$7+BR=xaCptn1n1xMjd6@t8(Bvm1N~lr=L&+ycblrGg`{Yyx=Gq2vo5`|ipx;h|Xrz_&2tOL3&N zviFE8LRm)SuOtep2$o)bgIPZ1yVRT>J*Ir|v{)b51p;TG^qy;yK_%;I=9uga7y%fi zx>j5e$0Vpu-2dk`d@@uT!`?&Div36*ja%FeRJKORqIR#U8Ufg+%u-4(YQr{V$e*4+ zw44XX&G2Ak*v|KAM-R5Y5@(#4EA!1 z`8}2aTQ-`M)QOT+e07gQ>ep{!o-0#OY|0g*S+4pP^CC=)(-=l{2_?x(^bHM$4Z)2S zNmur`_;od(CvI=9dPexVmx)|^0euK+`itWTx;GOv8dfO|S3kou$6ZZt`!&~(CW{8c z0WQ)CHCXG5iquEXJfq~jU?@Q0eiU5z;VMKY-mU?uD6*Y7YAyQ`5Qg&};e$juGhxdL z1nYggn(fwBvi&B`l94M1q>_4)_}iq5PWYYC=j%8?V8va`KJMT+@xS&;R!U ziMW@>gXL5yEZDJpG-5_^M{%WF1Wj)~Y;7yneP3MdpHhpd8#5L%C?7ktL z?*R?l$TV%&(a^n&K_+n9);Z?pGnKFUe-hqjie3mpTq|js|0$=9QkJ{$%VCl<3Tf<8 z(J3AmG?mrkUl~wgY9Hxkfim4CzUs|QCtcSU;&bNXlt7P*-suXig-40Da>?q9iF*M+ zmjKAw7)Xy`VX?NSn~uu_`nD|A_v-(=n~tM577lW9M)f$KF20K?JYZqLgdE@rWzSyj zJs$x@IHV5wz7A;gGeY9(eLDyKS&~70d$?Gs{@-V{x*Ma)le@~DDY~OM!VdOr(-mUqYANJl=B?+?%|-75NpIU0OtqOPp(6m%qi==H~U?wcwb~ zLCBP;9_7jH7+NfZAu#3NAZ3Yaq_c&LH@iPm0w?p^)JSGiPoan_8f#)2`I3%{8EVrp zL3$FD{3^QXUoWocLnhNyp>V3w4NHT^^6a%HmZQ9PpDTiWCzhSqm>YXpYCPnX_~h&T zKQs`ho^9gRvm4wU$#{gOqsgc$KvTKD&O2H5zCimXp~tRF$V4Y@z*7V^K%c4s(o(M# zTdfVyC{Rm!*(J26&hSoH+e0UFEjj9D9@;H0mppgpGKq+(8mdqC*44ajcQCPfHM6iJ zaetl5VZ;n$vD>^h?L;w4#JYZT^VN({#Op_29)roj&^@S;S zRu6gyz4V|&a`1Hg_i8%DjclF)Y{q4&G={5(v8`t)ke}gJGkl-O?7#}VdreGqg4*-U=N54N@xXZA|Yf1z!z5C z^D=uTpROeY8xu~-Y-h{iDo{lK`@dc}Ork}eR+u(^f1X8;xh&@6bH`TyYPP2p8cRDl zGqNN-tp0IJ(MKil|p;}7^7`q@iKrVEVy??Jgr7WQr{qQMIOs z&L~=C!JNk>rgKLL>lv>Y%R_~Qz4N2D=QQ*@hK!-LdWSn#w{04cAHt>|#>igzsLVg%8!l*^6_69X78Qe=9~IazzOs-8JDXvGZ+lTguLZWjoHX1f+r8}@ z?NTGiFdTyzSixNY*{PVL1X8Jj4RCR;+febvbsWt ziZLOyyjZ<%KEIm&9Xzv;PyoJ6h7bum14^h;uei5&Z#!fo z09VXs~a{Q_X|41aD?~n*J35bY(U=kxLPyeYlAPe2% zGst;aZX*M0(Dpk84CD+lGkh5d1&Ue6Yqr(!jaOS+G}wZZ^kM{?k|y`~%;ujVRwx-( zgJm(?mUEEPGpBp}m|sLqA|ndcUM`MWFs`<%*PjA@_#BI!t^cBGuJMgRMpS$}#M8_Z zX1#$oPNN-@mu&VkOGf8OEk6uUGm`MHOd$kl?Cgw4rT=5aTEChn{YH91pVm(9!t>;4 z#ml^peIr84Uxzzzx_R=L9qjkd<(lC6`TIrswnTDn{ILQ`wE3_y*->9K#sA2zSHRyq zn3P*owp&N{el60-KB^`*idPZ4MncOARmXySodPBsdU=brZS^(H-NP%;;FOOBo6DlL zvf*FZj^RSbIbz^%^}WzNn4$l>uk?W>(LAXgHj6&pBqu zOdzc9nXO=c5|H%lYG%X6aP@1Boe5&Tz)+Bo#Svw}osHZ`?#XRXkE=rw5%v@cFQrDk zU|Vj`R7cPEu$13eb&S~j-qO1lvaVIigjMn#`libCSW*0cL^LnSxT_z+%qap0X0u;` zyPM6v`_iyib8|Z$3$bgr5?c(ab~0FyxM3N#;jR)19z zDLBhd3uoAW~4t{z1p^D-|1PStT%bB4JhEH)JM3fMb#`kDgfi})MbR_2)Hk-n6O zKSgdvY~o_d2iq|#?zexsBgm z2sgl&b{j|ADrH3j*IxaaV97}eT^-PgAjKB4I_r#`_B z33fPW3VTc| zDBzxymsdXz6aU;0%8)!-8CV;@tXFXgQBW|ni?dJhCj)%5Cg|AemzetH_r4{s(n!6VT5GZ4&4w;*dH$FIbK*b`3k7|?3U z6I~ubYtLf=_=@NJk8cW6T&{hxZfY?rt zQ9j&8H5%F=~f_k0aB}V>we3NtdG{`?D zwzpGK(l(9qDpizn-Yb5KjqPqG5dTZKqALr7T&md*@^U!y*GI4{u8;P863tU^guZ=N z&+AH~)b4-1!)uUo1o?G*UOtS|^Fx!=fphsKzCLypn;J?l*L&QI@%WnDW`D<=?zul~ zA&WiMc5iEO+l|xZV41T3@R~OS(s!7O6}c$M6WjHGiVOHqPYcxlY7&-UVYq%v=UIAy zfEb4m1f1&{PFu?v>1G=TYJHAKRlxj z2tbd?#VA$^He8@jE%;c@3J7# zD$W0#@Jx%~djoq(Nk3NcUcYy{ixv8J_f16%KJBjSIF0F?Np?$VeB5%A8EaH8c5Ba} zUph~D^OIy8D1=ql)CNA?d7Yk_YCtg4p z0iQth(z}{I8TE(KF2=JJXS>~#=(ayuNBHg#GI%^CEsFEe@P-FhJXAQC+D#`>p!d!hh+{8lOdzkoWOM3N-p0kXyE*YexZ_izZXgJ)I02z1E)Fj7 zO{AL+n-dt&8WX=&GCyZ*P-}ak(#huLB4~G6X9_^MzCMqHb%{iJ|?muGF?XT*Dx!Ijd=$An2Per6IdS zG(39(Q%*ANRt6}fiO7rYT*-ziPN>7TF7Kd93^hn(a95U)fw1$B~z78 zk#0J0w+zItfBolEw{V|lL(5IXeFbf73M^!ukR~r_v4N0Mr1bWidv2>wFKYUO91I&1Dm;<*a^{489rDj)fK+7R8BODE@dhNF zb@m@9d;Jc%5}l!)tWF`Vx`%WcSOV5H2bZUl0NgK!wW^bixHxcmBMTDs=4gf~p&63M zvLgw=@!ElA2Ig;0H-H!Q+(E$gh{86w9QnqOLc0$hIwQ(uMA>+#HCs|NKywjf#<3oe`3T=^-}YOt04eqQCf^J0D5ijJ;h3_Q0*9wx zzBkHCa$vLt*{`-^fnP2-+k0fHok!0U2C*Aa*P7@wG@e8>Cc*AV+2KyHLXxya`W_ht zPIgAd-tdjU{LIRXkoNZEz2E_(+XxoYT5ZntY8t^y$fT*uQO1mM)lMbevqW2Sn=XKm zm+9V^uG%MW8s(I1mR z;Xt=H)69rt%X>a5Xh(x1i9=xJVJF zwi10G{eT49Egg^bD1 zEvYdix5rP#dhifRgCD6yoMq}_`cifT8<>6Y4l%d3EHU^ z!J#;N!5qI-w?EC>YW7l)ZnbB~p+KuIhZ}u}UR0h#YbF<1`gF)31-ZKxvwMmkBxG}{ zK%8bE!>`bCOncsQS{3MhM)ne1^Ex?(Tz?=(imSqpRr5YL@3*gjlOu`+eS=-=K*_|t ztjaLjrtv~l^Mh*Z7nP5)sv7%bdcB6Cj|ycvyLg-1PZf0bI2L>HZhBncYljgPmWXY> z*QV~CS!tQ@#_rN1R8-Kj(LiCVL{?;&_p+n)-z(@y5CNM#0+jAp&8S<&0O0x6dLHJX zh8q_6d-g;n2B6Dv2?h(I;v7I~ig&?FT72lZjqI~A9{!ru>vM)Tsgdbds7KGmg?rkx z2JrRt;^FqtVG?9Myo>1&xRWqTg~`uPqdS}tl(6q~j|WB|XkN?~ulB~6EpEl2l@FA- z#SWds%0T#Zg)F$vIXTr4C_pKvc_x8w!_}13>#62_-UQ%7z)vN^lxD)G*?jGM3in#} z%>kZbFXpW;M|mITcJx8Cy57#TAUY;wEp<>J4AXWpw@s!;>bFh zz8=Q*>i-ejSmuwq?Bo)%5f9d$dTSuTLOnj8S&(m&`2fdIY2g*H*~@q9i>}t23eDaK z#^naTK3z!h-G2Mch%?Nr2c>kN)Rl74VRH}E>yWQ^-r!F(vuqE3amC~~SDMciLjz`f z`8CG8^^D3WHllOqW|nFVdt}mj29u5GR1GyM^7%3*}5Xu4L%E1h~$KJ+4=2?21W1E527>}g&2c_ zO%K7nv~#b?pzdk@3aF2XvZNugyUz^| z*t}k^)k4DU@Q75wGd~at@h?)@=F{D_sfXr4i5WkxzV-dZJ%g#I=XPfygZi&=qf=HA z4^o$uClBiArn4bwG4{G@>3+<8jDfkkjI6!-)QT6!D=JLTrHQ(sWZHDvk|WCGY*A)p z7~x4YXo!8z7;634)7^NSr%UG#Q&Ygzo+usxLAct2ynTtu&K3oLSl{hyJ*oCCF&7x{ z5m+@494FLjs(+<@Ssq^~{~|F#0CelOd^^>EEP&_s*-*{5(~3;|wEENr;27d8xbp*i z9@Vl3w@J^0O(2}mNAC{I^vxEJfN<)QLDhoIjF}yKJ<}%Zk_rqF!2hGNAyh&Cig-pF zd@+czbbx7kysX=i@C z$`_j(+7HzSk_k{5ynYJr`jxnhAauyDv)Nr#T&0thH)vL>-!^f2e+B9iTwB8DBd2XJ zyX5t(H`@fsJ?)y}3+=wbu6EN9Cw!MimIv+!do;;Mg9#Hxb2|jX0J!bzEqWP1i?ysU z?eg>j!j3+=&Ff`LdO(iPlrQ99+hVHr`c;NmR>zEIt855CI2LYXK1VUZkAZ8YWJI;&LlF!MFeGSPr)T8gMB zVrPgaFU{)ynY|-JjS6P=%4TO{#%?c)EVM3lMD=Iv|03K11=BWKX8*(BXcE2?Dg|_# z(hpU!z5rMe4*2(eD=h1>+nm)*53Z|Nf~t6rlILrzM#6lD5g9NBMu{Iw<+l6bs*v53 zb5YZ7Eg&bX|Ll6Gum#8?Mja-r?;J=19CcZ~G?B0;cp|5XemYi5P zQm!FW#zS_2OFj|`+I(QMdp>qg z6||-kFh;>mNDzcnl=V94f~LQaNKawdfIMzXcizmvsS|V6_-qJ*OA+QIyJMuHHW*k z{9*J#!+S*i?4zX7mIpdxDUp~J5!0ANVUrg4;WA5cxtWU$|Bt5Yj;H$V-?r>Z zHYwSXoy`#?``DX`V}|U_K@u`Dvk$UYHrbWEced<(?8C8sx99mi|9oG*4LSGcbKm#- zeO=f4x;C|Lc_J@S&`a3i<}iZ&>?d;?DqL@7`n$qA+0Iq) z{!CDjK>fEhJD@w|GMm2LBRav#ch5lYL+B1k+M@HVy;aNt^$Vr=H@(_t)V_|{>Un|u zJL9o26t7KOz8*O)G*8eSzla7QKp@H^4!p5rj)3{TCBX3T$^-d_x1E6{U_X(siQ0ji zw^*)cTer``A`1{QDVr)ev)n22NTKQv8VVXAJ_2oBybeC7)IFXfms*7qp`#>L6QX`U_2YB|S5+ z*qN1L{qOPB4g~kPf!j@}R6AkPEZ}IJr{-1kD%~lp@~RDgDoWM~t7pE+Y+(n_F_XRp zK${k|FBwZ3(>$Ym<(<$9!a?w!TPzxO@QIq|QxFQ;%f;YaQI z0FNylfDMxYjwJ~os*(=i<8Qi4kN@DiiLBp|1#`d0QT}=}Aasz*G_|3Ve`+vbZEdFr z-47kvHTz(>)1m^+b5|-4pYl7==6yD8+52=q`chO)5SUW`I}Tx7J7wbi{{;Z-@ySWK zE~Fx@kTybW)MCW0qp9=ZKq%_+d@4e=BKP^!xaI-dAwYD3c-uj`&HDF8KpZu=((N@%}02}&*?2| zE?nTKE6K_s46JK6@@QF2aO2!({~c>IuiQuGax~OKBLNxVTzNG8U<~xur`ux_C2by8 zgE~HUHe7*av6#S9Fl0sZayb9EhpXP(=;B<*fHOXEeb4blB>a9tvoG-6wiO?RA1+6k zQPFqR1UmIn7CBbLT`!S&VYOYZ3suF<}G4B7>BJaC(-}g6x z_6u*yl!7kwIZ<_WTR!!1&=sqDqVc=DFL;j;eTg9O>FPL7M?4Z_79qcSSe|{z8)1*< zm3}_ zHam{H7~po0V^W1wcsN>I$t~$NPdAD-AXos-rgEwvZ)|)@(nk&?#oN>4`V^<5YMQ1L z&l7Kz(B}&wBf#P*Cub_7iUR#Yw7OcA_ud~kKO+}Akv5PZ-371b`{=J-BRK=d*Dks4 zGm(-tzTq)0x9{%7#|2+@U;s3UGRK60jY3Ahp~YV}b<@|#BY<;akf{Upy5};3x%$&} z>g1oZZF0d?Z9$2vKP|gvH(Yz9E%s!RC%dB?Nd#l%NIx`WFF>>>-_02zsp(3B|w*Kx2@pKuN~ zJ{}LEZ<4U*1q>w;@k-ou2;^NQ4Pc4ZY}su0mvO|xM~JbmNZI>2ue3PXgXqEisvln- zQ=Ob|eDaOEl6G{EuqT-|Z>u&Mh$hqJ!7()w<9UZ7qT|`vSCR|V$jCb|_DGHi^Kz;` zOE6D!xIBm&=)AdF*pq%GKTF8I%tHtSLYo~+S|;7K@wdrihK5bXRuk#-456>{(kzU> z(~D1_XM5sDQbqTqEd;k3sj_a&fk^FNR}ERt)TMOFMR~op3XZ$T zOW(}a@B56YtKJ(sI~cHYDo;j%h&@~|_%1^_)VN6oOKwZ9l5+7^E)J_5`74|DnupfU4X z_^SodwQ@^7-b$tu6hEYJG*p!2cePM#{$@_RoxjGB+*p)l z9#-qWbEM^bnxu;fyF9i}@q8>w<$EhVfZ@b__(ov_($FkUzKh0lrxZzmsgGx4z)p5d zbpJxM$*@9|cxT^jIBVAE<=$ssjd%snK)Z73Qv`}ig8B*gHv^af$aV{ca>B*^9nQGY zfSwZwU=>&4*s0fVeur36%Hddtxr5gnusrecI@C+J0uYy5ue5!C^?OHIVfrNLh00W^ zz41%$)|V{7$jW4Cz2TQuABSW>f24q_6%c7RyL0ZT4^FP6_b2yEq)8*)I@4SpK$8hS ze-2|0%X(EjtOqpRDAw zjIJaZ7-=;kW>?Ta4ty(F)R@fBVtXqJ^mmncjkf9UadYmlV+U+d(Hj5kVylMr#uz@8 z)IT|Kf<}#kWGJH)cV2cLqhcdyL3qEs**cB`q=k-K^;A!0vl*_T1>LJpSZQ5gnLQb&dS4Bl<8X^=xT;_tW(@f}=0>od1d{Q5!pT<5^}%C8gJ8JBAgNF1Z@95YM&hL{(7XRqdBXit$AL6BWa`PeoWoCg$0` zthYbttVzru3L5;}^EMDs>lk9ZG@~H?yU|1oH~X?qnVBM)WyN27*Y&j2C&onRcUQr@^psvMf=U zFwGu`_lxIOacW|{C_+#}CW+GxOd5V-e)S1ozudLRNIU{FhtCG%ttI4qGp{ue7Y*Xn zS_|@~QBD2#qk_2&SB}zX`um5=54t;X7Uf z@7l$L=ME>hlXetwn?@o0Q$(C6wprR%e~o1bx}GCJ+)fGk8q5Zwubvq~w}i5pj85I1 zIZ2^}!CE^R>2AcTeM7-glDabV=&`lCRk_dPe3zTQbO!eH2D|hMshWD$2db7}^qm90 zXUeg8Blm<2)3cIth%G*4wF9oPBX4JSe57246ITFm>dN*MY^T27?yvr2;@FC=yWMmS z$_xC|!=F0?bM*~_stXnI7Pd~p$br`h7kfZo(n<;Ch|3{$QdH_eNol}DoC1GHv(dGX*Xwc^(w?>&*+M&qJZFR*CE26fz88`^>&%; z=G}<9%EM`=8#oYOP?ve7tF|lD_IB~xQaP3FGsr}lrLFP9tf@j}BKC0`31Q-H%oV?? zs;XTlE9T@Za9tjxqIV%eON-M9Jp#`s+*RYyVWqGo-I&B+f2?sXTF|I;3%$MCZms`9lW(=^Mz4b>bRMdLF~;~zPetO)x802{5p18IuJxU8&EQZ z`ZYg0`^AE5+eQSkW66K9jT|SsP<=amc!e4wPW_A{buAL-Qu~D(v!tHp8k~cu^MCkO zTd`61W@;Y0o8rp;C?+nUyisXx_LU_&oX{@1Tea`&qpf}Dy;EztgH%@!NR4FpH&agz zKx9OFW@m)|w$6D24|nidU}xD)wCvr#?vsV9qiUHEbcu%dY?lcCR0lzP8#t*ix9Oed4}wd2uvAVIF$Ww8Od($b*I)5$1|5j|ST2G(K7@A4kEib^gXYGr4hgb|~} z*Sm^YG_@_#SsUZd1FGJIgVWuAR6d(t^ygPyn?sn*a}Akx^Y1qs2V3k6HykI8G-Afg z+I6*<2OqobR_xNh@ZEjCIUQdXfQPH7bkb?1M3n5lt5}-s-b=Y6arDKHzQ#5r!Ss40 zVLjeFQr^_F-lws|)Ztp3tC? zPAZC;#m2bPeD&PG|A5HQuNl~Bo+F<I6$2Fii$hXO3vt~m+S16N@BXG z=-rc?A`_o`(qWX%4+{0F?u3M9)H^=$<30Blc{9pNU*+Jvd4bF}DA~c}eb-L-xpxw! zTilvXJx*>B*;zV1F7j^SbPKi6IeC!qpz9Hf?L^nIBsDPuGH84IF)cY&e{yh|g3b?y zpXLO=Y!Ie?G)P8w`qM%?FLmPcjVGTwlA|U|eydW^Ynq!>nH`*!8mm{iav3D@bne_- z*Q!_v_-$%Dz_#LGZ{1n#4d7`}9-V(B+*nVO^~wF3tL%;1pL*4w^eujpVHkq(af@m0 z^P%USArs@lk@dI^&7o+VOw-|96%oIM(~h}@a>0mBgR)O}^opLYwv(vK}YG3O7`&XOg1sREEf-Xb+KT@KdjIDc3bBG#^02baM9;iDlwwExbU~) z?pdhjU9tr~Iw8divxAO^yD&mJx7}as96t06x<+5z8r-vC%dh%s_MKk=8IMGwUJbE# zZ2rUTIvWZ(hUsLUmOqLq*K@xqc@kQ-$BW8S$^t%pd2a=0Kl+B+Dzf@qYvO=~4IT2TYCXO$QZSJ^Yn zEBrQl|H8HUx=}~ZYUap*^E@TRF>DY&Blj(;0;abS;2UYNKa!K_d=b@hK`L%J*zx($ zX$Q3&wZA(TPL}RPSbZQy$=x;6M91d0kBNaOt+?+zSrR_Q@z2(}O(8hAYp#K+-=QVK zecr1#q1q&*)QCVG`=Tw3B0n^?ocRL1q2tX|nq$^o2OlXkw6DhnKA%KQ#+sTz4<)@8 zKa#6LylbD{NryN)3#|1e1%W`0hxPB!B?`@N?s{x-V6+a!+$T;K;k%~VnUA0!z7}~; ztvWmDhTI;(JsZuyz`!OV9FiVJh0aFRJIl_@g^Iak0D;;2_?qjXKYfdBVk^y{l%cS4i`Z(^r&&& zJ0?Dkmu22-NkgX_l>=cdl-%{Ijb?njPRzXC&z(>^ZGRri{<^6lA?ccOUv87Oy33mG z<0R%T&Utfljqh{z7~{=s^y8sdUp|;iJDsMPuW4)j@ijhaxhQQ;#e$mwhxvo+XQmIQ zi+2_nSFL?Wk143Iqa^V#sEwfTpyKPDH&7{i^vUl(nyTftRIy7pNPpRuh2@LWV7I?- z37TK@Oi@ixy6xI*N+`lQ>p3ybsGi;-;Sm}NEVIAo`f8XvI4T>GA=TOu zfp+dH?@YFDAlVTY#)3OqrYFtb%`$0%FI?hb4CN_N9an8GFnAnx51oFi98|U6%z1j> zV>x0d*}e0j(;Z$HtH83)navMH6HN#)hMb&+w%hQBdvlMXzejeaO9uG1OI}b>WJYy& z8V-yVU>x`C9IU5>w38rCxTqwJL>u00-wu7`XSBoV#9%KC*z}VB>uxsQqg_y zctA@24p3=Yc^`A+VO(AOZh808%42nScbdhwnXwynJnGefiP)!VdF>%Z1&ov4Ogvqg z9DDN)20If=qQp)2m#Xpwo=qXOJ4mzJ!+o6E$cuRytH=JrL{Qja{!3U`*wDr87eUK7 zO6TY2U4w%TN7u8nMuU=&m}yH`e@83&`Hjn+fue)ia29yiXKxmEfd!bnUu5 za^&rVor4w}$_}|SBwSZ`CrgsxzE%1OH!BD#0-Yarc2H_ zDu1Ma3BL5M{Z7cLQ_PT-OGx!=HuNu`yTNw#*Apnn_?J zO8&l0zMWAU5F(stL;a+f)7~%Niw9E-L5%x3x_XH-}da3Q5%GP)gA62^Vi6GHD{D?<5T`n;E=_(USHrRBA3-_JONg31q3JQ`t~YMz z@RizscWwT0*guvnWaZCjo*JXe_5_J@JYi#UGVN_olPw?R_F+)s*UkqzJ`$ok(jEs+r+JkH@^7~7n?Cf18Hr((fokw zvenLwsjqx`EDAY{ZEQzGiU^C5C<)FEaymMf847=jwaA|&)?xFkt->Iac(l-b(6Msb zt;!(2wO#^0e=J(0+Z!Ogv=*wN7k4Nlx&^1NHR7WAN&vo7efR>8gJ8krpc`4wR5j7v zdT7)`_}7700`is9n`_GjzdQC`+^&z+@ZvzktX|D~nuJ~3fBC>Et^(Hk!+uWe%tuN& zi60j=>r7?=3JnS_okifM`T_=HVO2?9+3@pz(cpH7)zw9wA=U<>I96*0*?tdH+xDxK zRSF=KEn;eOF}Ei+fh8uZlqWqeqy{BI0sVRMQn%olN-vT%Ub9h1rMY!lsLk-M`}d-v z2$iOOoN_Ehp)U&0feFD^s*?El*0F*^k958##Y?QpO5r|IOE}0ra)+2&TIkQWfx>rz ztGE`#+68>|5K2p+JobhoDd4`&*%d$3sL7zEz&e-;OHm-UG1iw`C0?0;{pAN(=XtVM zpWL--v5ht6bBBpq(Y6_SA%xaof4>LH7})9gUi=|1sSV8w9Asl8x4>3B@#HsvSi?B$ zXiQQTx$}X`8JlN#N-BV}=pMpghx8ZWJmwyDA+_@{*p34tzyC%cntfMo*E$(zj(j-n zM-t-pU#VfG6SF5i)en><6~zhJQJTq9N%?g9^(}URv6!1;{|gkZAzY<(SWo05<&2FP z<~`RL9(*&RVzmu@-R-PD+vFBC~MGh z*&=8kslRj6f)PSw(jb{Ove;!@3O7NOBS4yd^=rH?B5~_t8$7H2t zm~(xcw-Gd-eklDE{6R+wO+ggFzj~?dk zsyleA3ehuIJu*S?MhV}UZOk060DBZtA6Sxk&w9kyVQ_L0nJ$-CY3bCm&~B^R;RdzVE^N(Qp}W_g<<-9>>2ay{5NCiE%4E|l zZ96&llPN0*4Oi4SW=rjK-Qm%KdI=$n>Y(feC#Mk zZdOaCn-Y1f9`vtko6S|D#yHIl+4zLZTTOb-$o8bpv4Wg$$`yEg!sNkTA%6!^u+t}C z&sM2b%nj72@<>c%Yq9cJA2{6mHbvND4x*&WWb3_a-?ux?Ftp7YOu6`hFNzLvX9cNeZ_Pf>846btJ}2TGXWFQUJ(yI z#25GL=rH(*jkhpDIx!5hcfmiysJ+nZ`Zr9% z)--`rc738u*hJ`&lqs(P0iXHjhs7A1WbES;X0_T-tcrfa(WM)EL6S4Ht*_I+P&TYs z*5I3&FL$Y)dU`tbAZWmU7u6dHd$dYrl7Qc)VNKWD2gA?&q>-15EIZ<-=`} z5DX=mPdAPe%maz-XH1rA7;p&4l)+QR#*_1R5;h2>Q6OR3A!HwSW$&-D(+4BcoH0~Y zT)G|Uq^X1litBTa<`E$4cQHa3UQ{|Fdnglhyj62^rRIOLaBZ(X49AWQHNuas`40Ta*}+VPD8nhu1xSQSi3pn@T{n~#WC3mFpQ zo+nYg1^?}5DE+SO+P#t8+n+M7p861QWbYV+#8AZL@*=+1j1iXVwJlY^&}ov7(CApW zA4b@RE@g-{;8xmfv_H~9lL^@5Qh*tV3Bk8#HXqhHsAjulM7eaaPzz-A-o+2|Rg-Z* zKIw1>0B8#8Ghp(Nf*QpFje0yVL{Gd5Jo>)qq`jR)(4VZ!&7ak+-1m%KZKwMETN&u| zo27is*;h{q6(JAF#ofBXCtdh8WeRGny))Zq)??cMLi|rQ_REKD9ESiPzdpKH<+El* zXia7Swzc^xbP{ckYuH#qgk%1?fbuSNPR+iB2871$NZIWy#_%MBPizow2}o{LjZfJX$4EEq=o{45xq8NbEZ&w#*~wrn*mAta?bv zJ#XC5L!|d)OksZW{gInD?&@OOA?bwk;ATm@@ElI#O*1ig(oN{I@p`PZOsHUItY#TSX zYi?G!2G89gt{P0qH`A4Dje#R}m^mH;!-Ct}$t;~Gr1!8f&*^u9DIFjtyhXe5 zulNwk8J9l#_0&8FW%(iQX`lt=n@{)_hA9f!;$(Mr(r|8$-Tc$9#x*#;#aBow?-&aX z#jbUQdq549TcgzapXI?{W&Y_`Vaw37X3=y(I%J9+DLp@pBEW$kET8PoHS|;U-U0Vx zFeb}Ow!roh!{2JhALRg3RGtnFor6vL0#fz}9cbaj`>H0x4>r)qnMp)nFOexyWjv4U z!^wDSio+HgDYBVJIgQgl(RPB`6wos2z*SydW@?&qk^)BQj5h`>GYKJ6l!!zTSv>nf&w`)!a``Fx}fpT1Ynv!PmdheJg~u0GyLL#Fisrsu&NqM`yH}$ z;1uqjg%t%VVNqFr%$(_Y-wv9I7BWzzUnBh|n(?{VRo+4rhTG{rRC-nttGxOW&HWt6 z8rmY}R~3L9S|QYDSb!F4KokAMWsAARVyfa;Mc>&wTo}X1J#AjB#Vq7nP8t>_WyLW; z@aywEC-FJV9CY;-O3RR5)A1nN-!}?QTvB>jdvOLOo zV{1E#!de18h7kV>9!~z#dK+9IYU*fa9S4SJhV=a!Q7!KY0DZpS!`l`~sF)poNk)s4 z>Jro3WY4hQ_2kgZzF7pZQa};6b)VI~7~#T?(DFB_S{9-`@e~|xFS?Tu7M@mQQ$D@a zv1o6rVV&wgodVqt$4*H4ap;m+ zqXy@jmZ^e7`uoJ7osOzCo&r83g~`PBfO7q=l<7{jbgVJ! zZg$kl(f&t*Qx`MkZ-^Ud>amd3Z|#JNnxM*YIWVY;Yc{@g>pW2XjHccp2P=bPaJ?92Rb+m zaH*qBcscPW?q+ivp|401QZ>{cJ0OyP`t$-F8~D>N33$OtOG}P_w#a{*IxUs5*ZDQ+ z*6H=lFq3bCrP@Uz)(_{`q--8+Y9w#_ln-?*G3x4@=y<81g}8L8xN$Z@DU*0Bcb3pz zzwr>6ZBxE{vPO9zER}RF);Q!aGi0S^d~@z=jPd{O-Hjz}DO!eTZ05-&W25&-S}hBZ zcTPtCS)XU{puKu-AF&gOA{W>^^r`HK2ajVl!Baz<$>4k` z(q*$(qG|-gge3@<8FVaU$3{jNKQ6 z_VJb=D!@wbcYaJHr1|o|gP9x(z-z$OqupRE9|lC%nxzu5qY{KSu2IrQ*kyp8Cd5_@ zEA@7lq{jLc)IOnewW8>wnpKz;b6>yP@|Xa;<8C$X*#9WvUQJ|bVJmV`#DUO*+GX6h zwnqSfZoMau(MgXjanAgqo24V~U%{WWf=C7d+vzOO2x#id6qq3L3Kgqm@z1dmx-oOU zo|K5W#zeu2fF{-m6!QPHqQ9@LMwk@_xayU$UwX83t3-8aK!*bO;NhjTSTpXYyTh{0`!7>g=EiU?ml@G7 z556n>i!ZRb`~H*1aDUvXecO&$+*Yt6Cz#8-t?R>_=ETfmb(*?f!?G86{0BF!4)EZW zgZAEt$cUJ5!m?!~5X{niZ&#bjv*_qRJTp}QpsQ}pWs8?~}gC?fsu z)U7vMM&n;WQ1$7=CTFTLf!VY8%##!Je#8|D|5-Ej*&5xskj=J96;vQSf$|*Zn>8kk zpCYbX%U7=9hpH}wBk(FAVN8|ZC1!XLN>9~Y)d&dNLFffbAdk-=Dd-Z?sGY&)XGWsr9Q6bXTxu< zb<^vx*1$B5M_UBYm8~e$eg&-?ctSisK-qvZTi@JwxZ0|%i^=H!{>q!$j**fk1&Up$3ve;TNB{IA4g7AV{cK_4G@jX@D6DVk(34Oys$psL`^^=Xv42Qa; z{I0?R0)Lfo^GRFlLOG)4R1bOzif*W+$!&47^Fj>0G1gcrC+<+L*yy&lW-%Xubm{&i z#6G@1ZG{U5W;5&XpHTG6Ad!F1#m^0|nv>j^Hc`EuGw730!+Z@B__+8=CFza1u2uhVz$4{P4k>i=*`x?q%}WQPfcs< zGZKzkP$V9%%-dq-3==BmVJlX0&x7uTXj4yH#{QiPgJMI1k^)67xV+yV=?t1Z$@$qt z_Zkc>!&n?f^yA-$yL;9jQLKhOc+mChvj-Rpk*xT|KY#SyOX^z~X_hi|%xF_XYGB&t ze@?{48$Zz@kjbf0IgmZbR>Y3lAuv@Fd8iV*E@k9Dau+Y|fuZ>iJAN2^~lm^^+8q z^&II!(ygEiq7<-t(!^H@e*bhuqbqd2KS5|^X!ez6x-Nyb+LmqpE@BtY--iCI4!j>d zDCz3z)YRni!zrjE{8nbiKg$mqSQw~WtRU8tP86sl|zqpbnHX{W{$z@yMyVH{NJ3tPrg5T_=HZlquIJdYVwbFy7CD#Qh7s!2xrCh z*VZ_|dGU|e;rf-wo!=Q2lwP}B30g&))RQoig76!>bT7q)XPj8}b!})VR;R53C+~@; zW~Q2^JeCAM0{^#2XH%Ak1VbBe`c@-cSRuAz_O>FZg8-O=Lh_hG2#HP_#H24VE{`(o zCdJ9eHWw_W8wKhE@AKA@!hQmAYjwM!aX2NfG)(QseQ0vpN7sPt0^xV=)gE~u3*_#Qp%-urD+^5Fdvb}ocYEL~Z#GgTC9T*^zKl0$ zkKGeupPOA`sNXZMz=ZkvUB=3RiW^8Yf4*r*qIBp{C1>5}JmV^>YsgXe-E(9@2p-L@ zw+pdj(g@a6G5e8PKsJemwV|xZE5MGG*gjIM=gg~12Vg(oEoiK_Bx^C1!ncrx5d5(} zas$l;qGEjCa81Kj=1Jao;l+nPt8iFD|52bIyurYMU}(#7)5 z9~%|}_rnrB#%ex*yDZW4gV~h7zh{7XRp7|F(jFGe-Do!Srb$qRCR;tyz6enzj!>>@ z)&?TY#xABx4I28tFD2`1#pdRV-$0uOsC^}|i>o~v9wP(=x@T@r1R_Ho+&ER$1HAkA zahp~^D3*^{!Ew0w?Cg{c{xwh`0zI7o7;zhqZM-?*sW&zz5fo-aUG=#kXlUXD%s%Zj z*By@>r>@`ZSUSzTP7wy3!BMNeh-e2g(JmKgL*Nx=@<-vV;Wj^1QjQfG%kx3C!pZK9 zN(d+H1V3$2`%IWj(27(tO<92^Q#@9(mqzuH3A*7Hu6I@e=6 z7k;`82ZKq)2Di<}u$4izKZ@bC zqu}6NWA!XzM7=;jHJCDVBS^asmT2QPedt*T*+==nd)tz@X5k!bp$#4~qb@mgl|SJ`k0@62YR6;#!(3eCS&sc z<^2mijhO2OhVyeLyDW!hJ}HdHqoDI%252ttaAX+S0V=8(SZ=YLa3h%hI#}_xoHAj| zI^uuWF1hW)L-xA$>iH#JV;mFFRI)wWQn2I%B#~Sam3|yYs$S5@7PS)Po-o z_FSC`NI{0Ina=*!@tsDP@qqm6`gX%nb6nWPsT1|PLb;-+Lg7FU|DS%kxNsc&wJnlG zJqpl`f=t5eBL#4}G|k&3^iU$zq^!N0>|Gz_BGP54&*#V(IK!2*aO0w+pZ#7VdiJ{U zW3sW=arAhaQo0(@v@?MZkD(& z$!t)nV0Uhds3gh8wAJVXI5x6Ar~)H1fk#gdU#SV&6R}6scp&GwGZGtz=DG9RW516S@Eg{(o}rc%q^xC1dnhkstD_IGTR)KmL($9jwST9 zm>GW;0B48Ud6Mrn?S^(p%KNyEp`W+&NEuc>?sk>7U7Sw=6R;wWeqeTD%MxUKf;LaID4LDG9AR7(uFZKGdy*4S0p@J*et zm1y9vQj_@cH?`C8>fEAFT$ejm3YxNY5p)5$tiIw5Ez9P3t4~cI`qds?q3ot|e!vf7 zlvdobTxFglSvT#?>d&+P5NmI!`&H{E>WSWcOI$~vUw0~5t&uFvhUJIo5jb=h%OCi*_VnJ zs%d1JN}sPhEDF?U>Z+~`ynja;^8-LQQyf0ENIIlfyFPuwZSei31pzUQHn>FrlD57; zAb7uY3>(QwmL4D82Q%8^W`lryP*K@ge+>8qv=9G>;=&Q0=qz;y7Yjfn>MYdr0UQPP zZFlW4V69WN%A^VY8pIdXClRmbY+&+xe^sWn*O zDIyh>qtxw7qr2hj`TzC!N&!aD4ZU9ok1VBa0oL9?CW#$*`N8RBj5E5xWoBTPVC^I2 zDQvggvEi<>TY3gXx`_hQ#S+99Vs>GB<;F+@rWD~`qN#gNjssMemU!a<7Bkb>fBS z)#J_8Yvcb!CXLx@V+#ivO8@25Uuu6E?*Bg{ z!im{Ss@$=?Sh7UgLS17rN&#Q_Q)7#~Q4<)}iuXX>&kz6p_R-1;s&(a#}EM+xc+gF4FQtpfD^Z zi%InL01?0&BxsBJX9_lZ52%w?(zr2m=(yN1Q2>a9OFSF9wUqGWlk^gdPE17ms^947 z7&Ow+uBd?Ibfxs9+umuP@{bv8G`D7wyBjC2{L`M^R|SCMUIhU+wE$g{;o9&pK+VK3 zDzPG}#JaSN4|k3RPf~(W^IQw4nFWJ|JaZbmBajSsTkq)|fqnc`bMw}yQILXf}P5R_~W z*y8{gUHKJ0!ky{JeEZxjxg1~OP9<KWTN~NCBlo z>nxD=Q%67f-Vmta%cst>Gy=wDQN7QR0CXyQTu|e_;MZ^|+?U}{Oe;)T9q4pyb#-HN z5uEhg;oidu~ls~w%KKA4XqW2`|&|4I4#* zsoB{YSDg~X1GOGiUIBKtBsRaY%^BTDmf*)%#`(^u05&AlOo(XDA?I_)?ioi40=(;=y#KL|Ld3Z zF2ICk9f{n7qOXSW>x%G%F>+FPqCqPNNFe1&{$g^OPv!UifR)gnR8c;q zwvKn>@9?EUO%f&Y(g&6LCo!>?veb$q&Zasx5nJ(*S4!=fVSWA9lL`YUPMlPR(Eyt< z6Lt>?-3romjQ!jo$)+37P-SU0EOh#2IqePdQOCu)HhFqL;NaY81?i@AF!MTz5qKD5 zci?wn=V|YU-aMq$%}&vq^uHU#@=G7-Ju=_%33l>Dxi0{{4XS_IEkFvLC}LqojA?o z8%FP9pA0}XKLJFLsHjumJWzUGpTQqa&K=6(wT6X&NXL4O z6Q!+<77gqv0!*6_kSjD3;H|b7>S8HY-#P|eQT^EJKj}~TJ(;1b>n#i-T5I`ep?k9& z(tFjX_K(~k)@~5eR!WEL!y_2{8?bJu0>26dO~6Mr26g9dtZGFKqZ?2I14v-Oq?!}` zo=9D$`-JUw8f`Nhk9&CU5M&oPudi?lMF8)SlVD9_)8Cu7SFu`8%JX2|Z?AelKEMB-q-R*rH`4;ra^!b;fIeMpbMjvwjB1K@mH>LS^6T%2`8nkWx!C{M zL^f>>)?QM=XivVqb_HWEPt__)Bv47#2X2}GLnGRnn5Y?S(*YV9IT9HF-2pArc{CNa zBHKfGaFMHmb3BGI<~MxAWOt^Qv&aMVRBRsDr+9JTe+jK>JUZFZJAsY95?_+GE*lX& z81dkF4^4dS1ehz^$^E3ewewq%TM7V|(+QWuxSCaPsV)y30oibIQU{#uLMnJ43QYX( z-|-L7Lb~N|tBHv|k_R&~%ec~0Mlv+@q&Xn{rSqr$@UuQb!sD$kE?_SJ^h?51~p3ZQzD{PRUdVBo-S_d>f3#CHJ*J|Dqx3DD?BWIp})R#B$22BiW5d0Ce5l!3>I_ z{Pr2U(X8>Ft}a)00T5orkEpt^FfFVTMLfWE!V0JnKGjgT@@AP?05C-Ppahpv1N2fDKVUPHhL%V+cK`m;*45{F;jzu_OX7_ovR%CY;<30vBPbPc;2AeY zH#Zx@tu&T;Ga*``wWK*-vbX&*=&O#W9Hg(9NvsTIz|PE|9=&(#q?*A#1{4|0^8l@A zy`B4_jlte{TPsqo_fycP&2HD`kS>v z-&+DGpx%jPzh4-A`uW}_$$Tt0j02$RUmJc~^W0l6e#OP!^ml2ly2wacZ}&~P*Asc1 zIC1waY@?k=_BH2MNk@O1(Ke!gPLBoyIv)z$NWQBE^uqcOs9R&3RGW}eZ`ujp>>24t z>`-1^U}NKL%m9<~YX|K?cW_;P>%IOJH|zxD=TtP%!fmx&F9<0jLbvjBoWPttY5hU*HAoC53T&u>7{1w;e( zwuPX^|Jd=Gy3#B}qEsLAMG|`&I5SD_D1r82=#hh+27V);k$By(@XN z$9U~0pLtf!Y{G$oOZ?2Hk^lXno6>i!FTtx6AHQdlbIdPd{*S-9MH*_=x}pdYlr{2qtZ4}>Jk2s|GGQ_#kHe27l_&` zCh}?MQ`s3UFue~n~r~3WY z--rewLxfON6cU-oe36hTAu}N|hB8m3GLxamOvy}{hixcio+8s`lg!gL&zt}H)bISx zxz3C8?tfk9#n~@(k!^pT=ULBM_qx~AJof-0bzJbl#mv7`|uxacV$k-`p- zna)A>Qmc~NW{}5qBnDYDUey(^ihug9t<=MrS+0|lKt)c-5x#GwyPf#W39}H$7*wFq zLtmwKD`^xPc8X<~F3)>Wh}M5?07!`8iWxM;da3=y&4EmDQ~yU`le&Wg<`hdZh45PQ z1}=D~IyNumzTXAxNKtr%0(N3&VX&vl-`R(`4A1^LfnAS&iNNr3~3fRv4rkMQ>6 zqb{Ld251mpA9CuM9xdpdAgyyJYIz~!DZPa5>jKEW6Dx;%ags<;vEYH9{*48o5M}Nqdq8|d1 zz!r6DDDHOeb#sQ6rzkH~0CZkmA?{B3$l9eJF2itI^gzD=OGH9|; zlOGx;U(4zJLXGsG=WHVXX5jHT#UVuSBd@_>$^NX$Y|^>^VlT39U64#mex^K z+JB%NZcsH@Nb(-W<(_D^E~peWKJ@g0#$WG%SKJ8Fl%A6fc7Y7J<-Vw{pA;FZa;L>Ia6+^`6%F)$<#IZuz@e?T8yWOlOqN1DC7 zHI5eaD_ICzR=st*;X&;C$&O&I)~9g!rvowIYFv0e0C1G#Ow|Y8okdc07;-S%Ow1n=Uq;9*%x1H5SW`0r&9yE>SuRbpEk6*bc&-|@~d6|T>2S>3{H-pzI@c+PU44WSDU7u zba>$28ocPaWQC)R1Yt{(GIPAxagx2cvl_w$3r_#Kx@`c^($m*u*Y%=m=_uUO9Zc z4jBi84J98zYbJ2rKYy)(mJk|Qrs_Vp_xjxq-O_cTLh~49W%r!2%uY?)krQ0{nfBW_ z7Q-{t3S=Be{ce?WokPh>Qi2PmZ1pBteXGLi41^WKJ9`MAK7_hQ<1P;P!~(jf0O$vDQoUg}*agu$9mDV8YK zb;{urnIk{s2QujV0c|?MTZ0XB=8s6G4p#icznqg0J!~O8bGRMwb2_oTG5o#ny<@4c zz0~??cRw&wXW6XNj#W8XEG*n?il1C6p~Zc_Epp%f2v02~RGFBWHd3s>5<=o?aYx0_ zaO1hF-3g9FD;&vURtn&nWE-2+!#(TWVUyBo#%?2P*|V4R&>dH=5kBgSwpUGLFzh(~ z(*K>*k=p?-=5DZy;MpIUGKv-*4~f&|fWW{vFeUD}<6kKuoO0!G74asq1{ud_A86v3 zQTbB09G>#`hYc)Q7OM2L*9{oFGp>O%Hg_m7Gu0AR151DA?ve%yzLxabi(OU8lLh)g zW{|6Q1Ne#R9o{Ozk093Ra*`P-#pad`3>yv%$M&v<)YrVtELcXEUhEuIOeS-E8+>?{D)|*im z5fNZLJ|)Zx8t|EXSI61th$wVXMI+-0drmFAcN&^7&&AT4iAgLIfQ|L9@1gG2Vk!Q9 zxBZ?$8wOWfEbs?sP`AVG9(XA!n#~?f#q{_)12gkIej>45G)C4i67o8#vRM%N8fZF* zlepEKIZfy^-Mno9=qh^|@*;+R*-e4Rm#kW#OZ8Ss1xO7@sS8)GaUSM0yrpB1H+F&$ zU48iR%+i-A8|cE|8DF;N(X~NqpDIr=o?o?Lt4x$%sYnsl0UYGsGvA#m7|kFlkV2!V zR9#DRmjUrWH2mIWU$X$RwC6gP=+h@gCAZ4#_|OKWT%HVif-QPv;v2 zhEo!Til+8Mid{&X&a;)7lC=(1>ycN|3%0vjUKqwOFxKaUfZNRPA@j|$D1ob7G+)D0KGD*s%%z2-F+8EYY)*(9%O5zKUUIy z{z+;t6iBC5x%AqW|1<}tknfVe(Dpru@y+l=XrOOG?-)28)6KEB*}i;wkcE!d-w$M; z#Dq&;D+`5voCjcA!Aj{suCC8Dz}{g7AoiMKz7&$YrC19le2yIaH99(E84t-?TeeQM zGE02R33z$8AZ4UVyOiE}f!0vL>g69q`-&9ft#9D-quKZTMZ;V4r?1r3yxq}*;VK+A z_0XdXTymtWN{VTp^Kj<=fiWey zU>6e;=VRvCKv}i%*zX@Yb@CocOW(lEwr9HUS(#Sr}g z1_$&NrUYq8SkB1(tb5LPzy#UwIP2GY<@!~EXoPfX_o;;xJi7h}KgSo+<58*`OF=;^ zPxvFkn5I^%ZFF{MU($WCcFIqmFy zH9W!b0Rox=vnnwo`r|*f&C>^ehZA*4G9FpGI`Nb=h*W-hC3PHf58t0ryDjM)>6UaC z#{T6EC?<*${3&GIdFW(RKoSi;yS0^>$v=W;dnRXy*poQMfSrdGw$KCW{=$o9=mt;$ z=a|Qh-N*6pjHH#g0&_Vz`O&LP|03kJ%E|5BpC=~u<;?$#+mBO!z`+@klfChd`<4$S z)Gn`&6`0Bog;jgHxt>_v94M@|->_Ui`_BaKiv`8XsLLAO`R;%q1f7F(4-OV3DAO0m z*IT-~A%B#?cC~c)RIC+9J7e7YbC3@tB>mx)k6k@2ZkAl~oa-X*?$%rF`58WlvS0R} z9OUW0WDk9Ebmp)#Qa4$z%}XGR;%2Xu5c;Hz4pjM$ehUG?&4^UHaCVl5xUzHxCfuU zbn|M;{d&q0rFznW^ay0~YL(ye(|BGPXF))2*x{?4)tVCmm0ljD%^Cj``xa&^*6>i1 zOrrKyGnu2{XnaqL=j7B6Ec462c;j97tMpbT&wFTbHptu(l6TjM1?@?0hdp(-7k^cN zojhIg;@%UaYuVb`XUCn`;&O{%8dcCqll}oB;C8 zVaj)Wf(FfX3oYFdyL>XK)h`-mVAGzM{nP@XuaX7d2`Vn0_fM* zREMrWs!HQF>@o=$ z`(YZ%V>f9xMFlX|I9m8fq9>8;AwtA4qPy#}AMdnp+yGn};lrWA6}l0d>YJBg#Y-5A z>0v*hhFidlMc874X`nJ);YamsBe~j|Q*bkKXNso^>O<7;D zUrskHrnP_e!UeK|gBG$gk`xa;vclza2msJ8UF^)!)7$Kyl6@epK#QEm)5UYxWny8t z4A@L64h|H#xZ2p^e9j8pyp7L#%N0h0a(hTMA8Aht;jD{P?*o<1B0K-2}Hzk z%stp@NG{md=qOHT`v*XTp?oHyga?Z!I7AvT%=2y~K&yaTO?pl((uoy=PRvi)IQ0w_ zSm~`+Dz&=r380(6XNPEIGD-!fY*lQXQD#Q4NBoLOLy?r!oO65rC(LJ@!&G~)yF{dE z6?-36FslUJVttQ`Pv+r?g@Mh{!?ZXk?~S`MAaZ{|?CCy3w6Ej?uHI{j$H20tI$3yG zhLwwmn3Ajvny&o@KoSZmSLwtLsIIZ)-xQIXW0csGw4;Cht1#+dyYu zK*B_|ceVITYhOIG^Z1+d+YqAx7M_^+y$Cw`-U~1_INaiu}3;obml; z0E1pa2^@i!lwADw)>7R>-9L}6-@!HyJLvk#16D{eZmyJD2N zjeos4Z;>^__~;skj)cM$WS>4aV&YU1)3i^(qveV&elB$p1YZBxw}Dj8b>#|MZQwP_ zQmo=~QznUN&4bq*$2WR6mpbB~$J-Uo>>n=K*ZH#`mBw@R{E_J-P>1xx8bAk^?wtwf zRENa3!Oafo$|!TDV5B|tCT~$7gP6Rjn9HN(WA;^3Gi_sfz|CZpwe7K)YFm#c42V>JrcV?v?!04A%g!5wlC^At%j~WirNj1804%34 z+WG|i{11-2H8SR{M+xhQ=}^C$*h@Sv!jnk}a9q6>$(>~f^KUD?@f)eZ&@$!#kAti9 z2s+3ukJfFEwQUzQib+zc3Gz3`>pcpfwWoEuq?#+U+pD@-|FFt`QN7>zmO|&%s}WJ& zO(71>M(8V0lcK>6k2VRVMkA%1A+tX@_a07Wo#GI=;9oeTsoj!JU$alXgU980CA(k= z4mWwcsx;Wgze2kpsSEDG(CeYF5#wg1Ht}l9?m2Ni<@kgP++EuQ2C3ko|pwgGiCQSt02J2P4Bofm@!+%A;VR_jR&<37ca_ggn(B3!ck-2VfHz z$@?@@^5Q|K*z>Czi@QnS<6Pw7*=^z^QcNp7@E&hre?Fp*U-G~aYvuEAOKdF?fRGi-IRfU6|U%>GdpE<#ei^Uz~EoEy75^Apjplf*sOb_TJD4*-`v z@Sy^^Iu0?I1_~es6=-==F0HX9^PqzwRSzb$5bbIqPGqL!Z^_P1!471z4EDdJDTLahURXKXA6hd%4*+U%t(X)Uy;Co z8xcwKS79rTac6+}q-n%vr#Yw*0x`blcILvRHTSD-xhWrMAmTi!39`;JJHT`Btq0uY z2i9uN3-1oPF0N&N2=9kFoRm`9^69vpUO^V0^E(?FULNDO#;4;oii|*JU6)E`lgmu}u(a2q^yp1;a-7%0;4&e7r%=g; zCo9Go+YRMPJU{(@3Sqkk=B_xh0m&Q%(R*E_eZeF>Q)K;LS%}cqypJ;SA>%SQ1*zJ- z9x^oX!_&3{!*9}p?j4K%nj-$#+(Rfr@{aBI)4N+G1B6x1C3y5ges2yJ!FXYt?}sqO zQAsGW*fJ?~jY>R4`h1}Pn%FkZNn8vHJsaH*y#VdbYpIFmI9a$+M`@t15}#9}a?|Nb zvK`oAbBtf_?De;$p(AQyvgq2TApq`SuXrL)Z}W)g{2Q4|3D0Ps%xCR6KYNDhUlPKi z41Els!9;J)b&Zyps0Fx>@d1U(P#T#YT=rUBMB%==iz}@?O=4{dq;TFQ~d@6jfHPShdX%F?-$Dx+1xIY31wjJ!jiIL(Qw=2T$CuV<7@& z7VL5%#i;oVrFnMqDale7MrZ2Nr6|-j83kGC`|O0R!^10#dVx>wgy9=RA#%`os24zs zyKb=IM9Jz0>!Vbk*StUI@$j5TOFT6?Fm0iSXs4cK@{i6FB&^*}wCRewK_I+6vazU| z>sx3bX4r5>{ZTObWP|SyVTg)?qVWzSnX*JI&0drl6|#u6q-F)E=DifOG@tWa9V)jp zbD-1~^{BIN>^fIphHD1rd77n=(9k`fhh&PSzLe^pIIo>znP}Q%4=rL#0pKJ-1r$_~ zypPv$s55#GX(IsvXn%ss5f0B$D+9HJA|iX30(6?TFsd%mg%DUldn2eQ7Z3nbNN}0b zTr`v&2%Se>?xn#zmM|9dawm$`S^?vStRc7!pCsLkGiox z8Gc+>_k4~~<=sj6BWdnb#?XYhwQbXB$@mRGRx!gyO3H|B0RN1FvllPdSsi07)6heM zqU6TPMw59;R=XEwHqS|{zWZ_Sf|Su%DHXyINs5T@-3X&aQraWmL=a3tt3&8BOt&>w z_nasZ%gxGKsH7etUSU*muO^wuF<=C)7(D5_E_NAS$lO2ohUi90alG&twvgD;>eLa8 z#=Uxy9uhR`Ql$MpKkoh1?Ze`|liFJ)D=X_vr3pg=*1SNZ9EG6u5Dy<552d>J#CiLD z=aetJt21C=pMiMC^$Xs3M11-3MN_DnZ)uS(vl~6_<85ln#_*QC5*l5hkPd%wjV~2q zsQ2gI;xD(Fi8E{Pbf=RZSP#6eE+|2tmp<%N_-fi?;3+4U8l}3Fk$geR*qWPb@=H9i zt2kAK|3FyNEjPE!%4|2hdx~~Jc`^=DczMIUcQ}>E$kb-CAXnCS%(-p2q&u4Md0l_r z8V+D!-B{H{LowzKzCB#)pf3c>YUQDJ>C~xHH{3TY?XL|XSl~!v$ zj$)w8Vr8Z1>2o(w@q)JB;DKL}F$zL(>n+FCtATq0Jy1KbG5g#WQ<_>`nNk%j0Bu1# z6GVg$cYa62$1iLwpD`C;4$q?7nd12s9(#Laty8Q!Ork$kf>mhZ%PgOD|AjK2BSD;9 zq6qa@&Vr}L{v3(_+Iab+>TT91`%5U_cQJ-91Rvi!=&D^;Id-^m9KSy1PC9&&{i7>I zkw31HF5;#eA1YA=Ta1JLw$VeEcgemF zYBD|bR=!`AP(;Fm@W4xhMx54w_4|w6=UYpZ<74dBE3TIuDZ0*wKOB`oiRhKxmKy8j zPsu*@ppqt5%E;SWhrWwq>0|N0aY%YGs@=|$o`ZI8jNzOytL>|nkv%>dw;|A}sHD_W z>*I5$0wvLuiga4W=I zJfQiqqvM8Y2{f?ACrl{I%C167C!?cN;#=oFo61iVh~b~6xZt9fw6yM#5(?V9!OS1S zonxYwT{Sbi<@P&NXrfO;Rj$CW`m@9D+anH5Oec;J3ggi030MI{8JIyk@0M5Pf#?*O zK6L+r|ia=0H`+-D3tHN{FZ^BZS_*eO24BWyfl7ImQg7BL`lP3dx%0TIozo zLP4UH52lAR%H-pYl)YAl>h`kxtqKz&2+Mf;xZXm5<^|~3<%3@^Qo#{YQl{%dcNtd4 zT5_i0ns7vG(S&y$=h8pnxk}t!TkCBaXY$c$3q$ds=Dg)&f>OJmIodyIA*Cgf81xtD zC0Yoq1B{#``=jN9!kC_$hCg%XIbkWrk%3MC_0M1XS8FRce5oM`gLFey`vAd~cu=-r zR#Hi#AF6?sx~lN!?eU&9E7ufZzp%*fv9j80h{ZId08F_TiCFIlm#jZl41JL=rM>Go zA%Vr#tAK!j_F!n005+U{sJ_ z+}~OwF$MZ1L&cqdAVR^j?+j%`*|WKCQ5RTwOoD~L#FRn1{*L{OWRx<53H5y?NRi-;x|cP+Ji z-OJGC`;RvOpPja`x(m*=8S+4r5>Ta~6g=|i)_?x*Jq)^n-bhs0WMW z$CiH(H+Q)>`*7GI3io)pyyEck=q-apPYmw(wQC6&77A-iOE7*Fy;Z+BNTPMDT44MS zj!^x!wVmDf#i1fzhY8uq+j`=00Y6?er70;Vo)SO!T!Zfvt6TXMwoIN5f01>2eDzML z>+D5iq?Z%47|qcVDU)JOXAU0O9ydZOE35`m;Q)095cMuAy^F8i|Vgjz%x-sxPiO&-+v_G(P~>V8sGc}Od=l& zAB#P!jjHw_qGl)ja9gBWXwpPP1&2cZ0`hX}9{*Yg9hiF2fm|R0e}70xsZ;+X(&oQB zQ~(_1AJP8vhu<`fxk+TSl_?{KobFkYvgT zR#UK|NBd*3g0>9H<-f^24|iwI3EG^yayQnOTd!2O+WPNBfv?4?-$|k=U;yg%+5<;@ z$Ck^&vnhTn4b-YBnVBb4rSQeQRk#2B%lnhU)kIm{eSI&}m0~8|>DisE?!s-G9_*~b zGzIm(g2y&CvZkh{v(R75g$U)mI0&=nru&vZE62she*yf8V1^1Lu0yV_^?UWsB)K^4 zA9WhxfuOYTyHd>7*46~5xKE9EG$bjM*1_AK>86{IZH_$O*W$;$|JWb*lU{^g_=#dJue)ZPo^*xeWMxT* zGfRB-#=95Wk74IVFSc4Cn*Dhb>)%JAU=EjEj+kru@ab`8UY?w}x%o&}8}Q|zQTlhuPuOlVQ9Jl!hd|MX4!8JO6@;l8~b`r-v)2!p_>WbeH!@FAmDKdB~%MX<@Ief)R~b~Tp&F;xwI z3-h__v8835z<|DAXQJ2#fR)1Q?Ki);tv~YLiscX+@xWED?0UxXnJdnEfyn%@0P9*l z{(`i-!pVY$mi8gE)_728rZD?E?$fU=jJ>>^9PueqQeN)^SI;B-Hu*BI`Xeh_+eX{6 z(btk*dnunkpTR?y^HG;EvS%vS!{yWZ9+W@1s3Ng>|Gt*ix0&@{Qb)V0gH565J;avm_7!?&RIe{nHQE%XCa*Vc~t?jz^Uo6?RtI^3@1h0{Sm_Rhh27q89Wjk~co2=q#A z9NY&2_=aB)lRoJX7=T;_$*K3Hpe@Y$F^&~7B) zCN$#xT79L}CfRF?{%|d()_Ar%)dV;5$pS%~`F94S zF5>yu(DmeEcdMr3tpBkuD=oEp`}Xbd##}Gc2xr=2k$D>}nQy7_S3>1pe%pb316@12 z{H?V%9)HQ1c>9_jlw~k2x1*I%AfJ}4ZJu)-!EsCYjGpgdOgW=Z>dE3htvif=cVEFshJsTo|>J9qRtT<)(M_#EyL+Ch74OZuzxaQ zM+fTy%Aj7NucL|wjC>?EN+V2h3k9|PC`;H@omnR=q)2tltUqQHw7G++$$*?&iTtdr zlW@5kcUFJP;MVu?=cK&FX}NVL$CD_{lmBQl(P#6=P!B4fUIkrNAJ+Ap=y;k%SCY77 z;JxuU>-?`RkSOfjPJl?~2~W?J$li z^u`Y*SFmua-$;3kyHli*cHqdeTU!<30VhRmR=3Kp8&qC6bE5dYY$YfaXt~~zTFu&e zeZbIz8|%KnjXpZup9On5iw7~2(a@j<89TeR3x~T{@^tQ=%}^n+KeIcBqod=Ss3<>T zQd;BhA@t2aY`M9Kz-IAhWoFh%A7`T3sv)8fKeN!EN95bh+vKF3*0;Y|;1fD_Ff9bk ztrM?V^BH~DU$0`}=7Sz2_XQoS5pv!GKGgc=PI-DdG3cA-!QW8?=}j;j#$;#ZSFD(e z-K^JF<1>ha%=Ua>8o8O)p7EF=zj{j-eYm#}D`d~Sw=qY(wF;($O-M*+apwRu;1_6t z&YUbOC<@m9Gt6e;(ktcK7=vwm0{i4&>c&Nt-UPa2WvOiJbv3RES0e*-0SW~M72)c> zg*E-{Mjs0g*s--ZL{uwv5Gi%$#D#OG3Bhxiqyg;!5A(%(;5wH@KqC zdf9}1ew;agT2-7f#>iU)8BoSAB=mdOx}dRQCMg&s(f?5M>h#7rhr*`z_cu$DBs{F# z+}wu2oPY9KYhhQxQK^3?Iqw|L&Rfy`DZ>y}zWmp5v=V+G^ zSlBT5#k7RcuKePLAaYUN);okszWN=vh8YvXK>3!yYWWs_e>GOCS}Mg9udO+9OGz1t zfglvy*W&wAt1q|e3kV1dlL?KaY%UIIa6%&U-qunMeygnZC(Oc%W#QxMv48HVHKc{V!&I+4+Z9a0V(Ok!Fc&!K!i1ot4ZMB zK3_mH?|(Xg|G&Nw2R;l75TSf$A~+Fy7I_doi2cDoisP-E1uwg1{Gh)&+HL)=*AhrO z|!%4gGp|G{)gY$s$Dcx???eDG$;XomqYG_jq@Qe%J;k-z(w z3W;up>(gCeB!#NWDX0mm_Sk0FtAt^7$el#_g6trd_bNsnc?WC3-}ji+fxMqUWoBi4 z1)(>YwKnuv66hNk@b{AVgI{0$A&F%F{#tU^@jBP|GE3anJ|2NO_e$;m;4;HMQJ8>c z-x{y|hwZVvDBmMcw}XY|N+VrkdnCDFrGKQCtkyO3bCb#uu*1>vz0}O@yg)~5CL?ox{l!ZoL zGKo1i97rOK@;xP4!bGNH%cXF@J)Xv+EgPDa(d#OxI$-g`6{4=B78X*ydi6?prH;q} zV2%H^$FE>vrV|Z;sa;~=(cFL`Tl@k7^oItXaIgp)+WkSE0@)DxaApKaf42I0O~&X5 zZnyD#U)DK3vlECO`u6RgjU@~noslQ+J1!ln^##@=5>UqA7x5zthRd~s_f}zGheLMa zM~<2gM#3cbp)66w^2~0RmS>P_l-h-#kvgK^`U1f0dnm&33%*xkK%AGh29Hsr?x9Gbwh}q+Eh- z_s#iqZr$QL3qR78;tSwowy6)7Uu}>1NNqd=WAXDkNKNd130O8na|G>qA@GWz8@@7b z&y2!mr{d^BcLu>BNL5ajG+5vDRNtNofIblO^Yg{VH!=;t*z<1hf+yIgtE-!Km}^+= z{uou<62)%qvyT}oPDn_|9Ag93;xU&VGjUi2;LMvF4A8VU%-#UaV;2mKZO6vJ!t{R+ zXBnGbfX6<+Jwpwmo&}632(wwY$V`GC2psBHZ^Z{n7W;vGrcUACA>I3ojEo3)Z;uzE z07yXx9qQ8%hc<(RyBjZ5kGLp%waq#tf&{@uJhw=Q6@6G;(VIsnC z6#txci@KuxEmx=Lvsnuj0?^NiIdh@LK{^_;GLnM&`}<>S!y){V;5Pl<5h z6fEH8Ts;Iunwplzx{Tv{hk?mQpij=j(20Zf8k{mv*10SN*W z$TIoi-azelybf5TdQEMESA~Uq?Fk~(;0Sz2JP@!Da8N9vp`pTnjZL+r5vklkkO?$2 zJk2CZ191pptOrhlOQ-Nym(-E?ZJ0)+-1`JBk|_WkhwUlw7`}rO=AVpTv@r1@TE$&K zWW8bTWi)uH%}QWw6V%=gW^3l8d3UZ&waFwq^~lk^@>=ZIv;T>*OixcAhI2^s#>WX* z7Y7BMBJB@OJZW;;pnRx!=A}|dwXiHCL!wd;gD<9 zVKL`Us1}o`Jr=EIKGht-hVeWAHGfJ|1q&BPoka{#Zfa{Epv1?3*iP)bPL5p|HiZ~a zKr@oo2qOOe39NMvC%X9A(x%k#|5RPs~dC?nD1L7zT2SK-CCLbK$}HN{A+oLi-3G2YNKTkLgyxf zO*5T|!J&*ogxy3UwMI#HSwC&go;_=O#WLrJj9FZGqvGe!pQ%gW&axJJ^}$$;{cw$3 z{R+Nf39G)$^5h(EeY~haA0X%Bz;o6(4bdP~x z;FUrsJ~J95XM~kCYNEug32OWhrtra@TiQb^RH-e7cDPhj|9b$Ku$QH6t*sN@`NLMZ z-ieB2V~h9h-=|qOwYqWM-c_}7yD`j5Wn&whqm#tN^JDd4O-3JKPj&Z_5crZkSZ0U> z130n)R-co3eHumsa;_lEK>tEcK|zysK{d%OdtOPf*xzbY$Py*t1Y`4RA}U>Qc4M7- zX9~^^a+DHan&!u3ybeY|l_SuG%*(*R!J$2T6{iRv;SA|e$ZEdI(HXo%-0r~=YdVBy zNqE+;O!JgG}$XFLL=6kXR?gSjR!O zDKx`j9=F~FEtqfwvJ7);lM zA3?Ci{6K|{g2G9ZF-VSs6yl#LH7&;$+6?g(7Z*1i?0|~x>FYao;Q-eILIIQ~f$wG$ z3#c9SYkyg}!j!Z$!rx8d$5HJ`5{#VM`3)l#P6Q}mhgd5?YfW2&NoLXYdji_s_KGhf zuiZ$wTH6wMCdvf`57gAo4BOe*gzUQ2`%_TlG46)@9I!n~H?g(lHguo6j6z)9=pWB` zmo8mXt=(U)iY0ms0`gkKY5Jp6+3BG#rt+2yF8r{Lr1pbl?ht zRo7>_j-x`DB^b2z9bSdjj`oRy&FIO|<^illTQ=&;UUQEK6?=)85GrVWU_aB0TbYD7)d2% z0x)d{;2N*%im|>!<5|R!Q8zRU10EB=7zxmZ-(dYOlwoRZW6;?!3M;s6Y3=`ViP8YA z|GDJT?=AkpiOnQ9L4qU8y7k)nI-qs;QsPb>x3AvR()Zf@iOiFGoRLVo^#%EV8q0Ul(Z;~m3(tLwLfi%P-h2)M$1t9? z2*U=fUsBv`0L0) zn?jIB$QRS5G;lbYJ38cm4pR|dl@*7#1EZd5@yR78OnmJQa6~i+h`+|k3AsnXFd0*A z#RD|4SamS3f%A|#0_qXMCIy^0z&wM%Qy}o^5B&o43FGzx4+N*c0by_%eMSd5%MYRR zU|lc(es-)@s#ARZuJ~#L_26d{qOCEXBYu1iVq^4n`8jin5QpRMYY1AtAlLNIYx3M* f{qw*7o7f|Y)DYCr>Wshv3SJ6wDzf?i7{B;`{nNGt literal 0 HcmV?d00001 diff --git a/labworks/LW2/is_lab2 (1).ipynb b/labworks/LW2/is_lab2 (1).ipynb new file mode 100644 index 0000000..2fb35a4 --- /dev/null +++ b/labworks/LW2/is_lab2 (1).ipynb @@ -0,0 +1,7459 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pCa-oj1IGPf-", + "outputId": "8ca03a21-9a10-4ff9-ef79-1325d85ff2da" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘Notebooks/is_lab2’: No such file or directory\n" + ] + } + ], + "source": [ + "mkdir drive/MyDrive/Colab Notebooks/is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zTHlvvZGq6o", + "outputId": "2d84c95d-fde9-4e90-c07e-1ec1a24163cf" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive\n" + ] + } + ], + "source": [ + "cd drive" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zTgwV0j1G34f", + "outputId": "93cf0baf-e456-4215-af49-1d36f637a659" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive/MyDrive\n" + ] + } + ], + "source": [ + "cd MyDrive/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X1emctxUG5_a", + "outputId": "e6e98b44-e27f-4949-9cf9-4f0f592da751" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive/MyDrive/Colab Notebooks\n" + ] + } + ], + "source": [ + "cd Colab\\ Notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZILuaysRG8AA", + "outputId": "ee9a0918-92f5-499b-a72f-13f64be6ea94" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘is_lab2.ipynb’: File exists\n" + ] + } + ], + "source": [ + "mkdir is_lab2.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xR3GRzOMG_Xp" + }, + "outputs": [], + "source": [ + "mkdir is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "myqtSP8YHeOG" + }, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3ryig5GRIEP4", + "outputId": "4e210d07-48a6-4b56-f338-66a65c68ff5a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-10-15 13:48:20-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 22329 (22K) [text/plain]\n", + "Saving to: ‘lab02_lib.py’\n", + "\n", + "lab02_lib.py 100%[===================>] 21.81K --.-KB/s in 0.1s \n", + "\n", + "2025-10-15 13:48:21 (167 KB/s) - ‘lab02_lib.py’ saved [22329/22329]\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "R7ls5L_fIP-s", + "outputId": "763765c3-e49e-4a92-e000-d4bd3fa60667" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-10-15 13:50:09-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 769500 (751K) [text/plain]\n", + "Saving to: ‘letter_train.txt’\n", + "\n", + "letter_train.txt 100%[===================>] 751.46K 1.16MB/s in 0.6s \n", + "\n", + "2025-10-15 13:50:10 (1.16 MB/s) - ‘letter_train.txt’ saved [769500/769500]\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DCcRAZQMIqnD", + "outputId": "3d0732c8-a04a-4207-a536-a5640a54cea3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-10-15 13:50:30-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 51297 (50K) [text/plain]\n", + "Saving to: ‘letter_test.txt’\n", + "\n", + "letter_test.txt 100%[===================>] 50.09K 203KB/s in 0.2s \n", + "\n", + "2025-10-15 13:50:31 (203 KB/s) - ‘letter_test.txt’ saved [51297/51297]\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9Qgqz050IvsY" + }, + "outputs": [], + "source": [ + "mkdir out" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "xag0MrqqI6P8" + }, + "outputs": [], + "source": [ + "# импорт модулей\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "svNJLDxrI9CM", + "outputId": "8d2760c6-f292-4897-ee2d-b62e7fc48805" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAK9CAYAAABRvo1QAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApFJJREFUeJzt3XuUFdWd6PFfd2M3KDQio8EHCdpI0w22JjEzgxkfd9QYQxwBB2MmXtSVrGjUiY7DTEKCic9AIhPNmCsxifPCMGSRacyaKDHGhJnrNQ9GYUAaWkGJBHWceJMGRbvt0+f+Ube6q09XnXrtqr131fezFgtOc86pXbt2Vddv79/e1VCtVqsCAAAAAACM06i7AAAAAAAAwB9BOwAAAAAAhiJoBwAAAADAUATtAAAAAAAYiqAdAAAAAABDEbQDAAAAAGAognYAAAAAAAxF0A4AAAAAgKEI2gEAAAAAMBRBOwAABXTllVfKjBkzEn32lltukYaGBrUFAgAAiRC0AwCQo4aGhkh/Nm3apLuo1lu7dq3cc889uosBAEAqDdVqtaq7EAAAlMWDDz446vU//dM/yWOPPSZr1qwZ9fPzzz9f3vGOdyTezttvvy1DQ0PS0tIS+7ODg4MyODgo48ePT7x9E3z4wx+WZ555Rvbu3au7KAAAJDZOdwEAACiTyy+/fNTrn//85/LYY4+N+XmtQ4cOyeGHHx55O4cddlii8omIjBs3TsaN4xYBAAATkB4PAIBhzjnnHJk7d6489dRTctZZZ8nhhx8un/vc50RE5Pvf/77Mnz9fjjvuOGlpaZG2tja5/fbbpVKpjPqO2jnte/fulYaGBlm1apV885vflLa2NmlpaZH3ve99snnz5lGf9ZvT3tDQINdff7089NBDMnfuXGlpaZE5c+bID3/4wzHl37Rpk5x++ukyfvx4aWtrk/vvvz/yPPnnnntOLrnkEpk2bZqMHz9eTjjhBLnsssukr69v1PsefPBBee973ysTJkyQo446Si677DLZt2/fqDp8+OGH5Ve/+tXwlIOkc/wBANCJbnQAAAz02muvyYUXXiiXXXaZXH755cOp8v/wD/8gEydOlJtuukkmTpwoP/nJT+QLX/iCHDhwQO66667Q7127dq0cPHhQrr76amloaJCvfOUrsmjRInn++edDR+efeOIJ6e7ulmuvvVYmTZokf/u3fyuXXHKJvPjiizJ16lQREdmyZYt88IMflGOPPVZuvfVWqVQqctttt8nRRx8dWraBgQG54IILpL+/X/78z/9cpk2bJvv375cf/OAH8rvf/U4mT54sIiJ33nmn3HzzzXLppZfKJz7xCfnv//5vuffee+Wss86SLVu2yJFHHimf//znpa+vT37961/L3XffLSIiEydODC0DAADGqQIAAG2uu+66au2v47PPPrsqItVvfOMbY95/6NChMT+7+uqrq4cffnj1rbfeGv7ZFVdcUX3Xu941/PqFF16oikh16tSp1f/7f//v8M+///3vV0Wk+q//+q/DP/viF784pkwiUm1ubq7u3r17+Gf/+Z//WRWR6r333jv8s4suuqh6+OGHV/fv3z/8s+eee646bty4Md9Za8uWLVURqa5fvz7wPXv37q02NTVV77zzzlE/3759e3XcuHGjfj5//vxRdQAAgI1IjwcAwEAtLS1y1VVXjfn5hAkThv998OBB+c1vfiNnnnmmHDp0SHbt2hX6vR/5yEdkypQpw6/PPPNMERF5/vnnQz973nnnSVtb2/Drrq4uaW1tHf5spVKRH//4x7JgwQI57rjjht83c+ZMufDCC0O/3x1Jf/TRR+XQoUO+7+nu7pahoSG59NJL5Te/+c3wn2nTpsnJJ58sP/3pT0O3AwCATUiPBwDAQMcff7w0NzeP+fmOHTtk+fLl8pOf/EQOHDgw6v9q5337eec73znqtRvA//a3v439Wffz7mdfffVVefPNN2XmzJlj3uf3s1onnnii3HTTTfLVr35VvvOd78iZZ54pf/InfyKXX375cED/3HPPSbValZNPPtn3O9IswAcAgIkI2gEAMJB3RN31u9/9Ts4++2xpbW2V2267Tdra2mT8+PHy9NNPy2c+8xkZGhoK/d6mpibfn1cjPAE2zWej+pu/+Ru58sor5fvf/7786Ec/kk9/+tOyYsUK+fnPfy4nnHCCDA0NSUNDg2zcuNG3PMxbBwAUDUE7AACW2LRpk7z22mvS3d0tZ5111vDPX3jhBY2lGnHMMcfI+PHjZffu3WP+z+9nQU455RQ55ZRTZPny5fLkk0/K+9//fvnGN74hd9xxh7S1tUm1WpUTTzxRZs2aVfd7oqxWDwCA6ZjTDgCAJdyRZe/I9sDAgNx33326ijRKU1OTnHfeefLQQw/JSy+9NPzz3bt3y8aNG0M/f+DAARkcHBz1s1NOOUUaGxulv79fREQWLVokTU1Ncuutt44Z4a9Wq/Laa68Nvz7iiCMiTRkAAMBkjLQDAGCJM844Q6ZMmSJXXHGFfPrTn5aGhgZZs2aN0vT0tG655Rb50Y9+JO9///vlU5/6lFQqFfn6178uc+fOla1bt9b97E9+8hO5/vrrZfHixTJr1iwZHByUNWvWSFNTk1xyySUiItLW1iZ33HGHLFu2TPbu3SsLFiyQSZMmyQsvvCAbNmyQT37yk7J06VIREXnve98r3/3ud+Wmm26S973vfTJx4kS56KKLsq4CAACUImgHAMASU6dOlR/84Afyl3/5l7J8+XKZMmWKXH755XLuuefKBRdcoLt4IuIEyhs3bpSlS5fKzTffLNOnT5fbbrtNdu7cGbq6/amnnioXXHCB/Ou//qvs379fDj/8cDn11FNl48aN8od/+IfD7/vsZz8rs2bNkrvvvltuvfVWERGZPn26fOADH5A/+ZM/GX7ftddeK1u3bpW///u/l7vvvlve9a53EbQDAKzTUDWpex4AABTSggULZMeOHfLcc8/pLgoAAFZhTjsAAFDqzTffHPX6ueeek0ceeUTOOeccPQUCAMBijLQDAACljj32WLnyyivlpJNOkl/96leyevVq6e/vly1btgQ+Xx0AAPhjTjsAAFDqgx/8oPzzP/+zvPLKK9LS0iLz5s2TL33pSwTsAAAkwEg7AAAAAACGMmZO+8qVK6WhoUFuvPHGwPd0d3fL6aefLkceeaQcccQRctppp8maNWvyKyQAAAAAADkyIj1+8+bNcv/990tXV1fd9x111FHy+c9/XmbPni3Nzc3ygx/8QK666io55phjjHnUDQAAAAAAqmhPj3/99dflPe95j9x3331yxx13yGmnnSb33HNP5M+/5z3vkfnz58vtt98e6f1DQ0Py0ksvyaRJk6ShoSFhqQEAAAAAiKZarcrBgwfluOOOk8bGeAnv2kfar7vuOpk/f76cd955cscdd0T+XLValZ/85CfS29srX/7ylwPf19/fL/39/cOv9+/fL52dnanKDAAAAABAXPv27ZMTTjgh1me0Bu3r1q2Tp59+WjZv3hz5M319fXL88cdLf3+/NDU1yX333Sfnn39+4PtXrFght95665if79u3T1pbWxOVGwAAAACAqA4cOCDTp0+XSZMmxf6stqB93759csMNN8hjjz0m48ePj/y5SZMmydatW+X111+Xxx9/XG666SY56aST5JxzzvF9/7Jly+Smm24afu1WVmtrK0E7AAAAACA3SaZoa5vT/tBDD8nChQulqalp+GeVSkUaGhqksbFxeCQ9zCc+8QnZt2+fPProo5G2e+DAAZk8ebL09fURtAMAAAAAMpcmDtU20n7uuefK9u3bR/3sqquuktmzZ8tnPvOZSAG7iLOwnHfOOgAAAAAARaEtaJ80aZLMnTt31M+OOOIImTp16vDPlyxZIscff7ysWLFCRJz56aeffrq0tbVJf3+/PPLII7JmzRpZvXp17uUHAAAAACBr2lePr+fFF18ctRz+G2+8Iddee638+te/lgkTJsjs2bPlwQcflI985CMaSwkAAAAAQDa0P6c9b3HnElQqFXn77bdzKBnK6LDDDos8FQQAAACAnayc0266arUqr7zyivzud7/TXRQU3JFHHinTpk1LtJIkAAAAgGIjaA/gBuzHHHOMHH744QRUUK5arcqhQ4fk1VdfFRGRY489VnOJAAAAAJiGoN1HpVIZDtinTp2quzgosAkTJoiIyKuvvirHHHMMqfIAAAAARmkMf0v5uHPYDz/8cM0lQRm47Yy1EwAAAADUImivg5R45IF2BgAAACAIQTsAAAAAAIYiaAcAAAAAwFAE7VDuyiuvlBkzZiT67C233EK6OAAAAAD8fwTtJdLQ0BDpz6ZNm3QX1Xpr166Ve+65R3cxAAAAAFiuoVqtVnUXIk8HDhyQyZMnS19fn7S2tvq+56233pIXXnhBTjzxRBk/fnzOJczOgw8+OOr1P/3TP8ljjz0ma9asGfXz888/X97xjnck3s7bb78tQ0ND0tLSEvuzg4ODMjg4aH29f/jDH5ZnnnlG9u7dG/reorY3AAAAAI4ocWgQntNeIpdffvmo1z//+c/lscceG/PzWocOHYr1+LvDDjssUflERMaNGyfjxtEsAQAAAECE9HjUOOecc2Tu3Lny1FNPyVlnnSWHH364fO5znxMRke9///syf/58Oe6446SlpUXa2trk9ttvl0qlMuo7aue07927VxoaGmTVqlXyzW9+U9ra2qSlpUXe9773yebNm0d91m9Oe0NDg1x//fXy0EMPydy5c6WlpUXmzJkjP/zhD8eUf9OmTXL66afL+PHjpa2tTe6///7I8+Sfe+45ueSSS2TatGkyfvx4OeGEE+Syyy6Tvr6+Ue978MEH5b3vfa9MmDBBjjrqKLnssstk3759o+rw4Ycfll/96lfDUw6SzvEHAAAAUG4MaWKM1157TS688EK57LLL5PLLLx9Olf+Hf/gHmThxotx0000yceJE+clPfiJf+MIX5MCBA3LXXXeFfu/atWvl4MGDcvXVV0tDQ4N85StfkUWLFsnzzz8fOjr/xBNPSHd3t1x77bUyadIk+du//Vu55JJL5MUXX5SpU6eKiMiWLVvkgx/8oBx77LFy6623SqVSkdtuu02OPvro0LINDAzIBRdcIP39/fLnf/7nMm3aNNm/f7/84Ac/kN/97ncyefJkERG588475eabb5ZLL71UPvGJT8h///d/y7333itnnXWWbNmyRY488kj5/Oc/L319ffLrX/9a7r77bhERmThxYmgZAAAAAKAWQbsGlYpIU5PuUgR75ZVX5Bvf+IZcffXVo36+du1amTBhwvDra665Rq655hq577775I477gidw/7iiy/Kc889J1OmTBERkfb2drn44ovl0UcflQ9/+MN1P7tz507p6emRtrY2ERH5H//jf8ipp54q//zP/yzXX3+9iIh88YtflKamJvk//+f/yHHHHSciIpdeeql0dHSE7nNPT4+88MILsn79evnTP/3T4Z9/4QtfGP73r371K/niF78od9xxx3D2gYjIokWL5N3vfrfcd9998rnPfU7OP/98Of744+W3v/1t6NQDAAAAAKiH9Pgc9faKzJkjMm6c83dvr+4S+WtpaZGrrrpqzM+9AfvBgwflN7/5jZx55ply6NAh2bVrV+j3fuQjHxkO2EVEzjzzTBERef7550M/e9555w0H7CIiXV1d0traOvzZSqUiP/7xj2XBggXDAbuIyMyZM+XCCy8M/X53JP3RRx+VQ4cO+b6nu7tbhoaG5NJLL5Xf/OY3w3+mTZsmJ598svz0pz8N3Q4AAAAAxEHQnqNFi0YC9d5e57WJjj/+eGlubh7z8x07dsjChQtl8uTJ0traKkcfffTwSHLtvG8/73znO0e9dgP43/72t7E/637e/eyrr74qb775psycOXPM+/x+VuvEE0+Um266Sb797W/L7/3e78kFF1wg/+t//a9R+/Xcc89JtVqVk08+WY4++uhRf3bu3Cmvvvpq6HYAAAAAIA7S43NSqYj09Ix9bWKqvHdE3fW73/1Ozj77bGltbZXbbrtN2traZPz48fL000/LZz7zGRkaGgr93qaAHY3y1ME0n43qb/7mb+TKK6+U73//+/KjH/1IPv3pT8uKFSvk5z//uZxwwgkyNDQkDQ0NsnHjRt/yMG8dAAAAgGoE7TlpahLp7HRG2N1Avb3dvIA9yKZNm+S1116T7u5uOeuss4Z//sILL2gs1YhjjjlGxo8fL7t37x7zf34/C3LKKafIKaecIsuXL5cnn3xS3v/+98s3vvENueOOO6StrU2q1aqceOKJMmvWrLrfE2W1egAwjYkdyQAAlB3p8Tnq7nYCdRHn7+5uveWJwx1Z9o5sDwwMyH333aerSKM0NTXJeeedJw899JC89NJLwz/fvXu3bNy4MfTzBw4ckMHBwVE/O+WUU6SxsVH6+/tFxFlwrqmpSW699dYxI/zValVee+214ddHHHFEpCkDAGACW9ZcAQCgjBhpz1F7u8iOHXaOZJxxxhkyZcoUueKKK+TTn/60NDQ0yJo1a5Smp6d1yy23yI9+9CN5//vfL5/61KekUqnI17/+dZk7d65s3bq17md/8pOfyPXXXy+LFy+WWbNmyeDgoKxZs0aamprkkksuERGRtrY2ueOOO2TZsmWyd+9eWbBggUyaNEleeOEF2bBhg3zyk5+UpUuXiojIe9/7Xvnud78rN910k7zvfe+TiRMnykUXXZR1FQBAIn5rruzYobdMAADAQdCugW0Bu4jI1KlT5Qc/+IH85V/+pSxfvlymTJkil19+uZx77rlywQUX6C6eiDiB8saNG2Xp0qVy8803y/Tp0+W2226TnTt3hq5uf+qpp8oFF1wg//qv/yr79++Xww8/XE499VTZuHGj/OEf/uHw+z772c/KrFmz5O6775Zbb71VRESmT58uH/jAB+RP/uRPht937bXXytatW+Xv//7v5e6775Z3vetdBO1ATDZ2cNrIpjVXAAAoo4aqSUOlOThw4IBMnjxZ+vr6pLW11fc9b731lrzwwgty4oknyvjx43MuIVRbsGCB7NixQ5577jndRfFFewNGc0d6e3qctUC8U4uQDTcl3rvmCiPtAACoEyUODcKcdhTKm2++Oer1c889J4888oicc845egoEIDZbHo9ZJDavuQIAQNGRHo9COemkk+TKK6+Uk046SX71q1/J6tWrpbm5Wf76r/9ad9GgAem99iFVWw+b11wBAKDoGGlHoXzwgx+Uf/7nf5Y///M/l3vvvVfe9773yb//+7/LySefrLtoyBErYdvLfTymGzjWvka2qGcAAMzDSDsK5e///u91FwEGYCVsu3V3j8xpJ1UbAACUHUE7gEIhvdp+pGoDAACMID0eQKGQXl0cHDMAAACC9rpK9jQ8aEI7U4+VsAEAAFAUpMf7OOyww0RE5NChQzJhwgTNpUHRHTp0SERG2h3SI70aAAAARUHQ7qOpqUmOPPJIefXVV0VE5PDDD5eGhgbNpULRVKtVOXTokLz66qty5JFHShPRpXJUKQAAAGxH0B5g2rRpIiLDgTuQlSOPPHK4vQEAAACAF0F7gIaGBjn22GPlmGOOkbffflt3cVBQhx12GCPsMBJTCwAAAMxA0B6iqamJoApAabjPte/pcVbd9y7qBwAAgPyxejwAYNiiRU7gLjISwAOArSoV3SUAgPQI2gEAIuLc3Pb0jNzk1r4GTEY7hVdvr8icOSLjxjl/u52RAGAjgnYAgIg4c9g7O0fmste+BkxEcAY/ZA0BKBKCdgDAMO8c9vZ25zVgMoIz1CJrCEDRsBAdAGBYe7vIjh2sHg87uMFY7Wvab7m5WUK9vSNtob2dNgHAXoy0AwDGKOrNLSNtxcKUDgQhawhAkRC0AwAKj3nPxbVq1eigfdUqveWBGdysocFB528eXQnAZgTtAIDCY95zcS1dOnru8tKlessDs5B1AaAICNoBAIXGolTFxbEFAJQBQTsAoNCY91xcHFsAQBkQtAMACo9FqYqLYwsAKDoe+QYAKDweZVdcHFsAQNEx0g4AKA2CuuLi2AIAioqgHQAAAAAAQxG0AwAAAABgKIJ2AIXAI54AAABQRATtAKzW2ysyZ47IuHHO3729uksEAAAAqEPQDsBqixaNBOq9vc5rAGqRyQIAgD4E7QCsVamI9PSMBBS1rwGkQyYLAAD6EbQDsFZTk0hn58ijnmpfA0iHTBYAAPQjaAdgte5ukfZ259/t7c5rIC95ZHXoyhwhkwUAADMQtAOwWnu7yI4dIoODzt9uAA9kKY+0cd2p6WSyAABgBoJ2AIVAIIEkko4a55E2bkJqOpksAADoR9AOACidNKPYeaSNm5KaTiYLAAD6EbQDAEonzSh2HmnjpqWmk8kCAIA+BO0AgFJRMYqdR9o4qel2YYE+AEBWCNoBAKWiYhQ7j7RxUtPtoHvBQABA8RG0AwBKR9Uodh5p46Smm82EBQMBAMU2TncBAADImzuKXakUOygu+v7p5k6tqH1NvQMAVGKkHQBQWkUNrEjZzodpCwYCAIqJoB0AgIIhZTs/LBgIZI+FHlF2BO0AABSIKc94LwsWDASyQ9YQ4CBoBwCgQEjZ1oP6BdQjawhwELQDQIkw2loOpGwDsB1ZQ8AIgnYAKAFSDMuFlG0AtiNrCBhB0A4AJZAmxZBRDXtxcwvAZmQNAQ6CdgAouKQphozOw4vOGwB5I2sIcBC0A0DBJU0xZAEg+2QRWNN5A0A3soZQdgTtAFACcVMMWQDILlkG1nTeAACgV0O1Wq3qLkSeDhw4IJMnT5a+vj5pbW3VXRwAyFWlEn3Ewg3+3M+4aYowT1bHqlJxOgJqDQ4y8gUAQBxp4lBG2gGgROIEWiwAZIcssyJYvRkAAP0I2gEAvlgAyA5ZB9Z03gAAoBdBOwCgLkZVzZdlYE3nDQAAevnMVAMAADZxA+s4axbERecNAAB6MNIOAEBBEFgDAFA8BO0AAAAAABiKoB0AgJJSscI8AADIFkE7AAAl09vrPNt93LiRZ7wDAAAzEbQDAFAyixaNBOq9vc5rAABgJoJ2AIDVSPGOp1IR6ekZqbfa1wAAwCzGBO0rV66UhoYGufHGGwPf861vfUvOPPNMmTJlikyZMkXOO+88+eUvf5lfIQEAxiDFO5mmJpHOzpGV5mtfAwAAsxgRtG/evFnuv/9+6erqqvu+TZs2yUc/+lH56U9/Kj/72c9k+vTp8oEPfED279+fU0kBAKYgxTu57m7n2e4izt/d3XrLAwAAgjVUq9WqzgK8/vrr8p73vEfuu+8+ueOOO+S0006Te+65J9JnK5WKTJkyRb7+9a/LkiVLIn3mwIEDMnnyZOnr65PW1tYUJQcA6FKpOCPstQYHGTGOo1KhvgAAyEOaOFT7SPt1110n8+fPl/POOy/2Zw8dOiRvv/22HHXUUYHv6e/vlwMHDoz6AwCwGynealBfiIu1DwAgf1qD9nXr1snTTz8tK1asSPT5z3zmM3LcccfVDfhXrFghkydPHv4zffr0pMUFABiEFG8gP6whAQD6aAva9+3bJzfccIN85zvfkfHjx8f+/MqVK2XdunWyYcOGup9ftmyZ9PX1Df/Zt29fmmIDAAzR3i6yY4eTEr9jx0gAD0A91pAAAH20zWl/6KGHZOHChdLkyc2rVCrS0NAgjY2N0t/fP+r/vFatWiV33HGH/PjHP5bTTz891naZ046kmPsJAOlxLVUrj/pkDQkASM/KOe3nnnuubN++XbZu3Tr85/TTT5ePfexjsnXr1sCA/Stf+Yrcfvvt8sMf/jB2wA4kQUogUB7M180O11K18qxP1pAAAL20Be2TJk2SuXPnjvpzxBFHyNSpU2Xu3LkiIrJkyRJZtmzZ8Ge+/OUvy8033yx/93d/JzNmzJBXXnlFXnnlFXn99dd17QZKgJRAoPgIKLPHtVStvOuTNSQAQB/tq8fX8+KLL8rLL788/Hr16tUyMDAgf/qnfyrHHnvs8J9Vq1ZpLCWKrFIR6ekZGX2rfQ2gGAgos8W1VC0d9ckaEgCgj/bntOeNOe2Iyx11c+cNujcuAIqB+br54FqqFvUJAHaxck47YAtSAqETI5HZY75uPriWqkV9AkB5MNKOQshr9Vxu4ovBhmPppmj39DgBpPcGPUs21E0WdNV3GZW1jWWF+gQAOzDSjtLKe/Vc2M2mxcbynmNtU91kgfm6+eFaqhb1CQDFx0g7rMacPsRhS3vRMcfalroBAACwESPtKCVWI0YcNrWXvOdY21Q3AAAAZUPQDmuxeBTisK295LnIlG11AwAAUCYE7bAaq+ciDpvaS95zrG2qGwAAgDJhTjsKgdVzEQftJRh1AwAAoB5z2lF6BBmIg/YSjLoBAAAwC0E7AAAAAACGImgHAAAAAMBQBO0AAAAAABiKoB0AAMtVKrpLAAAAskLQDgCApXp7RebMERk3zvm7t1d3iQAAgGoE7QAAWGrRopFAvbfXea0SI/gAAOhH0A7AegQWKKNKRaSnZ6T9176O8vkgjOADAGAOgnYA1iKwQJk1NYl0djp/+70OEuW8yXoEHwAAREfQDsBaBBYou+5ukfZ259/t7c7rMGHnTdoRfFtUKsXbJwBAMRG0A5bg5nK0sgQWQD3t7SI7dogMDjp/uwF8kCjnTdIRfJN596+3V2TmTCfTYNw4599k6QAATEbQDhiOFHB/JgUWdBRAt6jtPup5k2QE30R+189Fi0T27Bl5z549ZOkAAMxG0A4YjhTwYLoDCzpUYKMo503cEXxT1V4/Fy50MgtqkaUDADBZQ7VareouRJ4OHDggkydPlr6+PmltbdVdHKCuSsUJCGsNDtqdqqpapaKnPtxA3d2+G+gANtB13uQl6PrZ0SGyc+fon3V2cu4CALKVJg5lpB0wmEkp4CbTlRLPnHrYzNTriKpzKOj6uWGDSFvbyPva2uxN/wcAlANBO2A43Sng8EeHCqBWFtNN/K6f7e0iu3c7GUuDg86/bU3/BwCUA+nxgCWKnspqI3eNgZ4eJ2D3BggA4slyugnXTwCAbmniUJ/ZXgCylPTmkRtO87hBBQEBkI47vaT2tapzi/MTAGAz0uOBnNi40jjzs6MhIADSYboJAADBCNqBnNj06DYbOxgA2I31OwAA8MecdiAHtj26jUeZpUO6vD7Uvf04hgCAIuKRb4DhbEr95FFmyZGhoA91XxwmXhcRjN8NAJA9gnZoUcZf8rakftrUwWAam6ZAFA11D+SLjjIAyA9BO3JV5l/ybor54KDzt8mPBrOlg8FLd0cQGQr6RK17jgWKwJR2TEcZAOSHoB254pe8HSPWNnUwmNIRRIaCPmF1b0obAdIwqR3TSQkA+SJoR274JW8fGwJOkzqCbMxQSMuU87de3ZvURpAvU9qnCia1YzopASBfBO3IDb/koZppHUE2ZSikZdKon0hw3etsI0UKGG2jun3qPpamXetEytlJCQC6ELQjV6b8ktd9AwY1TO0I0r39POQ96hf1nK2tex1txLQODdPkcf1V1T5NOZYmXuvK1EkJALoRtCNXun/Jm3IDBnWy7giig2esPEf9VJyzeXcWmpTGbJK8rr8q26dJx9KUTu9aZeikBADdGqrValV3IfKU5qH2sJ97o1ipODcabicC7OceU1XcG/SeHmdEy3vDjLHn0qxZTl1lvZ0056z7HarbSu02xo0b+/PBQYKbPK+/KraVx7FM0hazbL8AgOykiUMZaUdpmDgnEOqovok1aYTNRN5OjKYmkZ071Y+eqjxnKxWR3buzH+k1MY3ZBHlff1WMSmd5LNNkHZS9LQFAGRG0ozS4ma6PzosRdPCEc0cuOzpG6kV154aKc9YbHHV15dMRY2oas055X39VTcXK6ljSKYiy4PcmoAZBO0qFm+mxmOc/lk0dPDpviCoVZ4Q9y86NtOesNzgaGFA3al+P7rU7TKXj+pv2nM3iWNIpiDLg3gJQi6AdpcLN9FiM+PgzvYPHhBuiPDo30pyz9YKhtKP2UercxE4enWy+/qo8ljZ1CgJJcW8BqMVCdECJsWhWOFMXfTJlUcWsFuxTVe/eempsdNr7wECysmZR56a2L2SLhS5RZNxbAP5YiA5AIoz4hDOxLkxKr1U9eqo6g8AbDM2eLbJtm5pR+7R1bkKmhI2KkkIe57wpyj6jPLi3ANQjaAdKzvQ0cIxl4g2Rqm2rTqn0C46SlFV1nZM6Gk9ROznqtZ+i7jPKgXsLQC3S4wGICGm6tiliem2alMo82q+qOid1ND5TpoPkqYz7jOLh3gIYQXo8gNRs/qVaxvRRnYt6ZVXfSUaz8xyNTFvnbr2ZmClhMpOmg+SlSPtsY5mhDtc1QA2CdgDWIn003xuiPOo7bkpl0jTzNIFE3Dr3qzcbU0eT1lnaoK2MnRxF2GeuzwCgDkE7AGsxLzhfedS3dzR727bwBbrijkbqCCT86s2mx58lrTOVdW1jJ0datu8z12cAUIc57QCsxLzgfOVZ32Fzx71zJOPO+817nnAR2mnSOuMReWrYts9up5nt7R4AVGNOO4DSKUL6qIg98z2T1neS/QsaoUubZq5jnrDt7TRpnWVV17bUm0q27LP3/OzqEmlrs7fdA4BpCNoBWMvm9FFVqcN5Bv1x6jvp/tUL9hYtEtm1a+T746aZ6wqgbW6nSevM9s4KxFfb2SZib7sHANOQHg/Aelmlj2aZlpo2dVjnI9+i1Eua/fP77Pr1zs9rxU23Nb3eTJS0zor4WEL4qzcNRMTOdg8AqqWJQwnaASRmaxASpl6woWKfVcxzNvkZzmn3z6/+3ddenZ3J97mobTdLSeuMui4Hk69JAGAC5rQDyFXRH+XjN6da5T6nTR02/RnOafevNuV95syxAbuIM/qepoxllOej7tJ+DnaxeRoIAJiOoB1AbEV+lE9QQLxwodp9TnODa8N8YRU38EH7577u7FRT1jIoekcb9LPpMYaqmNJRCqD4CNoBxGL6KG9afgFiR4fIzp1q9zntDa7po1qqb+BN31/TFbmjDWYxqfMwK3SCAcgbc9oBxFb0uYtBc6pN3Ocizheut09F3N8gqva1CM+KB0xS9N+BALLBnHYAuSr6qKffKLGp+1ykoCvK6FWR9jdIbT34zeePw4bpFEWnOhOpKJlNNip6thkAMxG0A4itLHMXvUFNWfZZJ1K4Hd566OlxAve0KbimdjoVneo0atKy9aMTDIAOpMcDQAplStfOEincjqB6aGwUmT07fQou7TVfqtOoScs2Q73HggJAENLjAZSCSemHjHipxeiVI2i/h4bUpOCWpT5NuFaoTqMmLdscZF4ByBtBO2C5MtywqQyQVdUXqdzqkcLt8Bu1K2snRlx+1wpd10jVHVF0bJmHugeQF4J2wFJlGulVESCrDvwZ8VKviKNXSdqEWw87dow8i15XJ4Ztbdp7rdi1S6SrS+01Mm59qO6IomMLAMqJOe2Apcoyt1HVXGfmliJPKue86piHbuOc3aBrhUj6czRtfag+hqxNAAD2SROHErQDFirbol1pA+Qs6svGoCZrBBIjbO/UsbX8YSnxSc95W+sDAGAOFqIDSqZscxvTpoRmUV9FTOVOyoapGnmmeds+fcLm8nuvFc3Nas55m+sDAFAMBO2Apco0t9EbIG/blixAzqq+itpREofJi/Lp6FCwvVPN5vIHXSvSnPNJ64OgHgCgCkE7YKmyjfT29qZbVKps9ZUX00chdXUo2N6pZnv5vSnsKs75OPVhQ+YJAMAuzGkHkBmVc5yZU2ouU4+NCWs/2D7P3/byqxalPkw9HwAAejGnHYBRVI80mT6aWwb16trUUVkT0rzjbMvE9mxzwJ5FfUZJiedaBQBQjaAdgHKqU5JNCL7KKkoHjMlTD0ztUPCqreOeHt0lspvO9PQsrlUE/AAAgnYASmU10mRD8FVEcTpgsuhESdtuTO5QcHnruKfHCTSZC52c7oURVV2rTJ4bT0cCAOSLOe0AUnFv3tyArVJxFozLak4nc2zzo3NOuBts9fQ4I5XeQCgvebS1oDpubBSZPdveudC6zlMT1jHwliXNNk2cG2/CeQkAtmJOO4Dc9faKzJzp3CCPGyfyzneOvO7vF5kxw3mf6lFxAvb86JyWoHO0NK8RTveJCH6GhuycC617dNikqTRpU+JNnBuvO4sBAMqKkXYAidSbe+uOCm3bRpBtOx0ja2lGS1WM8OY1wundTi1TRlbjMmF0uCijwSbUpZdJWQwAYCNG2gEoFTaa4476JP1/2EPHnPAko6WqRnjzGuEM+t6ODudvG9dtGBgwY3TYhnUMojBtHQ+TshgAoGwI2gEMixr4uDdrQXTczOlOGy26vG/M4wYsqtJ28wpMgrbT02NfsOleN1paRJqbnfn4IvqDOtuDSRM7H0zrSACAsiBoBzAsauDT2+vMW/eaPl2krc35d5qbubjBt+45tMhGnIBF9eh4loGJt0xB27Eh2PTuh/e64U2hJqgrHhM7EgCgDAjaAYhIvMBn0SKRvXudfzc2Oim9L74osnt38pu5pMG3roWRGNkfLav6iBLAqh4dzyIw8WvfNgZAfs+Ur71uDAw4nXq27JOpTO6QtKFjqQj4PQPARdAOQESiBz61wfzQkMjOnWMf/RZXkuBbxwrL3hvpzk6zbqR1MCWwyGJ0XGVgUq992xQA1e7H4sX+143mZn1lLApWai8vU66rAMzB6vEAhkVddVn1qsZpViXOe4Xl2hW/m5udVfLLNqLo1reJK1x724yu54V7FWXV7aD92LHDCd5tX61dh6D2WZQ2g2RMu64CUIPV4wEoETVdV/WoZpr05jwXRvIbyR8YEFm4MLttmqY208CE1cK93DZj0khVUVbdDtqPzk7z0/xNSzMOa59FaDOm1bktdGSQATAfQTuAMcJuDLOYi5s0+M5zXnBT08gjuby80wOKfmPlTdl99lkn08DEwEJnarFfGyjKqtv19sOE417LpM4br4ULw9unrW3G1Dq3RRE6bACoR3o8UHImpA97mVaeWr29Il1dzgi7iLMQ3+zZzg11lKkFNgtK2e3ocDouTNlvXanFUaaXmN6+o7JlP0xLM+7tdQL2nTvH/l9Q+7Slrl2m1bmNok5VA2CXQqTHr1y5UhoaGuTGG28MfM+OHTvkkksukRkzZkhDQ4Pcc889uZUPKBpTR0NMvzltb3fmsLsj7t6AveiLRpn8bHHv6Laukap6bSDtQo2msWE/TEwzXrTIyVDxCmufNtS1y8Q6t5GNT5YAkC0jgvbNmzfL/fffL11dXXXfd+jQITnppJNk5cqVMm3atJxKBxSTyiCzbDdk7e2jA9WZM8tzo2ras8WDOp/yTi0OClZ6eszsHCsD09KMg64Ls2bZk/oexrQ6tx31BsClPWh//fXX5WMf+5h861vfkilTptR97/ve9z6566675LLLLpOWlpacSghTFTEgyouq0RBTR+vzEnRjWuQbVdNGgII6n/IuZ1AbWLy4+BkYJjNpXrhfG+nocK69us8jVSoVs+ocAIpCe9B+3XXXyfz58+W8887L5Pv7+/vlwIEDo/7AbiYEirZ3GKgKMm1LCVd13Iq80FhUJnRIROl8yrOctW1g/frsMzDifpft1664TOtkqm0jGzbkX4Ys2oD39/KiRc5+mlLnAFAEWoP2devWydNPPy0rVqzIbBsrVqyQyZMnD/+ZPn16ZttCPnQGiiZ0GKiSNsg0ae5i2DZVHbd632NacGC7KO0oywyHsO3X/n+lMrYNuI9Dy6J8cdt01tcuv/rQxW/bJnQyiei9TmTZBvx+L5tS5wBQBNqC9n379skNN9wg3/nOd2T8+PGZbWfZsmXS19c3/Gffvn2ZbQvZ0x0o2jayXE/am0cTUsKj3oSqOm5Rvqfe/psWyJgobmBRr/MpyT6Hbb/2/zduHPt+bxvIKgMjbpvO6tpVWx8PP6yvY9OmTlUdAW1WbUD372UAKANtj3x76KGHZOHChdLk+c1VqVSkoaFBGhsbpb+/f9T/1ZoxY4bceOONdVeb98Mj3+yn63Eyuh4jZTLdj6WJ0hZUHbc036OznnQfo7iSnt/ex2Kl2eew7df+f1OT8++w8qp8bFfctpjltctbH7XyftxXVr8bbHvkmp+sf3/xmDcACGflI9/OPfdc2b59u2zdunX4z+mnny4f+9jHZOvWrXUDdpSbrrnDJowsq6By9ENnqmfU0R1Vxy3N9+jM0LApOyTNiJ33OMTZZ+93h23f7/XAQHh5VQd9QW0x7vvTlins+NSrD9WyGO21aeQ+TNa/v8q2pgcA5E1b0D5p0iSZO3fuqD9HHHGETJ06VebOnSsiIkuWLJFly5YNf2ZgYGA4wB8YGJD9+/fL1q1bZffu3bp2AxroDBRtvjHJ8gZUR8dFnJtQVcct6vfECQSzZFvaqorAIuo++50PYdv3e93cHPz/WZ5z3d3Oo8JERGbMEOnvr7+dLK5dUZ4vnld9ZBGU2tThFUWWv79Y0wMAMlY1yNlnn1294YYbRr2+4oorhl+/8MILVREZ8+fss8+OvI2+vr6qiFT7+vrUFRylMzho3zY6O6vVpqZqVcT5u7NT7ffrsGuXsx8izt+7dtV/v6o6DfqeoPLorPustp3VORD3mPqJss9B7wnbfu3/P/KI//sHB7Ore28ZOjqq1ba26NtRfdy8Zan9U1t/WZ8HKtqOa3DQf5/yuPZnrQj7AAA2ShOHapvTrgtz2mG6LOYgF30+vilzToPmdRZpTnte+5LmmIaVMcr5ELb92v93X3u37Uf1PHJ3Tn0W24mjp8d5Jr1b5+vXj07Zz/MapOp6wDxtAIBKaeJQgnbAMFndKHIDmi0VgWCWTA1ksqyTet+d1X4ELcym6pwbGBBpaRn788ZGkaGh5Iv3qZJnnWfNtkUcAQBms3IhOgBjZTkH2eb5+DaIMqdWZzaAqmeXq2qfeSzyVW+fVZ0P3v3o7Ayuj7TnnLudlpax8+jb2kRmzw7fjlsuXetb2HYNYp62eUxdjwMAssZIO2CYrEejTEklL6IyjMypap+mjLqmPR+iPAJu27b051xnp8izzzrf29joBNwDA6PbWdC+1LbL/n6RvXv11b3N1yCby26zMlxbARQfI+1AgWQ9GsUNZzxxRnaCRuaKNDqkon2atKp9mvMh6BFw7qrubv2k2UZvrxOk7Nw5sp2hIWc7/f2j21nQdryroO/aJbJnj966zyIlP2t+2Qn1tlukc94ERVvJHwDiImgHDGNzSmaRblTTpBDn8YgrXVS0z6yfGR1X0nYbtB89PcH1E2Vb3vcsWuSMsPttt7k52nd5g/KhoZHv8NuHuGXVKc/zqzZo7Ory365J57zpxy8qkzr5AEAXgnbAUDaNiJt0oxpV2A2fipEdFd9h6o1p2vZpwvxmFe02aD9q6yfKtmrf09PjH5zMmhW9vvw6Ftra6te9LedzXqOvQRkVIs7P58/Pv0z12HL8ojKtkw8AdGBOO4DUTJmfHEWUuZEqHk+V9jtUzOG0Yf6tzjKqbLdh+xFlW37v2b17JEAUcUbX+/vjlS2oLQWVOWq95HXs/LaT92Msw1LiBwedv014tKZN1+OomNMOoAh45FsMBO2AWvVunkXMCxqj3tCquPFN8x0zZzpzj11tbU4AFwU3uOHyfm54lMcB+r3HT9IyRgmyo5Q1r/YVtp08g1NvWfy49aM7YM67MyNvNnREAkAQFqIDoE1Q+m3QnE+d4syNXLVq9D6tWhV/e0lTwCuV0QG7yOjFw8KYkKJrujxTbqM+DtDvPSrLGOVzUcqaV/sK206eUyy8azm0tY3+v7a2kfrRPe2j6KnkRdkPAIiLoB1AarU3qiJmBo1BN7R+li4dHdwvXRp/ezoWFWTRpujyDLDCttXb66S9u8dpxgznPTqCwHrbzKt9RdmOjvOrqUnk4YdHrhudnc5rnWWqtX69/vUiAABqkR4PQBn3htrk9Exvmqs7YrZnz9i5vrr3IU16vO4UXdvkmXIbZR55Y6PI7Nmjj5mOtODabfqliGfZvnS146h1bVqqdu10gvXrgzslAQD5Iz0egBGamtSmZ6YdvfP7/MyZIyNhLS0ie/c6P/dmBJiQYlpvNC+M7hRd2+T53PCgR6vVPpatdlRZR3BYu01vurory/aVdzuOu+q6SQG7yNjpBIsX6y0PAEAdgnYAyqW92U77yCK/z/v9rF76re7AN02arQkpunkxKe0/abuNM21Dl6A0+G3b1LYvnenvNq8FwbQYACg2gnagJPK8eUt7s5325tnv836jUPVG000JfNOM5pk2EhhHWHs18VnUadqtt5NoxgxnfrtJ+5Ym+yTKtafe8VS1jbDP2xz0mpAdBADIDkE7UHA6g5ukKfFpbp6DPu/3sygLNulI6y+zqO3VtFHRtO3W20kUNG1Dt7jZJ3GuPUmPZ+02gh7JFsQ9PlkFvXleC3RnBwEAssNCdEDB2bgoWdoy+31eJPg7VS0oxfPRRySt0yjH3oSFAt1yeLen4lwzZd/qiXpso9ZHmn32bsMV5dzzO1dF1J2/Oq8Fpi2QBwBwsBAdjMfIox62pnymHTHy+3y971R1g2va6K8OaTI7orZX3anAQfuoYqRT975FETVdPeq1J+k+B33nrl3h557fuapySozOa4FJbQUAoAYj7cgUI4/62TjS7ko7YuT3+axGoWwYIc1DFlkSfp/XeW0JK2PaNlaU62actpB0n/1G2l1B517W5yrXAgCAH0baYSxGHvUzcZ5j1JH+tDe4fp/P6qa5CHNiowoqk4rMjrD26n6XroUCo+xj2mNuyiKIacW59iTdZ7/gPuzci3uu1mvvKr7fBCZeZwAAIwjakRlbU7OLxqQAwMQVv1VS2UGisq5UnXP1ytTbK9LVNfr9SYKVoPYatO28A6E8AjLv4mg2S3LtibvP7jZ27Bh5TF6Ucy/KuRrU5qKcmyqvBVn+ziz6NRkAioL0eGTK5tRsqFeW9qAiLV9FXalOs65XpqQLgqnYdt6ySl+P870sNuYvbr3Ue39Qm4vTFtMcpzymSZh0XgFA0aWJQwnakamizM1EemWd55nkHFBVVypvyOuVSSSbY+uW29S2ozpwjnK8wtoTwbwaQW2uv995JF+tNG0x6JhlHVCbel4BQFExpx3GMik1G3rZOM9ThSTrOqioK9XTU+qVSfWxrU3Z3b3bzLajOiU+yvEKak+kOasV1Kabm5O3xdpjWe+Y5TG9rKzXZACwEUE7csFNAETMXBSvlsqb4jQ33lHqqt73ZHFDXq9MKo9tbWC6cKEdbSeNKMerXnti0U/1/Npcb68z2u4egxkzwttiUHBe75ipPn+DrhVFP68AoChIjweQSpJ0XBNTeLOaypE2xdWvrqKWNat9GhhwRhyjljeOoJTdjg6RDRtEZs40r+2oEuV4+bWnbdvsT3M28Zrg8pbNW/+NjU799/TU/3zSY6bi/I36HSbXPwAUBenxACJROYqcJh3XxJvDrEYq045k+dVV1LKqnp7iHvOWluBjHvexWX6f9xtRfPZZZz9NbDuqRDlefu0pzais7qd52JDW79ZjbabD0JDIzp1OXQeVOyg7QiT8mKk4f6NcKwjYAcB8BO1ACWRxY1ykdNws54+qDpyTlFXVDXmSY56k7XV3i8yaNfpnZXpkZL3jFdSe4nYOmRIs23QdCetQivIZ7+uoxyxNSny9a4UpbQAAEI70eKAEVK9CXMRVh0199JHfKJiOsiY95mnK2tnpBERxP5vFyKEto5FRylmpiHR16W/vNl5H3DUWdu4c+39B5da54n/UxzSadM1Dvmy5tgFFQHo8gEBZjCKbtOqwqpHXLBdkSlLGeqNguhaPinvM07a9DRv0jx77fWdY+XVmA7iPyPPj3ZesVyaPwqTrSFTuHPaOjujl9mZHbNs2Ntsmy/0NulbksTo9zEamBWAXgnbAElk8qisN3asOq77hyOLxhGnKWC9tOM9HKXr3ob/fWS3bLUPYMU/b9uLuZxap1t7v3LXLGaEOOp66b4LDtu/dFy+dwbLu60hSSTqU6rWdrASdQzZ2mEAtm6amACA9XndxgFB5riCchK7UOhtSO5OW0aS04aCVr6OWQ0Xbi5rynaTO6n130HeK+B9PnW0yLOW93r6oviYkYWuKbtRym3i9yvL3Asxm0u8YoEzSxKEE7YDhVN7s2XpjXMuGG460ZTThJl9lPSdpe3GDijh1FvW7w1Li3brQ1Sa9+1GvfCLpO2BUyPIaZOr1zfTrlan1hmyZ8DsGKBvmtAMWipLurnreYVFuzGxI7UxbRhPShnfvHv089sbG5PWc5DNx0zfj1FnU7/Z+Z3Nz8PGMery957IKcVLegx4Xl4cspw7onpYQxq9teOfE62ZKOZAvE37HAIiOkXYgZ3FHD2fOFNmzZ+R1W5sTTJWdDamdQWWMM7KlcxSsdpS5udl/Ia0spBmdDKuzJN9dqTjnXb02V69N9vSILF7s/N3cLDIwkL7dJk1519GmshzVs2HE0Ns2VB1/FyPlSIP2A+SH9PgYCNqhW9wbTIL2+my44XDLaENHgysoIOzoGL0IV5ZMDfSidAq4/18vfV3FPkVJedd9jmSZHm566nmtpI8x9GPT9QQAQHo8YI246e6VyuiAXcR5zWN5Rph4Y17LLWNWq/Vm0R6C0ruffTa/VYazTN9M891hbc77/0Hp6yJqHrNVbz+Spo2rbk9ZTmexYaqMq1Jxnu+uaroTq38DQHkQtAM5inuDadMNKerL4rnIqufy1palu1tk1qyx78nrec5ZPtouj8fmhdWVivPZux/d3U7g5raH+fPjBXVZtidTO2DypPJ6znPWAaBcCNqRC24kRsS9wfQGTibfkBZBpZJdW82iA0bVSFtQsNbe7gQC3kWzdHQcZbmtrL/br67cxf1Uns9NTWPbgzcrJ0pQl2V7sr0Dxk+Sa4X3+j9rVvLjT4eu3bgnAhAXQTsyZfqqvjrEucF0b5x37nQCpyLPWdR5E9Pb66wdMG6c82fmzGzaalCHTZJ9VznSFhaseeew59lxZNqNbdogrbPTOef7+9UHmH7tQcRZ8V8kPKjLqz2pDCpry2biSvi1ZXTPn44O57peb/pEve8RsSfDACO4J0rOtN8HQN4I2pEp5twFi3KD6a2/POcS58mEm5hFi0avHbBnTzZ1XdthI5J831WNtEUJ1vIeyTShTagqT23ddXY6P1cdYPq1h7Y2kdmzR8pRL6jLsz2lpbt9RPm9Vq+MixY51/N6n4/yPboyDJAc90Tx6T7fAVOwejwyY9uqvqYpS/2pWiE86QrZ9R6blXVdp913VatHm/bILJ3l8WtHptVPkLSPGLSlPQV9fx6r5Ee9LtcrY5zrusltT/dTCWxTlt/pqpl8DgBxsXo8jMScu3TKUH8qRuXS9sK79Vor67pWse+qRtpMSrOtVy9ZpkcGtSObFvwKag9R27EN7SnoeHR25jMSF+W6XK/NxLmum9r2GPlMpgy/01Uz9RwAdCBoN5ztFyaTggEbmVp/qtqlipsYFemG3d1OKrGrrS37ulZ5A5f2ps+kNNugNO+urmyDhKB2tHv3yMJxIs4ccdNvtNOWzdT2FBT0NjdHTzdXIey6HHZuR72umxrkkeKdnKm/001l6jkA6EB6vKFUpSmagjS6dEypvyzaZZrvVJ1u6HZG5LmgVZHOc1Vq66W/X2Tv3ujpkXHPl3rtqKtrJDVTxAkQt23jOOWptj2sWiWydOnIkw127hz7mTjXgDRTa4I+F+XcjrJd064RpHirYcrvdBuYdg4AaaSJQwnaDcUcHpgoy3aZ9CbGxHMlaF/i/rzs3EA5apCQ5ubOrx1t21auAEVVO1TZniuV0R0nfnPYk14D8ggGTKzTtEy85qL4TDoHgKSY014wzOGBibJul0l/GZuUbhg01zNsDig3Iv6amuKlR6ZJ2/VrRyamZmbxe6Be+1S5vkTS76o3P1wk+TUgjzRvVW3FpGuESddclIdJ5wCgAyPthqInGyYyuV3q7oWvNyJocr3ZIGqqcZRR8bB2Uvv/pqRmZlkOv/bZ3R1/e0HtPEnZvd/lVe/8iXMNIM07Pd3XXACwDenxMdgStJtyowh40S7H8taJn/5+kZaWsT8nOIgvLEio1zmStu1mHaCk2be02/ULXjs6nMXd4qwjEGVdgDTfJaL2umNKZxrBLwCUA+nxBWTSas6Ai3Y5ljfF1stNpW5uNi/FWgUd03XC6qxe2q6pK15HeXxWllNT/KYAuIu7xdle0FQCkfhlD/ou1dcd3WnePDoNABAVQbvhbL+xRzHRLh31AhBvEKA7OEjKb7/yCjSSBKRBnUppgt6s9zdKZ0LWc+tr2+eGDcm2p3JdgKDvUkl3J2QeHUmshQMAxUDQDgAJRR0R1B0cxFUvUM060FARJNcGd2mC3vnzR6Y+9PQ4r1WJ05mQZcePX/tMsr2gdq7yu7KgoxNSRfZEvfcyiq+Wrs4POl0AuAjaASCFOCOCtmQoBAXmeTzZIqtOgdrjtH59+GcqFZE9e0b/bM8etU9MiNqZkEcQ691umu3Vll/ldxXF7t3O1BlXY2P0jqQoAbmp00HiMCFg1dX5QacLgFosRAcYrgiLFNmyD2nKacs+hglbVbve4l1p6yCPFb17ekQWL462IJ2K8oTVCYs7llPt6vjNzSLbtkU79mEL6Nm+Mr5J54SuxQpNWSQRgFosRAcUUBF62m3ZhyxSsk0TddQqbPTXL7NA1XHO47noixdHH4FsahJpaxv9s7Y2daOhIvVHob0ZDUVStP2Jyy9DZWBAZObM+J/1+648zqMsmZIlkEdmkUnbBWA2gnbAUKbcuKShYx+S3NjYUs4kkgTU9eYg+wWZKusvy7nbSW6GH354ZBX0zk7ndRRx66T22fDuMWtpMb/TK4pKxZ5OvKylCaqjftbmxS9NCVhr6zbOFAaV27Wt0wVANkiPBwxke3qjSP77kDSl0pZy+omSjp4mzTLK92dVf1lNN0haH3HKk7ZOalOnRexNkfW29+ZmZ59I+U13HYjzWRun7ZiUGt7b6yw+6a5t0dbmdNxlna5v0hQBAOqQHg8UTBF62vPeh6SjvbaUU2QkiIs6Ypl21ErlyJ+3/Kq2nUTSEcg45UnTpoKOUZoRR51p9t72PjBgxgiqCdIszhfns1n/zsji+JmUJdDe7mS7uPW4d28+mVi2PXEEQPYI2gFDmXTjkpSKfYhyU5g2OM2irv22nbSctUH6/PnRAn83WGz0XOmbm52Vq1UKq78kadH16iRNoBDlZjjs+6NsP03ngF+An6QzSXeafb32bWNHZBbS7L/OustyqoNJAavudP2ynx8ARhC0A4Yy6cYlqTT7EOemMO1oucq6rlfupOX0jlbu2jX6sWNhN5Hd3aNTtSsV9SNFYfUXJ7ugXv2pDBT86jzs++NsP02b8gb87mPB4nYmucfZO8rt7kPY8c/qkXaNjcn3Jw9lHfVPIo91QEwIWIuQ9QagGAjaAcMV4eYgyT7EvSlUMVquoq7Dyh23nLVB+dDQ6LKG3URWKiMBm9/3qRSUEh9npKpe/WUdKNR7Pn0e23d5A/7+/niBv7djIW6afRajp972Pnu281izLDsik7Rr0xfIM60zQffoc96KkPUGwH4sRAdkxMYFgEyRZiEvnfUep9xxylm7MNOMGU66c5RFiubMcd7n1dmZ78JOUReWqld/ItkuGBi07Y4OkZ07R/6Oun3VC0lFbS9+i9h51av/LBcAy/q8TFPfJi185mXyYmSm1lktle2O3+kA0mIhOsAgpo/a2CDtI5F0iVPuOOWsHel5+OFoqdfuCFit9eujb1uFqCNV9eovSZuIu/Bd7fc3N4s8+6zz+tlnnddRt69qVD7O9aTeiGdYWnrWo6dZn5dJ69vkUWOTH/tp+uhzFr+HCdgB6ETQDihm8o2WTUy/KQyStNz1goSg+dFhN5FBga773PG8zJwZfX53vfqLWrfeG/bOzug37N7vnzVr7GrnAwPOz8O2rzIQjHM9CTreUdLsbZ67m6a+Td1vkzsTRMxfc4XfwwCKhvR4QCEbn6+eR8pfmm3YmpLoLXe9fcg6BVZnim2abbt15ld3YW2iNkW8udmZSx1320EpwFHapIr04STXkzR13tMjsnixmenY9VQqIl1dyevb1DR0W1LQTWPj72EA5UB6PIxnyuhA1kwdtfGTRxq/im2YWHdRNDVF2/+sR4R0joil2bfdu+uvwh/Eb0RyYEDklFNGviPseuR+f9DIfpQ2qWphxLjXkyTH222nc+Y4r3fsMHP0tJb3/Orvd9Z6EAmv79rjb+qosa3ZRrrZ9HsYAKJipB2ZMnUEI0u27HMeozhlHykK2/8oI0I2ZxqkGe1K03Y6O/0XjTvpJJHx4+OfmzozRWqvJ+vXq5/e4K3rxkZnlXcbzlO/NrJtWz5ZLXmel3G3Zes1QyVbfg+XAe0RGMFIO4xVxnllpo7aeOUxX9L0OZlZi7L/9UaEbF/QMM1oV9q2s2HDyMJrXs8/n+x6lOaGM+3Nqns9cYNod0RcVXvwe6RgT4//AoYmCWoj9aj4faTjvIzahrIqm43XbBt+Dxed7b/DANMQtCMzZQ/aTO5ZziN9sOwpilH3PygFtggdXknTe9O2HXfE9bDDRn7W0OD8ber1KKwcixdn0x7cuvXbnsnithFVv49MPi9Vl60IQVdZft+YyORzBbARQTsyU/agzXRRA6o0QU3Z52TW23+3Xv1GhIrS4ZVmtCtt22lvF9m+3Xm+uojz9zvfOfo9bW36r0dhgVGlkn178HsEYNTv19km41zDVPw+Mvm8zKJsBF0IEtauTD5XAFsRtCNTZQ/aTBYWUKkYZTEtRTHvGwa//Q96HJk3eMiqw0vXDZOuwLi93blRdOvfO/JuiqDAyNtOurpGdzCo7gB1HwMY5/tNGIWNew1btSrd7yOTO6JVl42gC36invcmnyuArQjakSnTgjaMFfRLVOUoi+5f1LoDDO/+L1oksmuX8++dO0ceVVVLZYdXnvuv6qZedfurVET27Bn98z17nJXl8xYUCHlf1+6/SLYdoHHbm0mjsFGvYUuXpv99ZHJHdG3Z/DIooiLogp84573J5wpgI1aPBzBG1s+5zXs1WVNWsQ+q146O4EW0VNRVHvuvemXuLNpf7Srp48Y5QXteq0v71ZF7E1y7AnrQ/otke+64HQhhj9Uz/TnYRbuGxdHT46xJkPZcZAV2eCU5p6JcT4AyYfV4AEplNcqiY8TbpDTPpqaROdZeO3cGl0dFSnwe+696ZFxF+6vdR2/QMW7cyP/nNVLsV0d+o1H19j/Lm9/eXifzowipr1mX0aR9raVq0UIy5eAV55yqnd5j4yKGgGkI2gH4yiK1TUdKrWkBRu3jyLIuTx77n0XHQJr2F9Q55AYh/f3OCHueHTlBdTRzpn9gpCO1tGiprzaUUbUszkWTOyiQr6jnlEnTZ4CiID0eQF2q0kB1ptSalubZ2yuycKEzwp5HeWr3f/16/8d8+Yl6/LNKwU/S/mrLMmvW2OkHOqZMJNlmXmnYSc/PpOUL+1ya/a79rMmp7Fnwa2fbtpWrDpCteueUDdNnAF1IjwcsY9MKvCrTSXWNeGeR5pnmGNauap51B4K7/26AOGdO+PSEuFMZshrVTJISXzvS6HaOePdBxyhskm3mdZOb9PyMW76wdpVmCk3QZ8sWKHjb2YwZTmaJzc9ah3nqnVOmZbcBRcFIO5Aj74hnR4eTKl2meYKmjXgnYcM+BI2C1Bvprf1M0pFoE0Y1vWV3Be2DjvLmOXoeZzt5tO2wdpUmA8KUBSdr6TonKpWR+cR514nfPptwbUA+bPg9CeiQJg4laAdyVBtMNDc7aYtl+2Vm882brsAgSp3Vu1EKSlncsWPsStMzZ6pLb9RxrL3TD2qVIUUz7Q1zVscsLG02TVqtiSm5ugMXHXXit88iBHBZMvn3qcllA3QgPR6wgN+CQAMDTnBRNrb+EtexEn2cdOF6i/8EpSz6rTStIr0x6ycF1Ktzd/pBR0c5UzTTLgKla1HENO0uqycOpJH1Ylz1yuoGS3mnKfvtM4uSZUPH01jiKsP1FsgLQTuQk6am+I/7gllMuQn2E6VDoXZO9fr1wZ9JO+c7qxv1ODeq3uknRVs9vFLxv26Y9IhDP2HtKk27y+KJA0mlPQ713levrLX/t2pVfudA0D6b3B5tRmcIUC6kxwM5cp+DPDDgvG5sFJk924x5l6YwPZ0uz5TXuOmtUVP3vXUc9pkkxyPLtFyTV2DPQ2+vyPz5Inv2OK/b2kQefnh0GzR1brdXnqvHRzFz5kidijj1unt3su27khyHKNeXet8b9H95nQN+23f3y+T2aBsTp4MACEd6PGAJ99E77oj77NnFGv1Lw4ZUP5H0K9HHGWGKO7IfdaTR+/mwzyS5AcwqIyHp6GWRbmIXLRodXO7ZM3aEzYbnk6telT7NZyuV0XUq4rxOOxqc5DiEjZ7WOwfq/V9e54DfPtvQHk3m1w5ZoR0oH0baAU2KMPqnch9sGB1MI+kIfZLPJR0dj/OZsPdnlZHgtzK8qYtbqTg/vN8RNLom4j/CVoRrjEpB9ZHlqKXbTqN8T9RyRB1p15nJxerx6YVdQ3UvdAggPkbaAQvZfPNi2vxPGySdf5hkZD/p6HgUUY+9X7lVzOf1uzE1bT6nivPD7zvc0bRaQSNs3p8V6VyKK+x4NDU56fBebW3prtHebbqPXQsTdfS03sh1d7fzbHYRkaEh5xntOrKWwtojwoX9zkib9QXALgTtAGJTvQBO0VP9VHRKmFIXcY99U1P0IDbK+9wpJl6mdfKoOD+CvqO7e3SA2dZWP93YlmknWYpyPB5+eKRDpLPTeZ31Nv1ESSWvF6y1t4u0tIxcL/buNatDC9HE+Z1hyu8GANkyJj1+5cqVsmzZMrnhhhvknnvuCXzf+vXr5eabb5a9e/fKySefLF/+8pflQx/6UOTtkB4PpJNVKqlfqt/MmcW5ISlC+n/SYx913+PUUZz35pmWq+L8iPIdUdOus1ho0CZxj4eqKQ0q2kCScrBAWXEU4XcGgNGsT4/fvHmz3H///dLV1VX3fU8++aR89KMflY9//OOyZcsWWbBggSxYsECeeeaZnEoKmEHniGJWo+Le0aPubieAVzE6aMroa56LMWW1z0mOfdQRo7jZCFHqM8ooc5q68vvs7t0izc0jrxsb458fUeq5qSn8O+vVaVlG4OO2WRWBrYprZNJyFD1rqUxYwA+Al/ag/fXXX5ePfexj8q1vfUumTJlS971f+9rX5IMf/KD81V/9lXR0dMjtt98u73nPe+TrX/96TqWFaqYEVLYw5UY7y5uJpiY16cWm1JUrj/mHYfus4nyLe+yjBhFxg40o9VmvHaVpHz09wZ9dtGh0PY8bl+z8UHGO1avTpOeYinUJ8qYj+NEZcNkU7Hk7lDAac9YBjFLVbMmSJdUbb7yxWq1Wq2effXb1hhtuCHzv9OnTq3ffffeon33hC1+odnV1BX7mrbfeqvb19Q3/2bdvX1VEqn19fSqKj4R27apWOzurVRHn7127dJfIDp2d1WpTk1NvTU3Oa50GB7P5TpGxf+Juy7S6ykPQPmdxvsU5HlG3r7KcYe0oSfvwls/94/2sqrZbux9p+NVpknLqOIaqZXG9MnGbJmw7jLedNDeb2V6iMrmeAZilr68vcRyqdaR93bp18vTTT8uKFSsivf+VV16Rd7zjHaN+9o53vENeeeWVwM+sWLFCJk+ePPxn+vTpqcoMNVQvZFYGJq6wnkXKpYr0ThPrKmv19jmL8y3OyuRRR4xUjizVa0dJ28eiRSK7do3+We2zsFWnJqc9x2bOHFunScoZtQ2pbGuqztc4j11TTWdauskp8d52MjDg/G3bvYBp2VwAik1b0L5v3z654YYb5Dvf+Y6MHz8+s+0sW7ZM+vr6hv/s27cvs20hGpMDKhPKEKRMcxXTpnfGrSuTj3tUQfsskt35FjcdP2pbVdWmg9pRmrn5Q0Njy+r9rCmpybXHZvfu0f8fp5xZrUsQtexJg6EyBlU2XMuith/TMfgAIE/agvannnpKXn31VXnPe94j48aNk3Hjxsm//du/yd/+7d/KuHHjpOJz1Z42bZr813/916if/dd//ZdMmzYtcDstLS3S2to66g/0MjH4tOXmzpSAIGsqRlxVLVRmE799zvJ8C7ppzape497M12tHaefme7fh/awp81CDjo1bh3HKmdW6BHHLHleZgiqbrmVR24/JTB580Kns+w9kKoN0/UgOHDhQ3b59+6g/p59+evXyyy+vbt++3fczl156afXDH/7wqJ/NmzevevXVV0febpq5BFDHtHmPaec/5z2njTl00dWrq6LOe6/dZ1Xnm/d7682LVl2vWV4v0szN37FDXTlUCjo2HR3J6zDsGLj1mPZYqVoXIIv1BUxm27WsCHPabavzLJl2TweYKk0casxz2kVEzjnnHDnttNOGn9O+ZMkSOf7444fnvD/55JNy9tlny8qVK2X+/Pmybt06+dKXviRPP/20zJ07N9I2eE67WUx4RnCa59r6PVucFV7NVNvWyvg846TnW1A793uO8LZt6ut1zhxnLvnQULznFWd1fUn7vXlc92qPjTuXP+0zn2vLHtQ20uyjqudTq/ieNPuR1+83m69lbh2ZcC8QF7//R/BMeSAa65/THuTFF1+Ul19+efj1GWecIWvXrpVvfvObcuqpp8r3vvc9eeihhyIH7DCPCb+k06R02ph+Wbb0taC0UROnafiJc7zC3pt034LaufcmddasbNLxe3pGzyWPkoaadapw0n3JM4W59tgMDKhJ5a3d96C2EXf9CO/PVU0D8mufUaV5fGLeqeq2XMv8eMtsG1OmwujGVAEgJ8rH/Q1Hejz8JEntsi39sqjpa2H1XS+F0eQ6qVe2qOnvKtpiWDvftWts2rXKeq19xJr7nWGfSZu2msV5HKVcqreb5hF3Ub476jUwqE3EaedJ7NiRbFpAmscn6kibNvlahuJjqgAQTZo4lKAd8Cjys8BtKmsUUW5SowYVJna0+B2voH2ufW9bm9ob+Hptp97/pa3XoONXby55lGOu4nnkUcoep1xZB11pvj/puhDezwW9L6v1RLz76/6J+v1p1mvQ3ZkbZTsmXu9gNzqNgGgI2mMgaIdKWf+iUnVzpftGMgtRb/Zt7Kyot5BY7b4Evdf7p60tXXnqjeRn3a6SHL88R0njLPrX1hZ8XPJqp2kW3vOrL7/3+C3Y59dO+vuTt5+wsnnrM8n3+x2PqO09zbHM8ppMYIWs2XxPAeSBoD0GgnZkQfUvqixurmwMXoOoSMs1Xe3xclN8o4z+ZRVI+31H1gFKkuMXNSMhzShpkm0EBe2mdqrFObZho+pBmSPuyuF+20gzwu9Xn42N0dtn0jZU77NJtqdSkX4HAICNCNpjIGiHDbK4uTI9eM16aoLuACguv+MVZQQ5KLjP6vFkUR8FFvaZsOOT5PhFfUSdV5oMjnrbCNt+0PclkcdaBnE/t2OHf3tubBx5T3NztDURopTN2xng/kly3Uvz+MSoUzKq1ewDalM7hgCgTAjaYyBoh+myvrky7SYtaWdC3p0QuurNu92oAXLtiK77/rzKGVZWb4DS2Jjfc5pVjZImnfNc7/+8221rGzmGOs+JpIFk2Ci4+3eSOoy6jawD1KjfpXLtjbTlY6QdAPQiaI+BoB02yOrmyrSAvVpNv69Z75OJGQph+xw0hzjP4x90XOvNwc86kEg6SuonStZD7TaiBnBZBMtJJMmICPpc1PJGDWDDnpiQNLVftTSZG0mkbX8AgOwQtMdA0A4bqL65MvVmzYaUTdWBUF77pqLcadKz6x1Xb9l0HH8V359kWkDU/0tSJ2kWdQszOJj8sZj1pJk3XruN2u965JHw8mZxXUwyJUNlWaLUnUnXVwAokzRxaGP+T4YHEKa9XWTHDpHBQefv9vZ037dokUhvr/Pv3l7ntQmamkQ6O52//V7rVqmI9PQ4f/u9jvodIk69z5kjMm6c87d7PLLS3T3SbtrbnddRhZU1bP+Djqtf2Zqb8z/+Kr4/7Bytt42w/4tzTrjHqqXFqcvGxmifi6OpKdk1JGzbQXUYp+2626gt39Kl4ddQlddFv3MmzrFUcc0Pul4NDIx+nynXVwBAdATtgMFU3FypCDxrv0+lNMFl1tJ0KtTexM+fn2/HSZogICiYidPx4D2uM2aI9PePfE5kpGzbtplx/JO26ywCoDjnxMKFI8ehUnHqOMrn4lB9DQkTt+3WK1/Q8Um7T7XvCzpn4l7f/MobtUxNTSJtbaN/dthhTodOHh2FAIDsELQDBadqNDtqwBb3Rl51VkFateVP2qlQexO/Z09+QY9X3ONcL5iJMzLpPa4tLSJ79458buHCkbKpPP5J6jPvDIgootRJb69zHu/cOfpYDQw4HSQqz6V615AkWSfefahX91HbbpJrXNLrol+Z650zadq3irb59tsj32VKhhUAIL7YQfsVV1wh//7v/55FWQBkRMVodljAlvYGU3fKZlD5k9x0+93Ei2STuqxavdT2pCOTtZ/budP5Tm8biVIXQduK0/aijpCaoF6dLFok8uyzY9/f2emkyYeJ28FRew358pej13lPj/97VdZ9kmtcks/4lTlKB0CScz1u/VQqTudg0P/l1VEIAMhA3EnwF198cfWwww6rzpw5s3rnnXdWf/3rX8eeSK8TC9GhzKIuQFT7vigLKtn+OCHV5a/9vrY2MxcD9KNigTAvv4Xn4nw+bJGupI9ys2EhRD9B5e7oCG9XaRc88z5vPexYerdV+96s6j7J5+NcF4PKrHpRu6T1E7TIo43XZAAomlwXonvooYdk//798qlPfUq++93vyowZM+TCCy+U733ve/K2m4cFwEhJUj/dz9UbScp7zqtqYeVPsh+1o3j33qumrHlIu0CY3xSDWbPGvidqG6k34hi17UUdIe3oyC8DIs08er9y9/SEZ4KkHd1evNh/YcKwOq99r0jyaTv16i3JsVORhq96mk/c9H23TrznaFvbyBx309YLAQDElLbH4Kmnnqpef/311fHjx1d/7/d+r3rjjTdWn3322bRfmxlG2oFg9UYsw0aSOjqKN9KuYvQsyXOjTefuU9RnZ7vqtZGgEcS4WR7un9pnd0cZIW1uzicTQkW7SvoItjSj20Gfb2wc256jvDfuPpjw6Mo8yxBlW2HPq6/9NwBAH23PaX/ppZeqK1eurLa3t1ePOOKI6pIlS6rnnntuddy4cdWvfvWrab46MwTtgL+oN/T1AjW/oMeWG0a/m19VgbatadhBkqbP+30uSmAS53uD0oHDviOrTie/Y6yyAyduG0q77bAOkiTv9duHNPWWx3mV57lbb1tF6gy0na3XcwD5yTVoHxgYqH7ve9+rzp8/v3rYYYdV3/ve91ZXr149auPd3d3VI488MnZh8kDQDgRLcgNY+5mODufnJoyKJeEdRVYZaKvsAMjivXH47Uuc+oq7FkKUthS2/XrfkUWnSr0RUJ0dOGnPy9rP79gR/F7v/Pew94aVL0q92XrNSUp3W4KjbO0OQHK5Bu1Tp06tTpkypXrttddWt2zZ4vue3/72t9UZM2bELkweCNqBYHFvPurdNBZhBChoH5LcFKsOlup9PsubSJXHPG7QEVbvUUbLg75DdXsNm24RlBGQJZUp0/U+HyWwT3Icwo5REa45cZVxn03DMQAQVa5B+z/90z9V33zzzdgbMgVBO2yia8QkznbTjrqarDb4eOQRdXPc44pzY5j1TWTQ9yeZo+xOqUhTVhXz0lV2dPT3+7d/b6dCWGq5SnmPBNZrf2kyHvLOlrABo7x6mdLuit7OgaJIE4c2VKvVqq5F8HQ4cOCATJ48Wfr6+qS1tVV3cQBf7qrOPT3OisHeFYFNE1RWd/X5SmX06so2cvdB1z5VKs6K/rUGB8euJh3nvUmFtU+3fsLMmSOya5fI0JDzurlZZNu2+G299rjMmjWyQnkc7grc3qcixKkzb700Nzt1PjQ0UqadO8d+RuVxCZJlu62to7D2F1aWKGUNOi5FuubEFbetmr4dm+hsdzbdKwBIF4fGfuQbgOylfSxTntI+HswGTU16H2sX5/FPu3c7AaOrsTH6o7SiCnu8VZRtDQw49ecG7O7PZs6MVxa/47JzZ7zj4n3UYVeXyMaN/o8+DOM9b73Ba3u7yIYNo4+LiPM66wAoq3ab5PGQUcoS5boRVGdFuubElXU7Cjre0NvubLpXAJAOI+2AYfIYKc1TkUZmgkZU8tjHqCMq3jKKJB+9rifN/tYbjU46QpV2pKv2826AGef7gs7b/n5nP3We11mMBNb7znptNWpZ0rSxIl1zTFHmLIao8m53RbtXAMqAkXagQOKMqtrA1nL7qR1RWbUqv9GnsNFtEf+RyySj17Xf6VIx2lZvNDrpCFWakS6/0d+Bgfgj00HnrTu6rvO8Vj0SGDZiXq+tRi1Lmnop0jXHBDqzjLKQVbnzbndFu1cAUB9BO2CgMqd5mqw2GFm6NP/UxHo3ZCpv4vwC9KSpmEE3+26A3N8f3BERRZQOjSBhdRSnDsPOW13ndZr68RO1nfnVmeqymMTWIDZMUYLDIqb4c68AlAfp8YDBSPM0l6mpiaoWJursFHn22dGLu8VdSM2vLG7gn2WabZoF5GolqcOw7RfhvA5qZ0XYt7jKsBhYEfbRphT/uOdRGc87wEakxwOKmTJiEuWXsCllLRtTR5/SjmT29jr74V3MzV3craMj3v76jcxnOTKUdCStvd2Z9+8naD2AeuddWBvQ3UZUqG1nIsUbxYyqDIuB2Z4hYUuKf9JrWBGuKQDqI2gHPGxKn7OprEVlcmpi0pu4RYucEfba7+rsdFZAj7q/QTfJM2f63/yruHn2C57qfa/3/6J2wgSdd3ne/PttS1fw4daPzsBVxb4n/Q5bgkFX2nLZGhya2slaqwwdQACSIWgHPGz6hWlTWYsqbPQp6AbZ5Bt6v4Bj1qyRDoo4o231bpLdv1V1PgUFT37fG7TNKJ0wtefd/Pn5dZ75lduEzjtdgauKfU/7HbYEgya0E91M7mQVsa8DCEC+mNMO/H+mzlH2Y1NZiyxoHmHQ/E8b5oXWzvucNct/rncQ7z62tTk/27MneH/rzTONO09z5kxnW7VqvzdsbmvQdoPOu8bGsY+tc79D5VxTv3KLmDFPV8d8YRXbVPEdNp7XJs/nzprJ8785TkCxMacdUMCWERMR88patpGAsFGroCwIG7IjakejNmyI93nvPu7dK9LSUj8TwW9kqadH7aigdztRRrPcYLtWULbA0NDo7+rsdMre0pLNPnhfmzIyl/copopRSVUjm6bP97ZtBDfrcpn4O91lQjaAqe0CKDuCdsDDhF+YUZlQ1rKmXNYLvoNukAcG7LhxThOABO17kKDOp8WL43VuuI+O8xtldzU3i+zeHd7hFTZnvfa8a2sb/V3NzSNrAgwMRN+HMGHPgffup46gJO/AVUXHperOT1ODQdM6eYOU9feJl84OIOofMBtBO+Bh+oiJlwlltWHkWLWwUat6wZWbLu466STzbpxdQaPNYZ+JGxzUBsHr10fv3OjtdVLi3VHtww5zUtXdbXtVKiPts16HV9icdZHR593DD49816xZTqBeW1ZVHTR+deV2DLj8tp+nPNuzio5LEzo/82DDfpr2+6Qs55HLtPoHMBpz2gEkUuZ59WHzDoPmuPrNuTZxDmyaObpJP+udZxp1XuecOWNH8pubncC1oyP8ufK1c1vjzFkPKr+37C73c9u2qTk3ktRVkamYo2zyPGeVTN1Pk36f2LBGgWom1T9QZMxpB5A7W1IusxA2auWXBVGp+Kdv79oVLf07TzpGXLztJsqoYFDq/cCASH//yA13vfZZ21ajzlkPmu9eW3Y3dX3GDKdMqtJO49ZV0am45pThuiVi7n6a9Ptk4cLyjTibVP8A/BG0A0isrAFD1KkJtQGi303Q0FD99O+85ximXbRKRcAfpX7d+qzlnecdNfj36u52gmz3/w47LN6NrLfshw45f7e0OIvyiagPAvKeJmPaGgwoDt2/T3p7nfN7507z1x7Jgu76B1AfQTusVoZfpCYzYV69TnFHIfzSLOsFgrpGvJOOuKhepTpsm93do9cJaGsbfaNZr30GdYi0tztBtjs33ptOHPVGtrdXpKvL+e5TTslnAcKsR8RYpApZ0/37ZNGikUUkXWUacdZd/wDqI2iHlbiBNEsZbmhUcG+KduwYGSUOS//WMeKTdMQl7xTL9nZnRfjBQefP7t3Bo/K1gjpE3Hp2U+KHhkZS7mtvZIOOhfe7n3129IruKuskz05LFR1IZe1kLet+J6Xj90nQ9XXWrPKNOPP7HDATQTusxCqn2eImM1udndHTv3XMMUwz4qIjxbKpKV691OsQifJoNb9Ow6DOFfdxdLNmOa9V1Em97WchbQdSWTtZ3XTrsu13XCb8vvE77zs6nHYepaMuSybUDwD9CNoLpCwXdp0jkEXX01POm2tdoqR/65xjmKSDwIYUy3odIr29zqi6ez2ZMWNsvXs7DXftGkmFnzPHGe33++6eHnV14l0oq3b7WZyzaTuQytjJ6k6RcJ9gEGXBybIxrTOn9nq7YcPI/+koq2n1A0AvHvlWAGV8PAmPOVLL24Zc1Ks5TH1Mk82Crpvea0tjo8js2c454B6DoEcjiYycM93d2VyTe3udgN3vUXbe7as6Z73tLs2j/Mr2KCk3YB8YGPt/Rd7vuLL6PZ72eun3eR33HNznAMWTJg4laC+AMl7Yy9hRkaU5c5yRIHcerxc3mYjCto4FbxDufW67X4DpPvPdvda4I8dB2T3uOaO6TqKmwvuds3HKUu/6mmSfyvY7yl2BvJabbo1sOnOyui/Q0fFUxs4uoAx4TnuJlTVV3IYUXFvULrzlymoOddHbZq0891dH3dqWwllb3t27R/7PLw28uXlkRWk3KKh9FntQ2rjKcyfo2h62yF2S41MvnT1sn/zaoO5pHnmqVPwD9ubm0enWZZfFmh1ZTcPQsb4Iz00HUIug3XJlv7CXZT+9snhUlF+bUX1znSa4szHQzzOY1Rk42zZfOay83gBz1iwnxbm2U3TmzJFOw23b8glIgxbKCtt+3OOTtCO4XhssUyere5waPXdXzc2jj5Mupl1Haztz1q9P/l1ZD2Do6HgqU2cXgAiqJdPX11cVkWpfX5/uoiiza1e12tlZrYo4f+/apbtEyEKWx7n2u3fsUPO9g4Mj/+7srFabmpxtNDU5r+OWy6a2nWR/bdiW1+Cgs83aP97jbpI45XV/FrVu3fdnue/1zoegfUhyfJK0J11t0DSDg6OPU0eH/uuW6dfRHTvitesgebRBHdc2U6+nAOJLE4cy0l4ANo1imNbTb5MsRzRr25D7DPGkakfdenqSjYLYNorrynPais4pMvUyfUw816NmJnnnbUcd7dq9O/tsh3rXer+so6SZWHFH+PJugya2Le81z51CMTg49pFhOph+HV28eGz5kmQP5TEyrSO7r4wZhQDGImgvEJMv7LbNezVNXjfFqtpQ7U3i4sXxgweb12vIc9pKlG1lWWe1N8qrVpl9rte7sfe7TkXtFM0zMIrTjpIEMt70/ygdwXm1d5N/j/gdfxN+J5t+HQ0qn/exhlHPJ5sGMAAgLoJ25ML0nn7T2bR2QdBN2Pr18YIHm/bZT1iwpPKmuXYetrutPIKc2hvlpUvNPtfr3dgnvU7VC4x0B0dxApl6i/SFido5kKY+TP09YnJgbPp1NGithp07k9enKfsGACoRtCNzJt/Q2MSWRWmCbhI7O+OPgtiyz36CgqUsAmm3btybXTe4yXv016Zz3S8l3q/sPT3hx8uvzbe1Oc/qTnqca+ssbR1GCWTStJewzoG07d7ktmV6YGz6dbS2fBs2mF2fAKADz2lHLsr2nN4s2fA8bNXPy7Vhn6PK6lyo/d5Zs/wfPZX1c35tPtf9yi4SbX+8bb6jw1l1fu/e+PVQe+6sWuVkL6h+9nStrJ8LraJdmNy24l7zdFzTTL+OesuX1TPXAUCnNHEoQTtywS/gclJ5k2j6DWcUWQVGQd/b0eE8YzzPIMfmc7227OvXO4FiraDj1dvrzMX16yyp9zmv2sDUzWCIcwzd0ee4bapeUJzm/FPV7m1oW2H15G0jee6DrddPW8sNAH7SxKGkxyMXLBBTTiputkxefCqurNJog753w4Z0abFJUo9tOdf99s3vKQpxjteiRU4nSa2ox9kvBdzvOfFBx6W311lEbtw458/MmeHni/e7/NKoVZx/pqePqxQWsHd1jXTq5DEv3/brZxHbCAAkQdCOXPELuBxUzjM1dfGpOMICoyTfU8vve5MG0KoCNT+65yBH2Tdv2esdL+++1Auoox5nv+C2uTlep8GePSOv9+wJPl+irpSv6vxTMa8662tBlLaZpv0uXOh0wni/K+t5+UW4fgIACNoBKKR6VCfq4lO6A8EgaR4hFvY9teI+w7ueLG70dY74edtH3H3zq1e/fQkaTY7bYVIb3D700Nhg16+9u+dGraCgsF49uPsQdP55A8+o0mZgZLkQXZS2qWIhPb9pEx0d2XVmm7x4HwAgHoJ2oIRU37S536c62AtLq1VxI52lKIFR2u+plTYAyOpGX8eIX237cFeDT7Jv3noN2he/0eS4x6M2uL3wwpHX3d3Otvzau3tu1PIbmY96jING/lta1GdgRPlcW9von7W1qQl4o7TNtO3XrctGz11Xc7MzhSUrZZqWAABFR9AOlIjq0U7v93V2ZhPs1UurTXojnceor6rgN+/Rsixu9HWN+NW2j8WL0+9bvX1ROZ/fr0xh7b27e3Rg29bmn4Ye5xh7z7+mJmffgravQ9o2FKVtpmm/tVNjZs92/t3RIbJtW/ZrPpj+uDfkI6ytkn0BmI+gHSgR1aOd3u979tl482+jcgOh/v7RgVCaG+k8Rn1VBb86Rsvi3uiH1bmOfQhqH+vXpwtiouyLyv3ydjCFtff2dpHdu53AenDQ+XdQUBj1GHvPv4EBkaGh4O2rVhs4e+friziv03a8RT2ecdtv2NSYnp58FmmM0pFEwFZcYR3Uti9UCJQJQTtgMJU3U6pHO4NWup41y3mtalTHvamoTclNGgjmOeqratG5vEfLgjpKasW54ct7H4LaR2dn+tHwPPfF28HkVa+9u4+KqyduVkBzc34dL1HWDKh9f9SON7/zPMrxjHvMVU2NUSHosWkEbMUX1kHNQoWARaol09fXVxWRal9fn+6iAIF27apWOzurVRHn71271HxvZ2e12tTkfG9Tk/M6i+8bHExf1rBtVKvJ60llPUTZ1zj1UW+fVNZr0jJ4JanHsH1QuY9ZnUeupGWN+rnBQafsfn+y2J+wMmZdny6/djU4OHr7fn/q1WuUsqs6l4OOW17nrytsn1X/PoBZwtqhKe0UKJM0cShBO2CgrG6mVN905xEURbmpGBxUFxjn+R1+TLiRjlIG1Td8WdSn9+bUBEn2MSiADZJ2X1UFt0lF6agYHIx/nuR9XiXdXl4dngRs5RDWDk34fQOUCUF7DATtMEXQzVEeN1Oqb8yyvNELu6lIE+ylKXcWNztZHPu4n41TBpV1oPK78hoRjivJPkbdF1X7HFbGPII6bxm8f4JG3cP2V0eAGvd4qG6zUfaZgK34wtqVqddKoKgI2mMgaIduUX5JcjM1wsQUzyyDAFX7k+ZmLGoZVN3wqa5PE8+ftPvY31///1Xsc70yZnlzX1sHYWnwtaPuUXR2VquNjfm3iTjlU91ms+zwhF3ynJYEIFiaOJSF6ICcRVn4hcf0jKi3YJauR4lluRq6qmOfZoEhUxaNS1KfutpEmKDndO/eXf9zQQsxeqna53rHIU57irrdoIXQvOd82OJzUdpIb6+zqKK78v2MGfldU6OUL6s2G3Yeq3xEIcwW1g7zXhwRQHwN1Wq1qrsQeTpw4IBMnjxZ+vr6pLW1VXdxUDKVinODWmtw0P+XZtCqvxjh3uy7deXeiGbNDRp6epzAwnuDrEKaYx+3nSUtg8q6r63P9eudv5PQ1SbC9PaKdHU5T1kQiVa2qPuiap/92vXMmdHaU9xzIkqZvd/pJ0qbNrU9eGVZRn6PAIAZ0sShjLQDOYo7osiNVjhdWQlZj1KlCdhVPiO+3nZUjg669ekGKnPmJH8MlQmZKn71cOKJIwG7+556dRanjlXts1+7jtqe4o7GR9m3oFF3Ux7xqOp7smyz/B4BAPsRtAM5MyGgcOlOGVahvV1k2zZ9KZ46nrnspzbVeNWqbNtZVlMEFi9O/9xgnWm/finf3hT35uZ4nXZR61j1PtduI+y6FTc4TtKBmeTamVU7Vf2Mc1LVAQD1ELQDOTPh5kz1Dacu3v3o6rJ3P6IIO2a1o5xLl2bfzlR3QKkeFU2TrZCU32iz92fedO4oddbdLTJrVvT3Z9WJFHbdShIcx20/Sa+dWXSUplkzoh4TR8WL0LnrVbT9AVAOzGkHSsiGOZ5RFGU/oqi3r7rXSlD5fTqPaZp1CtxAwO84+Onvd0bdo5ano0NkwwazR2CT1p9bd1kHrKraqao1I0yX9bodeSva/gCwD3PaAURm6uracWW5H6bVRdi+Rh3lzCrDIm6gUq9+dU4fSTJ6Wpvt0dY29jj4HZuwgL22PM8+q240NytJRsLdxfnyyPpRFVBn+fQIk2SVTaBL0fYHQLkQtAOWSpMyXIQbziz2Q2VQqzLwj7KvUYJd3TetUepX1/SRpJ1AtXUqMvY4JOmISFoeEzqc4pyDWTxKLg8mrU2ShaJ07rqKtj8AyoegHbCMisCyKDecqvdDRVCb1Wh22mcum3DTGqd+8+5EStIJ5Fene/aMXRgxSUdE3PLYuE5F1DZp4r6ZsDZJlorSuesq2v4AKB/mtAOWUTnn12+Op4nP9A0rk4oyq5qnmvWc7DT7qnO+uA3zgJPMec2yTuOUJ205dJ33Ucodd99MvIbZqGhzwIu2PwDsw5x2oCSyXF3bxNGsqGVScYOuYiRG5fGp96ispHRmWBR1pCvLOo06mpum3ek+71U+Sk73vpgu7nWoaNkERdsfAOVC0A5YJMvAR/d8Zz/1ypRFWnfaACzq8alX9iwCD3d7um9aTZ+WkeQcyKNOw87vONeF2ran+7xX+Sg53ftiqrTXFNs71moVbX8AlANBO2CZLAIfE+Y7Ry1TT092o2kqArB6xyfKzbPKwCNoe7puWnV3GtST9hyIUqdZnk9h1wW/tmDSeZ/2ee4m7Ytp6MwAAPsxpx2wlOp5myY+89yvTCL5ljNpPft9LqyOVc/7NvGYmiyr+spzLm1tu3NfB+2bTW0k7Fy0aV/yEuWawhoAAJAP5rQDJaT6JsvE1OXaMq1fH200TcXomuqU0igjgSqnPzDyGF9W50CeI51uW/G2387O4LZg4nkfJOw8sGlf8lLvmsIaAABgD0baAYxi4qiLt0z1RtOijGhG3b8sRu2ifKfKUVlTRx5NbGNe9coXt+y6Vs2vPfZNTc42h4ac/29udh5N57Yt049JHEXaFxWCrimmXh8AoKgYaQegjIk3u94y1RtNqzeiGWdUKYtR6qijmirnfZs28mjLyJ7fOZC07DpWzR8YGNt+BwZGdx5UKqPPDxPP+6SKtC8q+F1TyMQBALsw0g7ASn5zd+uNaMYdVVI1CuU3yjVzZr6BhSkjjzaP7KUpe15z2r3baW4eGVlvahKZNUtk586xn8l6xB/msvl8BAAbMdIO5IRRCHPUBhr1RjSTjCqpGqX2G/3PO0gyISizeWQvbdnzWjXf29a8nVjt7SIbNuQ/4g+zmZaJAwAIRtAORGBLWm/ZBd2EJklRVhFo2RyoqqYjTVwVVWXPcl/92trAgEh//0j7JUiDl8mPYEyqjNdWAOVA0A5EwHNu7VDvJjRpwJIm0LI5UM2CjqBR1U286QFvUFtrbh55TxGDNNPYGDTadD0Kql861gEUHUE7EILRUvv43YTqClhMD/bylOcxUH0Tb0PAG7Wt2RSkmar2+k/QmK2w+qVjHUDRsRAdEAEL9iCtoMXgTFkkrmjinrNFOg5++1Kk/dOJx6fpUa9+dT1WEQDiYiE6IGOMliKt2ptHRuayEzU7plIp5nHwtrUi7p9OfiO6ZGNlK6x+mYYEoAy0Bu2rV6+Wrq4uaW1tldbWVpk3b55s3Lgx8P1vv/223HbbbdLW1ibjx4+XU089VX74wx/mWGKUlQ2psbAL6ZzZCbuJ9wayXV3Jj4MNQRntTJ2g4FGEoDFLUYJyOtYBFJ3WoP2EE06QlStXylNPPSX/8R//IX/8x38sF198sewIyClbvny53H///XLvvfdKT0+PXHPNNbJw4ULZsmVLziVHWXETBhUYmctevZt4byA7MBD/ONgyep1HOzP1u7JQL3gkaMxWWP3SsQ6g6Iyb037UUUfJXXfdJR//+MfH/N9xxx0nn//85+W6664b/tkll1wiEyZMkAcffDDS9zOnHYiGObDZKtsc2Dzbk3dbtdsNmv8qEv045HHsVNVXVmUNmtut+rvccptyPQrbb1PKaUo5VCvqfgEoh0LMaa9UKrJu3Tp54403ZN68eb7v6e/vl/Hjx4/62YQJE+SJJ54I/N7+/n45cODAqD8Agtkyimi7sozM5dme/LZVe4NfO1ra2DjyWLQoxyHr0es09eVXhqzamcq0e7/v8tZDS4s516OwEV3dAWXRr9+66xcAdNE+0r59+3aZN2+evPXWWzJx4kRZu3atfOhDH/J975/92Z/Jf/7nf8pDDz0kbW1t8vjjj8vFF18slUpF+vv7fT9zyy23yK233jrm54y0m63Mvem6971sI8C6pTneST6bd/uK057Sli3qtvxGS2fOjL7tLM+RJN8dZdRb5XFXuVp30Hd1dIg8++zojgiuR+G4fgOAuaweaW9vb5etW7fKL37xC/nUpz4lV1xxhfS4K7vU+NrXviYnn3yyzJ49W5qbm+X666+Xq666Shobg3dj2bJl0tfXN/xn3759We0KFCj6KEE9Juw7c63zlySQStJWdLSvqO1JRdnitF2/0dI4xyGr0euk51+UUW+VHTVRV+uOct3w+66ODpGdO/1X++d6FIzrNwAUl/agvbm5WWbOnCnvfe97ZcWKFXLqqafK1772Nd/3Hn300fLQQw/JG2+8Ib/61a9k165dMnHiRDnppJMCv7+lpWV4dXr3D8xV5pWOTdh3Hp1jhyRtRUf7itqeVJQtSdtN2q6zWvQqyT5kEahF+Wy9jou4nTC137Vhg/9+Z3k9yjKwzSto5voNAMWlPWivNTQ0FJjq7ho/frwcf/zxMjg4KP/yL/8iF198cU6lQ5bKPEpg0r6XZa61rZK0FZ3tK6w9BZVtYGDktaptqZZFMBR3H1QGanGC7XodF3E7Yfy+y1sPcdYciCvLDBQd2S1cvwGgmLTOaV+2bJlceOGF8s53vlMOHjwoa9eulS9/+cvy6KOPyvnnny9LliyR448/XlasWCEiIr/4xS9k//79ctppp8n+/fvllltukRdeeEGefvppOfLIIyNtk9XjzVbm+Xim7bvuufUIlqSt6G5f9dpTbdmampygvbnZ+ds7TztKu7Sl7dYrZ5x9ULWSu4o2onK+u/t9Wa4eb9r6BKrYcg4AQWjDKCJr57S/+uqrsmTJEmlvb5dzzz1XNm/ePBywi4i8+OKL8vLLLw+//6233pLly5dLZ2enLFy4UI4//nh54oknIgfsMF+ZRwlM23d+WZorSVvR3b7qtSdv2ZqanABPZGS0vbdXZP786KOWprfdnp7wfYmzD/VGvaNmKqjKxlCdou39HtWyzEBJ890qtm/6OQAEMWF9H8BE2lePzxsj7XYocw9rmfe9CHQ9jzzLz+RlYMB5vFeQxkaRoSEzMlGS8I6Iu7Lalzij72HlipvdoPIZ7qrV7otJI+0m1xuQF91ZYbCXyfc3LmtH2oEgpp90WdKx72VYNyBrOkYHkrQVk8+t5ubgBchEnIBdxN71LhYtEtm1a/TPstqXOPPKve91tbeLrFoV3qb92n1WC/WlEXR+ZpWB0tsr0t8/clxnzAj/7rBjZlt7LwLqPF8mre8De5QlO4OgHSixslzo8mDC6v9FELQAWVub3atiuzefbseDK4t9iXPjG/R/27aJLF0a3Kbd99dr9yYdn6ByZtXBsGiRyN69zr8bG50MknrfXe+YcZ1WI07gR53rwRMQkERZ7r8I2oESK8uFLmuMDsRTr168QVR//0gw9fDD+ubkq5pj7HfzmcW+xLnxDXqviH+b9s7H7+y0o91HOT+z7DQZGgqvl3rHjOt0OkkCcOpcH93rr8AuZbr/ImgHSqpMF7qsMToQTZyb59oFyHSkXMcpb9xnm3d2OvuR1b7EufH1e29Qm168eKQenn3WyYYwvd3nfX42NTmZIV7eTJEgfseB63R6cQNw6lwvE6fXwFxluv8iaAdKqkwXujwwOhBOxeiVivYZ9eY7SnnTPNvcHdHOQpwb36D31rbp9evHBjMDAyKzZo28x9R2b8P56XccuE6nkyQAp87NQH0jKhuu7yqwejxQQu4Km6xWrJ4Nq5fqoPr53UnEae9Ry1uGlY69bTpof21p93mUU3VbL/J1Oo/jkeQcLXKdA0Vlw+8hVo8HEEntqKAIaWiqmf4LQxcTRq/ijPRHKW9Z0mi9+xw0omFLu8+jnKrbehHThfNc6C3JKFwR6xwoOlt+DyXFSDtQIqpGBW3ozYR5dI5eJRn9jFLeMoy0+8nzGpDltrL6bkZq69Nx3vB7C4BujLQDCKViVJDH4BRb1iPEOkevkox+Rilv2rl0to7K5xH8ZHm9yfpaZtNIbd5tUFeGCgE7AJsRtAMloSJlk8fg6JH1zWzenTGqb56j1k/SADttYO+HDrBwQdcbFedDXtcykwNFXW3QhKkyAGAbgnagRNKMCpZl/q5Jenudm9msb6pt7YyJG3TUC7DTtuO4AUdtnS9cmG77RRN0vVFxPnAtc+g878uy2jMAqMKcdqCEks7tK+v8XR16e0W6upxHaolkV99pVrrWPUdURXvUMfc4qM47OkQ2bDA7lTpPtce3qcn5d9TjXa99lv1aZsLTHNxyMMIOoCyY0w4glqQ3SYyO5GfhwpGAXSS70cAkqap5ptUG7a+q0VIdo41Bdfzss3qzHEwbafZeb2bNcs6HKMc7Svss+7XMlBR1AnYAiIagHUBkNi2uZLNKRWTnzrE/7+jI5iY3bgCTR6AbFnipCDp0pkl3dzuBaL3y5MXU+fXe642bCRHleEdpn1zL6LgAAJuQHg8ABpozR2TXLpGhIed1c7PItm3ZBhdRUlXzSquNkr6sIrVdd5p0Z6czwq4zTVt3HUQV5XibkvZtE1LUASAfpMcDQMF0d4vMnu38u6Mj+4BdJNqNe1Zptd7R5agj4CpGS3WPNnrnsOvYftS6VjH6n/Y7oh7vqO3TtOkAuhCwA4D5CNoBwEC1qcF+I4q6qAx0/VKz43YMpAk6dKdJ695+WF2rSJ1XnX7vd7y92+jvF5kxw/m5X/v0K4/K8ynOdxWt46Bo+wMApiBoBwCD1QYoJsw/VhloBs0/znsEXPdoo87t16trFesX5LEGgncbe/eKtLQEt8/a8nR1qTmf4pybJpzHKhVtfwDANMxpBwCL2DL/OIoo84+Zb5uf2rpWMT88jznmcbYR9F6R9OdTnHOzSOexSPH2BwCywJx2ACgBnaudZyFKGjwBe35q61rF+gV5PFoszjbC5rgnPZ8GBqKfm0U7j4u2PwBgIoJ2ALCEKc9WVkn3QnCoT8XxyeMYx9mG973NzSKN//9OKMn55KaFt7Q435Wk48D287ho+wMAJiI9HoD1ypRCreIxZyYq0zHMi8o6VfFdeRzjONuoVER27053PnnTwhsbndT7gYHw7yraeVy0/QGALKSJQwnaAVirzDeKBLnpFLn+ynxeJJWkPQTNj+/vd0bds9quyYq2PwCgEnPaAZSSilWpbZ13yY1xMnFWuTaxbUQpUx6rtRdNkvMpKC08asCedLsmK9r+AIApCNoBWCnt4kc8oqicogS0JraNqGViUbB8sSYDACAPpMcDsFaaxwzxiKLyifpoMBPbRpkfJ2YD0sIBAGFIjwdQSklHuco4GmnTvmVV1iirXJvYNuKWKey8sKktBImyD3nuJwE7ACBLBO0ArOWOIA4OOn9HXWyrTI8oMjHVO0geZQ0LaE1sG3HLFHRe6GoLKoPnnp7wfbCpzQMAEAVBOwDrJQmoyjIX1aZFyfIoa5SOHhPbRpIy1Z4XebcFlcGz+11z5jiBu/szv32wqc0je0XILAEA5rQDKLUiz0WNOofbBFmWNe6zu933mtg2kpZJR1tQObfe+121vPuQdD9NPNZIh0cfAjANc9oBIKEi36ibmOodJIuyxhnp9XuvqfWU9HN5tgWVawMEfbaxcew+xN1PUumLi4wLAEVC0A4ABZYm1TvvtFJvWWfNSp+WHuemvQw3+Hmm/avsJAj67OzZ/vsQZz/LcNzLyMQFJQEgDdLjC46UP9iKtqtWnPrUmVba2yuycKHIzp3pth2WJl2bBm/LNAIV8jq3VLaj2u9av975u56BAZHm5uD/L9txLxsefQjANKTHYwxS/mAr2m424gQhOkcfFy0SefbZ9NsOGundvds/Dd6kaQRZjwbmtV9Jn+4Q5bvqBezuNaSlpf41xLTjDrVMXFASAJJipL2gvD3MjY1OGiE9zLABoyN66Rx9VL1tv5Fet0Oitn2ZsGiVCWUogjjXEOq8+MjaAmCKNHEoQXsBBd34ho1OALqRrmoGnR0nWWzb/a4o7UvnDb6Oei9aQMPq8clRBwCQLdLjMYqb4ldr8eL8ywLEQbqqGXSmlWax7aD25Ne+dKbE57lwVlGnoSS9hpT5GlPUtgAARULQXlDr14/9GSunwgbMQ4xP9Xmtci6yqm2r2kdT21feHVZFXjXd1GNsqiK3BQAoCtLjC4y5wbAZqZrhyjAfN6t9NLF95XU8yzINJYtjbGK7SaMsbQEATEB6PHwx2gCbFXXlbpXKMEKW1T6aGJDkleFQlmkoKvcnixRyE641ZWkLAGA7gvYC05niCtjGtnmdec+B1kHnPuqsxzwCpqJ26mZ13FR2Hpl2rSlqWwCAIiFoLwF6zIFwto1al2GETMc+mhZQZSWrTl1dnR1ZHjfVnUemXWvo4AcA8xG0Ayg9W0etyzBClvc+mhZQZU1VB4juzo4sj5vKziOTrzVF6vADgKJhIToApeVdVMrmhRt1L46Vx/bz2gaLciWTxfkT9ZjncdxULhJo87UGAJAcC9EBQAx+o4I2j1rrCijzHF3NYx/LMOUgC6pHj+O2qzyOm8oUcpuvNQAAPRhpB1A69Ua6dI9a26SII4ZZPnatyG1LZVtI8l02Pv6wyO0BADBWmjiUoB1AqZACrUbR61FlQBUUUBYpaFMVNKdtV0WqUwBAsZAeDwARkQKthop6NGHxrSAq20PtImnz5xdvhXpV6eNp2xXnMQCgiAjaAZQOc0rVSFqPulcaz5PffO89e0R27XJeF22FehVBM+cnAACjkR4PYJQypZeWaV9FstvfuN9r41z4NHVXu79+GQZFmVagkq7zs2zXBQBAPkiPB5BamUY/XWW5Mfc7tipT0+OmxJv6nGo/Ks6L2pHjtjamZ0SRd52U8RoIALADI+0ARMTO0U9E4z22jY1OUDIwoG+VbZVtLWxUNM6oqd97syirjSudl0GcY81oPAAgLkbaAaRi2+hnHEXYh7i8+1x7LIeGnIBdJLv51GF1rmLOctioaJxR06D3qj4v3CBP5TO/oUbUY81oPABAB4J2AIVcUb2MN9d++1zvWKrunIla5yqC1toV2Ws7H8L+P8p7sz4vbD6/iibqsY7TrgAAUIX0eAAiUryU3TKm+wfts/fYNjc7/59FveRV52HP8o7zrO+w99aeF+vXO3/rRGp2NsKugWmfIQ8AKDfS4wGkVqSU3SKn+wept8/eY7ttWzaP08qzzsNGRd3XjY3+/x/nu9y6czsf5szRl7lRxuyRPIVdA4uYkQQAsANBO4BRinADWsab6yj77B39Vt05k3ed15sX39srcvCgM39fxAneV61K9l2uxYv1p0UHpWar6BgpcodWXPXaLM+QBwDoQHo8gEIqWrp/FLr3Wcf2g1Z87+kZ/bPOzvBU/aC0cxPSooPK0NEhsnNn8vrW3WZsxRQFAEBcaeJQgnYAhVbGm+u89rlekKurzoOCW5F0QbYJayTUlsGdv5+mTCbsFwAAZcCcdgAIULaAXST7fQ6bW62zzt20/FppU/VNSIv2lmHWLOfRfWnWECjj2g8AANiIoB0AEIvpj73q7hZpaxt53daWPsg2YaFGbxncdPY0awiUce0HAABsRNAOAIjMhtHZ9naR3bud4HZw0Pm3ygX3dHPLoGL034QMgjIx6TwBANiDoB0AEJlNo7PuvO+iUjH6b0IGQRnwuD4AQBoE7QCAUN4RQkZnzaKiY6LInRsmMH1KiQ5kHQBAdATtAHLDTZp9/EYIGZ0dK8+2zXlkFxumlOSJrAMAiI+gHUDminqTVoab7nojhIzO5tu2i3oeFZ1NU0ryQNYBAMRH0A4gc0W7SStL8BR3hLAMnRi18mzbJp5HZTzmSTClxEHWAQAkQ9AOIFNFvEkzMXjKQtQRwrJ0YtTKs22bdh6V9ZgnxZQSB1kHAJAMQTuATBXtJs204ClrUUYIy9KJUSvPtm3aeVTWY56Wrdc9lcg6AID4CNoBZK5IN2l5BU+mdAKEjRCWrROjVp5t25TzqOzHPAz1UB9ZBwAQH0E7gMwV7SYtafAU5Wbe1LTjoE4J00aA85Zn2zblPCr7MQ9i6rlrqrK3FwCIg6AdQG6KcpMWN3iKczOfRdpx1iN/powA65Rn2zbhPOKYj5XVlAFG7gEADdVqtaq7EHk6cOCATJ48Wfr6+qS1tVV3cQBrVCpmBAs2cgN1tw7doL9WpeIE9rUGB5PVvRs49PQ4I6HeQCsLtJHy4Zg7VJ+7Ivmev3GPI8cdAOJLE4cy0g6gLlI+04kz/1d12nHei4VxE18+HHNHFlMG8jh/417f+X0AAHoQtAOoi1Wi04l7M68q7ZjFwoB8qZwykNf5G/f6zu8DANCD9HgAgbJI+SyjJGmuKtJPo6blA1BHVep41udv3Os7vw8AIB3S4wFkglWi1Uiy6reKOmaxMCB/qq6PWZ+/ca/v/D4AAH0I2gHUReCnTt43t6Y8IgxAfHmcv3Gv7/w+AAA9SI8HEAmrBQNAMbF6PABkj/R4AJnjBg1FpHJhLxb5g63iXt/5fQAA+SJoBwCUjspHV/EYrOTo6AAAIBxBOwCgdFQ+uorHYMVnckcHHQkAANMQtAMASkXlM7Dzep520ZjY0WFyRwIAoNwI2gEApaLy0VU8Bis+Uzs6TOxIAABAhKAdsJrum1zAViofXcVjsOIxsaPD1I4EAABENAftq1evlq6uLmltbZXW1laZN2+ebNy4se5n7rnnHmlvb5cJEybI9OnT5S/+4i/krbfeyqnEgBlI4wTSUfkM7Dyep100pnV0mNiRAACAa5zOjZ9wwgmycuVKOfnkk6Varco//uM/ysUXXyxbtmyROXPmjHn/2rVr5bOf/az83d/9nZxxxhny7LPPypVXXikNDQ3y1a9+VcMeAHr4pXHu2KG3TMgfz0pOT2X9cSyiczs6TGrD3d3OtbSnx4yOBAAAXA3VarWquxBeRx11lNx1113y8Y9/fMz/XX/99bJz5055/PHHh3/2l3/5l/KLX/xCnnjiiUjfn+ah9oAJKhVnhL3W4KA5N7/IlttR09PjjAZ6Ry0BpGNSRwIAoDjSxKHGzGmvVCqybt06eeONN2TevHm+7znjjDPkqaeekl/+8pciIvL888/LI488Ih/60IcCv7e/v18OHDgw6g9gM9I4wYJZQHa4lgIATKM1PV5EZPv27TJv3jx56623ZOLEibJhwwbp7Oz0fe+f/dmfyW9+8xv5oz/6I6lWqzI4OCjXXHONfO5znwv8/hUrVsitt96aVfEBLUjjLC93gaza10UYHSzCPgCwC9cdADbQPtLe3t4uW7dulV/84hfyqU99Sq644grp8d6RemzatEm+9KUvyX333SdPP/20dHd3y8MPPyy333574PcvW7ZM+vr6hv/s27cvq10BcsPCV+VVxEwLFlYEkDeuOwBsYtyc9vPOO0/a2trk/vvvH/N/Z555pvzhH/6h3HXXXcM/e/DBB+WTn/ykvP7669LYGN4HwZx2ALYr2px294bZHfFyO6UAICtcdwDkLU0cqj09vtbQ0JD09/f7/t+hQ4fGBOZN/394ybC+BwAGsz0d0sSVt5Mqcro/ADNx3QFgG63p8cuWLZN///d/l71798r27dtl2bJlsmnTJvnYxz4mIiJLliyRZcuWDb//oosuktWrV8u6devkhRdekMcee0xuvvlmueiii4aDdwAIUrR0yCJc9oqY7g/7VCq6S4A8cd0BYButI+2vvvqqLFmyRF5++WWZPHmydHV1yaOPPirnn3++iIi8+OKLo0bWly9fLg0NDbJ8+XLZv3+/HH300XLRRRfJnXfeqWsXAFiE59ubiYUVoUvRppogOq47AGxi3Jz2rDGnHSgnnm9vPlJTkTfmNYPrDoC8FOI57QCQJdIhzcexQJ6885j9XqMcuO4AsAFBO4DS8Ka+kg4JlBsdeQAAWxC0AygNnm8PwIuOPACADYx75BsAZM30kTTmWAL5KNLjEwEAxcVIOwAYomiPpANsQcAOADAZQTsAGMLvkXRA0bDQGwAA8RC0A4ABWMkaRWdjJgnnHwDABATtAGAAVrJG0dmUSWJjBwMAoLgI2gHAEKxkDVfRRnhtyySxqYMBAFB8BO0AYAgeSYeijvDalEliWwcDAKD4CNoBwDAmBjI2MCmoSlqWIo/w2pJJYlMHAwCgHAjaAQBWM2l0Ok1Zij7Ca1MmiS0dDACAcmioVqtV3YXI04EDB2Ty5MnS19cnra2tuosDICeVCiNlReUGx+4xdoNDG8ti0r6A6wYAQJ00cSgj7QAKzaRRWKhn0uh0mrK472GE1ywE7AAAExC0Ayi0Is8Rhlnzj8PK4he813YqidiTQg4AAPJB0A6gsEwahdWlDPtq0ui0X1nqZXsEdSoxwgsAAFzMaQdQaGWdI+wGgD09zmivN5j0U4S5uybtg7csQW2wUnEC+VqDg+bsBwAAUIM57QAQwKRR2DxFnRZQpDn/JgW63pT4oGwPk1L7AQCAuQjaARSaTY+ZUiXOtADm/GcrLDAva6eSLmWYLgIAKB6CdgClUKbRy6gjuMz5z0e9wLyMnUo6FCWjhHMTAMqJoB0ACijKCC7p2fmIEphT59myPaOkKJ0OAIBkWIgOAAosbHG2uAvWIT8mLaxnsyIs+FfWBTUBoEhYiA4AcmRTimpYUEJ6tnkYVVXL9owSprEAAAjaASCiIgdTtgQwZWB7KreJbF7wz/ZOBwBAeqTHA0BEpKgia0VI5TaZrVMOmMYCAPZLE4f63BoAAGq5Kam1r20NAmAmdxS1tnOINqaGrfXodhByvQGAciI9HgAiIEUVebE5lRvZ4noDAOVE0A4AERFMIQ8sDggAALxIjweAiEhRRZ5oYwAAQISRdgCIjWAKAAAAeSFoBwAAAADAUATtAAAAAAAYiqAdAAAAAABDEbQDAAAAAGAognYAAAAAAAxF0A4AAAAAgKEI2gEAKJBKRXcJAACASgTtAFBABG7l09srMmeOyLhxzt+9vbpLBAAAVCBoB4ACIXArr0WLRo53b6/zGgAA2I+gHQAKhMCtnCoVkZ6ekQyL2tcAAMBeBO0AUBAEbuXV1CTS2en87fcaAADYi6AdAAqCwK3curtF2tudf7e3O68BAID9CNoBoEAI3MqrvV1kxw6RwUHnb7cdAAAAu43TXQAAgDpu4FapMMJeVhx3AACKhZF2ACggAjcAAIBiIGgHAAAAAMBQBO0AAAAAABiKoB0AAACBeGwkAOhF0A4AAIAxentF5swRGTfO+bu3V3eJAKCcCNoBwCKMeAHIy6JFI4F6b6/zGgCQP4J2ALAAI14A8lSpiPT0jHQU1r4GAOSHoB0ALMCIF4A8NTWJdHaOPD6y9jUAID8E7QBgOEa8AOjQ3S3S3u78u73deQ0AyN843QUAANTnjnD19jqBelOTcwPNiBeALLW3i+zYMXLdAQDowUg7AFiAES8AuhCwA4BejLQDgAUY8QIAACgnRtoBwCIE7AAAAOVC0A4AAAAAgKEI2gHAgxXZAQAAYBKCdgAQZ2X2OXNExo1z/nafiQ4AAADoRNAOACKyaNFIoN7b67wGAAAAdCNoB1B6lYpIT89IanztawAAAEAXgnYApdfUJNLZObIye+1rAAAAQBeCdgAQke5u51noIs7f3d16ywMAAACIiIzTXQAAMEF7u8iOHU5KPCPsAAAAMAUj7QDgQcAOAAAAkxC0AwAAAABgKIJ2AAAAAAAMRdAOAAAAAIChCNoBAAAAADAUQTsAAAAAAIYiaAcAAAAAwFAE7QAAAAAAGIqgHQAAAAAAQxG0AwAAAABgKIJ2AAAAAAAMRdAOALBepaK7BAAAANkgaAcAWKu3V2TOHJFx45y/e3t1lwgAAEAtgnYAgLUWLRoJ1Ht7ndcAAABFQtAOALBSpSLS0zOSGl/7GgAAoAgI2gEAVmpqEunsdP72ew0AAFAEBO0AAGt1d4u0tzv/bm93XgMAABTJON0FAAAgqfZ2kR07nJR4RtgBAEARMdIOALAeATsAACgqgnYAAAAAAAylNWhfvXq1dHV1SWtrq7S2tsq8efNk48aNge8/55xzpKGhYcyf+fPn51hqAAAAAADyoXVO+wknnCArV66Uk08+WarVqvzjP/6jXHzxxbJlyxaZM2fOmPd3d3fLwMDA8OvXXntNTj31VFm8eHGexQYAAAAAIBdag/aLLrpo1Os777xTVq9eLT//+c99g/ajjjpq1Ot169bJ4YcfTtAOAAAAACgkY1aPr1Qqsn79ennjjTdk3rx5kT7zwAMPyGWXXSZHHHFE4Hv6+/ulv79/+PWBAwdSlxUAAAAAgDxoX4hu+/btMnHiRGlpaZFrrrlGNmzYIJ2dnaGf++UvfynPPPOMfOITn6j7vhUrVsjkyZOH/0yfPl1V0QEAAAAAyFRDtVqt6izAwMCAvPjii9LX1yff+9735Nvf/rb827/9W2jgfvXVV8vPfvYz2bZtW933+Y20T58+Xfr6+qS1tVXJPgAAAAAAEOTAgQMyefLkRHGo9qC91nnnnSdtbW1y//33B77njTfekOOOO05uu+02ueGGG2J9f5rKAgAAAAAgrjRxqPb0+FpDQ0OjRsb9rF+/Xvr7++Xyyy/PqVQAAAAAAORP60J0y5YtkwsvvFDe+c53ysGDB2Xt2rWyadMmefTRR0VEZMmSJXL88cfLihUrRn3ugQcekAULFsjUqVN1FBsAAAAAgFxoDdpfffVVWbJkibz88ssyefJk6erqkkcffVTOP/98ERF58cUXpbFxdDJAb2+vPPHEE/KjH/1IR5EBAAAAAMiNcXPas8acdgAAAABAngo1px0AAAAAADgI2gEAAAAAMBRBOwAAAAAAhiJoBwAASKhS0V0CAEDREbQDAADE1NsrMmeOyLhxzt+9vbpLBAAoKoJ2AACAmBYtGgnUe3ud1wAAZIGgHQAAIIZKRaSnZyQ1vvY1AAAqEbQDAADE0NQk0tnp/O33GgAAlQjaAQAAYuruFmlvd/7d3u68BgAgC+N0FwAAAMA27e0iO3Y4KfGMsAMAssRIOwAAQEIE7ACArBG0AwAAAABgKIJ2AAAAAAAMRdAOAAAAAIChCNoBAAAAADAUQTsAAAAAAIYiaAcAAAAAwFAE7QAAAAAAGIqgHQAAAAAAQxG0AwAAAABgKIJ2AAAAAAAMRdAOAAAAAIChCNoBAAAAADAUQTsAAAAAAIYiaAcAAAAAwFAE7QAAAAAAGIqgHQAAAAAAQxG0AwAAAABgKIJ2AAAAAAAMRdAOAAAAAIChCNoBAAAAADAUQTsAAAAAAIYiaAcAAAAAwFDjdBcgb9VqVUREDhw4oLkkAAAAAIAycONPNx6No3RB+8GDB0VEZPr06ZpLAgAAAAAok4MHD8rkyZNjfaahmiTUt9jQ0JC89NJLMmnSJGloaEj1XQcOHJDp06fLvn37pLW1VVEJYRPaAGgDEKEdgDYA2gActAMEtYFqtSoHDx6U4447Thob481SL91Ie2Njo5xwwglKv7O1tZWTsuRoA6ANQIR2ANoAaANw0A7g1wbijrC7WIgOAAAAAABDEbQDAAAAAGAogvYUWlpa5Itf/KK0tLToLgo0oQ2ANgAR2gFoA6ANwEE7QBZtoHQL0QEAAAAAYAtG2gEAAAAAMBRBOwAAAAAAhiJoBwAAAADAUATtAAAAAAAYiqA9wOrVq6Wrq0taW1ultbVV5s2bJxs3bgx8/znnnCMNDQ1j/syfPz/HUkOluG1AROSee+6R9vZ2mTBhgkyfPl3+4i/+Qt56662cSgzV4raBt99+W2677TZpa2uT8ePHy6mnnio//OEPcywxsrZy5UppaGiQG2+8se771q9fL7Nnz5bx48fLKaecIo888kg+BUQuorSDHTt2yCWXXCIzZsyQhoYGueeee3IrH7IXpQ1861vfkjPPPFOmTJkiU6ZMkfPOO09++ctf5ldIZCpKG+ju7pbTTz9djjzySDniiCPktNNOkzVr1uRXSGQu6n2Ba926ddLQ0CALFiyItR2C9gAnnHCCrFy5Up566in5j//4D/njP/5jufjii2XHjh2+7+/u7paXX355+M8zzzwjTU1Nsnjx4pxLDlXitoG1a9fKZz/7WfniF78oO3fulAceeEC++93vyuc+97mcSw5V4raB5cuXy/333y/33nuv9PT0yDXXXCMLFy6ULVu25FxyZGHz5s1y//33S1dXV933Pfnkk/LRj35UPv7xj8uWLVtkwYIFsmDBAnnmmWdyKimyFLUdHDp0SE466SRZuXKlTJs2LafSIQ9R28CmTZvkox/9qPz0pz+Vn/3sZzJ9+nT5wAc+IPv378+ppMhK1DZw1FFHyec//3n52c9+Jtu2bZOrrrpKrrrqKnn00UdzKimyFLUduPbu3StLly6VM888M/7GqohsypQp1W9/+9uR3nv33XdXJ02aVH399dczLhXyVK8NXHfdddU//uM/HvWzm266qfr+978/j6IhJ/XawLHHHlv9+te/PupnixYtqn7sYx/Lo2jI0MGDB6snn3xy9bHHHqueffbZ1RtuuCHwvZdeeml1/vz5o372B3/wB9Wrr74641Iia3Hagde73vWu6t13351p2ZCPpG2gWq1WBwcHq5MmTar+4z/+Y3YFRObStIFqtVp997vfXV2+fHk2hUNu4raDwcHB6hlnnFH99re/Xb3iiiuqF198caztMdIeQaVSkXXr1skbb7wh8+bNi/SZBx54QC677DI54ogjMi4d8hClDZxxxhny1FNPDae+Pf/88/LII4/Ihz70oTyLioxEaQP9/f0yfvz4UT+bMGGCPPHEE3kUERm67rrrZP78+XLeeeeFvvdnP/vZmPddcMEF8rOf/Syr4iEncdoBiilNGzh06JC8/fbbctRRR2VQMuQlaRuoVqvy+OOPS29vr5x11lkZlQ55idsObrvtNjnmmGPk4x//eKLtjUv0qZLYvn27zJs3T9566y2ZOHGibNiwQTo7O0M/98tf/lKeeeYZeeCBB3IoJbIUpw382Z/9mfzmN7+RP/qjP5JqtSqDg4NyzTXXkB5vuTht4IILLpCvfvWrctZZZ0lbW5s8/vjj0t3dLZVKJedSQ6V169bJ008/LZs3b470/ldeeUXe8Y53jPrZO97xDnnllVeyKB5yErcdoHjStoHPfOYzctxxx9HpY7EkbaCvr0+OP/546e/vl6amJrnvvvvk/PPPz7CUyFrcdvDEE0/IAw88IFu3bk28TUba62hvb5etW7fKL37xC/nUpz4lV1xxhfT09IR+7oEHHpBTTjlFfv/3fz+HUiJLcdrApk2b5Etf+pLcd9998vTTT0t3d7c8/PDDcvvtt+dcaqgUpw187Wtfk5NPPllmz54tzc3Ncv3118tVV10ljY1cam21b98+ueGGG+Q73/nOmCwKlAftAGnbwMqVK2XdunWyYcMG2pClkraBSZMmydatW2Xz5s1y5513yk033SSbNm3KrqDIVNx2cPDgQfmf//N/yre+9S35vd/7veQbTprHX0bnnntu9ZOf/GTd97z++uvV1tbW6j333JNTqZCnem3gj/7oj6pLly4d9bM1a9ZUJ0yYUK1UKnkUDzmIch148803q7/+9a+rQ0ND1b/+67+udnZ25lQ6qLZhw4aqiFSbmpqG/4hItaGhodrU1FQdHBwc85np06ePmb/8hS98odrV1ZVTqaFaknbgxZx2+6VpA3fddVd18uTJ1c2bN+dYYqiW9jrg+vjHP179wAc+kHFpkZW47WDLli1j3t/Q0DD8/t27d0faLunxMQwNDUl/f3/d96xfv176+/vl8ssvz6lUyFO9NnDo0KExI6pNTU0i4sxjQjFEuQ6MHz9ejj/+eHn77bflX/7lX+TSSy/NqXRQ7dxzz5Xt27eP+tlVV10ls2fPls985jPD57jXvHnz5PHHHx/1+JfHHnss8pooME+SdoBiSdoGvvKVr8idd94pjz76qJx++ul5FBUZUXUdiHIfAXPFbQezZ88e8/7ly5fLwYMH5Wtf+5pMnz490nYJ2gMsW7ZMLrzwQnnnO98pBw8elLVr18qmTZuGH9GwZMkSOf7442XFihWjPvfAAw/IggULZOrUqTqKDYXitoGLLrpIvvrVr8q73/1u+YM/+APZvXu33HzzzXLRRRdxQ2epuG3gF7/4hezfv19OO+002b9/v9xyyy0yNDQkf/3Xf61zN5DCpEmTZO7cuaN+dsQRR8jUqVOHf17bDm644QY5++yz5W/+5m9k/vz5sm7dOvmP//gP+eY3v5l7+aFGknYwMDAwPJVmYGBA9u/fL1u3bpWJEyfKzJkz890BpJakDXz5y1+WL3zhC7J27VqZMWPG8LoWEydOlIkTJ+a7A0gtSRtYsWKFnH766dLW1ib9/f3yyCOPyJo1a2T16tW5lx9qxG0H48ePH/P+I488UkRkzM/rIWgP8Oqrr8qSJUvk5ZdflsmTJ0tXV5c8+uijwwtHvPjii2NGVXt7e+WJJ56QH/3oRzqKDMXitoHly5dLQ0ODLF++XPbv3y9HH320XHTRRXLnnXfq2gWkFLcNvPXWW7J8+XJ5/vnnZeLEifKhD31I1qxZM3xxRjHVtoMzzjhD1q5dK8uXL5fPfe5zcvLJJ8tDDz0U65cz7FPbDl566SV597vfPfx61apVsmrVKjn77LOZz1pQtW1g9erVMjAwIH/6p3866n1f/OIX5ZZbbsm5dMhDbRt444035Nprr5Vf//rXMmHCBJk9e7Y8+OCD8pGPfERjKZE1vzgxrYYqebsAAAAAABiJJY0BAAAAADAUQTsAAAAAAIYiaAcAAAAAwFAE7QAAAAAAGIqgHQAAAAAAQxG0AwAAAABgKIJ2AAAAAAAMRdAOAAAAAIChCNoBAAAAADAUQTsAAAAAAIYiaAcAAAAAwFAE7QAAoK7//u//lmnTpsmXvvSl4Z89+eST0tzcLI8//rjGkgEAUHwN1Wq1qrsQAADAbI888ogsWLBAnnzySWlvb5fTTjtNLr74YvnqV7+qu2gAABQaQTsAAIjkuuuukx//+Mdy+umny/bt22Xz5s3S0tKiu1gAABQaQTsAAIjkzTfflLlz58q+ffvkqaeeklNOOUV3kQAAKDzmtAMAgEj27NkjL730kgwNDcnevXt1FwcAgFJgpB0AAIQaGBiQ3//935fTTjtN2tvb5Z577pHt27fLMccco7toAAAUGkE7AAAI9Vd/9Vfyve99T/7zP/9TJk6cKGeffbZMnjxZfvCDH+guGgAAhUZ6PAAAqGvTpk1yzz33yJo1a6S1tVUaGxtlzZo18r//9/+W1atX6y4eAACFxkg7AAAAAACGYqQdAAAAAABDEbQDAAAAAGAognYAAAAAAAxF0A4AAAAAgKEI2gEAAAAAMBRBOwAAAAAAhiJoBwAAAADAUATtAAAAAAAYiqAdAAAAAABDEbQDAAAAAGAognYAAAAAAAz1/wDSEjhXZB51HgAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# генерация датасета\n", + "data = lib.datagen(4, 4, 1000, 2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ocj6d5ekc_O1", + "outputId": "755ea122-2a72-49d0-9921-6abc6508e91f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.76686858, 3.89771608],\n", + " [3.98017808, 4.02404228],\n", + " [3.99359527, 4.061742 ],\n", + " ...,\n", + " [3.97524308, 3.97205872],\n", + " [4.14755453, 4.15956144],\n", + " [4.02719245, 3.93862556]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2ikhhr1Qg6pX" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OD4s_l9kJQQl", + "outputId": "603a5f96-c4b6-446d-b31f-baebba0b0427" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходные данные:\n", + "[[3.76686858 3.89771608]\n", + " [3.98017808 4.02404228]\n", + " [3.99359527 4.061742 ]\n", + " ...\n", + " [3.97524308 3.97205872]\n", + " [4.14755453 4.15956144]\n", + " [4.02719245 3.93862556]]\n", + "Размерность данных:\n", + "(1000, 2)\n" + ] + } + ], + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(data)\n", + "print('Размерность данных:')\n", + "print(data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e_fQEkQeR6Ie", + "outputId": "84e969bd-49c2-477f-ed02-9a3d982438da" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 1\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 1\n", + "Epoch 1/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - loss: 22.9071\n", + "Epoch 2/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 22.8838\n", + "Epoch 3/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 22.8606\n", + "Epoch 4/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 22.8373\n", + "Epoch 5/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 22.8140\n", + "Epoch 6/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 22.7908\n", + "Epoch 7/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 22.7675\n", + "Epoch 8/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 22.7442\n", + "Epoch 9/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 22.7209\n", + "Epoch 10/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 22.6976\n", + "Epoch 11/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 22.6743\n", + "Epoch 12/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.6509\n", + "Epoch 13/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 22.6276\n", + "Epoch 14/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.6043\n", + "Epoch 15/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.5809\n", + "Epoch 16/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.5576\n", + "Epoch 17/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.5342\n", + "Epoch 18/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.5108\n", + "Epoch 19/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 22.4874\n", + "Epoch 20/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 22.4640\n", + "Epoch 21/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.4406\n", + "Epoch 22/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.4172\n", + "Epoch 23/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 22.3937\n", + "Epoch 24/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 22.3703\n", + "Epoch 25/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.3468\n", + "Epoch 26/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.3233\n", + "Epoch 27/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.2999\n", + "Epoch 28/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 22.2764\n", + "Epoch 29/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.2528\n", + "Epoch 30/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.2293\n", + "Epoch 31/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.2058\n", + "Epoch 32/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 22.1822\n", + "Epoch 33/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.1586\n", + "Epoch 34/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.1351\n", + "Epoch 35/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.1115\n", + "Epoch 36/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.0878\n", + "Epoch 37/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.0642\n", + "Epoch 38/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.0405\n", + "Epoch 39/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 22.0169\n", + "Epoch 40/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 21.9932\n", + "Epoch 41/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.9695\n", + "Epoch 42/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.9457\n", + "Epoch 43/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.9220\n", + "Epoch 44/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.8982\n", + "Epoch 45/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.8744\n", + "Epoch 46/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.8506\n", + "Epoch 47/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.8267\n", + "Epoch 48/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.8029\n", + "Epoch 49/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.7790\n", + "Epoch 50/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.7551\n", + "Epoch 51/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.7312\n", + "Epoch 52/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.7072\n", + "Epoch 53/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 21.6832\n", + "Epoch 54/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.6592\n", + "Epoch 55/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.6352\n", + "Epoch 56/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.6111\n", + "Epoch 57/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.5870\n", + "Epoch 58/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.5628\n", + "Epoch 59/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.5387\n", + "Epoch 60/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.5145\n", + "Epoch 61/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.4903\n", + "Epoch 62/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.4660\n", + "Epoch 63/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.4417\n", + "Epoch 64/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.4174\n", + "Epoch 65/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.3930\n", + "Epoch 66/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.3686\n", + "Epoch 67/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.3441\n", + "Epoch 68/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.3196\n", + "Epoch 69/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.2951\n", + "Epoch 70/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2705\n", + "Epoch 71/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2459\n", + "Epoch 72/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2212\n", + "Epoch 73/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.1964\n", + "Epoch 74/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.1717\n", + "Epoch 75/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.1468\n", + "Epoch 76/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.1219\n", + "Epoch 77/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.0970\n", + "Epoch 78/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.0720\n", + "Epoch 79/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.0469\n", + "Epoch 80/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.0218\n", + "Epoch 81/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.9966\n", + "Epoch 82/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.9714\n", + "Epoch 83/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.9460\n", + "Epoch 84/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.9206\n", + "Epoch 85/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.8952\n", + "Epoch 86/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.8696\n", + "Epoch 87/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.8440\n", + "Epoch 88/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.8183\n", + "Epoch 89/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.7924\n", + "Epoch 90/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.7666\n", + "Epoch 91/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.7406\n", + "Epoch 92/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.7145\n", + "Epoch 93/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.6883\n", + "Epoch 94/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.6620\n", + "Epoch 95/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 20.6356\n", + "Epoch 96/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.6091\n", + "Epoch 97/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.5824\n", + "Epoch 98/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 20.5557\n", + "Epoch 99/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.5288\n", + "Epoch 100/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.5017\n", + "Epoch 101/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.4746\n", + "Epoch 102/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.4473\n", + "Epoch 103/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.4198\n", + "Epoch 104/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.3922\n", + "Epoch 105/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.3644\n", + "Epoch 106/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.3364\n", + "Epoch 107/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.3083\n", + "Epoch 108/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2799\n", + "Epoch 109/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.2514\n", + "Epoch 110/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2227\n", + "Epoch 111/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.1937\n", + "Epoch 112/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.1646\n", + "Epoch 113/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.1352\n", + "Epoch 114/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 20.1055\n", + "Epoch 115/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 20.0756\n", + "Epoch 116/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.0455\n", + "Epoch 117/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.0151\n", + "Epoch 118/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.9843\n", + "Epoch 119/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.9533\n", + "Epoch 120/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.9220\n", + "Epoch 121/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.8903\n", + "Epoch 122/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.8583\n", + "Epoch 123/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.8259\n", + "Epoch 124/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.7932\n", + "Epoch 125/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.7601\n", + "Epoch 126/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.7265\n", + "Epoch 127/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.6925\n", + "Epoch 128/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.6581\n", + "Epoch 129/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.6232\n", + "Epoch 130/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.5878\n", + "Epoch 131/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 19.5520\n", + "Epoch 132/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.5155\n", + "Epoch 133/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 19.4786\n", + "Epoch 134/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.4410\n", + "Epoch 135/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.4028\n", + "Epoch 136/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 19.3640\n", + "Epoch 137/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.3246\n", + "Epoch 138/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.2844\n", + "Epoch 139/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.2436\n", + "Epoch 140/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.2019\n", + "Epoch 141/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.1595\n", + "Epoch 142/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.1163\n", + "Epoch 143/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.0723\n", + "Epoch 144/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.0273\n", + "Epoch 145/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 18.9815\n", + "Epoch 146/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.9347\n", + "Epoch 147/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.8869\n", + "Epoch 148/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.8381\n", + "Epoch 149/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.7882\n", + "Epoch 150/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.7372\n", + "Epoch 151/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.6851\n", + "Epoch 152/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 18.6318\n", + "Epoch 153/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.5773\n", + "Epoch 154/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 18.5216\n", + "Epoch 155/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.4645\n", + "Epoch 156/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 18.4062\n", + "Epoch 157/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.3464\n", + "Epoch 158/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.2853\n", + "Epoch 159/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.2228\n", + "Epoch 160/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.1588\n", + "Epoch 161/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.0934\n", + "Epoch 162/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.0264\n", + "Epoch 163/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 17.9579\n", + "Epoch 164/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.8879\n", + "Epoch 165/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 17.8163\n", + "Epoch 166/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 17.7432\n", + "Epoch 167/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 17.6685\n", + "Epoch 168/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.5922\n", + "Epoch 169/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 17.5144\n", + "Epoch 170/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 17.4351\n", + "Epoch 171/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.3543\n", + "Epoch 172/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 17.2720\n", + "Epoch 173/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.1882\n", + "Epoch 174/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 17.1031\n", + "Epoch 175/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.0166\n", + "Epoch 176/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 16.9289\n", + "Epoch 177/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.8399\n", + "Epoch 178/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.7499\n", + "Epoch 179/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 16.6587\n", + "Epoch 180/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 16.5666\n", + "Epoch 181/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 16.4737\n", + "Epoch 182/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.3800\n", + "Epoch 183/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 16.2856\n", + "Epoch 184/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 16.1907\n", + "Epoch 185/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 16.0954\n", + "Epoch 186/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.9998\n", + "Epoch 187/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.9039\n", + "Epoch 188/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.8081\n", + "Epoch 189/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.7122\n", + "Epoch 190/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.6166\n", + "Epoch 191/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.5212\n", + "Epoch 192/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.4263\n", + "Epoch 193/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.3318\n", + "Epoch 194/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.2379\n", + "Epoch 195/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.1448\n", + "Epoch 196/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.0524\n", + "Epoch 197/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.9609\n", + "Epoch 198/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.8704\n", + "Epoch 199/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.7808\n", + "Epoch 200/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.6924\n", + "Epoch 201/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.6050\n", + "Epoch 202/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.5188\n", + "Epoch 203/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.4338\n", + "Epoch 204/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.3500\n", + "Epoch 205/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.2674\n", + "Epoch 206/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 14.1861\n", + "Epoch 207/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 14.1060\n", + "Epoch 208/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 14.0272\n", + "Epoch 209/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 13.9496\n", + "Epoch 210/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 13.8732\n", + "Epoch 211/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 13.7980\n", + "Epoch 212/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 13.7241\n", + "Epoch 213/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 13.6513\n", + "Epoch 214/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.5796\n", + "Epoch 215/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 13.5090\n", + "Epoch 216/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.4395\n", + "Epoch 217/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 13.3711\n", + "Epoch 218/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 13.3036\n", + "Epoch 219/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 13.2371\n", + "Epoch 220/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.1716\n", + "Epoch 221/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 13.1069\n", + "Epoch 222/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 13.0431\n", + "Epoch 223/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 12.9801\n", + "Epoch 224/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 12.9180\n", + "Epoch 225/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 12.8566\n", + "Epoch 226/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 12.7959\n", + "Epoch 227/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 12.7359\n", + "Epoch 228/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 12.6766\n", + "Epoch 229/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 12.6180\n", + "Epoch 230/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 12.5600\n", + "Epoch 231/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 12.5026\n", + "Epoch 232/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 12.4459\n", + "Epoch 233/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 12.3896\n", + "Epoch 234/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 12.3340\n", + "Epoch 235/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 12.2789\n", + "Epoch 236/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 12.2244\n", + "Epoch 237/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 12.1704\n", + "Epoch 238/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 12.1170\n", + "Epoch 239/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 12.0641\n", + "Epoch 240/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 12.0118\n", + "Epoch 241/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 11.9600\n", + "Epoch 242/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 11.9088\n", + "Epoch 243/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 11.8582\n", + "Epoch 244/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 11.8081\n", + "Epoch 245/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 11.7586\n", + "Epoch 246/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.7098\n", + "Epoch 247/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.6615\n", + "Epoch 248/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.6139\n", + "Epoch 249/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.5669\n", + "Epoch 250/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.5206\n", + "Epoch 251/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.4749\n", + "Epoch 252/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.4300\n", + "Epoch 253/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.3857\n", + "Epoch 254/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.3422\n", + "Epoch 255/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.2993\n", + "Epoch 256/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.2572\n", + "Epoch 257/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.2159\n", + "Epoch 258/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.1753\n", + "Epoch 259/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.1354\n", + "Epoch 260/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.0963\n", + "Epoch 261/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.0580\n", + "Epoch 262/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.0205\n", + "Epoch 263/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.9837\n", + "Epoch 264/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.9476\n", + "Epoch 265/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.9123\n", + "Epoch 266/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.8778\n", + "Epoch 267/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.8440\n", + "Epoch 268/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.8109\n", + "Epoch 269/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.7786\n", + "Epoch 270/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.7469\n", + "Epoch 271/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.7160\n", + "Epoch 272/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.6857\n", + "Epoch 273/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.6561\n", + "Epoch 274/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.6272\n", + "Epoch 275/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.5989\n", + "Epoch 276/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.5711\n", + "Epoch 277/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.5440\n", + "Epoch 278/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.5175\n", + "Epoch 279/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.4915\n", + "Epoch 280/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.4661\n", + "Epoch 281/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.4412\n", + "Epoch 282/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.4168\n", + "Epoch 283/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.3929\n", + "Epoch 284/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.3695\n", + "Epoch 285/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.3465\n", + "Epoch 286/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.3239\n", + "Epoch 287/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.3018\n", + "Epoch 288/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 10.2801\n", + "Epoch 289/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.2588\n", + "Epoch 290/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 10.2378\n", + "Epoch 291/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.2172\n", + "Epoch 292/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.1969\n", + "Epoch 293/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.1770\n", + "Epoch 294/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.1574\n", + "Epoch 295/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.1380\n", + "Epoch 296/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.1190\n", + "Epoch 297/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.1002\n", + "Epoch 298/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.0818\n", + "Epoch 299/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.0635\n", + "Epoch 300/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.0455\n", + "Epoch 301/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.0278\n", + "Epoch 302/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.0102\n", + "Epoch 303/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.9929\n", + "Epoch 304/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.9758\n", + "Epoch 305/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.9589\n", + "Epoch 306/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.9421\n", + "Epoch 307/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.9256\n", + "Epoch 308/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.9092\n", + "Epoch 309/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.8930\n", + "Epoch 310/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.8769\n", + "Epoch 311/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.8610\n", + "Epoch 312/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 9.8453\n", + "Epoch 313/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.8297\n", + "Epoch 314/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.8142\n", + "Epoch 315/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.7988\n", + "Epoch 316/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.7836\n", + "Epoch 317/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.7685\n", + "Epoch 318/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.7535\n", + "Epoch 319/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.7387\n", + "Epoch 320/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.7239\n", + "Epoch 321/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.7092\n", + "Epoch 322/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.6947\n", + "Epoch 323/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.6802\n", + "Epoch 324/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.6658\n", + "Epoch 325/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.6515\n", + "Epoch 326/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.6373\n", + "Epoch 327/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.6232\n", + "Epoch 328/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.6092\n", + "Epoch 329/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.5952\n", + "Epoch 330/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.5814\n", + "Epoch 331/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.5676\n", + "Epoch 332/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.5538\n", + "Epoch 333/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.5402\n", + "Epoch 334/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.5266\n", + "Epoch 335/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.5130\n", + "Epoch 336/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.4995\n", + "Epoch 337/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.4861\n", + "Epoch 338/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.4728\n", + "Epoch 339/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.4595\n", + "Epoch 340/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.4462\n", + "Epoch 341/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 9.4330\n", + "Epoch 342/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.4199\n", + "Epoch 343/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.4068\n", + "Epoch 344/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.3938\n", + "Epoch 345/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.3808\n", + "Epoch 346/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.3679\n", + "Epoch 347/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.3550\n", + "Epoch 348/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.3421\n", + "Epoch 349/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.3293\n", + "Epoch 350/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.3166\n", + "Epoch 351/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.3038\n", + "Epoch 352/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.2912\n", + "Epoch 353/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.2785\n", + "Epoch 354/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.2659\n", + "Epoch 355/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.2533\n", + "Epoch 356/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.2408\n", + "Epoch 357/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.2283\n", + "Epoch 358/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.2159\n", + "Epoch 359/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.2034\n", + "Epoch 360/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.1911\n", + "Epoch 361/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.1787\n", + "Epoch 362/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.1664\n", + "Epoch 363/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.1541\n", + "Epoch 364/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.1418\n", + "Epoch 365/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.1296\n", + "Epoch 366/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.1174\n", + "Epoch 367/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.1052\n", + "Epoch 368/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.0931\n", + "Epoch 369/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.0810\n", + "Epoch 370/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.0689\n", + "Epoch 371/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.0569\n", + "Epoch 372/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.0448\n", + "Epoch 373/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.0328\n", + "Epoch 374/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.0209\n", + "Epoch 375/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.0089\n", + "Epoch 376/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.9970\n", + "Epoch 377/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.9851\n", + "Epoch 378/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.9732\n", + "Epoch 379/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.9614\n", + "Epoch 380/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.9495\n", + "Epoch 381/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.9377\n", + "Epoch 382/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.9260\n", + "Epoch 383/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.9142\n", + "Epoch 384/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.9025\n", + "Epoch 385/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.8908\n", + "Epoch 386/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.8791\n", + "Epoch 387/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.8674\n", + "Epoch 388/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.8558\n", + "Epoch 389/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.8441\n", + "Epoch 390/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.8325\n", + "Epoch 391/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.8209\n", + "Epoch 392/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.8094\n", + "Epoch 393/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.7978\n", + "Epoch 394/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.7863\n", + "Epoch 395/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.7748\n", + "Epoch 396/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.7633\n", + "Epoch 397/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.7519\n", + "Epoch 398/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.7404\n", + "Epoch 399/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.7290\n", + "Epoch 400/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.7176\n", + "Epoch 401/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.7062\n", + "Epoch 402/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6948\n", + "Epoch 403/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.6835\n", + "Epoch 404/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.6722\n", + "Epoch 405/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6608\n", + "Epoch 406/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6495\n", + "Epoch 407/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.6383\n", + "Epoch 408/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6270\n", + "Epoch 409/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.6158\n", + "Epoch 410/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6045\n", + "Epoch 411/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.5933\n", + "Epoch 412/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.5821\n", + "Epoch 413/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.5709\n", + "Epoch 414/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.5598\n", + "Epoch 415/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.5486\n", + "Epoch 416/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.5375\n", + "Epoch 417/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.5264\n", + "Epoch 418/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.5153\n", + "Epoch 419/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.5042\n", + "Epoch 420/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.4931\n", + "Epoch 421/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 8.4821\n", + "Epoch 422/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 8.4711\n", + "Epoch 423/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 8.4600\n", + "Epoch 424/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 8.4490\n", + "Epoch 425/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.4380\n", + "Epoch 426/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 8.4271\n", + "Epoch 427/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 8.4161\n", + "Epoch 428/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 8.4052\n", + "Epoch 429/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 8.3942\n", + "Epoch 430/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.3833\n", + "Epoch 431/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.3724\n", + "Epoch 432/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 8.3615\n", + "Epoch 433/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.3507\n", + "Epoch 434/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.3398\n", + "Epoch 435/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.3290\n", + "Epoch 436/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.3181\n", + "Epoch 437/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.3073\n", + "Epoch 438/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.2965\n", + "Epoch 439/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 8.2857\n", + "Epoch 440/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.2750\n", + "Epoch 441/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 8.2642\n", + "Epoch 442/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.2535\n", + "Epoch 443/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 8.2427\n", + "Epoch 444/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.2320\n", + "Epoch 445/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 8.2213\n", + "Epoch 446/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 8.2106\n", + "Epoch 447/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.1999\n", + "Epoch 448/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 8.1893\n", + "Epoch 449/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 8.1786\n", + "Epoch 450/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 8.1680\n", + "Epoch 451/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 8.1574\n", + "Epoch 452/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 8.1468\n", + "Epoch 453/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 8.1362\n", + "Epoch 454/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.1256\n", + "Epoch 455/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 8.1150\n", + "Epoch 456/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.1044\n", + "Epoch 457/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.0939\n", + "Epoch 458/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 8.0834\n", + "Epoch 459/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.0728\n", + "Epoch 460/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.0623\n", + "Epoch 461/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.0518\n", + "Epoch 462/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 8.0414\n", + "Epoch 463/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.0309\n", + "Epoch 464/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.0204\n", + "Epoch 465/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.0100\n", + "Epoch 466/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.9996\n", + "Epoch 467/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.9891\n", + "Epoch 468/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.9787\n", + "Epoch 469/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.9683\n", + "Epoch 470/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.9579\n", + "Epoch 471/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.9476\n", + "Epoch 472/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.9372\n", + "Epoch 473/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.9269\n", + "Epoch 474/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.9165\n", + "Epoch 475/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.9062\n", + "Epoch 476/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.8959\n", + "Epoch 477/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.8856\n", + "Epoch 478/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.8753\n", + "Epoch 479/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 7.8650\n", + "Epoch 480/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.8548\n", + "Epoch 481/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.8445\n", + "Epoch 482/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.8343\n", + "Epoch 483/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.8241\n", + "Epoch 484/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.8138\n", + "Epoch 485/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.8036\n", + "Epoch 486/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.7934\n", + "Epoch 487/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.7833\n", + "Epoch 488/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.7731\n", + "Epoch 489/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.7629\n", + "Epoch 490/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.7528\n", + "Epoch 491/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.7427\n", + "Epoch 492/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.7325\n", + "Epoch 493/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.7224\n", + "Epoch 494/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.7123\n", + "Epoch 495/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.7022\n", + "Epoch 496/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 7.6921\n", + "Epoch 497/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.6821\n", + "Epoch 498/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6720\n", + "Epoch 499/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.6620\n", + "Epoch 500/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.6520\n", + "Epoch 501/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.6419\n", + "Epoch 502/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6319\n", + "Epoch 503/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6219\n", + "Epoch 504/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6119\n", + "Epoch 505/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.6020\n", + "Epoch 506/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.5920\n", + "Epoch 507/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.5820\n", + "Epoch 508/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.5721\n", + "Epoch 509/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.5622\n", + "Epoch 510/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.5522\n", + "Epoch 511/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 7.5423\n", + "Epoch 512/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.5324\n", + "Epoch 513/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5225\n", + "Epoch 514/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.5127\n", + "Epoch 515/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.5028\n", + "Epoch 516/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.4929\n", + "Epoch 517/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4831\n", + "Epoch 518/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.4733\n", + "Epoch 519/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.4634\n", + "Epoch 520/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.4536\n", + "Epoch 521/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.4438\n", + "Epoch 522/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.4340\n", + "Epoch 523/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.4242\n", + "Epoch 524/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4145\n", + "Epoch 525/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.4047\n", + "Epoch 526/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.3950\n", + "Epoch 527/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.3852\n", + "Epoch 528/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.3755\n", + "Epoch 529/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.3658\n", + "Epoch 530/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.3561\n", + "Epoch 531/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.3464\n", + "Epoch 532/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.3367\n", + "Epoch 533/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.3270\n", + "Epoch 534/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.3174\n", + "Epoch 535/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.3077\n", + "Epoch 536/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.2981\n", + "Epoch 537/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.2884\n", + "Epoch 538/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.2788\n", + "Epoch 539/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2692\n", + "Epoch 540/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.2596\n", + "Epoch 541/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2500\n", + "Epoch 542/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.2404\n", + "Epoch 543/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.2309\n", + "Epoch 544/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2213\n", + "Epoch 545/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.2118\n", + "Epoch 546/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.2022\n", + "Epoch 547/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.1927\n", + "Epoch 548/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.1832\n", + "Epoch 549/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.1737\n", + "Epoch 550/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.1642\n", + "Epoch 551/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.1547\n", + "Epoch 552/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.1452\n", + "Epoch 553/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.1357\n", + "Epoch 554/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.1263\n", + "Epoch 555/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.1168\n", + "Epoch 556/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.1074\n", + "Epoch 557/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.0980\n", + "Epoch 558/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.0886\n", + "Epoch 559/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.0792\n", + "Epoch 560/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.0698\n", + "Epoch 561/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.0604\n", + "Epoch 562/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.0510\n", + "Epoch 563/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.0416\n", + "Epoch 564/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.0323\n", + "Epoch 565/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.0229\n", + "Epoch 566/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0136\n", + "Epoch 567/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.0043\n", + "Epoch 568/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.9950\n", + "Epoch 569/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.9857\n", + "Epoch 570/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.9764\n", + "Epoch 571/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.9671\n", + "Epoch 572/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.9578\n", + "Epoch 573/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.9485\n", + "Epoch 574/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.9393\n", + "Epoch 575/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 6.9300\n", + "Epoch 576/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.9208\n", + "Epoch 577/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.9116\n", + "Epoch 578/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 6.9024\n", + "Epoch 579/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.8932\n", + "Epoch 580/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.8840\n", + "Epoch 581/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8748\n", + "Epoch 582/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.8656\n", + "Epoch 583/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.8564\n", + "Epoch 584/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8473\n", + "Epoch 585/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8381\n", + "Epoch 586/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8290\n", + "Epoch 587/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.8199\n", + "Epoch 588/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8107\n", + "Epoch 589/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.8016\n", + "Epoch 590/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.7925\n", + "Epoch 591/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.7835\n", + "Epoch 592/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.7744\n", + "Epoch 593/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.7653\n", + "Epoch 594/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.7563\n", + "Epoch 595/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.7472\n", + "Epoch 596/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.7382\n", + "Epoch 597/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.7291\n", + "Epoch 598/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.7201\n", + "Epoch 599/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.7111\n", + "Epoch 600/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.7021\n", + "Epoch 601/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.6931\n", + "Epoch 602/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.6841\n", + "Epoch 603/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.6752\n", + "Epoch 604/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.6662\n", + "Epoch 605/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.6572\n", + "Epoch 606/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.6483\n", + "Epoch 607/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.6394\n", + "Epoch 608/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.6304\n", + "Epoch 609/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.6215\n", + "Epoch 610/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.6126\n", + "Epoch 611/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.6037\n", + "Epoch 612/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.5948\n", + "Epoch 613/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.5860\n", + "Epoch 614/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.5771\n", + "Epoch 615/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.5683\n", + "Epoch 616/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.5594\n", + "Epoch 617/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.5506\n", + "Epoch 618/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.5417\n", + "Epoch 619/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.5329\n", + "Epoch 620/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.5241\n", + "Epoch 621/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.5153\n", + "Epoch 622/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.5065\n", + "Epoch 623/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.4977\n", + "Epoch 624/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.4890\n", + "Epoch 625/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 6.4802\n", + "Epoch 626/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 6.4714\n", + "Epoch 627/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.4627\n", + "Epoch 628/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.4540\n", + "Epoch 629/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 6.4452\n", + "Epoch 630/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 6.4365\n", + "Epoch 631/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 6.4278\n", + "Epoch 632/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.4191\n", + "Epoch 633/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 6.4104\n", + "Epoch 634/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.4018\n", + "Epoch 635/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 6.3931\n", + "Epoch 636/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 6.3844\n", + "Epoch 637/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.3758\n", + "Epoch 638/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 6.3671\n", + "Epoch 639/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 6.3585\n", + "Epoch 640/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.3499\n", + "Epoch 641/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 6.3413\n", + "Epoch 642/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 6.3327\n", + "Epoch 643/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 6.3241\n", + "Epoch 644/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 6.3155\n", + "Epoch 645/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 6.3069\n", + "Epoch 646/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 6.2983\n", + "Epoch 647/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.2898\n", + "Epoch 648/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 6.2812\n", + "Epoch 649/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 6.2727\n", + "Epoch 650/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 6.2642\n", + "Epoch 651/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.2556\n", + "Epoch 652/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 6.2471\n", + "Epoch 653/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 6.2386\n", + "Epoch 654/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.2301\n", + "Epoch 655/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 6.2217\n", + "Epoch 656/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 6.2132\n", + "Epoch 657/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 6.2047\n", + "Epoch 658/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 6.1963\n", + "Epoch 659/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 6.1878\n", + "Epoch 660/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.1794\n", + "Epoch 661/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 6.1709\n", + "Epoch 662/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.1625\n", + "Epoch 663/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.1541\n", + "Epoch 664/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.1457\n", + "Epoch 665/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.1373\n", + "Epoch 666/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.1289\n", + "Epoch 667/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.1205\n", + "Epoch 668/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.1122\n", + "Epoch 669/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.1038\n", + "Epoch 670/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.0955\n", + "Epoch 671/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.0871\n", + "Epoch 672/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.0788\n", + "Epoch 673/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.0705\n", + "Epoch 674/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.0622\n", + "Epoch 675/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.0539\n", + "Epoch 676/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.0456\n", + "Epoch 677/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.0373\n", + "Epoch 678/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.0290\n", + "Epoch 679/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.0207\n", + "Epoch 680/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.0125\n", + "Epoch 681/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.0042\n", + "Epoch 682/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.9960\n", + "Epoch 683/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.9878\n", + "Epoch 684/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.9795\n", + "Epoch 685/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.9713\n", + "Epoch 686/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.9631\n", + "Epoch 687/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.9549\n", + "Epoch 688/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 5.9467\n", + "Epoch 689/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.9385\n", + "Epoch 690/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.9304\n", + "Epoch 691/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.9222\n", + "Epoch 692/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.9141\n", + "Epoch 693/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.9059\n", + "Epoch 694/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.8978\n", + "Epoch 695/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.8897\n", + "Epoch 696/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.8815\n", + "Epoch 697/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.8734\n", + "Epoch 698/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.8653\n", + "Epoch 699/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.8572\n", + "Epoch 700/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.8492\n", + "Epoch 701/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8411\n", + "Epoch 702/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8330\n", + "Epoch 703/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8250\n", + "Epoch 704/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 5.8169\n", + "Epoch 705/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 5.8089\n", + "Epoch 706/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.8008\n", + "Epoch 707/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.7928\n", + "Epoch 708/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.7848\n", + "Epoch 709/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.7768\n", + "Epoch 710/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.7688\n", + "Epoch 711/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.7608\n", + "Epoch 712/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.7529\n", + "Epoch 713/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.7449\n", + "Epoch 714/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.7369\n", + "Epoch 715/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.7290\n", + "Epoch 716/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.7210\n", + "Epoch 717/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.7131\n", + "Epoch 718/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 5.7052\n", + "Epoch 719/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.6972\n", + "Epoch 720/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6893\n", + "Epoch 721/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.6814\n", + "Epoch 722/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.6735\n", + "Epoch 723/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.6657\n", + "Epoch 724/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.6578\n", + "Epoch 725/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.6499\n", + "Epoch 726/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.6421\n", + "Epoch 727/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.6342\n", + "Epoch 728/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.6264\n", + "Epoch 729/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.6185\n", + "Epoch 730/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.6107\n", + "Epoch 731/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6029\n", + "Epoch 732/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.5951\n", + "Epoch 733/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.5873\n", + "Epoch 734/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.5795\n", + "Epoch 735/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.5717\n", + "Epoch 736/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.5640\n", + "Epoch 737/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.5562\n", + "Epoch 738/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.5484\n", + "Epoch 739/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.5407\n", + "Epoch 740/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.5330\n", + "Epoch 741/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.5252\n", + "Epoch 742/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.5175\n", + "Epoch 743/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.5098\n", + "Epoch 744/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.5021\n", + "Epoch 745/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.4944\n", + "Epoch 746/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.4867\n", + "Epoch 747/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4790\n", + "Epoch 748/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.4714\n", + "Epoch 749/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4637\n", + "Epoch 750/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 5.4561\n", + "Epoch 751/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 5.4484\n", + "Epoch 752/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.4408\n", + "Epoch 753/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.4331\n", + "Epoch 754/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.4255\n", + "Epoch 755/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.4179\n", + "Epoch 756/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.4103\n", + "Epoch 757/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4027\n", + "Epoch 758/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.3951\n", + "Epoch 759/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.3875\n", + "Epoch 760/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.3800\n", + "Epoch 761/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3724\n", + "Epoch 762/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3649\n", + "Epoch 763/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.3573\n", + "Epoch 764/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.3498\n", + "Epoch 765/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.3423\n", + "Epoch 766/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.3347\n", + "Epoch 767/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 5.3272\n", + "Epoch 768/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.3197\n", + "Epoch 769/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.3122\n", + "Epoch 770/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.3047\n", + "Epoch 771/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.2973\n", + "Epoch 772/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.2898\n", + "Epoch 773/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.2823\n", + "Epoch 774/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 5.2749\n", + "Epoch 775/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2674\n", + "Epoch 776/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.2600\n", + "Epoch 777/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.2526\n", + "Epoch 778/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2451\n", + "Epoch 779/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.2377\n", + "Epoch 780/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.2303\n", + "Epoch 781/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 5.2229\n", + "Epoch 782/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.2155\n", + "Epoch 783/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.2081\n", + "Epoch 784/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2008\n", + "Epoch 785/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1934\n", + "Epoch 786/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.1861\n", + "Epoch 787/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.1787\n", + "Epoch 788/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.1714\n", + "Epoch 789/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1640\n", + "Epoch 790/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1567\n", + "Epoch 791/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.1494\n", + "Epoch 792/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.1421\n", + "Epoch 793/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1348\n", + "Epoch 794/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.1275\n", + "Epoch 795/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1202\n", + "Epoch 796/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 5.1129\n", + "Epoch 797/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.1057\n", + "Epoch 798/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0984\n", + "Epoch 799/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.0912\n", + "Epoch 800/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.0839\n", + "Epoch 801/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.0767\n", + "Epoch 802/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.0695\n", + "Epoch 803/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.0622\n", + "Epoch 804/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0550\n", + "Epoch 805/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0478\n", + "Epoch 806/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.0406\n", + "Epoch 807/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.0335\n", + "Epoch 808/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0263\n", + "Epoch 809/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.0191\n", + "Epoch 810/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.0119\n", + "Epoch 811/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0048\n", + "Epoch 812/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.9976\n", + "Epoch 813/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.9905\n", + "Epoch 814/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 4.9834\n", + "Epoch 815/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 4.9762\n", + "Epoch 816/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 4.9691\n", + "Epoch 817/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 4.9620\n", + "Epoch 818/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 4.9549\n", + "Epoch 819/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.9478\n", + "Epoch 820/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.9408\n", + "Epoch 821/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 4.9337\n", + "Epoch 822/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.9266\n", + "Epoch 823/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.9196\n", + "Epoch 824/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 4.9125\n", + "Epoch 825/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.9055\n", + "Epoch 826/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 4.8984\n", + "Epoch 827/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 4.8914\n", + "Epoch 828/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 4.8844\n", + "Epoch 829/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.8774\n", + "Epoch 830/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 4.8704\n", + "Epoch 831/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 4.8634\n", + "Epoch 832/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 4.8564\n", + "Epoch 833/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.8494\n", + "Epoch 834/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 4.8424\n", + "Epoch 835/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 4.8355\n", + "Epoch 836/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 4.8285\n", + "Epoch 837/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 4.8215\n", + "Epoch 838/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 4.8146\n", + "Epoch 839/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 4.8077\n", + "Epoch 840/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 4.8007\n", + "Epoch 841/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.7938\n", + "Epoch 842/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.7869\n", + "Epoch 843/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.7800\n", + "Epoch 844/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.7731\n", + "Epoch 845/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.7662\n", + "Epoch 846/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.7594\n", + "Epoch 847/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 4.7525\n", + "Epoch 848/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 4.7456\n", + "Epoch 849/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 4.7388\n", + "Epoch 850/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 4.7319\n", + "Epoch 851/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 4.7251\n", + "Epoch 852/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 4.7182\n", + "Epoch 853/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.7114\n", + "Epoch 854/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.7046\n", + "Epoch 855/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.6978\n", + "Epoch 856/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 4.6910\n", + "Epoch 857/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.6842\n", + "Epoch 858/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.6774\n", + "Epoch 859/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6706\n", + "Epoch 860/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6639\n", + "Epoch 861/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6571\n", + "Epoch 862/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.6503\n", + "Epoch 863/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.6436\n", + "Epoch 864/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.6368\n", + "Epoch 865/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.6301\n", + "Epoch 866/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6234\n", + "Epoch 867/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.6167\n", + "Epoch 868/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6100\n", + "Epoch 869/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.6033\n", + "Epoch 870/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 4.5966\n", + "Epoch 871/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5899\n", + "Epoch 872/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5832\n", + "Epoch 873/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.5765\n", + "Epoch 874/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5699\n", + "Epoch 875/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.5632\n", + "Epoch 876/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.5565\n", + "Epoch 877/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.5499\n", + "Epoch 878/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.5433\n", + "Epoch 879/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5366\n", + "Epoch 880/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.5300\n", + "Epoch 881/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.5234\n", + "Epoch 882/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.5168\n", + "Epoch 883/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.5102\n", + "Epoch 884/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.5036\n", + "Epoch 885/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4970\n", + "Epoch 886/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.4905\n", + "Epoch 887/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.4839\n", + "Epoch 888/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.4773\n", + "Epoch 889/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.4708\n", + "Epoch 890/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.4642\n", + "Epoch 891/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.4577\n", + "Epoch 892/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4512\n", + "Epoch 893/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.4446\n", + "Epoch 894/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.4381\n", + "Epoch 895/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4316\n", + "Epoch 896/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.4251\n", + "Epoch 897/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.4186\n", + "Epoch 898/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.4121\n", + "Epoch 899/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.4057\n", + "Epoch 900/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.3992\n", + "Epoch 901/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.3927\n", + "Epoch 902/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.3863\n", + "Epoch 903/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.3798\n", + "Epoch 904/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 4.3734\n", + "Epoch 905/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 4.3670\n", + "Epoch 906/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.3605\n", + "Epoch 907/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3541\n", + "Epoch 908/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.3477\n", + "Epoch 909/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.3413\n", + "Epoch 910/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.3349\n", + "Epoch 911/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.3285\n", + "Epoch 912/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3221\n", + "Epoch 913/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.3158\n", + "Epoch 914/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 4.3094\n", + "Epoch 915/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3030\n", + "Epoch 916/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.2967\n", + "Epoch 917/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.2903\n", + "Epoch 918/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.2840\n", + "Epoch 919/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.2777\n", + "Epoch 920/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.2713\n", + "Epoch 921/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.2650\n", + "Epoch 922/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.2587\n", + "Epoch 923/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.2524\n", + "Epoch 924/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.2461\n", + "Epoch 925/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.2398\n", + "Epoch 926/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.2335\n", + "Epoch 927/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.2273\n", + "Epoch 928/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.2210\n", + "Epoch 929/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.2148\n", + "Epoch 930/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2085\n", + "Epoch 931/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.2023\n", + "Epoch 932/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.1960\n", + "Epoch 933/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.1898\n", + "Epoch 934/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.1836\n", + "Epoch 935/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1774\n", + "Epoch 936/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.1711\n", + "Epoch 937/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.1649\n", + "Epoch 938/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.1588\n", + "Epoch 939/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.1526\n", + "Epoch 940/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1464\n", + "Epoch 941/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.1402\n", + "Epoch 942/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 4.1340\n", + "Epoch 943/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 4.1279\n", + "Epoch 944/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 4.1217\n", + "Epoch 945/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1156\n", + "Epoch 946/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.1095\n", + "Epoch 947/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.1033\n", + "Epoch 948/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.0972\n", + "Epoch 949/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.0911\n", + "Epoch 950/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 4.0850\n", + "Epoch 951/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.0789\n", + "Epoch 952/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.0728\n", + "Epoch 953/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.0667\n", + "Epoch 954/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.0606\n", + "Epoch 955/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 4.0546\n", + "Epoch 956/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.0485\n", + "Epoch 957/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.0424\n", + "Epoch 958/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.0364\n", + "Epoch 959/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.0303\n", + "Epoch 960/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.0243\n", + "Epoch 961/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.0183\n", + "Epoch 962/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.0122\n", + "Epoch 963/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.0062\n", + "Epoch 964/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.0002\n", + "Epoch 965/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.9942\n", + "Epoch 966/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.9882\n", + "Epoch 967/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.9822\n", + "Epoch 968/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.9763\n", + "Epoch 969/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.9703\n", + "Epoch 970/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.9643\n", + "Epoch 971/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.9584\n", + "Epoch 972/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.9524\n", + "Epoch 973/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.9465\n", + "Epoch 974/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.9405\n", + "Epoch 975/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.9346\n", + "Epoch 976/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.9287\n", + "Epoch 977/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.9227\n", + "Epoch 978/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.9168\n", + "Epoch 979/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.9109\n", + "Epoch 980/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.9050\n", + "Epoch 981/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.8991\n", + "Epoch 982/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.8933\n", + "Epoch 983/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.8874\n", + "Epoch 984/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8815\n", + "Epoch 985/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.8756\n", + "Epoch 986/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8698\n", + "Epoch 987/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.8639\n", + "Epoch 988/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 3.8581\n", + "Epoch 989/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.8523\n", + "Epoch 990/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.8464\n", + "Epoch 991/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.8406\n", + "Epoch 992/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 3.8348\n", + "Epoch 993/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.8290\n", + "Epoch 994/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.8232\n", + "Epoch 995/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 3.8174\n", + "Epoch 996/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 3.8116\n", + "Epoch 997/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 3.8058\n", + "Epoch 998/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.8001\n", + "Epoch 999/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 3.7943\n", + "Epoch 1000/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 3.7885\n", + "Epoch 1001/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.7828\n", + "Epoch 1002/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 3.7770\n", + "Epoch 1003/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 3.7713\n", + "Epoch 1004/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.7656\n", + "Epoch 1005/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 3.7598\n", + "Epoch 1006/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.7541\n", + "Epoch 1007/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 3.7484\n", + "Epoch 1008/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 3.7427\n", + "Epoch 1009/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.7370\n", + "Epoch 1010/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 3.7313\n", + "Epoch 1011/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 3.7256\n", + "Epoch 1012/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.7199\n", + "Epoch 1013/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 3.7143\n", + "Epoch 1014/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 3.7086\n", + "Epoch 1015/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.7029\n", + "Epoch 1016/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 3.6973\n", + "Epoch 1017/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 3.6916\n", + "Epoch 1018/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 3.6860\n", + "Epoch 1019/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.6804\n", + "Epoch 1020/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 3.6748\n", + "Epoch 1021/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 3.6691\n", + "Epoch 1022/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 3.6635\n", + "Epoch 1023/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.6579\n", + "Epoch 1024/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.6523\n", + "Epoch 1025/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.6467\n", + "Epoch 1026/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.6411\n", + "Epoch 1027/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.6356\n", + "Epoch 1028/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.6300\n", + "Epoch 1029/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.6244\n", + "Epoch 1030/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.6189\n", + "Epoch 1031/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.6133\n", + "Epoch 1032/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.6078\n", + "Epoch 1033/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.6022\n", + "Epoch 1034/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.5967\n", + "Epoch 1035/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.5912\n", + "Epoch 1036/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.5857\n", + "Epoch 1037/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.5801\n", + "Epoch 1038/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.5746\n", + "Epoch 1039/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.5691\n", + "Epoch 1040/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.5637\n", + "Epoch 1041/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.5582\n", + "Epoch 1042/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.5527\n", + "Epoch 1043/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.5472\n", + "Epoch 1044/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.5418\n", + "Epoch 1045/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.5363\n", + "Epoch 1046/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.5308\n", + "Epoch 1047/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.5254\n", + "Epoch 1048/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.5200\n", + "Epoch 1049/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.5145\n", + "Epoch 1050/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.5091\n", + "Epoch 1051/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.5037\n", + "Epoch 1052/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4983\n", + "Epoch 1053/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.4929\n", + "Epoch 1054/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.4875\n", + "Epoch 1055/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.4821\n", + "Epoch 1056/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.4767\n", + "Epoch 1057/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.4713\n", + "Epoch 1058/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.4659\n", + "Epoch 1059/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.4605\n", + "Epoch 1060/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.4552\n", + "Epoch 1061/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.4498\n", + "Epoch 1062/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.4445\n", + "Epoch 1063/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.4391\n", + "Epoch 1064/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.4338\n", + "Epoch 1065/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4285\n", + "Epoch 1066/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.4232\n", + "Epoch 1067/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.4178\n", + "Epoch 1068/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.4125\n", + "Epoch 1069/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.4072\n", + "Epoch 1070/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.4019\n", + "Epoch 1071/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.3966\n", + "Epoch 1072/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.3913\n", + "Epoch 1073/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.3861\n", + "Epoch 1074/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 3.3808\n", + "Epoch 1075/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.3755\n", + "Epoch 1076/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.3703\n", + "Epoch 1077/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.3650\n", + "Epoch 1078/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.3598\n", + "Epoch 1079/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.3545\n", + "Epoch 1080/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.3493\n", + "Epoch 1081/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.3441\n", + "Epoch 1082/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.3389\n", + "Epoch 1083/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 3.3336\n", + "Epoch 1084/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.3284\n", + "Epoch 1085/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.3232\n", + "Epoch 1086/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 3.3180\n", + "Epoch 1087/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.3128\n", + "Epoch 1088/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.3077\n", + "Epoch 1089/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.3025\n", + "Epoch 1090/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.2973\n", + "Epoch 1091/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2922\n", + "Epoch 1092/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.2870\n", + "Epoch 1093/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.2818\n", + "Epoch 1094/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 3.2767\n", + "Epoch 1095/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.2716\n", + "Epoch 1096/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.2664\n", + "Epoch 1097/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.2613\n", + "Epoch 1098/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2562\n", + "Epoch 1099/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.2511\n", + "Epoch 1100/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.2460\n", + "Epoch 1101/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.2409\n", + "Epoch 1102/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.2358\n", + "Epoch 1103/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.2307\n", + "Epoch 1104/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.2256\n", + "Epoch 1105/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.2205\n", + "Epoch 1106/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.2155\n", + "Epoch 1107/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.2104\n", + "Epoch 1108/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.2053\n", + "Epoch 1109/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.2003\n", + "Epoch 1110/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.1952\n", + "Epoch 1111/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.1902\n", + "Epoch 1112/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.1852\n", + "Epoch 1113/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.1801\n", + "Epoch 1114/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.1751\n", + "Epoch 1115/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.1701\n", + "Epoch 1116/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.1651\n", + "Epoch 1117/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.1601\n", + "Epoch 1118/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.1551\n", + "Epoch 1119/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.1501\n", + "Epoch 1120/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.1451\n", + "Epoch 1121/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.1402\n", + "Epoch 1122/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.1352\n", + "Epoch 1123/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.1302\n", + "Epoch 1124/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.1253\n", + "Epoch 1125/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.1203\n", + "Epoch 1126/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.1154\n", + "Epoch 1127/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.1104\n", + "Epoch 1128/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.1055\n", + "Epoch 1129/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.1006\n", + "Epoch 1130/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.0956\n", + "Epoch 1131/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.0907\n", + "Epoch 1132/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 3.0858\n", + "Epoch 1133/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 3.0809\n", + "Epoch 1134/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.0760\n", + "Epoch 1135/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 3.0711\n", + "Epoch 1136/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.0662\n", + "Epoch 1137/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 3.0614\n", + "Epoch 1138/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 3.0565\n", + "Epoch 1139/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 3.0516\n", + "Epoch 1140/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 3.0468\n", + "Epoch 1141/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.0419\n", + "Epoch 1142/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 3.0370\n", + "Epoch 1143/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 3.0322\n", + "Epoch 1144/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.0274\n", + "Epoch 1145/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 3.0225\n", + "Epoch 1146/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 3.0177\n", + "Epoch 1147/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 3.0129\n", + "Epoch 1148/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 3.0081\n", + "Epoch 1149/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 3.0033\n", + "Epoch 1150/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.9985\n", + "Epoch 1151/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.9937\n", + "Epoch 1152/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.9889\n", + "Epoch 1153/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 2.9841\n", + "Epoch 1154/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 2.9793\n", + "Epoch 1155/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 2.9746\n", + "Epoch 1156/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 2.9698\n", + "Epoch 1157/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 2.9650\n", + "Epoch 1158/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 2.9603\n", + "Epoch 1159/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.9555\n", + "Epoch 1160/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 2.9508\n", + "Epoch 1161/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.9461\n", + "Epoch 1162/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.9413\n", + "Epoch 1163/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.9366\n", + "Epoch 1164/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 2.9319\n", + "Epoch 1165/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 2.9272\n", + "Epoch 1166/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 2.9225\n", + "Epoch 1167/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 2.9178\n", + "Epoch 1168/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.9131\n", + "Epoch 1169/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 2.9084\n", + "Epoch 1170/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.9037\n", + "Epoch 1171/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.8990\n", + "Epoch 1172/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.8944\n", + "Epoch 1173/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.8897\n", + "Epoch 1174/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.8850\n", + "Epoch 1175/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.8804\n", + "Epoch 1176/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.8757\n", + "Epoch 1177/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.8711\n", + "Epoch 1178/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.8665\n", + "Epoch 1179/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.8618\n", + "Epoch 1180/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.8572\n", + "Epoch 1181/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.8526\n", + "Epoch 1182/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.8480\n", + "Epoch 1183/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.8434\n", + "Epoch 1184/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.8388\n", + "Epoch 1185/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.8342\n", + "Epoch 1186/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.8296\n", + "Epoch 1187/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.8250\n", + "Epoch 1188/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.8204\n", + "Epoch 1189/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.8158\n", + "Epoch 1190/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.8113\n", + "Epoch 1191/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.8067\n", + "Epoch 1192/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.8022\n", + "Epoch 1193/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.7976\n", + "Epoch 1194/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7931\n", + "Epoch 1195/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.7885\n", + "Epoch 1196/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.7840\n", + "Epoch 1197/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.7795\n", + "Epoch 1198/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.7750\n", + "Epoch 1199/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.7704\n", + "Epoch 1200/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7659\n", + "Epoch 1201/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.7614\n", + "Epoch 1202/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.7569\n", + "Epoch 1203/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.7525\n", + "Epoch 1204/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.7480\n", + "Epoch 1205/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.7435\n", + "Epoch 1206/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.7390\n", + "Epoch 1207/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7345\n", + "Epoch 1208/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 2.7301\n", + "Epoch 1209/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.7256\n", + "Epoch 1210/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.7212\n", + "Epoch 1211/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 2.7167\n", + "Epoch 1212/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.7123\n", + "Epoch 1213/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.7079\n", + "Epoch 1214/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.7034\n", + "Epoch 1215/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.6990\n", + "Epoch 1216/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.6946\n", + "Epoch 1217/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.6902\n", + "Epoch 1218/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.6858\n", + "Epoch 1219/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.6814\n", + "Epoch 1220/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.6770\n", + "Epoch 1221/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.6726\n", + "Epoch 1222/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.6682\n", + "Epoch 1223/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.6638\n", + "Epoch 1224/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.6595\n", + "Epoch 1225/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.6551\n", + "Epoch 1226/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.6507\n", + "Epoch 1227/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.6464\n", + "Epoch 1228/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.6420\n", + "Epoch 1229/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.6377\n", + "Epoch 1230/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 2.6333\n", + "Epoch 1231/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.6290\n", + "Epoch 1232/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.6247\n", + "Epoch 1233/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.6204\n", + "Epoch 1234/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.6160\n", + "Epoch 1235/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.6117\n", + "Epoch 1236/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.6074\n", + "Epoch 1237/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.6031\n", + "Epoch 1238/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.5988\n", + "Epoch 1239/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.5945\n", + "Epoch 1240/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.5903\n", + "Epoch 1241/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.5860\n", + "Epoch 1242/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5817\n", + "Epoch 1243/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.5774\n", + "Epoch 1244/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.5732\n", + "Epoch 1245/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.5689\n", + "Epoch 1246/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.5647\n", + "Epoch 1247/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5604\n", + "Epoch 1248/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.5562\n", + "Epoch 1249/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.5520\n", + "Epoch 1250/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.5477\n", + "Epoch 1251/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.5435\n", + "Epoch 1252/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5393\n", + "Epoch 1253/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.5351\n", + "Epoch 1254/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.5309\n", + "Epoch 1255/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5267\n", + "Epoch 1256/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.5225\n", + "Epoch 1257/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.5183\n", + "Epoch 1258/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.5141\n", + "Epoch 1259/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.5099\n", + "Epoch 1260/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5058\n", + "Epoch 1261/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.5016\n", + "Epoch 1262/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.4974\n", + "Epoch 1263/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 2.4933\n", + "Epoch 1264/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.4891\n", + "Epoch 1265/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.4850\n", + "Epoch 1266/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.4808\n", + "Epoch 1267/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.4767\n", + "Epoch 1268/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4726\n", + "Epoch 1269/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.4684\n", + "Epoch 1270/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4643\n", + "Epoch 1271/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.4602\n", + "Epoch 1272/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.4561\n", + "Epoch 1273/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.4520\n", + "Epoch 1274/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 2.4479\n", + "Epoch 1275/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 2.4438\n", + "Epoch 1276/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.4397\n", + "Epoch 1277/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.4356\n", + "Epoch 1278/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 2.4316\n", + "Epoch 1279/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 2.4275\n", + "Epoch 1280/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.4234\n", + "Epoch 1281/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.4194\n", + "Epoch 1282/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.4153\n", + "Epoch 1283/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 2.4112\n", + "Epoch 1284/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.4072\n", + "Epoch 1285/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 2.4032\n", + "Epoch 1286/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.3991\n", + "Epoch 1287/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 2.3951\n", + "Epoch 1288/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.3911\n", + "Epoch 1289/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 2.3871\n", + "Epoch 1290/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 2.3830\n", + "Epoch 1291/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 2.3790\n", + "Epoch 1292/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 2.3750\n", + "Epoch 1293/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 2.3710\n", + "Epoch 1294/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 2.3670\n", + "Epoch 1295/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.3631\n", + "Epoch 1296/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 2.3591\n", + "Epoch 1297/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.3551\n", + "Epoch 1298/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.3511\n", + "Epoch 1299/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.3472\n", + "Epoch 1300/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.3432\n", + "Epoch 1301/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 2.3393\n", + "Epoch 1302/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.3353\n", + "Epoch 1303/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 2.3314\n", + "Epoch 1304/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.3274\n", + "Epoch 1305/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 2.3235\n", + "Epoch 1306/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 2.3196\n", + "Epoch 1307/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 2.3156\n", + "Epoch 1308/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 2.3117\n", + "Epoch 1309/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 2.3078\n", + "Epoch 1310/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 2.3039\n", + "Epoch 1311/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 2.3000\n", + "Epoch 1312/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.2961\n", + "Epoch 1313/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.2922\n", + "Epoch 1314/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.2883\n", + "Epoch 1315/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.2844\n", + "Epoch 1316/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.2806\n", + "Epoch 1317/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.2767\n", + "Epoch 1318/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2728\n", + "Epoch 1319/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 2.2690\n", + "Epoch 1320/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.2651\n", + "Epoch 1321/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2612\n", + "Epoch 1322/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.2574\n", + "Epoch 1323/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.2536\n", + "Epoch 1324/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.2497\n", + "Epoch 1325/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2459\n", + "Epoch 1326/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2421\n", + "Epoch 1327/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.2382\n", + "Epoch 1328/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2344\n", + "Epoch 1329/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2306\n", + "Epoch 1330/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.2268\n", + "Epoch 1331/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.2230\n", + "Epoch 1332/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.2192\n", + "Epoch 1333/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2154\n", + "Epoch 1334/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.2116\n", + "Epoch 1335/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.2079\n", + "Epoch 1336/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.2041\n", + "Epoch 1337/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.2003\n", + "Epoch 1338/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.1966\n", + "Epoch 1339/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.1928\n", + "Epoch 1340/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.1890\n", + "Epoch 1341/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.1853\n", + "Epoch 1342/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.1816\n", + "Epoch 1343/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.1778\n", + "Epoch 1344/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.1741\n", + "Epoch 1345/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.1703\n", + "Epoch 1346/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.1666\n", + "Epoch 1347/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.1629\n", + "Epoch 1348/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.1592\n", + "Epoch 1349/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1555\n", + "Epoch 1350/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.1518\n", + "Epoch 1351/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.1481\n", + "Epoch 1352/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.1444\n", + "Epoch 1353/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.1407\n", + "Epoch 1354/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.1370\n", + "Epoch 1355/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.1333\n", + "Epoch 1356/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.1297\n", + "Epoch 1357/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1260\n", + "Epoch 1358/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.1223\n", + "Epoch 1359/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.1187\n", + "Epoch 1360/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.1150\n", + "Epoch 1361/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1114\n", + "Epoch 1362/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.1077\n", + "Epoch 1363/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.1041\n", + "Epoch 1364/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.1004\n", + "Epoch 1365/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.0968\n", + "Epoch 1366/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.0932\n", + "Epoch 1367/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.0896\n", + "Epoch 1368/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.0859\n", + "Epoch 1369/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.0823\n", + "Epoch 1370/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.0787\n", + "Epoch 1371/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0751\n", + "Epoch 1372/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.0715\n", + "Epoch 1373/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.0679\n", + "Epoch 1374/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 2.0644\n", + "Epoch 1375/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.0608\n", + "Epoch 1376/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.0572\n", + "Epoch 1377/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.0536\n", + "Epoch 1378/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0501\n", + "Epoch 1379/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0465\n", + "Epoch 1380/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.0429\n", + "Epoch 1381/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0394\n", + "Epoch 1382/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.0358\n", + "Epoch 1383/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.0323\n", + "Epoch 1384/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.0288\n", + "Epoch 1385/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.0252\n", + "Epoch 1386/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.0217\n", + "Epoch 1387/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.0182\n", + "Epoch 1388/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.0147\n", + "Epoch 1389/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0112\n", + "Epoch 1390/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0076\n", + "Epoch 1391/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.0041\n", + "Epoch 1392/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0006\n", + "Epoch 1393/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9972\n", + "Epoch 1394/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.9937\n", + "Epoch 1395/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.9902\n", + "Epoch 1396/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.9867\n", + "Epoch 1397/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9832\n", + "Epoch 1398/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.9798\n", + "Epoch 1399/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9763\n", + "Epoch 1400/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9728\n", + "Epoch 1401/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 1.9694\n", + "Epoch 1402/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.9659\n", + "Epoch 1403/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9625\n", + "Epoch 1404/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.9590\n", + "Epoch 1405/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.9556\n", + "Epoch 1406/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9522\n", + "Epoch 1407/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9487\n", + "Epoch 1408/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.9453\n", + "Epoch 1409/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.9419\n", + "Epoch 1410/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9385\n", + "Epoch 1411/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.9351\n", + "Epoch 1412/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9317\n", + "Epoch 1413/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.9283\n", + "Epoch 1414/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 1.9249\n", + "Epoch 1415/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9215\n", + "Epoch 1416/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.9181\n", + "Epoch 1417/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 1.9147\n", + "Epoch 1418/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.9114\n", + "Epoch 1419/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 1.9080\n", + "Epoch 1420/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.9046\n", + "Epoch 1421/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.9013\n", + "Epoch 1422/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 1.8979\n", + "Epoch 1423/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.8946\n", + "Epoch 1424/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 1.8912\n", + "Epoch 1425/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.8879\n", + "Epoch 1426/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.8845\n", + "Epoch 1427/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 1.8812\n", + "Epoch 1428/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.8779\n", + "Epoch 1429/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8745\n", + "Epoch 1430/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 178ms/step - loss: 1.8712\n", + "Epoch 1431/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.8679\n", + "Epoch 1432/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.8646\n", + "Epoch 1433/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 1.8613\n", + "Epoch 1434/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 1.8580\n", + "Epoch 1435/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.8547\n", + "Epoch 1436/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 175ms/step - loss: 1.8514\n", + "Epoch 1437/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.8481\n", + "Epoch 1438/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 1.8448\n", + "Epoch 1439/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 1.8416\n", + "Epoch 1440/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.8383\n", + "Epoch 1441/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 1.8350\n", + "Epoch 1442/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.8317\n", + "Epoch 1443/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 1.8285\n", + "Epoch 1444/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 1.8252\n", + "Epoch 1445/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 1.8220\n", + "Epoch 1446/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 1.8187\n", + "Epoch 1447/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 1.8155\n", + "Epoch 1448/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 1.8123\n", + "Epoch 1449/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.8090\n", + "Epoch 1450/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 1.8058\n", + "Epoch 1451/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.8026\n", + "Epoch 1452/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 1.7994\n", + "Epoch 1453/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.7961\n", + "Epoch 1454/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 1.7929\n", + "Epoch 1455/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.7897\n", + "Epoch 1456/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.7865\n", + "Epoch 1457/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7833\n", + "Epoch 1458/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.7801\n", + "Epoch 1459/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.7770\n", + "Epoch 1460/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.7738\n", + "Epoch 1461/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.7706\n", + "Epoch 1462/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.7674\n", + "Epoch 1463/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.7643\n", + "Epoch 1464/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7611\n", + "Epoch 1465/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.7579\n", + "Epoch 1466/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.7548\n", + "Epoch 1467/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.7516\n", + "Epoch 1468/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7485\n", + "Epoch 1469/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.7453\n", + "Epoch 1470/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7422\n", + "Epoch 1471/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7391\n", + "Epoch 1472/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.7359\n", + "Epoch 1473/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.7328\n", + "Epoch 1474/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.7297\n", + "Epoch 1475/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.7266\n", + "Epoch 1476/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7235\n", + "Epoch 1477/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.7204\n", + "Epoch 1478/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.7173\n", + "Epoch 1479/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7142\n", + "Epoch 1480/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.7111\n", + "Epoch 1481/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7080\n", + "Epoch 1482/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7049\n", + "Epoch 1483/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7018\n", + "Epoch 1484/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.6987\n", + "Epoch 1485/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6957\n", + "Epoch 1486/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.6926\n", + "Epoch 1487/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.6895\n", + "Epoch 1488/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.6865\n", + "Epoch 1489/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.6834\n", + "Epoch 1490/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.6804\n", + "Epoch 1491/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 1.6773\n", + "Epoch 1492/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.6743\n", + "Epoch 1493/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6713\n", + "Epoch 1494/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.6682\n", + "Epoch 1495/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.6652\n", + "Epoch 1496/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.6622\n", + "Epoch 1497/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.6591\n", + "Epoch 1498/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.6561\n", + "Epoch 1499/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.6531\n", + "Epoch 1500/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.6501\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "patience = 300\n", + "ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt',\n", + "1500, True, patience)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "twXXzEr1Oq7s" + }, + "outputs": [], + "source": [ + "mse_stop_ae1 = 1.6501" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ghEHU6XSOznl", + "outputId": "6b32baf3-8fdd-4051-e30b-bdea0819aca0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(2.15)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "IREth1" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "mb5m37JhKfHU", + "outputId": "4d9683c0-dca6-4705-e75b-e07d77d9aadc" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeUFMXaBvBnNrDLLixRkgQTimIOGEFMYBYVFfQqeM1iuoar+JkTXhUj5gB6FQNcQcxgQFREQFERUQwkJShhFxY2z3x/lLVTXVPVYaZnZxae3zkcZndnemp6uqur3n6rKhKLxWIgIiIiIiIiIiIiyhI5mS4AERERERERERERkYpBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElERERERERERERZhUFLIiIi2mTMnz8fF198MXbaaSc0b94ckUik/t+iRYsyXbzN0pgxY+q/g6FDhzboe6vfPxERERE1LgxaEhERNXJ9+/atD8zccsst1uepARz9X25uLlq2bInu3bvjlFNOwTPPPIPy8vKkyhD0X1iBrEmTJmGPPfbA448/jvnz5wcqPxHRBx984Kibdtxxx8DbuOWWW5KuC7faaivXbS9btgxvvPEGbrjhBhx55JFo06YNb8wQEdEmLS/TBSAiIqLMi0ajKCsrQ1lZGX755ReMHz8ew4cPx1NPPYUTTzwx08XzVF5ejqFDh6KqqgoA0LFjRxx00EHYYost6rPsSkpKMlnElNxyyy249dZbAQA333yza3CaKFtttdVWWLx4MQBg4cKFnkG6hvb88887fv7xxx8xc+ZM9OrVK0MliuvUqROWL1+e6WIQERE1KAYtiYiINkMDBgzAlltuWf9zNBrFqlWr8MUXX+D3338HAKxatQoDBw7E+PHjAwUu99lnn0Cd/P32289/wS3eeustrF27FgDQs2dPzJo1C02bNk15u0S0eVi/fj1ef/31hN8///zzSQctO3XqFKjubNOmjfVvDFgSEdHmiEFLIiKizdDll1+Ovn37Jvw+Go3i+eefx0UXXYSqqipEo1FcdNFF6N+/P4qKinxt++ijj27wTMCvv/66/vHgwYMZsMwiQ4cObfC5LKVYLJaR96XGZ/z48di4cSMAoGnTpqioqAAAvPLKK3jggQfQpEmTwNvs3r07Ro0aFVoZCwsLsfvuu2OfffbBPvvsg/bt26N///6hbZ+IiCjbcE5LIiIiqpeTk4Ozzz4b99xzT/3vVq5ciYkTJ2auUD7ILEtADA0nIgpCHRp+7bXXon379gCANWvW4M0338xUsep9/fXXWL9+Pb744gs8/PDDOPPMM7H99ttnulhERERpxaAlERERJbjgggtQWFhY//O0adMyWBpvNTU19Y9zcti8ISL/Fi1aVF/HRSIRDBkyBIMHD67/uz7XZSbsscceyMvjIDkiItq8sFVPRERECQoKChwr5y5btiyDpTFTV+lVgwpnn312wqq8Y8aMMW6jvLwcDz/8MPr374/OnTujsLAQrVq1ws4774xLLrkEX375pa+yqO8lffvtt7j88sux8847o3Xr1ohEIhgwYECgzyhXZZeL8ADArbfe6msV9qFDhyZ8/tLSUjz00EPo06cPttxyS+Tl5SESiaC0tNTx2j///BOjR4/GkCFDsMcee6B169bIz89Hy5Yt0aNHD5x99tl4//33fX2GMWPGeK4UP3Xq1PrnqNMWfPTRRxg0aBC22WYbFBYWok2bNujTpw9GjRrlCFTbmL4X3VZbbZWw+vLvv/+OG2+8EbvtthtatmyJ4uJi9OjRA5deemn9QjJ+TZkyBYMGDULXrl1RWFiIjh07onfv3nj00UexYcMGAM5jOaypFVatWoX77rsPhx9+ODp16oTCwsL677Bnz54YOHAg7r//fixcuNDX9j788ENceOGF6NmzJ1q3bo2CggJ06tQJ/fv3x6hRo+qHU+sWLVpU/9nUfbf11lsbj+OpU6eG8fEDeeGFF+qnEjjooIOw1VZb4cwzz6z/+7vvvos///yzwctFRES0uePtOiIiIjJS54WsrKzMYEnS46233sJ5552HFStWOH5fVVWF0tJSzJs3D48++ihOP/10PP30077n9AREEOqOO+5AXV1d2MVO2ueff47Bgwdj6dKlrs97+OGHceWVVxrLLleY/+mnnzBmzBgceuiheO2111wXEElGdXU1LrnkEjz99NOO31dVVeHTTz/Fp59+itGjR+P9999H27ZtQ33viRMnYujQoSgrK3P8/qeffsJPP/2EZ599FuPGjcMxxxzj+RnOOeccvPjii47fr1ixAitWrMBnn32GRx99FBMmTAi1/ADwxhtv4Oyzz3ZMmyDJ7/CHH37A//73P9x///31i2+ZLF26FGeddZYxmLh8+XIsX74ckydPxogRI/DKK6+gd+/eYX6UBvHCCy/UP5bByj333BM9e/bEvHnzUFtbi7Fjx+KKK67IUAmJiIg2TwxaEhERkZGaXSnnd8smvXr1wrBhwwCILLAff/wRAHDYYYehR48ejueqWaMA8Oqrr+KMM86oD8zl5ubioIMOwnbbbYfy8nJ8+umn9Z9/7NixWLhwIT766CPHkHmbe++9tz4zctttt0WvXr1QVFSERYsWIT8/P9BnPPHEE7Hzzjtj5syZmDVrFgD76uxuq7D/8ssvuOKKK1BWVobmzZujT58+6NSpE9auXZsw9H/ZsmX1+2WbbbbBjjvuiC222AKFhYUoLS3F3LlzMW/ePAAiE/Lwww/HjBkzUFBQEOizuTn//PPx/PPPIycnB/vuuy969OiBaDSKGTNm4KeffgIg5vg766yz8M4774T2vh988AEuvPBC1NXVoWvXrth///1RUlKChQsXYurUqaitrUVFRQVOPfVUfP/999h6662t2xo8eLBjNerWrVujb9++aN26NZYuXYpPPvkE8+fPxzHHHIPjjz8+tM8we/ZsDBw4ELW1tQDEzYf99tsPW221FQoKCrBu3Tr8+uuvmDt3bv3CMzbz58/HYYcdVr9ydSQSwZ577omddtoJTZs2xR9//IFp06Zh/fr1WLZsGY444gi8++67OOSQQ+q3UVJSUn+evvDCC1i/fj0A4KyzzkLz5s0T3nPLLbcMZT/49dlnn+HXX38FIDLMTznllPq/nXnmmbjuuusAiCHiDFoSERE1sBgRERE1agcffHAMQAxA7Oabb7Y+Tz4HQOzjjz923eZPP/3keP6oUaNCKUO6DBkypP79R48e7frcX375JdasWbP65/fq1Sv2888/O55TV1cXGzlyZCwnJ6f+eZdeeql1m+q+ysvLi7Vo0SI2YcKEhOdVVlYm8/FiN998c+D9q+6TvLy8GIDYsGHDYuvXr3c8r7q6OlZXV1f/87PPPht75JFHYr///rt1299++21s7733rt/+7bffbn3u6NGj6583ZMgQ43M+/vjj+ucUFBTEAMT22Wef2Pz58x3Pi0ajsQcffNCxvz/55BPre6vPs+nWrZvjvYuLi2P//e9/Y9Fo1PG877//PrblllvWP/fss8+2bvOZZ55xvPdVV12V8N2vXLkydtRRRzk+cxjnz4ABA+q3dfLJJ8fWrFljfF5FRUXs7bffjl1wwQXGv5eXl8d23HHH+m0dddRRsV9++SXheWVlZbGLLrqo/nkdO3aMlZaWGrep7uuFCxcm/RnDdO6559aXaeDAgY6/LV261FEHfPvtt57bU8/Vgw8+OE2lFhYuXOg4zrJlnxIREYWFmZZERETkUFtbi8svv7z+55KSEgwaNMj369955x2sWrXK9/Nvu+02tG7dOlAZU3HbbbehvLwcALDddtth8uTJaNGiheM5OTk5uPLKKxGJRHDllVcCAB599FH861//cs2uA4BoNIpJkyahT58+CX8LMxsxiNraWpx77rkYNWpUwt/07M9//vOfntvbdddd8cEHH6BHjx5YsWIFHnvsMQwfPhy5ubkpl7Wqqgrdu3fHRx99hGbNmjn+FolEcPnll+Ozzz7D+PHjAQAvv/yycV8no7q6GhMnTsSRRx6Z8LeePXviySefxLHHHgsAGDduHJ566qmExVHq6upw88031/98wQUX4L777kvYXrt27TBx4kQcdNBB9Vm0Yfj0008BiGNtzJgxCftQKiwsxNFHH42jjz7a+Pf7778f8+fPByAyfsePH29c5KqkpASPPfYYNm7ciOeffx7Lly/HE088gWuvvTakT5Q+FRUVeO211+p/VuexBIDOnTujb9+++OijjwCIbMuRI0f63v7PP/+MSy65xPfzzzzzTOy7776+n09ERLSpY9CSiIiIEI1GsWrVKnz++ee4++67MXPmTABAXl4ennvuuUBzFs6aNStQEObqq69usKBlaWkpXn311fqf77nnnoSAperyyy/Hs88+i3nz5iEajeKpp57CiBEjXN9j4MCBoQXRwlJYWIh77rkn1G22aNECJ554Ih5//HEsX74cP/zwA3bZZZdQtn333Xdbg22ACKzKoKU8VsNw7LHHGgOW0tFHH40OHTpgxYoVKC8vx/z58xM+83vvvYc//vgDAFBcXIy7777bur0mTZrgvvvuw8EHHxzOBwCwbt06AEBRUZHrPnRTU1NTH+AuKCjAE088YQxYqu666676BW1eeumlRhG0nDhxYv3+atOmDY466qiE55x55pn1QcuXXnoJ//nPf3yv4r1s2TI8+uijvsuz9957M2hJRESkYNCSiIhoM6TOOWezww47YOTIkZ4LjjQm06dPR1VVFQCgbdu2OO6441yfn5OTg3/+85+46qqrAAAff/yx53sEyUptKP369UOrVq0Cv+7PP//EjBkzMH/+fKxduxYbNmyoX2UZEPMnSt98800oQcvCwkLP72WPPfaofyxX/A6DOp+hSSQSwW677Va/eNOiRYsSPrO6YM0xxxyDli1bum6zT58+6Nq1K5YsWZJUmXVdunTBb7/9hrVr1+LVV1/FaaedFngbs2fPrl8t+7DDDkO7du08X9OpUyf06NED8+fPx/fff4+ysjLXGwLZ4Pnnn69/PGjQIOOcswMHDsSwYcOwceNGrFy5Eu+///4mVScSERFlMwYtiYiIKEH79u3xwgsvGBd88XLzzTfjlltuCb9QIZgzZ0794169evnKmDrwwAMdr4/FYohEItbn77XXXqkVMg2ClumHH37Atddei3fffdf3CuhBpgRws8MOO3guWKRm/spMuTD4Cbp6vfc333xT/9hv1lyvXr1CC1qeeuqp9dmdgwcPrg9cHnLIIb6CjwDwxRdf1D/+/ffffQ9xLi0tBQDEYjH8/vvvWR20XLZsGT744IP6n/Wh4VKzZs0wYMAAjB07FoAIdPoNWh588MHGVdeJiIjIHwYtiYiINkMDBgxwrNK7evVq/Prrr/XDuleuXInevXvjf//7X/0cfpuCv/76q/5xt27dfL1mq622qn9cXV2N9evXo6SkxPr8LbbYIunypUuQMr3//vs44YQT6jNS/ZKrQqfKT6BLDWrKVbIz8d41NTUJf1ePsS5duvh6386dO/t6nh833HADpk6dihkzZiAWi2HChAmYMGECAKB79+7o3bs3DjvsMBx33HHG1bsBEdCTvvvuO3z33XeBy7F27drkPkADefHFF+sD8t27d3cNMJ955pn1QctJkyZh7dq1SWUuExERUTDuk9MQERHRJunyyy/HqFGj6v+9/PLLmDlzJr799lvstttuAESAbvDgwfj1118zXNrwyAV4ADHfoB/687yCc02bNg1esDTzW6a//voLp512Wn3Aslu3bhgxYgQ+++wzLFu2DBs3bkQ0GkUsFkMsFnMsOBONRkMpq1sWa7qF8d7qMVZUVOTrNcnOPWlSXFyMTz75BPfee68j4A6IhWGee+45nHHGGejQoQP+/e9/o6KiImEbZWVlKZcjzGByOqhDw//xj3+4PveII45Ahw4dAIiFotR5cYmIiCh9GLQkIiKiervuuismT55cn4VZXl6Oc889N8OlCo8aHNqwYYOv1+jPs2WnbQqefvrp+oDVbrvthu+++w7XXXcdDjzwQHTs2BFNmzZ1BPbCyq7clKjH2MaNG329xu+x6FeTJk1w9dVX47fffsM333yDhx9+GIMGDXJkV2/cuBH33nsvDjnkkITApRqov+yyy+qD1EH+9e3bN9TPFKbZs2fjhx9+qP/55ptvRiQSsf7Ly8urn8cUcAY8iYiIKH0YtCQiIiKHdu3a4ZFHHqn/eerUqXj77bczWKLwqMOk/c4hqC700qRJk006aPnhhx/WP77hhhtch8EDwOLFi9NdpEanbdu29Y9///13X6/x+7yg5MJBl156KV5++WX8/vvv+Prrr3H22WfXP+fLL79MWOG6ffv29Y/VYN2mItWg44wZM7BgwYKQSkNEREQ2nNOSiIiIEpx44ok48MAD8fnnnwMQAaxNYcVcddXpmTNnoq6uDrm5ua6vmT59uuP1mRi+3FDvqc5l6LUoTV1dXf3xQXG77757ffD3yy+/9PWamTNnprNIDnvssQeee+455Obm4plnngEg5mm8+uqr65+jzu84ffp0z8Wn/Mrk0H+puroaL7/8cv3PO+ywg+cK79LPP/+MNWvWABCBzzvvvDMdRSQiIqK/MdOSiIiIjNQVwL/55htMmjQpc4UJyQEHHICCggIAYv5GrwzSaDSK0aNH1/986KGHprV8NoWFhfWPTYu/hCUnJ9409BraPHHixE0yCy9V6rDot99+23N+yM8++ywjGavHH398/eOVK1c6/nbggQfWB/J+//13vPnmm6G8Z0Mdx27efvttrF69GgCQl5eHadOmYcaMGb7+XX/99fXb+e9//xvaPK5ERERkxqAlERERGR1++OE44IAD6n++4447MliacLRs2RKnnXZa/c/XXHON67yMo0aNwty5cwGIgN7555+f9jKatGnTpv7xH3/8kbb32WabbeofuwWp//rrL/zrX/9KWzkasyOPPBKdOnUCIOaEVQNduurqakeGY6qqqqocCwG5Wbp0af3jdu3aOf5WUFCAK664ov7niy++ONBxpwdBpYY6jt2oQ8OPOOKIhM/uZvDgwfWB/aVLl+Ljjz8OvXxEREQUx6AlERERWd100031j2fNmoX33nsvg6UJx0033VS/WMqCBQvQv39//Pbbb47nRKNRPPTQQ7jyyivrfzds2LCE1Zgbys4771z/ePLkyaGs7mxy3HHH1T8eMWIEXnzxxYTnfP311zj44IOxdOlS3yuwb07y8vIcWcqPPfYYrr32WlRXVzue99dff+Hkk0/Gl19+WZ/9m6rly5ejS5cuuPrqqzF79mzr86ZMmeJY+f2oo45KeM5VV12Fnj17AhABxr333hvjxo2zZheuWrUKTz31FPbcc0/ce++9xueox/G4ceN8faYxY8Y4FsVR55gNatWqVXjnnXfqfz7jjDMCvb5Tp0445JBD6n/mgjxERETpxTktiYiIyKp///7Yd9996+fmu/3223HkkUe6vuadd97BqlWrfL9HUVER7rnnnpTKGcS2226LZ555BmeccQbq6urwxRdfYIcddkDv3r2x7bbbory8HJ9++qkjE2y//fZr0DLqevXqhS5dumDp0qVYvnw5evTogX79+qFt27b18wTus88+jizSZAwZMgQjR47EggULUFVVhTPPPBN33XUXdtttNxQWFuL777+vD4bttttu6N+/f0b3S7Y699xz8fbbb+ONN94AANxzzz149tln0bdvX7Ru3Rq///47Pv74Y1RWVmKbbbbBCSecgAceeACAc4h+MkpLSzFy5EiMHDkSrVu3xh577IEtt9wShYWF+PPPP/Hdd985gvTbb789Lr/88oTtNGvWDJMmTcLhhx+OhQsXYsWKFTj11FPRtm1b7LfffujQoQNisRjWrFmDH374AT///HN9QNM2jcLJJ5+MJ598EoAI5n711VfYc889UVRUVP+ciy66CNtuu21K+8Bm7Nix9cPSi4uLMWDAgMDbOOOMM+rnLH399dfx2GOPOVaMV/3888+45JJLAm1/+PDhjlXepSeeeAJPPPGE43d6IPzoo49GkyZNHL+78MILceGFFwYqAxERUbZg0JKIiIhc3XTTTfWL8EyfPh0ffvghDjvsMOvzZ82ahVmzZvnefosWLRo88HXaaaehuLgY5557LlauXIna2lp8/PHHxuGegwcPxjPPPOOYj6+h5eTk4LHHHsPJJ5+M6upqrFixAi+88ILjOUOGDEk5aFlQUIA333wTRx11VH1ga/78+Zg/f77jeQceeCBeffVVPP300ym936YqEong1VdfxdChQ/HKK68AAFavXo3//e9/juftuOOOmDBhguO79Fqx3U1+fj4KCgpQVVUFAFizZo1jRXhd37598fLLL1szZrfZZhvMnj0bF154IcaPH49YLIZVq1bhrbfesm6zZcuW1kWcjjjiCAwePLh+IZwvv/wyYbGiY489Nm1BSzUzcsCAAUllCp988sm4+OKLUVlZiQ0bNmD8+PEYOnSo8bnLli1LWJndy7nnnmsMWq5YsQLffvut62v181S+joiIqLHi8HAiIiJydfTRR2Pvvfeu//m2227LYGnCc+yxx+KXX37BQw89hCOOOAKdOnVCkyZN0KJFC+y44464+OKLMWPGDIwdO9aRCZbJ8s6ePRsXXHABevbsiebNm6dlNebtt98ec+bMwV133YW9994bzZs3R0FBAbp164Zjjz0WY8eOxSeffGIMrFBcQUEBXn75Zbz//vs45ZRT0LlzZzRp0gTt27fHgQceiEceeQSzZs3CDjvsUL8iNQDfK1mbbLnllli9ejUmTZqEa665Boceeii6du2Kpk2bIjc3Fy1btsRuu+2Gc889F1OmTMHHH3+MDh06uG6zdevWeO211/Ddd9/h+uuvxwEHHICOHTuiSZMmKCwsRIcOHXDQQQfhsssuw6RJk7B8+XIMGTLEur2XXnoJL730Eo499lh07ty5wW4GfP/99/j666/rfw46NFwqKSlxTKMwZsyYVItGREREFpFYLBbLdCGIiIiIiDZXBx54IKZPnw4AmDFjBvbdd98Ml4iIiIgo8xi0JCIiIiLKkMWLF2PbbbdFXV0dmjRpgrKysoxORUBERESULTg8nIiIiIgoA2KxGC6//HLU1dUBAE488UQGLImIiIj+xqAlEREREVHIbrrpJjz00ENYtWqV8e+LFi3CiSeeWL/CeG5uLq6++uqGLCIRERFRVuPq4UREREREIVuyZAluv/12XH311dhll13Qo0cPtGjRAuXl5fjxxx8xZ86c+gxLALjhhhscC14RERERbe4YtCQiIiIiSpPa2lrMmTMHc+bMMf69adOmuO2225hlSURERKThQjxERERERCErLS3FG2+8gY8++gjz5s3DX3/9hVWrVqGurg6tW7fGDjvsgMMOOwznnHMOOnbsmOniEhEREWUdBi19ikajWLZsGZo3b45IJJLp4hARERERERERETUqsVgM69evR6dOnZCT477UDoeH+7Rs2TJ06dIl08UgIiIiIiIiIiJq1JYuXYrOnTu7PodBS5+aN28OQOzUkpKSDJcmfDU1NZg8eTL69euH/Pz8TBeHaLPDc5Ao83geEmUez0OizOI5SJR5m/p5uG7dOnTp0qU+zuaGQUuf5JDwkpKSTTZoWVRUhJKSkk3ypCDKdjwHiTKP5yFR5vE8JMosnoNEmbe5nId+pl50HzxORERERERERERE1MAYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVsnLdAE2B7FYDDU1NYhGo5kuilVNTQ3y8vJQWVmJurq6TBdnk5ebm4v8/PxMF4OIiIiIiIiIKCsxaJlG1dXV+PPPP7Fx48asDwTGYjF06NABS5cuRSQSyXRxNgsFBQVo27YtSkpKMl0UIiIiIiIiIqKswqBlmmzcuBFLly5Fbm4uWrVqhaZNmyI3NzdrA4LRaBTl5eVo1qwZcnI4a0A6yczbsrIy/PHHHwDAwCURERERERERkYJByzRZtWoV8vPz0a1bN+Tm5ma6OJ6i0Siqq6tRWFjIoGUDaNq0KZo3b47ff/8dq1atYtCSiIiIiIiIiEjB6FQa1NbWYsOGDWjdunWjCFhSZkQiEbRo0QJVVVWoqanJdHGIiIiIiIiIiLIGg5ZpUFtbC0DMWUjkRi7Gk+1znhIRERERERERNSQGLdMoW+evpOzBY4SIiIiIiIiIKBGDlkRERERERERERJRVGLQkIiIiIiIiIiKirMKgJREREREREREREWUVBi0po7baaitEIhGMGTOm/ndjxoxBJBJx/MvJyUFJSQn22GMPDB8+HH/99Zd1m/prbf+mTp2a/g9IRERERERERESB5WW6AEQ2xcXFGDhwIACxuvbixYvxxRdf4JtvvsHo0aPx6aefonv37tbX9+/fHx06dLD+3e1vRERERERERESUOQxaUtZq27atIwMTAObNm4eDDz4YK1euxBVXXIG3337b+vrrrrsOffv2TW8hiYiIiIiIiIgodBweTo1Kz549ceWVVwIApkyZgqqqqgyXiIiIiIiIiIiIwsagJTU6u+66KwCgpqYGa9asyXBpiIiIiIiIiIgobAxaUqOzbt06AEBubi7atm2b4dIQEREREREREVHYGLSkRkfOY3nkkUciPz8/w6UhIiIiIiIiIqKwcSGeTNl7b2DFikyXol4EQEkshkgk4v3kDh2A2bPTXiaVXD38qaeewtixY9GtWzc8/PDDrq855JBDrH9r0aIFSktLQy4lERERERERERGFgUHLTFmxAvjjj0yXol7k73/ZZPHixcYgaq9evTB58mS0aNHC9fX9+/dHhw4djH8rKioKpYxERERERERERBQ+Bi0zxRJMy5QYgNjfmZaewcsGKntxcTEGDhwIAKiqqsL8+fPx7bffYubMmbjgggvwyiuvuL7+uuuuQ9++fRugpEREREREREREFCYGLTOlgYdXe4lFo1i3bh1KSkoQycmOqU7btm2LMWPGOH73+uuv47TTTsOrr76KPn364OKLL85M4YiIiIiIiIiIKG2yIzpF5NNJJ52E6667DgBw0003oaysLMMlIiIiIiIiIiKisDFoSY3O8OHD0bFjR6xevRr3339/potDREREREREREQhY9CSGp2ioiLceOONAIAHH3wQa9euzXCJiIiIiIiIiIgoTJzTkhqlc889FyNHjsSvv/6K++67D3feeWfCc+6+++6EOTFVp59+Ovr165fGUhIRERERERERUTIYtKRGKT8/H3fccQcGDx6MRx55BFdeeSXatGnjeM7777/vuo3dd9+dQUsiIiIiIiIioizEoCVl1KJFixJ+N3ToUAwdOtTztYMGDcKgQYMSfh+LxUIoGRERERERERERZQrntCQiIiIiIiIiIqKswqAlERERERERERERZZVGGbR8/PHHseuuu6KkpAQlJSXYf//98e6777q+Zty4cejRowcKCwuxyy674J133mmg0hIREREREREREVEQjTJo2blzZ9x999346quvMHv2bBx66KE44YQTMG/ePOPzp0+fjsGDB+Occ87BnDlzMGDAAAwYMADff/99A5eciIiIiIiIiIiIvDTKoOVxxx2Ho48+Gt27d8f222+PO++8E82aNcOMGTOMz3/ooYdw5JFH4pprrsGOO+6I22+/HXvuuSdGjRrVwCUnIiIiIiIiIiIiL41+9fC6ujqMGzcOGzZswP777298zhdffIErr7zS8bv+/ftj4sSJ1u1WVVWhqqqq/ud169YBAGpqalBTU+NappqaGsRiMUSjUUSjUZ+fJLPkituy3NQwotEoYrEYampqkJubm+niUAbJesWrfiGi9OF5SJR5PA+JMovnIFHmbernYZDP1WiDlnPnzsX++++PyspKNGvWDBMmTMBOO+1kfO6KFSvQvn17x+/at2+PFStWWLc/YsQI3HrrrQm/nzx5MoqKilzLlpeXhw4dOqC8vBzV1dU+Pk32WL9+faaLsFmprq5GRUUFpk2bhtra2kwXh7LAlClTMl0Eos0ez0OizON5SJRZPAeJMm9TPQ83btzo+7mNNmi5ww474JtvvkFZWRnGjx+PIUOG4JNPPrEGLoMaPny4Iztz3bp16NKlC/r164eSkhLX11ZWVmLp0qVo1qwZCgsLQylPusViMaxfvx7NmzdHJBLJdHE2G5WVlWjatCn69OnTaI4VSo+amhpMmTIFRxxxBPLz8zNdHKLNEs9DoszjeUiUWTwHiTJvUz8P5UhmPxpt0LJJkybYbrvtAAB77bUXZs2ahYceeghPPvlkwnM7dOiAlStXOn63cuVKdOjQwbr9goICFBQUJPw+Pz/f86Cpq6tDJBJBTk4OcnIax7Shcki4LDc1jJycHEQiEV/HFW0eeCwQZR7PQ6LM43lIlFk8B4kyb1M9D4N8pk0mOhWNRh1zUKr2339/fPjhh47fTZkyxToHJhEREREREREREWVOo8y0HD58OI466ih07doV69evx9ixYzF16lS8//77AICzzjoLW265JUaMGAEAuPzyy3HwwQdj5MiROOaYY/DKK69g9uzZeOqppzL5MYiIiIiIiIiIiMigUQYt//zzT5x11llYvnw5WrRogV133RXvv/8+jjjiCADAkiVLHEOcDzjgAIwdOxY33HADrr/+enTv3h0TJ07EzjvvnKmPQERERERERERERBaNMmj57LPPuv596tSpCb875ZRTcMopp6SpRERERERERERERBSWTWZOSyIiIiIiIiIiIto0MGhJGbXVVlshEolgzJgx9b8bM2YMIpGI419OTg5KSkqwxx57YPjw4fjrr7+s29Rfa/tnysh1I8s1dOjQ5D4sERERERERERH50iiHh9Pmobi4GAMHDgQA1NXVYfHixfjiiy/wzTffYPTo0fj000/RvXt36+v79++PDh06WP+u/y0SiQAAYrFYCKUnIiIiIiIiIqJkMWhJWatt27aODEwAmDdvHg4++GCsXLkSV1xxBd5++23r66+77jr07ds3vYUkIiIiIiIiIqLQcXg4NSo9e/bElVdeCQCYMmUKqqqqMlwiIiIiIiIiIiIKG4OW1OjsuuuuAICamhqsWbMm5e3dcsst9UPDgcQ5MRctWpTwmg0bNmD48OHYbrvtUFBQgA4dOmDIkCH4448/Ui4PEREREREREdHmjsPDqdFZt24dACA3Nxdt27ZNeXu77747hgwZgueffx4AMGTIEMffmzVr5vi5rKwMBxxwAJYsWYLevXtj5513xhdffIEXXngBn3zyCb799lu0aNEi5XIREREREREREW2uGLSkRkfOY3nkkUciPz8/5e0NGDAAAwYMqA9a6vNo6iZOnIj+/fvj008/RUlJCQBg7dq1OPTQQ/HNN9/gsccew/Dhw1MuFxERERERERHR5opBywzZe++9sWLFikwXwyEWizmGSdt06NABs2fPboASxcnVw5966imMHTsW3bp1w8MPP+z6mkMOOcT6txYtWqC0tDSpshQXF2P06NH1AUsAaNWqFa677joMGjQIH3zwAYOWREREREREREQpYNAyQ1asWMH5Dz0sXrzYGETt1asXJk+e7DkEu3///ujQoYPxb0VFRUmXa++990bHjh0Tfr/jjjsCAL9XIiIiIiIiIqIUMWiZIbZgWiYFybRsCMXFxRg4cCAAoKqqCvPnz8e3336LmTNn4oILLsArr7zi+vrrrrsOffv2Db1cXbt2Nf5eZl5WVlaG/p5ERERERERERJsTBi0zpKGHV3uJRqNYt24dSkpKkJOTHYvKt23bNmF+yddffx2nnXYaXn31VfTp0wcXX3xxg5crW/YPEREREREREdGmitEXalROOukkXHfddQCAm266CWVlZRkuERERERERERERhY1BS2p0hg8fjo4dO2L16tW4//77Q9uuXIm8trY2tG0SEREREREREVFwDFpSo1NUVIQbb7wRAPDggw9i7dq1oWy3c+fOAIB58+aFsj0iIiIiIiIiIkoO57SkRuncc8/FyJEj8euvv+K+++7DnXfemfCcu+++O2FOTNXpp5+Ofv361f988skn47777sPhhx+OQw89FM2bNwcA/Oc//0GbNm1C/wxERERERERERGTGoCU1Svn5+bjjjjswePBgPPLII7jyyisTAovvv/++6zZ23313R9Dy9ttvR05ODl5//XVMnDgR1dXVAIAbbriBQUsiIiIiIiIiogbEoCVl1KJFixJ+N3ToUAwdOtTztYMGDcKgQYMSfh+LxZIqS2FhIf7zn//gP//5j/HvXuXaaqutkn5vIiIiIiIiIiKK45yWRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQMo1isVimi0BZjscIEREREREREVEiBi3TICdH7Na6uroMl4SynTxG5DFDREREREREREQMWqZFfn4+8vPzUV5enumiUJarqKhAbm4u8vPzM10UIiIiIiIiIqKswaBlGkQiETRv3hxlZWWoqKjIdHEoS9XV1aGsrAxFRUWIRCKZLg4RERERERERUdbIy3QBNlVt27ZFRUUFlixZgpKSEjRv3hy5ublZG5yKRqOorq5GZWUlhyqnWSwWQ1VVFdasWYNoNIp27dplukhERERERERERFmFQcs0yc3NRZcuXbBq1SqsX78epaWlmS6Sq1gshoqKCjRt2jRrA6ubmuLiYnTo0AFNmjTJdFGIiIiIiIiIiLIKg5ZplJubi/bt26Ndu3aoqalBNBrNdJGsampqMG3aNPTp04fzKzaAvLw85OXx9CMiIiIiIiIiMmHUpAFEIpGsz6bLzc1FbW0tCgsLGbQkIiIiIiIiIqKM4uSFRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElERERERERERERZhUFLIiIiIiIiIiIiyioMWhIREREREREREVFWYdCSiIiIiIiIiIiIsgqDlkRERERERERERJRVGLQkIiIiIiIiIiKirMKgJREREREREREREWUVBi2JiIiIiIiIiIgoqzBoSURERERERERERFmFQUsiIiIiIiIiIiLKKgxaEhERERERERERUVZh0JKIiIiIiIiIiIiyCoOWRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElERERERERERERZhUFLIiIiIiIiIiIiyioMWhIREREREREREVFWYdCSiIiIiIiIiIiIsgqDlkRERERERERERJRVGLQkIiIiIiIiIiKirMKgJREREREREREREWUVBi2JiIiIiIiIiIgoqzBoSURERERERERERFmFQUsiIiIiIiIiIiLKKgxaEhERERERERERUVZh0JKIiIiIiIiIiIiyCoOWRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZZVGGbQcMWIE9tlnHzRv3hzt2rXDgAED8NNPP7m+ZsyYMYhEIo5/hYWFDVRiIiIiIiIiIiIi8qtRBi0/+eQTDBs2DDNmzMCUKVNQU1ODfv36YcOGDa6vKykpwfLly+v/LV68uIFKTERERERERERERH7lZboAyXjvvfccP48ZMwbt2rXDV199hT59+lhfF4lE0KFDh3QXj4iIiIiIiIiIiFLQKIOWurKyMgBA69atXZ9XXl6Obt26IRqNYs8998Rdd92Fnj17Gp9bVVWFqqqq+p/XrVsHAKipqUFNTU1IJc8e8jNtip+NqDHgOUiUeTwPiTKP5yFRZvEcJMq8Tf08DPK5IrFYLJbGsqRdNBrF8ccfj9LSUnz22WfW533xxRf4+eefseuuu6KsrAz33Xcfpk2bhnnz5qFz584Jz7/llltw6623Jvx+7NixKCoqCvUzEBERERERERERbeo2btyI008/HWVlZSgpKXF9bqMPWl500UV499138dlnnxmDjzY1NTXYcccdMXjwYNx+++0JfzdlWnbp0gWrVq3y3KmNUU1NDaZMmYIjjjgC+fn5mS4O0WaH5yBR5vE8JMo8nodEmcVzkCjzNvXzcN26dWjbtq2voGWjHh5+ySWX4K233sK0adMCBSwBID8/H3vssQd++eUX498LCgpQUFBgfN2meNBIm/rnI8p2PAeJMo/nIVHm8Twkyiyeg0SZt6meh0E+U6NcPTwWi+GSSy7BhAkT8NFHH2HrrbcOvI26ujrMnTsXHTt2TEMJiYiIiIiIiIiIKFmNMtNy2LBhGDt2LN544w00b94cK1asAAC0aNECTZs2BQCcddZZ2HLLLTFixAgAwG233Yb99tsP2223HUpLS3Hvvfdi8eLFOPfcczP2OYiIiIiIiIiIiChRowxaPv744wCAvn37On4/evRoDB06FACwZMkS5OTEE0nXrl2L8847DytWrECrVq2w1157Yfr06dhpp50aqthERERERERERETkQ6MMWvpZO2jq1KmOnx944AE88MADaSoRERERERERERERhaVRzmlJREREREREREREmy4GLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElERERERERERERZhUFLIiIiIiIiIiIiyioMWhIREREREREREVFWYdCSiIiIiIiIiIiIsgqDlkRERERERERERJRVGLQkIiIiIiIiIiKirMKgJREREREREREREWUVBi2JiIiIiIiIiIgoqzBoSURERERERERERFmFQUsiIiIiIiIiIiLKKgxaEhERERERERERUVZh0JKIiIiIiIiIiIiyCoOWRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElERERERERERERZhUFLIiIiIiIiIiIiyioMWhIREREREREREVFWYdCSiIiIiIiIiIiIsgqDlkRERERERERERJRVGLQkIiIiIiIiIiKirMKgJREREREREREREWUVBi2JiIiIiIiIiIgoqzBoSURERERERERERFmFQUsiIiIiIiIiIiLKKgxaEhERERERERERUVZh0JKIiIiIiIiIiIiyCoOWRERERERERERElFUYtCQiIiIiIiIiIqKswqAlERERERERERERZRUGLYmIiIiIiIiIiCirMGhJREREREREREREWYVBSyIiIiIiIiIiIsoqDFoSERERERERERFRVmHQkoiIiIiIiIiIiLIKg5ZERERERERERESUVRi0JCIiIiIiIiIioqzCoCURERERERERERFlFQYtiYiIiIiIiIiIKKswaElEREREqfnuO2DFikyXgoiIiIg2IZFYLBbLdCEag3Xr1qFFixYoKytDSUlJposTupqaGuy4446orKzMdFGINluVlZUoLCzMdDGINms8D5NQWQmsXg1EIkCHDkAO74lTangeEmUWz0GizKusrES3bt3w1VdfZboooQsSX8troDJRI1BaWorVq1dnuhhERETUGMViwPLlmS4FERER0SaBNw8YtCRFy5YteVIQZRDvahNlHs/DJPzxR/xx8+bAJjgihRoWz0OizOI5SJR5lZWVaN++faaLkXEMWlK9kSNH4uijj0Z+fn6mi0K02ampqcE777zDc5Aog3geJikSiT++4grgttsyVhRq/HgeEmUWz0GizFPPw80dJx0iIiIionBwqnQiIiIiCgmDlkRERERkV1cHPPYYMHq0d1CSQUsiIiIiCgmHhxMRERGR3ZgxwLBh4vEWWwDHHmt/LoOWRERERBQSZloSERERkd3dd8cfP/FE5spBRERERJsVBi2JiIiIKBzMtCQiIiKikDBoSUREREThiEYzXQIiIiIi2kQwaElERERE/kQi7n9npiURERERhYRBSyIiIiLyh0FJIiIiImogDFoSERERUTgY1CQiIiKikDBoSURERER2XkPCVQxaEoXnkkuAnXYCZs7MdEmIiIgyIi/TBaBNXCwm/uUwPk6NQDTKY3Vzwu+bKHxciIcoHHPnAo8+Kh4ffDBQUZHZ8hAREWUAe2uUPhs3AnvuCWyzDbBwYaZLQ+TuhReAVq2Aa6/NdEmoIUyeDGyxBXD66ZkuCRERUaIVK+KPKyszVw4iIqIMYtCS0uehh4BvvgEWLwaGDMl0aYjcDRkCrFsH3HNPpktCqVi/3t/z+vcH1qwBXn4Z+PHH9JaJaFPiNfybw8OJNk2xmP9rLBERUUgYtKT0WbIk/phz8VBjwuGNjdOwYUCLFsB//hPsdeyEEYWHQUuiTU80Chx4oBih8M47mS4NERFtRhi0pPRp0iT+uLo6c+UgCqquLtMloGQ89pgImFx3XbDX5eampzxEmyPWn0SbnmnTgC++AKqqgGOOyXRpiLLPqlVAWVmmS0G0SWLQktKnoCD+mJkX1JjU1GS6BBRUVVXyrw2yMjIRJVLPIdafROHIprYzRyQQ2c2fD3TuDHTqBPzxR6ZLQ7TJYdCS0kfNtCRqTGprM10CCiqVDhVXECcv0Sjw5ZdigTlKxKAl0aaN10kiu4svFjfPN24Err4606Uh2uTwCkTpo2ZaEjUmDFo2PqkELTmHKXm55RZgv/2APn2yK/spWzBoSRS+bBoFwKAlkd3atfHHK1ZkrhxEmyhegSh9GLSkxopBy8Zn3brkX8vvm7zcfrv4/6uvEo+1VauAiROZhSnxfCLyb8UK4I03gMrKxL9l0w0Szv1MZKf2eVOZrogIEHODv/ce8NtvmS5J1mDQktInPz/TJSBKDjvdjQ+DltRQ9EDCMccAJ54IXHZZZsrTELwyvtQsLGZaEvkTiwGHHAIMGABcf33i37Pp2sRMSyI7Bi0pTE89BRx1FPL23Re5FRWZLk1W4BWI0ieb7hDTpm3dOuDpp4Effghne9nUUSB/GLTMnI8/Bl57zbxqdCwGTJoEvPnmpnNNUD9nNArMnCkeP/tsZsqTDTg8nJL17rvA669vOvVDEGvWAD/+KB4/8EDi37Pp2pRNQ9Vp8zJ7NvD88+Zs5GyhBi2zuZxSLCZGiLzzTqZLQiYXXwwAiJSVoYNsY27m8jJdANqEZVNjizZtN94IPPww0KwZ8NdfQGFhatvjsdv4pDKnJb/v5M2bBxx6qHg8ZgwwZIjz7x98AJxwgng8dSpw8MENWbr0UINyHBIuMGhJyfjyS+Doo8XjiRPjdcXmwiuDJpuuTZtjUJkyb9UqYJ99xOOFC8X80tlI7Xc0hkzL994TI0QA4NNPgYMOymx5yI43jAA00kzLESNGYJ999kHz5s3Rrl07DBgwAD/99JPn68aNG4cePXqgsLAQu+yyC97h3YX0yqbGFiUvFgNeeAF4/HFzJlU2ePhh8X95OfDtt6lvb1M7dquqgPvvB8aOzXRJ0oeZlpkxalT88QUXJP792mvjj2+4wX1bb7whjtNsDwSqQbny8syVIxULFwK33gp8/734Wdbzo0Z51/NewQueT8l77TVxPWsMnV6/JkwQWYSmAN1dd8UfX3FF4t9ra4FHHwX++9+0FS+jvOqPbLoBwPM6u8k6/LHHNq3v6v33449vvTVz5fDS2IaHX3NN/PFttzn/tnYtcPfdYhQNUZZolJmWn3zyCYYNG4Z99tkHtbW1uP7669GvXz/88MMPKC4uNr5m+vTpGDx4MEaMGIFjjz0WY8eOxYABA/D1119j5513buBPsJnIpsYWJW/mzHj2VIcO8Ttz2WrhQmDffVPbxqbU4APEsJqrrhKP6+qAM8/MbHnSgUHLzFDnOTOtwq4GwNwWcvjhBzGvGyAazHLhm2ykXts2bMhcOVJxwgnA3LmiY1JRAcyaFa/nIxFg2LBg2+Oclqn78kvgtNPE42jUHMRrbObOBU46STxevx646Sbn39W5zw3HTeT554FLLhE/dO4s5n/clHiNEMima1M2lYUSffBBvA4vKADOOSez5QlLY5lLtbEND1fbY/qNyiuuEAFwQIxea9u2wYpFZNNIagKn9957D0OHDkXPnj2x2267YcyYMViyZAm++uor62seeughHHnkkbjmmmuw44474vbbb8eee+6JUWqWCIVLb+DYsjNGjRITkDfWzl86vfACcPXVYt6jTPnll/jj+fMzVw6/Fi5MfRubWuP8yy/jj886K/sz2ZLBoGVmqMNWTHW836DlhAnxx3fckXq50kk9XhprpuXcueL/ykrxvT3/fPxvMkhkY/qeOTw8dc89F388fHjmyhGmcePij2++OfHvTZrEH1dXJ/w5V33Nk0+GWLAswaAlheWJJ+KP9cy5dBk/XgS4li9P33s0lqGxjW14uNsNZxmwBIA5cxqmPJuLn38WbawPPsh0SRqdRplpqSsrKwMAtG7d2vqcL774AldeeaXjd/3798fEiRONz6+qqkKVUums+7tDXFNTg5pNsEEuP1OYny2nqgpqF7VmwwbnnSgAkY8+Qt6llwIA6qJRRLM5u6ah/for8v++axpduhR1L76YkWJEKivrK4q60lJEs/D4z4tEEPm7Ix39+WfUBS1jNAp1rfuaysoG73in4xyUckpKHOdi7euvIyYzejYROWVlzvrGbT/GYo7vu7ayErEsPK4bg5xYrH6/x2Ix1Gr7Ma+uDrLLEc3JsZ6bOXV1/r+/NLKdh476YePG+vohUlrqaEjVVFU1iswQx+dZswY5W27puv/zYrH491hXl/A95gHxv9fUBK+DCbkbN9ZnEsQKCxPOpcYooR2ofabc3Nz4Z66pqf/M9c9TOtPRWGyTO64S6g/t86ntL9PfG1I2lYUS5cZi8XPJcC0OyrNNunIl8k85BQAQnTcPdWmaci1SV9cojrucvLx4W6iqKuvr79ycnPrjJVpb66hbHe3j6mq2j0OU178/IgsXAo8+ipqKCuvN/Hzt52w97lMV5HM1+qBlNBrFFVdcgQMPPNB1mPeKFSvQvn17x+/at2+PFStWGJ8/YsQI3GqYO2Py5MkoKipKrdBZbMqUKaFta6eff0Z3ddsTJ6KmeXPHc3Z56ils8/fjyH334Z399w/t/Ru7Tp9/jr+nnkbOa6/hzdNPz0g5us6Zgz3+frx43jzMzaK5YDt8+SW6fPwxOimZP2u+/BKfByxjpKYGxys/T//kE5Sm886xizDPQWmXBQvqzzMA+OHTT7FQOxcbg9Y//IBt33wTi/r1w1977OH42+7z5qGb8vM7b71lDR5Famsd3/ecmTOxTM34aUCtFizAdhMmYMkhh2Blr15Jb6fkt9+w/fjxWHbggVh24IEhltDdLosXx4+tWCxhrujD1q1Ds78f/7VmDWZYzs3tFyzAjsrPmZ5zWj8P1eVBPvv4Y6xbvBgAsMWcOThA+dv7EyeiLtWFwBqA+nk+fv11tF+6FLspv0v4HjdsqP8eV69Ygena34+tra3vsJWtWoVpWXSdaCz2XrgQW/79uCoSwfubwD7cacECRztQP652X7Givt6uq6xM+Ht1dTXkre5ly5fjq01gn6g6f/YZ9lJ+1j//Vt9843pepluTsjL0HDMGGzp2xIaOHbF3BstC7vZeubK+/qioqMCUkL4fW5u09bx56P3345wPPsCbf79f3oYN6DlmDKpatsSPp5+ecqZkp2++qe8LAdl73O22aBG2+vtxpLq6Qcq53euvo2TJEswbMgRVrVoFem2f9eshX7F21Sp8ppRXbR/MmjkTfzLLOjQnKKMB3580CXVaMlf987Sf09E3zAYbA4z8a/RBy2HDhuH777/HZ599Fup2hw8f7sjMXLduHbp06YJ+/fqhpKQk1PfKBjU1NZgyZQqOOOII5Ofr8f3k5Hz0kePnIw48UMxJpD5HqSQjeXk4Wq4iSYg0bQrce2/9z5naNzl//FH/eKtWrdAlW76jWAz5cg48RZvVq4PvK63SPHDffRFr4AB6Os5BKXfSJMfPPXfYATtmy/cYgPy+O33xBWq0oYS56nAWAEf36+cceqjSpqLYY5ddsHuG9ofbZwoib4stECkrw5bTp6Pm1luBvIa5vOeoQ1xisYRzL69p0/rHW7Rvbz03c777zvFzpuo7P+dh7/32Q2xv0X2PaMPA+vfp0+jmfzpk992Row1TPfqwwxwjI/KU+cLbtGiR8P3kKBlxLYuKeC1PQu4zz9Q/LmjZcpPYhznaQg4Jx43SBsyNRuv/Ls/DJso52GnLLdF+E9gnKrV9BRj2z6JFrn9Pt9wzzqj/DqNnn53RspC7XGWxqqaFhSl/P17Xwki7do6f5fvlXHopcv8OsGx78smIyTltkxTR2ufZetzlqlPcIP3ljMyYgby/271blpSgbvz4QK/PvftuMVQZQKuSEmt599lrL8SOOiq1wpJR/8MOA3zElCKxWFr6htlgXYCpvRp10PKSSy7BW2+9hWnTpqGzFgzTdejQAStXrnT8buXKlejQoYPx+QUFBSgwRL/z8/M3yYNGCvXzaRP75ldXOyddBxxzY0VycjbpfRuYti/q982SJcB55wE9egAPPpj++V6U7yhnwwbkZMt3ZJlLLrJyJfIrKnxdCGzyYrHEYzWo5cuBf/4TaNMGGD3a9/bSUsfoQ/JiMeRmy/foJhYDLrsMWLAAUDr0ABL3kXY85Eci9n2uzcmXJzaYYmFTl5+Xl/z5/Pc0KQCQX1MDKMHCtFKCo5FYLPF7Ua4DOXl59vpDGyLj+xz4+mvgyiuB446LLzYVArfz0HG8aBPu59fUZMWx5Eo7/vM3bEiYry5/6VJgRyX3VTkuc+rqEr9H5fWR2lpey5OhBMAjTZvG9+H8+WIOrIMPTlzIJtupx5qpjae0syM1NYl/V9sfubn+2h+PPgq8+irwn/8A2T56RwvI5EcizhtO2lxzDX5eKXOS5nz+eWbLQolmzhSrQJ98smNkifFanCTrtdDWR3n22frf5X36aXxxsWRpN5+z9rhr6HNVWccjZ9Kk4H0zpZ7JiUatr8/Lyclcm+bjj8U175//BLSbJpuCfJ99TdmmytpjPwVBPlP2T7xkEIvFcMkll2DChAn46KOPsPXWW3u+Zv/998eHH37o+N2UKVOwf7Y3aBozPZ3ctNCO+hy3RRo2R/o8D7Lxfu21wOTJwMMPA2+80bDl8Jo0viGtXm3/m5ad4Ek/VsMYCnHYYcB77wEvvQRMnZr69lKhZ/A1lrlR3npLLNQ1ebJomLvRj019NUSVPkl6tgx9CWvy9oZc1MwryOp3IZ5k9ekDfPKJWLDsr7/C376J2+rhFRUNU4ZU6Mf72rWJx96CBc6f1Q6Z/np9Ev9sOZ8aGzUArk4xcMQRwEcfiYVsfvut4cuVCq82nhqQsC3WGMSGDSLA++mnwEEHpb69dNOvW9l6baLstP/+wLRpwOWXO4+lMM4lL7b2ivreYSRVNJaFeBr6XE31O3ZbPVylX98b0qGHAp99JoKWmyKffbEcXgcANNKg5bBhw/Diiy9i7NixaN68OVasWIEVK1agQuksnHXWWRiurL54+eWX47333sPIkSPx448/4pZbbsHs2bNxidcqmZQ8P0FLtaJsoOGMjYYeaJKZVK+8Ev/d5MnpL4f6PYYdtHz7bWD77YERI4K/1m1F9aoqsUr2brsBP/zgva2wg5aTJztXWl+6NLXtpcqtI/TBByJr17Sya6apQwtffdX5N73Bpg8xcPsO9XNLfe6ttwLduwPvvuu/nGHxO7dLbS1wwgnAXnuZj61sClqqDd50LFCjflYl2zSt1IamnvEdYH6ejNGyQ30FLdVzZNYsYJddgG+/TfwbEOymyD33iPPNsijiJiUWA845B9h11/jq7So14K1mSqtDiN2ue9lIPTZMbTyv+iNoAEStAxq6sz1/vmhz/OMf/gMKev2hn5uZ6Kw++aQ4J8eOdf5e/0wNERgjd+oxrl4LG+LYT2E6m0DcAmrZRL/uZWO5J0wQfa77728cQUvVphi4Y9AykEYZtHz88cdRVlaGvn37omPHjvX/XlU6tUuWLMFyZSGNAw44AGPHjsVTTz2F3XbbDePHj8fEiRNdF++hFAUNWjLT0kmvzJYtE/936RL/3d+LQaRVOoOWxx4r5lS5/vrgF0a3TMvXXwf++1/gu+/83aELO2j58svOn0tLU9teqtyClkccAfz0E3DbbdYh9xmzdm38sd7h1RtZYQQtq6uBW24BfvkFyMS8SX6z9MaPByZNEkOjBw1K/Hs6A2f6eRok07KhOjnpph5bjTHT0hS01H8ns9Xl962fT99/D8h5rpINWtbViZEDv/wCnHiiv9c0ZlOnAs89JwKWAwcm/l09dmyLOWVowbCkeWVaeh0ramDMz3W5oW5cmBxzjGhzvPSSyP72Q29T6eehbcRNWEztrgsvFOfkGWe4v9ZPUCZbAh6bA/XYyESmpfyuw860TNfIoLCPTb1+ysYbmCedJPpcV13lP2hZXZ2+4ynId6Aeb43xhonps5qObcPzGLQUGmXQMhaLGf8NHTq0/jlTp07FmDFjHK875ZRT8NNPP6Gqqgrff/991k7mu8nwU4EzaGmnd/BlEL5r1/jvGnvQUhW0YeIWtJw5M/74yy+9txV20FIfnu5W1obgd8hZWMOTw7JqVfyxvjKifn4ECVra9ocegGroYfR+A15qduX06Yl/T1em5R13AK1bA088Ef9dkKCl3iFXhdG5SdfxqzciN7VMy9LSxH23caMIsLVqBdx4o/l8ktekZIOWjS1rMFW//BJ/rGeyAs7vxTYnbWOZ2kPyGk0TJGjpp17LZNBSWRXW9zU/aKZlmNlbc+YAW24JHH64v+3qgQKvm1APPQS0bAncfXfSRaQA1O8jE0FLeSyr18swruvpCNg88oi4toV5bOrlzLYkAJ068sXt/D/tNGCnncLvxzzzjPgO/I7yqqoS+3TffUU/+Mcfwy1PusRi4iZlhw5iKgeVfv279lrRxtYWFmXQUmiUQUvKUnoFrZ+MzLQMRt9/soPYvn38d0uWpL8camUZYJUvAMEu2mEGLVesCLYt/b1TvUDo34utrBs2JN+4DLJv/QYtsy0TTu3k6xlGegM9yJyWtkxLPWjoZ2qBMPkNeFkWkKuXrqDljTeKoMBFF8V/5zXkW/0egmQhJtPgT1fQUq8f3IKWjTXTUt93FRViKPO6dSJY7VYnJnvT588/nT9neycvVV71qynTMt03UmKx9O53r+HhXvsk1aBlpoZotmjh73mmTEu1XZDK1Ate+vcXbaUPPxTzb3ttP2jQ8oorxOcbPrxxZkY1NslmoiV7/tumsFKFMSVMOm7UXHaZuLYp08ilzE+fN0ypnlPq9+dVT/74owiohem888R3cNtt5s+i/66yUoyEmjkT+P13YOTIcMuTLrNmAf/7n5hz/eCDnX9Tv4OKCjFdTlkZMGSI42kRBi0BMGhJYRk2TKzWfNdd8d9xeHhqbEFLPfMx3Y1yvYPu90L54IOi4X7++ea/6+UOM2i5cmX8cevW3tsKM9MyGk2cZ9BU1k8+Adq1A/beO/h3eO21Yt/edpu/5+sBCbmv9XMym4KWdXXAr7/Gf9b3oVrWjRuDLQbiN2iprM6YFnqZ/Qa8vIaIZtOcluqx55ZpqWvRQmRDBBFk+0G4BQ70fd0YMy1tQUuVW/2cbF2uL5yU6bl/080rqK5+L/K8UqY5AhB+HX388SLb5aWXwt2u5JVp6fV5bHP22eiBk4bKvNTbRX7bEHrQcvx4oE0b4JBDxDbTsUigpJ5/shxu+1h/7yDHotomo/RQkwr8ttOvvlpca9W+m196fWY617JxeHi6AugNnWmZ6udQz3U/fRA5h3U6mBJi9LZUZSWgjqA1jVbIRm59VfXYVpM0NMy0FBi0pHA89pioQP/v/+K/a4ig5R9/ZFegJUz651q2TAwH1zuc6e7oqd9jNOq/U/6vf4nnP/20eS4Pdb5CINygpfq3Nm28t5Vqx6CmRtz5A0Tmgv5ZTGXt21fsy6+/Dr4K/D33iH0aZFiFSn6+dHeIU7F4sXM/us31ZWoshxG0/PrrxNeq33Wq9ONEPbeqquLz2Hq9Tv88YQQtly3zl7noNidRLOb8TEGyEKNR4Pnn/T8faLhMS/XYSibTcskS/3XMmjXhB178BC31Y8gtIJxsNpieadkQIwcyKUimpa2OrqkRzwsjCLRkCfDWW+K9/vGP1Ldnoh4LubnivP7tt3iH223xCr3+SCZoqbcz/KioSBytsWSJe8def1+/11K9/rjlFnEufvKJWCRPnSIFcK83otHkpwwqLjaXR6XXbUHaC34DDKtWpXcaok2Zegz6DWiNHCmOG7Xv5pefTMswhBGwKS2N1wX68RXW3JYNHbRMtdzqfvATtPRzXa+tTa59rLcFgMTvad06Z1+qZ8/g7yOVlTXc9DRu2cbqPnWpI3Ma27QwacKgJYXPNs9V2EHL118Xi9LsvPPmsarYgw8CW22VuGL4Tz+ltxz6vk2mQWm6i6YH8sIMWqrSHbSMRsUqzl26iHlITB1vr7Kmu5HuN2iZTXNaenVy1AZz0KClbX/ogRk907KuLv5dv/iie/n8sGW31dSIBlnnzmK1R51+ruhzqKaa7ff22+Iz7rBDvEy2BrLbeVtR4ew8Bc2E9Dov9PfORKZl0KDlU08B3boBBxzg3bH8+Wcx51ynTuEG9PwsxKOuWA241w1hDQ9viDmaM8mrflWPHXmM6XX02rXA1luLuuHTT1MrT9DpXpKhDw8fNgzYdtv4Anl64EPZBzk1NYio9Y6fek1f9C7oIngbNojyde4MfPyx+N0jj4hz9vDD7a/Tz0+/11K3Oq5fP2D0aOfv3OrbU04RbcRbbvF+X9PQS8A9MKzv/yBtNj9By2+/FfVd586JWdjkraHnc20smZZLlsSvo7/+mnhshdVuaOjh4akmGahtFz/b8rqux2JivskuXRLrLS+m811vW+l932T7K3/8IeqYTp3S338G3Peb36DlphjjSAKDluRu/XqRbeTWudJPJpmdlO6FeE4+WZTr55+B998P9trGwO8FadkyUbnPmpWeYQ9hBC1N2Q76Xa50BS2bNfN+TpBOdzQqjnHZGZo7V/wDxDwkyQQtgxz7yXzHpszCiorEgFg2ZVrqnXWdV9BS1i3z54vMHttrgfixpwec9Czm6dPj3/WZZ7qXzw/T4ieAqM9+/VV81yedlPg6/VzRGztBGst//RX/TNLgwfGsHZntaDs/3c6VINl6fl7v9fdMzGkZdHj4BReI/2fN8p4z9bLLxD7buFGs9ull7Vpg9mzvOsLPQjxBAoimoK6fekrvqDTmTMtFi7wDM0GunbYbSw89JLIsa2uBY48NVMQEDbFAnL4Ql1zESw7zc+no5+nHaUNkWj7zjNjndXVi6DwgzkNArP5umy9bP1+8rqULF4rrS9BsLFt9G4uJG/kAcOut3tvRg7ny2udWHr1uc/uMeubWzz8nPqeqSsxPJwPTZ54ptinnuduU1daKRSJTmQNZr2P1LOV007//995LPJ/DmNNSP+a/+CLYtf6qq8SxW1kJXHJJ4s0yt2t2LCauqX7O04bOtAzannLry/m5IeQVOPv++3j/X96U8stPpuV33zl/Tvbm/E03ie+mqgpQFnBOG7frlnoOmerIvzFoKTBoSXZ1dcCee4rMoocftj/Plp3k566TPnQoWY1hHrGg/AbxysrE5L69evm7wx5UMkFLPSvL1HHQO0xBK2W/HS4/2w2yEM+TT4pzYuedxev0RlkyQUvTXF82yQQWTZmF/foBDzyQ+rbTxauD6ifT8vPPRcbiTjuJhq7ptfK5gPfwt6BZO15smZZe30NYQcu1a4EePYBddxUThUvqOS7nFbUFet3qKb0cQTtoXp/Da+XdsKRrIR6v40ltyNumCpAqK8X1ep99vOcCTWZOSzemoWV+hpttKsPDf/sN6N5dnEuffWZ/nlsmlO3GmR60VAO9qWZK6teldCwipX4u05B2l6ktcvXyNETQUj0nTUEHW32nH7tudfi334pszq239j6vdWEtoqcHWWUb2i3Qorfr3N5Tr09MAf3jjhOZWf/6l/hZze4O+1qbba65BthvP+Cww5Lfhtu118/xkOp8+Pp3/Mgj4oanKh2ZlgccIBZx8UudYmHFisSbZW79x7vvFtfUfff1Ho7d0EHLoDdp9fpULZ+fut+rT5pKoNyUaan3NW03WoJSr5sN0eZwOw44PDwQBi3Jbu7c+MSwV1wR/30sJoIB338vftYrziCZlmqlI4OWlZViniV9Lp9sMX++mG8o3Xcy/VZSc+fG9/lttwFvvhnuvtPL4SdoqVfSfoKW6cq09HNhD5JpefHF4v8//hCZUnoAQO0MyAVTZLaUTZCgZTIXan0fVFaaO9fZNDzc60aEn6DlO++I87SqSjR033lHNNRtw8PdFh+ZNSv14Zg6W6alV3ZCKkHLujoxzGbRIhGAlxnP55wTf4668q0MmujvqQ5lt3ELKlZViXpeNlZNHQKvYyDVTE6/3OoH/TOqZf72W5Gda7tW2LK2JLVekO+5bp1YrENvwH/0UXyagMsvd9+uftyZhocHYaov/dTnm8rw8HHjxD6IxRJXB1Wp9ZTemdePZblP9aBWmDeW9Guo6XhcsEBMF5Fse8frpqFL0DJPP07Ly0Xd5RY8SDVo6RWYsNVJQYaHn3++2J/JBI1s+zNou0Avr3x9kCz99evFaA1T4FUvj36NisWAKVPEY5kUoe77MDL0giovByZNaphh1g8+KP7/4ovkhxG71dl+jodk2nuxmOj//PijuS5Sb34C4QQtTcf8f//rfv5UVorvcuVK57EUjQbLtLz+evH/Dz94X58aenh40Gu2fkyo+7W62rs+MrWD3n03cXqiZKjfyU8/ie2GEbRctUr0idV91bRpsG2kyu044PDwQBi0JDtbo+GDD4CDDgJ2200McfEbtDRdINUKQzaK//1vcQf2sMP8N5TDmkjZy7JlIiupb9/gi6cE5bdz8s03zp+PP15k0YVF/x79ZHfojT7TXfOGClomM1eL7QKhH2f5+YkXPXWo7R57xB+7lTdIlnEYQUtbRy6bMi29AlZ+FuLRP/cxx4jhf0EzLb/+WmQy33uvd7mDsGW3eZ1j+rmiz8vj1kh66imgf39xbKrHqtpA7Ngx/lgGLW1zzwUZHq7OcXnddaKel6vkmhrM1dXu29cDhtkwPFzul59+Evv4wAPFsFITrykQTEHLU08Vc9f16+fcZ0FW0tQ7O9XVyS/oZvuO/DSyN5Xh4SUl8cfRqL09otZT8oaWpHfQ5P7Tv9d0Bi314FNZmRhVcOyxwA03JPceXsdBkOHhgKi7nn3Wvr10By1tdWuQTMtUghm2dpJ+7fJqO+vl9ZNpqbvoIjF9yf77Jx6/+nf3yy/O+spUV6v7PpWRV8k6+2zghBNEHZtOesZxsvN3ugWt6uq829TJ1CUTJoj+z267hROs8sP2OdzmI7z6avFdHnZYakFLlVddFsZUWkGkmmkZ9O/653vkEeDoo0U7Z8OGYOXR6yd5Dvz8s7jmHH00MGKE8zl6P9LP99a/v+gTX3ll/HcNHbT0k2m5dq1rPcCgpcCgJdnZ7pCdcYb4PxoVmX16RSUvyPpJZrrAqhWGvIDKoW3ffed8zdy5Yn41U0XVUMPDn3gi/rlOPDG97+U3iGda4XjOnMTX//KLCNgEHXajf48//CBWBHfL5rR1HKZNE1kpdXWpBS1ra/1/Dq+G2YIFIpCjb99EnxtRruSq+vbb+OMePeKP3YKWQe5GB+2cAInnqG3fNaagZWWluKv/0Uf2oKUp+Pfll8GDlsl22L3YMi31cuvfsX6u6J0gt30nM4VLS4GxY+O/VwOVnTrFH3sFLYMMD1e3IzNN5s0TjTrbOefWwW+o4eFBFuKR+/666+Lf27Bh4n99H3oFLfPzE8sg52+eNctZb82Z43ytW71g2k/JrPgJiO9RX7QHSC7T0jSvVTJqaoCXXwZmzHD+ftkysc+8MlxTNWuW+fdqPaVn15uClm+9JeorVTqDlvJ4jMWAiRPF9CHy+L7rLpFdFZRb9k5dXeLnUequXNv5fP759m36uWEKiGkvnn46MaiZbKalPke3/Fw//iiCrOr3m0oWod9MS6+60JZpGSRoKeeYW7IkcQ5K07VU3bbXwpwNmWn5/fdijtXx48XP+oIfYdPrarXemzNHlMVPMCXVIFQyN/lkQLe62v3mgZTOhXhMfR/p0UfF//PmOev7aDTY8HCVfm4sWSL6hLY+b7ozdlPNtNR57Qf988lAYGmp6PcEKY9+XfjzT3HdOeaYeN3w+efO5wTNtKyujh8jjz8e/70atExXm1HlJ2jpMp8lwKClFGBMIm12bBc0tVFnGmop08yDBi1NF6bKSlHBlJcDu+8u3nvBAuDOO53PS/cdLamgoGHeB0i9c1JREe/0RqNi2NqyZWI4ip/GhqR/j9ddJ/5/800x/MJEv7isXSsa73Lo3NixqQUtgwRe3fZjba2Yr0YPEtnKoq8mLRe0MZUtEnEGgtyClkEuSKYhHmpwQxeNJm7fln3SmIaHjx8fb5ged1zi3+vqzJ9z40b/QcvaWrH/0jUVhC3TUm/srlvnHLKtH5/68ZtMJo96rKrvJbOvbMPDg2RaAqJO1+tRt4zKDRuc5XHbfkNlWsqyRqOJx6ncL+o1SXbc9MCG13x2amDLVCfdeitw4YVi+3rdVFoKtGpl3m6YDfVrrwXatUv8vZ/63NR5rK5OzEIM6umn44HipUvFSqEAcPrpYmjjSy+J/8OiH3fvvy/mQNOp57Vp6LOqtta8GElDBC0nTzbflL377vgCOn65HQc1NcEzLb34ybSMxUQGzq+/io6x+pmSzbTU64GqKvFd9ekTX+xM3qhJJZDjN2i5bp2zc66zZVommwX60EPAjTfGs45N393GjfG63HR9z8Tw8I0bgb33Tjwfa2rc21Wp0OtqWQ+uXg307i2+g6VLxf5043V+VFQ4s8B1+meOxcIJMurbTJXtmP/qK+Af//B+vZyXGxDtwmQzLfV+5okniqDY//4npjrQ67J0L3SWyUxLvZ7MyUncj27Hk34d+/NPsS/dgndBMy1twcKiIvfXhc3PQjweQcsIg5YAmGlJbmwVop5qb7pwVlUlVuCm56m/MzXGZSX6xRfxSvKuuxKf11BBS7eVqKuqxNw8w4aJoGCqF+tUJ95VK/Tff493kJ97LpxyvPmm/TWmjsNDD8V/Hjo0taBlkGwAtwv7ypXmbDzbBUK/s2vKtJSaNgXatIn/7NaACfLZvRaL0Zk+f5iZlj/8ANxxR/hDhbwaJDJgCZiPxdpae9DS75yWgPhu0tXIsWUZ6cek3sgOErScNg34z3+8h0mqHTR96H0sFl6mpWkfV1ZmJtNy9mxxPfHKvLMND3fL+lc/pzx+9KBlMpmWaiBC1l8bN4q5llXnnmsfPqfup/bt3cvghylD0qtOq6lJ3B9AOAtwyIAlALz4YvyxDFROm5b6ewDi+LvvvsSbd7ZgtHpdrK0V/8rKgNtvT5xuprZWTL+j81tHv/WWCJK5dURtQUt1KJ3Ko2Nl5Hb9rakJthCP5BZY8RO0LC2NBzKef1685p57gA8/9G63+Q1aVleLkRkyIKW2f1IJDPkdHu41xYj+92QyLfVyqce9LWgphZlp+eOP4hxSg1O6BQvETQD9GJ4zx3yMBp1WIAi9HSnrz/Hj4/vlppvctzFnTny+RZvZs0XbzDbthn7u+ZljtbDQ+zmqMIItbpmW0ajInh8zxn7uqudGkExLfX+o50ZVVfx7/OAD8R3qnzXdQUv9HPP6/vxmWtq2o34P+qgzuTq7yq0u0Y+9v/5K3KbOa2FH2Qd//XX39w96DKfKbT888IAor8f0Psy0FJhpSXa2xrHa4IpGzRd8UyfU7/Bw09+9OkDpXqVNKi62/+3FF50LIGy5JXDkkcm/V6pBS7WCT6azISVTWZo6Dur3m5+fWtAySHDN7bm2i7PtM+vzh5oyLaXCwoYJWnq9NkiDPJmg5f77iw7Qa6/Fh4uFIdUpH2xByw0b/GdaAu5By1QzE/zOafnXX2J1YrVMKv2mjTz3166NZzf/+CMwerS9LOo29O2vWeN/IR51n5jqZdt1wHbOuR0HqcxpKbOsATHnpNuQQNvwcNPnk/tFLbcMNNqCRDamOS1NK9qvXJmY+fD666KzahqqrH4HXbqYV3VOldd1w1Yfrl1rztxMlq2O37gx9ZsR//d/8UVEVLb2iH5drKgABg0C3nsv8bmmOXkBf3X0r7/Gs8/XrDFnbAL249G2X5IZ7uh2TlZXB1uIR1KvqzrTKA+dHmS/6y4RtCwsFPPFqvwurmEKWpqC8kB6Mi31etXrRr7t2pNKW1rdpulaqu47fT/GYsnPaXnSSeKmzf/+l9hGk9vu00fUc++9JxZHk2zB0bDrIZVeRhlE++EHf6+vqRGfx+u7OvZY8f+4cc5piyRTdqnXopBNmwbLxg1j1WPbMT9njvg+L7hA/Nyihch+dMuWNs1pafs8en2nnlP6dCrvvtvwQUv9+6uqcr+m+c20tH1n6ufTs4VNQcuyMqB5c/O2TJmWQdv8+vOfey7eB//6a3twMuxsYi9u5+mcOcDJJwM77OC6CQYtBWZakp1p2DeQmGlpW2AnjKClfI3Xoj7r14s7bcOHixWCL7ssPv9SdTVwyy3ijoacq+nii80LD4waJe5w2ipPt7vwesBGz3wJKtVhYOpn8LNIw8SJwL/+lZglEkbQsrTU+XmaNEm8oLu9T2mpGIYo5xwKEpxw24+2zCxbWfROiFfQUh3W6pb58Pf7tZs9GzlXXeW+IEXQoKXp86v7b9ttzb/3IxaLfy51UZdkfPMNcOml8cZQGEFL2YFVh8kGGR4OuA9dTnU4sm1OS/388cq01MlGuFoneQ3rVBvk+uddssT/Qjzqz+nOtExl9XD188pVbG2SybRU/yY7EqYg0SOPiGuOLWAu1daKAJwehFu71t45mj3b/Ht1P22xhfk5qfJ7jOrCznCS+0vvyKrzNz7yiFgA0M8icypTwBJwdlLktevZZxOPl9deMwcsAXvQ0k821Ntvxx/ffrv9ebbpCmwjSpLJgnU7J6urzUHBuXORc/HFaGebs651a/Pv1euR5Cdo+c478bLqQX79OwsyPNx2U6Khhoe7sV17UlkkSN1m0EzLykrnOfrSS8A113jXB7FYvK397bfmNvqCBfEbM3K17htvFPMR2r4L27E+b55op3zxhXu53OjzwcvjUQ1adulif/306cnNParTr+l+AozZlGm5fr3IdJdkhrjbsR8k01I/BtR9rq8k/tZbqQ8P//NPsYDQuHH+nq+fY17tUb+Zlrb9XVUVP7/0utk0gsntJpd+7K1aFfyGif551BEWTz1l316QQPp//yvaBm710CuviLrKts6DnzrVbVEpMGgpMdOS7EyBwTZtnBf5WCz5TEt9Ena3TEuvVdmmTYsPF737bvH/a6+JYX8jR4q5vwBg663FvFYVFWIBj3nz4nd0335bNEYAEeT4178Sy+MWANMbwkE7QLowh4d7BS1Xr47PYfXDD/HFHgD3Rkc0ar5Tbcq0VAN4+fmJHSbb543FgMGDRecuL09kRwUJFrk913YR95v1VVNj75Q1bers/HlNxlxejv3vuEP8/N139hWHTSv/uvHaV23axIdVBQ2Uh7ny3r77ivd/6ilR5lSDluqclm3aiLJWViYXtLR1YMrLUxtq4jfTMmjQUu47r/nZVOrxqW9/yZLE4JY8DvXnVlfHhzXb5rTUuWVapmt4eJDn2gKzpmPUlGlpC1r+9Ze4wQaIrJ5LLjFvCzAPpQXEMR60sa9+9nRlEyWTAQ6EH7SU54D+fS9fLm7YPPdc/Dvo0ME+NDoI9Zi94QbnVBYq2VYxsX3ffriNCFHpx6OcJsGWHRN2pqXpM/75J7D77siNRtHJ/Cp7Ft6GDYlBXVPdrQctvv8+/viXX5x/089x23XJlGmZjqBlWMPDM5FpGSRoWVYmAlJ//imG8Nvo3++aNYmZuGoQHxCrEst58W+5xbxdWz100EHiPUeNSm4KqFgscR+bgpZdu9q3oX+eZJkyLb3Y2ju77WbO5gwj2OK2jbZt44/lFEVu15C6Ov9BS307ar9TTyz46KPEuido0HLYsHhixuLF7scAYM60dONnDlTAvr/ldHBNmyZ+1xs3Jn7+IEHL2lrvOb51+vfWqlW8X1laam87+u1b//ILcNZZ4vFff5lHKi1cKPqngMi+ffnlxOeEMBI0J4yM5U0AMy3JzhS0BJxBqtdei5+wKrdMy19/FSuQP/ZY4vsNGpS4HSCxgtMrAVOWl7yzKgOWAHD//fFt/vSTc37Hp5+OP1bv3ullVKmNljCClitWiPke778/9UzL0lKRKn/FFd7DTtS5RPRhkkEX2gDMQUu10m3SxH/Q8s0349kotbXiDndYmZa2xorfoKVXpqXa+VMbPKbVoNULttsiEfr7nXaa89jVee0rNWvFbV8tXy7OW3URrDBXR5TvLf9X93Uyk/KrwcZWreKBI7c5LU2Nuupq++cMkpWyYQNw0UUiG1x2zoIMD1f5zWLzk5UluQ0PX7fO/0I81dViyMtpp4lsGZ1tbuMwMi2D1AtBguJBMi3lflHLJo9ft07Mvfe6l7Gqyj7VQzYGLb06qw0VtJTngP5dLV8ujvlzz43/7oMP/G/Xra5Uvw9bwBJIDJCpUrlp4ydoGYslXoNlHWBbCKm8PFidAngPD9fPrTvvTH4xHFM9bbo+u61Srx63kUjymZamoOWpp4r2TEOsHp5spmVYQcugmZa2dtQLL7i/p35tNI1Seest589qG8Z0jQLs9ZAaJJVt9SD04CwgPsPq1c42oNt5o3+eZIWZabnjjubfpzPT0uT0083BU2njxsTt+Q1aqueGfpyVlZmHh7sFtp98EjjzTHGMn3pqPGAJJA6//uwzsbL2oYeKzD4g/ExLP9OxyWuEaYh9KpmWQOK57KWuzlnWli3jj93aRfr3ZPuOvvwy/njMGGDmTPE9qeefOppFfi+6MIKWzLQEwExLcqNXQLIRpDe4TB2xykr7QjyDBokTfezYxNe9+qrzZ1MHEAi28I76OfSL0zPPAOedJx6rlXCHDuZt6RVtWVm8otQr3GQWBzr//PiiIttsE/z1qpEjzcMeTSvxujWi3S5g5eXmrAxT0FLP1DJlLZroAbmvvw7W0a6uts89GEampd+gpXrhMsyRF/Eb5Nbf7/PPxb9+/YBu3RKf7yfTUrJ1xGMx4IAD4neyTz1VzLEYVtDSNC+i3NcFBSLDNuiwtTVr4o0RGbRcs8acaSnf35ZpafucQRojt9wihqMBwB57iH2Y7uHhQRo6cn65Jk0St19e7n8hnupqkY1i6wjYhofbgiHpyrQMEhSyzWnpd3i4/MxuQctOhrwydV+tX29fVMvts5iy4bMt07JVq3gHMV1BS/24W7YsMWMpSOfYbdGAMObYVrfRpEmwm5h+gmLr1iUe1/Jcczue1q2zr0pvEjTT0g/b/jVdQ03v77dzbFoR11QfRaP+gpbjxol/ci7dZKQraGlrawcRJGip769kR23o18YlS8T1VaqrAz79NP5zbq5oC8r9aNtPfuohmQHap49YgdwP0/7988/ExAvbtez331OfekoKM9NSDRip0p1pqZ9jL79sznaTTN93MpmW+vBwfeQgIPZvRYV5nsnffgMuvFA8VheLk/Tv4sor41NXzJwpRsbpx4jfTEobr+HhgNgH7dqZV/LWM+CDBi1tw6vdbNwY79Oq16XSUv/Dw6uqzMd1SYnz5wEDxPE2bpyo8yMR+w0+VSp16t8YtBSYaUl2foOWJm7Dw23zbJnYGlLJdgr0i5N6UVIXI7CtqKrvE7UT6pVp+csvYmGeG2+0l09dBdlrJTUvtnnaTI14t0rVrbK0BWZNc1qqFwpTI8F2odQvZPfeK+44+hWLBV/kI4xMS314uLqv9MZFba150v7ffweOOkpMVSADcLb3s2XTBgla2p77xhvO1cGPPVZMfq833JIZLgUkNg4rKuL7uqhIBC6DUjumaqblsmViVV2V10I8YWRaPv54/LHMZg6Safn998ARR4iVwP0GLfXjdb/93F8n61VTMMPvQjzV1e5BD1OAMqyFeDZuFJlzJ51k73RGo2Li/sMOS/y9TdBMS33alGSDlur25UrTOj2jQJ/Q3W2uaCB9c1oeeaT7quzq/lFvEnrNm7hokdj2tdf6K4dbpqX+fXzwgchk+fxz7+26TbkSQifFsQ3bcG0bPxnHpmNRvqfbDVe3jugbb4iFv9SV0IMuxOOHbf+afm96f7dMS5XfTEtTsMBtTstU5kL2Ozw86EI8YWdaBh0evv/+yb2nV6Zlebnz2lJX5+zD2PaT6fphu0bMnOldTrU8ur/+SlzYpaJCjCo6+OD4zU4gMQPPL9N5FmampS1oGcawVrdteC1mpzPthzCGhwPmctqu+V6BZ709pB4fGzaYMxt79XJfUDCMTEt5/Or7JtU5LYHkgpbqZ1L7CWvX2q8T+r5dt06M5uvTx5ktaZpSRvrxR7Fo2znneJcxhJuYEQYtATBoSW5sQUs/8/H4XYjHz3aAxJM+mSxGwD1jSe1g2bJP9IpWXpCi0cQKVw88nHKKmCvyjjsSJzFuSJWVicGldAct1651Hk+m9/PbGAeCH0u2jlGQTMtYLLHcyWZamhbT0Rs30Wh8Ls8HH4xP/G57P9uFMYxMSz3It2ABMGFCfNVGKZlzHEj87OXl8X1dXJxc0FI9H1u2dF9V0WtOyzAyLdVty9Wk/WZarlghvoMPPhDDy//4w/29NmwwH6/qcBcTeT4HybQ0DQ93U1GR+LnDGh4+YYJY8GTCBOC668yveeYZMW+q3tn1mnNWJctqKtvGjfYsIregpakzqB+PpgwxPWj5yCMiuC15BS3TlWm5ahVw8832v6vHgHqT0CvD6bzzxHX0nnucGVQ2tizq5cvNdePHH8fnrXPjFrQMI9NSDZDYFsaxcZvGRjLdJNu40TznnsqtIzpggJhffMAA8XM06l4fmIaH+1FVZX6drf7W+Q1a1tYm7gvbOW96X9scbcksaKSWySRopqWtPk/l2FW3GXR4uFv2q9uNK1Ompcr0fanng9+AFWBv7waZMsG0f//8M/FYqawUo1umTRPTysjjPdmgpZ+Avp9z0fZZ05lpGWbQ0iSZhXjcFstU2a75XseMaYEyVVVV4jm2bh3Qv789ecBvpqVXny8aTbwO2FYPtzFde5NZbV0fjSItW+Y/03LdOpEc8umnos8l959bXfiPf4jh/H7KzOHhoWHQkpwWLQL22ktksukno2lOSxs/C/H4EXbQUv9Mtuw/20TvtkzLtWsTL0J6Gb/5Jv7455+dfxs3DujRw/ye6WAKSqjUxqdbZWmrjPWLVW2tM5PVdMEKErQM6pVXxP4dNcr5+yCZlurKeerzwsi0rKlBRO9ElpWJeWykhQvF/w0dtFy71lkOlZ5pqX+uiy8Gdt/dfY6hSy8FdtrJ+bv1652ZlsksdqMGLdVMSxO3oGVFhX3fBmmMqEEIGbQ0dRxNK+AuXRqva2KxxKwMnRyqFDTjS36eVIaHu2XXAeIYMWWYhrEQj2rCBPPvbUPH5D5fvx4H3Hgjcvv1i5+zQYaHm25A+Alamj6Lvn1TJoKeUdCsmTPIr+/rf/8b+N//4j+nK2gJJM4Xt3SpWHDrpJOc51qQoKU67+ScOd5lsGUd24KW0m23if/XrwcOPxzo3dv5/aU7aKnyG7T84w+RsSanvJHkPpg3TwydPeccc4cyFhPfi1em5W+/iSHOgwe7Zyh73cAIErQ84ADnz36Dh6brdpC50/TrstuUECq3hXjSEbQ0BTDcpHt4eNBMSzdLlzp/rqkBjj9ejBzQ2xamTEudnyCjqR6yfW9BFryzBQ/1zHHbfM3JJjyEFbQ0ndO5ufY6Kkiw5dFHRTtdndvRaxvqMdW7t//3Mm0jFhPBqL32En00W6ZlLJZ60NLrmFG/C9MN6Opq+/XLlsUZVqZlWVlinWrKtFTPl8pKMULiwANFOybM4eGSWueVl4v1HFSyzKZMS5Xsq7pdB23n4ZtvivldR46M/y5IXZdnnrWRQUuBQUtyyBkzRpyM77yTmCURZHi4qRNaVxf8rptsiCU7PNyrkpbl0RsxtouBLWhpunMv95fprlck4vz9qaeKhYEair5f9P2pXmiTybQ0Ne5+/NG9TOkMWp57rti/cnV4r22bPrMtQOGWaVlQEF9JWd1XfjIt9Z/lnex0Bi1Nz33/ff+ZBOo+mjFDDIn+9lsxnNxk3rzEQDKQGLQMc3i4iVvQ0i3QlGwHzy3TsqIicX8vXep8rp/G3caNwctnC9K5DQ/Xn6sHsnWVlea5mLyClrFYYl3qdh2w3XiyBZv+rq9zbr0VW8ydi5ypU+OLuAUZHl5dbQ9aygCI6Vg0fVf68Wj63vW5m0xBS7nvli9PXPAnnUFLfduXXiqGUk6Y4JwuQR0eHmROS9M1w9SZUv+XFi1yrxvl/NqXXQZ8+KG4caOuYuy2iI7pHE6F36DlRReJelcnj8dBg8TN0+eeswf1N270zrQcOlRM8/PKK+KGK2Bu53hde4LMK/vxx8DJJ8d/1s8XGXA10Y8Tv5mWQOK57DdYWl5uD44ms0ij5Led5DXfdKYW4pF1UZBrkx4geu45ERz48ktnPQIkXn9Mn8dPkNHUhrXt07o6f1PjeGUxu72/DPKkmmmpXkeTGR5uOqebNLG3r4L0+S65RLTTTzkleLnatBFZqX37+n8/SR77b78tbrR9/bVY0Me2EM+aNf6TcJLNtFS/m5qaxOdXV9vLYFtdPqw5LU3XaK9MyyefFH2J6dPFArGmoGWYmZYm8nOZMi1VMqkombrw+ONFX/fqq+MjDYJMgWLJWGbQUmDQkhwitowqINjwcNNCPPL3QaSaaWkbniPJMurPszW2bcPDbUHL4cPFxVSfaPm008QdxTCGNiSjZUvnXSi9AalePPysJKdLZoEWr2FPbdsGWwDARv0Og2Ramp7rtXo4EO9wqsewnzkt9WNDvo/t/WxZAF4XTK9MyyArVXbuLDq0gHNOVltmoG2Yc2lpvCxBgpZq3RRW0NItKyfZDp78PKZsF9O5U1Xl3FemoZ26DRuCr0CczPBw/bleQctkhocvWgRsvbVY7ECtq9w6vragpe2a8Pdnz1GHHMsAkF42+XPQoKX8fZs2iSs868dSbW3ivrVlWqqvLS52Tg7/009i3/XqZe4UpGtOS9O233sv/lhta6hBywkTxEgPP0EA/Zh8/nlnfQaIY+TEE51D5gHRMZFBaZM//xRlGDMm/jv1xqJXpo1pldpk+Q1a2lY/l9/799/Hf2ebh2/DBvf2VWmpc1j+vHkimGhavNAraOk3cJWXJ45p9ZxRj/kVK0R2y4knml+vl6MhgpZ6dmBY/A4P/+9/EzNuVbZMy3QGLZcvFyMvevQINme7fk1xG7khz0u5INxee/l/H5UpMGNr1151FbD99vY6obJSZEBvuy3w3Xfx3595pv/y1NSI/ec1ksFm40Zx7dthB7FPysuTy7Q0ndMFBfEbsTq/wZZkp6iS5GIs22/v7/1U8vxVb2jOnm3PtAySKZ1s0NKrnVNVZa9fbW12r6ClPGe9ElVMn98raKmesxMmmPsaydzoU7Nk/U6JoR/n6ihAIH4cpDpiQp3myi8GLV0xaEkOEbfKeN06/53gjRvNdzOTDVomu3q4V8dCVl7684JmWpoCG2VlwN13iwufqXGyYIHIPAkaWAjLQw/Fgx/JZlqqr5MX0ZqaeKegZ09x58kPrwyC9u2BSZP8bcuNvJDW1dkbH2EELWUjTs5r6TU8XG/cyJUCJa+gpa1x5NVxbN06/tjUkAg6HOn558WdRj8NYFvwTe1UBglaqh3nsIaHq2U57zzn8OJkMy3lvjFlu9gaXm6ZXbbnhzk8PJ2Zll7Dw88/X2z366+B0aOdf7NRh9nIc9ftJpHc72o5ZJZ0kExLILERLIf9q0HLG25wPkevg03HoilouXKlsx7TMy2PP17su9mznftO0qdesAV7k6F/B2rQSf3uWrWK72tAjPRQp1Ox0euPoUMTO5pvvQVMnOizwIra2sTRD9tsI/6PRr2DUuXl4a2E7rYQj59pbUzXBvUYVV+nZrlLXbrEH+uBm3ffBV5/PTEQWFfnfe3x2ymUQVs1eKu+9qqr3EeqqOWoqwuW0ZNs0FJO5xI2v0FLQMzfa2qbRqOJ25FZkKkOD49GRX1jCgw/8YQI2i1Y4JyiwovePlfrCt2KFfGbDX4W1LIJErQExPX24ovjP6vH3MMPixtgCxeKVaClvfbyNy8vIK456rRSflYtVm3YAAwbJrYxZ45Y0M+UaVlR4Z6Jasu0tAUt/d640Y9TedOqpsZfH0kGLbt39/d+Krl9vf60ZVoGScqw1TVeAcTycvE92EbMuLWZ9MVuY7H4KB43sl3mNTzcdOPXbSGeigpnMK6iIrkF2EzkZ3K78S3Jz+XVZg0raFlWxqBlyBi0pLhYzL1j/MQT4oTS52M0sZ3sYWVa+h1e49VwDBq0DJJp6afD8r//JWbc6GyNgaCNFpNffxX/u2Va+hkevno1sN12IrPm+efj+2+XXYDjjvNXFttQP3kMFBba90UQZWWi3N27A7ff7r8syQwPB+IdTq+FePQOuFx4R3+N7f1sAUC3jmNubryxZ3tuMvPHrlrlr7FqCyIlG7Q8/HBnGaRUFuJRG9MtWtg7zkHI/ew30xIIfnPjnXeSHx5umgQ+U5mWGzcCU6bEf1avUW7HtgyYPfwwUFICXHih+xyI8pqifh65DT9BS3XaFP24rqx0Bn7btAH+9S/RiZT078pv0PLrr50ZjHqmpVpGr5EHgH1BhWTIa+Azz4hzx1ZHFRQknuN+jl0/cxOmku24447On+U5sHKld6drw4bU5i5UuWVatmgRX104SNBSzdjq2DH+WA+4X3SRuPkq6fWT3kGWTAtF6NTv2O24k5/fFvRWs9dsZZHWrAk2B2GyQcsg7xFE0Gl0TPWxrd5cvz61YMKaNeKc2Wor8w2SZOntc7e2bywm9pHfOQdtggYtgfhCd//5j2hvyCCmLTO0WTP/mYH6HNVbbeXvddKGDc6F+H76KfE4+PxzMaXHrrv6T9wARN2d6vBwvQ9VVib6bx06eC8gCKSWaSn3qz71mV5/y/aR13HQtm38sS1o6dWeW75cJH20ayemJ9G5tcvVAGJ1tRhlscUWok3oxs+clpdfbu7T2TItp04V7/3AA86/hRW0lPvRT0zANjxcryvCDFoG3YblOhiJRsOdcqaRYtCS6hWuWYOI1yp9fjsAMhim8xPwVNmCln4n7PUKWsoLqqmTaWKbaDjIcKOgbA20MO682CrnoJmWU6aIIcDr1zuHJO21l/9GhLrKq9yftbXxxn/TpsktyKIrLQXuv9/92DANBzXNyVlbaz9WZIBVdrg2bIh/Fv01q1Yhop8zetBSvsb2frbGkduNCD0ry9SQSCbz4q+//GWz2IIoasc5yEI86hBQPZPLLWi5apU4dr2Cli1bOgMI8+aZh7HW1jqHc+vPqawUDRD9GIzFnHVJ0I6J6q23ks+01I9/0/Bw2115r6ClqXEbZCEeteHm1vCVAcfLLxevefJJ92wst0xLPwvxqI1NfQhfRYXzfGjTRpx3o0aJodtAYh1suhZ7BekiEVHv2IL8bhlKUjqClued534dKSjw9/n180g9V7yy+lRudYEbebz5CYgEybRUs4NMNzHdgpa1tSKwCFgn8TfWxeq5o2aoq3XvSScBjz0GbLll/Hd+s4wqK72zUdVze8897c+T+0TdD+piE6bj3bYYVdApefRAu1rmujpxDWvI0TJBMi2B+LFaVSVGb8ycCcyda36ubboWv954w32BqmTJ72zZMrHPvbLBKytTbysmE7QERIDy+utFW+/xx8V1xXYdLi4WAR0/6wToGYedOnm/RqW2PwHxnvr189prRb01b158Tl9dMsPD9faQid6HWr0aOOssf1PhAOEMD3dbSAYQ51JpabCgZVmZuR70qjOeflr0OTZsEG0YnVeQTpb9xRfFjaWNG73rPj+ZljamTMslS8Rq5qbjP6ygpaxv1P1xxhnO70B/T69My4kTxXOzKGgJILx91ogxaEn1mvnJwvBL3vnXHXposO3Yhof7DVouWuT+99pa0RHSL0J+My3l89TOpGlup1Q0aSIamqee6vx9GHfybUFLtaHgJ9PSNmfhnnsGC1qWlYlOfOfOYtiM2hAPK2hZVubdgFI/cywG9OsnVko1ldlvpiUQP471oM3LLyOiz/GklzGZ4eEjRgC33GJ+viybGhQ3XRSTuXCfdBJw3XXez7M1ovSgpd9MS9swSq+g5eLFohNgmi9KrWtatHAGFV55JXHesGhUrGraubNYMABIbKBWVgIHHywWE9Cp3/suu9jLbCMDIPPn2zunNm5zWoY1PHzDBvNCPLa7yPrNArUD4JVFrHObR820CJEt09I0p6Xa2DQNlVWPaXXeRdOct0Dw+VUBcWzm5NhvdPnJTAwStPSq2/1mGprOb1O9o+8TdT8HCUapU2JId98tJs8//3z76+Tx5idouWGD/6DlXXcB//d/Ijttn30S/+42PFzllWlp+7st01Iem2o2vt+g5YcfAocd5v4ctV3Xvr240XLllYkjIEzDwy+8ML7isun4UY9j9boWNANPv66qc6j17i0Cuo88EmybJqNGiVXdbfNySskELSsqxFyGvXoB++4r/pmkuhjkDz+k9nqb9evFubHllmL1Ya82SRhBy3XrvINYulhMTPmkts2//dYetGzWTNxo8jNnbXW183qjnrN+6EHL3Fz366ftswZdiKe6OrE9ZKJfm1avds577EXWUXIKjyDkftXrNlNgcKutvM8TdV+MHg107SpGVqiC3FA21bleQUt57Zk+3f/72Np0fphuRi9ebA+0JbPojsl114nFBdXM05IS8wKDfjMtAVFf+g2Y25SWBk8ccFu3gUFLBi0prjjMoGVYbJmWfis8WzBNVVubeIH2OzRC/qxmkPbo4a9sfuXni46MvkriBRfEH3t1Dmxk0DLVhXj0IWXSnnuKzogfNTUiA3LlSvH43HOdcxI1bRre8HCvjKPaWpEFt2SJCPx8/LH9eX4X4gHiw6+mTg1cbM+g5axZiZl711/vvk2voGV1dXiLScycmbj9MIeHP/OMPdOoVSvvaRhsHSG34eEA8Oyzzp+/+y6+wuc554j/9eDFwoX2+bbuvDP+eOed3ctsoq7Ubhu6aTN5sgiwpTI83JRBoO6z1asTG9JumZZ65o4aFHVrxJkCNG6Z/m7Dw4NmWprqQ/VapAbN5L7RA7em/eh1PZPHuO188XOzz+8NAiDxmqQzzV9q0qQJ8M9/On9nOh/180g9N4MELU0dg0GDROfH7fqdrkzLrl2BO+4Qc3Ka6jC/C/HYgpJuq9YD9qClDJYmE7S89FLv56jtjvx8sQDTyJFiqhmVPK71Ovyee8T/piC9ej6q7Tb1u/PTVrMND1+wID4a4qOPvLfjZb/9xDXslVfcnyfrnu++cx5fbkHLmTO9byYBqQct02Xdunj98OWX8QXSbMIIWgLieFT7RV7H/urViXNUjh5tv+7I89rPTQk90zJo0HLjRuf1xZRpqbK1tYNmWs6Zk9geMtFv9AUNGMnzvUmT+Hnt1eaTbEOMTUOwy8qc172SksTnmOrZBx8UAWy5zVSzs/0GLYPcSAg709KNbTRmMv79b+f+KCkxLzBoy7Q07aNFi4IFfE3KyoIvnOUWtAyyfzdRDFpSvWapDg1Jh1SHh/upMGpr/WdamuZii8Xii5VssYW4QxMm2SDXGwW9eok5MR9/3Dx8wI+whoebOozbbCMaEn5WmwfEhVJd3XTBAuDoo+M/h5lpaQtuSV9/LVZ63GYb0Ymyccu01BfiAUSD5YILxCJIQXkFLaNR0dmbN0/87GeOl2bNnB0+/fj2O+eYH/vumxiY8Ds83CuQ8tRTYtumTnskIjrdekNy7729ywwkBi29GsKmDAXbhO4maibhjjsGXxglmeFR0kcfiXm4Usm0NFFvXIwdmxhM9zOJuqQGHfzMaanyE7RMdiGeIEFLNdPSNk+f6Tz3urEoO8G288VPpqWfoYqS6VzQ57vyE7grKBCZjmoQyZShoJ9bcoVvIPVMS7nP9NXHVbLT4ycAZAtamjq0akfFdNyGlWlpC1qqo0PUNlMqmZa2G5kqtR5Ur0P6cWXKtFSZjnd1n6r1hPrd+bkpZMq0jMXC70DKz+DnhupzzwG77SbmHjSN3jjrrPjjxYv9zWULmKfAyQZ6W8arHgs6d77Nhx+KdqC8JgdZgEUaPdpeX8jj3FQf6VINWgbNtDRdf9TpmlRumZZ+r+umTMsg1DrqzTdF9rrXYk+yb2ILWtoCi2rZTMOQbfti993Feet3cSE32Ri0DHLeBZ0qTmVqd6j7o3nzYJmWQbPX/SorCz5dBoeHu2LQkuoV+F3cpiHJSlDvwPhthPnpyMhhySq/w8NXrRILPciL2F57OS+eYZCNWD1gV1AghuFeeKH/To1uwQLzipFBF+JR97PsdKkZX15BQkA0ENUFN3QNmWm5apXYL3V1wAsv2J8XNNNy+XKxqmUyvIKWgGhQyqkZ/Ky+27y5+5yWaqfS1DgL6qWXnA2GMDItjzlGDNGORMzHWUmJCMToDckRI/xN5aBmr7ZrZ+44v/NOfCoKU2ddD16YghknnJD4u9at3YMoukgE6NbN//OBxHPhqacSn2Oa09LPpO2SqQGpChK0XLMmflwGDVq6DQ8Pc07LIEFL9XhS62GvTo1pvlPZmLcND9dv9g0alPicVIOW//wnMGRI/Ge/QcsttnAOCy4vF0GUDz6IByb1bVVWxvdZqpmWtqClmrERxvBwU/tAPXZMx23Tpt43/yor7UFLuW+SzbRUs4nKyvzdiPRzvVCP91SCln4zLWfNEiudS8kELeXigGEvtCM/g9e+ra2NZ6z9/jswfrwIAEybFn/9M8/Ez+MlS/yfG+kKWvq9cW2jZ7x5DdOurEwtqHzyyc5tffCBeOw3aLnffv6eJ49ndXoB283UMIaHq5mWXkFL/bNu3GgPArplWvqlZ1oGDfao9ep22wHDh4ugvhvZLlm/Xpwnfr9fr3ax275YuFDME5zKyvaAv6BlWVmwQHuQNp0kr1dBg5Zuc+17MQX5/WRa2oKWqr32Sr5curIyZ3DWT6IEg5auGLSkejlhDQMNky3T0m9F7Od5pqCl34V4vvkGuOKK+M977mkeLpAK2XHWG35qICfZhQXKy0Wl6pbJGiRoWVQkGhv//a9zmKufBUXmzHFfEc9tgYkgysrCG/IcNNNywoTk38tP0BKIH7tySI6bZs1E41UeW+kOWgLxjpHbStlBFuJRG4imDr8MUOjnSIsW/oLpqu7dzR3nY44RDZJ16xI7iLFYYifL1OnaaafE35WUBDvmCwuDd2b8PN809Ed23P103r2miHAbHm6ydKnogLm9d5DgG2AOWsrt+5nTUu00mRZm8xO0VM83r/P8hhvEkDOVV6alGiTq21d0ngDneZBq0DIvzxkU9DOvpSyvui9mzhTX0yOOiM+FZgoCyn0dZHqbIJmW6rUr6PBw02c33ShROyqmG2pNmrivmAy4jyCQ5TUdFzk5zrpdzbSU1668vPh3XVrq7xjxcz7rw8Ml/biyDQ+X/GRazpwpRqeonWVTneuHaboMG6/vTfJbz+t10bRpIntLatpU7Eu5UEs2BC1TvZGvB2hMARv1GE41aPnkkyIhQJIBNL/9jp128tcPkPXdwQeLG5/vvAMcfrj5uXp2nt9plyQ9aBmNuh/D+me94grzTS7APdNSZ2t765mWXlMA6EzHmNeoGHUf7rRT8EW6gGCZltIVV8RH5yXLz0I8fhIXVLLvEKQtJhdpU9uIfoLYbguh6n1dPSnHdP1Wr7W2OS1tw8NVQdvPbvRMS9N81ToGLV0xaEn1sjZo6Tav3u67J7ddNSPBK9Ny40YRhJs3z7vS2Guv5LMebWyNXrWRm8pdzuHDE4OWP/0Uz24JMjy8Y0exkM4//uHsgD7/fPLlk5o2dV9kwq+yMvfgaBBVVfZjwrQQj9d8VW78Bi3lXEB+GkXFxaKBIPepPO5nzhTDeNWGQFhBy1mzxH547TX7c9TOrFemZUMFLWXWY5Mmzk6itHq1yHrRG76mYaKm4IupE9KiRbDjPZmg5fbb+3uNDHBJc+eKOZr8aNPGPdARJNMSEB1xr05p0OuZaRGiqiqRnalnn8rnyOM0P9/ZQTIFU9XpV2zDw4MELUtKEucNlHWun2Pm4ovj54Z6fgWZjsDUOdODln4zLQHnvhg/Pr4PJk2yb0sGLdOVaalmLsu6Xn6XbueN6byPRID77nP+rlkzZ8DOVCcVFHiPDigrs393S5aIY9J0TpSUOK/VpoV4gHhQYP16f8eIn2C1LdNSP67cMi1jMe+FeKqqRBtO1a5dYp0bZA48v0MH/QZG/QYta2ud++G55xIXLATEPKmAOD/UAIHbdVx+Z0Fv+Oj0la2Tvaku+bkxpk6LkmrQsmVLMb+tJLOl/AYtW7eOLxLlRj3ejjpK/LPdoNUzLd3muTV9x/rw8IoK/5mWVVViNWubIJmWv/4qRhvp86fqN/rkfLF+JRO0POKI+OMNG/zd6NcFzbQMi1cfZu1af2s6qJLJtJQ34Sor48dns2bxBSGToQccZWBUMl2/1SkYUsm0DDtoKY/zLl0S60Vdbq77McugJYOWFJe1QUu31bc6dUounVut0LzmtLzjDjFHUO/e3o2WdGZa6tTGTSqNwtdfT5z3ZNUqkc0Ui3kvxFNREW/s2ir8Aw4Qwaojj3T+Psi+kp831QZBaWl4QUu3uQlNw8NNGViKX44/HtEBA8x/9Bu0lFk1c+Yk/k3fd/Jn2WGqrhaZNr17A2ec4ZzPM6yg5WWXiZXYhw6N/+4f/wBefdX8/OLi9AUtbeeWqQGsdoo++sgcZFy+PDF48tdficEL09Bf053hoJmWcphtkMBTSYkIUm+9tfvzTA2mgw7y9x7Nmrl3soJmWrqtSilVVgYbwmlaiKeyUtRZ+qIA+vDwoiLvoFLYw8MLChKDC14L8ajU80Y9loPMG+wn09LPggqmTEuV/JxhBS31TI2cnPg54xa0rKoS3718zy5d7O+hDw8fP14E+fUbrXoHzBa09ApEl5bab8JUVYl6yBSkKClxfo+m4eFA/LsJ69oJ+M+0dAtaVlf7Gx6uZ7h27ZrY/vC7iOKGDfbzU68H0hG0dMuy04OWgKjfpW23dT7fFKDUgwRB6fO6pxq09CPMoGVurjjv5XcZNNOyTRvgmmu851Q0Hc+29q2eaWnbp61bm7O59YV4Nm50v4YqNx0icuoBm4ICsc+8roGAWGDz7LOBQw5xvr+eaRm0njG12dzaQU2biimC1EW/bH2dK64Q9bdJpoKWfoaH+10ITkpmTkv1GJbHTEFB8Exglf5a/TwxtVHUGzPNm5szFv1kWvqZMsqv336L75Ptt/deF8AjQSOSjTGaBsagJdVzBC1TzWYLy+zZ7ll6HTuKOQeDDhtWAwQ1Ne6rh48YIf73unN14IGioRN20DLdmZY2X3/t3ekvL3d2Ft3uJO29N7D//s7fBWkcy8+Y6mI8ZWXuwcYg3BoOpuHhHv7cay/E9tzT/Ee/QcvZs0WWgGn+PlvQUh5j1dViblF5cVcb3WEFLU03IY45xjmPlF5Gv0FLUyNVNhSCZFqa7tKqnaLWrc1DpVauTAye/Pmnv8ajachL0KBlcbHohAZpeOXmAp07i8y7oPxOJl9c7H4HOR2ZllVVwTqupuHhf/xhnjC+pkZkbsm76EVF3tdMv8PD//hDXHO+/DL+e9P3Kd/PNBdg0KDl2LHxbT3xRHwusKuvdt+GqeOcm+sMxPlZDM8raCm/R9N5JDsrqWRaqvtL71jow8PVoJ5+k07dH+XlziHrxxwD7LKLeG+1ju/Xz7mNdGRaAvZzpnlze5aw+n3I61hZWXgZH34X4nEbHm6bX1IPWurnZ1lZ4rV54EB/N3yeecY5D6FKP7b8ZhwFGR7up92hHptyIZmiosS6xHSzTA14JkP/zA0RtNxmm/jjVIOWgDgOZID355/FMeYnexgQ9Xt+vnOIuS4/33zNsLVva2oSR6Cce27i89q3N/dB9EzLDRvc99H48cj517+wy9NPI+fWW+3PA+Kfw8/3LOdyXL5cXD9ffVVkcQaZ3sPEa95sXfPm4js49VTv57ZoAZx4ojnAb2q3ZUvQ0u/xKgUdHn7qqc7vXF6fCwvNbWi/9Nfq58T++yf2HeWc8oA4/k3Hop9MyzCDlrNmxR9vv737yuCAdzuSmZYMWlJcrnoie51cQfgdcmPzr3/Z/9axo7iTvWCBWGnXLz1oqd9BrakJlqVTXAy8954Y/tVQmZapzmnptcDHV185L16m99Dn8PNKrdcv5updTi/ytak2CMIcHq5uR2+8mDItPdTl5SG2xx7mP7oFLXff3ZlB8e9/m58nh/xLetCyqsoeyAsraKnbbTfR+MnNNTfYvVaNTzbTsrDQ/llNwXR9VW5TMHrRInOm5fz55vcxlVNVUhLsBpKsa93Ow7vucpZdNsRT7ah6lcvtPKisdGaBeFmyxLsBFzRoWVYGxGKIqOeIbYXLP/5wrtDrJ2gpr685Oc6Air56+LnnitXV1SHpeuYSEK//1eNalt3PMaOeU/vuK25yLF4sAtgzZoj5sG64wX0bOTmJ9XFenvPz+QkmyvLa2gry+mzqhMksqLCClnrHVA9aut2kU6+p5eXxIWsdOsT3dyQCfPaZaC988omYP0/V0EFLWwcPMGdaBlVcbJ5OAwi+EI+pnBUViZ3QnBxn2aurE+sL0w3m3XcXdbicQ9XmgQeAd981/00PeuuZjTZBgpZuwQh5I8nUvuvYMXHfmm4069eCoB15/VrZEEFL9fisrAxnBXH5OSorReDXb+aan8XzbHWd3+HhRUXiBtPs2c793b69uW1SXh4s0xJA7qOPYpu330aOmqlrIvsJQdvmr74qbv6ef36w6z+QWB8GXYDQrU7RycUc9Ta+vpClWrag86WbbLml/XhIR6ZlkOHhZ54pFtY07b+CguBBZJV+/uj7uKRETNc2cGD8d3qmpekclJ/LFpQtKjL335OdLkMdZdK9u3dcpWlTBi09MGhJ9eozLfPywp2X0auxm0rlLjvnXbsGC1qqd3LWrTNXYtOnA5df7m97++0X/5ymO2+p8BO09Gos5OeL4Soq0+I4agP266/9BS1POy3+s1fQUt+GenfcSzZmWqpBS/0imUSmZbRJE3vQsrJSBCVMHc899vCe5LlnTxGcMJVRzbTUV0uVWrVKfRVQk2efjTcK9I5G27Yigzkdw8Ntzwf8BS1N9dqCBYkZA5MmAePGmd/HVE6pqEiUL0impSyT23mo789sCFr6GR6u1oN+My2DdFz//DNxm34zSf0ELaVWrZyNYD3T8r33El9jGrZqym6R5Q2aaQmI6QFkcKJpUxFo8rMdvfOtDw/3E0z0yrSUQUtTJ+yxx8T8cR5TbzjogSW3z6nPael2k069BqxZE3+ufm41bQr07w/06ZMYaEx2eHhZmXvnyi1oaQugqG2ZZNuEPXvaA3e24eG2OS3btRNTl6gqKxM72Xp2vmnu6ZtuSuygFheLoL3fYeIm+rHlNoWAyu+UHuvWuQcV5HyrqQQt9d8FubkMZCZoqbYLw8i0BJyfY8oU/9cDdd/bkhhsdV2Q4eG5uWJ6LLXNZsu0VBfXBMyL6yVLZp8H/Z7VxTqDUt+rWTPvobc6WZ/5CbTK/amfUy1bmvtn+fn+hsp7adHC3pbTh9PrSkuDBy1XrRJJQrabtarevcW1yvSdp5pp2a0bcOih4vEjjyT2+QoLxb7p2zf+OzVA2KKFmJJMn4pFXgNk/dmunfP6vnGjuX/pNXWSH+3aeQct8/IYtPTAoCXVqw9aFhamnh2p8tpWKlmdaoUeJJilNsD1i7nUuzfw8MP+tqde+FK5w2Riq8TUAJJbRXfbbSKQcsghzt+bgpY9e8Y7Kl995Wwc2xoF6gITXhMN6w0EU2fG1ngPM2iZjkxLvUFjWojHQzQ/P/H4kfujosIehCkosAed9t1XdJ7nzEnsnJvmtLQFLZs3D3/Yy8yZ9jlpL79crPTapk3DBy07d078nT7kzfS9/vRTYkPxmWfM76HT60E5R1MymZZu52FxsTOrQR5fQTIVpk8Hjj3W//ObNUt9eHj79vF9lI7h4Rs2+BvKbBIkaKnXE+p+sWVQmYIopkxL2an1UxY/57Kfjpd+XuXlOYNd06d7b8O0EI+qtFSMfLAt/HTPPd7vodLL7Fa/qEGnqqrEoKV6HVa/W3Ul5iA3BFLJtHQ7hxYvDh60VK9FyQYtW7a0X9NtmZa2uVojEeDjj51D6k2ZlvrcYHrQ8tVXRftO/97l++jnxtSpwIMPmj+DTm8nhd0e9ApWSKagZadO/oKWepn9ZotK+rWyITrb6Qhaqp/DbeFAnbrvbfM+h5FpKfkJWurXNp9By7n//Cdqp08HTj/d/iS57YYYFi2p79WtW/Ab6rLu8RNolXWffk7ZphjKywsnaFlSYg9aqtOUqGQ9GiTTUp1D8sEHgYce8n6N3P/pyLQsKhI3Cf74A7jkksRzQr63LaO5RQtxzZk1S4w6k/RMy8JC54JbXbuaz78gyTU2BQXesQ51UVQTBi0ZtKS4+qBlQUG4d0a9Mi2D3iFTqQ2uIBlJ6gXFFqQJQq3oUrnDZGK7+KnDGN0u2FtsITLW9MrYdPeoWbP4fFsrV8YXdQHEEMXjjxf72TZc6Jhj7OUAEo8r0x18/S695Gd4uJ9GU9BMy+bNE1d8ldROtG14eIAshTr5Xd93n+i4XXhh/PxxW5RKLsBiUlgovi/TkBVZRnmhLC0VGSgmxcWpB4x1bsG1I4+MB+7czm21TG5BS9OxESTTUj/mgw6XzM93n8NVrwdlxyPsTMviYufUFzJA0L69/4b29tuL7F6/wsi0LCqKB38WLrTPgSol03H1k2FgK5tp35m+B/08VfeLHOqs22WXxN+FnWlpkpvrnQFmyrTcfvt4EFy9htjI8tqmiCgrEyvOyvp21129M8vd6O+h769nnhGf44wzxHmpZqK7BS3Vzt/338cfB7khkEqmpVun5pdfzL/X57SU9OGQyQ4Pd5s72JZpqVPfW51rEDAHLQsL3YOWpptSQPxc0o+PPn38T/ujLwiyxRZibtggi6O58ZtRbMu01NtgpmvwFlsAo0aJ7+3884MHrNu2Bc45R7z+8cfFdAjpIgMcYQQt8/KARx+N/6wGXj780P921H3/2GPmqXVs55PbnJayfndb9MYWtNSDXD6GhwPAql12QWzvvcVoMhsZtGyIjFpJrTuSGSUi68NUMi1tizmGFbRs3tzeRla/O7lY5bhx8fZukKCl19oCO+2UeOPULWhZWGgPWvqZ47eoSFx/5GffeefE7QPmOi43N16mvDznsTFokLhhpY4qHTgwPj/9ZZcln2nZrp2oK20KC71jHTk5DFp6YNCS6uWqQcswMy29Gjx6CrfugANEloDamJDUTmGyQUtbpmUQ6oWvoCDceS1tlZjf95D7X98/pkxLNWgJOBeDyMsD3nhDXAgvvTTxtRUV3kPjvTItCwvtx4ufTEs/jaYgq4efcILoJMihCm70oJY6Ib7POaGi8ru+6ipRxscfj2/HK2hpG4am7i+9IaUPD3fTrFn4QUu37an1QhgL8aQatNQ7o0E7cl26uHf88/Kc9W4qQUu3RmhRkTlomZNj78zrmjQJliHvZ05LP0FLNfgjF8EB7CtF2jKTbWVJNmhZWGg+h2wBAVtZfvjBvH3TnIDyuFA7k7JxH1ampdu25Lmmnwcy0Hn//f62r7+H6bspL3de/x980DzPp40tC17Sz7FzzhFBwBdfdP69uto5/YMetLQtnNVQmZZ68G6rreLbmzrV/Do5b65ed7Zt68x4TDbTUma9mKiBJbdjVm+PqseuKWgZi7kHLW3vZcu0jET8fX7T6q+tW4tsnvXrvRe28sMr01KW09QWMw0PN7VN2rUDhg0Tx9STT3rXJ/q+ad5cBP7XrRM3XtVhnGefHX+sn5crV4rn+3XZZaL9fvjhqQctTzxRlFddkE79XEHmuFf3fbduos448kjnc2x9LD/Dw4uKnPWOGgjaeWfzsapfC31mWlbI65Xe31C/O3kDKYyg5YAB/p6ntuH91q8HHBB/LK+pfue0BPwHLW2LLAXllmmpmjZN9MsGDoy3hfwGLQsL3fttr78OzJ2b2MaS+y3o8HDTdVvfhv6zPqrHLdOyZUvnuaF/P4MGxfv8+fniuWPHijbGVVeZ+yR++m+xmJhjtrwc6NUr8e/JZloWFqJmwQK8/9xziB11lHc5NnEMWlK9HNlpDDto6dZZPfRQ4J//dH999+7iomTqmKqViVvnXq8s1IrM73AbN3pDI8xsS7WskyeLBuU//5mYsn7ffeLic+CBzt/L71KvjNu0Sfxuioudw3XVCbhl56dp08TOuNuE0Sr9YqQHSYqKvBtzbp1tPwGe6mrvFbilLbYQn8vPxOrnnef8Wd0f+hDoV1813n2Pmub1UoOWtjmVCgpEY0+fs1Ivh94h1oeHuykuTmwAdOgAvPmm92tt9GNm3Dixry+7zHluh7EQT+vWYqjJFluI4Lvt+UDicZmfn1iGoJ34rl3t+/npp+PvI6UyPLx/f/fnmIKWgP+s9/z8YEFLt/MaMAceTNuwdU5sd+9t2SG283nYMPcy2Kxe7T9oqWcgqPvFtGBTmzbin759+fPdd4uO6k47ialAgPAyLdX30clAlHqTC4ifUyee6K8cTZo4Oxm240QOt+7USUx14vf423VXsdK7Sj+XTZ9RvVapC5XpC/GoZY9EzOdQqkHLJk28g5alpYmZGMXF4sYbYL/hFY2KcuvXZrfgehBumZYqt3pOf289aKl/7mg0taBlt27AP/4h9sGUKeYy2Mqpb1ueJ02bhhPUcWuvtmsnggyAuY7r0iXx/DItxCTrKPl7r/NY3TfqvGzye7rzTnE9P/54cSO2b18RjNGzF9u2DRYcLCkx38xOZiGeoqLEOjHZY17fX/n5iTc9bQsb+hkern+HL74o6qLjjweOO85fQoPPTMsa+V56e+eyy4CDDxbnyqhR4ndhzOffqZNoU3boINrUfhaA9Dtv7GGHiTn427UDRo4Uv/NzHbTdCGiITEs/QctWreKfQ14X16/3l5DTpo17+7pZM9FG1OsIt/6Y2/Dw9u0Tp/+wBUQlvY0hmeo4/Txzu67I61IkYu8nA+J7uOMO8f3bkqxisfh29DLI7XrVo6ag5fbbA1tthcrWrcNPGmmEGLSkejnpyrS0Xfhvvlk0WrwuGvKCpJ/wekfOrUIwDWGTws60BILP5/Hbb/a/qRe/I44QQzGefTbxeVddJT7LtGnOzAZ50TfN36SXs3lze6alWg79Qup3+Ju+n/QyFRXZG/aywnaruNXvNYz5deRF0Sto+fLLiYFJtZz6RffUU0UGp9YgqzM1dPxkWsoL4hdfJH5uP0FLv5mWqsMOExkE+sIIQejf5cCBolOmz6kTxpyWgJjUe+VK0bgH7B0k/bxo0SJxCoagHZpu3czH7tSpYsVowHne2jKk3cgydelivxlUXOwMaqrDvG0NU11+frBpPXJzvfeX1yIHbkFL2xQMtpsTqcyjbPL77+FkWprmqera1RwMk8dFq1bAd9+J4ci2ut4k1aClnFdQnxJE7Qj4CezrZbUdJ/L4kN/d3nt7b/vll8WQcn14l1empc40PDwnR3yXagcsFjMfW2FkWiYzPLygQMz36fb55GgHvY1kahskwy3TUuXWyQ+aaZlq0BIQge6VK0UWH+Dv8xcXu39PYbRJbMG4Pn1E21CW19Rm6do1cV8WFCQ+V6+j9M+kj9JR93Xz5onXygMOEG2FN94Qz/3oIzFfnZ5BnpMTPGgppZppafpuTN+5n3rHxBYY9lMOIDHTUtWrl7gGvfGG2Pd+gpb6HJkGsYKC+Hepb7NZM9F2WbgwvghqGPO3NmkiMuuWLweeespf8M/v+0ajwCuviPPksMPE71LJtGzTJr1By/339xe0VNsG6vVHXxTSpE0b93pJfg79ObapNOTv3BJ3TO1rlV5H5eQ4R+XJz+gnaOn2PZj+Zvo8zZoB//d/on990UXmbanTtZmCln7aZKagZdhzIjdyDFpSvRzZqCssDHdCZVsnRJ7E6qIQJragpd4hdAtmqZWgfkFR57RMNqU/1UzLoiIRbNTn7jCVyW3+ykhEVPDz5olA2fHHx7ON9P1jClrutJO4OMhKd+7c+N/UzpR+IfXbKdM7F7m5zs+TaqalWsYwAu/youjVsDHNaafub9Pwzkgk4TXRZIOW8tyIRNIbtFQvzE2bmt/Pr/x8c2fWdHyHFbTUt2/r2OjniqkRkkympamOUsuvBkDkdxKkTlLr2lGjRLab6UbBI4+IjuQJJwAXXBD/m36cn3MOYBqSkpsbPPDnFbRUjy2ToiJ7Ay7oQhFhZISoli1LPtPSq4Mp61Z9f6vnRCTif2E2QBxnfrLfTNtq00YcO089JX7Wp85Qz2k/nWfbYig2cj+ceqp7RjEQP/b1cgQNWqrDw2XQsn37xOuXLWgZZE5L0zUg2eHhBQViREbPns7fH3mk2Hf77Qeccor4nb7f9TZMKkFLP8eaW2DTNq0JIOqwzz93/j0adR63bkHLyZPF/hkxIvE4UL9bP5+/WTPnd2Dr6KeDXgcUFSUe5926NUzQ0lY+U1lfe00EvR5/XPzs1R9QhRm0NM1tb/ospmmV/PDKZJb8ZFqajiN9mgo/bAu/SWq7R9+m2uaUwhhhpp+D+rHXs6cIeqv8ZGMC8WNLLXOQOS31duCpp6Zv9fCTThLtL6+gZSTiLFfQm+lemZay7rbd0Da9tqDAXg/U1SV+Jv2GrAyCq6ZMEX3agQPjowlNN4nSFbQEjH22eurNFtuQeQB4/nnz55Pb1z9P2GtkNHIMWpIQiyFXHR7ut0Pjh1fQ0mtYoAy66RczveJz63iolYjeAVAzLdWJ9ININdOyqEhkrM2dm7jARTIXvx12EKt/v/FG/Ls0ZTXqFeKee4qK07TIRhhBS/V1cmJnfUi0V9DS7QKrdnzCSKWXjXmvlQlN76WWRc20VBeQCBK0jEbtjUz1u9XL4ido6We4fHGxM7Akt6WX+dNPvRdJUd/bj1TmtHQLrtk6Nl4NIcC7E6sfM7bh4bbyy0ZQkExL9dxp2lQMFdTnSYxERDDt88+BiRMTzz9Vs2bAO++Y55kKErQ0ZfgEVVSUGHyRggZU1GkUwqgn/vEPcz1tmls0aAabLWjpFpj0OmbkDQc/9Pd55x1x7Mi6XM+OVzu3fjrP+va9Mq3kfigsBN57z32hM/ndqp2iJk2Sz7SsqIhnw8rP75Vp2bRpsCB5mJmW8jvWj7H27cW+++KL+OfQvyv9OE1leLifTEstcBZT61x9/3ldO/RMy+pqe9DyiCNElvJ117lv0+/w8LKy+M/6dSOdqyubMjDVfZqba16IxxS01Otq/dhz+3vQ4+SUU8Q1Ss5lmalMS9OwT9NnSTbzyW+mpZ+FeLyC336vh15BS7e63FQfhZVpqVKvq8ccI87VQw5xJgKYFqqTBg6MPzZlyZr2pe0ard586tVL9NnSkWn54IPA//4nzlm3xSoBUceo16CgN0a8gpbJZlra2hd9+iT2H/V60hTU23pr0acdNy7+eSMR8zyjKj/Dw/Wy69R6wM/CuKZ6Xm73rLPsc5cz09ITg5YkqA06v0HLnBx/k+HbKg2voGXfvmIeiV13FT/rlUmQoKW+UI5teHiyFUSqQUu9fKowJnQG/GVayouF6aKh7jP9QuE3aNmjB3DLLWJo4aRJ4nf6BTeVoKV6ofQbjNhpJ/vf1M85caKYw2fcOHvZbLbeWgzTO+SQeIYS4LgAxvS53Uzbtk1loB4zbpmWtoyVxYtdCv83vQEvy2oaNu2nwRYkWJRKpqXbMOZUgpZenbODD3b+7CfT0hS0TDbT0rR9L3qDV36PpuCTV9By9GgREBgxQmR7JRv0UMu2117Av/6V+LcggV1AzBN0660i2yzVlW2POUZ8RtP3ZMqcD5rBJjtKbpmWOq9jJsgxoW/LtJLm7Nmibrv9dufnS2Z4uNdcdPp+MJ2bkjzfiorEJPmHHipGNCQbtFy3Lp6tI9sfXpmW+ryXXpJdiKe01LwgDZB47pmOD/06GObwcK/25JAhCdOM1E6ejL923RV199+f2N4IGrT0Ozzcjd/h4WrQ0muutlSpbSfTjUd1v225ZeJib4A5aKkzzdM5YYIIQLzxRmpBS51Xxr1KnXvabU7Lfv1EeXV33SWGex51lHOBIMn0WZKdWiTV4eHr18f3TVhBSw+OGwf6Nk11ZhgBFrf+j3oOv/iimArh7rvdb1w9+qjIxh42TGQv6kz7Ww9uyrq3Xz/gjDPE9t56y/k3lTqvazLUfeCVaakfj0FvDvsdHh4001K3zz4ic/SssxI/k3qjolOnYAFffZGcdGZaum1P/Qy2eT69MGjpKcR0OmrU1M6736DlSy+JSlw2eHr0ECfcd985n2c7yeVJbEuV/ugjZ2M/lUzLs84Cpk8Xjy+4wJ5pGVbQMmhKt7q/9UozjLlRTNstLra/1/bbJ75eLaM+kXKQ4W833+z8We1opTo8XL1w+AmKXXedCILYMmzVYScnnCD+mTIB/LzXNdeIfyq3710KGrRMJtNyyRLzdvX38NOhkBN3ewkStHR7rvod6Z/PtHiQyha01F+TTNCyd2/nir3dunlnWqr7TQZH3Oq1ggLnZ0g1aGmb+zeZoOU++wBDh9q3HZRcMfX++8VE/b/8Ev9b0KDlrrvGyxakk6zr1Sveefn++8S/d+4sjk+3a0xBQeL3qJI3hPQAiNtx7SfT0i+1Ed2ypXko3o47Jg7ZA5IbHu6VIaXvBz9BS0Bc9+VUCPp37jdoqTJlwESjieXzypTRJbsQj2lebHmt8hNw2Gsv0aaTggTX99kHmDXL/DevTMsttgDGjEn8/R57YPptt+Hoo49GwquzNWjZrJmYq1FKd6blFVeI+hBw1rWm95PtdFPQUj1mTddu/fqblyey72UG/k03md8zGerw8KZN3UeBqO1OW6Zlu3bA+++bz49mzYDHHrNvPz8/sW52q28AsRCOSarDw9WsSK+gZUgLdsSGDIn/YBsernLr93Tq5G+ORbdMS7WvsPPO8UWy3LRrJxIObGxBy3feMZftxRedvzPV16kOD1f3rXpDIS8PkCMiJf16E7Sd1bq1+5QM6gKsKq9MS0BM2/Prr+LxRx/F26f6NfGnn+KPbfEAm06dgDlz4j+nO9PSFhvxm2npJhJJ3D6HhzswaElCMkHLwkJR4f33v2Ko0U03iZPulluAsWPjz4tExIT4F17ovAstK5NttxXz2Uyf7lzlU89O8JrT0tbxaNpUrEK3eLF4/xtuAJ55Jv53tUOp37XxS6+k/M6xYuJnZdNkmOYOszWwTavxul2E/UwWbaNeMN0W4vEz/6J64fBzkWjWzL3DarqDm5OTOGG8LNunn4q5BM8/3/u9Aec+9RO0NM27pL/WbbEjW9DSD/18tGUPFRf7Gw4YxvDw/fcXWXyS/vm8Amu2rC79WDdla3qdl3LeHalLl2BzWvoZHl5c7Ky7TQ3WdGVaejWO9b+HkWlpegyI78Krg3vnncDPP4u6TZ2uIUgWnE49vkzHQ3GxeD/1GmNqhJaU2FcFlkNj3eZm1YWZaanWz9tvH2x/pSNoqe8Ht0xq27nj1bbwsx2/w8ODXhv1Oiw/X7xHMu0AWYfo557p8+iLxfkZHr7NNiJwtc8+wODB5jJ4BS2TyVzzOn7r6sIPWhYUiM/h1sHXMy31DnTYmZZXXy2O5cpK4OKLE/+uzoEt62NT0FJl+q70m7r6MaqP1EqF2q5q1kx8d6YbxTk5zj6ALWgpy2P6zv2UtXlz96Dl1luLFanbtwe++UZk3ZukOjw8SNAylT7DIYeIaVgKChA97zwR8AW8jxvAPeljyy39BS3dMi29phJLhmlfBllsKejw8NNOA1591X2b+nzVkyaJG0rDhonsZlWqmZatW4ssXhvb8HC3TEv5tzffFKMvjj3Wef3Qr4nqSK+gQUuvoeYNlWnpFbT0U9fk5CS2TZhp6cDh4SSonfcgw8MBMZ/Xiy+KDk337s679XLbgwYlDs9QT+ILLwReeMH9/bwyLW0X+44dRVnvuksMFdAXTVHvXIUVtEylg56uTEtTFppctRgQ+0fyyrQExIVIchueEYSfTEs9E0B9vtq49ZMZ0by5/bgpLLRfMPR9Ibdx0EFidUJ9cQob9bt1C7pL6h1JVaqZlldckbjNZBu+6ci0tO2bJ55wXuTDCFredFNix80ru8Jkiy3iQ2m7dBHHtlem5dVXxx/LLAe378FPYFA9xkxDe1W2oKXpXPIKXullSTVoqX5W07xst97q/vqOHcWQ9euvT/zbkUcmVyY/QUu9LjXd0HKrq+R8XUGCO/pxpgdKgwQtf/89/jjogkd+gpZ61qPeFtEFGR7upx6yvY/K9N36HR6eatBSli2ZdoDct34yLfV5rP1kWj79NDBypPvx27q1e3syHUFLU6alGnhK5toWiXi3KZo1Ay67LP7zeec5/+73vNNHZNi0bg3cd5+4UWr6TtWgpax/TXWn2m4yBS31BAG3oGWq7VU1+H3NNfbjQw53l5IJWvppg+jfuV7fPPusCFRecYXIGLad7w0ZtEx2sSBAXJ8eeUQcV+qxoNelQYOW6lB+N/p21eNJn7M3DKZzUp32bK+93F8fNGj58stiihI3+j447jjRr5DrO6j8BC3drsMlJckND5fnk+l4lc/dcUeRwHT66c6/6+fIbbfFH591lr0sJl6L+rjVR6brUl5eYh3oJ2ipzonsln3qxnTjiZmWDsy0JEFt0BUW+gtaut31KiyMdz7k/0HnkdIlOzzc1Iiwfb5kg5b6Z0vljnq6gpZ6kKFpUzGXz4gRIntAXUV4q60ShyLo++yxx0Sw8vDDkwvqmLgFLU2rFQLAjBmi83TGGeIuplRSIhpRf/5pf7/mze0dmG22sQdm8vOdDahkh+Oo+9R2/KrblvOA6vzOaWkLtt5wg9gP99wT/1vr1sCKFc7n+xlKW1SU/kzLSy4R8xHK+W4l/X29OsR6VtcNNwDXXpv4vGSO72bNxHxfTz4pbuwA3vP/XHABsHatOAdOPDHx7zr9XLGdO598IhblGTbMvcx6veU2PNyLHqRMddigV6blFVeIhQruvNN8bXLbjw8/LDpqRx6Juk8+Qa56HrhRjy+9npZDxPSgpenao+/fgw8WmW99+sQ7gkGCO6Z5kdRMziDfxbp18cdBO8N+bhzp56D6c/v2iVNXBAla+l2J2CuI5Ra0THempVvQRdphB/MNrSDDw/VjUJ/n0HTTQZ6HtuMpEhHBJbfrgVumrI3X9dZteHgk4u/6ZOLVFmvWTNwIXrNG7HN9QTq/7cKbbhLll8OfFy8W87urmjTxbkP7zbRUzxNToF8/hvVjVK1vUx0ZdOyxYiGSsjIRAB471jzCxC1pwRS0NO0rP30Q/bjX6xu/bT/9u7ctzpWTA3z8sRjSfNhhwPHHi9+rGbxex1GLFmLakg8/FIt7fvCBvzIC/jP1TPvObW5Uv0FLv8PDw2L6/lq0EKOmXntNzHnqJsjq4Z98Iuqf3r1Fu3DMGLEYms52DpnaDvr1xnRsdOzovI6rSkriCzyZ2DItZd/Ia/SQiX7uXnqpqKt22sm5UKkf+g2VIMPDbfV5YaH5ho/tNTffDFx5Zfxn0+d3K8d++4nz/J//TPwbMy0dGLQkIZnh4frcGipT0NJt2KrUsSOwfLl5jsRkF+IxzSllqniKi/1nA+XnOy+g+mdTK97evcUF0C/9c4YVENTJhrtp1cz8fBG0W7Ag/jv9mOjSBXjggXDL5Ba0lBdJvVG9887AQw+Jx2pQLRIRAQM1aNmihbPx1769PTDplpWWyjBrlXoc2i6gfradaqZlmzbAf/4j5qg9/HDxu0ceEZPTl5eLBVV06n7bbz8RPM7NFf/SPaflI4+YnxeJOIfue3WI1ayuYcPEUBaTZIOW228vsmAk040bdV/l5wM33uh8TqqZloAIfunDikyCDA/X6cOz9fo4lbkj9bKZsoXy80XjMRp13rm3lUfVvbsIXAKIHnEE/pg1C10//ti7TG6ZlvK7MU21odP37447xueqM72XF/3869oVmDcv/nOy9VXQoKXtuDnggPgc03rQ8r774hlqw4cndhq9gpbq9dbvCIBUhofffXe8jOeemzjMP9WgpTyu3AJmtgCIbSEe2+c96ywx4qVFi8Tv2hSAluehLYgiF1Vo6EzL++5zno9q0NK24J0fXnVYcbHYt3odLrkFd1XNmiVei559VrSN1ed4GTkSOPNM8VguYGZa+fvCC0UWOhBvS6mCDA9PNWgZiQCXXx7/uWtXMexapwfI1GNaXYgn3ZmWftsx+n53C5z37Sv+qfM2BwlaAmKBuGOOEd9tkKCl3z6QqQ5x+0x60PKEE8RNXa/t2hbiCUtOjrO/Cojr1kEHiX9e/C7EM2qUsw12/vliGL7pPdymNdHnWPUzp2WHDvZRWs2bO48tnTzXbcecW6aljSk78u673V/jd1upDg8HggUtd9hBTImn0uv5Jk3c+0TXXhufH1jHTEsHBi1JSGb1cLegZdOm8eEMsiPrJ2j5ySdidWY1Y872/FQyLU2VVatW5m0MHAiMH+/8XUmJ8+6v/tlatRJDAGbMEEOFg8yRol8Edt/d/2vD1L27e9AyHYqLve/0unU4TEFLdXXgrl3FnWdAHANugRx1rkSdfvwkm2mpbsd2UQszaGlbPVw67DAxr+yGDSLTr0cP0bCUHR9bp23cONHZlZPQ+8lkCWv1cF1eXrw+8+oQq3WY23skE7Q0Hcf6ewT9br3eI8x5I4FgQctmzZxBS/081Y+dO+4Qd5f1bFk/ZbMNVQLsx1WAYyjqt65TOwx6J0WWUS6k40bfv6bjNpmMNOmAA4B3343/nGx9lWrQ8uSTxc2Bxx+P/04PWg4ZIm4Itm1rvm56LcTz/POiPjrwQP+r6KayEM8554j/W7cW76kuvgU0zPBwWz0XJNMSEIHyHj3EdVE/x5LJtJTHfkPOafnooyLorb6nHrRMllfQ0qv+TSXbXN+2n2N70CAxX12rVvE5lk2Zlr16iXn2Vq0yL+ijH3vpHB6us9WfetAyJyeeTLBhQzx7VNZ1yQYt9f2u1z/JZlr6oe7LIMPDVUHr+iCJG0FsuaXz58suEzfJ9dEfbpmW6QhaAmJ/yqBlXl6wfeZ3eHiQOVXdrkdNmjivmX6Gh7tdg9ymyALsmZZSMpmWyY5oNPEKWgZdiAdITPRQvw+vuhBwH+1m4hbQLClxj7VsZjinJQEAInqmpbpq3KOPml901FH2DaqdkuHDxf9+gpbdu4s5x0xzZ6nPb9nS3/aA1IOWf2fgOOidMVMl3bu3mJNHv1h70Su43XYL9no3vXuL/3v18n6u/h2E3Rg1sWVaHnBA/LFbBa/OzZSTk5jlpAaad9013kDr2TNxW25BS9sw66DUwI6tY+enoea2EI9bpqXpO/3HP8Qw5dxckcX6f/9n7jioZe/cWZy3cv49mdXhJoyFeEzUzxikQ+z2HdqClnLBpU6dEj+P6TjW3yPsoGUYK3Sr3Oa01Hl9lgMPjD/n5pvFcbXLLv6Hv6hlc1sUwM80Cx6i+nkhP78eRHMLWsoy7rZbPFNJHUJk2r5kOm6TCe5IPXo4fw5y7slM/JKSxMWlvOjXyf/7P7HQgz50V5WfLzIXTzlFHBt68Nsr07JrV+Df/w5W1qBBy0gk/p3m54tsplNPNZcv1dXD/QwPt2VaBg1atmkj2mumfZebm7homMwC8QpaNlSm5S67iHnB5OJF8n1nzIgv9pDJoGUq0wbp36Gf4FJenjiXBg2K/05vZ8hj4dRTxb7zc8NG30aYmZY606grwDwUWdbxauaY/HymESB+F+JR6fWN33lzkxlpoF6HgmZaSkGn4fLbhggaQNQzLVu0EMebfv43dKYl4KxPWrQIlontd3i430VfAO+gpcpP0FLPlJY3JgoLRZvGT9AyzEzLJk3ibRJ9Co2g0pVpKTVr5jwekglamr7Pm26KPz74YOffjjlG/L/77qktFLkJYqYlCfrk9126iIbeokXASSc574aNHi0CPraGMiAyaN54Q1ReMlPQb5DRRn2+KRDpthCPzlTRtGyZuI2cHPPCCX6CllLQhqpeSaUaiFCNGyfmujn6aO/nes1jlA5FRYnv8/TT8UocCJ5pqVIbmGogdPJkkYmkLkzkd3h4fn7yc2Spd9Bs23Cbk1NKdnh40Aui+nq3z7zDDiLT+OST7asip3o320YtV7qDlvfeK4bG9+4thvnITEPbvMDJZFq6dQLDXuzGNqelrQ5Sh1V51XPNmolryrffiux1qWtXf8e430zLZLIXNAlByw8/FOU+5hhnEMptLje5zwoLxRxlM2aIQJyJn0zLVIKWxcUiS3LRIvHz2rX+X3vjjeJ83mef4NcivcMvzzG3oKVKLmSkDm3zClomUxd71S/6sdO2rf01mViIxzaXnG318GQDS2om9QEHxPe97dyXAaeGyrTU91FBQfwaK+dtS2fQ0uv88Ds83EQ/l/xmEXvxWy+2bi3m6gQSh5NmItPSdLOrsFBklpqClvKxegyHMTzcbxvKrZ6zUY9V9YZ8NmRaBp1fUr95I/erfj429OrhgHN/Bp2/22+mpel5ybRV9L/5CVrqmY133CGmH9h7b/HZ/SzEE2amJSBWpZ88OT53e7L0zxYkaOkn01I/H/x8r34yLYcPF0k1u+6aWObRo0X8xC0xbDOVVKblunXrsM42qWsA5eXlmDRpEibZFpeghqMvxAMA++4rhmnrJ+WQIWKRADeRiAhcyvnxgNSDlnl58RUu9TsTgL1y8junpSnTsqTEPCdTkKBl0CFB6jw2bhNbJ6N9ezGczU9HKhNBy6ZNEzsG557rLIvfTEtT0FKuMNysmcjGkTp1EvtFrqDeqZMYumKjHj/JZllq5Y3ZOnamyZl1yS7EE9Tzz4v/IxH7/I9S797maR6kIOdFJCLqI8AZWDZRP6PXkNqXX46XxW3CdVvQsqREzPu53XbOxo1bkE8VdqZlmIvdAPHj3HaMq5/Zz3vvuquYakB97v+3d+fhTZWJ28fvdKdAKWvLvgyKbLIKVnQQRRYZRkYURWQbxWXgRcCfOLgADs7gyCAK4oKO4r4wgsu86FhBQEZEqYCIguMr4qgUVHbQUuh5/zi/pEmapEl6kjxtv5/r6kVITpLnJOc5y51nCaf7tH/ZAo1pGeh2sGXKccr/Qur000v3Q+6hQpKSfH/88T+meH837dvb20mwC0L/40mg7bYioWVmpl0Gt88/j+y548YFbo1enmDHyXBDS6ns7K2RTMTjFP/tIdTx0798kX5vgYI3KXSLZKe6h0fC+4fEinQPj2bYg0hCS38VCS29zy8CiWVLy2i6h4cj3JDRe2w1/x8inZyIx1+g40PNmmVnZpdKj1PeXam9t4HyArJA/D/3zMzSMUtbtw7cKyyQfv1K62mwMbn9BftuItnnOdnScv58+9+GDaW8vMDLBFu3YBN7hQop/f8fq9DSv6VlJIL9OB1O93AnWlr6f67htLRs2NC+jncf00Ndw7jXL9i2GKis4eznWrSwz6kqeo3rXy6nJuJxKy+0jLalZUaG3ast0PBIDRvan02kvTSrgaiuYLOzs5WUlKRPPvlEHTp0KPP4999/rzvuuEMul0t///vfg77O7t27NWzYMCUlJekkffYTy797eCjRNleuaGgp2QNKv/++PfZeuCrSPdx9Ql2jhv0LrlskoWWkvzx7z+QYTjfuWPEPe+MRWgY62PsL9Vn7dw/3P6EcN84+WDZrFng2w+nT7WC8Y8fQ7+P9WVQkKPL+roNd2PXta2/z3i1D/UXb0jJSffvasx3WrBneBCOhvstIw9433wyv7kfSPfyKK+xfaps2Ddyi2i2cC2vvk5tgF6+xbmkZble1YPxPeMvrGpSba4+DJoX+/EJxOrSMxZiW3gHB8OH2uIX16vmO8RispWU4wmlpGc0M7m6ZmfZ+zT2uZTyG+pDKljlQS8vyzv26d7dnEHbzrzMVGevTrbwWdJGElv51siKt2aXSzyrUD8XBtg13WcKdiCcSv/lN6W1TuoeHc0HpdKjmrbzQsiIhVDTdw8MR7vbZsGFpi2f/lvFZWaWtGyuynwrEv3v48uX2sDWBJqgItO+vaGjp/7m7XHZomZdn71PDbdmdmWlPKLRzpz3OfTiCbauRzCjsZEvLyZPtz75Dh+Cve+ONdsv8JUt85wLw38bDbWnpvT1VJPQPxemWlrVrhx6b0y3aMS29+V+nBfqM/EPLQMOdBOMud7Blom1pGSuxbmkZzhBbkY5pibBFfYVjhTjJO3DggJYuXaqlS5dW+LUQJ+WFlu7B5i+5JPr38D+4R3PyWK+efbIcyU4x3O7hgUJL9w7Q//38DwJO7qTvuKN0lrhwf5GNBf/PLR4XuqmpdjjnPlH1HhvV7ZprSi9U/Wcf9N6XJCXZ38ugQfb/r7/evq9//7JjvLklJ9vLN29efjndKnJA8g4tQwVOeXm+ZQ41NlMkE/FEyuWyu0O7x64sj5OhZd26duue8p4XSWjpctndZMoLYMO5qPQOqcIdVzGalpben6mTQ0dIwVtatmlT+p3PnVv6+DPP2P8mJ0uPPFLaKm7WrPDfM9xfkxPZPdy/vvXtW7YOBJuIJxzhjGmZnV3a2viOO8J/bXdZpk0rHdLl/vsje360gv24F8mx37+lpf/FkxMhSXkt6Py3Hf/jvzeXy/eYEyn/cxP3thBqQr5A+wGXyw4OJOdaWk6ZYv97zjm+LW9r1LCPC/5iNRFPsO3Hv94GGnaiIoFtRbuHB7vwX768/Pd2snu4e7gn93YajlAtLZcts/+tWTO88awj4V/XfvOb4Mfr8kJL/+8+nPFmA4V4qal2181IJxRp0UK66KLwg85g50+RzCgc6fYeKrRMSbF7IAX6wd8tOdleR/8x4f3X2V1Xymtpeeedpd/rs88Gf9+K8D4Pcyq0jFVLy/ImpPXfB2VklH/+6j9W6M032//26VP+thptS0sn3Xqr/W9eXuCZu4OJV0tLQkvHMKYlbOWFlo8+ap+AOzmTtRO/9ofzeoHG3gzW0tJ/5xIstPQ/IDsZWublSTt22K9ZXngWS4noHu4ewPqTT6Svvgo8CVFWlt2Ffu9e+xdfb/5jWkrSihX26/lf/FZEPFtaunl3o/CeIVuKfiKeWAsVWsbq19hoJ+IJJZwT2XBO1JwILRs0kPbssW/HOrR0f5ZJSfaYjDt2lA7RIdnHg6++spdr3twex/SzzyKra+FegFW0e3hFJuIJR6xbWrpc9tiY27dHvi/LzLT3H59/bgc5nTpF9vxoBRvT0vs7DzU2tuS7vQXixH4k0paWoUJLyf4xbcuW6I45/vto9w94oS48/evDFVfYPy64x2V2KrScP18aOdI+7noHcO5t89NP7bFP3dznL063tAwW/oVTbyvS0rJ5c7v+BRNp68fbb5fGjCk7jE04r12RlpYPPGB3D41kkse2bUtv+9fZiy6y9y316jk/pJH/D0aR/hDqfZ/3OVabNuG10naqG340gp0TVqSlZYMGpb0jAnHqnKK8c0339+q/L/L/f26utGuX3dMtnN490ahI9/BwQ8tIWlqG2kf5/0Bb3piWdeqUf+7jX7Z77rGPId4/zIYajzc93TdDiHdLy7/8xe4B06lT2WODExPxhHpOOC0tnc46qjFmD4etvNAyOdk+GXWytZ3TFblTp9ITZvdF0dVXBz7BDRZaduzoe2C89FL7X/+dkP8kLdH+kpKcbA9G7O/00xMbWEplT0zjFVpK9kV8qJnT6tcvG1hKZbuHS/Z306tX9JPlhCqn+/Wj5V3eSEJL/19Gw21pWdHuw5FysqVluKKdiMffPffY/w4ZEt5JmPf7Bttu27Xz/X803cO9A594tbR0P9a9e9l1a926dF+VmWkP7h5Jl9hwL8C8t5dQLS2D7acq0tIyHKHGtCxPOKGlZG8vkX6+Uuln16hR/AJLqex6ub+nG26wfxRLSZFeeSX0a9SpU3ocnjGj7OPNmtnj50rSgw9GV85IQ8vygva0tOiPOcFCy1D8t7U2bXzPUZzqHp6UZK9XoMDMPRPtX/9q/3/gwNJziFCfg5OhUKxDy6efDv38SPfHTZuGF1hKzra0dJ/PR/JZzJhROgGVuwWvtzPOiCxMi8Ttt9v/BpvIzK28lpbuGeSl8H9QcPK8MVIuV+DvKJKWlv6fSXZ26GDOqWEHAn1u//M/9r+jR5feF2oMS7fc3NgFlpLz3cNr1gw/tAw0KWq43cMbNSp/4tZAE8z6u+ACu/66XHaX/pQUe//g/bw+fewQ0+XyHa5Fiu7HeCclJdnlDfS+sZ6Ih5aWcUVLS0iSXIEm4ok1p0NLl8se827vXvtkcPfu4OOlBdqRZWfbO6BPP7VbSdSvXzomov9n4j2WmRRdGDRypLRgQfmtNhLF/2AYz9AyWqedJv30k307loMYe5+QOdU9PJLQ0p/3iUyoA2a8xw5OdEvLiox3d+ut0lVXRbcdBQtB/Fu2hDM0SqiuqU6PHxYqtIyVcC90vT+HUC0t/QP9QMuUw4pm3OZg3d/C4f89Ov29JuqkOdj4jjVr2i10Dx0K7/i3bJn03/8GDvDcrfy+/z76H/oiDS1jFc5IZY+z3ucwAwYE/pEz2Fi0brEY0zKY6dOlK6/07UIa6tzByYmUYh1adu8uffedHbTfcEPZxyMNfCLZv8ZqIp5w1a1rn1MfPRrb7T+Qu++2J94pb/zj8kJLb+VNJupW3tARsZaa6ntMq1kzsu63/uufkWGHnv4zwHu/vhMCfW7z5kmTJvl+j+W1tIwHJ1taZmba5wLhdA+XpDfesPcp3p9JqH2U97Eq0DjigYY4K+9cOyVF2rrVboEbbMiEpCSpoMAeGsJ/mYwM3+0p3t3DQwl17IlVS0v//RAtLR1DS0vYIpmIxymxeJ+UlNKQoWXL4C1Sgo1pKZW2kvCexMV/zBMnTrQzMswNLAOJx9izFR0kf+lSu3VHy5bSbbc5UqSAvMPGigQ73iFipKHl4sX2c6691nc7D9XS0qTQMlZBipPdw5s3d7Z1qstl/2LttmFD+c/xrxPDh9sXHbm50tChdquFlJTArV8iFax7eCyFajXy9NP2NnT55b7LhWpp+csvgV8rguNNshOzlEZy8ecfQDixzT35pP39XXmlc8MkRCrUPi2S419SUugWh8nJFeuZUN6xzX/biaSlU6RChZZPPBE4MPLf1vz3GcEm94mVFi18t2H/7WDpUrtMI0Y4+1n6H28Ctbyt6DlGgwbS738fuGt1LEPLWE3EE4nMzPgHlm6hzufdYhFaep/rJUKkrbz9BWoFF+o7dGq7Cvbjof/3GM3kSE6rSEtL/31bsAmGgtX1pCT72PX44/Y+cdSo0CHjgQOltwM1ZPCvI3XqhHcel5ZW/hivqamBl0l0S8tQQu0zwmlp6b/fpaVlQhFawpaI0DLe4+t5C9Y9PBjvnVCgsS+rA3cLxliq6Alxu3b2r5Zfful8ayVv3uFfRbbjSLqH+2+ff/iD/evmY4/53h8qtHQijIlEIkJLd13NzIzvyVO4of7IkaW3e/Ysf3n//XHr1tK339qtXnJy7GDv4EG7JUpF+X9e8WhpGeoibPRo+yT95Zd97w/V0jLYLOYRHNeSgl1wRaIiLS2dMG6cvV288ILzr10VeI/XVV4LLlNaWjZtah/f/FtbRtpCOpYzaAfiv05jx9rb5ksvOfs+/us9caIdBnhzYt1TU6WPP5a+/tr3/khbGEXSotvJ7uFVVaDjfbD9frjj83u3GA5nqAan+W/Tke57/Nc/XqGl9zVlqO28vIl44qEiLS1dLt/vyP35hdvS0u2aa+x9YnmTDXlfh5U3HrQUXkvLivIfNzYe541OiNVEPLS0jBlCS9jiFVo+/bQdvgQamyqeIg0tvcOeQLOMl2f58rIHmGi6ICZSoJk4nbBmjX0SdcUV4YU45cnIiH0g7lRoGe7s4VLgE49AwUioX/lMCi1jdSI1caLdLfyWW2Lz+hU1YYI9cUFOjjR7dvnLB/rFPi3N936nunSF0/XFaeVtB4HWLVRIc+GF9jik/iKop0lO1JOKzB7uFKfHPI3GfffZF0733Zfokvh66SU7EDz3XDvgDaWirZ0i4b+d+s9QnJJS9kKqvJaW/uJ9ERXoB7mKbptPPln2vkD7K/+AxqlQJCmp7DldpC2kI9nPJLp7eGUQaNxD7239xRftc4PJk8MP/4YNk/r3t1uYvfqqA4WMUEVDy0Ct4ELtv5w6ZoR7TVnZW1pKvt+Ru15Gcy4VzmfvHVoG+4HWW5069vd9ww12y8zXXy//OZHynwi0slzbhjP+eTTdw/2PA9WxkVOMMKYlbN5d6mJ50Bg9OvjkOPEUaWjp3SQ/nIGN/f3ud/bJT+3a0rFj9n2J/gzCcfHF0sqV9m3v2SOd1LevVFhYOT4Pt0i6dYdS0dAykFC/8sU7tAwVFMXqQH7NNXb3vXhvT/6z6QaTlma3lLKs8MqYyJYIpv5i7n9y7//Z//Of9hiI5bWgC+JY48al/zn33Kheo0Ldw6uSqVOlKVPM27+3b2+3lIumDsYztAx0XChv8oXKEFpW1Lhx0vnn+044FGxSDG9O7j8regyLZLgWE7qHmy5Ql2/v7+iKK+whCSLZFyUnS/n54R+vnVbRH0wibWnp1L7BO7QMVedMaGnpfe0Xzb7du8dUsNDSqfXy7tETapx7N3fL0Ycflh56KDbbsH9oWVlE09LS/1gWzo/hhJaOqVBLS5dpJ6GInnd3uFhXMBO2m0A7mlCTdhw86LtcNAd2//U24XMoz9//LvXubYeX5bVGqYjK8Fl4i0VLy/Iu7MKtl/4nDd4XvdWhpaWUmO3J+2QynK7i4ZbRf18TzyAxkUN4hBJOK8YKBIHf9emjkt/9zp5h9plnonuRSELL7Gxp1ix7Bs933onu/Uxm6v493HL5X3DGcqKB48fLX8Z/nL3yJuLxF+8ZkWO1HwlnOItYhpYVXa+KhJZV+YeOaAUKLf2Pn9HuixK1D4tFS0v/sOu11+yhlebPd249va8pI2lpmYhzjquusq9zfvMbeybtSHkHtMG6h8fivC2c0NJ7PxGrbdi/e3hlEezzCBVa+j8nnO+V7uGOqdDeoVOnTkEfcweayZVpA67OEjGmZSL572jS00OHKP6hZXX55SQ3V/rgg0SXwjzeFxsVORmJZExL7zHYevUKvlyobdN78oABA0K/nxNCfTZVbT/Tv3/pWHNDhzr3uuEO6B4LiWxpGarFQzihUUW6uSUn69RLLympIusf6fvPnh3ecAGIv3i2/vHu8teqVeBl/GfmDSeYS00t/dEq3sMGxOo6IJwfdGIZWlY0BKhI93BaWpbVsqXdas67Z5STs9MnQiwm4vGvN7/9rf3nJO/QMpKWlokIh5s0qdh1jveP1JFOxBOpvn2ltWvt22edVf7y8Th2eW9jTk5cGWvB9r/eday8yQJpaRlXFdq6LMuq8B/M4KruoWV5s6sePVp6Ozvbfv6jj9oHkPXrw39f723e1NYnKF8iWlr26CHdcYcdjoVq/RXqAHnxxdL/+T/2v088EVlZoxHqRK2qbf833WTP/Dh8uN1qzin+J51VsXu4/4XlBRdIq1YFXz6c0DLRXdtNGE8Szojnj++nny7NnGmPzfqvfwVexj+0DKdVz/vv292p778/dK+SWIhV6yn/Y12g9fbfVzi9/3zmGem888pOjhQOWlo6y+UqGzIMGpSYsjglFhPxxOPYGO41ZVW73ox2Ip5wPf64PSb6bbdJ55xT/vLx+K6998Mmnte//rq9j162zPd+723U2xVX2MO5jRtnH4dDoaVlXEV1JvHrX/+aruFVTbzGtDSF/0l0eaHlDTdIjzxi3x482P73uuvsv0hcc420aJF9+6KLInsuzOFUaDlmjHTvvZKkknBOrufMKX+ZUC2GXS5p4cIwC+eARAdH8ZSWVv7Mj9HwD0zi+ZnGK6ypW1c6dMi+/ZvfSG+8EXr5WHbPdUplKCPCc/hwfN/vrrtCP96mTentbt3KPh7oArlnT+nddytWrmjFaj8STmumWLa0lOwx2q++OvzlL7+89OL57LPDfx6hZXhGjJD+9Cf79qJF5Z/bm85/my6v5Ze/QC0te/cu/f8ll0RXrvJ4H8fHjAm+XCLGsIylikzEE462bSP7gSQe54ve+3cTW1oOHRq495N3a2BvdetKK1aE99q0tIyrqK6216xZ43AxkHC0tAy9/Jw5drD7q19VrFvt3Xfbr9OwoXTZZdG/DhLLqdDyzjvtC+I6dWSNGiW99VbFy2bSAbI6hZbxEs+T/EhaAlVEvXr2pCiStH9/+cuH+xm89ZbdMmHKlGhLFj1aWlYd7kDdFM2b2z091q61zyn8mRYExKqlpf8FciJCy0gtXmyX6fTTI5vky3896B4e2M03S999Z0/QdOONiS5Nxflvr5FOiBmopeWZZ0oLFkgFBdI991SsfMH8/vfSzp32teWtt4Zfvsou1hPxRCoeY4RW1h6EwULLSITz+TJMomMMHWUfcRfPiXhM4H9AKa+7VIMG0pNPVvx9s7KkJUsq/jpILKdCy1q17Fn9JOcmyTFp9j7/etavX2lrn/bt41+eqiDWQXDPntKmTfZt7/H1YmnSJPsiR7Jbo5fH+8Q4VBkHDrT/EiHR4Qicc/75pbdvuCFhxfARqqeHaT8WxeuiLVCdi3X38Eg1bBjduaT/eYZJx3mTZGXZP1RVFf51uWXLyJ7vfz3n/n+sf8hLSbEn9ilPouuj0+I5EU8w111Xep3Zr1/s3887tDSxpWUwToSW4XyvDIXoGEJL2KpbS8tIu4cD3rxDS9N+RTOp/vof0J95xj6R7dPHnuQJkYv1Sf4rr9jf0YAB8WvNM3astG+fHdyPHh3ec9avl154wdzWNKYFR4hely7SY49J//mPdPvtiS5N+UwLAuJ1jAxU5/wvok37bKJVmVo0IXre1yqNG0del/y3d9PCbpPOV50QbCKeeF4nzJ1rjxPesaP9F2veYyybvl9KTi6dSyDYmJaRCKfRiv8Y1IhawkPL48eP6+GHH9bNN9+c6KJUb9UttExKsv/cOxNCS0TCqZaWseB9UnreeYkrh1T2s2naVLrvvsSUpaqIdRjWooX0wAOxfQ9/SUmhu5AF0qeP/WeSoUNLx/Fq0iSxZYGzrr020SWovBIZWvqrzKFlq1b2MBr84Fd97N1bert168if7x/amxZaVub6GEiwlpbxDPPq1fOMlR8Xlal7+Lx50rRp9u1wfyAPhZaWcZWwq+0jR45o4cKFeuCBB/TTTz8RWiaYNWyYdtWqpZa5uUqqLi1EUlNLw1pCS0TC5NAyKcnu3vvWW9L48YktS3XZl8QTn6m5Hn/c/rvgguoxzArMFK+xaMMVrwvZqh5a5udLzz9vz26L6mHXrtLbrVpV/PUILWPLPRxFdTpP825JaHr38IkT7e+mUSOpV6+Kvx4tLeMq7lfb+/fv14IFC7R48WIdOnRIlmUxE7kBSiZP1idt26rZxRcrqbp8H4SWiJa7e4FkXmgpST162H+JVp1O3OKlqp3kVyWNGkm33ZboUqC6c2p8ZKfEq6VJVQ8t27aVZs5MdCkQT0eOlN6uiqGl6SFXpNyfb3U6961MLS3T0uwx1J1CS8u4qtDeYvfu3Zo8ebI6dOig2rVrq169eurevbvmzp2rQ36zLR49elSzZs1Sq1at9Je//EUHDx6UZVlq0KCB7g40+yEQa95hE6ElomViaGmK6nTiFi9sbwBCMa2lJaElUHHRdA/3Z1poaXrIFSn38GrVaT9TWSficYJpcxpUcVFvXfn5+ercubMWL16snTt36tixYzp48KC2bt2qO+64Q2effbYKCwslSf/+97/VqVMn3X333Tp69Kgsy1LTpk21YMEC7d69WzNmzHBshYCweZ/gljd7OOBtxQr739TU0vFRUBahpTOuv97+t0ePqneSD6DiFi2y/83Oli66KKFFSZhwLpjpqofK5P777X/r15dGjKj465kWWlY17mFhqtO5b2XqHu60YOv74ov2v+np9mzucERUTTZ++OEHjRw5UkePHvXcV7NmTaWkpHhaWH7xxReaOHGibrrpJg0cOFAnTpyQZVlq3bq1/vjHP2rcuHFKrU6VGubx3v5oaYlIXHKJ9O67Uk4OE26Ewj7eGQsWSBdfbN7EMwDMcOONdvfhM86QatZMdGl8xaulpfewLcGY1nUeCGXSJOn006V27aSsrIq/HqFlbFXH7uHucTyl0tnTq7vLL5caNrQnH23UKNGlqTKiisQfe+wx7d+/Xy6XS5dddpm+/PJLHTlyRAcOHND333+vSf87XsBrr72mq6++WkVFRapVq5YWLVqknTt3asKECQSWSDxCS0TL5ZLOP19q3z7RJTEb+3ln1Kgh/fa3dmsLAPCXnCwNGuTMuHdOMym0NK3rPBBKcrI0eLDUpo0zr2daaFkVxvubP9/+97TTpK5d7dvV6dz33ntLWxwuWZLYspgiKcmekLFdu0SXpEqJqqXl22+/LUk6++yz9fLLL/s8lpubq4ULF+rIkSN66qmn9O233yo7O1vvvfeeOnbsWPESA05hTEsgtqrTiRsAoKx4je8WTtdvWlqiOuOczHlTp0q//rUdULnHOKxOn3PbttJXX9k/CP3qV4kuTXxVhdC9EomqpeWOHTvkcrn0hz/8IegykydPliS5XC5NnjyZwBLmoaUlEFvV6cQNAFBWz57SmWfat59+OnbvQ/dwIDTGxHaey2Xv47y7RleniXgkqWXL6hdYIu6iaml54MABSVLbtm2DLnPaaad5bp933nnRvA0QW94DJps2BhRQFTDTNQBUb0lJ0qZNUmGh1Lx57N4nWEvLxo2lPXvs2/xAjerMtO7h9eqV3q5KP3JXpXVBcLS0jKuoWloW/+8vlbVDDLhaq1Ytz+3c3Nxo3gaIrauvtk+mr7mGXx+BWHB3lQEAVF+pqbENLKXgLS1ff12qVcue0OSaa2JbBsA0zz9v178hQ8xrDXfZZVKXLvZkLvn5iS6Nc7imBBwXl2YwLiovTHTzzdJ11zHbGRAr/NoMAIiVZs2kb7+1bwdrINGzp7R3r5Sezg9pqH5GjpR+8xs7uDdNSor08cfS8eNmli9a1a17eHVFS8u4iqqlJVBlEFgCsVOrljRpkpSdLS1blujSAACqkjfesLt/n3++NGJE8OUyMwksUX3Vrm1u67+kpKoVWEpSnTrSxIn2ue8//pHo0iBWCC3jqkItLcePH6+aYYwFWN5yLpdLq1atqkhRAAAmWrRIeuAB+8QUAACndO1qt7Tk+ALAJA8+KC1cyL4JcEiFQstNmzaFfNzdLTzUcpZl0X0cAKoyTtoAALHA8QWAidg3AY6JujZZluXIHwAAAAAAAGCk884rvd2pU+LKUQ1F1dKypKTE6XIAAAAAAAAAZnnmGXsS3w4dpP79E12aaqVStltet26dhg4dqiZNmsjlcunVV18NufyaNWvkcrnK/BUWFsanwAAAAAAAAKh8WraU/vUvacECcye3qqIqZWh57NgxdenSRYsXL47oeTt37tSePXs8f40aNYpRCQEAAAAAAABEq0IT8STK4MGDNXjw4Iif16hRI2VnZztfIAAAAAAAAACOiSq0/NOf/uR0OTRz5kzHX9Nf165dVVRUpE6dOmn27Nnq06dP0GWLiopUVFTk+f/hw4clScXFxSouLo55WePNvU5Vcd2AyoA6CCQe9RBIPOohkFjUQSDxqno9jGS9XFYUU3gnJSXJ5XA//lOnTkX1PJfLpRUrVmjYsGFBl9m5c6fWrFmjnj17qqioSI8//rieeeYZbdy4Ud27dw/4nNmzZ+uuu+4qc//zzz+vzMzMqMoKAAAAAAAAVFfHjx/XVVddpUOHDikrKyvkslGHlk5yuVwxDS0D6du3r1q0aKFnnnkm4OOBWlo2b95cP/74Y7kfamVUXFys/Px8XXTRRUpNTU10cYBqhzoIJB71EEg86iGQWNRBIPGqej08fPiwGjRoEFZoGVX38HfffTeqgpmkV69eWr9+fdDH09PTlZ6eXub+1NTUKrnRuFX19QNMRx0EEo96CCQe9RBILOogkHhVtR5Gsk5RhZZ9+/aN5mlG2bJlixo3bpzoYgAAAAAAAADwUylnDz969Ki+/PJLz/937dqlLVu2qF69emrRooVmzJih7777Tk8//bQk6f7771fr1q3VsWNH/fLLL3r88ce1evVqvf3224laBQAAAAAAAABBVMrQctOmTerXr5/n/9OmTZMkjR07VkuXLtWePXv0zTffeB4/ceKEbr75Zn333XfKzMzUmWeeqXfeecfnNQAAAAAAAACYoVKGlueff75CzR+0dOlSn/9Pnz5d06dPj3GpAAAAAAAAADjB2WnAAQAAAAAAAKCCCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRCC0BAAAAAAAAGIXQEgAAAAAAAIBRKmVouW7dOg0dOlRNmjSRy+XSq6++Wu5z1qxZo+7duys9PV1t27bV0qVLY15OAAAAAAAAAJGrlKHlsWPH1KVLFy1evDis5Xft2qUhQ4aoX79+2rJli6ZMmaJrr71W//rXv2JcUgAAAAAAAACRSkl0AaIxePBgDR48OOzlH3nkEbVu3Vrz58+XJLVv317r16/XggULNHDgwFgVEwAAAAAAAEAUKmVoGakNGzaof//+PvcNHDhQU6ZMCfqcoqIiFRUVef5/+PBhSVJxcbGKi4tjUs5Ecq9TVVw3oDKgDgKJRz0EEo96CCQWdRBIvKpeDyNZr2oRWhYWFionJ8fnvpycHB0+fFg///yzatSoUeY5c+fO1V133VXm/rfffluZmZkxK2ui5efnJ7oIQLVGHQQSj3oIJB71EEgs6iCQeFW1Hh4/fjzsZatFaBmNGTNmaNq0aZ7/Hz58WM2bN9eAAQOUlZWVwJLFRnFxsfLz83XRRRcpNTU10cUBqh3qIJB41EMg8aiHQGJRB4HEq+r10N2TORzVIrTMzc3V3r17fe7bu3evsrKyAraylKT09HSlp6eXuT81NbVKbjRuVX39ANNRB4HEox4CiUc9BBKLOggkXlWth5GsU6WcPTxSeXl5WrVqlc99+fn5ysvLS1CJAAAAAAAAAARTKUPLo0ePasuWLdqyZYskadeuXdqyZYu++eYbSXbX7jFjxniWv+GGG/TVV19p+vTp2rFjhx566CG9/PLLmjp1aiKKDwAAAAAAACCEShlabtq0Sd26dVO3bt0kSdOmTVO3bt00c+ZMSdKePXs8AaYktW7dWv/3//5f5efnq0uXLpo/f74ef/xxDRw4MCHlBwAAAAAAABBcpRzT8vzzz5dlWUEfX7p0acDnbN68OYalAgAAAAAAAOCEStnSEgAAAAAAAEDVRWgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiElgAAAAAAAACMQmgJAAAAAAAAwCiVOrRcvHixWrVqpYyMDPXu3Vsffvhh0GWXLl0ql8vl85eRkRHH0gIAAAAAAAAIR6UNLV966SVNmzZNs2bN0scff6wuXbpo4MCB2rdvX9DnZGVlac+ePZ6/3bt3x7HEAAAAAAAAAMJRaUPL++67TxMmTND48ePVoUMHPfLII8rMzNQTTzwR9Dkul0u5ubmev5ycnDiWGAAAAAAAAEA4UhJdgGicOHFCBQUFmjFjhue+pKQk9e/fXxs2bAj6vKNHj6ply5YqKSlR9+7d9Ze//EUdO3YMuGxRUZGKioo8/z98+LAkqbi4WMXFxQ6tiTnc61QV1w2oDKiDQOJRD4HEox4CiUUdBBKvqtfDSNbLZVmWFcOyxMT333+vpk2b6v3331deXp7n/unTp2vt2rXauHFjmeds2LBB//nPf3TmmWfq0KFD+tvf/qZ169Zp+/btatasWZnlZ8+erbvuuqvM/c8//7wyMzOdXSEAAAAAAACgijt+/LiuuuoqHTp0SFlZWSGXrZQtLaORl5fnE3Cec845at++vR599FHNmTOnzPIzZszQtGnTPP8/fPiwmjdvrgEDBpT7oVZGxcXFys/P10UXXaTU1NREFweodqiDQOJRD4HEox4CiUUdBBKvqtdDd0/mcFTK0LJBgwZKTk7W3r17fe7fu3evcnNzw3qN1NRUdevWTV9++WXAx9PT05Wenh7weVVxo3Gr6usHmI46CCQe9RBIPOohkFjUQSDxqmo9jGSdKuVEPGlpaerRo4dWrVrlua+kpESrVq3yaU0ZyqlTp7Rt2zY1btw4VsUEAAAAAAAAEIVK2dJSkqZNm6axY8eqZ8+e6tWrl+6//34dO3ZM48ePlySNGTNGTZs21dy5cyVJf/rTn3T22Werbdu2OnjwoObNm6fdu3fr2muvTeRqAAAAAAAAAPBTaUPLK664Qj/88INmzpypwsJCde3aVW+99ZZycnIkSd98842Skkobkh44cEATJkxQYWGh6tatqx49euj9999Xhw4dErUKAAAAAAAAAAKotKGlJE2aNEmTJk0K+NiaNWt8/r9gwQItWLAgDqUCAAAAAAAAUBGVckxLAAAAAAAAAFUXoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADAKoSUAAAAAAAAAoxBaAgAAAAAAADBKpQ4tFy9erFatWikjI0O9e/fWhx9+GHL5ZcuW6YwzzlBGRoY6d+6slStXxqmkAAAAAAAAAMJVaUPLl156SdOmTdOsWbP08ccfq0uXLho4cKD27dsXcPn3339fI0eO1DXXXKPNmzdr2LBhGjZsmD799NM4lxwAAAAAAABAKJU2tLzvvvs0YcIEjR8/Xh06dNAjjzyizMxMPfHEEwGXf+CBBzRo0CDdcsstat++vebMmaPu3bvrwQcfjHPJAQAAAAAAAISSkugCROPEiRMqKCjQjBkzPPclJSWpf//+2rBhQ8DnbNiwQdOmTfO5b+DAgXr11VcDLl9UVKSioiLP/w8dOiRJ2r9/v4qLiyu4BuYpLi7W8ePH9dNPPyk1NTXRxQGqHeogkHjUQyDxqIdAYlEHgcSr6vXwyJEjkiTLsspdtlKGlj/++KNOnTqlnJwcn/tzcnK0Y8eOgM8pLCwMuHxhYWHA5efOnau77rqrzP2tW7eOstQAAAAAAAAAjhw5ojp16oRcplKGlvEwY8YMn5aZJSUl2r9/v+rXry+Xy5XAksXG4cOH1bx5c/33v/9VVlZWoosDVDvUQSDxqIdA4lEPgcSiDgKJV9XroWVZOnLkiJo0aVLuspUytGzQoIGSk5O1d+9en/v37t2r3NzcgM/Jzc2NaPn09HSlp6f73JednR19oSuJrKysKlkpgMqCOggkHvUQSDzqIZBY1EEg8apyPSyvhaVbpZyIJy0tTT169NCqVas895WUlGjVqlXKy8sL+Jy8vDyf5SUpPz8/6PIAAAAAAAAAEqNStrSUpGnTpmns2LHq2bOnevXqpfvvv1/Hjh3T+PHjJUljxoxR06ZNNXfuXEnSTTfdpL59+2r+/PkaMmSIXnzxRW3atElLlixJ5GoAAAAAAAAA8FNpQ8srrrhCP/zwg2bOnKnCwkJ17dpVb731lmeynW+++UZJSaUNSc855xw9//zzuuOOO3TbbbfptNNO06uvvqpOnTolahWMkp6erlmzZpXpEg8gPqiDQOJRD4HEox4CiUUdBBKPeljKZYUzxzgAAAAAAAAAxEmlHNMSAAAAAAAAQNVFaAkAAAAAAADAKISWAAAAAAAAAIxCaAkAAAAAAADAKISW0OLFi9WqVStlZGSod+/e+vDDDxNdJKBKmDt3rs466yzVrl1bjRo10rBhw7Rz506fZX755RdNnDhR9evXV61atTR8+HDt3bvXZ5lvvvlGQ4YMUWZmpho1aqRbbrlFJ0+ejOeqAFXCPffcI5fLpSlTpnjuow4Csffdd9/p6quvVv369VWjRg117txZmzZt8jxuWZZmzpypxo0bq0aNGurfv7/+85//+LzG/v37NWrUKGVlZSk7O1vXXHONjh49Gu9VASqlU6dO6c4771Tr1q1Vo0YN/epXv9KcOXPkPScv9RBw1rp16zR06FA1adJELpdLr776qs/jTtW5Tz75ROedd54yMjLUvHlz3XvvvbFetbgitKzmXnrpJU2bNk2zZs3Sxx9/rC5dumjgwIHat29foosGVHpr167VxIkT9cEHHyg/P1/FxcUaMGCAjh075llm6tSpeuONN7Rs2TKtXbtW33//vS699FLP46dOndKQIUN04sQJvf/++3rqqae0dOlSzZw5MxGrBFRaH330kR599FGdeeaZPvdTB4HYOnDggPr06aPU1FS9+eab+uyzzzR//nzVrVvXs8y9996rhQsX6pFHHtHGjRtVs2ZNDRw4UL/88otnmVGjRmn79u3Kz8/XP//5T61bt07XXXddIlYJqHT++te/6uGHH9aDDz6ozz//XH/961917733atGiRZ5lqIeAs44dO6YuXbpo8eLFAR93os4dPnxYAwYMUMuWLVVQUKB58+Zp9uzZWrJkSczXL24sVGu9evWyJk6c6Pn/qVOnrCZNmlhz585NYKmAqmnfvn2WJGvt2rWWZVnWwYMHrdTUVGvZsmWeZT7//HNLkrVhwwbLsixr5cqVVlJSklVYWOhZ5uGHH7aysrKsoqKi+K4AUEkdOXLEOu2006z8/Hyrb9++1k033WRZFnUQiIdbb73VOvfcc4M+XlJSYuXm5lrz5s3z3Hfw4EErPT3deuGFFyzLsqzPPvvMkmR99NFHnmXefPNNy+VyWd99913sCg9UEUOGDLF+//vf+9x36aWXWqNGjbIsi3oIxJoka8WKFZ7/O1XnHnroIatu3bo+56S33nqr1a5duxivUfzQ0rIaO3HihAoKCtS/f3/PfUlJSerfv782bNiQwJIBVdOhQ4ckSfXq1ZMkFRQUqLi42KcOnnHGGWrRooWnDm7YsEGdO3dWTk6OZ5mBAwfq8OHD2r59exxLD1ReEydO1JAhQ3zqmkQdBOLh9ddfV8+ePXX55ZerUaNG6tatmx577DHP47t27VJhYaFPPaxTp4569+7tUw+zs7PVs2dPzzL9+/dXUlKSNm7cGL+VASqpc845R6tWrdIXX3whSdq6davWr1+vwYMHS6IeAvHmVJ3bsGGDfv3rXystLc2zzMCBA7Vz504dOHAgTmsTWymJLgAS58cff9SpU6d8LsQkKScnRzt27EhQqYCqqaSkRFOmTFGfPn3UqVMnSVJhYaHS0tKUnZ3ts2xOTo4KCws9ywSqo+7HAIT24osv6uOPP9ZHH31U5jHqIBB7X331lR5++GFNmzZNt912mz766CNNnjxZaWlpGjt2rKceBapn3vWwUaNGPo+npKSoXr161EMgDH/84x91+PBhnXHGGUpOTtapU6f05z//WaNGjZIk6iEQZ07VucLCQrVu3brMa7gf8x6KpbIitASAOJg4caI+/fRTrV+/PtFFAaqN//73v7rpppuUn5+vjIyMRBcHqJZKSkrUs2dP/eUvf5EkdevWTZ9++qkeeeQRjR07NsGlA6qHl19+Wc8995yef/55dezYUVu2bNGUKVPUpEkT6iEAo9E9vBpr0KCBkpOTy8ySunfvXuXm5iaoVEDVM2nSJP3zn//Uu+++q2bNmnnuz83N1YkTJ3Tw4EGf5b3rYG5ubsA66n4MQHAFBQXat2+funfvrpSUFKWkpGjt2rVauHChUlJSlJOTQx0EYqxx48bq0KGDz33t27fXN998I6m0HoU6H83NzS0zSeTJkye1f/9+6iEQhltuuUV//OMfdeWVV6pz584aPXq0pk6dqrlz50qiHgLx5lSdqw7nqYSW1VhaWpp69OihVatWee4rKSnRqlWrlJeXl8CSAVWDZVmaNGmSVqxYodWrV5dput+jRw+lpqb61MGdO3fqm2++8dTBvLw8bdu2zeeAlZ+fr6ysrDIXgQB8XXjhhdq2bZu2bNni+evZs6dGjRrluU0dBGKrT58+2rlzp899X3zxhVq2bClJat26tXJzc33q4eHDh7Vx40afenjw4EEVFBR4llm9erVKSkrUu3fvOKwFULkdP35cSUm+l/7JyckqKSmRRD0E4s2pOpeXl6d169apuLjYs0x+fr7atWtXJbqGS2L28OruxRdftNLT062lS5dan332mXXddddZ2dnZPrOkAojOjTfeaNWpU8das2aNtWfPHs/f8ePHPcvccMMNVosWLazVq1dbmzZtsvLy8qy8vDzP4ydPnrQ6depkDRgwwNqyZYv11ltvWQ0bNrRmzJiRiFUCKj3v2cMtizoIxNqHH35opaSkWH/+85+t//znP9Zzzz1nZWZmWs8++6xnmXvuucfKzs62XnvtNeuTTz6xLrnkEqt169bWzz//7Flm0KBBVrdu3ayNGzda69evt0477TRr5MiRiVgloNIZO3as1bRpU+uf//yntWvXLmv58uVWgwYNrOnTp3uWoR4Czjpy5Ii1efNma/PmzZYk67777rM2b95s7d6927IsZ+rcwYMHrZycHGv06NHWp59+ar344otWZmam9eijj8Z9fWOF0BLWokWLrBYtWlhpaWlWr169rA8++CDRRQKqBEkB/5588knPMj///LP1hz/8wapbt66VmZlp/e53v7P27Nnj8zpff/21NXjwYKtGjRpWgwYNrJtvvtkqLi6O89oAVYN/aEkdBGLvjTfesDp16mSlp6dbZ5xxhrVkyRKfx0tKSqw777zTysnJsdLT060LL7zQ2rlzp88yP/30kzVy5EirVq1aVlZWljV+/HjryJEj8VwNoNI6fPiwddNNN1ktWrSwMjIyrDZt2li33367VVRU5FmGegg469133w14LTh27FjLspyrc1u3brXOPfdcKz093WratKl1zz33xGsV48JlWZaVmDaeAAAAAAAAAFAWY1oCAAAAAAAAMAqhJQAAAAAAAACjEFoCAAAAAAAAMAqhJQAAAAAAAACjEFoCAAAAAAAAMAqhJQAAAAAAAACjEFoCAAAAAAAAMAqhJQAAAAAAAACjEFoCAAAAlVCrVq3kcrk0bty4RBcFAADAcYSWAAAAEbr++uvlcrnkcrm0evXqiJ779ttve5570003xaiEAAAAQOVGaAkAABChMWPGeG4/++yzET33mWeeCfg6ibJmzRpPiLpmzZpEFwcAAACQRGgJAAAQsT59+uhXv/qVJOmVV17Rzz//HNbzjh07phUrVkiSOnbsqB49esSsjAAAAEBlRmgJAAAQhdGjR0uSDh8+rNdeey2s5yxfvlzHjh3zeT4AAACAsggtAQAAojB69Gi5XC5J4XcRd3cNT0pK0tVXXx2zsgEAAACVHaElAABAFNq0aaM+ffpIkv71r39p3759IZf//vvvtWrVKknSBRdcoKZNm5ZZ5tVXX9Xll1+uFi1aKCMjQ9nZ2erZs6fuuusuHThwIKxyrVy5UldffbXatGmjmjVrKiMjQ61bt9bw4cO1dOlSHT9+XJL09ddfy+VyqV+/fp7n9uvXzzO+pftv6dKlZd7jxIkTeuihh9SvXz81bNhQaWlpys3N1cUXX6xnn31WJSUlQcs3btw4uVwutWrVSpK0Z88e3XrrrerYsaNq164d8diagcbkfPnll3XhhReqYcOGqlGjhtq1a6fp06dr//79QV/n/PPPl8vl0vnnnx/y/WbPnu15v0Dcj82ePVuS9O6772rYsGFq0qSJatSoofbt22vOnDmeFrduK1eu1MUXX+xZrkOHDpo7d65OnDgR9mfx0UcfaeTIkWrevLkyMjLUvHlzjR8/Xjt27Ajr+V9++aWmTp2qzp07q06dOqpRo4batGmjcePGadOmTUGf5/8dlJSU6IknnlC/fv2Uk5OjpKQkZjgHAACRswAAABCVJUuWWJIsSdYDDzwQctl58+Z5ln366ad9Htu/f791wQUXeB4P9NeoUSNrw4YNQV//xx9/tC688MKQryHJevLJJy3Lsqxdu3aVu6z38m67du2yzjjjjJDPOffcc62ffvopYDnHjh1rSbJatmxpbdiwwWrQoEGZ57/77rvlfvZu7777rud5q1atsq6++uqg5Wrbtq21Z8+egK/Tt29fS5LVt2/fkO83a9Ysz+sF4n5s1qxZ1ty5cy2XyxWwLOecc4519OhRq6SkxJo8eXLQMg8aNMg6efJkwPdq2bKlJckaO3as9fe//91KSUkJ+Brp6enWyy+/HHK95s2bZ6WmpgYth8vlsu68886Az/X+Dt58802rf//+ZZ4/duzYkO8PAADgj5aWAAAAURoxYoQyMjIk+c4KHoj78Vq1aunSSy/13F9UVKT+/ftr9erVSk5O1ujRo/XCCy/ogw8+0Hvvvac///nPql+/vvbt26eLL75Yu3fvLvPax48fV79+/TwtOXv06KFHH31U//73v7Vp0yatWLFCU6dOVZMmTTzPadq0qbZt26YnnnjCc98TTzyhbdu2+fwNGzbM8/jRo0d14YUXelruDRs2TK+//ro2bdqkZcuWqW/fvpKk9evXa+jQoTp16lTQz+Po0aMaPny4fvnlF91+++1as2aNPvzwQ/39739X48aNQ36Wwdx555169tlnNWzYMC1fvlwFBQVauXKlhgwZIqm0JWE8vPnmm5oxY4bOPvtsPf/889q0aZPeeustDR48WJL0/vvva+7cuVqwYIEWLlyowYMH65VXXlFBQYFee+01nX322ZKkt956S4899ljI99qyZYtuuOEGNWrUSIsWLdLGjRu1du1a3XrrrUpPT1dRUZFGjRoVtLXkvHnzdMstt6i4uFhnnnmmHn74Yb3zzjvatGmTnnvuOeXl5cmyLM2ZM0cLFy4MWZZbb71V77zzjn7729/6fAfu9QYAAAhbolNTAACAymzEiBGe1mQ7duwIuMzWrVs9y4wZM8bnsdtuu82SZGVnZ1ubNm0K+Pyvv/7aaty4sSXJuuqqq8o8PnXqVM/rT5w40SopKQn4OkVFRVZhYaHPfd6t5Mpr4fg///M/nmXvuOOOMo+XlJRYo0aN8izz0EMPlVnG3dJSklWrVi1ry5YtId+zPN7ll2TdfffdAcs1YMAAS5KVkpJi7du3r8wyTre0lGQNHz68TCvJkydPWmeffbYlyapdu7aVkZFhTZkypczrHDt2zNOS8swzzwz4Xu7H9b8tVwO1Il29erWnBeZZZ51V5pbc9uIAAApBSURBVPHt27d7WljOmjUr4LZz6tQpTwvWWrVqWfv37/d53P87CLRtAAAARIqWlgAAABUwZswYz+1grS297/de/ujRo1q8eLEkac6cOerRo0fA57ds2VJ33nmnJGnZsmU+4yEePHhQjz76qCS7heUDDzwQdLzFtLQ05eTkhLNaZRQVFenxxx+XJHXs2NEzZqM3l8ulhx56SPXr15ckPfjggyFfc/r06erSpUtU5QmkR48euu222wKWa9q0aZKkkydPasOGDY69ZzCZmZlasmSJkpOTfe5PTk7WddddJ0k6cuSIGjZsqHvvvTfg88eOHStJ+uSTT3To0KGQ7zd//nzl5uaWub9fv36aMGGCJHvMS//WlvPnz1dxcbF69uypWbNmBdx2kpKStGjRIqWnp+vo0aP6xz/+EbQcp59+esBtAwAAIFKElgAAABUwcOBATxD43HPPybIsn8dLSkr0/PPPS5KaNWvmM/HN2rVrPWHUZZddFvJ9fv3rX0uSiouLVVBQ4Ll/9erVnsl1Jk+eXCYkc0pBQYEOHjwoyZ5MJ9j7ZGVlacSIEZKkzz77THv27An6mqNGjXK0jFdddVXQwNY7EP7qq68cfd9ALrroItWrVy/gY95B7aWXXqrU1NRyl9u1a1fQ96pbt64uueSSoI///ve/99x+5513fB574403JEnDhw8P+tlJUnZ2tjp37ixJIUPfK664ImbbIAAAqF4ILQEAACogJSVFV111lSR7Ru7169f7PL5q1Sp9//33kuyQLimp9PTLu9Vb48aNy8zc7f3XqVMnz7KFhYWe25s3b/bcPu+885xdOS+ffvqp53bv3r1DLuv9uPfzvNWqVUtt2rRxpnD/64wzzgj6mHeAeOTIEUffN5DTTz896GPZ2dkRLxeqzN26dVNKSkrQx7t27aq0tDRJ0rZt2zz37969Wz/88IMkacaMGSG3P5fL5dlevbc/f2eeeWbQxwAAACJBaAkAAFBBobqIB+saLkn79u2L6v3cLSsl6ccff/TcjnYCm3Ds37/fc7tRo0Yhl/Xupuz9PG/egZxTMjMzgz7mHRaHmiAo3mVxoszlfR8pKSme0Nb7+3Bi+/NXt27dqF4TAADAX/CfZAEAABCWrl27qnPnztq2bZuWLVvmGf/v2LFjWr58uSS7e3KHDh18nucdRH388cdBuwn7a9asmXOFj0KobsThoguxc6L9Pry3v5kzZ+ryyy8P63k1a9YM+hjfKwAAcAqhJQAAgAPGjBmjW265RQcPHtQbb7yhyy67TCtWrPBMmuPfylKSZ8IaSWrYsGFUYWSDBg08t/fs2aPWrVtHUfryeXev3rt3b8huzd7dh4ON62gad6vGkpKSkMt5T4Jkir1794Z8/OTJk54Wlt7fh/f2l5qa6jMEAQAAQKLRPRwAAMABo0aN8rQye/bZZyWVdg1PTU3VyJEjyzynW7duntv//ve/o3rf7t27e26vW7cu4ueH20rPO9DauHFjyGU//PDDgM8zWe3atSVJBw4cCLncF198EY/iRGTLli06efJk0Me3bt2qEydOSPL9Ptq0aaM6depIin77AwAAiBVCSwAAAAc0btxY/fv3lyStXLlSn376qVatWiVJGjRokBo2bFjmOf379/eMabhw4cIyM4+Ho1+/fp7uuosWLYp4vMaMjAzP7aKioqDL9ejRwzMO5VNPPRW0ReKRI0f08ssvS5I6dOgQ03E2neRuofrFF18EnfTmxx9/VH5+fjyLFZb9+/d7ZgEP5IknnvDcdm+jkt2V++KLL5Ykvf322/r8889jV0gAAIAIEVoCAAA4xN0FvLi4WFdeeaUnQAzUNVyyJ6OZNGmSJOn999/X1KlTQ3ZP3rt3rx5//PEyr3H99ddLkgoKCjRlypSg4WdxcXGZyVe8Q8X/9//+X9D3Tk9P17XXXivJnhF8zpw5ZZaxLEuTJk3yTA7kXrfKoG/fvpKkEydOaNGiRWUeLy4u1rXXXquff/453kULy7Rp0wJ2E1+7dq2WLFkiyQ6ezzrrLJ/HZ8yYoeTkZJWUlOiyyy7Tt99+G/Q9Tp06peeeey7kMgAAAE5hTEsAAACH/O53v1Pt2rV15MgRbd++XZI9m/LQoUODPudPf/qT1q5dq40bN+qBBx7QmjVrNGHCBHXt2lU1a9bUgQMHtH37dr3zzjt688031blzZ0946DZnzhzl5+dr27ZtevDBB7VhwwZdf/316ty5s9LS0vTtt9/qvffe0wsvvKC7775b48aN8zy3RYsWatasmb799lv97W9/U7NmzdSuXTtPV/ecnBxP1+mZM2dq+fLl+uqrrzR79mxt27ZN48ePV+PGjbVr1y49+OCDWrNmjSQpLy9P1113nYOfbmwNGTJELVu21O7du3XnnXfqxx9/1KWXXqqMjAxt375dCxcu1ObNm3X22Wfrgw8+SHRxfXTp0kWfffaZevTooRkzZqhXr14qKirSypUrtWDBAp08eVIpKSlavHhxmed27txZf/vb3zR16lR99tln6tSpk6677jpdcMEFysnJ0S+//KKvv/5aGzZs0D/+8Q/t2bNH27ZtS/hkUAAAoOojtAQAAHBIjRo1dNlll+nJJ5/03DdixAilp6cHfU56erry8/M1btw4LV++XFu3bg3ZQjErK6vMfZmZmVq9erWGDx+udevWqaCgIKLA8LbbbtMf/vAH7dq1S5dcconPY08++aQn5Kxdu7ZWrVqlwYMHa8eOHXrllVf0yiuvlHm9Pn366PXXX69UM0mnpaXp2Wef1aBBg3Ts2DEtWLBACxYs8DyenJys+++/X/v37zcutOzatasmTZqkG2+8MeC2k5aWpqeeekq9e/cO+PwpU6aoZs2amjJlig4dOqR58+Zp3rx5AZdNS0vzGVIAAAAgVugeDgAA4KCxY8f6/D9Y13BvtWvX1iuvvKL33ntP1157rdq1a6fatWsrJSVF9erV01lnnaWJEydq5cqVQcdUbNCggdauXavly5frsssuU7NmzZSenq6MjAy1adNGl19+uZ577rmAEwLdeOONeuWVVzRgwAA1atRIKSnBf9du1aqVtm7dqgcffFB9+/ZV/fr1lZqaqpycHA0aNEjPPPOM1q1bV2lmDfd27rnnqqCgQKNHj1aTJk2Umpqqxo0be8LgyZMnJ7qIQV177bV67733NGLECDVp0kRpaWlq2rSpxowZo82bN+vKK68M+fwJEyboq6++0l133aU+ffqoQYMGSklJUc2aNXX66adr+PDheuSRR/Tdd9+pbdu2cVorAABQnbmsaEZ8BwAAAAAAAIAYoaUlAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwCqElAAAAAAAAAKMQWgIAAAAAAAAwyv8Ha1GKLHhjV7IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AqAL8cJZOpmE", + "outputId": "07fdb91a-1b32-43c4-c4f6-cc3faf49651f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 2\n", + "Epoch 1/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 3s/step - loss: 16.0125\n", + "Epoch 2/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.9980\n", + "Epoch 3/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.9837\n", + "Epoch 4/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.9694\n", + "Epoch 5/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.9552\n", + "Epoch 6/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.9411\n", + "Epoch 7/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.9271\n", + "Epoch 8/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.9132\n", + "Epoch 9/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.8993\n", + "Epoch 10/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.8856\n", + "Epoch 11/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.8719\n", + "Epoch 12/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.8582\n", + "Epoch 13/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.8446\n", + "Epoch 14/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.8310\n", + "Epoch 15/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.8173\n", + "Epoch 16/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.8037\n", + "Epoch 17/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.7901\n", + "Epoch 18/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.7764\n", + "Epoch 19/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.7627\n", + "Epoch 20/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.7490\n", + "Epoch 21/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.7352\n", + "Epoch 22/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.7214\n", + "Epoch 23/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.7075\n", + "Epoch 24/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.6936\n", + "Epoch 25/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.6795\n", + "Epoch 26/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.6654\n", + "Epoch 27/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.6512\n", + "Epoch 28/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.6370\n", + "Epoch 29/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.6226\n", + "Epoch 30/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.6082\n", + "Epoch 31/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.5936\n", + "Epoch 32/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.5789\n", + "Epoch 33/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.5642\n", + "Epoch 34/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.5493\n", + "Epoch 35/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.5343\n", + "Epoch 36/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.5192\n", + "Epoch 37/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.5040\n", + "Epoch 38/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.4886\n", + "Epoch 39/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.4732\n", + "Epoch 40/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.4576\n", + "Epoch 41/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.4419\n", + "Epoch 42/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.4261\n", + "Epoch 43/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.4101\n", + "Epoch 44/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.3941\n", + "Epoch 45/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.3779\n", + "Epoch 46/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.3615\n", + "Epoch 47/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.3451\n", + "Epoch 48/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.3285\n", + "Epoch 49/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.3118\n", + "Epoch 50/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.2949\n", + "Epoch 51/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.2779\n", + "Epoch 52/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.2608\n", + "Epoch 53/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.2435\n", + "Epoch 54/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.2261\n", + "Epoch 55/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.2086\n", + "Epoch 56/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.1909\n", + "Epoch 57/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 15.1731\n", + "Epoch 58/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.1551\n", + "Epoch 59/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.1370\n", + "Epoch 60/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.1187\n", + "Epoch 61/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.1003\n", + "Epoch 62/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.0818\n", + "Epoch 63/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.0631\n", + "Epoch 64/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.0443\n", + "Epoch 65/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.0253\n", + "Epoch 66/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.0061\n", + "Epoch 67/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.9869\n", + "Epoch 68/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.9674\n", + "Epoch 69/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.9478\n", + "Epoch 70/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.9281\n", + "Epoch 71/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.9081\n", + "Epoch 72/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.8881\n", + "Epoch 73/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.8678\n", + "Epoch 74/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.8474\n", + "Epoch 75/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.8269\n", + "Epoch 76/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.8062\n", + "Epoch 77/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.7853\n", + "Epoch 78/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.7642\n", + "Epoch 79/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.7430\n", + "Epoch 80/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.7216\n", + "Epoch 81/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.7000\n", + "Epoch 82/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.6782\n", + "Epoch 83/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.6563\n", + "Epoch 84/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.6342\n", + "Epoch 85/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.6119\n", + "Epoch 86/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.5895\n", + "Epoch 87/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.5668\n", + "Epoch 88/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.5440\n", + "Epoch 89/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.5209\n", + "Epoch 90/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.4977\n", + "Epoch 91/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.4743\n", + "Epoch 92/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.4507\n", + "Epoch 93/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.4269\n", + "Epoch 94/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.4029\n", + "Epoch 95/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.3787\n", + "Epoch 96/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.3543\n", + "Epoch 97/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.3297\n", + "Epoch 98/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 14.3049\n", + "Epoch 99/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.2798\n", + "Epoch 100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.2546\n", + "Epoch 101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.2291\n", + "Epoch 102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.2034\n", + "Epoch 103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.1775\n", + "Epoch 104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.1514\n", + "Epoch 105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.1250\n", + "Epoch 106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.0984\n", + "Epoch 107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.0716\n", + "Epoch 108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 14.0446\n", + "Epoch 109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 14.0173\n", + "Epoch 110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 13.9897\n", + "Epoch 111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.9620\n", + "Epoch 112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 13.9339\n", + "Epoch 113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 13.9057\n", + "Epoch 114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 13.8772\n", + "Epoch 115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 13.8484\n", + "Epoch 116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.8194\n", + "Epoch 117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 13.7901\n", + "Epoch 118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 13.7606\n", + "Epoch 119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.7309\n", + "Epoch 120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.7009\n", + "Epoch 121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.6706\n", + "Epoch 122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 13.6401\n", + "Epoch 123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 13.6093\n", + "Epoch 124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 13.5783\n", + "Epoch 125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 13.5471\n", + "Epoch 126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 13.5156\n", + "Epoch 127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.4838\n", + "Epoch 128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.4518\n", + "Epoch 129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.4195\n", + "Epoch 130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 13.3871\n", + "Epoch 131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.3543\n", + "Epoch 132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 13.3213\n", + "Epoch 133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 13.2881\n", + "Epoch 134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 13.2547\n", + "Epoch 135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 13.2210\n", + "Epoch 136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.1871\n", + "Epoch 137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 13.1530\n", + "Epoch 138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.1186\n", + "Epoch 139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 13.0840\n", + "Epoch 140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 13.0492\n", + "Epoch 141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 13.0142\n", + "Epoch 142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 12.9789\n", + "Epoch 143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 12.9435\n", + "Epoch 144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 12.9078\n", + "Epoch 145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 12.8720\n", + "Epoch 146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.8359\n", + "Epoch 147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.7996\n", + "Epoch 148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.7632\n", + "Epoch 149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.7265\n", + "Epoch 150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.6897\n", + "Epoch 151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.6527\n", + "Epoch 152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.6154\n", + "Epoch 153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.5781\n", + "Epoch 154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.5405\n", + "Epoch 155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.5028\n", + "Epoch 156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.4649\n", + "Epoch 157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.4268\n", + "Epoch 158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.3886\n", + "Epoch 159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.3502\n", + "Epoch 160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.3117\n", + "Epoch 161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.2730\n", + "Epoch 162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.2342\n", + "Epoch 163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.1952\n", + "Epoch 164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.1561\n", + "Epoch 165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.1169\n", + "Epoch 166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 12.0775\n", + "Epoch 167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.0380\n", + "Epoch 168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.9984\n", + "Epoch 169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.9587\n", + "Epoch 170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.9189\n", + "Epoch 171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.8789\n", + "Epoch 172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.8389\n", + "Epoch 173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.7987\n", + "Epoch 174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.7585\n", + "Epoch 175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.7181\n", + "Epoch 176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.6777\n", + "Epoch 177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.6372\n", + "Epoch 178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.5966\n", + "Epoch 179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.5559\n", + "Epoch 180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.5151\n", + "Epoch 181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.4743\n", + "Epoch 182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.4334\n", + "Epoch 183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.3924\n", + "Epoch 184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.3514\n", + "Epoch 185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 11.3103\n", + "Epoch 186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.2692\n", + "Epoch 187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.2280\n", + "Epoch 188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.1868\n", + "Epoch 189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.1455\n", + "Epoch 190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.1042\n", + "Epoch 191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.0629\n", + "Epoch 192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.0215\n", + "Epoch 193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.9801\n", + "Epoch 194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.9387\n", + "Epoch 195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.8972\n", + "Epoch 196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.8558\n", + "Epoch 197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.8143\n", + "Epoch 198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.7728\n", + "Epoch 199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.7313\n", + "Epoch 200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.6898\n", + "Epoch 201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.6483\n", + "Epoch 202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.6068\n", + "Epoch 203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 10.5653\n", + "Epoch 204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.5238\n", + "Epoch 205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.4824\n", + "Epoch 206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.4409\n", + "Epoch 207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.3995\n", + "Epoch 208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 10.3581\n", + "Epoch 209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.3167\n", + "Epoch 210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.2753\n", + "Epoch 211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.2340\n", + "Epoch 212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 10.1927\n", + "Epoch 213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.1514\n", + "Epoch 214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.1102\n", + "Epoch 215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.0690\n", + "Epoch 216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.0278\n", + "Epoch 217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.9867\n", + "Epoch 218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.9457\n", + "Epoch 219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.9047\n", + "Epoch 220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 9.8637\n", + "Epoch 221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.8228\n", + "Epoch 222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.7820\n", + "Epoch 223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.7412\n", + "Epoch 224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.7005\n", + "Epoch 225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.6599\n", + "Epoch 226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.6193\n", + "Epoch 227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.5788\n", + "Epoch 228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.5384\n", + "Epoch 229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.4980\n", + "Epoch 230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.4578\n", + "Epoch 231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.4176\n", + "Epoch 232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.3775\n", + "Epoch 233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.3374\n", + "Epoch 234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.2975\n", + "Epoch 235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.2576\n", + "Epoch 236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.2178\n", + "Epoch 237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.1782\n", + "Epoch 238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.1386\n", + "Epoch 239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 9.0991\n", + "Epoch 240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.0597\n", + "Epoch 241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.0204\n", + "Epoch 242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.9812\n", + "Epoch 243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.9421\n", + "Epoch 244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.9031\n", + "Epoch 245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.8642\n", + "Epoch 246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.8254\n", + "Epoch 247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.7867\n", + "Epoch 248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.7481\n", + "Epoch 249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.7096\n", + "Epoch 250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.6713\n", + "Epoch 251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6330\n", + "Epoch 252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.5949\n", + "Epoch 253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.5568\n", + "Epoch 254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.5189\n", + "Epoch 255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.4811\n", + "Epoch 256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.4434\n", + "Epoch 257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.4059\n", + "Epoch 258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.3684\n", + "Epoch 259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.3311\n", + "Epoch 260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.2939\n", + "Epoch 261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.2568\n", + "Epoch 262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.2199\n", + "Epoch 263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.1830\n", + "Epoch 264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.1463\n", + "Epoch 265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.1097\n", + "Epoch 266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.0732\n", + "Epoch 267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.0369\n", + "Epoch 268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.0007\n", + "Epoch 269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.9646\n", + "Epoch 270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.9286\n", + "Epoch 271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.8928\n", + "Epoch 272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.8571\n", + "Epoch 273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.8215\n", + "Epoch 274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.7861\n", + "Epoch 275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.7508\n", + "Epoch 276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.7156\n", + "Epoch 277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.6806\n", + "Epoch 278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.6456\n", + "Epoch 279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.6109\n", + "Epoch 280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5762\n", + "Epoch 281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.5417\n", + "Epoch 282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5073\n", + "Epoch 283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.4731\n", + "Epoch 284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.4389\n", + "Epoch 285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.4050\n", + "Epoch 286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.3711\n", + "Epoch 287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.3374\n", + "Epoch 288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.3038\n", + "Epoch 289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2704\n", + "Epoch 290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.2371\n", + "Epoch 291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.2039\n", + "Epoch 292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 7.1708\n", + "Epoch 293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.1379\n", + "Epoch 294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.1052\n", + "Epoch 295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.0725\n", + "Epoch 296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.0400\n", + "Epoch 297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.0077\n", + "Epoch 298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.9754\n", + "Epoch 299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.9433\n", + "Epoch 300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.9114\n", + "Epoch 301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.8795\n", + "Epoch 302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.8478\n", + "Epoch 303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.8163\n", + "Epoch 304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.7849\n", + "Epoch 305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.7536\n", + "Epoch 306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.7224\n", + "Epoch 307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.6914\n", + "Epoch 308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.6605\n", + "Epoch 309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 6.6298\n", + "Epoch 310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.5992\n", + "Epoch 311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.5687\n", + "Epoch 312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.5383\n", + "Epoch 313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.5081\n", + "Epoch 314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.4780\n", + "Epoch 315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.4481\n", + "Epoch 316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.4183\n", + "Epoch 317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.3886\n", + "Epoch 318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.3590\n", + "Epoch 319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 6.3296\n", + "Epoch 320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 6.3003\n", + "Epoch 321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 6.2711\n", + "Epoch 322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 6.2421\n", + "Epoch 323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 6.2132\n", + "Epoch 324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.1844\n", + "Epoch 325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 6.1558\n", + "Epoch 326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.1273\n", + "Epoch 327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 6.0989\n", + "Epoch 328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 6.0707\n", + "Epoch 329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 6.0425\n", + "Epoch 330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 6.0145\n", + "Epoch 331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 5.9867\n", + "Epoch 332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 5.9589\n", + "Epoch 333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 5.9313\n", + "Epoch 334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.9038\n", + "Epoch 335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 5.8765\n", + "Epoch 336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 5.8492\n", + "Epoch 337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.8221\n", + "Epoch 338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 5.7951\n", + "Epoch 339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 5.7682\n", + "Epoch 340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 5.7415\n", + "Epoch 341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 5.7149\n", + "Epoch 342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 5.6884\n", + "Epoch 343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 5.6620\n", + "Epoch 344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 5.6358\n", + "Epoch 345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 5.6096\n", + "Epoch 346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 5.5836\n", + "Epoch 347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 5.5577\n", + "Epoch 348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 5.5320\n", + "Epoch 349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 5.5063\n", + "Epoch 350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 5.4808\n", + "Epoch 351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 5.4554\n", + "Epoch 352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.4301\n", + "Epoch 353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 5.4049\n", + "Epoch 354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3799\n", + "Epoch 355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3549\n", + "Epoch 356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.3301\n", + "Epoch 357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3054\n", + "Epoch 358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.2808\n", + "Epoch 359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.2563\n", + "Epoch 360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.2320\n", + "Epoch 361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.2077\n", + "Epoch 362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.1836\n", + "Epoch 363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.1596\n", + "Epoch 364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.1357\n", + "Epoch 365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.1119\n", + "Epoch 366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0882\n", + "Epoch 367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.0646\n", + "Epoch 368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.0411\n", + "Epoch 369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.0178\n", + "Epoch 370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.9945\n", + "Epoch 371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.9714\n", + "Epoch 372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.9484\n", + "Epoch 373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.9255\n", + "Epoch 374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.9027\n", + "Epoch 375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.8799\n", + "Epoch 376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.8574\n", + "Epoch 377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.8349\n", + "Epoch 378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.8125\n", + "Epoch 379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.7902\n", + "Epoch 380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.7680\n", + "Epoch 381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.7459\n", + "Epoch 382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.7240\n", + "Epoch 383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.7021\n", + "Epoch 384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.6804\n", + "Epoch 385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6587\n", + "Epoch 386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.6371\n", + "Epoch 387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.6157\n", + "Epoch 388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.5943\n", + "Epoch 389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.5731\n", + "Epoch 390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.5519\n", + "Epoch 391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.5309\n", + "Epoch 392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5099\n", + "Epoch 393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.4890\n", + "Epoch 394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.4683\n", + "Epoch 395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.4476\n", + "Epoch 396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.4271\n", + "Epoch 397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.4066\n", + "Epoch 398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.3862\n", + "Epoch 399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.3659\n", + "Epoch 400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.3458\n", + "Epoch 401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.3257\n", + "Epoch 402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.3057\n", + "Epoch 403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.2858\n", + "Epoch 404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.2660\n", + "Epoch 405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.2463\n", + "Epoch 406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.2266\n", + "Epoch 407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.2071\n", + "Epoch 408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.1877\n", + "Epoch 409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.1683\n", + "Epoch 410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1491\n", + "Epoch 411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.1299\n", + "Epoch 412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.1108\n", + "Epoch 413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.0918\n", + "Epoch 414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.0729\n", + "Epoch 415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.0541\n", + "Epoch 416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.0354\n", + "Epoch 417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.0167\n", + "Epoch 418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.9982\n", + "Epoch 419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.9797\n", + "Epoch 420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.9614\n", + "Epoch 421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.9431\n", + "Epoch 422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9249\n", + "Epoch 423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9067\n", + "Epoch 424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.8887\n", + "Epoch 425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.8708\n", + "Epoch 426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.8529\n", + "Epoch 427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.8351\n", + "Epoch 428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8174\n", + "Epoch 429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7998\n", + "Epoch 430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7822\n", + "Epoch 431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.7648\n", + "Epoch 432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.7474\n", + "Epoch 433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7301\n", + "Epoch 434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7129\n", + "Epoch 435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6958\n", + "Epoch 436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6787\n", + "Epoch 437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6617\n", + "Epoch 438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6448\n", + "Epoch 439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.6280\n", + "Epoch 440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.6113\n", + "Epoch 441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.5946\n", + "Epoch 442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.5780\n", + "Epoch 443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.5615\n", + "Epoch 444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.5451\n", + "Epoch 445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.5287\n", + "Epoch 446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.5124\n", + "Epoch 447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.4962\n", + "Epoch 448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.4801\n", + "Epoch 449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.4640\n", + "Epoch 450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4480\n", + "Epoch 451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4321\n", + "Epoch 452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4163\n", + "Epoch 453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.4005\n", + "Epoch 454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3848\n", + "Epoch 455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.3692\n", + "Epoch 456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.3536\n", + "Epoch 457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.3382\n", + "Epoch 458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3228\n", + "Epoch 459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.3074\n", + "Epoch 460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.2922\n", + "Epoch 461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.2770\n", + "Epoch 462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.2618\n", + "Epoch 463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.2468\n", + "Epoch 464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.2318\n", + "Epoch 465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.2169\n", + "Epoch 466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.2020\n", + "Epoch 467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.1872\n", + "Epoch 468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1725\n", + "Epoch 469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.1579\n", + "Epoch 470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.1433\n", + "Epoch 471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.1288\n", + "Epoch 472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1143\n", + "Epoch 473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.0999\n", + "Epoch 474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0856\n", + "Epoch 475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.0714\n", + "Epoch 476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.0572\n", + "Epoch 477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.0431\n", + "Epoch 478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.0290\n", + "Epoch 479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.0150\n", + "Epoch 480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.0011\n", + "Epoch 481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.9872\n", + "Epoch 482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.9734\n", + "Epoch 483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.9597\n", + "Epoch 484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9460\n", + "Epoch 485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9324\n", + "Epoch 486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9188\n", + "Epoch 487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9053\n", + "Epoch 488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.8919\n", + "Epoch 489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.8785\n", + "Epoch 490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.8652\n", + "Epoch 491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8520\n", + "Epoch 492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.8388\n", + "Epoch 493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.8257\n", + "Epoch 494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.8126\n", + "Epoch 495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7996\n", + "Epoch 496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.7866\n", + "Epoch 497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7737\n", + "Epoch 498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7609\n", + "Epoch 499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.7481\n", + "Epoch 500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.7354\n", + "Epoch 501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7227\n", + "Epoch 502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7101\n", + "Epoch 503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6976\n", + "Epoch 504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6851\n", + "Epoch 505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6727\n", + "Epoch 506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.6603\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6480\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.6357\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.6235\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6113\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5992\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.5872\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5752\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.5633\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5514\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5395\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.5278\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5160\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 2.5044\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 2.4927\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 2.4812\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 2.4697\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.4582\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 2.4468\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.4354\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.4241\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.4128\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 2.4016\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.3905\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 2.3794\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.3683\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 2.3573\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.3463\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.3354\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.3246\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.3138\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.3030\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.2923\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.2816\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 2.2710\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.2604\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.2499\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.2394\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.2290\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.2186\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.2082\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.1979\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1877\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 2.1775\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.1673\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 2.1572\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 2.1472\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 2.1371\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.1272\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.1172\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.1073\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.0975\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.0877\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0779\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0682\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0586\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0489\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0394\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0298\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0203\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.0109\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0015\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9921\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.9827\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.9735\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9642\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9550\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.9458\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.9367\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9276\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.9186\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.9096\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9006\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.8917\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.8828\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.8740\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.8652\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.8564\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.8477\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.8390\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8304\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.8217\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8132\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.8046\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.7961\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7877\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7793\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.7709\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7625\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7542\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7460\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.7377\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.7295\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.7214\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.7132\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7051\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6971\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.6891\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.6811\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.6732\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6652\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.6574\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6495\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6417\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.6340\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.6262\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6185\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.6108\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6032\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.5956\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.5880\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5805\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.5730\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5656\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5581\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5507\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5434\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5360\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5287\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5215\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5142\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5070\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4998\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4927\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4856\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.4785\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.4715\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4645\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4575\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4505\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4436\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4367\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.4299\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4230\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4162\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4095\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4027\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3960\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3894\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3827\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.3761\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.3695\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3630\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.3564\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3499\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.3435\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3370\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3306\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3242\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.3179\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.3115\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3052\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2990\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2927\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2865\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2803\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.2742\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2680\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.2619\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.2558\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2498\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2438\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2378\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2318\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2259\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.2200\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2141\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2082\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2024\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.1966\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1908\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.1850\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.1793\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1736\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1679\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1622\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.1566\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1510\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1454\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.1399\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1343\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1288\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1234\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.1179\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1125\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.1071\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.1017\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0963\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0910\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0857\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0804\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0751\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0699\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0647\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0595\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.0543\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0492\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0441\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.0390\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.0339\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 1.0288\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 1.0238\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 1.0188\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.0138\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.0089\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.0039\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.9990\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.9941\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.9893\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.9844\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.9796\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.9748\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.9700\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.9652\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.9605\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.9558\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.9511\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.9464\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.9417\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.9371\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.9325\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.9279\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.9233\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.9188\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.9143\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.9098\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.9053\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.9008\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.8964\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.8919\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.8875\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.8831\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.8788\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.8744\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.8701\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.8658\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8615\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8572\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.8530\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8488\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8445\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8404\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8362\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8320\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.8279\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.8238\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8197\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8156\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8116\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.8075\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8035\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7995\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7955\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7916\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7876\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7837\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.7798\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.7759\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.7720\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7682\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7643\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.7605\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7567\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7529\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7491\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.7454\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7417\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7379\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7342\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7306\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7269\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.7232\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7196\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7160\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7124\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7088\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7053\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7017\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6982\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6947\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6912\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6877\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6842\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.6808\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6773\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6739\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6705\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6671\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.6638\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6604\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.6571\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6537\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6504\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6471\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6439\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6406\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6374\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6341\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6309\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6277\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.6245\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6214\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.6182\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6151\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6119\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6088\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6057\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6026\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5996\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5965\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5935\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5905\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5875\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5845\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5815\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.5785\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5755\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.5726\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.5697\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.5668\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.5639\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5610\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5581\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5553\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5524\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5496\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5468\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.5440\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.5412\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5384\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5356\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5329\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5301\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5274\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.5247\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5220\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.5193\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5166\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5140\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5113\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5087\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5061\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.5035\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5009\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4983\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.4957\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4932\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4906\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.4881\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.4855\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4830\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4805\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4780\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.4756\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4731\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4707\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4682\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.4658\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4634\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4610\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4586\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.4562\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.4538\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4515\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4491\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4468\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4444\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4421\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.4398\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.4375\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.4353\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.4330\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.4307\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4285\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.4262\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.4240\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.4218\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.4196\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.4174\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.4152\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4131\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.4109\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.4087\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4066\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.4045\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.4023\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.4002\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.3981\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.3960\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.3940\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.3919\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.3898\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.3878\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.3858\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.3837\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.3817\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.3797\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.3777\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.3757\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.3737\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.3718\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.3698\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.3679\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.3659\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.3640\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.3621\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.3601\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3582\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3564\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3545\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3526\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3507\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3489\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3470\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3452\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3434\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3415\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3397\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.3379\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3361\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.3343\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3326\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3308\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3290\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3273\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3256\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3238\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3221\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3204\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3187\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3170\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.3153\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3136\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.3119\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3103\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3086\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3070\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3053\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3037\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3021\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3005\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2989\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.2973\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2957\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2941\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2925\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2910\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2894\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2879\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2863\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2848\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2832\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2817\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2802\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.2787\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2772\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2757\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2742\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2728\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2713\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2698\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2684\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2670\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2655\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2641\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.2627\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2612\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2598\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2584\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.2570\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2557\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2543\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2529\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2515\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2502\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2488\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2475\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2462\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2448\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2435\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2422\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2409\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2396\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2383\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.2370\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2357\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2344\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2331\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2319\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2306\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2294\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2281\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2269\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2257\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2244\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2232\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2220\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2208\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2196\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2184\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2172\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2160\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2149\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2137\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.2125\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2114\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2102\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2091\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2079\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2068\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2057\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2045\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2034\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2023\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2012\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2001\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1990\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1979\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1968\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1958\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1947\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1936\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1926\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.1915\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.1905\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.1894\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1884\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1874\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.1863\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.1853\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1843\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1833\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1823\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.1813\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.1803\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.1793\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.1783\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.1773\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1764\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1754\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.1744\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1735\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1725\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1716\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.1706\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1697\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1688\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1678\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.1669\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1660\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.1651\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1642\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1633\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1624\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.1615\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1606\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1597\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.1588\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1580\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.1571\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1562\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.1554\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1545\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1536\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1528\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1520\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1511\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1503\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1495\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1486\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1478\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1470\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1462\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1454\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1446\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1438\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1430\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1422\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1414\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1406\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1398\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1391\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1383\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1375\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1368\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1360\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1353\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1345\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1338\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1330\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1323\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1316\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1308\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1301\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1294\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1287\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1280\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1273\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1266\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1259\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1252\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1245\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1238\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1231\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1224\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1217\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1211\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1204\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1197\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1191\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1184\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1177\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1171\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1164\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1158\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1152\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1145\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1139\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1133\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1126\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1120\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1114\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1108\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1101\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1095\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1089\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1083\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1077\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1071\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.1065\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1059\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1054\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1048\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1042\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1036\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1030\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1025\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1019\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1013\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1008\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1002\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0997\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0991\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0986\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0980\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0975\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0969\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0964\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0959\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0953\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0948\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0943\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0938\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0932\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0927\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0922\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0917\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0912\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0907\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0902\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0897\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0892\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0887\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0882\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0877\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0872\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0868\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0863\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0858\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0853\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0849\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0844\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0839\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0835\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0830\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0825\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0821\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0816\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0812\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0807\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 178ms/step - loss: 0.0803\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0799\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0794\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0790\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0785\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0781\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0777\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0773\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0768\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0764\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0760\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0756\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0752\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0747\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0743\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0739\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0735\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0731\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0727\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0723\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.0719\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0715\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0711\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0707\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0704\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0700\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0696\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0692\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0688\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0685\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0681\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0677\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0673\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0670\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0666\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0663\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0659\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0655\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0652\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0648\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0645\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0641\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0638\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0634\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0631\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0627\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0624\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0621\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0617\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0614\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0611\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0607\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0604\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0601\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0597\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0594\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0591\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0588\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0585\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0582\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0578\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0575\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0572\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0569\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0566\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0563\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0560\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0557\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0554\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0551\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0548\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0545\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0542\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0539\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0536\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0534\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0531\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0528\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0525\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0522\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0520\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0517\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0514\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0511\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0509\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0506\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0503\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0501\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0498\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0495\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0493\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0490\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0487\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0485\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0482\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0480\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0477\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0475\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0472\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0470\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0467\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0465\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0462\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0460\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0458\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0455\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0453\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0451\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0448\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0446\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0444\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0441\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0439\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0437\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0434\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0432\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0430\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0428\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0426\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0423\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0421\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0419\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0417\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0415\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0413\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0410\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0408\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0406\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0404\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0402\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0400\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0398\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0396\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0394\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0392\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0390\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0388\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0386\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0384\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0382\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0380\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0378\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0377\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0375\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0373\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0371\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0369\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0367\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0365\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0364\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0362\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0360\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0358\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0356\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0355\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0353\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0351\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0349\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0348\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0346\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0344\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0343\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0341\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0339\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0338\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0336\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0334\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0333\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0331\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0330\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0328\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0326\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0325\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0323\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0322\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0320\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0319\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0317\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0316\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0314\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0313\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0311\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0310\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0308\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0307\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0305\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0304\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0302\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0301\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0300\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0298\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0297\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0295\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0294\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0293\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0291\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0290\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0289\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0287\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0286\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0285\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0283\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0282\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0281\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0279\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0278\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0277\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0276\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0274\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0273\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0272\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0271\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0270\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0268\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0267\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0266\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0265\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0264\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0262\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0261\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0260\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0259\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0258\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0257\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0256\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0254\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0253\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0252\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0251\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0250\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0249\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0248\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0247\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0246\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0245\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0244\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0243\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0242\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0241\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0240\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0239\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0238\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0237\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0236\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0235\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0234\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0233\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0232\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0231\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0230\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0229\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0228\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0227\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0226\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0225\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0224\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0223\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0222\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0221\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0221\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0220\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0219\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0218\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0217\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0216\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0215\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0215\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0214\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0213\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0212\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0211\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0210\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0210\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0209\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0208\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0207\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0206\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0206\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0205\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0204\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0203\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0202\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0202\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0201\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0200\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0199\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0199\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0198\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0197\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0197\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0196\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0195\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 0.0194\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0194\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0193\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0192\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0192\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0191\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0190\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0190\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0189\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0188\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0188\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0187\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0186\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0186\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0185\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0184\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0184\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0183\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0182\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0182\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0181\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0181\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0180\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0179\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0179\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0178\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0178\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0177\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0176\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0176\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0175\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0175\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0174\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0173\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0173\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0172\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0172\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0171\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0171\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0170\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0170\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0169\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0169\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0168\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0167\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0167\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0166\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0166\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0165\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0165\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0164\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0164\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0163\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0163\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0162\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0162\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0161\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0161\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0161\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0160\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0160\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0159\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0159\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0158\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0158\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0157\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0157\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0156\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0156\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0156\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0155\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0155\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0154\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0154\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0153\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0153\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0153\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0152\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0152\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0151\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0151\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0151\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0150\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0150\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0149\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0149\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0149\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0148\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0148\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0147\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0147\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0147\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0146\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0146\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0146\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0145\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0145\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0144\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0144\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0144\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0143\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0143\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0143\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0142\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0142\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0142\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0141\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0141\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0141\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0140\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0140\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0140\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0139\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0139\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0139\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0138\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0138\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0138\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0138\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0137\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0137\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0137\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0136\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0136\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0136\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0135\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0135\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0135\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 0.0135\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0134\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0134\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0134\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0133\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0133\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0133\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0133\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0132\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0132\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0132\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0132\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0131\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0131\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0131\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0131\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 0.0130\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0130\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0130\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0130\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0129\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0129\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0129\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0129\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 240ms/step - loss: 0.0128\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0128\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 176ms/step - loss: 0.0128\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0128\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0127\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0127\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0127\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0127\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0127\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0126\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0126\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0126\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0126\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0125\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0125\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0125\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0125\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0125\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0124\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0124\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0124\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0124\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0124\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0123\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0123\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0123\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0123\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0123\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0122\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0122\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0122\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0122\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0122\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0121\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0121\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0121\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0121\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0121\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0121\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0120\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0120\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0120\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0120\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0120\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0119\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0119\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0119\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0119\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0119\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0119\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0118\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0118\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0118\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0118\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0118\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0118\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0118\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0117\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0117\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0117\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0117\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0117\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0117\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0116\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0116\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0116\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0116\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0116\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0116\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0116\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0116\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0115\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0115\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0115\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0115\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0115\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0115\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0115\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0114\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0114\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0114\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0114\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0114\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0114\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0114\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0114\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0113\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0113\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0113\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0113\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0113\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0113\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0113\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0113\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0112\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0112\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0112\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0112\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0112\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0112\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0112\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0112\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.0112\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0111\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0111\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0111\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step - loss: 0.0111\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0111\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0111\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0111\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0111\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0111\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0111\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0110\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0110\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0110\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0110\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0110\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 176ms/step - loss: 0.0110\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0110\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0110\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 0.0110" + ] + } + ], + "source": [ + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt',\n", + "3000, True, patience)\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "ACzX5dNuOfDV" + }, + "outputs": [], + "source": [ + "mse_stop_ae2 = 0.0110" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "DZQDlWauPvTB", + "outputId": "adb41f7d-2135-46a0-e9f2-3447ce784ec8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XecFPX9x/H33h1dQAkREAuxxIKxEmxRUUHUaNRIgsQoEDUaNZoQfyqJsaXYjT3GiiXGFrtExYKigthARcSKghRB4OAoV/f3x7p7s3PTd2ZnZu/1fDx4sLs3O/PdKd/5zmc+3+9kstlsVgAAAAAAAACQEFVxFwAAAAAAAAAAjAhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAICKMXv2bJ1yyinabrvt1L17d2UymcK/uXPnxl28dmnChAmFbTBmzJiyLtu4/QEAAJAuBC0BAEi5IUOGFAIzF1xwge10xgCO+V91dbXWX399bbXVVvrZz36mW2+9VXV1dYHK4PdfWIGsxx9/XDvvvLP++c9/avbs2b7KDwDPPfdcUd207bbb+p7HBRdcELguHDBggO18V69erSeffFK///3vte+++6pfv37q1KmTunXrps0220xHHHGE/vWvf2n16tUlrAEAAJKFoCUAAFBLS4tqa2v1ySef6KGHHtKJJ56o733ve3rkkUfiLpondXV1GjNmjOrr6yVJ/fr1089+9jOdcsopOvXUU3XqqaeqR48eMZcyOGMgxCkwDSTZgAEDEp35fOeddxa9//DDDzV9+vSYStPql7/8pTbccEMddthhuvrqq/Xyyy9r0aJFamho0Jo1a/Tll1/qscce08knn6wBAwbo4YcfjrvIAACEoibuAgAAgPI74ogj1L9//8L7lpYWLV26VFOnTtX8+fMlSUuXLtWIESP00EMP6cgjj/Q87x/+8IcaPHiw5+l333137wW38eSTT2r58uWSpIEDB+qNN95Qly5dSp4vgPZh1apVlsG+O++801d9ZrTRRhv5qju/853vWH7+0EMPFW7ISNIGG2ygwYMHa6ONNlI2m9Xs2bM1ffp0ZbNZLV26VEcddZT++c9/6uSTTw5UbgAAkoKgJQAA7dAZZ5yhIUOGtPm8paVFd955p37zm9+ovr5eLS0t+s1vfqPhw4era9eunuZ9yCGHlD0b8O233y68HjVqFAHLBBkzZkzZx7LMy2azsSwX6fPQQw9pzZo1kqQuXbpo7dq1kqT77rtP//jHP9SxY0ff89xqq610/fXXh1K+rl27atSoUfrVr36l3XffXVVVxR3mZs2apV/+8peaMWOGJOm0007TXnvtpR/84AehLB8AgDjQPRwAABRUVVVp7NixuuyyywqfLV68WI8++mh8hfIgn2Up5bqGA4Afxq7hZ599tvr06SNJWrZsmZ544om4iiVJ+u1vf6vPPvtMt956q/bcc882AUspl2H+wgsvaLPNNpMkNTc36+9//3u5iwoAQKgIWgIAgDZOOukkde7cufD+5ZdfjrE07hobGwuvrS7oAcDO3LlzC3VcJpPR6NGjNWrUqMLfzWNdltvll19eCKI62WCDDXT22WcX3k+cODHKYgEAEDla9QAAoI1OnToVPTl3wYIFMZbGmvHhNMagwtixY9s8lXfChAmW86irq9O1116r4cOHa+ONN1bnzp21wQYbaPvtt9dpp52m119/3VNZjMvKmzlzps444wxtv/326tWrlzKZjI444ghfvzH/VPYLL7yw8NmFF17o6SnsY8aMafP7V6xYoWuuuUb77LOP+vfvr5qaGmUyGa1YsaLou19//bXuuOMOjR49WjvvvLN69eqlDh06aP3119c222yjsWPH6plnnvH0GyZMmOD6pPjJkycXpjEOW/DCCy/o6KOP1uabb67OnTvrO9/5jvbZZx9df/31RYFqO1bbxczq4TDz58/Xn//8Z+24445af/311a1bN22zzTb67W9/qy+++MLT786bNGmSjj76aG266abq3Lmz+vXrp7333ls33HBD4UnPUTxoaenSpbriiis0dOhQbbTRRurcuXNhGw4cOFAjRozQVVddpc8//9zT/J5//nmdfPLJGjhwoHr16qVOnTppo4020vDhw3X99dcXulObzZ07t/DbjOvue9/7nuV+PHny5DB+vi933XVXYSiBH/3oRxowYICOPfbYwt//97//6euvvy57uYLYa6+9Cq9XrlypZcuWxVgaAABKw5iWAADAknFcyHXr1sVYkmg8+eSTOvHEE7Vo0aKiz+vr67VixQrNmjVLN9xwg37xi1/olltu8Tymp5QLQv31r39Vc3Nz2MUO7NVXX9WoUaM0b948x+muvfZajRs3zrLstbW1qq2t1Zw5czRhwgTtv//+euCBB2wfIBJUQ0ODTjvtNN1yyy1Fn9fX12vKlCmaMmWK7rjjDj3zzDPq3bt3qMt+9NFHNWbMGNXW1hZ9PmfOHM2ZM0e33XabHnzwQf34xz92/Q3HH3+87rnnnqLPFy1apEWLFumVV17RDTfcoEceeSTU8kvSY489prFjxxYNm5CX34YffPCB/vvf/+qqq64qPHzLyrx583TcccdZBhMXLlyohQsX6tlnn9XFF1+s++67T3vvvXeYP6Us7rrrrsLrfLByl1120cCBAzVr1iw1NTXp3nvv1e9+97uYSuidOUCfpDoIAAC/CFoCAABLxuxKL10Ty23w4ME69dRTJeWywD788ENJ0gEHHKBtttmmaFpj1qgk3X///TrmmGMKF/TV1dX60Y9+pC233FJ1dXWaMmVK4fffe++9+vzzz/XCCy8UdZm3c/nllxcyI7fYYgsNHjxYXbt21dy5c9WhQwdfv/HII4/U9ttvr+nTp+uNN96QZP90dqensH/yySf63e9+p9raWnXv3l377LOPNtpoIy1fvrxN1/8FCxYU1svmm2+ubbfdVt/97nfVuXNnrVixQu+9955mzZolKZcJOXToUE2bNk2dOnXy9duc/PrXv9add96pqqoq7bbbbtpmm23U0tKiadOmac6cOZJyD1867rjjQu0C+9xzz+nkk09Wc3OzNt10U+2xxx7q0aOHPv/8c02ePFlNTU1au3atfv7zn+v999/X9773Pdt5jRo1quhp1L169dKQIUPUq1cvzZs3Ty+99JJmz56tH//4x/rJT34S2m948803NWLECDU1NUnK3XzYfffdNWDAAHXq1EkrV67Up59+qvfee6/w4Bk7s2fP1gEHHKCFCxdKygXEdtllF2233Xbq0qWLvvrqK7388statWqVFixYoGHDhul///uf9ttvv8I8evToUThO77rrLq1atUqSdNxxx6l79+5tltm/f/9Q1oNXr7zyij799FNJuQzzn/3sZ4W/HXvssTrnnHMk5bqIpyFo+d577xVed+nSJfSgPgAAZZUFAACptu+++2YlZSVlzz//fNvp8tNIyr744ouO85wzZ07R9Ndff30oZYjK6NGjC8u/4447HKf95JNPsuutt15h+sGDB2c//vjjommam5uzV155Zbaqqqow3W9/+1vbeRrXVU1NTbZnz57ZRx55pM1069atC/Lzsueff77v9WtcJzU1NVlJ2VNPPTW7atWqoukaGhqyzc3Nhfe33XZb9rrrrsvOnz/fdt4zZ87MDho0qDD/v/zlL7bT3nHHHYXpRo8ebTnNiy++WJimU6dOWUnZH/7wh9nZs2cXTdfS0pK9+uqri9b3Sy+9ZLts43R2Nttss6Jld+vWLXv33XdnW1paiqZ7//33s/379y9MO3bsWNt53nrrrUXL/sMf/tBm2y9evDh78MEHF/3mMI6fI444ojCvo446Krts2TLL6dauXZt96qmnsieddJLl3+vq6rLbbrttYV4HH3xw9pNPPmkzXW1tbfY3v/lNYbp+/fplV6xYYTlP47r+/PPPA//GMJ1wwgmFMo0YMaLob/PmzSuqA2bOnOk6P+Oxuu+++0ZUanvDhg0rLP/HP/5x2ZcPAECYyLQEAABFmpqadMYZZxTe9+jRQ0cffbTn70+cOFFLly71PP1FF12kXr16+SpjKS666CLV1dVJkrbccks9++yz6tmzZ9E0VVVVGjdunDKZjMaNGydJuuGGG/T73//eMbtOklpaWvT4449rn332afO3MLMR/WhqatIJJ5yg66+/vs3fzNmfv/rVr1znt8MOO+i5557TNttso0WLFunGG2/U+PHjVV1dXXJZ6+vrtdVWW+mFF17QeuutV/S3TCajM844Q6+88ooeeughSdJ//vMfy3UdRENDgx599FEddNBBbf42cOBA/etf/9Khhx4qSXrwwQd18803q6amuDnd3Nys888/v/D+pJNO0hVXXNFmfhtuuKEeffRR/ehHPypk0YZhypQpknL72oQJE9qsw7zOnTvrkEMO0SGHHGL596uuukqzZ8+WlMv4feihhywfctWjRw/deOONWrNmje68804tXLhQN910U9EDYZJq7dq1euCBBwrvjeNYStLGG2+sIUOG6IUXXpCUy7a88sorPc//448/1mmnneZ5+mOPPVa77bab5+nNnnzySU2aNKnwPp/hCgBAWhG0BAAAamlp0dKlS/Xqq6/qkksu0fTp0yVJNTU1uv32232NWfjGG2/4CsKceeaZZQtarlixQvfff3/h/WWXXdYmYGl0xhln6LbbbtOsWbPU0tKim2++WRdffLHjMkaMGBFaEC0snTt31mWXXRbqPHv27KkjjzxS//znP7Vw4UJ98MEH+sEPfhDKvC+55BLbYJuUC6zmg5b5fTUMhx56qGXAMu+QQw5R3759tWjRItXV1Wn27NltfvPTTz+tr776SpLUrVs3XXLJJbbz69ixo6644grtu+++4fwA5R6+Ikldu3Z1XIdOGhsbCwHuTp066aabbrIMWBr9/e9/LzzQ5t///ncqgpaPPvpoYX195zvf0cEHH9xmmmOPPbYQtPz3v/+tSy+9tE2g2s6CBQt0ww03eC7PoEGDAgctFy5cqF//+teF98OGDbP8PQAApAlBSwAA2iHjmHN2tt56a1155ZWuDxxJk9dee0319fWSpN69e+uwww5znL6qqkq/+tWv9Ic//EGS9OKLL7ouw09WarkceOCB2mCDDXx/7+uvv9a0adM0e/ZsLV++XKtXry48ZVnKjZ+YN2PGjFCClp07d3bdLjvvvHPhdf6J32EwjmdoJZPJaMcddyw8vGnu3LltfrPxgTU//vGPtf766zvOc5999tGmm26qL7/8MlCZzTbZZBN99tlnWr58ue6//36NHDnS9zzefPPNwtOyDzjgAG244Yau39loo420zTbbaPbs2Xr//fdVW1vreEMgCe68887C66OPPtpyzNkRI0bo1FNP1Zo1a7R48WI988wziasTGxoaNGLEiMLYo9/5znc0YcKEeAsFAEAICFoCAIA2+vTpo7vuusvygS9uzj//fF1wwQXhFyoE77zzTuH14MGDPWVM7bXXXkXfz2azbZ7Qa7TrrruWVsgI+C3TBx98oLPPPlv/+9//PD992M+QAE623npr1wcWGTN/85lyYfASdHVb9owZMwqvvWbNDR48OLSg5c9//vNCdueoUaMKgcv99tvPU/BRkqZOnVp4PX/+fM9dnFesWCFJymazmj9/fqKDlgsWLNBzzz1XeG/uGp633nrr6YgjjtC9994rKRfo9Bq03HfffS2fuh6mbDar0aNH67XXXpOUG+7hP//5jzbaaKNIlwsAQDkQtAQAoB064ogjip7S+8033+jTTz8tdOtevHix9t57b/33v/8tjOFXCZYsWVJ4vdlmm3n6zoABAwqvGxoatGrVKvXo0cN2+u9+97uByxcVP2V65plndPjhhxcyUr3KPxW6VF4CXcagZv4p2XEsu7Gxsc3fjfvYJpts4mm5G2+8safpvDj33HM1efJkTZs2TdlsVo888ogeeeQRSdJWW22lvffeWwcccIAOO+wwy6d3S7mAXt67776rd99913c5li9fHuwHlMk999xTCMhvtdVWjgHmY489thC0fPzxx7V8+fJAmctROO2003TfffdJymWG33nnnRo2bFjMpQIAIBzOg9MAAICKdMYZZ+j6668v/PvPf/6j6dOna+bMmdpxxx0l5QJ0o0aN0qeffhpzacOTfwCPlBtv0AvzdG7BuS5duvgvWMS8lmnJkiUaOXJkIWC52Wab6eKLL9Yrr7yiBQsWaM2aNWppaVE2m1U2my164ExLS0soZXXKYo1aGMs27mNdu3b19J2gY09a6datm1566SVdfvnlRQF3KfdgmNtvv13HHHOM+vbtq7POOktr165tM4/a2tqSyxFmMDkKxq7hv/zlLx2nHTZsmPr27Ssp96Ao47i4cRo/frxuvPHGwvsbbrhBo0aNirFEAACEi6AlAAAo2GGHHfTss88WsjDr6up0wgknxFyq8BiDQ6tXr/b0HfN0dtlpleCWW24pBKx23HFHvfvuuzrnnHO01157qV+/furSpUtRYC+s7MpKYtzH1qxZ4+k7XvdFrzp27KgzzzxTn332mWbMmKFrr71WRx99dFF29Zo1a3T55Zdrv/32axO4NAbqTz/99EKQ2s+/IUOGhPqbwvTmm2/qgw8+KLw///zzlclkbP/V1NQUxjGVigOecfnb3/5W9JCnSy+9VCeffHKMJQIAIHwELQEAQJENN9xQ1113XeH95MmT9dRTT8VYovAYu0l7HUPQ+KCXjh07VnTQ8vnnny+8Pvfccx27wUvSF198EXWRUqd3796F1/Pnz/f0Ha/T+ZV/cNBvf/tb/ec//9H8+fP19ttva+zYsYVpXn/99TZPuO7Tp0/htTFYVylKDTpOmzZNH330UUil8e/qq6/WueeeW3h/7rnn6qyzzoqtPAAARIUxLQEAQBtHHnmk9tprL7366quSchfFSXtibhDGp05Pnz5dzc3Nqq6udvxO/gEX+e/H0X25XMs0jmXo9lCa5ubmwv6BVjvttFMh+Pv66697+s706dOjLFKRnXfeWbfffruqq6t16623SsqN03jmmWcWpjGO7/jaa6+5PnzKqzi7/uc1NDToP//5T+H91ltv7fqE97yPP/5Yy5Ytk5QLfP7tb3+LooiObr75Zv3+978vvD/jjDP0l7/8pezlAACgHMi0BAAAloxPAJ8xY4Yef/zx+AoTkj333FOdOnWSlBu/0S2DtKWlRXfccUfh/f777x9p+ex07ty58Nrq4S9hqapqbRq6dW1+9NFHKzILr1TGbtFPPfWU6/iQr7zySiwZqz/5yU8KrxcvXlz0t7322qsQyJs/f76eeOKJUJZZrv3YyVNPPaVvvvlGklRTU6OXX35Z06ZN8/Tvj3/8Y2E+d999d2jjuHp1zz33FHUBP/744/WPf/yjrGUAAKCcCFoCAABLQ4cO1Z577ll4/9e//jXG0oRj/fXX18iRIwvv/+///s9xXMbrr79e7733nqRcQO/Xv/515GW08p3vfKfw+quvvopsOZtvvnnhtVOQesmSJUXZXmh10EEHaaONNpKUGxPWGOgya2hoKMpwLFV9fX3Rg4CczJs3r/B6ww03LPpbp06d9Lvf/a7w/pRTTvG135mDoHnl2o+dGLuGDxs2rM1vdzJq1KhCYH/evHl68cUXQy+fnYcfflhjxoxRNpstlOXmm29ORPYqAABRIWgJAABsnXfeeYXXb7zxhp5++ukYSxOO8847r/CwlI8++kjDhw/XZ599VjRNS0uLrrnmGo0bN67w2amnntrmaczlsv322xdeP/vss6E83dnKYYcdVnh98cUX65577mkzzdtvv619991X8+bN8/wE9vakpqamKEv5xhtv1Nlnn62Ghoai6ZYsWaKjjjpKr7/+eiH7t1QLFy7UJptsojPPPFNvvvmm7XSTJk0qevL7wQcf3GaaP/zhDxo4cKCkXIBx0KBBevDBB22zC5cuXaqbb75Zu+yyiy6//HLLaYz78YMPPujpN02YMKHooTjGMWb9Wrp0qSZOnFh4f8wxx/j6/kYbbaT99tuv8L5cD+R5+umnNWrUKDU3N0uSDj/8cN11111FmdEAAFQixrQEAAC2hg8frt12260wNt9f/vIXHXTQQY7fmThxopYuXep5GV27dtVll11WUjn92GKLLXTrrbfqmGOOUXNzs6ZOnaqtt95ae++9t7bYYgvV1dVpypQpRZlgu+++e1nLaDZ48GBtsskmmjdvnhYuXKhtttlGBx54oHr37l3ItPrhD39YlEUaxOjRo3XllVfqo48+Un19vY499lj9/e9/14477qjOnTvr/fffLwTDdtxxRw0fPjzW9ZJUJ5xwgp566ik99thjkqTLLrtMt912m4YMGaJevXpp/vz5evHFF7Vu3TptvvnmOvzwwwvdfEsNRK1YsUJXXnmlrrzySvXq1Us777yz+vfvr86dO+vrr7/Wu+++WxSk//73v68zzjijzXzWW289Pf744xo6dKg+//xzLVq0SD//+c/Vu3dv7b777urbt6+y2ayWLVumDz74QB9//HEhoGk3jMJRRx2lf/3rX5Jywdy33npLu+yyi7p27VqY5je/+Y222GKLktaBnXvvvbfQLb1bt2464ogjfM/jmGOOKYxZ+vDDD+vGG28semK80ccff6zTTjvN1/zHjx9f9JT3pUuX6qc//Wkh6F1dXa3vfve7RZmwTo499tiiMUoBAEgTgpYAAMDReeedV3gIz2uvvabnn39eBxxwgO30b7zxht544w3P8+/Zs2fZA18jR45Ut27ddMIJJ2jx4sVqamrSiy++aNndc9SoUbr11luLxuMrt6qqKt1444066qij1NDQoEWLFumuu+4qmmb06NElBy07deqkJ554QgcffHAhsDV79mzNnj27aLq99tpL999/v2655ZaSllepMpmM7r//fo0ZM0b33XefJOmbb77Rf//736Lptt12Wz3yyCNF29Ltie1OOnTooE6dOqm+vl6StGzZsqInwpsNGTJE//nPf2wzZjfffHO9+eabOvnkk/XQQw8pm81q6dKlevLJJ23nuf7669s+xGnYsGEaNWpU4UE4r7/+epuHFR166KGRBS2NmZFHHHFEoEzho446SqeccorWrVun1atX66GHHtKYMWMsp12wYEGbJ7O7OeGEE4qClnV1dVq7dm3hfXNzc+EBSl4MGjSIoCUAILXoUwAAABwdcsghGjRoUOH9RRddFGNpwnPooYfqk08+0TXXXKNhw4Zpo402UseOHdWzZ09tu+22OuWUUzRt2jTde++9RZlgcZb3zTff1EknnaSBAweqe/fukYxn9/3vf1/vvPOO/v73v2vQoEHq3r27OnXqpM0220yHHnqo7r33Xr300ktFgRW01alTJ/3nP//RM888o5/97GfaeOON1bFjR/Xp00d77bWXrrvuOr3xxhvaeuutC0+kluT5SdZW+vfvr2+++UaPP/64/u///k/777+/Nt10U3Xp0kXV1dVaf/31teOOO+qEE07QpEmT9OKLL6pv376O8+zVq5ceeOABvfvuu/rjH/+oPffcU/369VPHjh3VuXNn9e3bVz/60Y90+umn6/HHH9fChQs1evRo2/n9+9//1r///W8deuih2njjjct2M+D999/X22+/XXjvt2t4Xo8ePYqGUZgwYUKpRQMAADYy2fxozgAAAADKbq+99tJrr70mSZo2bRqZcQAAACJoCQAAAMTmiy++0BZbbKHm5mZ17NhRtbW1sQ5FAAAAkBR0DwcAAABikM1mdcYZZxSeCn3kkUcSsAQAAPgWQUsAAAAgZOedd56uueYaLV261PLvc+fO1ZFHHll4wnh1dbXOPPPMchYRAAAg0Xh6OAAAABCyL7/8Un/5y1905pln6gc/+IG22WYb9ezZU3V1dfrwww/1zjvvFDIsJencc88teuAVAABAe0fQEgAAAIhIU1OT3nnnHb3zzjuWf+/SpYsuuugisiwBAABMeBAPAAAAELIVK1boscce0wsvvKBZs2ZpyZIlWrp0qZqbm9WrVy9tvfXWOuCAA3T88cerX79+cRcXAAAgcQhaetTS0qIFCxaoe/fuymQycRcHAAAAAAAASJVsNqtVq1Zpo402UlWV86N26B7u0YIFC7TJJpvEXQwAAAAAAAAg1ebNm6eNN97YcRqClh51795dUm6l9ujRI+bShK+xsVHPPvusDjzwQHXo0CHu4gDtDscgED+OQyB+HIdAvDgGgfhV+nG4cuVKbbLJJoU4mxOClh7lu4T36NGjYoOWXbt2VY8ePSryoACSjmMQiB/HIRA/jkMgXhyDQPzay3HoZehF587jAAAAAAAAAFBmBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiVITdwHag2w2q8bGRrW0tMRdFFuNjY2qqanRunXr1NzcHHdxKl51dbU6dOgQdzEAAAAAAAASiaBlhBoaGvT1119rzZo1iQ8EZrNZ9e3bV/PmzVMmk4m7OO1Cp06d1Lt3b/Xo0SPuogAAAAAAACQKQcuIrFmzRvPmzVN1dbU22GADdenSRdXV1YkNCLa0tKiurk7rrbeeqqoYNSBK+czb2tpaffXVV5JE4BIAAAAAAMCAoGVEli5dqg4dOmizzTZTdXV13MVx1dLSooaGBnXu3JmgZRl06dJF3bt31/z587V06VKClgAAAAAAAAZEpyLQ1NSk1atXq1evXqkIWCIemUxGPXv2VH19vRobG+MuDgAAAAAAQGIQtIxAU1OTpNyYhYCT/MN4kj7mKQAAAAAAQDkRtIxQUsevRHKwjwAAAAAAALRF0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBS8RqwIABymQymjBhQuGzCRMmKJPJFP2rqqpSjx49tPPOO2v8+PFasmSJ7TzN37X7N3ny5Oh/IAAAAAAAAHyribsAgJ1u3bppxIgRknJP1/7iiy80depUzZgxQ3fccYemTJmirbbayvb7w4cPV9++fW3/7vQ3AAAAAAAAxIegJRKrd+/eRRmYkjRr1iztu+++Wrx4sX73u9/pqaeesv3+OeecoyFDhkRbSAAAAAAAAISO7uFIlYEDB2rcuHGSpEmTJqm+vj7mEgEAAAAAACBsBC2ROjvssIMkqbGxUcuWLYu5NAAAAAAAAAgbQUukzsqVKyVJ1dXV6t27d8ylAQAAAAAAQNgIWiJ18uNYHnTQQerQoUPMpQEAAAAAAEDYeBBPXAYNkhYtirsUBRlJPbJZZTIZ94n79pXefDPyMhnlnx5+8803695779Vmm22ma6+91vE7++23n+3fevbsqRUrVoRcSgAAAAAAAISBoGVcFi2Svvoq7lIUZL79lyRffPGFZRB18ODBevbZZ9WzZ0/H7w8fPlx9+/a1/FvXrl1DKSMAAAAAAADCR9AyLjbBtLhkJWW/zbR0DV6WqezdunXTiBEjJEn19fWaPXu2Zs6cqenTp+ukk07Sfffd5/j9c845R0OGDClDSQEAAAAAABAmgpZxKXP3ajfZlhatXLlSPXr0UKYqGUOd9u7dWxMmTCj67OGHH9bIkSN1//33a5999tEpp5wST+EAAAAAAAAQmWREpwCPfvrTn+qcc86RJJ133nmqra2NuUQAAAAAAAAIG0FLpM748ePVr18/ffPNN7rqqqviLg4AAAAAAABCRtASqdO1a1f9+c9/liRdffXVWr58ecwlAgAAAAAAQJgY0xKpdMIJJ+jKK6/Up59+qiuuuEJ/+9vf2kxzySWXtBkT0+gXv/iFDjzwwAhLCQAAAAAAgCAIWiKVOnTooL/+9a8aNWqUrrvuOo0bN07f+c53iqZ55plnHOex0047EbQEAAAAAABIIIKWiNXcuXPbfDZmzBiNGTPG9btHH320jj766DafZ7PZEEoGAAAAAACAuDCmJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWiJWAwYMUCaT0YQJEwqfTZgwQZlMpuhfVVWVevTooZ133lnjx4/XkiVLbOdp/q7dv8mTJ/sqa75cY8aMCfZjAQAAAAAA4ElN3AUA7HTr1k0jRoyQJDU3N+uLL77Q1KlTNWPGDN1xxx2aMmWKttpqK9vvDx8+XH379rX9u/lvmUxGkpTNZkMoPQAAAAAAAIIiaInE6t27d1EGpiTNmjVL++67rxYvXqzf/e53euqpp2y/f84552jIkCHRFhIAAAAAAACho3s4UmXgwIEaN26cJGnSpEmqr6+PuUQAAAAAAAAIG0FLpM4OO+wgSWpsbNSyZctKnt8FF1xQ6BoutR0Tc+7cuW2+s3r1ao0fP15bbrmlOnXqpL59+2r06NH66quvSi4PAAAAAABAe0f3cKTOypUrJUnV1dXq3bt3yfPbaaedNHr0aN15552SpNGjRxf9fb311it6X1tbqz333FNffvml9t57b22//faaOnWq7rrrLr300kuaOXOmevbsWXK5AAAAAAAA2iuClkid/DiWBx10kDp06FDy/I444ggdccQRhaCleRxNs0cffVTDhw/XlClT1KNHD0nS8uXLtf/++2vGjBm68cYbNX78+JLLBQAAAAAA0F4RtIzJoEGDtGjRoriLUSSbzRZ1k7bTt29fvfnmm2UoUav808Nvvvlm3Xvvvdpss8107bXXOn5nv/32s/1bz549tWLFikBl6datm+64445CwFKSNthgA51zzjk6+uij9dxzzxG0BAAAAAAAKAFBy5gsWrSI8Q9dfPHFF5ZB1MGDB+vZZ5917YI9fPhw9e3b1/JvXbt2DVyuQYMGqV+/fm0+33bbbSWJ7QoAAAAAAFAigpYxsQumxclPpmU5dOvWTSNGjJAk1dfXa/bs2Zo5c6amT5+uk046Sffdd5/j98855xwNGTIk9HJtuummlp/nMy/XrVsX+jIBAAAAAADaE4KWMSl392o3LS0tWrlypXr06KGqqmQ8VL53795txpd8+OGHNXLkSN1///3aZ599dMopp5S9XElZPwAAAAAAAJWK6AtS5ac//anOOeccSdJ5552n2tramEsEAAAAAACAsBG0ROqMHz9e/fr10zfffKOrrroqtPnmn0Te1NQU2jwBAAAAAADgH0FLpE7Xrl315z//WZJ09dVXa/ny5aHMd+ONN5YkzZo1K5T5AQAAAAAAIBjGtEQqnXDCCbryyiv16aef6oorrtDf/va3NtNccsklbcbENPrFL36hAw88sPD+qKOO0hVXXKGhQ4dq//33V/fu3SVJl156qb7zne+E/hsAAAAAAABgjaAlUqlDhw7661//qlGjRum6667TuHHj2gQWn3nmGcd57LTTTkVBy7/85S+qqqrSww8/rEcffVQNDQ2SpHPPPZegJQAAAAAAQBkRtESs5s6d2+azMWPGaMyYMa7fPfroo3X00Ue3+TybzQYqS+fOnXXppZfq0ksvtfy7W7kGDBgQeNkAAAAAAABoxZiWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaRiibzcZdBCQc+wgAAAAAAEBbBC0jUFWVW63Nzc0xlwRJl99H8vsMAAAAAAAACFpGokOHDurQoYPq6uriLgoSbu3ataqurlaHDh3iLgoAAAAAAEBiELSMQCaTUffu3VVbW6u1a9fGXRwkVHNzs2pra9W1a1dlMpm4iwMAAAAAAJAYNXEXoFL17t1ba9eu1ZdffqkePXqoe/fuqq6uTmxwqqWlRQ0NDVq3bh1dlSOWzWZVX1+vZcuWqaWlRRtuuGHcRQIAAAAAAEgUgpYRqa6u1iabbKKlS5dq1apVWrFiRdxFcpTNZrV27Vp16dIlsYHVStOtWzf17dtXHTt2jLsoAAAAAAAAiULQMkLV1dXq06ePNtxwQzU2NqqlpSXuItlqbGzUyy+/rH322YfxFcugpqZGNTUcfgAAAAAAAFaImpRBJpNJfDZddXW1mpqa1LlzZ4KWAAAAAAAAiBWDFwIAAAAAAABIFIKWAAAAAAAAABIl1UHLG264QQMGDFDnzp212267afr06bbTTpgwQZlMpuhf586dy1haAAAAAAAAAF6kNmh5//33a9y4cTr//PP19ttva8cdd9Tw4cP19ddf236nR48eWrhwYeHfF198UcYSAwAAAAAAAPAitUHLq666SieeeKLGjh2r7bbbTjfddJO6du2q22+/3fY7mUxGffv2Lfzr06dPGUsMAAAAAAAAwItUPj28oaFBb731lsaPH1/4rKqqSkOHDtXUqVNtv1dXV6fNNttMLS0t2mWXXfT3v/9dAwcOtJy2vr5e9fX1hfcrV66UJDU2NqqxsTGkX5Ic+d9Uib8NSAOOQSB+HIdA/DgOgXhxDALxq/Tj0M/vymSz2WyEZYnEggUL1L9/f7322mvaY489Cp+fddZZeumll/T666+3+c7UqVP18ccfa4cddlBtba2uuOIKvfzyy5o1a5Y23njjNtNfcMEFuvDCC9t8fu+996pr167h/iAAAAAAAACgwq1Zs0a/+MUvVFtbqx49ejhOm8pMyyD22GOPogDnnnvuqW233Vb/+te/9Je//KXN9OPHj9e4ceMK71euXKlNNtlEBx54oOtKTaPGxkZNmjRJw4YNU4cOHeIuDtDucAwC8eM4BOLHcQjEi2MQiF+lH4f5nsxepDJo2bt3b1VXV2vx4sVFny9evFh9+/b1NI8OHTpo55131ieffGL5906dOqlTp06W36vEnSav0n8fkHQcg0D8OA6B+HEcAvHiGATiV6nHoZ/flMoH8XTs2FG77rqrnn/++cJnLS0tev7554uyKZ00NzfrvffeU79+/aIqJgAAAAAAAIAAUplpKUnjxo3T6NGjNWjQIA0ePFhXX321Vq9erbFjx0qSjjvuOPXv318XX3yxJOmiiy7S7rvvri233FIrVqzQ5Zdfri+++EInnHBCnD8DAAAAAAAAgElqg5YjR47UkiVLdN5552nRokXaaaed9PTTT6tPnz6SpC+//FJVVa2JpMuXL9eJJ56oRYsWaYMNNtCuu+6q1157Tdttt11cPwEAAAAAAACAhdQGLSXptNNO02mnnWb5t8mTJxe9/8c//qF//OMfZSgVAAAAAAAAgFKkckxLAAAAAAAAAJWLoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFFSHbS84YYbNGDAAHXu3Fm77babpk+f7ul79913nzKZjI444ohoCwgAAAAAAADAt9QGLe+//36NGzdO559/vt5++23tuOOOGj58uL7++mvH782dO1dnnnmm9t577zKVFAAAAAAAAIAfqQ1aXnXVVTrxxBM1duxYbbfddrrpppvUtWtX3X777bbfaW5u1jHHHKMLL7xQm2++eRlLCwAAAAAAAMCrmrgLEERDQ4PeeustjR8/vvBZVVWVhg4dqqlTp9p+76KLLtKGG26o448/XlOmTHFcRn19verr6wvvV65cKUlqbGxUY2Njib8gefK/qRJ/G5AGHINA/DgOgfhxHALx4hgE4lfpx6Gf35XKoOXSpUvV3NysPn36FH3ep08fffjhh5bfeeWVV3TbbbdpxowZnpZx8cUX68ILL2zz+bPPPquuXbv6LnNaTJo0Ke4iAO0axyAQP45DIH4ch0C8OAaB+FXqcbhmzRrP06YyaOnXqlWrdOyxx+qWW25R7969PX1n/PjxGjduXOH9ypUrtckmm+jAAw9Ujx49oipqbBobGzVp0iQNGzZMHTp0iLs4QLvDMQjEj+MQiB/HIRAvjkEgfpV+HOZ7MnuRyqBl7969VV1drcWLFxd9vnjxYvXt27fN9J9++qnmzp2rww47rPBZS0uLJKmmpkZz5szRFltsUfSdTp06qVOnTm3m1aFDh4rcafIq/fcBSccxCMSP4xCIH8chEC+OQSB+lXoc+vlNqXwQT8eOHbXrrrvq+eefL3zW0tKi559/XnvssUeb6bfZZhu99957mjFjRuHfT37yE+23336aMWOGNtlkk3IWHwAAAAAAAICDVGZaStK4ceM0evRoDRo0SIMHD9bVV1+t1atXa+zYsZKk4447Tv3799fFF1+szp07a/vtty/6/vrrry9JbT4HAAAAAAAAEK/UBi1HjhypJUuW6LzzztOiRYu000476emnny48nOfLL79UVVUqE0kBAAAAAACAdi21QUtJOu2003TaaadZ/m3y5MmO350wYUL4BQIAAAAAAABQMlIRAQAAAAAAACQKQUsAAAAAAFDZGhulV1+V6uvjLgkAjzLZbDYbdyHSYOXKlerZs6dqa2vVo0ePuIsTusbGRm277bZat25d3EUB2q1169apc+fOcRcDaNc4DoH4cRwC8arYY3D5cmnNGqlzZ+k734m7NICjdevWabPNNtNbb70Vd1FC5ye+luoxLRGuFStW6Jtvvom7GAAAAAAARGPdOumrr+IuBeCqIm8e+ETQEgXrr78+BwUQo4q9qw2kCMchED+OQyBeFXsMGgOV/fvHVw7Ag3Xr1qlPnz5xFyN2BC1RcOWVV+qQQw5Rhw4d4i4K0O40NjZq4sSJHINAjDgOgfhxHALxquhjMJNpfT1/fnzlAFwYj8P2jgfxAAAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAgPYjm427BAA8IGgJAAAAAADaD4KWQCoQtAQAAAAAAO0HQUsgFQhaAgAAAAAAAEgUgpYAAAAAAKD9INMSSAWClgAAAAAAoP0gaAmkAkFLAAAAAADQfhC0BFKBoCUAAAAAAKhcBCmBVCJoCQAAAAAAKpc5aEkQE0gFgpYAAAAozZIl0rp1cZcCAABrBC2BVCJoCQAAgOCmTJH695c231xasybu0gAA0BZBSyCVCFoCAAAguIMOkhobpYULpX/+M+7SAADQFkFKIJUIWgIAACA4Y3ZlXV185QAAwA6ZlkAqEbQEAAAAAACVi6AlkEoELQEAAAAAQOUiaAmkEkFLAAAAhCOTibsEAAAAqBAELQEAAAAAQOUi0xJIJYKWAAAAAACgchG0BFKJoCUAAAAAAKhcBC2BVCJoCQAAAAAAKhdBSiCVCFoCAAAAAIDKRaYlkEoELQEAAAAAQOUiaAmkEkFLAAAAAABQuQhaAqlE0BIAAAAAAFQugpRAKhG0BAAAAAAAlYtMSyCVCFoCAAAAAIDKRdASSCWClgAAAAAAoHIRpARSiaAlAAAAwpHJxF0CAADcEcQEUoGgJQAAAAAAqFx0DwdSiaAlAAAAAACoXAQtgVQiaAkAAAAAACoXQUoglQhaAgAAAACAykWmJZBKBC0BAAAAAEDlImgJpBJBSwAAAISDp4cDAJKIoCWQSgQtAQAAAABA5SJICaQSQUsAAAAAAFC5yLQEUomgJQAAAAAAqFwELYFUImgJAAAAAAAqF0FLIJUIWgIAAAAAAABIFIKWAAAAAACgcpFpCaQSQUsAAAAAAFC5CFoCqUTQEgAA5CxaJP35z9LkyXGXBEnS1CRdc430r39xkQcASCeClkAq1cRdAAAAkBCjRuUCln/9q1RXJ3XrFneJkAS33ir97ne51336SEccEWdpAADwjyAlkEpkWgIAgBxjhuXChbEVAwlz5ZWtr2+7Lb5yAAAQFJmWQCoRtAQAAG21tMRdAgAAgHAQtARSiaAlAABoi6AlAACoFAQtgVQiaAkAANqiMY8gMpm4SwAAQFu0a4BUImgJAADaItMSAABUCjItgVQiaAkAANoiaAkAACoFQUsglQhaAgCAtmjMAwCASkHQEkglgpYAAKAtGvPIY18AAABADAhaAgCAtugeDituD9rhQTwAgCQi0xJIJYKWAACgLYKWAACgUhC0BFKJoCUAAGiLoCUAAKgUBC2BVCJoCQAA2qIxDwAAKgXtGiCVaoJ8aeXKlZKkHj16lLTwuro6vfDCC5Kkn/zkJyXNCwAAhIhMSwAAUCnItARSKVDQcv3111dVVZXeffddbbfddm3+vmDBAp177rnKZDK67bbbbOfzxRdf6IgjjlBVVZWampqCFAUAAESBxjyssF8AANKIoCWQSoG7h2cdDvLly5drwoQJmjBhQsnzAgAAMSDTEnk8ERwAkHbEHIBUYkxLAADQFkFLAABQKci0BFKJoCUAAGiruTnuEgAAAISDoCWQSqkOWt5www0aMGCAOnfurN12203Tp0+3nfbhhx/WoEGDtP7666tbt27aaaeddPfdd5extAAApAhBS+RxYQcASDuClkAqpTZoef/992vcuHE6//zz9fbbb2vHHXfU8OHD9fXXX1tO36tXL/3pT3/S1KlT9e6772rs2LEaO3asnnnmmTKXHACAFKB7OKwwviUAII0IUgKplNqg5VVXXaUTTzxRY8eO1XbbbaebbrpJXbt21e233245/ZAhQ3TkkUdq22231RZbbKEzzjhDO+ywg1555ZUylxxAaD74QLrsMmnBgrhLAlQeMi0BePXZZ7nz8WefxV2SyvLqq9LVV0u1tXGXBGm0bJl05ZXSG2/EXZJkiiqI+c470hVXSEuWRDN/oJ2pibsAQTQ0NOitt97S+PHjC59VVVVp6NChmjp1quv3s9msXnjhBc2ZM0eXXnqp5TT19fWqr68vvF+5cqUkqbGxUY2NjSX+guTJ/6ZK/G2oXB0GDpQkZe+7T02vvx5zaUrDMYgk6GB43VRfr2w72x85Dq3VSMrnV7a0tKjZtH6M+01zc7NaWH/tTs2PfqTMwoXKXn21mr74oqR5cRx+a9kydfjRjyRJLTNnqvnmm2MuENKm+vjjVfXoo5KkxhUrpK5dPX2vUo/BTGNjUfCjsaFBCvs3Njaqwy67SJJann1WzU89Fe780W5U6nGY5+d3pTJouXTpUjU3N6tPnz5Fn/fp00cffvih7fdqa2vVv39/1dfXq7q6WjfeeKOGDRtmOe3FF1+sCy+8sM3nzz77rLp6rPDTaNKkSXEXAfDs8G//z7zzjiZOnBhrWcLCMYg4HW54/db06VoUW0nixXFY7IDVq7Xet68Xf/21ppvqW+N+M+ejj/RxhdTH8O7whQslSZmFC0M7H7f34/C7M2Zoz29fV02YoCeOOCLO4iCFDv82YClJL999t+o22cTX9yvtGFz/44+1r+H9q6+8otqQe2t1rK3Vwd++rpo0SU9wPkSJKu04zFuzZo3naUsKWmZSNq5R9+7dNWPGDNXV1en555/XuHHjtPnmm2vIkCFtph0/frzGjRtXeL9y5UptsskmOvDAA9WjR48ylro8GhsbNWnSJA0bNkwdOnRw/wKQMIccckjcRSgJxyCSZtedd1Y25ceVXxyH1mq6dSu87rPhho717dZbb62t2tl+g2Klno85DnMyHTsWvU97Owfx2meffaRtt/U0baUegxlTN/m99tpL2nnncBdi6hLOcYugKvU4zMv3ZPaipKDl9ttvb/u3fECzurq6lEVY6t27t6qrq7V48eKizxcvXqy+ffvafq+qqkpbbrmlJGmnnXbS7NmzdfHFF1sGLTt16qROnTq1+bxDhw4VudPkVfrvQ+WqlP2WYxBJUZPJSO10X+Q4tFdVVaUqh3VTXV2tatZduxbWsdPuj0PTb2/X6wIl61BT4/ucXnHHoCkuEWSduOK4Rcgq7jj8lp/fVNKDeLLZbMn/gujYsaN23XVXPf/884XPWlpa9Pzzz2uPPfbwPJ+WlpaicSsBpAhPAASixYN4AABApTBfO3AtAaRCoEzLffbZJ/au4ePGjdPo0aM1aNAgDR48WFdffbVWr16tsWPHSpKOO+449e/fXxdffLGk3BiVgwYN0hZbbKH6+npNnDhRd999t/75z3/G+TMABNXSEncJgMpG0BIA4pOyYbiAxCNoCaRSoKDl5MmTQy6GfyNHjtSSJUt03nnnadGiRdppp5309NNPFx7O8+WXX6qqqjWRdPXq1TrllFM0f/58denSRdtss43uuecejRw5Mq6fAKAUBC2BaHGMIQgCLQCQPAToWAdASqXy6eF5p512mk477TTLv5kDq3/961/117/+tQylAlAWBFSAaJFpiTwu9IDy4wYAEC4yLYFUKmlMSwCIDUFLIFoELREEF4FAOAhaAuEiaAmkUuxByzVr1ujKK6+MuxhA7sTFySs9CFoC0SJoCStugRTOo0A4CFoC4SJoWXni3oZxL7+diC1ouWrVKv3tb3/TgAEDdNZZZ8VVDCBn4UJp222lnXeWVq2KuzTwgqAlEC2OMQRBAx7sAwCSiLqpsjzwgNS7txRHLCmblY48UurfX5o2rfzLb2fKHrRctmyZ/vznP2uzzTbTeeedp6VLl5a7CEBbp50mzZkjzZwpXXhh3KWBFzQ8gGiRaQkrbnUvdTOoO8JBpiUQrSjOV5wDy2fkSGnZMunyy6WmpvIu+4UXpEcfzSU+DRlS3mW3QyUFLb/44gudfvrp2m677dS9e3f16tVLu+yyiy6++GLV1tYWTVtXV6fzzz9fAwYM0N///netWLFC2WxWvXv35gE5iN+777a+/vDD+MoB78gCA6JF4AF5foInXLCBugNAEpWjezjnwHiUe70vXtz6ur6+vMtuhwI/PXzSpEk66qijtHr1aklS9tsdZebMmZo5c6buuusuvfjii+rbt69effVVHXPMMZo3b15huv79++vMM8/Ur3/9a3Xp0iWEnwKUoMoQv+dkkw4ELYFoEXhAEJxDQd0RDjItESbqZoKWlYz1XtECBS2XLFmiUaNGqa6urvBZt27dVFNTU8iw/Oijj3TqqafqjDPO0PDhw9XQ0KBsNqvvfe97OuecczRmzBh16NAhnF8BlMoYtCQYlg5sJyBaHGMIggsHELQEkETlOD9xDowH672iBeoefsstt2jZsmXKZDIaMWKEPvnkE61atUrLly/XggULdNppp0mSHnvsMf3yl79UfX291ltvPV133XWaM2eOTjzxRAKWSBbj3Wwu1NOB7QREi8ADguDCAdQd4eBYAsJFpmXl4rqwogXKtHz22WclSbvvvrseeOCBor/17dtX1157rVatWqU777xT8+fP1/rrr68pU6Zo4MCBpZcYiAKZlunDdgKiReABQXDBBuqOcNDOQZiom8sTtOS4jUe592+Op7IKlGn54YcfKpPJ6JRTTrGd5vTTT5ckZTIZnX766QQskWwELdOH7QREi2MMQdCQB0HLcFAHA+Ei07Jysd4rWqCg5fLlyyVJW265pe00W221VeH13nvvHWQxQPkQtEwfthMQLQIPyPNzMcCFA6g7wkE7BwgXY1pWrnLXl2znsgoUtGxsbJQkde/e3Xaa9dZbr/C6b9++QRYDlA9By/RhOwHRIvAAKzzRGGbmizfqjnDQzkGYCLKQaVnJWO8VLVDQ0q8MDVwkHUHL9GE7oRSrV0u33y69917cJUkuAg/F1q6VJkyQ3nor7pIkGxcO7Y/5fJykuqOxUfrPf6QpU+IuibWPP5ZuuUVasaLt32jnIEzUzQQtvVizRrrjDmnmzLhL4k/Y6/3116W77pLq61s/a2iQ7rlHmjo13GXBVaAH8QAVh6Bl+rCdUIqzz5ZuuCH3uq5O6tYt3vIkEcdYsYsuki65JPd6+XJp/fVjLU5ipf2CDf4lOdPy5pul007Lvf7kE2mLLeItj1Fzs/SDH+QuiidNkkwPN6UORqiomwlaevHnP0tXXZV7XVsr9egRb3m8CrO+XLRI2n333Ot586Q//Sn3+pprpLPOyr2++OLwlgdXJQUtx44dq24eLvTcpstkMnr++edLKQpQGoKW6cN2QinyAUspl22Zb5ygVZICD0mQD1hKuaytww6LryxJlvYLNviX5EzLfMBSku68M3fzISlWrWrN4nnwwbZ/p52DMFE3l0fa13M+YClJ06dLQ4fGVxY/wlzvjz/e+vrcc1uDlvmApWRdZyMyJQUt33zzTce/57uFO02XzWbpPo74EbRMH7YTEK0kBR6SplOnuEuQXGm/YIN/Sc60NEpau8Ht+idp5UW6UTeTaelXmuqgMNe7l9hUJW3nFAgctMyyoVBJjEFL9u10SNOJFEijpAYekqBz57hLkFycQ9ufJGdaGiVt3yRoiXJifyJo6Vea9hmeHl7RAgUtW9K0AwNekGmZPmwnIFocY/YIWtqjId/+pCXTMmn7plt5qIMRpqTt/3EoxzqopPWcpt9S7kxLlFVZnh4OJB5By/RhOyEsaWqUlVNSAw9J0KFD3CVILo6n9odMy2AIWqKckrb/x4FMS3/SVAeFWdYqDyGyStrOKUDQEpAIWqYR2wmIVlIDD0lAY9Ue66b9SUumZdLaDW7lSVp5kW7sTwQt/UrTPkOmZUUjaAlIBC3TiO2EsFRSAzNMSQ08JEF722f8/N72tm5ApmVQZFqinJK2/8eBoKU/aaqDyr3eK2k7p0CgMS0vuuiisMuh8847L/R5Ap4Z76ikqYJuz9hOCAsND2scY/ZYN/Y4ntqftGRaJm3fJNMS5ZS0/T8OjGnpT5p+S7m7h6OsAgUtL7jgAmVCTpslaIlYkWmZPmwnIFpJDTwkQXurf/y0+dJ0kYNwmI+HpqZ4yuEmacctQUuUE/sTmZZ+pWmfoXt4RQscRs5ms6H9Q4VqaJCGDZN23VX66qu4S+OMoGX6hL2dHn5Y2nxz6ZJLwp1vmMaOlbbdVnrnnbhLYm3OHOkHP5COOorjqBIQtLRH28Ve0tbN8cdL22wjvf123CWpXHbdw5ubpcMPz50XPvkk/OV++GFu3iNGeNvvkrZvupUnaeX1Y8IE6Xvfk266Ke6SIC/N+1NYCFr6k6a2PN3DK1qgTMsXX3wx7HKgEl13nfTcc7nXJ54oTZwYb3mcELRMn7C301FH5f4fP14655xw5x2GV17JXQRI0tCh0jffxFocSz/9qfTBB9L77+eCwCNGxF0ib2h4WCNo2cpc33CesJek42nqVOn223Ov999fWrEi1uJULLvu4Q89JD3+eO71z34W/g23I4/MBS7z55z8edxrOeNWyZmWY8fm/v/Nb6STT463LMhJ2v4fB4KW/qTpt4RZX3rJtEzTuqkAgYKW++67b9jlQCWaPbv19SuvxFcOLwhapk97207z57e+XrYsvnI4+eCD1tdffBFfORCO9naMOVm3rvg9jVV7SVo3xl4etbXxlaPS2WVaGs8DM2aEv9wPP2x9PXeu9TSZTOs+maR9U+JBPCgv9ifGtPQrTftMmOvdy5iWlbSdU4BRRhGdNAUC01RW5ES5nZJ4IkpimZwwHkz6kWnZau3a4vecJ+wlqa5KUlkqmV2mZZcu5SuD3TknyQ9arORMSyQP9WFbUayTSjpu0/Rbyp1pyXVOWRG0RHSMgcCkX/wStEwfgpbJxsk8/ZJeb5cTQUvv0lZXoXR2mZblDFraIWgJ5FA30z3crzTVQYxpWdEIWiI6aQoEJrlRC2tRniySuA+k7eTopWtFUqRt3ZYLQctW5qAl+4y9JK2bJJWlkiUh09KO8VyUtP2B7uEop6Tt/3EgaOlPmn4L3cMrWoquKpE6aQpapqmsyDFvpzBPHpyISkfQMv2oC1uRaekdx1P7Y5dpWV1dvjLYZfcnuX3nN9OSYwulSNr+HwfGtPQnTftMubuHo6xSdFWJ1ElyQ9EsyXfiYS3KxnzS99c0IGiZfmRatmrvQUuOETixy7Rsaip/WcyMF59J24/9Bi3bW72DcCVt/48DmZb+pKnOCXO9E7RMnBRdVSJ1jHfYk17ppSnAipz2FrRMWyMoTSf8JG7vJCBo2Yru4a3cju0krZsklaWS2WVaErR05rd7OHUySpG0/T8OBC39SdNvYUzLikbQEtFJU6YVQcv0oXt4shG0TD8ukFutWVP8nn3GHvVn+2OXadnYWL4yeOkenrR9k0xLlBP7D0FLv9K0z5S7e3glbecUSFFUCalTzrGMSkXQMn2ibMwncR+I6uS4dq30wAPSvHnhzjd/TM2fn5u/OeiTJEnc3kmQhvWybp300EPS3LnRLodMS++StG6SVJZK5jXT0iqIOXWq9MIL0W2rJD9oMW2Zlh99JD3ySHmD0QgP9SFjWvoVd53jRyWtd7RB0BLRIdMSUaJ7eDjOPFMaOVIaNCjcxklVVW497rZbbv6//3148w5bErd3EqShsfqnP0k/+5m0yy7RXki39zEt/eDCof3xmmm5alXx+5kzpT33lA44QHr++dLKYJcZk+Tu4WnKtKyrkwYOlH76U+mKK+IrB4JL2v4fBzIt/UlDOzCv0pNX2rkURZWQOmkKWib5TjystbegZVRuvDH3/9df5/6FJZORamulBQty72++Obx5h609bW8/0tBYveqq3P/Ll0uffRbdcghaepekC7YklaWS2WUEmoOWK1cWv//Tn1pfn3JK+OWS0tU93Fy+JGVaPvdca+bsH/8YXzkQHOctgpZ+paEdmFfu68BK2s4pkKKoElInTd3DjTipp0OUGQhJPBElsUxOGNMy/dLUWJWiPUboHu4d66b98fr0cHOmpbHujeqckeSb0nbrLS9JmZYc1+nHNiRo6Vea2oHlfrZBJW3nFCBoieikKdPS2BCkEkqH9pZpmbb9Mq3Hf3vmluXTnpFp6V2S6qoklaWSBc20NG6fUs8ZldA93C1oGWcAgTov/ZK2/8eBMS39Md94SjK6h1e0FF1VInXSlGlpPMFQUaVDe3sQTzmEmemSpkzLNN1JjpJb1k97Rqald0laN0kqSyXzmmlpDlqWO9MyaftDmjItS1l20tZ7e9Ve27ZOyLR0lqZ2IN3DKxpBS0QnrZlWnNTTIcpMyySeiJJYJidpPf7bs7QHLaM8RtasKX7fnvcZt/WctroKpfOaaWnuHm7cV6IKWqZpTMskZ1qWsu7ac32ZJEnb/+NA93B/0pRpWek97tq5FF1VInXSFLQg0zJ96B6ebGk6/pO4veOQpAvkpKF7uHdJqquSVJZKFjTTstzdw5N23PoNWqZ1TEuOw2RgOxC09CtN7cByP9ugkrZzCqToqhKpk9agRdIatbDW3rqHp+3kWFWVnjIncXvHgTEt7dE9vJVbRlx7XjftlbmuyAcr3ca0pHt48fskZ1qWcj7gXJIMSdv/48CYlv6QaYmESFFUCamTpqAlmZbp094yLcshzHWYyaSn4dZet7cZ3cPtkWnpXZKO+ySVpZLZ1R1+HsRD9/BkZ1oStEw/tgOZln6lqR1Y7uSVStrOKZCiqBJSJ01BSzIt04cxLZO9jEwmPcdSWsoZtbQHLaNE0NK7JNafiJZd8M2cpWMe09L4vajajJXUPTytmZbUCcnAdiBo6Vea2oHlvg5M2vmkwqUoqoQoVR91lA467jjV9OsnNTSEM9OkBy2feELacUfpppuKK6c4TzYffSTtuaf0m99U1kkvCnQP92fNGunHP5YOPFCqrbWexu13L10qDR0qHXmkez0RR/fwW26RdtpJeuwxf99L4vaOQ9qDlo2N0ogR0v77S19/He6822P38CefzB1PN93k73tJWjdJKksl8/ognigzLb2MaWneH154Qdp5Z+nKK0tbtiR9/HGu/Xbyyd73uzQ9PZwH8aRfkurD+nrpiCOkAw6Qli0r33LLEbRMw/5eWysddJB02GFt2zdGXrqHZ7PSr34l7bWX9Pnn4ZXRL54eXtESHlVC2dTWqtPKlcp88006Ktsw/OQn0rvv5gKESbk4P/JIaerU3EXiCy/EXZpko3u4P+edJ02cKE2aJF1xhfU0br973Djp+eelRx+VrrnGedo4uof/+tfSzJm5hrAflbi9g0j7mJY33ij997/Siy9Kp58e7rzXrSt+n7Z1E8Rhh+WOp9/8xt/3aMi3P14fxFNXZ/+9cjyIx1zOAw6QZsyQzjyz7THu189/nmu//etfufOsF26ZlEm6kUT38PRL0na4/fbcDeYXXsgF+sslbb2WonLOOdIzz+RuTl58sf10Xuqchx+W7rhDeu21XPAyLuVOXknS8dQOELREThQDlaeh0s5bsiTuEuR88EHr608+ia8caRBm0DLKAGhYSi3T44+3vp4+Pdgynn++9fWbb7ovs5wndLJASpekC+QgjPuk16CBV27BBLRK0rpJUlkqmddMS3MQsxwP4jEGQ53q+tWrS1vOjBmtr+fM8fadSs20TPsNsEqVpPpw9uzW1w8+WL7l0j08Z/Lk1tfTptlP5yXT8u23redbbmRaVjSClsiJYqDyNDVS5s2LuwRtURk6C7Mxn6QLAzul7g+LFrW+7tvXehq33+33oqWc+3Apw1qkLTgXlSSNn5Y0XIR7l6RzV5LKUsm8Zlqa35fjQTxex7Ssrw9vmeZgrR27p67b/T0tmZblCAzBvyRth402ime5BC1zvNa3XuqcNWtKK0tQUW5LxrRMHIKWyIlioPI0HcxJDFrCWZjZkW7ZDZXA+ACEoEFLI7cGT0tLeRtuTmPyuKnE7R1E2jMtjcIOgKThxgYQF6+Zlk4Zy1F1D/d6U77U7uFGXrKTpHQ9PZxMy/RL0nbo0yee5dI93B8vdZkxS71Ll+jKYhb3sw2SdDy1AwQtkdPeu4cnEevPGZmWwfXqFf0ystnyrkeClqVL+4VmlHVmGoaQiFIpAYs4JakslczuhkfSuoc77Q+lnEPMvAYt/XYPT0umZRraVO1RkurDmpp4lkumZVtO5fVS5xiDlt26lV4er6LclnQPTxyClshp793DkT5RZlom8URUjpNxmMdsubuHE7QsXdozLaMMgLT3i/BSuoai8tkF18zBO6egXKmZlna89iSKI2hZqZmW7f0mT1IlaTskpb3RXoOWYXYPjytoGWX9SPfwxCFoiZwouoenodJOMtafsygfxFNpJyJztze7Cyq3deg324pMy3RJykVEUFFux/Z+Ee5nX0jSuklSWSpZkjMtvfYkCjNo6XVMyzRlWtI9PP2StB3MZVm8uDzLJdOyLafyerkBYxzTsmvX0svjVdyZlkk6ntoBgpbIiaJ7eNIP5p497f+W9LIj3EBjGsa0LOW4/Oqr4vd2Fz5pzrQsZSDwJG7vOKQ9aGksb9gBkPZ+Ee5n3abtgg2lC5ppWY4xLY2fO9VpYT5MohIzLekenn5JqpvN+4S5nRoVxrTM8Xrdn+RMS4KW7QpBS+QQtCyWhIv1NJz04hRlpmUS133agpY8iCd90h6Yo3t4dIx1RpgZ2VFLUlkqmddMy7gfxOPUtgsz09JrG9Jv0DItY1qm/VxSqZJUH5rLElfQkkxLZ34fxFPOTMtyPojHaptW0nZOAYKWyIliTMukH8yl3lmK2uzZ0htvJH89xiVIwyOblaZMkb74ovjzNGRalmL+/OL3QbuH+5H27uENDdIzz0jLlwefb5Q++USaOtV9my1aJD3/vLc6LaoL5BkzpJkzw5mXk7i6h9fWSk8/LdXXR7f8sK1dmyvzqlXepjf+fre6N0nnrEqry8tt/nxp8mT39ej16eFxdw8vV9DS6Rz7yivS55+3vjeq1EzLKOuEurpcXRbm9qtUSa6bze3UqER5vnr7bWnWrGSt51K110xLLzdeKmk7pwBBS7QVVqMo6RcLTuXz2rUnSjfcIA0enLtgQFtBGvP33ivts480cGAu0FDKvNIkikxLL11E05xpedZZ0kEHSQcckLyGyaJF0nbbSXvuKT31lP10jY3SrrtKQ4dK//iH+3yj6B7+zjvSzjtLO+0UfeAyrkzLQw6RDj5YOv30cJcZpZNOypX5pz/1Nr1TpmWSg5ZJKkvarFkj7bCDtN9+0q23Ok9rV3f46R6e9qBldXXra7sxLR98UNp771wbZNmydGVaJnVMy5Ejc3XZ2LHRLaNSJKltm5Tu4WGdI6ZNy7W3tt9e+vDDcOYZJa/1rd8xLbt0CVaeIMrZPdyq7k3S8dQOELRETnvsHu5UviRkWua9/nrcJUimIHfyf/nL3P+rV0t33dX6eRoyLUs5Ls3ZVOXKtExL0NLqeL/mmtz/77yTjJsYRpdf3npRfNhh9tNNmyYtWJB7/X//5z7fKC40x41rff3rX5c+PyflzLQ0vn/ttdz/N98c3fLDdvfduf+fe87b9GRatj+PP96aaX7SSc7ThpFpGdXTw8vVPbympvW13Tlj5MjWZd18c7rGtCzl6eFRlnvixNz/998f3TIqRZLrZq9Z/6WKah2MGdP62kt7K0lK7XkY5njAfpSzezhBy9gRtEROe+wenvRMyzyvT6Fsb8I8WVX6mJZeM+jCfhBPmruHJ1lU+2cUmZYdOrS+jvqiJMoH8aShjogSQUs4SUKmZakP4ilH0NLI6sZekjMtSxnTMkl1QnuWpO0Q1z4S1XLTdq6J6kE85ayjytk93Op3Jel4agcIWiLHWHnRPTxZmZYNDXGXIJlKDSI4Xcgkcd8N80FDdhdUbr/bb6ZFWjItw/zdSeI3CGCVaVnqb19vvdbXdXWlzctNlMetXRZqWvcNv4zr1q3uTdI6SWJdXomCZlqG+SAeL6J8eniQoGWaMi15enj6JWk7xLWPRHW+StJ5L0xe6jJjPV/O6+cobyZ72T+TdDy1AwQtkRNF9/CkPz0wLUFLMi2thRm0TEMDO8xMUrv9O80P4inlgrNSg5Z+Wf3OUrehcVD2NAct7eqb9rJvpHVMyyTW5Wnh56ZH0EzLcjyIx7iMJGVaSunKtEzqmJbwLsl1c9qDln6WmXReh9SQoumh41WU9QzdwxOHoCVyougenqTGlpW0dA8n09JamA0epy5rSVHK74ure3icmZalZIX4/Xu5eV2vpWZaSqX/dmOmpbELURTieBBP0s5rUaF7ePvj5xjymmkZx4N4yhW0NA6FQaZl8O8iOkmqm+MKbMexDpK03vOc6ltjTMCtLjMnDFRK93AvMYz20v5LCIKWyClH9/AkBQIlMi3TjkzL4N8N40E8SX96uJ9jmEzLHKv1UGpdaAxaRn0DJsrtZFdHJLGuiAKZlnBi3ub5c0w5u4fb7XfGz5OUaRkkaJnWTMsk1QntWZLqw6S0u8vRPTyJ+79TD0uv4wBL0sqVxe/j7B4eduKFEUHL2BG0RE45uoenKWiZpLKSaWmtvY1pWY7u4WEG7+J+EE8lBy3L9SAeKdygZdTKmWmZX1ftpdFKpmX7E0amZTm7h9vtd0ntHh7kQTxkWqIUSa6b0949PG1BSyOn8rnVZXEGLcuZaWm1fyZ9u1YYgpbIKUf38CQFAiUyLdOu1AaPU6ZlEk9E5ci0DHs8mKRmWvrtltReLriiCFp26VLa9/0o55iWlZRp6fc4JWjZPkTRPTzKTEu7bR1H0NJLu609ZVpyHMYjyXVzUrqHM6ZlW16z0yVp1ari95UatExSXKCdImiJnCi6h5NpGQ4yLa2FGWis9ExLr2Nahv0gnkoJWia5wekUWEjCmJblZNzmYWda2jWOK6Eh63cbE7RsH9L2IJ4kdQ/3GrRsL5mWSaoT2pMkB4+TkmlZqcsshbG8Sc60jLt7OMqKoCVyougeTqZlq+nTpf32k2680f93Ky3T8oILpAMPlD76qLT5mLffkCHSddeFM68kNezykpZp6WVMy6R2D/d7BzXuBudLL+X27wkTcu+T1D28pUX69a+lI46Qli61/nu5kGlpL5uV/vAH6cc/lubNK/6b8Tecc4500EHS5587z8vP+zilZfvYmTIld+zfemvcJXEWRqZlHN3DjQ/PMT9Qwi9j0NJ8s/nFF3Pb0SgJD+JZuVIaMUIaPdq9rUmmZeluuil3LTBtWnmWF1fd3NAgHXus9POft83Ey0tK0LLUdTJzpnTAAdJnn3lfZhI4Xfd7zU6X2k/3cD+/a8EC6dBDpdNP916mSy6Rhg6V3n/f+3LamRr3SdAuELQsFnalu9tuuf8nT5aOO87fOG+VlGn57rvShRfmXh92mDRnTvB5mbdfbW3uBPHLX0obbOD+fca0bKuUY9+q8VDOhpqfJxj6bSzHvT/kL3ZfekkaM6b4b1FnWrrVhXffLd1yS+51t27Sv/9d/Pe4gpY8PbzYc89JV12Ve33sscV/a27OBW+mTJEuvTT32S9/aT8vgpbls88+uf9fekkaO1aqri7fskvNtMxm2x4fTk8Pj+pBPE4X4B07tgbrSs20NG4bc7tt//3bTp+E7uF//KP03//mXu+0k/T739tP6+e4TsON4HJbs0b6zW9yr/fYI55uyeWqm6+6SrrnntzrTTeVrrii7TSVErQcMkRascLfMpPArn43t93d6py6uuL3lRq09LN//upX0jPP5F4PG5a73nXy+efS+PG510OHSosWeV9WO0KmJXKiGNOS7uHWzBW8m0rKtPz449bXYWda5i1f7u377WlMS6/dHMIMjCa5e7jfxkjS9ockZVpOndr6+uGH2/69nBcmcTyIJy0X4zNntr5+6aXiv+V/w4wZrZ+99pr9vJIcpDRLy/bxotw3MEsd09KqHRVl93AvY1o6te1KDVoay19f7z691TnSKRNVCn9/fuKJ1tdTpjhP62fZZFq2VWombxBx1dWTJrW+zgdvzCplTEu3gGUYy4iasXx+r93dbkxFKcr2ZSk3jIz7vLHtZeerr1pfL17sfTntDEFL5EQxpmXSB7GN60E8fk9elZRpGSYvFyhetbdMy6Ddw532Xat1mNTu4Wke09JcljCDc1brwU8WqlWmlPn7fm/a+BFH9/CkndfsOO3D+d/iJdBiNa8kBzGTWJcH5XX7xMHqxpjVDdcoH8QTZExL4/5RatDSOG+vQcu4My39rH8/y07DjeD2IK7AoPHYNw7B4FQWxrQsL6dMSyMvQwT5mT5MUbY9whrTssZDp+ZSz33tBGsJOVF0D09ypqVbFliUZfW7fisp0zLK1H23z82cAvVJvNBNWvdwc4PHqtsfmZbh87Ney9E93G1MOvO6NY9/FCZjvU2mpXf5bbxunbfp3S6Ek3S8VML2ySt30DJtmZZBuocb38cRtIz7QTxuN52CLptMy7bCPid5EdcNJeN1S8eO1tMkJWgZRzf9JPM7tFucD6xJaqalEUHL0LCWkBNF9/Akj2np9hujrHT9rgeCltbsTk5et53TmJZJbGAkIdPSzzLS9CCepI9paRRlWcoRtLQblD8MUdaVdhfhlZRpGTRoSaZleSS510UYmZZxBC3be6aln6BlKZmWlXQcBhXHOkhC0NIu07JSuocHWWbSGMvnt86p1EzLsOowL0HLOG5opBBBS+SUo3t4koKWbr8xyrL6vbBO8oWKX0kKWjrNK4kN7KSPaZmmTMs0dw83lzXuB/EkKdMySnZ1RBLrCit0D0+/Ssi0NAfqosyMMS7TWC6775QatDTOK6qgZZyZlnQPL00cN7joHt4WQcscu/o9TZmWdA9vV1hLyGlv3cPdTo5kWiZfmN3D2+uYln5P+H7GtExy0LK9dA8PMm8zP+vGy5iWlRK0zP/uSsq0JGiZbEkOWnrNtMz/Lc+4fUrdb0rNtFyzprQylKN7eFoyLcsVLEtSXeOGTMtiSQlaVuoy/TCWL01jWtI9vF1hLSGH7uHFoqx0ybQMR5jdwys909Lu5BvmhYVV0LKc69H8ZM720j3cKbDg93hLe/dwo6jHtKykTMv8NjYGWuwuNK3mRdCyPJL8IB6vmZb5v+U5dUv0y2/Q0upGRCntLeO8vcwnbZmWfpZdrjZVkuoaN3Hc4Ior4zXJQUszMi2L+Q3WVWqmZTmDlnQP94SgJXLoHl4syrK250zLJAUtnb6TxAZGFN3D/TZonU6sVg3Qcq3HbLZtpqXTcVZqoyxOftar332m1KCllzKUK9OyXEHLSsq0NI5paffwBKt5EbQsj0rMtExS0FIqrYs4Y1q2ItOyrfbUPdwYtGdMy3Ttp36v3eO81q+UMS3hCUFLSJKydA8vZtW4eP99afHi0pdNpmU47LZhkCBvkJPTrFnSwoX+l2U2Z440b57zNJ98Is2dG3wZdo2KMLtJx9k9vKGh7bKmTbPP6nNrLCclCLN6tfT668HL4rfcVtvfT9egUruHL14svfee8/LiYrdPJDEo1tQkTZ3q/dxh1T2coGU0vvlGmjEj2Hfr66VPP839k3IBtmnTWm9kvPOOtHx5aEX1xSq4ZncuNrYFvXQP/+gjaf5872XI15v593ZjWoYdtDQHR73c8PHbPTys/Tmbld54Q6qtbf3MLUidxDEtk1TXuAkStMxmpbfeytUbQVRK9/Bly3L1Wxjlp3t4W6V0D/cz/dKl0syZ/srmJKr60eq6LMpMS6v9I39OX7Ys2HIrEEFL5LS37uF+My2ffFL6wQ+kLbeUVqwobdlkWobDbhsG2c/8jmn57LPS9ttLW2wRvDEp5QIL22wjbb65feDy7belrbaSHnkk+HKi6B5uvsCJs3u41YXmr38tDR5sXQa3hk4SxjjNZqUf/Ujaffe2ZfF6HIXRPdxPILuUB/GsWJHbz3fYQXr8cedlehFlN0rj+yRmWv7qV9Kee0q/+EXrZ15uOHjNtExqkN9KkoKWa9dK224r7byzdM89/r8/Y4b0/e/njpP33pOGDZP22EM6+2xpwgRpl12k7bYLLyOzlBskIXUPz7z+urT11tL3vud+cy8fBNx771y9eeGFbedrrD+tjt2wMi0l9+0QZ6blFVe0PT+GGbQsVxZdXN2fgwiyDm67TRo0KHdeDLJvJiFoaXcu8RpwWrcuV2/usot0992ll41My5ywHsTjtY5avTp3/tppJ+mBBzwV0VUU2/K113LXZc8+W/x5lEFLq33/7rulXXZRzQ47qKqSkpdKQNASOVF0D6+kTMvDDsv9X1cn3Xhjacsm0zIcpWZami9kjNzKecghuf/XrpX+8Q9vy7MyYkTu/6YmVV16qfU0Y8YEn3+e10zLsB5CkJ9XHA1kow8/lD7+uO3nfoOWcTQ4Fy+2zsjyU5Zydw/3ErQ0BsaM/vWv1szYww93XqYXYZ9v7I6VJAXF8vIXdv/9b+tnfruHM6Zl+B55RFqyJPf62GP9f/9Pf2oNuh1zjPTqq7nPr7giF6iWpEWLpIkTwylvKXVNSJmW1ccd1/qdP/3JuQzZbO4m4jvv5N5fdJF12ZzGo7Wrn7wIErSMK9PyrLPaflYJY1omqe4xCxL0OPHE3P8LFgS7cR1XF2wvmZZey/boo9LXX+dejx5dctEIWlpwunkUVqblPfe09gQYOdJf+exEUc+MGmX9eZRBS6t5f7uvZ77+Wn2nTw+27ApD0BI5UXQPr6RMS69/84JMy3CUmmlpN86V07ytpi9lf1i6tPW13V3PUjI/8ryOaVnKCd8qqFOuBrLTcqwuxNway0kIWtod9y0txftK2h7E45RNEaYox34zvk9ipqUVL0FLHsQTrVLP5cbfMmuWt+nCWp6biDIti+oFtxu4djfKvJ7/pNKyVNOUaWnFz5iWblmZ5aoTklz3mJW67bwMkWCWhEzLUruHh30NFOY68VpHJnG/9PMgHi/tB+P0VqK4lo1i/7a75gp6XvUyNrTLvDNpaWdGjKAlcghaFnOqIEpdP2RaRjuvMDItS+km7Ydx23brFv7888LKtPQzpqWfbsylctpe1dXu0ycxaGlXB7W0eN8/y51p6WVMS7syhd0oizrT0ilbK20IWpZHqWXp1cvbvMJ6CFUpmXVeMy3dgpZGbvuV+YaOU9mM/xuVErQ0LyeKoGWU+7OfoKXfrMxydQ9P0vFuVmrZgoyhXglBy7DLHOb8vF6fJemc6MbvMEHlvLFiFsX+bXf+DPq7vJQpyfVWghC0RE4UY1qmuXu4nycP++U3aFlJmZZhCrN7eCljGLo13r0qZ9AyikzLOLuHOy0njKBlHA0Kuzoomy3+W9SZlm71tt9MS6dgbJjCbjjbNY7Tcgfcyw2HSnwQT5LKUuo+vsEG4ZTDq3KMaenSPbykJ5hbLcO4/KgzLYNkhqYl09Jt2nJ1S46r+3MQQbZd796tr9MatCx1TMuog5alzN9rfZGk85AVt5tHfhJ57KaNYh1EcdMijqBlWtqRMSNoiZwoxrSM8+6LmzgzLf0Gb5uakn/C8yqp3cP9ZhwahZXVEmXQ0q5REWaDP84H8fjtHu7W0DHvQ3Ecf3b7cUuL97q03JmWXspgV6YkBy2dMg+SfJFs5HdMy0oJWiZp+5RalnL/llIyLZuayp9paXejLK6gZaVlWhqXnZRMyyTXPWZBzkkbbdT6esEC/99PQlC31DEtCVpGw2v3cMlfIk/aMy3tBD12vHwvSe2UBCNoiZwouoenOdMySd3Dg34nicoRtPS6rozbOAmZluutF938w+oebmRu8FjNKwndw62kYUzLODIt/d5hN38nyPihbp8HFeb5xqpsacu0dGLVPZygZfhKXS9r1oRTDq9KzbS0OxdHmWnpdKyal5+EoGVaMy2TOqZlko53syDbrl+/1tdpyrQ0stuvvLY/CVpGz1g+vzevvWZaRqGddA8PKTUm9QhaIieK7uFu2UtxKqV7eLkzLaXKGdcyLZmWMQQts3ZBgiR1D/czpqXVBVm5LlyMrH6T24VgkruHJznTspQH8SQ509JpH0ryRbKRl2PXmGnpND1By2BKPR7DeCibH6WOaRnGg3iMvGR1+6nvreqIUtpa5uVUWqaln6BlucpdzvVTqiBlM/bACRK0LOXGdFi8DtsQV6ZlKdIctKyETMs0dA8n0zI0BC2RU47u4WkKWoaZaWleFpmW4Sg109L4/VIy66J+6EGSHsTjxOpiK64LF7e/uZUrCZmWTk8P91qXhjGmZdhBS7v5JflBPE77UNIzLfPl9Ns93M85kKClN37LYp4+bUHLMLqH+8209HLzLEmZln6DllHWN34CkYxp6V+QbWf8PatXl35Oj2P9eM2gTGP38Ep8EI/fHjdehuSwm65U5Wx7MKZl7AhaIofu4cXCzLQ0z4tMy3AkJdMyDUFLrxdtpTRok5pp6aVBlaagpfnCPOoH8aQ107KlJbpeA1LrvJN8kSy11odegpbGIIufcyBBS29KbTuUO2hZavfwMB7E46c8VkFApzotzKCl1fkuiu7hScm09DumZbnO/Umqe8xKDVpK0ooV/r6fhPXj9ZxfrqBlmPNPc6alkdvNI78Pp7Xa16NYB+XMtAw67zAyLZO+/5QJQUvkRBG0JNMyx/y705JpOW+eNHKkdNll4c0zLZmWMQQtM0nItCzld5u/+7e/SccdF3z+fvjNtHS7w5+E7uF2NyqS3D08yEOP8oy/N6wbAWHdvU5zpqWX8oUdtEySsI7dCy6QjjlGWrw4urJks9LZZ+fqzeXL2267crehSsm0zGbtj+koMy39BC2tjg2/QcvHHpMOP1x6+WX/8wqSaXnlldLTT/sro1f5+nvixNxvuuUW6aijpBtvbFs2v2Naluvcv3ix9MtfSuedl7x6Kci5wvyd+fOdp/3d76Tjj5fq6nKfJaGuTlrQkjEtc+yO4VLHtHSb3quJE6Wf/ESaPNn7sit0TEvk1MRdACQE3cOLkWmZa/i9/LL0wAPSsGHSzjuXPs+kBi1LCd4FHdPSXM4ogx92F0ZhnvCtyl9bG978nbSn7uHZbHQP4omze7gxiyysh1s1N0s1ITRznLJ1k97Y9JJpmd8mxn3Oz0VKubKqgghj+7zwgnThhbnXq1dLjz4aTVkef7z1JmFVlXTttcGWExY/685qmxuHG+jUqfV9Oce0dMoaCiPT8ogjcv8//njbv7m126yClub2oVUZDz44mmMsX+/++Me5//O/6eGHc58lcUxL83r47W+lZ5/Nvd5zT+mgg6JZbhBB1oH5OwsXSj/4gfW0t94qXXNN7nWvXtLllyeje3jSg5alqJSgpVs97NQeiCrTMl8PPfGE9yEGkhi09HLMJf3md0KQaYkcuocXC7Osac20NGYOvPtu+ZfvJszu4XGMablqlX15wpi/URzdw72UIyyV2D08jZmWXspgV6aogpZhcMrWTXpj0+4GhVGpY1glIZvHThgX6W+80fr6sceCz8dtvUyd2vr6zjuD71thZSr72Y5W69nYlbVz59bXdpmWVssrdUxLp307zO7hVrzUnX67h0fJaV1/9FFxWZI6pmU+YClJr7wSzTKDCqN7uFMg3JiB++CDuf+TUDd7DTiRaRmfUrqHR5Vp6UU5h8/w+puC7F9JvvGbIAQtkcPTw4s5BQnj6B4e95iWYZ2AKjHTMugF4sqV3paZpAfxeMnW8lOOsETdPTxJmZYtLdFlWvoNXpm/U0r38CiClmGdc5yydZPe2PQ6pqV5f2NMy1Zh7Y9u68X4pGAp/jZTqZmWy5e3vjYGLe0C6aVmWsY5pqUVL78nieceK3V1yRzT0mkdJ+0BlmEELb3Wy/ntk4S6OemZlu01aBlW9/Ag7cawlDPT0uv50FzvePme27GQxP0nBgQtkRNF9/BKzbSMo3t43I2vsLZdOYKWYWRalqN7eDkzLe2CLmEGa718N62ZlnF0qbK7UWGVTWSn3JmWpTyIxxi0rK52XqZXcWRaJq1x6WUdNDe3fcgLQctWYQUt3cpiDlrGncVbaqblsmWtrzt1an1tFzQMI9PSS33jNKalnxvEfrPMrb6fpExLp2WZg5ZJ7R5ulKRrDinYucJP0NI4bX77xNE93Ou2J2iZTEnMtLRbfhK7h5uv18M+ztsxgpbI4UE8xci0LFaJmZZ2TzCVytM93JxpabeOowpaNjVVTvdwv5mWaege7jXT0onfcpcjaOllTMuwgpZxZFrGEeB24rV7+Jo11t+z0t6ClmHtj36DlnG3mUrNtLQLWuZ/l98AnZcgYTm7h7uVN4xMy6QGLZPaPdwo7uPHLEg7M2impV3Qshx1s9egjdd9JOx9J8x14PXaLEnnRDd+Mye9Tl/KOjAnedgtO4x9pdSgpXmf8FKmuB+6lxIELZFD0LJYmJmWYVRGlZJpGaakZFqmoXu4XTAqzC4Iaeoe7nahmISgpddMS6f9I02ZlsagWVj7SRxPD0/axYnX7uHtJdMySNni6h4ed6aln+PQLdPSqnu4l4fORJlpWWrQ0q2tUUlBy1WrrDP5vM6L7uHu7Qwraewebj6GSs20DBuZljl+HsQTd6al+XrJbtlRrmeviRlhZFrGfe5PKIKWyIliTEu3bi9xItPSnzR1D2dMy7bsGiFhjimWpgfx+B3TMo7sOadMy6ADggeZ3k/QMqwxLcO6EIiy3sp/VimZluagZaVmWsYZtHTbN8xPuo+7zeRnXVlNaxzT0kumpZcxK93+7mV7O3UP9xO09DPer5WkdQ93+j1+u4cnIdOyvQUtvXQPT2PQku7h0TOWz287sByZlnZBy3JmWnqZdzYbLNPS5TgP6dF6qZfqoOUNN9ygAQMGqHPnztptt900ffp022lvueUW7b333tpggw20wQYbaOjQoY7TtztRjGlJpqX1vNpzpmWYDdcwg5alZEuFNaZlubuHW2ValrJ9gpyYw1KJ3cOdnh5uPB79BJfcJKV7uNXQBW7LtkKmpbdMS79jWroFhpK0DsIIWpare3jS2kxhZlpajWnpJUBHpqX38pTKT/dwv+N5ErSMJ9Myjptq5mOo1O7hBC2j4Sc457edGfa5y657eNLGtAyaaUn3cE9SG7S8//77NW7cOJ1//vl6++23teOOO2r48OH6+uuvLaefPHmyRo0apRdffFFTp07VJptsogMPPFBfffVVmUueUFF0DzfPJ0kHIZmW/qRpTMsg3cMrPdMyrO7hTvVEUse0tFpmGoKWdvWEuXu43zvgTkoNWnopg5dMS8nbxUC5Mi2typzUTEu745JMy5wkZ1oGCWpEqdRMS79jWvrNtLQKepRzTMtKy7QMM2iZhEzLJF1zSMHOFX6CGZWaaRn2vhPmOkhz0NKO3+7hfoOcXpjXVzm7h5catIwg0xI5qQ1aXnXVVTrxxBM1duxYbbfddrrpppvUtWtX3X777ZbT//vf/9Ypp5yinXbaSdtss41uvfVWtbS06Pnnny9zyRPKqnv4ypXS3LnB55nkgzDOoOXcucXdprxYt0764IP4TnyLF0sLFvj7TjYrzZ4d3oXXp596G/fOKdhj5JRpmaSgpR2n/aGpKbfu7QIr+Wn8NqKdxr2JI2j51Ve5Y8ktIONWjiRlu+TZ3aj4/PPi+iPMrPAgjU/jd4J2D//yS2nRouLPwghaNjaGU2/6ybT88EPn8Ug/+CDaYFSQm4VWQctyjWlprqvC5rT/ffmlVFvrPo9yjWmZtDZTqZmWxnOc1ZiWpWZaWu13frqHxx20tLpxmOSgpfHvfvdlP8f3smW5c7sXTmWOI9OypcX+nBNVpmX+nGPV6yHqoOW6ddLHHxd/1l7GtGxult55x98yv/hCWrEi2PLKxe/Na6fp58xpbQ/5Wc/mfSHM7uHz5jlfg0edaZm/NjZO53acpynoHaEa90mSp6GhQW+99ZbGjx9f+KyqqkpDhw7V1KlTPc1jzZo1amxsVK9evSz/Xl9fr3pDxbvy2wOmsbFRjUnrchCCbDarfAeopoYGZVesUM1WWymzdKmannxS2QMP9D3P6ubmoqh4c0ODWhKy7jINDY47f0tDg5oNZa3JZJT5ttJobmnx9Tsy69YVL+uxx5TddFM1ffSR1Lt30bQd7GYycmRu2aeeqpZ//MPzsktRVJarr1b2uuvUNG2atOOOnr5fde65qr7sMrUccoiaH30091lTk4wd7bweS5n771fNsccqO2CAmj74QKqpabN/5Zm3XUFzc9Fvam5qKmzHqsbGonI1NzY6buOi+WSzgfbrqhUripbZ8u1JyrxOqmVzd2ngQDWfeKJabrihzZ+qhw9X1Ysvqvn889Xypz9ZrqvGdeuk+nrbdWKlRq1jq7Q0Nxet50x9vesJpbG+PrQLicybb6p6772lzp3VfM89tstuamhQ1rRM8/Hv9luaGhvbzCNqVevWybJT6k9+Uvy+pUWNDQ2WDS3z73Q73jKNjW3Wo1u9Xd3SUti3ssqtq6K/m/a9lqam4nX9yiuqHjq0zZg9jatXt30wiVlDg32dKSn7858r8957aj7lFLVcfbXzvPLL/bZsRevKdJxIrb+jzTrbdVe1DB6s5ilT2myTqrPPVvU//qGWww5T83//66k8vjU1FZW1cd06qbFRVc3N1vuTpKb6esm0r2SbmmzHUcpms8Xb2bQdsi0tbfYDO9WHHaaqZ55R8znnqOWiizx9xw/z/pc/VjIvvqjqgw6S1l9fTR9/LPXoYTuPTDbr6ziyU9XQ4Hj+M+9LTStXBmqkh1Vfmc+LTr/bfG43a+nQobAdmurrc+Vbt654v2luLuw3+WVls1nbc455X29ublbWXOdZHLv55Vuds1rWrbNuP1hZu9ax/jHWnVbTtTQ1KWtab+b6saalxfI4LPU6xKo8+fO/ZVlXrlTGUCe0qQNM2uzLXvfJhQtVs802UkODml57Tdp5Z+fpHc4Btm3BCFUfc4yqHnzQsq1u3t/ydbPj/Fyuo6r+8Q9Vn322WnbbTerWrfVcnMnkto9p/Zj3LyeW50Kj5mbV7LijMh99pKZbb1X2uONyn9fVeVpmdVNT0W+zO28EvW6wU9XSUtzed2n32qk++mhVPfywp2kbGxqUefpp1Rx8sLIbbOB6zikH47WFcd1bXR83rVtne/xa1f2N69ap6vLLVX3WWYX2kLkN4rgdTfVQ04oVlss31zNu2zIzbZqqhwyRuna1vAaXvr3et/hu/rrQqc5vrK+X1qwpPi+Zrier/v53VV9wgVr23VfNkyZZ/o5Gi3NLJcaeJH+/K5VBy6VLl6q5uVl9+vQp+rxPnz768MMPPc3j7LPP1kYbbaShQ4da/v3iiy/WhRde2ObzZ599Vl27dvVf6IT7/qefattvX7/5xhvq9tRT+sHSpZKkmkMP1WPfBp382Hv5chlDwvM++0wzJ04suaxh2GDOHO3j8PdF8+bpDUNZjWGCuZ9/rvd9/I4NPvywzbIydXWae8op+mDMmKLPD3eZV/UNN+jJYcM8L7sU5rJkmpu1+uij9dKVV3r7/mWXSZKqJk7UE9+ur++9/752MEwz0eN6PPzYY3NlmDtXb/3tb1r8wx9qn2XLtIHFtF/Nnau3LeabaWws3o6fflrYjtt89JG2Nvztozlz9JFD2YzrZtYHH+jzAPv1DnPm6HuG95998om0226a9O1JLG/v2lpZ31qRqm+5RU/++MdFn2UaG/WTF1/M/f3CC/Xkzjtrn+XL26yrFydNUoe6Ou1n+Gz2rFn61OG3HNzYqI7fvl4wf77eMkzb/+23Ncj2mznPTZqkhvXXd5nKmwNOPlnrNTdLq1er7g9/kN1cX3v1VS1fsqTos16zZmlvw/uVK1boJcNv+e4772hP4zxee03LjV0dy2CbDz4o2iedTHzySctx9zaeMUO7Gqdz2U/Nv1ty3yf2XLJE3/329aq6Or1omnaPxYu1oeH914sW6XXDNPv99rfqYXF3/IX//U/rvvvdNp8bVTU26jCHv2fee0+SVH3jjXrS540343HYZfFimb+9ePFiTZ84UZvOmCHzZXXV9OmadPfdWmdqEB/+7UVs1RNP6Imnngpn6AcTcz336ssvq/arrzTw00+1pc133n7zTamlRYONHzpkFaxdvVqTDNuwx+efF9UjdatW6QWvdfszz0iSqi+5RE/uvrun7/ixx9dfF+1/T0+cqJZOnXToiBG5G5HLl+vjM87Qxz/7me08Nnn/fe1ieO/1vGW2zZw5Rce0eT7mfemNZ5/VHh7m21JdrSrD9nr7rbe00NgdO6DNP/hAPzC8d/rd2378sb7vMK8F33yjjb99/e7bb2tez57qvHSphhumWbVqVZv6Y83atVrv29dfL15cVHdkmpqK9vUv587V/FdeKarbn580SQeZyvL6a69p6erV6jV7dtG0krT0q6801eP27fzNN0XlN5v13nuFtoFV227BvHmqX7lSWxg+W7ZkiV41LP8Qm6DcxCefLCkD2Ko88774QjOfesryb998+aU619aq+7fvG+rr9bTDeur7xhvazfB+1rvvaq6H9brTdddps2+zvtf+7Gd68dprHafvumiR7FrEixcs0PQyX3Mc/uCDkqzb6ubj+7lnnnFtD+27fHlR22b2e+8VnY8PP/tsSVLV669r1cYbF7bPyro6TZ44Uet99ZUOMHx//rx5esfnOjG3SfN6zZqlvT/6SJJUc8IJeuzb890GH31UdM3z1fz5lm3ywYsWqZ/hff2aNXrGYrotZs3S9ob3QevfvB3mzi1qe3/80UeaE2Ceh3sMWErSyy+9pANOO02SlFm+XB+ce67mHmSumcprr2XLlG+hrKyt1eRv14F5+0nS9Fdf1RJjTzeDgZ991qZtMWXyZO1/1lmSvm0P3XOP+s+e7Xk7VjU0FLXtZr/+uj4zxXyktm3WTz/5RLMd5nvg8cerpqVFqqvTlyedpPePP77NNAesWVM45xh9NHu2Ppo40fE6/en//U89584tWn8fzJqlz4zH7AUXSJKqXnpJTz3yiFo6ddKAmTNlTAd66fnnZY5O2R2HabfGZr+yksqgZakuueQS3XfffZo8ebI6G7usGIwfP17jxo0rvF+5cmVhHMweMd8diUJ2xozC60G77qqMKd3/kEMO8T3P6r/9rej9pv37q3+A+UQhs4FVuKtV3969i39zJlNIzx6w2Wba1MfvyNjsL5tvsokGBFgfQbZFWHpmMoGWf8jBB0uZjKo++6z48wDzGrTjjsoecoiq//IXy7/379NHfa3mu25d0Vvjdqx67bWiv31/yy21pceyDdx+e20b4HdUPfVU0fvNN9tMH0oaNmyYOnRovUypvvhix/m0WYemrjmH2Kyr/fbZp003lW233lpbO/yWGkO5NurXT30M02Y8dHkZesABkkXDI4gaQxfcng7Bnz13311ZUzAks15xk6TneusVrceMaX577rabsnvtVUpxfat69VXP0x4yfLjUsWObzzPffFM8nct+mrEIfG671VaO+0T1NdcUXnfv0aPNMqqvu67o/YamurXm97+3nO/+e+0lbWkXZvuW6Zh24rWuaWxs1KRJk4qPQ1O9JUl9vv0dGZthM/YfMkTadFP78uy/v9Sli6cy+WJaJz/afXdlf/hDVb30ku1XdtlppzZByoxDN6suXboUr09D+0GS1uvWzdv6Ni0jinObcf+UpIOGD5e6dlW1ofvV1ptuqq0clu33OLJjPqbN8zHvSz902//z36uqKtp+u3x7jixV1Zw5Re+dfrdbfbXR5ptLU6ZIknbYfnv94JBDcl0lDbp37VpYRv44NCYJbLjhhsVlMJ3rNt1kE22y225Fnx0wZEibsuw2aJCyw4ZZts16W9RhtkzlNxu47baObYON+vZV1nRjplfPnsX1o01g8pCDDmr7tPkSbdq/v/offLDl377TqZMyhvqqY02N43rKmIbI2H7gQG3nYb1WT5hQeN09m3XfFp98YvunPr16xdpebnN8m4ZAGbr//lLfvo7zqDn//KL3Tufj9Qzbp0d+PzIl8mzcv7/6lXIuNMiYEnjyvzfTvXvR5/379bNsk1ffckvR+04dO1pur6pvA6Pm5QRV9b//Fb3faquttEXE+8k+exffHhk4aJCn4yFK1VddVXjdw1DvZSx6oA52OKdUWQyzt/eexbe/9x8yRFWm5AHH7WgKZG3Xv7+2sZg+Y6oft/je9/Q9p2sYQ/voe9/9ruW1fI1ND5/vb7GF63XhQcOHK/PWW8Vl32Yby7JL0kEHHSR16aKqL78s+nxfi+sNu+Mw7Vbadf23kMqgZe/evVVdXa3FixcXfb548WL1dTkBXHHFFbrkkkv03HPPaYcddrCdrlOnTupkcae6Q4cOFbnTNBsaPzVVVW0ugAP9ZtMYDFWSqpKy7lzuUFc1NxeX1RDEqJZUHcLvqO7aNdB84tz/Mh07Blp+h+rqXCaYKRgUZF41NTVShw62Y3y02XZ5pkZ0dTZru/6rMxnP26a6qiqU/SG/R7apY1z21Tbr0BR86GCzrjpkMm2y81x/i2E+bY5nD1ljHaqrc9suDIayZxyywmqqqtou0/S7M9ls8Xo0/ZaaMMvtlY9xDztY/Uapze90Pd4sgpZOx4mkosBTprq67TLM54Fstni/6dcvN06nSYeWFvd17qNbid+6pug4tFgvbuezDh06OJa/w7p10XQPM42FVJPJ5MrhcHzaBUbstDleTMGTjDyub1NZIzm3mfY/qzqourraeR8Poz1kVRaX+dTYPTHVxBxgDq2+Mp+va2rs9yOX+r/KEFCpyWZz5TPtd232KxVflFZlMsXHnGn/qc5k2syzg0W5nI6JqoYG7+1Ul+PGrR1RZXFermppKV6+zc0D2zq/BFWSqizqOkmqWr26aP+12lbFXyheN57bVMbzSU2N+7FmDtxWVRXmUdXUFOs1h1vZPW1D0z7idD7OGLdPVVVu+ab1E+Q6zPa6165eNLVdvC4z09JivRzzMV3qNjUd92G14Z10MG2Hmo02Kn+b0sywHjKZjGN7p8apPWZRj3Ywb7OaGn/tUXP9sWaN9Tbyew1jmL5NWzTP5lzm5dq/Q01N22PWoe4rtEfM51pzGb6tbysx/uTnN6XyQTwdO3bUrrvuWvQQnfxDdfbYw74zzWWXXaa//OUvevrppzVokFtHxnbG/FRgm4aLL0GeLlwuboP1mgfBLeXp6naD6dtk+SZa0ArTaeD7oPw+PdxpgPtSBo0P+pu8DiDttwup00NDjKweAuDntwR5OmiYg0kb6yi/D6Nxe/hBkp8ebsWubi3H08ON695qX3Vb1/36yVIYD+IJi5+nh3vl4+6yL3YDujutK6u6wElYD+IpR5vAS90eQTd9S34f3OJ1SIqoHt7iZ7u6bXMvD+Ip9enhVg/isXooVlgP4nF7UFJ+/na/q6Ul+NPDo3hoSUuL/XzL9fRw4zr10t40L8cY7EjaGHBRPYgnr9wP4rEL2puPIbtlet1Hwj7Px/FEdfMywrjGjorfejGKp4dH9SAe4z7r95rL6zWO+Zzj1vYy/p8X90P4EiqVmZaSNG7cOI0ePVqDBg3S4MGDdfXVV2v16tUaO3asJOm4445T//79dfG3XSsvvfRSnXfeebr33ns1YMAALfo2TX+99dbTeutZjV7QzpifHh5GhRrk6cLl4vfp4VZPV/fKrvIJYcypSBnuWBcEDVo2NeXuyoa5D/h9erjTxUApF31BGzxeT7Z+x63y8rRsyTpQUUqwNkgDvBTG9eJ0gvcSxHX7LXEELe2eQG3Fbt37LXeQoKXfQIz5fVqDlnZPD89zK1u5gpb58jmVp9TgdpqClkHqoLDK6XYhYl6O0xNOnYRVz1rtS3bnI7dlGts7+fVQ6tPDrc5fXi7+yv30cLvjoZSnh5eyT/opT96qVcWZ4X6fHh4kaOml+7t5vsb989uxMRMj6qClcdr8eogyQGd3bIb99PCwA/RxBC3dnigdB7tkHL/1otd2o5/fbP6+XXvJ77Y0xjbsjr+wnx7utP/anYsIWlpKbdBy5MiRWrJkic477zwtWrRIO+20k55++unCw3m+/PJLVRlOXv/85z/V0NCgESNGFM3n/PPP1wXfDorarhkP0paWcMbKSXOmpbnSiSLTMulBy5qatoGToPtFmJmW+W3hN2jp1EAq5cI2rZmWTU3hZlp6PaGHxXhx4rRsq2W63eGPKnPJjzAyLf2u7yB3zI31m5esVvN7u4zzpActS8209Nj117cgjd/2FLQMss+Edfx7zczLizto6Sdbzk/QMqpMS6tMQat6NClBy7gyLZ3m6ZRpaUzwKHVb2fEbtDTP19hmTVrQMkh7K2jQ0i7TMqobx0ZhBy2jzrQsh4ULi9/H0aZ0YlwnVusnjEzLUpIiogha+r3m8nqNEyTT0uU4L1NfkMRLbdBSkk477TSd9u3TuMwmT55c9H7u3LnRFyjNougeHkaGQ1TcyhJm93C7ii7p3cOtgpalZFpK4e4DdvMK0j28lCBVWoOWzc3+G7ROd2PjDFo6BfjSmmkZRffwbNZ5fyo109JqWrd1bbfPeQkelOuc4hSMDRp4K3empdvdfj/1TFiZKuXYfmkKWiY909JpvmF0Dw8j09JP0NLq2PWT4e41CO2ULRlHpqXT+cKpXWV8yJfbPha0/W/cXkGClkZJC1oGybT0023UuC7y7aMw6j875QpaVkKm5bx55V+mGz/doMPItPTD/H27m7x+6xmvyQ5eymRXHj+ZlnbtyCQleSVIKse0RATMQbkwMi2DBDXKJc2ZluU62VkFrpOQaZlntx6CdA8vpWEX1gV70OPDS+DRa6ZlKb87SNZAKege3sprpqWfoLTbvPOM697LuvZ6Ue7l9yehe3jQ7JCogpZ2mVtuDecwj/0kZ1oGqYPK1T3cXDavY1q6zScoP+vOT6aln+7hRl72u7RlWgatH0vZxk5BS6dj1xhEL8eYlkG6hxtVQtAyaKZlnN3DvWaaed1Hwj5PELTMCSto6SXTstReP0noHu6lnRRRpiVyCFoiJ4oxLdPcPbwcD+IxPXnPs3INLm7VYAwatCTT0v17QTMtvZTd65iWpfzuODMtS30QT9ALxyhFkWkZRdDS+PcgAeJSMi2T0D086EOQyt093C3g5GcfT1P38DAuUOPKtFyxIthywiqvnzaccVrDk8ILgnYP95MZXu4xLb1uT6dgjNM69nKxG0SQTEvz9/yOaVmu7uFG5Q5auv3GcgYtk/QgnlIzLaMOWpZjHvPnF7+Po03ppJQxLb0ELf2KakzLUh7EY1VfW5WHMS0jQ9ASOWGOablkifSb30izZhV/bjfGxcUXS6efHl3midkDD0ijRztP47e7qZOwK59Fi6RTTpGuvtr7dyZMkE44oe3dPidWgesonh4+b550/PHSHXd4m1daxrSsq8vt13/9q6/AWeaFF6TjjpPeeCP3uVvQ0ssJMspMyxdfzJV32jT373zxRW4/vPNO78ux4+WOqeQtiOvWYAg7OHbDDdJJJ0lff20/jd9My1mzcvXaE0+0fl6OTEu3oKVbGYIGLSdNkn75S+dpwhIk09JtXSepe3ipmZZu72fNytURjz1mXbYoednf7OrYlSul3/42V4eHwa4tsGxZ7px+xRXFn6epe7jxbz17tv27n0zLN99U9dix6j1zZvHfvdQlfjItrfa/JGValpLZapzu/POlceNag3hBg5ZGUWValqN7eG1t7ri+5JJwz+1+A7le1omfYIZxu9plWlotc8aMXP389NPu5THyE7R85pncMh58UBo7Nve/W/tz3TrpD3+Qwn7uhHk5q1ZJZ5xh31b3Mg83UWVaXndd7np76dLWz77+Wjr5ZOn664PN06psxvboa6/ltuWUKfbTW92QKmVMy7C6h1tdNzz7bO73vPNO7r1T0NJLGzqKTMskZOYmQKrHtESIwuwefsop0kMPtf3c6mD/3/+kP/6x9e9BK1mvamulkSPdp3PqHu73QsuukRG0EjrlFOmpp3Kvd98998/Jl1/mGgmSNHu29Oqr3pZjtQ9EEbQ87jhp8mTp9tuloUOlTTbxNs8oMy1LObnmnXturkEhSTvvLP34x47fy3xbhpqDDsp9cPfd7mMQSm1/r9egZViZlvvv7/07P/tZrnF1222573nd1laMjY+oMy3DbDC8/baUH4t52bJc492K30zLH/0ol5l111259VFdXZ5MS+O69zKmpdcsVrfgwYEHOv89TFFkWpYraGkXIDIKe0xL8/v8vnn33a37plVZm5vD6eVhVMqNmT/+MXeDISzGY8V4wX/GGdI997SdPu6gpZ/Ak3Hanj1zN1eNvIxpmZ/HD3+oKkl7Scpus4338nntHu6UfVxf7+28a5yPHbegpVXmjttwG8bvenHPPdJFF+Ver7++dN555QlaBm1bhJ1pabUtzz239Vpjxx2lgw/2VjY3br8x6kxL4/z8ZFr+8Ie5+ebbnKUyn7uzWcnYrpVyiRS77FI8nfm3Xn65dNVVpZfHzbXXtr7efnvpiCPcv+O3jl2woLTvW3nzzVxihCR9800uIUfKtS/z7co99pB23dV9Xn4yLffaK/d/fn/xkmnp9/eWM9Ny+PDc//fc417nhp1pmf+bWw8BgpaSyLREnrl7uN+HfxhZBSwl6xP0pEmtr8O8OLBjbkjbceoeHlbQMuhJKx+wlFrvdDmZM6f19WuveV9OmEFLp4sE40OzPvzQ+zz9Zlo6NRhLCd7ZnUyuuab1tXE/97vMMDIto+geHuQkarwb/NFH/r9vZK6z7HgJ4gYNrAXxyiutr+3qSsl/pqWxK2l+n0hCpqXfdZ3nJ+MpakEyLd3WW3vKtLTaN41ls/pbWEqp48JukxjbAsZ63SpgKTl3bz3gAPu/RZVp6TWj3a17eJRjWnrpHp6fj982hJnXTEunbGynoHoYmZbGc8yECbn/wwhalrqt7BjL5qW96TZf48OD8ozJEc8+661cXqQ1aBm0N5jXxAG76YztQavpbr89WLncOJ3rvGab+m3/WgVySzV1autr481v42unJJVyPoin1ExLr+O2uy3DqYdW/ruMaZlYBC2RY+4eHuZFep5VpWPXvSAqXgOO5ci0DGMdezkJBF3HYY5pGcWDePxecDhdvEY9pmW3bv7KYxRVpmVTk/8TvtcLKi9K/b7X/dpLENftYiLMu5xeg3GljGlpd1HuNzvGat5mfh/E4/T+nHNaX/sdQylKTtm6jGnp/N7pWDOvOz+Beq9KybQMm13Q0o7Tsffgg/YZYlEFLb1mWlo9ZNDLmJZW84/i6eFuwUSvdXSp3cPdbhwavzdkiPTzn3tfdp7xt+SzXePItIxjTEvJOvBfSnveSTmClm4Z83l+uocHVWrQ0m1+UdXVTvMN0q787nfdpw+6Tpx4KatTO9KubrVaP6WOaVlqpqXTjR8/yzEGLf1ec8U4pmWm3G3ehCJoiRxz9/BKDVoG6aIiJTdo6WUeQddxmGNaeumiKPkL1HhtMOU5nQRLycYJM2hpdUKMakzLODItgy7Litf9Omndw60yP6yU8vTwfHnLnWnppXu40/uuXVtfOzWSy52F6RT49tqYNiv308PdLnajyrQ0PwHbKcgdV6ZlKT1L/LDrHh5EVZV9UCes9puf+sP4N6ugpZ/u4V7LY1U+L/uU2zHhte712j3cqY5wWsfG1+bt7XUbG+vK/Hax+91+6oGouocbt5eXoSKCBC29BC6CcJtXkHVSjkxLv2VymzasoGVUgRqndeD1XGAsm5eHqkbRpiw1aGnkp3u403fzSg1aekk2sPrMT/dwu3qwlDEtW1qCZVq69BDI0D1cEkFL5Jm7WkZxsojzYsGpDFaSPKal33mkKdPST/aR30zLqMa09DKtMRhjtfxvy5Cx2leizLQs5c52qXVEqft/KZmWaQhalpJpaZfhE0XQ0m+mpdNxaOxW6hQ4SELQ0i3T0u0mXdK6h5dysep04fDVV9blMb+W2lemZalBy+pq+3kkPdMyvx68nLvac6alOWjp5YLbzHi+KWemZdAMP7+Zlm7ztQpaenmCcBDlyLQs9UE8YQYt7eblNWjpNHSD37L4EXbQ0ksyRxSZll6C+k7tSLv14Ddo6TXT0s+51+rYCJKAYGa+YeG3TFGNael2nBO0lETQEnntpXt4pWVaRhm0tDohBg1aeumiKPm7kK/ATMsqt0aclTSNaRl0WVbKGbQMsz70ekFcSqalXaAq6kzLIOvaLmjptJ6iCG45cfpdfjItjTcvktY9PKpMy/nzi//mFLQsR6ZlGI3/oPWBVSZUUFVV9hetUQUtvY5pGWb3cKOwxrQMK2gZRqaln6BlkAxBY9DSLdMyzKBl0OPOuE69BIOSnGnpdvx4uZbwsj9b/c0u09JvYNWJ1za43Tydbig4zb9UcQQt48q09PqQyjRkWnq5tvGbaWm1b0Y5pqVdTxiXoCWZljkELSFJyraX7uGMaeldHJmWXoKW+W3hN9PSqUEZ9ZiWVhdxVkFLL91rzYJ2D7fKtPRz0Vjq/lvq970+ZdhLlxK3i4uoxrR0+g1pybSMI2iZhEzL/LoKOqZlmjMt/QQtzZmWTk+bL0emZRjn3aCD5Kct09JP/eGUaVlVVXxhbzdcjN/hUaz2Oz+ZlnbHbjkzLf10Dw+Saemne3gaMy2DBC2DrEcv/AYpw860NE5r1052GmPYano/ZcsLK2iZljEtg2RaJqF7uF0ZrD53OjfbXV+Yp4ki09Jv0NL8IB6rskc5pqXX9lkUmbkVgKAlcsrRPTwJQUuvgYC0dA/3sp28BnfMrBqMQcvstWJOSqZl2N2kvQQj7bqHu80/aPdwqxNwObuHlytoGUamZVTdw62C2XmlZFraZfhEEbR0CkJZLdPpODSOe5f0oGWQTEvjZ+UKWnoZTzjKMS2dMi29BJhK5aVu95v1GLScYY9pmaTu4U6ZljU1xe2JqDItrYJuUXYPdwteu90wKEemZVRBS8m5zgh6s8DvDQG3+a5Z0/azcnUPd9u/vSw7aNDSa/dwc1DXz/WNUzDeyzzTnGlpnIeX4HoUvXeiClpGkWnpN67g9TrG7zFlPvb9Bi29nKOcMi3tAvqMaekJQUvklKN7uNU8yx20DDrAejkyLYNUSlFmWgYJYNix66Jo7iLppctkvlx+My39jGkZVsPdbv5Wy2ix6R4eRqalVRmDZFqaM7JLUWodU84H8YRZH1pdRFrxExixawj5DUqTaWnN6Q6/nzEt4whakmnp/D6IMDItS60/q6uj7x7ulpVlN61V0NJYVj+Zll6zO/Pvg3YP91r3GFVipmUpNy+c/hYkaOnlO6VmWkYZtPSbeellnl7rHq8P4jGvnygyLe3KbFXfk2npXZhjWpbSPdwuKcI8jZ99q1yZln6uacPItLRLMnE7zglaSiJoibxydQ83X8CEHbRsbpYWLrT+2+rV0tdfe5uPVePXuAy/ZbISRtDSy3YKOnaW1ztdXthdOJsv3L1cyLtlSSRxTEuvQcsg3cNLybQsJROv1DrC7/6ezUrvvSd98EHudSljWkbVPbyuTqqtdZ7G2PjLZxZ+9VXbZcSRaeml8Wnm90E8aQxaOv0upywqp8/q6trWQXbnLj/M+1F7HNNy4UL7c04Yjf8wMi1LrT8zmXRlWpovFo3/O83fKYhhtW3Nn3nNtIwjaGl1Ie8UtDRnWn7zjXVQLu/rr3P1TF6YD+KR/GVaej3u3DL3/ZRByq2fbFZasKD1s6R1D1+61P4BfVbBDKfrnDy7TMv8/Bobc/uH30zLRYvczyleg5ZpzrT0G7QsZ6alsTx256pFi+z/ZrV+Ss20/Oab4rrIjdfrGL9BS/Ox7yeZyks7KWimpUvdQaZlDkFL5JiDlmGeyPPeeUfaeGPprLNaPwszaJnNSj/6kdS/v3TXXcV/W7JE2mQT6Wc/8z4/q0GtpegyLYOcxKI6qdvNO+jy7Bo5QYKWbplDXse0dLp49pPdYTWtlzF9rIKWYWRaes1WsTphh5Vl4YXffenoo6UddpAGDpROPDF5Tw9fuDBX92y0kfTxx/bTmZ/meuGFuXrxl78sni6NY1oG6R5ufG98UE1agpZ+xrQ0ZzasXt36fvjw3L5z443By2m1XLsAkXmaSsm0vOuu3HG4117WQaykZFqWUo6qquQFLd0yLYN2D/cbGPMTtLSre4L2yLFbjt16c7txaA5aGrf39Om5/XyzzaxvlD31VK4+Mbapyhm0DCPTMkgmotnatdLhh+fW1VVX5T6L6kE8bpnJVu9ffTW3nbbYovh8YFe+xkZpjz1yv+eee+zL4pRp2diYa0f16yc99JDz8oweeCC33EGDnPcVr2NaWnG6SRGWSsm0tCursa61qv/uuiu3z732mnV5rLarXZvLbj8wb/OhQ6XLL7eehxWvCRx+z+/m85DV9KWMadnS4i/T0mP3cDItcwhaIsct0zLMA8ZYcYUZtJw1S5o2LVfW0aOL/3bhhdLy5f7mZ6x4jOvH7wWL1zEtg6zjMO5E2wmSdWXHLtAYpHu4lwwnL2V3uqPrtM68BLTMdxS9dHVoaSnvmJZBuoebpy2lXvB7sfDww8Wvw+we7nZx4aWs//d/uQvENWukE06wn848puUFF+Re33tv8XRpGNPSvA8EaVQa33fr1vraKYMoSNAy7H3VbZgKL43u/EXqokXSc8/lXp96arAy2i3Da/fwqDItly2zLo9VmcLItBw9Orf811+X3n8/mrZM3JmW+bovSQ/iMf7NHLQ0d2V36h7uVD+47XdW536vmZbG8XS91r1hZFr66R5uXIcnn5yrB5cssQ4GHHpo2/KlbUzLMNq3K1dKTzyRe/2HP+T+T9KYlocemttHFyywvmFl/s4bb+T+ZbPSscfal8UpaDlxYu7GaktL6zqxK7PRyJG578ycKU2ZYr/uwwpaRpWUEUemZRQ3z+y6h7tlWubPkXb8BC3tAnmlJj55vYFVSvdwu/qu1DEtnYKWdtca5vkypqUlgpbIcRvTMooB8qVwg5ZOF7IrVvifXxoyLb00roOeHL0Gv7ywu0iJonu4cXlGYY1p6WVa8+9I4piWQTItzZli5QpaNjcXb9N165KXablkifVrsyjGtLRrCIWRael0k8Zv90639+uv3/ra6QZGkIy8sPdVq2wtr9/Jy69bq4dFBGW3DLeAUynBCqf3TsdW1GNa1tdHc7EYRqZlKRd1+QuvqMe0dKsXjcLKtHSqe922pVUvIat61OpC0Xih73XbxJlpaeS1fesWtPSbce00bRg35b2UxW2+Vts/SWNaGredVfvXPA+vN+ycuoc7nW+8ro/Vq+2n9do93G35cQRqosq0NAvjt9kF14zlCXKu8hO09Jok4ldUmZbm7uFex87MT+/lGsnpHMaYliUhaIkct0zLNAQtnXh5upuZXaZlVEHLIJWSlwZM0EaZ127GXpRzTEvJ+ULFPB+recUVtCznmJZNTaUFtfxmZ3kpkx3z9qyv9/70cC93Z8MIWnplNaalmdXdWideu4f7CUrbzdvLcp0+c3q/3nqt5wSnuiBIpmUpF6dO+5DdfK3qd/N88ts4zGCd3b7sFrSMKtPSqdtTVGNaGsvh5Twbx9PDvZzH7KQt09LPg3iczmdu9XIp3cONbUSv6y/OTMsg8t93apOWcvPCPC+n916EkWlp9VutxlcNg5cgpdN7L/P0yinT0ul6yOv6cApwt4dMS+M8ggQto/ptkrcxLc3MCQlmdm2USsy0dNqvvbShnc5hXse0NGdaRrm/pAhBS+QYG79WDb8onuppXm6UgjT2vD6F2o3X7uFBKiUvF+9hdg9PS9DSS8ain4sho6iCls3NyngJtpp5ybS0uxPq98LCfBc87ECQHavf6PX7XteHU6DF7zHk1PA1dw+34vfueFzdw4OM3ep0/FRXS927514nKWjptA95zbR0ymIN8/xqXo5dgMgoyjEt48y0LGWoG6fpwgha5oPYdg/gcJJvz6RpTEuvD+JxyjDxkmnpJ2hpnLZjx7blc5OUTEuv8uvSqc4q5eaF09+iClq6zdeqTomre7jfoGUpbSy7TEu3oKWfgH3U3cOjyi5zmm+aMi3ttlWQoKXbfPNtLnO57doO5cq09Bu09PIgHqf6OuxMS8a09IWgJXLK3T08f4AmOdPSbvyp9pJpGeaJyK6LYhRjWkrlzbS02m7m3xFlpmXQ7uFWY1r6ycTzm5Vh5ue7VhceXuskr40Sp2PcS1m9Hr9eMi39Bm+i7B5ezkzLqiqpR4/ca6e6IElBS6cGrts88vtwmA8WsrtwdsuSKyVY4ae+dBrXMYoeHUEzvpyOwTC6h+fL4jR2q518uylJ3cON07p1D7cLpFsFLZ2C3FbnL7eLP+P37AIPfrLNnOTn75Rp6SdoWWqmpZcbLaXcvLBalt17L98JI9Myzu7hbvtrkPOxV3aZli0tznVbFJmWQbuHh7ltjMLItExC0NJuW5WaaekUtLTax8uVaRmkfWlmvnnm55rL6prJLKpMS4KWkghaIs+te3jYGRD5hrrfbllOnA7qUruHlyNoGeQEXe6gZdB5+cm0dKucvQQt29OYlkG7h4eRaRlX93DJe53kpUuJuTxBMi2N0zjVa17GtPQbvAkr09LvjQqru8FuAS2vQcukZ1p6yVpym0d+/QUJXNmxa/y6BS1LCVakPdPS6jOnbRJGpqUUPGhZrkzLqLqH22WXWF3wOQW5rcrnJRBerqCl2w0Dqwt+p6Cln5v8VgHOcgYt/WZASW3r9TBuFrplWoZ5o8StzvebaVnKcZxvg1gdM051jtdlWrUf89sizUHLIJmWQW4mhPHb7OYRJGhpbtub2QUt7eqMKDItw+gebr5h4ec6lzEtY0fQEjlu3cPDzoDInzTJtGyVhkzLoPOyu3C2Cu65XcR5CVqWmmkZR/fwloBPDw+ze7jXgHH+ddiBIDtWFx5eL/aD3LGNckxLY3dQc3Azv5xSMy3zv6XcmZZWy/CTfVJV1do9fPVq+2UnIWjpVg95CVrmj90og5Z2ASLzNOUKWsY9pqVTANrIaZskJdPSrv0UVn3l56aHW/dwLw/iyWbb7gNO+4vV+ctP0NI4P+OFvtdjwWv3cD+ZlsbpzXWjn+BI16728w0raOk1iO02bZ65Xg+je7jV9jeux3KMJ+z1vdv8/Mhva6u62anOKSXTMv/dNHcPD5JpGST5Jsru4ca61rz/251jvWRaWtWvcWda+g1amp9P4TUIK3kb07KlJVimpUsPAca0zCFoiRy37uFRZVomOWhprNydskPcVNKYlkFPRHYZB1ZdQN26iLe0uGf5OV2oWL0vJdMyrO7hzc3lzbS06urgtixzg7JcQUur7VnOoKXfjA+vY1ra1QGlZlraHW9hBy39jh3r9t6YaSlJdXXWyw0StAw7K9gta8nLPlSOTMtydA93eu90oR51pqXk7caM1TZ0esJu0OCq1T4R5MnxSRzT0vi3oA/ikdquW+M0buUpZUzLOLqHu42pZg6M+GkvWwUt3eosv0HLsMe0DBK0LDXTshxDc9j93U97yy+7oKXbjRKvy7QKVoUdtIwqUBN20DLIdWwYv81uHsbxec37v931lZf13thovY+Hea3o9H0vbXk/bVyr+s7pBm4UmZYeu4cjh6Alcszdw6POgIiie7hTZVWpmZZeLvKCnhzdutD64TXT0u4zIy8nDi/dw/1cDDnNx2pa82/wGNwp65iWbl3TrJhP+KUEgvx8t5RMS6/7sdMxHlX3cLv9LqpMSy8NLrd5u/3Nb9DSOA9z0NKuLkjj08OtpitHpmWSu4d7CTCVwmumpdVn5ci09NKzwEq5xrS0C0q4TRs001Jyzgxyq5et2q5RjmlZ6oN47M6hfjMtrebRpYt9ecoRtAzSvo0iaGlVpxjPz+UMWpYz09KpDRBVpmX+eAire3iSMy2N8wgStAzjt9ltK2NdZl73dm0qL0HL+nrrfbhcmZZhdA83t/Otfo9T0NLLNZLTNSJPDy8JQUvklPvp4fnsgjBPSk4nxiBBy9/8Rvr889xrq4DGCy9Ip58uffppsHL5vUNkJczu4Y8+Ko0bJy1YYP89r/Oyu9gJI2jppWHd2CjddZd01lnSsmXFZTDOx1w+q7+ZRdQ9vGraNG1/++2u07URZqal3zGqwmhUu7ntNukPf2j7edBMy+nTpd/9ru10Thlg+d/+r39J48fbZwDmlRq09Bu8OfVU6/mUchc6r5yZlsanh0vSe+9JZ5whPfNM8XeCnI/C3le9BADc5pHfzkGy7ex4rXuN/N6AyGal//s/aelS62U6ZVqOHy/985/Wf/OyXZctk84+O1e/eymnlzrOb9AyjWNafvllrt773/+8L8dP/WH8W5iZlk5jWlq99xIItzp2k55p6XdMy6CZlqVkXDv9zUv96zam5YoV0jnnSHfc4X2+VnWKcZ+KMmjpN4jpNr8gZbGqm53ON16X6dQ93O/vtFu+XVnmzJF++1vp5Zed57V4ca7t+OCDxZ+H3TW7XJmWc+fmrkuPOir37+qrradzGtPSLtPSuE7s1k99vbc6VyotaHnvvdZt/vp66a9/lS691P6msVVZZszI7S9vvtl2/7IKFtptGy/dw7NZ5/EoA45pyYN4cgJEclCRyv308HxDPcy7B06VZJCBkqdNk0aMkN56y/ruzAEH5N4/9ZRz4NKuXH7vEFkJq3v4kiXSkUfmXr/zjvTii9EELc3rIqqg5dtvS6NH515/800u8OUUbPQTvIsoaClJnZcv9zRdkTDHtPR6UZp/X8qJ1Euj5s03pRNOsP5b0EzL3Xazns4tiP3229LJJ+fer14tXXut83LsGBsjdnWA36BcbW3xe7sLlrCDllZ/czs+nP5uzrT88Y9z/197bW5755+2noQxLcPItCzng3jctqPf9XPFFbmbeg895C/T8q23cv+22y5Yj45x46Q778y93nVXaeBA+2m91nFpC1q6jWlp9XsOPzx38XbNNbmbLt26uS/HT/3hlmlpLGvQoKWXTEsvbVerQH6UY1o61RFOQXRz3VjqmJZuQUu/9YCfTEsv8zWf98zlPOss6ZZbcq932knaeedg3cPLFbT0m2kZxpBR5nlFmWkZdfdwq22byUj77psLSF5/vfP2Hzu29SbNggVSv37287VavtdylivT8vzzvd2scwpalpJp2dDQNgEo7EzLjz+WjjnG+m///rf05z/nXvfuLR1/vLfr6J13zv1//fXSgQcWl9HqmLX7/UG7hxvnF3BMy8iyjlOGTEvkxPX08DCDlk4NyCBBSykXqJDaBjSMDZ3PPgtWriCNOrOwMi0/+qj19eTJ9t/zeiKyu3A2f251x9c45p/dvN1+0733tr7OZy86rW8/28LLySTImJZ2Sg1a2p3srNaj3+5epRy/XroMPf20/d9KGdPSbTqri4kXXmh9f911bb/vtXu4U9ncLiq9yn8/jqCll2wou/fmoKXRihWtr5MQtPQSAHCbRzkfxON2QyJIo/i//839b3fh4FRHPPlksHZGPmApSS+95Dyt12xyq20Ydvdwu4uZUjIt/XQPnzGj9XU+Q9ZN0JtaVkHLTKb1Yjq/na3Wu2kfyBjPb27lsdrfouwenpRMS6v5G8e1M883rO7hfm9yunHrHp4PWErS88/n/g8StDTuU5U6pqXTjcuonh5eju7hmUwuYOmFMav8ww+d52u1fCelBi2DbNsvv/Q2nbE8YQYt7bqHl3KtaDZ1qv3fjMd/Psu0nN3Do8i0tGufmcpFpmUOQUvkuAUt22OmpZG5ovNTbmMl9cAD1vOUosu09FJWr13mggba7Cpmq8aT22/ycoGd79ZvVQarMiage7jn5Zm5dQ93yvLw04i2avyWcvx6adT42Q5B5mE3nVXQcsMNvc1Hsg9augWYwwpa2mX4BLlIKmf3cKegZanjkJXS6PMaWHD6jtV05cy0dAswlHIsOwUt7VRVBcu0NHIrs1VmRFzdw+2yksuVaRmEWxDGyC3T0vi5j6Cl4/Kt2lBe9qlyBy39nIPtvuc309KqbPltFFbQ0u9wMm78jGnptm7zrLa/8byV5KeHl9IOKEempd3vDStoacXctvJ6Xl9vPW/fCdKuLNfTw72uR2PZSu0ebqzLrbqHhx20dNK3b+vrhQtz/5fSxrWq79wyLb3c+PdzrWl3bexl2K92iKAlcso9pmW5My1LWc7q1W0rHT8nYeO0xhNnkDvRZkGCllbL8TLAsd13vSzT7sLZqvHktq95aVhbZb+moHu4Jb+NcqeTn/E4twr++smcyGZLCwR5OYbCqB+8ltEtiG08doMy7+92+12pTw50yrJwUo7u4ebPzI1/45iWRqU+8TWMrBUjLwEAt3mUM9PSbTuWcizbBSjcbiSa/17qA6jMrDItvd6MCzvT0i7AX64xLY2CPGzCbb7Gv5mDlvny5j/PH79euoc7Ld/LjbQgY1p6rSu8dg93yrR0amcZ/+aUaWm1PZ1uKJUjaBmkfes2pqWRXW8CszgzLf0GMc3bMYxzlt+gpZ+b6XZtzbC6h1sxryOv884PLVPq8q2mK1f3cK83y5yCln4zLY0P9LIb0zLM7uFO+vRpff3NN7n/S8209BO09JJp2dISbExLl+7hZFrmELRETqWPaVlKBfrVV20rOj/zM1Y+xi47YYxfE2RMS68BtFLuntkt00vQ0kumZZC761FlWkbZPdxLF2y3O3LGZRszNazWo9+LkFKO31IzLb0K0gi1anS41YFeGhXm4RDs6oCwuof72b52fy8109Lt5kf+db7hb5dpaZSEp4e7Zfp4qVPKkWnptXt4mOvHbbxPyTpoGUWmpZf90Wofd3pYRZD2kN2xEuQhTKVmWpY6fIUVP5mW+ePXan6lZlr6CVoap40i09Lt2LM77qzK5zfTMu6gZZD2bZBMS7dzmtX2j6t7uN9MyyiClm43Srzu+1YBHLtMSz/8Bme8riO7TEKzINc45eoeHmQMXa9BS+PvMX7fGOwtR/dwp3OTVW+nUoKWLS3+uod7ubkbdExLuxsAxvmCoCW+VQljWkYVtJw/v+28gmZaOt3NL1f3cKuyR9093E+mZRhBSy9lsruzaPXeqJyZlkECtE4NZ+Mg2lbHudeL0vz79pJpaRW0ND9B3MuYlm6ZlmEFLZ0uWJyUY0xL82deg5bGZVVapmWUTw/32j08jkzLUtsZfofOkLyf18qRaRm0e3iQMS2D8HLD02qZXoOWYWdaWl0wRjmmZamZln6Dln7GtAwatPRTD/i5yRlV9/AgQcu4HsTjp73l5e9OnLqHh/H08MZG+3Z+KUFLv22UIDcYkjCmZRSZllbnevO28JtpaQ5aWu3jXuufUlm1q0s5pvxmWgYNWgYZ05JMS0sELZHj1j087EzL/EkzzKClUyVZShDAPPhx0KCl+U6538rWipeLPC9BS68XckGDluXOtLQSVaZl3EFLt0xL49+NQUureSct0zKMLiZB9lmrRof5WPvqq7bT5CUlaOm3jgk709LpYt382i1oafxOkJtoYQct7dax3XecgpZkWuaEnWlptZ/ENaZlmN3DS820DHIjx22+QTItreqWcmZa2nUPDyvT0ktgzaltYA6MtLdMS7c6y8t8vXQPDysg4Ha8xJFpaXWMhJFpaRW0DCPT0m0f9dNWt5su7DEtk5Jpmd+vjfP2Oqal3fpx6x4edqalE6uxUkvNtPQTtLQabsYsm3W+JiPTsiQELZFj7h5e6lhTbpKaaWnVKAwraFlT0zY4bBRVpqVd5o3bsksJWnrN9rEqi9tvcjqpWMlvU6cGo5/gXTmDll66h/sZ09Kte7iXiwSn7/uRpqBlS0vb9WwOWhp5DVoGyVDzwu5iOeygpdXfnI4rq2nyr/N1o92YlsZ5JSHT0ksAwG0e5XwQj9t2LHempdWDeMLOtHQKWLl9luSgZaljWga5MHebr/FvdkHL/PA4QYOWbuWxOicF6R7uta4I0l3TyzzsgpZ+giPlCFr6bS+4MW97L+cev5mWVplQYSVl+A1SRhm0tMu0dKtzvC6zocG+nR9G0NLrNvF6/m2vmZbmtpLf7uHGoGVDg/VxXa4xLc371eLF/usZczvfT9AyikxLuzqZTEtLBC2RUwlPDw8j09I45mReVEHLII06M6uGg5mXQKHXC7mgFztesn3yws60zG/TqDItzeu/vr7t8RJnpqVd9/BSg5aV1j3cKpBmnIf5gso8bISX5ZQr09LueCtH0NJ8J9uK1TT5QIyXTMskPD3cLZvQS51CpmXxZ37bGW7HiddMS6v5JPlBPPl2RNDu4UFvPjp9z2+mpd0NOad9wO3cazXPKLuHh5Fp6Sdoabe9ve7TXoa08FMPxDmmpdegpbkOsFrfYSVlJCloabfvpSXTMshDZ4zMw/cYpws70zLI08ODbFu3dWKVaek1aGnXbjNnWlrtw6VcK/ph3q+++so9+cepHdbU5P335Kf/f/bOO86K6vz/n1t2l947gogNFRAFC6JiwYYau0axRBNN0di7UYwmX40aY40tMf4SNcbegr0XbCiCvZeogIoIAsLu3vn9Mczec889fc7Mnbs879drX3vLlHOnnPKZz/McE9GSnJaJQaIlEVIPs4cHgdzaDvhxWopEy88/r3zf0pKMaOlaKZnMti0qj27fpu5Lk31Gx192HthBTjSgUYUxuIiWKgFHJ+4EQbmxF7mDFi8uvxd1ClxFy++/t3cTqTrOvNPSxu0r6gzIOkAmpOW0XLy4fIxMnrAHAfDdd5XfiXJazpxZvUyEqdNS1Ln58cfwLw6yAUv0+aJFlcJS1ME36Xyy51xUlyxYUL0/WfnY1z5zWrIChK4sMlpby/e1aN0ffwTefz+8R0WYCMYtLWH9wV9vcZDV9zrRshZOy7j9DN05TcppGc1cqsLEbd/aWhun5Q8/iI8NX2adCCNblu9H8aIlAMyfH99pydY1gLmLTjRQ1ImWCxfa59MTiY88ovpDJlom7bRsaZHXZyKi48G2J/y++GVVuOS0tK0D5s/X71e0L14EU5UpQvfgytfDBdW6tqJl1AfR1cUi151P0dK0LVi4UH6/isoG+HFasttIy2mpO66ynJZR+75woXxcxZaHfe2a09K0724zhhBFO+nGMDpTh8jdrXoQbWISEj1ci8a0rjktfRg42gEkWhIhWZ89PAiArbYC+vQB7r5bvExSTktetHR1WhYK1ceZxbVSMulwicrD4js83Hbg3L17+fWyZcDEieG5vuce8bZdREsbpyV/PA44AOjZE7j66upl77svnNXupZfC9z5FywED9IOIWoWHf/EFMHKkumwqTO6huOIdAJxzDrDqqqHQYPL7fvrTakGyVKru3PzlL8AVV5Tf+xAtP/wQGDQI+MlP5OU0QTVgefjh8HrdaKPw+I4eDfTvDzz3nL7zefTRQI8ewB//WP1dxPrrA3//e2U5VNvkRUsf4eFduqjX15BftgzFUaPC+2/GDPFxWbYMWGst4M039eWV7f/bb4E11gCmTy9/JhJcbZAJK7qHeiuz09JWtDz33PD+l3HkkeF9csEF5c+ylNNyzBhg+PDKtuXCC8My//rX8u2otqsaxItEyz59KuvPCFOn5Z//DOyzT3UZTPquIvGO7fvx19UNNwC9egF77VX5edyJeADgq6/k65k6LUW4iJYLF4btnylBEPZ/+vQBNt9cLnyw+1Zhk9PS1Wk5YIB+vyzNzeU28tln1fvS3S/1EB7+8cfAKqsAQ4cC8+bJl0t6Ih7TtmDVVYF119U7Ck2dli5jnLRyWro4LYHw2Oy+O9C7N/DAA/ryqJyWomva5GG3iAsuCNuc3/xGvyxQfV3973/6e043PhI9KJGdG9eclq2tYf3Yt2/1mFbWPyOnpRASLYmQrM8e/uqrwNNPh+XYYw/xMkk5LflOpch1pSLad6HgP6cloB/Am+S0NBUoTY+jbOAsO989epRfP/008Mwz4bnefXdxuWTXY//+1Z+ZiJaqp3HNzcAtt4Sf/frX4mOwZAmw3Xbha9GTTFfR0gTXiXhE97mNaBkXk2vJV9jsV18Bp52m/33LlgG33lr9neyev/lmu3LwIix/7g47zI/rThUevsMOYTlmzAD23z8U3ZYsCT/XiZaXXx4u87vficsf8YtfiPfPloN/HdWNTU2V16lonYRFy2EPPYTcBx+E7prdd3e79k3Cwy+/vPqhWNz7TDZQzprTMo2JeETbM3WF6K6x44+Xf/fXv4b7OeWU8meydtflwUxc0RIIB3znnlt+f/LJYZmvvrr8mY3wxH7HP7QRiZYyTGcPP/FE8fc2oiW7rCqn5aGHhtfIXXdVumx9OC1V67H9HD5SR4eLaGlLEIQP2JYvB55/Puy78fuSvRdhklaH355tTksRqnv9xhvLbWTUx9OVKcI2PNzWyWtSFlun5S9/GV7jc+eicOqp8uVEqalq4bQEgPfeA667rvIzV6elS3h4VpyWMtHy44+Be+9Vry8TLVmn5fLl4n6Nq9PylFPCda+6Sr8sUF3++fPtnZZ8uUSipezcmDgtRW7/p54K68dly6pFS1kbwdVblNMyhERLIiTt2cNloqXsxjRpwJISLUVON5ucajLRslZOS1WuI115knJasqLlN9+ot1UqyUMcevas/sxEtFQ94Td9Oh51knw6LU2wCQ+PM3u470bTpGPrIlpecgkwalT15x9+qB8EyeoZUU5LwL5zrnua+sEH5tuSPbwB5AMW/ny/8Ub59eLF4nOsmsjF1SmiEi0BsdvQJjw8pmjZxNb5oqf5JpjU76YPOOLs1zQ8PE59JKtHbJ2WWZqIx/dDGlFdYRu1ERE57lxzWkbMnav+3qTvEKFymtuIljazh4vKYCKEiwaKbNto+jt9OC1V67H1Q7du/pyW7HcbbGBXNtH2IlhB18VpaXO9mTyMAczqFFV7woaT6x4wxBUtfY0JALnTMghCATbisMPk2xC5gCNUTksfYqvtmJMfN/Bta9acli79aZeJeABxSgRVeWT1oqifIHMm2l67suuVRSRA6kRL/pjx722cliJtRLSMKqUSj6weE00gRpBoSaxAFx7u22kZNZqmjbRITORJKjxcFhpoCjsoV4WH1zKnparR2Xjjcsimq2hp47TkO4aia0TWCLDbiTDJaakSLfn1dOc+bdHS1Wkpus9NnTQ+SMppudZawJ/+VP354sX63yerQ0olvQBiEh6uEy1Nj3H//sAxx8i/lz295d/zHXvVE3ORwGY6aFd9LhItdU5LXZ0nCjG3uH6rnmonJVr26WO2bpz91sJpye9bRKEQ/+Goi2Dh+wGdKbJ210W09OG0VCELvTVtH9JwWoqIEx5uOhEP+9t0bZipsCYrH9uX6NbNzWnZu3f1dtlyn312mC7ABf76YO83l/6tTvQT9Z+Tdlra1Iu68uvaBBN3vm1ZROco2s/mm4epXM47z377spyWvh6Axc1vnHWnpcsxcnVasjn3TcrDHh8T0TJOTssIE8Fb1F/W3VP8Ovx7m5yWgL4+EYWHm1xvmnaLclqGkGhJhGRl9nBZpWwiWtrkLJRhsh/ALvdO9J0uPNy1UkoqPDxaL5crl9u0jLJ9moiWumNrK1pGAyXZ9dHaqg7T4ffPzxrNk2WnpS6npY8n0KYkJVrKJiwwES1l9ZzMaelbtDRFl99MNmDxLVq6Oi1VOS0B/UQ6Lk7LOKKcD9FStP/OncXr+nCqRJgMBnzntJSVhSWfJ6dlqeR2ruNOxKNDNvhVbTe6BkRliga+Jv2ruE5LG9GSXVaV05LfR0TSTku2L9G1q5vTkv1dorQNfL/UBv53sfWyD6cl/14UqWSb01KEqj2xuZd0vzmu89IG2fFhXZZRvkKX89/cLO7n+4oUsB1z8mVJM6ely+zhaTotTURLE6elqJ8g6zvYnr/oHlTVqT6clvw2bJyWou3xiJyWJqJl3L7QSgKJlkRIVnJayiosk0ZVlbsiadHSxB3AiykuT6JNyiLbf4SJaMkn1Y/K7fIUkl3PRLTkhSob0ZKd0CdCFx6uE6P49T77TLzvaFlTcceX3V/3VE8lWro6aXxgItixHWxTcjlxJzKO01KW01J2P5iKlq4Pg3SipSqnJQt/fEXXZBCEf6ZivGp/os9FomWNc1p6eaBkMgCV/Q6fomWtnJaizjuLj5yWujrE1GnpkvpAhuw4J+G0jBseLsNFtBTdxxFROeOGh+t+l+hBnKq/wy6rymkpK4Np/edDtFQ5LVVpPdg+LfugNiIp0dLm2onQiXjs9W7qYjWpU1TXnE+nZZqipSzcViRamorh7HUic1rGyWcJ+HNa8v1w0/rcdDl+jGSL7bmV9UFZZPW2bjJPfh2ZaCl6yCbrO9heB9H5thEtTZyWujy5tqKlyYMqm76DqC0CyGkpgURLIoR3APoaXMuwFS1NKgFVB8C0EjHpVAPVDapJaLpOtEzKaWlyjFWdJVYgcXkKyW7fRLTkw8NF51WW01LktIwGI7LrQ3T8ZA04oBYt583LntPS10Q8vnOq1MJpqdqnT6eljFo7LXVlVDkjRde1j/Bwtn6MqHFOS+vjJsLk3kpCtLR1uUff+XZa6vI/5XJuD0dVKVZ4auG0lJ27JHJaJuW0jM6D6gGYbJ+iBza+wsNNnJYmfVfRQNE0pyX7nWn9Z3s+ouVdc1qyIYppipZs382lDtWJfll3WmZJtJRde6zrztZpyV5/opyWPkXLuKlCsj57uOuDDBWytt5kckfZ8XF1WtpeB0k5Lfl14uS0FK2vK6MO2diYq7doIp4QEi2JkLRzWtqKljYVtuh9FpyWhUIyOS3TEC1tw8Nl+zQRLflrTTT4twkPV20HEB8/VXj4p5/K9/G//2VbtMxSeHhSE/G4Oi1bW+X3sUzQlHX0shIeLrrmRYJghCo3YdLh4ezvSSI83McAMM46aYmWsoFz2uHhOqel68NRkdtKRi1yWtqIlqVSNnNaJhUeHtdpye5H9p3OaQOIxTvT8HDRAxfdskk7LWXrA2IHqS/Rkj/WP/wg/87kmtSJfqJ7n3JaipE5Ldl9dOoU/jcVw9nlRE7LlpbsOC3bW05Lk+tYVm8vWKBfVzbm4esP0TUbrcsKnK6iper4i5yWccPDfee0dBUtdX0hEi0BkGhJRGQ9p2VaTktRWKIIvpOjqqii38g7wLKU01I1IYhLeLisoyRb31ZstBEtZftWiZauTssvvjAXd3yJgDQRTyVxclqqwsPrKaelbEBXKpUHKiJUomVSTku2foxQhYfLzgWLKFekxfXrZSIeCg/X79Mlj5MqWoFHJliZOAh12xalIpFtC/ArWtbKaWnSPiTptAT0QrjNQ1rZ4Ny3aGl7PkSipU1OS/Y3JylaqvIIZiWnpUldmpTTUidKpuG0VB2fuE5LUT1KTkszbNtbk+MaR7QEymVi1+edlqJrNlqerWvSymmpu+d0E/H4Dg9PyGlJomUIiZZECC+m6W6guKThtHQRLU1/p43T0jQ8PKtOy1wufni4jdNSty2VaCkaSPoWLVUT8Xzxhbm440sEtJmIRyda6lwsPknKaSkTLYF44eGmoaZAOjktTR6UiAaO0UBFhK1o6eq01ImWqvBwXR2dz4uFWZv7zYdoafJAIA3Rspbh4br7LWmnpWh7pmkxdMdD9oAzjfBwXzktZfe7bPCrEwzZsrH4ymkpKhP/nY04pnIUyXAJD087pyVbrjTDw9ny2jwQlS1j4rT00Y9Ky2mZVdGyPTotVTkt691pKdufrK33JVrKjA4ip2UaoqXoAaTOacm/59ORmeYNdf2eR/Zgi6uTKDw8hERLIkQXHu7baRklgzYVLV2cli7h4ToBULacqdNSFR7u2kGx7eSbOC1lE/G4ipa6DmaXLuZCU6kkz2nZsWP1wMhFtGxpAa68Erj6ajsBwSQ8/IMPgN/9zvxa0xHHaakTZ157LSzrRx/5E1kjknJaysLDAf2AV/XQROe0NMGn01I1I6SsI1QqyZ2WhUJ6Tss33wTOOAN46y2xaCkShC66CPh//09f3xUKYmE2EtEuvxy45pp4g1GXdWy2wdZZV15ZXd7PPwfOOgt48UX9fk0G96LcUDa4Oi1FD0ebm4E//xm44QbxenyKC1U5RNdKdN3xZRGVT8W33wJTpwLPPlv5eRJOS74+0zktH3ggvM5N6tinngLOPrvys9//HrjzTvU1XCoBV1wBXHVVuL/Zs8VlZfEhWtqmHBAhEu+y5LQ8+2zg4Ycr+zk2TktZ2HsQADNnhvdXRKFgNys5i43Tkn//+OPh75w3r/yZ6H5m1xPd+z4G88uWAS+/HPZ1+PQ/qnPX3Axccglw/fXi+i6uaBnn4ZUsPJzF1Gn51lvhsWHPL+W0LL+OM3v4iy8CZ54ZtukyXnkFOO208ntZPRrXafn734fLynJaPvBAdVvBOhN9hIcnndNSFx4eN/w7qZyWvsdfdYphLCzR7sn67OEiEZV346gafNOKpEMHs+Vcc1raOi0bG/XH3kd4uOoJbxo5LSOxUSRS2Tgt8/nQkfD11+XPZI2C6onuW28BRx0VvrYRF7/8Uh8ePnFiuJwvbJyWupyW/PsNNwz/33QT8OCD8crJk2R4uAydcGPqtMzlquvJtCfiUaWyUDktZaJlsVi5fEND+Te3tvrNabnnnuH/v/ylXOfqnJZ33BH+qcLbAbloWSqFQtjRR4fv+/cHdt9duImqp9pJTcQjIzquN95Yrod69QL22Sd8veuuwOuvA+eeG25X9TAsusZ0QkwWnJbLl4eCSjRAW2cdYJNNKpdhrxPdIF90P7/9NrDxxtVlEZVPxznnhH9Ll5av4yREy6amSkeILqclEF7nHTsCv/iFfJklS4Cttqr+/F//Cv969aoub8QNNwC//W31uqIyReuZ5AzXDRpV50UnlPPbkDkt2XOouo+TclredVf4N3Bg+L6xMbwGZOebF01UTstx4yqX9em0ZNsI1XFbtAjYdtvw9UsvAdOmidcBwnMRtXWie9+XaBnVCfffHwq7EartX3cdcNxx4etBg/Sipa5N0D2AtsHk2jPMaVncdNNqR1rWnJYqAR3w77TkjR22RHXVppuG7//7X+DVV8XLbrRR5fsOHcR947hOy3POCUV7NvKNrReffrp6HVY4ZK+jNERLkzGMLqelzVjex/c8utRpEeS0BEBOSyJCFx6ucvW4EOVDcXVaqips0XvThmj77YExY8KO3hFHyJdzES1dclqadPJ9hIenldNSJ1qKsBUtu3YV75sve/QUX3f8rrxS/T3L0qXizha7b5+CJaDv6MpES9H9J2sYP/nEv9NS16lpbnbrACfhtORFy0igkImWaeS0HD++Wnzh9yM6v7IHM7xoyecyEt1zunZBd80sXWrutIy4+mr1NotFuWh54YXl99dcI99GWjktdetefHH5s6uuKr9+/XX5fmzr3ui7tJ2WIlGzVKp0lNx+e/V6qvBw0xyZ/ADcJaclyzffyLclCrlj92FSB/A5WqNjoHPIsde7iI8/Vn8/f37le/Y3TJ0qXkdU90XHIA2npW/RUjUxoKws0bbihjB/9VX4v1u38L/sfNuEh4tCruNMxMPW1abh4Wxe8AcekK/DfyZ66O+jX8KKOmzdqtv+//1f+fXf/64XULIWHv6Tn4T/Nec/x9eXQPZzWkbRfKLvs5DTslSqrFtee818XVunJTtBlo7/9/8q19fN88A6Ldmxou11EB0L1Xr8NWHitKwX0VJz3VF4eAiJlkSILjxcJhLFQVThmDotRaKlqgNgKrYVi6EVf948YN995cvZhIfHyWmpmulXVhYeE9FS57SMm9MyjmhpEx6ez1cLFiqnkYloadNY8E+aowFDnDAfHTazh8eZiMd3o6k7Ji4uS0Cd01L3FJc9lkOHll/zHczoWpUdL1PR0pXoN06fDvTtW/29ymkpO4+FgryzKhMtVe2CrYCgc1pGyO79CJXTkj3+ppOu5XJug0cfTks+AkK1rGw/9ZTTkn8/aFD1eqo2VOeyUJXF5LOmJmD11as/Z3+/7HzIXGQmgzv+QZyJ05IvlwjbOpb9bZGgxqNyWvqYiEdVh4muKdly7H9AntNSNFFDhOzcRQ42V6clTyRamoojsol4RMcmrtOSFVJNw8NlbnnZPRLhMhGPCXPnyr9TbZ8vT1yR0qdoqQsPv/FGYL31wtcu6QFETkufomXcnJZ83Za1nJam/SNRWWUPnqNjr3JAm5YtQtdPYutjdqyYVk5L3ThalfqM3W9EVnJa8pBoCYBES2IFgS483FS0tBV4dI287HP+KVq0Pdl704YomnSme/dyR1GEa3i4bU7LtERLU6elq2ipGzh36iR3ldo6LflGViWYlkr+RUtRnqwkRUufs4ezv9WH20yFrnObhGipqsd40bJ///JrmdPStCMc4VO0jP737Fn9vawjpBrU65yWfMc3CNTHU5TzSgT7UEe0b544oiV7zSkGahVPtdMSLUUOQhPR0sTdw+eG48lKTkv+/YAB1ev5cFqKysIjuk+KRaBPn+rPVaKlqu0zdVryoqUupyW7fb58LCIHlcn2AHk9EtdpaSJayvZt+6DEJKcl3z8wOQa8E9+XaOkyezjbrxL1deKKluw2TcPDZYiOpyxSxGd4eHsULXXXHttvcDn/ovad7/+64Mtpyfcfs+i0NKn7RWVN0mnJr2/jtMzl3J2WvnJa2j64zEpOS819QzktQ0i0JEL4wRF/A5k+qbFpsGSNnoi0nJZs48MPFFhcJ+JRhYfLclrqsBXddB1DoPJ4sw1RFsLDZa4vICynLNep7Hfbir4qWKclK6BmxWlpk9MyjlPMBFenJR8qyaMKD1fl9pG5ZIHweo46N7lc+TtZR1i2/7guhAi2HhF1mGUDOlVHmZ+IR+e0VDmeAbETQ0R0nk2dlroHaLqJeNjlZKhES9MBiu0AVCSa+BAtRQ8HRdvIgtOSL4NowKRyWvLbMx34moaHy3LJqh6Q+hAtu3SpLgf7X0Z0XmTnQfTwV4XJNRLXaWkSHq5K42EjWsqclnFEy2KxfI2Yumh0RH3RuLOHi9rUOKIlf65UTktV30L1uc5p6aNfwk4GxONTtDR5wCT73tYNqXNasvWYq9MyyfDwuE5Lvm7LotPS5FiJru80RUudcYYVDlmnZVo5LXXjaF05fDstfU3EQwgh0ZII8RUebnPj2YiWfENiktPSRbRkj4MPpyXbidaFh4uOXVo5LVV50XyEh5tOxGOyLdZpyYdJ2IqWSTot2Vk5aylaykJiRQ2+akDmOzzB1WmpepgAqJ2W332nLg97LNnriHVaNjaKnccuOS1d0YmWKqel7Ljb5rRUPTwAzJ2WoiTucUVLUfgh/9sVDoKKp9q8aGkaVm4r+rN1vUi0jFDl2BO9Z50QMkR1gQ2uTkudyCgLZ5V97ypaygRF0b5F5589J7Iy+RQtTXNaihyFLLZhgyb3cz05LV1ES114ODthTlpOS5lQDlT+Lt+iJe/UNc1pKTt/uvuwFk5L1fVkO7FhHKelyVhAtK6s/Ox14dNpWauclvx1oHJamuzfZjmX2cNN634b0VI2zkrSacle91GkIpBOeLiob2PrtKyT8HByWoaQaEmEmISH+w5/FDlAfDotXcLD2cbbRrRUPflnt60KD3d1WuqeSJoc46TDw3UWeJuclmyoKjvLXVRWWXh4WqJldCyLxXRES9eJeESdbJPcbL5IymmpEi1dnZalUvk+a2jQ3w9pipaifckGy3FES17g0ImWpk7LCNPwcF0H3DSnpULwybPHKJop3qRs/P5U73lMnZai88Aicr/o9m2yjApfTkuVqy1CJVraDlhU+7FxWrL7sXFatraa1QlJOS1tw8Oj7ajWq6XTUiVo8ttg/wPmOS114ptItIzbdupyWqr6eA0N5XpEdN7iiJZ8G710qTyvHvte1u/QOS1tREub3zRnjvw7X05LUYqONETLJJ2Wot+bFadl0jkt+bGdLXGclrKcljKnpS02/R2Z0zKtnJZpOy2TCg/XnTPKaQmAREsiQidatrSYdXBr6bT0ER7OHofOneXig2lFxz8ltnVa+shpaVKJqzpLaeS0tHFaLl1aPt7du1d+l6WclllxWsrCw0X3OfteJ4bGxVW0lHXYIlTh4d9/L1+Pd1ry4eE2TksZaTstRR06U9GSF9GSclpGmIaH6/AwEU9ede2bDvB8Oy2jcyMK01e9N8kzVgunpYkrTiYcRuicmWmJliqnpY/wcN45bJvT0le9E23vyy/ly6geovh6CJuV8PC0nJZRdIGs7lG1+cVi+Zwk7bQEyg9VbJyWUSivTrRky6nrU5oI5BGq8HDV9WQjWsrSE6ney65PE3Th4e3NaclfX6qIhHrKaenDaWmLjdOSfeCZhZyW/PusOy11hp4V0OzhISRaEiF8rkVRpWcSSlRLp6WPiXh4B5MsFNVFtNTltNS5SmSkORGPy1NIdj3Rb4xyQJmKlqxbjhctCwX78HDdICnroqXPiXhUAwvfoqWuUyPLt6YbjMQJDzfJaWnitJSRlmgpu99UHWXbnJYtLfqcljb3jqnTUkehIL5G+N+umoiHPU98eLipaGl7/7D1VlROH6KliftMVBfY4MtpKVqGhz3+OtHS1K0jaxtE+9Y5LWX9kDiiJS/CR/eK7lrUOS1tiX7D//4nXybp2cNVbq4kREuV+JEVp6UqyqhYLK8nEy1dnHaAWLSM6iebnJbROjZOy+g6kbUxNqIlD7tNVRumS6vFlt3kwYhKxKyV01J27SaV0zLaZhynpei69O20jCtappnT0hZX0TJOTsvofKuOv2iso+v/1ItoSU5LI0i0JEJ0jS+gzyVm66zx4bRUhWWxDZeLaAnIQ8RNw8P5p8Qip6Wq82WSKyUqC19ZNjfLXbOqcrJli8odN6elqmKOBmSyThlfNpVoKctp2dwsvgaWL6//8PA4OS35Zdnfyl8nvhtNV6elbjASZyIemdOyVLJzWsruk1o7LVUiSbFYeS+kldMywqfTUrS+jdOSvQ5cRUvfTstofV14uGg/snuJXSfO/S3ap0tOS9V2o3MicltF39fSaRndW7bh4fXktIy288UX8mXi5rSM67Q0+a2i42Kb0zIIxOJILXJa8vcJ/3AmKo/v8HBR30kmQKpSz8jcmfxnontfdGzjCLFAZb0Rx2mpE7hVIcz8+raipSenpTSXnqiu8xkeHienpai9Y9uHLDgtRaKl6DeLypOl8HC278DmtEzCaSka2+iclrq+D1+H6Sano5yWNYVESyJEFx4OqAeop54auhIvvdR8n3GclkuWAE89BfTtC2y3nbgB2HJL4Iwzwtcu4eGAuWhpGh7OD0L32Qfo2RO45x7xMTcVLX/+81DAu/nm8LNZs4DBg4Fx48wEVpVbj7X8u4qWqoFbJFqaOi3ZEF8T0fK778LzeOed1dteZRXgzTfF+40gp6V4u3FxnYhH13lXOS3jhIfbOC2zIlraOC3feQe4/PLye/ZaWbKkWkzQiZZJ5bTUIXPD8W2Eq9OyVhPxuDotAaB/f/W+WbeEC7I60pfT8qSTwv7FlVeK3VYHHRTmN/7PfyrXN3XrxBUtv/kGGDECGDYM+Pjjyu+SdFrGzWlpS9adlqaOYVH9yOd7jhCFh7e2ApttJq7/WNHS1EWjwzSn5fHHh8teeWX5O9ZpKRP4kggPT8JpKUoNIfpN7ANjF9hz7iunpegefPZZ+fLRNiNsnaM6wZztJ6vaQtW1y9evPsPDbZ2W7LET9R1POAEYPjzMX5oFp6Wo7u/eHfjlL+X7iUgzPNxk9nCR09K2zTERLXlED1tZsf4nPwF++1v1Nvjr7Lzz1MsnldOSwsONINGSCIkbHv6nP4WVztlnm+8zrtNyq61CEeLRR4HHHhPf9P/3f+L1ZfCND58AP8LUack3bOz2Z80Cbr8dWLwY2H13cUPar1/59ejRwKabVi8zbx5w/fXhMZkyJfxszz2Br78GXn0VuO46fVn548MnmWY7vSaVp014ePTU0FS0ZK9DPnw/ny8fAxZZPtbly4G//U38XUQ9OC1VYUiy8CpVgw/UPqelzAEbJzzcdSIe25yWtRYtZY4CU5EEqBRnRIPz5mb1pDi1dFqKRDpeJLOZiMdFtLQV/ZMULXXEdVq65LQ0EZii7y+6KKwPjjqq2m21YAFw442hsH7SSZXrm7oeTMPDZaLlmWcC778fOhB//vPK73w4LXnRstY5Lb/+Wr5MtK/jjy9/Nnly+D8Np6WLaMk783Q5LR94AHjhBfG2Re1D3AFnNPmczmn5l7+EfZ1//rP8HStaivA5EQ8Q9mfZMvFlBKqvR1PRkkV1X8V1WrLnPI7TUida8vh0WuquPbYeUzktVeUWuZB9iZZxZryWueU++ww49lj/TstcDjjsMLP1IkRGm6VLgWuvrbyvbETLWoWHsxPxxHVt21w/ooet0fuZM4H77tNvQ+fE5KGJeGpKDDsD0a7wER5ui41oyS/HVzTffaeuLNiGd8AA+WyBvLNR1lEwdVqqwsO/+qpyWdEx79IlrHgffBA48cSwATn/fGCttYBjjgmXEbnHPvyw/Jr/rXHCw6PvdB1CG6dltC1T0ZId1PDnJ58H9torFNFPOUVdRlNsOgC1cFoCYQcvcp3aiJY2AwvfjaaucZcdd52gpXIn63Jayp4wl0qVTstoH7I8SWmKlqqJL2ycljxsZ1Uk+qtcq0B4vGw6sD6dlp07h/XmrruWP+d/u+vs4UmFh8vCUyNMRUuX+9TUoSbDVbQ0cVry22avd1naD/Z7E0zFEpmL9913y6/5OkbV9pnei645LZMSLVUhdFHf6Pe/D9vnwYOBrbcOP/M1e7jsGncVLfk+ji48XFXGpqZyfelLtIwe7JrmtGTRiZa671WI2gXZb1Y5LaMH0aLfIXsgmzWnpUhA0eW05PHptLQJD3d1WvLn36fTUpWCQoQuPDzigw/8OC15Y8dFFwG9egF33FHttheh6ouxn6uMHrL10hYto+XZ8HBbfDstdWHeEdFDFlMop2VNIaclEcI7OkQVt2/R0iY8XJbTUrVMBDuw6d0buOQSeZn4zptMIHFxWvLh4TyySmmXXYArrghDz1ZZJXz905+Wv7c9L3Em4uG/kyHrvMncK4C8U8afV/bY8+cnnw+P8cknAxtsoC+nCbaiZUynZemAAywKtwLWfaq6p9gOiGiAx76vtdNS9r2uE5WG01KU49VkgFLrnJamyd+ByntL5HpVCcBAbZ2WQFhvnn9++XO+g2s6e3jWwsNdclrqUAlBJrhMxGOSf1A0sOPrKNXvTSs8XPU7VLn3dPmUI7LitIy2oxIFot/UpUsYanfUUeXvfISH65yWLjktbUTLUgno00e+7SQm4omOm8ppqXLUqfqdvsPDZb9ZldNS5bSUiZ2q+8pUtJQdF5nTkl8+bk5LnpXBafmXv5hN/GMrWurCwyP4h5Cy/evgx0g9ewIXXggccYTZ+qq+mOxheETSTkvXnJZ8PWqDb6elaR/St2hpK9obthEUHh5CoiURYhIeLhPHXG8mn05LQN4pWLq00v2mqoR9Oy1V4p9qWR1so6USYkS4OC3jipaqJ4A60dLWaRkR50k7i8313doa32lp2zkFKu9N1T2l62SrBhZpi5ZxnJaywYjKHdjaWnkfs9cjO1CW5bRUOUnYffggTk5L0zKwx1k0ONXVO7Y5Ldn71YdoCajrLZuBGv/wyQQfTkvRdZxUeHgtnJa6fba2yidCAZJ1WsraKtt2RdX2mYqqWctpqRIFZKlYgOzktOQfovLCHbsNkWip6hMkMRFPdNxUOS1VD/mSCg/35bQ0DQ8XOS1F65iKlr16iT9n70v+ARaLLnLFZ3h4Fp2WIvOGTrSRPfiJiPanypsrgq034oiWcXNa2vQPVEYb0X4iVDktTVN46coWYZPTMktOS9M+pG14eFJOS911R6IlABItiQiT8HBZTkvXDrFvp6VsXV60VFWqrk7LuKJlQ4Pd7OFso6UL0+SJMxEPYHa+ZTktRevaipaqBrXWoqWH8PAgadGSHVDZOAN8i5au4eFxnJa68HD2PmavLV4oF4mWWXJa+s5pKRqcssdSVE/GcVrGDQ8XbVM1oOSLwh4jvp0yrVfqLadlEqKl6no3EdBLpeq2ls11prvGTEVB05yWuoeeIpIQLaNrsFbh4aqBnmpfJm1bXKelzUPV6L/KacmfI929koTTMjpusvMtchxFpC1ayqJqVH0L1ezhSYaHy0RLts5RiZb1kNPSpB/lMns44Oa01D34iep8Vd5cEex+VfVTPp/s7OGm95LKaakLD1c5LX2IWzb9HV85LaN61tZpqZs93De68rmIlgZlJqdlCImWREic2cNdc5iIBhyyhj0tpyVP3PBwVU5LloED7Tq2bAfGh2ipyl8oymmpQ3ZeVU5LWafMZhCUBdEy7kQ8vkVL2TWoekoJVF8nvvNyuoaH656gqu4zVSoFVXg4n5Ig66KlzO0SPYk3ga0ndeHhUT5VljizhyfhtBQdC1lR2O/4diqp8HCd0zLJ8HCde0xHkjkt+WuPdfiyD4lEJOG09ClamoaHd+pUXQ72vwzfTkuT8HAVvnJaJhEezjr0dTktVfsgp2X4X9W38OG09BEe3ru3+HOZaMkfJxvR0sYBLFqnVrOHq651/vzr7g3AzGn55ZfqbYjIitPS9F5SPXzROS1lOS1tHxTLsAkPr7XTUtbPiptbVUYSTkuDc6Z8eLASQaIlERInPNy1cojjtBQl2fXhtOTxGR6uymk5YIBdxzafdx/YixrlpHNa+gwPZ+GPAXtuXRpPUWfAl9PSdDsu59U0p2Ucp6VtY6wjKaelKjxcVx72N8pES9ZpCYiFAVnH15d4wP4+m/BwU2cXYOe07NGj+nu+A63rzCfhtOQjCFhMnZa8IJBUeHgtnZaGHWcpaTot2bZfN0hzGYCqPnMRLVUP7GT3I9/vyEpOy2h7ppMc8JjcOybtguz3xHFasuXT5bRM22lpktMyjmjpKjTY5LRU9S1cclr6CA/v2VP8uS+npeo3i+CXYd/bPsy2CQ/35bQ0CQ8XCVtsnVoq2eezBMxFSx0uTktdf0xEEk5LXY5nU9ht6MYj7APPWuS0lD0cqZVo6ZLT0iV6cSWFREsiJE54uEk4gIha5bRUVap8xeBzIh5deLjomKvEFxdHHhA/p6VreLgs14rt7OEsvsPD+cEh4MdpCZh3JlwEN1OnJSvo6TrZ/HXiuxOQVE5L1xAVF6clW07Z4IolCael6HqRhYe7ipYiRxjreBMN/ninpUlYf0QaOS0V13OVu4Q9bqaila0D0tRpmdTs4bVwWuqOiUi0ZNE5LU0xDQ/37bR0FS2znNMyaXzktOTrbF4EZrchEi110R/RdqI+T5adlnFCOmuZ09KH07JLF/HnSTgt085pqXNaGoaH521ES9fwcL6fbJvPEqjcr+qhii483LSu5KPRIkzHHSrR0jWnpS+npU2/rdZOy7RFS912bfdr6rQk0RIAiZZERJLh4bIBqI1o6TOnpc2gI67Tkg/NlQlSLoNG205MhItoGTc8XBWW6tNpGVe09O20ZK81UzeTywCCvTdl+USjbbMDKpXgkVWnZZKipSynpcppKXIzpSla2jgtbc6hb6elyXkT7dsW3zktATfR0lZMdHVa+goPT9tpaTp7uEpoT2KQpvrMd05L2f3It4X1lNMyaUqlZHJaAmZOS107zjoto30k7bTU5bTUPQhNQrS0cR2a5rRkX/vIaSl6SA24Oy1Vfa+0RUud05Ktx2o9EU+aTsukZg8Xvdat7+q0lIWHJ+G0NBEtfeS09D17eDsLDyenZQiJlkRIkqKlrNK74grgqacqP3vvPeCCC4CPP678PK7TMiqjL6clXzGZOC1V4eGyiks3S6ULLS3hZAaXXw4880z5MxaV0/Ltt4GLLlJ3LEQCgaxi1omWqs5e1kRLdhDNd5xNGyffTktZePgbbwD33lu5rMppeeGF9uVS4ZrTMsnwcJnTkhVOZE7LLIqWSTotbXNaZtFp+frrwMUXVyX9z/HXvmnuQZZSCbjjDuD448O6lp1ARoSJ03L2bGD69Or9REyfHv4eW2zSV/DIHrjpBKRp04Cnn9ZvOw2npalomVZOy6w6LePmtPTBZZfJ+6ILFgAffaTfBl9n86Ll7NnA1VeHopyt01IkWmbZaanaro60clp++WXY52QdeD6clnyu2AiV0/J//wPOOQc45RTgtdfK3+mcliZ9vw8+AK69ttxOJ+W05Pv0qvBwm5yWf/tbOIZTYRse3q+fensR0XmaNQs491z1/uM6LR9/PGzTI3xPxFNrp6VNTstLLy2XN47T8okngEceyb7T8r771N+7OC1vukm7GOW0DIlhZyDaFbKcll27hoOtIJBP+OIqWj7xRPVnV1wR/r/66srOp4nTUtbYLFlS/q5Y9OO05DGdPTz6L+rcpOm0POOMsPMPAPPmqZ/w8rOHb7FF+P/mm4FXXxXvQyQQuIqWaTotRU/ebRoLtrPLC+StrWZlchlAmOa0ZM+lTiTnr4kXXrAvl4okw8Nd4J2W7PWoCg+PfkcWRUu+HDaiJXucRfUtGx5u4rRMS7SUhb2JBNwxY8LXjzwCPPBAeTWV09K0PnjlFeC//y2/HzVKvbzOaVkqAbvsUr1eVJ7vvgM228ysbKJtuHaKVaKl6nrXDW6jbatEyySdlqKypxUebuq0NM1p6WsAlwWn5X/+A3z4Ybxt6JyWAPDrX4f3lEtOSz4yxZdomUROSyB9p6VMtJSladhtt7A+ZfGR01I2ezh7X/Ki5W9+IxYuRNeFyl0q45e/BBYvBo47LjnRUpULnsPKaQmUxxXRdvnfbeu0HDIkHKPoiNqCrbcG5s+XLxfXafnZZ8C221Z+5jLuUDktaz0RD7sNk5yWEXFyWgLA9tvLJ8cSUQunpQ5bp+WMGcARRyRTlnYIOS2JEH5wxIp8USUyd654XdfwcBUff6x+MiuqGHxMxGPqtOSxFS15ZC48lWMsjmjJdiyef7762PH5WkRlZp8y84jCZHSipUwgVjXCvmcPFx1TmwEH76x1cVrGDQ83dVqKcOlku+ISHn7DDelNxKMKDxelS1ANyiLSEi195LRk7y1RjijWOSjKDZaF8HD2OuCPPSu6PvhgZVFUOS3Z37TKKsDYseJy8O3lm2+Kl4vQOS1//DEcMPFE5XnpJfX2VcQRVmQP3ExDdXXl0omWaea09B0eHjenpa6Ny2JOy2OOiV8OXsCyJfod0bUlczKefnr1OXJxWsa9D3ROy9ZWeZlUs4P/9Kfq7UbssEN4DXbuDBxySPlz0XVgIlrK6lfZwwPR+Y4bHr7OOsBee4m/U4WHv/uueB2d09LmHjz++PI2I3xOxMPXYa4T8egEGlGbb5LTku1vdOum3kdES0t43lSCZbT/OE7Le+6p/iwrE/Hw0S2u2DxsZonjtIz49lvzZWvhtNThO43WCshpGUKiJREiCw8vFMKBGRCGaJg6ElhcB6Bs+CG/D5O8jBE2OS35CtC0o2CSi1MlWroMGmUNl247IoFSNWuhy9MzUedNJ1rKRA1Xp6XtdccPNiJcB/Oi8HCTjqus03PEEWFYkgjTiXhsRMukG32du5gt9x13AJ9/Hg6YsjoRT3tzWrJP8xcvrv6eHViIHMq24eHsvZJEeDjvClJ0Lqucluz554XYF14Iw+J06DqdOqel7Nz5CNmthdPShNZWfXh4Uk5L0WdphYfz++DDWKPrwtRp6Vu0dJ09HAD+8hfg/PP9lEfFkCHiaB6g+p6J6i9RP0eX05J3yZiGhx9+OLD33vLys0R1g8ppKbsPZE7LW24Jo2UA/XW01lqh++3LL8PjGuErPDw6Hzbji+g3yyZ3VN2nhx0WpgYZOlT8vSo8XGVQUPW92O388pfAlCny8rHbjKiV01JVd+gEGtH4ycRp6SKaNTebCUZxnZaius93TkvX8PBly/y0hzbh4Sxxclq6IBpD+H5QZ0tc0VJ2vCmnJQASLYkIWXh4Pg8MHhy+bmkR2/STcFoClSECqs6ArhxZcVpG+5XN9mvb2KjymqgQ5a/kP7MRukSInrLLzo/OaZlWTkvfoqWr01LmEuzaFejbV/ydjWipciGqwsOTQHU8eJdB9PDEJMzYx0Q8MtEyzkQ8voRgdv+i8ykbsCQlWopyg8UJD09iIh5e1JMdiyAwDw+PBsfsQN4VndNSVl4f7rc4OS1r6bRsbfVzT9VKtJSdU34fsglD0hYtowdvNvUITy4HDB/upzwqCgVg5Ejxd7z4aiNa8k5L/reYOi179wZ69pSXn98m4J7TUtRGrLWWufidz4dl7datclnRvenitHQRLQH5Qwud03LVVcP6tndvcT+a/V3s/nM5u5nrZU7LYhFYc015+dhtRtg6LVWiJX9sZOc/CNQOL13dKyqzSU5L/liZ0Nxs1hbEzWnpS7SM47SUXQvtwWlpg+iei97XymkZd7+S0H+aPTyEREsihA8PZ0XLSCwAxJOvmMwW5wKbdFvlBATUro4lS8qNlE605InrtGQrVF14uKhSUglMqoZLdcxNnJY2IcUiRL9FJqYm5bSstWjpOhGP7FirzoNLTksRaTotAXUHUST4A/oHCUlMxGPitKyH8HCbp8BpOy2TnoiHF/VELiFAfI5kTsvoN/lwF+iclroHY3HzDLpem0k6LXWiJRBPQIswDQ9PS7Tk2y5eWGFna1WRhNNSdt/YkMbAtlAIH/SJKJUqUwvYipa825rF1GmZy5lfSyazh9vmtGSvKd11xNZDfMoKUVmA6t+sah9VoqVONHMJD4+Oey5XNmWwuDgtVfn1ou/Z/Zu0cew6rrOHi46fKjybpVSK57R0DQ9n92naF+AfOstI2mmZRk5L2fXty2mpqt9UxM1paYvKadnOREtyWoaQaEmEyMLDWaclUCkkRiQlWqqcliJnoKwc7IDbNjw8rtPSNDzct9NSJdq4iJZxw8MB+QAtTk5L/lyy5XQRLVWuNVtETss44eEql6Sv8PC0nZaqukMk+APJhYe3tsqdluy1a+K0lB27WoeHu4qWopmvWZFMJFpmIaelKjxcJr6I6in2M5ELxEUk53F1WvoID2e347Jekk5LnSjpMrO7aD8mnwG1ES3564t9CGuCT9HSxyQ8ce5vU/J59eR+ovpLVJeKwsPZ48n3W0TtQxwBnO1HuDotReux5dZdRzJnv+tEPL6cls3N8URLwE60VDktRZOgyMLDCwWzsUUcp6Uqp6Wp07K1NZmclrrwcPa4mdZx9ei0lO1L57RsaEhWtGT3n3WnZdZEy7jh4ZI2i5yWITR7OBGiCg+P67R0HdCx+9I5LVWCEOtCq6XTUhUeLnsar0KVjNlWtOQ/s3HniRA1nLLKPDousk6cqhOhSihu23jyg42IrISHu4qWrhPx1NppKRL8AbOJeFxojzkt0woPb09OS1E9tTI4LV3vd5kok5bT0ofzz1S0DAL7dsUlp6XpBDsm152P8xDR2upHtExjYCs6NtFsxrxoGaW3MHVasvclX6+ZOi1NRUsTR6TsHozKl5TTUjURT9I5LQF1eLiqH8CeZ3Z8EyETLVUhvaLQXFV4uMnYgt2ey8SbQWAmWiocvN5zWpqEh8uibFRkxWnpIzxc57Tk+6ARvkRLdv9Zz2m5soSH+ziv7QByWhIhqvDwuE5LVxGB3VccpyXrEkrbaWkTHl4rp6XoKb2pO09W5lo5LZMID3dtLHyHh6tmATUVLW3Cw9NwWiYRHp7lnJZph4fz5XAVLUVOS3bbJk7LWuS0VLmCXJ2Wot9k28aJrmGd01LXxsSZHAVw72zXMqcl4MdpaRoeDtQmpyWPjWhp6vA3wZfTMq3wcJ7ouMqcli45LflzwPcjZO2+aXg428+TpT5xcVraiJYrm9OSvS/ZelE1zkjaaekiWsoEc9PZw3VOSx2uE/HUMqel7veKHuCy90Stw8N9OPLY65+clnbEdVrKwsMJACRaEhGq8PBa5bT05bTkRcs4TkvZ4NSHaJmW05I/TqLG3tSdp5jMoookclr6Fi1lkyS54Oq0dAkPV+W05AdYWZqIxyU8vNYT8Yiclqr8XSxJiJZpTMQjEi1ZTJyWNuHhWXNassdNNLOm7fUmGszpnJY6N7/uHOmI47SUtV1pOC1XhvBwHpvw8OXL/YqWccVxoLZOS8BOtOTPkc4JlqTTUlbGpHNayh6S2cwezh4zG6elLjw5rmg5YED19zKnZakk78eKnJYyobZQSMdpKbv2bHJaxhEts5jTUnet18NEPEmHh7uKlrXIaZk1p2VSoiU5LQGQaElEqMLD2SeRH39cXiYiK05LU9EyjtNSNkus7BjUIqelbXj4smXuOS3Zzh0bimITHq5zWqqurzSclj4n4vGd0zJ6v2xZ+VzoRMt6Dw+vxUQ8qpyWovNaa6elzO3icyIeFlFdFMdpWUvRUiQk6cLDba830fHSOS1lRMuyDy5cSGIinnpxWpo6vIKg/pyW7IQzcaknp6XOgS5Kb8Gvk8vpc1qKnJa8CBNnIh6+XySr71Wipage8REeLvpdLk7L6B4R/QZVP0TkbgTsRMtevaq/l4mWfN5rXVlkTkvTiXiSCg+3cVrGqTt8OC1NRcDmZv/h4aK8oL5Ey6Sclr7Dw23qanJaUk7LhCHRkgjhw8OjRiOfB7p1Azp3Dt8/8wzwk58Aa64JbLxxWIFnxWlpGh6uqlT5ioFvdIcOFa9n4rRMK6flOuuoB3Ii0dLVaRntZ8kSYJNNgLXWAj7/3C08XNaJUzUCqoTivkRLGaLOLksaOS179Ci/3mgjcY4n15yWK7vTkr0eecegyhnAL89SrzktVfUJP0hn96VyJPEkER6ehNNSFLqWlNPSpE2IjjGbIsKFjz5yW08VHl4vTkvR4F50D7uIlscfDxxxhFubKMNGtPTptHzgAWCzzeJvp1aiJftgz8Rpmc9XX1+/+Q3wq1+V35s4LUXn3qfTUrYPwGwiHtfwcBGytmfJEmCPPcQPM1ROS9X9vfrq4norKdFSNls5YJfT0sVpaTsRT7R+DKdlLonwcJGwxfenWNOM6QNBX+HhURnOOQfo2xfYf//Qjfub34TfiR7g1sJpKdqP6Bp0gW2XVGmpeGqR0zJroiXltEwUEi2JEFl4eKEQfjdiRPn7++4DPvwQePll4KKLknNazp9f7liqOgPR+zSclqL8N4DZRDwuTsuddxZvF3B78gpUdwJFgxrTPIhR43bddeH18MEHwJQp4k6Ba07LtJyWsol4ZAwapP7ed05LUYdg2LDy69mzgZdeUouWupyWNg5qHySR09Jl4iig2mkp248oPDxroqXvnJYqZKKlrdPS5hwD4cM0EWx7owplVIX5qT4zfRClwtRpaVJf+BItXUnSadnamo5oCaidYSwugvp11wGfflr9uex+ZK+Pnj2rv6+V09KEPn30y6SZ03LMmPJnUf+Nn1BIJVrq6kxdTkuV09LkOPB1hay+twkP59uwJERL0f1z991hH8Ump6XO2XvPPdWf2YiWG2xQ/b1MtFTVNUFQ3abIHgK7OC1l4rMK04l40s5paRoeXigAkyeb7UvlgmUxFS2nTgW+/Ra45RZg3jzgqquAOXP0Tss0clomHR7O9pVs+tO1cFqmER4+caL5spTTMlFItCRCVDktAeDyy8XrvfJKcqIlUHZbqkS16HsfTksevtEVDSAAeUXlGh7epQtwxhmhAGhaNlP4MEKR05Ivty48/Msvy58984zdE/M4TkvfoqXuWj3qqPDJ65136kVjkdPSd3j4qadWvl+61F94eFadlia5EU3rnFtvrSxLdK2pBgj8k2dVx4mnXp2WKmQO5eXLK/dvk9PSRBgSzfrKb0fltJSh63SKhNiknJYmA5BoWRfR8qST7NcR7T9Jp6Xumq0H0RIAvv+++jNVePgddwAHHAA8/XT197XKaaljlVWAJ57QL5em0/Kuu4CDDwb+/vdynREEZrOHFwr6/i2/jmiiNp9OS5fwcH4dk5BzFll4eATbT5W1PREqR6LoOMkc8SpsRMuhQ4Hrrwe22qr8mUy01MGXVTURj63T0vR64dfPYk5LVXg4224UCsDeewNnnWW2P76Nv/HG6mVMREvZvbRkiT/RMo7TUnZ9m7pNdURjxA4d7ITIWuS0TNppedRRoYBtSkJmD3JahpBoSYSocloCwPjxwM9/Xr3ewoXpiJY6p2VLi7yhYUU62/BwvtFlw3FZbMLDZaIlu+/LLwf+8Ad1Z9LVackPbk1yWurCw/lk5i6ipawTl6Zoqeu8r78+cPPNYZiTbtk0wsOHDwfOPLP8Pm54eJaclrK8Rr7Cw//5T2C33crvWdGyoUF+HkSiZdacllkQLZPOaSnLLywbYBuKljkX0dK2jRPVdexvVuV4k5XHJaflOusAxxxjvx6//1rmtHQRNWT7Ur0H3MLDI0TnUvbbggDYc0/gppuAkSPl28ya0/KWW9TljUhTtBw2DPh//w847LDK/bJhnrKclvm8/tjFcVr6DA+XlVMU3mkihMq+55ddffXwWo3QPXDp1MnOaZm0aAkAhx4aXrsRrqKlKP+p6LXp7OF8H8g217OpaKlwWuZN647x46s/Mw0Pl+W0jCL9fv974IIL9GVg2/hTTgG23lq8f1fREhCLlmnPHi5zWgJ+2sOoLyGrF2W4Oi2vvtp+HSD5nJZTp4ZjcVlUj4i4+7WZ3HYlhERLIoTPacmLlgDQtWv1egsX6jt1cUTLaDIen05Lm0GHqdPSJjxcltNS5iyT4SpaipyWcUVLPi+Qz5yWNuHhbINp23jK8sSw2IRJpREezj+1Fu2DPbe6SWrSdlomFR5uUufwx44ND5dNXhCtpxMtZb8rCdFSNeN9GuHhsocNvKPGRrQ0qaNloqVsgG3ama8HpyVb98cJD/fhjGgPOS0B8wcPrqKlSDS3uR9ZapXTUofptVSrnJbsZyLR0ofTMumclrKHVDY5LU2EUBaV05Lfvs5pKXqwWmvREqg8JrIcxjpMnZbFot5pKRoT2NY9phPxyI6VTXi4qF/mOhGPaPxp0qdj61hZf95EtJTVy7mcPqel6TlSOS1NJuKR1f0+JkqL9ilzoMswNQywmAr4IkTjnei9jzYv+i02913c8HDJtUcT8YSQaEmE6MLDAfHThiw5LWU3dZzwcJ9OS114OFt+k2Pm02kZdyIe/vyIzoVscBmdjyzktNQdd5s8UK5OS5vwcF50EO3DxmkJlM9dVsPDfTkt+eV4p6VNeHi9OC1dZw9X0dQk/l2809ImPNykEyubFE2W09K0M68TktIULWXXC7tsHNHSJsm+jFo7LZMID5f1JeI4LUWDXVdXhU14eJpOyyyJliJsRUsfTkuZqO/TaanLacn3G2z7jirxiO/nqHJaAuKoKN+ipa6frxMtfTktZQ+BTYSaH3+s7gO5OC1Fx9TUaRkE8URLWXi4TU5LXRlZ2DZeJlzn88mKlmmEh6uclj5Eywhbp6XLQ1DVb9GRtNMy+t025YsrWqqiLwgSLYkV6MLDAbFouWhRcrOHA+ZOS9VAk60EbCfi4QeXMpu47Bi45rRM0mnJ/0YTp6UupyX/+21cJTqnZVrh4bZOS92yIqdlnJyWUagMv6xOtLTJaQmkO/ueS3i4i9NSdM/zT1HjOC2zmtOSL0eaomXSTkvZpGimE/HIsHFauk7E49NpGS3rEh5OTsvKfYle82RJtCSnpRzRsWWPF/swW+W01B27OE5LXxPx2Oa05LepE6Z0omV7c1omkdOSn4hH57Tk85O7ONJMJ+JROS1N6w6fTksfomUcp6WsTeGFZFHZTNuHOOHhqus7CdHStL52CQ9vbIyXckVmmPEpWtqUL25bu3ix8F4ip2UIiZZEiEl4uEiw++47vTMlCaela662uE7LYjGcJIfHJqelLJwzLaclj85pqZo9TiZaRmKzaFmeaNv1kNPSJlyFv9ZEnXURpmJZ9Jlvp2Xc8AqbhxRJOC1FoqXo2oqOGytaUk7LMqb1i6nT0ndOy6hDrdpOVp2WOleKzmnJh4cvX56MI8mE9ui0lJU7a05Lk+tuZXVa6kRL05yWtg/lfee05Nsu25yWJqKlTYonU9HSxmkZLS9ax0WEcREtWTEtiZyW/EQ8ujaOFy1dwsM95LT07rS0zWnJrqeDzTcpuwbihIcvWCD+PG2nZdqiZT05LQH1sY0wTSEFpBsZIBEtY/el2gkkWhIhJuHhopyWzc3AnDnqbSfhtOQxHbiI3GosOqdlPi8Wb21yWspEhrScljwip6WpOy9q3Pnf//nn8mV5dE7LtMLDfTsteVevQXh4kMshSDI8XCVAtxUi5pNKGzeA75yWsvMje+IPlM8RmxdXlTOIvx9EDlqZwyEt0dJHTkvT/L+1Ei1l5ydueHgtJuLhB3K2OS1dXJYAOS1ZZK4oHp+ipSvR8Ta57lZW0VJ0XdiGh7s6LflwV9H9YSpCmTgtVX0L305Lfls+nJaAPBIlLaclUD4uWXRauoaHx81paVp36KIHIkzCw0Xjzyw4Lb/7Tvy5q9NSdmzZPojsgYfsePiamA5wc1q6PMCN47R0FS1F5iOeuKKlS65OmdPSrQTtDhItiRBZOIvOaQkAn3yi3nYSTkseG6elCt3s4fm8XLwVYRoezouWJsdM1+kxZflyfU5L2/BwkWipc1rK8qul6bQ0cU+K9iUrm2V4eKBq9F1FS9vw8LhOS5uG2sVpqdq+zBEiEvhF4eEmTkv+mMs6n7UULX04LXM5swcjTU3i88iHh9vktDTpxKrukwib2cOjY6U7RvzgU1UWGSL3lEi0NMlp2drqls8y2m+ch4pA8k5L3flI22npOoCxES1NnZYmg0RR+54UWRItRYN3mWgpm3DCxWnJR2zIHIRpzR4uEi35+icLTkuZ8JqEaCn7LjouSeS0rIXT0jQ8XFaHlErJ5LRMIzw8Taely+zhcZyWqv3Um9OysTGe01J0fFSh9xGdO+u37xIezuIiWv7wg3hsT05LACRaEhFspcsnjI6QiZaffmq+bVu++kreyWGxcVqqcHVaNjeH5fzPf4Cnnip/LnKLKUIxKvajI0mnpe1EPPz6zz4rX5ZHJ0jVs9PSdiIekTDJfucSHs5fV7r7MVo/DaflfffJO5Cy+0HVgbBxWvoMD5d1nHjSmj1cN3A0wUa0FP2u778H/v738ntdx8/UTRuVzUS0ZF/rBirRsVI9JOFFDF9OS9F9zJaJh803Wmun5dVXA3PnVn/+n/+4z44d0dqarfBwwH0A43PQwV7LunaInJZl0nBa8iLh228Df/ubuCwu4eGyh1RxJuJJIqelKkWKrG2sZU5LoHxcPvgAeO89edsuw9RpWSjU1mnJHxtRSh0gmZyWruHhvpyWJsQJD08jpyXQfnJa1sppaSNapum0XLKEcloqcLxSiHaHTLTUhYcDeqdlHCdHqRQOiHw5LXWVI9/IipyWMtHy1luBKVPC92+/DYwYIXaLyQa4bEOVdk7LuKKlicBlIlo2NlYvV685LYvFygbVJDyc3we/b36forBSX+HhrgNdGwfw+ecDu+4KbLZZ9Xc+w8NNnZYu4eGyAWOSoqUsBJrfT5yOTj5vdi5lT8o//bTygZbPiXjWXNM+PFxHS0v4O1T1TS4X1v/RwCAKMUrbacmHh8dxWsYVkESCDAD88Y9+XJw6UdJXOBx7rJMQLW0Q3bcdOpR/K3v+TZyWWRctTcRBW1wm4hE9FHSZaJL9bP/9xevlcvK8vKrt2zotRW2+bU5LF9FSFR5u47RMK6clUHlctt8eeOcdu/2a5rQsFvWCxpIlyTktZTk9BWmiYjktfU7EYzIm4kVL2b2S9ZyWWREtIwe6jdPSJTw8Th9EdHx8i5ZpOi07dxbfNyRaAiCnJcEQRI2CTLSUOS3nz1dvOI7TEgg7l7pOlW14+B57hP9/+9vQ7QUAffoAhx5aubzoKbdIvG1pAQ4/vPz+4ovD/6Y5LaNt8Muq2Gwzs4pXh24injRFyzScloMHi78zeeKXtNNS9sQ72l/cnJZZCw8HgLfeUpcDMBe0ZGFsJjktfU7Ew5c/otbh4Sz/939qUdLGabnTTsCQIerlbMLDdSkA/v1ve6eljhXnJqcSwfJ54PbbwzJ07gycfnq5TDbEdVqy65sIezJ8OC1VsOU/+WS39bPktIwzEU9c/vvf8H+3bsAxx5Q/152/pJyWa64J9O9f+ZmraOkyuNMhui7Y/Zo4LU3u60KhfD522y38b1Lv5PPA5MnA0KHh+8MOEy8navN5+Ha/d+/w/9ixQK9e+vBwk36JrDx8e6iru1Q5LX06LVX3qey7HXYov/700zBawAaVaOnitOTHYkk5LWWfxREtZa67fL5arE8ip6XswbOJaClrU9iJflhcREuV01IVHr7vvtX7ZKlHp2WcPojoGJqEh9s8MErTaXnHHcL6iZyWISRaEmWizohMPJOJljqXR1zR0mTWZdvw8FtvBV5/Hbj0UmCXXYD33wc+/LD8ZClC5LQUCYXLlwM9e5bff/NN+N80pyVQ7YjT0bdv2LF64AHgnHP0y8vQOS1VDZGNaKmbiAcQV/Iq55MqobesY7rhhsDHH1eLLI2NepHGphNVLzktJ04EttmGKUSKE/Hw5ZN9bipoyc6PaB0+PDxK8RB9ZhqmLxMtRZ/5yi1nKlqq6s3hw8Pcs7J63Ua0bGgIxed33gFGjhQv58Np2bNnWOdtuGEyTktA3enP54HNNwc++gj47LOyOFBLpyU7gZSOo46q3m9cN6QpP/sZ8OqrduuYiJaygaQtWRItRQOUbbYJr7tPPgF69Ch/7ttp+eabwH77qZdZbz1g5szqetVVtDQ5pr/7HTB1qtn2AX14uMhpyZfLZKCYzwN/+UvYn7z99ur9yMjlKuvNgw+WL8di4rQ8/XRg9uwwTY+oT8Ef7yTCw6NjN3Bg5QN9HzktN9igss/C4+q0vOoqoHv38nvbByKqnJZ8LuQszR4ebV+wvnN4uEw0FEWr+QoPZ9uCJJyWJmMY03Pk4rQ88EDg5pvD1+0lp6XuAYMO0THkj+0vflG9jI1omYbTco01wrQUO+wg3h/ltARAoiXB0FaN24aH656ExhUtTZwCtk7LYhEYPbpctjXWEA/eRYNLXtiMytinT/n911+H/0UhrrLjYeu0BMJB8447Auuvb7a8CJHT0nTyFh9OS7aREz19tgkPN0mIXSiEguXAgZWfNzT4FS2TcFqKwtf4ffAdMp3TcsyY6k5jtC0XTBpqduY+2TFxCex7nBMAAJcuSURBVA+XCVaFgtyVG33OXp/1lNPS1WlZLAL9+skdkjaiJRCe07XXlrcTPkTLQYPK5fUtWkbnRidaAsCwYaGDSbRPE+I6LfnwcJP6t2fPsqtLtt8kKRSAddaxW8dEtPQ1SEs6p6UPVlut8uEooL/GbZ2W664rf5ARscEGYT9I9dBQhYtoOWAAsNZaZtsHxL+ZPVYmTksT0bJQCO//0aPtJuaKluncOaw3Teoz2bZ50bJQCB8eRblvdaKlTXi4KFydd8qx//P58HqJ8OG0HDYs7LPLcBUt83lgiy3K7+OKlrLw8LRyWppOxCP7zMZpKQr5Fl2ruVx1HyGpiXgkeTqdnZYm0WJJTsQzZkx5++0lp2XcFDUmTssNN6xeptZOS/7+79cPWH116f7IaRlCoiVRRhce7jpbdVwnRxJOS1NsnJZ9+5bfi0RLndPSNqelqpw2iBo5U9EyEouTdFrahIezqERL0bq2TkuTmcZdREvZsY4GR3x5bJyWou3LnBKurkCTASi7jGzA5BIeLjs/JqIlOzhKIqelbADhgk601IlegH6AbStaRsgEDxvRUiUYi5a33Y4IG9HS9HMZvnNamtyrovrDR05LU1TtiIw0nZZZz2kpw7fTEtD3J6Lrz1W0VOW0kyEKK7VFJ1ryx9LUaWnyGY+JGCn6XCIuSSfQNNmGz/Bw/oEZ7xD0kdNS5NZjcRUt+e98ipb8+bF1WpqswyN7oCrLacljKlqKXKAy0VB07njR21dOS34b0fZ9Oy3ZsiU5EY9J38ZXjmfAzWlp28an4bQUaRdpiJaq38Wbn9g+nWg9Ei0BkGhJMGhzWrrisg22kkjCaWmKyBEjquyam8uhgkBZtHQND487CLZBNOjjy+IjPNx0Ih4emdNSN6mMrWjZ0KA/jjZOS5fwcFWjn8/7CQ8XbYPdZxoT8YicnTyyzpppeDjvuEvSaWkiWvrMK6frvJo6LfltsfgWLW1yWpos49tpGdVhupyWun2a4DOnpWl4uIlTO0lEoqmOrDkta5nTUkYSOS11dXhc0dIlp2VSoiWby5ovl+nDANV+TMqiWsfUaSlrL0XbiOO0tJ09PJerFi3jOi0LBbmjH4gnWrLrxRWA4kzEk3Z4eBynpWxGcJmgrwsP95XTUrRenJyWtXZamoiW5LQ0Ey0jF7oKfoxgi+oeV4mW5LSUQqIlUUaX0zLudm1gb+haOi1FT6xF4eG8cBFNTiQKcU1CtIzjtDQRLWXlSSOnpWzbuoYkaael7hw5OC0DH+HhthPx8GJCXKelybVo4rSUPTwxnYiHReS0lF0HgFq05I+hTIxOS7SUDWJFZWBJSrT0ER4uw9ZpaVOPRudH5dxTXRM2xHVash3uuE5LXdl99AGi7bg4LXUPJJMQLWXHvZY5LWXU0mnp4pgEsiVastvky2XSrxQdf5N+pqloaeK0FIWHq7Zhm9MyLael6HORcJik05JdL+4kX7I6xaTeTTs8XNKPMMppKXNairaZyyWX07JWTkvT/ilfjiSclrWePdxljO3bacnXh6J+bK3Dw/n9k2hpBImWRJmknJYusDd0LZ2WPDLREqhM7A5UC0jRsTTJaRnXuWODTrRUORpr6bT0LVqa5LS0CVcROS3jhIeLBE1b0VK0fd9OS1vR0mdOS9HviD6XDeRE14kqPFyUw8skp2WaomW0rzhOy3zerF5JIjxchskgJqbTMucSHl4POS1FA2WTQUactkW3fx1pOi2zFB5ug+6YJuG0jL5PM6dlLudXtIyuG5VoadKvdHVamoaHmy7H50xUrVPvTkudaKlzb5mGhyfptNSxZElyTkvRdkRCSalkHh5u47R0yWnpGh7Ol6EeclpmRbRMw2mpe8CgQ1R3+QoPj46xqw7i6rSk8HApdStaXnnllRg2bBg6dOiATTbZBC+99JJ02TfffBN77bUXhg0bhlwuh0suuSS9gtYRbeHhqs6P04YdbjZetNQ1nGmKlrLKjhct582zy2mZJadlmhPxpO20jNbLqtNStt0giC9aypyWokGHq8iWlZyWLCY5LVlsnJa1Dg+vtdOS7xC6hoeb1M1JipZp5rQUzbps47Rkj3kc0dIkNMuXaJnP24u7Ji7BNGcPB7LntNSdvyzmtHQRLX07LSPYbfLfuzotTeoDn05LoFLoSFK0NO0/sE5Ltjwyp6VMzEw7p6VPp6Uqp6WOLDgtAeRN2hZemI724ZLTku3DxnFaylI+JO20NK0DVe22SXi4jFrPHm7bF0rCaek7p6XrZMK+nZYkXNanaPmf//wHxx9/PKZOnYpXX30V66+/PnbYYQfMmzdPuPySJUswfPhwnH/++RgwYEDKpa0jkgoPN519joW9oWWdHJakwsN5VE7LRYsq33/xhXtOyzSdlqJKvx5yWtbCaWkjWjrktFQ2+qWS3illktNStA2f4eEm9xjbmMvqB5nj23T2cN5paRMeLksiH61XL6KlidNS9jt957TUiUu2A32TQb6D09JJtIw7cVocp6VJvRLtQ/fQQ4RPp2W0T1NMBmCu9RRPvea0TMJpmbZoaRoeLut7maITLdPMacnfi6p62GTbbD9JJ4imER7uy2kpOgcitx5LrSbi4ZGJliZ1SBZyWgLIy/rfFQtZOi1V4eGyfp/JPcX2MWROyzg5LX2Gh8d1WspY2ZyWJrOHi/qxNjktXbFxWrL9LNk1RKIlMtb7MuPiiy/G4YcfjkMPPRQAcPXVV+O///0vrr/+epx66qlVy2+00UbYaKONAED4vYhly5ZhGVNxLVy4EADQ3NyMZpNKvM5obm5GdMsEra2IuiUlAK3M73Xx85VaW63V8aBDh7YytCxdirxmG8Hy5TAZNrYCKFmeP/Y3t5RKQGOj8MYJfvihogzBnnsi9/nn5XWDAEFzMwoQPy0oLVvW9nlLqYQgRjllBF27IseLq6KyLF9eUZZcEEDUrJSWLkVrczMKzPJSHn5Y+HFrELSdk0KxWL2dxx4TrhcUi2hpbq743ey9mQsC4XlqzeVQam5GIZ+v2FdLPo9csSj8nW3LMOdFdh7bll3xZCwqQ+vy5QiWL1dWugGA1lJJuEzLCscM+11za2vF72xdvhx55v4NVyw33i2lEvK5XEW5WwHkmN/SvHw50NyMQnOz01OtErd9EUGh0FbG1uXLhfdkgbnnm0ulio6c7FoP8nm0rFiuGATlemzFuWWPS3QuC4VCVXlLhQJaW1uF+2kulZBn74fJk1HaYouqbTQvW1Yu8+zZKO68s1EdZQJ7z+QF92bQ2oqW5uaKY8DTVh9JzldzSwsKDQ3ac9laLFacv1ynTuL77ssvlfcW+5sA8Tku5fNt7VFOcp+0lkrl7bS0GLdZzT/+CDQ3I68QV9nrq3Kn4mtFRmuhUHEsgkIBLaVS2zZKLS1obW5Gkb+Xo/WZeqq1uRnBsmXazlxQKKDEXSstQQBIjmPbeo2NXq7b5tZWoLkZxXzeLOQQQGnJktSerFfcr8uWCc9nEAQV58knQbGI3Iq6ulQqVfS7VBTzeeX5aV26NKzPDcvR3NyMPHd9Vm1zxT3Pt6F8Pa2CPYZseyCjpVRCUCxaHXu+ry6q64IOHdruaVldqNzHiuuaRVQn81T18SR1SEV9BlQd87blfvyxbZ9R3d62Dir7Kq35fOU2W1q0fZlAUu+WcrmKtrLU3BzWXSvaniCXQyvKg83WZcuQE/Qtmn/8EcVSyaiuKQEoSdoZAGhB2KeRnQPVdcpeAy0//BBrkByUSm3XVn758qrzo7qWS4sXh+1RVObWVvvrc511hB9HfWAWWT1i4rQM8nmUUHm8g2Kxqr0Bwn4FOnSo+O2tuVx5ufvua/vcpL2v4Msv2162AAiam1Hk6pZSSwtygLbOFI53mDEaS3NLS/l6Mm0f3n5b/t0TT6C0885ovf125Jqb2343ex/Kxh/B0qXe+pktDQ3KPiJPCeEYxkaCLOVyaI3RpgYrzmfFNnfeGWDv43y+6tppBZBvbEROEaXJ1tFO2odoPBt916FDZZ3c0FAeB0vq+OZly/wYyTKGjaZWd6Ll8uXLMWPGDJx22mltn+XzeUyaNAnTp0/3tp/zzjsPv//976s+f/jhh9Ep7tPejDJ5xc3QwnTY58ybh5enTWtbZrNRo9B39myr7b699tpY74UXwm03NaFo8PRy/rJl6L3i9asvv4zV5s1DX8Xyy+fPh4EnCG+/9x4+ZH6PCbsxr5+bPh0tHTpgW8Fyy775BuyzG1awBICZs2bhi549scX336OXYP0vP/8cq6x4/eJLL+Ebi6e8nebMwXYGyy1takInA9GSLcvMWbNQ/PFHjBEsN+ezz/DytGnY8LPPMMS4tJV89MkneGvFOdl0wQL0N1xvWUsLHpo2reL8TGPO7cBZs7CxYL3P/vc/zJo2DeO+/hqDmc9fmjkTHb/9Fhso9jn9xRcxf8XxGzdnTsX6PK/NmoVcayvGrXj/1qxZWPLVV9iEW27+Wmuh13vvAQC+nDABX8+aVbUMAMyaORNL//c/TGA+e/jRR9Hr3XcxfsX79995BwO//x7dJWV6+ZVXMPybbyqO8XsffIDuc+di0Ir3jz/6KH7s0wfj/vc/5e+T8e033yjvVQBYuHRpWxnfe+cdvCe4Jzf7+uu27Tz48MMoMU9Ld6taOmTZ8uV4aMW2dm5paWvgvvn2W3RatgxdmGWfff55fD93LjZbsKCqvJ/Pm4fXH3wQPxHs49nnn0f/99/Husxn+WeeqVruiUcfxdK+4ZYn/fKXaJg7V1Jqe9565x18tOJ3rvXBB+CHJksWLcKj06ZhZ6bDy/Pciy9iwbffYvPvv2+ra1keevhhjJw3D8M0ZZn17rv4jDl/gz/8sO2ar1gOUN5bb7z1Fj5htiM6x98uWIDnVyzT6+23sYVgmXfffx/vr1im2yefYGtN+SOeefJJLPr4Y2w+Z47weADAD42NeFxwrXaYPx87GO4HAGa/+25Ffbp46VI89dhj2HnF+2/mzsX0adOw448/Ctu19z79tO2cv/fOO1jeuTPW1+zzh6VL8dGbb1Ys9+zzz6Pr559jrGK9JS0t6KzZtgmPPP44mrt2xa5QDxhZfvjmGyiCQL3y3NNP4/sVg97OX36JSYJlvl+4EE8/8oiwXojLF5tuilWefRYA8NaQIcb9lG2bmyvqNZ6P33sPxR9/1N7HEdOmTcPwDz7AKMUyb37wAT6eNg1bLFpU0ZeZ9tBDxq5j9v7+fvFi9NAs//rs2ZjToUPbPaJj/tpr4xnuGI754gusyi+3dCmeXbHc+v/7n/Fxinj6uefwwyefVHwmqpN5Xp81C//r2bPtvayuermhAXPZPrigvQKAd994o61Nmjl7Nr5g1uH7Kh99+mlbnwsAVunaVVkHzJ49u62OHzJrFjZkvvtizhy8/9xz2GbF+88/+wwzp03D5BXjiB+WLMEbr73W1kd57+230WnevKrz8OxTT2Gi5CENz+dffIEPX321bZ88M15/HU3ffy/sswLAw48/jhZJeOjoL7/Eaitez3r55YrfakvQ3NzWJx398cdt2312+nR8P3eutB8DAF9+8AFyra1t5+3xJ5/Eul995dzPZvn4s8/wJndvbLdsGUQjWxPRsqW1Fe++/z5GMp/98OOP+PSddyo+A4BnnnsOiwcOxK7MZ2999hnWbWhAgRMv5i9YgOdWlHPQzJnYSFuSMs+++CK+//pr7NjSUtGGLpg/H92YvqGID956C2sLPv/uq6+EfYNHH38cy3v0AADkWlu9tA/5adPw+kknASj3m2a/8UbbfTjh22/RR7DeD998A4UH2YoXXn8d35ZK2GLhQuGYleezzz/Honxe2XbwzP32W7z53HPC9taEVsED2/yLL1a8f/7ll7Elt8x7H3yANQoFpRj5+uzZ+N+K4626V0UEuRy+/vZb6Xj2q0WLKurkj7/8su2e3PS774TrPfrIIwiyFunhgSUWKX7q7td/8803aG1tRf/+lae0f//+eOedd7zt57TTTsPxxx/f9n7hwoUYMmQItt9+e3RT5VKpU1ilm70oBgwahMmTJ5c/GDkSpRNOQLDhhshfeily0SzZAoL+/VHaYw+sdfHFaJkwAfm770Zw9tnAxiIpqZKegwa1PYnacORI5DWCdNMKJywAlDbdFOjZE1iwoGq9dUaOxNrs77Fksy23BDbYAK2LFyP3/PPA3LltFWST5mnBmA03xPqTJ6NwwQXC7wf1LXdFNxk/HsFWW5kXjBNIZXTs1w/45hvtcmxZxmy4YXmmTY4BPXti8uTJKNx8s1k5BQxfc00MW3FOCn/7G/Dqq0brNXXpgsmTJ6Pl4YeRv/hilA4/vOJalT1BGzp8OFaZPBmFW26p+HzjCRMqntSKGD9hAoLxYfe7cNNNymU32GijCpfjumuvjWDo0Krluh13HFpnz0bw3Xd4e9ddsa0kHHP06NHAqpVd/e133BE5ZuCz5mqrIa94qLDRJpsg/8orFZ+ttc46yDEC+TZbbQUMHYrCP/6h/H08QZcuaL32WvS+7jrtst169gQ+/TTc/+qrYw3BPVm4+OK21ztOnmwUqtzUsWPbNVBgnkj2GTAAuSVLgDlz2j6bsMUWwJgxKPz1r8CsWRXbWWWjjTBIUk9svuWWSjdexNYTJwLDhgGAV8ESANYdORIjVpQvP3Nm1fedVhyHguKp7GZbbhn+/gsvFH6/w447Iv/kk8AjjyjLMmrcOIxk77tcDvjznyuWaT3hBIz87W+BK6+Ubmfk6NFYl9lOy0MPIX/22RV1eO9+/drOb66XuBu99ogRWDPazhtvKMvOssX48eHxmDoVABA0NKB03nnI33QT0NqKoEsXdDzlFEzeaafqlZnryoSRG1YOhTt37Yrtme32WVGvFiVhU2uNGgX8+9/h69VXB1YMmFR06dYNI0ePrvhswpZbIqdyfADo1K9fmJ85JtvtsAPQowdyhUJFvRj074/SgQeiwF0zANA1Tq5mSzbfbDME41bI7e++K1yme9eu2GmXXSo+K22yCXJLlyLo3Rv5J55w3n//K69E6eKLETQ0YO1LLsHahmH5heHDldffaqusop5cCkDLVVchf889KJ14IiZvuSVyX30F/O1v0uXX3XBDrCPoy0ze2VRSrKRb797Ahx8ql1l/gw0weu+9EfziFxW/p7TLLsjff3/FsqVJk9D1yisxebXVKj4v3Htv1XZ79u/fVqfkH3jAuuxbbrUVsOaaFZ/lX39du976G2yA0WwbI6irWk84AWOnTq0QggtXXCFcdu3hw9tejxk7Fusz2+b7Z8PXWqutzwUA2HFHtJZKKFx+ubCso8aMaavjc99+W/Hd4KFDMYDpqw4ZNAiDJk9GccXgukvXrtho/Pi279caPhw5wcB78802a5shN9A4oIasuioGbSOTLIGxm2yirLO2nzxZmtMu/9BDba/XX1skXZmTK5XK/RHm2pswcSIwSi3tDOratSJkdJtJk1AQPBx1YbU11sCqXP+m2KUL8PXXVcuahIcXGxuxzshKebJL9+5YZ731qpbdYuLEKgfoOhtvjGDDDYHf/Kbi815se285KdKErbYCRo5EsWNHgBkf9ujWDTmNW20NQT8dAHp2ET8emrT99kCfFRKixxDe0U1NCNZYo+09ex+y/WOWLgpRq62e328/FFdEqqrYdJttEGy0kXTMyjNk2DBAcM5V9B80CH0E93Kw3noIVl0VpT32QPHww6XrFzTHO8jnw74ux1ojRiDfqVNFOH1pxx2Rf/DBtvdsHd1y220o7rOP9ve00dCAvv3lFpwBm2wCPPdc2/vV1l677Z4sXHONcJ1J22yDBsk1WM8sZO5PHXUnWqZFU1MTmgSD5IaGBjSk2JFOk2ginhyTUyRfLCLP/t7VVwfuvjt8fd11gEK0zP3rXyhst11oFT/8cODww41DG/KMm7UIWOXFzB93HLDvvsAZZwCcaFlobEQhxvlraGwM81Scckr4waGHAitEy5xGyCg2NYXrynLHML+x2NBgl3S7s4EXJpdDrrvMg+dWlnxzc3h9sOensVE9MdJGGwEvv9z2ttDQUD4nFvnTcsVieC9utx2w3XbV15ZE5GrbH7evYseO2pxZxej8A9rcNcWmpoplCkEgtPYXO3QArrwSzc3NaJk2TVopFwWJ2BuamipysxQAZaep2NhYdf0VGhoqytlQLIb7scxFm3vgARQ33zysF3TLMr+jkMuJ70lm/w3RvaPbbj5frp+Z45AvFKqPXYcO4WeC7RaGDkVBci22raehQbBPX1TcM4J95Eql8DgozmFDx47K+qihsdEoWXmxc+fKMjAiOgDgwgtROPFEFL77Trmdit8EANtvD4wfX5H/Kl8olNsjyfkpFIvl7Zjk5FxBw4r7K4gGRx07onDCCcAJJwCoTKFQhWXexyJXz+QKhfC6WkG+VKquVxkKzPqFXM5ooJQrFFDg6qyGpibtMcp5ekjbdt9wdWDuvvtQePNN8b7j5pSzoKJ+ldwTOay4Lxjy998P9OmD3IcfAswAU4ngnDX06gXccEO4e5uCr7KK8uuCwWy5xZ/+FPjVr8rXt2ZgVOzUKTxW/PXkWN/lDe6fYmNjeJ8NHgx88EH4YVMT8vfdB+y9N3DHHeXt3Xcf8qKcZYI2u6KP61B+YdtksJ2qfhV/H55wAgoXXVR9Lcj6NWyfje2nAFW/u9DUVN3mXnYZ0K8fcOaZ6rLy139jI/JMmfJARd2Vy+fDPk60b8m12JDLldfp0EHZh8wXi8gr2qZihw7KOrmt7RN+yfRNYubLzZVKYT8gn6+4B036EPkffgCYB3MNHTr4mRgVknGQbFxicAxy+TwK3HWZ49vzFTTw1yZWXF+HHw5MnVohnJq09wCAiROBp56q3E90jrn2Jm8woYnsvOcl12RVHZDPu83lwJejQ4eKBxYV96FEeFU9oCrus09Yz3/1ldH+i127KvuIVeUtFKz7QvmGBuG9nPvlL5H77W+1D4BymuszVyyGYzG+rPwcBt26hQ+t2OPNXqt77w3cey/wEzMfba5YVIrjBeYhExD26druF8nYsqFQaJf6k81vqrvg+D59+qBQKGAu51yZO3cuTbITl+gGkyVC5tENaOPkXrCdPZxl8ArTtUWyaWP432RTQetmIlMlUtdhmsjedAAaZ/ZwXYJj/nvXiTN8T8RjO3u4LgyOTzAtS0BvOotoqeQ2eziLaHZyfpZH19nDbSYjsZ093CYReATbMbWdPXyVVdQTvZhcpx46rVJ090x0TE0m4lH9TpP6TTcRT/Tepb1QzZyb9EQ8NjMV29bX/HG1nT2cPeZxZw/Xld3kgZgJsonoVDOYW7prYsEea5t7N2p7ba4XkTPWNexLI1oazR7O71v3W6Lr15OIYtx/ASp/b9T/EE0Oo9oGC/vbXX6P60Q8unZfVhbZsYoze7huny4T8bCzh/MT8YiuR1Zc1/XDdDMO6yb3MJ2kx8dDE1FdbnKvL1xYPQmLr3x2ov3LRDDTSd5sJuKRfaaa2EvVvxRNyiR7AGXwECfW7OGifbpSLMon4mGPB3s+Va56XZ+Px3YiHpOJ/URlEq0TtTG6cYVJ2ya75th6xuRatWmjdX0rvt1my0IT8UipO9GysbERY8eOxWPM5BylUgmPPfYYxjMhCIQ9bbeD6ezhuo5tnIrbdvZwlqgyEN34vkVLm6ceskFbBNvpTGL2cN2Miyz8NeBTtOSvG1eRQXcuaz17ON+xzoJoKTqX/GdRw2grWroKzrLysp+b3g+i3xF9biNaDh5sPnu4jFqKlvwMriJ8zR7O1z0y0bKpSX0efYmW7D5srsnoeo86/Ta5q3XXJ18X8cdMdB8D8vPHrm8jWrrMHm4jxun2H+2TL4OufUkD9ljb1H21Fi0HD1Z/bzJ7uK1oKZs93BWT3x5dI6Lfayoa6ERLF0TbNDkuulnBkxQtdX0jHtXDWl+zh7Pl1/UhRe05i060VLUL7Ho+6p+obmbraJPrY9Gi5ERL37OH8+cYCN+L2kXRb4iW47dh0t4D4gdrMoEu6dnDAb8Pc0xmD2f7aUmIlqbLu8weLnsAoXGUGlMr0VJ2/Ufw7RhbFtkxTHJMUSfUZXj48ccfj0MOOQTjxo3DxhtvjEsuuQSLFy9um0384IMPxuDBg3HeeecBCCfveeutt9pef/HFF5g5cya6dOmCNUzDeVYGTBuYiKw6LQcODP8nIVryx8jFaSk7LqZisQjfTku+LLLj5ttpaXN+4jotRUKCyRP+CBPRkr1eZOK7jWgpWjauaClzWtqGRkXbMHkaaOK0jD7P5exFfL4coo6RTLwG1O4l06fJWRAt4zgtTUVLU6dlLhfe+7JOtcng31a0tLlueKelrh5j0dUFHTsCP/xQfi9yWkbXeRDYOS1bW+M5LdMSLVVOS9nxS9Npyd6vsntXdD9F95HNcRKlaUnSaWkSFcDC/xY+nL2WoqXo9+oEQNXnJg/QVKTttJT1OVWiJX98ZMfbpU715bRkBaGkRUsVvp2WUd2cJaelxTVrEh4e22kZXbuuoqUonYVsTGQiWsrESdn1YHp/2VIomImWjY3leQdUInMaTkvbazSu01KHrI/Di5Ym94StaGnjtGTrddl+SLSsT9Fyv/32w9dff42zzjoLc+bMwZgxY/Dggw+2Tc7z2WefIc9cLF9++SU22KA8b+lFF12Eiy66CBMnTsSTTz6ZdvGzi6hyUFVWaTktTZwCEf37l2/+JERLvhw2Tsto37JKmO0c2FbUJuXI5dxFSxunpU7o4L93dVr6Dg/37bTkQztkgiK/Hdm59+W0FG1DNOhI0mnJXq86p6XNPct2Rl2dlg0N5aTq+Xx1+bLmtBRdLzZOSxvRsqmpuuPOL8O7udn3HTvKRUuTTqPud/PLxHBaBh07Gs9yra2vO3RQi5ZROQuFsC6N6lPZ+XMJD5fd+2k7LW3KYOLy8UVc0TJyEps8tEnbaWkblcCfc/5hQ9acli5OfNG+XepsU2GGRye0yrZh4rTUbcs2PDxtp6VJPywp0ZJdz8dDk6hdsXVaikTLuAKOav8yp6Vv0VL0G6K2UdZH41/ziETLaFt8fWwSHp4Vp+Xy5ZV1sew+NDXP6KJreNJyWorWSdtpaWLa8um07Nev8j05LY2oS9ESAI466igcddRRwu94IXLYsGEIKBeAlsDkpmVJ0mnJhubJOjki2A5tEqIl34BnxWlp+mTfRbQU5UGMWJlzWurgO/NZCA+X5bRkP4vqSlunZbQNX07L6HfYHHPZvkVOS5loOWhQ+TtZnZgl0VJUFh85LUWiZYcOetFSFS7eqZN88jaTwX/S4eHNzeUcXr5yWhYK+mPEur9ZJ1IWclrW0mmZJq45Ldm6QuUkZklTtFy+XP9Qk6/n+HPOP2zwLVra5LRMUrS0fVAH1IfT0qdoqbt/XZ2WaYaHq0jDaWlStmXLKkXTLDst44aHy0RLtpyqe1zltOT7QEk4LeOIWyqWLq186BtXtNSNQXmi+9DGaWl73xWL4uMV/aa0REuTsZlPpyX/HeW0NCIDPUUiM/gWLWvhtExatIzjtNQ1GHFyWpru3zWnpey4RY17LXJa1tppqWtA+MY4ifBw/smma07LWk7EIytvtH9X0dLUaclfJ2zYhsx9nnXRMqnwcNG9rbtnWNFS1WaYuDJMREvX+qSlpVKYSVO05K/FyA0iO3+u4eEuTkub3J4y2BQPovonC6KlidNSh+mx8hkePmiQ+nub/lME/zv4eyFr4eGm14+ovHFFy6SclrY5LVmhxbdoaRMezufjFYmWSTstTdJeqNaN8OG0FOW0NL3XFywov05atIyT09LGaekqWqp+e4cO1d/HCQ/PitNy6VL7nJYqZG2wiI4d7ZaPlvPttIw7FlZdh2w/THSdJylaqiCnpZS6dVoSKaG66XQd9DgNLD8Rj+nNynZoRRVM3CdgcZyWUUWUhNPSBJvwcNPZw//3P+Czz+zCw7PqtGxo0J9PG9GS3/8HHwArcutKtwnYhYfz+3HNacl+9sILwJw57k5LE0QDxQULgIcfBiZNAnr1cnNasr+dz2kpy4/IXwfsgw9ZZ8ekTF99BTz/fDL3soloaSKqy9YHwmuNvx9cREs+PFxGrUXLf/87TC8SYZPTUtWxtnFaRudEdx/7dFqKBA523z6cljZOLRmNjfJBow/efTccPO+8s114OIvpsRK1w64DXV2btXy5fb9HFB7O0l7Dw+vZaakKPzYdfJvUqSbh4R9+WJmT2tZpmZXw8Fo6LYHkREvRsYvjtBSdD114OJtKI65oWSiEdVaU15HdVtaclqYpRABgyRKzCSltzDOq7bCwbYDp9aqKypMhioIC/DotTXJaJiFa2giubAQSiZZSSLQk2ghsnxivjE5LvrFxcVomkdPSdP++c1oCwOabA717l5fVHRN+AGTaMeGpdXi4qSgUcc89+m2K3kfIJqSJGx7On9/DDpOvryLahm14eFTe/fcHHnwwFC0feaR2OS19OS132im5cA6dMGeSt0mXYxcQ57TULcMTR7RULSNbnj2fNvXJP/8J3H57+b2Nw9DWacnXkSKnpY1oaXKd8Y7q6DORmO9btFTV8abujI4dkxUtf/vb8P/55wNbbCFeRicQmhwrUTssOje+cHFa6kTL6DjUIjx8wIDq7yinZW1zWrLrLVkCjB9fuTz7vYnTsqGh+uEJXx6daOlqUGDX8+m0tJ2IB0hOtBTVY75zWsr6SdFnvXsD33wTvo6OjSqnpe7BIC9aysLD4+S0VF2PfHlkFIvmuZpVTkve/WzzUM/UaWmzfLScS3h4FnJais6J6QRLolzvtk5Ltq6h8HApCVhAiHZFHNFStu7FF+v36+q07NWr/NqX0/KSS8L/Q4cCG29c+V1WcloCwO676/fvGh6uKs/nnwNz54avTTqLaTktdR3zuOHhumtS9gRRtU3ReyA8bz/7mfg7H05LH4NP1/DwqMP64IPh/0cfDf+bOi3ZsvsQLdkHH3FyWibZwTBxWqqug0KhLMqpfkvPnpXvRe5DUTtw7LHh/003rbyn4oqWugccPXoAU6aU39sKQUuWlF/biHVxnZb8tShzI0XwQour01JWH7BkxWlp43yNw6mnVt47P/lJ+fz+7W/h/0MOCf/vskvluq6ipShc3IbTTpN/t3x5fNEy6fBwk34UK+xvv334+tBDw//ktPQze7iP8PBPPwW+/rr8fvPN7Z2W+bz6mtCJI8WivL7YZx/5ekByTkuRE/ayy6qX32mn8utItGxsDP98PNjo3h04+ODqz+M4LV1yWt51V3m5U08tv2axdVqK9sP3w0wEQ9uHY6qIEB6bMejSpdX9WNE+g8A8RJzfjgy272fjtHQJDxc9tPM1e7ipaCm6zvlrR2aEuuoq8X5lZT/55PD/tGnh/6amSrMIOS2lkGhJtOF9Ih7ZjXfssWHYpApXp6Uuma2NyBhx9NHA9OnAzJliocsUnWgZN6flLbcAl16q3r+r01LXEEW54ExEy6zmtExiIh4fouXeewPvvReeOx/h4SKHh+l98fOfy52YcZ2WPKY5LU2EZNG5kF0HrNNSJhL7cjy4onMg6Nx3Awfq01UA1aGYooGgqE658ELg6adDxyxLkqLljTcC77xTmZQ/xnkKajERT/R5c7P8Wm5oqL7nXXNaqtImRPh2WorqH1vnR1wefhi49VbgxBPF37PHfsQI4P33w2trgw3Cz667DnjqKeC22+Rl7NIlXObXv65cRvTwUJSn0YZzzgGeeQbo3Ln6OxenJX+fJx0ebjLgZq+Ru+4Kj+0111R/Z7qNCMppqd+nzUOHKNQXAIYPBy64wD6nZT6v7ltHdZnKbc+3S2uvHV4zN94o3260bkRSTsvoOB91VDi2mD8/TE/x3nvhgz6ewYP9OC1vvz3cj2jimrRzWm6+OfDGG2HapCFDyuvIymQjWjY0lO8vvh9kMlFaXNFS5wI2xTSnJeBmoFGh6wcDYTvKb9fFaQlUr2frtFxjjfBe4ttW0/BwUX+Zbw/4c3f11eH9tPba1euKrv+99w7b6f/7v/D9jjuGusL771fOJi67Rki0pPBwgiGuaFksmrkFc7nK8BHdtlUDOB6daGmb+wMIyyvqSABuOS1NwsNdOidNTcA228i/t8lpaTJ7eNeuwKJF4euoc2ciWvIDlKyIlsWi//BwF8cFf32MG1cOiUsqp6XpfbHppmEnU0RcpyVP3PBwllo4LZMkrtPSpEPKLwdU3x8dO4qvnWJRHGKbZHj4uHGVOSlNtymjFk7L6Fiq3HF8Jzyu01I02GRJw2lpco/7dFput134/6OPxN/zOZ1XX73y+4YGYMstq9djj1UQhMv897+Vy4geHupmANdRLIYiQOfOlSGSgJvTkj9HSTstbUXLTp0qj38cpyXfftoiOgYmx0X3sFJWd9Uip6WN05K9/nbdtfqBYWurH6clEG5XJDCJRMsOHcT3LA977JKeiIcdW0TONlEfPaof4vY7RG1kRBynpY1oyV4/661XvQ6LqWiZz1fWUex2aiFa+nRamoiWtk5Lk/qSbZNkv2fixOrt2l6j0bYLhcp7xNZp2dAQ3kurrQbMmlX+3NRpKYLvQ/Pnbr31wr7BvHnV64qclt27h+10RC4HrL9+9brktJRCTkuijdhOS1WDYwubT0wXKsfCVkKi/bs4LVX4dFr6mIhHVR4bp6XJRDzsINJUtFSJR/xrHb5FS9FsyaptmuQM9OG01LnqfOS0NL0vikW1MAj4c1qahoeLZj7nEZ0LV9HSVzh9HNhyiY6PLm+TbrKhCNHAj8U03USEKk9kXKelq+NJho1IpnOB8PdXXKcl7y42HVhmwWkpOm9pOy1lZYlgj73Nvc6WMRr4igQk36JlhMzB5iLGsSTttDS511TXSHvMaWnrtLTJaanrG/Go+iAq0TK6H0yclrxTVNeX5bfLUixWt02m12qaTksRSYqWuodrAhILDxcRN6elaDtpiJY8aTgt+ePhOzzc5MG26Hy5Oi1lUYym13y0Pn//qMRz3THj201Z2g3RtSnar0sdxEI5LUm0JBh0ggiPTrT05XKptdNSRVI5LV3zeOgEQ9eclqLrQFTh60TLpiZ1h7qWoqXJ/nmxQLWeaTJ4G9HSxCmSpNPSRLQ03U6EbEBtGh7O5/aRlc1UtBw0SLxtdr24gwfXSQLYMoheR+iclqaiZS4X5omM4O9504cgESrhyaRDpxK/bAdIOrLqtORFS5vwcBPBkD8PNhMSydA5LU3OUxI5LU0cDTbXEHusIhFJVO/4Dg+PkIlBcUVLmdMybj0WkRXRsp5zWqYVHq4TLdljKBMtfTotRYiclqb3cdJOS9HDIxZRHz2qH5IULSXbzpmMvWyclroHfLL3uvV4o0sE3yc0EX7i5jL15bTkZw/35bQ0uY5MnJaiPphLTkvRPmxnD4/6TqaipYlZQxcerhMtbdIGsJDTUgqJlkQb1k5LfjDj02nJT8RTy5yWKmxEUF0OOdWTch/lyeX8TsQjGmiYiJYqh0GtRUsdsvKJjrupI4/bZtV96NNpKTqXtk5L2fZthHb2eInyLwaBudOSxUdOS/ZYyETiuIOHuA9PTO4Z0/Bw3Xljw8l4l4JP0TKu01L0O+IkcU9y9nDZtWjitIwTHp5Vp6VJPRmnHKaDrghX0VJUxvbotJTlIXPFNjycp5aipevDElfR0sRp6Vu0tAkPZ7FxWtrktDQRLZuaKrdheq0mJVpG15auHBlzWhoheihsEh7O4yunJXstubjT2ovT0uR+lmGaQojFxWkp64dH965NeDggFi1NclqK0IWHR8dFNi5zdVqSaCmFREuiTNzwcF1HSQXfQXF1WrKCQ1adliY5LV0H27qOXlNTZUXdp4++LFkVLXUNgOwYyp7smcCWj+0MyfL6uTgt44qWqk6aKDzct9PSNjxc5BRjBzY251lWT6iclqp7rV6dloBayDJ1WgKVouXcuZXf2YaHJ5nT0tbVoSNJp6WsrXRxWvrOaZmEaFlrp6VNDr9crjo9iimiYyWqd/iBVdadlvyxj653X6Klzezhtt+xiMobR7SUueZMyqMLD5dtwyWnpanjR7ZP1/s3evBTC6dlLuc2KVvS4eG6tl8kWtbQaWmEL6elSrTUlZ03ukS4iJZZcVraTMQjEuBk/XpfOS1F27W9jmQPwFTh4ap6XJQWQnYd2oaHx3VaUnh4bEi0JMr4zmlpI7zJciYB7cdpGR1LE5HBtQOhCw8HKiv13r3Fy5rktHQND0/LaSmr4GU5VEzgxYIImdPSZB82gxddA5707OGFgt5p6ZLTkp+hkhUtddeETEhmUeW0/PZb+bZNn6Da4tNpafIQhH844Uu0zLrTMsZ5CnyFI4tES1lnlr0PZW4PfjBok9NSJDik7bSsxezhNs6yIChPMAck47TkB1ZZd1rKBndZES1rldPSROQzXden01K37Sw6Ldn6zofTEggnpmLLaULS4eG6cogeBEb1Q5zIAd36ce7lNHJa2jgtWWrhtFQdS5vjbOq0lIWHx+ln2vQR2eV8OS1VE/GIfpdLeHhcp6VtTksKD48NiZaEmjiipclAKoKvPNhKiXJammPS0WMrddnyfFlElajMaalqtEQ5LdnlbRo8V9HSV3i4zmlpKlrqBhi2Tst6zGnJdxLZgbZuu65Oy+i4sUIcL+LLOjtZEi1lZWGFiiFDKr+zCf1hRcuvv678rh2Llt4mfhGJlrJ7nL0uZAPmODktTQRD/j5pD05L2/DwBQv0y4hwDQ/PotOSvRZl11fcejDCpZ1kUYlqum3EcVraXlcsrhPxZDGnpWy96H5g10/LaQlUipa1clpGvzVOeDg5LdMVLeM6LdMID2cJAvH9Eqef2atX+bWN09JWtHRxWsoi2wC/4eGmTktZu+LbaUmiJTxl0SbaA4FtA+NTtJTlTAKA2283306WnZZRhSXrOPjIaalqEKP9spW67HjwTktRw1/r8HBd46/Kb2iyvghZ+ZIMD9eFyGQlp6XrubvzTmDmzMrvbcLD2WvTZSKeOXPKn7ECHVB9vHM5txAYnjRES7b+7dev8jt2siEb0ZInS6Klbfulw5doGeVXYzFxWq6/vnx7rjktRcdsZchpaeuI8ylaiuodvu3s2dN8Hyp8Oi2bmsp9EtkgPq7zK8KnaKlazrdomVWnZdqipew6iO6HyInX0gK8+KJ4WZ85LaPfwYaHm55bF6dlx47yWal5p6VteHguBwwcGL5OUrSMm9PSVLRMI6cli4toGVcc8hkeLktVYpLTMk4/07ROZYnjtOTXU03Eo3Ja8k7lJJ2W0XbJaZka5LQk1KgqK/YpJlA9OGNnndWhclraUM9OS7ZxTdJpOWBA+L9jR2DPPcvfs+KEyezhLqJlY6NatBw7Vr6uaF8q2CeFLEk4LWVhlr6dlqJrh92vLPSKXT8pp6XNNcsfl48+qnzPuqtFv3nkyPLrtdYqv1aVTdbhmDix/Bl7P0TridaJO3gwvfZ23ln8ua1oqRKidL9ls83Kr7fdtvI725yWqsltbAf6STst+fbNlUKhup2QXVfsfSgbBMfJaSkS4VeGnJay607WR0naaSk6Dz7Ybbfqz1pa1OKLbN/s8Y7rPNJhUh+qBsO+REu2LTDBVlhk8Z3T0odoKdunLjxcti57P+jOsY3TUteHi8rC1uGLF6v3H8Fu0zRMWFVH2k7E07VrZX01ZEj5ehozxqw8MuotPNw1pyVLLfIAqq512+PM9gNUx04nWsZpY9LIackfM9VEPCqnZffu1Z/LREtRHcPeY2uuKd5HBOW0TB0SLYk2rGcPj8SviGIReP55YMstgQsuUDt0ePgBSb2Ilj5zWoqWtcUkp+UZZwATJgAXXgiccAKwzz7hYOeMM8rL8qKlqHKXzVYXx2m5117Ar34lXtc0mXxEnz7ARRdVN2K+REtWHMzlqq93V6el6r2scYzQOS27dk3eaWmb01KELjz8rrtCAe3kk4FNNy1/rsq3KZuc4LjjgN13B/bdF/jd7yqXkblfknRajhgBHHoosMsuwOWXi5exFS1zOeDuu8Nj9e9/Vy4nuqZuvLH8epttgBNPDP9ffXXlcllyWop+R4yOemDTfqkQhYeLlgHM2hPX8HDRA4voc1FZImxmUZehc1qanHsT8fTGG8O27ZRTKj/v0gW44gpg882B554rf77rrsDeewPDhlUu7ypaio6V7GHJzTcD48cD995rvn0dl10WPug47LDwOER8+ql8HRPR8scfgVtuCR9g+CxvhMl1z/c3Wdg2J45oeeKJwH776cui25dJ3ZGk01JXN/p0Wkbb8i1aujgtJ0wArruu/N5FtDQRFvjfqnqgYjsRT6EA/PnPwNprA+utF/ZhI3bZBTjqKGD77asFFRNU7aHNA0i+v2jjtLQRLU36OUC4b1k7VQuhR5XaQdcn2WSTyvc//FB+rTK8iPoYurEDy847A2eeGd5Dzz4r344Kn05LVb2iclpGrmR2O7LrUHQv3nEHMGkScNJJlW2oqCy2OS1NHwCT01IKhYcTZVxEy3y+fCMVi8CGGwJPPWW/b77CdRGU+O2kER5usz0bwcN1sG3iRth888pG6dZbw///7/+VP+NFS1GD6BoerhPlrroqbCwOOqj8+e9/D8yfD1x6aeW+dJxwArDDDsCoUeXPZI2kCew6vDN28GDgyy8rl3XpAMedPVwnWoqe/tVy9nARuol41lgDePTR8PVvflP+XLVv2VPSbt1CEVSE7Fz4moBCREMDcP314WvZQMukM8qGFeVy4YMJkROLP74PPhjeMywXXijeR9ZFyzjisq88gyaiZVROk/ZEFB5uEvooC+OUDRYifDstRfeUr/Dw7bcHpkwBPvwQ+NOfyp8XCsCRR4Z/LJ06AbfdFr4+/3zgtNPC16xoaXOvmzotAWD//cM/n/TrB9x/f/h60qTy56o2QVZ/sNfssmWhmGcj6NmgO8aFQnWKCxbT2d51omWHDqE426MHcM016jJF5RJhMrGSzm1rm9MyrfBwmwd57P2gO8d8Tk6TnJa8E48XW5ISLRsaKt3HJqKl6UQ8QPjgXvTwPpcrP8jcaSfg/ff122JR3Rs2omVDQ/XESSKXpGh/WQ0P79YNWLjQbFkdsrLyDxwB4JlngC22KL9/+mngpz8t90nZ61bWjspES9Ncv6efDvzxj+Hrc86p/j7JnJYiE0lDgzpfpEq05PttqpyWonpw+HDgkUf05QbsnZYkWsaGnJZEG0KnpS43B/v021ZoZCsjX+HhbEcnq05LE0EyrpPLZZuq0CBRg5jE7OGyz0QNj2t+kLi5eyJ40ZJvLCORQLc/G6elrBMYHVOV4yqfDwfpou3biJa62cNNt6OCDQ+3OX424eEm2ITC2aA6TyYhUSbhkPyDBxmmYYkibMPDVZ02k/sypZyWzR072v82GUk7LePktGT3bfreBdl5s8kRy187omMlc2CZ/AZWgE86p2UamNbpsvLwTsukUdXPAweqzyHbJqmWM7n+ddvQbQ8oP9C3WddUtKxFTkvX8HDW/Za001LUVsYND5fBl83GaenrgafLWEbVR7N5AClKdyLqn6cVHm7z4F2GTTozHTZOS9FxY+8bmWjJo+tjqI6fru+epNNSNBEPe33ZhofzD4xU16Gv3PK+nZYUHi6FREuijItThRVqbG8olWjpw2kpqjyznNOSxVeOK9H+bb/P58W/M4mJeGSfiZ5QxhUtXRoAlWjJN5amYeg2oqXsuoj2xXb8ebp1EwsEOlcDi4nT0nQ7KnROSxb2mKgEVR8TL9ncwypUIhNbTtWDBN0yfHi4jDiipU+npcn9qBLwPYaH/8jPIh+HJJyWrqKlyYPJJFzEsvNm8xCAb29Urka+nU9LtBS1iToBKSlM63QTp2UaoqWqb8ZOHCbCZIZd2XeidsH0HpAtVywCffuq13UVCnw4LU0clbLPs5DTUiRaivaflNOS/y02TkvXsQ2PS9SYL9GSv1dFrrU0J+KRueYA836+r8nQovKIEI1jRPcqe9+YOC2BeE5LXV2UZE5LmdMywtZpyZ9HWZi5D9HS1mlpmmqHnJZSSLQk2rDOaQlUCjVff223Q3Z/okbQpXOvCg93eQqkQ1TpyQaoNoJHlpyW+bzf8HBXp6Vv0dKlAbBxWka/MyuiZeQcy4LTUrc/XU5LlvbstIxTV7iGTNZKtDQV3iJMRUsH4XJp2qJllnJa+hpUy/Yheu3itBRdS3Gclqyz9vvvq7dpgizPM0vWnJYmOS2TnogH0DstVZiKlqLrII5oqdpXXNHSZ07LWjkt085pycPOHm5SR5psE2ifTss0clrq2uM4OS1lx8NUtPTptFQ9cDBxVJuIlixxw8Ndx4ai5WrttJTl3BW1w3H7OqoQdnJaJgKJlkQZF9GSDQ+fO9d9f6Kb1LYzyVcS/Pq+81nKtilr/KOymwyik3Bauj7Zl4mWruHhJiIJf57r0WkZYSta2ua0BMydlqL9+XZa+s5pqesEJem0lJ2LuMKD6jz5Ei1dnZY2nU6f4eGmeRkjTB5+qD5X8GOvXtbrSEkjp2XWnZayazr63GSf9eC0FJ2/WoWHx+3vpOm0DAK1CKMTLX3ltIyI67QE9KKl67Zl55U9BknmtMyq01LUfrBOS1PIaalHZDIxFS1VxMlpGVfoSSM8nM3VqFrW1mkZBOLrwXQc6dNp6ZrTkl0vjtMSqJx8NZp9PQtOy5g5LXPktCTRktBgI1ra3lAqgREQVyiqhloXYu47NFy2TVnjT05L8yeNfFmSEC2TdlrK9q/apu697BzFES19OS19ipZsTkvddWv6EKAenZZp5LQ0Ff9E2DotVeExSTgtRZ8bXOtL+/TRl8UUk4cCvnJa6vJ+mTwgSjM8XOVU4LFxWmZJtMy601JWHn4inqRJw2npW7RU7StuHWLrtFStK3Mfme5T1QdRPXhI02kp6ne4iJYrq9Mybk5LUXi4bd9C1Ra55rQ0FS07d/Y3RlQ5LU0eErP3jcns4UCy4eFpOC1lqR5MRUt2fZGZKgnRMtqm7GEwOS29Q6Il0UZgEjrG07+/+w5V4eGyz1SDP375NJyWojLK3Ec2omU95LRMeyKeLDgt+aeb7Oe+nJaqTo2P8HCREGd6bxQK6hBsU3THZPny8n58hK5kLaelT6el7LjXW05LE6elqjMr+438cqoB5gqW+cxv5dtpqQoP183OngWnpWggZXLN2Tgt44aHR+4M07JF1KPT0iQ8vNY5LbMqWibptFQJH7brmvadZPt0CQ/P5fQTY7LEdVqKyJLTMmrfVmanpa7ui5PTMq5oWSj4nXxPhE+nJY+oj2ESpaX7zoY4OS3Z46Ab8+j0AlaXUImWvsLDU3JaUk5LEi0Jlrjh4baIwsRYRBWKqqEWPeljScJpKSqPrPG3cWklMbBxfZoW5aHhf6uL01IUomji/jFJYK3ap+h9HGcw0H7Cw307LU3Qnbvly823W49OS1PRMo7TcmXLaal66MKiExABNLsMdmXYiJYm96EqPFw1eJY5LVX1mi90TkuTupy/dkS/1ZfTUrRNE7Kc01LWd6oH0TKrE/HUi9PSVLT0GR7eqZM+BRSLjdNS9nCCh81paYrJuXdxWkb/s+q0jJvT0mQiHtvwcJMoI8CP0zKft+/PqLYlwsVpaRoenqTT0hQXp6XoXtadd11kJqtLzJlTuR92u0mLlq5OSxItpZBoSahJUrTUVai2TkvRkz7TdV0RVXq6wU+tclrGcVoC1Y2ii9MynzcTG7LotFQN7vN5eeirz4l4ZOcoCzktba5Z0XXAwoYj2obXi8haTktV58O20ycrC3stJOW0tBX3VIO7uDktTZ2WJqKl6SyPJshES1F5XZyWNqKlidNSVYe4IhObk3Jaujzg8iFaZtlpKXuoZiJamk5i4koQ+AsPV53rNJ2W/fqZbcN22yZ1hG/R0sVpyd+f9eK0TCI8vFQq95t8iZZZclqKchm6hIernJY60S1uSG2h4E+09Om0lE2w5VO01J0X02PoktNSNFGOzqihCw9n24vogVscs4aMpJyWFB4uhURLog3h7OHjxqlX2nBDYNiw8PWZZ9rtkK1EOncGRo4MXx97bPjf1mmpEy2TcFrmctXblYUF2QgeBgNra+KKlqZOS92gwSU8vKEB2Gijys/49zJkouVuu5WTb199dfn7W24x2w7vtASAvfYK/2+/ffm79jZ7+DnnqF3ZJg2rrnOTFaelTPyIM/DI5YCpU+Xf+xItv/uucp+m6+uO92GHhf/Hj7cXYDp0ANZfP3z9298Cl10Wvu7dG5g0Sb++6tiYipbjximvhaB/f3wzerS+LKbIREu2XNE9Y3IfbrSRXLRsaADGjg1f//rX1eUwcbWvuiowfHj4+ne/C///61/6cqmQuShUn/GYiJayQYSpk1PUptncj+usU+4PRfd4VpyWMhFNVp6zzy5/d9NN3orVxlVXhf979AB22aWqvKWddwYABMOHA7r7sVYT8aj2NWVK5YQQttS709JWtGTbfJVzjt2Xbps77ljuj//lL+pl2X3r6NABuP768HWXLtV1LUtra+X16Ss8vFY5LceMMXda2j6wcQ0PB8I+d+RuvuSS8ue1CA+3dVruvnv4etddw/+y9DTsuhdeWH79r3+ZPxgV4WKSOeqo6s+CwL59E/WpXURL9rOTTy635X//e/U2o/cbbFCei+Dcc+3KzW5T1q6I3OcmkNNSiqfak2gX8JXDxRcDm2yiXqehAXjuOWDmzEqhxnZ/QQA88QTw4ovlwaut01IXHp6E0xIIyxmJRYUCMGSIeDlT0TKXc3tCrCMLTkvT8HBRJ3unnYCnnwbeeitsbOKKlp07h9ft++8DW29d/n7ffcOcKOefDzz0kLxMos7QP/4BHHIIsNVWlWVXkZZo6ctpOWgQMHs2cNZZwJ13VpfTpJNo47T0IVoC2XBajhwJ/PvfwBtvyJcxGTSZhId//rl+GdF3ut92xRVhJ3vCBPVyInI54NFHgRdeALbbLjwna68dij0GuSad3AL856uuCsyaFdYlP/wAnHhi+bs99kDLhReiVXV+bDFxWkadUdl9uNtuYf03dGjYzrK/ic1pWSyGddb06eHxjYQhQPzAKCof//7554EZM8pt8QEHhE69Sy8F7rlH/XtFsL/fxWkpald4UUR135jeU4MHAx9+WPm5zb0eHbuZM8vHrlaiJX8tyUQJ2T0V3ScLFgCbbea1aACAI44A1lgDWHPNsC3mzm/r1Kl4cYMNMO4Xv0CDru7OYk7LHj2AV18FTj0VuO226u917aRK+NCh62PZ5rRURXtk2WnZsSPwyivAO+8A226rXta0nEB4Lx1ySFgfDx+udtW2tKhndndFdnzyebcUPjrBbrvtgKOPDh9W7r139XZFphG+3bMVLU2ijCI6dgzbLP5c18JpKStrQ0P1uSkUQtHxiSfK4waZK57d7lprAa+/HuZf3nhj4LPPqpdPKjz8vvvC64GnVFJf37/9bVjXn39++TPR/Sbqk7LHTee0HDQIeO21MJ/llluGn4na4YYG4KWXwvZa9Ht06JyW/HgsrtOSREsSLYkyVU7L6GbXMWiQPueQCF607NMHWPF0HYD5jOKy5dNwWgJh52HJkvD1wIHyStu0s9K1azIDG9ecljLRUuZK0YWHu+a0zOWALbYI/2yQiZZAODBbddXK73O5sPNw993momX0m7p2LT8tjfCZ01J2jtLMaQkA660XilasaGkbHq66H7IaHh43p+WWW4bC5Ztvypfx5bRkRUubDqvJ4IC/xm3o0yd0VkXYPOxy6XjznxeLoUi6zjrAu+9WipY/+Uk4EE1DtLRxWq67LvDLX1Z+lsuF67FOy2IxdK2yx5cth+jcis5///7A5MmVn229dThYcUEmWrJlU9HQUL0MPwBQXbem99Qqq8QTLYGwD8CGp/H1ThKpX0Tw15KtaAmE9byKOOFq+Xylu1oQcjtv3DizvmUc0VJ0bZi2FbprY/jw8GGDSLTU4eq0FK0nqgNt9lmL8HATp6XJfT10aPhnimkqiXy+Uhzr3h34/vvqZVtaKtMrJO20bGio7D+xqO51XXRXz57ldkUkAImEcX6btjktTZ2W0XZF57oWOS1VqR1YRzEQ/uYuXSr7VJH7j4c/fqwDXSRimxgedN+JEPUvAL1oOWpU9eS90fKssK9L/WMyce+IEeFfhOzhPN9e25BUeDg5LaWk9MiXqAv4G8xnXi8RfIgbT704LVkGD5Y3kqZONF8Np2z/tt/biJZJ5bSMIzirREsVunKKREsRaTotVY1adF2JBh02TkuTcurI5dJ1Wrrk2hHtO67TMrqO4wosJk/Qk3Ja1hKXjrfKZcQf6yTScsjuLxunpaqOLJXMZqaV5bRUlYvHVaRij6vo2tVdc42NetEyrtMSEDtc4t4P9eq0TBuXGd8jTEVLU4HSh9NStX1Af9xl29b1J0TrydyRuuVEn7uKlrpjlYTT0gWTbYpciTLhI22npaqvHEe4Ys8n/xtkDv64TkvTnJYqshQebprTcsAAdQomEUlOxGN6DHWiZS4nf4CiqsNNxoNxx1ku6ERLfh8m0UTRuiIopyWJlkSZKqel6VMBV3inJU/c2cNFbr0kWLCg/Fr2hAwwFy19NZyy/dt+H50nXxPxuIaHu+IqWuoGm75ES93xsBEtVfjKaSkqF/veNDzc1GnpS7TMgtMyKoMPV1hEXKel6YA262RZtNQNKHROS5UQwYeHq8phct2qlvEhWorqM1250nJaJiFa1moiHv5akvUrsvKQwmXG94haTcRjcuxcB6AmrkfT9XTRHLrPfYiWuuPs4rRMQrQ0dVrypC1aqpyWMuI8oFCJlrL7yqdo6VpPZWkinsZGM9GyoUE8yW1SoqWvNsAkp6Wsv6mqw01ES90YphaipW0UUwQ5LaVkpLdCZIK0RUtReBxLXKcl/3vSclrKiCqildlpKXL7iCpon4Jz1p2WNvuNI1r6ymkpKpeqbCJ8Oi1NOgK+RMusOC1FZeJpj05LFSYuIaDyOuCviVqLljZOS7azbyJailzuIlT3sWunWSda6q55kdOSb398OC1FDx3JaSnHp0vTl2hpU9cBtRMtfWzbdD3TbZmImbL+G3/M+EgtnQkhK05LV9FSlsYgqfBw2fHROd1cqYVoyS5fT6Klymlp+pDY9gFakk5LU1ycliLRUje2cBEtk2iHozKbOi1NIdFSSp2OTohUSNNpKboZ4+a0tFnXFyrRkg3nU5GUaOk7p6Wo05RFp6XrtmyclqrGSbc/vlOlOj6yDlgc0bJWTktT0bKWOS1lHcy4TkvVvWgbHi4ry5w54uV56km0rNfw8Lg5LX05LU0GJ0k4Ldm2wkVUcXFasr+VnJYUHi77Lo5oaXLsXPsuro48E6elDJM61LRNNHFastdoVpyWphPx8GTFaakqf1KipUy04ccIcXJaJi265fPmYy9bV1+EqdMSsH+AVg/h4YC8P1aP4eHRfW3qtDSFwsOlZHh0QqRNoOt0+EYnxojEPZXgZ+LWSJpVVtF3/GolWsZ1WvLHT1SxmjgtTRoPk0bKFV9OS/Y8xnFa8te+6klsHNFSFh5eKLgJGnGclvm8usxssnJyWqoxKYtqGdcQllrgW7TMitMyTk5LUxePaXh4LZyWunK55LR0ES3bs9NSFh6eFdEyjtOSFYXSFC1NBpFZEC1Nz3Ecp6Vu/CAqF3uN8m2+qr8ebatWTkvRvUROy0p8h4cnjU1OS11uQnJamu8rLadlnPGKjKjdkV3/5LT0ToZHJ0TNSdqZqHNaimZCZht/nqw7LaPfW285LWVOS9nTrqw5LXl85bQ0Ja5oabLfuE7LXM7+/ojTCfAZHp7lnJYyt0mSoqXI8dFenJYqZOWWJX4H0nFaihwngD+nJXuvZNVpqZs9PAmnJfve9N5vTxPxrKxOyzRzWtaLaBn3mhM9aOD3pxMtRX13VXh4vTktVaJlmk7LNERLE/e4b9HSt2Ajuo5NDSO6foJKtKyV01KFT9HSdpyZltOyFuHhvp2WJFqSaEkwmD6VSWJ/os6fqJMTR7SsdU7LiFrltNSdU91Tdr5RdHFamoqWPnNa6rYtQ/dE1DSnpW5/fEPk4nyzES1lnaa4omWE74l4bJ/cyvDptDS9hrp3r3wfHeO44eEs/LaGDNEvw9JeREsfTssk2giZwzGu0zK6Tj7+uPxZPeS0FPUzXHJa6pxc7G81vacGDDB3wphSq/Dweps93FdOS9sJJ7IqWrpeJy4PBSKSnIiHdVJGsNco3+a3p5yWrGiZtNMyqfBwNkepqdMyn68sj27/qu36Do3lj59P0VJ2DTU2Jue01D0YTWMinlJJnLeSLYOL09JEtKzFRDwq0dL0IbEI2TVB4eEkWhJlKmYP19nffcBWGqZOS7bx58mC03LgQGCdddTLJB0e3rmz+HNXp2V0XF2dlptuWn49YoSb07IWoqWuY8b+rgkT5NvRXZf8+VY1rrL70qQjrJo93IU4jX69TMQj62Ca/naZaBnXadm/f/k1vy3bJ/T1JFrWa05LEb6clixJOy1Hj9avLyKJ2cP5ulDl/Dat84vFynvLpGw6suK07NoVWGON6uW22cZ9HyNHll9vt537doB0clqKthlHtDRBdk/26aNerxZOS5MUAjLnuk60FPXnZfVd1p2WouO0+uriZfnw8Cw7LceOlX/nktMS0LvsReuI9sNfT+x2+TqbZdIk8eciF6jp2CtOeLip01Ikgts6Ldnzue228nV95rQE9A9PWUyclibh4bY5LX3chz16hP9l17/KZKWCnJZSMjw6IVInbdGyvTgtH3oIWG894E9/CgXDvfcGDjhAvnzS4eFPPQVssAFwwgmVFbWL+HPOOUCXLuFrV6fljTcCm2wCHHQQsMceZiJJFsLDdeU86yxg++3DTtEf/iDfjqzsAwcCZ58N9O1rvt8uXYA//hEYNQp4/PHy57rf1LNn+fzZNt6bbx5e31dfrS5nBH99izrCNk7LLIWHR2UxHQTyrkeX8PDrrw+P/4knhvf1yScDa65ZXaaIXr2qt9lenJZZFi1vuy08T9deW/l5tI+rrgq/v+OO6vLGyWnJ4kO0VC1zxBHAnnsCW2wBHHVUdd31hz+IB4k+REv+tyXhtASq29+490OWnJb33guMGwcccgiw667AxInApZe67+Pgg4F99gE22yysp+Lgy2mpWk/Ur03baTlmDHDqqcBqq6nXq4Vo2aMHcO651Q8nVP1I2YM8/voTiZaycuXz9em0PPvssG923XXlz5MKD3fJaanj1lvDvvqwYdXfueS0BPyJlt26he3LqFHAE08AzzwT3kt8f4jn+uvFpgK+rS8UQqe9CT6dlrJjwjpbdcvKynT00cBuuwFbbglccYV8XZ/h4YBaP/DhtBTNt2HrtFQJ3Sqefx5Yf33gjDPKBgGZaPnjj277EFw/y7t2Taa+qzPoCBBt1NRpaSpaLl8e3tAix2WtnJbbbw+88Ub5fT4P3HQTsPvuwL77Vi+fdHj42LHAq6+Gry+7rNwY2IqWv/wlcOaZ5femTku+wl19deCFF8rv6yU8XNcx69IlFKx1yK7L2bOB3r2rP9c12KefHv6pysrDuu9sRar99gsFCl05RWy1VdjBXHNN4IMPKtetB6dl3JyW/MDUxWl56KHhnwx+W9HTX9Uyqu+yLFq6oBLpfU7Es/fe4R8Qinv8/n71q/BPVC4Xp6XpZ+x3pqkbZBSLZdEVCB/c9OtXft+nD/DII8BJJwEXXVT+PG5OS1F4eOS+lCXD1z0UlaHLlWlLVpyW3bqFbfHLL/vbR6EQCh0+SGMiHtFgN2mnJb+t115zW891f4DdNfe734V/MnelaZtoIlrK7staOi1dRUsAmDo1/Pvoo/Jnra3JTMTjMnu4juHDw776rFmhMMNSa9ESCIWiM84ovze5l4YMAZ59FvjFL4C//738uUi0lIX48+gMMDZOSxmi82srWjY1AXffrd+Xb9GyY0dg0SKzfZmIlvw6LqIley116CB+uG/C+PHAzJmVn8lES3YcYwN33bc8+ywe+OYbTN5xR7fttSPa2eiEiEUtnZam4eGRaCkiCzktWWTlSTOnpU0+Gb6h4BtBHxPxiMpRr05LU2Rll20viZyWbH4cW6elKoRLhOj65q+dXC7dnJa+wsNtnZa8aBmVQVVm23LyZeFD0nX7Mw1XqleyGh6ettMyn48vWur2F5VflStU5LTkEYWDiQbK7HZVA2mbsCrfomWWnJZZJo3wcNFg11b8Z6mXnJZxRQnVPSsTLfl+g61oaeK0TKKtEqWu4c+h7l5il68np2WEKNrLNTycLafuOkyyrtSNbwqFcNyrS9sA2AlkLI2N5veiLkclj6jvYnr8khAtZbiEh/PvRS5Um/DwwYP95nI2cVratAO16jPUAXQkiDJsByKJwRuPzmkp6uQsWya/+bOQ09Jkf0nntGRhj4mtY42/BvhG1GUiHsBMJNF1gOPgy2lpShZEyzhOSxshRYYof5BqfTZpf5bCw2vhtNRhIlq2F6elS0dTNXu4rs7zQZZyWpqILDbHmN9fVH6VGGyyfZHoKaqPVS4eclpWvo+bdiZpfIWHZ81pubLMHs7vt16dloD+YZbuXuJFyzSdlj6uXdEYJAtOyzjo2vroe5PJVOM4LU3vRR9OS9N96ZazzWkpEy19TcTj4rRcurT8WpT3PQ6y658VLW2MYCYPBVZSMjw6IdImz3Yqsuq0XLZM3pDpGrh6cVr6HFz4FC1NnJaFgn1CZJPw8JXJaemynI3T0lYUtXVasshmnrdxWvoKD3fpAMfNaSlzWvoULfky2jot60m0dMHGtd2enZY+wsN1+5M5LdnjypZBdl3ydY7Maclul5yWlfDHMI0H0XHw5bRUredbtEzSaZkl0dIlPNzEaSm7L02dlkmJlrq0ISKnl2z9lcFpWQ+ipU6Ijr4fOFC/Ldv8iRFJOi3zefe2Ji2npcrFbBMe7uK0/Oqr8msTYdoGE6eljabC/ZagvfXJY0BHgmijkDXRUpTTUiVa1ovTsr2Eh/tyWpoMyNuj09JVPHXZlspp6Sr2xwkP1zktkwgPd+mYyY6V6bXAJ7SPrmNVWchpKcfHOVTVT0m0ESaipa+clj7Cw5N2WpqIlj6clrpIDhn8gKhenZZ8vZ11twZ/7duUN8s5LduDaMmub9om8tcfGz0R4eq0jPZZK6elTZgzL1pmOadlRGOjWqg1qdOiZWxc9mk6LfnrM9qXyWQ8ruHhSTotAfc6P83w8Fo5LRcuLL/27bQ0yWkZx2lJtJHh0QmRNnm2U5H2RDw2OS1dw8PTdlq2t/DwWua0rIVomRWnpUl54+S09O20FIkSItHSl9MyyY5ZXKcln+w7jfBw0UQ85LQso6qfkhB2suK0BPw7LWUhoXEnOBI5LUXXqcppqXsoKqO9hodnnThiS9Lh4a5RM6p1dbheJ6Z1hes2XZ2WItFS5bSsZXh43PpLFR6etNPS1zHhxyGuOS3ZY6erh2ud0xIwm1XaNTw8SaclIA9511FvOS1N63EZphMumWLitLSpQyinpRQ6EkQbqTstdU6IendaZmEiHpsOkq1oKRs0Z30iHtMGmj92rp3NLISHm+S0lB0XWQfN1OEo2oYoTIQlifBwl4bfNH+XDP7cJxEebuK0JNGyTFIDXRlZyWnJ7keFzQBGJlQk4bQUtRtJOC35AVFckSErE/FknTj9M/b8qo6vKM2AiYs5zjWQBadlXJKaPVwmYhUKtQ0PjztBWxrh4UnmtATsREtTp6XoGmDJQk7LenZauoqWOkzbz2g5VfoEE6elThR3cVqymKQAsCFpp2XWoyRSpJ2NTog41NRpaSpatrS4Oy3THqy6hocnldOS7TiJsBUtc7nq32giWpqIJD4HDa4k7bRMMzxc5bTUESenZUStnZauoqXsGnB9gl0rp6Vqfy4TP9WKpMPDk8AmPNzGaWkbHs7uR0Wc85+k05KHnJbtiziipWl4eC5XLb6I6pQsOC19ipY2178IH05LkWAl6uNH2zJ50JaW09J2P2lMxONjgkQVcUXL6LOsiJamOS1NRMtaOS116yYlWqoQtbM2TkuRaKnrk9aLaOnqtKQ+gxQ6EkQbFU7LNJK2uw4qXJ2WaT+tcOnoNjT4PfZ850mF7km5qFwuoqWL07IWJJ3TMk2nZc+e9vuNqPXs4brfVgunZdxrIcmclh072uWHqyenpe/Zw9NAlbeNX6benJY8MqclW4e4TMQjC5VjP1ddxyvjRDzsgKke8BUerqs/2fNr+kCx3p2WcUXLpCbiUYmWqofsaTstdWKbav20nZa+4M0TtuHhEWwdnWWnpc/w8CSclibr1UK0FLWzNjkto/emE/E0NMjnUzAl605L/reQ07KNDI9OiLRJffbwSy8tv/7DH6q/v+mm6s/++U9gzBjx9o4/Xr2/tAfjJjkt+cqpVy+/FVQc0VLntOS3Hy2TRdFyt93C/+usY76OLzHHxGllUw7TfUyYUP6vGnToiJPTMiLJ2cP326/8+rLLxK/33TfsqEQ5Jn/1K/U22XKy6JyWq6xSPl5//Wv190k4LUWdQN4l0bmzfP2si5Z/+lP59eTJld9F79ddV74+/9v5+mnzzcP/W23lVDwtsnr3qqvKr886K/yfdE7LddctDyhOOMF8X6ZE5Y8bHm4qWpo6LeOEh8e9H2p1f627LtC3b/j65JPT2Wcc4ogwl19efn3OOeplfYqWvp2WBxwQ/l9lFXU7HfWX83lgvfUqvxNdX0k6LWVtIn/P/utf1dtViZarrgr06xe+P+YY8T7TEi1HjCiX5bjj9Ouzx6KlBViwoPy+S5fYxQMgbyv4a3LnncP/I0fabZ/vQ7D3p+yB/i9+Ef7v378c8cHW0aK8pixJOsxMRctNNwV691Zva401ysfnqKP0+4qwcVq6iJYbbFB+vcoqlWYFFbp6jO0v33BD5Xc33lh+ffTR4X+ZaPmTn8h/P9tf/v3vK79jf3tTk5mBhue3vw3/DxpUPUFmXETlKRSAiy4qv2df66DwcCkpWw6ILJN6ePg22wCPPBJ2PDbZpPr7/fYLn/YNGBBWWl98ETbAkycDt90WOgl22w146y2gTx9gzTXV+8ui07JYrOy4sWG8PmArv7jh4aJOEt9QdOtmL1qazowbhxtuAO6/H9h2W/N1knZamuIiWuZywF13AQ8+COywg/32WOLMHq6aiEdVDhvRsm9f4PXXgQ8/BHbdtfz5r38ddtxWX7084JgxA5g+Pew8mWDrtBw0CLj3XuDjj8X7SCOnZT4f3offflv+TFWvyMJ1ssJxx4XncMSI6k74TTcB//2v+r7mfzt/P955J/DQQ8BOO/kpL49sYL7jjuH92blz+UGcSf5L1We6uqapCZg1K7wPogc5PD6clqrwcJeclqIcWbxomVWnZa3SLzQ2As89pz7XWSJOOzlpEvDww2G/ddw49bIuomWcstmse/XVYf924kT1fXjSScBaa4VC1LHHAm++Wf4u6fBwmQtK57TcffewD3bKKeXyypx3+Xx43KZPB158Mbx+WZND2uHhHTsCzz8PvPyy2b2Uy5X79i0t4dglwlcf3zT91I03hsd90iS77aty68v6xn/5C7D11uGDQFF4uM44kWZ4ON+mROWNzvWMGeWHCDwdOgAzZwIvvCC+HmR1fEODXU79fL5875q0G1dfHY6rFy8Oy2V6f+hEy1VXBV55pTwGZ9l333Cc3rdvKOYC1W3oDTcAY8eGpoFPPxXvY4cdwn5Yp07VxiRetBSlUNP91vPOC3WGzTbzX280NoZ/rIZSLAJbbFHWOMaPN99e1o0ENYRES6KNmoSHqxrSQqFShBg7Nvzfu3flk5/VVjPbX1aclrxoycJOmOKDtJ2WJqKlSYXs+1z16AEceKDdOr4ajlqIllEn4qCD3LbHEienpUy0tHFamnRcR48O/1iKRWCPPSo/GzbM7imr7BqQ/fZiMXzazT7xZomOZZLh4blcdadOVa9kvYPU0ADstZf4ux49gClT1Ovzv52/H/v2ta8bbJDVu7lc9QMFm2245LQEwoFFNLgQYeNK5DFxWprA1zki54bOaSkKvzfBt2jJk+b9teaa+oe5WSGO0zKXA7bbzmzZLDstu3bV12dAeJ/ts095HZa0w8Nl++UfdubzoeBx331l0VLltASA4cPDP9n3aTktGxrCB2err26+DVa0/N//yp/76uObOi1d+r6AOre+zAnWpUu10JeVnJa6vIjsvtZaK/yTiZbFYjjulI09ZeVubLSr/xsby2k+TNbr0QM44gjz7dswdmx5DM4S3dcs/LHda6+yw1hWf+RywPbby7+LaGoSC+q69qNzZ7O61ZVu3YBvvim/Lxb1GocMWQg9QeHhRJkc29il4bRMm7RvfJfwcN9Oy6RFSx9OyzRESxfqXbSMsz2WWuS0tHFaJomt01J3rtOYiCdyWrLYOC2zcO/5ROe0TBpdveu6DZFgEkdw9LGNpJyWJqKlKg+WjWgjc+D4or3dX75I675U5VuLqJXT0gW+rhe1H7ooGx2q8HDRMoC8/8seD5XTUkVUhqSiAuJOxMOuU2unpSsuTksRNuHhWREtddgaMyJsnJbR8rpt+sDXNROhevDn8jtE4eH8uCTtfh0Pf7/4LA/1GdqgI0GIMenY1Rtp3/im4eEsWXZaijpJfPm7dtU3/vUiWtZzeLiqw5mm0zIiydnDk8Q2p6XuXKcZHs6iqlfa+1Nd/renHf4eVzAAxHW3aAC4ZEn8fZHTUr4dH2ShbcsiSU8sEsGK0jLRzKfTMun6hq/rk8hpaeK01OW0jGDPs6xu1N0j0XFP02lpS1S21tZKp+WgQe7lYpEdo7jnOiIJ0VJHkpOW+RQtXSeHdHFa6raZRfgHf3Fy6vPrRNeTKudqLeCNIj7rpvbWJ49BHd0FRKqQ0zI+LuHhWc5pKWqok3JaZiGvXlaclibHIkuipWggxw9gdLN5s9dqLTtrsnyPpg4xnjSclqLw8O7dzddvb7RXpyUr7EfUWrRsD05LEi1rQ1qDTvb8moqWWXZaphEenpTT0mR/IpIWLfntxhEtWadl377Jp97yJVrahIerzpdupm2WNHNaxqnnfTktdWPStJyWvknSaRldT/z1WWvRkpyWqUBHghCTRk7LtMmK01IVHp4lp6WJ/Z79LJcL84bojnMtclq6YOq20JE1p6WteJ/URDymx7OWArZMYDfN68UTXQs+c1qKysiff9X+snCvJYkup2USsMfUh2gpEleiXFcsPkTLOINemdOSrUNcZg+XiZbsdlUzbsYRLX3XP+SaEFOL8HCZaGkqnpgI/EnXrybh4UlOxCP73MRpKUN3z0W/Jy2nZZzw8GXLgC+/DF/77t8nSefO8u9sZjfOimiZZni4aU5LXd3AHrsk2400w8OTclq25/Bw6jO00c5HK4Qz7dFpmfbgvL3ltNQ5Lbt2Natc6yU8PCtOy1rntExqIh7TcmQpPNxUlNR9n7TT0qZMWbjXkmTgwMr3aXRu2XOYptNy6dL4+/LhtNRNyhFhKlq6zB7ObpvCw7NPLZyWsnvTp9My6QFnGqKlS3h4PTstfYaHf/llOXLEd/9ehC8BSvWbbcK4bY5dmqIl36bUIqel7jpvLzktbX6zCLb+komWtY7OI6dlKtCRIMSQaBkfk5yWfAcwy6Kl6PewjarK3cdSL+HhvnJaxv0ttc5pmdREPKbHJUvh4bqymKZGSDqn5aJF5fcqAVtXlvZALRK2s/vwkdNS5AjLck5L1aDWZPuU03LlI8sT8cRxWiaNSU7LuOX0mdOyHkRLnxPxsIJLGk5LX+HhKrHRpm8cR7T0WVfqwsPTclrahIenldMy605Ltq8jEy1r7UaknJapQL0nQkx7FC2zmNOSb4h0AoMtSYuW7GemZV/ZnJa+yyGCPzdZy2lpO3s4S5bCw+M6LWXbtdkHj+g6Xbiw/F73MCEL91qapNEO2NS7JtRbTkvTazjJnJYkWtYXtXBayqgn0dIkp6WPBycR5LQ0Q1S29uK0TCo8XJZD3Ae68PC0clra7LO95LSMOxEP+9A2avN9j5XjQuHhqVBHdwGRNMu7dCm/GTq0dgXxCdtJGDIk3X3LGtyRI8uvN9oo2TL4FC1791avo8qBo9qP6DhloYFO8qmvDWmFh0+YIP7c1mk5blz59ahR4X9ReHg9OC1NBHYWXUclCklKOjx8/fXL7ydNUq+/snWI0nB0bb55+fVaa8Xfnqg9FomWo0dXvmcnYOLD5GXEcepE167qGKfltNx44/Jrts3VwYcNkmiZDllyWvLXQOfOQJ8+1ctlQbTk+2WiVAqswy+u2y+u03KNNcqv11nHbFs8Ub1WD05LFl8zh6sYP778etVV3bfDXCcBf43xfX3VPWUj+No+JLYhzZyWsnussbGyfbXJaVlP7Ybv8HCRaGka2ZcWFB6eCnQkiDamT52KYPXVgYMPlgsY9cZ//wusuSaw777A9tunv/9zzw0bsNtvL392xhnh8d1wQ+DSS4HzzgvF1Ztu8r9/n7OHDxkCHH102BF67LHwM3bgzDZUl1wS/qZ//KN6P3zHRNQJzuWAs88Oj92dd6rLnRT9+lW+d2044g5sXERLlUAh295115VFRtW2ddv5y1+AsWPDzvPUqeFnJk5LmeidpfBwF6flQw+FotMJJ5QHvkmHh59ySvhAZMMNgQsusFu/PfLkk2G99atfpfNA7rrrQgFx4kTgmGPs1r311rDeO+ggYMQIYJddgP320683bhzw+99XfvbYY6FIcOCB5m26bX11++1hec85p1yXZ8Fp+Ze/hNf/+PHAmWealUe0LxIt0yEtp6VI1OPp3z+sKxoaQlHwmGOAhx+uFNxsiPpDN9zgtr6KTTYBdt01vK5WWQX45S+rl9l5Z2CvvcIHKNOmmW33ttvC7f3hD5Wfy65fU3fi3nsDu+0GrL12WHfccEO1A1G0jyeeAIYNA3772/A/UH9OS99Cyz/+ER67n/0svDZ/+tOw3ovO9f33u297001RmjIFi/v3R+u991Z+t8su4UOhXC5sow44QL6dOPd1rUXLf/5TLEDqIhG32CJsc1dfvfLzhoZK0dJm9vAk8f3wRVXHJhUeXmsoPDwVajzdEpElFqy5JlrefhsNaVWUabD++sB779Vu/7/7XfjH0rkz8Oyz5fennhr+JYFPpyUQiqyXXlp+z078wDbkxxwjH6ybiJZAKHhFolctMOlIp4GLaKkKQ5Id7yFDgFmzwgE+O1AxdVZE9OkDvPJK5We860LktPzyy7CjPXeu2X7SwIfTcvvtgU8/Nd+ObWdHdD917w689JLZ+iuDiDJxIvDJJ+ntb/Bg4PXX3dbdZ5/wz4bf/S58QMYzdizw/vt227IdwOy1V/jHYuq0jDt7uMpp2acPMGOGvBwySLSsDWn1O0X9GhFXXRX+sbz/fijY/Pe/4XvTe0XVH4pLPg/wohJPLlf54NyEvfcO/0TbkpWDRRWhcffd5ffrrgsccojejbXVVsDHH1d+llTqGL7+crk2RWUzcfna8LOfhX88tudaRC6H1n/8A49Om4bJfERY9+7Aiy+abSfOfZ1mTkvRvg46KPxbbbXK/oPuPOZywL/+VX4d0dioTg/Gwx47nykeeJLOackS12kZ1StZEy1Ncgu7Qn2GNuhIEER7xka05DujJp0NNoeaiYNBtJ+swoeD1ZPTUhUCFjfE2XQ7LCZOy2JRvG/Kaakmbu5V6hDVP6ZCjAk+BjCqa9hEtOTvI1HbksslEz5HomVtSKuejyuO1kv/JSni5rQ0odb5rn3MHi9ax7SP3J6oZ6el7DtX8dnWacm2bz5yY6eF6vj4clpmPaelT1b2NoeBek8E0Z6J47Q06TiyTkvThrxeBm35fKV71LXccWdz9O20zIpoKZrsQNTBrXenpYikc1rGWZ+oP+KKluw1k6ZoKcOH09IV3iFGomU6pDUw8+nozEJOy7QxFS3j3I9ZEy19hYf7dlrWA1kVLXkBWbUvneBpSkNDNp2WvvHttGTHrll1WiYpolKfoQ06EgTRnomT09IEF9Gynp4asbkh2ad9aWLSceOX4fNxsmRBtMzlxIMc0b7rPaelyXZt9mGzrTTWJ2qPzQytItg6Oe5DFiCdnJaAOqelK0lOBgHQ/SYjreNCTst42KaLccF0W0ldM0lNxEOipR1ZdVq6OmYLhWw6LdMMD3ehHkRLclqmAvWeCKI9E8dpacLKJFp+9ZXbNmoRHm7z1Jgna07LLIWH+zp2PsPD495P9XQ/EmKy5rRUbcNk+/x9JLongiAZpyUPOS3TIa16KK7Az7IyOi1l16/P65rNYedSlriQ09Ifce63Wue0lH0X5zyu7E7LuA9Fo2OyMomW1Gdog44EQbRnkhYt2W22t5yWgB/RMi4mx8umQ6PbXq1yWuZy2Q8Pz6LTMi7UIap/siZaquojk5yWJvcAL1omdR3T/ZEO5LSsD9JwWi5bZrZcWhPxkNPSnaxMxJOFnJbAyuG0VJ3zuKJldEwop+VKCfXGCKI9w3ackggPZ2lvOS0BYNCg8us5c9y2kYYbg59xW0UWnJai2cNl+85SeLiuLD4GUSRaErbEFS3ZayALoqXJNVmvTksf4fftkbTqIXJaxmNlEC3JaemPOKKlT7GGvz7ZfPVAOjktAXenZZLtRpr1WHt1WiYpoq6M7YwEGq0QRHuGbYhtZw+3pb2Hh2cZVlDlZz3nqYVoKZrcQrR+1sPDfTktVfdi2vcHiZb1j0+npY/BkakrxKdoWS9OSxqAiKmXiXjqqf+SJj7baVPRMq2cliRauuNz4qs48Ncnfx/bpOzx5bTUXb8+H7Bkhbj9i+i+yprTMsny0IPONmi0QhDtGZewFlfao2jJOi1dSWOQyoqWAwbE2xY5LcskldNSlbMr7d9LomX9U6/h4TJMw8PZQV1SDzd8198kWoqpl/BwlpXxXMoG0D7P348/mi2XltOSwsPdyYpoqbs+TXNaNjTEu+5swsOzcux84is8vHPn+GXxSZLmChIt26DRCkG0Z37+8/Lrv/5Vv3yvXuH/bbYx2/4FF5Rf77WX2Tr1JFpOnlx+/Yc/uG1jn32qP9tqK/U6W2wR/u/Rw2wfZ51Vfn3hhWbryDBtfH3ntASALl3i7cc3/JNu9tisv3718qaDm1VWKb+eMqXyO3JaEiaceGL59YQJ8bblW7TcdNPy6+OOM9svW0/27Ste/sADy6+HDgVWX70c5jdihH05Zey2W/i/Y0f/QgMNQMSw54/tt/iGvVfYe8iUk04qv/7Tn+KXp97o1KncDu66a/nzuO3I1Knl1zvtZLYOW0+I+lmurLOO+r0JfJ+nqWnlbGtHjy6//vWv9ctvvnn4X9YGuBJHtGT7fbbtwRprhP9HjQr/24SHp+W0TOLhy4Ybhv9XX73y82HDyq8POsh+u5GQ26NH+R776U/tt5ME0W/dbLP422LH09G4nECKNiyCIFJnnXWAxx4DvvwS2G8//fIvvQQ89JB5B/Doo8Nw5DXXBIYMMVunnjpuffsCL74IvP56tbhkytChwDPPAB98EA7mH38c2Htv9Tq33x7+7bij2T622ipcPp/Xr6ProCTRgTGZPRwABg+u/qyW1wufN4cty7RpwF13AUcdVf7MVLRsbARmzwaefRbYf3/gppvK36UtWtbTQwSizNlnA2utBWywAdCzZ7xt+c5p2b078MorwKuvAgccUPmdbPvXXhs+LNtyS+DBB8XLXHFFKDptvnlYpzQ1hfXp229X7ycO118P/Oc/wNZb+6l/crny714Z3XkmdOwYtrMvvBDWiUnRowfw8svAa6+5XTMTJgD33w8sWWL+oLY9kc8Db74Z3ndsnzLufXLqqWFfacQIoH9/s3WKReCtt4Ann/R7zRx5ZFiHffIJMHGi2wMRPlx0ZXRZAqEj7rXXwn60yf12xx3AbbeZC9emxMlHzq7L58LU8fjjwL33AnvsEb7PotMyiTbp/vuBO+8Edtml8vMOHYBZs4Dnn3e7Z6NjUigAM2cCTzxhNrZNg8ceC393dK7j8Le/AZMmhf2hNCMmMw4dCYJo75i6JoHwSdFvfmO+fFMTcOihduWpN5Fk443Dvzhsvnn5CbJJB7hfP7vzkMuZD6B0HZQknEB85yuXE3ciRaJlLXNa8gMPtiyDBoWDGxfREgBGjgz/eCg8nDChc2fg8MP9bMt3TksAGDs2/OORTcTTowfwq1+Fr++5R7zN7t3Ly0SMHx/++aRXLzNXkCmsaElOSzmjR5edWaoUGnEZNy78c2Xnnf2VpR5Ze+3wjyVuO9KhA3DYYfbrrbOOmxNSRceO8etW/oHnyipaAsCYMeGfCf36hf0q3+j6kaY5LW1TsQwZUvl7sui0TIKBA+XncdSosvPUFvaYjBjhN8IiLquu6u/aZftDSbaFdQaNVgiCSJd6Ey3bG75ES5vzKMoNKepEsmHT7LK1QuW0FOHjiSiFhxNp4zs8XIXJ7OGmE3HUC2keX4KoBdSvq4REy2yhuz5Nc1rGzR+dRadlPUHHZKWGRisEQaQLdW6zTRqDahunZZZES1+zh6sg0ZJIm1qJarJrffny9MqQBuw9Rk5Loj2imnxrZYREy2zR0qL+3lS0jOt+zKLTsp4epJFouVJDoxWCINKFRJLaUgunJY9NTstahoeT05JYGfCd01KFyfbJaUkQ9YVOFFrZoJyW2ULXpqj6mWyfuD06LeupTSLRcqWGRisEQaQLOS2zTRodGNns4VkLD1fltBThQ7SknJZE2mTNackOMNtDEvo0RWGCqAWs05LaFHJaZg2daKkal7Drpum0JIGuGjomKzXUshAEkS4kWtaWWkzEw5PLiQXA3r3FM43XClunpQ9XKM0eTqRNrXJaymAHiXGdLVkgiYmOCCJLsKJlLaMjsgLfd+jUqTblIEJ+/FH9vapvx6Yr8em0TKM/aUI9PUir58mJiNiQaEkQRLqQSFJbdB0U0w5M3PBwUYctl6sOEc+SaKnrRPooK4WHE2mTpqhmMhEPO8BsD6IlOS2J9g4rWrYHd3RcKDw8W+jyJKv6QT4fotmEh9N9VA05LVdqaLRCEES6kEhSW7LstASqRct6ymnpQ3Ck8HAibbI8e3h7EC3JaUm0d9icluS0pPDwrBEnp2VSomVWnJb1BDktV2potEIQRLqQ07K29Oih/n7gwPLrAQPky8UJd5LNHg4AQ4dWvq+laGGb09LHtc0PdpKG7kdizJjy69VWS3Zfa69dfr3uuuJlhg8vv95ww2TLkwYkWhLtHXJaVkKiZbZg+7JrrFH9vaqf6TOnZVaclmw/m+3zZ53evWtdAqKGkGhJEES6kEhSW9ZbD9h//7Dxf+SR6u/32gvYZpuwIzNtmnw7/foBRxwB9OwJ3H23fr833gh07w6ceKJ89nAg3GbUMdloI2CLLfTbTgpbp6Ur06YBvXoBhxziJhr9+c9hWS+6yH/ZiPbP3/8eXndjxgCnnprsvs47D1hnHWCttYBLLhEvc/rpwMiRwOqrA9dem2x50oCtN0i0JNoj5LSshETLbHHggcCECWEkT9Rfvf328CH+b36jfpjvM6elzUQ8SYqW990HDBoETJwIHHBAcvvxwcMPh2OC/fcP+wXESgs9DiMIIl1ItKw9N98cDp5FnaZ8HnjsMfn3LNdcA1x1lZmYN2VK2OmIlpVdB1tuCcyZAyxdCnTpUtvrpUOHyvdJDcZ22gn4+mt3UfT444Fjj3Vbn3LsEUOHAh98EN5rSd9vPXsCb74Zvpbtq1s3YNas8NpsD+kLKKcl0d4hp2UllNMyWzQ0AM8+W9mv3WsvYI899G1MUk7LWoaHjx4NfP55fbSv220HzJtXH2UlEoVaFoIg0oUanmygOw+m58nmfJoO3ovF6k5/LeBFlSRzWsa9L+i+IuKQ5vVjcp+kIaCmBYmWRHuHnJaV8BOGkGiZDfh2zqTda49OS5P9Z4l6KiuRGHQVEASRLu1lIErEox4H72nktCQIon1BOS2J9g7rtCTRshoSLeuXWuW0pPuIICog0ZIgiHQhYYcA6lO0TGP28LSpx/NAEPUEOS2J9g6JlmriTFxI1BZWaGxPTkuCqDNItCQIIl3qUdgh/FOPg3edS4qubYIgeMhpSbR3SLRUQ07L9kFc0TIrOS0Jog4h0ZIgiHQhYYcA6lO0XLxY/T1d2wRB8LD1Qj3WewShg81pSQ6xaqhv0D7wKVrqrgm6jwiiAhItCYIgiPSpx8F7exQt6/E8EEQ9wTpqyGlJtEfIaammubnWJSB8EDenpU14ON1HBFEBiZYEQaQLiSQEUJ/XQXsULQmCSBZyWhLtHXJaqmGPD1G/kNOSIGoGiZYEQaQLDdoIoD6vgx9+UH9PoiVBEDw0EQ/R3iGnpRpyWrYPyGlJEDWDREuCINKlS5fy6y23rF05iNpSL4P3P/6x/Hqffaq///Wvy68nTEi+PL5ZffXy6z32qF05CKK9MnVq+fWvflW7chBEUhx3XPn1qafWrhxZ4qyzyq9/8pPalYOIx8knl19PnhxvWyedVH59/PHqZUePLr+eMiXefgmiHUDeY4Ig0qVQAGbMAB56CDj00FqXhqgV9SJannAC0LUrMGQIMHJk9ffnnx8Kf2PGAAMHpl682HTpAjz/PPD008AvflHr0hBE++OQQ0InWpcuwKRJtS4NQfhnt92Af/wjDH8VPdxbGTn1VKBnT2CNNYA116x1aQhXzjwTGDAAWHddYLXV4m1rr72A668Po3J0D4l79ACeeSbsnx1+eLz9EkQ7gERLgiDSZ8MNwz9i5aVeRMumJuC3v5V/361bKGzWM+PHh38EQfinWASOOKLWpSCI5MjlgJ/9rNalyBYdOwLHHlvrUhBx6dKl0kkch3zezqyx+ebhH0EQFB5OEARB1IB6ES0JgiAIgiAIgiCImkCiJUEQBJE+JFoSBEEQBEEQBEEQCki0JAiCIAiCIAiCIAiCIAgiU5BoSRAEQaQPOS0JgiAIgiAIgiAIBXUtWl555ZUYNmwYOnTogE022QQvvfSScvnbbrsNI0aMQIcOHTBq1ChMmzYtpZISBEEQFZBoSRAEQRAEQRAEQSioW9HyP//5D44//nhMnToVr776KtZff33ssMMOmDdvnnD5559/Hvvvvz9+/vOf47XXXsPuu++O3XffHW+88UbKJScIgiBItCQIgiAIgiAIgiBU1K1oefHFF+Pwww/HoYceinXXXRdXX301OnXqhOuvv164/KWXXoodd9wRJ510EtZZZx2ce+652HDDDXHFFVekXHKCIAiCREuCIAiCIAiCIAhCRbHWBXBh+fLlmDFjBk477bS2z/L5PCZNmoTp06cL15k+fTqOP/74is922GEH3H333cLlly1bhmXLlrW9//777wEA8+fPR3Nzc8xfkD2am5uxZMkSfPvtt2hoaKh1cQhipWNluwfzXbqgsOJ1sOqqaPn225qWhyCAle8+JIgsQvchQdQWugcJova09/tw0aJFAIDAwMhSl6LlN998g9bWVvTv37/i8/79++Odd94RrjNnzhzh8nPmzBEuf9555+H3v/991eerrbaaY6kJgiAIIZ9+CvTpU+tSEARBEARBEARBECmxaNEidO/eXblMXYqWaXDaaadVODNLpRLmz5+P3r17I5fL1bBkybBw4UIMGTIEn3/+Obp161br4hDESgfdgwRRe+g+JIjaQ/chQdQWugcJova09/swCAIsWrQIgwYN0i5bl6Jlnz59UCgUMHfu3IrP586diwEDBgjXGTBggNXyTU1NaGpqqvisR48e7oWuE7p169YubwqCqBfoHiSI2kP3IUHUHroPCaK20D1IELWnPd+HOodlRF1OxNPY2IixY8fisccea/usVCrhsccew/jx44XrjB8/vmJ5AHjkkUekyxMEQRAEQRAEQRAEQRAEURvq0mkJAMcffzwOOeQQjBs3DhtvvDEuueQSLF68GIceeigA4OCDD8bgwYNx3nnnAQCOOeYYTJw4EX/+85+x884745ZbbsErr7yCa6+9tpY/gyAIgiAIgiAIgiAIgiAIjroVLffbbz98/fXXOOusszBnzhyMGTMGDz74YNtkO5999hny+bKRdLPNNsPNN9+M3/3udzj99NOx5ppr4u6778bIkSNr9RMyRVNTE6ZOnVoVEk8QRDrQPUgQtYfuQ4KoPXQfEkRtoXuQIGoP3YdlcoHJHOMEQRAEQRAEQRAEQRAEQRApUZc5LQmCIAiCIAiCIAiCIAiCaL+QaEkQBEEQBEEQBEEQBEEQRKYg0ZIgCIIgCIIgCIIgCIIgiExBoiVBEARBEARBEARBEARBEJmCREsCV155JYYNG4YOHTpgk002wUsvvVTrIhFEu+C8887DRhtthK5du6Jfv37Yfffd8e6771Ys8+OPP+LII49E79690aVLF+y1116YO3duxTKfffYZdt55Z3Tq1An9+vXDSSedhJaWljR/CkG0C84//3zkcjkce+yxbZ/RPUgQyfPFF1/gwAMPRO/evdGxY0eMGjUKr7zyStv3QRDgrLPOwsCBA9GxY0dMmjQJ77//fsU25s+fjylTpqBbt27o0aMHfv7zn+OHH35I+6cQRF3S2tqKM888E6uttho6duyI1VdfHeeeey7YOXnpPiQIvzz99NPYddddMWjQIORyOdx9990V3/u652bNmoUtttgCHTp0wJAhQ3DBBRck/dNShUTLlZz//Oc/OP744zF16lS8+uqrWH/99bHDDjtg3rx5tS4aQdQ9Tz31FI488ki88MILeOSRR9Dc3Iztt98eixcvblvmuOOOw3333YfbbrsNTz31FL788kvsueeebd+3trZi5513xvLly/H888/j//2//4cbbrgBZ511Vi1+EkHULS+//DKuueYajB49uuJzugcJIlm+++47TJgwAQ0NDXjggQfw1ltv4c9//jN69uzZtswFF1yAyy67DFdffTVefPFFdO7cGTvssAN+/PHHtmWmTJmCN998E4888gjuv/9+PP300zjiiCNq8ZMIou7405/+hKuuugpXXHEF3n77bfzpT3/CBRdcgMsvv7xtGboPCcIvixcvxvrrr48rr7xS+L2Pe27hwoXYfvvtseqqq2LGjBm48MILcfbZZ+Paa69N/PelRkCs1Gy88cbBkUce2fa+tbU1GDRoUHDeeefVsFQE0T6ZN29eACB46qmngiAIggULFgQNDQ3Bbbfd1rbM22+/HQAIpk+fHgRBEEybNi3I5/PBnDlz2pa56qqrgm7dugXLli1L9wcQRJ2yaNGiYM011wweeeSRYOLEicExxxwTBAHdgwSRBqecckqw+eabS78vlUrBgAEDggsvvLDtswULFgRNTU3Bv//97yAIguCtt94KAAQvv/xy2zIPPPBAkMvlgi+++CK5whNEO2HnnXcODjvssIrP9txzz2DKlClBENB9SBBJAyC466672t77uuf++te/Bj179qzok55yyinB2muvnfAvSg9yWq7ELF++HDNmzMCkSZPaPsvn85g0aRKmT59ew5IRRPvk+++/BwD06tULADBjxgw0NzdX3IMjRozA0KFD2+7B6dOnY9SoUejfv3/bMjvssAMWLlyIN998M8XSE0T9cuSRR2LnnXeuuNcAugcJIg3uvfdejBs3Dvvssw/69euHDTbYANddd13b9x9//DHmzJlTcR92794dm2yyScV92KNHD4wbN65tmUmTJiGfz+PFF19M78cQRJ2y2Wab4bHHHsN7770HAHj99dfx7LPPYqeddgJA9yFBpI2ve2769OnYcsst0djY2LbMDjvsgHfffRffffddSr8mWYq1LgBRO7755hu0trZWDMQAoH///njnnXdqVCqCaJ+USiUce+yxmDBhAkaOHAkAmDNnDhobG9GjR4+KZfv37485c+a0LSO6R6PvCIJQc8stt+DVV1/Fyy+/XPUd3YMEkTwfffQRrrrqKhx//PE4/fTT8fLLL+Poo49GY2MjDjnkkLb7SHSfsfdhv379Kr4vFovo1asX3YcEYcCpp56KhQsXYsSIESgUCmhtbcUf//hHTJkyBQDoPiSIlPF1z82ZMwerrbZa1Tai79hULPUKiZYEQRApcOSRR+KNN97As88+W+uiEMRKw+eff45jjjkGjzzyCDp06FDr4hDESkmpVMK4cePwf//3fwCADTbYAG+88QauvvpqHHLIITUuHUGsHNx666246aabcPPNN2O99dbDzJkzceyxx2LQoEF0HxIEkWkoPHwlpk+fPigUClWzpM6dOxcDBgyoUakIov1x1FFH4f7778cTTzyBVVZZpe3zAQMGYPny5ViwYEHF8uw9OGDAAOE9Gn1HEIScGTNmYN68edhwww1RLBZRLBbx1FNP4bLLLkOxWET//v3pHiSIhBk4cCDWXXfdis/WWWcdfPbZZwDK95GqPzpgwICqSSJbWlowf/58ug8JwoCTTjoJp556Kn76059i1KhROOigg3DcccfhvPPOA0D3IUGkja97bmXop5JouRLT2NiIsWPH4rHHHmv7rFQq4bHHHsP48eNrWDKCaB8EQYCjjjoKd911Fx5//PEq6/7YsWPR0NBQcQ++++67+Oyzz9ruwfHjx2P27NkVDdYjjzyCbt26VQ0CCYKoZNttt8Xs2bMxc+bMtr9x48ZhypQpba/pHiSIZJkwYQLefffdis/ee+89rLrqqgCA1VZbDQMGDKi4DxcuXIgXX3yx4j5csGABZsyY0bbM448/jlKphE022SSFX0EQ9c2SJUuQz1cO/QuFAkqlEgC6DwkibXzdc+PHj8fTTz+N5ubmtmUeeeQRrL322u0iNBwAzR6+snPLLbcETU1NwQ033BC89dZbwRFHHBH06NGjYpZUgiDc+PWvfx107949ePLJJ4Ovvvqq7W/JkiVty/zqV78Khg4dGjz++OPBK6+8EowfPz4YP3582/ctLS3ByJEjg+233z6YOXNm8OCDDwZ9+/YNTjvttFr8JIKoe9jZw4OA7kGCSJqXXnopKBaLwR//+Mfg/fffD2666aagU6dOwY033ti2zPnnnx/06NEjuOeee4JZs2YFu+22W7DaaqsFS5cubVtmxx13DDbYYIPgxRdfDJ599tlgzTXXDPbff/9a/CSCqDsOOeSQYPDgwcH9998ffPzxx8Gdd94Z9OnTJzj55JPblqH7kCD8smjRouC1114LXnvttQBAcPHFFwevvfZa8OmnnwZB4OeeW7BgQdC/f//goIMOCt54443glltuCTp16hRcc801qf/epCDRkgguv/zyYOjQoUFjY2Ow8cYbBy+88EKti0QQ7QIAwr9//OMfbcssXbo0+M1vfhP07Nkz6NSpU7DHHnsEX331VcV2Pvnkk2CnnXYKOnbsGPTp0yc44YQTgubm5pR/DUG0D3jRku5Bgkie++67Lxg5cmTQ1NQUjBgxIrj22msrvi+VSsGZZ54Z9O/fP2hqagq23Xbb4N13361Y5ttvvw3233//oEuXLkG3bt2CQw89NFi0aFGaP4Mg6paFCxcGxxxzTDB06NCgQ4cOwfDhw4MzzjgjWLZsWdsydB8ShF+eeOIJ4VjwkEMOCYLA3z33+uuvB5tvvnnQ1NQUDB48ODj//PPT+ompkAuCIKiNx5MgCIIgCIIgCIIgCIIgCKIaymlJEARBEARBEARBEARBEESmINGSIAiCIAiCIAiCIAiCIIhMQaIlQRAEQRAEQRAEQRAEQRCZgkRLgiAIgiAIgiAIgiAIgiAyBYmWBEEQBEEQBEEQBEEQBEFkChItCYIgCIIgCIIgCIIgCILIFCRaEgRBEARBEARBEARBEASRKUi0JAiCIAiCIAiCIAiCIAgiU5BoSRAEQRAEQRB1yLBhw5DL5fCzn/2s1kUhCIIgCILwDomWBEEQBEEQlvzyl79ELpdDLpfD448/brXuww8/3LbuMccck1AJCYIgCIIgCKK+IdGSIAiCIAjCkoMPPrjt9Y033mi17r/+9S/hdmrFk08+2SaiPvnkk7UuDkEQBEEQBEEAINGSIAiCIAjCmgkTJmD11VcHANxxxx1YunSp0XqLFy/GXXfdBQBYb731MHbs2MTKSBAEQRAEQRD1DImWBEEQBEEQDhx00EEAgIULF+Kee+4xWufOO+/E4sWLK9YnCIIgCIIgCKIaEi0JgiAIgiAcOOigg5DL5QCYh4hHoeH5fB4HHnhgYmUjCIIgCIIgiHqHREuCIAiCIAgHhg8fjgkTJgAAHnroIcybN0+5/JdffonHHnsMALDNNttg8ODBVcvcfffd2GeffTB06FB06NABPXr0wLhx4/D73/8e3333nVG5pk2bhgMPPBDDhw9H586d0aFDB6y22mrYa6+9cMMNN2DJkiUAgE8++QS5XA5bb71127pbb711W37L6O+GG26o2sfy5cvx17/+FVtvvTX69u2LxsZGDBgwAJMnT8aNN96IUqkkLd/PfvYz5HI5DBs2DADw1Vdf4ZRTTsF6662Hrl27WufWFOXkvPXWW7Htttuib9++6NixI9Zee22cfPLJmD9/vnQ7W221FXK5HLbaaivl/s4+++y2/YmIvjv77LMBAE888QR23313DBo0CB07dsQ666yDc889t81xGzFt2jRMnjy5bbl1110X5513HpYvX258LF5++WXsv//+GDJkCDp06IAhQ4bg0EMPxTvvvGO0/gcffIDjjjsOo0aNQvfu3dGxY0cMHz4cP/vZz/DKK69I1+PPQalUwvXXX4+tt94a/fv3Rz6fpxnOCYIgCIKwJyAIgiAIgiCcuPbaawMAAYDg0ksvVS574YUXti37z3/+s+K7+fPnB9tss03b96K/fv36BdOnT5du/5tvvgm23XZb5TYABP/4xz+CIAiCjz/+WLssu3zExx9/HIwYMUK5zuabbx58++23wnIecsghAYBg1VVXDaZPnx706dOnav0nnnhCe+wjnnjiibb1HnvsseDAAw+UlmuNNdYIvvrqK+F2Jk6cGAAIJk6cqNzf1KlT27YnIvpu6tSpwXnnnRfkcjlhWTbbbLPghx9+CEqlUnD00UdLy7zjjjsGLS0twn2tuuqqAYDgkEMOCf7+978HxWJRuI2mpqbg1ltvVf6uCy+8MGhoaJCWI5fLBWeeeaZwXfYcPPDAA8GkSZOq1j/kkEOU+ycIgiAIguAhpyVBEARBEIQj++67Lzp06ACgclZwEdH3Xbp0wZ577tn2+bJlyzBp0iQ8/vjjKBQKOOigg/Dvf/8bL7zwAp555hn88Y9/RO/evTFv3jxMnjwZn376adW2lyxZgq233rrNyTl27Fhcc801eO655/DKK6/grrvuwnHHHYdBgwa1rTN48GDMnj0b119/fdtn119/PWbPnl3xt/vuu7d9/8MPP2Dbbbdtc+7tvvvuuPfee/HKK6/gtttuw8SJEwEAzz77LHbddVe0trZKj8cPP/yAvfbaCz/++CPOOOMMPPnkk3jppZfw97//HQMHDlQeSxlnnnkmbrzxRuy+++648847MWPGDEybNg0777wzgLKTMA0eeOABnHbaadh0001x880345VXXsGDDz6InXbaCQDw/PPP47zzzsNf/vIXXHbZZdhpp51wxx13YMaMGbjnnnuw6aabAgAefPBBXHfddcp9zZw5E7/61a/Qr18/XH755XjxxRfx1FNP4ZRTTkFTUxOWLVuGKVOmSN2SF154IU466SQ0Nzdj9OjRuOqqq/Doo4/ilVdewU033YTx48cjCAKce+65uOyyy5RlOeWUU/Doo4/iJz/5ScU5iH43QRAEQRCEMbVWTQmCIAiCIOqZfffdt81N9s477wiXef3119uWOfjggyu+O/300wMAQY8ePYJXXnlFuP4nn3wSDBw4MAAQHHDAAVXfH3fccW3bP/LII4NSqSTczrJly4I5c+ZUfMa65HQOxxNPPLFt2d/97ndV35dKpWDKlClty/z1r3+tWiZyWgIIunTpEsycOVO5Tx1s+QEEf/jDH4Tl2n777QMAQbFYDObNm1e1jG+nJYBgr732qnJJtrS0BJtuumkAIOjatWvQoUOH4Nhjj63azuLFi9uclKNHjxbuK/oeK5yrIhfp448/3ubA3Gijjaq+f/PNN9scllOnThVeO62trW0O1i5dugTz58+v+J4/B6JrgyAIgiAIwhZyWhIEQRAEQcTg4IMPbnstc1uyn7PL//DDD7jyyisBAOeeey7Gjh0rXH/VVVfFmWeeCQC47bbbKvIhLliwANdccw2A0GF56aWXSvMtNjY2on///iY/q4ply5bhb3/7GwBgvfXWa8vZyJLL5fDXv/4VvXv3BgBcccUVym2efPLJWH/99Z3KI2Ls2LE4/fTTheU6/vjjAQAtLS2YPn26t33K6NSpE6699loUCoWKzwuFAo444ggAwKJFi9C3b19ccMEFwvUPOeQQAMCsWbPw/fffK/f35z//GQMGDKj6fOutt8bhhx8OIMx5ybst//znP6O5uRnjxo3D1KlThddOPp/H5ZdfjqamJvzwww+4/fbbpeVYa621hNcGQRAEQRCELSRaEgRBEARBxGCHHXZoEwJvuukmBEFQ8X2pVMLNN98MAFhllVUqJr556qmn2sSovffeW7mfLbfcEgDQ3NyMGTNmtH3++OOPt02uc/TRR1eJZL6YMWMGFixYACCcTEe2n27dumHfffcFALz11lv46quvpNucMmWK1zIecMABUsGWFYQ/+ugjr/sVsd1226FXr17C71ihds8990RDQ4N2uY8//li6r549e2K33XaTfn/YYYe1vX700UcrvrvvvvsAAHvttZf02AFAjx49MGrUKABQir777bdfYtcgQRAEQRArFyRaEgRBEARBxKBYLOKAAw4AEM7I/eyzz1Z8/9hjj+HLL78EEIp0+Xy5+8W63gYOHFg1czf7N3LkyLZl58yZ0/b6tddea3u9xRZb+P1xDG+88Ubb60022US5LPs9ux5Lly5dMHz4cD+FW8GIESOk37EC4qJFi7zuV8Raa60l/a5Hjx7Wy6nKvMEGG6BYLEq/HzNmDBobGwEAs2fPbvv8008/xddffw0AOO2005TXXy6Xa7te2euPZ/To0dLvCIIgCIIgbCDRkiAIgiAIIiaqEHFZaDgAzJs3z2l/kbMSAL755pu2164T2Jgwf/78ttf9+vVTLsuGKbPrsbCCnC86deok/Y4Vi1UTBKVdFh9l1p2PYrHYJtqy58PH9cfTs2dPp20SBEEQBEHwyB/JEgRBEARBEEaMGTMGo0aNwuzZs3Hbbbe15f9bvHgx7rzzTgBhePK6665bsR4rRL366qvSMGGeVVZZxV/hHVCFEZtCIcT+cD0f7PV31llnYZ999jFar3PnztLv6LwSBEEQBOELEi0JgiAIgiA8cPDBB+Okk07CggULcN9992HvvffGXXfd1TZpDu+yBNA2YQ0A9O3b10mM7NOnT9vrr776CquttppD6fWw4dVz585VhjWz4cOyvI5ZI3I1lkol5XLsJEhZYe7cucrvW1pa2hyW7Plgr7+GhoaKFAQEQRAEQRC1hsLDCeL/t3d/IU22fxzHPw/ObSUrKEs0qZBIiCRL7A8GUkisIqJcYkRlMBVLQjszKCo7U7B0QUQkkhJE20EHCzLDKWUGYsNmIaQFiwhECYnyT/UciPdPmZMMrfV73q+j293Xtfua7ujj9b2+AADMgSNHjhi7zOrr6yX9rzQ8Ojpahw8fDpmzceNG4/rJkye/9NxNmzYZ1y0tLbOe/7O79CYHWu3t7TOOff78+bTzIpnNZpMkDQ4Ozjiup6fndyxnVl68eKGxsbGw9/1+v0ZGRiRN/XskJSVp8eLFkn79+wcAADBfCC0BAADmQHx8vLKysiRJXq9XL1++VFNTkyTJbrdr2bJlIXOysrKMMw2rq6tDOo//jB07dhjlujU1NbM+r9FqtRrXw8PDYcelpaUZ51DW1dWF3ZE4NDSku3fvSpLWrVs3r+dszqWJHao9PT1hm9709/ersbHxdy7rpwwMDBhdwKdz69Yt43riOyqNl3Lv2bNHkvTw4UO9evVq/hYJAAAwS4SWAAAAc2SiBHx0dFS5ublGgDhdabg03oymuLhYkvT06VOVlpbOWJ788eNH3bx5M+Q9CgsLJUkdHR0qKSkJG36Ojo6GNF+ZHCq+efMm7LMtFoucTqek8Y7g5eXlIWN+/Pih4uJioznQxGf7G2RmZkqSRkZGVFNTE3J/dHRUTqdTX758+d1L+ylnzpyZtkzc5/Ppxo0bksaD5/T09Cn3y8rKFBUVpe/fv8vhcCgYDIZ9xrdv39TQ0DDjGAAAgLnCmZYAAABz5MCBA7LZbBoaGlIgEJA03k153759YedcunRJPp9P7e3tunr1qpqbm5Wfn6/U1FTFxMRocHBQgUBAjx490oMHD5SSkmKEhxPKy8vV2Niorq4uuVwutbW1qbCwUCkpKTKbzQoGg2ptbdWdO3d0+fJl5eXlGXNXrlypxMREBYNBVVZWKjExUcnJyUape1xcnFE6ff78eXk8HvX29urChQvq6urSiRMnFB8fr76+PrlcLjU3N0uStm3bpoKCgjn87c6vvXv3atWqVXr37p3OnTun/v5+HTx4UFarVYFAQNXV1ers7NTWrVv17NmzP73cKTZs2KDu7m6lpaWprKxMmzdv1vDwsLxer6qqqjQ2NiaTyaRr166FzE1JSVFlZaVKS0vV3d2t9evXq6CgQDt37lRcXJy+fv2qt2/fqq2tTffu3dOHDx/U1dX1x5tBAQCA/3+ElgAAAHNkwYIFcjgcqq2tNV7LycmRxWIJO8disaixsVF5eXnyeDzy+/0z7lBctGhRyGsLFy7U48ePlZ2drZaWFnV0dMwqMDx79qxOnjypvr4+7d+/f8q92tpaI+S02WxqamrS7t279fr1a7ndbrnd7pD3y8jI0P379/+qTtJms1n19fWy2+36/PmzqqqqVFVVZdyPiorSlStXNDAwEHGhZWpqqoqLi1VUVDTtd8dsNquurk5btmyZdn5JSYliYmJUUlKiT58+qaKiQhUVFdOONZvNU44UAAAAmC+UhwMAAMyh48ePT/k5XGn4ZDabTW63W62trXI6nUpOTpbNZpPJZNKSJUuUnp6uU6dOyev1hj1TMTY2Vj6fTx6PRw6HQ4mJibJYLLJarUpKStKhQ4fU0NAwbUOgoqIiud1u7dq1S8uXL5fJFP7/2qtXr5bf75fL5VJmZqaWLl2q6OhoxcXFyW636/bt22ppaflruoZPtn37dnV0dOjo0aNKSEhQdHS04uPjjTD49OnTf3qJYTmdTrW2tionJ0cJCQkym81asWKFjh07ps7OTuXm5s44Pz8/X729vbp48aIyMjIUGxsrk8mkmJgYrV27VtnZ2bp+/brev3+vNWvW/KZPBQAA/sv++fErJ74DAAAAAAAAwDxhpyUAAAAAAACAiEJoCQAAAAAAACCiEFoCAAAAAAAAiCiElgAAAAAAAAAiCqElAAAAAAAAgIhCaAkAAAAAAAAgohBaAgAAAAAAAIgohJYAAAAAAAAAIgqhJQAAAAAAAICIQmgJAAAAAAAAIKIQWgIAAAAAAACIKISWAAAAAAAAACIKoSUAAAAAAACAiEJoCQAAAAAAACCi/AsPRnyNgrsaxQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "LgfmjxdIQ_L2", + "outputId": "652ab9fc-71af-453d-f271-9a3351078afd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m222/222\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfSJJREFUeJzt3Xl8VPW9//H3TCYJ64QAISEQgkJAQEHjbS1YigoUUXGriugtqEBp1Ra9iha1IqLigvfWpVrc7RXBqsWf9koVcG1xQVGDYEGEQCCQhCUJa5aZ8/tjciaznJlM1jlJXs/HIw8zkzNnvrMk8p7P9/v5OgzDMAQAAAAAAOLOGe8BAAAAAAAAH0I6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6ACCuHA6H7rrrrngPo9154YUX5HA4lJ+fX+/bfvDBB3I4HPrggw+afFxtXf/+/XXVVVfFexhB7rrrLjkcDu3duzfeQ2kQOz6nANAYhHQAaKAnnnhCDodDp512WqPP9fbbbxNUW1Bpaak6dOggh8Oh7777zvKYq666Sg6Hw/KrQ4cOQcfee++9Ov/885Went7oDx3OOOOMiPcb+MX7pfHWrFmju+66S6WlpY0+1w8//KBZs2bp+OOPV4cOHeR2u3X66afrkUce0dGjRxs/WABAu+GK9wAAoLVasmSJ+vfvr88//1xbtmzRwIEDG3yut99+W3/6058IXi3k1VdflcPhUEZGhpYsWaJ77rnH8rjk5GQ988wzYdcnJCQEXb7jjjuUkZGhU045Re+8806jxnb77bdrxowZ/str167Vo48+qttuu01DhgzxXz98+PBG3c8vf/lLXX755UpOTq73bX/2s5/p6NGjSkpKatQY4m3NmjWaP3++rrrqKnXr1q3B5/m///s/XXrppUpOTtbUqVN14oknqrKyUv/85z81Z84cbdiwQU899VTTDRwA0KYR0gGgAbZt26Y1a9bob3/7m2bNmqUlS5Zo3rx58R5Wu3fs2DElJSXJ6Yw+Ueyll17SOeeco+zsbL388ssRQ7rL5dJ//ud/1nm/27ZtU//+/bV3716lpaU1aOym8ePHB13u0KGDHn30UY0fP15nnHFGxNsdPnxYnTt3jvl+EhISwj5siJXT6QybTdBebdu2TZdffrmys7P13nvvqXfv3v6fXXfdddqyZYv+7//+L44jRH3E+jcEAJoTf4EAoAGWLFmi1NRUnXvuubrkkku0ZMmSsGMirdvNz8+Xw+HQCy+8IMk3rfpPf/qTJAVNZzYdPnxYN910k7KyspScnKzBgwdr0aJFMgwj7D5feuklnXrqqerYsaO6d++uyy+/XAUFBUHHnHHGGTrxxBO1ceNGnXnmmerUqZP69OmjBx98MOx8x44d01133aVBgwapQ4cO6t27ty6++GL98MMP9R5fRUWFbrzxRqWlpalr1646//zztXPnTsvnd9euXbrmmmuUnp6u5ORkDRs2TM8995zl87ts2TLdcccd6tOnjzp16qTy8nLLc5p27Nihjz/+WJdffrkuv/xy/wcujdG/f/9G3b6+zDXEGzdu1BVXXKHU1FT99Kc/lSTl5eXpqquu8k+7zsjI0DXXXKN9+/YFncNqTXr//v113nnn6Z///Kd+/OMfq0OHDjr++OP1l7/8Jei2Vu/t+ryvtm/frvPPP1+dO3dWr169dOONN+qdd96JaZ37wYMHdcMNN6h///5KTk5Wr169NH78eK1bty7ouM8++0xnn322UlJS1KlTJ40ZM0b/+te/gp7DOXPmSJKOO+44/+9dfdfoP/jggzp06JCeffbZoIBuGjhwoGbPnh3x9vv379fNN9+sk046SV26dJHb7dbEiRP1zTffhB372GOPadiwYerUqZNSU1P1H//xH3r55Zfr/dxEsnfvXl122WVyu93q0aOHZs+erWPHjgUdU11drQULFmjAgAFKTk5W//79ddttt6mioiLouEhLMkLXj5vvw3/961/6r//6L6Wlpalz58666KKLVFJSEnRbwzB0zz33qG/fvurUqZPOPPNMbdiwIew+Yn1OI/0N+frrr+VwOPQ///M/Yedes2aNHA6Hli5dWtfTCQANRiUdABpgyZIluvjii5WUlKQpU6boySef1Nq1a/WjH/2o3ueaNWuWCgsLtXLlSv3v//5v0M8Mw9D555+v999/X9OnT9fJJ5+sd955R3PmzNGuXbuC/hF577336g9/+IMuu+wyzZgxQyUlJXrsscf0s5/9TF999VXQdN4DBw7o7LPP1sUXX6zLLrtMr732mm699VaddNJJmjhxoiTJ4/HovPPO0+rVq3X55Zdr9uzZOnjwoFauXKlvv/1WAwYMqNf4ZsyYoZdeeklXXHGFRo0apffee0/nnntu2PNRVFSkn/zkJ3I4HLr++uuVlpamFStWaPr06SovL9cNN9wQdPyCBQuUlJSkm2++WRUVFXVOwV66dKk6d+6s8847Tx07dtSAAQO0ZMkSjRo1yvJ4q2ZaSUlJcrvdUe+nJVx66aXKycnRfffd5/9QZOXKldq6dauuvvpqZWRk+Kdab9iwQZ9++mnQB0BWtmzZoksuuUTTp0/XtGnT9Nxzz+mqq67SqaeeqmHDhkW9bSzvq8OHD+uss87S7t27NXv2bGVkZOjll1/W+++/H9Nj/vWvf63XXntN119/vYYOHap9+/bpn//8p7777jvl5uZKkt577z1NnDhRp556qubNmyen06nnn39eZ511lj7++GP9+Mc/1sUXX6zNmzdr6dKl+p//+R/17NlTkuo9E+Ktt97S8ccfH/H9U5etW7fqjTfe0KWXXqrjjjtORUVFWrx4scaMGaONGzcqMzNTkvT000/rd7/7nS655BJ/eM7Ly9Nnn32mK664IubnJprLLrtM/fv318KFC/Xpp5/q0Ucf1YEDB4I+pJkxY4ZefPFFXXLJJbrpppv02WefaeHChfruu++0fPnyBj0HkvTb3/5WqampmjdvnvLz8/XHP/5R119/vV555RX/MXfeeafuuecenXPOOTrnnHO0bt06/fznP1dlZWWDnlNT6N+QE044QaeffrqWLFmiG2+8MejYJUuWqGvXrrrgggsa/FgBoE4GAKBevvjiC0OSsXLlSsMwDMPr9Rp9+/Y1Zs+eHXTc+++/b0gy3n///aDrt23bZkgynn/+ef911113nWH1J/mNN94wJBn33HNP0PWXXHKJ4XA4jC1bthiGYRj5+flGQkKCce+99wYdt379esPlcgVdP2bMGEOS8Ze//MV/XUVFhZGRkWH84he/8F/33HPPGZKM//7v/w4bl9frrdf4vv76a0OSce211wYdd8UVVxiSjHnz5vmvmz59utG7d29j7969QcdefvnlRkpKinHkyBHDMGqf3+OPP95/XSxOOukk48orr/Rfvu2224yePXsaVVVVQcdNmzbNkGT5NWHCBMtzl5SUhD2exnr11VfD3kfz5s0zJBlTpkwJO97quVi6dKkhyfjoo4/81z3//POGJGPbtm3+67Kzs8OOKy4uNpKTk42bbrrJf53VezvW99XDDz9sSDLeeOMN/3VHjx41TjjhBMvfl1ApKSnGddddF/HnXq/XyMnJMSZMmOB/nxqG73k57rjjjPHjx/uve+ihh8Keg/ooKyszJBkXXHBBzLfJzs42pk2b5r987Ngxw+PxBB2zbds2Izk52bj77rv9111wwQXGsGHDop67rucmEvP9dP755wddf+211xqSjG+++cYwjNrf4xkzZgQdd/PNNxuSjPfee89/XaTfg9DHb74Px40bF/R63XjjjUZCQoJRWlpqGIbvfZiUlGSce+65QcfddttthqQGPafR/oYsXrzYkGR89913/usqKyuNnj17Bt0XADQHprsDQD0tWbJE6enpOvPMMyX5pnVOnjxZy5Ytk8fjadL7evvtt5WQkKDf/e53QdffdNNNMgxDK1askCT97W9/k9fr1WWXXaa9e/f6vzIyMpSTkxNWpezSpUvQWuukpCT9+Mc/1tatW/3Xvf766+rZs6d++9vfho3LrMbGOr63335bksKOC62KG4ah119/XZMmTZJhGEGPZcKECSorKwubujtt2jR17NjR+gkMkZeXp/Xr12vKlCn+66ZMmaK9e/daNnzr0KGDVq5cGfZ1//33x3R/ze3Xv/512HWBz8WxY8e0d+9e/eQnP5GkmKY9Dx06VKNHj/ZfTktL0+DBg4PeG5HE8r76xz/+oT59+uj888/3X9ehQwfNnDmzzvNLUrdu3fTZZ5+psLDQ8udff/21vv/+e11xxRXat2+f//1z+PBhjR07Vh999JG8Xm9M91UXc2lF165dG3yO5ORk//pnj8ejffv2qUuXLho8eHDQ69WtWzft3LlTa9eujXiuup6bulx33XVBl83fffP31/zvf/3XfwUdd9NNN0lSo9be/+pXvwqa5TF69Gh5PB5t375dkrRq1SpVVlbqt7/9bdBxoX9DpNifU5PV35DLLrtMHTp0CFrK9M4772jv3r0x9akAgMZgujsA1IPH49GyZct05plnatu2bf7rTzvtND388MNavXq1fv7znzfZ/W3fvl2ZmZlhIcDs8m3+A/b777+XYRjKycmxPE9iYmLQ5b59+4ZNe05NTVVeXp7/8g8//KDBgwfL5Yr8v4pYx7d9+3Y5nU4NGDAg6LjBgwcHXS4pKVFpaameeuqpiN2wi4uLgy4fd9xxEccX6qWXXlLnzp11/PHHa8uWLZJ8AbF///5asmRJ2PT7hIQEjRs3LubztzSrx75//37Nnz9fy5YtC3uuysrK6jxnv379wq5LTU3VgQMH6rxtLO+r7du3a8CAAWHHxbo7woMPPqhp06YpKytLp556qs455xxNnTpVxx9/vCTf74LkC16RlJWVKTU1Nab7i8Zc8nDw4MEGn8Pr9eqRRx7RE088oW3btgV90NejRw//97feeqtWrVqlH//4xxo4cKB+/vOf64orrtDpp5/uP6au56YuoX8/BgwYIKfT6V+nb/4eh75WGRkZ6tatm//3vSFC33fm62O+78xzh44xLS0t7LWM9Tk1Wf0edevWTZMmTdLLL7+sBQsWSPJ9QNunTx+dddZZ9X14AFAvhHQAqIf33ntPu3fv1rJly7Rs2bKwny9ZssQf0iOt/W3qarvk+0epw+HQihUrLDt2d+nSJehypK7ehkUzupZkVjj/8z//M2LICt16LNYqumEYWrp0qQ4fPqyhQ4eG/by4uFiHDh0Ke67szOqxX3bZZVqzZo3mzJmjk08+WV26dJHX69XZZ58dUwW5Me+NlnhfXXbZZRo9erSWL1+ud999Vw899JAeeOAB/e1vf9PEiRP9j/Ghhx7SySefbHmOpnqN3W63MjMz9e233zb4HPfdd5/+8Ic/6JprrtGCBQvUvXt3OZ1O3XDDDUGv15AhQ7Rp0yb9/e9/1z/+8Q+9/vrreuKJJ3TnnXdq/vz5kup+buor0t+wuvoaRBPp719TvndifU5Nkf6GTJ06Va+++qrWrFmjk046SW+++aauvfZaOr8DaHaEdACohyVLlqhXr17+buyB/va3v2n58uX685//rI4dO/qrO6WlpUHHWVWbIv2jNzs7W6tWrdLBgweDqtX//ve//T+X5G/idtxxx2nQoEENemyhBgwYoM8++0xVVVVhlfj6ji87O1ter9dfnTdt2rQp6Hxm53ePx9PkFewPP/xQO3fu1N133x2037jkq9b96le/0htvvNGqp7IeOHBAq1ev1vz583XnnXf6rzery3aQnZ2tjRs3yjCMoPe9ObMhFr1799a1116ra6+9VsXFxcrNzdW9996riRMn+mdruN3uOt9DjQmbpvPOO09PPfWUPvnkE40cObLet3/ttdd05pln6tlnnw26vrS01N/MztS5c2dNnjxZkydPVmVlpS6++GLde++9mjt3rn9LvGjPTV2+//77oKryli1b5PV6/bsXmL/H33//fdDvUFFRkUpLS/2/75KvEh76t6+yslK7d++O6XkJZZ77+++/D5oZUFJSEjbLoz7PaTRnn3220tLStGTJEp122mk6cuSIfvnLXzZo/ABQH3wUCAAxOnr0qP72t7/pvPPO0yWXXBL2df311+vgwYN68803Jfn+UZmQkKCPPvoo6DxPPPFE2LnN/a1D/1F7zjnnyOPx6PHHHw+6/n/+53/kcDj8//C++OKLlZCQoPnz54dVngzDCNt+Kxa/+MUvtHfv3rD7Ns9Zn/GZ/3300UeDjvvjH/8YdDkhIUG/+MUv9Prrr1tWJ0O3ZKoPc6r7nDlzwl67mTNnKicnx3Irvaa0d+9e/fvf/9aRI0ea5fxmNTL0PRD6PMfThAkTtGvXLv/vieRbO//000/XeVuPxxM2Zb9Xr17KzMz0bwF26qmnasCAAVq0aJEOHToUdo7A91Ck3zvJt1Wf+WFTNLfccos6d+6sGTNmqKioKOznP/zwgx555JGIt09ISAh7vV599VXt2rUr6LrQ3+GkpCQNHTpUhmGoqqoqpuemLqEfPj722GOSan9/zznnHEnh76f//u//lqSg5SIDBgwI+9v31FNPNXgm0bhx45SYmKjHHnss6Pmyem/H+pzWxeVyacqUKfrrX/+qF154QSeddFLYTB4AaA5U0gEgRm+++aYOHjwY1PAq0E9+8hN/1WXy5MlKSUnRpZdeqscee0wOh0MDBgzQ3//+97B1wpIvWEi+xmoTJkxQQkKCLr/8ck2aNElnnnmmbr/9duXn52vEiBF699139f/+3//TDTfc4K8aDhgwQPfcc4/mzp2r/Px8XXjhheratau2bdum5cuX61e/+pVuvvnmej3eqVOn6i9/+Yv+67/+S59//rlGjx6tw4cPa9WqVbr22mt1wQUXxDy+k08+WVOmTNETTzyhsrIyjRo1SqtXr7asnt5///16//33ddppp2nmzJkaOnSo9u/fr3Xr1mnVqlXav39/vR6H5Nuj/fXXX9f48eP9FcdQ559/vh555BEVFxerV69eknx7Qr/00kuWx1900UX+kPe///u/2r59uz98f/TRR7rnnnskSb/85S/9VcDHH39c8+fP1/vvv68zzjij3o+jLm63Wz/72c/04IMPqqqqSn369NG7774b1D8h3mbNmqXHH39cU6ZM0ezZs9W7d28tWbLE/7pEq24fPHhQffv21SWXXKIRI0aoS5cuWrVqldauXauHH35YkuR0OvXMM89o4sSJGjZsmK6++mr16dNHu3bt0vvvvy+326233npLUu3v3e23367LL79ciYmJmjRpkjp37qypU6fqww8/rHO69YABA/Tyyy9r8uTJGjJkiKZOnaoTTzxRlZWVWrNmjV599dWgfcFDnXfeebr77rt19dVXa9SoUVq/fr2WLFkSto785z//uTIyMnT66acrPT1d3333nR5//HGde+656tq1q0pLS+t8buqybds2nX/++Tr77LP1ySef+LdMHDFihCRpxIgRmjZtmp566imVlpZqzJgx+vzzz/Xiiy/qwgsv9DfTlHxbtf3617/WL37xC40fP17ffPON3nnnnXpVsgOlpaXp5ptv1sKFC3XeeefpnHPO0VdffaUVK1aEnTPW5zQWU6dO1aOPPqr3339fDzzwQIPGDgD11qK95AGgFZs0aZLRoUMH4/DhwxGPueqqq4zExET/9mElJSXGL37xC6NTp05GamqqMWvWLOPbb78N24Kturra+O1vf2ukpaUZDocjaDu2gwcPGjfeeKORmZlpJCYmGjk5OcZDDz0UtA2R6fXXXzd++tOfGp07dzY6d+5snHDCCcZ1111nbNq0yX/MmDFjLLdymjZtmpGdnR103ZEjR4zbb7/dOO6444zExEQjIyPDuOSSS4wffvih3uM7evSo8bvf/c7o0aOH0blzZ2PSpElGQUGB5VZNRUVFxnXXXWdkZWX573fs2LHGU0895T/G3D7p1Vdfjfh6BD4vkoxnn3024jEffPCBIcl45JFH/M+HImzBppBtu8ztx6y+rLZOq2ubsUDRtmArKSkJO37nzp3GRRddZHTr1s1ISUkxLr30UqOwsDDseY60Bdu5554bds4xY8YYY8aM8V+OtAVbrO+rrVu3Gueee67RsWNHIy0tzbjpppv8r9Gnn34a8bmoqKgw5syZY4wYMcLo2rWr0blzZ2PEiBHGE088EXbsV199ZVx88cVGjx49jOTkZCM7O9u47LLLjNWrVwcdt2DBAqNPnz6G0+kMej7M1zRWmzdvNmbOnGn079/fSEpKMrp27WqcfvrpxmOPPWYcO3bMf5zVFmw33XST0bt3b6Njx47G6aefbnzyySdhz/nixYuNn/3sZ/7HM2DAAGPOnDlGWVlZvZ+bUOb7aePGjcYll1xidO3a1UhNTTWuv/564+jRo0HHVlVVGfPnz/f/TcjKyjLmzp0b9BgNwzA8Ho9x6623Gj179jQ6depkTJgwwdiyZUvELdjWrl0bdHur95jH4zHmz5/vf67OOOMM49tvv23wcxrr35Bhw4YZTqfT2LlzZ53PJQA0BYdhxLlLEAAAaPf++Mc/6sYbb9TOnTvVp0+feA8H8DvllFPUvXt3rV69Ot5DAdBOsCYdAAC0qKNHjwZdPnbsmBYvXqycnBwCOmzliy++0Ndff62pU6fGeygA2hHWpAMAgBZ18cUXq1+/fjr55JNVVlaml156Sf/+97+bvXEfEKtvv/1WX375pR5++GH17t1bkydPjveQALQjhHQAANCiJkyYoGeeeUZLliyRx+PR0KFDtWzZMoIQbOO1117T3XffrcGDB2vp0qURG04CQHNgTToAAAAAADbBmnQAAAAAAGyCkA4AAAAAgE20uzXpXq9XhYWF6tq1qxwOR7yHAwAAAABo4wzD0MGDB5WZmSmnM3qtvN2F9MLCQmVlZcV7GAAAAACAdqagoEB9+/aNeky7C+ldu3aVJN32ry/VoUuXOI8GAAAAANDWHTt0SPedfqo/j0bT7kK6OcW9Q5cu6hDDEwQAAAAAQFOIZck1jeMAAAAAALAJQjoAAAAAADZBSAcAAAAAwCba3Zp0AAAAAEDTSTC8SvJ65ZAR76HEhSGHqh0OVTmcUhNs801IBwAAAAA0iLu6UkOOliupCcJpa2YYhvY5XfqhY1dVOhMadS5COgAAAACg3hIMr4YcLVda167q0r271F5zuiF5qqrUad8+dTlcqi+6dJfRiA8tCOkAAAAAgHpL8nqV5HCoS/fuSuzQId7DiavEDh3kdLl0tKBAHbweHU1oeNSmcRwAAAAAoN78a9DbawU9hMPpeyIauzafkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAAC0O8V79uj2G2/QaScMVra7q04dMEBTL75IH7/3niTpf595RhePH6+ctJ7q3SFZZaWlLTIuQjoAAAAAoF0pyM/XhFEj9c8PPtAfFt6v9778Ui+/9ZZGjRmjuTfMliQdPXpEZ/785/rdLbe26NjYgg0AAAAA0K78fvbv5HA4tOKf/1Knzp391w8eOlRTpl0lSfrVb38nSVrz4YctOjYq6QAAAACAuPN4WuZ+Duzfr/fffVdXzfp1UEA3pXTr1jIDiYCQDgAAAACImy2bpTEnu9S3c5LGnOzSls3Ne3/5P/wgwzA0cPDg5r2jBiKkAwAAAADiZvplLv3wvUOS9MP3Dk2/rHlXZRuG0aznbyzWpAMAAAAA4sLjkTb/2xlw2aHN/3bI45ESEprnPo8bOFAOh0NbNm1qnjtoJCrpAAAAAIC4SEiQBp3gVUKCUXPZqLncfPeZ2r27zhg/Xi8s/rOOHD4c9vOW2motEkI6AAAAACBunv1rtQbk+EL6gBxDz/61utnvc+EfH5HH49HEn56uvy9frq1bvtfmf3+nZ/70uM4b8zNJvn3Uv/3mG2374QdJ0nfffqtvv/lGB/bvb9axMd0dAAAAABA3AwdJH35d3axT3ENlH3+83v3kUz3ywP2af+utKt6zWz3S0jT8lFP0wKOPSZL+8vTTevjee/y3uWjcWEnSH596WpOnTm22sTkMu6+ab2Ll5eVKSUnR3d9sUoeuXeM9HAAAAABolTp5qnTq0XL1ye6nxOQO8R5O3FVVHNOu7Tv0ZUe3jiQkBv3s2MGDunPEYJWVlcntdkc9D9PdAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAUG+GHOY3kPzPg/95aSBCOgAAAACg3qodDhmGIU9VVbyHYgtVR4/KaxiqdDYuZrNPOgAAAACg3qocTu1zutRp3z45XS45nI2rILdahi+g79tbop2uZHkchHQAAAAAQEtzOPRDx67qcrhURwsK4j2auPIahna6krW9Q5dGn4uQDgAAAABokEpngr7o0l0dvB452unidEMOVTqdja6gmwjpAAAAAIAGMxwOHU0gWjYVGscBAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANhHXkH7XXXfJ4XAEfZ1wwglRb/Pqq6/qhBNOUIcOHXTSSSfp7bffbqHRAgAAAADQvOJeSR82bJh2797t//rnP/8Z8dg1a9ZoypQpmj59ur766itdeOGFuvDCC/Xtt9+24IgBAAAAAGgecQ/pLpdLGRkZ/q+ePXtGPPaRRx7R2WefrTlz5mjIkCFasGCBcnNz9fjjj7fgiAEAAAAAaB5xD+nff/+9MjMzdfzxx+vKK6/Ujh07Ih77ySefaNy4cUHXTZgwQZ988knE21RUVKi8vDzoCwAAAAAAO4prSD/ttNP0wgsv6B//+IeefPJJbdu2TaNHj9bBgwctj9+zZ4/S09ODrktPT9eePXsi3sfChQuVkpLi/8rKymrSxwAAAAAAQFOJa0ifOHGiLr30Ug0fPlwTJkzQ22+/rdLSUv31r39tsvuYO3euysrK/F8FBQVNdm4AAAAAAJqSK94DCNStWzcNGjRIW7Zssfx5RkaGioqKgq4rKipSRkZGxHMmJycrOTm5SccJAAAAAEBziPua9ECHDh3SDz/8oN69e1v+fOTIkVq9enXQdStXrtTIkSNbYngAAAAAADSruIb0m2++WR9++KHy8/O1Zs0aXXTRRUpISNCUKVMkSVOnTtXcuXP9x8+ePVv/+Mc/9PDDD+vf//637rrrLn3xxRe6/vrr4/UQAAAAAABoMnGd7r5z505NmTJF+/btU1pamn7605/q008/VVpamiRpx44dcjprP0cYNWqUXn75Zd1xxx267bbblJOTozfeeEMnnnhivB4CAAAAAABNxmEYhhHvQbSk8vJypaSk6O5vNqlD167xHg4AAAAAoI07dvCg7hwxWGVlZXK73VGPtdWadAAAAAAA2jNCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGATrngPAADQePn5+fEeQrPr379/vIcAAADQ7AjpANCKmeG8+kCFLjpQGtexNKflqd2Ur3yCOgAAaPMI6QDQSuXn5/vDeXlJkbI69on3kJrN2JJNcqel662ay4R1AADQVhHSAaCVCayej928SVkd+6hw70YVamN8B9aMcpxDldTRpUlbi6iqAwCANo2QDgCtSGj1PGe/VOhdqark0ngPrVnl7VulTG+msrLGa2zJJq0eNFj5ypdEVR0AALQthHQAaCXMgG5Wzyv3S3nlq5TWo5OW5g6M9/Ca1ejVeapKLlVhwUrlOIdKm33T36mqAwCAtoaQDgA2Z05vn7S1KKh6XnioUBVOaWnuQOW6J8d3kM3s47G+/05Zt0V5+1ZpuMYpqaMrqKpOUAcAAG0BIR2ALbWHLcViZU5vzzrkCqqeVxyRPh47vM0HdEn+x7g09xWNXp2nvHLf9PfAqvpbdZyjveFDCwAAWidCOgDbCVx3Dfk7txcWBFfPJbWLgB4o1z1ZH4+tnf4eWFUf81me3Gnp8R6iLbAMAACA1ouQDsA2Qqd1t+UtxeqjMqA5XHuqnkdiBnVJYVX1pI78b00SzfUAAGjF+NcMAFsIrJ6b07oLvSvjPSxbKDxUGNQcrj0HdJP5HIRW1TO9mXEemT3QXA8AgNaLkA4griz3/K6Z1p3Wo1N8B2cTFUfaR3O4hgitqrf1rehiRXM9AABaL0I6gLiJtue3GUzhQ0CPLLCqDp+6musR1gEAsC9COoAWZ1U9t9rzm2CK+uD9UitSc71JW4uY/g4AgM0R0oE2ys5bmEWsnreTPb+B5hapuV5W1viwpnItjQ8HAACIjpAOtEF238LM7NxO9RxoPlbN9QoLVgZNf29pVPEBAKgbIR1oY8yAbk4jtyOzc3vgnt+Ec6B5BFbVp6zbEjT9vaWxNRwAAHUjpANtROge4zk23sLM7NzOnt9AyzB/x5bmvhI0/b2lsTUcAAB1I6QDbYDVHuPmNHI7CuzcTkAHWo5ZVY/XdnVsDQcAQN0I6UArFm2PcXMauV0RzoH4CJz+3tIibQ23/ECFXKnJhHUAAERIB1pUU3dcj7bHONPIAUQSr78NkbaGa66O84R+AEBrREgHWkhzdFynSzqA1iTXPVmHL5qspeWvRKyqNxVzzbtEWAcAtC6EdKCZWU1Jbyp0SQfQGoWujW+OjvNjS2hQBwBonQjpQDOyaujWlB3X6ZIOoLUKXBvfHB3nc5xDaVAHAGiVCOlAM4jW0K0pO66bXdJz3ZOV22RnBYCWYX6w2Bwd5/P2hU+lf6vmZ4R1AICd2Sak33///Zo7d65mz56tP/7xj5bHvPDCC7r66quDrktOTtaxY8daYIRAbAKr51YN3Zq64zrVcwCtXXN0nLeaSj9paxHT3wEAtmeLkL527VotXrxYw4cPr/NYt9utTZs2+S87HI7mHBpQL2ZAN6vnNHQDgNg09d9Gq6n0WVnjwzrJE9YBAHYT95B+6NAhXXnllXr66ad1zz331Hm8w+FQRkZGC4wMbV1Tb4cmSZO2FgVVz2noBgDxYTWVvrBgZfD+7AEd4JsKoR8A0FhxD+nXXXedzj33XI0bNy6mkH7o0CFlZ2fL6/UqNzdX9913n4YNGxbx+IqKClVUVPgvl5eXN8m40bo1x3ZokvzN4czqOQ3dACC+AqfST1m3JWx/9ubY9o2gDgBojLiG9GXLlmndunVau3ZtTMcPHjxYzz33nIYPH66ysjItWrRIo0aN0oYNG9S3b1/L2yxcuFDz589vymGjlQudkt6UzOZwZvVcYno7AMSb+Xd4aa5vf/bdiWuUWNDN3wG+qZihnwZ1AIDGcBiGYcTjjgsKCvQf//EfWrlypX8t+hlnnKGTTz45YuO4UFVVVRoyZIimTJmiBQsWWB5jVUnPysrS3d9sUoeuXRv9ONB6mNPbA6ek7/VubNL7qEou1c4DR6ieA4BNrSt/RZKvql6y74gyuzTdtm89nUOV1KePCrpUa3lqN7lSkwnqAABJ0rGDB3XniMEqKyuT2+2OemzcKulffvmliouLlZtbu3GUx+PRRx99pMcff1wVFRVKSEiIeo7ExESdcsop2rJlS8RjkpOTlZyc3GTjRutktV+5OSW9KVE9BwB7C62qN8e2bzSoAwA0RtxC+tixY7V+/fqg666++mqdcMIJuvXWW+sM6JIv1K9fv17nnHNOcw0TrVxo9Tx9v1To3Rg2Jb2pEM4BoHVozm3fIjWoI6gDAGIRt5DetWtXnXjiiUHXde7cWT169PBfP3XqVPXp00cLFy6UJN199936yU9+ooEDB6q0tFQPPfSQtm/frhkzZrT4+BFfsXZmj1Q9p6EbAKC5tn2zalAXWFWPBYEeANqvuHd3j2bHjh1yOp3+ywcOHNDMmTO1Z88epaam6tRTT9WaNWs0dOjQOI4SLSmwMh6L8pIiZXXsQ0M3AECzC51Kb+7PHlhVjwWVdwBo3+LWOC5eysvLlZKSQuO4ViiwK/uwGLuyV+7apb3ejTR0AwC0qHXlvqDeN7WTSvYd0XD3OCX1ie3/XRuO7tLqQYPlSvX11CGsA0Dr1yoaxwGxsurKXuhdGdNtCw8VKq1HJ6rnAIAWFbjmPbCqHgvWswNA+0ZIh601tit7xRHf9HbCOQCgpZn/7/l4rOrVST7aenbCOgC0fYR02JJZPTent0daVx4LAjoAIJ7q20k+0np2quoA0D4Q0mE7gdXzwOntVcmldGUHALRK9fn/Vixd4gnqANB2EdLRImLdMk0Krp4HTm9nXTkAoD2IpUv8W/U4H4EeAFoXQjqaXWBlPBaB1fPA6e2EcwBAe2JOkzfXswdW1WPditScIi8R1gGgtSCko9mEdmXPinXbtIDq+aqRwyVRPQcAtE+RusRnZY2P6fZjS1jPDgCtDSEdzcKqK3t9tk2jeg4AgI9Vl/jCgtj+n5rjHMp6dgBoZQjpaFLRurLXZ9s0msMBABAssKo+Zd2WmG6Tty/yenbCOgDYEyEdTaauruxsmwYAQOMENpWLRaT17Ex/BwD7IqSjSZgBna7sAAA0v1j/nxppPXvg9HeJqjoA2AkhHRHVZ9s0szkcXdkBALCPSOvZc5xDNazgkAoOlAZ1gI8FgR4AmhchHWEC15XHum2a2RzOrJ6zrhwAAPsI7RJf6C0Mqqq709JjOg/T5AGg+RHSESR0XXms26aZzeHM6rnE9HYAAOwkWlU9qWNs/ySkSzwAND9COiRZd2Wvz7ZpZnM4qucAANhbaJd4swN8LOgSDwDNj5COqF3ZY7HzwBF9PHK4JKrnAAC0BoFd4s2qeizoEg8AzY+Q3s7F0pU9FoRzAABan8CqeizoEg8AzY+Q3gbRlR0AAMSqPv+/t1rPbk5/r0+XeMI8AERGSG9D6MoOAACak9V6dnP6e326xLOeHQAiI6S3EXRlBwAALSF0Pbs5/b0+XeJZzw4AkRHS2wCrdeV0ZQcAAM3JrKqb09/r0yU+3TlUY7sX0SUeACwQ0lsxc3q71brytB6dYjoH1XMAANBQue7JOnzRZC0tp0s8ADQVQnorFTi93Wpdeayd2QnnAACgsegSDwBNh5DeyoRWz9P3S4XejawrBwAAcdXUXeIJ6gDaK0K6DdRny7Ro1XPWlQMAgNagri7xgVX1WBDoAbQlhPQ4C5y2Hguzcztd2QEAQGsWrUu8WVWPBZV3AG0NIT2OQruyx8Ls3E5XdgAA0BZYdYk3q+qxYD07gLaGkB4Hkbqyx8Ls3E71HAAAtBWB098Dq+qxYD07gLaGkN7ConVlj4XZuZ1wDgAA2hLz3zaBVfVYRFvPTlgH0BoR0luIWT0PnN5uta48FgR0AADQVjVmOzeq6gDaAkJ6I8Xamd2sngdOb2ddOQAAQLj6bucmRe8ST1AH0JoQ0hsocF15LMyu7IHT21lXDgAAWiuvR3ImxHsUsXWJf6vmWMI6gNaAkN4AoevKY2F2ZQ+c3k44BwAAkTRXCG7seYsLEvX8/EwV7UhWer8KXT2vUL2yqppugA0UrUv8pK1FTH8H0GoQ0ushtCt7+n6p0LsxptuaXdlXjRwuieo5AACw1lwhuKnO+/z8TJXsTJIklexM0vPzM3XrM9sbPb6mEKlLfFbWeJrKAWg1nPEeQGthVs8nbS1S1iGXcmqmrVcll8b0FVg9J6ADAIBIrEJwfXk9zXfeoh3J8nodvsteh++yxf3Fi/lvrY/HDleFU6pKLlVhwUrl7JfGbt6kSVuLVH2gIua+QgDQ0qik14Gu7AAAoKWYIdh/OSAExzJFPVK1vLHnNTkTpPR+FSrZmSSv1yGn01Ba38qo56iulFxJsd9HQ4U+lsCqOk3lALQmhPQoAtee05UdAAA0t4aE4ECRpqJHO299g/rV8wr9HwSk9a3U1fMKLY/7bm0nPTcvU55qpxJcXl0zv1BDfnQk9juKUbRp/DSVA9AaOQzDMOI9iJZUXl6ulJQU3f3NJnXo2jXicWZAH7t5k4Z17KPKXbvoyg4AAJpdQ9eOez3SzRMHhV2/aMVmORPCz3v+rBK9uTitwWvU6wr3c84ZKE+1Q5JDkqEEl6GH3t4S8/lj9cCM7LAPH6zWyK8r9wX1vqmdVLLviIa7xympTx9tOLpLqwcNlis12eLs1gj0AOrr2MGDunPEYJWVlcntdkc9lkp6iNDmcDl0ZQcAAC2oV1aV5iz2hcymnIreK6tKtz6z3R+uzXArBVfdrcK31XXmZaufVVdKnurA1kcOeaodTT71vT7T+CM1lQusqseCLvEAmhshPUDo1mqBe5ozvR0AADS3xnZgj2UqujnF3Src3j89W8UFtfctKeJ4oo3VlSQluLxhlfTAgN4UW8zVd3mA+e+4SFu1xYIu8QCaG9PdFV49HxbSHO7jsWybBgAAml+sU7frEksAfmBGtop3Jsmo6dQuGXI4JSPgviWFjWfO4u1BlfhIY420Jr2pt5hr6PnWlb8iyRfWk71SZpfI3e49XocSnL5/Mvd0DtX33SV3WrqWp3aTKzWZoA6gTvWZ7t7uQ3pY9Txg7fnOA0eongMAgBZR15ry+pwnloZwxQWJemhWdsi09Nj0yqpQcUH4Gm6rsYZOcW+qDyJCNbQyH7hWPdTOfRm65/XfqWBvH2X13KU7fvGokrXVcj07QR1ANKxJj8GOHTuU1LlznVurEdABAEBLaGxn98CKsm+quTNqZblnZlXEgG5VSZfMuo5De3clKcHlleF11DnW0CnuTbEVnOWYG3j7wLXqod664dcq399DkrRzf2/d8n8368FJ19IlHkCzqv9Hp21EdWmFJm0t0tjNm3zN4QpqtlZz1q49J6ADAICWdPW8Qn84jra9mZXA7dd8a8FrG8JZMT8UcNZM43Y4DCW4vEH3HTge39py33m9Xoc81U45zNs6DZ0/q6TOMYbep9Np+C43MqA3lvnvvsCvkztPVtnONBle3z+XDa9TZTvT9OEZI1ThlG89e/kq5eyXsg65NGlrkaoPVPiXUQJAQ7XbSvqYLd8rK3VgUHM4qucAACCeQjuwxyq0Qh0YpiNVqr2e4EZzvbJ8wbxnZlXQsbc+s10PzMhW0Y4k/3l9VXWH/8MAw+vQm4vTNORHdU9bj3Wf9XiLNLPhP1Iv08djfR8yBHaJz8oaT1M5AE2i3Yb0AQekwkNsrQYAABqnKaZqh6rv+UIDpRmiraahWzVa65lZFfF+wz8AkGrDeviHAXWNv64PIup7fXOK9IGCVZf4woKVQdPf2aoNQEO128ZxT159gfr1TqE5HAAAiFlgUGzqLuV13V9dx8S6Jj20cVtqepVciUbUxxF4GysOh6HuGXWfJ5pIz2dLPM91ifY6mF3ip6zbopJ9RyybyklU1YH2ju7uUZgh/Y/TL9AXE0+VxPR2AAAQnVVQNNeAN3WX8kj3FxpMrY6RpOfuylRxQbJ6ZVXomruCbxepg7zDYcgwIj+O0A8AvB6HDKO2Yp/er0LVVQ4dKEps8PMRqet7c3WDb2qBXeITK7qxVRuAIPUJ6e22cdyaMcNoDgcAAGIS2JStZGeSnrvLF1jNynLodO+mvj+r5m9Wxzw/P1N7d/mu27sr/HZWjdsk1QTuyI/DnKL+4N83a87i7eqV5Wsml96vUrc8vU1zFm/Xvt1JDX4+zCn1obevrrS+vqme56bk6xI/XEtzB4Y1lRu7eRNN5QDErN2uST+56y/iPQQAANAKWG0bVlyQ3Kjt0up7f6HN3yIdE3SeCE3jQtdZW1XAQx+HVdW+e7qvwZx5bF3PR7T16pGatLmSGrctXUsziz9Lc18JairHVm0A6qPdVtIBAABiEWnbsLq2S2tItbe4IFEPzcquuRS+TVlg0LUaUyzbm5lV8UUrNuvWZ7Zr5j276tz2LbBqX1yQpIdmZeuW8wbp5omDdO+0/iouSAx6Pnr2qT1PcUGi7pnaXzdPDD4+VKTnszHb0sWLWVVnqzYADdFu16Tft/xLdejcJd7DAQAArUC0NeKhleo92xP14oLI68mjNSELbtBWu977/FklenNxWtj6c6s16fVpshZanY/UVd1qHXstQ+n9fOvEQ5+n82eV6Ll5mfJUOy2Pr2tMsVxvZ2ZTudGr85TslTK7ZCozazxN5YB2iMZxURDSAQBArEKDYbSgGBhQQ7dAswqwVuHdKgwvWrFZD83KVvHOJBk1a7MTXN6ateFVEfdANyvvVuMNHItVg7lQdXV3Dxxn4NR0h9MICejBx0cadyStMahLNJUDQOM4AACARikuSNQDM7J188RBemBGtn96dmDVOVTglHCr/cPragbnTJB69K6UOc1dMmou+9afGwEB2VPt1HN3ZQaNKdDeQuvxB461uMCcvp7s+xAg5JjAxxg45TzB5Q0Yo2+c6f0q/OMMbPJmHdDDp+Hv2R59vJFej9aCpnIA6oOQDgAAECJSoI4UFkO7k5scjsgBNpYu5Z5qBaxRD1ZcUHv70PM8Pz9TxTXjL9pRG8KLCxK18JpsX+g3gkP/n3/fR5J1YA5cxz5n8Xb16F1bde/Ru0rnzyqxXEvv+z500qZD1VUO/3gemJGtB2cep6IdkT/AiKXbfVNr6g7y5q5CS3MHqsIp5ZWvUmHBSuXsl8Zu3qRJW4u05atNhHUA7be7OwAAgJVo3dWtwuKtz2wP605uTnfvleVrdLa3MFEJLq+/suxwGupl0f183+6kgJE4VFqS5G8EZ55T8oX/XlmV2lsYPoW+Z2ZVWKd3T7VTT93eR2V7XRGnn5eWJOn+6dkqLjCn69cGfHNqvTPB13ju9hfzg0KsOc09kMNpSF7r+zpQlBjwwUfk2QfmlP26ut03pVj2qG8MX1Xdt069KrlUeftWabjGKamjS2NLNmn1oMHKVz7T34F2jEo6AABAgEid06Xo1fDAKeHm/uG3PuMLt8/Pz5TXU1u5djoNTftDcJdyq+nu5v341N6+V1alpv2h0PJDg9rzBNu/JyliQDeFBmapNuAH8np8U+ofmuWruAfPIqh5fvyPN7z9kfnchVb0zeMTXF5/AA9/XnxT7vcWNs+U95ao2ue6J+vwRfdGrarn5+dTVQfaKUI6AABACKttvyKFdzNMhm5tlpFd2/3danr5gzOPq3N9tTMheP13gsur6Qt2SlLNFPFoU+hj6Q0cPhXdyv49SfJ6gqf7m83sas8T/OFC7eOtbXbnsNgyzuEIH4On2hl1urmn2hFTeK7vlPXQZQuxLktoKLZqA2CFkA4AABAiNHCb051j2bPbagp2YLgPDLSBldra6e614dbrCf6nmqfaoReCGtQFh2NfU7fQ80QTyzE+t04aqD//vo//vj3VzoBmdo6gcUvyh2+Hw1Ba3wrflPmAfdTPn1Wi6ipHQJi3rpSHPy+++4gWnhvaaK6uD2KaQ2BTucCqemhTOcI60H4Q0gEAACIIDWeRwruVwKBYXeVQarp5bG2gNSu1e7YnhjVeq/1vcDj1VDtDppY7gn4mqWZ6fqy77NaGaTPkh3Zvl3wfEJSWRNqGrfbDAqfT15W+e4bv8RqGQyU7k/X0HX10/qwSpferUHFBsp6bl6l9u33h2eEMHqvXW1spN4OzVUf5SOG5MVPWY/kgpqmZTeUCq+qh09+pqgPtByEdAACgnmKprAYGxQNFiXIlGlq0YrNvirczuGr87J19AqaOh6/RDr8cXpU3q757CxNVXRUY3qOpbUaXml6lOYu314wv8BjrCnnguJwJhr/je1rfSs28Z5dcicGd3fftTtRz8zKDKvHmOX0V+drxGhbr/UM7ykcKz42dsl6fD2KaGlu1AZDo7g4AANDkInUkl6SfXnhArz+a7v+Zp9oR0tXdFN4wLvSyGVz37U7yV32fn5+pA0WRpncbAbcP/n7/niQ9d1dmTXd369smuHxh3HdM7Ti8Hqf27U6SM8Gr82eVWHaY91X6I31wEDprwFB6P1/3e7Pb+r7dSeqVVaGr7iz0r/e3Etpp3+k0lBbQST/WrvDNOcU9mlz3ZEnS0txXNHp1nvLKVynTm6kc51Bp8ya509L1Vs2xdIAH2iYq6QAAAE3Mam1zj96VevBX2Xr90QyFTmGPxle5Dp7q3aN3pRat2KzbX8zX7S/m+6u+ZjgOn5Ju1DShq71sNYa9u5KCGryFjERXzSvU75/dbrHG3sfrcei5eZk1W7VVWD+eCOcOHY/Z/T5wRsLeXUl64e66p65bTVlv6Dr1eKGpHNB+UUkHAACIUaQqrNX1ZlW7aEeyUtOrVFoSeY9ya74g7UwwQirQDh0odmlvYaJ/Knbgfaf3q1DRjvDGccFN6Kw/GPB6HZLlmnOfnOFHJEnT/lCoFxdk1lTLQ9fMO1RdKV1zV6Ee/FV2wP0a6ppapU5djZrbhX5QYF72VewzsqtUXRk+I6G4IFkPzMiOun+5OWU98HV5YEa25R73dmbuqS4pqKqelTVeY0uCq+qxoPIOtA6EdAAAgDqYU66LdiQrvV+FPyBGul6SembWBsWHZmXXM6BLZoC1up3X49RDs7J9HdNDxtE9o1KRp8iHBuNQ0X5u6PcXDFKCyytPtdO/d3zYqJ2GXFaz9yUdLnfp4AGnumdUqrTEFbR3fHADPIcemJGtoh3JSnB55fU4grawKw4I2dGmrwdOcbdafhDr1Pd4Mqe/fzzWF9Srkkv1xXcvarh7nJI6+qrqsVie2k35ypdEWAfszmEYRqytP9uE8vJypaSk6L7lX6pD5y7xHg4AAGgFzCps4BrnW5/Zbnl9YAU9vV+FzptZomf/0Dfq+R1Oo6Z5WuDabCPgv+Z1wdL6Vmjuc9trpm8nyTB845DDqAnAodubxb7lWjCrteyB/4QM/ll6vwpVVTq0f0+EtB7lwwBz/DIc8nodcjgM+f61Gn68b9ZA+AckViK9hq3JuvJXJPnCerJXyuySqcys8THddsPRXXKnpWt5aje5UpMJ6kALO3bwoO4cMVhlZWVyu91RjyWkAwAAROH1SDdPHBR2/YN/36xbzgu/vldWhfbuqg2DDqc5Xd1qarfkTPAqtVd1hOZxMXB4JcOqSh+pSVxLaMj9+W5jVurrkuDyyvA6Yg7d0WY9tDbryn1N5fqmdlJiRbeYbtPTOVRJffpow9FdWj1oMEEdaGH1CelMdwcAALBgToWO1C3clWR9fei0aqs13rWVc1+zNU+1L9z7uqbXM+AagVV3BXwfa3O65gjwkfZSj1A9T/Dqlqe26+k7+vj3Tvevya/5oCNwyrszITjIxzJ93WqdemsVuFZ9yrotMd0mbx9d4oHWgpAOAAAQwKriGjiF3ZzSLsnyerMbuRncg6ee+7YwC66aO1RakhTQLb2+wtefd8+oVGlxYk2X98Dp6VaV9YZVvJuS1+NU9/Tw50WSemRW6sLflOjNxWkq2pGsXlkVuuau8Oc5cJu1aFp7QDcFbtUWC3M9e96+VRqu2vXs5lp1gjpgH0x3BwAACBBt7XIs3d1DQ37FUadKS1yKHNIbyjp0J7i8uvj6Yv3t8V4h08atwrXVGvj63G/TiTbN3fywpGdmVcTnuTHT19tCdb0ukdazB05/l6iqA82FNelRENIBAEAkkdafL1qxOeYQZwY+r0eqrpR+f0H4+ZwJ3qCtyaJXuuvH4TTktFwH31Saa3271fPg43Aa6hVhzXljAnZbWqceq9D17D2dQ/V9d9FUDmhmrEkHAABogEjrz2MJgYGBr1tapcr3u2qCeGi1WkHbicU+7Ty2cGx4HfJE2es88nljDd/hDfB8VfDaKf3hXeljOXfk58GIsua8vh+eBDKnzEvR905vS5X20PXsgdPfx5Zs0upBg9mqDYiz+m7YCQAA0Kp5PdF/fv6sEjlq1oc7nIbOn1US03kDA19pSWJApTywou373qgzRFv9PHTbs0jqO0myoWvTa2/j9Vqdx6qjfTTRf94rq6JBQbm4IFEPzMjWzRMH1WxV52tMZ+6d7jUb+AV8EFDXbVu7XPdk5bona2nuQFU4pbzyVSosWKmc/dLYzZs0aWuRqg9UKD8/P95DBdolQjoAAGgXYg1cby5O84dow+vQm4vT6jx3aOCLFHh94T8gjDpCLod9b4RcX1eX9kjHNOfqRkOGt65/UsYy9T76YysuSG5QULaqlku1sybMhn1Op+G7nFD3bdsKX1V9uFaNH+5rKle+Sjn7paxDLo3dvImgDsQJIR0AALQLsQSuWKqrVszA53BECsO1QTDods7QaeCh39enyh3tmMC17rL4vi7Rjo21At+wDwqcCV45av7FGvq6RXtdqivrfj2vnleotL6VkhTUtd88d0PeC61NLFX1/Px8wjrQgliTDgAA2jwzcPkvR1jj3Jg16YHbsYU2gZt57y7ljDiiW84LbiIX3jwukkhVcqt135G6uNdn7/RQkc4XbWz1OYfVOR1yOIyA56j2dduzPVEvLrBu+Pbd2k56bl6mPNVOJbi86pZWpfJ9rqDt6B6ale2/TaS90xvzXmiNzLXqbNUGxB+VdAAA0ObFMrXZFK26Gk2vrCrNWbxdPXpXBlzr23JtyI+OyJVUs67aGTiF3aq6bPXzSNPFY+3gblVJb4xIFf9IwqfuJ7hCxxL+AUJtg73a2/boXakXF4TPijAr3L6A7rudp9qh8v0J/tfTFFqRjxS8G/peaK3M6e+hVfXQ6e9U1YHmRSUdAAC0C4GV7qYOXIGd3YM5tG93kr/yW1yQrASXV/JGq2o3tJFbLLdr6S3ZAn9We0z3jErd9ny+5XZ3gZxOQ3IY8npqb2sY1rMibp44SL2yKkL2WnfI63Hoxse212yFFz51PTCgB172ehS10t5W5bonS1JQVb2wYKVynEOlzZv8W7VRVQeaD/ukAwCAdqWuwPXAjOywKc5W23JFuk1g9du8vSQV70zyN6RLcHllGKoJn7EE3Obam7y51D3eXlkVqjzmVGmJK+KxXbpV6lBpUtj1gdPQQ59vX6d5yZz6n+Ay9NDbW6K+roEfspgzIfbtTmo3e6dHsq78FUm+rdpK9h3RcPc4JfXpow1Hd2n1oMHsqQ7UQ332SWe6OwAAaFeiBfSGNAuz7uzu+z6tb6Wm/aFQRTuSg7Zd81Q7a9ZaN2Un9oY2havrXA25Td0fKOzdlSRngqH0fuZU9PD7PFSaqNDHld6vQtP+UBgwhb32+fbWzFBwJtROqb9mvm/GROjU9Wl/qJ1JEdhUcN/uRO3b7esgX7QjSU/f0afOx9JW0VQOiA/bhPT7779fDodDN9xwQ9TjXn31VZ1wwgnq0KGDTjrpJL399tstM0AAANDm1WfteuhtQsNk9wxfpTYju6rm51bCg2n3DLNqazUFPtYu641dg97wPdNrRb9vr9eh/XuSVF3lUErPygj3Gb4soGhHsh6ceZyqqxy65eltlq/XohVb9ODfN+uht7doyI+OSKqdun7z4m2SpAdnHqcHZmRrz/bEiB+ymMsV2lpH9/oy16pXOBW2VRt7qgNNzxYhfe3atVq8eLGGDx8e9bg1a9ZoypQpmj59ur766itdeOGFuvDCC/Xtt9+20EgBAEBbF63iGsoMb75jgsPk/j1Jqq6sPWeCyxvw88gd0cv2utSjd2XYdm3Wx4fuox7r8dacCd6oP69f6I82jb/2v/t2J6psb2LIzyLdrvbn+3b71vlHau7mSgreoq24IFEPzMjWolnHqWhHbdO5FxdkBgV9WIvUVC59UxFVdaCJxX1N+qFDh5Sbm6snnnhC99xzj04++WT98Y9/tDx28uTJOnz4sP7+97/7r/vJT36ik08+WX/+858tb1NRUaGKitpPr8vLy5WVlcWadAAAEFW0bb4C1zCb068fnHmc5XnM23q90gt3+5rHRd8uzReWA7ceCz5elrdpvKY4d0O2ZosuweUNaQYXbPqCnRp22pGgXgOhr4/ZNLB2HXuwW57e5n+tffdnVtN93flvfzG/UY+hrVlX/opGr85T39ROQWvVC7pUa3lqN9aqAxZa1Zr06667Tueee67GjRtX57GffPJJ2HETJkzQJ598EvE2CxcuVEpKiv8rKyur0WMGAABtn9U2X6bANczFO5P08G+ya34Svn1acUGSHpqVHRLio3diD94/PVCkRnNNUXOJdTu3us4R7XL9dUur9k9rD3+chl6oeV0ClyQEvj4lO5P03F2ZIVPaa0bn8E2Pz8j2TYW/5elt6pZW7R93j95VmnnPrkY/hraGrdqA5hXXkL5s2TKtW7dOCxcujOn4PXv2KD09Pei69PR07dmzJ+Jt5s6dq7KyMv9XQUFBo8YMAADavmgN5EJ/ZngdFpXe2sBrGLU/Ly5IkjPBK4ejdg11t7RK1T1d3fdf33T0SPuo200se6dbfR9s/57aae216/Vr78NT7fQvK5CsX7viguSQKe2+//bKCt6K78UFmTpQ5Jt673QaciUa7baze13MpnKBa9VDm8qxVh1omLiF9IKCAs2ePVtLlixRhw4dmu1+kpOT5Xa7g74AAACiidZALvRnwepq2OaQ1+OUYdQGyIMHXHLUmbF95wvesq0pKt/xFGmf+ODnzjB8H5D0zKzSHX/Jr1nbXxu2E1xeuQJ2aQt9fcxqeeDa9fR+lbrl6W269Znt/hDekM7+CK6qhzaVC6yqA4hdzCG9sDBy05SG+PLLL1VcXKzc3Fy5XC65XC59+OGHevTRR+VyueTxhP9FzMjIUFFRUdB1RUVFysjIaNKxAQAARGpIFvqzBFdtZdz8b33Cs6e6NrTXCm0IZzU9PriRWtsR/lwEdse/Zn6hElzhW6xJtY3irp5XqNR0X/g2DIeqq3znvPWZ7Vq0YrMvnPcNrpA3pLM/fNiqDWhaMTeOS01N1Z/+9CddccUVTXLHBw8e1Pbt24Ouu/rqq3XCCSfo1ltv1Yknnhh2m8mTJ+vIkSN66623/NeNGjVKw4cPj9g4LlR5eblSUlJoHAcAAGIS2JAsVHWltL8ouElZxVGnSktcMhuPORPM8BhLcPc1XqurWVqk29lbw8fYPaNS+/ckBTXwq66Uv4JeV6M4p9NQWl/flnj1aQgY+DPEhqZygLX6NI6LOaQ/8cQTuvXWW3X22Wdr8eLF6t69e5MMNtAZZ5wR1N196tSp6tOnj3/N+po1azRmzBjdf//9Ovfcc7Vs2TLdd999WrdunWWot0JIBwAAjWUV5npmVsmZIN07rb/27U5UYPf22tAdPaianeIzsqu08JpslexMbpkH1KJCO8BH7nJvHuNw+CrigWFbqv0A5YEZ2UGBvEdmpeVzl96vQkU7arvrB54v8MOYaB/MoG7ryl+RJI1enadkr5TZJVOZWeO14egurR40WK5U32tDWEd70izd3a+99lrl5eVp3759Gjp0aFA1u7ns2LFDu3fv9l8eNWqUXn75ZT311FMaMWKEXnvtNb3xxhsxB3QAAIBA9V1vbB4f2j38+fmZ/or5vt1JCp2ebngd6tG7Uj16W1dlHQ5DvbIqdOsz25WR7Ttm+vzQvdWtxGO6e117s4ceZ35vtRTA9/0tT+dHeayOoDX8RTuStWe7b8/zmycO0gMzssPWkvsCuiEFNOhLcHn9r5l5v+b5As9VXJBIQG+kaE3lfldwiKZyQB0atE/6448/rhtvvFFDhgyRy+UK+tm6deuabHDNgUo6AACIdVqzWVENPL5XVkXNXufBFq3Y7K/qFhckWawzD9z/PLiCHFqNDxznQ7OyY5j6HktFuml1z6jU/iKXZDS2D7GhS28o0oCTjuq5uzItn1uT02koNb1KpSUu/3PicBpyOg15PWaYD6/UR3rNHA5DzgRDhtcRNi0eTYOqOuBTn0q6K+pPLWzfvl1/+9vflJqaqgsuuCAspAMAANidVSU8MJiFhvjqKod/a669u5KU4PKGBTszXF89r1BP39GnpqLu43AaMrxmd3YptNJecdThv03ghwY9M6tiXJtubtFmBNxH89q/x5zSH8pQgqs2+IYGYfO5CLztq39M13+/+71+/6xvzfjDv6n9YMK8vafaqbS+lTp2JHjLO8PrkMcbXp03v0/rW6HfP7tdc84ZKE+12RHfqPlZZVB4D+zoTjW9aeS6J0uSPh7rC+r+qrpzqLR5k9xp6Vqe2k35yieoAzXqlbCffvpp3XTTTRo3bpw2bNigtLS05hoXAABAszC32vJftghmgSE+tCru9Tokr8O/vjm083uvrCq5Es3p3TXh2WnI440ctktLEv3fF+1I0tN39NHtL+ZL8q2jNtdbh1fKgyvotVV6KbyyHun7hop0e0dNGPaNwzCk8Vfs01cfuGu2UgtdL+47zz1T++tX9+7Ss3f2qbm9jzPB0JzF29Uz0zfT4eaJgyzuM/JMgpKdyaquVMiHHTXT7J/arodm1c58CP3ABU3HN/3d9/2UdVuUt2+Vhmuckjq6NLZkk1YPGkxQB2rEHNLPPvtsff7553r88cc1derU5hwTAABAszG32grt/B3YNCwwxJsB3ek0wqZEW1VcqyuDby8FBsRI4Ti4+rtvd5JunjhQXo9TPXpXKjW9KmSte/TbR1v//Yvf7tEbT/YKCsLRNSTQB6+mfPelHkqr2fLM11Qv3P49vtkLgTMQJN9zZy4DiNxDwGqLOkkOQ+lZlXIlhb/mqelVWnhN/6D7S02vCvrABU3LrKovzfV1gM8rX6VMb2ZQVd3sekVYR3sW8yIij8ejvLw8AjoAAGj1ou2BbrVfdo/elZbHh64ff2BGtm45b5AiN00LvC46c9q6Oc3e+jZ1hfbw2yx/olfNXuN1NaWr6z7quk1tcPZ6nf4PLiJPx3eEfbhhKt7pew6cCVKP3pWK9Pyar1WvLN++6ulZta9V6GsuhX5gYMiVaLDlWgsIbSqXV75KOfulrEMumsoBamDjuNaMxnEAAMAUae1xpMZy0dYqB24D1vDqc0vtdW7XfdUD/1la+0FDer/aZm7FBYlBa/67pVVKcviXDPToXamZ9+wKa8JnMqvx1tPmaxsAovnRVA7tSbM2jgMAAGgrIoWxXllVltPZIx0fOkU+PABHWkse+H3kfcKbPlDbMaBLkZYCFO1I1v3Ts3XNXb4PS25/Md8fts2O+g6HIcPwNfgLbQQYyHwNfT0FApcQ+D4MIKC3nMCmclPWbVGVfE3lhmWNl/tAqXRAeuv49PgOEoiDxu6ZAQAA0GbFEtjMIB84RT58OnZo+Ky93KN3Vc3U8/rsO16X1jZRsna6ujMh9Lnwfb93l68Lv8mZIP869aIdyWF7qUdev+5z9bzCoH3re/RmPXo85V96WtDlkf1OidNIgPijkg4AANAAoVPiz59VojcXp9VU1CNtCRbswb/7plZH71geoSma5bGh9xmpCm/VWK4xYq32+7Zn83odMmq2TUtwedUtrVr7dicprW+lKo46VVoS+E/U8PAd1AtgZ6ISXN6gfdN7xdCh3aoiDwB2QEgHAACog9Va9NC91t9cnOafIv/QrOywTuKlJa6gvb971XQdl6ReWRVB+3X71CdAhx+bml6ppGSj5kOD4C3KaoOy1Njp9M4Eb83Wb+b3gR8sBN9vj95V8lRLpSW1HdU91Q65Eg0tWrFZUuS14uZzZr4OgR+SBFbenU6jXhVxwjkAu2G6OwAAQARmx/abJw7SAzOyVVzga05mTrH2eoOrvHu2J+qhWdkq2pEsR83U97S+vkZm18wvlMPp66juTDB0/qwS//1cc1cs3dYjTWEPn2Kf4PJq1n27NGexuS47uBrvqXb6K9l1V+ijT50P7NYeqXN7j95V6p5RqX27k4L2hDfv33zuzKp4+BikXlnBXfgDPyQJfAyeaqe6pzddh/a6ps03tZa+PwD2Q0gHAACIILRabq6JttqmLb1fhV5cUHu84XWoV1aFv4HZc/MyZXh9//Tyehx6c3Ga/356ZVVpzuLtNduLmYLDd4/eVf7gHyy8SV23tGr1yvJ1N4+83j2Wdeuhze7qOia0AZ5DzgSvSktc2r8nPFAHnnvRr4/TgzOPC9u/vUfvKt3y9Dbd+sx2//ZooR+SBJ4nweXVLecFf6jSEJE+oGkuLX1/AOyLkA4AAGAhUrXcrHSG7rs97Q+FYccXF9RW182p7pJkGOHNzcw10otWbNYtT29Tej/fudP7VeqWp7fJlVhXqK6tjO/bnSSvR6quVM39WndNDxZpL/dYKu6ReT3OoMduLfIa/rnP5Ssju7YyXlzgez6Dx1g7VjPkB36o0hCRPqBpLi19fwDsizXpAAAAFsxqeeDa8rSAhmRW27RZHf/C3ZmWITXB5dXewkR/dTjwfjOyg88dvsWbyWorN99/b500sOZ+G9okrqHr1JtqyzjfeR6alR20T33wNHcf3xp71Uzhj95oLhahz3djzmXH+7OjT37YJ9eBI0r2HpEKVkqSyo8WqTq1m/KVL4n90tF+UEkHAACIILRabtWQLDBEWVXXwxvC+Xi9jojV0tCO41bT6+uarl47bTzaHuyB6jomfFs0K05n9J/Xd6u5kp1JevqOPv6p4MHT3K3W2Nf8xOFbgtCQkBtpOUNzBeaWvj+7yXVPVq57sj4eO1wVTqkq2bdfes5+aezmTZq0tUjVByqUn58f76ECLcJhGEZr20izUcrLy5WSkqL7ln+pDp27xHs4AACgFahvRTPweN/64iT/Pt6hFq3YbNmxPL1fha6eV6iemb615YE/s+4G31QiV8JrO7kHV+3rul30+wi+XY/evgZzYfftNGrCee3MAHO2giT/DAbzfObzFzpTIVZWr0VDz2XH+7OrdeWvSJKmrNuikn1HNNw9Tkl9+mjD0V1aPWiwXKm+9z1VdbQ2xw4e1J0jBqusrExutzvqsYR0AADQrjX3lOLA8JXg8vr3CDcDptlYLnTrNofTkNNpyFPtDApt5njnnDMwwlrv4ADtcBphVebwY2uFB/HwczanRSs2Bz8PDiPiBxzm8yIpKOBO+0Nh0Dr2xmjpKeftaYp7NOvKX9Ho1XlK9kqZXTLV0zlU33eX3GnpWp7aTa7UZII6WpX6hHSmuwMAgHappbppm2vXF63YrDmLt6tXyPT5wHEETuU2vA5/CA/tLC9J18wvVPQp6L7zdE+vqukab3Wsxf7qvap1y9Pb1C3NKuRGajZnRPg+doFTvEOXDfToXRk2FXzRis1BHd+Dz1Xvu488rhYOzAR0H3P6+6rxw1WVXKq88lXK2S9lHXJp7OZNTH9Hm0ZIBwAA7dLTd/RR0Q7ftOqiHb51z83JmRAc2M2AGdwIzTrghnaWl6QhPzqimffu8u+9btWF3ek05Eo0NP3uXQoO2IEV8mD7diepV98qJXc0ArZ8i1Q9912f4LL+gMCadRf5wDX/vbKqdPW8QqX3q53Wn1qz97l5XGCYpTN622SuVV+aO1AVTimvfFXYWvX8/HzCOtocQjoAAGh3vB7VrHsO37asJZgBM3y/78Amb8GV7x69K8OqrG8uTpMjSuA2w/0Ld0cKrdZh2hxX+DT58IDdPaMyZJu3uqbDB3yIkOBVj97W09IDg/eBokS5Eg3L6nldW+Wh9QttKhdYVaepHNoiQjoAAEALCgyPkbp6p/eriOk8Vp3OnQnegAq477/FBeGN2KwZciZ49cDM/mHXS1L3jNBA7dD+PUkKn0pvNd3d4kMEj1MHinzLDAIr4JGCt5X23hm9vTCDemhVPXT6O2EdbQEhHQAAtDvOBIWs07auVDelSGvgQ9dfnzezpCaQBk9PD630m+HU4QgOv16P0x9Yw6vbda0Vd8jrcWrf7uD1+QkuQzf/eZtuez4/6D7D78f83qqaHjoG33+tKuD1Dd6xbJWH1o+t2tBe0N0dAAC0Sy295dUDM2o7lgd2djdDqfnfB2Zk16yVDwy6htL71XaCD3wMD83KtujyXtda8oYeK3VNrdKRgwnyVDuV4PKqa2q1yvcl+juxOxN83eQDt0MLvo/a6xJctceGdruP9vpE6oBOZ/T2I5at2uj+DjupT3d3VwuNCQAAwFbMJm4tEezM6dv+yzVV4/unZ6u4IHhPdKtp3T16+xqphQb67ulVEbZhsw7c1tuZ1RXOg0P8wQO1/3w0vA4luKSefSpVXJCsXlmVOn9Wid5cnFaz5ZwhT3VoZb22uu/7mU9qelVQBdzq9anrgxUCevuR654sSVqa69uqLa98lTK9mcpxDpU2b5I7LV1v1RxLWEdrQ0gHAADtWksEO3P6duDe384EQ3t3BXckv/WZ7UHHOZ2Gevap1DV3FQbttW5WsWv/G2mKebBeWZWqrnLUNM2LVeRQ7/XWniswNA/5UfAMgcB9zy33XHf4utD3zIw8k8Hrse7iHjq7AO2Lb/q7NHp1nq+p3L5VGq5xSuroayq3PLWb8pVPUEerwnR3AACAFlBckKin7+gTNSAvWrFZewvDq8VmOLUKub4mcYYMb7RWQ4a6Z1Tpjr/kq7ggUfdP76/wNeKxTXevvU3wNHZzuvqcxdvDPvgIrICbHy5EYj5mSTHdZtGKzVTQ4Z/+Pnp1npK9UmaXTPV0DtX33eWrqh+fLomqOuKH6e4AAAA2EDhVu1dWlVyJhpxOIyBsS4EBN3Av9cBKdPAU+OBmcL5t0nxh3fCGrv+uvc3+Pb7Gc72yqjTz3l169s5MeT1O/89rg3BtADe3R/M1kqvtHp/aqzpkC7vaKfw3TxwUNhXdfEzVlb7HdPPEQRbPlu9+A7u8m1Xz2mnx1s8ZYE5/p6qOtoDu7gAAAE3MqpN7tD3RrTqSm+EztNN5aHd0s9O6EWWvdbM7umnIj45o0Yot6pVVIWfNvwYNr0POBG/YY5l5zy6l9/N1Tu+VVaFbntqu21/M16IVmy3G5fs+MGgHPh+3nDdID83KVo/elWFd6c0xm2Hfanu5up4zSeyP3s6xVRvaAqa7AwAANLFIndytrreaHm4yq+lW08VD/2tWos3zTvtDoV5c4LuNb7s5ad/upKAmddYV7WDmdHKrBnuB44p229DHnZrum1VQtCNZvbIq5Kl26EBRYtDzIilsin+sU+pbols/7G9dua+pXN/UTkqs6BY0/X15ajc6wKNFMd0dAAAgTiJ1cvd65F9fXrQj2V8JtgroVoHTaru2+6dn+5vPmczzBk6bNxu3SdGb1JlT5gPDcmBFP1TofRQXJMkwgm9r9Xzs252kRSs2+88b+HgDK+S1H0z4usRHe85oKodQZlM5ybdVW+D097Elm7R60GCmv8OWCOkAAABNKLSTe7T15pFECpzmbczmcsUF4WvVrarMVh8aVFeGf2gQuH1aYFiua7x7CxNVXeXwb+8WuJ2aM0EhHeh9+6MHni/S82L1wYSVaB+MsGa9fWOrNrRGrEkHAABoYlfPK/RP2Y623txK6Nr1wMBpCgzxoevOQ88duqbd4TCU4PLqlvMG6fn5mbp6XqEWrdisW5/Zrh4ZwdPD9+1J1P3Tg9fWW3l+fqYOFCX6x+FKNPxTzb0e1UzHD9wf3ak928PPZfW8RKvkR3qMkZ4LtF/mWvUKp3xN5cpXKWe/lHXI11TOXKsO2AEhHQAAoImZlWEz/NZnbfTewkQluGobuDlCAqd1AzpJDt8a7wdmZIcF4MAPDZwJhv+2ZpXePPfz8zNVXBP+i3Yk6+nb+/ir9cUFwc3gTHV9qGAG6NqGd5Jk6MUF1udqqLo+GAFoKofWgunuAAAAzaQhldzn52fK66nd2szpNHT1vEL/1G2r6fS1269JRTuS9ODM44KapwVugXbLebXN4kIDdXgDuNpxGIb1FPJo0/sl33rzqkqHQreECzxXUzR9i3UpAdo3q63aCgtWKsc5VMMKDqngQClbtSHuqKQDAADYhFmVNtd2S76p4s/dlRk05Ty0auypdoZV1kO3QZMkV1LkaeG1Fe/InAleywAcrYr9/PxMlRablX3r6ehWa/AbioCOWARW1bcdKaSqDlshpAMAANiE1drqBJfX38HdDLCh0+nDp5Nbr2WXogfqq+cVBk21D+X1OFVdGX59pOn9kabmhzalq2sNPtAcct2Tw9aqFxasVM5+aezmTaxVR9wQ0gEAAGwkWpXcar13cYGvs3rtdPLozdOirZfvlVWlOYu3q1dWRdC5JEkBDeciNZGrq2md02moV1ZF0P3S9A3xFlhVD20qF1hVB1qKwzAMo+7D2o7y8nKlpKTovuVfqkPnLvEeDgAAgCVzbfUDM7LD1nsH7v8d+HOHw5AzwZCn2tngtd2B97+3MFHP3eXb6i3B5ZXX4wjaBz2WfchjWW9e1zGsM0dLWVfu26ot2StldslUT+dQfd9dvq3ajk+XxFZtaJhjBw/qzhGDVVZWJrfbHfVYQjoAAICNRQuwXo9088RBYbd58O+b5UoKu7rBQhvOmRat2BxzeI4laIce0xQN5YD6MoN639ROKtl3RMPd45TUp48KulRreWo3uVKTCeqot/qEdLq7AwAA2FjPTOuu5WaA9TEk1Va4mzKgS7UN5yJ1cI9FLMeGHmPVUC6W6j3QGL7p777vp6zbor0VG6WCjcrKGq+LVKq3UtOVn0/3dzQf1qQDAADYUHFBoh6Yke3v6r63MHgNeGCANTXn/uAtvQ85DeUQT+ZWbZJ0cnZO0M8u0bGWHg7aGSrpAAAANhStimwG2Fq+IDtn8fZmW7vd0vuQ17X/OgC0VVTSAQAAbKauKnI8O6K3ZEhu6eo9ANgBlXQAAACbiaWKfPW8Qn9TtYYE2NbQMb2lq/cAYAeEdAAAABuqK4Q3NMC2xo7pBHQA7QkhHQAAwIZiDeH1DbB0TAcAe2NNOgAAgI01ZRWZjulA/ew8cERr96xV4aFCVe7apaxDLlVsLVP1gQrl5+fHe3hoowjpAAAA7UQ8G86F4oMB2J1vv/ThWpo7UBVOKa98lQoLVirrkEtjN2/yB3XCOpoaIR0AAKAdiXfH9ND934sLEuu+ERAnue7J/rBe4ZSqkktVWLBSOfulsZs3adLWIqrqaHIOwzCMeA+iJZWXlyslJUX3Lf9SHTp3ifdwAAAA4iJeHdMfmJEd1rWeNfFoDdaVvyJJmrJui0r2HdFw9zgl9emjDUd3afWgwXKlJkuS+vfvH8dRwq6OHTyoO0cMVllZmdxud9RjqaQDAAC0Q/Ga4s6aeLRWZlU9dPo7VXU0NUI6AAAAWoSd1sQDDRU6/T2vfJVy9itsrTrQUIR0AAAAtJh4r4kHmkKue7IOX3Rv1Ko6TeXQUOyTDgAAgBYT6/7vQGvgq6pLo1fn+arq+1ZpuMYpqaNLk7YWaXlqN+Urn3XqqBcq6QAAAGhxBHS0FWzVhqZGSAcAAACARmCrNjQlQjoAAAAANIHAqjpN5dBQrEkHAAAAgCaS654sSVqa+4pGr85TXvkqZXozleMcKm3eJHdaut6qOZa16rBCJR0AAAAAmli0rdqY/o5oCOkAAAAA0AwCp7+n9eikvd6NKsssU9Yhly46UKpLdIygjjCEdAAAAABoJub0dyBWhHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAIAWcvizz+M9BNgcIR0AAAAAmtnOA0dUlVyqwkOFqty1S1mHXKrYWsZ+6QjjivcAAAAAAKAt8+2X7vt+9Oo85ZWvUqY3U+nOoRrbvUjutHS9VXNs//794zVM2ASVdAAAAABoZrnuyTVhfbgqnFJVcqnyylcpZ7+UdcilSVuLqKpDEiEdAAAAAFqMGdSX5g5UhVPKK1+lwoKVyjrk0tjNm/xBnbDefhHSAQAAAKAFWVXVCwtWKme/NHbzJqrq7RwhHQAAAADiILCqHjr9PbCqjvaFxnEAAAAAECe57smSpKW5r2jKui3aW7FRKtioYVnj5T5QKh2Q3hIN5doTKukAAAAAYBMnZ+f4vx/Z75Q4jgTxQkgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIIt2AAAAADABpbmDpTWrVXJoSPquWuXdkoqP1qk6tRuylc+27C1E3GtpD/55JMaPny43G633G63Ro4cqRUrVkQ8/oUXXpDD4Qj66tChQwuOGAAAAACaXq57snLdk7U0d6AqnFJe+SoVFqxUzn5p7OZNmrS1SPn5+crPz4/3UNHM4hrS+/btq/vvv19ffvmlvvjiC5111lm64IILtGHDhoi3cbvd2r17t/9r+/btLThiAAAAAGg+ue7J+njscFU4parkUuWVr1LOfinrkEuTthap+kAFQb2Ni+t090mTJgVdvvfee/Xkk0/q008/1bBhwyxv43A4lJGR0RLDAwAAAIAW5wvqvu9Hr85TXvkqZXozlZU1XmNLNmn1oMHKV74kMQW+DbJN4ziPx6Nly5bp8OHDGjlyZMTjDh06pOzsbGVlZdVZdZekiooKlZeXB30BAAAAgJ2Z098Dq+qh09+pqrdNcQ/p69evV5cuXZScnKxf//rXWr58uYYOHWp57ODBg/Xcc8/p//2//6eXXnpJXq9Xo0aN0s6dOyOef+HChUpJSfF/ZWVlNddDAQAAAIAmZQb1pbkD/dPfU/duVNYhl8Zu3uQP6oT1tsNhGIYRzwFUVlZqx44dKisr02uvvaZnnnlGH374YcSgHqiqqkpDhgzRlClTtGDBAstjKioqVFFR4b9cXl6urKws3bf8S3Xo3KXJHgcAAAAANKd15a9o9Oo89U3tpMSKburpHKrvu0vutHQtT+0mV2oy099t6tjBg7pzxGCVlZXJ7XZHPTbuW7AlJSVp4MCBkqRTTz1Va9eu1SOPPKLFixfXedvExESdcsop2rJlS8RjkpOTlZyc3GTjBQAAAIB4CFyrPmXdFuXtW6XhGqekjq6gteoE9dYt7tPdQ3m93qDKdzQej0fr169X7969m3lUAAAAABB/bNXW9sU1pM+dO1cfffSR8vPztX79es2dO1cffPCBrrzySknS1KlTNXfuXP/xd999t959911t3bpV69at03/+539q+/btmjFjRrweAgAAAAC0OLZqa7viOt29uLhYU6dO1e7du5WSkqLhw4frnXfe0fjx4yVJO3bskNNZ+znCgQMHNHPmTO3Zs0epqak69dRTtWbNmpjWrwMAAABAW8JWbW1T3BvHtbTy8nKlpKTQOA4AAABAm0FTOXurT+M4261JBwAAAADUj9VWbeb098Ct2mB/hHQAAAAAaAMCm8ql9eikvd6NKixYqWEd++iiA6W6RMcI6q0AIR0AAAAA2qCTs3PiPQQ0ACEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAACgHajYWhbvISAGhHQAAAAAaGOW5g7U2j1rVXioUJW7dinrkEvlJUXsl94KuOI9AAAAAABA08l1T5YkLc19RaNX5ymvfJUyvZnKcQ6VNm+SOy1dyw9UyJWarP79+8d3sAhDJR0AAAAA2qBc92R9PHa4KpxSVXKp8spXKWe/lHXIpbGbN1FVtykq6QAAAADQRuW6J+vwRZO1tDxyVf2tmmOpqtsDlXQAAAAAaOOiVdUnbWWtup0Q0gEAAACgHTCD+tLcgapwSnnlq1RYsDJs+jthPb6Y7g4AAAAA7YTZVO7jsdKUdVtUpVIVFqzUsKzxch8olQ5Ibx2fHt9BtnNU0gEAAACgHcq/9LSgyyP7nRKnkSAQIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAADt0Cc/7PN/X7lrl3ZuXO+/nJ+fH4cRQSKkAwAAAEC7k+ueLEnaeeCIqpJLlVe+SpW7dinrkEuTthap+kAFQT1OCOkAAAAA0A7luifr47HDtTR3oCqcUl75KhUWrFTWIZfGbt7kD+qE9ZZFSAcAAACAdirXPdkf1iucUlVyqQoLVipnvzR28yaq6nFASAcAAACAdi6wqm5Of8/Zr7CqOpqfK94DAAAAAADEn7lOfWnuKxq9Ok955auU6c1UjnOotHmT3Gnpeqvm2P79+8dtnG0dlXQAAAAAgF/o9PfAqjrT35sfIR0AAAAAECRw+ntaj07a692osswyZR1y6aIDpZLYpq25ENIBAAAAAGHM6e9WLtGxFhxJ+0JIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAQJ0Of/Z5vIfQLhDSAQAAAAAR7TxwRFXJpSo8VKjKXbuUdciliq1l7JfeTAjpAAAAAABLgfulVzilvPJVKixYqaxDLo3dvMkf1AnrTYeQDgAAAACIKNc92R/WK5zyVdULVipnv/S7gkOatLWIqnoTIqQDAAAAAOoUWFWvSi6lqt5MCOkAAAAAgJiYVXVz+ntgVX3s5k1U1ZsAIR0AAAAAUC9WVfWc/QqrqqP+XPEeAAAAAACg9cl1T5YkLc19RVPWbdHeio1SwUYNyxov94FS6YD0lqT+/fvHc5itDpV0AAAAAECjnZyd4/9+ZL9T4jiS1o2QDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAADTa2j1r/d/v3Lje/31+fn4cRtN6EdIBAAAAAA2W656spbkDtfPAEVUll6qwYKUqd+1SeUmRJm0tUvWBCoJ6PRDSAQAAAACNkuuerI/HDtfS3IGqSi5VXvkq5eyXsg65NHbzJoJ6PbjiPQAAAAAAQOuX654sSVqa+4pGr85TXvkqZXozleMcKm3eJHdaut6qObZ///5xG6fdUUkHAAAAADQZs6pe4VRYVZ3p73UjpAMAAAAAmlTg9PcKp5RXvkqFBSvDpr8T1sMR0gEAAAAATS7XPTmsql5YsFI5+6WxmzdRVY+AkA4AAAAAaDZmUM+/9DRVJZdqr3ejhnXso6xDLl10oDTew7MdQjoAAAAAoEWVZZbFewi2RUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANhEXEP6k08+qeHDh8vtdsvtdmvkyJFasWJF1Nu8+uqrOuGEE9ShQweddNJJevvtt1totAAAAAAANK+4hvS+ffvq/vvv15dffqkvvvhCZ511li644AJt2LDB8vg1a9ZoypQpmj59ur766itdeOGFuvDCC/Xtt9+28MgBAAAAAGh6cQ3pkyZN0jnnnKOcnBwNGjRI9957r7p06aJPP/3U8vhHHnlEZ599tubMmaMhQ4ZowYIFys3N1eOPP97CIwcAAAAAoOnZZk26x+PRsmXLdPjwYY0cOdLymE8++UTjxo0Lum7ChAn65JNPIp63oqJC5eXlQV8AAAAAANhR3EP6+vXr1aVLFyUnJ+vXv/61li9frqFDh1oeu2fPHqWnpwddl56erj179kQ8/8KFC5WSkuL/ysrKatLxAwAAAADQVOIe0gcPHqyvv/5an332mX7zm99o2rRp2rhxY5Odf+7cuSorK/N/FRQUNNm5AQAAAABoSq54DyApKUkDBw6UJJ166qlau3atHnnkES1evDjs2IyMDBUVFQVdV1RUpIyMjIjnT05OVnJyctMOGgAAAACAZhD3Snoor9eriooKy5+NHDlSq1evDrpu5cqVEdewAwAAAADQmsS1kj537lxNnDhR/fr108GDB/Xyyy/rgw8+0DvvvCNJmjp1qvr06aOFCxdKkmbPnq0xY8bo4Ycf1rnnnqtly5bpiy++0FNPPRXPhwEAAAAAiCLXPVmf/PCKXAeOKNl7RJmffa6OzqEq7y5NkvRWzXH9+/eP4yjtIa6V9OLiYk2dOlWDBw/W2LFjtXbtWr3zzjsaP368JGnHjh3avXu3//hRo0bp5Zdf1lNPPaURI0botdde0xtvvKETTzwxXg8BAAAAABCDXPdkfTx2uCqcUlVyqfLKVylnv5R1yKVJW4tUfaBC+fn58R5m3DkMwzDiPYiWVF5erpSUFN23/Et16Nwl3sMBAAAAgHZlXfkrkqTRq/OU7JUyu2QqM2u8NhzdpdWDBsuV6usp1paq6scOHtSdIwarrKxMbrc76rG2W5MOAAAAAGi7ct2Tw6rqhQUrlbNfGrt5U7uvqhPSAQAAAAAtzgzqS3MHhk1/H7t5U7sN6nHfgg0AAAAA0D7luidLkpbmvqLRq/OUV75Kmd5M5TiHSps3yZ2W3u6aylFJBwAAAADEVej0973ejUFN5SS1m6o6IR0AAAAAEHdmUJekk7NztNe70f+zS3QsXsNqcYR0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABsZe2etUGXK7aWxWkkLc8V7wEAAAAAAGBamjtQo1fnKdl7RCpYqXTnUH3fXZok6a2aY/r37x/HETYvKukAAAAAAFvIdU9WrnuyPh47XBVOqSq5VHnlq5SzX8o65NKkrUWqPlCh/Pz8eA+12RDSAQAAAAC2Ygb1pbkDVeGU8spXqbBgpbIOuTR28yZ/UG+LYZ2QDgAAAACwHauqemHBSuXsl8Zu3tRmq+qEdAAAAACAbQVW1UOnvwdW1dsKGscBAAAAAGwt1z1ZkrQ09xWNXp2nvPJVyvRmKsc5VNq8Se609DbTVI5KOgAAAACgVTCr6mk9Ounk7Bzt9W7UsI59NLLfKZq0tSjew2sShHQAAAAAQKuSf+lp8R5CsyGkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALCJdrcFm2EYkqRjRw7FeSQAAAAAgPqqPHJMRw8d1cGjXh2uqNChY0dUfvigDh89osrDh3Xs4MF4DzHMsUO+/Gnm0WgcRixHtSE7d+5UVlZWvIcBAAAAAGhnCgoK1Ldv36jHtLuQ7vV6VVhYqK5du8rhcMR7OLZUXl6urKwsFRQUyO12x3s4aGG8/uA90L7x+oP3QPvG6w/eA83DMAwdPHhQmZmZcjqjrzpvd9PdnU5nnZ9cwMftdvOL2Y7x+oP3QPvG6w/eA+0brz94DzS9lJSUmI6jcRwAAAAAADZBSAcAAAAAwCYI6QiTnJysefPmKTk5Od5DQRzw+oP3QPvG6w/eA+0brz94D8Rfu2scBwAAAACAXVFJBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThPR2ZuHChfrRj36krl27qlevXrrwwgu1adOmOm/36quv6oQTTlCHDh100kkn6e23326B0aKpNeT1f+GFF+RwOIK+OnTo0EIjRlN78sknNXz4cLndbrndbo0cOVIrVqyIeht+/9uO+r7+/P63bffff78cDoduuOGGqMfxN6DtiuU9wN+BtuWuu+4Kez1POOGEqLfhb0DLI6S3Mx9++KGuu+46ffrpp1q5cqWqqqr085//XIcPH454mzVr1mjKlCmaPn26vvrqK1144YW68MIL9e2337bgyNEUGvL6S5Lb7dbu3bv9X9u3b2+hEaOp9e3bV/fff7++/PJLffHFFzrrrLN0wQUXaMOGDZbH8/vfttT39Zf4/W+r1q5dq8WLF2v48OFRj+NvQNsV63tA4u9AWzNs2LCg1/Of//xnxGP5GxAnBtq14uJiQ5Lx4YcfRjzmsssuM84999yg60477TRj1qxZzT08NLNYXv/nn3/eSElJablBocWlpqYazzzzjOXP+P1v+6K9/vz+t00HDx40cnJyjJUrVxpjxowxZs+eHfFY/ga0TfV5D/B3oG2ZN2+eMWLEiJiP529AfFBJb+fKysokSd27d494zCeffKJx48YFXTdhwgR98sknzTo2NL9YXn9JOnTokLKzs5WVlVVn1Q2th8fj0bJly3T48GGNHDnS8hh+/9uuWF5/id//tui6667TueeeG/a7bYW/AW1Tfd4DEn8H2prvv/9emZmZOv7443XllVdqx44dEY/lb0B8uOI9AMSP1+vVDTfcoNNPP10nnnhixOP27Nmj9PT0oOvS09O1Z8+e5h4imlGsr//gwYP13HPPafjw4SorK9OiRYs0atQobdiwQX379m3BEaOprF+/XiNHjtSxY8fUpUsXLV++XEOHDrU8lt//tqc+rz+//23PsmXLtG7dOq1duzam4/kb0PbU9z3A34G25bTTTtMLL7ygwYMHa/fu3Zo/f75Gjx6tb7/9Vl27dg07nr8B8UFIb8euu+46ffvtt1HXoaDtivX1HzlyZFCVbdSoURoyZIgWL16sBQsWNPcw0QwGDx6sr7/+WmVlZXrttdc0bdo0ffjhhxGDGtqW+rz+/P63LQUFBZo9e7ZWrlxJ4692qiHvAf4OtC0TJ070fz98+HCddtppys7O1l//+ldNnz49jiNDIEJ6O3X99dfr73//uz766KM6PwXNyMhQUVFR0HVFRUXKyMhoziGiGdXn9Q+VmJioU045RVu2bGmm0aG5JSUlaeDAgZKkU089VWvXrtUjjzyixYsXhx3L73/bU5/XPxS//63bl19+qeLiYuXm5vqv83g8+uijj/T444+roqJCCQkJQbfhb0Db0pD3QCj+DrQt3bp106BBgyK+nvwNiA/WpLczhmHo+uuv1/Lly/Xee+/puOOOq/M2I0eO1OrVq4OuW7lyZdQ1jLCnhrz+oTwej9avX6/evXs3wwgRD16vVxUVFZY/4/e/7Yv2+ofi9791Gzt2rNavX6+vv/7a//Uf//EfuvLKK/X1119bhjP+BrQtDXkPhOLvQNty6NAh/fDDDxFfT/4GxEm8O9ehZf3mN78xUlJSjA8++MDYvXu3/+vIkSP+Y375y18av//97/2X//Wvfxkul8tYtGiR8d133xnz5s0zEhMTjfXr18fjIaARGvL6z58/33jnnXeMH374wfjyyy+Nyy+/3OjQoYOxYcOGeDwENNLvf/9748MPPzS2bdtm5OXlGb///e8Nh8NhvPvuu4Zh8Pvf1tX39ef3v+0L7ezN34D2p673AH8H2pabbrrJ+OCDD4xt27YZ//rXv4xx48YZPXv2NIqLiw3D4G+AXTDdvZ158sknJUlnnHFG0PXPP/+8rrrqKknSjh075HTWTrIYNWqUXn75Zd1xxx267bbblJOTozfeeCNqszHYU0Ne/wMHDmjmzJnas2ePUlNTdeqpp2rNmjWsX26liouLNXXqVO3evVspKSkaPny43nnnHY0fP14Sv/9tXX1ff37/2x/+BoC/A23bzp07NWXKFO3bt09paWn66U9/qk8//VRpaWmS+BtgFw7DMIx4DwIAAAAAALAmHQAAAAAA2yCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwCAiDwej0aNGqWLL7446PqysjJlZWXp9ttvj9PIAABomxyGYRjxHgQAALCvzZs36+STT9bTTz+tK6+8UpI0depUffPNN1q7dq2SkpLiPEIAANoOQjoAAKjTo48+qrvuuksbNmzQ559/rksvvVRr167ViBEj4j00AADaFEI6AACok2EYOuuss5SQkKD169frt7/9re644454DwsAgDaHkA4AAGLy73//W0OGDNFJJ52kdevWyeVyxXtIAAC0OTSOAwAAMXnuuefUqVMnbdu2TTt37oz3cAAAaJOopAMAgDqtWbNGY8aM0bvvvqt77rlHkrRq1So5HI44jwwAgLaFSjoAAIjqyJEjuuqqq/Sb3/xGZ555pp599ll9/vnn+vOf/xzvoQEA0OZQSQcAAFHNnj1bb7/9tr755ht16tRJkrR48WLdfPPNWr9+vfr37x/fAQIA0IYQ0gEAQEQffvihxo4dqw8++EA//elPg342YcIEVVdXM+0dAIAmREgHAAAAAMAmWJMOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADbx/wFe7+K+3O9AJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 20\n", + "amount_ae: 248\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U1XjBvDnJi3dA0rLaAtllb1kiQgtUAWBAsosyFb2UlFAQcDxAxUEQWTKkFeGKCAueBHZqAVkFBCKZSNQitBBd3J+f/TNtWmSNmlvVnm+n08+ysnJfc7JPU1PT+6QhBACRERERERERERERApT2bsBREREREREREREVDpx8ZGIiIiIiIiIiIisgouPREREREREREREZBVcfCQiIiIiIiIiIiKr4OIjERERERERERERWQUXH4mIiIiIiIiIiMgquPhIREREREREREREVsHFRyIiIiIiIiIiIrIKF3s3gIgc2507d3D48GHcvXsX9+7dQ1JSEl5//XVUrVrV3k0jIiIiIiIiIgfHIx+JyKj4+Hh06tQJwcHB6NOnD8aPH485c+Zg2bJlOHDggL2bR0RmuHr1KiRJwuzZs22SN3v2bEiShKtXr9okj4iIiIiIHB8XH0lxuj92zXmMHj3a3s0lI+Lj49G6dWv88ssvmDp1Ki5dugStVgshBDQaDQYPHmzvJhJRCSxZsgSSJJn8WX7w4AGCg4Ph6emJ+Ph4uTwsLAxhYWE2aiURERERkbLCwsIQGRlp9Rzdl/L79+83Wv64fVnP067JamrUqIEXX3zR6HNXr17F+vXrbdwiMteIESOQmpqK77//Hp06dbJ3c4hIYePHj8e2bduwYcMG9OrVCz169NB7fty4cfj777/xySefIDw83E6tJCJncPXqVVSrVs2suqNGjcLy5cut3CKyp8jISBw4cABCCHs3hYjIbH/88QdatWqF6tWr49SpU/Dw8DCo06VLF/z000/YsGGDyXUOMo2Lj2Q1NWvWNHmq3/79+7n46KDi4uJw+PBhvPbaa1x4JCqlJEnC2rVr0bBhQ4wcORJt2rRB+fLlAQBff/01Nm3ahPbt22PChAl2bikROQt+6UxERM7qiSeewFtvvYU5c+Zg+vTpWLRokd7zK1euxE8//YTnn3+eC4/FxNOuySGFhYWZPFV73bp1BvXXrl2LVq1awdvbG97e3mjVqpXRevv37zd5/TNJkowefh0ZGQlJkgzK9+3bh+HDh6N27dpybvPmzbFy5cpi963gIdlDhw5V7JDss2fPom/fvggKCoKbmxuqVauGyZMn4/79+3r1jh49CgCoXbs2YmJiUKFCBZQpUwZVq1bFmDFjcPv2bbmuVqtF1apVERAQgKysLKO57dq1g4uLC27evAnA9PupO11/6NCheuWWvs/GTgu9c+cOxo4di2rVqqFMmTIoV64cunXrhl9//dXg9aYOjy/O2AGAM2fOoH///qhUqZL8Pk6YMMHgfS/qcgWrV6/Wq2/u/iyMbnypVCpcuXLF4PlDhw7J+QX7XVifTb2HgPk/qxs2bIBKpUL//v31jp4wNU5iY2Ph7e2NJ554AqmpqXrPpaamYtasWahfvz48PDzg7++PTp064fDhw0bbn5qaijlz5qBRo0bw9PSEn58fmjZtipkzZyInJ8eiS0vofnZ174nuoVKpUKlSJXTt2lX+mctv+/btiImJQc2aNeU2tG3bFt98843RNhdHWFgYFixYgMTERIwZMwYAcPfuXYwZMwY+Pj5Yu3at/LOq6/O1a9dw7do1vb7Y6nqSROTYdF86G3sU/MwmIiJyNG+99RaaNm2KxYsX693j4MqVK3jttdcQGBiIFStW2LGFzo2Lj+Sw/Pz8MGvWLPlR8LRAnYkTJ2L48OG4desWRowYgREjRuDWrVsYNmwYJk2aZLX2ffDBBzh48CBatGiB8ePH48UXX0RSUhJGjRqF1157rdDXFuxbRESE1doJAIcPH0arVq2wfft2dOzYEa+++iqqVq2KTz75BK1atUJSUpJc9969ewCAMWPGYOvWrYiMjMRrr72GunXrYvny5WjevDmuXbsGAFCpVHjppZfwzz//GF0UuXjxIg4dOoTOnTsjJCSkWG0vyfsMAH///TdatGiBZcuWoVy5cnj11VfRo0cP/PLLL2jXrh22bdtWrHaZY+fOnWjZsiV27tyJyMhITJ48GQ0bNsSnn36K1q1b48GDBwavady4sd7Y0D2eeOIJuY4l+9McKpXK6C/SZcuWQa1WW95xEyz5WR00aBA++OADbNmyBa+88kqh242Pj0fXrl0RFBSEn376CT4+PvJz//zzD1q3bo133nkHZcuWxejRo9GrVy+cOHEC7du3x44dO/S2lZiYiJYtW2L27NlQq9UYM2YMhg8fjooVK+KDDz7Ao0eP4O/vb7B//Pz8DH6uZ82aBX9/f73tDxkyBLNmzcJbb72FiIgI7NmzB1FRUbhw4YJevenTp+PcuXN4+umnMWnSJPTp0wcXL15E7969sWTJEsvffBNGjhyJTp06yUc7jhw5EklJSVi0aJHeHe11fTbWT1tcM4eISjd+6ZxHyS+d8/fF3PdVCIE1a9agTZs28PX1haenJ5o3b441a9YY3X58fDyioqLg6emJOnXqYNeuXfJzCQkJiIyMhIeHB+rVq4etW7ca3ca1a9cwYsQIBAcHo0yZMggJCcGIESNw/fp1k/3JzMzEtGnTUKVKFbi7u6Nu3bpYsmSJwane69atK7S/jx49gp+fn9GxYGocnDp1Cmq12mCb+b8cPXfuHLp27Qp/f394e3vj2WefxYkTJxTrv+5RpkwZhIWF4aWXXjKon52djSVLlqBTp04IDQ2Fm5sbgoKC8MILL+DkyZMG29a9V8beJ8D4l/uFjVdTXxYDln2BXtjPT8Gjz5KSkjB58mRUq1ZN7m/fvn1x9uxZo30yxhpjBij8s+jIkSPo2rUrypUrB3d3d9SpUwezZs1Cenq6Xr24uDiULVsWdevWNXivjO2f+/fvo27duihbtizi4uL0nrP0Z10IgbVr16Jt27bw9/eHp6cnatWqhVGjRsljr7B9ZeyzR/ee5H+UK1cOrVq1whdffGHQhhMnTmD8+PFo0KAB/Pz84OHhgYYNG2LevHnIyckx2m5Lubq64osvvoCrqyuGDRuGtLQ0aLVaDB06FGlpaVixYgUCAwMNXnfjxg3ExMSgXLly8Pb2RkREBA4ePKhIm0oVQaSwK1euCACiU6dOJuvs27dPABCjRo0y+nxwcLAICwvTK1u7dq0AINauXSuXHThwQAAQdevWFQ8fPpTL//nnHxEeHi4AiIMHDxrkzpo1yyATgIiIiDAoj4iIEMZ+VC5fvmxQlpOTI5555hmhVqvFtWvXjPYtJCTEoG+zZs0SAMS+ffv0yocMGSIAiCtXrhjdljk0Go2oUaOGACB27dql99zrr78uAIjhw4cbtAWA+OGHH/Tqz58/XwAQ3bp1k8tu3bolXFxcRGRkpEH2lClTBACxY8cOuSwyMlIAEFqtVq+ubtwMGTJEr9zS97lq1aqiatWq8r/79esnAIiBAwfqZf7xxx+iTJkyomzZsiIlJcWg/wX3haVjJykpSfj6+org4GBx9epVvec2bdokAIjx48cX2f+CLN2fhdGNrx49eojAwECRlZUlP5eYmCjKlCkjevbsabTfpn5ehDD+Hlr6s6rzyiuvCABi3rx5QgjD9+nvv/8WYWFhIjAwUMTHxxu8fsCAAQKAWLVqlV753bt3RWhoqAgMDBQZGRlyea9evQQA8eabbxps686dOyInJ8donwuOO3PeEyGEWLp0qQAgFi1apFeekJBgsI3U1FTRsGFD4efnJx49emQyKz/d+2Vs3OrcvHlT+Pv7Czc3N4Of74LM7WdJPrOIyLkoMe+rWrWq8PPzE7NmzZIfPXr0MJj3CSHEhAkTBAARHBwsJk6cKCZOnCiCg4MFADFx4kSjuUrM+zp16iRq1KghBg4cKKZOnSpGjRolqlatKgCIV1991WTfjfVNl2GNeZ+xvpjzvmq1WhETEyMAiFq1aolRo0aJCRMmiDp16ggA4rXXXtOrf/fuXVGpUiUhSZJ4/vnnxbhx40RAQICoUqWKACDCw8NF7969xciRI0W5cuWEJEnim2++0dvGxYsXRWBgoAAgoqOjxbRp00S3bt0EABEYGCguXrxotD/R0dEiJCRETJo0SUyaNEmEhIQY3Q+6vx3UarVo1aqVwfuzYsUKoVarjY4FU+Ogbdu28jw5/3uo+zlo27at8PPzE+3btxfTpk0TMTExwsXFRXh6eorffvtNkf7r9uW0adNE+/bt5X2Wf45y+/ZtoVKpREREhBg5cqSYOnWq6NOnj3BzcxPu7u4iNjbW6HtVcFzoGPv9X9h4NTWvPXTokPD09BQuLi6if//+Ytq0aXK/atSoIe7du2eQW/DnR/fIP54SExPl+XFkZKSYNm2a6Nevn1Cr1cLT01McOnTIaL8KssaYEcL0Z9FXX30lt3HYsGFi6tSpomnTpgKAaNWqld4cVYi8+bS7u7to3bq1SE9P13uf8u+fR48eiSeffFK4ubmJAwcO6G3D0p91jUYjevfuLX/ujh49Wrzxxhuib9++wt/fX2zfvl0IIcTChQv19k/jxo0FADFp0iS98pMnT+q9JxEREfJzo0aNEgEBAQKAWLdunV47Ro0aJSpXriz69+8vXn/9dTFu3DhRv359AUC88MILRt93U6pWrWry7xghhJg7d64AIEaOHCkWLFggAIhBgwYZrfv333/Lv4M6deokpk+fLnr27CnKlCkjOnXqZPSz/nGdL3PxkRSnxCQ0KChI1K5dW6/M2C/F4cOHCwBiy5YtBtv48ssvDRZilJyEmvLNN98Y/cDUCQgIEOHh4Xpl1lx8PHjwoAAgnnvuOYPnUlNTRbly5YS7u7u88KRri7H9l5OTI6pVqyYkSRKJiYly+fPPPy8kSRKXLl2Sy7Kzs0VQUJCoVKmS3mSob9++Rvtk7uKbjqn3Of8v38zMTOHq6ipcXV3FjRs3DLbx8ssvCwBiw4YNcplSi48ff/yxACC++OILo+1/4oknRPny5eV/m9t/S/dnYXTj66effhIAxJdffik/N3fuXOHp6Sm2b9+uyOKjpT+rOlqtVl5AXL9+vd77lJycLBo3biy8vLwMJtFCCHHv3j2hVqtFhw4djLZz8eLFAoD47rvvhBB5E3VJkkSNGjVEdna20deYUtzFx08++UTumzl0E6D9+/ebVd+cxUchhJgxY4YAIFxdXcXff/9tsh4XH4moIH7p7FhfOuf39NNPG/TF1CLTypUrBQAxbNgwvd+BWVlZIjo6WgAQx48fl8snTpwoAIilS5fKZUeOHJG/yJo/f75cfunSJeHj4yNCQkJEbm6uXK5bOFuxYoVeW3RfzBX8/a3bN7Vr19bb/w8fPhS1a9cWkiSJY8eOGfRVt+D6xx9/6G2vSZMm8pes5iwkbd68WQAQzZo1M7n4CEBMmzZN73W7du0SAETDhg31yovb/4L69OkjAIhTp07JZZmZmeLmzZsGdc+ePSu8vb1FVFSUXrktFh+L8wV6UfMOnWHDhgkAYvr06XrlP/zwgwAgatasKTQaTZHbUXrM6Bj7LEpOThZ+fn7Czc1NnD59Wi7XaDTywRPvvPOOwba2bdsm1Gq16Natm/zzlP99ysnJEV27dhUqlcpgwV8Iy3/WlyxZIgCIjh076i14CiFEenq6uH//vtE+F/V5Zurz+dy5cwKA6Nmzp175tWvX9D4/hMj7O0H3N8bhw4eN5hhT1OJjbm6uaNWqlQAgypQpI0JCQsSDBw+M1tX187333tMrX7FihfyZwMXHPDztmhxSSkoK3N3di6ynO23A2Gkz7du3B5B3eoQ16K4j17hxY3h7e8uHi/fq1QtA3um+BWm1WiQnJ8PT09OirEWLFmH27Nl45513sGzZMuzduxdardas1xb2HulOGcrMzMTFixf1ntO9f/m5uLigbdu2EELg9OnTcvmoUaMghNC7LuHOnTuRmJiIYcOGwcXl33tbtWrVCgDwxhtv4O7du0W2vzjvs+6adO7u7sjJyUHNmjWNnvZtzTHy22+/AQB+//13o9e/yszMRFJSksWnSBd3fxamTp066NChg3wHUq1WixUrViAmJsbgtOH8rl69arRvxq71WNyfVUmS8OqrrwLIuwu77pSurKws9OzZE6dPn0a7du3QokULg9ceO3YMGo0GWVlZRtup20e6U56PHz8OIQTat28PV1dXk/0uiXXr1mH27NmYOXMm+vXrhylTpqBz587o27evXr3ExES8+uqrqFu3Ljw9PeVxr7vUgLFxX1yJiYnyafc5OTn4/vvvFds2EZE5cnJy4ObmVmQ93U1rZs+eDT8/P7m8bNmymDVrFgCYPG20pIzd0dvFxQWjR4+GRqPBvn37jL4uIyMDZcqUsUqbimJJ9qeffgovLy8sXbpU73dgmTJl8P777wMANm3aJJd//fXXKFu2LEaNGiWXPfXUU3jyyScBQO/SODVr1kTfvn1x8+ZN+Xfv9evXsW/fPtSrVw8vv/yyXltGjx6NOnXq4JdffsGNGzcM2jpz5ky9/e/n54cZM2ZACGH0xkbR0dEICQnBsmXL5LLffvsNp06dkq95XJSMjAy8/vrrqFevHkaPHm2ynr+/P9566y29sk6dOqFjx46Ii4uTT78uSf8Lys3NlbN13NzcEBwcbFC3fv36aN++PQ4ePKjYqarmOnLkCBISEvDcc88Z3NTy7bffRrly5bBx40ZkZ2dbtN3s7Gxs2rQJAQEBmDFjht5zXbp0wTPPPIO//voLR44cMXubSoyZonz77bdITk7G8OHD0ahRI7lcpVLhww8/hIuLi9HPs+effx5Lly7F999/r/fzpzNy5Ej88MMP+PTTT/HCCy8YPG/pz/pnn30GtVqNZcuWGdwB2sPDA+XKlbO474XRjeeyZcvqlVepUsXgclCSJGHcuHEAgJ9//lmxNqjVavm9yM7OxqJFi4z+TZSdnY0tW7YgKCjI4HJgL730EmrVqqVYm0oD3u2aHE56ejoyMzONXk+hoJSUFKhUKqN1K1SoAEmSkJKSongbs7OzERkZiT/++ANNmzbFoEGDEBAQABcXF/mOjsZuwHL37l3k5uaicuXKFuV98sknBmXh4eHYsWMH6tatW+hrdf2vUKGC0ecrVaqkV0+3UFixYsVC6ycnJ8tlzz77LKpVq4b169fjvffeg4uLC1avXg1JkjBixAi9148bNw7bt2/H1q1bTV7/R6e477Ofnx8mT56MlJQULFy4sMi+5++LUv755x8AwNKlSwut9+jRI/kuw+awdH+aa8yYMejTpw/OnTuHq1ev4urVqxgzZozBzVvyu3btGubMmWN2u4vzs6rRaDB69Gj4+vqievXqGD9+PABg69at0Gq1aNu2LX766Sfs2LEDPXv21Hutbh8cOXKk0Anno0ePAPw7DoxN1pVS8I+i8uXLo1mzZnrXCPrnn3/QokULXL9+HW3atEFUVBT8/f2hVqtx6tQpfPvttyZv8FQco0ePxr179zBv3jzMnz9fvtN9lSpVFMsgIipMSkqK/PurMPb+0nn+/PnYsWMHEhIS5N8dOoV96RwaGmpRlu4PXd3vzfDwcLRv3x4qlWXHjTx48MCsL7zT09MRFxeHypUr44MPPjB4XrdIpfuyLjk5GX///Tdat25t9rWhGzZsCAA4d+4c2rRpI++niIgIg+vkqVQqtGvXDhcuXMCpU6cM3r+2bdsabF9XZux6hmq1GiNHjsQHH3yA+fPnw9fXF5999hlq1qyJZ555xqz2f/DBB7hx4wb++9//4tatWybrNW3aFN7e3kbbt3fvXpw8eRLNmjUrUf911w3MysrCr7/+iqNHj+Ktt97Su1YzkPez8OGHH+Lw4cO4c+eOwWJjUlKSwc/djh07jF7D8eHDhya/kDa2MPPw4UODeuZ8gf7f//4XFy9elMeLOS5cuIDMzEy0b9/e6Hhv37499uzZg1OnThkdO8aUZMwYu66jsfe0sPejSpUqqF69OuLj45Gamqp3PXMg79ros2bNwueff673N9tbb72FtWvXIjAwEIMHDzbYrqU/62lpafjzzz9Rs2ZNqy2k7d+/X37Pbt++ja1btyI8PBzTp0/Xq5ednY1PP/0UmzdvxoULF5CWlqZ3nVclv5gXQuC9996T/71t2zb5wJf8Ll68iMzMTHTo0MHgwCmVSoU2bdrg0qVLirXL2XHxkRxOQkICABhcNNcYX19faLVa3Lt3D0FBQXrPJSYmQggBX19fxdv47bff4o8//sCIESMM7kK8efNmo9+6Av9OiMPDwy3Ku3LlCsLCwiCEwN9//40PP/wQixcvxoQJE4r8lkfXf1NHGd65c0evnu7bK125qfr5v3GWJAkjR47E9OnT8d1338mTh44dO6J69ep6r3dzc8OBAwfw008/IS4uDpmZmQDyJikFF1mL+z77+/tj9uzZSE1NxcKFC4vse/6+KEX3fsbFxaFBgwaKb9fc/Wmunj17olKlSli2bBmuXr2KFi1aoFmzZkaPYtSJiIgw+vzs2bMNFiWL+7P68ccf4/jx41i+fDl69uyJp556CpcvX4ZGo8H8+fMxZswYNGjQAGPHjkVkZKTe5Fe3vddeew3z588v8j3QvbawPypKat++ffIk8969e1i3bh2mTp2KhIQE+Vvmzz//HNevX8e7775r8A3+vHnz8O233yrWng0bNmD79u3o1q0bpk6dirCwMPTv3x8jRozAnj17FMshIjKFXzobKsmXzjq6OWPBeZgxDx48gBACt27dKvRLRd2Cq+6LSWOLbKbo6ur2T0m+TDX2Gl2ZqS+UX3rpJbzzzjvYsGED+vfvj61bt+K9994zeYOQ/K5fv44PP/wQ3bt3xzPPPFPo0bWm+lOwfSXpf8F9VLduXdSsWVOv7OjRo+jQoQOAvIMEatWqJZ9BtGPHDpw+fdromP32229NzjNMLT4aG6/GWOsLdGttt7hjxpIv5oHC2x0fH4+UlBSDxce33noLd+/eRbt27fD+++/LXwL83//9H9q1a4eDBw/izTffNNg3lv6s2+KL+QMHDujdWdrV1RXR0dEGC8m9e/fGd999h/DwcPTr1w9BQUFwdXWV/4ZU8ov5xYsXY//+/Rg0aBCuX7+OjRs3ok+fPgYHOujen4J/2+iY2rePK552TQ5HdzpG8+bNi6zbtGlTADC6AKIra9KkiVJNk+kWSI3dgfvQoUMmX6dbKGzXrl2xciVJQnBwMBYtWgQ/Pz8cP368yNcU9h49evQIx48fh4eHB2rXrg0A8l2VjdXXaDQ4fPgwJEkyeF+HDRsGV1dXrF69GmvWrIFWqzU4jURHpVKha9eumDZtmnwK7OTJkw3qFfd91vHx8UHNmjXx119/GV1QsuYY0Z1e/uuvvyq6XUv3p7lcXFzw0ksvYf369fjpp58UO6VEpzg/q3/99RdmzZqFdu3aYeTIkahQoQK2bNkCAOjatStee+01eHp6YuXKlbh9+zamTJmi9/oWLVpAkiSz90Hz5s2hUqmwb98+m5yKFBgYiNdffx0NGzbE1q1b5YX4ko57c926dQsTJ05EuXLl5Lu19uvXD71798bPP/9s9A7oarUaGo1GsTYQERX3S+eCbPWl8x9//IFly5bhvffew+zZs9G5c2eTryvJl85CCGi1Wty8eRMTJ05EfHw8JkyYYPY2dEeDmZOte8+aNWsGkXdPAKMP3anlXl5eAPKOijKXrq5uEbIkX6Yae42uzNQXypUqVULPnj2xfPlyrF27FkDe3NUcr7/+OrRaLT7++OMi65rqT8H2laT/uv2Rm5uLhIQEPPHEExg2bJje7+33338fWVlZ+Pnnn7Fz504sWLAAc+bMwezZs02e3QTk3Une2L4veFRlfrrxmv9x5coVg3rW+gLdWtst7pgp7GdHiXb//vvvWLx4Mfr3749ffvkFPXr0gEajgUajQY8ePfDLL7+gX79++PTTT+W/qwtmmvuzrhuv1vxiftasWXJuSkoKvvnmG+zcuRPt2rVDRkYGgLxLKX333Xfo1KkTzp8/j1WrVuH999/H7Nmz0b9/f0XbEx8fj+nTpyMkJARLlizBmjVr4OXlhdGjRxvcZVz3/iQmJhrdljmXGHuccPGRHEpycjIWL14MV1dXdO/evcj6Q4YMAZD3DVP+b7OSk5Plb3N0dZSk+wV8+PBhvfIDBw5g1apVRl+TlJSEDRs2oFy5cnjuuedKlH/79m2kpaUZXAvDmDZt2qBGjRr46aefDI6SfO+993D//n3ExMTI1wRq1aoVwsPDsWvXLvn6ejpLlixBQkICoqOjDU4VrlChAnr27Ildu3Zh2bJlKF++vMG3Q5Yqzvtc0LBhw5CTk4Pp06frHZp/5swZrFu3DmXLli1xO03l+vj44K233sK5c+cMnk9PTzeYEJjD0v1piZEjR6Js2bKoWbOm4r/ILf1ZFULg5Zdflq8lqvuWWTfu8o+/qKgoDBs2DJ9//jl++eUXubxixYro27cvjh49io8++khv/+v8/vvvSE9PB5A3hnv16oWEhASj3wYnJibK16FRyoMHD3Dr1i29b9FNjfuNGzfixx9/VCx7xIgRePjwIT799FO9064+++wzeWH02rVreq8pV64ckpKS5IVSIqKS4pfOphXnS+fiZPv4+KBu3br4888/jZ4uW1DZsmVRoUIFXLhwwewvpM6ePQsA8pGbuv108OBBg9/PQggcPHhQr15+xt5zXZlujBgzZswYnD17Fu+++y769u1r1rXqDh06hK+++gqvvPIKatSoUWT9kydPGl2ULdi+kvRfR61Wo3r16liyZAmAvLMZdBISElCuXDk8/fTTeq9JT0/HH3/8UWQ/rMFaX6DXqVMH7u7uOHbsmDyny68knw3FGTPmKuz9uHHjBhISElC9enW9ox6zs7MxYsQIlC1bFosXL4ZarcamTZtQvnx5lC9fHps2bYJarcbixYvh7++PESNG6F1D09KfdW9vb9SrVw9XrlyxyenDPj4+iI6OxuDBg3H58mX5skm6z+CuXbsaXOpByS/mNRoNhgwZgoyMDKxevRp+fn6oXr06PvjgA9y9e1e+/JNOeHg43N3dcfz4cYO5sVarxdGjRxVrW2nAxUdyGO+99x5q166Ns2fP4p133jHr2j/t2rXDhAkTcP78eTRo0ACvvPIKJk+ejAYNGuDChQuYOHGi0UmX7jTO/A8g71oRBct1149Yvny5POmLjo5GWFgYPvzwQ3Tt2hVTp05Fz5490bFjR6MT03Xr1qF169a4d+8eqlSpgnnz5hm9Qce6deuwY8cOg9d/+eWXWL58OZYtW4aZM2eidevW0Gg0GDlyZJHvkUqlwrp16+Dp6YkuXbpg4MCBePPNN9G+fXvMmzcPNWrUwLx58+T6kiTh888/h4eHB6Kjo9G/f3+8+eabeO655/DKK68gODgYn376qdGs0aNHQ6vV4u7duxgyZEiJL7Bu6ftszGuvvYZWrVphw4YNaNmyJaZNm4bhw4fL7+Hq1auNnja0c+dOvXGwc+dOAEWPHd14CQwMxKZNm5CWlobGjRujW7dumDJlCiZMmIDo6GhUrFjR6DVhimLp/rRESEgIrl+/josXLxpcULqkLP1ZXblypXwNGHOuMbNgwQJUrFgRI0eO1Jt4fvbZZ2jSpAneeOMNNG7cGKNGjcLUqVMxYMAAhIeH48knn9RbDP3ss89Qt25dvP/++3jiiScwZcoUvPbaa4iOjkZoaKhFR3kYo7vhzOzZszF+/Hg0atQI9+/fx6BBg+RrxQwaNAh+fn6YMGEC+vbti9dffx3PPvssBg0aZPTC4cWxYsUK7N69G71790ZMTIzec4GBgVi2bBlSU1MxfPhwvT+KOnTogMzMTDz33HN4++238d5778l/IBERWYpfOpvHki+dASAzMxOfffYZXFxc0K9fP7NeM3HiRKSnp+Pll182uJ4lkHd0W/7r1vXs2RMPHjzQuyzOr7/+Ki8mL1iwQC6/fPkyvvrqK1SoUAFPPfUUgLxr2rVv3x7nzp3DmjVr9LJWrlyJP//8Ex06dDB6vcx3331X7/Tq5ORk+XTYwvZ/hw4d8NRTT8HHxwdjx44t4h3JM3HiRFSqVMngJjKmPHz4UL5Rhc7u3buxd+9eNGjQAM2aNQNQsv4XFBcXZ1BWtWpVPHjwQO8LcI1GgylTphg9ctgWrPUFepkyZRATE4OkpCTMnTtX77ldu3Zh9+7dqFmzJtq0aWNxm4szZszVo0cP+Pn5Ye3atXr7SQiBqVOnIjc3F0OHDtV7zfvvv49z585h4cKF8uUnPDw84OXlBS8vL3n+HhQUhIULF+L8+fMG49HSn/Vx48ZBo9Fg7Nix8pGIOpmZmfI11pUihJC/rNAx9Rl87tw5g31eEh9++CF+++03jBw5Uu+mSGPHjkWHDh2wefNmbNu2TS53c3ND3759kZiYqPeZBwCrV69GfHy8Ym0rFRS7bzbR/1y5ckUAEJ06dTJZZ9++fQKAGDVqlFwWEREhoqKixLfffmv0NWvXrhUAxNq1aw2eW7NmjWjRooXw9PQUnp6eokWLFmLNmjUmc4v7mDVrlryty5cvi169eonAwEA5c/PmzXJG/roRERFmZwwZMkR+3ZAhQwyeDwwMFG3atBEbNmwwvROMOHPmjOjdu7coX768cHV1FVWrVhWTJk0S9+7dM1r/9OnTevVDQ0PF2LFjxe3bt01maLVaUaVKFQFA/Pnnnxa1Tzdu8vdfCMveZyGEqFq1qqhatapeWWpqqnjzzTdFzZo1RZkyZUTZsmVFt27dxNGjRw3aMWvWrBKNkX379ult78KFC2LEiBGiatWqcnbDhg3FxIkTRWxsbJH9N8XS/WmMbnxduXLFZB1T7zMAERERYfQ1uvew4HshhHk/qzdv3hS+vr6iadOmIicnR++5wt6nr7/+WgAQr776ql55enq6+PDDD0WzZs2El5eX8PDwENWqVRM9e/YUX3zxhUFGcnKymDlzpqhTp45wc3MTfn5+okmTJuLtt98W2dnZRvtsbNwZe0/yP8qWLSuaNWsmlixZYtCGU6dOiWeffVaULVtW+Pj4iIiICPHzzz8X+jlojO79KvjZ5e3tLYKCggodLzExMQKAWLp0qVyWmpoqXn75ZVGpUiWhVqsNtq3rZ2FjiohKl+LO+959911RoUIFAUDMnTvX4DWmPu8mTJggAIjQ0FAxefJkMWnSJBESEiIAiIkTJxrN7dq1q1i2bJneA4CoVauWQXmtWrUEALFs2TJx7NgxIUTeZ19YWJgAILp06SLeeOMN0aNHD6FWq0Xv3r0NPgvXrl0ratasKQCIJk2aiFmzZuk9dPPCIUOGiO3bt8uv0/1efu+998SyZcvEZ599JmbMmCHPrf7v//6vyP2xfft28cQTTwgAIiwszCC7R48eAoDo0aOH3nur1Wrl/EqVKolBgwaJqVOniqFDh4onn3xSSJIkNm3aJNe/efOmKF++vJAkSfTq1UuMHz9eBAYGiqpVqwoAol69eqJPnz5i1KhRIiAgQAAQX375pV5bL1y4IG+jR48eYvr06aJ79+7yfPfixYt69XXvW3R0tAgJCRGTJk3S2/8Ff/+b+zvT2Jwm/9x9/fr1RW5X93PQtm1b4efnJ9q3by+mT58uYmJihIuLi/Dw8BC//fabIv3X7csZM2aIwYMHCy8vL4N2fvfddwKA8Pf3FyNHjhQTJ04UjRo1EgEBASIyMtLgd3VR75WxeU5h80hT87VDhw4JT09P4erqKgYMGCCmT58ut6dGjRoiMTGxyFxjEhMTRfXq1QUA0aFDB7333tPTUxw6dKjIbQihzJgxxtR8+quvvhJqtVp4eXmJ4cOHi6lTp4pmzZoJAKJly5YiIyNDrhsXFydcXV1F586dDbZv6n3q1KmTcHV1FXFxcXKZpT/rWq1W9O3bVwAQwcHBYsyYMWLq1KkiJiZGlCtXTu8zLL+i/s7QvScRERHymH7ttdfk/tepU0dkZmYKIYTIzc0VLVu2lH/GXn/9ddGvXz/h4eEhfwab+zeU7v0quP/OnDkjypQpI6pVqyZSU1MNXnPlyhWj8+e///5bBAcHCwCic+fOYvr06aJnz56iTJky4tlnnzX6N9HjOl/m4iORmapWrWrwC8NcERERZn0gmlvPUf3999/CxcVFtG3b1t5NsTndJMvYghuRvRhbfLSmx3UyRfQ445fOjvWls7FtmHoY+xJxy5YtIioqSpQtW1a4urqK4OBgERkZKRYsWGDwhdW5c+dE+/bthbu7u6hdu7bYtWuX3PeEhAQREREh3NzcRHh4uMHCo87Vq1fFsGHDRKVKlYSLi4uoVKmSGDZsmLh69apBXd22MzIyxBtvvCFCQ0NFmTJlRO3atcXixYuFVqvVq6/EQlKrVq3M2m7+xbazZ8+KLl26CF9fX+Hl5SWioqLE8ePHFeu/7qFSqUTFihVFVFSU+P777w3qf/311+KJJ54Qnp6eonz58qJv374iISHB6KKQrRYfhbDsC3RzFx+FEOLevXti4sSJomrVqsLV1VWUL19e9O7dW2/hrSi2XnwUQoiDBw+K5557Tvj7+4syZcqI8PBwMXPmTJGWlibX0S2+eXt7i2vXrhlsw9T7dPXqVeHt7S1atmwpcnNz9Z6z5Gddq9WK1atXiyeffFJ4eXkJT09PUatWLTF69Ghx/fp1o302d/Ex/8PLy0vUrl1bTJ061WAhOjExUQwfPlxUrlxZuLu7i4YNG4qlS5eKy5cvl3jxMTs7WzRp0kRIklTo33IrVqwQAESfPn30yq9duyb69esn/P39haenp2jbtq04cOCAyQMyHtf5siSEkYtgEZGBsLAwDB06tFinykZGRiIsLKzQu+NZUs9RTZ06FR9++CE2btxocCpnaXf16lVUq1ZN727GRPamG5ezZs0q1meXpXR3Or9y5YpZN48gInJUzjrvGzp0KK5evWr0OnLFqWepyMhIHDhwwOh1lh152yWl+307ZMgQp53HEz0uwsLCEBYWpvjnn7ke1/myi70bQOQsBg4caNbF0I0ZOnQo/P39FavnSJKTk7Fs2TJcu3YNq1evRr169dC3b197N8vmfHx8MGrUKFSuXNneTSEiIiIiIiJyGFx8JDJTwYv1WqLgxYJLWs+RPHjwANOnT4e7uzuefvppLF++3OAuZI+DgIAA+eYzRERE5Nyc9Uvnnj17mnUXW3PrERERKYGLj0RUImFhYQ55+gsRAf7+/pg1a5bNLgWgy3G2I7iJiApy1i+de/bsqWg9IiIiJfCaj0REREREREREVOotWrQI/v7+djvrcP/+/di/fz8mT578WH1hz8VHIiIiIiIiIiIisgqVvRtAREREREREREREpdNjd81HrVaLv//+Gz4+PpAkyd7NISIiIrKYEAKpqamoXLkyVCp+l+yMOCclIiIiZ2bJfPSxW3z8+++/ERoaau9mEBEREZXYjRs3EBISYu9mUDFwTkpERESlgTnz0cdu8dHHxwdA3pvj6+trk8x+/fphy5YtNsmyVybznDvPHpnMY56jZzLPufPskWnLvJSUFISGhsrzGnI+j8OclHnOn8k85jl6JvOcO88emcxTjiXz0cdu8VF3Wouvr6/NJnqurq42y7JXJvOcO88emcxjnqNnMs+58+yRaY8+8nRd5/U4zEmZ5/yZzGOeo2cyz7nz7JHJPOWZMx/lRYKIiIiIiIiIiIjIKrj4SERERERERERERFbBxUciIiIiIiIiIiKyCi4+EhERERERERERkVU8djecsZRGo0FOTk6JthEQEIDMzEyFWuSYmcxz7jx7ZDprnouLC9RqNW/yQERENqPEfBRw3t+9zLNfJvOYZ89MV1dXqNVqRbZFRPbFxUcThBC4c+cOHj58WOJtDR06FFeuXCl5oxw4k3nOnWePTGfOU6vVCAoKgp+fHxchiYjIapScjwLO/buXefbJZB7z7J3p7++PihUrcs5N5OS4+GiCbqIXFBQET0/PEn3YSZKEsLAw5RrngJnMc+48e2Q6Y54QArm5uUhJScHt27eRkZGBSpUqKdNAIiKiApScjwLO+buXefbNZB7z7JUphEB6ejoSExMBgHNuIifHxUcjNBqNPNELCAgo8fbUajXc3d0VaJnjZjLPufPskenMeT4+PnBzc0NSUhKCgoJ4OggRESlO6fko4Ny/e5lnn0zmMc+emR4eHgCAxMREzrmJnBxvOGOE7po6np6edm4JETkqLy8vCCEUuQYXERFRQZyPEhH9+xnIOTeRc+PiYyF4XQkiMoWfD0REZAv8fUNEjzN+BhKVDlx8JCIiIiIiIiIiIqvg4iMVy6NHj3Djxg08ePDA3k0hIiIiIiIiIiIHxcVHMtvWrVvRsWNH+Pj4wNvbG1WqVMGHH35o72YREREREREREZGD4uLjY+rcuXN48cUXERwcDDc3N1SuXBkDBw7EuXPnjNafNm0a+vbtCx8fH6xatQp79uzBzz//jLFjx9q45URERETkzNatWwdJkuSHu7s7wsPDMX78eNy9e9fezSMbatmyJSRJwrJly4w+X3CsFHz89ttvct0tW7bgxRdfRK1atSBJEiIjI23UCyIiKoqLvRtAtrdt2zbExMSgXLlyGDFiBKpVq4arV6/i888/x9dff43Nmzfj+eefl+sfOHAAH3zwAebOnYtp06bZseVEREREVFq88847qFatGjIzM3H48GEsW7YMP/74I86ePcu7fD8GLl26hGPHjiEsLAxffvklxowZY7KubqwUVLNmTfn/ly1bhhMnTqBFixa4f/++VdpMRETFw8XHx0xCQgIGDRqE6tWr4+DBgwgMDJSfmzRpEtq2bYtBgwbhzJkzqF69OgBg/vz5eOqpp7jwSERERESKee6559C8eXMAwEsvvYSAgAB8/PHH+PbbbxETE2Pn1pG1/ec//0FQUBAWLFiA3r174+rVqybr5h8rpmzYsAHBwcFQqVRo0KCBwq0lIqKS4GnXj5mPPvoI6enpWLlypd7CIwCUL18eK1aswKNHj/Su5fjbb7+hQYMG6N+/P8qVKwcPDw+0aNECO3bskOs8evQIXl5emDRpkkHmzZs3oVarMXfuXADA0KFDERYWZlBPkiTMnj1b/ve1a9cwduxY1K5dGx4eHggICECfPn0MJib79++HJEnYv3+/XHbs2DE888wz8PHxgZeXFyIjI3Ho0CG91+lO4zh+/LhclpSUZNAOABg5cqTRNv/+++/o3Lkz/Pz84OnpiYiICBw5csSg3q1btzB8+HBUqFABbm5uqF+/PtasWWNQzxjdaSWLFi0yeK5OnTqQJAnjx48vtF+F9e3kyZN47rnn0LRpU3h7e6Njx456p7AAwIoVK6BSqbB161a57OrVq5AkCevWrZPL4uPjUa5cOQwYMEDv9Q8fPsTkyZMRGhoKNzc31KxZEytXroRWq9Wrp9Vq8cknn6Bhw4Zwd3dHYGAgOnfuLPelsNNu8p9eoxsTuoebmxueffZZzJ07F0IIo/339fU12X8iIiKyvg4dOgAArly5AgD4559/MGXKFDRs2BDe3t7w9fXFc889h9OnTxu8NjMzE4sXL0Z4eDjc3d1RqVIlvPDCC0hISADw77ylqDmETmJiIkaMGIEKFSrA3d0djRs3xvr16/XqXL58GR06dEDFihXh5uaG0NBQjB49Gv/8849cRzcn+frrrw3a7O3tjaFDh8r/Nre/lmyzuPNC3bxo8ODBRudFxuZ2H3zwgcHcrjAbN25E79690a1bN/j5+WHjxo1mv9aY0NBQqFTF+/M2/9zx1KlTes/dunULarXa4D0fOnQovL29Dbb19ddfG/xtAuRdP//555+Hh4cHypcvjxdffBG3bt3SqzNgwAAEBATg0qVLcpluH+b/G2jr1q1QqVRYsWKF3usvXLiA3r17o1y5cnB3d8cLL7yAnTt3GrTx4cOHeOWVVxAWFgY3NzeEhIRg8ODBSEpKMphHG3voxs3s2bP1yn18fNCrVy+9vxPzt7lZs2aF9p+ISi8e+fiY+e677xAWFoa2bdsafb5du3YICwvDDz/8IJfdv38fK1euhLe3NyZOnIjAwED85z//wQsvvIAvv/wSMTEx8PLywvPPP48tW7bg448/hlqtll+/adMmCCEwcOBAi9p67NgxHD16FP3790dISAiuXr2KZcuWITIy0ugvUZ2//voLkZGR8PT0xOuvvw5PT0+sWrUKUVFR2LNnD9q1a2dRO0z55Zdf8Nxzz6FZs2aYNWsWVCoV1q5diw4dOuDQoUNo2bIlAODu3bt48skn5UXCwMBA/PTTTxgxYgRSUlIwefLkIrPc3d2xdu1avbpHjx7FtWvXStSHc+fOoW3btvD19cXLL7+MihUrYsWKFYiMjMSBAwfQqlUrAMCoUaNw8eJFDBkyBGFhYWjRooXBtv755x9069YNdevWxdq1a+Xy9PR0RERE4NatWxg1ahSqVKmCo0ePYsGCBcjJydFbVB0xYgTWrVuH5557Di+99BJyc3Nx6NAh/Pbbb2jevDk2bNgg1z106BBWrlyJhQsXonz58gCAChUq6LXpzTffRN26dZGRkYG1a9fizTffRFBQEEaMGGHQ/zfeeAOurq5G+09ERETWp1soDAgIAJC3uLdjxw706dMH1apVw927d7FixQpERETg/PnzqFy5MgBAo9GgW7du2Lt3L/r3749JkyYhNTUVe/bswdmzZ1GjRg05IyYmBl26dNHLnT59ut6/MzIyEBkZib/++gvjx49HtWrVsHXrVgwdOhQPHz6Uv2zPyMhASEgIoqOj4evri7Nnz2Lp0qW4desWvvvuO4v7b25/rcXYvOjTTz81mBeZmttNnz4dt2/fNvqFeUG///47/vrrL6xduxZlypSR/67o06eP0frJyclISkrSK5MkSR4rStHNuT/55BO5bP369ShTpgwyMzOLvd1169Zh2LBhaNiwIebOnYu7d+/ik08+wZEjR3Dy5En4+/sDANasWYMOHTqga9eu+P3331G2bFmDbcXGxmLIkCF45ZVXMGrUKLn83LlzaNOmDYKDgzFt2jR4eXlh/fr16NmzJ7755hv5slppaWlo27Yt/vzzTwwfPhxPPPEEkpKSsHPnTty8eRN169bVm3OvXLkSf/75JxYuXCiXNWrUSK9NuvpJSUn45JNP0KdPH5w9exa1a9fW63+LFi0K7T8RlWLiMZOcnCwAiOTkZJN1MjIyxPnz50VGRoYimfHx8Ypsp6SZDx8+FABEjx49Cn1t9+7dBQCRkpIihBACgAAg9u/fL9dJT08XdevWFRUrVhTZ2dkiPj5e7N69WwAQP/30k972GjVqJCIiIuR/Dxs2TFSpUsUgF4CYNWuWXkZBv/76qwAgPvzwQ7ls3759AoDYt2+fEEKIXr16CbVaLc6ePSvXSUpKEgEBAaJZs2Zy2dq1awUAcezYMbns3r17Bu0QQojIyEhRtWpV+d9arVbUqlVLdOrUSWi1Wr02V6tWTTzzzDNy2YgRI0SlSpVEUlKS3jb79+8v/Pz8jPYz//4DIHr37i1cXFzE8ePH9bY7YMAAAUCMGzeu0H6Z6lvPnj1FmTJlREJCgpz5999/Cx8fH9GuXTu912s0GhEdHS0qVaokbty4Ia5cuSIAiLVr14rs7GwRGRkpqlWrJhITE/Ve9+677wovLy+DMTly5EihVqvF9evXhRBC/PLLLwKAmDhxosH7kf89LtjPK1euGDxXcEwIIcTZs2eFSqUSY8eONdp/HVP9L6ioz4no6OhCX6+00p5nj0zmOXeePTJtmWfOfIYcW1H7UOn5qBB584v0dCE+/liI8ePz/mtkGqJonjG63+E///yzuHfvnrhx44bYvHmzCAgIEB4eHuLmzZtCCCEyMzOFRqPRe+2VK1eEm5ubeOedd+SyNWvWCABi+vTpBlm6OYRu3vLRRx8Z1Klfv77eXHXRokUCgPjPf/4jl2VnZ4vWrVsLb29veY5srH9jx44V3t7e8r91c5KtW7ca1PXy8hJDhgyR/21Of+Pj4y3aZnHnhTqHDx82mBeZmttNmzZNb25XmPHjx4vQ0FB5//z3v/8VAMSOHTv06unab+zh5uZmcvsF96kpuj7o3tOYmBgREBAgsrKy5Dq1atWS59z53/MhQ4YILy8vg21u3bpVbx6anZ0tgoKCRIMGDURcXJxc7/vvvxcAxNtvv633+rt374qwsDDRvn17kZ2drTfnvX79uqhYsaLo3r27wVjp2LGjaNiwocjMzJTLLl68KJ566ilRq1Ytueztt98WAMS2bdsM2m5szj1kyBC9v4PymzVrlii4pKBr71dffWXQ//yfZ6b6XxDn3KU7zx6ZzFOOJfNRu552XfAwbUmSUKdOHZP1z507h169eiEsLMzkaaiOLCsjBzsW/oblE3Zhx8LfkJWRY9P81NRUAICPj0+h9XTPp6SkyGUtWrRARESE/G8PDw+MHTsWd+7cwR9//AEAiIqKQuXKlfHll1/K9c6ePYszZ87gxRdflMuCgoKQmJiI7OzsQtvh4eEh/39OTg7u37+PmjVrwt/fH+fPnzeon5ycjMTEROzZswedOnVC/fr15ecCAgIwdOhQnDhxQpG7KJ46dQqXLl3CgAEDcP/+fSQlJSEpKQmPHj1Cx44dcfDgQWi1Wggh8M033yA6OhpCCLleUlISOnXqhOTkZPn9K0yFChXQtWtX+YjC9PR0fPXVVxg2bJjJ1+i+IdY98p8CBOQdJfDf//4XPXv2lK/vCQCVKlXCgAEDcPjwYb0xoFKpsGnTJgQEBCA6OhqPHj2SnxszZgxiY2Px/fffG5zOv3XrVrRt2xZly5bVa89TTz0FjUaDgwcPAgC++eYbSJKEWbNmGfRFkqQi36PC3oPr169j1apV0Gq18ildlvafiIhKp8dpPpqZKaFNG2DKFGDFirz/tmkDZGTYpz1RUVEIDAxEaGgo+vfvD29vb2zfvh3BwcEAADc3N/k0Wo1Gg/v378Pb2xu1a9fWmz998803KF++PAYNGmSQUZw5xI8//oiKFSvqXXfS1dUVEydORFpaGg4cOKBXPzk5GXfv3sXevXvxww8/GD3LJjU1VW8eVPAoPkv6a8k287exOPPCoKAgg3mRqbldVFSU3tzOlNzcXGzZsgX9+vWT90+HDh0QFBRk8ojRpUuXYs+ePXqPn376qdCc4oiOjoYkSfJZVocOHcLNmzfRr18/k68puA90f3PpHD9+HImJiRg7dizc3Nzk8q5du6JOnTp6Z5wBee/5Dz/8gN9//x1jx46Vy9PS0hAdHY3y5ctj48aNeqeY//PPP/jll1/Qt29fvXHx4MEDdOrUCZcuXZJPcf7mm2/QuHFjvRuM6hR3zq3L+/PPP7Fp0yZ4eXnhySefNOi/u7t7kf0notLJ7qdd169fHz///LP8bxcX001KT09H9erV0adPH7zyyiu2aJ5isjJy8Eabdbh8+i5UaglajcC+DXH48MhQuHm42qQNukXFgr8QCzK2SGlsEl63bl0AedfQKVeuHFQqFQYOHIhly5YhPT0dnp6e+PLLL+Hu7q53CsVTTz2FDz74ADNmzMDEiRP1fgnll5GRgblz52Lt2rW4deuW3rX6jPWhZ8+e8v/rDvE31d6Cp+daSncdliFDhpisk5ycjJycHDx8+BArV67EypUrjdZLTEw0K3PYsGEYNmwYFixYgK1bt6Js2bLyQpoxUVFRhW7v3r17SE9PN/leabVa3LhxQ28RV6PRICkpCXfu3JEXPj/77DMcO3YMkiQZ3S+XLl3CmTNnDBYldXT9T0hIQOXKlVGuXLlC222J/GNCpVJhxowZ6NWrF4Di9Z+IiEqnx2U+ummTH06fBrTavAcAnD4NLF8O2KMrS5cuRXh4OFxcXFChQgXUrl1bb0FFdy3ozz77DFeuXIFGo5Gfy3+6bUJCAmrXrl3ofrPEtWvXUKtWLYPrB+rmkgUve9OpUyf8/vvvAIDOnTtjy5YtBtscPnx4kbnm9teSbeooOS80d25nyn//+1/cu3cPLVu2xF9//SWXt2/fHt9//z20Wq3Be9+yZcsibzijBFdXV7z44otYs2YNevfujTVr1qBXr17w9fU1Wv/Ro0cm3wcd3Xgx9t7WqVMHhw8fNihPSUlBRkYGVq9eLV/zc/jw4Th9+jQqVaqkNzaAvMtOCSEwc+ZMzJw502g7EhMTERwcjISEBHk+rJT874G3tze+/PJLhIaGAihe/4mo9LH74qOLiwsqVqxoVt0WLVrI15pztjsv/7T8BC6fvguhFdBo8xbRLp++i5+Wn0DPV560SRv8/PxQqVIlnDlzptB6Z86cQXBwsPxLNv8RiEUZPHgwPvroI+zYsQMxMTHYuHGjfBFpne7du2P48OH46KOP8NFHH5nc1oQJE+TrHLZu3Rp+fn6QJAn9+/c3ejHr+fPno1atWujRo4fZ7S0uXf5HH32EJk2aGK3j7e2N+/fvAwBefPFFkwuVBa+ZYkrXrl1RpkwZ7NixA2vXrsWQIUMKvai2bkKvk5KSUuKJxsyZM5GZmYmdO3fK3wAfO3YMixcvxqZNmzB27FgcO3bM4A+HZ555Bm+88Ybetm7evImQkBC9Nipt/vz5aNy4MXJycrBr1y588MEHcHFxMXp0JRERPb4el/nojRuuUKv/XXgEALUauHzZPu0pakHp//7v/zBz5kwMHz4c7777rvxl9+TJky26sYm1LVmyBElJSTh//jzmzp2L0aNH4z//+Y9enbffftvgmuvR0dF6/7a0v+ZsU0fJeaGpuZ1OUXM73VlSffv2Nfr8gQMH0L59+2K1TQnDhw9H06ZNcfHiRWzdurXQa827u7sbHK156NAhvPPOO8XO12g0GDt2LFq3bo1+/frJ1xg9e/Ysdu7ciUGDBuHtt9/WO+paNz6mTJmCTp06yeW6+TYA1KxZs9htKsqePXsA5C3Grl27Fn379sX333+PZ555xmqZRORc7L74eOnSJVSuXBnu7u5o3bo15s6diypVqti7WYq7c/khVGpJXngEAJVawp3LD23ajm7dumHVqlU4fPgwnn76aYPnDx06hKtXr+pdvLhatWq4ePGiQd0LFy4AgN5doBs0aICmTZviyy+/REhICK5fv44lS5YYvPbzzz/H22+/jYSEBPmXZcFfTl9//TWGDBmCBQsWyGWZmZl4+PCh0b41a9YMERER8Pb2Nru9xaW7cLmvr2+h3yQHBgbCx8cHGo2myG+ci+Li4oJBgwbh/fffx7lz54q8W3bBCX3BU3ECAwPh6elp8r1SqVTyN5ZA3qnmS5cuxSeffILo6GisXr0aAwcOxMsvv4wJEyagbdu2aN68OT777DO9u2/XqFEDaWlpBv2/dOkSatWqpVdv9+7d+OeffxQ7+rFZs2by3Str1qyJzMxMfPDBB5g5c6bF/SciotLrcZmPhobmoMABU9BogHxn2TqUr7/+Gu3bt8fnn3+uV/7w4UP5ZnNA3hzi999/R06OMpc0qlq1Ks6cOWNwBJ5uLlm1alW9+rrF6Oeeew5BQUEYPHgw3nrrLflISQBo2LChwVwo/w0aAfP7a8k2dZScF5qa25nj0aNH+Pbbb9GvXz/07t3b4Plx48bhyy+/tOviY8OGDdG0aVP07dsXgYGBaN++vcGp9jpqtdrgfSj4t4puvFy8eNFgbnnx4kWD8fTZZ5/hzJkzOHHiBBo3boyzZ89i1apVWL16NaKjo/Hee+9h8uTJGDZsGBo3bgwA8qnyrq6ueu0pON8G8vbf2bNnzXw3zJM/s169evjzzz8xf/58PPPMM3r9L3jWlrH+E1HpZNdrPrZq1Qrr1q3Drl27sGzZMly5cgVt27Yt8rRgS2RlZSElJUXvYQ8Vq/tDqxF6ZVqNQMXq/jZtx+uvvw4PDw+MGjVKPipP559//sHo0aPlu0TrdOnSBbGxsTh69KhclpmZiWXLlqFixYpo1qyZ3nYGDRqE//73v1i0aBECAgLw3HPPGW1L1apV0aFDB0RFRRmdvKjVar1TrYG8b5YLnmaQnyRJePbZZ7F79278+eefen1bv349mjdvXuJTroG8Ra0aNWpg/vz5SEtLM3j+3r17ch969eqFb775xugveV09cw0fPhxxcXFo166d3vV4ikOtVuPZZ5/Ft99+i6tXr8rld+/excaNG/H000/LR78KITB27Fg0btwYY8aMAZB3+nz+/zZp0gTjxo3DjBkz9K6r2bdvX/z666/YvXu3QRsePnyI3NxcAECvXr0ghMCcOXMM6hUcB8WVkZGB3Nxc5ObmWtR/IiIqvWwxHwUcY04aE5OMxo0BlQpwdc37b5MmwOjRNm+KWYzNBbdu3Spfu06nV69eSEpKMjjaECjeHKJLly64c+eO3unTubm5WLJkCby9vfWug16QblEvKyvL4lxz+2sNpuZFSUlJBvMic+d2xmzfvh2PHj3CuHHj0Lt3b4NHZGQkvvnmm2K9f0oaPnw4zpw5g6FDhxb7Oog6zZs3R1BQEJYvX653zfuffvoJf/75J7p27SqX3b17FzNnzsT48ePlhcWCc+4xY8agcePGGDt2rDxegoKCEBkZiRUrVuD27dsGbcj/N0evXr1w+vRpbN++3aCeEnNujUaD7OxseR/m73/+/Wqs/0RUetn1yMf8i1KNGjVCq1atULVqVXz11VcYMWKEIhlz5841upjRr18/uLoav9ai7uYkkiSZ/PbQEunp6agV5YfKdfzx958P5Gs+Vq7jj1pRfvL1A5WUnp5ucrvz5s3DlClTUK9ePfTu3RshISG4desWtm7digcPHuDjjz+GVquVX9+7d2988cUX6NSpEwYPHoyyZcvi22+/xfnz57FgwQJcuXJFL093ceHt27djwIABehOYoty/f1/eTrt27bBhwwYIIVCjRg2cOnUKR48ehb+/P3Jzc+V6N2/elP976dIlvPTSS9i1axeefvppDBo0CO7u7vjqq6/w8OFDLFq0SH6dboHs22+/la+loltIPHnypN63zklJSUhLS8Pnn38uX0R89uzZeOmll1C7dm288MILqFChAu7evYvff/8d3t7eWLFiBQBg5MiR2LNnD1q2bIm+ffuiRo0aSE5Oxvnz53H06FEcO3asyP338OFDXLp0CS4uLvj999/h7u5u9Pn8/bp+/bre6e66C4vnf49ffvll/Pe//8WTTz6JPn36wMPDA5s3b0ZmZiYmTJgg19u6dSt+//13bNmyBQkJCXrv+927d+V6Q4cOxaZNmzBq1Cj5lPrnn38eW7duRbdu3fD888+jQYMGSE9Px/nz57F371788ssvKFeuHEJCQtCjRw8sXrwYp06dQrt27aDVanH8+HG0atXK4CLyun5euXLF4EgHXdu2bNmC48ePIzc3F3/88Qe++eYbdOjQQb72TP7+DxgwAC4uLkb7b4xGo0FiYiI+/PBDg4V8AIiNjUX37t1Nvl5ppT3PHpnMc+48e2TaMk+pI7zINvNRwPI5qdLzUQDQatOxfv1f2LTJDzduuCI0NAcxMcm4eVOZL/kKMjUfNTVXKah169ZYunQpevXqhaZNmyI+Ph7fffcdQkNDkZGRIW+7devWaNWqFebOnYszZ86gefPmyMjIwNGjRzFgwABERUXJc4OkpCSDNmVnZ+ttr0OHDqhRowaGDBmCn3/+GcHBwdi9ezdiY2Px1ltv4c6dO7hz5w4WLlyIf/75B7Vq1UKZMmVw/vx5fPPNN6hduzY8PDxw6dIlOff27dsGuUIIpKSk6PWjqP6mp6dbtM3izgt186JNmzYZzItMze3i4+Oxe/dueW5nzMqVK+Hv74/AwECjY+Ppp5/GV199hVWrVqFTp05y+//zn/9g//79BvWbNm0qH6V87NgxeV59584dJCcny9dlzX+5hPx0Y7TgexoZGYnffvsNPj4+JvdjSkoKhBAG/dAt/un+NgGAV199FdOmTUNMTAy6d++OpKQkfPHFFwgJCUH37t3lelOmTIGbmxuGDBlisA/zz3mnT5+Ovn37Yt68efIRpG+88QZiYmJQr1499O3bF6Ghobhz5w7Onj2LO3fuyKeHP//889i4cSP69OmDXr16oUGDBnj48CF++eUXzJkzR++IXV0/8//tlZ9uDjx//nwAeV/07969G1evXsXAgQMN+t+qVSt069bNZP+N4Zy7dOfZI5N5yrFoPqr8zbZLpnnz5mLatGlF1qtatapYuHBhkfUyMzNFcnKy/Lhx40aRtwLPyMgQ58+fFxkZGZY03aT4+Pi8tqRni+0f/yqWjf9JbP/4V5GZnq3I9gvLNOXMmTMiJiZGVKpUSbi6uoqKFSuKmJgYERcXZ7R+QkKC6N27t/Dz8xPu7u6iRYsWYseOHSbzunTpIgCIo0ePmt1mAGLWrFnyvx88eCCGDRsmypcvL7y9vUWnTp3EhQsXRNWqVcXzzz8v19u3b58AIPbt2yeXnThxQjz77LPC29tbeHp6inbt2okDBw7o5a1du1YAsPiR38mTJ8ULL7wgAgIChJubm6hataro27ev2Lt3r169u3fvinHjxonQ0FD5/e7YsaNYuXKl0fci//sJQIwbN67Q9y3/87p+HTt2TK/evXv3DN5jIYT4448/RKdOnYSXl5fw9PQU7du319tv9+/fF+XLlxcjR47Ue92VK1cEALF27Vq98i+//FIA0Hu/U1NTxfTp00XNmjVFmTJlRPny5cUTTzwh5s+fL7Kz//05yM3NFR999JGoU6eOKFOmjAgMDBTPPfecOHHihEG/df28cuWKwXO6MaF7uLi4iODgYDFx4kTx4MEDo/3XjZWC/TelqM+J6OjoIrehpNKeZ49M5jl3nj0ybZmXnJxc5HyGik/p+agQls9JlZ6PClH0/FBppvJMzVUKyszMFK+99pqoVKmS8PDwEG3atBG//vqriIiIEBEREXp109PTxZgxY0S1atXkuVbv3r1FQkKCEOLfectHH31kkFO/fn2D7d29e1eeh5YpU0Y0bNjQYM6zZMkS0aJFC+Hr6ys8PDxEzZo1xWuvvSbu3bsn19HNSbZu3WqQ6+XlJYYMGWJRf+Pj4y3aZnHnhbp50ZNPPml0XmRsbvfUU08ZzO0KvqcuLi5i0KBBRp8XIu9vFE9PT3muX9R8Pf8+mTVrlsl6Bfupoxujhb2npp4fMmSI8PLyMqi7detWg79NhBBiy5Ytol69esLNzU2UK1dODBw4UNy8eVN+fv/+/QKA2Lhxo97rTM15X375ZVG+fHlx//59uSwhIUEMHjxYVKxYUbi6uooKFSqIbt26ia+//lrvtffv3xfjx48XwcHBokyZMiIkJEQMGTJEJCUlGfRnyJAhomrVqkbfl4Lvue7nYOHChUKr1Rr0v2nTpib7bwrn3KU7zx6ZzFOOJfNRh1p8TE1NFWXLlhWffPJJkXUtmezlZ86bY63FR1uy9+SyZ8+eokaNGjbLs7b4+Hh50mqrPFuz95hxtjxOhDgxYZ5j59kj01Ene2QZW8xHhSh6H5bmxUfmOU8m85hn70zOuUt3nj0ymaccS+ajdr3m45QpU3DgwAFcvXoVR48exfPPPw+1Wo2YmBgAeXdOnj59ulw/Ozsbp06dwqlTp5CdnY1bt27h1KlT+Ouvv+zVBTLi9u3b+OGHHwxOkyUiIiJyNJyPEhEREVmXXa/5ePPmTcTExOD+/fsIDAzE008/jd9++w2BgYEA8q5Nkv8Oc3///TeaNm0q/3v+/PmYP38+IiIijF4DhGzrypUrOHLkCFavXg1XV1e9O2aXBh4eHujUqZO9m0FEREQK4nyUiIiIyLrsuvi4efPmQp8vOIELCwtT7K63pLwDBw5g2LBhqFKlCtavX4+KFSvau0mKqlChAnbt2mXvZhAREZGCOB8lIiIisi67Lj5S6TJ06FAMHTrU3s0gIiIiIiIiIiIHYddrPhIREREREREREVHpxcVHIiIiIiIiIiIisgouPhaC1/MhIlP4+UBERLbA3zdE9DjjZyBR6cDFRyNcXPIuhZmbm2vnlhCRo8rJyQEAqNVqO7eEiIhKI1dXVwBAenq6nVtCRGQ/us9A3WciETkn3nDGCLVaDbVajZSUFPj4+Ni7OUTkYIQQSE5OhpubGydCRERkFWq1Gv7+/khMTAQAeHp6QpKkEm1To9EgMzNTieYxzw559shkHvPslSmEQHp6OhITE+Hv788v/ImcHBcfjZAkCUFBQbh9+zbc3Nzg5eVVosmeM3/oM+/xyLNHpjPmCSGQk5OD5ORkpKWlITg4WKHWERERGapYsSIAyAuQJZWYmGjTUxiZ5/yZzGOevTP9/f3lz0Iicl5cfDTBz88PGRkZSEpKwr1790q0rdLwoc+80p1nj0xnznNzc0NwcDB8fX0V2R4REZExkiShUqVKCAoKki/3URIffvghli1bpkDLmGePPHtkMo959sx0dXXlEY9EpQQXH01QcrLn7B/6zCv9efbIdNY8tVrNU62JiMimdJcEKqn79+/D3d1dgRYxzx559shkHvOcIZOIHB8XH4ugxGTvcfjQZ55z59kjs7TnERERERERERHvdk1ERERERERERERWwsVHIiIiIiIiIiIisgouPhIREREREREREZFVcPGRiIiIiIiIiIiIrIKLj0RERERERERERGQVXHwkIiIiIiIiIiIiq7Dr4uPs2bMhSZLeo06dOoW+ZuvWrahTpw7c3d3RsGFD/PjjjzZqLRERERGVNpyPEhEREVmX3Y98rF+/Pm7fvi0/Dh8+bLLu0aNHERMTgxEjRuDkyZPo2bMnevbsibNnz9qwxURERERUmnA+SkRERGQ9dl98dHFxQcWKFeVH+fLlTdb95JNP0LlzZ7z++uuoW7cu3n33XTzxxBP49NNPbdhiIiIiIipNOB8lIiIish67Lz5eunQJlStXRvXq1TFw4EBcv37dZN1ff/0VUVFRemWdOnXCr7/+au1mEhEREVEpxfkoERERkfW42DO8VatWWLduHWrXro3bt29jzpw5aNu2Lc6ePQsfHx+D+nfu3EGFChX0yipUqIA7d+6YzMjKykJWVpb875SUFOU6QEREREROzRbzUYBzUiIiInp8SUIIYe9G6Dx8+BBVq1bFxx9/jBEjRhg8X6ZMGaxfvx4xMTFy2WeffYY5c+bg7t27Rrc5e/ZszJkzx6C8c+fOcHV1Va7xhYiNjUXLli1tkmWvTOY5d549MpnHPEfPZJ5z59kj05Z5OTk52LVrF5KTk+Hr62uTzMeFNeajwOM5J2We82cyj3mOnsk8586zRybzlGPRfFQ4mObNm4tp06YZfS40NFQsXLhQr+ztt98WjRo1Mrm9zMxMkZycLD9u3LghAIjk5GQlm12o6Ohom2XZK5N5zp1nj0zmMc/RM5nn3Hn2yLRlXnJyss3nM48TpeejQjyec1LmOX8m85jn6JnMc+48e2QyTzmWzEftfs3H/NLS0pCQkIBKlSoZfb5169bYu3evXtmePXvQunVrk9t0c3ODr6+v3oOIiIiIyBhrzEcBzkmJiIjo8WXXxccpU6bgwIEDuHr1Ko4ePYrnn38earVaPo1l8ODBmD59ulx/0qRJ2LVrFxYsWIALFy5g9uzZOH78OMaPH2+vLhARERGRE+N8lIiIiMi67HrDmZs3byImJgb3799HYGAgnn76afz2228IDAwEAFy/fh0q1b/ro0899RQ2btyIGTNm4M0330StWrWwY8cONGjQwF5dICIiIiInxvkoERERkXXZdfFx8+bNhT6/f/9+g7I+ffqgT58+VmoRERERET1OOB8lIiIisi6HuuYjERERERERERERlR5cfCQiIiIiIiIiIiKr4OIjERERERERERERWQUXH4mIiIiIiIiIiMgquPhIREREREREREREVsHFRyIiIiIiIiIiIrIKLj4SERERERERERGRVXDxkYiIiIiIiIiIiKyCi49ERERERERERERkFVx8JCIiIiIiIiIiIqvg4iMRERERERERERFZBRcfiYiIiIiIiIiIyCq4+EhERERERERERERWwcVHIiIiIiIiIiIisgouPhIREREREREREZFVcPGRiIiIiIiIiIiIrMJhFh/nzZsHSZIwefJkk3VycnLwzjvvoEaNGnB3d0fjxo2xa9cu2zWSiIiIiEo1zkmJiIiIlOUQi4/Hjh3DihUr0KhRo0LrzZgxAytWrMCSJUtw/vx5jB49Gs8//zxOnjxpo5YSERERUWnFOSkRERGR8uy++JiWloaBAwdi1apVKFu2bKF1N2zYgDfffBNdunRB9erVMWbMGHTp0gULFiywUWuJiIiIqDTinJSIiIjIOuy++Dhu3Dh07doVUVFRRdbNysqCu7u7XpmHhwcOHz5sreYRERER0WOAc1IiIiIi63CxZ/jmzZvxxx9/4NixY2bV79SpEz7++GO0a9cONWrUwN69e7Ft2zZoNBqTr8nKykJWVpb875SUlBK3m4iIiIhKD85JiYiIiKxHEkIIewTfuHEDzZs3x549e+Tr6kRGRqJJkyZYtGiR0dfcu3cPL7/8Mr777jtIkoQaNWogKioKa9asQUZGhtHXzJ49G3PmzDEo79y5M1xdXRXrT2FiY2PRsmVLm2TZK5N5zp1nj0zmMc/RM5nn3Hn2yLRlXk5ODnbt2oXk5GT4+vraJLO04pyUec6SZ49M5jHP0TOZ59x59shknnIsmo8KO9m+fbsAINRqtfwAICRJEmq1WuTm5pp8bUZGhrh586bQarXijTfeEPXq1TNZNzMzUyQnJ8uPGzduCAAiOTnZGt0yKjo62mZZ9spknnPn2SOTecxz9EzmOXeePTJtmZecnGzz+UxpxTkp85wlzx6ZzGOeo2cyz7nz7JHJPOVYMh+122nXHTt2RFxcnF7ZsGHDUKdOHUydOhVqtdrka93d3REcHIycnBx888036Nu3r8m6bm5ucHNzU6zdRERERFR6cE5KREREZF12W3z08fFBgwYN9Mq8vLwQEBAglw8ePBjBwcGYO3cuAOD333/HrVu30KRJE9y6dQuzZ8+GVqvFG2+8YfP2ExEREZHz45yUiIiIyLrsesOZoly/fh0q1b835M7MzMSMGTNw+fJleHt7o0uXLtiwYQP8/f3t10giIiIiKtU4JyUiIiIqPodafNy/f3+h/46IiMD58+dt1yAiIiIieuxwTkpERESkHFXRVYiIiIiIiIiIiIgsx8VHIiIiIiIiIiIisgouPhIREREREREREZFVcPGRiIiIiIiIiIiIrIKLj0RERERERERERGQVXHwkIiIiIiIiIiIiq+DiIxEREREREREREVkFFx+JiIiIiIiIiIjIKrj4SERERERERERERFbBxUciIiIiIiIiIiKyCi4+EhERERERERERkVVw8ZGIiIiIiIiIiIisgouPREREREREREREZBVcfCQiIiIiIiIiIiKr4OIjERERERERERERWQUXH4mIiIiIiIiIiMgqHGbxcd68eZAkCZMnTy603qJFi1C7dm14eHggNDQUr7zyCjIzM23TSCIiIiIq1TgnJSIiIlKWi70bAADHjh3DihUr0KhRo0Lrbdy4EdOmTcOaNWvw1FNPIT4+HkOHDoUkSfj4449t1FoiIiIiKo04JyUiIiJSnt2PfExLS8PAgQOxatUqlC1bttC6R48eRZs2bTBgwACEhYXh2WefRUxMDGJjY23UWiIiIiIqjTgnJSIiIrIOuy8+jhs3Dl27dkVUVFSRdZ966imcOHFCnthdvnwZP/74I7p06WLtZhIRERFRKcY5KREREZF12PW0682bN+OPP/7AsWPHzKo/YMAAJCUl4emnn4YQArm5uRg9ejTefPNNk6/JyspCVlaW/O+UlJQSt5uIiIiISg/OSYmIiIisRxJCCHsE37hxA82bN8eePXvk6+pERkaiSZMmWLRokdHX7N+/H/3798d7772HVq1a4a+//sKkSZPw8ssvY+bMmUZfM3v2bMyZM8egvHPnznB1dVWsP4WJjY1Fy5YtbZJlr0zmOXeePTKZxzxHz2Sec+fZI9OWeTk5Odi1axeSk5Ph6+trk8zSinNS5jlLnj0ymcc8R89knnPn2SOTecqxaD4q7GT79u0CgFCr1fIDgJAkSajVapGbm2vwmqefflpMmTJFr2zDhg3Cw8NDaDQaozmZmZkiOTlZfty4cUMAEMnJyVbplzHR0dE2y7JXJvOcO88emcxjnqNnMs+58+yRacu85ORkm89nSivOSZnnLHn2yGQe8xw9k3nOnWePTOYpx5L5qN1Ou+7YsSPi4uL0yoYNG4Y6depg6tSpUKvVBq9JT0+HSqV/mUpdPWHiAE43Nze4ubkp1GoiIiIiKk04JyUiIiKyLrstPvr4+KBBgwZ6ZV5eXggICJDLBw8ejODgYMydOxcAEB0djY8//hhNmzaVT3GZOXMmoqOjjU4MiYiIiIgKwzkpERERkXXZ9YYzRbl+/bret8ozZsyAJEmYMWMGbt26hcDAQERHR+P999+3YyuJiIiIqDTjnJSIiIio+Bxq8XH//v2F/tvFxQWzZs3CrFmzbNcoIiIiInqscE5KREREpBxV0VWIiIiIiIiIiIiILMfFRyIiIiIiIiIiIrIKLj4SERERERERERGRVXDxkYiIiIiIiIiIiKyCi49ERERERERERERkFVx8JCIiIiIiIiIiIqvg4iMRERERERERERFZBRcfiYiIiIiIiIiIyCq4+EhERERERERERERWwcVHIiIiIiIiIiIisgouPhIREREREREREZFVcPGRiIiIiIiIiIiIrIKLj0RERERERERERGQVXHwkIiIiIiIiIiIiq+DiIxEREREREREREVkFFx+JiIiIiIiIiIjIKhxm8XHevHmQJAmTJ08utN7Dhw8xbtw4VKpUCW5ubggPD8ePP/5om0YSERERUanGOSkRERGRslzs3QAAOHbsGFasWIFGjRoVWi87OxvPPPMMgoKC8PXXXyM4OBjXrl2Dv7+/bRpKRERERKUW56REREREyrP74mNaWhoGDhyIVatW4b333iu07po1a/DPP//g6NGjcHV1BQCEhYXZoJVEREREVJpxTkqkrIwMYPly4PJloHp1YPTovPKCZR4e/9aNiwMWLjQst2Qb5tQlIiLbsvvi47hx49C1a1dERUUVOdHbuXMnWrdujXHjxuHbb79FYGAgBgwYgKlTp0KtVht9TVZWFrKysuR/p6SkKNp+IiIiInJ+nJMSKScjA2jTBjh9GlCrAY0GWL8+77m4uH/LNmwAfv4ZiIrKqysEMGWKYbkl2yiq7pEjXIAkIrI1SQgh7BW+efNmvP/++zh27Bjc3d0RGRmJJk2aYNGiRUbr16lTB1evXsXAgQMxduxY/PXXXxg7diwmTpyIWbNmGX3N7NmzMWfOHIPyzp07y99UW1tsbCxatmxpkyx7ZTLPufPskck85jl6JvOcO88embbMy8nJwa5du5CcnAxfX1+bZJZmnJOWkrwjh9Gyfm3b5Z27aNM8e2QWN+/yLQ+cu+xtVt2KAVm4c99NlwigpZFyS7ZRuPrV01A9OCMvzUneT2fJA4DY+Cul+3OGeU6fyTzlWDIftdvi440bN9C8eXPs2bNHvq5OURO98PBwZGZm4sqVK/K3yh9//DE++ugj3L592+hrjH3LHBoaatPJevfu3bFz506bZNkrk3nOnWePTOYxz9EzmefcefbItGVeSkoK/Pz8uPioAM5JS1Feu9bY+bHhAq/V8l6dZdM8e2QWN2/CR3WwYlsIcnL/vb+pSsr7s1MrJLnM1UWLOmGPcOGq1//qdgew00i5JdsovO6oF25iyesXStS/4irteQDQ/Z1PS/fnDPOcPpN5yrFkPmq3065PnDiBxMREPPHEE3KZRqPBwYMH8emnnyIrK8vgtJVKlSrB1dVVr7xu3bq4c+cOsrOzUaZMGYMcNzc3uLmZ9y0YERERET1eOCclUl714HRoNJJembFDXjQaCdWD03Euwduscku2UVhdIiKyLVXRVayjY8eOiIuLw6lTp+RH8+bNMXDgQJw6dcro9XLatGmDv/76C1qtVi6Lj49HpUqVjE7yiIiIiIgKwzkpkfJGv3ATjcNToZIEXF20UEkCjWulolGBsibhqVgz85xcV5KE0XJLtlFU3dEv3LT320NE9Nix25GPPj4+aNCggV6Zl5cXAgIC5PLBgwcjODgYc+fOBQCMGTMGn376KSZNmoQJEybg0qVL+L//+z9MnDjR5u0nIiIiIufHOSmR8jzctTiyOhbLt4Xg8i1PVA9Olxf9Cpblr7t4SyYm9rtoUG7JNsypS0REtmX3u10X5vr161Cp/j04MzQ0FLt378Yrr7yCRo0aITg4GJMmTcLUqVPt2EoiIiIiKs04JyWynIe7Fq8MuG5QbqxMV3ff8TS954uzDXPqEhGRbTnU4uP+/fsL/TcAtG7dGr/99pttGkREREREjx3OScnRZGSqsHxbCOISvLFwY5VCj+rT1TXnCEBjdfOXFzevuO3In6dEX2ydV9Q2zMkrrJyIyFk51OIjERERERER/SsjU4U2L7XE6XgfCLhjyqLaWP99ZUAC4i75QK0W0GgkbPixMn5eehxR45rjdPy/5ZbULVhenLyStEOXp0RfbJ1nzjaKyius/MjqWC5AEpHT4uIjERERERGRg1q+LQSn432gFRIACQISzlzyAQAISNDm5t1V+nS8D4a/W1+uqyu3pG7B8uLklaQdujwl+mLrPHO2UVReYeXLt4XwFHIiclp2u9s1ERERERERFe7yLU+o1UKvTJLyHvmp1aLEdUvTNpyxzUWVExE5Ky4+EhEREREROajqwenQaPRXr4TIe+Sn0UglrluatuGMbS6qnIjIWXHxkYiIiIiIyEGNfuEmGoenQiUJSJKAShJoXCsVjf5X5uqihUoSaBKeijUzz8l1deWW1C1YXpy8krRDl6dEX2ydZ842isorrFx34xoiImfEaz4SERERERE5KA93LY6sjsXybSFYvCUTE/tdLPQuzLq65tyx2VhdJfKK2478eUr0xdZ5RW3DnLzCyomInBUXH4mIiIiIiMyUkanC8m0hiEvwxsKNVeSFIV15wQUjY+WA8QUtU9sgKs74MneMEhFZGxcfiYiIiIiIzJCRqUKbl1ridLwPBNwxZVFtbPixMn5eehxR45rjdLwP1GoBjUYyWb7++8qABMRdKrpuwXJdpiXbsHVeSdpR1HuqdL+VzDNnG7YYM5bmHVkdywVIIrI6Lj4SERERERGZYfm2EJyO94FWSAAkCEg4He+D4e/Wl8u1uXk3CzFVfuaSDwBAoOi6Bct1mZZsw9Z5JWlHUe+p0v1WMs+cbdhizFiat3xbCF4ZcB1ERNbEG84QERERERGZ4fItT6jV+rcuVquFReWSlPew1TZsneco23DGNtur30RE1sbFRyIiIiIiIjNUD06HRqO/sqPRSBaVC5H3sNU2bJ3nKNtwxjbbq99ERNbGxUciIiIiIiIzjH7hJhqHp0IlCUiSgEoSaBKeijUzz8nlri7aQssb10pFIzPrFizXZVqyDVvnlaQdRb2nSvdbyTxztmGLMWNpnu4GNURE1sRrPhIREREREZnBw12LI6tjsXxbCBZvycTEfhflOwbrygveSdhYOWD8btdFbSN/piXbsHVecdthznuqZL+VzitqG7YaM5bmERFZGxcfiYiIiIiIzOThrsUrA65j3/E0vRt16MpN1S/IkrqmMh05rzjtMPc9deS8wrZhyzFjSR4RkbVx8ZGIiIiIiB4LGZkqo0d+WVIO5B1VFpfgjYUbq5RoG5a2I3+mJduwdV5x22HOe6pkv5XOc5QxY48xSkRUGC4+EhERERFRqZeRqUKbl1ridLwP1GoBjUbChh8r4+elxxE1rrlZ5eu/rwxIQNwlHwi4Y8qi2iXahqXt0GVasg1b55WkHUW9p0r3W8k8Rxkz9hijR1bHcgGSiArlMDecmTdvHiRJwuTJk03WWbduHSRJ0nu4u7vbrpFEREREVKpxTlp6Ld8WgtPxPtAKCTm5KmiFhNPxPhj+bn2zy89c8sGZ/5UJIZV4G5a2Q5dpyTZsnVeSdhT1nirdbyXzHGXM2GOMLt8WYu8fbyJycA5x5OOxY8ewYsUKNGrUqMi6vr6+uHjxovxvSZKs2TQiIiIiekxwTlq6Xb7lCbVaQJv7775Sq4VF5brdLAScZhvO2Gb22/n6TURUGLsf+ZiWloaBAwdi1apVKFu2bJH1JUlCxYoV5UeFChVs0EoiIiIiKs04Jy39qgenQ6PRXyTWaCSLyoXQX5Bxhm04Y5vZb+frNxFRYey++Dhu3Dh07doVUVFRZtVPS0tD1apVERoaih49euDcuXOF1s/KykJKSoreg4iIiIgoP85JS7/RL9xE4/BUqCQBVxctVJJAk/BUrJl5zuzyxrVS0eh/ZZIkSrwNS9uhy7RkG7bOK0k7inpPle63knmOMmbsMUZ1N6ghIjJFEqLgdxq2s3nzZrz//vs4duwY3N3dERkZiSZNmmDRokVG6//666+4dOkSGjVqhOTkZMyfPx8HDx7EuXPnEBJi/DoTs2fPxpw5cwzKO3fuDFdXVyW7Y1JsbCxatmxpkyx7ZTLPufPskck85jl6JvOcO88embbMy8nJwa5du5CcnAxfX1+bZJZmj82c9MhhtKxf2yZZABB77qLD5Wm0wLXbHniUqYaXuwZVK2VArbKsHMgru3wrDtWDG5ZoG5a2I3+mJduwdV5x22HOe6pkv5XOc5QxY48xasnPoZJsnhd/pdTOLeyRZ49M5inHkvmo3RYfb9y4gebNm2PPnj3ydXWKmugVlJOTg7p16yImJgbvvvuu0TpZWVnIysqS/52SkoLQ0FCbTta7d++OnTt32iTLXpnMc+48e2Qyj3mOnsk8586zR6Yt81JSUuDn58fFRwU8VnPSdq2x82PDBVCr5b06S/G8jEwVlm8LweVbnqgenC4fcbV8WwgWb5mAif2WYPQLN+Hhri20bv4yU3WL2oY5eUq3I3+mJduwdV5x26H0PrR1nqOMGWcco8W9W7Y1PmcKzXvn01I7t7BHnj0ymaccS+ajdrvhzIkTJ5CYmIgnnnhCLtNoNDh48CA+/fRTZGVlQa1WF7oNV1dXNG3aFH/99ZfJOm5ubnBzc1Os3URERERUenBO6jwyMlVo81JLnI73gVotoNFIWP99ZUAC4i75QMAdUxbVxoYfK+PnpccRNa65ybq6MlN1zdlGUXnWaIcu05Jt2DqvJO1Qch/aOs9RxowzjtENP1bGkdWxxV6AJCLHZ7fFx44dOyIuLk6vbNiwYahTpw6mTp1a5CQPyJsYxsXFoUuXLtZqJhERERGVYpyTOo/l20JwOt4HWiHJd9s9c8kHACAgAZAgIOF0vA+Gv1u/0Lq6MlN1zdlGUXnWaIcu05Jt2DqvJO1Qch/aOs9RxowzjtHT8T5Yvi0Erwy4DiIqney2+Ojj44MGDRrolXl5eSEgIEAuHzx4MIKDgzF37lwAwDvvvIMnn3wSNWvWxMOHD/HRRx/h2rVreOmll2zefiIiIiJyfpyTOo/LtzyhVgt5wQIApP/9b/4LSanVosR1S9M2nLHN7Pfj2W8iKr3sfrfrwly/fh23b9+W//3gwQO8/PLLqFu3Lrp06YKUlBQcPXoU9erVs2MriYiIiKg045zUMVQPTodGI+mVCaG/uAEAGo1U4rqlaRvO2Gb2+/HsNxGVXg61+Lh//369C3vv378f69atk/+9cOFCXLt2DVlZWbhz5w5++OEHNG3a1PYNJSIiIqJSi3NSxzT6hZtoHJ4KlSTg6qKFShJoXCsVjf5XJkkCKkmgSXgq1sw8V2hdXZmpuuZso6g8a7RDl2nJNmydV5J2KLkPbZ3nKGPGGcdok/BU+QY1RFQ62e20ayIiIiIiInN5uGtxZHVsIXf2zcTEfhflO+cWVrfgXXaN1VUiT+l25M+0ZBu2zituO5Teh7bOc5Qx44xjlDebISrduPhIREREREROwcNda/SmFK8MuI59x9P0niusrrnbVSJPyXYUzHTkvOK0wxr70NZ5jjJmnHGMElHpxcVHIiIiIiKyi4xMldEjoCwpB/KOropL8MbCjVXMqmurPKXbkT/Tkm3YOq+47VB6H9o6z1HGjDOOUUvbQUTOhYuPRERERERkcxmZKrR5qSVOx/tArRbQaCRs+LEyfl56HFHjmptVvv77yoAExF3ygYA7piyqbVZdW+RZox26TEu2Yeu8krRDyX1o6zxHGTPOOEYtbceR1bFcgCRyMlx8JCIiIiIim1u+LQSn432gFRK0uXl3vz0d74Ph79Y3u/zMJR8AgIAEQIKAZFZdW+RZox26TEu2Yeu8krRDyX1o6zxHGTPOOEYtbcfybSE8bZvIyTjU3a6JiIiIiOjxcPmWJ9RqoVemVguLyiUp76F03dK0DWdsM/vNfhe1DSJyLlx8JCIiIiIim6senA6NRn9lQaORLCoXIu+hdN3StA1nbDP7zX4XtQ0ici5cfCQiIiIiIpsb/cJNNA5PhUoScHXRQiUJNAlPxZqZ58wub1wrFY3+VyZJwuy6tsizRjt0mZZsw9Z5JWmHkvvQ1nmOMmaccYxa2g7djWiIyHnwmo9ERERERGRzHu5aHFkda/ROtpaUA3nXj1y8JRMT+100q66t8pRuR/5MS7Zh67zitkPpfWjrPEcZM844Ri1tBxE5Fy4+EhERERGRXXi4a43eOMLS8lcGXMe+42l6zxVW15Z5SrajYKYj5xWnHdbYh7bOc5Qx44xj1JJ2EJFz4eIjEREREREpJiNTheXbQhCX4I2FG6vIRyrpys05qslY3aK24Yh5Srcjf6Yl27B1XnHbofQ+tHWeo4wZZxyjSuxDU3WJyAGIx0xycrIAIJKTk22WGR0dbbMse2Uyz7nz7JHJPOY5eibznDvPHpm2zLPHfIaUZZc5adsnhTi226qP9EN7RNPayUIlaYUkdRMqSSua1k4W93/eK5e7umiEStKKxrWSReNw/TJTdc3ZhqPlWaMdukxLtmHrvJK0Q8l9aOs8RxkzzjhGldiHpuqmH9qj6GdcaZ5b2CPPHpnMU44lcxke+UhERERERIpYvi0Ep+N9oBUSAAkCEk7H+2D4u/Xlcm1u3h1tz1zyAQAI/Ftmqq4523C0PGu0Q5dpyTZsnVeSdii5D22d5yhjxhnHqBL70FTd5dtCeNo2kQPg3a6JiIiIiEgRl295Qq0WemVqtTBaLkl5D3PqKrENW+c5yjacsc3sN/utZL+JyP64+EhERERERIqoHpwOjUZ/BUCjkYyWC5H3MKeuEtuwdZ6jbMMZ28x+s99K9puI7I+Lj0REREREpIjRL9xE4/BUqCQBSRJQSQJNwlOxZuY5udzVRQuVJNC4VioaFSgzVdecbThanjXaocu0ZBu2zitJO5Tch7bOc5Qx44xjVIl9aKqu7kY0RGRfDnPNx3nz5mH69OmYNGkSFi1aVGT9zZs3IyYmBj169MCOHTus3j4iIiIiKv04Jy0ZD3ctjqyOxfJtIVi8JRMT+12U7zirKzfnTrbG6ha1DUfMU7od+TMt2Yat84rbDqX3oa3zHGXMOOMYVWIfmqpLRPbnEIuPx44dw4oVK9CoUSOz6l+9ehVTpkxB27ZtrdwyIiIiInpccE5qWkamyuxFASIiR2Ls88vDXWuynIiswAZ33y5UamqqqFWrltizZ4+IiIgQkyZNKrR+bm6ueOqpp8Tq1avFkCFDRI8ePSzKs+RW4Erh7eqZ5+h59shkHvMcPZN5zp1nj0xb5tljPlPaPRZz0rZPCnFst8WP9EN7RNPayUIlaYWri0aoJK1oXCtZNA7XL2taO1nc/3mvXFeSuhktt2QbRZXn34aj5VmjHbpMS7Zh67yStEPJfeiMY1TpfjvLGFViHyqR17R2skg/tKfQz8PSPLewR549MpmnHEvmMnY/8nHcuHHo2rUroqKi8N577xVZ/5133kFQUBBGjBiBQ4cOFVk/KysLWVlZ8r9TUlJK1F4iIiIiKn04JzVt+bYQnI73gVZI0Obm3eThzCUfAIDAv2Wn430w/N36cl1AgoBkUG7JNooqz78NR8uzRjt0mZZsw9Z5JWmHkvvQGceo0v12ljGqxD5UIu90vA+WbwvBKwOug4iUJQlR8J5QtrN582a8//77OHbsGNzd3REZGYkmTZqYvL7O4cOH0b9/f5w6dQrly5fH0KFD8fDhw0KvrzN79mzMmTPHoLxz585wdXVVqCeFi42NRcuWLW2SZa9M5jl3nj0ymaesw0d/R70GzW2Wd/7scZvm2SPzrwsnSvWYKe159si0ZV5OTg527dqF5ORk+Pr62iSzNLPrnLR1c7i62OZ4gNhzF9Gyfm2LXxeX4I1rt90hhFRoPUkS8PbQIC1D/b+6sQBaGim3ZBuFl+tzrDzrtCMv05Jt2DqvZO1Qbh/aOs9Rxoyt8xxlzCiRJ0kCVStlomGNNJP5xf0cLa7Y+Culdi5jr0zmKceS+ajdjny8ceMGJk2ahD179sDd3b3I+qmpqRg0aBBWrVqF8uXLm50zffp0vPrqq/K/U1JSEBoaii1btthsst69e3fs3LnTJln2ymSec+fZI5N5yno6sis+XLzVZnlvTOxj0zx7ZM6b0b9Uj5nSnmePTFvmpaSkwM/PzyZZpZ3d56T/9yZ8vb2K1XZLdX91FnZ+bLgAWpSFG6tgyqLa/zuSKo+EvOMXCpZ1aJGI7w4G/a+8O4CdRsot2UbR5f9uw/HylG/Hv5mWbMPWecVvh7L70NZ5jjJmbJ3nKGNGibyJ/S4WeuRjcT9Hi6v7O5+W2rmMvTKZpxxL5qMqK7fFpBMnTiAxMRFPPPEEXFxc4OLiggMHDmDx4sVwcXGBRqPRq5+QkICrV68iOjparv/FF19g586dcHFxQUJCgtEcNzc3+Pr66j2IiIiIiADOSc0x+oWbaByeCpUk4OqihUoSaFwrFY0KlDUJT8WamefkupIkjJZbso2iyvNvw9HyrNEOXaYl27B1XknaoeQ+dMYxqnS/nWWMKrEPlchrEp4q30yLiJRltyMfO3bsiLi4OL2yYcOGoU6dOpg6dSrUarXec3Xq1DGoP2PGDKSmpuKTTz5BaGio1dtMRERERKUL56RF83DX4sjqWLPvdq2ru3hLJib2u2hQbsk2zCnXbcMR85RuR/5MS7Zh6zxHGTPOOEaV7LczjVEl9qESebzbNZF12G3x0cfHBw0aNNAr8/LyQkBAgFw+ePBgBAcHY+7cuXB3dzeo7+/vDwAG5URERERE5uCc1Dwe7lqjpyIaK9PV3Xc8Te/54mzDknY4ap6S7SiY6ch5jjJmnHGMKtVvZxujSuxDJfKISHl2v9t1Ya5fvw6Vym5nhhMRERERlco5aUamyugRP5aUA8aPMtLVjUvwxsKNVUq0DUva4Yh5Srcjf6Yl27B1nqOMGWcco0r225nGqBL70B5jlIjM41CLj/v37y/03wWtW7fOam0hIiIiosdTaZ+TZmSq0Oalljgd7wO1WkCjkbDhx8r4eelxRI1rblb5+u8rAxIQd8l0XQF3TFlUu0TbsKQdjpZnjXboMi3Zhq3zHGXMOOMYVbrfzjJGldiH9hijR1bHcgGSyEwOtfhIRERERETWtXxbCE7H+0ArJGhz8+70ejreB8PfrW92+ZlLPgDy7ixrqm7evWOlEm3DknY4Wp412qHLtGQbts5zlDHjjGNU6X47yxhVYh/aY4wu3xbC07aJzFS6zh8hIiIiIqJCXb7lCbVa6JWp1cKicknKezjTNpyxzew3+81+O3a/icg8XHwkIiIiInqMVA9Oh0aj/xe2RiNZVC5E3sOZtuGMbWa/2W/227H7TUTm4eIjEREREdFjZPQLN9E4PBUqScDVRQuVJNAkPBVrZp4zu7xxrVQ0KqKuJIkSb8OSdjhanjXaocu0ZBu2znOUMeOMY1TpfjvLGFViH9pjjOpuUENEReM1H4mIiIiIHiMe7locWR1r9I6ulpQDxu8Kq6u7eEsmJva7WKJtWNIOR8xTuh35My3Zhq3zHGXMOOMYVbLfzjRGldiH9hijRGQeLj4SERERET1mPNy1Rm+UYGl5YXX3HU/Te74427CkHY6ap2Q7CmY6cp6jjBlnHKNK9dvZxqgS+9DWeURkHi4+EhERERGVAhmZKqNH7OjK4xK8sXBjlUKP7ilqG+YcIWQsr7jbsKQdjpindDuKuw9tnecoY8YZx6iS/XamMarEPnT0MUr0OOPiIxERERGRk8vIVKHNSy1xOt4HarWARiNhw4+V8fPS44ga1xyn430g4I4pi2pj/feVAQmIu2S6blHl5mxDl1eSbVjSDkfLs0Y7irMPbZ3nKGPGGceo0v12ljGqxD509DF6ZHUsFyDpscbFRyIiIiIiJ7d8WwhOx/tAKyRoc/Puyno63gfD360vlwMSBCScueQDABAwXbeocnO2ocsryTYsaYej5VmjHcXZh7bOc5Qx44xjVOl+O8sYVWIfOvoYXb4thKdr02ONd7smIiIiInJyl295Qq0WemVqtTBaLkl5D3PqlqZtOGOb2W/2m/0uPf0mepxx8ZGIiOwmJzMHsRtOYPfcvYjdcAI5mTn2bhIRkVOqHpwOjUb/L16NRjJaLkTew5y6pWkbzthm9pv9Zr9LT7+JHmdcfCQiIkWZu6CYk5mDL4Zsxt4FB3Dy6zPYu+AAvhiymQuQRETFMPqFm2gcngqVJODqooVKEmgSnoo1M8/J5ZIkoJIEGtdKRaMi6hZVbs42dHkl2YYl7XC0PGu0ozj70NZ5jjJmnHGMKt1vZxmjSuxDRx+juhvRED2ueM1HIiIyKSczBye3nsGDmw9RNsQfTfs0gqu7a6H1vxiyGYkX70FSSxAagbjvz2Pw+v4Grzu59QwSL96DEAIiN+8r4sSL93By6xm0HNTMqv0iIiptPNy1OLI61ugdVnXli7dkYmK/i4XejbWobZhzR1djecXdhiXtcMQ8pdtR3H1o6zxHGTPOOEaV7LczjVEl9qGjj1GixxkXH4mIyKjCFhJNsWRB8cHNh3nbzf333BRJLeHBzYdW6Q8RkTPKyFQZ/SPWWDkRETkuU5/nRI8DLj4SEZFRhS0k5pf/6Mi7uoVKMxYUy4b4Q2j0L4ojNAJlQ/yNHnFpCUuP2CQickQZmSq0eaklTsf7QK0W0GgkbPixMn5eehxR45rrla//vjIgAXGXTNcVcMeURbXNqqtkXkm2YUk7HC3PGu0ozj60dZ6jjBlnHKNK99tZxujj/Ll2ZHUsFyDpscDFRyIiMsqcIxMLHh2pzTWcPGlztUi5k4qczBy9BcCmfRoh7vvzekdWBtUJRIPoelg/eBMS4+9BggQBgTPfnYMIMm9iZsmp30REjmz5thCcjveBVkjQ5ubd1OB0vA+Gv1vfoPzMJR8AgIDpuoAEAcmsukrmlWQblrTD0fKs0Y7i7ENb5znKmHHGMap0v51ljD7On2vLt4XglQHXQVTaOcwNZ+bNmwdJkjB58mSTdVatWoW2bduibNmyKFu2LKKiohAbG2u7RhIRPUYKOzJRJ//RkcYWHnUu7U8wuJmMq7srBq/vj46vRaBp70bo+FoEBq/rj9Pb45B48R4gACEEIPKOuHx4K8WsdhdskxDC6BGbRETGONKc9PItT6jV+p/DarUwWi5JeQ+l65ambThjm9lv9pv9Lv39JnocOMTi47Fjx7BixQo0alT4aXX79+9HTEwM9u3bh19//RWhoaF49tlncevWLRu1lIjo8dEguh68Ar0AAJIqbxYVVCdQ7xRo3dGR+UlqCX7BvgbbM7YA6OruipaDmqHT9I5oOagZXN1dcenAZaPteZT0yKx2m2oTryVJREVxtDlp9eB0aDT6n2cajWS0XIi8h9J1S9M2nLHN7Df7zX6X/n4TPQ7svviYlpaGgQMHYtWqVShbtmyhdb/88kuMHTsWTZo0QZ06dbB69WpotVrs3bvXRq0lIno85GTmYNOor/HoXhoklQShFfAJ8kbM8t56py4bOzoSWsAnyAcqlwK/YiTg9Ldn8evaWPy6Jha75+5F7IYTSH+YgdgNJ+R/C23JrntjzhGbREQFOeKcdPQLN9E4PBUqScDVRQuVJNAkPBVrZp4zKG9cKxWNiqgrScLsukrmlWQblrTD0fKs0Y7i7ENb5znKmHHGMap0v51ljD7On2u8WRg9Lux+zcdx48aha9euiIqKwnvvvWfRa9PT05GTk4Ny5cqZrJOVlYWsrCz53ykp5p22R0T0OPv31GXIX9+m3XuEs9+d17trtanrNtaKqI5bp/7W26bQCiQl3Me+RYcAQK6/f8lhaLJzIalVEBoBr/LGTz/xCvAyq+2m2mTpTWuI6PHiiHNSD3ctjqyONXp3VGPlAAqtu3hLJib2u2hWXaXzirsNS9rhiHlKt6O4+9DWeY4yZpxxjCrZb2cao4/z5xrR40ASouBBwbazefNmvP/++zh27Bjc3d0RGRmJJk2aYNGiRWa9fuzYsdi9ezfOnTsHd3d3o3Vmz56NOXPmGJR37twZrq62ufFAbGwsWrZsaZMse2Uyz7nz7JHJPGUdPvo76jVortj27l1KQvLtFOT/FSFJEvwq+SKwVnmcP3tczhNaLZL/TkFORi5cPVzgVznvlOsbf9xC1qNsi7MlAOoyauRma+QyN68yeCBuorJ/LTlDUpk+eN9Ymwqrb8xfF06U6jFT2vPskWnLvJycHOzatQvJycnw9TW8zAFZxq5z0tbN4epim+MBYs9dRMv6tW2SxbzSkck85jl6JvMUzou/wvka88xmyXzUbkc+3rhxA5MmTcKePXtMTtIKM2/ePGzevBn79+8v9PXTp0/Hq6++Kv87JSUFoaGh2LJli80m6927d8fOnTttkmWvTOY5d549MpmnrKcju+LDxVsV217shhPYu+AABPItPkJCxwERaDmoGd6Y2AcfLt6KnMwcnNx6Bg9uPkTZEH807dNIPi371zWx2PfJIYuzVS4qNO7RAAFVy+HBzYfwreCDc7su4MeLi1A7u3vekYyugYrfvbpgX372+qBUj5nSnmePTFvmpaSkwM/PzyZZpZ3d56T/9yZ8vb2QkakyekSMJeWA8aNtdHXjEiagffMlZtVVOq+427CkHY6Yp3Q7irsPbZ3nKGPGGceokv12pjHKzzXz9qG1dX/nU87XmGc2i+ajwk62b98uAAi1Wi0/AAhJkoRarRa5ubkmX/vRRx8JPz8/cezYMYtzk5OTBQCRnJxckuZbJDo62mZZ9spknnPn2SOTecpqE9FFHDn9SLHH/t8fiuF1lotu0rsi2uU90U16Vwyvu1zs//2hOHL6kWgT0UWu0xXviG6qd0VXvCP6BX0s9hxIEkdOPxJv998pol3eE13xjkWPbtI7YuGUg3JbFk45KLpJ74og1M5X5129OtbobzXfRiIzPdtm+7C0j1F+rinLHvOZ0sruc9J920T6oT2iae1koZK0wtVFI1SSVjStnSzu/7zX7PLGtZJF4/DC60pSN7PrKplXkm1Y0g5Hy7NGO4qzD22d5yhjxhnHqNL9dpYxys818/Zh+qE9QhzbbdUH52vMs4Ql81G7HfnYsWNHxMXF6ZUNGzYMderUwdSpU6FWq42+7sMPP8T777+P3bt3o3lz5U4xJCKif7m6u2Lw+v4mj2oE8q4LefdCIoC86zkCQFpiGj7v8wVGfzfc+M1ozKAu44IG0fXkf8t3r879t47Sd6/+9xqXAiI3r83pKVn4afkJ9HzlScVyiMjxOMKcdPm2EJyO94FWSNDm5t0N9XS8D4a/W9/s8jOXfAAAAqbrAhIEJLPqKplXkm1Y0g5Hy7NGO4qzD22d5yhjxhnHqNL9dpYxys818/bh8m0heGXAdRA5I7stPvr4+KBBgwZ6ZV5eXggICJDLBw8ejODgYMydOxcA8MEHH+Dtt9/Gxo0bERYWhjt37gAAvL294e3tbdsOEBGVcq7urno3lynowc2H8p2w80tNTMPJrWf0bvwCVd4dpz3KeqBSvQq4fOSqye3mZuXq3djGFnev1i1w6hYeAQCShDuXHyqWQUSOyRHmpJdveUKtFvIfngCgVguLyqX//W/+q7krUbc0bcMZ28x+s9/sN/udvy6Rs7Ls6vs2dv36ddy+fVv+97Jly5CdnY3evXujUqVK8mP+/Pl2bCUR0eOpbIi/wcIjAEgqCfev/oOTW8+gcsOKqBlRHU2eb4ioKZEYv+tllA31h8rF9K+fgkc1Nu3TCEG1AyEh73qQkiQpfvdqo0dpCoGK1f0VyyAi52XtOWn14HRoNJJemUYjWVQuhP4fqkrVLU3bcMY2s9/sN/vNfuevS+SsHGrxcf/+/Xp3Fdy/fz/WrVsn//vq1at5p8QVeMyePdvmbSUicjY5mTmI3XACu+fuReyGE8jJzCnR9pr2aQTvIMMjfIRW4K+Dl7F3wQGc3n4Wlw4k4MLeS9Dk5N29uqjTsYVGIOVOqtw+3Sng5WsEoGnvRoic+DTqdaqNXxYexK9rY/HrmtgS90le4JQkeYHT088Nz402feQnEZVetp6Tjn7hJhqHp0IlCbi6aKGSBJqEp2LNzHNmlzeulYpGRdSVJGF2XSXzSrINS9rhaHnWaEdx9qGt8xxlzDjjGFW6384yRvm5Zt4+1N2IhsgZ2e20ayIisp2czBx8MWQzEi/eyzu9WCMQ9/35Iu8Ybepu1kKrxcmtZ1CjTTX8+d+LyH6UDUgABOAd6IW0e2l539r+7zTmjAcZ2PfJIZzffRExK3oj7vvz8vUijfnrQAK+GLJZbp+ruyv8Q/zR4ZV2ev3Q5ubd9U9SS4AWZvXJGGPXuBTnf4Obh3J30yYiMsXDXYsjq2ON3gXVknLA+B1WdXUXb8nExH4XzaqrdF5xt2FJOxwxT+l2FHcf2jrPUcaMM45RJfvtTGOUn2vm7UMiZ8XFRyKiUky3eHhhbzzuXkwE8i0IJl68h5Nbz5i8rqOpBcuYFb1x4+Tf2Hv4gN4CIP53MKMmRwNJrYLINZwgJV68h7Pf5S0Q7pj6Ay7tTzCaLYTx9hm7MQwA+UjKovpUmILXuPxlhkOdHEBEpdTSraGYHPPQ3s0gIiInkJGpMrqASeTouPhIRFRK5V88FBDy4qBOUXeMNrbQl3jxHn6YtRvZaVkQ0F8A1Ml4mJl3FKQRukxXd1f0/KCrxe0zemMYC/pERORo3vqsFrbskQAJiLvkA7VaQKORsOHHyvh56XFEjWuO0/FFl6//vnKR2xBwx5RFtc2qq2ReSbZhSTscLc8a7SjOPrR1nqOMGWcco0r321nGKD/XSrYPj6yO5QIkOTwuPhIRlVL5Fw+NKeqO0cYW+iS1hIe3kvNuw2fiso2SWoK7rzsyHmYY1NFl6o7IrFgvCJrsXCTfTUXOoxyjdfMz53qRSt4Fm4jI2gQknLnkI/+/7o6np+N9MPzd+jgd7wOtKLrcnG0Akl3ySrINS9rhaHnWaEdx9qGt8xxlzDjjGFW6384yRvm5VrJ9uHxbCF4ZcB1EjoyLj0REpZSpowQlKe/ijN6BXrh/9R/EbjghX8sxP9+KPtBq9L9F1Wq0yE7PMbmgmVcJeHJwc0ACflt3HBkPM+RrMgbVCUSD6Hr4YsjmQq/5KElAQPVyOLXtDA6v+g3e5b2QG5iLpn0aIe778yav+aj0XbCJiGxB+t/R4vk/WtVqgcu3PKFWC/mPzMLKLdmGrfMcZRvO2Gb2m/1mv9lvc7ZB5Oh4QSsiolLK1FGClRtVhFegN1IT03B6x1nsXXAAXwzZrHen6JzMHJz78YLh0Y0CSLmTIv9TUkt6/y9JEoLqBKL5gKZoPawlxu9+GVFTIvFEn8bo+FoEBq/rj7Pf5S0eFsY7yBtJCfeRdPkfZCZnIinhPq78dg0ZyZkYvL4/Or4Wgaa9G6H95LZoP6mt3vYtvdkMEZG9CaH/RyYAaDQSqgenQ6ORzCq3ZBu2znOUbThjm9lv9pv9Zr/N2QaRo+PiIxFRKdW0TyME1Q6EJElQuaggSRIq1A1CjaerIS0xDQCgzdVCCIG7FxKxY+oP2D13L2I3nMDxjSdx71KS0e3mX9AMblTJ5AKgqTtl647ILEzq3TSj5ZvHfCPfGKbT9I5oPawlWg9viU7TO6LloGZceCQipyNBoHGtVDQKT4VKEnB10UIlCTQJT8WamefQ2Mxyc7YhScLsukrmlWQblrTD0fKs0Y7i7ENb5znKmHHGMap0v51ljPJzrWT7UHd3bCJHxtOuiYhKmfyLfvU61Ua9zrWRcicVZUP80SC6Hlb0XGv0dZf2J0DlooLQCLj7u+d9PaUpPCuwZnm0HtZSL/Pk1jNoEF0PG1/eisT4e3k3nxHAmZ3nMGRDTJHXbSxMWtIjg0XNBtH1cPa78waLnEREzuD9sZfku10bu4PpkdWxZpcXtY3FWzIxsd9Fs+oqnVfcbVjSDkfMU7odxd2Hts5zlDHjjGNUyX470xjl51rJ9iGRo5NEoRfuKn1SUlLg5+eH5ORk+Pr62iSze/fu2Llzp02y7JXJPOfOs0cm85T1dGRXfLh4q94driW1BKERCKxVHvW71EHKnVSk3EnFpf0JJc47hi/RAgNRK7IGen7QFesHb0Ji/D1IkCCEQBkvV2QXuIEMAFR/Kgx+wb64dOCyfPSlJZkRZV+CAJDxMAMqtQraXC1c3Fygyc6FpM5bOA2qHYjB60t++vW8Gf1L9Zgp7Xn2yLRlnj3mM6QseR/u2wZfby+bZHZ/dRZ2fjzHJlnMKx2ZzGOeo2cyT+G8dz7lfI15ZrNkPsojH4mISpH8d7jW3WgmMf4eEi/dkxfrzCGpJAht0d9NpT9Ix8aRW+VrOIr/XSTS2MIjAFw+elX+fzfvMgjvWBMZDzKR/iAddy4kQptTePvSH2TI/6/rS25Wbl72//6dePEeTm49g5aDmhXZfgAmTw8nIrKFpVtDCz3yMSNTZXZ5UduIS/DGwo1VzKqrdF5xt2FJOxwxT+l2FHcf2jrPUcaMM45RJfvtTGOUn2vKf64RORIuPhIRlSKm7nANAbMXHgHkLTz+73Tpwtw6c7vIOqZkpWXjyq/X8dLWwfhh1u4iFx7NJgH3r/1jVlVjR4rGfX8eg9f3V6YtRERFeOuzWtiyRwIkIO6SD9RqAY1GwoYfK+PnpccRNa45TscXXb7++8pFbkPAHVMW1TarrpJ5JdmGJe1wtDxrtKM4+9DWeY4yZpxxjCrdb2cZo/xcU/5z7cjqWC5AkkPh4iMRUSliyfUUVS4qaDVao4uHZbzKIPtRdtEbKeGFO9IS0/B5ny+QauEp2IURWoFLBy4jakpOkUcwGj1S9H9HThIR2YKAhDOXfOT/1+bm3ZDrdLwPhr9bH6fjfaAVRZebs42829vYPq8k27CkHY6WZ412FGcf2jrPUcaMM45RpfvtLGOUn2vKf64t3xaCVwZcB5Gj4N2uiYhKkYJ3uDZGkoBakTXQtHcjhDSpbPTO0+6+btZuqkzJhUedtMQ0nNx6BjmZOYjdcEK+i3dOpv7p4MbuvC2pJTy4+VDxNhERmSJJeY/81GqBy7c8oVYLs8ot2Yat8xxlG87YZvab/Wa/2e/i1iVyJFx8JCIqRVzdXTF4fX90fC0CTXs3QvtJbfUWIyVJQlCdIPT8oCs6Te+IOh3DASNnZKTcTrV94wtjuD5aeHWVhPvX/sEXQzZj74IDOPn1GexdcABfDNmstwBp7EhRoREoG+KvQKOJiMwjRN4jP41GQvXgdGg0klnllmzD1nmOsg1nbDP7zX6z3+x3cesSORIuPhIRlTKu7q5oOagZOk3viNbDW2LIFzHyYmTH1yIweF3enaBzMnOgydXA3c/d3k0umoWndwutQNq9R/Ip1f/P3tvHR1Wde/vfNZOBAHlBBHxJEAsmoaIJKRaLtoVTrKVCgsenFNCCVc9pPdAiWJ8WWikvFqGtBeWoaAUr0iIcLPpLLQWBB1CxGuAgRNAQAUURClIzCQkJycz9+yNNSMjb3jN79l5r8r36mU/JYs193Yt1Z7mys2evcG0YItLsI9UX3ilad3G2F3LHZjs8AEIIaRkFQU5GObIzy+FTgkBCGD4lGJRZjmdn7UeOxXYrMZQSy32d9EUTw04euvlikUckc+i2T5eaMbFGnR63KTXKdc35da3+IBpCdIHPfCSEkDin/mJkYy48aCXeSO6dhKSe3ZodvnPhR6rr7xTladeEEK+YP7mkzdOudywrtNzeXowla6owdVyxpb5O+yKNYScPHX1O5xHpHLrt06VmTKxRJ8dtUo1yXXN+XSNEJ5TIhTfpesPChQsxc+ZM3HfffXj00Udb7LN//3788pe/xO7du/HRRx9h8eLFmDZtmi1PWVkZUlNTEQwGkZKSEn3iFsjPz0dBQYErLq+c9Jnt88JJn7N8dfgo/GbJWsv9C1fuxpbfbUek/wnYiT/hy7gjovdGilVnUq9u+I8X78S7fznQbIxKKYz4ybBmF2NbYuGD4+O6ZuLd54XTTZ8X+5mOgut70q3rkJLULfrELZB//2wULJrriou++HDSR5/uTvoc9s17nPs1+ixjZz+qxZ2PO3fuxNNPP43s7LY/5lZZWYl+/fph7NixmD59ukvZEUJI/FF/0ErjuwIjoWf/i9E5qROO7T3uUGZRoAAI0PWirggkJiB3bDaKXjnQcHdnuDaMbr264fRH/0Thyt28w5EQ0gwv9qRPrO3T5p2PZ6t8ltvbi1F0KAmLV11hqa/Tvkhj2MlDR5/TeUQ6h277dKkZE2vUyXGbVKNc19xb1wjxBPGY8vJyycjIkE2bNsmwYcPkvvvus/S+vn37yuLFi237gsGgAJBgMGj7vZGSl5fnmssrJ31m+7xw0ucsNw67RXbsrbD8WvzAazJaPSSjMC+iV29kyZ39n5Btb5fKL8cXRBzHrtNq30fu2yo79lbItrdLZfEDr8mD33lZxvdeJKPVPMlL+JWMVg/J3QOekm1vl7b6bxTvNRPvPi+cbvq82M/EO17tSRVKJScjKDmZQfGpsAQSQuJTYcnNCsrpzVskN8tau5UYSo223NdJXzQx7OShmy8WeUQyh277dKkZE2vU6XGbUqNc19xb1ypf3ySyc2OrL+7X6LODnf2o53c+TpkyBaNGjcJNN92EX/3qV47Hr66uRnV1dcPXZWVljjsIIURHaqpqWn2WYeO7AgVi+0AXAPjnh5+jpqoWKZckO5x59Lz1/C5cd3tuw/MuC1fuxjt/Lqo7EbC27je+9YfPWPkINiEk/vFqTypQ2FeS3PDncG3dc3j3HkzG3Q8NxN6DyQhL++1WYtQdb+O+L5oYdvLQzReLPCKZQ7d9utSMiTXq9LhNqVGua+6ta0+tS8f024+CELfx9JmPq1evxvz587Fz504kJiZi+PDhGDRoUKvP12nMlVdeiWnTprX7fJ05c+Zg7tzmz0gYOXIkAgF3Pm5XWFiIIUOGuOLyykmf2T4vnPHue+PNt3H1Nde55jvw7q4mPgmH8fGeT3HuTDWgFCCCTt06Ibl3MmqraxHokoDkS5JRdrwcpz/8p+1nP5biE3RHOrr16AoAqPhnpaPjactplV79L0b39O4AgFMlnyF4vKzZ8x9TL0tBr4yeLb7/g/d3x3WNxrvPC6ebvpqaGmzYsIHPfHQIL/ekwEgAzfekSgmSuoRw5qwfIqrd9pZo3rcQQMs1GktfdDHs5KGXLzZ52J9Dt3261IzbPl1qxm2fLjXjtk+XmrHr63tZFa7tf6bV9xbuL8aQgVltxneawoNH4na/Fu8+O/tRz+58/Pjjj3Hfffdh06ZNSExMjJln5syZuP/++xu+LisrQ58+fbBmzRoeOEMffR46491n9wCYaPnp1LFNfIUrd2PLG9ub3tVYAeAI4EvwQUJhJJUnIfmSJHwqJ2z7Gg5/+acz+dtyWiQ95XJM+M13EEgMnD9gp9EtngoKI25v/fAZHjhjts8LpxcP+CbR4/WeFFgDhcZ3udShIPjGl0/iL6/1ttzefox8AAUW+zrrizyGnTz08zmfR2Rz6LZPl5px26dLzbjt06Vm3PbpUjN2fFPHFbd556MnhxS5fMhNPO8P3fbZ2Y/6YpxLq+zevRsnT57El770JSQkJCAhIQHbt2/HkiVLkJCQgFAo5Iinc+fOSElJafIihJB4p/5AmZYI14YhApSfPINPi+xfeDSFT975FM/fuRo1VTXIHZuN3lm9oJSCL8EHpRR6D+iF3LFtHypBCIl/vN6TKghyMsqRnVkOnxIEEsLwKcGgzHI8O2s/ciy2W4mhlFju66Qvmhh28tDNF4s8IplDt3261IyJNer0uE2pUa5r7q1r9QfUEOI2nt35OGLECBQVFTVpu+uuuzBgwAD87Gc/g9/v9ygzQggxn4vSu0NCnj1VQw+k6XMdJ60Y3+ozMAkhHRev96TzJ5e0edr1jmWFltvbi7FkTRWmjiu21NdpX6Qx7OSho8/pPCKdQ7d9utSMiTXq5LhNqlGua+6ta4R4gWcXH5OTk3HNNdc0aevWrRsuvvjihvZJkyYhLS0NCxYsAACcO3cOBw4caPjzsWPH8M477yApKQlXXXWVuwMghBCNaXygjPIrhEPhiA6VMR3lV/j8k1IAaDh8hhBCGsM9KSGEkI7E2Spfqxcwiw4lYfGqK3ihkjiO56ddt8XRo0fh853/ZPinn36K3Nzchq8feeQRPPLIIxg2bBi2bdvmQYaEEKIf9adcX37NpUi5NBlJvbqhe1oq9q9/H6dKPgMUIOH4uxIZ6BpAzdmaJhdZJSS46F+HzhBCSKTEck/6iyczsGaTAhRQVJIMv18QCimsXH85Nj+xCzdNuQ57D7bfvuKVy9uNIUjEA49mWerrpC+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmt6rms7lhXyAiRxDK0uPl64Wbvw6yuvvNL2iayEENKRqKmqwfN3rm6441FCgt5ZvXDTA8Nx3YRc7Fm7D6c/+idKth/GmZOtn3RnIhIW9M7shVMHPzs/dj7XkRASAW7uSQUK+0rOHzgTrq17Xu/eg8m4+6GB2HswGWFpv91KjLonTLrviyaGnTx088Uij0jm0G2fLjVjYo06PW5TapTrmp7r2lPr0ts8nIYQO2h18ZEQQkh07Fm7DyeLT0FEILV1Pxg3fu5h/ceOb3qgBqt+8CKO7f3Uy3QdpbaqFgNHDoA/z9/ucx3r7w7l8x8JITqg/nU+WOPrmX6/4PCxrvD7peEHxLba7cRw26dLDBNz5rg5bo6b4/bSR4hTeHbaNSGEEOdp6ZTrxs89BOouvL39/C4c3x9/J12XfhrEkImD8a2ZIzBk4uBWLzw+f+dqbPnddux5cR+2/G57w6nYhBDiBSJNf+gDgFBIoV9aJUIhZandTgy3fbrEMDFnjpvj5rg5bi99hDgFLz4SQkgccVF6d4Rrmz6bJVwbbnjuYU1VDVZMfAGvPfFms37xwJlTFS2211TVoHDlbmxcsAUv/+yv+Mf7JyEiCNeGISI4WXwKu1btaehTuHJ33SE9hBASYxQEORnlyM4sh08JAglh+JRgUGY5np21HzkW263EUEos93XSF00MO3no5otFHpHMods+XWrGxBp1etym1CjXNT3XtfqDaAhxAn7smhBCDKXxR4dLPylFTVUNrsm7Gtv++w3UVtc29EvonIBr8q4G8K+PZR885VXKMafyn5Woqappcsfjhc/BbPGiqw946/ldqCqtanhe5IHkj1F9tgadu/Dj2ISQ2DF/cgmmTSgFgGanj3ZJDGPHskLL7e3FWLKmClPHFVvq67Qv0hh28tDR53Qekc6h2z5dasbEGnVy3CbVKNc1Pdc1QpxCSQc7waWsrAypqakIBoNISUlxxZmfn4+CggJXXF456TPb54Uz3n1fHT4Kv1myNmbxL7ygVli7EqMGTMfVI7Ow7bHXm3x0QilgxE+GY8jEwdi4YAt2r34nav9O/Alfxh1Rx3HcqYBLsnpj0orxDRcgC1fuxpbfbW//cAiFJidl78Kf8NSi53Dr9K9El7hF4v17guuas3ixnyHO0jCHW9chJambK878+2ejYNFcV1z0xYeTPvp0d9Jntg8A8uc9Hrf7tXj32dmP8s5HQggxkAsPlhHUHSwT6BKA8vsgje7uU35fwzMf6z9+HbcI8I/3T+KFe/+MASMycE3e1Xh/S0mr3X0JPkhIkNg9EdXl1U3vilQKJw6Xxj5nQkiH5om1fdq88/Fslc9ye3sxig4lYfGqKyz1ddoXaQw7eejoczqPSOfQbZ8uNWNijTo5bpNqlOuaWesaIXbhxUdCCDGQ+oNl6k+0BvCvg2YEEmp6h5+EpOGiY+7YbPz9uUJUfBbfD5A+9s6nOPbOMWz779dRWx1qsU/npE64euQAXHxlD4RqQ9j22BtNO4jg0n7dY58sIaRD84snM7BmkwIUUFSSDL9fEAoprFx/OTY/sQs3TbkOew+2377ilcvbjSFIxAOPZlnq66Qvmhh28tDNF4s8IplDt3261IyJNer0uE2pUa5rZq1rO5YV8gIksQ0vPhJCiIFclN69xYuMGV/vj5qztQ0fx5aQoPeAXsgdm93Q75Ks3jj82YcuZ+wu9R+xbu3CIwBUnzmHi6/sgSETB6OmqgYHNhQ3+XfrmtIZ3753sFspE0I6KAKFfSXJDX8O19adQrr3YDLufmgg9h5MRljab7cSo+54G/d90cSwk4duvljkEckcuu3TpWZMrFGnx21KjXJdM2tde2pdOqbffhSE2IEXHwkhxEByx2aj6JUDDRfLVC3Qe0AvXHd7LnJuuxZ/nb0RpceC6J6WilFzv4VAYqDhOZH/eP9ks3jKp6CU6lAnPPsS6j6OXn9wz+XXXIqUS5OR1KsbLu7bA3LgLR42QwhxBVX3M12T5/X6/YLDx7rC75eGH/raarcTw22fLjFMzJnj5rg5bo5bJ199OyF28XmdACGEEPsEEgOYtGI8RvxkGHK/k42e/S/GpOfGAwBe+OGL+GD7YZw+8k98sP0wXvjhiw0X2E4Wt3zStYSlQ114BOruFO3WsyuW5j2LzY9swzvrilCy7RA+LTqB3LHZ8Pn5n0hCiDuINP2hDwBCIYV+aZUIhZSldjsx3PbpEsPEnDlujpvj5rh18tW3E2IX/mRFCCGGEkgMYMjEwfjWzBHont4dgcRAk4NowrVhiAhOFp/CnrX7Gp4T2dGpv8uzV2ZP/O+avThz8gyAuguwQN2BNXvW7vMyRUJIB0JBkJNRjuzMcviUIJAQhk8JBmWW49lZ+5Fjsd1KDKXEcl8nfdHEsJOHbr5Y5BHJHLrt06VmTKxRp8dtSo1yXTNrXas/oIYQO/Bj14QQEke0dhDN55+U/us5kR3g7kYFQFr+q249u6F7WgqUTyExKbHVO0FPf/TP2OVHCCGNmD+5pM3TrncsK7Tc3l6MJWuqMHVcsaW+TvsijWEnDx19TucR6Ry67dOlZkysUSfHbVKNcl0za10jxC68+EgIIXFEawfRXJTeHbljs/HWip04c6rCo+xcQtBwAdKX4EM4FEaX7l3wpe9mY++6d3Fs73Eon2q407ElzpyqAJJdy5gQQgghhBBjOFvl40VJYgtefCSEkDii/iCaf7x/suECW7de3XBN3tUIJAaQenlq/F98BAABelx5Eb7wlb5IuTQZoZoQ/v7sTtScran76zYuPAJAUs9uQLUbiRJCOjq/eDIDazYpQAFFJcnw+wWhkMLK9Zdj8xO7cNOU67D3YPvtK165vN0YgkQ88GiWpb5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlumb+urZy/eXYsayQFyBJq/DiIyGExBGBxAAmPP0dLB/7PMpPnoHyKVScOoNVP1iLgSMHoPRYqdcpusY/P/wct/9+LNZOfbnFE77b4uIrewDFMUqMEEIaIVDYV5Lc8Of6U0X3HkzG3Q8NxN6DyQhL++1WYtQ9YdJ9XzQx7OShmy8WeUQyh277dKkZE2vU6XGbUqNc18xf1/YeTMZT69Ix/fajIKQleOAMIYTEGe/+5UDD3Y0SFogAJ4tPYetjr6Pis451Ot3q//pzq891rEf5mh7Ck9A5AdfkXR3LtAghpAlK1b0a4/cLDh/rCr9fLLXbieG2T5cYJubMcXPcHDfHrZOvvXZCWsPyxcdPP/00lnlg4cKFUEph2rRpbfZbu3YtBgwYgMTERFx77bVYv359TPMihBDT4KnW5znzWUWb/xadkjpBpOnmKXSuFu/+5UCsUyOERECs96OAN3tSkbpXY0IhhX5plQiFlKV2OzHc9ukSw8ScOW6Om+PmuHXytddOSGtYvvg4cOBArFq1KiZJ7Ny5E08//TSys7Pb7Pfmm29iwoQJuOeee7Bnzx7ceuutuPXWW/Huu+/GJC9CCDGRlg6d6agk9ezW6r9Fcu8kfPGbWfD5m/6nUPl9+PyTUheyI4TYJZb7UcCbPamCICejHNmZ5fApQSAhDJ8SDMosx7Oz9iPHYruVGEqJ5b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlumb+ujYos7zh1GxCWsLyMx/nz5+PH/7wh3jppZfw9NNPo0ePHo4kcObMGdxxxx145pln8Ktf/arNvo899hhGjhyJ//t//y8A4KGHHsKmTZvw+OOP46mnnnIkH0IIMZ36Q2dOFp+C8iuEQ+G6E6A7GAmdEzB+6f/B//zoJZw8eP6j1126J+Ir3/8yrpuQiz1r97V6Ojif+UiIfsRqPwp4tyedP7kE0yaUAkCLJ4fuWFZoub29GEvWVGHquGJLfZ32RRrDTh46+pzOI9I5dNunS82YWKNOjtukGuW6Zv66xsNmSFsoufDzZm1w5MgR3HPPPThw4ACeeeYZ5OXlRZ3AnXfeiR49emDx4sUYPnw4Bg0ahEcffbTFvldccQXuv//+Jh+DmT17Nl5++WXs3bu3xfdUV1ejuvr8kaVlZWXo06cPgsEgUlJSos7fCvn5+SgoKHDF5ZWTPrN9Xjjj3ffV4aPwmyVrXfP9dOrYJr6aqhrsWbsPn39SipRLk7F//fs4VXKq2UcqImUn/oQv4w5ngjno7NmvB5Tfh+5pqRg191sIJCZgxaQXcPLgKSgoCAS9ruqJa0Z9EWUnyhv923wG5VeQkKD3gF6Y9Nx4/O5XE+O6RuPd54XTTV9ZWRlSU1Nd3c/oQiz2o4CHe9Kt65CS1M2RMbRH/v2zUbBorisu+uLDSR99ujvpM9sHAPnzHo/b/Vq8++zsR21dfKzn8ccfx/Tp0/HFL34RCQlNb5783//9X8txVq9ejfnz52Pnzp1ITExsd6PXqVMnrFixAhMmTGhoe/LJJzF37lz84x//aPE9c+bMwdy5zb95Ro4ciUAgYDnXaCgsLMSQIUNccXnlpM9snxfOePe98ebbuPqa61zzHXh3V5u+UE0IJ4tP4dzZGkAENWdroroZshSfoDvSo4gQG2fnbp3Q50tpAIDgp2U4c6oCZ8uqWuxb/6SaTt06Ibl3MmqraxHokoDUy1OgfL52/02d5oP3d8f19wTXNWepqanBhg0bOuTFx3qc2o8C3u5JB1z5NfRLqwEAfHS8Cyqq/OiWGELfy87C7wNCYevt7cU4fKwI/dKutdTXaV+kMezkoaPP6TwinUO3fbrUjIk16uS4TapRrmvxu661R+H+YgwZmNV+R4coPHgkbveHbvvs7Ectf+y6no8++gjr1q3DRRddhDFjxjTb7Fnl448/xn333YdNmzYhMTExohhWmDlzJu6///6Gr+t/y7xmzRre+UgffR46493n9Z2PjampqsHzd65Gz382+hh2lOh65yMqgLSyyxA8Xo6LTp6BUnV3O7b3noy+/XHrr0chkHj+l1Jt/ZvGgoUPjo/r7wmua85S/5vmjopT+1HA+z1p8Yd/QeeAAhTw3pFk+P2CUEihU6Acm5/YhZumXGepPcFf3m4MQT7eO1Jgqa+Tvmhi2MlDN18s8ohkDt326VIzJtao0+M2pUa5rsXvurZjWWG7H8d2/e5O3mnpGHb2o7Z2as888wx+8pOf4KabbsL+/fvRq1eviBIEgN27d+PkyZP40pe+1NAWCoXw2muv4fHHH0d1dTX8fn+T91x66aXNfpv8j3/8A5deemmrns6dO6Nz584R50kIIaZS/9Hr97ccxD+KTwICSG0E9zv6AYQcTy9mHNt3vOEZl1Zv7i/ZdgjP37kak1aMb3IBkhCiH07uRwHv96QChX0lyQ1/DtfW3Ze992Ay7n5oIPYeTEZY2m+3EqPueBv3fdHEsJOHbr5Y5BHJHLrt06VmTKxRp8dtSo1yXYvfde2pdemYfvtREGL5tOuRI0fiZz/7GR5//HGsW7cu6o3eiBEjUFRUhHfeeafhdd111+GOO+7AO++802yTBwBDhw7Fli1bmrRt2rQJQ4cOjSoXQggxlZqqGhSu3I1TJZ+hcOVu1FTVNLQ/f+dqbPnddnzyzqcRHzjTrVc3fGFIXwczdoEIx3qy+BT2rN3nbC6EEEdxej8K6LEnVaru1Ri/X3D4WFf4/WKp3U4Mt326xDAxZ46b4+a4OW6dfJHEIASwcfExFAph3759mDRpkiPi5ORkXHPNNU1e3bp1w8UXX4xrrrkGADBp0iTMnDmz4T333XcfNmzYgN/97nd4//33MWfOHOzatQs/+tGPHMmJEEJMovEFxuDxMmz53XY8f+dqVJaexcs/+yv+8f7Jujv/oni4Y2JSJ5yrPOdc0hqj/Aqff1LqdRqEkDZwej8K6LEnFUGzA8FCIYV+aZUIhZSldjsx3PbpEsPEnDlujpvj5rh18kUSgxDAxsXHTZs2IT3d3cMFjh49iuPHjzd8fcMNN2DVqlX4/e9/j5ycHLz44ot4+eWXGzaGhBDSkdizdh9OFp+CiDS8ThafxLKxz6Nk26EW36OUglIKPftfDJ+FJ0CfPvI5ju093m6/eEBCgovSu3udBiGkDbzYjwKx3ZMqCHIyypGdWQ6fEgQSwvApwaDMcjw7az9yLLZbiaGUWO7rpC+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmvxu67de9snTv7nmBhM5E/njgHbtm1r82sAGDt2LMaOHetOQoQQojGff1IK5VdNn+OoFM6cPNPqe9IGXY4BIzIQqglh62Ovu5Cl/vgSfJCQoPeAXsgdm+11OoQQDXBzTzp/cgmmTSgFADy1Lh2Hj3VFv7RK3HvbJ+iSGMaOZYWW29uLsWRNFaaOK7bU12lfpDHs5KGjz+k8Ip1Dt3261IyJNerkuE2qUa5r8buuEQIASqw+jT9OqD+Nx8pR4E7BEz7p093nhTPefW6cdl24cje2/G47RKTJSdDKpyDh5kv7JV/sjUnP1R2o8reHNuGddUUt9rOCtqdd26RTtwC6dO+KnH8fiOsnXsfTruPI54XTi9MF3dzPEGdpmMOt65CS1M0Vp+snitJnvJM++nR30me2zwsnT7t2Djv7Ua3ufCSEEGKd3LHZKHrlAE4Wn4L61/+SenVDeQt3PmYM749bfz0KgcQAKkvP4sCG9yO+8Gg6yq8gobqxn6uowbmKIN58phBfGjuIJ10TQlznibV92rzz8WyVz3J7ezGKDiVh8aorLPV12hdpDDt56OhzOo9I59Btny41Y2KNOjluk2qU61rHW9dIx4IXHwkhxFACiQFMWjEee9buw8FVf8GI24fhmryr8cIPX6y7IPmvi2y9B/RquPBYU1WD5WOfR/WZjnGITEJiAq74UjpSL09B97RUQAH/u3YfgseCTfrVVtfir7M3Yuxjt3qTKCGkw/KLJzOwZpMCFFBUkgy/XxAKKaxcfzk2P7ELN025DnsPtt++4pXL240hSMQDj2ZZ6uukL5oYdvLQzReLPCKZQ7d9utSMiTXq9LhNqVGuax1vXduxrJAXIDsYvPhICCEGE0gMYMjEwXhxZ08MmTgYABouSH7+SSkuSu+O3LHZDXf07Vm7r8U7I+OFQGICemX0xKkPTqPmbA3CtWEc+ftH6J3VCzf93+EIJAbw7l/fa/G9pRdckCSEEDcQKOwrSW74c7i27gTRvQeTcfdDA7H3YDLC0n67lRh1x9u474smhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU61rHW9eeWpeO6bcfBek4WD7tmhBCiBnUX5D81swRGDJxcJOPEn/+SSmUT3mYXWypqapFt4u7obaqFgAQrg3/6xTwU9izdh8A1N0B2QKttRNCSKxRqu7VGL9fcPhYV/j9YqndTgy3fbrEMDFnjpvj5rg5bp18TsYgHQtefCSEkA5CTVUNyk6Ux/ezHn11F1hxweZH+VVdO4BRc7+FhM5Nb/xP6JyAUXO/5U6OhBByASJ1r8aEQgr90ioRCilL7XZiuO3TJYaJOXPcHDfHzXHr5HMyBulY8OIjIYR0AGqqavD8natRsu2Q16nEljDw+dHSZhdYJRTGRendAQBdu3fBj179ATKG90evjJ7IGN4fP3r1B+javYsHCRNCOjoKgpyMcmRnlsOnBIGEMHxKMCizHM/O2o8ci+1WYigllvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU61rHW9fqD6ghHQc+85EQQuKQmqqaJs99DNWGcLL4lNdpxR4FhM6FmjUn9UpC7tjshq+7du/Cw2UIIVowf3JJm6dd71hWaLm9vRhL1lRh6rhiS32d9kUaw04eOvqcziPSOXTbp0vNmFijTo7bpBrlutbx1jXSseDFR0IIiTPq73JsfOJ1Ympi3Z9r4/gj1wDQ0vAUcNXX+zV59mVLXHjBVsLcFBFCCCGEEEJItPDiIyGExBl71u7DyeJTEJGGi41nS882ew5iuyi0fDFPUwJdAqitrm3+TEsByv5RjpqqmlYvQLZ0wfbjbp+2+Z7W4rR20jghhLTEL57MwJpNClBAUUky/H5BKKSwcv3l2PzELtw05TrsPdh++4pXLm83hiARDzyaZamvk75oYtjJQzdfLPKIZA7d9ulSMybWqNPjNqVGua51vHVtx7JC3v3YweDFR0IIiTM+/6S02V2Oyq+QmJKIqtIqCKT9i4oKGHjLAJRsP4xzZ87FNmEHUD6FXlddjE+LTrT494deP4IVE1/AnSsntHgxsKULtufOVGPP2n0YMnGwpRxauoBZ9MoBTFoxnhcgCSGtIlDYV5Lc8Odwbd1vivYeTMbdDw3E3oPJCEv77VZi1D1h0n1fNDHs5KGbLxZ5RDKHbvt0qRkTa9TpcZtSo1zXOt669tS6dEy//ShIx4EHzhBCSJxxUXp3SOiCq4th4CuTrsOInwxD+qDL278LUoCjOz/B5L/+B256YDjScy28x0MkLAgeL2uzz8mDp7Bn7b4W/67+gm0T1PkTsq3Q+AJmuDYMEcHJ4tadhBBSj1J1r8b4/YLDx7rC7xdL7XZiuO3TJYaJOXPcHDfHzXHr5HMyBulY8OIjIYTEGbljs9E7qxeUUvAl+KCUQu8BvXDd7bkYMnEwJjz1HVyS1RtKqTYvKJ45dQbv/uUAhkwcjEuyesPn1/s/GRWfVbbdQaHVi4ktXrAVaTgh2wotXcBUfnsXMAkhHRORuldjQiGFfmmVCIWUpXY7Mdz26RLDxJw5bo6b4+a4dfI5GYN0LPT+SZIQQohtAokBTFoxHiN+Mgy538nGiJ8Mw6Tnzn/0t/Hfd7u4W6txlN+H97eUYOOCLSg7UQ4JGf5cFkGrFxNbumDbKalzkxOy26OlC5gSsncBkxDS8VAQ5GSUIzuzHD4lCCSE4VOCQZnleHbWfuRYbLcSQymx3NdJXzQx7OShmy8WeUQyh277dKkZE2vU6XGbUqNc1zreulZ/OjbpOPCZj4QQEocEEgNtPquw/u9DNSFsfez1FvuEa8P4ZM8xfFp0HOHacN1dfRfeHWgQvbN6tXoxsf6CbOPDYv759g5bz2rMHZuNolcONHnmY+8BrTsJIQQA5k8uwbQJpQCAp9al4/CxruiXVol7b/sEXRLD2LGs0HJ7ezGWrKnC1HHFlvo67Ys0hp08dPQ5nUekc+i2T5eaMbFGnRy3STXKda3jrWukY6FELrw5Nr4pKytDamoqgsEgUlJSXHHm5+ejoKDAFZdXTvrM9nnhjHffV4ePwm+WrHXN99OpYyPy1VTVYMXEF3Dy4Cnrb1LATvkTvow7bPuiYSfsOTt164RAYgISEhOQc+s1uH7SdbYuJkbybxrNadcLHxwf198TXNecxYv9DHGWhjncug4pSa3fhe4k+ffPRsGiua646IsPJ3306e6kz2yfF878eY/H7f7QbZ+d/aindz4uXboUS5cuxYcffggAGDhwIH75y1/i29/+dqvvefTRR7F06VIcPXoUPXv2xHe+8x0sWLAAiYmJLmVNCCF6UVl6FsffPYFnvrMC3dNSMWrut9C1exdL7w0kBnDnygnYs3YfTn/4T5z5rAJJvbrhZPEpHCs63vKp2Ab8yqpzUiecqziH2upayD8FxVs+wPWTrou5t707Tgkh+uH1fvSJtX3avPPxbJXPcnt7MYoOJWHxqiss9XXaF2kMO3no6HM6j0jn0G2fLjVjYo06OW6TapTrGtc13hEZ33h68TE9PR0LFy5ERkYGRAQrVqzAmDFjsGfPHgwcOLBZ/1WrVmHGjBl49tlnccMNN+DgwYP4/ve/D6UUFi1a5MEICCHEWypLz+Lxm3+PM9UVOHX6M5wq+QyP3/x7/OjVH9i6ANn4gllNVQ2eynu29YuMPsDn8wG1DgwgCnydfAifa75BSeqdhIpTZ+oefF1b9/f1p07zwiAh5EK83o/+4skMrNlUdwBYUUky/H5BKKSwcv3l2PzELtw05TrsPdh++4pXLm83hiARDzyaZamvk75oYtjJQzdfLPKIZA7d9ulSMybWqNPjNqVGua5xXat37lhWyAuQcYqnFx/z8vKafD1//nwsXboUb731VoubvTfffBM33ngjbr/9dgDAlVdeiQkTJuDtt992JV9CCNGNv87eiNrqplcBa6tr8dfZGzH2sVsjirln7T6cOXWm9Q5hoHufVAROBlBztiYihxO0dOExY3h/JPXqhr0vvdtw4RHgqdOEkNbxej8qUNhXktzw53Bt3amgew8m4+6HBmLvwWSEpf12KzHqjrdx3xdNDDt56OaLRR6RzKHbPl1qxsQadXrcptQo1zWua/XOp9alY/rtR0HiD21Ouw6FQli9ejUqKiowdOjQFvvccMMN2L17NwoLCwEAhw8fxvr163HLLbe0Gre6uhplZWVNXoQQEi+UHgvaarfC55+UQvnb/s9DdXk1aqq8u/DYEr4EH1IuTcbFfXvw1GlCSETEaj8KtL0nVaru1Ri/X3D4WFf4/WKp3U4Mt326xDAxZ46b4+a4OW6dfLGMUd9O4hPPD5wpKirC0KFDUVVVhaSkJKxatarNzduSJUvwwAMPQERQW1uLe++9F0uXLm21/5w5czB37txm7SNHjkQgYP3ggWgoLCzEkCFDXHF55aTPbJ8XTvqc4eDOT/H5iTMoxSfojvSG9qSLu+Gyay61HEfCYQQ/LUPN2VrUVtfizOmKNvsH1TGkSlrEeUfChWO8EAWgZ/+LkXp5Cj7e8ynOnamu2wWJoFNSZ/TJvRzKZ/13bh+8vzsua6aj+LxwuumrqanBhg0beOCMQ8R6Pwq0vicFRgJoeU966cXVOHG6s+X29mMUAmi9RmPpizyGnTz08zmfR2Rz6LZPl5px26dLzbjt06Vm3PbpUjNu+2JZMwP7nUG/tLOWYkdK4cEjcbs/dNtnaz8qHlNdXS0lJSWya9cumTFjhvTs2VP279/fYt+tW7fKJZdcIs8884zs27dP1q1bJ3369JF58+a1Gr+qqkqCwWDD6+OPPxYAEgwGYzWkZuTl5bnm8spJn9k+L5z0OUPwdIX8e5eHpTeyZBTmySjMkzGdH5ZN2z+THXsrLL22vV0qdw94SkarhyQv4VcyWtXFqI/X0iut88A2/z4Wr8ZjbPyqy/khufuLT8m2t0sbxrT4gdfkl+MLZPEDrzW023nFa810FJ8XTjd9wWDQ9f1MPBPr/ahI63tShVIZlBGUnMyg+FRYAgkh8amwfCkrKKc3b5HcLGvtVmIoNdpyXyd90cSwk4duvljkEckcuu3TpWZMrFGnx21KjXJd47pW3175+iaRnRtj+orn/aHbPjv7UU+f+QgAnTp1wlVXXQUAGDx4MHbu3InHHnsMTz/9dLO+s2bNwsSJE/Ef//EfAIBrr70WFRUV+MEPfoBf/OIXdQcgXEDnzp3RubO1q/KEEGIaKT264rlP7kNu5ovo1aOn7dOugbpnPJ4sPgURgdTW3QwfOleLnv0vxmeHTrf4nk5dOwHVjgwhYnpl9MQ1t3wRZf8ox0Xp3ZE7NhuBxLq7h3jqNCHEDrHejwKt70nnTy5p87TrHcsKLbe3F2PJmipMHVdsqa/Tvkhj2MlDR5/TeUQ6h277dKkZE2vUyXGbVKNc17iu8bTr+Mbzj11fyDe+8Q1cccUVeO6555r93eDBg3HTTTfh17/+dUPbCy+8gHvuuQfl5eXw+/3txi8rK0NqaqqrH1PKz89HQUGBKy6vnPSZ7fPCSZ+zfHX4KPxmydqI3rtxwRbseXEfwo0PaFEKXS/uirOlZ5u0A4C/kx/vdP4fXFv+f6LK2S478Sd8GXc0fN07sxfuXDmh4YJjTVUN9qzdh88/KW12MTISFj44Pq5rJt59Xjjd9Hmxn+lIxHo/CjSaw63rkJLUzanU2yT//tkoWNTSR7/pM8HnhZM++nR30me2zwtn/rzH43Z/6LbPzn7U0zsfZ86ciW9/+9u44oorUF5ejlWrVmHbtm3YuHEjAGDSpElIS0vDggULANSdRrho0SLk5ubi+uuvxwcffIBZs2YhLy/P8kaPEEJIUy5K7978gBYRVHzW8nMfQzUhVJ2rimlOXVIT0bVHV5w+8s9W+5w8eAovPfAKUtNSkHJJMvZveB+nDn4G5VeQkKDolQOYtGJ8VBcgCSHxj9f70SfW9mnzzsezVT7L7e3FKDqUhMWrrrDU12lfpDHs5KGjz+k8Ip1Dt3261IyJNerkuE2qUa5rXNfaikHigBh/BLxN7r77bunbt6906tRJevXqJSNGjJBXX3214e+HDRsmd955Z8PXNTU1MmfOHOnfv78kJiZKnz59ZPLkyfL5559bdnrxjCQ+54o+3X1eOOlzlhuH3WL7mYaNn/l4V+bS1p+3qObJaN9Dlp6/6NRrtHpIHpm2Ve7KWtquc7T/oVZjLH7gtYj/XeK9ZuLd54VT12fskLbxYj8qcn4OFUolp4VnZeW28qys1tqtxKh/rpbbvmhi2MlDN18s8ohkDt326VIzJtao0+M2pUa5rnFdayuG08+BjOf9ods+Y575uHz58jb/ftu2bU2+TkhIwOzZszF79uwYZkUIIR0Q1UqzXyEt+zJUnzmHUx98Brj1oA4FlB4L4vbfj8Uf71qNzw63fgfkhXdtNoTwK3z+SWmMEiSExAte70cFCvtKkhv+HK6tW5D3HkzG3Q8NxN6DyQhL++1WYgDKE180MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rrU1h0+tS8f024+CmE3LT8QmhBAS99RU1aBw5W68cO+LOHnwVMudwsCAEZnIGXNNRBce/Z0ieySGhAUl2w5h1X+ubfPCY5sxQoKL0rtH9F5CCHETpepejfH7BYePdYXfL5ba7cRw26dLDBNz5rg5bo6b49bJ51UMYj68+EgIIR2QmqoaPH/namz53XZ88s6nrV5Y7D2gF3LHZiN3bDaSeyfZcgQSExA6F2q9g6o72KZ3Vi8k9Wp+2MKZUxWtXxS1QK/MngjVhLBxwRYUrtyNmqqaiGMRQkgsEal7NSYUUuiXVolQSFlqtxPDbZ8uMUzMmePmuDlujlsnn1cxiPnw4iMhhHRA9qzdh5PFpyAirV54zBjeHxOe+g72rN2H/7f4NeR+NxvderZ9ImugSwISEuue6FFTXdt6RwX0uqonRvxkGO58fgIyhvWH8jXdgCilWv04eHtc9bV+gADblryBPS/uw5bfbcfzd67mBUhCiHYoCHIyypGdWQ6fEgQSwvApwaDMcjw7az9yLLZbiaGUWO7rpC+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmtc19qKUX8QDTEbT5/5SAghxBs+/6S07lTo2gs/7lB3ta/3gF4YNfdbeOGHL+Jk8amGE6R7ZfZEr/4XY+fbzWNmDO+P9JzLsW3JG3UNbXxMW0EhZ8w1GDJxMADg4it7NOsvF/7q81/07NcDfb6Uju7pqQjVhrDzj3twtvQslF8B4brc+wxOw7bH3oCINIzxZPEp7Fm7r8FJCCE6MH9ySZunXe9YVmi5vb0YS9ZUYeq4Ykt9nfZFGsNOHjr6nM4j0jl026dLzZhYo06O26Qa5brGdY2nXcc3vPhICCEdkIvSu7d4UEvaoMsxYEQGcsdmN7k7sv4C3qmDp5CQGGj2PuVXSLk0GWX/KG/xouaFdOvVDac/+icKV+5u+Fj3voL9dR+zVgAE6NazKyo+a/4xi2vzBmLo3UMavr5+4nXYs3YfPv+kFBeld0fu2Gz8v8WvNcuDB9AQQgghhBBiHmerfLwoaToxPnlbO+wcBe4Ubh+t7oWTPrN9Xjjpc5Ybh90iO/ZWWH5te7tU7h7wlIxWD0lewq9ktHpI7v7iU7Lt7dKGPr8cXyB5Cb+SUZjX8Brte0hGYZ70RlaT9lGYJ4sfeE0WP/CajFYPNfu7/7z293Lf1/4o/3nN7+XWLgvqYvkfqvMOeEo2bf9M7spaKqPUvLr3q3nyndTfNIlR73zwOy+3O76W8hitHpLFD7xm+d8o3msm3n1eON30ebGfIc5SP4cKpZKTEZSczKD4VFgCCSHxqbDkZgXl9OYtkptlrd1KDKVGW+7rpC+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmtc1yKJUfn6JpGdG22/4nl/6LbPzn6Udz4SQkgHJJAYwKQV45vdMRhodFdjyqXJCNc2/Y2ihKXhzsTG+AI+nDp0Gj36dkfP/hfj1AefNfn7mqpaBE+U4VTJ+fb6Oy9PFp/CX2dvxKmDnwECyL+Cnw1WtZj7mc8q2h1f7thsFL1yoMlHxusPzyGEEJ0QKOwrSW74c7i27vEXew8m4+6HBmLvwWSEpf12KzHqnjDpvi+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmtc1yKZw6fWpWP67UdBzIAXHwkhpIMSSAy0/fzD1j453UJ7uCaMvS8VQSm0eChN44uOzcIpQemxYPOPSavmJ94BQNeLuqJw5e5WL5oC1i6uEkKILvzrcbtN1jy/X3D4WFf4/dLww1Zb7XZiuO3TJYaJOXPcHDfHzXHr5NMtBjEHnnZNCCGkReqf32gHEeDMqYpmJ1e3SbjuLssLn0HZ4nkzCji04wi2/G57u6dY119c/dbMERgycTAvPBJCtEWk+ZoXCin0S6tEKKQstduJ4bZPlxgm5sxxc9wcN8etk0+3GMQcePGREEJIi1yU3h2I4DnOyqfqPp5tg7Tsy9E7qxeUUvAl+Oo+2t0Cnbt1wpmTZyAiCNeGISINp1gTQoiJKAhyMsqRnVkOnxIEEsLwKcGgzHI8O2s/ciy2W4mhlFju66Qvmhh28tDNF4s8IplDt3261IyJNer0uE2pUa5rXNciiVF/OjYxA37smhBCSIvUPzfxH++fbPZ3bd7XKIKk3kmoOFXR8LzFbj274syplp/VqHwKFacrmnxM+h/FJ3Fs3/Emd0MqAMmXJKOm6vMmz6LkKdaEEJOZP7kE0yaUAkCLJ3nuWFZoub29GEvWVGHquGJLfZ32RRrDTh46+pzOI9I5dNunS82YWKNOjtukGuW6xnUtkhjEHJRIix9si1vKysqQmpqKYDCIlJQUV5z5+fkoKChwxeWVkz6zfV446XOWrw4fhd8sWet43JqqGrz8s7+iZNuhJu078Sf8W68fNLugqBTQe0BvTHjqO3j3Lwcanrd4Td7V+NM9/9PsIJp6/m3a1zD0riENXxeu3I0tv9uOxv+J2oU/YcLwX+KD7YebtCulMOInw9p+fmUELHxwfFzXTLz7vHC66fNiP0OcpWEOt65DSlLzZ+XGgvz7Z6Ng0VxXXPTFh5M++nR30me2zwtn/rzH43Z/6LbPzn6Udz4SQghplUBiALf+ehSev3N1k5OjO3fthC7du9SdPP2v64BduifiK9//Mq6bkNviYTbf/9PtePv5Xfj78kLUVNU2+bv9699veB/Q8mnVnbp1xqi538ILP3yRp1gTQuKGJ9b2afPOx7NVPsvt7cUoOpSExauusNTXaV+kMezkoaPP6TwinUO3fbrUjIk16uS4TapRrmtc15z6/iaaIh2MYDAoACQYDLrmzMvLc83llZM+s31eOOlzlhuH3SI79lbE7LXt7VJZ/MBr8svxBbL4gdfki1cOlVGY1+Q1Wj0kix94rd1Yj9y31dJ7L3Te8LWRzdofuW+rPDJta0OfbW+XOjbmeK+ZePd54XTT58V+hjhL/RwqlEpORlByMoPiU2EJJITEp8KSmxWU05u3SG6WtXYrMZQabbmvk75oYtjJQzdfLPKIZA7d9ulSMybWqNPjNqVGua5xXXPq+7vy9U0iOze2+Yrn/aHbPjv7Ud75SAghpF0a38lYU1WD0seCzTv5YOnZi2X/KIcvwdfucxsvvHvyxZ2+Ju01VTXN7sgseuUAJq0Yz5OtCSHGIFDYV5Lc8Odwbd1TdfceTMbdDw3E3oPJCEv77VZi1B1v474vmhh28tDNF4s8IplDt3261IyJNer0uE2pUa5rXNecWteeWpeO6bcfBdEPnnZNCCGkTWqqalC4cjc2LtiCwpW7sWvVHoRqQs36SUjqTshuh4vSuzc5SMbOexuzZ+0+nCw+xZOvCSHGo1TdqzF+v+Dwsa7w+8VSu50Ybvt0iWFizhw3x81xc9w6+XSJ0VZfoieeXnxcunQpsrOzkZKSgpSUFAwdOhR/+9vfWu0/fPhwKKWavUaNGuVi1oQQ0nGov7twy++2Y8+L+7Dld9vx1vO7WjztustFXSw9ezF3bDZ6Z/WCUgq+BB+UUhE9t/HzT0qh/E0z4cnXhBC76LAfFal7NSYUUuiXVolQSFlqtxPDbZ8uMUzMmePmuDlujlsnny4x2upL9MTTi4/p6elYuHAhdu/ejV27duEb3/gGxowZg/3797fYf926dTh+/HjD691334Xf78fYsWNdzpwQQjoGLd1deLb0LOTCjgr4yp3XWfq4cyAxgEkrxmPET4Yh9zvZGPGTYZj0nP2PSjt1ByUhpGPj9X5UQZCTUY7szHL4lCCQEIZPCQZlluPZWfuRY7HdSgylxHJfJ33RxLCTh26+WOQRyRy67dOlZkysUafHbUqNcl3juubU93f9QTREPzx95mNeXl6Tr+fPn4+lS5firbfewsCBA5v179GjR5OvV69eja5du/LiIyGExIj6uwul9vxFPp/fBz/8UCHV5MTp6ybkWo7b0mnYdmnpRGyefE0IsYvX+9H5k0vaPO16x7JCy+3txViypgpTxxVb6uu0L9IYdvLQ0ed0HpHOods+XWrGxBp1ctwm1SjXNa5rTn1/Ez3R5sCZUCiEtWvXoqKiAkOHDrX0nuXLl2P8+PHo1q1bq32qq6tRXV3d8HVZWVnUuRJCSEeh1bsLv9AdI24bhs8/KcVF6d2ROza7yZ2LNVU12LN2X6t/7wT1d1DG2kMI6TjEaj8KcE9KCCGEkI6LErnwk/LuUlRUhKFDh6KqqgpJSUlYtWoVbrnllnbfV1hYiOuvvx5vv/02hgwZ0mq/OXPmYO7cuc3aR44ciUDAnR9QCwsL28wxHpz0me3zwkmfGb5wKIwDb3yMyrLquqc6i6BrameU+o/j6mu/3OJ7JBzGx3s+xbkz59/TKakz+uReDuWL/GkfB97dhauvuS7i99vlg/d3x8UcdlSfF043fTU1NdiwYQOCwSBSUlJcccYzsd6PAq3vSYGRSOlW9yyrsooEKCUQUUjpVosbskvx5r7ultvbiwEUAhhiqa/Tvkhj2MlDR5/TeUQ6h277dKkZE2vUyXGbVKNc17iuOfH9/dVBn8Pfzo8bhfuLMWRgVtudHKTw4BHuR6HBnY9ZWVl45513EAwG8eKLL+LOO+/E9u3bcfXVV7f5vuXLl+Paa69t9x915syZuP/++xu+LisrQ58+fbBmzRrXNuv5+fkoKChwxeWVkz6zfV446TPHV322Bn97ajdOHC7Fpf2649v3DsaIb9+K3yxZ22L/wpW7seWN7RAI6h8OqSoURlw/LKqPWv906thWnbFg4YPj42YOO6LPC6ebvrKyMqSmprri6gjEej8KtL4nBdagvCL5X62q4QH6ZyoFnTudxJnK3pbayyuk3RhAPoACS32d9EUTw04euvlikUckc+i2T5eaMbFGnR63KTXKdY3rmlPr2k1DijH99qNoi/z7Z6NgUUu/DIwN+fMe534UGlx87NSpE6666ioAwODBg7Fz50489thjePrpp1t9T0VFBVavXo158+a1G79z587o3LmzY/kSQkhHo3OXAG6d/hXL/Vt6TiRPoSaE6Eys96NA23tS9a9DPBt/HsnvFxw+1hV+vyBcq9pttxPDbZ8uMUzMmePmuDlujlsnny4x2upL9MTT065bIhwON3keTkusXbsW1dXV+N73vudSVoQQQqzCU6gJIabj9n5UpOkPUAAQCin0S6tEKKQstduJ4bZPlxgm5sxxc9wcN8etk0+XGG31JXri6cXHmTNn4rXXXsOHH36IoqIizJw5E9u2bcMdd9wBAJg0aRJmzpzZ7H3Lly/HrbfeiosvvtjtlAkhhLRD7ths9M7qBaUUfAk+KKWiOoW6pqoGhSt341TJZyhcuRs1VTUOZ0wI6ch4vR9VEORklCM7sxw+JQgkhOFTgkGZ5Xh21n7kWGy3EkMpsdzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rjn1/V1/CjbRD08/dn3y5ElMmjQJx48fR2pqKrKzs7Fx40Z885vfBAAcPXoUvgsOJyguLsYbb7yBV1991YuUCSGEtIOTp1DXVNXg+TtX42TxKQRRhi2/246iVw5g0orxPNWaEOIIXu9H508uwbQJpQCAp9al4/CxruiXVol7b/sEXRLD2LGs0HJ7ezGWrKnC1HHFlvo67Ys0hp08dPQ5nUekc+i2T5eaMbFGnRy3STXKdY3rmlPf30RPPD/t2m3qH4jp5umQfMg+fbr7vHDSZ7bvq8NHuXL4S+HK3djyu+0QEezEn/Bl3AGlFEb8JLrDa6zAA2fM9nnh9OIB3zzt2lwa5nDrOqQkdXPF6fpD9ukz3kkffbo76TPb54WTB844h539qOcHzhBCCCGtwcNrCCHxzhNr+7R55+PZKp/l9vZiFB1KwuJVV1jq67Qv0hh28tDR53Qekc6h2z5dasbEGnVy3CbVKNc1rmuxXteIx0gHIxgMCgAJBoOuOfPy8lxzeeWkz2yfF076zPbdOOwW2bG3IuavxQ+8JqPVQzIK86Q3smQU5slo9ZAsfuC1mLvjfQ7j3eeF002fF/sZ4iz1c6hQKjkZQcnJDIpPhSWQEBKfCktuVlBOb94iuVnW2q3EUGq05b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlusZ1LdbrWuXrm0R2bhTZuVHyvvaVhj+78eJ+tA7e+UgIIURbcsdmo+iVAzhZfArqX/+L5vAaQgjRDYHCvpLkhj+Ha+tO9Nx7MBl3PzQQew8mIyztt1uJUXe8jfu+aGLYyUM3XyzyiGQO3fbpUjMm1qjT4zalRrmucV2L9br21Lp0TL/9KIh3eHraNSGEENIW9YfXjPjJMKReloIRPxmGSc/xsBlCSHyhVN2rMX6/4PCxrvD7xVK7nRhu+3SJYWLOHDfHzXFz3Dr5dIkRiY94Cy8+EkII0ZpAYgBDJg5Gr4yeGDJxMC88EkLiDpG6V2NCIYV+aZUIhZSldjsx3PbpEsPEnDlujpvj5rh18ukSIxIf8RZefCSEEEIIIcQjFAQ5GeXIziyHTwkCCWH4lGBQZjmenbUfORbbrcRQSiz3ddIXTQw7eejmi0Uekcyh2z5dasbEGnV63KbUKNc1rmuxXtfqD6gh3sFnPhJCCCGEEOIR8yeXtHna9Y5lhZbb24uxZE0Vpo4rttTXaV+kMezkoaPP6TwinUO3fbrUjIk16uS4TapRrmtc12K9rhFvUSIX3qwa35SVlSE1NRXBYBApKSmuOPPz81FQUOCKyysnfWb7vHDSZ7bvq8NH4TdL1rrmA4CfTh3rqnPhg+Pjeg7j3eeF002fF/sZ4iwNc7h1HVKSurnizL9/NgoWzXXFRV98OOmjT3cnfWb7vHC67pv3OPej4J2PhBBCCCGEeMYTa/u0eefj2Sqf5fb2YhQdSsLiVVdY6uu0L9IYdvLQ0ed0HpHOods+XWrGxBp1ctwm1SjXNa5rXqxrvCPSRaSDEQwGBYAEg0HXnHl5ea65vHLSZ7bPCyd9ZvtuHHaL7Nhb4erLbWe8z2G8+7xwuunzYj9DnKV+DhVKJScjKDmZQfGpsAQSQuJTYcnNCsrpzVskN8tau5UYSo223NdJXzQx7OShmy8WeUQyh277dKkZE2vU6XGbUqNc17iuebGu5WYFpfL1TSI7N8b0xf1oHbzzkRBCCCGEEI8QKOwrSW74c7i27pTOvQeTcfdDA7H3YDLC0n67lRh1x9u474smhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXNS/Wtb0Hk/HUunRMv/0oSOzhadeEEEIIIYR4iFJ1r8b4/YLDx7rC7xdL7XZiuO3TJYaJOXPcHDfHzXHr5NMlhhO++nbiDrz4SAghhBBCiIeI1L0aEwop9EurRCikLLXbieG2T5cYJubMcXPcHDfHrZNPlxhO+OrbiTvw4iMhhBBCCCEeoSDIyShHdmY5fEoQSAjDpwSDMsvx7Kz9yLHYbiWGUmK5r5O+aGLYyUM3XyzyiGQO3fbpUjMm1qjT4zalRrmucV3zYl0blFnecHANiT185iMhhBBCCCEeMX9ySZunXe9YVmi5vb0YS9ZUYeq4Ykt9nfZFGsNOHjr6nM4j0jl026dLzZhYo06O26Qa5brGdc2LdY2nXbsH73wkhBBCCCGEEEIIIYTEBhdO326VJ598Uq699lpJTk6W5ORk+cpXviLr169v8z2ff/65TJ48WS699FLp1KmTZGRkyF//+lfLTjtHgTuF20ere+Gkz2yfF076zPbdOOwW2bG3wtWX2854n8N493nhdNPnxX4mXvFiPypyfg4VSiUnIyg5mUHxqbAEEkLiU2HJzQrK6c1bJDfLWruVGEqNttzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rnmxruVmBaXy9U0iOzfG9MX9aB2efuw6PT0dCxcuREZGBkQEK1aswJgxY7Bnzx4MHDiwWf9z587hm9/8Jnr37o0XX3wRaWlp+Oijj9C9e3f3kyeEEEIIIcbj9X5UoLCvJLnhz+Haugfi7z2YjLsfGoi9B5MRlvbbrcSoe8Kk+75oYtjJQzdfLPKIZA7d9ulSMybWqNPjNqVGua5xXfNiXdt7MBlPrUvH9NuPgsQeTy8+5uXlNfl6/vz5WLp0Kd56660WN3vPPvss/vnPf+LNN99EIBAAAFx55ZVupEoIIYQQQuIQHfaj6l8HcDY+udPvFxw+1hV+vzT8ANVWu50Ybvt0iWFizhw3x81xc9w6+XSJ4YSvvp24gzbPfAyFQli9ejUqKiowdOjQFvsUFBRg6NChmDJlCi655BJcc801ePjhhxEKhVqNW11djbKysiYvQgghhBBCLiRW+1Gg7T2pSNMfoOpyUeiXVolQSFlqtxPDbZ8uMUzMmePmuDlujlsnny4xnPDVtxN38Py066KiIgwdOhRVVVVISkrCSy+9hKuvvrrFvocPH8b/+3//D3fccQfWr1+PDz74AJMnT0ZNTQ1mz57d4nsWLFiAuXPnNmsfN25cw2+rY01hYSHy8/NdcXnlpM9snxdO+sz2ffD+bix8cLxrPi+c8T6H8e7zwummr6amxhVPRyHW+1Gg9T0pMA7J3ep+ICqrSIBSAhGF5K61qD5XiqSu3a21d6ttNwZQCCDfUl9HfVHEsJOHdr4Y5BHRHLrt06VmTKxRh8dtTI1yXeO65sW61rUWmws/x9ZdiCmFB49wPwpAiVx4vdhdzp07h6NHjyIYDOLFF1/EsmXLsH379hY3fJmZmaiqqsKRI0fg9/sBAIsWLcJvf/tbHD9+vMX41dXVqK6ubvi6rKwMffr0QTAYREpKSmwGdQH5+fkoKChwxeWVkz6zfV446aNPdyd9Zvu8cLrpKysrQ2pqqqv7mXgm1vtRoPU96cOTd2LahFIAwFPr0nH4WFf0S6vEvbd9gi6JYZyt8lluby/GkjU/xtRx/22pr9O+SGPYyUNHn9N5RDqHbvt0qRkTa9TJcZtUo1zXuK55sa51SQy3+t9tp8if9zj3o9Dg4uOF3HTTTejfvz+efvrpZn83bNgwBAIBbN68uaHtb3/7G2655RZUV1ejU6dO7cb3YrPOH7jo093nhZM++nR30me2zwunrps9Yp9Y70eBRnO4dR1Skro5lntb5N8/GwWLWrr7kj4TfF446aNPdyd9Zvu8cLru48VHABp87PpCwuFwk98KN+bGG2/EqlWrEA6H4fPVPa7y4MGDuOyyyyxv9AghhBBCCGkLN/ejT6zt49qdj0WHkrB41RWu3SHU2OfGHTs6+pzOI9I5dNunS82YWKNOjtukGuW6xnVNp3WNxADxkBkzZsj27dvlyJEjsm/fPpkxY4YopeTVV18VEZGJEyfKjBkzGvofPXpUkpOT5Uc/+pEUFxfLK6+8Ir1795Zf/epXlp3BYFAASDAYdHw8rZGXl+eayysnfWb7vHDSR5/uTvrM9nnhdNPnxX4mXvFiPypyfg4VSiUnIyg5mUHxqbAEEkLiU2HJzQrK6c1bJDfLWruVGEqNttzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rum0rlW+vklk50bHXtyP1uHpxce7775b+vbtK506dZJevXrJiBEjGjZ6IiLDhg2TO++8s8l73nzzTbn++uulc+fO0q9fP5k/f77U1tZadvLiI3306eGkjz7dnfSZ7fPCqetmj7SNF/tRkfNzCARFISwKYTl/fqeIT4VlzLAT4lPW2q3FyLPR1zlfdDHs5KGXLzZ52J9Dt3261IyJNer8uM2oUa5rXNdi8/0dmW/R9Pd48dEidvajnn7sevny5W3+/bZt25q1DR06FG+99VaMMiKEEEIIIR0JHfajqu6wa4icb/P7BYePdYXfLwjXqnbb7cRw26dLDBNz5rg5bo6b49bJp0uMWPuI8/i8ToAQQgghhJCOTP09F40JhRT6pVUiFFKW2u3EcNunSwwTc+a4OW6Om+PWyadLjFj7iPPw4iMhhBBCCCEeoSDIyShHdmY5fEoQSAjDpwSDMsvx7Kz9yLHYbiWGUmK5r5O+aGLYyUM3XyzyiGQO3fbpUjMm1qjT4zalRrmucV3TaV2rP4iGOIt2p10TQgghhBDSUZg/uaTN0653LCu03N5ejCVrqjB1XLGlvk77Io1hJw8dfU7nEekcuu3TpWZMrFEnx21SjXJd47qm07pGnEeJXHijaXxTVlaG1NRUBINBpKSkuOLMz89HQUGBKy6vnPSZ7fPCSR99ujvpM9vnhdNNnxf7GeIsDXO4dR1Skrq54sy/fzYKFs11xUVffDjpo093J31m+7xwuu6b9zj3o+Cdj4QQQgghhHjGE2v7tHnn49kqn+X29mIUHUrC4lVXWOrrtC/SGHby0NHndB6RzqHbPl1qxsQadXLcJtUo1zWuazqtayQGxPzsbc2wcxS4U7h9tLoXTvrM9nnhpI8+3Z30me3zwummz4v9DHGW+jlUKJWcjKDkZAbFp8ISSAiJT4UlNysopzdvkdwsa+1WYig12nJfJ33RxLCTh26+WOQRyRy67dOlZkysUafHbUqNcl3juqbTulb5+iaRnRsde3E/WgcvProAf+CiT3efF0766NPdSZ/ZPi+cum72iJ7UzyEQFIWwKITl/NmbIj4VljHDTohPWWu3FiPPRl/nfNHFsJOHXr7Y5GF/Dt326VIzJtao8+M2o0a5rnFdi833d2S+RdPf48VHi9jZj/K0a0IIIYQQQjxEqbpXY/x+weFjXeH3i6V2OzHc9ukSw8ScOW6Om+PmuHXy6RIj1j7iPLz4SAghhBBCiIfU33PRmFBIoV9aJUIhZandTgy3fbrEMDFnjpvj5rg5bp18usSItY84Dy8+EkIIIYQQ4hEKgpyMcmRnlsOnBIGEMHxKMCizHM/O2o8ci+1WYigllvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXNZ3WtfqDaIiz8LRrQgghhBBCPGL+5JI2T7vesazQcnt7MZasqcLUccWW+jrtizSGnTx09DmdR6Rz6LZPl5oxsUadHLdJNcp1jeuaTusacR5efCSEEEIIIYQQQgghBMDZKh8vSjqNCwfgaAVPu6aPPj2c9NGnu5M+s31eOHU9XZDoSf0cKpRKTkZQcjKD4lNhCSSExKfCkpsVlNObt0hulrV2KzGUGm25r5O+aGLYyUM3XyzyiGQO3fbpUjMm1qjT4zalRrmucV0zYV2rfH0TT7u+ADv7UV58dAH+wEWf7j4vnPTRp7uTPrN9Xjh13ewRPamfQyAoCmFRCMv5x9+L+FRYxgw7IT5lrd1ajDwbfZ3zRRfDTh56+WKTh/05dNunS82YWKPOj9uMGuW6xnUtNt/fztbMounv8eLjBdjZj/LAGUIIIYQQQjxEqbpXY/x+weFjXeH3i6V2OzHc9ukSw8ScOW6Om+PmuHXy6RLDq5xJ5PDiIyGEEEIIIR5Sf29FY0IhhX5plQiFlKV2OzHc9ukSw8ScOW6Om+PmuHXy6RLDq5xJ5Hh68XHp0qXIzs5GSkoKUlJSMHToUPztb39rtf9zzz0HpVSTV2JioosZE0IIIYSQeMLr/aiCICejHNmZ5fApQSAhDJ8SDMosx7Oz9iPHYruVGEqJ5b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlusZ1zYR1rf50bBIZnp52nZ6ejoULFyIjIwMighUrVmDMmDHYs2cPBg4c2OJ7UlJSUFxc3PC1uvA+WUIIIYQQQizi9X50/uQSTJtQCgAtnqy5Y1mh5fb2YixZU4Wp44ot9XXaF2kMO3no6HM6j0jn0G2fLjVjYo06OW6TapTrGtc1E9Y1EjlK5MIbTb2lR48e+O1vf4t77rmn2d8999xzmDZtGkpLSyOOX1ZWhtTUVASDQaSkpESRqXXy8/NRUFDgissrJ31m+7xw0kef7k76zPZ54XTT58V+piMR6/0o0GgOt65DSlK3qGJZJf/+2ShYNNcVF33x4aSPPt2d9Jnt88Lpum/e49yPwuM7HxsTCoWwdu1aVFRUYOjQoa32O3PmDPr27YtwOIwvfelLePjhh1v9rTQAVFdXo7q6uuHrsrIyR/MmhBBCCCHxQaz2o0Dre9In1vZp887Hs1U+y+3txSg6lITFq66w1NdpX6Qx7OSho8/pPCKdQ7d9utSMiTXq5LhNqlGua1zXTF3XeEekNTy/87GoqAhDhw5FVVUVkpKSsGrVKtxyyy0t9v373/+OkpISZGdnIxgM4pFHHsFrr72G/fv3Iz09vcX3zJkzB3PnNr+qPXLkSAQCAUfH0hqFhYUYMmSIKy6vnPSZ7fPCSR99ujvpM9vnhdNNX01NDTZs2MA7Hx0i1vtRoPU9KTASKd3qPrZdVpEApQQiCindanFDdine3Nfdcnt7MYBCAEMs9XXaF2kMO3no6HM6j0jn0G2fLjVjYo06OW6TapTrGtc1U9e1rw76HP42TlMpPHiE+1EAEI+prq6WkpIS2bVrl8yYMUN69uwp+/fvt/Tec+fOSf/+/eXBBx9stU9VVZUEg8GG18cffywAJBgMOjWEdsnLy3PN5ZWTPrN9Xjjpo093J31m+7xwuukLBoOu72fimVjvR0Va35MCQVEIi0JYzp+9KeJTYRkz7IT4lLV2azHybPR1zhddDDt56OWLTR7259Btny41Y2KNOj9uM2qU6xrXtdh8f8e+ZnwqLIumvyeyc2OrL+5H6/D0tGsA6NSpE6666ioMHjwYCxYsQE5ODh577DFL7w0EAsjNzcUHH3zQap/OnTs3nF5Y/yKEEEIIIaSeWO9Hgbb3pErVvRrj9wsOH+sKv18stduJ4bZPlxgm5sxxc9wcN8etk0+XGLrkXN9O2sfzi48XEg6HmzwPpy1CoRCKiopw2WWXxTgrQgghhBDSUXB7P1p/D0XTuAr90ioRCilL7XZiuO3TJYaJOXPcHDfHzXHr5NMlhi4517eT9vH04uPMmTPx2muv4cMPP0RRURFmzpyJbdu24Y477gAATJo0CTNnzmzoP2/ePLz66qs4fPgw/vd//xff+9738NFHH+E//uM/vBoCIYQQQggxGK/3owqCnIxyZGeWw6cEgYQwfEowKLMcz87ajxyL7VZiKCWW+zrpiyaGnTx088Uij0jm0G2fLjVjYo06PW5TapTrGtc1U9e1QZnlDQfXkLbx9LTrkydPYtKkSTh+/DhSU1ORnZ2NjRs34pvf/CYA4OjRo/D5zl8f/fzzz/Gf//mfOHHiBC666CIMHjwYb775Jq6++mqvhkAIIYQQQgzG6/3o/MklbZ52vWNZoeX29mIsWVOFqeOKLfV12hdpDDt56OhzOo9I59Btny41Y2KNOjluk2qU6xrXNVPXNZ52bQ1PLz4uX768zb/ftm1bk68XL16MxYsXxzAjQgghhBDSkeB+lBBCCCEkxrhwAI5WeHE6JE/4pE93nxdO+ujT3Umf2T4vnLqeLkj0pH4OFUolJyMoOZlB8amwBBJC4lNhyc0KyunNWyQ3y1q7lRhKjbbc10lfNDHs5KGbLxZ5RDKHbvt0qRkTa9TpcZtSo1zXuK6Zuq7lZgWl8vVNPO3awn6UFx9dgD9w0ae7zwsnffTp7qTPbJ8XTl03e0RP6ucQCIpCWBTCcv7x9yI+FZYxw06IT1lrtxYjz0Zf53zRxbCTh16+2ORhfw7d9ulSMybWqPPjNqNGua5xXYvN93fsa8anwrJo+nu8+GhhP6rdadeEEEIIIYR0JJSqezXG7xccPtYVfr9YarcTw22fLjFMzJnj5rg5bo5bJ58uMXTJub6dtA8vPhJCCCGEEOIh9fdQNCYUUuiXVolQSFlqtxPDbZ8uMUzMmePmuDlujlsnny4xdMm5vp20Dy8+EkIIIYQQ4hEKgpyMcmRnlsOnBIGEMHxKMCizHM/O2o8ci+1WYigllvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXNVPXtUGZ5Q2nZpO28fS0a0IIIYQQQjoy8yeXYNqEUgDAU+vScfhYV/RLq8S9t32CLolh7FhWaLm9vRhL1lRh6rhiS32d9kUaw04eOvqcziPSOXTbp0vNmFijTo7bpBrlusZ1zdR1rUtiuN3/1hNAiVx4o2l8U1ZWhtTUVASDQaSkpLjizM/PR0FBgSsur5z0me3zwkkffbo76TPb54XTTZ8X+xniLA1zuHUdUpK6ueLMv382ChbNdcVFX3w46aNPdyd9Zvu8cLrum/c496PgnY+EEEIIIYR4xhNr+7R55+PZKp/l9vZiFB1KwuJVV1jq67Qv0hh28tDR53Qekc6h2z5dasbEGnVy3CbVKNc1rmvxtq6RC4j52duaYecocKdw+2h1L5z0me3zwkkffbo76TPb54XTTZ8X+xniLPVzqFAqORlByckMik+FJZAQEp8KS25WUE5v3iK5WdbarcRQarTlvk76oolhJw/dfLHII5I5dNunS82YWKNOj9uUGuW6xnUt3ta1ytc3iezcKLJzI/ej/4IXH12AP3DRp7vPCyd99OnupM9snxdOXTd7RE/q5xAIikJYFMJy/uxNEZ8Ky5hhJ8SnrLVbi5Fno69zvuhi2MlDL19s8rA/h277dKkZE2vU+XGbUaNc17iuxeb727uaWTT9PV58vACedk0IIYQQQoiHKFX3aozfLzh8rCv8frHUbieG2z5dYpiYM8fNcXPcHLdOPl1imJAzaQovPhJCCCGEEOIh9fdLNCYUUuiXVolQSFlqtxPDbZ8uMUzMmePmuDlujlsnny4xTMiZNIUXHwkhhBBCCPEIBUFORjmyM8vhU4JAQhg+JRiUWY5nZ+1HjsV2KzGUEst9nfRFE8NOHrr5YpFHJHPotk+XmjGxRp0etyk1ynWN61q8rWv1B9GQ8/C0a0IIIYQQQjxi/uSSNk+73rGs0HJ7ezGWrKnC1HHFlvo67Ys0hp08dPQ5nUekc+i2T5eaMbFGnRy3STXKdY3rWryta6QpSuTCm0Tjm7KyMqSmpiIYDCIlJcUVZ35+PgoKClxxeeWkz2yfF0766NPdSZ/ZPi+cbvq82M8QZ2mYw63rkJLUzRVn/v2zUbBorisu+uLDSR99ujvpM9vnhdN137zHuR8F73wkhBBCCCHEM55Y26fNOx/PVvkst7cXo+hQEhavusJSX6d9kcawk4eOPqfziHQO3fbpUjMm1qiT4zapRrmucV2Lt3WNXEDMz95ugyeffFKuvfZaSU5OluTkZPnKV74i69evb7X/n//8Zxk8eLCkpqZK165dJScnR55//nlbTjtHgTuF20ere+Gkz2yfF0766NPdSZ/ZPi+cbvq82M/EK17sR0XOz6FCqeRkBCUnMyg+FZZAQkh8Kiy5WUE5vXmL5GZZa7cSQ6nRlvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXtXhb1ypf3ySyc6PIzo3cj/4LTy8+FhQUyF//+lc5ePCgFBcXy89//nMJBALy7rvvtth/69atsm7dOjlw4IB88MEH8uijj4rf75cNGzZYdvLiI3306eGkjz7dnfSZ7fPCqetmj7SNF/tRkfNzCARFISwKYTl/bqaIT4VlzLAT4lPW2q3FyLPR1zlfdDHs5KGXLzZ52J9Dt3261IyJNer8uM2oUa5rXNdi8/3tXc0smv4eLz5egKenXefl5eGWW25BRkYGMjMzMX/+fCQlJeGtt95qsf/w4cPx7//+7/jiF7+I/v3747777kN2djbeeOMNlzMnhBBCCCHxgA77UaXqXo3x+wWHj3WF3y+W2u3EcNunSwwTc+a4OW6Om+PWyadLDBNyJk3x9OJjY0KhEFavXo2KigoMHTq03f4igi1btqC4uBhf//rXW+1XXV2NsrKyJi9CCCGEEEIuJFb7UaDtPWn9/RJNc1Hol1aJUEhZarcTw22fLjFMzJnj5rg5bo5bJ58uMUzImTTF8wNnioqKMHToUFRVVSEpKQkvvfQSrr766lb7B4NBpKWlobq6Gn6/H08++SS++c1vttp/wYIFmDu3+UlG48aNQyAQcGQM7VFYWIj8/HxXXF456TPb54WTPvp0d9Jnts8Lp5u+mpoaVzwdhVjvR4HW96TAOCR3q/thpqwiAUoJRBSSu9ai+lwpkrp2t9berbbdGEAhgHxLfR31RRHDTh7a+WKQR0Rz6LZPl5oxsUYdHrcxNcp1jetanK1rmws/x9ZdAAAU7i9G/tfb/4WmUxQePKLlflSJXHid1l3OnTuHo0ePIhgM4sUXX8SyZcuwffv2Vjd84XAYhw8fxpkzZ7BlyxY89NBDePnllzF8+PAW+1dXV6O6urrh67KyMvTp08fSUeBO4eZR51456TPb54WTPvp0d9Jnts8Lp5u+srIypKamurqfiWdivR8FWt+TPjx5p2unXS9Z82NMHfffrp0K29jnximtOvqcziPSOXTbp0vNmFijTo7bpBrlusZ1Ld7WtXry75+NgkUt/fIxNuTPe1zL/ajndz526tQJV111FQBg8ODB2LlzJx577DE8/fTTLfb3+XwN/QcNGoT33nsPCxYsaHWz17lzZ3Tu3DkmuRNCCCGEEPOJ9X4U4J6UEEIIIR2YGB9+Y5t/+7d/kzvvvNNy/7vuukuGDRtmuT9Pu6aPPj2c9NGnu5M+s31eOHU9XZDYJ9b7UZHzc6hQKjkZQcnJDIpPhSWQEBKfCktuVlBOb94iuVnW2q3EUGq05b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlusZ1Ld7WtcrXN50/7fprX2n4sxsvXfejnl58nDFjhmzfvl2OHDki+/btkxkzZohSSl599VUREZk4caLMmDGjof/DDz8sr776qhw6dEgOHDggjzzyiCQkJMgzzzxj2cmLj/TRp4eTPvp0d9Jnts8Lp66bPdI2XuxHRc7PIRAUhbAohOX8o+tFfCosY4adEJ+y1m4tRp6Nvs75oothJw+9fLHJw/4cuu3TpWZMrFHnx21GjXJd47oWm+9v72pm0fT3ePHxAjz92PXJkycxadIkHD9+HKmpqcjOzsbGjRsbHth99OhR+HznD+SuqKjA5MmT8cknn6BLly4YMGAA/vjHP2LcuHFeDYEQQgghhBiMDvtR9a/DM0XOt/n9gsPHusLvF4RrVbvtdmK47dMlhok5c9wcN8fNcevk0yWGCTmTpvja7xI7li9fjg8//BDV1dU4efIkNm/e3OSkwG3btuG5555r+PpXv/oVSkpKcPbsWfzzn//Em2++yQuPhBBCCCEkYnTYj9bfL9GYUEihX1olQiFlqd1ODLd9usQwMWeOm+PmuDlunXy6xDAhZ9IUTy8+EkIIIYQQ0pFREORklCM7sxw+JQgkhOFTgkGZ5Xh21n7kWGy3EkMpsdzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rsXbulZ/CjY5j+enXRNCCCGEENJRmT+5BNMmlAIAnlqXjsPHuqJfWiXuve0TdEkMY8eyQsvt7cVYsqYKU8cVW+rrtC/SGHby0NHndB6RzqHbPl1qxsQadXLcJtUo1zWua/G2rpGmKJELbxKNb8rKypCamopgMIiUlBRXnPn5+SgoKHDF5ZWTPrN9Xjjpo093J31m+7xwuunzYj9DnKVhDreuQ0pSN1ec+ffPRsGiua646IsPJ3306e6kz2yfF8649817XMv9KO98JIQQQgghxCOeWNunzTsfz1b5LLe3F6PoUBIWr7rCUl+nfZHGsJOHjj6n84h0Dt326VIzJtaok+M2qUa5rnFd6yjrWocl5mdva4ado8Cdws2jzr1y0me2zwsnffTp7qTPbJ8XTjd9XuxniLPUz6FCqeRkBCUnMyg+FZZAQkh8Kiy5WUE5vXmL5GZZa7cSQ6nRlvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXtY6yrlW+vklk58aYvnTdj/LiowvwBy76dPd54aSPPt2d9Jnt88Kp62aP6En9HAJBUQiLQljOn5sp4lNhGTPshPiUtXZrMfJs9HXOF10MO3no5YtNHvbn0G2fLjVjYo06P24zapTrGte12Hx/61czi6a/12EvPvK0a0IIIYQQQjxEqbpXY/x+weFjXeH3i6V2OzHc9ukSw8ScOW6Om+PmuHXy6RLDxJzr2zsqvPhICCGEEEKIh9TfL9GYUEihX1olQiFlqd1ODLd9usQwMWeOm+PmuDlunXy6xDAx5/r2jgovPhJCCCGEEOIRCoKcjHJkZ5bDpwSBhDB8SjAosxzPztqPHIvtVmIoJZb7OumLJoadPHTzxSKPSObQbZ8uNWNijTo9blNqlOsa17WOsq7VH1DTEeFp14QQQgghhHjE/MklbZ52vWNZoeX29mIsWVOFqeOKLfV12hdpDDt56OhzOo9I59Btny41Y2KNOjluk2qU6xrXtY6yrnVUeOcjIYQQQgghhBBCCCEkNrhwAI5W8LRr+ujTw0kffbo76TPb54VT19MFiZ7Uz6FCqeRkBCUnMyg+FZZAQkh8Kiy5WUE5vXmL5GZZa7cSQ6nRlvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXtY6yrlW+vqnDnnbNi48uwB+46NPd54WTPvp0d9Jnts8Lp66bPaIn9XMIBEUhLAphOf/oehGfCsuYYSfEp6y1W4uRZ6Ovc77oYtjJQy9fbPKwP4du+3SpGRNr1Plxm1GjXNe4rsXm+1u/mlk0/b0Oe/GRH7smhBBCCCHEQ5SqezXG7xccPtYVfr9YarcTw22fLjFMzJnj5rg5bo5bJ58uMUzMub69o8KLj4QQQgghhHhI/f0SjQmFFPqlVSIUUpba7cRw26dLDBNz5rg5bo6b49bJp0sME3Oub++o8OIjIYQQQgghHqEgyMkoR3ZmOXxKEEgIw6cEgzLL8eys/cix2G4lhlJiua+Tvmhi2MlDN18s8ohkDt326VIzJtao0+M2pUa5rnFd6yjrWv3p2B2RBC/lS5cuxdKlS/Hhhx8CAAYOHIhf/vKX+Pa3v91i/2eeeQbPP/883n33XQDA4MGD8fDDD2PIkCFupUwIIYQQQuIIr/ej8yeXYNqEUgDAU+vScfhYV/RLq8S9t32CLolh7FhWaLm9vRhL1lRh6rhiS32d9kUaw04eOvqcziPSOXTbp0vNmFijTo7bpBrlusZ1raOsax0VJXLhTaLu8Ze//AV+vx8ZGRkQEaxYsQK//e1vsWfPHgwcOLBZ/zvuuAM33ngjbrjhBiQmJuLXv/41XnrpJezfvx9paWmWnGVlZUhNTUUwGERKSorTQ2qR/Px8FBQUuOLyykmf2T4vnPTRp7uTPrN9Xjjd9Hmxn4lXvNiPAo3mcOs6pCR1c3JIrZJ//2wULJrriou++HDSR5/uTvrM9nnhjHvfvMe13I96eudjXl5ek6/nz5+PpUuX4q233mpxs/enP/2pydfLli3Dn//8Z2zZsgWTJk2Kaa6EEEIIIST+8Ho/+sTaPm3e+Xi2yme5vb0YRYeSsHjVFZb6Ou2LNIadPHT0OZ1HpHPotk+XmjGxRp0ct0k1ynWN61pHXtc6xB2RMT552zK1tbXywgsvSKdOnWT//v2W3lNWViaJiYnyl7/8pdU+VVVVEgwGG14ff/yx5aPAncLNo869ctJnts8LJ3306e6kz2yfF043fcFg0PX9TEcgVvtRkdb3pAqlkpMRlJzMoPhUWAIJIfGpsORmBeX05i2Sm2Wt3UoMpUZb7uukL5oYdvLQzReLPCKZQ7d9utSMiTXq9LhNqVGua1zXOvK6lpsVlMrXN4ns3OjIS9f9qKcfuwaAoqIiDB06FFVVVUhKSsKqVatwyy23WHrv5MmTsXHjRuzfvx+JiYkt9pkzZw7mzm1+i+vIkSMRCASiyt0qhYWFrj+X0m0nfWb7vHDSR5/uTvrM9nnhdNNXU1ODDRs28GPXDhHr/SjQ+p4UGAmg5T3ppRdX48Tpzpbb249RCKD1Go2lL/IYdvLQz+d8HpHNods+XWrGbZ8uNeO2T5eacdunS8247dOlZtz2xbJmBvY7g35pZy3Fbo/Cg0f03I/G/FJoO1RXV0tJSYns2rVLZsyYIT179rT0m+YFCxbIRRddJHv37m2zH+98pI8+PZ300ae7kz6zfV44df1NM2mfWO9HRVrfkwJ1d0D4VFgAaXgFEkJy7VVlEkgIWWq3FiPPRl/nfNHFsJOHXr7Y5GF/Dt326VIzJtao8+M2o0a5rnFdi833txk1E0gIyY+++1Hc3/noi/210Lbp1KkTrrrqKgwePBgLFixATk4OHnvssTbf88gjj2DhwoV49dVXkZ2d3Wbfzp07IyUlpcmLEEIIIYSQemK9HwXa3pPW/wjSmFBIoV9aJUIhZandTgy3fbrEMDFnjpvj5rg5bp18usQwMef22uMdzy8+Xkg4HEZ1dXWrf/+b3/wGDz30EDZs2IDrrrvOxcwIIYQQQkhHwM39qIIgJ6Mc2Znl8ClBICEMnxIMyizHs7P2I8diu5UYSonlvk76oolhJw/dfLHII5I5dNunS82YWKNOj9uUGuW6xnWtI69rgzLLGw6uiWc8Pe165syZ+Pa3v40rrrgC5eXlWLVqFbZt24aNGzcCACZNmoS0tDQsWLAAAPDrX/8av/zlL7Fq1SpceeWVOHHiBAAgKSkJSUlJno2DEEIIIYSYidf70fmTS9o87XrHskLL7e3FWLKmClPHFVvq67Qv0hh28tDR53Qekc6h2z5dasbEGnVy3CbVKNc1rmsdeV3rCKdde3rgzD333IMtW7bg+PHjSE1NRXZ2Nn72s5/hm9/8JgBg+PDhuPLKK/Hcc88BAK688kp89NFHzeLMnj0bc+bMseQsKytDamqqqw9oz8/PR0FBgSsur5z0me3zwkkffbo76TPb54XTTZ8X+5l4xYv9KNBoDreuQ0pSNyeG0i75989GwaKWDr2hzwSfF0766NPdSZ/ZPi+cce+b97iW+1FP73xcvnx5m3+/bdu2Jl9/+OGHsUuGEEIIIYR0OLzejz6xtk+bdz6erfJZbm8vRtGhJCxedYWlvk77Io1hJw8dfU7nEekcuu3TpWZMrFEnx21SjXJd47rWkde1jnDnI2J+/I1meHE6JE/4pE93nxdO+ujT3Umf2T4vnLqeLkj0pH4OFUolJyMoOZl1p14HEkLiU2HJzQrK6c1bJDfLWruVGEqNttzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rnXkdS03KyiVr2+K+9OuefHRBfgDF326+7xw0kef7k76zPZ54dR1s0f0pH4OgaAohEUhLOfPzRTxqbCMGXZCfMpau7UYeTb6OueLLoadPPTyxSYP+3Potk+XmjGxRp0ftxk1ynWN61psvr/NqBmfCsui6e/F/cVH7U67JoQQQgghpCOhVN2rMX6/4PCxrvD7xVK7nRhu+3SJYWLOHDfHzXFz3Dr5dIlhYs7ttcc7vPhICCGEEEKIh9Tf/9CYUEihX1olQiFlqd1ODLd9usQwMWeOm+PmuDlunXy6xDAx5/ba4x1efCSEEEIIIcQjFAQ5GeXIziyHTwkCCWH4lGBQZjmenbUfORbbrcRQSiz3ddIXTQw7eejmi0Uekcyh2z5dasbEGnV63KbUKNc1rmsdeV0blFnecHBNPOPpadeEEEIIIYR0ZOZPLmnztOsdywott7cXY8maKkwdV2ypr9O+SGPYyUNHn9N5RDqHbvt0qRkTa9TJcZtUo1zXuK515HWtI5x2zTsfCSGEEEIIIYQQQgghscGFA3C0gqdd00efHk766NPdSZ/ZPi+cup4uSPSkfg4VSiUnIyg5mUHxqbAEEkLiU2HJzQrK6c1bJDfLWruVGEqNttzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rnXkdS03KyiVr2+K+9OuefHRBcn9a1wAADm9SURBVPgDF326+7xw0kef7k76zPZ54dR1s0f0pH4OgaAohEUhLOcfXS/iU2EZM+yE+JS1dmsx8mz0dc4XXQw7eejli00e9ufQbZ8uNWNijTo/bjNqlOsa17XYfH+bUTM+FZZF09+L+4uP/Ng1IYQQQgghHqJU3asxfr/g8LGu8PvFUrudGG77dIlhYs4cN8fNcXPcOvl0iWFizu21xzu8+EgIIYQQQoiH1N//0JhQSKFfWiVCIWWp3U4Mt326xDAxZ46b4+a4OW6dfLrEMDHn9trjHV58JIQQQgghxCMUBDkZ5cjOLIdPCQIJYfiUYFBmOZ6dtR85FtutxFBKLPd10hdNDDt56OaLRR6RzKHbPl1qxsQadXrcptQo1zWuax15XRuUWd5wanY8k+B1AoQQQgghhHRU5k8uwbQJpQCAp9al4/CxruiXVol7b/sEXRLD2LGs0HJ7ezGWrKnC1HHFlvo67Ys0hp08dPQ5nUekc+i2T5eaMbFGnRy3STXKdY3rWkde17okhtveLMQBSuTCm0Tjm7KyMqSmpiIYDCIlJcUVZ35+PgoKClxxeeWkz2yfF0766NPdSZ/ZPi+cbvq82M8QZ2mYw63rkJLUzRVn/v2zUbBorisu+uLDSR99ujvpM9vnhTPuffMe13I/yjsfCSGEEEII8Ygn1vZp887Hs1U+y+3txSg6lITFq66w1NdpX6Qx7OSho8/pPCKdQ7d9utSMiTXq5LhNqlGua1zXuK7F+d2QMT97WzPsHAXuFG4ede6Vkz6zfV446aNPdyd9Zvu8cLrp82I/Q5ylfg4VSiUnIyg5mUHxqbAEEkLiU2HJzQrK6c1bJDfLWruVGEqNttzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rnFdax6j8vVNIjs32n7puh/19OLjk08+Kddee60kJydLcnKyfOUrX5H169e32v/dd9+V2267Tfr27SsAZPHixbadvPhIH316OOmjT3cnfWb7vHDqutkjbePFflTk/BwCQVEIi0JYzp+bKeJTYRkz7IT4lLV2azHybPR1zhddDDt56OWLTR7259Btny41Y2KNOj9uM2qU6xrXtdh8f5tdM4umvxdXFx89Pe06PT0dCxcuxO7du7Fr1y584xvfwJgxY7B///4W+1dWVqJfv35YuHAhLr30UpezJYQQQggh8YYO+1Gl6l6N8fsFh491hd8vltrtxHDbp0sME3PmuDlujpvj1smnSwwTc44kRjzh6cXHvLw83HLLLcjIyEBmZibmz5+PpKQkvPXWWy32//KXv4zf/va3GD9+PDp37uxytoQQQgghJN7QYT9af69DY0IhhX5plQiFlKV2OzHc9ukSw8ScOW6Om+PmuHXy6RLDxJwjiRFPeHrxsTGhUAirV69GRUUFhg4d6ljc6upqlJWVNXkRQgghhBByIbHajwKt70kVBDkZ5cjOLIdPCQIJYfiUYFBmOZ6dtR85FtutxFBKLPd10hdNDDt56OaLRR6RzKHbPl1qxsQadXrcptQo1zWua1zXmseoP4gmXlAiF15jdZeioiIMHToUVVVVSEpKwqpVq3DLLbe0+74rr7wS06ZNw7Rp09rsN2fOHMyd2/xY85EjRyIQCESati0KCwsxZMgQV1xeOekz2+eFkz76dHfSZ7bPC6ebvpqaGmzYsAHBYBApKSmuOOOZWO9Hgdb3pAOu/Br6pdUAAD463gUVVX50Swyh72Vn4fcBobD19vZiHD5WhH5p11rq67Qv0hh28tDR53Qekc6h2z5dasbEGnVy3CbVKNc1rmtc15rHiITCg0e03I96fvHx3LlzOHr0KILBIF588UUsW7YM27dvx9VXX93m+6xu9qqrq1FdXd3wdVlZGfr06ePqZj0/Px8FBQWuuLxy0me2zwsnffTp7qTPbJ8XTjd9ZWVlSE1N5cVHh4j1fhRoY0+6dR1SkrpFOwRL5N8/GwWLml8Apc8MnxdO+ujT3Umf2T4vnHHvm/e4lvvRBFcyaoNOnTrhqquuAgAMHjwYO3fuxGOPPYann37akfidO3fm8yEJIYQQQkirxHo/CrS+J31ibR9Mm1AKAHhqXToOH+uKfmmVuPe2T9AlMYyzVT7L7e3FKDqUhMWrrrDU12lfpDHs5KGjz+k8Ip1Dt3261IyJNerkuE2qUa5rXNe4rjWPEVfE+ORt2/zbv/2b3Hnnne3269u3ryxevNh2fDtHgTuFm0ede+Wkz2yfF0766NPdSZ/ZPi+cbvq82M90JGK9HxU5P4cKpZKTEZSczKD4VFgCCSHxqbDkZgXl9OYtkptlrd1KDKVGW+7rpC+aGHby0M0XizwimUO3fbrUjIk16vS4TalRrmtc17iuNY9R+fomkZ0bbb903Y96evFxxowZsn37djly5Ijs27dPZsyYIUopefXVV0VEZOLEiTJjxoyG/tXV1bJnzx7Zs2ePXHbZZfLAAw/Inj17pKSkxLKTFx/po08PJ3306e6kz2yfF05dN3ukbbzYj4qcn0MgKAphUQjL+TMvRXwqLGOGnRCfstZuLUaejb7O+aKLYScPvXyxycP+HLrt06VmTKxR58dtRo1yXeO6Fpvvb7NrZtH09+Lq4qOnH7s+efIkJk2ahOPHjyM1NRXZ2dnYuHEjvvnNbwIAjh49Cp/v/FM2P/30U+Tm5jZ8/cgjj+CRRx7BsGHDsG3bNrfTJ4QQQgghhqPDflSpuv8XOd/m9wsOH+sKv18QrlXtttuJ4bZPlxgm5sxxc9wcN8etk0+XGCbmHEmMeCLC83OcYfny5fjwww9RXV2NkydPYvPmzQ0bPQDYtm0bnnvuuYavr7zySohIsxcvPBJCCCGEkEjQYT9af69DY0IhhX5plQiFlKV2OzHc9ukSw8ScOW6Om+PmuHXy6RLDxJwjiRFPeHrxkRBCCCGEkI6MgiAnoxzZmeXwKUEgIQyfEgzKLMezs/Yjx2K7lRhKieW+TvqiiWEnD918scgjkjl026dLzZhYo06P25Qa5brGdY3rWvMY9QfRxAuen3ZNCCGEEEJIR2X+5JI2T7vesazQcnt7MZasqcLUccWW+jrtizSGnTx09DmdR6Rz6LZPl5oxsUadHLdJNcp1jesa17X4Pu2adz4SQgghhBBCCCGEEEJiQ8yOvdEUnnZNH316OOmjT3cnfWb7vHDqerog0ZP6OVQolZyMoORkBsWnwhJICIlPhSU3KyinN2+R3Cxr7VZiKDXacl8nfdHEsJOHbr5Y5BHJHLrt06VmTKxRp8dtSo1yXeO6xnWteYzK1zfF1WnXvPjoAvyBiz7dfV446aNPdyd9Zvu8cOq62SN6Uj+HQFAUwqIQlvOPnRfxqbCMGXZCfMpau7UYeTb6OueLLoadPPTyxSYP+3Potk+XmjGxRp0ftxk1ynWN61psvr/NrplF09+Lq4uP/Ng1IYQQQgghHqJU3asxfr/g8LGu8PvFUrudGG77dIlhYs4cN8fNcXPcOvl0iWFizpHEiCd48ZEQQgghhBAPqb/XoTGhkEK/tEqEQspSu50Ybvt0iWFizhw3x81xc9w6+XSJYWLOkcSIJ3jxkRBCCCGEEI9QEORklCM7sxw+JQgkhOFTgkGZ5Xh21n7kWGy3EkMpsdzXSV80MezkoZsvFnlEModu+3SpGRNr1Olxm1KjXNe4rnFdax6j/hTseCHB6wQIIYQQQgjpqMyfXIJpE0oBAE+tS8fhY13RL60S9972CbokhrFjWaHl9vZiLFlThanjii31ddoXaQw7eejoczqPSOfQbZ8uNWNijTo5bpNqlOsa1zWua81jxBNK5MIbPOObsrIypKamIhgMIiUlxRVnfn4+CgoKXHF55aTPbJ8XTvro091Jn9k+L5xu+rzYzxBnaZjDreuQktTNFWf+/bNRsGiuKy764sNJH326O+kz2+eFM+598x7Xcj/KOx8JIYQQQgjxiCfW9mnzzsezVT7L7e3FKDqUhMWrrrDU12lfpDHs5KGjz+k8Ip1Dt3261IyJNerkuE2qUa5rXNe4rsX3nY+I+dnbmmHnKHCncPOoc6+c9Jnt88JJH326O+kz2+eF002fF/sZ4iz1c6hQKjkZQcnJDIpPhSWQEBKfCktuVlBOb94iuVnW2q3EUGq05b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlusZ1jeta8xiVr28S2bnR9kvX/SgvProAf+CiT3efF0766NPdSZ/ZPi+cum72iJ7UzyEQFIWwKITl/JmXIj4VljHDTohPWWu3FiPPRl/nfNHFsJOHXr7Y5GF/Dt326VIzJtao8+M2o0a5rnFdi833t9k1s2j6e3F18ZGnXRNCCCGEEOIhStW9GuP3Cw4f6wq/Xyy124nhtk+XGCbmzHFz3Bw3x62TT5cYJuYcSYx4ghcfCSGEEEII8ZD6ex0aEwop9EurRCikLLXbieG2T5cYJubMcXPcHDfHrZNPlxgm5hxJjHiCFx8JIYQQQgjxCAVBTkY5sjPL4VOCQEIYPiUYlFmOZ2ftR47FdisxlBLLfZ30RRPDTh66+WKRRyRz6LZPl5oxsUadHrcpNcp1jesa17XmMeoPookXPD3tesGCBVi3bh3ef/99dOnSBTfccAN+/etfIysrq9X31NTUYMGCBVixYgWOHTuGrKws/PrXv8bIkSNdzJwQQgghhMQDXu9H508uafO06x3LCi23txdjyZoqTB1XbKmv075IY9jJQ0ef03lEOodu+3SpGRNr1Mlxm1SjXNe4rnFdi+/Trj2983H79u2YMmUK3nrrLWzatAk1NTW4+eabUVFR0ep7HnzwQTz99NP47//+bxw4cAD33nsv/v3f/x179uxxMXNCCCGEEBIPcD9KCCGEEB05W+XD4lVX4Me/HYDFq67A2SqDP7zswgE4ljl58qQAkO3bt7fa57LLLpPHH3+8Sdttt90md9xxhyUHT7umjz49nPTRp7uTPrN9Xjh1PV2Q2MON/ajI+TlUKJWcjKDkZAbFp8ISSAiJT4UlNysopzdvkdwsa+1WYig12nJfJ33RxLCTh26+WOQRyRy67dOlZkysUafHbUqNcl3jusZ1zXoela9vMvK0a60uPpaUlAgAKSoqarVPjx49ZNmyZU3a7rjjDunbt2+L/auqqiQYDDa8Pv74Y158pI8+DZz00ae7kz6zfV44dd3sEXvEYj8q0vqeFAiKQlgUwnL+sfMiPhWWMcNOiE9Za7cWI89GX+d80cWwk4devtjkYX8O3fbpUjMm1qjz4zajRrmucV2Lzfd3fNbMounvGXnxUYmIeHPPZVPC4TDy8/NRWlqKN954o9V+t99+O/bu3YuXX34Z/fv3x5YtWzBmzBiEQiFUV1c36z9nzhzMnTu3WfvIkSMRCAQcHUNrFBYWYsiQIa64vHLSZ7bPCyd99OnupM9snxdON301NTXYsGEDgsEgUlJSXHF2BGK1HwVa35MCIwE035MqJUjqEsKZs36IqHbbW6J530IALddoLH3RxbCTh16+2ORhfw7d9ulSM277dKkZt3261IzbPl1qxm2fLjXjtk+nmul7WRWu7X+m1fcWHjyi53405pdCLXLvvfdK37595eOPP26z38mTJ2XMmDHi8/nE7/dLZmamTJ48WRITE1vszzsf6aNPTyd99OnupM9snxdOXX/TTKwTq/2oCO981OGOHd4h1LHuEDKxRnnnI9c1u3NoYo1yXeuYdz5q8bTKH/3oR3jllVewdetWpKent9m3V69eePnll1FRUYGPPvoI77//PpKSktCvX78W+3fu3BkpKSlNXoQQQgghhDQmlvtRoPU9qYIgJ6Mc2Znl8ClBICEMnxIMyizHs7P2I8diu5UYSonlvk76oolhJw/dfLHII5I5dNunS82YWKNOj9uUGuW6xnWN65r1POpPxzaNBC/lIoIf//jHeOmll7Bt2zZ84QtfsPzexMREpKWloaamBn/+85/x3e9+N4aZEkIIIYSQeMTr/ej8ySWYNqEUAPDUunQcPtYV/dIqce9tn6BLYhg7lhVabm8vxpI1VZg6rthSX6d9kcawk4eOPqfziHQO3fbpUjMm1qiT4zapRrmucV3jumY9DxPx9JmPkydPxqpVq/D//X//H7KyshraU1NT0aVLFwDApEmTkJaWhgULFgAA3n77bRw7dgyDBg3CsWPHMGfOHBw5cgT/+7//i+7du7frLCsrQ2pqqqvPSMrPz0dBQYErLq+c9Jnt88JJH326O+kz2+eF002fF/uZeMWL/SjQaA63rkNKUjfHx9US+ffPRsGilp47SZ8JPi+c9NGnu5M+s31eOOPeN+9xLfejnt75uHTpUgDA8OHDm7T/4Q9/wPe//30AwNGjR+Hznf90eFVVFR588EEcPnwYSUlJuOWWW7By5UrLGz1CCCGEEELq8Xo/+sTaPm3e+Xi2yme5vb0YRYeSsHjVFZb6Ou2LNIadPHT0OZ1HpHPotk+XmjGxRp0ct0k1ynWN6xrXNet5GEmMnz+pHV48oJ0P2adPd58XTvro091Jn9k+L5y6PuCb6En9HCqUSk5GUHIyg+JTYQkkhMSnwpKbFZTTm7dIbpa1disxlBptua+Tvmhi2MlDN18s8ohkDt326VIzJtao0+M2pUa5rnFd47pmPY/K1zcZeeAMLz66AH/gok93nxdO+ujT3Umf2T4vnLpu9oie1M8hT7vmqbA8FZanXTs5hybWKNc1rmux+f6Oz5rhadeEEEIIIYQQ2yhV92qM3y84fKwr/H6x1G4nhts+XWKYmDPHzXFz3By3Tj5dYpiYs5MxTIQXHwkhhBBCCPGQ+nsaGhMKKfRLq0QopCy124nhtk+XGCbmzHFz3Bw3x62TT5cYJubsZAwT4cVHQgghhBBCPEJBkJNRjuzMcviUIJAQhk8JBmWW49lZ+5Fjsd1KDKXEcl8nfdHEsJOHbr5Y5BHJHLrt06VmTKxRp8dtSo1yXeO6xnXNeh71B9SYhqenXRNCCCGEENKRmT+5pM3TrncsK7Tc3l6MJWuqMHVcsaW+TvsijWEnDx19TucR6Ry67dOlZkysUSfHbVKNcl3jusZ1zXoeJqJELrzBM74pKytDamoqgsEgUlJSXHHm5+ejoKDAFZdXTvrM9nnhpI8+3Z30me3zwummz4v9DHGWhjncug4pSd1ccebfPxsFi+a64qIvPpz00ae7kz6zfV44494373Et96O885EQQgghhBCPeGJtnzbvfDxb5bPc3l6MokNJWLzqCkt9nfZFGsNOHjr6nM4j0jl026dLzZhYo06O26Qa5brGdY3rmvU8jCTmZ29rhp2jwJ3CzaPOvXLSZ7bPCyd99OnupM9snxdON31e7GeIs9TPoUKp5GQEJSczKD4VlkBCSHwqLLlZQTm9eYvkZllrtxJDqdGW+zrpiyaGnTx088Uij0jm0G2fLjVjYo06PW5TapTrGtc1rmvW86h8fZPIzo2tvnTdj/LiowvwBy76dPd54aSPPt2d9Jnt88Kp62aP6En9HAJBUQiLQljOn3kp4lNhGTPshPiUtXZrMfJs9HXOF10MO3no5YtNHvbn0G2fLjVjYo06P24zapTrGte12Hx/x2fNLJr+npEXH3naNSGEEEIIIR6iVN2rMX6/4PCxrvD7xVK7nRhu+3SJYWLOHDfHzXFz3Dr5dIlhYs5OxjARXnwkhBBCCCHEQ+rvaWhMKKTQL60SoZCy1G4nhts+XWKYmDPHzXFz3By3Tj5dYpiYs5MxTIQXHwkhhBBCCPEIBUFORjmyM8vhU4JAQhg+JRiUWY5nZ+1HjsV2KzGUEst9nfRFE8NOHrr5YpFHJHPotk+XmjGxRp0etyk1ynWN6xrXNet51B9QYxo87ZoQQgghhBCPmD+5pM3TrncsK7Tc3l6MJWuqMHVcsaW+TvsijWEnDx19TucR6Ry67dOlZkysUSfHbVKNcl3jusZ1zXoeJsI7HwkhhBBCCCGEEEIIIbHBhQNwtIKnXdNHnx5O+ujT3Umf2T4vnLqeLkj0pH4OFUolJyMoOZlB8amwBBJC4lNhyc0KyunNWyQ3y1q7lRhKjbbc10lfNDHs5KGbLxZ5RDKHbvt0qRkTa9TpcZtSo1zXuK5xXbOeR+Xrm4w87ZoXH12AP3DRp7vPCyd99OnupM9snxdOXTd7RE/q5xAIikJYFMJy/rHzIj4VljHDTohPWWu3FiPPRl/nfNHFsJOHXr7Y5GF/Dt326VIzJtao8+M2o0a5rnFdi833d3zWzKLp7xl58dHTj10vWLAAX/7yl5GcnIzevXvj1ltvRXFxcbvve/TRR5GVlYUuXbqgT58+mD59OqqqqlzImBBCCCGExBM67EeVqns1xu8XHD7WFX6/WGq3E8Ntny4xTMyZ4+a4OW6OWyefLjFMzNnJGCbi6cXH7du3Y8qUKXjrrbewadMm1NTU4Oabb0ZFRUWr71m1ahVmzJiB2bNn47333sPy5cuxZs0a/PznP3cxc0IIIYQQEg/osB+tv6ehMaGQQr+0SoRCylK7nRhu+3SJYWLOHDfHzXFz3Dr5dIlhYs5OxjARTy8+btiwAd///vcxcOBA5OTk4LnnnsPRo0exe/fuVt/z5ptv4sYbb8Ttt9+OK6+8EjfffDMmTJiAwsJCFzMnhBBCCCHxgNf7UQVBTkY5sjPL4VOCQEIYPiUYlFmOZ2ftR47FdisxlBLLfZ30RRPDTh66+WKRRyRz6LZPl5oxsUadHrcpNcp1jesa1zXredSfjm0aCV4n0JhgMAgA6NGjR6t9brjhBvzxj39EYWEhhgwZgsOHD2P9+vWYOHFii/2rq6tRXV3d8HVZWZmzSRNCCCGEkLghFvtRoPU96fzJJZg2oRQA8NS6dBw+1hX90ipx722foEtiGDuWFVpuby/GkjVVmDqu2FJfp32RxrCTh44+p/OIdA7d9ulSMybWqJPjNqlGua5xXeO6Zj0PE1EiF97g6Q3hcBj5+fkoLS3FG2+80WbfJUuW4IEHHoCIoLa2Fvfeey+WLl3aYt85c+Zg7ty5zdpHjhyJQCDgSO7tUb8xdRO3nfSZ7fPCSR99ujvpM9vnhdNNX01NDTZs2IBgMIiUlBRXnB2BWO1HgTb2pEOvQyDBnfsBCvcXY8jALFdc9MWHkz76dHfSZ7bPC2fc+w4e0XI/qs2dj1OmTMG7777b7kZv27ZtePjhh/Hkk0/i+uuvxwcffID77rsPDz30EGbNmtWs/8yZM3H//fc3fF1WVoY+ffpgzZo1rm3W8/PzUVBQ4IrLKyd9Zvu8cNJHn+5O+sz2eeF001dWVobU1FRXXB2JWO1Hgdb3pF/PXdrmnY9nq3yW29uLUXTox/i36/7bUl+nfZHGsJOHjj6n84h0Dt326VIzJtaok+M2qUa5rnFd47pmPY+2yJ/3uJ770RifvG2JKVOmSHp6uhw+fLjdvl/96lflgQceaNK2cuVK6dKli4RCoXbfb+cocKdw86hzr5z0me3zwkkffbo76TPb54XTTZ8X+5l4x839qMj5OVQolZyMoORkBsWnwhJICIlPhSU3KyinN2+R3Cxr7VZiKDXacl8nfdHEsJOHbr5Y5BHJHLrt06VmTKxRp8dtSo1yXeO6xnXNeh6Vr28S2bmx1Zeu+1FPLz6Gw2GZMmWKXH755XLw4EFL7/nSl74kP/3pT5u0rVq1Srp06SK1tbXtvp8XH+mjTw8nffTp7qTPbJ8XTl03e6RtvNiPipyfQyAoCmFRCMv5My9FfCosY4adEJ+y1m4tRp6Nvs75oothJw+9fLHJw/4cuu3TpWZMrFHnx21GjXJd47oWm+/v+KyZRdPfM/Lio6enXU+ZMgV//OMfsWrVKiQnJ+PEiRM4ceIEzp4929Bn0qRJmDlzZsPXeXl5WLp0KVavXo0jR45g06ZNmDVrFvLy8uD3+70YBiGEEEIIMRQd9qNK1b0a4/cLDh/rCr9fLLXbieG2T5cYJubMcXPcHDfHrZNPlxgm5uxkDBPx9OLj0qVLEQwGMXz4cFx22WUNrzVr1jT0OXr0KI4fP97w9YMPPoif/OQnePDBB3H11Vfjnnvuwbe+9S08/fTTXgyBEEIIIYQYjA770fp7GhoTCin0S6tEKKQstduJ4bZPlxgm5sxxc9wcN8etk0+XGCbm7GQME/H04qOItPj6/ve/39Bn27ZteO655xq+TkhIwOzZs/HBBx/g7NmzOHr0KJ544gl0797d9fwJIYQQQojZeL0fVRDkZJQjO7McPiUIJIThU4JBmeV4dtZ+5FhstxJDKbHc10lfNDHs5KGbLxZ5RDKHbvt0qRkTa9TpcZtSo1zXuK5xXbOeR/0BNaahzWnXhBBCCCGEdDTmTy5p87TrHcsKLbe3F2PJmipMHVdsqa/Tvkhj2MlDR5/TeUQ6h277dKkZE2vUyXGbVKNc17iucV2znoeJeHrnIyGEEEIIIYQQQgghJI6J0aE32sLTrumjTw8nffTp7qTPbJ8XTl1PFyR6Uj+HCqWSkxGUnMyg+FRYAgkh8amw5GYF5fTmLZKbZa3dSgylRlvu66Qvmhh28tDNF4s8IplDt3261IyJNer0uE2pUa5rXNe4rlnPo/L1TUaeds2Ljy7AH7jo093nhZM++nR30me2zwunrps9oif1cwgERSEsCmE5/9h5EZ8Ky5hhJ8SnrLVbi5Fno69zvuhi2MlDL19s8rA/h277dKkZE2vU+XGbUaNc17iuxeb7Oz5rZtH094y8+MiPXRNCCCGEEOIhStW9GuP3Cw4f6wq/Xyy124nhtk+XGCbmzHFz3Bw3x62TT5cYJubsZAwT4cVHQgghhBBCPKT+nobGhEIK/dIqEQopS+12Yrjt0yWGiTlz3Bw3x81x6+TTJYaJOTsZw0R48ZEQQgghhBCPUBDkZJQjO7McPiUIJIThU4JBmeV4dtZ+5FhstxJDKbHc10lfNDHs5KGbLxZ5RDKHbvt0qRkTa9TpcZtSo1zXuK5xXbOeR/3p2KaR4HUChBBCCCGEdFTmTy7BtAmlAICn1qXj8LGu6JdWiXtv+wRdEsPYsazQcnt7MZasqcLUccWW+jrtizSGnTx09DmdR6Rz6LZPl5oxsUadHLdJNcp1jesa1zXreZiIErnwBs/4pqysDKmpqQgGg0hJSXHFmZ+fj4KCAldcXjnpM9vnhZM++nR30me2zwunmz4v9jPEWRrmcOs6pCR1c8WZf/9sFCya64qLvvhw0kef7k76zPZ54Yx737zHtdyP8s5HQgghhBBCPOKJtX3avPPxbJXPcnt7MYoOJWHxqiss9XXaF2kMO3no6HM6j0jn0G2fLjVjYo06OW6TapTrGtc1rmvR+bQn5mdva4ado8Cdws2jzr1y0me2zwsnffTp7qTPbJ8XTjd9XuxniLPUz6FCqeRkBCUnMyg+FZZAQkh8Kiy5WUE5vXmL5GZZa7cSQ6nRlvs66Ysmhp08dPPFIo9I5tBtny41Y2KNOj1uU2qU6xrXNa5r0fkqX98ksnOjyM6N2u5HefHRBfgDF326+7xw0kef7k76zPZ54dR1s0f0pH4OgaAohEUhLOfPvBTxqbCMGXZCfMpau7UYeTb6OueLLoadPPTyxSYP+3Potk+XmjGxRp0ftxk1ynWN61psvr/jr2Za67to+nvaX3zkadeEEEIIIYR4iFJ1r8b4/YLDx7rC7xdL7XZiuO3TJYaJOXPcHDfHzXHr5NMlhok5x3rcusOLj4QQQgghhHhI/f0LjQmFFPqlVSIUUpba7cRw26dLDBNz5rg5bo6b49bJp0sME3OO9bh1hxcfCSGEEEII8QgFQU5GObIzy+FTgkBCGD4lGJRZjmdn7UeOxXYrMZQSy32d9EUTw04euvlikUckc+i2T5eaMbFGnR63KTXKdY3rGte16Hz1B9HoDE+7JoQQQgghxCPmTy5p87TrHcsKLbe3F2PJmipMHVdsqa/Tvkhj2MlDR5/TeUQ6h277dKkZE2vUyXGbVKNc17iucV2Lzqc7SuTCmzbdY8GCBVi3bh3ef/99dOnSBTfccAN+/etfIysrq9X3DB8+HNu3b2/Wfsstt+Cvf/1ru86ysjKkpqYiGAwiJSUlqvytkp+fj4KCAldcXjnpM9vnhZM++nR30me2zwunmz4v9jPxihf7UaDRHG5dh5SkbhHnb4f8+2ejYNFcV1z0xYeTPvp0d9Jnts8LZ9z75j2u5X7U0zsft2/fjilTpuDLX/4yamtr8fOf/xw333wzDhw4gG7dWt6ErVu3DufOnWv4+vTp08jJycHYsWPdSpsQQgghhMQJXu9Hn1jbp807H89W+Sy3txej6FASFq+6wlJfp32RxrCTh44+p/OIdA7d9ulSMybWqJPjNqlGua5xXeO6Fp1Pe2J+9rYNTp48KQBk+/btlt+zePFiSU5OljNnzljqb+cocKdw86hzr5z0me3zwkkffbo76TPb54XTTZ8X+5mOghv7UZHzc6hQKjkZQcnJDIpPhSWQEBKfCktuVlBOb94iuVnW2q3EUGq05b5O+qKJYScP3XyxyCOSOXTbp0vNmFijTo/blBrlusZ1jetadL7K1zeJ7NwosnOjtvtRrZ75GAwGAQA9evSw/J7ly5dj/Pjxrf5murq6GtXV1c0cZWVlUWRqj5qaGld9XjjpM9vnhZM++nR30me2zwunm756j3j39Jy4JRb7UaD1PamgHHtLkv/VWo5wbd2f3ikWTJx9Bd4pFoiF9r0l0m4MoPZfvvb7OumLJoadPHTzxSKPSObQbZ8uNWNijTo9blNqlOsa1zWua9GN+9EXumPK2I8B6Lsf9fSZj40Jh8PIz89HaWkp3njjDUvvKSwsxPXXX4+3334bQ4YMabHPnDlzMHeuu88sIIQQQghxg48//hjp6elepxE3xGo/CnBPSgghhJD4xMp+VJuLj//1X/+Fv/3tb3jjjTcsb6J/+MMf4u9//zv27dvXap8Lf8tcWlqKvn374ujRo0hNTY067/YoKytDnz598PHHH7v2QHi3nfSZ7fPCSR99ujvpM9vnhdNtn4igvLwcl19+OXw+X8x9HYVY7UeBjrcnpc98J3306e6kz2yfF076nMXOflSLj13/6Ec/wiuvvILXXnvN8kavoqICq1evxrx589rs17lzZ3Tu3LlZe2pqqqunQ6akpLh+GqXbTvrM9nnhpI8+3Z30me3zwummz40LVh2JWO5HgY67J6XPfCd99OnupM9snxdO+pzD6n7U04uPIoIf//jHeOmll7Bt2zZ84QtfsPzetWvXorq6Gt/73vdimCEhhBBCCIlnuB8lhBBCCIktnn5OZ8qUKfjjH/+IVatWITk5GSdOnMCJEydw9uzZhj6TJk3CzJkzm713+fLluPXWW3HxxRe7mTIhhBBCCIkjuB8lhBBCCIktnt75uHTpUgDA8OHDm7T/4Q9/wPe//30AwNGjR5t9dry4uBhvvPEGXn31VdvOzp07Y/bs2S1+7CUWuO3zwkmf2T4vnPTRp7uTPrN9Xji9GCNxBi/2o0D81yh95jvpo093J31m+7xw0ucd2hw4QwghhBBCCCGEEEIIiS94PCIhhBBCCCGEEEIIISQm8OIjIYQQQgghhBBCCCEkJvDiIyGEEEIIIYQQQgghJCbw4iMhhBBCCCGEEEIIISQmxN3Fx9deew15eXm4/PLLoZTCyy+/3Gb/73//+1BKNXsNHDgwJj4AeOKJJ/DFL34RXbp0QVZWFp5//nlLLgBYsGABvvzlLyM5ORm9e/fGrbfeiuLi4jbfs3//fvyf//N/cOWVV0IphUcffTSmvnXr1uG6665D9+7d0a1bNwwaNAgrV66Mma8xq1evhlIKt956a0x9paWlmDJlCi677DJ07twZmZmZWL9+fcx8jz76KLKystClSxf06dMH06dPR1VVlaUxLl26FNnZ2UhJSUFKSgqGDh2Kv/3tb22+Z+3atRgwYAASExNx7bXXWhpbpL5nnnkGX/va13DRRRfhoosuwk033YTCwsKY+Rpjt14i8T333HPN1pfExMSY+YYPH97imjZq1KiYOWtqajBv3jz0798fiYmJyMnJwYYNGyz7GrNw4UIopTBt2rRW+0SzpkXqjGZdi8QXbd3Y9QGRr2uR+qJZ1+bMmdPs32fAgAFtvieadc2uL9p1jZgP96PN4X40Nk5T9qTcj7ZOJPUSidO0PamX+1HA/T0p96N1cD/qnE+3/WjcXXysqKhATk4OnnjiCUv9H3vsMRw/frzh9fHHH6NHjx4YO3ZsTHxLly7FzJkzMWfOHOzfvx9z587FlClT8Je//MXS+7dv344pU6bgrbfewqZNm1BTU4Obb74ZFRUVrb6nsrIS/fr1w8KFC3HppZda8kTj69GjB37xi1/g73//O/bt24e77roLd911FzZu3BgTXz0ffvghHnjgAXzta1+L6fjOnTuHb37zm/jwww/x4osvori4GM888wzS0tJi4lu1ahVmzJiB2bNn47333sPy5cuxZs0a/PznP7c0xvT0dCxcuBC7d+/Grl278I1vfANjxozB/v37W+z/5ptvYsKECbjnnnuwZ88e3Hrrrbj11lvx7rvvxsS3bds2TJgwAVu3bsXf//539OnTBzfffDOOHTsWE189kdRLpL6UlJQm68xHH30UM9+6deuauN599134/X7La1okzgcffBBPP/00/vu//xsHDhzAvffei3//93/Hnj17LDsBYOfOnXj66aeRnZ3dZr9o1rRIndGsa5H4gOjqxq4vmnUtEl+06xoADBw4sMm/zxtvvNFq32jXNbu+aNc1Yj7cjzaH+1HnnSbtSbkfbZlI6yVSp0l7Uq/2o4D7e1LuR+vgftRZn3b7UYljAMhLL71k6z0vvfSSKKXkww8/jIlv6NCh8sADDzRpu//+++XGG2+07RMROXnypACQ7du3W+rft29fWbx4cUSuSHz15ObmyoMPPhgzX21trdxwww2ybNkyufPOO2XMmDG2XVZ9S5culX79+sm5c+cictj1TZkyRb7xjW80aYumZkRELrroIlm2bFmLf/fd735XRo0a1aTt+uuvlx/+8Icx8V1IbW2tJCcny4oVK2Lmc6perPj+8Ic/SGpqalTx7fguZPHixZKcnCxnzpyJmfOyyy6Txx9/vEnbbbfdJnfccYfl+OXl5ZKRkSGbNm2SYcOGyX333WfpfdGsaZE667G7rtnxOVE3dnxOrGt2fNGua7Nnz5acnBzLuUW7rtn1XYgT6xoxF+5Hm8P9qDNO0/ek3I86ux9tzxkPe9JY70dF3N+Tcj96Hu5HnfVdiNf70bi78zFali9fjptuugl9+/aNSfzq6upmtyp36dIFhYWFqKmpsR0vGAwCqPstiBvY9YkItmzZguLiYnz961+PmW/evHno3bs37rnnHtsOu76CggIMHToUU6ZMwSWXXIJrrrkGDz/8MEKhUEx8N9xwA3bv3t1wi/Thw4exfv163HLLLbZ9oVAIq1evRkVFBYYOHdpin7///e+46aabmrR961vfwt///veY+C6ksrISNTU1EdW0VZ9T9WLVd+bMGfTt2xd9+vSx9FvwaH2NWb58OcaPH49u3brFzNnautbWb+IuZMqUKRg1alSz2oslkTojXdfs+qKtGzs+J9Y1Oz4n1rWSkhJcfvnl6NevH+644w4cPXq01b5OrGt2fBcSzbpGOibcjzrrM20/atVp6p6U+9E6nKyXeN+TurUfBdzfk3I/eh7uR531XYjn+1FPLnm6BGz+pvnYsWPi9/tlzZo1MfPNnDlTLr30Utm1a5eEw2HZuXOnXHLJJQJAPv30U1u+UCgko0aNsvXbxmh+02zHV1paKt26dZOEhATp3LmzLF++PGa+119/XdLS0uTUqVMiIhH/5tCqLysrSzp37ix333237Nq1S1avXi09evSQOXPmxMQnIvLYY49JIBCQhIQEASD33nuvLde+ffukW7du4vf7JTU1Vf7617+22jcQCMiqVauatD3xxBPSu3fvmPgu5L/+67+kX79+cvbs2Zj4nKgXO74333xTVqxYIXv27JFt27bJ6NGjJSUlRT7++OOY+Brz9ttvCwB5++23LbsicU6YMEGuvvpqOXjwoIRCIXn11VelS5cu0qlTJ0uuF154Qa655pqGOXfjt8yROKNZ1+z6oq0bu75o17VI/j2jWdfWr18v//M//yN79+6VDRs2yNChQ+WKK66QsrKyFvtHu67Z9V1IJOsaiR+4H20O96POOE3bk3I/eh6n6iXe96Ru7kdF3N+Tcj/aFO5HnfVdiNf7UV58bMTDDz8sF198sVRXV8fMV1lZKXfddZckJCSI3++Xyy+/XH76058KADlx4oQt37333it9+/a19R+MaDZ7dnyhUEhKSkpkz5498sgjj0hqaqps3brVcV9ZWZlceeWVsn79+oa2SP/jbXV8GRkZ0qdPH6mtrW1o+93vfieXXnppTHxbt26VSy65RJ555hnZt2+frFu3Tvr06SPz5s2z7KqurpaSkhLZtWuXzJgxQ3r27Cn79+9vsa8Tmz07vsYsWLBALrroItm7d69llx2fU/US6fhERM6dOyf9+/e39fGISH0/+MEP5Nprr7XsidR58uRJGTNmjPh8PvH7/ZKZmSmTJ0+WxMTEdj1Hjx6V3r17N5nzWG/0InVGuq5FO0YRe3UTiS+adS0SnxPrWmM+//xzSUlJafWjWE6sa3Z8jYl0XSPxA/ejzeF+NHqniHl7Uu5H63CyXuJ9T+rWflTE/T0p96PN4X7UWV9jdNiP8uLjvwiHw3LVVVfJtGnTXPGdO3dOPv74Y6mtrZUnn3xSkpOTJRQKWXZNmTJF0tPT5fDhw7ZyjHSzF6mvnnvuuUduvvlmx3179uwRAOL3+xteSilRSonf75cPPvjAUZ+IyNe//nUZMWJEk7b169cLAMs/KNjxffWrX232XKaVK1dKly5dbNVMY0aMGCE/+MEPWvy7Pn36NKuRX/7yl5KdnR2Rqz1fPb/97W8lNTVVdu7cGbGnPZ9T9WLV1xrf+c53ZPz48RG5rPrOnDkjKSkp8uijj0bsses8e/asfPLJJxIOh+WnP/2pXH311e3Gfemll5rNCYCGOWm8+WiJSNa0aJ31WF3XnPJZrZtIfNGsa5H4YrGuXXfddTJjxowW/y4W61pbvnqcXNeIuXA/2hzuR6N3ipi/J+V+1Nn9aFvO1jBtTxqr/aiI+3tS7ke5HxXpWPvRBKc/xm0q27dvxwcffODIMzesEAgEkJ6eDgBYvXo1Ro8eDZ+v/Udwigh+/OMf46WXXsK2bdvwhS98IaZ5OuULh8Oorq523DdgwAAUFRU1aXvwwQdRXl6Oxx57DH369HHUBwA33ngjVq1ahXA43DBnBw8exGWXXYZOnTo57qusrGxWG36/vyFeJLQ1H0OHDsWWLVswbdq0hrZNmzZZfp6LXR8A/OY3v8H8+fOxceNGXHfddRF72vNFWy92fS0RCoVQVFQU0TM77fjWrl2L6upqfO9734vYY9eZmJiItLQ01NTU4M9//jO++93vtht3xIgRzebkrrvuwoABA/Czn/2sodadxCmn1Xl3wmenbiLxRbOuReJzel07c+YMDh06hIkTJ7b4906va+35AOfXNdIx4H40tj5d96OROAHz96Tcj57Hif1oW86WMHFPGqv9KOD+npT7Ue5HgQ62H/XiimcsKS8vlz179jT8RmnRokWyZ88e+eijj0REZMaMGTJx4sRm7/ve974n119/fcx9xcXFsnLlSjl48KC8/fbbMm7cOOnRo4ccOXLEku+//uu/JDU1VbZt2ybHjx9veFVWVjb0mThxYpOr39XV1Q05XnbZZfLAAw/Inj17pKSkJCa+hx9+WF599VU5dOiQHDhwQB555BFJSEiQZ555Jia+C7HzsYVIfEePHpXk5GT50Y9+JMXFxfLKK69I79695Ve/+lVMfLNnz5bk5GR54YUX5PDhw/Lqq69K//795bvf/a6lMc6YMUO2b98uR44ckX379smMGTNEKSWvvvpqi74dO3ZIQkKCPPLII/Lee+/J7NmzJRAISFFRUUx8CxculE6dOsmLL77Y5N+kvLw8Jr4LsfsxF7u+uXPnysaNG+XQoUOye/duGT9+vCQmJlr+SEyk4/vqV78q48aNszyuaJxvvfWW/PnPf5ZDhw7Ja6+9Jt/4xjfkC1/4gnz++ecR+S/8iISTa1qkzmjWtUh80daNXV8061okvmjXtZ/85Ceybds2OXLkiOzYsUNuuukm6dmzp5w8ebJFX7Trml1ftOsaMR/uR7kftbu/iPc9KfejztZLJE7T9qRe70dF3N+Tcj/K/aiTPt32o3F38XHr1q0CoNnrzjvvFJG6hX3YsGFN3lNaWipdunSR3//+9zH3HThwQAYNGiRdunSRlJQUGTNmjLz//vuWfS25AMgf/vCHhj7Dhg1r8IuIHDlypMX3XPjv4JTvF7/4hVx11VWSmJgoF110kQwdOlRWr14ds/FdiJ3/eEfqe/PNN+X666+Xzp07S79+/WT+/PmWblWPxFdTUyNz5syR/v37S2JiovTp00cmT55s+T+kd999t/Tt21c6deokvXr1khEjRjT8R7u18f3P//yPZGZmSqdOnWTgwIG2HtBt19e37//f3h2rtJZFYQBeokRIayEiOrYpRGsRRC0ES0FSiGJrIVrYKWjhE1gpoo9hIRaxsUggEIIQbGz0AWyslD3VhSsMMySeM8k131dqcK2EsPn5Oef41z9+JsfHx7m9v9+1G/banbe/v58mJydToVBIo6OjaXV1NdXr9dzmpZRSq9VKEfHlde1od2alUkmlUikNDw+nkZGRtLm5mV5fXzua/evv/x4UsjzTOp35nXOtk3nf/d60Oy+lzs+1TuZ991wrl8tpbGwsFQqFND4+nsrl8pfb1LI+19qd991zjT+fPCqPtpsvfnomlUez/b50MvNPy6TdzqO/ZvyfmVQelUeznNdreXQgpQ7v2wQAAAAA+Bf//VAXAAAAAIAOKB8BAAAAgFwoHwEAAACAXCgfAQAAAIBcKB8BAAAAgFwoHwEAAACAXCgfAQAAAIBcKB8BAAAAgFwoHwEy8Pn5GXNzc7G2tvbl529vbzExMRGHh4dd2gwAgH4gjwK9aiCllLq9BMBP8PT0FLOzs3F5eRkbGxsREbG1tRWNRiNqtVoUCoUubwgAwE8mjwK9SPkIkKGzs7M4OTmJx8fHqFarsb6+HrVaLWZmZrq9GgAAfUAeBXqN8hEgQymlWFpaisHBwWg2m7G7uxtHR0fdXgsAgD4hjwK9RvkIkLFWqxWlUimmp6ejXq/H0NBQt1cCAKCPyKNAL/EPZwAydn19HcViMZ6fn+Pl5aXb6wAA0GfkUaCXuPIRIEMPDw+xsLAQt7e3cXp6GhERd3d3MTAw0OXNAADoB/Io0Gtc+QiQkff399je3o6dnZ1YXFyMq6urqFarcX5+3u3VAADoA/Io0Itc+QiQkb29vbi5uYlGoxHFYjEiIi4uLuLg4CCazWZMTU11d0EAAH40eRToRcpHgAzc39/H8vJyVCqVmJ+f//K7lZWV+Pj4cLsLAAC5kUeBXqV8BAAAAABy4ZmPAAAAAEAulI8AAAAAQC6UjwAAAABALpSPAAAAAEAulI8AAAAAQC6UjwAAAABALpSPAAAAAEAulI8AAAAAQC6UjwAAAABALpSPAAAAAEAulI8AAAAAQC6UjwAAAABALv4GKACpXDkET+AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFAFRQMEGKOiLqLFExBYVwRYrNjTWCNh775qgsdco9gq2mNh7xAZGjL1irLGLBRRFpUmZ7w++meyyhQV2aZ7f8/Ao0+6dndndw52Ze2WCIAggIiIiIiIiIiIiIiIiojzHIKcrQERERERERERERERERESZw4t9RERERERERERERERERHkUL/YRERERERERERERERER5VG82EdERERERERERERERESUR/FiHxEREREREREREREREVEexYt9RERERERERERERERERHkUL/YRERERERERERERERER5VG82EdERERERERERERERESUR/FiHxEREREREREREREREVEexYt9REREREREuVBycjKWLl2K2rVrw8LCAjKZDDKZDO3btwcAhISESNNCQkJ0WrY+t01ERESUlzEnEVFuxIt9RLmUfHDQ9mfkyJE5XW1KR6NGjaTj9f3332u9noeHR4bPhw8fPiht58OHDzh+/DhmzZqFdu3awdbWVlrew8NDdztKRESUB6jLW0ZGRihatCjKli2Lhg0bYtSoUdi9eze+fPmSrfXr1q0bRo4ciUuXLuHTp0/ZWnZewWxFRESU8758+YLt27ejV69eqFixIqytrWFsbAwbGxu4urpi0KBBOHHiBFJSUnK6qqRDmzZtknKPoaEhXrx4odV6gYGBGc5hS5YsUdpOUlISrl27hjVr1qBv376oVq0ajIyMpHWePHmi2x0myuWMcroCRERfi6dPn+L06dPS7ydPnsTLly9ha2ubbXVwcXFh2CEiIkpHcnIy3r9/j/fv3+PJkyc4c+YMlixZgmLFimH48OGYOHEijIz0+6fU33//jZ07dwIAWrdujZEjR6JEiRKQyWSwsLDQa9namDZtGqZPnw4AEAQhR+rAbEVERJTz9uzZgzFjxqj8Pnz37h3evXuHq1evYvXq1XB2dsbixYvRunXr7K9oOp48eYKyZcsCAAICAuDj45OzFcoDNm3aJP0/JSUFW7duxcSJE7Ot/FmzZmHatGnZVh5RbseLfUR5wKBBgzB48OB0l7OxscmG2lBmbdmyBYIgwMTEBMnJyUhKSsLWrVsxfvz4DG0nLCxMq+VUNQTKN8aVKFECtWrVwqFDhzJUPhERUX6UNm99/vwZ79+/x82bN3Hy5EmcOHECkZGR+Omnn3Dw4EEcOnQIxYoV01t9Tpw4AQAwNDTEb7/9pvJ73cPDQ28X2vS5bV1htiIiIspZM2bMwM8//yz93qxZM7Rt2xbffPMNrKysEBUVhXv37uHgwYM4fvw47t+/jylTpuTKi30ZkRdykr49f/5c6sK0UKFC+Pz5M7Zs2ZLhi30zZ85Eu3bt0l2uVKlSStPkj4GpqSmqV6+OyMhIPHz4MEN1IMoveLGPKA8oXrw4qlSpktPVoCzasmULAKBNmzaIi4vDkSNHsGXLlgw3SGXlXBg6dCjKli2L2rVro3Tp0gAAmUyW6e0RERHlF+ryVsuWLTFhwgTcvn0bPXv2xLVr13Dx4kV06NABp06dQoECBfRSn/DwcACpF5Byw5N8uRGzFRERUc4JCAiQLvQVL14cO3bsgLu7u9JyTZs2xZAhQ3Dr1i2MGjUKkZGR2V1V0gPxpitjY2MsXLgQAwcOxO3bt3H58mXUrFlT6+3Y2dllOot99913WL16NWrXro2qVavCyMgIPj4+vNhHXy1e7CMiygbnz5/H/fv3AQA9evRAfHw8jhw5glu3buHq1auoUaNGttRj7Nix2VIOERFRfvPNN9/g7NmzqF+/Pq5du4azZ89ixYoVGDVqlF7KS0hIAAAYGxvrZft5HbMVERFRzgkPD8fQoUMBAObm5jh9+jQqVqyocZ0qVaogKCgIv/32W3ZUkfRMvOmqZcuW8Pb2xoQJExAdHY3Nmzdn6GJfVjRv3jxbyiHKKwxyugJEpB+CIKB58+aQyWQwMjLCuXPn1C7r7+8vDV7r5+encplPnz5h0aJFaNy4MUqWLIkCBQrAwsICLi4uGDZsGM6ePat2+8nJydi0aRPatGkDW1tbmJiYwNraGg0aNMDixYsRFxencV+uXLmCPn36wNnZGebm5jA1NUXp0qXh6uqKIUOG4MCBAyq7T4iPj4e/vz88PDxQrFgxGBsbo2jRoqhQoQJatmyJxYsXZ9sYK5s3bwYAFClSBK1bt0b79u1RuHBhhXlERESUu5mZmWHLli3Sk1sLFy5EYmKi2uVfv36NKVOmoGbNmihatChMTExQunRp/PDDD1I3nWmJmUwcA+Xp06fSNPFHFBISIk0Tu1FS58iRI+jZsyfKlSsn5amyZcvCy8sLgYGBiI2NVVhe3bYDAwMhk8mk8frk6yz/o++MxWxFRESUc3799VcpO/zyyy/pXugTGRgYoGfPnmrnh4aG4scff4SjoyNMTU1hZWUFFxcXTJ06Nd0nAl+9eoWVK1eiU6dOKF++PMzNzWFiYgI7Ozu0a9cOf/zxB1JSUlSuK5PJpPH6AMDX11cp28iPDZdeBvPx8YFMJoOjoyMA4MOHD/j5559RuXJlmJubw8rKCg0bNsS2bds07pPo4MGDaNGiBYoVK4aCBQvC2dkZ48aNw+vXrwEAjo6OkMlk2TbO4MWLF3H37l0AQM+ePWFqaopOnToBAH7//XeN+ZiI9EggolwpODhYACAAEPz8/DK1jZcvXwrW1tYCAKFcuXLCx48flZa5deuWYGpqKgAQ6tSpIyQmJiotc/z4ccHGxkaqj7ofVZ4+fSp8++23GtdzcnIS7t27p3L9xYsXCwYGBumW/enTJ6V9/+abb9Jdb8yYMZl4ZTMmISFBKFq0qABA6N+/vzTd29tbACAUL15c5esuz93dXePrnBXidt3d3XW+bSIiotwss3nr+++/l9Y7e/asymW2bt0qmJuba8whffr0UcoA6WUX+SwgX//g4GCV9Xj79q3QpEmTdLcZEBCg9rWR33ZAQIBWdXz8+LHWr2dGMVsRERHlnJSUFKmNyNzcXGVbU0YlJycLQ4YM0ZgtLC0thWPHjqlcPykpSau2o2bNmim1HwmCdvlLPiuml8HETOLg4CDcvXtXcHR0VLvdIUOGaHxtBg8erHbdkiVLClevXhUcHBwEAIK3t3dGXvZME4+VpaWlEBcXJwiC4muyf/9+jevL58m0GTSrxNde33mUKDfik31E+VipUqWwfv16AMCjR48wfPhwhfkJCQno3r074uPjYW5ujq1bt8LISLF33+DgYLRs2RJv376FoaEhfHx8sHfvXly5cgVnz57FunXr0LFjR5VdTL179w4NGjTAjRs3YGJigqFDh2Lnzp24dOkSgoODMWnSJBQsWBD//vsvWrZsiejoaIX1b968ibFjxyIlJQVly5bFokWLcPLkSVy7dg1//fUX1q1bh+7du8Pc3Fyp7GHDhuH27dsAUu8y2rNnD86fP49Lly7hwIED+Pnnn/Htt99m6fXV1qFDhxAVFSXVRST+PyIiAkePHs2WuhAREVHWNW3aVPr/mTNnlObv2LEDP/74I2JiYlCuXDksXrwYR48exZUrV7B79260atUKALBhwwal8eXCwsIQFhaGdu3aAQBsbW2laeKPtmJjY9GoUSOcPHkSAODq6oo1a9bg7NmzuHz5Mvbu3YtRo0bB1tZW6222b98eYWFhGDRokFKd5X/s7Oy03mZGMVsRERHlnH/++Qdv374FALi5uUlP1mfFxIkTsWLFCgBA2bJlsXr1aly8eBHBwcEYNWoUjI2NER0djTZt2uDGjRtK6wv/39tT48aNsWDBAil3hYSEYOPGjfjuu+8AAMePH8eQIUOU1g8LC0NQUJD0+8yZM5WyzeDBgzO8X7GxsfD09MS7d+8wdepUhISE4PLly1i3bh3s7e0BACtWrFAoW978+fOxcuVKAEDp0qWxYsUKXLhwAX/99RemTJmC6OhodOrUSamHBn1KTEzE77//DgDw8vKCqakpAMDd3V0av5i9LBDlDI7ZR5QHRERE4NatW+kuV6FCBaWLbu3bt0ffvn2xfv16BAYGonXr1tKj9ZMnT8bNmzcBAEuWLIGTk5PCuvHx8ejZsyeSkpJQsGBBHD58GB4eHgrL1KtXD3379sXz58+V6jN8+HA8f/4cDg4OCA4OVugSAQA8PDzQuXNnuLm54dGjR5g/fz5mzZolzd+1axdSUlJgbm6Oc+fOoUSJEgrru7m5oW/fvoiOjkbBggUV6n3gwAEAwJgxY7Bw4UKlunl6emL69OlSQ5E+iSHH0dERDRo0kKY3btwYtra2ePnyJTZv3ow2bdpotT1tzoUiRYrotZGNiIjoayY/Hpw4bpzo7du36N+/PwRBQO/evbFmzRqFm6lq1KiBjh07YsqUKZg9ezaWLl2KAQMGoEKFCgBSx7MBACsrKwCpY/aJ0zJq6tSp0sXBIUOGYNmyZQrdgLq6uqJ9+/aYO3cu3r9/r9U2raysYGVlheLFi0vTMlu/zGK2IiIiyjnyF9tcXV2zvL2wsDAsWrQIQGqmOHPmjJSDgNS2o++//x6tW7fGly9f0L9/f1y4cEFhG4aGhrh3755SuxaQehHK19cXfn5++OWXX7BlyxZMnToV5cuXl5apUqUKChUqJP1uZ2enk3wTGRmJL1++4Ny5c6hcubI03dXVFR4eHqhatSri4+OxcuVKpfHnXr9+LQ214+TkhHPnzsHGxkaa7+bmhlatWqFRo0b48uVLluuqrcOHD+Pdu3cAFG+6kslk6N69O+bNm4dDhw7h/fv3KFKkSLrbCw8P1yqLZXfeJMqL+GQfUR6watUqVK1aNd2f8PBwlesvWbJECjEDBgxAeHg4Tpw4gV9//RXAfxcE09q8eTNevnwJAJg9e7bShT554t07oidPnuCPP/4AACxfvlzpQp/IxcVFuqsqMDBQYZ7Y97izs7PShT55lpaWMDD47+MsKipK6h+8YcOGatcDgKJFi2qcn1Xv3r3DkSNHAADdu3dXaGAzMDBA9+7dAaT2v/7hwwettqnNuTBlyhSd7wsRERGlsra2lv6f9iLZqlWrEB0dDTs7O6xcuVKp1wTR9OnTYWdnh5SUFL3c/fzhwwesWbMGQGqD0tKlSxVyiLwCBQpozFq5CbMVERFRzhIv9ABQuPkns1atWiWNpbd+/XqFC32iFi1aoHfv3gBSx4u7dOmSwnyZTKbyQp+8n3/+GTY2NhAEQbpBPDvMmDFD4UKfyMnJCe3btweQOlZhWps2bUJ8fDyA1HY9+Qt9onr16ql8UlGfxNxqb2+v1E74448/AkjtSUxsE0zP1KlTtcpiRJQ+Xuwj+grId9EZFRWF7t27w8fHB4IgoFSpUli3bp3K9Q4dOiSt369fvwyVefjwYSQnJ6NgwYJo2bKlxmXFC3IvX77Es2fPpOmlSpUCANy+fRsXL17Uumxra2sUKFAAALBlyxYkJSVlqO66tH37dunCo6pBqMVp8fHx2LlzZ7bWjYiIiDJH/s7vT58+KcwTG4/atGkDExMTtdswMjKSupQ6d+6czut46tQpqUun4cOHw9DQUOdl5ARmKyIiopwln31UDauSUSdOnAAAVK5cGXXq1FG7nHy7lLiOOikpKXj58iXu3buHW7du4datW7hz547UdaaqrkD1QXzaTR3xycioqCilm5TEfbSxsdHYrtarV6+sV1RLUVFROHz4MADlm66A1GNYvXp1AKntcUSUvXixjygP8PPzgyAI6f44Ojqq3Ubt2rWlx///+usvhIeHQyaTISAgQOXdQQBw7do1AKnhQ76bTG1cvnwZQGr/5EZGRpDJZGp/5LtYEp/mA4Bu3brB2NgYCQkJqF+/Pjw9PbF69WrcunVL6o9dFRMTE3Tp0gVAalegTk5OGD9+PI4cOaL1Hd66smnTJgCpXXZVqlRJaf63334rdUWg7V392pwLaZ+SJCIiIt2Rb+SysLCQ/p+cnIzr168DANasWaMx/8hkMuzatQuAYv7RFTHHAandPOUXzFZEREQ5S36MvpiYmCxtKyEhAQ8ePAAAjRf6gNSeocSha1R1+ygIArZu3YpGjRqhUKFCsLOzQ8WKFRWeDhNzmjjmoL7Z2Ngo9AiRlnxvU2lvIBP3sXr16gq9WaVVtWpV6YZ3fdu+fbvUZaiqm67kp//99994+PBhutsMCAjQKosRUfp4sY/oKzJp0iSUK1dO+r1v375KfYLLE8OP+IRdRkRERGS8goDCoMIVK1bE9u3bUaRIESQlJeHQoUMYNGgQqlatiuLFi+PHH3/EmTNnVG5n+fLl8PT0BAA8ffoUCxYsQOvWrWFtbY1atWphwYIFiI6OzlQdtXXnzh3poqe6EAT8183B2bNn8fjxY73WiYiIiLJOvoFIvpEmKioqUz0KyOcfXZGvY2ayXG7EbEVERJTz5C9evXnzJkvbku8OPb0uQY2NjaWyo6KiFObFx8ejdevW+PHHHxESEoK4uDiN20pvvq6kd+O8/EW85ORkhXnia1OsWDGN2zA0NNT7EDUi8UaqatWqqe1as3v37lKPEvroqp6I1FM9gAQR5UuHDx/Go0ePpN9DQ0MRFxcHMzMznZclhhQbGxsEBwdrvV7asf28vLzQtGlT/PHHHwgKCsKZM2cQGRmJt2/fYuvWrdi6dSu8vb2xceNGhZBkYWGBAwcO4OLFi9ixYwdCQkJw/fp1JCcn4/Lly7h8+TIWLlyIffv2SV1o6Zp8qBk9ejRGjx6tcXlBELB582bpCUwiIiLKneSfmqtQoYL0f/lGmr59+2LEiBFabS+77sbO65itiIiIct63334r/f/q1as62666sYW1MWvWLPz5558AAHd3dwwZMgQ1atRAyZIlYWZmJrUXNWzYEGfOnOGTYplw7949aYidmzdvanW8tm7dimnTpmXp2BKR9nixj+gr8ebNG/Tt2xdA6oWwjx8/4s6dOxg3bhyWL1+uch0bGxu8ePECr169ynB54t1Wnz59QqVKlbI0ToylpSX69++P/v37A0i9q3v//v1YtmwZXr58iU2bNsHFxUVlg1rt2rVRu3ZtqS4hISEIDAzEnj17EBERAS8vLzx8+FDnFzxTUlKwbdu2DK+3ZcsWNkgRERHlcsePH5f+36BBA+n/8ndVC4IgdSeZE+S7aX/16pXSDVV5DbMVERFR7lC5cmXY2Njg7du3OHPmDD5+/KjQrXlGFClSRPp/ek8JJiUl4d27dwCUM9f69esBpHZdfurUKbXdXqZ9IjA3K1KkCF6/fo3IyEiNyyUnJys8IakvmXlK79GjRwgNDc1XXcoT5Wa82Ef0lejduzciIyNhYGCAQ4cOYenSpdi9ezdWrFiBNm3aoEWLFkrr1KhRAy9evMDly5cRGxuboXH7XFxc8NtvvyEhIQGXL19Ot+/1jKhUqRIqVaqEHj16oFKlSoiJicGOHTvSvXu+cOHC8PT0hKenJ0aMGAF/f3+8evUKoaGhaNasmc7qBwDBwcF4/vw5AGDYsGGoV6+exuUvXLiAJUuW4OHDhzh79izq16+v0/oQERGRbty6dQsnT54EAJQuXRo1a9aU5hUoUACVK1fGP//8g7Nnz+ZUFQGk5jjRX3/9pfOLfdl9hzazFRERUe4gk8ng7e2NRYsWISYmBuvXr0/3aXt1TExMUL58eTx48AAXLlzQuOy1a9eQmJgIAAo3VEVFRUnjH3fu3Fnthb7Pnz/j3r17aref254+q1y5Ml6/fo3r168jJSVF7X6FhYUhISFBr3URx0MEUrvwnDRpUrrL9+7dG/Hx8di8eTMv9hFlE17sI/oKrFy5EkeOHAEATJgwAW5ubqhcuTLOnz+P8PBw+Pr6IiwsTOEOcADw9PTEgQMHEBsbi7Vr12LkyJFal+np6Ynx48dDEAQsWbIE27dv1+UuAUhtYHN2dsa1a9cyPLhykyZN4O/vD0A/AzOLdzwZGhpi6tSp6fY937RpUyxfvhxJSUnYvHkzG6SIiIhyobi4OPTq1Uvq+mns2LEwMlL8k6pt27b4559/cPfuXQQFBWkcH1mfGjVqBHNzc8TExGDZsmXo2bNnlnpaSMvU1FT6f0JCAkxMTHS2bVWYrYiIiHKPUaNGYdWqVYiNjcXPP/+MVq1aoWLFiumul5KSgu3bt6NHjx7StKZNm+LBgwf4559/cPHiRal3prTEp/fEdUTy4yXHxMSoLXv9+vUax1ZOm21yWpMmTXDy5Em8ffsWf/75J1q3bq1yuewYFy8kJATPnj0DAPTq1Qtdu3ZNd50//vgD+/fvx86dO7Fs2TKF15eI9EP1LQFElG/cu3cP48aNAwC4urpi+vTpAFK7PAgMDIRMJsPr16+lLjLl9ezZE3Z2dgCAKVOm4PTp02rLefHihcLvFSpUQOfOnQEAv//+OxYvXqyxno8fP1a6ILhv3z58+PBB7TrPnz/H3bt3ASiO9ffo0SONdQWAY8eOSf9Pe6d7SEgIZDIZZDIZfHx8NG5HlZiYGOzZswdAahcS6TVGAaldbbm7uwMAduzYkSuCJREREf3n9u3baNCggTRen7u7OwYNGqS03IgRI1CoUCEAgK+vL/755x+N2z18+DBu3ryp8/paWVlhwIABAIArV65g5MiRasenSUxMRERERIa2X6pUKen/Dx8+1LgssxUREVH+YmdnJw0JExMTA3d393TbYW7fvo0WLVpgwYIFCtMHDRokPbXWv39/fPz4UWndY8eOYcOGDQBSh2upVauWNK9YsWKwsrICAGzfvl3ld/6lS5fw008/aayftbW1NI5yetkmO3h7e0s3U40cOVLljernzp3DihUr0t2Wo6OjlMUyQ/6CopeXl1brdOrUCQAQHR2N/fv3Z6pcIsoYPtlHlAdERETg1q1b6S5nZmaG//3vf9LviYmJ6NGjB2JjY2FmZoatW7fC2NhYmt+0aVOMGDECS5Yswd69e7Fx40b07t1bmm9qaootW7bg+++/R2xsLJo2bYoff/wR7du3h729PRISEnD37l0cOXIEBw4cUApUq1atwuXLl/Ho0SOMGTMG+/fvR69evVC5cmWYmJjg3bt3uHHjBo4ePYpTp06hQ4cO6Natm7T+kiVL0KNHD7Ru3RqNGzdGpUqVYGlpiffv3+Py5ctYtmwZ4uLiAAADBw6U1nv27BkaNWqEb775Bh06dEDNmjWli5bPnz/HH3/8gR07dgAAqlevrtMuRgFgz549+Pz5MwDtQ5C47MmTJ/HhwwccOHBAulialjbnAgA4ODigcOHCCtOuX7+O69evq1z+9evXCAwMVJjWqVMnqcGSiIgoP0ubt2JiYvD+/XvcvHkTJ0+exPHjx6WLZXXr1sWuXbsUcpWoRIkS2LRpEzp16oRXr16hZs2a8PHxQcuWLWFvb4/ExES8ePECFy9exK5du/Do0SMcPHgQ1apV0/k+zZgxA8ePH0dYWBiWL1+Oc+fOYcCAAahatSoKFCiAFy9e4MyZM9i+fTtmzpyZoQtx8t1ojho1ClOmTEGpUqWkRiRHR0elpx4zi9mKiIgo9/H19cWLFy/w888/IyIiAh4eHvj+++/Rrl07VKpUCVZWVoiKisL9+/dx+PBhHD16FMnJyfj2228VtlO1alWMGTMGCxYswI0bN1CjRg1MmDABLi4uiImJwcGDB+Hv74/k5GQUKFAAa9asUVjfwMAAPXr0wIoVK3Dz5k00aNAAo0ePRvny5REdHY0jR45g5cqVKFSoEGxtbXH//n2V+2NkZIRatWrh7Nmz2LhxI1xcXFC9enUp7xUtWlRhrEB9s7W1hZ+fHyZPnox///0Xrq6umDhxImrWrImEhAQEBQVh0aJFsLW1RUxMDCIjI/XSFWlsbCx2794NIPUhAkdHR63W8/T0RIECBfDlyxds3rwZXbp0UblceHi4VlnMwsICZcqUUZj2+fNn7Nq1S2Hav//+K/1/165dCr2YVa9eHdWrV9eq/kR5kkBEuVJwcLAAIEM/3377rcI2Jk2aJM1bsWKFynLi4+OFKlWqCACEQoUKCQ8fPlRa5ujRo0KRIkXSLV+VV69eCW5ublrV39fXV2Fdd3f3dNcxMDAQZsyYkanXrmLFisKjR480vvbe3t4ajpJqTZs2FQAIMplMCA8P13q9169fCwYGBgIAoU2bNhl+LdL+7N27V6kMPz+/DG3j8ePHGd5/IiKivCKjeatYsWLCrFmzhMTExHS3feDAAaFo0aJaZZlTp04pre/t7S0AEBwcHLSqf3BwsMplIiMjhYYNG6Zbj4CAgAxv+4cfftAqQzBbMVsREVH+tXv3bsHR0VGr78HKlSsLQUFBSttITk4WBg8erHFdS0tLlesKgiB8+PBBqF69utp1ixYtKpw+fVr6/nd3d1e5nUOHDgkymUzlNvz8/KTl0stJ2uQ4QRCEgIAAjRkhJSVFGDBggNr9srGxES5duiSULl1aACAMHDhQZTkODg7SOhm1detWad05c+ZkaN1WrVoJAAQjIyPh9evX0nT5/db2p127dkrbf/z4cYa2IX8MifIjduNJlE+FhoZi3rx5AIBWrVph8ODBKpczMTHBtm3bYGJigs+fP6Nnz55ITk5WWKZ58+Z49OgRZs+ejXr16sHa2hqGhoawsLBAjRo1MHLkSFy8eFHl9kuWLIm//voLhw4dQo8ePVCuXDkULFgQxsbGKFasGOrVq4cxY8bg9OnT2Lhxo8K627dvx9q1a9G9e3dUr14dJUuWhJGREQoVKoTKlStj0KBBuHbtGqZOnaqwnpubG0JCQjBp0iQ0atQITk5OKFy4MIyNjVGiRAl8//33WL16Na5fv67UhWdWhYeH49SpUwCA7777Dra2tlqvW6JECWk8maNHjyIyMlKndSMiIiLtGBgYwNLSEmXKlIGbmxtGjhyJ3bt348WLF5g8ebJWT6x5enri8ePHWLhwIRo3bowSJUrA2NgYZmZmKFu2LNq0aYPFixfjyZMnaNSokd72xcbGBqdPn8aePXvQqVMn2Nvbw8TEBKampihXrhw6d+6Mbdu2KfSuoK2tW7di/vz5qF27NiwtLaUuuHSJ2YqIiCh369ixI+7du4dt27ahZ8+eqFChAooUKQIjIyMULVoUNWrUwODBg3Hq1CmEhYXh+++/V9qGgYEBVqxYgb/++gs9evRAmTJlYGJiAgsLC1SvXh2TJ0/GgwcPVK4LAJaWljh79ixmzJiBqlWrwtTUFIUKFUKlSpUwduxY3LhxAw0bNkx3X1q3bo2TJ0+iXbt2sLW1VdmLQ3aSyWRYvXo19u/fj++//x5FixaFqakpnJycMHz4cFy7dg01a9aUuj61tLTUeR0y04Vn2uWTkpLw22+/6bReRKRMJghqBm4gIiIiIiIiIiIiIqJc6cWLFyhdujQAYP369ejTp08O14iIcgqf7CMiIiIiIiIiIiIiymO2b98u/b9u3bo5WBMiyml8so+IiIiIiIiIiIiIKBeJiYnBx48fUapUKZXzr127Bnd3d3z69Amurq64fPlyNteQiHKT9AebICIiIiIiIiIiIiKibBMZGYlKlSqhffv2aNGiBSpUqAATExO8fPkSR48exYYNGxAXFweZTIbFixfndHWJKIfxyT4iIiIiIiIiIiIiolzkyZMnKFu2rMZlChQogHXr1qFXr17ZVCsiyq14sY+IiIiIiIiIiIiIKBdJTEzE3r17cfToUVy6dAmRkZGIiopCwYIF4ejoiKZNm2LYsGFwcHDI6aoSUS7Ai31EREREREREREREREREedRXN2ZfSkoKXr58icKFC0Mmk+V0dYiIiCgLBEHAp0+fYGtrCwMDg5yuzlePOYuIiCj/YM7KXZiziIiI8gd9Zayv7mLfy5cvUbp06ZyuBhEREenQ8+fPYW9vn9PV+OoxZxEREeU/zFm5A3MWERFR/qLrjPXVXewrXLgwgNQX0sLCQm/ldOnSBX/88Yfetp+fysiuclgGy2AZLCOvlJFd5eSHMj5+/IjSpUtL3++Us5izWEZeLiO7ymEZLINlsIy8UgZzVu7CnMUyWMbXUUZ2lcMyWAbLyLky9JWxvrqLfWJXBxYWFnoNR8bGxnrdfn4qI7vKYRksg2WwjLxSRnaVk1/KAMCujHIJ5iyWkZfLyK5yWAbLYBksI6+UIWLOyh2Ys1gGy/g6ysiuclgGy2AZOVsGoPuMxU7XiYiIiIiIiIiIiIiIiPIoXuwjIiIiIiIiIiIiIiIiyqN4sY+IiIiIiIiIiIiIiIgoj+LFPiIiIiIiIiIiIiIiIqI8ihf7iIiIiIiIiIiIiIiIiPIoXuwjIiIiIiIiIiIiIiIiyqN4sY+IiIiIiIiIiIiIiIgojzLK6QrkJYIgIDExESkpKekua21tjfj4eL3WJ7+UkV3lsAyWwTJYRl4pI7vKyQ9lfPnyBQ4ODvjy5Uu2HJevnaGhIYyNjfWybeYslpHTZWRXOSyDZbAMlpFXymDOyl76zFmJiYlITk7Watn8cv6yDJaRV8vIrnJYBstgGTlXhjYZKzO5QCYIgqCLCuYVHz9+hKWlJaKjo2FhYaHVOl++fEFERARiY2O1DkcREREoXrx4Vqr61ZSRXeWwDJbBMlhGXikju8rJD2WkpKTg+fPnKF26NAwM2GFBdjAxMYGNjY3KHMWcxTLychnZVQ7LYBksg2XklTKYs7KfrnPWx48f8fbtWyQkJGhdh/xy/rIMlpFXy8iuclgGy2AZOVeGthlLUy5QhU/2pSM2NhbPnz+HoaEhihQpAjMzMxgaGkImk2lcTyaTwdHRUa91yy9lZFc5LINlsAyWkVfKyK5y8kMZycnJiIuLg6OjIwwNDfVWDv335F10dDTCw8MBQOvAqQ5zFsvITWVkVzksg2WwDJaRV8pgzso++shZHz9+RHh4OAoVKgQbGxsYGxunm7GA/HP+sgyWkVfLyK5yWAbLYBk5V0Z6GSuzuYAX+9Lx9u1bGBsbw8HBIUPh1tDQEKampnqsWf4pI7vKYRksg2WwjLxSRnaVkx/KEJ8EMzU1ZSNUNjAzM0PhwoXx4sULvH37NsuNUMxZLCM3lZFd5bAMlsEyWEZeKYM5K3vpI2cVKlQI9vb2Wl3kE+WX85dlsIy8WkZ2lcMyWAbLyLkytMlYmckF7IdBg6SkJMTExKBo0aIMtkRERERIvcPN0tISCQkJSExMzPR2mLOIiIiIFOkqZyUmJiIhIQGWlpYZutBHREREuUdGcwEv9mmQlJQEILVvVCIiIiJKJQ4Sre0Ye6owZxEREREp00XOEtcVt0VERER5U0ZyAS/2aYF3QRERERH9R5fZiDmLiIiI6D/MWURERCTKyHc5L/YRERERERERERERERER5VG82EdERERERERERERERESUR/FiHxEREREREREREREREVEeZZTTFcgXpnVQmlQ+G4rNUhnT9uqqGkRERET6k9dyFjMWERER5RXMWURERPkGn+wjnXB0dIRMJtP6Z9q0aTldZSLKAplMBkdHR6Xpfn5+kMlkqFq1Kr58+aJyXUEQ0KRJE8hkMvTp0ydD5YqfNU+ePFFZp0aNGmVoe0REuR0zFtHXJbdmLFV1IiLK65iziL4uzFmU3/HJPtKp+vXrw8nJSe38o0eP4s2bN9lYIyLKTlOnTsWBAwdw/fp1+Pn5Yc6cOUrLLFu2DKdOnYKDgwN+/fXXHKglEVHew4xF9HVjxiIi0h/mLKKvG3MW5Re82Ec61bdvX/j4+Kid7+HhwYBElI8ZGxtj8+bNqFmzJhYsWIB27dqhbt260vwHDx5g0qRJkMlk2LhxIywsLHKwtkREeQczFtHXLb2M9eTJE2YsIqJMYs4i+roxZ1F+wW48iYhIp6pWrYpp06YhOTkZ3t7eiIuLAwDp99jYWAwZMgSNGzfO4ZoSERER5R2aMtaECROYsYiIiIgyiTmL8gNe7KNcJSQkJN0+0lW5e/cufH194eDgABMTExQtWhRNmjTBjh07VC4/bdo0tf2tBwYGQiaTqbyr68mTJ2r7Uo6MjMTmzZvRqlUrlC1bFmZmZrCwsEDNmjUxb948xMfHa9x3Hx8fjfutqj7iOoGBgRq3rS1x352dndGwYUO1yzVr1kyqV9qy06uT+BqqG1stI8cyJSUFXbt2hUwmQ/fu3ZGSkqIw39/fX+VxTklJQffu3SGTydCtWzel9QDgypUr6NGjB8qUKSPVo3nz5jhy5Ija1yUpKQkbN25E06ZNYWNjAxMTE9jb26Np06ZYtmyZtFxGxgSQP+4eHh5K8wsXLoyKFSti1KhRePbsmVKdIiMj4e/vn+nzMrPGjx+P2rVr4/79+5g8eTIAYP369Th37hycnJwwb948tevevn0bnTt3ho2NDczMzFClShUsXLgQycnJeqkrEdHXgBkrd2QsMbOoo4uMpW7MD11mrGnTpsHZ2ZkZK5dkrAULFuDatWvMWEREOYQ5K3fkrPzSlsWcxZxFlFnsxpNypRIlSqBFixYK0zZt2qRy2cOHD6NTp06Ij49HhQoV0LFjR0REROD06dM4deoUgoKCsGHDBr3XOSgoCDNnzoSdnR2cnJxQt25dREZG4sKFC5g4cSL279+P4OBgmJiYaNxO2r7i//33X5w9e1bf1Vdy5swZXL9+HdWrV1eY/s8//+DEiRN6KTOjx9LAwABbtmxBTEwMtm/fDgsLC6xevTrdcgYNGoTt27ejTZs22LJlCwwMFO97WLp0KUaPHo2UlBRUr14dderUwevXrxESEoJjx45h+vTp+PnnnxXWiY6ORps2bRAaGgpjY2PUq1cPtra2eP36NW7evImTJ09i2LBhAABvb2+FdT9//ozdu3fD3NwcnTp1UpjXoEEDpfo3b94cJUuWBAB8+PABZ86cwZIlS7Bt2zbcvHlTmgeknpcjRoxI97zUNUNDQ2zatAkuLi5YunQpypcvD39/fxgYGGDTpk0oWLCgyvVCQ0PRokULxMTEoFy5cmjWrBnevn2LyZMn4/z58zqvJxHR14YZK+cz1uXLl5mxvqKMld55mVGqMpafnx8zFhFRLsCclfM5i21ZzFlZwZxFeV2OXuybNm0apk+frjCtQoUKuHv3rsrl//nnH/z888+4cuUKnj59il9//RUjR47MhppSdhHvdqhUqZLS3TSqAtKbN2/Qo0cPxMfHY+bMmZg8ebJ0x9Tly5fx/fffY+PGjahbty48PDz0WndXV1fs2LEDnTt3Vpj+/v17dO3aFceOHYO/vz/GjRuncn3xjpy0fcUHBgZme0CqXbs2rly5An9/f2zcuFFhnr+/PwwNDeHm5oaQkBCdlZmRY9mvXz9pPWNjY+zcuROtWrXCmjVrYGFhgfnz56stZ9y4cVi7di0aN26MnTt3wshI8WMwKCgIo0aNgrW1NXbv3q1wV1hYWBhatWoFPz8/uLu7w93dXZrXu3dvhIaGwsXFBXv27FG4Yy4pKQmHDx+Wfk97bj958gS7d++GjY2NyrvIHjx4oPD7xIkTFc7nmJgYuLu748qVK9i1axeGDh0qzXN1dcW5c+cU+hoHlM/L9u3bq3vJMq1ixYqYPXs2Ro8ejSFDhgBIff3r1auncvn4+Hh0794dMTExGDlyJBYuXAhDQ0MAwM2bN9GkSRO8fftW5/Ukyo+YsSgtZqzckbHc3d0RGhrKjJVLMlZa+shY6s7LrFCVsfr27cuMRZRNmLMoLeas3JGz2JbFnKULzFmUl+V4N56VK1fGq1evpJ/Q0FC1y8bGxqJcuXKYO3euwtV+yj8SExMBpH7paWPdunWIjo6Gq6srpkyZotA1Qs2aNTFlyhQAqY9c61ulSpWU7hwCgCJFikiPve/cuVPt+uIj6Nruuz7Z2dmhbdu22L59u8IXUlRUFLZu3Yq2bdvCwcFBp2Vm5ViampriwIEDqFOnDhYsWIBZs2apLGPmzJlYuHAh6tati/3798PU1FRpGT8/PwiCgNWrVyt1/1C1alUsXrwYABS6Mrhx4wb27NkDU1NTHDx4UKlrDCMjI7Rr1067FyITzM3N8d133wGAUjcOlSpVUgpHgPbnZVYNHjwYlpaWAIDixYtjxowZapfdvXs3nj9/jtKlS2P+/PlSOAKAatWqSecAEWmHGYvkMWPljozl6OiIxo0bM2NpmbHu3LnDjKWGfMaytbXVeOGAGYtI95izSB5zVu7IWWzLYs7SFeYsyqtyvBtPIyMjrcNOrVq1UKtWLQCpdwNQ/iMOfqrtY9ji3ThpHyUX9enTB2PHjsWDBw/w5s0blC9fXif1VCc5ORknT57E33//jVevXiEuLg6CIEAQBADAvXv31K4bExMDAGofCc9uw4cPx969e7F27Vqpn+p169YhNjYWw4cP11nf6qKMHMuXL1/C1tZWYX6hQoXw559/4n//+x+mTp0qfSmLli1bhp9++glFihTBkSNHUKhQIaUy3r59i4sXL8LMzAyenp4q6yHehfT3339L044ePQoAaN26Nezs7LTaX12Jjo7Gn3/+ic2bN6NgwYIq652cnIyQkJBMnZdZNWvWLERHRwOA1I3F999/r3JZ8Rz44YcfVP6h4O3tjVGjRumtrkT5DTMWyWPGyj0Zq1evXjh+/DgzVhqqMtaZM2cAMGOpIp+xXr58iYsXL6Jy5coql2XGItI95iySx5yVe3IW27KYs3SBOYvyqhy/2PfgwQPY2trC1NQU3333HebMmYMyZcrobPsJCQlISEiQfv/48aPOtk269+7dOwCpd2poIzw8HABQtmxZlfOtrKxQtGhRREVF4fXr17qppBoPHjxA27ZtlbpclKfp/BP3xdraOsNl+/r6wtfXF0Bq/9JFihSBi4sL+vbtix9++CHD2wNSg0C1atWwatUqjB8/HgCwYsUKVKtWDR4eHukGJPk6aSMjx/LFixdKAQlI7Sf9/fv3AFIDXsWKFQEA+/btw82bNwGkPvJ/5MgR9OjRQ2n9x48fQxAExMXFpRvSIyMjpf8/ffoUAKTy9E3VgNCurq4ICAhQev0ePHiADh064J9//lG7PX19Ll6+fBlz5syBsbEx+vfvjxUrVqBv374ICwtTCrAA8OLFCwDqz4EiRYrA0tJSClxEpJm+MxaQmrO+fPki/c6clXsxY+WejFWnTp08n7G+/fZbAPrPWC9fvgTAjJWWqow1ZcoUdOzYkRmLKJswZ5E85qzck7PyQ1sWcxZzFlFm5ejFvjp16iAwMBAVKlTAq1evMH36dLi5ueHWrVsoXLiwTsqYM2eOUl/qANClS5d0HzG3traGj48PZDKZwiO4aen3/hr90PQlLi82NlarZZOSkgCk9lWtaXnxbqd3794pLCeWI36JmZqaqt2O/HQx+L58+VLt8uKj4PHx8dIyYhBLWw9xH4DUL42088QP8KSkJKV5np6eePDgARo1aoS+ffvCyckJhQoVgrGxMb58+YIqVaoo1V++jg8fPlS5j2nrI39MxC+2GjVqSF0RJCQk4NGjRzh+/DiOHz+Ov//+W+pjOj1iWeL+de3aFZMnT8bKlSsBAM+fP8eAAQPw4MEDqey0x1xVneTFxsYiKCgIKSkpmT6Wz549UwrRb968wdChQ1GwYEGsWbMG48ePx507dwCkdrNpa2uLuXPnYuDAgRgyZAgcHBxQokQJhW2IF+3Mzc3VPn0mTzwe4hd2VFSU1u8teZrOK+C/94f4/nFzc4ONjQ2A1PP67t27uHLlCn744QesXr1aITx6enri3r176Z6X2r7X5amrL5B6PLt164akpCSMGDECgwcPxsWLF3Hp0iX07dsXs2fPVlpHvCMwIiIi3XPg8ePHUlcpaedn5hhkRGZeq9xaTn4oQ7yrjxRlR8YCoLa7ma85Z2XkfNfm/cGMlX0ZC/jv9dJXxvr48SNiY2P1mrGSkpIUzi19ZKzr168D0G/GAv7rFk1fGQtIfd30mbHS5ndtZDRjXblyBefPn9drxkp7XukLy8hdZTBnqcaclXOYs/JuzmJbFnMWcxZzFsv4j74yVo5e7GvZsqX0/2rVqqFOnTpwcHDAjh070KdPH52UMWnSJIwePVr6/ePHjyhdujT++OMPWFhYaFw3Pj4ejx8/hqOjo8r+kPMybbsAePDggVbLigPDlihRQuPyZmZmAFKDp/xyYjniF7Sbm5va7chPL1u2LB49eoT4+HiVy0dHR+PDhw8AAAcHB2kZ8Y6jtPUQ9wEALCwslOaJgdrIyEhh3t27d3Hv3j1YW1vj2LFjSgPlyt+Joqqe//zzDz5//owSJUoo9a2dtj7yx0Q8h4cNG6YwEDIArFmzBgMHDsT69euxYMECrfpPF8sS92/UqFFYvHix1A+2tbU1Ro8eDTMzM6nstMdcU52A1AF8y5YtCwMDg0wfy++++06pi4ERI0YgOjoaK1euRM+ePVG7dm3Uq1cP7969Q4kSJRASEoLy5cvj06dPGDJkCObMmaMw0DCQGowAwMDAALt27YKBQfrDmj548ABVq1YFkPrFnpnuNdSdV/JllC9fXnr//PLLL0qDdPv5+eGXX37BggULcOjQIQD/nZfFixdP97wsWLBghuuurr5A6uDR//77L1xdXbFw4UIYGRlh3rx5aNu2LXbt2oU+ffqgRYsWCus4OzvjzJkziI2NVbndDx8+4NOnTwBSz5e0/ckDUDqv9EHbz8W8UE5+KCM5ORnXrl3T2/bzquzIWEDqe128YxZgzgK0z1iAdu8PZqzsy1jAf6+XvjKWhYUFChYsqNeMZWRkpPC9ro+M5ebmhoiICL1mLADSUzL6ylhA6jHXZ8ZKm9+1kdGMtX37dlSpUkWvGSvteaUv+SGb5KcymLNUY87KOcxZeTdnsS2LOYs5izmLZfxHXxlLu3d/NrGysoKzszP+/fdfnW3TxMQEFhYWCj+UOyUmJiI4OBgA0KBBA63WEb8kNm3apHL+xo0bAaR++OtzIOyoqCgAQPHixZW+hABg69atGtffvXs3AKB58+Y6q9OPP/4IIPUOE/mBiTPC1NQU/fv3R2hoKEJDQ9G3b1/pS1rXMnIs04ajdevW4c8//0TTpk0xcOBAAKlftl27dgUADBgwQPqAHjRoEJo0aYIjR45g/fr1CtuxtbVFtWrV8OnTJ2kcPm2IX/RHjhyRukHIbl26dAEAnD59Wpomnpe2traZOi8z6+zZs1i8eDFMTEywadMmqWx7e3tpUOq+ffsqdWHg7u4OANixY4fKO502b96sl/oSfQ30kbEA5qy8ghmLGQvQbcYS/6/vjOXm5gaAGUukLmM5OjpKFwSYsYiyH3PW1405izkLYM7KLOYsIt3KVRf7Pn/+jIcPH6JUqVI5XRXKZl++fMHw4cMRGRkJDw8Ptf0cp9WvXz9YWFjg6tWrmD17tsIjsNeuXcPMmTMBpN6ZoU/Ozs4wNDTE/fv3pYFZRQcPHsSvv/6qdt3nz59j2bJlAFK/vHXlyJEjAFLv8BEfk8+MwYMHo3Xr1mjdurXWXShkRmaP5dOnTzFmzBhYWFhgw4YNkMlk0jzx/2mnbdy4ERYWFhg9erTU3YFILMfX1xcHDx5UqqcgCLhw4QKOHTsmTatevTratWuHuLg4tGvXDs+ePVNYJykpCQcOHMjQ65FRv//+OwAoHGvxvAwLC8vweZlZsbGx8PHxQUpKCqZPn640gPGAAQPQpEkThIeHY+TIkQrzOnXqBDs7Ozx79gyTJk2SujkAgFu3bknHhogyjhnr68WMxYyVlzPWN998w4z1/9LLWF27dmXGIsohzFlfL+Ys5izmrKxhziLSrRztxnPs2LHw9PSEg4MDXr58CT8/PxgaGqJbt24AgF69esHOzg5z5swBkPolevv2ben/4eHhuH79OgoVKgQnJ6cc2w/Kmg0bNmDSpEmIjIyEnZ0d1qxZo/W6JUqUwLZt29C5c2dMmTIFW7ZsgYuLCyIiInD69GkkJSXB19cX/fr1U9nP7okTJxAfH68wLSwsDABw5coVTJw4UWGeePfG+/fvMXHiRHTu3Bmurq6wsbHB0KFDsXTpUjRp0gRubm6wtbXFvXv3cPXqVUydOlXlh/vYsWMREBCAqKgomJubY/Xq1Vi9erXCMuLdgaGhofDx8UHXrl2VHiPeuXMn7t69CyC1n/O7d+9KX+ATJkzQqtsDdezs7KRH6fUpI8dSJAgCfH198enTJ2zYsEHrAdHLlCmDxYsXo2/fvujduzdOnDghhShPT08sXboUY8aMQdu2beHk5IQKFSrA0tISkZGRuHHjBiIiIjBhwgSFvtADAgLQqlUrnD9/HuXLl0e9evVga2uL169fIywsDJGRkTrrj3nu3LnSoNKxsbEICwuTjv9PP/0kLZfZ8zIrxo8fj3///Rd169bF2LFjlebLZDJs2LABVatWRWBgIDp37oxWrVoBSO0aZdu2bWjVqhUWLVqEffv2oVatWnj37h1CQkLg6emJK1euKIVaIlLGjEUAM1ZGM9bEiROVxjVixmLGYsYiorSYswhgzmJbVirmLO0xZzFnUTYQclCXLl2EUqVKCQUKFBDs7OyELl26CP/++680393dXfD29pZ+f/z4sQBA6cfd3V3rMqOjowUAQnR0dLrLxsXFCbdv3xbi4uIysluCIAjC/fv3M7xOXi7DwcFBACAEBARoXM7d3V0AIPj5+UnTJkyYIFSsWFGYOnWqEBERoXZd8Xircvv2bcHb21uwt7cXjI2NBSsrK6FRo0bC77//rnJf/Pz8VJ5LGf2R39+UlBRh9uzZgqurq1CoUCHB0tJSaNCggVQHVfUXX7eM/GzZskVa39vbW2m+gYGBYG1tLTRt2lRh/7UREBAgABA6dOiQ7rJi2WmPubrpIvF9bGdnp3K+NsdS5O/vLwAQWrVqpXJbQ4cOVTrf5LVs2VIAIPj7+yvNCwsLE/r37y+UL19eMDU1FQoWLCiUK1dOaN68ueDv7y+Eh4cLgqB4XiUkJAirVq0S3NzcBCsrK6FAgQKCvb290KxZM2HFihUq6yD/mjg4OKicL5Yhvn/kfwwNDYUSJUoInp6ewrFjx5TWTUlJETZs2JDueZnRzxNV9T158qQgk8kEMzMz4e7du2r3QxAEYc2aNQIAwdbWVnj//r3CcmFhYULHjh2FokWLCiYmJkKlSpWEOXPmCImJidJ75vHjxyrrpO680qXs+OzNrnLyQxlJSUnCpUuXhKSkJL2Wk9foO2Opy0jMWbovgxkr+zJWcHCwtC/6ylje3t7pHvesZiwHBweVZegyY4nHWZ8ZSxD+O7f0lbHEMvSZseT3QxuZyVjyZegrY6k7r3SNZeSuMpizVGPOyrrcUgZzFtuy0psuys62LOYs5ix9YRm5p4yMZKyMfKfn6MW+nMBwlPvKyK5ydFmG+IWWNgRktAwHBwetL1aL4UU+IOlLXjseLCP7y0gv0OmijIzSFLx1iZ+LuasMNkLlDDZCsQx9lZGTGUv+Yp8+sQyWoUlmMlZGy8goNkJ9vWUwZ+UM5iyWoa8y2JaVN8rIrnK+xjKYs1hGbilDXxf7ctWYfURERERERERERERERESkvRwds48orypSpAjmzJkDV1fXLG1n4cKFKFSokFbLNmjQAAEBAShXrlyWyiQiIiLKrXIyY1WsWBGfPn3KUrlEREREuRXbsoiI8jde7CPKBEtLS6UBjzOjU6dOWi/r5OQEJycnlYMzExEREeUHOZmxAPBiHxEREeVbbMsiIsrf2I0nERERERERERERERERUR7FJ/uIiCjD/Pz8YGVlldPVUODn54fExMScrgYRERFRpuXWjJXb6kRERESUUbkx0+TGOlHexYt9RESUYdOmTcvpKiiZNm0auwYhIiKiPC23ZiwAzFlERESUpzFnUX7HbjyJiIiIiIiIiIiIiIiI8ihe7CMiIiIiIiIiIiIiIiLKo3ixj4iIiIiIiIiIiIiIiCiP4sU+IiIiIiIiIiIiIiIiojyKF/uIiIiIiIiIiIiIiIiI8ihe7CMiIiIiIiIiIiIiIiLKo3ixj4iIiIiIiIiIiIiIiCiP4sU+IiIiIiIiIiIiIiIiojyKF/uIiIiIiIiIiIiIiIiI8iijnK5AftB48DMVU00AqJquS5kv49TKMjqtiaOjI54+far18n5+fpg2bZpO60BEuYP4eSAIgsL03bt3Y9KkSShZsiT++ecfFC1aVOX6vr6+CAwMRJMmTXD8+HHIZDKty75w4QKcnZ3h7e2NwMDArOwGEeUSeS1nMWMRkb6oy1gBAQHo3bu3XjNWSEgIGjVqxIxFlM8wZzFnEVEq5izKD3ixj3Sqfv36cHJyUjv/6NGjePPmTTbWiIhyCy8vL4SGhuLw4cMYMmQItm/frrTMwYMHERgYCAsLC2zcuFEhHHl4eOD06dMIDg6Gh4dHNtaciCjnMWMRkTq+vr7YvHkzQkJCmLGIiDKBOYuI1GHOoryEF/tIp/r27QsfHx+18z08PBiQiL5i69atQ5UqVfD777/Dy8sLnTp1kua9e/cO/fr1AwAsWbIEZcro9q5NIqK8jBmLiDSZOXMm2rZty4xFRJQJzFlEpAlzFuUVHLOPiIiyTalSpbB8+XIAwKBBgxARESHNGzx4MN68eQNPT0/4+vrmVBWJiIiI8pzixYszYxERERHpAXMW5RU5erFv2rRpkMlkCj8VK1bUuM7OnTtRsWJFmJqaomrVqjhy5Eg21ZayQ0hIiNI5kfZHlbt378LX1xcODg4wMTFB0aJF0aRJE+zYsUPl8uK5p6qv9cDAQMhkMpV3dT158gQymQyOjo5K8yIjI7F582a0atUKZcuWhZmZGSwsLFCzZk3MmzcP8fHxGvfdx8dH436rqo+4jq76cxb33dnZGQ0bNlS7XLNmzaR6pS07vTqJr2GjRo1Uzs/IsUxJSUHXrl0hk8nQvXt3pKSkKMz39/dXeZxTUlLQvXt3yGQydOvWTWk9ALhy5Qp69OiBMmXKSPVo3ry5xs+cpKQkbNy4EU2bNoWNjQ1MTExgb2+Ppk2bYtmyZdJy6Z3j6o67h4eH0vzChQujYsWKGDVqFJ49Ux7zIDIyEv7+/pk+L/WhW7du8PLywtu3bzFgwAAAwO+//44dO3agaNGiWLt2rcLy4ufC6dOnAQCNGjVSeA3YnzmRasxZJI8ZK3dkLDGzqKOLjKXqNQR0m7GmTZsGZ2dnZixmLKKvEjMWpcWclTtyVn5py2LOYs4iyqwc78azcuXKOHHihPS7kZH6Kv3999/o1q0b5syZgzZt2uC3335D+/btcfXqVVSpUiU7qkvZpESJEmjRooXCtE2bNqlc9vDhw+jUqRPi4+NRoUIFdOzYERERETh9+jROnTqFoKAgbNiwQe91DgoKwsyZM2FnZwcnJyfUrVsXkZGRuHDhAiZOnIj9+/cjODgYJiYmGreTtq/4f//9F2fPntV39ZWcOXMG169fR/Xq1RWm//PPPwrvWV3K6LE0MDDAli1bEBMTg+3bt8PCwgKrV69Ot5xBgwZh+/btaNOmDbZs2QIDA8X7HpYuXYrRo0cjJSUF1atXR506dfD69WuEhITg2LFjmD59On7++WeFdaKjo9GmTRuEhobC2NgY9erVg62tLV6/fo2bN2/i5MmTGDZsGADA29tbYd3Pnz9j9+7dMDc3V+gKAAAaNGigVP/mzZujZMmSAIAPHz7gzJkzWLJkCbZt24abN29K84DU83LEiBHpnpfZbdWqVThz5gz27duHBQsWYO7cuQCAFStWKNQfAEqWLAlvb29pnAT5/QegcWwFoq8dcxalxYyV8xnr8uXLzFhfUcZK77zUNWYsouzBjEWqMGflfM5iWxZzlj4xZ1Ful+MX+4yMjJTeDOosXboULVq0wLhx4wAAM2bMwPHjx7F8+XKtPhQp90tOTgYAVKpUSekOB1UB6c2bN+jRowfi4+Mxc+ZMTJ48Wbpj6vLly/j++++xceNG1K1bFx56HgTV1dUVO3bsQOfOnRWmv3//Hl27dsWxY8fg7+8vnb9piXfkpO0rPjAwMNsDUu3atXHlyhX4+/tj48aNCvP8/f1haGgINzc3hISE6KzMjBxLsS9sADA2NsbOnTvRqlUrrFmzBhYWFpg/f77acsaNG4e1a9eicePG2Llzp9IfZUFBQRg1ahSsra2xe/duhbvCwsLC0KpVK/j5+cHd3R3u7u7SvN69eyM0NBQuLi7Ys2ePwh1zSUlJOHz4sPR72nP7yZMn2L17N2xsbFTe2fPgwQOF3ydOnKhwPsfExMDd3R1XrlzBrl27MHToUGmeq6srzp07h7p16ypsI+152b59e3UvmV4UK1YMq1evRseOHTF+/HgAQOfOndG1a1elZStWrIjAwEB4/P84CWn3n4jUY84iETNW7shY7u7uCA0NZcbKJRkrLX1kLHXnpb4wYxFlD2YskseclTtyFtuymLP0jTmLcrscH7PvwYMHsLW1Rbly5dCjRw+Vj+6Kzp07h6ZNmypMa968Oc6dO6d2nYSEBHz8+FHhh3KvxMREAKlfetpYt24doqOj4erqiilTpih0jVCzZk1MmTIFALBgwQLdVzaNSpUqKd05BABFihSRHnvfuXOn2vXFR9C13Xd9srOzQ9u2bbF9+3a8fftWmh4VFYWtW7eibdu2cHBw0GmZWTmWpqamOHDgAOrUqYMFCxZg1qxZKsuYOXMmFi5ciLp162L//v0wNTVVWsbPzw+CIGD16tVK3T9UrVoVixcvBgCFrgxu3LiBPXv2wNTUFAcPHlTqGsPIyAjt2rXT7oXIBHNzc3z33XcAoNSNQ6VKlZTCEaD9ealPHTp0kLq7MTExwcqVK3OkHkT5GXMWiZixckfGcnR0ROPGjZmxtMxYd+7cYcbKBGYsIv3Td8YCmLPyEuas3JGz2JbFnJUdmLMoN8vRJ/vq1KmDwMBAVKhQAa9evcL06dPh5uaGW7duoXDhwkrLv379GiVKlFCYVqJECbx+/VptGXPmzMH06dOVpnfp0iXdLyJra2upz2ZDQ0MNS2bvI8O6kPZJIXViY2O1WjYpKQlA6h0tmpaPi4sDALx7905hObGchw8fSttTtx356WKf0y1btlS5vHjHxIMHD/DkyRNp+rt371TWQ9wHAPj48aPSvBcvXmis36dPn7Bp0yZcu3YNkZGRiI+PhyAIEAQBQOoXqbr9Egd3/fDhg8Iyaesjf0zEsJ/e664tsaykpCT88MMP2Lt3L2bPno1BgwYBANauXYvY2Fh07NgRe/bsUVl2enUSX8OUlJRMH8vQ0FClzwIAWL58OZo2bYqpU6ciISFBCtzv3r3DTz/9hJkzZ8LS0hLLli3Dq1evlNaPiorCxYsXYWpqiooVK6qsR5kyZQCkdg0hHo+tW7cCSL1bX9v3jLz0zitxm+L758WLF9Jynz59wunTpxEYGAgzMzNUqVJFaRvJycm4cOGCxvMyM/VWR/w8SLu9tGXs2rULd+/eBZD6h+yqVatU3g0lUrX/aYl/aKh6/+qKLl+rnC4nP5QhnsekLDtylro/Sr/mnJWR812b9wczVqrsyFjAf6+XvjLWx48f8cMPP+D48eN6y1hJSUkK55Y+Mtb79+8B6DdjAcCpU6cA6C9jAanHXJ8ZK21+zwp1GUvcD3G6PjKW+FrqM2MB+SOb5KcymLNUy46MBTBnqcKclXdzFtuymLOYs5izWMZ/9JWxcvRiX8uWLaX/V6tWDXXq1IGDgwN27NiBPn366KSMSZMmYfTo0dLvHz9+ROnSpfHHH3/AwsJC47rx8fF4/PgxHB0dVd418R/1d3DlVuXLl9dquQcPHmi1rPj4eIkSJTQub2ZmBiA1eMovJ5YjDlpqb2+vdjvy08UvwDp16qhdvmjRooiKikJ0dLS0jLW1tcp6iPsAABYWFkrzxEBtZGSkNO/Bgwfo2rWrxg+Cz58/q63nhw8fAKTecSO/TNr6yB8T8RyeOHEiJk6cCAAwNDREkSJF4OLigr59++KHH35QW5+0xLKMjIzQs2dPLFiwADt37pS6Evjjjz9QrVo19OzZU+rrPO0xV1UnVQwMDDJ9LAsUKKByma1btyI6OhpA6p1P4p02Z86cwc2bNwGk9kd+79499OjRQ2n9S5cuQRAExMfHpzt2QlRUlHQ8YmJiAKTetaXte0uepvMK+O/9Ib5/fvzxR6VlXF1dERAQgKpVqyqt26lTJ/zzzz9qy//8+TMKFiyYqbqrIn4eqHqPiNOePXsm9W0+cuRILFmyBAsWLECvXr3U3mkn7r+mz4cLFy4AUP3+1RVtPxfzQjn5oYzk5GRcu3ZNb9vPy7IjZ40bN07qvgRgzgK0z1iAdu8PZqzsy1hiWeXLl9dbxrKwsIC7uzuqVaumt4xlZGSk8L2uj4z17bffAtBvxgKAyMhIAPrLWEDqMddnxkqb37NCXcYS61O+fHm9Zazw8HAA+s1YQP7IJvmpDOYs1bIjYwHMWaowZ+XdnMW2LOYs5izmLJbxH31lrBwfs0+elZUVnJ2d8e+//6qcX7JkSeluDdGbN2809pNuYmKS7YN1UuaJH262trY5XJOM69SpEx48eIA2bdpg/Pjx+Oabb2BhYQFjY2N8+fJF43mYkpKCx48fAwDKli2b4bLlB0KOj4/H3bt3cfz4cRw/fhz37t3DTz/9lKl9GjFiBPr06YO9e/cCAJ4/f640mK82dZInDuCray9fvsTw4cNhbm6OQ4cOoVevXrhz5w6A1G42y5Qpg8DAQHh6emLYsGFo1KiR0nkmdhtQqFAheHl56byOuiI/qG9sbCxu3ryJK1eu4Mcff8SBAwekO7YASOEoM+elvgiCgN69e+Pjx4/o3bs3fv31V3z48AGBgYHo06cPjh8/rtD1BRHphr5yluYGJMotmLGYsTJLVca6fv06AGYsZiwiAvSTsQDmrLyEOYs5K7OYs5iziHQpV13s+/z5Mx4+fKjySj8AfPfddzh58iRGjhwpTTt+/LjUvy/lfbdv3wYAVK5cWavl7ezscPfuXTx69Ejl/OjoaERFRQGAykfldeXu3bu4efMmrK2tsXfvXqWBctN77PfOnTv4+PEjSpQogdKlS2e4/LQDIQPAmjVrMHDgQMybNw8TJ07MVP/p3bt3x4QJE+Dv7w8g9e4xVXcRaVsn4L8BfNPKyLG0s7NTWd779++xcuVKeHh44MSJE6hXrx7evXuHEiVK4MSJEyhfvjzmz5+PIUOGoF+/fgoDDQOQXnuZTIaNGzfCwEC7YU3FQCI+xq9vqgb19fPzwy+//ILBgwfj0KFDUn1u3ryJ4sWLZ+q81JeVK1fi5MmTKF26NH799VcAwK+//orjx4/j5MmT0rlLRLrFnPV1Y8ZixtJlxnJzc0NERITeM1apUqUAMGNpixmLKGcwYxFzFnMWc1b6mLOI9E+7d7+ejB07FqdPn8aTJ0/w999/o0OHDjA0NES3bt0AAL169cKkSZOk5UeMGIGjR49i0aJFuHv3LqZNm4bLly9j6NChObULpEOJiYkIDg4GADRo0ECrdcQviU2bNqmcv3HjRgCpj2Cnd9dcVohf3MWLF1f6EgIgjemmjhgYmjdvrrM6iX9oxMTEKAxMnBGmpqbo378/QkNDERoair59+0qPn+taRo5l2oC0bt06/Pnnn2jatKn0xers7Cz1mT1gwADp0etBgwahSZMmOHLkCNavX6+wHVtbW1SrVg2fPn3C0aNHta57ixYtAKT21f7y5Uut19OlLl26AIDUfQjw33lpa2ubqfNSHx4+fIgJEyZIIVTsKsPKygrr1q0DkNpdjfy4BKICBQoA+K8fdSLSjDmLRMxYzFiAbjOW+H99Zyw3NzcAzFjaePbsGTMWUTZhxiJ5zFnMWQBzVmYxZxHpVo5e7Hvx4gW6deuGChUq4IcffoC1tTXOnz+PYsWKAUh9I8kPPFqvXj389ttvWLt2Lb799lvs2rUL+/btS7c/Ysr9vnz5guHDhyMyMhIeHh5aP/7fr18/WFhY4OrVq5g9e7bC4JbXrl3DzJkzAaR+4OqTs7MzDA0Ncf/+fYSEhCjMO3jwoHTHhyrPnz/HsmXLAEAaPFgXxEGCzc3NYWNjk+ntDB48GK1bt0br1q0xZMgQXVVPSWaP5dOnTzFmzBhYWFhgw4YNCo/Mi/9PO038Yh49ejSePn2qsD2xHF9fXxw8eFCpnoIg4MKFCzh27Jg0rXr16mjXrh3i4uLQrl07PHumOO5BUlISDhw4kKHXI6N+//13AFA41uJ5GRYWluHzUh9SUlLg4+ODmJgYDBgwAE2bNlWY37JlS/Tu3RufP39G7969lQartbe3BwCNfbYT0X+YswhgxmLGytsZ65tvvmHG0kJKSgomTJjAjEWUTZixSMScxZzFnJU1zFlEupWj3XiKb2h10r6hAaBz587o3LmznmpEOWHDhg2YNGkSIiMjYWdnhzVr1mi9bokSJbBt2zZ07twZU6ZMwZYtW+Di4oKIiAicPn0aSUlJ8PX1Rb9+/VQ+5n3ixAnEx8crTAsLCwMAXLlyRWlQXnHA3Pfv32PixIno3LkzXF1dYWNjg6FDh2Lp0qVo0qQJ3NzcYGtri3v37uHq1auYOnWq9MUrb+zYsQgICEBUVBTMzc2xevVqrF69WmEZsd//0NBQ+Pj4oGvXrkoDhO7cuVN67D4hIQF3796VvsAnTJiQqW4PRHZ2dtKj9PqUkWMpEgQBvr6++PTpEzZs2KDQv7cmZcqUweLFi9G3b1/07t0bJ06ckEKUp6cnli5dijFjxqBt27ZwcnJChQoVYGlpicjISNy4cQMRERGYMGECvv/+e2mbAQEBaNWqFc6fP4/y5cujXr16sLW1xevXrxEWFobIyEilL/zMmjt3LgIDAwGk9nMeFhYmHX/5Pu0ze17qS0BAAEJDQ1G2bFksWLBA5TJiFwjBwcFYtWoVBg8eLM3z8vJCQEAAxo8fjxMnTqB48eKQyWTo3bs36tWrl127QZRnMGcRM1bGMtbEiRNhaGiosAwzFjNWXshYixcvxpUrV5ixiLIJMxYBzFlsy0rFnKU95izmLMoGwlcmOjpaACBER0enu2xcXJxw+/ZtIS4uLsPl3L9/PzPVy7NlODg4CACEgIAAjcu5u7sLAAQ/Pz9p2oQJE4SKFSsKU6dOFSIiItSuC0BQd8revn1b8Pb2Fuzt7QVjY2PByspKaNSokfD777+r3Bc/Pz9pe1n5kd/flJQUYfbs2YKrq6tQqFAhwdLSUmjQoIFUB1X1F1+3jPxs2bJFWt/b21tpvoGBgWBtbS00bdpUYf+1ERAQIAAQOnTokO6yYtlpj7m66aLHjx8LAAQ7OzuV87U5liJ/f38BgNCqVSuV2xo6dKjS+SavZcuWAgDB399faV5YWJjQv39/oXz58oKpqalQsGBBoVy5ckLz5s0Ff39/ITw8XBAExfMqISFBWLVqleDm5iZYWVkJBQoUEOzt7YVmzZoJK1asUFkH+dfEwcFB5XyxDPH9I/9jaGgolChRQvD09BSOHTumtG5KSoqwYcOGdM9LXX6eiOe1vNu3bwsmJiaCTCYTQkJCNK4fFBQkABDMzc2FR48eKcxbt26dUKNGDaFgwYIq34dbtmwRAAje3t662h0l2fHZm13l5IcykpKShEuXLglJSUl6LYcUqctIzFm6L4MZK/syVnBwsLQv+spY3t7e6R73rGYsBwcHlWXoMmOJx1mfGUsQ/ju39JWxxDL0mbHk9yOr1GUsU1NTvWes4OBgvWcsQcg9n70sIxVzVs5gzsq+Mpiz2JaV3nRRdrZlMWcxZ+lLbvnsZRkZy1gZ+U7nxT4NGI7YqK2O+IWWNgRktAwHBwfB3d1dq2XF8CIfkPQlrx0PlpG7ylAVkHRdhjq82Pf1lcFGqJzBRiiWoa8ycjJjyV/s0yeWwTIyS13G0mUZ6rAR6ussgzkrZzBnsQx9lcG2rLxRRnaVwzIUMWexjOwsQ18X+3J0zD4iIiIiIiIiIiIiIiIiyrwcHbOPKK8qUqQI5syZA1dX1yxtZ+HChShUqJBWyzZo0AABAQEoV65clsokIiIiyq1yMmNVrFgRnz59ylK5RERERLkV27KIiPI3XuwjygRLS0ulAY8zo1OnTlov6+TkBCcnJ5WDMxMRERHlBzmZsQDwYh8RERHlW2zLIiLK39iNJxEREREREREREREREVEexSf7iIhIp0aOHIkPHz7kSNl2dnbw8/ND9erVc6R8IiIiIn3JyYzl6OiIoUOHokmTJjlSPhEREZE+MWdRfsCLfUREpFMjR47MsbLt7e0xbdq0HCufiIiISF9yMmM5Ojpi+PDhKF++fI7VgYiIiEhfmLMoP2A3nkRERERERERERERERER5FC/2EREREREREREREREREeVRvNhHRERERERERERERERElEfxYh8RERERERERERERERFRHsWLfURERERERERERERERER5FC/2EREREREREREREREREeVRvNhHRERERERERERERERElEfxYh8RERERERERERERERFRHmWU0xXID549e4a3b98qTfv06ZPey81sGTY2NihTpoyOa0RERESkW3ktZzFjERERUV7BnEVERJR/8GJfFj179gyVKlVCbGxsTlclQwoWLIg7d+4wJBEREVGulRdzFjMWERER5QXMWURERPkLu/HMordv3yI2NhZbt27FlStXpJ+9e/cq/J6Vn02bNsHc3BzVqlXDX3/9leUytm7ditjYWKW7t7LC0dERMplM659p06bprGzSrWnTpsHZ2RmBgYEK0yMiIlCsWDHIZDL89ttvatcPCQmBgYEBChYsiPv372tdbmBgIGQyGXx8fFTWSSaTKdWJiDJPJpOhUaNGStP9/Pwgk8lQtWpVfPnyReW6giCgSZMmkMlk6NOnT4bLFt/vWfku6NChA8zMzPDixQuleTKZDI6OjkrT9b1v4nfhkydPAAAtW7aETCbD48eP1a7j7e0NmUyG5s2bq10mPj4e33zzDWQyGWbMmJGhOgGaP0ObNm0KCwsLvH79OsPbzQ7ZkbPU/WSmDGYs0kR8L+7Zs0dhur4zlkg8l4hIN9Tlmbi4ODRv3hwymQyzZ89Wu/7du3dhZmYGAwMDnD59WutyQ0JCIJPJ0LNnT63rlBG5KWO9evUKBgYGcHd3V7tMbv07NbdnLEA/OUtd+xVzFhGR/mnKJhUrVoSzs7NesonIw8MDzs7OUptITlP3PZ0bssOmTZu03l5G8Mk+HalUqRJq1Kgh/V64cGGUL18+y9u9ePEihg0bhm+//RZHjx5F4cKFdV6GLtWvXx9OTk5q5x89ehRv3rzJxhqRrhQvXhyrVq1C586dMWzYMDRq1AilSpVSWObTp0/w8fGBIAiYM2cOnJ2dc6i2RJRZU6dOxYEDB3D9+nX4+flhzpw5SsssW7YMp06dgoODA3799VeFeY6Ojnj69CkeP36ssjFIF06cOIF9+/Zh7NixsLe3R2RkpFbrZXXfMsrLywtHjx7Fnj17MGbMGJXLLF26FCdPnsSxY8ewZs0aDBgwQGmZyZMn486dO6hVqxYmTZqkME9suBcEIVN1nDt3rrTdgICATG0jO+grZ2mS23IWM1b+ldWMFRgYCF9fX3h7e/PGKKJcwMzMDPPnz0fXrl0xffp0eHp6omrVqgrLJCcnw9vbG/Hx8Rg5cqTGi1nZKW3GSk5O1mo9feXHUqVKoV69eggNDUVERASKFy+utN3c+ndqXslYgO5ylqb2q7SYs4iIso+ZmRk2bdqE+vXrZyqbhISEoFGjRnB3d0dISEg21173tMkOnz9/zpNt3Lnmyb65c+dCJpNh5MiRapdJTEzEL7/8gv/9738wNTWVAkR+dfHiRTRr1gxVqlRJNyjlFn379kVgYKDan4oVK+Z0FSkLOnXqhK5duyIqKgr9+vVTmj9q1Cg8ffoUHh4eGD58eA7UkIiyytjYGJs3b0aBAgWwYMECnD9/XmH+gwcPMGnSJMhkMmzcuBEWFhbZXsdRo0bB1NQUEydOzNB62b1v7du3h6GhIXbv3q12GSsrK2zYsAEAMHbsWKWnAP/66y8sXboUpqam2LRpE4yMMn+flq+vr1LOqlmzJtq0aYNNmzbh8uXLX1XOymuYsfI3Ziyi/OXbb7/FuHHj8OXLF/Tq1QuJiYkK8+fMmYOLFy+iQoUKGu+wz265MWN5eXkhJSUF+/btU7tMTn+GHj58WKk9Sz5j3bhxI9+3Z+XF9it5zFlElN/VqVMHffr0yXPZRF/Syw6zZ8/Ok39/5YqLfZcuXcKaNWtQrVo1jctNnToVa9aswbJly3D79m0MHDgQHTp0wLVr17Kpptknrwclyr9WrFiBkiVL4vDhw9i4caM0/ciRI9iwYQMKFy6MgIAAdhNFlIdVrVoV06ZNk+7siouLA/DfnV6xsbEYMmQIGjdunO11O378OG7duoX27dvD2to6w+tn577Z2NjAzc0N58+fx8uXL9Uu17x5c/Tv3x+fP3+Gr6+v9JSe+HtKSgpmzpyJSpUqZaoe4eHhAIDSpUurnN+nTx8IggBfX9+vJmcR5UbMWET5y/Tp01GlShVcv35doRvuGzdu4JdffoGhoSE2b94MMzOzHKzlf3JrxurYsSMAaLx5CsjZz9CQkBCV7Vlixlq6dGm+bs9i+xURUd4wfPjwPJVN9E1Tdti1a1ee/Psrxy/2ff78GT169MC6detQpEgRjctu2bIFkydPRqtWrVCuXDkMGjQIrVq1wqJFi7Kpttnjaw5K4vgDmn5UuXv3Lnx9feHg4AATExMULVoUTZo0wY4dO1QuL/aPq6q/dU396j558kTtOAWRkZHYvHkzWrVqhbJly8LMzAwWFhaoWbMm5s2bh/j4eI377uPjo3G/VdVHXCc7u2wqWrQo1q5dCyD1Dsnnz5/j/fv36Nu3LwBg0aJFarvuS0pKwpIlS1C1alVUqVIFxYoVg5eXF8LCwvRS140bN6Jx48awt7eXjkelSpUwatQolWNoPX36FPPmzUPjxo1RpkwZmJiYwMrKCg0aNMCaNWuQkpKS4TpoOm/FsS00HcNTp05h+PDhsLe3h4mJCYoVK4ZatWrBz88P7969k5bTdN4eP34cBQsWhLm5OU6dOqWynEaNGmk8/9LWT9259/HjR0ybNg3Vq1dHoUKFYGpqivLly2PEiBEquz3RVG9AeQw0eUlJSVi/fj08PDxQtGhRmJiYoHHjxhg0aBCeP3+utLz4+eLh4aGyLCC1f3GZTKbULYG66QAQHBys8X0KAPfv38eAAQOkO3ktLS3RsGFDbN26VW09nJ2dpbufVXn27BmMjIw0nmNZMX78eNSuXRv379/H5MmTAQALFizAuXPn4OTkhHnz5iksLx7Lp0+fAgDKli0LmUwm7YeuunpYvnw5AKh9rbWR0X2Td/v2bXTu3Bk2NjYwMzNDlSpVsHDhQrXdXHl5eUEQBOzdu1djnRYuXAhHR0ecPn0a/v7+AFKf9Hv06BEaNGiAUaNGKSwvfo+J0r5nxffM58+fpfHBChYsqLLs1q1bw8bGBrdu3cKIESPyfc76WjFj5c+M5ejoCF9fXwDApk2bpH1ydnbW+H2nraioKHh7e8PFxQXFihVDgQIFULJkSdSvXx/bt29XOTbXiRMnMGzYMFSvXh02NjYwMTGBvb09unTpgkuXLmW4DprOm4SEBOl7Rt05HBsbiyVLlqBBgwYoUqQITExM4ODgAE9PT6UxOtR93wuCgP79+0Mmk6Fu3bqIjo5WKkfTe0ysY1rq6n3t2jX07NlTIY/Wr18fa9euVfl9I+YGVd+16eWfly9fYvTo0ahUqRIKFiyIwoULo1atWli+fDmSkpKUlk/vvaHuvazpPQ78N4atuv0AgF27dqFFixbSuWhnZ4eePXvi9u3baushk8lQuHBhfPz4UeU2Z82alW6Oy6wCBQpg8+bNMDY2xpw5c3DlyhWFu+knTJiA2rVrq11/8+bNqFWrFgoWLIiiRYuiRYsWOHPmjE7rKC8nMpa6/Cj+hISEwMHBAa6urggODsaHDx/Ulq2rv1NNTU21/jtV/Az08fFR2Z4lZqzt27dj06ZN+bI962tuv5LHnJWzOUvc9wkTJqhdRl3bwu3bt+Hn54f69evDzs4OBQoUgLW1NZo2bar2OGgi//2T3o+6/T958iSGDBmCUqVKoUCBAihevDg6dOiAc+fOqVxe/hxbt24dXF1dYW5uDisrK7Rq1UrpaWt5qtpVypYtq7ZdRRQeHo5x48ahatWqKFy4MMzNzeHs7AwfHx/8/fffSsvHxcVh0aJFqFu3LqysrGBqaooKFSpg/PjxCm1bIk1tMDmRbZydnTOdbfTRxpRZmckmHh4eaNSoEQDg9OnTCuewroZu0dT2J15sU/fZlxU5kR30LcfH7BsyZAhat26Npk2bYubMmRqXTUhIgKmpqcI0MzMzhIaGalwnISFB+l1dyM8tGJRSlShRAi1atFCYpm7gysOHD6NTp06Ij49HhQoV0LFjR0REROD06dM4deoUgoKCpC7S9CkoKAgzZ86EnZ0dnJycULduXURGRuLChQuYOHEi9u/fj+DgYJiYmGjcTtq+4v/991+cPXtW39XPEE9PT/j4+CAwMBC9e/dGsWLF8OrVK7Ro0ULlo88AkJKSgs6dO2Pfvn0oUKAAateuDTs7O1y4cAG1a9dG7969dV7PEydOICoqCtWqVYOVlRXi4uJw4cIFLFmyBBs3bpQeTxdt2bIFP/30E8qWLQtnZ2fUr18fr169wrlz53D27FkcO3YMu3bt0smFlYcPH2q8oACk3nGzbNkyAED16tXh5uaG6Oho3Lt3D7/88gsaNWqUbkPe8ePH0a5dO8hkMhw6dEj6glbHy8sLhQoVkn4PDQ3Fw4cPtdqnN2/eoGHDhrh//z5MTU3h4eEBS0tL/P333/D398eWLVtw4sQJhfEgMuvTp09o27YtQkJCUKhQIbi6uqJYsWK4cuUKVq9ejZ07d+L48eNwcXHJclmaJCYmYsiQIRqX2blzJ3r16oX4+HhUrFgRrVq1QnR0NC5cuIAff/wRp06dUntBD0gd30TV+2P58uVaj6OSGYaGhti0aRNcXFywdOlSlC9fHn5+fjAwMMCmTZuULhw5OTnB29sbu3btQkxMjHQuffz4ERYWFihZsmSW6xQfH4+goCAYGxujYcOGmd5ORvdNFBoaihYtWiAmJgblypVDs2bN8PbtW0yePFntH1AdOnTA8OHDsXv3bo3ninjHWOPGjTFp0iQYGhpizZo1MDc3R2BgIAwMFO/Pql69Ory9vaXvRm9vb4X54vt4yJAhKF++PC5cuKC2bGNjY3h4eGDXrl34999/FeZpk7PkG/tze84iZqz8lrE6deqE8+fP4+zZs/jf//6HBg0aAEh9L2q6iKCtqKgo7NixA1WrVkX9+vVhbm6O169fIzQ0FH///TfOnTuHP//8U2GdgQMH4vnz56hcuTLq168PIyMj3L17Fzt27MCePXvw+++/w8vLK8t1A1IvIjx48EDt/OfPn6NFixa4ffs2ChYsiPr168Pa2hrh4eE4c+YMwsLCcPz4cY1lCIKAAQMGYN26dahbty6CgoI0dkGYkfeYKjt27EDPnj2RmJiI0qVLo3379vj06ROCg4Px999/Y8+ePThw4AAKFCig9TbV+euvv9C+fXu8f/8ejo6OaNasGRISEqRxtw4ePIhDhw7B2Ng4y2VpEhoais2bN6udn5SUhB49emDHjh0wMTGBq6sr7OzscP/+fWzbtg179uzBnj17lF530efPn7Fx40alrqwTExOxcuVKXe6KEhcXF0yZMgXTpk1Dr1690LJlS9y8eRPVqlWDn5+f2vVGjBgBf39/GBgYoEGDBrC1tcXNmzfh4eGBYcOG6byeOZWx1OVHkZgfvby8cOXKFRw4cAC9evVSW74u/k718PBAkSJFtPo79ciRIwCAypUrq7yZQT5jGRkZZao9KzfnLLZfKWPOyt05S5XFixdjw4YNqFixIqpWrQorKys8e/YMwcHBOHnyJM6fP4/FixdneLvm5ubo1KmTynma2lnGjh2LRYsWwcDAADVr1oSbmxuePXuG/fv34+DBg1i3bp10o1dao0ePxpIlS1C/fn20a9cOYWFh+PPPP3H8+HHs2LEDHTp0UFj+8+fPaNasmVK7SlhYmMZ2lZMnT6JTp0748OEDihcvjiZNmqBAgQJ48uSJdCNVvXr1pOVfvnyJFi1aICwsDEWLFkWtWrVQuHBhXL16FQsWLMDOnTulmzuyKq9kG3W0aWPKqoxmkxYtWsDU1BRBQUFKn3E2NjZ6rev79+81XsTXBXXZwc3NTS/ZQd9y9GLf77//jqtXr2p9h2fz5s2xePFiNGzYEP/73/9w8uRJ7NmzR2Nj55w5czB9+nSl6V26dEn3jW1tbS1d3Tc0NFS5zLNnz6R/5YNNbGysxj88Vblx4wZ8fX3h7OyM5cuX4/Xr13j9+rXa5TNThqY6Z6UM8c6IN2/eaFxe7Mrj3bt3CsuJ5Yh39Dk6OmLKlCkK64oBSX69t2/folu3boiPj8eoUaMwcOBA6UJMWFgYevfujY0bN6Js2bLw9PSU1hXvGklbD3EfgNQgnXbeixcvpP1NO8/a2hqbN29G3bp1FaZHR0dj1KhRCA0Nxc8//yzdHZCWeJeip6en1FUJAOzZswdnz56V6iN/TMSwn97rnhHia5PeNocNG4agoCCcOHECAGBhYYHJkyerXWfr1q3Yt28fbGxssHnzZtja2qJgwYJISkrCzJkzpT+0Vb3u2tYprZUrV8LKykphWnJyMsaPH4+DBw9iwYIFCl8alSpVwqFDh5QGXX3z5g369euHPXv2YNmyZWjZsqU0T9v3SNpl+vbti4SEBNja2uLly5dK+7Z582YsW7YMVlZWWLBggcLAuEDq54WBgYG0jqrz9uzZsxg0aBBkMhnWrFkDe3t7tXUV38NDhw6FnZ2dNH3ChAl4+PChUv1UnXv9+vXD/fv3YW9vj8DAQJQpUwZAaljx8/PDrl270K5dOxw9elRqoNL0fpOv1+PHjxX6Ex8zZow0QPDs2bOlroZiY2OxY8cOzJ49Gx07dsSff/4pfX6L79+4uDi1r4P4GfXixQuFZeSnFylSRJq3bt063LlzRzqOaffj3r176NmzJ2QyGZYtW4bmzZtL88LDwzFw4EAEBASgYsWKCsFbLK9u3bo4f/48fvvtN9SqVUth/tq1a/Hdd99Jd/dl5jMgJSVF43qGhoYYNWoU5syZIwXOvn37olixYkrrlShRAlOmTMGJEycQExODIUOGwN7eHrGxsVLDTtrzVdVnsCZ///03EhISULVqVel4il1eZlTFihUxe/ZsjB49Wtq3cePGKfxRIi8+Ph7du3dHTEwMRo4ciYULF0rn1s2bN9GkSRO8fftWaT07OzvUrVsXf/31F96+fasxDIsNeP7+/lJD3vz58/G///1Padn27dujffv20nejqrsQxZzVrl07jRf7gNQ/xnbt2oWdO3di3LhxWuesBQsWYNasWUrTc2POyqjMlJGRjKVtGcxY2Zex5F8vfWashIQEnWWsAQMGoFixYjh79iyqVasmHVvxs1d+HfFcysj+JCcn4+rVq0rjhb58+RIdOnTA0aNHceTIEZQvX16aN3r0aNSuXRuWlpYK6xw/fhwjRoxA37594ezsrNTorUpsbKza8+bFixeYNWuW9B2cdt9SUlLQqVMn3L59Gw0aNMDChQtRtGhRaX5CQgLOnTun8D5MmwMEQcBPP/2EHTt2oHr16li5ciXevHmjsreCjL7H5InTX758CW9vbyQmJuKHH36An5+f9Fn67Nkz+Pj4ICgoCCNGjMDo0aOl9dXlF3GauIz8vMjISLRr1w7R0dGYNm0aunbtKt1Y8v79e4wYMQLHjh3D2LFjMXToUOl4pPfeUPdeVjc9KSkJffv2haGhIaytrREREaG0H4sXL8aOHTvw7bffYvHixQrdUh89ehSjRo1C165dcfLkSelCrFiera0tjI2NsWTJErRq1QoymUw65ocOHcLLly+lPKUuj6qjKc/In1c//PADdu7ciX/++Qe3b9+GsbExZsyYIZ0zaQUHB8Pf3x8FCxbEunXrFDLg6tWrpUbn5ORktZ+zushYQOZyVkYyVoMGDdCgQQOEhIQgJiZG6ukgLS8vL0yePBm7d+/WeLEPAJYsWYKTJ09Kn6FWVlZYv3692uVXrVqFffv2oUSJEggODpa6TU9KSsLw4cPVXhD+/fff8erVK411Af7LWMWLF89we1ZuzlkZbb9Kiznr68tZ+mzLEvdd1f6J1LUtNGrUCN26dZPaL0SPHj2Cj48Pfv31V9SrVw/ffvstgPTPK/G1trKyUjoXROraWf744w8sWrQIDg4OWLBgAapXry7Nu3TpEvr3748BAwbA3t5e5WflqlWrEBgYiO+++06atn79esyfPx/e3t4oVaqUQjfNU6ZMUdmuAqT+famqXeXVq1fo0KEDPn36hP79+2P48OEKNyC9e/cOjx8/lvYrJiYGXbt2RVhYGDp16oTJkydLN3UkJSVh4cKF2LhxI7p27apwcSwj2UY8JpnJNkD656M+so2q/YuNjcWUKVM0tjGlJ70cIL5WGckmXl5esLe3R1BQEBwcHJTOa1X7lfZ9lh51789p06YhMjJSej3E/dL2OyQrbdxTp07Vuo1bvNEhI23cERER6dY/U4Qc8uzZM6F48eLCjRs3pGnu7u7CiBEj1K4TEREhtGvXTjAwMBAMDQ0FZ2dnYfDgwYKpqanadeLj44Xo6Gjp5/nz5wIAITo6Ot06xsXFCbdv3xbi4uLULnPlyhUBgHDlyhWF6ffv3093+/IuXLggWFhYCPXq1RM+fvyo1ToZLUOkrs5ZKcPBwUEAIAQEBGhczt3dXQAg+Pn5qSznzz//FAAIzZo1U1oXgJD2lJ0xY4YAQHB1dVVZ3sKFCwUAQvny5RX2xc/PT2U9BEEQAgICBACCt7e30rzHjx8LAAQHBweV5al7ve7duycAEGrVqqVyviAIQufOnQUAwtatWzXWR74Mb29vrV73jBBfG222OXfuXOm4+Pv7a1zWyclJACCsWrVKEATF/YiLixNKliyp9nXPSJ3kqToeKSkpwo8//igAEMaPH6/1toKCggQAQufOndMtQ56q83bPnj0CAMHT01PlMUxMTBSKFSsmABB2796t1fsw7Xly7NgxwczMTDA3NxdCQkLSXd/GxkYAIISHhytMV3eOpZ3+4MEDaV/37NmjtP2YmBipjG3btknTt2/fLgAQWrdurbJe4mfL48ePpWm3b98WZDKZYGtrq/R5Kb5WrVq1EgAIBw8elOYFBwcLAAR3d3e1r4P4GRUcHKx2uljG8+fPBXNzc8HW1lZYtmyZyvO3S5cuAgBh4cKFKsu7ePGiys8wsbw//vhDMDExEby8vBTmr1q1SgAg7N+/X+U5pg0Agp2dXbrLxcfHC5aWlgIAwdbWVoiPj9e4fNpjpur8Fc9XVZ/BmixYsEAAIPTq1UualpSUJFy6dElISkqSpmn6nJaXkX3bunWrAEAoXbq08OXLF6X5v/76q3Qs5M9X+XqvW7cu3TqFh4cLBgYG0nmRkpKicXl1x18+Z4mfoRUqVFCbs8TPOEtLS61ylpiRPnz4kCdyVmZkpoyMZCxty2DGUtyPtHSZseTL0WfGmjt3brrLZiRjadoPeeK5pAvh4eFC0aJFBQDC7du3tV6vW7duAgDh8OHDWi1///59tedN27Ztpayk6hzet2+fAEAoVaqU8OnTJ41liOS/71NSUoR+/foJAITvvvsu3c+1jL7HVE2fMmWKAEAoWbKkEBsbq7T8rl27BABC4cKFFT47mzdvLgAQdu7cqbSOuvwzYcIEAYAwdOhQlfvz4sULwdjYWChWrJj0XXT//v103xvq3svqpi9evFgAIAwbNkxlDnv37p1gZmYmmJqaCi9evFBZ5uDBgwUAwrJly1SWt3TpUoVcKB7zOnXqCCVLlhTWrFmj9rNJE015Ju178Pfff5eO9+jRozVut2nTpgIAYcKECSrnV69eXQAg1K5dO0N10kRVxhIE5Zylj4wlCKozf1qVK1cWTE1NNb6fRVn5O1Weur9TxZw1cOBA6f2grj1LzFhVqlTRuj0rt+eszLRfpcWc9fXlLH22ZYlldejQQe0y2nzOpCV+P4wbN06alt55ld5rLQiq9z85OVmwtbUVAAiXL19WWc78+fMFAMKYMWMUpovn2MiRI1WWV7NmTQGAMGvWLGmapnYVkap2lZEjRwpAanuWNtavXy8AEKpXry4kJiYqzU9OThaqVKkiABDCwsKk6RnJNuJrlZlsIwjpn4+6zjaCoLrt6a+//kq3jSk96eUA+fMqI9lEm/Y0QfhvvzLyPhME1e/Py5cvCwYGBoKLi4swdepUhf3S9jskK23cmsrITHZIW6cNGzYotWWpo813uijHxuy7cuUKIiIiUKNGDRgZGcHIyEgap8bIyEjl3U3FihXDvn37EBMTg6dPn+Lu3bsoVKgQypUrp7YcExMTWFhYKPzkNuz64D/iHQDpdQ8gEvs2Ttt9mahPnz4AUu8yUHUHrq4lJyfj5MmTmDFjBgYPHgxfX1/4+PhId+Pdu3dP7boxMTEA1I+plNtERERg4cKF0u87duxQO6ZdeHi41DVcz549leabmprihx9+0E9FAUyfPh0+Pj7w8vKCo6MjtmzZgpIlS2Lw4MFKyyYkJODgwYP4+eefMXDgQOkYrlmzBoDmY6iN2NhYjBo1CmZmZli6dKnKZa5cuYLIyEjY2NgodbOgDbHrzri4OGzdulXpqUBVxH74tX3vidavXw8fHx8MGDAAAGBpaYn27dsrLVewYEG0bt0aQOrdyqKKFSsCSH0vq+qbW5UjR45AEAS0bNlS7eel2L2pqr7idWXUqFGIiYnBokWLFLobEqWkpEhdm3Xp0kXlNmrWrIlChQrh2rVrKsdCKF68OLp27Yp9+/Yp9Jfv7++PcuXKoU2bNjraG/VmzZoljU308uVLnD59Wu9lqiN+jsvfcZgVGdk38fvmhx9+UHkntbrvIQBSd3Xi2HmaTJw4UfosDQsLwz///JPuOqrI56xffvkFQOrnl7qcJb6m5ubm+S5nUSpmrPyZsbJLeHg4fHx80KtXLzRv3hxOTk6IiopCt27dpKdg5L18+RLr1q3DmDFj0LdvX/j4+MDHx0f6TMtqnjp8+DAOHDiA5s2bKzxFIO/o0aMAgO7du6v8ntZEkOu6s3Tp0ul23Qlk/D0mT3x9tmzZAiD1u8bMzExpuY4dO6JIkSL49OkTrly5Ik0X89TmzZu17uL78OHDANRnFDs7O5QvXx6RkZF6e5L61atXmDZtGkqUKIEZM2aoXCY4OBhxcXHSWEqqpJf7fH19UbhwYWlMXAC4cOECLly4gAEDBuikS1RN4uLiFLrFOnDgAGJjY1Uum5SUJHXrqOrvJgDpPtmWGTmZsbTl5eWF+Ph4qetMdbLj71QxZ4l/I/bp00dte5b4mkZFReWL9iy2X6nGnJV3cpYqnz9/xs6dOzF58mT0799f+l7evXs3gKznFm1cu3YNL1++xP/+9z+4urqqXCa97zt155P4vSE/Plxm21XEfNW/f3+1+yJPLNPLy0uppwgAMDAwkLqPli8nP2cbdWbPnq2xjUmXMpJNckJKSgoGDx4MQRCwYsUKtU+o60peauNOT45149mkSROlAQt9fX1RsWJFTJgwQeNBNDU1hZ2dHRITE7F79+4cfQGzikFJkfgoq6rBrVUJDw8HkDqQtypWVlYoWrQooqKiMtSlRGY8ePAAbdu21fiFoamPfXFfMvMHlq+vr9Rnt6GhIYoUKQIXFxf07dtXb++PAQMG4O3bt2jfvj1u3LiB0NBQLFmyRKFLIZH4aLuNjY3aLyx1x1AXDh48qNAg4uHhgc2bNyt0AQQA58+fR5cuXaTuQVTJ6jgJM2fOxNOnTzF9+nS1+yw+Nl+hQoUMjw94+fJl7NixQ/pjY+vWrSovvslLTEzE58+fYWBgoNTlVnrOnj2r0A+/OKiuKuLrLZ7rQOq4Y82aNcPx48dRvXp1eHh4KHS9qqpbxEePHgEANmzYkO4YBpGRkUrTxAGFs0Icv7Fx48bo2rWryi4U3717J50vac81Vd69e6eyEWvEiBHYtGkTVqxYgblz5+LYsWO4c+eO1I+/Pl2+fBlz5syBsbEx+vfvjxUrVqBv374ICwvL8LmiC2KjkS4aOjK6b+LnmLr3bZEiRWBpaSnVUV7ZsmXh4uKCkydPIjo6Wu1rt3//fmzZsgVWVlZo3749AgMD4e3tjQsXLqj8w0gT+Zy1cuVKrFq1Co6OjmjQoIHKnCW+pu/fv89XOYv+w4yVPzNWdnn//r3CmEPGxsYYMmSINLawvOnTp2PWrFkau+7JSp6Kj4/H8OHDYWJiorJ8kZinxMaijBg/fjwuX74MIHXcv5CQEHh6empcJ6PvMXlpx3NS976TyWQoW7Ys3r9/r5CnBg8ejHXr1uHgwYOoUqUKatSoId2You79KeYpNze3dOsXGRmp1M29/Hsjs8aMGYOPHz9i2bJlar8bxXqePHky3fymKvcBqePi+vr6YtmyZbhz5w6MjIywdOlSFChQAAMHDpQaLvVl0qRJuHfvHr777jsIgoDz589j4sSJChcfRe/evZNuAFN3Hujj76aczFja8vLywi+//JJuNsmOv1PFnCVmrOnTp2P//v0q27PkMxaQt9uz2H6lHnNW7shZe/fuzfDf+gcPHoSvr690DFXJjvEyxe+7hw8fZvr7Lr3vDflumjPbrpLRfCXetPzTTz/hp59+0rqcwYMHY/369fky26hy7NgxHD16VGMbky5lJJvkhPXr1+PixYvw9fXFd999h6CgIL2Wpyo7BAYGYs6cOUrL5nQbd3py7GJf4cKFUaVKFYVp5ubmsLa2lqb36tULdnZ20gt74cIFhIeHo3r16ggPD8e0adOQkpKC8ePHZ3v9dYFBSZkYEmxtbXO4JhnXqVMnPHjwAG3atMH48ePxzTffwMLCAsbGxvjy5YvGO7xSUlLw+PFjAJn7QJAfCDk+Ph53797F8ePHcfz4cdy7dy/dL9SM2rJlC/bt24fixYtj3bp1CAsLQ5MmTTB16lS0adNG6Qszp4mNNZGRkQgODsbIkSPh7u6OoKAgaYyZ2NhYtG/fHm/evIGvry8GDRoEJycnWFhYwNDQEPfv30eFChUyPT4YANy/fx+LFi2Ck5OT3gaY/eeff1CwYEEcOXIEEydOxO7du7FhwwbpzkBVxHFuihUrluELCgEBAdIdb+oGn07P3r178fPPP+P333/HgQMH0n2NxbtrqlevLvWbL/r48aNCI0WdOnWU1lc1aLro6NGj6d45+eXLFwwbNgzGxsZYvnx5uvUEND/1JVL3GeHi4gI3NzesX78e06ZNw9KlS2Fubq7xmOpCQkICvL29kZSUhF9++QVTp07F7du3ERwcjNGjR2fLYPFpiReCs/rHVk7sm5eXF65du4aDBw+qvPvr7du30t2R/v7+6Ny5M86fP4+rV69izpw5Gf4cl89ZxYsXB5B6jqnLWWIjn6mpKR49epQvchYpYsZixsqKKlWqQBAEJCUl4dmzZ1i9ejUWLFiAjx8/YtOmTVKj1J49ezBt2jQUKlQIy5cvR+PGjWFrawszMzPIZDJMnjwZc+bMyVKemjt3Lh49eoSpU6cqjBWoS5cvX0adOnXw008/oV27dujTpw9u3ryJkiVLql0nK+8x8fXw9PTEoUOHMry+s7MzfvvtN6xevRpnzpzB3bt3011HzCmdOnWCubm5xmVVNeDKvzfkff78WXoSQpOQkBBs374dbm5uGp9UE+vp5OSE+vXra9ympobHYcOGYdmyZVi+fDm6deuGXbt24YcfftB4THVBfNrLzMwMgYGBSElJgYuLC5YvXw4vLy+teuDIDnkhY1WrVg1OTk44cuQI4uPjVY77mV2foWLOEjOWvb292vYssYcHc3Nz7NmzJ8+2Z+WG9ivxCbLciDkrd+SsMmXKoFGjRirn7dq1S+kcCg8PR5cuXRAXF4fx48ejR48ecHR0RKFChWBgYIBjx46hefPmWcot2hK/70qWLInmzZsrtW3I0zQOvCby+6GpXSUtVe0q2hLLadCggcqx6OVVrlxZ+r+zszNCQ0MxadKkfJdt0tK2jUlXcns2effuHSZPnowiRYpg3rx5ei9PXXZYsmSJNDZtXpJjF/u08ezZM4WnFuLj4zF16lQ8evQIhQoVQqtWraQ74POa3BCUcqPbt28DUPyA18TOzg53796V7t5IKzo6GlFRUQBSG/j15e7du7h58yasra2xd+9epQsm6T0efufOHXz8+BElSpTQ6gmgtMTukeStWbMGAwcOxLx58zBx4sR0B/DWVnh4OIYPHy6VYWNjg0aNGmHw4MFYsWIFfH19cebMGYX3rvi00tu3b/H582eVdz5o24VjVhQrVkzqFqlt27aYMGGC1K3eX3/9hTdv3qBGjRrYuHGj0rq6eMR/6NCh+PLlC/z9/TUGZnFg6Pv372c4VBYsWBAHDx5E48aN4eDgAFdXV4wYMQINGzZU2yCW0fedKuJ5++TJEwiCoPJONPHul7RPr5mbm2PRokVYtGiR0jqOjo5KAwSLZdWvX18pCD148CDdhr+KFSuqvUvKw8Mj3Yt9GzZswP379zF+/HiVXZeJbGxsYGZmhri4OCxcuDDTgRwAhg8fjs6dO2PatGn4888/MXDgQL0/WSc2zri6umLSpEmQyWTYuHEjqlatio0bN6Jz585qL5rqi9igoumuS21kZt/E81bdZ9WHDx9UPtUn6tixI6ZOnYrdu3ervNg3ePBgREREoF27dvjxxx8BpA6KXr9+fcyYMQPt2rVDtWrVMrnHqsnnLPE1jYuLwzfffJPncxYpY8bKnxkruxkZGaFcuXKYP38+bty4gS1btqBTp05o27YtgNQub4DULvxUde+U1Tz16NEjzJs3D46Ojpg8ebLGZcU8pU3jUFp16tRBUFAQLC0tMXnyZMyYMQM+Pj74888/1d5tr8s8pe59B0BqVE2bp7755hup+3B5ISEhKhs+S5cujQcPHmDChAmoWbNmhuuq6r0BpH5PptcglpiYiCFDhsDIyAgrVqzQuKz4mlSoUCFLd7k7OTmhVatW2Lx5Mz59+oTExETp/aYvnz9/hq+vLwRBwOzZs6XGohkzZmDcuHHo3bs3bt68qdAgaW1tDRMTEyQkJODJkycqzyd9/N2UkxkrIzp27Ij58+cjKCgI7dq1U5iX2/5OFXOW+JpaWVnl2fas3NB+9enTJwwdOjTby9UWc1buyFmurq5qvytCQkKULvYdPHgQcXFx6NChg8qLCvrq6lEV8fWztrZGYGCgVm0baT1+/BjVq1dXmi5+jtnb2yuVp6pdRZMyZcrg3r17uHv3rsoLY2mVKlUKANCuXTuMHTtW63KA1AuR+THbpLVgwQLcv38f/fr109jGpAsxMTEZzibZbeLEiXj37h1WrlyJYsWK6bWs3JYddCHn/lJUISQkBEuWLFH4Xf5D2t3dHbdv30Z8fDzevn2LzZs358m7ZnJDUMqNEhMTpbG8GjRooNU6Yv/Rabu+EYkXbcqXL6/XuzbFEFa8eHGVT0Zt3bpV4/ril0bz5s11ViexsTgmJkZlV4iZ1adPH3z48AE9e/ZU6B5y3rx5KFeuHP7++28sXrxYYR17e3tpLILffvtNaZsJCQnYuXOnzuqYHvHL4s6dO9I08RiKDUNppXcM07Nz504cP34c7du3R8uWLTUuW7NmTdjY2CAyMhL79u3LUDmdOnVC48aNAaQ2+ixcuBAxMTHo3r272u60jh07BkD7950qLi4uKFKkCKKjo7F3716l+XFxcVL/6WL9Mkt8/Q4cOKBynDt9evr0KVavXg17e3v8/PPPGpc1NDREs2bNAPzX+JlZHTp0QJkyZTBv3jwIgoBhw4ZlaXvpOXv2LBYvXgwTExNs2rRJ+lxzdHTEggULAKQGYVUXt8Rxb5KSknRerxo1agD474/pzMjsvol3t+3YsUPle2nz5s0ay61UqRIqVaqEoKAgpT8yt2/fjp07d8La2loa+wVIbWweO3YsEhMT4ePjo7Jc8Y9fbV7viRMnqs1Zt27dApDa53xez1mkjBkr/2YsQL+fu5oULVoUgOo85eDgoLR8REQEjh8/nqUyhw8fjvj4eCxZskTlmHbyxAsK27dvz/DTIHPmzJFuqvn5559Rt25dBAUFqR1vOTPvMVXEjCTfJbu8vXv34v3797CwsMhUI5Y8MU9lNaNkxpIlS3D79m0MHToUVatW1bhskyZNUKBAAYSEhCAiIiJL5Y4YMQKfP3/Gli1bUKdOHdSuXTtL20vPmDFj8PjxYzRs2BAjRoyQpo8ePRr16tXDo0ePlHr7MDIykp5g3LZtm8rtimM76lJOZixA+88xTeMg5/Tfqeras8SM5eHhkSfbs3JD+9WnT5/QokULPHz4MNvL1gZzVt7IWapoyi2CIKj8XNCXWrVqwcbGBrdv3870uO3qvh/E6eJ5B2S+XUXMV+vWrdNqeXE8vp07d+r9Ccm8km3kPX36FLNnz4a9vT2GDBmixxqmmjt3boazCZB9f29cvHgRGzZsgKurKwYMGKDXsgDN2aF06dJ5oo07rVx1se9rkBuCUm7s+uDLly8YPnw4IiMj4eHhofXj//369YOFhQWuXr2K2bNnK3xxXLt2DTNnzgQAjBs3Ti/1Fjk7O0tdPcoPeAuk3in066+/ql33+fPn0ngjgwYN0lmdxIHLzc3Ns/REkby1a9ciKCgItra2Sv04m5ubIyAgADKZDD/99JPSAMYjR44EAEybNk3hDuvk5GSMHTtW6kpSV969e6fyj9V3795h4sSJAFIvhonEu2dOnjyptN7atWvxxx9/ZKk+o0ePRsGCBRX+AFTHyMgIU6ZMAZA66PGlS5eUlrl06ZJCf+uitHebDxkyBK1bt8bly5dVXpw6duwYVq9eDWNjY5VPG2nL2NhYCgpjx46V7joHUv/4GTFiBCIjI1GuXDnpj/TMcnFxgZeXF54/f46OHTuqvGMmJiYG27Zt0/lg5lOnTkVcXBwWL16s1Z1Ofn5+KFCgAMaNG4dNmzapHOD31q1bKhss5BkaGmLGjBlo3bo1Ro0apde7vWJjY+Hj44OUlBRMnz5d6e7UAQMGoEmTJggPD5fe1/LEuwUz+weKJvXq1YOJiQlu3LihshE0PVnZt06dOsHOzg7Pnj3DpEmTFI7lrVu3pO8bTby8vBAXF6dwd+Lr16+lu5RXrFihdOfu9OnT8c033+DatWuYPXu20jZ19XqLg6Fn9WI85T7MWPk/Y4mfA1lppFfn+vXrKp/0CQ4OxsGDBwGozlNr167Fly9fpOnR0dHw9vbW+AR0ek6ePInDhw+jVatWSk/0qNK2bVu4uLjg5cuX6Ny5s9J+xMfHq7xbHFDMU0ZGRti2bRsKFy6MiRMn4ubNmwrLZvY9pkq7du1Qvnx5vHnzBiNGjFC4yePx48cYM2YMAEhjFmbFuHHjYGVlhcWLF2PRokUKx0u+zKze8JZWdHQ0fvnlF5QqVQrTp09Pd/kSJUpg2LBhiImJgaenpzQerbyEhAQcOHAg3ac4mzVrhl69esHDwyPdm7ay6syZM1i7dq3C+1dkYGCAgIAAmJmZYeXKlUqfbWIGWbZsmfT9LJo/fz6uXr2q8/rmZMYCtM8ztWrVQunSpXHgwAGF90du/js1L2es3NB+JV7ou3XrFlauXJnt5aeHOStv5Cx1xNyya9cuvHr1SpqenJyMn3/+WekzWJ+MjY3h5+cHQRDQoUMHaTgaecnJyTh16hTOnz+vchurVq1SOo6//vorLl68iMKFCysMBeLi4oLmzZtnuF1l9OjRKFy4MA4cOICpU6cq3ZAaERGB0NBQ6femTZuiVq1a0vhrqsYbfP/+PVavXp3lC0l5JdvImzp1KmJjY7F48WIULFhQp/VKKygoCH/88Uemson4Pf3gwQON43JnlZh1V6xYoffeTNLLDnPnzs01bdwZkau78cxL5O9oBVK7bPj06ZPCtFu3bmHw4MH43//+h7lz52b5cXBVZaQnJiZG7+M8ZdSGDRswadIkREZGws7OTuGphvSUKFEC27ZtQ+fOnTFlyhRs2bIFLi4uiIiIwOnTp5GUlARfX1/069dP5et94sQJpTtYxD8gr1y5Il0UEokNFO/fv8fEiRPRuXNnuLq6wsbGBkOHDsXSpUvRpEkTuLm5wdbWFvfu3cPVq1cxdepUlQ3BY8eORUBAAKKiomBubo7Vq1dj9erVCsv8+++/AIDQ0FD4+Piga9euSo/y79y5U/pwSUhIwN27d6WntSZMmKCT7qWePHkifeiuXbtW5cDTDRs2xLBhw+Dv7w8fHx+cPXtW+nAeMmQIjh8/joMHD+Lbb79FnTp1YGdnhwsXLuDVq1cYNGgQVq1aleV6ip4/f4727dvjf//7H5ycnFC0aFG8efMGf//9N+Lj42FjY6NwTFxcXNCuXTvs378fLi4u8PDwQNGiRXH9+nXcu3cPkydPxqxZszJdnxcvXmDmzJkq7xhTZcSIEbh37x5Wr16NHj16YOHChahQoQI+fvwodfcRHBys0A2DOhs3bkS1atUwf/58tGjRAu7u7nj69Cm8vLxw5coVGBgYYPLkyVke92by5Mk4d+4cgoKC8M0336BRo0awsLDAuXPn8OzZMxQtWhS7d++W7gjKioCAAHz48AF//vknKlSogG+//RZly5bFp0+f8PbtW9y4cQNfvnzBnTt3dNrtyYsXL1C/fn107txZq+Vr1KiBrVu3wsfHBz4+Ppg6dSq++eYbFCtWDFFRUQgLC8OLFy/QpUsXdOzYUeO2evXqlaF+3zNr/Pjx+Pfff1G3bl2V3WzIZDJs2LABVatWRWBgIDp37oxWrVpJ8728vBAcHIyePXvi+++/h4GBASwtLTFu3DhUqFAhS3UzNTVF8+bNceDAAYSEhKT7lKwu983MzAzbtm1Dq1atsGjRIuzbtw+1atXCu3fvEBISAk9PT1y5ckWp21l5Xl5emDlzpsIYl/369UNUVBQ6d+6MLl26KK1jYmKCwMBAfPfdd5g1axbat2+vMKaCl5cXFi5ciKZNm6Jx48ZSI8y8efNUjkOgSmJiIv766y/p9c2NtMlZupaZMtLWM6cxY2UsY02cOBGGhoYKy+SFjFW3bl3Y2tri2rVrqFGjBqpWrYrY2FjUrl07y42EgYGBWLlyJapXrw57e3upQVC84NWmTRu0bt1aWn7kyJHYvHkzjhw5gnLlyqFu3bpITEzE6dOnUbBgQfTu3Vtld+naePHiBUxNTZX+GFfHwMAAe/fuRfPmzfHnn3+iTJkyaNCgAaytrREeHo4bN27AyspKq6cNy5Urh+XLl8Pb2xvdu3fH5cuXYWpqig0bNmDq1Kl4/fp1ht9jqhgbG+OPP/5As2bNsG7dOgQFBeG7777Dp0+fcOrUKcTHx6NVq1Y6uVBlb2+P/fv3w8vLC2PHjsX8+fNRpUoVlCpVCtHR0bhz5w4ePnyIOnXqZOmGsLQ+fPgAAFi9erXasYjSmjt3Ll69eoXffvtNGluoXLlyMDIywosXL3D9+nXExMTgzz//1DhuH5D6FE1mukbLiA8fPkg37s2fP1+6+1ues7MzZs2ahdGjR6N3794ICwuTbiTz9PTEkCFDsGLFCri5uaFhw4YoVaoUbt68iTt37mDEiBFqnzLNrJzMWIByfhQ/B9PmR5lMho4dO2Lp0qU4deoUmjdvrvO/Uxs1aoQiRYro5O/UvJCxANU569y5czptv0pLm5wVExODoUOH4uHDh1i5cqXSd3ROY87KG21Zmnh6esLV1RVXrvwfe/ceX1V95/v/HS4JIRAChEsIkFARiCIgtzYFKxZ0rAraGTtHjSJ2dEblnMG2M3U4lREqFDpVqx5nMo6X6oj8nIe0dbyCyCFyRJQEhSKkiZdckASSQO6EnZCs3x+bnZV7dpK99vrundfz8fAxk7D2+nx33lnJp99P9l4HNW3aNF155ZWKiYnRJ598oqKiIj344INBuWeYz//8n/9ThYWF+s1vfqPbbrtNmzZt0tSpUxUdHa2TJ0/q0KFDqqioUHp6ur7zne+0e/zf/d3f6fvf/76uuOIKJSYm6vPPP9eRI0c0cOBAvfDCC+1eJbp582adP3++3b6KZVnKz8/vcF9l8uTJ2r59u26++WZt2rRJzz33nFJTUzV48GAVFBTos88+02233db8KtcBAwbo9ddf1/XXX6+XXnpJ27dv1+zZszV58mTV19fr66+/1pEjR9TY2KhVq1Z1+ApTf4VSb+PzzTff6Oqrr9aPfvQjR982tqKiQnfffbek3vUmkydP1vz585WVlaXLLrtM8+fP15AhQxQfH68tW7YEbJ3ffPON7r777j7dJ9If/vQOCxYscKV36DOrn6msrLQkWZWVld0eW1dXZx07dsyqq6vr9JiCggJr6NChlqSQ+m/o0KFWQUFBt1+D3Nxcv76uSUlJliTrd7/7XZfHXXnllZYk6+GHH27+3IMPPmjNmDHDeuihh6ySkpJOH+tbe0eOHTtm3XnnndbEiROtwYMHW3FxcdZVV11lvfrqqx0+l4cffjggX8eWz7epqcn61a9+Zc2bN88aNmyYNWLECGvx4sXNa+ho/b6vW0/+e/nll5sff+edd7b79wEDBlijR4+2li1b1ur5+8v3tWn73JYsWWJJsu66664uH19bW2tNnTrVkmT9+te/bvVvDQ0N1mOPPWZdcsklVmRkpDV69GjrxhtvtA4dOmT97ne/syRZd955p19r6k5paal1xx13WHPnzrVGjx5tDRw40Bo2bJg1e/Zs6+c//7lVVFTU7jH19fXWb37zG+uyyy6zhg4dao0aNcq65pprrPfee8/Ky8uzJFlJSUmtHtPdNeLL5eKLL7Y8Hk+7f/dl2Nlze/fdd62lS5da48aNswYPHmyNGTPGWrhwobVhwwbr9OnTzcd19fXznSciIsKaNGmSdebMGevQoUPW5MmTrVtuucXat29fp8+js/V19vmGhgbrX//1X61vf/vb1rBhw6yoqChr6tSp1po1a6wPP/yw069TZ3zXSF5eXrt/a2xstLZt22Zdd911zV+fuLg4a+bMmdZdd91l/fGPf7Tq6+ubj9+zZ48lybryyis7ref7GbVnz54OPx8ZGWnt2LGj3eO6+/rn5eVZP/nJT6yZM2daMTEx1pAhQ6ykpCRryZIl1pYtW6wvv/zSr3V0pKufjd09LjExsdXndu/ebUVERFjR0dHWn//85y4f/8wzz1iSrAkTJljl5eXNn29sbLQ2b95sXXrppdaQIUOa19fyufi+Xi1/F/jrvffesyRZf/3Xf21ZlmWdP3/eyszMtM6fP9/qubW9VgPx3CzLso4cOWL95V/+pTVq1CgrKirKSklJsTZv3mw1NDR0+f3q861vfcsaPny4de7cOeuFF16wJFljx461SktLu1zT2rVrLUnW7NmzW31f19XVWT//+c+tqVOnWpGRkc1f75Zr6O5n6B/+8Ae/fr631FmPRJ/lf49lWf71WfRYweux9uzZ0/xcnOyxtmzZ0uq5BaLHOnLkiLVixQprzJgx1oABAzr8fef7mvTErl27rL/+67+2vvWtb1kxMTHWoEGDrLFjx1pXX321tXnz5lY/e33y8vKstLQ0a/LkyVZUVJSVlJRk3XvvvdbJkyebvwb+/vzPzc1t/p0hyfrnf/7nDo/r6nu4urra+vWvf20tWLDAGj58ePOaVqxYYb366qutvn+7+/17yy23WJKs1atXW5blvcZmz57d62uss88fP37cuv/++60pU6ZYkZGR1vDhw61FixZZ//Ef/9Hh19yyOv950l3/c+rUKWvdunXW3LlzreHDh1uRkZHWxIkTre9+97vWww8/bP3pT39qVaO73rWzntn3+a7W0t3X/5133rH+8i//0kpMTGz+eZSSkmLdcsst1rZt26za2tpu1+F7Hi1118d1prN+ZuXKlZYka+nSpVZTU1Onj29sbLQWL15sSbLuu+++dv/+wgsvWPPmzbOGDBlijRgxwlq2bJm1Z8+e5kwXLlzo95r80bbHsqz2fZZTPZY//aPPBx98YEmy7rnnHkf+d2pUVFTA/ndqb3osy6LPos8Kzz7Lyb0s33X6wx/+sNNjOvvfatXV1db//t//25o+fbo1ZMgQa+zYsdZNN91kZWVldfg7tLvvq65+//h097t037591ooVK6ykpCQrKirKGj58uDVt2jTrpptusp577jnrzJkzrY5vmVF6ero1Z84cKzo62oqNjbWuvfZaa9++fR3Wyc3N7XBfZfTo0Z3uq/gUFBRYa9asaf66DRs2zJo2bZr14x//2Nq/f3+7r9e5c+esf//3f7euuuoqa/To0c095Zw5c6zVq1dbO3fu7OrL2krbXNpm0pPexrK6z8OJ3qblHpPvd2fL5+FUb5Kamtrr3qSgoMC67bbbrISEBGvQoEEdfk18z6urPZGO+K7PUaNGWWVlZe3+ve3/hvB3XtGXPe7c3FxHe4fnn3++3V5WZ/z5ne4TYVkOv2GuYaqqqjRixAhVVlZ2O20/d+6c8vLyNGXKFA0ZMqTT4woLC9u9j3RhYWGn9/4KlL7UiI+P9+uxTv/VYzDrBLJGfn6+pkyZot/97netbt7a0xrJyclKTk5u9/Lojrz44ou666679PLLLwf0L1DaWr9+vTZs2NDuuQVaT75WvV1TqH1fUYMawawTERGhxMTEDt8ONpA6eh6+n2cPP/yw1q9f36PzWZalWbNm6YsvvtA333yjkSNH6rPPPtPll1/e/Ne+ERERSkpKcvWmyJ35x3/8Rz366KN68803dcMNNwSlZnc/Q5cvX663335bn376aYc3dO9IZz0SfZb/PZYUPj+zwqXH2rNnjxITEx37evmuxS1btnR4L4xA6ujrlZycrIKCgoDdLyXUvreoQY1A1+iqn3HreQSyx4qPj1djY2OrPsuEHqupqUkTJkyQZVkqLi52/G2+uuJEjyXRZ3WFPqtvwnkvSwq9PAJVx/d2jD3t8cLl60UNW3d9gNPPY8mSJfrggw+Ul5en5ORkx+r4+zz6ssft1NfKt6bnn39es2bNarWX1Rl/f6dLvI1nQEyePLldszF8+HDHfwgEowYAACaJiIjQ448/rmuuuUZbtmwJ6tuqBMI999yjmJiYPt9rKVAyMzP11ltvadWqVT3ahAom+iwAAJzXtsd69NFH3V5ShwYMGKCnnnpKx44d0+nTpzVmzBi3l9ShUOixJPosAADCCcM+oBdGjhypzZs3a968eX06z6OPPqphw4b5dezixYv1u9/9rsP3VQaA/uTqq6/WTTfdpH/913/V//pf/8vt5fTItGnTevyX9k5au3athg8frs2bN7u9FECSuz3WjBkzHL8XJACYrGWP9cADDyghIcHtJXXor//6r91eQrfosWAi9rIAILwx7AN6YcSIEe1ueNwbN998s9/HTp06VVOnTnX0hq0AECr++Mc/SpIaGxtVWlrq8mpC1/vvv+/2EoBW3OyxJDHsA9Dv+XosydtnoXfosWAi9rIAILwx7AMAAAAAAAAAIMQE6n7MAEIfwz4ArSxZskSnT5826r4CS5YskSSj1gSEuocfflgNDQ2u1J4zZ44efvjh5ms70B5++GHFxcU5cu5QxM9QwAy+a3HGjBmu1H/ggQdUUVHhSm0gHDndz/QGPVZw0WMBAEzidm+yatUqXXbZZcb0Cib+nvatafbs2Y4M6hn2AWhlyZIlSkxMNOpm2UuWLDHqf0QD4WD9+vWuvZXKnDlzHG22TLonngn4GQqYwXctuvWz94EHHnClLhCunO5neoMeK7josQAAJnG7N1m1apUWLVpk1LDPtN/TvjU1Njbqs88+C/j5BwT8jAAAAAAAAAAAAACCgmEfAAAAAAAAAAAAEKIY9vmBG50CAADYAtkb0WcBAADY6LMAAIBPT36XM+zrwqBB3lsaejwel1cCAABgjoaGBknSwIEDe30O+iwAAID2AtFn+R7rOxcAAAhNPekLGPZ1YdCgQYqJidGZM2fU2Njo9nIAAABcZ1mWKisrFRUVpcGDB/f6PPRZAAAArQWqzxo8eLCioqJUWVnJq/sAAAhRPe0LBgVhTSEtPj5ex48fV15enkaMGKHo6GgNHDhQERERXT6usbFR586dc3Rt4VIjWHWoQQ1qUCNUagSrTjjU8A2Jzp0716e/fkb3LMtSQ0ODKisrVVNTo8TExD6fkz6LGibVCFYdalCDGtQIpRoSfVYwONVnnThxQt98841GjBihwYMHd9tjSeH1/UsNaoRijWDVoQY1qOFeje56rN72BQz7ujF06FBNmTJFJSUlKi8vV1lZmV+PKykpcfyvp8KlRrDqUIMa1KBGqNQIVp1wqNHU1KSysjLl5+drwADesCAYoqKilJiYqNjY2D6fiz6LGibVCFYdalCDGtQIlRr0WcEXyD7Ld46ysjKdOHHC78eFy/cvNagRqjWCVYca1KCGezX87bF62hdEWP3s9fxVVVUaMWKEKisre9w8+SaqTU1N3R573333KT09vbfL9Eu41AhWHWpQgxrUCJUawaoTDjVqamo0f/58ZWVladiwYY7VgdfAgQO7fOsI+ixqhHKNYNWhBjWoQY1QqUGfFVxO9lkNDQ1+v216uHz/UoMaoVojWHWoQQ1quFfDnx6ru76gI7yyrwciIiIUGRnp17GnT5/WkCFDHF1PuNQIVh1qUIMa1AiVGsGqEw416uvrVVBQoMjIyKDkAufQZ1HD7RrBqkMNalCDGqFSgz4rfAwePNjvDcNw+f6lBjVCtUaw6lCDGtRwr4ZTPRbvwwAAAAAAAAAAAACEKGOGfVu2bFFERIQeeOCBLo974oknNH36dEVHR2vSpEn6yU9+EpQbowIAAIQq+iwAAABn0GcBAAATGPE2npmZmXrmmWc0a9asLo/btm2b/umf/kkvvPCCvvvd7yo3N1erVq1SRESEHn/88SCtFgAAIHTQZwEAADiDPgsAAJjC9Vf21dTUKC0tTc8++6xGjhzZ5bEfffSRFi1apNtuu03Jycm65pprdOutt+rAgQNBWi0AAEDooM8CAABwBn0WAAAwievDvtWrV+v666/XsmXLuj32u9/9rg4ePNjcDH399dd65513dN1113X6GI/Ho6qqqlb/AQAA9Af0WQAAAM6gzwIAACaJsCzLcqv4q6++qk2bNikzM1NDhgzRkiVLNGfOHD3xxBOdPuapp57SP/zDP8iyLJ0/f1733nuv0tPTOz1+/fr12rBhQ7vPX3vttRo8eHAgnkaHDhw4oIULFzp2/nCqEaw61KAGNagRKjWCVSccajQ0NGjHjh2qrKxUbGysY3VCEX0WNahhZh1qUIMa1AiVGvRZnaPPogY1qBHqdahBDWq4V8OxHstySWFhoTV27Fjr8OHDzZ+78sorrTVr1nT6mD179ljjxo2znn32WetPf/qT9Yc//MGaNGmS9ctf/rLTx5w7d86qrKxs/u/48eOWJKuysjKQT6ed5cuXO3r+cKoRrDrUoAY1qBEqNYJVJxxqVFZWBuX3eqihz6IGNcytQw1qUIMaoVKDPqtj9FnUoAY1wqEONahBDfdqONVjDQrc2LBnDh48qJKSEs2dO7f5c42Njdq7d6+efvppeTweDRw4sNVj1q1bpzvuuEN33323JOmyyy5TbW2t/vZv/1a/+MUvNGBA+3cljYqKUlRUlLNPBgAAwCD0WQAAAM6gzwIAACZybdi3dOlSHTlypNXn7rrrLs2YMUMPPvhgu8ZIks6ePduuAfIdZ7n3bqQAAABGoc8CAABwBn0WAAAwkWvDvuHDh2vmzJmtPhcTE6PRo0c3f37lypVKTEzU5s2bJUnLly/X448/rssvv1zf/va39eWXX2rdunVavnx5h80UAABAf0SfBQAA4Az6LAAAYCLXhn3+KCwsbPWXTw899JAiIiL00EMP6cSJExozZoyWL1+uTZs2ubhKAACA0EOfBQAA4Az6LAAAEGxGDfsyMjK6/HjQoEF6+OGH9fDDDwdvUQAAAGGAPgsAAMAZ9FkAAMBt7e8ADAAAAAAAAAAAACAkMOwDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQhTDPgAAAAAAAAAAACBEMewDAAAAAAAAAAAAQpQxw74tW7YoIiJCDzzwQJfHVVRUaPXq1UpISFBUVJSmTZumd955JziLBAAACEH0WQAAAM6gzwIAACYY5PYCJCkzM1PPPPOMZs2a1eVx9fX1uvrqqzV27Fht375diYmJKigoUFxcXHAWCgAAEGLoswAAAJxBnwUAAEzh+rCvpqZGaWlpevbZZ7Vx48Yuj33hhRd05swZffTRRxo8eLAkKTk5OQirBAAACD30WQAAAM6gzwIAACZxfdi3evVqXX/99Vq2bFm3zdEbb7yh1NRUrV69Wv/93/+tMWPG6LbbbtODDz6ogQMHdvgYj8cjj8fT/HFVVVVA1x/uysvL9corrzhep6CgwPE61KCGE8rLyx09PwD0BX2W2erq6vTpp586WqO8vJwahtWhhv/q6uocPT8A9AV9ltnos6gRqjWCVYc+Cwg/EZZlWW4Vf/XVV7Vp0yZlZmZqyJAhWrJkiebMmaMnnniiw+NnzJih/Px8paWl6f7779eXX36p+++/X3//93+vhx9+uMPHrF+/Xhs2bGj3+Wuvvbb5r6mccODAAS1cuNCx8wejRnl5uT788EPHzg+Ei8WLF2vkyJGOnT8cfp5Qw8w64VCjoaFBO3bsUGVlpWJjYx2rE4ros8yuUVdXp/fff9+x8wPhYtmyZYqOjnbs/OHw84Qa1HAKfVbn6LPMrkGfBfiHPosa1HCnhlM9lmvDvuPHj2v+/PnatWtX83ubd9ccTZs2TefOnVNeXl7zXz49/vjj+s1vfqPi4uIOH9PRX0JNmjTJ8WZ1xYoVeuONNxw7fzBqvPLKK7r99ts1eECEkuOG6ueLLlb04I7/4qwvfvdpgXbnl+nmlAm6KSWh3b/XNTTqX/Z9oeNVdVq7eJouGhUT8Br+eD27SNuzi3VzSoJuSpngSI3uPLn/K2UWV2h09GBtWXYpebicxx+PFen3fy7W1q1blZaW5kgNKTx+nlDDzDrhUKOqqkojRoxgE6oN+izza3z66aeaN2+etv5wnlLGDHekxjtfnNK6PdnUMKgONfyXXVqt2/94UAcPHtTcuXMdqSGFx88TalDDKfRZHaPPMr8GfRY1QrVGsOrQZ1GDGu7WcKrHcu1tPA8ePKiSkpJWP1AaGxu1d+9ePf300/J4PO3eyiAhIUGDBw9u9fmUlBSdPHlS9fX1ioyMbFcnKipKUVFRzj2RfiA5bqgO/u0SDY9y5i/H9hWe1u78Ms0eP0Jpl01q9W/VngZd+8p+nar16INVV2hhYu9ePdVVDX9s3Juj7dnFeuSqFD30vemO1OjOgRPlOnSqQpJ03/wpuntucsBrSOThrwMnyvX2l6cCfl4ACAT6rNCRMma45ibEOXLu7LJqahhWhxoAEPros0JHqP8upEb/qxHMOgDCj2vDvqVLl+rIkSOtPnfXXXdpxowZnb5n+aJFi7Rt2zY1NTVpwIABkqTc3FwlJCR02BghMH6+6GLHBn1d8Q2WPi+p0q47FvV6sNRXG/fmaN2e7C4HS047cKJcV7+8T6OiI3Wqtl5RgwL/ir7ukIfNl8ek2Gh9cabWlTUAQFfoswAAAJxBnwUAAEw0wK3Cw4cP18yZM1v9FxMTo9GjR2vmzJmSpJUrV2rt2rXNj7nvvvt05swZrVmzRrm5uXr77bf1q1/9SqtXr3brafQLTrxVZHcYLNl8g6WZY2N1w7TxrqyBPGwt8/j5ootdWQMAdIc+CwAAwBn0WQAAwESuvbLPH4WFhc1/8SRJkyZN0s6dO/WTn/xEs2bNUmJiotasWaMHH3zQxVUi0Bgs2VoOlnakperB948GfQ3kYWubxxu5J11ZBwAEAn0WAACAM+izAABAsBk17MvIyOjyY0lKTU3Vxx9/HJwFIegYLNnaDpZ4K1XyAIC+oM8CAABwBn0WAABwm2tv4wm05TnfyGDpAhMGS+RhMyEPAAAAAAAAAAA6YtQr+9C/vXS4UJWe8wyWDBkskYeXKXkAAAAAAAAAANARXtkH19U3NkmSSmo9DJYMGCyRh82EPAAAAAAAAAAA6ArDPriq2tOgt3JPSpJWzUlisGTAPfrIw8uEPAAAAAAAAAAA6A7DPrim2tOga1/ZrzN19ZKkibHRrqyDwZIXedhMyAMAAAAAAAAAAH8w7IMrfIOlz0uqtHx6gmvrYLDkRR42E/IAAAAAAAAAAMBfDPsQdC0HS7vuWKRxMVGurIPBkhd52EzIAwAAAAAAAACAnmDYh6BqO1jinnBmDfrIg0EfAAAAAAAAACC0MOxD0DBYspkwWCIPmwl5AAAAAAAAAADQG4PcXgD6B1MGSxn5pdqdV9bvB0vkYTMhDwAAAAAAAAAAeotX9sFxpgyWJDFYEnm0ZEIeAAAAAAAAAAD0BcM+OMqUwVJWUYUkaemU+H49WCIPmwl5AAAAAAAAAADQVwz74BhTBksb9+Yo88JwaUnyGFfWYMJgiTxsJuQBAAAAAAAAAEAgMOyDI0waLK3bk60FE+JcqS+ZMVgiD5sJeQAAAAAAAAAAECgM+xBwpg2WHrkqRfNdGi6ZMFgiD5sJeQAAAAAAAAAAEEgM+xBQJg6W+vM94cjDZkIeAAAAAAAAAAAEGsM+BAyDJZsJgyXysJmQBwAAAAAAAAAATmDYh4BgsGT7pqrO9cESedhMyAMAAAAAAAAAAKcw7EOfMVhq7cVDBQz6RB4AAAAAAAAAAAQDwz70CYMl26lajyRpbEwUgz7yAAAAAAAAAAAgKIwZ9m3ZskURERF64IEHOj3mxRdfVERERKv/hgwZErxFohUGS7YDJ8r1Zk6xJOnO2ZMZ9JEHABiFPgsAAMAZ9FkAAMAEg9xegCRlZmbqmWee0axZs7o9NjY2Vjk5Oc0fR0REOLk0dILBku3AiXJd/fI+jYqO1KnaekUNGhj0NZCHzYQ8AMAk9FkAAADOoM8CAACmcP2VfTU1NUpLS9Ozzz6rkSO7H1BERERo/Pjxzf+NGzcuCKtESwyWbL7B0syxsbph2nhX1kAeNhPyAACT0GcBAAA4gz4LAACYxPVX9q1evVrXX3+9li1bpo0bN3Z7fE1NjZKSktTU1KS5c+fqV7/6lS699NJOj/d4PPJ4PM0fV1VVBWTd3SkvL9crr7ziaI2CggJHa+zbt0+S9Hp2sfLKz0qSPOcb9dLhQpXUerRqTpLe+6pE731V0qc6WUUVkqSM/FK/H5ORX6rdeWVaOiVeknfQFOga3fmmqk4vHirQ2JgofT85XjsvfB0CWaOtts+DPGxu5HH4ZKUk+1pxitPXuuT9mQUg/IRrn1VXV6dPP/3U0Rrl5eWO1sjOzvb+39Jqx2r4+jdqmFOHGv7zndt3rTjF6Wtd8v7MAhB+6LN6jz6LGtRwtw59FhCeIizLstwq/uqrr2rTpk3KzMzUkCFDtGTJEs2ZM0dPPPFEh8fv379fX3zxhWbNmqXKyko9+uij2rt3r44ePaqJEyd2+Jj169drw4YN7T5/7bXXavBgZ+7jVV5erg8//NCRcwOAUxYvXuzXX6T21oEDB7Rw4ULHzh9ONYJVJxxqNDQ0aMeOHaqsrFRsbKxjdUJRuPZZdXV1ev/99x05NwA4ZdmyZYqOjnbs/OHwO50a5tWgz+ocfRYAmIM+ixqhVsOpHsu1Yd/x48c1f/587dq1q/m9zbtrjtpqaGhQSkqKbr31Vj3yyCMdHtPRX0JNmjTJ0Wb1lVde0e2336775idr0eTRfT7fV2dqtfnDXE2KjdbPF12s6MED9btPC7Q7v0w3p0zQTSkJAVh1e74aCybEada4WL2Ve1Jn6uq1fHqCxsVEBazOB/llOlZWowUT4jR/QlyXx2YVVSizqMKvY3tbozunaj16M6dYo6IjdcO08YocOCDgNTrjqzF3/AidqK4jD5mRx43Tx+tYabWOV9Vp7eJpumhUTMBq9ORafz27SNuzi3VzSoJuSpngd419haeVnpWvrVu3Ki0tra9L7tSKFSv0xhtvOHb+cKoRrDrhUKOqqkojRoxgE6qNcO6zPv30U82bN09bfzhPKWOGO1LjnS9Oad2e7KDUeOSqFE0ZOdSRGr6f79Qwpw41el4j1K/17NJq3f7Hgzp48KDmzp3rSA0pPH6nU8O8GvRZHaPP6hv6LGpQw/069Fk9Ey6/16lhTg2neizX3sbz4MGDKikpaXUhNjY2au/evXr66afl8Xg0cODALs8xePBgXX755fryyy87PSYqKkpRUYEbhPTEosmjlXbZpD6d48CJct3/9mHNTYjTjrRUDY/y/vXWvsLT2p1fptnjR/S5Rmd8Nf7iorH6v/llqjvfpA9/fGXA7wl3/9uHdKysRiumJ3R5r7eNe3OUWZTfq3vC+VujO757wi1IHNUqj0DW6IqvRulZD3nInDw+La5Qpee8Plh1RcDz8Pda37g3R9uzi3t9z8T0rPw+rBKAafpDn5UyZrjmJsQ5cu7ssuqg1bju4nGO1ZC8P9+pYVYdavSsRqhf6wDCD31W39BnUYMaZtShzwLCj2vDvqVLl+rIkSOtPnfXXXdpxowZevDBB7ttjCRvM3XkyBFdd911Ti3TVb5Bxsyxse0GGcH00uFCVXrOa9cdiwI+yPDXxr05zX+V5dTgpjsm5FHf2CRJKqn1aO9d3yMP8pBkRh4AzEKfBQAA4Az6LAAAYCLXhn3Dhw/XzJkzW30uJiZGo0ePbv78ypUrlZiYqM2bN0uSfvnLX+o73/mOpk6dqoqKCv3mN79RQUGB7r777qCv32kMMmwmDDJMyKPa06C3ck9KklbNSSIP8pBkRh4AzEOfBQAA4Az6LAAAYCLXhn3+KCws1IABA5o/Li8v1z333KOTJ09q5MiRmjdvnj766CNdcsklLq4y8Bhk2EwYZJiSx7Wv7NeZunpJ0sRY52462xXy8CIPAOGgv/ZZAAAATqPPAgAAwWbUsC8jI6PLj3/729/qt7/9bfAW5AIGGTYTBhkm5fF5SZWWT0/QH7KLg74GiTx8yANAqKLPAgAAcAZ9FgAAcNuA7g9BsJg4yHCLCYMM0/LYdccijYtx5+bc5OFFHgAAAAAAAAAA0zDsMwSDDJsJgwwT8+CtVMlDMiMPAAAAAAAAAIA5GPYZgEGGzYRBBnnYyMOLPAAAAAAAAAAApjLqnn39EYMMW0Z+qXbnlTFYIo9m5GEzIQ8AAAAAAAAAgHl4ZZ+LGGS05vYggzxaIw/yAAAAAAAAAACYj2GfSxhk2LKKKiRJS6fEM1giD0nk0ZIJeQAAAAAAAAAAzMWwzwUMMmwb9+Yo88IwY0nyGFfWQB428vAiDwAAAAAAAABAqGDYF2QMMmwb9+Zo3Z5sLZgQ50p9iTxaIg8v8gAAAAAAAAAAhBKGfUHEIMPmG2Q8clWK5rs0zCAPG3l4kQcAAAAAAAAAINQw7AsSBhm2loMM7glHHhJ5tGRCHgAAAAAAAACA0MGwLwgYZNhMGGSQh408vMgDAAAAAAAAABCqGPY5jEGGzYRBxjdVdeRxAXl4kQcAAAAAAAAAIJQx7HPQV2dqGWRcYMog48VDBeQh8vAhDwAAAAAAAABAqGPY56DNH+YyyJAZg4xTtR5J0tiYKPIgD0nk0dJXZ2pdqQsAAAAAAAAA6DuGfQ6aFBvNIMOAQcaBE+V6M6dYknTn7MnkQR7k0cKBE+Xa/GGuK7UBAAAAAAAAAH3HsM9BP190MYMMAwYZV7+8T6OiIyVJUYMGBn0N5GEjD5tJeUyKjXalPgAAAAAAAACg7xj2OSh6MIMMEwYZM8fG6oZp411ZA3nYyMNmWh4/X3SxK2sAAAAAAAAAAPQdw74wwiDD1nKQsSMtVZEDg/+tTh428rCZmIcbf5gAAAAAAAAAAAgMhn1hgkGGre0gg7dSJQ/ysJmQBwAAAAAAAAAgcIwZ9m3ZskURERF64IEH/Dr+1VdfVUREhG666SZH1xUKGGTYTBhkeM43kscF5GEjDwBuos8CAABwBn0WAAAwwSC3FyBJmZmZeuaZZzRr1iy/js/Pz9c//MM/6IorrnB4ZeZjkGEzZZDx0uFCVXrOkwd5NCMPAG6izwIAAHAGfRYAADCF66/sq6mpUVpamp599lmNHNn9RnxjY6PS0tK0YcMGfetb3wrCCs320uFCBn0yY5BR39gkSSqp9ZAHeTQjDwBuos8CAABwBn0WAAAwieuv7Fu9erWuv/56LVu2TBs3buz2+F/+8pcaO3as/uZv/kb/7//9v26P93g88ng8zR9XVVVJkv7rv/5LQ4cO7f3Cu7Bv3z5J0uvZxcorP+tIjU++KZckFVWf091zk/XeVyV676uSgNbIKqqQJGXkl3Z6TEZ+qXbnlWnplHhJ3sGGE3W68k1VnV48VKCxMVH6fnK8nvzk64DX6I7nfKP+6/MTkqTLxo5wJA+p++dBHl7kYfMnj8MnKyXZP7ucUl5e7uj5AbTnVp916NAhDRs2rPcL70J2drb3/5ZWO3J+Sc39GzX6T41g1aFGz2u888UpZZc5U2df4WnHazQ/j3feaf755QT6LCD46LN6J9x+T1GDGqFYx1fjuU/zNWF4tCM1Dp+scLxGUXWdt8Zzz2nChAmO1JCk4uJix84NBFKEZVmWW8VfffVVbdq0SZmZmRoyZIiWLFmiOXPm6Iknnujw+A8//FC33HKLDh06pPj4eK1atUoVFRV6/fXXO62xfv16bdiwwZknAADokcWLF/v1V6+9deDAAS1cuNCx8werRrDqhEONhoYG7dixQ5WVlYqNjXWsTiiizwKA/oU+ixqBRp/VOfosAOhf5s+fr4SEBMfOHy69AzX841SP5dor+44fP641a9Zo165dGjJkSLfHV1dX64477tCzzz6r+Ph4v+usXbtWP/3pT5s/rqqq0qRJk/Q3l0/WVVPG9GjNX52p1eYPczUpNlo/X3SxogcP7PC4331aoN35ZVowIU7zJ8T1qEZ36hub9FbuSZXU1suSHKnh80F+mY6V1XRYI6uoQplFFQGp31Wdrpyq9ejNnGKNio7UDdPGK3Jg5+9K29sa3fHlcaauXomx0cqvqHMlE/LwCnYee/PLdLSsRgmX3K64hPmO1KgozlLxsa1KXvAzRcdOcrRGytInFDNyqiM1asu/VPbuB3TvvfcqLS3NkRqStGLFCr3xxhuOnT9YNYJVJxxqVFVVacSIEY6dP1S53Wf9xw1zNM+hn73vfHGq+e2Rp4x06F0aCk8rPSufGv2oRrDqUMN/r2cXaXt2saP9SVnBHuVnPhbyNeizqOEU+qyO0Wf1Tbj8nqIGNZwSjDq+vevhY2aruvSw4r/1A42Z8hcBrVH859dUcWKf4r91ncZMuabT4+qqClT4aboih41X0px7NWBQ9z9Xe1qjO03nz6ng0L+rvuakJs+9T9GxSc3/VnkyS0VHt+rGG2/UQw891Osa3QmX3oEa/nGqx3Jt2Hfw4EGVlJRo7ty5zZ9rbGzU3r179fTTT8vj8WjgQHuY9tVXXyk/P1/Lly9v/lxTk/eeXIMGDVJOTo4uuuiidnWioqIUFRXV7vPfnjhKaZf5v3F+4ES57n/7sOYmxHV7z6t9hae1O79MK6YnBPQeXdWeBl37yn7VnW/SD1MS9Ifs4oDXaOn+tw/pWFlNuxob9+Yosyg/YPcg66xOV3z3IFuQOMqve5D1pkZ3Wubx4Y+v1IuHCpSelR/0TMjDy608jpbVKC5hvsZP+6EjNSSp+NhWxSddpeFjLnO0RszIqY7WABA8bvdZ0+OHaW5CXACfkc33VnvXXTzOsRqSlJ6VT41+ViNYdajhn7zys9qeXexof1Jb/qUkhXwNAMFFn9V34fB7ihrUcJLTdXx719WlhzVl4c+UPO/vA16jojhLFSf2adjolE73zKpOHVLu/1unYWMu1ezr/1ODInv2FsX+1OjO+foaHX57pRrqTuvyG/9LsePmtDum6OjWXp0bCDbXhn1Lly7VkSNHWn3urrvu0owZM/Tggw+2aowkacaMGe2Of+ihh1RdXa0nn3xSkyY584oXyR5kzBwb69cgwwm+QcbnJVXadccivXioIOhrkLyDJd9feTk1QOmOiXksTBzpSibk4WVKHgBgilDqswAAAEIJfRaAcBH/rR84MujzR9WpQzr01u2KGTWtV4O+QPAN+mrP5GrODVs7HPQBocS1Yd/w4cM1c+bMVp+LiYnR6NGjmz+/cuVKJSYmavPmzRoyZEi74+Pi4iSp3ecDiUGGjcGSV0d5uIE8vEzJAwBMEip9FgAAQKihzwIQLgL91p3+YtAHOMO1YZ8/CgsLNWBA5/f9chqDDBuDJS9T8sjIL9XuvDLyMCQPAAhFbvdZAAAA4Yo+CwA6xqAPcI5Rw76MjIwuP27rxRdfdGwtDDJsDJa8TMlDEnnIrDwAIBSY1GcBAACEE/osAOgegz7AWfyZUQcYZLTGYMmcPLKKKiRJS6fEk4dBeQAAAAAAAADoGIM+wHkM+9pgkGFjsORlSh4b9+Yo80ImS5LHuLIG8rC1zAMAAAAAAABAewz6gOBg2NcCgwwbgyUvk/JYtydbCybEuVJfIo+WTMgDAAAAAAAAMJmnpphBHxAkDPsuYJBhM2GQQR42Xx6PXJWi+S5lQh42E/IAAAAAAAAATHcyZzuDPiBIGPaJQUZLJgwyyMPWMg/eSpU8AAAAAAAAANM1nC2TJEUOjWfQBwRJvx/2MciwmTDIIA8beXiRBwAAAAAAABAaqk4dUlnB+5KkcdP+ikEfECT9etjHIMNmwiDjm6o68riAPLzIAwAAAAAAAAgNVacO6dBbt2vwkDhJ0oCBkUFfA4M+9Ff9dtiXV17LIOMCUwYZLx4qIA+Rhw95AAAAAAAAAKHBN+iLGTVNo5OWurIGBn3oz/rtsO/x/V8yyJAZg4xTtR5J0tiYKPIgD0nkAQAAAAAAAISKloO+2df/pyIGBH8/kUEf+rt+O+xLjI1mkGHAIOPAiXK9mVMsSbpz9mTyIA/yAAAAAAAAAEJE20Ef9+gD3NFvh30PfPsiBhkGDJaufnmfRkV737s5atDAoK+BPGzkYTMhDwAAAAAAAMBkJgz6mhrrGfQB6sfDviGDGWSYMFiaOTZWN0wb78oayMNGHjYT8gAAAAAAAABMZsKgT5JO5f6eQR+gfjzsCzYGGbaWg6UdaamKHBj8b0PysJGHzYQ8AAAAAAAAAJOZMOizmhokSfVnyxj0AWLYFxQMMmxtB0u8lSp5kAcAAAAAAAAQGkwY9J2vr9Hpgt2SpPHTb2bQB4hhn+MYZNhMGCx5zjeSxwXkYTMhDwAAAAAAAMBkpgz6Dr+9Ug3nKiRJUcMSgr4GwEQM+xzEIMNmwmBJkl46XEgeIo+WTMgDAAAAAAAAMJlJg77aM7mKT1oW9PqAyRj2OYhBhpcJg6X6xiZJUkmthzzIo5kJeQAAAAAAAAAmM23QN+eGrRo8ND7oawBMxrDPAQwybCYMlqo9DXor96QkadWcJPIgD0lm5AEAAAAAAACYzMRBH/foA9pj2BdgDDJspgyWrn1lv87U1UuSJsZGB30NEnn4kAcAAAAAAAAQGhj0AaGDYV8AMciwmTRY+rykSsunu3ejVvLwIg8AAAAAAAAgNDDoA0KLMcO+LVu2KCIiQg888ECnxzz77LO64oorNHLkSI0cOVLLli3TgQMHgrfILjDIsJk2WNp1xyKNi4kK+hok8vAhDwBwV6j3WQAAAKaizwIQjhj0AaHHiGFfZmamnnnmGc2aNavL4zIyMnTrrbdqz5492r9/vyZNmqRrrrlGJ06cCNJKO8Ygw2biYIm3UiUPyYw8AMANod5nAQAAmIo+C0A4YtBnK83b6UpdoDdcH/bV1NQoLS1Nzz77rEaO7HoI8Morr+j+++/XnDlzNGPGDD333HNqamrS7t27g7Ta9hhk2Bgs2cjDizwAwF2h3mcBAACYij4LQDhi0GfLP/iUyr5+15XaQG8McnsBq1ev1vXXX69ly5Zp48aNPXrs2bNn1dDQoFGjRnV6jMfjkcfjaf64qqpKkvR2zkmdqvF09jC/eM436qXDhSqp9WjVnCS991WJ3vuqRFlFFZKkjPzSPp2/Ky1rZOSXandemZZOiZfkHWwEukZ3vqmq04uHCjQ2JkrfT47Xk5987UidrnSWRyBrdMVX43efFejrirMBz6Nlje6eB3kEJ4+DF2rUVR1XdemRgJ23pbqq45Kk2vIvHTl/sGr4zr1v3z7HakhSeXm5o+cHQo1bfVZOWY2GRTrTZuaVn5UkZZdWO3J+avTPGsGqQw3/FVXXSQr9HiiYfVZeXp4+/fRTx+rU1dU5dm4gFNFnUYMa1AjVOqW13p8tpXnvNfcqkuSpKdbJnO2KHBqvuAnf1fE/vdDrGr59soqij5WX5f/jmhrrdSr396o/W6bx02/W6eN7dfr43oDW8EdF0ceqOLFPQ0derLPlX6ioqIg+C8aLsCzLcqv4q6++qk2bNikzM1NDhgzRkiVLNGfOHD3xxBN+Pf7+++/Xzp07dfToUQ0ZMqTDY9avX68NGzYEcNUAAJMtXry427+s7YsDBw5o4cKFjp0/mHXCoUZDQ4N27NihyspKxcbGOlYnFNFnAQACbdmyZYqOjnbs/OHQm4RTDfqsztFnAQACjT6r/9Rwqsdy7ZV9x48f15o1a7Rr165OG5uubNmyRa+++qoyMjK6fPzatWv105/+tPnjqqoqTZo0SVdOHqVLxvbuC1nf2KS3ck/qTF29lk9PaHePvg/yy3SsrEYLJsRp/oS4XtXojq+GJMfq+PM8TtV69GZOsUZFR+qGaeMVObDn7wzb169Xd3kEooY/th8tUmldvRKHDdGKGeMdqdHd8yAPWzDy2JtfpqNlNUq45HbFJcx3pEZFcZaKj21V8oKfKTp2UsjXuHTMcK29YpojNfYVnlZ6Vr7uvfdepaWlOVJDklasWKE33njDsfMHs0441KiqqtKIESMcO3+ocrvP+sUV05QyZniv1t4d37X+yFUpmjJyKDWoEVJ1qOG/17OLtD27OGx6ICdr1FUdV37mY3rkqhRdd/E4R2pkl1br9j8e1K9//WvNnTvXkRpSePQm4VSDPqtj9FnUoAY1Qr0n/d2nBdqdX6a4xEWKHjFFDWfLVFbwvgYPidPopKWKGND3WwFVFH2iuoovNGzMbA0fc1m3x1tNDTpdsFsN5yoUn7RMg4fGB7yGP6pLj6im9HDzOesq81RxYp/um5+su+cmB6RGW/RZ/a+GUz2Wa8O+gwcPqqSkpNU3cGNjo/bu3aunn35aHo9HAwcO7PCxjz76qLZs2aL333+/25sgR0VFKSqq/bAhbfZk3dOLC9R3D7K680368MdXdngPsvvfPqRjZTVaMT3BsfuDLXw2Q5K0dEq83l+52JEa3T0P3z3hFiSO6tM94fry9fInj77W8MfGvTkqrauXJN27YIpjuXf1PMjDFsw8jpbVKC5hvsZP+6EjNSSp+NhWxSddFbDGxc0at8ycqLTLnNnokqT0rHzHzg2EErf7rGsuGqvvJXX/P856Kz0rX9ddPE5zE+KoQY2Qq0MN/+SVn9X27OKw6YGcrFFdekT5mY9pysihjl8jAOizqEENaoR+T7qv8LR255cpYcaPNHTEFB1663bFjpsd0Hv0/fmDX6iu4gvFJy/TlPl/3+Wxvnv0NTV6NO+Hv/f7Hn09qeGP/INPqfjYVk1Z+DMlz/Oe72TuH1VxYp8mDI+mz4LxXBv2LV26VEeOtL7H1V133aUZM2bowQcf7LQx+pd/+Rdt2rRJO3fu1Pz5zrySpjO+QcbnJVXadceiTgcZTtu4N0eZF+4VtiR5jCtr8A2WZo6N7dNgqS9MymPdnmwtmBDXnEuwkYfNhDwAwG2h2GcBAACEAvosAOGirqpAuf9vnWJGTQvooK8nfIO+2jO5mnPDVr8HfYGWf/Ap5R14rNWgDwg1rg37hg8frpkzZ7b6XExMjEaPHt38+ZUrVyoxMVGbN2+WJP3617/WP//zP2vbtm1KTk7WyZMnJUnDhg3TsGHO/jBikGFjsGTz5fHIVSkqqq5zJRPysJmQBwCYINT6LAAAgFBBnwUgXBR+mq5hYy5l0MegD2Gi5zf0CqLCwkIVFxc3f5yenq76+nrdfPPNSkhIaP7v0UcfdXQdJg4ynLrPWXcYLNla5uHU20R2hzxsJuQBAKHElD4LAAAg3NBnAQgFkcPGM+hj0Icw4tor+zqSkZHR5cf5+flBW4uPqYOM+98+FPQ1MFiymTBYIg+bCXkAgOlM7LMAAADCAX0WgFCUNOdeBn0M+hBGjH5ln9sYZNgYLNlMyOObqjryuMCEPAAAAAAAAIBQMmDQkKDXZNAHOIdhXycYZNgYLNlMyEOSXjxUQB4yJw8AAAAAAAAAnWPQBziLYV8HGGS0xmDJy4Q8TtV6JEljY6LIw6A8YIavztS6vQQAAAAAAAC0waAPcB7DvjYYZNgYLNlMyOPAiXK9meO9wfedsyeThxF5nHSlNto7cKJcmz/MdXsZAAAAAAAAaIFBHxAcDPtaYJBhY7BkMyWPq1/ep1HRkZKkqEEDg74G8rD58hh9IQ+4y5fHpNhot5cCAAAAAACAC5oa6xn0AUHCsO8CBhk2Bks2k/KYOTZWN0wb78oayMPWMo/rp41zZQ2wtczj54sudns5AAAAAAAAuOBU7u8Z9AFBwrBPDDJaYrBkMy2PHWmpihwY/EuWPGwm5AFb2zyiBwf/DxMAAAAAAADQmtXUIEmqP1vGoA8Ikn6/U80gw2bCIIM8bG3z4K1UyQM28gAAAAAAADDP+foanS7YLUkaP/1mBn1AkPTrYR+DDJsJG+ee843kcQF52MgDbZEHAAAAAACAec7X1+jw2yvVcK5CkhQ1LMGVdTDoQ3/Ub4d95xoYZPiYsnH+0uFC8hB5tEQeaIs8AAAAAAAAzOMb9NWeyVV80jLX1sGgD/1Vvx32PfHJVwwyZMbGeX1jkySppNZDHuTRjDzQFnkAAAAAAACYp+Wgb84NWzV4aLwr62DQh/6s3w77TlTVMcgwYOO82tOgt3JPSpJWzUkiD/KQRB5ojzwAAAAAAADM03bQxz36AHf022HfT1OnMsgwYLB07Sv7daauXpI0MTY66GuQyMOHPGwm5AEbeQAAAAAAAJiHQR9gjn477JsyMsaVugwyvHyDpc9LqrR8ujs3apXIw4c8bCbkARt5AAAAAAAAmMeUQV9F0ccM+gD142GfGxhkeLUcLO26Y5HGxUQFfQ0SefiQh82EPGAjDwAAAAAAAPOYMuiTpIoT+xj0AWLYFzQMMrzaDpZ4K1XykMgD7ZEHAAAAAACAeUwZ9FWXHpEkxSUuYtAHiGFfUDDI8GKwZCMPG3mgLfIAAAAAAAAwjymDvvyDT6mm9LAkKW7Cd1xZA2CaQW4vINwxyPAyZbCUkV+q3Xll5EEezUzIAzbyAAAAAAAAMI9Jg768A49p2JjZzQM/AAz7HMUgw8uUwZIk8hB5tGRCHrCRBwAAAAAAgHlMG/RNWfgznas5xbAPaIG38XQQgwxzBktZRRWSpKVT4smDPCSZkQds5AEAAAAAAGAeEwd93KMPaM+YYd+WLVsUERGhBx54oNNjjh49qr/6q79ScnKyIiIi9MQTTwRtfT3BIMPLlMHSxr05yryQyZLkMa6sgTxs5IG2yANwXjj1WQAAACahzwIQzhj0AaHDiGFfZmamnnnmGc2aNavL486ePatvfetb2rJli8aPHx+k1fUMgwwvkwZL6/Zka8GEOFfqS+TREnmgLfIAnBdOfRYAAIBJ6LMAhDMGfUBocX3YV1NTo7S0ND377LMaObLrAcSCBQv0m9/8RrfccouioqKCtEL/McjwMm2w9MhVKZrvUibkYSMPtEUegPPCqc8CAAAwCX0WgHDGoA8IPYPcXsDq1at1/fXXa9myZdq4cWPAz+/xeOTxeJo/rqqqkiS9nXNSp2o8nT2sxzLyS7U7r0xLp8SrynO++XNO8b1VaMsa31TV6cVDBRobE6XvJ8fryU++DniN7njON+qlw4UqqfVo1ZwkvfdVid77qiTgdbrTMg+narTVtkag8+ioRnfIw9k8Dl6oUVd1XNWlR/p8vo7UVR2XJNWWf+nI+YNdw8k8Dp+slCTt27evz+fqSnl5uaPnBwLJrT4rp6xGwyKdaTPzys9KkrJLqx05PzX6Z41g1Qm3Gu98cUrZZc7UOXyyQlL49EBO1vCdO6/8rD4trnCkhu/7KTs725Hz+9TV1Tl6fiCQ6LOoQQ1qOFnnuU/zNWF4tCM1sk5USJJK895r7lVaamqs16nc36v+bJnGT79Zp4/v1enje3tUw7dPVlH0sfKyerfOiqKPVXFin+ISF8mypLyspwJeo9s1nPhIklRUXUefBeNFWJZluVX81Vdf1aZNm5SZmakhQ4ZoyZIlmjNnjl/vXZ6cnKwHHnigy/dEl6T169drw4YNgVkwAACSFi9e3O1f7/bVgQMHtHDhQmp0o6GhQTt27FBlZaViY2MdqxOK6LMAAKFo2bJlio52ZnNTCo/+J1g16LM6R58FAAhF9Flm1HCqx3LtlX3Hjx/XmjVrtGvXLg0ZMsSxOmvXrtVPf/rT5o+rqqo0adIkXTl5lC4Z2/cvZFZRhTKLKrRgQlzzWxN+kF+mY2U1rT4XaC1rTBoRrTdzijUqOlI3TBuvyIGBeXfWnjyP+sYmvZV7Umfq6rV8eoLGxfj/thSB/Hp1lEega3TGVyMlfpi+PFMT8Dxa1ujueZCHtDe/TEfLapRwye2KS5jvSI2K4iwVH9uq5AU/U3TsJGr4USMY18fNKRN0U0pCp8fVNTTqX/Z9oeNVdVq7eJouGhXjd419haeVnpWve++9V2lpaYFYdqdWrFihN954gxrdqKqq0ogRIxw7f6hyu8/6xRXTlDJmuCM1fdfhI1elaMrIodSgRkjVCZcar2cXaXt2sVKWPqGYkVMdqVFWsEf5mY+FTQ/kZI26quPKz3xM981P1qLJox2p4fu+2vrDeY79fM8urdbtfzyoX//615o7d64jNaTw6H+CVYM+q2P0WdSgBjWc7El/92mBdueXacKlt2vEeGf2s4r//JoqTuzTsDGzNXzMZc2ft5oadLpgtxrOVSg+aZkGD43vdY2Kok9UV/FFuxr+qC49oprSw90+ti81utNwtkxlBe9r4KAhamyo0c0pCbopZUJAa/jQZ/W/Gk71WK4N+w4ePKiSkpJW31yNjY3au3evnn76aXk8Hg0cOLDPdaKiojp8P/S02ZN1z9zkPp17494cZRZ5f8g/9L3pzZ+//+1DOlZWoxXTE1p9PpB8NeYmxOn/+/wbLUgcFfB7Xvn7PHz3hKs736QPf3xlj+8JF6ivV2d5BLJGV3w1vi6vdSSPljW6eh7kYdc4WlajuIT5Gj/th47UkKTiY1sVn3RVwJuKcK0RjOtj9vgRSrus48003/VxqtajD1Zd0at7WKZn5fdxpYDz3O6zrrlorL6X1Pv/Ydid9Kx8XXfxOM1NiKMGNUKuTjjUyCs/q+3ZxYoZOdWx3sH31pTh0gM5WaO69IjyMx/TosmjO+2BAiE9K18pY4Y7fh0CpqPPogY1qOFkjX2Fp7U7v0wjxju3n1VRnKWKE/sUn7xMU+Z774Pnu0dfU6NH8374+z7fo+/PH/xCdRVftKrhj/yDT6n42Fa/7tHX2xrdqTp1SIfeul2x42YrYfqPlPPBP2n2+Dj6LBjPtWHf0qVLdeRI63tc3XXXXZoxY4YefPDBgDRGTtq4N0fr9mR3OMgIphcPFWjehJGObJz7w7dx/nlJlXbdsahXG+eBYEIep2q976U/NiaKPAzKA2bh+gCCI9T7LAAAAFPRZwEIN75BX+2ZXM25YWufB329lX/wKeUdeMyvQZ9TfIO+mFHTNPv6/1RZ/i5X1gH0hmvDvuHDh2vmzJmtPhcTE6PRo0c3f37lypVKTEzU5s2bJUn19fU6duxY8/9/4sQJHTp0SMOGDdPUqc68fUxHTBpksHFuRh4HTpTrzZxiSdKdsyeThxF5nHSlNrrW368PIFhCuc8CAAAwGX0WgHDCoM/WdtA3KHKYK+sAeitwN0tyQGFhoYqLi5s/Lioq0uWXX67LL79cxcXFevTRR3X55Zfr7rvvDtqazBlkMFiSzMnj6pf3aVR0pCQpalDw/4qPPGy+PEZfyANm6c/XB2AaE/ssAACAcECfBSAUNDXWM+i7gEEfwoFrr+zrSEZGRpcfJycny7Ks4C2oDZMGGaOiI3Wqtr5fb5yblMfMsbFKiR+m5z8rDPoayMNmQh4wiynXB2AC0/ssAACAUEWfBSAUncr9vc7XVzPoY9CHMGH0K/tMYtog44Zp411Zgykb56blsSMtVZEDg385kYfNhDxgFlOuDwAAAAAAAFNYTQ2SpPqzZQz6GPQhjLAb7gcGGV6mbJybmAdvpUoeMIsp1wcAAAAAAIApztfX6HTBbknS+Ok3M+hj0IcwwrCvGwwyvEzZOCcPL8/5RvK4wIQ8YBZTrg8AAAAAAABTnK+v0eG3V6rhXIUkKWpYgivrYNAHOINhXxcYZHiZsnFOHraXDheSh8zJA2Yx4foAAAAAAAAwhW/QV3smV/FJy1xbB4M+wDkM+zrBIMNmwsY5eXjVNzZJkkpqPeRhQB4wiynXBwAAAAAAgClaDvrm3LBVg4fGu7IOBn2Asxj2dYBBhpcpG+fk4VXtadBbuSclSavmJJEHgz60YMr1AQAAAAAAYIq2gz7u0cegD+GLYV8bDDK8TNk4Jw8v3z0Tz9TVS5ImxkYHfQ0SecBMplwfAAAAAAAApmDQZ2PQh/6AYV8LDDK8TNk4Jw8vXx6fl1Rp+XR3bpwrkQfMZMr1AQAAAAAAYApTBn0VRR8z6AOChGHfBQwyvEzZOCcPr5Z57LpjkcbFRAV9DRJ5wEymXB8AAAAAAACmMGXQJ0kVJ/Yx6AOChGGfGGT4mLJxTh5ebfPgrVQZ9MFmyvUBAAAAAABgClMGfdWlRyRJcYmLGPQBQdLvh30MMrxM2TgnDy/ysJmQB8xiyvUBAAAAAABgClMGffkHn1JN6WFJUtyE77iyBgZ96I8Gub0ANzHI8DJl4zwjv1S788rIgzyamZAHzGLK9QEAAAAAAGAKkwZ9eQce07Axs5sHfsHGoA/9Vb8d9r2dU6z/zj3V7wcZJm2cM1gij5ZMyANmMen6AAAAAAAAMIFpg74pC3+mczWnXBn2MehDf9Zv38aTQZ85G+dZRRWSpKVT4smDPCSZkQfMYsr18Xp2kSt1AQAAAAAA2jJx0Mc9+gB39Nth343TxvXrQYYpG+cb9+Yo88JwaUnyGFfWQB428oCJTLo+tmcXu1IbAAAAAACgJQZ9NgZ9QD8e9l0/PcGVuiYMMkzaOF+3J1sLJsS5Ul8ij5bIAyYy7fq4OcWd3x0AAAAAAAA+DPpsnppiBn2A+vGwzw0mDDJM2zh/5KoUzXdpuEQeNvKAiUy8Pm5KmeDKGgAAAAAAACQGfW2dzNnOoA8Qw76gMWGQYeLGOW+lSh6SGXnALFwfAAAAAAAArTHoszWcLZMkRQ6NZ9AHiGFfUJgwyGDj3EYeNvKAibg+AAAAAAAAWmPQZ6s6dUhlBe9LksZN+ysGfYAY9jnOhEEGG+e2b6rqyOMC8oCJuD4AAAAAAABaY9Bnqzp1SIfeul2Dh8RJkgYMjHRlHYBp/B72FRUVObkObdmyRREREXrggQe6PO61117TjBkzNGTIEF122WV65513HF1XX5gwyGDjvLUXDxWQh8gDZuL6QH9GnwUAABB4TvdYEn0WAOcx6LP5Bn0xo6ZpdNJSV9YAmMrvYd+ll16qbdu2ObKIzMxMPfPMM5o1a1aXx3300Ue69dZb9Td/8zf67LPPdNNNN+mmm27S559/7si6+srtQQYb57ZTtR5J0tiYKPIgDxiI6wP9HX0WAABA4DnZY0n0WQCcx6DP1nLQN/v6/1TEAPYTgZb8HvZt2rRJf/d3f6cf/ehHOnPmTMAWUFNTo7S0ND377LMaObLrzd0nn3xS1157rf7xH/9RKSkpeuSRRzR37lw9/fTTAVtPIJgwyGDj3HbgRLnezCmWJN05ezJ5kAcMw/UB0GcBAAA4wakeS6LPAuA8Bn22toM+7tEHtDfI3wPvv/9+/eAHP9Df/M3f6JJLLtGzzz6r5cuX93kBq1ev1vXXX69ly5Zp48aNXR67f/9+/fSnP231ub/4i7/Q66+/3uljPB6PPB5P88dVVVWSpLdzTupUjaezh/XaN1V1ej3bO8j41sgYPfnJ1wGvIUlZRRWSpIz80nb/5jnfqJcOF6qk1qNVc5L03lcleu+rkoDW8EdGfql255Vp6ZR4Sd6NdCfqdOWbqjq9eKhAUQMHqqGpUfu/OdPpOvqqs+cRqDy6quGP/pbHwQvPo67quKpLjzhSo67quCSptvxLR84fjjVC/fo4fLJSkrRv375erbEnysvLHa8Bc4Rbn5VTVqNhkX63mT2SV35WkpRdWu3I+anRP2sEq0641CiqrpMUPv1JqNfwnXtf4WnHavjO7eT3le/c2dnZjtWQpLq6OkfPD7M41WNJ9FnUoAY1nFF64UUkJV+9o68/+RfVny3T+Ok36/TxvTp9fG9Aavj2ySqKPlZeVtfHVhR9rIoT+xSXuEiWJeVlPRXwGt3x1BTrZM52RQ6NV9yE7+r4n14IeI3O1Jz29iUZeYHfJ/U5fLJCEn0W+i7Csiyrpw96+umn9ZOf/EQpKSkaNKh1g/Hpp5/6fZ5XX31VmzZtUmZmpoYMGaIlS5Zozpw5euKJJzo8PjIyUi+99JJuvfXW5s/927/9mzZs2KBTp051+Jj169drw4YNfq8JAABTLF68uNu/Eu6LAwcOaOHChY6dPxg1GhoatGPHDlVWVio2NtaxOsFEnwUA6KnB0fGKHTvH0RqnC9539PzBtGzZMkVHRzt2/nDosaTw67MC1WNJ9FkAAHSGPqt7TvVYPf5ToIKCAv3hD3/QyJEjdeONN7ZrkPx1/PhxrVmzRrt27dKQIUN6dQ5/rF27ttVfT1VVVWnSpEm6cvIoXTI2cF/IU7UevZlTrFHRkRo5JFJ/Pl2jBRPiNH9CXMBqtPRBfpmOlbWuUd/YpLdyT+pMXb2WT0/QuJiogNfwR1ZRhTKLKvx+XG/rdKVlHjdMG6/9x88EvEZbbZ9HoPPoqIY/+msee/PLdLSsRgmX3K64hPmO1KgozlLxsa1KXvAzRcdOokY3Nc5V5uui1H9y5PyS96/as3c/EJTr4+aUCbopJaFvC77gqzO12vxhribFRuvniy5W9OCB2ld4WulZ+br33nuVlpYWkDodWbFihd544w3Hzh+MGlVVVRoxYoRj5w+2cOmzfnHFNKWMGe5ITd/18chVKZoycig1qBFSdcKlxuvZRdqeXRwW/Um41KivPalZ1z3vyPl99qQn6b75yVo0ebQj5/d972794TzHfodkl1br9j8e1K9//WvNnTvXkRpSePRYUnj1WYHqsST6LGpQgxrO9qS/+7RAu/PLJA1QfPI1Gjw0PuA1Koo+UV3FFxo2ZraGj7msw2OqS4+opvRwl8f0tUZ3Gs6WqazgfQ0eEqfRSUvb3aMvEDW6U160X+cqvlLEgEjNuHKLYkZPC3gN337WzSkJuillQsDPL9FnmVbDqR6rR93Ns88+q5/97GdatmyZjh49qjFjxvS68MGDB1VSUtIq+MbGRu3du1dPP/20PB6PBg4c2Oox48ePb/cXT6dOndL48eM7rRMVFaWoqPZDlrTZk3XP3ORer7+lAyfKdfXL+7QgcZR2pKXqwfeP6s+na7RieoJj9326/+1DOlZm1/Dd86rufJM+/PGVAbnnVdsa/ti4N0eZRfk9uudVb+p0pW0ew6MGB7xGR1rWWPPtbwU8j7Y1/Hke/T2Po2U1ikuYr/HTfuhIDUkqPrZV8UlXOdZUhFONktqTjp7fJxjXx+zxI5R2Wd837A6cKNf9bx/W3IS4dvd4Tc/K7/P5EVrCqc+65qKx+l5S4P9HqU96Vr6uu3ic5ibEUYMaIVcnHGrklZ/V9uzisOhPwqVGyZdvOXbulhZNHh2QHqgz6Vn5Shkz3PFrHf1LIHssiT6LGtSghrM19hWe1u78MiUvWKMp8x9wpMafP/iF6iq+UHzyMk2Z3/4efPkHn1Lxsa19ukdfdzW647tHX+y42Z3eo6+vNbpzvr5GH2+7UpKUNG+1xs/4q4DXaGn2+Dj6LPSJ38O+a6+9VgcOHNDTTz+tlStX9rnw0qVLdeRI6/to3XXXXZoxY4YefPDBdo2RJKWmpmr37t164IEHmj+3a9cupaam9nk9veUbZMwcG9tuozZYfIO+z0uqtOuORQEbLPXUxr05Wrcnu0cb54FmQh6e843kcYEJeQAd4fqAaeizAAAAAi/QPZZEnwUgOKJjk1ypm3/wKeUdeKxPg76+8g36YkZN63TQ57Tz9TU6/PZKNZyrkOReHkBP+D3sa2xs1J/+9CdNnDgxIIWHDx+umTNntvpcTEyMRo8e3fz5lStXKjExUZs3b5YkrVmzRldeeaUee+wxXX/99Xr11VeVlZWl//iP/wjImnrKhI1aBks2E/KQpJcOF6rSc548DMkDaIvrAyaizwIAAAi8QPdYEn0WgPDFoM/LN+irPZOr+KRlKsvfEfQ1AL0xwN8Dd+3aFdDmyB+FhYUqLi5u/vi73/2utm3bpv/4j//Q7NmztX37dr3++uvtmqxgMGWj9qXDhQz6ZEYe9Y1NkqSSWg95GJQH0BLXB0xFnwUAABB4bvRYEn0WgNDDoM+r5aBvzg1bHblnIuCU3t+R2AEZGRldfixJP/rRj/SjH/0oOAvqhAkbtS0HS3vv+h6DJQPeSvWt3JOSpFVzksjDgDzezj3V/YHoV7g+0N+FSp8FAAAQauizAIQyBn1ebQd9sePmqOjPrwV9HUBv+f3KPniZsFHLYMlmSh7XvrJfZ+rqJUkTY6ODvgaJPHx8eZy+kAcgcX0AAAAAAAC0xaDPq6NBHxBqGPb1gAkbtQyWbCbl8XlJlZZPTwh6fR/y8Gqdx/ig14eZuD4AAAAAAABaqyj6mEGfGPQhfDDs85MJG7UMlmym5bHrjkUaFxMV9DVI5OFjSh4wC9cHAAAAAABAexUn9jHoY9CHMMKwzw8mbNSaMshg49yrbR68lSp5wDxcHwAAAAAAAK1Vlx6RJMUlLmLQZ8Cgryj7VVfqIvww7OuGCRu1pgwy2Dj3Ig8becBUXB8AAAAAAACt5R98SjWlhyVJcRO+48oaGPTZ8g8+paKjW12pjfDDsK8LJmzUmjLIYOPcy5Q8MvJLyUPm5AGzcH0AAAAAAAC0ln/wKeUdeEzDxsx2bQ0M+my+PCZcersr9RF+GPZ1woSNWlMGGWyce5mShyTtzisjD4PygFm4PgAAAAAAAGy+wdKUhT/T8DGXubIGBn22lnlMSLnFlTUg/DDs64AJG7UmDTLYODcnj6yiCknS0inx5GFAHjBTf78+AAAAAAAAfFoOlrhHn1mDPrfyQHhi2NeGCRu1pgwyGCx5mZLHxr05yryQyZLkMa6sgTwQCvrz9QEAAAAAAOBjwmCJQZ/NhDwQvhj2tWDCRq0pgwwGS14m5bFuT7YWTIhzpb5EHkBXTLg+AAAAAAAAfEwYLHlqihn0XWBCHghvDPsuMGGj1pRBBoMlL9PyeOSqFM13KRPyADpnwvUBAAAAAADgY8pg6WTOdgZ9MicPhDeGfTJjo9aUQQaDJS8T8+CtVN3PA2jLhOsDAAAAAADAx4TBUsPZMklS5NB4Bn0G5IH+od8P+0zYqDVlkMFgyYs8bOQBdM6E6wMAAAAAAMDHhMFS1alDKit4X5I0btpfMehj0Icg6dfDPhM2ak0ZZJgwWPqmqo48LiAPL1PyANoy4foAAAAAAADwMWGwVHXqkA69dbsGD4mTJA0YGBn0NTDoQ3/Vb4d9eeW1rm/UmjLIMGGwJEkvHiogD5GHjyl5AB1x+/oAAAAAAADwMWGw5Bv0xYyaptFJS11ZA4M+9Gf9dtj3+P4vGWTIjMHSqVqPJGlsTBR5kIckc/IA2jLh+gAAAAAAAPAxYbDUctA3+/r/VMSA4O+XMOhDf9dvh32JsdH9fpBhwmDpwIlyvZlTLEm6c/Zk8iAPY/IA2jLh+gAAAAAAAPAxYbDUdtDHPfoY9MEd/XbY98C3L+rXgwxTBktXv7xPo6K9790cNWhg0NdAHjbyADpnwvUBAAAAAADgY8JgyYRBX1NjPYM+QP142DdkcP8dZJg0WJo5NlY3TBvvyhrIw0YeQOdMuD4AAAAAAAB8TBgsmTDok6RTub9n0AeoHw/7gs2UQYZpg6UdaamKHBj8b0PysJEH0DkTrg8AAAAAAAAfEwZLJgz6rKYGSVL92TIGfYBcHvalp6dr1qxZio2NVWxsrFJTU/Xuu+92+ZgnnnhC06dPV3R0tCZNmqSf/OQnOnfuXJBW3DumDDJMHCzxVqrkYUoeQFsmXB9Ab/WXHgsAACDY6LMAuMmEwZIJg77z9TU6XbBbkjR++s0M+gBJg9wsPnHiRG3ZskUXX3yxLMvSSy+9pBtvvFGfffaZLr300nbHb9u2Tf/0T/+kF154Qd/97neVm5urVatWKSIiQo8//rgLz6B7pgwyGCx5ec43kscF5AF0zoTrA+iL/tBjAQAAuIE+C4BbTBgsmTLoO/z2SjWcq5AkRQ1LCPoaJDPyAFpyddi3fPnyVh9v2rRJ6enp+vjjjztskD766CMtWrRIt912myQpOTlZt956qz755JOgrLenTBlkMFiyvXS4UJWe8+RBHkCnTLg+6hoag14T4SXceywAAAC30GcBcIMJgyWTBn21Z3IVn7RMZfk7gr4GyYw8gLZcHfa11NjYqNdee021tbVKTU3t8Jjvfve72rp1qw4cOKCFCxfq66+/1jvvvKM77rij0/N6PB55PJ7mj6uqqiRJb+ec1KkaT2cP65OsogpJ0v858LXOnW/UqjlJeu+rEr33VUnAa2Tkl3Z5XEZ+qXbnlWnplHhJ3kFToGt055uqOr14qEBjY6L0/eR4PfnJ147U6con35RLkoqqz+nuuckBz0Py73n0JQ9/a3Snv+Rx8MLzqCjOCuh5W/Kdu7b8S8dq1FUdD5saTefPqbr0iGM1fOsP9evDc75R6Vl5jp0f/Y9TPZbUeZ+VU1ajYZHOtJl55WclSdml1Y6cnxr9s0aw6oRLjaLqOknh0Z+EU41gyCs/q0+LKxw7t+Ts967TP0fQ/9BnUYMa1Ai00lrvdV950t7PKs3bqbKv31X8t36gIcMn6WTuH/tUo67Su+dQUfSx8vzcNvPUFOtkznZFDo1X3ITv6vifXujyeN/+T09qdKepsV6ncn+v+rNlGj/9ZlWXHQ14jbZ8z+Nc9fHm/78o+1UVHd2qCZfertGTr+rzXpevTyyqrqPPQp9EWJZlubmAI0eOKDU1VefOndOwYcO0bds2XXfddZ0e/9RTT+kf/uEfZFmWzp8/r3vvvVfp6emdHr9+/Xpt2LDBiaUDAOCoWbNmKSkpybHz+zYcnOR0jYaGBu3YsUOVlZWKjY11rE4ocrrHkuizAAChafHixRo50rl3FgmHHkuiz+oKfRYAAB2jz+qeUz2W68O++vp6FRYWqrKyUtu3b9dzzz2nDz74QJdcckm7YzMyMnTLLbdo48aN+va3v60vv/xSa9as0T333KN169Z1eP6O/hJq0qRJunLyKF0yNvDNan1jk7Yd+UZ155uUEj9MS5LjA15Dkj7IL9OxshotmBCn+RPi2v17VlGFMosqOv33QNTozqlaj97MKdao6EjdMG28IgcOcKROV+obm/RW7kmV1NbLkhyp4dPV8whEHt3V6E5/zWPhhDjNcyiPvfllOlpWo4RLbldcwvy+LbgTFcVZKj62VckLfqbo2EkhXyMYeYT69XGmrl5zxsUps7hCW7duVVpaWkDrtLRixQq98cYbjp0/GDWqqqo0YsQINqE64HSPJXXeZ/3iimlKGTPckee1r/C00rPy9chVKZoycig1qBFSdcKtxn3zkzVheLQjNTLySrU7vyxseiAna9RVHVd+5mO6OSVBs8fHOVLj8MkKbc8uDvnv3bzys1q3J1sHDx7U3LlzHakhhUePJdFndYU+ixrUoIZTfHVuTknQmJgoR2r49jbiEhcpesSULo9tOFumsoL3NXhInEYnLVXEAP9udVJR9InqKr7QsDGzNXzMZX1ar9XUoNMFu9VwrkLxScs0eGh8wGt0pq4yTxUn9mlBQpzmJ8Y5UiO3rEa788tC/vuXPst/TvVYrr+NZ2RkpKZOnSpJmjdvnjIzM/Xkk0/qmWeeaXfsunXrdMcdd+juu++WJF122WWqra3V3/7t3+oXv/iFBgxovzkbFRWlqKj2PxjTZk/WPXOTA/pcqj0NuvaV/Trf1CRJuu2ySY7dk+3+tw/pWFmNVkxPaFdj494cZRbl9/mecF3V6I7vnlcLEkd1e8+rvtTpii+PuvNN+mFKgv6QXRzwGi119jwClUdXNbrTn/NY7nAeR8tqFJcwX+On/bCvS+5U8bGtik+6yrHGJZg1gpFHqF8fH/74Sn1xpka3/+FgwM6P/snpHkvqvM+65qKx+l6SM3/wJEnpWfm67uJxmpsQRw1qhFydcKpx99xkR2vszi8Lmx7IyRrVpUeUn/mYbkqZoLTLnBkovnLkuLZnF4f89+6nxRVatyfbkXOjf6HPogY1qOGk9Kx8rb1iumN1fHsbCTN+1OV+lu8efbHjZvf4Hn1//uAXqqv4QvHJyzRlfu/vaee7R19To0fzfvh7xY6bE/AaXTmZ+0dVnNinFTOc28N85chx7c4vC/nvX/os93XcUbioqamp1V8utXT27Nl2TdDAgQMlSS6/QLF5o/bzkiotn57g2jo27s3Ruj3ZAdk47y3fxvnMsbHdbpw7pWUeu+5YpHEO/SVMd8jDizzQERPyMPH6WJjo3FsdoH8L1R4LAADAdPRZAMKNb9AXM2pajwd9geIb9NWeydWcG7a2GvQBaM/VV/atXbtWP/jBDzR58mRVV1dr27ZtysjI0M6dOyVJK1euVGJiojZv3ixJWr58uR5//HFdfvnlzW99sG7dOi1fvry5UXJD243aFw8VuLIONs69Oto4dyMT8vAiD3TEhDxMvT6AQAiXHgsAAMA09FkAwh2DPltp3k5X6gK94eqwr6SkRCtXrlRxcbFGjBihWbNmaefOnbr66qslSYWFha3++umhhx5SRESEHnroIZ04cUJjxozR8uXLtWnTJreeAoOMFtg4t5GHF3mgIybkwfWBcBcOPRYAAICJ6LMAhDMGfbb8g0+p7Ot3XakN9Iarw77nn3++y3/PyMho9fGgQYP08MMP6+GHH3ZwVf4zZaOWjXMvU/LIyC/V7rwy8iAPdMCEPLg+0B+Eeo8FAABgKvosAOGKQZ8t/+BTyjvwmOK/9QMGfggZrg77QpkpG7VsnHuZkock8hB5oHNu58H1AQAAAAAA0BqDPptv0Ddl4c80ZPgkhn0IGQO6PwRtmbRRy8a5OXlkFVVIkpZOiScP8kAnuD7MuD4AAAAAAAAkBn0ttRz0Jc/7e1fWAPQWw74eMmWj1oRBBhvnto17c5R5IZMlyWNcWQN52EzIAx3j+nD/+gAAAAAAAJAY9LXEoA+hjmFfD5iyUWvCIIONc5vvnokLJsS5Ul8ij5ZMyANm4foAAAAAAABora6qgEHfBQz6EA4Y9vnJlI1aEwYZbJzbfHk8clWK5ruUCXnYTMgDZuH6AAAAAAAAaK/w03QGfWLQh/DBsM8PpmzUmjDIYOPc1jIP3kqVPGAerg8AAAAAAICORQ4bz6CPQR/CCMO+bpiyUWvCIIONcxt5eJEHTMX1AQAAAAAA0LmkOfcy6GPQhzDCsK8LpmzUmjDIYOPcZkIe31TVkccFJuQBs3B9AAAAAAAAdG3AoCFBr8mgD3AOw75OmLJRa8Igg41zmwl5SNKLhwrIQ+bkAbNwfQAAAAAAAJiFQR/gLIZ9HTBlo9aUQQYb514m5HGq1iNJGhsTRR4G5QEzcH0AAAAAAACYh0Ef4DyGfW2YslFr0iCDjXMz8jhwolxv5hRLku6cPZk8jMjjpCu10R7XBwAAAAAAgHkY9AHBwbCvBVM2as0ZZLBxLpmTx9Uv79Oo6EhJUtSggUFfA3nYfHmMvpAH3MX1AQAAAAAAYJ6mxnoGfUCQMOy7wJSNWpMGGWycm5XHzLGxumHaeFfWQB62lnlcP22cK2uAjesDAAAAAADATKdyf8+gDwgShn0yZ6PWtEFGf984Ny2PHWmpihwY/EuWPGwm5AGbCXmYcn0AAAAAAACYwmpqkCTVny1j0AcESb/fqTZlo5ZBhhd52NrmwVupkgdsJuRhyvUBAAAAAABgivP1NTpdsFuSNH76zQz6gCDp18M+UzZqGWR4ec43kscF5GEjD7RlQh6mXB8AAAAAAACmOF9fo8Nvr1TDuQpJUtSwBFfWwaAP/dEgtxfglnMNZmzUMsiwvXS4UJWe8+RBHs3IA22ZkocJ1wcAAAAAAIApfIO+2jO5ik9aprL8Ha6sg0Ef+qt++8q+Jz75ikGfzNg4r29skiSV1HrIgzyakQfaMiEPU64PAAAAAAAAU7Qc9M25YasGD413ZR0M+tCf9dth34mqOgYZBmycV3sa9FbuSUnSqjlJ5EEeksgD7ZmQhynXBwAAAAAAgCnaDvq4Rx/gDleHfenp6Zo1a5ZiY2MVGxur1NRUvfvuu50ev2TJEkVERLT77/rrr+9x7Z+mTmWQYcDG+bWv7NeZunpJ0sTY6KCvQSIPH/KwmZAHbCbkYcr1AfSEm30WAABAuKLHAgAbgz7AHK4O+yZOnKgtW7bo4MGDysrK0ve//33deOONOnr0aIfH/+EPf1BxcXHzf59//rkGDhyoH/3oRz2uPWVkTF+X3ysMMrx8G+efl1Rp+XR3btQqkYcPedhMyAM2E/Iw5foAesrNPgsAACBc0WMBgJcpg76Koo8Z9AGSBrlZfPny5a0+3rRpk9LT0/Xxxx/r0ksvbXf8qFGjWn386quvaujQoSHTIDHI8Gq5cb7rjkV68VBB0NcgkYcPedhMyAM2E/Iw5foAeqO/9VkAAADBQI8FAOYM+iSp4sQ+Bn2AXB72tdTY2KjXXntNtbW1Sk1N9esxzz//vG655RbFxHT+Kj2PxyOPx9P8cVVVlSTp7ZyTOlXj6exhfZJVVCFJysgvbf5cRn6pdueVaekU781JN+7NCXiN7nxTVacXDxVobEyUvp8cryc/+TrgNbrjOd+olw4XqqTWo1VzkvTeVyWO1GmrbY1A59FRje70NI/e1OgOedh6k8fBCzUqirN6u8xu+c5dW/6lYzXqqo4HrQbXh38On6yUJO3bt8/ROuXl5Y6eH+YIdp+VU1ajYZHOtJl55WclSdml1Y6cnxr9s0aw6lDDf0XVdZLCpwdysobv3HnlZ/VpcYUjNcLl+8p37uzsbMdqSFJdXZ2j54c5nOqxJPosalCjP9YIVp3SWu/PlsqTvdvPajp/TgWH/l31NSc1ee59OluZp7OVea2OqbvwcUXRx8pzaNusLP99SVLU8MmyLCkv66mA16g57e0Ziqrr6LO6QZ/lvgjLsiw3F3DkyBGlpqbq3LlzGjZsmLZt26brrruu28cdOHBA3/72t/XJJ59o4cKFnR63fv16bdiwIZBLBgAgbCxevFgjRzp3D9sDBw50+Xu6rxoaGrRjxw5VVlYqNjbWsTqhij4LAAB3LFu2TNHRzt3n2ekeS6LP6orTPZZEnwUAQGdCvc9yqsdyfdhXX1+vwsJCVVZWavv27Xruuef0wQcf6JJLLunycX/3d3+n/fv3609/+lOXx3X0l1CTJk3SlZNH6ZKxzjSrH+SX6VhZjRZMiJMkZRZVaMGEOM2/8HGga3R33lO1Hr2ZU6xR0ZG6Ydp4RQ7071aNPanRnfrGJr2Ve1Jn6uq1fHqCxsVEOVKnM74aicOG6ETNOUdq+fs8eptHT2p0hzxsgchj4YQ4zetjHm/nntLpunotnz6+VR5788t0tKxGCZfcrriE+b2u0ZWK4iwVH9uq5AU/U3TsJEdrcH34x1dHkm5OSdBNKRMCXmNf4WmlZ+Vr69atSktLC/j5fVasWKE33njDsfNXVVVpxIgRbEJ1wq0+6xdXTFPKmOEBeQ5t+b53H7kqRVNGDqUGNUKqDjV6XuO++cmaMNyZ/yGfkVeq3fllQemBnKxRV3Vc+ZmP6b75yVo0ebQjNcLt+2rrD+c59nsqu7Rat//xoA4ePKi5c+c6UkNyvseS6LO64nSPJdFnUYMa/bFGsOr4atyckqAxLfY8Asm3rxGXuEjRI6YE9NzVpUdUU3pYg4aM1vlzpzVszGwNH3NZQGv41FXmqeLEPsf2ZqTw+f6lz/KfUz2W62/jGRkZqalTp0qS5s2bp8zMTD355JN65plnOn1MbW2tXn31Vf3yl7/s9vxRUVGKimr/Qytt9mTdMze51+vuyv1vH9KxshrFRg3S7rwyR+5B5quxYnpCl+f23fNqQeKoHt/zyt8a3fHd86rufJM+/PGVWpjY+hUkgarTFV+NEzXnHLsnnD/Poy95+FujO+RhC1QeywOQx9nzjfrwx9/rMI+jZTWKS5iv8dN+2Ksa/ig+tlXxSVc51hz5anB9+GfhsxmSpKVT4vXaX3/bsTrpWfmOnRtmcKvPuuaisfpeUnzvF96N9Kx8XXfxOM1NiKMGNUKuDjV6VuPuucmO1tidXxaUHsjJGtWlR5Sf+ZgWTR6ttMucGShK4fV9lTJmuOM/TxDenO6xJPosalCjv9YIVp30rHytvWK6YzV8+ycJM34U0P2s/INPqfjYVk1Z+DOdqznl7bOSl2nKfGfu13cy94+qOLFPs8fH0Wf5WYM+yz3+v2QiSJqamlr95VJHXnvtNXk8Ht1+++1BWlXvODXo85dv43zm2NhebZwHgm/j/POSKu26Y1G7jfNg8d1na+mUePIgD0nkYRrysG3cm6PMC9fIkuQxrqwB4Suc+iwAAABT0GMBgPPyDz6lvAOPacrCnyl5njPDPSCUufrKvrVr1+oHP/iBJk+erOrqam3btk0ZGRnauXOnJGnlypVKTEzU5s2bWz3u+eef10033aTRo515i5K+YpDhxca5jTxs5OFlSh4mIA/bxr05WrcnWwsmxDVfJ0BvhWufBQAA4CZ6LAAIPgZ9QPdcHfaVlJRo5cqVKi4u1ogRIzRr1izt3LlTV199tSSpsLBQAwa0fvFhTk6OPvzwQ7333ntuLLlbDDK82Di3kYeNPLxMycME5GHzXR+PXJWiouo6hn3os3DsswAAANxGjwUAwcWgD/CPq8O+559/vst/z8jIaPe56dOny7Ish1bUNwwyvNg4t5GHjTy8TMnDBORha3l9PPS96br/7UOurAPhJdz6LAAAABPQYwFA8DDoA/xn3D37QlXLjdr5E+JcWQMb57a2G+duIA8beXiZkocJyMNmwvUBAAAAAABgEhMGfXVVBa7UBXqDYV8AmLBRy8a5jTy8yMNGHmYhD5sJ1wcAAAAAAIBJTBj0VZ06pMJP012pDfQGw74+MmGjlo1zmwl5fFNVRx4XkIeXKXmYgDxsJlwfAAAAAAAAJjFl0HfordsVOWy8K/WB3mDY1wcmbNSycW4zIQ9JevFQAXmIPHxMycMU5OFlwvXx1ZlaV+oCAAAAAAB0xKRBX8yoaUqac68rawB6g2FfL5mwUSuxce5jQh6naj2SpLExUeRBHpLMycMk5GHG9XHgRLk2f5jrSm0AAAAAAIC2TBv0zb7+PzVg0BBX1gH0BsO+XjBho5ZBhs2EPA6cKNebOcWSpDtnTyYP8jAmD9P09zxMuT6ufnmfJsVGu1IfAAAAAACgJRMHfYMih7myDqC3GPb1kCkbtQwyvEzJ4+qX92lUdKQkKWrQwKCvgTxs5GG2/pyHSdfHzLGx+vmii11ZAwAAAAAAgA+DPiAwGPb1gEkbtQwyzMpj5thY3TDNnRu2koeNPNCWKXmYdn3sSEtV9ODg//4AAAAAAADwYdAHBA7DPj+ZtlHb3wcZpuWxIy1VkQODfzmRh4080JYpeZh4fbjxinAAAAAAAAAfBn1AYDHs84OJG7X9eZBhYh68lSp5mJIHvEzJg+sDAAAAAACgNQZ9QOAx7OsGG7VebJzbTMjDc76RPC4gD7RlSh5cHwAAAAAAAK0x6AOcMcjtBZiMjVovNs5tJuQhSS8dLlSl5zx5kAc6YEIeXB8AAAAAAACtMegDnMOwrxNs1NrYOPcyIY/6xiZJUkmtR3vv+h55kAdaMCUPrg8AAAAAAIDWGPQBzuJtPDvARq1Xy41zBn3u51HtadBbuSclSavmJJEHeaAFU/Lg+gAAAAAAAGiNQR/gPIZ9bbBR68XGuc2UPK59Zb/O1NVLkibGRgd9DRJ5+JiSB7xMyYPrAwAAAAAAoDUGfUBwMOxrgY1aLzbObSbl8XlJlZZPTwh6fR/y8DIlD3iZkgfXBwAAAAAAQGuleTsZ9AFBwrDvAjZqvdg4t5mWx647FmlcTFTQ1yCRh48pecDLlDy4PgAAAAAAANor+/pdBn1AkDDsExu1Pmyc20zMg7dSJQ/YTMmD6wMAAAAAAKBj8d/6AYM+IEj6/bCPjVovNs5t5GEjDy9T8oCXKXlwfQAAAAAAAHRuzJS/cKUugz70R4PcXoCb2Kj1MmXjPCO/VLvzysiDPJqRB9oyJQ+uDwAAAAAAAPMw6EN/5eor+9LT0zVr1izFxsYqNjZWqampevfdd7t8TEVFhVavXq2EhARFRUVp2rRpeuedd3pc++2cYgZ9MmfjXBIb5yKPlsgDbZmUB9cHTOdmjwUAABDO6LMAwFwM+tCfufrKvokTJ2rLli26+OKLZVmWXnrpJd1444367LPPdOmll7Y7vr6+XldffbXGjh2r7du3KzExUQUFBYqLi+tx7f/OPdXvN2pN2TjPKqqQJC2dEk8e5CGJPFry5dHfmZ4a9LoAAF1nSURBVJZHf78+YD43eywAAIBwRp8FAGZi0If+ztVh3/Lly1t9vGnTJqWnp+vjjz/usEF64YUXdObMGX300UcaPNi7uZmcnNyr2jdOG9evN2pN2TjfuDdHmRc2z5ckj3FlDeRhIw8vE/Poz0zMoz9fHwgNbvZYAAAA4Yw+CwDMw6APMOiefY2NjXrttddUW1ur1NTUDo954403lJqaqtWrV+u///u/NWbMGN1222168MEHNXDgwA4f4/F45PF4mj+uqqq68P9FaOPenEA/DUn2Kz8y8kvb/ds3VXV68VCBxsZE6fvJ8Xryk68DXqM7nvONeulwoUpqPVo1J0nvfVWi974qCWgNf/jueZU4bIhO1JxzrI7U+XMJVB5d1eiOv3n0pYY/yMPLuDyGR+lEtUcVxVkBr+HjO3dZwR7Vln/paI2QzyMI14fU8XMJ5PUhSYdPVvbp8QgdTvVYUud9Vk5ZjYZFOtNm5pWflSRll1Y7cn5q9M8awapDDbNqFFXXSZJj/Y8k1VUdd7yG79x55Wf1aXGFIzXCJfNg1HD6ZxXMQp9FDWpQIxTrBKNGaa3351flSef2s+oq8yRJFSc+UuGn/6rIYeOVMP1HKsvfFbAavvUXVdfRZxlQgz6raxGWZVluLuDIkSNKTU3VuXPnNGzYMG3btk3XXXddh8fOmDFD+fn5SktL0/33368vv/xS999/v/7+7/9eDz/8cIePWb9+vTZs2ODkUwAAIGTNmjVLSUlJjp3/wIEDWrhwoWPnb2ho0I4dO1RZWanY2FjH6oQip3ssiT4LAIDOLF68WCNHOveOFE73WBJ9VlfoswAAcE+o91lO9ViuD/vq6+tVWFioyspKbd++Xc8995w++OADXXLJJe2OnTZtms6dO6e8vLzmv356/PHH9Zvf/EbFxcUdnr+jv4SaNGmSrpw8SpeMdaZZ/SC/TMfKarRgQpzmT4iTJJ2q9ejNnGKNio7UDdPGK3LggIDX6E59Y5Peyj2pM3X1Wj49QeNiogJewx9ZRRXKLKpoPq9TdVpqWyPQeXRUozs9zaM3NfxBHl6m57FwQpzmOZTH3vwyHW1Rw5vHSY2OjtT108YFJA9fjXDJw8nrQ2r9XCaNiA749SFJuWU12p1fpq1btyotLS0g5+zIihUr9MYbbzh2/qqqKo0YMYJNqA443WNJnfdZv7himlLGDA/8k5K0r/C00rPy9chVKZoycig1qBFSdahhZo375idrwvBoR2ocPlmh7dnFQakRLnmEeo288rNatydbBw8e1Ny5cx2pITnfY0n0WV2hz6IGNajhlHB5Lr4aN6ckaIwfezq94dvXCEaNcMkj1GuES5/lVI/l+tt4RkZGaurUqZKkefPmKTMzU08++aSeeeaZdscmJCRo8ODBrd7mICUlRSdPnlR9fb0iIyPbPSYqKkpRUe0v9rTZk3XP3OTAPZEW7n/7kI6V1WjF9AQ99L3pzfdYWpA4KmD3WGpbozu+e17VnW/Shz++0q97XvW0hj+897zyXvS+czpRp62WNa65aGzA82hbo7vn0Zs8elrDH+ThFQp5LHc4j6MXath5jAx4HkfDKA8nr4+WdeYmxOn/+/ybgF8fkvTKkePanV8WsPPBPE73WFLnfdY1F43V95LiA/RM2kvPytd1F4/T3IQ4alAj5OpQw7wad89NdqzGK0eOa3t2cVBqhEseoV7j0+IKrduT7ci5YQ76LGpQgxpOCpfnkp6Vr7VXTHe0B9qdXxaUGuGSR6jXoM/qWmBeHhBATU1Nrf5yqaVFixbpyy+/VFNTU/PncnNzlZCQ0Glz5DbfoG/m2NiAb9T6y7dx/nlJlXbdscjvjfNA27g3R+v2ZLfaOA+2b6rqyOMC8vAiDxt52EzIQ5JePFTgah4IL+HWYwEAAJiCPgsAALjN1WHf2rVrtXfvXuXn5+vIkSNau3atMjIymt9ObOXKlVq7dm3z8ffdd5/OnDmjNWvWKDc3V2+//bZ+9atfafXq1W49hS6xcW5j49yLPFojDy/y8CIP26kLN7IeGxPFoA+9Eu49FgAAgFvoswAAgIlcfRvPkpISrVy5UsXFxRoxYoRmzZqlnTt36uqrr5YkFRYWasAAex45adIk7dy5Uz/5yU80a9YsJSYmas2aNXrwwQfdegpdevFQgeZNCOxb4fUEG+c2EzbOycNGHjby8CIP24ET5Xozx3vvjjtnT2bQh14J9x4LAADALfRZAADARK4O+55//vku/z0jI6Pd51JTU/Xxxx87tKLAYOPcxsa5F3nYyMNGHl7kYfO99fOo6Eidqq1X1KCB3T8I6EC49lgAAABuo88CAAAmMu6efaGOjXObaRvnklzZOCcPG3nYyMOLPGwt7/F6w7TxrqwBAAAAAAAAQOhh2BdAbJzb2Dj3Ig8bedjIw4s8bC3z2JGWqsiB/HoGAAAAAAAA4B92EwOEjXMbG+de5GEjDxt5eJGHrW0e3KMPAAAAAAAAQE8w7AsANs5tbJx7kYeNPGzk4UUeNhPyAAAAAAAAABDaGPb1kQkbtWyc20zIw3O+kTwuIA8beXiRh82EPAAAAAAAAACEvkFuLyCUmbBRy8a5zYQ8JOmlw4Wq9JwnD/JoRh428vAyIY+6hsag1wQAAAAAAAAQeAz7esmEjVqJjXMfE/Kob2ySJJXUerT3ru+RB3lIIg8f8rCZkEe1p0H/su+LoNcFAAAAAAAAEHi8jWcvmLBR23LjnEGf+3lUexr0Vu5JSdKqOUnkQR6SyMOHPGym5HHtK/t1vKou6LUBAAAAAAAABB7Dvh4yZaOWjXMvU/K49pX9OlNXL0maGBsd9DVI5OFDHjbysJGHV8t7vK5dPC3o9QEAAAAAAAAEHsO+HjBpo5aNc7Py+LykSsunJwS9vg95eJGHjTxs5OHVMo9ddyzSRaNigr4GAAAAAAAAAIHHsM9Ppm3UsnFuVh677likcTFRQV+DRB4+5GEjDxt5eLXNw61XhAMAAAAAAAAIPIZ9fjBxo5aNc7Py4K1UyUMiDx/ysJEHAAAAAAAAAKcx7OsGG7U2Ns69yMNGHjby8CIPG3kAAAAAAAAACIZBbi/AZGzU2tg49zIlj4z8Uu3OKyMP8mhGHjby8DIlDwAAAAAAAADOYtjXCTZqbWyce5mShyTyEHm0RB6tkYdZeQAAAAAAAABwFm/j2QE2altj49ycPLKKKiRJS6fEkwd5SCKPlsjDy5Q8AAAAAAAAAAQHw7422Ki1sXHuZUoeG/fmKPNCJkuSx7iyBvKwkYcXedjIAwAAAAAAAIAbGPa1wEatjY1zL5PyWLcnWwsmxLlSXyKPlsjDizxs5AEAAAAAAADALQz7LmCj1sbGuZdpeTxyVYrmu5QJedjIw4s8bOQBAAAAAAAAwE0M+8RGbUtsnHuZmAdvpUoeEnm0RB5epuQBAAAAAAAAwB2uDvvS09M1a9YsxcbGKjY2VqmpqXr33Xc7Pf7FF19UREREq/+GDBnSpzWwUWtj49yLPGzkYSMPL/KwkQdMZ0KfBQAAEG7osQAAgIkGuVl84sSJ2rJliy6++GJZlqWXXnpJN954oz777DNdeumlHT4mNjZWOTk5zR9HRET0uj4btTYTNs6/qaojjwvIw4s8bORhIw8vU/KAudzuswAAAMIRPRYAADCRq8O+5cuXt/p406ZNSk9P18cff9xpgxQREaHx48f3uXZeea3+4b3P2aiVGRvnkvTioQLNmzCSPMhDEnm0RR5e5OFlSh4wm5t9FgAAQLiixwIAACZyddjXUmNjo1577TXV1tYqNTW10+NqamqUlJSkpqYmzZ07V7/61a86baYkyePxyOPxNH9cVVUlSfqXD7/QhNgh+n5yvJ785OvAPRFJWUUVkqSM/NLO13W+US8dLlRJrUer5iTpva9K9N5XJQGt4Y+M/FLtzivT0inxkrwb6YGu0f0ayiRJQwYNdCQPqfvn0tc8/Knhj67yCFSN7tdAHj7k4UUeLdfgfB5S188lEHlI0uGTlX1dJkJIsPusnLIaDYt0ps3MKz8rScourXbk/NTonzWCVYca1KBG+Ndw+mcVzOJUjyXRZ1GDGv2xRrDqUIMaoVqDPqtrEZZlWW4u4MiRI0pNTdW5c+c0bNgwbdu2Tdddd12Hx+7fv19ffPGFZs2apcrKSj366KPau3evjh49qokTJ3b4mPXr12vDhg1OPgUAAELWrFmzlJSU5Nj5Dxw4oIULFzp2/oaGBu3YsUOVlZWKjY11rE6oos8CAMAdixcv1siRzr37gtM9lkSf1RWneyyJPgsAgM6Eep/lVI/l+rCvvr5ehYWFqqys1Pbt2/Xcc8/pgw8+0CWXXNLtYxsaGpSSkqJbb71VjzzySIfHdPSXUJMmTdKiSSM1a9yIgD2Plj7IL9OxshotmBCn+RPiWv1bfWOT3so9qTN19Vo+PUHjYqICXsMfWUUVyiyq6PLxfa3RnVO1Hr2ZU6xBAwao7nyTY3Wkzp9LoPLoqoY//MmjrzW6Qx428vAiD1sw85A6fi6BzEOScstqtDu/TFu3blVaWloAVt2xFStW6I033nDs/FVVVRoxYgSbUJ1wq8/6xRXTlDJmeMCeR0v7Ck8rPStfj1yVoikjh1KDGiFVhxrUoEb418grP6t1e7J18OBBzZ0715EakvM9lkSf1RWneyyJPosa1OiPNYJVhxrUCNUa4dJnOdVjuf42npGRkZo6daokad68ecrMzNSTTz6pZ555ptvHDh48WJdffrm+/PLLTo+JiopSVFT7DdE75yTpnrnJvV53V+5/+5COldVoxfSEVveU8t1jqe58kz788ZV9usdSZzX8sXFvjjKL8ru951VfanTnwIlyXf3yPi1IHKWU+GF6/rNCR+r4dPRcAplHZzX84W8efanRHfKwkQd5tBXsPKT2zyXQeUjSK0eOa/eFtyVF+HKrz7rmorH6XlJ87xfejfSsfF138TjNTYijBjVCrg41qEGN8K7xaXGF1u3JduTcMIfTPZZEn0UNavTXGsGqQw1qhGIN+qyuDXB7AW01NTW1+sulrjQ2NurIkSNKSEhweFV959uo/bykSrvuWBSQjdre2Lg3R+v2ZPu1ce4U38b5zLGx2pGWqsiBwf82JA8bedjIw4s8bOSBcBOufRYAAICb6LEAAIDbXH1l39q1a/WDH/xAkydPVnV1tbZt26aMjAzt3LlTkrRy5UolJiZq8+bNkqRf/vKX+s53vqOpU6eqoqJCv/nNb1RQUKC7777bzafRLVM2ak3cOB8eNTjoayAPG3nYyMOLPGwm5OE532hEHghN/aXPAgAACCZ6LAAAYCJXh30lJSVauXKliouLNWLECM2aNUs7d+7U1VdfLUkqLCzUgAH2qyjKy8t1zz336OTJkxo5cqTmzZunjz76yK/3RHcLG+c2Ns5t5OFFHjbysJGH7aXDhar0nGfQh17pD30WAABAsNFjAQAAE7k67Hv++ee7/PeMjIxWH//2t7/Vb3/7WwdXFFhsnNvYOLeRh408vMjDRh5e9Y1NkqSSWo/23vU9Bn3olXDvswAAANxAjwUAAEzk6rAv3LFx7sXGuY08vMjDRh428vCq9jTordyTkqRVc5IY9AEAAAAAAADo0oDuD0FPtdw4Z9DHxrkPeXiRh408bOTh5Xvr5zN19ZKkibHRQV8DAAAAAAAAgNDCsC/A2Di3sXFuIw8v8rCRh408vFre43X59ISg1wcAAAAAAAAQmhj2BRAb5zY2zm3k4UUeNvKwkYdXyzx23bFI42Kigr4GAAAAAAAAAKGJYV+AsHFuY+PcRh5e5GEjDxt5eLXNg3v0AQAAAAAAAOgJhn0BwMa5jY1zG3l4kYeNPGzk4WVKHgAAAAAAAABCF8O+PjJlo5aNcy/ysJGHjTy8yMNGHgAAAAAAAADCxSC3FxDKTNmoZePcy5Q8MvJLtTuvjDzIoxl52MjDy5Q8AAAAAAAAAIQ+hn29ZMpGLRvnXqbkIYk8RB4tkUdr5GFOHq9nF7lSFwAAAAAAAEBg8TaevWDKRq3ExrlkTh5ZRRWSpKVT4smDPCSRR0vk4WVKHhv35mh7drErtQEAAAAAAAAEFsO+HjJlo5aNcy9T8ti4N0eZFzJZkjzGlTWQh408vMjDRh4231s/35yS4Ep9AAAAAAAAAIHFsK8HTNqoZePcrDzW7cnWgglxrtSXyKMl8vAiDxt52Fre4/WmlAmurAEAAAAAAABAYDHs85NpG7VsnJuVxyNXpWi+S5mQh408vMjDRh62lnm49YpwAAAAAAAAAIHHsM8PJm7UsnFuVh68lSp5SOTREnl4kQcAAAAAAAAApzHs6wYbtTY2zm3k4UUeNvKwkYcXeQAAAAAAAAAIBoZ9XWCj1sbGuc2EPL6pqiOPC8jDizxs5GEzIQ8AAAAAAAAAzmLY1wk2am1snNtMyEOSXjxUQB4iDx/yaI08vEzJAwAAAAAAAICzGPZ1gI3a1tg49zIhj1O1HknS2Jgo8iAPSeTREnnYTMgDAAAAAAAAQHAw7GuDjVobG+c2E/I4cKJcb+YUS5LunD2ZPMiDPFogD5sJeQAAAAAAAAAIHoZ9LbBRa2Pj3GZKHle/vE+joiMlSVGDBgZ9DeRhIw8beXiRBwAAAAAAAAC3uDrsS09P16xZsxQbG6vY2Filpqbq3Xff7fT4P/zhD5o/f77i4uIUExOjOXPm6OWXXw7IWtiotbFxbjMpj5ljY3XDtPGurIE8bORhIw8v8oCpTOqzAAAAwgU9FgAAMJGrw76JEydqy5YtOnjwoLKysvT9739fN954o44ePdrh8aNGjdIvfvEL7d+/X3/6059011136a677tLOnTv7tA42am1snNtMy2NHWqoiBwb/kiUPG3nYyMOLPGAyU/osAACAcEKPBQAATDTIzeLLly9v9fGmTZuUnp6ujz/+WJdeemm745csWdLq4zVr1uill17Shx9+qL/4i7/o1RrYqLW13Th/8P2OG1UnkYetbR68lSp5kIeNPGwm5AEzmdBnAQAAhBt6LAAAYCJXh30tNTY26rXXXlNtba1SU1O7Pd6yLP3f//t/lZOTo1//+tedHufxeOTxeJo/rqqqkiS9nXNShRVn9dLhQpXUerRqTpLe+6pE731V0ufnklVUIUnKyC/16/iM/FLtzivT0inxkrwbt4Gu0Z1vqur04qECjY2J0veT4/XkJ18HvEZnfHXe/7pE/3EwL+B5tKzhz3PpTR49rdGdjvIIdI3OkEd75GEjD28NJ/NoWae759LbPCTp8MlKSdK+fft6t0g/lZeXO3p++CfYfVZOWY2GRTrTZuaVn5UkZZdWO3J+avTPGsGqQw1qUCP8a/jOnZ2d7VgNSaqrq3P0/PCPUz2WRJ9FDWr0xxrBqkMNaoRqDfqsrkVYlmW5uYAjR44oNTVV586d07Bhw7Rt2zZdd911nR5fWVmpxMREeTweDRw4UP/2b/+mH//4x50ev379em3YsMGJpQMAAD8sXrxYI0c688rHhoYG7dixQ5WVlYqNjXWkRiijzwIAIPjGxUQ5/q4Pb+ae1LJlyxQdHe1YDfqszjndY0n0WQAAdCQc+iyneizXh3319fUqLCxUZWWltm/frueee04ffPCBLrnkkg6Pb2pq0tdff62amhrt3r1bjzzyiF5//fV2b4vg09FfQk2aNEmxkQNVd75Ry6cnaFxMVECf0wf5ZTpWVqMFE+I0f0Jcp8dlFVUos6ii2+P6UqM7p2o9ejOnWKOiI3XDtPGt7nkVqBrd2ZNXpj+frtEASTelBD4Pyb/n0pc8/K3Rna7yCFSN7pCHjTxs5OEVjDyk7p9LX/NoWeORq1J03cXjevz4z0uqdP/bh3XRqBg9/YNZiungr4uzS6t1+x8PauvWrUpLS+vVOrtTVVWlESNGsAnVCbf6rF9cMU0pY4Y78ZS0r/C00rPy9chVKZoycig1qBFSdahBDWr0jxrfVJ3TG7d+x5Hz+0RseF0HDx7U3LlzHatBn9U5p3ssiT6LGtTojzWCVYca1AjlGuHQZznVY7n+Np6RkZGaOnWqJGnevHnKzMzUk08+qWeeeabD4wcMGNB8/Jw5c5Sdna3Nmzd32iBFRUUpKqr9ZqynsUkf/vhKR6bA9799SMfKarRiekKn90/auDdHmUX5vb7Hkj81uuO759WCxFEd3vMqEDW6U+1p0MX/Z5ck6Z55yfr3G+Y4Uqe759LXPPyp0Z3u8ghEje6Qh408bOThFaw8pK6fSyDyaFljysihmpsQ16PHHjhRrv/17p80e/wI1+6ZCP+41Wddc9FYfS8pPjBPogPpWfm67uJxPf7epQY1TKhDDWpQI/xr/NfnJxw7N8zgdI8l0WdRgxr9tUaw6lCDGqFagz6rcwO6PyS4mpqaWv3lUqCP9/lp6lTHX+7ZmY17c7RuT3afN2r7wrdxPnNsrGsbtdWeBl37yn6dqauXJE2Mde7tR7pCHl7kYSMPG3l4kYfNhDzQe8HqswAAAPoTeiwAAOA2V1/Zt3btWv3gBz/Q5MmTVV1drW3btikjI0M7d+6UJK1cuVKJiYnavHmzJGnz5s2aP3++LrroInk8Hr3zzjt6+eWXlZ6e3uPaU0bGBPS5+IuNWi/fxvnnJVVaPj1Bf8guDvoaJPLwIQ8bedjIw4s8bCbkAf+52WcBAACEK3osAABgIleHfSUlJVq5cqWKi4s1YsQIzZo1Szt37tTVV18tSSosLNSAAfaLD2tra3X//ffrm2++UXR0tGbMmKGtW7fqf/yP/+HWU+gRNmq9Wm6c77pjkV48VBD0NUjk4UMeNvKwkYcXedhMyAM909/6LAAAgGCgxwIAACZyddj3/PPPd/nvGRkZrT7euHGjNm7c6OCKnMNGrVfbjfOFiSNd2TwnDy/ysJGHjTy8yMNmQh7ouf7UZwEAAAQLPRYAADCRq8O+/oKNWq+ONs7dQB5e5GEjDxt5eJmSR0Z+qXbnlfX7PAAAAAAAAAB0jmGfw9g492Lj3EYeNvLwIg8bebRGHgAAAAAAAAC6w7DPQWyce7FxbiOP1siDPFoiD1tWUYUkaemU+H6dBwAAAAAAAIDuDej+EPQWG+dsnLdEHjby8CIPG3nYNu7NUeaFTJYkj3FlDSbkAQAAAAAAAMA/DPscwMa5FxvnNvKwkYcXedjIw+Z76+cFE+JcqS+ZkQcAAAAAAAAA/zHsCzA2zr3YOLeRh408vMjDRh62lvd4ne9SJibkAQAAAAAAAKBnGPYFEBvnXmyc28jDRh5e5GEjD1vLPPrzK8IBAAAAAAAA9BzDvgBh49yLjXMbedjIw4s8bORhIw8AAAAAAAAAfcGwLwDYqPVi49xGHjby8CIPG3nYTMjjqzO1rucBAAAAAAAAoPcY9vWRCRu1bJzbTMjjm6o68riAPLzIw0YeNhPykKTNH+Yy6AMAAAAAAABCGMO+PjBho5aNc5sJeUjSi4cKyEPk4UMerZGHlwl5nKr1SJImxUYz6AMAAAAAAABCGMO+XjJho1Zi49zHhDx8G+djY6LIgzwkkUdL5GEzIY8DJ8r1Zk6xJOnniy5m0AcAAAAAAACEMIZ9vWDCRi0b5zYT8mi5cX7n7MnkQR7k0QJ52EzJ4+qX92lUdKQkKXrwQFfWAQAAAAAAACAwGPb1kCkbtWyce5mSR8uN86hBwd84Jw8bedjIw4s8bC3v8XrDtPGurAEAAAAAAABAYDHs6wGTNmrZODcrDzc3zsnDRh428vAiD1vLPHakpSpyIC0AAAAAAAAAEA7Y6fOTaRu1bJyblYdbG+fkYSMPG3l4kYetbR7cow8AAAAAAAAIHwz7/GDiRi0b52blwVupkgd52MjDRh4AAAAAAAAAnMawrxts1HqxcW4zIQ/P+UbyuIA8bOThRR42E/IAAAAAAAAA4KxBbi/AZGzUerFxbjMhD0l66XChKj3nyYM8mpGHjTy8TMijtv580GsCAAAAAAAA/Q3Dvk6wUWtj49zLhDzqG5skSSW1Hu2963vkQR6SyMOHPGwm5FHtadD/fPdPQa8LAAAAAAAA9Deuvo1nenq6Zs2apdjYWMXGxio1NVXvvvtup8c/++yzuuKKKzRy5EiNHDlSy5Yt04EDBwK+LjZqvVpunDPocz+Pak+D3so9KUlaNSeJPMhDEnn4kIfNlDyufWW/vjpTG/TasJnaZwEAAIQyeiwAAGAiV4d9EydO1JYtW3Tw4EFlZWXp+9//vm688UYdPXq0w+MzMjJ06623as+ePdq/f78mTZqka665RidOnAjYmtio9WLj3GZKHte+sl9n6uolSRNjo4O+Bok8fMjDRh428vBqeY/Xf7t+dtDrw2ZinwUAABDq6LEAAICJXB32LV++XNddd53+//buPTzK+k7/+B2DCRGSQIRwDOGgIB6AUlh/EQoKSlsRoUe1FES7bUX0qt31slihoMXCurbVdrusq1RdKcVqxa6IHGQJFOUsIgIGRWKUMxUSCGESku/vj8fJNwnJnPLMzDOT9+u6cl0FZ+Z+hluHTz/fZObSSy9V37599eijj6pt27bauHFjo7f/05/+pLvvvluDBg3SZZddpmeeeUY1NTVavXq1K9fDotbB4tzyUh/vHy3TuH5dYp7vRx8O+rDow6IPR90+Vk0apitzs2J+DbC8NmcBAAAkA2YsAADgRZ75zL7q6mq99NJLKi8vV0FBQUj3OXPmjKqqqpSTk9PkbXw+n3w+X+2vy8rKJEmvFx3WkdP29wuLj2n1/uMa3auDJGdxG6mtB0/WPmY4Piur0HPvfqLcNuka1bODntz0sesZwfjOVev5HSU6Wu7TJTlttef4adczGmrsubjZR1MZwYTTR6QZwdTtY8qgfL1zyP2MhuijafRh0Uf0+mgqJ5Bw+6ib8VbJPyK9zHoqqqr12Fsf6tOyCj04vK8+/Py09p8448pjo/liPWcVHT+ttmnRGTP9/17tOXYqKo9PRsvMiFUOGWSQ0XIy0DJEa8aSmLPIIKMlZsQqhwwyEj0DjUsxxph4XsDOnTtVUFCgs2fPqm3btlq0aJFuvPHGkO579913a8WKFdq1a5dat27d6G1mz56thx9+2M1LBgAAYRgwYIDy8/Oj8thVVVVavny5SktLlZXFTxI2xJwFAEDyGj58uNq3j95HbjBnNS3aM5bEnAUAQDxFc86K1owV98O+yspKlZSUqLS0VC+//LKeeeYZrV27VpdffnnA+82bN0+PPfaYCgsLNWDAgCZv19h3QuXl5WlkjxxdnpulrQdPasvBkxratZ2GdG3nynNaW3xcu4+fDvkxj5T79FrRIeVkpOmmvp2Vlhr83VXDzQimsrpGS/ce1ucVlRrXr4s6tUl3PaMpdXMkud5Hw4xgjxtJH+FmBNNYH25nNIU+zkcfFn1Ev4+GOYEeO9I+wskIpqk+JGnv8dNaXXxcCxcu1MSJEyPOCKSsrEzZ2dksoZoQrznroa/0Vf+Oma49j7reKvmH5m8t1i+v669e7S8ig4yEyiGDDDLIcMP+E2c0c80ebdu2TYMHD45KhsScFUi0ZyyJOYsMMlpiRqxyyCCDjKbFYs6K1owV97fxTEtL0yWXXCJJ+vKXv6wtW7boySef1FNPPdXkfR5//HHNmzdPb775ZtDhKD09Xenp6ef9/sSBPXTktE9bDha7/hlLd7/+rnYfP62b+3UJ+rj+z1ga2i0nrM9YCicjGP9nLFWcq9H6O0fqn7q1dz0jEH9OVnorrd5/PCqfeRXqc4m0j3AygmmqDzczAqGP+ujDoo/Y9FE3J9BzaU4foWYEE6gPSfrTzk+1uvh4RI8Nd8RrzhrTJ1cj8js07+IDmL+1WDde2kmDu7Qjg4yEyyGDDDLIaK53Dp3UzDV7ovLYCE20ZyyJOYsMMlpqRqxyyCCDjMYl8pwV98O+hmpqaup951JDjz32mB599FGtWLFCQ4YMiTjn9aJD+tveI1Fb1IbCv6i9MjcrokWtG/yL2vePlmnVpGHnLWpjKZqL81DQR330QR910Ud99OGtPhC6WM1ZAAAALQkzFgAAiLe4HvY9+OCD+vrXv64ePXro1KlTWrRokQoLC7VixQpJ0uTJk9WtWzfNnTtXkvRv//Zv+sUvfqFFixapZ8+eOnz4sCSpbdu2atu2bVjZHPR5Z1G79eBJSdLoXh3ogz4k0Udd9OGgD4s+EKp4zlkAAADJihkLAAB4UVwP+44eParJkyfr0KFDys7O1oABA7RixQrdcMMNkqSSkhJdcIH9/KH58+ersrJS3/72t+s9zqxZszR79uywssf37cSi1gOL2jnrirTli+X5tT07xuUa6MOiDwd9WPRh0YfDK30guHjOWQAAAMmKGQsAAHhRXA/7FixYEPCfFxYW1vt1cXGxa9lj+3Vx7bHCwaLWmrOuSDPX7NHQru1qF+ixRh8WfTjow6IPiz4cXukDoYnnnAUAAJCsmLEAAIAXXRD8JnALi1rLvzj/5XX9NaRru7hcA31Y9OGgD4s+LPpweKUPAAAAAAAAAPVx2BcjLGqtuotz3kqVPiT6qIs+HPRh0QcAAAAAAACAQDjsiwEWtRaLcwd9WPRh0YeDPqzPyiroAwAAAAAAAEBAHPZFGYtzi8W5gz4s+rDow0Ef9T337if0AQAAAAAAACAgDvuiiMW5xeLcQR/10YeDPhz0YR0p90mSctukt/g+AAAAAAAAAATGYV8UsTh3sDh30IdFHxZ9OOjD2nzghF4rOiRJun1gjxbdBwAAAAAAAIDgOOyLAhbnFotzB31Y9GHRh4M+LP9bP+dkpEmS0lulxvwavNIHAAAAAAAAgNBw2OcyFucWi3MHfVj0YdGHgz6sup/xelPfznG5Bq/0AQAAAAAAACB0HPa5iMW5xeLcQR8WfVj04aAPq24fyycWKC019n89e6UPAAAAAAAAAOHhsM8lLM4tFucO+rDow6IPB31YDftoyT8RDgAAAAAAACB8HPa5gMW5xeLcQR8WfVj04aAPywt9+M5Ve6IPAAAAAAAAAJFpFe8LSHReWNSyOLe80IdXFuf04aAPiz4s+rCe31GiUt85DvoAAAAAAACABMVhXzN4YVHL4tzyQh+SNxbn9GHRh4M+LPpwVFbXSJKOlvu07o4RHPQBAAAAAAAACYrDvgh5YVErsTj380IfXlmc04eDPiz6sOjDccpXpaV7D0uSpgzK56APAAAAAAAASGB8Zl8EvLCorbs456Av/n14ZXFOHw76sOjDog+H/62fP6+olCR1z8qI+TUAAAAAAAAAcA+HfWHyyqKWxbnDK314YXFOHw76sOjDog9H3c94HdevS8zzAQAAAAAAALiPw74weGlRy+LcW33Ee3FOHw76sOjDog9H3T5WTRqmTm3SY34NAAAAAAAAANzHYV+IvLaoZXHurT7iuTinDwd9WPRh0YejYR98Rh8AAAAAAACQPDjsC4EXF7Uszr3VB2+lSh8SffjRh0UfAAAAAAAAAKItrod98+fP14ABA5SVlaWsrCwVFBTojTfeaPL2u3bt0re+9S317NlTKSkpeuKJJ6J+jSxqLRbnDvqw6MOiDwd9WPSBeEqEGQsAACARMWcBAAAviuthX/fu3TVv3jxt27ZNW7du1ahRozR+/Hjt2rWr0dufOXNGvXv31rx589S5c+eoXx+LWovFucMrfRQWH6MP0Udd9GHRh8MrfSA+vD5jAQAAJCrmLAAA4EWt4hk+bty4er9+9NFHNX/+fG3cuFFXXHHFebcfOnSohg4dKkmaPn16VK+NRa1VWHxMq/cfZ3HukT4k0Yfooy76qI8+vNPHq3sOxiUX3p6xAAAAEhlzFgAA8KK4HvbVVV1drZdeeknl5eUqKChw7XF9Pp98Pl/tr8vKyiRJrxcd1pHTvkbv81lZhZ579xPltknXqJ4d9OSmj8PK3HrwpCTnkCxSvnPVen5HiY6W+zRlUL5W7juqlfuOupoRjD9j9f7jGt2rgyTnJ/yildPUc2luH6FkBBOsDzcyQvG/HxyWJPVud5Ek+qAP+qgrWfoIJSeQUPpobkYo/N8ogviL1owlNT1nFR0/rbZp0Rkz9584I0nac+xUVB6fjJaZEascMsgggww3RPv1EKFjziKDDDISMYcMMshoWiLPWSnGGBPPC9i5c6cKCgp09uxZtW3bVosWLdKNN94Y9H49e/bUfffdp/vuuy/g7WbPnq2HH37YpasFAADhGjBggPLz86Py2FVVVVq+fLlKS0uVlZUVlYxEFe0ZS2LOAgAgnoYPH6727aP3Dg7MWU1jzgIAILlFc86K1owV98O+yspKlZSUqLS0VC+//LKeeeYZrV27VpdffnnA+4U6IDX2nVB5eXka2SNHl+fW/4M8Uu7Ta0WHlJORppv6dlZaamQfabi2+Lh2Hz+toV3baUjXdmHdt7K6Rkv3HtbnFZUa16+LOrVJdz0jFFsPntSWL37qI1oZfk09F7f6CJQRTKh9NCcjFP4+Omak6VhFZVQ7oY/g6MNBHzbDzT4C5QQSTh+RZoTC38fQru2UldZKq4uPa+HChZo4caJrGXWVlZUpOzubJVQjoj1jSU3PWQ99pa/6d8xs7lNo1Fsl/9D8rcX65XX91av9RWSQkVA5ZJBBBhlu2H/ijGau2aNt27Zp8ODBUcmQmLMCYc4igwwyoiVZngsZZCRqRizmrGjNWHF/G8+0tDRdcsklkqQvf/nL2rJli5588kk99dRTrjx+enq60tPPX3hOHNhDPxzcs/bX/s9YGtotp9mfsXT36+9q9/HTurlfl7A+M8r/GUsV52q0/s6RAT9jKdKMUMxZV6QtB4s1tGs7bTl4MioZdTX2XNzso6mMYMLpI9KMUPj7+OV1/XXwVIXmby2Oaif0ERh9OOgjen00lRNIuH1EkhGKun3MGNFPf9r5qVYX81ae8RLtGUtqes4a0ydXI/I7uJbT0Pytxbrx0k4a3KUdGWQkXA4ZZJBBRnO9c+ikZq7ZE5XHRmiYs8ggg4xoSpbnQgYZiZiRyHNW8370IApqamrqfedSLPgXtVfmZrm2qA2Xf1H7/tEyrZo0LKRFbTTMWVekmWv26JfX9Y/qT/MFQh9W3T6ieeAaCH1Y9OGgD4s+LC/0gcDiMWMBAAC0BMxZAAAg3uL6k30PPvigvv71r6tHjx46deqUFi1apMLCQq1YsUKSNHnyZHXr1k1z586V5LxNwu7du2v/94EDB/Tuu++qbdu2td9RFS4WtVbDRe3dr78b82ugD8sLi3P6sOjDQR8WfVhe6AP1eWHGAgAASEbMWQAAwIvieth39OhRTZ48WYcOHVJ2drYGDBigFStW6IYbbpAklZSU6IIL7A8fHjx4UF/60pdqf/3444/r8ccf18iRI1VYWBh2PotaywuL2s/KKujjC/ThoA+LPiz6cNAHAon3jAUAAJCsmLMAAIAXxfWwb8GCBQH/ecOhp2fPnjLGuJK9/0S57l/5PotaeWdR+9y7n+jLXdvTB31Ioo+G6MNBHw76QDDxnLEAAACSGXMWAADwIs99Zl+s/GbDRxz0yRuL2iPlzvva57ZJpw/6kEQfddGHRR8O+gAAAAAAAABQV4s97OuWlcGi1gOL2s0HTui1okOSpNsH9qAP+qCPOujDog8HfQAAAAAAAABoqMUe9t13dR8WtR5YnN/wwlvKyUiTJKW3So35NdCHRR8WfTjow6IPywt9AAAAAAAAALBa7GFf6wtZ1HphcX5lbpZu6ts5LtdAHxZ9WPThoA+LPiwv9AEAAAAAAACgvhZ72BdrLGqtuovz5RMLlJYa+38N6cOiD4s+HPRh0YflhT4AAAAAAAAAnI/DvhhgUWs1XJzzVqr0QR8WfVj04fCdq6YPAAAAAAAAAAG1ivcFJDsW5xaLc4s+HPRh0YdFH9bzO0pU6jvX4vsAAAAAAAAA0DQO+6KIxbnF4tyiD4s+HPRh0YejsrpGknS03Kd1d4xo0X0AAAAAAAAACIzDvihice5gcW7Rh4M+LPqw6MNxylelpXsPS5KmDMpv0X0AAAAAAAAACI7P7IuCuotzDvpYnPvRh4M+LPqw6MPhf+vnzysqJUndszJifg2SN/oAAAAAAAAAEBoO+1zG4txicW7Rh4M+LPqw6MNR9zNex/XrEvN8Py/0AQAAAAAAACB0HPa5iMW5xeLcog8HfVj0YdGHo24fqyYNU6c26TG/BskbfQAAAAAAAAAID4d9LmFxbrE4t+jDQR8WfVj04WjYR0v+iXAAAAAAAAAA4eOwzwUszi0W5xZ9OOjDog+LPhz0AQAAAAAAAKC5OOxrJha1Fotziz4c9GHRh0UfDq/0UVh8LO59AAAAAAAAAIhcq3hfQCLzyqKWxbnDK30UFh/T6v3H6YM+atGHRR8Or/QhKe59AAAAAAAAAGgeDvsi5JVFLYtzh1f6kOK/OKeP+uiDPuqiD2vrwZOSpNG9OnDQBwAAAAAAACQw3sYzAl5Z1EosziXv9OGFxTl9WPThoA+LPqw564q05YtOru3ZMS7XAAAAAAAAAMAdHPaFySuLWhbnDq/04YXFOX1Y9OGgD4s+LP9bPw/t2i4u+QAAAAAAAADcxWFfGLy0qGVx7q0+4r04pw+LPhz0YdGHVfczXodw2AcAAAAAAAAkhbge9s2dO1dDhw5VZmamcnNzNWHCBBUVFQW8T1VVlR555BH16dNHrVu31sCBA7V8+fKoX6vXFrUszr3VRzwX5/Rh0YeDPiz6sOr2wWf0Jb9EmrEAAAASCXMWAADworge9q1du1bTpk3Txo0btWrVKlVVVWnMmDEqLy9v8j4zZszQU089pd///vfavXu37rrrLn3jG9/Q9u3bo3adXlzUsjj3Vh+8lSp9SPRRF3046APxkigzFgAAQKJhzgIAAF7UKp7hDb+L6bnnnlNubq62bdumESNGNHqfF154QQ899JBuvPFGSdLUqVP15ptv6te//rUWLlzo+jV6dVF79+vvxvwaWJxbXlic04dFHw76sOjD8kIfiL1EmLEAAAASEXMWAADworge9jVUWloqScrJyWnyNj6fT61bt673exkZGVq/fn2Tt/f5fLW/LisrkyS9XnRYR077Gr1P7X3PVev5HSU6Wu7TlEH5WrnvqFbuOxr0eWz94vP0CouPBb1tKAqLj2n1/uMa3auDJGdx63ZGY+pmfFZWoefe/US5bdI1qmcHPbnp46jkBBJpH+FkhKKxPtzOaIo/428fHNKcdR/Qh+jDjz6Sp49wcoJpqg83MwLZcbg0ao+N8ERjxvLfp7E5q+j4abVNi86Yuf/EGUnSnmOnovL4ZLTMjFjlkEEGGWS4IdqvhwgPcxYZZJCRaDlkkEFG0xJ5zkoxxph4X4Qk1dTU6Oabb9bJkycDDjvf+973tGPHDr366qvq06ePVq9erfHjx6u6urreEOQ3e/ZsPfzww9G8dAAAEMCAAQOUn58flceuqqrS8uXLVVpaqqysrKhkJLpozVgScxYAAPE0fPhwtW8fvXePYM4KjjkLAIDkFM05K1ozlmcO+6ZOnao33nhD69evV/fu3Zu83bFjx/TDH/5Qr732mlJSUtSnTx9df/31+uMf/6iKiorzbt/Yd0Ll5eVpZI8cXZ7b+B9kZXWNlu49rM8rKjWuXxd1apMe1nNZW3xcu4+f1tCu7Zr12XpbD57UloMnG30ctzIC8WdcIKljmzTd1Lez0lLd/5jHYM+luX2EkhGKQH24lRHMGx8dUfHJCrW9MFW3XNmNPuiDPupIlj5CyQkmWB9uZARzpNynv+05pGpJCxcu1MSJE13PkJy/17Ozs1lCBRCtGUtqes566Ct91b9jpuvPRZLeKvmH5m8t1i+v669e7S8ig4yEyiGDDDLIcMP+E2c0c80ebdu2TYMHD45KhsScFQrmLDLIICMRc8ggg4ymxWLOitaM5Ym38bznnnu0dOlSrVu3LuBwJEkdO3bUq6++qrNnz+of//iHunbtqunTp6t3796N3j49PV3p6ecvWycO7KEfDu553u/7P2Op4lyN1t85MqLPWLr79Xe1+/hp3dyvS8SfjzRnXZG2HCxu8jOW3MgI5lt/2aTdx0+rW1Zr7bp7dNQ+8yrQc3Gjj2AZoQjWhxsZwWw+cELPvFMsSbrv//XRL0dd7nqGRB+hog+LPhxu9REsJ5hQ+mhuRjD+z0zsndNGH35e7upjIzzRnLGkpuesMX1yNSK/Q7Ovvynztxbrxks7aXCXdmSQkXA5ZJBBBhnN9c6hk5q5Zk9UHhuhY84igwwyEjmHDDLIaFwiz1nu/9hDGIwxuueee7RkyRL93//9n3r16hXyfVu3bq1u3brp3Llz+utf/6rx48c3+3r8i9r3j5Zp1aRhzVrUNsecdUWauWZP0EVtNG0+cEKvFR2SJN0+sEfUDvoCoQ/LvzjPyUiTJKW3So35NdCHRR8WfTjow/L3cWVulh4YdmlcrgHem7EAAACSBXMWAADworge9k2bNk0LFy7UokWLlJmZqcOHD+vw4cP13sJg8uTJevDBB2t/vWnTJr3yyiv6+OOP9fe//11f+9rXVFNTowceeKBZ18Ki1mJxbnmpjytzs3RT385xuQb6sOjDog8HfVh1+1g+sUAZF8b+7w84vDRjAQAAJBPmLAAA4EVxPeybP3++SktLde2116pLly61Xy+++GLtbUpKSnTo0KHaX589e1YzZszQ5Zdfrm984xvq1q2b1q9fr3bt2kV8HSxqLRbnltf6WD6xICqfQRYMfVj0YdGHgz6shn3E4yfCYXllxgIAAEg2zFkAAMCL4vqZfcaYoLcpLCys9+uRI0dq9+7drl0Di1qr4aL2Z2/uivk10IflhcU5fVj0YdGHgz4sL/SB+rwwYwEAACQj5iwAAOBFcf3JvnhjUWt5YVHrO1dNH1+gD4s+HPRh0YdFHwAAAAAAAADi+pN98XS2ikWtn1cWtc/vKFGp7xx90Ect+rDow0EfFn0AAAAAAAAAkFrwYd8Tm/bp+JlKFrUeWNRWVtdIko6W+7TujhH0QR+S6MOPPiz6sOgDAAAAAAAAgF+LfRvPA2UVHPR5YFF7ylelpXsPS5KmDMqnD/qQRB9+9GHRh0UfAAAAAAAAAOpqsYd9/1JwCYtaDyzOv/anDfq8olKS1D0rI+bXINGHH31Y9GHRh4M+LC/0AQAAAAAAAMBqsYd9vdq3iUsui1qHf3H+/tEyjevXJeb5fvThoA+LPiz6cNCH5YU+AAAAAAAAANTXYg/74oFFraPu4nzVpGHq1CY95tcg0YcffVj0YdGHgz4sL/QBAAAAAAAA4Hwc9sUIi1pHw8U5b6VKHxJ9+NGHRR8WfQAAAAAAAAAIpFW8L6AlYFHrYHFu0YdFHw76sOjDKiw+ptX7j7f4PgAAAAAAAAA0jcO+KGNx7mBxbtGHRR8O+rDooz76AAAAAAAAABAMh31RxOLcweLcoo/66IM+6qIPa+vBk5Kk0b06tOg+AAAAAAAAAATHZ/ZFEYtzFud10YdFHw76sOjDmrOuSFu+6OTanh3jcg1e6AMAAAAAAABAaDjsiwIW5w4W5xZ9WPThoA+LPiz/Wz8P7douLvmSN/oAAAAAAAAAEDoO+1zG4tzB4tyiD4s+HPRh0YdV9zNeh8SpEy/0AQAAAAAAACA8HPa5iMW5g8W5RR8WfTjow6IPq24fLfknwgEAAAAAAACEj8M+l7A4d7A4t+jDog8HfVj0YdEHAAAAAAAAgObgsM8FLGodLM4t+rDow0EfFn1YXujjs7KKuPcBAAAAAAAAIHIc9jWTFxa1LM4tL/ThhcU5fVj0YdGHgz7qe+7dTzjoAwAAAAAAABIYh33N4IVFLYtzywt9SPFfnNNHffThoA8HfVhHyn2SpNw26Rz0AQAAAAAAAAmMw74IeWFRK7E49/NCH15YnNOHRR8WfTjow9p84IReKzokSbp9YA8O+gAAAAAAAIAEFtfDvrlz52ro0KHKzMxUbm6uJkyYoKKioqD3e+KJJ9SvXz9lZGQoLy9PP/3pT3X27NkYXLHDC4taFueWF/rwwuKcPiz6sOjDQR+W/62fczLSJEnprVLjch2IrkSdsQAAALyOOQsAAHhRXA/71q5dq2nTpmnjxo1atWqVqqqqNGbMGJWXlzd5n0WLFmn69OmaNWuW9uzZowULFujFF1/Uz3/+85hcs1cWtSzOHV7pI96Lc/qw6MOiDwd9WHU/4/Wmvp3jcg2IjUScsQAAABIBcxYAAPCiVvEMX758eb1fP/fcc8rNzdW2bds0YsSIRu/z9ttva9iwYfre974nSerZs6duu+02bdq0KerX66VFbU5Gmo6UV7I490gfV+ZmqX+HtlqwvSTm10AfFn1Y9OGgD6tuH8snFuhnb+6Ky3UgNhJtxgIAAEgUzFkAAMCL4nrY11BpaakkKScnp8nbXHPNNVq4cKE2b96sf/qnf9LHH3+sZcuWadKkSY3e3ufzyefz1f66rKxMkvR60WEdOe1r9D6NKSw+ptX7j2t0rw6SnMVtU7YePFl7Hzd9Vlah5979RLlt0tXxonQdKa90PaOuxp6H71y1nt9RoqPlPk0ZlK+V+45q5b6jrucEE04fkWYEU7ePUT07aMUXfw6x7IQ+LPqw6COx+4g0J5CGfTy56eOo/V1V147DpVF7bIQnGjOW1PSctXLfUX1aVuHS1df3Vsk/JEl7jp2KyuNL0v4TZ8hoYRmxyiGDDDLIcEO0Xw8RnljPWUXHT6ttWnTWecny3wgZZCRqRqxyyCCDjKYl8pyVYowx8b4ISaqpqdHNN9+skydPav369QFv+7vf/U7333+/jDE6d+6c7rrrLs2fP7/R286ePVsPP/xwNC4ZAACEYMCAAcrPz4/KY1dVVWn58uUqLS1VVlZWVDISXbRmLIk5CwCAeBo+fLjat4/eO1cwZwXHnAUAQHKK5pwVrRnLM4d9U6dO1RtvvKH169ere/fuTd6usLBQt956q+bMmaOrr75aH330kX7yk5/ohz/8oWbOnHne7Rv7Tqi8vDyN7JGjy3OD/0FuPXhSWw6e1NCu7TSka7uQnsva4uPaffx0WPcJ5Ei5T68VHVJORppu6ttZaakXuJ7RmLoZAzplaenew/q8olLj+nVRpzbpUckJ9lwi6SPcjGAa68PtjKb4MwZ3ztaBUxX0Ifqoiz6So49wcwJpqg83MwLZe/y0Vhcf18KFCzVx4sSoZJSVlSk7O5slVADRmrGkpues8X07a0iU3jbX/9OyU4f01LAeF0cl462Sf2j+1mL98rr+6tX+IjJaQEascsgggwwy3LD/xBnNXLNH27Zt0+DBg6OSITFnhSIec9ZDX+mr/h0zXX8uUvL8N0IGGYmaEascMsggo2mxmLOiNWN54m0877nnHi1dulTr1q0LOBxJ0syZMzVp0iT98z//syTpqquuUnl5uX70ox/poYce0gUXXFDv9unp6UpPP3/RO3FgD/1wcM+AWXPWFWnLweKwP2Pp7tff1e7jp3Vzvy7N/mwm/2csDe2Wo+UTC5SZfqHrGU3xZ3y1T67+r/i4Ks7VaP2dI13/zKtQn0ukfYSTEUxTfbiZEYg/49gZH32IPuqij+TpI5ycQAL14VZGMM+8U6zVxcej8tgITTRnLKnpOWtsv85B56zmWL3/uIb1uFgTr8qLWsb8rcW68dJOGtylHRktJCNWOWSQQQYZzfXOoZOauWZPVB4boYvXnDWmT65G5Hdw50k0Ihn+GyGDjETOiFUOGWSQ0bhEnrPiethnjNG9996rJUuWqLCwUL169Qp6nzNnzpw3BKWmptY+nlvmrCvSzDV7Il7UusG/qL0yN6vRRW2sPL+jRKW+c1o1aZjri/NQ0YejsrpGknS03Kd1d4ygD/qQRB9+9GF5oY9Tvio99taHMc+Fw8szFgAAQCJjzgIAAF4U18O+adOmadGiRfrb3/6mzMxMHT58WJKUnZ2tjIwMSdLkyZPVrVs3zZ07V5I0btw4/eY3v9GXvvSl2rc+mDlzpsaNG1c7KDUXi1oHi3PLC32c8lVp6V7nv5Epg/Lpgz4k0YcffVhe6eNrf9qgT8sqYp4Nh1dnLAAAgETHnAUAALworod9/g8ivvbaa+v9/rPPPqspU6ZIkkpKSup999OMGTOUkpKiGTNm6MCBA+rYsaPGjRunRx991JVrYlHrYHFueaWPr/1pgz6vqJQkdc/KiPk1SPThRx8WfVj04fD38f7RMj04vK9mFX4Q82uAN2csAACAZMCcBQAAvCjub+MZTGFhYb1ft2rVSrNmzdKsWbNcvx4WtQ4W55aX+nj/aJnG9euiV/Ycivk1SPThRx8WfVj04ajbx6pJw/Th56djfg1weG3GAgAASBbMWQAAwIvO/wTgFopFraPh4jxe6MPRcHHeqc35H84dC/ThoA+LPiz6cDTsI14/EQ4AAAAAAAC0NBz2iUWtH4tzy4t98Faq9CHRhx99WPQBAAAAAAAAtGwt/rCPRa3DK4ta+nDQh0UfFn046MOiDwAAAAAAAABx/cy+eGNR6/DKoraw+JhW7z9OH/RRiz4s+nDQh0UfAAAAAAAAAKQWfNj3etEh/W3vERa1HlrUsjinj7rooz76oI+66AMAAAAAAACAX4t9G08O+ryzqN168KQkaXSvDvRBH5Looy76cNCHRR8AAAAAAAAA6mqxh33j+3ZiUeuBRe2cdUXa8sXy/NqeHeNyDfRh0YeDPiz6sOjD4ZU+AAAAAAAAADha7GHf2H5d4pLLotbyf2bi0K7t4pIv0Udd9OGgD4s+LPpweKUPAAAAAAAAAFaLPeyLBxa1ln9x/svr+mtInJbn9GHRh4M+LPqw6MPhlT4AAAAAAAAA1MdhX4ywqLXqLs55K1X6kOijLvpw0IdFHwAAAAAAAAAC4bAvBljUWizOHfRh0YdFHw76sD4rq6APAAAAAAAAAAFx2BdlLM4tFucO+rDow6IPB33U99y7n9AHAAAAAAAAgIA47IsiFucWi3MHfdRHHw76cNCHdaTcJ0nKbZPe4vsAAAAAAAAAEBiHfVHE4tzB4txBHxZ9WPThoA9r84ETeq3okCTp9oE9WnQfAAAAAAAAAILjsC8KWJxbLM4d9GHRh0UfDvqw/G/9nJORJklKb5Ua82vwSh8AAAAAAAAAQsNhn8tYnFsszh30YdGHRR8O+rDqfsbrTX07x+UavNIHAAAAAAAAgNBx2OciFucWi3MHfVj0YdGHgz6sun0sn1igtNTY//XslT4AAAAAAAAAhIfDPpewOLdYnDvow6IPiz4c9GE17KMl/0Q4AAAAAAAAgPBx2OcCFucWi3MHfVj0YdGHgz4sL/ThO1ftiT4AAAAAAAAARKZVvC8g0XlhUcvi3PJCH15ZnNOHgz4s+rDow3p+R4lKfec46AMAAAAAAAASVFx/sm/u3LkaOnSoMjMzlZubqwkTJqioqCjgfa699lqlpKSc9zV27NgYXbXlhUUti3PLC31IzuKcPuijLvqw6MPhhT4qq2skSUfLfRz0JaFEn7EAAAC8ijkLAAB4UVwP+9auXatp06Zp48aNWrVqlaqqqjRmzBiVl5c3eZ9XXnlFhw4dqv16//33lZqaqu985zsxvHJvLGolFud+XujDK4tz+nDQh0UfFn04TvmqtHTvYUnSlEH5HPQloUSesQAAALyMOQsAAHhRXN/Gc/ny5fV+/dxzzyk3N1fbtm3TiBEjGr1PTk5OvV8vXrxYF110UUwHJC8sausuztfdMYLFOYtzSfThRx8WfVj04fC/9fPnFZWSpO5ZGTG/BkRfos5YAAAAXsecBQAAvMhTn9lXWloq6fwhKJAFCxbo1ltvVZs2bRr95z6fTz6f77yMv39yPKJr3H+iXL/Z8JG6ZWXo1iu6afGuA+fdZvfRMknS1gMn9PQ7xRHlBHK2qlovfZF7dbf22nGkVDuOlLqeE+x5vF50SH/be0Tj+3ZSp7bpET/X5vx5hdJHczOCOVtVrSc27dOxcmdxfvjU2aj0LgV+HvThoA+LPqxE6qO5OYH4+zhQVqGrOmbrnSOlUfu7SpI2ffa5JOnMmTMqKyuLSob/cY0xUXn8ZBGNGUtyf84KxdYDJyRJe46d0roo5ew5dkqStO3gSZ2uPEdGC8iIVQ4ZZJBBhhuKjp+WJJ0+fTpqM5bEnBWqWM9Z7x5yf//jlyz/jZBBRqJmxCqHDDLIaFos5qyozVjGI6qrq83YsWPNsGHDQr7Ppk2bjCSzadOmJm8za9YsI4kvvvjiiy+++Erir08//dSNcSQpRWvGMoY5iy+++OKLL75awhdzVtOYs/jiiy+++OKLr0i/3J6xUozxxrdoTZ06VW+88YbWr1+v7t27h3SfH//4x9qwYYPee++9Jm/T8DuhTp48qfz8fJWUlCg7O7vZ192YsrIy5eXl6dNPP1VWVhYZHsghgwwyyEiUjFjlJEuGMUanTp1S165ddcEFcf0oYs+K1owlMWeRkTwZscohgwwyyEiUDIk5KxTMWWSQQUYi5pBBBhnxzYjWjOWJt/G85557tHTpUq1bty7k4ai8vFyLFy/WI488EvB26enpSk9PP+/3s7Ozo/rCLElZWVlkeCyHDDLIICNRMmKVkwwZ0Vp2JINozlgScxYZyZcRqxwyyCCDjETJYM5qGnMWGWSQkeg5ZJBBRvwyojFjxfWwzxije++9V0uWLFFhYaF69eoV8n1feukl+Xw+ff/734/iFQIAACQeZiwAAIDoYM4CAABeFNf3YZg2bZoWLlyoRYsWKTMzU4cPH9bhw4dVUVFRe5vJkyfrwQcfPO++CxYs0IQJE3TxxRfH8pIBAAA8jxkLAAAgOpizAACAF8X1J/vmz58vSbr22mvr/f6zzz6rKVOmSJJKSkrOe9/SoqIirV+/XitXrgw7Mz09XbNmzWr0rRDcQob3csgggwwyEiUjVjnJkoHGxWPGkpLn3ysyWl5GrHLIIIMMMhIlA01jziKDDDKiKVmeCxlkkBF7KcYYE++LAAAAAAAAAAAAABC+uL6NJwAAAAAAAAAAAIDIcdgHAAAAAAAAAAAAJCgO+wAAAAAAAAAAAIAExWEfAAAAAAAAAAAAkKCS7rBv3bp1GjdunLp27aqUlBS9+uqrAW8/ZcoUpaSknPd1xRVXuJYhSX/4wx/Uv39/ZWRkqF+/fvqf//mfJm87d+5cDR06VJmZmcrNzdWECRNUVFQU8PF37dqlb33rW+rZs6dSUlL0xBNPBL2mSHJeeeUVDRkyRO3atVObNm00aNAgvfDCC65m1LV48WKlpKRowoQJrmecPHlS06ZNU5cuXZSenq6+fftq2bJlrmY88cQT6tevnzIyMpSXl6ef/vSnOnv2bKO3nT9/vgYMGKCsrCxlZWWpoKBAb7zxRsDHf+mll3TZZZepdevWuuqqq5q8/kgznn76aX3lK19R+/bt1b59e11//fXavHmzqxl1hdJ3JBnPPffcef+Nt27d2tWMa6+9ttHXkrFjx7qWUVVVpUceeUR9+vRR69atNXDgQC1fvjzg82ho3rx5SklJ0X333dfkbSJ5PQk3I9zXkkgyIuk93AwpvNeSSDPCeS2RpNmzZ5/33C+77LKAGeG+noSbEcnrCbyHOSu010VmLG/NWBJzlsScxZzFnNWUcF5PYjFjRZLDnJX4kmHGkpiz/FrSnBWLGSuSHOas5JqzYjFjhZrDnBVehtfmrGSfsZLusK+8vFwDBw7UH/7wh5Bu/+STT+rQoUO1X59++qlycnL0ne98x7WM+fPn68EHH9Ts2bO1a9cuPfzww5o2bZpee+21Rm+/du1aTZs2TRs3btSqVatUVVWlMWPGqLy8vMmMM2fOqHfv3po3b546d+4c0nVFkpOTk6OHHnpIGzZs0Hvvvac77rhDd9xxh1asWOFahl9xcbHuv/9+feUrX3H9eVRWVuqGG25QcXGxXn75ZRUVFenpp59Wt27dXMtYtGiRpk+frlmzZmnPnj1asGCBXnzxRf385z9v9Pbdu3fXvHnztG3bNm3dulWjRo3S+PHjtWvXrkZv//bbb+u2227TD37wA23fvl0TJkzQhAkT9P777zd5TeFmFBYW6rbbbtOaNWu0YcMG5eXlacyYMTpw4IBrGX6h9h1pRlZWVr3/1j/55BNXM1555ZV6j//+++8rNTU14GtJuBkzZszQU089pd///vfavXu37rrrLn3jG9/Q9u3bAz4Xvy1btuipp57SgAEDAt4ukteTcDPCfS2JJEMKv/dwM8J9LYkkI9zXEr8rrrii3nNfv359k7eN5PUk3IxIXk/gPcxZob0uMmN5a8aSmLOYs5izmLMaF8nrSSxmrHBzmLMSXzLMWBJzltTy5qxYzFiR5DBnJc+cFYsZK5wc5qzEn7OSesYySUySWbJkSVj3WbJkiUlJSTHFxcWuZRQUFJj777+/3u/9y7/8ixk2bFhIGUePHjWSzNq1a0O6fX5+vvntb38b0m2bk+P3pS99ycyYMcPVjHPnzplrrrnGPPPMM+b2228348ePD/l6QsmYP3++6d27t6msrAz5ccPNmDZtmhk1alS93wund2OMad++vXnmmWca/Wff/e53zdixY+v93tVXX21+/OMfh/z4wTIaOnfunMnMzDTPP/+8qxnN6TuUjGeffdZkZ2eH/ZjhZDT029/+1mRmZprTp0+7ltGlSxfzH//xH/V+75vf/KaZOHFi0Mc9deqUufTSS82qVavMyJEjzU9+8pOQriec15NIM/xCeS0JJyPS3sPJiPS1JJyMSF5LZs2aZQYOHBjy9UTyehJuRkORvp7AO5izQseMFbpYzVjGMGe5lcGcxZwVjkSfs2IxY0WS0xBzVmJLlhnLGOasljpnxWLGCpbTEHNWYs5ZsZixmpPjx5zVOC/OWck+YyXdT/Y114IFC3T99dcrPz/ftcf0+Xzn/ahtRkaGNm/erKqqqqD3Ly0tleR850A0hZtjjNHq1atVVFSkESNGuJrxyCOPKDc3Vz/4wQ9CetxwM/73f/9XBQUFmjZtmjp16qQrr7xSv/rVr1RdXe1axjXXXKNt27bV/mjvxx9/rGXLlunGG28M+vjV1dVavHixysvLVVBQ0OhtNmzYoOuvv77e7331q1/Vhg0bQnoOoWQ0dObMGVVVVYX870ioGc3pO9SM06dPKz8/X3l5eSF9Z1YkGXUtWLBAt956q9q0aeNaRlOvJYG+A8Vv2rRpGjt27Hn/zrgp0oxwXkvCzYik93AyIn0tCScj0teSDz/8UF27dlXv3r01ceJElZSUNHnbSF9PwsloKNzXEySHljpnMWN5Z8aSmLPCwZzFnBVIS52zYjFjhZvTEHNWy+PFGUtizgpHMsxZsZixQs1piDkrMeesWMxYzclhzgrMq3NWUs9Y8TxpjDaF+d1QBw4cMKmpqebFF190NePBBx80nTt3Nlu3bjU1NTVmy5YtplOnTkaSOXjwYMD7VldXm7Fjx4b1HTSRfCdUODknT540bdq0Ma1atTLp6elmwYIFrmb8/e9/N926dTPHjh0zxpiwvjMm1Ix+/fqZ9PR0c+edd5qtW7eaxYsXm5ycHDN79mzXMowx5sknnzQXXnihadWqlZFk7rrrroC3f++990ybNm1Mamqqyc7ONq+//nqTt73wwgvNokWL6v3eH/7wB5Obm+taRkNTp041vXv3NhUVFa5lRNp3OBlvv/22ef7558327dtNYWGhuemmm0xWVpb59NNPXcuoa9OmTUaS2bRpk6vP47bbbjOXX3652bt3r6murjYrV640GRkZJi0tLWDGn//8Z3PllVfW9haN74aKJCPc15JwMyLpPdyMSF5LIvmzCve1ZNmyZeYvf/mL2bFjh1m+fLkpKCgwPXr0MGVlZY3ePpLXk3AzGgr19QTexZwVGmYsb8xYxjBnGcOcxZzlXkZLnbNiMWNFktMQc1ZiS4YZyxjmrJY0Z8Vixgo3pyHmrMSbs2IxY0Waw5yVuHNWss9YHPbV8atf/cpcfPHFxufzuZpx5swZc8cdd5hWrVqZ1NRU07VrV/PAAw8YSebw4cMB73vXXXeZ/Pz8oC/idUVy2BdOTnV1tfnwww/N9u3bzeOPP26ys7PNmjVrXMkoKyszPXv2NMuWLav9vXAGpFCfx6WXXmry8vLMuXPnan/v17/+tencubNrGWvWrDGdOnUyTz/9tHnvvffMK6+8YvLy8swjjzzS5H18Pp/58MMPzdatW8306dNNhw4dzK5duxq9baQDUjgZdc2dO9e0b9/e7NixI+htQ81oTt+RPg9jjKmsrDR9+vQJ+iP2kWb86Ec/MldddVVI1xJOxtGjR8348ePNBRdcYFJTU03fvn3N3XffbVq3bt3k45eUlJjc3Nx6vbk9IEWaEc5rSXOfhzHBe48kI9zXkkgyInktaejEiRMmKyurybfUaM7/4Qo1o65wXk/gXcxZoWHG8saMZQxzljHMWcxZa6LyPIxpuXNWLGasUHLqYs5KfMkwYxnDnNWS5qxYzFjh5tTFnJV4c1YsZqzm5DBnhZaRCHNWss1YHPZ9oaamxlxyySXmvvvui1pGZWWl+fTTT825c+fMf/7nf5rMzExTXV3d5O2nTZtmunfvbj7++OOwrinc4SjSHL8f/OAHZsyYMa5kbN++3UgyqamptV8pKSkmJSXFpKammo8++siV5zFixAgzevToer+3bNkyIynggBxOxvDhw897f/sXXnjBZGRkBOy9rtGjR5sf/ehHjf6zvLy883r+xS9+YQYMGBDSY4eS4ffv//7vJjs722zZsiWsxw6W0Zy+Q81oyre//W1z6623hnz7UDNOnz5tsrKyzBNPPBHWY4eTUVFRYT777DNTU1NjHnjgAXP55Zc3edslS5ac92csqfbPuO5f6o0J5fWkuRl+gV5L3MoI1HskGeG+lkSS4cZriTHGDBkyxEyfPr3Rf+bW60mgDL/mvp7AO5izgmPGcnhxxjKGOYs5q3HMWcxZ4b6exGLGCpbjx5yVHBJ9xjKGOaulz1mxmLGC5fgxZ4We4aU5KxYzlhs5fsxZiT1nJdOM1SrCd/9MOmvXrtVHH30U0Xssh+rCCy9U9+7dJUmLFy/WTTfdpAsuOP9jE40xuvfee7VkyRIVFhaqV69eUbket3Jqamrk8/lcybjsssu0c+fOer83Y8YMnTp1Sk8++aTy8vJceR7Dhg3TokWLVFNTU9vB3r171aVLF6WlpbmScebMmfP6TU1NrX28UAT6sy0oKNDq1at133331f7eqlWrQn4P7lAyJOmxxx7To48+qhUrVmjIkCFhPXawjEj6DjejMdXV1dq5c2fIn+0TTsZLL70kn8+n73//+2E9djgZrVu3Vrdu3VRVVaW//vWv+u53v9vkbUePHn3en/Edd9yhyy67TD/72c9q/51sDrcyAj13NzKC9R5JRrivJZFkuPFacvr0ae3bt0+TJk1q9J+78XoSLENy5/UEiamlzVnMWN6fsSTmLOasxjFnRZbRUuesWMxYoeRIzFktlZdmLIk5q66WPGfFYsYKliMxZ4Wb4aU5KxYzlps5zFmJO2cl3YwV06PFGDh16pTZvn177XdY/OY3vzHbt283n3zyiTHGmOnTp5tJkyadd7/vf//75uqrr45KRlFRkXnhhRfM3r17zaZNm8wtt9xicnJyzP79+xt9/KlTp5rs7GxTWFhoDh06VPt15syZ2ttMmjSp3omzz+ervaYuXbqY+++/32zfvt18+OGHTT6PSHJ+9atfmZUrV5p9+/aZ3bt3m8cff9y0atXKPP30065lNBTsx+AjySgpKTGZmZnmnnvuMUVFRWbp0qUmNzfXzJkzx7WMWbNmmczMTPPnP//ZfPzxx2blypWmT58+5rvf/W6jGdOnTzdr1641+/fvN++9956ZPn26SUlJMStXrmz08d966y3TqlUr8/jjj5s9e/aYWbNmmQsvvNDs3LmzyT+rcDPmzZtn0tLSzMsvv1zveZ86dcq1jIZCeduDcDMefvhhs2LFCrNv3z6zbds2c+utt5rWrVsHfAuDSJ/H8OHDzS233BLw+iPN2Lhxo/nrX/9q9u3bZ9atW2dGjRplevXqZU6cOBFSnl/DH7N34/Uk3IxwX0siyYik93Azwn0tiSQj3NcSY4z513/9V1NYWGj2799v3nrrLXP99debDh06mKNHjzaaEcnrSbgZkbyewHuYs0J7XWTG8taMZQxzlh9zFnOWWxktdc6KxYwVSQ5zVuJLhhnLGOasulrKnBWLGSuSHOas5JuzYjFjhZLDnBV6hhfnrGSfsZLusG/NmjVG0nlft99+uzHGeeEdOXJkvfucPHnSZGRkmP/+7/+OSsbu3bvNoEGDTEZGhsnKyjLjx483H3zwQZOP39hjSzLPPvts7W1GjhxZm2eMMfv372/0Pg2fa3NzHnroIXPJJZeY1q1bm/bt25uCggKzePFiVzMaCvaXZaQZb7/9trn66qtNenq66d27t3n00Ueb/NHpSDKqqqrM7NmzTZ8+fUzr1q1NXl6eufvuu5v8i+zOO+80+fn5Ji0tzXTs2NGMHj269i/Jpp7DX/7yF9O3b1+TlpZmrrjiiqAfuBtuRn5+fqPPe9asWa5lNBTKcBRuxn333Wd69Ohh0tLSTKdOncyNN95o3nnnHVczjDHmgw8+MJLq3c7NjMLCQtO/f3+Tnp5uLr74YjNp0iRz4MCBkLLqaviXsRuvJ+FmhPtaEklGJL2Hm2FMeK8lkWSE+1pijDG33HKL6dKli0lLSzPdunUzt9xyS723EXHj9STcjEheT+A9zFmhvS4yY3lrxjKGOcuPOYs5y62MljpnxWLGiiSHOSvxJcOMZQxzVl0tZc6KxYwVSQ5zVvLNWbGYsULJYc4KPcOLc1ayz1gpxoTxXjcAAAAAAAAAAAAAPKPxN9kGAAAAAAAAAAAA4Hkc9gEAAAAAAAAAAAAJisM+AAAAAAAAAAAAIEFx2AcAAAAAAAAAAAAkKA77AAAAAAAAAAAAgATFYR8AAAAAAAAAAACQoDjsAwAAAAAAAAAAABIUh30AAAAAAAAAAABAguKwDwAAAAAAAAAAAEhQHPYBSBrV1dW65ppr9M1vfrPe75eWliovL08PPfRQnK4MAAAgcTFjAQAARAdzFgC3pBhjTLwvAgDcsnfvXg0aNEhPP/20Jk6cKEmaPHmyduzYoS1btigtLS3OVwgAAJB4mLEAAACigzkLgBs47AOQdH73u99p9uzZ2rVrlzZv3qzvfOc72rJliwYOHBjvSwMAAEhYzFgAAADRwZwFoLk47AOQdIwxGjVqlFJTU7Vz507de++9mjFjRrwvCwAAIKExYwEAAEQHcxaA5uKwD0BS+uCDD9S/f39dddVVeuedd9SqVat4XxIAAEDCY8YCAACIDuYsAM1xQbwvAACi4Y9//KMuuugi7d+/X5999lm8LwcAACApMGMBAABEB3MWgObgJ/sAJJ23335bI0eO1MqVKzVnzhxJ0ptvvqmUlJQ4XxkAAEDiYsYCAACIDuYsAM3FT/YBSCpnzpzRlClTNHXqVF133XVasGCBNm/erP/6r/+K96UBAAAkLGYsAACA6GDOAuAGfrIPQFL5yU9+omXLlmnHjh266KKLJElPPfWU7r//fu3cuVM9e/aM7wUCAAAkIGYsAACA6GDOAuAGDvsAJI21a9dq9OjRKiws1PDhw+v9s69+9as6d+4cb4EAAAAQJmYsAACA6GDOAuAWDvsAAAAAAAAAAACABMVn9gEAAAAAAAAAAAAJisM+AAAAAAAAAAAAIEFx2AcAAAAAAAAAAAAkKA77AAAAAAAAAAAAgATFYR8AAAAAAAAAAACQoDjsAwAAAAAAAAAAABIUh30AAAAAAAAAAABAguKwDwAAAAAAAAAAAEhQHPYBAAAAAAAAAAAACYrDPgAAAAAAAAAAACBBcdgHAAAAAAAAAAAAJKj/D1GhK+3S472sAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 11.4\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.08064516129032256\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "yOLwh85tbchO", + "outputId": "27f34d3d-8a06-4ad5-efa4-560b64bdf961" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m222/222\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdNRJREFUeJzt3Xl4VOXd//HPLFkEkhAgJCSEhF1AwUJbBWtRgSIi7hv6PKACpXUpWkXcAdEHFX1al2ojiNqfKFarVvtIEXAvqCgqi8qiJAQCCVsS1iwz5/fHZCaznJlMQpI5JO/XdeUimZw5c8+ZJPqZ731/b5thGIYAAAAAAEDM2WM9AAAAAAAA4EFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwDElM1m06xZs2I9jFbnhRdekM1mU35+fr3v++GHH8pms+nDDz9s9HG1dLm5ubrmmmtiPYwAs2bNks1m0549e2I9lAax4jUFgGNBSAeABnr66adls9l06qmnHvO53n33XYJqMyotLVViYqJsNpu+//5702OuueYa2Ww204/ExETfcT/88INuv/12nXLKKUpKSlKXLl00duxYffnllw0a25lnnhn2cf0/+Hk5ditXrtSsWbNUWlp6zOf68ccfNXXqVPXo0UOJiYlKTk7W6aefrscff1xHjhw59sECAFoNZ6wHAADHq0WLFik3N1dffPGFtmzZol69ejX4XO+++67+8pe/ELyayWuvvSabzaaMjAwtWrRIDzzwgOlxCQkJWrBgQcjtDofD9/mCBQv03HPP6ZJLLtH111+vsrIy5eXl6bTTTtO///1vjRw5sl5ju/vuuzV58mTf16tXr9YTTzyhu+66S/369fPdPnDgwHqdN9h///d/68orr1RCQkK97/vrX/9aR44cUXx8/DGNIdZWrlyp2bNn65prrlH79u0bfJ7/+7//02WXXaaEhARNmDBBJ510kiorK/Xpp59q+vTp2rBhg5599tnGGzgAoEUjpANAA2zdulUrV67UG2+8oalTp2rRokWaOXNmrIfV6h09elTx8fGy2yNPFHvppZd07rnnKicnRy+//HLYkO50OvVf//VfEc81fvx4zZo1S+3atfPddt1116lfv36aNWtWvUP6qFGjAr5OTEzUE088oVGjRunMM88Me79Dhw6pbdu2UT+Ow+EIeLOhPux2e8BsgtZs69atuvLKK5WTk6P3339fXbp08X3vhhtu0JYtW/R///d/MRwh6iPavyEA0JT4CwQADbBo0SKlpqZq7NixuvTSS7Vo0aKQY8Kt283Pz5fNZtMLL7wgyTOt+i9/+YskBUxn9jp06JBuvfVWZWdnKyEhQX379tWjjz4qwzBCHvOll17SkCFDdMIJJ6hDhw668sorVVhYGHDMmWeeqZNOOknfffedzjrrLLVp00ZZWVl65JFHQs539OhRzZo1S3369FFiYqK6dOmiiy++WD/++GO9x1dRUaFbbrlFaWlpSkpK0vnnn6/t27ebXt8dO3bouuuuU3p6uhISEjRgwAAtXLjQ9PouXrxY99xzj7KystSmTRuVl5ebntNr27Zt+uSTT3TllVfqyiuv9L3h0lBDhgwJCOiS1LFjR51xxhlhp9IfK+8a4u+++05XXXWVUlNT9atf/UqStHbtWl1zzTW+adcZGRm67rrrtHfv3oBzmK1Jz83N1XnnnadPP/1Uv/zlL5WYmKgePXrob3/7W8B9zX626/NzVVBQoPPPP19t27ZV586ddcstt2jp0qVRrXM/cOCAbr75ZuXm5iohIUGdO3fWqFGjtGbNmoDjPv/8c51zzjlKSUlRmzZtNHz4cP3nP/8JuIbTp0+XJHXv3t33e1ffNfqPPPKIDh48qOeeey4goHv16tVL06ZNC3v/ffv26bbbbtPJJ5+sdu3aKTk5WWPGjNG3334bcuyTTz6pAQMGqE2bNkpNTdXPf/5zvfzyy/W+NuHs2bNHl19+uZKTk9WxY0dNmzZNR48eDTimurpac+bMUc+ePZWQkKDc3FzdddddqqioCDgu3JKM4PXj3p/D//znP/rjH/+otLQ0tW3bVhdddJF2794dcF/DMPTAAw+oa9euatOmjc466yxt2LAh5DGivabh/oZ88803stls+tOf/hRy7pUrV8pms+mVV16p63ICQINRSQeABli0aJEuvvhixcfHa/z48XrmmWe0evVq/eIXv6j3uaZOnaqioiItW7ZM/+///b+A7xmGofPPP18ffPCBJk2apFNOOUVLly7V9OnTtWPHjoD/iXzwwQd177336vLLL9fkyZO1e/duPfnkk/r1r3+tr7/+OmA67/79+3XOOefo4osv1uWXX67XX39dM2bM0Mknn6wxY8ZIklwul8477zytWLFCV155paZNm6YDBw5o2bJlWr9+vXr27Fmv8U2ePFkvvfSSrrrqKg0bNkzvv/++xo4dG3I9iouLddppp8lms+nGG29UWlqalixZokmTJqm8vFw333xzwPFz5sxRfHy8brvtNlVUVNQ5BfuVV15R27Ztdd555+mEE05Qz549tWjRIg0bNsz0eLNmWvHx8UpOTo74OLt27VKnTp0iHnOsLrvsMvXu3Vv/8z//43tTZNmyZfrpp5907bXXKiMjwzfVesOGDfrss88C3gAys2XLFl166aWaNGmSJk6cqIULF+qaa67RkCFDNGDAgIj3jebn6tChQzr77LO1c+dOTZs2TRkZGXr55Zf1wQcfRPWcf/e73+n111/XjTfeqP79+2vv3r369NNP9f3332vw4MGSpPfff19jxozRkCFDNHPmTNntdj3//PM6++yz9cknn+iXv/ylLr74Ym3atEmvvPKK/vSnP/leq7S0tKjG4fXOO++oR48eYX9+6vLTTz/prbfe0mWXXabu3buruLhYeXl5Gj58uL777jtlZmZKkubPn68//OEPuvTSS33hee3atfr888911VVXRX1tIrn88suVm5uruXPn6rPPPtMTTzyh/fv3B7xJM3nyZL344ou69NJLdeutt+rzzz/X3Llz9f333+vNN99s0DWQpJtuukmpqamaOXOm8vPz9ec//1k33nijXn31Vd8x9913nx544AGde+65Ovfcc7VmzRr95je/UWVlZYOuqVfw35ATTzxRp59+uhYtWqRbbrkl4NhFixYpKSlJF1xwQYOfKwDUyQAA1MuXX35pSDKWLVtmGIZhuN1uo2vXrsa0adMCjvvggw8MScYHH3wQcPvWrVsNScbzzz/vu+2GG24wzP4kv/XWW4Yk44EHHgi4/dJLLzVsNpuxZcsWwzAMIz8/33A4HMaDDz4YcNy6desMp9MZcPvw4cMNScbf/vY3320VFRVGRkaGcckll/huW7hwoSHJ+N///d+Qcbnd7nqN75tvvjEkGddff33AcVdddZUhyZg5c6bvtkmTJhldunQx9uzZE3DslVdeaaSkpBiHDx82DKP2+vbo0cN3WzROPvlk4+qrr/Z9fddddxmdOnUyqqqqAo6bOHGiIcn0Y/To0REf4+OPPzZsNptx7733Rj2ucF577bWQn6OZM2cakozx48eHHG92LV555RVDkvHxxx/7bnv++ecNScbWrVt9t+Xk5IQcV1JSYiQkJBi33nqr7zazn+1of64ee+wxQ5Lx1ltv+W47cuSIceKJJ5r+vgRLSUkxbrjhhrDfd7vdRu/evY3Ro0f7fk4Nw3NdunfvbowaNcp327x580KuQX2UlZUZkowLLrgg6vvk5OQYEydO9H199OhRw+VyBRyzdetWIyEhwbj//vt9t11wwQXGgAEDIp67rmsTjvfn6fzzzw+4/frrrzckGd9++61hGLW/x5MnTw447rbbbjMkGe+//77vtuDfa6/g5+/9ORw5cmTA63XLLbcYDofDKC0tNQzD83MYHx9vjB07NuC4u+66y5DUoGsa6W9IXl6eIcn4/vvvfbdVVlYanTp1CngsAGgKTHcHgHpatGiR0tPTddZZZ0nyTOu84oortHjxYrlcrkZ9rHfffVcOh0N/+MMfAm6/9dZbZRiGlixZIkl644035Ha7dfnll2vPnj2+j4yMDPXu3TukStmuXbuAtdbx8fH65S9/qZ9++sl32z/+8Q916tRJN910U8i4vNXYaMf37rvvSlLIccFVccMw9I9//EPjxo2TYRgBz2X06NEqKysLmbo7ceJEnXDCCeYXMMjatWu1bt06jR8/3nfb+PHjtWfPHi1dujTk+MTERC1btizk46GHHgr7GCUlJbrqqqvUvXt33X777VGNq6F+97vfhdzmfy2OHj2qPXv26LTTTpOkqKY99+/fX2eccYbv67S0NPXt2zfgZyOcaH6u/v3vfysrK0vnn3++77bExERNmTKlzvNLUvv27fX555+rqKjI9PvffPONNm/erKuuukp79+71/fwcOnRII0aM0Mcffyy32x3VY9XFu7QiKSmpwedISEjwrX92uVzau3ev2rVrp759+wa8Xu3bt9f27du1evXqsOeq69rU5YYbbgj42vu77/399f77xz/+MeC4W2+9VZKOae39b3/724BZHmeccYZcLpcKCgokScuXL1dlZaVuuummgOOC/4ZI0V9TL7O/IZdffrkSExMDljItXbpUe/bsqbNPBQAcK6a7A0A9uFwuLV68WGeddZa2bt3qu/3UU0/VY489phUrVug3v/lNoz1eQUGBMjMzQ0KAt8u3939gN2/eLMMw1Lt3b9PzxMXFBXzdtWvXkGnPqampWrt2re/rH3/8UX379pXTGf4/FdGOr6CgQHa7XT179gw4rm/fvgFf7969W6WlpXr22WfDdsMuKSkJ+Lp79+5hxxfspZdeUtu2bdWjRw9t2bJFkicg5ubmatGiRSHT7x0OR70avx06dEjnnXeeDhw4oE8//TRkrXpjM3vu+/bt0+zZs7V48eKQa1VWVlbnObt16xZyW2pqqvbv31/nfaP5uSooKFDPnj1Djot2d4RHHnlEEydOVHZ2toYMGaJzzz1XEyZMUI8ePSR5fhckT/AKp6ysTKmpqVE9XiTeJQ8HDhxo8Dncbrcef/xxPf3009q6dWvAG30dO3b0fT5jxgwtX75cv/zlL9WrVy/95je/0VVXXaXTTz/dd0xd16YuwX8/evbsKbvd7lun7/09Dn6tMjIy1L59e9/ve0ME/9x5Xx/vz5333MFjTEtLC3kto72mXma/R+3bt9e4ceP08ssva86cOZI8b9BmZWXp7LPPru/TA4B6IaQDQD28//772rlzpxYvXqzFixeHfH/RokW+kB5u7W9jV9slz/+U2mw2LVmyxLRjd3BYDNfV2zBpRtecvBXO//qv/wobsoK3Hou2im4Yhl555RUdOnRI/fv3D/l+SUmJDh482OBgXVlZqYsvvlhr167V0qVLddJJJzXoPPVh9twvv/xyrVy5UtOnT9cpp5yidu3aye1265xzzomqgnwsPxvN8XN1+eWX64wzztCbb76p9957T/PmzdPDDz+sN954Q2PGjPE9x3nz5umUU04xPUdjvXmSnJyszMxMrV+/vsHn+J//+R/de++9uu666zRnzhx16NBBdrtdN998c8Dr1a9fP23cuFH/+te/9O9//1v/+Mc/9PTTT+u+++7T7NmzJdV9beor3N+wuvoaRBLu719j/uxEe029wv0NmTBhgl577TWtXLlSJ598st5++21df/31dH4H0OQI6QBQD4sWLVLnzp193dj9vfHGG3rzzTf117/+VSeccIKvulNaWhpwnFm1Kdz/9Obk5Gj58uU6cOBAQLX6hx9+8H1fkq+JW/fu3dWnT58GPbdgPXv21Oeff66qqqqQSnx9x5eTkyO32+2rzntt3Lgx4Hzezu8ul6veW5fV5aOPPtL27dt1//33B+w3Lnmqdb/97W/11ltvNWgqq9vt1oQJE7RixQr9/e9/1/Dhwxtr2PWyf/9+rVixQrNnz9Z9993nu91bXbaCnJwcfffddzIMI+Dn3juzIRpdunTR9ddfr+uvv14lJSUaPHiwHnzwQY0ZM8Y3WyM5ObnOn6FjCZte5513np599lmtWrVKQ4cOrff9X3/9dZ111ll67rnnAm4vLS0NaTzYtm1bXXHFFbriiit8bwo9+OCDuvPOO31b4kW6NnXZvHlzQFV5y5Ytcrvdys3NlVT7e7x58+aA36Hi4mKVlpb6ft8lTyU8+G9fZWWldu7cGdV1CeY99+bNmwNmBuzevTtklkd9rmkk55xzjtLS0rRo0SKdeuqpOnz4sP77v/+7QeMHgPrgrUAAiNKRI0f0xhtv6LzzztOll14a8nHjjTfqwIEDevvttyV5/qfS4XDo448/DjjP008/HXJu7/7Wwf9Te+6558rlcumpp54KuP1Pf/qTbDab73+8L774YjkcDs2ePTuk8mQYRsj2W9G45JJLtGfPnpDH9p6zPuPz/vvEE08EHPfnP/854GuHw6FLLrlE//jHP0yrk8FbMtWHd6r79OnTQ167KVOmqHfv3qZb6UXjpptu0quvvqqnn35aF198cdjj9uzZox9++EGHDx9u6NOIyFuNDP4ZCL7OsTR69Gjt2LHD93siedbOz58/v877ulyukCn7nTt3VmZmpm8LsCFDhqhnz5569NFHdfDgwZBz+P8Mhfu9kzxb9XnfbIrk9ttvV9u2bTV58mQVFxeHfP/HH3/U448/Hvb+Docj5PV67bXXtGPHjoDbgn+H4+Pj1b9/fxmGoaqqqqiuTV2C33x88sknJdX+/p577rmSQn+e/vd//1eSApaL9OzZM+Rv37PPPtvgmUQjR45UXFycnnzyyYDrZfazHe01rYvT6dT48eP197//XS+88IJOPvnkkJk8ANAUqKQDQJTefvttHThwIKDhlb/TTjvNV3W54oorlJKSossuu0xPPvmkbDabevbsqX/9618h64QlT7CQPI3VRo8eLYfDoSuvvFLjxo3TWWedpbvvvlv5+fkaNGiQ3nvvPf3zn//UzTff7Ksa9uzZUw888IDuvPNO5efn68ILL1RSUpK2bt2qN998U7/97W9122231ev5TpgwQX/729/0xz/+UV988YXOOOMMHTp0SMuXL9f111+vCy64IOrxnXLKKRo/fryefvpplZWVadiwYVqxYoVp9fShhx7SBx98oFNPPVVTpkxR//79tW/fPq1Zs0bLly/Xvn376vU8JM8e7f/4xz80atQoX8Ux2Pnnn6/HH39cJSUl6ty5syTPntAvvfSS6fEXXXSR2rZtqz//+c96+umnNXToULVp0ybkeO9xkvTUU09p9uzZ+uCDD3TmmWfW+3nUJTk5Wb/+9a/1yCOPqKqqSllZWXrvvfcC+ifE2tSpU/XUU09p/PjxmjZtmrp06aJFixb5XpdI1e0DBw6oa9euuvTSSzVo0CC1a9dOy5cv1+rVq/XYY49Jkux2uxYsWKAxY8ZowIABuvbaa5WVlaUdO3bogw8+UHJyst555x1Jtb93d999t6688krFxcVp3Lhxatu2rSZMmKCPPvqozunWPXv21Msvv6wrrrhC/fr104QJE3TSSSepsrJSK1eu1GuvvRawL3iw8847T/fff7+uvfZaDRs2TOvWrdOiRYtC1pH/5je/UUZGhk4//XSlp6fr+++/11NPPaWxY8cqKSlJpaWldV6bumzdulXnn3++zjnnHK1atcq3ZeKgQYMkSYMGDdLEiRP17LPPqrS0VMOHD9cXX3yhF198URdeeKGvmabk2artd7/7nS655BKNGjVK3377rZYuXdrgbQnT0tJ02223ae7cuTrvvPN07rnn6uuvv9aSJUtCzhntNY3GhAkT9MQTT+iDDz7Qww8/3KCxA0C9NWsveQA4jo0bN85ITEw0Dh06FPaYa665xoiLi/NtH7Z7927jkksuMdq0aWOkpqYaU6dONdavXx+yBVt1dbVx0003GWlpaYbNZgvYju3AgQPGLbfcYmRmZhpxcXFG7969jXnz5gVsQ+T1j3/8w/jVr35ltG3b1mjbtq1x4oknGjfccIOxceNG3zHDhw833cpp4sSJRk5OTsBthw8fNu6++26je/fuRlxcnJGRkWFceumlxo8//ljv8R05csT4wx/+YHTs2NFo27atMW7cOKOwsNB0q6bi4mLjhhtuMLKzs32PO2LECOPZZ5/1HePdPum1114L+3r4XxdJxnPPPRf2mA8//NCQZDz++OO+66EwW7DJb9uuaI8zjNqtruraZsxfpC3Ydu/eHXL89u3bjYsuusho3769kZKSYlx22WVGUVFRyHUOtwXb2LFjQ845fPhwY/jw4b6vw23BFu3P1U8//WSMHTvWOOGEE4y0tDTj1ltv9b1Gn332WdhrUVFRYUyfPt0YNGiQkZSUZLRt29YYNGiQ8fTTT4cc+/XXXxsXX3yx0bFjRyMhIcHIyckxLr/8cmPFihUBx82ZM8fIysoy7HZ7wPXwbikXrU2bNhlTpkwxcnNzjfj4eCMpKck4/fTTjSeffNI4evSo7zizLdhuvfVWo0uXLsYJJ5xgnH766caqVatCrnleXp7x61//2vd8evbsaUyfPt0oKyur97UJ5v15+u6774xLL73USEpKMlJTU40bb7zROHLkSMCxVVVVxuzZs31/E7Kzs40777wz4DkahmG4XC5jxowZRqdOnYw2bdoYo0ePNrZs2RJ2C7bVq1cH3N/sZ8zlchmzZ8/2XaszzzzTWL9+fYOvabR/QwYMGGDY7XZj+/btdV5LAGgMNsOIcZcgAADQ6v35z3/WLbfcou3btysrKyvWwwF8fvazn6lDhw5asWJFrIcCoJVgTToAAGhWR44cCfj66NGjysvLU+/evQnosJQvv/xS33zzjSZMmBDroQBoRViTDgAAmtXFF1+sbt266ZRTTlFZWZleeukl/fDDDw1u3Ac0tvXr1+urr77SY489pi5duuiKK66I9ZAAtCKEdAAA0KxGjx6tBQsWaNGiRXK5XOrfv78WL15MEIJlvP7667r//vvVt29fvfLKK2EbTgJAU2BNOgAAAAAAFsGadAAAAAAALIKQDgAAAACARbS6Nelut1tFRUVKSkqSzWaL9XAAAAAAAC2cYRg6cOCAMjMzZbdHrpW3upBeVFSk7OzsWA8DAAAAANDKFBYWqmvXrhGPaXUhPSkpSZJ013++UmK7djEeDQAAAACgpTt68KD+5/QhvjwaSasL6d4p7ont2ikxigsEAAAAAEBjiGbJNY3jAAAAAACwCEI6AAAAAAAWQUgHAAAAAMAiWt2adAAAAABA43EYbsW73bLJiPVQYsKQTdU2m6psdqkRtvkmpAMAAAAAGiS5ulL9jpQrvhHC6fHMMAzttTv14wlJqrQ7julchHQAAAAAQL05DLf6HSlXWlKS2nXoILXWnG5Irqoqtdm7V+0OlerLdh1kHMObFoR0AAAAAEC9xbvdirfZ1K5DB8UlJsZ6ODEVl5gou9OpI4WFSnS7dMTR8KhN4zgAAAAAQL351qC31gp6EJvdcyGOdW0+IR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAABodUp27dLdt9ysU0/sq5zkJA3p2VMTLr5In7z/viTp/y1YoItHjVLvtE7qkpigstLSZhkXIR0AAAAA0KoU5udr9LCh+vTDD3Xv3If0/ldf6eV33tGw4cN1583TJElHjhzWWb/5jf5w+4xmHRtbsAEAAAAAWpU7pv1BNptNSz79j9q0beu7vW///ho/8RpJ0m9v+oMkaeVHHzXr2KikAwAAAABizuVqnsfZv2+fPnjvPV0z9XcBAd0rpX375hlIGIR0AAAAAEDMbNkkDT/Fqa5t4zX8FKe2bGrax8v/8UcZhqFeffs27QM1ECEdAAAAABAzky536sfNNknSj5ttmnR5067KNgyjSc9/rFiTDgAAAACICZdL2vSD3e9rmzb9YJPLJTkcTfOY3Xv1ks1m05aNG5vmAY4RlXQAAAAAQEw4HFKfE91yOIyar42ar5vuMVM7dNCZo0bphby/6vChQyHfb66t1sIhpAMAAAAAYua5v1erZ29PSO/Z29Bzf69u8sec++fH5XK5NOZXp+tfb76pn7Zs1qYfvteCvzyl84b/WpJnH/X1336rrT/+KEn6fv16rf/2W+3ft69Jx8Z0dwAAAABAzPTqI330TXWTTnEPltOjh95b9Zkef/ghzZ4xQyW7dqpjWpoG/uxneviJJyVJf5s/X489+IDvPheNHCFJ+vOz83XFhAlNNjabYfVV842svLxcKSkpuv/bjUpMSor1cAAAAADguNTGVaUhR8qVldNNcQmJsR5OzFVVHNWOgm366oRkHXbEBXzv6IEDum9QX5WVlSk5OTnieZjuDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAgHozZPN+Asl3HXzXpYEI6QAAAACAequ22WQYhlxVVbEeiiVUHTkit2Go0n5sMZt90gEAAAAA9VZls2uv3ak2e/fK7nTKZj+2CvJxy/AE9L17dmu7M0EuGyEdAAAAANDcbDb9eEKS2h0q1ZHCwliPJqbchqHtzgQVJLY75nMR0gEAAAAADVJpd+jLdh2U6HbJ1koXpxuyqdJuP+YKuhchHQAAAADQYIbNpiMOomVjoXEcAAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBExDemzZs2SzWYL+DjxxBMj3ue1117TiSeeqMTERJ188sl69913m2m0AAAAAAA0rZhX0gcMGKCdO3f6Pj799NOwx65cuVLjx4/XpEmT9PXXX+vCCy/UhRdeqPXr1zfjiAEAAAAAaBoxD+lOp1MZGRm+j06dOoU99vHHH9c555yj6dOnq1+/fpozZ44GDx6sp556qhlHDAAAAABA04h5SN+8ebMyMzPVo0cPXX311dq2bVvYY1etWqWRI0cG3DZ69GitWrUq7H0qKipUXl4e8AEAAAAAgBXFNKSfeuqpeuGFF/Tvf/9bzzzzjLZu3aozzjhDBw4cMD1+165dSk9PD7gtPT1du3btCvsYc+fOVUpKiu8jOzu7UZ8DAAAAAACNJaYhfcyYMbrssss0cOBAjR49Wu+++65KS0v197//vdEe484771RZWZnvo7CwsNHODQAAAABAY3LGegD+2rdvrz59+mjLli2m38/IyFBxcXHAbcXFxcrIyAh7zoSEBCUkJDTqOAEAAAAAaAoxX5Pu7+DBg/rxxx/VpUsX0+8PHTpUK1asCLht2bJlGjp0aHMMDwAAAACAJhXTkH7bbbfpo48+Un5+vlauXKmLLrpIDodD48ePlyRNmDBBd955p+/4adOm6d///rcee+wx/fDDD5o1a5a+/PJL3XjjjbF6CgAAAAAANJqYTnffvn27xo8fr7179yotLU2/+tWv9NlnnyktLU2StG3bNtntte8jDBs2TC+//LLuuece3XXXXerdu7feeustnXTSSbF6CgAAAAAANBqbYRhGrAfRnMrLy5WSkqL7v92oxKSkWA8HAAAAANDCHT1wQPcN6quysjIlJydHPNZSa9IBAAAAAGjNCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCMuE9Iceekg2m00333xz2GNeeOEF2Wy2gI/ExMTmGyQAAAAAAE3IGesBSNLq1auVl5engQMH1nlscnKyNm7c6PvaZrM15dAAAAAAAGg2Ma+kHzx4UFdffbXmz5+v1NTUOo+32WzKyMjwfaSnpzfDKAEAAAAAaHoxD+k33HCDxo4dq5EjR0Z1/MGDB5WTk6Ps7GxdcMEF2rBhQ8TjKyoqVF5eHvABAAAAAIAVxTSkL168WGvWrNHcuXOjOr5v375auHCh/vnPf+qll16S2+3WsGHDtH379rD3mTt3rlJSUnwf2dnZjTV8AAAAAAAaVcxCemFhoaZNm6ZFixZF3fxt6NChmjBhgk455RQNHz5cb7zxhtLS0pSXlxf2PnfeeafKysp8H4WFhY31FAAAAAAAaFQxaxz31VdfqaSkRIMHD/bd5nK59PHHH+upp55SRUWFHA5HxHPExcXpZz/7mbZs2RL2mISEBCUkJDTauAEAAAAAaCoxC+kjRozQunXrAm679tprdeKJJ2rGjBl1BnTJE+rXrVunc889t6mGCQAAAABAs4lZSE9KStJJJ50UcFvbtm3VsWNH3+0TJkxQVlaWb836/fffr9NOO029evVSaWmp5s2bp4KCAk2ePLnZxw8AAAAAQGOzxD7p4Wzbtk12e+2y+f3792vKlCnatWuXUlNTNWTIEK1cuVL9+/eP4SgBAAAAAGgcNsMwjFgPojmVl5crJSVF93+7UYlJSbEeDgAAAACghTt64IDuG9RXZWVlSk5OjnhszPdJBwAAAAAAHoR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFOGM9AAAAAHjk5+fHegjNJjc3N9ZDAABLIqQDAADEmDecV++v0EX7S2M6lubyTs2/hHUACERIBwAAiKH8/HxfOC/fXazsE7JiPaRmMe6nYr2Z2l75yieoA4AfQjoAAECMeAP6iE0blX1Clir3SUXuZbEeVrPIzh6lEbs3akWfvspXviSq6gAgEdIBAACanXd6+7ifilW+u1i9a8J50cEipXVsE9vBNZOiwmXqbe8vbdqo5LR0quoAUIOQDgAA0Iz8p7dnH3Sqcp+0tny50jq2UcVh6ZXBvWI9xGYxfs0Wrd27XAM1UvEnOAOq6gR1AK0ZIR0AAOAY1acru//09qJCT/W8wl4bzgcnX9FEo7SWVwa/qjNWrNXa8uXKdGcGVNXfqfvuPgR6AC0NIR0AAKCBGtKV3Vs9L3IvU1VCqSoOS5+MGNhqwrnX4OQr9MkI6YwVa1WVUBpQVR/3U3FU5/BOkZcI6wBaDkI6AABAAzS0K7t/9fyToQMltZ7qeTBvUJcUUFXPzh4V1f1H7GY9O4CWh5AOAABQT8fSlb01V8/NeK+Bf1W9qDC6a9nb3j9kPbtEVR3A8Y2QDgAAEKXG6Mre2taeRyu4qt41te7ruVMrFVfYni7xAFoUQjoAAEAUGqsrO+E8PP+qerToEg+gpSGkAwAARODfHI6u7M2jPtcymi7xhHUAxxNCOgAAQBjBzeF605XdcurqEu/fAT4aBHoAsUZIBwAAMGHWHM47vZ3qubVE6hLv7QAfDdazA7ACQjoAAICfcNVz/+nthHPrCdcl3tsBPhqsZwdgBYR0AACAGpGq50xvPz74V9W9TeUy3ZlR3Zf17ACsgJAOAABavUhbq9Ec7vjjfZ28TeWqEkqjul+49ewEdQDNiZAOAABatbq2VqN6fvzyr6pHw389e7q9v0Z0KKaqDqDZEdIBAECrxNZqrUN9Xr9ousQT1AE0NUI6AABoddha7di5XZLdEetRNK66usR7m8pJVNUBNB1COgAAaFWOl63VmioEH+t5Swrj9PzsTBVvS1B6twpdO7NInbOrGm+AMRapS7y3qRxVdQBNiZAOAABahWiaw1khnDdVCG6s8z4/O1O7t8dLknZvj9fzszM1Y0HBMY/Pasy6xHunv7NVG4CmZI/1AAAAAJqat3o+7qdiZR90qndN9bwqoVQVdmtNbzcLwfXldjXdeYu3Jcjttnm+dts8X5s8XkswOPkKDU6+Qq8M7qUKu+dnpqhwmXrvk0Zs2qhxPxUrPz/f9wYQADQGKukAAKDFCq6eW705nDcE+772C8HRTFEPVy0/1vN62R1SercK7d4eL7fbJrvdUFrXyojnqK6UnPHRP0ZDNeUaeW9VnaZyAJoDlXQAANAimVXPv/z+xZDquVUCulQbgu12w/O13fB8HWX4DFctj3Te+lbBr51ZpLSulZKktK6VunZmkelx369uo+nn9tLt5/XR9HN76fvVber3QFEqKYzTw5NzdNuYPnp4co5KCuOa5HE8QX1gSFU9+6BTIzZtVPX+CqrqABqFzTAMI9aDaE7l5eVKSUnR/d9uVGJSUqyHAwAAGlnw1moDgqrnn4wYKMk61fNgDV077nZJt43pE3L7o0s2ye4IPe/5U3fr7by0Bq9Rr6tyPf3cXnJV2yTZJBlyOA3Ne3dL1OeP1sOTc0Iq+029Rn5N+as6Y8VadU1to7iK9upk76/NHeRrKudMTaCqDiDA0QMHdN+gviorK1NycnLEY5nuDgAAWoyWsLVa5+wqTc/zhMzGnIreObtKMxYU+MK1N9xKgQ3gzMK32W3er82+V10puar9J2za5Kq2NfrU98aaxl9fZk3lMt2Zyjwhi63aABwzQjoAAGgRjpet1SI51g7s184s8t0/3FR07xR3s3D70KQclRTWPraksOOJNFZnvORwukMq6f4BvTGCdEPWyDcW78/SK4NfZas2AI2K6e4AAOC4Zra12h73dwHT260ezr0aa+p2NAH44ck5KtkeL6OmU7tkyGaXDL/HlhQynul5BQGV+HBj/X51Gy2cmSlXtV0Op1vXzS5Sv18cbvQt5ppj3/a6ruea8lclearqu/ce1sDkkYrPytKGIzu0ok9fpr8DqNd0d0I6AAA4bvlPb88+6FTljh2+6vn2/YePq4Be15ry+pzHWy2PdL+SwjjNm5oTNC09Op2zK1RSmBByu9lYg6e4N9Ua8qaY4l7fNwC8a9UT3FJmu8yAterv9EiXxPR3oLViTToAAGjRgpvDWX1rtWgc69Rt/0DpmWpujxgsO2VWhQ3oZpV0yVvXsWnPjng5nG4ZbludYw2e4t5Ua8ibYoq7Wbf8SG8osFUbgMbAFmwAAOC44r+12ohNGz3N4QqXWXprtWhFu72ZGf9A6VkLHrgNW7DgbdlsNkMOpzvgsf3H41lb7jmv222Tq9oum/e+dkPnT91d5xiPdYu55uR9Q8Htrn3O3jcUIvHfqi2tYxvP0ouardou2l/q26oNAMKhkg4AAI4LZtXz47E5XCTBHdijFVyh9g/T4SrVbldgo7nO2Z5g3imzKuDYGQsK9PDkHBVvi/ed11NVt/neDDDcNr2dl6Z+v6h72no0ze2s4FhmNgxOvsK3Tv2UnN76pmCzJGlot59J277WO6npTTl0AMc5QjoAALC8iFur1Uxvj1U4b4q10PU9X3Cg9IZos2Bpts66U2ZV2McNfQNAqg3r5lXmSOOv642I+t7elI6XNxQAtCyEdAAAYGlW2lrNPyhaoau4/zH+gdLhNOSqtpkGy+B11vPvyZIzzgj7PELfAAhlsxnqkFGleVNzor4ewc8r3PVsjuscTkNnNgDAsWBNOgAAsKT8/Hzl5+eHrD1fW748oHreHAG9pDBOD0/O0W1j+ni2LqsJjsFNxZry8eo6RlJNgK2Qq9quztmhgdZsnfXenfEqKYz8PPzXpjucbtls3iZynn87Z9c2mYt0nkjCXc+mvM7RIqADaE6EdAAAYDn+zeGyDzrVu6Z6HtwcrrkEB8WFszIb1FSsoY9nFkzNjnl+dqb27PDctmdH6P3MGrdJkmFEfh7eivIj/9qk6XkFvlCe3q1St8/fqul5Bdq7M77B1yNck7bqyoY1bwOA4xnT3QEAgGVYcWs1s23DSgoTjmm7tPo+XnDzt3DHBJwnTNO44HXW1VU27S+Oi/g8zKacd0j3NJjzHlvX9Yi0Xj1ckzZn/LFtSwcAxyNCOgAAsJRxPxVLki+gn5LTW1W7SmPWHC5cgKyrqVhD1jF7w7BHaPM37znDjUlSnYE2eJ21fwAP1xzNv2pfUhiveVNzfHusd+xSqSkP7Ai4Hp2yas9TUhinZ+/O0r5d8QHHB68rD3c9j+fmbdv3H5a0WrsPHlanHTu0XZLaed6EYr90AOHYDMMw6j6s5SgvL1dKSoru/3ajEpOSYj0cAADgx7sGfWi3n2n7d+t8IX31rtUx7eAeqXlZcBjfVRCnF+eEb3QWKbw/PDknpEN7ercKnT91t97OSws4p6SQMZndFqnJWnB1PlxX9dvG9IlwdQyld6vUjAUFIdfp/Km7tXBmpi/QBx9f15iiud3KvNuwnbFirRLcUma7TGVmj9KGIzu0ok9fOVM9sx8I60DLd/TAAd03qK/KysqUnJwc8Vgq6QAAAGF4g2GkLt9m3d69DdW8a8XNAmy4pm61POuwp+cVaN7UHJXUVLKLtyVo3tQcTc8rMB2T/23h1m77j6VzdoWumxU+zNfd3b12Wn3I2v2QgB54vNne7eGCuP9MguOF902lT0Z4gnpVQqmKCpept72/tGmjktPS9WZqe6rqAALQOA4AACBIuO7q/lXnYP4B1Wz/8Lqawdkdnqng3oAvGTVfe4K54ReQXdV2LZyVGTAmf3uKIneHf352pq+je0mhJ/QHH+P/HIO7u9eO0TPO9G4VvnH6N3kLDei1xwfPPog03mi63VvZ4OQr9MmIgXplcC9VJZRqbfly9d4nZR90asSmjZ7p7zX9GACAkA4AABAkXKAOFxaDu5N72WzhA2w0Xcpd1dK8qTmm3ysprL1/8Hmen50ZUnkvKYxTSWGc5l7n2cvc29Hd8zh2/fWOLEnmgdk7k+DRJZ7u7h271FbdO3ap0vlTd/uN079zvKHAQC9JNlVX2XzjeXhyjh6Z0l3F28K/gRGLbdgau4O8d7vAVwb3UoXds1tBUeEy9d4njdi0UeN+KtaWrzcS1gEw3R0AAMBfpO7qZmFxxoICkynhnvXknbM9jc72FMXJ4XT7Kss2u6HOJt3P9+6M9xuJTaW7433bpHnPKXnCf+fsSu0pCp1C3ymzKqTTu6varmfvzlLZHmeY6rZUujteD03KUUlh7XR9/6n1nbOrfFP/734xPyDEzpua4zeLQL7nKLf5Y+0vjvN74yP87APvFPe6ut03prqWJRwrT1W9dvr72r3LNVAjFX+CUyN2b9SKPn2Z/g60clTSAQAA/JjtJR5NNdx/Srh3//AZCzzh9vnZmXK7aivXdruhifcGdik3m+7ufRyP2vt3zq7UxHuLTN80qD1PoH274sMGdK/gwCzVBnx/bpdnSv28qZ6Ke+Asgprr43u+oT2KvdcuuKLvPd7hdPsCeOh18Uy531PUNFPem6NqPzj5Ch266EG9MriX0jq28VXVB5yQ5auqU1EHWi8q6QAAAEHMtv0Kt+2ZN0yGay4X2hDOE3wfmdK9zkqt3eGuCbueIOtwunXNzCL9a36aHpnSPeDY0Cn0tZX38IKPMT9+3654XzD3XheH0+0XzA2/+3vOWRu+a8fudttkBG0ZV1IYHxTUbXJV2yJWyl3VNt8shkjqW21v7qq9JOVfdqpyX/tcqpDKMss0oChLhapumgcDcFygkg4AABDEfw22txouBVbLw+3ZbRbm/Cvz/uu0/Su1tdPda8Ot2xX4v2quapteCGhQ57/m26hp6hZ8nkiiOcZjxrhe+usdWb7HdlXb/ZrZ1b6R4D8l3/tvWtcKz5T5mmvXKatS50/dreoq/zBvXikPvS6ex4i0pr+hjebCzaI4njrKAzj+EdIBAADCCA5n4cK7Gf+gWF1lU2q699jaQOut1O4qiAtpvBZYnZbvc1e1PWhquS3ge5JqpueHTjM3VxumvSE/uHu75HmDoHR3uG3Yat8ssNs9Xek7ZHier2HYtHt7gubfk6Xzp+5WercKlRQmaOHMTO3d6QnPNnvgWN1um+/NC29wNusoHy48H8uU9WjeiAGApkRIBwAAqKdoKqv+QXF/cZyccYYeXbJJ6d0qAkKpw+nWc/dl+bqxh1a3g8N2YPXcPxynd6vQnqI4VVf5h/dIaqe7p6ZXaXpeQc34/I8xr5D7j8vuMHwd39O6VmrKAzvkjAvs7L53Z5wWzswMqMR7z+mpyNeO1zBZ7x/cUT5ceA7utB9tJ32v+rwRAwBNgZAOAADQyMIFRUn61YX7Zbhrj3VV27R3Z3zAPugeoQ3jar/23NaxS1VAOPaupd9fHG56d3CFvHaq+b5d8Vo4KzNkT3b/4x1Ot6/K7D8ut8uuvTvjZXe4df7U3X4d5iPNAggel3ml3Nttfe/OeHXOrtDt87fq7hfzI6zjjzxlPdqwzhR3ALFC4zgAAIBGZtZkLjW9So/81rvFmb/IFW+bzZBh+B/nqVrfuTA/IHiabVdWy5DdYQR1XA9tGLdnR3xAg7fgcV4zc4cGnHpYD0/OCdluzjMOmxbOzNS8d7eoc3aFyXP1TG0P/4ZE7dfe7vf+MxL27IjXC/dn6o7nIjeMM2v819RbqwFAY6GSDgAALMF/y6nt361T5Y4dkqTVu1Zr+/7DMRpVoHBVWLPb/dc2p6ZXqXS30zS0hldTCXYET3e3aX+JM2ALMv+qb7j16J4mdOGq8zXHuG1BDeEC9R7oeR0m3ltkWlH3VsurK6XrZhXJ7vCbMiBDSamVvuZx5tP4Pf86nG5l5FSpujJ0RkJJYUKdzeDMpqw3x9ZqANAYqKQDAICYy8/PV/X+Cl20v1TZB52q3LFDa8uXK61jG23ff1ifjBiowclXxGx84aqwkaqznTJrt2SbNzWnzj3KQ3mCqdn93C675k3N8XRMDxpHh4xKmU+Rl+reli3S9w3dcUEfOZxuuartvr3jQ0ZtN+SMN/2WDpU7dWC/XR0yKlW62xmwd3xgAzybHp6cU7vVm8sWsE1bSU3INtvyzp//TIPm3loNABqKkA4AAGLGWz2v3l+hEZs2KvuELBUVLlPRwSJV2KVXBveSpJgGdMm8W/iMBQWmt/tPtU7vVqHzpuwOMwW9Vu0U8ND9xs27vHvC+3MzM3XnQs84Sgo94ygtiQvZXz3cOUxGEub22vDuqvb8W7wt3uS8nufx8OQcVVUGbyFn84Xyfbviwj6W3W5INsN3XT0BPWg0NSHbG+Tr3m8+8h73AGAlTHcHAAAx4a2ej/upWCM2bVTvfVJR4TJVJZSqwi5f9TzWAT1cEzizqdjF2xK0cFZgcH9hdqbCT+2W7A63Ophszxb4r3mg3b09QX8c3cvT7M2oHUfw/uqB52sI84p36NhqA/y+XWHK6WHHUrMVnN2Q21XbYM7zvEKPdzjd9Zq+ztZqAI4XVNIBAECz8wZ0b/W8cp9809utUj33ToUOV4V1xpvfHjytWibru/2bp7ldNrmq5ddora4p6UGMwOZttZ+bBWvTE9Tv8aISLoSHqZ473Lr92QLNvyfLt3e693i73agJ7rVT3u0Od8AygGimr3vXqTPFHYDVUUkHAADNJj8/X/n5+SHV87Xly33T22NdPS8pjNPDk3N025g+vgZl4aqwZrcHb//laZ5W2xStY5dKGe7AaeClu+O1Z0ekynMkoYG8Q0albwyBe6rL5PP6BvTQpnTHyu2yq0N6lfbujFfwTIKOmZW6bnaROmd7rnPn7Ard/mxBxG3WIiGgA7A6KukAAKBZhDSH86ueVxxWzJvDeYVbf25WhTWrzgZv/1VxxK7S3XX/L1ft/uHRhmaz6rlnGviIK/fpjac611Txzc5ntla9KSrqZo9p7s4Le5nevnt7gt7OS9O1M4vUKbMq7HU+lunrVNcBWInNMIJbcbRs5eXlSklJ0f3fblRiUlKshwMAQKvhraAP7fYzbSj9VIc+/0JVCaXKv+xUrfpxryUCutsl3TamT8jtjy7ZFHWI89+zvLpSuuOC0PN5Grt5q+n+DeKi7cIens1uyG43ahq8NUXobqowb3YdPGx2Q527VmrGgtD90Y8lYFth7/Q15a/qjBVrleCWMttlqpO9vzZ3kJLT0vVOj3RJUm5ubrOOCUDjO3rggO4b1FdlZWVKTk6OeCyVdAAAgBrH0gXcP/C1T6tU+T5nTRAPrlYrYDuxuvYurxVdODbcNrnC7HMe+bzRhm//Yzz38WzL5n1TwKwrfTTnDn8djAhrzuv75om/cLMmorlvYxmcfIU+GSGdsWKtqhJKtXbvcg3USMWf4NTwz9dqRZ++ylc+QR1oRQjpAACgVakrcJ0/dbcWzsyU3DbZ7IbOn7o7qvP6B77S3f5bjIUGcsNd19nCTVGPJuzWt9Jd32n2ofd1u83OE3y+Y9mj3bMWvSFBOVy1PJq905ur0u4N6pInrK8tX65Md6Z62/tLmzZ6quo1xxLWgZaPxnEAAKBVMGsIZ+btvDRf53XDbdPbeWl1njt4m7ZwYdNmNxTQeM0W9HXI58FN3+oKueGOacrVjUZQIzwz0Uy9j/zcSgoTIr5u4ZhVy6XaWRORms+Fu29T8DZM/GTEQFXY5amqly9X731S9kGnxv1UrOr9FcrPz2+yMQCwBkI6AABoFaIJXOH2RHe7Ip/bG/hstnBhuDYIBtzPHlw9Dv68PlXuSMcEN4oL/rwukY6tT6O7+rM73LLV/B9r8OsW6XWprqz79Yy0d3pDfxaOlTeovzK4lyrsnuaKRYXLlH3QqRGbNvqCOmEdaLmY7g4AAFq8aKY2S8e2Jt2/23hwE7gpD+5Q70GHdft5gU3kQpvHhROuSm627tvsXPXdOz1YpKnr0VT56zqH2TltstkMv2tU+7rtKojTi3PMp6F/v7qNFs7MlKvaLofTrfZpVSrf66wJ257zzpua47tPuL3Tj+Vn4Vh5myj6r1UvKlwWMP39zdT2rFUHWigq6QAAoMWLZmqzV6TqaiSds6s0Pa9AHbtU+t1qqGOXKvX7xWE542vWVQfsX25WXTb7fqSt1OpTZW+sae/hKv7hhE7ddziDx2Kydt8IHrdnn/kX54TOivBWuD0B3XM/V7VN5fscvtfTK7giHy54N/RnobH4V9WrEkq1x/2db/r7RftLJYmKOtACEdIBAECr0JSBy3+9+96d8fKfpr53Z7x2FcTVrKdOqFmXLoWfzm4z+X40opka31Rbp0XzvdrH7pBRqYff2VLnme12Q3ZHYJc9wzCfhn7bmD56aFKOXNV2+V8Lt8uuW54s8H3tf5/gqev+X7td8lXaH12ySTMWFDT79mySArYmPCWnt/a4v/N9famONvt4ADQ9prsDAIBWIdLUZn/RbssV7j7+1W/vFOkX52SqpOb73mnYhiG5XZGCeOPsm970wjWqC/8mxL5d8Xrktzlqn1al0t3OMOeQ2iRX6WBpfMh9/aeh+1/vPTviFbwEwOE0FH9C5Knr/l3cvTMh9u6Mj9ne6QBaNyrpAACgVYkU0BvSLMy8s7vn87SulZp4b5GKtyX4OsZLnqDuWWvdmJ3YG9oUrq5zNeQ+db+hsGdHvOwOQ+ndvFPRQx/zYGmcgp9XercKTby3yG8Ke+319rwGNtkdtVPqr5vtmTERPJNi4r21Myn832TZuzNOe3d6OsgXb4vX/Huy6nwuANCYLBPSH3roIdlsNt18880Rj3vttdd04oknKjExUSeffLLefffd5hkgAABo8eqzdj34PsFhskNGpWYsKFBGTlXN982EBtMOGd6qrdkU+Gi7rB/rGvSG75leK/Jju92eqnh1lU0pnSrDPGZos7vibQl6ZEp3VVfZdPv8raav16NLtuiRf23SvHe3qN8vDkuqnUlxW95WSdIjU7rr4ck52lUQF/ZNFu9yhabu6A4A/iwR0levXq28vDwNHDgw4nErV67U+PHjNWnSJH399de68MILdeGFF2r9+vXNNFIAANDSRaq4BvOGN88xoVO6qytrz+lw+q+tDt8RvWyPUx27VIZs12Z+fPA+6tEeby54/Xeo+oT+SNP4a//duzNOZXvigr4X7n6139+709PhPVyvAWd84Bpzb9+AR6d2V/G22uUML87JDAj6ABBrMQ/pBw8e1NVXX6358+crNTU14rGPP/64zjnnHE2fPl39+vXTnDlzNHjwYD311FNh71NRUaHy8vKADwAAgHC8Fdfb5wdWXEsK43zH+DeKe3hyTthz3X5e7fdvfaZAnbODK+qhwdBVbdf+EqdfZdf/uOCO8PXZR72u44yaNfINvb/nHIGfR3qjwbxyHaz2zQ3zqvruoriQ5m7Br493zXlt34DA5Qz+0+c9jxfYTb45tl0DAK+Yh/QbbrhBY8eO1ciRI+s8dtWqVSHHjR49WqtWrQp7n7lz5yolJcX3kZ2dfcxjBgAALZ/ZNl9e/oGvZHu8Hvu9N6iHhumSwnjNm5qjR6Z09zt75HAduH+6v3CN5hqjClzfbvLhzhHp6/prn1btm9Ye+jwNvVDzuvgH6eDmfwtnZQZNaa8Znc0zPT4jp/aNmfZp1b5xd+xSpSkP7Djm5wAA9RHTkL548WKtWbNGc+fOjer4Xbt2KT09PeC29PR07dq1K+x97rzzTpWVlfk+CgsLj2nMAACg5YvUQC74e4bbVrPtl7/awGsYtd8vKYyX3eGWzVa7hrp9WqXqnq7u+dczHT3cPupWU9+qu7l9u2qntdeu1699DFe13besQDJ/7UoKE4KmtHv+7ZwduBXfi3Mytb/YM2PCbjfkjDPo7A6g2cUspBcWFmratGlatGiREhMTm+xxEhISlJycHPABAAAQSaQGcsHfC1RXwzbPvt2GURsgD+x3ylZnxvacL3DLtsaofMeSWaM7KfjaGYbnDZJOmVW652/5IdPRHU63nH67tAW/Pt5quf/a9fRulbp9/taAvc8b0tkfAJpC1CG9qCh805SG+Oqrr1RSUqLBgwfL6XTK6XTqo48+0hNPPCGn0ymXK/QvYkZGhoqLiwNuKy4uVkZGRqOODQAAIFxDsuDvOZy1lXHvv/UJz67q2tBeK7ghnNn0+HBrvo93odfCvzv+dbOL5HCGbrEm1TaKu3ZmkVLTPeHbMGyqrvKcM2DtetfACnlDOvsDQFNwRnvggAED9Je//EVXXXVVozzwiBEjtG7duoDbrr32Wp144omaMWOGHI7Qv4hDhw7VihUrArZpW7ZsmYYOHdooYwIAAPDyNpBzu0L3Vvd+r7pS2lfsaUpWvC1BnbMrVXHErtLdTnnCpiG7wxseownuhiSbHE5Druq6KuXBgd3qVfWGjtGmqkqbbhvTx1cRn/fuFlVXyldB9zaGK96W4DvGGWfIbjfkdtu0v+Y1mrGgQCXbPdPn/Y/1VtOvnVnkO0/wGzMA0FyiDukPPvigpk6dqjfffFN5eXnq0KHDMT1wUlKSTjrppIDb2rZtq44dO/punzBhgrKysnxr1qdNm6bhw4frscce09ixY7V48WJ9+eWXevbZZ49pLAAAAOGYVVLNQmGnzCrZHdKDE3MDjnW7bHI43TWhO3JQTe/m2fItI6dKc6/L0e7tCVGO0uoBXQpcChD8eaTrYvjWiXsb+M1YUODbYs3uCG0U99zMzIBr5526/vDkHBVvS5B3BoL/+dyuyG/MAEBziXq6+/XXX6+1a9dq79696t+/v955552mHJckadu2bdq5c6fv62HDhunll1/Ws88+q0GDBun111/XW2+9FRL2AQAAolHf9cbe44ND4fOzM30V87074xU8Pd1w29SxS6U6djFvQmazGeqcXaEZCwqUkeM5ZtLs4L3VzcRiuntde7MHH+f93GwpgOfz2+fnR3iutoA1/MXbErSrIHCLteC15J6Abkh+DfocTnfYLdiCt2sjoAOIpagr6ZLUvXt3vf/++3rqqad08cUXq1+/fnI6A0+xZs2aBg/mww8/jPi1JF122WW67LLLGvwYAAAAZpVwsy7e3oqq//GdsytUUhhapfUem96tQiWF8QHrzN1um/bujK/pzi4FV5C9Xcb9K7ids6s0Pa9A86bmmHSP96pPRbqxeM7fIaNK+4qdklHX2II/D2Zo64YTND2vQAtnZQZc22B2u6HU9Co99vvaa1KyPV4Op1tulzfMe6+BTTI8Ib1TVqXpeW02Q3aHEfKGy4wFBRHGCwBNq14hXZIKCgr0xhtvKDU1VRdccEFISAcAALA6s0q4fzALDvHVVTbflOs9Ozyh0HDb5HbbZLcbSuta6QvX184s0vx7smoq6h42uyHD7e3OLgVX2iuO2Hz38X/ToFNmVYSA7s+7RZvh9xhNa9+uOJmHb0MOp+G7Pt4g7Pu65lr43/e1P6frf9/brDueK9CugriAEO69v6varrSulTp6OHDLO8Ntk8sd7g0Bm9K6VuiO5wo0/dxefuv8jZrvVUZ8wwUAYqFeCXv+/Pm69dZbNXLkSG3YsEFpaWlNNS4AAIAm4d1qy/e1STDzD/FmVXG5bUrvVmHaYKxzdpWccd7p3TXh2W7I5Q4ftkt3x/k+L94Wr/n3ZOnuF/MleSrzu7fH10znDq6UB1bQ3S67AqeVm63/Dv68ocLd3+a3/t5TzB511V59/WFyzVZqlUFr7T3neWBCrn774A49d19Wzf097A5D0/MK1CnTM9PhtjF9TB4z/EyC3dsTVF2poDc7aqbZP+uZqeB9jYPfcAGAWIg6pJ9zzjn64osv9NRTT2nChAlNOSYAAIAm452S7g2+wcEsOMR7A7q3U7j3+HANxqorA+8v+QfEcOE4sPq7d2e8bhvTS26XXR27VCo1vSporXvk+0da/33JTbv01jOdA4JwZA0J9IHr1d97qaPSarY827szzuwO2rfLM3vBfwaC5Ll23qZ84XsImG1RJ8lmKD27Us740Nc8Nb1Kc6/LDXi81PQqOroDiLmoG8e5XC6tXbuWgA4AAI57kfZAN9svu2OXStPj/QN6SaGnmdnt5/VR+KZp/rdF5p227p1mb36fukJ76H3efLpzzV7jdTWlq+sx6rpPbXB2u+2+Ny7CT8e3hby54VWy3XMN7A6pY5dKhbu+3teqc7ZnX/X07NrXKvg1l4LfMDDkjDNMexMAQHOKupK+bNmyphwHAABAs6lrqy2z/bI7Z1dFXKvsP0U+kNl6afO13GbHepvONUzo47hdds2/OyvMGJpD5CZyoccZenFObc+AKQ/sCFjz3z6tSpJNpbvjfB3er5tVuyWel/9rLplNm2c9OgBroOsbAABotcKFsXAhPtzxwVPkQ4NouLXk/p+H3ye88QO1VfdVN18KULwtQQ9NytF1szxvltz9Yr4vbNsd0sOTc2SzGTIMT4O/SB3ava+hp6eA/xICQ+ndrLcefU35qzpjxVoptY2+KdisTvb+vu+9rsQYjgxAU4l6ujsAAEBrE01g8996zTtFPnQ6dnD4rP26Y5eqmqnn9dl3vC6x2D/9WNROV/dsUxd8/Txd9Z+fnem71e6Qb5168baEkL3Uw69f97h2ZlHAvvUdu1hvPbo3oCe4pbiK9upk76/NHaTCdtV6p0e6JCk3Nze2gwTQ6KikAwAANEDwNm3nT92tt/PSairq0e0R/si/NsnuqKtjeaQp8sHHBj9muCq8WWO5YxFttd+zPZvbbZNRMzXd4XSrfVq19u6MV1rXSlUcsat0t///ooaG74BeANvj5HC6a7dssxvqHEWHdrOKvFWsKX9VkjR+zRbtdksDk0cqPitLG47s0Io+feVMTSCcAy0YIR0AAKAOZuuUg/dafzsvzTdFft7UnJBO4qW7nQF7f3eu6TouSZ2zKwL26/aoT4AOPTY1vVLxCUbNmwaBW5TVBmXpWKfT2x3umq3fvJ/7v7EQ+Lgdu1TJVS2V7q5dY++qtskZZ+jRJZskhXvDovaaeV8H/zdJ/CvvdrtRr4q4lcK5VFs975raRnEV7TUweZg2d5CS21VrRTYBHWgNCOkAAABhBFfL/RvIme21vqsgTi/O8RzvcLolt83XeG7vrjgtuDdThtsuu8PQ+VN3++5/3awizZuaE7SXd7BIVfHAPcIdTrem/s8Odcqsqgm9gdV4sz3Dwz9m5GP8u7WH69zesUuVDEM1zd6Cp+LXXju7QwFVcf/n1zk7sAt/YKO+2sd1VdvVIb3xOrQ3VyM5b/X88i9/1D631KVqmOKzA6vnTjG9HWgNCOkAAABhBFfLvQ3Jwu21/uKc2uMNt02dsys0Y0GBSgrjtHCmJ6BLnjD7dl6a+v3C09ysc3aVpucVBHQtN6tC7yuO800TrxXapK59WrVvKzFP6DVrTBdNBd1/z/Xo9ngP/p7d4Q6YRRDujYZHf9fd73FqdexSpUn371BGTm3wDm3UV3seh9PQ7ef1CXhTpSHCvUHTFNaUv6rer+/RguW366U9WerRcZ9umvieTqR6DrRKNI4DAADNLqUoJdZDqJM3CHq39QpuSBa87/bEe4tCji8p9FSIg6vkhhHa3My7RvrRJZt0+/ytSu/mOXd6t0rdPn+rnHF1NYOrrZbv3Rkvt0uqrvRWzesK11L4vdyjWRMfnttlr2OGQPC5Ax/nzoX5AQG9pNBzPQPHWDtWzxsStW+qNJTZGzSNbU35q77p7XlLb9OOvRmSpPx97fWnV87VOz3SCehAK0QlHQAANJs3U9tL275W+ZFi9bb3156K75T72udy7j+sT0ZIg5OviPUQfcJVy71Tn822aTM7/oX7M01DqsPp1p6iuJDqrN0hZeQEnjtS5Tjc+u8Z43rVPG5Dm8Q1dJ16Y20Z5znPvKk5AcsMzPaj96yxV80sg8iN5qIRbjlDU0x9H9qzo7p82VZF+7NrH8+wa9vOZHXLzrXcmnkATY9KOgAAaBa5ublypibonR7pWtGnrzZ3kDKzRymuor0S3NIZK9b6KotWEVwtN2tI5h+izKrroQ3hPNxuW9jqbHDH8eAt3jz/Rq6seyvKkfdg91fXMaHbopmx2yN/v75bze3eHq/592Tp4ck5um1Mn4DZCv5r7IOXAdhshueaNSDkml3vhp4rGg67oW4dd8pud9c8nlupOYcJ6EArRSUdAAA0G++03Xzla0WfvkreX6rs7FHqtGOH1pYv1/g1W7TdQlV1s2p5fY9P71ahksJ43z7eXoZJddZsHXSnzCrZHZ43ALzf65RVGaEb/LFNT4+09ty/k3vosZ7P3SFr5kPPYz4DwKNjl6qadfm1FfG9O+NN9qCvna0gyTeDIVyjufryv97h3qBpTDPPX6g5y25Q/vb26pp+UKfP/lFSRpM+JgBrshmGUdfbmS1KeXm5UlJSdP+3G5WYlBTr4QAA0Grl5+dLksb9VKzy3cXqvU/a4/5ORQeLVGGXPhkxsFmCelN37/YP3g6n27dHuDdgzlhQ4BuH/9ZtNrshu92Qq9oe0lne7pCmn9srzFrvwGnvNrth0mwu+NhatUE8/FT6pvTokk2B18FmhLzB4eW9LpIC3tyYeG9RwDr2Y9GUPx9ryl/V0J4dlfva54qraK+2p/5S7banqCi5Wu/0SGctOtCCHD1wQPcN6quysjIlJydHPJbp7gAAICZyc3OVm5sbMv19YPJIJbil8Wu2NOn095LCON8U6ocn56ikMK5JHsdbXX90ySZNzytQ56Dp8/7j8J/KbbhtvhDu37jMGxivm12kyFPQPefpkF6ljl0qwxxrsr9652rdPn+r2qeZhdxwzeaMMJ9Hz39KefCygY5dKkOmnj+6ZJNmLCgw7bhub8T/w23uKecO/u8caPX4MwAAAGLKu1Z9RZ++KmxXrc0dpIHJIxVX0V7j12zxrVVvbPPvyVLxNk8DsuJtnnXPTcnuCAzs3oAZ2AjNPOAGd5aXpH6/OKwpD+6QrWYds9k0d7vdkDPO0KT7dygwYPtXyAPt3Rmvzl2rlHCCIZs9fJj3v93hNH+DwJx5F3n/KeWds6t07cyimqUCnmn9qTV7n3uP8w/PzdGJHQCaC2vSAQBAzOXm5ipf+XonNV3jJMWf4FSmslRUuExdUz1N5RpznbrbJb/9yCX/bcuao3LqfYzQru3+4TZwunnHLlUhY3s7L0022WpibuhUdG+4f+H+cKHVPExH103e83WHjCrt2xV4LSPzexPB4VZq5+qg18LDP3jvL45TWtdKPbpkU8g1aM5O7ADQHKikAwAAS/Bff9u1/8m+z3+R8Qt1TW0TgxE1Df9qeLgu4undKqI6j1mnc7vD7VcB9/xbUhgags0ZsjvcenhKbsjtktQhI3hqua0moAdPpTeb7m4yQ8Bl1/5izzID/wp4uD3qzTR3J3YAaGqEdAAA0OrYHQpap2141j03cQM5szXwweuvz5uyuyaQBk5P91b6/Z9DercK2WyB4dftsvt1Qg+eAl/XWnGb3C679u4MXJ/vcBq67a9bddfz+QGPGfo43s/Nu8MHjsHzb3AQ91bA6xO8o9kqDwCOF0x3BwAArdKUB3b4dQRv+mBntm56xoICdcoM3Lbt4ck5MptWnt4t9E2Ea2cWad7UHL890T08X5t1YjcLz+GCtv/57Hr0d90lSUmpVbI7DLmqPZ3j23esUvneOF8ndrvD003efzu0cI3qHE6371hvt3vvc4y0BVrwVPb6bpUHAFZGSAcAAK1Scwa7cOumH5qUo5LCwD3RzaZ1d+ziaaTmHav33w7pVWG2YTNfF26+nVlda8gDA/aB/bX/+2i4bXI45du3vXN2pc6fultv56XVbDln1LxhYPYGgC3gzYXU9KqAIG72+pjtI+/f3Z2ADqAlIKQDAIBWrbkaxaV3qwjY+9vuMLRnR2hl3f84u91Qp6xKXTerKGCvdVe1PejfcFPMA3XOrlR1lc20UVt44UO92117Lv/Q3O8XBQFvKPjve26657rN04W+U2b4vc3drvCzEQCgJWFNOgAAQDO4dmaRbxsxw/DsgW62Hjt4fbU3oHvDqbf67P3X7bb5NYoLx1CHjErNWFCgKQ/sUHSN3iKfL/i+3tDsXTfvffMjeN/z2u3a/MK/4Xn+/uv1/dfwTz+3V8g+8mbb0gFAS0AlHQAAWMo7PdKln75W+ZFi9bb31zcF30kJjb8NW3Pwn6rdObtKzjhDdrvhV1GWpMD12MHTvMNv0+b513B7qug2u1Hzufka8327PI3nOmdXacqDO/TcfZlyu+y+73sr8/6V7o5dPG8qeBrJ1XaPr902LbCq7g3awVPRvc+putLznG4b08fkanke17/Le/AbE+Gu2fFoTfmrkqTc1z7X7r2HldmuvVKKUrThyA6tyO7L/6QDrRiVdAAAYBnebdje6ZGuFX36anMHKTN7lOIq2ivB7Qnqa8pf9QUcqzLr5G6+ZZrnc7OO5P6VaP9O58Hd0b2d1g2T83qP8XZH9+r3i8N6dMkWdc6ukL3m/wYNt012hzvkuUx5YIfSu3mq4J2zK3T7swW6+8V8Pbpkk8m4Aqvqwdfj9vP6aN7UHHXsUhnSld47Zm/YN9terq5rJum4qKyvKX9VZ6xYq/Frtiiuor0GJo/U/k79VdiuWiv69JUzNSFgS0IArYvNMIz6zm86rpWXlyslJUX3f7tRiUlJsR4OAAAIIz8/X9X7K3TR/lJlH3SqcscOrS1frrSObbR9/2F9MmKgZavqD0/OCVhXntbVM9Xc7PbpeQVhq8Hearp/wzTzNem1FXDveSfeW6QX53ju49luTtq7Mz6gSZ15RTvQo0s2BTSr8+c/rkj3DX7eqemeWQXF2xLUObtCrmqb9hfHBVwXSSHr2CNds7qaylmB982lM1asVYJbymyXqczsUZ7qeU04l0RAB1qgowcO6L5BfVVWVqbk5OSIxzKTBgAAWFJubq7yla93UtM17qdilXeQfp41UUWFy5TgPuyb/i5Zawp8uE7u3vXmwduKmQV0s8AZPAXe7pAempTjaz7n5T2v/7R5b+M2KXKTOu+UebMt0czGGfwYJYXxMozA+5pdj7074/Xokk2+8/o/X/8Kee0bE54u8ZGumdWbynmr511T22i3WxqYPFLxWVme6nk21XMAtQjpAADAsnzT3yVVp7ZX8v5SZWePUqeaqvr4NVtqqurWCerBndwjrTcPJ1zg9N5nT5En1JYUhq5VN6sym71pUF0Z+qaB//Zp/mG5rvHuKYpTdZXNt72b/3ZqdoeCOtAbcjiNqPY5N3tjwkykN0assGbdG9AT3KqZ3j5MmztIye2q9U6PdDlF9RxALUI6AACwPLOq+kCN1J6K7wKq6lYJ6mYVc3+RgmM0gdM/xAdPBQ8+d7jt324/r0/A1HdvRdvf3l1xWjgrM2Avd7Mp5M/PztT+Ys997XbPdmre49wuBe3l7tkffVdBnDJyAs9ldl0iVfLDPUerNJXzTm8fv2ZLQPXcf3o74RxAMBrHAQCA40Jubq5yc3P1To90Jael+5rKZbbLVILbE4Ss0lTOWxl+dMkmzVhQUK+10XuK4uRw1jZws9U0ffMGTvMGdJJsnjXeD0/O0a6CwLDtvwWa3WH47uut0vuH/5Ka8F+8LUHz787yVetLCgObwXkFjyd4azRvgA7e9u3FOebnaqjgrevMmso1J7PmcJs7iOZwAOpEJR0AABx3EnqkKFmSDkptT/2lMj//QlUq1dCeHbXqx72xHp5PQyq5nr3Ga7c2s9sNXTuzyFdJN6sa126/JhVvi9cjU7oHVL79t0C7/bzaZnHBgTq0AVztOAzDfAp5XVXsksI4VVXaFLwlnP+5GqPpW7RLCZpacHO4uIr2Ic3hmN4OIBIq6QAAABbhrUp713ZLnqniC2dlBmznFlw1dlXbQyrrwdugSZIzPnA7N7tflb624h2e3eE2DcCRqtjPz85UaYm3sh/6uN5jgtfgN1SsA7q3ep5QM709M3tUSPWcgA4gEirpAAAAFhGuSu7t4O7fRM6/avzw5BwVb4uXf7U6XPO0SOvlr51ZpHlTc4LWkNdyu+yqrvSEfX/hqtjB6+vN9ji3etO3aJhVz3/e7zJtOLKD5nAA6o2QDgAAYCHBITpSgPVOFa+u8p9OHrmRXKRp4Z2zqzQ9r8DXLM57LkmSzZAjqOFc8JT0uprW2e2GOmVVBmyNZtWmb9FiazUAjY3p7gAAABYS3HQu3PR0L//O6jabZ3szqe7maeFCcOfsKt3xnOfx73guX52zPVPgHQ7Dt1a+PlPSg6fCXzcrdEx1NX07loZyTSl0a7Xa5nDv9EgnoANoECrpAAAAFuQN0ZGmpwdPFTcMz/Zmj/xrU8iU9IY8vjewR2o4V1fFO5qGbuGOaYyGck2BrdUANCVCOgAAOO68rkSNU5k2HNmhAUVZOiRp997Dyn3tc60a3CvWw2tUnTIjB1iPwCnuxxrQg3kbzh3LlPRojg0+xqyhnP9U+Vjwn97uqZ4P0+YOUjLT2wE0EkI6AAA4rngD0DuSqlPbS5s2akD2KHXasUNr9y7X+DVb9MpgT6VzcPIVMRvnsaqriuwfYL2acn/wSBX9pmC1hnJsrQaguRDSAQDAcSk3N1f5yteKPn2VvL9U5R2kgRqpPRXfafyaLdq+/7A+GXH8BvVIVeRwXdOn5xU0WYBt7n3IrdRQjuZwAJoTjeMAAMBxKzc3V87UBL3TI10r+vTV5g5SZvYoxVW0V4LbU/VcU/6qrwp6vPCGcO/e5/5VZKk2wEZqKNdUmjMk19VQrjnQHA5Ac6OSDgAAjmvegORfVc/2Tn8vX35cVtWjqSIf6/Tz42Ef8uau3vvzhvPxQdVzmsMBaGo2wzCMWA+iOZWXlyslJUX3f7tRiUlJsR4OAABoRPn5+ZKkcT8Vq3x3sXrvk/a4v1PRwSJV2KVPRgw8boJ6tJ3N6xtgrdox3Ur8q+eZ7TLVyd7f0xwuLV1vprYnoAOot6MHDui+QX1VVlam5OTkiMcS0gEAQIuTn5+v6v0VGrFpowackKXKmqp6Wsc2NVX14yesN3YV+eHJOSEV+lh3TLeKgK3V9h6meg6g0dQnpDPdHQAAtDiRmsoluA/rjBVr9cmI6M8Xy0DfmAHdah3TrYSt1QBYBSEdAAC0SLm5uVKu9E5+fu1WbScErlWPxvG2nj0SK3VMt8obA2ytBsBqCOkAAKBFi1RVj0Zw5f14D+vNvd95MCutiWdrNQBWxJp0AADQKnibyvmvVY/G8byePZJYVbKtsiY+UnO4d3qkS6J6DqDxsCYdAAAgiNlWbdEIt579eA/qsZriHus18QHN4dhaDYAFEdIBAECr4p3+/k5qelTHh1vP/spgT9g73sN6c4r1mniawwE4HhDSAQBAq1OfIBZuPfv4NVtaVFO55hKLNfHB1XOawwGwMkI6AABABP6Vd/+qelHhshbXVK45dM6u0owFBc02xT1c9dxF9RyARRHSAQAA6mC2nj07O3D6O1X1+mnqgM7WagCOV4R0AACAKPlX1cf9VKzyDtLPsyZSVbcYtlYDcDwjpAMAANSDN9y9I09TOarq1uK/tVpwc7h3eqRTPQdgeYR0AACABjCrqrfErdqOF2ytBqClIKQDAAA0UHBVna3aYoOt1QC0JIR0AACAY+StqrNVW/OiORyAloiQDgAA0Ajqs1Vbc2uONwe8gbk50RwOQEtESAcAAGgk0WzV1tyauorvvxa8ue2uqZ7/vN9l2nBkB83hALQIhHQAAIBGFqmpXHNryq3hgteCN7eBycOongNocQjpAAAATSBcU7nm1hRbw4VbC97cqJ4DaIkI6QAAAE3IW1X/6NSBSv6puNkfv7yD9POsiaZr4xsS1v2r58FrwZsb1XMALREhHQAAoIn5V9WbW3Vqe9O18Q2pqnsDurd67r/V2Ts90pvwWZijeg6gJSKkAwAANJNYBMpwa+Mb0nF+/JotAdVz/63OCMsA0DgI6QAAAC1YuLXxDek4H1w9Z7o5ADQ+QjoAAEAr4F0b790ariEd5zOzRwVUz5luDgCNj5AOAADQSvhvDdeQjvNsdQYATY+QDgAA0Ip4w7V/VT1abHUGAE2PkA4AANAK+VfV63MfAEDTIqQDAAC0UoRuALAee6wHAAAAAAAAPAjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsIiYhvRnnnlGAwcOVHJyspKTkzV06FAtWbIk7PEvvPCCbDZbwEdiYmIzjhgAAAAAgKbjjOWDd+3aVQ899JB69+4twzD04osv6oILLtDXX3+tAQMGmN4nOTlZGzdu9H1ts9maa7gAAAAAADSpmIb0cePGBXz94IMP6plnntFnn30WNqTbbDZlZGQ0x/AAAAAAAGhWllmT7nK5tHjxYh06dEhDhw4Ne9zBgweVk5Oj7OxsXXDBBdqwYUPE81ZUVKi8vDzgAwAAAAAAK4p5SF+3bp3atWunhIQE/e53v9Obb76p/v37mx7bt29fLVy4UP/85z/10ksvye12a9iwYdq+fXvY88+dO1cpKSm+j+zs7KZ6KgAAAAAAHBObYRhGLAdQWVmpbdu2qaysTK+//roWLFigjz76KGxQ91dVVaV+/fpp/PjxmjNnjukxFRUVqqio8H1dXl6u7Oxs3f/tRiUmJTXa8wAAAAAAwMzRAwd036C+KisrU3JycsRjY7omXZLi4+PVq1cvSdKQIUO0evVqPf7448rLy6vzvnFxcfrZz36mLVu2hD0mISFBCQkJjTZeAAAAAACaSsynuwdzu90Ble9IXC6X1q1bpy5dujTxqAAAAAAAaHoxraTfeeedGjNmjLp166YDBw7o5Zdf1ocffqilS5dKkiZMmKCsrCzNnTtXknT//ffrtNNOU69evVRaWqp58+apoKBAkydPjuXTAAAAAACgUcQ0pJeUlGjChAnauXOnUlJSNHDgQC1dulSjRo2SJG3btk12e22xf//+/ZoyZYp27dql1NRUDRkyRCtXroxq/ToAAAAAAFYX88Zxza28vFwpKSk0jgMAAAAANIv6NI6z3Jp0AAAAAABaK0I6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALCKmIf2ZZ57RwIEDlZycrOTkZA0dOlRLliyJeJ/XXntNJ554ohITE3XyySfr3XffbabRAgAAAADQtGIa0rt27aqHHnpIX331lb788kudffbZuuCCC7RhwwbT41euXKnx48dr0qRJ+vrrr3XhhRfqwgsv1Pr165t55AAAAAAAND6bYRhGrAfhr0OHDpo3b54mTZoU8r0rrrhChw4d0r/+9S/fbaeddppOOeUU/fWvf43q/OXl5UpJSdH9325UYlJSo40bAAAAAAAzRw8c0H2D+qqsrEzJyckRj7XMmnSXy6XFixfr0KFDGjp0qOkxq1at0siRIwNuGz16tFatWhX2vBUVFSovLw/4AAAAAADAimIe0tetW6d27dopISFBv/vd7/Tmm2+qf//+psfu2rVL6enpAbelp6dr165dYc8/d+5cpaSk+D6ys7MbdfwAAAAAADSWmIf0vn376ptvvtHnn3+u3//+95o4caK+++67Rjv/nXfeqbKyMt9HYWFho50bAAAAAIDG5Iz1AOLj49WrVy9J0pAhQ7R69Wo9/vjjysvLCzk2IyNDxcXFAbcVFxcrIyMj7PkTEhKUkJDQuIMGAAAAAKAJxLySHsztdquiosL0e0OHDtWKFSsCblu2bFnYNewAAAAAABxPYlpJv/POOzVmzBh169ZNBw4c0Msvv6wPP/xQS5culSRNmDBBWVlZmjt3riRp2rRpGj58uB577DGNHTtWixcv1pdffqlnn302lk8DAAAAAIBGEdOQXlJSogkTJmjnzp1KSUnRwIEDtXTpUo0aNUqStG3bNtnttcX+YcOG6eWXX9Y999yju+66S71799Zbb72lk046KVZPAQAAAACARmO5fdKbGvukAwAAAACa03G5TzoAAAAAAK0dIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFiEM9YDaG6GYUiSjh48GOORAAAAAABaA2/+9ObRSGxGNEe1INu3b1d2dnashwEAAAAAaGUKCwvVtWvXiMe0upDudrtVVFSkpKQk2Wy2WA/HksrLy5Wdna3CwkIlJyfHejhoZrz+4GegdeP1Bz8DrRuvP/gZaBqGYejAgQPKzMyU3R551Xmrm+5ut9vrfOcCHsnJyfxitmK8/uBnoHXj9Qc/A60brz/4GWh8KSkpUR1H4zgAAAAAACyCkA4AAAAAgEUQ0hEiISFBM2fOVEJCQqyHghjg9Qc/A60brz/4GWjdeP3Bz0DstbrGcQAAAAAAWBWVdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUhvZebOnatf/OIXSkpKUufOnXXhhRdq48aNdd7vtdde04knnqjExESdfPLJevfdd5thtGhsDXn9X3jhBdlstoCPxMTEZhoxGtszzzyjgQMHKjk5WcnJyRo6dKiWLFkS8T78/rcc9X39+f1v2R566CHZbDbdfPPNEY/jb0DLFc3PAH8HWpZZs2aFvJ4nnnhixPvwN6D5EdJbmY8++kg33HCDPvvsMy1btkxVVVX6zW9+o0OHDoW9z8qVKzV+/HhNmjRJX3/9tS688EJdeOGFWr9+fTOOHI2hIa+/JCUnJ2vnzp2+j4KCgmYaMRpb165d9dBDD+mrr77Sl19+qbPPPlsXXHCBNmzYYHo8v/8tS31ff4nf/5Zq9erVysvL08CBAyMex9+AlivanwGJvwMtzYABAwJez08//TTssfwNiBEDrVpJSYkhyfjoo4/CHnP55ZcbY8eODbjt1FNPNaZOndrUw0MTi+b1f/75542UlJTmGxSaXWpqqrFgwQLT7/H73/JFev35/W+ZDhw4YPTu3dtYtmyZMXz4cGPatGlhj+VvQMtUn58B/g60LDNnzjQGDRoU9fH8DYgNKumtXFlZmSSpQ4cOYY9ZtWqVRo4cGXDb6NGjtWrVqiYdG5peNK+/JB08eFA5OTnKzs6us+qG44fL5dLixYt16NAhDR061PQYfv9brmhef4nf/5bohhtu0NixY0N+t83wN6Blqs/PgMTfgZZm8+bNyszMVI8ePXT11Vdr27ZtYY/lb0BsOGM9AMSO2+3WzTffrNNPP10nnXRS2ON27dql9PT0gNvS09O1a9euph4imlC0r3/fvn21cOFCDRw4UGVlZXr00Uc1bNgwbdiwQV27dm3GEaOxrFu3TkOHDtXRo0fVrl07vfnmm+rfv7/psfz+tzz1ef35/W95Fi9erDVr1mj16tVRHc/fgJanvj8D/B1oWU499VS98MIL6tu3r3bu3KnZs2frjDPO0Pr165WUlBRyPH8DYoOQ3ordcMMNWr9+fcR1KGi5on39hw4dGlBlGzZsmPr166e8vDzNmTOnqYeJJtC3b1998803Kisr0+uvv66JEyfqo48+ChvU0LLU5/Xn979lKSws1LRp07Rs2TIaf7VSDfkZ4O9AyzJmzBjf5wMHDtSpp56qnJwc/f3vf9ekSZNiODL4I6S3UjfeeKP+9a9/6eOPP67zXdCMjAwVFxcH3FZcXKyMjIymHCKaUH1e/2BxcXH62c9+pi1btjTR6NDU4uPj1atXL0nSkCFDtHr1aj3++OPKy8sLOZbf/5anPq9/MH7/j29fffWVSkpKNHjwYN9tLpdLH3/8sZ566ilVVFTI4XAE3Ie/AS1LQ34GgvF3oGVp3769+vTpE/b15G9AbLAmvZUxDEM33nij3nzzTb3//vvq3r17nfcZOnSoVqxYEXDbsmXLIq5hhDU15PUP5nK5tG7dOnXp0qUJRohYcLvdqqioMP0ev/8tX6TXPxi//8e3ESNGaN26dfrmm298Hz//+c919dVX65tvvjENZ/wNaFka8jMQjL8DLcvBgwf1448/hn09+RsQI7HuXIfm9fvf/95ISUkxPvzwQ2Pnzp2+j8OHD/uO+e///m/jjjvu8H39n//8x3A6ncajjz5qfP/998bMmTONuLg4Y926dbF4CjgGDXn9Z8+ebSxdutT48ccfja+++sq48sorjcTERGPDhg2xeAo4RnfccYfx0UcfGVu3bjXWrl1r3HHHHYbNZjPee+89wzD4/W/p6vv68/vf8gV39uZvQOtT188AfwdalltvvdX48MMPja1btxr/+c9/jJEjRxqdOnUySkpKDMPgb4BVMN29lXnmmWckSWeeeWbA7c8//7yuueYaSdK2bdtkt9dOshg2bJhefvll3XPPPbrrrrvUu3dvvfXWWxGbjcGaGvL679+/X1OmTNGuXbuUmpqqIUOGaOXKlaxfPk6VlJRowoQJ2rlzp1JSUjRw4EAtXbpUo0aNksTvf0tX39ef3//Wh78B4O9Ay7Z9+3aNHz9ee/fuVVpamn71q1/ps88+U1pamiT+BliFzTAMI9aDAAAAAAAArEkHAAAAAMAyCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAACAsl8ulYcOG6eKLLw64vaysTNnZ2br77rtjNDIAAFomm2EYRqwHAQAArGvTpk065ZRTNH/+fF199dWSpAkTJujbb7/V6tWrFR8fH+MRAgDQchDSAQBAnZ544gnNmjVLGzZs0BdffKHLLrtMq1ev1qBBg2I9NAAAWhRCOgAAqJNhGDr77LPlcDi0bt063XTTTbrnnntiPSwAAFocQjoAAIjKDz/8oH79+unkk0/WmjVr5HQ6Yz0kAABaHBrHAQCAqCxcuFBt2rTR1q1btX379lgPBwCAFolKOgAAqNPKlSs1fPhwvffee3rggQckScuXL5fNZovxyAAAaFmopAMAgIgOHz6sa665Rr///e911lln6bnnntMXX3yhv/71r7EeGgAALQ6VdAAAENG0adP07rvv6ttvv1WbNm0kSXl5ebrtttu0bt065ebmxnaAAAC0IIR0AAAQ1kcffaQRI0boww8/1K9+9auA740ePVrV1dVMewcAoBER0gEAAAAAsAjWpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARfx/jirKTf9ZyqEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 20\n", + "amount_ae: 30\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7tFJREFUeJzs3XdYU9f/B/D3JeyNCA5AcO+9aq2CSusqjjrRKo7Wvdraqq1Wbe3XUa3WUWcd9VdHqaN2aa11W0WtA7WKxT0BlSU7Ob8/aG4JSSCBhAC+X8+TRzk5OZ9zb27C4XPvPUcSQggQERERERERERERmZiVpTtAREREREREREREpROTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZmFt6Q4QUfH26NEjHDt2DI8fP0ZsbCzi4uLw/vvvw9/f39JdIyIiIiIiIqJijlc+EpFOUVFR6NixI3x8fNCnTx+MGzcOs2fPxsqVK3H48GFLd4+IDHDr1i1IkoRZs2YVSbxZs2ZBkiTcunWrSOIREREREVHxx+QjmZz6j11DHqNGjbJ0d0mHqKgotGrVCn/88QemTJmC69evQ6VSQQgBpVKJwYMHW7qLRFQIy5YtgyRJej/Lz549g4+PDxwdHREVFSWXBwQEICAgoIh6SURERERkWgEBAQgKCjJ7HPVJ+UOHDuksf9FO1vO2azKbqlWr4s0339T53K1bt7Bp06Yi7hEZavjw4UhKSsJPP/2Ejh07Wro7RGRi48aNw86dO7F582b06tUL3bt313h+7NixePDgAb788kvUqFHDQr0kopLg1q1bqFy5skF1R44ciVWrVpm5R2RJQUFBOHz4MIQQlu4KEZHB/vrrL7Rs2RJVqlTB+fPn4eDgoFWnS5cu+PXXX7F582a9eQ7Sj8lHMptq1arpvdXv0KFDTD4WU5GRkTh27Bjee+89Jh6JSilJkrBhwwbUr18fI0aMQOvWrVG2bFkAwPfff4+tW7eiXbt2GD9+vIV7SkQlBU86ExFRSdWkSRN89NFHmD17NqZNm4YlS5ZoPL9mzRr8+uuv6NmzJxOPBcTbrqlYCggI0Hur9saNG7Xqb9iwAS1btoSzszOcnZ3RsmVLnfUOHTqkd/4zSZJ0Xn4dFBQESZK0yg8ePIhhw4ahZs2actxmzZphzZo1Bd623JdkDxkyxGSXZF+6dAl9+/aFt7c37OzsULlyZUyaNAlPnjzRqHfixAkAQM2aNREaGopy5crB1tYW/v7+GD16NB4+fCjXValU8Pf3h6enJ9LT03XGbdu2LaytrXHv3j0A+ven+nb9IUOGaJQbu5913Rb66NEjjBkzBpUrV4atrS3KlCmD119/HX/++afW6/VdHl+QYwcALl68iP79+6NChQryfhw/frzWfs9vuoJ169Zp1Df0/cyL+viysrLCzZs3tZ4/evSoHD/3due1zfr2IWD4Z3Xz5s2wsrJC//79Na6e0HecREREwNnZGU2aNEFSUpLGc0lJSZg5cybq1q0LBwcHuLu7o2PHjjh27JjO/iclJWH27Nlo0KABHB0d4ebmhsaNG2PGjBnIzMw0amoJ9WdXvU/UDysrK1SoUAFdu3aVP3M57dq1C6GhoahWrZrchzZt2mDHjh06+1wQAQEBWLRoEWJiYjB69GgAwOPHjzF69Gi4uLhgw4YN8mdVvc23b9/G7du3NbalqOaTJKLiTX3SWdcj93c2ERFRcfPRRx+hcePGWLp0qcYaBzdv3sR7770HLy8vrF692oI9LNmYfKRiy83NDTNnzpQfuW8LVJswYQKGDRuG+/fvY/jw4Rg+fDju37+PoUOHYuLEiWbr3/z583HkyBE0b94c48aNw5tvvom4uDiMHDkS7733Xp6vzb1tgYGBZusnABw7dgwtW7bErl270KFDB7z77rvw9/fHl19+iZYtWyIuLk6uGxsbCwAYPXo0wsPDERQUhPfeew+1a9fGqlWr0KxZM9y+fRsAYGVlhbfeegtPnz7VmRS5du0ajh49ik6dOsHX17dAfS/MfgaABw8eoHnz5li5ciXKlCmDd999F927d8cff/yBtm3bYufOnQXqlyH27NmDFi1aYM+ePQgKCsKkSZNQv359LF++HK1atcKzZ8+0XtOwYUONY0P9aNKkiVzHmPfTEFZWVjp/ka5cuRIKhcL4DdfDmM/qoEGDMH/+fGzfvh3vvPNOnu1GRUWha9eu8Pb2xq+//goXFxf5uadPn6JVq1b45JNP4OHhgVGjRqFXr144e/Ys2rVrh927d2u0FRMTgxYtWmDWrFlQKBQYPXo0hg0bhvLly2P+/Pl4/vw53N3dtd4fNzc3rc/1zJkz4e7urtF+WFgYZs6ciY8++giBgYHYv38/goODcfXqVY1606ZNw+XLl/HKK69g4sSJ6NOnD65du4bevXtj2bJlxu98PUaMGIGOHTvKVzuOGDECcXFxWLJkicaK9upt1rWdRTFnDhGVbjzpnM2UJ51zbouh+1UIgfXr16N169ZwdXWFo6MjmjVrhvXr1+tsPyoqCsHBwXB0dEStWrWwd+9e+bno6GgEBQXBwcEBderUQXh4uM42bt++jeHDh8PHxwe2trbw9fXF8OHDcefOHb3bk5aWhqlTp6JSpUqwt7dH7dq1sWzZMq1bvTdu3Jjn9j5//hxubm46jwV9x8H58+ehUCi02sx5cvTy5cvo2rUr3N3d4ezsjNdeew1nz5412farH7a2tggICMBbb72lVT8jIwPLli1Dx44d4efnBzs7O3h7e+ONN97AuXPntNpW7ytd+wnQfXI/r+NV38liwLgT6Hl9fnJffRYXF4dJkyahcuXK8vb27dsXly5d0rlNupjjmAHy/i46fvw4unbtijJlysDe3h61atXCzJkzkZKSolEvMjISHh4eqF27tta+0vX+PHnyBLVr14aHhwciIyM1njP2sy6EwIYNG9CmTRu4u7vD0dER1atXx8iRI+VjL6/3Std3j3qf5HyUKVMGLVu2xDfffKPVh7Nnz2LcuHGoV68e3Nzc4ODggPr162PevHnIzMzU2W9j2djY4JtvvoGNjQ2GDh2K5ORkqFQqDBkyBMnJyVi9ejW8vLy0Xnf37l2EhoaiTJkycHZ2RmBgII4cOWKSPpUqgsjEbt68KQCIjh076q1z8OBBAUCMHDlS5/M+Pj4iICBAo2zDhg0CgNiwYYNcdvjwYQFA1K5dW8THx8vlT58+FTVq1BAAxJEjR7Tizpw5UysmABEYGKhVHhgYKHR9VG7cuKFVlpmZKV599VWhUCjE7du3dW6br6+v1rbNnDlTABAHDx7UKA8LCxMAxM2bN3W2ZQilUimqVq0qAIi9e/dqPPf+++8LAGLYsGFafQEgfv75Z436CxcuFADE66+/Lpfdv39fWFtbi6CgIK3YkydPFgDE7t275bKgoCABQKhUKo266uMmLCxMo9zY/ezv7y/8/f3ln/v16ycAiIEDB2rE/Ouvv4Stra3w8PAQiYmJWtuf+70w9tiJi4sTrq6uwsfHR9y6dUvjua1btwoAYty4cfluf27Gvp95UR9f3bt3F15eXiI9PV1+LiYmRtja2ooePXro3G59nxchdO9DYz+rau+8844AIObNmyeE0N5PDx48EAEBAcLLy0tERUVpvX7AgAECgFi7dq1G+ePHj4Wfn5/w8vISqampcnmvXr0EAPHhhx9qtfXo0SORmZmpc5tzH3eG7BMhhFixYoUAIJYsWaJRHh0drdVGUlKSqF+/vnBzcxPPnz/XGysn9f7Sddyq3bt3T7i7uws7Ozutz3duhm5nYb6ziKhkMcW4z9/fX7i5uYmZM2fKj+7du2uN+4QQYvz48QKA8PHxERMmTBATJkwQPj4+AoCYMGGCzrimGPd17NhRVK1aVQwcOFBMmTJFjBw5Uvj7+wsA4t1339W77bq2TR3DHOM+XdtiyH5VqVQiNDRUABDVq1cXI0eOFOPHjxe1atUSAMR7772nUf/x48eiQoUKQpIk0bNnTzF27Fjh6ekpKlWqJACIGjVqiN69e4sRI0aIMmXKCEmSxI4dOzTauHbtmvDy8hIAREhIiJg6dap4/fXXBQDh5eUlrl27pnN7QkJChK+vr5g4caKYOHGi8PX11fk+qP92UCgUomXLllr7Z/Xq1UKhUOg8FvQdB23atJHHyTn3ofpz0KZNG+Hm5ibatWsnpk6dKkJDQ4W1tbVwdHQUJ0+eNMn2q9/LqVOninbt2snvWc4xysOHD4WVlZUIDAwUI0aMEFOmTBF9+vQRdnZ2wt7eXkREROjcV7mPCzVdv//zOl71jWuPHj0qHB0dhbW1tejfv7+YOnWqvF1Vq1YVsbGxWnFzf37Uj5zHU0xMjDw+DgoKElOnThX9+vUTCoVCODo6iqNHj+rcrtzMccwIof+76LvvvpP7OHToUDFlyhTRuHFjAUC0bNlSY4wqRPZ42t7eXrRq1UqkpKRo7Kec78/z58/FSy+9JOzs7MThw4c12jD2s65UKkXv3r3l791Ro0aJDz74QPTt21e4u7uLXbt2CSGEWLx4scb707BhQwFATJw4UaP83LlzGvskMDBQfm7kyJHC09NTABAbN27U6MfIkSNFxYoVRf/+/cX7778vxo4dK+rWrSsAiDfeeEPnftfH399f798xQggxd+5cAUCMGDFCLFq0SAAQgwYN0ln3wYMH8u+gjh07imnTpokePXoIW1tb0bFjR53f9S/qeJnJRzI5UwxCvb29Rc2aNTXKdP1SHDZsmAAgtm/frtXGt99+q5WIMeUgVJ8dO3bo/MJU8/T0FDVq1NAoM2fy8ciRIwKA6Ny5s9ZzSUlJokyZMsLe3l5OPKn7ouv9y8zMFJUrVxaSJImYmBi5vGfPnkKSJHH9+nW5LCMjQ3h7e4sKFSpoDIb69u2rc5sMTb6p6dvPOX/5pqWlCRsbG2FjYyPu3r2r1cbbb78tAIjNmzfLZaZKPn7xxRcCgPjmm2909r9JkyaibNmy8s+Gbr+x72de1MfXr7/+KgCIb7/9Vn5u7ty5wtHRUezatcskyUdjP6tqKpVKTiBu2rRJYz8lJCSIhg0bCicnJ61BtBBCxMbGCoVCIdq3b6+zn0uXLhUAxI8//iiEyB6oS5IkqlatKjIyMnS+Rp+CJh+//PJLedsMoR4AHTp0yKD6hiQfhRBi+vTpAoCwsbERDx480FuPyUciyo0nnYvXSeecXnnlFa1t0ZdkWrNmjQAghg4dqvE7MD09XYSEhAgA4syZM3L5hAkTBACxYsUKuez48ePyiayFCxfK5devXxcuLi7C19dXZGVlyeXqxNnq1as1+qI+MZf797f6valZs6bG+x8fHy9q1qwpJEkSp0+f1tpWdcL1r7/+0mivUaNG8klWQxJJ27ZtEwBE06ZN9SYfAYipU6dqvG7v3r0CgKhfv75GeUG3P7c+ffoIAOL8+fNyWVpamrh3755W3UuXLglnZ2cRHBysUV4UyceCnEDPb9yhNnToUAFATJs2TaP8559/FgBEtWrVhFKpzLcdUx8zarq+ixISEoSbm5uws7MTFy5ckMuVSqV88cQnn3yi1dbOnTuFQqEQr7/+uvx5yrmfMjMzRdeuXYWVlZVWwl8I4z/ry5YtEwBEhw4dNBKeQgiRkpIinjx5onOb8/s+0/f9fPnyZQFA9OjRQ6P89u3bGt8fQmT/naD+G+PYsWM64+iSX/IxKytLtGzZUgAQtra2wtfXVzx79kxnXfV2zpkzR6N89erV8ncCk4/ZeNs1FUuJiYmwt7fPt576tgFdt820a9cOQPbtEeagnkeuYcOGcHZ2li8X79WrF4Ds231zU6lUSEhIgKOjo1GxlixZglmzZuGTTz7BypUrceDAAahUKoNem9c+Ut8ylJaWhmvXrmk8p95/OVlbW6NNmzYQQuDChQty+ciRIyGE0JiXcM+ePYiJicHQoUNhbf3f2lYtW7YEAHzwwQd4/Phxvv0vyH5Wz0lnb2+PzMxMVKtWTedt3+Y8Rk6ePAkAOHXqlM75r9LS0hAXF2f0LdIFfT/zUqtWLbRv315egVSlUmH16tUIDQ3Vum04p1u3buncNl1zPRb0sypJEt59910A2auwq2/pSk9PR48ePXDhwgW0bdsWzZs313rt6dOnoVQqkZ6errOf6vdIfcvzmTNnIIRAu3btYGNjo3e7C2Pjxo2YNWsWZsyYgX79+mHy5Mno1KkT+vbtq1EvJiYG7777LmrXrg1HR0f5uFdPNaDruC+omJgY+bb7zMxM/PTTTyZrm4jIEJmZmbCzs8u3nnrRmlmzZsHNzU0u9/DwwMyZMwFA722jhaVrRW9ra2uMGjUKSqUSBw8e1Pm61NRU2NramqVP+TEm9vLly+Hk5IQVK1Zo/A60tbXFZ599BgDYunWrXP7999/Dw8MDI0eOlMtefvllvPTSSwCgMTVOtWrV0LdvX9y7d0/+3Xvnzh0cPHgQderUwdtvv63Rl1GjRqFWrVr4448/cPfuXa2+zpgxQ+P9d3Nzw/Tp0yGE0LmwUUhICHx9fbFy5Uq57OTJkzh//rw853F+UlNT8f7776NOnToYNWqU3nru7u746KOPNMo6duyIDh06IDIyUr79ujDbn1tWVpYcW83Ozg4+Pj5adevWrYt27drhyJEjJrtV1VDHjx9HdHQ0OnfurLWo5ccff4wyZcpgy5YtyMjIMKrdjIwMbN26FZ6enpg+fbrGc126dMGrr76Kf/75B8ePHze4TVMcM/n54YcfkJCQgGHDhqFBgwZyuZWVFRYsWABra2ud32c9e/bEihUr8NNPP2l8/tRGjBiBn3/+GcuXL8cbb7yh9byxn/WvvvoKCoUCK1eu1FoB2sHBAWXKlDF62/OiPp49PDw0yitVqqQ1HZQkSRg7diwA4PfffzdZHxQKhbwvMjIysGTJEp1/E2VkZGD79u3w9vbWmg7srbfeQvXq1U3Wp9KAq11TsZOSkoK0tDSd8ynklpiYCCsrK511y5UrB0mSkJiYaPI+ZmRkICgoCH/99RcaN26MQYMGwdPTE9bW1vKKjroWYHn8+DGysrJQsWJFo+J9+eWXWmU1atTA7t27Ubt27Txfq97+cuXK6Xy+QoUKGvXUicLy5cvnWT8hIUEue+2111C5cmVs2rQJc+bMgbW1NdatWwdJkjB8+HCN148dOxa7du1CeHi43vl/1Aq6n93c3DBp0iQkJiZi8eLF+W57zm0xladPnwIAVqxYkWe958+fy6sMG8LY99NQo0ePRp8+fXD58mXcunULt27dwujRo7UWb8np9u3bmD17tsH9LshnValUYtSoUXB1dUWVKlUwbtw4AEB4eDhUKhXatGmDX3/9Fbt370aPHj00Xqt+D44fP57ngPP58+cA/jsOdA3WTSX3H0Vly5ZF06ZNNeYIevr0KZo3b447d+6gdevWCA4Ohru7OxQKBc6fP48ffvhB7wJPBTFq1CjExsZi3rx5WLhwobzSfaVKlUwWg4goL4mJifLvr7xY+qTzwoULsXv3bkRHR8u/O9TyOuns5+dnVCz1H7rq35s1atRAu3btYGVl3HUjz549M+iEd0pKCiIjI1GxYkXMnz9f63l1kkp9si4hIQEPHjxAq1atDJ4bun79+gCAy5cvo3Xr1vL7FBgYqDVPnpWVFdq2bYurV6/i/PnzWvuvTZs2Wu2ry3TNZ6hQKDBixAjMnz8fCxcuhKurK7766itUq1YNr776qkH9nz9/Pu7evYvffvsN9+/f11uvcePGcHZ21tm/AwcO4Ny5c2jatGmhtl89b2B6ejr+/PNPnDhxAh999JHGXM1A9mdhwYIFOHbsGB49eqSVbIyLi9P63O3evVvnHI7x8fF6T0jrSszEx8dr1TPkBPpvv/2Ga9euyceLIa5evYq0tDS0a9dO5/Herl077N+/H+fPn9d57OhSmGNG17yOuvZpXvujUqVKqFKlCqKiopCUlKQxnzmQPTf6zJkz8fXXX2v8zfbRRx9hw4YN8PLywuDBg7XaNfaznpycjL///hvVqlUzWyLt0KFD8j57+PAhwsPDUaNGDUybNk2jXkZGBpYvX45t27bh6tWrSE5O1pjn1ZQn5oUQmDNnjvzzzp075Qtfcrp27RrS0tLQvn17rQunrKys0Lp1a1y/ft1k/SrpmHykYic6OhoAtCbN1cXV1RUqlQqxsbHw9vbWeC4mJgZCCLi6upq8jz/88AP++usvDB8+XGsV4m3btuk86wr8NyCuUaOGUfFu3ryJgIAACCHw4MEDLFiwAEuXLsX48ePzPcuj3n59Vxk+evRIo5767JW6XF/9nGecJUnCiBEjMG3aNPz444/y4KFDhw6oUqWKxuvt7Oxw+PBh/Prrr4iMjERaWhqA7EFK7iRrQfezu7s7Zs2ahaSkJCxevDjfbc+5Laai3p+RkZGoV6+eyds19P00VI8ePVChQgWsXLkSt27dQvPmzdG0aVOdVzGqBQYG6nx+1qxZWknJgn5Wv/jiC5w5cwarVq1Cjx498PLLL+PGjRtQKpVYuHAhRo8ejXr16mHMmDEICgrSGPyq23vvvfewcOHCfPeB+rV5/VFRWAcPHpQHmbGxsdi4cSOmTJmC6Oho+Szz119/jTt37uDTTz/VOoM/b948/PDDDybrz+bNm7Fr1y68/vrrmDJlCgICAtC/f38MHz4c+/fvN1kcIiJ9eNJZW2FOOqupx4y5x2G6PHv2DEII3L9/P8+TiuqEq/rEpK4kmz7quur3pzAnU3W9Rl2m74TyW2+9hU8++QSbN29G//79ER4ejjlz5uhdICSnO3fuYMGCBejWrRteffXVPK+u1bc9uftXmO3P/R7Vrl0b1apV0yg7ceIE2rdvDyD7IoHq1avLdxDt3r0bFy5c0HnM/vDDD3rHGfqSj7qOV13MdQLdXO0W9Jgx5sQ8kHe/o6KikJiYqJV8/Oijj/D48WO0bdsWn332mXwS4H//+x/atm2LI0eO4MMPP9R6b4z9rBfFifnDhw9rrCxtY2ODkJAQrURy79698eOPP6JGjRro168fvL29YWNjI/8NacoT80uXLsWhQ4cwaNAg3LlzB1u2bEGfPn20LnRQ75/cf9uo6XtvX1S87ZqKHfXtGM2aNcu3buPGjQFAZwJEXdaoUSNTdU2mTpDqWoH76NGjel+nThS2bdu2QHElSYKPjw+WLFkCNzc3nDlzJt/X5LWPnj9/jjNnzsDBwQE1a9YEAHlVZV31lUoljh07BkmStPbr0KFDYWNjg3Xr1mH9+vVQqVRat5GoWVlZoWvXrpg6dap8C+ykSZO06hV0P6u5uLigWrVq+Oeff3QmlMx5jKhvL//zzz9N2q6x76ehrK2t8dZbb2HTpk349ddfTXZLiVpBPqv//PMPZs6cibZt22LEiBEoV64ctm/fDgDo2rUr3nvvPTg6OmLNmjV4+PAhJk+erPH65s2bQ5Ikg9+DZs2awcrKCgcPHiySW5G8vLzw/vvvo379+ggPD5cT8YU97g11//59TJgwAWXKlJFXa+3Xrx969+6N33//XecK6AqFAkql0mR9ICIq6Enn3IrqpPNff/2FlStXYs6cOZg1axY6deqk93WFOekshIBKpcK9e/cwYcIEREVFYfz48Qa3ob4azJDY6n3WtGlTiOw1AXQ+1LeWOzk5Aci+KspQ6rrqJGRhTqbqeo26TN8J5QoVKqBHjx5YtWoVNmzYACB77GqI999/HyqVCl988UW+dfVtT+7+FWb71e9HVlYWoqOj0aRJEwwdOlTj9/Znn32G9PR0/P7779izZw8WLVqE2bNnY9asWXrvbgKyV5LX9d7nvqoyJ/XxmvNx8+ZNrXrmOoFurnYLeszk9dkxRb9PnTqFpUuXon///vjjjz/QvXt3KJVKKJVKdO/eHX/88Qf69euH5cuXy39X545p6Gddfbya88T8zJkz5biJiYnYsWMH9uzZg7Zt2yI1NRVA9lRKP/74Izp27IgrV65g7dq1+OyzzzBr1iz079/fpP2JiorCtGnT4Ovri2XLlmH9+vVwcnLCqFGjtFYZV++fmJgYnW0ZMsXYi4TJRypWEhISsHTpUtjY2KBbt2751g8LCwOQfYYp59mshIQE+WyOuo4pqX8BHzt2TKP88OHDWLt2rc7XxMXFYfPmzShTpgw6d+5cqPgPHz5EcnKy1lwYurRu3RpVq1bFr7/+qnWV5Jw5c/DkyROEhobKcwK1bNkSNWrUwN69e+X59dSWLVuG6OhohISEaN0qXK5cOfTo0QN79+7FypUrUbZsWa2zQ8YqyH7ObejQocjMzMS0adM0Ls2/ePEiNm7cCA8Pj0L3U19cFxcXfPTRR7h8+bLW8ykpKVoDAkMY+34aY8SIEfDw8EC1atVM/ovc2M+qEAJvv/22PJeo+iyz+rjLefwFBwdj6NCh+Prrr/HHH3/I5eXLl0ffvn1x4sQJfP755xrvv9qpU6eQkpICIPsY7tWrF6Kjo3WeDY6JiZHnoTGVZ8+e4f79+xpn0fUd91u2bMEvv/xistjDhw9HfHw8li9frnHb1VdffSUnRm/fvq3xmjJlyiAuLk5OlBIRFRZPOutXkJPOBYnt4uKC2rVr4++//9Z5u2xuHh4eKFeuHK5evWrwCalLly4BgHzlpvp9OnLkiNbvZyEEjhw5olEvJ137XF2mPkZ0GT16NC5duoRPP/0Uffv2NWiuuqNHj+K7777DO++8g6pVq+Zb/9y5czqTsrn7V5jtV1MoFKhSpQqWLVsGIPtuBrXo6GiUKVMGr7zyisZrUlJS8Ndff+W7HeZgrhPotWrVgr29PU6fPi2P6XIqzHdDQY4ZQ+W1P+7evYvo6GhUqVJF46rHjIwMDB8+HB4eHli6dCkUCgW2bt2KsmXLomzZsti6dSsUCgWWLl0Kd3d3DB8+XGMOTWM/687OzqhTpw5u3rxZJLcPu7i4ICQkBIMHD8aNGzfkaZPU38Fdu3bVmurBlCfmlUolwsLCkJqainXr1sHNzQ1VqlTB/Pnz8fjxY3n6J7UaNWrA3t4eZ86c0Robq1QqnDhxwmR9Kw2YfKRiY86cOahZsyYuXbqETz75xKC5f9q2bYvx48fjypUrqFevHt555x1MmjQJ9erVw9WrVzFhwgSdgy71bZw5H0D2XBG5y9XzR6xatUoe9IWEhCAgIAALFixA165dMWXKFPTo0QMdOnTQOTDduHEjWrVqhdjYWFSqVAnz5s3TuUDHxo0bsXv3bq3Xf/vtt1i1ahVWrlyJGTNmoFWrVlAqlRgxYkS++8jKygobN26Eo6MjunTpgoEDB+LDDz9Eu3btMG/ePFStWhXz5s2T60uShK+//hoODg4ICQlB//798eGHH6Jz585455134OPjg+XLl+uMNWrUKKhUKjx+/BhhYWGFnmDd2P2sy3vvvYeWLVti8+bNaNGiBaZOnYphw4bJ+3DdunU6bxvas2ePxnGwZ88eAPkfO+rjxcvLC1u3bkVycjIaNmyI119/HZMnT8b48eMREhKC8uXL65wTJj/Gvp/G8PX1xZ07d3Dt2jWtCaULy9jP6po1a+Q5YAyZY2bRokUoX748RowYoTHw/Oqrr9CoUSN88MEHaNiwIUaOHIkpU6ZgwIABqFGjBl566SWNZOhXX32F2rVr47PPPkOTJk0wefJkvPfeewgJCYGfn59RV3nool5wZtasWRg3bhwaNGiAJ0+eYNCgQfJcMYMGDYKbmxvGjx+Pvn374v3338drr72GQYMG6Zw4vCBWr16Nffv2oXfv3ggNDdV4zsvLCytXrkRSUhKGDRum8UdR+/btkZaWhs6dO+Pjjz/GnDlz5D+QiIiMxZPOhjHmpDMApKWl4auvvoK1tTX69etn0GsmTJiAlJQUvP3221rzWQLZV7flnLeuR48eePbsmca0OH/++aecTF60aJFcfuPGDXz33XcoV64cXn75ZQDZc9q1a9cOly9fxvr16zVirVmzBn///Tfat2+vc77MTz/9VOP26oSEBPl22Lze//bt2+Pll1+Gi4sLxowZk88eyTZhwgRUqFBBaxEZfeLj4+WFKtT27duHAwcOoF69emjatCmAwm1/bpGRkVpl/v7+ePbsmcYJcKVSicmTJ+u8crgomOsEuq2tLUJDQxEXF4e5c+dqPLd3717s27cP1apVQ+vWrY3uc0GOGUN1794dbm5u2LBhg8b7JITAlClTkJWVhSFDhmi85rPPPsPly5exePFiefoJBwcHODk5wcnJSR6/e3t7Y/Hixbhy5YrW8WjsZ33s2LFQKpUYM2aMfCWiWlpamjzHuqkIIeSTFWr6voMvX76s9Z4XxoIFC3Dy5EmMGDFCY1GkMWPGoH379ti2bRt27twpl9vZ2aFv376IiYnR+M4DgHXr1iEqKspkfSsVTLZuNtG/bt68KQCIjh076q1z8OBBAUCMHDlSLgsMDBTBwcHihx9+0PmaDRs2CABiw4YNWs+tX79eNG/eXDg6OgpHR0fRvHlzsX79er1xC/qYOXOm3NaNGzdEr169hJeXlxxz27ZtcoycdQMDAw2OERYWJr8uLCxM63kvLy/RunVrsXnzZv1vgg4XL14UvXv3FmXLlhU2NjbC399fTJw4UcTGxuqsf+HCBY36fn5+YsyYMeLhw4d6Y6hUKlGpUiUBQPz9999G9U993OTcfiGM289CCOHv7y/8/f01ypKSksSHH34oqlWrJmxtbYWHh4d4/fXXxYkTJ7T6MXPmzEIdIwcPHtRo7+rVq2L48OHC399fjl2/fn0xYcIEERERke/262Ps+6mL+vi6efOm3jr69jMAERgYqPM16n2Ye18IYdhn9d69e8LV1VU0btxYZGZmajyX1376/vvvBQDx7rvvapSnpKSIBQsWiKZNmwonJyfh4OAgKleuLHr06CG++eYbrRgJCQlixowZolatWsLOzk64ubmJRo0aiY8//lhkZGTo3GZdx52ufZLz4eHhIZo2bSqWLVum1Yfz58+L1157TXh4eAgXFxcRGBgofv/99zy/B3VR76/c313Ozs7C29s7z+MlNDRUABArVqyQy5KSksTbb78tKlSoIBQKhVbb6u3M65giotKloOO+Tz/9VJQrV04AEHPnztV6jb7vu/HjxwsAws/PT0yaNElMnDhR+Pr6CgBiwoQJOuN27dpVrFy5UuMBQFSvXl2rvHr16gKAWLlypTh9+rQQIvu7LyAgQAAQXbp0ER988IHo3r27UCgUonfv3lrfhRs2bBDVqlUTAESjRo3EzJkzNR7qcWFYWJjYtWuX/Dr17+U5c+aIlStXiq+++kpMnz5dHlv973//y/f92LVrl2jSpIkAIAICArRid+/eXQAQ3bt319i3KpVKjl+hQgUxaNAgMWXKFDFkyBDx0ksvCUmSxNatW+X69+7dE2XLlhWSJIlevXqJcePGCS8vL+Hv7y8AiDp16og+ffqIkSNHCk9PTwFAfPvttxp9vXr1qtxG9+7dxbRp00S3bt3k8e61a9c06qv3W0hIiPD19RUTJ07UeP9z//439HemrjFNzrH7pk2b8m1X/Tlo06aNcHNzE+3atRPTpk0ToaGhwtraWjg4OIiTJ0+aZPvV7+X06dPF4MGDhZOTk1Y/f/zxRwFAuLu7ixEjRogJEyaIBg0aCE9PTxEUFKT1uzq/faVrnJPXOFLfeO3o0aPC0dFR2NjYiAEDBohp06bJ/alataqIiYnJN64uMTExokqVKgKAaN++vca+d3R0FEePHs23DSFMc8zoom88/d133wmFQiGcnJzEsGHDxJQpU0TTpk0FANGiRQuRmpoq142MjBQ2NjaiU6dOWu3r208dO3YUNjY2IjIyUi4z9rOuUqlE3759BQDh4+MjRo8eLaZMmSJCQ0NFmTJlNL7Dcsrv7wz1PgkMDJSP6ffee0/e/lq1aom0tDQhhBBZWVmiRYsW8mfs/fffF/369RMODg7yd7Chf0Op91fu9+/ixYvC1tZWVK5cWSQlJWm95ubNmzrHzw8ePBA+Pj4CgOjUqZOYNm2a6NGjh7C1tRWvvfaazr+JXtTxMpOPRAby9/fX+oVhqMDAQIO+EA2tV1w9ePBAWFtbizZt2li6K0VOPcjSlXAjshRdyUdzelEHU0QvMp50Ll4nnXW1oe+h6yTi9u3bRXBwsPDw8BA2NjbCx8dHBAUFiUWLFmmdsLp8+bJo166dsLe3FzVr1hR79+6Vtz06OloEBgYKOzs7UaNGDa3Eo9qtW7fE0KFDRYUKFYS1tbWoUKGCGDp0qLh165ZWXXXbqamp4oMPPhB+fn7C1tZW1KxZUyxdulSoVCqN+qZIJLVs2dKgdnMm2y5duiS6dOkiXF1dhZOTkwgODhZnzpwx2farH1ZWVqJ8+fIiODhY/PTTT1r1v//+e9GkSRPh6OgoypYtK/r27Suio6N1JoWKKvkohHEn0A1NPgohRGxsrJgwYYLw9/cXNjY2omzZsqJ3794aibf8FHXyUQghjhw5Ijp37izc3d2Fra2tqFGjhpgxY4ZITk6W66iTb87OzuL27dtabejbT7du3RLOzs6iRYsWIisrS+M5Yz7rKpVKrFu3Trz00kvCyclJODo6iurVq4tRo0aJO3fu6NxmQ5OPOR9OTk6iZs2aYsqUKVqJ6JiYGDFs2DBRsWJFYW9vL+rXry9WrFghbty4UejkY0ZGhmjUqJGQJCnPv+VWr14tAIg+ffpolN++fVv069dPuLu7C0dHR9GmTRtx+PBhvRdkvKjjZUkIHZNgEZGWgIAADBkypEC3ygYFBSEgICDP1fGMqVdcTZkyBQsWLMCWLVu0buUs7W7duoXKlStrrGZMZGnq43LmzJkF+u4ylnql85s3bxq0eAQRUXFVUsd9Q4YMwa1bt3TOI1eQesYKCgrC4cOHdc6zXJzbLiz179uwsLASO44nelEEBAQgICDA5N9/hnpRx8vWlu4AUUkxcOBAgyZD12XIkCFwd3c3Wb3iJCEhAStXrsTt27exbt061KlTB3379rV0t4qci4sLRo4ciYoVK1q6K0RERERERETFBpOPRAbKPVmvMXJPFlzYesXJs2fPMG3aNNjb2+OVV17BqlWrtFYhexF4enrKi88QERFRyVZSTzr36NHDoFVsDa1HRERkCkw+ElGhBAQEFMvbX4gIcHd3x8yZM4tsKgB1nJJ2BTcRUW4l9aRzjx49TFqPiIjIFDjnIxERERERERERlXpLliyBu7u7xe46PHToEA4dOoRJkya9UCfsmXwkIiIiIiIiIiIis7CydAeIiIiIiIiIiIiodHrh5nxUqVR48OABXFxcIEmSpbtDREREZDQhBJKSklCxYkVYWfFccknEMSkRERGVZMaMR1+45OODBw/g5+dn6W4QERERFdrdu3fh6+tr6W5QAXBMSkRERKWBIePRFy756OLiAiB757i6uhZJzH79+mH79u1FEstSMRmvZMezREzGY7ziHpPxSnY8S8QsyniJiYnw8/OTxzVU8rwIY1LGK/kxGY/xintMxivZ8SwRk/FMx5jx6AuXfFTf1uLq6lpkAz0bG5sii2WpmIxXsuNZIibjMV5xj8l4JTueJWJaYht5u27J9SKMSRmv5MdkPMYr7jEZr2THs0RMxjM9Q8ajnCSIiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrN44RacMZZSqURmZmah2vD09ERaWpqJelQ8YzJeyY5niZglNZ61tTUUCgUXeSAioiJjivEoUHJ/9zKe5WIyHuNZMqaNjQ0UCoVJ2iIiy2LyUQ8hBB49eoT4+PhCtzVkyBDcvHmz8J0qxjEZr2THs0TMkhxPoVDA29sbbm5uTEISEZHZmHI8CpTs372MZ5mYjMd4lo7p7u6O8uXLc8xNVMIx+aiHeqDn7e0NR0fHQn3ZSZKEgIAA03WuGMZkvJIdzxIxS2I8IQSysrKQmJiIhw8fIjU1FRUqVDBNB4mIiHIx5XgUKJm/exnPsjEZj/EsFVMIgZSUFMTExAAAx9xEJRyTjzoolUp5oOfp6Vno9hQKBezt7U3Qs+Ibk/FKdjxLxCzJ8VxcXGBnZ4e4uDh4e3vzdhAiIjI5U49HgZL9u5fxLBOT8RjPkjEdHBwAADExMRxzE5VwXHBGB/WcOo6OjhbuCREVV05OThBCmGQOLiIiotw4HiUi+u87kGNuopKNycc8cF4JItKH3w9ERFQU+PuGiF5k/A4kKh2YfCQiIiIiIiIiIiKzYPKRCuT58+e4e/cunj17ZumuEBERERERERFRMcXkIxksPDwcHTp0gIuLC5ydnVGpUiUsWLDA0t0iIiIiIiIiIqJiisnHF9Tly5fx5ptvwsfHB3Z2dqhYsSIGDhyIy5cv66w/depU9O3bFy4uLli7di3279+P33//HWPGjCninhMRERFRSbZx40ZIkiQ/7O3tUaNGDYwbNw6PHz+2dPeoCLVo0QKSJGHlypU6n899rOR+nDx5EgDw5MkTfP7552jbti28vLzg7u6Ol156Cdu3by/KzSEiIj2sLd0BKno7d+5EaGgoypQpg+HDh6Ny5cq4desWvv76a3z//ffYtm0bevbsKdc/fPgw5s+fj7lz52Lq1KkW7DkRERERlRaffPIJKleujLS0NBw7dgwrV67EL7/8gkuXLnGV7xfA9evXcfr0aQQEBODbb7/F6NGj9dZVHyu5VatWDQDw559/4qOPPkKXLl0wffp0WFtbY8eOHejfvz+uXLmC2bNnm207iIgof0w+vmCio6MxaNAgVKlSBUeOHIGXl5f83MSJE9GmTRsMGjQIFy9eRJUqVQAACxcuxMsvv8zEIxERERGZTOfOndGsWTMAwFtvvQVPT0988cUX+OGHHxAaGmrh3pG5/d///R+8vb2xaNEi9O7dG7du3dJbN+exokvdunVx/fp1+Pv7y2VjxoxBcHAw5s+fjw8++ABOTk6m7D4RERmBt12/YD7//HOkpKRgzZo1GolHAChbtixWr16N58+fa8zlePLkSdSrVw/9+/dHmTJl4ODggObNm2P37t1ynefPn8PJyQkTJ07Uinnv3j0oFArMnTsXADBkyBAEBARo1ZMkCbNmzZJ/vn37NsaMGYOaNWvCwcEBnp6e6NOnj9bA5NChQ5AkCYcOHZLLTp8+jVdffRUuLi5wcnJCUFAQjh49qvE69W0cZ86ckcvi4uK0+gEAI0aM0NnnU6dOoVOnTnBzc4OjoyMCAwNx/PhxrXr379/HsGHDUK5cOdjZ2aFu3bpYv369Vj1d1LeVLFmyROu5WrVqQZIkjBs3Ls/tymvbzp07h86dO6Nx48ZwdnZGhw4d5FtY1FavXg0rKyuEh4fLZbdu3YIkSdi4caNcFhUVhTJlymDAgAEar4+Pj8ekSZPg5+cHOzs7VKtWDWvWrIFKpdKop1Kp8OWXX6J+/fqwt7eHl5cXOnXqJG9LXrfdSJKEoKAgAP8dE+qHnZ0dXnvtNcydOxdCCJ3b7+rqqnf7iYiIyPzat28PALh58yYA4OnTp5g8eTLq168PZ2dnuLq6onPnzrhw4YLWa9PS0rB06VLUqFED9vb2qFChAt544w1ER0cD+G/ckt8YQi0mJgbDhw9HuXLlYG9vj4YNG2LTpk0adW7cuIH27dujfPnysLOzg5+fH0aNGoWnT5/KddRjku+//16rz87OzhgyZIj8s6Hba0ybBR0XqsdFgwcP1jku0jW2mz9/vtbYLi9btmxB79698frrr8PNzQ1btmwx+LW5Va5cWSPxCGSPG3v06IH09HTcuHEjz9fnHDueP39e47n79+9DoVBo7fMhQ4bA2dlZq63vv/9e628TIHv+/J49e8LBwQFly5bFm2++ifv372vUGTBgADw9PXH9+nW5TP0e5vwbKDw8HFZWVli9erXG669evYrevXujTJkysLe3xxtvvIE9e/Zo9TE+Ph7vvPMOAgICYGdnB19fXwwePBhxcXFa42hdD/VxM2vWLI1yFxcX9OrVS+PvxJx9btq0aZ7bT0SlF698fMH8+OOPCAgIQJs2bXQ+37ZtWwQEBODnn3+Wy548eYI1a9bA2dkZEyZMgJeXF/7v//4Pb7zxBr799luEhobCyckJPXv2xPbt2/HFF19AoVDIr9+6dSuEEBg4cKBRfT19+jROnDiB/v37w9fXF7du3cLKlSsRFBSk85eo2j///IOgoCA4Ojri/fffh6OjI9auXYvg4GDs378fbdu2Naof+vzxxx/o3LkzmjZtipkzZ8LKygobNmxA+/btcfToUbRo0QIA8PjxY7z00ktyktDLywu//vorhg8fjsTEREyaNCnfWPb29tiwYYNG3RMnTuD27duF2obLly+jTZs2cHV1xdtvv43y5ctj9erVCAoKwuHDh9GyZUsAwMiRI3Ht2jWEhYUhICAAzZs312rr6dOneP3111G7dm1s2LBBLk9JSUFgYCDu37+PkSNHolKlSjhx4gQWLVqEzMxMjaTq8OHDsXHjRnTu3BlvvfUWsrKycPToUZw8eRLNmjXD5s2b5bpHjx7FmjVrsHjxYpQtWxYAUK5cOY0+ffjhh6hduzZSU1OxYcMGfPjhh/D29sbw4cO1tv+DDz6AjY2Nzu0nIiIi81MnCj09PQFkJ/d2796NPn36oHLlynj8+DFWr16NwMBAXLlyBRUrVgQAKJVKvP766zhw4AD69++PiRMnIikpCfv378elS5dQtWpVOUZoaCi6dOmiEXfatGkaP6empiIoKAj//PMPxo0bh8qVKyM8PBxDhgxBfHy8fLI9NTUVvr6+CAkJgaurKy5duoQVK1bg/v37+PHHH43efkO311x0jYuWL1+uNS7SN7abNm0aHj58qPOEeW6nTp3CP//8gw0bNsDW1lb+u6JPnz466yckJCAuLk6jTJIk+VjR59GjRwAgjxXzox5zf/nll3LZpk2bYGtri7S0NIPa0GXjxo0YOnQo6tevj7lz5+Lx48f48ssvcfz4cZw7dw7u7u4AgPXr16N9+/bo2rUrTp06BQ8PD622IiIiEBYWhnfeeQcjR46Uyy9fvozWrVvDx8cHU6dOhZOTEzZt2oQePXpgx44d8rRaycnJaNOmDf7++28MGzYMTZo0QVxcHPbs2YN79+6hdu3aGmPuNWvW4O+//8bixYvlsgYNGmj0SV0/Li4OX375Jfr06YNLly6hZs2aGtvfvHnzPLefiEox8YJJSEgQAERCQoLeOqmpqeLKlSsiNTXVJDGjoqJM0k5hY8bHxwsAonv37nm+tlu3bgKASExMFEIIAUAAEIcOHZLrpKSkiNq1a4vy5cuLjIwMERUVJfbt2ycAiF9//VWjvQYNGojAwED556FDh4pKlSppxQUgZs6cqREjtz///FMAEAsWLJDLDh48KACIgwcPCiGE6NWrl1AoFOLSpUtynbi4OOHp6SmaNm0ql23YsEEAEKdPn5bLYmNjtfohhBBBQUHC399f/lmlUonq1auLjh07CpVKpdHnypUri1dffVUuGz58uKhQoYKIi4vTaLN///7Czc1N53bmfP8AiN69ewtra2tx5swZjXYHDBggAIixY8fmuV36tq1Hjx7C1tZWREdHyzEfPHggXFxcRNu2bTVer1QqRUhIiKhQoYK4e/euuHnzpgAgNmzYIDIyMkRQUJCoXLmyiImJ0Xjdp59+KpycnLSOyREjRgiFQiHu3LkjhBDijz/+EADEhAkTtPZHzn2ceztv3ryp9VzuY0IIIS5duiSsrKzEmDFjdG6/mr7tzy2/74mQkJA8X29qpT2eJWIyXsmOZ4mYRRnPkPEMFW/5vYemHo8KkT2+SEkR4osvhBg3LvtfHcMQk8bTRf07/PfffxexsbHi7t27Ytu2bcLT01M4ODiIe/fuCSGESEtLE0qlUuO1N2/eFHZ2duKTTz6Ry9avXy8AiGnTpmnFUo8h1OOWzz//XKtO3bp1NcaqS5YsEQDE//3f/8llGRkZolWrVsLZ2VkeI+vavjFjxghnZ2f5Z/WYJDw8XKuuk5OTCAsLk382ZHujoqKMarOg40K1Y8eOaY2L9I3tpk6dqjG2y8u4ceOEn5+f/P789ttvAoDYvXu3Rj11/3U97Ozs8ozx5MkT4e3tLdq0aaO3jnob1Ps0NDRUeHp6ivT0dLlO9erV5TF3zn0eFhYmnJyctNoMDw/XGIdmZGQIb29vUa9ePREZGSnX++mnnwQA8fHHH2u8/vHjxyIgIEC0a9dOZGRkaIx579y5I8qXLy+6deumdax06NBB1K9fX6Slpcll165dEy+//LKoXr26XPbxxx8LAGLnzp1afdc15g4LC9P4OyinmTNnitwpBXV/v/vuO63tz/l9pm/7c+OYu3THs0RMxjMdY8ajFr3tOvdl2pIkoVatWnrrX758Gb169UJAQIDe21CLs/TUTOxefBKrxu/F7sUnkZ6aWaTxk5KSAAAuLi551lM/n5iYKJc1b94cgYGB8s8ODg4YM2YMHj16hL/++gsAEBwcjIoVK+Lbb7+V6126dAkXL17Em2++KZd5e3sjJiYGGRkZefbDwcFB/n9mZiaePHmCatWqwd3dHVeuXNGqn5CQgJiYGOzfvx8dO3ZE3bp15ec8PT0xZMgQnD171iSrKJ4/fx7Xr1/HgAED8OTJE8TFxSEuLg7Pnz9Hhw4dcOTIEahUKgghsGPHDoSEhEAIIdeLi4tDx44dkZCQIO+/vJQrVw5du3aVryhMSUnBd999h6FDh+p9jfoMsfqR8xYgIPsqgd9++w09evSQ5/cEgAoVKmDAgAE4duyYxjFgZWWFrVu3wtPTEyEhIXj+/Ln83OjRoxEREYGffvpJ63b+8PBwtGnTBh4eHhr9efnll6FUKnHkyBEAwI4dOyBJEmbOnKm1LZIk5buP8toHd+7cwdq1a6FSqeRbuozdfiIiKp1epPFoWpqE1q2ByZOB1auz/23dGkhNtUx/goOD4eXlBT8/P/Tv3x/Ozs7YtWsXfHx8AAB2dnawssr+c0WpVOLJkydwdnZGzZo1NcZPO3bsQNmyZTFo0CCtGAUZQ/zyyy8oX768xryTNjY2mDBhApKTk3H48GGN+gkJCXj8+DEOHDiAn3/+WeddNklJSRrjoNxX8Rmzvca0mbOPBRkXent7a42L9I3tgoODNcZ2+mRlZWH79u3o16+f/P60b98e3t7eeq8YXbFiBfbv36/x+PXXX/XGUKlUGDhwIOLj47Fs2bI8+5NTSEgIJEmS77I6evQo7t27h379+ul9Te73QP03l9qZM2cQExODMWPGwM7OTi7v2rUratWqpXHHGZC9z3/++WecOnUKY8aMkcuTk5MREhKCsmXLYsuWLfKxAmTfgfTHH3+gb9++GsfFs2fP0LFjR1y/fl2+xXnHjh1o2LChxgKjagUdc6vj/f3339i6dSucnJzw0ksvaW2/vb19vttPRKWTxW+7rlu3Ln7//Xf5Z2tr/V1KSUlBlSpV0KdPH7zzzjtF0T2TSU/NxAetN+LGhcewUkhQKQUObo7EguNDYOdgUyR9UCcVc/9CzE1XklLXILx27doAsufQKVOmDKysrDBw4ECsXLkSKSkpcHR0xLfffgt7e3uNWyhefvllzJ8/H9OnT8eECRM0fgnllJqairlz52LDhg24f/++xlx9urahR48e8v/Vl/jr62/u23ONpZ6HJSwsTG+dhIQEZGZmIj4+HmvWrMGaNWt01ouJiTEo5tChQzF06FAsWrQI4eHh8PDwkBNpugQHB+fZXmxsLFJSUvTuK5VKhbt372okcZVKJeLi4vDo0SM58fnVV1/h9OnTkCRJ5/ty/fp1XLx4USspqabe/ujoaFSsWBFlypTJs9/GyHlMWFlZYfr06ejVqxeAgm0/ERGVTi/KeHTrVjdcuACoVNkPALhwAVi1CrDEpqxYsQI1atSAtbU1ypUrh5o1a2okVNRzQX/11Ve4efMmlEql/FzO222jo6NRs2bNPN83Y9y+fRvVq1fX6Avw31gy97Q3HTt2xKlTpwAAnTp1wvbt27XaHDZsWL5xDd1eY9pUM+W40NCxnT6//fYbYmNj0aJFC/zzzz9yebt27fDTTz9BpVJp7fsWLVrkueBMbuPHj8fevXvxzTffoGHDhga/zsbGBm+++SbWr1+P3r17Y/369ejVqxdcXV111n/+/Lne/aCmPl507dtatWrh2LFjWuWJiYlITU3FunXr5Dk/hw0bhgsXLqBChQoaxwaQPe2UEAIzZszAjBkzdPYjJiYGPj4+iI6OlsfDppJzHzg7O+Pbb7+Fn58fgIJtPxGVPhZPPlpbW6N8+fIG1W3evLk811xJW3n511VncePCYwiVgFKVnUS7ceExfl11Fj3eealI+uDm5oYKFSrg4sWLeda7ePEifHx85F+yOa9AzM/gwYPx+eefY/fu3QgNDcWWLVvkSaTVunXrhmHDhuHzzz/H559/rret8ePHy/MctmrVCm5ubpAkCf3799c5mfXChQtRvXp1dO/e3eD+FpQ6/ueff45GjRrprOPs7IwnT54AAN588029icrcc6bo07VrV9ja2mL37t3YsGEDwsLCtAZmOakH9GqJiYmFHmjMmDEDaWlp2LNnj3wG+PTp01i6dCm2bt2KMWPG4PTp01p/OLz66qv44IMPNNq6d+8efH19NfpoagsXLkTDhg2RmZmJvXv3Yv78+bC2ttZ5dSUREb24XpTx6N27NlAo/ks8AoBCAeSzFofZ5JdQ+t///ocZM2Zg2LBh+PTTT+WT3ZMmTTJqYRNzW7ZsGeLi4nDlyhXMnTsXo0aNwv/93/9p1Pn444+15lwPCQnR+NnY7TWkTTVTjgv1je3U8hvbqe+S6tu3r87nDx8+jHbt2hWobwAwe/ZsfPXVV5g3b57Oq2HzM2zYMDRu3BjXrl1DeHh4nnPN29vba12tefToUXzyySdGx1VTKpUYM2YMWrVqhX79+slzjF66dAl79uzBoEGD8PHHH2tcda0+PiZPnoyOHTvK5erxNgBUq1atwH3Kz/79+wFkJ2M3bNiAvn374qeffsKrr75qtphEVLJYPPl4/fp1VKxYEfb29mjVqhXmzp2LSpUqWbpbJvfoRjysFJKceAQAK4WERzfii7Qfr7/+OtauXYtjx47hlVde0Xr+6NGjuHXrlsbkxZUrV8a1a9e06l69ehUANFaBrlevHho3boxvv/0Wvr6+uHPnjs5bHb7++mt8/PHHiI6Oln9Z5v7l9P333yMsLAyLFi2Sy9LS0hAfH69z25o2bYrAwEA4Ozsb3N+CUk9c7urqmueZZC8vL7i4uECpVOZ7xjk/1tbWGDRoED777DNcvnw539Wycw/oc9+K4+XlBUdHR737ysrKSj5jCWTfar5ixQp8+eWXCAkJwbp16zBw4EC8/fbbGD9+PNq0aYNmzZrhq6++0lh9u2rVqkhOTtba/uvXr6N69eoa9fbt24enT5+a7OrHpk2byqtXVqtWDWlpaZg/fz5mzJhh9PYTEVHp9aKMR/38MpHrgikolUCOu2yLle+//x7t2rXD119/rVEeHx+vsYBI1apVcerUKWRmmmZKI39/f1y8eFHrCjz1WDL3qsrqZHTnzp3h7e2NwYMH46OPPpKvlASA+vXra42Fci7QCBi+vca0qWbKcaG+sZ0hnj9/jh9++AH9+vVD7969tZ4fO3Ysvv322wInH1esWIFZs2Zh0qRJmDJlSoHaqF+/Pho3boy+ffvCy8sL7dq107rVXk2hUGjth9x/q6iPl2vXrmmNLa9du6Z1PH311Ve4ePEizp49i4YNG+LSpUtYu3Yt1q1bh5CQEMyZMweTJk3C0KFD5as61bfK29jYaPQn93gbyH7/Ll26ZODeMEzOmHXq1MHff/+NhQsX4tVXX9XY/tx3benafiIqnSw652PLli2xceNG7N27FytXrsTNmzfRpk2bfG8LNkZ6ejoSExM1HpZQvoo7VEqhUaZSCpSv4l6k/Xj//ffh4OCAkSNHylflqT19+hSjRo2SV4lW69KlCyIiInDixAm5LC0tDStXrkT58uXRtGlTjXYGDRqE3377DUuWLIGnpyc6d+6ssy/+/v5o3749goODdQ5eFAqFxq3WQPaZ5dy3GeQkSRJee+017Nu3D3///bfGtm3atAnNmjUr9C3XQHZSq2rVqli4cCGSk5O1no+NjZW3oVevXtixY4fOX/LqeoYaNmwYIiMj0bZtW435eApCoVDgtddeww8//IBbt27J5Y8fP8aWLVvwyiuvyFe/CiEwZswYNGzYEKNHjwaQfft8zn8bNWqEsWPHYvr06Rrzavbt2xd//vkn9u3bp9WH+Ph4ZGVlAQB69eoFIQRmz56tVS/3cVBQqampyMrKQlZWllHbT0REpVdRjEeB4jEmDQ1NQMOGgJUVYGOT/W+jRsCoUUXeFYPoGguGh4fLc9ep9erVC3FxcVpXGwIFG0N06dIFjx490rh9OisrC8uWLYOzs7PGPOi5qZN66enpRsc1dHvNQd+4KC4uTmtcZOjYTpddu3bh+fPnGDt2LHr37q31CAoKwo4dOwq0/7Zv344JEyZg4MCB+OKLL4x+fU7Dhg3DxYsXMWTIkALPg6jWrFkzeHt7Y9WqVRpz3v/666/4+++/0bVrV7ns8ePHmDFjBsaNGycnFnOPuUePHo2GDRtizJgx8vHi7e2NoKAgrF69Gg8fPtTqQ86/OXr16oULFy5g165dWvVMMeZWKpXIyMiQ38Oc25/zfdW1/URUeln0ysecSakGDRqgZcuW8Pf3x3fffYfhw4ebJMbcuXN1JjP69esHGxvdcy2qFyeRJEnv2UNjpKSkoHqwGyrWcseDv5/Jcz5WrOWO6sFu8vyBppSSkqK33Xnz5mHy5MmoU6cOevfuDV9fX9y/fx/h4eF49uwZvvjiC6hUKvn1vXv3xjfffIOOHTti8ODB8PDwwA8//IArV65g0aJFuHnzpkY89eTCu3btwoABAzQGMPl58uSJ3E7btm2xefNmCCFQtWpVnD9/HidOnIC7uzuysrLkevfu3ZP/vX79Ot566y3s3bsXr7zyCgYNGgR7e3t89913iI+Px5IlS+TXqRNkP/zwgzyXijqReO7cOY2zznFxcUhOTsbXX38tTyI+a9YsvPXWW6hZsybeeOMNlCtXDo8fP8apU6fg7OyM1atXAwBGjBiB/fv3o0WLFujbty+qVq2KhIQEXLlyBSdOnMDp06fzff/i4+Nx/fp1WFtb49SpU7C3t9f5fM7tunPnjsbt7uqJxXPu47fffhu//fYbXnrpJfTp0wcODg7Ytm0b0tLSMH78eLleeHg4Tp06he3btyM6Olpjvz9+/FiuN2TIEGzduhUjR46Ub6nv2bMnwsPD8frrr6Nnz56oV68eUlJScOXKFRw4cAB//PEHypQpA19fX3Tv3h1Lly7F+fPn0bZtW6hUKpw5cwYtW7bUum1GvZ03b97UutJB3bft27fjzJkzyMrKwl9//YUdO3agffv28twzObd/wIABsLa21rn9uiiVSsTExGDBggVaiXwAiIiIQLdu3fS+3tRKezxLxGS8kh3PEjGLMp6prvCiohmPAsaPSU09HgUAlSoFmzb9g61b3XD3rg38/DIRGpqAe/dMc5IvN33jUX1jldxatWqFFStWoFevXmjcuDGioqLw448/ws/PD6mpqXLbrVq1QsuWLTF37lxcvHgRzZo1Q2pqKk6cOIEBAwYgODhYHhvExcVp9SkjI0Ojvfbt26Nq1aoICwvD77//Dh8fH+zbtw8RERH46KOP8OjRIzx69AiLFy/G06dPUb16ddja2uLKlSvYsWMHatasCQcHB1y/fl2O+/DhQ624QggkJiZqbEd+25uSkmJUmwUdF6rHRVu3btUaF+kb20VFRWHfvn3y2E6XNWvWwN3dHV5eXjqPjVdeeQXfffcd1q5di44dO8r9/7//+z8cOnRIq37jxo1RqVIlXLhwAYMGDYK7uzvq1auncedUznq5qY/R3Ps0KCgIJ0+ehIuLi973MTExEUIIre1QJ//Uf5sAwLvvvoupU6ciNDQU3bp1Q1xcHL755hv4+vqiW7ducr3JkyfDzs4OYWFhWu9hzjHvtGnT0LdvX8ybN0++gvSDDz5AaGgo6tSpg759+8LPzw+PHj3CpUuX8OjRI/n28J49e2LLli3o06cPevXqhXr16iE+Ph5//PEHZs+erXHFrno7c/7tlZN6DLxw4UIA2Sf69+3bh1u3bmHgwIFa29+yZUu8/vrrerdfF465S3c8S8RkPNMxajxq+sW2C6dZs2Zi6tSp+dbz9/cXixcvzrdeWlqaSEhIkB93797Ndynw1NRUceXKFZGammpM1/WKiorK7ktKhtj1xZ9i5bhfxa4v/hRpKRkmaT+vmPpcvHhRhIaGigoVKggbGxtRvnx5ERoaKiIjI3XWj46OFr179xZubm7C3t5eNG/eXOzevVtvvC5duggA4sSJEwb3GYCYOXOm/POzZ8/E0KFDRdmyZYWzs7Po2LGjuHr1qvD39xc9e/aU6x08eFAAEAcPHpTLzp49K1577TXh7OwsHB0dRdu2bcXhw4c14m3YsEEAMPqR07lz58Qbb7whPD09hZ2dnfD39xd9+/YVBw4c0Kj3+PFjMXbsWOHn5yfv7w4dOog1a9bo3Bc59ycAMXbs2Dz3W87n1dt1+vRpjXqxsbFa+1gIIf766y/RsWNH4eTkJBwdHUW7du003rcnT56IsmXLihEjRmi87ubNmwKA2LBhg0b5t99+KwBo7O+kpCQxbdo0Ua1aNWFrayvKli0rmjRpIhYuXCgyMv77HGRlZYnPP/9c1KpVS9ja2govLy/RuXNncfbsWa3tVm/nzZs3tZ5THxPqh7W1tfDx8RETJkwQz54907n96mMl9/brk9/3REhISL5tmFJpj2eJmIxXsuNZImZRxktISMh3PEMFZ+rxqBDGj0lNPR4VIv/xoanpi6dvrJJbWlqaeO+990SFChWEg4ODaN26tfjzzz9FYGCgCAwM1KibkpIiRo8eLSpXriyPtXr37i2io6OFEP+NWz7//HOtOHXr1tVq7/Hjx/I41NbWVtSvX19rzLNs2TLRvHlz4erqKhwcHES1atXEe++9J2JjY+U66jFJeHi4VlwnJycRFhZm1PZGRUUZ1WZBx4XqcdFLL72kc1yka2z38ssva43tcu9Ta2trMWjQIJ3PC5H9N4qjo6M81s9vvK5+Twytl5v6GM1rn+p7PiwsTDg5OWnVDQ8P1/rbRAghtm/fLurUqSPs7OxEmTJlxMCBA8W9e/fk5w8dOiQAiC1btmi8Tt+Y9+233xZly5YVT548kcuio6PF4MGDRfny5YWNjY0oV66ceP3118X333+v8donT56IcePGCR8fH2Frayt8fX1FWFiYiIuL09qesLAw4e/vr3O/zJw5U2M/qz8HixcvFiqVSmv7GzdurHf79eGYu3THs0RMxjMdY8ajxSr5mJSUJDw8PMSXX36Zb11jBns5GbJzzJV8LEqWHlz26NFDVK1atcjimVtUVJQ8aC2qeEXN0sdMSYvHgRAHJoxXvONZImZxHeyRcYpiPCpE/u9haU4+Ml7Jicl4jGfpmBxzl+54lojJeKZjzHjUonM+Tp48GYcPH8atW7dw4sQJ9OzZEwqFAqGhoQCyV06eNm2aXD8jIwPnz5/H+fPnkZGRgfv37+P8+fP4559/LLUJpMPDhw/x888/F2h1OSIiIqKixPEoERERkXlZdM7He/fuITQ0FE+ePIGXlxdeeeUVnDx5El5eXgCy5ybJucLcgwcP0LhxY/nnhQsXYuHChQgMDNQ5BwgVrZs3b+L48eNYt24dbGxsNFbMLg0cHBzQsWNHS3eDiIiITIjjUSIiIiLzsmjycdu2bXk+n3sAFxAQYLJVb8n0Dh8+jKFDh6JSpUrYtGkTypcvb+kumVS5cuWwd+9eS3eDiIiITIjjUSIiIiLzsmjykUqXIUOGYMiQIZbuBhERERERERERFRMWnfORiIiIiIiIiIiISi8mH4mIiIiIiIiIiMgsmHzMA+fzISJ9+P1ARERFgb9viOhFxu9AotKByUcdrK2zp8LMysqycE+IqLjKzMwEACgUCgv3hIiISiMbGxsAQEpKioV7QkRkOervQPV3IhGVTFxwRgeFQgGFQoHExES4uLhYujtEVMwIIZCQkAA7OzsOhIiIyCwUCgXc3d0RExMDAHB0dIQkSYVqU6lUIi0tzRTdYzwLxLNETMZjPEvFFEIgJSUFMTExcHd35wl/ohKOyUcdJEmCt7c3Hj58CDs7Ozg5ORVqsFeSv/QZ78WIZ4mYJTGeEAKZmZlISEhAcnIyfHx8TNQ7IiIibeXLlwcAOQFZWDExMUV6CyPjlfyYjMd4lo7p7u4ufxcSUcnF5KMebm5uSE1NRVxcHGJjYwvVVmn40me80h3PEjFLcjw7Ozv4+PjA1dXVJO0RERHpIkkSKlSoAG9vb3m6j8JYsGABVq5caYKeMZ4l4lkiJuMxniVj2tjY8IpHolKCyUc9TDnYK+lf+oxX+uNZImZJjadQKHirNRERFSn1lECF9eTJE9jb25ugR4xniXiWiMl4jFcSYhJR8cfkYz5MMdh7Eb70Ga9kx7NEzNIej4iIiIiIiIi42jURERERERERERGZCZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFhZNPs6aNQuSJGk8atWqledrwsPDUatWLdjb26N+/fr45Zdfiqi3RERERFTacDxKREREZF4Wv/Kxbt26ePjwofw4duyY3ronTpxAaGgohg8fjnPnzqFHjx7o0aMHLl26VIQ9JiIiIqLShONRIiIiIvOxePLR2toa5cuXlx9ly5bVW/fLL79Ep06d8P7776N27dr49NNP0aRJEyxfvrwIe0xEREREpQnHo0RERETmY/Hk4/Xr11GxYkVUqVIFAwcOxJ07d/TW/fPPPxEcHKxR1rFjR/z555/m7iYRERERlVIcjxIRERGZj7Ulg7ds2RIbN25EzZo18fDhQ8yePRtt2rTBpUuX4OLiolX/0aNHKFeunEZZuXLl8OjRI70x0tPTkZ6eLv+cmJhoug0gIiIiohKtKMajAMekRERE9OKShBDC0p1Qi4+Ph7+/P7744gsMHz5c63lbW1ts2rQJoaGhctlXX32F2bNn4/HjxzrbnDVrFmbPnq1V3qlTJ9jY2Jiu83mIiIhAixYtiiSWpWIyXsmOZ4mYjMd4xT0m45XseJaIWZTxMjMzsXfvXiQkJMDV1bVIYr4ozDEeBV7MMSnjlfyYjMd4xT0m45XseJaIyXimY9R4VBQzzZo1E1OnTtX5nJ+fn1i8eLFG2ccffywaNGigt720tDSRkJAgP+7evSsAiISEBFN2O08hISFFFstSMRmvZMezREzGY7ziHpPxSnY8S8QsyngJCQlFPp55kZh6PCrEizkmZbySH5PxGK+4x2S8kh3PEjEZz3SMGY9afM7HnJKTkxEdHY0KFSrofL5Vq1Y4cOCARtn+/fvRqlUrvW3a2dnB1dVV40FEREREpIs5xqMAx6RERET04rJo8nHy5Mk4fPgwbt26hRMnTqBnz55QKBTybSyDBw/GtGnT5PoTJ07E3r17sWjRIly9ehWzZs3CmTNnMG7cOEttAhERERGVYByPEhEREZmXRRecuXfvHkJDQ/HkyRN4eXnhlVdewcmTJ+Hl5QUAuHPnDqys/suPvvzyy9iyZQumT5+ODz/8ENWrV8fu3btRr149S20CEREREZVgHI8SERERmZdFk4/btm3L8/lDhw5plfXp0wd9+vQxU4+IiIiI6EXC8SgRERGReRWrOR+JiIiIiIiIiIio9GDykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyKTfJx3rx5kCQJkyZN0lsnMzMTn3zyCapWrQp7e3s0bNgQe/fuLbpOEhEREVGpxjEpERERkWkVi+Tj6dOnsXr1ajRo0CDPetOnT8fq1auxbNkyXLlyBaNGjULPnj1x7ty5IuopEREREZVWHJMSERERmZ7Fk4/JyckYOHAg1q5dCw8Pjzzrbt68GR9++CG6dOmCKlWqYPTo0ejSpQsWLVpURL0lIiIiotKIY1IiIiIi87B48nHs2LHo2rUrgoOD862bnp4Oe3t7jTIHBwccO3bMXN0jIiIiohcAx6RERERE5mFtyeDbtm3DX3/9hdOnTxtUv2PHjvjiiy/Qtm1bVK1aFQcOHMDOnTuhVCr1viY9PR3p6enyz4mJiYXuNxERERGVHhyTEhEREZmPJIQQlgh89+5dNGvWDPv375fn1QkKCkKjRo2wZMkSna+JjY3F22+/jR9//BGSJKFq1aoIDg7G+vXrkZqaqvM1s2bNwuzZs7XKO3XqBBsbG5NtT14iIiLQokWLIollqZiMV7LjWSIm4zFecY/JeCU7niViFmW8zMxM7N27FwkJCXB1dS2SmKUVx6SMV1LiWSIm4zFecY/JeCU7niViMp7pGDUeFRaya9cuAUAoFAr5AUBIkiQUCoXIysrS+9rU1FRx7949oVKpxAcffCDq1Kmjt25aWppISEiQH3fv3hUAREJCgjk2S6eQkJAii2WpmIxXsuNZIibjMV5xj8l4JTueJWIWZbyEhIQiH8+UVhyTMl5JiWeJmIzHeMU9JuOV7HiWiMl4pmPMeNRit1136NABkZGRGmVDhw5FrVq1MGXKFCgUCr2vtbe3h4+PDzIzM7Fjxw707dtXb107OzvY2dmZrN9EREREVHpwTEpERERkXhZLPrq4uKBevXoaZU5OTvD09JTLBw8eDB8fH8ydOxcAcOrUKdy/fx+NGjXC/fv3MWvWLKhUKnzwwQdF3n8iIiIiKvk4JiUiIiIyL4suOJOfO3fuwMrqvwW509LSMH36dNy4cQPOzs7o0qULNm/eDHd3d8t1koiIiIhKNY5JiYiIiAquWCUfDx06lOfPgYGBuHLlStF1iIiIiIheOByTEhEREZmOVf5ViIiIiIiIiIiIiIzH5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZFJvk47x58yBJEiZNmpRnvSVLlqBmzZpwcHCAn58f3nnnHaSlpRVNJ4mIiIioVOOYlIiIiMi0rC3dAQA4ffo0Vq9ejQYNGuRZb8uWLZg6dSrWr1+Pl19+GVFRURgyZAgkScIXX3xRRL0lIiIiotKIY1IiIiIi07P4lY/JyckYOHAg1q5dCw8PjzzrnjhxAq1bt8aAAQMQEBCA1157DaGhoYiIiCii3hIRERFRacQxKREREZF5WDz5OHbsWHTt2hXBwcH51n355Zdx9uxZeWB348YN/PLLL+jSpYu5u0lEREREpRjHpERERETmYdHbrrdt24a//voLp0+fNqj+gAEDEBcXh1deeQVCCGRlZWHUqFH48MMP9b4mPT0d6enp8s+JiYmF7jcRERERlR4ckxIRERGZjySEEJYIfPfuXTRr1gz79++X59UJCgpCo0aNsGTJEp2vOXToEPr37485c+agZcuW+OeffzBx4kS8/fbbmDFjhs7XzJo1C7Nnz9Yq79SpE2xsbEy2PXmJiIhAixYtiiSWpWIyXsmOZ4mYjMd4xT0m45XseJaIWZTxMjMzsXfvXiQkJMDV1bVIYpZWHJMyXkmJZ4mYjMd4xT0m45XseJaIyXimY9R4VFjIrl27BAChUCjkBwAhSZJQKBQiKytL6zWvvPKKmDx5skbZ5s2bhYODg1AqlTrjpKWliYSEBPlx9+5dAUAkJCSYZbt0CQkJKbJYlorJeCU7niViMh7jFfeYjFey41kiZlHGS0hIKPLxTGnFMSnjlZR4lojJeIxX3GMyXsmOZ4mYjGc6xoxHLXbbdYcOHRAZGalRNnToUNSqVQtTpkyBQqHQek1KSgqsrDSnqVTXE3ou4LSzs4OdnZ2Jek1EREREpQnHpERERETmZbHko4uLC+rVq6dR5uTkBE9PT7l88ODB8PHxwdy5cwEAISEh+OKLL9C4cWP5FpcZM2YgJCRE58CQiIiIiCgvHJMSERERmZdFF5zJz507dzTOKk+fPh2SJGH69Om4f/8+vLy8EBISgs8++8yCvSQiIiKi0oxjUiIiIqKCK1bJx0OHDuX5s7W1NWbOnImZM2cWXaeIiIiI6IXCMSkRERGR6VjlX4WIiIiIiIiIiIjIeEw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmUWxST7OmzcPkiRh0qRJedaLj4/H2LFjUaFCBdjZ2aFGjRr45ZdfiqaTRERERFSqcUxKREREZFrWlu4AAJw+fRqrV69GgwYN8qyXkZGBV199Fd7e3vj+++/h4+OD27dvw93dvWg6SkRERESlFsekRERERKZn8eRjcnIyBg4ciLVr12LOnDl51l2/fj2ePn2KEydOwMbGBgAQEBBQBL0kIiIiotKMY1IiIiIi87D4bddjx45F165dERwcnG/dPXv2oFWrVhg7dizKlSuHevXq4X//+x+USqXe16SnpyMxMVHjQURERESUE8ekREREROZh0Ssft23bhr/++gunT582qP6NGzfwxx9/YODAgfjll1/wzz//YMyYMcjMzMTMmTN1vmbu3LmYPXu2Vnm/fv3kM9XmFhERgW7duhVJLEvFZLySHc8SMRmP8Yp7TMYr2fEsEbMo42VmZhZJnBcFx6SMVxLiWSIm4zFecY/JeCU7niViMp7pGDUeFRZy584d4e3tLS5cuCCXBQYGiokTJ+p9TfXq1YWfn5/IysqSyxYtWiTKly+v9zVpaWkiISFBfty9e1cAEAkJCSbZDkOEhIQUWSxLxWS8kh3PEjEZj/GKe0zGK9nxLBGzKOMlJCQU+XimtOKYlPFKSjxLxGQ8xivuMRmvZMezREzGMx1jxqMWu/Lx7NmziImJQZMmTeQypVKJI0eOYPny5UhPT4dCodB4TYUKFWBjY6NRXrt2bTx69AgZGRmwtbXVimNnZwc7OzvzbQgRERERlVgckxIRERGZl8WSjx06dEBkZKRG2dChQ1GrVi1MmTJFa5AHAK1bt8aWLVugUqlgZZU9XWVUVBQqVKigc5BHRERERJQXjkmJiIiIzMtiC864uLigXr16Gg8nJyd4enqiXr16AIDBgwdj2rRp8mtGjx6Np0+fYuLEiYiKisLPP/+M//3vfxg7dqylNoOIiIiISjCOSYmIiIjMy6ILzuTnzp078tlkAPDz88O+ffvwzjvvoEGDBvDx8cHEiRMxZcoUC/aSiIiIiEozjkmJiIiICq5YJR8PHTqU588A0KpVK5w8ebJoOkRERERELxyOSYmIiIhMx2K3XRMREREREREREVHpxuQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWRSb5OO8efMgSRImTZqkt87GjRshSZLGw97evug6SURERESlGsekRERERKZlbekOAMDp06exevVqNGjQIN+6rq6uuHbtmvyzJEnm7BoRERERvSA4JiUiIiIyPYtf+ZicnIyBAwdi7dq18PDwyLe+JEkoX768/ChXrlwR9JKIiIiISjOOSYmIiIjMw+LJx7Fjx6Jr164IDg42qH5ycjL8/f3h5+eH7t274/Lly3nWT09PR2JiosaDiIiIiCgnjkmJiIiIzEMSQghLBd+2bRs+++wznD59Gvb29ggKCkKjRo2wZMkSnfX//PNPXL9+HQ0aNEBCQgIWLlyII0eO4PLly/D19dX5mlmzZmH27Nla5Z06dYKNjY0pN0eviIgItGjRokhiWSom45XseJaIyXiMV9xjMl7JjmeJmEUZLzMzE3v37kVCQgJcXV2LJGZpxjEp45WEeJaIyXiMZ3TM48fQom7Noot3+Vrpjhd1s/QfM6X8c1Ga4xkzHrVY8vHu3bto1qwZ9u/fL8+rk99AL7fMzEzUrl0boaGh+PTTT3XWSU9PR3p6uvxzYmIi/Pz8inSw3q1bN+zZs6dIYlkqJuOV7HiWiMl4jFfcYzJeyY5niZhFGS8xMRFubm5MPpoAx6SMV1LiWSIm4zGe0THbtsKeL7RPtJgt3rszS3e8T5aX/mOmlH8uSnM8Y8ajFltw5uzZs4iJiUGTJk3kMqVSiSNHjmD58uVIT0+HQqHIsw0bGxs0btwY//zzj946dnZ2sLOzM1m/iYiIiKj04JiUiIiIyLwslnzs0KEDIiMjNcqGDh2KWrVqYcqUKfkO8oDsgWFkZCS6dOlirm4SERERUSnGMSkRERGReVks+eji4oJ69epplDk5OcHT01MuHzx4MHx8fDB37lwAwCeffIKXXnoJ1apVQ3x8PD7//HPcvn0bb731VpH3n4iIiIhKPo5JiYiIiMzLYslHQ9y5cwdWVv8tyP3s2TO8/fbbePToETw8PNC0aVOcOHECderUsWAviYiIiKg045iUiIiIqOCKVfLx0KFDef68ePFiLF68uOg6REREREQvHI5JiYiIiEzHKv8qRERERERERERERMZj8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsik3ycd68eZAkCZMmTTKo/rZt2yBJEnr06GHWfhERERHRi4NjUiIiIiLTsrZ0BwDg9OnTWL16NRo0aGBQ/Vu3bmHy5Mlo06aNmXtGRERERC8KjkmJiIqX1DQrrNrpixv3HVHFJwWj3rgHB3uVXB4Z7YzFWyph1Bv3ACDPuoaU59dGzngO9ipL7hqiEsXiycfk5GQMHDgQa9euxZw5c/Ktr1QqMXDgQMyePRtHjx5FfHy8+TtJRERERKUax6RERMVLapoVWr/VAheiXKBQCCiVEjb/UhG/rziD4LHNcCHKBQL2mLykJjb9VBGQgMjr+uvmV25IG+p4m3+piOPrIpiAJDKQxW+7Hjt2LLp27Yrg4GCD6n/yySfw9vbG8OHDDaqfnp6OxMREjQcRERERUU4ckxIRFS+rdvriQpQLVEJCZpYVVELChSgXDPu0rlwuhASVkHDxugsu5lM3v3JD2lDHuxDlglU7fS29i4hKDIte+bht2zb89ddfOH36tEH1jx07hq+//hrnz583OMbcuXMxe/ZsrfJ+/frBxsbG4HYKIyIiAt26dSuSWJaKyXglO54lYjKeaR07cQqvBHUtsnhXLp0p0niWiPnP1bOl+pgp7fEsEbMo42VmZhZJnBcFx6SMVxLiWSIm4zGe0TEvX0O3d2eapK3IaGcI2AOQ5DIBgT9OKyGg+Lc8AkA3CB2v166bX7khbajjCSzdnoaDZ5ILv6F5iLh8Dd3atjJrDI14UTf5vcZ4BjNmPGqx5OPdu3cxceJE7N+/H/b29vnWT0pKwqBBg7B27VqULVvW4DjTpk3Du+++K/+cmJgIPz8/bN++Ha6urgXqu7G6deuGPXv2FEksS8VkvJIdzxIxGc+0XgnqigVLw4ss3gcT+hRpPEvEnDe9f6k+Zkp7PEvELMp4iYmJcHNzK5JYpR3HpIxXUuJZIibjMZ7RMdu2wp4vtE+0FMTiLZUweUlNiBwJQgkC7ZvH4Mcj3v+WdwOwB9K/qcO86+Zfnn8b/8Wb0O8a3hlwxyTbqk+3d2eabH8aFO+T5fxeYzyDGTMetVjy8ezZs4iJiUGTJk3kMqVSiSNHjmD58uVIT0+HQqGQn4uOjsatW7cQEhIil6lU2fMrWFtb49q1a6hatapWHDs7O9jZ2ZlxS4iIiIiopOKYlIioeBr1xj1s/qWixryMjWokYf2Mywge6/DvHIwCEgQaVEuCyDVfY+66+ZUb0oY6XqMaSfICNUSUP4slHzt06IDIyEiNsqFDh6JWrVqYMmWKxiAPAGrVqqVVf/r06UhKSsKXX34JPz8/s/eZiIiIiEoXjkmJiIonB3sVjq+L0Ln6tLp86fY0TOh3Lc+VqvNrw5DVrnXF42IzRIazWPLRxcUF9erV0yhzcnKCp6enXD548GD4+Phg7ty5sLe316rv7u4OAFrlRERERESG4JiUiKj4crBX6by1WV1+8EyyxvN51TW03Jh4RGQYiy44k587d+7AysriC3ITERER0QuMY1IiItNJTbPSeXWhrnJA95WI6rqR0c5YvKWSQXVNHc/YNoheZMUq+Xjo0KE8f85t48aNZusLEREREb2YOCYlIjKP1DQrtH6rhcZci5t/qYjfV5xB8NhmGuWbfqoI5JqDMXddAXtMXlLToLqmjGdsG8fXRTABSS+0YpV8JCIiIiIiIqLSadVOX1yIcoFKSFBlZa8qfSHKBcM+ratVfvG6C4Ds1af11c1ej1oyqK4p4xnbxqqdvrxdm15ovH+EiIiIiIiIiMzuxn1HKBRCo0yhEDrLJSn7Yeq6lmqD6EXG5CMRERERERERmV0VnxQolZrZOaVS0lkuRPbD1HUt1QbRi4zJRyIiIiIiIiIyu1Fv3EPDGkmwkgRsrFWwkgQa1UjC+hmXtcobVk9Cg3zqSpIwuK4p4xnbhnohGqIXFed8JCIiIiIiIiKzc7BX4fi6CJ2rQesqB3SvHK2uu3R7Gib0u2ZQXVPHM7YNohcZk49EREREREREVCQc7FU6F1/RV55X3YNnkjWeN6ZdU8Qzpg2iFxmTj0RERERERERkUqlpVjqvADSmHNB9FaG6bmS0MxZvqWRQXVPHK2gbhpYTlSZMPhIRERERERGRyaSmWaH1Wy1wIcoFCoWAUilh8y8V8fuKMwge28yg8k0/VQQkIPK6/roC9pi8pKZBdU0ZrzBtGFJ+fF0EE5BUqjD5SEREREREREQms2qnLy5EuUAlJKiysleEvhDlgmGf1jW4/OJ1FwCAgP66gAQByaC6poxXmDYMKV+105e3blOpwtWuiYiIiIiIiMhkbtx3hEIhNMoUCmFUuSRlP0xdt7i3oS4nKk2YfCQiIovJTMtExOaz2Df3ACI2n0VmWqalu0REREREhVTFJwVKpWYWTqmUjCoXIvth6rrFvQ11OVFpwuQjERGZlKEJxcy0THwTtg0HFh3Gue8v4sCiw/gmbBsTkEREREQl3Kg37qFhjSRYSQI21ipYSQKNaiRh/YzLBpc3rJ6EBvnUlSRhcF1TxitMG4aUqxeuISotOOcjERHplZmWiXPhF/HsXjw8fN3RuE8D2Njb5Fn/m7BtiLkWC0khQSgFIn+6gsGb+mu97lz4RcRci4UQAiIr+xRxzLVYnAu/iBaDmpp1u4iIiIjIfBzsVTi+LkLnKs7GlAO6V45W1126PQ0T+l0zqK6p4xW0DUPLiUoTXvlIREQ6FeTKxJwJRVWWCkIIOaGY27N78ZAUmreZSAoJz+7Fm3pTiIiIiMiMUlOBxYuByGhnLN5SCalpTDUURmqaFRZvqcT9SaUGr3wkIiKd8royMaecV0c+Vl/xmPXfZDf6Eooevu4QSs1JcYRSwMPXXecVl8Yw9opNIiIiIiqY1FSgdWvgwgVACHtMXlITm36qCEhA5HUXKBQCSqWEzb9UxO8rziB4bDNciMq/3JA2BCwTrzBtGNOPnPGOr4vgFZFUYjH5SEREOqmvTMwrkZj7NmtVlvaASJWlQuKjJGSmZWokABv3aYDIn65o3KLtXcsL9ULqYNPgrYiJioUECQICF3+8DOFt2GDLmFu/iYiIiKhwVq3KTjyqVAAgQUDCxesuAAABCaqs7DtdLkS5YNindXEhygUqkX+5IW1YKl5h2jCmHznjrdrpi3cG3DHRu0ZUtIrNtbvz5s2DJEmYNGmS3jpr165FmzZt4OHhAQ8PDwQHByMiIqLoOklE9ALJ68pEtdy3Wetz/VC01i3bNvY2GLypPzq8F4jGvRugw3uBGLyxPy7sikTMtVhAAEIIQGRfcRl/P9Ggfhtz6zcRUW4ckxIRGefGDUCh0CyTpOxHTgqFwI37jlAohEHlxrRR1PEs1QZRSVUsko+nT5/G6tWr0aBB3rfVHTp0CKGhoTh48CD+/PNP+Pn54bXXXsP9+/eLqKdERC+OeiF14OTlBACQrLJHQN61vDRugdY3b6Obj6tWe7oSgDb2NmgxqCk6TuuAFoOawsbeBtcP39DZn+dxzw3qN+eSJKKC4piUiMh4VaoASqVmmRDZj5yUSglVfFKgVEoGlRvTRlHHs1QbRCWVxZOPycnJGDhwINauXQsPD48863777bcYM2YMGjVqhFq1amHdunVQqVQ4cOBAEfWWiOjFkJmWia0jv8fz2GRIVhKESsDF2xmhq3pr3Lqs6+pIqAAXbxdYWef6FSMBF364hD83RODP9RHYN/cAIjafRUp8KiI2n5V/FqrCzWVjyBWbRES5cUxKRFQwo0YBDRsCVlaAJAlYSQINqyehQY0kWEkCNtYqWEkCjWokYf2My2hoYLkhbVgqXmHaMKYfOeOpV9ImKoksPufj2LFj0bVrVwQHB2POnDlGvTYlJQWZmZkoU6aM3jrp6elIT0+Xf05MNOy2PSKiF9l/ty5DPvWaHPscl368ghaDmsr19M3bWD2wCu6ff6DRplAJxEU/wcElRwFArn9o2TEoM7IgKawglAJOZXXfUuLk6WRQ3/X1ydhFa4joxcIxKRFRwTg4AMePZ8/9uHRhGib0uyYnylbt9MWN+46o4pOCUW/cg4O9CsfXRRhcnl8bS7dbLl5B2zCmH7njEZVUkhC5L+gtOtu2bcNnn32G06dPw97eHkFBQWjUqBGWLFli0OvHjBmDffv24fLly7C3t9dZZ9asWZg9e7ZWeadOnWBjUzQLD0RERKBFixZFEstSMRmvZMezREzGM61jJ06hTr1mJmsv9nocEh4mIuevCEmS4FbBFV7Vy+LKpTNyPKFSIeFBIjJTs2DjYA23itm3XN/96z7Sn2cYHVsCoLBVICvjv/t37Jxs8UzcQ0X36nIMyUr/xfu6+pRXfV3+uXq2VB8zpT2eJWIWZbzMzEzs3bsXCQkJcHXVnuaAjMMxKeOVhHiWiMl4JTze8WNoUbdmkcUDgIjL14o0JuOZOF7UTX6vMZ7BjBmPWuzKx7t372LixInYv3+/3kFaXubNm4dt27bh0KFDeb5+2rRpePfdd+WfExMT4efnh+3btxfZYL1bt27Ys2dPkcSyVEzGK9nxLBGT8UzrlaCuWLA03GTtRWw+iwOLDkMgR/IREjoMCESLQU3xwYQ+WLA0HJlpmTgXfhHP7sXDw9cdjfs0kG/L/nN9BA5+edTo2FbWVmjYvR48/cvg2b14uJZzweW9V/HLtSWomdEt+0pGGy+Tr16de1t+d5pfqo+Z0h7PEjGLMl5iYiLc3NyKJFZpxzEp45WUeJaIyXglPF7bVtjzhfZJj8JITbPSefWeujwyejzaNVuW5xWA+bVhyFWExSFeQdswph+GxDPlFZHdPlnO7zXGM5gx41GLJR/Pnj2LmJgYNGnSRC5TKpU4cuQIli9fjvT0dChyL5n1r4ULF2LevHn4/fff850Q3M7ODnZ2dibtOxFRaWfIrcuZaZn4JmwbHl+NkeeFPPnNGbwVPhiO7g5IfJwEK2urPFfB1kUoVfD0LyPf3h2x+Sxio+IgALkt9eI1OW8BLwz1tuTc3isud5Gemgk7h6K5IomILINjUiIiw6SmWaH1Wy1wIcoFCoWAUilh8y8V8fuKMwge2wwXolwgYI/JS2pi008VAQmIvK6/bn7lhrRhqXiFacOYfuQXb/MvFXF8XQRvyaZiz2LJxw4dOiAyMlKjbOjQoahVqxamTJmid5C3YMECfPbZZ9i3bx+aNTPdLYZERPQfG3sbDN7UX+9VjUD2vJCPr8YAyJ7PEQCSY5LxdZ9vMOrHYboXozGAwtYa9ULqyD/Lq1dn/VfH1KtX/zfHpYDIyu5zSmI6fl11Fj3eeclkcYio+OGYlIjIMKt2+uJClAtUQoIqK3uF5gtRLhj2aV25HJAgIOHidRcAgID+uvmVG9KGpeIVpg1j+pFfvAtRLli10xfvDLhT+DeYyIwslnx0cXFBvXr1NMqcnJzg6ekplw8ePBg+Pj6YO3cuAGD+/Pn4+OOPsWXLFgQEBODRo0cAAGdnZzg7OxftBhARlXI29jZ5Xln47F68fMVjTkkxyTgXflHj6klYZa847eDhgAp1yuHG8Vt6281Kz9JY2KYoVq9WJzjViUcAgCTh0Y14k8UgouKJY1IiIsPcuO8IhULIiS8AUCiEznLp3//mXGFCX11TtFHU8YpbG0TFnXGz7xexO3fu4OHDh/LPK1euREZGBnr37o0KFSrIj4ULF1qwl0RELyYPX3etxCMASFYSntx6inPhF1GxfnlUC6yCRj3rI3hyEMbtfRsefu6wstb/6yf3VY2N+zSAd00vSMieD1KSJJOvXq3zKk0hUL6Ku8liEFHJxTEpERFQxScFSqWkUaZUSjrLhdBMnuVV1xRtFHW84tYGUXFnsSsfdTl06FCeP9+6davI+kJEVNrktThMQTTu0wAnvzmD5JhkjXKhEvjnyA2c3xEJSSFBpVTBwd0BLw3Ovi0xv9uxhVIg8VESMtMyYWNvI98CfmrAN2jcvAFcy7kAEvDH4iNwLe8CCCDxcVKhtknXHJeOrnboPMo0c0oSUcnCMSkRkbZRb9zD5l8qasw52KhGEtbPuIzgsQ7/zokoIEGgQbUkiFxzH+aum1+5IW1YKl5h2jCmH/nFa1QjSV6ghqg4K1bJRyIiMg9dC6pE/nQl3xWj9SUshUqFc+EXUbV1Zfz92zVkPM8AJAACcPZyQnJscvZZ239vY059loqDXx7FlX3XELq6NyJ/uiLPF6nLP4ej8U3YNrl/NvY2cPd1R/t32mpsh3oBGkkhASoYtE266JrjUlw5ycVmiIiIiP7lYK/C8XUROldbVpcv3Z6GCf2u5bnqc35tGLJydHGIV9A2jOmHIfG42AyVBEw+EhGVYurk4dUDUXh8LQbIkRDMb8VofQnL0NW9cffcAxw4dlgjAYh/L2ZUZiohKawgdKxyHXMtFpd+zE4Q7p7yM64fitYZWwjd/dO1MAwA+UrKwqyCnXuOyz+mF+uZSYiIiIjMJjXNikkuIjIZJh+JiEqpnMlDASEnB9XyWzFaV6Iv5losfp65DxnJ6RDQTACqpcanZV8FqYM6po29DXrM72p0/3QuDGPENhERERFR3lLTrND6rRYat/du/qUifl9xBsFjm+VZLmCPyUtqYtNPFYFctx8b2oa63JA2LBWvMG0Y04/84m3+pSKOr4tgYpiKPSYfiYhKqZzJQ13yWzFaV6JPUkiIv5+QvQyfnmkbJYUEe1d7pManatVRx1RfkVm+jjeUGVlIeJyEzOeZ+fbPkPkiTbkKNhEREdGLZtVOX1yIcoFKSPLKyheiXDDs07r5lgMSBCRcvO4CABAwvg11uSFtWCpeYdowph/5xbsQ5YJVO33xzoA7hXzXicyLyUciolJK31WCkpQ9OaOzlxOe3HqKiM1ndS7U4lreBSql5llUlVKFjJRMvQnN7ErIXlxGAk5uPIPU+FR5TkbvWl6oF1IH34Rty3POR0kCPKuUwfmdF3Fs7Uk4l3VClleW1sIwued8NPUq2EREREQvmhv3HaFQCDnBBQAKhTCqXPr3vzmHjOZso6jjFbc2iIo7Jh+JiEopfVcJVmxQHgkPk5AUk4wLuy/pXHwmMy0Tl3+5qn11owASHyXKP6rnglT/X50AbDagMWzsbdAstLHWgjXqKzLz4uztjLjoJ/LPaQlpuBl9G6kJaRoLw5hqtWsiIiIiylbFJwVKpeYcOkqlhCo+Kbgc7WxQua7z1OZso6jjFbc2iIo7zqZPRFRKNe7TAN41vSBJEqysrSBJEsrV9kbVVyojOSYZAKDKUkEIgcdXY7B7ys/YN/cAIjafxZkt5xB7PU5nuzkTmj4NKqDdpDZoN7ENmvRpiA7vBWLwxuwkpr6VstVXZOYl6XGyzvJto3fIC8N0nNYBrYa2QKthLdBxWge0GNSUiUciIiKiQhr1xj00rJEEK0nAxloFK0mgUY0krJ9xOd9ySRKwkgQaVk9CgwK2oS43pA1LxStMG8b0I794jWokyatjExVnvPKRiKiUyZn0q9OxJup0qonER9lXBtYLqYPVPTbofN31Q9GwsraCUArYu9tnn55S5h3Lq1pZtBraQiPmufCLqBdSB1veDkdMVGz24jMCuLjnMsI2h+Y7b2NekuOeayU164XUwaUfr2glOYmIiIjIeA72KhxfF6Fztev8ypduT8OEftfkhFhB2shZnl8bloxX0DaM6Ych8bjYDJUETD4SEZUiOVe4Vt8S7VW9LOp2qYVn9+Lx88x9SH2Wqvf16jkU86qTU3JsdjJw0+CtiImKhQQJQggcWXkcGeoFZP7NM8ZExWLHO3vg5uMKJy8n+epLY1hZSVjeaS1S41NhpbCCKkuFQ8uOQZmRBUlhpfMWciIiIiIyjoO9SuciJvmVHzyTrPF8QdrIrTjHK0gbxvTD0HhExR2Tj0REpUjOFa7VC83ERMUi5nqsnKwzhGQlQajyvzox5VkKtowIl+dwFP9mGjNyrVytduPELfn/ds62qNGhGlKfpSHlWQoeXY2BKjPv/qXkSIqqtyUrPSs79r8/x1yLxbnwi2gxqGm+/Qeg9/ZwIiIiohdVapqVzivs8iuPjHbG4i2V8rwC0Ji282vDkvEK2oYx/ShMPKLihMlHIqJSRN8K1xAwOPEIIDvx+O/t0nm5f/FhvnX0SU/OwM0/7+Ct8MH4eea+fBOPBpOAJ7efGlRV15Wi6isniYiIiF5EqWlWaP1WC1yIcoFCIaBUStj8S0X8vuIMgsc2y7NcwB6Tl9TEpp8qAhIQed34NtTlhrRhqXiFacOYfhQ03vF1EUxAUrHC5CMRUSlizHyKVtZWUClVOpOHtk62yHiekX8jBUw8qiXHJOPrPt8gqQC3YOsjVALXD99A8OTMfK9g1Hml6L9XThIRERG9iFbt9MWFKBeohARVVvYigReiXDDs07r5lgMSBCRcvO4CABAwvg11uSFtWCpeYdowph8Fjbdqpy9vz6ZihatdExGVIrlXuNZFkoDqQVXRuHcD+DaqqHPlaXtXO3N3VWbKxKNackwyzoVfRGZaJiI2n5VX8c5M07wdXNfK25JCwrN78SbvExEREVFJcOO+IxQKzTPMCoUwqlySsh9F1UZRxysubeRVl6g4YfKRiKgUsbG3weBN/dHhvUA07t0A7Sa20UhGSpIE71re6DG/KzpO64BaHWoAOu7ISHyYVPSdz4t2fjTv6lYSntx+im/CtuHAosM49/1FHFh0GN+EbdNIQOq6UlQoBTx83U3QaSIiIqKSp4pPCpRKzcGXUikZVS5E9qOo2ijqeMWljbzqEhUnTD4SEZUyNvY2aDGoKTpO64BWw1og7JtQORnZ4b1ADN6YvRJ0ZlomlFlK2LvZW7rL+TPy9m6hEkiOfS7fUq3KUkEIoXVLde4rRbOTs15o3KeBiTeAiIiIqGQY9cY9NKyRBCtJwMZaBStJoFGNJKyfcTnfckkSsJIEGlZPQoMCtqEuN6QNS8UrTBvG9KOg8dQL0RAVF5zzkYiolFMnI3PKvdBKaePi7Qznsk5ai+/kvqVafaUoV7smIiIiyuZgr8LxdRE6V1DOr3zp9jRM6Hctz1WYjWk7vzYsGa+gbRjTj8LEIypOik3ycd68eZg2bRomTpyIJUuW6Kxz+fJlfPzxxzh79ixu376NxYsXY9KkSUXaTyKi0kDXQiulhbOXE4aHD8alH68YdEu1ruQsEb24OCYlIspOQOpasCS/8oNnkjWeL0gbuRXneAVpw5h+FCYeUXFSLJKPp0+fxurVq9GgQd63uaWkpKBKlSro06cP3nnnnSLqHRFR6aNeaKWwiceyVT1h52yL+xcemqhnhSABEICjhyNs7K3RuE8DRP50Rb66U5WlgpOXE57cfoqIzWd5hSMRaeGYlIgoW2qalc6r6fIrj4x2xuItlfK8Is+YtvNrw5LxCtqGMf0oTDyi4sTiycfk5GQMHDgQa9euxZw5c/Ks27x5czRv3hwAMHXq1KLoHhFRqaRroRVjla3qiaFbBuKPxUeKR/Lx382JiYrFmS3n0GpYC/mW6ie3nuKfIzeQHJuMC7suQSgFIn+6gsGb+jMBSUQAOCYlIlJLTbNC67da4EKUCxQKAaVSwuZfKuL3FWcQPLZZnuUC9pi8pCY2/VQRkIDI68a3oS43pA1LxStMG8b0o6Dxjq+LYAKSihWLLzgzduxYdO3aFcHBwWZpPz09HYmJiRoPIqIXQWZaJiI2n8W+uQcQsfmsxirPORdaMXYlabWnt54hMy0LruVcTNRj0zn5zRlkpmXKt1R7BpRBcuxzCAG9i88Q0YuNY1IiomyrdvriQpQLVEJCZpYVVELChSgXDPu0br7lQkhQCQkXr7vgYgHbUJcb0oal4hWmDWP6UdB4q3b6WvowItIgCZF7Yfais23bNnz22Wc4ffo07O3tERQUhEaNGumdXyengIAATJo0Kd/5dWbNmoXZs2drlXfq1Ak2NkVztUtERARatGhRJLEsFZPxSnY8S8Qs7fGOnTiFOvWaFVm8K5fOaMQTKhXunnuAjOR0QJIAIWDrZAsXbxdkpWfBxsEaLuVckPgwCU9uPYWxvwricQ/u8IVTGUcAwPOnKSbdnrxiGsqrqifc/53fMfZ6HBIeJmpspyRJcKvgCq/qZXW+/p+rZ0v1MVra41kiZlHGy8zMxN69e5GQkABXV9ciiVmacUzKeCUhniViMl4Jj3f8GFrUrWn06yKjnXH7oT2E+O8MtSQJODsokZyqyKc8AoDubTS8Df2KS7zCtWFMPwoWz79CGupXTc6zns5oUTf5vcZ4BjNmPGqx267v3r2LiRMnYv/+/bC3tzdbnGnTpuHdd9+Vf05MTISfnx+2b99eZIP1bt26Yc+ePUUSy1IxGa9kx7NEzNIe75WgrliwNLzI4n0woY9GvIjNZ3Hg2GEICPl2ZDwHcBOwsraCUKrgnOQMl3LOeCAeGR3vNL5FcwwEnpqm/0bFNJCva0WELugNG3ub7P2x6N/98S8JEjoMCNS72My86f1L9TFa2uNZImZRxktMTISbm1uRxCrtOCZlvJISzxIxGa+Ex2vbCnu+0D7pkZ/FWyph8pKaEDluj5Eg0L55DH484p1PeTcAeyD9O+YqWBv/leffhuXiFbwNY/pRsHgT+l0r0CI03T5Zzu81xjOYMeNRi912ffbsWcTExKBJkyawtraGtbU1Dh8+jKVLl8La2hpKpdIkcezs7ODq6qrxICIq7dQLyuiSfdsxkBSTjAeRxiceS4p75x/gm7BtyEzL1LjN3MraCpIkwbuWFxr3yXtRCSIq/TgmJSLSNOqNe2hYIwlWkoCNtQpWkkCjGklYP+NyvuWSJGAlCTSsnoQGBWxDXW5IG5aKV5g2jOlHQeOpF6IhKi4sduVjhw4dEBkZqVE2dOhQ1KpVC1OmTIFCobBQz4iISj5TLChT4gnI8zq2GNRUXnzm2b14ePi6c7VrIgLAMSkRUW4O9iocXxehcwXl/MqXbk/DhH7X8lyF2Zi282vDkvEK2oYx/ShMPKLixGLJRxcXF9SrV0+jzMnJCZ6ennL54MGD4ePjg7lz5wIAMjIycOXKFfn/9+/fx/nz5+Hs7Ixq1aoV7QYQERVjjfs0QORPVxBzLRaSQoJKqfrv9usXiKSQ8OxePADIi88QEeXEMSkRvehS06x0JrSIiEzFYslHQ9y5cwdWVv/dGf7gwQM0btxY/nnhwoVYuHAhAgMDcejQIQv0kIio+MlMy8S58IuoWK88XMu7wNnLCe4+brj8y1XEXo8DJECoSl8m0sbRBpmpmRpJVqEU8Ph30RkiooLimJSISqvUNCu0fqsFLkS5QKEQUColbPqpIiABkdf/K9v8S0X8vuIMgsc206ibu1zAHpOX1CxUG8b0w1LxCtOGMf0oaLzj6yJ49SMVK8Uq+Zh7sJb754CAAKNXZCUiepFkpmXim7Bt8hWPQingXdMLwZOD0Cy0Mc6FX8ST209x/fANJMcYvwJecSZUAt41vBAbFffftnNeRyIqAI5JiehFsWqnLy5EuUAlJKiysucLv3jdBUD2IibqsgtRLhj2aV2turnLs5c7kQrVhjH9sFS8wrRhTD8KGm/VTt8CLThDZC7FKvlIRESFcy78ImKuxUIIAZGV/YdxznkP1bcdB0/OxJYR3+P+hQeW7K5JZaVloW6nWlCEKPKd11F9dSjnfyQiIqIX2Y37jlAohJy4AgDp3//mPMeiUAiddfWVF3UbJbHP5t5uouLEYqtdExGR6ela5TrnvIdAduLt1Ddn8PBy6VvpOv5BAloMaoqO0zqgxaCmehOP34Rtw4FFh3Hu+4s4sOiwvCo2ERER0Yukik8KlErNsaMQmsksAFAqJZ119ZUXdRslsc/m3m6i4oTJRyKiUsTD1x2qLM35XVRZKnnew8y0TGwatBVHVpzQqlcaJMc+11memZaJiM1nsW/uAeye8jMeX42BEAKqLBWEEIi5FoszW87JdSI2n81epIeIiIioFBv1xj00rJEEK0nAxloFK0mgYfUkNMhV1qhGEtbPuKxVN3e5JIlCt2FMPywVrzBtGNOPgsbjokFU3PC2ayKiEirnrcPx9+KRmZaJeiF1cGjZMWSlZ8n1rO2sUS+kDoB/b8uOirVUl80u5WkKMtMyNa54zD0Pps6kqxVw8pszSItPk+eLvOJyF+mpmbBz4O3YREREVDo52KtwfF2EztWuc5fpq5uzfOn2NEzod61QbRjTD0vGM/W+09VGYeIRFSdMPhIRlUC5E2pxWU/wTdg21OlUE8qMLI26yowsXPrxCloMavr/7d17fJTlnf//953JEXIABEQSBDkrGmBBbLRVf+IBYSOslYpao7Vui2I9tH5bWHEBK4Xd1SqubqCCFemmuFjsuhTBQwkWFAM0Qgw1iaJyEAxWSUIgQzJz/f7ARCaZJDOZueeeSV7PPvIouXLN9b4mpMOnn9xzXz5vv+6MDpYc0gu3rVbeyhlNDUh/98FszniMThw9IRk1zTle7darS3dq2gPfitj+AQAAIi0l2ev3cBJ/Y63NbRzftOOYz9c7skYw+3A6L5zfO39rhJIHRBOajwAQg5o31IxOHSyTkJIgyxUnc9rVfZYrrqnp2Pj2607LSJ9/UKnfz/yDRk4cpvNzz9MHb1a0Oj0uPk7GY5TcI1nuGrfvVZGWpcN7j9q/ZwAAAAedqIsL+Go6f3NPHy/5KFVPFJwd0hrB7MPJvI6uEcw+7MgDnEDzEQBiUOPBMqdfyXfqoBkj4/G9us94TFPTcez0bL3zfJFqv+jcN6E++N5nOvjeQRX+51/U4Pb4nZOUmqjzJo3UGYN6ydPgUeGSLb4TjFG/wT3s3ywAAIBDTtTF6ZI7J2hXeZpcLiOPx9LKdf0lSyqp+GZs1fr+euOZHbpy1nifuc3HjZL14JMjQlojmH04lRfKGsHsI9x5W5cX0YCEI2g+AkAM6pnVw2+TcdilQ1R/oqHp7djGY9R3ZB+NnZ7dNO/MEX2194tPIrzjyDJfH/vXWuNRktzHTuqMQb004dZxqq+r154NZT7ft27pSbp25rhIbRkAACDilq7N0q7yNHmNJW/DqZOUd1ekSZKMvhnbVZ6mO345qsXc5uOSJSMrpDWC2YdTeaGsEcw+wp23dG0Wb9GGI2g+AkAMGjs9WyXr9jQ1y6wGqe/IPhp/81iNvv4C/WneRh09WKUemRmasuAaJSQnNN0n8vMPKlusZ8VZsiyrS53wHBd/6u3ojQf39D+/n9L7pSm1T3edMbCXzJ5tHDYDAAA6tb0Hu8nlMk0NKkmyvv6jOe333C6X8Tu3tfFIrxGLe3bqeQNOiHN6AwCA4CUkJyhv5QxN/NllGntDtnoPOUN5z8+QJP3+xy/pw8179fePv9SHm/fq9z9+qanBVlnm/6Rr4zVdqvEonbpStHvvbsrPfU5vPFao99aWqKLwI31Wclhjp2crzsU/kQAAoHMbnHlcHo/lM2aMbzNLkjwey+/c1sYjvUYs7tmp5w04gf9nBQAxKiE5QRNuHadr5kxUj6weSkhO8DmIxtvglTFGlWVHVLxmd9N9Iru6xqs8+wzvrb++uEvHKo9JOtWAlU4dWFO8ZreTWwQAAIiImdcf0OjhNYqzjBLivYqzjEYPq1F2s7Exw2v03MOlLeY2H7csE/IawezDqbxQ1ghmH+HOazygBog03nYNAJ1IawfRfHXg6Nf3iewCVzeeOnfHr+69u6tHZrqsOEvJqcmtXgn690+/tG9/AAAAUSIl2auty4sCPkHZ39zTx596sU733lgW0hrB7MPJvHB/7/ytYUce4ASufASATqS1g2h6ZvXQ2OnZ6t67u0M7iyCjUw1InbqvoywppWeKLvnxRbIs6eCuQzq465A+/MveVpc4dqQ2MnsFAAAAgE6OKx8BoBNpPIjm8w8qZcVZMl6j7n266/zc85SQnKCM/hldo7FmpF6Deuqcbw1Uer80eeo9eue57ao/UX/qy95WLo38Wmrv7pI7EhsFAABwzom6OF1y5wTtKk+Ty2Xk8Vhaua6/ZEklFd+MrVrfX288s0NXzhrvM7f5uFGyHnxyREhrBLMPp/JCWSOYfYQ7b+vyIq5+hCNoPgJAJ5KQnKCblt2gFdNfUE3lMVlxlmqPHFPBj9Zo1KSROnrwqNNbjJgvP/lKN/9mutbc+0e/J3y35YxBvaQymzYGAAAQJZauzdKu8jR5jdV0MvLuijRJktE3Y7vK03THL0e1mNt8XLJkZIW0RjD7cCovlDWC2Ue485auzdIDN+8L9scECBnNRwDoZN7/vz1NVzc2XuFXWXak1fsbdmar7/qD/r637fs3Nl4h2ig+KV7n556nP9N8BAAAndzeg93kcpmmBpUkWV//8fRTlF0u43dua+ORXiMW9+zU8wacEPA9Hz/77DM796HFixfLsizdf//9bc5bs2aNRo4cqeTkZF1wwQVav369rfsCgFjDqdbfOPZFbZvfi8TURBnj+xZsz8kGvf9/e+zeGoAOsLselahJAXQtgzOPy+PxrZWM8W1mSZLHY/md29p4pNeIxT079bwBJwTcfBw1apQKCgps2cT27du1bNkyZWdntznv7bff1k033aQf/vCHKi4u1rRp0zRt2jS9//77tuwLAGKRv0NnuqrU3t1b/V6k9U3VuVeNUJzL959CyxWnrw4cjcDuAATLznpUoiYF0PXMvP6ARg+vUZxllBDvVZxlNHpYjbKbjY0ZXqPnHi5tMbf5uGWZkNcIZh9O5YWyRjD7CHde4+nYQKQF/LbrhQsX6sc//rFefvllLVu2TL169QrLBo4dO6ZbbrlFzz77rB599NE25y5ZskSTJk3S//t//0+S9Mtf/lKvv/66nn76aS1dujQs+wGAWNd46Exl2RFZLktej/fUCdBdTHxSvGbkf1f/c8/Lqiz/5i3nKT2S9a3bL9T4m8aqeM3uVk8H556PQPSxqx6VqEkBdE0pyV5tXV6kpWuztPdgNw3OPN7UoGo+1trc08eferFO995YFtIawezDybxwf+/8rWFHHuCEgJuPd999t6699lr98Ic/1Hnnnadnn31Wubm5IW9g1qxZmjJliq688sp2C7133nlHP/3pT33GrrnmGv3xj39s9TFut1tu9zdHllZXV4e0XwCIdgnJCcpbOUPFa3brqwNHld4vTaXrP9CRiiMt3pbR2fQe3EuWK049MjM0ZcE1SkiO19f36pYlS0ZGqX1SJUl/fuItpfdLU59hvXWk4gtZLkvGY9R3ZB+NnZ6tP7f9TxIAB9hVj0rUpAC6rpRkr99DSPyNtTa3cXzTjmM+X+/IGsHsw+m8cH7v/K1hRx7ghKAOnDnnnHP05z//WU8//bSuv/56nXvuuYqP913ir3/9a8DrrV69Wn/961+1ffv2gOYfPnxYZ555ps/YmWeeqcOHD7f6mEWLFmnBggUtxm+88UYlJCQEvNdQFBUV6brrrotIllOZ5MV2nhOZnT1vz/s79PN7p0dH3iHJ09ujyr8f0ckT9ZIxqj9RH9LFkEd1QNv13yGsYE9m0ueJGvAPmZJHev2OZ3TsSK1OVNf5TqqQ1j95qicpSYndE5U2KE0N7gYlpMTry97peujnr2jP+zv07cun2PJc/Pnwg52d+n8TvK6FV319fURyolG461GJmpS82MhzIpO8GM8rLdN1P53X7jyPV/r0UIpq61zqnuzRwLNOSGo55orzP/f08b0HP9T5Ny4OaY1g9uFkXkfXCGYfduS1+TNT/jGva+QFLJh6NOjTrj/99FOtXbtWPXv21NSpU1sUe4Hav3+/7rvvPr3++utKTk7u0BqBmDNnjs9vpqurqzVgwAC9+OKLSk9Pty33dNddd51eeeWViGQ5lUlebOc5kdnZ8759+RT9+1NrIpb383unt5pXX1evF25brd5fnvY27BBt13/rQt0S8jphz6yVMqvPUtWhGvWsPCbLOnW1Y3uPGTZwiKb92xQlJH/TAGjre2qHxXNndOr/TfC6Fl7V1dXKyMiISFY0Clc9KlGTkhc7eU5kkhfjeZfm6JVft/ylx+lO1MXpkjsn6G8fp8nlMvJ4LMW7aiRLPmOJCTV645kdunLW+DbHja7T3z5+JaQ1gtmHU3mhrBHMPsKdt3V5UZtvvb7ukad5XSMvYMHUo0FVas8++6x+9rOf6corr1Rpaan69OnToQ1K0s6dO1VZWal/+Id/aBrzeDx666239PTTT8vtdsvlcvk8pl+/fvr88899xj7//HP169ev1ZykpCQlJSV1eJ8AEKvq6+pVvGa3PnizXJ+XVUpGMg0duN7RJckT9u3Z5uDuQ033uGx+knVrKgo/0gu3rVbeyhk+DUgA0Sec9ahETQqga1u6Nku7ytPkNZa8DafeF7K7Ik2SZPTN2K7yNN3xy1Et5jYflywZWSGtEcw+nMoLZY1g9hHuvKVrs3grNhwR8GnXkyZN0i9+8Qs9/fTTWrt2bciF3sSJE1VSUqL33nuv6WP8+PG65ZZb9N5777Uo8iQpJydHb775ps/Y66+/rpycnJD2AgCxqr6uXkWrdupIxRcqWrVT9XX1TeMv3LZabz6+WQfe+6zDB85079Nd50wYGMYdR0AHn2tl2REVr9kd3r0ACKtw16MSNSmArm3vwW5yuXyLJ8s69XE6l8v4ndvaeKTXiMU9O/W8AScEfOWjx+PR7t27lZWVFZbgtLQ0nX/++T5j3bt31xlnnNE0npeXp8zMTC1atEiSdN999+myyy7T448/rilTpmj16tXasWOHfvOb34RlTwAQSxobjJVlR1Slar35+GaVrNujm5bdoD/N26jPP6gMOSM5NVEnj58Mw26jn+Wy9NWBo05vA0Abwl2PStSkALq2wZnH5fH4dq/8vXHE47E0OPO4Sj9KDWg80mvE4p6det6AEwK+8vH1118Pa6EXiH379unQoUNNn1988cUqKCjQb37zG40ePVovvfSS/vjHP7YoGAGgKyhes1uVZUdkjGn6qCyr1PLpL6ii8CO/j7EsS5ZlqfeQMxTX3h2nJf394690cNehdud1BsZj1DOrh9PbANAGJ+pRiZoUQOc18/oDGj28RnGWUUK8V3GW0ehhNcpuNjZmeI2ee7i0xdzm45ZlQl4jmH04lRfKGsHsI9x5M68/4PSPHLqojt+d2waFhYVtfi5J06dP1/TpkTtBFgCi1VcHjspyWb73cbQsHas81upjMsf018iJw+Sp92jTkr9EYJfRLy4+TsZj1HdkH42dnu30dgBEAWpSAF1FSrJXW5cXaenaLO092E2DM483Naiaj7U29/Txp16s0703loW0RjD7cDIv3N87f2vYkQc4IaqajwCAwPXM6iHj8X2vhfEaWXGWjLflezDOPLevblr6XSUkJ+jVX77e6ryuJLF7glJ6dNPofxqli24dz2EzAACgy0lJ9vo9hMTfWGtzG8c37Tjm8/WOrBHMPpzOC+f3zt8aduQBTqD5CAAxauz0bJWs26PKsiOyvv5Pap/uqvFz5eOwy4do2r9NUUJygo4fPaE9Gz7oso1Hy2U1NW1P1tbrZG2V3n62SP8wfQzNRwAA0OWcqIsL+Go6f3NPHy/5KFVPFJwd0hrB7MPJvI6uEcw+7MgDnEDzEQBiVEJygvJWzlDxmt0qL/g/Tbz5Mp2fe55+/+OXTjUkv26y9R3Zp6nxWF9XrxXTX5D7WNc4RCY+OV5n/0OWMvqnq0dmhmRJf12zW1UHq3zmNbgb9Kd5GzV9yTRnNgoAAOCAE3VxuuTOCdpVniaXy8jjsbRyXX/Jkkoqvhlbtb6/3nhmh66cNd5nbvNxo2Q9+OSIkNYIZh9O5YWyRjD7CHfe1uVFNCDhCJqPABDDEpITNOHWcXppe29NuHWcJDU1JL86cFQ9s3po7PTspiv6itfs9ntlZGeRkByvPsN668iHf1f9iXp5G7z6+J1P1XdEH135/y5XQnKC3v/T3/w+9mizhiQAAEBnt3RtlnaVp8lrLHkbTp16vbsiTZJk9M3YrvI03fHLUS3mNh+XLBlZIa0RzD6cygtljWD2Ee68pWuzeCs2HEHzEQA6mcaGpD9fHTjaqe/1WF/XoO5ndNeh9z+XJHkbTv1mt7LsiIrX7NaEW8epR2aGjlR80eKxPTIzIrpXAAAAp+092E0ul2lqUEmS9fUfzWnlostl/M5tbTzSa8Tinp163oAT4pzeAAAgMurr6lV9uKbTNh4lSXGnGqyyfIctl3VqXNKUBdcoPsn3d2/xSfGasuCayOwRAAAgSgzOPC6Px7dwMsa3mSVJHo/ld25r45FeIxb37NTzBpxA8xEAuoD6unq9cNtqVRR+5PRW7OWVvtp3tEWD1Xi86pnVQ5LUrUeK7nntRxp2+RD1GdZbwy4fonte+5G69UhxYMMAAADOmXn9AY0eXqM4yygh3qs4y2j0sBplNxsbM7xGzz1c2mJu83HLMiGvEcw+nMoLZY1g9hHuvMYDaoBI423XANAJ1dfV+9z30dPgUWXZEae3ZT9L8pz0tBhO7ZOqsdOzmz7v1iOFw2UAAECXl5Ls1dblRQGfoOxv7unjT71Yp3tvLAtpjWD24WReuL93/tawIw9wAs1HAOhkGq9yPP3E6+SM5FN/bujEb7mWJH9Pz5KGXjq46dCd1jRv2BovxRkAAABiU0qyl8NlEDVoPgJAJ1O8Zrcqy47IGNPUbDxx9ESL+yC2y5L/Zl6USkhJUIO7oeU9LY1U/XmN6uvqW21A+mvY7u/+WZuPaW2d1k4aBwAAiDYn6uJ0yZ0TtKs8TS6XkcdjaeW6/pIllVR8M7ZqfX+98cwOXTlrvM/c5uNGyXrwyREhrRHMPpzKC2WNYPbR0byty4u4yhFRheYjAHQyXx042uIqR8tlKTk9WXVH62Rk2m8qWtKoySNVsXmvTh47ae+Gw8CKs9Rn6Bn6rOSw369/9JePtfLW3+u2VTf5bQb6a9iePOZuOiE7EP4amCXr9ihv5QwakAAAICotXZulXeVp8hqr6WTk3RVpkiSjb8Z2lafpjl+OajG3+bhkycgKaY1g9uFUXihrBLOPjuYtXZvFVY+IKhw4AwCdTM+sHjKeZt1Fr/StvPGa+LPLlDWmf/tXQRpp3/YDuvtPd+rKBy9X1tgAHuMg4zWqOlTd5pzK8iMqXrPb79caG7Y+rG9OyA7E6Q1Mb4NXxhhVlrWeCQAA4LS9B7vJ5fKtGy3r1MfpXC7jd25r45FeIxb3bPfzBqIJzUcA6GTGTs9W3xF9ZFmW4uLjZFmW+o7so/E3j9WEW8fppqU36MwRfWVZVpsNxWNHjun9/9ujCbeO05kj+irOFd3/ZNR+cbztCZZabSb6bdga03RCdiD8NTAtV3ANTAAAgEganHlcHo9v/WLMqY/TeTyW37mtjUd6jVjcs93PG4gm0f3/JAEAQUtITlDeyhma+LPLNPaGbE382WXKe/6bt/6e/vXuZ3RvdR3LFacP3qzQxkVvqvpwjYwnxu8bY9RqM9FfwzYxNcnnhOz2+GtgGk9wDUwAAIBImnn9AY0eXqM4yygh3qs4y2j0sBplNxsbM7xGzz1c2mJu83HLMiGvEcw+nMoLZY1g9tHRvMZTsIFowT0fAaATSkhOaPNehY1f99R7tGnJX/zO8TZ4daD4oD4rOSRvg/fUVX3Nrw6MIX1H9Gm1mdjYkD39sJgv390a1L0ax07PVsm6PT73fOw7svVMAAAAp6Uke7V1eZGWrs3S3oPdNDjzeFPjqvlYa3NPH3/qxTrde2NZSGsEsw8n88L9vfO3Rih5QDSh+QgAXdj4m8eq9NUPVFl+pNU53oZTxUvTVX0xcgp2YvdEJSTHKz45XqOnna+L8sa32Uxs3rB9aXtwbw7w18DktGsAABDtUpK9fg8n8TfW2tzG8U07jvl8vSNrBLMPp/PC+b3zt0YoeUA0cbT5mJ+fr/z8fH3yySeSpFGjRulf//Vfde2117b6mCeffFL5+fnat2+fevfurRtuuEGLFi1ScnJyhHYNANHl+NETOvT+YT17w0r1yMzQlAXXqFuPlIAem5CcoNtW3aTiNbv190++1LEvapXap7sqy47oYMkh/03GGGg8JqUm6mTtSTW4G2S+NCp780NdlDfe9tz2rjgFEH2oRwGgpRN1cX6vpmtvvOSjVD1RcHabV+QFs3Z7aziZ19E1gtlHKHlANHG0+ZiVlaXFixdr2LBhMsZo5cqVmjp1qoqLizVq1KgW8wsKCjR79mw999xzuvjii1VeXq7bb79dlmXp17/+tQPPAACcdfzoCT199W90zF2rI3//QkcqvtDTV/9G97z2o6AakKc3zOrr6rU097nWm4xxUlxcnNQQhicQgrjEOHlPtiysUvumqvbIsVM34P76qs3GU6dpDAJojnoUAHydqIvTJXdO0K7yNLlcRh6PpVXr++uNZ3boylnj2xw3StaDT47QynX9JUsqqQh+jcbxQNZwKi+UNYLZR0fzti4vogGJqOJo8zE3N9fn84ULFyo/P1/btm3zW+y9/fbbuuSSS3TzzTdLkgYNGqSbbrpJ7777bkT2CwDR5k/zNqrB7dsFbHA36E/zNmr6kmkdWrN4zW4dO3Ks9QleqceADCVUJqj+RH2HMsLBX+Nx2OVDlNqnu3a9/H5T41Hi1GkAraMeBQBfS9dmaVd5mrzGkrfh1OnKu8rTdMcvR7U7LlkysrS7Ik2SZBT8Go3jgazhVF4oawSzj47mLV2bxVuxEVWi5rRrj8ej1atXq7a2Vjk5OX7nXHzxxdq5c6eKiookSXv37tX69es1efLkVtd1u92qrq72+QCAzuLowaqgxgPx1YGjslxt//PgrnGrvs65xqM/cfFxSu+XpjMG9uLUaQAdYlc9KlGTAogdew92k8vlW0u5XCaoccs69RGpNSKdFy1rtDUXiCaWMcbRu3eVlJQoJydHdXV1Sk1NVUFBQZvF21NPPaUHH3xQxhg1NDRo5syZys/Pb3X+/PnztWDBghbjkyZNUkJCZA4BKCoq0oQJEyKS5VQmebGd50QmeeFRvv0zfXX4mI7qgHooq2k89YzuOuv8fgGvY7xeVX1WrfoTDWpwN+jY32vbnF9lHVSGyezwvjui+XNszpLUe8gZyuifrv3Fn+nkMfepaswYJaYmacDY/rLiAv+d24cf7OyUPzNdJc+JzEjm1dfXa8OGDaqqqlJ6enpEMjszu+tRqWvWpOTFfiZ5MZ63dYsmjBoR9OP2HkxR6d7UFuP9znDr8N+T2hkvktT6cwxsjbZFS17H1whmHx3LGzX4mAZnnghork9a+ce8rpEXsGDqUcebjydPntS+fftUVVWll156ScuXL9fmzZt13nnntZhbWFioGTNm6NFHH9VFF12kDz/8UPfdd5/++Z//WQ8//LDf9d1ut9xud9Pn1dXVGjBgQESL9euuu06vvPJKRLKcyiQvtvOcyCQvPKq/PK7bs5Zo64mVulC3SJLik+KDuudjfV29XrhttSrLjshyWTIer1yJ8S3ezn2695Je1Bj3jWF5DoHarv9ueo6ni4uPk/EY9R3ZR3nPz1BCcoLq6+pDPnV68dwZnfJnpqvkOZEZybzq6mplZGTQfAwTu+tRqWvWpOTFfiZ5MZ53aY5e+XXLX3q0x989H8cMr9Hrfu452Hzc6DpZekXZQ2tkmt2LMNA1GscDWcOpvFDWCGYfHc3b0sF7Pl73yNO8rpEXsGDqUUfv+ShJiYmJGjp0qCRp3Lhx2r59u5YsWaJly5a1mPvwww/r1ltv1Z133ilJuuCCC1RbW6sf/ehHeuihh04dgNBMUlKSkpIC++0AAMSa9F7d9PyB+zR2+Evq06t30KddS6fu8VhZdkTGGJmGU7+P8pxsUO8hZ+iLj/7u9zGJ3RIlt98vRUyfYb11/uRzVf15TYsGI6dOAwiG3fWoRE0KIHakJHu1dXmR3xOU2xt/6sU63XtjWZunMAezdntrOJnX0TWC2UcoeUA0cbz52JzX6/X5rfDpjh8/3qKgc7lckiSHL+AEAMek9+qms87vp39+6rYOPf7UPR6tpsbjKZZOVNUpLj5O3gbf4sWV6JKnwfmCxrIsjb95bFPDsb6uXkWrdoZ0tSMASNSjAJCS7PV7YEl745t2HPP5ekfWaC6a8zqyRjD7CCUPiCaONh/nzJmja6+9VmeffbZqampUUFCgwsJCbdy4UZKUl5enzMxMLVq0SNKp0wh//etfa+zYsU1vc3n44YeVm5vbVPQBAILTM6tHywNajFHtF/7v++ip96juZJ2te0rJSFa3Xt3094+/bHVOZfkRvfzgOmVkpiv9zDSVbvhAR8q/+Pqt40Yl6/Yob+UMGpAA2kQ9CgAtnaiL83s1XXvjJR+l6omCs9u8Ii+Ytdtbw8m8jq4RzD5CyQOiiaPNx8rKSuXl5enQoUPKyMhQdna2Nm7cqKuuukqStG/fPp/fLM+dO1eWZWnu3Lk6ePCg+vTpo9zcXC1cuNCppwAAMW/s9GztfqVUleVH/E+wTl1laLxfNygjcGFPXbVb3/rBhSp99QNVlrWyL0kf/mVvU7OxUeMVnJVlR1S8ZjdvvwbQJupRAPDl756Pq9b31xt+7jnYfNwoWQ8+OUIr1/WXmt2LMNA1GscDWcOpvFDWCGYfHc3b2sF7PgJ2cbT5uGLFija/XlhY6PN5fHy85s2bp3nz5tm4KwDogqxWhl2WMrPPkvvYSR358IuINB4b93P0YJVu/s10/e4Hq/XF3tavgGx+1WbTEi5LXx04atMGAXQW1KMA4Gvp2iztKk+T11jyNpwqEneVp+mOX45qd1yyZGRpd0WaJMko+DUaxwNZw6m8UNYIZh8dzVu6Nou3YiOqRN09HwEAkdF4IvQHb5a3ftWjVxo5cbgk6Y3HCoPOcCW65DnpCfpxxmtUUfiRDu461Gbjsc01PEY9s3p06LEAAABd1d6D3eRymaZmliS5XCaocevrP55+K1w714h0XrSs0dZcIJr4P44PANCp1dfV64XbVuvNxzfrwHuftXpFY9+RfTR2erbGTs9WWt/UoDISkuPbbjx+/XbuviP6KLVP9xZfPnaktvWmaAD6DO8tT71HGxe9qaJVO1VfV9/htQAAALqKwZnH5fH4vi3G47GCGjfGtyFm9xqRzouWNdqaC0QTmo8A0AUVr9mtyrIjp05mbaXxOOzyIbpp6Q0qXrNbf37iLY39Xra6927ZJDxdQkq84pNPXVRf725ofaIl9RnaWxN/dplue+EmDbtsiKw432LKsqxW3w7enqHfGSwZqfCpLSp+abfefHyzXrhtNQ1IAACAdsy8/oBGD69RnGWUEO9VnGU0ZniNnnu4tN1xyzKKs4xGD6tRdgfXaBwPZA2n8kJZI5h9dDSv8SAaIFrwtmsA6IK+OnD01EEtDb6dR+vr9270HdlHUxZco9//+CVVlh1pOtSlz/De6jPkDG1/t+Wawy4foqzR/VX41JZTA23cH9KSpdFTz286DOaMQb1azDfNf437td6De2nAP2SpR1aGPA0ebf9dsU4cPSHLZUneU3sfMC5ThUu2yBjDATQAAABBSEn2auvyIr8nKLc3/tSLdbr3xrI2T2EOZu321nAyr6NrBLOPUPKAaELzEQC6oJ5ZPfwe1JI5pr9GThymsdOzfa6ObGzgHSk/ovjkhBaPs1yW0vulqfrzGr9Nzea69+muv3/6pYpW7Wx6W3fTiduWJCN1791NtV+0fMvIBbmjlHPHhKbPL7p1vIrX7NZXB46qZ1YPjZ2erT8/8VaLfXAADQAAQGBSkr0cWBIj+LtCLKD5CABd0Njp2SpZt8fnqsa+I/vopqXfVcLXzUW/V0dalupPtHzr8umHu/hrava/oJ+69eim418d15GP/q5jlcf03toSySuVrNujm5bdoK8P9JMlS8Yy8tb7/43t0YNVPp8nJCe0uJrRX3OVA2gAAAA67kRdnC65c4J2lafJ5TLyeCytWt9fbzyzQ1fOGq9d5WkyStaDT47QynX9JUsqqWh9bnvjgazhVF4oawSzj/byVq3vr63Li7jSEVGP5iMAdEEJyQnKWzmjxRWDCadd1ZjeL03eBt9CxnhN05WJp4tLiNORj/6uXgN7qPeQM3Tkwy98vl5f16Cqw9U6UvHNeGNzsLLsiP40b6OOlH8hGcl8vfiJqjq/ez/2RW27z6+15urY6dntPhYAAAAtLV2bpV3lafIaq+nE5V3labrjl6OaxiVLRpZ2V6RJkoxan9veeCBrOJUXyhrB7KO9vF3laVq6NosrHxH1aD4CQBfl74pBH629c9rPuLfeq10vl8iy5PdQmtObji2Ws4yOHqxq+TZpq+XpfZLUrWc3Fa3a2WrTVAqsuQoAAIDA7T3YTS6XaWp8SZLLZfyOf30bcZ9arrW54Vgj0nnRtgYQ7TjtGgDgV+P9G4NhjHTsSG2Lk6vb5D11lWWLt0n7a35a0kdbP9abj29u9xTrxubqNXMmasKt42g8AgAAhGBw5nF5PL41nsdj+R03pmUt19rccKwR6bxoWwOIdjQfAQB+9czqIXXg9jFWnHXq7dlByMzur74j+siyLMXFx516a7cfSd0TdazymIwx8jZ4ZYxpOsUaAAAA9pl5/QGNHl6jOMsoId6rOMtozPAaPfdwadO4ZRnFWUajh9Uou5257Y0HsoZTeaGsEcw+2ssbM7ym6cRrIJrxtmsAgF+N9038/IPKFl9r87pGY5TaN1W1R2qb7rfYvXc3HTvi/16NVpyl2r/X+rxN+vOySh3cfcjnakhLUtqZaaqv+8rnXpScYg0AAGC/lGSvti4v0tK1Wdp7sJsGZx7XzOsP+Iw/9WKd7r2xrKkh1tbcQMbbW8PJvI6uEcw+AsnjsBnEApqPAAC/Gu+b+Mdf/EkVhR/5fM1ISu3TvUVD0bKkviP76qalN+j9/9vTdL/F83PP03//8H9aHEQjnTrEJr1fms89KItW7dTB9w61mNtzQA/9fe+Xvo/nFGsAAICISEn2+j3cpHF8045jPl9va26g49Gc15E1gtlHoHlAtKP5CABoVUJygqb92xS9cNtqn5Ojk7olKqVHyqmTp7++ODGlR7K+dfuFGn/TWL+H2dz+3zfr3Rd26J0VRaqva/D5Wun6D5oeJ/k/rTqxe5KmLLhGv//xS5xiDQAA4IATdXF+r7xrHC/5KFVPFJzd5hWA7a0RyFWE0ZDX0TWC2UfzPCBW0XwEALTJ38nRH720vsUJ1nVVbrniXa0e7JKQnKBv/yhHrniXNi35i8/XjlR8oeI1u5salv4yv3x3q7r1SPEZTz8zTbKkPz/xFidaAwAA2OhEXZwuuXOCdpWnyeUy8ngsrVrfX288s0NXzhqvXeVpMkrWg0+O0Mp1/SVLKqlofW5744Gs4VReKGsEs4/T87YuL6IBiZhF8xEA0K7Tr2Ssr6vX0SVVLSfFKaB7L1Z/XqO4+Lh279vY/OrJl7bH+YzX19W3uCKzZN0e5a2cQQMSAAAgzJauzdKu8jR5jSVvw6k7gO8qT9MdvxzVNC5ZMrK0uyJNkmTU+tz2xgNZw6m8UNYIZh+n5y1dm8VbrhGzaD4CANpUX1fvcwWip94jT72nxbxA773YM6uHz0EywTz2dMVrdquy7IiMMTINp9ZrPPm6+Vu+AQAAEJq9B7vJ5TJNTTJJcrmM33Hr6z+a00q+1uaGY41I5zm1BhCr4pwMz8/PV3Z2ttLT05Wenq6cnBy9+uqrrc6//PLLZVlWi48pU6ZEcNcA0HU0Xl345uObVfzSbr35+GZte2GH39OuU3qmBHTvxbHTs9V3RB9ZlqW4+DhZltWh+zZ+deCoLJfvTjj5GkCwqEcBIDCDM4/L4/GtvTwey++4Mb7Ns7bmhmONSOc5tQYQqxxtPmZlZWnx4sXauXOnduzYoSuuuEJTp05VaWmp3/lr167VoUOHmj7ef/99uVwuTZ8+PcI7B4Cu4fSrC70NXhljdOLoCZnmEy3pW7eND+jtzo33c5z4s8s09oZsTfzZZcp7Pvi3SofrCkoAXRv1KAAEZub1BzR6eI3iLKOEeK/iLKMxw2v03MOlTeOWZRRnGY0eVqPsdua2Nx7IGk7lhbJGMPs4Pa/xIBogFjn6tuvc3FyfzxcuXKj8/Hxt27ZNo0aNajG/V69ePp+vXr1a3bp1o9gDAJs0Xl3Y+LZmSYpzxckllyyP5XPi9Pibxga8rr/TsIPl70RsTr4GECzqUQAITEqyV1uXF/k9sblx/KkX63TvjWVtnvrc3hqBnBwdDXkdXSOYfTTPA2JV1Nzz0ePxaM2aNaqtrVVOTk5Aj1mxYoVmzJih7t27tzrH7XbL7XY3fV5dXR3yXgGgq2j16sJzemji9Zc13Qey+SnTze8Taccp1P5OxOa0awChsKselahJAXQOKcleDj2JgMbv86Ydx/h+o1OwjGl+N4HIKikpUU5Ojurq6pSamqqCggJNnjy53ccVFRXpoosu0rvvvqsJEya0Om/+/PlasGBBi/FJkyYpISEy/we1qKiozT12hkzyYjvPiUzyYiPP6/Fqz5b9Ol7tPnX3a2PULSNJR12HdN4FF/p9jPF6tb/4M5089s1jElOTNGBsf1lxHb/bx573d+i888d3+PHB+vCDnZ3i77Cr5jmRGcm8+vp6bdiwQVVVVUpPT49IZmdmdz0qdc2alLzYzySPvEB4PNKWLdKp36kUSZqg9O4NkqTq2nhZlpExltK7N+ji7KN6e3ePgMfbW8PJvI6uEcj4t8d8JVecVFT+caf8mXEyk7zwCaYedfzKxxEjRui9995TVVWVXnrpJd12223avHmzzjvvvDYft2LFCl1wwQXtflPnzJmjn/70p02fV1dXa8CAAXrxxRcjVqxfd911euWVVyKS5VQmebGd50QmebGT5z5Rr1eX7tThvUfVb3APXTtznCZeO03//tQav/OLVu3Um1s2y8io8eaQVq2liRddFtJbrX9+7/RWM+2weO6MTvN32BXznMiMZF51dbUyMjIiktUV2F2PSl2zJiUv9jPJIy8QTzwhbdjQlCrpFdXUNl7jZDUdnnLsuFFSYqWOHe8b0HggaziVF8oagYxfOaFMD9y8T9c98nSn/JlxMpO88AmmHnW8+ZiYmKihQ4dKksaNG6ft27dryZIlWrZsWauPqa2t1erVq/XII4+0u35SUpKSkpLCtl8A6GqSUhI07YFvBTzf330iOYUaQDSzux6VqEkBdF5790oul+Q97ZaE1tcHOJ/+PkuXy2jvwW5yuYy8DVa748GsEek8O9doHAc6E0dPu/bH6/X63A/HnzVr1sjtduv73/9+hHYFAAgUp1ADiHXUowAQuMGDT731+nTG+DbgJMnjsTQ487g8Hiug8WDWiHSenWs0jgOdiaPNxzlz5uitt97SJ598opKSEs2ZM0eFhYW65ZZbJEl5eXmaM2dOi8etWLFC06ZN0xlnnBHpLQMA2jF2erb6jugjy7IUFx8ny7JCOoW6vq5eRat26kjFFypatVP1dfVh3jGArox6FABCM3OmNHq0FBcnWZZRnGU0eliNsofXKM4ySoj3Ks4yGjO8Rs89XKrRAY4HsoZTeaGsEch444nXQGfh6NuuKysrlZeXp0OHDikjI0PZ2dnauHGjrrrqKknSvn37FNfscIKysjJt2bJFr732mhNbBgC0I5ynUNfX1euF21arsuyIqlStNx/frJJ1e5S3cganWgMIC+pRAAhNSoq0dau0dKn01GN1uvfGsqbm2dK1Wdp7sJsGZx7XzOsPKCXZq63LiwIeb2+Np150Lq+jawQ6DnQmjjYfV6xY0ebXCwsLW4yNGDFCDh/QDQBoR0JyQkiHyzQqXrNblWVHZIxR438qy46oeM3usKwPANSjABC6lBTpgQekTS8f0wM372saP/3PTXOTvUGNtzV30w5n8zqyRqDjQGfi+IEzAAC0hsNrAAAAOpcTdXF+r/TzNy75v4qwcW7JR6l6ouDsgOaGO6+ja3CFI7oimo8AgKjF4TUAAACdx4m6OF1y5wTtKk+Ty2Xk8Vhatb6/3nhmh66cNd5nfOW6/pIllVS0PtcoWQ8+OSKgueHMC2WN08e3Li+iAYkugeYjACBqjZ2erZJ1e1RZdkTW1/8J5fAaAAAAOGfp2iztKk+T11jyNpw65XlXeZru+OWoFuO7K9IkSUatz5UsGVkBzQ1nXihrnD6+dG0Wb7lGl+DoadcAALSl8fCaiT+7TBlnpWvizy5T3vMcNgMAABCL9h7sJpfL910tLpfxO25Zpz7CPTfa1gC6ApqPAICo1nh4TZ9hvTXh1nE0HgEAAGLU4Mzj8nh8u3Mej+V33JhTH+GeG21rAF0BzUcAAAAAAGC7mdcf0OjhNYqzjBLivYqzjMYMr9FzD5e2GB89rEbZ7cy1LBPw3HDmhbLG6eONB9QAnR33fAQAAAAAALZLSfZq6/Iiv6c++xuX/J8c3Tj3qRfrdO+NZQHNDXdeR9fgtGt0RTQfAQAAAABARKQke/0estLaeFtzN+045vP1YNYNR15H1gC6IpqPAAAAAADAUSfq4gK+irBxbslHqXqi4OyA5gYyHkxesGsAXRnNRwAAAAAA4JgTdXG65M4J2lWeJpfLyOOxtHJdf8mSSiq+GVu1vr/eeGaHrpw1XrvK02SUrAefHBHQ3PbGg8kLdo2ty4toQKJLo/kIAAAAAAAcs3RtlnaVp8lrLHkbTp0KvbsiTZJk9M3YrvI03fHLUU1zJUtGVkBz2xsPJi/YNZauzeIt1+jSOO0aAAAAAAA4Zu/BbnK5jM+YZZ36OJ3LZUKe69QaQFdG8xEAAAAAADhmcOZxeTy+XTtjTn2czuOxQp7r1BpAV0bzEQAAAAAAOGbm9Qc0eniN4iyjhHiv4iyj0cNqlN1sbMzwGj33cGnTXMsyAc9tbzyYvGDXaDyIBuiquOcjAAAAAABwTEqyV1uXFwV8cnTj3KderNO9N5YFNDeQ8WDygl0D6MpoPgIAAAAAAEelJHv9Hsrib6xx7qYdx3y+HuqhLq3tobW8YPYMdGWOvu06Pz9f2dnZSk9PV3p6unJycvTqq6+2+ZijR49q1qxZOuuss5SUlKThw4dr/fr1EdoxAAAAOhPqUQDovE7UxemSOyfowSdHaNnaLD345AhdcucEfVkV73f8RB13pgPs4OiVj1lZWVq8eLGGDRsmY4xWrlypqVOnqri4WKNGjWox/+TJk7rqqqvUt29fvfTSS8rMzNSnn36qHj16RH7zAAAAiHnUowDQeS1dm6Vd5WnyGkvehlOHw+wqT9Mdvxzld3zp2iyuWgRs4GjzMTc31+fzhQsXKj8/X9u2bfNb7D333HP68ssv9fbbbyshIUGSNGjQoEhsFQAAAJ0Q9SgAdF57D3aTy2WaGoyS5HKZNscBhF/UXFPs8Xi0evVq1dbWKicnx++cV155RTk5OZo1a5bOPPNMnX/++frVr34lj8fT6rput1vV1dU+HwAAAEBzdtWjEjUpADhhcOZxeTyWz5jHY7U5DiD8LGOMcXIDJSUlysnJUV1dnVJTU1VQUKDJkyf7nTty5Eh98sknuuWWW3T33Xfrww8/1N133617771X8+bN8/uY+fPna8GCBS3GJ02a1PTbarsVFRVpwoQJEclyKpO82M5zIpM88qI9k7zYznMiM5J59fX12rBhg6qqqpSenh6RzM7M7npU6po1KXmxn0keedGe2V6exyNt2SJVV0uWJRkjZWRIOTnS22+3HL/kEsnl6nheuHX2PCcyyQufoOpR4zC3220qKirMjh07zOzZs03v3r1NaWmp37nDhg0zAwYMMA0NDU1jjz/+uOnXr1+r69fV1Zmqqqqmj/379xtJpqqqKuzPpTW5ubkRy3Iqk7zYznMikzzyoj2TvNjOcyIzknlVVVURr2c6M7vrUWO6Zk1KXuxnkkdetGcGknf8uDG//rUx99xz6r+PH297PNS8cOrseU5kkhc+wdSjjt7zUZISExM1dOhQSdK4ceO0fft2LVmyRMuWLWsx96yzzlJCQoJcp/0q4txzz9Xhw4d18uRJJSYmtnhMUlKSkpKS7HsCAAAAiGl216MSNSkAOCUlRXrggcDHAYRf1NzzsZHX65Xb7fb7tUsuuUQffvihvF5v01h5ebnOOuusVgs9AAAAIBjUowAAAOHjaPNxzpw5euutt/TJJ5+opKREc+bMUWFhoW655RZJUl5enubMmdM0/6677tKXX36p++67T+Xl5frTn/6kX/3qV5o1a5ZTTwEAAAAxjHoUAADAXo6+7bqyslJ5eXk6dOiQMjIylJ2drY0bN+qqq66SJO3bt09xcd/0RwcMGKCNGzfqgQceUHZ2tjIzM3XffffpF7/4hVNPAQAAADGMehQAAMBejjYfV6xY0ebXCwsLW4zl5ORo27ZtNu0IAAAAXQn1KAAAgL2i7p6PAAAAAAAAADoHmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABbONp8zM/PV3Z2ttLT05Wenq6cnBy9+uqrrc5//vnnZVmWz0dycnIEdwwAAIDOhHoUAADAXvFOhmdlZWnx4sUaNmyYjDFauXKlpk6dquLiYo0aNcrvY9LT01VWVtb0uWVZkdouAAAAOhnqUQAAAHs52nzMzc31+XzhwoXKz8/Xtm3bWi32LMtSv379IrE9AAAAdHLUowAAAPaKmns+ejwerV69WrW1tcrJyWl13rFjxzRw4EANGDBAU6dOVWlpaZvrut1uVVdX+3wAAAAAzdlVj0rUpAAAoOuyjDHGyQ2UlJQoJydHdXV1Sk1NVUFBgSZPnux37jvvvKOKigplZ2erqqpKjz32mN566y2VlpYqKyvL72Pmz5+vBQsWtBifNGmSEhISwvpcWlNUVKQJEyZEJMupTPJiO8+JTPLIi/ZM8mI7z4nMSObV19drw4YNqqqqUnp6ekQyOzO761Gpa9ak5MV+JnnkRXsmebGd50QmeeETVD1qHOZ2u01FRYXZsWOHmT17tundu7cpLS0N6LEnT540Q4YMMXPnzm11Tl1dnamqqmr62L9/v5FkqqqqwvUU2pWbmxuxLKcyyYvtPCcyySMv2jPJi+08JzIjmVdVVRXxeqYzs7seNaZr1qTkxX4meeRFeyZ5sZ3nRCZ54RNMPeroPR8lKTExUUOHDpUkjRs3Ttu3b9eSJUu0bNmydh+bkJCgsWPH6sMPP2x1TlJSkpKSksK2XwAAAHQudtejEjUpAADouqLmno+NvF6v3G53QHM9Ho9KSkp01lln2bwrAAAAdBXUowAAAOHj6JWPc+bM0bXXXquzzz5bNTU1KigoUGFhoTZu3ChJysvLU2ZmphYtWiRJeuSRR/Stb31LQ4cO1dGjR/Uf//Ef+vTTT3XnnXc6+TQAAAAQo6hHAQAA7OVo87GyslJ5eXk6dOiQMjIylJ2drY0bN+qqq66SJO3bt09xcd9cnPnVV1/pn//5n3X48GH17NlT48aN09tvv63zzjvPqacAAACAGEY9CgAAYC9Hm48rVqxo8+uFhYU+nz/xxBN64oknbNwRAAAAuhLqUQAAAHtF3T0fAQAAAAAAAHQONB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2cLT5mJ+fr+zsbKWnpys9PV05OTl69dVXW52/du1ajR8/Xj169FD37t01ZswYrVq1KoI7BgAAQGdCPQoAAGCveCfDs7KytHjxYg0bNkzGGK1cuVJTp05VcXGxRo0a1WJ+r1699NBDD2nkyJFKTEzUunXr9IMf/EB9+/bVNddc48AzAAAAQCyjHgUAALCXo83H3Nxcn88XLlyo/Px8bdu2zW+xd/nll/t8ft9992nlypXasmULxR4AAACCRj0KAABgr6i556PH49Hq1atVW1urnJycducbY/Tmm2+qrKxMl156aavz3G63qqurfT4AAACA5uyqRyVqUgAA0HVZxhjj5AZKSkqUk5Ojuro6paamqqCgQJMnT251flVVlTIzM+V2u+VyufRf//VfuuOOO1qdP3/+fC1YsKDF+KRJk5SQkBCW59CeoqIiTZgwISJZTmWSF9t5TmSSR160Z5IX23lOZEYyr76+Xhs2bFBVVZXS09MjktmZ2V2PSl2zJiUv9jPJIy/aM8mL7TwnMskLn6DqUeMwt9ttKioqzI4dO8zs2bNN7969TWlpaavzPR6PqaioMMXFxeaxxx4zGRkZZtOmTa3Or6urM1VVVU0f+/fvN5JMVVWVDc/Gv9zc3IhlOZVJXmznOZFJHnnRnklebOc5kRnJvKqqqojXM52Z3fWoMV2zJiUv9jPJIy/aM8mL7TwnMskLn2DqUUfv+ShJiYmJGjp0qCRp3Lhx2r59u5YsWaJly5b5nR8XF9c0f8yYMfrb3/6mRYsWtbj/TqOkpCQlJSXZsncAAADEPrvrUYmaFAAAdF1Rc8/HRl6vV26327b5AAAAQFuoRwEAAMLH0Ssf58yZo2uvvVZnn322ampqVFBQoMLCQm3cuFGSlJeXp8zMTC1atEiStGjRIo0fP15DhgyR2+3W+vXrtWrVKuXn5zv5NAAAABCjqEcBAADs5WjzsbKyUnl5eTp06JAyMjKUnZ2tjRs36qqrrpIk7du3T3Fx31ycWVtbq7vvvlsHDhxQSkqKRo4cqd/97ne68cYbnXoKAAAAiGHUowAAAPZytPm4YsWKNr9eWFjo8/mjjz6qRx991MYdAQAAoCuhHgUAALBX1N3zEQAAAAAAAEDnQPMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC0ebj/n5+crOzlZ6errS09OVk5OjV199tdX5zz77rL7zne+oZ8+e6tmzp6688koVFRVFcMcAAADoTKhHAQAA7OVo8zErK0uLFy/Wzp07tWPHDl1xxRWaOnWqSktL/c4vLCzUTTfdpE2bNumdd97RgAEDdPXVV+vgwYMR3jkAAAA6A+pRAAAAe8U7GZ6bm+vz+cKFC5Wfn69t27Zp1KhRLeb/93//t8/ny5cv1x/+8Ae9+eabysvLs3WvAAAA6HyoRwEAAOzlaPPxdB6PR2vWrFFtba1ycnICeszx48dVX1+vXr16tTrH7XbL7XY3fV5dXR3yXgEAAND52FWPStSkAACg67KMMcbJDZSUlCgnJ0d1dXVKTU1VQUGBJk+eHNBj7777bm3cuFGlpaVKTk72O2f+/PlasGBBi/FJkyYpISEhpL0HqqioSBMmTIhIllOZ5MV2nhOZ5JEX7ZnkxXaeE5mRzKuvr9eGDRtUVVWl9PT0iGR2ZnbXo1LXrEnJi/1M8siL9kzyYjvPiUzywieoetQ4zO12m4qKCrNjxw4ze/Zs07t3b1NaWtru4xYtWmR69uxpdu3a1ea8uro6U1VV1fSxf/9+I8lUVVWF6ym0Kzc3N2JZTmWSF9t5TmSSR160Z5IX23lOZEYyr6qqKuL1TGdmdz1qTNesScmL/UzyyIv2TPJiO8+JTPLCJ5h61PG3XScmJmro0KGSpHHjxmn79u1asmSJli1b1upjHnvsMS1evFhvvPGGsrOz21w/KSlJSUlJYd0zAAAAOg+761GJmhQAAHRdjjcfm/N6vT73w2nu3//937Vw4UJt3LhR48ePj+DOAAAA0BVQjwIAAISPo83HOXPm6Nprr9XZZ5+tmpoaFRQUqLCwUBs3bpQk5eXlKTMzU4sWLZIk/du//Zv+9V//VQUFBRo0aJAOHz4sSUpNTVVqaqpjzwMAAACxiXoUAADAXo42HysrK5WXl6dDhw4pIyND2dnZ2rhxo6666ipJ0r59+xQXF9c0Pz8/XydPntQNN9zgs868efM0f/78SG4dAAAAnQD1KAAAgL0cbT6uWLGiza8XFhb6fP7JJ5/YtxkAAAB0OdSjAAAA9oprfwoAAAAAAAAABI/mIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBaONh/z8/OVnZ2t9PR0paenKycnR6+++mqr80tLS/Xd735XgwYNkmVZevLJJyO3WQAAAHQ61KMAAAD2crT5mJWVpcWLF2vnzp3asWOHrrjiCk2dOlWlpaV+5x8/flyDBw/W4sWL1a9fvwjvFgAAAJ0N9SgAAIC94p0Mz83N9fl84cKFys/P17Zt2zRq1KgW8y+88EJdeOGFkqTZs2dHZI8AAADovKhHAQAA7OVo8/F0Ho9Ha9asUW1trXJycsK2rtvtltvtbvq8uro6bGsDAACg87CrHpWoSQEAQNdlGWOMkxsoKSlRTk6O6urqlJqaqoKCAk2ePLndxw0aNEj333+/7r///jbnzZ8/XwsWLGgxPmnSJCUkJHR020EpKirShAkTIpLlVCZ5sZ3nRCZ55EV7JnmxnedEZiTz6uvrtWHDBlVVVSk9PT0imZ2Z3fWo1DVrUvJiP5M88qI9k7zYznMik7zwCaoeNQ5zu92moqLC7Nixw8yePdv07t3blJaWtvu4gQMHmieeeKLdeXV1daaqqqrpY//+/UaSqaqqCsPuA5ObmxuxLKcyyYvtPCcyySMv2jPJi+08JzIjmVdVVRXxeqYzs7seNaZr1qTkxX4meeRFeyZ5sZ3nRCZ54RNMPer4264TExM1dOhQSdK4ceO0fft2LVmyRMuWLQvL+klJSUpKSgrLWgAAAOh87K5HJWpSAADQdTl62rU/Xq/X5344AAAAQCRRjwIAAISPo1c+zpkzR9dee63OPvts1dTUqKCgQIWFhdq4caMkKS8vT5mZmVq0aJEk6eTJk9qzZ0/Tnw8ePKj33ntPqampTb+tBgAAAAJFPQoAAGAvR5uPlZWVysvL06FDh5SRkaHs7Gxt3LhRV111lSRp3759iov75uLMzz77TGPHjm36/LHHHtNjjz2myy67TIWFhZHePgAAAGIc9SgAAIC9HG0+rlixos2vNy/gBg0aJOPs4dwAAADoRKhHAQAA7BV193wEAAAAAAAA0DnQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANjC0ebjokWLdOGFFyotLU19+/bVtGnTVFZW1uZj6uvr9cgjj2jIkCFKTk7W6NGjtWHDhgjtGAAAAJ0J9SgAAIC9HG0+bt68WbNmzdK2bdv0+uuvq76+XldffbVqa2tbfczcuXO1bNky/ed//qf27NmjmTNn6p/+6Z9UXFwcwZ0DAACgM6AeBQAAsFe8k+HNf0P8/PPPq2/fvtq5c6cuvfRSv49ZtWqVHnroIU2ePFmSdNddd+mNN97Q448/rt/97ne27xkAAACdB/UoAACAvRxtPjZXVVUlSerVq1erc9xut5KTk33GUlJStGXLllbnu93ups+rq6vDsFMAAAB0RnbUo42PoSYFAABdkWWMMU5vQpK8Xq+uu+46HT16tM3C7eabb9auXbv0xz/+UUOGDNGbb76pqVOnyuPx+BR0jebPn68FCxa0GJ80aZISEhLC+hxaU1RUpAkTJkQky6lM8mI7z4lM8siL9kzyYjvPicxI5tXX12vDhg2qqqpSenp6RDK7ArvqUalr1qTkxX4meeRFeyZ5sZ3nRCZ54RNUPWqixMyZM83AgQPN/v3725xXWVlppk6dauLi4ozL5TLDhw83d999t0lOTvY7v66uzlRVVTV97N+/30gyVVVVdjwNv3JzcyOW5VQmebGd50QmeeRFeyZ5sZ3nRGYk86qqqiJez3QFdtWjxnTNmpS82M8kj7xozyQvtvOcyCQvfIKpRx09cKbRPffco3Xr1mnTpk3Kyspqc26fPn30xz/+UbW1tfr000/1wQcfKDU1VYMHD/Y7PykpSenp6T4fAAAAwOnsrEclalIAANB1Odp8NMbonnvu0csvv6w///nPOueccwJ+bHJysjIzM9XQ0KA//OEPmjp1qo07BQAAQGdEPQoAAGAvRw+cmTVrlgoKCvS///u/SktL0+HDhyVJGRkZSklJkSTl5eUpMzNTixYtkiS9++67OnjwoMaMGaODBw9q/vz58nq9+vnPf+7Y8wAAAEBsoh4FAACwl6PNx/z8fEnS5Zdf7jP+29/+Vrfffrskad++fYqL++YCzbq6Os2dO1d79+5VamqqJk+erFWrVqlHjx4R2jUAAAA6C+pRAAAAeznafDQBHLRdWFjo8/lll12mPXv22LQjAAAAdCXUowAAAPaKigNnAAAAAAAAAHQ+NB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2cLT5uGjRIl144YVKS0tT3759NW3aNJWVlbX7uCeffFIjRoxQSkqKBgwYoAceeEB1dXUR2DEAAAA6E+pRAAAAeznafNy8ebNmzZqlbdu26fXXX1d9fb2uvvpq1dbWtvqYgoICzZ49W/PmzdPf/vY3rVixQi+++KL+5V/+JYI7BwAAQGdAPQoAAGCveCfDN2zY4PP5888/r759+2rnzp269NJL/T7m7bff1iWXXKKbb75ZkjRo0CDddNNNevfdd23fLwAAADoX6lEAAAB7RdU9H6uqqiRJvXr1anXOxRdfrJ07d6qoqEiStHfvXq1fv16TJ0/2O9/tdqu6utrnAwAAAPDHjnpUoiYFAABdl2WMMU5vQpK8Xq+uu+46HT16VFu2bGlz7lNPPaUHH3xQxhg1NDRo5syZys/P9zt3/vz5WrBgQYvxSZMmKSEhISx7b09RUZEmTJgQkSynMsmL7TwnMskjL9ozyYvtPCcyI5lXX1+vDRs2qKqqSunp6RHJ7ArsqkelrlmTkhf7meSRF+2Z5MV2nhOZ5IVPUPWoiRIzZ840AwcONPv3729z3qZNm8yZZ55pnn32WbN7926zdu1aM2DAAPPII4/4nV9XV2eqqqqaPvbv328kmaqqKjuehl+5ubkRy3Iqk7zYznMikzzyoj2TvNjOcyIzknlVVVURr2e6ArvqUWO6Zk1KXuxnkkdetGeSF9t5TmSSFz7B1KOO3vOx0T333KN169bprbfeUlZWVptzH374Yd1666268847JUkXXHCBamtr9aMf/UgPPfSQ4uJ830melJSkpKQk2/YOAACA2GdnPSpRkwIAgK7L0eajMUY/+clP9PLLL6uwsFDnnHNOu485fvx4i4LO5XI1rQcAAAAEinoUAADAXo42H2fNmqWCggL97//+r9LS0nT48GFJUkZGhlJSUiRJeXl5yszM1KJFiyRJubm5+vWvf62xY8fqoosu0ocffqiHH35Yubm5TUUfAAAAEAjqUQAAAHs52nxsvCn35Zdf7jP+29/+Vrfffrskad++fT6/WZ47d64sy9LcuXN18OBB9enTR7m5uVq4cGGktg0AAIBOgnoUAADAXo6/7bo9hYWFPp/Hx8dr3rx5mjdvnk27AgAAQFdBPQoAAGCvlnfDBgAAAAAAAIAwoPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwhaPNx0WLFunCCy9UWlqa+vbtq2nTpqmsrKzNx1x++eWyLKvFx5QpUyK0awAAAHQW1KMAAAD2crT5uHnzZs2aNUvbtm3T66+/rvr6el199dWqra1t9TFr167VoUOHmj7ef/99uVwuTZ8+PYI7BwAAQGdAPQoAAGCveCfDN2zY4PP5888/r759+2rnzp269NJL/T6mV69ePp+vXr1a3bp1o9gDAABA0KhHAQAA7OVo87G5qqoqSS0LurasWLFCM2bMUPfu3f1+3e12y+12t8iorq4OYafBqa+vj2ieE5nkxXaeE5nkkRftmeTFdp4TmZHMa8wxxkQkryuxox6VumZNSl7sZ5JHXrRnkhfbeU5kkhc+wdSjlomSqtXr9eq6667T0aNHtWXLloAeU1RUpIsuukjvvvuuJkyY4HfO/PnztWDBgnBuFQAAICrs379fWVlZTm+j07CrHpWoSQEAQOcUSD0aNc3Hu+66S6+++qq2bNkScBH94x//WO+88452797d6pzmv2U+evSoBg4cqH379ikjIyPkfbenurpaAwYM0P79+5Wenm57nhOZ5MV2nhOZ5JEX7ZnkxXaeE5mRzjPGqKamRv3791dcnKO38O5U7KpHpa5Xk5IX+5nkkRftmeTFdp4TmeSFVzD1aFS87fqee+7RunXr9NZbbwVc6NXW1mr16tV65JFH2pyXlJSkpKSkFuMZGRkR+x+UJKWnp0c0z4lM8mI7z4lM8siL9kzyYjvPicxI5kWiYdWV2FmPSl23JiUv9jPJIy/aM8mL7TwnMskLn0DrUUebj8YY/eQnP9HLL7+swsJCnXPOOQE/ds2aNXK73fr+979v4w4BAADQmVGPAgAA2MvR9+nMmjVLv/vd71RQUKC0tDQdPnxYhw8f1okTJ5rm5OXlac6cOS0eu2LFCk2bNk1nnHFGJLcMAACAToR6FAAAwF6OXvmYn58vSbr88st9xn/729/q9ttvlyTt27evxXvHy8rKtGXLFr322mtBZyYlJWnevHl+3/Zih0jnOZFJXmznOZFJHnnRnklebOc5kenEc0R4OFGPSp3/Z5S82M8kj7xozyQvtvOcyCTPOVFz4AwAAAAAAACAzoXjEQEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGzR6ZqPb731lnJzc9W/f39ZlqU//vGPbc6//fbbZVlWi49Ro0bZkidJzzzzjM4991ylpKRoxIgReuGFFwLKkqRFixbpwgsvVFpamvr27atp06aprKyszceUlpbqu9/9rgYNGiTLsvTkk0/amrd27VqNHz9ePXr0UPfu3TVmzBitWrXKtrzTrV69WpZladq0abbmHT16VLNmzdJZZ52lpKQkDR8+XOvXr7ct78knn9SIESOUkpKiAQMG6IEHHlBdXV1AzzE/P1/Z2dlKT09Xenq6cnJy9Oqrr7b5mDVr1mjkyJFKTk7WBRdcENBz62jes88+q+985zvq2bOnevbsqSuvvFJFRUW25Z0u2J+XjuQ9//zzLV5fkpOTbcu7/PLL/b6mTZkyxbbM+vp6PfLIIxoyZIiSk5M1evRobdiwIeC80y1evFiWZen+++9vdU4or2kdzQzlda0jeaH+3ASbJ3X8da2jeaG8rs2fP7/F92fkyJFtPiaU17Vg80J9XUPsox5tiXrUnsxYqUmpR1vXkZ+XjmTGWk3qZD0qRb4mpR49hXo0fHnRVo92uuZjbW2tRo8erWeeeSag+UuWLNGhQ4eaPvbv369evXpp+vTptuTl5+drzpw5mj9/vkpLS7VgwQLNmjVL//d//xfQ4zdv3qxZs2Zp27Ztev3111VfX6+rr75atbW1rT7m+PHjGjx4sBYvXqx+/foFlBNKXq9evfTQQw/pnXfe0e7du/WDH/xAP/jBD7Rx40Zb8hp98sknevDBB/Wd73zH1ud38uRJXXXVVfrkk0/00ksvqaysTM8++6wyMzNtySsoKNDs2bM1b948/e1vf9OKFSv04osv6l/+5V8Ceo5ZWVlavHixdu7cqR07duiKK67Q1KlTVVpa6nf+22+/rZtuukk//OEPVVxcrGnTpmnatGl6//33bckrLCzUTTfdpE2bNumdd97RgAEDdPXVV+vgwYO25DXqyM9LR/PS09N9Xmc+/fRT2/LWrl3rk/X+++/L5XIF/JrWkcy5c+dq2bJl+s///E/t2bNHM2fO1D/90z+puLg44ExJ2r59u5YtW6bs7Ow254XymtbRzFBe1zqSJ4X2cxNsXiivax3JC/V1TZJGjRrl8/3ZsmVLq3NDfV0LNi/U1zXEPurRlqhHw58ZSzUp9ah/Hf156WhmLNWkTtWjUuRrUurRU6hHw5sXdfWo6cQkmZdffjmox7z88svGsizzySef2JKXk5NjHnzwQZ+xn/70p+aSSy4JOs8YYyorK40ks3nz5oDmDxw40DzxxBMdyupIXqOxY8eauXPn2pbX0NBgLr74YrN8+XJz2223malTpwadFWhefn6+GTx4sDl58mSHMoLNmzVrlrniiit8xkL5mTHGmJ49e5rly5f7/dr3vvc9M2XKFJ+xiy66yPz4xz+2Ja+5hoYGk5aWZlauXGlbXrh+XgLJ++1vf2syMjJCWj+YvOaeeOIJk5aWZo4dO2Zb5llnnWWefvppn7Hrr7/e3HLLLQGvX1NTY4YNG2Zef/11c9lll5n77rsvoMeF8prW0cxGwb6uBZMXjp+bYPLC8boWTF6or2vz5s0zo0ePDnhvob6uBZvXXDhe1xC7qEdboh4NT2as16TUo+GtR9vL7Aw1qd31qDGRr0mpR79BPRrevOacrkc73ZWPoVqxYoWuvPJKDRw40Jb13W53i0uVU1JSVFRUpPr6+qDXq6qqknTqtyCREGyeMUZvvvmmysrKdOmll9qW98gjj6hv37764Q9/GHRGsHmvvPKKcnJyNGvWLJ155pk6//zz9atf/Uoej8eWvIsvvlg7d+5sukR67969Wr9+vSZPnhx0nsfj0erVq1VbW6ucnBy/c9555x1deeWVPmPXXHON3nnnHVvymjt+/Ljq6+s79DMdaF64fl4CzTt27JgGDhyoAQMGBPRb8FDzTrdixQrNmDFD3bt3ty2ztde1tn4T19ysWbM0ZcqUFj97dupoZkdf14LNC/XnJpi8cLyuBZMXjte1iooK9e/fX4MHD9Ytt9yiffv2tTo3HK9rweQ1F8rrGrom6tHw5sVaPRpoZqzWpNSjp4Tz56Wz16SRqkelyNek1KPfoB4Nb15zjtejjrQ8I0RB/qb54MGDxuVymRdffNG2vDlz5ph+/fqZHTt2GK/Xa7Zv327OPPNMI8l89tlnQeV5PB4zZcqUoH7bGMpvmoPJO3r0qOnevbuJj483SUlJZsWKFbbl/eUvfzGZmZnmyJEjxhjT4d8cBpo3YsQIk5SUZO644w6zY8cOs3r1atOrVy8zf/58W/KMMWbJkiUmISHBxMfHG0lm5syZQWXt3r3bdO/e3bhcLpORkWH+9Kc/tTo3ISHBFBQU+Iw988wzpm/fvrbkNXfXXXeZwYMHmxMnTtiSF46fl2Dy3n77bbNy5UpTXFxsCgsLzT/+4z+a9PR0s3//flvyTvfuu+8aSebdd98NOKsjmTfddJM577zzTHl5ufF4POa1114zKSkpJjExMaCs3//+9+b8889v+juPxG+ZO5IZyutasHmh/twEmxfq61pHvp+hvK6tX7/e/M///I/ZtWuX2bBhg8nJyTFnn322qa6u9js/1Ne1YPOa68jrGjoP6tGWqEfDkxlrNSn16DfC9fPS2WvSSNajxkS+JqUe9UU9Gt685pyuR2k+nuZXv/qVOeOMM4zb7bYt7/jx4+YHP/iBiY+PNy6Xy/Tv39/8/Oc/N5LM4cOHg8qbOXOmGThwYFD/YIRS7AWT5/F4TEVFhSkuLjaPPfaYycjIMJs2bQp7XnV1tRk0aJBZv35901hH//EO9PkNGzbMDBgwwDQ0NDSNPf7446Zfv3625G3atMmceeaZ5tlnnzW7d+82a9euNQMGDDCPPPJIwFlut9tUVFSYHTt2mNmzZ5vevXub0tJSv3PDUewFk3e6RYsWmZ49e5pdu3YFnBVMXrh+Xjr6/Iwx5uTJk2bIkCFBvT2io3k/+tGPzAUXXBBwTkczKysrzdSpU01cXJxxuVxm+PDh5u677zbJycnt5uzbt8/07dvX5+/c7kKvo5kdfV0L9TkaE9zPTUfyQnld60heOF7XTvfVV1+Z9PT0Vt+KFY7XtWDyTtfR1zV0HtSjLVGPhp5pTOzVpNSjp4Tz56Wz16SRqkeNiXxNSj3aEvVoePNOFw31KM3Hr3m9XjN06FBz//33RyTv5MmTZv/+/aahocH813/9l0lLSzMejyfgrFmzZpmsrCyzd+/eoPbY0WKvo3mNfvjDH5qrr7467HnFxcVGknG5XE0flmUZy7KMy+UyH374YVjzjDHm0ksvNRMnTvQZW79+vZEU8P9RCCbv29/+dov7Mq1atcqkpKQE9TNzuokTJ5of/ehHfr82YMCAFj8j//qv/2qys7M7lNVeXqP/+I//MBkZGWb79u0dzmkvL1w/L4HmteaGG24wM2bM6FBWoHnHjh0z6enp5sknn+xwTrCZJ06cMAcOHDBer9f8/Oc/N+edd16767788sst/k4kNf2dnF58+NOR17RQMxsF+roWrrxAf246khfK61pH8ux4XRs/fryZPXu236/Z8brWVl6jcL6uIXZRj7ZEPRp6pjGxX5NSj4a3Hm0rszWxVpPaVY8aE/malHqUetSYrlWPxof7bdyxavPmzfrwww/Dcs+NQCQkJCgrK0uStHr1av3jP/6j4uLavwWnMUY/+clP9PLLL6uwsFDnnHOOrfsMV57X65Xb7Q573siRI1VSUuIzNnfuXNXU1GjJkiUaMGBAWPMk6ZJLLlFBQYG8Xm/T31l5ebnOOussJSYmhj3v+PHjLX42XC5X03od0dbfR05Ojt58803df//9TWOvv/56wPdzCTZPkv793/9dCxcu1MaNGzV+/PgO57SXF+rPS7B5/ng8HpWUlHTonp3B5K1Zs0Zut1vf//73O5wTbGZycrIyMzNVX1+vP/zhD/re977X7roTJ05s8Xfygx/8QCNHjtQvfvGLpp/1cApXZqB/7+HIC+bnpiN5obyudSQv3K9rx44d00cffaRbb73V79fD/brWXp4U/tc1dA3Uo/bmRWs92pFMKfZrUurRb4SjHm0r059YrEntqkelyNek1KPUo1IXq0ed6HjaqaamxhQXFzf9RunXv/61KS4uNp9++qkxxpjZs2ebW2+9tcXjvv/975uLLrrI9ryysjKzatUqU15ebt59911z4403ml69epmPP/44oLy77rrLZGRkmMLCQnPo0KGmj+PHjzfNufXWW3263263u2mPZ511lnnwwQdNcXGxqaiosCXvV7/6lXnttdfMRx99ZPbs2WMee+wxEx8fb5599llb8poL5m0LHcnbt2+fSUtLM/fcc48pKysz69atM3379jWPPvqoLXnz5s0zaWlp5ve//73Zu3evee2118yQIUPM9773vYCe4+zZs83mzZvNxx9/bHbv3m1mz55tLMsyr732mt+8rVu3mvj4ePPYY4+Zv/3tb2bevHkmISHBlJSU2JK3ePFik5iYaF566SWf70lNTY0tec0F+zaXYPMWLFhgNm7caD766COzc+dOM2PGDJOcnBzwW2I6+vy+/e1vmxtvvDHg5xVK5rZt28wf/vAH89FHH5m33nrLXHHFFeacc84xX331VYfym79FIpyvaR3NDOV1rSN5of7cBJsXyutaR/JCfV372c9+ZgoLC83HH39stm7daq688krTu3dvU1lZ6Tcv1Ne1YPNCfV1D7KMepR4Ntr7o7DUp9Wh4f146khlrNanT9agxka9JqUepR8OZF231aKdrPm7atMlIavFx2223GWNOvbBfdtllPo85evSoSUlJMb/5zW9sz9uzZ48ZM2aMSUlJMenp6Wbq1Knmgw8+CDjPX5Yk89vf/rZpzmWXXdaUb4wxH3/8sd/HNP8+hCvvoYceMkOHDjXJycmmZ8+eJicnx6xevdq259dcMP94dzTv7bffNhdddJFJSkoygwcPNgsXLgzoUvWO5NXX15v58+ebIUOGmOTkZDNgwABz9913B/wP6R133GEGDhxoEhMTTZ8+fczEiROb/tFu7fn9z//8jxk+fLhJTEw0o0aNCuoG3cHmDRw40O/3ZN68ebY9v9MFW+wFm3f//febs88+2yQmJpozzzzTTJ482fz1r3+1Lc8YYz744AMjyWdeMILNLCwsNOeee65JSkoyZ5xxhrn11lvNwYMHO5TduP7phUI4X9M6mhnK61pH8kL9uQk2z5iOv651JC/U17Ubb7zRnHXWWSYxMdFkZmaaG2+80edtauF+XQs2L9TXNcQ+6lHq0WDri85ek1KPhvfnpSOZsVaTOl2PNmZEsialHqUeDWdetNWjljEdfN8mAAAAAAAAALSh/Zu6AAAAAAAAAEAH0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAhIHH49HFF1+s66+/3me8qqpKAwYM0EMPPeTQzgAAANAVUI8CiFaWMcY4vQkA6AzKy8s1ZswYPfvss7rlllskSXl5edq1a5e2b9+uxMREh3cIAACAzox6FEA0ovkIAGH01FNPaf78+SotLVVRUZGmT5+u7du3a/To0U5vDQAAAF0A9SiAaEPzEQDCyBijK664Qi6XSyUlJfrJT36iuXPnOr0tAAAAdBHUowCiDc1HAAizDz74QOeee64uuOAC/fWvf1V8fLzTWwIAAEAXQj0KIJpw4AwAhNlzzz2nbt266eOPP9aBAwec3g4AAAC6GOpRANGEKx8BIIzefvttXXbZZXrttdf06KOPSpLeeOMNWZbl8M4AAADQFVCPAog2XPkIAGFy/Phx3X777brrrrv0//1//59WrFihoqIiLV261OmtAQAAoAugHgUQjbjyEQDC5L777tP69eu1a9cudevWTZK0bNkyPfjggyopKdGgQYOc3SAAAAA6NepRANGI5iMAhMHmzZs1ceJEFRYW6tvf/rbP16655ho1NDTwdhcAAADYhnoUQLSi+QgAAAAAAADAFtzzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAW/z/WA8aDubr8VQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUFNffBvBnKdIUELABCvrDFivBFkvAFis2NNYI2HvvmqDR2DWKsRewxcTeI6KCEWPXKMYau1hAUUSalHn/4J3JLltYYJfm8zmHo+yU753d2d2HKffKBEEQQEREREREREREREREREQFjkFeN4CIiIiIiIiIiIiIiIiIsocn+4iIiIiIiIiIiIiIiIgKKJ7sIyIiIiIiIiIiIiIiIiqgeLKPiIiIiIiIiIiIiIiIqIDiyT4iIiIiIiIiIiIiIiKiAoon+4iIiIiIiIiIiIiIiIgKKJ7sIyIiIiIiIiIiIiIiIiqgeLKPiIiIiIiIiIiIiIiIqIDiyT4iIiIiIiIiIiIiIiKiAoon+4iIiIiIiPKh1NRULF++HPXq1YOlpSVkMhlkMhk6deoEAAgNDZUeCw0N1Wltfa6biIiIqCBjTiKi/Ign+4jyKfngoO3PmDFj8rrZlImmTZtKr9c333yj9XIeHh5Z3h/ev3+vtJ5bt25h0aJFaN++PZydnWFqagpzc3OUL18ePXr0wNGjR3W4tURERPmburxlZGQEGxsblC9fHl9//TXGjh2LPXv24NOnT7navp49e2LMmDG4dOkSYmNjc7V2QcFsRURElPc+ffqEHTt2oG/fvqhSpQpsbW1hbGwMOzs7uLm5YejQoThx4gTS0tLyuqmkQ5s3b5ZykqGhIZ4/f67VcoGBgVnOYcuWLVNaT0xMDLZv3w5fX1/UqlULVlZWMDY2RokSJdC0aVMsWbJEZX4jKqyM8roBRESfiydPnuD06dPS7ydPnsSLFy9gb2+fK/W9vb2xZcsWldMeP36Mx48f4/fff0erVq3w22+/wdraOlfaRURElN+kpqbi3bt3ePfuHR4/fowzZ85g2bJlKFGiBEaNGoUpU6bAyEi/f0r99ddf2LVrFwCgXbt2GDNmDEqVKgWZTAZLS0u91tbGzJkzMWvWLACAIAh50gZmKyIiory3d+9ejB8/Ho8fP1aa9vbtW7x9+xZXr17FmjVrUKlSJSxduhTt2rXL/YZm4vHjxyhfvjwAICAgAD4+PnnboAJg8+bN0v/T0tKwbds2TJkyJVdq//HHH+jcuTOSkpKUpr158wahoaEIDQ3F4sWL8euvv6Jp06a50i6ivMSTfUQFwNChQzFs2LBM57Ozs8uF1lB2bd26FYIgwMTEBKmpqUhJScG2bdswadKkLK0nPDxcq/kyHgiMiIgAANjY2KBr167w8PCAs7MzjIyMcO3aNSxduhR3795FUFAQPD09cfr0aRgY8AZwIiL6PGTMWx8/fsS7d+9w48YNnDx5EidOnEBUVBS+//57HDp0CIcPH0aJEiX01p4TJ04AAAwNDfHrr7+qPMHn4eGhtxNt+ly3rjBbERER5a3Zs2fjhx9+kH5v2bIlOnTogC+++ALW1taIjo7G3bt3cejQIQQHB+PevXuYPn16vjzZlxUFISfp27Nnz6QuTIsWLYqPHz9i69atWT7ZN2fOHHTs2DHT+cqUKaPw+9u3b5GUlAQDAwO0bNkSrVu3Rq1atWBtbY3nz59j+/bt+P333/Hq1Su0b98eZ8+eRe3atbPUNqKChif7iAqAkiVLonr16nndDMqhrVu3AgDat2+PhIQEHD16FFu3bs3yAans7gtly5bF2rVr4e3tDRMTE4VpdevWRZ8+fdCqVSuEhYUhLCwM27ZtQ9++fbNVi4iIqKBRl7fatGmDyZMn49atW+jTpw+uXbuGixcvonPnzjh16hSKFCmil/aIJ5JKlSqVL+7ky4+YrYiIiPJOQECAdKKvZMmS2LlzJ9zd3ZXma9GiBYYPH46bN29i7NixiIqKyu2mkh6IF10ZGxtj8eLFGDJkCG7duoXLly+jTp06Wq/HwcEhW1nM2NgYgwcPxrRp01CuXDmFaa6urvD09ESjRo0watQoxMfHY9y4cTh16lSW6xAVJLyskIgoF5w/fx737t0DAPTu3Rt9+vQBANy8eRNXr17NlTYEBARg0KBBSgejRObm5li9erX0++7du3OlXURERAXBF198gbNnz8LV1RUAcPbsWaxcuVJv9cQuiYyNjfVWoyBjtiIiIso7ERERGDFiBADAwsICp0+fVnmiT1716tURFBSECRMm5EYTSc/Ei67atGkDb29vWFlZAYDaLs51rXv37lizZo3SiT55I0eOlE48nj59Gm/evMmVthHlFZ7sIyqkBEFAq1atIJPJYGRkhHPnzqmd19/fXxrw1s/PT+U8sbGxWLJkCZo1a4bSpUujSJEisLS0hKurK0aOHImzZ8+qXX9qaio2b96M9u3bw97eHiYmJrC1tUXjxo2xdOlSJCQkaNyWK1euoH///qhUqRIsLCxgamqKsmXLws3NDcOHD8fBgwdVdp+QmJgIf39/eHh4oESJEjA2NoaNjQ0qV66MNm3aYOnSpSr7lNcHMewUL14c7dq1Q6dOnVCsWDGFaflB9erVpe5gHzx4kMetISIiyl/MzMywdetWyGQyAMDixYuRnJysdv5Xr15h+vTpqFOnDmxsbGBiYoKyZcvi22+/lbrpzEjMZOIYKE+ePJEeE39EoaGh0mNiN0rqHD16FH369EGFChWkPFW+fHl4eXkhMDAQ8fHxCvOrW3dgYCBkMpk0Xp98m+V/9J2xmK2IiIjyzs8//yxlhx9//BFVqlTRajkDAwPpAh1VwsLC8N1338HZ2RmmpqawtraGq6srZsyYkekdgS9fvsSqVavQtWtXVKxYERYWFjAxMYGDgwM6duyI33//HWlpaSqXlclk0nh9AODr66uUbWbOnClNzyyD+fj4QCaTwdnZGQDw/v17/PDDD6hWrRosLCxgbW2Nr7/+Gtu3b9e4TaJDhw6hdevWKFGiBMzNzVGpUiVMnDgRr169AgA4OztDJpPl2jiDFy9exJ07dwAAffr0gampKbp27QoA+O233zTm49zm4eEBIH1MwUePHuVtY4j0TSCifCkkJEQAIAAQ/Pz8srWOFy9eCLa2tgIAoUKFCsKHDx+U5rl586ZgamoqABDq168vJCcnK80THBws2NnZSe1R96PKkydPhFq1amlczsXFRbh7967K5ZcuXSoYGBhkWjs2NlZp27/44otMlxs/fnw2ntmsSUpKEmxsbAQAwqBBg6THvb29BQBCyZIlVT7v8tzd3TU+z7pkaWkpABBq1Kih91pERER5Kbt565tvvpGWO3v2rMp5tm3bJlhYWGjMIf3791fKAJllF/ksIN/+kJAQle148+aN0Lx580zXGRAQoPa5kV93QECAVm189OiR1s9nVjFbERER5Z20tDTpGJGFhYXKY01ZlZqaKgwfPlxjtrCyshKOHz+ucvmUlBStjh21bNlS6fiRIGiXv+SzYmYZTMwkTk5Owp07dwRnZ2e16x0+fLjG52bYsGFqly1durRw9epVwcnJSQAgeHt7Z+VpzzbxtbKyshISEhIEQVB8Tg4cOKBxefk8mTGD6trIkSOlWleuXNFrLaK8xjv7iAqxMmXKYMOGDQCAhw8fYtSoUQrTk5KS0KtXLyQmJsLCwgLbtm2DkZHiUJ4hISFo06YN3rx5A0NDQ/j4+GDfvn24cuUKzp49i/Xr16NLly4qu5h6+/YtGjdujOvXr8PExAQjRozArl27cOnSJYSEhGDq1KkwNzfHv//+izZt2iAmJkZh+Rs3bmDChAlIS0tD+fLlsWTJEpw8eRLXrl3Dn3/+ifXr16NXr16wsLBQqj1y5EjcunULQPpVRnv37sX58+dx6dIlHDx4ED/88ANq1aqVo+dXW4cPH0Z0dLTUFpH4/8jISBw7dixX2pKZa9eu4cOHDwCAqlWr5nFriIiI8qcWLVpI/z9z5ozS9J07d+K7775DXFwcKlSogKVLl+LYsWO4cuUK9uzZg7Zt2wIANm7cqDS+XHh4OMLDw9GxY0cAgL29vfSY+KOt+Ph4NG3aFCdPngQAuLm5Ye3atTh79iwuX76Mffv2YezYsbC3t9d6nZ06dUJ4eDiGDh2q1Gb5HwcHB63XmVXMVkRERHnnn3/+kbpDbNKkiXRnfU5MmTJF6h69fPnyWLNmDS5evIiQkBCMHTsWxsbGiImJQfv27XH9+nWl5YX/7+2pWbNmWLRokZS7QkNDsWnTJnz11VcAgODgYAwfPlxp+fDwcAQFBUm/z5kzRynbDBs2LMvbFR8fD09PT7x9+xYzZsxAaGgoLl++jPXr18PR0REAsHLlSoXa8hYuXIhVq1YBSB8reOXKlbhw4QL+/PNPTJ8+HTExMejatatSDw36lJycjN9++w0A4OXlBVNTUwCAu7s7ypYtCyB/9bJw+vRpAOld47u4uORxa4j0LK/PNhKRavJXxAwdOlQIDw/P9OfTp08q1zVgwABpXbt27ZIeHzdunPT4+vXrlZZLSEgQ7O3tBQCCubm52ivGBUEQnj59qvRYr169pCuZHj58qHK5q1evSle9T5s2TWHa999/L10p9urVK7W1379/L6Smpiq029jYWKs7996+fatxui507NhRACA4OzsLaWlp0uOpqanS89utWzeN65C/+lybfeH58+fZamvXrl2lOrt3787WOoiIiAqK7N7Zd+LECWm5fv36KUyLiooSrKyspGnq7jCbNm2aAEAwMDAQ7ty5ozRd/opwbdqvKqeNHTtW4apx+RwiLykpSSlrZbZuPz+/XLszLiNmKyIioryzbds26btt+vTpOV7fjRs3pLvyqlevLrx7905pnj/++EOap169ekrT09LShPv372us88MPPwgABJlMJty7d09p+qNHj7S+20zbO/vw/3e/3bx5U2me+/fvSz1tdejQQWn6y5cvpekuLi5CVFSU0jxnz54VihQpItXKjTv79u3bJ9U7deqUwrTJkycLAAQTExMhOjpa7Trk7+ybM2eOVlksOw4fPizVad++fbbWQVSQ8GQfUT4lHxy0/VHXXdLHjx+FihUrCgAEGxsb4fnz50JwcLAgk8kEAEKnTp1ULrd27Vpp3cuWLctS+x89eiQYGhoKAIRDhw5pnHfSpEkCAMHe3l7h8YEDBwoABFdX1yzVjoiI0LrrAH178+aNdOIx48lMQRCECRMmCAAEU1NTlYFWJH9ASpuf7AS83bt3S8u7ubmpPSBIRERUWGT3ZN+1a9ek5Tp37qww7ccffxQACA4ODkJiYqLadSQnJwsODg5qM0JOT/a9e/dOMDc3l77XU1JStN6+zNYtCHl3so/ZioiIKG8tX75c+n5bvnx5jtc3dOhQaX3nz59XO5/8hewXL17Mcp2UlBSp+9HFixcrTdfXyT5/f3+16+nRo4d0rC6j+fPnS+s4fPiw2nXIX9yVGyf7OnfuLAAQHB0dlbLNzZs3pbasXr1a7Tq07RZe/ier3r59K3VvamhoKFy9ejXL6yAqaNiNJ9FnQL6LzujoaPTq1Qs+Pj4QBAFlypTB+vXrVS53+PBhafmBAwdmqeaRI0eQmpoKc3NztGnTRuO8X3/9NQDgxYsXePr0qfR4mTJlAAC3bt3CxYsXta5ta2uLIkWKAAC2bt2KlJSULLVdl3bs2CENTKxqEGrxscTEROzatStX2ybv9u3b8PX1BQCYmZlh69atkMlkedYeIiKi/Kxo0aLS/2NjYxWmHTx4EADQvn17mJiYqF2HkZGR1KXUuXPndN7GU6dOSV06jRo1CoaGhjqvkReYrYiIiPKWfPZRNaxKVp04cQIAUK1aNdSvX1/tfPLHpcRl1ElLS8OLFy9w9+5d3Lx5Ezdv3sTt27elrjNVdQWqDzKZDL169VI73c3NDQAQHR2N9+/fK0wTt9HOzk7jcbW+ffvmvKFaio6OxpEjRwAAvXr1Uso21apVQ+3atQGkH4/LK6mpqejduzeePHkCAJgxYwZcXV3zrD1EuYUn+4gKAD8/Pwjpd+Jq/HF2dla7jnr16sHPzw8A8OeffyIiIgIymQwBAQGws7NTucy1a9cApIcPc3PzLLX58uXLANL7JzcyMoJMJlP70759e2m5V69eSf/v2bMnjI2NkZSUhEaNGsHT0xNr1qzBzZs3pf7YVTExMUH37t0BALt374aLiwsmTZqEo0ePKoUnfdu8eTMA4Msvv1Q5TkutWrVQvXp1ANr3aa7NvhAYGKh1G1+8eIG2bdsiNjYWMpkMmzZt4pgyREREGsgf5LK0tJT+n5qair///hsAsHbtWo35RyaTYffu3QAU84+uiDkOSB9Pp7BgtiIiIspb8mP0xcXF5WhdSUlJuH//PgBoPNEHAK6urjA2NgYA3Lx5U2m6IAjYtm0bmjZtiqJFi8LBwQFVqlRBjRo1pB8xp4ljDuqbnZ0dbG1t1U63sbGR/p/xAjJxG2vXrg0DA/WH8GvUqCFd8K5vO3bswKdPnwCovuhK/vG//voLDx48yHSdAQEBWmWxrBg2bJg0fnP79u3x/fffZ2l5ooKKJ/uIPiNTp05FhQoVpN8HDBiAVq1aqZ1fDD/iHXZZERkZmfUGAgqDClepUgU7duxA8eLFkZKSgsOHD2Po0KGoUaMGSpYsie+++w5nzpxRuZ5ffvkFnp6eAIAnT55g0aJFaNeuHWxtbVG3bl0sWrQIMTEx2Wqjtm7fvi2d9FQXggDgu+++AwCcPXsWjx490mubMoqOjsY333yDx48fAwBWrFiBHj165GobiIiIChr5A0TyB2mio6Oz1aOAfP7RFfk2ZifL5UfMVkRERHlP/uTV69evc7Sud+/eSf8vWbKkxnmNjY2l2tHR0QrTEhMT0a5dO3z33XcIDQ1FQkKCxnVlNl1XMrtwXv4kXmpqqsI08bkpUaKExnUYGhoq5FF9Ei+kqlmzJmrUqKFynl69ekk9Smh74ZUuTZ06FevWrQOQfsHbzp07C00PF0SZMcrrBhBR7jly5AgePnwo/R4WFoaEhASYmZnpvJYYUuzs7BASEqL1cuXLl1f43cvLCy1atMDvv/+OoKAgnDlzBlFRUXjz5g22bduGbdu2wdvbG5s2bVIISZaWljh48CAuXryInTt3IjQ0FH///TdSU1Nx+fJlXL58GYsXL8b+/fulLrR0TT7UjBs3DuPGjdM4vyAI2LJli3QHpr7FxsaidevW+OeffwAAs2fPxvDhw3OlNhERUUEmf9dc5cqVpf/LH6QZMGAARo8erdX6cutq7IKO2YqIiCjv1apVS/r/1atXdbbenHR3/dNPP+GPP/4AALi7u2P48OH48ssvUbp0aZiZmUnHi77++mucOXMmy3eKEXD37l1piJ0bN25o9Xpt27YNM2fOzLWuzBcsWID58+cDSO8F4vDhw3o55kmUX/FkH9Fn4vXr1xgwYACA9BNhHz58wO3btzFx4kT88ssvKpexs7PD8+fP8fLlyyzXE6+2io2NRdWqVXN0FY2VlRUGDRqEQYMGAUi/qvvAgQNYsWIFXrx4gc2bN8PV1VXlAbV69eqhXr16UltCQ0MRGBiIvXv3IjIyEl5eXnjw4IHOv/zT0tKwffv2LC+3devWXDkglZCQAE9PT1y6dAkAMHHiRMyYMUPvdYmIiAqD4OBg6f+NGzeW/i9/VbUgCFJ3knlBvpv2ly9fKl1QVdAwWxEREeUP1apVg52dHd68eYMzZ87gw4cPCt2aZ0Xx4sWl/2d2l2BKSgrevn0LQDlzbdiwAUD6nVynTp1S2+1lxjsC87PixYvj1atXiIqK0jhfamqqwh2S+pKdu/QePnyIsLCwXOlSftWqVZgyZQoAoGrVqggKCsr2fklUUPFkH9Fnol+/foiKioKBgQEOHz6M5cuXY8+ePVi5ciXat2+P1q1bKy3z5Zdf4vnz57h8+TLi4+OzNG6fq6srfv31VyQlJeHy5cuZ9r2eFVWrVkXVqlXRu3dvVK1aFXFxcdi5c2emV88XK1YMnp6e8PT0xOjRo+Hv74+XL18iLCwMLVu21Fn7ACAkJATPnj0DAIwcORINGzbUOP+FCxewbNkyPHjwAGfPnkWjRo102h55ycnJ8PLywunTpwEAQ4YMwcKFC/VWj4iIqDC5efMmTp48CQAoW7Ys6tSpI00rUqQIqlWrhn/++Qdnz57NqyYCSM9xoj///FPnJ/ty6wptEbMVERFR/iCTyeDt7Y0lS5YgLi4OGzZsyPRue3VMTExQsWJF3L9/HxcuXNA477Vr15CcnAwAChdURUdHS+Mfd+vWTe2Jvo8fP+Lu3btq15/b2SYz1apVw6tXr/D3338jLS1N7XaFh4cjKSlJr20Rx0ME0rvwnDp1aqbz9+vXD4mJidiyZYveT/Zt3boVI0aMAABUqFABJ06cULjwjehzwZN9RJ+BVatW4ejRowCAyZMno0mTJqhWrRrOnz+PiIgI+Pr6Ijw8XOmL0NPTEwcPHkR8fDzWrVuHMWPGaF3T09MTkyZNgiAIWLZsGXbs2KHLTQKQfoCtUqVKuHbtWpYHV27evDn8/f0B6GdgZvGKJ0NDQ8yYMSPTvudbtGiBX375BSkpKdiyZYveDkilpqaiV69eUvcW3333HVatWqWXWkRERIVNQkIC+vbtK3X9NGHCBBgZKf5J1aFDB/zzzz+4c+cOgoKCNI6PrE9NmzaFhYUF4uLisGLFCvTp00en45WYmppK/09KSoKJiYnO1q0KsxUREVH+MXbsWKxevRrx8fH44Ycf0LZtW1SpUiXT5dLS0rBjxw707t1beqxFixa4f/8+/vnnH1y8eFHqnSkj8e49cRmR/HjJcXFxamtv2LBB49jKGbNNXmvevDlOnjyJN2/e4I8//kC7du1Uzpcb4+KFhobi6dOnAIC+fftqNR7x77//jgMHDmDXrl1YsWKFwvOrS3v37oWvry8EQYCjoyNOnjwJe3t7vdQiyu9UXxJARIXG3bt3MXHiRACAm5sbZs2aBSC9y4PAwEDIZDK8evVK6iJTXp8+feDg4AAAmD59unS1sirPnz9X+L1y5cro1q0bAOC3337D0qVLNbbz0aNHSicE9+/fj/fv36td5tmzZ7hz5w4AxbH+Hj58qLGtAHD8+HHp/xmvdA8NDYVMJoNMJoOPj4/G9agSFxeHvXv3AkjvQiKzg1FAeldb7u7uAICdO3fqJVgKgoCBAwdi9+7dANLHQwwICMh3V68RERHlR7du3ULjxo2l8frc3d0xdOhQpflGjx6NokWLAgB8fX2l8dvUOXLkCG7cuKHz9lpbW2Pw4MEAgCtXrmDMmDFqx6dJTk5GZGRkltZfpkwZ6f8PHjzQOC+zFRERUeHi4OAgDQkTFxcHd3f3TI/D3Lp1C61bt8aiRYsUHh86dKh019qgQYPw4cMHpWWPHz+OjRs3AkgfrqVu3brStBIlSsDa2hoAsGPHDpXf+ZcuXcL333+vsX22trbSOMqZZZvc4O3tLV1MNWbMGJUXqp87dw4rV67MdF3Ozs5SFssO+ROKXl5eWi3TtWtXAEBMTAwOHDiQrbqZOX78OHr27InU1FSULFkSJ06cgLOzs15qERUEvLOPqACIjIzEzZs3M53PzMwM//vf/6Tfk5OT0bt3b8THx8PMzAzbtm2DsbGxNL1FixYYPXo0li1bhn379mHTpk3o16+fNN3U1BRbt27FN998g/j4eLRo0QLfffcdOnXqBEdHRyQlJeHOnTs4evQoDh48qBSoVq9ejcuXL+Phw4cYP348Dhw4gL59+6JatWowMTHB27dvcf36dRw7dgynTp1C586d0bNnT2n5ZcuWoXfv3mjXrh2aNWuGqlWrwsrKCu/evcPly5exYsUKJCQkAEjvLkn09OlTNG3aFF988QU6d+6MOnXqSCctnz17ht9//x07d+4EANSuXVunXYwC6VcVffz4EYD2IUic9+TJk3j//j0OHjwonSzNSJt9AQCcnJxQrFgx6fcJEyYgICAAQHqXF9OmTcPt27c1riMvxxoiIiLKTRnzVlxcHN69e4cbN27g5MmTCA4Olk6WNWjQALt371bIVaJSpUph8+bN6Nq1K16+fIk6derAx8cHbdq0gaOjI5KTk/H8+XNcvHgRu3fvxsOHD3Ho0CHUrFlT59s0e/ZsBAcHIzw8HL/88gvOnTuHwYMHo0aNGihSpAieP3+OM2fOYMeOHZgzZ06WTsTJd6M5duxYTJ8+HWXKlJEOIjk7Oyvd9ZhdzFZERET5j6+vL54/f44ffvgBkZGR8PDwwDfffIOOHTuiatWqsLa2RnR0NO7du4cjR47g2LFjSE1NRa1atRTWU6NGDYwfPx6LFi3C9evX8eWXX2Ly5MlwdXVFXFwcDh06BH9/f6SmpqJIkSJYu3atwvIGBgbo3bs3Vq5ciRs3bqBx48YYN24cKlasiJiYGBw9ehSrVq1C0aJFYW9vj3v37qncHiMjI9StWxdnz57Fpk2b4Orqitq1a0t5z8bGRmGsQH2zt7eHn58fpk2bhn///Rdubm6YMmUK6tSpg6SkJAQFBWHJkiWwt7dHXFwcoqKi9HLBUXx8PPbs2QMg/SYCbU+meXp6okiRIvj06RO2bNmC7t27q5wvIiJCqyxmaWmJcuXKSb+fP38enTt3xqdPn2BsbIyff/4ZycnJGtfl6OgonRgmKpQEIsqXQkJCBABZ+qlVq5bCOqZOnSpNW7lypco6iYmJQvXq1QUAQtGiRYUHDx4ozXPs2DGhePHimdZX5eXLl0KTJk20ar+vr6/Csu7u7pkuY2BgIMyePTtbz12VKlWEhw8fanzuvb29NbxKqrVo0UIAIMhkMiEiIkLr5V69eiUYGBgIAIT27dtn+bnI+LNv3z6FdTg5OWV5HURERIVZVvNWiRIlhJ9++klITk7OdN0HDx4UbGxstMoyp06dUlre29tbACA4OTlp1f6QkBCV80RFRQlff/11pu0ICAjI8rq//fZbtet79OiRynUxWxERERUue/bsEZydnbX6HqxWrZoQFBSktI7U1FRh2LBhGpe1srJSuawgCML79++F2rVrq13WxsZGOH36tPT97+7urnI9hw8fFmQymcp1+Pn5SfNllpO0yXGCIAgBAQEqs5MoLS1NGDx4sNrtsrOzEy5duiSULVtWACAMGTJEZR35zJJV27Ztk5adN29elpZt27atAEAwMjISXr16JT0uv93a/nTs2FFh3X5+flleR8a8S1TYsBtPokIqLCwMCxYsAAC0bdsWw4YNUzmfiYkJtm/fDhMTE3z8+BF9+vRBamqqwjytWrXCw4cPMXfuXDRs2BC2trYwNDSEpaUlvvzyS4wZMwYXL15Uuf7SpUvjzz//xOHDh9G7d29UqFAB5ubmMDY2RokSJdCwYUOMHz8ep0+fxqZNmxSW3bFjB9atW4devXqhdu3aKF26NIyMjFC0aFFUq1YNQ4cOxbVr1zBjxgyF5Zo0aYLQ0FBMnToVTZs2hYuLC4oVKwZjY2OUKlUK33zzDdasWYO///5bqQvPnIqIiMCpU6cAAF999VWW+gkvVaqUNJ7MsWPHEBUVpdO2ERERkXYMDAxgZWWFcuXKoUmTJhgzZgz27NmD58+fY9q0aVrdsebp6YlHjx5h8eLFaNasGUqVKgVjY2OYmZmhfPnyaN++PZYuXYrHjx+jadOmetsWOzs7nD59Gnv37kXXrl3h6OgIExMTmJqaokKFCujWrRu2b9+u0LuCtrZt24aFCxeiXr16sLKykrrg0iVmKyIiovytS5cuuHv3LrZv344+ffqgcuXKKF68OIyMjGBjY4Mvv/wSw4YNw6lTpxAeHo5vvvlGaR0GBgZYuXIl/vzzT/Tu3RvlypWDiYkJLC0tUbt2bUybNg33799XuSwAWFlZ4ezZs5g9ezZq1KgBU1NTFC1aFFWrVsWECRNw/fp1fP3115luS7t27XDy5El07NgR9vb2KntxyE0ymQxr1qzBgQMH8M0338DGxgampqZwcXHBqFGjcO3aNdSpU0fq+tTKykrnbchOF54Z509JScGvv/6q03YRkTKZIKgZuIGIiIiIiIiIiIiIiPKl58+fo2zZsgCADRs2oH///nncIiLKK7yzj4iIiIiIiIiIiIiogNmxY4f0/wYNGuRhS4gor/HOPiIiIiIiIiIiIiKifCQuLg4fPnxAmTJlVE6/du0a3N3dERsbCzc3N1y+fDmXW0hE+Unmg00QEREREREREREREVGuiYqKQtWqVdGpUye0bt0alStXhomJCV68eIFjx45h48aNSEhIgEwmw9KlS/O6uUSUx3hnHxERERERERERERFRPvL48WOUL19e4zxFihTB+vXr0bdv31xqFRHlVzzZR0RERERERERERESUjyQnJ2Pfvn04duwYLl26hKioKERHR8Pc3BzOzs5o0aIFRo4cCScnp7xuKhHlAzzZR0RERERERERERERERFRAfXZj9qWlpeHFixcoVqwYZDJZXjeHiIiIckAQBMTGxsLe3h4GBgZ53ZzPHnMWERFR4cGclb8wZxERERUO+spYn93JvhcvXqBs2bJ53QwiIiLSoWfPnsHR0TGvm/HZY84iIiIqfJiz8gfmLCIiosJF1xnrszvZV6xYMQDpT6SlpaXe6nTv3h2///673tZfmGrkVh3WYA3WYI2CUiO36hSGGh8+fEDZsmWl73fKW8xZrFGQa+RWHdZgDdZgjYJSgzkrf2HOYg3W+Dxq5FYd1mAN1si7GvrKWJ/dyT6xqwNLS0u9hiNjY2O9rr8w1citOqzBGqzBGgWlRm7VKSw1ALAro3yCOYs1CnKN3KrDGqzBGqxRUGqImLPyB+Ys1mCNz6NGbtVhDdZgjbytAeg+Y7HTdSIiIiIiIiIiIiIiIqICiif7iIiIiIiIiIiIiIiIiAoonuwjIiIiIiIiIiIiIiIiKqB4so+IiIiIiIiIiIiIiIiogOLJPiIiIiIiIiIiIiIiIqICiif7iIiIiIiIiIiIiIiIiAoonuwjIiIiIiIiIiIiIiIiKqCM8roBBYkgCEhOTkZaWlqm89ra2iIxMVGv7SksNXKrDmuwBmuwRkGpkVt1CkONT58+wcnJCZ8+fcqV1+VzZ2hoCGNjY72smzmLNfK6Rm7VYQ3WYA3WKCg1mLNylz5zVnJyMlJTU7Wat7Dsv6zBGgW1Rm7VYQ3WYI28q6FNxspOLpAJgiDoooEFxYcPH2BlZYWYmBhYWlpqtcynT58QGRmJ+Ph4rcNRZGQkSpYsmZOmfjY1cqsOa7AGa7BGQamRW3UKQ420tDQ8e/YMZcuWhYEBOyzIDSYmJrCzs1OZo5izWKMg18itOqzBGqzBGgWlBnNW7tN1zvrw4QPevHmDpKQkrdtQWPZf1mCNglojt+qwBmuwRt7V0DZjacoFqvDOvkzEx8fj2bNnMDQ0RPHixWFmZgZDQ0PIZDKNy8lkMjg7O+u1bYWlRm7VYQ3WYA3WKCg1cqtOYaiRmpqKhIQEODs7w9DQUG916L8772JiYhAREQEAWgdOdZizWCM/1citOqzBGqzBGgWlBnNW7tFHzvrw4QMiIiJQtGhR2NnZwdjYONOMBRSe/Zc1WKOg1sitOqzBGqyRdzUyy1jZzQU82ZeJN2/ewNjYGE5OTlkKt4aGhjA1NdVjywpPjdyqwxqswRqsUVBq5FadwlBDvBPM1NSUB6FygZmZGYoVK4bnz5/jzZs3OT4IxZzFGvmpRm7VYQ3WYA3WKCg1mLNylz5yVtGiReHo6KjVST5RYdl/WYM1CmqN3KrDGqzBGnlXQ5uMlZ1cwH4YNEhJSUFcXBxsbGwYbImIiIiQfoWblZUVkpKSkJycnO31MGcRERERKdJVzkpOTkZSUhKsrKyydKKPiIiI8o+s5gKe7NMgJSUFQHrfqERERESUThwkWtsx9lRhziIiIiJSpoucJS4rrouIiIgKpqzkAp7s0wKvgiIiIiL6jy6zEXMWERER0X+Ys4iIiEiUle9ynuwjIiIiIiIiIiIiIiIiKqB4so+IiIiIiIiIiIiIiIiogOLJPiIiIiIiIiIiIiIiIqICyiivG1AozOys9FDFXCiboxoz9+mqGURERET6U9ByFjMWERERFRTMWURERIUG7+wjnXB2doZMJtP6Z+bMmXndZCLKAZlMBmdnZ6XH/fz8IJPJUKNGDXz69EnlsoIgoHnz5pDJZOjfv3+W6oqfNY8fP1bZpqZNm2ZpfURE+R0zFtHnJb9mLFVtIiIq6JiziD4vzFlU2PHOPtKpRo0awcXFRe30Y8eO4fXr17nYIiLKTTNmzMDBgwfx999/w8/PD/PmzVOaZ8WKFTh16hScnJzw888/50EriYgKHmYsos8bMxYRkf4wZxF93pizqLDgyT7SqQEDBsDHx0ftdA8PDwYkokLM2NgYW7ZsQZ06dbBo0SJ07NgRDRo0kKbfv38fU6dOhUwmw6ZNm2BpaZmHrSUiKjiYsYg+b5llrMePHzNjERFlE3MW0eeNOYsKC3bjSUREOlWjRg3MnDkTqamp8Pb2RkJCAgBIv8fHx2P48OFo1qxZHreUiIiIqODQlLEmT57MjEVERESUTcxZVBjwZB/lK6GhoZn2ka7KnTt34OvrCycnJ5iYmMDGxgbNmzfHzp07Vc4/c+ZMtf2tBwYGQiaTqbyq6/Hjx2r7Uo6KisKWLVvQtm1blC9fHmZmZrC0tESdOnWwYMECJCYmatx2Hx8fjdutqj3iMoGBgRrXrS1x2ytVqoSvv/5a7XwtW7aU2pWxdmZtEp9DdWOrZeW1TEtLQ48ePSCTydCrVy+kpaUpTPf391f5OqelpaFXr16QyWTo2bOn0nIAcOXKFfTu3RvlypWT2tGqVSscPXpU7fOSkpKCTZs2oUWLFrCzs4OJiQkcHR3RokULrFixQpovK2MCyL/uHh4eStOLFSuGKlWqYOzYsXj69KlSm6KiouDv75/t/TK7Jk2ahHr16uHevXuYNm0aAGDDhg04d+4cXFxcsGDBArXL3rp1C926dYOdnR3MzMxQvXp1LF68GKmpqXppKxHR54AZK39kLDGzqKOLjKVuzA9dZqyZM2eiUqVKzFj5JGMtWrQI165dY8YiIsojzFn5I2cVlmNZzFnMWUTZxW48KV8qVaoUWrdurfDY5s2bVc575MgRdO3aFYmJiahcuTK6dOmCyMhInD59GqdOnUJQUBA2btyo9zYHBQVhzpw5cHBwgIuLCxo0aICoqChcuHABU6ZMwYEDBxASEgITExON68nYV/y///6Ls2fP6rv5Ss6cOYO///4btWvXVnj8n3/+wYkTJ/RSM6uvpYGBAbZu3Yq4uDjs2LEDlpaWWLNmTaZ1hg4dih07dqB9+/bYunUrDAwUr3tYvnw5xo0bh7S0NNSuXRv169fHq1evEBoaiuPHj2PWrFn44YcfFJaJiYlB+/btERYWBmNjYzRs2BD29vZ49eoVbty4gZMnT2LkyJEAAG9vb4VlP378iD179sDCwgJdu3ZVmNa4cWOl9rdq1QqlS5cGALx//x5nzpzBsmXLsH37dty4cUOaBqTvl6NHj850v9Q1Q0NDbN68Ga6urli+fDkqVqwIf39/GBgYYPPmzTA3N1e5XFhYGFq3bo24uDhUqFABLVu2xJs3bzBt2jScP39e5+0kIvrcMGPlfca6fPkyM9ZnlLEy2y+zSlXG8vPzY8YiIsoHmLPyPmfxWBZzVk4wZ1FBl6cn+2bOnIlZs2YpPFa5cmXcuXNH5fz//PMPfvjhB1y5cgVPnjzBzz//jDFjxuRCSym3iFc7VK1aVelqGlUB6fXr1+jduzcSExMxZ84cTJs2Tbpi6vLly/jmm2+wadMmNGjQAB4eHnptu5ubG3bu3Ilu3bopPP7u3Tv06NEDx48fh7+/PyZOnKhyefGKnIx9xQcGBuZ6QKpXrx6uXLkCf39/bNq0SWGav78/DA0N0aRJE4SGhuqsZlZey4EDB0rLGRsbY9euXWjbti3Wrl0LS0tLLFy4UG2diRMnYt26dWjWrBl27doFIyPFj8GgoCCMHTsWtra22LNnj8JVYeHh4Wjbti38/Pzg7u4Od3d3aVq/fv0QFhYGV1dX7N27V+GKuZSUFBw5ckT6PeO+/fjxY+zZswd2dnYqryK7f/++wu9TpkxR2J/j4uLg7u6OK1euYPfu3RgxYoQ0zc3NDefOnVPoaxxQ3i87deqk7inLtipVqmDu3LkYN24chg8fDiD9+W/YsKHK+RMTE9GrVy/ExcVhzJgxWLx4MQwNDQEAN27cQPPmzfHmzRudt5OoMGLGooyYsfJHxnJ3d0dYWBgzVj7JWBnpI2Op2y9zQlXGGjBgADMWUS5hzqKMmLPyR87isSzmLF1gzqKCLM+78axWrRpevnwp/YSFhamdNz4+HhUqVMD8+fMVzvZT4ZGcnAwg/UtPG+vXr0dMTAzc3Nwwffp0ha4R6tSpg+nTpwNIv+Va36pWrap05RAAFC9eXLrtfdeuXWqXF29B13bb9cnBwQEdOnTAjh07FL6QoqOjsW3bNnTo0AFOTk46rZmT19LU1BQHDx5E/fr1sWjRIvz0008qa8yZMweLFy9GgwYNcODAAZiamirN4+fnB0EQsGbNGqXuH2rUqIGlS5cCgEJXBtevX8fevXthamqKQ4cOKXWNYWRkhI4dO2r3RGSDhYUFvvrqKwBQ6sahatWqSuEI0H6/zKlhw4bBysoKAFCyZEnMnj1b7bx79uzBs2fPULZsWSxcuFAKRwBQs2ZNaR8gIu0wY5E8Zqz8kbGcnZ3RrFkzZiwtM9bt27eZsdSQz1j29vYaTxwwYxHpHnMWyWPOyh85i8eymLN0hTmLCqo878bTyMhI67BTt25d1K1bF0D61QBU+IiDn2p7G7Z4NU7GW8lF/fv3x4QJE3D//n28fv0aFStW1Ek71UlNTcXJkyfx119/4eXLl0hISIAgCBAEAQBw9+5dtcvGxcUBgNpbwnPbqFGjsG/fPqxbt07qp3r9+vWIj4/HqFGjdNa3uigrr+WLFy9gb2+vML1o0aL4448/8L///Q8zZsyQvpRFK1aswPfff4/ixYvj6NGjKFq0qFKNN2/e4OLFizAzM4Onp6fKdohXIf3111/SY8eOHQMAtGvXDg4ODlptr67ExMTgjz/+wJYtW2Bubq6y3ampqQgNDc3WfplTP/30E2JiYgBA6sbim2++UTmvuA98++23Kv9Q8Pb2xtixY/XWVqLChhmL5DFj5Z+M1bdvXwQHBzNjZaAqY505cwYAM5Yq8hnrxYsXuHjxIqpVq6ZyXmYsIt1jziJ5zFn5J2fxWBZzli4wZ1FBlecn++7fvw97e3uYmpriq6++wrx581CuXDmdrT8pKQlJSUnS7x8+fNDZukn33r59CyD9Sg1tREREAADKly+vcrq1tTVsbGwQHR2NV69e6aaRaty/fx8dOnRQ6nJRnqb9T9wWW1vbLNf29fWFr68vgPT+pYsXLw5XV1cMGDAA3377bZbXB6QHgZo1a2L16tWYNGkSAGDlypWoWbMmPDw8Mg1I8m3SRlZey+fPnysFJCC9n/R3794BSA94VapUAQDs378fN27cAJB+y//Ro0fRu3dvpeUfPXoEQRCQkJCQaUiPioqS/v/kyRMAkOrpm6oBod3c3BAQEKD0/N2/fx+dO3fGP//8o3Z9+vpcvHz5MubNmwdjY2MMGjQIK1euxIABAxAeHq4UYAHg+fPnANTvA8WLF4eVlZUUuIhIM31nLCA9Z3369En6nTkr/2LGyj8Zq379+gU+Y9WqVQuA/jPWixcvADBjZaQqY02fPh1dunRhxiLKJcxZJI85K//krMJwLIs5izmLKLvy9GRf/fr1ERgYiMqVK+Ply5eYNWsWmjRpgps3b6JYsWI6qTFv3jylvtQBoHv37pneYm5rawsfHx/IZDKFW3Az0u/1Nfqh6UtcXnx8vFbzpqSkAEjvq1rT/OLVTm/fvlWYT6wjfomZmpqqXY/842LwffHihdr5xVvBExMTpXnEIJaxHeI2AOlfGhmniR/gKSkpStM8PT1x//59NG3aFAMGDICLiwuKFi0KY2NjfPr0CdWrV1dqv3wbHzx4oHIbM7ZH/jURv9i+/PJLqSuCpKQkPHz4EMHBwQgODsZff/0l9TGdGbGWuH09evTAtGnTsGrVKgDAs2fPMHjwYNy/f1+qnfE1V9UmefHx8QgKCkJaWlq2X8unT58qhejXr19jxIgRMDc3x9q1azFp0iTcvn0bQHo3m/b29pg/fz6GDBmC4cOHw8nJCaVKlVJYh3jSzsLCQu3dZ/LE10P8wo6Ojtb6vSVP034F/Pf+EN8/TZo0gZ2dHYD0/frOnTu4cuUKvv32W6xZs0YhPHp6euLu3buZ7pfavtflqWsvkP569uzZEykpKRg9ejSGDRuGixcv4tKlSxgwYADmzp2rtIx4RWBkZGSm+8CjR4+krlIyTs/Oa5AV2Xmu8mudwlBDvKqPFOVGxgKgtruZzzlnZWV/1+b9wYyVexkL+O/50lfG+vDhA+Lj4/WasVJSUhT2LX1krL///huAfjMW8F+3aPrKWED686bPjJUxv2sjqxnrypUrOH/+vF4zVsb9Sl9YI3/VYM5SjTkr7zBnFdycxWNZzFnMWcxZrPEffWWsPD3Z16ZNG+n/NWvWRP369eHk5ISdO3eif//+OqkxdepUjBs3Tvr9w4cPKFu2LH7//XdYWlpqXDYxMRGPHj2Cs7Ozyv6QCzJtuwC4f/++VvOKA8OWKlVK4/xmZmYA0oOn/HxiHfELukmTJmrXI/94+fLl8fDhQyQmJqqcPyYmBu/fvwcAODk5SfOIVxxlbIe4DQBgaWmpNE0M1EZGRgrT7ty5g7t378LW1hbHjx9XGihX/koUVe38559/8PHjR5QqVUqpb+2M7ZF/TcR9eOTIkQoDIQPA2rVrMWTIEGzYsAGLFi3Sqv90sZa4fWPHjsXSpUulfrBtbW0xbtw4mJmZSbUzvuaa2gSkD+Bbvnx5GBgYZPu1/Oqrr5S6GBg9ejRiYmKwatUq9OnTB/Xq1UPDhg3x9u1blCpVCqGhoahYsSJiY2MxfPhwzJs3T2GgYSA9GAGAgYEBdu/eDQODzIc1vX//PmrUqAEg/Ys9O91rqNuv5GtUrFhRev/8+OOPSoN0+/n54ccff8SiRYtw+PBhAP/tlyVLlsx0vzQ3N89y29W1F0gfPPrff/+Fm5sbFi9eDCMjIyxYsAAdOnTA7t270b9/f7Ru3VphmUqVKuHMmTOIj49Xud73798jNjYWQPr+krE/eQBK+5U+aPu5WBDqFIYaqampuHbtmt7WX1DlRsYC0t/r4hWzAHMWoH3GArR7fzBj5V7GAv57vvSVsSwtLWFubq7XjGVkZKTwva6PjNWkSRNERkbqNWMBkO6S0VfGAtJfc31mrIz5XRtZzVg7duxA9erV9ZqxMu5X+lIYsklhqsGcpRpzVt5hziq4OYvHspizmLOYs1jjP/rKWNq9+3OJtbU1KlWqhH///Vdn6zQxMYGlpaXCD+VPycnJCAkJAQA0btxYq2XEL4nNmzernL5p0yYA6R/++hwIOzo6GgBQsmRJpS8hANi2bZvG5ffs2QMAaNWqlc7a9N133wFIv8JEfmDirDA1NcWgQYMQFhaGsLAwDBgwQPqS1rWsvJYZw9H69evxxx9/oEWLFhgyZAiA9C/bHj16AAAGDx4sfUAPHToUzZs3x9GjR7FhwwaF9djb26NmzZqIjY2VxuHThvhFf/ToUakbhNzWvXt3AMDp06elx8T90t7ePlv7ZXadPXsWS5cuhYmJCTZv3izVdnR0lAalHjBggFIXBu7u7gCAnTt3qrzSacuWLXppL9HnQB8ZC2DOKiiYsZixAN1mLPH/+s5YTZo0AcCMJVKXsZydnaUTAsxYRLmPOevzxpzFnAUwZ2UXcxaRbuWrk30fP37EgwcPUKZMmbxuCuWyT58+YdSoUYiKioKHh4fafo4zGjhwICwtLXH16lXMnTtX4RbYa9euYc6cOQDSr8zQp0qVKsHQ0BD37t2TBmYVHTp0CD///LPaZZ89e4YVK1YASP/y1pWjR48CSL/CR7xNPjuGDRuGdu3aoV27dlp3oZAd2X0tnzx5gvHjx8PS0hIbN26ETCaTpon/z/jYpk2bYGlpiXHjxkndHYjEOr6+vjh06JBSOwVBwIULF3D8+HHpsdq1a6Njx45ISEhAx44d8fTpU4VlUlJScPDgwSw9H1n122+/AYDCay3ul+Hh4VneL7MrPj4ePj4+SEtLw6xZs5QGMB48eDCaN2+OiIgIjBkzRmFa165d4eDggKdPn2Lq1KlSNwcAcPPmTem1IaKsY8b6fDFjMWMV5Iz1xRdfMGP9v8wyVo8ePZixiPIIc9bnizmLOYs5K2eYs4h0K0+78ZwwYQI8PT3h5OSEFy9ewM/PD4aGhujZsycAoG/fvnBwcMC8efMApH+J3rp1S/p/REQE/v77bxQtWhQuLi55th2UMxs3bsTUqVMRFRUFBwcHrF27VutlS5Uqhe3bt6Nbt26YPn06tm7dCldXV0RGRuL06dNISUmBr68vBg4cqLKf3RMnTiAxMVHhsfDwcADAlStXMGXKFIVp4tUb7969w5QpU9CtWze4ubnBzs4OI0aMwPLly9G8eXM0adIE9vb2uHv3Lq5evYoZM2ao/HCfMGECAgICEB0dDQsLC6xZswZr1qxRmEe8OjAsLAw+Pj7o0aOH0m3Eu3btwp07dwCk93N+584d6Qt88uTJWnV7oI6Dg4N0K70+ZeW1FAmCAF9fX8TGxmLjxo1aD4herlw5LF26FAMGDEC/fv1w4sQJKUR5enpi+fLlGD9+PDp06AAXFxdUrlwZVlZWiIqKwvXr1xEZGYnJkycr9IUeEBCAtm3b4vz586hYsSIaNmwIe3t7vHr1CuHh4YiKitJZf8zz58+XBpWOj49HeHi49Pp///330nzZ3S9zYtKkSfj333/RoEEDTJgwQWm6TCbDxo0bUaNGDQQGBqJbt25o27YtgPSuUbZv3462bdtiyZIl2L9/P+rWrYu3b98iNDQUnp6euHLlilKoJSJlzFgEMGNlNWNNmTJFaVwjZixmLGYsIsqIOYsA5iwey0rHnKU95izmLMoFQh7q3r27UKZMGaFIkSKCg4OD0L17d+Hff/+Vpru7uwve3t7S748ePRIAKP24u7trXTMmJkYAIMTExGQ6b0JCgnDr1i0hISEhK5slCIIg3Lt3L8vLFOQaTk5OAgAhICBA43zu7u4CAMHPz096bPLkyUKVKlWEGTNmCJGRkWqXFV9vVW7duiV4e3sLjo6OgrGxsWBtbS00bdpU+O2331Rui5+fn8p9Kas/8tublpYmzJ07V3BzcxOKFi0qWFlZCY0bN5baoKr94vOWlZ+tW7dKy3t7eytNNzAwEGxtbYUWLVoobL82AgICBABC586dM51XrJ3xNVf3uEh8Hzs4OKicrs1rKfL39xcACG3btlW5rhEjRijtb/LatGkjABD8/f2VpoWHhwuDBg0SKlasKJiamgrm5uZChQoVhFatWgn+/v5CRESEIAiK+1VSUpKwevVqoUmTJoK1tbVQpEgRwdHRUWjZsqWwcuVKlW2Qf06cnJxUThdriO8f+R9DQ0OhVKlSgqenp3D8+HGlZdPS0oSNGzdmul9m9fNEVXtPnjwpyGQywczMTLhz547a7RAEQVi7dq0AQLC3txfevXunMF94eLjQpUsXwcbGRjAxMRGqVq0qzJs3T0hOTpbeM48ePVLZJnX7lS7lxmdvbtUpDDVSUlKES5cuCSkpKXqtU9DoO2Opy0jMWbqvwYyVexkrJCRE2hZ9ZSxvb+9MX/ecZiwnJyeVNXSZscTXWZ8ZSxD+27f0lbHEGvrMWPLboY3sZCz5GvrKWOr2K11jjfxVgzlLNeasnMsvNZizeCwrs8dFuXksizmLOUtfWCP/1MhKxsrKd3qenuzLCwxH+a9GbtXRZQ3xCy1jCMhqDScnJ61PVovhRT4g6UtBez1YI/drZBbodFEjqzQFb13i52L+qsGDUHmDB6FYQ1818jJjyZ/s0yfWYA1NspOxslojq3gQ6vOtwZyVN5izWENfNXgsq2DUyK06n2MN5izWyC819HWyL1+N2UdERERERERERERERERE2svTMfuICqrixYtj3rx5cHNzy9F6Fi9ejKJFi2o1b+PGjREQEIAKFSrkqCYRERFRfpWXGatKlSqIjY3NUV0iIiKi/IrHsoiICjee7CPKBisrK6UBj7Oja9euWs/r4uICFxcXlYMzExERERUGeZmxAPBkHxERERVaPJZFRFS4sRtPIiIiIiIiIiIiIiIiogKKd/YREVGW+fn5wdraOq+bocDPzw/Jycl53QwiIiKibMuvGSu/tYmIiIgoq/JjpsmPbaKCiyf7iIgoy2bOnJnXTVAyc+ZMdg1CREREBVp+zVgAmLOIiIioQGPOosKO3XgSERERERERERERERERFVA82UdERERERERERERERERUQPFkHxEREREREREREREREVEBxZN9RERERERERERERERERAUUT/YRERERERERERERERERFVA82UdERERERERERERERERUQPFkHxEREREREREREREREVEBxZN9RERERERERERERERERAUUT/YRERERERERERERERERFVBGed2AwqDZsKcqHjUBoOpxXcp+jVOryum0Jc7Oznjy5InW8/v5+WHmzJk6bQMR5Q/i54EgCAqP79mzB1OnTkXp0qXxzz//wMbGRuXyvr6+CAwMRPPmzREcHAyZTKZ17QsXLqBSpUrw9vZGYGBgTjaDiPKJgpazmLGISF/UZayAgAD069dPrxkrNDQUTZs2ZcYiKmSYs5iziCgdcxYVBjzZRzrVqFEjuLi4qJ1+7NgxvH79OhdbRET5hZeXF8LCwnDkyBEMHz4cO3bsUJrn0KFDCAwMhKWlJTZt2qQQjjw8PHD69GmEhITAw8MjF1tORJT3mLGISB1fX19s2bIFoaGhzFhERNnAnEVE6jBnUUHCk32kUwMGDICPj4/a6R4eHgxIRJ+x9evXo3r16vjtt9/g5eWFrl27StPevn2LgQMHAgCWLVuGcuV0e9UmEVFBxoxFRJrMmTMHHTp0YMYiIsoG5iwi0oQ5iwoKjtlHRES5pkyZMvjll18AAEOHDkVkZKQ0bdiwYXj9+jU8PT3h6+ubV00kIiIiKnBKlizJjEVERESkB8xZVFDk6cm+mTNnQiaTKfxUqVJF4zK7du1ClSpVYGpqiho1auDo0aO51FrKDaGhoUr7RMYfVe7cuQNfX184OTnBxMQENjY2aN68OXbu3KlyfnHfU9XXemBgIGQymcqruh4/fgyZTAZnZ2elaVFRUdiyZQvatm2L8uXLw8zMDJaWlqhTpw4WLFiAxMREjdvu4+OjcbtVtUdcRlf9OYvbXqlSJXz99ddq52vZsqXUroy1M2uT+Bw2bdpU5fSsvJZpaWno0aMHZDIZevXqhbS0NIXp/v7+Kl/ntLQ09OrVCzKZDD179lRaDgCuXLmC3r17o1y5clI7WrVqpfEzJyUlBZs2bUKLFi1gZ2cHExMTODo6okWLFlixYoU0X2b7uLrX3cPDQ2l6sWLFUKVKFYwdOxZPnyqPeRAVFQV/f/9s75f60LNnT3h5eeHNmzcYPHgwAOC3337Dzp07YWNjg3Xr1inML34unD59GgDQtGlTheeA/ZkTqcacRfKYsfJHxhIzizq6yFiqnkNAtxlr5syZqFSpEjMWMxbRZ4kZizJizsofOauwHMtizmLOIsquPO/Gs1q1ajhx4oT0u5GR+ib99ddf6NmzJ+bNm4f27dvj119/RadOnXD16lVUr149N5pLuaRUqVJo3bq1wmObN29WOe+RI0fQtWtXJCYmonLlyujSpQsiIyNx+vRpnDp1CkFBQdi4caPe2xwUFIQ5c+bAwcEBLi4uaNCgAaKionDhwgVMmTIFBw4cQEhICExMTDSuJ2Nf8f/++y/Onj2r7+YrOXPmDP7++2/Url1b4fF//vlH4T2rS1l9LQ0MDLB161bExcVhx44dsLS0xJo1azKtM3ToUOzYsQPt27fH1q1bYWCgeN3D8uXLMW7cOKSlpaF27dqoX78+Xr16hdDQUBw/fhyzZs3CDz/8oLBMTEwM2rdvj7CwMBgbG6Nhw4awt7fHq1evcOPGDZw8eRIjR44EAHh7eyss+/HjR+zZswcWFhYKXQEAQOPGjZXa36pVK5QuXRoA8P79e5w5cwbLli3D9u3bcePGDWkakL5fjh49OtP9MretXr0aZ86cwf79+7Fo0SLMnz8fALBy5UqF9gNA6dKl4e3tLY2TIL/9ADSOrUD0uWPOooyYsfI+Y12+fJkZ6zPKWJntl7rGjEWUO5ixSBXmrLzPWTyWxZylT8xZlN/l+ck+IyMjpTeDOsuXL0fr1q0xceJEAMDs2bMRHByMX375RasPRcr/UlNTAQBVq1ZVusJBVUB6/fo1evfujcTERMyZMwfTpk2Trpi6fPkyvvnmG2zatAkNGjSAh54HQXVzc8POnTvRrVs3hcffvXuHHj164Pjx4/D395f234zEK3Iy9hUfGBiY6wGpXr16uHLlCvz9/bFp0yaFaf7+/jA0NESTJk0QGhqqs5pZeS3FvrABwNjYGLt27ULbtm2xdu1aWFpaYuHChWrrTJw4EevWrUOzZs2wa9cupT/KgoKCMHbsWNja2mLPnj0KV4WFh4ejbdu28PPzg7u7O9zd3aVp/fr1Q1hYGFxdXbF3716FK+ZSUlJw5MgR6feM+/bjx4+xZ88e2NnZqbyy5/79+wq/T5kyRWF/jouLg7u7O65cuYLdu3djxIgR0jQ3NzecO3cODRo0UFhHxv2yU6dO6p4yvShRogTWrFmDLl26YNKkSQCAbt26oUePHkrzVqlSBYGBgfD4/3ESMm4/EanHnEUiZqz8kbHc3d0RFhbGjJVPMlZG+shY6vZLfWHGIsodzFgkjzkrf+QsHstiztI35izK7/J8zL779+/D3t4eFSpUQO/evVXeuis6d+4cWrRoofBYq1atcO7cObXLJCUl4cOHDwo/lH8lJycDSP/S08b69esRExMDNzc3TJ8+XaFrhDp16mD69OkAgEWLFum+sRlUrVpV6cohAChevLh02/uuXbvULi/egq7ttuuTg4MDOnTogB07duDNmzfS49HR0di2bRs6dOgAJycnndbMyWtpamqKgwcPon79+li0aBF++uknlTXmzJmDxYsXo0GDBjhw4ABMTU2V5vHz84MgCFizZo1S9w81atTA0qVLAUChK4Pr169j7969MDU1xaFDh5S6xjAyMkLHjh21eyKywcLCAl999RUAKHXjULVqVaVwBGi/X+pT586dpe5uTExMsGrVqjxpB1FhxpxFImas/JGxnJ2d0axZM2YsLTPW7du3mbGygRmLSP/0nbEA5qyChDkrf+QsHstizsoNzFmUn+XpnX3169dHYGAgKleujJcvX2LWrFlo0qQJbt68iWLFiinN/+rVK5QqVUrhsVKlSuHVq1dqa8ybNw+zZs1Serx79+6ZfhHZ2tpKfTYbGhpqmDN3bxnWhYx3CqkTHx+v1bwpKSkA0q9o0TR/QkICAODt27cK84l1Hjx4IK1P3XrkHxf7nG7Tpo3K+cUrJu7fv4/Hjx9Lj799+1ZlO8RtAIAPHz4oTXv+/LnG9sXGxmLz5s24du0aoqKikJiYCEEQIAgCgPQvUnXbJQ7u+v79e4V5MrZH/jURw35mz7u2xFopKSn49ttvsW/fPsydOxdDhw4FAKxbtw7x8fHo0qUL9u7dq7J2Zm0Sn8O0tLRsv5ZhYWFKnwUA8Msvv6BFixaYMWMGkpKSpMD99u1bfP/995gzZw6srKywYsUKvHz5Umn56OhoXLx4EaampqhSpYrKdpQrVw5AetcQ4uuxbds2AOlX62v7npGX2X4lrlN8/zx//lyaLzY2FqdPn0ZgYCDMzMxQvXp1pXWkpqbiwoULGvfL7LRbHfHzIOP6MtbYvXs37ty5AyD9D9nVq1ervBpKpGr7MxL/0FD1/tUVXT5XeV2nMNQQ92NSlhs5S90fpZ9zzsrK/q7N+4MZK11uZCzgv+dLXxnrw4cP+PbbbxEcHKy3jJWSkqKwb+kjY7179w6AfjMWAJw6dQqA/jIWkP6a6zNjZczvOaEuY4nbIT6uj4wlPpf6zFhA4cgmhakGc5ZquZGxAOYsVZizCm7O4rEs5izmLOYs1viPvjJWnp7sa9OmjfT/mjVron79+nBycsLOnTvRv39/ndSYOnUqxo0bJ/3+4cMHlC1bFr///jssLS01LpuYmIhHjx7B2dlZ5VUT/1F/BVd+VbFiRa3mu3//vlbzirePlypVSuP8ZmZmANKDp/x8Yh1x0FJHR0e165F/XPwCrF+/vtr5bWxsEB0djZiYGGkeW1tble0QtwEALC0tlaaJgdrIyEhp2v3799GjRw+NHwQfP35U2873798DSL/iRn6ejO2Rf03EfXjKlCmYMmUKAMDQ0BDFixeHq6srBgwYgG+//VZtezISaxkZGaFPnz5YtGgRdu3aJXUl8Pvvv6NmzZro06eP1Nd5xtdcVZtUMTAwyPZrWaRIEZXzbNu2DTExMQDSr3wSr7Q5c+YMbty4ASC9P/K7d++id+/eSstfunQJgiAgMTEx07EToqOjpdcjLi4OQPpVW9q+t+Rp2q+A/94f4vvnu+++U5rHzc0NAQEBqFGjhtKyXbt2xT///KO2/sePH2Fubp6ttqsifh6oeo+Ijz19+lTq23zMmDFYtmwZFi1ahL59+6q90k7cfk2fDxcuXACg+v2rK9p+LhaEOoWhRmpqKq5du6a39RdkuZGzJk6cKHVfAjBnAdpnLEC79wczVu5lLLFWxYoV9ZaxLC0t4e7ujpo1a+otYxkZGSl8r+sjY9WqVQuAfjMWAERFRQHQX8YC0l9zfWasjPk9J9RlLLE9FStW1FvGioiIAKDfjAUUjmxSmGowZ6mWGxkLYM5ShTmr4OYsHstizmLOYs5ijf/oK2Pl+Zh98qytrVGpUiX8+++/KqeXLl1aulpD9Pr1a439pJuYmOT6YJ2UfeKHm729fR63JOu6du2K+/fvo3379pg0aRK++OILWFpawtjYGJ8+fdK4H6alpeHRo0cAgPLly2e5tvxAyImJibhz5w6Cg4MRHByMu3fv4vvvv8/WNo0ePRr9+/fHvn37AADPnj1TGsxXmzbJEwfw1bUXL15g1KhRsLCwwOHDh9G3b1/cvn0bQHo3m+XKlUNgYCA8PT0xcuRING3aVGk/E7sNKFq0KLy8vHTeRl2RH9Q3Pj4eN27cwJUrV/Ddd9/h4MGD0hVbAKRwlJ39Ul8EQUC/fv3w4cMH9OvXDz///DPev3+PwMBA9O/fH8HBwQpdXxCRbugrZ2k+gET5BTMWM1Z2qcpYf//9NwBmLGYsIgL0k7EA5qyChDmLOSu7mLOYs4h0KV+d7Pv48SMePHig8kw/AHz11Vc4efIkxowZIz0WHBws9e9LBd+tW7cAANWqVdNqfgcHB9y5cwcPHz5UOT0mJgbR0dEAoPJWeV25c+cObty4AVtbW+zbt09poNzMbvu9ffs2Pnz4gFKlSqFs2bJZrp9xIGQAWLt2LYYMGYIFCxZgypQp2eo/vVevXpg8eTL8/f0BpF89puoqIm3bBPw3gG9GWXktHRwcVNZ79+4dVq1aBQ8PD5w4cQINGzbE27dvUapUKZw4cQIVK1bEwoULMXz4cAwcOFBhoGEA0nMvk8mwadMmGBhoN6ypGEjE2/j1TdWgvn5+fvjxxx8xbNgwHD58WGrPjRs3ULJkyWztl/qyatUqnDx5EmXLlsXPP/8MAPj5558RHByMkydPSvsuEekWc9bnjRmLGUuXGatJkyaIjIzUe8YqU6YMAGYsbTFjEeUNZixizmLOYs7KHHMWkf5p9+7XkwkTJuD06dN4/Pgx/vrrL3Tu3BmGhobo2bMnAKBv376YOnWqNP/o0aNx7NgxLFmyBHfu3MHMmTNx+fJljBgxIq82gXQoOTkZISEhAIDGjRtrtYz4JbF582aV0zdt2gQg/RbszK6aywnxi7tkyZJKX0IApDHd1BEDQ6tWrXTWJvEPjbi4OIWBibPC1NQUgwYNQlhYGMLCwjBgwADp9nNdy8prmTEgrV+/Hn/88QdatGghfbFWqlRJ6jN78ODB0q3XQ4cORfPmzXH06FFs2LBBYT329vaoWbMmYmNjcezYMa3b3rp1awDpfbW/ePFC6+V0qXv37gAgdR8C/Ldf2tvbZ2u/1IcHDx5g8uTJUggVu8qwtrbG+vXrAaR3VyM/LoGoSJEiAP7rR52INGPOIhEzFjMWoNuMJf5f3xmrSZMmAJixtPH06VNmLKJcwoxF8pizmLMA5qzsYs4i0q08Pdn3/Plz9OzZE5UrV8a3334LW1tbnD9/HiVKlACQ/kaSH3i0YcOG+PXXX7Fu3TrUqlULu3fvxv79+zPtj5jyv0+fPmHUqFGIioqCh4eH1rf/Dxw4EJaWlrh69Srmzp2rMLjltWvXMGfOHADpH7j6VKlSJRgaGuLevXsIDQ1VmHbo0CHpig9Vnj17hhUrVgCANHiwLoiDBFtYWMDOzi7b6xk2bBjatWuHdu3aYfjw4bpqnpLsvpZPnjzB+PHjYWlpiY0bNyrcMi/+P+Nj4hfzuHHj8OTJE4X1iXV8fX1x6NAhpXYKgoALFy7g+PHj0mO1a9dGx44dkZCQgI4dO+LpU8VxD1JSUnDw4MEsPR9Z9dtvvwGAwmst7pfh4eFZ3i/1IS0tDT4+PoiLi8PgwYPRokULhelt2rRBv3798PHjR/Tr109psFpHR0cA0NhnOxH9hzmLAGYsZqyCnbG++OILZiwtpKWlYfLkycxYRLmEGYtEzFnMWcxZOcOcRaRbedqNp/iGVifjGxoAunXrhm7duumpRZQXNm7ciKlTpyIqKgoODg5Yu3at1suWKlUK27dvR7du3TB9+nRs3boVrq6uiIyMxOnTp5GSkgJfX18MHDhQ5W3eJ06cQGJiosJj4eHhAIArV64oDcorDpj77t07TJkyBd26dYObmxvs7OwwYsQILF++HM2bN0eTJk1gb2+Pu3fv4urVq5gxY4b0xStvwoQJCAgIQHR0NCwsLLBmzRqsWbNGYR6x3/+wsDD4+PigR48eSgOE7tq1S7rtPikpCXfu3JG+wCdPnpytbg9EDg4O0q30+pSV11IkCAJ8fX0RGxuLjRs3KvTvrUm5cuWwdOlSDBgwAP369cOJEyekEOXp6Ynly5dj/Pjx6NChA1xcXFC5cmVYWVkhKioK169fR2RkJCZPnoxvvvlGWmdAQADatm2L8+fPo2LFimjYsCHs7e3x6tUrhIeHIyoqSukLP7vmz5+PwMBAAOn9nIeHh0uvv3yf9tndL/UlICAAYWFhKF++PBYtWqRyHrELhJCQEKxevRrDhg2Tpnl5eSEgIACTJk3CiRMnULJkSchkMvTr1w8NGzbMrc0gKjCYs4gZK2sZa8qUKTA0NFSYhxmLGasgZKylS5fiypUrzFhEuYQZiwDmLB7LSsecpT3mLOYsygXCZyYmJkYAIMTExGQ6b0JCgnDr1i0hISEhy3Xu3buXneYV2BpOTk4CACEgIEDjfO7u7gIAwc/PT3ps8uTJQpUqVYQZM2YIkZGRapcFIKjbZW/duiV4e3sLjo6OgrGxsWBtbS00bdpU+O2331Rui5+fn7S+nPzIb29aWpowd+5cwc3NTShatKhgZWUlNG7cWGqDqvaLz1tWfrZu3Sot7+3trTTdwMBAsLW1FVq0aKGw/doICAgQAAidO3fOdF6xdsbXXN3jokePHgkABAcHB5XTtXktRf7+/gIAoW3btirXNWLECKX9TV6bNm0EAIK/v7/StPDwcGHQoEFCxYoVBVNTU8Hc3FyoUKGC0KpVK8Hf31+IiIgQBEFxv0pKShJWr14tNGnSRLC2thaKFCkiODo6Ci1bthRWrlypsg3yz4mTk5PK6WIN8f0j/2NoaCiUKlVK8PT0FI4fP660bFpamrBx48ZM90tdfp6I+7W8W7duCSYmJoJMJhNCQ0M1Lh8UFCQAECwsLISHDx8qTFu/fr3w5ZdfCubm5irfh1u3bhUACN7e3rraHCW58dmbW3UKQ42UlBTh0qVLQkpKil7rkCJ1GYk5S/c1mLFyL2OFhIRI26KvjOXt7Z3p657TjOXk5KSyhi4zlvg66zNjCcJ/+5a+MpZYQ58ZS347ckpdxjI1NdV7xgoJCdF7xhKE/PPZyxrpmLPyBnNW7tVgzuKxrMweF+XmsSzmLOYsfckvn72skbWMlZXvdJ7s04DhiAe11RG/0DKGgKzWcHJyEtzd3bWaVwwv8gFJXwra68Ea+auGqoCk6xrq8GTf51eDB6HyBg9CsYa+auRlxpI/2adPrMEa2aUuY+myhjo8CPV51mDOyhvMWayhrxo8llUwauRWHdZQxJzFGrlZQ18n+/J0zD4iIiIiIiIiIiIiIiIiyr48HbOPqKAqXrw45s2bBzc3txytZ/HixShatKhW8zZu3BgBAQGoUKFCjmoSERER5Vd5mbGqVKmC2NjYHNUlIiIiyq94LIuIqHDjyT6ibLCyslIa8Dg7unbtqvW8Li4ucHFxUTk4MxEREVFhkJcZCwBP9hEREVGhxWNZRESFG7vxJCIiIiIiIiIiIiIiIiqgeGcfERHp1JgxY/D+/fs8qe3g4AA/Pz/Url07T+oTERER6UteZixnZ2eMGDECzZs3z5P6RERERPrEnEWFAU/2ERGRTo0ZMybPajs6OmLmzJl5Vp+IiIhIX/IyYzk7O2PUqFGoWLFinrWBiIiISF+Ys6gwYDeeRERERERERERERERERAUUT/YRERERERERERERERERFVA82UdERERERERERERERERUQPFkHxEREREREREREREREVEBxZN9RERERERERERERERERAUUT/YRERERERERERERERERFVA82UdERERERERERERERERUQPFkHxEREREREREREREREVEBZZTXDSgMnj59ijdv3ig9Fhsbq/e62a1hZ2eHcuXK6bhFRERERLpV0HIWMxYREREVFMxZREREhQdP9uXQ06dPUbVqVcTHx+d1U7LE3Nwct2/fZkgiIiKifKsg5ixmLCIiIioImLOIiIgKF3bjmUNv3rxBfHw8tm3bhitXrkg/+/btU/g9Jz+bN2+GhYUFatasiT///DPHNbZt24b4+Hilq7dywtnZGTKZTOufmTNn6qw26dbMmTNRqVIlBAYGKjweGRmJEiVKQCaT4ddff1W7fGhoKAwMDGBubo579+5pXTcwMBAymQw+Pj4q2ySTyZTaRETZJ5PJ0LRpU6XH/fz8IJPJUKNGDXz69EnlsoIgoHnz5pDJZOjfv3+Wa4vv95x8F3Tu3BlmZmZ4/vy50jSZTAZnZ2elx/W9beJ34ePHjwEAbdq0gUwmw6NHj9Qu4+3tDZlMhlatWqmdJzExEV988QVkMhlmz56dpTYBmj9DW7RoAUtLS7x69SrL680NuZGz1P1kpwYzFmkivhf37t2r8Li+M5ZI3JeISDfU5ZmEhAS0atUKMpkMc+fOVbv8nTt3YGZmBgMDA5w+fVrruqGhoZDJZOjTp4/WbcqK/JSxXr58CQMDA7i7u6udJ7/+nZrfMxagn5yl7vgVcxYRkf5pyiZVqlRBpUqV9JJNRB4eHqhUqZJ0TCSvqfuezg/ZYfPmzVqvLyt4Z5+OVK1aFV9++aX0e7FixVCxYsUcr/fixYsYOXIkatWqhWPHjqFYsWI6r6FLjRo1gouLi9rpx44dw+vXr3OxRaQrJUuWxOrVq9GtWzeMHDkSTZs2RZkyZRTmiY2NhY+PDwRBwLx581CpUqU8ai0RZdeMGTNw8OBB/P333/Dz88O8efOU5lmxYgVOnToFJycn/PzzzwrTnJ2d8eTJEzx69EjlwSBdOHHiBPbv348JEybA0dERUVFRWi2X023LKi8vLxw7dgx79+7F+PHjVc6zfPlynDx5EsePH8fatWsxePBgpXmmTZuG27dvo27dupg6darCNPHAvSAI2Wrj/PnzpfUGBARkax25QV85S5P8lrOYsQqvnGaswMBA+Pr6wtvbmxdGEeUDZmZmWLhwIXr06IFZs2bB09MTNWrUUJgnNTUV3t7eSExMxJgxYzSezMpNGTNWamqqVsvpKz+WKVMGDRs2RFhYGCIjI1GyZEml9ebXv1MLSsYCdJezNB2/yog5i4go95iZmWHz5s1o1KhRtrJJaGgomjZtCnd3d4SGhuZy63VPm+zw8ePHAnmMO9/c2Td//nzIZDKMGTNG7TzJycn48ccf8b///Q+mpqZSgCisLl68iJYtW6J69eqZBqX8YsCAAQgMDFT7U6VKlbxuIuVA165d0aNHD0RHR2PgwIFK08eOHYsnT57Aw8MDo0aNyoMWElFOGRsbY8uWLShSpAgWLVqE8+fPK0y/f/8+pk6dCplMhk2bNsHS0jLX2zh27FiYmppiypQpWVout7etU6dOMDQ0xJ49e9TOY21tjY0bNwIAJkyYoHQX4J9//only5fD1NQUmzdvhpFR9q/T8vX1VcpZderUQfv27bF582Zcvnz5s8pZBQ0zVuHGjEVUuNSqVQsTJ07Ep0+f0LdvXyQnJytMnzdvHi5evIjKlStrvMI+t+XHjOXl5YW0tDTs379f7Tx5/Rl65MgRpeNZ8hnr+vXrhf54VkE8fiWPOYuICrv69eujf//+BS6b6Etm2WHu3LkF8u+vfHGy79KlS1i7di1q1qypcb4ZM2Zg7dq1WLFiBW7duoUhQ4agc+fOuHbtWi61NPcU9KBEhdfKlStRunRpHDlyBJs2bZIeP3r0KDZu3IhixYohICCA3UQRFWA1atTAzJkzpSu7EhISAPx3pVd8fDyGDx+OZs2a5XrbgoODcfPmTXTq1Am2trZZXj43t83Ozg5NmjTB+fPn8eLFC7XztWrVCoMGDcLHjx/h6+sr3aUn/p6WloY5c+agatWq2WpHREQEAKBs2bIqp/fv3x+CIMDX1/ezyVlE+REzFlHhMmvWLFSvXh1///23Qjfc169fx48//ghDQ0Ns2bIFZmZmedjK/+TXjNWlSxcA0HjxFJC3n6GhoaEqj2eJGWv58uWF+ngWj18RERUMo0aNKlDZRN80ZYfdu3cXyL+/8vxk38ePH9G7d2+sX78exYsX1zjv1q1bMW3aNLRt2xYVKlTA0KFD0bZtWyxZsiSXWps7PuegJI4/oOlHlTt37sDX1xdOTk4wMTGBjY0Nmjdvjp07d6qcX+wfV1V/65r61X38+LHacQqioqKwZcsWtG3bFuXLl4eZmRksLS1Rp04dLFiwAImJiRq33cfHR+N2q2qPuExudtlkY2ODdevWAUi/QvLZs2d49+4dBgwYAABYsmSJ2q77UlJSsGzZMtSoUQPVq1dHiRIl4OXlhfDwcL20ddOmTWjWrBkcHR2l16Nq1aoYO3asyjG0njx5ggULFqBZs2YoV64cTExMYG1tjcaNG2Pt2rVIS0vLchs07bfi2BaaXsNTp05h1KhRcHR0hImJCUqUKIG6devCz88Pb9++lebTtN8GBwfD3NwcFhYWOHXqlMo6TZs21bj/ZWyfun3vw4cPmDlzJmrXro2iRYvC1NQUFStWxOjRo1V2e6Kp3YDyGGjyUlJSsGHDBnh4eMDGxgYmJiZo1qwZhg4dimfPninNL36+eHh4qKwFpPcvLpPJlLolUPc4AISEhGh8nwLAvXv3MHjwYOlKXisrK3z99dfYtm2b2nZUqlRJuvpZladPn8LIyEjjPpYTkyZNQr169XDv3j1MmzYNALBo0SKcO3cOLi4uWLBggcL84mv55MkTAED58uUhk8mk7dBVVw+//PILAKh9rrWR1W2Td+vWLXTr1g12dnYwMzND9erVsXjxYrXdXHl5eUEQBOzbt09jmxYvXgxnZ2ecPn0a/v7+ANLv9Hv48CEaN26MsWPHKswvfo+JMr5nxffMx48fpfHBzM3NVdZu164d7OzscPPmTYwePbrQ56zPFTNW4cxYzs7O8PX1BQBs3rxZ2qZKlSpp/L7TVnR0NLy9veHq6ooSJUqgSJEiKF26NBo1aoQdO3aoHJvrxIkTGDlyJGrXrg07OzuYmJjA0dER3bt3x6VLl7LcBk37TVJSkvQ9o24fjo+Px7Jly9C4cWMUL14cJiYmcHJygqenp9IYHeq+7wVBwKBBgyCTydCgQQPExMQo1dH0HhPbmJG6dl+7dg19+vRRyKONGjXCunXrVH7fiLlB1XdtZvnnxYsXGDduHKpWrQpzc3MUK1YMdevWxS+//IKUlBSl+TN7b6h7L2t6jwP/jWGrbjsAYPfu3WjdurW0Lzo4OKBPnz64deuW2nbIZDIUK1YMHz58ULnOn376KdMcl11FihTBli1bYGxsjHnz5uHKlSsKV9NPnjwZ9erVU7v8li1bULduXZibm8PGxgatW7fGmTNndNpGeXmRsdTlR/EnNDQUTk5OcHNzQ0hICN6/f6+2tq7+TjU1NdX671TxM9DHx0fl8SwxY+3YsQObN28ulMezPufjV/KYs/I2Z4nbPnnyZLXzqDu2cOvWLfj5+aFRo0ZwcHBAkSJFYGtrixYtWqh9HTSR//7J7Efd9p88eRLDhw9HmTJlUKRIEZQsWRKdO3fGuXPnVM4vv4+tX78ebm5usLCwgLW1Ndq2bat0t7U8VcdVypcvr/a4iigiIgITJ05EjRo1UKxYMVhYWKBSpUrw8fHBX3/9pTR/QkIClixZggYNGsDa2hqmpqaoXLkyJk2apHBsS6TpGExeZJtKlSplO9vo4xhTdmUnm3h4eKBp06YAgNOnTyvsw7oaukXTsT/xZJu6z76cyIvsoG95Pmbf8OHD0a5dO7Ro0QJz5szROG9SUhJMTU0VHjMzM0NYWJjGZZKSkqTf1YX8/IJBKV2pUqXQunVrhcfUDVx55MgRdO3aFYmJiahcuTK6dOmCyMhInD59GqdOnUJQUJDURZo+BQUFYc6cOXBwcICLiwsaNGiAqKgoXLhwAVOmTMGBAwcQEhICExMTjevJ2Ff8v//+i7Nnz+q7+Vni6ekJHx8fBAYGol+/fihRogRevnyJ1q1bq7z1GQDS0tLQrVs37N+/H0WKFEG9evXg4OCACxcuoF69eujXr5/O23nixAlER0ejZs2asLa2RkJCAi5cuIBly5Zh06ZN0u3poq1bt+L7779H+fLlUalSJTRq1AgvX77EuXPncPbsWRw/fhy7d+/WyYmVBw8eaDyhAKRfcbNixQoAQO3atdGkSRPExMTg7t27+PHHH9G0adNMD+QFBwejY8eOkMlkOHz4sPQFrY6XlxeKFi0q/R4WFoYHDx5otU2vX7/G119/jXv37sHU1BQeHh6wsrLCX3/9BX9/f2zduhUnTpxQGA8iu2JjY9GhQweEhoaiaNGicHNzQ4kSJXDlyhWsWbMGu3btQnBwMFxdXXNcS5Pk5GQMHz5c4zy7du1C3759kZiYiCpVqqBt27aIiYnBhQsX8N133+HUqVNqT+gB6eObqHp//PLLL1qPo5IdhoaG2Lx5M1xdXbF8+XJUrFgRfn5+MDAwwObNm5VOHLm4uMDb2xu7d+9GXFyctC99+PABlpaWKF26dI7blJiYiKCgIBgbG+Prr7/O9nqyum2isLAwtG7dGnFxcahQoQJatmyJN2/eYNq0aWr/gOrcuTNGjRqFPXv2aNxXxCvGmjVrhqlTp8LQ0BBr166FhYUFAgMDYWCgeH1W7dq14e3tLX03ent7K0wX38fDhw9HxYoVceHCBbW1jY2N4eHhgd27d+Pff/9VmKZNzpI/2J/fcxYxYxW2jNW1a1ecP38eZ8+exf/+9z80btwYQPp7UdNJBG1FR0dj586dqFGjBho1agQLCwu8evUKYWFh+Ouvv3Du3Dn88ccfCssMGTIEz549Q7Vq1dCoUSMYGRnhzp072LlzJ/bu3YvffvsNXl5eOW4bkH4S4f79+2qnP3v2DK1bt8atW7dgbm6ORo0awdbWFhEREThz5gzCw8MRHByssYYgCBg8eDDWr1+PBg0aICgoSGMXhFl5j6myc+dO9OnTB8nJyShbtiw6deqE2NhYhISE4K+//sLevXtx8OBBFClSROt1qvPnn3+iU6dOePfuHZydndGyZUskJSVJ424dOnQIhw8fhrGxcY5raRIWFoYtW7aonZ6SkoLevXtj586dMDExgZubGxwcHHDv3j1s374de/fuxd69e5Wed9HHjx+xadMmpa6sk5OTsWrVKl1uihJXV1dMnz4dM2fORN++fdGmTRvcuHEDNWvWhJ+fn9rlRo8eDX9/fxgYGKBx48awt7fHjRs34OHhgZEjR+q8nXmVsdTlR5GYH728vHDlyhUcPHgQffv2VVtfF3+nenh4oHjx4lr9nXr06FEAQLVq1VRezCCfsYyMjLJ1PCs/5ywev1LGnJW/c5YqS5cuxcaNG1GlShXUqFED1tbWePr0KUJCQnDy5EmcP38eS5cuzfJ6LSws0LVrV5XTNB1nmTBhApYsWQIDAwPUqVMHTZo0wdOnT3HgwAEcOnQI69evly70ymjcuHFYtmwZGjVqhI4dOyI8PBx//PEHgoODsXPnTnTu3Flh/o8fP6Jly5ZKx1XCw8M1Hlc5efIkunbtivfv36NkyZJo3rw5ihQpgsePH0sXUjVs2FCa/8WLF2jdujXCw8NhY2ODunXrolixYrh69SoWLVqEXbt2SRd35FRByTbqaHOMKaeymk1at24NU1NTBAUFKX3G2dnZ6bWt796903gSXxfUZYcmTZroJTvoW56e7Pvtt99w9epVra/wbNWqFZYuXYqvv/4a//vf/3Dy5Ens3btX48HOefPmYdasWUqPd+/ePdM3tq2trXR239DQUOU8T58+lf6VDzbx8fEa//BU5fr16/D19UWlSpXwyy+/4NWrV3j16pXa+bNTQ1Obc1JDvDLi9evXGucXu/J4+/atwnxiHfGKPmdnZ0yfPl1hWTEgyS/35s0b9OzZE4mJiRg7diyGDBkinYgJDw9Hv379sGnTJpQvXx6enp7SsuJVIxnbIW4DkB6kM057/vy5tL0Zp9na2mLLli1o0KCBwuMxMTEYO3YswsLC8MMPP0hXB2QkXqXo6ekpdVUCAHv37sXZs2el9si/JmLYz+x5zwrxuclsnSNHjkRQUBBOnDgBALC0tMS0adPULrNt2zbs378fdnZ22LJlC+zt7WFubo6UlBTMmTNH+kNb1fOubZsyWrVqFaytrRUeS01NxaRJk3Do0CEsWrRI4UujatWqOHz4sNKgq69fv8bAgQOxd+9erFixAm3atJGmafseyTjPgAEDkJSUBHt7e7x48UJp27Zs2YIVK1bA2toaixYtUhgYF0j/vDAwMJCWUbXfnj17FkOHDoVMJsPatWvh6Oiotq3ie3jEiBFwcHCQHp88eTIePHig1D5V+97AgQNx7949ODo6IjAwEOXKlQOQHlb8/Pywe/dudOzYEceOHZMOUGl6v8m369GjRwr9iY8fP14aIHju3LlSV0Px8fHYuXMn5s6diy5duuCPP/6QPr/F929CQoLa50H8jHr+/LnCPPKPFy9eXJq2fv163L59W3odM27H3bt30adPH8hkMqxYsQKtWrWSpkVERGDIkCEICAhAlSpVFIK3WK9BgwY4f/48fv31V9StW1dh+rp16/DVV19JV/dl5zMgLS1N43KGhoYYO3Ys5s2bJwXOAQMGoESJEkrLlSpVCtOnT8eJEycQFxeH4cOHw9HREfHx8dKBnYz7q6rPYE3++usvJCUloUaNGtLrKXZ5mVVVqlTB3LlzMW7cOGnbJk6cqPBHibzExET06tULcXFxGDNmDBYvXiztWzdu3EDz5s3x5s0bpeUcHBzQoEED/Pnnn3jz5o3GMCwewPP395cO5C1cuBD/+9//lObt1KkTOnXqJH03qroKUcxZHTt21HiyD0j/Y2z37t3YtWsXJk6cqHXOWrRoEX766Selx/Njzsqq7NTISsbStgYzVu5lLPnnS58ZKykpSWcZa/DgwShRogTOnj2LmjVrSq+t+Nkrv4y4L2Vle1JTU3H16lWl8UJfvHiBzp0749ixYzh69CgqVqwoTRs3bhzq1asHKysrhWWCg4MxevRoDBgwAJUqVVI66K1KfHy82v3m+fPn+Omnn6Tv4IzblpaWhq5du+LWrVto3LgxFi9eDBsbG2l6UlISzp07p/A+zJgDBEHA999/j507d6J27dpYtWoVXr9+rbK3gqy+x+SJj7948QLe3t5ITk7Gt99+Cz8/P+mz9OnTp/Dx8UFQUBBGjx6NcePGScuryy/iY+I88tOioqLQsWNHxMTEYObMmejRo4d0Ycm7d+8wevRoHD9+HBMmTMCIESOk1yOz94a697K6x1NSUjBgwAAYGhrC1tYWkZGRStuxdOlS7Ny5E7Vq1cLSpUsVuqU+duwYxo4dix49euDkyZPSiVixnr29PYyNjbFs2TK0bdsWMplMes0PHz6MFy9eSHlKXR5VR1Oekd+vvv32W+zatQv//PMPbt26BWNjY8yePVvaZzIKCQmBv78/zM3NsX79eoUMuGbNGumgc2pqqtrPWV1kLCB7OSsrGatx48Zo3LgxQkNDERcXJ/V0kJGXlxemTZuGPXv2aDzZBwDLli3DyZMnpc9Qa2trbNiwQe38q1evxv79+1GqVCmEhIRI3aanpKRg1KhRak8I//bbb3j58qXGtgD/ZaySJUtm+XhWfs5ZWT1+lRFz1ueXs/R5LEvcdlXbJ1J3bKFp06bo2bOndPxC9PDhQ/j4+ODnn39Gw4YNUatWLQCZ71fic21tba20L4jUHWf5/fffsWTJEjg5OWHRokWoXbu2NO3SpUsYNGgQBg8eDEdHR5WflatXr0ZgYCC++uor6bENGzZg4cKF8Pb2RpkyZRS6aZ4+fbrK4ypA+t+Xqo6rvHz5Ep07d0ZsbCwGDRqEUaNGKVyA9PbtWzx69Ejarri4OPTo0QPh4eHo2rUrpk2bJl3UkZKSgsWLF2PTpk3o0aOHwsmxrGQb8TXJTrYBMt8f9ZFtVG1ffHw8pk+frvEYU2YyywHic5WVbOLl5QVHR0cEBQXByclJab9WtV0Z32eZUff+nDlzJqKioqTnQ9wubb9DcnKMe8aMGVof4xYvdMjKMe7IyMhM258tQh55+vSpULJkSeH69evSY+7u7sLo0aPVLhMZGSl07NhRMDAwEAwNDYVKlSoJw4YNE0xNTdUuk5iYKMTExEg/z549EwAIMTExmbYxISFBuHXrlpCQkKB2nitXrggAhCtXrig8fu/evUzXL+/ChQuCpaWl0LBhQ+HDhw9aLZPVGiJ1bc5JDScnJwGAEBAQoHE+d3d3AYDg5+enss4ff/whABBatmyptCwAIeMuO3v2bAGA4ObmprLe4sWLBQBCxYoVFbbFz89PZTsEQRACAgIEAIK3t7fStEePHgkABCcnJ5X11D1fd+/eFQAIdevWVTldEAShW7duAgBh27ZtGtsjX8Pb21ur5z0rxOdGm3XOnz9fel38/f01zuvi4iIAEFavXi0IguJ2JCQkCKVLl1b7vGelTfJUvR5paWnCd999JwAQJk2apPW6goKCBABCt27dMq0hT9V+u3fvXgGA4OnpqfI1TE5OFkqUKCEAEPbs2aPV+zDjfnL8+HHBzMxMsLCwEEJDQzNd3s7OTgAgREREKDyubh/L+Pj9+/elbd27d6/S+uPi4qQa27dvlx7fsWOHAEBo166dynaJny2PHj2SHrt165Ygk8kEe3t7pc9L8blq27atAEA4dOiQNC0kJEQAILi7u6t9HsTPqJCQELWPizWePXsmWFhYCPb29sKKFStU7r/du3cXAAiLFy9WWe/ixYsqP8PEer///rtgYmIieHl5KUxfvXq1AEA4cOCAyn1MGwAEBweHTOdLTEwUrKysBACCvb29kJiYqHH+jK+Zqv1X3F9VfQZrsmjRIgGA0LdvX+mxlJQU4dKlS0JKSor0mKbPaXlZ2bZt27YJAISyZcsKnz59Upr+888/S6+F/P4q3+7169dn2qaIiAjBwMBA2i/S0tI0zq/u9ZfPWeJnaOXKldXmLPEzzsrKSqucJWak9+/fF4iclR3ZqZGVjKVtDWYsxe3ISJcZS76OPjPW/PnzM503KxlL03bIE/clXYiIiBBsbGwEAMKtW7e0Xq5nz54CAOHIkSNazX/v3j21+02HDh2krKRqH96/f78AQChTpowQGxursYZI/vs+LS1NGDhwoABA+OqrrzL9XMvqe0zV49OnTxcACKVLlxbi4+OV5t+9e7cAQChWrJjCZ2erVq0EAMKuXbuUllGXfyZPniwAEEaMGKFye54/fy4YGxsLJUqUkL6L7t27l+l7Q917Wd3jS5cuFQAII0eOVJnD3r59K5iZmQmmpqbC8+fPVdYcNmyYAEBYsWKFynrLly9XyIXia16/fn2hdOnSwtq1a9V+NmmiKc9kfA/+9ttv0us9btw4jett0aKFAECYPHmyyum1a9cWAAj16tXLUps0UZWxBEE5Z+kjYwmC6syfUbVq1QRTU1ON72dRTv5Olafu71QxZw0ZMkR6P6g7niVmrOrVq2t9PCu/56zsHL/KiDnr88tZ+jyWJdbq3Lmz2nm0+ZzJSPx+mDhxovRYZvtVZs+1IKje/tTUVMHe3l4AIFy+fFllnYULFwoAhPHjxys8Lu5jY8aMUVmvTp06AgDhp59+kh7TdFxFpOq4ypgxYwQg/XiWNjZs2CAAEGrXri0kJycrTU9NTRWqV68uABDCw8Olx7OSbcTnKjvZRhAy3x91nW0EQfWxpz///DPTY0yZySwHyO9XWckm2hxPE4T/tisr7zNBUP3+vHz5smBgYCC4uroKM2bMUNgubb9DcnKMW1ON7GSHjG3auHGj0rEsdbT5Thfl2Zh9V65cQWRkJL788ksYGRnByMhIGqfGyMhI5dVNJUqUwP79+xEXF4cnT57gzp07KFq0KCpUqKC2jomJCSwtLRV+8ht2ffAf8QqAzLoHEIl9G2fsvkzUv39/AOlXGai6AlfXUlNTcfLkScyePRvDhg2Dr68vfHx8pKvx7t69q3bZuLg4AOrHVMpvIiMjsXjxYun3nTt3qh3TLiIiQuoark+fPkrTTU1N8e233+qnoQBmzZoFHx8feHl5wdnZGVu3bkXp0qUxbNgwpXmTkpJw6NAh/PDDDxgyZIj0Gq5duxaA5tdQG/Hx8Rg7dizMzMywfPlylfNcuXIFUVFRsLOzU+pmQRti150JCQnYtm2b0l2Bqoj98Gv73hNt2LABPj4+GDx4MADAysoKnTp1UprP3Nwc7dq1A5B+tbKoSpUqANLfy6r65lbl6NGjEAQBbdq0Uft5KXZvqqqveF0ZO3Ys4uLisGTJEoXuhkRpaWlS12bdu3dXuY46deqgaNGiuHbtmsqxEEqWLIkePXpg//79Cv3l+/v7o0KFCmjfvr2Otka9n376SRqb6MWLFzh9+rTea6ojfo7LX3GYE1nZNvH75ttvv1V5JbW67yEAUnd14th5mkyZMkX6LA0PD8c///yT6TKqyOesH3/8EUD655e6nCU+pxYWFoUuZ1E6ZqzCmbFyS0REBHx8fNC3b1+0atUKLi4uiI6ORs+ePaW7YOS9ePEC69evx/jx4zFgwAD4+PjAx8dH+kzLaZ46cuQIDh48iFatWincRSDv2LFjAIBevXqp/J7WRJDrurNs2bKZdt0JZP09Jk98frZu3Qog/bvGzMxMab4uXbqgePHiiI2NxZUrV6THxTy1ZcsWrbv4PnLkCAD1GcXBwQEVK1ZEVFSU3u6kfvnyJWbOnIlSpUph9uzZKucJCQlBQkKCNJaSKpnlPl9fXxQrVkwaExcALly4gAsXLmDw4ME66RJVk4SEBIVusQ4ePIj4+HiV86akpEjdOqr6uwlApne2ZUdeZixteXl5ITExUeo6U53c+DtVzFni34j9+/dXezxLfE6jo6MLxfEsHr9SjTmr4OQsVT5+/Ihdu3Zh2rRpGDRokPS9vGfPHgA5zy3auHbtGl68eIH//e9/cHNzUzlPZt936vYn8XtDfny47B5XEfPVoEGD1G6LPLGml5eXUk8RAGBgYCB1Hy1fpzBnG3Xmzp2r8RiTLmUlm+SFtLQ0DBs2DIIgYOXKlWrvUNeVgnSMOzN51o1n8+bNlQYs9PX1RZUqVTB58mSNL6KpqSkcHByQnJyMPXv25OkTmFMMSorEW1lVDW6tSkREBID0gbxVsba2ho2NDaKjo7PUpUR23L9/Hx06dND4haGpj31xW7LzB5avr6/UZ7ehoSGKFy8OV1dXDBgwQG/vj8GDB+PNmzfo1KkTrl+/jrCwMCxbtkyhSyGReGu7nZ2d2i8sda+hLhw6dEjhgIiHhwe2bNmi0AUQAJw/fx7du3eXugdRJafjJMyZMwdPnjzBrFmz1G6zeNt85cqVszw+4OXLl7Fz507pj41t27apPPkmLzk5GR8/foSBgYFSl1uZOXv2rEI//OKguqqIz7e4rwPp4461bNkSwcHBqF27Njw8PBS6XlXVLeLDhw8BABs3bsx0DIOoqCilx8QBhXNCHL+xWbNm6NGjh8ouFN++fSvtLxn3NVXevn2r8iDW6NGjsXnzZqxcuRLz58/H8ePHcfv2bakff326fPky5s2bB2NjYwwaNAgrV67EgAEDEB4enuV9RRfEg0a6ONCR1W0TP8fUvW+LFy8OKysrqY3yypcvD1dXV5w8eRIxMTFqn7sDBw5g69atsLa2RqdOnRAYGAhvb29cuHBB5R9GmsjnrFWrVmH16tVwdnZG48aNVeYs8Tl99+5docpZ9B9mrMKZsXLLu3fvFMYcMjY2xvDhw6WxheXNmjULP/30k8aue3KSpxITEzFq1CiYmJiorC8S85R4sCgrJk2ahMuXLwNIH/cvNDQUnp6eGpfJ6ntMXsbxnNS972QyGcqXL493794p5Klhw4Zh/fr1OHToEKpXr44vv/xSujBF3ftTzFNNmjTJtH1RUVFK3dzLvzeya/z48fjw4QNWrFih9rtRbOfJkyczzW+qch+QPi6ur68vVqxYgdu3b8PIyAjLly9HkSJFMGTIEOnApb5MnToVd+/exVdffQVBEHD+/HlMmTJF4eSj6O3bt9IFYOr2A3383ZSXGUtbXl5e+PHHHzPNJrnxd6qYs8SMNWvWLBw4cEDl8Sz5jAUU7ONZPH6lHnNW/shZ+/bty/Lf+ocOHYKvr6/0GqqSG+Nlit93Dx48yPb3XWbfG/LdNGf3uEpW85V40fL333+P77//Xus6w4YNw4YNGwpltlHl+PHjOHbsmMZjTLqUlWySFzZs2ICLFy/C19cXX331FYKCgvRaT1V2CAwMxLx585Tmzetj3JnJs5N9xYoVQ/Xq1RUes7CwgK2trfR437594eDgID2xFy5cQEREBGrXro2IiAjMnDkTaWlpmDRpUq63XxcYlJSJIcHe3j6PW5J1Xbt2xf3799G+fXtMmjQJX3zxBSwtLWFsbIxPnz5pvMIrLS0Njx49ApC9DwT5gZATExNx584dBAcHIzg4GHfv3s30CzWrtm7div3796NkyZJYv349wsPD0bx5c8yYMQPt27dX+sLMa+LBmqioKISEhGDMmDFwd3dHUFCQNMZMfHw8OnXqhNevX8PX1xdDhw6Fi4sLLC0tYWhoiHv37qFy5crZHh8MAO7du4clS5bAxcVFbwPM/vPPPzA3N8fRo0cxZcoU7NmzBxs3bpSuDFRFHOemRIkSWT6hEBAQIF3xpm7w6czs27cPP/zwA3777TccPHgw0+dYvLqmdu3aUr/5og8fPigcpKhfv77S8qoGTRcdO3Ys0ysnP336hJEjR8LY2Bi//PJLpu0ENN/1JVL3GeHq6oomTZpgw4YNmDlzJpYvXw4LCwuNr6kuJCUlwdvbGykpKfjxxx8xY8YM3Lp1CyEhIRg3blyuDBafkXgiOKd/bOXFtnl5eeHatWs4dOiQyqu/3rx5I10d6e/vj27duuH8+fO4evUq5s2bl+XPcfmcVbJkSQDp+5i6nCUe5DM1NcXDhw8LRc4iRcxYzFg5Ub16dQiCgJSUFDx9+hRr1qzBokWL8OHDB2zevFk6KLV3717MnDkTRYsWxS+//IJmzZrB3t4eZmZmkMlkmDZtGubNm5ejPDV//nw8fPgQM2bMUBgrUJcuX76M+vXr4/vvv0fHjh3Rv39/3LhxA6VLl1a7TE7eY+Lz4enpicOHD2d5+UqVKuHXX3/FmjVrcObMGdy5cyfTZcSc0rVrV1hYWGicV9UBXPn3hryPHz9Kd0JoEhoaih07dqBJkyYa71QT2+ni4oJGjRppXKemA48jR47EihUr8Msvv6Bnz57YvXs3vv32W42vqS6Id3uZmZkhMDAQaWlpcHV1xS+//AIvLy+teuDIDQUhY9WsWRMuLi44evQoEhMTVY77mVufoWLOEjOWo6Oj2uNZYg8PFhYW2Lt3b4E9npUfjl+Jd5DlR8xZ+SNnlStXDk2bNlU5bffu3Ur7UEREBLp3746EhARMmjQJvXv3hrOzM4oWLQoDAwMcP34crVq1ylFu0Zb4fVe6dGm0atVK6diGPE3jwGsivx2ajqtkpOq4irbEOo0bN1Y5Fr28atWqSf+vVKkSwsLCMHXq1EKXbTLS9hiTruT3bPL27VtMmzYNxYsXx4IFC/ReT112WLZsmTQ2bUGSZyf7tPH06VOFuxYSExMxY8YMPHz4EEWLFkXbtm2lK+ALmvwQlPKjW7duAVD8gNfEwcEBd+7cka7eyCgmJgbR0dEA0g/w68udO3dw48YN2NraYt++fUonTDK7Pfz27dv48OEDSpUqpdUdQBmJ3SPJW7t2LYYMGYIFCxZgypQpmQ7gra2IiAiMGjVKqmFnZ4emTZti2LBhWLlyJXx9fXHmzBmF9654t9KbN2/w8eNHlVc+aNuFY06UKFFC6hapQ4cOmDx5stSt3p9//onXr1/jyy+/xKZNm5SW1cUt/iNGjMCnT5/g7++vMTCLA0Pfu3cvy6HS3Nwchw4dQrNmzeDk5AQ3NzeMHj0aX3/9tdoDYll936ki7rePHz+GIAgqr0QTr37JePeahYUFlixZgiVLligt4+zsrDRAsFirUaNGSkHo/v37mR74q1KlitqrpDw8PDI92bdx40bcu3cPkyZNUtl1mcjOzg5mZmZISEjA4sWLsx3IAWDUqFHo1q0bZs6ciT/++ANDhgzR+5114sEZNzc3TJ06FTKZDJs2bUKNGjWwadMmdOvWTe1JU30RD6houupSG9nZNnG/VfdZ9f79e5V39Ym6dOmCGTNmYM+ePSpP9g0bNgyRkZHo2LEjvvvuOwDpg6I3atQIs2fPRseOHVGzZs1sbrFq8jlLfE4TEhLwxRdfFPicRcqYsQpnxsptRkZGqFChAhYuXIjr169j69at6Nq1Kzp06AAgvcsbIL0LP1XdO+U0Tz18+BALFiyAs7Mzpk2bpnFeMU9pc3Aoo/r16yMoKAhWVlaYNm0aZs+eDR8fH/zxxx9qr7bXZZ5S974DIB1UzZinvvjiC6n7cHmhoaEqD3yWLVsW9+/fx+TJk1GnTp0st1XVewNI/57M7IBYcnIyhg8fDiMjI6xcuVLjvOJzUrly5Rxd5e7i4oK2bdtiy5YtiI2NRXJysvR+05ePHz/C19cXgiBg7ty50sGi2bNnY+LEiejXrx9u3LihcEDS1tYWJiYmSEpKwuPHj1XuT/r4uykvM1ZWdOnSBQsXLkRQUBA6duyoMC2//Z0q5izxObW2ti6wx7Pyw/Gr2NhYjBgxItfraos5K3/kLDc3N7XfFaGhoUon+w4dOoSEhAR07txZ5UkFfXX1qIr4/Nna2iIwMFCrYxsZPXr0CLVr11Z6XPwcc3R0VKqn6riKJuXKlcPdu3dx584dlSfGMipTpgwAoGPHjpgwYYLWdYD0E5GFMdtktGjRIty7dw8DBw7UeIxJF+Li4rKcTXLblClT8PbtW6xatQolSpTQa638lh10Ie/+UlQhNDQUy5YtU/hd/kPa3d0dt27dQmJiIt68eYMtW7YUyKtm8kNQyo+Sk5OlsbwaN26s1TJi/9EZu74RiSdtKlasqNerNsUQVrJkSZV3Rm3btk3j8uKXRqtWrXTWJvFgcVxcnMquELOrf//+eP/+Pfr06aPQPeSCBQtQoUIF/PXXX1i6dKnCMo6OjtJYBL/++qvSOpOSkrBr1y6dtTEz4pfF7du3pcfE11A8MJRRZq9hZnbt2oXg4GB06tQJbdq00ThvnTp1YGdnh6ioKOzfvz9Ldbp27YpmzZoBSD/os3jxYsTFxaFXr15qu9M6fvw4AO3fd6q4urqiePHiiImJwb59+5SmJyQkSP2ni+3LLvH5O3jwoMpx7vTpyZMnWLNmDRwdHfHDDz9onNfQ0BAtW7YE8N/Bz+zq3LkzypUrhwULFkAQBIwcOTJH68vM2bNnsXTpUpiYmGDz5s3S55qzszMWLVoEID0Iqzq5JY57k5KSovN2ffnllwD++2M6O7K7beLVbTt37lT5XtqyZYvGulWrVkXVqlURFBSk9Efmjh07sGvXLtja2kpjvwDpB5snTJiA5ORk+Pj4qKwr/vGrzfM9ZcoUtTnr5s2bANL7nC/oOYuUMWMV3owF6PdzVxMbGxsAqvOUk5OT0vyRkZEIDg7OUc1Ro0YhMTERy5YtUzmmnTzxhMKOHTuyfDfIvHnzpItqfvjhBzRo0ABBQUFqx1vOzntMFTEjyXfJLm/fvn149+4dLC0ts3UQS56Yp3KaUbJj2bJluHXrFkaMGIEaNWponLd58+YoUqQIQkNDERkZmaO6o0ePxsePH7F161bUr18f9erVy9H6MjN+/Hg8evQIX3/9NUaPHi09Pm7cODRs2BAPHz5U6u3DyMhIuoNx+/btKtcrju2oS3mZsQDtP8c0jYOc13+nqjueJWYsDw+PAnk8Kz8cv4qNjUXr1q3x4MGDXK+tDeasgpGzVNGUWwRBUPm5oC9169aFnZ0dbt26le1x29V9P4iPi/sdkP3jKmK+Wr9+vVbzi+Px7dq1S+93SBaUbCPvyZMnmDt3LhwdHTF8+HA9tjDd/Pnzs5xNgNz7e+PixYvYuHEj3NzcMHjwYL3WAjRnh7JlyxaIY9wZ5auTfZ+D/BCU8mPXB58+fcKoUaMQFRUFDw8PrW//HzhwICwtLXH16lXMnTtX4Yvj2rVrmDNnDgBg4sSJemm3qFKlSlJXj/ID3gLpVwr9/PPPapd99uyZNN7I0KFDddYmceByCwuLHN1RJG/dunUICgqCvb29Uj/OFhYWCAgIgEwmw/fff680gPGYMWMAADNnzlS4wjo1NRUTJkyQupLUlbdv36r8Y/Xt27eYMmUKgPSTYSLx6pmTJ08qLbdu3Tr8/vvvOWrPuHHjYG5urvAHoDpGRkaYPn06gPRBjy9duqQ0z6VLlxT6WxdlvNp8+PDhaNeuHS5fvqzy5NTx48exZs0aGBsbq7zbSFvGxsZSUJgwYYJ01TmQ/sfP6NGjERUVhQoVKkh/pGeXq6srvLy88OzZM3Tp0kXlFTNxcXHYvn27zgcznzFjBhISErB06VKtrnTy8/NDkSJFMHHiRGzevFnlAL83b95UecBCnqGhIWbPno127dph7Nixer3aKz4+Hj4+PkhLS8OsWbOUrk4dPHgwmjdvjoiICOl9LU+8WjC7f6Bo0rBhQ5iYmOD69esqD4JmJifb1rVrVzg4OODp06eYOnWqwmt58+ZN6ftGEy8vLyQkJChcnfjq1SvpKuWVK1cqXbk7a9YsfPHFF7h27Rrmzp2rtE5dPd/iYOg5PRlP+Q8zVuHPWOLnQE4O0qvz999/q7zTJyQkBIcOHQKgOk+tW7cOnz59kh6PiYmBt7e3xjugM3Py5EkcOXIEbdu2VbqjR5UOHTrA1dUVL168QLdu3ZS2IzExUeXV4oBinjIyMsL27dtRrFgxTJkyBTdu3FCYN7vvMVU6duyIihUr4vXr1xg9erTCRR6PHj3C+PHjAUAaszAnJk6cCGtrayxduhRLlixReL3ka+b0greMYmJi8OOPP6JMmTKYNWtWpvOXKlUKI0eORFxcHDw9PaXxaOUlJSXh4MGDmd7F2bJlS/Tt2xceHh6ZXrSVU2fOnMG6desU3r8iAwMDBAQEwMzMDKtWrVL6bBMzyIoVK6TvZ9HChQtx9epVnbc3LzMWoH2eqVu3LsqWLYuDBw8qvD/y89+pBTlj5YfjV+KJvps3b2LVqlW5Xj8zzFkFI2epI+aW3bt34+XLl9Ljqamp+OGHH5Q+g/XJ2NgYfn5+EAQBnTt3loajkZeamopTp07h/PnzKtexevVqpdfx559/xsWLF1GsWDGFoUBcXV3RqlWrLB9XGTduHIoVK4aDBw9ixowZShekRkZGIiwsTPq9RYsWqFu3rjT+mqrxBt+9e4c1a9bk+ERSQck28mbMmIH4+HgsXboU5ubmOm1XRkFBQfj999+zlU3E7+n79+9rHJc7p8Ssu3LlSr33ZpJZdpg/f36+OcadFfm6G8+CRP6KViC9y4bY2FiFx27evIlhw4bhf//7H+bPn5/j28FV1chMXFyc3sd5yqqNGzdi6tSpiIqKgoODg8JdDZkpVaoUtm/fjm7dumH69OnYunUrXF1dERkZidOnTyMlJQW+vr4YOHCgyuf7xIkTSlewiH9AXrlyRTopJBIPULx79w5TpkxBt27d4ObmBjs7O4wYMQLLly9H8+bN0aRJE9jb2+Pu3bu4evUqZsyYofJA8IQJExAQEIDo6GhYWFhgzZo1WLNmjcI8//77LwAgLCwMPj4+6NGjh9Kt/Lt27ZI+XJKSknDnzh3pbq3JkyfrpHupx48fSx+669atUznw9Ndff42RI0fC398fPj4+OHv2rPThPHz4cAQHB+PQoUOoVasW6tevDwcHB1y4cAEvX77E0KFDsXr16hy3U/Ts2TN06tQJ//vf/+Di4gIbGxu8fv0af/31FxITE2FnZ6fwmri6uqJjx444cOAAXF1d4eHhARsbG/z999+4e/cupk2bhp9++inb7Xn+/DnmzJmj8ooxVUaPHo27d+9izZo16N27NxYvXozKlSvjw4cPUncfISEhCt0wqLNp0ybUrFkTCxcuROvWreHu7o4nT57Ay8sLV65cgYGBAaZNm5bjcW+mTZuGc+fOISgoCF988QWaNm0KS0tLnDt3Dk+fPoWNjQ327NkjXRGUEwEBAXj//j3++OMPVK5cGbVq1UL58uURGxuLN2/e4Pr16/j06RNu376t025Pnj9/jkaNGqFbt25azf/ll19i27Zt8PHxgY+PD2bMmIEvvvgCJUqUQHR0NMLDw/H8+XN0794dXbp00biuvn37Zqnf9+yaNGkS/v33XzRo0EBlNxsymQwbN25EjRo1EBgYiG7duqFt27bSdC8vL4SEhKBPnz745ptvYGBgACsrK0ycOBGVK1fOUdtMTU3RqlUrHDx4EKGhoZneJavLbTMzM8P27dvRtm1bLFmyBPv370fdunXx9u1bhIaGwtPTE1euXFHqdlael5cX5syZozDG5cCBAxEdHY1u3bqhe/fuSsuYmJggMDAQX331FX766Sd06tRJYUwFLy8vLF68GC1atECzZs2kgzALFixQOQ6BKsnJyfjzzz+l5zc/0iZn6Vp2amRsZ15jxspaxpoyZQoMDQ0V5ikIGatBgwawt7fHtWvX8OWXX6JGjRqIj49HvXr1cnyQMDAwEKtWrULt/2Pv7uOsrOv88b+HuwGBAeRGEREwRUhFBKRIS1rRUENt0/2WGGlrm0q70tY35ZsuUBJUWurPllyzclMe9NDK3FJIXZH1lhvvWCTR5C5uBJSZAYRhHK7fH8XowAwMMNc55zrzfD4e5/HwHK7ren3OnLl5e17nnGvw4Dj66KNrnxDcXXh9+tOfjvPPP792+wkTJsR//ud/xsMPPxzHHntsfPSjH43q6up48skn47DDDosvfelL9X5cemP85S9/ibZt2+71P+MNadGiRfz2t7+NT33qU/HII4/EMcccE2eccUZ07do11qxZEy+//HJ07ty5Ue82PPbYY+OOO+6IL37xi3HppZfGwoULo23btnH33XfHDTfcEOvXrz/gn7H6tG7dOn71q1/F2WefHXfddVfMmTMnRowYEVu2bIn//u//jh07dsR5553XJEXV0UcfHb/73e/is5/9bHzjG9+I73//+3HSSSdFz549o6KiIpYuXRp//vOf4yMf+cghvSBsT+Xl5RER8ZOf/KTBcxHtafr06bFu3bqYOXNm7bmFjj322GjVqlX85S9/iZdeeim2bdsWjzzyyD7P2xfx13fRHMxHox2I8vLy2hfuff/736999fcH9e/fP6ZOnRr/+q//Gl/60pdi8eLFtS8kGzNmTIwfPz5+/OMfx8c//vH4xCc+ET179oxXXnklli5dGtdee22D7zI9WPmcsSL2nh93/x7cc34sKSmJv//7v4/bbrst/vu//zs+9alPNfn/p37yk5+MLl26NMn/p2Zhxoqof8569tlnm/T5qz01Zs7atm1bfPWrX40///nP8e///u97/Y3ON3NWNp7L2pcxY8bE0KFDY9GiRdG/f/8488wzo3379vH888/H2rVr47rrrsvJOcN2++pXvxqrVq2KH/zgB3HppZfG1KlT47jjjot27drF+vXr46WXXory8vKYMWNGfPSjH91r/6985Svxd3/3d/Hxj388evXqFf/7v/8bixcvjpYtW8bPfvazvd4lOm3atHjvvff2el4lSZJYsWJFvc+rHHPMMfHAAw/ExRdfHFOnTo2f/vSnMWLEiGjdunWsXLkyXnzxxbj00ktr3+XaokWLePDBB+P888+Pe+65Jx544IE45ZRT4phjjomdO3fGm2++GYsXL46ampq4/PLL632HaWNlabbZ7S9/+UucffbZcckll6T6sbHl5eVx5ZVXRsTBzSbHHHNMDBs2LBYuXBgnn3xyDBs2LNq2bRvdunWL6dOnN9k6//KXv8SVV155SOeJbIzGzA6nnXZaXmaHQ5Y0MxUVFUlEJBUVFfvddvv27cmrr76abN++vcFtVq5cmRx22GFJRGTqcthhhyUrV67c79dg2bJljfq69unTJ4mI5Oc///k+tzvzzDOTiEgmTZpUe9t1112XDBgwILnhhhuSDRs2NLjv7rXX59VXX02++MUvJkcffXTSunXrpHPnzsknP/nJZNasWfXel0mTJjXJ1/GD93fXrl3Jd7/73WTo0KFJhw4dkk6dOiVnnHFG7RrqW//ur9uBXH75y1/W7v/FL35xr39v0aJF0rVr12TUqFF17n9j7f7a7HnfRo4cmUREcsUVV+xz/23btiXHHXdcEhHJ9773vTr/Vl1dndxyyy3Jhz/84aRNmzZJ165dkwsvvDB56aWXkp///OdJRCRf/OIXG7Wm/dm4cWPyhS98IRkyZEjStWvXpGXLlkmHDh2SU045JfnmN7+ZrF27dq99du7cmfzgBz9ITj755OSwww5LDj/88OScc85J/vjHPybLly9PIiLp06dPnX329zOy+3E5/vjjk6qqqr3+ffdj2NB9e+SRR5KzzjorOeKII5LWrVsn3bt3T4YPH55MmTIlefvtt2u329fXb/dxSkpKkt69eyfvvPNO8tJLLyXHHHNM8rnPfS55+umnG7wfDa2vodurq6uTH//4x8lHPvKRpEOHDklpaWly3HHHJddee23y1FNPNfh1asjun5Hly5fv9W81NTXJzJkzk/POO6/269O5c+fkpJNOSq644orkt7/9bbJz587a7Z944okkIpIzzzyzwbzdv6OeeOKJem9v06ZNMnv27L3229/Xf/ny5cnXvva15KSTTkrat2+ftG3bNunTp08ycuTIZPr06ckbb7zRqHXUZ1+/G/e3X69everc9vjjjyclJSVJu3btkj/96U/73P/OO+9MIiI56qijks2bN9feXlNTk0ybNi058cQTk7Zt29au74P3ZffX64N/Cxrrj3/8YxIRyT/8wz8kSZIk7733XrJgwYLkvffeq3Pf9vxZbYr7liRJsnjx4uTv//7vk8MPPzwpLS1NBg4cmEybNi2prq7e5/frbscee2zSsWPHZMeOHcnPfvazJCKSHj16JBs3btznmiZOnJhERHLKKafU+b7evn178s1vfjM57rjjkjZt2tR+vT+4hv39Dv3Nb37TqN/vH9TQjGTOavyMlSSNm7PMWLmbsZ544ona+5LmjDV9+vQ6960pZqzFixcnF1xwQdK9e/ekRYsW9f692/01ORCPPvpo8g//8A/Jsccem7Rv3z5p1apV0qNHj+Tss89Opk2bVud3727Lly9Pxo4dmxxzzDFJaWlp0qdPn+Sqq65K1q9fX/s1aOzv/2XLltX+zYiI5N/+7d/q3W5f38NbtmxJvve97yWnnXZa0rFjx9o1XXDBBcmsWbPqfP/u7+/v5z73uSQikvHjxydJ8tefsVNOOeWgf8Yaun316tXJNddck/Tr1y9p06ZN0rFjx+T0009P/uM//qPer3mSNPz7ZH/zz1tvvZXceOONyZAhQ5KOHTsmbdq0SY4++ujkYx/7WDJp0qTklVdeqZOxv9m1oZl59+37Wsv+vv4PP/xw8vd///dJr169an8fDRw4MPnc5z6XzJw5M9m2bdt+17H7fnzQ/ua4hjQ0z4wbNy6JiOSss85Kdu3a1eD+NTU1yRlnnJFERHL11Vfv9e8/+9nPkqFDhyZt27ZNOnXqlIwaNSp54oknah/T4cOHN3pNjbHnjJUke89Zac1YjZkfd3vyySeTiEi+/OUvp/L/qaWlpU32/6kHM2MliTnLnFWcc1aaz2Xt/jn9zGc+0+A2Df2/2pYtW5L/9//+X3LCCSckbdu2TXr06JFcdNFFycKFC+v9G7q/76t9/f3ZbX9/S59++unkggsuSPr06ZOUlpYmHTt2TPr3759cdNFFyU9/+tPknXfeqbP9Bx+jGTNmJIMHD07atWuXlJWVJaNHj06efvrpenOWLVtW7/MqXbt2bfB5ld1WrlyZXHvttbVftw4dOiT9+/dPvvSlLyXPPvvsXl+vHTt2JD/5yU+ST37yk0nXrl1rZ8rBgwcn48ePT+bMmbOvL2sdez4uez4mBzLbJMn+H480ZpsPPse0+2/nB+9HWrPJiBEjDno2WblyZXLppZcmPXv2TFq1alXv12T3/drXcyL12f3zefjhhyebNm3a69/3/H+IxvYVh/Ic97Jly1KdHe6+++69nstqSGP+pu9WkiQpf2BugamsrIxOnTpFRUXFftv2HTt2xPLly6Nfv37Rtm3bBrdbtWrVXp8jvWrVqgbP/dVUDiWjW7dujdo37Vc95jKnKTNWrFgR/fr1i5///Od1Tt56oBl9+/aNvn377vX26Pr84he/iCuuuCJ++ctfNukrUPY0efLkmDJlyl73rakdyNfqYNeUte8rGTJymVNSUhK9evWq9+Ngm1J992P377NJkybF5MmTD+h4SZLEoEGD4vXXX4+//OUv0aVLl3jxxRfj1FNPrX21b0lJSfTp0yevJ0VuyP/9v/83br755viv//qv+PSnP52TzP39Dh0zZkz84Q9/iBdeeKHeE7rXp6EZyZzV+Bkronh+ZxXLjPXEE09Er169Uvt67f5ZnD59er3nwmhK9X29+vbtGytXrmyy86Vk7XtLhoymztjXPJOv+9GUM1a3bt2ipqamzpxVCDPWrl274qijjookSWLdunWpf8zXvqQxY0WYs/bFnHVoivm5rIjsPR5NlbP74xgPdMYrlq+XjPftbw5I+36MHDkynnzyyVi+fHn07ds3tZzG3o9DeY47ra/V7jXdfffdMWjQoDrPZTWksX/TI3yMZ5M45phj9ho2OnbsmPovgVxkAEAhKSkpiR/+8IdxzjnnxPTp03P6sSpN4ctf/nK0b9/+kM+11FQWLFgQv//97+Pyyy8/oCehcsmcBQDp23PGuvnmm/O9pHq1aNEibr/99nj11Vfj7bffju7du+d7SfXKwowVYc4CgGKi7IOD0KVLl5g2bVoMHTr0kI5z8803R4cOHRq17RlnnBE///nP6/1cZYDm5Oyzz46LLroofvzjH8c///M/53s5B6R///4H/Er7NE2cODE6duwY06ZNy/dSICLyO2MNGDAg9XNBAhSyD85YEyZMiJ49e+Z7SfX6h3/4h3wvYb/MWBQiz2UBFDdlHxyETp067XXC44Nx8cUXN3rb4447Lo477rhUT9gKkBW//e1vIyKipqYmNm7cmOfVZNdjjz2W7yVAHfmcsSJC2Qc0e7tnrIi/zlkcHDMWhchzWQDFTdkHAAAAAAAZ01TnYwayT9kH1DFy5Mh4++23C+q8AiNHjoyIKKg1QdZNmjQpqqur85I9ePDgmDRpUu3PdlObNGlSdO7cOZVjZ5HfoVAYdv8sDhgwIC/5EyZMiPLy8rxkQzFKe545GGas3DJjAVBI8j2bXH755XHyyScXzKxQiH+nd6/plFNOSaWoV/YBdYwcOTJ69epVUCfLHjlyZEH9TzQUg8mTJ+fto1QGDx6c6rBVSOfEKwR+h0Jh2P2zmK/fvRMmTMhLLhSrtOeZg2HGyi0zFgCFJN+zyeWXXx6nn356QZV9hfZ3eveaampq4sUXX2zy47do8iMCAAAAAAAAOaHsAwAAAAAAgIxS9jWCE50CALyvKWcjcxYAwPvMWQDAbgfyt1zZtw+tWv31lIZVVVV5XgkAQOGorq6OiIiWLVse9DHMWQAAe2uKOWv3vruPBQBk04HMBcq+fWjVqlW0b98+3nnnnaipqcn3cgAA8i5JkqioqIjS0tJo3br1QR/HnAUAUFdTzVmtW7eO0tLSqKio8O4+AMioA50LWuVgTZnWrVu3WL16dSxfvjw6deoU7dq1i5YtW0ZJSck+96upqYkdO3akurZiychVjgwZMmRkJSNXOcWQsbsk2rFjxyG9+pn9S5Ikqquro6KiIrZu3Rq9evU65GOas2QUUkaucmTIkCEjSxkR5qxcSGvOWrNmTfzlL3+JTp06RevWrfc7Y0UU1/evDBlZzMhVjgwZMvKXsb8Z62DnAmXffhx22GHRr1+/2LBhQ2zevDk2bdrUqP02bNiQ+quniiUjVzkyZMiQkZWMXOUUQ8auXbti06ZNsWLFimjRwgcW5EJpaWn06tUrysrKDvlY5iwZhZSRqxwZMmTIyEqGOSv3mnLO2n2MTZs2xZo1axq9X7F8/8qQkdWMXOXIkCEjfxmNnbEOdC4oSZrZ+/krKyujU6dOUVFRccDD0+5GddeuXfvd9uqrr44ZM2Yc7DIbpVgycpUjQ4YMGVnJyFVOMWRs3bo1hg0bFgsXLowOHTqklsNftWzZcp8fHWHOkpHljFzlyJAhQ0ZWMsxZuZXmnFVdXd3oj00vlu9fGTKympGrHBkyZOQvozEz1v7mgvp4Z98BKCkpiTZt2jRq27fffjvatm2b6nqKJSNXOTJkyJCRlYxc5RRDxs6dO2PlypXRpk2bnDwupMecJSPfGbnKkSFDhoysZJizikfr1q0b/YRhsXz/ypCR1Yxc5ciQISN/GWnNWD6HAQAAAAAAADKqYMq+6dOnR0lJSUyYMGGf2916661xwgknRLt27aJ3797xta99LScnRgUAyCpzFgBAOsxZAEAhKIiP8VywYEHceeedMWjQoH1uN3PmzLj++uvjZz/7WXzsYx+LZcuWxeWXXx4lJSXxwx/+MEerBQDIDnMWAEA6zFkAQKHI+zv7tm7dGmPHjo277rorunTpss9tn3nmmTj99NPj0ksvjb59+8Y555wTn//852P+/Pk5Wi0AQHaYswAA0mHOAgAKSd7LvvHjx8f5558fo0aN2u+2H/vYx2LRokW1w9Cbb74ZDz/8cJx33nkN7lNVVRWVlZV1LgAAzYE5CwAgHeYsAKCQlCRJkuQrfNasWTF16tRYsGBBtG3bNkaOHBmDBw+OW2+9tcF9br/99vjGN74RSZLEe++9F1dddVXMmDGjwe0nT54cU6ZM2ev20aNHR+vWrZvibtRr/vz5MXz48NSOX0wZucqRIUOGjKxk5CqnGDKqq6tj9uzZUVFREWVlZanlZJE5S4aMwsyRIUOGjKxkmLMaZs6SIUNG1nNkyJCRv4zUZqwkT1atWpX06NEjefnll2tvO/PMM5Nrr722wX2eeOKJ5Igjjkjuuuuu5JVXXkl+85vfJL17906+/e1vN7jPjh07koqKitrL6tWrk4hIKioqmvLu7GXMmDGpHr+YMnKVI0OGDBlZychVTjFkVFRU5OTvetaYs2TIKNwcGTJkyMhKhjmrfuYsGTJkFEOODBky8peR1ozVqulqwwOzaNGi2LBhQwwZMqT2tpqampg3b17ccccdUVVVFS1btqyzz4033hhf+MIX4sorr4yIiJNPPjm2bdsW//RP/xTf+ta3okWLvT+VtLS0NEpLS9O9MwAABcScBQCQDnMWAFCI8lb2nXXWWbF48eI6t11xxRUxYMCAuO666/YajCIi3n333b0GoN3bJfn7NFIAgIJizgIASIc5CwAoRHkr+zp27BgnnXRSndvat28fXbt2rb193Lhx0atXr5g2bVpERIwZMyZ++MMfxqmnnhof+chH4o033ogbb7wxxowZU+8wBQDQHJmzAADSYc4CAApR3sq+xli1alWdVz7dcMMNUVJSEjfccEOsWbMmunfvHmPGjImpU6fmcZUAANljzgIASIc5CwDItYIq++bOnbvP661atYpJkybFpEmTcrcoAIAiYM4CAEiHOQsAyLe9zwAMAAAAAAAAZIKyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyStkHAAAAAAAAGaXsAwAAAAAAgIxS9gEAAAAAAEBGKfsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMKpiyb/r06VFSUhITJkzY53bl5eUxfvz46NmzZ5SWlkb//v3j4Ycfzs0iAQAyyJwFAJAOcxYAUAha5XsBERELFiyIO++8MwYNGrTP7Xbu3Blnn3129OjRIx544IHo1atXrFy5Mjp37pybhQIAZIw5CwAgHeYsAKBQ5L3s27p1a4wdOzbuuuuuuOmmm/a57c9+9rN455134plnnonWrVtHRETfvn1zsEoAgOwxZwEApMOcBQAUkrx/jOf48ePj/PPPj1GjRu1324ceeihGjBgR48ePjyOOOCJOOumk+O53vxs1NTUN7lNVVRWVlZV1LgAAzYE5CwAgHeYsAKCQ5PWdfbNmzYoXXnghFixY0Kjt33zzzfjv//7vGDt2bDz88MPxxhtvxDXXXBPV1dUxadKkeveZNm1aTJkyZa/b/8//+T+1r6ZKw/z58+OCCy5I7fjFlJGrHBkyZMjISkaucooho7q6OrVjZ505S4aMwsyRIUOGjKxkmLMaZs6SIUNG1nNkyJCRv4zUZqwkT1atWpX06NEjefnll2tvO/PMM5Nrr722wX2OP/74pHfv3sl7771Xe9stt9ySHHnkkQ3us2PHjqSioqL2snr16iQikoqKiia5Hw0ZM2ZMqscvpoxc5ciQIUNGVjJylVMMGRUVFTn5u5415iwZMgo3R4YMGTKykmHOqp85S4YMGcWQI0OGjPxlpDVj5e2dfYsWLYoNGzbEkCFDam+rqamJefPmxR133BFVVVXRsmXLOvv07NkzWrduXef2gQMHxvr162Pnzp3Rpk2bvXJKS0ujtLQ0vTsCAFBgzFkAAOkwZwEAhShvZd9ZZ50VixcvrnPbFVdcEQMGDIjrrrtur8EoIuL000+PmTNnxq5du6JFi7+ebnDZsmXRs2fPegcjAIDmyJwFAJAOcxYAUIha5Cu4Y8eOcdJJJ9W5tG/fPrp27RonnXRSRESMGzcuJk6cWLvP1VdfHe+8805ce+21sWzZsvjDH/4Q3/3ud2P8+PH5uhsAAAXHnAUAkA5zFgBQiPL2zr7GWLVqVe0rniIievfuHXPmzImvfe1rMWjQoOjVq1dce+21cd111+VxlQAA2WPOAgBIhzkLAMi1gir75s6du8/rEREjRoyI5557LjcLAgAoEuYsAIB0mLMAgHzL28d4AgAAAAAAAIdG2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyStkHAAAAAAAAGaXsAwAAAAAAgIxS9gEAAAAAAEBGKfsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARhVM2Td9+vQoKSmJCRMmNLjNL37xiygpKalzadu2be4WCQCQQeYsAIB0mLMAgELQKt8LiIhYsGBB3HnnnTFo0KD9bltWVhavvfZa7fWSkpI0lwYAkGnmLACAdJizAIBCkfd39m3dujXGjh0bd911V3Tp0mW/25eUlMSRRx5ZezniiCNysEoAgOwxZwEApMOcBQAUkry/s2/8+PFx/vnnx6hRo+Kmm27a7/Zbt26NPn36xK5du2LIkCHx3e9+N0488cQGt6+qqoqqqqra65WVlU2yboCIiM2bN8d9992XasbKlSuLImPz5s2pHh/YmzkLyLLt27fHCy+8kGrG5s2biyJj+/btqR4f2Js5C8gyc1bjmbPIipIkSZJ8hc+aNSumTp0aCxYsiLZt28bIkSNj8ODBceutt9a7/bPPPhuvv/56DBo0KCoqKuLmm2+OefPmxZIlS+Loo4+ud5/JkyfHlClT9rp99OjR0bp166a8O3XMnz8/hg8fntrxiykjVzkyZDS1zZs3x1NPPZXa8YvRGWec0ahXvR6sYvi+ymVOMWRUV1fH7Nmzo6KiIsrKylLLySJzlgwZhZkjo3G2b98ejz32WGrHL0ajRo2Kdu3apXb8Yvi+knFgzFkNM2fJkCEjyznmrANnzpLRlNKasfJW9q1evTqGDRsWjz76aO1nm+9vONpTdXV1DBw4MD7/+c/Hd77znXq3qe+VUL179059WL3gggvioYceSu34xZSRqxwZMprafffdF5dddln84+BjYt6qt2N15faYeEb/+NDh7Zss4+cvrIzHV2yKiwceFRcN7LnPbR9cujYeWLouLh7YMy4aeFQqGfvz53e2xbSnlkXvsnbxzdOPj3atW0ZExNOr3o4ZC1fEvffeG2PHjj2kjH0phu+rXOYUQ0ZlZWV06tTJk1B7MGfJkFG4OTIa54UXXoihQ4fGvZ8ZGgO7d0wl4+HX34obn1ia+YylG7fEZb9dFIsWLYohQ4akkhFRHN9XMg6MOat+5iwZMmSkzZxVOBnmLBlpSGvGytvHeC5atCg2bNhQ54ekpqYm5s2bF3fccUdUVVVFy5Yt93mM1q1bx6mnnhpvvPFGg9uUlpZGaWlpk60bYE/zVr0db22riicv/3gM79W071p7etXb8fiKTXHKkZ1i7Mm9G9zupnmvxQNL18V3PjkwbvjECalk7M/8NZvjmj+8HEN6do7ZY0dEx9K6rzadsXDFQR8bODDmLKBYDOzeMYb07JzKsZdu2lIUGUBumbOAYpH1GcicBXXlrew766yzYvHixXVuu+KKK2LAgAFx3XXX7XcwivjrMLV48eI477zz0lomwH6trtyeStHXWDfNey1ufGLpQRV9TWX+ms1x9i+fjpN6lNVb9AG5Zc4CAEiHOQsAKER5K/s6duwYJ510Up3b2rdvH127dq29fdy4cdGrV6+YNm1aRER8+9vfjo9+9KNx3HHHRXl5efzgBz+IlStXxpVXXpnz9QPsNvGM/oo+RR8UFHMWAEA6zFkAQCHKW9nXGKtWrYoWLVrUXt+8eXN8+ctfjvXr10eXLl1i6NCh8cwzz8SHP/zhPK4SaO6a8hx9B0LRBxwKcxYAQDrMWQBArhVU2Td37tx9Xv/Rj34UP/rRj3K3IIACpegDDpQ5CwAgHeYsACDfWux/EwAKiaIPAAAAAIDdlH0AGaLoAwAAAADgg5R9ABmh6AMAAAAAYE8Fdc4+AOo3d8XGeHz5JkUfAAAAAAB1eGcfQAYo+gAAAAAAqI+yD6CALVxbHhERZ/XrpugDAAAAAGAvyj6AAnXTvNdiwd/KvpF9u+dlDYo+AAAAAIDCpuwDKEA3zXstbnxiaZx2VOe8rUHRBwAAAABQ+JR9AAVmd9H3nU8OjGF5KvsUfQAAAAAA2aDsAyggHyz6nKMPAAAAAID9UfYBFAhFHwAAAAAAB0rZB1AACqHo+0vldkUfAAAAAEDGKPsA8qwQir6IiF+8tFLRBwAAAACQMco+gDwqhKLvrW1VERHRo32pog8AAAAAIGOUfQB5UghF3/w1m+O/XlsXERFfPOUYRR8AAAAAQMYo+wDyoFCKvrN/+XQc3q5NRESUtmqZl3UAAAAAAHDwlH0AOVZIRd9JPcri0/2PzMsaAAAAAAA4dMo+gBwqtKJv9tgR0aalPwUAAAAAAFnlGV6AHCnEos85+gAAAAAAsq1gyr7p06dHSUlJTJgwoVHbz5o1K0pKSuKiiy5KdV0ATUHRB+STOQsAIB3mLACgEBRE2bdgwYK48847Y9CgQY3afsWKFfGNb3wjPv7xj6e8MoBDp+gD8smcBQCQDnMWAFAo8l72bd26NcaOHRt33XVXdOnSZb/b19TUxNixY2PKlClx7LHH5mCFAAdP0fdX26trcp4JmLMAANJizgIACkmrfC9g/Pjxcf7558eoUaPipptu2u/23/72t6NHjx7xj//4j/E///M/+92+qqoqqqqqaq9XVlYe0noB9vTg0nWxfPO7e90+d8XGeHz5pjirX7eI+Gvxd6AWri2vPdbB+Evl9vjFSyujR/vS+Lu+3eK2599s8oz9qXqvJmYsXB4REU8//XQqGbtt3rw51eND1pizgKx7+PW3YummLakc++lVbxdFxu45dOnSpakcf7ft27enenzIGnMWkHU/fWFFHNWxXSrHfnl9eVFkrN3y1/nHnEUWlCRJkuQrfNasWTF16tRYsGBBtG3bNkaOHBmDBw+OW2+9td7tn3rqqfjc5z4XL730UnTr1i0uv/zyKC8vjwcffLDBjMmTJ8eUKVP2un306NHRunV6726ZP39+DB8+PLXjF1NGrnJkyGhqK1eujFdeeSW143NwzjjjjEa9svZg+b1YWBnV1dUxe/bsqKioiLKystRyssicJUNGYebIaJx169bFwoULUzt+MRp1bPdo16plasf/r2XrY9SoUdGuXTpPpkUUx/duMWWYsxpmzpIhQ0aWczyfdeDO6H14dGnXJrXjm7OaV0ZaM1be3tm3evXquPbaa+PRRx+Ntm3b7nf7LVu2xBe+8IW46667olu3bo3OmThxYvzrv/5r7fXKysro3bt3/OpXv0p1WL3gggvioYceSu34xZSRqxwZMprafffdF5dddln0Pe3r0a6sdyoZ5esWxrpX7y2ajO98cmCcd/wRqWQs3bglLvvtorjqqqti7NixqWRE+L1YaBmVlZXRqVOn1I6fVeYsGTIKN0dG4+yeswaedWu073JcKhmbVj4RKxbckvmMbZvfiKWPT4jvjToxhvTsnEpGRETJlAfje9/7XgwZMiS1jGL43i2mDHNW/cxZMmTISFvaOTfddFO88sor0bH7KbFl48vR7dhzo3u/TzVpxro/3R/la56ObseeF937ndPgdtsrV8aqF2ZEmw5HRp/BV0WLVvv/vXqgGfuz670dsfKln8TOrevjmCFXR7uyPrX/VrF+Yaxdcm9cdVq/GHtyOs+ZRZizmltGWjNW3sq+RYsWxYYNG+p8A9fU1MS8efPijjvuiKqqqmjZ8v1XJf75z3+OFStWxJgxY2pv27VrV0REtGrVKl577bX40Ic+tFdOaWlplJaWpnhPgOauW59PRsfuJ6d2/HWv3ls0Gf26HJbqk1DAX5mzgGLRvstxqc0n2za/URQZQG6Zs4BisWXjy9Fv+Nej79B/afJjl69bGOVrno4OXQfGkf0/U+82lW+9FMv+58bo0P3EOOX8/4xWbTo0ecb+vLdza7z8h3FRvf3tOPXCX0XZEYP32mbtknsP6tiQa3kr+84666xYvHhxnduuuOKKGDBgQFx33XV1BqOIiAEDBuy1/Q033BBbtmyJ2267LXr3Tq9ZBwDIEnMWAEA6zFlAseh27LmpFH2NUfnWS/HS7y+L9of3P6iirynsLvq2vbMsBn/63nqLPsiSvJV9HTt2jJNOOqnObe3bt4+uXbvW3j5u3Ljo1atXTJs2Ldq2bbvX9p07d46I2Ot2AIDmzJwFAJAOcxZQLJr6ozsbS9EH6chb2dcYq1atihYtWuR7GQAARcecBQCQDnMWQP0UfZCegir75s6du8/re/rFL36R2loAAIqJOQsAIB3mLID9U/RBurzMCICi8NMXVuR7CQAAAADsQdEH6VP2AZB5N817LWYsXJHvZQAAAADwAYo+yA1lHwCZdtO81+LGJ5bG1cP65nspAAAAAPxN1dZ1ij7IEWUfAJm1u+j7zicHxpVD+uZ7OQAAAAD8zfrXHlD0QY4o+wDIpA8WfTd84oR8LwcAAACAiKh+d1NERLQ5rJuiD3JE2QdA5ij6AAAAAApP5VsvxaaVj0VExBH9P6vogxxR9gGQKYo+AAAAgMJT+dZL8dLvL4vWbTtHRESLlm1yvgZFH82Vsg+AzFD0AQAAABSe3UVf+8P7R9c+Z+VlDYo+mjNlHwCZoOgDAAAAKDwfLPpOOf8/o6RF65yvQdFHc6fsA6DgKfoAAAAACs+eRZ9z9EF+KPsAKGiKPgAAAIDCUwhF366anYo+iIhW+V4AADRE0QcAAABQeAqh6IuIeGvZr+O9nVsUfTR7yj4ACpKiDwAAAKDwFELRl+yqjoiIne9uiiEX3a/oo9nzMZ4AFBxFHwAAAEDhKYSi772dW+PtlY9HRMSRJ1ys6INQ9gFQYBR9AAAAAIWnUIq+l/8wLqp3lEdERGmHnjlfAxQiZR8ABUPRBwAAAFB4Cqno2/bOsujWZ1TO86GQKfsAKAiKPgAAAIDCU2hF3+BP3xutD+uW8zVAIVP2AZB3ij4AAACAwlOIRZ9z9MHelH0A5JWiDwAAAKDwKPogO5R9AOSNog8AAACg8Cj6IFsKpuybPn16lJSUxIQJExrc5q677oqPf/zj0aVLl+jSpUuMGjUq5s+fn7tFAtBkFH2QO+YsAIB0mLOAYqTog+wpiLJvwYIFceedd8agQYP2ud3cuXPj85//fDzxxBPx7LPPRu/eveOcc86JNWvW5GilADQFRR/kjjkLACAd5iygGCn63rdx+Zy85MLByHvZt3Xr1hg7dmzcdddd0aVLl31ue99998U111wTgwcPjgEDBsRPf/rT2LVrVzz++OM5Wi0Ah0rRB7ljzgIASIc5CyhGir73rVh0e2x685G8ZMPBaJXvBYwfPz7OP//8GDVqVNx0000HtO+7774b1dXVcfjhhze4TVVVVVRVVdVer6ysPOi1AtmyefPmuO+++1I7/tNPPx0REds2v5FaxvbK1UWVcfvzf475a8rj4oE9o1+Xw+K+xaubLGP55neb7FhQLMxZQFq2b98eL7zwQmrHX758eUQUzwyUZkaaxwYaZs4C0pL2nLV27dqIiNi4/I+1s0pERNXWdbH+tQeizWHdovNRH4vVr/zsoDO2bFwcERHla5+L5Qsbv9+ump3x1rJfx853N8WRJ1wcb6+eF2+vntekGY1Rvva5KF/zdBzW5fh4d/PrTXtwSElJkiRJvsJnzZoVU6dOjQULFkTbtm1j5MiRMXjw4Lj11lsbtf8111wTc+bMiSVLlkTbtm3r3Wby5MkxZcqUvW4fPXp0tG7d+lCWv0/z58+P4cOHp3b8YsrIVY6M5pWxefPmeOqpp1I7PoVr0KBB0adPn9SO7/diYWVUV1fH7Nmzo6KiIsrKylLLySJzlgwZhZlTDBnbt2+Pxx57LLXjU7jOOOOM/b6D6VAUw89HMWWYsxpmzpIhQ0ZazFnNlzmr+WSkNWPlrexbvXp1DBs2LB599NHazzY/kOFo+vTp8f3vfz/mzp27z89Gr++VUL179059WL3gggvioYceSu34xZSRqxwZzSvjvvvui8suuyyGH9U5/uWjH0ol4+cvrozHl2+Knh++LDr3HJZKRvm6hbHu1Xuj72lfj3ZlvTOf0atD27hgwJGpZCzbtDUeX7Ep7r333hg7dmwqGRF+LxZaRmVlZXTq1MmTUHswZ8mQUbg5xZDxwgsvxNChQ+PezwyNgd07ppLx0xdWxIyFK4pmBkozY3vl6lix4Ja4eljfOP2YrqlkLN/8btz4xNJYtGhRDBkyJJWMiOL4+SimDHNW/cxZMmTISFMu5qxp//NaPLB0XXTudXq069Qvqt/dFJtWPhat23aOrn3OipIWh/6CgvK1z8f28tejQ/dTomP3k/e7fbKrOt5e+XhU7yiPbn1GRevDujV5RmNs2bg4tm58ufaY2yuWR/map+PigT3jooFHNUnGnsxZzS8jrRkrbx/juWjRotiwYUOdb+CampqYN29e3HHHHVFVVRUtW7asd9+bb745pk+fHo899th+T4JcWloapaWlTbp2IDv+5aMfirEnp/PEytOr3o7Hl2+Kzj2HxZH9P5NKRkTEulfvjW59Ptlkg0s+M646rV9q5+m7b/HqeHzFplSODVljzgJyYWD3jjGkZ+dUjn1Ux3YREUUzA6WZsWXj4lix4JY4/Ziuqc29L6wrjxufWJrKsSFrzFlALqQ5Z3Vv/9ffLT0HXBKHdeoXL/3+sig74pQmPUffn578Vmwvfz269R0V/Yb9yz633X2Ovl01VTH0M79u9Dn6DiSjMVYsuj3WvXpv9Bv+9eg79K/HW7/st1G+5uk45cjO5iwKXt7KvrPOOisWL15c57YrrrgiBgwYENddd12Dg9H3v//9mDp1asyZMyeGDUvnnTQAAFlmzgIASIc5CygW2ytXxrL/uTHaH96/SYu+A7G76Nv2zrIY/Ol7G130NbUVi26P5fNvqVP0Qdbkrezr2LFjnHTSSXVua9++fXTt2rX29nHjxkWvXr1i2rRpERHxve99L/7t3/4tZs6cGX379o3169dHRESHDh2iQ4fc/zICAChE5iwAgHSYs4BiseqFGdGh+4mKPkUfRaJFvhewL6tWrYp169bVXp8xY0bs3LkzLr744ujZs2ft5eabb87jKgEAssecBQCQDnMWkAVtOhyp6FP0UUTy9s6++sydO3ef11esWJGztQAAFBNzFgBAOsxZQBb1GXyVok/RRxEp6Hf2AQAAAAAATatFq7Y5z1T0QXqUfQAAAAAAQGoUfZAuZR/AQXprW1W+l8AH/PmdbfleAgAAAAB7UPRB+pR9AAdh/prN8V+vrc/3Mvib+Ws2x7SnluV7GQAAAAB8gKIPckPZB3CA5q/ZHGf/8uno2q5NvpdCvP949C5rl++lAAAAAPA3u2p2KvogR5R9AAdgd7F0Uo+yOL//EfleTrP3wcfjm6cfn+/lAAAAAPA3by37taIPckTZB9BIHyyWZo8dEW1a+hWaT3s+Hu1at8z3kgAAAACavWRXdURE7Hx3k6IPcsQz1QCNsGex1LG0db6X1Kx5PAAAAAAKz3s7t8bbKx+PiIgjT7hY0Qc5ouwD2A/FUmHxeAAAAAAUnvd2bo2X/zAuqneUR0REaYeeeVmHoo/mSNkHsA+KpcLi8QAAAAAoPLuLvm3vLItufUblbR2KPporZR9AAxRLhcXjAQAAAFB4Plj0Df70vdH6sG55WYeij+ZM2QdQD8VSYfF4AAAAABSePYs+5+iD/FD2AexBsVRYPB4AAAAAhUfRB4WjVb4XAFBIFEuFxeMBAAAAUHgKpegrX/tclK95WtFHs+edfQB/o1gqLB4PAAAAgMJTKEVfRCj64G+UfQChWCo0Hg8AAACAwlMoRd+WjYsjIqJzr9MVfRDKPgDFUoHxeAAAAAAUnkIp+lYsuj22bnw5IiI6H/XRvKwBCo2yD2jWFEuFxeMBAAAAUHgKqehbPv+W6ND9lLzkQ6FS9gHNlmKpsHg8AAAAAApPoRV9/YZ/PTp2Pzkva4BCpewDmiXFUmHxeAAAAAAUnkIs+pyjD/ZWMGXf9OnTo6SkJCZMmNDgNkuWLInPfvaz0bdv3ygpKYlbb701Z+sDiodiqbB4PCB95iwAgHSYs4BipuiD7CiIsm/BggVx5513xqBBg/a53bvvvhvHHntsTJ8+PY488sgcrQ4oJoqlwuLxgPSZswAA0mHOAoqZog+yJe9l39atW2Ps2LFx1113RZcuXfa57WmnnRY/+MEP4nOf+1yUlpbmaIVAsVAsFRaPB6TPnAUAkA5zFlDMFH2QPa3yvYDx48fH+eefH6NGjYqbbrqpyY9fVVUVVVVVtdcrKyubPAMoXA8uXRfLN78bf6ncHr94aWX0aF8af9e3W9z2/JuHfOxFa8sjImJ75erYsnHxIR+vPtsrV0dExLbNb6Ry/FxnzF2xMSIilcfj5fUVh3wMKDbmLCBND7/+VizdtCWVY7+8vjwiimcGSjNj97GXb343XlhXnkrG0o3pPM6QZeYsIE0/fWFFHNWxXSrHXrimPCIiNi7/Y+2s8kG7anbGW8t+HTvf3RRHnnBxvL16Xry9et4BZex+nqx87XOxfOHBrbN87XNRvubp6Nzr9EiSiOULb2/yjP2uYc0zERGxdst2cxYFryRJkiRf4bNmzYqpU6fGggULom3btjFy5MgYPHhwoz67vG/fvjFhwoR9fiZ6RMTkyZNjypQpe90+evToaN06vXeRzJ8/P4YPH57a8YspI1c5MppXxsqVK+OVV15J7fgUrkGDBkWfPn1SO77fi4WVUV1dHbNnz46KioooKytLLSeLzFkyZBRmTjFkrFu3LhYuTOkZFQraGWecsd93MB2KYvj5KKYMc1bDzFkyZMhIi+ezmi9zVvPJSGvGyts7+1avXh3XXnttPProo9G2bdvUciZOnBj/+q//Wnu9srIyevfuHb/61a9SHVYvuOCCeOihh1I7fjFl5CpHRvPKuO++++Kyyy6Lvqd9PdqV9U4lo3zdwlj36r0yDiBjYLcO8cY7W+Pwdm3i0/2PjDYtm+7TpJdt2hqPr9gU3/zmN2Ps2LFNdtw9+b1YWBmVlZXRqVOn1I6fVeYsGTIKN6cYMnbPWQPPujXadzkulYxNK5+IFQtuKZoZKM2M7ZWrY8WCW+LqYX3j9GO6ppKxfPO7ceMTS+O2226LIUOGpJIRURw/H8WUYc6qnzlLhgwZabrpppvilVdeiaNOvCw6HTkslYx1f7o/ytc8HR26nxIdu59ce3uyqzreXvl4VO8oj259RkXrw7oddEb52udje/nre2U0xpaNi2Prxpf3u++hZOxP9bubYtPKx6Jlq7ZRU701Lh7YMy4aeFSTZuxmzmp+GWnNWHkr+xYtWhQbNmyo8w1cU1MT8+bNizvuuCOqqqqiZcuWh5xTWlrq89ChGevW55NN/gf/g9a9eq+MA8h4c/O2OK3X4amco+++xavj8RWbmvSYkFXmLCAX2nc5LrXZYfdHUxbLDJRmxpaNi2PFglvi9GO6xtiT0ykUX1hXHjc+sTSVY0PWmLOAXOh05LA4sv9nUjl2+bqFUb7m6ejWd1T0G/bX8+DtPkffrpqqGPqZXx/yOfr+9OS3Ynv563UyGmPFottj3av3NuocfQebsT+Vb70UL/3+sig74pToecIl8dqT18cpR3Y2Z1Hw8lb2nXXWWbF4cd1zXF1xxRUxYMCAuO6665pkMAKgsPRoX5pK0QfUZc4CAEiHOQsoNruLvm3vLIvBn773kIu+g7Vi0e2xfP4tjSr60rK76Gt/eP845fz/jE0rHs3LOuBg5K3s69ixY5x00kl1bmvfvn107dq19vZx48ZFr169Ytq0aRERsXPnznj11Vdr/3vNmjXx0ksvRYcOHeK449L5+BgAms4XTzlG0Qc5YM4CAEiHOQsoJoq+9+1Z9LVq0yEv64CDlbeyrzFWrVoVLVq8fz6ntWvXxqmnnlp7/eabb46bb745zjzzzJg7d24eVgjAgSht5VWuUCjMWQAA6TBnAVmwq2anou9vFH0Ug4Iq+/YccPa83rdv30iSJHcLAgAoEuYsAIB0mLOALHpr2a/jvZ1bFH2KPopEQZV9AAAAAABAOpJd1RERsfPdTTHkovsVfYo+ikSL/W8CAAAAAABk2Xs7t8bbKx+PiIgjT7hY0afoo4go+wAAAAAAoIi9t3NrvPyHcVG9ozwiIko79MzLOhR9kA5lHwAAAAAAFKndRd+2d5ZFtz6j8rYORR+kR9kHQFHYXl2T7yUAAAAAFJQPFn2DP31vtD6sW17WoeiDdCn7AMi8LVXV8f2nX8/3MgAAAAAKxp5Fn3P0KfooXso+ADJtS1V1jL7v2VhduT3fSwEAAAAoCIq+9yn6aA6UfQBk1u6i7383VMbEM/rnezkAAAAAeVcoRV/52ucUfZAjyj4AMumDRd+jXzg9PnR4+3wvCQAAACCvCqXoi4goX/O0og9yRNkHQObsWfQN79Ul30sCAAAAyKtCKfq2bFwcERGde52u6IMcUfYBkCmKPgAAAIC6CqXoW7Ho9ti68eWIiOh81EfzsgZFH82Rsg+AzFD0AQAAANRVSEXf8vm3RIfup+QlP0LRR/Ol7AMgExR9AAAAAHUVWtHXb/jXo2P3k/OyBkUfzZmyD4CCp+gDAAAAqKsQiz7n6IP8UPYBUNAUfQAAAAB1Kfrep+gDZR8ABUzRBwAAAFCXou99VVvXKfoglH0AFChFHwAAAEBdir661r/2gKIPQtkHQAFS9AEAAADUpeh7X/W7myIios1h3RR9EMo+AAqMog8AAACgLkXf+yrfeik2rXwsIiKO6P9ZRR+Esg+AAqLoAwAAAKhL0fe+yrdeipd+f1m0bts5IiJatGyTl3VAoWl02bd27do01xHTp0+PkpKSmDBhwj63u//++2PAgAHRtm3bOPnkk+Phhx9OdV0A5Iaij+bMnAUA0PTSnrEizFlA+hR979td9LU/vH907XNWXtYAharRZd+JJ54YM2fOTGURCxYsiDvvvDMGDRq0z+2eeeaZ+PznPx//+I//GC+++GJcdNFFcdFFF8X//u//prIuAHJD0UdzZ84CAGh6ac5YEeYsIH2Kvvd9sOg75fz/jJIWrfOyDihUjS77pk6dGl/5ylfikksuiXfeeafJFrB169YYO3Zs3HXXXdGly76f3L3tttti9OjR8X//7/+NgQMHxne+850YMmRI3HHHHU22HgByS9EH5iwAgDSkNWNFmLOA9Cn63rdn0eccfbC3Vo3d8Jprrolzzz03/vEf/zE+/OEPx1133RVjxow55AWMHz8+zj///Bg1alTcdNNN+9z22WefjX/913+tc9unPvWpePDBBxvcp6qqKqqqqmqvV1ZWHtJ6gWzZtvmN1I69vXK1jAPMmLtiY53bq96riXteXhUbtlXF5YP7xB//vCH++OcNB5Xx8vqKQ14n5Is5C8iiYplPsp6x+9hPr3o7tYzlm99N7diQprRmrAhzFpCuDX9+ON58/vux891NceQJF8fbq+fF26vnNcmxt2xcHBER5Wufi+UL971t+drnonzN09G51+mRJBHLF97e5Bn7U7V1Xax/7YFoc1i36HzUx2L1Kz9r8oyGbH17aUREzF2+cT9bHry1W7andmyal5IkSZID3emOO+6Ir33tazFw4MBo1apuX/jCCy80+jizZs2KqVOnxoIFC6Jt27YxcuTIGDx4cNx66631bt+mTZu455574vOf/3ztbf/+7/8eU6ZMibfeeqvefSZPnhxTpkzZ6/bRo0dH69bpvdV3/vz5MXz48NSOX0wZucqR0bwyVq5cGa+88kpqx6dwDRo0KPr06ZPa8f1eLKyM6urqmD17dlRUVERZWVlqOblkztq/YvjelVF4GbnKKYYMc1bhad2uW5T1GJxqxtsrH4thw4ZFz549U8sohp+PYsootjmrqWasCHOWDBky0rN06dJ44430XiRE4SqG57NkNE5aM1aj39m328qVK+M3v/lNdOnSJS688MK9BqTGWr16dVx77bXx6KOPRtu2bQ/qGI0xceLEOq+eqqysjN69e8evfvWrVIfVCy64IB566KHUjl9MGbnKkdG8Mu6777647LLLou9pX492Zb1TyShftzDWvXqvjEZm7KhYER8acX0qx99t4QOfjm9+85sxduzY1DL8XiysjMrKyujUqVNqx881c1bjFMP3rozCy8hVTjFkmLMKL2PntvUx6Ly7Uzn+bk/M6BMTJkzI/Jwlo/GKac5qqhkrwpwlQ4aMdDNuuummuPHGGyOiRXTre060Pqxbk2eUr30+tpe/Hh26nxIdu59c7zZbNi6OrRtf3uc2h5qxP9XvbopNKx+L1m07R9c+Z+11jr6myNifzWufjR3lf46SFm1iwJnTo33X/k2esW3zG7H08QlxySWXxA033NDkx9+tWH5GiiEjrRnrgKabu+66K77+9a/HqFGjYsmSJdG9e/eDDl60aFFs2LAhhgwZUntbTU1NzJs3L+64446oqqqKli1b1tnnyCOP3OsVT2+99VYceeSRDeaUlpZGaWnpQa8TyLZufT6Z2h/8iIh1r94ro5E2bFuf6vEh68xZQNYUw3xSLBkb3vh9aseGrGvKGSvCnAXkRt/Tro1+wyakcuw/Pfmt2F7+enTrOyr6Ddv7HHwrFt0e616995DO0be/jP3ZfY6+siNOafAcfYeasT/v7dwaz808MyIi+gwdH0cO+GyTZ0BTanTZN3r06Jg/f37ccccdMW7cuEMOPuuss2Lx4sV1brviiitiwIABcd111+01GEVEjBgxIh5//PGYMGFC7W2PPvpojBgx4pDXAwCQL+YsAICm19QzVoQ5C8iNdmXpfZzjvqxYdHssn3/LIRV9h2p30df+8P4NFn1pe2/n1nj5D+Oiekd5ROTv8YAD0eiyr6amJl555ZU4+uijmyS4Y8eOcdJJJ9W5rX379tG1a9fa28eNGxe9evWKadOmRUTEtddeG2eeeWbccsstcf7558esWbNi4cKF8R//8R9NsiYAgHwwZwEANL2mnrEizFlA8VL0/dXuom/bO8uiW59RsWnF7JyvAQ5Gi8Zu+OijjzbpcNQYq1atinXr1tVe/9jHPhYzZ86M//iP/4hTTjklHnjggXjwwQf3GrIAALLEnAUA0PTyMWNFmLOA7FH0/dUHi77Bn743lXMmQloO/ozEKZg7d+4+r0dEXHLJJXHJJZfkZkEAAEXCnAUAkA5zFpBlir6/2rPoKzticKz90/05XwccrEa/sw8AAAAAACgOir6/qq/og6wpqHf2AQAAAAAA6Spf+1yUr3la0afoo0h4Zx8AAAAAADQjij5FH8VF2QcAAAAAAM3Alo2LIyKic6/TFX0FUPStXTorL7kUH2UfAAAAAAAUuRWLbo+tG1+OiIjOR300L2tQ9L1vxaLbY+2Se/OSTfFR9gEAAAAAQBFbsej2WD7/lujQ/ZS8rUHR977dj8dRJ16Wl3yKj7IPAAAAAACK1O5iqd/wr0fH7ifnZQ2Kvvd98PE4auDn8rIGio+yDwAAAAAAitAHiyXn6Cusoi9fjwfFSdkHAAAAAABFphCKJUXf+wrh8aB4KfsAAAAAAKCIFEKxVLV1naLvbwrh8aC4KfsAAAAAAKBIFEqxtP61BxR9UTiPB8VN2QcAAAAAAEWgEIql6nc3RUREm8O6KfoK4PGgeVD2AQAAAABAxhVCsVT51kuxaeVjERFxRP/PKvoUfeSIsg8AAAAAADKsEIqlyrdeipd+f1m0bts5IiJatGyT8zUo+miulH0AAAAAAJBRhVAs7S762h/eP7r2OSsva1D00Zwp+wAAAAAAIIMKoVj6YNF3yvn/GSUtWud8DYo+mjtlHwAAAAAAZEwhFEt7Fn3O0afoIz+UfQAAAAAAkCGFUCwVQtG3q2anog8iolW+FwAAAAAAADROIRRLhVD0RUS8tezX8d7OLYo+mj1lHwAAAAAAZEAhFEuFUPQlu6ojImLnu5tiyEX3K/po9vL6MZ4zZsyIQYMGRVlZWZSVlcWIESPikUce2ec+t956a5xwwgnRrl276N27d3zta1+LHTt25GjFAACFz4wFAJAOcxaQT4VQLBVC0ffezq3x9srHIyLiyBMuVvRB5PmdfUcffXRMnz49jj/++EiSJO6555648MIL48UXX4wTTzxxr+1nzpwZ119/ffzsZz+Lj33sY7Fs2bK4/PLLo6SkJH74wx/m4R4AABQeMxYAQDrMWUC+FEKxVChF38t/GBfVO8ojIqK0Q8+cryGiMB4P+KC8ln1jxoypc33q1KkxY8aMeO655+odkJ555pk4/fTT49JLL42IiL59+8bnP//5eP7553OyXgCALDBjAQCkw5wF5EMhFEuFVPRte2dZdOszKjatmJ3zNUQUxuMBeyqYc/bV1NTE/fffH9u2bYsRI0bUu83HPvaxuPfee2P+/PkxfPjwePPNN+Phhx+OL3zhCw0et6qqKqqqqmqvV1ZWNvnagcK1aeUTsW3zG6kcu3zdwoiI1I4fEbG9cnXRZOx6b0ds2bg4tQygfmnNWBHmLGjuzFmFlQHknjkLSEvF+oW1/71x+ZzY9OYj0e3Yc6Ntx96xftlvD+nY2yuWR0RE+drnYvnC/Wz8N1Vb18X61x6INod1i85HfSxWv/KzfW6/+/mfA8nYn101O+OtZb+One9uiiNPuDi2bFrS5Bl72n0/dmxZXfvfa5fOirVL7o2jTrwsuh7zyUN+rivNOZHmpSRJkiSfC1i8eHGMGDEiduzYER06dIiZM2fGeeed1+D2t99+e3zjG9+IJEnivffei6uuuipmzJjR4PaTJ0+OKVOm7HX76NGjo3Xr1k1yH+qze4hLU7Fk5CpHRvPKWLlyZbzyyiupHZ/CNWjQoOjTp09qx/d7sbAyqqurY/bs2VFRURFlZWWp5WRR2jNWhDlLRnFl5CqnGDLMWc3XsGHDomfP9D4qqxh+Poopw5zVMHOWDBky0mLOar6K4fksGY2T1oyV97Jv586dsWrVqqioqIgHHnggfvrTn8aTTz4ZH/7wh/fadu7cufG5z30ubrrppvjIRz4Sb7zxRlx77bXx5S9/OW688cZ6j1/fK6F69+6d+rB6wQUXxEMPPZTa8YspI1c5MppXxn333ReXXXZZnNWvW/TvWvdjBRauLY8Fa8vjtKM6x7CjOh90xrwVm2LJpq3R88OXReeeww5xxfUrX7cw1r16b/Q97evRrqx35jOGH9U5hu7xNW+qx2PZ21vj8eWb4t57742xY8ce2oL3we/FwsqorKyMTp06eRKqHmnPWBHmLBnFlZGrnGLI2Nec1VTMWY23vXJ1rFhwS1w8sGeccmTnVDLWbtkeMxauiEWLFsWQIUNSyYgojp+PYsowZzXMnCVDhoy0vPDCCzF06NC4eGDP6N6+NJWMJ1dsilc3bY3OvU6Pdp367XPb6nc3xaaVj0Xrtp2ja5+zoqRF415sUL72+dhe/np06H5KdOx+8iGtN9lVHW+vfDyqd5RHtz6jovVh3Zo8oyHbK5ZH+Zqn47SenWNYr86pZGzcVhUPLF1nzmpGGWnNWHn/GM82bdrEcccdFxERQ4cOjQULFsRtt90Wd955517b3njjjfGFL3whrrzyyoiIOPnkk2Pbtm3xT//0T/Gtb30rWrRosdc+paWlUVqazi9GoPBdcWqfGHvy+0+s3DTvtViwdkV855MD44ZPnHBIx77mDy/Fkk1bo3PPYXFk/88c6lIbtO7Ve6Nbn0+mNrjkMmPMCT3rfN2b8vG4b/HqeHz5pkNdJhSNtGesCHMWNHd7zllNyZzVeFs2Lo4VC26JiwYeldrj8cK68pixcEUqx4YsMmcBaZv48RNiSM/OqRz7mj+8FK9u2ho9B1yyzzlr9zn6yo445YDP0fenJ78V28tfj259R0W/YQd/Trvd5+jbVVMVQz/z6yg7YnCTZ+zL+mW/jfI1T8cFA3oe8vNWDXlhXXk8sHRdKsemeal/osijXbt21Xnl0ge9++67ew1BLVu2jIiIPL9BEciAm+a9Fjc+sbRJiiUOnccDcsuMBQCQDnMWUGx2F33tD+9/wEVfU9ld9G17Z1kM/vS9dYo+YG95fWffxIkT49xzz41jjjkmtmzZEjNnzoy5c+fGnDlzIiJi3Lhx0atXr5g2bVpERIwZMyZ++MMfxqmnnlr70Qc33nhjjBkzpnZQAqiPYqmweDwgXWYsAIB0mLOAYqfoe9/G5XPykgsHI69l34YNG2LcuHGxbt266NSpUwwaNCjmzJkTZ599dkRErFq1qs6rn2644YYoKSmJG264IdasWRPdu3ePMWPGxNSpU/N1F4AMUCwVFo8HpM+MBQCQDnMWUMwUfe9bsej22PTmI3nJhoOR17Lv7rvv3ue/z507t871Vq1axaRJk2LSpEkprgooJg8uXRsPLF2nWCoQc1dsjMeXb/J4QMrMWAAA6TBnAcVK0fe+FYtuj+Xzb4lux56r8CMzCu6cfQBNSdFXWBR9AAAAAIVF0fe+3UVfv+Ffj+79PpWXNcDBUPYBRe3igT0VSwXkrH7dPB4AAAAABULR974PFn19h/5LXtYAB0vZBxS1iwYele8l8AEj+3bP9xIAAAAACEXfByn6yDplHwAAAAAANCPbK1cq+v5G0UcxUPYBAAAAAEAzsuqFGYq+UPRRPJR9AAAAAADQjLTpcKSiT9FHEVH2AQAAAABAM9Jn8FWKPkUfRUTZBwAAAAAAzUiLVm1znqnog/Qo+wAAAAAAgNQo+iBdyj6Ag/TWtqp8L4EP+PM72/K9BAAAAAD2oOiD9Cn7AA7C/DWb479eW5/vZfA389dsjmlPLcv3MgAAAAD4AEUf5IayD+AAzV+zOc7+5dPRtV2bfC+FeP/x6F3WLt9LAQAAAOBvdtXsVPRBjij7AA7A7mLppB5lcX7/I/K9nGbvg4/HN08/Pt/LAQAAAOBv3lr2a0Uf5IiyD6CRPlgszR47Itq09Cs0n/Z8PNq1bpnvJQEAAAA0e8mu6oiI2PnuJkUf5IhnqgEaYc9iqWNp63wvqVnzeAAAAAAUnvd2bo23Vz4eERFHnnCxog9yRNkHsB+KpcLi8QAAAAAoPO/t3Bov/2FcVO8oj4iI0g4987IORR/NkbIPYB8US4XF4wEAAABQeHYXfdveWRbd+ozK2zoUfTRXyj6ABiiWCovHAwAAAKDwfLDoG/zpe6P1Yd3ysg5FH82Zsg+gHoqlwuLxAAAAACg8exZ9ztEH+ZHXsm/GjBkxaNCgKCsri7KyshgxYkQ88sgjDW4/cuTIKCkp2ety/vnn53DVQLFTLBUWjwccHHMWAEDTM2MBvE/RB4WjVT7Djz766Jg+fXocf/zxkSRJ3HPPPXHhhRfGiy++GCeeeOJe2//mN7+JnTt31l5/++2345RTTolLLrkkl8sGiphiqbB4PODgmbMAAJqeGQvgrwql6Ctf+1yUr3la0Uezl9eyb8yYMXWuT506NWbMmBHPPfdcvQPS4YcfXuf6rFmz4rDDDjMgAU1CsVRYPB5waMxZAABNz4wFUDhFX0Qo+uBv8lr2fVBNTU3cf//9sW3bthgxYkSj9rn77rvjc5/7XLRv377BbaqqqqKqqqr2emVl5SGvFciOp1e93ajt/vzOtpj21LLoXdYurhh8TDy0bP1+91n29taIiChft/CQ1rgvu4+9bfMbqWVsr1yds4yX11fEfYtX73f7g3k8GvtYQ3NkzgLSkObf3t1z1vbK1bFl4+JUMnI5A6WZsfvYyze/Gy+sK08lY+nGLakcF7IurRkrwpwFzV2af3s3bvvr75aK9Qf3fNau93bEypd+Eju3ro9jhlwd71Ysj3crltfZZvvfrpevfS6Wp/S02aYVj0VERGnHYyJJIpYvvL3JM7a+vTQiItZu2W7OouCVJEmS5HMBixcvjhEjRsSOHTuiQ4cOMXPmzDjvvPP2u9/8+fPjIx/5SDz//PMxfPjwBrebPHlyTJkyZa/bR48eHa1bp/cukfnz5+9zXTJynyOjeWVs3rw5nnrqqdSOT+E644wzokuXLqkd3+/Fwsqorq6O2bNnR0VFRZSVlaWWk1XmLBkyCi+nGDLMWc3XqFGjol27dqkdvxh+Poopw5zVsLRnrAhzlgwZzTVj+/bt8dhjj6WaQWEyZzWfjLRmrLyXfTt37oxVq1ZFRUVFPPDAA/HTn/40nnzyyfjwhz+8z/2+8pWvxLPPPhuvvPLKPrer75VQvXv3Tn1YveCCC+Khhx5K7fjFlJGrHBnNL+PjH/94XHXVVakd/+mnn44ZM2bEWf26Rf+uHQ76ODtrdsUflr0Vb2/fGWNOODKOaF9a+2/zVmyKJZu2Rs8PXxadew5rimXvpXzdwlj36r3R97SvR7uy3qlkbK9cHSsW3BJXX311nH766alkRET85Cc/if/5n/9J7fgRfi8WWkZlZWV06tTJk1ANMGfJkFF4OcWSkfactXz58rjxxhvj6mF946iO6TzpMXf5xnh8xaZUZ6Bczlnf+c53GlU2HKzrrrsuHn300dSOH1E8Px/FkmHOaljaM1aEOUuGjOaaERFx9tlnx/e+973Ujr906dK47LLL4uKBPaP7B56DakpPrtgUr27aGp17nR7tOvVr0mNv2bg4tm58OVq17Rrv7Xg7OnQ/JTp2P7lJM3bbXrE8ytc8HVdffXVceeWVqWREmLOaW0ZaM1beP8azTZs2cdxxx0VExNChQ2PBggVx2223xZ133tngPtu2bYtZs2bFt7/97f0ev7S0NEpL0/mlBRS2Ll26xNixY1PNmDFjRlxxap8Ye/LBPXmzpao6Rt/3bLz7Xk089aVPxPBedd+Rds0fXoolm7ZG557D4sj+n2mKJddr3av3Rrc+n0xtONqycXGsWHBLnH766ak+Jr/61a9SOzZkkTkLSEvac9YLL7wQN954Y1w5pG8M6dk5tZzHV2xKdQaKyN2c1a9fvxgyZEgqGRGR6ivNIWvSnrEizFnQnLVr1y7Vv+m7Tfz4CanNWdf84aV4ddPW6DngkiZ9PmvFottj3av3Rr/hX48dW9/665zVd1T0G5bO+frWL/ttlK95Oo466ihzFgWvRb4XsKddu3bVeeVSfe6///6oqqqKyy67LEerAmh6u4u+/91QGY9+4fS9ij6ApmbOAgBoemYsgPStWHR7LJ9/S/Qb/vXoOzSdcg+yLK/v7Js4cWKce+65ccwxx8SWLVti5syZMXfu3JgzZ05ERIwbNy569eoV06ZNq7Pf3XffHRdddFF07do1H8sGOGSKPiBt5iwAgKZnxgLIPUUf7F9ey74NGzbEuHHjYt26ddGpU6cYNGhQzJkzJ84+++yIiFi1alW0aFH3zYevvfZaPPXUU/HHP/4xH0sGOGSKPiAXzFkAAE3PjAWQW4o+aJy8ln133333Pv997ty5e912wgknRJIkKa0IIF2KPiBXzFkAAE3PjAWQO4o+aLyCO2cfQLFS9AEAAADA/hVC0be9cmVecuFgKPsAckDRBwAAAAD7VwhFX+VbL8WqF2bkJRsOhrIPIGWKPgAAAADYv0Ip+l76/WXRpsORecmHg6HsA0iRog8AAAAA9q+Qir72h/ePPoOvyssa4GAo+wBSougDAAAAgP0rtKLvlPP/M1q0apuXdcDBUPYBpEDRBwAAAAD7V4hFX6s2HfKyDjhYyj6AJqboAwAAAID9U/RB01D2ATQhRR8AAAAA7J+iD5qOsg+giSj6AAAAAGD/FH3QtJR9AE1A0QcAAAAA+6fog6an7AM4RNuraxR9AAAAALAfij5IR6t8LwAg677/9Ovx1rYqRR8AAAAANEDRB+lR9gEcotWV2+PJyz+u6AMAAACAeij6IF0+xhPgEE08o7+iDwAAAADqoeiD9Cn7AA7Rhw5vn+8lAAAAAEDBUfRBbvgYTwAAAAAAoEltXD4nNr35iKIPcsA7+wAAAAAAgCal6IPcUfYBAAAAAABNqtux5yr6IEeUfQAAAAAAQJPq3u9TeclV9NEcKfsAAAAAAIDMU/TRXOW17JsxY0YMGjQoysrKoqysLEaMGBGPPPLIPvcpLy+P8ePHR8+ePaO0tDT69+8fDz/8cI5WDABQ+MxYAADpMGcBFC5FH81Zq3yGH3300TF9+vQ4/vjjI0mSuOeee+LCCy+MF198MU488cS9tt+5c2ecffbZ0aNHj3jggQeiV69esXLlyujcuXPuFw+QAwvXlud7CUAGmbEAANJhzgIoTIo+mru8ln1jxoypc33q1KkxY8aMeO655+odkH72s5/FO++8E88880y0bt06IiL69u2bi6UC5NxN816LBco+4CCYsQAA0mHOAig8ij7Ic9n3QTU1NXH//ffHtm3bYsSIEfVu89BDD8WIESNi/Pjx8bvf/S66d+8el156aVx33XXRsmXLevepqqqKqqqq2uuVlZWprB9ovp5e9XaTH/PBpWvjgaXr4tjOh8Wb5e/G9srVsWXj4ibPiYjYXrk6IiK2bX4jleOnfWxg39KasSLMWUD6lm7cktqx127ZHhHpzinmLChu5iwgy9KcszZu++vvr4r1C1PL2F6xPCIiytc8E6te+HG06XBk9Dzhkti04tEmy0hz/dDUSpIkSfK5gMWLF8eIESNix44d0aFDh5g5c2acd9559W47YMCAWLFiRYwdOzauueaaeOONN+Kaa66Jf/mXf4lJkybVu8/kyZNjypQpe90+evTo2ldUpWH+/PkxfPjw1I5fTBm5ypEho6lt3rw5nnrqqdSOX4zOOOOM6NKlS2rHL4bvq1zmFENGdXV1zJ49OyoqKqKsrCy1nCxKe8aKMGfJKK6MXOXIaJzt27fHY489ltrxi5E5S0ZTM2c1zJwlQ4aMLOeYsw7csGHDomfPnqkdv1i+f2U0TlozVt7Lvp07d8aqVauioqIiHnjggfjpT38aTz75ZHz4wx/ea9v+/fvHjh07Yvny5bWvfvrhD38YP/jBD2LdunX1Hr++V0L17t079WH1ggsuiIceeii14xdTRq5yZMhIw8c//vG46qqrUs34/ve/H9/85jczn/GTn/wk/ud//ifVjGL5vspVTjFkVFZWRqdOnTwJVY+0Z6wIc5aM4srIVY6Mxjv77LPje9/7XqoZX/nKV2LChAmpZpizZGQ1w5zVMHOWDBkysp6TiznriiuuiEsuuSTVjHvuuSe++MUvpprxu9/9LhYsWJBqRrF8/8ponLRmrLx/jGebNm3iuOOOi4iIoUOHxoIFC+K2226LO++8c69te/bsGa1bt67zMQcDBw6M9evXx86dO6NNmzZ77VNaWhqlpaXp3QGgWevSpUuMHTs21Yxf/epXRZMB5E7aM1aEOQtIV7t27WLIkCGpZvTs2dOcBRwwcxaQdbmYs/r06RM33HBDqhnz58/PSQZkQYt8L2BPu3btqvPKpQ86/fTT44033ohdu3bV3rZs2bLo2bNng8MRAABmLACAtJizAIB8y2vZN3HixJg3b16sWLEiFi9eHBMnToy5c+fWvupx3LhxMXHixNrtr7766njnnXfi2muvjWXLlsUf/vCH+O53vxvjx4/P110AACg4ZiwAgHSYswCAQpTXj/HcsGFDjBs3LtatWxedOnWKQYMGxZw5c+Lss8+OiIhVq1ZFixbv95G9e/eOOXPmxNe+9rUYNGhQ9OrVK6699tq47rrr8nUXAAAKjhkLACAd5iwAoBDltey7++679/nvc+fO3eu2ESNGxHPPPZfSigAAss+MBQCQDnMWAFCICu6cfQAAAAAAAEDjKPsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyKi8ln0zZsyIQYMGRVlZWZSVlcWIESPikUceaXD7X/ziF1FSUlLn0rZt2xyuGAAgG8xZAABNz4wFABSiVvkMP/roo2P69Olx/PHHR5Ikcc8998SFF14YL774Ypx44on17lNWVhavvfZa7fWSkpJcLRcAIDPMWQAATc+MBQAUoryWfWPGjKlzferUqTFjxox47rnnGhyQSkpK4sgjj8zF8gAAMsucBQDQ9MxYAEAhKphz9tXU1MSsWbNi27ZtMWLEiAa327p1a/Tp0yd69+4dF154YSxZsmSfx62qqorKyso6FwCA5sScBQDQ9NKasSLMWQDAgSlJkiTJ5wIWL14cI0aMiB07dkSHDh1i5syZcd5559W77bPPPhuvv/56DBo0KCoqKuLmm2+OefPmxZIlS+Loo4+ud5/JkyfHlClT9rp99OjR0bp16ya9Lx80f/78GD58eGrHL6aMXOXIkCFDRlYycpVTDBnV1dUxe/bsqKioiLKystRyssqcJUNG4eXIkCFDRlYyzFkNS3vGijBnyZDRXDNylSNDhoz8ZaQ2YyV5VlVVlbz++uvJwoULk+uvvz7p1q1bsmTJkkbtu3PnzuRDH/pQcsMNNzS4zY4dO5KKioray+rVq5OISCoqKprqLtRrzJgxqR6/mDJylSNDhgwZWcnIVU4xZFRUVOTk73pWmbNkyCi8HBkyZMjISoY5q2Fpz1hJYs6SIaO5ZuQqR4YMGfnLSGvGyus5+yIi2rRpE8cdd1xERAwdOjQWLFgQt912W9x555373bd169Zx6qmnxhtvvNHgNqWlpVFaWtpk6wUAyApzFgBA00t7xoowZwEAB6Zgztm3265du6KqqqpR29bU1MTixYujZ8+eKa8KACD7zFkAAE3PjAUA5Fte39k3ceLEOPfcc+OYY46JLVu2xMyZM2Pu3LkxZ86ciIgYN25c9OrVK6ZNmxYREd/+9rfjox/9aBx33HFRXl4eP/jBD2LlypVx5ZVX5vNuAAAUHHMWAEDTM2MBAIUor2Xfhg0bYty4cbFu3bro1KlTDBo0KObMmRNnn312RESsWrUqWrR4/82Hmzdvji9/+cuxfv366NKlSwwdOjSeeeaZ+PCHP5yvuwAAUJDMWQAATc+MBQAUoryWfXffffc+/33u3Ll1rv/oRz+KH/3oRymuCACgOJizAACanhkLAChEBXfOPgAAAAAAAKBxlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyStkHAAAAAAAAGaXsAwAAAAAAgIxS9gEAAAAAAEBGKfsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZFRey74ZM2bEoEGDoqysLMrKymLEiBHxyCOPNLj9b37zmxg2bFh07tw52rdvH4MHD45f/vKXOVwxAEA2mLMAAJqeGQsAKESt8hl+9NFHx/Tp0+P444+PJEninnvuiQsvvDBefPHFOPHEE/fa/vDDD49vfetbMWDAgGjTpk38/ve/jyuuuCJ69OgRn/rUp/JwDwAACpM5CwCg6ZmxAIBClNeyb8yYMXWuT506NWbMmBHPPfdcvQPSyJEj61y/9tpr45577omnnnrKgAQA8AHmLACApmfGAgAKUcGcs6+mpiZmzZoV27ZtixEjRux3+yRJ4vHHH4/XXnstPvGJTzS4XVVVVVRWVta5AAA0J+YsAICml9aMFWHOAgAOTEmSJEk+F7B48eIYMWJE7NixIzp06BAzZ86M8847r8HtKyoqolevXlFVVRUtW7aMf//3f48vfelLDW4/efLkmDJlyl63jx49Olq3bt0k96E+8+fPj+HDh6d2/GLKyFWODBkyZGQlI1c5xZBRXV0ds2fPjoqKiigrK0stJ6vMWTJkFF6ODBkyZGQlw5zVsLRnrAhzlgwZzTUjVzkyZMjIX0ZqM1aSZ1VVVcnrr7+eLFy4MLn++uuTbt26JUuWLGlw+5qamuT1119PXnzxxeTmm29OOnXqlDzxxBMNbr9jx46koqKi9rJ69eokIpKKiooU7s37xowZk+rxiykjVzkyZMiQkZWMXOUUQ0ZFRUVO/q5nlTlLhozCy5EhQ4aMrGSYsxqW9oyVJOYsGTKaa0aucmTIkJG/jLRmrLyesy8iok2bNnHcccdFRMTQoUNjwYIFcdttt8Wdd95Z7/YtWrSo3X7w4MGxdOnSmDZt2l6fgb5baWlplJaWprJ2AIBCZs4CAGh6ac9YEeYsAODAFMw5+3bbtWtXVFVVpbY9AEBzZc4CAGh6ZiwAIN/y+s6+iRMnxrnnnhvHHHNMbNmyJWbOnBlz586NOXPmRETEuHHjolevXjFt2rSIiJg2bVoMGzYsPvShD0VVVVU8/PDD8ctf/jJmzJiRz7sBAFBwzFkAAE3PjAUAFKK8ln0bNmyIcePGxbp166JTp04xaNCgmDNnTpx99tkREbFq1apo0eL9Nx9u27YtrrnmmvjLX/4S7dq1iwEDBsS9994b/+f//J983QUAgIJkzgIAaHpmLACgEOW17Lv77rv3+e9z586tc/2mm26Km266KcUVAQAUB3MWAEDTM2MBAIWo4M7ZBwAAAAAAADSOsg8AAAAAAAAyStkHAAAAAAAAGaXsAwAAAAAAgIxS9gEAAAAAAEBGKfsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjMpr2TdjxowYNGhQlJWVRVlZWYwYMSIeeeSRBre/66674uMf/3h06dIlunTpEqNGjYr58+fncMUAANlgzgIAaHpmLACgEOW17Dv66KNj+vTpsWjRoli4cGH83d/9XVx44YWxZMmSerefO3dufP7zn48nnnginn322ejdu3ecc845sWbNmhyvHACgsJmzAACanhkLAChErfIZPmbMmDrXp06dGjNmzIjnnnsuTjzxxL22v+++++pc/+lPfxq//vWv4/HHH49x48alulYAgCwxZwEAND0zFgBQiPJa9n1QTU1N3H///bFt27YYMWJEo/Z59913o7q6Og4//PAGt6mqqoqqqqra65WVlYe8VgCALDFnAQA0vbRmrAhzFgBwYEqSJEnyuYDFixfHiBEjYseOHdGhQ4eYOXNmnHfeeY3a95prrok5c+bEkiVLom3btvVuM3ny5JgyZcpet48ePTpat259SGvfl/nz58fw4cNTO34xZeQqR4YMGTKykpGrnGLIqK6ujtmzZ0dFRUWUlZWllpNV5iwZMgovR4YMGTKykmHOaljaM1aEOUuGjOaakascGTJk5C8jtRkrybOqqqrk9ddfTxYuXJhcf/31Sbdu3ZIlS5bsd79p06YlXbp0SV5++eV9brdjx46koqKi9rJ69eokIpKKioqmugv1GjNmTKrHL6aMXOXIkCFDRlYycpVTDBkVFRU5+bueVeYsGTIKL0eGDBkyspJhzmpY2jNWkpizZMhorhm5ypEhQ0b+MtKasfL+MZ5t2rSJ4447LiIihg4dGgsWLIjbbrst7rzzzgb3ufnmm2P69Onx2GOPxaBBg/Z5/NLS0igtLW3SNQMAZIE5CwCg6aU9Y0WYswCAA5P3sm9Pu3btqvOZ5Hv6/ve/H1OnTo05c+bEsGHDcrgyAIBsM2cBADQ9MxYAkG95LfsmTpwY5557bhxzzDGxZcuWmDlzZsydOzfmzJkTERHjxo2LXr16xbRp0yIi4nvf+17827/9W8ycOTP69u0b69evj4iIDh06RIcOHfJ2PwAACo05CwCg6ZmxAIBClNeyb8OGDTFu3LhYt25ddOrUKQYNGhRz5syJs88+OyIiVq1aFS1atKjdfsaMGbFz5864+OKL6xxn0qRJMXny5FwuHQCgoJmzAACanhkLAChEeS377r777n3++9y5c+tcX7FiRXqLAQAoIuYsAICmZ8YCAApRi/1vAgAAAAAAABQiZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyKq9l34wZM2LQoEFRVlYWZWVlMWLEiHjkkUca3H7JkiXx2c9+Nvr27RslJSVx66235m6xAAAZYcYCAEiHOQsAKER5LfuOPvromD59eixatCgWLlwYf/d3fxcXXnhhLFmypN7t33333Tj22GNj+vTpceSRR+Z4tQAA2WDGAgBIhzkLAChErfIZPmbMmDrXp06dGjNmzIjnnnsuTjzxxL22P+200+K0006LiIjrr78+J2sEAMgaMxYAQDrMWQBAIcpr2fdBNTU1cf/998e2bdtixIgRTXbcqqqqqKqqqr1eWVnZZMcGACh0ac1YEeYsAKB5M2cBAIWiJEmSJJ8LWLx4cYwYMSJ27NgRHTp0iJkzZ8Z555233/369u0bEyZMiAkTJuxzu8mTJ8eUKVP2un306NHRunXrg132fs2fPz+GDx+e2vGLKSNXOTJkyJCRlYxc5RRDRnV1dcyePTsqKiqirKwstZwsSnvGijBnySiujFzlyJAhQ0ZWMsxZDTNnyZAhI+s5MmTIyF9GajNWkmdVVVXJ66+/nixcuDC5/vrrk27duiVLlizZ7359+vRJfvSjH+13ux07diQVFRW1l9WrVycRkVRUVDTB6hs2ZsyYVI9fTBm5ypEhQ4aMrGTkKqcYMioqKnLydz2L0p6xksScJaO4MnKVI0OGDBlZyTBnNcycJUOGjKznyJAhI38Zac1Yef8YzzZt2sRxxx0XERFDhw6NBQsWxG233RZ33nlnkxy/tLQ0SktLm+RYAABZkfaMFWHOAgCaJ3MWAFBoWuR7AXvatWtXnc8kBwDg0JmxAADSYc4CAPItr+/smzhxYpx77rlxzDHHxJYtW2LmzJkxd+7cmDNnTkREjBs3Lnr16hXTpk2LiIidO3fGq6++Wvvfa9asiZdeeik6dOhQ+4oqAIDmzowFAJAOcxYAUIjyWvZt2LAhxo0bF+vWrYtOnTrFoEGDYs6cOXH22WdHRMSqVauiRYv333y4du3aOPXUU2uv33zzzXHzzTfHmWeeGXPnzs318gEACpIZCwAgHeYsAKAQ5bXsu/vuu/f573sOPX379o0kSVJcEQBA9pmxAADSYc4CAApRwZ2zDwAAAAAAAGgcZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyStkHAAAAAAAAGZXXsm/atGlx2mmnRceOHaNHjx5x0UUXxWuvvbbPfaqrq+Pb3/52fOhDH4q2bdvGKaecErNnz87RigEACp8ZCwAgHeYsAKAQ5bXse/LJJ2P8+PHx3HPPxaOPPhrV1dVxzjnnxLZt2xrc54Ybbog777wz/r//7/+LV199Na666qr4zGc+Ey+++GIOVw4AULjMWAAA6TBnAQCFqFU+w/d8FdMvfvGL6NGjRyxatCg+8YlP1LvPL3/5y/jWt74V5513XkREXH311fHYY4/FLbfcEvfee2/qawYAKHRmLACAdJizAIBClNeyb08VFRUREXH44Yc3uE1VVVW0bdu2zm3t2rWLp556qsHtq6qqaq9XVlY2wUoBALIjjRlr9z7mLACgOTNnAQCFoCRJkiTfi4iI2LVrV1xwwQVRXl6+z2Hn0ksvjZdffjkefPDB+NCHPhSPP/54XHjhhVFTU1NnCNpt8uTJMWXKlL1uHz16dLRu3bpJ78MHzZ8/P4YPH57a8YspI1c5MmTIkJGVjFzlFENGdXV1zJ49OyoqKqKsrCy1nCxLa8aKMGfJKK6MXOXIkCFDRlYyzFn7Z86SIUNGVnNkyJCRv4zUZqykQFx11VVJnz59ktWrV+9zuw0bNiQXXnhh0qJFi6Rly5ZJ//79k2uuuSZp27Ztvdvv2LEjqaioqL2sXr06iYikoqIijbtRa8yYMakev5gycpUjQ4YMGVnJyFVOMWRUVFTk5O96lqU1YyWJOUtGcWXkKkeGDBkyspJhzto/c5YMGTKymiNDhoz8ZaQ1Y7Voutrw4H31q1+N3//+9/HEE0/E0Ucfvc9tu3fvHg8++GBs27YtVq5cGX/605+iQ4cOceyxx9a7fWlpaZSVldW5AAA0B2nOWBHmLACg+TJnAQCFJK9lX5Ik8dWvfjV++9vfxn//939Hv379Gr1v27Zto1evXvHee+/Fr3/967jwwgtTXCkAQHaYsQAA0mHOAgAKUat8ho8fPz5mzpwZv/vd76Jjx46xfv36iIjo1KlTtGvXLiIixo0bF7169Ypp06ZFRMTzzz8fa9asicGDB8eaNWti8uTJsWvXrvjmN7+Zt/sBAFBIzFgAAOkwZwEAhSivZd+MGTMiImLkyJF1bv/5z38el19+eURErFq1Klq0eP8NiDt27Igbbrgh3nzzzejQoUOcd9558ctf/jI6d+6co1UDABQ2MxYAQDrMWQBAIcpr2ZckyX63mTt3bp3rZ555Zrz66qsprQgAIPvMWAAA6TBnAQCFKK/n7AMAAEiprqoAAByoSURBVAAAAAAOnrIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUco+AAAAAAAAyChlHwAAAAAAAGSUsg8AAAAAAAAyStkHAAAAAAAAGaXsAwAAAAAAgIzKa9k3bdq0OO2006Jjx47Ro0ePuOiii+K1117b73633nprnHDCCdGuXbvo3bt3fO1rX4sdO3bkYMUAAIXPjAUAkA5zFgBQiPJa9j355JMxfvz4eO655+LRRx+N6urqOOecc2Lbtm0N7jNz5sy4/vrrY9KkSbF06dK4++6741e/+lX8v//3/3K4cgCAwmXGAgBIhzkLAChErfIZPnv27DrXf/GLX0SPHj1i0aJF8YlPfKLefZ555pk4/fTT49JLL42IiL59+8bnP//5eP7551NfLwBAFpixAADSYc4CAApRQZ2zr6KiIiIiDj/88Aa3+djHPhaLFi2K+fPnR0TEm2++GQ8//HCcd9559W5fVVUVlZWVdS4AAM1JGjNWhDkLAMCcBQAUgpIkSZJ8LyIiYteuXXHBBRdEeXl5PPXUU/vc9vbbb49vfOMbkSRJvPfee3HVVVfFjBkz6t128uTJMWXKlL1uHz16dLRu3bpJ1l6f+fPnx/Dhw1M7fjFl5CpHhgwZMrKSkaucYsiorq6O2bNnR0VFRZSVlaWWk2VpzVgR5iwZxZWRqxwZMmTIyEqGOWv/zFkyZMjIao4MGTLyl5HajJUUiKuuuirp06dPsnr16n1u98QTTyRHHHFEctdddyWvvPJK8pvf/Cbp3bt38u1vf7ve7Xfs2JFUVFTUXlavXp1ERFJRUZHG3ag1ZsyYVI9fTBm5ypEhQ4aMrGTkKqcYMioqKnLydz3L0pqxksScJaO4MnKVI0OGDBlZyTBn7Z85S4YMGVnNkSFDRv4y0pqx8nrOvt2++tWvxu9///uYN29eHH300fvc9sYbb4wvfOELceWVV0ZExMknnxzbtm2Lf/qnf4pvfetb0aJF3U8mLS0tjdLS0tTWDgBQqNKcsSLMWQBA82XOAgAKSV7LviRJ4p//+Z/jt7/9bcydOzf69eu3333efffdvYagli1b1h4PAKC5M2MBAKTDnAUAFKK8ln3jx4+PmTNnxu9+97vo2LFjrF+/PiIiOnXqFO3atYuIiHHjxkWvXr1i2rRpERExZsyY+OEPfxinnnpqfOQjH4k33ngjbrzxxhgzZkztoAQA0JyZsQAA0mHOAgAKUV7Lvt0nIh45cmSd23/+85/H5ZdfHhERq1atqvPqpxtuuCFKSkrihhtuiDVr1kT37t1jzJgxMXXq1FwtGwCgoJmxAADSYc4CAApR3j/Gc3/mzp1b53qrVq1i0qRJMWnSpJRWBQCQbWYsAIB0mLMAgEK09xmAAQAAAAAAgExQ9gEAAAAAAEBGKfsAAAAAAAAgo5R9AAAAAAAAkFHKPgAAAAAAAMgoZR8AAAAAAABklLIPAAAAAAAAMkrZBwAAAAAAABml7AMAAAAAAICMUvYBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRyj4AAAAAAADIKGUfAAAAAAAAZJSyDwAAAAAAADJK2QcAAAAAAAAZpewDAAAAAACAjFL2AQAAAAAAQEYp+wAAAAAAACCjlH0AAAAAAACQUXkt+6ZNmxannXZadOzYMXr06BEXXXRRvPbaa/vcZ+TIkVFSUrLX5fzzz8/RqgEACpsZCwAgHeYsAKAQ5bXse/LJJ2P8+PHx3HPPxaOPPhrV1dVxzjnnxLZt2xrc5ze/+U2sW7eu9vK///u/0bJly7jkkktyuHIAgMJlxgIASIc5CwAoRK3yGT579uw613/xi19Ejx49YtGiRfGJT3yi3n0OP/zwOtdnzZoVhx12mAEJAOBvzFgAAOkwZwEAhSivZd+eKioqImLvIWhf7r777vjc5z4X7du3r/ffq6qqoqqqaq+MysrKQ1jp/lVXV8sosBwZMmTIyEpGrnKKIWP3sZMkSS2jGKQxY0WYs2QUV0aucmTIkCEjKxnmrMYxZ8mQISOLOTJkyMhfRmozVlIgampqkvPPPz85/fTTG73P888/n0RE8vzzzze4zaRJk5KIcHFxcXFxcSniy+rVq5tiHClKac1YSWLOcnFxcXFxaQ4Xc1bDzFkuLi4uLi4uB3tp6hmrJEkK4yVaV199dTzyyCPx1FNPxdFHH92ofb7yla/Es88+G6+88kqD2+z5Sqjy8vLo06dPrFq1Kjp16nTI665PZWVl9O7dO1avXh1lZWUyCiBHhgwZMrKSkaucYslIkiS2bNkSRx11VLRokddTERestGasCHOWjOLJyFWODBkyZGQlI8Kc1RjmLBkyZGQxR4YMGfnNSGvGKoiP8fzqV78av//972PevHmNHo62bdsWs2bNim9/+9v73K60tDRKS0v3ur1Tp06p/mKOiCgrK5NRYDkyZMiQkZWMXOUUQ0ZaT3YUgzRnrAhzloziy8hVjgwZMmRkJcOc1TBzlgwZMrKeI0OGjPxlpDFj5bXsS5Ik/vmf/zl++9vfxty5c6Nfv36N3vf++++PqqqquOyyy1JcIQBA9pixAADSYc4CAApRXj+HYfz48XHvvffGzJkzo2PHjrF+/fpYv359bN++vXabcePGxcSJE/fa9+67746LLroounbtmsslAwAUPDMWAEA6zFkAQCHK6zv7ZsyYERERI0eOrHP7z3/+87j88ssjImLVqlV7fW7pa6+9Fk899VT88Y9/PODM0tLSmDRpUr0fhdBUZBRejgwZMmRkJSNXOcWSQf3yMWNFFM/3lYzml5GrHBkyZMjISgYNM2fJkCEjTcVyX2TIkJF7JUmSJPleBAAAAAAAAHDg8voxngAAAAAAAMDBU/YBAAAAAABARin7AAAAAAAAIKOUfQAAAAAAAJBRRVf2zZs3L8aMGRNHHXVUlJSUxIMPPrjP7S+//PIoKSnZ63LiiSc2WUZExI9//OMYOHBgtGvXLk444YT4z//8zwa3nTZtWpx22mnRsWPH6NGjR1x00UXx2muv7fP4S5Ysic9+9rPRt2/fKCkpiVtvvXW/azqYnN/85jcxbNiw6Ny5c7Rv3z4GDx4cv/zlL5s044NmzZoVJSUlcdFFFzV5Rnl5eYwfPz569uwZpaWl0b9//3j44YebNOPWW2+NE044Idq1axe9e/eOr33ta7Fjx456t50xY0YMGjQoysrKoqysLEaMGBGPPPLI/9/encZEdb5vHL/pIIIGCGpVVERxqbs2MTG4tuJPEzHRmioatVZNrEqNpCUWqylo1JrW1trWWovUGhN3JelCFGuAtq6oRHHfcK2NfeGCYpDl/r/oHwI4wDmHwzgzfD8Jb4Yz5zqHx95czTMz1Hj+Xbt2Sbdu3cTf31969+5d7fVbzUhOTpYhQ4ZISEiIhISEyIgRI+T48eO2ZlRkZL2tZPz0008v/Dfu7+9va8Ybb7zhdJZER0fbllFUVCTLli2TTp06ib+/v/Tt21f27dtX431UtWrVKvHx8ZG4uLhqj7EyT8xmmJ0lVjKsrLvZDBFzs8RqhplZIiKSlJT0wr1369atxgyz88RshpV5AvdDzzI2F+lY7tWxROhZIvQsehY9qzpm5okrOpaVHHqW5/OGjiVCzyrTkHqWKzqWlRx6lnf1LFd0LKM59CxzGe7Ws7y9Y3ndZt/Tp0+lb9++sm7dOkPHr127Vu7du1f+dfv2bWnWrJlMmDDBtoz169fLokWLJCkpSc6dOydLly6V2NhY+eWXX5wen5WVJbGxsXL06FE5cOCAFBUVyciRI+Xp06fVZhQUFEhERISsWrVKWrdubei6rOQ0a9ZMFi9eLEeOHJEzZ87IjBkzZMaMGbJ//37bMsrcuHFD4uPjZciQIbbfx/Pnz+V///uf3LhxQ3bv3i2XLl2S5ORkadu2rW0ZW7dulYSEBElMTJQLFy5ISkqK7NixQz7++GOnx7dr105WrVolJ0+elBMnTsjw4cNl7Nixcu7cOafHHz58WCZPniyzZs2SnJwcGTdunIwbN07Onj1b7TWZzcjMzJTJkydLRkaGHDlyRMLCwmTkyJFy9+5d2zLKGF1vqxlBQUGV/lu/efOmrRl79+6tdP6zZ8+Kw+GocZaYzViyZIls2LBBvvnmGzl//rzMmTNH3nrrLcnJyanxXspkZ2fLhg0bpE+fPjUeZ2WemM0wO0usZIiYX3ezGWZniZUMs7OkTM+ePSvd+19//VXtsVbmidkMK/ME7oeeZWwu0rHcq2OJ0LPoWfQsepZzVuaJKzqW2Rx6lufzho4lQs8SaXg9yxUdy0oOPct7epYrOpaZHHqW5/csr+5Y6sVERFNTU009JzU1VX18fPTGjRu2ZURGRmp8fHylxz744AMdNGiQoYz79++riGhWVpah48PDw3XNmjWGjq1LTpnXX39dlyxZYmtGcXGxDhw4UDdu3KjTp0/XsWPHGr4eIxnr16/XiIgIff78ueHzms2IjY3V4cOHV3rMzLqrqoaEhOjGjRudfm/ixIkaHR1d6bEBAwboe++9Z/j8tWVUVVxcrIGBgbp582ZbM+qy3kYyNm3apMHBwabPaSajqjVr1mhgYKA+efLEtozQ0FD99ttvKz02fvx4nTJlSq3nzc/P1y5duuiBAwd02LBhumDBAkPXY2aeWM0oY2SWmMmwuu5mMqzOEjMZVmZJYmKi9u3b1/D1WJknZjOqsjpP4D7oWcbRsYxzVcdSpWfZlUHPomeZ4ek9yxUdy0pOVfQsz+YtHUuVntVQe5YrOlZtOVXRszyzZ7miY9Ulpww9yzl37Fne3rG87p19dZWSkiIjRoyQ8PBw285ZWFj4wlttAwIC5Pjx41JUVFTr8x89eiQi/71yoD6ZzVFVOXjwoFy6dEmGDh1qa8ayZcukZcuWMmvWLEPnNZvx888/S2RkpMTGxkqrVq2kV69esnLlSikpKbEtY+DAgXLy5Mnyt/Zev35d0tLSZPTo0bWev6SkRLZv3y5Pnz6VyMhIp8ccOXJERowYUemxUaNGyZEjRwzdg5GMqgoKCqSoqMjwvxGjGXVZb6MZT548kfDwcAkLCzP0yiwrGRWlpKTIpEmTpGnTprZlVDdLanoFSpnY2FiJjo5+4d+MnaxmmJklZjOsrLuZDKuzxEyG1Vly5coVadOmjURERMiUKVPk1q1b1R5rdZ6YyajK7DyBd2ioPYuO5T4dS4SeZQY9i55Vk4bas1zRsczmVEXPanjcsWOJ0LPM8Iae5YqOZTSnKnqWZ/YsV3SsuuTQs2rmrj3LqzvWy9xprG9i8tVQd+/eVYfDoTt27LA1Y9GiRdq6dWs9ceKElpaWanZ2trZq1UpFRP/+++8an1tSUqLR0dGmXkFj5ZVQZnIePnyoTZs2VV9fX23cuLGmpKTYmvHnn39q27Zt9d9//1VVNfXKGKMZr732mjZu3FhnzpypJ06c0O3bt2uzZs00KSnJtgxV1bVr12qjRo3U19dXRUTnzJlT4/FnzpzRpk2bqsPh0ODgYP3tt9+qPbZRo0a6devWSo+tW7dOW7ZsaVtGVXPnztWIiAh99uyZbRlW19tMxuHDh3Xz5s2ak5OjmZmZOmbMGA0KCtLbt2/bllHRsWPHVET02LFjtt7H5MmTtUePHnr58mUtKSnR9PR0DQgIUD8/vxoztm3bpr169Spft/p4NZSVDLOzxGyGlXU3m2Flllj5WZmdJWlpabpz5049ffq07tu3TyMjI7V9+/b6+PFjp8dbmSdmM6oyOk/gvuhZxtCx3KNjqdKzVOlZ9Cz7Mhpqz3JFx7KSUxU9y7N5Q8dSpWc1pJ7lio5lNqcqepbn9SxXdCyrOfQsz+1Z3t6x2OyrYOXKldq8eXMtLCy0NaOgoEBnzJihvr6+6nA4tE2bNrpw4UIVEf3nn39qfO6cOXM0PDy81iFekZXNPjM5JSUleuXKFc3JydHVq1drcHCwZmRk2JLx+PFj7dChg6alpZU/ZqYgGb2PLl26aFhYmBYXF5c/9sUXX2jr1q1ty8jIyNBWrVppcnKynjlzRvfu3athYWG6bNmyap9TWFioV65c0RMnTmhCQoK2aNFCz5075/RYqwXJTEZFn376qYaEhOjp06drPdZoRl3W2+p9qKo+f/5cO3XqVOtb7K1mzJ49W3v37m3oWsxk3L9/X8eOHauvvPKKOhwO7dq1q86bN0/9/f2rPf+tW7e0ZcuWldbN7oJkNcPMLKnrfajWvu5WMszOEisZVmZJVQ8ePNCgoKBqP1KjLv/DZTSjIjPzBO6LnmUMHcs9OpYqPUuVnkXPyqiX+1BtuD3LFR3LSE5F9CzP5w0dS5We1ZB6lis6ltmciuhZntezXNGx6pJDzzKW4Qk9y9s6Fpt9/6+0tFQ7d+6scXFx9Zbx/PlzvX37thYXF+t3332ngYGBWlJSUu3xsbGx2q5dO71+/bqpazJbjqzmlJk1a5aOHDnSloycnBwVEXU4HOVfPj4+6uPjow6HQ69evWrLfQwdOlSjoqIqPZaWlqYiUmNBNpMxePDgFz7ffsuWLRoQEFDjulcUFRWls2fPdvq9sLCwF9b5k08+0T59+hg6t5GMMp9//rkGBwdrdna2qXPXllGX9TaaUZ23335bJ02aZPh4oxlPnjzRoKAg/eqrr0yd20zGs2fP9M6dO1paWqoLFy7UHj16VHtsamrqCz9jESn/GVf8pe6MkXlS14wyNc0SuzJqWncrGWZniZUMO2aJqmr//v01ISHB6ffsmic1ZZSp6zyB+6Bn1Y6O9R937Fiq9Cx6lnP0LHqW2Xniio5VW04ZepZ38PSOpUrPaug9yxUdq7acMvQs4xnu1LNc0bHsyClDz/LsnuVNHcvX4qd/ep2srCy5evWqpc9YNqpRo0bSrl07ERHZvn27jBkzRl555cU/m6iqMn/+fElNTZXMzEzp2LFjvVyPXTmlpaVSWFhoS0a3bt0kNze30mNLliyR/Px8Wbt2rYSFhdlyH4MGDZKtW7dKaWlp+RpcvnxZQkNDxc/Pz5aMgoKCF9bX4XCUn8+Imn62kZGRcvDgQYmLiyt/7MCBA4Y/g9tIhojIZ599JitWrJD9+/dL//79TZ27tgwr6202w5mSkhLJzc01/Ld9zGTs2rVLCgsLZerUqabObSbD399f2rZtK0VFRbJnzx6ZOHFitcdGRUW98DOeMWOGdOvWTT766KPyf5N1YVdGTfduR0Zt624lw+wssZJhxyx58uSJXLt2TaZNm+b0+3bMk9oyROyZJ/BMDa1n0bHcv2OJ0LPoWc7Rs6xlNNSe5YqOZSRHhJ7VULlTxxKhZ1XUkHuWKzpWbTki9CyzGe7Us1zRsezMoWd5bs/yuo7l0q1FF8jPz9ecnJzyV1h8+eWXmpOTozdv3lRV1YSEBJ02bdoLz5s6daoOGDCgXjIuXbqkW7Zs0cuXL+uxY8c0JiZGmzVrpnl5eU7PP3fuXA0ODtbMzEy9d+9e+VdBQUH5MdOmTau041xYWFh+TaGhoRofH685OTl65cqVau/DSs7KlSs1PT1dr127pufPn9fVq1err6+vJicn25ZRVW1vg7eScevWLQ0MDNT3339fL126pL/++qu2bNlSly9fbltGYmKiBgYG6rZt2/T69euanp6unTp10okTJzrNSEhI0KysLM3Ly9MzZ85oQkKC+vj4aHp6utPzHzp0SH19fXX16tV64cIFTUxM1EaNGmlubm61PyuzGatWrVI/Pz/dvXt3pfvOz8+3LaMqIx97YDZj6dKlun//fr127ZqePHlSJ02apP7+/jV+hIHV+xg8eLDGxMTUeP1WM44ePap79uzRa9eu6R9//KHDhw/Xjh076oMHDwzllan6Nns75onZDLOzxEqGlXU3m2F2lljJMDtLVFU//PBDzczM1Ly8PD106JCOGDFCW7Rooffv33eaYWWemM2wMk/gfuhZxuYiHcu9OpYqPasMPYueZVdGQ+1ZruhYVnLoWZ7PGzqWKj2roobSs1zRsazk0LO8r2e5omMZyaFnGc9wx57l7R3L6zb7MjIyVERe+Jo+fbqq/jd4hw0bVuk5Dx8+1ICAAP3hhx/qJeP8+fPar18/DQgI0KCgIB07dqxevHix2vM7O7eI6KZNm8qPGTZsWHmeqmpeXp7T51S917rmLF68WDt37qz+/v4aEhKikZGRun37dlszqqrtl6XVjMOHD+uAAQO0cePGGhERoStWrKj2rdNWMoqKijQpKUk7deqk/v7+GhYWpvPmzav2F9nMmTM1PDxc/fz89NVXX9WoqKjyX5LV3cPOnTu1a9eu6ufnpz179qz1D+6azQgPD3d634mJibZlVGWkHJnNiIuL0/bt26ufn5+2atVKR48eradOnbI1Q1X14sWLKiKVjrMzIzMzU7t3766NGzfW5s2b67Rp0/Tu3buGsiqq+svYjnliNsPsLLGSYWXdzWaompslVjLMzhJV1ZiYGA0NDVU/Pz9t27atxsTEVPoYETvmidkMK/ME7oeeZWwu0rHcq2Op0rPK0LPoWXZlNNSe5YqOZSWHnuX5vKFjqdKzKmooPcsVHctKDj3L+3qWKzqWkRx6lvEMd+xZ3t6xfFRNfNYNAAAAAAAAAAAAALfh/EO2AQAAAAAAAAAAALg9NvsAAAAAAAAAAAAAD8VmHwAAAAAAAAAAAOCh2OwDAAAAAAAAAAAAPBSbfQAAAAAAAAAAAICHYrMPAAAAAAAAAAAA8FBs9gEAAAAAAAAAAAAeis0+AAAAAAAAAAAAwEOx2QcAAAAAAAAAAAB4KDb7AHiNkpISGThwoIwfP77S448ePZKwsDBZvHjxS7oyAAAAz0XHAgAAqB/0LAB28VFVfdkXAQB2uXz5svTr10+Sk5NlypQpIiLyzjvvyOnTpyU7O1v8/Pxe8hUCAAB4HjoWAABA/aBnAbADm30AvM7XX38tSUlJcu7cOTl+/LhMmDBBsrOzpW/fvi/70gAAADwWHQsAAKB+0LMA1BWbfQC8jqrK8OHDxeFwSG5ursyfP1+WLFnysi8LAADAo9GxAAAA6gc9C0BdsdkHwCtdvHhRunfvLr1795ZTp06Jr6/vy74kAAAAj0fHAgAAqB/0LAB18crLvgAAqA8//vijNGnSRPLy8uTOnTsv+3IAAAC8Ah0LAACgftCzANQF7+wD4HUOHz4sw4YNk/T0dFm+fLmIiPz+++/i4+Pzkq8MAADAc9GxAAAA6gc9C0Bd8c4+AF6loKBA3n33XZk7d668+eabkpKSIsePH5fvv//+ZV8aAACAx6JjAQAA1A96FgA78M4+AF5lwYIFkpaWJqdPn5YmTZqIiMiGDRskPj5ecnNzpUOHDi/3AgEAADwQHQsAAKB+0LMA2IHNPgBeIysrS6KioiQzM1MGDx5c6XujRo2S4uJiPgIBAADAJDoWAABA/aBnAbALm30AAAAAAAAAAACAh+Jv9gEAAAAAAAAAAAAeis0+AAAAAAAAAAAAwEOx2QcAAAAAAAAAAAB4KDb7AAAAAAAAAAAAAA/FZh8AAAAAAAAAAADgodjsAwAAAAAAAAAAADwUm30AAAAAAAAAAACAh2KzDwAAAAAAAAAAAPBQbPYBAAAAAAAAAAAAHorNPgAAAAAAAAAAAMBDsdkHAAAAAAAAAAAAeKj/A8mFNCm2All8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 0.5\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.6666666666666667\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nx46pWeWbwsb", + "outputId": "6109a36a-923b-4359-eca8-4cc44c01c455" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT9JJREFUeJzt3Xt8U/X9P/DXSdKmtDSlQGnphZZLKRctWqZYJgNWXGUIgk4rshUVHJtM0YkwBAeIDJxz37m5IYLgnGWoU/Dyg7GCwGCglIulIEUKFFpKWwq9Bpq2yfn9EZImTdImbZKTnLyej0ce0tOT5JNKX7zP53wugiiKIoiIiIhkQiF1A4iIiIjcicUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNBRRBELBs2TKpm0FEfobZ4V9Y3PiJv/3tbxAEAaNGjerya23bto2/pF5UU1ODkJAQCIKAU6dO2T3nsccegyAIdh8hISFW565cuRJTpkxBdHQ0A5c6xOzwX+7MjsLCQixYsAC33XYbwsPD0bdvX0yaNAmHDx/21sfxKpXUDSDn5OTkICkpCYcOHUJRUREGDRrU6dfatm0b/vrXvzKkvOSjjz6CIAiIiYlBTk4OXnnlFbvnqdVqrF+/3ua4Uqm0+nrJkiWIiYnB7bffjh07dnikzSQfzA7/5c7sWL9+Pd555x08+OCDeOqpp1BbW4u1a9firrvuwr///W9MmDDBY59DCixu/MD58+dx4MABfPLJJ5gzZw5ycnKwdOlSqZsV8BobGxEcHAyFov0O0Pfffx8//vGPkZiYiE2bNjkMKJVKhZ/+9Kcdvu/58+eRlJSEqqoqREVFdartFBiYHb5JiuyYPn06li1bhu7du5uPPfHEExg6dCiWLVsmu+KGt6X8QE5ODiIjIzFp0iT85Cc/QU5Ojs05e/bsgSAI2LNnj9Xx4uJiCIKAd999F4CxC/Ovf/0rAFh1X5potVo8//zzSEhIgFqtRkpKCv7whz/A3ubx77//PkaOHIlu3bqhZ8+eeOSRR1BSUmJ1zrhx43DLLbfg22+/xfjx4xEaGoq4uDj8/ve/t3m9xsZGLFu2DIMHD0ZISAj69u2LBx54AGfPnnW5fTqdDs899xyioqIQHh6OKVOmoLS01O7P99KlS3jiiScQHR0NtVqN4cOHY8OGDXZ/vps3b8aSJUsQFxeH0NBQ1NXV2X1Nk4sXL2Lfvn145JFH8Mgjj5j/semKpKSkLj2fAgezg9lhMnLkSKvCBgB69eqFMWPGOLzl5c/Yc+MHcnJy8MADDyA4OBjTp0/HmjVrkJeXhzvuuMPl15ozZw7KysqQm5uLf/zjH1bfE0URU6ZMwe7duzFr1izcdttt2LFjB1544QVcunQJ//d//2c+d+XKlXjppZfw8MMPY/bs2bhy5Qr+8pe/4Ac/+AGOHTuGHj16mM+trq7GvffeiwceeAAPP/ww/vWvf2HhwoW49dZbMXHiRACAXq/Hfffdh127duGRRx7BvHnzUF9fj9zcXJw4cQIDBw50qX2zZ8/G+++/j0cffRSjR4/Gl19+iUmTJtn8PCoqKnDXXXdBEAT86le/QlRUFLZv345Zs2ahrq4Ozz77rNX5K1asQHBwMObPnw+dTofg4OB2f97//Oc/ERYWhvvuuw/dunXDwIEDkZOTg9GjR9s9v6qqyuZYcHAwNBpNu+9DZA+zg9nRUXaUl5ejd+/e7Z7jl0TyaYcPHxYBiLm5uaIoiqLBYBDj4+PFefPmWZ23e/duEYC4e/duq+Pnz58XAYgbN240H5s7d65o73/91q1bRQDiK6+8YnX8Jz/5iSgIglhUVCSKoigWFxeLSqVSXLlypdV5BQUFokqlsjo+duxYEYD43nvvmY/pdDoxJiZGfPDBB83HNmzYIAIQ//jHP9q0y2AwuNS+b775RgQgPvXUU1bnPfrooyIAcenSpeZjs2bNEvv27StWVVVZnfvII4+IERER4vXr10VRbP35DhgwwHzMGbfeeqs4Y8YM89cvvvii2Lt3b7G5udnqvJkzZ4oA7D4yMzPtvvaVK1dsPg+RCbOD2eEoO0z++9//ioIgiC+99JLT7fIXvC3l43JychAdHY3x48cDMHYHZ2VlYfPmzdDr9W59r23btkGpVOKZZ56xOv78889DFEVs374dAPDJJ5/AYDDg4YcfRlVVlfkRExOD5ORk7N692+r53bt3t7ofHBwcjDvvvBPnzp0zH/v444/Ru3dvPP300zbtMnV9O9u+bdu2AYDNeW2vpERRxMcff4zJkydDFEWrz5KZmYna2locPXrU6jkzZ85Et27d7P8A2zh+/DgKCgowffp087Hp06ejqqrK7kDgkJAQ5Obm2jxWr17t1PsRWWJ2MDvay47Kyko8+uij6N+/PxYsWOBUu/wJb0v5ML1ej82bN2P8+PE4f/68+fioUaPw+uuvY9euXfjRj37ktve7cOECYmNjER4ebnV86NCh5u8DwJkzZyCKIpKTk+2+TlBQkNXX8fHxVvfmASAyMhLHjx83f3327FmkpKRApXL8V9LZ9l24cAEKhQIDBw60Oi8lJcXq6ytXrqCmpgZvv/023n77bbvvWVlZafV1//79Hbavrffffx9hYWEYMGAAioqKABhDKCkpCTk5OTZd3UqlUnaD+kgazI7OtS9QskOr1eK+++5DfX099u/fbzMWRw5Y3PiwL7/8EpcvX8bmzZuxefNmm+/n5OSYA6ptAJi4+woNAAwGAwRBwPbt222mKQOw+UWxdw4AuwMNvclgMAAAfvrTn2LmzJl2z0lNTbX62tkrL1EU8c9//hNarRbDhg2z+X5lZSUaGhpkGSokPWaHZ/lzdjQ1NeGBBx7A8ePHsWPHDtxyyy2deh1fx+LGh+Xk5KBPnz7mGQqWPvnkE2zZsgVvvfUWunXrhsjISADGRZ8sma5ILDkKs8TEROzcuRP19fVWVziFhYXm7wMwD9Dr378/Bg8e3KnP1tbAgQPx9ddfo7m52ebqzdX2JSYmwmAwmK/oTE6fPm31eqbZEHq93u09Jnv37kVpaSlefvll89WhSXV1NX7+859j69atTk39JnIVs6Nz7ZN7dhgMBmRnZ2PXrl348MMPMXbsWHc12/d4f5gPOeP69etieHi4+MQTT9j9/v/+9z8RgLh582ZRFEWxpqZGVCqV4nPPPWd13oMPPmgzKHDhwoUiALG6utrqXNOgu9/97ndWx7OysqwG3RUVFYlKpVJ89NFHzQP2TAwGg9UAu7Fjx4rDhw+3af/MmTPFxMRE89euDArsqH3Hjh1zelDgY489JgYHB4sFBQU271tZWWn+s2lQ4EcffWRznj2zZs0Sw8LCxBs3btj9fnJysnjvvfeav545c6YYFhbm1GubcEAx2cPssH5NV9on9+x46qmnRADi2rVrnTrfn7Hnxkd99tlnqK+vx5QpU+x+/6677kJUVBRycnKQlZWFiIgIPPTQQ/jLX/4CQRAwcOBAfPHFFzb3fQHjegeAcdBcZmYmlEolHnnkEUyePBnjx4/H4sWLUVxcjBEjRuA///kPPv30Uzz77LPm+9ADBw7EK6+8gkWLFqG4uBhTp05FeHg4zp8/jy1btuDnP/855s+f79Lnzc7OxnvvvYdf//rXOHToEMaMGQOtVoudO3fiqaeewv333+90+2677TZMnz4df/vb31BbW4vRo0dj165d5nvXllavXo3du3dj1KhRePLJJzFs2DBcu3YNR48exc6dO3Ht2jWXPgdgXCfj448/xj333GOzdYLJlClT8MYbb6CyshJ9+vQBALS0tOD999+3e/60adMQFhYGAPjHP/6BCxcu4Pr16wCA//73v+bFvX72s5+Zr0IpMDE7mB2WTNnxpz/9CX/729+Qnp6O0NBQm/MtM0YWpK6uyL7JkyeLISEholardXjOY489JgYFBZmvdq5cuSI++OCDYmhoqBgZGSnOmTNHPHHihM3VV0tLi/j000+LUVFRoiAIVlM76+vrxeeee06MjY0Vg4KCxOTkZPG1116zucoSRVH8+OOPxbvvvlsMCwsTw8LCxCFDhohz584VT58+bT7H2asvUTRecS5evFjs37+/GBQUJMbExIg/+clPxLNnz7rcvhs3bojPPPOM2KtXLzEsLEycPHmyWFJSYreno6KiQpw7d66YkJBgft+MjAzx7bffNp/jytXXxx9/LAIQ33nnHYfn7NmzRwQgvvHGG+afBxxM5wQgnj9/3vxc0xRZe4+203kp8DA7mB32ssOVjJEDQRQlHplFRERE5EZc54aIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGsBNwifgaDAWVlZQgPD3e4lDgReZYoiqivr0dsbCwUCv+4xmJ2EEnLldwIuOKmrKwMCQkJUjeDiACUlJQgPj5e6mY4hdlB5BucyY2AK25Mm6a9+L8jCOGOzESSaGxowO++P9JqE0Nfx+wgkpYruRFwxY2pOzmke3eE+FGwEsmRP93eYXYQ+QZncsM/bnYTEREROYnFDREREckKixsiIiKSlYAbc0PkaUrRgGCDAQJEqZsiCRECmhQK6AVeOxE5SxBFhBj0zA035QaLGyJ3EUUkNjYgvkUHhR8NlPUEgyiiVKXGhZDuQID/LIg6ojbokaqtQUiA/6q4MzdY3BC5SWJjA/obmtCrTx8EdesGBGpQiUDzjRsIqroCNDbgQjfOLCJySBQx4EY9ItXBiIyOhqAI0OBwc26wuCFyA6VoQHyLDr369EFoZKTUzZFcUEgIAKC5shKlYhhvURE5ECQa0MvQgohefRDcrZvUzZGUO3ODiUPkBsEGAxSCYOyxIQBAULduUAgCgg0GqZtC5LNUoghBEKAMCpK6KT7BXbnB4obIDcyDAAO0R9kuwfSfwBwgSeQMZkcbbsoNFjdEREQkKyxuiIiISFZY3BARKsvLsfi5ZzFqSAoSNeEYOXAgsh+Yhn1ffgkA+Mf69XjgnnuQHNUbfUPUqK2pkbbBROQTfDU7WNwQBbiS4mJkjk7H/j178NKq1fjyyBFs+vxzjB47FouenQcAuHHjOsb/6Ed4ZsFCiVtLRL7Cl7ODU8GJAtxv5j0DQRCwff//EBoWZj6eMmwYps98DADw86efAQAc2LtXiiYSkQ/y5exgzw2RD9LrvfM+1deuYfd//oPH5vzCKpxMInr08E5DiMgtmB1GLG6IfEjRd8DY21SIDwvG2NtUKPrOs+9XfPYsRFHEoJQUz74REXkUs8MaixsiHzLrYRXOnjEu9HD2jIBZD3v2zrEocg0aIjlgdljjmBsiH6HXA98VKiy+FvBdoQC9HlAqPfOe/QcNgiAIKDp92jNvQEQex+ywxZ4bIh+hVAKDhxigVIo3vxZvfu2594zs2RPj7rkH7659C9e1Wpvvc8o3ke9jdthicUPkQ975sAUDk40BNTBZxDsftnj8PVf96Q3o9XpMvPv7+GLLFpwrOoPvCk9h/V/fxH1jfwDAuJbFifx8nD97FgBw6sQJnMjPR/W1ax5vHxF1jNlhjbeliHzIoMHA3m9aPNqd3FbigAH4z8Gv8Marq7F84UJUll9Gr6gopN5+O179818AAO+tW4fXV75ifs60CRkAgD+9vQ5Z2dneaSgROcTssCaIvj4qyM3q6uoQERGBl/NPIyQ8XOrmkEyE6psx8kYd4hL7IUgdInVzfEKzrhGXLlzEkW4aXFda73jcWF+P345IQW1tLTQajUQtdA2zgzyB2WHNXbnB21JEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ+QGIgTTH8hENP1HkLYdRD6M2dGGm3KDxQ2RGzQpFDCIIppv3JC6KT6j+cYNGEQRTQrGDJEjLYIAURShb26Wuik+wV25Iek6N8uWLcPy5cutjqWkpKCwsNDhcz766CO89NJLKC4uRnJyMl599VX8+Mc/9nRTidqlFxQoVakRVHUFABDUrRsCtsNCNAbU1aorKFWpoRfcW9wwN0hOmgUFripUCL16FQqVCoIiQIPDzbkh+SJ+w4cPx86dO81fq1SOm3TgwAFMnz4dq1atwn333YdNmzZh6tSpOHr0KG655RZvNJfIoQsh3YHGBjRXVkIhBGhA3WQQRZSq1MafiQcwN0g2BAFnu4Wju7YGN0pKpG6NpNyZG5IXNyqVCjExMU6d+8Ybb+Dee+/FCy+8AABYsWIFcnNz8eabb+Ktt97yZDOJOiYIuNAtHKViGIINBggBehNdhIAmhcLtPTaWmBskJ00KJQ5374kQg5654abckLy4OXPmDGJjYxESEoL09HSsWrUK/fr1s3vuwYMH8etf/9rqWGZmJrZu3erw9XU6HXQ6nfnruro6t7SbyBG9oMANJceZeJKncwNgdpB3iYKAG0rJ/0mWDUkTeNSoUXj33Xfx73//G2vWrMH58+cxZswY1NfX2z2/vLwc0dHRVseio6NRXl7u8D1WrVqFiIgI8yMhIcGtn4GIvMsbuQEwO4j8maTFzcSJE/HQQw8hNTUVmZmZ2LZtG2pqavDhhx+67T0WLVqE2tpa86MkwO9pEvk7b+QGwOwg8mc+1QfWo0cPDB48GEVFRXa/HxMTg4qKCqtjFRUV7d57V6vVUKvVbm0nEfkOT+QGwOwg8mc+NTCgoaEBZ8+eRd++fe1+Pz09Hbt27bI6lpubi/T0dG80j4h8EHODiNqStLiZP38+9u7di+LiYhw4cADTpk2DUqnE9OnTAQDZ2dlYtGiR+fx58+bh3//+N15//XUUFhZi2bJlOHz4MH71q19J9RGIyMuYG0TUEUlvS5WWlmL69Om4evUqoqKicPfdd+Orr75CVFQUAODixYtQWKxSOHr0aGzatAlLlizBiy++iOTkZGzdupVrVRAFEOYGEXVEEEUxoCbV19XVISIiAi/nn0ZIeLjUzSEKSI319fjtiBTU1tZCo9FI3RynMDuIpOVKbvjUmBsiIiKirmJxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkRSV1A8h3FRcXo6Va16nnqiLVSEpKcm+DiIiInMDihhxqqdYh47vTGN4tzuXnvqZtAFjcEBGRBFjckEM6bQOSrwFlhlyXnyt2H4vi4mL23hARkdexuCG7iouLITY14XjdTkT1CnX5+ePPnMLByJ5AkvvbRkRE1B4WN2SXtvQqfnrsDN67J7VTz7/z8zzotCPYe0NERF7H4kaGiouLu/waYlMTChsOIk3z+049Xx16HONO5uNg2PdRjK61h8URERG5gsWNDLVU6zCtugZ1Vyo6/RrXa6rQFBqElk4+f19GKrJ3q5Dx3elOtwEAdg1O4a0tIiJyCYsbGdJpGxB9ugJKw7edfo2KqgtomdG5XhsASNNkobBhAYZUJXb6NQCgMSqKt7aIiMglLG5kpujYaYw7mY/LQd916XXUXei1MTk0eSTUu44jPtL1AckmswrOIYcDk4mIyAUsbmRGp21AXIMK740f1OXXSuvq8zVZ2JfRtde48/P9aKwewN4bIiJyGosbP+HsIOGuDgR2tzRNVpeerw49bp5W3t7AZBY+RERkwuLGT5gGCben7koFYsrrsW7yyC73uvgKy4HJmqhou+dsiezB21ZERGTG4sYPFBcXQ6dtQEJD+/+7mq4B+2v2+0yvjTukabJw3rAYQ8pHoZeDbSB0wQ28bUVERGYsbvxAS7UOTxwpxOHGrzs81x0DgX3NvoxU6D7fD80p+5//iZBRyAn7HntviIgIAIsbn1dcXIzG6mvIr9mPQ5NHOvUcudySMknTZOHQZMff56BjIiKyxOLGh9gbNNxSrcP4M6fQFBrU5cG5/qy9z97RoGMWPEREgYXFjQ+xN2i47koFIhtUeC8jVXY9Mu7S3qBjDjYmIgo8LG58iL1Bw1fL61FoOIw0zUqJWuX72ht0rAtukKhVREQkFYXUDTBZvXo1BEHAs88+6/Ccd999F4IgWD1CQkK810gPKjp2GpmFhSgrybV65Nfsx76Mzu3MHUj2ZaQiv2a/zc8vs7AQRce6tr8V+bZAzw4isuUTPTd5eXlYu3YtUlM7/kdco9Hg9OnWf6wEQfBk07xGp21A71o9zhvKrI6rA3ysjbPSNFlQhx7H+evWP7/+jbHQadl7I1fMDiKyR/LipqGhATNmzMC6devwyiuvdHi+IAiIiYnxQsu8p7i42LyycFc2qwx02mm2t+4KcxZAbErmTCoZYnYQkSOS35aaO3cuJk2ahAkTJjh1fkNDAxITE5GQkID7778fJ0+e9HAL3au4uNjm0VKtw6yCc1CHBkndPNlRhwZhVsE5tFTr7P7syX8FWnYQkfMk7bnZvHkzjh49iry8PKfOT0lJwYYNG5Camora2lr84Q9/wOjRo3Hy5EnEx8fbfY5Op4NOpzN/XVdX55a2d1ZLtQ4Z31mPAdHX1yO/Zj97bTxAO20l8nMWYNwRQBkebvW9XYNTOJPKTwVidhCR8yQrbkpKSjBv3jzk5uY6PbAvPT0d6enp5q9Hjx6NoUOHYu3atVixYoXd56xatQrLly93S5u7yrQgX2TVt1bHyxrKZLmysK9Qhwah6erXiNXFWh1vjIri7So/FIjZQUSukey21JEjR1BZWYm0tDSoVCqoVCrs3bsXf/7zn6FSqaDX6zt8jaCgINx+++0oKipyeM6iRYtQW1trfpSUlLjzY7jEtCBfs7rG6qFTgDOiPGhfRip0Ctj83MefOYWWal3HL0A+JRCzg4hcI1nPTUZGBgoKCqyOPf744xgyZAgWLlwIpVLZ4Wvo9XoUFBTgxz/+scNz1Go11Gp1l9vrDjptA+IaVHhv/CCb73FGlOekabKwL8P2ePZuFWdS+aFAzA4ico1kxU14eDhuueUWq2NhYWHo1auX+Xh2djbi4uKwatUqAMDLL7+Mu+66C4MGDUJNTQ1ee+01XLhwAbNnz/Z6+51lGrTaUq3DuJP5OG/4hgvyScBe8XjesBjjTrbgYFh3qCKN/4jxFpXvC5TsIKLOk3wqeHsuXrwIhaL1zll1dTWefPJJlJeXIzIyEiNHjsSBAwcwbNgwCVvpmGkm1LTqGm6j4IPabtuwJbIHisExOHLg79lBRF0jiKIoSt0Ib6qrq0NERARezj+NkDazZ9yt6NhpjDtyGEOaje+zv3I7Z0T5GFXOAtzdZyIAoDCoHntGfg+Dbk+RuFXy11hfj9+OSEFtbS00Go3UzXGKN7ODiGy5khs+3XPj73TaBsRpgcthBwAAhyaPZK+Nj1GHBuFykPH/T5z2Vo7BISKSARY3HlJ07DTGncxHYdM32DfGOBOKg4Z9j3baSvyz7gMAwJhdX2PcSR0OhnVn7w0RkR9jceNGlivemmdGZaSyqPFxpv8/+zJaZ1BZ/r/kGBwiIv/C4saNTIOHAaD6XBEKGw4iTcMxNv4iTZOFwoYFyCxUIrLJOF1/S2QPrmJMRORnWNy4kU7bgIQG4480VAts4xgbv6MODUKcFuh18/+jLphjcIiI/A2LGzcpOnYamYWFOHz1awBAXWMze238kGkvKs0p4//HzF6jsIdjcIiI/AqLGzfRaRvQu1aP9+5p3UaBvTb+6dDkkeY/Z+/WcwYVEZGfYXHjBsXFxRCbmjjGRiYsB4AXNiyA2JTMDTaJiPwIi5suKDp2GoCx12ZWwTms4xgb2Tk0eSSe3HcOOZE9UVRt/P/NW1REZGJaib4zVJFqXjR5CIubTio6dhoZ353G8G5xaLp0Cftr9rPXRobSNFnIr1mAX3wVjuC4OJy8cQm7wAKHiIy0pVfxwjXXn3fyxiXsGpzC2ZgewuKmk3TaBiRfA8oMuShrKIM6NAgtUjeKPEIdGoTjdTsRa4hFsmIYtnEMDhGhdUhCWclel5/LLPEsRcenUFumv9DH63aiWV0DncK4CSPJ076MVOgUQLO6BsfrdkJsarJa5I+IAlNLtQ7jz5xCs7rG5cfloAPILCw0D28g92LPTSdoS68ax9hYzoziKsSylabJwr6M1q+f3HcOG4KDAd4rJwpoOm0D6svzsMtihqUrOBvTc1jcOMnySl1sakI+x9gEFMviNb9mAcSmAdyigSgAmX7vW6p1GHcyH02hQZ2+uLWcjWnCLHEPFjdO0pZexY8vXQIAXK+pQhPH2AQsdWgQxp85hdArVwAA2+Li2ItDFACKi4ut/i2INO0f2MnXY5Z4DsfcOME0xiay6ltEVn2L+vI8jrEJYPsyUlFfnmf++8AxOESBoaVah8zCQvPvvnFts84PSdBOW2mVJRyD4z4sbpxgGmNjGgim7kI3JPm/NE0W1KFB5r8PswrOQVt6VepmEZEHFRcXQ6dtQNPVr9GsrsH562VWq5l3lmWWxGnBMThuwttSHTD12uTX7MehMa1/kblYX2Cz7Lm78/P95jE4vF9OJE+mMTY6BfDPtEEA3DORhFniGSxuHLAcNDb+zKkuDRoj+bH8u6AOPY7xZ07hYGRPFKMYAAcFEsmNTtuAONMYGzf+W8As8QzelrLDtJz25HMVyPjuNOIaVBxjQw7ty0hFXIMKGd+dxuRzFWip1nEMDpGMWO8f6LmLXNMYnHFHDmPyuQpMPlfBMTidxOLGDm3pVTxT0oCEBhViyutx3nCYvTbkUJomC+cNhxFTXo+EBhWeKWngGBwiGdGWXsVPj51xyxibjqhDgxCnBRIaVEhoUHEMTifxtlQbpgr98Kl/AgDqGptxiBtiUgf2ZaRC9/l+aE59DQAQ75jO++ZEMmDda+P5tc2YJe7B4qYN0xgbyy0V2GtDHUnTZOHQZOOfx+xqvW/OTfGI/JvluEtvrG3GLHEPFjewXn3YU4PGSP5Mf1/2ZQDZu9mdTOTviouL0Vh9DfXleV7twTdliXZaFnQ5C9BYPZS9Ny7imBvAPHh48rkKjDuZzzE2ZMWgd+6YiWkMzriT+RwMSOTHTL02nV3brG1OtJcbjphWMW6p1rn+5AAW8D03poWZEhqMPwplF5fTJv9m0AMKpfHPlSVB2Lg8FhUX1Yjup8PjS8sAwOZYn4Rmm9fZl5HK3hsiP2fVk9/OeZa5Adhmx5Q5V/DZ2qgOc8MeZknnBHzPjWk57bKSXJSV5Hp8qh/5psqSILw6OxHzJw7Gq7MTzeF0pTQYAHClNBgbl8faPWbPbWFZKGw4yK0ZiPxUcXExMgsL2/03wV5uALDJiQ1LbXPDUS9O2+PsCe6cgO+50Wkb0LtWj/MG41U5Z0YFprZh9PbiOFwrDzZ/32AQUHFRbfUc07HVsxLxxDLjlZjlFVtE/Dr8sXkr/hsczM3wiPyMtvQqetfqsa2dfxPa5sa6JXFQqkRUlrRmhcEgAAbB6uuKi2rMnzjYqhfHXk+xqXeHvTeuC+iem6Jjp81jbLTTVkI7bSV7bQKQQQ9UXFQbQwjG8DEWNqLVeUqVAb36NkGhMB03/reyxBhqgHXY1Zf1xuL/l8neGyI/48yiffZy4+rlYFRdMl0UWeaHCEGwzA3jnysu2s+Otr3CaRr2BLsqoIsb0/1Urj4c2BRKILqfzly0tIaQYHWeXm/8Oiq+qc33jaHW0mQbduW1/TD2dKF51WIGE5HvsxxI7Iij3DAYWnPBTAAUSstc6Tg7Ki6qrW5RqUODMKvgHAcWOylgi5uLFy96ZTlt8g9T5lyBcDOkFEoRPaKaLIqcm0RjEFWW2g+8tmGnUIiIiL8CbeUhPFPSgLFfH4e29CoLHCIfZjn9WzttZbvn2suN1p5dC6IAfYsCgsJg93XsZUd0P53VIGXttJXIr9mPxuprzBAnBGxxoy275rXltMn3fbY2CuLNqybRIECpAvokmHporMNKNCjaHDf+97U5iZgy54q5Zycqvgm/XN4AdWgQDp/6OyKrvsWv8su4NQORD3Om18bEXm6Yfv+VKgM6zg7jeVVlQXh8aZlVdphmZ5oY9JwW7oqAHVDszeW0ybeZ7p2bv75577yVYPskO8evlAbjs7VRWLj+gtXU0H0RqUj+VxVe+ngBSqriENG3Dk2rzuL2H8S494MQUZe5Mv3bXm4olMbeGX2L5e2ntqwHGG9cHouF6y/YZAeANpMU/oY//mArdMM5sLgjAdtz84Ozp52qzEn+2nYJWw74c47tfXLLcErTZOGP+5eg9FpfAEB9eXdsXzLYLW0nIvdxZvq3ib1bSYAIg97OmJt2iG3G11hmB2A7SWHJ9ns5LdwJAVvc1Fcc5UBiMrPsErYe8NceEQqlod375IDxCq+2NMrcJW0QFagpDcO5s8Xuaj4RuYFp+rezwxUsc6N3XBNcyQ7TBZQpN+yxNyPrcnUCEq+HONW+QBawxU1nl9Mm+bCcidAnoRkL11/AH7Z/dzNorKdx2ifAoFe0FkWCiIqLaqvFvAA7V3iCHrG9rsBQx/vmRL7CmenfgOPc+M07F9qMs2mv97e1CIqMbkZzk2CzECDgeJKC0t6gZbISsMXNgbHDpW4CSaT8gv1VRQGgsjQILc3OXn0Z3ffkFShVBhj0xl+nyhLblYstr/DC465hReZWLshF5EM6GkjsaDViwFiElF8IQnikHs5mh1JlwKwVpai5ojIvGNpRdkTFN+EHL3zUiU8XeAJ2QPFt4Q9K3QTyMsuBeaarKtNiWY8vLbP5nvG/HRU6It5dHgt9S+t1gijajr0xXeGZjmlz/h/Epmzu9EvkAyynf7fMsJ1kUlkShNfmJJp/zytv5sbC9Rfs5opR29wQ0XYgcWey42jdVeBcN/d8cBkL2J4bCjwbl8eissQ0C8p6ELDloD3LBbY6JliFk0mfBNuxN0BrYB2aPBI/PXaG08KJfEBHvTYblrUpQiwGAW9cHotKm+ywx/p7oqFz2UHOYXFDAcE0ME8UbcNHoTRYDdprn6N73dbrVjyxrMzBeUZcTp3ItwxoVNudZGLQw2qvKEsrH0sy5kqH2eFoDJ/1zExnssOEt7Xbx+KGAoL96d5GrVM32xYuFsuqC6aVRdsPseh+Ojy/5oJ5w7v2cEEuIt9nyg6bFcsBVFfY7kHXSrRYkdgyN+xnSJ8EHV5Y23F2pGmykF+znxdGHWBxQwGhssQ4UNjuvi8Ob0PdXHlUBCAq0PHsB6CqLAi/f7K/zYBDwHqWBWBcTr2+PI/LqRP5MFN22Ov1NXJ8vHVFYkeMY/qUKgMqS9Q3b53b3hprmx28MOoYixsKCBuXx6K6wpVFG9sbGOiYcVVS611925tlwZAi8m2uZwfg2iKg9nMDcJwd+zJSUV+ex1tT7WBxQ7LXdiEs59g719HtK9tzDG0GHJoGK7cNr30ZqYhrUDGkiHxQ57IDcOWCyPL8truBO8qONE0W1KFBXKm4HSxuSPbau2feOc4NPDaufWO7wqhleJkGFmcWFvLWFJGPcX92dES8uRCg/dWJLbNjX0YqBjSqeWHkAIsbCgiPLy2zs8u3q3tIucI4zXPBfYOhVBkgtLNFw6HJI9G7Vs9p4UQ+yLvZYcyN+RMH47U5iejVt8nh9i6mgcVkH4sbCgimhbAWrDuP6H7GoFIorRfV8hSDXjAHVFR8Ex5faj3Vk9PCiXyXvexwfg+pzjPdjrJcnbhtdpBjAbtCMQWmmERjUK2elYiqS6aFtzxb5IiiAH2LgN9/8R1UwfbPMQ0sPhjZE0jyWFOIqJMss8O4GKhnixuDQcDVy8H4w/bvAHARP1ex54YCjmlRLvvTwt3FdnGua+3MuOC0cCLf17qgn6cKG9vcqCoLYmHTCSxuKCDZ7vztbgKUKouFAg2CzYZ4bXFaOJHv65Pgyeywvt3lTG6QfbwtRQHDcoM7hdIAz3Yriw73onF0FbYvIxXZu43Twi17b7ixJpHnmDbNzK/ZjzSN7aaZgDE71i2Jw9XLDu4ru431LXJncoPsY3FDAcNyzYjWLRc8xfj6gkKEaDAOKI6Kb2o3oIwDixcgs1AJ5aVwAMCuwSkcg0PkQaZNM5tCg9Di4JyNy2Nx9bKrC/l1huu5QfbxthQFBNvFuDw/SwpAu7Ok7Dk0eSSqLu1HZNW3iKz6lmNwiDxMp21AXIPK7qaZQGt2eCszANdzg2yx54YCQlVZEJQqg9WtIm/QtyjanSXVlnHl0eNoVtcAAGdQEXlQ0bHTGHcyH+cN3yBNs9LuOVJkh6u5QbZY3FBA2Lg8ts2tKM+vcSMoRPSJb4IqGC7dM7e8gjSNwSEi9zP12ryXkYo0B+fYZoeHCSKiE1zPDbLG4oZkr7Vb2ZJnBxMDAvrEN+G+J6/g1dmJqLioRnQ/3c3VTpvbfXaaJsv8Z9MYnP3xvTiwmMgDChsOOhxIbD87PMWYG9EJTZgy58rN9XQ6zg3T4p/MB2scc0OyZ9ofxnIZc+NsKU9O5zR656V4VFxs3fhuwzLXpnVyawYiaVlmh3EbFc/mxs9eLMOGpbE319MBKkuCb/Ye2T6Dy0c4xuKGZK2yJMjcc2Iw3DwoiDDoFfD0banKUtMN89aN7ypL1Hh1diIqS5ybecGtGYi8z5Qb8ycOhu6GYN4bTjQAns6NDcvirJeREI3TwedPHGyTHfsyUhHXwFvX9rC4IVmznP5tIoreuX8uGtq+jzEgr5QGu7QwF6/OiLzLMjdqrgRB3+K9WZbXyu2NIrafHWmaLJw3HEZmYSGKjp32eNv8CYsbki1H079tiw5vae3BMS3M5QxuzUDkPfZzQ6rMMHGcHfsyUtG7Vs/emzZY3JBstR1rY7r68ex9cyfapRCN7XJhFgR7b4i8w35u3MwOQZrsECzGC7bNDtOta7LG4oZk7fGlZYiKb7I65o375rZaA1HTq8Xlhbl4b53Ieyxzo0dUs3mfOFEEpOjFMfU2R0Y3c1E/J/lMcbN69WoIgoBnn3223fM++ugjDBkyBCEhIbj11luxbds27zSQ/FKfhGYsXH8BfRJ0UJj/tkvZxSyivlrZ4XTwtnhv3TFmB7mbKTf+sP07qLuJFreypbsoMv3Z1ewIVD5R3OTl5WHt2rVITbW//LXJgQMHMH36dMyaNQvHjh3D1KlTMXXqVJw4ccJLLSV/ZNADlSWW99C9yRROreGob1GgpcnR+Y7x3rotZgd5mvX4G28TrP589XKw02P1Ap3kxU1DQwNmzJiBdevWITIyst1z33jjDdx777144YUXMHToUKxYsQJpaWl48803vdRa8keme+jG++XeZj8UO7PqKKeFW2N2kKcplECvvk2QcowedY7kxc3cuXMxadIkTJgwocNzDx48aHNeZmYmDh50PJhKp9Ohrq7O6kGB5/GlZVAovRlQjt5LRHhk53f55cDiVswOCiwievXlDuHOcrq4KStz/yCmzZs34+jRo1i1apVT55eXlyM6OtrqWHR0NMrLyx0+Z9WqVYiIiDA/EhISutRm8k+9Y5u9vGmm427s4JDOv6q/TQuvrXD8u9kVzA7yBoMeuHo5GNJPBQeUKhFPvnJJ6mb4DafTfvjw4di0aZPb3rikpATz5s1DTk4OQkK6kPYdWLRoEWpra82PkpISj70X+S7TrSnvstd70/X75v7Ue/PHzPE49uknbn1NZgd5i/mWtkL6Xl99iwK9YzmY2FlOFzcrV67EnDlz8NBDD+HatWtdfuMjR46gsrISaWlpUKlUUKlU2Lt3L/785z9DpVJBr7dN/5iYGFRUVFgdq6ioQExMjMP3UavV0Gg0Vg8KTI8vLYNSZej4RLcQAcF2pkNn1rhpy5+mhWc+vxAfL1mIf8z9Oa7XVLvlNZkd5E2PLy1DH/NyEtIUOYLQ9dwINE4XN0899RSOHz+Oq1evYtiwYfj888+79MYZGRkoKCjAN998Y35873vfw4wZM/DNN99AqbT9v5ieno5du3ZZHcvNzUV6enqX2kKBoU9CM55YXnZz00wvEG1/vaLim7q8ToVpWvi4k/k+Py189M8ew6+37cL1mmr84Ufj8O2u/3T5NZkd5E2maeEPPuOZW6y2bKedK5Qi17dxkcqVk/v3748vv/wSb775Jh544AEMHToUKpX1Sxw9etSp1woPD8ctt9xidSwsLAy9evUyH8/OzkZcXJz5vvq8efMwduxYvP7665g0aRI2b96Mw4cP4+2333blY1AAMuiNXcyfrY3y0t5Sbd/D+PXMl8rcsk7FvoxUZO/2j96bngn9MCfnI/zvvQ1475ez0WdgMgTB+PMYM2YMlEql07kBMDvIu0zZsX9rJASFaRFQ79K3KFo3/iWnuFTcAMCFCxfwySefIDIyEvfff79NceNOFy9ehKJ15TWMHj0amzZtwpIlS/Diiy8iOTkZW7dutQk6IpPKkiBsXB6Liotq9IxpcrApnfe8+3IsfvPOhS6/jnFa+AKITckoLi5GUlJS1xvnQdWXSnFix3Z0i4jA8HsyYdDrcbnwW0yaNAlqtdrt78fsoK7yrewQ8fcVsVi4vuvZEShcqkzWrVuH559/HhMmTMDJkycRFRXl1sbs2bOn3a8B4KGHHsJDDz3k1vcl+bLc3fdaeVCb74rw9iyIyhK1+Uqwq9ShQZhVcA45kT2BpK6/nqd8vTkHX/xuOZJHj8Hz/96D7r16obG+HrvX/AW/+c1v3DKWhdlB7ua97HDmtVo3zOS4G+c4Xdzce++9OHToEN58801kZ2d7sk1EbmHa3beV/VtF3uTOdSq001YiP2cBGqsH+GzvzfrHHkVJ/jeYumwlRj7AwoL8g3ezo+PXEhQi+sRzjRtXOF3c6PV6HD9+HPHx8Z5sD5HbmKZxXikNlnD5dEsi9C3ufUXTtPCDPtp7I+r1eG7bTvToGyt1U4ic5mvZIRqAKXOuSN0Mv+L0bKnc3FwWNuR3rHcFt52a7V0Caq64d28YX58W/uQ/PmBhQ37J17Ljs7XuHQYid5Jvv0DkSaZpnAvWnUd0P2NQ9Y7TwRdWHHUHy93C/WHFYiJ/YS87jLyRHbYFlGnMTVtH6z7wQnv8j+emOhH5kJhEY1AZ9EBVWRBWz0qC9wscEb36NvO+OZEfMWVH+YUgvP7LRC9t42KdTe2NuRmz6ziCY+6AOqy7F9rlP9hzQwFFoQQ2LIuF9wob0bwqcnS/Jsx6mXvDEPmjv6+Ihb7Fe7mhUBrMW8ZExTle/FN3vRm7k4dCFen+JRX8GYsbChiVJUFYPSsRlSXeDAEBz68xdm0DwO+f7I9XZyeisqTt1FK4dSwOEbmHKTeMs6e8VdwIMOgVmPlSGaL76VBZosbG5bE2uXG07gMkh46GEBzsk7MlpcTihgLGxuWxqLpkWojLe4MCr5YH4e8rWtfMuFIajI3LWwfZVpYE4dXZiZg/cbDDwoeIpCFVbiiUBrzz27h2c2PnrJmYuGYBPnvph6g8x/vdlljcUEAwrVvROq3T3hWYJ4JLxMZlsVbvbTAIVoMDLRcLaxtgRCQd7+aG9esY9AKuXg5uNzcq6+IAADWl3fDeLyLd1A55YHFDAcG0boVCYQoQe4HkiS5nY/dyn4TW97bcGbxteLYNMGfsy0hFnBbQll71QPuJ5Esd1h3hMXcgbMtiu9+3nxtts8NduWF/ocB2c0M09taIegGVRUG8tW2BxQ0FDMt1K3r1bYZ3upiNA4qfWNb63pY7g7cNT8sAc1aaJgv5NfshNjVxOjiRC1SRauxOHgrddceb2bbNDWN2eIOIXn2b2s8NwVjNCEoRfQZxJqYlTgWngNEzunU6uEIJnMoLxbrFcWi9YnL/XlOCQsQTy8vMa2bY2xvm8aVl5g36LAPMFb6+UjGRL0pKSsLJ0qsY0j0d79V9gDRNls05bXMDAJY/2h+1VSoY88Ize9T1iGrGk69cQp+EZoe58e6vlSiv7Yeo/i3Ifqva7W3wZyxuSPZO5YViw9JY6FsUxl6U5WUYesd1DL3jOn7zTjHeXhx3c8dfdweUiD7xzRh6x3XzEXtXVu0VPs7al5GKOz/Pg047opNtJQpM6rDuqIpQYsyu49BOay1uHOUGAPzy1VLzBYknChtBIULdTUSfBGMvkaPceHHqc8gbPxu3/mCk29vg73hbimTPGFDGANK3CNiwtHXAbp+EZqiC7N1HdwfXxs90pUs5TZMFdWgQxp3MR9Gx051/IaIAM+j2FOwYMgT9Fd+zWu23o9xYuP4CBIUBnsgO0YWxdwr+K24Xfywkay1NuLmiaOtsB32LAi1NrVOwjeveuP/qqzPjZ7rC1/eZIvJV6rDuUKtaf1Hbyw2gNTtEg+U57uPt7JAjFjcka6pg3FwhuHW2g1JlgCrYegq2exnfq7PjZzorTZOFwoaDHFhM1EXt5QbguexQKI2rmXs7O+SIxQ3J3hPLy6BUGUNKqTIO8LVdv8KdBPSMMYaT6Z65txyaPBI/PXaG08KJushebgD21r5xF9G8bIQU2SE3HFBMsjf0jut4bVsRWppgvvICjFMpKy66eyCxceZETWUQNi6PxcL1F9z42h0z9t4sgNiUjOLiYi7JTtRJjnLDNA3bvdnROm6n6lKwJNkhN+y5oYChatOLPPOlMrj/fnnnF+NzF9O08JZqnfffnEhm2uYGANz35BV0LTvsLQQofXbICYsbClgxic1t7qu7k3QDAvdlpKK+PA86bQPH3hA56VyIDmN2HXfq3C/WRaFrudFeYeRcdoRtWYwRPe6GOqx7F9ohXyxuKCCZdvq1nhHhjLaB5ijgjFdfUmyEaTktnL03RB1zZqVik/ILQQ7Wt3Gm2HHmHAEtzUKHuaG73ox3bh0AVaTaidcMPCxuKCDZ3+nXueBp/2vT6xhfS6qNMDktnMh5SUlJEIKDMaR7utVaN/b8fUUsrLNCvDnLyZmLpI7OMb5udUVQu7lxtO4DDOmeDiE4mOPqHGBxQwHHuZ1+22O56J+9DfWkv39umhaeWVjIW1NETgiL74WqCCXu/PyIw3NM2WGdGQJE0dkMsXcBZXnMudwYs+s4LnVv4S2pdrC4oYDTdrNKQbAsStrqqDfHskASsPrT77q8Eaa7HJo8Er1r9ZwWTuSEpKQk7BgypN3eG/u7hBtXFLbmyqrnAvok6JzOjaN1H6C/4nvYM3wEBt2e4uR7BB4WNxSQLHf67ZPQ1M7AYnsFj+DgOPDHXyViypwrdnfy9TYu6kfkmrYrFdtjmR3R/Rxlh6OMsJ8blSVq3Pekc7nBXhvncJ0bCkiWm1UCwPyJg7v4isb1baouBeOztVFd3gjTXbhbOJF7uSc72u4kLuKLdc7lhu56M/43cii6cyBxu9hzQwFNoWztanbH1E7Le+VSFzYAoJ22EvXleWisvsbeGyI3MmVH55aTsJ2Y4ExuhG1ZjPCYOxAS2ZMDiTvA4oYI7S3o5+jeedtBxa3jd3xtwzsu6kfkGQZ92w02LTmahSlajPNrHWPTJ6Hj3NBdb8bu5KGc/u0EFjdEMC7oF91PZxM6ANAjqhkL1p2/eYV2kwDzvjO9+jajR5RxfQxRdG6NCm/itHAiz3A0wNhk1opS/OadYpvsUChb96wCAEEhorKk/XWxOP3bNSxuiG56fGkZevQxLeLVOguq5kowevdtvnmFdpMoQN+iwO+/+A6L/14MdTfRHHAdrVHhbZwWTuQ8V1YqBoy50Tuu6eZX1lPEh37vOnrHOs6O17YVIbqfzjzbqr11scbsOo6qCCUHEjuJxQ0RjCsWb1wei+qKYLRdoCu6nw6qYNidqqkKtl03xxf3hlGH+k5PEpGvcmWlYkuCuaZp7cFRqgxWY/q6kh2m6d87hgzh9G8nsbghgnHF4iulphWLra++jONxrKeAWk7VdBRevjTuhog65spKxSb2s8PYO2MqUrqaHZz+7TpOBaeA17rqqDVBENEnoQkxic0w6K2ngLYNn8eXlmHj8lhUXFRLurYNEXVNWHwvvN+UjDs/fw8tM7LaPbej7DDpanZw+rfrWNxQwDNdPV0pDb7ZPWxcg6JPQhOmzLmCV2cnouKiGtH9dHh8aRn6JNh2WbcXXkTkP5KSknCy9CqGdE/He3UfIE3juMBxlB09Y5rR0ixg/sTBVrlhLxs6yo6wLYsRzOnfLuNtKSLYrjq6YN15LFx/AZ+tjTJ3OTuzCSYLGyL/pw7rjkvdW5waWGwvO1RBIqorjOPcnN0811F2cPp357Dnhgj2r57adjk7WqDPX3prdHqdca2bJKlbQuTbBt2egj3aBsz4WoX3LMbe2OvFaZsdzuYG0HF2HK37ANnd03GE079dxp4bIguWQdPRYL/KkiC8OjsR8ycObnd9Cl/AlYqJXGPqvZl+tAjTjxZ12ItjygVnBgk7mx13fn4EVRFKhMX3cstnCiQsboja4WiWA2A9S8LZrmcpcaViIueZpoUH6XogSNcDuuvNTs+gai83AOeyw7Ro344hQ9hr0wm8LUXUDkeD/VzpevYV+zJSkb2bKxUTOSMpKQlF1TpU9x4GAAhX9cGYXd9AO639GVRA+4OEnc2OMbuO45LmNk7/7iT23BA5oW1A+ePaNmmaLJw3HMa4k/koOnZa6uYQ+TxVpBp7R6Vi76hU7Bk+Av0V33O69wawf6HjbHZwIHHXsLgh6qSOup59EfeZInJeUlKS+eHKDKqOdJQd3P2763hbiqiT/HFtG+M+UwsgNiWjuLiYwUnkJNMYnO/ty+vya3WUHVy0r+vYc0PURf5S2JioQ4Mwq+AcBxYTucC0NcOIHne7dGuqPfayg7t/uweLG6IAo522Evk1+zktnMhFYfG98M6tA3Dn50c89h6c/u0eLG6IAhCnhRO5rjMba7qC07/dh8UNUQDiwGKiznHnwOK2uPu3+3BAMVEAMg0sBoZL3RQiv+Joa4a2HG242V6Pz50cSOw2LG6IiIhcYOq9mZDruPdm5z22Bc7Rug9w5+dHoAmxv92CyOnfbsPihoiIyAWqSDX2DB+BF66NsPv9pkuXUPf5drTMsC5u7vz8CO7uMxHBcXF2n/daTyCMvTZuweKGiIjIBaatGUqaaux+v64nMOR6Ot6r+8Dce2Pa4ftMT0DTvcXu89RhPdhr4yYsboiIiFykilTj88hou99rieyB9Jr/Ycyu4+a9qEx7RR0cnOJwSwX+g+w+/FkSBTCxqYkrFRN1Qru/M0mwGXRsOViYv2+ex+KGKEAdmjwST+47hw3BwQDDlsitTIOOpx8tAgBUcrCwV3GdG6IAlabJQn7NfnPvDRG5j2kvqr7No9G3eTR3+PYyFjdEAYwrFRN5RlJSEkIie6IiJRoVKdHstfEy3pYiCmD7MlKRvZsrFRN5guWgY/5j6138eRMFsDRNFs4bFiOzUIn98b14ZUnkRvx9kg5vSxEREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkRdLiZs2aNUhNTYVGo4FGo0F6ejq2b9/u8Px3330XgiBYPUJCQrzYYiKSGnODiDoi6Wyp+Ph4rF69GsnJyRBFEX//+99x//3349ixYxg+fLjd52g0Gpw+fdr8tSAI3moukSwZp4ProS296hcrFTM3iKgjkhY3kydPtvp65cqVWLNmDb766iuHISUIAmJiYrzRPKKAkKbJQmHDAohNyX6xzxRzg4g64jNjbvR6PTZv3gytVov09HSH5zU0NCAxMREJCQm4//77cfLkyXZfV6fToa6uzupBRNb8daViT+UGwOwg8meSFzcFBQXo3r071Go1fvGLX2DLli0YNmyY3XNTUlKwYcMGfPrpp3j//fdhMBgwevRolJaWOnz9VatWISIiwvxISEjw1Ech8lvaaStRX56HxuprfrHPlKdzA2B2EPkzQRRFUcoGNDU14eLFi6itrcW//vUvrF+/Hnv37nUYVJaam5sxdOhQTJ8+HStWrLB7jk6ng07XejVaV1eHhIQE/G7LEYSEdXfb5yDyd2FbFiNYcxsO3vl9DLo9xaPv1Vhfj9+OSEFtbS00Go3Lz/d0bgCOs+Pl/NMICQ93uc1E1DWu5Ibk2y8EBwdj0KBBAICRI0ciLy8Pb7zxBtauXdvhc4OCgnD77bejqKjI4TlqtRpqNXdiJeqIP+0z5encAJgdRP5M8ttSbRkMBqurpfbo9XoUFBSgb9++Hm4VkfwZBxYfRGZhoV/cmrLE3CAiS5L23CxatAgTJ05Ev379UF9fj02bNmHPnj3YsWMHACA7OxtxcXFYtWoVAODll1/GXXfdhUGDBqGmpgavvfYaLly4gNmzZ0v5MYhk49DkkT4/LZy5QUQdkbS4qaysRHZ2Ni5fvoyIiAikpqZix44duOeeewAAFy9ehELR2rlUXV2NJ598EuXl5YiMjMTIkSNx4MABp+6zE1HH/GFaOHODiDoi+YBib6urq0NERAQHFBM54I2BxV0dUCwFU3ZwQDGRNFzJDZ8bc0NE0tqXkYoBjRxIS0T+i8UNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BCRDV2L3i9WKiYisofFDRFZSdNk4bzhMDILC1F07LTUzSEichmLGyKysS8jFb1r2XtDRP6JxQ0R2TDtMyU2NfndPlNERCxuiMgudWgQxp85hZZq5zakJCLyFSxuiMgu7bSVqC/P460pIvI7LG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCGidnHzTCLyNyxuiMihQ5NHYlbBOWhLr0rdFCIip7G4ISKH0jRZyK/Zz94bIvIrLG6IqF3q0CCMP3MKLdU6qZtCROQUFjdE1K59GamoL8+DTtsgdVOIiJzC4oaI2pWmyYI6NAiZhYW8NUVEfoHFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4IaIO7ctIRe9aPVcqJiK/wOKGiDqUpslCYcNBrlRMRH6BxQ0ROYUrFRORv2BxQ0RO0U5bifryPDRWX2PvDRH5NBY3ROQ09t4QkT9gcUNETtuXkYoBjWqpm0FE1C4WN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEJHT0jRZyK/Zz80zicinsbghIpdw80wi8nUsbojIJfsyUhHXoIJO2yB1U4iI7GJxQ0QuSdNk4bzhMMadzEfRsdNSN4eIyAaLGyJy2b6MVAxoVLP3hoh8EosbInKZaWAxEZEvYnFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaxIWtysWbMGqamp0Gg00Gg0SE9Px/bt29t9zkcffYQhQ4YgJCQEt956K7Zt2+al1hKRL2BuEFFHJC1u4uPjsXr1ahw5cgSHDx/GD3/4Q9x///04efKk3fMPHDiA6dOnY9asWTh27BimTp2KqVOn4sSJE15uORFJhblBRB0RRFEUpW6EpZ49e+K1117DrFmzbL6XlZUFrVaLL774wnzsrrvuwm233Ya33nrLqdevq6tDREQEfrflCELCurut3USBRpWzAEcyZmP43SNdfm5jfT1+OyIFtbW10Gg0XW6Lp3MDaM2Ol/NPIyQ8vMttJiLXuJIbPjPmRq/XY/PmzdBqtUhPT7d7zsGDBzFhwgSrY5mZmTh48KDD19XpdKirq7N6EJE8eCo3AGYHkT+TvLgpKChA9+7doVar8Ytf/AJbtmzBsGHD7J5bXl6O6Ohoq2PR0dEoLy93+PqrVq1CRESE+ZGQkODW9hOR93k6NwBmB5E/k7y4SUlJwTfffIOvv/4av/zlLzFz5kx8++23bnv9RYsWoba21vwoKSlx22sTkTQ8nRsAs4PIn6mkbkBwcDAGDRoEABg5ciTy8vLwxhtvYO3atTbnxsTEoKKiwupYRUUFYmJiHL6+Wq2GWq12b6OJSFKezg2A2UHkzyTvuWnLYDBAp9PZ/V56ejp27dpldSw3N9fhvXYiCgzMDSKyJGnPzaJFizBx4kT069cP9fX12LRpE/bs2YMdO3YAALKzsxEXF4dVq1YBAObNm4exY8fi9ddfx6RJk7B582YcPnwYb7/9tpQfgyhgiU1NKC4uRlJSktfek7lBRB2RtLiprKxEdnY2Ll++jIiICKSmpmLHjh245557AAAXL16EQtHauTR69Ghs2rQJS5YswYsvvojk5GRs3boVt9xyi1QfgShgHZo8Etm7zyAnOBjwYnHD3CCijvjcOjeexnVuiNxHlbMAh8dko/uAvi713rh7nRtv4Do3RNLyy3VuiMj/qEODMP7MKbRU2x/vQkQkBRY3RNRp2mkrUV+eB522QeqmEBGZsbghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIuiyzsBDFxcVSN4OICACLGyLqokOTR6J3rR7a0qtSN4WICACLGyLqojRNFgobDkJsamLvDRH5BBY3RNRl6tAgjD9zCi3VOqmbQkTE4oaIuk47bSXqy/Og0zaw94aIJMfihojcQh0ahMzCQqmbQUTE4oaIiIjkhcUNERERyQqLGyIiIpIVFjdEREQkKyqpG+BtoigCABqvN0jcEiJ5UTQ1Q6lrRJNWi8b6+nbPbWww/v6Zfh/9gTk7GpgdRFJwJTcE0Z/SxQ1KS0uRkJAgdTOICEBJSQni4+OlboZTmB1EvsGZ3Ai44sZgMKCsrAzh4eEQBKHTr1NXV4eEhASUlJRAo9G4sYW+jZ87sD434JnPLooi6uvrERsbC4XCP+6OuyM7+Pco8D47P7c0uRFwt6UUCoVbrxQ1Gk1A/YU14ecOPO7+7BEREW57LW9wZ3bw71HgfXZ+bvdwNjf845KJiIiIyEksboiIiEhWWNx0klqtxtKlS6FWq6VuilfxcwfW5wYC+7O7WyD/LAP1s/NzS/O5A25AMREREckbe26IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLixgWrVq3CHXfcgfDwcPTp0wdTp07F6dOnpW6WV6xZswapqanmBZnS09Oxfft2qZvldatXr4YgCHj22WelbopHLVu2DIIgWD2GDBkidbP8VqBmB3PDKFByA/Cd7GBx44K9e/di7ty5+Oqrr5Cbm4vm5mb86Ec/glarlbppHhcfH4/Vq1fjyJEjOHz4MH74wx/i/vvvx8mTJ6Vumtfk5eVh7dq1SE1NlbopXjF8+HBcvnzZ/Ni/f7/UTfJbgZodzI3Ayw3AR7JDpE6rrKwUAYh79+6VuimSiIyMFNevXy91M7yivr5eTE5OFnNzc8WxY8eK8+bNk7pJHrV06VJxxIgRUjdDtgI5O5gb8uYr2cGemy6ora0FAPTs2VPilniXXq/H5s2bodVqkZ6eLnVzvGLu3LmYNGkSJkyYIHVTvObMmTOIjY3FgAEDMGPGDFy8eFHqJslGIGYHcyNw+EJ2BNzGme5iMBjw7LPP4vvf/z5uueUWqZvjFQUFBUhPT0djYyO6d++OLVu2YNiwYVI3y+M2b96Mo0ePIi8vT+qmeM2oUaPw7rvvIiUlBZcvX8by5csxZswYnDhxAuHh4VI3z68FWnYwNwInNwDfyQ4WN500d+5cnDhxIqDGIaSkpOCbb75BbW0t/vWvf2HmzJnYu3evrIOqpKQE8+bNQ25uLkJCQqRujtdMnDjR/OfU1FSMGjUKiYmJ+PDDDzFr1iwJW+b/Ai07mBuBkxuA72QHt1/ohF/96lf49NNP8d///hf9+/eXujmSmTBhAgYOHIi1a9dK3RSP2bp1K6ZNmwalUmk+ptfrIQgCFAoFdDqd1ffk7I477sCECROwatUqqZvit5gdzI1Ayw1Amuxgz40LRFHE008/jS1btmDPnj0BG04mBoMBOp1O6mZ4VEZGBgoKCqyOPf744xgyZAgWLlwYMAHV0NCAs2fP4mc/+5nUTfFLzI5WzI3AyQ1AuuxgceOCuXPnYtOmTfj0008RHh6O8vJyAEBERAS6desmces8a9GiRZg4cSL69euH+vp6bNq0CXv27MGOHTukbppHhYeH24yLCAsLQ69evWQ9XmL+/PmYPHkyEhMTUVZWhqVLl0KpVGL69OlSN80vBWp2MDdaBUJuAL6THSxuXLBmzRoAwLhx46yOb9y4EY899pj3G+RFlZWVyM7OxuXLlxEREYHU1FTs2LED99xzj9RNIw8oLS3F9OnTcfXqVURFReHuu+/GV199haioKKmb5pcCNTuYG4HHV7KDY26IiIhIVrjODREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDfkFvV6P0aNH44EHHrA6Xltbi4SEBCxevFiilhGRr2JuBC6uUEx+47vvvsNtt92GdevWYcaMGQCA7Oxs5OfnIy8vD8HBwRK3kIh8DXMjMLG4Ib/y5z//GcuWLcPJkydx6NAhPPTQQ8jLy8OIESOkbhoR+SjmRuBhcUN+RRRF/PCHP4RSqURBQQGefvppLFmyROpmEZEPY24EHhY35HcKCwsxdOhQ3HrrrTh69ChUKm5uT0TtY24EFg4oJr+zYcMGhIaG4vz58ygtLZW6OUTkB5gbgYU9N+RXDhw4gLFjx+I///kPXnnlFQDAzp07IQiCxC0jIl/F3Ag87Lkhv3H9+nU89thj+OUvf4nx48fjnXfewaFDh/DWW29J3TQi8lHMjcDEnhvyG/PmzcO2bduQn5+P0NBQAMDatWsxf/58FBQUICkpSdoGEpHPYW4EJhY35Bf27t2LjIwM7NmzB3fffbfV9zIzM9HS0sJuZiKywtwIXCxuiIiISFY45oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkK/8f3jx8PnBcaaMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lib.plot2in1(data, xx, yy, Z1, Z2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "grtL7WrBePEo" + }, + "source": [ + "Создали тестовый набор для теста энкодеров" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "9e_7wvKlcfAV" + }, + "outputs": [], + "source": [ + "test_data = np.array([[3.5, 4.2], [3.2, 4], [4.1, 3], [3.5,3.5], [3, 4], [3.5, 4.5]])" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "S5qqvBX6eYYn", + "outputId": "176702c4-7cd4-4fd4-8f7d-81bdf6f5ecf6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.5, 4.2],\n", + " [3.2, 4. ],\n", + " [4.1, 3. ],\n", + " [3.5, 3.5],\n", + " [3. , 4. ],\n", + " [3.5, 4.5]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_data" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AvLSqStAeabQ", + "outputId": "860ed58a-a7b7-4e22-b531-c782ab5f4139" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step\n" + ] + } + ], + "source": [ + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, test_data, IREth1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "id": "jQuw0fktemKe", + "outputId": "a22780fa-f1ee-4f95-a51c-d5fa2a2c0c4f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Аномалий не обнаружено\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjB9JREFUeJzs3XeYXWW9NuBnZjJpkAKEJPSA9A6BUEQILQFsoYnAkaIiCigahQPn86iIikgTFLETUNEAUlRaQm8hECA0Aek9gUBIJckks78/1pmZbFJImczek9z3db0Xs9d6157fGmYlmWfeUlMqlUoBAAAAAKgStZUuAAAAAABgbkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKkJLAIBW9PTTT+eEE07I5ptvnm7duqWmpqa5vfzyy5UuDwAA2gWhJQCw1AYOHNgczP3gBz9YYL+5A7wPt7q6uvTs2TMbbbRRDj300Pz+97/P1KlTl6iGxW3HHHPM0n8RkvzjH//Idtttl0suuSRPP/30YtUPK7rvfve7Zc/l1772tcV+j2X150CpVMqzzz6bP//5zzn55JOz6667pmvXrs3X9uvXb8lvHACYL6ElAFAVGhsbM2nSpDz//PO5+uqrc9xxx2X99dfPtddeW+nSFsnUqVNzzDHHZObMmUmSNdZYI4ceemhOOOGEnHjiiTnxxBPTvXv3Cle55H7wgx8sUjDdHhxzzDHN9zJs2LBKl9MmXn755aoO2EqlUv70pz+VHRs+fHjz81RJY8aMSc+ePbPpppvmC1/4Qi666KKMGjUqH3zwQaVLA4DlWodKFwAArJiGDBmStdZaq/l1Y2NjJkyYkFGjRuX1119PkkyYMCGHHHJIrr766hx44IGL/N477rhjBgwYsMj9d95550UvfAH+9a9/ZeLEiUmSLbbYIg899FC6dOmy1O8LK4I77rgjr776atmxiRMn5h//+EcOPfTQJXrP1vpzYOrUqZk8efIS1QAALDmhJQBQESeffHIGDhw4z/HGxsZcdtll+drXvpaZM2emsbExX/va1zJ48OB07dp1kd77gAMOaPPRgI888kjzx4cffrjAEhbDZZdd1vxxly5dmkcxXnbZZUscWrb2nwOrrLJKdthhh+y4447Zcccd8+yzz+a0005rtfcHAMqZHg4AVJXa2toce+yx+dnPftZ8bPz48bnuuusqV9QiaBplmRRTw4FFM3Xq1Pz9739vfn3++ec3f3zLLbdk/PjxlSir2TbbbJPnnnsu7733XkaMGJEf//jHGTJkSPr06VPRugBgeSe0BACq0vHHH5/OnTs3v7777rsrWM1Ha2hoaP64ttY/sWBR/f3vf8+0adOSJOuvv36OP/74bLvttkmS2bNn5y9/+UsFqytGWG644YYVrQEAVkT+RQ0AVKVOnTpls802a3795ptvVrCa+Zt7c5q5p7cee+yx8+xMvKANX6ZOnZqLLroogwcPztprr53OnTtnlVVWyZZbbpmTTjopo0ePXqRa5v5cTR577LGcfPLJ2XLLLbPqqqumpqYmQ4YMWax7bNqN+Ywzzmg+dsYZZyzR7svXXnttjj766Gy88cbp0aNHOnfunHXWWSdDhgzJZZddltmzZy9STc8880xOPfXU7LzzzunVq1c6duyYzp07p3fv3unfv3+OPfbYXHbZZWWjX5OkX79+i/T/qjU2G1rSGuenoaEhf/rTn/K5z30uG2ywQbp165aVVlop66+/fg4//PBce+21KZVK87122LBhqampyfrrr9987JVXXlngDtqVMPf/j//6r/9KTU1NvvCFL8z3PACw4rCmJQBQteZeF3LGjBkVrGTZ+Ne//pXjjjsu48aNKzs+c+bMvP/++3nqqady8cUX54gjjsjvfve7RV7TMykC1R/96EeZM2dOa5e92B5//PEcffTRGTt27DznXn/99bz++uu5/vrrc9ZZZ+Waa67J5ptvvsD3Wth9vfPOO3nnnXfyyCOPZNiwYTnyyCPz5z//uTVvZZG0Zo133nlnvvzlL+eFF16Y59zLL7+cl19+OX/729+y88475+qrry7b3Ko9eOWVV3LnnXc2v/6v//qvJMkRRxyRU089NXPmzMnjjz+esWPHNo++BABWDEJLAKBqzT26shrXjxswYEBOPPHEJMltt92WZ555Jkmy9957Z9NNNy3rO/eo0SQZPnx4jjzyyOZgq66uLrvttls23HDDTJ06Nffcc0/z/V9xxRV56aWXcvvtt5dNmV+Qc845p3lk5Mc+9rEMGDAgXbt2zcsvv5z6+vrFuscDDzwwW265ZR588ME89NBDSRa8K/P8dl++++678+lPf7p59+X6+vrsuOOO2WijjVJfX5+XX3459957b2bMmJFnn302u+66a0aNGjXP1ytJLrzwwrIRn7169crOO++cNdZYIzU1NXnvvffyzDPP5Omnn55vYHj00Ufn3Xff/cj/V0kWa9fp1qxxbldddVWOPPLI5qUHunTpkp133jn9+vVLbW1t/vOf/2TUqFGZPXt2Hnjggeyyyy556KGHyp6VzTbbLCeeeGKmTJmSyy+/PEnSrVu3HHXUUUt0f63tT3/6U/Mo0Z122ikbb7xxkqRv377Zd999c/PNNycpRlsKLQFgBVMCAFhKe+yxRylJKUnp+9///gL7NfVJUrrjjjsW+p7PPvtsWf9f/vKXrVLDsnL00Uc3f/5LL710oX2ff/750sorr9zcf8CAAaXnnnuurM+cOXNK5513Xqm2tra539e//vUFvufcX6sOHTqUevToUbr22mvn6Tdjxowlub3S97///cX++r711lul3r17N1931FFHld588815+o0bN6504IEHNvfbaqutSrNnzy7r09DQUOrVq1dzn7POOqs0a9as+X7ed999t/THP/6xdPbZZ8/3/OL8v1ocrVnjk08+WerSpUspSammpqb0ne98pzRx4sR5+r3wwgul3Xbbrflz7r///vN9v5deeqm5z3rrrbekt9jqNtpoowU+43/5y1+az/Xu3bvU0NDwke/Xln8OXHrppVX5NQWA5YWRlgBA1Zk9e3ZOPvnk5tfdu3fP5z//+UW+/sYbb8yECRMWuf8Pf/jDrLrqqotV49L44Q9/mKlTpyZJNtxww4wYMSI9evQo61NbW5uhQ4empqYmQ4cOTZJcfPHF+da3vlW2PuH8NDY25h//+Ed23333ec516tSple7io/2///f/8vbbbydJvvGNb+TCCy+cb78+ffrkqquuyqBBg3L77bfniSeeyNVXX53DDjusuc8zzzzT/P/04x//eE477bQFft5VV101xx57bCveyaJpzRq/8Y1v5IMPPkiSnHfeefnWt741334bbLBBbr755gwYMCD//ve/c9NNN2X06NHZaaedluJO2sb999+f5557LkkxAnfu/99JMmTIkKy88sqZOnVq3n777dx000359Kc/vcjvX+1/DgAACye0BACqQmNjYyZMmJD77rsvP/3pT/Pggw8mSTp06JA//vGPWW211Rb5vR566KHmqcyL4jvf+U6bhRXvv/9+hg8f3vz6Zz/72TyB5dxOPvnk/OEPf8hTTz2VxsbG/Pa3v81ZZ5210M9xyCGHzDewbEvvvPNO81qNffv2zdlnn73Q/nV1dfnxj3+cXXbZJUnyl7/8pSzEappeniSrr776Mqh46bVWjY899lhuv/32JMl2222Xb37zmwvtv9JKK+V///d/c/jhhycpvnbtIbSce4Od/fffP7169So737Vr1xx88MHN/S677LLFCi2r+c8BAOCj2T0cAKiIPffcs2zX4rq6uvTp0ycHHXRQc2C5ySab5LrrrsvBBx9c4Wpbz/3335+ZM2cmKdY7/KgQpra2Nl/84hebX99xxx0f+TkWZ1TqsnLrrbdm1qxZSZKDDjpokdbi3GmnnbLSSislSe69996yc+uss07zx3fccUf+85//tGK1raO1arzxxhubPz788MMXaVfvvfbaq/njD3/tqtGMGTNy5ZVXNr+ee7fwuc299uY///nPvPfee8u8NgCgOhhpCQBUpT59+uTyyy9fog1Rvv/97+cHP/hB6xfVCh599NHmjwcMGJAOHT76n2Mf//jHy64vlUoLDbL69++/dEW2glGjRjV//Pjjj+ekk05arOsnTpyYadOmNYeY66yzTnbeeec88MADmTRpUvr3758vfOELOfDAA/Pxj398sXZWX1Zaq8a5v3Z33HFHXnnllY+8pvR/m9kkyWuvvbb4xbex66+/Pu+//36SpGfPngsM7wcOHJi11147r7/+embNmpW//e1vOeGEExbpc1TznwMAwEcTWgIAFTFkyJCstdZaza/ffffdvPDCC83TOcePH59PfOIT+fvf/55PfepTlSqz1b3zzjvNH6+33nqLdE2/fv2aP541a1amTJmS7t27L7B/NUyfnnvn93vvvXeJRv9NnDixObRMkj/84Q/Za6+9Mn78+EydOjWXXHJJLrnkknTo0CHbbrttdt999wwePDh777136urqWuU+Fldr1Dj31+6mm25a7BomTpy4xPW3lbmnhh966KELXGu1trY2Rx55ZPPyApdddtkih5YAQPtmejgAUBEnn3xyfvnLXza3v/71r3nwwQfz2GOPZZtttklSBHSHH354XnjhhQpX23qaNuBJUhbILcyH+02ZMmWh/bt06bL4hbWySZMmLfV7zJ49u+z15ptvnsceeyxf//rXy9YBnT17dsaMGZPzzz8/gwcPznrrrZff//73S/35l0Rr1Li0X7s5c+Ys1fXL2rhx4zJixIjm1//1X/+10P5zTx1/8MEH88wzzyyz2gCA6iG0BACqytZbb50RI0Y0j8KcOnVqvvzlL1e4qtaz8sorN388bdq0Rbrmw/26devWqjUtC3MHreeff35KpdJit7lHmDbp06dPLrrooowfPz533nlnzjzzzOy///5lI0/feOONHHfccfnGN77RFrfa6jXO/bW75pprluhrV83+/Oc/lwWre+yxR9n6th9uW265Zdn1c4/SBACWX0JLAKDq9O7dO7/4xS+aX99555254YYbKlhR65l76varr766SNe8/PLLzR937NixXYSWffr0af543Lhxrf7+nTp1yh577JHvfve7ufHGGzNhwoTcdNNN2W233Zr7/OIXv1is3aOrpcZl/bWrtKUNHf/85z+nsbGxlaoBAKqV0BIAqEpNm5c0+e53v1vBalrPdttt1/zxgw8+uEhTee+///6y6xdlN+nWtrifc6eddmr++L777mvtcuZRX1+f/fbbL7feemvZyLx//vOf8/StxNcvWfQal8XXrlL3/GGPPPJInnzyyebXO+64Y3baaadFak2bVr3++uu57bbbKnULAEAbEVoCAFVr7p1/x44dm3/84x+VK6aV7Lrrrs2bjrzzzjsfOYK0sbExl156afPrvfbaa5nWtyCdO3du/rihoeEj+w8ePLg5ZLr//vvz2GOPLbPa5tapU6cMGjSo+fX48ePn6bO499LaPqrGuTeeuuaaa+Z7D4ur0vfcZO5RlltttVUefPDBPPDAA4vU9ttvv/m+DwCwfBJaAgBVa5999smuu+7a/PpHP/pRBatpHT179sxhhx3W/PqUU05Z6MY6v/zlL/PEE08kKXZS/spXvrLMa5yf1VZbrfnjN9544yP7r7XWWs0brJRKpRx11FGZPHnyIn2uxsbGsl3Wk2JH7EWdEvzaa681f9y7d+95zi/uvSyq1qpxwIABGThwYJLkgw8+yBe+8IXMmjVrkd531qxZ8909vGfPnqmtLf7p/84771QkuGxoaMgVV1zR/PqjNuD5sLn7X3vttR+5IRUA0L4JLQGAqva9732v+eOHHnooN998cwWraR3f+973mjfk+c9//pPBgwfnxRdfLOvT2NiYCy+8MEOHDm0+duKJJ853c5q2MPd05hEjRizSDtc//vGPs8YaayRJHn/88QwYMKBs1+gPe/3113PBBRdkk002yfDhw8vOXX/99dl4441z7rnnlq3xObeZM2fml7/8Za6++urmY/vvv/9C7+X6669f5EDwo7Rmjb/4xS+av0dGjhyZ3XffPaNHj17g5/7Pf/6TM888M/369ZvvlPJOnTplo402SlKEh9ddd90i3dMxxxzTvCHO0n7vNa3rmRTT1Q8//PDFuv4zn/lM83qu06dPz1VXXbVU9QAA1a1DpQsAAFiYwYMHZ6eddmoObM4888yyaaLzM3c4sii6du2an/3sZ0tV5+L42Mc+lt///vc58sgjM2fOnIwaNSqbbLJJPvGJT+RjH/tYpk6dmnvuuadsFODOO+/cpjV+2IABA7LOOuvktddey1tvvZVNN900gwYNSq9evZrXS9xxxx3LRpGuueaauf7663PAAQdkwoQJefbZZzN48OCstdZaGTBgQFZfffU0NDRkwoQJefLJJ/PSSy8ttIYXXnghp5xySk455ZSsu+662XrrrZtHKY4bNy4PPPBA3nvvveb+Rx55ZNlI3Sb7779/unTpkg8++CBjx47NZpttloEDB6Znz57N9zJo0KCyKdyLqrVq3HLLLfPXv/41hx12WKZPn57Ro0dn5513zsc+9rFsv/32WXXVVTNjxoy8/fbbefzxxxdpxOjBBx+cn/zkJ82fd9iwYdlwww1TX1/f3Ofcc89d7HteVHNP6d59992zzjrrLNb1Xbp0yYEHHpjLL7+8+f2++MUvLrB/a/458OUvfzljxowpOzb3/8c333wz22677TzX/f73v88OO+ywyDUAAHMpAQAspT322KOUpJSk9P3vf3+B/Zr6JCndcccdi/z+N9xwQ9m1t95660JrWNzWo0ePxb/pDzn66KOb3+/SSy9dpGv++c9/lvr06fOR9R1++OGladOmLfS95u6/rPzzn/8sdezYcYF1Hn300fO97uWXXy7tvffei/z/o0+fPqWbb7657D2uuuqqUk1NzSJdX1tbWzrhhBNKs2bNWuC9XHLJJQt9v4V9Hy9Ia9dYKpVKY8eOLfXv33+Rv3b9+vUrPfroo/N9r/fff7+06aabLvT6D5v7+3q99dZb7K9JkwkTJpR97/zud79bovcZMWJE83vU1NSUXnzxxbLzy+rPgSV938X5cw4AKGekJQBQ9Q444IDssMMOzSOdfvjDH2bvvfeucFVL71Of+lSef/75/PGPf8y//vWvPPXUU5kwYUK6dOmSNddcM3vuuWeOOuqost2kK+lTn/pUxowZk4svvjj33ntvXn311UydOjWlUmmh16233nq59dZbM2rUqFx11VW5++6789prr2XixInp0KFDVltttWy00UbZYYcdMmjQoAwcOLB5E58mhxxySN56662MGDEi9913Xx577LG8+OKLef/995MkPXr0yMYbb5zddtstRx11VDbffPOF1vTVr341W221VX7zm99k9OjReeONNzJ9+vSPvJeFae0ak2SbbbbJmDFjMmLEiFx33XW577778uabb+b9999Pp06dsvrqq2eTTTbJTjvtlMGDB2eXXXZZ4E7hPXr0yEMPPZRf/epXueGGG/L000/n/fffb5P1Lf/61782T8Pv1KlTDjnkkCV6n7322itrrLFG3nrrrZRKpVx22WVlG3YBAMuPmtLS/MsMAAAAAKCV2YgHAAAAAKgqQksAAAAAoKoILQEAAACAqiK0BAAAAACqitASAAAAAKgqQksAAAAAoKp0qHQB7UVjY2PefPPNdOvWLTU1NZUuBwAAAADalVKplClTpmTNNddMbe3Cx1IKLRfRm2++mXXWWafSZQAAAABAu/baa69l7bXXXmgfoeUi6tatW5Lii9q9e/cKV7NsNDQ0ZMSIERk0aFDq6+srXQ6scDyDUHmeQ6gszyBUlmcQKm95fw4nT56cddZZpzlnWxih5SJqmhLevXv35Tq07Nq1a7p3775cPhhQ7TyDUHmeQ6gszyBUlmcQKm9FeQ4XZelFG/EAAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVTpUuoAVQalUSkNDQxobGytdykI1NDSkQ4cOmTFjRubMmVPpcpZrdXV1qa+vr3QZAAAAAFVJaLkMzZo1K2+//XamT5/eLkLAUqmUvn375rXXXktNTU2ly1nuderUKb169Ur37t0rXQoAAABAVRFaLiPTp0/Pa6+9lrq6uqyyyirp0qVL6urqqjoMbGxszNSpU7PyyiunttbKActK08jbSZMm5Y033kgSwSUAAADAXISWy8iECRNSX1+f9dZbL3V1dZUuZ5E0NjZm1qxZ6dy5s9ByGevSpUu6deuW119/PRMmTBBaAgAAAMxFMrUMzJ49O9OmTcuqq67abgJL2l5NTU169OiRmTNnpqGhodLlAAAAAFQNoeUyMHv27CTFmoWwME2b8bSHNU8BAAAA2orQchmq5vUrqQ6+RwAAAADmJbQEAAAAAKqK0BIAAAAAqCpCSwAAAACgqggtqah+/fqlpqYmw4YNaz42bNiw1NTUlLXa2tp079492223XU4//fS88847C3zPD1+7oHbnnXcu+xsEAAAAYLF1qHQBsCArrbRSDjnkkCTF7tqvvPJKRo0albFjx+bSSy/NPffck4022miB1w8ePDh9+/Zd4PmFnQMAAACgcoSWVK1evXqVjcBMkqeeeip77LFHxo8fn29+85u54YYbFnj9aaedloEDBy7bIgEAAABodaaH065sscUWGTp0aJJk5MiRmTlzZoUrAgAAAKC1CS1pd7beeuskSUNDQ957770KVwMAAABAaxNa0u5Mnjw5SVJXV5devXpVuBoAAAAAWpvQknanaR3L/fbbL/X19RWuBgAAAIDWZiOeStlhh2TcuEpXUaYmSfdSKTU1NQvv2LdvMmZMm9TUpGn38N/+9re54oorst566+Wiiy5a6DV77rnnAs/16NEj77//fitXCQAAAEBrEFpWyrhxyRtvVLqKMjX/16rFK6+8Mt8AdcCAARkxYkR69Oix0OsHDx6cvn37zvdc165dW6VGAAAAAFqf0LJSFhCmVVIpSen/RlouNLxso9pXWmmlHHLIIUmSmTNn5umnn85jjz2WBx98MMcff3z+9re/LfT60047LQMHDmyDSgEAAABoTULLSmnj6dWLotTYmMmTJ6d79+6pqa38cqe9evXKsGHDyo5dc801OeywwzJ8+PDsvvvuOeGEEypTHAAAAADLTOWTKVgMBx10UE477bQkyfe+971MmjSpwhUBAAAA0NqElrQ7p59+etZYY428++67Of/88ytdDgAAAACtTGhJu9O1a9f87//+b5Lk5z//eSZOnFjhigAAAABoTda0pF368pe/nPPOOy8vvPBCzj333Pz4xz+ep89Pf/rTedbEnNsRRxyRQYMGLcMqAQAAAFgSQkvapfr6+vzoRz/K4Ycfnl/84hcZOnRoVltttbI+t9xyy0LfY9tttxVaAgAAAFQhoSUV9fLLL89z7Jhjjskxxxzzkdd+/vOfz+c///l5jpdKpVaoDAAAAIBKsaYlAAAAAFBVhJYAAAAAQFVpl6HlJZdckq233jrdu3dP9+7ds8suu+Smm25a6DVXXXVVNt1003Tu3DlbbbVVbrzxxjaqFgAAAABYHO0ytFx77bXz05/+NA8//HDGjBmTvfbaK5/97Gfz1FNPzbf//fffn8MPPzxf+tKX8uijj2bIkCEZMmRInnzyyTauHAAAAAD4KO0ytPz0pz+dAw44IBtttFE23njj/PjHP87KK6+cBx54YL79L7zwwuy333455ZRTstlmm+XMM8/M9ttvn1/+8pdtXDkAAAAA8FHa/e7hc+bMyVVXXZVp06Zll112mW+fUaNGZejQoWXHBg8enOuuu26B7ztz5szMnDmz+fXkyZOTJA0NDWloaFhoTQ0NDSmVSmlsbExjY+Mi3knlNe263VQ7y15jY2NKpVIaGhpSV1dX6XKosKY/Wz7qzxhg2fEcQmV5BqGyPINQecv7c7g499VuQ8snnngiu+yyS2bMmJGVV1451157bTbffPP59h03blz69OlTdqxPnz4ZN27cAt//rLPOyhlnnDHP8REjRqRr164Lra1Dhw7p27dvpk6dmlmzZi3C3VSXKVOmVLqEFcasWbPywQcf5O67787s2bMrXQ5VYuTIkZUuAVZ4nkOoLM8gVJZnECpveX0Op0+fvsh9221ouckmm2Ts2LGZNGlSrr766hx99NG56667FhhcLq7TTz+9bHTm5MmTs84662TQoEHp3r37Qq+dMWNGXnvttay88srp3Llzq9TTFkqlUqZMmZJu3bqlpqam0uWsEGbMmJEuXbpk9913b1ffKywbDQ0NGTlyZPbdd9/U19dXuhxYIXkOobI8g1BZnkGovOX9OWyaybwo2m1o2bFjx2y44YZJkv79++ehhx7KhRdemN/85jfz9O3bt2/Gjx9fdmz8+PHp27fvAt+/U6dO6dSp0zzH6+vrP/KbZs6cOampqUltbW1qa9vPsqFNU8KbamfZq62tTU1NzSJ9X7Hi8P0Alec5hMryDEJleQah8pbX53Bx7mm5SaYaGxvL1qCc2y677JLbbrut7NjIkSMXuAYmAAAAAFA57XKk5emnn579998/6667bqZMmZIrrrgid955Z2655ZYkyVFHHZW11lorZ511VpLk5JNPzh577JHzzjsvn/zkJ/O3v/0tY8aMyW9/+9tK3gYAAAAAMB/tMrR8++23c9RRR+Wtt95Kjx49svXWW+eWW27JvvvumyR59dVXy6Y377rrrrniiivy3e9+N//zP/+TjTbaKNddd1223HLLSt0CAAAAALAA7TK0/MMf/rDQ83feeec8xw499NAceuihy6giAAAAAKC1LDdrWgIAAAAAywehJRXVr1+/1NTUZNiwYc3Hhg0blpqamrJWW1ub7t27Z7vttsvpp5+ed955Z4Hv+eFrF9TmNyJ3YZrqOuaYY5bsZgEAAABYJO1yejgrhpVWWimHHHJIkmTOnDl55ZVXMmrUqIwdOzaXXnpp7rnnnmy00UYLvH7w4MHp27fvAs9/+FxNTU2SpFQqtUL1AAAAACwpoSVVq1evXmUjMJPkqaeeyh577JHx48fnm9/8Zm644YYFXn/aaadl4MCBy7ZIAAAAAFqd6eG0K1tssUWGDh2aJBk5cmRmzpxZ4YoAAAAAaG1CS9qdrbfeOknS0NCQ9957b6nf7wc/+EHz1PBk3jUxX3755XmumTZtWk4//fRsuOGG6dSpU/r27Zujjz46b7zxxlLXAwAAALCiMz2cdmfy5MlJkrq6uvTq1Wup32/bbbfN0UcfncsuuyxJcvTRR5edX3nllcteT5o0KbvuumteffXVfOITn8iWW26ZUaNG5fLLL89dd92Vxx57LD169FjqugAAAABWVEJL2p2mdSz322+/1NfXL/X7DRkyJEOGDGkOLT+8juaHXXfddRk8eHDuueeedO/ePUkyceLE7LXXXhk7dmx+9atf5fTTT1/qugAAAABWVELLCtlhhx0ybty4Spcxj1KpVDZVen769u2bMWPGtFFFhabdw3/729/miiuuyHrrrZeLLrpoodfsueeeCzzXo0ePvP/++0tUy0orrZRLL720ObBMklVWWSWnnXZaPv/5z+fWW28VWgIAAAAsBaFlhYwbN876hx/hlVdemW+AOmDAgIwYMeIjp2APHjw4ffv2ne+5rl27LnFdO+ywQ9ZYY415jm+22WZJ4v8rAAAAwFISWlbIgsK0SlvUkZZtYaWVVsohhxySJJk5c2aefvrpPPbYY3nwwQdz/PHH529/+9tCrz/ttNMycODAVq9r3XXXne/xppGXM2bMaPXPCQAAALAiEVpWSFtPr14UjY2NmTx5crp3757a2spvLN+rV6951pe85pprcthhh2X48OHZfffdc8IJJ7R5XdXwtQEAAABYnklfaFcOOuignHbaaUmS733ve5k0aVKFKwIAAACgtQktaXdOP/30rLHGGnn33Xdz/vnnt9r7Nu1EPnv27FZ7TwAAAAAWn9CSdqdr16753//93yTJz3/+80ycOLFV3nfttddOkjz11FOt8n4AAAAALBlrWtIuffnLX855552XF154Ieeee25+/OMfz9Pnpz/96TxrYs7tiCOOyKBBg5pfH3zwwTn33HOzzz77ZK+99kq3bt2SJGeffXZWW221Vr8HAAAAAOZPaEm7VF9fnx/96Ec5/PDD84tf/CJDhw6dJ1i85ZZbFvoe2267bVloeeaZZ6a2tjbXXHNNrrvuusyaNStJ8t3vfldoCQAAANCGhJZU1MsvvzzPsWOOOSbHHHPMR177+c9/Pp///OfnOV4qlZaols6dO+fss8/O2WefPd/zH1VXv379lvhzAwAAANDCmpYAAAAAQFURWgIAAAAAVUVoCQAAAABUFaElAAAAAFBVhJYAAAAAQFURWgIAAAAAVUVoCQAAAABUFaHlMlQqlSpdAlXO9wgAAADAvISWy0BtbfFlnTNnToUrodo1fY80fc8AAAAAILRcJurr61NfX5+pU6dWuhSq3AcffJC6urrU19dXuhQAAACAqiG0XAZqamrSrVu3TJo0KR988EGly6FKzZkzJ5MmTUrXrl1TU1NT6XIAAAAAqkaHShewvOrVq1c++OCDvPrqq+nevXu6deuWurq6qg6nGhsbM2vWrMyYMcN05WWoVCpl5syZee+999LY2JjevXtXuiQAAACAqiK0XEbq6uqyzjrrZMKECZkyZUref//9Spf0kUqlUj744IN06dKlqsPV5cVKK62Uvn37pmPHjpUuBQAAAKCqCC2Xobq6uvTp0ye9e/dOQ0NDGhsbK13SQjU0NOTuu+/O7rvvbo3FZaxDhw7p0MHjBwAAADA/UpM2UFNT0y5G09XV1WX27Nnp3Lmz0BIAAACAirFwIQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFWlXYaWZ511Vnbcccd069YtvXv3zpAhQ/Lss88u9Jphw4alpqamrHXu3LmNKgYAAAAAFlW7DC3vuuuunHjiiXnggQcycuTINDQ0ZNCgQZk2bdpCr+vevXveeuut5vbKK6+0UcUAAAAAwKLqUOkClsTNN99c9nrYsGHp3bt3Hn744ey+++4LvK6mpiZ9+/Zd1uUBAAAAAEuhXYaWHzZp0qQkyaqrrrrQflOnTs16662XxsbGbL/99vnJT36SLbbYYr59Z86cmZkzZza/njx5cpKkoaEhDQ0NrVR5dWm6r+X1/qDaeQah8jyHUFmeQagszyBU3vL+HC7OfdWUSqXSMqxlmWtsbMxnPvOZvP/++7n33nsX2G/UqFF57rnnsvXWW2fSpEk599xzc/fdd+epp57K2muvPU//H/zgBznjjDPmOX7FFVeka9eurXoPAAAAALC8mz59eo444ohMmjQp3bt3X2jfdh9afu1rX8tNN92Ue++9d77h44I0NDRks802y+GHH54zzzxznvPzG2m5zjrrZMKECR/5RW2vGhoaMnLkyOy7776pr6+vdDmwwvEMQuV5DqGyPINQWZ5BqLzl/TmcPHlyevXqtUihZbueHn7SSSflX//6V+6+++7FCiyTpL6+Ptttt12ef/75+Z7v1KlTOnXqNN/rlsdvmrmtCPcI1cwzCJXnOYTK8gxCZXkGofKW1+dwce6pXe4eXiqVctJJJ+Xaa6/N7bffnvXXX3+x32POnDl54oknssYaayyDCgEAAACAJdUuR1qeeOKJueKKK3L99denW7duGTduXJKkR48e6dKlS5LkqKOOylprrZWzzjorSfLDH/4wO++8czbccMO8//77Oeecc/LKK6/ky1/+csXuAwAAAACYV7sMLS+55JIkycCBA8uOX3rppTnmmGOSJK+++mpqa1sGkk6cODHHHXdcxo0bl1VWWSX9+/fP/fffn80337ytygYAAAAAFkG7DC0XZe+gO++8s+z1BRdckAsuuGAZVQQAAAAAtJZ2uaYlAAAAALD8EloCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVJUOlS6A6rHzzjvnlVdeSefOnStdCqywZsyY4RmECvMcQmV5BqGyPINQeTNmzMh6662Xhx9+uNKlVJTQkmbjx4/Pu+++W+kyAAAAAFZofnkgtGQuffr08Vs1qDDPIFSe5xAqyzMIleUZhMqbMWNG+vTpU+kyKk5oSbMHHnggN954Yw444IDU19dXuhxY4TQ0NHgGocI8h1BZnkGoLM8gVN7cz+GKzkY8AAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAEBVEVoCAAAAAFVFaAkAAAAAVBWhJQAAAABQVYSWAAAAAFANZs1Kz+eeq3QVVUFoCQAAAACVNGVKct556bDxxvn4//5vMnFipSuqOKElAAAAAFTC+PHJ//t/ybrrJt/5TmrefDMdZsxI7a9/XenKKq5DpQsAAAAAgBXKiy8m556bXHppMmNG2am3dtopq++7b4UKqx5CSwAAAABoC48+mpx9dnLVVUljY8vx+vrkC19Iwze/mQdffDEH7LBD5WqsEkJLAAAAAFhWSqXkjjuKsHLEiPJzK6+cHH988q1vJWutlTQ0FKMwEVoCAAAAQKubMye57roirHzoofJzq6+efPObyde+lqyySiWqq3pCSwAAAABoLTNnJpdfnpxzTvLcc+XnNtgg+c53kmOOSbp0qUh57YXQEgAAAACW1uTJya9/nfz858lbb5Wf23bb5LTTkoMPTjqI4xaFrxIAAAAALKlx45ILL0x+9asiuJzbXnsl//3fyb77JjU1lamvnRJaAgAAAMDiev75Ygr4ZZcVU8Kb1NQkBx1UhJU77li5+to5oSUAAAAALKqHHy4217n66mJn8CYdOyZHHZWcckqy8caVq285IbQEAAAAgIUplZLbbkt++tPiv3Pr1q3YBfzkk5M116xMfcshoSUAAAAAzM+cOcnf/16MrHzkkfJzffok3/xm8tWvJj17VqK65VptpQtYEmeddVZ23HHHdOvWLb17986QIUPy7LPPfuR1V111VTbddNN07tw5W221VW688cY2qBYAAACAdmXGjOQ3v0k22SQ57LDywHLDDYtzL79c7AgusFwm2mVoedddd+XEE0/MAw88kJEjR6ahoSGDBg3KtGnTFnjN/fffn8MPPzxf+tKX8uijj2bIkCEZMmRInnzyyTasHAAAAICq9f77yVlnJf36FSMoX3ih5Vz//smVVybPPJN85StJ586VqnKF0C6nh998881lr4cNG5bevXvn4Ycfzu677z7fay688MLst99+OeWUU5IkZ555ZkaOHJlf/vKX+fWvf73MawYAAACgSr35ZvLznye//nUyZUr5uX32KUZU7rVXsTM4baJdhpYfNmnSpCTJqquuusA+o0aNytChQ8uODR48ONddd918+8+cOTMz59qufvLkyUmShoaGNDQ0LGXF1anpvpbX+4Nq5xmEyvMcQmV5BqGyPIOskJ59NnXnn5+av/wlNbNmNR8u1damdNBBmfOd7yTbb18cnD17mZezvD+Hi3NfNaXS3Huztz+NjY35zGc+k/fffz/33nvvAvt17Ngxl112WQ4//PDmY7/61a9yxhlnZPz48fP0/8EPfpAzzjhjnuNXXHFFunbt2jrFAwAAANDmev7nP9nommuyxujRqZkrGptTX59X99orLwwZkmlrrFHBCpdP06dPzxFHHJFJkyale/fuC+3b7kdannjiiXnyyScXGlguidNPP71sZObkyZOzzjrrZNCgQR/5RW2vGhoaMnLkyOy7776pr6+vdDmwwvEMQuV5DqGyPINQWZ5BlnulUmpGjkztOeek9q67yk91757G449P49e/nrX79s3aFSpxeX8Om2YyL4p2HVqedNJJ+de//pW77747a6+98G+nvn37zjOicvz48enbt+98+3fq1CmdOnWa53h9ff1y+U0ztxXhHqGaeQah8jyHUFmeQagszyDLndmzk6uvTs4+Oxk7tvzcGmsk3/pWao4/PnXdu6euIgXOa3l9Dhfnntrl7uGlUiknnXRSrr322tx+++1Zf/31P/KaXXbZJbfddlvZsZEjR2aXXXZZVmUCAAAAUCkffJD86lfJxhsnhx9eHlhuvHHyu98lL72UnHJKspzOqm3P2uVIyxNPPDFXXHFFrr/++nTr1i3jxo1LkvTo0SNdunRJkhx11FFZa621ctZZZyVJTj755Oyxxx4577zz8slPfjJ/+9vfMmbMmPz2t7+t2H0AAAAA0MomTizCygsvTN55p/zcgAHJf/938tnPJnXVMq6S+WmXoeUll1ySJBk4cGDZ8UsvvTTHHHNMkuTVV19NbW3LQNJdd901V1xxRb773e/mf/7nf7LRRhvluuuuy5ZbbtlWZQMAAACwrLz+enLBBclvf5tMnVp+bvDgIqwcODCpqalIeSyedhlaLsqG53feeec8xw499NAceuihy6AiAAAAACri6aeTc85J/vznpKGh5XhtbfK5zyWnnppst13l6mOJtMvQEgAAAIAV3AMPJD/9aXL99eXHO3dOvvjF5NvfTjbYoDK1sdSElgAAAAC0D6VSctNNxU7gd99dfq5nz+TEE5NvfCPp3bsi5dF6hJYAAAAAVLfZs5Phw4uw8oknys+ttVYydGhy3HFJt26VqY9WJ7QEAAAAoDpNn5784Q/Jeeclr7xSfm7TTYv1Ko88MunYsTL1scwILQEAAACoLu++m1x8cXLRRcXHc9t552In8M98pthsh+WS0BIAAACA6vDqq8n55ye/+10xynJuBxxQhJWf+ERSU1OZ+mgzQksAAAAAKuupp5Kf/Sy54opi/comdXXJ5z9fTAPfeuvK1UebE1oCAAAAUBn33VdsrvPPf5Yf79Il+dKXkm9/O+nXryKlUVlCSwAAAADaTmNjcsMNRVh5333l51ZdNTnppKKtvnpl6qMqCC0BAAAAWPYaGpK//rWYBv7UU+Xn1lknGTo0+fKXk5VXrkx9VBWhJQAAAADLztSpye9/X2yw89pr5ec237zYXOfww5P6+srUR1USWgIAAADQ+iZMSH7xi+SXv0zee6/83Mc/XoSVn/xkUltbmfqoakJLAAAAAFrPK68k551XjK784IPyc5/6VBFW7rZbZWqj3RBaAgAAALD0Hn+8WK/yb39L5sxpOd6hQ3LEEckppyRbblm5+mhXhJYAAAAALJlSKbnnnmIn8BtvLD/XtWty3HHFBjvrrluZ+mi3hJYAAAAALJ7GxuQf/yjCygceKD+32mrJ17+enHRS8TEsAaElAAAAAItm1qzkL38ppoE/80z5ufXWS7797eSLX0xWWqky9bHcEFoCAAAAsHBTpiS/+11y/vnJG2+Un9tyy2JzncMOS+rrK1Mfyx2hJQAAAADz9/bbyUUXJRdfnLz/fvm5T3wiOe20ZP/9k5qaipTH8ktoCQAAAEC5F19Mzjsv+eMfkxkzys999rPFyMpddqlMbawQhJYAAAAAFMaOLTbXufLKYrOdJvX1yZFHJqeckmy+ecXKY8UhtAQAAABYkZVKyZ13FmHlLbeUn1tppeT445NvfStZe+2KlMeKSWgJAAAAsCKaMye5/vrkpz9NHnqo/Nzqqyff+EZywgnJqqtWpj5WaEJLAAAAgBXJzJnJn/6UnHNO8p//lJ/r1y/5zneSY49NunatSHmQCC0BAAAAVgyTJye/+U1ywQXJW2+Vn9tmm2JznUMPTTqIi6g834UAAAAAy7Nx45ILL0wuuSSZNKn83MCBRVg5eHBSU1OR8mB+hJYAAAAAy6Pnn0/OPTcZNqyYEt6kpiY58MAirBwwoGLlwcIILQEAAACWJ488UuwEfvXVSWNjy/H6+uSoo5JTTkk22aRy9cEiEFoCAAAAtHelUnL77cVO4LfeWn6uW7fk+OOTb34zWWutipQHi0toCQAAANBezZmTXHNNMbLy4YfLz/XuXQSVX/ta0rNnJaqDJSa0BAAAAGhvZsxILr88OeecYu3KuX3sY8l3vpMcfXTSpUtl6oOlJLSkcMklqbvvvqzftWtqVl896d8/6dSp0lUBAAAAc5s0qdgF/Oc/T8aPLz+3/fbF5joHH5zU1VWkPGgtQksK//xnam+6KVsnye9+l3TsmGy7bbGLWFPbaKOktrbChQIAAMAK6K23iqDy179OJk8uP7f33kVYuc8+xc7gsBwQWlIs1vvYY+XHZs1KHnywaE169kx23LE8yOzbt01LBQAAgBXKf/5TTAG//PLiZ/UmNTXFiMr//u9khx0qVx8sI0JLij/oXnwxsx95JP8eNixbTpuW2jFjkmefLe/3/vvJyJFFa7LuuuUhZv/+ycort2n5AAAAsNx56KFic51rrikGGzXp2DE55phizcqNNqpYebCsCS0pdOqU0g475KW3385mBxyQ2vr6IqQcMyYZPboYcTl69LzrZbz6atGuvrp4XVubbLFFS4i5007F6w6+1QAAAGChSqVioNDZZye3315+rnv3Yhfwk09O1lijMvVBG5IksWA9exbrYeyzT/G6VEpef70lwHzwwSLUnDat5ZrGxuSJJ4r2hz8Ux7p0KUZgNoWYAwYk661nnQ0AAABIktmzi8FAP/tZ8uij5ef69k2+9a3k+OOTHj0qUx9UgNCSRVdTk6yzTtEOPrg4NmdO8vTT5UHmE08Ux5t88EFy771Fa7L66uWjMXfcMVl11ba9HwAAAKikDz5Ihg1Lzj03efHF8nMbbZScckryhS8knTtXpDyoJKElS6euLtlyy6J98YvFsenTi98MNYWYDz6YvPRS+XXvvJPccEPRmmy4YflozG239QczAAAAy5+JE5Nf/Sq56KLk7bfLz+2wQ7G5zoEHFj9zwwpKaEnr69o1+fjHi9bknXdaAsym9t575dc9/3zRrriieN2hQ7LNNuVB5iabFOtmAgAAQHvzxhvJBRckv/lNMnVq+blBg4qwcs89LacGEVrSVlZfPfnkJ4uWFOtjvvhi+WjMRx5JZs5suWb27OThh4t2ySXFse7di986NYWYAwYka67Z9vcDAAAAi+qZZ5Jzzkn+9KekoaHleG1tcuihyamnJttvX7n6oAoJLamMmprkYx8r2hFHFMdmzUqefLI8yHz66SLgbDJ5crGD2ty7qK21VvlozP79i3ATAAAAKumBB4qdwK+/vvxn206dkmOPTb7zneLnYmAeQkuqR8eOxW+Wtt8++drXimOTJxc7lM89rfyNN8qve+ON5Npri5YUgehmm5UHmVttldTXt+39AAAAsOIplZKbby7CyrvuKj/Xo0dy4onJN76R9OlTmfqgnRBaUt26d0/22qtoTd54ozzEfOihZMqUlvOlUvLvfxdt2LDiWOfOyXbblU8r32AD64QAAADQOmbPTq68sggrH3+8/Nyaaybf+lbyla+YGQiLSGhJ+7PWWsUuagceWLxubCzWB5k7yHzsseIvjCYzZiSjRhWtyWqrtQSYAwYkO+5YrL0JAAAAi2r69OSPf0zOOy95+eXyc5tsUqxXeeSRxZRwYJEJLWn/amuTzTcv2jHHFMdmzEgefbQ8yHz++fLr3n03uemmojXZYIPyIHO77Yrd0AEAAGBu772XXHxxctFFyYQJ5ecGDEhOOy357GeLn1mBxSa0ZPnUuXOyyy5Fa/Luu8VU8qYQc/Toef9iefHFov3tb8Xrurpk663Lg8zNNiuOAwAAsOJ57bXk/POT3/0umTat/Nx++yX//d/JHntYjgyWktCSFcdqqxV/gey3X/G6VCqG7s89GvPhh5MPPmi5Zs6cYsTmo48mv/lNcWzllZMddigPMtde219IAAAAy7N//zv52c+Sv/ylfDmy2trk858vpoFvs03l6oPljNCSFVdNTbL++kU77LDi2OzZyZNPlgeZTz1VrJvZZOrU5M47i9ZkjTXKQ8wddkh69mzDmwEAAGCZuP/+5Kc/Tf75z/LjnTsnX/pS8u1vFz9XAq1KaAlz69Ah2Xbbon3lK8WxqVOLEZhzB5mvvlp+3VtvJddfX7Qmm25aHmRus03SsWNb3QkAAABLqrExufHGYifwe+8tP7fKKslJJyVf/7rNXGEZWqLQcvLkyUmS7t27L9Unnzp1am6//fYkyWc+85mlei9YZlZeuViPZI89Wo699Vb5+pgPPphMmlR+3TPPFO3yy4vXHTsWG/s0hZg77ZRsuKFp5QAAANWioaHY4+Dss4tZd3Nbe+1k6NDkuOOKnxOBZWqJQsuePXumtrY2jz/+eDbffPN5zr/55pv57ne/m5qamvzhD39Y4Pu88sorGTJkSGprazN77vUgoNqtsUbymc8ULSl+C/fcc+Uh5tixyaxZLdfMmlVs/jN6dMuxVVZJdtyxfERmnz5teisAAAArvGnTkt//vthg58Mz6zbbrFiv8ogjzJ6DNrTE08NLpdICz02cODHDhg37yNByUd4L2oXa2mSTTYr2hS8Ux2bOTB57rDzIfPbZ8usmTkxGjChak/XWKx+Nuf32yUortd29AAAArCgmTEh++cvkF79I3nuv/NwuuySnnZZ86lPFz3xAm7KmJSwrnTq1hI9NJk5MxoxpCTFHj07Gjy+/7pVXinbVVcXr2tpkyy3Lg8zNNy/W3wQAAGDxvfJKMary979Ppk8vP/fJTyb//d/JbrtZzgsqSOoBbWmVVZJ99y1akpRKyWuvlY/GHDOmmJrQpLExefzxov3+98Wxrl2T/v3Lg8x11/UXKgAAwMI88UTys58lf/1rMmdOy/G6uuTww4tp4FttVbn6gGZCS6ikmpoibFx33eSQQ4pjs2cnTz9dPhrzySfL/0KdPj25556iNenduzzE3HHHIiQFAABYkZVKxQ7gZ5+d3HBD+bkuXYqNdYYOLZbqAqqG0BKqTYcOxW/2ttoq+dKXimPTpiWPPloeZL78cvl1b7+d/OtfRWuy0UYtIeaAAck22ySdO7fZrQAAAFRMY2Pyz38WYeWoUeXnVl01+frXk5NOSnr1qkx9wEIJLaE9WGmlYj2V3XZrOfb228lDD5VPLf/wwtHPPVe0v/yleF1fXwSXcweZG29sUWkAAGD5MWtWcsUVxTTwp58uP7fOOsl3vlMMELHhKVQ1oSW0V717FwtEf/KTxetSKXnhhfLRmI8+Wuxi3qShoVgzc8yY5Fe/Ko51715MJW8KMQcMSNZYo+3vBwAAYGlMnZr87nfFBjuvv15+bssti/UqP//5YjAHUPWElrC8qKlJNtywaEccURybNatYaHruIPOZZ4qAs8nkyclttxWtydprl4/G7N8/6datbe8HAABgUbzzTnLRRcnFFycTJ5af22235LTTkgMOsHEptDNLFVrWeOChunXsWASO/fsnX/tacWzSpOThh1tCzNGjk7feKr/u9deLds01xeuammTzzctHY265pd9QAgAAlfPSS8l55yV/+EMyY0b5uc98Jvnv/0523bUytQFLbalCyy233HKB55oCzbq6uqX5FEBr69Ej2WuvojV5443y0ZhjxiRTprScL5WSp54q2h//WBzr0iXZfvuWEHPAgGT99f32EgAAWLYee6zYXOfKK5M5c1qOd+iQHHlkcsopyRZbVK4+oFUsVWhZmnuKKdB+rbVWcuCBRUuKv/iffbYlxHzwweTxx5PZs1uu+eCD5L77itakV6/yEHPHHe3EBwAALL1SKbnrriKsvPnm8nMrrZQcd1wydGix0Q6wXFii0HL33Xc3NRyWZ3V1xXTwzTdPjjmmOPbBB8nYseVB5gsvlF83YUJy441Fa7LBBuXTyrfbrhilCQAA8FEaG5Prry/CytGjy8/16pV84xvJiScmq65amfqAZWaJQss777yzlcsAql6XLskuuxStybvvJg89VB5kTphQft2LLxbtr38tXnfokGy9dfmIzE03LYJSAACAJJk5M/nzn5Nzzilmgc2tX7/k299OvvjFpGvXipQHLHt2DweW3GqrJfvtV7SkmLLx8svl62M+/HD5otizZyePPFK0X/+6ONatW7LDDuVB5tprt/ntAAAAFTZ5cvLb3yYXXJC8+Wb5ua22KnYC/9znisEQwHLNUw60npqaYjOe9ddPDjusONbQUGzgM/dozKeeKgLOJlOmJHfcUbQma65ZHmLusEOxiRAAALD8GT8+ufDC5Fe/SiZNKj+3xx7FTuD77WfjT1iBVDy0nD59ei655JJ8+9vfrnQpwLJQX59su23RvvKV4tiUKcVIy6YQ88EHk9deK7/uzTeT664rWlL842TTTcuDzK23Tjp2bLt7AQAAWtcLLyTnnptcemkxJXxuQ4YUYeXOO1ekNKCyKhZaTpkyJRdddFEuvPDCvPvuu0JLWJF061b8tnSPPVqOvfVWsT5mU5D50EPlv2EtlZKnny7aZZcVxzp1Kjb2aQoxd9op+djH/PYVAACq3aOPFpvrXHVVsdlOk/r65AtfSE45pRi0AKyw2jy0fO+993LBBRfk4osvzqRJk1IqlexEDiRrrJF85jNFS4p/uDz3XPm08rFji+nmTWbOTB54oGhNVlmlfDTmgAFJ795teisAAMB8lErJ7bcXYeXIkeXnVl45Of745JvftL49kGQpQ8tXXnkl5513Xm699da89tprqa+vT79+/XLooYfmhBNOSI+51p+bOnVqzjnnnFxwwQWZNm1aSv+3nl2vXr3yrW99a+nuAlj+1NYmm2xStC98oTg2c2by2GPl08r/85/y6yZOTG65pWhN+vUrH425/fZ2GQQAgLYyZ05y7bVFWDlmTPm51Vcvgsqvfa0YgADwf5Y4tBw5cmQOPvjgTJs2LUmaQ8jHHnssjz32WC6//PLccccd6du3b+67774ceeSRee2115r7rbXWWvnOd76Tr3zlK+nSpUsr3Aqw3OvUqSV8bDJxYvEPn6Ygc/To5O23y697+eWiXXll8bquLtlyy5YQc8CAZPPNi+MAAEDrmDEj+dOfknPOKWZRzW2DDZLvfCc55phEJgDMxxKFlu+8804OP/zwTJ06tfnYSiutlA4dOmTS/61B95///CcnnnhiTj755AwePDizZs1KqVTK+uuvn9NOOy3HHHNM6uvrW+cugBXXKqsk++5btKSYcvLaa+WjMceMSaZPb7lmzpxixOZjjyW/+11xbKWVkv79y4PMddaxPiYAACyuSZOSX/86+fnPk3Hjys9tu21y2mnJwQcnHSq+NzBQxZboT4jf/e53ee+991JTU5ODDz44P/3pT7PBBhskScaNG5ef/OQnufjii3P99dfnoYceysyZM9OtW7f85Cc/yfHHH58O/mAClpWammTddYt26KHFsdmziw185g4yn3iifMHvadOSu+8uWpM+fcqnle+wgykrAACwIG+9lVx4YXLJJcnkyeXn9tyzCCv33dfAAGCRLFF6OGLEiCTJzjvvnCubplv+n759++aiiy7KlClTctlll+X1119Pz549c88992SLLbZY+ooBFleHDslWWxXty18ujk2bVuxYOHeQ+fLL5deNH5/8859Fa7LxxuWjMbfZppi2DgAAK6rnniumgF92WTJrVsvxmprkoIOS//7vZMcdK1cf0C4tUWj5zDPPpKamJieccMIC+3zjG9/IZZddlpqamnzjG98QWALVZaWVkt12K1qTt99uCTCb2sSJ5df95z9F+/Ofi9f19cUUl7mDzI02KjYSAgCA5dmYMcXmOn//e7FMU5OOHZOjjkpOOaX4pT/AElii0HLi//0Qv+GGGy6wz0YbbdT88Sc+8Ykl+TQAbat37+RTnypaUvzD64UXykdjPvposYt5k4aG5KGHinbxxcWxHj2K3yQ3hZgDBiR9+7b9/QAAQGsrlZJbby3CyttuKz/XrVuxC/jJJydrrlmZ+oDlxhKFlg0NDampqUm3bt0W2GfllVdu/rivH9aB9qimJtlww6IdeWRxbNasYj3MuYPMp58uv27SpOIfcrfe2nJsnXXKQ8z+/ZO5/pwEAICqNmdOcvXVRVj56KPl5/r0Sb75zeSrX0169qxEdcByqE12xKmxyC6wvOjYsQgc+/dPmpbImDSpmBrTFGKOHl0sQj63114r2tVXF69ra5PNNy8PMjfZpG3vBQAAPsoHHxRrVZ57bjELaW4f+1hy6qnFVPDOnStTH7Dcso03wNLq0SPZe++iNXn99fK1MR96KJk6teV8Y2Py5JNF+8MfkiQdunTJxzfYILWPPZZ88pPJdttZGxMAgMp4//3kV78qdgN/++3yc/37F5vrHHRQUldXkfKA5d9ShZbHHntsVlpppaXuV1NTk9s+vBYGQHu29tpFO+ig4vWcOckzz5QHmY8/nsye3XxJzQcfpNdTTyXf/37RVl89GTQo2W+/4r+9e1foZgAAWFF0fu+91J52WvK73yVTppSf3Gef5LTTkr32KpZSAliGliq0HDNmzELPN00LX1i/Uqlk+jiw/KurS7bYomjHHlsc++CDYj2g/wsxS6NHp+bFF1uueeed5C9/KVqSbL99MnhwEWLuskuxczkAACyt6dOTG29M3V//mn3+8Y/UzfWL9dTWJoccUkwD79+/cjUCK5wlDi1LpVJr1gGw4unSJdl116Ilmd3QkDsuvTR7z56dupEji90Y5/7t9iOPFO2ss4qdGffeuwgwBw9O+vWrzD0AANA+zZiR3HxzcuWVyT/+kUyblrKFiTp1So45JvnOd4qNKQHa2BKFlo2Nja1dBwBJPujTJ40HHJC6E05IGhqSUaOSW24p/kH5yCMtHadMSa67rmhJsYlP0yjMPfZIunatRPkAAFSzWbOSkSOT4cOT669PJk+ep8vMbt3S4atfTd3QoUnfvhUoEqDQLnd4uPvuu/PpT386a665ZmpqanJd0w/tC3DnnXempqZmnjZu3Li2KRhgSdTXJ7vvnvz4x8nDDyfjxiV/+lNy5JHFepdze/bZ5KKLkgMOSFZdtVgD8/zzk6eeSoyMBwBYcTU0FL8E/+IXkz59kk99qvg35dyB5SqrJF/8YmbfcENuGTYsjT/+scASqLh2uXv4tGnTss022+SLX/xiDmra5GIRPPvss+nevXvz6942tQDakz59kv/6r6I1NhbrYTaNwrz//mKznySZObP4DfrIkcm3v11sCNQ0CnOffZKePSt6GwAALGOzZyd33VWMqLzmmuTdd+ft0717MmRIcthhxb8RO3ZMqaEhpRtvbPNyAeanXYaW+++/f/bff//Fvq53797p6Yd1YHlQW1sshN6/f/I//5NMmpTcfnsRYN5yS/LKKy19X389+cMfilZXl+y0U8tamP37F8cAAGjf5sxJ7r23WKPy6quTt9+et8/KKyef+UwRVA4eXKxbCVCllii0/OEPf9jadeR73/teq7/nh2277baZOXNmttxyy/zgBz/Ixz/+8QX2nTlzZmbOnNn8evL/DZ1vaGhIQ0PDMq+1Eprua3m9P6h2S/UMdu1aTPX51KeK6eDPPpvakSNTM2JEau66KzUzZhT95swpRmXef3/yve+ltNpqKe29dxoHDUpp332TNdZoxTuC9sffhVBZnkFYTI2NqRk9OjVXXZXav/89NW+9NU+XUteuKR1wQBoPPTSl/fYrNoNs8qFnzTMIlbe8P4eLc181pSXYBry2tjY1NTWLe9lCzWma1riYampqcu2112bIkCEL7PPss8/mzjvvzA477JCZM2fm97//ff70pz9l9OjR2X777ed7zQ9+8IOcccYZ8xy/4oor0tUGF0A7UjtzZlb797/T+9FH0/vRR9P9tdcW2HdSv355e7vt8vb22+fdTTdNqb6+DSsFAOAjlUrp+dxzWevee7Pm/fen64QJ83SZU1+f8f37543ddsv4HXbInM6dK1AowLymT5+eI444IpMmTSpbwnF+lji0bE01NTXLNLScnz322CPrrrtu/vSnP833/PxGWq6zzjqZMGHCR35R26uGhoaMHDky++67b+oFFdDm2uwZfO211IwcmdpbbknN7benZtKk+XYrrbRSSgMHpjR4cBr33Tf52MeWXU1QJfxdCJXlGYQFKJWSsWNTe+WVxYjKl1+et0vHjintu28xovLTn066dVvsT+MZhMpb3p/DyZMnp1evXosUWi7R9PA77rhjiQqrJgMGDMi99967wPOdOnVKp/ms71FfX79cftPMbUW4R6hmy/wZ3GCD5PjjizZ7djJ6dMtamGPGNO82XjNtWmpuuCG54YbUJcmGG7ashTlwYLEmEiyn/F0IleUZhBT/JnviiWKNyuHDk+efn7dPhw7Jvvsmhx2Wms9+NjU9e6Y1hhh5BqHyltfncHHuaYlCyz322GNJLqsqY8eOzRrWbgNWdB06JB//eNHOPDOZMKHYdbwpxBw/vqXv888nv/xl0Tp2THbbrSXE3GqrpJWXDQEAWCE9/XQRUg4fnjzzzLzn6+qSvfZKPve55MADk9VWa/saAdpAu9w9fOrUqXl+rt8yvfTSSxk7dmxWXXXVrLvuujn99NPzxhtv5PLLL0+S/PznP8/666+fLbbYIjNmzMjvf//73H777RkxYkSlbgGgOvXqlRx+eNEaG5PHH28JMO+9txiZmSSzZhW7ld9+e3Lqqcmaaxbh5eDBxW/7V121svcBANCePPdcEVJeeWUxuvLDamqKmS6f+1xy8MHJ6qu3eYkAba1dhpZjxozJnnvu2fx66NChSZKjjz46w4YNy1tvvZVXX321+fysWbPy7W9/O2+88Ua6du2arbfeOrfeemvZewDwIbW1ybbbFu2005IpU4qQ8pZbiiDzpZda+r75ZnLppUWrrU123LFlFOaAAcWIAAAAWrz0UktQ+eij8++z227JYYclhxyS9O3btvUBVFi7DC0HDhyYhe0fNGzYsLLXp556ak499dRlXBXAcq5bt+Szny1aqVRMF28ahXnHHcn06UW/xsZinczRo5MzzkhWWSXZZ5+WEHOttSp7HwAAlfLaay1rVD700Pz77LxzS1C59tptWx9AFWmXoSUAFVZTk2y0UdG+/vVk5sxi+vjNNxftySdb+k6cmFx1VdGSZMstWwLMT3wimc+mZwAAy4033yz+HTR8eDJq1Pz77LBDMfX7c59L1luvbesDqFJCSwCWXqdOyd57F+2cc5LXX09GjChGYY4cWQSXTZ58smjnnpt07ZrsuWcRYO63X7FDuQ19AID2bvz45Oqri1GV99xTzFL5sG23bQkqP/axNi8RoNoJLQFofWuvnXzxi0WbM6eY/tQ0CvPBB1v+4T59enLDDUVLkvXXbxmFuddexZR0AID2YMKE5JprihGVd95ZLJnzYVtsUUz9/tznkk02afMSAdoToSUAy1ZdXbE20847Jz/4QfLuu8mtt7Zs6PPWWy19X3opueSSonXoUCw+3zQKc5ttjMIEAKrLxInJtdcWQeVttxW/rP2wTTZpCSq32KLtawRop4SWALSt1VYr/uF+2GHFiMsnnmgJMO+9N5k1q+g3e3YxSuHOO5PTT0/69CkCzMGDk333TVZfvZJ3AQCsqCZNSq6/vggqR45MGhrm7bPBBi3/3tl6a794BVgCQksAKqempviH/NZbJ6eckkydWoSUTSHm88+39B0/Prn88qLV1CT9+xcjMPfbL9lpp2JkJgDAsjBlSvLPfxZrVN50U8svWee23nrFaMrDDku2315QCbCU/IQHQPVYeeXkU58qWpK88EJLgHn77cm0acXxUikZM6ZoP/pR0qNHss8+LSMx1123cvcAACwfmtbeHj68+O+MGfP2WWutlqBywABBJUArEloCUL0+9rHkhBOKNmtWct99RYB5yy3JY4+19Js0Kfn734uWJJtv3rIW5ic+kXTpUpn6AYD2ZcaMYiTl8OHFyMrp0+ft07dvcuihRVi5665JbW3b1wmwAhBaAtA+dOyY7Lln0c4+u9jAZ8SIIsQcObLY4KfJv/9dtAsuSDp3TgYObAkxN9nEKAgAoMXMmcW/Ka68slircsqUefusvnpy8MHFiMpPfKLYaBCAZUpoCUD7tMYaydFHF23OnOThh1umkj/wQNLYWPSbMaM4dvPNybe+VUwdb1oLc6+9iqnlAMCKpaGh2O17+PBi9+9Jk+bts+qqyUEHFUHlwIHWzwZoY/7UBaD9q6sr1pEaMCD53/9NJk4sfhBpmkr++ustfV99Nfntb4tWV1dM62oahbnddqZ4AcDyavbsYsO/4cOTa65J3ntv3j49eiQHHlgElXvvndTXt3mZABSElgAsf1ZZJTnkkKKVSsVU8aYA8+67i2lgSTFC8557ivbd7xZTvwYNKgLMQYOS3r0rex8AwNJp+rt++PBi7et33pm3T7duyWc/W6xROWhQ0qlT29cJwDyElgAs32pqki22KNq3v10sqH/XXS0h5rPPtvR9553kL38pWpJsv33LKMxddjHaAgDag8bG5P77izUqr7oqGTdu3j5duyaf/nQxonK//WzaB1CFhJYArFi6dk32379oSfLyyy1rYd52W/ni+488UrSzzipGYey9d/GDzeDBSb9+lageAJifUil58MFiROVVV5UvDdOkc+fkk58sgspPfrL4NwEAVUtoCcCKrV+/5Pjji9bQkIwa1TIK85FHWvpNmZJcd13RkmIX8qZRmHvs4QcfAGhrpVLxd/Xw4cWoyldembdPx47FLyoPOyz51KeKX0IC0C4ILQGgSX19svvuRfvJT5Lx45MRI4oA85ZbkgkTWvo++2zRLrqoWPtq991bRmFuvnkxLR0AaF2lUvL44y1B5QsvzNunvr5Ym/JznyvWquzRo+3rBGCpCS0BYEH69Em+8IWiNTYmjz5ajMK8+eZiROacOUW/mTOTkSOL9u1vJ2uv3TIKc599kp49K3obANDuPfVUEVIOH16+HnWTurpiGZfDDit2/15llbavEYBWJbQEgEVRW5v071+0//f/kkmTijUwm9bDfPXVlr6vv5784Q9Fq6tLdtqpZRRm//7FMQBg4f7znyKkHD68CC0/rLY2GTiwCCoPOijp1avNSwRg2RFaAsCS6NGj+AHpoIOKqWrPPtsyCvOuu5IZM4p+c+YUO5jef3/yve8lq62W7LtvEWIOGpSssUZl7wMAqsmLL7ZM/R47dt7zNTXJJz5RBJUHH1zMigBguSS0BIClVVOTbLpp0b75zeSDD5K7724Zhfn00y193303+dvfipYk22zTMgrz4x8vNgwAgBXJK68UIeWVVyZjxsy/zy67FEHlIYcka63VtvUBUBFCSwBobV26FCHk4MHJ+ecXU8ebAsxbb00mT27p+9hjRTv77GTllZM992wJMT/2scrdAwAsS6+/nlx9dTGq8oEH5t9nxx2LoPLQQ5N1123b+gCoOKElACxr666bHHdc0RoaktGjW0LMhx8uppcnydSpyT//WbQk2XDDlgBz4MAi1ASA9mrcuJag8t57599nu+2KoPJzn0vWX79t6wOgqggtAaAt1dcnu+1WtDPPTN55p9h1/OabkxEjkvHjW/o+/3zyy18WrWPH4pr99ivallsW09IBoJq9807y978XU7/vuitpbJy3z1ZbtYyo3Hjjtq8RgKoktASASlp99eSII4rW2FhMFW8ahXnffcns2UW/WbOS228v2qmnJmuu2TIFfd99k1VXrex9AECT995Lrr22GFF5++3FpnQftummRVB52GHJZpu1fY0AVD2hJQBUi9raYlrcdtslp51WrH15xx0tu5K//HJL3zffTC69tGi1tcW6X01TyQcMSOrqKnYbAKyAJk1KrruuCCpHjmz5pdvcNtywJag0YwCAjyC0BIBq1b178tnPFq1USp57rmUU5h13FLuUJ8UIzdGji3bGGckqqyT77NMSYtplFYBlYcqU5B//KILKW24pZgV8WL9+LUHlttsKKgFYZEJLAGgPamqKdb423jj5+teTGTOKTQxuvrn4QfHJJ1v6TpyYXHVV0ZJiNEtTgPmJTySdOlXmHgBo/6ZNS/71r2KNyhtvLP4++rC11y420jnssGImgKASgCUgtASA9qhz52I05T77JOeem7z+erGRz803F9Py3n+/pe+TTxbt3HOTrl2TPfcsAsz99ium6vlhEoCF+eCD5KabihGV//pXMn36vH3WWKPYSOeww5Kddy6WLgGApSC0BIDlwdprJ1/8YtFmz04eeqhlFOaDDxbTy5PiB80bbihakqy/fssozL32Srp1q9w9AFA9Zs4s/g4ZPryYAj516rx9evdODjmkCCp3201QCUCrEloCwPKmQ4dkl12KdsYZybvvJrfe2rKhz7hxLX1feim55JKidehQ/NDZNApzm22MwgRYkcyaVfx9MXx4sanO5Mnz9lltteTgg4vp33vsUfzdAQDLgL9hAGB5t9pqLZsglErJE0+0jMK8556koaHoN3t2cuedRTv99KRPnyLAHDw42XffZPXVK3kXACwLs2cXm7sNH55cc02xLvKH9eyZHHhg8ffIXnsl9fVtXiYAKx6hJQCsSGpqkq23LtqppxbT/e68s2UU5gsvtPQdPz65/PKi1dQk/fsXIzD32y/ZaSejawDaqzlzkrvvLoLKv/89mTBh3j7duiVDhhRB5b77Jh07tnmZAKzY/LQBACuylVdOPvWpoiXJ888XIzBvuSW5/fZil9ikGKE5ZkzRfvSjpEePYhOgppGY665buXsA4KM1Nib33VcElVdfXfxi6sNWWin5zGeKoHLw4GLTNwCoEKElANBiww2LduKJxSYM99/fMgrz8cdb+k2aVIzO+fvfi9ebb96yFuYnPpF06VKZ+gFoUSolDzyQXHllctVVyRtvzNunS5fiF1eHHZbsv3/StWvb1wkA8yG0BADmr1OnZM89i3b22cmbbyYjRhSjMEeMSN57r6Xvv/9dtAsuKEbmDBzYEmJusokNfQDaSqmUPPxwMaLyyiuTV1+dt0+nTkVAedhhRWC58sptXycAfAShJQCwaNZcMznmmKLNmVNMFb/llmIU5ujRxdTDJJkxo2V05re+VUwdb1oLc6+9iqnlALSeUil57LGWoPLFF+ftU19f/DLpsMOKKeDdu7d9nQCwGISWAMDiq6srNuPZaafke98rdpu99daWEHPuKYivvpr89rdFq6tLdt21ZRTmdtsltbWVuw+A9uzJJ1uCyv/8Z97zHToU6w8fdljy2c8mq6zS9jUCwBISWgIAS2+VVZJDDy1aqZQ89VRLgHn33cmsWUW/OXOSe+4p2ne/m6y+ejJoUBFgDhqU9O5d2fsAqHbPPFOElMOHF8tyfFhtbTGq/XOfSw46KFlttbavEQBagdASAGhdNTXJllsW7dvfLnYgv+uulhBz7tFA77yT/OUvRUuS7bdvGYW5yy7FdEaAFd3zz7cElXNvitakpibZffdiROXBB/sFEADLBaElALBsrbRScsABRUuSl15qCTBvuy2ZOrWl7yOPFO2ss5Ju3ZK99y4CzMGDk379KlI+QEW8/HJLUPnII/Pv8/GPF0HlIYcka6zRpuUBwLImtAQA2tb66ydf/WrRZs1KRo1qCTEffbSl35QpyXXXFS0pdiFvGoW5xx5J166VqB5g2Xn99eSqq4qgcvTo+ffZaaeWoHKdddq2PgBoQ0JLAKByOnYsAsg99kh+8pNk/PhkxIgiwBwxIpkwoaXvs88W7aKLkk6diqmQTaMwN9+8mB4J0N689VZy9dVFUHnfffPv079/sUbl5z5n1DkAKwyhJQBQPfr0Sb7whaI1NhZTIm++uRiJOWpUsZFPksycmYwcWbRvfztZe+2WUZj77JP07FnR2wBYqLffTv7+9yKovPvuYgOzD9t662JE5ec+l2y4YdvXCAAVJrQEAKpTbW2yww5F++53k/ffT26/vQgxb745ee21lr6vv5784Q9Fq6srpk82jcLs3784BlBJ776bXHNNsU7l7bcXv5j5sM03bwkqN9207WsEgCoitAQA2oeePZODDipaqZQ880zLKMy77kpmzCj6zZmT3H9/0b73vWS11ZJ99y1CzEGDbFYBtJ3330+uvbYIKm+9NZk9e94+G2/cElRuuWWblwgA1UpoCQC0PzU1yWabFe1b30o++KCYYtkUYj79dEvfd99N/va3oiXJNtu0jML8+MeLdTUBWsvkyck//lFM/b7llqShYd4+G2xQhJSHHVb8mWRNXgCYh9ASAGj/unQpQsjBg4vXr7xShAW33FKMbpo8uaXvY48V7eyzk5VXTvbcsyXEXHfdytQPtG9Tpyb/+lcRVN50U7Hu7oetu25LUNm/v6ASAD6C0BIAWP6st17yla8UraEhGT26ZRTmmDEt/aZOTf75z6Il6bDBBtmlW7fU/fnPxbTyVVdNVlmlaPP7eOWVBQ+wopo+PbnxxmLq97/+VYz4/rC11koOPbQIKnfayZ8XALAYhJYAwPKtvj7Zbbei/ehHxa69I0e2jMR8++3mrjUvvpjeSTESc1F06LDwUHNhH3fpskxuF1iGZswo/twYPryYAj5t2rx9+vQpgsrPfa5YgqK2tu3rBIDlgNASAFix9O6dHHlk0Robi4Dy/0Zhlu6/PzXzW39uQWbPTt55p2iLq3PnJQs7V1mlCGKBtjFrVvGLjuHDk+uvL19uokmvXsnBBxcjKnffPamra/s6AWA5I7QEAFZctbXJdtsV7fTTM3vmzIz4+98zaMcdUz9lSjJxYtHee2/hH7/33vyDjIWZMSN5662iLa6VV15wsLmw4LNHD6O+YFE0NCS3314ElddeW+wC/mGrrJIcdFARVO65ZzHyGgBoNf5mBQBoUlub2SutlPTrt/ijGWfPTiZN+uiAc34fT5++eJ9r6tSivfba4l1XU1MElx81otP6nayI5sxJ7ryzWKPy739P3n133j7duycHHlgElXvvnXTs2OZlAsCKQmgJANAaOnQoNu9ZbbXFv3bmzGIk19wjNxc1+Jw1a9E/T6lUfJ75jRr7KHOv37koU9mt30l70NiY3HtvMaLy6qvL1rhttvLKyWc/W6xROXhw0qlT29cJACsgoSUAQKV16lRs3tGnz+JdVyoVOxYvaMr6RwWfjY2L/rlaY/3OJVnD0/qdtLbGxuSBB4qg8qqr5r9EQ9euyac+VYyo3H9/wTsAVIDQEgCgvaqpKcKVrl2TtddevGsbG5OPWrdzQWHnpEmL97mW1fqdCxvlaf1O5lYqJQ89VEz9vvLK+S+t0LlzcsABRVD5yU8mK63U9nUCAM2ElgAAK6La2iLY69GjWMNzcTSt37momxRV8/qd8/vY+p3Lh1IpGTu2GFF55ZXJSy/N26djx2S//Yqg8tOfTrp1a/MyAYD5E1oCALB4lmb9zlmzFn/dzqaP23L9zp49F21H9g9/bBpxZZVKyZNPtgSVzz03b58OHZJBg4o1Kj/72eL/NQBQdYSWAAC0nY4dW3/9zkX5eHHX75wwoWiLq1OnRd+R3fqdrefpp1uCyqefnvd8XV2y117FiMoDDyy+7gBAVRNaAgBQ/ZZm/c5SqVi/c0l2Z1/c9Ttnzlz69TsXZUf2uT/u0aMI5VY0zz1XhJTDhydPPDHv+ZqaZODAIqg86KBk9dXbvEQAYMkJLQEAWL7V1CTduxdtcdfvnDOnmGK+JBsWTZu2eJ9radfvXNRNitrz+p0vvdQSVD766Lzna2qS3XYrpn4fckjSt2/b1wgAtAqhJQAALEhd3dKv37kkGxYt6fqd89tsZmE+vH7n4gSfbbV+52uvtQSVDz00/z4771yMqDz00GSttdqmLgBgmRJaAgDAsrC063cuyYZFEycWo0MX1bJYv3NRPv6o9TvffDO57roirLz//vn32WGHlqByvfUWv34AoKoJLQEAoJrMvX7n4o4a/PD6nYsTfFbB+p213bvn4yNHpsO//13cy4dtu20RVH7uc8kGGyz+5wUA2g2hJQAALC+Wdv3OSZOWbMOiVlq/sy5Jrw/33XLLlqBy440X7/MAAO2W0BIAACjW71x11aItrrnX71ycDYsWsH5naeONU/P5zxdh5eabt8LNAQDtjdASAABYOq2xfufEiZn99tu5+9//zie+8pXUd+y4bGoFANoFoSUAAFAZH1q/s9TQkClTphTHAYAVWm2lCwAAAAAAmJvQEgAAAACoKkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKkJLAAAAAKCqCC0BAAAAgKoitAQAAAAAqorQEgAAAACoKu0ytLz77rvz6U9/OmuuuWZqampy3XXXfeQ1d955Z7bffvt06tQpG264YYYNG7bM6wQAAAAAFl+7DC2nTZuWbbbZJhdffPEi9X/ppZfyyU9+MnvuuWfGjh2bb37zm/nyl7+cW265ZRlXCgAAAAAsrg6VLmBJ7L///tl///0Xuf+vf/3rrL/++jnvvPOSJJtttlnuvffeXHDBBRk8ePCyKhMAAAAAWALtMrRcXKNGjco+++xTdmzw4MH55je/ucBrZs6cmZkzZza/njx5cpKkoaEhDQ0Ny6TOSmu6r+X1/qDaeQah8jyHUFmeQagszyBU3vL+HC7Ofa0QoeW4cePSp0+fsmN9+vTJ5MmT88EHH6RLly7zXHPWWWfljDPOmOf4iBEj0rVr12VWazUYOXJkpUuAFZpnECrPcwiV5RmEyvIMQuUtr8/h9OnTF7nvChFaLonTTz89Q4cObX49efLkrLPOOhk0aFC6d+9ewcqWnYaGhowcOTL77rtv6uvrK10OrHA8g1B5nkOoLM8gVJZnECpveX8Om2YyL4oVIrTs27dvxo8fX3Zs/Pjx6d69+3xHWSZJp06d0qlTp3mO19fXL5ffNHNbEe4RqplnECrPcwiV5RmEyvIMQuUtr8/h4txTu9w9fHHtsssuue2228qOjRw5MrvsskuFKgIAAAAAFqRdhpZTp07N2LFjM3bs2CTJSy+9lLFjx+bVV19NUkztPuqoo5r7f/WrX82LL76YU089Nc8880x+9atf5corr8y3vvWtSpQPAAAAACxEuwwtx4wZk+222y7bbbddkmTo0KHZbrvt8r3vfS9J8tZbbzUHmEmy/vrr54YbbsjIkSOzzTbb5Lzzzsvvf//7DB48uCL1AwAAAAAL1i7XtBw4cGBKpdICzw8bNmy+1zz66KPLsCoAAAAAoDW0y5GWAAAAAMDyS2gJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVWnXoeXFF1+cfv36pXPnztlpp53y4IMPLrDvsGHDUlNTU9Y6d+7chtUCAAAAAIui3YaWw4cPz9ChQ/P9738/jzzySLbZZpsMHjw4b7/99gKv6d69e956663m9sorr7RhxQAAAADAomi3oeX555+f4447Lscee2w233zz/PrXv07Xrl3zxz/+cYHX1NTUpG/fvs2tT58+bVgxAAAAALAoOlS6gCUxa9asPPzwwzn99NObj9XW1mafffbJqFGjFnjd1KlTs95666WxsTHbb799fvKTn2SLLbaYb9+ZM2dm5syZza8nT56cJGloaEhDQ0Mr3Ul1abqv5fX+oNp5BqHyPIdQWZ5BqCzPIFTe8v4cLs591ZRKpdIyrGWZePPNN7PWWmvl/vvvzy677NJ8/NRTT81dd92V0aNHz3PNqFGj8txzz2XrrbfOpEmTcu655+buu+/OU089lbXXXnue/j/4wQ9yxhlnzHP8iiuuSNeuXVv3hgAAAABgOTd9+vQcccQRmTRpUrp3777Qvu1ypOWS2GWXXcoCzl133TWbbbZZfvOb3+TMM8+cp//pp5+eoUOHNr+ePHly1llnnQwaNOgjv6jtVUNDQ0aOHJl999039fX1lS4HVjieQag8zyFUlmcQKsszCJW3vD+HTTOZF0W7DC179eqVurq6jB8/vuz4+PHj07dv30V6j/r6+my33XZ5/vnn53u+U6dO6dSp03yvWx6/aea2ItwjVDPPIFSe5xAqyzMIleUZhMpbXp/DxbmndrkRT8eOHdO/f//cdtttzccaGxtz2223lY2mXJg5c+bkiSeeyBprrLGsygQAAAAAlkC7HGmZJEOHDs3RRx+dHXbYIQMGDMjPf/7zTJs2Lccee2yS5Kijjspaa62Vs846K0nywx/+MDvvvHM23HDDvP/++znnnHPyyiuv5Mtf/nIlbwMAAAAA+JB2G1oedthheeedd/K9730v48aNy7bbbpubb745ffr0SZK8+uqrqa1tGUg6ceLEHHfccRk3blxWWWWV9O/fP/fff38233zzSt0CAAAAADAf7Ta0TJKTTjopJ5100nzP3XnnnWWvL7jgglxwwQVtUBUAAAAAsDTa5ZqWAAAAAMDyS2gJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVRWgJAAAAAFQVoSUAAAAAUFWElgAAAABAVRFaAgAAAABVpV2HlhdffHH69euXzp07Z6eddsqDDz640P5XXXVVNt1003Tu3DlbbbVVbrzxxjaqFAAAAABYVO02tBw+fHiGDh2a73//+3nkkUeyzTbbZPDgwXn77bfn2//+++/P4Ycfni996Ut59NFHM2TIkAwZMiRPPvlkG1cOAAAAACxMuw0tzz///Bx33HE59thjs/nmm+fXv/51unbtmj/+8Y/z7X/hhRdmv/32yymnnJLNNtssZ555Zrbffvv88pe/bOPKAQAAAICF6VDpApbErFmz8vDDD+f0009vPlZbW5t99tkno0aNmu81o0aNytChQ8uODR48ONddd918+8+cOTMzZ85sfj1p0qQkyXvvvZeGhoalvIPq1NDQkOnTp+fdd99NfX19pcuBFY5nECrPcwiV5RmEyvIMQuUt78/hlClTkiSlUukj+7bL0HLChAmZM2dO+vTpU3a8T58+eeaZZ+Z7zbhx4+bbf9y4cfPtf9ZZZ+WMM86Y5/j666+/hFUDAAAAAFOmTEmPHj0W2qddhpZt4fTTTy8bmdnY2Jj33nsvq622WmpqaipY2bIzefLkrLPOOnnttdfSvXv3SpcDKxzPIFSe5xAqyzMIleUZhMpb3p/DUqmUKVOmZM011/zIvu0ytOzVq1fq6uoyfvz4suPjx49P375953tN3759F6t/p06d0qlTp7JjPXv2XPKi25Hu3bsvlw8GtBeeQag8zyFUlmcQ/n979x5c853/cfx15OSGuCckQshaFAkaSkQbQa3LWFbQEhJ2XbbLuk1bw5ZQWt1V407RolvUIHHpTlBCgtYtKTZYta1LV4VUXVbSipDv7w+/nCZyTooN36Pn+Zg5M9/z/Xw+38/7nO/3zGTe+VzMxW8QMN8v+Xf4cyMsCzyVG/F4eHgoLCxMycnJtnP5+flKTk5WeHi43Tbh4eFF6kvSjh07HNYHAAAAAAAAYI6ncqSlJI0bN05xcXFq0aKFnnvuOc2ZM0c5OTkaPHiwJCk2NlY1a9bUjBkzJEmjR49WZGSkZs2apW7dumnt2rVKS0vT0qVLzfwYAAAAAAAAAO7z1CYtX3rpJX333XeaPHmyLl26pGbNmmnbtm22zXa++eYblSnz00DSNm3aaM2aNXrjjTc0ceJE/frXv9amTZvUpEkTsz6C0/H09FR8fHyxafEAngx+g4D5+B0C5uI3CJiL3yBgPn6HP7EYD7LHOAAAAAAAAAA8IU/lmpYAAAAAAAAAfrlIWgIAAAAAAABwKiQtAQAAAAAAADgVkpYAAAAAAAAAnApJS2jPnj3q3r27AgICZLFYtGnTJrNDAlzKjBkz1LJlS/n4+MjPz089e/bUl19+aXZYgMtYvHixQkNDVaFCBVWoUEHh4eHaunWr2WEBLuudd96RxWLRmDFjzA4FcBlTpkyRxWIp8mrYsKHZYQEu5dtvv9WAAQNUtWpVeXt7KyQkRGlpaWaHZSqSllBOTo6aNm2qhQsXmh0K4JJSU1M1YsQIHThwQDt27FBeXp46deqknJwcs0MDXEJgYKDeeecdpaenKy0tTe3bt1ePHj104sQJs0MDXM7hw4e1ZMkShYaGmh0K4HIaN26szMxM22vfvn1mhwS4jGvXrikiIkLu7u7aunWrTp48qVmzZqly5cpmh2Yqq9kBwHxdunRRly5dzA4DcFnbtm0r8n7lypXy8/NTenq6XnjhBZOiAlxH9+7di7x/6623tHjxYh04cECNGzc2KSrA9WRnZysmJkbLli3T9OnTzQ4HcDlWq1U1atQwOwzAJf31r39VrVq1tGLFCtu5unXrmhiRc2CkJQA4mRs3bkiSqlSpYnIkgOu5e/eu1q5dq5ycHIWHh5sdDuBSRowYoW7duqljx45mhwK4pH//+98KCAhQcHCwYmJi9M0335gdEuAytmzZohYtWqhPnz7y8/NT8+bNtWzZMrPDMh0jLQHAieTn52vMmDGKiIhQkyZNzA4HcBkZGRkKDw/XrVu3VL58eW3cuFGNGjUyOyzAZaxdu1ZffPGFDh8+bHYogEtq1aqVVq5cqQYNGigzM1NTp07V888/r+PHj8vHx8fs8IBfvDNnzmjx4sUaN26cJk6cqMOHD2vUqFHy8PBQXFyc2eGZhqQlADiRESNG6Pjx46whBDxhDRo00NGjR3Xjxg1t2LBBcXFxSk1NJXEJPAH/+c9/NHr0aO3YsUNeXl5mhwO4pMLLhYWGhqpVq1YKCgrSunXr9Ic//MHEyADXkJ+frxYtWujtt9+WJDVv3lzHjx/Xe++959JJS6aHA4CTGDlypP7xj39o9+7dCgwMNDscwKV4eHioXr16CgsL04wZM9S0aVPNnTvX7LAAl5Cenq6srCw9++yzslqtslqtSk1N1bx582S1WnX37l2zQwRcTqVKlVS/fn199dVXZocCuAR/f/9i/yx/5plnXH6ZBkZaAoDJDMPQn//8Z23cuFEpKSksuAw4gfz8fOXm5podBuASOnTooIyMjCLnBg8erIYNG2r8+PFyc3MzKTLAdWVnZ+vrr7/WwIEDzQ4FcAkRERH68ssvi5w7ffq0goKCTIrIOZC0hLKzs4v8B+3s2bM6evSoqlSpotq1a5sYGeAaRowYoTVr1mjz5s3y8fHRpUuXJEkVK1aUt7e3ydEBv3wTJkxQly5dVLt2bd28eVNr1qxRSkqKtm/fbnZogEvw8fEpto5zuXLlVLVqVdZ3Bp6QV199Vd27d1dQUJAuXryo+Ph4ubm5qV+/fmaHBriEsWPHqk2bNnr77bfVt29fHTp0SEuXLtXSpUvNDs1UJC2htLQ0RUVF2d6PGzdOkhQXF6eVK1eaFBXgOhYvXixJateuXZHzK1as0KBBg558QICLycrKUmxsrDIzM1WxYkWFhoZq+/btevHFF80ODQCAJ+LChQvq16+fvv/+e/n6+qpt27Y6cOCAfH19zQ4NcAktW7bUxo0bNWHCBL355puqW7eu5syZo5iYGLNDM5XFMAzD7CAAAAAAAAAAoAAb8QAAAAAAAABwKiQtAQAAAAAAADgVkpYAAAAAAAAAnApJSwAAAAAAAABOhaQlAAAAAAAAAKdC0hIAAAAAAACAUyFpCQAAAAAAAMCpkLQEAAAAAAAA4FRIWgIAAABPoTp16shisWjQoEFmhwIAAFDqSFoCAAA8pOHDh8tischisWjXrl0P1fbTTz+1tR09evRjihAAAAB4upG0BAAAeEixsbG241WrVj1U248++sjudcySkpJiS6KmpKSYHQ4AAAAgiaQlAADAQ4uIiNCvfvUrSVJCQoJ+/PHHB2qXk5OjjRs3SpIaN26ssLCwxxYjAAAA8DQjaQkAAPAIBg4cKEn673//q82bNz9Qm8TEROXk5BRpDwAAAKA4kpYAAACPYODAgbJYLJIefIp4wdTwMmXKaMCAAY8tNgAAAOBpR9ISAADgEQQHBysiIkKStH37dmVlZZVY/+LFi0pOTpYktW/fXjVr1ixWZ9OmTerTp49q164tLy8vVapUSS1atNDUqVN17dq1B4orKSlJAwYMUHBwsMqVKycvLy/VrVtX0dHRWrlypX744QdJ0rlz52SxWBQVFWVrGxUVZVvfsuC1cuXKYn3cvn1bixYtUlRUlHx9feXh4aEaNWqoa9euWrVqlfLz8x3GN2jQIFksFtWpU0eSlJmZqfHjx6tx48by8fF56LU17a3JuW7dOnXo0EG+vr7y9vZWgwYN9Prrr+vq1asOr9OuXTtZLBa1a9euxP6mTJli68+egrIpU6ZIknbv3q2ePXsqICBA3t7eeuaZZzRt2jTbiNsCSUlJ6tq1q61eo0aNNGPGDN2+ffuBv4vDhw+rX79+qlWrlry8vFSrVi0NHjxYp06deqD2X331lcaOHauQkBBVrFhR3t7eCg4O1qBBg5SWluaw3f33ID8/X8uXL1dUVJSqV6+uMmXKsMM5AAB4eAYAAAAeydKlSw1JhiRj7ty5JdadOXOmre7f//73ImVXr1412rdvbyu39/Lz8zP279/v8PpXrlwxOnToUOI1JBkrVqwwDMMwzp49+7N1C9cvcPbsWaNhw4Yltmnbtq3x/fff240zLi7OkGQEBQUZ+/fvN6pVq1as/e7du3/2uy+we/duW7vk5GRjwIABDuOqV6+ekZmZafc6kZGRhiQjMjKyxP7i4+Nt17OnoCw+Pt6YMWOGYbFY7MbSpk0bIzs728jPzzdGjRrlMObOnTsbd+7csdtXUFCQIcmIi4szPvjgA8Nqtdq9hqenp7Fu3boSP9fMmTMNd3d3h3FYLBZj0qRJdtsWvgdbt241OnbsWKx9XFxcif0DAADcj5GWAAAAj6hv377y8vKSVHRXcHsKysuXL69evXrZzufm5qpjx47atWuX3NzcNHDgQH388cc6cOCA9u7dq7feektVq1ZVVlaWunbtqvPnzxe79g8//KCoqCjbSM6wsDAtWbJEn332mdLS0rRx40aNHTtWAQEBtjY1a9ZURkaGli9fbju3fPlyZWRkFHn17NnTVp6dna0OHTrYRu717NlTW7ZsUVpamtavX6/IyEhJ0r59+9S9e3fdvXvX4feRnZ2t6Oho3bp1S3/5y1+UkpKiQ4cO6YMPPpC/v3+J36UjkyZN0qpVq9SzZ08lJiYqPT1dSUlJ6tatm6SfRhI+CVu3btWECRPUunVrrVmzRmlpadq2bZu6dOkiSfr88881Y8YMzZ49W/PmzVOXLl2UkJCg9PR0bd68Wa1bt5Ykbdu2TcuWLSuxr6NHj+qPf/yj/Pz8NH/+fB08eFCpqakaP368PD09lZubq5iYGIejJWfOnKnXXntNeXl5Cg0N1eLFi7Vz506lpaVp9erVCg8Pl2EYmjZtmubNm1diLOPHj9fOnTv129/+tsg9KPjcAAAAD8zsrCkAAMDTrG/fvrbRZKdOnbJb59ixY7Y6sbGxRcomTpxoSDIqVapkpKWl2W1/7tw5w9/f35Bk9O/fv1j52LFjbdcfMWKEkZ+fb/c6ubm5xqVLl4qcKzxK7udGOL766qu2um+88Uax8vz8fCMmJsZWZ9GiRcXqFIy0lGSUL1/eOHr0aIl9/pzC8Usypk+fbjeuTp06GZIMq9VqZGVlFatT2iMtJRnR0dHFRkneuXPHaN26tSHJ8PHxMby8vIwxY8YUu05OTo5tJGVoaKjdvgrK9f8jV+2NIt21a5dtBGbLli2LlZ84ccI2wjI+Pt7us3P37l3bCNby5csbV69eLVJ+/z2w92wAAAA8LEZaAgAA/A9iY2Ntx45GWxY+X7h+dna2Fi5cKEmaNm2awsLC7LYPCgrSpEmTJEnr168vsh7i9evXtWTJEkn3RljOnTvX4XqLHh4eql69+oN8rGJyc3P1/vvvS5IaN25sW7OxMIvFokWLFqlq1aqSpAULFpR4zddff11NmzZ9pHjsCQsL08SJE+3GNW7cOEnSnTt3tH///lLr05GyZctq6dKlcnNzK3Lezc1Nw4YNkyTdvHlTvr6++tvf/ma3fVxcnCTpn//8p27cuFFif7NmzVKNGjWKnY+KitLQoUMl3Vvz8v7RlrNmzVJeXp5atGih+Ph4u89OmTJlNH/+fHl6eio7O1sbNmxwGEf9+vXtPhsAAAAPi6QlAADA/+A3v/mNLRG4evVqGYZRpDw/P19r1qyRJAUGBhbZ+CY1NdWWjOrdu3eJ/bzwwguSpLy8PKWnp9vO79q1y7a5zqhRo4olyUpLenq6rl+/LuneZjqO+qlQoYL69u0rSTp58qQyMzMdXjMmJqZUY+zfv7/DhG3hhPCZM2dKtV97XnzxRVWpUsVuWeFEba9eveTu7v6z9c6ePeuwr8qVK6tHjx4Oy3//+9/bjnfu3Fmk7JNPPpEkRUdHO/zuJKlSpUoKCQmRpBKTvi+99NJjewYBAIBrIWkJAADwP7Barerfv7+kezty79u3r0h5cnKyLl68KOlekq5MmZ/+/Co86s3f37/Yzt2FX02aNLHVvXTpku34yJEjtuPnn3++dD9cIcePH7cdt2rVqsS6hcsLtyusfPnyCg4OLp3g/l/Dhg0dlhVOIN68ebNU+7Wnfv36DssqVar00PVKirl58+ayWq0Oy5s1ayYPDw9JUkZGhu38+fPn9d1330mSJkyYUOLzZ7FYbM9r4efvfqGhoQ7LAAAAHgZJSwAAgP9RSVPEHU0Nl6SsrKxH6q9gZKUkXblyxXb8qBvYPIirV6/ajv38/EqsW3iacuF2hRVOyJWWsmXLOiwrnCwuaYOgJx1LacT8c/fDarXakraF70dpPH/3q1y58iNdEwAA4H6O/yULAACAB9KsWTOFhIQoIyND69evt63/l5OTo8TEREn3pic3atSoSLvCiagvvvjC4TTh+wUGBpZe8I+gpGnED4opxKXnUe9H4edv8uTJ6tOnzwO1K1eunMMy7isAACgtJC0BAABKQWxsrF577TVdv35dn3zyiXr37q2NGzfaNs25f5SlJNuGNZLk6+v7SMnIatWq2Y4zMzNVt27dR4j+5xWeXn358uUSpzUXnj7saF1HZ1MwqjE/P7/EeoU3QXIWly9fLrH8zp07thGWhe9H4efP3d29yBIEAAAAZmN6OAAAQCmIiYmxjTJbtWqVpJ+mhru7u6tfv37F2jRv3tx2/Nlnnz1Sv88++6zteM+ePQ/d/kFH6RVOaB08eLDEuocOHbLbzpn5+PhIkq5du1ZivdOnTz+JcB7K0aNHdefOHYflx44d0+3btyUVvR/BwcGqWLGipEd//gAAAB4XkpYAAAClwN/fXx07dpQkJSUl6fjx40pOTpYkde7cWb6+vsXadOzY0bam4bx584rtPP4goqKibNN158+f/9DrNXp5edmOc3NzHdYLCwuzrUP54YcfOhyRePPmTa1bt06S1KhRo8e6zmZpKhihevr0aYeb3ly5ckU7dux4kmE9kKtXr9p2Abdn+fLltuOCZ1S6N5W7a9eukqRPP/1U//rXvx5fkAAAAA+JpCUAAEApKZgCnpeXp5dfftmWQLQ3NVy6txnNyJEjJUmff/65xo4dW+L05MuXL+v9998vdo3hw4dLktLT0zVmzBiHyc+8vLxim68UTip+/fXXDvv29PTUkCFDJN3bEXzatGnF6hiGoZEjR9o2Byr4bE+DyMhISdLt27c1f/78YuV5eXkaMmSIfvzxxycd2gMZN26c3WniqampWrp0qaR7ieeWLVsWKZ8wYYLc3NyUn5+v3r1768KFCw77uHv3rlavXl1iHQAAgNLCmpYAAACl5He/+518fHx08+ZNnThxQtK93ZS7d+/usM2bb76p1NRUHTx4UHPnzlVKSoqGDh2qZs2aqVy5crp27ZpOnDihnTt3auvWrQoJCbElDwtMmzZNO3bsUEZGhhYsWKD9+/dr+PDhCgkJkYeHhy5cuKC9e/fq448/1vTp0zVo0CBb29q1ayswMFAXLlzQu+++q8DAQDVo0MA21b169eq2qdOTJ09WYmKizpw5oylTpigjI0ODBw+Wv7+/zp49qwULFiglJUWSFB4ermHDhpXit/t4devWTUFBQTp//rwmTZqkK1euqFevXvLy8tKJEyc0b948HTlyRK1bt9aBAwfMDreIpk2b6uTJkwoLC9OECRP03HPPKTc3V0lJSZo9e7bu3Lkjq9WqhQsXFmsbEhKid999V2PHjtXJkyfVpEkTDRs2TO3bt1f16tV169YtnTt3Tvv379eGDRuUmZmpjIwM0zeDAgAAv3wkLQEAAEqJt7e3evfurRUrVtjO9e3bV56eng7beHp6aseOHRo0aJASExN17NixEkcoVqhQodi5smXLateuXYqOjtaePXuUnp7+UAnDiRMn6k9/+pPOnj2rHj16FClbsWKFLcnp4+Oj5ORkdenSRadOnVJCQoISEhKKXS8iIkJbtmx5qnaS9vDw0KpVq9S5c2fl5ORo9uzZmj17tq3czc1Nc+bM0dWrV50uadmsWTONHDlSr7zyit1nx8PDQx9++KFatWplt/2YMWNUrlw5jRkzRjdu3NDMmTM1c+ZMu3U9PDyKLCkAAADwuDA9HAAAoBTFxcUVee9oanhhPj4+SkhI0N69ezVkyBA1aNBAPj4+slqtqlKlilq2bKkRI0YoKSnJ4ZqK1apVU2pqqhITE9W7d28FBgbK09NTXl5eCg4OVp8+fbR69Wq7GwK98sorSkhIUKdOneTn5yer1fH/tevUqaNjx45pwYIFioyMVNWqVeXu7q7q1aurc+fO+uijj7Rnz56nZtfwwtq2bav09HQNHDhQAQEBcnd3l7+/vy0ZPGrUKLNDdGjIkCHau3ev+vbtq4CAAHl4eKhmzZqKjY3VkSNH9PLLL5fYfujQoTpz5oymTp2qiIgIVatWTVarVeXKlVP9+vUVHR2t9957T99++63q1av3hD4VAABwZRbjUVZ8BwAAAAAAAIDHhJGWAAAAAAAAAJwKSUsAAAAAAAAAToWkJQAAAAAAAACnQtISAAAAAAAAgFMhaQkAAAAAAADAqZC0BAAAAAAAAOBUSFoCAAAAAAAAcCokLQEAAAAAAAA4FZKWAAAAAAAAAJwKSUsAAAAAAAAAToWkJQAAAAAAAACnQtISAAAAAAAAgFMhaQkAAAAAAADAqZC0BAAAAAAAAOBU/g87P9blcEKncAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE1\n", + "lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)\n", + "lib.ire_plot('test', ire1, IREth1, 'AE1')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IQ5H5q4qetns", + "outputId": "b2f03ce6-2543-4df4-946a-c869964602d4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n" + ] + } + ], + "source": [ + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, test_data, IREth2)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 900 + }, + "id": "2vQM2NaBe1-x", + "outputId": "1dd24afb-c367-46db-e95e-e65bedcdabe3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] [0.54] 0.39 \n", + "1 [1.] [0.8] 0.39 \n", + "2 [1.] [1.] 0.39 \n", + "3 [1.] [0.7] 0.39 \n", + "4 [1.] [1.] 0.39 \n", + "5 [1.] [0.71] 0.39 \n", + "Обнаружено 6.0 аномалий\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApY1JREFUeJzs3Xd0VFXXx/HfpJAEJCBSpQXpSO9Y6EVUFBQfmlIUVASlPErxUYoiCAoqiAUVAZWiiKKCFBGkKqA0kd67dAgldd4/9juZjBQDJLmT5PtZKwvm3DuTPcncmdx9z9nb5Xa73QIAAAAAAAAAPxHgdAAAAAAAAAAAkBhJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAgGS0adMmPfPMMypTpoyyZs0ql8uV8LV7926nwwMAAADSBJKWAADghtWtWzchMTdo0KAr7pc4gffPr8DAQGXPnl3FixfXI488oo8//liRkZHXFcO1fnXs2PHGfwiSvvvuO1WqVEnvv/++Nm3adE3xAxndSy+95HNcdu3a9ZofI6XeBw4fPqzPPvtMTzzxhKpWrapbbrlFwcHByp49u0qVKqUOHTro+++/V3x8/A38BAAAQGIkLQEAgF+Ij4/X6dOntX37dk2fPl1dunRRkSJF9M033zgdWpJERkaqY8eOioqKkiTly5dPjzzyiJ555hl169ZN3bp1U3h4uMNRXr9BgwYlKTGdFnTs2DHhuUyYMMHpcFLF7t27E55zRESE0+Fcwu1267PPPvMZmzZtWsLx5JS9e/eqfv36yp8/v9q3b6/x48fr999/14kTJxQbG6vTp09ry5YtmjRpkh544AFVrlxZGzZscDRmAADSiyCnAwAAABlT8+bNlT9//oTb8fHxOnbsmFasWKH9+/dLko4dO6aWLVtq+vTpatGiRZIfu1q1aqpevXqS969Zs2bSA7+CH374QSdPnpQk3X777Vq1apXCwsJu+HGBjGDhwoXau3evz9jJkyf13Xff6ZFHHrmux0yO94GDBw9q4cKFPmOFCxdWxYoVlTt3bp07d06rVq3Stm3bJEnr1q3TnXfeqQULFqhatWrXFTcAADAkLQEAgCN69OihunXrXjIeHx+viRMnqmvXroqKilJ8fLy6du2qJk2aKHPmzEl67HvvvTfVZwP+8ccfCf9v06YNCUvgGkycODHh/2FhYbpw4ULC+PUmLZPzfeDWW2/V448/rg4dOqhYsWKXbJ85c6Y6d+6sY8eO6ezZs3rkkUe0adMm3gcAALgBLA8HAAB+JSAgQJ06ddKIESMSxo4cOaJvv/3WuaCSwDPLUrKl4QCSJjIyUl9//XXC7VGjRiX8f+7cuTpy5IgTYUmSwsPDNWrUKO3YsUOvvvrqZROWkvTggw9q9uzZCgwMlCTt2bNHkyZNSs1QAQBId0haAgAAv/TUU08pNDQ04fbixYsdjObfxcTEJPw/IIA/sYCk+vrrr3Xu3DlJUpEiRfTUU0+pYsWKkqTY2Fh98cUXjsVWpkwZ9erVy+e96EqqVaumhx9+OOH2rFmzUjI0AADSPf6iBgAAfikkJESlS5dOuH3w4EEHo7m8xM1pEi9v7dSp0yWdia/U8CUyMlKjR49WkyZNVKBAAYWGhurmm29W2bJl1b17d/32229JiiXx9/JYt26devToobJlyypHjhxyuVxq3rz5NT1HTzfmwYMHJ4wNHjz4mrsvu91uffPNN+rQoYNKlCihbNmyKTQ0VAULFlTz5s01ceJExcbGJimmzZs3q0+fPqpZs6Zy5sypTJkyKTQ0VLlz51aVKlXUqVMnTZw40Wf2qyRFREQk6XeVHM2GrjfGy4mJidFnn32m//znP7rtttuUNWtWZcmSRUWKFFGbNm30zTffyO12X/a+EyZMkMvlUpEiRRLG9uzZc8UO2k5I/Pt49NFH5XK59Nhjj112u7+78847E/6/e/du5wIBACAdoKYlAADwW4nrwV28eNHBSFLGDz/8oC5duujw4cM+41FRUTp16pQ2btyosWPHqm3btvroo4+SXNNTsoTqkCFDFBcXl9xhX7P169erQ4cOWrt27SXb9u/fr/3792vmzJkaNmyYZsyYoTJlylzxsa72vI4ePaqjR4/qjz/+0IQJE9SuXTt9/vnnyflUkiQ5Y1y0aJE6d+6sHTt2XLJt9+7d2r17t6ZOnaqaNWtq+vTpPs2t0oI9e/Zo0aJFCbcfffRRSVLbtm3Vp08fxcXFaf369Vq7dm3C7Et/ljjx6w/HHgAAaRlJSwAA4LcSz67MkyePg5FcXvXq1dWtWzdJ0oIFC7R582ZJUoMGDVSqVCmffRPPGpWkadOmqV27dgmJjcDAQN11110qVqyYIiMjtWTJkoTnP3nyZO3atUs///xzkpapvvHGGwkzI4sWLarq1asrc+bM2r17t4KDg6/pObZo0UJly5bVypUrtWrVKklX7sp8ue7LixcvVrNmzXTmzBlJUnBwsKpVq6bixYsrODhYu3fv1tKlS3Xx4kVt2bJFd9xxh1asWHHJz0uS3nnnHZ8Znzlz5lTNmjWVL18+uVwunThxQps3b9amTZsumzDq0KGDjh8//q+/K0nX1HU6OWNM7KuvvlK7du0SSg+EhYWpZs2aioiIUEBAgLZu3aoVK1YoNjZWv/76q2rVqqVVq1b5HCulS5dWt27ddPbs2YQai1mzZlX79u2v6/klt88++yxhlmiNGjVUokQJSVLevHnVqFEjzZkzR5LNtkwLScsNGzYk/L9gwYIORgIAQDrgBgAAuEF16tRxS3JLcg8cOPCK+3n2keReuHDhVR9zy5YtPvu/++67yRJDSunQoUPC9//000+vuu/27dvdN910U8L+1atXd2/bts1nn7i4OPfIkSPdAQEBCfs9++yzV3zMxD+roKAgd7Zs2dzffPPNJftdvHjxep6ee+DAgdf88z106JA7d+7cCfdr3769++DBg5fsd/jwYXeLFi0S9itXrpw7NjbWZ5+YmBh3zpw5E/YZNmyYOzo6+rLf9/jx4+7x48e7hw8fftnt1/K7uhbJGeOff/7pDgsLc0tyu1wu9/PPP+8+efLkJfvt2LHDfddddyV8z6ZNm1728Xbt2pWwT+HCha/3KSa74sWLX/EY/+KLLxK25c6d2x0TE/Ovj+fk+8DZs2fdN998c8L3f+ONN1L1+wMAkN4w0xIAAPid2NhY9ejRI+F2eHi4WrduneT7z549W8eOHUvy/q+88opy5MhxTTHeiFdeeUWRkZGSpGLFimnevHnKli2bzz4BAQHq3bu3XC6XevfuLUkaO3asevXq5VOf8HLi4+P13XffqXbt2pdsCwkJSaZn8e/+97//6e+//5YkPffcc3rnnXcuu1+ePHn01VdfqXHjxvr555+1YcMGTZ8+Xa1atUrYZ/PmzQm/0zvvvFP9+vW74vfNkSOHOnXqlIzPJGmSM8bnnntOFy5ckCSNHDlSvXr1uux+t912m+bMmaPq1avrr7/+0o8//qjffvtNNWrUuIFnkjqWL1+ubdu2SbIZuIl/35LUvHlz3XTTTYqMjNTff/+tH3/8Uc2aNUvy46f2+8CgQYMSapTedNNN6tChw3U/FgAAYHk4AADwE/Hx8Tp27JiWLVum119/XStXrpQkBQUFafz48brllluS/FirVq1KWMqcFM8//3yqJS1PnTqladOmJdweMWLEJQnLxHr06KFPPvlEGzduVHx8vMaNG6dhw4Zd9Xu0bNnysgnL1HT06NGEWo158+bV8OHDr7p/YGCgXnvtNdWqVUuS9MUXX/gksTzLyyUpV65cKRDxjUuuGNetW6eff/5ZklSpUiX17NnzqvtnyZJFL7/8stq0aSPJfnZpIWmZuMFO06ZNlTNnTp/tmTNn1sMPP5yw38SJE68paZma7wMLFizQ22+/nXC7f//+fvs6BQAgraB7OAAAcES9evV8uhYHBgYqT548euihhxISliVLltS3336rhx9+2OFok8/y5csVFRUlyeod/lsSJiAgQI8//njC7YULF/7r97iWWakp5aefflJ0dLQk6aGHHkpSLc4aNWooS5YskqSlS5f6bEtcH3DhwoXaunVrMkabPJIrxtmzZyf8v02bNknq6l2/fv2E///zZ+ePLl68qC+//DLhduJu4Yklrr35/fff68SJEyke27Xas2ePWrdunVCj9K677lLfvn0djgoAgLSPmZYAAMAv5cmTR5MmTbquhigDBw7UoEGDkj+oZLBmzZqE/1evXl1BQf/+59idd97pc3+3233VRFaVKlVuLMhksGLFioT/r1+/Xt27d7+m+588eVLnzp1LSGIWLFhQNWvW1K+//qrTp0+rSpUqeuyxx9SiRQvdeeed19RZPaUkV4yJf3YLFy7Unj17/vU+7v9vZiNJ+/btu/bgU9nMmTN16tQpSVL27NmvmLyvW7euChQooP379ys6OlpTp07VM888k6TvkRrvA8ePH1fTpk0TlqEXKFBAU6ZMUWBgYIp+XwAAMgKSlgAAwBHNmzdX/vz5E24fP35cO3bsSFjOeeTIEd199936+uuvdf/99zsVZrI7evRowv8LFy6cpPtEREQk/D86Olpnz55VeHj4Fff3h2WpiTu/L1269Lpm/508eTIhaSlJn3zyierXr68jR44oMjJS77//vt5//30FBQWpYsWKql27tpo0aaIGDRo4ljRKjhgT/+x+/PHHa47BU1fRnyVeGv7II49csdZqQECA2rVrl1BeYOLEiUlOWqa0yMhI3Xvvvdq0aZMk6ZZbbtHcuXNVoEABhyMDACB9YHk4AABwRI8ePfTuu+8mfE2ZMkUrV67UunXrVKFCBUmWoGvTpo127NjhcLTJx9OAR5JPQu5q/rnf2bNnr7p/WFjYtQeWzE6fPn3DjxEbG+tzu0yZMlq3bp2effZZnzqgsbGxWr16tUaNGqUmTZqocOHC+vjjj2/4+1+P5IjxRn92nmXK/urw4cOaN29ewu1HH330qvsnXjq+cuVKbd68OcViS6qLFy/qgQceSChlkTVrVv34448qU6aMw5EBAJB+kLQEAAB+pXz58po3b17CLMzIyEh17tzZ4aiSz0033ZTw/3PnziXpPv/cL2vWrMkaU0pInGgdNWqU3G73NX8lnmHqkSdPHo0ePVpHjhzRokWL9Oqrr6pp06Y+M08PHDigLl266LnnnkuNp5rsMSb+2c2YMeO6fnb+7PPPP/dJrNapU8envu0/v8qWLetz/8SzNJ0QExOjhx9+OKG+bFhYmL7//ntVq1bN0bgAAEhvSFoCAAC/kzt3bo0ZMybh9qJFizRr1iwHI0o+iZdu7927N0n32b17d8L/M2XKlCaSlnny5En4/+HDh5P98UNCQlSnTh299NJLmj17to4dO6Yff/xRd911V8I+Y8aMuabu0f4SY0r/7Jx2o0nHzz//XPHx8ckUzbWJi4tT27ZtE5olBQcHa/r06apTp44j8QAAkJ6RtAQAAH7J07zE46WXXnIwmuRTqVKlhP+vXLkySUt5ly9f7nP/pHSTTm7X+j1r1KiR8P9ly5YldziXCA4O1j333KOffvrJZ2be999/f8m+Tvz8pKTHmBI/O6ee8z/98ccf+vPPPxNuV6tWTTVq1EjSl6dp1f79+7VgwYJUjz0+Pl4dO3bU9OnTJUmBgYGaPHmy7r333lSPBQCAjICkJQAA8FuJO/+uXbtW3333nXPBJJM77rgjoenI0aNH/3UGaXx8vD799NOE2/Xr10/R+K4kNDQ04f8xMTH/un+TJk0SkkzLly/XunXrUiy2xEJCQtS4ceOE20eOHLlkn2t9Lsnt32JM3HhqxowZl30O18rp5+yReJZluXLltHLlSv36669J+rrnnnsu+zip5emnn9bnn38uyZLA48ePV8uWLVM9DgAAMgqSlgAAwG81bNhQd9xxR8LtIUOGOBhN8siePbtatWqVcPuFF164amOdd999Vxs2bJBknZSffPLJFI/xcm655ZaE/x84cOBf98+fP39CgxW326327dvrzJkzSfpe8fHxPl3WJeuIndQlwfv27Uv4f+7cuS/Zfq3PJamSK8bq1aurbt26kqQLFy7oscceU3R0dJIeNzo6+rLdw7Nnz66AAPvT/+jRo44kLmNiYjR58uSE2//WgOefEu//zTff/GtDquTUu3dvffTRRwm3x44dq/bt26fa9wcAICMiaQkAAPzagAEDEv6/atUqzZkzx8FokseAAQMSGvJs3bpVTZo00c6dO332iY+P1zvvvKPevXsnjHXr1u2yzWlSQ+LlzPPmzUtSh+vXXntN+fLlkyStX79e1atX9+ka/U/79+/XW2+9pZIlS2ratGk+22bOnKkSJUrozTff9KnxmVhUVJTefffdhOW7ktS0adOrPpeZM2cmOSH4b5IzxjFjxiS8RubPn6/atWvrt99+u+L33rp1q1599VVFRERcdkl5SEiIihcvLsmSh99++22SnlPHjh0TGuLc6GvPU9dTspmKbdq0uab7P/DAAwn1XM+fP6+vvvrqhuJJqoEDB+qtt95KuD1ixAh17do1Vb43AAAZWZDTAQAAAFxNkyZNVKNGjYSEzauvvuqzTPRyEidHkiJz5swaMWLEDcV5LYoWLaqPP/5Y7dq1U1xcnFasWKGSJUvq7rvvVtGiRRUZGaklS5b4zAKsWbNmqsb4T9WrV1fBggW1b98+HTp0SKVKlVLjxo2VM2fOhHqJ1apV85lFeuutt2rmzJm69957dezYMW3ZskVNmjRR/vz5Vb16deXKlUsxMTE6duyY/vzzT+3ateuqMezYsUMvvPCCXnjhBRUqVEjly5dPmKV4+PBh/frrrzpx4kTC/u3atfOZqevRtGlThYWF6cKFC1q7dq1Kly6tunXrKnv27AnPpXHjxj5LuJMquWIsW7aspkyZolatWun8+fP67bffVLNmTRUtWlSVK1dWjhw5dPHiRf39999av359kmaMPvzwwxo6dGjC950wYYKKFSum4ODghH3efPPNa37OSZV4SXft2rVVsGDBa7p/WFiYWrRooUmTJiU83uOPP37F/ZPjfWD27Nl65ZVXEm7nyZNHe/bsUffu3ZP0mK+88opy5MiR5BgAAEAibgAAgBtUp04dtyS3JPfAgQOvuJ9nH0nuhQsXJvnxZ82a5XPfn3766aoxXOtXtmzZrv1J/0OHDh0SHu/TTz9N0n2+//57d548ef41vjZt2rjPnTt31cdKvH9K+f77792ZMmW6YpwdOnS47P12797tbtCgQZJ/H3ny5HHPmTPH5zG++uort8vlStL9AwIC3M8884w7Ojr6is/l/fffv+rjXe11fCXJHaPb7XavXbvWXaVKlST/7CIiItxr1qy57GOdOnXKXapUqave/58Sv64LFy58zT8Tj2PHjvm8dj766KPrepx58+YlPIbL5XLv3LnTZ3tyvw98+umn1/14kty7du26rucJAADcbmZaAgAAv3fvvfeqatWqWr16tSSbvdSgQQOHo7px999/v7Zv367x48frhx9+0MaNG3Xs2DGFhYXp1ltvVb169dS+fXufbtJOuv/++7V69WqNHTtWS5cu1d69exUZGSm3233V+xUuXFg//fSTVqxYoa+++kqLFy/Wvn37dPLkSQUFBemWW25R8eLFVbVqVTVu3Fh169ZNaOLj0bJlSx06dEjz5s3TsmXLtG7dOu3cuVOnTp2SJGXLlk0lSpTQXXfdpfbt26tMmTJXjenpp59WuXLl9OGHH+q3337TgQMHdP78+X99LleT3DFKUoUKFbR69WrNmzdP3377rZYtW6aDBw/q1KlTCgkJUa5cuVSyZEnVqFFDTZo0Ua1ata7YKTxbtmxatWqV3nvvPc2aNUubNm3SqVOnUqW+5ZQpUxKW4YeEhFx3A5v69esrX758OnTokNxutyZOnOjTsAsAAKQfLveN/GUGAAAAAAAAAMmMRjwAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FeCnA4grYiPj9fBgweVNWtWuVwup8MBAAAAAAAA0hS3262zZ8/q1ltvVUDA1edSkrRMooMHD6pgwYJOhwEAAAAAAACkafv27VOBAgWuug9JyyTKmjWrJPuhhoeHOxxNyoiJidG8efPUuHFjBQcHOx0OkOFwDALO4zgEnMUxCDiLYxBwXno/Ds+cOaOCBQsm5NmuhqRlEnmWhIeHh6frpGXmzJkVHh6eLg8MwN9xDALO4zgEnMUxCDiLYxBwXkY5DpNSepFGPAAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArQU4HkBG43W7FxMQoPj7e6VCuKiYmRkFBQbp48aLi4uKcDiddCwwMVHBwsNNhAAAAAAAA+CWSlikoOjpaf//9t86fP58mkoBut1t58+bVvn375HK5nA4n3QsJCVHOnDkVHh7udCgAAAAAAAB+haRlCjl//rz27dunwMBA3XzzzQoLC1NgYKBfJwPj4+MVGRmpm266SQEBVA5IKZ6Zt6dPn9aBAwckicQlAAAAAABAIiQtU8ixY8cUHByswoULKzAw0OlwkiQ+Pl7R0dEKDQ0laZnCwsLClDVrVu3fv1/Hjh0jaQkAAAAAAJAImakUEBsbq3PnzilHjhxpJmGJ1OdyuZQtWzZFRUUpJibG6XAAAAAAAAD8BknLFBAbGyvJahYCV+NpxpMWap4CAAAAAACkFpKWKcif61fCP/AaAQAAAAAAuBRJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCUdFRETI5XJpwoQJCWMTJkyQy+Xy+QoICFB4eLgqVaqk/v376+jRo1d8zH/e90pfixYtSvknCAAAAAAAgGsW5HQAwJVkyZJFLVu2lGTdtffs2aMVK1Zo7dq1+vTTT7VkyRIVL178ivdv0qSJ8ubNe8XtV9sGAAAAAAAA55C0hN/KmTOnzwxMSdq4caPq1KmjI0eOqGfPnpo1a9YV79+vXz/VrVs3ZYMEAAAAAABAsmN5ONKU22+/Xb1795YkzZ8/X1FRUQ5HBAAAAAAAgORG0hJpTvny5SVJMTExOnHihMPRAAAAAAAAILmRtESac+bMGUlSYGCgcubM6XA0AAAAAAAASG4kLZHmeOpY3nPPPQoODnY4GgAAAAAAACQ3GvE4pWpV6fBhp6Pw4ZIU7nbL5XJdfce8eaXVq1MlJg9P9/Bx48Zp8uTJKly4sEaPHn3V+9SrV++K27Jly6ZTp04lc5QAAAAAAABIDiQtnXL4sHTggNNR+HD9/5e/2LNnz2UTqNWrV9e8efOULVu2q96/SZMmyps372W3Zc6cOVliBAAAAAAAQPIjaemUKyTTnOSW5P7/mZZXTV6mUuxZsmRRy5YtJUlRUVHatGmT1q1bp5UrV+qpp57S1KlTr3r/fv36qW7duqkQKQAAAAAAAJITSUunpPLy6qRwx8frzJkzCg8PlyvA+XKnOXPm1IQJE3zGZsyYoVatWmnatGmqXbu2nnnmGWeCAwAAAAAAQIpxPjMFXIOHHnpI/fr1kyQNGDBAp0+fdjgiAAAAAAAAJDeSlkhz+vfvr3z58un48eMaNWqU0+EAAAAAAAAgmZG0RJqTOXNmvfzyy5Kkt99+WydPnnQ4IgAAAAAAACQnaloiTercubNGjhypHTt26M0339Rrr712yT6vv/76JTUxE2vbtq0aN26cglECAAAAAADgepC0RJoUHBysIUOGqE2bNhozZox69+6tW265xWefuXPnXvUxKlasSNISAAAAAADAD5G0hKN27959yVjHjh3VsWPHf71v69at1bp160vG3W53MkQGAAAAAAAAp6TJmpaLFy9Ws2bNdOutt8rlcunbb79N8n2XLVumoKAgVaxYMcXiAwAAAAAAAHD90mTS8ty5c6pQoYLGjh17Tfc7deqU2rdvrwYNGqRQZAAAAAAAAABuVJpcHt60aVM1bdr0mu/39NNPq23btgoMDLym2ZkAAAAAAAAAUk+aTFpej08//VQ7d+7U559/riFDhvzr/lFRUYqKikq4febMGUlSTEyMYmJirnrfmJgYud1uxcfHKz4+/sYCT0WeWpCe2JHy4uPj5Xa7FRMTo8DAQKfDgcM87y3/9h4DIOVwHALO4hgEnMUxCDgvvR+H1/K8MkTSctu2berXr5+WLFmioKCkPeVhw4Zp8ODBl4zPmzdPmTNnvup9g4KClDdvXkVGRio6Ovq6YnbS2bNnnQ4hw4iOjtaFCxe0ePFixcbGOh0O/MT8+fOdDgHI8DgOAWdxDALO4hgEnJdej8Pz588ned90n7SMi4tT27ZtNXjwYJUoUSLJ9+vfv7969+6dcPvMmTMqWLCgGjdurPDw8Kve9+LFi9q3b59uuukmhYaGXnfsqc3tduvs2bPKmjWrXC6X0+FkCBcvXlRYWJhq166dpl4rSBkxMTGaP3++GjVqpODgYKfDATIkjkPAWRyDgLM4BgHnpffj0LOSOSnSfdLy7NmzWr16tdasWaPu3btL8i7JDQoK0rx581S/fv1L7hcSEqKQkJBLxoODg//1RRMXFyeXy6WAgAAFBKSdXkeeJeGe2JHyAgIC5HK5kvS6QsbB6wFwHsch4CyOQcBZHIOA89LrcXgtzyndJy3Dw8O1YcMGn7H33ntPP//8s6ZPn64iRYo4FBkAAAAAAACAy0mTScvIyEht37494fauXbu0du1a5ciRQ4UKFVL//v114MABTZo0SQEBASpbtqzP/XPnzq3Q0NBLxgEAAAAAAAA4L00mLVevXq169eol3PbUnuzQoYMmTJigQ4cOae/evU6FBwAAAAAAAOAGpMmkZd26deV2u6+4fcKECVe9/6BBgzRo0KDkDQoAAAAAAABAsqDbCgAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0hKMiIiLkcrl86pBOmDBBLpfL5ysgIEDh4eGqVKmS+vfvr6NHj17xMf953yt9LVq06Jpi9cTVsWPH63uyAAAAAAAASJI02YgHGUOWLFnUsmVLSVJcXJz27NmjFStWaO3atfr000+1ZMkSFS9e/Ir3b9KkifLmzXvF7f/c5nK5JOmqTZ4AAAAAAACQ8khawm/lzJnzkk7wGzduVJ06dXTkyBH17NlTs2bNuuL9+/Xrp7p166ZskAAAAAAAAEh2LA9HmnL77berd+/ekqT58+crKirK4YgAAAAAAACQ3EhaIs0pX768JCkmJkYnTpy44ccbNGhQwtJw6dKamLt3777kPufOnVP//v1VrFgxhYSEKG/evOrQoYMOHDhww/EAAAAAAABkdCwPR5pz5swZSVJgYKBy5sx5w49XsWJFdejQQRMnTpQkdejQwWf7TTfd5HP79OnTuuOOO7R3717dfffdKlu2rFasWKFJkybpl19+0bp165QtW7YbjgsAAAAAACCjImmJNMdTx/Kee+5RcHDwDT9e8+bN1bx584Sk5T/raP7Tt99+qyZNmmjJkiUKDw+XJJ08eVL169fX2rVr9d5776l///43HBcAAAAAAEBGRdLSIVWrVtXhw4edDuMSbrfbZ6n05eTNm1erV69OpYiMp3v4uHHjNHnyZBUuXFijR4++6n3q1at3xW3ZsmXTqVOnriuWLFmy6NNPP01IWErSzTffrH79+ql169b66aefSFoCAAAAAADcAJKWDjl8+DD1D//Fnj17LptArV69uubNm/evS7CbNGmivHnzXnZb5syZrzuuqlWrKl++fJeMly5dWpL4vQIAAAAAANwgkpYOuVIyzWlJnWmZGrJkyaKWLVtKkqKiorRp0yatW7dOK1eu1FNPPaWpU6de9f79+vVT3bp1kz2uQoUKXXbcM/Py4sWLyf49AQAAAAAAMhKSlg5J7eXVSREfH68zZ84oPDxcAQHON5bPmTPnJfUlZ8yYoVatWmnatGmqXbu2nnnmmVSPyx9+NgAAAAAAAOkZ2RekKQ899JD69esnSRowYIBOnz7tcEQAAAAAAABIbiQtkeb0799f+fLl0/HjxzVq1Khke1xPJ/LY2Nhke0wAAAAAAABcO5KWSHMyZ86sl19+WZL09ttv6+TJk8nyuAUKFJAkbdy4MVkeDwAAAAAAANeHmpZIkzp37qyRI0dqx44devPNN/Xaa69dss/rr79+SU3MxNq2bavGjRsn3H744Yf15ptvqmHDhqpfv76yZs0qSRo+fLhuueWWZH8OAAAAAAAAuDySlkiTgoODNWTIELVp00ZjxoxR7969L0kszp0796qPUbFiRZ+k5auvvqqAgADNmDFD3377raKjoyVJL730EklLAAAAAACAVETSEo7avXv3JWMdO3ZUx44d//W+rVu3VuvWrS8Zd7vd1xVLaGiohg8fruHDh192+7/FFRERcd3fGwAAAAAAAF7UtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWmZgtxut9MhwM/xGgEAAAAAALgUScsUEBBgP9a4uDiHI4G/87xGPK8ZAAAAAAAAkLRMEcHBwQoODlZkZKTTocDPXbhwQYGBgQoODnY6FAAAAAAAAL9B0jIFuFwuZc2aVadPn9aFCxecDgd+Ki4uTqdPn1bmzJnlcrmcDgcAAAAAAMBvBDkdQHqVM2dOXbhwQXv37lV4eLiyZs2qwMBAv05OxcfHKzo6WhcvXmS5cgpyu92KiorSiRMnFB8fr9y5czsdEgAAAAAAgF8haZlCAgMDVbBgQR07dkxnz57VqVOnnA7pX7ndbl24cEFhYWF+nVxNL7JkyaK8efMqU6ZMTocCAAAAAADgV0hapqDAwEDlyZNHuXPnVkxMjOLj450O6apiYmK0ePFi1a5dmxqLKSwoKEhBQRx+AAAAAAAAl0PWJBW4XK40MZsuMDBQsbGxCg0NJWkJAAAAAAAAx1C4EAAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPAraTJpuXjxYjVr1ky33nqrXC6Xvv3226vuP2PGDDVq1Ei5cuVSeHi4atWqpblz56ZOsAAAAAAAAACuSZpMWp47d04VKlTQ2LFjk7T/4sWL1ahRI82ePVu///676tWrp2bNmmnNmjUpHCkAAAAAAACAaxXkdADXo2nTpmratGmS93/77bd9bg8dOlQzZ87U999/r0qVKiVzdAAAAAAAAABuRJpMWt6o+Ph4nT17Vjly5LjiPlFRUYqKikq4febMGUlSTEyMYmJiUjxGJ3ieV3p9foC/4xgEnMdxCDiLYxBwFscg4Lz0fhxey/Nyud1udwrGkuJcLpe++eYbNW/ePMn3GTFihF5//XVt3rxZuXPnvuw+gwYN0uDBgy8Znzx5sjJnzny94QIAAAAAAAAZ0vnz59W2bVudPn1a4eHhV903wyUtJ0+erC5dumjmzJlq2LDhFfe73EzLggUL6tixY//6Q02rYmJiNH/+fDVq1EjBwcFOhwNkOByDgPM4DgFncQwCzuIYBJyX3o/DM2fOKGfOnElKWmao5eFTp05V586d9dVXX101YSlJISEhCgkJuWQ8ODg4Xb5oEssIzxHwZxyDgPM4DgFncQwCzuIYBJyXXo/Da3lOabJ7+PWYMmWKOnXqpClTpui+++5zOhwAAAAAAAAAV5AmZ1pGRkZq+/btCbd37dqltWvXKkeOHCpUqJD69++vAwcOaNKkSZJsSXiHDh30zjvvqEaNGjp8+LAkKSwsTNmyZXPkOQAAAAAAAAC4vDQ503L16tWqVKmSKlWqJEnq3bu3KlWqpAEDBkiSDh06pL179ybsP27cOMXGxqpbt27Kly9fwlePHj0ciR8AAAAAAADAlaXJmZZ169bV1foHTZgwwef2okWLUjYgAAAAAAAAAMkmTc60BAAAAAAAAJB+kbQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL+SJpOWixcvVrNmzXTrrbfK5XLp22+//df7LFq0SJUrV1ZISIiKFSumCRMmpHicAAAAAAAAAK5dmkxanjt3ThUqVNDYsWOTtP+uXbt03333qV69elq7dq169uypzp07a+7cuSkcKQAAAAAAAIBrFeR0ANejadOmatq0aZL3/+CDD1SkSBGNHDlSklS6dGktXbpUb731lpo0aZJSYQIAgLTkxAm5li1T8NmzTkcCAIAzTp5UrjVrpLvvlnLkcDoaABlcmkxaXqsVK1aoYcOGPmNNmjRRz549r3ifqKgoRUVFJdw+c+aMJCkmJkYxMTEpEqfTPM8rvT4/wN9xDAIOiIqS68cfFfDFF3LNnq2gmBg1ypxZ7l27FNOjhxQW5nSEQIbCZyHgkAsXFDB2rIKGD9cdp0/LPXas4vr1U/yTT0qhoU5HB2Qo6f2z8FqeV4ZIWh4+fFh58uTxGcuTJ4/OnDmjCxcuKOwyJyTDhg3T4MGDLxmfN2+eMmfOnGKx+oP58+c7HQKQoXEMAinM7dbNW7ao4KJFyr90qYIjI302B58/Lw0YoAvvvKNN7dppX506UmCgQ8ECGROfhUAqiYtTwcWLVeqLL5T52LGEYdexYwp8/nlFvf66trRurX316snNZyGQqtLrZ+H58+eTvG+GSFpej/79+6t3794Jt8+cOaOCBQuqcePGCg8PdzCylBMTE6P58+erUaNGCg4OdjocIMPhGARS2M6dCvjiCwVMmSLX9u2XbHbnzau4ypUVOGeOXPHxCjt+XJVHj1alhQsVN2yY3I0aSS6XA4EDGQefhUDqcc2fr8ABA+Ravz5hzO1y6UTJkrpl82ZJUuZjx1Tp3XdVcf58xQ0aJPdDD/FZCKSw9P5Z6FnJnBQZImmZN29eHTlyxGfsyJEjCg8Pv+wsS0kKCQlRSEjIJePBwcHp8kWTWEZ4joA/4xgEktHJk9KXX0qffSYtW3bp9rAwqUULqX17uRo0kNvt1sIPPlDdOXMUMHu2JMm1YYOC7r9fathQGjFCqlQplZ8EkPHwWQikoDVrpL59pX/O4rr3XsW++qqW7tune/PnV/CgQdKsWZIk15YtCmrTRqpaVRo61D4TSV4CKSq9fhZey3NKk93Dr1WtWrW0YMECn7H58+erVq1aDkUEAABSTHS0NHOm1LKllDev9PTTvglLl0uqX1+aMEE6ckT64gupSRMpyK7lni1USHHffistXGgnZx4//SRVriw99pi0Z0+qPiUAAG7Ynj32GValim/CsnJlacECS1CWK2djFSpIP/wgLVki3XWXd9/Vq6XGjaUGDaTffkvd+AFkOGkyaRkZGam1a9dq7dq1kqRdu3Zp7dq12rt3ryRb2t2+ffuE/Z9++mnt3LlTffr00ebNm/Xee+/pyy+/VK9evZwIHwAAJDe3206eunWTbr1Vat5c+vprS2B63H679Prr0t69dnLWoYOUNeuVH7NuXXvMqVOlIkW8459/LpUoIb3wgs3kBADAn508aZ9ZJUrYZ5jbbeMREdLkydKqVXYx73LuuktavNgSmhUqeMcXLpRq1rTP240bU/oZAMig0mTScvXq1apUqZIq/f/yrN69e6tSpUoaMGCAJOnQoUMJCUxJKlKkiGbNmqX58+erQoUKGjlypD7++GM1adLEkfgBAEAy2bVLevVVqVQpO3l67z3p+HHv9ty5pZ49pT/+kDZssOVwBQok/fEDAqRWraRNm6S335ZuucXGo6OlN9+UbrvN/r14MTmfFQAAN+7iRWnkSKloUfus8lzIu/lmadQoafNmqU0b+6y7GpdLuvde+yydPNkez2PmTJud2aGDtHt3ij0VABlTmqxpWbduXbk9V4cuY8KECZe9z5o1a1IwKgAAkCpOnZK++srqVC5Zcun20FCb+dG+vdSoUcKy7xsSEiL16GEnZcOHWwLz4kWL5YUXpDFjpNdek9q2/feTPwAAUlJ8vDRlivS///mWM/F8lvXrZ4nLaxUQYEnOli2l8eOlV16RDh60mZuTJtn3fOop6aWXpDx5ku/5AMiw+KsaAAD4v5gY6fvvpUcesTqVTz55acKyXj07iTpyxE6cmjZNnoRlYtmzS8OGSVu3Sp06eZsQ7N1rdcKqVrXalwAAOOGnn+yz6NFHvQlLl8suum3dahferidhmVhwsCUnt2+3BnWex4uJkd5912ZivvSSdPr0jX0fABkeSUsAAOCf3G6rs/Xss1an8oEHpOnTpago7z6lS1sX0z17pJ9/tkRieHjKx1awoCVI16615KjHmjU2u/Oee6R161I+DgAAJPvMuece+wxKvMKwSRO7PWGCVKhQ8n7PsDBbbbBzp83qzJzZxs+ds9UHRYpYUvP8+eT9vgAyDJKWAADAv+zZYyc7pUtL1avbrI1jx7zbc+WSnnvOOphu3Cj175/8J2JJVb68NHu2t7O4x9y5UqVKNrMlUZ1tAACS1b59UseO9pkzd653vGJFad48ac4c3wY6KSF7dmnIEEtePvuszcSUrAFQ375S8eLShx/aTEwAuAYkLQEAgPNOn5Y++cQ6dkdE2LKyLVu820NCrCHODz9IBw5I77wjVaniXZ7ttAYNbFboF19IhQvbmKfGV4kSdtJ26pSjIQIA0pFTp6w2ZfHi0sSJ3o7ghQpZzefff7dZl6kpTx5p9Gj7/G7f3vsZffCg9PTTUpkyVr4lPj514wKQZpG0BAAAzoiJkWbNsmRk3rxS587SL7/47lOnjvTxx1ancupU6b77vDM4/E1AgDXi2bLFurV6anxFRdnyuKJFpbfe8l3eDgDAtYiKss+SokWtPqXnMyV7dusQvmWL1bN0silckSKWSN2wwRrjeWzfbp+TlSvbKoWrNNcFAImkJQAASE1uty3r7tFDyp9fuv9+6csvrRO3R8mStsxs1y5p0SLpiSekbNkcC/mahYRIvXtLO3ZIffrYbUk6ccLGS5VipgkA4Np4OoKXKmWfJSdO2HimTNLzz9tnzn//K4WGOhtnYrffLn3zjbRihTXL81i3zi5C1q4tLV3qXHwA/B5JSwAAkPL27rWu27ffLlWrZsvHjh71bs+ZU+reXVq5Utq0yQr6R0Q4Fm6yuPlmmwWzdavvMrndu22mSfXq1jwIAICrWbjQPjPatrXPEI9HH7WZlW+8IeXI4Vh4/6pmTWnBAquxWaWKd3zpUunuuy2BSfM6AJdB0hIAAKSMM2ekTz+12RUREdKLL1pC0iMkRHrkEem776ze1ZgxltD0lzqVyaVQIVsm98cfUuPG3vHff7damPfea0voAABI7M8/LaFXv759Zng0aGC3P/ss7Vzgc7msxuaqVdL06TZj1GP2bGsc1LatLSEHgP9H0hIAACSf2Fjpxx+lNm2sIP/jj9sS78R1q+6+Wxo3Tjp82JaGN2vmv3Uqk1PFitbZde5c306uP/5otx9/XNq/37HwAAB+4sABK41SoYIl9DzKl7du4PPnW13ItMjlkh5+2C7WffKJVLCgd9uUKVLp0ta05+BB52IE4DdIWgIAgBvjdtsswl69pAIFbObg1Km+dSqLF5deeUXauVNavFjq0sWaBmREjRvbz2vSJO/Jmttts1KLF7cZqadPOxsjACD1nT5t5VGKF5fGj/fWPi5YUJowwT47mjRJHysSgoLsYt3WrdZYKGdOG4+NlT78UCpWTOrb11u7E0CGRNISAABcn/37rWZjuXJWo+rtt63Lt0eOHFK3btKvv1rNrZdfto6isK6ujz1mJ2tvvOFN4F68aLU/ixa1up/R0Y6GCQBIBdHRViKlWDFp6FDpwgUbz5bNPme3bJE6dJACA52NMyWEhko9e9pFzUGDpKxZbfzCBWnECOm226TXXpMiI52MEoBDSFoCAICkO3vW6jM2aGC1Gvv1kzZu9G7PlMmWfX37rXTokPTuu1KNGuljVkhKCA317fqaKZONHz9uHdZLl7Yl9ImX1wMA0ge3297jy5SRnntOOnbMxoODbfXCjh1Snz5SWJizcaaGrFmlgQMtedm7t9W9lmz26Usv2cW8d9/lYh6QwZC0BAAAVxcbazW02rWzOpUdO1rX68SJtDvvlD74wOpUTp8uPfigNwGHf5cjh/Tmmzabpl077/jOnVKrVpb4/eUX5+IDACSvxYutq3arVpac9GjTxj4LRo2SbrnFufickjOnNHKktG2b1fUM+P+Uxd9/S88+K5UsaeVV4uKcjRNAqiBpCQAALuV2S2vX2uy/ggWlpk2lyZO9S9Ykm/UwaJB1+ly6VHrqKenmm52KOH2IiJA+/9y6wtav7x1ftUqqW9eaFiWe2QoASFv++kt64AGpTh1p5UrveL169l4/eTKlVCT72+Pjj+3n9cgj3vHdu22pfIUKtqqDlQhAukbSEgAAeB04YDUWy5eXKlWymR6HD3u333yz1LWrtHy5zYIYONCSl0helStLP/1kncXLlfOO//CD/W66dKGzKgCkJQcPSk8+ae/p33/vHS9b1jqEL1ggVa3qXHz+qmRJW0K/erU1svPYuFFq0UKqVUtauNC5+ACkKJKWAABkdJGR0mefSY0a2cyGPn2kP//0bg8OthODGTOsTuV779lJAnUqU5bLJd1zj7RmjXUWL1DAxuPjbfZJsWLW3OjMGWfjBABc2Zkz9l5dvLj00UfejuD581uH8LVrbTUDn6lXV6WKNHeuJShr1vSO//abrUxo3NgSmwDSFZKWAABkRHFx0rx51sE6Tx6pfXub2Zd4mVWtWpagPHTIEpYtWngL4yP1BAZaHdGtW6XXX5fCw238wgVpyBBLXo4dK8XEOBomACCRmBh7by5WzN6rz5+38axZrUP41q1Sp07psyN4Sqpb11Z7fPutdPvt3vH586Vq1Wwp+ebNTkUHIJmRtAQAICNZv1564QXr/N2kidVP9JxISdJtt9mS723b7KSga9eM2QjAH4WFSX37WsOGnj1tBqwkHT0qde9uJ2/Tp1PfCwCc5HZLX39t78ndu9t7tGTv2c89Z+/h/ftLmTM7G2da5nJZw79166wpT0SEd9v06fazf+IJae9ex0IEkDxIWgIAkN4dOmSdOCtUsK833/Sth5g9uzXRWbrUmuoMGmQzQ+CfcuaU3nrLZpK0bu0d37bNZpjccYf9LgEAqWvpUnsPbtnS3pM9/vMfadMm6Z13pFy5nIsvvQkMtBUjW7ZI775rK0ckW4I/frwtye/d25s4BpDmkLQEACA9OnfOZlE2aWK1EJ9/3mZZegQH2yyF6dMtqfnBB9Kdd1JTKy257TZpyhTrPlu3rnf811+lu++WmjdniRwApIbNm62Eyt1323uwR+3aVnNx2jSa1qWkTJmkbt1sFutrr0nZstl4dLRd5LvtNrsgSw1oIM0haQkAQHoRF2d1KTt0sNkGjz1mdSs9Rf8lqUYNm41w8KDVg3r4YSk01LGQkQyqVZN+/lmaNcu3vtfMmdaV9umnfTvAAwCSx+HDVkalbFn7TPUoXdo6hC9aJFWv7lR0GU+WLNKLL0o7d1o5lbAwG4+MlAYPtsTxW29JFy86GyeAJCNpCQBAWvfnn/bHeeHC1gF80iSbaekREWGdS7dssRkg3brZEmOkHy6XdO+9Vt/rk0+kW2+18bg46cMPbbn/oEHS2bOOhgkA6UJkpLeUygcf2HutJOXLZx3C16+X7r+f1QtOyZHDGtdt324X7oKCbPzYMVsuXqKEfVbGxjobJ4B/RdISAIC06PBhadQoqVIlqVw5acQI6cAB7/Zs2aQuXaTFi2251Cuv2B/pSN8CA6XHH7daaq+9Zl1qJUtiDx5s9b0++IBO4wBwPWJi7D20WDF7T/VcILzpJunVV+29t3Nnb5IMzrr1Vun9962eaNu23iTyvn32eypblgZ2gJ8jaQkAQFpx/rw0ebLUtKmUP7/03/9Ka9d6twcFSc2aSV9+aUnNceOsvlYAH/cZTubMtkRuxw7p2We9J9BHjniXMn7zDSdqAJAUbrct/y5Xzt5Djxyx8aAgby3Fl16y5cnwP8WKSV98Ia1ZI913n3d8yxZrYFetmpXT4TMR8DucxQAA4M/i461eYadOVqeyXTtpzhzfOpXVqkljxlidyu++sz/AqVMJybrUjh5ts0weecQ7vnWr9NBD0l13ScuXOxcfAPi7FSvsAmCLFpbk8mjZUvrrL6sTnTu3c/Eh6SpUkH74QVqyxH6nHr//bo0L69f3baQEwHEkLQEA8EcbN0r9+lmdygYNpAkTrIaWR6FC0v/+Z8molSul7t0tQQVcTrFiNgPX01ncY/ly6xr/8MOWyAQAmK1b7b3xjjukZcu8456LPV99ZSU3kPbcdZf0yy/S7NlSxYre8UWLpFq1pObNrV44AMeRtAQAwF8cOSK9/bZUpYot3x0+XNq/37s9PFx64gn7o3rXLmnIEKlUKaeiRVpUo4adqH33nXW39ZgxQypTxpY5epY9AkBGdOSIvReWKWPvjR4lS9oS8cWLLbGFtM3lsnI7v/8uTZliF/c8Zs6UypeX2re3v7cAOIakJQAATrpwQZo61Wos5c8v9eol/fGHd3tgoG2bOtXqVH78sVSnDnUqcf1cLqt9un691T3Nm9fG4+Kk996zE7dXXvGd2QsA6d25c9ZMp1gxey/0dATPk8ea7/z5p/Tgg3QET28CAqTWrW2p/4cfWvMeyepbfvaZJauffZYLeoBDOOMBACC1xcfbbMknnrCToTZtbImS5wRJstmW77xjdSp/+EFq1UoKC3MsZKRDQUHWYX77dktS3nSTjUdGSgMH2rLHceOk2Fhn4wSAlBQbK330kSUrBwzwXrDJksU6hG/fLj31FB3B07vgYOnJJ+33PWKElCOHjcfEWN3S226zsjynTjkaJpDRkLQEACC1bNpkHZ2LFJHq1ZPGj5fOnvVuL1hQ6t/frvavXi099xzF/ZHysmSRXn7ZTtSeecZ7Yn74sJ2olytny8npqgogPXG77b2tfHlLVh0+bOOBgdYhfPt2S2J6LuggYwgLk154Qdq507cj/Pnz0tChlrwcPtxuA0hxJC0BAEhJf/9t3ZurVbP6WMOGSXv3erdnzWqdwX/+Wdq92/4gTlxrEEgtefJIY8daE6iHH/aOb95sSyLr1JF++825+AAgufz2m72nPfigXVD0aNHC3gPfe89bOgMZU7ZsVi5gxw5bHh4cbOMnT1qjxGLFrGxATIyzcQLpHElLAACS24UL1qm5WTOrjdSjh82c9AgMtOLvU6bYzI7x423mJXUq4Q9KlJCmT7duuXfe6R1fskSqWVP6z39sBhIApDXbt9t7WM2a9p7mUauWtHSpNd4pWdK5+OB/8uSxi89bt0odOnj/Vjt0yGbkli4tTZ5spX8AJDvOjgAASA7x8dZRtHNnm53RqpXVokxcp7JyZemtt6QDB6yGZevWUubMzsUMXM0dd9hJ/TffWCLT46uv7CTt2Welo0ediw8AkuroUSu5Urq0vYd5FC8uff31pRdpgH+KiJAmTLAmds2be8d37JDatbO/8WbNopQKkMxIWgIAcCO2bLGaR7fdZkvNPvlEOnPGu71AAalvX+s6+vvvUs+edtUeSAtcLjs5+/NP6f33va/d2FhrTFC0qJU0oLYXAH/kqUNYtKg0Zoy3sVju3N5yGA89REdwJN3tt9vFvF9/lerX946vWyfdf79Uu7bvLF4AN4SkJQAA1+rYMUvY1KghlSolvfaatGePd/tNN9kSop9+sjqVr79uf+QCaVVwsPT007a0cuBAb2OCs2etm2rx4pawTzyzGACcEhdnpVeKF7f3KE/Tu8yZrbmOp/GYp04hcK1q1JAWLJDmz5eqVvWOL11qicv77pPWrnUsPCC9IGkJAEBSXLxodf4eeEDKl8+Wxq5c6d0eECA1aSJ98YXVqZwwQWrQwOpXAunFTTdJgwZJ27ZZZ3HP6/vgQSuNUKECy+MAOMfttvIrFSpITzxh702SfUY/+aQlKwcPtiZ4QHJo2ND+Hpw+3S5ke8yeLVWqJLVpQx1o4AaQtAQA4Ercbrti/uSTVqfykUek77/3Li+TpIoVpZEjpf37pTlzpLZtvbPQgPQqXz7rmvrnn761vTZutOVx9etLq1Y5Fh6ADGj1anvvue8+ey/yeOABe6/68EN77wKSm8slPfywtGGDzfAtWNC7bepUS2Y+/bTVNAdwTUhaAgDwT9u22fKxokWlu++WPvpIOn3au/3WW6UXXrBi7GvWSL17cyKEjKlUKavt5eks7rFokVS9us0w2bnTsfAAZAA7d9p7TbVq9t7jUb269Msv0syZ1oAHSGlBQVKnTtZp/K23pJw5bTwuzpLmxYpJffpIx487GyeQhpC0BABAsj8g33tPqlXLOiW/+qq0a5d3e5Ys0mOPWe2ivXulESOkcuWcixfwJ3fdJS1fbsvjihXzjntmmPTsabVgASC5HD8u9epl7zFTp3rHixa1DuG//mq1BYHUFhpqn3s7d/qWI7h4UXrjDWveOGSIFBnpaJhAWkDSEgCQcUVFSTNm2PLWfPmkbt3sJMcjIEBq1Ej67DOrUzlpktUuok4lcCnP8ri//rJGVbly2XhMjPTOO5ZIeP116cIFZ+MEkLZduCANH27vKW+/be8xks1qGzPG3oNatqQjOJyXNaut3Nm5U/rvf6WQEBs/c0Z6+WVvV/uoKGfjBPwYSUsAQMbidtuMsKeftkTlww/b0jHPSY8klS9vV8L37ZPmzZMefdQakAD4d8HBdgFg+3bppZesW69kJ2n9+9tM5gkT6DQO4NrExdl7R4kSUr9+3rItYWHWIXzHDql7dylTJkfDBC6RM6f05ptWfqhzZ+/F77//lp57TipZ0i6M87kIXIKkJQAgY9ixw7oeFy8u3Xmn1RY6edK7PV8+uwq+dq20bp30/PNWuxLA9QkPtzIL27ZJXbrYzGXJmlZ16mRdVefModM4gKtzu+29olIle+/Yv9/GAwKsQ/i2bbbUNjzc2TiBf1OwoNVJ37hR+s9/vON79kgdOljX+2+/5XMRSISkJQAg/Tpxwjoc33GH1dkbPNiSlx6ZM0vt2klz59qsyjfftD8YASSfW2+Vxo2zrqrNmnnHN2yQmja1Egx//OFcfAD81x9/2HtE06b2nuFx3312gfHjj6X8+Z2LD7geJUtK06ZJv/8uNWniHd+4UWrRwuqr//yzc/EBfoSkJQAgfYmOtqvUDz1ksye7dpVWrPBud7msLuXEiVan8vPPpcaNqVMJpLQyZaTvvrPuvtWqeccXLJCqVLELCLt3OxUdAH+ye7eVZqlSxd4jPKpWtWTODz9IZcs6Fh6QLCpXtlnEixZZotLjt9+kBg3s79PVqx0LD/AHJC0BAGmf222JyWeesURlixbSN99YAtOjbFkr3L93r3UAb9/e280RQOqpU8dOyKZNsw6qHpMn2+yT//7XZkkDyHhOnLDyLCVLSl984R0vUkSaMsXeO+rVcy4+ICXUqSMtW2Y11hMn4+fPt4t8LVtKmzc7Fx/gIJKWAIC0a+dO6ZVXrCj/HXdI77/vm+zIk0fq1Utas0Zav17q00cqUMC5eAEYl8vqeW3aJI0eLd1yi41HR0ujRllH1TfekC5edDZOAKnj4kUr0VK0qDRypPeiY44c1iF80yapdWtvbVwgvXG5pAcesNrqn31miXqPr7+Wbr9devxxu/gOZCC86wMA0paTJ60+3l132cnNwIHWpdgjLExq00b68Ucr1j9qlFSxov0xCMC/ZMokPfus1Zp98UUpNNTGT52yiwwlS9rJW3y8o2ECSCHx8XaMlywpvfCCHfuSvRf062fvDT16SCEhjoYJpJrAQCuNsHmz9O67dgFesmPl00+toWSvXtLRo87GCaQSkpYAAP8XHW218Fq2lPLmlZ56ypbReLhcUv369sfc4cO2zPSee6SgIOdiBpB02bJJr71mXYAff9x7kWHvXivlULmyLZMDkH7Mn281K9u3984ec7mkjh2lrVulYcOk7NmdjBBwTqZMUrdulrgfOtQ+JyX7m/jtt628ysCB0pkzjoYJpDSSlgAA/+R2W+2q7t2t+/CDD9rymMR1KsuUsZOaPXusUH/HjlJ4uGMhA7hBBQpIn3xiXYHvvdc7vm6dNSRo3NiWzgFIu9autY7J/zyemza1259+KhUs6FBwgJ/JkkXq399KIvXtayuKJCky0kok3XabrSqinArSKZKWAAD/snu3NGSIVKqUVLOmNHasdPy4d3vu3LZUbPVq6c8/bfkYJzdA+lKunDRrlrezuMf8+Tbrsn17u1gBIO3Yu1fq0MGO4XnzvOOVK0s//STNni2VL+9cfIA/y5FDev11m3nZtat3NdHx49bArnhx6eOPpdhYZ+MEkhlJSwCA806dsj+0ate2wuMvv2xLwzxCQ60A/6xZVqfy7bctkUGdSiB9q19fWrnSSj54mhK43d4aeH36WJ1bAP7r5Ek7VkuUkCZNsmNYkgoXtg7hq1ZJDRo4GyOQVuTLJ733ntW8bNfO+7fw/v1Sly7WsOerr6gFjXSDpCUAwBkxMdL331sH4bx57Q+tJUt896lb15aKHj4sTZliy0WDgx0JF4BDAgKsudamTdJbb9lsE0mKirIO40WL2tK4qChn4wTgKyrKjs2iRe1Y9RyjN99sHcK3bJHatqUjOHA9ihaVPv/cSircf793fOtW+9u6WjVp7lzvRQIgjeITAgCQetxum1Hx3HNS/vzSAw/Y1eDEyYZSpawhx+7d0sKF1pTDU3wcQMYVEiL17GlL4/r29XYTPnnSlsaVKmWztphdAjgrPt5mR5cqZcemZzZ0SIh1CN+xQ+rdm47gQHIoX94mASxdKt19t3f8jz+sKWX9+tKvvzoXH3CDSFoCAFLenj2WiCxdWqpeXRozRjp61Ls9Z07p2WctofnXX9KLL9qyMQD4p+zZra7X1q1WH8+zNG73bunRR6WqVa0WJoDU9/PPNsOrXTs7JiU7Rtu3t2N2xAibaQkged15p/TLL1YbtmJF7/iiRVKtWtbQ8s8/nYoOuG4kLQEAKeP0aVvaXbeuFBEhvfSSLQXzCAmx5Svffy8dPCiNHm3JBupUAkiKQoWkCROkNWusE7HHmjVSw4bWiXj9esfCAzKUDRushEuDBjbDy6NxY7s9caIdswBSjstln32//y5NnWrNeTy++85mZT72mHUiB9IIkpYAgOQTE2PNclq3tjqVnTvbVd/EateWPvrI6lROm2Z1eKhTCeB6VaggzZljncUrVfKOz5ljs006dZL27XMsPCBd27/fjrEKFaQff/SOV6hg9fTmzvWd9QUg5QUESK1aSRs3SuPGSbfeauNut9XBLFVK6t7d/hYH/BxJSwDAjXG77Ypuz55Wp/L++y0ZefGid58SJaRXX5V27bIkZufOtsQTAJJLw4bS6tV2QuaZ0eV222zMEiWk/v1tBjiAG3f6tB1TxYvbMeZp9lGwoHUI/+MPm2UJwDnBwdbocvt2a4blaWQXEyONHWvNfF58UTp1ytEwgashaQkAuD779lldudtvt2Xd77zjW6fyllvsKu5vv0mbN9vy8IgIx8IFkAEEBFgtvS1bpDff9F4cuXjR3q+KFrX3KjqNA9cnOtqOoaJF7ZjyXKDMls3qVW7dastP6QgO+I+wMOn5521Z+MsvS1my2Pj589KwYdJtt0nDh9ttwM/waQIASLozZ6RPP7VOhIUL2yyLTZu82zNlklq2lGbOtDqVY8ZY4x3qVAJITaGh1rV4xw47UcuUycaPH7dZ4aVL24xwOo0DSeN22zFTurQdQ8eP23imTHas7dxpncFDQx0NE8BVZMsmvfKKHa/PPef9bDx5UurXTypWTHr/fZuJCfgJkpYAgKuLjbU6VW3bWp3Kxx+XFi70LgWTpLvukj780GrjfPWV9MAD3j+EAMApOXLYkrgtW6yzuMeuXVZ7t0YN66wK4MoWLbJjpXVr3wYeiWc1e5adAvB/uXPbjOmtW6WOHb0zow8dkp55xmpeTp7MhT34BZKWAIBLud3WgbdXL6lAAesIOmWKdOGCd59ixaTBg20m05Il0pNPSjff7FzMAHAlERHSZ59Znb0GDbzjq1dL9epZLd6NGx0LD/BLGzdKzZrZMbJqlXe8fn1v/VjKvgBpV+HCtoJqwwapRQvv+M6ddlGiUiXphx98JyoAqYykJQDAa/9+q2lTrpxUubL09tvSkSPe7Tly2BXYFSvs6uyAAVYHBwDSgkqVrMv4nDlS+fLe8Vmz7HbnztKBA87FB/iDAwfsWChf3hIWHuXK2cqLn36SqlRxLj4AyatMGWnGDKtDn/jC3vr1duHi7rulxYudiw8ZGklLAMjozp6VJk60zruFCllNm8QzjjJlkh56SPrmG1s2MnasVLMmdSoBpE0ul9Skic26nDjRuh1Ltgzuk0+sG/JLL1kNXyAjOXPGXvvFi9ux4FkaWqCAzcZas0a65x4+/4H0qnp1uygxf75UrZp3fNkyqU4dW3m1dq1j4SFjImkJABlRbKw0d67VeMub1+rZLFjgu/zjjjusGPehQ9LXX0vNm1OnEkD6ERgotW9vNfmGD7cGBZKVwXjtNeuOPGaMdUsG0rPoaOndd+01/9pr3lIw4eHWIdxT9y4w0NEwAaSShg1t1uXXX1vzLY8ff7QVC61bS9u2ORcfMhSSlgCQkaxbZ510Cxa02RJffCGdP+/dXrSoNGiQtH27XVV9+mmK6wNI38LCpD59rD5vr15ScLCNHztm3VXLlLEGY9T0QnrjdkvTp0u33y49+6y95iU7Bnr2tGOib187RgBkLC6XrbRav14aP95WY3lMm2bJzKeeoqQKUhxJSwBI7w4etO655ctLFStKI0dal2+Pm2+25OSyZXbVdOBAS14CQEZyyy3SqFE287JNG+/4jh3Sf/4j1apFTS+kH0uW2Gv6kUfsQqVH69bS5s3SW29JOXM6Fx8A/xAUJHXqZDOu335bypXLxuPipHHjrDHnCy9Ix487GibSL5KWAJAeRUZap9zGjW1WZZ8+1hnQIzjYlnt//bUt/37/fVsOTp0qABldkSLS5MnezuIev/1mNb0efFDatMm5+IAbsWmTvYZr17bXtEfdutLKldKUKTTYA3CpkBCpRw+7kDd4sJQ1q41fvCi9+aa9bwwZYucgQDIiaQkA6UVcnBXOfuwxq1PZvr3d9hTSl6yBznvvWaLym29s2UdIiHMxA4C/qlLFav3Oni2VLesd/+47u/3UU/ZeCqQFhw7Za7ZsWXsNe9x+uzRrlvTzz76NNwDgcrJmlQYMkHbulP77X+95xJkz0ssv22qt0aOlqChn40S6QdISANK6DRtsWUahQjaz8vPPpXPnvNuLFLE/LrZulVaskLp2tWWQAICrc7mkpk2tW+r48VL+/DYeH+9dFjdggHT2rKNhAld09qyVfSlWzF6znguZt95qHcLXrbOOwKy0AHAtcua0GZbbt0tdungbdf39t83ILFlSmjjRJlUAN4CkJQCkRYcOWW3KihWtVuWbb1rtSo/s2aUnn7SaVZ5lHMWLOxUtAKRtgYHeml5Dh1pXZckamb36qiWE3ntPiolxNk7AIybGSr8UKya98oq36V7WrNYhfNs26fHH6QgO4MYUKGAXRP76y+o/e+zZI3XsaOcp33xDMztcN5KWAJBWnDtn3b7vucf+QHj+eZsh4REUJD3wgHW5PXRI+vBD6a67mD0BAMklc2apf3+7GNSjh7fT+N9/S9262VLbGTM4OYNz3G5LEJQtKz3zjL02Jfsb4dln7bX74ov2WgaA5FKihHUV//13O1fx+OsvK0dVs6aVoQCuUZpNWo4dO1YREREKDQ1VjRo1tHLlyqvu//bbb6tkyZIKCwtTwYIF1atXL128eDGVogWA6xQXZzXVOnSwOpWPPirNnetbp7J6denddy1ROXOm1LKlFBrqXMwAkN7lzGldVDdtklq18o5v2yY9/LB0553SsmWOhYcMatkyu1j50EM2K9jjkUfstTp6tLfzLwCkhMqVpR9/lBYtkmrV8o6vXCk1aCA1aiStWuVYeEh70mTSctq0aerdu7cGDhyoP/74QxUqVFCTJk30t+dK4j9MnjxZ/fr108CBA7Vp0yZ98sknmjZtml588cVUjhwAkujPP6W+faXChaWGDaVJk3y78UVESC+9JG3ebN0/u3Wzk2gAQOopWlSaOtXeh2vX9o6vWOFNHm3Z4lx8yBi2bLHX2l13ScuXe8fvvlv69Vfpyy9tmTgApJY6dexCynffSeXKecd/+skmXDz8sF1MAf5Fmkxajho1Sl26dFGnTp1UpkwZffDBB8qcObPGjx9/2f2XL1+uO++8U23btlVERIQaN26sNm3a/OvsTABIVUeO6LbvvlNQ9er24T5ihHTggHd7tmxS587SL7/Y8q5XX7Ui1wAAZ1WvbrNKvv9eKlPGO/7NN7ZkvGtX6fBhx8JDOnXkiC0Bv/12e615lC5tiYJffpFq1HAuPgAZm8slNWsmrVljjUKLFPFumzHDylg8/ri0d69zMcLvBTkdwLWKjo7W77//rv79+yeMBQQEqGHDhlqxYsVl73PHHXfo888/18qVK1W9enXt3LlTs2fP1mOPPXbF7xMVFaWoqKiE22fOnJEkxcTEKCadFln3PK/0+vwAv7VjhwJGjlTQpEkqFx3ts8kdFCR348aKf/RRue+/37vsOy6ObnxACuCzEDekSROpQQO5Jk1S4ODBch06ZO/VH3wg92efKb53b8X36iXddJPTkfotjsEkiIxUwNtvK2DkSLnOnUsYdufNq7iBA+Xu0MFqWMbGOhgk0iqOQaSI//xHat5cAePHK2DoULkOH7ZyV59+KvcXXyj+qacU37evlDu305H6hfR+HF7L83K53WmrUvjBgweVP39+LV++XLUS1Ujo06ePfvnlF/3222+Xvd/o0aP1/PPPy+12KzY2Vk8//bTef//9K36fQYMGafDgwZeMT548WZkpXA0gGYTv3q3iX3+t/MuWyZW4RqWkk8WKaV/dujpw992KzpbNoQgBANcr8OJFFf3uOxX75hsFX7iQMH4xe3ZtbtNGexs2lJvOzbgGrrg4FfrpJ5WaOlWhJ08mjMeGhmpbixba8eCDiqOmNQA/F3jxom6bNUvFZsxQpkQXXmJDQ7X9wQe148EHFUvOJV07f/682rZtq9OnTys8PPyq+2aIpOWiRYvUunVrDRkyRDVq1ND27dvVo0cPdenSRS+//PJlv8/lZloWLFhQx44d+9cfaloVExOj+fPnq1GjRgr2dMMEkOxcy5crYMQIBcye7TPuzppV2xs0UIEBAxRUtqxD0QEZG5+FSHZ//62AoUMVMG6cXIlmvrlLlFDc0KFyN2tmS+ggiWPwstxuub7/XoH/+59ciWqkuoOCFN+5s+L/9z8pTx4HA0R6wjGIVHPypALefFMB774rV6KLe+5bblF8nz6Kf/ppKSzMwQCdk96PwzNnzihnzpxJSlqmueXhOXPmVGBgoI4cOeIzfuTIEeXNm/ey93n55Zf12GOPqXPnzpKkcuXK6dy5c3ryySf1v//9TwEBl5b2DAkJUUhIyCXjwcHB6fJFk1hGeI5AqnO7rev30KHSkiW+23LmlHr2VOyTT+qv5csVUbYsxyDgMD4LkWzy55fGjpV69pRefFGaPl2S5Nq6VUEtW1rzlDfekGrWdDZOP8Mx+P9+/VV64QVp6VLf8YcflmvoUAWWKCHm6yIlcAwixeXObTX8e/WShgyRxo2TYmPlOn5cgX37KnD0aGngQKlTJyt5kQGl1+PwWp5TmmvEkylTJlWpUkULFixIGIuPj9eCBQt8Zl4mdv78+UsSk4H/vxwnjU00BZDWxMVZ184qVaSmTX0TlgULSu+8I+3ZI/3vf1L27I6FCQBIYcWLS199Zd2d77rLO750qVSrltSypbRtm3Pxwb9s2yY98oi9NhInLO+80zryTp8ulSjhXHwAkFzy5bOLe5s3S+3aeVcfHDggPfmkNRv78kurgYkM57qSlmfOnEloTHMjIiMj9d133+m77767pvv17t1bH330kSZOnKhNmzapa9euOnfunDp16iRJat++vU+jnmbNmun999/X1KlTtWvXLs2fP18vv/yymjVrlpC8BIBkFR0tffKJdfBs1cq65nmULCl9+qm0fbv03HMSNVsAIOOoVUtavFj69lv7PPD4+mvrPN69u/T3346FB4f9/bf07LP2Wvj/WbmSLEH5zTd28fOOO5yLDwBSStGi1mV83TrrOu6xdaudT1WtKs2ZYyvYkGFc1xzb7NmzKyAgQOvXr1eZMmUu2X7w4EG99NJLcrlc+uSTT674OHv27FHz5s0VEBCg2GvobteqVSsdPXpUAwYM0OHDh1WxYkXNmTNHef6/lsvevXt9ZlZ6YnnppZd04MAB5cqVS82aNdNrr712Dc8aAJLg3Dlb2jBypF0dTKxKFal/f6l5c4kLJgCQcblc0oMPSvfdZxe4Bg6Ujhyxbs9jx0oTJ0p9+9qSuSxZnI4WqeHcOentt6Xhw6WzZ73juXNLgwdLTzwhpcMlggBwiXLlpO++s5UJ/fvbhT7JJoE0bSrVqSMNG2YXAZHuXffy8Kstqz558qQmTJigCRMm3PBjXUn37t21Z88eRUVF6bffflONGjUSti1atMjnewcFBWngwIHavn27Lly4oL1792rs2LHKzlJMAMnlxAnplVekwoWl3r19E5b16knz5kmrVkkPP0zCEgBggoKkp56ymfeDB3sTlJGR0ssv25Lyjz+2ZCbSp9hY+x0XLy699JI3YZkliyWzt2+Xnn6ahCWAjOeOO6RFi6Qff5QqVfKO//KLbXvgAWnDBsfCQ+pIczUtAcCvHDwoPf+8JSsHDpSOH/due+ABacUK6eefpUaN6A4LALi8m26SBgywBFXXrt6LW4cOSV26SBUqSN9/z5K49MTtln74wX63XbrY71qy3/1TT1lNy0GDpKxZHQ0TABzlckn33COtXi1NnWoXeDy+/97eQx99VNq507kYkaJIWgLA9dixw04qihSxpeCRkTYeGGgfnBs2SDNn0g0WAJB0efNK770nbdwotWjhHf/rL7sQVq+etHKlc/EheaxaZb/LZs3sd+vRvLn055/SBx9YYwoAgAkIsLqWGzdaKa78+W3c7Za++MJqRHfr5r0AhHSDpCUAXIv166U2bawg/rhx1nBHkkJCbHbMtm3SZ59JZcs6GycAIO0qWVKaMcPbWdzjl1+kGjXsxG3HDufiw/XZsUNq3VqqXt1+lx41a1qDnW++kUqVci4+APB3wcE2O33bNunNN6UcOWw8NtYu+hUtKr34onTypLNxItmQtASApFi2TLr/fluCMHWqFB9v41mzWrOE3bvtg7JIEUfDBACkI3feaZ8/X3/tuyTuyy+l0qWlHj2kY8eciw9Jc+yY1LOn/c6mTfOOFytmHcKXL5fuusux8AAgzQkLk/77X1sW/vLL3prQFy5Yk57bbpNef106f97ZOHHDSFoCwJW43Vb4uXZtO5mYNcu7LWdOacgQae9e+0DMm9e5OAEA6ZfLJT30kC2JGzvWuklLUkyMNHq0zSoZNowTM390/rz9booWld55x35nkpQrl/Tuu7Y0/OGHqXkNANcrWzZrhrpzp13Iy5TJxk+dss7jRYtK77/vXR2HNIekJQD8U1yczWKpXFm6915bsuVRsKCdJO7ZI/3vf1L27I6FCQDIQIKDpWeesWY9AwZImTPb+JkzthSuRAnp00/tMwzOiouz30WJEva7OXPGxjNntg7h27db7TU6ggNA8sidW3r7bWnrVqlTJ6uBKUmHD9tnZ+nSVvvSs1oOaQZJSwDwiIqSPv7YPtRatZLWrvVuK1XKTkC2b5eefdZ7sggAQGrKmlUaPNg+j5580ntiduCA9PjjUsWK0uzZdBp3gmeFRsWK9rs4cMDGAwK8NdhefVUKD3c0TABItwoXlsaPt6aoDz3kHd+505qlVqwo/fADn5FpyA0lLV0sZQCQHkRGSm+9ZcsHPCcVHlWrWi2xjRuljh29Sw4AAHBSvnzShx9at+kHHvCO//mndN99UoMG0urVzsWX0fz+u9Swoa3Q+PNP73izZnbyPG6cdOutzsUHABlJmTJ2Dvfbb/Z56LFhg70v33WXtHixc/EhyW4oaVm2bFkFBgZe8lW+fPmEhObltifeDwAcc+KEzVYpXFjq3ds7I0KS6tWT5s2TVq60q3QBTEwHAPih0qWlmTOtG3X16t7xhQulatWktm2lXbuciy+927VLatfOLnL+/LN3vFo1adEi6bvv7OQZAJD6qleXfvrJvqpV844vXy7VqSM1bSqtWeNcfPhXN3QW7na7b/gLAFLdwYPS889LhQpJgwZZ8tLjwQelFSvsxKNRI4rjAwDShtq1pV9/lb76ylYOeEyZIpUsaRfnjh93Lr705vhx+5mWKiVNnuwdv+026xD+2292QgwAcF6DBva+PGOGXezzmDPH+hi0bu272g5+I+h67lS7dm2WhgNIe7Zvl0aMkCZO9O0gFxgotWkj9e0rlS3rXHwAANwIl0tq2dKWi48bZ6sJjh2zrtVvvWV1vvr3l557TgoLczratOnCBWnMGGnoUOn0ae/4LbdIAwdKTz1FKRkA8Ecul9SihX1GfvaZvWfv3Wvbpk2Tpk+3esQDBkgFCjgbKxJcV9Jy0aJFyRwGAKSgdeuk11+3juCJO8aFhEhPPGGzLosUcS4+AACSU6ZMUvfuUvv2drFu1ChLtp0+LfXrJ737rjRkiDUlCAx0Otq0IS7OOs++9JK0b593PDTUZlz26SNly+ZcfACApAkMtF4FbdpYbeghQ6SjR+19/qOPpEmTrPFqv352QQqOokgbgPRr6VJrRlCxojR1qjdhmTWrzarcvVsaO5aEJQAgfQoPt5OxbdvsIp2nPvP+/XbCVrmyNHcuXVT/zbx5UpUqUocO3oSly2UzcrZtk157jYQlAKQ1ISG28mDHDumVV+wzU5KioqQ337RyH6++ak1b4RiSlgDSF7db+vFHq+11993S7Nnebbly2YnF3r028zJvXufiBAAgteTPL338sbR+vXT//d7x9eule+6RGjemEcHlrFljP5smTWzVhse999rtTz5hCSEApHVZs0ovvyzt3Gkr8EJDbfzMGVsqfttt0jvvWDITqc7xpOX58+c1cuRIp8MAkNbFxVktksqV7WRiyRLvtkKFpNGjbWbliy9K2bM7FSUAAM65/Xbp+++ts3jVqt7xn36yz8/HHpP27HEuPn+xZ4/9LKpUkebP945XqSItWCDNmiWVK+dcfACA5HfLLdIbb9gM+i5dvOVTjh6VevaUSpSQJkyw806kGseSlmfPntVrr72miIgI9enTx6kwAKR1UVE2e6R0aev6tnatd1upUvbBsn271SXJnNmpKAEA8B9161oX1alTfUukfP65nZS98IJ08qRj4Tnm5El77iVK2M/Cs2y+SBHrEL5ypVS/vrMxAgBSVoEC1szur7+kVq2843v3Sp062UWrGTMorZJKUj1peeLECb388ssqXLiwBgwYoGPHjqV2CADSg8hIayxw2212JWzbNu+2qlWlr7+WNm60+lPBwc7FCQCAPwoIsJOxTZukt9+WcuSw8ehoby2vN9+ULl50NMxUcfGiNHKkVLSoPefoaBvPkcO6rm/aZA0bAhxfpAYASC0lStjFvT/+sFIqHps2SQ8/LNWoYbPvkaJu6JN3z549eu6551SmTBllzZpVOXLkUOXKlTVs2DCdPn3aZ9/IyEgNHDhQERERGjp0qE6dOiW3262cOXNqyJAhN/QkAGQgJ05IgwdLhQtL//2vdPCgd1v9+raMa+VK6aGHOLkAAODfhIRIPXpYI4J+/by1vE6dslmHJUvarENPM7v0JD7eOoKXKmV1zDyzS0NCrGHfjh22JDAkxNEwAQAOqlTJeib88ot0xx3e8VWrpIYN7WvVKufiS+eu+4x+/vz5KleunMaOHastW7bo3LlzOnXqlNatW6eXXnpJNWvW1OHDhyVJy5YtU9myZTVkyBBFRkbK7XYrf/78euutt7Rnzx71798/2Z4QgHTqwAFLUhYqJA0aZMlLjwcflH791a50NWxoHT0BAEDSZc8uDRsmbd1qncU9n6V791p9x6pVrfZlevHTT/acHn3UW8fT5bIVGlu3WsM+amADADxq15aWLrXa0InrGi9YIFWvbpNm/vrLufjSqetKWh49elRt2rRJSEC63W5lyZJF2bJlS7i9detWdevWTYsXL1bDhg21b98+ud1uFSlSRB9++KF27typHj16KCwsLLmfE4D0ZPt26cknbZnaqFHSuXM2HhhoJ1F//il9+61NzwcAADemYEHp00+tRnTTpt7xNWukRo1siVziTtppzbp19hwaNfLtmN6kid2eMMEukAIA8E8ul3T//fYZ+fnndo7q8c03lszs1ImmdsnoupKWH330kU6cOCGXy6WWLVtq+/btOnv2rE6ePKmDBw+qe/fukqSZM2fq0UcfVVRUlG666SaNGTNGW7ZsUZcuXRRMjTkAV7NunTXWKVlS+ugjb32pkBDpmWeshuWkSdYJFQAAJK/y5aXZs72dxT3mzrWlch07Svv2ORbeNdu3z2KuVMmeg0elSlZaZs4cqUIFx8IDAKQhAQFSu3ZW3/K996S8eW08Pt4ufpUoYaVX/v7b0TDTg+tKWs6bN0+SVLNmTX355Ze6LVF2OW/evBo9erTat2+v+Ph47d+/X9mzZ9fy5cvVrVs3BQUFJU/kANKnpUul++6TKlaUpk3z1tAKD7daW3v2SGPH+nY7BQAAKaNBA6vV9cUXVk9aso6pEydKxYtb7cdTpxwN8apOnbK/H0qUsJg93V4LF7ZZMqtXW2kZAACuVaZMUteutjpw2DBvWZHoaGn0aJuJOWCA9I+eL0i660pabt68WS6XS88888wV93nuueckSS6XS88995xuZzYUgCtxu6248d1329fs2d5tuXJJr71mycphw6Q8eZyLEwCAjCggQGrbVtqyxbps33yzjUdFSSNGWNftt96y2/4iKsq6ohctKg0f7u2Cnj27dQjfvNlmydC0DwBwo7JksQtkO3dK/ftLmTPb+Llz0quvWvLyzTelCxecjTMNuq5P6ZP/31mvWLFiV9ynePHiCf+/++67r+fbAEjv4uJsNmXlytK999osS49ChaQxY6Tdu6UXX6QYPgAATgsJkXr3tq7aL7zg7ap94oSNlyolTZnibKfx+HiLoXRpqVcvb+O+TJmsQ/iOHdbYz9MlHQCA5HLzzdLQofZZ062b5FlpfOKEfW4WL26lz2JjnY0zDbmupGVMTIwkKWvWrFfc56abbkr4f17P+n4AkGz2w8cf28lN69ZWyNijVCmrA7J9u9S9u/cqFQAA8A8332wzLLduldq393Ya373bZmRWry4tXJj6cS1caN+7bVtp1y7v+KOPWqxvvCHlyJH6cQEAMpa8eaV337UVCo8+6v2cPHDAmsyWKeNbCg1XlCrrIVyeXxCAjC0y0jqA33ab1KWLJSY9qlWTZsyQNm6UOnSQaNYFAIB/K1TI6kT+8YfUuLF3/Pffpfr1rUb1hg0pH8eff9r3ql/fvrdHw4YW22efeetxAgCQWm67zT6D1q2THnjAO75tm03eqVrVGsF56i3jEhRxAZDyjh+XBg2yE4b//lc6eNC7rX5969r5229SixbUlgIAIK2pWNE6cs+d69uBe/Zsu/3449L+/cn/fQ8ckJ54wr5H4nrY5ctbLPPnW3dwAACcVK6cNHOmtHy5VKeOd3zNGqlpU6luXduGS9xQK+9OnTopS5YsN7yfy+XSggULbiQUAP7owAGbWfnhh1aEOLHmza1YcY0ajoQGAACSWePGNrvxiy+k//1P2rfPZo98+qnVmezVy7qNZ8t2Y9/n9Glbnv7WW75NDQoWlIYMsQY7gYE39j0AAEhutWpZKZN586xvwx9/2PjixdKdd0r3329NaEuXdjZOP3JDScvVq1dfdbtnWfjV9nO73SwfB9KbbdvsZGLSJCk62jseGGh1pvr2lW6/3bn4AABAyggIkB57THrkEWuo99prlmS8eFEaNkwaN04aMEB6+mlrjnMtoqPtQugrr0jHjnnHs2Wzk79nn5XCwpL3+QAAkJxcLqlJE6lRI+nrr6WXXrK6y5L0ww/SrFkKbN1amRPPyMzArnsdptvtTpYvAOnI2rVWm6NUKWu040lYhoZKzzxjNSwnTSJhCQBAehcaap1Sd+600jCeBOXx41KPHjaL5Msvk1bHy+22fcuUkZ57zpuwzJTJZm/u2CH16UPCEgCQdgQE2AW+jRuto3iBAjbuditgyhQ16NZNASNHOhujH7iupGV8fHyyfsXFxSX38wKQmpYske691+pGJe6CFh5uS8B375bGjpUiIpyMEgAApLYcOaQ337QOqu3aecd37pRatbIyMb/8cuX7L14s1axp++7Y4R1v21bavNnK0NxyS8rFDwBASgoKkjp3ttWKI0cmfKYFxMXJXaqUw8E5j44XAK6P221F7+++W6pdW/rxR++2XLmkoUOlvXttKViePM7FCQAAnBcRIX3+ubR6tTXh81i1yhoQNGtms008/vrLOq3WqSOtXOkdr1fPHuOLL6QiRVIregAAUlZoqNS7t7Rzp+L+9z8dqVRJ7nvvdToqx91QTUsAGVBcnPTVV9Lrr0vr1vluK1TIloI9/riUObMz8QEAAP9VpYr000/W3btPH2nDBhv/4Qdp9mwFduyoCvv2KWjBAu/KDUkqW9bqZd9zj9UDAwAgPQoPV/zAgfq1alXdy+cdMy0BJFFUlNXaKFVKatPGN2FZurQ0caLVrOzenYQlAAC4MpfLko9r1lhncU8dr/h4BYwfr4j58+XyJCzz55fGj7e62U2bkrAEAGQMfN5Jus6Zlq+88kpyx6EBAwYk+2MCSAaRkdbpc+RI6eBB323Vqkn9+0sPPmiFhAEAAJIqMFDq2NHqVY4ebaVlzpyRJLnDw+Xq398a73AxFACADOm6kpaDBg2SK5mzviQtAT9z/Lg0Zox9nTjhu61+fenFF+1frgABAIAbERYm9e0rPfGE4t55R9u2bVPRUaMUfOutTkcGAAAcdN01Ld1ud7IFkdwJUAA34MAB68T54YfSuXO+25o3t5mV1as7EhoAAEjHcuZU/IAB2jJ7tormyuV0NAAAwGHXlbRcuHBhcscBwGnbtlmB+4kTpZgY73hgoNSunc2AKFPGufgAAAAAAECGcV1Jyzp16iR3HACcsnatNGyYNH26b5fO0FDpiSek55+XIiKcig4AAAAAAGRA1708HEAat2SJJSt//NF3PDxc6tZN6tFDypPHmdgAAAAAAECGRtISyEjcbktSDh0qLVvmuy1XLqlXL+mZZ6Rs2ZyJDwAAAAAAQCQtgYwhLk766ivp9deldet8txUuLL3wgvT449a9EwAAAAAAwGEkLYH0LCpKmjRJGj5c2rHDd1vp0lK/flKbNlJwsDPxAQAAAAAAXAZJSyA9ioyUPvxQGjVKOnjQd1u1atKLL0oPPCAFBDgTHwAAAAAAwFWQtATSk+PHpTFjpNGjpZMnfbc1aCD17y/Vry+5XM7EBwAAAAAAkAQkLYH04MABaeRIadw46dw5323Nm1uysnp1R0IDAAAAAAC4ViQtgbRs2zZpxAhp4kQpJsY7HhgotWsn9e0rlSnjXHwAAAAAAADXgaQlkBatXSsNGyZNny7Fx3vHQ0OlJ56Qnn9eiohwKjoAAAAAAIAbQtISSEuWLJGGDpXmzPEdDw+XunWTevSQ8uRxJjYAAAAAAIBkQtIS8HdutzR7ts2sXLbMd1vu3FLPntIzz0jZsjkSHgAAAAAAQHIjaQn4q9hYW/49bJi0fr3vtsKFpRdekB5/XAoLcyY+AAAAAACAFELSEvA3UVHWWGfECGnHDt9tpUtbJ/DWraXgYGfiAwAAAAAASGEkLQF/cfasNG6cNHKkdOiQ77bq1S1Z+cADUkCAM/EBAAAAAACkEpKWgNOOH5dGj5bGjJFOnvTd1qCB9OKLUr16ksvlTHwAAAAAAACpjKQl4JT9+6VRo6QPP5TOn/fd1qKFzaysVs2Z2AAAAAAAABxE0hJIbdu2ScOHS5MmSTEx3vHAQKldO6lvX6lMGefiAwAAAAAAcBhJSyC1rFkjvf669NVXktvtHQ8NlTp3lp5/3rqCAwAAAAAAZHAkLYGUtmSJNHSoNGeO73h4uNStm9Szp5Q7tyOhAQAAAAAA+COSlkBKcLul2bOlYcOkZct8t+XOLfXqJXXtKmXL5kx8AAAAAAAAfoykJZCcYmNt+ffrr0vr1/tuK1xY6tNH6tRJCgtzJj4AAAAAAIA0gKQlkByioqSJE63Bzs6dvtvKlJH69ZNat5aCg52JDwAAAAAAIA0haQnciLNnpQ8/lEaNkg4d8t1Wvbr04otSs2ZSQIAz8QEAAAAAAKRBJC2B63H8uDR6tDRmjHTypO+2hg2l/v2levUkl8uZ+AAAAAAAANIwkpbAtdi/Xxo5Uho3Tjp/3ndbixaWrKxWzZnYAAAAAAAA0gmSlkBSbN0qjRghTZokxcR4x4OCpHbtpL59pdKlnYsPAAAAAAAgHSFpCVzNmjXSsGHS9OmS2+0dDw2VOneWnn/euoIDAAAAAAAg2ZC0BP7J7ZaWLLFk5Zw5vtuyZZO6dZN69JBy53YmPgAAAAAAgHSOpCXg4XZLs2ZZsnL5ct9tuXNLvXpJXbta4hIAAAAAAAAphqQlEBsrffWVJSs3bPDdFhEhvfCC1KmTFBbmSHgAAAAAAAAZDUlLZFwXL0oTJ1qDnZ07fbeVKWOdwFu1koKDnYkPAAAAAAAggyJpiYzn7Fnpww+lUaOkQ4d8t9WoYcnKZs2kgABn4gMAAAAAAMjg0mxWZuzYsYqIiFBoaKhq1KihlStXXnX/U6dOqVu3bsqXL59CQkJUokQJzZ49O5WihV84dkwaMMC6fb/wgm/CsmFD6eefpRUrpAcfJGEJAAAAAADgoDQ503LatGnq3bu3PvjgA9WoUUNvv/22mjRpoi1btij3ZTo6R0dHq1GjRsqdO7emT5+u/Pnza8+ePcqePXvqB4/Ut3+/NHKkNG6cdP68d9zlklq0kPr1k6pVcy4+AAAAAAAA+EiTSctRo0apS5cu6tSpkyTpgw8+0KxZszR+/Hj169fvkv3Hjx+vEydOaPny5Qr+//qEERERqRkynLB1qzR8uPTZZ1JMjHc8KEhq107q21cqXdq5+AAAAAAAAHBZaS5pGR0drd9//139+/dPGAsICFDDhg21YsWKy97nu+++U61atdStWzfNnDlTuXLlUtu2bdW3b18FBgZe9j5RUVGKiopKuH3mzBlJUkxMjGISJ8DSEc/zSvPPb80aBY4YIdeMGXK53QnD7rAwxT/+uOJ79rQl4pJvMhNwWLo5BoE0jOMQcBbHIOAsjkHAeen9OLyW55XmkpbHjh1TXFyc8uTJ4zOeJ08ebd68+bL32blzp37++We1a9dOs2fP1vbt2/XMM88oJiZGAwcOvOx9hg0bpsGDB18yPm/ePGXOnPnGn4gfmz9/vtMhXDu3W7f89ZeKT5+uPGvW+GyKyZxZu+69Vzvuv1/R2bNLGzfaF+Cn0uQxCKQzHIeAszgGAWdxDALOS6/H4fnEZfv+RZpLWl6P+Ph45c6dW+PGjVNgYKCqVKmiAwcO6I033rhi0rJ///7q3bt3wu0zZ86oYMGCaty4scLDw1Mr9FQVExOj+fPnq1GjRgnL6P2e2y3X7NkKGDFCAf+YaevOk0fxzz0nPfmkimTLpiIOhQgkVZo8BoF0huMQcBbHIOAsjkHAeen9OPSsZE6KNJe0zJkzpwIDA3XkyBGf8SNHjihv3ryXvU++fPkUHBzssxS8dOnSOnz4sKKjo5UpU6ZL7hMSEqKQkJBLxoODg9PliyaxNPEcY2Olr76Shg2TNmzw3RYRIfXpI1fHjgoMC9PlCwAA/itNHINAOsdxCDiLYxBwFscg4Lz0ehxey3MKSME4UkSmTJlUpUoVLViwIGEsPj5eCxYsUK1atS57nzvvvFPbt29XfHx8wtjWrVuVL1++yyYs4ccuXpQ+/FAqWVJq29Y3YXn77dZ0Z9s2qWtXKSzMuTgBAAAAAABw3dJc0lKSevfurY8++kgTJ07Upk2b1LVrV507dy6hm3j79u19GvV07dpVJ06cUI8ePbR161bNmjVLQ4cOVbdu3Zx6CrhWZ89Kb7whFSkiPf20tHOnd1uNGtLMmdL69dKjj1p3cAAAAAAAAKRZaTK706pVKx09elQDBgzQ4cOHVbFiRc2ZMyehOc/evXsVEODNxxYsWFBz585Vr169VL58eeXPn189evRQ3759nXoKSKpjx6TRo6UxY6RTp3y3NWok9e8v1a0ruVxORAcAAAAAAIAUkCaTlpLUvXt3de/e/bLbFi1adMlYrVq19Ouvv6ZwVEg2+/ZJI0dKH30kJe4s5XJJLVpYsrJqVefiAwAAAAAAQIpJs0lLpFNbt0rDh1ttypgY73hQkC397ttXKlXKufgAAAAAAACQ4khawj/88Yd1Av/6a8nt9o6HhUmdO0vPPy8VKuRcfAAAAAAAAEg1JC3hHLdbWrzYkpVz5/puy5ZN6t5d6tFDypXLmfgAAAAAAADgCJKWSH1ut/TDD5asXLHCd1uePFKvXlLXrlJ4uDPxAQAAAAAAwFEkLZF6YmOlL7+UXn9d2rDBd1tEhNSnj9Sxoy0JBwAAAAAAQIZF0hIp7+JFacIE6Y03pJ07fbfdfrt1Am/VyprtAAAAAAAAIMMjS4SUc/as9MEH0qhR0uHDvttq1rRk5f33SwEBzsQHAAAAAAAAv0TSEsnv2DHpnXekd9+VTp3y3daokfTii1KdOpLL5Uh4AAAAAAAA8G8kLZF89u2TRo6UPvpIOn/eO+5ySQ89JPXrJ1Wt6lx8AAAAAAAASBNIWuLGbdkiDR8uff65FBPjHQ8Kkh59VOrbVypVyrn4AAAAAAAAkKaQtMT1++MPadgw6euvJbfbOx4WJnXpIv33v1KhQs7FBwAAAAAAgDSJpCWujdstLV4sDR0qzZvnuy1bNql7d6lHDylXLmfiAwAAAAAAQJpH0hJJEx8vzZplMytXrPDdlieP1Lu39PTTUni4M/EBAAAAAAAg3SBpiauLjZW+/NKSlX/+6butSBHphRekTp2k0FBn4gMAAAAAAEC6Q9ISl3fxojRhgvTGG9LOnb7bypa1TuCtWlmzHQAAAAAAACAZkXGCj6ALFxQwcqT0zjvS4cO+G2vWlPr3l+6/XwoIcCZAAAAAAAAApHskLWGOHlXAW2+p0ejRCjx3zndb48aWrKxTR3K5nIkPAAAAAAAAGQZJS0inT0tFiyrw7FkFesZcLumhhyxZWaWKk9EBAAAAAAAgg2GNL6Rs2aRmzSRJ8YGBiu/QQfrrL2n6dBKWAAAAAAAASHXMtITp109xOXJoQYUKqtehgwKCg52OCAAAAAAAABkUMy1hypVT/KhRupArl9ORAAAAAAAAIIMjaQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CtpOmk5duxYRUREKDQ0VDVq1NDKlSuTdL+pU6fK5XKpefPmKRsgAAAAAAAAgGuWZpOW06ZNU+/evTVw4ED98ccfqlChgpo0aaK///77qvfbvXu3nn/+ed19992pFCkAAAAAAACAaxHkdADXa9T/tXfvUVrV9f7A3wMDMyIgKndBlDpKKoiBF6IyFO/LEydvKcrlpHVKjimr8uBJkaiwzLynaaGdlMwbWucghSiohSl4CfVYp7xlcRFRuZgwMs/vD388MTGDYMizYV6vtWat59n7+937s+d5vmvNes937+93v5szzjgjo0ePTpJce+21+Z//+Z9Mnjw5//Ef/9FonzVr1mT48OGZMGFCHnzwwbz++utNHn/VqlVZtWpV+f2yZcuSJHV1damrq9t8F1Iga69rW70+KDpjECrPOITKMgahsoxBqLxtfRxuynVVlUql0vtYy/ti9erVadOmTW6//fYGt3iPHDkyr7/+eu6+++5G+40fPz6//e1vM3Xq1IwaNSqvv/567rrrrkbbXnjhhZkwYcJ626dMmZI2bdpsjssAAAAAgGbjzTffzCmnnJI33ngj7du332DbrXKm5ZIlS7JmzZp06dKlwfYuXbrk2WefbbTPQw89lB/+8Id54oknNuoc48aNy9ixY8vvly1blp49e+bwww9/11/q1qquri4zZszIYYcdllatWlW6HGh2jEGoPOMQKssYhMoyBqHytvVxuPZO5o2xVYaWm2r58uU57bTTcv3116djx44b1aempiY1NTXrbW/VqtU2+aVZV3O4RigyYxAqzziEyjIGobKMQai8bXUcbso1bZWhZceOHdOyZcssWrSowfZFixala9eu67X/4x//mBdeeCHHHntseVt9fX2SpLq6Or/73e/ygQ984P0tGgAAAADYKFtlaNm6desMGDAgM2fOLD/Tsr6+PjNnzsyYMWPWa9+nT5/Mnz+/wbavfvWrWb58eS6//PL07NlzS5RdeAcddFBefPHF1NbWVroUaLbeeustYxAqzDiEyjIGobKMQai8t956K7169cq8efMqXUpFbZWhZZKMHTs2I0eOzMCBA3PAAQfksssuy8qVK8uriY8YMSK77LJLJk2alNra2uyzzz4N+nfo0CFJ1tvenC1atCivvvpqpcsAAAAAaNb882ArDi1POumkvPLKK7nggguycOHC9O/fP9OnTy8vzvPSSy+lRYsWFa5y69KlSxf/VYMKMwah8oxDqCxjECrLGITKe+utt9ZbfLo5qiqVSqVKF7E1WLZsWXbYYYeNWpJ9a1VXV5dp06bl6KOP3iYf9gpFZwxC5RmHUFnGIFSWMQiVt62Pw03J10xFBAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgELZqkPLq6++Orvttltqa2tz4IEH5pFHHmmy7fXXX5+Pfexj2XHHHbPjjjtm6NChG2wPAAAAAFTGVhta/vSnP83YsWMzfvz4PPbYY9l3331zxBFHZPHixY22nzVrVk4++eTcf//9mTNnTnr27JnDDz88f/7zn7dw5QAAAADAhmy1oeV3v/vdnHHGGRk9enT22muvXHvttWnTpk0mT57caPubb745X/jCF9K/f//06dMnP/jBD1JfX5+ZM2du4coBAAAAgA2prnQB78Xq1aszb968jBs3rrytRYsWGTp0aObMmbNRx3jzzTdTV1eXnXbaqdH9q1atyqpVq8rvly1bliSpq6tLXV3dP1B9ca29rm31+qDojEGoPOMQKssYhMoyBqHytvVxuCnXtVWGlkuWLMmaNWvSpUuXBtu7dOmSZ599dqOOce6556Z79+4ZOnRoo/snTZqUCRMmrLf9l7/8Zdq0abPpRW9FZsyYUekSoFkzBqHyjEOoLGMQKssYhMrbVsfhm2++udFtt8rQ8h910UUX5ZZbbsmsWbNSW1vbaJtx48Zl7Nix5ffLli0rPwezffv2W6rULaquri4zZszIYYcdllatWlW6HGh2jEGoPOMQKssYhMoyBqHytvVxuPZO5o2xVYaWHTt2TMuWLbNo0aIG2xctWpSuXbtusO93vvOdXHTRRbn33nvTr1+/JtvV1NSkpqZmve2tWrXaJr8062oO1whFZgxC5RmHUFnGIFSWMQiVt62Ow025pq1yIZ7WrVtnwIABDRbRWbuozqBBg5rs9+1vfzsTJ07M9OnTM3DgwC1RKgAAAACwibbKmZZJMnbs2IwcOTIDBw7MAQcckMsuuywrV67M6NGjkyQjRozILrvskkmTJiVJvvWtb+WCCy7IlClTsttuu2XhwoVJkrZt26Zt27YVuw4AAAAAoKGtNrQ86aST8sorr+SCCy7IwoUL079//0yfPr28OM9LL72UFi3+NpH0mmuuyerVq3P88cc3OM748eNz4YUXbsnSAQAAAIAN2GpDyyQZM2ZMxowZ0+i+WbNmNXj/wgsvvP8FAQAAAAD/sK3ymZYAAAAAwLZLaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQtmqQ8urr746u+22W2pra3PggQfmkUce2WD72267LX369EltbW369u2badOmbaFKAQAAAICNtdWGlj/96U8zduzYjB8/Po899lj23XffHHHEEVm8eHGj7X/961/n5JNPzmc+85k8/vjjGTZsWIYNG5annnpqC1cOAAAAAGzIVhtafve7380ZZ5yR0aNHZ6+99sq1116bNm3aZPLkyY22v/zyy3PkkUfmy1/+cj70oQ9l4sSJ+fCHP5yrrrpqC1cOAAAAAGxIdaULeC9Wr16defPmZdy4ceVtLVq0yNChQzNnzpxG+8yZMydjx45tsO2II47IXXfd1Wj7VatWZdWqVeX3b7zxRpJk6dKlqaur+wevoJjq6ury5ptv5tVXX02rVq0qXQ40O8YgVJ5xCJVlDEJlGYNQedv6OFy+fHmSpFQqvWvbrTK0XLJkSdasWZMuXbo02N6lS5c8++yzjfZZuHBho+0XLlzYaPtJkyZlwoQJ623ffffd32PVAAAAAMDy5cuzww47bLDNVhlabgnjxo1rMDOzvr4+S5cuzc4775yqqqoKVvb+WbZsWXr27Jk//elPad++faXLgWbHGITKMw6hsoxBqCxjECpvWx+HpVIpy5cvT/fu3d+17VYZWnbs2DEtW7bMokWLGmxftGhRunbt2mifrl27blL7mpqa1NTUNNjWoUOH9170VqR9+/bb5MCArYUxCJVnHEJlGYNQWcYgVN62PA7fbYblWlvlQjytW7fOgAEDMnPmzPK2+vr6zJw5M4MGDWq0z6BBgxq0T5IZM2Y02R4AAAAAqIytcqZlkowdOzYjR47MwIEDc8ABB+Syyy7LypUrM3r06CTJiBEjsssuu2TSpElJki9+8Ys5+OCDc8kll+SYY47JLbfckrlz5+a6666r5GUAAAAAAH9nqw0tTzrppLzyyiu54IILsnDhwvTv3z/Tp08vL7bz0ksvpUWLv00k/chHPpIpU6bkq1/9as4777z80z/9U+66667ss88+lbqEwqmpqcn48ePXuy0e2DKMQag84xAqyxiEyjIGofKMw7+pKm3MGuMAAAAAAFvIVvlMSwAAAABg2yW0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJXnggQdy7LHHpnv37qmqqspdd91V6ZKgWZk0aVL233//tGvXLp07d86wYcPyu9/9rtJlQbNxzTXXpF+/fmnfvn3at2+fQYMG5Z577ql0WdBsXXTRRamqqsrZZ59d6VKg2bjwwgtTVVXV4KdPnz6VLgualT//+c859dRTs/POO2e77bZL3759M3fu3EqXVVFCS7Jy5crsu+++ufrqqytdCjRLs2fPzplnnpmHH344M2bMSF1dXQ4//PCsXLmy0qVBs9CjR49cdNFFmTdvXubOnZtDDjkkn/zkJ/P0009XujRodh599NF8//vfT79+/SpdCjQ7e++9dxYsWFD+eeihhypdEjQbr732WgYPHpxWrVrlnnvuyTPPPJNLLrkkO+64Y6VLq6jqShdA5R111FE56qijKl0GNFvTp09v8P7GG29M586dM2/evHz84x+vUFXQfBx77LEN3n/jG9/INddck4cffjh77713haqC5mfFihUZPnx4rr/++nz961+vdDnQ7FRXV6dr166VLgOapW9961vp2bNnbrjhhvK23XffvYIVFYOZlgAF88YbbyRJdtpppwpXAs3PmjVrcsstt2TlypUZNGhQpcuBZuXMM8/MMccck6FDh1a6FGiW/u///i/du3dP7969M3z48Lz00kuVLgmajZ/97GcZOHBgTjjhhHTu3Dn77bdfrr/++kqXVXFmWgIUSH19fc4+++wMHjw4++yzT6XLgWZj/vz5GTRoUN566620bds2U6dOzV577VXpsqDZuOWWW/LYY4/l0UcfrXQp0CwdeOCBufHGG7PnnntmwYIFmTBhQj72sY/lqaeeSrt27SpdHmzznnvuuVxzzTUZO3ZszjvvvDz66KM566yz0rp164wcObLS5VWM0BKgQM4888w89dRTniEEW9iee+6ZJ554Im+88UZuv/32jBw5MrNnzxZcwhbwpz/9KV/84hczY8aM1NbWVrocaJbWfVxYv379cuCBB6ZXr1659dZb85nPfKaClUHzUF9fn4EDB+ab3/xmkmS//fbLU089lWuvvbZZh5ZuDwcoiDFjxuS///u/c//996dHjx6VLgealdatW+eDH/xgBgwYkEmTJmXffffN5ZdfXumyoFmYN29eFi9enA9/+MOprq5OdXV1Zs+enSuuuCLV1dVZs2ZNpUuEZqdDhw7ZY4898oc//KHSpUCz0K1bt/X+Wf6hD32o2T+mwUxLgAorlUr593//90ydOjWzZs3ywGUogPr6+qxatarSZUCzcOihh2b+/PkNto0ePTp9+vTJueeem5YtW1aoMmi+VqxYkT/+8Y857bTTKl0KNAuDBw/O7373uwbbfv/736dXr14VqqgYhJZkxYoVDf6D9vzzz+eJJ57ITjvtlF133bWClUHzcOaZZ2bKlCm5++67065duyxcuDBJssMOO2S77barcHWw7Rs3blyOOuqo7Lrrrlm+fHmmTJmSWbNm5Re/+EWlS4NmoV27dus9x3n77bfPzjvv7PnOsIV86UtfyrHHHptevXrlL3/5S8aPH5+WLVvm5JNPrnRp0Cycc845+chHPpJvfvObOfHEE/PII4/kuuuuy3XXXVfp0ipKaEnmzp2bIUOGlN+PHTs2STJy5MjceOONFaoKmo9rrrkmSfKJT3yiwfYbbrgho0aN2vIFQTOzePHijBgxIgsWLMgOO+yQfv365Re/+EUOO+ywSpcGAFvEyy+/nJNPPjmvvvpqOnXqlI9+9KN5+OGH06lTp0qXBs3C/vvvn6lTp2bcuHH52te+lt133z2XXXZZhg8fXunSKqqqVCqVKl0EAAAAAMBaFuIBAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAgK3QbrvtlqqqqowaNarSpQAAbHZCSwCATfS5z30uVVVVqaqqyn333bdJfX/5y1+W+37xi198nyoEAICtm9ASAGATjRgxovz6pptu2qS+P/7xjxs9TqXMmjWrHKLOmjWr0uUAAEASoSUAwCYbPHhwPvCBDyRJ7rjjjvz1r3/dqH4rV67M1KlTkyR77713BgwY8L7VCAAAWzOhJQDAe3DaaaclSZYtW5a77757o/rceeedWblyZYP+AADA+oSWAADvwWmnnZaqqqokG3+L+Npbw1u0aJFTTz31fasNAAC2dkJLAID3oHfv3hk8eHCS5Be/+EUWL168wfZ/+ctfMnPmzCTJIYcckl122WW9NnfddVdOOOGE7LrrrqmtrU2HDh0ycODATJgwIa+99tpG1TVt2rSceuqp6d27d7bffvvU1tZm9913z3HHHZcbb7wxb775ZpLkhRdeSFVVVYYMGVLuO2TIkPLzLdf+3HjjjeudY/Xq1fne976XIUOGpFOnTmndunW6du2ao48+OjfddFPq6+ubrG/UqFGpqqrKbrvtliRZsGBBzj333Oy9995p167dJj9bs7Fnct5666059NBD06lTp2y33XbZc88985WvfCVLly5t8jif+MQnUlVVlU984hMbPN+FF15YPl9j1u678MILkyT3339/hg0blu7du2e77bbLhz70oUycOLE843atadOm5eijjy6322uvvTJp0qSsXr16o38Xjz76aE4++eT07NkztbW16dmzZ0aPHp1nn312o/r/4Q9/yDnnnJO+fftmhx12yHbbbZfevXtn1KhRmTt3bpP9/v4zqK+vz+TJkzNkyJB06dIlLVq0sMI5ALDpSgAAvCfXXXddKUkpSenyyy/fYNuLL7643Pa//uu/GuxbunRp6ZBDDinvb+ync+fOpTlz5jR5/CVLlpQOPfTQDR4jSemGG24olUql0vPPP/+ubddtv9bzzz9f6tOnzwb7fPSjHy29+uqrjdY5cuTIUpJSr169SnPmzCl17Nhxvf7333//u/7u17r//vvL/WbOnFk69dRTm6zrgx/8YGnBggWNHufggw8uJSkdfPDBGzzf+PHjy8drzNp948ePL02aNKlUVVXVaC0f+chHSitWrCjV19eXzjrrrCZrPvLII0tvv/12o+fq1atXKUlp5MiRpR/+8Iel6urqRo9RU1NTuvXWWzd4XRdffHGpVatWTdZRVVVVOv/88xvtu+5ncM8995SGDh26Xv+RI0du8PwAAH/PTEsAgPfoxBNPTG1tbZKGq4I3Zu3+tm3b5lOf+lR5+6pVqzJ06NDcd999admyZU477bT85Cc/ycMPP5wHH3ww3/jGN7Lzzjtn8eLFOfroo/Piiy+ud+w333wzQ4YMKc/kHDBgQL7//e/nV7/6VebOnZupU6fmnHPOSffu3ct9dtlll8yfPz+TJ08ub5s8eXLmz5/f4GfYsGHl/StWrMihhx5anrk3bNiw/OxnP8vcuXNz22235eCDD06SPPTQQzn22GOzZs2aJn8fK1asyHHHHZe33nor//mf/5lZs2blkUceyQ9/+MN069Ztg7/Lppx//vm56aabMmzYsNx5552ZN29epk2blmOOOSbJ32YSbgn33HNPxo0bl4MOOihTpkzJ3LlzM3369Bx11FFJkl//+teZNGlSLr300lxxxRU56qijcscdd2TevHm5++67c9BBByVJpk+fnuuvv36D53riiSfyb//2b+ncuXOuvPLK/OY3v8ns2bNz7rnnpqamJqtWrcrw4cObnC158cUX58tf/nLq6urSr1+/XHPNNbn33nszd+7c3HzzzRk0aFBKpVImTpyYK664YoO1nHvuubn33nvzz//8zw0+g7XXDQCw0SqdmgIAbM1OPPHE8myyZ599ttE2Tz75ZLnNiBEjGuw777zzSklKHTp0KM2dO7fR/i+88EKpW7dupSSlU045Zb3955xzTvn4Z555Zqm+vr7R46xataq0cOHCBtvWnSX3bjMcv/SlL5XbfvWrX11vf319fWn48OHlNt/73vfWa7N2pmWSUtu2bUtPPPHEBs/5btatP0np61//eqN1HX744aUkperq6tLixYvXa7O5Z1omKR133HHrzZJ8++23SwcddFApSaldu3al2tra0tlnn73ecVauXFmeSdmvX79Gz7V2f/7/zNXGZpHed9995RmY+++//3r7n3766fIMy/Hjxzf63VmzZk15Bmvbtm1LS5cubbD/7z+Dxr4bAACbykxLAIB/wIgRI8qvm5ptue72dduvWLEiV199dZJk4sSJGTBgQKP9e/XqlfPPPz9JcttttzV4HuLrr7+e73//+0nemWF5+eWXN/m8xdatW6dLly4bc1nrWbVqVX7wgx8kSfbee+/yMxvXVVVVle9973vZeeedkyRXXXXVBo/5la98Jfvuu+97qqcxAwYMyHnnnddoXWPHjk2SvP3225kzZ85mO2dT2rRpk+uuuy4tW7ZssL1ly5b57Gc/myRZvnx5OnXqlG9/+9uN9h85cmSS5Le//W3eeOONDZ7vkksuSdeuXdfbPmTIkJxxxhlJ3nnm5d/PtrzkkktSV1eXgQMHZvz48Y1+d1q0aJErr7wyNTU1WbFiRW6//fYm69hjjz0a/W4AAGwqoSUAwD/giCOOKAeBN998c0qlUoP99fX1mTJlSpKkR48eDRa+mT17djmMOv744zd4no9//ONJkrq6usybN6+8/b777isvrnPWWWetF5JtLvPmzcvrr7+e5J3FdJo6T/v27XPiiScmSZ555pksWLCgyWMOHz58s9Z4yimnNBnYrhsIP/fcc5v1vI057LDDstNOOzW6b92g9lOf+lRatWr1ru2ef/75Js+144475pOf/GST+//1X/+1/Pree+9tsO/nP/95kuS4445r8neXJB06dEjfvn2TZIOh70knnfS+fQcBgOZFaAkA8A+orq7OKaeckuSdFbkfeuihBvtnzpyZv/zlL0neCelatPjbn1/rznrr1q3beit3r/uzzz77lNsuXLiw/Prxxx8vv/7Yxz62eS9uHU899VT59YEHHrjBtuvuX7ffutq2bZvevXtvnuL+vz59+jS5b90Acfny5Zv1vI3ZY489mtzXoUOHTW63oZr322+/VFdXN7m/f//+ad26dZJk/vz55e0vvvhiXnnllSTJuHHjNvj9q6qqKn9f1/3+/b1+/fo1uQ8AYFMILQEA/kEbukW8qVvDk2Tx4sXv6XxrZ1YmyZIlS8qv3+sCNhtj6dKl5dedO3feYNt1b1Net9+61g3kNpc2bdo0uW/dsHhDCwRt6Vo2R83v9nlUV1eXQ9t1P4/N8f37ezvuuON7OiYAwN9r+l+yAABslP79+6dv376ZP39+brvttvLz/1auXJk777wzyTu3J++1114N+q0bRD322GNN3ib893r06LH5in8PNnQb8cZyC/Hm814/j3W/fxdccEFOOOGEjeq3/fbbN7nP5woAbC5CSwCAzWDEiBH58pe/nNdffz0///nPc/zxx2fq1KnlRXP+fpZlkvKCNUnSqVOn9xRGduzYsfx6wYIF2X333d9D9e9u3durFy1atMHbmte9fbip5zoWzdpZjfX19Rtst+4iSEWxaNGiDe5/++23yzMs1/081v3+tWrVqsEjCAAAKs3t4QAAm8Hw4cPLs8xuuummJH+7NbxVq1Y5+eST1+uz3377lV//6le/ek/n/fCHP1x+/cADD2xy/42dpbduoPWb3/xmg20feeSRRvsVWbt27ZIkr7322gbb/f73v98S5WySJ554Im+//XaT+5988smsXr06ScPPo3fv3tlhhx2SvPfvHwDA+0VoCQCwGXTr1i1Dhw5NkkybNi1PPfVUZs6cmSQ58sgj06lTp/X6DB06tPxMwyuuuGK9lcc3xpAhQ8q361555ZWb/LzG2tra8utVq1Y12W7AgAHl51D+6Ec/anJG4vLly3PrrbcmSfbaa6/39Tmbm9PaGaq///3vm1z0ZsmSJZkxY8aWLGujLF26tLwKeGMmT55cfr32O5q8cyv30UcfnST55S9/mf/93/99/4oEANhEQksAgM1k7S3gdXV1+fSnP10OEBu7NTx5ZzGaMWPGJEl+/etf55xzztng7cmLFi3KD37wg/WO8bnPfS5JMm/evJx99tlNhp91dXXrLb6ybqj4xz/+sclz19TU5PTTT0/yzorgEydOXK9NqVTKmDFjyosDrb22rcHBBx+cJFm9enWuvPLK9fbX1dXl9NNPz1//+tctXdpGGTt2bKO3ic+ePTvXXXddkneC5/3337/B/nHjxqVly5apr6/P8ccfn5dffrnJc6xZsyY333zzBtsAAGwunmkJALCZ/Mu//EvatWuX5cuX5+mnn07yzmrKxx57bJN9vva1r2X27Nn5zW9+k8svvzyzZs3KGWeckf79+2f77bfPa6+9lqeffjr33ntv7rnnnvTt27ccHq41ceLEzJgxI/Pnz89VV12VOXPm5HOf+1z69u2b1q1b5+WXX86DDz6Yn/zkJ/n617+eUaNGlfvuuuuu6dGjR15++eV85zvfSY8ePbLnnnuWb3Xv0qVL+dbpCy64IHfeeWeee+65XHjhhZk/f35Gjx6dbt265fnnn89VV12VWbNmJUkGDRqUz372s5vxt/v+OuaYY9KrV6+8+OKLOf/887NkyZJ86lOfSm1tbZ5++ulcccUVefzxx3PQQQfl4YcfrnS5Dey777555plnMmDAgIwbNy4HHHBAVq1alWnTpuXSSy/N22+/nerq6lx99dXr9e3bt2++853v5JxzzskzzzyTffbZJ5/97GdzyCGHpEuXLnnrrbfywgsvZM6cObn99tuzYMGCzJ8/v+KLQQEA2z6hJQDAZrLddtvl+OOPzw033FDeduKJJ6ampqbJPjU1NZkxY0ZGjRqVO++8M08++eQGZyi2b99+vW1t2rTJfffdl+OOOy4PPPBA5s2bt0mB4XnnnZcvfOELef755/PJT36ywb4bbrihHHK2a9cuM2fOzFFHHZVnn302d9xxR+644471jjd48OD87Gc/26pWkm7dunVuuummHHnkkVm5cmUuvfTSXHrppeX9LVu2zGWXXZalS5cWLrTs379/xowZk89//vONfndat26dH/3oRznwwAMb7X/22Wdn++23z9lnn5033ngjF198cS6++OJG27Zu3brBIwUAAN4vbg8HANiMRo4c2eB9U7eGr6tdu3a544478uCDD+b000/PnnvumXbt2qW6ujo77bRT9t9//5x55pmZNm1ak89U7NixY2bPnp0777wzxx9/fHr06JGamprU1tamd+/eOeGEE3LzzTc3uiDQ5z//+dxxxx05/PDD07lz51RXN/1/7d122y1PPvlkrrrqqhx88MHZeeed06pVq3Tp0iVHHnlkfvzjH+eBBx7YalYNX9dHP/rRzJs3L6eddlq6d++eVq1apVu3buUw+Kyzzqp0iU06/fTT8+CDD+bEE09M9+7d07p16+yyyy4ZMWJEHn/88Xz605/eYP8zzjgjzz33XCZMmJDBgwenY8eOqa6uzvbbb5899tgjxx13XK699tr8+c9/zgc/+MEtdFUAQHNWVXovT3wHAAAAAHifmGkJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBC+X+ayqeX5qj6UAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lib.ire_plot('test', ire2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "v2XXEddTe7LU", + "outputId": "151a6c0e-b6d3-4e6b-a0f1-fcc57404139e" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVntJREFUeJzt3Xt8U/X9P/DXSdKmtLSlQGnphYJQykWLlnkpkwErDhFQ0bmCzIKiMmUOnQpDdIDKinPOr5ubIopOLdYxBSY/GEMGDAbK1YJAEZCWlNIL0GugaZNzfn+EpEmTtEmb5CQnr+fj0Qf09CT5pNBX3+dzPhdBkiQJRERERAqhkrsBRERERN7E4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oZCiiAIWLJkidzNIKIgw+wILixugsRf//pXCIKAm2++ucvPtXHjRv6Q+lFtbS0iIiIgCAKOHz/u9JxZs2ZBEASnHxEREXbnLlu2DHfeeScSEhIYuNQhZkfw8mZ2FBcXY/78+bj++usRHR2Nvn37YtKkSdi/f7+/3o5faeRuALmnoKAA/fv3x969e3Hq1CkMGjSo08+1ceNG/OUvf2FI+cmaNWsgCAISExNRUFCAl19+2el5Wq0W7777rsNxtVpt9/nzzz+PxMRE3HDDDdi8ebNP2kzKwewIXt7MjnfffRfvvfce7r33Xjz++OOoq6vDihUrcMstt+Bf//oXxo8f77P3IQcWN0HgzJkz2L17Nz7//HPMmTMHBQUFWLx4sdzNCnlNTU0IDw+HStV+B+jHH3+MO+64A2lpaVi9erXLgNJoNPj5z3/e4eueOXMG/fv3x4ULFxAfH9+ptlNoYHYEJjmyY/r06ViyZAm6d+9uPfbQQw9h6NChWLJkieKKG96WCgIFBQWIi4vDpEmT8NOf/hQFBQUO52zfvh2CIGD79u12x0tKSiAIAj744AMA5i7Mv/zlLwBg131podfr8fTTTyM1NRVarRYZGRn4wx/+AGebx3/88ccYOXIkunXrhp49e2LatGnQ6XR254wdOxbXXnstjh07hnHjxiEyMhLJycn4/e9/7/B8TU1NWLJkCQYPHoyIiAj07dsX99xzD06fPu1x+wwGA5566inEx8cjOjoad955J8rKypx+f8+dO4eHHnoICQkJ0Gq1GD58OFatWuX0+1tYWIjnn38eycnJiIyMRH19vdPntDh79ix27tyJadOmYdq0adZfNl3Rv3//Lj2eQgezg9lhMXLkSLvCBgB69eqF0aNHu7zlFczYcxMECgoKcM899yA8PBzTp0/HW2+9hX379uHGG2/0+LnmzJmD8vJybNmyBR999JHd1yRJwp133olt27Zh9uzZuP7667F582Y8++yzOHfuHF5//XXrucuWLcMLL7yAn/3sZ3j44YdRXV2NP//5z/jRj36EQ4cOoUePHtZza2pqcPvtt+Oee+7Bz372M/zjH//AggULcN1112HixIkAAJPJhMmTJ2Pr1q2YNm0a5s2bh4aGBmzZsgXffvstBg4c6FH7Hn74YXz88ce4//77MWrUKPznP//BpEmTHL4flZWVuOWWWyAIAn75y18iPj4emzZtwuzZs1FfX48nn3zS7vyXXnoJ4eHheOaZZ2AwGBAeHt7u9/uTTz5BVFQUJk+ejG7dumHgwIEoKCjAqFGjnJ5/4cIFh2Ph4eGIiYlp93WInGF2MDs6yo6Kigr07t273XOCkkQBbf/+/RIAacuWLZIkSZIoilJKSoo0b948u/O2bdsmAZC2bdtmd/zMmTMSAOn999+3Hps7d67k7J9+3bp1EgDp5Zdftjv+05/+VBIEQTp16pQkSZJUUlIiqdVqadmyZXbnHTlyRNJoNHbHx4wZIwGQPvzwQ+sxg8EgJSYmSvfee6/12KpVqyQA0h//+EeHdomi6FH7vvnmGwmA9Pjjj9udd//990sApMWLF1uPzZ49W+rbt6904cIFu3OnTZsmxcbGSpcvX5YkqfX7e80111iPueO6666TZsyYYf38ueeek3r37i21tLTYnTdz5kwJgNOPCRMmOH3u6upqh/dDZMHsYHa4yg6L//73v5IgCNILL7zgdruCBW9LBbiCggIkJCRg3LhxAMzdwbm5uSgsLITJZPLqa23cuBFqtRq/+tWv7I4//fTTkCQJmzZtAgB8/vnnEEURP/vZz3DhwgXrR2JiItLT07Ft2za7x3fv3t3ufnB4eDhuuukmfP/999Zjn332GXr37o0nnnjCoV2Wrm9327dx40YAcDiv7ZWUJEn47LPPMGXKFEiSZPdeJkyYgLq6Ohw8eNDuMTNnzkS3bt2cfwPbOHz4MI4cOYLp06dbj02fPh0XLlxwOhA4IiICW7ZscfhYvny5W69HZIvZwexoLzuqqqpw//33Y8CAAZg/f75b7QomvC0VwEwmEwoLCzFu3DicOXPGevzmm2/Ga6+9hq1bt+InP/mJ116vtLQUSUlJiI6Otjs+dOhQ69cB4OTJk5AkCenp6U6fJywszO7zlJQUu3vzABAXF4fDhw9bPz99+jQyMjKg0bj+L+lu+0pLS6FSqTBw4EC78zIyMuw+r66uRm1tLd555x288847Tl+zqqrK7vMBAwa4bF9bH3/8MaKionDNNdfg1KlTAMwh1L9/fxQUFDh0davVasUN6iN5MDs6175QyQ69Xo/JkyejoaEBu3btchiLowQsbgLYf/7zH5w/fx6FhYUoLCx0+HpBQYE1oNoGgIW3r9AAQBRFCIKATZs2OUxTBuDwg+LsHABOBxr6kyiKAICf//znmDlzptNzMjMz7T5398pLkiR88skn0Ov1GDZsmMPXq6qq0NjYqMhQIfkxO3wrmLOjubkZ99xzDw4fPozNmzfj2muv7dTzBDoWNwGsoKAAffr0sc5QsPX5559j7dq1ePvtt9GtWzfExcUBMC/6ZMtyRWLLVZilpaXhyy+/RENDg90VTnFxsfXrAKwD9AYMGIDBgwd36r21NXDgQHz99ddoaWlxuHrztH1paWkQRdF6RWdx4sQJu+ezzIYwmUxe7zHZsWMHysrK8OKLL1qvDi1qamrw6KOPYt26dW5N/SbyFLOjc+1TenaIooi8vDxs3boVf//73zFmzBhvNTvw+H+YD7nj8uXLUnR0tPTQQw85/fr//vc/CYBUWFgoSZIk1dbWSmq1Wnrqqafszrv33nsdBgUuWLBAAiDV1NTYnWsZdPe73/3O7nhubq7doLtTp05JarVauv/++60D9ixEUbQbYDdmzBhp+PDhDu2fOXOmlJaWZv3ck0GBHbXv0KFDbg8KnDVrlhQeHi4dOXLE4XWrqqqsf7cMClyzZo3Dec7Mnj1bioqKkq5cueL06+np6dLtt99u/XzmzJlSVFSUW89twQHF5Ayzw/45PWmf0rPj8ccflwBIK1ascOv8YMaemwD1z3/+Ew0NDbjzzjudfv2WW25BfHw8CgoKkJubi9jYWNx3333485//DEEQMHDgQGzYsMHhvi9gXu8AMA+amzBhAtRqNaZNm4YpU6Zg3LhxWLRoEUpKSjBixAj8+9//xvr16/Hkk09a70MPHDgQL7/8MhYuXIiSkhLcfffdiI6OxpkzZ7B27Vo8+uijeOaZZzx6v3l5efjwww/x61//Gnv37sXo0aOh1+vx5Zdf4vHHH8ddd93ldvuuv/56TJ8+HX/9619RV1eHUaNGYevWrdZ717aWL1+Obdu24eabb8YjjzyCYcOG4dKlSzh48CC+/PJLXLp0yaP3AZjXyfjss89w2223OWydYHHnnXfijTfeQFVVFfr06QMAMBqN+Pjjj52eP3XqVERFRQEAPvroI5SWluLy5csAgP/+97/Wxb0eeOAB61UohSZmB7PDliU7/u///g9//etfkZ2djcjISIfzbTNGEeSursi5KVOmSBEREZJer3d5zqxZs6SwsDDr1U51dbV07733SpGRkVJcXJw0Z84c6dtvv3W4+jIajdITTzwhxcfHS4Ig2E3tbGhokJ566ikpKSlJCgsLk9LT06VXX33V4SpLkiTps88+k2699VYpKipKioqKkoYMGSLNnTtXOnHihPUcd6++JMl8xblo0SJpwIABUlhYmJSYmCj99Kc/lU6fPu1x+65cuSL96le/knr16iVFRUVJU6ZMkXQ6ndOejsrKSmnu3LlSamqq9XVzcnKkd955x3qOJ1dfn332mQRAeu+991yes337dgmA9MYbb1i/H3AxnROAdObMGetjLVNknX20nc5LoYfZwexwlh2eZIwSCJIk88gsIiIiIi/iOjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUJeQW8RNFEeXl5YiOjna5lDgR+ZYkSWhoaEBSUhJUquC4xmJ2EMnLk9wIueKmvLwcqampcjeDiADodDqkpKTI3Qy3MDuIAoM7uRFyxY1l07Tn/ncAEdyRmUgWTY2N+N0PR9ptYhjomB1E8vIkN0KuuLF0J0d0746IIApWIiUKpts7zA6iwOBObgTHzW4iIiIiN7G4ISIiIkVhcUNERESKEnJjboh8TS2JCBdFCJDkboosJAhoVqlgEnjtROQuQZIQIZqYG17KDRY3RN4iSUhrakSK0QBVEA2U9QVRklCm0aI0ojsQ4t8Loo5oRRMy9bWICPEfFW/mBosbIi9Ja2rEALEZvfr0QVi3bkCoBpUEtFy5grAL1UBTI0q7cWYRkUuShGuuNCBOG464hAQIqhANDi/nBosbIi9QSyJSjAb06tMHkXFxcjdHdmEREQCAlqoqlElRvEVF5EKYJKKXaERsrz4I79ZN7ubIypu5wcQh8oJwUYRKEMw9NgQACOvWDSpBQLgoyt0UooClkSQIggB1WJjcTQkI3soNFjdEXmAdBBiiPcpOCZY/QnOAJJE7mB1teCk3WNwQERGRorC4ISIiIkVhcUNEqKqowKKnnsTNQzKQFhONkQMHIu+eqdj5n/8AAD56913cc9ttSI/vjb4RWtTV1srbYCIKCIGaHSxuiEKcrqQEE0ZlY9f27Xghfzn+c+AAVn/xBUaNGYOFT84DAFy5chnjfvIT/Gr+AplbS0SBIpCzg1PBiULcb+b9CoIgYNOu/yEyKsp6PGPYMEyfOQsA8OgTvwIA7N6xQ44mElEACuTsYM8NUQAymfzzOjWXLmHbv/+NWXN+YRdOFrE9evinIUTkFcwOMxY3RAHk1HfAmOs1SIkKx5jrNTj1nW9fr+T0aUiShEEZGb59ISLyKWaHPRY3RAFk9s80OH3SvNDD6ZMCZv/Mt3eOJYlr0BApAbPDHsfcEAUIkwn4rlhl87mA74oFmEyAWu2b1xwwaBAEQcCpEyd88wJE5HPMDkfsuSEKEGo1MHiICLVauvq5dPVz371mXM+eGHvbbfhgxdu4rNc7fJ1TvokCH7PDEYsbogDy3t+NGJhuDqiB6RLe+7vR56+Z/39vwGQyYeKtP8SGtWvx/amT+K74ON79y5uYPOZHAMxrWXxbVIQzp08DAI5/+y2+LSpCzaVLPm8fEXWM2WGPt6WIAsigwcCOb4w+7U5uK+2aa/DvPV/hjVeWY+mCBaiqOI9e8fHIvOEGvPKnPwMAPly5Eq8te9n6mKnjcwAA//fOSuTm5fmnoUTkErPDniAF+qggL6uvr0dsbCxeLDqBiOhouZtDChFpasHIK/VITuuHMG2E3M0JCC2GJpwrPYsD3WJwWW2/43FTQwN+OyIDdXV1iImJkamFnmF2kC8wO+x5Kzd4W4qIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiLxAgmD5C1lIlj8EedtBFMCYHW14KTdY3BB5QbNKBVGS0HLlitxNCRgtV65AlCQ0qxgzRK4YBQGSJMHU0iJ3UwKCt3JD1nVulixZgqVLl9ody8jIQHFxscvHrFmzBi+88AJKSkqQnp6OV155BXfccYevm0rULpOgQplGi7AL1QCAsG7dELIdFpI5oC5eqEaZRguT4N3ihrlBStIiqHBRpUHkxYtQaTQQVCEaHF7ODdkX8Rs+fDi+/PJL6+cajesm7d69G9OnT0d+fj4mT56M1atX4+6778bBgwdx7bXX+qO5RC6VRnQHmhrRUlUFlRCiAXWVKEko02jN3xMfYG6QYggCTneLRnd9La7odHK3RlbezA3ZixuNRoPExES3zn3jjTdw++2349lnnwUAvPTSS9iyZQvefPNNvP32275sJlHHBAGl3aJRJkUhXBQhhOhNdAkCmlUqr/fY2GJukJI0q9TY370nIkQTc8NLuSF7cXPy5EkkJSUhIiIC2dnZyM/PR79+/Zyeu2fPHvz617+2OzZhwgSsW7fO5fMbDAYYDAbr5/X19V5pN5ErJkGFK2qOM/ElX+cGwOwg/5IEAVfUsv9KVgxZE/jmm2/GBx98gH/961946623cObMGYwePRoNDQ1Oz6+oqEBCQoLdsYSEBFRUVLh8jfz8fMTGxlo/UlNTvfoeiMi//JEbALODKJjJWtxMnDgR9913HzIzMzFhwgRs3LgRtbW1+Pvf/+6111i4cCHq6uqsH7oQv6dJFOz8kRsAs4MomAVUH1iPHj0wePBgnDp1yunXExMTUVlZaXessrKy3XvvWq0WWq3Wq+0kosDhi9wAmB1EwSygBgY0Njbi9OnT6Nu3r9OvZ2dnY+vWrXbHtmzZguzsbH80j4gCEHODiNqStbh55plnsGPHDpSUlGD37t2YOnUq1Go1pk+fDgDIy8vDwoULrefPmzcP//rXv/Daa6+huLgYS5Yswf79+/HLX/5SrrdARH7G3CCijsh6W6qsrAzTp0/HxYsXER8fj1tvvRVfffUV4uPjAQBnz56FymaVwlGjRmH16tV4/vnn8dxzzyE9PR3r1q3jWhVEIYS5QUQdESRJCqlJ9fX19YiNjcWLRScQER0td3OIQlJTQwN+OyIDdXV1iImJkbs5bmF2EMnLk9wIqDE3RERERF3F4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKYpG7gZQ4CopKYGxxtCpx2ritOjfv793G0REROQGFjfkkrHGgJzvTmB4t2SPH/uqvhFgcUNERDJgcUMuGfSNSL8ElItbPH6s1H0MSkpK2HtDRER+x+KGnCopKYHU3IzD9V8ivlekx48fd/I49sT1BPp7v21ERETtYXFDTunLLuLnh07iw9syO/X4m77YB4N+BHtviIjI71jcKFBJSUmXn0NqbkZx4x5kxfy+U4/XRh7G2KNF2BP1Q5Sga+1hcURERJ5gcaNAxhoDptbUor66stPPcbn2Apojw2Ds5ON35mQib5sGOd+d6HQbAGDr4Aze2iIiIo+wuFEgg74RCScqoRaPdfo5Ki+Uwjijc702AJAVk4vixvkYciGt088BAE3x8by1RUREHmFxozCnDp3A2KNFOB/2XZeeR9uFXhuLvVNGQrv1MFLiPB+QbDH7yPco4MBkIiLyAIsbhTHoG5HcqMGH4wZ1+bmyuvr4mFzszOnac9z0xS401VzD3hsiInIbi5sg4e4g4a4OBPa2rJjcLj1eG3nYOq28vYHJLHyIiMiCxU2QsAwSbk99dSUSKxqwcsrILve6BArbgckx8QlOz1kb14O3rYiIyIrFTRAoKSmBQd+I1Mb2/7maLwG7ancFTK+NN2TF5OKMuAhDKm5GLxfbQBjCG3nbioiIrFjcBAFjjQEPHSjG/qavOzzXGwOBA83OnEwYvtiFmOPO3/9DETejIOoH7L0hIiIALG4CXklJCZpqLqGodhf2Thnp1mOUckvKIismF3unuP46Bx0TEZEtFjcBxNmgYWONAeNOHkdzZFiXB+cGs/bee0eDjlnwEBGFFhY3AcTZoOH66krENWrwYU6m4npkvKW9QcccbExEFHpY3AQQZ4OGL1Y0oFjcj6yYZTK1KvC1N+jYEN4oU6uIiEguKrkbYLF8+XIIgoAnn3zS5TkffPABBEGw+4iIiPBfI33o1KETmFBcjHLdFruPotpd2JnTuZ25Q8nOnEwU1e5y+P5NKC7GqUNd29+KAluoZwcROQqInpt9+/ZhxYoVyMzs+Jd4TEwMTpxo/WUlCIIvm+Y3Bn0jeteZcEYstzuuDfGxNu7KismFNvIwzly2//4NaEqCQc/eG6VidhCRM7IXN42NjZgxYwZWrlyJl19+ucPzBUFAYmKiH1rmPyUlJdaVhbuyWaWSqQ1NyNxQiNgKHeoSU3F48jSYtPZX3vqpjrfuigvmQ2pO50wqBWJ2kDs0TVcwouAj9NCVojY1DUUzHoAxopvczSIfk724mTt3LiZNmoTx48e7FVCNjY1IS0uDKIrIysrC7373OwwfPtwPLfUOVzOiZh/5HsUKXKPGG9SGJuQ+NR3xp49DUqkhiCYM3boen77+iUOB05Y2Msy6+SZnUilLqGUHeU7TdAX333cX4o8dg6RWQTCJGL7uH1i9Zj0LHIWTtbgpLCzEwYMHsW/fPrfOz8jIwKpVq5CZmYm6ujr84Q9/wKhRo3D06FGkpKQ4fYzBYIDBYLB+Xl9f75W2d5axxoCc7+zHgJgaGlBUu4u9Ni5kbihE/OnjUEkSYDKXf/GnjyNzQyEO3Tur3cfqpy5DUcF8jD0AqKOj7b62dXAGZ1IFqVDMDvLciIKPEH/sGFSSCBhFAED8sWMYUfARDsx+VObWkS/JVtzodDrMmzcPW7ZscXtgX3Z2NrKzs62fjxo1CkOHDsWKFSvw0ksvOX1Mfn4+li5d6pU2d5VlQb64C8fsjpc3lityZWFvia3QQVKprYUNAEgqNWIrdG49XhsZhuaLXyPJkGR3vCk+nrerglAoZgd1Tg9dKSS1ylrYAICkVqGHrlTGVpE/yDZb6sCBA6iqqkJWVhY0Gg00Gg127NiBP/3pT9BoNDCZTB0+R1hYGG644QacOnXK5TkLFy5EXV2d9UOnc+8Xoi9YFuRr0dbafRhU4IyodtQlpkIQ7f8/CKIJdYmpbj1+Z04mDCo4fN/HnTwOY42h4yeggBKK2UGdU5uaBsEk2h0TTCJqU9NkahH5i2w9Nzk5OThy5IjdsQcffBBDhgzBggULoFarO3wOk8mEI0eO4I477nB5jlarhVar7XJ7vcGgb0RyowYfjhvk8DXOiHLt8ORpGLp1vd2Ym+qBQ3F48jS3Hp8Vk4udOY7H87ZpOJMqCIVidlDnFM14AMPX/cNuzE3VsOEomvGA3E0jH5OtuImOjsa1115rdywqKgq9evWyHs/Ly0NycjLy8/MBAC+++CJuueUWDBo0CLW1tXj11VdRWlqKhx9+2O/td5dlALGxxoCxR4twRvyGC/J5yKSNwKevf9LhbKn2OCsez4iLMPaoEXuiukMTZ/4lxltUgS9UsoO6zhjRDavXrOdsqRAk+2yp9pw9exYqVeuds5qaGjzyyCOoqKhAXFwcRo4cid27d2PYsGEyttK1kpIS65YK3Eaha0zaiA4HD3uq7bYNa+N6oAQcg6MEwZ4d5D3GiG4cPByCBEmSJLkb4U/19fWIjY3Fi0UnENFm9oy3nTp0AmMP7MeQFvPr7KraxBlRAUZTMB+39pkIACgOa8D2kT/AoBsyZG6V8jU1NOC3IzJQV1eHmJgYuZvjFn9mBxE58iQ3ArrnJtgZ9I1I1gPno3YDAPZOGclemwCjjQzD+TDzv0+y/jqOwSEiUgAWNz5y6tAJjD1ahOLmb7BztHkmFAcNBx791GX4pP5TAMDorV9j7FED9kR1Z+8NEVEQY3HjRbarD1tnRuVksqgJcJZ/n505rTOobP8tOQaHiCi4sLjxIsvgYQCo+f4Uihv3ICuGY2yCRVZMLoob52NCsRpxzebp+mvjenAVYyKiIMPixosM+kakNpq/pZF6YCPH2AQdbWQYkvVAr6v/joZwjsEhIgo2LG685NShE5hQXIz9F78GANQ3tbDXJghZ9qKKOW7+d5zQ62Zs5xgcIqKgwuLGSwz6RvSuM+HD21q3UWCvTXDaO2Wk9e9520ycQUVEFGRY3HhBSUkJpOZmjrFRCNsB4MWN8yE1p3ODTSKiIMLipgtOHToBwNxrM/vI91jJMTaKs3fKSDyy83sUxPXEqRrzvzdvURGRhWUl+s7QxGl50eQjLG466dShE8j57gSGd0tG87lz2FW7i702CpQVk4ui2vn4xVfRCE9OxtEr57AVLHCIyExfdhHPXvL8cUevnMPWwRmcjekjLG46yaBvRPoloFzcgvLGcmgjw2CUu1HkE9rIMByu/xJJYhLSVcOwkWNwiAitQxLKdTs8fiyzxLdUHZ9CbVn+Qx+u/xIt2loYVOZNGEmZduZkwqACWrS1OFz/JaTmZrtF/ogoNBlrDBh38jhatLUef5wP240JxcXW4Q3kXey56QR92UXzGBvbmVFchVixsmJysTOn9fNHdn6PVeHhAO+VE4U0g74RDRX7sNVmhqUnOBvTd1jcuMn2Sl1qbkYRx9iEFNvitah2PqTma7hFA1EIsvzcG2sMGHu0CM2RYZ2+uLWdjWnBLPEOFjdu0pddxB3nzgEALtdeQDPH2IQsbWQYxp08jsjqagDAxuRk9uIQhYCSkhK73wVxlv0DO/l8zBLf4ZgbN1jG2MRdOIa4C8fQULGPY2xC2M6cTDRU7LP+f+AYHKLQYKwxYEJxsfVn37y2WeeHJOinLrPLEo7B8R4WN26wjLGxDATTdqEbkoJfVkwutJFh1v8Ps498D33ZRbmbRUQ+VFJSAoO+Ec0Xv0aLthZnLpfbrWbeWbZZkqwHx+B4CW9LdcDSa1NUuwt7R7f+R+ZifaHNtufupi92Wcfg8H45kTJZxtgYVMAnWYMAeGciCbPEN1jcuGA7aGzcyeNdGjRGymP7f0EbeRjjTh7HnrieKEEJAA4KJFIag74RyZYxNl78XcAs8Q3elnLCspz2lO8rkfPdCSQ3ajjGhlzamZOJ5EYNcr47gSnfV8JYY+AYHCIFsd8/0HcXuZYxOGMP7MeU7ysx5ftKjsHpJBY3TujLLuJXukakNmqQWNGAM+J+9tqQS1kxuTgj7kdiRQNSGzX4la6RY3CIFERfdhE/P3TSK2NsOqKNDEOyHkht1CC1UcMxOJ3E21JtWCr0/cc/AQDUN7VgLzfEpA7szMmE4YtdiDn+NQBAunE675sTKYB9r43v1zZjlngHi5s2LGNsbLdUYK8NdSQrJhd7p5j/Pnpr631zbopHFNxsx136Y20zZol3sLiB/erDvho0Rspn+f+yMwfI28buZKJgV1JSgqaaS2io2OfXHnxLluin5sJQMB9NNUPZe+MhjrkBrIOHp3xfibFHizjGhuyIJveOWVjG4Iw9WsTBgERBzNJr09m1zdrmRHu54YplFWNjjcHzB4ewkO+5sSzMlNpo/laou7icNgU30QSo1Oa/V+nC8P7SJFSe1SKhnwEPLi4HAIdjfVJbHJ5nZ04me2+IgpxdT34759nmBuCYHXfOqcY/V8R3mBvOMEs6J+R7bizLaZfrtqBct8XnU/0oMFXpwvDKw2l4ZuJgvPJwmjWcqsvCAQDVZeF4f2mS02POXB+Vi+LGPdyagShIlZSUYEJxcbu/E5zlBgCHnFi12DE3XPXitD3OnuDOCfmeG4O+Eb3rTDgjmq/KOTMqNLUNo3cWJeNSRbj166IooPKs1u4xlmPLZ6fhoSXmKzHbK7bYlJX4Y8s6/Dc8nJvhEQUZfdlF9K4zYWM7vxPa5sbK55Oh1kio0rVmhSgKgCjYfV55VotnJg6268Vx1lNs6d1h743nQrrn5tShE9YxNvqpy6Cfuoy9NiFINAGVZ7XmEII5fMyFjWR3nlojolffZqhUluPmP6t05lAD7MOuobw3Fv2/Cey9IQoy7iza5yw3Lp4Px4Vzlosi2/yQIAi2uWH+e+VZ59nRtlc4K4Y9wZ4K6eLGcj+Vqw+HNpUaSOhnsBYtrSEk2J1nMpk/j09pbvN1c6gZmx3DrqKuH8acKLauWsxgIgp8tgOJXXGVG6LYmgtWAqBS2+ZKx9lReVZrd4tKGxmG2Ue+58BiN4VscXP27Fm/LKdNweHOOdUQroaUSi2hR3yzTZFzlWQOoqoy54HXNuxUKgmxKdXQV+3Fr3SNGPP1YejLLrLAIQpgttO/9VOXtXuus9xo7dm1IQkwGVUQVKLT53GWHQn9DHaDlPVTl6Godheaai4xQ9wQssWNvvyS35bTpsD3zxXxkK5eNUmiALUG6JNq6aGxDytJVLU5bv7z1TlpuHNOtbVnJz6lGY8tbYQ2Mgz7j/8NcReO4ZdF5dyagSiAudNrY+EsNyw//2qNiI6zw3zehfIwPLi43C47LLMzLUQTp4V7ImQHFPtzOW0KbJZ759bPr947byU4PsjJ8eqycPxzRTwWvFtqNzV0Z2wm0v9xAS98Nh+6C8mI7VuP5vzTuOFHid59I0TUZZ5M/3aWGyq1uXfGZLS9/dSW/QDj95cmYcG7pQ7ZAaDNJIW/4o8/WgfDcA4s7kjI9tz86PQJtypzUr62XcK2A/7c43if3DacsmJy8cddz6PsUl8AQENFd2x6frBX2k5E3uPO9G8LZ7eSAAmiycmYm3ZIbcbX2GYH4DhJ4flNt3NauBtCtrhpqDzIgcRBRG1owg2ffYCxf3kJN3z2AdSGJq8+v22XsP2Av/ZIUKnFdu+TA+YrvLqyeGuXtCipUFsWhe9Pl3ir+UTkgqbpCka+9w5ylizCyPfegabpistzLdO/3R2uYJsbvZOb4Ul2WC6gLLnhjLMZWedrUpF2OcKt9oWykL0t1dnltMn/1IYm5D41HfGnj0NSqSGIJgzduh6fvv4JTNrO/5Db9rD0SW2xdgm/OicNlWfD0RpSEpwHlgDRJCChn8HcPS1IqDyrxSsPp9mtUWG5wqsuC4coClAJJiT2vASxnvfNiXxJ03QF9993F+KPHYOkVkEwiRi+7h9YvWY9jBHd7M51d/dvV7mhUgPP3jHI5naUq9yA3fG4hBa0NAsO694ATrJDJSE66QLUzgYtk52Q7bnZPWa43E0gN2VuKET86eNQSRLUJiNUkoT408eRuaGwU89XUep8VVEAqCoLg7HF3asvs8mPVEOtESGazD9OVTrHlYttr/Ciky/hpQnruCAXkY+NKPgI8ceOQSWJUBuNUEki4o8dw4iCjxzO7WggsavViAFzEVJRGoboOBPczQ61RsTsl8pQW62xLhjaUXbEpzTjR8+ucev5Q13I9txcH32v3E0gN8VW6CCp1IDJaD0mqdSIrdB59Dy2A/MsXcKWxbIeXFzu8LXWK6/2wkrCB0uTYDK2XidIkuPYm7ZXePqC/wepOY87/RL5UA9dKSS1CjC2TsGW1Cr00JXanWc7/ds4w7HXpkoXhlfnpFl/zquu5saCd0ud5opZ29yw78kRRaFT2XGw/iLwfTdQ+0K254aCR11iKoQ2G64Iogl1iakePc/7S5NQpbPMgrIfBGw7aM92ga2OCXbhZNEn1XHsDdAaWHunjMTPD53ktHAiH6pNTYNgsl9bRjCJqE1NszvWUa/NqiVtihCbQcDvL01ClUN2OGP/NUnsXHaQe1jcUMA7PHkaqgcOhSgIMKk1EAUB1QOH4vDkaW4/h2VgniQ5ho9KLdoN2mufq3vd9utWPLSk3MV5ZlxOncj3imY8gOphwyAKKpg0GoiCClXDhqNoxgMO517TpHU6yUQ0wW6vKFvLZvU350qH2SG183fPssOCt7XbF7K3pSh4mLQR+PT1T5C5oRCxFTrUJabi8ORpHg0mbjswz7aLuHXqZtsBgObPBUGCBAmQVOioNyehnwEzX2gdENgey4Jce+J6Av3dfitE5CZjRDesXrMeIwo+Qg9dKWpT01A04wGHwcTtsWRHlS7c4eKoptKyB52zXJAgqKSrsyRtv+48Q/qkGqwb8LYnKyYXRbXzITVfw9va7WBxQ0HBpI3AoXtndfrxVTrzQGGn+764vA11deVRCTB3cnY8++FCeRh+/8gAh1kPABzWv9FPXQZDwXw01QxlSBH5iDGiGw7MfrTTj7dkh7NeXzPXxzvu0TF/Xa0RUaXTWsf/tS1w2mYHL4w6xttSFBLeX5qEmkpPFm1sb2Cga+ZpoPa7+rY3y4LLqRMFNs+zA/BsEVDnuQG4zo6dOZloqNjHW1PtYHFDitd2ISz3OF/Xxqy94HJcrdh2sHLb8NqZk4nkRg1DiigAdS47AE8uiGzPb7sbuKvsyIrJhTYyjCsVt4PFDSme5Z65wy7fnebewGPz2jeOK4zahpdlYPGE4mIOLCYKMN7Pjo5IVzfcdL46sW127MzJxDVNWl4YucDihkKC+T52212+Pd1DyhPmaZ7zJw+GWiNCaGeLhr1TRqJ3nYnTwokCkH+zw5wbz0wcjFfnpKFX32aX27uYBxbv8kEblIHFDYUEy0JY81eeQUI/c1Cp1O0NEPYe0SRYAyo+pRkPLraf6slp4USBy1l2uL+HVOdZbkfZrk7cNjvINc6WopCSmGYOquWz03DhnGXhLd8WOZIkwGQU8PsN30ET7vwczn4gCmy22WFeDNS3xY0oCrh4Phx/2PQdAC7i5yn23FDIsSzK5XxauLc4Ls51qZ0ZF/qpy9BQsQ9NNZfYe0MUoFoX9PNVYeOYGxfKw1jYdAKLGwpJCf0M8N14GwAQoNa0Pr8oCg4b4rXFaeFEga9Pqi+zw/52lzu5Qc7xthSFDNsN7lRqEb7tVpZc7kXj6ipsZ04m8raZp4Xb9t5wcT8i37FsmllUuwtZMY6bZgLm7Fj5fDIunndxX9lr7G+Ru5Mb5ByLGwoZtmtGtG654Cvm5zcvv24eUByf0txuQJkHFs/HhGI11OeiAQBbB2dwDA6RD1k2zWyODIPRxTnvL03CxfOeLuTXGZ7nBjnH21IUEhwX4/L9LCkA7c6ScmbvlJG4cG4X4i4cQ9yFYxyDQ+RjBn0jkhs1TjfNBFqzw1+ZAXieG+SIPTcUEi6Uh0GtEe1uFfmDyahqd5ZUW+aVRw+jRVsLAJxBReRDpw6dwNijRTgjfoOsmGVOz5EjOzzNDXLE4oZCwvtLk9rcivL9GjeCSkKflGZowh03vmuP7RWkZQwOEXmfpdfmw5xMZLk4xzE7fEyQkJDqeW6QPRY3pHit3cq2fDuYGBDQJ6UZkx+pxisPp6HyrNbpTuHOZMXkWv9uGYOzK6UXBxYT+UBx4x6XA4mdZ4evmHMjIbUZd86pvrqeTse5YVn8k/lgj2NuSPEs+8PYLmNuni3ly+mcZu+9kILKs60b361a4tm0Tm7NQCQv2+wwb6Pi29x44LlyrFqcdHU9HaBKF36198jxEVw+wjUWN6RoVbowa8+JKF49KEgQTSr4+rZUVZnlhnnrxndVOi1eeTgNVTr3Zl5wawYi/7PkxjMTB8NwRbDuDSeJgK9zY9WSZPtlJCTzdPBnJg52yI6dOZlIbuSta2dY3JCi2U7/tpAk/9w/l8S2r2MOyOqycI8W5uLVGZF/2eZGbXUYTEb/zbK8VOFsFLHz7MiKycUZcT8mFBfj1KETPm9bMGFxQ4rlavq3Y9HhL609OJaFudzBrRmI/Md5bsiVGRaus2NnTiZ615nYe9MGixtSrLZjbSxXP769b+5Gu1SSuV0ezIJg7w2RfzjPjavZIciTHYLNeMG22WG5dU32WNyQoj24uBzxKc12x/xx39xRayDG9DJ6vDAX760T+Y9tbvSIb7HuEydJgBy9OJbe5riEFi7q56aAKW6WL18OQRDw5JNPtnvemjVrMGTIEEREROC6667Dxo0b/dNACkp9Uluw4N1S9Ek1QGX93y5nF7OEhhp1h9PB2+K9ddeYHeRtltz4w6bvoO0m2dzKlu+iyPJ3T7MjVAXEOjf79u3DihUrkJnpfPlri927d2P69OnIz8/H5MmTsXr1atx99904ePAgrr32Wj+1NnSpDU3I3FCI2Aod6hJTcXjyNJi0EV4731dEE6zTKv3PslhgaziajAKMzfB49VHzxpq8t26L2REcNE1XMKLgI/TQlaI2NQ1FMx6AMaKb1873Jf+tc+OMYPf3i+fDubCfm2QvbhobGzFjxgysXLkSL7/8crvnvvHGG7j99tvx7LPPAgBeeuklbNmyBW+++SbefvttfzQ3ZKkNTch9ajriTx+HpFJDEE0YunU9Pn39E6cFi6fn+5LlHnqVLtxvM6VaOX+9zoSTZWNNqTmdi3aB2REsNE1XcP99dyH+2DFIahUEk4jh6/6B1WvWOy1YPD3fl1RqoFff5qubZso9qJg8Ifttqblz52LSpEkYP358h+fu2bPH4bwJEyZgzx7Xg6kMBgPq6+vtPshzmRsKEX/6OFSSBLXJCJUkIf70cWRuKPTK+b724OJyqNT+HAjo6rUkRMd1fpdfDixuxewIDiMKPkL8sWNQSSLURiNUkoj4Y8cwouAjr5wfOiT06ssdwt3ldnFTXu79QUyFhYU4ePAg8vPz3Tq/oqICCQkJdscSEhJQUVHh8jH5+fmIjY21fqSmpnapzaEqtkIHqc1PlaRSI7ZC55Xzfa13UoufN810fZUX3oWOq2CbFl5X6fpnsyuYHcGjh64Uktr+Z09Sq9BDV+qV831JNAEXz4cjEHpt1BoJj7x8Tu5mBA2303748OFYvXq1115Yp9Nh3rx5KCgoQESE725TLFy4EHV1ddYPnU6eX67Bri4xFUKbhVkE0YS6ROeB7+n5vma5NeVfznpvWu+bd1Yw9d78ccI4HFr/uVefk9kRXGpT0yCYRLtjgklEbWqaV873JUtuCCr5e31NRhV6J3EwsbvcLm6WLVuGOXPm4L777sOlS5e6/MIHDhxAVVUVsrKyoNFooNFosGPHDvzpT3+CRqOByeSY/omJiaisrLQ7VllZicTERJevo9VqERMTY/dBnjs8eRqqBw6FKAgwqTUQBQHVA4fi8ORpXjnfHx5cXA61Ruz4RK+QAMFxpkNn1rhpK5imhU94egE+e34BPpr7KC7X1njlOZkdwaVoxgOoHjYMoqCCSaOBKKhQNWw4imY84JXzfe3BxeXoY11OQp4iRxC6nhuhxu0BxY8//jgmTpyI2bNnY9iwYVi5ciWmTJnS6RfOycnBkSNH7I49+OCDGDJkCBYsWAC12vFfMTs7G1u3brWb8rllyxZkZ2d3uh3kHpM2Ap++/onbs588Pd8f+qS24KGl5Xjvt0lX95byMcnxNeJTmru8ToV5WvgijD1qxJ6o7hh0Q0aXns+XRj0wC0PG/hhrfvM0/vCTsfhp/qsYlvOTLj0nsyO4GCO6YfWa9W7PfvL0fF+zTAv/34YYfPanhI4f0GWO085Vaonr23jIo9lSAwYMwH/+8x+8+eabuOeeezB06FBoNPZPcfDgQbeeKzo62mEKZlRUFHr16mU9npeXh+TkZOt99Xnz5mHMmDF47bXXMGnSJBQWFmL//v145513PHkb1EkmbQQO3TvLZ+f7kmX65D9XxPtpxlTb1zB/PvOFcq+sU2GeFh4cvTc9U/thTsEa/O/DVfjwsYfRZ2A6BMH8/Rg9ejTUarXbuQEwO4KRMaIbDsx+1Gfn+5IlO3ati4OgsiwC6l8mo6p1419yi8dTwUtLS/H5558jLi4Od911l0Nx401nz56FqnXlNYwaNQqrV6/G888/j+eeew7p6elYt24d16kgl6p0YXh/aRIqz2rRM7HZxaZ0/vPBi0n4zXtdHxgZbNPCa86V4dvNm9AtNhbDb5sA0WTC+eJjmDRpErRa768jwuygrgqs7JDwt5eSsOBd/w+qDlYeVSYrV67E008/jfHjx+Po0aOIj4/3amO2b9/e7ucAcN999+G+++7z6uuSctnu7nupIqzNVy0L7PlPlU7rtUW4tJFhmH3kexTE9QT6d/35fOXrwgJs+N1SpI8ajaf/tR3de/VCU0MDtr31Z/zmN7/xylgWZgd5m/+yw53nat0wk+Nu3ON2cXP77bdj7969ePPNN5GXl+fLNhF5hWV331bObxX5kzfXqdBPXYaigvloqrkmYHtv3p11P3RF3+DuJcsw8h4WFhQc/JsdHT+XoJLQJ4Vr3HjC7eLGZDLh8OHDSElJ8WV7iLzGMo2zuiwcoij/OhWABJPRu89omRa+J0B7bySTCU9t/BI9+ibJ3RQitwVadkgicOecarmbEVTcnjKyZcsWFjYUdOx3BXecmu1fAmqru7bGTVuBPi38kY8+ZWFDQSnQsuOfK7w7DETpZN9+gciXLNM45688g4R+5qDqnWxAIKw46g22u4UHw4rFRMHCWXaY+SM7HAsoy5ibtg7Wf+qH9gQf2TfOJPKHxDRzUIkm4EJ5GJbP7g//FzgSevVt4X1zoiBiyY6K0jC89lian7Zxsc+m9sbcjN56GOGJN0Ib1d0P7Qoe7LmhkKJSA6uWJMF/hY1kXRU5oV8zZr/IvWGIgtHfXkqCyei/3FCpReuWMfHJrhf/NFxuwbb0odDEeX9JhWDG4oZCRpUuDMtnp6FK588QEPD0W+aubQD4/SMD8MrDaajStZ1aCq+OxSEi77Dkhnn2lL+KGwGiSYWZL5QjoZ8BVTot3l+a5JAbB+s/RXrkKAjh4QE5W1JOLG4oZLy/NAkXzlkW4vLfoMCLFWH420uta2ZUl4Xj/aWtg2yrdGF45eE0PDNxsMvCh4jkIVduqNQi3vttcru58eXsmZj41nz884Ufo+p73u+2xeKGQoJl3YrWaZ3OrsB8EVwS3l+SZPfaoijYDQ60XSysbYARkXz8mxv2zyOaBFw8H95ublTVJwMAasu64cNfxHmpHcrA4oZCgmXdCpXKEiDOAskXXc7m7uU+qa2vbbszeNvwbBtg7tiZk4lkPaAvu+iD9hMplzaqO6ITb0TU2kVOv+48N9pmh7dyw/lCge3mhmTurZFMAqpOhfHWtg0WNxQybNet6NW3Bf7pYjYPKH5oSetr2+4M3jY8bQPMXVkxuSiq3QWpuZnTwYk8oInTYlv6UBguu97Mtm1umLPDHyT06tvcfm4I5mpGUEvoM4gzMW1xKjiFjJ4JrdPBVWrg+L5IrFyUjNYrJu/vNSWoJDy0tNy6ZoazvWEeXFxu3aDPNsA8EegrFRMFov79++No2UUM6Z6ND+s/RVZMrsM5bXMDAJbePwB1FzQw54Vv9qjrEd+CR14+hz6pLS5z44Nfq1FR1w/xA4zIe7vG620IZixuSPGO74vEqsVJMBlV5l6UpeUYeuNlDL3xMn7zXgneWZR8dcdfbweUhD4pLRh642XrEWdXVu0VPu7amZOJm77YB4N+RCfbShSatFHdcSFWjdFbD0M/tbW4cZUbAPDYK2XWCxJfFDaCSoK2m4Q+qeZeIle58dzdT2HfuIdx3Y9Ger0NwY63pUjxzAFlDiCTUcCqxa0DdvuktkAT5uw+ujd4Nn6mK13KWTG50EaGYezRIpw6dKLzT0QUYgbdkIHNQ4ZggOoHdqv9dpQbC94thaAS4YvskDwYe6fib3Gn+G0hRTM24+qKoq2zHUxGFYzNrVOwzeveeP/qqzPjZ7oi0PeZIgpU2qju0Gpaf1Dbyw2gNTsk0fYc7/F3digRixtSNE04rq4Q3DrbQa0RoQm3n4LtXebX6uz4mc7KislFceMeDiwm6qL2cgPwXXao1ObVzP2dHUrE4oYU76Gl5VBrzCGl1pgH+DquX+FNAnommsPJcs/cX/ZOGYmfHzrJaeFEXeQsNwBna994i2RdNkKO7FAaDigmxRt642W8uvEUjM2wXnkB5qmUlWe9PZDYPHOitioM7y9NwoJ3S7343B0z997Mh9ScjpKSEi7JTtRJrnLDMg3bu9nROm7nwrlwWbJDadhzQyFD06YXeeYL5fD+/fLOL8bnLZZp4cYag/9fnEhh2uYGAEx+pBpdyw5nCwHKnx1KwuKGQlZiWkub++reJN+AwJ05mWio2AeDvpFjb4jc9H2EAaO3Hnbr3A0r49G13GivMHIvO6LWLsKIHrdCG9W9C+1QLhY3FJIsO/3az4hwR9tAcxVw5qsvOTbCtJ0Wzt4boo65s1KxRUVpmIv1bdwpdtw5R4CxRegwNwyXW/DedddAE6d14zlDD4sbCknOd/p1L3ja/9zyPObnkmsjTE4LJ3Jf//79IYSHY0j3bLu1bpz520tJsM8K6eosJ3cukjo6x/y8NZVh7ebGwfpPMaR7NoTwcI6rc4HFDYUc93b6bY/ton/ONtST//65ZVr4hOJi3poickNUSi9ciFXjpi8OuDzHkh32mSFAktzNEGcXULbH3MuN0VsP41x3I29JtYPFDYWctptVCoJtUdJWR705tgWSgOXrv+vyRpjesnfKSPSuM3FaOJEb+vfvj81DhrTbe+N8l3DzisL2PFn1XECfVIPbuXGw/lMMUP0A24ePwKAbMtx8jdDD4oZCku1Ov31Sm9sZWOys4BFcHAf++Ms03Dmn2ulOvv7GRf2IPNN2pWJnbLMjoZ+r7HCVEc5zo0qnxeRH3MsN9tq4h+vcUEiy3awSAJ6ZOLiLz2he3+bCuXD8c0V8lzfC9BbuFk7kXd7JjrY7iUvYsNK93DBcbsH/Rg5Fdw4kbhd7biikqdStXc3emNppe69c7sIGAPRTl6GhYh+aai6x94bIiyzZ0bnlJBwnJriTG1FrFyE68UZExPXkQOIOsLghQnsL+rm6d952UHHr+J1A2/COi/oR+YZoarvBpi1XszAlm3F+rWNs+qR2nBuGyy3Ylj6U07/dwOKGCOYF/RL6GRxCBwB6xLdg/sozV6/QrhJg3XemV98W9Ig3r48hSe6tUeFPnBZO5BuuBhhbzH6pDL95r8QhO1Tq1j2rAEBQSajStb8uFqd/e4bFDdFVDy4uR48+lkW8WmdB1VaHo3fflqtXaFdJAkxGFX6/4Tss+lsJtN0ka8B1tEaFv3FaOJH7PFmpGDDnRu/k5quf2U8RH/qDy+id5Do7Xt14Cgn9DNbZVu2tizV662FciFVzILGbWNwQwbxi8ftLk1BTGY62C3Ql9DNAEw6nUzU14Y7r5gTi3jDayMDpSSIKVJ6sVGxLsNY0rT04ao1oN6avK9lhmf69ecgQTv92E4sbIphXLK4us6xYbH/1ZR6PYz8F1HaqpqvwCqRxN0TUMU9WKrZwnh3m3hlLkdLV7OD0b89xKjiFvNZVR+0JgoQ+qc1ITGuBaLKfAto2fB5cXI73lyah8qxW1rVtiKhrolJ64ePmdNz0xYcwzsht99yOssOiq9nB6d+eY3FDIc9y9VRdFn61e9i8BkWf1GbcOacarzychsqzWiT0M+DBxeXok+rYZd1eeBFR8Ojfvz+Oll3EkO7Z+LD+U2TFuC5wXGVHz8QWGFsEPDNxsF1uOMuGjrIjau0ihHP6t8d4W4oIjquOzl95BgveLcU/V8Rbu5zd2QSThQ1R8NNGdce57ka3BhY7yw5NmISaSvM4N3c3z3WVHZz+3TnsuSGC86untl3OrhboC5beGoPJYF7rpr/cLSEKbINuyMB2fSNmfK3BhzZjb5z14rTNDndzA+g4Ow7Wf4q87tk4wOnfHmPPDZEN26DpaLBflS4MrzychmcmDm53fYpAwJWKiTxj6b2ZfvAUph881WEvjiUX3Bkk7G523PTFAVyIVSMqpZdX3lMoYXFD1A5XsxwA+1kS7nY9y4krFRO5zzItPMzQA2GGHjBcbnF7BlV7uQG4lx2WRfs2DxnCXptO4G0pona4GuznSddzoNiZk4m8bVypmMgd/fv3x6kaA2p6DwMARGv6YPTWb6Cf2v4MKqD9QcLuZsforYdxLuZ6Tv/uJPbcELmhbUAF49o2WTG5OCPux9ijRTh16ITczSEKeJo4LXbcnIkdN2di+/ARGKD6gdu9N4DzCx13s4MDibuGxQ1RJ3XU9RyIuM8Ukfv69+9v/fBkBlVHOsoO7v7ddbwtRdRJwbi2jXmfqfmQmtNRUlLC4CRyk2UMzg927uvyc3WUHVy0r+vYc0PURcFS2FhoI8Mw+8j3HFhM5AHL1gwjetzq0a2p9jjLDu7+7R0sbohCjH7qMhTV7uK0cCIPRaX0wnvXXYObvjjgs9fg9G/vYHFDFII4LZzIc53ZWNMTnP7tPSxuiEIQBxYTdY43Bxa3xd2/vYcDiolCkGVgMTBc7qYQBRVXWzO05WrDzfZ6fG7iQGKvYXFDRETkAUvvzfgtrntvvrzNscA5WP8pbvriAGIinG+3IHH6t9ewuCEiIvKAJk6L7cNH4NlLI5x+vfncOdR/sQnGGfbFzU1fHMCtfSYiPDnZ6eNe7QlEsdfGK1jcEBERecCyNYOuudbp1+t7AkMuZ+PD+k+tvTeWHb5P9gRiuhudPk4b1YO9Nl7C4oaIiMhDmjgtvohLcPo1Y1wPZNf+D6O3HrbuRWXZK2rP4AyXWyrwF7L38HtJFMKk5mauVEzUCe3+zPSHw6Bj28HC/HnzPRY3RCFq75SReGTn91gVHg4wbIm8yjLoePrBUwCAKg4W9iuuc0MUorJiclFUu8vae0NE3mPZi6pvyyj0bRnFHb79jMUNUQjjSsVEvtG/f39ExPVEZUYCKjMS2GvjZ7wtRRTCduZkIm8bVyom8gXbQcf8Zetf/H4ThbCsmFycERdhQrEau1J68cqSyIv48yQf3pYiIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKYqsxc1bb72FzMxMxMTEICYmBtnZ2di0aZPL8z/44AMIgmD3ERER4ccWE5HcmBtE1BFZZ0ulpKRg+fLlSE9PhyRJ+Nvf/oa77roLhw4dwvDhw50+JiYmBidOnLB+LgiCv5pLMlIbmpC5oRCxFTrUJabi8ORpMGn5C8obzNPBTdCXXQyKlYqZG+QJTdMVjCj4CD10pahNTUPRjAdgjOgmd7PIx2QtbqZMmWL3+bJly/DWW2/hq6++chlSgiAgMTHRH82jAKE2NCH3qemIP30ckkoNQTRh6Nb1+PT1T1jgeEFWTC6KG+dDak4Pin2mmBvkLk3TFdx/312IP3YMkloFwSRi+Lp/YPWa9SxwFC5gxtyYTCYUFhZCr9cjOzvb5XmNjY1IS0tDamoq7rrrLhw9erTd5zUYDKivr7f7oOCSuaEQ8aePQyVJUJuMUEkS4k8fR+aGQrmbphjBulKxr3IDYHYowYiCjxB/7BhUkgi10QiVJCL+2DGMKPhI7qaRj8le3Bw5cgTdu3eHVqvFL37xC6xduxbDhg1zem5GRgZWrVqF9evX4+OPP4Yoihg1ahTKyspcPn9+fj5iY2OtH6mpqb56K+QjsRU6SCq13TFJpUZshU6mFimPfuoyNFTsQ1PNpaDYZ8rXuQEwO5Sgh64Uktr+15ykVqGHrlSmFpG/yF7cZGRk4JtvvsHXX3+Nxx57DDNnzsSxY8ecnpudnY28vDxcf/31GDNmDD7//HPEx8djxYoVLp9/4cKFqKurs37odPyFGGzqElMhiCa7Y4JoQl0if9l4UzD13vg6NwBmhxLUpqZBMIl2xwSTiNrUNJlaRP4ie3ETHh6OQYMGYeTIkcjPz8eIESPwxhtvuPXYsLAw3HDDDTh16pTLc7RarXVWheWDgsvhydNQPXAoREGASa2BKAioHjgUhydPk7tpirIzJxPJjcGxz5SvcwNgdihB0YwHUD1sGERBBZNGA1FQoWrYcBTNeEDuppGPBdzeUqIowmBw78rRZDLhyJEjuOOOO3zcKpKTSRuBT1//hLOlfMwysDgY95libpAzxohuWL1mPWdLhSBZi5uFCxdi4sSJ6NevHxoaGrB69Wps374dmzdvBgDk5eUhOTkZ+fn5AIAXX3wRt9xyCwYNGoTa2lq8+uqrKC0txcMPPyzn2yA/MGkjcOjeWXI3Q/H2ThkZ8NPCmRvkCWNENxyY/ajczSA/k7W4qaqqQl5eHs6fP4/Y2FhkZmZi8+bNuO222wAAZ8+ehUrVeuespqYGjzzyCCoqKhAXF4eRI0di9+7dLgcSEpFngmFaOHODiDoiSJIkyd0If6qvr0dsbCx+t/YAIqK6y90cooATtXYRwmOux56bfohBN2T45DWaGhrw2xEZqKurC5qxLJbseLHoBCKio+VuDlHI8SQ3ZB9QTESBZWdOJq5p0srdDCKiTmNxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdE5MBgNAXFSsVERM6wuCEiO1kxuTgj7seE4mKcOnRC7uYQEXmMxQ0ROdiZk4nedey9IaLgxOKGiByYVyreA6m5GSUlJXI3h4jIIyxuiMgpbWQYxp08DmONextSEhEFChY3ROSUfuoyNFTs460pIgo6LG6IiIhIUVjcEBERkaKwuCEiIiJFYXFDREREisLihoiIiBSFxQ0REREpCosbIiIiUhQWN0RERKQoLG6IiIhIUVjcEBERkaKwuCGidnHzTCIKNixuiMilvVNGYvaR76Evuyh3U4iI3MbihohcyorJRVHtLvbeEFFQYXFDRO3SRoZh3MnjMNYY5G4KEZFbWNwQUbt25mSioWIfDPpGuZtCROQWFjdE1K6smFxoI8MwobiYt6aIKCiwuCEiIiJFYXFDREREisLihoiIiBSFxQ0REREpCosbIiIiUhQWN0TUoZ05mehdZ+JKxUQUFFjcEFGHsmJyUdy4hysVE1FQYHFDRG7hSsVEFCxY3BCRW/RTl6GhYh+aai6x94aIAhqLGyJyG3tviCgYsLghIrftzMnENU1auZtBRNQuFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BCR27JiclFUu4ubZxJRQGNxQ0Qe4eaZRBToWNwQkUd25mQiuVEDg75R7qYQETnF4oaIPJIVk4sz4n6MPVqEU4dOyN0cIiIHLG6IyGM7czJxTZOWvTdEFJBY3BCRxywDi4mIAhGLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgURdbi5q233kJmZiZiYmIQExOD7OxsbNq0qd3HrFmzBkOGDEFERASuu+46bNy40U+tJaJAwNwgoo7IWtykpKRg+fLlOHDgAPbv348f//jHuOuuu3D06FGn5+/evRvTp0/H7NmzcejQIdx99924++678e233/q55URmakMTbvjsA4z9y0u44bMPoDY0yd0kxWNuULDTNF3ByPfeQc6SRRj53jvQNF2Ru0mKI0iSJMndCFs9e/bEq6++itmzZzt8LTc3F3q9Hhs2bLAeu+WWW3D99dfj7bffduv56+vrERsbi9+tPYCIqO5eazeFHrWhCblPTUf86eOQVGoIognVA4fi09c/gUkbIXfzfE5TMB8Hch7G8FtHevzYpoYG/HZEBurq6hATE9Pltvg6N4DW7Hix6AQioqO73GYKTZqmK7j/vrsQf+wYJLUKgklE9bBhWL1mPYwR3eRuXkDzJDcCZsyNyWRCYWEh9Ho9srOznZ6zZ88ejB8/3u7YhAkTsGfPHpfPazAYUF9fb/dB5A2ZGwoRf/o4VJIEtckIlSQh/vRxZG4olLtpIcNXuQEwO8g3RhR8hPhjx6CSRKiNRqgkEfHHjmFEwUdyN01RZC9ujhw5gu7du0Or1eIXv/gF1q5di2HDhjk9t6KiAgkJCXbHEhISUFFR4fL58/PzERsba/1ITU31avspdMVW6CCp1HbHJJUasRU6mVoUOnydGwCzg3yjh64Uktr+V6+kVqGHrlSmFimT7MVNRkYGvvnmG3z99dd47LHHMHPmTBw7dsxrz79w4ULU1dVZP3Q6/uIh76hLTIUgmuyOCaIJdYn8Jehrvs4NgNlBvlGbmgbBJNodE0wialPTZGqRMsle3ISHh2PQoEEYOXIk8vPzMWLECLzxxhtOz01MTERlZaXdscrKSiQmJrp8fq1Wa51VYfkg8obDk6eheuBQiIIAk1oDURBQPXAoDk+eJnfTFM/XuQEwO8g3imY8gOphwyAKKpg0GoiCClXDhqNoxgNyN01RNHI3oC1RFGEwGJx+LTs7G1u3bsWTTz5pPbZlyxaX99qJfMmkjcCnr3+CzA2FiK3QoS4xFYcnTwuJwcSBhrlBwcIY0Q2r16zHiIKP0ENXitrUNBTNeICDib1M1uJm4cKFmDhxIvr164eGhgasXr0a27dvx+bNmwEAeXl5SE5ORn5+PgBg3rx5GDNmDF577TVMmjQJhYWF2L9/P9555x053waFMJM2AofunSV3M2QjNTejpKQE/fv399trMjco2BkjuuHA7EflboaiyVrcVFVVIS8vD+fPn0dsbCwyMzOxefNm3HbbbQCAs2fPQqVqvXM2atQorF69Gs8//zyee+45pKenY926dbj22mvlegtEIWvvlJHI23YSBeHhgB+LG+YGEXUk4Na58TWuc0PkPZqC+dg/Og/dr+nrUe+Nt9e58Qeuc0Mkr6Bc54aIgo82MgzjTh6Hscb5eBciIjmwuCGiTtNPXYaGin0w6BvlbgoRkRWLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiKjLJhQXo6SkRO5mEBEBYHFDRF20d8pI9K4zQV92Ue6mEBEBYHFDRF2UFZOL4sY9kJqb2XtDRAGBxQ0RdZk2MgzjTh6HscYgd1OIiFjcEFHX6acuQ0PFPhj0jey9ISLZsbghIq/QRoZhQnGx3M0gImJxQ0RERMrC4oaIiIgUhcUNERERKQqLGyIiIlIUjdwN8DdJkgAATZcbZW4JkbKomlugNjShWa9HU0NDu+c2NZp//iw/j8HAmh2NzA4iOXiSG4IUTOniBWVlZUhNTZW7GUQEQKfTISUlRe5muIXZQRQY3MmNkCtuRFFEeXk5oqOjIQhCp5+nvr4eqamp0Ol0iImJ8WILAxvfd2i9b8A3712SJDQ0NCApKQkqVXDcHfdGdvD/Uei9d75veXIj5G5LqVQqr14pxsTEhNR/WAu+79Dj7fceGxvrtefyB29mB/8fhd575/v2DndzIzgumYiIiIjcxOKGiIiIFIXFTSdptVosXrwYWq1W7qb4Fd93aL1vILTfu7eF8vcyVN8737c87zvkBhQTERGRsrHnhoiIiBSFxQ0REREpCosbIiIiUhQWN0RERKQoLG48kJ+fjxtvvBHR0dHo06cP7r77bpw4cULuZvnFW2+9hczMTOuCTNnZ2di0aZPczfK75cuXQxAEPPnkk3I3xaeWLFkCQRDsPoYMGSJ3s4JWqGYHc8MsVHIDCJzsYHHjgR07dmDu3Ln46quvsGXLFrS0tOAnP/kJ9Hq93E3zuZSUFCxfvhwHDhzA/v378eMf/xh33XUXjh49KnfT/Gbfvn1YsWIFMjMz5W6KXwwfPhznz5+3fuzatUvuJgWtUM0O5kbo5QYQINkhUadVVVVJAKQdO3bI3RRZxMXFSe+++67czfCLhoYGKT09XdqyZYs0ZswYad68eXI3yacWL14sjRgxQu5mKFYoZwdzQ9kCJTvYc9MFdXV1AICePXvK3BL/MplMKCwshF6vR3Z2ttzN8Yu5c+di0qRJGD9+vNxN8ZuTJ08iKSkJ11xzDWbMmIGzZ8/K3STFCMXsYG6EjkDIjpDbONNbRFHEk08+iR/+8Ie49tpr5W6OXxw5cgTZ2dloampC9+7dsXbtWgwbNkzuZvlcYWEhDh48iH379sndFL+5+eab8cEHHyAjIwPnz5/H0qVLMXr0aHz77beIjo6Wu3lBLdSyg7kROrkBBE52sLjppLlz5+Lbb78NqXEIGRkZ+Oabb1BXV4d//OMfmDlzJnbs2KHooNLpdJg3bx62bNmCiIgIuZvjNxMnTrT+PTMzEzfffDPS0tLw97//HbNnz5axZcEv1LKDuRE6uQEETnZw+4VO+OUvf4n169fjv//9LwYMGCB3c2Qzfvx4DBw4ECtWrJC7KT6zbt06TJ06FWq12nrMZDJBEASoVCoYDAa7rynZjTfeiPHjxyM/P1/upgQtZgdzI9RyA5AnO9hz4wFJkvDEE09g7dq12L59e8iGk4UoijAYDHI3w6dycnJw5MgRu2MPPvgghgwZggULFoRMQDU2NuL06dN44IEH5G5KUGJ2tGJuhE5uAPJlB4sbD8ydOxerV6/G+vXrER0djYqKCgBAbGwsunXrJnPrfGvhwoWYOHEi+vXrh4aGBqxevRrbt2/H5s2b5W6aT0VHRzuMi4iKikKvXr0UPV7imWeewZQpU5CWloby8nIsXrwYarUa06dPl7tpQSlUs4O50SoUcgMInOxgceOBt956CwAwduxYu+Pvv/8+Zs2a5f8G+VFVVRXy8vJw/vx5xMbGIjMzE5s3b8Ztt90md9PIB8rKyjB9+nRcvHgR8fHxuPXWW/HVV18hPj5e7qYFpVDNDuZG6AmU7OCYGyIiIlIUrnNDREREisLihoiIiBSFxQ0REREpCosbIiIiUhQWN0RERKQoLG6IiIhIUVjcEBERkaKwuCEiIiJFYXFDQcFkMmHUqFG455577I7X1dUhNTUVixYtkqllRBSomBuhiysUU9D47rvvcP3112PlypWYMWMGACAvLw9FRUXYt28fwsPDZW4hEQUa5kZoYnFDQeVPf/oTlixZgqNHj2Lv3r247777sG/fPowYMULuphFRgGJuhB4WNxRUJEnCj3/8Y6jVahw5cgRPPPEEnn/+ebmbRUQBjLkReljcUNApLi7G0KFDcd111+HgwYPQaLi5PRG1j7kRWjigmILOqlWrEBkZiTNnzqCsrEzu5hBREGBuhBb23FBQ2b17N8aMGYN///vfePnllwEAX375JQRBkLllRBSomBuhhz03FDQuX76MWbNm4bHHHsO4cePw3nvvYe/evXj77bflbhoRBSjmRmhizw0FjXnz5mHjxo0oKipCZGQkAGDFihV45plncOTIEfTv31/eBhJRwGFuhCYWNxQUduzYgZycHGzfvh233nqr3dcmTJgAo9HIbmYissPcCF0sboiIiEhROOaGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCj/HxWzhHYcLGGQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# построение областей аппроксимации и точек тестового набора\n", + "lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nuBl5GGrfs--" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/labworks/LW2/is_lab2 (2).ipynb b/labworks/LW2/is_lab2 (2).ipynb new file mode 100644 index 0000000..cbeae0a --- /dev/null +++ b/labworks/LW2/is_lab2 (2).ipynb @@ -0,0 +1,4935 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pCa-oj1IGPf-", + "outputId": "11188f2d-2342-493e-f455-b88df2b91d70" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘drive/MyDrive/Colab’: No such file or directory\n", + "mkdir: cannot create directory ‘Notebooks/is_lab2’: No such file or directory\n" + ] + } + ], + "source": [ + "mkdir drive/MyDrive/Colab Notebooks/is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zTHlvvZGq6o", + "outputId": "f0dc78fd-392e-4b58-d892-4478b3034ffe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive\n" + ] + } + ], + "source": [ + "cd drive" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zTgwV0j1G34f", + "outputId": "e355de3f-1724-4a7e-a4df-62de92aa8475" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive/MyDrive\n" + ] + } + ], + "source": [ + "cd MyDrive/" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X1emctxUG5_a", + "outputId": "51562d69-266b-4fd0-f045-9308aab5407a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/drive/MyDrive/Colab Notebooks\n" + ] + } + ], + "source": [ + "cd Colab\\ Notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZILuaysRG8AA", + "outputId": "459d32ce-f891-48b9-f03e-c38b99477591" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘is_lab2.ipynb’: File exists\n" + ] + } + ], + "source": [ + "mkdir is_lab2.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xR3GRzOMG_Xp", + "outputId": "b4b61fdb-e290-407e-8330-d69a15a08dff" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘is_lab2’: File exists\n" + ] + } + ], + "source": [ + "mkdir is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "myqtSP8YHeOG" + }, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3ryig5GRIEP4", + "outputId": "caa2adcc-b496-480b-d5ce-b343615dddf6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-11-12 21:04:43-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘lab02_lib.py’ not modified on server. Omitting download.\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FFTboL_Z9jvj", + "outputId": "d023b3f9-db94-4115-bb12-80603edb2dd8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "R7ls5L_fIP-s", + "outputId": "8b28971d-e6c7-46ad-b021-03039719ba71" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-11-12 21:04:47-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘letter_train.txt’ not modified on server. Omitting download.\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DCcRAZQMIqnD", + "outputId": "5c3baab7-eb39-48fc-a0a3-d290e6a15fd6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-11-12 21:04:49-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘letter_test.txt’ not modified on server. Omitting download.\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Qgqz050IvsY", + "outputId": "1de61707-a92a-4c8c-fa17-a58b0230d462" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘out’: File exists\n" + ] + } + ], + "source": [ + "mkdir out" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xag0MrqqI6P8", + "outputId": "3cd0267b-0baf-4c8a-ecdd-93a24a1f7142" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:444: SyntaxWarning: invalid escape sequence '\\X'\n", + " hatch='/', label='Площадь |Xd| за исключением |Xt| (|Xd\\Xt|)')\n", + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:452: SyntaxWarning: invalid escape sequence '\\X'\n", + " facecolor='none', label='Площадь |Xt| за исключением |Xd| (|Xt\\Xd|)')\n" + ] + } + ], + "source": [ + "# импорт модулей\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "svNJLDxrI9CM", + "outputId": "8b9eef4a-d8a4-4b36-e7a8-44583a162833" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApmVJREFUeJzt3X+cHVV98PHv7l12AyS7/HhAfgWjN2SzG1hAsTVafrQEEVNKsjRIHyjCSysIVCzNU0SjIIKhEoWqJVKlrQ2m6RO7wZdABIrGPhQUCqSJ2WQhgUgM0Citu4HALnv3Pn9MZ3d2dmbu/Dgzc87M5/167WtzN/fHmTNn5p7vnO8501Sv1+sCAAAAAABy15x3AQAAAAAAgIUgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQCAArr00ktl1qxZsV574403SlNTk9oCAQCAUAjSAQDIUFNTU6ifDRs25F1U461evVruuOOOvIsBAEAkTfV6vZ53IQAAKIt77rln0uN/+Id/kIcfflhWrVo16e9nnXWWvO1tb4v9OW+99ZaMjY1JW1tb5NeOjo7K6OioTJs2Lfbn6+D3f//35ec//7ns3Lkz76IAABBaS94FAACgTC6++OJJj3/605/Kww8/POXvbvv27ZMDDjgg9Ofst99+sconItLS0iItLXQRAADIA+nuAABo5owzzpDjjz9ennrqKTnttNPkgAMOkM985jMiIvL9739fFi5cKEcddZS0tbVJtVqVL37xi1Kr1Sa9h3tO+s6dO6WpqUlWrFghf/M3fyPValXa2trkPe95jzz55JOTXus1J72pqUmuvvpquffee+X444+XtrY2mTdvnvzwhz+cUv4NGzbIKaecItOmTZNqtSp33XVX6Hnuzz33nJx//vlyxBFHyLRp0+SYY46RCy+8UAYHByc975577pF3v/vdsv/++8shhxwiF154oezatWtSHd5///3yi1/8YnwKQdw5+gAAZInL5AAAaOjVV1+Vc845Ry688EK5+OKLx1Pf//7v/16mT58u1157rUyfPl1+9KMfyec//3kZGhqS2267reH7rl69Wvbu3SuXX365NDU1yZe//GXp7e2V559/vuHo+6OPPip9fX1y5ZVXyowZM+RrX/uanH/++fLiiy/KoYceKiIizzzzjHzwgx+UI488Ur7whS9IrVaTm266SQ477LCGZRsZGZGzzz5bhoeH5U//9E/liCOOkN27d8t9990nv/nNb6Sjo0NERG655Rb53Oc+JxdccIF87GMfk1/96lfy9a9/XU477TR55pln5KCDDpLPfvazMjg4KL/85S/l9ttvFxGR6dOnNywDAAC5qwMAgNxcddVVdffX8emnn14Xkfo3v/nNKc/ft2/flL9dfvnl9QMOOKD+5ptvjv/tIx/5SP3tb3/7+OMXXnihLiL1Qw89tP5f//Vf43///ve/XxeR+g9+8IPxv91www1TyiQi9dbW1vr27dvH//Yf//EfdRGpf/3rXx//27nnnls/4IAD6rt37x7/23PPPVdvaWmZ8p5uzzzzTF1E6mvXrvV9zs6dO+uVSqV+yy23TPr75s2b6y0tLZP+vnDhwkl1AACACUh3BwBAQ21tbXLZZZdN+fv+++8//u+9e/fKr3/9azn11FNl3759sm3btobv++EPf1gOPvjg8cennnqqiIg8//zzDV+7YMECqVar4497enqkvb19/LW1Wk3+5V/+RRYtWiRHHXXU+PNmz54t55xzTsP3t0fKH3zwQdm3b5/nc/r6+mRsbEwuuOAC+fWvfz3+c8QRR8hxxx0nP/7xjxt+DgAAOiPdHQAADR199NHS2to65e9btmyRZcuWyY9+9CMZGhqa9H/uedtejj322EmP7YD9v//7vyO/1n69/do9e/bIG2+8IbNnz57yPK+/ub3jHe+Qa6+9Vr761a/Kd7/7XTn11FPlD/7gD+Tiiy8eD+Cfe+45qdfrctxxx3m+R5IF8wAA0AFBOgAAGnKOmNt+85vfyOmnny7t7e1y0003SbValWnTpsnTTz8t1113nYyNjTV830ql4vn3eog7siZ5bVhf+cpX5NJLL5Xvf//78tBDD8knP/lJWb58ufz0pz+VY445RsbGxqSpqUnWr1/vWR7mnQMATEeQDgCAITZs2CCvvvqq9PX1yWmnnTb+9xdeeCHHUk04/PDDZdq0abJ9+/Yp/+f1Nz8nnHCCnHDCCbJs2TJ57LHH5P3vf79885vflJtvvlmq1arU63V5xzveIXPmzAl8nzCryQMAoBvmpAMAYAh75Ng5cj0yMiJ33nlnXkWapFKpyIIFC+Tee++Vl156afzv27dvl/Xr1zd8/dDQkIyOjk762wknnCDNzc0yPDwsIiK9vb1SqVTkC1/4wpQR/Hq9Lq+++ur44wMPPDDUFAAAAHTCSDoAAIZ43/veJwcffLB85CMfkU9+8pPS1NQkq1atUppuntSNN94oDz30kLz//e+XT3ziE1Kr1eQb3/iGHH/88bJx48bA1/7oRz+Sq6++WpYsWSJz5syR0dFRWbVqlVQqFTn//PNFRKRarcrNN98s119/vezcuVMWLVokM2bMkBdeeEHWrVsnH//4x2Xp0qUiIvLud79b/umf/kmuvfZaec973iPTp0+Xc889N+0qAAAgEYJ0AAAMceihh8p9990nf/7nfy7Lli2Tgw8+WC6++GI588wz5eyzz867eCJiBcbr16+XpUuXyuc+9zmZOXOm3HTTTbJ169aGq8+feOKJcvbZZ8sPfvAD2b17txxwwAFy4oknyvr16+W9733v+PM+/elPy5w5c+T222+XL3zhCyIiMnPmTPnABz4gf/AHfzD+vCuvvFI2btwof/d3fye33367vP3tbydIBwBor6mu0+V3AABQSIsWLZItW7bIc889l3dRAADQGnPSAQCAUm+88cakx88995w88MADcsYZZ+RTIAAADMJIOgAAUOrII4+USy+9VN75znfKL37xC1m5cqUMDw/LM88843t/cwAAYGFOOgAAUOqDH/yg/OM//qO88sor0tbWJvPnz5cvfelLBOgAAITASDoAAAAAAJpgTjoAAAAAAJogSAcAAAAAQBOlm5M+NjYmL730ksyYMUOampryLg4AAAAAoODq9brs3btXjjrqKGluDh4rL12Q/tJLL8nMmTPzLgYAAAAAoGR27dolxxxzTOBzShekz5gxQ0Ssymlvb8+5NAAAAACAohsaGpKZM2eOx6NBShek2ynu7e3tBOkAAAAAgMyEmXLNwnEAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANFG6heOiqtVq8tZbb+VdDBTUfvvtJ5VKJe9iAAAAANAEQbqPer0ur7zyivzmN7/JuygouIMOOkiOOOKIUCs9AgAAACg2gnQfdoB++OGHywEHHEAABeXq9brs27dP9uzZIyIiRx55ZM4lAgAAAJA3gnQPtVptPEA/9NBD8y4OCmz//fcXEZE9e/bI4YcfTuo7AAAAUHIsHOfBnoN+wAEH5FwSlIHdzlj7AAAAAIA2Qfqtt94qTU1N8qlPfcr3OX19fXLKKafIQQcdJAceeKCcdNJJsmrVqtTKRIo7skA7AwAAAGDTIt39ySeflLvuukt6enoCn3fIIYfIZz/7WZk7d660trbKfffdJ5dddpkcfvjhcvbZZ2dUWgAAAAAA0pH7SPprr70mF110kXzrW9+Sgw8+OPC5Z5xxhixevFi6urqkWq3KNddcIz09PfLoo49mVFoAAAAAANKTe5B+1VVXycKFC2XBggWRXlev1+WRRx6RgYEBOe2003yfNzw8LENDQ5N+kK5LL71UZs2aFeu1N954I+nfAAAAAEor1yB9zZo18vTTT8vy5ctDv2ZwcFCmT58ura2tsnDhQvn6178uZ511lu/zly9fLh0dHeM/M2fOVFF0IzU1NYX62bBhQ95FNd7q1avljjvuyLsYAAAAAAzTVK/X63l88K5du+SUU06Rhx9+eHwu+hlnnCEnnXRSYHAzNjYmzz//vLz22mvyyCOPyBe/+EW599575YwzzvB8/vDwsAwPD48/HhoakpkzZ8rg4KC0t7d7vubNN9+UF154Qd7xjnfItGnTYm+jbu65555Jj//hH/5BHn744SmL75111lnytre9LfbnvPXWWzI2NiZtbW2RXzs6Oiqjo6PG1/vv//7vy89//nPZuXNnw+cWtb0BAAAAsAwNDUlHR0dgHGrLbeG4p556Svbs2SPvete7xv9Wq9XkX//1X+Ub3/iGDA8Pe94zurm5WWbPni0iIieddJJs3bpVli9f7hukt7W1xQoWi+jiiy+e9PinP/2pPPzww1P+7rZv375It6Pbb7/9YpVPRKSlpUVaWrRYzxAAAAAAMpdbuvuZZ54pmzdvlo0bN47/nHLKKXLRRRfJxo0bPQN0L2NjY5NGypHMGWecIccff7w89dRTctppp8kBBxwgn/nMZ0RE5Pvf/74sXLhQjjrqKGlra5NqtSpf/OIXpVarTXoP95z0nTt3SlNTk6xYsUL+5m/+RqrVqrS1tcl73vMeefLJJye91mtOelNTk1x99dVy7733yvHHHy9tbW0yb948+eEPfzil/Bs2bJBTTjlFpk2bJtVqVe66667Q89yfe+45Of/88+WII46QadOmyTHHHCMXXnihDA4OTnrePffcI+9+97tl//33l0MOOUQuvPBC2bVr16Q6vP/+++UXv/jF+BSCuHP0AQAAAJRLbkOWM2bMkOOPP37S3w488EA59NBDx/9+ySWXyNFHHz0+Z3358uVyyimnSLValeHhYXnggQdk1apVsnLlyszLX2SvvvqqnHPOOXLhhRfKxRdfPJ76/vd///cyffp0ufbaa2X69Onyox/9SD7/+c/L0NCQ3HbbbQ3fd/Xq1bJ37165/PLLpampSb785S9Lb2+vPP/88w1H3x999FHp6+uTK6+8UmbMmCFf+9rX5Pzzz5cXX3xRDj30UBEReeaZZ+SDH/ygHHnkkfKFL3xBarWa3HTTTXLYYYc1LNvIyIicffbZMjw8LH/6p38qRxxxhOzevVvuu+8++c1vfiMdHR0iInLLLbfI5z73ObngggvkYx/7mPzqV7+Sr3/963LaaafJM888IwcddJB89rOflcHBQfnlL38pt99+u4iITJ8+vWEZAAAAAEDrvOIXX3xRmpsnBvtff/11ufLKK+WXv/yl7L///jJ37ly555575MMf/nCOpYyuVhMJmSiQi1deeUW++c1vyuWXXz7p76tXr5b9999//PEVV1whV1xxhdx5551y8803N5xW8OKLL8pzzz03fqu9zs5OOe+88+TBBx+U3//93w987datW6W/v1+q1aqIiPzu7/6unHjiifKP//iPcvXVV4uIyA033CCVSkX+7d/+TY466igREbngggukq6ur4Tb39/fLCy+8IGvXrpU//MM/HP/75z//+fF//+IXv5AbbrhBbr755vHsAhGR3t5eOfnkk+XOO++Uz3zmM3LWWWfJ0UcfLf/93//dcCoBAAAAADjlfgs2pw0bNkxaNG7Dhg3y93//9+OPb775ZnnuuefkjTfekP/6r/+Sxx57zKgAfWBAZN48kZYW6/fAQN4l8tbW1iaXXXbZlL87A/S9e/fKr3/9azn11FNl3759sm3btobv++EPf3g8QBcROfXUU0VE5Pnnn2/42gULFowH6CIiPT090t7ePv7aWq0m//Iv/yKLFi0aD9BFRGbPni3nnHNOw/e3R8offPBB2bdvn+dz+vr6ZGxsTC644AL59a9/Pf5zxBFHyHHHHSc//vGPG34OAAAAAATRKkgvut7eicB8YMB6rKOjjz5aWltbp/x9y5YtsnjxYuno6JD29nY57LDDxkeK3fO2vRx77LGTHtsB+3//939Hfq39evu1e/bskTfeeGN8UUEnr7+5veMd75Brr71Wvv3tb8v/+l//S84++2z567/+60nb9dxzz0m9XpfjjjtODjvssEk/W7dulT179jT8HAAAAAAIonW6e5HUaiL9/VMf65j67hwxt/3mN7+R008/Xdrb2+Wmm26SarUq06ZNk6efflquu+46GRsba/i+fosBhrkLYJLXhvWVr3xFLr30Uvn+978vDz30kHzyk5+U5cuXy09/+lM55phjZGxsTJqammT9+vWe5WHeOQAAAICkCNIzUqmIdHdbI+h2YN7ZqV+A7mfDhg3y6quvSl9fn5x22mnjf3/hhRdyLNWEww8/XKZNmybbt2+f8n9ef/NzwgknyAknnCDLli2Txx57TN7//vfLN7/5Tbn55pulWq1KvV6Xd7zjHTJnzpzA9wmzmjwAAEWm40AEAJiAdPcM9fVZgbmI9buvL9/yRGGPHDtHrkdGRuTOO+/Mq0iTVCoVWbBggdx7773y0ksvjf99+/btsn79+oavHxoaktHR0Ul/O+GEE6S5uXn8Fn+9vb1SqVTkC1/4wpQR/Hq9Lq+++ur44wMPPDDUFAAAAIrGlDV4AEBXjKRnqLNTZMsWM68sv+9975ODDz5YPvKRj8gnP/lJaWpqklWrVilNN0/qxhtvlIceekje//73yyc+8Qmp1WryjW98Q44//njZuHFj4Gt/9KMfydVXXy1LliyROXPmyOjoqKxatUoqlYqcf/75IiJSrVbl5ptvluuvv1527twpixYtkhkzZsgLL7wg69atk49//OOydOlSERF597vfLf/0T/8k1157rbznPe+R6dOny7nnnpt2FQAAkDuvNXi2bMm3TABgEoL0HJgWoIuIHHrooXLffffJn//5n8uyZcvk4IMPlosvvljOPPNMOfvss/MunohYgfH69etl6dKl8rnPfU5mzpwpN910k2zdurXh6vMnnniinH322fKDH/xAdu/eLQcccICceOKJsn79ennve987/rxPf/rTMmfOHLn99tvlC1/4goiIzJw5Uz7wgQ/IH/zBH4w/78orr5SNGzfK3/3d38ntt98ub3/72wnSAQCFZ9IaPACgq6a6TkOhGRgaGpKOjg4ZHByU9vZ2z+e8+eab8sILL8g73vEOmTZtWsYlhGqLFi2SLVu2yHPPPZd3UTzR3gAARWKnuDvX4GEkHUDZhYlDbcxJR6G88cYbkx4/99xz8sADD8gZZ5yRT4EAACgZk9fgAQAdkO6OQnnnO98pl156qbzzne+UX/ziF7Jy5UppbW2Vv/iLv8i7aACAEitTurfJa/AAgA4I0lEoH/zgB+Uf//Ef5ZVXXpG2tjaZP3++fOlLX5Ljjjsu76IBAErIXjitv9+6FatzlLnoCNABIB6CdBTK3/3d3+VdBAAAxrHSOQAgKuakAwAApMC5srnXYwAAvBCkAwAApKBSsVLc7bRv92MAALwQpAco2d3pkBPaGYAyKdsoMiudAwCiIkj3sN9++4mIyL59+3IuCcrAbmd2uwOAIhoYsO6f3dIycR/tMrBXOh8dtX6XZdE4AEB8LBznoVKpyEEHHSR79uwREZEDDjhAmpqaci4ViqZer8u+fftkz549ctBBB0mF/EcABVb2BdQ4xQMAwiJI93HEEUeIiIwH6kBaDjrooPH2BgBFZC+Y5n7MfbQBAJiKIN1HU1OTHHnkkXL44YfLW2+9lXdxUFD77bcfI+gACs9eMG1gYCIw7+wkQAcAwAtBegOVSoUgCgCAhPr6rBT3/n4WUAMAIAhBOgAASJ29gBop7gAABGN1dwAAkBkCdAAAghGkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAGioVsu7BAAAAOVAkA4A8DUwIDJvnkhLi/V7YCDvEgEAABQbQToAwFdv70RgPjBgPQYAmIeMKMAcBOkAAE+1mkh//0THzv0YAKA/MqIA8xCkAwA8VSoi3d3Wb6/HAAD9kREFmIcgHQDgq69PpLPT+ndnp/UYAGAGMqIAM7XkXQAAgL46O0W2bLE6dIygT0adANCdnQE1MDBxzurs5NwF6I6RdABAQ3ToJjC/E4BJyIgCzNNUr9freRciS0NDQ9LR0SGDg4PS3t6ed3EAAIaxA3PnqNSWLXmXCgCCkf0D5CtKHMpIOgAAITG/E4CpCNABcxCkAwAQEiveAwCAtBGkAwAQAfM7AQBAmljdHQCACFjxXg/UPwCgqBhJBwAgBgLEfLC6PgCg6AjSAQCAMXp7JwLzgQHrMQAARUKQDgAAjMDq+gCAMiBIBwAARmB1fQBAGRCkAwAAY7C6PgCg6FjdHQAAGIPV9QEARcdIOgAAMA4BOgCgqAjSAQAAAADQBEE6AAAJsbo4VKEtAQAI0gEAxssrsBkYEJk3T6Slxfpt378biIq2BACwEaQDAIyVd2DT2zvxmQMD1mMgDtoSAMDWVK/X63kXIktDQ0PS0dEhg4OD0t7enndxAAAJ2IG5vdK3vfJ3Fmo16+KA2+goi5ohGtoSABRflDiUkXQAgJFqNZH+/olUd/fjtFUqIt3dE0GU+zEQFm0JAOBEkA4AMJIOgU1fnzV6L2L97uvL7rNRLLQlAIDNI7kKAAAz9PVZc3f7+/MJbOz0ejvdHoirSG2pCNsAAHliJB0AUsKtlNJnBzajo9ZveyQyawQkUMXktpT3Qo4AUBQE6QCgGB3V7Jkc2ABFwQr1AKAGQToAKEZHFUDZ5L2QIwAUCUE6AChERxVAGemwkCMAFAVBOgAoREcVQFmxQj1gJgYS9EOQDgCK0VEFUEa6LOQIIBzW0NFXU71er+ddiCwNDQ1JR0eHDA4OSnt7e97FAVBg3IYIKDfOAQB0Zgfm9rnKvtCGdESJQxlJR2KkyADe6JwD5cToFJA++p/JsIaO3gjSERudEAAApopzhwc6xsXG/lWH/qcarKGjN4J0xMZtpgAAmCzq6BQBR7Gxf9Wj/6kOa+joiznpiKVWs75w3EZHuQJnAuZJIg20K8ASZZ4nc0KLjf2rFv3PdPD9nQ3mpCN1pMiYiSv6SAPtCpgs7OgUc0KLjf2rHv3PdFB/+iFIR2ykyJiHFDGkgXalv6RBAUFFNGFvRUbAUWzs33TQ/0QZEKQjNu6Hahau6CMNtCu9Jc1yIEsimTDBGAFHsbF/1aP/iTJgTjpQIsyNQxpoV/pKum/Yt+lyzgNlTmixsX8BMCcdgCeu6CMNtCs9Jc1yIEsiPV4ZCgRwxcb+BRAFI+lACXFFH2kwoV3pXkbV5WMkXU/UKwCUDyPpAALpHKTAXDq3K93nVqdVvqRZDmRJqEeGAgCgEUbSAQCFp/vIZdrlSzpCr3sGgml0b48AAPUYSQcA4H/oPnKZRfmSBtgE6GqRoQAACNKSdwEAAEiTfW9i98ilLoGn7uWDevbIeZ4ZCmRHAIC+GEkHUFq6jKQifbqPXOpePqQjjyDZa/0DzoUAoBfmpAMonYEBkd5eK6W4u3tygIRi0330UPfywXzu+fCVisjICOdCAEgbc9IBIEBv78Tq2XbAjnLQPQDWvXwwm9f6ByMj1r85FwKAPgjSAZSK7ouIAdBLkc4N9voHXheDOBcCgD60CdJvvfVWaWpqkk996lO+z/nWt74lp556qhx88MFy8MEHy4IFC+SJJ57IrpAAjOfupAZ1WgGUV1r3rs+bM6W9tVWk+X96gpwLAUAfWgTpTz75pNx1113S09MT+LwNGzbIH/3RH8mPf/xjefzxx2XmzJnygQ98QHbv3p1RSQEUAYt05YdROpiiqNNi7JXlR0dFNm0SmTt34u+cC4uN8y9gjtyD9Ndee00uuugi+da3viUHH3xw4HO/+93vypVXXiknnXSSzJ07V7797W/L2NiYPPLIIxmVFkARODupW7awUFIWijoqiWIqw7QY+1Z/nAuLj/MvYJ7cg/SrrrpKFi5cKAsWLIj82n379slbb70lhxxyiO9zhoeHZWhoaNIPAIiQ1pmloo5KopjKNi2mqNsFC+dfwDy5Bulr1qyRp59+WpYvXx7r9dddd50cddRRgQH+8uXLpaOjY/xn5syZcYsLAIihDKOSKB6mxaAIOP8CZsotSN+1a5dcc8018t3vflemTZsW+fW33nqrrFmzRtatWxf4+uuvv14GBwfHf3bt2pWk2ACAiMo2KhkFHWV9kQqOIuD8C5gptyD9qaeekj179si73vUuaWlpkZaWFvnJT34iX/va16SlpUVqAT2XFStWyK233ioPPfRQw8Xm2trapL29fdIPACBbjEpOxhxRcxDMwHScfwHzNNXr9XoeH7x37175xS9+Melvl112mcydO1euu+46Of744z1f9+Uvf1luueUWefDBB+W9731v5M8dGhqSjo4OGRwcJGAHgIzVagQ9IhOBuV0f9qgtAKSF8y+QryhxaEtGZZpixowZUwLxAw88UA499NDxv19yySVy9NFHj89Z/8u//Ev5/Oc/L6tXr5ZZs2bJK6+8IiIi06dPl+nTp2e7AQCAyOggTswJdT/WpQOtSzmANJS5fZd1uwET5b66e5AXX3xRXn755fHHK1eulJGREfnDP/xDOfLII8d/VqxYkWMpAQAIT9c5oqTgN8YaAuaifQMwSW7p7nkh3R0AkDf7Nkj9/VaA7pwzmhdS8P3puL8QDe0bQN6ixKEE6QAA5ESX1NtazRphdBsd1aN8eSPAMxvtG4AOosShWqe7AwBQZLoECLqm4OuA+0ybj/YNwDQE6QAAQNvbNOUdDBPgFUOa7TvvNgqgeAjSAQDAeAr36Kj1O+851zot9KXrBYwiSTvQTaN969RGARQLQToAABinywhxb+9E0GMv3JYX3S5gFEnWga7K9q1TGwVQLCwcBwAAtKJyoS9dFueDN1MX5WMxOgBRsXAcAK0wXw9AFCrmgRcxFblo51KTF+VjrQIAaSJIB5CaInaSAWQj6TzwIqUiF/Vcanqgy1oFANJCujuA1JiaxghAH3HS1YNSkUXMCQJtRT6X2hdQ+vutAN0Z+JqCKRUAwogShxKkA0gF8/UA5Mkd2M6aJdLWZl4wWJZzKYEugKJjTjqA3JmexgggmO7zht2pyCJmpr+rPpfqut/4bgCACQTpAFLDfD2z6Np5h15MmR/tvG3apk0iO3aYuUCZiJpzqSn7DQBAunvexQFKgTRGvSWdE8r+LRdT50ebWm6nJMdaEbYfAExGujsArRDA6S3uKtiMzBVDlNFkk2+ZVYTMniQp7qbuNwAoI4J0ACixJJ33It3iqoziXGQxea0JZ/r7li1mLBqnisn7DQDKiCAdAEosbuedkTnzxb3IYvqIdFkDU9P3GwCUCXPSAaDk4s5JZ46ruVTc1ou1CMzEfgOAfDAnHQAQWtw0YEbmzKUi/ZlAz0zst+yRYQQgKoJ0AICIRO+8l3mObxFwkQVIF4trAoiLdHcAAAIUIT04aBuKsH1Zo84QBlOCADiR7g4AQEJFGAULsw1FDjZVpxkXoU0gGyyuCSAJgnQAADwU4RZzRdiGONIKpstan4iO294BSIJ0dwAAXFSsfp63ImxDXGmkGZe5PknvjyfunTMAFBPp7gAAJFCEUTCTtyFJSnBaacYm12dcpPcnw+KaAOIiSAcAwEMRVj83bRtUBIVpBtN51mcec5lJ71ejyBdyAKSDdHcAKCDSU9UpQl2asg2q0tTTTjPOsj7zSpkuc3o/AKSBdHcAKCnSU9UrQkBiwjaoTFNXlWbs99lZ1mdeo9llTO8HAF0QpAMonDLf4ob0VOgs6NhMIyiM+1pdLnalNb8+7OtNmy4BAEVBkA6gMHTpWOeF+/JCV2GPTV2CQl0udqm+cBH1HMnCZwCQD+akAyiMNG67ZBrqAF7ynpMetV3mWV7d5mKrnJPO+QEA8sOcdAClwyiyRZeRSESXRlvVIbskzrGZ5wUF3eZiq5xfzzkSAMxAkA6gEHTrWOeF9FS1sghg0gykdUjbNvHY1PFiV9L6MnE/AEBZEaQDKAwdO9Z5oeOdTJYj0GkF0jqNnAYdmzqO5Bb1YhfnSAAwA3PSARRO3vNvYb6s5u6mPf85znakefw43zuv+3+DcyQA5IE56QBKjc4nkshyBDrtFOQoI6dZZA84t0uHVPyy4hwJ0+mYgQOoRJAOAEiNiR2prOfuppmCHCVtO8ugWadUfADm0GExTCALBOkAAOV06UjFDfqynLubxfznRhcYsgya7VRrFjEDEBUZOCgLgnQAgHJ5dKScAWXSiwR5LBxW9NuOuffJihUsYgYgPDJwUCYE6QAApbLuSHkF5KouEpRpZDft7AH3Plm6tJgrqANIBxk4KBNWdwcAKJfV6uhenzVnjsjWrVOfp2rF9KJLY+XvtFexLzJWYgcmcFcImIzV3QFAQ0VPyXNuX1Zzur1G7bduFenqYrQlrjTqycQRsLyPV13WdQB0ksdUJCAPBOkAkLKid7a9ti+rjpRf8LduHfOddZPlYnxJ6HK8skAW4E/nC3yACqS7A0DKskz9zkPe2+eX/miPhNKZ04vu6dt5t2cRpgcAQBGR7g4Amij6arQ6bJ971F5kYiS0p8eMzIWitIcwdA4ydWjPIhMZIc3Nkx/rXHdOZWrPAJAGgnQASJGJc3Gj0Gn77M/0SxPWMXDQJbUaFl3a88CAyPCwyNiY9XjWLH2nBzil1Z51PHYBIE0E6QCQMlPm4sal0/b5jYR2d+sZCDPvWD86tOfeXpGdO61/VyoibW1mLJCluj2nEfQT8AMwAXPSASAjus/FTUqX7XPPKa5UrH/rtiYA8471lld7NrVdpFFulesDcOsuAHljTjoAaEjnDrYKumyfs/M9Z47IyEj+c4y96JJajQnOdpHXfjC1Xagut+r1AchaAWASgnQAQKE4F5KzR810DXiSpFbrcKGhKHRbG0CHlPs4VJZbZdCvy4KAABAWQToAoJDszrzOAU+c+8nrFlDqKGrwpdsoa5x2oQPV5VZ17JqanRAWFxuA4iFIBwAUmgkBT5RgQUVAWdROfZwLGDqPspoaRKoqt8pjV+eLdXFxwQ4oLoJ0AEApmBrwOCUNKON26nUIWN28yhTnAkbRR1nTkmWbULEvTLhYF5VuGSAA1CFIBwDAEEkDyqideh1H6vzKlOQCRhFHWdMSpk3oeFHHVpSLLzpngABIjiAdAACDxA0o43TqdRyp8ytTkgsYRRxlTUtQm9Dxok5RkQECFBv3SQcAwEBx7uMd5b7TOt2v2y5vUJm2bxdZuFBkxw7rb9WqyP33xw+487pPus4atQmV9zVHY9z7HTAL90kHACAiXdJEw5YjTgAZZRQ+6Uidivp0j8xu3+5fpt5ekZ07rb83N4u0tcULWBgN9hfUJki/zh4ZIEBxEaQDAErNGZR1d+cXlGURHEbt1MdJrVe5HV6p1V5lcgeEY2PxA0QdU/x14tcmSL/OD3UMFA/p7gAKhzRVRDFvnsi2bVZgJyLS2iqyaVP2o1I6pwpHOaZUbUej1Gp3mVR8rg4p/kF1rdO5zasspF8DgD/S3QGUEmmqiMoegbUDdBGRkRGRxYvzKYeuqcJegaFX2VRuR6ORWXeZooz6+5Unz9HgoPOXjuc2u06cdUn6NQCoQZAOoDBIU0VUlYpIV9fUv2/dmv19oPMKDqNuZ1DAqHo7ogTeYQLEMMFuXrdjCzp/6Xhua9QOAADxke4OoBB0SFMtEp3SatM2MCBywgkib7018bdq1VqkLOtyJE0VjrLf4n5eo7TyNFKeVbXHqKvbZ5ni7nf+EtHz3Kbz9AyYp0zfOSgv0t0BlA6LFqmhY1pt2jo7RY49Nu9SJEsV7u+Pvt/ijM6GSWdPI+VZxXEcNRU/y3NH0Pmr0bktjykRuk/PgDnK+J0DhEGQDqAw8kpTLRId02rTVqtN3FvbtmNHfgFHlODQ7uDOm2cFSfbfGu23uEFWlIthul0gy+NCXpQ2FHT+8vq/PIMbLopClTJ+5wBhkO4OoHBIm4unzFMGTE3dda9M79Rov8XdZpNX8M6q7Ek+J+zq7nm3WZPbAfRQ5u8clFOUOJQgHQAwLu+Of15MDDj8Orhh91vSbTb5YljaZQ97HMUth07BjcntAPkr63cOyok56QCQoSLNwyzrlAETbx3ll2Icdr8l3WYdArO4x17aKe6NphIkTVXXKd1ch3aQhiKd19Ogqn7K+p0DNEKQDgAxFXHBm7CBWxodWB06xaYFHM4Obne3tc+iBtymbbOI3sdemABaxTxcgpt0NGpbOpyn8qT62DPxAimQBYJ0AIipyAve+AVuaQRHOgdcunN3cLu71b5/o4Akr4BF92MvKIBWtTI6wU06/NoW5ylLWseeiRcLgTQxJx0AYsh6Tqgu8z7TmD/o9Z6bNumxvWXVaL56nnP4dZqP3Yjfccs8XD0Fta2eHvaZSceeF12+R1FezEkHgJRlNSdUp9GbNO6N7PeeOmyv7tIcxW40WpbnSLZO87Eb8SsTqep68mtbItwXXsSsY89Jp+9RICyCdACIKYuOtk5pvWl00ILeI+/t1VXaHc5GF2PSuFgTVaNjL05Z3K9Jc3tIVdeXV9syNThNg4kXmHT6HgXCIkgHgJjS7mjrEAy5pdFB80uV1mF7k0ir3Gl3OBsFJDoELH7HXpwLGO7XrF+f3ahbmYI8U45jv7aVRXBqQh2ZdoFJx+9RIAyCdABIqFFHO8ltovIOhtzS6KA531O37Y0jzZHurDqcjQISXUbT3G0jzgUM92sWLWLUTSVTU429bm2YVnBqYh2Zcl7W8XsUCIOF4wAgJSoW18pzga48FGF7014ULM33dy+s1GihJZ0WYoqzqJXfa6K8h6my2ne6LZKnU5u16VZHRVOE7xUUAwvHAYAGVKQlm5ZamJTp25vFSHcao9h+I3mNghndgp2oI2Zeo2ytreaPugW1tyxHbXVKNdZ1tFqnOioq079XUE4E6QCQAtUdL9OChKQqFauuTOyopp1amUaH0+SFlZzB1/CwyKxZ1t/DXsBwX/S49149UvnjCBOIZrmvdUo11rWN61RHRUedwiQE6QCQAjpe8Q0MiMyebQUaLS3Wv7Ma9Yp7USBpoBiHqrZk+kieM/jauVOkrS3aBQz3RY9zzjF31K1RIBp1X6toAytWTD4PrliR/D2j0r2N67LGAwB9EKQDJaZLB6Wo6HjF09srsmPHxOMdO9If9UqaCps0UMyTyReU/IKvONzbq3r70z7fhglEw+5rlanhS5dOLtPSpfHfKy7d23he6dj0AQB9EaQDJaTr3LyiYR5cdH5BVtqjXklSYVUGinkx9YKSTsGXX/vM6nwbti7C7GtVqeE6jWCb0Mazarf0AQD9sbo7UEKsJAudzZs3Ncjt7o7WRqOs4BxnVXC3ohxTOq18HbYsea/c3Ojzs2wbUerCr35VHA9Ouh0bOrXxvOi2T4CyYHV3AL50GtkAvPT1iVSrE4+r1fCjXnFGiFSMxpowSmcLOtZ1CF6i7sO8M1aCRp2zPt9GqQu/fa06O0G3Y0OHNp6nkRH6AIAJCNKBkskiPZQv+/wUoe47O0W2b7cCjdFR699hA6+4abpJA4m8A0U3r3ZgSopr3H3oPodlcSw0CsLzSsdP+v4qA2vdjo2yso//trZi3GYQKDqCdKCE0hrZMCUIKKIi1n2lEq3jmGTUUlUgkXdHN6gdZHULqrjBsX3LvaSjfFkeC2GCcN1GksMIezxE2S95Hxtl5zz+nVMXTGmTQNkwJx0oMdVz85jnlh/q3tr2np5y14NfO1A9z9hL3Lnh7tcND1sr5Mfdh1GPhaTnwbDbXaS50HmvA4Bo/I7/4WFrVF1XRTpmABFD56Tfeuut0tTUJJ/61Kd8n7NlyxY5//zzZdasWdLU1CR33HFHZuUDikh1ijvz3PKhc91nUYY87lGuo6B2kEXaddyRevfrROKPPEc5FlSNuIcddS5SsNFoHj704nf86xqgFzEzDIhKiyD9ySeflLvuukt6enoCn7dv3z555zvfKbfeeqscccQRGZUOQBg63QqpbHSs+yw7WSbfo1ylRu0gzbTruBeKvF63Y4fIpk3x9mGUY0F1+n9ZznV++7q/n8BKZyZNu8hqag6gs9yD9Ndee00uuugi+da3viUHH3xw4HPf8573yG233SYXXnihtLW1ZVRCAGGZ1AkoGt3qPmonK8k8ZtPvUa5SUDtIcwGvuBeKgl6X5mriOmef6M5vny1ZQmClM1MW8OPYBCy5B+lXXXWVLFy4UBYsWJDK+w8PD8vQ0NCkHwDpMKUTUEQ61X2WKcc6ZhHkKUw7SKtu4l4oUn2BafbscHVAu4nPvc/WriWwMoXubZxjE7DkGqSvWbNGnn76aVm+fHlqn7F8+XLp6OgY/5k5c2ZqnwXAwpdpfnSo+6xTjnXLItBBHu0g7oUiVReY3Bd8tm/3f26tRrtJwr3PursJrLJU9IsfHJtAjkH6rl275JprrpHvfve7Mm3atNQ+5/rrr5fBwcHxn127dqX2WQAAS5Ypx3llERSlo6x6O+IGZkkDOvcFn8WLpz7HGcj39lrtMmq7Kcp+V8H0W82ZpiwLqumUGQbkJbcg/amnnpI9e/bIu971LmlpaZGWlhb5yU9+Il/72tekpaVFaoq+Bdva2qS9vX3SDwAgXWHTrlWOvqU1auf+OipKR7ko2yHifcFn61arPTW6V3zYdlOk+koDgVX6yragGpkYKLPcgvQzzzxTNm/eLBs3bhz/OeWUU+Siiy6SjRs3SoUjEwCM1+hUrvPom19QZmJH2eu6t992mDhS7HeB59lnJ29XkswNE/d7Hui+pYMF1YByyS1InzFjhhx//PGTfg488EA59NBD5fjjjxcRkUsuuUSuv/768deMjIyMB/QjIyOye/du2bhxo2wPmngGlBxf4NCZzqNvXkGZaR1lvwsNftvR3W3uSHFfn8icOZP/pupe8abtdx1QN2qxoBpQLrmv7h7kxRdflJdffnn88UsvvSQnn3yynHzyyfLyyy/LihUr5OSTT5aPfexjOZYS0FPRUjPp8BWbbh3NoFu76dxRdh8nfqO/Xh3+1lZr5Nn9XN34nQs6O6191NWl/l7xBEjhpfHdw/nfonPmEQC1mur1ej3vQmRpaGhIOjo6ZHBwkPnpKDS7c2SPINkjlqaxgwV7lM/ZSQHS5HcM6dgmvco0e7YVKLmNjlrb43xNV5c1h9vvuToIW+9hnmfv0zQ+v+xUfvdQ597itF8A+YsShxKkAwVUqwV3zk0SpcNHx8XfyIg1UpomXes/brkaBQg6ba/fcRLm+LH/T/cLe1HLl9b+0Wm/60b1d4/ubRIAoogSh2qd7g4gnqKkZoadB1q01H6V1q8XaWub+Fm/Xv1n6Fr/ScvVaL68LsdT0HGydm3j9NikqeBpq9XizQlPa//ost91pPK7h3UAAJQZQTpQULp2uKMI2+EzZdXlPDqXixZZo+gi1u9Fi9R/hq71r6pcugdlXsdJtSrS02NdnBCxLjI0WphPt0X8nBdZenqsbTL5wmNZgktV3z1Fudisg7K0PaBICNKBgtKtwx1Xow6fCaMteY00j4xMBOhBf0tC1/rPqlx5b6fNfZyIiGzbZv0eGBBZsiT8e+kSBLkvsoiYeeFR10yTtKj87inCxeY8la3tAUXCnHQARgiaB6r7vMU8y9fWNjkob20VGR5W+xm61n+a5UqyoFWac5prtYmOuZtJa1KMjFht12101PptynaI6Ht8NKLT3HudymISU9seUFTMSQc0p8vom0mCOmg6j7bkPdJ8770TC8a1tlqPVXPX/9q1E/+XZ1tPs13ESaXPYlSrUvEeNTclTdiuo7Y2q716pTqbsB22vI//OHQcfTVpn+vCxLYHYAIj6UCGuJ1MunQdbdFhNCPM6u5J66+/3woQ+/ut+cMiIjt25N/WVbeLuCtYZ9EO/Mq2ZYu1H3TnrKPmZmtbRkassq9dG30bdDgn6HD8R6FDeXXYb0Wgw74EMIGR9ALhimex6LrAVlHo2qnTYaQ/KEBXNXK2ZMnEa3fssH7s98+zratuF3EWtMpqVMuvbCYE6O46GRuzAvRNm6zH8+aFb586jQbrcPyHlffoq077rQhMantJ0FdGETGSrilGXIunSPcuRzy6jQ553R+7uVlk7tzooy1+7dupSG09zjk6q1Etk78/vOpIJHq9ud9nzhyrPvKk2/HvJ8/RV0Z+02FK2/MSVHaTz3UoJ0bSC4AR1+LhdjJ6yePKuy772jla1d09dfSyvz96QBPUnovY1js7rRHeKCtYZzWqZfKdHbzWN4g6sus1Grx1q9UG8xyZNaX95zX6mvcofpGZ0vacwmRV0FdGkRGka4gvquIqS+qZzkinnNyxefZZ71T4KLfssjnbd7U6MS+9aG3dff/usG0o6+DZxI65u47sVP0oFzf9nvPss+Z34rPoB+R1kYcL2XBqFIDTV0bRke6uKVK+is3k1DPTpXlsmbBfw6Sl2+z09Kjb5Xy+CXUSVZ7n5yLWZyMDAyILF06scVCtitx/f3DwODAgsnixNYLuZuJt3FSn9TZqR3m1M9KXIRJ+eiB9ZZiGdPcCYMS12EzqHBZJWlfeTRqdD1pYzP237dvjbZezfdtBvkp5jpTkNXrTqI0VefSos9O6JVvz//RYdu5sPCLe2Wntl66uye26WrWyH0w4Vp1UpfU2akd5n8tMnqoBdcJmVdBXRpERpGuKLypAvbTSKU2bF+fVsfH6W9LtUt3hzzuAEAnfhlQHzX77Qoc6SZt9IWRsbPLjMHW8bt3kdi1i1rEqovbCUKNjWpdzGReywynyxbkwATh9ZRQZ6e4ASiWNtFFTV+33Smm1/6Ziu1SnIuqS2hjUhtJI1w3aF/ac+KKn3ifd93YwY+qxqqLtNzqmTT6XlU2ZpgWUcYoPiot0dwDwofrKu8mLHfmtxG7/TrJdqtPCTVkkKMxiR1H57QsRPVPv05A0rbVSMftYVZHW22j7Ta6fstEl4yELtD+UFUE6gFJS+cVf1HlxSbZLdYdfpwDCr4McdCEhaWDrtS/yqhOv7U/7woCqi2tpHqtprr2Q1fYX9VxWJKZcsASQDOnuAKBIUdPy4m6X6pRMHVI8G6UE+6Ulq0rVd++LrOsk6O4AKj9f9bHkfj8V72+/Rxrt3F6ZPq19quvq7ghHl6k/AKIh3R0AclDUTm3c7VI9tUCHRYIajV57jUSqHPly74u4dRJ31G37dpHWVu//U5F2m8Zig93dU98vybHqLuPChepSjwcGrHUG7FvHbduWTipzo+0v6rmsCGo1Mh5MRKYDoiJIBwCkSnWHv9H7pd0ZWrFicpC+YsXE/3kFzVmkpYd9r6RBcG/vxH3G3VSk3aqYa2t/vjvgVTV311nGbdus+7erSj1evFhkZGTi8dgYqcx5SaPOk7yn89jt7bUCc51XNafNWspwBw6kgyAdAFAIWXWGli6dHJQtXTr1ObrezzdJEOy+FZpbc3Oyiw9JMw7c+/9DH5oc8Kq4iOB+D7suVFyAqdUmLig4Oe/1jvSlcR5R8Z5ex66O7YKgdLIyLfIHtZiTDgDInYo5sFnM00x6m6o85/qqvq2em4r500n2ofu1XmXs6rKC7CTcnzNrlkhbm5o56e76bW0V2bRJ3UhpFu3P9PnsYdtglO1UcQvBKMdunvuA+fITuK0h3JiTDgAwgqpRl6xWPE6aup5nx0xF2r0zALXnpnd3W51wFWm3cTMOvPa/iEhT08RzWltF1q1LVj6vMt5/v7q1Epzv3dWlLkDPYnSzCCOoYc4jUbdTxbkp7LGb9z5g5fnJdLorCcxDkA4AiC1p5ytsKmCjz8myM6RL6nocScvunHM/PDwRmNr3bc+L1/6vVq1AV0RtwOu3WJ+KtuZ87/5+dSPoWaTcFiGtN8x5JOp2qjo3hTl2894HZQ1Kg76fTP6+QL5IdwcARKbitlNhUgGjfE4etyMztfOpa9mTpMr67X9dtzUrWaTcFimtN+g8Enc7VZ6b/NqzLvtAh1tlZiXKtpb9PARLlDiUIB0AEJmqeYeN3ifO54yM+N8mTMTszpJpZY9SXlVBhml11Igp6zUUbS6yX70n2c6026ZO+0D349CU4wrFwpx0AEBqVM47DEoFjPo59nzMtjbv+Zh5z9dMwrSyxylv1FRZv3agc2AQhvMWcqr2eRYpt0VL6/VrR0m2M2pbjkqnfaDrcWjaOigoL0bSAQCRqR5BUDFq1ei5s2db97S2Vasi27fHL3NYZRyxiVveMOmjJqTTxtnn7u0aHhZ54QXrNm+q9nkeq7vrPqIal4rtSqstF7XOVVB5LjXtvIz8MZIOAEiV6hEbvw7lihWTR1ZXrPB+XqNRjVptcoAuYj1Oc9Qj6YhN0LZEGbFxPy/tkZ4k5fVblM0p78WxgsTd57Xa5O3autVqn/Z92FWN0mURuDnXkzAp+yMqFXWZVlsmQPemevRbp8wFFA9BOgCUiKoALUwwpcLSpZM7VEuXej9Px1WF43bA3cHN9u3xts39PuvXT36c9H7hflTsi6C0YJ1TTKPuc+c+cm6HV45jmu25Uf3Fqd9GdaHLPstLmAuLZZLF9qr+nsjqexDlRJCO0inbFx8gkt6oVppBcNSALGhUw74ll1O1mm7QEzeY9Apuoo7YuEdmBwZEFi2aeNzfb7UDZ1tQeW5Ma4Qp64sxUeokzj537qNG1q4NX5awGp0XkmQG+NVF0UfYw/Jry9u3l6t+sm4PaZybyFxAKuolMzg4WBeR+uDgYN5FQca2bavXu7vrdRHr97ZteZcIyE53d71eqVjtv1KxHicxOqqmXI3EKbdf2bI+B8QtuzWOOvnH3qZG9e7cxjA/lUq9Xq2mVy9ptBOv/aj6c+K2lSj73G9fi9Trra1qj1c/1erkz61W42+Pm99rVZ+LTObVzspWP3ltb1bfYYBTlDiUheNQGizwgbJSef/crBftCvt5UW/1lcXIR9y6SnKucr7WqVKxfkZHJ+Y5u/+/0efpthhVrWaNOqbRHtNc+K7R52zalN52OTU6LyQ9b3jVxezZ8d5Tt7anmr19utzrPCtl216AheMAF93nMcIcJrYZlSnCWS/a1WjOX9xbfWUh7nzFuOmYQee1OXNE7r1XZO7cyX9vbp54rd976JqeXKmk0x7TXvjOyWtfOy8K5DHX1d7OpOcNr22I+p5ebc/Ec3AjfvWhw9oaaSrb9gJREKSjFPgiyFcROlW6BiphqZiHFyd4UbXv/Y5VnVf6tkU9z8QN0LzOc9WqSFeXtVr40qXWft+yxXqeiBW0O+fme50bda3jtC6+prnwnVujfZ3md5TXOg377SfS1jZxjlNx3nBvQ5T3dLe9nh5zz8FhlW3F8LJtLxAW6e4oDRPurVs0Rapz06dL2OUeGRFpbY3/PmHrIYt9n2eqpK7pt1732t6503t/2X8L2le6p6OmdVwODIgsXmxd3DD93BXEue9bWyemQ/i1FZUavadf2xMx8xwcla7nmLSUbXtRTlHiUIJ0lA5fBNkxPbC16R6oBHF3wkdG4gUdYQI6p6z2fdZtzJQLT/ZocpR263du1Pk4TmN/ON+zq0tk3To997FKIyPWCLpb3ue4RinueZcPiIo+aLkxJx0IwMkxG0VaB8Dk6RLOdNGREet3knt2izROxc5y3zuDsjlz0k+V1DH126te7YXiorRbv7/rnI4aZWpA2Pbn3MfPPqvHPk5ba2u657i4x76z7bW2TqyhYNI5GBAxf8ocskeQjtIzMWg0gcmBrZcsAhXVbdEvOE56z26R4P2Y5b6394U97zrKfaejUn3xIen+DtPpU9Fu81zELKygthWlc5znugt5S+MclzQwcba9TZsmFj7U7WIR0IiOF3ihN4J0lBZXNdOn8whcVGkGKmm1Rb/gOGzQnCQozXLf9/ZaI54i6XZ+VF18ULW/3Z2+xYunPkdluzX1AluUznGUfVy075A0znGqApO8V7wHkihSZiGyw5x0lJbO8yxN555zxRysYGm2xaRz0pOWLe19n/V6ASrmQKvY337bXZY51GHFaR+6rbtgKpPX8gBU43wBERaOC0SQDhE6D2lJGsCUMZiP0xbj1JP9mqivNWGhtDw6P3Hbapj9Hfa9vRbVqlSsufn9/dHLVlRx20fQfuA7JJywdV/Gcz/KxYTvUqSPheOABoo2X1oXcVMbi5Y2GkVW6bXO94/ChBTTPKZVxD1XBO3vqPu3r88KyJ1qtYnbhoVpH17rFRRN3Pahy7oLJmtU92U+96NcTPguhV4YSUdpcVVTrSQjSyakgaU50pN2em1ZRqlM2U6//R13/3Z3W3Py3SPqQa93l2HFCpGlS4t9PlTdPvgOCS/O7f1MOZ4BICzS3QMQpMONjoA6cYIM3dNGs+yIO9ui17z+tObW5q2sx6B7f8c9DuxF47ZuDf9697FqT4XQ+UJZUmm1M53ar05lacSvzW/ZIrJkif7nLQCIinR3IAJTOjQmiJNWqnvaaJa3TQlKeY5TT7rf8kX3VNe0U7+d+y7JcdDZaQU0XV3er290C75azVpQMM7Kwyakx/u1M1Vl1+Fcpfux5MWvzS9ZEv68ZUL7w2TsMyAcgnQAysSdc6XrrdryuG1KUGAdpZ5MuOVL0LamXc6g988r4El6HDhXde/stFLYw17waW2NdoHApKDQ3c4WLjSn7GHpfkHOj7vNr10b7rxlUvuDhX0GREO6OwBt6JiqmeV8+bApz3FW/9YthTmvVNcwUwCyrjd32rtI+OPAqy3YfwvajqRz0p3z4HVrW05+7ay5WWRsTO+yh6VqylDQdJu0OT8vzPGX9XlZt+8lE+n8fQRkhXR3AKlKa5Qzi45Q1LJnOcrvNcLpTGF2Pi8MXTMURNSkusbRaPQ+ywwE58jS7NnWT0uLSE9P41GmoFEpO8U9aDvcWS/nnBMuC2ZgwNpPW7fqnaVh82pnIlaALpJN2bOYNpFkypBfO8xytNNZ1kbnrTDHqIo6Z+RXHRMyuwDdEKQDCM3kTkvcsmd92xRnB7W52QqG4tZ1lmWP09mKm+oat3x+HcX+/om20dMjUq1ms0aC84LBjh3Wj0i4ixON0pvDBm5RLwD19loj6EGf5ZZ3R9zdzrLav1meL5NckEvSDtPQ6Lyl8jaGQRYutM4NItbvhQvjv1fZ6b72DKAj0t0BhGZyuppJZR8YsILFkRHrcXOzyNy5epZXxQryUVNdk5RveFhk587J728/z/7brFkibW3pri7tl6Ls5JeuHDa9Oey+CZvO6/e5XV2T58P7ff7atdbvvNjbmdVdD/I450RNzU7SDvOk+jaGbrrfdcREptxtBEgTt2ALQJAOxGNyp8W0stvpxG46ljftoDppR85dPncAvnat9Ry30VHrd5r17SybU1A9hplv7vcatzh17f7cOXMmRhvDbJ9OnfOkc42DXm/SOSdOO3TLa962qtsYer2vKfvPNHmufYDk2GfJMCcdgHImp6uZVPZazTtA95qbnje/9HE7AyAOlSn6XuXbsUNk06aJ9+/u9m8bade3M1g99liR/fabKMOKFZOf607jXbEifHqz33bEWRHcnVa9bp3384JW5dZl5fG4+zdMSrXfOeaEE/SbJuTcp9Wq9SMSLm0+7ylQzvpVeZ6vVCbqweacJoH4VE9LQDbYZ9ljJB1AaKakq3ld6TWl7CJTR7ZaW63AUsfyukdWKxUrSNeljsOMOOfdNmq1icXi/Mrptx1xRzWSjhSG+dx580S2bZtYpC3O50QRdWX8uMJmMTjblZOux3OcEU7dphGpPJb93ouRxOR0azdojH2mBunuAQjSgeR07aSE6aDpWnYn53b4zffVhbOsra1W8KXTra2idNrzTNkNCpjTSr1V2elqdGHMlka7sO99bi94Vq2K3H9/OsdM1H0RNI/fb5qAKXROCfc7luMc41mvZeD+3KLRud3AG/tMHdLdAaRK15NymPRdXcvu5Ez57u/XN0AXmSjr8LA1gp7lra2ilC9M+nxebaNRmm5a0zVU3KIvKAXSrnt7WkGSzwnS2zsRoItY/04rpT7qvqhUrIDczXkLu6jyPqZsOk8j8rpgFDdV136vONND4ih6WrHO7Qbe2Gf5IEgHkBuVnc0i3ofVpC/A1tZwX+J57Q/d67JRwJzGPe9VzP/3Clzc+7i7O71bAdrHuVvQsZ+0DUbdF+vWWceHLW4HV8fgLY12mYakAXaW3y9ZXQzIkyntBhPYZ9kj3R1A5tJKG2TOVL6C9mte875NSxltVF5dtscOTvxu3xVmH6valnnzpgbq3d3WvG/n+6tug1HKPzAgsnixNYIe97N1Pr/p0i69qErVzaL+y5ZWrHO7gTf2WTKkuwPQWlojBVzpjU7lSFDQyGyYEVeVdBx1DKNR5yfvzpGzXnt6/Fe8DjquVe+bvr7JK3Efe6w1/cL9/qrPO1H2RWendXEgbjZBf7/emUJ5t8sgqlJ1s/h+KVtacVG3q8jYZ9lhJB1AplTfy1bV4kBlk+XItt8+F0nvs7MedUzS5kxqr0H3nffidVyntW9qNevn5JOnvv+mTWaPUPplC6TRpqOu8m5C+1V5vkt7e/O+2wSA9DCSDkBbKkYKGo3EZd1h1GU0K4qoo4pJtjFoH6cx5zLL+aNJRoVNG+33u+/8M89YwW7YNQm89k3Slc4HBqyRffuCgfv9RfQaoYzSFv3m3a9dq7ZNO9vj7NnWT1DbNKn9qlh/wZZ2m1FZVgDmIkgHkLmkaYO6LKzj7KR2dyfrpGYZ6EcJYlV1xP1Gg/w+u1F9BP1/limjSdqiLu04LK96bW21AuOeHpEVKxof1/Z7uC1Zkqxszrr0K7PXeSeN4y7oPeMcT+56b2620vuXLFEbIDvrcMeOiRXz/dqmae1XRP8RfyeTygogBfWSGRwcrItIfXBwMO+iAKU3OhrvNSJTf+K8V1Ld3fV6c/NEGVpb6/Vt26K9x7Zt1vuIWL+jvj6u7u56vVKxPrdSsR4neV5Yo6PB79moPsLWV9J6HR1t3KbCtEW/9wjbjvNo10G2bavXu7om2rvd/p37sVGZt2xRewz71aXfvh8dTee4C/OecY8n93tXq+qPS7869GvXWZ+HdTsWktJle3QpB1AGUeJQRtIB5CbOSIEuC+vYI8D2fcFFrPuEL14c7X3yGo0Kk82QRtq4PaI5Z473Zzeqj7D1FTdldGBgIs3XTvv1G6UMaothpmQEtWMdU4nt+t661arPkZGJ9u9sG42Oxe5u66f5f3ogSY9hv7r02/eVSjrHXaP3THI8Odvzpk3WKLfq49JvH3j9X5bnYR2PhSR02R5dygHARwYXDbTCSDpgvrxGn93sEcW4o0k6ZAU0+izVI+nOfdfVNXnfNaqPLEaf7bK5R2PDbI+zLYapt6B2HKXes2ov7swREe+R9DBUH8NR3i+N4y7sezr3a1NT/ONJ9XFZr0+uw2rV+gmqz6zOw2lsa5502R5dygGUSZQ4lNXdARgr71WF7cWqRkasx3FWqtb53sci6lcabrS9Sf6/UVnD3IPcbxX6RquAu1fE9nqf4WFrDnfQa4Ne7y5Dkn0T9djxK1Nrq9X+47YN1cdwo/dz1pktznHn9TlhjuWBAZGzzhLZtct6vN9+It//vsg554T/bPd2qF4BXKfV3Yt233BdtkeXcgBlw+ruAEoh786EfWunrq6Jx1EXwdP93u4qVxoOk+7bqD6C/t8v3ThsWqffomZh0niDUoGbmycWWAtzNwK/VGK3OCnbcVNcK5WJdu40MmJdfIjbNuLcdjHJ+3ktMBfluAuqvzDHcmenyH/+58Tjt94SWbQoeqp6kuMySh2G2T9pnod1md6kii7bY39usyMKaG0V2b4923IA8MdIOgAokHQ0Ke+sgKyEzRwIM+oddvS5pyd8tsL69SLnnWcFTyIixx4r8tBD0QNQ50hna+vEPbzDjto6X1+tWn/bsWNi1NSeN++1vUH1liRzwy9zZNOm9NuuipFjFaOHYeovqO2OjFgXa7ykfU9sU++/bWq5/eiyPSoywQBEEyUOJUgHAIyLkwYd9R73aXVQvQKoTZuiBWbO92huFpk7N1mn1S8oCxsY1mr+FxmiBtwqgtSBAWtxxK1bvS8e+O3LpBehVE0LSfI+SevPK9XeKe0gSfepNY0U7UJm3ttDyjuQPdLdAQCRRE2Djps2rTJ93s0r3ThMeqlf+v3YWPJVs1tbk6e3+k0RiDpVQkWqbWen9fmjo9bFh507rb/7pdurWEFa5V0GkkwvSVp/fvdyt6lYpT3se6f5WWkpWuCY9/boknoPwBtBOgAg8vzmKM/3CgTS6Aj6XQDwC8zcAeT27el0WtMKDONc8FC5BkKjoK9WU3OrM5XBhLvOZs+O9vq49ecXFHd1ZRMklTUgM+kiRB50XxMlK7QT6IggHQBKLuooW9jn53UfXvcouV8w6xVAptFpTZo90KhMUUfCVWQyBAV9zv2uwwi4l+3b1WSC2EF+mMXY3PXV1SWybl02QVKczAuTcQ/wcNLMbDIB7QQ6Y046ACDyfNUwz89zDmyY27EFzcfMe76ol7xvh+XmV8fO/e6kog14bV+cbU7aNt0LA9q3oVu71nsl/qDX2AsBqtiuoM8M+qyiMX3+PbJBO0HWmJMOAIhk7dpoo2yNRuXymgNrv3+jNOtG6b86BjFBZfIbEUqzvr1G4YL2s4rRW2cdxB0FU9E2ne3LXh27v98qh19Z7Prq6pr4LLttqtiuRuX0+qy8mTz/nhRpsxVhnQYUG0E6AJSYHRDMm2c93rIlXNpjozTJrOfAOgObrq5wna8ipf+6g7GFC7NL43TfV9trv6eRTht3vnvSttmoMx9UllrNWhk/qG2qmMfv9d46BSFpphmnfe4hRboYyrpOA8xBkA4AJeYOCJYsifb6oA5NlkFwb6/Itm3Wv+3fzc0TZfTqfBVlPqZXMLZjh5pAz/05Yfitsq9S0gBU5WJ+jcoW9Fr3Y5WBtS5BiFfZVV2I8JPmuSftsiM7RbpQi+JhTjoAlFRW98lNe56033a45/2GCcJ1nIsehvv+7mNjU58Td78Gze8Pqq+061LFfNK4ZfSaX25rVJb+futimN96CSrnyTZamyFNfp8d5byTtA2pXseBe4vnK61ziqnnfZiHOekAlNIhPTIOU8udFXtkrdnxTdDaaq18rfpz0mSvlO02MiKyb1+4UXLTU1idwdfcuSLVqroRVK+RwzD1lTS4akTFKFjcMjqzMIaHrX/bC8b5lSXs1BKVo3t5Zov4jTiHGeFXdTzGWceh0fvpkJ1QNmmfn9l/0BEj6QB85TkKk4Sp5c7DwIBIT8/ESGCjkbssRxyifJZ7O5qbrQ5dmJH0Ws16bZLRS11GYuxyqDoG/EYOu7pEnn1W/arIYcvtrG9d6l4kuCxRR8h12q6oGo04N9rPWay6Hfcz+H7JHquwoyiixKEE6QB8mfrFaGq58xA2fTNuxzROoBH3swYGRBYvthbmam21tmFszL8NOD/Hy+io9bvRaJzOHXYVgZ77eJozx6pjt6gpv15la3Ts5lXfKtKudU6TTuOCQJjzsN8t9VTUVaOpGEk/I++LKHl/flZ0P3aAKEh3B5CYzisDBzG13HkJm74ZdbGkJOmJcRdmmj3b2tfDw9YIuj0v268NOD/HqVKx0sV7ehqXP49FpKK0ZRWdWHf69bp1yVJ+g24X1+jYzbq+VaZd65gmnWYacZi0fa/tT1pXYadiOKf6xNkfee0706fmRKXrsQOkrl4yg4ODdRGpDw4O5l0UQHvd3fV6pVKvi1i/u7vzLlE4ppY7L9u2WXUkYv3etm3y/4+OWv/n/hkd9X/PsPvA/R5xPsur/I0+3+9zROr11tZ6febMxuWPU9YkGu2ntDm3K0lZgvZN0P9lXd+NyhNV3vvPSxbnyjj7J6325Xz/anWiDVWreuyPMMr4/abjsQPEESUOJd0dgC/dU3n9mFruvIWdTytipZNv2uQ/X7hRemLQPoo6XcHr+X19wW3APQ/dqVLxHq32Sq9014tIem0u72kcfqnJUVOQG81Vtqcs5DVXOWxZk7yvDinVuqQRx71DQJJU+byPpbh02Wd5KUuKP4qLdHcASph6H2lTy523oM6P+17Xo6P+qcZh0hOD0pajrG7tlyI9e7Z3G3Cmig4Pi8ya5f2eIuFSYb2C8TTSsPOcxhGUXhu1wxzUNux627rVWpjOq26zvK+xPe3ByblqfpL3bSSLlOa804jj3iGgUXtstE0mT4nKe5/lrSzbialMOD5V0yZIv/XWW6WpqUk+9alPBT5v7dq1MnfuXJk2bZqccMIJ8sADD2RTQKDETP1iDCp3GU/4ScyePfle0GNjwR3boGCqUSc5ykWWRp3WoLn1O3eKtLVZn+N+TbVq3crMq/xOnZ1WRoFTGp3+PDvnqueB+7UN5+c8+6z35/i1jaIdz1nNvc/yoodb3G0Mel2t5r1NzvZheqCb5z4Dsla2NRgmST35PoQnnniiPmvWrHpPT0/9mmuu8X3ev/3bv9UrlUr9y1/+cr2/v7++bNmy+n777VffvHlz6M9iTjpQbsxtiy/OXEi/+aju9+rqCv9at7D7NGhOs997hC1DFvNE02y7ftuZ5jxw53vE/Zy06yTrOfBhP1d1GdLeJq/P89rG4eF4r9uyZWo7CDqut22zzjkmfw9kvc+APBRtDYYocWjuQfrevXvrxx13XP3hhx+un3766YFB+gUXXFBfuHDhpL/99m//dv3yyy8P/XkE6UC5eZ3w6eyEozIgcr5Xa+vk94z7OWH2Y5gF5eLI8uJPo0AmijDlzqqTFOdz0i5bXh1Ev88t0kXGrq7J2+g+D/jxqhu/+ururtebmyf/3VmHXV1m1yGKg37IVHldKE1TlDg093T3q666ShYuXCgLFixo+NzHH398yvPOPvtsefzxx31fMzw8LENDQ5N+AJSTX5p1KdOoYlA5199+r66uif1hp64uXhwvDTZMumqjVNG4Ka/OunEvqKcqFdtO+2trm3rrsrj8Uoed75lVem3UzxkZSXdu8cCAtW6B/X6zZmWXWhxmSkBWt/xTzW7HW7dOTjkfHZ34/6DtctfN2rXe7WDzZuu3+1aMzvOL37QKICulTuduIOrUlKJNe8o1SF+zZo08/fTTsnz58lDPf+WVV+Rtb3vbpL+97W1vk1deecX3NcuXL5eOjo7xn5kzZyYqMwBzBZ3gTe3w5kHV3M1azeqouzvXXn9T9eWb5qKCAwOT762+fr3azpc7QFu4MNn7+1206u6e/J5ZLcQY9nOcFytaW9ObW9zba61bIGItItjWlt0ilF51EWbBM79/x5VGp9fZjms1a+2HkZGpwbTfZ7vrprvbuyN/4YVTX9vVle75BWbKc/8X4cJbmsJcvC3qhY7cgvRdu3bJNddcI9/97ndl2rRpqX3O9ddfL4ODg+M/u3btSu2zAOjP79ZYdNby0SioChN4xdlnaSwq6O5sLVqkrvPlFaDt2JHs/b1GKVpbrdFFr/fMamGtRp/jrGfnradUjvK767vRQolpcdZFo5Xx7U7q7NnWT5IOa1qdXq92vG2bFTxHvdji/H+/0XW3733P7EXjoFbewZ3JdxrISpiLt0W90JFbkP7UU0/Jnj175F3vepe0tLRIS0uL/OQnP5Gvfe1r0tLSIjWPFnrEEUfIf/7nf07623/+53/KEUcc4fs5bW1t0t7ePukHQHk5T/h01vLhvg3aUUf5P3fOHP/AS3UHK8n7eXW2RkbUdb7c7dO+PVzS93cGN3PmqC1zGryC55ERqx2pHOXXdQXwMGnwO3ZYPyLxO6xpdXr96nXdumRTKsKOrnd3szo6JuQd3Ol6ntFRUIp7US905Bakn3nmmbJ582bZuHHj+M8pp5wiF110kWzcuFEqHntj/vz58sgjj0z628MPPyzz58/PqtgACqJSobOWF/dt0P7zPyeCTlulYo2u9ff7B15hO1hBX9bO/0vSYfMblVbZ+XK217lzJ9+zO+77O4MbO9VdVZnT6CT5dWpbW9WXR9X5Ie3OYlCnNE6HNe1Or1e9qppSETS6bu+/rKZvQG+6BHf0Q5Ip9IWOqKvSXXLJJfWf/OQnsVa0a8S9uvsf//Ef1z/96U+PP/63f/u3ektLS33FihX1rVu31m+44QZuwQYgMZNXCjWN32qt7p9Gqy6HWfU1aCVs9/9t2ZJ8FVn3ez7wQDorcdtlSmOl70bvGaY+0l6BPOr7h3l+0HblveK/8/ODVjG3/+788VuRvtE2pbGqvfszszrvcn6HH51u70U7jc+ku16kegu28847r77ffvvVZ8+eXb/lllvqv/zlL2MV0os7SD/99NPrH/nIRyY95//+3/9bnzNnTr21tbU+b968+v333x/pMwjSAWSBL1x/7o5Ra2vje6aHeR93Byvo/6PcximqrIORNAJM9+u8Lmr4yarjq+Ie9ml27pLWg/tWYUEXkpzPrVatnzAXp/y2N63bLeregUa50DaLxYR+V5Q4tKler9ejjr7/6le/klWrVsl3vvMd6e/vlwULFshHP/pROe+882S//fZTPdiv1NDQkHR0dMjg4CDz04Gc1WoFSUlysNOk7dRhv4Xqymz9emtRtZERK035G98QueOO6HUWVNe1mjW33M2+zZPX/23ZIrJkiV77rtEx4vf/UdphmOPQnqPvTAX1et+geg+aU5jWeaBReZzbValMpEKn/blhzJtnLapmr3re2ioyc6Y1RcSvvM669KrXqNurYt+kVcdBivjdgvTQXpCVKHForDnphx12mFx77bXyH//xH/Kzn/1MZs+eLX/8x38sRx11lPzZn/2ZPPfcc7EKDqAc8l5RNU15L0SjSprz8pYunTwP8I474s0RDZpbGjRPze//urv1mavqdYw490mjYyhMOwx7HPrN1fR63yjzA7M4DwSVJ805qUnnSdplsQN0Eeuilkjw/FX3avBe7xlle5MGLlnP+y3ydwvSQ4AOHSVaOO7ll1+Whx9+WB5++GGpVCryoQ99SDZv3izd3d1y++23qyojgIIpSiDrpstCNEmk3ckNqqO4HSW/1wUtyOP3f7qMqDiPkW3bJt9/3T5m/I6hsO0w7HFoB5juxf383jfsQkhZnQe8ymPv5zQXHEqyIJS9cKLbjh0imzbFu5CUxwJLWX9mUb9bAJRQ1Fz6kZGR+ve+9736woUL6/vtt1/93e9+d33lypWTcuv7+vrqBx10UNS3zgRz0oF8hVnwy2Q6LUTjJY8Fo/L4DKcwc7Z1mpsYtLiePWe/0THUqI6jHofO+mm0KJnzM6JuY5rnAffc7TQX93N/bhzbtlnrNYSt77DvmXU7z+ozi/7dAsB8UeLQyCPpRx55pPzJn/yJvP3tb5cnnnhC/v3f/12uuOKKSXn1v/u7vysHHXSQuisJAAqj0LfLEH1vpxJmhDyrTIA4dZSkDEFty/6/uCNwfre9SiLomKjVRLZutUZZg46hRnUc9Ti0pxbY96D2e1/3Z4TdxrTOA859UalM3c9Ll6Y/xSHuNnV2WqPm9oi6ivNJlNuPqTrus7rlmeo2ZVIGFIDiiRyk33777fLSSy/JX//1X8tJJ53k+ZyDDjpIXnjhhaRlA1BQugayKuh6D94wQWgagZNXRzdKHWUxxzTOxQmvciUpa602+fOcx4jX/dbXrQs+hsLUcZzjUOW8/TTPA35z+lVPtUhbZ6dVRtVBddD2pnXMZVHHKtoU89oB6CDW6u4mY3V3QB86d46LJMpK06pWp1f1PlmtDB31c7yeLxK9rAMDIgsXWnONRUSqVZH775+8Sv327cGr2Ec9htyvyfs4bLQieRx++zOPlcajiloHqu8oYUIdBbEvVsRtR6ZvPwB9pb66OwCoQICejSgj5KoyAVQs4JTlQnxRRuD8yuX3tyC9vRMBuoj1b2ddOYMEv1Xsw/IbIUwzxTyMSkXt6GVQu/FbRE6lqO9nPz9uHahcLM3kxS+d9dfTE68Nmbz9QUwvP1BGBOkAUAJR00CTpriH6eg26jhmuX5BmIsTzhE6v1u4uS1Z4v+Zdr24+QUFSbc7TDAXdR85JQm0VQaaQe3GuZ/7+qzPUZXWHHX73c9fuDB6HagOKsMcc7oGfCraUNHWTCF1HzAXQTqgmK4dGNNQj2plOVe+UUc3Sscx6/ULwt7P26tca9dOfW1QwGTXi1taC6gFBXPubVy/PnrnPsnie6pHL8MsnKf6dl1R3899m70dO6LXgd+xloRf3eUV8IVpByrbUJHWTOGWdIC5mJMOKKJ6XmASSefk5UmnekR8Xvtx9myrTcaZ85nnvOmg8rrLNW+eFXCNjYXbtkZz0rPaDvf/VSoTi9l5bYf7HBNl3YOoZUvCr90kLW/S9/N7vl3vUerAeaxVq9bfduxIfv70attZztWO+l2gunx5r9WQlOo2DiA55qQDOdDhivXAgBUItbRYP7Nnm5fepkM9Ijm/tOLu7uARr6BR5zw0GqFzl2vtWpG5c61/e43Cubevs9Nq56Oj1s/27eldlPIbIfTaxpER7232O8ckTRNOa/TS7/NVpzVHfT+v51er8erAeay1tYns3Gn9XcW0AVsec7WjfheobkOmB7JFS90HyoYgHVBAl8VmGi1CpTtd6jEq3cuXJ3da8bPPet9SbPt2PedOhu3o2qnA8+ZZj+17ijtXfQ+6ZVtPj1UHafKb8uC1jV77yN6XXucYr0XZvNL//Y6VPG5d2Cioi3pcRw0S3c+///7kdZDW+TPrgC/Od0Fabcjk83uRUveBsiFIBxTQ4Yp11EWodKRDPUbBojyN+Y3SzpljPbY7jjpnUITp6LrL714wzmv78tpmr+PJvY333uu9CrrfOaalxSp/X9/kFPqo95DP8lj3C+riHtdRg8SgiyZxpH3+zDLgS7Itqra3COf3PC5+AVCDOemAIjrMpZ43b2onurvbrHu86lCPYZlyP92851b61ZP92JS5k171aF98CCq/3/Z5yXub3dvoNS/Z77Zy9r4VUXMP+byYclx7yeL8mdX5JO/vgjDtIO9zKwCzRIlDCdIBxfL80s5yEaq06d75MSGwzLuT26gczn1sWmDk3qbhYWsusLv8zuc5tbaKzJzp/Rqduc8xSeh0rNjSWFAuj23U/fwZRR7b0qgdDAyILF4ssnWr/heTAeiDheOAHOXZMerstOa1ZrEIVdp072DmnZofZgqDLink7pRLkXC3NNOZu25FvMvvfJ7TyIj1k+Y2pzHNxX2O8btffJi/6XiM22Vrbp78OGpZo6ZKq95XOtZtXHlsS9D5fWDAWkNi61br/7Zty+bcmva0tbC3ugOQDYJ0QANpdNCK1ElLIs1ORR6BZdjOv46L8Nlt0uvigUlzJ73qdscOkU2bJpe/UZ3v2jX1NSqkOZfWuap9peJ9DIT9m44GBqysiLEx6/GsWfHKGvYCWRHmPReVX5tdvNi6wGYbG0vv3GrfUSHNNhLm/WmnQPZIdwdypEs6chFlWbdZpmNGSQvXMYW8URqpKWm6YevW+TwvKlO+7bKksd8bHU9+8/XD/E0nKuouSsq8jsdoXnRtG85y+e3bri7/tRricB5vra3W56bVRsK0QdopoAbp7oAhdElHLqIs6zbLFPcoo+M6jl76pZHqegs2P2Hr1vm8/fab/H/V6uTOf1zOUS47WFCdQdHoePI6BsL+TReqsk/CToXx+zznKG0ZJBmlzSIzyLnfvPZla6vIunVqP9N5vI2MpJcRFabN65iVBZQBQTqQE7740lPUuo3S+ReZnEK+aZM+WRpeAa5pF6zCpuc7n7d5s7W/RKzf99+vJo20t9eaFysy8Vvl/O+iHk9uKteZCHMRx+vzWltF2tqsv+t+oUqVOMd+nunXzn3b1aX+3Bp0fKlezyFMm897/RWgrAjSgZzwxZeeItdtUOffq+NqL3Kk0wi1++LB7NnmBoFh25QzRdQZ2Ce9OGHXlT2H2l0uFRkURT6e3FRln4S9iOP8vEpF5K23rH9v3Wodt6qPV+eorA4aXQDyK2ueF/Wc+7a/X/3FT/fx1dxsXbyxP1t1RlSYNq9jVhZQdMxJB3LEnPT0mF63jeZnev2/17xBET3nEja6hdmcOWrneOpI1e2+ursnVpp2Gh6e6NwnlfYtp3Sbj+xXHq+/j4wkr+eREWsE3S3qXGe/cq9fL3LeeRMXAY49VuShh/Q4J3qdt+zsGq/ztwm3v0zK6/tr9ux0ty/MMajbcQqYhjnpgAJZjDaYtKK1aUyt27BpnGHnt+o6Qh10C7NKxQoGdRn5T4uqEeqvfGXy4+Zm631UBui9vdY+6epSG6D39+u3FoEdiNiLdYl4H5fr11uBtf2zfn38z2xtterWbevWcMdro/PGokUTAbqIyIsv6jOlJMz0l8WLJ55fhswOr++vtLev0UXhRs8BoBYj6YCL6SOwMFuSVXRNGUkPGgk74QSRZ5/Vq7xpUnG+mTfPmotup7y3tqqdJ5v2avG2vPe3s0z77TcR1Far1m9npod9v3jnIm+trVb2QpLP7+mZeM8o9RG0j/xG6UX0Gn12XhzxW0F93Tpr2/IYaS4j+kOAWlHiUIJ0wIVbjSAvfp3TsGnLXh0qET07WV7H2aZNxU9j9RM3jTRq6m/Uz4mbWtzoc4JuTZfX/m50u7wwkk4xiDOtIMw+amubump8d7e+321e+8Lr+7hWsy6W6HiOs5mcIk5/CFCLdHcgprKsYmyqou+HSsUaLXIvGBR2tWevFEld0/69UlxNS2NV2R7tEcQ4rwtTZ3FXw466T8J8jt951U7T97tbgUru9wxzrnfXgTsYb21NPsXAXkQxyvEaZh/de+/kWwAee6zei3/19VnrUjh57aNKRd87Q+S5Ar0K9IeAfBGkAw6mBQllYXpnJwx7G7dunWhvLS1WZ10k+WrPurVhv4sHJqwirLo9Jn2/MHWWJJDxev8kq277nVfnzm18t4Kk/N6z0bm+Wp1aB/feOxGUt7Zaj1WVa/v2aK9v1AbOOccaSR8eto65X/xCnwt2Xjo7rYDQedHSax/pHEjqevEgrEplYqqHrVrV77sEKCrS3QEX5mDppwwpd+5tnDPHe8XuoNWei9R2dU4RVd0eZ88W2bFj4nG1Gi5Ic9eR3yrjqlbDbpRaHOVz3G117dqJe8jbnPXc3GwF8UmP+6B9FzQn/f77reemtbq7qjaVxnGT57EY5pym4/dDUVagj3tuAuCNOekBCNIRVl4dE52Dk6hUbEtROjtB/LZx7lxrQTA3v23XsbNqK0q7Vt0e47yfO3BZsUJk6dKpgYyzzlW1jUbvE/Vzgm515lUvW7ZMDebDClvXzgXMRNJvt7qe43S66Bd0/tCpnE46n4/D0LVdAiZjTjqgQNZfQkVK6Va5LWWYguC3jc50WhH/Obsi+aV9Nnr/IrVrkXzbo13X7jTaRYsmP164cGqdq5hGEKaNRf0cv3qz69VtyZLo5Xa/Z6N95/z/LParruc4ndK1g+rCpHU38hD3O0DXdgmUBUE6oAmdOkRJqd6WvDs7Wcxv9NpGe8Vz+/7J7jm7Tll3qMIG3zq2a7/9GXY/q2yPYeZ9Ouu6u3tqoDwyMvnxjh1T61xFIOPVxpxzhkXUBkxr1079W9ILT1mcS+KUL+9znFtWF/1UL76ok7wvHqi4QKpbu9SJDuseoODqJTM4OFgXkfrg4GDeRQHGjY7W6yJTf0ZH8y5ZdGluS9b1sW1bvd7dbZW/u9t6nDa/bQyz7Q88UK+3tlrlbW21Hqelu7ter1Ssz6pUrMduurVrv/0Zdz+r2o5Gn++u69ZW/8fNzdHqPOo2OMtqt7U0j40w7SyOoO32+r8w9aTifOH8nLjtS1W7TKvu6/V8zq15yet8p3L/mdgXSUuZ2i7UixKHMpIOaKBIaWVpbkvW9dFoFDiNK+lB6b+NLF06eeRr6VJ15XIKO8qmW7v2259xR/tV3SosaMTNq65HRiZuT9XZaU2LsF8zd+7kkXjVt2Szy9rVNVEmd5151UPcuunrE5k1a+I9hofVTJnwaoNeddKonpzbpSJrpFKJv29UTy1JMoraaH/rmGGjWp5TfVRnQpjYF0lLGdouNJHBRQOtMJIOXRXp6mwRtiVoFDir7YsyepH1qHXYURpd2oJf/QwPh683v7pMexv96tpdHvtxmPIkGWXzq8stW6Z+roq66e6u15uaopc1att310lXl389ubdryxZ1x1/cfZNm1kHY7Qizv3XLsElLGvsjSh2lmQlRVmVpu0hPlDiUIB3QTJFO9qZvi18nJ+3OT9zAJstOWdQy6tAW4u7PqOnourQHu869gvmkHU3nNjc3W4+96iFp3cQJfuPUl1+d+H12GtsaVI5G+yat4CFqXYatA3uqhP3T2pqsnLpRvT/itGkTz9Em4OIHkiBID0CQDiDJqFAWV9LjdgL8ypsmkzp2ceekB+2PLEdWkswfd29XnDbm/Pxt2+r1anVie9/5zmhBblh2+Z0/jcqqYiTa68d+ryiZBHHoNJIe5T3DHgtFGY1sVF6V+yNp5ksQXbKdTEF9IQmC9AAE6UB5qVogLM0r6So6sFmm5JsoyiJqYfZHHiMrYdqDV7mipMTb/J7rfn/3gnZJR5eDguGorwm78FtXl3+QHrTt7gs3ScQ9dlUf83HqMuz+Nnk0Mmw9q9ofaV/UMHlf5Mm0i0rQA0F6AIJ0oLxUdUbymoOc9XvAkjQdXqWwnxWUvu18XZJg3+u97SDX/oykdROnHSdt+11d/hc3bFns87xXd6/Xo9dl1gFsHqLWiYr9kdb5vChZDUgPbUGtKHFoU71er+e1aF0ehoaGpKOjQwYHB6W9vT3v4gDISK1mrbLrNjoaf+XaWi2dVW/tFWP7+62VuZ2rLIctl+ptLbOw+yOt9uBkrxJtf5a92nqj5zo1ep1TUFvq6fEui1c9+NVNozqLcywkPX6ivD7KPs+ifagWty7DbqtpdZLXuTVpmw4S5ZyC8kizzZVZlDiUIB1AaZjWGUnSgTVtW5PKorOfd0ARNUBwdrK8hA0s/NqSXycuTD1F7QDGqfuk+8v5+iSfn3agm4W0y6LTtjaS57k1jXoiGIOXsvUhshIlDuU+6QBKI8l9f/OQpDNm2rbGleW9iFV0juPep9j+/Cj3nbc7VcPDye5X79eW3Pd3Fwm/L6LeazhO3Vcqyes7Tvtyv2bhwmjbmuf9tf2kFUA7t7W7W49tbSTPc2sa+8F9HBOgo1azLtrY50/3Y2SDkXQApWPSqE1SRd9WU672qxqtivI+zudWq9bfduyI//mN2lLYfRE3ZThKW1ZV33Hal/M1zc0iY2NTnxO0raa0aRXmzRPZtm2ijlpbRTZtMiNQLPq5FeVWpvNQlkh3D0CQDkA3dPbiUTE/NKu6V93hCVNur8/ctCmd7Y26L8LUR5J0cRX1Had9+b3GHtVvVJYyrSfht61dXf5TNABkg2kQ6SDdHQAMoGNaq0mipn87U/WyrPs0UgcbBWx+n+l+jipR90VQynDSdHFV9R11m/xeU62GT4+O85l5Sdp+KhUrIHfbupW0WiBvTIPIH0E6AOQk6rzcsgrqsIeZH+oVkGdZ93kEXkGfmdYFiihzdYM6gM59s22blaIfJeBWWd9x5h+7X3P//dE6u7qvJ6Gy/axbZ6W423S+KAF/XFQpLo7F/JDuDiBVpHJ7K1Naa1yqboXlTn2eM8carXNz173Ktuvclq4uKzhJe2TCr/7SnmuYpN5GRkTa2qb+PWy6uE11qmbeq8vrRHX7GRgQWbzYOiaT7itd6ywteW8vKdFANKS7A8gdqdzBTEprzUuU0e6gFHd36vPWrVag7Ff3abRde0S0q8v6fOe2pcVrtDqLVXvjtGG7ztvarJHV5uaJ94qSLm5TnaoZd3X5rD8zbWm0n85O6z2S7CuVx6zXtug2UqzL9yvZYN50ay8wE0E6gFQU/ctbxZewTmmtunUqwgQDIyON38fvYohzJNtd90nbrl9d9vaKPPts/PeNyxns6XpxyFnnziyTOOniTnlvV9Gk2X6SvIeK7xuvwFeXYNhNh+9XbtM1la7tBWYiSAegXNQvb5O+1FV+CeuwMIuq7VG9D4OCgfXrrRFX+2f9+uD38roY4lf3STqeQXWpU4dWp4tDIt51MzJi3d/duW8IuPVgQvuJc2x5Bb46BMNuupxLdL3glycd2wvMRZAOQLmwX946XnVu1NFR+SVsf1aenZqk25PmPvQLBhYtmhhFHxmxHgcJuhjirvskHc+gutSpQ6vDxSEnv7pxLiimCxWBkEkXJb2Y0n6iHFt+ga8OwbCbTucS3S7Y5EmXiycoDoJ0AKkI8+Wt+qpzki/DMMGmqi9hXS5OqNieNEcOvIKBkZGpae5ef/MSthMbp+MZpi5169DqNOKlW924RT1mvY4hXY57VYrUfvwCX12CYTddjhfdLtjkSaeLJygGVncHkCq/1WdVrm6uYoXZsCsWq1jZOO3VtbMqS14r1Le1TQ7KW1ut1GjVoq6cHLYu816R2YsuZdKlHG5h923QucjvPXTdZhN51WXY+vXadyJ6r15O29ELq92jEVZ3B6ANvw6EyqvOKhb6CjuinHQEQ7eUuCTbo3rkIGwd3HvvRCp0a6v1OA1RtyNsXerUqdZtdFenurFFOWb9zkV+79HdrU/dF4Gz/URt216jwrqPFOt4vJSZ7u0FZmEkHdBQWa6Oq7jqrGo0N+qIcpJ9pNNIui3u9qjYh3HfY2RE33nLphy/OrZFHTWqJzv4DjoXud/Dvvc7dZ/OMUPbBqAbRtIBQ+k2qpU2FVedVY3mRh1RTtKh1GU+oVPc7VGxD+NmQugYoItkE6CrWsBMp6wOnfkds85zdk+PdU93v3OR8z3mzLEuMpW97tP6zqNtAzAdI+mARrjyH4/KeWBZjoKaNOLaSNxtyWteu6lUz3nknBONu52762/WLGvNBL/9U6tZz1+yxHqOrax1n2b7o20D0A0j6YCBuPIfn8p5YFkGhlE/K2xbyLLNJB0J03lFXB2PPdWr6euY1aEzZ7v0Omfv2CGyadPUc5HzODn5ZJFt2ya/ryl1r/KYSPs7j7YNwGQE6YAmdA5WTFHUugobCOcxXUJF0KiyM62ig6/rtJOgeznHVbaFjlQGmUHnbPe5yHmcjIyIjI1N/v9Nm/Su+zSOibS/88rWtgEUC0E6oBGu/MNL2EA4zXuWe1E1EqaiMz0woG6l7KzrMSw7iHFbskTNezs596GOGQVRpXXhJcw5O+i4MOVirIpjIo27ZYShQ90W4RgCkC3mpAMaKtJcZUTn3P9h52xHndutqo3pMO9zYEDkhBNE3npr4m/Vqsj27dHfS/c58v39Vp27qSqfc857tWr9bccO/e75m9Y97ON+TqPnea3sPjKiX716CTomRBrXT5h1FIr2nWdvD/fNBuDEnHTAcEXqrCA8r9G+sCmhYZ+nekRRh+yPxYsnB+giVmAZZ/Qq62knXmUMKnd3t/XT3JxO+Zwjpjt2WD8i+mQUxGm/cTI+on5Oo/p3Hyde89Z15XVMVKvWavZh6ifMKHxRvvPc7WbhQj2zchjZB/RHkA4AmvDrzIYNhMM8T3Uqd97zPms1ka1b1b5nFhcevILAsIFhX5/I3LnqyxcUvOqykGWc9hvnwsvixekfJ6oCU/te62lyHxMi4eqnbAuiOtvntm2TLxbqsO26rrcBYCrS3QFAA2HSrJOm3uqeyh0kaNvnzZu6eFrcdPewn5mUV/q1SLSU7DTK5yyXkw63sErSfgcGrMB769bgtGPn8+J8TpYGBqyRWjvboVoVuf/+dC+U2e0iyn7QYUpMVHGOLb/2Wanos+0m7gugSEh3BwDDhBntC9tp9HueiXcQaDTyMzAgMjw8+W92sJJUminufqu0Rxl1C1u+KCN3zuC1Wp2Yl67DQpZx26890rt1q0hXV/C84N5ekWefDf7cONIYPe3tnQjQRax/e41oq/ps53z6KPtBhykxYSUZafabFqDLtpctqwEwHUE6AOTE3TnKojNrUodZpHF6c2+vyM6d1r+bm60gbPt2vef5+gU5qi+gxAk4nGnZ27dbP35TGfLo3Mdpv8429Oyz4VOzbXPmxD9O0kovtsvq5iy/qs/2ep8o+yHvKTFRJJ0O5K6X++/XZ9tNvEgLlBnp7gCQsUYr/qpKY3a/j3vVeN07Z43Sm01O3/dqAyJqV4JOK7U1rRWrvdpk0NSNsFM/kqRmz5mT7D70aaYXe03z6O6eeH9Vnx30Pkn3j05Unk903X5WmwfyRbo7AIi+aXyNRmuSdu7cI1/r13uvGq+7RiM/lYpIa+vk17S2mrFtXqOLKkcc00xtVb34YJxF9KJM/UiSmr1uXfD7B9Vn2unFfX0T0xFErH/bF3tUfXaj90n77hFZUjnSrOs5yKSsBqDsCNIBFI7OHcUs5gW6g6hFi/K7DVDS7QpKq63VrHtNO42M6HtxxotXZ15FBz+t1NY02q9X0K/yQkAaqdlhzjH2nGSnalVdANfZOTEdwZ6eYJdX1f6P+j6qL+BkzbTpQHHpehEBwATS3QEUju4r2KZZPr+UTbe0U8JVp1X6pY+qTk8ukrRSW1W237DtVSR5m1WRgmy/R9g6mD178uJuKu46EJaq/R/2fUyefuKma7o6ALNFiUMJ0gEUigkdxbTnBboDCHv+dpYXLbK6UOKsy9ZWaySduZaTqQ44VLdfFbejS5tzm7u6wt2iLcq5KM2gMIs1Lmy6XyAFgDwxJx1AaZmwgm3a8wLdKZv33pttCmeWt/qx67Kra/Kq1qal2abJr+3H3R+q269XirFuace9vSLbtln/dt+iTcR7LYQw56IspuaoOvfZ7xNUZt32GwCYipF0AIWT1wq2uqVIhhn5SkuSEbWo5TQhe0InOq3wPDIysfhflNXds9Tfb7XnRrzaW6O6NnHkOUyZddhvAKAbRtIBlFrWK9iGHQ3LekEzr5G9rMQZUYs7qmhC9kQa4rYnHRb3Wr9epK1t4mf9+vQW0UtqyZKpf3OOnAe1t6BzUZYZJ6qELbMO+w0ATEaQDqCwsuooNgp6dF5tPi1xLpQkCR7LlGabpD3pEhguWjSxMv/IiPVYR3b9uP3zP0drb34XIEy7uORXxp6ecpzXACArpLsDUKKs6Y1hUq1NTGnNmqqU9TK0w6TtKe/2ODJijZ67DQ9Pve+9DoLqK2l702nqgR/3NjrLbOO8BgCNke4OIDONRvV0Tt1UodFomC4jl7pTeV/nrOSxD1W0p6yzDtxla22dGox7/U0XQfUVtb256yLrqTlR+J3bOztFNm2a/FzOawCgFkE6gET8UpTLlOLdqBOfZkprkTrFfvWo2zaqbNtRty1pe6rVsgsMg+rp3nsngvLWVutxEmm2ERX11ajN6Jj9ETT9JItUfd2OewDIEkE6gNiCRvV0WJwqK4068WmMXBbxIoi7HkX03EYVbdtv/4UJTFQtypd2YBhUT+ecY6W32z/nnBPvM7I8DpLUl2nnwzAZG2llZBTx3AYAUTEnHUAiXvM1N23illheVM6XzntecRZ03EZVc+fd2zZrljVPO8rc5CjtKeu6zOq2eDq2ETdTbxEYtm5VrwNhwj4FgDiYk47CIv1NP16jKSauWpyFMNsfpo2XYZ67rtuoom17bduOHdFHWqOkuGddl1mlQ6verjTqxNTzYdiRct33adxyAECeCNJhBNLf9OWX6l2mW2KpEKWNm9rpj0LnbUzatt3b0vw/38RpBSZ51WWjekq6fSq3y338ed12LQkTz4d5LGqX93FPXyM6LmgA6SBIhxFMm89XRu5OlM6rFusoahs3sdMfla7bqKJtO7dt7lyRajXdwCSPuvSrJ5WBkKrtch5//f1WuVQGaSafD7O+MJbncU9fIzwuaADpYk46tGfqfD4grCRtvAz3BS/yNtrbltX9slXXZZz3S2POcZLt8jv+RKyLJ9u3xy8X4sv6uKevEQ1rBwDRMScdhZJ3+huQtiRtvAzHQZLgS3f2tmU10qqqvcQdRUtrznGS7Qo63nbsMKMdpSXPbc/63EZfIzxd1g4AiizXIH3lypXS09Mj7e3t0t7eLvPnz5f169f7Pv+tt96Sm266SarVqkybNk1OPPFE+eEPf5hhiZEXXdNeAVVo4+qYnIZpSkAQNy1Y10Cor09kzpx8y6ATk4+hJDgPh6PrcQwUSa7p7j/4wQ+kUqnIcccdJ/V6Xb7zne/IbbfdJs8884zMmzdvyvOvu+46ueeee+Rb3/qWzJ07Vx588EG59tpr5bHHHpOTTz451GeS7m62Iqe9AiK0cRVIw0xX0rTgrFL745g92xo9t5U13b3sxxDn4cZ0Po4BXUWJQ7Wbk37IIYfIbbfdJh/96Een/N9RRx0ln/3sZ+Wqq64a/9v5558v+++/v9xzzz2h3p8gHQCKq2jzSnUNFlQEcXltW9DnEnioO4Z0bbtQi/0MhGfknPRarSZr1qyR119/XebPn+/5nOHhYZk2bdqkv+2///7y6KOP+r7v8PCwDA0NTfoBABRTUdIwdU83VpEW7NwnWcxlDVOnJq/CrkrSY0j3tgu1TDu3AqbIPUjfvHmzTJ8+Xdra2uSKK66QdevWSXd3t+dzzz77bPnqV78qzz33nIyNjcnDDz8sfX198vLLL/u+//Lly6Wjo2P8Z+bMmWltCgBAA0WYV6r7raBUBbNZBnRR6rTsgUeSY0j3tlsULNIGFFvu6e4jIyPy4osvyuDgoHzve9+Tb3/72/KTn/zEM1D/1a9+JX/yJ38iP/jBD6SpqUmq1aosWLBA/vZv/1beeOMNz/cfHh6W4eHh8cdDQ0Myc+ZM0t0BoOBMTcMsWsp+kKzmPpepTlWKegxRz+ljSgZgLqPnpC9YsECq1arcddddvs9588035dVXX5WjjjpKPv3pT8t9990nW0J+qzMnHQD0YGoQnYW8F+7KYt9kHdDlXadZyvPYctfznDlWQAk1ytSOgaIxck66bWxsbNLIt5dp06bJ0UcfLaOjo/LP//zPct5552VUOgBAUsxZbSyvlP0s903W6wc463TOHDOnQTSiw7HlrOdKRWTrVo5zVbg/OVAeuY6kX3/99XLOOefIscceK3v37pXVq1fLX/7lX8qDDz4oZ511llxyySVy9NFHy/Lly0VE5Gc/+5ns3r1bTjrpJNm9e7fceOON8sILL8jTTz8tBx10UKjPZCQdAPLFSFB4WY+IZr1vsk7dHRgQWbzYChyLmCqs07HV3S3y7LN6lKVIdNrHAKKJEod6JJplZ8+ePXLJJZfIyy+/LB0dHdLT0zMeoIuIvPjii9LcPDHY/+abb8qyZcvk+eefl+nTp8uHPvQhWbVqVegAHQCQL3vkx/2Y1HdvWdZJHvvGDjCy2v+9vVbgKDJxgaAoAY5Ox1atZl0I0aEsRdPXN3Fhy9SFMQE0pt2c9LQxkg4A+WIkKHthgyPd902SIK8Mi5rptP90KksRccEDMI/Rc9IBAMVWhFukmWJgwEo7DjtHWdd9o2KuddZz4FWJMt9Yp/2XVVnKOh9b93YLIBlG0gEASsS5XRMdzfQMDIj09IiMjFiPm5tF5s4NN5qp276JOirrV36Tbl+VpKw67b+0ymLSvgQAEUbSAQAZCjPK6TXalSRtGY0tXjwRoIuIjI2FXwlalwBPJPyK1rVa47ZoB/ejo9ZvnYO63t6J8tsBaVg67b+0ypKkfgA3vlegG4J0AEAiQZ1llbeE0uH2UllQ0Vl0L9xl6+rSK4ALo1GaurNd9PSIbNs28ffeXrUXiLLCrbaCt5X6gSpl+V6BeQjSASADRe08NuosqxztKvrImcrOotd869ZWkXXrkpczD0Hzm53tYmTEyhgQmWiLOna+G50PTJ0/r0KY46DM9QO1iv69AnMRpANAinS5Sp/WRYKgzrLK0a4yjJyp6Cw668MZ2HZ1iWzapHd6dxC/NPWw7UCXzneU84FOi8BlKexxUNb6gTpl+F6BuQjSARjJlC/RvK/SZ3GRwK+zrHK0q+gjZ0k7i1772RnY2vdUzlOtlvy4de9vr3bR2ur92Wl3vsO8d5TzgUnz51WJchyUsX6gVtG/V2A2gnQARtFlZDoMHa7SZ3GRIKizrHK0y5SRszj7N2lnMe+LQUEGBkRmz7aO2ZYW698qj1t3u9i0yWqLWXW+w56T4p4PyhQwxDkOylQ/UM+U7xWUD7dgA2CUqLdiylue5a3VrMDBbXQ0vY6t3+2WVN6GSafbSzklvSVU3Nf77ectW0SWLMn/FlXz5lllcOruVn8cuNtFVrfoinKMm3b+ygO3VkMedP1eQbFEiUMJ0gEYI4+gM6m8O5xZBQVpbKdpnSZVdR1nu70+WyT/gNDvmBXJ7rhNsx1FPSflfT4wiWnHPwA0wn3SARSSifPH8p43mVUqn8p0a5OmNNhUTm2I057d+3nt2vynWoj4zxHP8rj1+xwVdRH1nJT3+cAkOp/XASBtBOkAxpmwGJup88fy6nBmERSonnuv8/xqP3lfQHLv5+5uPS5o1WrWbdHc1q7NthxOqi8CxTknEYACAIIQpAMwauSSkah40hxNFFEXEOqw2F5cXqPZWXPWuQ4XtNxtobl54gJCXlRfBIp6TjKhLcdR1O0CgDwQpAMwduQS8am4MON8j+FhkVmzrL8nCQjzHpFOwg7W7Hnf8+ble9ErrQtaUYMx58WCuXPzzX5J8yJQozaq4pjTMRDu7zfnIi8AmIIgHSg5k0cuEZ+KCzPO99i5U6StTU1AqMMIsEj8Y2DJEr0ueqm6wBEUZAbVlU7ZL3leBEpyzEUJ8LM6d9tlcq7er0N7LxK+h4HyIkgHSs7kkUvEo+LCjN97qJB3UJdkxLPIF728gswodaXLOSWPi0BJ20WYAD/raUu9vSLbtk3+W5Hae55MmoIGIB3cgg0AtwVSyJTbBqm4XVhR7/kcdrv89nUR68XvVmNdXSLPPmvmtmZ9rMZtF2Fv85Zlu/Mrk2ltQFdFPIcA4BZsACLKe+SyCEwb+VAxmqhLWrpKYUY8G+3rItaLV8ZNV5fI1q3mZg2kEaAHbXvcdhEm2ynrDA6/jKuitPc8FTkbB0B4BOkAxpkwAqwr0xbfU3FhpogXd8IERI32ta71krST7w4y161jqowtzEW6JO2iUYCfx7QlZ5m6uycWTdSlvQfROeBlChoAEYJ0AEjM5JEPFR2/onUegwKiKPtal3pRleXhFWQWMWsgjigX6eK0izABftb7wl2mPG+rF5YpGU8cVwCYkw4ACjCHsHiKMuc8i/KashZDGsLOGU/z892p72XdF42YduyyL4FiYU46AGSMkY/i8escm7Svs8ryKHMgkVd6st+ocJn3RRATM57Yl0B5EaQDgAK6zkOGeibta+a3ZiOPCzemrYORN44FACYhSAcAhejwlYcp+9qkkX9TZX3hxsRRYR1wLAAwhccsKgAAUBR2AMn81vRlVb/2KLB7fjX7NxjHAgBTMJIOAEAJxA1KnKOzjNTqg1Hh+AjQAeiOIB0AYDyCR/WcC5PNnm396H7rKj9FbB8mrY0AAIiGIB0AYKw07nvsFdAVMchrxLkw2Y4d1o+IWYuUmXJf7CQYFQaA4iFIBwAYS+UK114BXdQgryjBfNBCZCYtUqbDCugm1BMAQC8E6QAAI8Vd4drv/70CurBBXtFGbINuT2XKravyXgG9aG0CAJAdgnQAgJGi3vc4KGjyC+jCBnk6jNh6SRKQOhcmq1atHxFzFinL+77YurYJAID+CNIBAMaKssJ1UNDkF9CFCfLyHrH1omIU17kw2fbt1o9pi5TltQK6jm0CMAXHCUCQDgAwWNgVrsMETV4BXZggL+8RWy8qR3Gd2+H8twkd6bxWQNexTQC6Y4oIMIEgHQBQeGGCJq+ALmyQp9M9q9MexTWxI51HcKxTm9CZCRd7kA2miAATCNIBAMaKEjCGDZr8FksLotM9q9MexaUjHY5ObSIKFtZDHpgiAkxGkA4AMFaUgDGLoMkrEM6jk5nWKC4d6ehMSXFPK2iOcjcFlBdTRIDJCNIBBKLzDV3FDRiz6vTlOVKY1gUJOtL6UXWOVh00x7mbAt835cYUEWACQToAT6QiQne6B4w6jBSmURd0pPWg8hydRtAc524Kuhy7yIepU0SANDTV6/V63oXI0tDQkHR0dMjg4KC0t7fnXRxAW3anr1azOk72lyegE7vz399vdfKdAaQfu02nqVazgie30dHiBCJZ1CP8qT5Hq3y/MO0/zrELACaLEocykg5gClIRoSt3G4wy8pJldkgZRgqLtC1BdDzvpXGOVpkhEfduCgAAC0E6gCnKEGDALI0C7DBtM+v0c9LCzabrlJ+BAZGensl/U3GOVh00J7mbApBEGhfWdLxYh2IjSAfgiQADOkkaYOeRHcJIodlUXdRR3cac5bKpPEerCppp/8haGhfWdL1Yh+JjTjqAQMw7Rd5Uze9mnYUJHNfBVLS5NOZc+5VreFiktTXZewOmS+Mcz/cGVGJOOgBl6Mgjb6qmX5AdwqhQWCraXBrTK7zK1doq0tbG/kS5pZEtxfo8yBNBOgBAeyoCbNJv9bgtnCkd3CRtLs3OvbNclYrVnkXy25+ADtJYS4f1eZAngnQAgPZUBthl7WDlPSpk2ih+kjaXZufeLtfwsMjIiMjYmPV3RvlQdmlkS5GBhbwQpAMAjFHWAFuFvEeFdBjFjyNu/aTduW9tZZQPcEojW4oMLOSFIB0AgJLIa1Qo71H8PGTRuWeUD5gqjQtVXPxC1jzWCAUAeGFFbJjODhyzbsv2KK97leS0y6DDMZvm56e9P3WoPwAoI0bSAaAB0+bSAo3kEXhlOepbtmNW9f4sW/0BgG64TzoANMB9UsuLkUT1sqhTjtlkGtUfxwUARMd90gFAkTLOpUXwSCL7PpksUtzLfsymdW9oRtgBIBsE6QAQIO8VsctEpyDKayXyMgYoOu2TsMp2zDr3kYo2GlR/YVboN7HNAIBuCNIBoAFWUE6XbsGv30ji4sVm3kIsTtCk2z6JqgzHrNc+UnWbO6/6a5ShYHqbAQCdMCcdAEJiHmY6dJw/7C7TnDkiW7dOfd7oqL5twg7S+vutkVBn4NWIjvskjiIfs1m0UXf9BbWLorQZAEgLc9IBIAVF7eznSdf5w+6RxHXrzEuhjjuqqus+iUPn/ZOE1z7aulWkq0ttG3W/1i9DoUhtBgB0QJAOAMiN6vnDqoICexRwdNT6bQckpqRQJwmaspjTTfCWjN8+Wrcu3TbqdVwElaeoF0kAIG0E6QCgiGmBhy7lVRH8pjUf1hlk+AUoOkoaNKV1QYJ5y+p47aOs2qhXOzLpIhYA6I456QCQUJK5v3nQtbxJ5g8zH3YqFftZ9Zxu9pN6us271608AKCLKHEoQToAJGRa4GFaeRup1ayRWTedF3XLki5BE/sJAFBmLBwHABkxbcEk08obBvNhg+lSD+wn5MHkcxuA8iJIB4AETAs8TCtvWMyHnUzXwIT9ZCZd21MQ1j8AYDKCdABIyLTAw7TyhmHSom5p0j0wYT+ZRff2FCTuLQgBQAfMSQcARXSZ+xuWaeVFY0VbbwD5MrU9sf4BAB0xJx0AcmBa58+08iJYEdcbQH5Mbk9FndYDoDwI0gEAKAACE6hkensq4rQek5hwMQfQGUE6AAAFQWAClUxuT6x/kA+T1zEAdMKcdAAACob1BvJTxLp3blMRtw/qmLqOAZAF5qQDAFBiBFHZM2EEMUkKsgnbh3yZvI4BoBuCdAAAkJqydNCzuOVX3LqMG2A7X9fTwy3NEMz0dQwAnRCkAwAy4RVglCWAC1LUOijTyGvaI4hJ6zLuBQTn60ZGGCFFYyavYwDohCAdAJAqrwCjTAGcn6LXQRYjy7pIewQxSV3GvYAQ9DxGSCeU+UKF17azYB+gBkE6ACBVXgFGb6/Itm2T/1YEUTrsRQ5iyzg3Na0RxKR1GfcCgvt5zc0ira3WvxkhLf5FtiBhtp0LOEAyBOkAgNT4BRj9/SJjY97PMVHUDnvRg9jt2ycCOpF0Rl51q6u0RhBVjNLHvYDgfN3cuSKbNjFCaivyRbZGyrztQFYI0gEAqfEKMJzBm8301NmondaiL7DU22sFc7ZKRd3Iq+4jmGnsw6Sj9HEvIHi9rihtNImiX2QLUuZtB7JEkA4AGitCx8cZYMyZYy1A5bZ2bbZlUilup7WoCyzZ229nSohY+3z2bDXvn8Yonu7HmapR+rgBNoH5ZEW/yBakzNsOZIkgHQA0pPtoYRTOAKO/37uD192dbxmTiNtpLfICS2l14lWP4pl2nBEI6aOoF9nCKPO2A1khSAcADRVxzp8dYBSxg5dkm4oSeDkD3uFhkVmzrL+r3MeqR/GKeJwhG0W+yNZImbcdyEpTvV6v512ILA0NDUlHR4cMDg5Ke3t73sUBgClqNSvQcRsdLU5AJ2JtZ5G2R6SY2xSWPRJt10Fnp7XQmOr6sINpOyvDeYEkirIcZwAAPUSJQz2+ngAAebJHB90BT9ECh6Jtj0gxtykMO+3c77FK9iheowsijf6/LMcZAMA8pLsDgIaKmBIOswXN+85jMSm/944yz5zjDACgI4J0ANAQc/6gi7BBry4Bb5R55hxnAAAdMScdAAD48pprvmWL//PznJfPPHMAgK6ixKGMpAMAAE9xbnmWZzCsKu1e9/umAwCKjSAdAAB4ymOueVJJ0u5Nu286AKCYcg3SV65cKT09PdLe3i7t7e0yf/58Wb9+feBr7rjjDuns7JT9999fZs6cKX/2Z38mb775ZkYlBpAmRq8A/egy1zysJPPMuW86AEAHud6C7ZhjjpFbb71VjjvuOKnX6/Kd73xHzjvvPHnmmWdk3rx5U56/evVq+fSnPy1/+7d/K+973/vk2WeflUsvvVSamprkq1/9ag5bAEAFVfc9BqBe2Fue6SZOirvXbeRM224AgPm0WzjukEMOkdtuu00++tGPTvm/q6++WrZu3SqPPPLI+N/+/M//XH72s5/Jo48+6vl+w8PDMjw8PP54aGhIZs6cycJxgEaiLkwFAGngXAQASIuRC8fVajVZs2aNvP766zJ//nzP57zvfe+Tp556Sp544gkREXn++eflgQcekA996EO+77t8+XLp6OgY/5k5c2Yq5QcQT5yFqQAgDaal9gMAiin3kfTNmzfL/Pnz5c0335Tp06fL6tWrA4Pur33ta7J06VKp1+syOjoqV1xxhaxcudL3+YykA/pj9AqATkhxBwCoZtRIemdnp2zcuFF+9rOfySc+8Qn5yEc+Iv3OSWEOGzZskC996Uty5513ytNPPy19fX1y//33yxe/+EXf929raxtfmM7+AaAXRq/0RlZDOZV5vxOgAwDylPtIutuCBQukWq3KXXfdNeX/Tj31VHnve98rt9122/jf7rnnHvn4xz8ur732mjQ3N77mEOUKBoBsMXqlFxb0Kyf2OwAA6hk1ku42NjY2KT3dad++fVMC8cr/9Og1u9YAIAYCdL2U5XZUZR4x9lKW/Y5gHBcAkJ9cg/Trr79e/vVf/1V27twpmzdvluuvv142bNggF110kYiIXHLJJXL99dePP//cc8+VlStXypo1a+SFF16Qhx9+WD73uc/JueeeOx6sAwCSK8OCfgMD1noILS0T6yKUXRn2O4JxXABA/nK9T/qePXvkkksukZdfflk6Ojqkp6dHHnzwQTnrrLNEROTFF1+cNHK+bNkyaWpqkmXLlsnu3bvlsMMOk3PPPVduueWWvDYBAAqpUrFSnd0L+hXpeqjXiHHZFywsw35HMI4LAMifdnPS08acdAAIp8hzk2s1a6TQbXTU+l3moLTI+x3Bgo6LMh8TAKCC0XPSAQB6sG+FNzpq/S5SoGaPGNuBR6UiUq2K9PSQ5lvk/Y5gXseF8zEAIBsE6QCAQEXtoLtv/SfCgmlORd3vCMYtMQEgf7nOSQcAQAf1usiOHROPnQumEayiTOxMCto+AOSHkXQAQCk5F8h69lmR1lbSfE3EyvPpoO0DQH4I0gEApeN1q7GREZE5c6zHpPnqj1uFAQCKiiAdAFA6fgtk9fezYJopvG4VBgBAERCkAwBKyW+BLNJ89eeVCeF8DACAyVg4DgBCYiGlYmGBLHPZmQ8DAxP7r7OT/QgAKAZG0gGgAea+FhuBnZm4VVh+yFgAgHQRpANAA8x9BfRjZ0KwhkB2uGAJANkgSAeAAKbOfdW9fIAqZEJkhwuWAJANgnSgoAjS1PBbBVzXwICRLgBpMPWCJQCYiCAdKBiCNPVMmvvKSBeANJh2wRIATNZUr9freRciS0NDQ9LR0SGDg4PS3t6ed3EA5ezA3Lni8ZYteZeqGHRfBbxWsy7OuI2O6l1uAGawL/z191sBuvMCJgAgWJQ4lFuwAQVipx+6H+seXJpC9zrktlSAuUw4T3PbQgDIBunuQIGQjgiTUvOhH+YXZ8/EKUp8pwBAugjSgYIhSCs3bkuFOEwMFIuCdSQAAG7MSQcKinREAGGxlkU+WEcCAMojShzKSDpQUHTwAITBrbXywxQlAIAXgnQAAEqMQDFfTFECALgRpAMAUHIEivlhHQkAgBu3YAMAoOS4tVb+qHcAgI2RdAAAICIEigAA6IAgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAIAWarW8SwAAQP4I0gEAQK4GBkTmzRNpabF+DwzkXSIAAPJDkA4AAHLV2zsRmA8MWI8BACgrgnQAAJCbWk2kv38i1d39GACAsiFIBwAAualURLq7rd9ejwEAKBuCdAAAkKu+PpHOTuvfnZ3WYwAAyqol7wIAAIBy6+wU2bLFSnFPMoKe9PWq3wcAgDgYSQcAAFqIGxirWh2eVeYBADogSAcAAEZTtTo8q8wDAHRAkA4AAIylanV4VpnXF/sAQNkQpAMAAGOpWh2eVeb1w/QDAGVFkA4AAIymanV4VpnXC9MPAJRVU71er+ddiCwNDQ1JR0eHDA4OSnt7e97FAQAAirC6e3HUatYIutvoKPsGgJmixKGMpAMAgEJQFbwRBOaP6QcAyowgHQCAjLAAFhAe0w8AlBVBOgBojsDOfCyABUTX2SmyZYuV4r5ly0TADgBFR5AOAJoisCsOFsAC4iPFHUDZEKQDgKYI7IqB+28DAIAoCNIBQEMEdsXBAlgAACAKgnQA0BCBXbGwABYAAAiLIB0ANEVgVxwsgAUAAMJqybsAAABvdmBXqzGCXhTsRwAA0Agj6QCgOQI7AACA8iBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDQMlx73UAAAB9EKQDQEkNDIjMmyfS0mL9HhjIu0Rm4iIHAABQiSAdAEqqt3ciMB8YsB4jPC5yAACANBCkA0AJ1Woi/f0To8Dux2iMixwAACANBOkAUEKVikh398Q92N2PEYyLHAAAIC0E6QBQUn19Ip2d1r87O63HCIeLHAAAIC0E6QBQUp2dIlu2iIyOWr/tgB3hcJEDAACkoSXvAgAA8sXobzz2RY5ajToEAADqMJIOAEACBOgAAEAlgnQAAAAAADRBkA6g8FhxGwAAAKYgSAdQWAMDIvPmibS0WL/te1oDAAAAuiJIB1BYvb0TgfnAgPUYAAAA0BlBOoBCqtVE+vsnUt3djwEAAAAdEaQDKKRKRaS7e2LlbfdjAAAAQEcE6QAKq6/Pupe1iPW7ry/f8gAAAACNtORdAABIS2enyJYtVoo7I+gAAAAwASPpAAqPAB0AAACmIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANJFrkL5y5Urp6emR9vZ2aW9vl/nz58v69et9n3/GGWdIU1PTlJ+FCxdmWGoAAAAAANLRkueHH3PMMXLrrbfKcccdJ/V6Xb7zne/IeeedJ88884zMmzdvyvP7+vpkZGRk/PGrr74qJ554oixZsiTLYgMAAAAAkIpcg/Rzzz130uNbbrlFVq5cKT/96U89g/RDDjlk0uM1a9bIAQccQJAOAACUq9VEKpW8SwEAKBtt5qTXajVZs2aNvP766zJ//vxQr7n77rvlwgsvlAMPPND3OcPDwzI0NDTpBwAAwM/AgMi8eSItLdbvgYG8SwQAKJPcg/TNmzfL9OnTpa2tTa644gpZt26ddHd3N3zdE088IT//+c/lYx/7WODzli9fLh0dHeM/M2fOVFV0AABQQL29E4H5wID1GACArDTV6/V6ngUYGRmRF198UQYHB+V73/uefPvb35af/OQnDQP1yy+/XB5//HHZtGlT4POGh4dleHh4/PHQ0JDMnDlTBgcHpb29Xck2AACAYqjVrBF0t9FRUt8BAPENDQ1JR0dHqDg01znpIiKtra0ye/ZsERF597vfLU8++aT81V/9ldx1112+r3n99ddlzZo1ctNNNzV8/7a2Nmlra1NWXgAAUFyVikh3tzWCbs9J7+wkQAcAZCf3dHe3sbGxSSPfXtauXSvDw8Ny8cUXZ1QqAABQFn19VmAuYv3u68u3PACAcsl1JP3666+Xc845R4499ljZu3evrF69WjZs2CAPPvigiIhccsklcvTRR8vy5csnve7uu++WRYsWyaGHHppHsQEAQIF1dops2cLq7gCAfOQapO/Zs0cuueQSefnll6Wjo0N6enrkwQcflLPOOktERF588UVpbp482D8wMCCPPvqoPPTQQ3kUGQAAlAQBOgAgD7kvHJe1KBP2AQAAAABIKkocqt2cdAAAAAAAyoogHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmWvIuQNbq9bqIiAwNDeVcEgAAAABAGdjxpx2PBildkL53714REZk5c2bOJQEAAAAAlMnevXulo6Mj8DlN9TChfIGMjY3JSy+9JDNmzJCmpqa8i2OcoaEhmTlzpuzatUva29vzLg5yQjuACO0AFtoBRGgHsNAOIEI78FOv12Xv3r1y1FFHSXNz8Kzz0o2kNzc3yzHHHJN3MYzX3t7OQQfaAUSEdgAL7QAitANYaAcQoR14aTSCbmPhOAAAAAAANEGQDgAAAACAJgjSEUlbW5vccMMN0tbWlndRkCPaAURoB7DQDiBCO4CFdgAR2oEKpVs4DgAAAAAAXTGSDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkYt3LlSunp6ZH29nZpb2+X+fPny/r1632ff8YZZ0hTU9OUn4ULF2ZYaqgWtR2IiNxxxx3S2dkp+++/v8ycOVP+7M/+TN58882MSow0RG0Hb731ltx0001SrVZl2rRpcuKJJ8oPf/jDDEuMLNx6663S1NQkn/rUpwKft3btWpk7d65MmzZNTjjhBHnggQeyKSAyEaYdbNmyRc4//3yZNWuWNDU1yR133JFZ+ZCNMO3gW9/6lpx66qly8MEHy8EHHywLFiyQJ554IrtCInVh2kFfX5+ccsopctBBB8mBBx4oJ510kqxatSq7QhqIIB3jjjnmGLn11lvlqaeekn//93+X3/u935PzzjtPtmzZ4vn8vr4+efnll8d/fv7zn0ulUpElS5ZkXHKoFLUdrF69Wj796U/LDTfcIFu3bpW7775b/umf/kk+85nPZFxyqBS1HSxbtkzuuusu+frXvy79/f1yxRVXyOLFi+WZZ57JuORIy5NPPil33XWX9PT0BD7vsccekz/6oz+Sj370o/LMM8/IokWLZNGiRfLzn/88o5IiTWHbwb59++Sd73yn3HrrrXLEEUdkVDpkJWw72LBhg/zRH/2R/PjHP5bHH39cZs6cKR/4wAdk9+7dGZUUaQrbDg455BD57Gc/K48//rhs2rRJLrvsMrnsssvkwQcfzKikBqoDAQ4++OD6t7/97VDPvf322+szZsyov/baaymXClkLagdXXXVV/fd+7/cm/e3aa6+tv//978+iaMhQUDs48sgj69/4xjcm/a23t7d+0UUXZVE0pGzv3r314447rv7www/XTz/99Po111zj+9wLLrigvnDhwkl/++3f/u365ZdfnnIpkbYo7cDp7W9/e/32229PtWzITtx2UK/X66Ojo/UZM2bUv/Od76RXQGQiSTuo1+v1k08+ub5s2bJ0ClcAjKTDU61WkzVr1sjrr78u8+fPD/Wau+++Wy688EI58MADUy4dshKmHbzvfe+Tp556ajx97fnnn5cHHnhAPvShD2VZVKQoTDsYHh6WadOmTfrb/vvvL48++mgWRUTKrrrqKlm4cKEsWLCg4XMff/zxKc87++yz5fHHH0+reMhIlHaA4krSDvbt2ydvvfWWHHLIISmUDFmK2w7q9bo88sgjMjAwIKeddlpKpTNfS94FgF42b94s8+fPlzfffFOmT58u69atk+7u7oave+KJJ+TnP/+53H333RmUEmmL0g7+9//+3/LrX/9afud3fkfq9bqMjo7KFVdcQbp7AURpB2effbZ89atfldNOO02q1ao88sgj0tfXJ7VaLeNSQ7U1a9bI008/LU8++WSo57/yyivytre9bdLf3va2t8krr7ySRvGQkajtAMWUtB1cd911ctRRR3Ghx3Bx2sHg4KAcffTRMjw8LJVKRe68804566yzUiyl2RhJxySdnZ2yceNG+dnPfiaf+MQn5CMf+Yj09/c3fN3dd98tJ5xwgvzWb/1WBqVE2qK0gw0bNsiXvvQlufPOO+Xpp5+Wvr4+uf/+++WLX/xixqWGalHawV/91V/JcccdJ3PnzpXW1la5+uqr5bLLLpPmZr5mTLZr1y655ppr5Lvf/e6UTAmUB+0AIsnbwa233ipr1qyRdevW0Y4MFrcdzJgxQzZu3ChPPvmk3HLLLXLttdfKhg0b0iuo6fLOt4fezjzzzPrHP/7xwOe89tpr9fb29vodd9yRUamQtaB28Du/8zv1pUuXTvrbqlWr6vvvv3+9VqtlUTxkJMz54I033qj/8pe/rI+NjdX/4i/+ot7d3Z1R6ZCGdevW1UWkXqlUxn9EpN7U1FSvVCr10dHRKa+ZOXPmlPnHn//85+s9PT0ZlRqqxWkHTsxJL4Yk7eC2226rd3R01J988skMS4w0JD0f2D760Y/WP/CBD6RcWnOR7o5AY2NjMjw8HPictWvXyvDwsFx88cUZlQpZC2oH+/btmzJaWqlURMSad4TiCHM+mDZtmhx99NHy1ltvyT//8z/LBRdckFHpkIYzzzxTNm/ePOlvl112mcydO1euu+668WPdaf78+fLII49Muh3Pww8/HHp9E+gnTjtA8cRtB1/+8pfllltukQcffFBOOeWULIqKFKk6H4TpU5QZQTrGXX/99XLOOefIscceK3v37pXVq1fLhg0bxm+PcMkll8jRRx8ty5cvn/S6u+++WxYtWiSHHnpoHsWGYlHbwbnnnitf/epX5eSTT5bf/u3flu3bt8vnPvc5Offcc+m4GSxqO/jZz34mu3fvlpNOOkl2794tN954o4yNjclf/MVf5LkZSGjGjBly/PHHT/rbgQceKIceeuj4391t4ZprrpHTTz9dvvKVr8jChQtlzZo18u///u/yN3/zN5mXH2rEaQcjIyPj02NGRkZk9+7dsnHjRpk+fbrMnj072w2AEnHawV/+5V/K5z//eVm9erXMmjVrfG2K6dOny/Tp07PdACgRpx0sX75cTjnlFKlWqzI8PCwPPPCArFq1SlauXJl5+U1BkI5xe/bskUsuuURefvll6ejokJ6eHnnwwQfHF3V48cUXp4yYDgwMyKOPPioPPfRQHkVGCqK2g2XLlklTU5MsW7ZMdu/eLYcddpice+65csstt+S1CVAgajt48803ZdmyZfL888/L9OnT5UMf+pCsWrVKDjrooJy2AFlxt4X3ve99snr1alm2bJl85jOfkeOOO07uvffeKZ06FIu7Hbz00kty8sknjz9esWKFrFixQk4//XTmoRaYux2sXLlSRkZG5A//8A8nPe+GG26QG2+8MePSISvudvD666/LlVdeKb/85S9l//33l7lz58o999wjH/7wh3Mspd6a6uSjAgAAAACgBZbdBQAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAIBAv/rVr+SII46QL33pS+N/e+yxx6S1tVUeeeSRHEsGAEDxNNXr9XrehQAAAHp74IEHZNGiRfLYY49JZ2ennHTSSXLeeefJV7/61byLBgBAoRCkAwCAUK666ir5l3/5FznllFNk8+bN8uSTT0pbW1vexQIAoFAI0gEAQChvvPGGHH/88bJr1y556qmn5IQTTsi7SAAAFA5z0gEAQCg7duyQl156ScbGxmTnzp15FwcAgEJiJB0AADQ0MjIiv/VbvyUnnXSSdHZ2yh133CGbN2+Www8/PO+iAQBQKATpAACgof/zf/6PfO9735P/+I//kOnTp8vpp58uHR0dct999+VdNAAACoV0dwAAEGjDhg1yxx13yKpVq6S9vV2am5tl1apV8v/+3/+TlStX5l08AAAKhZF0AAAAAAA0wUg6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGji/wNrmNB+Kv4gaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# генерация датасета\n", + "data = lib.datagen(4, 4, 1000, 2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ocj6d5ekc_O1", + "outputId": "f38bfc69-be54-4cbb-f315-6d45ce329880" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.89754058, 4.00467196],\n", + " [4.00996996, 4.00696404],\n", + " [4.13181175, 4.19264161],\n", + " ...,\n", + " [3.90249897, 3.8890494 ],\n", + " [3.98817291, 4.05824572],\n", + " [3.95966561, 3.94263676]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OD4s_l9kJQQl", + "outputId": "93ddd49a-b2ee-4430-bbea-a61354cdec7a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходные данные:\n", + "[[3.89754058 4.00467196]\n", + " [4.00996996 4.00696404]\n", + " [4.13181175 4.19264161]\n", + " ...\n", + " [3.90249897 3.8890494 ]\n", + " [3.98817291 4.05824572]\n", + " [3.95966561 3.94263676]]\n", + "Размерность данных:\n", + "(1000, 2)\n" + ] + } + ], + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(data)\n", + "print('Размерность данных:')\n", + "print(data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e_fQEkQeR6Ie", + "outputId": "deb9fadc-5b1b-4263-a58c-7edb5fed376f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 3\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 3 1 3\n", + "Epoch 1/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - loss: 16.0694\n", + "Epoch 2/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 16.0436\n", + "Epoch 3/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 16.0181\n", + "Epoch 4/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 15.9931\n", + "Epoch 5/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 15.9683\n", + "Epoch 6/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 15.9436\n", + "Epoch 7/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 15.9190\n", + "Epoch 8/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 15.8943\n", + "Epoch 9/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.8695\n", + "Epoch 10/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 15.8445\n", + "Epoch 11/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.8194\n", + "Epoch 12/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.7941\n", + "Epoch 13/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.7686\n", + "Epoch 14/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.7429\n", + "Epoch 15/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.7170\n", + "Epoch 16/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.6909\n", + "Epoch 17/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.6646\n", + "Epoch 18/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 15.6382\n", + "Epoch 19/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 15.6115\n", + "Epoch 20/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.5846\n", + "Epoch 21/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.5575\n", + "Epoch 22/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.5301\n", + "Epoch 23/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.5026\n", + "Epoch 24/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.4749\n", + "Epoch 25/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.4469\n", + "Epoch 26/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.4187\n", + "Epoch 27/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.3903\n", + "Epoch 28/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.3617\n", + "Epoch 29/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.3328\n", + "Epoch 30/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.3038\n", + "Epoch 31/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.2745\n", + "Epoch 32/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.2450\n", + "Epoch 33/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.2153\n", + "Epoch 34/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.1854\n", + "Epoch 35/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.1553\n", + "Epoch 36/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.1250\n", + "Epoch 37/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.0945\n", + "Epoch 38/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.0637\n", + "Epoch 39/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.0328\n", + "Epoch 40/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 15.0017\n", + "Epoch 41/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 14.9704\n", + "Epoch 42/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.9389\n", + "Epoch 43/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.9072\n", + "Epoch 44/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 14.8753\n", + "Epoch 45/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.8433\n", + "Epoch 46/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.8111\n", + "Epoch 47/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.7787\n", + "Epoch 48/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.7461\n", + "Epoch 49/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.7134\n", + "Epoch 50/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.6805\n", + "Epoch 51/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.6474\n", + "Epoch 52/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.6142\n", + "Epoch 53/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 14.5809\n", + "Epoch 54/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.5474\n", + "Epoch 55/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.5137\n", + "Epoch 56/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.4800\n", + "Epoch 57/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.4460\n", + "Epoch 58/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.4120\n", + "Epoch 59/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.3778\n", + "Epoch 60/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.3435\n", + "Epoch 61/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.3091\n", + "Epoch 62/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.2746\n", + "Epoch 63/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.2400\n", + "Epoch 64/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.2053\n", + "Epoch 65/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.1704\n", + "Epoch 66/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.1355\n", + "Epoch 67/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.1004\n", + "Epoch 68/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.0653\n", + "Epoch 69/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.0301\n", + "Epoch 70/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.9948\n", + "Epoch 71/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.9594\n", + "Epoch 72/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 13.9239\n", + "Epoch 73/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.8884\n", + "Epoch 74/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.8528\n", + "Epoch 75/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.8171\n", + "Epoch 76/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.7814\n", + "Epoch 77/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.7456\n", + "Epoch 78/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.7097\n", + "Epoch 79/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.6738\n", + "Epoch 80/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.6378\n", + "Epoch 81/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.6017\n", + "Epoch 82/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.5657\n", + "Epoch 83/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.5295\n", + "Epoch 84/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.4934\n", + "Epoch 85/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.4572\n", + "Epoch 86/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.4209\n", + "Epoch 87/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.3846\n", + "Epoch 88/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.3483\n", + "Epoch 89/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.3119\n", + "Epoch 90/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.2756\n", + "Epoch 91/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.2392\n", + "Epoch 92/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.2027\n", + "Epoch 93/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.1663\n", + "Epoch 94/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.1298\n", + "Epoch 95/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.0933\n", + "Epoch 96/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.0568\n", + "Epoch 97/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.0202\n", + "Epoch 98/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.9837\n", + "Epoch 99/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.9471\n", + "Epoch 100/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.9106\n", + "Epoch 101/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.8740\n", + "Epoch 102/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 12.8374\n", + "Epoch 103/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.8009\n", + "Epoch 104/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 12.7643\n", + "Epoch 105/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.7277\n", + "Epoch 106/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.6911\n", + "Epoch 107/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.6545\n", + "Epoch 108/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.6179\n", + "Epoch 109/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.5814\n", + "Epoch 110/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.5448\n", + "Epoch 111/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.5082\n", + "Epoch 112/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.4717\n", + "Epoch 113/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.4351\n", + "Epoch 114/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.3986\n", + "Epoch 115/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 12.3621\n", + "Epoch 116/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.3256\n", + "Epoch 117/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.2891\n", + "Epoch 118/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.2526\n", + "Epoch 119/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.2162\n", + "Epoch 120/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 12.1797\n", + "Epoch 121/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.1433\n", + "Epoch 122/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.1069\n", + "Epoch 123/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.0706\n", + "Epoch 124/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.0342\n", + "Epoch 125/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.9979\n", + "Epoch 126/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.9616\n", + "Epoch 127/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.9253\n", + "Epoch 128/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.8891\n", + "Epoch 129/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.8529\n", + "Epoch 130/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.8167\n", + "Epoch 131/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.7805\n", + "Epoch 132/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.7444\n", + "Epoch 133/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 11.7083\n", + "Epoch 134/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 11.6723\n", + "Epoch 135/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 11.6363\n", + "Epoch 136/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.6003\n", + "Epoch 137/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.5643\n", + "Epoch 138/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.5284\n", + "Epoch 139/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 11.4926\n", + "Epoch 140/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 11.4567\n", + "Epoch 141/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.4209\n", + "Epoch 142/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.3852\n", + "Epoch 143/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 11.3495\n", + "Epoch 144/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.3138\n", + "Epoch 145/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.2782\n", + "Epoch 146/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.2426\n", + "Epoch 147/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.2071\n", + "Epoch 148/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.1716\n", + "Epoch 149/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.1362\n", + "Epoch 150/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.1008\n", + "Epoch 151/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 11.0654\n", + "Epoch 152/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.0301\n", + "Epoch 153/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.9949\n", + "Epoch 154/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.9597\n", + "Epoch 155/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.9246\n", + "Epoch 156/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.8895\n", + "Epoch 157/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.8544\n", + "Epoch 158/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.8194\n", + "Epoch 159/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.7845\n", + "Epoch 160/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.7496\n", + "Epoch 161/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.7148\n", + "Epoch 162/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.6800\n", + "Epoch 163/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.6453\n", + "Epoch 164/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.6107\n", + "Epoch 165/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.5761\n", + "Epoch 166/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.5415\n", + "Epoch 167/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.5071\n", + "Epoch 168/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.4726\n", + "Epoch 169/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.4383\n", + "Epoch 170/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.4040\n", + "Epoch 171/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.3698\n", + "Epoch 172/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.3356\n", + "Epoch 173/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.3015\n", + "Epoch 174/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.2674\n", + "Epoch 175/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.2335\n", + "Epoch 176/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.1996\n", + "Epoch 177/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.1657\n", + "Epoch 178/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.1319\n", + "Epoch 179/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.0982\n", + "Epoch 180/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.0646\n", + "Epoch 181/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.0310\n", + "Epoch 182/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.9975\n", + "Epoch 183/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.9641\n", + "Epoch 184/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.9307\n", + "Epoch 185/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.8974\n", + "Epoch 186/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.8642\n", + "Epoch 187/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.8311\n", + "Epoch 188/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.7980\n", + "Epoch 189/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.7650\n", + "Epoch 190/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.7320\n", + "Epoch 191/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.6992\n", + "Epoch 192/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.6664\n", + "Epoch 193/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.6337\n", + "Epoch 194/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.6011\n", + "Epoch 195/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.5685\n", + "Epoch 196/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.5361\n", + "Epoch 197/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.5037\n", + "Epoch 198/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.4713\n", + "Epoch 199/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.4391\n", + "Epoch 200/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.4069\n", + "Epoch 201/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.3748\n", + "Epoch 202/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.3428\n", + "Epoch 203/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.3109\n", + "Epoch 204/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.2790\n", + "Epoch 205/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.2473\n", + "Epoch 206/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.2156\n", + "Epoch 207/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.1839\n", + "Epoch 208/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.1524\n", + "Epoch 209/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.1209\n", + "Epoch 210/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.0895\n", + "Epoch 211/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.0582\n", + "Epoch 212/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.0270\n", + "Epoch 213/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 8.9958\n", + "Epoch 214/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.9648\n", + "Epoch 215/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.9338\n", + "Epoch 216/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 8.9028\n", + "Epoch 217/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.8720\n", + "Epoch 218/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.8412\n", + "Epoch 219/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 8.8105\n", + "Epoch 220/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.7799\n", + "Epoch 221/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.7493\n", + "Epoch 222/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 8.7188\n", + "Epoch 223/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 8.6884\n", + "Epoch 224/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 8.6581\n", + "Epoch 225/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.6278\n", + "Epoch 226/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.5977\n", + "Epoch 227/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.5676\n", + "Epoch 228/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.5375\n", + "Epoch 229/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.5076\n", + "Epoch 230/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.4777\n", + "Epoch 231/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 8.4479\n", + "Epoch 232/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.4182\n", + "Epoch 233/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 8.3885\n", + "Epoch 234/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.3590\n", + "Epoch 235/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.3295\n", + "Epoch 236/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.3000\n", + "Epoch 237/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.2707\n", + "Epoch 238/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.2414\n", + "Epoch 239/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.2122\n", + "Epoch 240/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 8.1831\n", + "Epoch 241/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.1541\n", + "Epoch 242/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 8.1251\n", + "Epoch 243/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 8.0962\n", + "Epoch 244/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 8.0674\n", + "Epoch 245/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.0387\n", + "Epoch 246/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.0100\n", + "Epoch 247/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.9814\n", + "Epoch 248/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 7.9529\n", + "Epoch 249/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.9245\n", + "Epoch 250/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.8962\n", + "Epoch 251/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.8679\n", + "Epoch 252/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.8397\n", + "Epoch 253/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 7.8116\n", + "Epoch 254/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 7.7835\n", + "Epoch 255/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.7556\n", + "Epoch 256/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 7.7277\n", + "Epoch 257/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.6999\n", + "Epoch 258/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.6722\n", + "Epoch 259/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.6445\n", + "Epoch 260/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.6170\n", + "Epoch 261/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.5895\n", + "Epoch 262/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.5620\n", + "Epoch 263/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.5347\n", + "Epoch 264/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.5074\n", + "Epoch 265/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.4803\n", + "Epoch 266/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.4532\n", + "Epoch 267/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.4261\n", + "Epoch 268/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.3992\n", + "Epoch 269/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.3723\n", + "Epoch 270/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3455\n", + "Epoch 271/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.3188\n", + "Epoch 272/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.2922\n", + "Epoch 273/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.2656\n", + "Epoch 274/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.2391\n", + "Epoch 275/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 7.2127\n", + "Epoch 276/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.1864\n", + "Epoch 277/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.1602\n", + "Epoch 278/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.1340\n", + "Epoch 279/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.1079\n", + "Epoch 280/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.0819\n", + "Epoch 281/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.0560\n", + "Epoch 282/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.0301\n", + "Epoch 283/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.0043\n", + "Epoch 284/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.9786\n", + "Epoch 285/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.9530\n", + "Epoch 286/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.9275\n", + "Epoch 287/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.9020\n", + "Epoch 288/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.8766\n", + "Epoch 289/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.8513\n", + "Epoch 290/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.8260\n", + "Epoch 291/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.8009\n", + "Epoch 292/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.7758\n", + "Epoch 293/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.7508\n", + "Epoch 294/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.7259\n", + "Epoch 295/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.7010\n", + "Epoch 296/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.6762\n", + "Epoch 297/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.6515\n", + "Epoch 298/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.6269\n", + "Epoch 299/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.6023\n", + "Epoch 300/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.5779\n", + "Epoch 301/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.5535\n", + "Epoch 302/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.5292\n", + "Epoch 303/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.5049\n", + "Epoch 304/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.4807\n", + "Epoch 305/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.4567\n", + "Epoch 306/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.4326\n", + "Epoch 307/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.4087\n", + "Epoch 308/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.3848\n", + "Epoch 309/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.3610\n", + "Epoch 310/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.3373\n", + "Epoch 311/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.3137\n", + "Epoch 312/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.2901\n", + "Epoch 313/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.2666\n", + "Epoch 314/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.2432\n", + "Epoch 315/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.2199\n", + "Epoch 316/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.1966\n", + "Epoch 317/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.1734\n", + "Epoch 318/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.1503\n", + "Epoch 319/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.1273\n", + "Epoch 320/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.1043\n", + "Epoch 321/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.0814\n", + "Epoch 322/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.0586\n", + "Epoch 323/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.0358\n", + "Epoch 324/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.0132\n", + "Epoch 325/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.9906\n", + "Epoch 326/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.9680\n", + "Epoch 327/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.9456\n", + "Epoch 328/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.9232\n", + "Epoch 329/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.9009\n", + "Epoch 330/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.8787\n", + "Epoch 331/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.8565\n", + "Epoch 332/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.8344\n", + "Epoch 333/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.8124\n", + "Epoch 334/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.7904\n", + "Epoch 335/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.7686\n", + "Epoch 336/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.7468\n", + "Epoch 337/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.7250\n", + "Epoch 338/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.7034\n", + "Epoch 339/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.6818\n", + "Epoch 340/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6603\n", + "Epoch 341/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6388\n", + "Epoch 342/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6175\n", + "Epoch 343/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.5961\n", + "Epoch 344/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.5749\n", + "Epoch 345/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.5538\n", + "Epoch 346/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.5327\n", + "Epoch 347/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.5116\n", + "Epoch 348/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.4907\n", + "Epoch 349/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.4698\n", + "Epoch 350/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.4490\n", + "Epoch 351/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.4283\n", + "Epoch 352/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.4076\n", + "Epoch 353/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.3870\n", + "Epoch 354/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3664\n", + "Epoch 355/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.3460\n", + "Epoch 356/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.3256\n", + "Epoch 357/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3052\n", + "Epoch 358/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.2850\n", + "Epoch 359/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.2648\n", + "Epoch 360/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.2447\n", + "Epoch 361/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.2246\n", + "Epoch 362/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.2046\n", + "Epoch 363/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1847\n", + "Epoch 364/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.1649\n", + "Epoch 365/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.1451\n", + "Epoch 366/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1254\n", + "Epoch 367/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1057\n", + "Epoch 368/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.0861\n", + "Epoch 369/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.0666\n", + "Epoch 370/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.0471\n", + "Epoch 371/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.0278\n", + "Epoch 372/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.0084\n", + "Epoch 373/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.9892\n", + "Epoch 374/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.9700\n", + "Epoch 375/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.9509\n", + "Epoch 376/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.9318\n", + "Epoch 377/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.9128\n", + "Epoch 378/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.8939\n", + "Epoch 379/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.8750\n", + "Epoch 380/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.8562\n", + "Epoch 381/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.8375\n", + "Epoch 382/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.8188\n", + "Epoch 383/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.8002\n", + "Epoch 384/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.7817\n", + "Epoch 385/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.7632\n", + "Epoch 386/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.7448\n", + "Epoch 387/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.7265\n", + "Epoch 388/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.7082\n", + "Epoch 389/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.6900\n", + "Epoch 390/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.6718\n", + "Epoch 391/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.6537\n", + "Epoch 392/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.6357\n", + "Epoch 393/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.6177\n", + "Epoch 394/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5998\n", + "Epoch 395/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5819\n", + "Epoch 396/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.5642\n", + "Epoch 397/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.5464\n", + "Epoch 398/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5288\n", + "Epoch 399/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5112\n", + "Epoch 400/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.4936\n", + "Epoch 401/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.4762\n", + "Epoch 402/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.4587\n", + "Epoch 403/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.4414\n", + "Epoch 404/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.4241\n", + "Epoch 405/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.4069\n", + "Epoch 406/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.3897\n", + "Epoch 407/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.3726\n", + "Epoch 408/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.3555\n", + "Epoch 409/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.3385\n", + "Epoch 410/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.3216\n", + "Epoch 411/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.3047\n", + "Epoch 412/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.2879\n", + "Epoch 413/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.2711\n", + "Epoch 414/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.2544\n", + "Epoch 415/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.2378\n", + "Epoch 416/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.2212\n", + "Epoch 417/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.2047\n", + "Epoch 418/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.1882\n", + "Epoch 419/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1718\n", + "Epoch 420/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.1555\n", + "Epoch 421/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.1392\n", + "Epoch 422/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.1230\n", + "Epoch 423/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.1068\n", + "Epoch 424/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.0907\n", + "Epoch 425/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.0746\n", + "Epoch 426/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.0586\n", + "Epoch 427/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.0427\n", + "Epoch 428/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.0268\n", + "Epoch 429/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.0109\n", + "Epoch 430/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.9951\n", + "Epoch 431/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.9794\n", + "Epoch 432/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.9638\n", + "Epoch 433/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.9481\n", + "Epoch 434/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.9326\n", + "Epoch 435/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9171\n", + "Epoch 436/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.9016\n", + "Epoch 437/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.8863\n", + "Epoch 438/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.8709\n", + "Epoch 439/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.8556\n", + "Epoch 440/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.8404\n", + "Epoch 441/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.8252\n", + "Epoch 442/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.8101\n", + "Epoch 443/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.7951\n", + "Epoch 444/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7801\n", + "Epoch 445/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.7651\n", + "Epoch 446/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.7502\n", + "Epoch 447/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 3.7353\n", + "Epoch 448/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.7206\n", + "Epoch 449/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.7058\n", + "Epoch 450/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.6911\n", + "Epoch 451/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.6765\n", + "Epoch 452/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 3.6619\n", + "Epoch 453/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.6474\n", + "Epoch 454/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.6329\n", + "Epoch 455/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.6185\n", + "Epoch 456/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 3.6041\n", + "Epoch 457/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.5898\n", + "Epoch 458/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.5755\n", + "Epoch 459/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.5613\n", + "Epoch 460/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.5471\n", + "Epoch 461/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.5330\n", + "Epoch 462/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.5189\n", + "Epoch 463/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.5049\n", + "Epoch 464/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.4909\n", + "Epoch 465/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.4770\n", + "Epoch 466/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.4631\n", + "Epoch 467/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.4493\n", + "Epoch 468/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.4356\n", + "Epoch 469/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.4218\n", + "Epoch 470/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.4082\n", + "Epoch 471/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.3946\n", + "Epoch 472/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.3810\n", + "Epoch 473/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.3675\n", + "Epoch 474/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.3540\n", + "Epoch 475/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.3406\n", + "Epoch 476/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 3.3272\n", + "Epoch 477/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 3.3139\n", + "Epoch 478/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.3006\n", + "Epoch 479/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 3.2874\n", + "Epoch 480/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.2742\n", + "Epoch 481/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.2611\n", + "Epoch 482/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 3.2480\n", + "Epoch 483/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.2349\n", + "Epoch 484/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.2220\n", + "Epoch 485/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.2090\n", + "Epoch 486/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.1961\n", + "Epoch 487/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.1833\n", + "Epoch 488/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.1705\n", + "Epoch 489/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.1577\n", + "Epoch 490/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.1450\n", + "Epoch 491/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.1324\n", + "Epoch 492/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1197\n", + "Epoch 493/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.1072\n", + "Epoch 494/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.0947\n", + "Epoch 495/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.0822\n", + "Epoch 496/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.0698\n", + "Epoch 497/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.0574\n", + "Epoch 498/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.0450\n", + "Epoch 499/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.0327\n", + "Epoch 500/500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.0205\n", + "Restoring model weights from the end of the best epoch: 500.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "patience = 100\n", + "ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt',\n", + "500, True, patience)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "twXXzEr1Oq7s" + }, + "outputs": [], + "source": [ + "mse_stop_ae1 = 3.0205" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ghEHU6XSOznl", + "outputId": "1973f30b-e420-4e34-a129-1ea7d15a0b39" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(2.8)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "IREth1" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "mb5m37JhKfHU", + "outputId": "db87e7d0-7b58-4fc6-a797-1dffb8154a50" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYFEX6B/DvbGaBJQpLRhQBQUyIigEUFcWEh55iAk/P7OkZfopnznpixCyKnoIKKgZQQBEVAckZEclpgYXNcXanf38UPVNdXd3TMzu7Mwvfz/PwMDuhp6Zj1dtvVfkMwzBARERERERERERElCCS4l0AIiIiIiIiIiIiIhmDlkRERERERERERJRQGLQkIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWREREtN9YvXo1br75Zhx++OFo3LgxfD5f8N/GjRvjXbwD0tixY4PbYMSIEXX63fL2JyIiIqL6hUFLIiKiem7AgAHBwMwjjzzi+D45gKP+S05ORtOmTdG1a1dccsklePfdd1FcXBxVGSL9F6tA1tdff42jjz4ab7zxBlavXh1R+YmIfvjhB8u5qUePHhEv45FHHon6XNi5c2fXZW/fvh1fffUVHnjgAZx99tlo0aIFb8wQEdF+LSXeBSAiIqL4CwQCKCgoQEFBAf766y9MnDgRI0eOxNtvv42LLroo3sULq7i4GCNGjEBFRQUAoE2bNjj55JNx0EEHBbPssrKy4lnEGnnkkUfw6KOPAgAefvhh1+A0UaLq3LkzNm3aBADYsGFD2CBdXfvggw8sf//xxx+YN28e+vbtG6cShbRt2xY7duyIdzGIiIjqFIOWREREB6AhQ4agXbt2wb8DgQByc3MxZ84cbN26FQCQm5uLiy++GBMnTowocHncccdF1Mg/4YQTvBfcwbfffou8vDwAQM+ePTF//nw0aNCgxsslogNDUVERvvjiC9vzH3zwQdRBy7Zt20Z07mzRooXjawxYEhHRgYhBSyIiogPQ7bffjgEDBtieDwQC+OCDD3DTTTehoqICgUAAN910EwYNGoTMzExPyx48eHCdZwIuWrQo+HjYsGEMWCaQESNG1PlYlibDMOLyvVT/TJw4EaWlpQCABg0aoKysDADwySef4MUXX0RaWlrEy+zatStGjx4dszJmZGTgqKOOwnHHHYfjjjsOrVu3xqBBg2K2fCIiokTDMS2JiIgoKCkpCddccw2ee+654HM7d+7EpEmT4lcoD8wsS0B0DSciioTcNfzee+9F69atAQB79+7FN998E69iBS1atAhFRUWYM2cOXnnlFVx11VU47LDD4l0sIiKiWsWgJREREdnccMMNyMjICP79yy+/xLE04fn9/uDjpCRWb4jIu40bNwbPcT6fD8OHD8ewYcOCr6tjXcbD0UcfjZQUdpIjIqIDC2v1REREZJOenm6ZOXf79u1xLI2ePEuvHFS45pprbLPyjh07VruM4uJivPLKKxg0aBDat2+PjIwMNGvWDL169cKtt96K33//3VNZ5O8yLV26FLfffjt69eqF5s2bw+fzYciQIRH9RnNWdnMSHgB49NFHPc3CPmLECNvvz8/Px8svv4xTTz0V7dq1Q0pKCnw+H/Lz8y2f3bVrF95//30MHz4cRx99NJo3b47U1FQ0bdoU3bt3xzXXXIOpU6d6+g1jx44NO1P8zJkzg++Rhy2YMWMGLrvsMnTp0gUZGRlo0aIFTj31VIwePdoSqHai2y6qzp0722Zf3rp1Kx588EEceeSRaNq0KRo2bIju3bvjtttuC04k49X06dNx2WWXoWPHjsjIyECbNm1wyimn4LXXXkNJSQkA674cq6EVcnNz8fzzz+OMM85A27ZtkZGREdyGPXv2xMUXX4wXXngBGzZs8LS8H3/8ETfeeCN69uyJ5s2bIz09HW3btsWgQYMwevToYHdq1caNG4O/TV53Bx98sHY/njlzZix+fkQ+/PDD4FACJ598Mjp37oyrrroq+Pp3332HXbt21Xm5iIiIDnS8XUdERERa8riQ5eXlcSxJ7fj222/xz3/+Ezk5OZbnKyoqkJ+fj5UrV+K1117D5ZdfjnfeecfzmJ6ACEI98cQTqK6ujnWxo/bbb79h2LBh2LJli+v7XnnlFdx5553aspszzK9ZswZjx47F6aefjs8++8x1ApFoVFZW4tZbb8U777xjeb6iogK//vorfv31V7z//vuYOnUqWrZsGdPvnjRpEkaMGIGCggLL82vWrMGaNWswZswYTJgwAeeee27Y33Dttdfio48+sjyfk5ODnJwczJo1C6+99hq+/PLLmJYfAL766itcc801lmETTOY2XLVqFT7//HO88MILwcm3dLZs2YKrr75aG0zcsWMHduzYgWnTpuHpp5/GJ598glNOOSWWP6VOfPjhh8HHZrDymGOOQc+ePbFy5UpUVVVh3LhxuOOOO+JUQiIiogMTg5ZERESkJWdXmuO7JZK+ffvilltuASCywP744w8AwMCBA9G9e3fLe+WsUQD49NNPccUVVwQDc8nJyTj55JNx6KGHori4GL/++mvw948bNw4bNmzAjBkzLF3mnfz3v/8NZkYecsgh6Nu3LzIzM7Fx40akpqZG9Bsvuugi9OrVC/PmzcP8+fMBOM/O7jYL+19//YU77rgDBQUFaNy4MU499VS0bdsWeXl5tq7/27dvD66XLl26oEePHjjooIOQkZGB/Px8LF++HCtXrgQgMiHPOOMMzJ07F+np6RH9NjfXX389PvjgAyQlJeH4449H9+7dEQgEMHfuXKxZswaAGOPv6quvxpQpU2L2vT/88ANuvPFGVFdXo2PHjjjxxBORlZWFDRs2YObMmaiqqkJZWRn+/ve/Y8WKFTj44IMdlzVs2DDLbNTNmzfHgAED0Lx5c2zZsgU///wzVq9ejXPPPRcXXHBBzH7DggULcPHFF6OqqgqAuPlwwgknoHPnzkhPT0dhYSHWrVuH5cuXByeecbJ69WoMHDgwOHO1z+fDMcccg8MPPxwNGjTAtm3b8Msvv6CoqAjbt2/HmWeeie+++w6nnXZacBlZWVnB4/TDDz9EUVERAODqq69G48aNbd/Zrl27mKwHr2bNmoV169YBEBnml1xySfC1q666Cvfddx8A0UWcQUsiIqI6ZhAREVG91r9/fwOAAcB4+OGHHd9nvgeA8dNPP7kuc82aNZb3jx49OiZlqC3Dhw8Pfv/777/v+t6//vrLaNSoUfD9ffv2NdauXWt5T3V1tTFq1CgjKSkp+L7bbrvNcZnyukpJSTGaNGlifPnll7b3lZeXR/PzjIcffjji9Suvk5SUFAOAccsttxhFRUWW91VWVhrV1dXBv8eMGWO8+uqrxtatWx2XvXTpUqNPnz7B5T/++OOO733//feD7xs+fLj2PT/99FPwPenp6QYA47jjjjNWr15teV8gEDBeeukly/r++eefHb9bfp+TTp06Wb67YcOGxv/+9z8jEAhY3rdixQqjXbt2wfdec801jst89913Ld9911132bb9zp07jXPOOcfym2Nx/AwZMiS4rKFDhxp79+7Vvq+srMyYPHmyccMNN2hfLy4uNnr06BFc1jnnnGP89ddftvcVFBQYN910U/B9bdq0MfLz87XLlNf1hg0bov6NsXTdddcFy3TxxRdbXtuyZYvlHLB06dKwy5OP1f79+9dSqYUNGzZY9rNEWadERESxwkxLIiIisqiqqsLtt98e/DsrKwuXXXaZ589PmTIFubm5nt//2GOPoXnz5hGVsSYee+wxFBcXAwAOPfRQTJs2DU2aNLG8JykpCXfeeSd8Ph/uvPNOAMBrr72Gf//7367ZdQAQCATw9ddf49RTT7W9FstsxEhUVVXhuuuuw+jRo22vqdmf//jHP8Iur3fv3vjhhx/QvXt35OTk4PXXX8fIkSORnJxc47JWVFSga9eumDFjBho1amR5zefz4fbbb8esWbMwceJEAMD48eO16zoalZWVmDRpEs4++2zbaz179sRbb72F8847DwAwYcIEvP3227bJUaqrq/Hwww8H/77hhhvw/PPP25bXqlUrTJo0CSeffHIwizYWfv31VwBiXxs7dqxtHZoyMjIwePBgDB48WPv6Cy+8gNWrVwMQGb8TJ07UTnKVlZWF119/HaWlpfjggw+wY8cOvPnmm7j33ntj9ItqT1lZGT777LPg3/I4lgDQvn17DBgwADNmzAAgsi1HjRrleflr167Frbfe6vn9V111FY4//njP7yciItrfMWhJRERECAQCyM3NxW+//YZnnnkG8+bNAwCkpKTgvffei2jMwvnz50cUhLn77rvrLGiZn5+PTz/9NPj3c889ZwtYym6//XaMGTMGK1euRCAQwNtvv42nn37a9TsuvvjimAXRYiUjIwPPPfdcTJfZpEkTXHTRRXjjjTewY8cOrFq1CkcccURMlv3MM884BtsAEVg1g5bmvhoL5513njZgaRo8eDCys7ORk5OD4uJirF692vabv//+e2zbtg0A0LBhQzzzzDOOy0tLS8Pzzz+P/v37x+YHACgsLAQAZGZmuq5DN36/PxjgTk9Px5tvvqkNWMqeeuqp4IQ2H3/8cb0IWk6aNCm4vlq0aIFzzjnH9p6rrroqGLT8+OOP8eyzz3qexXv79u147bXXPJenT58+DFoSERFJGLQkIiI6AMljzjnp1q0bRo0aFXbCkfpk9uzZqKioAAC0bNkS559/vuv7k5KS8I9//AN33XUXAOCnn34K+x2RZKXWlbPOOgvNmjWL+HO7du3C3LlzsXr1auTl5aGkpCQ4yzIgxk80LVmyJCZBy4yMjLDb5eijjw4+Nmf8jgV5PEMdn8+HI488Mjh508aNG22/WZ6w5txzz0XTpk1dl3nqqaeiY8eO2Lx5c1RlVnXo0AHr169HXl4ePv30U1x66aURL2PBggXB2bIHDhyIVq1ahf1M27Zt0b17d6xevRorVqxAQUGB6w2BRPDBBx8EH1922WXaMWcvvvhi3HLLLSgtLcXOnTsxderU/eqcSERElMgYtCQiIiKb1q1b48MPP9RO+BLOww8/jEceeST2hYqBxYsXBx/37dvXU8bUSSedZPm8YRjw+XyO7z/22GNrVshaEGmZVq1ahXvvvRffffed5xnQIxkSwE23bt3CTlgkZ/6amXKx4CXoGu67lyxZEnzsNWuub9++MQta/v3vfw9mdw4bNiwYuDzttNM8BR8BYM6cOcHHW7du9dzFOT8/HwBgGAa2bt2a0EHL7du344cffgj+rXYNNzVq1AhDhgzBuHHjAIhAp9egZf/+/bWzrhMREZE3DFoSEREdgIYMGWKZpXfPnj1Yt25dsFv3zp07ccopp+Dzzz8PjuG3P9i9e3fwcadOnTx9pnPnzsHHlZWVKCoqQlZWluP7DzrooKjLV1siKdPUqVNx4YUXBjNSvTJnha4pL4EuOahpzpIdj+/2+/221+V9rEOHDp6+t3379p7e58UDDzyAmTNnYu7cuTAMA19++SW+/PJLAEDXrl1xyimnYODAgTj//PO1s3cDIqBnWrZsGZYtWxZxOfLy8qL7AXXko48+Cgbku3bt6hpgvuqqq4JBy6+//hp5eXlRZS4TERFRZNwHpyEiIqL90u23347Ro0cH/40fPx7z5s3D0qVLceSRRwIQAbphw4Zh3bp1cS5t7JgT8ABivEEv1PeFC841aNAg8oLVMq9l2r17Ny699NJgwLJTp054+umnMWvWLGzfvh2lpaUIBAIwDAOGYVgmnAkEAjEpq1sWa22LxXfL+1hmZqanz0Q79qROw4YN8fPPP+O///2vJeAOiIlh3nvvPVxxxRXIzs7G//3f/6GsrMy2jIKCghqXI5bB5Nogdw2/8sorXd975plnIjs7G4CYKEoeF5eIiIhqD4OWREREFNS7d29MmzYtmIVZXFyM6667Ls6lih05OFRSUuLpM+r7nLLT9gfvvPNOMGB15JFHYtmyZbjvvvtw0kknoU2bNmjQoIElsBer7Mr9ibyPlZaWevqM133Rq7S0NNx9991Yv349lixZgldeeQWXXXaZJbu6tLQU//3vf3HaaafZApdyoP5f//pXMEgdyb8BAwbE9DfF0oIFC7Bq1arg3w8//DB8Pp/jv5SUlOA4poA14ElERES1h0FLIiIismjVqhVeffXV4N8zZ87E5MmT41ii2JG7SXsdQ1Ce6CUtLW2/Dlr++OOPwccPPPCAazd4ANi0aVNtF6neadmyZfDx1q1bPX3G6/siZU4cdNttt2H8+PHYunUrFi1ahGuuuSb4nt9//902w3Xr1q2Dj+Vg3f6ipkHHuXPn4s8//4xRaYiIiMgJx7QkIiIim4suuggnnXQSfvvtNwAigLU/zJgrzzo9b948VFdXIzk52fUzs2fPtnw+Ht2X6+o75bEMw01KU11dHdw/KOSoo44KBn9///13T5+ZN29ebRbJ4uijj8Z7772H5ORkvPvuuwDEOI1333138D3y+I6zZ88OO/mUV/Hs+m+qrKzE+PHjg39369Yt7AzvprVr12Lv3r0ARODzySefrI0iEhER0T7MtCQiIiIteQbwJUuW4Ouvv45fYWKkX79+SE9PByDGbwyXQRoIBPD+++8H/z799NNrtXxOMjIygo91k7/ESlJSqGoYrmvzpEmT9sssvJqSu0VPnjw57PiQs2bNikvG6gUXXBB8vHPnTstrJ510UjCQt3XrVnzzzTcx+c662o/dTJ48GXv27AEApKSk4JdffsHcuXM9/bv//vuDy/nf//4Xs3FciYiISI9BSyIiItI644wz0K9fv+DfTzzxRBxLExtNmzbFpZdeGvz7nnvucR2XcfTo0Vi+fDkAEdC7/vrra72MOi1atAg+3rZtW619T5cuXYKP3YLUu3fvxr///e9aK0d9dvbZZ6Nt27YAxJiwcqBLVVlZaclwrKmKigrLREButmzZEnzcqlUry2vp6em44447gn/ffPPNEe13ahDUVFf7sRu5a/iZZ55p++1uhg0bFgzsb9myBT/99FPMy0dEREQhDFoSERGRo4ceeij4eP78+fj+++/jWJrYeOihh4KTpfz5558YNGgQ1q9fb3lPIBDAyy+/jDvvvDP43C233GKbjbmu9OrVK/h42rRpMZndWef8888PPn766afx0Ucf2d6zaNEi9O/fH1u2bPE8A/uBJCUlxZKl/Prrr+Pee+9FZWWl5X27d+/G0KFD8fvvvwezf2tqx44d6NChA+6++24sWLDA8X3Tp0+3zPx+zjnn2N5z1113oWfPngBEgLFPnz6YMGGCY3Zhbm4u3n77bRxzzDH473//q32PvB9PmDDB028aO3asZVIceYzZSOXm5mLKlCnBv6+44oqIPt+2bVucdtppwb85IQ8REVHt4piWRERE5GjQoEE4/vjjg2PzPf744zj77LNdPzNlyhTk5uZ6/o7MzEw899xzNSpnJA455BC8++67uOKKK1BdXY05c+agW7duOOWUU3DIIYeguLgYv/76qyUT7IQTTqjTMqr69u2LDh06YMuWLdixYwe6d++Os846Cy1btgyOE3jcccdZskijMXz4cIwaNQp//vknKioqcNVVV+Gpp57CkUceiYyMDKxYsSIYDDvyyCMxaNCguK6XRHXddddh8uTJ+OqrrwAAzz33HMaMGYMBAwagefPm2Lp1K3766SeUl5ejS5cuuPDCC/Hiiy8CsHbRj0Z+fj5GjRqFUaNGoXnz5jj66KPRrl07ZGRkYNeuXVi2bJklSH/YYYfh9ttvty2nUaNG+Prrr3HGGWdgw4YNyMnJwd///ne0bNkSJ5xwArKzs2EYBvbu3YtVq1Zh7dq1wYCm0zAKQ4cOxVtvvQVABHMXLlyIY445BpmZmcH33HTTTTjkkENqtA6cjBs3LtgtvWHDhhgyZEjEy7jiiiuCY5Z+8cUXeP311y0zxsvWrl2LW2+9NaLljxw50jLLu+nNN9/Em2++aXlODYQPHjwYaWlpluduvPFG3HjjjRGVgYiIKFEwaElERESuHnrooeAkPLNnz8aPP/6IgQMHOr5//vz5mD9/vuflN2nSpM4DX5deeikaNmyI6667Djt37kRVVRV++uknbXfPYcOG4d1337WMx1fXkpKS8Prrr2Po0KGorKxETk4OPvzwQ8t7hg8fXuOgZXp6Or755hucc845wcDW6tWrsXr1asv7TjrpJHz66ad45513avR9+yufz4dPP/0UI0aMwCeffAIA2LNnDz7//HPL+3r06IEvv/zSsi3DzdjuJjU1Fenp6aioqAAA7N271zIjvGrAgAEYP368Y8Zsly5dsGDBAtx4442YOHEiDMNAbm4uvv32W8dlNm3a1HESpzPPPBPDhg0LToTz+++/2yYrOu+882otaClnRg4ZMiSqTOGhQ4fi5ptvRnl5OUpKSjBx4kSMGDFC+97t27fbZmYP57rrrtMGLXNycrB06VLXz6rHqfk5IiKi+ordw4mIiMjV4MGD0adPn+Dfjz32WBxLEzvnnXce/vrrL7z88ss488wz0bZtW6SlpaFJkybo0aMHbr75ZsydOxfjxo2zZILFs7wLFizADTfcgJ49e6Jx48a1MhvzYYcdhsWLF+Opp55Cnz590LhxY6Snp6NTp04477zzMG7cOPz888/awAqFpKenY/z48Zg6dSouueQStG/fHmlpaWjdujVOOukkvPrqq5g/fz66desWnJEagOeZrHXatWuHPXv24Ouvv8Y999yD008/HR07dkSDBg2QnJyMpk2b4sgjj8R1112H6dOn46effkJ2drbrMps3b47PPvsMy5Ytw/33349+/fqhTZs2SEtLQ0ZGBrKzs3HyySfjX//6F77++mvs2LEDw4cPd1zexx9/jI8//hjnnXce2rdvX2c3A1asWIFFixYF/460a7gpKyvLMozC2LFja1o0IiIicuAzDMOIdyGIiIiIiA5UJ510EmbPng0AmDt3Lo4//vg4l4iIiIgo/hi0JCIiIiKKk02bNuGQQw5BdXU10tLSUFBQENehCIiIiIgSBbuHExERERHFgWEYuP3221FdXQ0AuOiiixiwJCIiItqHQUsiIiIiohh76KGH8PLLLyM3N1f7+saNG3HRRRcFZxhPTk7G3XffXZdFJCIiIkponD2ciIiIiCjGNm/ejMcffxx33303jjjiCHTv3h1NmjRBcXEx/vjjDyxevDiYYQkADzzwgGXCKyIiIqIDHYOWRERERES1pKqqCosXL8bixYu1rzdo0ACPPfYYsyyJiIiIFJyIh4iIiIgoxvLz8/HVV19hxowZWLlyJXbv3o3c3FxUV1ejefPm6NatGwYOHIhrr70Wbdq0iXdxiYiIiBIOg5YeBQIBbN++HY0bN4bP54t3cYiIiIiIiIiIiOoVwzBQVFSEtm3bIinJfaoddg/3aPv27ejQoUO8i0FERERERERERFSvbdmyBe3bt3d9D4OWHjVu3BiAWKlZWVlxLk3s+f1+TJs2DWeddRZSU1PjXRyiAw6PQaL443FIFH88Donii8cgUfzt78dhYWEhOnToEIyzuWHQ0iOzS3hWVtZ+G7TMzMxEVlbWfnlQECU6HoNE8cfjkCj+eBwSxRePQaL4O1COQy9DL7p3HiciIiIiIiIiIiKqYwxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLYmIiIiIiIiIiCihpMS7AAcCwzDg9/sRCATiXRRHfr8fKSkpKC8vR3V1dbyLs99LTk5GampqvItBRERERERERJSQGLSsRZWVldi1axdKS0sTPhBoGAays7OxZcsW+Hy+eBfngJCeno6WLVsiKysr3kUhIiIiIiIiIkooDFrWktLSUmzZsgXJyclo1qwZGjRogOTk5IQNCAYCARQXF6NRo0ZISuKoAbXJzLwtKCjAtm3bAICBSyIiIiIiIiIiCYOWtSQ3Nxepqano1KkTkpOT412csAKBACorK5GRkcGgZR1o0KABGjdujK1btyI3N5dBSyIiIiIiIiIiCaNTtaCqqgolJSVo3rx5vQhYUnz4fD40adIEFRUV8Pv98S4OEREREREREVHCYNCyFlRVVQEQYxYSuTEn40n0MU+JiIiIiIiIiOoSg5a1KFHHr6TEwX2EiIiIiIiIiMiOQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWFFedO3eGz+fD2LFjg8+NHTsWPp/P8i8pKQlZWVk4+uijMXLkSOzevdtxmepnnf7NnDmz9n8gERERERERERFFLCXeBSBy0rBhQ1x88cUAxOzamzZtwpw5c7BkyRK8//77+PXXX9G1a1fHzw8aNAjZ2dmOr7u9RkRERERERERE8cOgJSWsli1bWjIwAWDlypXo378/du7ciTvuuAOTJ092/Px9992HAQMG1G4hiYiIiIiIiIgo5tg9nOqVnj174s477wQATJ8+HRUVFXEuERERERERERERxRqDllTv9O7dGwDg9/uxd+/eOJeGiIiIiIiIiIhird4HLZ955hn4fD7ccccdru+bMGECunfvjoyMDBxxxBGYMmVK3RSQYq6wsBAAkJycjJYtW8a5NEREREREREREFGv1Omg5f/58vPXWW8HMOyezZ8/GsGHDcO2112Lx4sUYMmQIhgwZghUrVtRRSSmWzHEszz77bKSmpsa5NEREREREREREFGv1diKe4uJiXHHFFXjnnXfwxBNPuL735Zdfxtlnn4177rkHAPD4449j+vTpGD16NN588826KK5dnz5ATk58vlvDByDLMODz+cK/OTsbWLCg1sskM2cPf/vttzFu3Dh06tQJr7zyiutnTjvtNMfXmjRpgvz8/BiXkoiIiIiIiIiIYqHeBi1vueUWnHvuuTjjjDPCBi3nzJkTnLzFNGjQIEyaNMnxMxUVFZZJXswuyX6/H36/3/X7/H4/DMNAIBBAIBDQvseXkwPftm2uy6lLvn3/vDAAGA6/K1ryujL/37RpkzaI2rdvX3z//fdo0qSJ4/oFgLPOOgvZ2dna1zIzM10/W1cCgQAMw4Df70dycnK8i0NxZJ5Xwp1fiKj28Dgkij8eh0TxxWOQKP729+Mwkt9VL4OWn3zyCRYtWoT58+d7en9OTg5at25tea5169bIccl0fPrpp/Hoo4/anp82bRoyMzNdvy8lJQXZ2dkoLi5GZWWl9j2NDjoISYbhofSJJ3DQQSjeF8St8bL2BQ7Ly8uDgeHy8nIAQMOGDXHBBRcAEEHkP//8EytWrMC8efNw7bXX4r333nNd9m233YaTTz7Z8fXCGP2GmqisrERZWRl++eUXVFVVxbs4lACmT58e7yIQHfB4HBLFH49DovjiMUgUf/vrcVhaWur5vfUuaLllyxbcfvvtmD59OjIyMmrte0aOHGnJziwsLESHDh1w1llnISsry/Wz5eXl2LJlCxo1auRcxoULY1ncGjMMA0VFRWjcuHHYLuJJANzXgHdJSWJY1YyMjOB6NddZy5Yt8dFHH1ne/8UXX2DYsGH48ssvMXDgQNx0002Oy87MzAy7reKtvLwcDRo0wKmnnlqr+zMlPr/fj+nTp+PMM8/kWK1EccLjkCj+eBwSxRePQaL429+Pw0gSyOpd0HLhwoXYtWsXjjnmmOBz1dXV+OWXXzB69GhUVFTYutlmZ2dj586dlud27tzp2HUYANLT05Genm57PjU1NexOU11dDZ/Ph6SkpGBQLtGZGY9mueuavK7k71fLcvHFF2Pp0qV44okn8PDDD+PKK69EkyZNwi4zUSUlJcHn83nar+jAwH2BKP54HBLFH49DovjiMUgUf/vrcRjJb0rsiI7GwIEDsXz5cixZsiT4r0+fPrjiiiuwZMkS7biAJ554In788UfLc9OnT8eJJ55YV8WmGBo5ciTatGmDPXv24IUXXoh3cYiIiIiIiIiIKMbqXdCycePG6NWrl+Vfw4YN0aJFC/Tq1QsAcPXVV2PkyJHBz9x+++34/vvvMWrUKPzxxx945JFHsGDBAtx6663x+hlUA5mZmXjwwQcBAC+99BLy8vLiXCIiIiIiIiIiIoqletc93IvNmzdbugX369cP48aNwwMPPID7778fXbt2xaRJk4JBTqp/rrvuOowaNQrr1q3D888/jyeffNL2nmeeeQZjx451XMbll1+Os846qxZLSURERERERERE0dgvgpYzZ850/RsALrnkElxyySV1UyCqdampqXjiiScwbNgwvPrqq7jzzjvRokULy3umTp3quoyjjjqKQUsiIiIiIiIiogS0XwQtqf7auHGj7bkRI0ZgxIgRYT972WWX4bLLLrM9bxhGDEpGRERERERERETxUu/GtCQiIiIiIiIiIqL9G4OWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLYmIiIiIiIiIiCihMGhJRERERERERERECYVBSyIiIiIiIiIiIkooDFoSERERERERERFRQmHQkoiIiIiIiIiIiBIKg5ZERERERERERESUUBi0JCIiIiIiIiIiooTCoCURERERERERERElFAYtiYiIiIiIiIiIKKEwaElEREREREREREQJhUFLiqvOnTvD5/Nh7NixwefGjh0Ln89n+ZeUlISsrCwcffTRGDlyJHbv3u24TPWzTv9mzpwZUVnNco0YMSK6H0tERERERERERJ6kxLsARE4aNmyIiy++GABQXV2NTZs2Yc6cOViyZAnef/99/Prrr+jatavj5wcNGoTs7GzH19XXfD4fAMAwjBiUnoiIiIiIiIiIosWgJSWsli1bWjIwAWDlypXo378/du7ciTvuuAOTJ092/Px9992HAQMG1G4hiYiIiIiIiIgo5tg9nOqVnj174s477wQATJ8+HRUVFXEuERERERERERERxRqDllTv9O7dGwDg9/uxd+/eGi/vkUceCXYNB+xjYm7cuNH2mZKSEowcORKHHnoo0tPTkZ2djeHDh2Pbtm01Lg8RERERERER0YGO3cOp3iksLAQAJCcno2XLljVe3lFHHYXhw4fjgw8+AAAMHz7c8nqjRo0sfxcUFKBfv37YvHkzTjnlFPTq1Qtz5szBhx9+iJ9//hlLly5FkyZNalwuIiIiIiIiIqIDFYOWVO+Y41ieffbZSE1NrfHyhgwZgiFDhgSDluo4mqpJkyZh0KBB+PXXX5GVlQUAyMvLw+mnn44lS5bg9ddfx8iRI2tcLiIiIiIiIiKiAxWDlnHSp08f5OTkxLsYFoZhWLpJO8nOzsaCBQvqoEQh5uzhb7/9NsaNG4dOnTrhlVdecf3Maaed5vhakyZNkJ+fH1VZGjZsiPfffz8YsASAZs2a4b777sNll12GH374gUFLIiIiIiIiIqIaYNAyTnJycjj+YRibNm3SBlH79u2LadOmhe2CPWjQIGRnZ2tfy8zMjLpcffr0QZs2bWzP9+jRAwC4XYmIiIiIiIiIaohByzhxCqbFUySZlnWhYcOGuPjiiwEAFRUVWL16NZYuXYp58+bhhhtuwCeffOL6+fvuuw8DBgyIebk6duyofd7MvCwvL4/5dxIRERERERERHUgYtIyTuu5eHU4gEEBhYSGysrKQlJQYk8q3bNnSNr7kF198gUsvvRSffvopTj31VNx88811Xq5EWT9ERERERERERPsrRl+oXvnb3/6G++67DwDw0EMPoaCgIM4lIiIiIiIiIiKiWGPQkuqdkSNHok2bNtizZw9eeOGFmC3XnIm8qqoqZsskIiIiIiIiIqLIMWhJ9U5mZiYefPBBAMBLL72EvLy8mCy3ffv2AICVK1fGZHlERERERERERBQdjmlJ9dJ1112HUaNGYd26dXj++efx5JNP2t7zzDPP2MbElF1++eU466yzgn8PHToUzz//PM444wycfvrpaNy4MQDg2WefRYsWLWL+G4iIiIiIiIiISI9BS6qXUlNT8cQTT2DYsGF49dVXceedd9oCi1OnTnVdxlFHHWUJWj7++ONISkrCF198gUmTJqGyshIA8MADDzBoSURERERERERUhxi0pLjauHGj7bkRI0ZgxIgRYT972WWX4bLLLrM9bxhGVGXJyMjAs88+i2effVb7erhyde7cOervJiIiIiIiIiKiEI5pSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLWuRYRjxLgIlOO4jRERERERERER2DFrWgqQksVqrq6vjXBJKdOY+Yu4zRERERERERETEoGWtSE1NRWpqKoqLi+NdFEpwZWVlSE5ORmpqaryLQkRERERERESUMBi0rAU+nw+NGzdGQUEBysrK4l0cSlDV1dUoKChAZmYmfD5fvItDRERERERERJQwUuJdgP1Vy5YtUVZWhs2bNyMrKwuNGzdGcnJywganAoEAKisrUV5ezq7KtcwwDFRUVGDv3r0IBAJo1apVvItERERERERERJRQGLSsJcnJyejQoQNyc3NRVFSE/Pz8eBfJlWEYKCsrQ4MGDRI2sLq/adiwIbKzs5GWlhbvohARERERERERJRQGLWtRcnIyWrdujVatWsHv9yMQCMS7SI78fj9++eUXnHrqqRxfsQ6kpKQgJYWHHxERERERERGRDqMmdcDn8yV8Nl1ycjKqqqqQkZHBoCUREREREREREcUVBy8kIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLYmIiIiIiIiIiCihMGhJRERERERERERECYVBSyIiIiIiIiIiIkooDFoSERERERERERFRQmHQkoiIiIiIiIiIiBJKvQxavvHGG+jduzeysrKQlZWFE088Ed99953j+8eOHQufz2f5l5GRUYclJiIiIiIiIiIiIq9S4l2AaLRv3x7PPPMMunbtCsMw8MEHH+DCCy/E4sWL0bNnT+1nsrKysGbNmuDfPp+vropLREREREREREREEaiXQcvzzz/f8veTTz6JN954A3PnznUMWvp8PmRnZ9dF8YiIiIiIiIiIiKgG6mXQUlZdXY0JEyagpKQEJ554ouP7iouL0alTJwQCARxzzDF46qmnHAOcAFBRUYGKiorg34WFhQAAv98Pv98fux+QIMzftD/+NqL6gMcgUfzxOCSKPx6HRPHFY5Ao/vb34zCS3+UzDMOoxbLUmuXLl+PEE09EeXk5GjVqhHHjxmHw4MHa986ZMwdr165F7969UVBQgOeffx6//PILVq5cifbt22s/88gjj+DRRx+1PT9u3DhkZmbG9LcQERERERERERHt70pLS3H55ZejoKAAWVlZru+tt0HLyspKbN68GQUFBZg4cSLeffdd/Pzzzzj88MPDftbv96NHjx4YNmwYHn/8ce17dJmWHTp0QG5ubtiVWh/5/X5Mnz4dZ555JlJTU+NdHKIDDo9BovjjcUgUfzwOieKLxyBR/O3vx2FhYSFatmzpKWhZb7uHp6Wl4dBDDwUAHHvssZg/fz5efvllvPXWW2E/m5qaiqOPPhp//fWX43vS09ORnp6u/ez+uNOY9vffR5ToeAwSxR+PQ6L443FIFF88Bonib389DiP5TUm1WI46FQgELJmRbqqrq7F8+XK0adOmlktFREREREREREREkaqXmZYjR47EOeecg44dO6KoqAjjxo3DzJkzMXXqVADA1VdfjXbt2uHpp58GADz22GM44YQTcOihhyI/Px///e9/sWnTJlx33XXx/BlERERERERERESkUS+Dlrt27cLVV1+NHTt2oEmTJujduzemTp2KM888EwCwefNmJCWFkkjz8vLwz3/+Ezk5OWjWrBmOPfZYzJ4929P4l0RERERERERERFS36mXQcsyYMa6vz5w50/L3iy++iBdffLEWS0RERERERERERESxst+MaUlERERERERERET7BwYtiYiIiIiIiIiIKKEwaElEREREREREREQJhUFLIiIiIiIiIiIiSigMWhIREREREREREVFCYdCSiIiIiIiIiIiIEgqDlkRERERERERERJRQGLQkIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLYmIiIiIiIiIiCihMGhJRERERERERERECYVBSyIiIiIiIiIiIkooDFoSERERERERERFRQmHQkoiIiIiIiIiIiBIKg5ZERERERERERESUUBi0JCIiIiIiIiIiooTCoCURERERERERERElFAYtiYiIiIiIiIiIKKEwaElEREREREREREQJhUFLIiIiIiIiIiIiSigMWhIREREREREREVFCYdCSiIiIiIiIiIiIEgqDlkRERERERERERJRQGLQkIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFAYtCQiIiIiIiIiIqKEwqAlERERERERERERJRQGLYmIiIiIiIiIiCihMGhJRERERERERERECYVBSyIiIiIiIiIiIkooDFoSERERERERERFRQmHQkoiIiIiIiIiIiBIKg5ZERERERERERESUUBi0JCIiIiIiIiIiooTCoCURERERERERERElFAYtiYiIiIiIiIiIKKEwaElEREREREREREQJhUFLIiIiIiIiIiIiSigMWhIREREREREREVFCYdCSiIiIiIiIiIiIEgqDlkRERERERERERJRQGLQkIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIiIiIiJKKAxaEhERERERERERUUJh0JKIiIiIiIiIiIgSCoOWRERERERERERElFDqZdDyjTfeQO/evZGVlYWsrCyceOKJ+O6771w/M2HCBHTv3h0ZGRk44ogjMGXKlDoqLREREREREREREUWiXgYt27dvj2eeeQYLFy7EggULcPrpp+PCCy/EypUrte+fPXs2hg0bhmuvvRaLFy/GkCFDMGTIEKxYsaKOS05ERERERERERETh1Mug5fnnn4/Bgweja9euOOyww/Dkk0+iUaNGmDt3rvb9L7/8Ms4++2zcc8896NGjBx5//HEcc8wxGD16dB2XnIiIiIiIiIiIiMJJiXcBaqq6uhoTJkxASUkJTjzxRO175syZgzvvvNPy3KBBgzBp0iTH5VZUVKCioiL4d2FhIQDA7/fD7/fXvOAJxvxN++NvI6oPeAwSxR+PQ6L443FIFF88Bonib38/DiP5XfU2aLl8+XKceOKJKC8vR6NGjfDll1/i8MMP1743JycHrVu3tjzXunVr5OTkOC7/6aefxqOPPmp7ftq0acjMzKxZ4RPY9OnT410EogMaj0Gi+ONxSBR/PA6J4ovHIFH87a/HYWlpqef31tugZbdu3bBkyRIUFBRg4sSJGD58OH7++WfHwGWkRo4cacnOLCwsRIcOHXDWWWchKysrJt+RSPx+P6ZPn44zzzwTqamp8S4O0QGHxyBR/PE4JIo/HodE8cVjkCj+9vfj0OzJ7EW9DVqmpaXh0EMPBQAce+yxmD9/Pl5++WW89dZbtvdmZ2dj586dlud27tyJ7Oxsx+Wnp6cjPT3d9nxqaup+udOY9vffR5ToeAwSxR+PQ6L443FIFF88Bonib389DiP5TfVyIh6dQCBgGYNSduKJJ+LHH3+0PDd9+nTHMTCJiIiIiIiIiIgofuplpuXIkSNxzjnnoGPHjigqKsK4ceMwc+ZMTJ06FQBw9dVXo127dnj66acBALfffjv69++PUaNG4dxzz8Unn3yCBQsW4O23347nzyAiIiIiIiIiIiKNehm03LVrF66++mrs2LEDTZo0Qe/evTF16lSceeaZAIDNmzcjKSmURNqvXz+MGzcODzzwAO6//3507doVkyZNQq9eveL1E4iIiIiIiIiIiMhBvQxajhkzxvX1mTNn2p675JJLcMkll9RSiYiIiIiIiIiIiChW9psxLYmIiIiIiIiIiGj/wKAlERERERERERERJRQGLYmIiIiIiIiIiCihMGhJRERERERERERECYVBSyIiIiIiIiIiIkooDFoSERERERERERFRQmHQkoiIiIiIiIiIiBIKg5ZERERERERERESUUBi0JCIiIiIiIiIiooTCoCURERERERERERElFAYtiYiIiIiIiIiIKKEwaElEREREREREREQJhUFLIiIiIiIiIiIiSigMWhIREREREREREVFCYdCSiIiIiIiIiIiIEgqDlkRERERERERERJRQGLQkIiIiIiIiIiKihMKgJRERERERERERESUUBi2JiIiIiIiIiIgooTBoSURERERERERERAmFQUsiIiIiIqJE5fcDs2YBlZXxLgkREVGd8hmGYcS7EPVBYWEhmjRpgoKCAmRlZcW7ODHn9/vRo0cPlJeXx7soRAes8vJyZGRkxLsYRAc0HodE8cfjULF3L1BWBjRoADRvHu/S0AGAxyBR/JWXl6NTp05YuHBhvIsSc5HE11LqqExUD+Tn52PPnj3xLgYREREREanKyoBt2+JdCiIiqiO8ecCgJUmaNm3Kg4IojnhXmyj+eBwSxR+PQ4UcqGzXLn7loAMGj0Gi+CsvL0fr1q3jXYy4Y9CSgkaNGoXBgwcjNTU13kUhOuD4/X5MmTKFxyBRHPE4JIo/HocaPl/o8dat8SsHHRB4DBLFn3wcHug4EQ8RERERERERERElFAYtiYiIiIiIiIiIKKEwaElERERERJSIAgHr39XV8SkHERFRHDBoSURERERE3uzZAxxzDHDccUBBQbxLs//z+93/JiIi2o8xaElERERERN7cfz+weDGwYAHwwAPxLs3+r7LS/W8iIqL9GIOWREREpGcY7IpYH3A7UV1atCj0eOHC+JXjQKEGKZlpSURUc6w31RsMWhIREZFdcTFwxBHAwQcDGzfGuzTkxO8HTjgBaN8eWLEi3qWhA0FaWugxA2i1j0FLIqLYGjYMaN4cmDIl3iUhDxi0JCKi/VN1NTB6NPD++yITjSLz3HPAypXAli3AtdfGuzTk5P33gXnzgJwcYOjQeJeGDgSpqaHHDKDVPgYtiYhiZ80a4JNPgMJC4Nxz410a8iAl3gUgIiKqFWPGALfdJh536QL07x/f8tQ3GzaEHi9dGr9ykLutW0OP//wzfuWgA4cctOT4irWPQUsiIm8CAaCsDGjY0Pk9+fl1VhyKDWZaEhHR/umee0KP3303fuWor3y+0ONAIH7lIKLEwu7hdYsT8RARhVdYCHTvDmRnix4oTjiWZb3DoCURkVfr1gF33AH89FO8S1I3Zs8Gbr8dWL063iWJTmFh6HHz5vErR32VJFURGLRMXBz6gOpaHXQPTy0uRtJ//gN8/HGtLL9eYaYlEVF4Tz4JrF0rxmR/9FHn91VV1V2ZKCbYPZzIiWEAO3YAbdvGuyQUb4Yhxos7/3wRwHv5ZXGXLmk/v+9z0kni/88+E8dCfcagZeSSk0OPGbQkIlMdBC17vfcekmfMEH8ccwzQo0etfE+9wKAlOdmxA2jdev+vjxJ5MWlS6HFOjvP7YplpGQgAO3cCbdrEbplkwzMckZObbgLatbN2MaUD0wUXiOC1nHFYVha/8tQFOXvL7cJfX8gBOPKG3cOJSKcOuod3NAOWAPDrr7XyHfUGg5ak88Ybom561lnxLglR/BmGdVzvY45xfm8sz6HnnCOOw9GjY7dMsmHQkggAysuBu+4CHnww1Dh/6y3x//PPx69cFH+lpcC339qf39+DluXldfM9Y8eKmam3bIntctUus6WlsV1+TX32GXDNNcBffwHr14vH48fHu1RW7B5eP7B7ONU1+dzA8RVrH4OWsVVdDYwcKZIS6vP+e/PN4v8ffwS2bYtvWYjiTZ48EnDPPo5VG27vXmDaNPHYnPiTagW7hxMBwEsvAS+8IB4fcggwYkQ8S0OJpKJC//z+HrSsiyDfpk0iWAcAGzeKines7Nlj/TuRtldBAXDppeLx77+LrpbLlokA7qBBidOVXa7wMTB24DEMYNUqoFs3IIXVRZLIQTMG0GofJ+JxZxiiJ8xhh3k7V735JvDMM+Jx69bAhRcCXbvWbhlrW3FxvEtAFF9z5lj/djtPxqpN4NRGpJhjpiURALz3XujxZ5/FrxyUeJwubImWuRdrdfH7li0LPZa7AsbC1q3WvxNpe23fHnq8erV1PSRSV3w5aMmZFg88d98N9OoFDBkS75JQopEbagxa1j5mWrp74AGgZ09g8GBv7x87NvT4nntEsPPdd2ulaHUmkW7MEsXDrl3Wv92ClrHqTcbjrs4waElWeXnAVVeJi/iBlFkj35mtqrL/ds4yVj8UFQFXXy1m+I5Vd1anC9L+fqEqKYn9MteuFQGQl14Sf9dmF/REDlq6BQATKaMt0buH//qrmBxLHnj9QFRb12qz98HkyeG/Y/du4PLLgf/858CqOxyo5MYgA2i1j0FLd089Jf6fPt3butFlJf7zn7EtU11jpiUd6PLzrX/XRaZlrJYzejTwt79Zx+QkiwRqHVEiSL73XuCjj8QfJ54oDqBYKCoCVqwAjj8+MWe4kwMF1dX2oEJJCdCkSd2WiSJ3//3A//4nHh93HHDFFTVfplNgLdGDlpWVwLx5QN++1kkTdAwDWLgQ6NwZaNlSPFcbQb6HHgK++kr8GzCAQUudROpqogYtKyqA+fOBE05IjODqqaeK/7/99sAOlNVGV1E1SF1ZCaSnO7//5puBiRPF41NPFcMcJLply4CDDuKMn9Fg9+S6pQbiGLR0lp8vjms3+2OAr7Aw3iUgiq+8POvfdZFpGYu2xZYtofEwV64E1qyp+TL3QwkYPaJ4SpK7TMRqtkbDAE46CejXD3j88dgsM9bkBrjfbz/R7Y8VnP2R3L1n5szYLLO+dg+/6irglFOAK68M/94PPhBB3sMPD/2u2si0/OST0OMvvzxwg5Zumdt1NQFSpAwDGDpU7FM33BDv0tgdyEHL2thncnOtf4e7BpoBS0CM05roJk8GjjwSOPRQ+/i3FJ56c6W2e6McyMc3wEzLSKjZVjr7Y52eQUs60CVCpmU0iQebN4ceM9PSEYOW5Cw5OTbLyckBli8Xjx95JDbLjDW1e7haIayNAM7+bPx4EaSWZ90OBIDrrgPOPdc+7kisyI33zMzYL1OW6JmW5tisEyaEf685Gc7u3cAXX4jHtRHka9Ei9Hju3Npdh+o+lkhBS7cgUyIFLdXz4OTJ4n95DOBEcSBnftVGdq4a9I+kkR+rukNtOu888X9pqeiWRd4sWyay5NWb2qwj1a76NhHPO++IZIVY3TyOhJptpbM/Bi0LCuJdgvh7/XXg5JNjl3RD9Uu4TMvdu8W1/9pr7W2Ck04Cxo2L/DvVdkw0Nw8SoedSPcCgJTk7kA4iNWjJTMuaufxyMYvb+eeHnhs3DhgzBpgyJZQGX5saNIjNcuprpmW0zDuV6u+LxUQs3bqFHv/+e+2uQ/WOayJtr3gELYuLgW++iaxhk+gNY1k8t29urli38bqRURdBy0iCUok4BIyb+rSfx9vZZwM//2x/vrbrSLU9EZhhAL/8IiZGS0T1KdOyuhq4/npg9mzgtNNq//vUoSy8ZFrGa5z6XbvEzb/aOOfEO9OyokL8tt274/P95eXALbcAv/0GnH56fMpwoFqyRAxHFW/hMi3vukvso++9B7z1lvW12bOjG1JMrXtGcxzWhxu9CaCe1SypTsXqIKoPs86GC1oyiyB6Zreu+fNDz9XFDO2xClrWx0zLmkyaYjY+1X0+FpVseRkFBWIczdqi3nFNpO0Vj6DlNdcAF1wA/P3v3j9Tn4I58TxHDx4s1u2tt8bn+2tjn9nfMy0pOjt26J+v7eOvtoN033wD9O8P9O5t3/cTQX0KWtZ1xp+673kJWsaDYYgs5fPOE+Ovx1q8g5b33y9+26mnxmc4h507Q485eWrdWbECOPpoMWfF3LnxLUu4oKXZkwywD4ETrVhkWpInDFqSs1g1PBK5cmWKNtNyzBjgsMOA99/Xv/7SS0DPnqFulQcCNWC2d6/43+er23JkZMRmOfVx9nC1bJEEMc19Xb17GIsAllquVatqvkwnzLS0MsccnDbN+2fqw7nbFK/tW1ISuiETr27ziZZpGY+g5dtvizF5o7khVtsN7NxcERA799zEmmgrlmo707K2b6BceKH4v6oKePPN2v2uaNSnoKVZ5zPV9vGl7nteuofHw549oUzeUaNiv/zCQrGur7kG6NOn7sfGe+EF8f8ff4jJV2PtsceAXr2An37Sv+50Q4XCu/VW4JhjxPAfbp5/XmyD778PPXf33aHHN95YO+Xzyql7+I8/inJ7qcdEeq2JRdAykc/nCYRBS3IWq4ZHfcjWiSZoWVgoxmhcu1bf3dkwgH//WwRmzPGz6oPdu0XjW75rGQk16GI2fiPpMrhqlRgXsyYBnFjdaa2P3cPV/TWShrJ5UVd/XywuquoyazOjRa28JNL2cgt418WYll6z3+vDudsUr0zLbdvi870yjmkpJodavRq49NLIP1vbQZX//Ed0PZ4yBXjuueiWUV0NfPVVYnTB06nt42/GDHHzty4yuFJTa/87IlWfg5Z794obp19/LbruerFwoagDerlWqeemcJmW8er9VdvbrLBQHCdjx4r1d9FFtft9bmKd6VhcDDz8sJhZ2anrd05ObL/zQDF/PvDaa8DixcA55zi/LxAA7rlHbAP5ffK2jiRBYu9e4MMPge3bIy+zE6dMyzPOEOX2ItJrWSy6hyfy+TyBMGhJzmI1pmV9avgC3ifikTM6dK/Xt99tGjpUDFIcbYVHPYFv2SL+99qQLS4WA2lffrm4qxetWDXk62P3cLUSHy4QJnelN++Q10b3cLc7krFuKDLT0pnXSlUin8PUhme8tm8idCVV95lYBHbq05iWibyfAtZJIaKdIGL8eGDIENEFT55pNFHUdqbl99+Lm7/y5H61pVGj2v+OSNXnoOWOHSLgfuGFom4XrofFnj1iIsfLLweefTb890WaaRmvCWtqu85YWGg9N9RmT5ZwYn1O9rLumGkZnU2bQo/dAohObSq5vhFJj7obbwSGDw9ludeU3x+bdkukQUtmWtYZBi3JWU3GxZPVh4NRPhnrMi2vuUZkVcrCdQVMlKCWYQBXXw107Bj+LveyZaFG1Zw50X2f+rsjzbT86adQpfPBB71/r9pQ111gV6wADjlENH687t91mGl5xDvvIKVzZ2vXi3DWrBFDFJx9diiQo150w+2LciPNXPd1kWkpi1V3fkDsC7qgZTzGWdJxC0zWRfdRr422RD53q+fo0lKxXk89VXQDqqtgonlTxosPPgCys4Enn4xtGdR9JhYNxppkWtZ10HLPnpp9vrbPC5mZocfquXnmTHFtvv5692VcdVXo8RtvxKxoMVNXmc7/+Eftf0daWu1/R6QSZfbwq64COnd2H7tODRru2AHccUfo7549RT1sxQr951euDP2+//xH1Gt+/BHo0AG4+Wb7+9WuyOEyLd2CmrFq9+io9Z/ffgM6dYrdPl1YCDRsGJtlRUo9h+r2z/feE9e/aLLNvdzMZaZl7XI658jHzLJl4no2c2b45U2YIP5fsCA212DdcZ9oQcs33gDatBGz3K9bB3TvLrJAEyVekOAYtCRnsWo8J3oWBGD9rZWV+jKPGRMaI8bvtwb1dJXcusiY8mLRIuB//xON6wsucH9vLMZkcwpaes20jHQsnO3bxVg6agVYt/+efTawfr3oZvbjj96W7yXTcv58cRGqyTg+u3ahy+TJ8G3f7t5FQ/WPf4ghCqZOFdsZiDzTUg5amoNT10WmpSyWQcviYnsmXnV1KAi3cyfw8ssi4BsP8c609DpRgds21zXuVqwAXn3VnmlTG3STpb38srjpsnKl6C5sKiwERo8WleNYU4N7bpXvESPEvvfAA7Htoqie62Jx7VaHB4kkaFnX3S9jNaB+bZEDCep59bTTxLX5nXe8j0GXiBMd1XamZV0qLxfnitdeS5xJFeo60zInB3jxRTE+oWn+fOCjj0Rm1sCBzp9Vz/85OUDTptbn1q/XByAB+2+dNk007LduFY3+DRusr0eaael2farN4IEatDz5ZJEZ+f770WdFyplthYWxm4AyUmq9RVd3uPZacV25997I9191+brtpGZaJsJkPBs2iPZJImbHm7wGDJ3qg+rnt2wR17VIvjMW9d66DFoGAsC4ccCkSZF1D7/5ZnE+vOUWkQy1Zo1oiybiOMoJKEb9f2m/FKtgo3pxMoyaT8pSXR3birt8wiwtdf7t5slMd4FWf1ei3DmRG9XhggmffFLz73Mat9Br9k2kjYR//EME7NTl6xru8vhzXgOM4SbiKSwE+vYVj9esEYGTaESbLTR7duixOci7etENVyGQ91uzHLGeiEc37IIsVsNRAM5BudJScYPhiitERaF585pnaUWjroOWauU9FpmWfj+Qnm79+8gjRWXu999F47Y2qcd3aWlo/weAWbNCjx98EHjlFfG4qCj67p+6644atCwv1zcc1fJu3y4yh2KhNoKW6nkvkuyDur5RmYiZlvK+Igct3YJ7XicQScSgpVr2cHW0WNfhakI9P+7ZA5xyijiWV64UNyTjLdZBy3Dr/5//FF3x33gjFEzftSv0uluvCV338DZt7JN8OA2VoC57/Hj78g8+OPS3ekzt3evezggXtKytbEW3NoHT+dVtOwUC1nNXYWH8AnVOE6A4+eMP4IgjvC9frRfl5Fj3AcAetCwsFHU8HS/nn1ico4YNE/Whzz/3Pp5rovLSPdwr9ZpdXFzzgLvu+llbQcsvvhDtCAA46ijra17bsPL5Tx1vMxZxkv0QMy3JWW1lWtZ0uS+8AGRlAU89VbPlyOQLYnGx84nOfF4XWFArkep74jX4t9esp+pqe3ZNNGV2yrT02u0m0qyZqVP1yw+3n3ntAuYURDIr1gsXhp4zAyNR8KnbKZp1b/7mSDMt5dfN9R/r7uHhgvixzBxxavybZTCzbM3GTV2r64l41GPBa9DSrcKnvpaTEzoGP/7Ye9mipeseLjcw5POBfFyGmx3TyfjxQJMm9mFC1KBlZqa+u9+6dda/1WyhmlD3mZpeYwMB+/EYSSZdXQ8rUNNMy1g39P/zH1FHMbtxy0HyWHSjTpRgn+zOO0NdAmfMAFq2BM4/X39+/ewzkXkXrkt8XfjwQ/t4yosWhY6pROmKH8ug5bPPivX/wAP61wOB0Niha9eGrlde9ztdpmWbNvb3NW6s/7xa91DH2VPrRuoN6B9+AI47zvn65VYnrs2xkd2WrauPjhsnrjlOMzKr+0BhYfx6tjlNgOJk8eLIlq8LWqrU51q0EBltqjvvFOt17Fjn77vvPnEOf/vtyMqp+v138f/s2YmTyBItdZua5/Zo6tDqtorFbPN1mWl5332hx0uWWF+LJjs/UYb/SHAMWpKzWB006nJq2ii/6y5x8f/Pf2q2HEDMlP3449ZuorrBfE1mw03XKFSfUy9QiT5RhO436SrGS5eKWfycGt1OmZZet7t6Mdu+XXxfpGNsqr8n2olZwmVaxora8Pa63eTKrrmOaxq0NIzYdw8Pt75yc8V2NrPlDEMMyfD665EHcN0yLVXhfldFBTBqlHXirZqKdablH3+IdefU3b02gpZ+v9gur70mhpWIRaUzEupvKimxNqqd9hmPjX3f55+L7W7ut5dfLr5jzBhrI1p3nL7/vv08pm6bjRs9lcOTWGda6j4fSbCtNoOWxcViTLRvvgk9p2ZtRHq+iPU4sk89Jc41ZvdXOXPL7brjdb05BY8qK0WX3nHjvC3Hi+++A55+WjTEwq1XMwgwdqw4B3/7rb7L+6WXiu34zjvOAaS6upk0fLj9uURsMMYqaDlxomhwFxeLfUVn/Xrr3+ZNQK+ZP7pMS11PioMO0n9ePdeox4xav9HdUFm40Hls8ETpHi7T7XNXXCHWxVtv6QMh6mcKC+3nMvPmXWmpGEv5yy8jK7NX4YKW6v5a06Dl9ddbEwYA/UQ8r79u3T+qq8V+X1IiuufqGIYI7JeWWoeZicS0acBjj1mfW748umXVNq/XS6e2fDTjwKrbKhbDi9RlpqWb0aOBefMi+4x64/Tee73Pdn4AYfdwCvEykUk0wmUgxoLZPVvurujFzTeLSpzKKVPLPJk5BS3lO8e6oKXTneVYKSqyf4duFlhd9xddZS0vTwycLVdW+/UTv2XyZP0YcepytmwRFzWv2129mN16q6hovf66CBaoWRFZWfoKnbqN1KBBrIKWsRq4XW14b9ggBmkPJz3dngGsm4inrEwEOHUNXnnbVFeLoFasu4d7Wd+PPSay4vLygK+/DmW1NWkS6orhRSRBy4oK9/PG88+HMlIOOwzo1q3m3VhiHbQ86yxxnL3/vn7sJF3X5EAg/JANbg3jykpx7rz1VvH3vfdGVuZomecSXfdw+fc4HZceKsdZ69cj5c47xR/l5fYbZEuXAm3bisdONxeKisS50ySPDQfENtMy1kFL3T4YSaOiNoM+jz4qjkkA+OsvMaGHesOnosI6+U04sayT6H67vC8WF4t/uiEKvDaW1OCRubzXXhNZRIA4V/Xp4215TrZvBwYPFo83bwb++1/395s3LuSbIrt2iXOm22d0XTidsl9jGcx02u7xGDIknFhl4owcGXpcWirO8WqdSg0o7d0rzndeA3q6oGXHjvb3yYHM0lJxXfX57Ndp9bhQb5A5nZuiybQ0f6M5lExNh60pLRXjdSclRR60lO3cKeq6Ml02vG5SkKZNxY2HJ54Q5Vi3TkymFEvhuoer2yzSoKV6TVuxAhg6VIwFao6HrvYUM23bFjoHeamH1jRwPXEicMkl9ucXLw4NJaVyuibUBa/1Bd2N4gYNojsn10bQ0inTMtLylZSIfSA1Nfrj//zzRd1QPre6tRXVY/nll0UvgLoYH74eYaYlBSWplcREzbSUGYbIluzcWVSqIs1e0QUsAecTRSSZlurvrO3ZNe++WwR3HnrI+rzaqHaaYU+3Xdq2FRdZ806c36/vFi3TBWvXr/d+YZQvZmlpoTvDubn6gIzTXcJwQUuvFZNw3cNjlEHrUxveXvdlOeDmlGk5b54IoHTrZi+vYdh/45499v21truHm8yKx0svhZ579tnIvkuuQMtBWt22Cnc+krvQHX206PZY0wldYh20NGewdprJWj0W7rsPOP748HfYw3UPf+aZ0N+RbqNo+P1iG7RqJbqgyrxmWnqoBLaTx57SdaE0G1zl5c5dk9VsVvX8k8jdwxM509IMWAKhoUF0QctIxLJOoss4lssTCIgMs+nT7e/zei2Ry/vIIyKYce+9oYAlEJsxZeXj4M039eU7+eTQY3Mfkd8Xruu+02+ui2xHp9mra7o/1YZYZFoahv28o9tfdUFLIPqgZU6Ofh2a1+lx40RgbdAg8R3qPqH+7TVo6XQNcJuIrrQUmDJFHFN9+9Zs6Ig5c4DWrYHevcX2q0nQUpdFqNsH1H3X3BZPPCH+DwSAX35x/65oqOtULZt6PVy8OLIb/rpz9KZNoj7Ws6e4weK0reQ2kJfgmNeeKDp79ugDloBzoPbBB8X+dv/90X9vTXi9/ukmPwRi0z28toKWQOTH8OLFou178MHex5lW7dplbyO7XUd0x3K0370fY9CSgpJrkq0xZw5w++36GfBqM2jp94vsrB07xMU52lR+VbhMS91vCNc9vDaDloGA6MpoGKK7u0wNZOgqP4BzhXTBgtD4Rl7u+ugqZosXR9c9XN13dA19p/1UfV7NdIpVpqVTt9iyMtFl97XXvH2Pum69BjXkWbfN/Vbd1+6/X9xxX7dOdF2QVVXZK4+5ufHJtFTLZYr0bqdceTEz4swyRDr2qaq0VMxCrzIMcQw++WT4BmUsg5Zqw0zXEND9xgULQmPQOQnXPdxpkPvaMmmSGJOypAS47Tbra2qmZQ2Clr5wlfBFi8T/u3c7v0etQNdm0DLemZbq+vIaUPnqKzHci9M1KRxzG6uZcbfcIjK1vYplnUTN+jcM/Q1NXea41zqCfE169FHxHc89Z31PLCYTUTPQdefwZs3sr8u/I1zWou76uWIFkp3G8YtlpqVTEEEN/DhlcNWmQEDcFHr6abGfxyJoWV5uPy/qeqmo68WsV6jbf/164N//tl9HdJmWunOSOab0Bx+I3zN9uphhOlz3cHWfcaqDOdU53IJSZWXAueeK9bR4MXDVVSIIde+97sFOncGDxXlz5UoxzrNbHUhePz/9JNpTMl2ygdegpdqeqY1M4nCZlup+Vlgorp8vvSTacOHql07n6LIyUbeXxxhUyUFLdd/KzQX+7/+ATz8NPVeToKVbncqsN6ieeEIcB08/Hfn3ffihyJ6uSZm91hecgpax6B4ei+GF5H1Q7o0QadvlpZfEsb51q/XGfKTUG+t1PQHnfojdwynIMWhpGOIE07at+L91a3u3wn79xP8ff2y/aKoXVre7tdXV4vMHHeRttumyMuuM0LEaAyKaTMtwwdnaDFqq2ZSGIX5Dw4bOmZY7d4qBqs2AkNt2MRvn6rbVdTHVLWfxYvs6082OZu5rTtSGfnW181009fvUsbWiyWrRfd6pMT9qVGhMm+7dgYEDXb/GlmnpNaghZ5eZy3ALMMgzgAL6fVkXtKyrTEtAHEty4yolxXoeCkeuvLRrFwrcl5bayyH//qoqcdy0auW+fF2lf8IEke0MiIa8OZ6dafdukQmdlua+LiINOKmV1YICayDBbZnhjoFw3cPV76ltbvt1aak1yOIU3AgXtNyzB0lex+NyK4/awP3rL+vfsRrT0jDCT3a3d6/oxuV1WAPd/uL2W6PppbF7NzBkiHi8Zk3oxlgkzMaSeu4cP17827IFaN8+/HJqM2hZWalfH7t32/dRr9ckL++LpHu8Ey9By4YNxfm5qipUx5HrOuEyLdXGqmEAffsiKVZjC27fLiaB0Y3H6BS0VPdnp+7NqpwcUXeNxURJZjACED2JYhG01B3DumCBOvaeec5Ut3/fvuJa+PHHYh2Zv1s9xxYW6r+nulo8Lwdzxo8HLr7Y/nm3Mjudm6IJWs6da/37k09Cj5s3j2wYFPkakJfnft03t28gAJx+uv311avtQzvp9gG1frd3r7WNBNTshpnabjCFG9NSFxwfMyY09EqDBiJALA+pIgt3jpbHOFa5ZVrecUdo4sC+fUV2XaTBaZk6aZRs+XJxPmzcOPKhzHRWrw6Nybt3rxj7NBper3+67uFAYnYPb9UqdLOpJgkXujGZvfrpJ2v2rFvdvi6GQ9kPMNOSgmxBS/NAv/RS0fDPzhYBg4EDnQ8kXWM+kkzLm28W3/Ovf3krdFmZtXIeq8ZHtGNaqmXTfbY2qFmE06aJinqbNvbfsmMH8MUXYlsefXQoOOS27sxtqDZAdBURXUVRno3TpFuHBQXu5VAb+m4XAfU1NeM0VpmWThdbOePVyyQu0QYt5e/3ErRUg8y69V1aWvcT8chKSuyZluZ5yOzm5MYt01Ld7ubvr64GjjpKHDNffOG9rKYxY0KPX37Z+tqUKeK81rOnaGjE8o6rWsHWVbidjpNwFcVw3cPrOmjpFogpKdFfl9TKoFvQcvZspHTsiEPUAJq6TtevF8+5rT/1vKueK7dujU03at22lfehRYvEMdCxo/fuRrp90O36pb7fy++Se2VMnuytXCrz2uUUGPvqK2/Lqc2gZXGx8/EX7WR9Xs6lsZgRXc2g0ZUvLS10XOoyLSMNWs6a5f77ImnEPf20uGYMHap/3eu4el4ygd95R1w7BgyITUPzhRdCj994o26DlmpQzyloadb3d+8O3dg2b5ir1MCZKS/PfiNSzUpXy+01aOl0znILSrnNFr9unfNr4aSkeAtaOmWcPfKIPaCm2wfU9bx3rz3jK9obZp9+KvbxPn3sGbvRBC3lIYD+7//Est95R//d4c7RbjM2y3V/dZ8wA5ZAaKbvmmQtOg2/BYjfcNBBYhxmp30zkpvWP/8celyTWc5rmmmZKEFLuX7TunXocU1ugNWk3TNrlnXdRtMDJhEnhYsjBi0pSJtpWV0tMoiA0F2LmTOtd5PCjYvmdSKejRtDJ97XXrMHmT78EPjHP6zPlZVZs0didXfeqXFnnli9dA/XZVoWF4tujY895v1EP348cPXV9kwdmVrJO/tssd51lbMdO0QlPhAQYzqZFRovFSq1AaJbT06Zlur60L3P7YIPWAN5H3/sPjmL+n3RBi3duqUA9ovt3/8uKhPy9vWSNaxW9Jcs8dYw0QUt3QIMasaJ7vfpxpXyevGsrBQZh//5j/XcEEn38OJie6PbPA89+GD4z8v7fbt2ocdlZfZ1Yx63P/8sMrUDgVAj1+0YjeQmxLnniuX+9ZeY0TSWQUv1GNQdk06VpXABBbf9z++PPpvrt99EVsWvv0b2ubQ059dKS/W/U20EugXuhg6Fz+vYQn/95T3TMhCwHz+BQPTdomXhbqANGyb+zs21jgdp2rVLzMT6+uvuy3T7rU5By6+/FtcuXQ+ISGf41gkERHbJ/Pn61+fM0T+vHtexDFqqDd6iIv36zMiwr1OvDVnz2uN2fnJrxDtZv17MqDt+vPhbXS+6c3h6eij7KxZBy/fe815eQByb119vDfKZzCyXL7/Ud2H0GoQy6yWlpaLbrtklX3b99eL/WbOcJ+eKhLwOMzNjMxGP16ClLlMbcL+G79ghjum77tIHzOX619VXW5etlkvNFgxXZvlvef+JJtPSKbiq+17VZ58BI0bos7OSk711D3cr2+7doWMT0F+f1X1v797YDU1y2WViv1+61J6RGmn3cEB/bjCPI1VNztFex7Q0j+maBC29XNO3bRNjBMvfaYrku2MxBAhgX7fLl4v6mTrEirpNzf3ZqX4pr8+77hJDJ5nPqW29WHQPVzMtTTUJiEZynm3ZUqwTc0zT8nLrvhfNPsxu4xbsHk5BtqDl7t3Od6J37w4FA8LdPfCaaTl2rPXvDz4ITYKwdWsoDV5Wk6Cl28kgFhPx6DItX3ghNKZg796h7nFOvvwSuPxy8Xj3bjHZRY8eYkayLVtERahtW3ulxI3TAMheMi3VTFpdUFS3DXbt0gcN1Uwt+a6njlnZ2rEDuPJK62tnnQWccYa4YwtYt4ffb//dNc1qMT+vXmwnTBD/5FnjdF3TFLbu4cXFYiDnE05w/pDfb/2dZvfnmmZalpd77x5eWSkq6T17it/58suiazwAdO0qKvFAZMemGrSMtNIhV6DVTEunoKWucuIW4PrzT5GpHCmfL3EyLcONbRUu0zJchW7tWtE9t0EDsS7z80W2iDl5x0cfRXaX3u37Skv1605tLLllWjrdNNGt061b3cdalfcdp3Lv3i0yIIuLxXcfeqjz8pyEuxbJDVTd9r75ZuDzz8XjU08FevWqeabl7t3iey+8UPw9bZp93cYiaPnnn8C77zq/7hS0VM9lsZxoxWumZUZG+LH75GXo3ud2PDgFLdetE1kouplqL75Y1PnGjhWToqjlDpdpqeseHumYlpMmub8fEPvOH38Ahx8ughzmhIpnnSX2X53KSuv4z+ZQRIAYvuWaa5y7/pqBiIceAl55RTzu00fcjNJRg3aBgChv9+7ebmAC1nWdmRl+2CUvdIEB9blAwL5sL0HLnByR2fzii/rXzc8mJVlvJMYiaCl/vlMn+3cC4netXCn2mWiDUm6Blb17RW8QQEwQ89NP1tfDBS3NYzlc2eR6pdegpVqP2bBBPzxTJNRzfjSZlpFc++siaLlzp0jIUbfBH3+IeouXLt1eb0Sa+7huPYYbnsgkn89qQi3DoEHid3z0kTiXmcM+OHUPd6rbV1aK/XXgwNCkNP37i+Hk1JsDsewe7vOJAKKpJgHRSCbDMYfgado09Jx8LYymnlFREZuhXvYT9TLT8umnn8Zxxx2Hxo0bo1WrVhgyZAjWhAnajB07Fj6fz/IvI1YH/H4iWb3IrFwJHHec/s3yiTncxcRL0NIcjFsmBzHV7s/ysuTsm0gugm6Vg9rqHi5X6OSxcpy+S84s/f574MgjgQsuEN0YDjkE6NJFNEKc1o+OelE1MxCiybTUNeblipncCFfHelErcMuWhe/6azbAly61v9a0KXDPPaGLlbw9duyw7xs1nT08XPdwuULppXKoa9ypFV+V7rv37HGvAHjJtCwpsT/v1EC+7DLgiCNEAL662tpNRe4WH0mmpdo9PNJGhjxBSocO1jKogQLzd+oCUG6Zv5Ecc7LMTPd9ry6DluGyoMJNxONWCRszBjjsMNHlfscOca465BB7V7VIuK2bkhJvmZZeJhNTOQUtvWZaOpV71y5R5u7dRYA/3DVBJ9y1SD7v6c5DZsASEJMzOZU3kkzLyZPF9jbpJjKJRbenZcvcr/nr1wObN9ufD9croia8Bi0LCuznNa9BS/P84XZO1QUJPv9cXJO7dXPuEWHascO+XnT7gJppaRjRZ1pWVIQfT84wRHCoVy+R9WgGLAHrbODqca/ub3v2hPadQw8VNzudxtMz60zmzThAP/u7SV63FRXAaaeJm3rq5GFu5G2bklJ33cOdJsxRy6SaOjU0hjcgguLmTQtZWpp1Are9e+3X5HD1eKegZUaGGDfaJC/3H/8QiQIjRtRO0HLZstBj3WQsPl/NMy0Ba3tHtw/osmTVY6qkJPxxGY56fokm0zIS8rno4IOd39e4sf05t4l4ZP/+t6gvyt2uAZEocuKJ3iacCddbzGSuH/U8HMm+Gauuw+o+I7cR5fqSU/dwtzbShx9aZ9HesEFcl9XtEMvu4U2aWAO6NVl2JFnzZnBRviFY06AlMy0t6mXQ8ueff8Ytt9yCuXPnYvr06fD7/TjrrLNQEqa7XlZWFnbs2BH8t2nTpjoqcf1gy7R04xa0VO8ye5mIp6jIPs7KunWhg9zpYlFWFv1BHU3Q0i0r8bzzRCalYYiusepsduog2ub++vnn4rOzZlnfv3KlvgL//ffibpUZNPj888gyLdXgmLm93NZjRYUYU8ccNNsUrnu43AhwyhYx/fKL8/ebdu4Un9MF+MyLlHk3VN6fdReeWGRaGkZsLrZVVfDtW5eGfIcwXIBH9925ue4VMy9dI3WBHafJJL78Ujz++mvgqaecZ/2W16M83oxOcbE1E0ut8IarPJp3sZs3t2bzFhQ4Z1rqtrPbXfPLLwfmzXMvh05lZWSZlpMni4yeH3+0Pm8YwH//a5+0IFbdw6ur3ddzZaXzcn2+0DiFf/4J3HCDOJcZhvfxinXcrlG//mqdAdQUi6Clbp1u3ep+nMnnbqdy79oljnEz62DYsMjL5mWoElO4myfm8ar7fCSZljq6hnNNeblxsGSJ/bm6DFoOHGgNaJgMw977wGmdqPuwea5yu/mhCxKY54rt2603lCZNsmcNVlfb15Mu+CxnWpr1Mfm8EUnQ0kuDPRAIBdpffdX6mhywUDN55N/ywguhySOBUGaTU0aLLhAhB97chr65++5Q3UbtTeRGrp/k54cPWr72mggSvvGGmLX69dfF9n7qqdB7ahq0dNvfPv44VLe4+25xztSdz9LTresuXH1Fxylo2aiRdRvK69BMivjoo+gnWvnlF3tdvboauPVWEZh2U1HhXue86SZxnQyXZSpvAy+B6xdf1HdXj3RcS7XeGC6BIdZBS3m/dBtLu29f+3N79oh6h5f6eiCg7/G1eLF7O2vzZnEzRXe90XGqd0YStHQ6HrdtE8NUyePqu3G7/skJAJFmWpaV2dt1hYX6HpxFRWLd33mnGD4imhsL5j7YtKk1uF+TTMudO70Hh81en3I7X97foqlnxLIXyH6gXnYP//777y1/jx07Fq1atcLChQtx6qmnOn7O5/Mh2+lOKkUWtJQrcboMQ7ny6CXT0qkhWVYmKjluQctox7F0OynK5TnttFDGW7hMy7vuEg1DuaJocgpamg2JyZOtFQO3i6v8/RMmRHY3SK0gmid0t/U4YwYwe7b9ebmismmTKLO8nDZtnJepVuDkStDJJ9uDuKY1a/QNITNYGU3QsrxcjIt2/PH2cfPCzfTs5YK4dau4UB91lNg/AgGRLduzJ5CVZQmKGMcdB9/y5eIz5sDgTqLJtPQyIZJu/f78s6iUyQ0ONaPghResdxmdgpbhZjFWMy3VCnFRkTWjQmVW/A86yFrevDznoKWu4RSuq89DD4mbCIBzQEhtWEQatDzvPPH/lCmiu2u3bmL73Hqr6HarilX38HANIrffYRjW86vcTVcdT0vXTa20VBwvffuK4/KII8Q1JdJKn2HUXqblTz+5dx2SX5PL7fOFzvO7dtmzu375RWR1yN0A3ei27Y8/iowidRZjr0FL3Xr2+0WGe+PG1ixKvx/44Yfw5fzjD/GbunQRjc5YBC29NGx0Dc1YBC3Nc3ivXtb6jto4dwtUqDfOde/1+4HvvtO/z+3atGaNOIachrAwz/GGAVx0kf314mL7etGdD+WgJWDv3h2ue7i8vrx0xXMLfsjrQ73mm/XQ9etFPU1mBi2drku6oKUcOHEaeqakJDR2nfl8IBC+i3hZmfX6t3eve9By505xPQBC49CZ+8znn4teEIcfrq+rqOsz2kxLuc5w4YXiXKLr5qoGLd3GkHQyb55IajjkEPG3+RvcgpaymgQCJk+21tW//14EjMPRDbmjevtt+1iRqkiDlk42bXLuSaejXgPnzBHJE4cdpn+9NjMt5e63qsMOs9/gBcQNjssvr9l1RzeE06JFol5/7rnWTO9wYpFpqe5PVVXiuLvlFjFUw4QJwJlnug8xBbgfD7t2iXOHXGaTl0xL9ZxTWKg/5ouLRbDY7I3YooXzUBM6hhG6fjRrZm3H1TSxZPt2cS4zh+tyqpuZ1w9mWtaaehm0VBXsO8ibyxdCjeLiYnTq1AmBQADHHHMMnnrqKfTs2VP73oqKClRIO1jhvhOu3++HPxYzfiYYv98fUdCyets2BMz1UFQE+RD2FxRYUrOTysogN52qS0pCnzXt2gXdacBfWAg0bAhfZaV2Z60qKkJSSYklZdhfXm5vrGn49uxxPgCkIGnV//0fUvYFLQNFRaj2+5FUWgqnbzCefRa6pmF1YSGSUlODrxl796KqtNS67ioqghVaX0GBtwPU7NLnkVFSYilfdV4eAn4/koqLHX+TNmAJoDo3V2zLLVuQ0r07fH4/jNatg8uvbt3acZlVhYUwpP0gadeu4HsDHTo4poFX//gjkJNjW251aioCfj9S0tLgA2BUVKBq3/KTNm2yvT9QUoLqfa8nDx2KpClTELj8clQr2RAp5eXa7QmI/TO5qCh8yvrXXwNff42qceNgXHwxkp58EsmPPgqjWzdULV0K7NgR3A8CzZoB2dlI2roVRklJ8Dfo+PLybPtI1Y4dSFa2sUw9/nzFxbZlBLZvt/+mTz+FsWgRqpYsCV60k374wbpe8/Nh+HzB7w4kJQXXcVJRUfC9RlmZY/kAoCo/H8nV1c7rPTfXOSumrAyp+ypKgYMOQnXjxqF1u2cPAspxVVVSAsPvh6+w0PK8v6ICSdu2OR8TAIytW4PbJzkQCK4zwzBC223bNssxXlVSgmSXfcooLw991jCs58UTT3QpjRA8JiW+khLtucTYvdt5/yop0Z6TTVVlZUgqL3fc943du0O/UarsG1lZ8EmVbX9RkS1YkDxoEJKkmxZGz56oWrgQSSUlrttD5S8stB0jRl4eqqTzrMzp91bn5tq/d94810zbQF5ecN9HcXFw2UbHjvDtC1ZV5+TAOOQQ67bp3x+BYcNQrQ6X4kS3ncaPR3XLlgiMGoUUwwidjwMB276h7puG3++4v+Coo2AkJaFq2bJgYzXp3/9GsodGe+Cee5A0axaMFi1Q9csvSCoosKxTr/Uqx210881IlicTMr931arQdjApdRbLMedR0hNPIPmxx4L7prk/JeXne95HqzdssLw3UFxsK2vSXXchWckoNEpLRXkLCpyP0Q0bgGOOQdUnn8D4298AWNdddUGB2Bf27NEuoyovDz7leAts22Y73qtTUuBr0CD0vDkGtykvD/6yMssNLPn7AgUFwd/sy82tUaOkqqgoWKfwbdpkPZ8XFwN+P3yzZ9u+o7p5cwT8fiTLv0NiFBejyu+3rj+fL3gs+bZutV5TzHLs2IFUpeeRf8eO8GPWbdhg3T/3BS3la0agoiK0r2ze7H6u3rABRteutmMOAKrz863nBOXYML+/yu9HcnGxp+55/vbtRUCtWTP7stLTUZ2VFVxfgY0bI+/yt3cvjMMOQ9Xy5UCXLkjZswc+AIEWLVCdlha63kvHk8dbQJ6Z56uk2bNt69RITrbvL8XF8JWWhv+tuqxsZTnB/a6sLOrjpSo311L/1jF/o9/vt+9j778PvP8+/AsWAL17I6WoyNquKCuz7FfJ+fmet7O/pMSWPCC3uQJNmji3Dzp3dm5zbNgAn+YY8Kpq507LOku+8EIkRTncTfD4LSy0XoP37g27XUxqm82/cyfQqhVSv/oq+Fz1nDkIHHus63KSXfbLqu3bg+WxteULC0Wby6E+7y8sRHJhoWXZ1Xl58C1bZvu+QFERMHlyqA49bhyqnnvOtdwWJSXBc22gSRMYKSnBslZ5bUs7qNq4EUnXX4+k6dMRGD4c1e+8Y6lXBX9DgwYiPpCREfru/PzQNcmpXuX23cXF1uNwPxTJ76r3QctAIIA77rgDJ510Eno5DcANoFu3bnjvvffQu3dvFBQU4Pnnn0e/fv2wcuVKtG/f3vb+p59+Go8++qjt+WnTpiFzPx0UtXMEQcudixdj/uTJ6Pn+++igjLs3c8oUlErdP3v++Sfk6QVWL16MdVOmWD5z0NKl6Ae7md99h9LsbLSeNw+6e0WLZ89G+40bIefzTZ84EX7duCaKNrNnQ9ORwGb20qU4OSUFSVVVSJo1C2UdOqChrpvUPj6H1zauWoW2O3bAbJ77li5FSa9eaCq956cPPkDZvnXX7rff0MdD+UzlTZsiw0O3l8q9eyEPJ7124UKsmTIFXRYvxhERfB8A/LVgAf6YMgVHvP02upgnZun3r8nPx+EOn13w66/YKd1FOnbFCphH4tqqKnST3rutXz+02xc4Tb7nHu3yNmzbhpVTpqB/RQWaQjREp+zbz3rOmmXZBwGgcMcO/Lzv9Qv3/Z80bhzyFi/G7t69sWZf16bzXAIlM779Fsdt3Qr32yUhKZdfjq8yM3HhvnOLb80a/PThh8jcuRP7pibBxpISNCsuRgsAvkAAU775xjEI33LZMpykrofPP0eHPXvgNGLv9rVrsUg6/lovWGA7tvL/+EP7m3xr12LuK69gb48eAIDTJ0+GeqT5pGyZ7bt2YeG+7+qxciX23ZPHH2ecgR77uuAUt22LRsp4p8vnzEH3oiI45WP++u23KOrcWftag927cda+xznV1Vi6aBHO2ff3rjVrsKN5c8i5R8vmzcOWRo3QZf58y/4/feJEHDZ7tm2/kZXu3o0f9v2+fjk5OGjf8yUlJfhx3/NN//oL/aXPLJ03D0cUFcFpHuzKwkJ8v++zyeXlOM/l+3U2LVuG5cr5tdPChThK897yrVux/W9/Q+MtW7DklltQJjWmUwsLMdjlexb//js6bdsGp+Z3xdat2n2wWgkiTv/qK/izsqQ3VONCJcvat3IlSg4/HE3Xr3cpkV15r17I7dUL8ghYvkAA0yZORJVmIhLNCGwAgPWLFqFrRN8MlGzbhhn7tkPWxo0wOw/uzcxEi32Pty1ejN2GAbVJkTR+PL4xJ3UIo/nq1ThF83zyq6/i24EDcYGUvb9540YsU/YN+TevmjcPG1q2RMcFCyzHiMwXCGD7HXdgyb7Mrgu9ZBkBwSC0b88eBE44AesGD0Z36fUpSrmc6LZRdUoKVpeWQlcDzJs7F3v//nc0W7sWS2+8EcUdOqDxli04Xf58cbH2+9Pz83H0K6+gvHlzLLn5Zkug+8J94/f5Vq4U1+1WrdBrzBgc8u23jmUvad0am844A4fvO/clKzNe527ahDnq9lG7QAMo3bsXP0yZgqZ//mk5t+j4rroKk/fdRJbX3frly7FqyhTb+cm06Jdf0HjLFvSQntu9bBnUgT1Wr1+PpgUFsNeiQ3747DNUmtlRhmEpR87atZi/7ze3WrQI4W/LOFsxfz427UteOGzGDEvZf/nhBxS3b4/Dv/jCdiwv2b4dW6dMwUllZWgJu9I9e/DDlCnWY2XxYqzfV+42c+da6pILf/0VOX4/stavDx73plkTJ6LQ4dplarl8ueW6XrVzJ6pTUy3n08I9e4L1l+arVmnPAaa5S5diT1UVDl24EGqaxuaVKy3nhIbbtuEM5T1Vu3ZhypQp6LdlS/Aa56Q6NRVTFi8Gli5FWkFB8NprKvH7MW/FiuDxt2fp0rDL1PEFAthyzz1Yc+mlOGffOW4XRL3SvGbu2bIFs806XhTf4WbK5MmAz4cuOTm2enN506aYpuwv61atwkHbt8OlY7Mnfy1fjj/M42XhQtfjpbxZM2Q4ZC8n33ILSh59FNUZGVhxzTXIPfJIx+VMnz5dW9cEgN233Yb5996L8woLLfXkP1eswJ/SfnXcn3+irf3jWj98/jkqzZ401dU4+rXX0FEKDm4pKkInh88uyM/H8dLfm087DR33tVFX/PorGm3f7lqnc7Nixgxs2nfDPmPvXgxyCVgWt2mDRi49dXasX48FmnP46rlzsV5zUyN73jx0/fxzrB88GNv6i090W7bMcg399csvUdShg2W/W718ua29req7ZYulDS1bNXMmNuzrIXjo0qWW88eGFSuw6uuvcYHDpHqzf/wRvTZvDtZ3AGDz8uVoM3cuMgBUZWQgZV8bcO+mTfA3bhwsR5lhYLqHOkHbWbPQZfJkbD3lFJh7cE55OYq3bAm2N1bPmxdx21a2bNIkHLNvDOOkDz7ANxddhLMKCmztk12Fhfh9yhR0WLcOx+x7buXvv2Pjvqz8NnPmeIo5yObMnIm9+3qOTXcbR7keK41kvgOjnrvxxhuNTp06GVu2bInoc5WVlcYhhxxiPPDAA9rXy8vLjYKCguC/LVu2GACM3Nxco7Kycr/7V1JSYiwfMcIwRJK1p39VTzyhfb5y8WLLsqtuucX6ucceC77mnzXLqJw71/B//LF+WUuWiPd98on2df+77xrVZ51l/cyqVWL5xcWG/6uvjMrNm62/d/16wz9pklH12muefmfl3LlGoGnTiNaN7l/1P/5hBFJSXN/j/+ab0Lp5663QOnvggfDLHzbMUzkC6enW7fGvf4nt9NhjEf+mQKdORuXGjUb1Ndc4bh/H3/rxx5btUj1wYOi1N96wlvGVV4xAixbu++N994nl9O0b2nbl5eK5oUPtZe/e3ahcs8bwf/65vnw//mhUlpe77xurVhmBww+PaJ1VVlZa/162zPD/73/Bvyueesqo7t8/9HpBgeNxqyt79bHHGoGGDZ33k4susi5Dc2wFOnZ03m5vvSU+u2xZ+H3yggtC54Fbbw0t49dfDf/UqYZ/+nSj6oYb7NvyhReMQLNmzmX46SfndTJnTmg5N9xgVJaWhspz/PFG1YsvWpf1+uuifI8/bt0uq1cb1Zdfrt/vfT7xf8uWof1X2u8Chx4aKs+XX9rWn3oMWpbduLHlXBXJvmUARvVll9nWSdULL4ReP+88I9C4sf17jzzS8H/xhVGZlyc+t2mT6/f4x441qk86yfl3pKZ6Ox7Wr7eWNzc34t8c6b/KP/6w7zsFBc7rdPjwiL8j0Lp1aB/47TfL9gk+HjTIqBo9Wl/GigrD/913RuXSpdqy+idONCo3bTL8U6c6/87KyuC+agBG9ZVX2pYlv7/qqafE/vLyy6Hf0amTfX2Yy3FZZ2HXT4cOtrJ6+add1qGHGlWvvBL2O6uuv14s5/ffrZ9PSdF+l3xu8r/1llH555+Gf9IkyznFAIzKpUsN/6xZ4X9z9+6G//XXnfezk04S3712reF/802j6tVX9ctp1UrsVz/84G1/3/d7AklJtnXhHzdO+xn/u+8aVf/3f9bvPfJI+zp94YWwx4dZj6usrDQqS0qsv/nMM0PHiXQdjOZf1ahRoW33z39ayzB/vjhPn3GG/bdOnixeO/ts/fo+6CCjMi/P+l1PPhn6LmXf83/4ofg906fbv+vbb8Pu4/733rOXQTlnB3r2dLzG2L5zyhRRzvvus+9zl19u/f6FC/XbsKTEqD7hhPD7eNeuoWWVlVn2OQMwAj16GJUbNoT+PuSQ6Lf3HXcYlYsXh37L1Vdb6mzVffuKcijHayz++T/+2KjcuNGoevBB+zpo1cq+n0v120j/yfXB6vPPN/xTpxqV5eWOddfge/v0sZarfXv9NmvSxKhcvVrbLpw0aZJRUlJi+MeO1X/H3/6mXb9VI0eK5SxdavgnTzaqTz899H1t27qWO9iGq6zUtiGq/v1v589K+4MBWLZP1VNP2c4LEe1vDz4YKpfD+giul0GD3F/fd95Tz+FVDzxgPydUVFh/o3neufNO6z7544/2a/oTT4Q93+jOicHP339/6PsefdT62vXXG5V79jgfIzNmGIFevay/WzrHVp92WrBNHDjqKMs6s5xHnM6TDnWf6hEjjKr//CdUzocfjnqbm79TXf+69mj1xReLco0fH/rss8+GyvvBBxF/t/+77yzHodd6Un36l5ubawAwCgoKwsbu6nWm5a233opvv/0Wv/zyizZb0k1qaiqOPvpo/PXXX9rX09PTkZ6ebns+NTUVqV7HmqpnIhrTEkDyAw9on0+tqrKO+aDchUmurERyaqoYu+XkffllN9wQekODBsFxPoLLckgfTvH7bWM+pBYVic88/DDw9NNi3Js1a0S2WmUlcPrpYhBqj7PHp2ZmijEqoh28e5+kHTvskxQpUtatC607aXskd+sGXHmlGETcafndujm+JvMp2zm5uFhsjyhSz32bNiH15JOBc9T76UJKW+d7qymVldb9xBz7KiUFKcrxnNy2rdhXpG4PquTMTPE7pO2aahjiO+RMvqZNgfx8+HbvRupxxzmOtZPywQdhx4JJra6OeLwU9fyRWlpqGew6qW1bJEnnnlTxIf3CNGOaJS1aJC53DpLKy5EkL0+zT/pc7hCnrFghyuOyLwa/q7g49F3SfpeSlRU69r/5xva55LIy1/WaUlLivE6kMQuTs7OR3KCBGP+yoABJeXm280WKeY7RnUccxj/ytW4N5OTAV1QU2p5SeX2lpaHn5YHMse+c5XKu9ZWXhz4bbvylgw6yLT9p3zAUFtI2ThoxQpRVGY/Ut3QpUv72N2D4cDFhhMs+BAApgYDrAOU+r9191etFHYzhk1pYaN9/lPUoS5KPh7ZtrecTB778/NB2lK6BSe3aiWtRdTWSdu923MapY8eK62JamhjkX5686tZbxfhnhx5qndFYXUZqqmU7JpWWWvcN9VpQVma7Fvi6d7eNvZjUtKlYzurVjt8djk+ZhCY1JSX8mJtOy+rSBckeesAkv/MOkt96y1Yn8VVVITUpyZ7Rbk4yBiBl/HjgwQfFGF+PPGIte2Vl+Ak0APgyMpDiMglZUlkZkvx+cd1xGQvSV1Ymtq2XCQKaNAnth40aBa93yQUFYlurkwHtk6KOqwjApxnbMTkjQz9jr8RyvClltlwjajJhAqS6JWA7RlMDAdFFXTNRRkrbtqJ88pjjEl9pKVKV8eySq6pC36U7x6emaq9hKbt3hx+vVjMGt09ZN76qKu21Ryelulp8p66+UFJiPSc4jB+fqo5X7sDXpUuoXKmpQMuWlmPDl5GBVGmyQbe6RjjJ2dlIljIJk7KzRd0pMxMoLQ2d72I1y7Ik5YorgE6dgPPPt73mKysT5wRJkm6cRY+SbrstOKN10jffIOmbb8T4f5o2quVzHTpYho/yde6s37cKCpB6772O9evU1FSx3+q+IzsbSZr6THJ1tdg2xx1nXf8+H3wHH+x6DU0tLQ0dI5pJW5JbtLA9J15IRqo5zqn51KGhvMrkoiLvE3DqFr9rV+iYDzNxaJLbZEEQw4gkadpdyUVFoe8wKRPOpQYCYtsr+1hKQYHt3JKcn29fnsrl+Ejesyf0ebUtX1aGZJc2bYrfbzunJ0l1iaS2bYNta19JiaVt6mvQwD3WYhjAzTdrX0pq3twy5FCy03nrnHOAQYOAO+5w/h4AyfLs5wBSfT5tPTWpYUOxTaXx9oN1KsC2/rxIqa6Gse/z+2v8KZLfVC9nDzcMA7feeiu+/PJLzJgxAwcffHD4Dymqq6uxfPlytHGbKOQAkxyrC7t6UXCaiOehh0LPvfVW6HG7dqHH5snGbaBf9YRkBi2eflr8v25d6AI5e3Zo1jyvjeO0NMfKbETUwfR15IuT3Jht2DB8kLVjR/skMjKncT7NoF20Expt3aqfuCUtTQym7ETdT8xGWsuW1oGMATEG1LXXupdDnYgHCDXKzZsTbdqEBtDfs8d9cPBJk8JP2lFeHvkgzz16WP8uKLAO5N+mjXU7uh2X8nebXWzDBJss6/2TT0QwXOUWcFq8WLxujrmXmmq96SCT16/TRDy6C9beve5lcBusXK5cm91szPGO9+61B4m2bRMDyj/5pL0MTtvWXG5FRaic8nvlx2pDP1zD3O8PVW7CTUxxhKbTS7iJeNLTxTHmxNyuXibikZer6W7tSbduwG23hf6u6aDpXugmZ3E71uUJj7xMFgKIdaO7fjVoIILNgGjMO+0P5jFVWWmf6Obtt8X/f/0FfPGFt/IA9n3faUZvubzq+QoI7RteZu/2qibjNR18cNgGPAAxKQGgv2lw1FH2iXHkm24zZ4aCL088YX1fQYG3/T/csVdSImb6DTd5jZfZw03yWO9yPcY8TzrNIqybiEc39E0g4Dy+sEmuH6jbec4cMVFMXl6NbwyHnYjHqa4Sbvbw0lL7JETydVl9zbzG6s4Vukl9ZIYBTJzo/h7Auh7DnZPM/d3L7OFO9eJNm/QBH3VeALU9Zp7rTOnpYj80b1DUIIgE9WaBuh3NZdfWjbBNm8TkHKry8thMNGbStVOvuCL8OVNN5unUyfm9S5e6L8tpv23USL9fVVaKSfTU+mvjxtYbcDpy/U7X7nGaiKdJE3tbTR6KQTcRYyTkdaDrGi7X2++/P3Tt1I1ha57rvEzEowzBFjwPq8fO6NGhiZHk9153HXDMMcCqVfZlA+7Hh3x8qdfN//0PcEheAqCfiEe+xjZrFrrhpd4UkdsIv/8OHHkkIA8NVlIi2vY66kQ8ujrWo4+KyS29xI/UYzwvT3/tNesAnIin1tTLoOUtt9yCjz76COPGjUPjxo2Rk5ODnJwclEk70dVXX42RI0cG/37ssccwbdo0rF+/HosWLcKVV16JTZs24brrrovHT0hIkWZaOvIatHQKsKlByx9+CM2IqHILWsrMi7vTSdtNamr0DfJIvflmKMCmBi3DzbjcooV7g8jpNTOwVJOToy7LxMxwc+I0e7hT0PL880UDp0MH/fLMyo0atNy7N9RA6949fAPLVFjoPIO5vPxIgyxqQz8/39LoMbKzrYE8r0FLc5bpcOT1vm/czojMmiVmyzQrTuedF5rFUyUHLeXvlbeBLmgZrmHnFrTUNWLkoKW6vZ59Vn/XXBfgNMkNMfM9atDSDB6rDVovs0Oa5+JwjXhd0FLXgFWDlm43EwBR9nA3seQs9yZNRLClY0f3zzh91+jRooED1E3QUpO94XlW8dtv9/49Zqaeuv7N/XLrVlFxDke+4aSep90m7FFvYKjrVt2/zNfl8uqClua60gV/o7VnD/Dhh8Datc7vcboh06mTt6CleTNAV9dZscK+bZ16CkiTygAQ69HL9TPcsVda6m2W3aoqcfx5CfjIQUt58inzPLlhg/5zuqClU1nC3dR1C1oCIsPrwgu9H4NO5Lqgeg2pqNAf90CobuRUNzAM+3qS9yH1HG+WQ3f+fuklex1g3ToxscnmzcD114edjAWAdT2Gu06YZdU13tXn1HOVac0afUNdneTDS9DS5wvdZK2J0lL99d7cH0tLxbp8//2af5eTP/+0P7dvkqyYcZq4KVzQUm5LAdYAnircddcpI9apV0xlpf78kZVl3ydU8rrTtXucshgzMuwT7MnrID+/ZvULcx3s2aO/2XPFFaIes2SJqJv98gswdap+Fuy8PNEeVffNsWPtAWQ1QGqWQz0eZ8ywXz+/+goYM0ac+4YM0f8ut/P87t3iN0ydqq8TvvOO82d1QUv5mtW0aaitV1RkLcf27SIoWlQkMiKXLQOefz70+9yufU2bhp893GwvRpO5uGuXPiPd3C/l66H83dG0sT/80Nv14ABRL4OWb7zxBgoKCjBgwAC0adMm+O/TTz8Nvmfz5s3YIZ1k8/Ly8M9//hM9evTA4MGDUVhYiNmzZ+Pww52mCTnwhA1anqQbhllDPZmoF1bzwHW6EMsXmRkzRHaEpgspAO9BS/PEsWKFfjlu0tLqLmgJAAMGiHUWaaZl8+buDaJwQUsvWRsNGoju9So1Q8V8r9egZWlp6PtbtLCvb7OSc8IJomKg45RpKTesu3ULH/yV6X6XrLCw5l2P1EzL7GzvmZZyheCYY5zfJ6tJZoPp3/8OPT78cOftHG2mZbigpVsjzS1oGQiEX7bJKdMyNdVaaTa3gfzeQCD0e6MJWprnyGiCljXNtAREGSPJtMzIENkgAwe6f8aNebOmhl1EPVm0yP6c14DJnXdquwRqXXGF+C65spqRYb326cqikvcZhyFtbFq1sp871P1ZDXCbr8vllbrXBZnrKpaZlrffLoYmOO0054wEp3Nh69b2oOXf/gZcfDHQVZp2RZdJKlPrGU7d1dXgfEGBtwaJl94HXoKWgL7uA9jPCfJ6kc/94YKWRUXeMkOqq8PfCJQzR5224a+/igZ7TcjrQ103lZXOQUvzeutWN1AnAZPXzebN+nLobiDt3CmGRjGPoepqsc//4x8i+P7uu6H3ugyvY1mPNcm0VPc3+XfJk7P88Ye+7iBnyQP2wJganDTXdSyCliUl7pmWOTliXTtM3mi7+RANed8+7rjQY11Gb7Scji/5Gq22p1JTRV1SVpOgpVO9qaREf82urNTXdbKynDMlTXIdRndMOn1e10aS62o1zbQ063JOE7G2bw/06RM6blq2BM46S18/zs0VbWpd2/aUU6z1kX1DAwSZ28JLm00+vp1uCLqd52fNAs4+W/yLdIiDcPXIZs1Cbb2SEuvv2bIFuPpqkbEqn9/MDHq3doyaaanbt839yil56minqQghemfpmPul3H6VvzuaxLCvv0bKgAFiuCqqn0FLwzC0/0aMGBF8z8yZMzFWqgC9+OKL2LRpEyoqKpCTk4PJkyfjaLed8gCUFu6iNWuWt0rl0KHi3xFHACeeaK9QmScmp3GQ5KDlM8+4f5fXoKV5oXKqtLpJS4tqLApX771nr1CYtm0Td7eiCVq6VXKdAhVz5wK9e2vHurF56y39hUv32cxM96ClvN3kCl7LlvbMDbmS8u9/6++0eg1aes20BBzH+wqKRcW0oCBYGapOTbXfJVQv+nfdJSqkjRsD8uyzuowonWiHAXDSvLm3oKVcyahp0NJrpqUZ7Jb3l3Db1OQUtDTHuDUVF4sKulOASO3CEknQMpru4V4yLeXsK50dO7xlWprLNY85t+EpwjH3y2gyISLNpFmyxJ615yVoeemlYp/6+mtrtoia3SGbNMm6/jMyIl9PN94ozl3r13vPbqyqsjcmvXYPl8ury6Iz11UNxrS0mTBB/L9tm3OGu1Olv2VLe9CyZUuxzD//DF07zXOQ03IaNhTXuLZtxfAyTg0FdV/xGrRMTxcBVt1xC4j17zVoKd/oMx11FHDqqdbnZs8Wv2f8eOs5ODdXHOORdA/XqaqqWfdwp/dFY/RocRNt0yZ72d0yLU1uv0M9j5v70B9/AMuXW18z17PTTac9e8SYhIAIGuuuSe3aATfd5FyeaDIt5XOref5y6x7eu3fo8Zo1+kBBnz6i54XPJ+okAwZYX1eDk+Zx6iVoGe49TpmW8nZ0a+y7Zfz9/e/i//R04Jpr3MsBiGuAvLxYBS0vucQ5mC7vA2qX67Q0eyBT7cUjq6gIjWG7b+z/1LQ0DLrmGvjmznUe87m01DnTUlfXGTgw/HaVP6eWNynJ+fPmerrsMvH/sGHWumlNMy1zckS9wWn8YqdeYE7nFafjtqhI3MQBRNtTXfdm8DSaBITx48X1QB7ixGsGYKQZf+HGeW7aNBQHMAx9HWz0aOvfZlkjybTUnQPcMi07dxbDuTklKzmNx6rLtPzf/8Q5sqAguqAlAF9xMdrMmxfVZ/c39TJoSbXDUyR/+HBR8VO7Hai++EJkNc6dax0PDAh/0nELvKl0QcstW+zPFReLk380adZpaa6TNESlVSv3u42FhdEFLd3upLpleCxfLtL/wzEn+/ESIGvQQJTZqZIkb3/5brWue7gcFGjVCli50ppBAzh3D5ezgSLpHg7UedCyomlTUfl3yrTcs0cEKquqxD4tH7Nt24adEAFA+IZ7pJo1cw5alpaGKsJmMC0lxbovRxO0fPZZ5zGY3DItgciClrq78mrQ8qmnxHlOZZ5z1O5jXoKWn38uuoWEG9tO11OgvNya3Tl/PvDKK6G/09Odu1eZ/vMf/VhdMjnTMhZBS103e6/CBWFN/fuL//PzRWVy5EgRnMrNDR+0vOAC8Rndd6rnK3lCgxkzrI2C9HR7l0qTU/ctQOxH/fsD//qXezlNlZX2dSn/vXOnbUIZbaal7rqzd6/YP6O5CdilS/j3RBq0bNHCHrSUG/pyd1G35TRqBDz2mDh+7r/febKFmgQtfT4RSBwzxv56ebm1Ifvaa8BvvwG9etnfW1ZmvYbef7/IyNEF0HfsAC6/3Pq7AwHglluc10VxsbdrRKTdw2thUhSL1avFeLDq91RWhrKa5eNVzpp1qxuowV1z3bz3nv29bt3DTebndDchjj1WHFtuYxC6BS2bNbNOLqF2D09NDdUH5TrEb79ZrxXdu4euz6tW2fdxsw57883i9bVr7YEytU4SSdAyXI+AcN3Dw3ELWp57rqg7rl8fqve6ycqynnNqWjds2VLUKz7+2DloKR+fav1eHobEpKuryckT5jX455+D4yhm5OUh6aWXnH+PW9BS3i9vukmMC/zSS+G3/SOPhLIC1eM4I8N5fZjXqg8/FOvugw/E0Crm9+Xn1yzT0u8X536nYJzThMCR9O4yrVwp/tclGTh1D/fi8svF5x98MHTjNlZtAZWXoKV8rHo5Zsx2RKwyLdX2x4QJYt23bu3cZo4k0xIQdeknn6zREGzJHNsSAIOWJEn3eof/qKP0Xca8Mk82TgGBcF0HZLqg5ZIl9kZFSYnoVhfNnanaCFo2bmz/nfIAyurMxV6Cls2auQ8qHK4C6IVZeXMbx8SUmSkaaE4BLfn3yRerFi3CVzrbtAGOP976XH3NtMzNDQanys1AiC5oaRjuY7I2auRcaZKZx0A0Yy7pBoR3y7QExL4cCIQqoV26WLtd6oKW4YJ1gOh2o8vaMStKycmh4Fw0Qcu8POdMS7kh9tFHoWCYrKhIdBtUK4Re1vu//iVuEMkNSFV6utjmn3wiusKec07oNXNm8OJioF8/++fCnWO//NI9ywcQ512zIhWLoKV5LEUTtAw3Ricg9jl5iJPhw0Um//33i4Hqw2W1nn++dV+V9yn13HzBBaHz+e+/W/fnjAzRpVK96QKI7sxutm51vst//PHA66+H/vb77evSPOfm5YleEL//rn9dzcxVz8c7d4adcdOR0/i3Mt0kB4BzpV+XaSmf583Hut8nS0ryNDO8bTyrSIKWgDhuzUwulTpUSL9+IrNXfb9a9+nfXzTOIzmvy12RVV4zLTMzY5dpGSvqxBWA2K7muf/oo4FPPxXnTWmGeNffodYpzevyJ5/Y3+s2EY9pyRIRYNUFLT//XATU3G7GmOsxELCWbdAgkSV08smh59RMy0aNrBNgGEao27rcFbVhw1BdX617DB0aus4AIsCpm2ClJkFLXVDxxBNDj9Xu4eb7vdbx3K6DjRuL+qLXm8FNmsQ+aHn88eKaY97sUMndlNVroC7TUhe0lLMD5euDxLdkifPvceoeXlZmPRddeaU4R7llSpoKCoCLLhKP1XNQerpzW8i8AZGaGlp3QKge6FSnkx1zjJhbwMmOHZEHLSNpc5jMGyy6c7B5jZDbs/Lx7lVRkTj2YzFklE64dnOzZt7GopaZdSm3gK2aaam7JjrVWY8/PrS9nNrMkWRamhYurFFwOIVBSwAMWpIkLZIxE2rSOP3uOzF+j+77mjeP7K5Uaan9pL58uX3MkeJib4EQndTUmg8QL+vUSZwY1WwnOXtVF7QMt17S02s3aJmdHarwnHSS6GbgxiyvU8VQ3kZq9/C0NBGUAuzZQCa1IhAuaJmRISo1kVQg1LGqAGsmSyyC2VImXrm5T6gT8RQViS6Fatc/WevWkQUtvd6kkOn2r3BBy8JCa/Zz9+7W16MZCBsQFUfdcWlWKA86KLSt5MZfuNnVTbt36ytGDRp4G+O2uFjfII1khly395pluPRS0ci9887Qa2ajffnyUKaryUvQ0ounnw6tn5oMam4yt1s0Y/d4CVq2bGlt8Mq++SZ8Fr46nIe8T/n9oUlczMmtzLF/q6qss3+np4t987vvrMvLyAg/q6qb7t1FoNkcV808b8iKi0WQ4+qr9WMZOmVaSuOFB183G7Znnx1ZObOzwx8/c+fqG1KRdA+Xr5deZxN2yqAAxDXJKeAaadAScF4HctDSbNwffLDYBrfcEnpN7R5u/t5ozuv/93/259zGtExLC3WHve662IxpGUu6c7ycDX/MMSII/Pnn1rGg3X6HWn+sqBDfY+4zciBGl2mpC/KvX28fF/baa0MZlk7dTQFxztmzRwTWzEBjaqo4rxx/vDWw4xa0NAxR1/z+e/t3pKfbr9eAmHxv4kTrmJdOnIKWbnUGky5oKZ835UxLOVDhth3NQN6hhzpnvAPWcnsJsDZpYl3nNa0byuvH59MH6uT6qVq/N68zsqZN7etdzjQ29w8lsOdbvz4UJJcnhQOcMy2/+gp4+WXrd5u8rM+VK8W1Sj0Hpafr20Lp6cCoUfplmd/tpXt4VpbI1H7oIf3reXnO2zaWQUuzF4OXTMtGjUR3ci+T+skWLhTbX3fNCJck44XT2J+mpk0jD1qabcVIuofrhrEx2wZqnVX+3ZEGLc39LCXF/rtSU2sWtKytwHI9w6AlCYbhHrQ84wzr39dfX7Pve/994Ntv7c83axZZ0NJp0onZs63PPf008PbbERUxKCUFuPfe6D5r+uMPcdFfv17csdYFDsIFLb1cRGozaKl2kQlX8TAb9U6VU3kcTLV7OCAuwH/+6Vx5UPcTp6Cl2a2rSxdR4Ypk/5LL9dxzojzyuK66i7LTWKVOpEZLhblPqJmW770X6i6i06KFqGSrlSbdMA7mzLOxDFq6BcHuucea0aXuRzUJdKkVUMMIVSjlLAOv3YdlTmO8pqR4C1red5/9PAREFrR0o5ahX7/QujQz1XQ3l7x0D49ULDItze0WTaall9/ToYMY4F7XfTYQ0F+PZGqWsbxPVVaKGUL//FNk3gLWSYmmTw89Ns/jum6UkeynvXqJrswmc0xvcxsYhj3DwDDETSCn37pihRhDSt4G6emiq+SmTfbx6gB7xns4WVnOk/CZKitFdiEgsrkefVTsH06Vfl3jR24oeu0e7qRlS/H7zzxT/7oatJQb6zL1+NBtb13Q0iRfu9Tu4ep4bpHQZX2qmZZmHWbVKlE32bxZ1GcaNar57OF/+5v1by+ZbW50QcvPPw89dgpWuQXS1BtkFRXin5l1K99wUCfiycwUw7qsXm2dSXjXLuuNrUWLrFleXbvaM+zMfai6WmTiyxNzmcPLAPZ60OTJoWBH48bWfauwUD9ue0aGPlAfSRBG3ZZuE/GodQG1zirPNgxYMy3lc4rb/nj99WJ80mXL3H+HXO54ZFqq+6Ku3mpeawB993C1zaDLtJQDm16GaBk61NpbpaTE2zVb/l6vkzDpsr39fvvvuvRScfPAqf1j1k8rK8NnFZplc6rLFBQ4Z1o61YOjCVquXy++y0vQ0tw3vCQtyM4+27me6zZUDSB6qIQjZ2LrRJNpmZsrEmYef9x9ueHqouY1Qn2fXJ5ou4cD9vq5GrSMZBg8iGEaiEFLMhUVIUnNyDHdcIN9/KWhQ0VDItYiDVo6ZUCqk8WsWiXGNwlH/e60NFEJvO8+kUnzyivud2eddOsmgh0HHxy6gHnNtExLs48D6MQtaBlN4Eam3nEPV/Ewu3d4CVrKs3SbF4rkZH2l3aRuK92YlvJFP9KuQ6qGDUV55O0gV97OPVdkSchZVV5Id+2CmZbqRDzhssDM7a5mZjgFqp1mqVXXtbrP6MZMDZdpOWGCyKw2xTpoWVERyt6Rs4NqGrRUZ/02mRMOhDNrlr5i5RS0jHS/VCtFmZmhTMJ160R3fF0FPVaZluoygZoFLc2GQDRBSy/nxvbtxX4azfkbsN+MkNd/RYXYL7p2DQVFBw/WnyPlLsJyuSMNWr77rpiU7NZbxQ0Vc4gC+XjSXR/dKvuA6Lo+eXLob7OMHTvaZ80GvI33JvMStATEjZrSUtHV/pFHxO/UZTM2aCCuFV4yLf1+6wRSXh16qNj+TtsnP99atp499e9Tyzhzpjg3yudt+bwTLmgpN2jN33jJJcDDD+u/X6dJEzHkj0oOGDRoEKrD9Ogh/m/XLnQMOJ27zOuJ25iWY8aIoRpkETbobNTu+0Ao4zwjQwz1oKMbO9SkBlsrKvQT2wD2iXjMYGL37tbAwvbtoXFTs7NFt3V5RusGDezjWsr7ijobsFynlPe19euBCy8M/a1OklhQoA9apqfrr3U1CVq6dQ9XM83VTMF+/azHel5eqB4jv9etfBkZ4gZ2gwbudQ+5fF6u902begtaes1g8xK0lKl1Pd21OCPDfu3XzXTsNu5jy5ZiHzbPhaWl3npHRBO0LCy0n/PLy+3romNH994WkdykNbePU10mP98atPz2W3EO/+EH57aK1+Pl2GOt19ilS/VBS7V7uLn8SIOWblnv8nBDOmZPkpqIJtPyq6/EuJy//aZ/PS3N22SHZtBSPQfI5XFqPzlNhijvZ+qNE8Ow7svjxokJFnXBYU39IT1WyQ71HIOWJLjdFXzzTXtjxecTGXDyGGGxUFUVWdBSvvsgX3x1M1y7SUsTDRM1g9Q88TVtKgaQvu02b1lWXqiVB/mCIwctzZOfl8qO04U7Lc17RcFJpJmW5vhsTgGt3FxxEq+uDnU/TEoSFXcvvHQPlxuAZiUr2qCl+TmnoOWVV4pAglOD1YNSs9KuZlquX+/+QTNoqVZanPYZp6ClWrlTGw0tW9or8M2aiXWjdhuSyZXgWHUPB0QWbZcuopxr1ugH5QeiC1q6de+qyTnAKSgXaSa0riF13nmhx2PH6hsftZFpGa6i70VNuod7qfiax4Y6lqQ8Q64b3eysJt0Nv8zMUFdxmbmufD7rPhpJ0HLkSJHh2KgR8OqrIpvZbDDJ5XIb1kQNFDmRzyG68um6j7pp0sTb7/zhBzE5nLk/fPaZPthonpe9TMQD6IeUCcc81pzKrc4MmpGhv6mrlvGII0TQTg4ouWVayteu0lJ9pmVSkgjyOmWFqlq3FuduOWsXsN4ACnd8OV1TzeBjfn7oGJGDf/fdJxr8AwbYb9TVhNsQIEOHOt+0iWRfdgtaqt3D5e+Tj/kHHgg9dgr+q8/LY5+rQRL5e+RttmKFNSiZm2sPWurOYenp+m1bV0FLdaI5M1BiHs/yjW/5+ulWPnm9uNVZosm0lM+VTm0q3RioOmp9IFy7SJdpCYSGV7rmGv0Y8/K50aF7uLZccvZ6uBuNycnW74kkaKme88vL7fXacOsmkpu05j7hVC9VMy0HDhTncLlnhcrr8fLxx+Jablq3zjloGQjYMy1jeTM6XI+xSG8sqfudzyf2g0jrjG5DuACibqtOZqrjlGkp/+1UJ3fqpSbv12obIS/Pui8ffDDwxhvWIV8AsQ3lCR/3yYjlEHX1GIOWBADwOY33qOtKJ4s2AORkwIDog5ZyBk0kDd8TTxTdfFev9na3sqZdl0xq4EDufhht0NLpTl9GRs2DrX37Wv92q3hccUVo33DLwrvoIuD550PBv3PO0U/2ouOle3i0QUtdmXVBS7liKjdGvAYEFMVmtq1cYaqoEIP2uzEzINWKq9NFt6xMf+FVKz26Lqxq4yAjw33CJVUsMy1HjxbZKoWFIkjuFLSM9A50OJEeS14qk5EGLXVluOqqUKV77Fj9NjazZ5zOFdGIVablmDGiIhcpL99r7gM33hh6btQo74EKOQMK8BYovfxy+3Py+UPeLxo29H5tcdufvAYtBwxwHyPXJP9OXdDusMOcM9d0srK8ze5rGPZuw7pAgFPQUjcRDyDGYJw3z1tZTV6Cluo4oA89ZM+Ec9pn5PO2HIiJJNNSvR66XefkiRTNsXAffFAcgz16iL/lTMtwdQ+n7SlnCZr7opzdI3cV/uKL0PPhsnzCcQtaunWfT0nxfuOgstJ6U6hFi9A5taxMBF7N1+W6nlOWsVq/MqnnJzlYII2HDcBaX5f3NbU769ln24OWujpzRoZ+29ZV0FKdRO6006zfLwfL5O3mVqfwmtkll9trnVE+BhcssL8nJcX7OV7dTyINWprH1sMPh66tgPVYTk62d7eX/3f7HnlyMy/jRMr1jZpkWlZXRx60jOQmrVl/8tI9PCvLW7vMax23QQNrb7kNG/RBy6oqcZPevGll/v5Y1umystx7ZXhtp5nUoaqaNBHnq0gzLcMx60bh1vkJJ+jfJ69DL2Oly+Tzr7pf5ObaJzgE7OeD1FTtPpXO7uEAGLQkk1PQMlxjMNKg5R13iO5Lso4dRcr3gw8Cd90VffdwL13OdMwZy1NS7BdT3YmvtjIt1TGG1KBlJOtF1aCBt4aikzfftGfV6ioe7duL8T/lwINbA/v770W2hUnuRhyOuu+ZJ3r5hB9t0FKX9WCuf6dKirz/vfCCGPNF153SRTBoKR93a9eGHwfRrOiomZFDh+rf75RpqW4rdXmNG1sv5PL73WbzMzVvbg/OOVUurrrKfqw98YT1b/m8tWKFc9Dy4IOtEy7UhM/n/RwwdKgYMkBukDtxqyClpAB33219TleG7GwxTAEggrm6WXRTU0XlKpZ35c0KWE0C0Hl5IqAUDfXmWtu2oQauyQxannKKOJ899JC4yx1ppqDJS6BUN5GGXEmXz+mVld4bHW6NsHDdw01HHy26KKn7lbosed2q39u+vbiuvPuuyP70IivL/Rw8eHAocKb66iv7c14yLeXvmzhRZHBGwrzWeQ1ammVRu/Y6NdB0PVZ8Pvs1W8201HUPN7ld76+6Soy7+eij1mvuQQeFGlElJaHlR5tpKV//zICznEUp76vnngtMmyaum3IGYqyFa2x7PR+omZbycA+lpdZrtlOmpaljR+dx0+XMSvXz6oze8jA7TkHLpk1FXVsOWm7apJ9cwinTMpK6aCRBS3XdyMF1IDTxj27flo9NOVtZ5bV7tnx9VT9z1132fVTNtHRaptcgTaRBS/XcLH/PQQeFri1yxq2aAblunXg9kkzLggLruKo66g3tmmRaAvbrZCwzLc3rnZegpdc2p9frerigpbxPTp8eyo6OdfIQILaRuZ+rk4ilpoptqt7IdaMGLc1tUltBS6ftd+qpoj5uXpvc6nE1GVJNbQ+ZPQtNTkHLtDTtOkkvLNRnwx9gGLQkwakrQ7hGaCSBsOxsMQi5WkFv2FCMW/XYY5HPHi7fUY/2BCOf8NWLqe6EVltBS/nkFWmmpdzN5Ztv7O91y7RU36teAP/zHzGuqUp3x/imm4BnnrG+Zt7RMnXpoi8HAJx8svNrKi+ZlnJF3KzU6RotaWki4zYlRWRi6bpG6DItZWp35CefFAPr6wIXmm5JRps2qDK/Q97v5ElsAPG71ca7WdE56aRQtvKUKfYbBCZd0HLYMHslTK0Iq5mWckBDvkg7VdL69LE/pzvHXHop8OGHYsw+Wf/+1oC4WqGVZwlUA66RBMTD8ZotMXGiCOh4GUbDLdOyTx/gv//1VgZ5YhS5EWsyt41bRf5f/9J/xomXTMsjjhABw5QU4Nln3ZdXU5dcIrpNy+Rs2xtuEAGb9HTbDYrqm29GmZdriZegpW4dy+cP+Rym67LsNNRETTMt09JE18t27cR+JXdPlqmVZ3W9mAGeVq2Ap54CzjrLuVymcJmW2dnO+8d779mfi7R7eDSiybQE7Oc2p33mpJPs71WzkwBr4z8/X9893OTWkG3YUBzjDz1k/16znmAYoZ4s4YIx6nelporuqHJD1axj6jItTWeeKa6bkU5mF4lw9TevY7RWVFgz0ho1Cq2HsjJrLyD5OmreIJd99pnzTSv1miz/rY5ZLN+klY8HuZ48erS4qSPvSzfcoJ88Kj1df+xEUgd2qlOrz6enW8ciTU4W9Ys77hD/P/lkqN6k27flY9NpchHze0xuGblyHe2QQ0QbJSNDXNOff14EdGRqpqVOZqb33gjqdg93DKrnP6fvUYOW8ra87z5RX5eCloXqjXezniJvg3DjuEcyPqdcz9FlWupEGtDVTVBpCtc9PDc3dEMi2kQZJw0aWMeNV4OWgweHHsvjTsu//5NPtPWaiGVlieU+/jjwf/9nfc2c6yGS3kF1FbTUzQsge/bZ0HwLgHuMw23Mz3DUzPW8POv52jyePWZa+gzDeQKoAwiDlgRA6R4uX6xjmWkpjw8pUytF0WYUZmWF786u4zbWSqRBS/lkaPrnP/Xv1QWETHv2hCoXTkFLeWw2uYF+3nniBClftJy6+WzZIirecoVPrWA4XVRSU+3bX9eYVhvEajBJFkngOdru4epkRYccIhqds2eLC80bb+gvxm5BS59P3+ho0UKMRyk3YIYPF5VCJRPMkDMq5P1Ozpb78kuxb1xwgfV7zN+UlCRmjt67V3Sxa9RIZNWo1KDl5Mki60pdp+pvatzYuh/pJjwA7EEvk27wbrXSsGBBaNwntTytWlmPE3WynAkTrO+VXX556PhWu51GwmumpTy7opcMRLcKoK5y7FQGefu4VXKcuvOXltobsG6NO8DbmJaNGomJR4qLRVA61uRzf1WVPitQR8msMvr2xfR33oFfvuGhywCVZ1x+6in9sps0sQee5POTfC4xGyfmsd2woXOjyC1oKe9rTl2KevWyvs8pqKee69SJSsyJn0xeGuThMi0bNowsQz3S7uGqJUtE5plMvbEVLmhZWWnNrHMKMDhdSzMz7Tf3dMen/P1794b2mZQU+zkm3Dp2Ip9fzcyOcA3Lhg1D9caBA8W15b33rNePf/1L3BiTu8xHm5ntdRxanXDnbvna5XadUDMtGzYMXa9KS8WQQyb1Rp9aB3KbQHHAgNA55N573QMlr7wSeuy0zcz9ystwLk6ZlpEMkeQ107JFC2vGnlm/ffFFUUeVr6fhgpbyuIAqt33ZzPDWBXy++kqcT83eK+o5uLIyfGAxNTX6oKVcF2rQQHTxV5ctH09Ov1OusyUl2Y+HBQuAOXOCf+ars8frgpYy3TpQ15XbTVB5vxg2zFtWfLg2o3rz7/rrnbdVuExLeR+tjaBlZmZouWrQsl+/0LqcNi30vLwtLr1UXIvMCb6iJW8Hp/FSI7l5ofaeMOtntZVp6ZQF6jW4D4hrmbk/PPBAqBeTF2rQ0jCsGeDm9+qClk7rxC2D/AARQW4v7dfkTMusrFBjJ5ZBS/OCqjYmYxW0bNBA/HMbj0VH/g1qRS7SMS0vvVQE6fx+0a3n99+duzyqy5H/lk9OTsGyk08WjeVdu+zfkZFhXY9OmZYtW4qTcu/eIqAA2Nef20UlK8t698gps+ioo0LjMvbsac8eNJcVSXcDp4l45PUk33F3ClrK49KY/+sCkG5ByxYtnAd1T0kR62XWLPHvuuvEMpR9zZArynLl07yh4POJrg2640Nu5Pt81jK+8YaoMEyZIr4fsActzUqS+tvUQI86FqJ8175Zs9B544orREDjvfeslSsvQUt5vajladXKuh+rQZnFi63vlTVrJjICZswQ2bReumw7causPfWU2BflAbbNgcHd7ty6BS11s/vWNGjpdG4396+TTw7tLy1aOA8hAnjLtGzUKDSGUW10Z0pNDWXeVlW5T3QmU7tfHnwwjLw8sT1mzhTjH+puPHXrJmYO/esv+wRupqQkcX4pKAg9J+/TuqDla6+J8e3OO09M/Kbj1j1c3gZO20yd7Mxpv1QzmXv3FjcGZs4UGeQ332x93UsQKivLPQukUaPIMu2cxvNy6h6u+z71fH/GGdbB8MMFLQFrV91Ig5aAODf++mvob10XSjVoqY5pJnMLTIZbH6pwwZikJGD+fDHcy4gRoffLYxQuXSr+yRORRDoG7rHHikBG797esnp1wmXdHnWUCFBt2CC+x+k6oesebm6HsjLxeZOcPQWIa5N5wy0z0/1GbsuW4po1b544z+jGSgREcE+uB8YiaJmRod9XIglWeA1aHnmkuFkwe7b4Wx7XVN3/wnUPP+ss0cMhJUXcjJXrIG778rffAuPHhyaRVKmf7dcvVN4WLfTHYZMmofN/SkpsgpapqfYbK2aGljn8gtP3yNe7fv3061JqDxYccoj1xrl5rnQ6jpo2tQdXIglyy/uF1+6w4dqMp50mxvieP1/Ule+4Q9yY1WVxmsFyp2uZPB5yrIOWZhvi4INF3W37duvNsIYNRW8jtaeV+vszMiJrS+nIx7g5kavZZjD3rXDDAsjOP986BIbZdqjJOOg6Zt3I6fer3+dWZ2nXTpwTVq0SbYY9e0SC0PPPhy+Hboxgc33Jw+6o51KHTEsA8DFoyaAl7SN3I4skaBlJt6vazrSMRdCyppmWDRtas4jcJjpQT6pOQUunMS0bNHCuXAHWSquum8+hh4ZOjj16hIKWarfhcEFLuaxOjdGvvxYVh5QUkcmg6+YXafd+3YUasFbm5KCNufxWrUQD18we0zUO3TItdevDS+XlpJOs3YTVRoNTpqXpqKOs6+iDD0RQ45//dD9mGjYU482lpDgHLc11oC5HF7SUM9rku/bjx4sG5dlni+7Mxx0ngiPyPqGbGV6tNDiN+QeIdea1waTbJscdJ/7VlFsl/Prr9UHv9PTog5a69eYUePAatAxXqR03Tpy/srLE5BVypovKS9BSLldNxucFRDBEzmQCxO8xg2x+v/58qaPsT0bnzqHrX//+4p8TL3femza1Bi2d9m+zAdW+vRiSA3CeRdlr93CnSq46Udju3fr36SreF1/sfN3xGrQcPlwM/yAH6UwNG4ogTnKy9aaIE6fjQH7erZ6SlWVfn05BS7dgsRykiiZoqWateglaqrPHytwCk7EOWgLiHKWep4YMEd09//hD/xmvmZbmjdWffxbbctEib5/T8VJnNbOdly1zfo86EY/aPVzeH9QbpfK53pzt1s2AAeIfoL+u9eljH3fOaV8z93WvmZY17R7uNWh59NGiLjNjhijjo486L1O3/8rHZlKSGEsaEL1TdN+v06VL6Nzrxfjx4hrZqJG4Ufvzz9bXhwwR5/Xvvxd/xypoad4Il5kZWuY52+n6fvvt4sZTXh7w9tv6sUz33QwxfD4UOO27TucQ3fqNZCw+r+NdysLVJ3w+cc2Rr3vqZ7KyRB3czLR22k5yoPOUUyIvqxcHHxxK7JDPnQ0a2Md5NZ9XmftIuPHwnai9Flu2tActZY0bW+sLcpATEGUZNCiUOWvud7WVaXnYYWKYILn3FWAve7jemeecE7qB0rChuJ55CVo69UIDrNfTlBRxLJk3IB0yLY2kJOeeMwcQdg8nAIBPzrSUKxnhKpXRZFqGC1qqg/97ZQYtIyV/vxqk0V343Sq9kQRxe/QIrb/bbw8ftIx0xjxZUpJ9W8lZb04TH+i+VyZXMJKT7d0HTR06iLtMq1eL9+iyniKZ4Q+w/37zYuTU1cps8Pl81safLgAVaaZlNHdclQZeQB7PU1cpULMUr75aXMS8XEAB6/a/5x5ro9zcjuEyLdUhGORuw4MGiTv048aFGmFduoTGsrnySv3xpP5Wp+6zgFhutLNvxorP53zspaY6B9/DVc4iDVo6NXTlc5BuEHuTU2awqUMHMbTBkiXWGWt1nMbwk8kN3UjP03l5IsvKpMtMkvetqiqxfswZec8803355izfBx9sn8G2ptTzmrxPy5kHb71l/6xTkNvrRDy6BulDD9kbW7U5VpIaBMjKEmX85Rfgt9/s7zczctXtIHfHd1u+yWumZZMm9vWp3tgwzzkZGd4CeNEELdVjPJKgpe73Rds9XHf+irZh2by5yFIpLtZP1OQSwAnsCzAY6emiQbdoUc0nJUxLi6xLuts6dOseXlEBPPJI6DU101Ju0Eaada67rumuHbXZPTySoKXT9V0XtOzcWUwGs3ix+3U+XPdwt/fGMkjSsaMITi9frp9JukUL642nSIKWbl2qk5P1QUv5+52uHZmZwMKFYj137ux+LmjUCEXqWITm+nTab3XBGnXsVSfPPRc+aPnkk/bnojkfyENMdOggsujmzQstK9x2atLEeaLLmpLbMHIGf4MG+huWTtsikjEnw5HbRGZdy5wYMzNTjGEsy8sL3Tho00bU2V58MXT+NXsi1daYloAYK3j0aOvruu8zE13OOCP671Xr42PGOL9XLYMac1HaSdW33oqvJ0yAccUV0ZdvP8GgJQlyN7KBA0OPw02MEk2mZbju4W5BATfRBi3lE36bNtbsyIUL7e93a7REsj4aNADmzhWN1ccfFycqs/zy9og2aKmOQ6cGguUxFeXxtNSgn9tFRW4AdO4c/gLk84kK17Rp9gtqpJmW6oXa/H1t2+orHPLy5QuwrkKlK0usg5Y33igubA88IMaUlGe31pXfzLSQRRLcl4+7jRutr0WSaSmXUw2kquVJSRHb+rXX9AP9A+6Zlrr9yWuDKZJjMdwYenK2aN++zus9O9s5mFiToGUkY/x5/d1eug/5fOJfuIZEpJmW4QKmqqws62d0v1ENWgKi0vraayIr2c3LL4v3ffdddDfM3KiNDHk/OPJIcXyMH68fD1nNvjO5BRzkbWAGrRs2FNk+X35pDabovqcmQVs1M/Ldd+0ZunIF3S0gonYRP/xw699//7sY8sIMTKu8TMSTkSHWl7qN1CED5DKHO/8kJzsfW24Zdeo1RBe0adw4dBysXRvKNo5l93A1wAZ4n3FZx5wFXTdMjksAsXrUKCy56SZU/f67OGbkdRdt0DLSSRTd1qHbRDwqtU4lfy7SSaJ01wndcykp+v3NPHd4mVHZqXt4JN19VU4T8Zj1Ci/n33Ddw2VOY5/HinmN1H1Xy5bWLMOUFO/fr64HeTnJyfZ2lBq0dLth6fM5d0+VNWqESvVaY/5Wp/1WnTXZ6TlZv36i+/a//uVe13jvPeDOO+3PRzM27pgxIkj62GPiGqweL+GWedll0Z+Hwu3j8vlC7o3gFLR0KoeXGxNukxLJ5HOM2Wa6805xjZ8xw9qL7MgjxW98/nkxPNX06WL99ugB/PijWPc33STeG8nxeOWVoreY7ia+SV0/6nlBV0f97Tfg9ddFwoUXusQYdbiSq64SvUnMG+Iy9TfLx5KufIccEnmdeT/FoCUJycmoTkmB0aCBuHty8ski2yBcFldtTMQDRHcx8JoFoVJ/g27iEpnbxSzSCugRR4jupGYlUFcZjEWmpY4ctDzuOBFE69LF3sB3u6hs3hx6rOu24KRHD/vkBzXtHm5KSgI6dbI/7xS01M2wqyuL+X2xClqmp4sZrR9/3DorIKC/cDmNyefV+efrZ6kFnH+bGsBITxdd0k87TVQcXnop/PcefrgY+85p+7oFLXVjDjlVstWgbrgud7J77hHd2nv31g/iP2qUCOyccIL+Tr/JbSy+cHfu3YKWkfwWr+cgtRLUpUtoiAhVLIKWNWksJiVZyxsIiGtTx46hiqa8H5kNvE6dxL6njv+latlSvK+mM27qqI1Ldb2feaZoAOkqpY89ph/OwC3grDu+W7QQmdBDhuj3pccfF8fzaad5O6adyEHLTp1EpkVmphgepHNnkeXpNKbn/7d35/FRVYf//98TshEIIGvYCeLGIiAIIlqksoh8rVTUishWhWrhp0ArFlsEii0qRRRBERVxARdEcSkuEQREIwoCAlbcEKpsWpawaAjk/v64n5ncuXNnMjOZydxJXs/HgwfJzL0zZzL33OV9z+Ll3X7t31nTpv6/33CD/7h3duFMxOO9qLOXw/5dWNe3H6Pbt/f/PdQ5SGnd3a3HLafjkrWXwM6dzuUL9Vg4zzldkMUi6GnZMvBvF2p/UaOGdvbtGxhWS9Gf+0R6flZaS0trd0hrS0urOnUCP7c1tIi0h0lqauCx1OnY4fEEfm/Wngrl1T3c6TWlwL9JqMmI7CJpaRlsGKF4sL+2U2gZ7Rh+1n1HsO7h4YaWVqX1HPN4dGr2bHP/O39+yXPB6oZTI4BQXWUlsxfFsGHmthHsXKNpU7M1X6y+v4YNzXO9SZMCJuOTVPr3ZG3cE6nSrnWsLf6s20/Vqs77i2D7w3D22/fea54bOF0zWVn3Md5u31Wrmsf4rl3NIWN++1tzzoIXXjCfr1XLvK60ToR08cXmdY/TxKmlGTXKvIYJdT5qrxf2352+19xcM0QNNbaw1fLl5jbTv7/5XbVvb4a3VmlpZpbQt2/g+vaeLdZt2uH8zSjLTaIKhtASkqRTb7+tN5Ys0cndu80TkvffN5vKO3WTtYqme7j9hCdWoWUsuodL5p0R792nMWMCl49laGkXKrS072yj+azeGQd79AgMpB55xOwyYu86GOqg8sMPJT/bZxksjf3AXdaWllb21iKpqf7bnXW7dpqswl4W6wVAWlrghX+suyI7bWNlnbwkO9u8S3niRGC3lmAtBVJSzEBFKmnRlJlp3ln99NPSw6Bw2D+rdTt3GlPPqY5kZJgnSt5g1+nuZii1a5ut7DZvdp6ZtnFjc8D9/PySk6ArrghcLtTfo7STM2+3Wbtwu/97hdoH/f73JT9bg5kzzzTrfrDxG0u7SA1n9vBo7xR7w2jr+qdOSX/6kxncDBpkPvb00yXPO7UmTJRwWjQFU7u2eRx+7LHw13H6DkrrJtaokVmfV64MDAcjYW8N5HXFFWY3Svs4dU7HMO+2Zq9L9n1saRev4XQP9343bdqUXAxOmxa4nDUwsNcFe7lC1fPSxnazHkO/+cZ5GafjpLX1u1e0w9g4hUexCgrsF5vRzh5u327CvakTadhW2jHXOl5c9erO+zinv+f06SU/z5gRWZmkwG0u2Hm6UzdEb2AazmQdsegeHqxMKSkl2+1115XtxlyVKsGDjFDdw62tf63Hj2iF09IyFqFlsJaWpd3wdVLaGP2Sim++2WygYJ2QzmkfcuONzq0qZ84MfMxa961d2YN9j7FuIVua0r6nSG9wem9216vn3GvKKjfXedLKSLuHh/M3y8kxe2F8+23JJETWSSS9rMcdp2A6JcWctGzr1sj+NpHUB++5f6jQ0l4v7L/HYjs6+2xzqLM33jBbkW7aFLxRycUXB+7b7GOVW4+vTgF/Wfa3FQyhJUp4u/FEwr78c88FX9Z78LZX4FiFlllZZe8e7v19zRqzBY/TCWV5h5bex0LNjloa77qLF0uLFpndJsMVaid/5ZUlP5c2bpyd/WASq5aWUuCFQu3a/n8/a1m9QW6osmRllaxvn51bCv8OXbicDuSxnHHZ6YQomEcfNev1a6/F7v2t7PXJ2grF2nrXO4SBUx3LzjYv5DZvNsPLuXMjK0OoybiCvedTTwV2JwnV0rK0k6WMDP+Tk9RUaenSkoHhJf/vLdj4scH2QU8+6d9F3xpQllZ3S9vXhNPSMtJu17Vrm39f777KHlra9eplnkDm54ceo7e8lSW09AqnVZRXNKGllXXfGcn7SoEX1qUJ1dLSHszY97Gl1afShhOQSj5ftWrmUC1LlpS0tLbe+LJ2oSsttAwV8JUWWlqHCHA6LkmBx6azzpLuvz9wuWhbWjZrFniuEavAIJyJDsNh3x+FG35GevGXlhb6ta2tYatVM8c2DEePHua+as0a/7F6w2Xf5oLVb/v3Zt0XWScjDCYlxXnfX5aWP9bjwL//be7jH3kkstewb7+hJjMK1T28YUPznOGNNyK/0enEaUzLWIWW9htCwSbi8Qq3pWWIfYERyRATixebrfSt21S3btK77zpPSGr9O1hDnGDblv1vaz02xeLmuV1p+xRvwBeuP/9Zeukl8+Z3OJMNWW8we8UjtPQe51JSzJuWL7xgtr60i2aCpHBEcmwJJ7SMpqVlPOXmmuekQ4cGX8a6bTvdbKClpQ+zh6Ns7DvL664rafli59TdSXK+oIjkrqtXkyaxCS0lsytTy5bOy4fayZa1y7bTzilYt5lIx7SUzJO7SE/OQn3e++4zx9Vq184/wAxHWVtaRhpaWt1yi9nq8McfnVvWOIWWVpmZ/neUYzngteR8YC1rIG4VLLR0anXqnT06XkKdHPbrJw0fbo7f9uyz5mPp6eY/6915b72pXTv4hB2hWE8anE6InC52TzvN3NdZ61NZWlrah7fo0kW66ir/ZRYsMLvFnn564HNewfanw4b571fHjzdnqDx2zLkOWIUbWob6LiMJLTt3Ni9kO3d2Xt8ptPR4yjaQerxE2v3TSSQn9sG6h4erUSNze3jlFWn27PDXkwK7MJYmVEtL+3PhtGj897/NiXlGjfJ/vLTu4ZLZ2tg6luXrr5sth7p39+8Cbj9GRxJaltZN8uabzfG1du82xzp2Yj82TZ7svH+KNrRMTzfPpf7735LH3NbS0r5eWlrwiUesojmGZmVJhw87P2c9p61e3TkocvrblXVfFW1oab8JUdpwBZIZkGVm+l9Ml6Xlj/V7yskJfr0Qin37DXXuWFr38HPPde5dEY1wWlpG2+PAvm8tbUzLcFtahjouh/qe7d+B0/fYp0/wbtTZ2SVju1rLEGyfYP/eVqwwz+N7945saKpwlRZuRXqtl55e0sPJ/todO5rXUlb2YUe87+l0XA3W06u0z/DXv/q37m/SJPj5c7KElqW1tAznvCTWunY191HBWnOX1kI6Ozt4flLJEFqibCJp/eUUiAR7jWhmM83NjU338NL07m0eJPbvN1suffedOStahw7xaWnpNN6KFN+xeaxCHVTOPNO8ixSNRIaWaWmhW5tWrep/ol7aDJTlEVrGsqXlWWeZJ0obN/p3+bHW0fLqkhDqwtXjMVsI2lWv7n8QL+udyNJCy3DrdahtOJyWltaTd6f3bN7cf2B2J07r/d/YVAHvt2xZ6NfyatnSbFnw1VfOz3u/w2hbWqallbS2OPNM6ZNPApexj2mZLGLR0rK0FlFWZW1pKZmBWbDQLJRg3cODCTWBjP3iIpzQ8vLLA8cHlsILLe3atjVDfbtIW1o+84w5tlX16qXf/ElNDd1bRQrcxzhNnCOF3meVtr/MzS2f0DJWrV7S0/0ntwkmmmNatWrBQ0v78fLuuwNbSEVTj0rTo4fZaksy951duzovV1poGa6srJJzobK0FpTCC5dLY9+2Q90Yiufs4XZOoaW1FaHT0EJOLV5feSXwte2t2GPV0jKUUOec4dyEDHWOvmiRGWimpARO1ubE/r116mQOnRIvoc5LQ/Woiea1P/00cBmnG41Vqzrv14PdLA+1ra9e7dwCNph4tfaLpD56jx+RtLQMNpFUeTv9dLNxz5Yt0m23+T9Xys0Gw369U4nRPRxlE0mQ8tNPzo87XYAePBhZOWrXNndksWppGUpmphn2vPeeOeblvfdKb79tNq0v6w7RacD2YHcRy9qqM1zxOskra2gZ6o6ZPegNd4a8YOVxamlpFevQ0n5SU6VKbLs1eDzmjIlvvinNmVPyuHUGwGHDYvd+oUTT2sZeT6I5obIG29YLf/sJUZUq4YeWpbVgsrKf9NvrWbQhtdN6Zb2ZUqWK2a0pL8/5ee+FWSShpfV36yDwwUK+0rqHu1UsQktrVzSnFhhWsQgtoxVp93CnAMQbLFlnBe/fP3AbjiRIK617eCTswZe927q9XIMHm92At22LPjSysh8ng/XECPb3z8go/dzB/pqxOgewf/5oW1rahfs60ewHQ61jDS2rVTN7BaxaZY5HumWLeUPXPqtsLPzxj2a32wULzDHkgo1DG6vQ0vo3yM6O/DzX2pIxWA+mSJSlpWU8Q0un7uHWsa+dJuWwBpZXXGG2tHbqtWRtmXvllYHHFY/H//WdxtyOVKiQ3zsZSyih9jM9e5o3J7dtC28SpvJqpOEV6lymrKGldd6AG25wXiZYaOkU0Acrj3XYH/v5V6Tnl24ILb3Lhgot7fu48t5ugklJMVsHv/VW4LBz1nri1NIylr3skhwtLVE2pZ0sZmeXTKYRrHVMLO68eg965RFaSmYXukaNzJ9TUmJ3YmrfGefmBt+pRzOmZTTidZJX1jEtJbMVy4IF5qy0Vu3bSxMmmOMw1q8vTZwYXfl27zZ/Lu/Q0n7CZB1TM1bq1g0cN23ECDOcOn5cuuee2L5fMNFcuNpPpqM5oXrtNbOLdO/eoUPLTp3C79IVKqCy16MaNfwncrC/R6RjQFrXq1rVf/iCWLTSrVs3eJdG74lWqBN9+4nXBx+Y3ZOuu056+OGSx4O9RrKGlrHoHt66tTmT+AcflN5lu6zdw8si0u7hHo85O/oHH5Q85q3bPXua40tu2+Y85l0kx6VoWloGY9/X1Kxp1jnv+Y392ODxBE5uVxb27ck+oZ71fZ2EE6LbW2+6bUxLO2/Pl9JE09Iy1Dbibf2SllbyWYJNZhZLKSnhzV4cy5aWXtH8DZculf6//89sERqLrtix7B4eS/bXrlXLbGn73Xfmc/YWVnZnnildeKHzc7feagbhJ06Yr+m0Txs92hyj89gxc9iIMjLK2tsm1DWKx+M//Etp3DQRj3UYkWhcfbXZ4GXXruATLaanm/tLazjs7QFmHx4pWEvL3//ebI168KC5X7KOjx7pOWE012fhKO0YsGqVOYHf8OElxzT7fmztWvMacPDgxHT/Dle9es43Lkob1sEtwasL0NISZVPaxXw4syrbZ9Ky84aDoQQLLcOZCdVNdzHsE0iEmoUtkjEt3Rha2g8u0RwUb7jBbOHqNBvfvfeaM7ytXm12hY6U9eLUHiDZDyKxPqA7hZblIS1NWrjQ7Drvhu7hwcQitGzb1mxt6p14w8t+YV3apEXe7usNG5otwoIJ5wLSWk8j6RJsZ99e4r2PCxZaelvrVq9utg6yuuAC887zyJH++4JggWSyhpaxGgtq0iTzLn1pF0zJ1NJSCqxf3m3V4zHH+fr3v52P45FcnMQytLTvezIy/I8H8b7AsIeWwY7tbds6TxYRTohu72Lfs2d4ZStNrMa0tFu4MLxznGj2g6H+Xt5ZdN10DmnlltCyVSuzV8eUKdG9v92FF/p/tlATydnrfqy2OSf2bTAlxfx7Pf+8uY163/uaa8z/7ZNzhLpRmZFhjon3/PPOw71I5j5xwQJzMpVIjjvBwtRQ553Dh5dsC//+t/MysewNVt7BjX078U5Ok55e9hv6Ho/00EPSq68Gv+kkBd5szMw017XeeKpaNfh3XaWK9Nhj5lAS1t4sUuT7rF//uuQ15s2LbN1QSru+7NHDvMaz1hV72bt3N88lnSYvkkrWvfrq6MsZT06h5dSp5v8dO5a9ZW8FQmiJsrHe4XHq9mFtYTBgQMnP1rGdvLMCW1lbgP3lL6WXI1hoeeON5p3HUOFleQVC4bAPZh1qgOnSdvZlCT0ieZ9YiUWLpFgK1WTfepDJzo79jHT213PrRVEsxKJ7eCwHCbdv76WFlsOHS5s2mS3CQp2k21/XKWiNVWhp315iuf04XSx5W0zYv8vf/U76/HPp229D129rwBVshmVrd7fBg8MrqxuU1zAeXk71qbxCy0jHtJQCA7FQ+9ImTUp+jqTOBwtakjG0LO0mr1eVKtKGDYEzwYbT0rJLF+nLL82x9bZvj11L0XiFlp06mePthgqvpOgCt3D+XuV1gy9SoWYPl8z9s9dLL5mBmBPrObIbWv3k5Eg7dpjb56efhh7Kxr7/TdSYdlaLFpnj5T7xhP/j0U7SU1b332+Wp1s3/8dDbde1a5vDIGzb5n+Tw9oCOJrGApI5P4BdoltaXnKJuS/85pvwurPHgvW4nZZWEmpbz6VycsLbpu373kive9PTzWvpjRsDJ7ori2i+10iPG088YW7fixdH/l7lwWkinkmTzOET1q51xz7LJVzcjhZJoU4ds6XR8uVm9zW7884zB5+1nzzPnm3uBFu1ch4MeO5cc3Dmiy82W+gcOCA9/rj0/ffO5fCGkvYTlGrVzO4o9tkwrdwUWubkmCcD3m5HocZiLG1HZj3glaUlYHk1t3dbaBmqyb49tIy1RLW0TIREtbQMxl6vrON8BlPaOINSeGNWJkNomZ9vtoDr188cq+/ss0u6tNm325o1A1uPOwmnFeXvfy998YV09Gh0wz0kSrzGggomkS0trceZcN/TfqEc6rj2zjtmN7D+/SMLHDMyzAuWOXPM4S+8ohlv1P59ZmT41+14X1xbX7+0sCw7O7C7abif+YwznFtqlkUsu4d/9JG5H/K2ojn9dPN8Mti4u1L8Qku33lQsraXlAw+Yx982bcyZjb/8svTXdMsFdMOG/g0hginvc6fly83WbePHB18mLa1kzN6aNUsmeor05uuaNeYkoGUNkVJSzPLYe7WVtl3Xrx/Ym27BArOhyQUXmNtVNJ5/3gxtliwpeSzRY1pmZJS9W3ikrMdQ680q63VuOL0ZpbKHlpK5rToFymURzfEy0mvS1FT/MbLdxrpte79n6/AJ4d6orAQILVF2w4eb/4JxOnjXqyc99VTwdVq29L/rO3my2eIp2Gxn3gsJp9DS/niVKv4Xxm474Xz9dbNJfHp66NlGSzt5nDPH7CImmbOcRyueJ6lTp5rfbe/e7gvmnO5+eVmDtnhsP/Ygz23baCylpprjvLz9tjRtWnjrxDO0lMyWG089Ze7XYrVd2k+CnVrgxaquxTO07NrVHKNMkm66yf85p9AyHOGEllWqSDNnhvd6bnLWWebJ5/r1/pNexYtTEFReY1o+9JB5k9LjKX3sTa/MTHOIgMcek66/PvSy55zjfyEbiUGDzNa61n1FrFpaWo8V8R66YMgQs5vtgQNm98LS2C/2E3lzMJYtLa37Ia/Sgo1YdA+3jxcsJU9LS3s3w5wcc1zwYMt7Wcejj3as5UQp75bu/fqZ/8K1bJnZOrF2bXOcw0hcfHFsx8u1N26IZrtu1qzsLdrOOsscosh6PlTeLS3t+6ZY96YKR7DjtnVm+HDPT+373vKuF8GUR2jpdm5ovZ4kkuzog6RgHXsilgdU+0FjyJCSn72toYKFlqG6b7ll5+114YXSzp3m4N3Nmvk/Z+1Kbx8s365VK7Nl6g8/RN6dwTqWZrwGYJbMVjNffmmOd+Q2oVpaWi9a4nHBUplaWkrmmEhffWUOMB8O+4y9sQ4tFywwW/U9/njsXjNUS0vvyXkytLQMxX6iH27LEetYRCNHxq48buDxmK37vvnGnCgh3pyCoHjuw63OOKPkmFPa8clq3jyzvlkDlHiw14NYhJbp6aFvcMVazZpm19j//rf0oSukwPObWMxmH614TcTjVdrFXyxaWjptM8kSWpZ2Hmg9rnpveEv+x6JEdWGOltvO7+0uucSckGXHjvJvlW93+ul+vxr2649EKu/Q0h6Mlff7S8F7K1iPMeFu3/b9lltuPkRzDDjvvJKfrcMGJSvr8ArlcY6YxCpYXA1XuP9+cwfZunVsm5LbDxr33WeeLJ5/fkk3pmChpfUAlJlpzq7n5caTsGCTDz3/vDR9unlnNpzWM9F2C3zjDfPv279//AOzWHdBi5VQoeXRoyU/E1qWXZUqocdvtRswwOwW5RXrk/2UlNCTYEXDvv+qWtWcGfGZZ0pOVFq0MG9WSMFnhAxHokLLlBRzX+sd2zDcUGjoUPNznzgR2/GS3CItzXnM53iw7zvS0sr3wj2aY0486psTe0vmWMwebm9paW0FEy/Z2eHv8ypqS0snpYWW0RxH7X+vmjWlvXv9H6sooWVWltl69403pAkTSh63th52S/fwcCXDuVOoYaDK06hR5g2nr7+WunSR0bu3OfmbG5T3dmd/P7eGluG20ovluO+xFE1omZtr9oT66CNzGIFkd9FFZi+Vb74xex4iKEJLxF6dOuF3DYuEfeeWkyM9/LD/Y8FCS+sBKJmbYjdvHtuZ24Jp1UqaPz/+7+Nm1u3E3h0s3qFlZeoeHg17C+5gk7e4iVNo2aOH+c/r0UfNSSXS08PvKu8kUaGlZG67J0+a+9xw60ZKSuxmlq3s7PuOWrWSL2goL/HoHl4eoWUk7Oc7lamlZVqa/3hg0YSk4bS0vPbayF+3PNiPOcFuhlv95jfmPyu6h1cOp53mf+2W6LH0rEN5nTiR2LIkIrQM1jDFej0S7vVsIsofDvv+pGdPaf9+swdeqOFPhg7179WZ7CIdGqKSSrKjDyq1cE5wg4WWVm5sWQn3sc5QPHWq/3PW0DIegZA9ZEiG1gLlyePxn4ylU6fElSVc4UzEc+aZ0u7dZhfbcAdYd2LfJsuzdZV3P52dnXwXuBVBtOOKVkaVMbSsTC0t7fvceISWeXnuvXi2f/5oz32t3cOTbZ9OaJm8rMeyRAeoiQj9gh2frDd4rUPrhKssvXjirXp1c5byvXsjGxsWlQItLZE8wjlohNPSEgjHRRdJTzxhhkhjx/o/Zx1eoDy6htHSMtDf/24GfzVr+o/16lbhjqUbi67u9u3l3HPL/prhqlrVnA01keFIZUZoGb5YjWkZaiiRRKvMLS0zM/1vMEYTWtr3Y/abTZdeGvlrlpfjx0t+LsuNT1paIhHS00taFSa6pWUiJuIJVmdvvtncr9WrF9n+Z/166bnnpBtvjE354iEz07y5Ul7jcCOpEFoieZSlpaV9gos//cmcUfuee2JXPlQ8we5iWi+EymPwdFpaBkpNDX/iHjc4/3z/3+N5MWUPLa0Dl8fbjTdK995bMcemTAb2YIbQ0t+jj5pdsYYPjy7EcsOYlpFwc2gZ614v9hvb9t+jCR7sfy/7eJZuviG+Z0/Jz2VpXZXMoWVmpnke9+yz0iOPJLo0iIS1vlbG0DJYY4WMDOmvf4389Tp1cn+vJG4yIIQkO/qgUotV93DDkP71L+nIETO8BCL14IMlP48YEf/3I7RMftaxKyXpf/+L33vZ93vNm8fvvezuvtvct955Z/m9J0rQ0jK0UaOkgoLox2x26h4+blzJ7/ahRBLNHgwmsgV0vG/wObW0vOmmkt87doz8Ne1/L+v4lfYx1d1m9+6Sn8MZzzIY683B22+P/nUS5YknzNb/0XSlReJYbyolunt4Im5OWAPGynITOJnnnEDc0dISySNW3cO94/Owc0S0Ro0yt6kmTaK7EIoU3cOTX0qKNHCgtHSp+XtZLiJLc+SI/+/lfcLNvjVxaGlZurJsn/Z9cUaG2UVv0SKzBf5115WtbPGWyJaWqXG+5HAKLWfMMMcK7to1ui6H9r/XJZeYM9f+/LP7g4TWraUtW8yfu3eP/nUGDpQef9zctyTrOHMck5LP+eeXTMbSqlViy5IIp50mrVkj5edLI0cmujTlg5aWCIHQEskjlt3DgbLIyCjf2d5oaVkxPPqoOStiQYHZPTVerN0CGRuocrEfJxMZUlVE9u6x3t+vv778yxKNijzWrNNEPLVqla11oL0+Va3q3ol37KZPl9atM7/zsgylkpLi7nHwUDE9/LC0dat5/mudeLG8zJsn3XFHYnvkXXyx+a+y4OYCQiC0RPJITTVbjRw+LP3mN87L2ENLb6sTN487BJSG0LJiqFNH+uwz88ZJPPdJN99stvySpKefjt/7wH3oHo5Q7ONKlrcuXaSPP5Y6dIj9azu1tIz3e7hZbq70zTfJNw4lIJm9Ub76yvw5Eddwf/iD2cKR+lN+kmn/inIXVWhZUFAgSapRxpOfo0ePauXKlZKk3wQLoQCr9euld9+VrrnG+Xl7aOk90HXoIL30kvlzWbrJAIlA9/CKJd4n4N27Sy+/bIaj/fvH973gLnQPRyjx7qJdmmXLzH//7//F/rXtF7zxGEMz2S6qCVyQzBLd4IT6U76imRwPlUZUZy+1atVSSkqKPvvsM7Vu3Trg+d27d+tvf/ubPB6PnnjiiaCvs3PnTg0YMEApKSk6efJkNEVBZdOqVeixTYKdUP7pT9KKFWa3zNmz41M2IF5oaYlIeDzSb3+b6FIgEWhpGX9PPSXddVfyTOT39NPSpEn+EwYlSsOG0i23xOe17ed/8eiyH+sZzwEAJkJihBD1LVcjxLiABw8e1MKFC0sNLcN5LSAiwQbxzcyU/q9VL5B0GJwaQDhoaRl/Q4cmz7iGkjRkiPmvojv9dHP8xoMHze8nVp953Dhp1iypZUtziA8AQOwRWiIExrRExcJdcFREdJkAEA5CS1RW1atLH30kffGF2f08Vl1L775buuAC8x/nmAAQH4SWCIGtAxXPI4+YY1i+8UaiSwLEBqElgHDYgxpmD0dlcuaZ5kSNsbz4zcqSrr1WatYsdq8JAPCX6DFM4Wq0tETFc/PN5j+goiC0BBANWloCAAC3o6UlQmDrAAA3yskp+blRo8SVA0DyIrQEAABuR2iJENg6AMCN3n5b6t1buv9+QksA0SG0BAAAbpeRkegSwMXoHg4AbnTuudI77yS6FACSGRcBAADAjZYulQYOlGrXloYMSXRp4GKElgAAAAAAACgfV10lbd1qDolVvXqiSwMXK1P3cA+zPAEAALjHqlXSb39rDjEBAADgVm3aSHXqJLoUcLkytbRs27Zt0Oe8gWaVKlXK8hYAAAAIV48e5j8AAAAgyZUptDQMI1blAAAAAAAAAABJUYaWv/rVr+gaDgAAAAAAACAuogotV61aFeNiAAAAAAAAAICpTBPxAAAAAAAAAECsEVoCAAAAAAAAcJWEh5bHjx/XzJkzE10MAAAAAAAAAC6RsNDyyJEj+sc//qEWLVpowoQJiSoGAAAAAAAAAJeJaiKesjhw4IBmzZqluXPn6vDhwzIMg5nIAQAAAAAAAPiUqaXlzp07deutt6p169bKzs5W7dq1dd5552n69Ok6fPiw37JHjx7V5MmT1aJFC/3zn//UoUOHZBiG6tatq7vvvrtMHwIAAAAAAABAxRF1S8u8vDwNHDhQx44dkyQZhiFJ2rx5szZv3qynn35a7733nnJycvTBBx9o8ODB+u9//+tbrnHjxvrzn/+sUaNGqWrVqjH4KAAAAAAAAAAqgqhCyx9//FGDBg3S0aNHfY9Vq1ZNqampvhaWX375pUaPHq3bbrtNffv21YkTJ2QYhnJzc/WXv/xFw4cPV1paWmw+BQAAAAAAAIAKI6ru4Y899pgOHDggj8ejq6++Wl9//bWOHDmigwcPavfu3RozZowk6dVXX9UNN9ygwsJCVa9eXQ899JC2b9+ukSNHElgCAAAAAAAAcBRVS8t33nlHknTBBRfoxRdf9HsuJydHs2fP1pEjR/TUU0/p+++/V61atfT++++rTZs2ZS8xAAAAAAAAgAotqpaWX3zxhTwej/74xz8GXebWW2+VJHk8Ht16660ElgAAAAAAAADCElVoefDgQUlSq1atgi5zxhln+H6++OKLo3kbAAAAAAAAAJVQVKFlUVGRJCk7OzvoMtWrV/f9nJOTE83bBDV9+nSdf/75ys7OVv369TVgwABt37691PWWLFmis88+W5mZmWrXrp2WL18e03IBAAAAAAAAKLuoQstIeTyemL7e6tWrNXr0aH300UfKy8tTUVGR+vTpo2PHjgVd58MPP9SgQYN04403auPGjRowYIAGDBigrVu3xrRsAAAAAAAAAMomqol4Eu2tt97y+33hwoWqX7++NmzYoF/96leO6zz44IO67LLLdPvtt0uSpk2bpry8PM2ZM0fz5s2Le5kBAAAAAAAAhKdMoeWIESNUrVq1Mi/n8Xi0YsWKqMtx+PBhSVLt2rWDLpOfn6/x48f7Pda3b18tW7bMcfnCwkIVFhb6fi8oKJBkdo33do+vSLyfqSJ+NiAZUAeBxKMeAolHPQQSizoIJF5Fr4eRfC6PYRhGpG+QkpISsy7fhmHI4/Ho1KlTUa1fXFys3/zmNzp06JDWrl0bdLn09HQ99dRTGjRokO+xhx9+WFOnTtW+ffsClp8yZYqmTp0a8PjixYuVlZUVVVkBAAAAAACAyur48eO6/vrrdfjwYdWoUSPkslG3tIwi64yL0aNHa+vWrSEDy2hMnDjRr2VmQUGBmjZtqj59+pT6R01GRUVFysvLU+/evZWWlpbo4gCVDnUQSDzqIZB41EMgsaiDQOJV9Hro7ckcjqhCy+Li4mhWi7kxY8bojTfe0Jo1a9SkSZOQy+bk5AS0qNy3b1/Qmc0zMjKUkZER8HhaWlqF3Gi8KvrnA9yOOggkHvUQSDzqIZBY1EEg8SpqPYzkM5XL7OGxZhiGxowZo1deeUUrV65Ubm5uqet069YtYNzMvLw8devWLV7FBAAAAAAAABCFpJw9fPTo0Vq8eLFeffVVZWdna+/evZKkmjVrqmrVqpKkoUOHqnHjxpo+fbok6bbbblOPHj00c+ZM9e/fX88//7zWr1+v+fPnJ+xzAAAAAAAAAAiUlC0tH3nkER0+fFiXXHKJGjZs6Pv3wgsv+JbZtWuX9uzZ4/v9wgsv1OLFizV//ny1b99eL730kpYtW6a2bdsm4iMAAAAAAAAACCKqlpZ///vfY10O3XXXXWEvG84kQKtWrQp47JprrtE111wTSbEAAAAAAAAAlLOoQsspU6bI4/HEtCCRhJYAAAAAAAAAKq6ox7QMp7VjuGIdgAIAAAAAAABIXlGFlu+9916sywEAAAAAAAAAkqIMLXv06BHrcgAAAAAAAACApCSdPRwAAAAAAABAxUVoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALhKUoaWa9as0RVXXKFGjRrJ4/Fo2bJlIZdftWqVPB5PwL+9e/eWT4EBAAAAAAAAhC0pQ8tjx46pffv2mjt3bkTrbd++XXv27PH9q1+/fpxKCAAAAAAAACBaqYkuQDT69eunfv36Rbxe/fr1VatWrdgXCAAAAAAAAEDMJGVoGa0OHTqosLBQbdu21ZQpU9S9e/egyxYWFqqwsND3e0FBgSSpqKhIRUVFcS9refN+por42YBkQB0EEo96CCQe9RBILOogkHgVvR5G8rk8hmEYcSxL3Hk8Hr3yyisaMGBA0GW2b9+uVatWqXPnziosLNTjjz+uZ555RuvWrdN5553nuM6UKVM0derUgMcXL16srKysWBUfAAAAAAAAqBSOHz+u66+/XocPH1aNGjVCLlspQksnPXr0ULNmzfTMM884Pu/U0rJp06b66aefSv2jJqOioiLl5eWpd+/eSktLS3RxgEqHOggkHvUQSDzqIZBY1EEg8Sp6PSwoKFDdunXDCi0rVfdwqy5dumjt2rVBn8/IyFBGRkbA42lpaRVyo/Gq6J8PcDvqIJB41EMg8aiHQGJRB4HEq6j1MJLPlJSzh8fCpk2b1LBhw0QXAwAAAAAAAIBNUra0PHr0qL7++mvf7zt27NCmTZtUu3ZtNWvWTBMnTtQPP/ygp59+WpL0wAMPKDc3V23atNEvv/yixx9/XCtXrtQ777yTqI8AAAAAAAAAIIikDC3Xr1+vnj17+n4fP368JGnYsGFauHCh9uzZo127dvmeP3HihP70pz/phx9+UFZWls4991y9++67fq8BAAAAAAAAwB2SMrS85JJLFGr+oIULF/r9PmHCBE2YMCHOpQIAAAAAAAAQC5V2TEsAAAAAAAAA7kRoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXCUpQ8s1a9boiiuuUKNGjeTxeLRs2bJS11m1apXOO+88ZWRkqFWrVlq4cGHcywkAAAAAAAAgckkZWh47dkzt27fX3Llzw1p+x44d6t+/v3r27KlNmzZp7Nixuummm/T222/HuaQAAAAAAAAAIpWa6AJEo1+/furXr1/Yy8+bN0+5ubmaOXOmJOmcc87R2rVrNWvWLPXt2zdexQQAAAAAAAAQhaQMLSOVn5+vXr16+T3Wt29fjR07Nug6hYWFKiws9P1eUFAgSSoqKlJRUVFcyplI3s9UET8bkAyog0DiUQ+BxKMeAolFHQQSr6LXw0g+V6UILffu3asGDRr4PdagQQMVFBTo559/VtWqVQPWmT59uqZOnRrw+DvvvKOsrKy4lTXR8vLyEl0EoFKjDgKJRz0EEo96CCQWdRBIvIpaD48fPx72spUitIzGxIkTNX78eN/vBQUFatq0qfr06aMaNWoksGTxUVRUpLy8PPXu3VtpaWmJLg5Q6VAHgcSjHgKJRz0EEos6CCReRa+H3p7M4agUoWVOTo727dvn99i+fftUo0YNx1aWkpSRkaGMjIyAx9PS0irkRuNV0T8f4HbUQSDxqIdA4lEPgcSiDgKJV1HrYSSfKSlnD49Ut27dtGLFCr/H8vLy1K1btwSVCAAAAAAAAEAwSRlaHj16VJs2bdKmTZskSTt27NCmTZu0a9cuSWbX7qFDh/qWv/nmm/Xtt99qwoQJ+uKLL/Twww/rxRdf1Lhx4xJRfAAAAAAAAAAhJGVouX79enXs2FEdO3aUJI0fP14dO3bUXXfdJUnas2ePL8CUpNzcXP373/9WXl6e2rdvr5kzZ+rxxx9X3759E1J+AAAAAAAAAMEl5ZiWl1xyiQzDCPr8woULHdfZuHFjHEsFAAAAAAAAIBaSsqUlAAAAAAAAgIqL0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALhKUoeWc+fOVYsWLZSZmamuXbvq448/DrrswoUL5fF4/P5lZmaWY2kBAAAAAAAAhCNpQ8sXXnhB48eP1+TJk/Xpp5+qffv26tu3r/bv3x90nRo1amjPnj2+fzt37izHEgMAAAAAAAAIR9KGlvfff79GjhypESNGqHXr1po3b56ysrK0YMGCoOt4PB7l5OT4/jVo0KAcSwwAAAAAAAAgHKmJLkA0Tpw4oQ0bNmjixIm+x1JSUtSrVy/l5+cHXe/o0aNq3ry5iouLdd555+mf//yn2rRp47hsYWGhCgsLfb8XFBRIkoqKilRUVBSjT+Ie3s9UET8bkAyog0DiUQ+BxKMeAolFHQQSr6LXw0g+l8cwDCOOZYmL3bt3q3Hjxvrwww/VrVs33+MTJkzQ6tWrtW7duoB18vPz9dVXX+ncc8/V4cOH9a9//Utr1qzRtm3b1KRJk4Dlp0yZoqlTpwY8vnjxYmVlZcX2AwEAAAAAAAAV3PHjx3X99dfr8OHDqlGjRshlk7KlZTS6devmF3BeeOGFOuecc/Too49q2rRpActPnDhR48eP9/1eUFCgpk2bqk+fPqX+UZNRUVGR8vLy1Lt3b6WlpSW6OEClQx0EEo96CCQe9RBILOogkHgVvR56ezKHIylDy7p166pKlSrat2+f3+P79u1TTk5OWK+Rlpamjh076uuvv3Z8PiMjQxkZGY7rVcSNxquifz7A7aiDQOJRD4HEox4CiUUdBBKvotbDSD5TUk7Ek56erk6dOmnFihW+x4qLi7VixQq/1pShnDp1Slu2bFHDhg3jVUwAAAAAAAAAUUjKlpaSNH78eA0bNkydO3dWly5d9MADD+jYsWMaMWKEJGno0KFq3Lixpk+fLkn6+9//rgsuuECtWrXSoUOHNGPGDO3cuVM33XRTIj8GAAAAAAAAAJukDS1/97vf6ccff9Rdd92lvXv3qkOHDnrrrbfUoEEDSdKuXbuUklLSkPTgwYMaOXKk9u7dq9NOO02dOnXShx9+qNatWyfqIwAAAAAAAABwkLShpSSNGTNGY8aMcXxu1apVfr/PmjVLs2bNKodSAQAAAAAAACiLpBzTEgAAAAAAAEDFRWgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKsQWgIAAAAAAABwFUJLAAAAAAAAAK5CaAkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAAAAAAMBVCC0BAAAAAAAAuAqhJQAAAAAAAABXIbQEAAAAAAAA4CqElgAAAAAAAABchdASAAAAAAAAgKskdWg5d+5ctWjRQpmZmeratas+/vjjkMsvWbJEZ599tjIzM9WuXTstX768nEoKAAAAAAAAIFxJG1q+8MILGj9+vCZPnqxPP/1U7du3V9++fbV//37H5T/88EMNGjRIN954ozZu3KgBAwZowIAB2rp1azmXHAAAAAAAAEAoSRta3n///Ro5cqRGjBih1q1ba968ecrKytKCBQscl3/wwQd12WWX6fbbb9c555yjadOm6bzzztOcOXPKueQAAAAAAAAAQklNdAGiceLECW3YsEETJ070PZaSkqJevXopPz/fcZ38/HyNHz/e77G+fftq2bJljssXFhaqsLDQ9/vhw4clSQcOHFBRUVEZP4H7FBUV6fjx4/rf//6ntLS0RBcHqHSog0DiUQ+BxKMeAolFHQQSr6LXwyNHjkiSDMModdmkDC1/+uknnTp1Sg0aNPB7vEGDBvriiy8c19m7d6/j8nv37nVcfvr06Zo6dWrA47m5uVGWGgAAAAAAAMCRI0dUs2bNkMskZWhZHiZOnOjXMrO4uFgHDhxQnTp15PF4Eliy+CgoKFDTpk313//+VzVq1Eh0cYBKhzoIJB71EEg86iGQWNRBIPEqej00DENHjhxRo0aNSl02KUPLunXrqkqVKtq3b5/f4/v27VNOTo7jOjk5OREtn5GRoYyMDL/HatWqFX2hk0SNGjUqZKUAkgV1EEg86iGQeNRDILGog0DiVeR6WFoLS6+knIgnPT1dnTp10ooVK3yPFRcXa8WKFerWrZvjOt26dfNbXpLy8vKCLg8AAAAAAAAgMZKypaUkjR8/XsOGDVPnzp3VpUsXPfDAAzp27JhGjBghSRo6dKgaN26s6dOnS5Juu+029ejRQzNnzlT//v31/PPPa/369Zo/f34iPwYAAAAAAAAAm6QNLX/3u9/pxx9/1F133aW9e/eqQ4cOeuutt3yT7ezatUspKSUNSS+88EItXrxYf/vb33TnnXfqjDPO0LJly9S2bdtEfQRXycjI0OTJkwO6xAMoH9RBIPGoh0DiUQ+BxKIOAolHPSzhMcKZYxwAAAAAAAAAyklSjmkJAAAAAAAAoOIitAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaQnPnzlWLFi2UmZmprl276uOPP050kYAKYfr06Tr//POVnZ2t+vXra8CAAdq+fbvfMr/88otGjx6tOnXqqHr16ho4cKD27dvnt8yuXbvUv39/ZWVlqX79+rr99tt18uTJ8vwoQIVwzz33yOPxaOzYsb7HqINA/P3www+64YYbVKdOHVWtWlXt2rXT+vXrfc8bhqG77rpLDRs2VNWqVdWrVy999dVXfq9x4MABDR48WDVq1FCtWrV044036ujRo+X9UYCkdOrUKU2aNEm5ubmqWrWqTj/9dE2bNk3WOXmph0BsrVmzRldccYUaNWokj8ejZcuW+T0fqzr32Wef6eKLL1ZmZqaaNm2q++67L94frVwRWlZyL7zwgsaPH6/Jkyfr008/Vfv27dW3b1/t378/0UUDkt7q1as1evRoffTRR8rLy1NRUZH69OmjY8eO+ZYZN26cXn/9dS1ZskSrV6/W7t27ddVVV/meP3XqlPr3768TJ07oww8/1FNPPaWFCxfqrrvuSsRHApLWJ598okcffVTnnnuu3+PUQSC+Dh48qO7duystLU1vvvmmPv/8c82cOVOnnXaab5n77rtPs2fP1rx587Ru3TpVq1ZNffv21S+//OJbZvDgwdq2bZvy8vL0xhtvaM2aNRo1alQiPhKQdO6991498sgjmjNnjv7zn//o3nvv1X333aeHHnrItwz1EIitY8eOqX379po7d67j87GocwUFBerTp4+aN2+uDRs2aMaMGZoyZYrmz58f989XbgxUal26dDFGjx7t+/3UqVNGo0aNjOnTpyewVEDFtH//fkOSsXr1asMwDOPQoUNGWlqasWTJEt8y//nPfwxJRn5+vmEYhrF8+XIjJSXF2Lt3r2+ZRx55xKhRo4ZRWFhYvh8ASFJHjhwxzjjjDCMvL8/o0aOHcdtttxmGQR0EysMdd9xhXHTRRUGfLy4uNnJycowZM2b4Hjt06JCRkZFhPPfcc4ZhGMbnn39uSDI++eQT3zJvvvmm4fF4jB9++CF+hQcqiP79+xu///3v/R676qqrjMGDBxuGQT0E4k2S8corr/h+j1Wde/jhh43TTjvN75z0jjvuMM4666w4f6LyQ0vLSuzEiRPasGGDevXq5XssJSVFvXr1Un5+fgJLBlRMhw8fliTVrl1bkrRhwwYVFRX51cGzzz5bzZo189XB/Px8tWvXTg0aNPAt07dvXxUUFGjbtm3lWHogeY0ePVr9+/f3q2sSdRAoD6+99po6d+6sa665RvXr11fHjh312GOP+Z7fsWOH9u7d61cPa9asqa5du/rVw1q1aqlz586+ZXr16qWUlBStW7eu/D4MkKQuvPBCrVixQl9++aUkafPmzVq7dq369esniXoIlLdY1bn8/Hz96le/Unp6um+Zvn37avv27Tp48GA5fZr4Sk10AZA4P/30k06dOuV3ISZJDRo00BdffJGgUgEVU3FxscaOHavu3burbdu2kqS9e/cqPT1dtWrV8lu2QYMG2rt3r28ZpzrqfQ5AaM8//7w+/fRTffLJJwHPUQeB+Pv222/1yCOPaPz48brzzjv1ySef6NZbb1V6erqGDRvmq0dO9cxaD+vXr+/3fGpqqmrXrk09BMLwl7/8RQUFBTr77LNVpUoVnTp1Sv/4xz80ePBgSaIeAuUsVnVu7969ys3NDXgN73PWoViSFaElAJSD0aNHa+vWrVq7dm2iiwJUGv/973912223KS8vT5mZmYkuDlApFRcXq3PnzvrnP/8pSerYsaO2bt2qefPmadiwYQkuHVA5vPjii1q0aJEWL16sNm3aaNOmTRo7dqwaNWpEPQTganQPr8Tq1q2rKlWqBMySum/fPuXk5CSoVEDFM2bMGL3xxht677331KRJE9/jOTk5OnHihA4dOuS3vLUO5uTkONZR73MAgtuwYYP279+v8847T6mpqUpNTdXq1as1e/ZspaamqkGDBtRBIM4aNmyo1q1b+z12zjnnaNeuXZJK6lGo89GcnJyASSJPnjypAwcOUA+BMNx+++36y1/+ouuuu07t2rXTkCFDNG7cOE2fPl0S9RAob7Gqc5XhPJXQshJLT09Xp06dtGLFCt9jxcXFWrFihbp165bAkgEVg2EYGjNmjF555RWtXLkyoOl+p06dlJaW5lcHt2/frl27dvnqYLdu3bRlyxa/A1ZeXp5q1KgRcBEIwN+ll16qLVu2aNOmTb5/nTt31uDBg30/UweB+Orevbu2b9/u99iXX36p5s2bS5Jyc3OVk5PjVw8LCgq0bt06v3p46NAhbdiwwbfMypUrVVxcrK5du5bDpwCS2/Hjx5WS4n/pX6VKFRUXF0uiHgLlLVZ1rlu3blqzZo2Kiop8y+Tl5emss86qEF3DJTF7eGX3/PPPGxkZGcbChQuNzz//3Bg1apRRq1Ytv1lSAUTnlltuMWrWrGmsWrXK2LNnj+/f8ePHfcvcfPPNRrNmzYyVK1ca69evN7p162Z069bN9/zJkyeNtm3bGn369DE2bdpkvPXWW0a9evWMiRMnJuIjAUnPOnu4YVAHgXj7+OOPjdTUVOMf//iH8dVXXxmLFi0ysrKyjGeffda3zD333GPUqlXLePXVV43PPvvMuPLKK43c3Fzj559/9i1z2WWXGR07djTWrVtnrF271jjjjDOMQYMGJeIjAUln2LBhRuPGjY033njD2LFjh/Hyyy8bdevWNSZMmOBbhnoIxNaRI0eMjRs3Ghs3bjQkGffff7+xceNGY+fOnYZhxKbOHTp0yGjQoIExZMgQY+vWrcbzzz9vZGVlGY8++mi5f954IbSE8dBDDxnNmjUz0tPTjS5duhgfffRRoosEVAiSHP89+eSTvmV+/vln449//KNx2mmnGVlZWcZvf/tbY8+ePX6v89133xn9+vUzqlatatStW9f405/+ZBQVFZXzpwEqBntoSR0E4u/111832rZta2RkZBhnn322MX/+fL/ni4uLjUmTJhkNGjQwMjIyjEsvvdTYvn273zL/+9//jEGDBhnVq1c3atSoYYwYMcI4cuRIeX4MIGkVFBQYt912m9GsWTMjMzPTaNmypfHXv/7VKCws9C1DPQRi67333nO8Fhw2bJhhGLGrc5s3bzYuuugiIyMjw2jcuLFxzz33lNdHLBcewzCMxLTxBAAAAAAAAIBAjGkJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAqxBaAgAAAAAAAHAVQksAAAAAAAAArkJoCQAAACShFi1ayOPxaPjw4YkuCgAAQMwRWgIAAEToD3/4gzwejzwej1auXBnRuu+8845v3dtuuy1OJQQAAACSG6ElAABAhIYOHer7+dlnn41o3WeeecbxdRJl1apVvhB11apViS4OAAAAIInQEgAAIGLdu3fX6aefLklaunSpfv7557DWO3bsmF555RVJUps2bdSpU6e4lREAAABIZoSWAAAAURgyZIgkqaCgQK+++mpY67z88ss6duyY3/oAAAAAAhFaAgAARGHIkCHyeDySwu8i7u0anpKSohtuuCFuZQMAAACSHaElAABAFFq2bKnu3btLkt5++23t378/5PK7d+/WihUrJEm//vWv1bhx44Blli1bpmuuuUbNmjVTZmamatWqpc6dO2vq1Kk6ePBgWOVavny5brjhBrVs2VLVqlVTZmamcnNzNXDgQC1cuFDHjx+XJH333XfyeDzq2bOnb92ePXv6xrf0/lu4cGHAe5w4cUIPP/ywevbsqXr16ik9PV05OTm6/PLL9eyzz6q4uDho+YYPHy6Px6MWLVpIkvbs2aM77rhDbdq0UXZ2dsRjazqNyfniiy/q0ksvVb169VS1alWdddZZmjBhgg4cOBD0dS655BJ5PB5dcsklId9vypQpvvdz4n1uypQpkqT33ntPAwYMUKNGjVS1alWdc845mjZtmq/Frdfy5ct1+eWX+5Zr3bq1pk+frhMnToT9t/jkk080aNAgNW3aVJmZmWratKlGjBihL774Iqz1v/76a40bN07t2rVTzZo1VbVqVbVs2VLDhw/X+vXrg65n/w6Ki4u1YMEC9ezZUw0aNFBKSgoznAMAgMgZAAAAiMr8+fMNSYYk48EHHwy57IwZM3zLPv30037PHThwwPj1r3/te97pX/369Y38/Pygr//TTz8Zl156acjXkGQ8+eSThmEYxo4dO0pd1rq8144dO4yzzz475DoXXXSR8b///c+xnMOGDTMkGc2bNzfy8/ONunXrBqz/3nvvlfq393rvvfd8661YscK44YYbgparVatWxp49exxfp0ePHoYko0ePHiHfb/Lkyb7Xc+J9bvLkycb06dMNj8fjWJYLL7zQOHr0qFFcXGzceuutQct82WWXGSdPnnR8r+bNmxuSjGHDhhlPPPGEkZqa6vgaGRkZxosvvhjyc82YMcNIS0sLWg6Px2NMmjTJcV3rd/Dmm28avXr1Clh/2LBhId8fAADAjpaWAAAAUbr22muVmZkpyX9WcCfe56tXr66rrrrK93hhYaF69eqllStXqkqVKhoyZIiee+45ffTRR3r//ff1j3/8Q3Xq1NH+/ft1+eWXa+fOnQGvffz4cfXs2dPXkrNTp0569NFH9cEHH2j9+vV65ZVXNG7cODVq1Mi3TuPGjbVlyxYtWLDA99iCBQu0ZcsWv38DBgzwPX/06FFdeumlvpZ7AwYM0Guvvab169dryZIl6tGjhyRp7dq1uuKKK3Tq1Kmgf4+jR49q4MCB+uWXX/TXv/5Vq1at0scff6wnnnhCDRs2DPm3DGbSpEl69tlnNWDAAL388svasGGDli9frv79+0sqaUlYHt58801NnDhRF1xwgRYvXqz169frrbfeUr9+/SRJH374oaZPn65Zs2Zp9uzZ6tevn5YuXaoNGzbo1Vdf1QUXXCBJeuutt/TYY4+FfK9Nmzbp5ptvVv369fXQQw9p3bp1Wr16te644w5lZGSosLBQgwcPDtpacsaMGbr99ttVVFSkc889V4888ojeffddrV+/XosWLVK3bt1kGIamTZum2bNnhyzLHXfcoXfffVe/+c1v/L4D7+cGAAAIW6JTUwAAgGR27bXX+lqTffHFF47LbN682bfM0KFD/Z678847DUlGrVq1jPXr1zuu/9133xkNGzY0JBnXX399wPPjxo3zvf7o0aON4uJix9cpLCw09u7d6/eYtZVcaS0c//znP/uW/dvf/hbwfHFxsTF48GDfMg8//HDAMt6WlpKM6tWrG5s2bQr5nqWxll+ScffddzuWq0+fPoYkIzU11di/f3/AMrFuaSnJGDhwYEAryZMnTxoXXHCBIcnIzs42MjMzjbFjxwa8zrFjx3wtKc8991zH9/I+r/9ruerUinTlypW+Fpjnn39+wPPbtm3ztbCcPHmy47Zz6tQpXwvW6tWrGwcOHPB73v4dOG0bAAAAkaKlJQAAQBkMHTrU93Ow1pbWx63LHz16VHPnzpUkTZs2TZ06dXJcv3nz5po0aZIkacmSJX7jIR46dEiPPvqoJLOF5YMPPhh0vMX09HQ1aNAgnI8VoLCwUI8//rgkqU2bNr4xG608Ho8efvhh1alTR5I0Z86ckK85YcIEtW/fPqryOOnUqZPuvPNOx3KNHz9eknTy5Enl5+fH7D2DycrK0vz581WlShW/x6tUqaJRo0ZJko4cOaJ69erpvvvuc1x/2LBhkqTPPvtMhw8fDvl+M2fOVE5OTsDjPXv21MiRIyWZY17aW1vOnDlTRUVF6ty5syZPnuy47aSkpOihhx5SRkaGjh49qpdeeiloOc4880zHbQMAACBShJYAAABl0LdvX18QuGjRIhmG4fd8cXGxFi9eLElq0qSJ38Q3q1ev9oVRV199dcj3+dWvfiVJKioq0oYNG3yPr1y50je5zq233hoQksXKhg0bdOjQIUnmZDrB3qdGjRq69tprJUmff/659uzZE/Q1Bw8eHNMyXn/99UEDW2sg/O2338b0fZ307t1btWvXdnzOGtReddVVSktLK3W5HTt2BH2v0047TVdeeWXQ53//+9/7fn733Xf9nnv99dclSQMHDgz6t5OkWrVqqV27dpIUMvT93e9+F7dtEAAAVC6ElgAAAGWQmpqq66+/XpI5I/fatWv9nl+xYoV2794tyQzpUlJKTr+srd4aNmwYMHO39V/btm19y+7du9f388aNG30/X3zxxbH9cBZbt271/dy1a9eQy1qft65nVb16dbVs2TI2hfs/Z599dtDnrAHikSNHYvq+Ts4888ygz9WqVSvi5UKVuWPHjkpNTQ36fIcOHZSeni5J2rJli+/xnTt36scff5QkTZw4MeT25/F4fNurdfuzO/fcc4M+BwAAEAlCSwAAgDIK1UU8WNdwSdq/f39U7+dtWSlJP/30k+/naCewCceBAwd8P9evXz/kstZuytb1rKyBXKxkZWUFfc4aFoeaIKi8yxKLMpf2faSmpvpCW+v3EYvtz9KfNfoAAAcOSURBVO60006L6jUBAADsgt+SBQAAQFg6dOigdu3aacuWLVqyZIlv/L9jx47p5ZdflmR2T27durXfetYg6tNPPw3aTdiuSZMmsSt8FEJ1Iw4XXYhjJ9rvw7r93XXXXbrmmmvCWq9atWpBn+N7BQAAsUJoCQAAEANDhw7V7bffrkOHDun111/X1VdfrVdeecU3aY69laUk34Q1klSvXr2owsi6dev6ft6zZ49yc3OjKH3prN2r9+3bF7Jbs7X7cLBxHd3G26qxuLg45HLWSZDcYt++fSGfP3nypK+FpfX7sG5/aWlpfkMQAAAAJBrdwwEAAGJg8ODBvlZmzz77rKSSruFpaWkaNGhQwDodO3b0/fzBBx9E9b7nnXee7+c1a9ZEvH64rfSsgda6detCLvvxxx87rudm2dnZkqSDBw+GXO7LL78sj+JEZNOmTTp58mTQ5zdv3qwTJ05I8v8+WrZsqZo1a0qKfvsDAACIF0JLAACAGGjYsKF69eolSVq+fLm2bt2qFStWSJIuu+wy1atXL2CdXr16+cY0nD17dsDM4+Ho2bOnr7vuQw89FPF4jZmZmb6fCwsLgy7XqVMn3ziUTz31VNAWiUeOHNGLL74oSWrdunVcx9mMJW8L1S+//DLopDc//fST8vLyyrNYYTlw4IBvFnAnCxYs8P3s3UYlsyv35ZdfLkl655139J///Cd+hQQAAIgQoSUAAECMeLuAFxUV6brrrvMFiE5dwyVzMpoxY8ZIkj788EONGzcuZPfkffv26fHHHw94jT/84Q+SpA0bNmjs2LFBw8+ioqKAyVesoeI333wT9L0zMjJ00003STJnBJ82bVrAMoZhaMyYMb7JgbyfLRn06NFDknTixAk99NBDAc8XFRXppptu0s8//1zeRQvL+PHjHbuJr169WvPnz5dkBs/nn3++3/MTJ05UlSpVVFxcrKuvvlrff/990Pc4deqUFi1aFHIZAACAWGFMSwAAgBj57W9/q+zsbB05ckTbtm2TZM6mfMUVVwRd5+9//7tWr16tdevW6cEHH9SqVas0cuRIdejQQdWqVdPBgwe1bds2vfvuu3rzzTfVrl07X3joNW3aNOXl5WnLli2aM2eO8vPz9Yc//EHt2rVTenq6vv/+e73//vt67rnndPfdd2v48OG+dZs1a6YmTZro+++/17/+9S81adJEZ511lq+re4MGDXxdp++66y69/PLL+vbbbzVlyhRt2bJFI0aMUMOGDbVjxw7NmTNHq1atkiR169ZNo0aNiuFfN7769++v5s2ba+fOnZo0aZJ++uknXXXVVcrMzNS2bds0e/Zsbdy4URdccIE++uijRBfXT/v27fX555+rU6dOmjhxorp06aLCwkItX75cs2bN0smTJ5Wamqq5c+cGrNuuXTv961//0rhx4/T555+rbdu2GjVqlH7961+rQYMG+uWXX/Tdd98pPz9fL730kvbs2aMtW7YkfDIoAABQ8RFaAgAAxEjVqlV19dVX68knn/Q9du211yojIyPoOhkZGcrLy9Pw4cP18ssva/PmzSFbKNaoUSPgsaysLK1cuVIDBw7UmjVrtGHDhogCwzvvvFN//OMftWPHDl155ZV+zz355JO+kDM7O1srVqxQv3799MUXX2jp0qVaunRpwOt1795dr732WlLNJJ2enq5nn31Wl112mY4dO6ZZs2Zp1qxZvuerVKmiBx54QAcOHHBdaNmhQweNGTNGt9xyi+O2k56erqeeekpdu3Z1XH/s2LGqVq2axo4dq8OHD2vGjBmaMWOG47Lp6el+QwoAAADEC93DAQAAYmjYsGF+vwfrGm6VnZ2tpUuX6v3339dNN92ks846S9nZ2UpNTVXt2rV1/vnna/To0Vq+fHnQMRXr1q2r1atX6+WXX9bVV1+tJk2aKCMjQ5mZmWrZsqWuueYaLVq0yHFCoFtuuUVLly5Vnz59VL9+faWmBr+v3aJFC23evFlz5sxRjx49VKdOHaWlpalBgwa67LLL9Mwzz2jNmjVJM2u41UUXXaQNGzZoyJAhatSokdLS0tSwYUNfGHzrrbcmuohB3XTTTXr//fd17bXXqlGjRkpPT1fjxo01dOhQbdy4Udddd13I9UeOHKlvv/1WU6dOVffu3VW3bl2lpqaqWrVqOvPMMzVw4EDNmzdPP/zwg1q1alVOnwoAAFRmHiOaEd8BAAAAAAAAIE5oaQkAAAAAAADAVQgtAQAAAAAAALgKoSUAAAAAAAAAVyG0BAAAAAAAAOAqhJYAAAAAAAAAXIXQEgAAAAAAAICrEFoCAAAAAAAAcBVCSwAAAAAAAACuQmgJAAAAAAAAwFUILQEAAAAAAAC4CqElAAAAAAAAAFchtAQAAAAAAADgKoSWAAAAAAAAAFyF0BIAAAAAAACAq/z/fW8LfxQaopEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "AqAL8cJZOpmE", + "outputId": "7f9ca986-af16-4ce8-a7ec-6b1b79bbae2e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 5\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 3 2 1 2 3\n", + "Epoch 1/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - loss: 15.9926\n", + "Epoch 2/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.9648\n", + "Epoch 3/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.9367\n", + "Epoch 4/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.9085\n", + "Epoch 5/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.8799\n", + "Epoch 6/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.8512\n", + "Epoch 7/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.8222\n", + "Epoch 8/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.7929\n", + "Epoch 9/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.7634\n", + "Epoch 10/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.7336\n", + "Epoch 11/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.7036\n", + "Epoch 12/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.6733\n", + "Epoch 13/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.6427\n", + "Epoch 14/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.6119\n", + "Epoch 15/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.5808\n", + "Epoch 16/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.5494\n", + "Epoch 17/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.5178\n", + "Epoch 18/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.4858\n", + "Epoch 19/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.4536\n", + "Epoch 20/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.4212\n", + "Epoch 21/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.3884\n", + "Epoch 22/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.3554\n", + "Epoch 23/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.3221\n", + "Epoch 24/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.2885\n", + "Epoch 25/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.2546\n", + "Epoch 26/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.2204\n", + "Epoch 27/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.1860\n", + "Epoch 28/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 15.1512\n", + "Epoch 29/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.1162\n", + "Epoch 30/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.0809\n", + "Epoch 31/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.0453\n", + "Epoch 32/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.0095\n", + "Epoch 33/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.9733\n", + "Epoch 34/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.9369\n", + "Epoch 35/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.9002\n", + "Epoch 36/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.8633\n", + "Epoch 37/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.8261\n", + "Epoch 38/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.7885\n", + "Epoch 39/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.7508\n", + "Epoch 40/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.7127\n", + "Epoch 41/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.6744\n", + "Epoch 42/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.6358\n", + "Epoch 43/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.5970\n", + "Epoch 44/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.5579\n", + "Epoch 45/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.5186\n", + "Epoch 46/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.4790\n", + "Epoch 47/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.4391\n", + "Epoch 48/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.3991\n", + "Epoch 49/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.3587\n", + "Epoch 50/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.3182\n", + "Epoch 51/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.2774\n", + "Epoch 52/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.2364\n", + "Epoch 53/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.1952\n", + "Epoch 54/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.1537\n", + "Epoch 55/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.1121\n", + "Epoch 56/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.0703\n", + "Epoch 57/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.0282\n", + "Epoch 58/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.9860\n", + "Epoch 59/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.9436\n", + "Epoch 60/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.9010\n", + "Epoch 61/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.8582\n", + "Epoch 62/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 13.8153\n", + "Epoch 63/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.7722\n", + "Epoch 64/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 13.7289\n", + "Epoch 65/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.6855\n", + "Epoch 66/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.6420\n", + "Epoch 67/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 13.5983\n", + "Epoch 68/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.5545\n", + "Epoch 69/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.5105\n", + "Epoch 70/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.4665\n", + "Epoch 71/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.4223\n", + "Epoch 72/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.3780\n", + "Epoch 73/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 13.3337\n", + "Epoch 74/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.2892\n", + "Epoch 75/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 13.2446\n", + "Epoch 76/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.2000\n", + "Epoch 77/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.1552\n", + "Epoch 78/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.1104\n", + "Epoch 79/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.0655\n", + "Epoch 80/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.0206\n", + "Epoch 81/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.9756\n", + "Epoch 82/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.9305\n", + "Epoch 83/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.8854\n", + "Epoch 84/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 12.8402\n", + "Epoch 85/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.7950\n", + "Epoch 86/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.7497\n", + "Epoch 87/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.7045\n", + "Epoch 88/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.6591\n", + "Epoch 89/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.6138\n", + "Epoch 90/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.5684\n", + "Epoch 91/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 12.5230\n", + "Epoch 92/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.4776\n", + "Epoch 93/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.4322\n", + "Epoch 94/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.3868\n", + "Epoch 95/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.3413\n", + "Epoch 96/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.2959\n", + "Epoch 97/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.2505\n", + "Epoch 98/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.2050\n", + "Epoch 99/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 12.1596\n", + "Epoch 100/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 12.1142\n", + "Epoch 101/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 12.0688\n", + "Epoch 102/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 12.0234\n", + "Epoch 103/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.9780\n", + "Epoch 104/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 11.9327\n", + "Epoch 105/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 11.8873\n", + "Epoch 106/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.8420\n", + "Epoch 107/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.7967\n", + "Epoch 108/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.7515\n", + "Epoch 109/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 11.7063\n", + "Epoch 110/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 11.6611\n", + "Epoch 111/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.6159\n", + "Epoch 112/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.5708\n", + "Epoch 113/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 11.5257\n", + "Epoch 114/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 11.4807\n", + "Epoch 115/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 11.4357\n", + "Epoch 116/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 11.3908\n", + "Epoch 117/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 11.3459\n", + "Epoch 118/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 11.3010\n", + "Epoch 119/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 11.2562\n", + "Epoch 120/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.2115\n", + "Epoch 121/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.1668\n", + "Epoch 122/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 11.1221\n", + "Epoch 123/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.0775\n", + "Epoch 124/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 11.0330\n", + "Epoch 125/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 10.9885\n", + "Epoch 126/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 10.9441\n", + "Epoch 127/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.8998\n", + "Epoch 128/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 10.8555\n", + "Epoch 129/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 10.8113\n", + "Epoch 130/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 10.7671\n", + "Epoch 131/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 10.7230\n", + "Epoch 132/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 10.6790\n", + "Epoch 133/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.6350\n", + "Epoch 134/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.5911\n", + "Epoch 135/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.5473\n", + "Epoch 136/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.5036\n", + "Epoch 137/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.4599\n", + "Epoch 138/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.4163\n", + "Epoch 139/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.3728\n", + "Epoch 140/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.3293\n", + "Epoch 141/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.2859\n", + "Epoch 142/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.2426\n", + "Epoch 143/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.1994\n", + "Epoch 144/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.1562\n", + "Epoch 145/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.1132\n", + "Epoch 146/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.0702\n", + "Epoch 147/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.0273\n", + "Epoch 148/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.9844\n", + "Epoch 149/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.9417\n", + "Epoch 150/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.8990\n", + "Epoch 151/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.8564\n", + "Epoch 152/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.8139\n", + "Epoch 153/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.7715\n", + "Epoch 154/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.7292\n", + "Epoch 155/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.6869\n", + "Epoch 156/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.6447\n", + "Epoch 157/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.6026\n", + "Epoch 158/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.5606\n", + "Epoch 159/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.5187\n", + "Epoch 160/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.4769\n", + "Epoch 161/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.4352\n", + "Epoch 162/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.3935\n", + "Epoch 163/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.3519\n", + "Epoch 164/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.3105\n", + "Epoch 165/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.2691\n", + "Epoch 166/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 9.2278\n", + "Epoch 167/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.1866\n", + "Epoch 168/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.1454\n", + "Epoch 169/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 9.1044\n", + "Epoch 170/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 9.0635\n", + "Epoch 171/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.0226\n", + "Epoch 172/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.9819\n", + "Epoch 173/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.9412\n", + "Epoch 174/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.9006\n", + "Epoch 175/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.8601\n", + "Epoch 176/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 8.8197\n", + "Epoch 177/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.7794\n", + "Epoch 178/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 8.7392\n", + "Epoch 179/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.6991\n", + "Epoch 180/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.6590\n", + "Epoch 181/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.6191\n", + "Epoch 182/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.5792\n", + "Epoch 183/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.5395\n", + "Epoch 184/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 8.4998\n", + "Epoch 185/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 8.4602\n", + "Epoch 186/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 8.4208\n", + "Epoch 187/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.3814\n", + "Epoch 188/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.3421\n", + "Epoch 189/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.3029\n", + "Epoch 190/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 8.2638\n", + "Epoch 191/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 8.2247\n", + "Epoch 192/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.1858\n", + "Epoch 193/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.1470\n", + "Epoch 194/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 8.1082\n", + "Epoch 195/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 8.0696\n", + "Epoch 196/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.0310\n", + "Epoch 197/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.9926\n", + "Epoch 198/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.9542\n", + "Epoch 199/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.9159\n", + "Epoch 200/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.8778\n", + "Epoch 201/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.8397\n", + "Epoch 202/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.8017\n", + "Epoch 203/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.7638\n", + "Epoch 204/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.7260\n", + "Epoch 205/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.6883\n", + "Epoch 206/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.6506\n", + "Epoch 207/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.6131\n", + "Epoch 208/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.5757\n", + "Epoch 209/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.5383\n", + "Epoch 210/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.5011\n", + "Epoch 211/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.4639\n", + "Epoch 212/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.4269\n", + "Epoch 213/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.3899\n", + "Epoch 214/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.3530\n", + "Epoch 215/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.3163\n", + "Epoch 216/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.2796\n", + "Epoch 217/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.2430\n", + "Epoch 218/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.2065\n", + "Epoch 219/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.1701\n", + "Epoch 220/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.1338\n", + "Epoch 221/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.0976\n", + "Epoch 222/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.0615\n", + "Epoch 223/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0254\n", + "Epoch 224/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.9895\n", + "Epoch 225/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.9537\n", + "Epoch 226/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.9179\n", + "Epoch 227/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.8823\n", + "Epoch 228/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.8467\n", + "Epoch 229/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.8113\n", + "Epoch 230/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.7759\n", + "Epoch 231/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.7407\n", + "Epoch 232/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.7055\n", + "Epoch 233/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.6705\n", + "Epoch 234/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.6355\n", + "Epoch 235/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.6006\n", + "Epoch 236/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.5659\n", + "Epoch 237/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.5312\n", + "Epoch 238/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.4966\n", + "Epoch 239/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.4621\n", + "Epoch 240/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.4277\n", + "Epoch 241/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.3934\n", + "Epoch 242/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.3593\n", + "Epoch 243/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.3252\n", + "Epoch 244/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.2912\n", + "Epoch 245/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.2573\n", + "Epoch 246/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.2235\n", + "Epoch 247/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.1898\n", + "Epoch 248/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.1562\n", + "Epoch 249/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.1227\n", + "Epoch 250/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.0894\n", + "Epoch 251/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.0561\n", + "Epoch 252/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.0229\n", + "Epoch 253/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.9898\n", + "Epoch 254/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.9568\n", + "Epoch 255/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.9240\n", + "Epoch 256/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.8912\n", + "Epoch 257/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.8585\n", + "Epoch 258/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.8259\n", + "Epoch 259/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.7935\n", + "Epoch 260/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.7611\n", + "Epoch 261/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.7289\n", + "Epoch 262/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.6967\n", + "Epoch 263/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.6647\n", + "Epoch 264/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6327\n", + "Epoch 265/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.6009\n", + "Epoch 266/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.5692\n", + "Epoch 267/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.5375\n", + "Epoch 268/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.5060\n", + "Epoch 269/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.4746\n", + "Epoch 270/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.4433\n", + "Epoch 271/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.4121\n", + "Epoch 272/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.3811\n", + "Epoch 273/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.3501\n", + "Epoch 274/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.3192\n", + "Epoch 275/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.2885\n", + "Epoch 276/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.2578\n", + "Epoch 277/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.2273\n", + "Epoch 278/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1969\n", + "Epoch 279/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.1665\n", + "Epoch 280/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.1363\n", + "Epoch 281/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.1062\n", + "Epoch 282/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.0763\n", + "Epoch 283/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.0464\n", + "Epoch 284/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.0166\n", + "Epoch 285/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.9870\n", + "Epoch 286/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.9575\n", + "Epoch 287/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.9280\n", + "Epoch 288/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.8987\n", + "Epoch 289/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.8695\n", + "Epoch 290/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.8405\n", + "Epoch 291/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.8115\n", + "Epoch 292/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.7827\n", + "Epoch 293/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.7539\n", + "Epoch 294/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.7253\n", + "Epoch 295/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.6968\n", + "Epoch 296/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.6684\n", + "Epoch 297/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.6401\n", + "Epoch 298/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.6120\n", + "Epoch 299/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.5840\n", + "Epoch 300/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.5560\n", + "Epoch 301/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5282\n", + "Epoch 302/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5005\n", + "Epoch 303/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.4730\n", + "Epoch 304/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.4455\n", + "Epoch 305/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.4182\n", + "Epoch 306/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.3910\n", + "Epoch 307/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.3639\n", + "Epoch 308/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.3369\n", + "Epoch 309/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.3101\n", + "Epoch 310/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.2833\n", + "Epoch 311/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.2567\n", + "Epoch 312/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.2302\n", + "Epoch 313/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.2038\n", + "Epoch 314/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.1776\n", + "Epoch 315/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1514\n", + "Epoch 316/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.1254\n", + "Epoch 317/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.0995\n", + "Epoch 318/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.0737\n", + "Epoch 319/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.0480\n", + "Epoch 320/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.0225\n", + "Epoch 321/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 3.9971\n", + "Epoch 322/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.9718\n", + "Epoch 323/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9466\n", + "Epoch 324/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.9215\n", + "Epoch 325/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 3.8966\n", + "Epoch 326/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 3.8718\n", + "Epoch 327/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.8471\n", + "Epoch 328/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 3.8225\n", + "Epoch 329/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.7981\n", + "Epoch 330/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 3.7737\n", + "Epoch 331/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.7495\n", + "Epoch 332/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.7254\n", + "Epoch 333/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.7014\n", + "Epoch 334/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.6776\n", + "Epoch 335/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.6539\n", + "Epoch 336/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.6303\n", + "Epoch 337/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 3.6068\n", + "Epoch 338/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.5834\n", + "Epoch 339/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.5601\n", + "Epoch 340/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.5370\n", + "Epoch 341/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.5140\n", + "Epoch 342/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 3.4911\n", + "Epoch 343/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.4684\n", + "Epoch 344/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.4457\n", + "Epoch 345/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.4232\n", + "Epoch 346/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.4008\n", + "Epoch 347/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.3785\n", + "Epoch 348/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.3563\n", + "Epoch 349/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.3343\n", + "Epoch 350/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.3123\n", + "Epoch 351/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.2905\n", + "Epoch 352/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 3.2688\n", + "Epoch 353/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 3.2473\n", + "Epoch 354/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.2258\n", + "Epoch 355/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.2045\n", + "Epoch 356/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.1833\n", + "Epoch 357/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.1622\n", + "Epoch 358/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 3.1412\n", + "Epoch 359/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.1203\n", + "Epoch 360/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.0996\n", + "Epoch 361/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.0789\n", + "Epoch 362/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 3.0584\n", + "Epoch 363/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.0380\n", + "Epoch 364/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.0177\n", + "Epoch 365/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9976\n", + "Epoch 366/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.9775\n", + "Epoch 367/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.9576\n", + "Epoch 368/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.9377\n", + "Epoch 369/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.9180\n", + "Epoch 370/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.8984\n", + "Epoch 371/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.8790\n", + "Epoch 372/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.8596\n", + "Epoch 373/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.8403\n", + "Epoch 374/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.8212\n", + "Epoch 375/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.8022\n", + "Epoch 376/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.7833\n", + "Epoch 377/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.7645\n", + "Epoch 378/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.7458\n", + "Epoch 379/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.7272\n", + "Epoch 380/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7087\n", + "Epoch 381/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.6904\n", + "Epoch 382/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.6721\n", + "Epoch 383/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.6540\n", + "Epoch 384/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.6359\n", + "Epoch 385/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.6180\n", + "Epoch 386/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.6002\n", + "Epoch 387/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.5825\n", + "Epoch 388/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.5649\n", + "Epoch 389/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.5474\n", + "Epoch 390/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.5300\n", + "Epoch 391/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.5128\n", + "Epoch 392/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.4956\n", + "Epoch 393/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.4785\n", + "Epoch 394/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.4616\n", + "Epoch 395/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.4447\n", + "Epoch 396/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.4280\n", + "Epoch 397/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.4113\n", + "Epoch 398/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.3948\n", + "Epoch 399/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.3783\n", + "Epoch 400/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 2.3620\n", + "Epoch 401/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.3458\n", + "Epoch 402/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.3296\n", + "Epoch 403/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.3136\n", + "Epoch 404/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.2977\n", + "Epoch 405/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.2818\n", + "Epoch 406/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.2661\n", + "Epoch 407/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.2505\n", + "Epoch 408/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.2350\n", + "Epoch 409/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.2195\n", + "Epoch 410/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.2042\n", + "Epoch 411/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.1890\n", + "Epoch 412/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.1738\n", + "Epoch 413/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.1588\n", + "Epoch 414/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.1438\n", + "Epoch 415/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.1290\n", + "Epoch 416/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.1142\n", + "Epoch 417/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.0995\n", + "Epoch 418/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 2.0850\n", + "Epoch 419/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.0705\n", + "Epoch 420/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.0561\n", + "Epoch 421/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.0418\n", + "Epoch 422/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.0276\n", + "Epoch 423/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.0135\n", + "Epoch 424/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.9995\n", + "Epoch 425/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.9856\n", + "Epoch 426/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.9718\n", + "Epoch 427/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.9580\n", + "Epoch 428/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.9444\n", + "Epoch 429/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.9308\n", + "Epoch 430/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.9174\n", + "Epoch 431/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.9040\n", + "Epoch 432/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.8907\n", + "Epoch 433/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.8775\n", + "Epoch 434/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.8643\n", + "Epoch 435/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.8513\n", + "Epoch 436/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.8383\n", + "Epoch 437/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.8255\n", + "Epoch 438/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.8127\n", + "Epoch 439/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.8000\n", + "Epoch 440/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.7874\n", + "Epoch 441/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.7749\n", + "Epoch 442/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.7624\n", + "Epoch 443/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.7500\n", + "Epoch 444/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.7378\n", + "Epoch 445/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.7256\n", + "Epoch 446/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.7134\n", + "Epoch 447/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.7014\n", + "Epoch 448/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.6894\n", + "Epoch 449/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.6776\n", + "Epoch 450/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.6657\n", + "Epoch 451/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.6540\n", + "Epoch 452/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.6424\n", + "Epoch 453/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.6308\n", + "Epoch 454/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.6193\n", + "Epoch 455/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.6079\n", + "Epoch 456/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.5966\n", + "Epoch 457/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.5853\n", + "Epoch 458/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.5741\n", + "Epoch 459/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.5630\n", + "Epoch 460/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.5520\n", + "Epoch 461/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.5410\n", + "Epoch 462/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.5301\n", + "Epoch 463/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.5193\n", + "Epoch 464/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.5086\n", + "Epoch 465/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.4979\n", + "Epoch 466/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.4873\n", + "Epoch 467/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.4768\n", + "Epoch 468/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.4663\n", + "Epoch 469/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.4559\n", + "Epoch 470/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.4456\n", + "Epoch 471/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.4353\n", + "Epoch 472/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.4252\n", + "Epoch 473/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.4151\n", + "Epoch 474/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.4050\n", + "Epoch 475/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.3950\n", + "Epoch 476/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.3851\n", + "Epoch 477/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.3753\n", + "Epoch 478/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.3655\n", + "Epoch 479/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.3558\n", + "Epoch 480/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3462\n", + "Epoch 481/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.3366\n", + "Epoch 482/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.3271\n", + "Epoch 483/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3177\n", + "Epoch 484/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.3083\n", + "Epoch 485/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2990\n", + "Epoch 486/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.2897\n", + "Epoch 487/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.2805\n", + "Epoch 488/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.2714\n", + "Epoch 489/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2623\n", + "Epoch 490/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.2533\n", + "Epoch 491/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2444\n", + "Epoch 492/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2355\n", + "Epoch 493/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2267\n", + "Epoch 494/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.2179\n", + "Epoch 495/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2092\n", + "Epoch 496/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.2005\n", + "Epoch 497/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1920\n", + "Epoch 498/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.1834\n", + "Epoch 499/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1750\n", + "Epoch 500/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.1666\n", + "Epoch 501/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.1582\n", + "Epoch 502/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.1499\n", + "Epoch 503/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.1417\n", + "Epoch 504/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.1335\n", + "Epoch 505/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.1254\n", + "Epoch 506/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1173\n", + "Epoch 507/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.1093\n", + "Epoch 508/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.1013\n", + "Epoch 509/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.0934\n", + "Epoch 510/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.0855\n", + "Epoch 511/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0777\n", + "Epoch 512/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.0700\n", + "Epoch 513/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.0623\n", + "Epoch 514/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.0547\n", + "Epoch 515/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.0471\n", + "Epoch 516/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.0395\n", + "Epoch 517/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.0321\n", + "Epoch 518/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.0246\n", + "Epoch 519/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.0173\n", + "Epoch 520/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.0099\n", + "Epoch 521/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.0026\n", + "Epoch 522/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9954\n", + "Epoch 523/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.9882\n", + "Epoch 524/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.9811\n", + "Epoch 525/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.9740\n", + "Epoch 526/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9670\n", + "Epoch 527/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9600\n", + "Epoch 528/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.9531\n", + "Epoch 529/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.9462\n", + "Epoch 530/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.9393\n", + "Epoch 531/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.9325\n", + "Epoch 532/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.9258\n", + "Epoch 533/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.9191\n", + "Epoch 534/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.9124\n", + "Epoch 535/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9058\n", + "Epoch 536/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8993\n", + "Epoch 537/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.8927\n", + "Epoch 538/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.8863\n", + "Epoch 539/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8798\n", + "Epoch 540/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.8735\n", + "Epoch 541/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8671\n", + "Epoch 542/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.8608\n", + "Epoch 543/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.8546\n", + "Epoch 544/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.8484\n", + "Epoch 545/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.8422\n", + "Epoch 546/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.8361\n", + "Epoch 547/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8300\n", + "Epoch 548/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.8240\n", + "Epoch 549/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.8180\n", + "Epoch 550/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.8120\n", + "Epoch 551/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.8061\n", + "Epoch 552/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8002\n", + "Epoch 553/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.7944\n", + "Epoch 554/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.7886\n", + "Epoch 555/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.7828\n", + "Epoch 556/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.7771\n", + "Epoch 557/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.7715\n", + "Epoch 558/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.7658\n", + "Epoch 559/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7602\n", + "Epoch 560/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.7547\n", + "Epoch 561/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.7491\n", + "Epoch 562/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.7437\n", + "Epoch 563/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.7382\n", + "Epoch 564/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.7328\n", + "Epoch 565/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.7275\n", + "Epoch 566/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.7221\n", + "Epoch 567/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.7168\n", + "Epoch 568/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.7116\n", + "Epoch 569/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.7064\n", + "Epoch 570/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7012\n", + "Epoch 571/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6960\n", + "Epoch 572/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.6909\n", + "Epoch 573/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.6859\n", + "Epoch 574/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.6808\n", + "Epoch 575/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.6758\n", + "Epoch 576/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.6709\n", + "Epoch 577/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.6659\n", + "Epoch 578/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.6610\n", + "Epoch 579/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.6562\n", + "Epoch 580/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.6513\n", + "Epoch 581/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.6465\n", + "Epoch 582/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.6418\n", + "Epoch 583/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.6370\n", + "Epoch 584/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6323\n", + "Epoch 585/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.6277\n", + "Epoch 586/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.6230\n", + "Epoch 587/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.6184\n", + "Epoch 588/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6139\n", + "Epoch 589/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.6093\n", + "Epoch 590/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6048\n", + "Epoch 591/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.6004\n", + "Epoch 592/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5959\n", + "Epoch 593/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5915\n", + "Epoch 594/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.5871\n", + "Epoch 595/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5828\n", + "Epoch 596/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.5785\n", + "Epoch 597/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5742\n", + "Epoch 598/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5699\n", + "Epoch 599/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5657\n", + "Epoch 600/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.5615\n", + "Epoch 601/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5573\n", + "Epoch 602/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.5532\n", + "Epoch 603/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.5491\n", + "Epoch 604/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.5450\n", + "Epoch 605/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5409\n", + "Epoch 606/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5369\n", + "Epoch 607/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5329\n", + "Epoch 608/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5290\n", + "Epoch 609/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5250\n", + "Epoch 610/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5211\n", + "Epoch 611/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.5172\n", + "Epoch 612/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5134\n", + "Epoch 613/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5095\n", + "Epoch 614/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5057\n", + "Epoch 615/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5020\n", + "Epoch 616/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4982\n", + "Epoch 617/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4945\n", + "Epoch 618/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4908\n", + "Epoch 619/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4871\n", + "Epoch 620/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4835\n", + "Epoch 621/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4799\n", + "Epoch 622/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.4763\n", + "Epoch 623/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4727\n", + "Epoch 624/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.4692\n", + "Epoch 625/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.4657\n", + "Epoch 626/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.4622\n", + "Epoch 627/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4587\n", + "Epoch 628/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4553\n", + "Epoch 629/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4518\n", + "Epoch 630/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.4484\n", + "Epoch 631/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4451\n", + "Epoch 632/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4417\n", + "Epoch 633/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4384\n", + "Epoch 634/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4351\n", + "Epoch 635/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.4318\n", + "Epoch 636/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4286\n", + "Epoch 637/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4254\n", + "Epoch 638/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4222\n", + "Epoch 639/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.4190\n", + "Epoch 640/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4158\n", + "Epoch 641/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4127\n", + "Epoch 642/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4096\n", + "Epoch 643/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4065\n", + "Epoch 644/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4034\n", + "Epoch 645/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4004\n", + "Epoch 646/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3973\n", + "Epoch 647/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3943\n", + "Epoch 648/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3914\n", + "Epoch 649/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.3884\n", + "Epoch 650/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3855\n", + "Epoch 651/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3825\n", + "Epoch 652/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3796\n", + "Epoch 653/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3768\n", + "Epoch 654/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3739\n", + "Epoch 655/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3711\n", + "Epoch 656/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3682\n", + "Epoch 657/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.3655\n", + "Epoch 658/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3627\n", + "Epoch 659/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3599\n", + "Epoch 660/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3572\n", + "Epoch 661/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3545\n", + "Epoch 662/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3518\n", + "Epoch 663/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3491\n", + "Epoch 664/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3464\n", + "Epoch 665/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3438\n", + "Epoch 666/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3412\n", + "Epoch 667/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3386\n", + "Epoch 668/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3360\n", + "Epoch 669/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3334\n", + "Epoch 670/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3309\n", + "Epoch 671/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3284\n", + "Epoch 672/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3259\n", + "Epoch 673/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3234\n", + "Epoch 674/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3209\n", + "Epoch 675/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3185\n", + "Epoch 676/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3160\n", + "Epoch 677/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3136\n", + "Epoch 678/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3112\n", + "Epoch 679/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3088\n", + "Epoch 680/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3065\n", + "Epoch 681/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3041\n", + "Epoch 682/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.3018\n", + "Epoch 683/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.2995\n", + "Epoch 684/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2972\n", + "Epoch 685/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2949\n", + "Epoch 686/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2926\n", + "Epoch 687/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2904\n", + "Epoch 688/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2881\n", + "Epoch 689/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2859\n", + "Epoch 690/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2837\n", + "Epoch 691/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2816\n", + "Epoch 692/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2794\n", + "Epoch 693/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2772\n", + "Epoch 694/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2751\n", + "Epoch 695/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2730\n", + "Epoch 696/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2709\n", + "Epoch 697/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2688\n", + "Epoch 698/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2667\n", + "Epoch 699/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2647\n", + "Epoch 700/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2626\n", + "Epoch 701/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2606\n", + "Epoch 702/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2586\n", + "Epoch 703/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2566\n", + "Epoch 704/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2546\n", + "Epoch 705/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2526\n", + "Epoch 706/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2507\n", + "Epoch 707/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2487\n", + "Epoch 708/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2468\n", + "Epoch 709/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2449\n", + "Epoch 710/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2430\n", + "Epoch 711/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2411\n", + "Epoch 712/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2393\n", + "Epoch 713/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2374\n", + "Epoch 714/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2356\n", + "Epoch 715/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2337\n", + "Epoch 716/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2319\n", + "Epoch 717/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2301\n", + "Epoch 718/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2283\n", + "Epoch 719/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2266\n", + "Epoch 720/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2248\n", + "Epoch 721/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2231\n", + "Epoch 722/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2213\n", + "Epoch 723/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2196\n", + "Epoch 724/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2179\n", + "Epoch 725/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.2162\n", + "Epoch 726/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2145\n", + "Epoch 727/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2129\n", + "Epoch 728/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2112\n", + "Epoch 729/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2096\n", + "Epoch 730/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2079\n", + "Epoch 731/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2063\n", + "Epoch 732/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2047\n", + "Epoch 733/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2031\n", + "Epoch 734/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2015\n", + "Epoch 735/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1999\n", + "Epoch 736/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1984\n", + "Epoch 737/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1968\n", + "Epoch 738/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1953\n", + "Epoch 739/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1938\n", + "Epoch 740/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1923\n", + "Epoch 741/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1908\n", + "Epoch 742/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1893\n", + "Epoch 743/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1878\n", + "Epoch 744/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1863\n", + "Epoch 745/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1849\n", + "Epoch 746/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1834\n", + "Epoch 747/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1820\n", + "Epoch 748/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1806\n", + "Epoch 749/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1791\n", + "Epoch 750/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.1777\n", + "Epoch 751/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1764\n", + "Epoch 752/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1750\n", + "Epoch 753/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1736\n", + "Epoch 754/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1722\n", + "Epoch 755/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1709\n", + "Epoch 756/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1695\n", + "Epoch 757/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.1682\n", + "Epoch 758/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.1669\n", + "Epoch 759/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.1656\n", + "Epoch 760/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1643\n", + "Epoch 761/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1630\n", + "Epoch 762/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1617\n", + "Epoch 763/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1605\n", + "Epoch 764/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1592\n", + "Epoch 765/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1579\n", + "Epoch 766/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.1567\n", + "Epoch 767/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1555\n", + "Epoch 768/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.1542\n", + "Epoch 769/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.1530\n", + "Epoch 770/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1518\n", + "Epoch 771/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1506\n", + "Epoch 772/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1495\n", + "Epoch 773/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1483\n", + "Epoch 774/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.1471\n", + "Epoch 775/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.1460\n", + "Epoch 776/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.1448\n", + "Epoch 777/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1437\n", + "Epoch 778/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1425\n", + "Epoch 779/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1414\n", + "Epoch 780/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1403\n", + "Epoch 781/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1392\n", + "Epoch 782/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1381\n", + "Epoch 783/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1370\n", + "Epoch 784/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1359\n", + "Epoch 785/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1349\n", + "Epoch 786/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1338\n", + "Epoch 787/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1328\n", + "Epoch 788/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1317\n", + "Epoch 789/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1307\n", + "Epoch 790/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1296\n", + "Epoch 791/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1286\n", + "Epoch 792/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1276\n", + "Epoch 793/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1266\n", + "Epoch 794/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1256\n", + "Epoch 795/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1246\n", + "Epoch 796/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1236\n", + "Epoch 797/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1227\n", + "Epoch 798/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1217\n", + "Epoch 799/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1207\n", + "Epoch 800/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1198\n", + "Epoch 801/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1188\n", + "Epoch 802/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1179\n", + "Epoch 803/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1170\n", + "Epoch 804/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1160\n", + "Epoch 805/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1151\n", + "Epoch 806/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1142\n", + "Epoch 807/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1133\n", + "Epoch 808/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1124\n", + "Epoch 809/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1115\n", + "Epoch 810/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.1107\n", + "Epoch 811/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1098\n", + "Epoch 812/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1089\n", + "Epoch 813/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1081\n", + "Epoch 814/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1072\n", + "Epoch 815/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1064\n", + "Epoch 816/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1055\n", + "Epoch 817/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1047\n", + "Epoch 818/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1039\n", + "Epoch 819/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1031\n", + "Epoch 820/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1023\n", + "Epoch 821/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1014\n", + "Epoch 822/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1006\n", + "Epoch 823/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0999\n", + "Epoch 824/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0991\n", + "Epoch 825/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0983\n", + "Epoch 826/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0975\n", + "Epoch 827/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0968\n", + "Epoch 828/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0960\n", + "Epoch 829/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0952\n", + "Epoch 830/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0945\n", + "Epoch 831/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0937\n", + "Epoch 832/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0930\n", + "Epoch 833/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0923\n", + "Epoch 834/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0916\n", + "Epoch 835/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0908\n", + "Epoch 836/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0901\n", + "Epoch 837/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0894\n", + "Epoch 838/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0887\n", + "Epoch 839/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0880\n", + "Epoch 840/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0873\n", + "Epoch 841/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0866\n", + "Epoch 842/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0860\n", + "Epoch 843/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0853\n", + "Epoch 844/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0846\n", + "Epoch 845/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0840\n", + "Epoch 846/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0833\n", + "Epoch 847/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0827\n", + "Epoch 848/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0820\n", + "Epoch 849/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0814\n", + "Epoch 850/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0807\n", + "Epoch 851/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0801\n", + "Epoch 852/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0795\n", + "Epoch 853/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0789\n", + "Epoch 854/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0782\n", + "Epoch 855/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0776\n", + "Epoch 856/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0770\n", + "Epoch 857/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0764\n", + "Epoch 858/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0758\n", + "Epoch 859/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0752\n", + "Epoch 860/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0746\n", + "Epoch 861/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0741\n", + "Epoch 862/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0735\n", + "Epoch 863/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0729\n", + "Epoch 864/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0724\n", + "Epoch 865/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0718\n", + "Epoch 866/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0712\n", + "Epoch 867/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0707\n", + "Epoch 868/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0701\n", + "Epoch 869/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0696\n", + "Epoch 870/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0691\n", + "Epoch 871/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0685\n", + "Epoch 872/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0680\n", + "Epoch 873/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0675\n", + "Epoch 874/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0669\n", + "Epoch 875/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0664\n", + "Epoch 876/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0659\n", + "Epoch 877/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0654\n", + "Epoch 878/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0649\n", + "Epoch 879/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0644\n", + "Epoch 880/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0639\n", + "Epoch 881/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0634\n", + "Epoch 882/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0629\n", + "Epoch 883/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0624\n", + "Epoch 884/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0620\n", + "Epoch 885/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0615\n", + "Epoch 886/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0610\n", + "Epoch 887/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0605\n", + "Epoch 888/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0601\n", + "Epoch 889/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0596\n", + "Epoch 890/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0592\n", + "Epoch 891/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0587\n", + "Epoch 892/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0583\n", + "Epoch 893/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0578\n", + "Epoch 894/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0574\n", + "Epoch 895/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0570\n", + "Epoch 896/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0565\n", + "Epoch 897/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0561\n", + "Epoch 898/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0557\n", + "Epoch 899/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0552\n", + "Epoch 900/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0548\n", + "Epoch 901/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0544\n", + "Epoch 902/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0540\n", + "Epoch 903/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0536\n", + "Epoch 904/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0532\n", + "Epoch 905/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0528\n", + "Epoch 906/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0524\n", + "Epoch 907/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0520\n", + "Epoch 908/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0516\n", + "Epoch 909/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0512\n", + "Epoch 910/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0508\n", + "Epoch 911/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0505\n", + "Epoch 912/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0501\n", + "Epoch 913/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0497\n", + "Epoch 914/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0493\n", + "Epoch 915/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0490\n", + "Epoch 916/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0486\n", + "Epoch 917/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0482\n", + "Epoch 918/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0479\n", + "Epoch 919/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0475\n", + "Epoch 920/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0472\n", + "Epoch 921/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0468\n", + "Epoch 922/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0465\n", + "Epoch 923/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0461\n", + "Epoch 924/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0458\n", + "Epoch 925/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0455\n", + "Epoch 926/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0451\n", + "Epoch 927/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0448\n", + "Epoch 928/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0445\n", + "Epoch 929/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0441\n", + "Epoch 930/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0438\n", + "Epoch 931/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0435\n", + "Epoch 932/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0432\n", + "Epoch 933/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0429\n", + "Epoch 934/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0426\n", + "Epoch 935/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0422\n", + "Epoch 936/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0419\n", + "Epoch 937/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0416\n", + "Epoch 938/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0413\n", + "Epoch 939/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0410\n", + "Epoch 940/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0407\n", + "Epoch 941/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0404\n", + "Epoch 942/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0402\n", + "Epoch 943/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0399\n", + "Epoch 944/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0396\n", + "Epoch 945/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0393\n", + "Epoch 946/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0390\n", + "Epoch 947/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0387\n", + "Epoch 948/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0385\n", + "Epoch 949/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0382\n", + "Epoch 950/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0379\n", + "Epoch 951/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0377\n", + "Epoch 952/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0374\n", + "Epoch 953/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0371\n", + "Epoch 954/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0369\n", + "Epoch 955/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0366\n", + "Epoch 956/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0364\n", + "Epoch 957/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0361\n", + "Epoch 958/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0358\n", + "Epoch 959/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0356\n", + "Epoch 960/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0353\n", + "Epoch 961/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0351\n", + "Epoch 962/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0349\n", + "Epoch 963/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0346\n", + "Epoch 964/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0344\n", + "Epoch 965/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0341\n", + "Epoch 966/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0339\n", + "Epoch 967/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0337\n", + "Epoch 968/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0334\n", + "Epoch 969/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0332\n", + "Epoch 970/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0330\n", + "Epoch 971/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0328\n", + "Epoch 972/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0325\n", + "Epoch 973/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0323\n", + "Epoch 974/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0321\n", + "Epoch 975/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0319\n", + "Epoch 976/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0317\n", + "Epoch 977/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0315\n", + "Epoch 978/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0313\n", + "Epoch 979/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0311\n", + "Epoch 980/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0308\n", + "Epoch 981/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0306\n", + "Epoch 982/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0304\n", + "Epoch 983/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0302\n", + "Epoch 984/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0300\n", + "Epoch 985/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0298\n", + "Epoch 986/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0296\n", + "Epoch 987/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0295\n", + "Epoch 988/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0293\n", + "Epoch 989/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0291\n", + "Epoch 990/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0289\n", + "Epoch 991/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0287\n", + "Epoch 992/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0285\n", + "Epoch 993/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0283\n", + "Epoch 994/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0281\n", + "Epoch 995/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0280\n", + "Epoch 996/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0278\n", + "Epoch 997/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0276\n", + "Epoch 998/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0274\n", + "Epoch 999/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0273\n", + "Epoch 1000/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 0.0271\n", + "Epoch 1000/2000\n", + " - loss: 0.0271\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0271\n", + "Epoch 1001/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0269\n", + "Epoch 1002/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0268\n", + "Epoch 1003/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0266\n", + "Epoch 1004/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0264\n", + "Epoch 1005/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0263\n", + "Epoch 1006/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0261\n", + "Epoch 1007/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0259\n", + "Epoch 1008/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0258\n", + "Epoch 1009/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0256\n", + "Epoch 1010/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0255\n", + "Epoch 1011/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0253\n", + "Epoch 1012/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0252\n", + "Epoch 1013/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0250\n", + "Epoch 1014/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0249\n", + "Epoch 1015/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0247\n", + "Epoch 1016/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0246\n", + "Epoch 1017/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0244\n", + "Epoch 1018/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0243\n", + "Epoch 1019/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0241\n", + "Epoch 1020/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0240\n", + "Epoch 1021/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0238\n", + "Epoch 1022/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0237\n", + "Epoch 1023/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0236\n", + "Epoch 1024/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0234\n", + "Epoch 1025/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0233\n", + "Epoch 1026/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0232\n", + "Epoch 1027/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0230\n", + "Epoch 1028/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0229\n", + "Epoch 1029/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0228\n", + "Epoch 1030/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0226\n", + "Epoch 1031/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0225\n", + "Epoch 1032/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0224\n", + "Epoch 1033/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0222\n", + "Epoch 1034/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0221\n", + "Epoch 1035/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0220\n", + "Epoch 1036/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0219\n", + "Epoch 1037/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0218\n", + "Epoch 1038/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0216\n", + "Epoch 1039/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0215\n", + "Epoch 1040/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0214\n", + "Epoch 1041/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0213\n", + "Epoch 1042/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0212\n", + "Epoch 1043/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0211\n", + "Epoch 1044/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0209\n", + "Epoch 1045/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0208\n", + "Epoch 1046/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0207\n", + "Epoch 1047/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0206\n", + "Epoch 1048/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0205\n", + "Epoch 1049/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0204\n", + "Epoch 1050/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0203\n", + "Epoch 1051/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0202\n", + "Epoch 1052/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0201\n", + "Epoch 1053/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0200\n", + "Epoch 1054/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0199\n", + "Epoch 1055/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0198\n", + "Epoch 1056/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0197\n", + "Epoch 1057/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0196\n", + "Epoch 1058/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0195\n", + "Epoch 1059/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0194\n", + "Epoch 1060/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0193\n", + "Epoch 1061/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0192\n", + "Epoch 1062/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0191\n", + "Epoch 1063/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0190\n", + "Epoch 1064/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0189\n", + "Epoch 1065/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0188\n", + "Epoch 1066/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0187\n", + "Epoch 1067/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0186\n", + "Epoch 1068/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0185\n", + "Epoch 1069/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0184\n", + "Epoch 1070/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0184\n", + "Epoch 1071/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0183\n", + "Epoch 1072/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0182\n", + "Epoch 1073/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0181\n", + "Epoch 1074/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0180\n", + "Epoch 1075/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0179\n", + "Epoch 1076/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0178\n", + "Epoch 1077/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0178\n", + "Epoch 1078/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0177\n", + "Epoch 1079/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0176\n", + "Epoch 1080/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0175\n", + "Epoch 1081/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0174\n", + "Epoch 1082/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0174\n", + "Epoch 1083/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0173\n", + "Epoch 1084/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0172\n", + "Epoch 1085/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0171\n", + "Epoch 1086/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0171\n", + "Epoch 1087/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0170\n", + "Epoch 1088/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0169\n", + "Epoch 1089/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0168\n", + "Epoch 1090/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0168\n", + "Epoch 1091/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0167\n", + "Epoch 1092/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0166\n", + "Epoch 1093/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0166\n", + "Epoch 1094/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0165\n", + "Epoch 1095/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0164\n", + "Epoch 1096/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0163\n", + "Epoch 1097/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0163\n", + "Epoch 1098/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0162\n", + "Epoch 1099/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0161\n", + "Epoch 1100/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0161\n", + "Epoch 1101/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0160\n", + "Epoch 1102/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0160\n", + "Epoch 1103/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0159\n", + "Epoch 1104/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0158\n", + "Epoch 1105/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0158\n", + "Epoch 1106/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0157\n", + "Epoch 1107/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0156\n", + "Epoch 1108/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0156\n", + "Epoch 1109/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0155\n", + "Epoch 1110/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0155\n", + "Epoch 1111/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0154\n", + "Epoch 1112/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0154\n", + "Epoch 1113/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0153\n", + "Epoch 1114/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0152\n", + "Epoch 1115/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0152\n", + "Epoch 1116/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0151\n", + "Epoch 1117/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0151\n", + "Epoch 1118/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0150\n", + "Epoch 1119/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0150\n", + "Epoch 1120/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0149\n", + "Epoch 1121/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0149\n", + "Epoch 1122/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0148\n", + "Epoch 1123/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0148\n", + "Epoch 1124/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0147\n", + "Epoch 1125/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0147\n", + "Epoch 1126/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0146\n", + "Epoch 1127/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0146\n", + "Epoch 1128/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0145\n", + "Epoch 1129/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0145\n", + "Epoch 1130/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0144\n", + "Epoch 1131/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0144\n", + "Epoch 1132/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0143\n", + "Epoch 1133/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0143\n", + "Epoch 1134/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0142\n", + "Epoch 1135/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0142\n", + "Epoch 1136/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0141\n", + "Epoch 1137/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0141\n", + "Epoch 1138/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0140\n", + "Epoch 1139/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0140\n", + "Epoch 1140/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0140\n", + "Epoch 1141/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0139\n", + "Epoch 1142/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0139\n", + "Epoch 1143/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0138\n", + "Epoch 1144/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0138\n", + "Epoch 1145/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0137\n", + "Epoch 1146/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0137\n", + "Epoch 1147/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0137\n", + "Epoch 1148/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0136\n", + "Epoch 1149/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0136\n", + "Epoch 1150/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0135\n", + "Epoch 1151/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0135\n", + "Epoch 1152/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0135\n", + "Epoch 1153/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0134\n", + "Epoch 1154/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0134\n", + "Epoch 1155/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0134\n", + "Epoch 1156/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0133\n", + "Epoch 1157/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0133\n", + "Epoch 1158/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0132\n", + "Epoch 1159/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0132\n", + "Epoch 1160/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0132\n", + "Epoch 1161/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0131\n", + "Epoch 1162/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0131\n", + "Epoch 1163/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0131\n", + "Epoch 1164/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0130\n", + "Epoch 1165/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0130\n", + "Epoch 1166/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0130\n", + "Epoch 1167/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0129\n", + "Epoch 1168/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0129\n", + "Epoch 1169/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0129\n", + "Epoch 1170/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0128\n", + "Epoch 1171/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0128\n", + "Epoch 1172/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0128\n", + "Epoch 1173/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0128\n", + "Epoch 1174/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0127\n", + "Epoch 1175/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0127\n", + "Epoch 1176/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0127\n", + "Epoch 1177/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0126\n", + "Epoch 1178/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0126\n", + "Epoch 1179/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0126\n", + "Epoch 1180/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0125\n", + "Epoch 1181/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0125\n", + "Epoch 1182/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0125\n", + "Epoch 1183/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0125\n", + "Epoch 1184/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0124\n", + "Epoch 1185/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0124\n", + "Epoch 1186/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0124\n", + "Epoch 1187/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0124\n", + "Epoch 1188/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0123\n", + "Epoch 1189/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0123\n", + "Epoch 1190/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0123\n", + "Epoch 1191/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0123\n", + "Epoch 1192/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0122\n", + "Epoch 1193/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0122\n", + "Epoch 1194/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0122\n", + "Epoch 1195/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0122\n", + "Epoch 1196/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0121\n", + "Epoch 1197/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0121\n", + "Epoch 1198/2000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0121\n", + "Epoch 1198: early stopping\n", + "Restoring model weights from the end of the best epoch: 1098.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYVOX5//HP7tJRVCSKYiH2FivBFhULEo0mGE0UjQKJxkZiQvxFydfYlcQWY4uxoklsMbYoURF77AUrdkGQIkhvy7I7vz8mM3vm7CnP6Wdm3q/r4mJm9sw5z8ycep/7fp6GQqFQEAAAAAAAAADkRGPWDQAAAAAAAAAAK4KWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAKBmTJ48Waeccoq22WYbrb766mpoaCj/mzJlStbNq0vjxo0r/wYjRoxIddnW3x8AAADVhaAlAABVbtCgQeXAzLnnnus6nTWAY//X1NSkNddcU5tvvrl+9KMf6aabbtKSJUtCtSHov7gCWQ899JB22mkn/eUvf9HkyZMDtR8AnnjiiYp909Zbbx14Hueee27ofWH//v1d57t06VI9/PDD+vWvf6199tlH6623nrp27aqePXtq44031tChQ/XXv/5VS5cujfANAACQLwQtAQCA2tratHDhQn3yySe69957dcIJJ+ib3/ym7r///qybZmTJkiUaMWKEmpubJUnrrbeefvSjH+mUU07RqaeeqlNPPVW9evXKuJXhWQMhXoFpIM/69++f68zn2267reL5Bx98oFdeeSWj1rT7yU9+onXWWUeHHnqorrzySj377LOaNWuWVq5cqWXLlumLL77Qgw8+qJNOOkn9+/fXfffdl3WTAQCIRaesGwAAANI3dOhQ9evXr/y8ra1Nc+fO1Ysvvqjp06dLkubOnasjjjhC9957rw477DDjeX/729/WwIEDjaffbbfdzBvu4uGHH9b8+fMlSdtuu61effVVde/ePfJ8AdSHxYsXOwb7brvttkD7M6v1118/0L5z7bXXdnz93nvvLd+QkaS11lpLAwcO1Prrr69CoaDJkyfrlVdeUaFQ0Ny5c3X44YfrL3/5i0466aRQ7QYAIC8IWgIAUIdOO+00DRo0qMPrbW1tuu2223TyySerublZbW1tOvnkkzVkyBD16NHDaN4HH3xw6tmAb7zxRvnxsGHDCFjmyIgRI1Lvy7KkUChkslxUn3vvvVfLli2TJHXv3l3Lly+XJN11113605/+pC5dugSe5+abb65rrrkmlvb16NFDw4YN009/+lPttttuamysLJh777339JOf/ESTJk2SJI0aNUp77rmnvvWtb8WyfAAAskB5OAAAKGtsbNTIkSN1ySWXlF+bPXu2HnjggewaZaCUZSkVS8MBIAhrafgZZ5yhddddV5I0b948/fvf/86qWZKkX/ziF/rss8900003aY899ugQsJSKGeZPPvmkNt54Y0lSa2urLr744rSbCgBArAhaAgCADk488UR169at/PzZZ5/NsDX+Wlpayo+dLugBwM2UKVPK+7iGhgYNHz5cw4YNK//d3tdl2i699NJyENXLWmutpTPOOKP8fPz48Uk2CwCAxHFWDwAAOujatWvFyLkzZszIsDXOrIPTWIMKI0eO7DAq77hx4xznsWTJEl111VUaMmSINthgA3Xr1k1rrbWWtttuO40aNUovv/yyUVusyyp56623dNppp2m77bZT79691dDQoKFDhwb6jKVR2c8777zya+edd57RKOwjRozo8PkXLFigP//5z9p7773Vr18/derUSQ0NDVqwYEHFe7/66ivdeuutGj58uHbaaSf17t1bnTt31pprrqmtttpKI0eO1GOPPWb0GcaNG+c7UvzTTz9dnsbabcGTTz6po446Sptssom6deumtddeW3vvvbeuueaaikC1G6ffxc5pcJjp06fr97//vXbYYQetueaa6tmzp7baaiv94he/0NSpU40+d8mECRN01FFHaaONNlK3bt203nrraa+99tK1115bHuk5iYGW5s6dq8suu0wHHHCA1l9/fXXr1q38G2677bY64ogjdMUVV+jzzz83mt/EiRN10kknadttt1Xv3r3VtWtXrb/++hoyZIiuueaacjm13ZQpU8qfzfrdffOb33Rcj59++uk4Pn4gt99+e7krge985zvq37+/jj322PLf//Of/+irr75KvV1h7LnnnuXHixYt0rx58zJsDQAA0dCnJQAAcGTtF3LFihUZtiQZDz/8sE444QTNmjWr4vXm5mYtWLBA7733nq699lodffTRuvHGG4379JSKQagLL7xQra2tcTc7tP/+978aNmyYpk2b5jndVVddpdGjRzu2feHChVq4cKE+/PBDjRs3Tvvtt5/uuece1wFEwlq5cqVGjRqlG2+8seL15uZmPffcc3ruued066236rHHHlOfPn1iXfYDDzygESNGaOHChRWvf/jhh/rwww91880365///Ke+973v+X6Gn/3sZ/r73/9e8fqsWbM0a9YsPf/887r22mt1//33x9p+SXrwwQc1cuTIim4TSkq/4fvvv69//etfuuKKK8qDbzmZNm2ajjvuOMdg4syZMzVz5kw9/vjjGjt2rO666y7ttddecX6UVNx+++3lx6Vg5c4776xtt91W7733nlatWqU77rhDv/rVrzJqoTl7gD5P+yAAAIIiaAkAABxZsytNShPTNnDgQJ166qmSillgH3zwgSRp//3311ZbbVUxrTVrVJLuvvtuHXPMMeUL+qamJn3nO9/RZpttpiVLlui5554rf/477rhDn3/+uZ588smKknk3l156aTkzctNNN9XAgQPVo0cPTZkyRZ07dw70GQ877DBtt912euWVV/Tqq69Kch+d3WsU9k8++US/+tWvtHDhQq2++urae++9tf7662v+/PkdSv9nzJhR/l422WQTbb311vrGN76hbt26acGCBXrnnXf03nvvSSpmQh5wwAF66aWX1LVr10CfzcvPf/5z3XbbbWpsbNSuu+6qrbbaSm1tbXrppZf04YcfSioOvnTcccfFWgL7xBNP6KSTTlJra6s22mgj7b777urVq5c+//xzPf3001q1apWWL1+uH//4x3r33Xf1zW9+03Vew4YNqxiNunfv3ho0aJB69+6tadOm6ZlnntHkyZP1ve99T9///vdj+wyvvfaajjjiCK1atUpS8ebDbrvtpv79+6tr165atGiRPv30U73zzjvlgWfcTJ48Wfvvv79mzpwpqRgQ23nnnbXNNtuoe/fu+vLLL/Xss89q8eLFmjFjhgYPHqz//Oc/2nfffcvz6NWrV3k7vf3227V48WJJ0nHHHafVV1+9wzL79esXy/dg6vnnn9enn34qqZhh/qMf/aj8t2OPPVZnnnmmpGKJeDUELd95553y4+7du8ce1AcAIFUFAABQ1fbZZ5+CpIKkwjnnnOM6XWkaSYWnnnrKc54ffvhhxfTXXHNNLG1IyvDhw8vLv/XWWz2n/eSTTwqrrbZaefqBAwcWPv7444ppWltbC5dffnmhsbGxPN0vfvEL13lav6tOnToV1lhjjcL999/fYboVK1aE+XiFc845J/D3a/1OOnXqVJBUOPXUUwuLFy+umG7lypWF1tbW8vObb765cPXVVxemT5/uOu+33nqrMGDAgPL8L7jgAtdpb7311vJ0w4cPd5zmqaeeKk/TtWvXgqTCt7/97cLkyZMrpmtraytceeWVFd/3M88847ps63RuNt5444pl9+zZs/C3v/2t0NbWVjHdu+++W+jXr1952pEjR7rO86abbqpY9m9+85sOv/3s2bMLBx10UMVnjmP7GTp0aHlehx9+eGHevHmO0y1fvrzwyCOPFE488UTHvy9ZsqSw9dZbl+d10EEHFT755JMO0y1cuLBw8sknl6dbb731CgsWLHCcp/W7/vzzz0N/xjgdf/zx5TYdccQRFX+bNm1axT7grbfe8p2fdVvdZ599Emq1u8GDB5eX/73vfS/15QMAECcyLQEAQIVVq1bptNNOKz/v1auXjjrqKOP3jx8/XnPnzjWe/vzzz1fv3r0DtTGK888/X0uWLJEkbbbZZnr88ce1xhprVEzT2Nio0aNHq6GhQaNHj5YkXXvttfr1r3/tmV0nSW1tbXrooYe09957d/hbnNmIQaxatUrHH3+8rrnmmg5/s2d//vSnP/Wd3/bbb68nnnhCW221lWbNmqXrrrtOY8aMUVNTU+S2Njc3a/PNN9eTTz6p1VZbreJvDQ0NOu200/T888/r3nvvlSTdeeedjt91GCtXrtQDDzyg7373ux3+tu222+qvf/2rDjnkEEnSP//5T91www3q1KnydLq1tVXnnHNO+fmJJ56oyy67rMP81llnHT3wwAP6zne+U86ijcNzzz0nqbiujRs3rsN3WNKtWzcdfPDBOvjggx3/fsUVV2jy5MmSihm/9957r+MgV7169dJ1112nZcuW6bbbbtPMmTN1/fXXVwwIk1fLly/XPffcU35u7cdSkjbYYAMNGjRITz75pKRituXll19uPP+PP/5Yo0aNMp7+2GOP1a677mo8vd3DDz+sCRMmlJ+XMlwBAKhWBC0BAIDa2to0d+5c/fe//9Uf/vAHvfLKK5KkTp066ZZbbgnUZ+Grr74aKAhz+umnpxa0XLBgge6+++7y80suuaRDwNLqtNNO080336z33ntPbW1tuuGGGzR27FjPZRxxxBGxBdHi0q1bN11yySWxznONNdbQYYcdpr/85S+aOXOm3n//fX3rW9+KZd5/+MMfXINtUjGwWgpaltbVOBxyyCGOAcuSgw8+WH379tWsWbO0ZMkSTZ48ucNnfvTRR/Xll19Kknr27Kk//OEPrvPr0qWLLrvsMu2zzz7xfAAVB1+RpB49enh+h15aWlrKAe6uXbvq+uuvdwxYWl188cXlAW3+8Y9/VEXQ8oEHHih/X2uvvbYOOuigDtMce+yx5aDlP/7xD/3xj3/sEKh2M2PGDF177bXG7RkwYEDooOXMmTP185//vPx88ODBjp8HAIBqQtASAIA6ZO1zzs2WW26pyy+/3HfAkWrywgsvqLm5WZLUp08fHXrooZ7TNzY26qc//al+85vfSJKeeuop32UEyUpNy4EHHqi11lor8Pu++uorvfTSS5o8ebLmz5+vpUuXlkdZlor9J5ZMmjQplqBlt27dfH+XnXbaqfy4NOJ3HKz9GTppaGjQDjvsUB68acqUKR0+s3XAmu9973tac801Pee59957a6ONNtIXX3wRqs12G264oT777DPNnz9fd999t4488sjA83jttdfKo2Xvv//+WmeddXzfs/7662urrbbS5MmT9e6772rhwoWeNwTy4Lbbbis/Puqooxz7nD3iiCN06qmnatmyZZo9e7Yee+yx3O0TV65cqSOOOKLc9+jaa6+tcePGZdsoAABiQNASAAB0sO666+r22293HPDFzznnnKNzzz03/kbF4M033yw/HjhwoFHG1J577lnx/kKh0GGEXqtddtklWiMTELRN77//vs444wz95z//MR59OEiXAF623HJL3wGLrJm/pUy5OJgEXf2WPWnSpPJj06y5gQMHxha0/PGPf1zO7hw2bFg5cLnvvvsaBR8l6cUXXyw/nj59unGJ84IFCyRJhUJB06dPz3XQcsaMGXriiSfKz+2l4SWrrbaahg4dqjvuuENSMdBpGrTcZ599HEddj1OhUNDw4cP1wgsvSCp293DnnXdq/fXXT3S5AACkgaAlAAB1aOjQoRWj9H799df69NNPy2Xds2fP1l577aV//etf5T78asGcOXPKjzfeeGOj9/Tv37/8eOXKlVq8eLF69erlOv03vvGN0O1LSpA2PfbYY/rBD35Qzkg1VRoVOiqTQJc1qFkaJTuLZbe0tHT4u3Ud23DDDY2Wu8EGGxhNZ+Kss87S008/rZdeekmFQkH333+/7r//fknS5ptvrr322kv777+/Dj30UMfRu6ViQK/k7bff1ttvvx24HfPnzw/3AVLy97//vRyQ33zzzT0DzMcee2w5aPnQQw9p/vz5oTKXkzBq1CjdddddkoqZ4bfddpsGDx6ccasAAIiHd+c0AACgJp122mm65ppryv/uvPNOvfLKK3rrrbe0ww47SCoG6IYNG6ZPP/0049bGpzQAj1Tsb9CEfTq/4Fz37t2DNyxhpm2aM2eOjjzyyHLAcuONN9bYsWP1/PPPa8aMGVq2bJna2tpUKBRUKBQqBpxpa2uLpa1eWaxJi2PZ1nWsR48eRu8J2/ekk549e+qZZ57RpZdeWhFwl4oDw9xyyy065phj1LdvX/32t7/V8uXLO8xj4cKFkdsRZzA5CdbS8J/85Cee0w4ePFh9+/aVVBwoytovbpbGjBmj6667rvz82muv1bBhwzJsEQAA8SJoCQAAyrbffns9/vjj5SzMJUuW6Pjjj8+4VfGxBoeWLl1q9B77dG7ZabXgxhtvLAesdthhB7399ts688wzteeee2q99dZT9+7dKwJ7cWVX1hLrOrZs2TKj95iui6a6dOmi008/XZ999pkmTZqkq666SkcddVRFdvWyZct06aWXat999+0QuLQG6n/5y1+Wg9RB/g0aNCjWzxSn1157Te+//375+TnnnKOGhgbXf506dSr3YypVBjyzctFFF1UM8vTHP/5RJ510UoYtAgAgfgQtAQBAhXXWWUdXX311+fnTTz+tRx55JMMWxcdaJm3ah6B1oJcuXbrUdNBy4sSJ5cdnnXWWZxm8JE2dOjXpJlWdPn36lB9Pnz7d6D2m0wVVGjjoF7/4he68805Nnz5db7zxhkaOHFme5uWXX+4wwvW6665bfmwN1tWKqEHHl156SR999FFMrQnuyiuv1FlnnVV+ftZZZ+m3v/1tZu0BACAp9GkJAAA6OOyww7Tnnnvqv//9r6TiRXHeRswNwzrq9CuvvKLW1lY1NTV5vqc0wEXp/VmUL6e1TGtfhn6D0rS2tpbXD7Tbcccdy8Hfl19+2eg9r7zySpJNqrDTTjvplltuUVNTk2666SZJxX4aTz/99PI01v4dX3jhBd/Bp0xlWfpfsnLlSt15553l51tuuaXvCO8lH3/8sebNmyepGPi86KKLkmiipxtuuEG//vWvy89PO+00XXDBBam3AwCANJBpCQAAHFlHAJ80aZIeeuih7BoTkz322ENdu3aVVOy/0S+DtK2tTbfeemv5+X777Zdo+9x069at/Nhp8Je4NDa2nxr6lTY/8MADNZmFF5W1LPqRRx7x7R/y+eefzyRj9fvf/3758ezZsyv+tueee5YDedOnT9e///3vWJaZ1nrs5ZFHHtHXX38tSerUqZOeffZZvfTSS0b/fve735Xn87e//S22flxN/f3vf68oAf/Zz36mP/3pT6m2AQCANBG0BAAAjg444ADtscce5ecXXnhhhq2Jx5prrqkjjzyy/Pz//b//59kv4zXXXKN33nlHUjGg9/Of/zzxNjpZe+21y4+//PLLxJazySablB97BannzJlTke2Fdt/97ne1/vrrSyr2CWsNdNmtXLmyIsMxqubm5oqBgLxMmzat/Hidddap+FvXrl31q1/9qvz8lFNOCbTe2YOgJWmtx16speGDBw/u8Nm9DBs2rBzYnzZtmp566qnY2+fmvvvu04gRI1QoFMptueGGG3KRvQoAQFIIWgIAAFdnn312+fGrr76qRx99NMPWxOPss88uD5by0UcfaciQIfrss88qpmlra9Of//xnjR49uvzaqaee2mE05rRst9125cePP/54LKM7Ozn00EPLj8eOHau///3vHaZ54403tM8++2jatGnGI7DXk06dOlVkKV933XU644wztHLlyorp5syZo8MPP1wvv/xyOfs3qpkzZ2rDDTfU6aefrtdee811ugkTJlSM/H7QQQd1mOY3v/mNtt12W0nFAOOAAQP0z3/+0zW7cO7cubrhhhu0884769JLL3Wcxroe//Of/zT6TOPGjasYFMfax2xQc+fO1fjx48vPjznmmEDvX3/99bXvvvuWn6c1IM+jjz6qYcOGqbW1VZL0gx/8QLfffntFZjQAALWIPi0BAICrIUOGaNdddy33zXfBBRfou9/9rud7xo8fr7lz5xovo0ePHrrkkksitTOITTfdVDfddJOOOeYYtba26sUXX9SWW26pvfbaS5tuuqmWLFmi5557riITbLfddku1jXYDBw7UhhtuqGnTpmnmzJnaaqutdOCBB6pPnz7lTKtvf/vbFVmkYQwfPlyXX365PvroIzU3N+vYY4/VxRdfrB122EHdunXTu+++Ww6G7bDDDhoyZEim30teHX/88XrkkUf04IMPSpIuueQS3XzzzRo0aJB69+6t6dOn66mnntKKFSu0ySab6Ac/+EG5zDdqIGrBggW6/PLLdfnll6t3797aaaed1K9fP3Xr1k1fffWV3n777Yog/RZbbKHTTjutw3xWW201PfTQQzrggAP0+eefa9asWfrxj3+sPn36aLfddlPfvn1VKBQ0b948vf/++/r444/LAU23bhQOP/xw/fWvf5VUDOa+/vrr2nnnndWjR4/yNCeffLI23XTTSN+BmzvuuKNclt6zZ08NHTo08DyOOeaYcp+l9913n6677rqKEeOtPv74Y40aNSrQ/MeMGVMxyvvcuXP1wx/+sBz0bmpq0je+8Y2KTFgvxx57bEUfpQAAVBOClgAAwNPZZ59dHoTnhRde0MSJE7X//vu7Tv/qq6/q1VdfNZ7/GmuskXrg68gjj1TPnj11/PHHa/bs2Vq1apWeeuopx3LPYcOG6aabbqrojy9tjY2Nuu6663T44Ydr5cqVmjVrlm6//faKaYYPHx45aNm1a1f9+9//1kEHHVQObE2ePFmTJ0+umG7PPffU3XffrRtvvDHS8mpVQ0OD7r77bo0YMUJ33XWXJOnrr7/Wv/71r4rptt56a91///0Vv6XfiO1eOnfurK5du6q5uVmSNG/evIoR4e0GDRqkO++80zVjdpNNNtFrr72mk046Sffee68KhYLmzp2rhx9+2HWea665pusgToMHD9awYcPKA+G8/PLLHQYrOuSQQxILWlozI4cOHRoqU/jwww/XKaecohUrVmjp0qW69957NWLECMdpZ8yY0WFkdj/HH398RdByyZIlWr58efl5a2treQAlEwMGDCBoCQCoWtQUAAAATwcffLAGDBhQfn7++edn2Jr4HHLIIfrkk0/05z//WYMHD9b666+vLl26aI011tDWW2+tU045RS+99JLuuOOOikywLNv72muv6cQTT9S2226r1VdfPZH+7LbYYgu9+eabuvjiizVgwACtvvrq6tq1qzbeeGMdcsghuuOOO/TMM89UBFbQUdeuXXXnnXfqscce049+9CNtsMEG6tKli9Zdd13tueeeuvrqq/Xqq69qyy23LI9ILcl4JGsn/fr109dff62HHnpI/+///T/tt99+2mijjdS9e3c1NTVpzTXX1A477KDjjz9eEyZM0FNPPaW+fft6zrN3796655579Pbbb+t3v/ud9thjD6233nrq0qWLunXrpr59++o73/mOfvnLX+qhhx7SzJkzNXz4cNf5/eMf/9A//vEPHXLIIdpggw1Suxnw7rvv6o033ig/D1oaXtKrV6+KbhTGjRsXtWkAAMBFQ6HUmzMAAACA1O2555564YUXJEkvvfQSmXEAAAAiaAkAAABkZurUqdp0003V2tqqLl26aOHChZl2RQAAAJAXlIcDAAAAGSgUCjrttNPKo0IfdthhBCwBAAD+h6AlAAAAELOzzz5bf/7znzV37lzHv0+ZMkWHHXZYeYTxpqYmnX766Wk2EQAAINcYPRwAAACI2RdffKELLrhAp59+ur71rW9pq6220hprrKElS5bogw8+0JtvvlnOsJSks846q2LAKwAAgHpH0BIAAABIyKpVq/Tmm2/qzTffdPx79+7ddf7555NlCQAAYMNAPAAAAEDMFixYoAcffFBPPvmk3nvvPc2ZM0dz585Va2urevfurS233FL777+/fvazn2m99dbLurkAAAC5Q9DSUFtbm2bMmKHVV19dDQ0NWTcHAAAAAAAAqCqFQkGLFy/W+uuvr8ZG76F2qro8/Nprr9Wll16qWbNmaYcddtDVV1+tgQMHOk47aNAgPfPMMx1eP/jgg/XII4/4LmvGjBnacMMNI7cZAAAAAAAAqGfTpk3TBhts4DlN1QYt7777bo0ePVrXX3+9dt11V1155ZUaMmSIPvzwQ62zzjodpr/vvvu0cuXK8vOvv/5aO+ywg370ox8ZLW/11VeXVPxSe/XqFc+HyJGWlhY9/vjjOvDAA9W5c+esmwPUHbZBIHtsh0D22A6BbLENAtmr9e1w0aJF2nDDDctxNi9VG7S84oordMIJJ2jkyJGSpOuvv16PPPKIbrnlFp155pkdpu/du3fF87vuuks9evQwDlqWSsJ79epVs0HLHj16qFevXjW5UQB5xzYIZI/tEMge2yGQLbZBIHv1sh2adL1YlUHLlStX6vXXX9eYMWPKrzU2NuqAAw7Qiy++aDSPm2++WUcddZR69uzp+Pfm5mY1NzeXny9atEhSceVpaWmJ0Pp8Kn2mWvxsQDVgGwSyx3YIZI/tEMgW2yCQvVrfDoN8rqoMWpZGXlx33XUrXl933XX1wQcf+L7/lVde0bvvvqubb77ZdZqxY8fqvPPO6/D6448/rh49egRvdJWYMGFC1k0A6hrbIJA9tkMge2yHQLbYBoHs1ep2uGzZMuNpqzJoGdXNN9+sb33rW66D9kjSmDFjNHr06PLzUs39gQceWLPl4RMmTNDgwYNrOv0YyCu2QSB7bIdA9tgOgWyxDQLZq/XtsFTJbKIqg5Z9+vRRU1OTZs+eXfH67Nmz1bdvX8/3Ll26VHfddZfOP/98z+m6du2qrl27dni9c+fONbnSlNT65wPyjm0QyB7bIZA9tkMgW2yDQPZqdTsM8pkaE2xHYrp06aJddtlFEydOLL/W1tamiRMnavfdd/d87z//+U81NzfrJz/5SdLNBAAAAAAAABBCVWZaStLo0aM1fPhwDRgwQAMHDtSVV16ppUuXlkcTP+6449SvXz+NHTu24n0333yzhg4dqrXXXjuLZgMAAAAAAADwUbVByyOPPFJz5szR2WefrVmzZmnHHXfUo48+Wh6c54svvlBjY2Ui6Ycffqjnn39ejz/+eBZNBgAAAAAAAGCgaoOWkjRq1CiNGjXK8W9PP/10h9e23HJLFQqFhFvVUaFQUEtLi9ra2lJftqmWlhZ16tRJK1asUGtra9bNqXlNTU012TcFAAAAAABAHKo6aJl3K1eu1FdffaVly5blPhBYKBTUt29fTZs2TQ0NDVk3py507dpVffr0qcnR6AEAAAAAAKIgaJmQZcuWadq0aWpqatJaa62l7t27q6mpKbcBwba2Ni1ZskSrrbZah7J6xKuUebtw4UJ9+eWXkkTgEgAAAAAAwIKgZULmzp2rzp07a+ONN1ZTU1PWzfHV1tamlStXqlu3bgQtU9C9e3etvvrqmj59uubOnUvQEgAAAAAAwILoVAJWrVqlpUuXqnfv3lURsEQ2GhoatMYaa6i5uVktLS1ZNwcAAAAAACA3CFomYNWqVZKKfRYCXkqD8eS9z1MAAAAAAIA0EbRMUF77r0R+sI4AAAAAAAB0RNASAAAAAAAAQK4QtAQAAAAAAACQKwQtAQAAAAAAAOQKQUtkqn///mpoaNC4cePKr40bN04NDQ0V/xobG9WrVy/ttNNOGjNmjObMmeM6T/t73f49/fTTyX9AAAAAAAAABNYp6wYAbnr27KkjjjhCUnF07alTp+rFF1/UpEmTdOutt+q5557T5ptv7vr+IUOGqG/fvq5/9/obAAAAAAAAskPQErnVp0+figxMSXrvvfe0zz77aPbs2frVr36lRx55xPX9Z555pgYNGpRsIwEAAAAAABA7ysNRVbbddluNHj1akjRhwgQ1Nzdn3CIAAAAAAADEjaAlqs72228vSWppadG8efMybg0AAAAAAADiRtASVWfRokWSpKamJvXp0yfj1gAAAAAAACBuBC1RdUr9WH73u99V586dM24NAAAAAAAA4sZAPFkZMECaNSvrVpQ1SOpVKKihocF/4r59pddeS7xNVqXRw2+44Qbdcccd2njjjXXVVVd5vmffffd1/dsaa6yhBQsWxNxKAAAAAAAAxIGgZVZmzZK+/DLrVpQ1/O9fnkydOtUxiDpw4EA9/vjjWmONNTzfP2TIEPXt29fxbz169IiljQAAAAAAAIgfQcusuATTslKQVPhfpqVv8DKltvfs2VNHHHGEJKm5uVmTJ0/WW2+9pVdeeUUnnnii7rrrLs/3n3nmmRo0aFAKLQUAAAAAAECcCFpmJeXyaj+FtjYtWrRIvXr1UkNjPro67dOnj8aNG1fx2n333acjjzxSd999t/bee2+dcsop2TQOAAAAAAAAiclHdAow9MMf/lBnnnmmJOnss8/WwoULM24RAAAAAAAA4kbQElVnzJgxWm+99fT111/riiuuyLo5AAAAAAAAiBlBS1SdHj166Pe//70k6corr9T8+fMzbhEAAAAAAADiRJ+WqErHH3+8Lr/8cn366ae67LLLdNFFF3WY5g9/+EOHPjGtjj76aB144IEJthIAAAAAAABhELREVercubMuvPBCDRs2TFdffbVGjx6ttddeu2Kaxx57zHMeO+64I0FLAAAAAACAHCJoiUxNmTKlw2sjRozQiBEjfN971FFH6aijjurweqFQiKFlAAAAAAAAyAp9WgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUy1b9/fzU0NGjcuHHl18aNG6eGhoaKf42NjerVq5d22mknjRkzRnPmzHGdp/29bv+efvrpQG0ttWvEiBHhPiwAAAAAAACMdMq6AYCbnj176ogjjpAktba2aurUqXrxxRc1adIk3XrrrXruuee0+eabu75/yJAh6tu3r+vf7X9raGiQJBUKhRhaDwAAAAAAgLAIWiK3+vTpU5GBKUnvvfee9tlnH82ePVu/+tWv9Mgjj7i+/8wzz9SgQYOSbSQAAAAAAABiR3k4qsq2226r0aNHS5ImTJig5ubmjFsEAAAAAACAuBG0RNXZfvvtJUktLS2aN29e5Pmde+655dJwqWOfmFOmTOnwnqVLl2rMmDHabLPN1LVrV/Xt21fDhw/Xl19+Gbk9AAAAAAAA9Y7ycFSdRYsWSZKamprUp0+fyPPbcccdNXz4cN12222SpOHDh1f8fbXVVqt4vnDhQu2xxx764osvtNdee2m77bbTiy++qNtvv13PPPOM3nrrLa2xxhqR2wUAAAAAAFCvCFqi6pT6sfzud7+rzp07R57f0KFDNXTo0HLQ0t6Ppt0DDzygIUOG6LnnnlOvXr0kSfPnz9d+++2nSZMm6brrrtOYMWMitwsAAAAAAKBeEbTMyIABAzRr1qysm1GhUChUlEm76du3r1577bUUWtSuNHr4DTfcoDvuuEMbb7yxrrrqKs/37Lvvvq5/W2ONNbRgwYJQbenZs6duvfXWcsBSktZaay2deeaZOuqoo/TEE08QtAQAAAAAAIiAoGVGZs2aRf+HPqZOneoYRB04cKAef/xx3xLsIUOGqG/fvo5/69GjR+h2DRgwQOutt16H17feemtJ4ncFAAAAAACIiKBlRtyCaVkKkmmZhp49e+qII46QJDU3N2vy5Ml666239Morr+jEE0/UXXfd5fn+M888U4MGDYq9XRtttJHj66XMyxUrVsS+TAAAAAAAgHpC0DIjaZdX+2lra9OiRYvUq1cvNTbmY1D5Pn36dOhf8r777tORRx6pu+++W3vvvbdOOeWU1NuVl+8HAAAAAACgVhF9QVX54Q9/qDPPPFOSdPbZZ2vhwoUZtwgAAAAAAABxI2iJqjNmzBitt956+vrrr3XFFVfENt/SSOSrVq2KbZ4AAAAAAAAIjqAlqk6PHj30+9//XpJ05ZVXav78+bHMd4MNNpAkvffee7HMDwAAAAAAAOHQpyWq0vHHH6/LL79cn376qS677DJddNFFHab5wx/+0KFPTKujjz5aBx54YPn54Ycfrssuu0wHHHCA9ttvP62++uqSpD/+8Y9ae+21Y/8MAAAAAAAAcEbQElWpc+fOuvDCCzVs2DBdffXVGj16dIfA4mOPPeY5jx133LEiaHnBBReosbFR9913nx544AGtXLlSknTWWWcRtAQAAAAAAEgRQUtkasqUKR1eGzFihEaMGOH73qOOOkpHHXVUh9cLhUKotnTr1k1//OMf9cc//tHx737t6t+/f+hlAwAAAAAAoB19WgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaJmgQqGQdROQc6wjAAAAAAAAHRG0TEBjY/FrbW1tzbglyLvSOlJaZwAAAAAAAEDQMhGdO3dW586dtWTJkqybgpxbvny5mpqa1Llz56ybAgAAAAAAkBsELRPQ0NCg1VdfXQsXLtTy5cuzbg5yqrW1VQsXLlSPHj3U0NCQdXMAAAAAAAByo1PWDahVffr00fLly/XFF1+oV69eWn311dXU1JTb4FRbW5tWrlypFStWUKqcsEKhoObmZs2bN09tbW1aZ511sm4SAAAAAABArhC0TEhTU5M23HBDzZ07V4sXL9aCBQuybpKnQqGg5cuXq3v37rkNrNaanj17qm/fvurSpUvWTQEAAAAAAMgVgpYJampq0rrrrqt11llHLS0tamtry7pJrlpaWvTss89q7733pn/FFHTq1EmdOrH5AQAAAAAAOCFqkoKGhobcZ9M1NTVp1apV6tatG0FLAAAAAAAAZIrOCwEAAAAAAADkCkFLAAAAAAAAALlC0BIAAAAAAABArhC0BAAAAAAAAJArBC0BAAAAAAAA5ErVBi2vvfZa9e/fX926ddOuu+6qV155xXP6BQsW6NRTT9V6662nrl27aostttD48eNTai0AAAAAAAAAU52ybkAYd999t0aPHq3rr79eu+66q6688koNGTJEH374odZZZ50O069cuVKDBw/WOuuso3vvvVf9+vXT1KlTteaaa6bfeAAAAAAAAACeqjJoecUVV+iEE07QyJEjJUnXX3+9HnnkEd1yyy0688wzO0x/yy23aN68eXrhhRfUuXNnSVL//v09l9Hc3Kzm5uby80WLFkmSWlpa1NLSEtMnyY/SZ6rFzwZUA7ZBIHtsh0D22A6BbLENAtmr9e0wyOdqKBQKhQTbEruVK1eqR48euvfeezV06NDy68OHD9eCBQv04IMPdnjPwQcfrN69e6tHjx568MEH9Y1vfENHH320zjjjDDU1NTku59xzz9V5553X4fU77rhDPXr0iO3zAAAAAAAAAPVg2bJlOvroo7Vw4UL16tXLc9qqy7ScO3euWltbte6661a8vu666+qDDz5wfM9nn32mJ598Usccc4zGjx+vTz75RKeccopaWlp0zjnnOL5nzJgxGj16dPn5okWLtOGGG+rAAw/0/VKrUUtLiyZMmKDBgweXs1EBpIdtEMge2yGQPbZDIFtsg0D2an07LFUym6i6oGUYbW1tWmeddXTDDTeoqalJu+yyi7788ktdeumlrkHLrl27qmvXrh1e79y5c02uNCW1/vmAvGMbBLLHdghkj+0QyBbbIJC9Wt0Og3ymqgta9unTR01NTZo9e3bF67Nnz1bfvn0d37Peeuupc+fOFaXgW2+9tWbNmqWVK1eqS5cuibYZAAAAAAAAgLnGrBsQVJcuXbTLLrto4sSJ5dfa2to0ceJE7b777o7v2XPPPfXJJ5+ora2t/NpHH32k9dZbj4AlAAAAAAAAkDNVF7SUpNGjR+vGG2/UbbfdpsmTJ+vkk0/W0qVLy6OJH3fccRozZkx5+pNPPlnz5s3Taaedpo8++kiPPPKILr74Yp166qlZfQQAAAAAAAAALqquPFySjjzySM2ZM0dnn322Zs2apR133FGPPvpoeXCeL774Qo2N7fHYDTfcUI899ph+/etfa/vtt1e/fv102mmn6YwzzsjqIwAAAAAAAABwUZVBS0kaNWqURo0a5fi3p59+usNru+++u1566aWEWwUAAAAAAAAgqqosDwcAAAAAAABQuwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcqeqg5bXXXqv+/furW7du2nXXXfXKK6+4Tjtu3Dg1NDRU/OvWrVuKrQUAAAAAAABgomqDlnfffbdGjx6tc845R2+88YZ22GEHDRkyRF999ZXre3r16qWZM2eW/02dOjXFFgMAAAAAAAAwUbVByyuuuEInnHCCRo4cqW222UbXX3+9evTooVtuucX1PQ0NDerbt2/537rrrptiiwEAAAAAAACY6JR1A8JYuXKlXn/9dY0ZM6b8WmNjow444AC9+OKLru9bsmSJNt54Y7W1tWnnnXfWxRdfrG233dZx2ubmZjU3N5efL1q0SJLU0tKilpaWmD5JfpQ+Uy1+NqAasA0C2WM7BLLHdghki20QyF6tb4dBPldDoVAoJNiWRMyYMUP9+vXTCy+8oN133738+m9/+1s988wzevnllzu858UXX9THH3+s7bffXgsXLtRll12mZ599Vu+995422GCDDtOfe+65Ou+88zq8fscdd6hHjx7xfiAAAAAAAACgxi1btkxHH320Fi5cqF69enlOW5WZlmHsvvvuFQHOPfbYQ1tvvbX++te/6oILLugw/ZgxYzR69Ojy80WLFmnDDTfUgQce6PulVqOWlhZNmDBBgwcPVufOnbNuDlB32AaB7LEdAtljOwSyxTYIZK/Wt8NSJbOJqgxa9unTR01NTZo9e3bF67Nnz1bfvn2N5tG5c2fttNNO+uSTTxz/3rVrV3Xt2tXxfbW40pTU+ucD8o5tEMge2yGQPbZDIFtsg0D2anU7DPKZqnIgni5dumiXXXbRxIkTy6+1tbVp4sSJFdmUXlpbW/XOO+9ovfXWS6qZAAAAAAAAAEKoykxLSRo9erSGDx+uAQMGaODAgbryyiu1dOlSjRw5UpJ03HHHqV+/fho7dqwk6fzzz9duu+2mzTbbTAsWLNCll16qqVOn6vjjj8/yYwAAAAAAAACwqdqg5ZFHHqk5c+bo7LPP1qxZs7Tjjjvq0Ucf1brrritJ+uKLL9TY2J5IOn/+fJ1wwgmaNWuW1lprLe2yyy564YUXtM0222T1EQAAAAAAAAA4qNqgpSSNGjVKo0aNcvzb008/XfH8T3/6k/70pz+l0CoAAAAAAAAAUVRln5YAAAAAAAAAahdBSwAAAAAAAAC5QtASAAAAAAAAQK4QtAQAAAAAAACQKwQtAQAAAAAAAOQKQUsAAAAAAAAAuULQEgAAAAAAAECuELQEAAAAAAAAkCsELQEAAAAAAADkCkFLAAAAAAAAALlC0BIAAAAAAABArhC0BAAAAAAAAJArBC0BAAAAAAAA5ApBSwAAAAAAAAC5QtASAAAAAAAAQK4QtAQAAAAAAACQKwQtAQAAAAAAAOQKQUsAAAAAyKuWFun556WVK7NuCQAAqWooFAqFrBtRDRYtWqQ11lhDCxcuVK9evbJuTuxaWlq09dZba8WKFVk3BahbK1asULdu3bJuBlDX2A6B7LEd2sybJy1fLnXvLvXunXVrUAfYBoHsrVixQhtvvLFef/31rJsSuyDxtU4ptQlVYMGCBfr666+zbgYAAAAAu+XLpS+/zLoVAICUcPOAoCUs1lxzTTYKIEPc1Qayx3YIZI/t0MYaqOzXL7t2oG6wDQLZW7FihdZdd92sm5E5gpYou/zyy3XwwQerc+fOWTcFqDstLS0aP3482yCQIbZDIHtshw4aGtofT5+eXTtQF9gGgexZt8N6x0A8AAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAVINCIesWAACQGoKWAAAAAFANCFoCAOoIQUsAAAAAqAYELQEAdYSgJQAAAADkkT1ISdASAFBHCFoCAAAAQB4RtAQA1DGClgAAAACQRwQtAQB1jKAlAAAAAOQRQUsAQB0jaAkAAAAAeUTQEgBQxwhaAgAAAEAeEaQEANQxgpYAAAAAkEdkWgIA6hhBSwAAAADII4KWAIA6RtASAAAAAPKIoCUAoI4RtAQAAACAPCJoCQCoYwQtAQAAACCPCFoCAOoYQUsAAIBqdvvt0vnnS0uWZN0S1IPWVunyy6U//1lqa8u6NbWPoCUAoI51yroBAAAACOnVV6Xhw4uPFy2SLrss2/ag9t1yi3T66cXHffpIxxyTbXtqHUFLAEAdI9MSAACgWj38cPvjyy/Prh2oH9dd1/74xhuza0e9IGgJAKhjBC0BAAAAmGloaH9MAC15BC0BAHWMoCUAAEC1sgaQgDSwzqWLoCUAoI4RtAQAAAAQHAG05BG0BADUMYKWAAAAAMxQHp4uvmMAQB0jaAkAAADADOXh6SLTEgBQxwhaAgAAAAiOAFryCFoCAOoYQUsAAAAAZigPTxdBSwCI17nnSgMHSq++mnVLYKBT1g0AAABASJTqArWNoCUAxOeLL6Tzzis+3mMPqaUl2/bAF5mWAAAAAJBHBC0BID5ffdX+eNWq7NoBYwQtAQAAqhWZlkgb5eHpImgJAKhjBC0BAAAAmCFQni6ClgCAOkbQEgAAAEBwBNCSR9ASAFDHqjpoee2116p///7q1q2bdt11V73yyitG77vrrrvU0NCgoUOHJttAAAAAoJZQHp4ugpYAgDpWtUHLu+++W6NHj9Y555yjN954QzvssIOGDBmir6wdqzqYMmWKTj/9dO21114ptRQAAACoEZSHp4ugJQCgjlVt0PKKK67QCSecoJEjR2qbbbbR9ddfrx49euiWW25xfU9ra6uOOeYYnXfeedpkk01SbC0AAB7mzcvnhWhzs7RkSdatgBcCSMhSHvdbtYagJQDEh31o1emUdQPCWLlypV5//XWNGTOm/FpjY6MOOOAAvfjii67vO//887XOOuvoZz/7mZ577jnPZTQ3N6u5ubn8fNGiRZKklpYWtbS0RPwE+VP6TLX42YBqwDZYvxruuENNP/uZCnvtpdbHH8+6Oe3mz1en7beXli3Tquefl7beOusWJa4at8PG1lY1WZ5XU9tRnZrUnvXQ1tam1pjXuWrcDhO1cqU6W562tLRIfDdIENsgalnDqlUVQbC8rue1vh0G+VxVGbScO3euWltbte6661a8vu666+qDDz5wfM/zzz+vm2++WZMmTTJaxtixY3Xeeed1eP3xxx9Xjx49Are5WkyYMCHrJgB1jW2w/vxgxAhJUsPTT+vJG2/U0n79sm3Q/2x3003adPZsSdLSww7TM1dckXGL0lNN2+EWH30kazh5/PjxmbUF9eE7CxZo7f89XrhwoZ5NaJ2rpu0wSd2/+koHWp4/9eSTWr7OOpm1B/WDbRC1aM2PP9Y+lud5P2+q1e1w2bJlxtNWZdAyqMWLF+vYY4/VjTfeqD59+hi9Z8yYMRo9enT5+aJFi7ThhhvqwAMPVK9evZJqamZaWlo0YcIEDR48WJ07d/Z/A4BYsQ1CkvbZbTfpW9/KuhmSpKa77y4/XmPxYh188MEZtiYd1bgdNtpuxtbD74RsNV1ySfnxGr16xb7OVeN2mKgpUyqe7jtokNS/fxYtQZ1gG0Qta3jttYrneT1vqvXtsFTJbKIqg5Z9+vRRU1OTZv8vA6Rk9uzZ6tu3b4fpP/30U02ZMkWHHnpo+bW2tjZJUqdOnfThhx9q0003rXhP165d1bVr1w7z6ty5c02uNCW1/vmAvGMbrG+dO3eW8vL7N7Z3e91QKNTVellV22FjZffkVdNuVC/LOtcoqTGhda6qtsMkdaq8XOvcqVN+jhOoaWyDqEn2fWrO1/Fa3Q6DfKaqHIinS5cu2mWXXTRx4sTya21tbZo4caJ23333DtNvtdVWeueddzRp0qTyv+9///vad999NWnSJG244YZpNh8AAGd5GlTF2hY6LQdQkqf9VD1gIB4AiA/70KpTlZmWkjR69GgNHz5cAwYM0MCBA3XllVdq6dKlGjlypCTpuOOOU79+/TR27Fh169ZN2223XcX711xzTUnq8DoAAJnJUzAgT22BO34nZImLv+QRtAQA1LGqDVoeeeSRmjNnjs4++2zNmjVLO+64ox599NHy4DxffPGFGhurMpEUAIB84SIZQAlZ2OkiaAkAqGNVG7SUpFGjRmnUqFGOf3v66ac93ztu3Lj4GwQAQBR5ypojMFEd8rTOoD6wzqWLoCUAoI6RiggAADoiMAHADwG05BG0BADUMYKWAADAGxfJAErIwk4XQUsAiA/70KpD0BIAgLzIU3ajtV9oTvAAlORpP1UPCFoCAOoYQUsAAPIiT8EAsqkAIHsELQEAdYygJQAA8MZFMgAn7BuSR9ASAFDHCFoCAJAXZFoiqDytM6gPrHPpYv8LAKhjBC0BAEBHBCYA+CGgljwyLQEgPuxDqw5BSwAA8iKvJ1J5bRcILiN9ZGGni6AlAMSnrS3rFiAggpYAAORFni5GCUwAcMK+IV0ELQEgPuxDqw5BSwDxe+EF6aSTpEmTsm4J6llzs3TWWdIf/lA9Jyh5aicZfAAy0nnRIjX+v/8n3Xpr1k3JHkFLAIgP+9Cq0ynrBgCoQXvuWfz/r3/lwIDsXHGFdNFFxcff/KZ05JHZtsdEXreXvLYLQPpSyLTc/oYb1PT888Un3/62tN12iSynKhC0BID4UB5edci0BADUpuuua398773ZtSOIPJ1IUQIKwEkK+4YNSgFLSXrxxUSWUTUIWgJAfNiHVh2ClgCA2tTa2v64sUoOd3k6kaI8HIAT9g3pImgJAPFhH1p1quQqDgCAgKxZiwQto8lru0AACdli35A8gpYAEJ88VTXBSJVcxQEAEBBBy2goDwfghH1DughaAkB82IdWnSq5igMAICCCltEQmKgOZFoibaxz6SJoCQDxIdOy6lTJVRwAAAERtIyGoGV14LdBltJY/+p9HSdoCQDxYR9adarkKg4AgICqMWiZp7u/ZFMBcMINjXTxHQNAfNinVp1QV3GLFi3SokWLIi98yZIleuihh/TQQw9FnhcQydy50p57SgccIC1fnnVrkDcXXSRtsYX06KNZtwRBWAOATU3ZtSOIvJ5I5bVdILiM9LHOpSvJTMuVK6WDD5Z23VWaMSO++QJA2trapMMPl3beWfrsM+/pUFVCBS3XXHNN9e7dW++//77j32fMmKGf/vSn+tnPfuY5n6lTp2ro0KH64Q9/GKYZQHx+/WvphRekiROlsWOzbg3ypLlZOuss6eOPpYMOyro1CKK1tf1xtWRa5ik4SDYVAD/sG5KXZNDy2mul//xHeuUV6cQT45svAKTt73+X7rtPevNNaeRI9+k4blWd0FdxBY8fe/78+Ro3bpzGjRsXeV5AKl54of3xpEmZNQM5tHJl1i1AWNVYHp6n4yHZVACccEMjXUkGLd99t/3xs8/GN18ASJvp/ozjVtWpkqs4IGGcgAO1h6BlfPLaLhBcBmodA/EAgL8VK9ofe533Ux5edarkKg4AMsLFQfWqxj4t83Qixc0cAMgeQUsA8Nfc3P64a1f36diHVh2ClgDghQNb9SLTMhoy+KpDntYZ1AduaKSLoCUA+LNmWnbr5j5dnhIEYKRKruKAhHECDjcc2KoXQUvUA/ZRSBs3NNJF0BIA/FmDlmRa1pQquYoDEsYJONwQEKgNBC2DY79YHfK0zqD+sP4lL8mgJb8fgFpBeXjNqpKrOCBF7MhgZQ9aTptWP4HMQkH64ousWxEPgpbBEbSsDnlaZ1AfqE5JV1qZluzz0/Xll9KqVVm3Aqgd1qAl5eE1pUqu4oCEcQIen1r7/uwHto02kg49NJu2pO2YY6SNN5bOPjvrlkRH0DI4LmCrQ57WGdQH9g3pSitoyb4kPXfcIW24obTLLgRQgLhQHl6zIl3FNXDSglrBuhyfWut7qbW142vjx1fezatVd95Z/P+CC7JtRxyqJWiZp4sX9ovVodr3sahurH/Jq7XzKhRvChcK0ttvSy+9lHVrgNpAeXjN6hTlzdttt53r30oBzaampiiLAFBt7AeCtjapmvcDbkGkPAWXUDvydCJF0LI65GmdQf1h/UteWt8x+/xstLRk3QKgNlAeXrMiBS0LnKigFrFeR2M/ENRq0JL1pLpUywkK6xWCYp1B2ljn0kV5eG0jWAzEg/LwmhUqaLn33ntTGo7awvocH/uBoLVV6tw5m7bEgUzL2uBU5p9HeTqRYr9YHdgXIW3WdS5P+6xaRXl4beNYC8TDmmnZpYv7dJw3VZ1QQcunn3465mYAOcLJYDRO5eHVzK391RIEQ1G1rId52v9wIVUd8rTOoD5Y1znWv+Qxenhtq5Y+t4G8swYtvfaTHLeqDntJQGL08DjVWtDSLThZ7Z+r3lRLkJn1CkFxzELaWOfSRaZlbSNYDMTDWh7udd7PPrTqELQEJE4Y4lRrQct6zbSstQN6tayHefre2S9WhzytM6gPaZeH1/s6TtCytpFpCcTDmmm5apX7dNVyTYCyzPeSy5Yt0+WXX551M4B2pZPBmTOlW2+V5szJtj3Vpl6CltX+ufzU2kVRtQSZ8/S9E7SsDnlaZ6rFqlXSv/4lvfRS1i2pTpSHp4ugZW0Le6xdskS67Tbpk0/ibQ9QrUyDlnHuQz/9tLgdLl4c3zzRQWZBy8WLF+uiiy5S//799dvf/jarZgBFTuXhgwdLP/2pNHRoJk2qWk4D8VSzes20rLWgbLV8Hi5GERTrTHC33CIdcYS0++7SlClZt6b6sM6li6BlbQubaTl6tDRihLT99t4BGqAeFArSypXtz72u0+K6JmhtlXbeubgdjhoVzzzhKPWg5bx58/T73/9eG2+8sc4++2zNnTs37SYAZt57r/j/Cy9k245qYz8QVEuwyE29ZlrW2uerliBzni5GybSsDnlaZ6rFiSe2P77lluzaUa0YPTxdBC1rW9hj7Y03Fv9fvlyaMSO+9gDVyNqfpZROpuW8edKiRcXHt98ezzzhKFLQcurUqfrlL3+pbbbZRquvvrp69+6tnXfeWWPHjtXChQsrpl2yZInOOecc9e/fXxdffLEWLFigQqGgPn366MILL4z0IQDkSK2Vh7sFu6olCBZWtf9udtXye+XpYpSgZXWotW01bfQnFxzl4ekiaFnb4tgHWTPMgHq0dGnl8zSClk1N8cwHvjqFfeOECRN0+OGHa+n/VpDC/378t956S2+99ZZuv/12PfXUU+rbt6/++9//6phjjtG0adPK0/Xr10+nn366fv7zn6t79+4xfBQgAkYPj0+tBS3rtTy81raDalkP89ROgpbVoda21bQRtAyOdS5dBC1rWxzH2paW6PMAqpk9aJlGeTjnyakJFbScM2eOhg0bpiVLlpRf69mzpzp16lTOsPzoo4906qmn6rTTTtOQIUO0cuVKFQoFffOb39SZZ56pESNGqHPnzvF8CgD5US9By2r/XH5q7fNVS5A5TxejnIxVhzytM9WITIngau34kHcELWsbQUsguiwyLdkXpybU7eUbb7xR8+bNU0NDg4444gh98sknWrx4sebPn68ZM2Zo1P86In3wwQf1k5/8RM3NzVpttdV09dVX68MPP9QJJ5xAwBL5QqZlfBiIpzZU+0Wp/ffJ6+fJ88UoQcvqkKd1phqxngdHeXi6kjxO8PvVBoKWqHcELWtaqEzLxx9/XJK022676Z577qn4W9++fXXVVVdp8eLFuu222zR9+nStueaaeu6557TttttGbzGQBC5a4kOmZW2o9s9nP1nJa5A5z0FLVAfWmWgoDw+OoGW6+I5rWxy/L0FL1LsgQcu4rnGq/VqpioQ6U/vggw/U0NCgU045xXWaX/7yl5KkhoYG/fKXvyRgierByWE0tRa0rNeBeKp9O7CfwOd1PbS3q9q/d6SPdSYaysODY51LV5I3t7hpn704fk8G4kG9C9KnZVz70LxeW9SgUEHL+fPnS5I222wz12k233zz8uO99torzGKQhUWLpFGjpAsv5KQ0Do88Iv3kJ9Jbb2XdkvRkGbRculT65S+lc85J/oBU6weqtD7fLbdII0dKX3wR73ztQcu8BZnvuks67jjpo48qX8/TesUxoDrwO0VDpmVw1v0U61/yKA+P16pV0hlnSKefLt14ozRihDRlSnbtIdMSiC6LTMt63H9mJFR5eEtLixoaGrT66qu7TrPaaquVH/ft2zfMYpCBxrPOkq6/vvhkhx2kQw/NtkFpSepO8yGHFP+/5576uQtqPxCkGYQ57zzp6quLj7feWjrqqOjzpE/L5EydKv3sZ8XHkydLL70U37ztJyt5CgYuXCgNG1Z8PHFi5d/ydAKUp7bAXZ7W7WpE0DI4ysPTRTci8br+eumSSypfW2016ZprsmkPQUsguiz6tOT8KzWpnKk1UHpQNRr/+tf2J088kV1DspTEyWA9nUxkORDPTTe1P3700XjmSaZlcj74oP3xyy/HO+88Z1p+9VX74xkzKv+Wp4vRPLUF7vidoqE8PDjWuXQRtIyXbTwGSdLs2em3o4TycCC6FSsqn1MeXlO4vQxIyYweXq8nlVmWh1uXFdfNEvq0rM5l5LlPS691M0/7jTy1Be74naLhxnpwlIeni6BlvJzO37I8RyBoCURnD1pSHl5TQpWHl4wcOVI9e/aMPF1DQ4Mm2kvkgDQlcdGSpyBJmvIyEE9cvymZltW5jDxnWnrJ0wlQntoCd/xO0VAeHhzl4ekiaBmvWgxaNjdHnwdQzZYvr3xOeXhNiRS0fO211zz/XioL95quUChQPp5X9fq7sCOLJsugpXXZSQctqyUIFla1By3tJyvV8nvl6WI0T22BO36naAhaBmdd5+r1XCdNBC3j5XQ+kOU5ApmWQHSUh9e00EHLAgdM1BJ7eXgc63e97shqrTycTMvkUB7eUZ7ayXG+OvA7RUOflsFZ91N52mfVqrSClvWSrOCUgZXlehzHssm0RL2jPLymhQpatnGCglpH0DK8LAfiIdMyPrXWp2W1/F55OgHKU1vgjt8pGjItgyPTMl1kWsarFjMtCVqi3gUJWiaVaVko1M/Nn5RxpoYKDZwIFcWRLVivJ/L2z51mxl4SQUu3E9la/32rvTw8z5mWXtgHI6gk1+16WB8JWgaXdtCyHtZDL7UWtEyi/UHmWYt9WlIeXlTt2wbCs/dp2drqvj6YbO8m65J9Gvu1RxCsu544UwOkjuXhcQTeqiVIEre0y8NvuUVabz3p8svJtIxTtQct6dMyujy1Be6S+p3+8Y/ivvWii5KZf14QtAyO8vB01UrQsq1NOuQQabPNpHffjW++99wjrb++dO65ZtPXYtCSTEvpd7+T+vWTHngg65YgC/ZMS8l9u/ba5pYvl/bYQ/rWt6QZM7yXaZ+/V3anl+OPlzbaSHr22XDvrwOcqQFSxwAXmZbhpR20/NnPpNmzpdNPr1x2XBei9Rq0rLXy8Dxtj16fO08Xo3lqC9wl9Tv95CfFfetZZyUz/7wgaBkc5eHpSnJfnOZ+/u67pUcekT77TDryyPjme+SR0qxZ0nnnmU1fi+Xh9Z5p2dwsjR0rzZwpHXZY1q1BFpyClm5BRK8bQWPHSi++KL33njRqlPcy7ce/MJmW778v3XyzNH26tM8+wd9fJ0L1aXn++efH3Q6dffbZsc8TEdVrnwxOmZZhTmbq9USegXhqQ7WX/OW5T0uv7zZPgcI8tQXu+J2iIWgZHEHLdNVKpuVHH7U/fv/9ZJbR1ua/TZNpWXuilOWiNjgFLU27+LL2RWnNAn/9de9lxlEe/vXXwd9Th0IFLc8991w1xBzQImiZQ9V6UhQG5eHxYSCe2lBr5eF52h692pKndtbTMaCa8TtFQ9AyOMrD05Vk0DLNBIVly5JfxqpVUpcu3tMQtKw9HAdh79NSCpdpaQ08du7svcw4Mi1Zd42EClpKUiHGLzjuACgQGOXh8cky05KBeOJT7UFLMi2jy1Nb4I7fCWkj0zJdSQYt09x/WIMKSV37tbT4By2dAhmUh1c39kOIqzzcev3QySdUFleflvAVKmj51FNPxd0O5FG9BpMpD4+m1oKW9ZppmcaFTL2OHk7QEnFKq//ZWj0nYD0PzumCr1bXjzyolfJwa9Cye/dklmESNCDTsvbU+jk5/EUtDy+x7kP8gpZxjh4OT6GClvvQSShqHZmW4cVRWh+W9eBEn5bR0KdlcghaIk5p/E6trf4n79Wq1vflSXA6zjc1ZdOWelAr5eEELZ2F/T0bG9vbXe+Zlnk6x0M2opSHW7d/63vSKA+HETryAaSOJ21xBN7q9YI/y0xLK0YPj6bay8PtJyp5+r0YPRxxqvZtNWus58HVSuZftajF8vC8BS2zPEcIu3+1BlTItMy6BchakPLwuDItKQ9PDUFLwK5Q6HgS98EHzjvDtjbpvfecTzhq+SLPS5YD8ViRaRnMJ59IS5e2P0/q8330UfuFS5qZlnn6vRiIJx6FQnH/W+8XK2llWvqZMkVauDDxpsQu7+t5mj780Cz4EfTm5IoVlSNHI5haCRJbg5Y9eiSzjDxnWra0SJMnx/d7ErRsV+/nAWlYtUp6//149j9JnL+ZlIdPmybNnx/fQDxBysPdYgbVuj9PGUFLuKun/on8Rg/fay9pp506vn788dJ22xX/t8tT8CFNecm0jIvbAbWWTpD++U9p882lrbduLzFK4iB6663SlltKO+5Y/P4YiKejPJ285KktTkaPLu5/f/zjrFuSrTz0PztxorTJJtI3vyktXpx8e+KU9/U8LddeK221lTRwoP93EqQapa2teP605ZbSzTdHb2c9qpWgpXX08HrMtNxvP2mbbaQ//rHy9bC/p3XAIcrDs25B7TvoIGnbbaXzzos+r//3/4rnb0ccEX1eJX6Zli+8IPXvL220kTR3buV0cQ3E4xW0POEE95gBfBG0BCT/8nCpmG358suVr916a+X/fvOoB3kJWiZdHl5Lv28p6DNtmvTgg8XHSXy+n/60+P9HH0nPPJPshZf9wiVPvxdBy3hceWXx//vuy7QZmUvid7JfAPpdEB54YLEd8+dL110Xf3uSlPf1PC2jRhX/f/vtYjaYlyDH+ZdeKp4/SVyshZVW0DLpZIU8l4cnfY4wf770/PPFx2PGVP6NTMvoCFomq7VVeuKJ4uM4gpaXX178/4EHos+rxK9PyyOOKG7nS5ZIf/1r5XRxlYd7BS1vuaX4v1PMAL4IWgJ2TuXhJUH6qshTkCRNeQlaMnp4OKUT36R/t8WLybR0QgAFQSUR0LBn7fhtP9Z12inbIc/q9Vjtxe/3DnKcj2NggnrfL6YVtEz6e67noKXXNkXQMro8nePVorzvgwsF//Lw+fO9318SZCAe+/dCn5aJIWgJ2DmVh5cECYTV64VQXoKWZFqGUzrAJ/35li1LN2iZp9+rWoKWeWoL3CWxz42y/VTbelNt7c2DIOXhcdxArPffqFbKw9MIWpoEyZ0CC0kHvZIYgM96nkt5eNYtqG153+e0tDi30bqtex2L3EYPjzPT0k3ev9ucIGgJOHHbgRC09Gf/3LU6EE+tniCVPlcaGRdpDsSTp9+LoCXilIdMy2rGet6R3/EzSKCcoGV0aX3+eikPd/o+kz5nTyJoaW0zmZZZt6C25X0f7FbhYZr5GHYgnjiCljBC0BKQzPq0DKpeg5Z5ybSMSz0MxGNV+r2S/t2SDlpWa5+WeWpn3k9SUZTESJR5zlSOG+t5cAQt01WL5eHWQWTiFLY8sxqDltb3kWmZdQtqW97PAZz6s5Qq1wuvY1HYPi2DjB6OSAhawl29jh4umWVa+u3A876DT0pegpaUh4eTVtAy7fLwPJ3QkmmJOCWxzyXTsr75nf8FKQ+PQ73/RrVYHp7UZwgbtKzG8nDr+8i0zLoFtS3v+5w4My2jlIfTp2ViCFoCdqZ9WvrdTanVoJafvAQtKQ8PJ60+LZcvp09LJ3k6McxTW+AuiYBGnrefuLGed+T3nZBpma5aHD08qX1KNWZahl025eHtavWcPC/yfg5gErQ0zbSkPDyXCFoiHe++K11zjffIXVmy7si8gpZWfqUYed/Bu/nyS+nPf5amTAn3fvuJmfVE4rHHpNtvT+dOVNJBy7z/vtOmSVddJX3xRbD3pdWnJZmWzvJ0cW5vy+efF9epmTOzaY8Xt+/tq6+Kbf7oo+TbMH9+8Tj39tvJL8uKPi2jyfu+PI/SvjmZp/1iFpIMWmb13RK0NPub6TzTKg8vFKR//Uu69958bZdkuCUrzG+9fLl0443Sf/8b/7zt3IKWpuXhYQfiiaM8PE/bUY75/BJADFpapG99q/j4qaeKB7u8CVMeXquZlgcdJL3zjnTFFdLUqcHf73Yx8/bb0ne/W3y8dKl08snR2umn3jMt99tP+uSTYgD600/N31erfVrm6feq1qDlbrsVg4DjxklvvJFJk1wVCs7b/FFHFY873bsXA+VJOukk6Z57io+bm5Prs82O0cOjqbb2piHO8nAyLaOrlfJwq7wFLauxPDyLTMtHH5WOOKL4+N//lg45JJ3l+snTOV4tCrOOXnRR8Z8kzZghrbee83RtbVJTU/i2Se59WkYdiIfy8Nwg0xLJ++qr9sf33ZddO0yZlofXaqblO+8U/w+aoVfidgF9443tr/3iF+HmHURcQUu3E6G8/76ffFL8/7PPgr0vyaBljx7tj5ctYyCeoH9Lm/33Ke3L33wz/bb4cfvennqq+H/SQXKpPWApSbNmJbssKzIto6mFAFDaKA9PV5JBy7T6r7fvQ5I61oUtz0z62JvEzcosMi0vvLD98QUXpLNME7V8jMqDMNtHKWApFYPdcc7bLqk+Lf1QHp4agpaAE7cTCLc7MU7yFHxIk1sGhnVgnDQuQOo90zIstz4t4/jNundvf5x0n5b23ydPv1e1Zlrmmcm6lOYd8DT3/3nLtKw21bSep8Xv+EnQMl21UB5uz3Svt0zLNIKWafyWed0W83SOV4ui/u5J36y3Bi2t/VCarhduQUu/tjF6eGoIWsJdXEGfahiF3N5Gk34MazXTMiq3i5kgI6/HgdHDwyl9riQukqyZlmkHLfP0exG0jJ/J75vmQAVpXkAlcYOhljMtk/i+6g2jh6erFsrDly6tfJ630cOrMdPSPs+0si1L8nR9V0vHqDyKun0kfd5rLQ9fbbX2x2EG4rG21e9zk2mZGoKWgJ1Xebj1dTItnbkNxBNXENEUmZbhuJWHx51pmfRAPGRaRpentvgxaWuaF3RZZlomMXp4nrafqPLcdUS1INMyXbVQHm4PWuYt07Iag5b296UdtMyTWjpG5VHUfY7X7xN3pmXPnu2PwwQtrYIGLcOUo9f78c0QQUtA6jh6uMnOi0xLZyaZlmmo99HDw0qyPNyeaZnkSSaZlvUlb5mWaf6OSZSH249vedp+orLvG9jmgmP08HTVQnl43oOW1V4eLqV7jMsbgpbJqqbycGumpel6EfZaL2x5eC2dU6WkqoOW1157rfr3769u3bpp11131SuvvOI67X333acBAwZozTXXVM+ePbXjjjvqb3/7W4qtrWN5Kh9wY1oebt35Bc20rIaT7jjaWGtBS7cDXq2eIKWZaZlm0NLrZkTaqiVomae2+DE5ASTT0lyUTMu8rzcELaMj0zJdtVgeHtc+0v5d1FOmpX2eaQQt87ru1eo5eV4kWR4ed9By9dXbH4fJfLTyW6/Clodb55vXbSpnqjZoeffdd2v06NE655xz9MYbb2iHHXbQkCFD9JV1pGqL3r176//+7//04osv6u2339bIkSM1cuRIPfbYYym3HLkXV6Zl2pkIcYjjot7tc9daeXg1/J5hJNmnZZcu7Y/T7tNSys9v5vVd5qWNUnWdSOUt0zLNC6g0Rg/P03oZlf0ipprW87T4HT+D3NQiaBkdQUt3Ycsz/eYTt1osD89TUgpBy2QlWR4ed5+WaZaHx5FpWUvnVwmq2qDlFVdcoRNOOEEjR47UNttso+uvv149evTQLbfc4jj9oEGDdNhhh2nrrbfWpptuqtNOO03bb7+9nn/++ZRbXofydFBzYy8PT6JPy2rYKcVxUR9HpuU110hHHCF98kn4dtCnZThJlodb55F2pqXba1kg0zJ+SQct33xTOuww6R//MJveaV17/nnp0EOlBx4I3w4naYwenpdtJw71lmn57LPSD34gPfyw+XvcvpOPPy4emxcurHydTMtkJfn5rfOO67zpnnukoUOlV19tfy2toGXYgTCyLA8P+11kkWmZV7V0jMojt31QS4s0apT0859XBg7tvDIL81Ae/v3vOx8jk+rT0vq+ej++GeqUdQPCWLlypV5//XWNGTOm/FpjY6MOOOAAvfjii77vLxQKevLJJ/Xhhx/qj3/8o+M0zc3Narbs/BctWiRJamlpUUsNjgzl9JlaCwW1xfFZV65UZ59lZa2pUChH8AuFglbZ2lyyqrlZhf+1v2HZsooNyP65GlaurPx7NXSQvXRp5N/K/rlbV65UW0uLGgsFNZnM+/PP1fkXv5AkFSZP1qpJkzyX5/Q7SVLrqlWxrL+Nq1ZVtLs8/5aWeLaP/yl9H3FtH0F+R+u0pc/luP5GzJZtamtr386WL1fbypVm60SYZbW0dLgr19LcnIubKPbv1iqu9TYOTa2trnc287Afr1jHm5sdL1Yrplm2zPeC1m077LT77mpobpYeeEAtP/iB1LWr97JWrOiwrE5Dhqhh2TLp4YdjXRet25X0v2014u/TsHx5xTq6auXK8rHPScU+pLU1N+uwoxUrKtubo20uCZ332af44KGHPM9DKtZfl3Wo08EHq8HhZqLb9idJDatWeZ4rOWlpaamr38iP/Twkzu/Dup8vFApaFXW+hYI6H3lk8fGDD5bXuYZ58yrWg7a2NrXG8RmamyvXleZm3+/G6byx0NYW/bN7sbXTalVLi+f+1U2nQkHWo0jL0qWxjV7sdiy0Hm/aCoV4fsMYNDQ3B97PIADb+lv6fhuvukpN114rSWrt00dt551Xnsbp2qL4pNXo/C2IxqVLy/vItu7dy+uo9bq9U0ODXM+6Jk2SDj1ULbbzg7ZVqzzX8Q7XvCtWuO5/Opwjdu7sOA/ruhv3tWHeBPlcVRm0nDt3rlpbW7XuuutWvL7uuuvqgw8+cH3fwoUL1a9fPzU3N6upqUnXXXedBg8e7Djt2LFjdZ5lwyt5/PHH1cM6mEQN++yzz/T++PGR59Nt3jwNsTwfH8M847bH11/rG/97vGjxYr353HMa5DDdqy+/rK/+d9dmnddf1+6Wv9k/V5+33tKeluePjh+vNmt5bA51+/rryL/V2u++q+9Ynn/w/vv6ZPx4bf3ZZ9rCYN7fmDRJe/zvccP77/u24Qcur3/04Yf6KIZ1bdtPP9VmDq9/9sknsWwfdhMmTIhlPtbvJch3+OlHH2ny+PFa7/XXNdDy+qP/+Y/aHAI1QXzn66+19v8etyxapCkffWS0ToQxcMYMrWd77bHx49XarVtsywir3xtvaIDL3z7+6CN9mJN95M5ffqkNXf6Wh/24db19YsIErezVy3OaF59+WvNnzTKat307/IHlJuaEBx9Ui/VOvtOynnlG82fOrPz7smXlxxPvvFPNa65p1BY/u8+erXUszydOmKDm3r0jzXPjN97QjpbnLz7/vObNm+c6vfWzf/Lxx/ogB+uHm67z5um7lucfTJ6sT3Lc3qhMjwXW6Z575hktnjq14zQu1Q9u00vSmh99pH0M2+DWng8/+EAf1/Bv5GezDz7Qtpbn77/3nj6L6fuw7udbWlr0n6jzbW11XOe2eOIJbW15/es5c/RCDJ+hqblZh1iev//2277fjeN5Y1tbose1Xp9/rn1d/vbWpEmaHuJ4cEhra0Uw+/lnn9Wi6dPDNM+V/Vi414IFKh1dFixYoOdysl32e/31ivOq8Q8/nH63VDXM7fpw97/9rXz+sfTvf9dTu+5ansa6nZWuBSWpoaVF37f87YnHH9fKNdaI1L6tPv5YW/7v8fS5c7XR/x6/N2mSpvxvuQe1tMjvKvzRhx7SoZbns2bO1Kse6/j6b7yhb1ueT/n4Y73rMr31+3j80Ue16n9l7H7xBCm+a8O8WWY5L/ZTlUHLsFZffXVNmjRJS5Ys0cSJEzV69GhtsskmGjRoUIdpx4wZo9GjR5efL1q0SBtuuKEOPPBA9XK4MKp2LS0tHTaITTbZRP0PPjj6zL/8suLpwXHMM2ZNf/5z+XGv1VbTnnvs4Tjdt3fZRYX/tb/BlgJu/1wNtgDldw88sHL05Dz6/POKp2F+qwZrXyKSttpiC21x8MFqtGVBu827oanJaDo/W2y+uTaLYV1rfOIJx9c32XjjeLaP/yltg4MHD1bnzm7348MJ8h1u+s1v6psHH6wGW5nHd4cMibz+Nlky2zu3tGjT/v1Dt9N3WTfe2OG1IQccIOVg/91gL6202HyzzbRpTvaRTXfd5fq3vO3HD9hvP2mddTyn2WOXXVTYZx/PaUy2w8EHHCD5BAX3GDhQBZfjiCQdsOmmKlhO7qNouvrqiuf777eftP76kebZOGVKxfPdd91Vhb32MnrvZpttpk1ytn5UmDat4mnpGFUPTLfbvb7zHWn77Y3nu9eee0o77OD4t4Y+fQK3wZ59seUWW2jzOvmNnDS++27F82223lpbxfR9NN15Z/lx5y5dou/bbdm8pfk12brFWHutteI5jixZUvF0my22CPXdNLS16eCDDkquGuPNN13/tMP222v7EG22h+S+s+ee0k47BZ6PE7djYdPFF5cfrxnXbxiDhgULKp4f/N3vSp3qKsyRLNtxs7xdW84/Vl9tNdf1YavNN28/zlpLuSUdsP/+vudvfhpfeKH8eINvflN66ilJ0nZbbaVt/rfcTl26dOymwua7++1X8bxvnz6e63iDbf/Tf8MNtZHBNnHg/vuXzyPtexzr8pK8NsyDUiWziarcmvv06aOmpibNnj274vXZs2erb9++ru9rbGzUZpsVc6Z23HFHTZ48WWPHjnUMWnbt2lVdncq/OneuyZXGSVNjo5ri+Ky2g0Yuvz/L3biGhgZ1bnIqCC6mlpfSue19UHT4XLY7fJ2bmtrfm1e2vjlC/Va2766poaG4HpmuB/bvLeR3Ftv66zZ/KZH5J7GPCTK/8u9l/x06dYq+/lq2mYaVK9UUx/pmsKzy/POyDXrc/S9//3ngcfGWt/24yW/bqbXV+Pf32g6NllWcifvfp02TvvMd179HEcu2ats2K459PpqamvKzDjuxbX9JHyvyxHS7DboOeW4TtnOCMPuOevqNHCW5zlr28w2FQvR9u+2Gfnl+tkzcxkJBjXF8Bvt3UyiE/m46d+qUXHaex3w7hT03sV+HNDbGfo7jdSxsbGiI5zeMg+18JYnvoq65XcNZ9x8NDa7rSsW5re3GRizn5pZ2NFoqqoJeq3W2nfs0St7ruH3/09pqtLyKz2xw3Vur8acgn6kq86a7dOmiXXbZRRMnTiy/1tbWpokTJ2r33Xf3eGeltra2in4rkZBq62DWdCAevz4qkxjIJGlJDsRjeiIY1/eUVCfvJbXa6XdaA/FIHTIkYsVAPNHlqS1+0hw93OR78euM3ZbVHkkSndrX8ujh9TYQTxhBv5Ok92n1/hslOXp43N+t23HWvs/LavRwr8+b5DlCGqOH19J+Oij7b1fP30US3NZR03XX+nsk8VtZ52ENhJkOjFNiP09MY/Twej++GarKTEtJGj16tIYPH64BAwZo4MCBuvLKK7V06VKNHDlSknTcccepX79+Gjt2rKRiH5UDBgzQpptuqubmZo0fP15/+9vf9Je//CXLj1EfquHAYR893G0H4jV6eKFQOZ9qHD08jsGC7N9d6eBkWnIT1/eUdPCzGn7PMEq/VxIXSfbvLEBZQGBOFx95+c0IWsbP5LeNazA0kwvbLIOWcfxutTx6uP23qab1PC0ELfMlyaCl9beLozTaaV+xalWH8tLMgpZe+7IkzxGS2Eaq8TojKQQtkxX1+7T+PkkHLa3ds1n3Byb7t6A3bO1/Nw1aWr8D1lUjVRu0PPLIIzVnzhydffbZmjVrlnbccUc9+uij5cF5vvjiCzVaMruWLl2qU045RdOnT1f37t211VZb6e9//7uOLI1wh47i6telGk82TbLr7Du2Wgha2u8w2T+TiaiZlnkLWrqd4NbSRXxjY/v3bv+/pBaClnn5zQhaxi/NTMt6CFraj2952XbiwMWtv6DfCUHLZFV7puW0acllONvn67fv9QoqVFvQMsn1wmSZSfX/GYZ9PailY1YeuK1bYRJSkr6+sAYtreuBSVuDZloGvWni9L56P74ZqtqgpSSNGjVKo0aNcvzb008/XfH8wgsv1IUXXphCq9BBNWyM9p1H2ExLt2ndlpG3ke38ArEm3D53EpmWXutWPWdaBv3saQUt7fMIE7Rsbe3QR5rrdHYmv5np/KPIKmgZ9LNVw767xKStcQUtTU5Knabp2bO9E/i8l4fbj29x7ZfzoJ7Lw033AUG/E69tIo71MY3fqLW1eCzMUyCmJK1Myzg4HXud9ndJZVr6ZTp5rauUh0eTxvmT17Ktsv4uqo3fb1cv5eFBb9jGUR7OumokZxET1KRquCAwPfD7ZVp6zaP090WLpO22kzbbrMPI6pkLeofJidv3kETQMo3gTzX2aRn0d7OeqCTZp6V9nosXB3v/NddIa64pXXCB/7RBMy0LBekHP5D69pWefTZYu4LKImh51VXF784y8qevath3l1RDebj1tS++iG8fksS2WsuZlvVcHr7++tKQIf6fOeh38p3vSM88E8+8kpqHl48+kvr3lwYOjO/mRpyqPdMyzaClX5Ai6QB7mHmH+Q2c3pNl8OOf/yyOhnzqqdksn6BlOIWCdOihxXPf5593n64WysNNRM20DFMeXk/nIBEQtETyquHAYRq0jCPT8pxzpPffL57EZXVwd+NUHh5UmuXhXu1LeiCePK/XQdtm/W1K703iIsk+j6BBy1/8ojh4z9ln+08bNNPyv/+VHnpImjtX2mefYO0KyqsdSa1Xp51W/O7+7/+SmX/W8lYe7nTian1t1Srp66/jaU/eMi3zrp4zLb/6Snr8cemRR7ynC/OdDBoU37ySmIeXI4+Upk+XXntNuu66ZJcVRrUHLWfN6vhaXPuUoOXheQxaxpEgEHY+cSxXkn7842JSxnXXBT+3iwPl4eE8+6z08MPFc9+99nKfLup+Is1MyyzLw92Cll7nabV0fpUggpZIXjVcEFjbaFoe7tdZr9vzjz9uf+3994O1M2lxjBgbdSCeICcaWZaH5/mEKI6gZRqZlqZ3JMMImmkZVwDJBH1axi/NTMsw5eFtbcn1c0yflsHUc9Cy5KuvvP+et6BY0r/RpEntj6dPT3ZZYVR7eXiSA+PFmWlZTeXhTvPLS/AjaHZbHMi0DGfuXLPpTL5Pr+u8NPu0dCsPN7kOXb7cfb5O7G13W/cJWkZG0BLJq4YLAnvQ0iRQFaVPy7yqpUzLpAfiyfPvGfSEIK3ycPs84goiOWH08OjS2L7CCpNdmOVAPE4B+jwHLWs507Key8NN1VvQ0iqrPvm8JPn508i0TDIrkPJws2UkwS0IlEW/sAQtwzH9raLuJ6qlPDxo0DJspiXl4YERtIS7eho93PSizyvT0rRPyzx/H0kGLenTMj1BA45kWqZ7kk3QMrowN4WyDFo6nTgnFbSMY771lGlZjxe3fttvnN9JHPNKc3+TtwESperOtHRLBEjqxjJBy/pEeXiyaqE83MSKFZXP/d5PeXhqcnhkRs3J+uLWhGmmpVeflqbl4dZl5W2UyiTKw5MMWtKnpbOgAR2TPi3jPqmQKte3uLcFMi2jS2P7CivMRXyW5eHVlmkZ5ViQp3XYCeXh/si0zJdq7tNy1apkS5mDZlp63Syt9vLwvOzLsjg/4GZUssJ8n9Z9aZpByyijh2dRHp6X7TbnCFoiedVw4DDNKosyerjT95C3oGUcmZZunzvtoCWZlu3yWh5uvXhII2iZl9/Max3P0/4yz0HLasu0TDNoGcd87e3Ny7YTB4KW/p85b0Exgpbez+Ocd1T27aulJd3ycL8KDjItozFJvCBoWXvCrKPWhAjr75PnPi3tmZZxlYfbp/P6PuCIoCXcJXVBlUemF31emZa1UB7uF4g14dZvR7X2aVkLQUu/79Tpbmga5eHW9S3ukjzKw6OrtaBlXJmWeSsPT2JbjSPrPq/o09Jf3oJilId7P4/Cum3HcRxMO9OyXsvDk/xOo8pD0DLP5+jVKGrQMg/l4VkGLSkPjyyHR2bkRlwnRdVwQRCmPNwvwJdE9kvJu+9Kc+bEN78SeyZSNZeH1/NAPEEvcJzuhqaRaenWhjh4lYe3tUkvv9zx5CQtBC2jy3IgHvtF74oV0ksvVb5mP3GttvJwMi3j9fHHzqNSFwrS669Lixb5z+P996XZs+NvmxOClvmSVqZlHPN1yrTMU3l4rYwe7pZpOXeu9M47wecXJ7fPWihIr74qLV0a/zLJtEyW12/qJqvy8DgH4vHbJ3hVkHlN19oqTZ4szZqVr/P+HMvhkRm5Uc9BS5Py8Kz6tHzgAelb35I231xavDj4+73kYfTwIAeYNII/9ZBpadKnZRKZlm5tiINXpuXpp0u77SYdfHC8yzSVRrA97PJNp8v6giBP5eGHHCLtvnvla9VeHl5PA/Ekvc29+qq0xRbSN78pTZ1a+berr5YGDJB23tn7O378cWnbbaVNNpHmzYveJr/PHOf2XW1BS8rDo0m7PLxeMy2d3rN4cXFfs/320r33Bp9n0OW6XcO47csuvlgaOLB4vEx6vaulY1YexFkensQx2DqPLMvDTfu0fPxxaZttisf0JJKQahBBS7hL6i5oHiWRaZlU0PKww4r/L1wo3Xxz8Pd7ycNAPEGClmkEVUzWhbyplj4trYJuC37t8cq0/NOfiv8/9VSwZcYl60zLWghahgnUJVUePnFix2lMgpZxXVSlkWmZ9e8dJ/tvk/RnGz68fblnnFH5t9NOK/7/6afFjEs3Bx1U/H/ZMunKK6O3Kc0+LeP4fsm09H4eRdLl4W6ZlkndWK6XTEun+d1+uzR/fvHxj34UfJ5xcfusZ51V/P+dd6QZM+JdJpmWyQrzfbplWoa56ezHrU/LoNt00IpDr26vrOzb+O9+V/x/+XLpkkvM21fHcnhkRm7Ua6ZlW5t7m+Po0zJOcV2ElySZaZl20JJMS/fndmmVh3u1w2/9CBqkqtaBeNLYX5p+D15tyfq7DLN+JpFp6fZbptmnZRIBjSiZlnk/5qedaWnN3LCXnll5rQ9e5x5JiJpVE3VeSczDFJmW0eR99PCsMi299qFxJAhI6ewbTJh8HmsJbxwIWoZjem1msp+wzyurPi07dWp/HHT/FvSmpn3+pkFLq7jOTWscQUu4q+egpUmgKg+jh8d9UE5yIJ5aC1rm+YQoSqZl6ftPO2jpl90SNBDrlWnpJC8D8aSxXpkug0xLZ9Z9lNtFYrWXh9dypmXaQUu3C7ew0thXhflOunaNb15JzMNUvQUt4962KQ8PPu+4ysPTvt7K8+jhWd9YrTVu65Z1HbBPY1oeHnfQ0i3D0+TYGTRoaf+7WwAyz+fTVYKgJdwldUGVR9bP6tWnpVe2Q5g+LaOKe0cXx0A8UdP+89anpduJT55PiIIGHK0nFqXvP4mLJK95+AUtg57kmGZaZrF/qpZMSy9Zn2TlpU9Lt0BolkHLrDMt8y7t0cPjDlqmoZ6DlvVWHp5Gn5Z5yrT0ykas9vLwvDBpW9zfNZmWyXL7Pr3WXdOBeOJOinDLtAwTtPRbTwlapiaHR2bkBpmWHeWhT0uvZUSVZHm46bzo0zK6aiwP97tQDHr30zTTMovfMeugZS1kWpqu49b1KomgpWmmZZLl4Un0D0WmZXzcLtzCiiPTMok+LWslaFlvmZZplIcnmWlpn49fiTSZltGYLMMkIJl0hm8tHbPywGQfZFoensQ5i1vQMmriTBrl4ayrRghawl3S5bV5EqY8PI4+LfMWtEyiPDyroCV9WrbLS3m41zz8toU4gpZegcy8lIfnKdMyzydZpiXR1pPmJMrDybSsPmlf3JpmWiax7bvN029ZYb6TWglaVkOmZZzSKA9P8oZhvZaHZ30MlqKVhyedaVlLx6wkhe3T0mSdzVt5uImgN2ydbpo4vSfP59NVIodHZuRGPZWHW9toWh7uN9J2EneS7OL+buMoD48atAzSkTh9WjqLkmmZVZ+WaQQtg55IJCXroGU9ZVpaX08z09L+erUFLWs507Lay8OD3GAJ+9nCvM9tYI04PjNBS+/ncc47KkYPd5ZGpmVemPzeZFpWlzDXtKbl4UlmWkYtDw+aaSk538z2mg/rqpEcHpmRG5SHdxQl0zKJ8nDTE6ynn5YuvVRauNB7uiTKw93Kjd0k2aflsmXSlVdK48dHX4bTd//ZZ9JFF0kffmg+f4u1PvxQjZdcIs2ZY/6mFSukq66SHnqo/bWgAUfrelj6XGn3aem3LSTVp2XeysPTaE9SmZavvSaNHSvNnh2uXUGYrp/W1+ulT8s45ltto4dPnlzc906Z4j9t0uXh779fbMsXXxSfu2WbpCHsupBGefjKldJ110n//Gcy7QmrFsrDlyyRrrhCmjCh8vX33pMuvFCaOtV8XlZPPSVddpn3uWQSA/F8/bX0xz9KL7zgP596ybTM6trKZLlOn3X5cv9pvLz6qvf5BUHLZEXNtPQKWibZp2VbW3GdGTtW+vJL//lEHYhHcj4vTCPJpsZ18p8Edaueg5ZhMi3z2qfl3LnSvvsWH7//vnTrre7T+mWPmshzefi55xaDt5L06afSJpv4L8PtItPpuxk0SJo2rbiMBQv85221fLn2PuOM4uOXXpL+/W+z911yiXTOOcXH77wjbbdd8Dui1u8qq0xLv/lTHp7O8q2CBC1XrZK+/e3i4wkTpCefDNc2U6bruPUzZDl6eJJ9WpJpKe2wQ7HNt94qffKJ97RJBy232644z7//vRhMzTLT0mS7CPN3J0GDltdfL512WvHxCy9Iu+8eb3vCSvNYYCroNv5//1e8mSkVA5QbbVR8PHBg8ebt3/7WfnPVdJ2cPVvab7/i4w8+kG66yXk6p3LtqOXhP/+5dN99xceLF0urrea9PC+1ErTMS+WIE6e2LV1a+TzIDZyVK4vrrlQ8t7AH453mR3l4vMJkWualPHzYsOINFxNRB+KRnG+QE7SMjExLuIvr4J33ix2pY3m4Salh0KBlmv1VWb3+evvjceO8p631gXhKAUtJeuwxs2UEybScNq34v19GqxPrHcCHHzZ/XylgKUn/+lfx/6DrXr0ELfNykp910DKJTEvrOm96chiFSXahfZp6ybSMYx2qtgvA0vf76af+0yYdtCzN74MPiv9nOXp4muXhQYOWY8a0P/Y7N6n3i7qg23gpYClV3kBatqz4/0cfOc/La74vvdT++Oab3adLok/LUsBS6riNUx6eHbcAv9P3uGRJ5fMgv/+8ee2Pn3jCbJnVcO2ZB0n2aelWHp5E92le5eFBzkmTKg/Pw/Za5Qhawl09ZVrad6ZubfYqD/fbCQcN3pmI+wSrngbicbvAsjMJYMchjvWidPIRNOBonb70/addHu43/yAnpG43HqqhPLxaMy3TZnLSa29/XJmWYUYPr7bycLduPmpB2n1aZjl6eNjlhXmfW5+WJt9vEpmfYeXxnDWJ43GJ9beO0oVLSRLl4VZ++ya/c0ivftOzyrQMs9y83IR1YpJpGeQzm3TZUG032qpNmPOMrDIto4weHnUgHil4piWMELSEu3oKWtrLw5PItEwiaGmyMw5ygRPHQDxRP3daQUu3Cyy7IJmWUSS5XgS5U+jWB2k1ZVoGCTTXY9CyFkYPN1nH7a/FlWmZt9HD09hWs/6941RPo4enWR7uNoBNEkH0JOVxXY8StAzyW3t99ihByySPvfb5+A3mSKZlNCbLjbs83GTdI9MyWWHOM5wG+ZSS79Myyo3COPq0JGiZCIKWcJdUFkgehSkPDzsQj1XUvpPi/m5rfSAeq6iZlnkMWobNtEyrPDxKECzIiYTbb+P0eqlN9GnZUZDfK+39fF7Kw/PYpyWZlt6SLg+3y2Ofln7iDKK4vZ7GKOhh5DHYESVo6Re4Ni0PDxu0tPdpWQooxPWbxlkenlWmZTUFLa3c1om4My1NPitBy2SFqaKzBg+9gpZJl4cHQXl4bhG0hLt6zrQ0KQ8P26eldbo0BuIJsoxaKg/3+25Mg5ZBBuKJwi87wIRb0DLIQTevfVoGOckJ8pvlLdMyjfYkkWmZ9vdosn46ZeDEsR6b9Glp356rrU/LKL9v2sf8qJkUcbbXaV5Zjh4eNJBo+vcoy8p7gCaP56xJbOOlmzhpl4eXAhlx7f8YiCd/nPZzUYKWJvtNysPDMV33wuyD3I59SZw/xlUensVAPDBC0BLukroLmkdhysPD9mkZpzyWh0cNWgYJ3uW5PDxqPyphxNGnZelzpREICTL/pDMt05R1pmUtBC3DZFpK4fq19Mo6zGOflklkRQe5AEx7XQh6cZpkpqVf0DIvmZZJBC1NlxXHeUWS8njOGkd5uP09pSBS2uXhpYBCUuXh9TwQTxrbSRbl4SbrCpmW4Zh+T27nfF77BdPy8LiDllmXh5NpmQiClnBXz+Xhbm22fidx9GkZJtPS+h4yLcP9TZI6dzZbhkkA20nAk9+GOIKWJXnNtIzye8URtKyGTMs8lYcHmUfaWQ0m67jpyWTQZYXp09JpvxbXd5ZGeXiQedZz0NLps+exT0s/SWZamt5giNqesPIY7EgraOk1X7c+S+1My8PjWjcpD8+eyfE47UzLPG7HeWT6PZlc29mvN63Ps+rTMui8gw7E4zR/p0xL1sfICFrCXa2Xhz/1lLTfftIdd5hnWlqz0OLo09LEtddKgwdLb7xRfB70DlKQ79++oz3oIOnss83f77Q8t8w9N2n1aRl1GX4nUUE+h5RtpmW9lId7jR6e5glF1kHLWs20bG2Vfv5z6Uc/kubPNz+Z9OMVoK3VTMsoQem0j/lB97VBMymCcPqeTI/ZSQT+w362OLMh3c6NgtxQvfHG4na9YEHwdgVVKEiXXiodeKD07rvJL89EHNu4ff0qBZHSLg83ybQcM6Z4/jl1avDlLV4snXaa+2cJGrQ84wzp0EOladP82+IljfLwrK63wgQt48q0LBSkUaOkxx4zm/9tt0n77y8995z58uMwc6Y0dKj0q195/07NzdLw4dLRR3f8zpJgus6YXBO8807lftM6TZqjhyedabl4sXTUUdLIkc7nlFHLw/fbT7rvPvPp60Qn/0lQt2o9aLnffsX/n3pK2mST9tdNysO9gh8lbieZQTIt588vHowlac89peXLg2daBrmgs2cNffaZdMEF0ve/Lw0YYDaPvGRahknpDzKd3/tbWqTu3c2WIYXLALMrrRtBs6ScysPrJdPSLQslSVG+hziEvbPuNY88ZFrecksxuCFJa6wh/elPHd8XJmjp1VdWHkYPT6M8PM+ZlkGDlnnNtEziezMNJAb9uxPTY2XYz3nvvdJaa0k33BDu/aY+/1y6+uri4wMPlGbMSHZ5JuLItLR/71mVh/tlWr7xhvSHPxQfH3649NprlX832TdddZX0gx+0n+dbBSkPnzhRuuSS4uNly4rPw/I6RlZTpqXTNYxJECpKpqXXtPfeW0zuMH3PiBHF/598Mt3v8Oc/lx5+uPh4332L66eTyy6Tbr+9+HjDDaU//jHZdkXNtLSbMKEYFJ49u3Ia63aXxE1vpxsjYeZtsi7//vfS3Xe7zyNqefhTTxX/5TV+khEyLeEurhPoJIIfcVuxov2xSXm4Sd94Jjtlv5PAefM6tjFo/1hxZC5++GH4eQTNZEurPNy0PaZZe0FLlOySLA8Pk2mZRvaW6d+kYJ1jh8m0zEv5YRoBnzgyLbMuxXLazzz7bPvzBx5wbn+Y4KrXtp2HTMukLwCkfGda5qk83KktcQctq3308Cjf9/33h3+vqS++aH88c2byyzMR5TvzC1qmkWlpXUYpoOC2rOnT2x+//rr//N3W8c8+M2uf17xKFU5SMcgVRS1nWpoMgpNUebg9qO01/yyvP0sBS8l5vS554on2x48+mlx7SsIGLb2+y6++6jhNVn1aBv3NTa41rL+lEwbiSQRBS7hLKtMyjxvu/Pntj03Kw00Ohm4XkmHukFsFTXuPq9zaVF4yLePKJDHNHgk6gqVdnJmWeS0Pj/J7UR6ezvKt8pxpaXLX36n9QbdLp3mHybR0Wm5eMy2d3l9LmZZJjh7ul2kZJGCSVHtMxJlpGXZbDbKMOKW9/ppIK9MyiaDlqlWV8/ULKKy1VrD5u21TG2zg/HqQGwdJ3ky2iusmQVYjZofJtIyrPNxtUM28DLyYd2GrzkzeZ1oeHmdSRGNj8IpEK5OqLr99IUHLRBC0hLt6ClouX97+uK0t2UzLIOXhTu1Iqjw8rpLVOIOWfh2/p5Fp6RfALjEJUnhJsk9Lv8/qdGKRRNAyykl7LZWHZx20TKJPy6zLw+0Z8g0Nzt9zVkHLNMvDo87X6f15zrSst/LwJEYPj+M8zTTTstSmMAMRErR0fm7y3ryVh7stz+9Yb3oD07ock+md5p1W0DLMOpeHoGWQc86kysPdgpZO78nLth3X9VYcTJcXZh9k/b7TyrSMGrR0Gq/C/ln99oWMHp4IgpZwl9cLqqQVCuEyLf0O2n4BSCd+F0AmO8E4gpZBuJUVms7fesDwC1pGCf5EDVrmMdOyJGjA0enEIm+ZlnEELauhPDyJdoTdBwcJWqa9X3f6TNY2NDZmWx5uf72a+rSstkzLeisPDyLsBWlcQZS45u23jDjl8eIyjm08y4F4rMvw62/Ovq+0l+ibZlqanrt5/S3MTS7TeVvFldkcZ3uDSLpPS699fJBMy7xcf+ZpH5NWpmXSfVpag5bW/6OWh4eZB5mWiSBoCXf1lGlp5XRXpcSrlNQ00zKIKKVmJaYnMXHcYZfizbQMk4lqX25J2AvVesy0dNoGkgiEBPl72PJwv4CB1zadlLSDlmGzIqsp09KeIV/PmZZJbKu1lGmZ5OjhTvMy7dKl2jMtTZcV5ftOI7Cbl8CGVR7Kw02Zjh7u1Cap4/b5+efe8zdd7/ymd5o35eHhlmsStEy6PNzkOi3vwmSjBxX2JrbJd2laHp5E0NLtesiPSVc+ZFpmgqAl3MW1gWWdkROG353buMrD/TjtPJMaiCepIHXQoFBSfVra73yZtsf0Ln6eg5ZBA4b2rDWTefjx+779/h4209J6Quu13ZJpGawtWe/XTT6TU/vjDlqaDsSTZp+WUefr9P64LjCTUE3l4Xnt0zKO/b1pkChKMCGJ7yjJIHZc8hC0DHvOtGpV5Xv9gvj2fWrYoGUcmZbVFrTMS6Zl3APxeO2fOnc2e0/QZdaLsOeDJu+zTuNVHh7HMTjJTEt7e+nTMhMELeHOaYdkHWXbVBJ3sZ12CHFyO/DHMRBPkIs/pxOmoEFL05OuuE6o4sy0DJIh6Pc3+7ob9mKuxP47LltW+TzgyW6DUz8qYUXJtJQ6XmREbU8c7w8btLSe0FZDpqXpjYgomW/1kGnZ2Bgt+FYotB9nvG5QJJVpGeQYFzag4baMqOXhaZ+c11t5uNcF08qVlfOJmkVj3Q6CzsNr3s3N7p/D6zwziXVryZLklxFVEkHL0ud2O9aHPWcKUh7u9DmCBi2TLA8P0l2RnyDn2CbbXNDjW3Nzcuu2yTlnnOXh1uNrUuXhcV1nOu3PvH7vtPc/Tstz+uxhrgncysPTyLQs/R903ibnagQtM0HQEu7sG9idd0prrikdfXS0+UTdcMeOlVZfXTr77Gjz8RIm09LvoF363Nb3+u1M4whapp1paZph6ra8IEHLICeB9hOHuMrDCwXp4IOljTeu/HvUPi3D3DEPm2npFJSJO5PO5P1e7QxbHu6XaRkmAzqqKDcIZsyQ+veXvvlNac4cs+XVYqal0/KtrzU0hM5EaWxpUaedd5bWX1966614Mi2DBC0ffljq3Vv63vd82+o4H5N1+fLLi8fRM84waxeZlmb8Mi3jCFq6mTxZ6tdP2mab9ptopoFEp3WorU3ae2/pG9+Qnn7af/lu7bcv629/k9ZYQ1q0qOO0v/qV1KuXGq+7Ltgywrr11uK2luQy4pBWpmXp+fXXS716Saee2v56lKCldRlpZVrGXR5uDbaGYXrc//nPi9/9Lbd4zy9IefiLL0rrrCPtumv0G4zW5ZbOOdMuD7f+Ll27mr1HMt9ufvWr4vHxmmvMpnfz+98X5zN2rPs0F15YnOb88zv+LYvy8JtuKq5/J51U+XqY80i3oGUS54/2oGXeysPzeFypMgQt4c6+gzr66OLdgzvvlGbNCj+fqBvu735XPGBdcEG0+XjxC1rGlWnpd9BOszzca15R+rR0G4jH7bNb21soBMumtLJ/HusI8U5/N52P/fVJk6T//Kfj36OWh4cJWrpdnAQtDy/1axlkHqZtCztNHJmWtVAe/stfSl9+KU2bJp1+utnyajHT0mn9tF9MhQxa9n/sMTW89540b540dKj3ZzXNtAxSHn7oocWg0/jx0ttv+7Y31DH29NOL+5xLLvGfn+k8vd6fpKD7yrA3sEykEbR0Ox4fdZQ0d6704YfSn/7kPU+//XuhID3+uPT889LixdK++/q3yzRA+pvfuGcx/fnPUkuLmn71K+e/x33h99OfdnwtzpLguMQRtDQZiKc0/cknF78Ha/A4bNAyaHm4fXv+6ivv+QfNqAyyDVrb4laGbMrkuL9qlXTjjcXjys9+Fnx+bsfh/fcv3iR49VXp/vvN2huEyW8SNnPXaf4mGbBelTV+/rcf0i9+YTa9mwsvLP6mv/td5evW7ff3vy8u65xzoi0rLPt3csIJxfXvr3+t/N69svHdWP/mde2b9/Jw+3fkl3VNpmUiCFrCndcGZg8AeQmTBZI1v9GHowQtvVLk7aox09K0PNyt7fb2hg1axlUe7rcu2EvLSqJmWoa5cHJbP/0+axrl4VEzLeMIWnoFY9K8CxolaGnNOrFnoJjOM44AYx4zLa3cBuIx+OxdFyxofzJlSvqZllb2biecxH2DodoyLYOuz9bfV4q3vVmOHj55cvvj0ojLYbOq29qKQfsgTIOWYaeR0lm3ai1oWWKaaekWuIuSaWl9b9DRw/1ukKVVHp5G0DLqzSG3807rNdvChebLMGUStDT93Zx4BZPdvrOw5eFpXKPm6TrY6zuxrv9hzvms01RLeTgD8eQWQUu4C1JC4SXuTMs0VEt5uMlO0DQIGNfvYhq0NMm09GtXlKBl1Isk+wHSLmqmZZxByzjKw7MOWoYtDzft07JaMi2D3rRwmi5sIMNrHllnWra1xZZp2YHXBZNbpqXJ9mzyO5hkucd9jK31TEt70LLaMi3dRPndnPb3Jt/LiSdKq63mvaw4z/nSWLdqLWgZpjzcyq1vXzdRRw8PGrS0/n3XXb3n7fW607zTDlqG+V2tTI7DbuXUYZbrVoLr1I4ogSqvYHKQoLXJMt2O6WlJ+/jptTzr9+y2n/A6R3ErD6+20cMZiCcXCFrCXZAAQpD55GXD7dbN/W95KQ93Onm27ixNfgeTjB9r+6Jy+x5MAyf29nl9xjQyLb1OfAuFylInq2rOtGxtjT9oafJ+r3YmNRBP3srD/X6rMEHLNMrD85BpaX3NLdMyq9HDwwYtTaTRlUOeMy2D/qbz51c+TzJoWSjEP3q42wWTUzDB9LP5dbfg1Ra/MrywbXBCpqXzcy9u52Be5eFWpXOTuDItredMJjeW/I5fblmcYW7QV1OmZdjjm9e1T1gmQago5wxeweQgwWmT7SbroKVVFn1aWlm/C7ffL0x5eBLnj26ZlkGP7yZJSQQtM0HQEu6SClrmJdOye3f3vyU5eniQ8vAk+rR0+2xpl4fHkWkZJGMt7j4tS8tIKtMyTHAlbKalU3l4GiWnfu2wt8l0ftU8erjf9+zXH5jJPOs50zJMO70+a5Q+LU3aEibTMoltNc+ZllHLw+Nsr1NfXVlkWvplmfjtE0y/k4aG4MtyY/I7kmkZnNt5gWl5eNRMS/v5RJLl4X7z9nrd6W9pDcQT5jwkq0xLJ7VUHh7XqOFe8hTA8vpOTDItTedt7Ss/zT4t4wyImqI8PBEELeEuSAlFkPnkJWgZJijrlC3pNr+kMi397lLbZZ1pGWUgHr92BQmqxF0eLhU/QzWUhwfNtEyiPNzk/VmUh+ct0zJIeXjYjMlaGIjHbx1PMtPSOo+kMy3zUh5eK5mWbW3ploeH3W95CZJ9YxpIDJtp2djon9Vpuu9Pe71xa1eeMq1KotyYKK1XpgPx2D9/HOXhbpmWcQQtrX/3O957ve4077QH4kkjaOlWHRRmuUFGD49yLegVTI67PDyNoGWemGZahjnPcDv3zHN5uNe8S8i0zARBS7gLkvUUZD552XC9Du5hysP9DshOd5j8dqZ+5eEmO2PTYFhcv4tpCYFb29Pq0zLsCbh9Hm5By6BBxzz1aZlEeTiZlt7tKAkStMxTpmXWAQd7kCVCn5YF+wlpmEzLtrbK9yUZtExjW81zpmWQ85ElS+L/vqyctgvra3nJtPTbfu2Zy27iLA9P+8aHaX+0eRDlPNptIB23TMvFiyufl76nsL9j1KCl300363OTSoSwmZZ5C1qaZDM6SWI7MzkfiBKoClMeHjbTMo2bFnm5Dpa82+L1PYdJREgzaBm2PNxr3iVpBS3ztJ7kAEFLuPPaWILs1PNaHu7Vjqjl4V98Ib34ovPygmRa+pWHV0OfltOmSbNmpZ9pGVfQMmxmzKpV0uuvS59+arSYBvs2FWd5eFub9Oqr7qNNV0OmZVxBS9PuC+JUKEj//a/05ZeVy3Sb1kscA/GkkWmZ9H7ePv/nny/ua0oijB7uuyyTPi3t05mMSOnELfA6cWL7KLDVmmk5Z470zDOV2+Dzz7ePfG0qSNvs/VlK8a6rTtuB9ftMO2hpGkgMGxRLuzw8TqWgnV2tBS2DlocvWVL5PO2BePyO9VH7tAySsBBnebhJ/+z2zzpxYsfMcPt7rEzOG5PYzkxKv51+x48+kt5803/+XsFkt/VywoSOI6WbbDdxZVoGuT7JUpKZlvZp3G6gxBm0LB2P4iwPDzoQT1zl4XmJl+QEQUu0C7JDCnJSl9dMyzDBKKfAY0npc339tbTllh2DVaX3BunT0m/08DBBy7T7tJSkb3/bvE/JtPq0jKM8vK3N/Tf4z3+kAQOkrbZqD1Z5SXIgnvHjpYEDi+vl7Nkd3+cUtIx7uw1zgmMVR3m4VwZpkvul226TvvMdadttixeK9ZBpmXQAwr68f/5TeuON9ucRMi0b/G6wmIwebp8ubKal0/f4299KBxwg7befcxlvEttqlH6snaxaJe28szRokPSnPxVfu/lmaa+9pO22k5YtM19ekBs8TkHLWsm0tIqaaRlneXgcNwiT4Ba0rNXycLegpf11e9Ay6kA89pugSY4eHrU83C3IYp93GCbHfftnO+CA4j7S6fcOu58Oc0PcyuSmlknbPvmkeH68887Sc895L9Prd3H7zE88Ie27r/lNo5K4tv9qCTiZXuuH2Qc5XVtI6fRpWQvl4XmJl+QEQUu0C7JDyirTMsmLCyu3g6BJpuX113fM6rO+J2qfltaghcnJRxyZlkG+d6dpp0+vDChI2fdpGTbLycopCFZyww3F/1etki6+2H9ZcZaH29tdWn5Li3T55R3f5xSkiTvTMur3bV8vTLMlunSpbIPb/ijJE8yRI4v/L1wo/etfwdZbu7yMHu6XWZH0Cbvf+hghaNlB2ExL69/iDFqWgnxvvNExi0kKvq2avD/I72ky7SuvFI8LknT66cX/Tzih+P+8edKDD5ovL0hA1SlrKc7ziiwzLa2CBi39ultwmqa0nDjKwwsFMi29JBG0dCv7tpeHJ9mnpdPnyOtAPFmVh7/1lrRokft7rMJcE0ThFmx1+hz21y68sP39Rx7pvZww5eFSMYvTGkAyWYfjyrRMe38WlmmmZZjsyHotD3eKkYT5jNUS+E4JQUuUdcguMe3nwk+cwY84DwJxZ1r67VycDu5+78lL0DIIt9931iz/5TlduIQNWvqVh5ush37fiVemZdBlJZlp6cfpLnbcQcu8lIe7nXildUfTrWy5xK8deR09POtMS7sI5eGx9GkpxZNp6bePdwouBd3+TY79cWdaxrm95TnT0n4DKI6gpcl0SZSHOy03rvJwgpbe4ghaup1b5a08PGiflkGyOL1ed5p3HoKW1r/7vea0DZmUbofl1u6gx157oNzOK5jst14GueaS0gla5ql03PRaP8w+yC1DNomgZak9aYweTqZlJghaol2QC5+sMi3jvEPo1x+hE6+srNLndBuZr/SeIOXhafZp6bVzDDJaqdt8Slk1JU5tD9rvW5SgZdgsJ/vfg1xAerH/LnH2aenXlryUhwfJ7AsbtHT7XGmdHDQ2RgtaVsvo4UkHILLMtDQZPdw+Xdg+LU32QVG3VZMLzrgzLU1+P1NBftOkMy2dvsu4My2DtNc0cON0k8pkvWpsjCfT0vQGYJzqvTzc7fWky8P9qgWS7tOy2jItpfCDyrS1dVzP47yOckvkMDmGWK+V7N032XkFk4NUrIVJIAgrjv1ZkONgWGlmWqbRp2US5eFB+7SMK2hJpmUFgpYoSyzTMq9ByzCZlibl4X5By6jl4dadZZhMS7+AbFSmO2aTk1W36UyWZf+baZ+aQaYxvdAKE7RMKtPSabTzNMrD855pmdbJQVNTfEFLMi3duWVaxl0enkWflva/xx20TCPT0k+Qi7W8D8RjnX+QbSrKdFHLw51u8CSZaWl6AzBObkHLOM8z4xJlG/cLFKRZHm7tTsBtnn43cLMqD486EE+UoKXTOmm6XSUZtHQrDzfJ+Oza1Xt6K68bh37rZZBppWwzLbPIrPP6TuLu09It6zvOEu68loeTaRkZQUu0C7JDipJpmYfycL82hCkPTyNo6XbXKsg8wmRaxpHZYRdHpmWQ4E8S5eFJZlpmGbRMojw8avZVrZSHZxG0DBtQrMVMyzDt8vqsppmWSZWHmwaX/Obh9/60My2DqKZMyyDvdWMyv6CBRJP9vV/QMsqFeGtrfjIt8yiJTEu3G3ZxZ1pay8Otmblu8wwatLTOI+pAPE5ZoiVO505BRAlaOh0/wgYto25n1uW6BS1NjiHW/sb9eAWT/dbLINNK6WRa5iloaXqtH+Y8wy3YnGaflnHOu8Ttmq50Y4NMy0QQtERZh0xL07svfuJMA7efvITdwZsEo7ze53VAdgtaltoa5K6fU4fk1vfEWR5ea5mW9veFKQ83WU/iyrS0nyilWR7udGKRRaalV7vjClq6XfzlJdPSrx1p9mnpxW+/nvT3SaZl+9+jbqvVnmlZTX1aBnlvlOmCjujttF80CZSZDMRjup4TtHQXR9DSrcTYPi/TPi3d2uCVaWkStPSrDvIKeJgcH8NmWiZ549br2sLeDpP5lSSdaenWbqe2eWVa+omrPDwvmZZu7Ntj1uXhXt+dSddKbok2aQQtsxg9vFu34v9kWiaCoCXaVUOmZZDAhZewQcuo5eGFQrCgo9PJmvX9cZaHe/0ucfRpaVcNfVr6TdPWZnZiYnKHPkympVvpRdRMyzhKTu2iZl/F1adl1pmWcfZpGTZoWQuZliZBS6f210Oflib7rSDPTeYZdFqTTFlTQda1rEcP9xJnpqXfPP1+c6egpdO8GhvjKw/Pa9AyD9kuSWRall4LWx7u9r149WlpLw93+hx+50Km5eFhguhZBS3TzLTMYvRw+7WPFCxo6XUMDpL8YfKdZR20TJvXMqNmWppeoySZaZlmeXgpaEmmZSIIWqKsKvq0jOvuTJgBcKzLC1se7nehb+d0suYWtHz7benMM6X33698T9yZlq+/XlzOxx87/z3uoOXJJ0vHHy89+2ywZdn/Zu/T0vSEz+/vQbJevIQZPdzt5N2rTU7rZ17Kw884Q3rnnfblXXutdOWVxc+VVKalX9ByxQrpoouk22/3b78Jk/LwW2+VLrnE+cQnjqDl2WdLDz4Y/H1WbW3F3+SKK6S//CWf5eF+2R7PPy/97nfStGne88oy09LvAjPMDQaTLDun5Ziyvv/dd4vb9bvvmr9fct9nLloknX++dO+9xef33y/9/vfuy7dLO9PS6bhv+t4o0wUNJJqsA07zcioP//rr4j7mkUfc52WXpz4t7UrbYHOzdOml0s03J9cmN1HWUb+gpf110/Jwv5v7JX7l4TNmSP/3f9JTT7VPb3+/1/yt7Yq7PDxolp6XKEHLKDe98lAe7rT+RikPP/106eWXnf9mF7RPyzjKwx98UDrrLPe/R8lKN1UoSDfdVNxneX0m00zLMDdO3ILNafRpmcVAPN27F/9fsEB69NHKv5FpGVnEXoVRU4IEF+s109KrhKP0mlfQ0q/Mxc6pbx/r92d9/w47FP+/7rrihZ31PV7ztLbPjXWZAwYU///73zuOCG6f1ovT8pza9p//FP+//35p5szKE50gGWs5Lw9vCJNpGSZomefy8FtuKQbs2tqKQYlRo4qv9+yZXJ+WfhcL55xTDCBK0k47Sd/6lv/n8OKXafnCC8V/pTadeWbH95eEzZj8+mtp6FBp6lRpo43M32fV1lb8vX7zm+Lzgw+u/HveMy1XrZL22qv4+LHHijdjTJdl2qel9W9JlYc7BeL9tjW/C8w4My133rn42a+7rmMGVxhnnCFdf33x8X/+I/3whx2nKRTc97n0aen8ukm7TcvDTztN+sc/io+//LL6My1XrSqed/z5z8X1T5L695f23z+xpnWQVKal000P0/LwIEFLa6alddtsa5N+9rPiBf7FFxeXndeBeLIMWuY109ItkcPkJmaYdbjkiy+k3XYrziNv5eGffFI8v/Ji2rVCFBMmSCecUHzc2Nh+rmbaFsls9PAg12G13qdljx7tjw8/XJo1S1p99eJzMi0jI9MS7YIEKfIyenjYi42wQcso5eFOB1enEiyrMOXh9gtD06BlkKxFqXgxEnQ+VqaZliXz5hVPVEyX5XXy6fR3k3k4/T2pTMswpf9hy8PtvIJ7YQW9IL/hhvbXrroqvvLwoJmWpYClVDwJjIPpd3HhhR1fi2MgnpKXXvJ+n9/29ac/tT8fP95smXExybT0ClpaL8zfeMN7Xm7ZApL3DTzrehg2EJhEeXiYrJiwmZal/a49EBK2PLwUsJSKNxSceH1+pwvSONdVp+82i0zLEtOMnrCZlk7l4aWApVTMhqr2oGWpXdb98R13xN8eL2mWh8cdtLSetzplWlozkj7/PFqfllGDlk6l7SbvM1GLQUu3dpvcCIsyNoJ1+X6/S9pBy4cfDv9e+/YYpU/Lv/2t/fHYsd7LdGOSaRkkaOnWv26SQcs0y8OPPbb98bJl0ty57c/JtIyMoCXKOmyCcQUtTQ5epuLa0QUpJ3B6X9jycLeO0N0EKQ93Y9qnZZADjxfrtPffL/32t+bL8/s8n31m3i63g6XJe0tSzLQ0Di57vSdM0NLt4jTODOkw73e7Q1sSV6alX9DSauON/afxE6QM0qlNcZSHm/ILWnbyKNbIQ6alW2aRyfu9lmWaael3wWvyHZkELe2iZlpGDVrGcQES5WLN6/NHzfjx47Su5DHT0qQ83OTczW8gnuXLzYPzeQ1aOp2XpDFAhlWU47FbdlPpNfvvY7/xHbU83Foh5DcQz+LF0crDk+zTMsugZV7Lw92uiUzWlSDBU7fParLfsC7HZLux34gMenywJ1c4SaM83HQf5bVMk0zLIMkjtT4Qz69+JR14YPvzqDc9yLSsQNAS7YIEFykP7/i3sEFLrwNukPJwN3FkWoa9wF9jDffMvjAnMZ9/Xvk8SNAyzLpjsp4klWmZVnm4W9Ayq0xLN1mVh1v17Ok/jZ+ofbfFMXp4iV/Wrd8+wW1fJ+WjT0uvTMsgvC7ATDMtg96wKvFrr9Pf/b6bMFkxYbL7vNaBsJmWJtOYVC9Y192ky8NNL/ZMt5kgxxzTbDOn/aLJjT5rua/TspYvN88IS/sCLUrQMm21kmlpH4gnjqAl5eHuksi0tC7XbV9vckwJ0g63dc2pKyO7qJmWQX93vz6ypXSClibL81tm3JmWpd887usL6zyzLA9vaJDWX7/9edCAuR2ZlhUIWqIssUzLJMvDw84rTPaK9XWvi7ogfVr6tSWOTEvTvhJNTuRMvm97aYPbzj3MSYw9aBnmYGny3hKT9cTkQjPM6OFplYe7rctxn1REfX8W5eH2gFRcJz95ybT0CwzVYqal20lzkGWV5lEoeB8Lw5SHmwYG7G3xm6/XPJPKtFy2zPw9YbitnyZBS5OMrDCcvlu34GSQG8VWcWRa+v3mTkFLp3lZy8PdMi1rpTw8ywvIJIOW9tfjHojHqzzc/jkWLQrep6VbpmWYoKV13oVC9KCD6XLDBC3DZlqmEbQ06dPS/pnCBNaSCFraz/uC7pdMMi3dOB0vwrKe3wVJ8LAyGT08yHVYUuXh1uUkUR5ub6/buXNjY+U+yL4/CYpMywoELdEuSJAiq0zLMCW+TqJmWnqVmLkFqJwuAvzaYtqnpclFWkmUTEuTg7c9aJmXTMukysOzzLQME7S0B9VrMdPSOq01aOn0e3mdeAXpQ9VULZWHe2VaJn2yZRK09Mq0jFKaVtrOgmRBmgYtgw7WFkd5uMmNxTCZll5BoTgyLd2YBCWsA7qlnWnpFjg3/Y7D/BZ+r5tkWjot16Q8vNqDlrWcaenUfYG9PDxqpmXQ8vCk+7T0Ws+8kgJqJdMy6nZmbaPbtUGYTMswI1yvWuX/efKYaVnid52SRjcUppmWbtcEeSgPt74/y/Jwe9CSTMtYEbREWYdN0HRH5ifsibmTrMvDvU7+/HbgbW3xlIdbl+1218r+Hq/n1va5MSn3s08reQct48i0DHOw9Fq+3zzsTC+0TE48sho93C1oGefNBr82+WloiK883O1zOb0eJLPXVJxBS9OLj1rMtDQJerldpFv/N+F2se63jVoztNy2MzvT/bXX3/OSaWkaFHKSdHm4fb8QlyCZlmGrUEz2xX5BEL/f3Ol8Jeny8GoKWlZTn5ZxlYf7BVjcXg9SHr5wYXzl4WFKcK1/i7vSwmS5XmXQdlmVh1s/h9t+xiTAbW+H1/YYpTzcK3Dk9B3ag5ZB90szZ/pPY/q9RRF3n5ZxZFqmGbTMqjzcejM/atCSTMsKBC3RLq1My2oOWppkWnpdJMRRHm79PkvzMx0MwmvaKCdUVqbl4WlnWmbZp6VJeXhamZYmA/E4fa60y8P9LpBMg5bWjCqnrKfSc5OgZbVmWrpNV819WkbNtAzSPqfMIcn/OOgUnPL7/fwu0O3y3KdllKBlFFmWhztdrGeRael3Qem37CzKw9O+QKu38nDTm+ZJl4dbzwnt85w/v+M+0G+51r+b3IwwPXeImnHnNW+7WisPN9m32T+T1/bo9b34fQ8m2YJWUYLVixaZT+u0/La2ZG6IhCm9l5IbPTzu6wuvoGUcmfJhMy2jloeTaVmBoCXKXPu0vOEG6dvfrvxblD4t4ywPb2uTVqyQjjhC+t73indpvdrxi19Ie+8tffih93L8shG9LurCZlq+/LK0227SH/7Q/jeTPi1/+9vi+9zEWR5usvOPkmnpt17NnVt5Qh13efibb0p77CGdc457G+3zTCrT8qWXir/r+ee7vyePfVouWiQdcoj0wx8Wt02v5QQRpGw2TKal0+e1By1/+lOpX7/iv+23lyZONGu7ldN3G4RT0Ouee4r76HvucX5PEpmWra3pZ1oWCtIpp0j77CN9+qn3tGmUh/vtr5wCpH7li0HLw/2Cll99VRzN8ic/Me9PKo1MS7/9iWmgK+h7S++x7heSLg+3z3+PPYrnIGGDltb5/etfxW3/zjsrp/E7Fvidl8VZHm4aXKmmTMukLV0q/eAHxX9LlyZbHm5nD9pELQ+X2r9Dv/LwBQv8v+/S/E8/XdprL+n999v/5jRQ3VVXFbeRp55yXqZVW5v0wQfF+Y4aVfm3118vzmf8eO/2lUyZIu27r3TSScXfyyS4EyRoGXd5+NSpxfaeeKLzvN9+W9pzz8puc9wSGqyf4/zzpV137Ti/ODIt995buu469/dJ3kHLb39buvzyyteiZFrazxndeGVaxnU8irtPS9Mb/k7TlKSRaVn63FmUhzc0xFseTqZlBY8rDtQdtx3SiSd2nDYvmZaFQvGA869/FZ//7nfStdc6v/eZZ6Rrrik+/tGPvJcTpTzc6yLBK2hZCjy+/HIxOLLOOs6lgtb5r1ghXXqp8/Ks7/F6XpJEpqX9BNXKaV4mwfDp06Wttqpsl187JLNMy0GDikG3F1+Uhg/3/7xxBS1bW9Vgb8/DDxf/f/llaeRIacMNnZfv9DxqpmWUoOVZZ0mPPFJ8fOml0u9/H+z9JfbvLKnRw91OvNrapC+/rHzt66/bH8+YIY0dK+2/v3s73NoWJdPS6aLsyCPb///xj83mE5VfpmUSJ1vPPCP95S/Fx88+6z1tlPJw+7rndrFummlpzwRyy1ySgpeHO30O63xPOUWaMKH4eJ99pBNOCBe0TDvT0mSdtV9cmrw3i4F47N/d5MnF7fS//+04rQnrdEccUfz/6KOd22FaImsStDQtD+/Wrf2G1fLlUvfuzm2wtzftoKXpQFFZlIefd5700EPFxxddFC1o6TX4mElANmqmpXU5TuXhnTu3n/s5ZVo6zf/llzsGm6SO2/WyZdJppxWfDxlS/Cx+57qHHip98onz3197rZggYfL9H3108Vzy6aeLN3KzClra13O33/zYY6Xnniu29+CDi/+sBg8u3gRzaoPbuejUqe1JAH7CZFq6/U5WXtmCb7xR/DdihLT22sXXogzEM3262XSldsR5fWwXR3l41ExLuyzKw+Ngb29a5eFkWlYg0xLtnHZIbhtMVpmWToEL64m/V+bTBx+0P54713s5aZaHO00/b17xf79MSxNxZFq6nZg4sd/xClIe7nYRarV8ecd2+bVDMgt6WUs7Zs40C1qa/B5+B0+/7WnGDOfXkyoP98pI9GPdBp97rnKeQcRVHh42aFko+Ael7AMWmMiiPNztt4uS7dbWln6m5WefmU8bpTzc70LCZDtzmy7uTEu/i9nSzQ+peHHmNE+TjL+4My1N5+HFbfv0em/a5eFumTNvvx1PpqVfO7zOR7yeBykPt2da9ujR/vdly8yDK2kHLU0zKNNul1R5HH3++WDHY9OSTMnsO4gj07K0n3IaPXz11dufmwYt3YJV9uP91Kkd2+B37mASCDPx4ovtjydPjha0DNN3sVT8PKY3wqzna++91/Hv9oCltQ1u+5NZs/zbWBImaGnCb0A8qfI3j9ItgPX6xITfeW4avD6fSaalaTa/ddpqC1qaZFqWrncZPTwxBC1R1mByp70kSKZl2BNzJ047ujAX8UGXY5+/03JMLhJM+xQqzcOvT0sTpgO8JJFpGbQ83FpO7MY0aBmmPNzKLchsn2ccmZZ+25Pb390CHEHWEbd1OWympVMmoNty3NiXlcZAPE77Kb/f3/Siwf7c9Lt0y2wKsny3+Ti1zfR9pWWnHbS0Xtz6ccu0DNOnpdsNEJObGvb3p10ebt8fOy3XJCASd6alyf7XT5hMy9L32amTd1lzWE77kbCBQ9NlOEmzPNy+XlkzK/Pcp6Vp0LI0XZpZL9Zjfpcu4crB7c/zGLRsa6vcry9YYBa0dFtX7PtXp3Jdk3PduLkdj0qSzLR0Wx/i4JbQ4HYz2EuY8nC7Rx/t+JrJ6OHW4HaU8vCgQcs4r4/tTMvDo2ZammbzW18Le33hxl7hJ8WbDW8atJQYPTxBBC3Rzim7xO3kIU+ZlmEu4v1EKQ/3ymoKGrR0uoA1+YzWaeIciCfOPi2dPrfJAd8a2AwStAw6EI9bkNnK9PfwO3j6bU9unXuHKQ83DVCEPZlyG906yHbv1MYsysOjBPVKnAYViBJstL5mejLt1k6/7TlvQcvVVjOf1i3TstSuOPq09PsdncoygwYto44e7hS0zEOmpcn+10+U8vCmpnj7vCoJcpMibGlgGpmWTvs/v/Lw0t/DBi3TzjIyXV4W5eHWoGXnzsHOo932V15l2yZtiSNo6VQebn0+f77ZzeKkgpZJroNxBy1Nb1643XTzEvTGatJBS9N9o9M5SdCgZZSBeEwSLyTv8nCnY3YYcfdp6Xa8CpJp6bYvqoVMy9Ly3MrDw3xGMi0rELREmWOmpVswJU99WtpLTeLg1+9jnOXhQTIt7X1aurHO0/Qi2OQk2ORAYz/guh10w2Zamg7uEjVo6ZVpXJJWpuWCBc6vu/22QTIJTIOWYTItrd9NkO3eJLgfV6al151fv9/W5DPF0cWDvV1BuS0vatAy7T4tg5yERsm0NO3T0jTT0jpd3JmWXsci+2PToKXXxYYTt4BK0kFLt/2mSdCyUyfvUa/DylumpWnANGympVN5eK0FLbMo2bQeN+IKWoa9GRF3pqU90cA6vWmmpdvnt3f7kJdMS795hykPD7tdxTmwlN+1QZDvM46gpfV8r8Qk2y2uTEvToKVbe7IIUplmWrqdJ5geY6zzqOWgJaOHJ4agJdoFCVpGybSMsnNy2tGlmWnpdSA2CVp6BSidXgsb8PAKWobJtHS7m+p3wRw00zJo0DLMibvJe0vvz0um5fz5zq+H6dPSNGgZNkParbuGIAdfpxOEpDItve54xxG0dOrUPUpGVZh9XK2Uhwe52IrSp6Wd077E9KaG/f329dGtffZ5uAnS11mUTMsgN4jSyrQM06eltTw8raClaflcnjIt4ywPNz1nSTs4mOfycOs5gVN5uFdbqq083Dq9aZ+WSWVa5jVomXZ5eNBMyyCBcjdxlIc7BS2jlocnmWkZ9hgQVNjy8CiZll7nEUGvx/w4BS3jzIa3tzet8nAyLSsQtERZh0xLt8xAKVqflkmWh8d1UhmmPNxkB25aHl76nGH7tAwTtDQ5qJlkbZoGLZ2+J5Py8LB9WobJtMxLn5ZumZZhysNNAxRZZlo6Xegn1adlaT5B9n8lYcrDowYt47xbm2SmZR6Cll6ZRVHKw0uv+f2OYcrDndYXk2VYuWVaui3XZFvPY6ZlXOXhcQajnAJ9YQOHboLcuDRdtkmmpWl5eLdu7X/Pc5+W1VIeHjRoaf8e8zB6eIlTebi1DcuW+Y/q7rWu2I/31qBlly7tr3vNOylxBy3D3gyIM9Myb+XhYYOW1vUkyujhpn1aut0sj3P9i7tPS7djhtv7vc4j4g7WOgUtk8y0dOJXHk6mZWQELdEuaqalW2AlaKalW1ZZoSB9/XXH10zLw4MEWqOUh3ulypsGLUvfr1OQ0PREZfHi4vSm5eEmgS6Tkx/r57eXAtnbaBck07JQcF/n7O2QkisPD3IwcxNnpmVbm/v0knmmZdigZRyZlkmWh7udLJlkGtnZ39Pc3PGk1al/pCgnaCbrrclrUvX1aRkkwz/JTMvS+8NkWqbRp6V132hSHr5wof+2GuZGSFaZlgsW+GeQBxmIx2m7dtLa2vGY5JZp2amT975o4UL35cSRael3Xha2PNz++ZMoD0/65nTY6bx4nas48evT0r7NWgXJeotaHu60rXnN02n0cPv0UTIt7QMBfvZZ+/NVq4rLy2Ompd/2GiXT0j7P5culDz4Ivk46cbs2yCpoGbZPy88/b29rGpmWbvO2Hy/8bo60trr3eW96Y8X0utn0hr/XfP3Wl7DSDlqmVR5OpmUFgpYoi9Sn5SmnSGutJY0d23HaIHeITz9d6t1bOuOMju/Ze2/p5JMrX29rMx89PMjBJKnycNM+LUvfb9gsrZdektZbT9pqq453raNkWpqUmVjbl8To4StWFNu6//7SiSe6T+d3Ih1XeXgcFzRx9mm5557SX//qPi+T7TEPmZZ2eSwPt77nq6+kjTaS1l+/8q592n1aBun7Kmp5eNp9WualPLw0H7/P6Be09Mqy95rGa3pJOv/84vH4N78xC1ruuae0447eGVluwTfJPNPSOl0cQUs3W2whHXCA9zHAWh7utazZs6UNN5T69assIbRraZG23176v//ruEyn+Xft6nzB2tYm7babtM460iOPOC8rSKal22/mt3932v85Ldfeb/Vaa0nPPtv+PImgZVz7lqCZlmGDpb/8ZfF7Of988/f49Wn53/9Ku+5qFogsPTfZ3zhxy7S88sri+fqwYd7Lt/IrDzdhWh4+b15l8L90Dp7HoKXf9UOcfVqOHy9tvbXUt680YYJ3e/z4ZVoG+T6TKg83yXZbtqx4DidFy7RMs0/LlhbpW98q/o7Wfa7JckyX6RW0jJJpmUbQktHDaw5BS7SLkmn5l78U///d7/zn67Vzuvzy4v+XXFL5+muvSc8/33H6tjbzPi3jCFqWluGVaekVtPQL8pWUvt+wAY/vfrd4AvDpp+7zNmlHSemzxVkeHiTT0noQWLFCevdd6amn3Ntrb4dTW00umqOMYhlkWWEzLe3f4WefFQPWQdril5HkNZ0Tt5sIQU5KTC6uwgYt3fZHTgEEv9/f+p4zzyye9C5YIP385+2vR+nT0m+ZTs+D9HFYbZmWQYKWbhk1cZWHmwRZnAKkcQ/E4/U5rrjCLGgpSe+8I91/f/FxkMwJp9fdMi2D7A+iXsQ8+aT09tuVr1m/K9Py8DPOkObMKe6DTzrJfbp77pHef7/j627B3m7dnIOqzzwjvfpqcb9xyCHOy4oj09LvOBCkPNwroyWJoGUc+xa/jDurqOW0V19d/P+cc8zf49enpVQ8L544sePrQTIto/Rpec89xXbdfXflfKKUh5vw6ibJeryfObPj31es8P7dTdsSZh2MErSMszy8pLlZ+te//Ofhxev8SQpWHTF3rv9y/IQtD5eK+3kp3T4towQt77xTmjy5uI/df3/z99l5LdPruwt6jLG+FjSJxE/amZZOkigPJ9OyAkFLlCXWp2XY4If1DqnbgcAetPSat2lfI1LlDnXkyGJWhHWZXjtjr8wG0/Jwt0zLUnmLH69pwgQt3Q40JkHLIOXhbr/RaqtVTrNkiXtbS/yCOX7fo2l5uMnJa9QLdNNMSxN+Qa/Sa3FnWgY5YDvd1Uy6PNzkot3O+h7rBdK0ae2Pk860DLpN+k1r8j7JP9My66ClW7AozvLwMJmWQQfiCVMe7sYvs7BUZub2d78KhJKsMy1L7Dd7rN+V6UA8M2a0P/7iC/fp3PbRbucL3bo574tMzlOCZFqaZsE4/Yam5eFeGS2mA/GYdn1TmjYq62fbZpuO1T1u05Zk3adliVN2mlumZdxBS7f5+GVaeo0ebsI009LpusFvffTK9rMKEowriTtoGcfNgDD9AjtN57bOBdlWnQZNss/PT9jycOsyooweHuQ606k9QY571mOOX7+7SWZahikPj/K5nSQdtDQJsjJ6eOIIWqJdlExLL6Y7J/vr1gOYW0ZPoWDep2WQTEvrAeDii4tlONZ2On0Gk1R50/Jwtz4towY8nOZpbZ8bt6ClV8apFF95uDVo6Xen3KkdUvByBNOgZRyZln7LMe3T0oRppmXYoGUcmZYmF1dhgpZOGRpRysPd2mA9WUy6T8soQcsky8PzELT0Wo+82meS/bBqldn+wf7+NEYP9xP2dw8aAMsy01Lq2DWKW3m413oedaA/t+D5/2fvuuPlKsr2s7u3pBcSEgiEJHRCCSUkhF4CgQACgiKGKvIpTTAWxAZiQaooUhThEyuKn4rgpYQSaiihEwg1kEYqpJe79+5+f5yc3TmzU96ZM+fs2Zt5fr/7u7tnz5mZM32eed53ZObhKvUynw7KmG1rHm6itFQReGvWxFeEie6NCzaMgQOByy+X3xvHPNxFWkXm4SFEee9aaSkzD5eFU0/zcHZMEs0n161Tx7dyJS0NJsKNEPVSWlKVdDbQmYebhK8iLdNQWobvIJqzURFXacnPUVV9q27jhDp2UUUuVCsl/ncWXcU8XJRef3p44vCkpUcF1j4tKeQPC9n9/A4VO4DJFse80lKVFlvzcJ54k02ubc3DTZSWLkjLOEpLG/NwFwfxuCAtkzIPd6G01IVBPT2cAippaauQdqG0FJGLtqRleGJo+Ixs8iG6bmIezoJNe9JKS9M2qbuXChkZw/7uGqbm4aL0ERQgQqsDUTi6d7Q5PVxHWupIaxVU5uGqOHRxyfqKOKSlC7KHn1PYmIe7IC1NlJaiuY6sPqrySKe01C3CqEpLnXl4uUw/xChN0lKmutXdawqZks0ESZKWlLx0qbR0YR4uszjK5aLtR1TvdPNHKmmZlNJSlncufVqykJGv1L5O1hfZkJZz59qtT1jY+rRk44ijtEzTPNwVKUdVWsrWDibzBV19sUXSSkvKuklnHm7zjl5pGYEnLT2qMDEPZwcWU9UG1cyForQslegH8diah+fztScSiuKh7DqpOnEWMp+WVPNwFWwO4pFNqOL4tLRVWq5dS5tEsOkol82VgxQFQFqkZZJKSyohU2+lpa15OE8SySaJcc3DZRPIpH1a1tM8nFoGrpAlpSWl7YvIgrinh/PP2JiHu1ZayvqUepuH80pLnqiinB4el7QUbcAActJSNNeR9cVxSEvdvMyVeThAc+diQlq6Ng8vFNQL3Djm4aYHc4ig2iASpUM2Jojeg6q0lG0CicIxUVpSxlkesjGUD1umtFT1LbKTmHlkQWnpgrR0pbSUjQGmY7bMBQe1jrhQWjaKebiJ0tIkDSwoSksTSx4ZaRl3XZs2aSnrfwB/eniCaGjS8qabbsLw4cPRrVs3jB07Fs8//7z03ttuuw0HHHAA+vfvj/79+2P8+PHK+zdGWCstTRe+skaoIi1lnS+vtHRlHq5TWoreQWeyJSOBVUpLU/9mFLj0aRnHPFz0LMWnpc68JwT7PlSymP/dlXk4hSBVYcUKGsFBAWUTQUT4pKm05Ns1YK+0LBSqaVK9l0vzcBZZ9mkZ1zw8bdLS1C2JKP0E0jJHUTNSylFkCqUzDxfVFxYuSEtZunXKwzSVlrLfTRYi/HgiMw9XpSUppWVzsz1pSVFaUjZRdd9dmIcDdNKS2i+6Ng/XkZZx5l2mJIYIMuIbSMc8HAj6JRdKS55YtHVvQSEtRXmv82mZpNKSslFmQlpS2kvSSkuX5uGA3ESc2jfE8WkZ9nlxVIAulJZUstFkLLQ1D3ettJT1RUkoLbuCebhXWkbQsKTl3/72N0yePBmXXXYZXnrpJYwaNQoTJkzAokWLhPdPnToVp5xyCh577DFMmzYNQ4cOxRFHHIF58+alnPIMw4S0ZK/rBiUq+aEiLVWLpaTNw6k+eHQduGxHWXRNprSMuysKuPVpqSNIVCoMW6UllbRk02FyojL7TFbMw8vl6MFU1OcoaXFNWro6PdyVeTi7IBW9l2xxL9tkYEHJk6R9WlI2NmTxdXWlpco8PK7S0tanpWvz8CR8WposQgB5fmWNtEzSPFy1WSmrh2koLamqWVulpc48HKARQY1gHm6zgKyH0tKEtKTm5fr1dEWWiXm4Lfknyg+2TQN2SktqeaWttIxjHk4tNxvoBA1ZIC2pJrqdneJyTdI8XNRWKRY8ut/4321d+cTxadmVzMMpG3j+9PDE0bCk5fXXX49zzjkHZ511FkaOHIlbb70VPXr0wB133CG8/89//jPOO+887L777thxxx3xu9/9DqVSCY888kjKKc8uhH68sqK0lA0apVIyB/Gw4P3kyBbrukmHjOyUKS1F8bggLYvFoMza2oAPPoimT4bw3UwJElOlZVI+LW0mfFRSgpIW/p72duA//6meTEuZFIn8WiZ5EA/VrQMPmdLSZPDl7xWdHk5ZsIfpYUlL2XvZmIerNihCpK20vOce4MMP1c+EiENa6t5D9duKFcC//hUQ8eUy8NhjwBtvqNMCmPu0VJGCkr4r9+ij6MObqMkW+7r64cKnZSOah7/7LvDoo7UKOxekpYl6QmceTiEtqfMLGWTzBRHxUirV+rT85z9r3YO4UFpmzTy8XKbXZdl7v/YaMHVq9V3WrAH+/W9AJGbgxwjVO+jmbatWAX/+M/Cb3wC8EMIFaalSWoaYMwe4995gvJGNlXGUluGcVIYwnNdfV4fD1xcb8k/W97owD6eCHddfeQV4/PGg7O+5R+zHNJeLR1omZR6eZaVluQw89RTw4ot04lDkE1hFvLEolcT5kYTSMgyTuj4WIW2fltS5cwgT0vKBB4C331anU4Tly4Mxkl0fJaG0XLIE+N//Be64A1i6VD4WAv708ARBOKYwe2hvb8eLL76ISy+9tHItn89j/PjxmDZtGimMNWvWoFgsYpNNNhH+vn79eqxnBp4VG/ycFItFFF0QRxlDsVisaRzlchmd69YJK0m5WERHmA9r14L1IsLnT76jA+ww0lEsoizIw9zy5ZG4yrNmoaO9HcjlkFu/XpiOjvZ25FFl38vlcjVdHApr1lix9MXOThSYOIrr1iFfLIIfGjuLRZSKReFvAFDq6EBJkJ8d7e0oF4uRPOxctw6lNWvAe2fpXLdOGLYJSu3tKP/qVyh84xso9+uHjg8/BHr0QK69XdohhO/Gl0Nx3bqaSUmhs7OaVx0dyJXLwnDDMFk0rVkD0TBT6tGjEmZpzRqUFGkNEakL69bV5GWpowOdXPzsPR3r1wMdHcp4OtvbAUl5R+7r6Ii8a/5730Ph2mtRHjoUHe+8I63fLIqLFwNbbhm5ll+/3rg+1OT7+vW19axYRL5UipRFR0eHsN3yYNtKuVSqlEGuWCQPOMX161EolSLtGh0dkfTweRpJQ7FYrYOlEpryeeQAlDs70cnVnUq75fqp4vr1aOrsFNbHEOz7Rd6bqXu5NWtq4isYTET4/rTQ0RHpx4p83f7611G+4oqgXXfvHqRBkved7e3SPASApnJZ+v6ljg6AKSMeYb8mQmHSJOTvuw+lo45C6eyz0XTSSSjn8+h4772aOs7CpL6XOzvRKXjvcOyq6cuKReTuvhtNkyZhMPdMp6CNF9euVfaZAJO/TBsr5fPVvmxDGlnkuDGiVCxG7+Haa6dBnnSWSsJ+PERHZyfKxaL0vUT9PQCgvb2mD8Fhh9U+v6G/BGrrZJEfAwXjA4BKW6agc9WqaBhMWynl88jlckG/oJo3lMvC/oxHvlQSlkNHezsKXF8KAOWODnRwZVna0KdF8v7EE1E69NBIO6vUG8G4xobVqZmPsPWKL/POzk7kmH40fJea+UuphHwup5xblVeuJJUZdX5TXLu2th7Ono2mPfZArlRCxz//ifIxxyB/8cUo3HYbyrvvjg7eHRRbF3I5dHZ0oCmXq928R9DGwnIJ34Ntl4WvfAX5v/wleNdhw9Axc2aVPFm1Sjk/loFvC/x4HKKjsxPlNWvQNHo0cosWofOyy1A66aTI8+XOTnRI6kIHYe4BAMVVq2rGnsjva9cCs2ejebfdlOGUcjmUy+VKOmzmtOUN7YR/rlwooKOzs/Lu5bVra/KsY9UqYXs0RXH16qAOvv8+mvfYI/Jb57e/jdJPfhItw85OaRkC1TYt63tL69fXjBWyts2io70dBcU8ptTeXgmXT29YV4uC30OEfSI/fwrfx3SOWnr//Up6ck8+iaYN40hpn31I67ciU/6VMJm8U43ZHevXo8y118p1YruVrWF4VPpfbuzsaG9HnhlzSuVyTbmHyG9Ym4aoWXsz9aMMyMc4Rbtm1/qytXyTpF7XzE1RnRPVzK2XLUN5zz3R8cEHgISXEab9c59DfsoUlEeMqPbNqM7ZnCnzfvCDysfSbbcBLS01YZdzuWBuiSq5Fo4dgNkaKERHe3tNO+xqMHmvhiQtlyxZgs7OTgweHF1aDB48GDNnziSFcckll2DIkCEYP3688Pcrr7wSP/rRj2quP/TQQ+jRo4d5ohsA/bnJWvv69Xjl2WcxVnBvrrMTbffdB+Tz6PbJJ5jA/NbW1ha5d8f33sMOzPeXpk/HxwJnyYOffx77sHGsXYv7770X5aYmbDJjBg4QpOPpJ5/E8LlzMWzD94729pr4Qxy4YAH6C39R46GHH8aeS5Zg8w3fH5kyBSPefjvyTgDwxuuv48O2Nmz/9tvYSRDO3NmzseTll7End/2FZ5/FovZ2HMdcm/naa5j13//iGO7eN199FbtavAOLZUuWYJNvfAMAkFu2DC9ddRUWjB2LzaZPF5Y1AHzw3nt4s62tpoyeeeIJLPv448i9e86di6EbPj/+xBPYZObMmncGgLdmzMD7XFkdunQpegvunbV4MbbZ8HnpvHl4/7nnIukAgCUjR2Lgm29Wvq9ftw4Pbgi/ecUKTOTun/PRR3iFi58tg9deegm5UgnR6WjtO3RfsqSSNhlmvfceZjBxHXfttQCA3Jw5mPr736P3nDk178Nj2mOP4VMur4e/+ipGaZ7jEZZliB4LF+Jw7p73330Xw9atQytz7fVXX8VsSdtiMXrRImyx4fO61avx0IZn+LqjwuOPPordly7FwA3fV376KfpwO+AffvAB3pCkZ+yCBdhsw+cpjz2GIzYQ5yuXL8erzzwT6UvefOMNfNDWht0+/BAjmOtTH30U+61cCVVvv27t2sr7jV20qBLn6tWr8ciG61u88AJGM8/Mfu+9SDw68P3Z6PnzK/kLAFOnTKkpv9ynn2L6dddh0Z5By9vkrbeE/SdfL3kcrSDt586eDZTL2Ery+4xXX8WHkrCPeOYZdAfQ/uyz6Hb//UGaSyXMvugivHH22dL07DBzJnaU/hrFyuXL8c5LL0XyHgDWrFyJh9vaMJTri9va2nDcpEnCsGa++SZ25q49OXUqui9ejHGKNHzw7rt4s60NfT78EIdsuDZ/8WKEtOyShQsxjcujrV5+OdLnLJw/H88z9zStWYOjmd/fNciTD2bNwpttbdh8+nSMEfz++muvYXZbGwZNny58r0enTME6wYJC1L+KMOXBB1HsHfTwW73ySuQ929raomPgm2/iPUH9OVqyCSbCrBkzIvW795w5OHTD5zkff4zNOjrQCmDNqlV4WFJXxyxeXBn716xeLb1vxIwZENE1r770EnZYtQq9uOsrly/H9Mcfr6QHABbMn4/3nnoKB3L35h99NPJ9wccf44W2NrQsW4ajhKkBlixahGltbdhmxgzsIvh90cKFeI55l0EvvRQp849mzUJ35t0B4NmnnsL+XDivv/46tliyBIMk6QCAdcuWobvi9xBvv/46RhLue/zRR7F6880j13b7zW8wYoP6Jf/5z+Pef/wDx912GwAg98oraLv33ogKq/uiRThiw+ePFy/G9LY2fCaXEypbZrz6Kma1teFYZnE+96OP8PKG/Dv0iScq85bcRx/h4b/9De39+gEANnnzzUjfK5uf8mDbwuwPPkD/5cvRT3DfC9Ono/j22zhwg5q08KMfYerAgWC3DDrWr0dbWxu2f+utmrnpGy+/jN0J6XnsoYew4+zZ0v7+iUcfxaCXX9bOT5cvX47Zb75ZmbfYzGlXLFuGeTNn1tSVjs5OPPn005U2lROo3l6ZNg27rV+PFsM4eTzz+ONYNm8edr/xxsr6I0Th6qtx3777RsrwrbfewjarV0vbwdLFi/FMWxuGvvKKcL68cO7cyDgAAFvPmKHNuzdeeQU7KOJdvngxntgQLpved997D29PmQIAmLLh/3H8wwjWiQ+0tWHUrFkYzlxfvHAhnm1rw9aG5bvk7bcrY+KhF1xQaVf5Z58lPX//gw/iM9y1BXPm4IUNYW758svYS/Lsc9OmYdVHH0XWswDw7DPPYCnR1+nhy5Yp54wh5s2Zg5fa2tB94cJKPwQAzz/7LHZatqyyVl326ad4UtJnDJsxI9J2+b5l1EcfVcqkXCpJ+56xCxdW5q48OteurTy366xZ2Jr5LZwvHCVpT48/8gh4huWdmTPxTlsbjhGQ2bk1azDze9/DB8ceK0lNLY7bUDdzjEJ39pw5eLWtDXsvWoQh5JDoKE+fjk+3376yPgmxdv16TGlrw6Yvv4x9N1x7d+ZMvB2uBV5+uWY+qsMzzzyDTz/5BEC1HXY1rOEtYhRoSNIyLn7+85/jrrvuwtSpU9GtWzfhPZdeeikmT55c+b5ixYqKH8w+ffqkldTUUCwWMZ2TZrc0NWEvxa7pxMMPB1pba057mzgxunzJP/NM5Pueu++O8sTaJU5OMCgcdcQRQLduyPXsKUzDfvvui/xbb1W+N+XzNfFXfmN2SkxwxIQJKNx1V+X7YYccgryAHN9l550xcuJE5F98URjOlltsgSG71C4f9t5zz5r82HGbbbD9oYfW3Dtyu+1Mk1+Dfn37Rr7vtcceKE+ciJzCTGfrESMwXHDPfmPHorxPlIoq/P3vlc8HHXwwcpI2ttP222MH7r2bJKfED99558D0CcCAnj3Rf8/aaV2/iy9Gx047oXD44citW4fW5uZqXVi4sOb+oVtuiSGSugIAu+28s9YkZafttgMImxgjhg/HMElcBx98MHIzZmjD2HfsWJT32y9yLc+a9xOx9fDhGM6mRRDGNiNGIM+Vxa677opdFPkVovDnP1c+d2tpqZRBzsAv0EEHHBCpR70Fzw7faitsJUlP4aabKp8PP+ooFJqbgXXr0LtnT4wbG6XmR+60E3acOBH5DeRZiIMPOghNLeqlDft+hd/8pnK9Z8+e1fdesiTyzFZbVCnH8u67o/PSS4FyGYXzz0du6dKaOPj+rHDnndF07iOmgvceNw7lDSqFHNfmQ4wYOlRaLwGgoPAJtOWQIUqzol122gkjZX3xBvKglatjw0eMkJYpAOSJlhQA0LtnT+w+qpbS79HaiokTJyK3YEHkumzcAIAdt9++5toB++yDXOjeQYKthw0L2trLL1euDdmquuwfOGBATbw5bmNi8MCB0Xs4NxHbDR+uTEMkPdtsE/TjksNBdh01CrtMnChUmwHAoQcdBAwdWvvD4sWk+A8/7DBgYDDV59+Tz4cdt98e2wvKpNDcTDYpHbH55tH6/dprlY9Dhw9HboMpa4/u3aXlX7j99spn1X35jz4SXh+1664o/Oc/Ndd7d+uGA7j+fLNBgzBI0p75+yZOnAhwechiYP/+mDhxIvISk7tBm24aeZccZ0o3bKutaurBPqNrl1y7jholjSNEN00/GmKHrbfW3wTgoP33B3aIbhvnH3648jnX2VlTThPHj68ozwFExr3Nt9wyuD+fF/ZpO++4I3aaODGSR1tuvjk23xBHEzfHGX/wwcCQYLmca22N/KbqZyrg0rDV0KHIS8p67zFjgP7R7fgDuXrVlMsFdeGll2qe33Un0RZ7LQ458EAUnnhC+vuB++6LXHNzYD6pQN9NNsEuzLrCZk7bp0cP9Np225rrTa2tOOBAnvKPYveddkJBZEJsiP323hvlceOQb2sDBG7G+HLeaaedkH/oIWl4AzaMBfx8IcRgwViRf/ddbTp3HTkSeUX76yfp07bbZhtsdfjhmDJlCg4//HA0i07lBtCyYZ5duOeeyPVNN6SXXZ9RMLBHj0p6mvr1A+bOrbmndMAByD/5pPD5o47hpR7AZswYmttAAIkwdvRolIfxFDSwz957oyxYj4nQRDRJ3mLzzbHZxIk1PjzHjB6N/H//W/ner18/aZ+hm8MU/vWv6r2C3yv3MXPXmt9Kpcpz+QcfjPy26847Y5eJE6XrtoP257e4gO233RbbHnkkChJ13cjtt8eOlD5SgaHDh2OLiRNR+MMfYoUjQ75cxib9ayVQ3TfM+9k173YjRmCbsO5tsNg1wb5jx6J9zBhtO2xkrDDIl4YkLQcOHIhCoYCFHBGxcOFCbLaZbL8gwLXXXouf//znePjhh7GbgpBrbW1FKzfZAIDm5uYuWWkA1Oww58plNCnMGJvL5eAETK6TrskfbuHbVChET1ANIfAD05zLCeOohJXPR/xH5MplefmI/MwQ0NzaGomjWbKQL+TzwYJKklbWjJ1FU/iObFic7L9y3YEvnjwXRiV+xUSukMsJ302Udvae5pYWQDJhKmDDApSFxB9MoXv3IJz2duTXr0dekMdNTU3A/vsDm28OzJoVrQuCMssDyCvaMqVzpE59K/knQLOizkTSI8prC38nlXpaCbj2TQsCxUlTPi9utzyYvM51dirLQIZmri7mBP48hfUnBENyNnfvXok7Vy5XCLNKOJKyaS4UtKR1pI4xZZgD0w9yYbBtONe7N5o+//ngyyWXBL5y+HQo2hewoR8WoKm1tVpekrZdKJfleQgo61dekJZI2Io6H5JO/CndNXXTID08cthQZ/nrHR3CMUI1rhcE79kMaNttJX+Z/GcXkPlyubYP4t4xXypF7+HrrzIFXHoKBeUYVRmbJfWlWdYHSBYtNc+zYz9XNnybl9Yfg36ksG5dNAzm2XxLSyUflPMGtj9T3SfJsyYJEZYrlWreOQ8gTyBUKmOXIi8qdUs2H+HrniD/+XSLSrkpn1fOHYCgzVFQIG5sNYvGQqZdicqpuVSKPsPWheZmZX6K+slIu+TyKZI+7t1J6wduU0HlTqSpubkmL2rGz7DPE9QFav/RrOnrmnO5KCksQZ7rQ2zmtDmJK4ZcoRDM1xVoKmpOQSeiKVz/SAQVfDkXmpqU8VbatKy9dnbWjhWEvrAAKOcxsvGwUChUrqvWvblSKfhNNm4Z5nV+zZrqe0oED/mJEwEJadksWG9E8k7RVzXl88K8Is99AbJPy0p5c+nhSU/lOoUbd2vKiCmTnOh3wX08csUimiUHlVXyRVLGorVyAeo2r52TElBoagrCIM5LTJHr7KyZuwLBxl9zc3Ok3kbex2KzpKlQQJnQDhsZJu/UkAfxtLS0YK+99oocohMeqjNunNxY6+qrr8aPf/xjPPDAAxgt2DHe2FGjrtA5Rg93SpI6iIcNW3UQD/WENIm6RAv+MBmZY32d4/tSiX6yb7Eo9h3mwqcFH58u3exvpqeH53Lyhb2oTGVl1NRUHQjWrpU7YQ/j5NNhe3o45SCeuKeHc4fMlHuLDOQlYbg4PVxWlykH9oggO3zHhGDl30vUN1AOBQCCukM5PVzUT5kcxCOr53ybZb+z/QqVjOHTL9uM4Q8PE6Fep4eHeUA5kVH0HAWiQ5fYOE3ilvXRuj4ka6eHUw/iMa0vpoc2iOKgniaa9unhLg7ikdVDUV9EWeTLDr/gww/DlKVL9V10EI9svNdtupkc9kKB6L11C1Q+bDaM8FnZe4hOD2efVx2exZMYlPLl663qIB5RmpM4iGeDD2MpikXxOM2DPyzHZk7b2SlONx+2CK4O4gnrE4GoraArH8Qj609MD4tk65CEtJQJIaRlz+adbs4iIh1N5tnUdabsEBt+vNCtHVSgHgJDWQuJwtCtHWUH8aiIXZs1DY8kTg/noVqDsmORPz3cKRqStASAyZMn47bbbsOdd96Jt956C+eeey5Wr16Ns846CwBw+umnRw7queqqq/CDH/wAd9xxB4YPH44FCxZgwYIFWEU51XBjgWjQUU0owsFON+mgnkIsmvDIFphsGnlCUQbbUxx5JYFsYaE7SU1GgshODxcN9kmQlmH8lEGNcno4G45qEinKQ1kZFQrVCYzsMIhwAA/j05GWugGko0M/4bI9PVwUTgiZiZyoniR5ergL0tLV6eGm95iQlqrTw01IPVn+8IsCGWlJPemQj0fVZnRpqxdpGeaJ6YTMpL7L0ic7PZyyacOHk8Tp4XzfpiPzTMaEsI7p8t3kNFBKeKL7bElLkxNBVaQl9fRw6qaoihyU1R/RItCk70v79PBGJi35zR2ewAbkcxXdvE2VTyICUge+T1eRlqoNdD7OOKSlbq7T0UEnLV2cHm5LWq5d64YICPvdepKWlPfQkZZx1xSyvii8bho+hbSUqWllSra4pCW1vnR20t9XtVlO3ezX9bvUcHRze9l8zeb0cFkehzCZ48niTeL0cB6icg7jZeuh7RoohD89PIKGNA8HgJNPPhmLFy/GD3/4QyxYsAC77747HnjggcrhPLNnzw7MEDbglltuQXt7O0466aRIOJdddhkuv/zyNJOeWdQ073JZ3QFnQWlZLtOVELakJa+0lE0CdJMO0SIgDI9Pt0xpaTPBE8Un+m6jtJTtpIXg8071bKkkfz9WablunbjOhQOUaGGuS6csfZR74iotud/L22yD3Kuv0sLIOmmpIimoYchAIS3D+seSltTdYlOlpQx8O2bLzIa05OOUtRkKaal7Px1Jo/pd1WfL+nVX5IcqfbK4KQQQCxdKS8pGhI5cTUJpaVpfqH2DC9LSRD3BO3jn1XUU0pKyMQHIy0FGOInGFxU5JUoTRWlJJbviKC11ZUJVz1AX/KJ0mJKWbJp0pKUoPhVpyZ1YX/OczhxOpM5UlSPfb8qITOqmuQg6pSWVtOTnhC6Vlqx6WoZGVVrabLwD+nmsK6VlXNKyqam2DsnISdl1SvvVrXNESklqGzFxQaaad1LnzSZKS0paZAjL0JXSUqVGNVFayu51pbRsbpbXX5VwxistE0PDkpYAcMEFF+CCCy4Q/jZ16tTI9w8//DD5BDU6RJNW1YIoHOx0iyYq+eHCPFzVwG3Nw6lKS10HXirJJ7/8+7W3iztFG5JKlA7Rd8qEyqV5OB+fasBvaqpODnVKS5fm4bpBxgVpyS0Oy9tIziJPirSU1WWqQpqHbDFnMmDHVVqG9SOcPNTTPDxppSXFPDwppaUNaUlVPYhgugtvYh5uqrQsFvX1QxQXS1hQ2rQunSaT/Hqbh6sWY5R+CXBnHs4qsKlkpA1pKZsvxDEPpygtTc3Du7rSUmUeHvaVaZiHu1ZaUolIGXnlyjzcRGnpgrSUKZ3SMg/PgtLShXm4LP9dkZbU+tW7N/Dpp0EdCvsUU/NwitJSN2eJYx5uIoyhKi1VdcZksyiOeXjYd8rWBCbzy1LJndJSNl64Ii2bmsxIyyTMw73SMoKGNQ/3cI+a6VqpVH+lJcU8XBVXCIqprwz8REi2sNBNOmQkyBNPAF/9avRasZicebhMYZSEebiJ0lJFKrPm4WvXuiEtXZiH6ybyIXSECJsXotN5gXgqCVVa4iotp00DzjuvejKvC6Vl3DwNy01EWsomXqabNuyzqutUn5ayBfPzzwMXXAC88oo4nbIJIHufLWmpgo5gmTcP+PrXgX/+M/h+yy3Ad78bLExC8PW3XAb+9S/g4osB0cncWTIPpygtdebh06YB114L/OlPwDe/CSxZkqxPS1mYIXTKw7jm4SpfXWkoLWU+LalKJFvSUqb4tSUtKUpL3WakblNKNF+RLUJdKS2ppOW55wLhae3LlweHmN15p/oZlXk4P07wiGMezvfPqvb6zjtBX8+cHlwJP455eBhGHNLSpXl4vX1a2sybeIR1VXPwTwRxSMvp04Ff/5oeXggdabl0aVDnwvkb+5wofTxk/Uz4PLV8Q1/unZ3VvDU1D4/r01JGqF14YW2bBILx+4ILgAceCP6bnHotIy35dpaE0nLu3GCO9Y9/AFdcATz2mDqcMP9MBS825uEmbVNWt1yZh6s2wlTWfrx5+M03B3NfG3eEXmkZQUMrLT0cQ7Rop/i0rKd5OL8gkA2slieHAzA3D1cN7qK8uvXW2mvt7eIJvAvzcBulpUzZocoHQE1aUskXIGoevn69OB9UB/HYmoe7UlrqCGFWaSkzHUtKaRmXtDz00KDs/vd/aw9JslVaUvKeQlryJxXL1E2i9JkqLWWgKi1l7WTs2OD/LbeI80XWJ1Amvkmah990U/D/hhuAu+4KiG0gekI6n66lS4HPfjb4/MorAGcxkah5uClpSfFpKVK7hQvr8Nq3vlX97aOPgJ12EqdXlhYbH1A6Isu0vmTVPJyfU9j4tKSqdFwpLSl5mYTSUtTfu1JauiYtX3kFOOkk4IUXgMmTgTvuqL2Hfx8XSkvZ86p8MvFpOX48MGeOOC7VRgKl7cg2WLuSeTjvL1ME1z4tTUAhLVXlceGFwG67AQceGH1GBcoc9aabgNtvr31O9T2EK/Nw9gDK1asDYtLVQTxU8/DOTvFace5c4JhjgBUrouncd9/gfzjXMYFs3cWPF1TXJao4+Hu//GXgwQeBX/6Sllad0tJkvtBISkuVGw+q0nLqVOC224LPm2xingavtIzAKy09KjD2aRl27qakpUvz8HKZtji39WcJBJMgk4N4VAvCFStocRaL4nuTOIhHZPoke8aleTgfFpW0BMR1xfQgHopKikJKxFUF8mHk88CvflU7MXNFWlLaowlpGZbbunW1C91GUFrKSEvRop0HZUIRV2kZQjbJlW3IuFBa6voEapn+/OfVz7/9bfUzn7+sG5fHH68Nx5SgUy3S0zQPF5GWIvzjH3qlJaUPloFCdgHmSsskSEtZXHFISzZMKmnJLowofQ4PGeEUxzzcRGlJVeglaR5Ohcn8Zvr04L+IsARqF7Rp+rS0NQ8XEZaAmswWba7JFE6i60mahx97bO19SSotCwXaQTwuYHOYHGWM0YXX1kYLLwR1jqqrpzrXIK5JS0CuqNSZh19xRfQe6saTjlBbsED+mylkIhd+DDCdl7CQ9TUPPqhPHwvZGlE3xshIS1c+LXVKyyyQlu++W/38ySfmafBKywg8aelRhWgCrZrQhB2PqU9LE6UlxTyc0qhtJyo8ERamRRSnbtJRKgHLltHibW8X3+vCpyWfl5TJl2xiEsc8XKW07Nkz+luhEPUdtHJlbXiqg3iSMg+nKi11Ew9+AXXhhcE7XnVVNC5R/KagtEfRQluUX/y1RYtoSkud/7EkSUvZYl1E5pvsZFN9WsY9iIdPk2ySTVG5pkVayohVPnydqZ0LpWVIZlJJsjAsHrYH8ehMGJM0D9eRlqK+k92wy4JPSxOCTKW0ZM3DqUpLG9KSbSfDhgE77li9X7dglcGF0lJnAWNCWsZdHIYwtSRRlRvf57gwD5dZb5j4tLR152BiwUNV9pqkR0d+FYvR9jZ/vpy0ZNtw2qQl7zLCFjKTWRUoc2xdeH361D6jApW0FD3HQtW/ie4Pr5v4tAwR1iOZj0qdefgPfhDMn0Nlm8np4aq1oksCiaq0TIK0NIXIzQ1gp7TUmYe7VFomaR6uclEmq7c28ErLCDxp6SGHTmkZdjz1VFqKFp8i2CotRTs2sjh1HXipFPXnpkKxKL43CaWlTPoveka3oObDUS3Q+WfZyUKPHtHfeKWlSIWq8mlpax6eltKSjSfMr5aW2nrHo97m4Xx9nDVLTpaZTPjiEsE8aRlOIkTvJdstpuRtGj4tecjar+o+U+Wc7rkw/LikJQ8dmW3S/6nSJ9qQMF0cUJTYovFLt7DW+Q2OQ1rqNgFDyDYYVOMwBWn7tNSZh1MO4mHbl4pUo/i0ZMexOObhLnxaZlFpaUpaLl5MD6sRzMNlcGEeHpe01G3i8UrL/v3Fi3d+I9vG5VEWSEtTpaVM+c/+TgmPJfdsLD2oMDUPl82r4igtZXFSzMNbWqpKubg+LUXPxhWQyOadWSYtRWlV1cGkzcOTVlqakpYipWVceKVlBJ609KggJ5rEUkhL3aCk29EPYUtaUhq1LWkp2jmRxSmT+7PPxVVaJuHTMiQUKIMjZRHDq8+op4ezZaQjLUUOjVU+LZM0D49LsPFhsHWNr3eiNJrCJWnJtyuetGTjo07EKL/r7nFhHk6ZbFPSWa/TwymkZb2VlqIwVXChtAToC33Vb0kpLfl6l4TSUqe+Y/ONNZFK0zzcBWlZLEbzU2YerlOQhVCNv7L+gm0nrKuZOObhaSgtRZuzshOM60Vazpol/02ntMyaebjq3XVKS6p5uOkcgs0PE/PwfD5Qw4lIS77/s1WeykhLXV2k+N2kwFRpqRNY2JCWNvMPKuIqLcPvNqRlOL+X5ZdMacnXt3D+Z+LTknpITNy1mGzeybd1U1JQFEdcqJSWuo0MUZpUeWxy/kQap4fLkBZp6ZWWEXjS0qMK0STWhXl4HNJSpwzR7V6GcKm0lBFVFJ+WWVBa8ml3TVpSzcP5sFSkJXt6OKA2D6f6tKSYh6ehtOQXqrLDWZIyD5f5W+Mhuo9XkYhIy7DOmqguKYojW9JS9v78dVekZdJKS9kkz4V5uC4drklLqnKRAtWEWtS2dYsZHkn4tAzTporbBWmpU0yycbCkZZLm4UmQlkB0XmFjHs4ujFT1mKK0zOejpKXonSltKks+LUsld+bhpvObOKSlK/Nw0VjFvgfVPFy1oa0aD0XzdBOlpaoOsYo23VyHJS179gzalmjxXm+flq6VlqL8Y10ZhdC1bSppyRJ2lH43adJS59Myjnm47Fnq6eEipWUcn5bUsYAC2QZioyktTedNOhN8k7V60qeHm/q0TMI83CstI/CkpUcFOdGktRHMwymN2tanpcw8XBSnTsXiQmlZL/Pw8DdT83AT0pItI96nZVNTPJ+Wtubhafi0rLfSkrqQEd1HUVra+H6S5SlLXFPUUUkrLfm6LgLVpyV14W+jtJTlFUX5IQOVsAfoE1FdnpsSdLL0uTAPpygtRQqFRiAtTZWWJmoj2TOUfskGMtLS5vRw1Uau6iAeVmnJEjmiOkghIlwoLW1IS9l4n0WlpWvzcH4TRLWhbqO0VG1om5qHy8gCXVp5sOSQidIynL8laR4uGiuy4tNSRFqqyhCgk5ZsGdpsmlJhah4uG6fqZR4OmJuH6wg1qqsQCmTzziySliLhQfjdlLTUEcMma/V6nh4u6je90jJxeNLSo4qkSEvqYqSrmIerFglZUFrKlFpJKS2TMA839WmZpHm4iTJGhFJJTlom4dOSsolAVaZSSEsKKc5DlqehY3VAXTb1Vlqm6dMyKfNwitLVtdLSNWkZd6HPhiVKSxpKSx25arIwsVFaUnxaUtu2C5+WpmQmO6+QmYdTlZai7yFMlZaiZ5JQWlL6KNF9ItJSZh5er4N4PvhA/ptr83BZfdURgVSflqoNbVPzcFl/ZTqHSIK0rJfSMpw/puHTkp2rhtD10zakZRaUlrIxpR6kJV/fbEhLqulyXKWlzJ1YkqSlLQEmMw/XbbLZkJYma/V6moeL3tv7tEwcnrT0qKBGaQkAt94qfyCu0vLTT4GDDwYOPzwYpGzNwymLtjTNw135tBSRllOm0J5XwYZUikNaJmEe/txzteGZ+rR0YR7+xz8C99+vvgewV1rWyzzclrT84AM3SkvZZGjAgOg9MqTl09Jm0ZCWT8uJE4FDDgGWLzcnLd96C9hzT3U6TEhL6sKFr0+PPALsvDPwox8F310qLU3Mw22VlqLxy/QgHpdKS6r6Tqa0POYYYMKEKBFz333VE7F1+OgjYOxY4LOfNffdqbsug415+JQpwMiRwM9+VptOWXuTlcMPflDdZGN9WgK1YbtUWs6eDey9N/DOO+owAODmm4Ezzoj+bmIeXi+l5e9+Rw9LpbSkmIfLNjlEeZKm0pJKWsY1D3dJWsY9PRwQ1xWZT8tCoZqmNHxaikhLXT/94ovAYYcF47UKbDiUvuL3v9ffIwKVtAwhI/XjkJZxzcNNfVqefz7w29/Kf3dJWso2lfh5S1jGf/1rMM7edlttGLo4qPfLIDMPt1FaNpJ5uCn56E8PTxwO6WCPhodp44jr0/J73wMefzz4/MMfqneB62UeHnZC7ORt7VpxnDplw4oVdJKpWKQTnKaIo7R0aR7Olwk7CeDNa5qagEGD5OkL42L/x1Va6sx5TKDLW16JFaJe5uFU0pIvw3nzgG23jV6zUVrKFlj9+1c/U0jLkHBRKS3jkJaUvqdeSksAmDoVuPTSgGgSQdYfHXss8P77ZulwAb4+jR8f/L/8cuDrX3fr09KFebhuctpo5uEiUpM3kXroIeCqq4IyAYK6QsXppwOffBJ8nj5dHDefVh6uSEvV6eFHHBH8/973asciU6UlC15pyYflUmkJ1OYxH1eI888Xx5G2ebgLS5IQJj4tKebhsnZpah4uqycq0lKnGqfMy2RjKlVpqbMqWbeumse9egX/RYt+F+bhgHjck20ItbYGpOXSpe7m1aanh1P6h0cfDf5UMDUPt4WJJYKor5CtGWRIS2kZZ05vYh7er5/eT60oPXw7Cz9/8YvB///5H+Ccc6r3qiAinguFoH2KDjOVwaVPy0ZSWqrMw1XxeqVlYvBKS48KhEpLFWRKS535afj96aer19jPLFyRlra7q2EntOWW1WsffSSOU2feES7WAPmgG0KmtHQBGelB8bdjqrTkd9VZfPSRPCx+J7WpCTj1VHn6gNqDeNj31JGrIlCUljz22w844IDa60kpLV2QlqJ8oOYXP8EQHU5iq7QUpYGtFyqzx7TMw9nnZVCZ+7Jtw7XSMsTTT5srLXWEJWCmtKRCNWHt6DAjNVSbAWkrLeOQljpyNWmflqIJ+Esv0eNkwY6Bc+aI45Z9112Xga1TMvNwHRnDwlRpyYL3aSlSWlLej6K01CEsY9Wp59Txvl7m4Sq4Ng+XkTimpGW9zMPjkpY6pSWrEDQxD1fFryINTEnLoUP18ZlANa9xtcEsgql5uIt4AHX6VXXQtXl4LievFzKflmz7iTNnoSgtv/AF4MwzgS99SR0WVWlpOi9hIeuzwk0FKmTm4aqNYfY5FjrS0kRgJKtb/FrQFrp1Og/v0zJxeNLSowpb0pLvOHS+ksLvKsVBiHqTlmHnN2JE9ZrIbx+gNw9nF2ysmasISSotZebhlMGRai4WQqW05J3os2Hxg0WhAAwcCNx7rzyN9fBpyeORRwKXByZx8RO+pH1aUkhLW/NwkR9cU0VCeK/ofrZeUEiNpM3D2edUKh1ZuKYH8YjMcXSkZbFo59NSB1vSUkXO6nbZ4/i05A+UiUtapuXTMk2lpagtmKoNbBFHaXnwwcDkyeL72TpFNQ9nQd0koPQXvNLS1jycqrRUIcxH2TyDah7uUmlpQlrusYdZWJSDeGzMw135tEzDPNzUxYyJebgtaalqN65Iy5aW6BzeBVTzGlcbzCKYmofbwoS0VCktXZOW+bycFJKZhwNy4s0EOqVljx6BGff//q/4MCYWsnknP6+iuO2SQdZnyczrZXCptOzsTE9pGXdcMs0nf3p44vCkpUcFzpSWOlLEhLSk+LRMQ2nJk5Y2Skt2UqojLVmlpemumA4y0oOyaNepgAC6efjHH0cn9GwZ85PVcPIh8hXExsX+16WTMuCbTjQLBfHunK3SMg3z8DikpWhXlF9MyE4eVEGmCmHrhSxPeRNQIDnzcFk6VIQ5+93UPFy0eNWRlqrFZlzS0mbRpCLsVLvspVI8n5Zs3VGZe8rC4iFSFfOwMQ839fVoQ1rqCEFZvoVwQVLx/STVXF9U55qb5WmSkZbUg3h4xDEP531aioi0tJSWYRgysizrpOUuu6h/5w9cUZmHh+OEjXm4KE/YNkw1D7dVWmbFPFxEWsY1D7chLUVl2NrqnrQ0VVrGaauycJIkNEzMw1XzKuo8il3nqHxa5vPyeiEzD2fTkaTSko1fp7ajkpZxlJayuYKpGw6V0tI0faVSej4t66W0VK17TeGVlhF40tKjClc+LXWkSPjdldKSMhmIS1oOG1a9JiMtdQtCFjrSctWqav4OHKgPzwR8flHMw2WLJIpPS9WChjURp5CWqt1L0e6aSpGic2Ngo7SUTah0ecuTGqLPrnbvdUpoWVwUpSVQO5mzVVqK0uCCtJSVOx9eUubhcXxaihaOOtJSt+C1ha3SUhWnasJqSlrypks8aZmmeTi/KaGa0OpIjjikpW4TkKq0dEFS8RtQVNJSdJ0lIHnINsZsScs45uG8Skj0zpQ25UJpGYbhQmnpaoFmspjWkZYrV0a/x1FapmEebuvT0kRpGYe09ErLKFTzGlcbzCJk0Txc5f/WtU/LQoGutBSRlnHyLAnSUkT28qSlqu2rELdMQsjyTrdxXW+lZb1IS8CdibhXWkbgSUuPClLzaRk2Qspua1bMw7t1A4YMCT7rzMMp6dERkewE0DVpyaePQirZ+rTU7TixJuI683CAprRk4wvTQlFaisgAG9LSpdKy0czDgWSVlhTzcBVpKdoZTkJpqQqnHkrLLJmHq6BS3Zgqn/kJdZbMw1XmQ7yD/DTNw0XpTco83NR3p+p6c7N8nFGZh8sO4lEhrk/LtE4Pp4YRV2lZKmVTacmTlnF8WsYxD0/apyW1L5ORjqp6W2/zcBVpYOrTst5KyyTMw9NUWmbJPFw2flJIyzh5pjMPZ4kqnYmwzJ0YP/ctleR5SJ1/8N9tlZaitb0qP+vl09KVebgpacnG58pE3CstI/CkpUcVaZmHi5SWuk7ZhLQUdaJxlZZAddKzaFHthBjQ+7RkoVNa2t5LAV9ecZSWFNJSNXCwpGUS5uFhum1IS1OSJKwrokW+jhCxNQ+3OW01bdLSpU9LitKSzROetATk/VVcpSXVp2Uc0lK0cIyjtMwaaamLz6V5uAlpKRp/VEpL9gAAPmydebgpaWlCXOnILqrS0oWyjl+cUM31Zf1CHPNwk3rcSKeHqxDGIyPLRAo+UZ9YL/PwnXdW/75iRfR7XPNwE9WSyqelrJ649GkpKqcsmYez+ZyG0jIJ0rJePi3rpbTUmYcnQVrKzMNl4w9PFLn2aVkP8/ByWU7y2SotXZmH2ygtdaRllpSWpj4tvdIycXjS0qMCY6Wlzjx82bJgASYjh1yYh4t2eopFYN686LW4SksA2Hrr6ufnn6+99+OP9bvRIUyISNdKS76cqQfxtLcH78iCYh5OVVomQVpSzcPL5drTbE2VlmF9Tkpp6WoizKdl7lxauFSflnxbDvPVlLQ0NQ/v7Ky2wRAU0lK22fDhh/L0iYhxvj7J4mPhQmnJulgQQXUQTz3Mw+PE50ppaerTUkZayp4J+wAbn5Y8aalLZ9I+LWXEQ1zolM2mSksKaSkzD29vB5YsUac3RFc7PdyFT0tX5uEm7zNokPp3lXl4Rwcwf371O8U8XNYOVeNyZ6feR22IOKeH82njDzkMw5CZa8pQb/Nw1cJfRG7IfFq2tABbbun2VN96KS3XrAEWLw4+Z8k8XLbOo74379Py44/FdUOlYFMpLcP+IM6cZeHC6loyTfNw0YGXomdZLFokdzWTltJS1t+o1JTt7dX6rUPSSssskJZeaRmBJy09qnBpHv7WW4E59ZZbBh29KJ6kTg8/+eQg3iuuqF5zqbQExOm9805g9931yifAjLTcdFP6vTagHMSzbh2www61p3fryC3dAt3UPNzWp6VOafmVrwDbbBP93ZS0tFVa8gqGNA/i+fa3gUmTaOFSlZY8Tj0V+Ne/kjUPL5eDE4SHDAF+85vq9bAsKEpLPn033yxPH1suugkklbSkLPxF+TJ7tvoZ1WKzkZSWpspnfkLN1h1T83DZYRtpKC35520VweyzcZWWSSAOaUn1acmbh7PPDBkCPPOMPp0ulZaNdnq4TDnjSmlpAtUGJiA3Dy+VgL32An72s+pvSZmHi+aCrn1aitL2k5+I7zOdQ5iYh7P1qJ7m4bKDeAoFYKut5OGZol4+LX/6U2CLLYDHH092/E3TPDx0qxQSPU89FfTHTz4pvlcVDgt27Np++6BPiEMCXXstMHRoQKrFNQ+nKi1LpVqSTzSvYL8/9FCQf7wgwdanpUppaTpv4klYEbk3aBDw8sv6dGXNp2US5uFeaRmBJy09KnB6eviZZwYd7fLlQQfK/w7QfFpSzMP53+65J/h/2WXVayxpabJ7wnZCY8bo758xo5bYE2GTTehp6NuXfq8NKObhjzwiVp7pyECReXiPHtXP7I5akkpLXTpvu632d5kyQQaq0lI0SWHjkRFZSZCW//d/4ntkZoA8qKYcJ50UjZclSvfbT5xGmaKKvSfEBx8EE10AuPzy6vWw3rATCNnk2mRyICKTZXVFVUZsOFTzcNN+uiuZh5sQdDxpyfu3iktaqjY1eNKSV1KrJtMi8oJ9nk+nSRlSxlMgnYN4eKTt05InOotF4Jhj9OlM2qdlWkrLMAyV0pJCkJ90kjulpQlyOeCMM+S/y8zDn3wSeO216G8683BRf0ExDxfVFVk94dPLx2ViHi4Lw3QOYWIezpKWoWqOcnq4rXm4KN0hacmXYzgnC/3Su0C9lJZh3EceGa0TrkiSEKbm4TJFMZW0BNSiBP5eEfg82G676Pdp0+LPWT79NNjwqKfSUkZahtcnTJCrHEUEsw4qpWUc8/CWFvnzkyfr05XV08MBr7RMCJ609KjClrQUTbxZ0xseYUdL8WmZxEE8JiQg2wlNnAicfrr+GXZy8vWvi+8xSYNOURAXNj4HQ9iYh/OKJ9HnOKSliOjTpVMEkUmYCiqlJRuXaKLBpK+c5unhMtLRNWnJK0U++9lAmfyHPwAnnCC+X/S+7ESAzUfZpkcc83AVROmwUTOyi0Lb08N1UBGdXdk8HIi+H68aopJkfDghVErLsH7YmIeLwlSRli59WooWQyrzcJflTy0PUV2Oax4eQqV2CyEjLamLcxekpQulZRiGTGmpG2/23hu47z5gp53qo7QEgOuvD6xbRJCZh4usbihKS1vzcFFYIqisgUzNw2Vh6PoWHibm4Ww4/fsH/ylKS5UfU1OVt6wcw/cwJSFUqJfSMsS6ddE64dL0HTBXWvJzQVOlJUArbxPz8MmTo74yqe67dFi1SlxvXfi05NupKG9lfY9uPOjosPODLyMtdeOVzjy8e3c7dxkhdEpL1bh0yCHAhRfK1+hANkhLr7SMwJOWHhU482mpC0dkHi7z6Wfj01KEcELY3BxV+unA+5w791z6swDwrW+JibY+fehhmPrVMAVFaSkD5SAefiIhK3eKeXhSSksRkvJpKdpZldX/pM3DZYM+lbSknvTX2hqNt1AINgBOO028UJQtsJqaqvfzil4RRKSla6WljkCgmt/Z+rTUQUVaNpLS0tQ8HIimj81rF0pLlU/LsH7YmIfr4lcpLXVjm66umyotbRZAMsRVWpoexKNTvMoQxzyc4tMyK6eHyw5zCXHBBcDRRwef60VabrIJ8J3viH9TmYfzoPi0NDEPD/OOSlqKTED5Z0zMw0WQETYm5uHUsadfv+C/iGBypbQUIYyPr4/hHNqlq4uwH6CWcZyx9rzzxNf5ORWLXA7YZx/7OE1IS5EaMEwb1W0GQCN6TJSWffsCl1xS/W6z6StCt27izSsXp4e7UFrK0NkZbW/Dh6vvDyEzD7fxacm+j2o9t+WW+nTFUVpOmgT86lfARRfJ78mCebhXWkbgSUuPKlyah1NOopY1at4khf0vCsuEtOzZ02ziIpv8UCFboJooLdMiLW0Gcwppyech63fIVGkZ+r4RwTVpaWoeTvVpKVr8yCafSR/EY6IaiqO0HDastl6IPrNpFL0vSzTYkpZUn5YqiMjkRlRaNhJp6VJpqTL3FEHUHlSqDdekJdU8XOd2REd2ieqyarx0SVqm7dNS9oyuz49jHp4lpWUYj0zRIiPqQ5j6400KsrhlSktRX5jU6eFUQmvNGnG8IVRzahPzcNM5hIl5OAud0lI0RxPBldIy7PvreRBPnL5Stgbg/cezyOfjvW89lJaU9JooLfn7bTZ9RejePVnzcN4yi+rTkkJasuVIteILy1BEsMYxD1fFv8UW+nTF8WkpWi/yyMJBPF5pGYEnLT2qSIu01MXDm6QA9SMtZWYmVIhIu3zeTO2Z9EEIqsm8Djbm4axfL1PSEpAPdKqDeNIwD6cqLUUKL/Zamj4t0yItt9qqlrgRfWbTKFPEuFZa2piHu1Jasv0JZeHv2qdlI5mH2ygtZeptU/NwU6VlHPNwEaikZUgW6MLRkZZUpaXKtNMUaSgtdebhgP6d4iotVQcQUtuUC6Wl7vRwFRkH6Dee0oKMxHCptCwW3ZmHi/JVd1Bkkubh1PHJxLQ2VFqKFu4m/Z9r8/AklJZpmIfL0q1y48Gruk1huqkn678pJ4C7UlpSSEsXc5bu3ZM1D+dJS6rSUlfHePNwKmmp8mlpYx4evo/KhyklbXFOD6fco9oMFYG91/u0TASetPSowNlBPDrnvLodOH5xCagXWZSJO0tamnQmMofeVIgmaKZpcO2rhkfSSksb0lJmHg7IBzORT8t6mIfbKC1tzcNtdu/ZyVJa5uF9+shJRpnaSUdasnnmQmlpax4uep7NK+rpqEkpLfm08eHZTopcLQCosPFHxdYRdgGetnk4375dmoezYSehtFT5tMySebjpQTyyk4Z17xRXaenCPLxeSkvZ5loWSUvZQTwyBT/gzjzcVGm5apU4XvaZuObhsv5a9azJ6eEsVEpL0ZxQBtO5r05p6ZK0TPMgHtm6Q3UQT5pKS5FSOKyXMh/ELJIyD+evuSQtdUpL29PDRZvqSZmHUw4+AuTm4bpNNtm6K1w3qIhJytwijtKSSmyatCE2Pn96eCLwpKVHFa58WuoaWRiPrMMxMQ839WnZq1e6SksZaWnSobk+FZBHezs9H3noSEveFAiQk5ZsWDZKS5HcX+VXxzVpGZazS5+WSZqHqyYFSR/Eo1vwyjYjZD4tZTDxaWl7EI8rpWVSPi0BcxMeCtJWWtoQZCbm4TakZZLm4dtsU/2sUlqy+aJTWuoI+jCeeigtqebhMvNeU5+WtkrLjeX08EYxD6cqLcNyVSmkTMzDwzHNBWkZV2kZh7R0bR6ez1dPD6ccxKOCqUigHj4tRRs89SAtRUrLOO9rQlqKNq9VCuA4pGVc8/AklZZs+m3Nw0Vjgsw83EQNG/5uYx6uUlqazi07Oqp5p4qfMreI49OSSlra8gVeaZkIEpZweTQSnCktdWoBHWni0jz8z38G9tqrGk7PnmaL36SUliZEpKvOr1CQm0nbmJ0C0fCefDJQbfAKONfm4bLdQZVPS5V5uGoBb2Merjs93ERpyZuHv/468OabwPHHB+3EZiKs2zQAxG3kz38GzjwT2Hbb6jUqafnxx8Arr1S/U3xaypSWYf6oiOAQSZ0ebqK0dHkQzx//CLz7Li2NLFTvNn06MG9ecBrw1KnAscfSwkx7B1hGFqmgIi1l5p66cEI89RQwa5b4fhfm4dtsA7z/fm38fL6zZZuWT8t6KS1l9VhlHs4u+HjzcFE56N6pvR1YuhT4+98DhdEJJwBbb914Pi3DBadMaSnz4xoiK+bhsrbEqxfD/kNEsIjGCRYyVzEyYiYJ83DVyeYUpGUe3q+fmoRK0jxcVo7he7i0Wpo/PxiLedIynEvzfVUc0lImlmDjNlVatraqx1QTQuyOO2qvlcvyvlRGWlLKO655uAsSSHYQjwvzcNE4mAXz8OefD+aHfNpMzcNZVW7SSkvVuETxaWmqtEzCPNwrLSPwpKVHFTamd3wnCNDNw2Udjql5uCrdp54a/d6zp36CyCIJn5b1Mg9vbpbn4/r18ZSWM2cCBx4ovseFeXhcn5YqpaVKIZeE0lKk2OBJjRDsJGjZMmDcuKD+XnllcGpqHKWlasIqmjB8+CGwxx7Bgj18Rypp+dxz0e86pSXFPFyVpyHCSXAa5uEyYsml0vKqq2jp46Hqj8eNi37/zGdoYTYCaanyacnXGdUkWVaG8+aJr+uUlrqyHjAgqppUmYezcEVaqhQ8QP18WsreXTW2mZqH695p3TrgnHOAf/0r+H7jjQG5TFlkZe308FWrzBTi7LWsKy15hOUqGrNslJaA3DTbtdKyVJKnjVpndGkVwcY8PPRnCcQ3D3d9EI9r//AHHwxMmFD93txcrV86BZ0JZOlWmYfrfFr26wcsXCj/3URped114uuyMZtPV6OZh+dy8UlLmWhCtKleb/Pwd98Fxo6tvW7j05JKWqaltNTVp3qbh3ulZQTePNyjAqu98nXr7A/ioSgtdebhVNOYEKaEYVbMw6nqJxVUE7bQRNwUYdlffXXtb7KdLFZtIjMPj+PTsl6kZRI+Ldm689BD1cXNpZdW02gKCmkpC3fVqqr6C6D7tORBOYjHxDxcVk5JHcQjMg8XpUfXF5qSlrYwebf//Id2X9rm4TYEmYl5uCp8Sjs76KDg//HHq0nLQkFfHiNG1C62QqjyvFs34IAD5L9TxlNAbx4eIm2lpezde/Y092kpMw/XvdOCBVHV+EcfBRtKLpSW1EW1K5+Wqv7bhLRMW2l5113Vz9S5VDjeqUhLE5+WgJwIDMs1S+bhMtIxjnn4RRfVPsNutlBOD1fBlrTkww/DcU1azp8f/IVg5wV8Xi1YYB+PK5+WRx1VJTOvv14dpwlpKYNsTG0E8/DLL5f/VirpzcNtfVqK8tnl6eE2Sst//lN8XTe/FaWHfRfVerrRfVp6pWUi8KSlRxXUxsHuzqxda28eTvFpKdqx/uIXq59NfTGanh6eFfPw//s/4JBD1Pf9/vfq31Xvbau0DMtFpcZxYR7O5pfOPJw3qebDDqFb+Jmahyfh01JH1sYhLW1VUuxzKqXl8OHy31wcxOPKPDwJpWX4WVc+bF1JUq3E9sfnnafvSyhIm7R0bR5uS1rK+tHf/jYwofr736v1LiQb2Ljyef3iwpa0zOWCzY3jjhP/rqvrpubhafu0lKW7X7/0Tg+fNav2HtHmrQhZOz3clKivt3l4c3PgIuXkk6vXXJCWFPNwGQGZlnl4PQ7ikZmHb7pp4Fbkpz+tfYYlLZMwD//mN+X3y8jnMB1JHGr5ySe18QC1eT1njn0cNubhIqXlmDHAe+8FGy2smx8RTP0liiAbs5M6iMeVefhf/gKceKL891IpOfNwEVnH9w+25uG2Pi1lsFFasmMOn0f77iu+T4Y4p4c3inm4V1pG4ElLjwrI086ePaufRZN1nXm4TmmpMw/fZ5/qZ9OFsylpyQ+CrE896vMuTg9vbq4142TR2hpMSHThyBBXaSki6lySlmwYG6vS0jVpaUMCAdF2qyItt9pK/hvlIB4X5uFJHcTDlpGI/A7D1JVPHKXl5pvrFx58eoDAx2/v3mZxycJsVKWlyEcdlcCRbVw1Nwd+QZuba0lt3jycQlqy/TXVPDyXC/oJkSkX+6xqowagH8STFaVl//40n5YuTg+fNav2HippSfFpmebp4aYuEeptHj5gALDLLtFr1LjD9i1Sl1LMw2WnqadhHq5TWlLqno1PS5l5ePfuwTgi6guTNg8PFe0i6EhLV0rL7bevfl66tDYewO3Y6EppWSgE/neHDNHnhQulpWx+yMcdtrusmIfvuqt6ndfZ6Y60pBCP/OnsMosJ3XjAu3OjmofLoJsDit5FRVrutlv1cxylpWztycKfHt6Q8KSlRxXUxqEjLXXhmCgtRZ0zO+DZkJa2OychTNSWMp+WNqeHq9JNIVOTUFqGZa9a2NqcHq7K46ySlkn4tGQ/i3zHsgdMUeGStFSZF6rKkHIQj4l5eBylZRIH8dgoLU1Jy3ye3hex78arvWzRaKQlO66IlJZUAkemepEppPmFUtJKSz5+Fro+r55KS8rBSDakpevTw+fNqz3kRWRxIgLFp2VaSkuZiWOILJqH65RUKqxfL/YPx4YhW+SK+gsgXZ+WWTo9PMwnUd5TzMPjkJYDBsjvl5WjakPZBmwaZKRlnLbJQzbOs+UpOj1c5jtSFWYIF6RlEkrLNMzDZYe0hegq5uEtLfH6bpvTw9k6wZd3jx7Vz1k5Pdybh2cKnrT0MAdLkNiYh5v4tBRN/vjdzDSVlnz6KM+7MA8H1M/Ui7QMy0UUtmzgsFFasrA5iMfWPFz2m2pypDs9XDTRoJiHy5xxA8DAgeJ0ikA5PVwFqnm4alKc1kE89TYP1+0Wx1Fa5nL0voitf6YTMRmoqjBXSNo8nOrjVZbnsgmriLTULQBVpKVqYaJTGFBJS53SUjeG24BiHi6rb7bm4aJ80r1TuVyrfHGptKT0Q2/16gsAAK6nSURBVK5OD1e9axZPDxfFQ51LhW4abMzDZXmVlnm4ygzTxDycSqKGkJmHs3M7Ps9YpWUS5uEU0pKvJ66VluyBZ8uXVz+z4cc5LZyHrdJS5WbJVGlp09ck4dMyDaWlbj3l0jw8jtLSxjyc7ceamuLNBXXjlSlpyXILSZ8eTj2Ix9adnDcPTwSetPSoIEddtLO7ITbm4Tqlpc48nO1EeH9hOjQyaRlXaZmkebhogHFpHs5C9psovrhKS9kkQDYZB8yVllTzcH6xxaZt003F6RQhrtKSSlqqytBWaZmkT8skDuJJ0jw8n6f3RWzadKeKUtFoSkuetDQxD5eFw0K22cAfgFEomJuHU5WWuom4bLHDh61S8LDhZOX08P79zQ/iMT09fOhQ8XUgWFRS2gKvchap5xtRaZmWeXgcpSUQjHk2p4cD4ufSUlrKngPSU1qKSEugtn/QKS3jmofbKC1d+7SUpUHm0iMubEhL0TjP3rOxKi0p8zx2nimCrO+0OT2corSk+rSkmIfz/rnjtAkbpSULPm7WXD1ppWUSPi29eXji8KSlhzl69ap+tjk9PGyEtqeHxzUPj3MQD2BuHh7Xp2UjmIeLJt2mp4dTiAFAng+i+FS+BU3Mw/m8E+WlrU9LftFBJS1Xrqx+7tu3Nk4ZdJsGOoTtVmZqF0JV33QLXlm7tj09nCeRWLgyD7fxaRnnIJ5cjt4XsWVtYx4uq9NpTqhsSHaZywmR6weKeXguJ6/XsgkrT2zolJa5HDBsmLzOUszDXSot0yItkzqIp71dvIlgenr4DjuIrwM00gmoXQTJ1Hs6pKG0zOJBPKJ4TPrN9evVPi1VYYn6nzRJS1mfkZZPS5F5OFDbP7BKS1F+5vP0+sKPb/m8eq5TD/NwFrq2bQuKeTjVp2WINHxampKWlPKhEFEsbM3DbZSWLszDRfWGqrQ0NQ/n/W+bwkZpyYIv75aWah7608MDeKVlBJ609KiArLRkJdzXXgs89VT0d10j05mn6szD0/Rp6UJpGdenZVrm4Tad44svAn/7m5q0pCotKSf0AvL3VPm0jGseztcZUR0K0yWaYL79dnBq89KlYqWlzKelyjx8yZLqZ5PJeFylZZgOnTpXtVtNMQ8XhW2qtAzzhXIQj615eCMoLdm6Y6O0lKmH0yQtv/5182f+9a/qZxenh4tM7kK48mk5ZEhQrnF8WtqSluF1nXl4R0eQt5MmydNiijhKy+7d1e3n5puBc86JnuBr6tOSPXyDB7uBpAK/YTBjRu09FCKyXkrLuXOrnxtRadnebmceDojHy7/8BTjjjNrrSZCWcc3DecV3CNUYzo4vbW3AsmXBZ6rSEhCTabZKy0JBv3nPp49NY5qkpWzsN/E/HsKV0tLED21nJ3K//z1G3XRT4MfXpq9JQmmpSrdszhjClXn4jTcCL7ygjsulebjMp6WpCb+ItIyrtIxDWvJxNzdX68aLLwJnnQW88478+TinhydBWiZhHn7ppcjdfrubsLoAPGnpYQ7WPPzee2t/j6u01JmH86aZJgvnHj3iKy1NSEuRqqlnT7NJfhrm4evW2RMQX/gCsHBh7fWkzMNl76HyaSkiRE3Mw/n0qMzDZeVwyy3AhRfW5rOt0nLx4mh62HapgivSUnUID6CukzqVjqxvSNKnpUulZRqkpYlPy7ikpSge6gIgK+AP4rE5PVxFWsoW8jxZoFNabr21OIwQFNIy6YN41qwBPvtZusKQgjikpejAOxZf+xrwu98FJ3+HkCm+ZH2PC9KS92kpAkXRVK/Tw1mYECAiuHomSfNw1n+26Llvf1scT5ivrnxaqhDXPFwFU/+9QFRpKfrdxDxcRbqJkJZPyzhKy7B/NwGFtBTllUppqZs7rFiBpv/5HwyfMgWFr341O+bhqnSI6rctaamqa+zmlywuKmlJMQ935dOSNw934dNSNW/WpUdEWrJ1/fe/ByZOlD8fR2nZKObhAJrOPRe92A3DjRietPSogKy0ZP1OiKDryEI/GPU4PZzdyaFA1OlRTTLDZzfbLHq9Z08zE800zMNXrIgnQ1+woPaa6enhVPNwHRGm82kZ5oNu4ceaXZkoLVX461/tfVryEwCetGTdNqgQ1zw8XLyxDuhFUNVJ3YJXNtlx4dOSz3+RUlIHVz4t0zo9nF08UIgTHqK+o1hMlrQ8/3y34blSWsr6YVdKy4svDv6zec4ugF0oLXU+LXVKSypJZ4I4pCVgthEY+rMUPSOrB7yCjAV/mrgMlHGfz4dttqm9x4XSUjUHA/TmeXHNw59+Ghg0CNhzT/ozpkpLnpgpFs3Mw1nS0mSTLwmlpQydnXTzcNP6Ihtf2Hzi+wdXSktRW9EpYnXm4Un7tKQcxNO7t3l8NubhOp+WAwYAX/kKKfr8gw/akZZJHMQThvnww7QDKG18WurMwylx2ZqHJ+nT0rV5uGulZVNTbd14/33583F8Wob5rhq7dMpuHmzbdtXXbEBfVT5sRPCkpUcVss6cNbED5Kc3s+HolJaqzszUPNxkIhbnNDBR+ijPjhgRvR6ah1AHizTMw5cti0dApGkebuPTUkSIUhZ+4QSJ4tOSunDT+bSk7tax5uE2pGVcpWVoKgaI41btVtsqLW19WqattAzD6ypKS9H9OqVWXFx8MfDTn4p/s1HM6HxaulRaqkjLQkFeL95/P1AwAsmQljKzMj5sndLSpS/LEHFODwfM2k9Yn0XPyBTkqs1aKmlJUW6wZXP//cCpp9bek4bSUjcfiGsePm4c8PHHwIMP0p+R+UjksXRpQKwvXw6ceWb1erGoVlqqSEuV/2YeaZKWNkpLanm5UFpSfC2KwI71fFwy4i8t83D29HAWFNIy7tjFIo7SEgBuvTUwwaWA2tewFj+qeRwLG9LysMMCCy9WFOLSPNymT2PTb2seLsrnJH1axnHtEdenpU5pqUOc08PDuqLze2kyV2Y3bByTlh4BPGnpUUFOtiDgJ+s60lI3KOh8KZmYh5sqLU13TlwoLV2RlkkqLT/9NB5pKVLeyHa7KAfxuCIt45iHs8+JTJx4UPNP4dOyLMorGWyVljqfsjqEi/pPP61eE+14U5WWondM0jxc5tMyLmkpmkBmRWmZBGkJuD0hVRSnLF4TFx0h4pweburTkjft5jclZPWVDZtNL5u2tA/iEb2vCYFDhe1BPOH8xBVpKSMgVaSlrU9LEXjzPVFdD/MhTvvTKS11iGseHoZh6m6Hhyg/e/cOxsPW1tq2qPJpaWoeLoOKtMyCeTiVOKMoLXU+LUVzJ8rcN1RDi8KSzXXSIi179BD3BxSfljZkhqgccjlzpaVoXKCmh9rXsKRlkkrL8DmRSIFFEj4tVc+FsD09XDT3lfm0tDEPp5KWlLJwfXq4qSVkHKVlCJfm4eyGjUPzcI8qPGnpUYWs8+EnlRTSUmcertrhV5mH8xMeU5+WpkrLOAfx6EhLameYBmm5bFk883DRoo1iHs7WFSppaXMQj415OAs+PaK8ou5EK3xa1pCWJkpLqoP3JJSWpqSlTmmZpHm47PTwuObhIjJap0Rk+xLTHe84SksX5uFJQ6S0CaEbg0TQmYeryordlXdxEI+qfoewUVrqJus683DRYkg07iRBWtqah4eqKxPiTOb7DrAjLU2UliakZS4nJixcKC2BeKSlq9PDTZQ1VPNwmfmyqdKSLfM0zMOpfqn58ExPD6fOPWVjeFylJZW0lM2HdEpLvj6G112NY/m82F0EhbS0SYOovHK56DxUtOEtOsiIB3XeQSUt2Xlo0qQloO970lRa2piHU4hHmXm47CAeWZ7wfYVqjkWZW2ZdaRnXPFw13xPBKy0ThyctPSqQKi1NSUuKebhqsqwyD+cHExulZVrm4a6UluF9cc3DVZ1oXKWlqDwp5uFArWpEN6nVqfd0p4ebmIeH4PMuDmmp8GmZitLSFWnJKi033bT2vjg+LSnm4TKVLn8/H19a5uFpKC3raR6eNFR+peIqLU3Nw0Oodt6p5uEqpSUbdhylZdyDeOqhtEyTtLRRWqr8f5n4tDQxD5e1cRc+LYF45RjXPDyEySKVqrRUkZYmPi3TJi1tTpamKi3ZPs+EtFQdOsiH1aNHbXnakpYq83BbpaWrcSyfryVn+fCpptEUiMqBJy1Fv+vMwwF626X2NWwdluWBjLSkrM1UpCXFPDxJn5Y25uEuD+IJr6vcw1CVlpQ5Vho+LVWIc3p4Ej4t2T7B9Zw5zsZgF4InLT2qyKLSMgnSMi3zcNc+LXXprqfSUgSK0hKo3TXU7XLqzMP5+gHYm4fzz4RwSVqqlJZJkpZxzcMpSktZ+m1JyyQO4olLWsqUmjrSsrk5nlpJpsISIS5pWQ+lpar+8JN4Cti8EhEQFFLCxjw8TaVlI5uHxyUtTYgzG9JS5Y4hqdPDZXG6UlrablwBbszDw2fj9C8is1g2PRSlJcU83BVpqVJSJUla2piHmyotdUQeYGYe7pq0dDWOFQpipWVSPi1F5ZDPq83DKT4tw/sosDEPNyUt4yot6+3Tko1L93wSpCUr/BDBhLRUqTBD6Nb6ujrD14OmpvSUliFcmod7pWXi8KSlRwXOlJa6SZSJT0sRocX7MMnqQTxhh7nlltHrSZiHl8v19WkpAlVpKSpj1bvE8WmZz1fTUy/zcJVPS5lZkwgsadnc3FhKS9uDeNgwKT4tw3JzbR5OUVqWSupJG9+PJKm0jHt6eL2UlrJJJ1v3qGDzSkRcUEh81SE6bPmx+dvRUbu4lNVX9rkkfFraHMSTlnm4rU/LOObhonxSkZay9paUT0uZCwhXSss4pCWb33GUloD54YYsdC5VKD4tZfXB1qdlWJepSsuwztmQloylhvY+G9LSRGkpIvLimIfL5kOmpGUS5uE6gjZp0pJXWlJ8WorynToXcOnT0sVBPCGSIi3j+rTUjUcm5uE8dEpLWdy8T0vVHIsi8HGttDRdn7tQWqrGLu/TMnPwpKVHFS7Nw3X+wVwpLevh09L0IB6+80rCPLxc1i8cVJ1vkkpLKmnJHnqjehdTn5bXXQdMn14bdmcncMopwJgx+ndxaR5u4tNSlQ9Z8mlZD/NwV0rLJ58EjjnG7FALF0pLvh/xSssobE20ZGDzSkRAUE5Cz+fFC7F8Xk5a8qQCr5BhwZYLrxA74wxg662BadPk6aMqLXU+LbOktLzwQmDYMOCxx8T9blrm4YWCvL25PD2cV1qKCL2upLQE7Nw9hBCRYizi+LRk57p//Ss9TSql5R13AOedV/1eKlWVVLZKS8rY9ctfVjc6XZKWbFguSUuVebipT8skzMNtfVrapEHUb/AH8YiIQMpBPEmah+uUcPx3St7w47Rr0jIcy202YkzK1uQgHh46n5aqTUve6iwOafncc8Chh+rTKYOoforG2CefDCwWzz23ek0lWPJKyy4LT1p6VOBMaSnyF8ZiY/NpCUQ7sz59qmmhgDLhCvNAFWa9lJZ8HvKTVp2alsd++4mvy3xaXnll9fumm1Z/X7kSuOsu9TuEyKJPy/nzo+mbMIEWf9zTw10rLUXvaHoQTxyflgDw3/8Cs2aJw5ClI4StT0u+HzGdJKfp03LQIPXvogVcXKhMtEaPNg9PR1pS2kNzs5y0ZKEzD5dBprR86ingD38I6ui//iV/3pV5OJte0bhBWViZgm8rnZ3A3LnAr38NzJ4dLI5EY9Txxwf/kz6IR9XeTHxaujAPz4LS0iVpaepyhwWfn/x3ik9L2VzF5sAvQE1aAsAttwDvvRd8ZsuAP+yJkq+m1kZAcgfxiNSHIgWgrH9i64HKPPyYY+Tp5dPHPufSPDycx4viARpHaenaPJxVwcr6F9lGQxqkpU6cQRGJ6J4F5MQ6C9H5D3GUli7Nw5ub9eXx8ce0dMpA9Wl54IHAhx8Ct94KvP12cE01B6GQltSDeGyVliZm7h5keNLSowpXpKVu8VcqqTscnXl4mj4tRR2ojSnT1KnACScEC88w/1ySlmHZZZG0tDEPz+WAu+8O8ixUSYY4+GDgxz+mxVcuR0/eu/lmux1UPu9EeZUEaakqT36X/bjjgO99Dzj99OA9jzhC/ZztgrXRfVqaKCplYNuiTL1mSlraKC35MHbbTXxvXNKyXz/g978HTjxRvGkwahRw/fXAF74gT4MpZIrr0aOBr30teu2kk4AbbwTOOUcengvScqutxO1GRZzw5uFU0pLtc6iEehIH8aRl5iQyD+d9efFtbPJk4Oyzg88m/XrYbkRtTmbq7cI83NSnpcw8PAtKS1vz8BNOAJ5/Pnotjnm4idJy9Wo1aaFSWppAR1oCwPLlwX+23vMLXcpp4lTzcBZJHcSjUx+yz4ragY60DJ855RTg298Wp5dPH5sGl+bhorCSPIjHlLSsl0/LTTapfl6xQnxPHPNwHq6VlirXITqwcXXvDvzpT8BnPwtcdJH4ftH61YV5uOwdefNwFWnZr1/89mJjHq4j+0KxBIW0TPsgHnbTqW9f+nMeZHjS0qMCZ0pL3US4XFYvENkBWqS05H1aJqm0FN1LfZ4dDHbbDfjnP4HTTqteM5k4sv9FoJCWOvNwU9JSRRAA8t0uHWkZpvOkk4I822uv2rC//33g4otrw2X/A1EVwp57Ap/5jBvS0vVBPGHemygtWTQ1Be/9k58Ad94ZmFH885/ie+MexCNSWspIS9c+LVkii92ljqu0NIXIPNzUp2Vc83CRCkumwotLWuZygXnyP/4B7L67OC1f/3pgQrnttmZhyyAzD7/99lpFz913AxdcAPz2t1ETIhYuSMsRI8Tjm2qzwURpyZaLLr0iJKG0jOuvkAqReTg/92DTdeaZgesP2QJl+HB5XCrS0uYgHpdKS96VQJJKS1enh1P7rk02CcalvfeOXo9jHm7i01JXTnxYvPKRCgppGaaTJxFM46eah7NIirSkKC2ppGU4p2HBunW46qpgHiiKKw2flqL0J3kQj848XERq8nFZkpbllhZ6X8MS1zLSMs5BPDxck5Yy1yE33FB77667ip8NMWkS8H//J54zAeKDbFyQlrIw+I10lSuufv3imzgn6dMyrtIyhE5paWuZKeoLPWLDk5YeVchIS77R6khL3URYp7TUkZa8ki7Jg3hckZaytFCQhtKys5OuFgmhez/T08PDsqbmi4gM5eMrl6O+MkXpoSBJn5a25uGq9KmedX0QT48eYkVIHJ+WFPNwQH+IThqkZZaUlrIy5w/isSEtQ4j6Ed3vNsjnxe+jqld8WliwC2KRiSiVtBTdp1Ja8gslVdplvuKo5JJusq5TYoiUlnFNf6kQkZYi/78hZP1/iBEj5HHZkpZxzcMpbY/i0xKQz31M/CKmbR5OMQtWIa7SUjfH4cNPkrQM58Aq0pJC5tooLVVWECxk5BybT6YH8ajU4FTzcFnYafm0lI1BSZmHi8rBRmkpG091aGmhz5vY/odKWoblZZM3SSkteYjaIt9vUea7LJJSWsr6AxPz8P790yctVRuDIcLyVnEIus1b0b0i2MyVQyThMsnDk5YeDGSkJd9o01BahnEmYR5uMjCKOixqJ9YIpCXri/CTT2jpCaFLfxzzcApkBB+vtOTzJotKSxvzcBaiuiEbjF0fxCOb3MQhLSnm4YBecRSmS1Tf4oB9X9lhYPwEkUcSp4fL8tuF0jKEaFLJlokLXz6icguhM9mRtW+27sRRWpr6tOR9PKvSx6IeSkvRQTz1JC1FfWUI0WYYi5495b5Yw7wV5ZPqIB4ZiWRSPi7MwwE5aSnytSdD2ubhsrrk8iAe/rsJaZmmeXhYZ3jlEwtKP23j01K2IcTfIxsrTJSWJubhbFmpzMNF6WB/T8M8XLc2SNs8XKTEdGUebktahi4QeNTTPJzq05KHqI+iKFn5NLIQKS3jHMQTuqKRvaPIPFyWNhdKS12d4fNP5tOSRZheVdgm5uEqxCEtvdIyEXjS0qMCqXk43xHHJS0pSsuwo9ApLW12mOP6tKQ+r1vspW0eLnoX1qzXlLSkKi1F5CLFPNw0fpHSkq1nItUdFXya0vJpGUdpqSMtbc3DQ5VaqLSUTW5Uag7dgpdiHg7oT0NOS2kpqw9pnx5OUVrakJYsRP2ITCFoC1VbtSUtWXM50RhFWSy4UFpSSUs2H03Mj1VxZNk8XOTTkm8/7BxF11fm88CAAeK4XJuHUyFTrrGgmIcDctKScgBEiLTNwykqaNPndaQl21ckTVqGcYVjAoW0VCktqaSl6ZhGqYfh73F9WlKVljwxR1FaUknLtMzD2WsuTw+XkZYqBb+IcIlDWtqcHt7I5uE8klJaujYPVz3Pb6SrzMNdKC1N87pQoI8Frg7iUcErLTMHT1p6VCFrxKYTuTR9WppO1lyYh6eptGRPWsya0rLe5uGyyTCbLraexTEPT8mnZZlPWxylpax8wrTHUVquX18lL5NQWlLNw6lKyzgbHbJ0hJCRB/xiks+jJE4Pl+U3aw4t8nWlQ9pKS5UqWmceLstH1j9RHPNw04N4qKQlXz/YfGQPvVIhiYN40lJaikhLldJSZx6ey8kXDmHeujIPp4KyYUA1D5eRYiakpSvz8HoqLXXkdRzzcFPSkr2fV1jzcEVa2piHU5SWqs1yE6WlTB0p6jP5cGVm3rKw01JaisYgPk9lpIorn5b5fHqnh+fzyZqHxyEtWdTbPFyW/jTNw3WkJft7c7P8fbPq05JiHk4hLSkwFTmxcK20pJCsGwE8aelRgVRpaTqRy7rSspFISzYuVbzh4KUKU/Q8S1ouXapPDwuqebjoehLm4TqlZRzzcJc+Ld96q/a58FlbpaXOzyALFwfxsCSKSmlJMZdJ0jw8zJeklZai+PkJIj/BTVNp6dI8PE2lpY15uKrfCZ+zMQ8vFIChQ+3Mw+MqLSkqUICutNT5tMzKQTwiVXoIHWmZz8sXDiqlpawvSUtpGdc8vFcvenpcmYfHVVq6PD3cpXm4KZlqQlqGGycia5AQlLmQjXl4ezt9fqrbEGXzN87p4fzBa3HMw5P2aSlqx/x8Jw2flqZKS1GZU/r3YrG+pKWqHbLprzdpaWoevnYt8MEH0WsUd2cy0vKpp4Cnn5Y/Z2Ie7kJpqaszNj4tFy8O1qquTg9XIUNKy5zpQbldFI56cI8uASqT74K0dOXTkrqYE4VNgeheVwfxUNLBT+JM7uehU1ramBipkAXSUqR0s1mEu1RaXnFF9LvKpyV1MZjmQTxr10ZJy/795eS+rdLSlLQ0MQ93rbSkmoe3tgJr1kS/s3Dh01Knrg3jaRSfli7Nw1mlpai8dKTlVlsF8SZ5EA8Lm3zUkZY6R/1ZO4iHv7Z6dfVzHKWlirSUwZXS0pV5uIysEh2KJkPaB/EkYR5uorSUkSiy8E0JJrZ+UJWWvPKJRVI+LVesSMY8nKK0dGkeTlVaujYPlykfKZujNiSIiLTk/TPaKi0p41GxaGce7sqnZffu8r5K1/fwY3E9fFrKxuNddglIOFOEdYufx9x9d/AnQ9YP4qH4tDz66KAs/vEP+T31MA/n62HfvrTniPCkZQCvtPSoQKq05BH39PBy2d3p4Vk2DzcZTGWgKi1tzcNtJexf/rKe/JMtanTm4bZKVtHumkjFYLMIN/Vpeckl9LBVPi1Z9wAs+AEx7YN4WPKgZ894Pi1NzMN5IlR34EFSPi35g3goSku+30zi9HBKn2Kze5y20jIJ83CdWbyOtNx88+D/rbfq42TjaW+vJaJ+9jN1XHwYVIQLRt2GhWz8FSk4sqS0ZJVyFKWlrB9WHcQjQ6EQn7Q0VVqqiFJRv9PUJPfjKULa5uGy++Lmq2pzl+3rdKSljiTTwYV5+MUXV7+PG6ePU2cSKsLy5e7Mw3fcMfjfp0/gPoOHTFWnU8hSzMNl5KQL8/AhQ6qfv/KV2nh15uEulZYiApIn4ER548o8vKOD1ld85jNR0lK2FjRVWh5zTPXzD34gjz9Jn5aijZW45uE2hCWg33yUoVik+7Ts1y/+XI5CWp51VvX7ttvSNrDWrwfOP1/+O4W0POSQ6mfROrilBRg+nD4G3HZb9LsrVfcGeNIygCctParIotJyY/dpqSItRQ6oTc3Du3fXp4HF7rsDt9wCXHdd/c3DZTv4MiVuHPNwU6XlZZfVDmIyqJSWgDi9m2wS/Z7mQTzr1kXftanJvU9LldKSLQvZjjObNj6+tA7i4ZVi/MI8rnm4SIVFqduNpLR0aR7OKi1F0LWH8L1OPRX4059q08SCHSPXr68lASdPBu64I5oePt02+Th8uDg9IcI6KWsDWfdpyZKWIpKS/77rrsADD9TGZau0pJTJ//xPMEaKYOrTUuQCIgSfPzfdBLz6qtk7ZcU8nH9HfnzTPa8iUNk2JlN+yZ4VldUpp8ift1Fa8qTlT34C/OY3wPTpNBNDmdLy618HnnxS/AxFaRm+u2iuw+bTN74RpPfhh8Un1/PrBZV5OAuK0jJJ8/AzzgD+/Oeg/9hrr9p40/RpCYiVlioFv2iTzpa0LBajG9UinHQScPvtUdJSBlPScvPNgWnTgN/9Drj0UvGzgHgelqR5OHXT2PUYKjMP16G9vVbZnaTSkmIefsMNwXj56qvBepTaPhYtkv8m6weAoF0/91z0ENoXXwR+/WvgnXeAX/4S+N73gMceCzYAdekZMCCYD555Ji3dlvCkZQBPWnpUQFZaiibRp59e/Uw5iIfq01JnHt7IPi1NzcNVu6a2SktTR/N77w189avB5NTEPJw/LboePi2TNg9nB5Xu3QM16j776MNmJlIk0jKXq10cyOqSaNB2obRkJyMyEolKWoreWUVasnGF96V9EA/vR4mitOQnuHEP4hEpLdMgLRv59HDVc1TSsqkJmDQJ2GkneZzsZtC6dbWkZWtroDA46CB5fDb5GCqdVEpLVbsXkZb1VFry19hDcijm4QAwYQJw6KHR31QH8chANQ/fc89gjJSFYWoeTlFa9uwJnHceMHKk2UI2K6eH8+8oIy1lUCkt2XakO9BKZx6+337BnwwmpGXo05J3YdOzZ0B877UXre3JSMuvfS0g7WXPUDfVRcQD+2yY3r33FofDb4zLzMMppKVOnWlqHq7Kg5YW4ItfDPoP0QGJaZqHh3Gy0JmHi5SW1E1xHhTS8mtfC4igOKSlbMwrFIK59Nlny+uTDK5IS9FaKa55uC1sScv16+nm4WkdxNOnTzBe7rZbcI26Wasau1QClXPOAcaMiV7beutAubnddkE9/slPgH33raZRhaOOCuaD1HWrJTxpGcCTlh5VxCEt2cmaC6VlkubhcX1a1ktpqZqw2SotTUlLtuxdKi3ZBZht/lJJyzTMw2VpFEGntBQtwviJoSzPRG067unhQPT0ZRvS0vYgHt7nTXhfmkpL3mRf5dOSfQ/XB/GIlF+UPqURlJZZNA/nn2W/q5SWa9fKza1V5WCaj62tVRN2WR6Uy1G/qjxEPmLr6dMyrnl4CD4vk/RpqVMBm5iHU5WWok1ACrJ6erjMxF32PPv+KnWejrTUKftaW9Xl5/r0cEp/LjMPV50MDNDnp6Kx2ISEMVFa8ubOtkpLqnk4NX9EKm4RSShyXcPDdlNPZx5u69OSUJa5Uim6YaRKH4W0NPVpSZ2vUMzDdetck8OAqObhWVJaZsmnpagtJO1eyLQsdG0opfmRJy0DeNLSowoqaSnqyExISxOlZUdHcD97OraMlKLAhdKS+nzSPi1NSEt+FziEKWnJlrOJ0pK/rtr9tFVaht9l9SOOeTiFtBRdo8RlqrRsaaGTliLENQ8HohNYFWkpe39X5uH1UFrypKUrpaULn5ZUpaXpxLBeSksb83BVnVOlTTeW8AsUNiw+TrZf5ZWWKlWYKj4dhg+n+XKikJaNYB5OVVoCteVuQ1oWCrQy0dVNE/NwlTKT7XfqQVrWwzxcBqrSMq55uI60ZPtj3eElrkhLmdKypUX9vC7stElL0fekfVpS84dKWlI2R12Zh/PzDlEaXR3EA+jbjglpaWoeTiWXkzw9nOLTshGUlryyu95KSx4uN70pB7fpIDosKE54lvCkZQBPWnpUQG4UokUv78NLBdPTw/kFX1ylZVbMwymTBZV5uGiwloUpI5BMfVrakpa6g3jYwS1p83CbRbjINIcCqunNBpBISxOlpQzlcrwFK2sqlITSUtau+bjS8mnJuzdgv9v6tEzz9HD+nqwrLeOYh6s2S+JMwlUn++pIS9ni0tSdhwrsIRi2pGXWDuLhr6lIS9V3mco5rtJStEBXlZup0lKV942otJTdF1dpqUoLWx66vNGRZDoi0EZpyZMILKhKS1E8rpSWOvNwHXjSUmUezrulsDUPF5lzh3GonmehqlNZMA9n4xAd2OhQaRmJS5e+tElLkW9/2bOufVrWm7Q03YA3MQ/v1q0+pGWjKS1VZWsqClLAk5YBPGnpYQeZuRVAIy1NTg/nCa04qilT0jJJ83BKOCrzcPY3VokqS4voN1PS0tY83IS0pOavTKbP5rsrn5Z8XNQBxJC0FA6ofNwipaXpQK/bONCBJy1lO/iUSZwL83BRP8DWM91uvA48QcWbh9soLeOah4tMR7NgHu5y0mlar/i08NfjpE2ltOTrFNuvpmUezpKWqvxR+Sarp9KSb0PlshlpqVJayuYrJmOByB2D6OARndLS1Dxcho1RaUkxD1cpLXVwqbSk+rRUKS0p9dNWaZmWeTg/x6Sah4uIuLhKSxPSMq7SUjWHsYHoubCvEBG8os1Jyqa4LVjrCJ0bDVPzcKqQIUnzcFEaurJ5OND4SksX9T2OeTiFwCfCk5YBPGnpUYFRo5CZWwE083CT08P/8Y/ob3GVliYdcVcxD5cpLZM0D5dNDvgJH0/uJKW0dGkeTkVWlZa6Azl0uPvu6ufQjEtUPylKS5PykJmHi/oulRLOFPwpzzwJKvNpmUWlZdIH8dRbaSnLAxuzeBYqn5Z8+avMw7OstHz3XeCuu+hqv6TBL/xVp4erfFq6MA8XtTdT0lJExPBQmXyyyJLSMssH8Zj0dTqSLAmlpQvzcJlPS1X9oZqHi8I22fizNQ9PgrTUKWllYWfRPJyNIw2lpQ5sXDqyxlRpSS2nJJWWonyqt9Iy7kE8TU3qvjvuBjTl9HDXcQLZMQ/v1cssLgU8aRnAk5YeduA7a36RpgJFacl2DJMmRX9jO6J6mIf36EF7Nkvm4TKFB+VgAdn9OoJNVsZpmoeLTK9cmIf361d7j4gApsTFEPikg3ji+rQE4pOWDz1U/awyvVKp3kKYEgdsm+QP6uLjF8VnA95/IW8eTlFa8vXDxenhfP+Uy+nzM66ZdBJKSxnR4JK0dK20FCndQ7ggLU3LiUpa6k6BPeUU4L77oulwCZMxhx9DTE4PT8M83EZpqVt8sO+sKkeZ0tJkoZTVg3jiKC1V5uE66EitLPq0DP2+8wgJCVsiRaW0NPElb2IezkNm5q37rjMr113nfxOlQzQfZ59Jg7QMy0GmtKTUJ1eEGhu2a9JSVU7sXLx379rfecs8W9JSdL3RTg9vb6/Wy3AtvbEpLU3nM7oyVoU3dKhZXAp40jKAJy09KsirCMALLwz+n3JK8J9XHrGdD0VpySomeKgUWi6UlnFJy8MOA7bZJvj8v/8rf9bGPPzEE+X3qCZs4aRVppwUTWoAOgEbQmcezpoCycyeXZmHiyZpfFyuzMP5enDPPdVJajj4//e/+jSKUA+lpezEURuoSEtb83AZ+L5GZR7O1tU4k8bx42tJS37DQBQ/r4A58sio2fP48dH7Zf3S1VeLr+fzQXs79NDg+49/XL2ugo4MGz1a/IwqnXGVlt27Rxf8MvPwkJTVkX2y6y59WrpWWoqIB+pY1bcvcPDB4jh4qJSWIajEmQ1M1P28RUbWDuIREYRhHfvGN2p/y+WAQYOAffaRx8O+syp9MqXlVVfR8zir5uEyn5YyqDYCZG1op52C/1dcIQ5H9Gxrq5qQYfswma/JEK58Wqo2h2Vh3HhjeqSlrXk4ey97j+p3mcJK9q5U83mXSkvTMejMM4P/OqUlHy5VaUkVCeigU1oOGRL8v/RSOWkpa6uqNP7mN8Fzra3AL39Z+ztLzFFIS/Y9Lr44+P+5z8VTWmbFPHz9+qpbinCMEKX5Zz8L/rsc+6mu1pL2aenaPFwV3u9+Fzzf0gJsvrlZvDw8aQnAk5YeDAoqk+1f/hJ4803gT38KvrOddUtLtOFSfFp++qkiIQolTVzSMp83mzTIOtrXXwfeew847TR1XCrwnd+99wJ//3v0OVPzcNmEWqR6y+XcKy3ZCaqsPolIS5fm4TK1ZxzzcD6fDjwQ+PBDYOnSoC5/+GGVPFKlUQRT0tKF0lKmhrbJGxvS0mbBG4JqHi4iwUxxzz3A/ffXppdyEA9fr8eMAWbPBh5+OPi/xx7R+/nF3YknAu+/X90o4hGm4cEHgZkzge9/P/gel7T8xjeAp54SxwUko7Rsbo4SLbINBlldk6WFRVzzcJVPS56c4H1ahr/rFuG6OHnce29Qnz78EBg4sHo9jtKSh659futbZuGZ+FFWmYfLNq1E36lKy8ceC/Lz/PNr0yJSWoo2/cIyveaaoG3yYeRywBNPAH/8Y+2zQLRvtlFabrUVMGeOeDwShWGLepiHxz2Ih8UTTwBvvVXtN0XPiszDRVYW7O8hdKSlK5+WOt/U/Nh3883ABRfEMw83mXebmIeb+rSkKi0pCl3Vb6LwdKSljNiljkE77hisuW6/Pfiu8mkpGttEax0XJI4MOtLyP/8J2ttPf2ru01I1Tu6wQ9DfzZkDDB8uvicsK4pPS7Zcr78+SPNdd9FIS1k6k1Ja2hzEE47/4YYb2zaGDw/mkt/5TvDddK6gApWg7Eqnh++wAzBvXlA3t93WLF4OXmkZIKb216MrIa+a/ORy1Z1pINrZ8L5zKKTlsmXV74VCrXlwEqRl2JHFVVoCwcJrm23Uux+mPi133rk60QjLQmUebkJainaGW1rMyS6dek1GWpooLakEk0ymr1Na2ux6igZSVvovMksB3JCWIuVIUqQlW/eoSFNpCdAP4nGhtNxll+C9+EUxRWnZ2Vlb/4YMqSoOePCLu169gK23Bj7+WHw/O9HfYYfq9UJBrYTRbdwUCsGCiUXSSsuWluhiIgnSMq55uOr0cKrSUkWsidqBLr077iieDKv6UIrSkoWuffLkuw4mSksT0tJGacmHEapVFywAbrop+pspaZnLBWO6KE3NzcCuu9Y+C9BJS5nSEggIbFk/4wo25uGy+3T+fkNQxgqK2TEQqJNZol8Uvsg8vH9/edwmB/G4Mg/XqR75MMJ5fNbNw0WkpU7lZLoxbau0BMTkhQ1pya9/2OvsmktnHi462C9Nn5Y68/CWluq8wqV5OAAMHqxPW+iuwcQ8PJerpjmO0jJL5uHhZklYRrxKnZ1Lsu5Y4iIrSkvT9Uacg3iAwLJClhYDeNIygFdaelSgVFry4JWWbMOlmIezSkt+4qgzD7f1aemStAyh6rBMzcNFJpEq83CeOAHUpKVIgWBKdunUa+wiztY8PK7SMgnzcFNFaghDpURqSstw4sLDRpGoIi1VqjfRZwrYeML2r1Na2k4YREQ335aoSktdGckUKbLnKKoj2XOqfq2pST0xS0ppSTEPl12XpYWFa1+ebBpsSUsWIgWIjgBWEbQymJKWuvpkephbWubhKiJdZx4uU2jw4ahIS0A9ZsvKlh0LVX2jTGkpi9s1kjQPj7PAoygtm5tp/ZSItHSltHRlHm6qtAzfWxQ26xc3nKOLyLcklJYi83AdiZwkaalSWoqe5YUBVPNwKtElSoOp0jJJ0lKntGTjdk1a6sAqLV0exEPdZMiSeXionhSRlnx/pXLjZgoqaekir8J3cqEsjmMernrOEJ60DOBJS48K8ia7p66Uln361BJCWVJa6ha5cUhLWefHhsnGr3JKHnZoJubhNkpLHRHELuJkk2l+cmdK7sjiF+VfI5CWOv9xokVYUqSlDakTV2lpWh5UpaVL0pJXxFEO4uF9WpqSljqCzoawAvTkncyVRAhR/6kjNXVoaYm+v2zxSVFaqshcl0pLFWnJm4eHv5tOXHXptakDrs3DkyQtk1Ja6g7ikfXD/DggGm95/7eyNFHGFFulpe5ZHjYLKps+nGoebkIm85CRdCxk8ySeNBOZh6uUlqrNWB6ulJampKVqHsSqtmfPDv6LFstJ+LR0aR5OJT5ckpbUtYlIUSqCydwxl6u/0lJHWqpcXYV5YGMeToEL0lJ0vd7m4aZE1rp1aqUlH55LpaUo/0T5ZWryroonDfNwal8TV2kZN1+6CDxp6VGBtdKSJy11p4ezSst+/cQTtSRJS5MBMM4i15S0NFVLsO9hYx5OVRuwMDmIR9bJ1ktpaTqhZWHrZ4USF2seLrpfZNbPl7NpOcraqGulJWXnOSmfli7Mw0ULPJF5uAulJXVxFyKO0jIOaZmG0lLmAzKu0tKlT0uVQoF9F5XSUtcOklBampKWrpWWrnxa6g7biKO0lJEULpWWcUlLl0pL0wP5gNqNHApk9+kOYDEJV0d0AfJ5Et+ORUrLnj3lectbAaTh01IH2aJbFPbWW1c/q+bWJmuFrmoeLkoLZW1CHYP4OEVK/DAO0YacSGlJeQ9b6MzDs6K01Pm0NBlT0zQP51XcgDlpuWJF9bOItOTzph7m4XEVhbrNBtfm4dSyjUtaeqUlAE9aejAwIi15NYGJeTirtOzfP33S0qTTirPI1cVD2QXVkQshbMzDk1BayhakaZqHs9cbTGmZ2unhtqSlatIraseUSVxSPi2TNA+nKC2TNg+XvZNuUq4jLXXm4Un5tGTLKxxDbJQ0qkWHS6WlSqGQy1XfZ906OQlrGicPG9LStU/LNM3D2bqtU1qqiHQbpSVbpiFMSUtTRbIq73VKS5OFvgmRHMKleTiv/FdtPOgQR2mpIy1DV0gytWVcpaWNebgOMnJQFDZLWqqQlHk4Dx0BnSRpqVNs6XxapklaNoLSMg5pGefAMDZuitLSZExI8/TwPn2qn20P4mFBMQ+vB2mZNaWlTv2eltLSk5YAPGnpwcDIPFylOpEdHBFizZrqolSktBQtmkMUCvF9WprcUw+lpcw8XBW+zenhNj4tdeo1imJDRFramIfLBo8kzMNtlZaUuFiflpRJZT19WoryIa55eJydz/b24LTrm29Wp9V2whC2fz697PfTTgP+9KfaZ/l6retLqIs7Nh02ECkwWNRLacn7geTDDdOmg4rwcOnTUkVaAtX3ofq0pMTJQxaeKp8ayael7kApFirz8LhKy9AlRFzSMqtKSxvSUqdE0z3Dgq+TcRZ4onkOD9k8iW/HsgOcZH4tbUhL1RiRJGmpU1qqEOcgHtm4xpuHA3qflrI5dBaUlrI8SsI8XKa0VLmUMomHAhPz8K5KWiZpHi4iLeMQWRTzcJc+LethHk4RgejglZaZgictPSoQKi1lDS2OGcsnn1Q/9+8v7hSo5JtJB2dDWsZZ5JqSluH97KCpSvPIkdXP48YF/12cHq5Kt+4gniwoLWWkdhzz8HoqLUVEepKnh6tgQlo2NdEUM3GUlrfcAlx/vfi+tJSWAPCrX9U+G9enpY60tH0ninl41pWWKqj84aWltASqfSHr0zILSkvXPi1N+0aT++OQlioiXXZ6uCzs8LuM/GTBti1T8l+XDhalUnUxH5eMiEtaxlVasiedb711NpSWos2dsLxlSkv2fh1pSTEPT5u0ZOeUIXbfvfZaHJ+WKvNwnU9Lqnl4PXxa8nNs1z4tRcRdeC2fFysteSRJWpqYh8sUs7LxrlFIyyTNw3v3rn5OirTk83m//aqfbcYIFqJ6L8ovdiywQdLm4RSXC7p0yXDoodKfPGkZwJOWHhXkRaSlrKFRBkgZWNJS5tPyy18Ghg6tfbZUou1misC+y7XXBp3jnXdG76Hs0lNhq7RkoSIXLrww6OR23hm4447gmgulpaosbc3DWfCTO1ekpYj0bQTzcN1psY2qtBwyRBzeZZepfZDpwLbJadPk9yV1EA+vqJAhrk/LMO9cKy0p5uH1UFqKSEvVovWqq4I6xqtcVWWTlE9LqtLSlIToij4tm5ro/ZXKZU0cpaXOPFxGgPLjgM7kTUWymJiHP/MMMHx49DeVWbEobhV04/bnPgdsuaU4bfxnFWT3HXMM8JnPBAfB/Oc/bklLUVgUpaXITVFYZiyBIIub92l5ww3AFltUv1MO4hGl/bTTasuCxRZbAHfdJU4ToDYP32orYPLkIIz//je49te/AjvsEL0vDfNwykE8svHBhfpJp7TMgnl4iN69aXXHRHk2Zgw6L7649vqf/gTstFPtdTY/RPPlOObhrvwcUnxayhCq7VmkaR6uIy2HDgXOOqv2uf32Aw48sPY6RWl5++3AjjsCEyYAX/mKXbpD6Mi/EAcfDJx8sn08rs3DdUpLV+bhe+wRiDAk8KRlAE9aelRQEBGAsobGHwIjuu+yy8TPsj4vZT4tx40LTi8sl4Fhw6q/rVxJmxiIwHY23/gGMG8ecPrp0Xtckpa2Pi2p5uGtrcAjjwBvvFHNo6SVljqTWwppqVNaUhe0skWrjNTOqnk4g7orLV2RloVCsLDiw7vrLuDyy6PX4igtVXBhHi5qk6LFlAiufFqaElMUn5aqPORdcITPhNApLW36TP70cIp5+Le/HfThkybJ08IjTaWlC/PwrujTslCg96cmSkvVd5nSkqqqCesdvxgXlQ/VpyWlLoT3jBsHzJoVEFYhRIfMidJMgW7cvu46YM4ccdr4zyqo8vuee4B33w02YU3HBFW+ivo7CmmpUlrK3OCo5jVf/CIwdy6w777B946O6l8Iig/CE04IymKvvWp/O+20IA520S9TnsqIuOuuC8KYODG4tuOOwMyZwPHHV+9LyzxcR1rGNQ9XjZU2SsskSUsV+ve3V1qKrj38MPDcc2JF8W67AW++CfziF/L06vrFepKWtkpLQCwgYJGkeTjbZ/Gk5ejRwXr5qKOiz/zqV8BTT4ndWVBIy+22A956C3jgAXvhRgiqFWMuF6wTrr46fjwmJL0MaZiH33MP8NJLwIAB0ls8aRnAk5YeAcplM/Nwyn2UxYxIacmHxfryWLmy6/u0ZEH1aRnC5CCeuEpLUXplk3mdebjIjFsHGWkpU1rWwzzcMC7SQTyNoLTcYguxb1pR+HHNNWRwobQUEYf5PC3NnZ16NRQL2eJOhqSUliLSkoVuo8OG4JcpLW3Mw1X55tKnJZsWHWlpexBPEkrLepOW+Tx9XFWRIypinf9uqrSUEaB8OKL3YK/ZLnB06QDcKi11vqh1ZqVxlZaqsG2e50ElLXXm4WH5y/JLZR4e5iFLEK9fb24erlJKUuaQqs1bVbtkw4mjtFSZh/P36XwyxlVaqogAHSlvS1razm9VBCtlHSWLWzXnVLlWULVF1TxRFK6OtMyCeTigF7UkaR4uIi35eYXMEkC0fqGQlizivgNVaUn9XQbX5uGUfooCiqpbEZYnLQN40tIjgOzEb+oAK2psFNWdyKclHxYri1+xItr4u6JPS9U9uvtNzMNbWvSqKR46Isj2IB4b83CKKUYjmIczIJ8ezrettHxaqsx+WKfdoWsHlVIuRFJKSxekpeh50QaACKY+Lfky1cVh+06hUlSW77oyEimXXCgtTc3DZVDVp6SUlqJxKCzP9vbogQlx4uQhC0+VT67Nw037RpHZrQxxzMNdKi1li0KdokhHrOqgep7NG1OLCR66uZpuczOu0pKHi0U+CxulpaiemigtefPw8DeWxFu71p60pM4XTczDqSr1OD4tZUpL3qelKD1U1RPVdQFVaSkKQ2ceLsojnRUDHx4LFWkRR2mpqkcq0tLUooGNW2bm32ikJXVT1YV5OE9asnki21QL0yMikU1JS1PXNrrn0yAtXZiH68qcGp4q/0SCG/4WT1oCaGDS8qabbsLw4cPRrVs3jB07Fs8//7z03hkzZuDEE0/E8OHDkcvlcMMNN6SX0EaBjMSoh9KSB6+0TJK01O2kmUCXd3HNw02VliIVqanSUmdyKytzndLShXm4KK6uaB7e0lJbRqb11NY8XDUZnTu3ei0kLZNQWqZpHh6Cr79UpSVLWurSYKq0lP3OTmZVmxKydkbpE1T+HW2VlkmfHh7GYwtbn5ZAVdmsUs+IFmaNoLS0IS2pCyBXpCXlAB1V2LJFoc6npSpNFFCVlnHNw3VzNVulpWtTOtvFP19OcQ/isTEPF5GW69apN7ZE+eCKtBQRgtQNnzjm4TKlJW8ebuPTUnRd1Q5cKy150lr0jG0bcKG0pJI4qjlCPZSWWfBpCaj7YzYe3XM26NWr+pknX+MoLdlyTJK0zIrS0jVp6VJpqbrHk5YAGpS0/Nvf/obJkyfjsssuw0svvYRRo0ZhwoQJWLRokfD+NWvWYOutt8bPf/5zbLbZZimntkFQL9JS5NOSB6+0tJ24pk1a6tIZV2kpCl82GRdNAFtaxIorqtJSlDZb0tKFebjoer3Nw5NSWvLIgnn4smXVa0mSlmmah4uepyot2Xrd3GxuZqsrC1l47KSc3fDhn5PlI6WM0lJaZsk83NanJVAlCk0n/lk4PVwVlgkByT5DLYc4Pi1VfljDfky2gHWltORh2tep3smlebiOHLclLZMwpRNBF66NebionurMw21IS5fm4ZR6IHvehEQwMQ+XEY2U+G1VTpS6CaTv01LneoUPjwqq0pIaj0ppGdZ9U9KSckBZ1n1a6uYjafq0dEVaUpWWcd8hK6RlXGsH6sYJDwpp6ZWWWjQkaXn99dfjnHPOwVlnnYWRI0fi1ltvRY8ePXBHeIIyh7333hvXXHMNvvCFL6A1rjPZrgpb5VUIUWOjKG769dN3TixpGZqg2hBPNgveNM3DCRJxbfgmpGU4ITHphF0cxMPvSLsmLbua0lJENvNIyzxct4MewoS0NC2PeistRUS/CGy9ppSPK6UlC9Epty5IyySUlqKxOctKSzYtosUvW56hYlBFQtmMoTbKDpdKSwoZz0Ok+pfBhLS0UVrKFgIyX3pxScu4ZJxsQy5p0tLWPJzPnzR8Woraoq15uMytAMWnpcw8nJ0jxSEtk1BaqmCrtJTVYR3hI7JooBxUxMdpq17SkR8683CRSpxqpcHHD7hRWlLiYZ4t82F2705ThenMw2V1QhamS/NwHeFuYh5OnZ+4Ng/v6KjtqwBvHs7H48I8XBW+SXiq+8J0Ku7xpGWAGIxMfdDe3o4XX3wRl156aeVaPp/H+PHjMW3aNGfxrF+/HusZP48rVqwAABSLRRRNBuwGQcfKlRAt58r5PDoE71solSqMdxlAZ6kUqUzlQgGduZy2ghV79UKhUIiw53z+5nv2RKWbWLUKxWIRTfk8ciam4Yp3aebuYbu5YpAgZbiyZXApl0On4tl8Lge2+wvfuymXq6ShVCpFwmDjKvIHfQBAS4u4HMtldJbLkfIoNTWhs1hEU1MTckw4ZSZ+HsV8vhJnjgsPADpaWiLXKu8EVN+pXEaJebb08MPIf+MblWc6AZQIbSzH1bkwrnypVMnXUnt7pW51ACgXiyjAfLemmM9H857YB5jGVc7na8Iu5PORMDrzeZSKxWh6ymVhPa2p2xsGvs7VqyGagpS4tljze0tLze8d5TLKXHo6Nt8c5WIR+XI5Ek94bzSADmkb4lEsFpEj9CsA0NnUVKlHorpKjQ+ItklRfyeMv1hEvlhEDkC5qUnY90TQ1BTJh85yuZJ+Uf6UymVh/8K2tXLv3jVtudjRAYTtXhBuWJciaSmVIm2yqbk58iybVll6VSg1NaHc3FzbH3Z21tRhXT7mOjuFZVMsFpHP54X1noKOXC5Sd/OAsP8OUWhtrWkrfPoLnZ3VcbRcrnk3fmzkIRwDgJp8i6Rh9eqgTuZyyBEWg0VVWBvqtUl5d+ZyyEvqHgCUe/ZEboMatLRunfT9+b6EL3e2zvJ9RljH8xvGg8r18H5+PsOUW6SfE/RFfF+sake6fCty5oxsf9qxdm11DBXMNfi+V4XOQkF5b7FUqukTioq8D1HmyrkEKOdEFUjGBNnzkfkFN2cCUNPXdXbrJpxjFIrFanvM59FRLkffecP8J9/aKsyvDmac6WxvR66joxJemIf5lpZqGa5cifz69dV7gEjdEc6xsGEek8vVtI3OXK7mvfj5Q1g/+ed1YxTbd5Y7OvTjGYNIm+nsDOYG3Py3M5dDvlyOliPX94TvHkI6B+zsrKaV63Mj40mpJO2HOkqlSlzCeEqlSFilXA4l9r633qoJs5zLoYMf0yTzbb5Ns2suHp19+qCUy0XTs2F+oJu38u8GVPvWEqIkQblnz0pesvNsPuxcPl/bL3LKY5O5TmdHB2lNIENTuK5bv15+fsMGiPqPmnA2oMjVgbCN10AxhlLR2a1bNb+nTEHpyCMr9aFSV7h1Sthe8k1NNf1VR2tr8Buq85hyqSRt1/x8xxT82qLc3KzsQ3KwI6gi7V2Q79I5kwzcWFTi+k1+TJdBtRas9DWKtVCuVOqS3BNAX08DDUhaLlmyBJ2dnRg8eHDk+uDBgzFz5kxn8Vx55ZX40Y9+VHP9oYceQg/KYSMNhr4ffICDBdfXd3Tgwba2mut7L1yIIRs+r127Fm+8+irGML+X8nm8+NprGKuIs9TUhCkzZmDXRYswlLnexsW36cCB2HfD5w8mTsTrbW04VkGsybB89Wo8LniX45jP64pFsFrBhx9/HO39+inDPU5yfeHixXheEF+Ird9+G7sy38P3PqpYRLgvNnfuXLzMhMHG9cSTT2LVhx9GwswVi/iMIK4VK1bglWnTcBBzbf7ixXixrQ0TUUuGinQXpUIBbQ88UPk++KWXsA93zytvvYXRgneayAwe8z7+GPNfeaVSN/L33x8J450PPsA7inwLsenLL1fqBRvXtm+/jZ03XPt08WIM2PD5pddew8e9emHU3LkYrg09igenTsUxgrh0MI4rl8OUKVMil/b79FMMZL6/PWsW3m1rw9GtrWjaMAFjy4UFW19KTU0obNj9n/P228J0LVu5Epsokrdk+XIM4q698NJLWARgnz32wOCXXwYAPLJ8Oda1tWGHWbOwI3Pvc9OnYwmnQOg9ezYOVcTJoq2tDZvMmIEDCPe+O3s23t5QTgNefx37E+Pg4wOAg1etQt8N11atXYu3X3stUs9FmDljBoYtW4ZeCBaK9+vqTLkcKa9333+/kn5RHzN77ly8Kgjz6I6OysD+SUdHpf6HeOLJJ7Hqgw9wZKkEkd3B1CefxJr33ovE+d4HH2AmE9f4jg6wWqV33nsv0mZlfaIMH82fj3nbbFMpo4/Gj8crbW1oWb4cRzH3LVu1Ck9o8nHL11/HXoLrbW1tGP7uuxjFXKMSdwDw9AsvYBnjAmHkrFnYjgufxe6LF2MYF8bqtWvxCHPf7nPnVu7p6OioCWO3BQswQpGm+x98EGWBIqGwfn2kv2KR26A06WxuRpPKZ+QGtN1/P/Y64ABs+eSTNb8VAdzf1mZU3rPnzsWm69ahl+T39S0t6LaBtFw0fz5kDn1ef/11zGbyq//MmTiQ+Z2ts/3ffjvyW5jPu37wAbbecK2Uz1eu8/3F+mKxMg8K37WjpQXPv/RSZAwCgPunTEGZUWOwefPGm2/iQybNxxYKyCs2X9vuvz+iFtlt7txKfXjpuecqc675ixbhRa7ubPfeexgpDTmKj+bPr+SDCPc/9BDKzc04pqkJhQ31h62rA197DfsJnmsvlyN9zLJly/AkYezsOW8exguuf7J0KZ4WPD9+zZpKf7Rw4cKaeddh69dH6tur77+POYJw9po3D1tu+Ly+WMSDDzwQKb/Hp03D6o8+Qr/m5shcCggWy6+8/nplXHjz9dexxdKllfG07YEHgFwOOy1ciO03XHv+oYcwfN68ylz60SeewLpNqiPwwNdfr8nXp597Dss++QTjPv20ZiyeuWwZ3uPea/8VKyJjQNtDDwH5PMYsWYLNmevtpRIeUJTNoAEDMG7D51kTJuB14hwIiLaBZ559Fp8uWxapywDw4Zw5GLJ2bWX+/fGCBXjnmWdwCHPPy6+9hvmMy5N+774bKYewTo766KPK/KazXI7U1f1GjsTAN98M4ujfv5L3PJ6bPh1LNiym+7/zTk3/0X3hQhzBXPtk2TK8//LLyjVPZ2cnHn7kkciY1ikh/BctWYLnmHSPXbRI2he+8uGHWPzEEziSuTZvwQK8xPXNonmraG701DPPYPnChdhi5szIPGdNPo+HN4QxbMYM7C4Je/Crr0bWBqVCoSbuyPxi1qxKXy0aS57q7MQyg/rG48BVq9CfeO/8BQtq+tIQR3Fro8effDLSTz08dSraBS55es2Zg8PIqRXjjQ8/jMxd8lOnVj4v/eQTPNPWhl7z5kXiCdc8O86ejR248J559VV8um4dNhs4sFJnPzj8cLwhefdt3323sq5i8cHEidiaUDZLly3Dpsz31evWReZCPLaYMUM7xxZh5dq1eGxDuN2WLMEE7veHH3lEWEYyNK1ejaM3fF41ZAhWLl0a6Tf5ua8Mu3/8cc18MMRzL7yAJevXq+dtpVLN2rCrYI2J9U+5wTBv3rwygPIzzzwTuf6tb32rPGbMGO3zw4YNK//iF7/Q3rdu3bry8uXLK39z5swpAygvWbKk3N7e3uX+1j76aLkc7OlH/kpDhgjv7zzuuOo9Q4eWi3fdFX2uR49y8Z57asLrPOaYcuehh5Y7jziiXLzjjiCsM86I3COKr+PnPy93fPWr5faFC8vt7e3lUmurML2qv8499xSGHUn30KHRtGyIT/Unje+YY5TPdfzyl8L3LvXrVw3jtNOkcbW//jo5PaXddiu3P/dcNH0bwi717x+9l/vOlikbj6h8i3//u/ideveuxnvKKeXiP/8pzbeOH/+YVGeL998vjKvjyiurcY0eXU3b3XcHv3/5y8Z1p3316nLxscfKnZMmlYtTp5LbFR9XaautlPG8c8IJ5dWrV0fb2sEHR/PnmmuC36ZPL3eeemq5eM89pLpZ6tOnmi+TJonr7L77qtvQUUfVlnlbWxDf22+XO08/vVz83/+tvv8Pfxi99+GHa9P5yiv0cmhvLxefeIJ0b8cVV1TryiOPGJd5pP6OGlXNxx13LBf/8Ad9/D/5SaW8Zf2oqrw6LrtM2aY7vvxlYRil7t2r5XXIIbXvNGNGcN+QIeJ3fued2rRcemk0ju22i/7+ox+R+kRpXl14YVBfrrmm3PGVr5TbFywIwvr442j9GzNG3y/8/vfyusOVW6lHD3pdeP75aNv+5jeFdaXy+1e/WhNGafvto237zDOrv/XpUxvGeedFn+/ZMxrn2rXifFixQvs+sn5e2Abmzy93fOUrkT6kDJRLgwbVlHfnmDHl0sCB8rI+//xyaYcd5OnadttqWOPHS+8r3nZbtNy5fqHje9+r/v7ss8Ky6jj33Gq8zc3S/qK0+ebV3+69t9x56qnl9uefLxcfeqg2v9avl7fpG2+MltMLLwR9+J/+JM97tj585SvV92ee6fziF2vv/elP6e2Pq8s16Vi3Ljrm/Oc/0byfMkVclptvHq0b++5LGzvffFMYXudBB4n7vOHDq/cce2zt7yNHRuvOP/4hDKfzxBOrad9ii5rya3/vvWr+/uIX5Y5zzikX//CHcuekSeX2554rF//yl2qeXnVVuXOvvYKw8vnqczfeWE3HLbeUOydOrIY/b56yTpdR7Yc6Dz+8pm9o//jj2nc68EBhnWLfla/jwr/168sdP/lJueP888vtixfTylHQBopPPSXs2zomT46MSZ0nnVRuf/HF6LN/+1s0bG5OK+xXe/eOPvPBB+XOL32pXLzttnLHxRfL+5eHHqqWw9NP18bz/vs1dVM1ry1jQx8/f370Wq9e4ro+cWK0HAVzr0pa77mn3L5wYfT5U06p5FHnpEnl4v33C8tGNDdqf+GFcnt7e3ndH/8YTeuoUdXnbrlF2lcV//vf6HOtrco60fHd7wqvd55wQrnjF78wqmvCdj12rLJcInGefLI0HH5ca3/rreh32XrxtddIcbPzzJoyvv12eZrHjw/ieeed6DPhmufyy2vL+MUXq+36xz8ud1xwQbl96VLpu3dcfXU0zkmTysVHHy23L10ajOl9+6rzle+vdtpJWWbFv/6VXGaRcHfZpRrOrFm17x3OLQ3+in/5S7nz9NPL7W++We783Oeidffyy2l18Kyz5GUb9jWKedvHo0fXrA27yt+SJUvKAMrLly/XcnMNp7QcOHAgCoUCFi5cGLm+cOFCp4fstLa2Cv1fNjc3ozmOX6yMIieR5+byefH7Mr4XcgCaOJ8ZuUIBTbwidaedkL/33moQ4QfuWWF8l1wCgJGnW/gIyTc1Ia8puxznr6K5e3drP2ja+Lj6VXlv5t3y+bw0jObmZnLacrkcmrn48q2tQdhcGDmJX41ca2u0bATto6lXVD8jfKdCAXmFb9lCSwsKlPeS1Rvm2Txr0tqtm/zEdBVyuaAeHHwwcPDBZqblXFy5P/8ZOECuEyxvaG+RfObCKPTsGeTPXnsBf/wjOT05Js/zEoVVTV1raor4AMoLDlpqam0N8nX77YE774ymhyujyr2Ke1Robm6m+U0FUOjRo1qPLH2SVsqB6Rdy+XxNfyeMH6gceJTr1s143NC1g0JTk/j3crnyUdTOmltalO1A1OfVxMWFW2huprVZ9nnGTKvQ2ho8/81vBt/DH7j6RunDZX1ic3MzsOmmkWu57t3JPh6be/aMhs3FU1O+AouMXFNT9D5uHK0Jg8vnXP/+kYN0mltbxWMhUwdkyHXvDnz6qeamXJCmzTcHbr0V2GwzgLFAyQnmQ/mrrwbefx84+2xhkIWmJmUfnGNUEHmF2VATP3ZxbTJSJ7myELXFyFyHn8+wvx1zDHDMMUE/99RTXKKagvYlQU07GT066MNFB6OJ5l5MvjWx7bylpbZdGPR5BY3ypDJ3kI05kjaX4+uGYj4TgWR+kM/lxM/r5kz8OLTppuI0M3kqmvtG+oCLL67+cNppQZ7MnVu5VAAqPuJyhUI1rG23raZj9uyoyWyPHtF09arVI1f6Z26umrvzTjSL1kBcW6ukg+tba/omEb73PQDxzEQr7ZYfY7gyyufzNeNXZQ4XgrB2qCnHESOA228PymvDeCNMJztXEcXDzUPyTU3Ia9pcLper6R9kKxnSWBemdeDAmj6u8vyYMcCf/iSfJ4rmCBvevYOvI5tsUs1LWb0CavImUv8FkM0f8rffDvTvH6u+ATCa8+cLBXm+8+tDfg3H188QxLM0cn/8I7DbbsLfmvr2lT5XSTPXX1Tai2Au0sz6Qf3+9wFo2jXfl7N16te/DvzYf+c78jTy60wdl0I5yFeASD+mqNtGOOUU4JRTgvfl0kWe+yrqYFM4J1f4rcyVSl2WfzJ5p4Y7iKelpQV77bUXHnnkkcq1UqmERx55BOPGjVM86aGE64N4RE7MZUSjTSO0caZLeRf+njgdhOlBPKYgLEwrkJ0eDtBP+FQdvhGCMtDoDmKgTjAozvpFB/yYEt4tLfaOtCmH6DAgHcRjOZhHBnDq6eF8WegcrPOgOCrvygfxhP2qTZnp0kxJg6i+JX16uAxs/aMSLK4P4unPGYmZlIvpO4vIddN6yPrfamoKDlxgIasDlHgo7647CEN24q+qnHSnh7OHR7k6iEfWZ4hOYBWFLXsf0xNRqWOr7F6T08NN6prsYBogXptzfXq47TjMp0Pm8kd0cA4LHfkgOz2cvT6CMYqeNSs6R+HTKWqjstO/ZWUoKz/ZScNJIyxD0SF9/JxW1w5l9UTWrmVpEUHVH8jSQhmzbQ/uUM33kzo9XNVuqAd2suGZpEEUvy1M1lomB/FQD5ehloXqPkofzed7mB7VQTxU6PJQtx5t1NPDefD9Ztwxjf1NdXq44RkeXRUNp7QEgMmTJ+OMM87A6NGjMWbMGNxwww1YvXo1zjrrLADA6aefji222AJXXnklgODwnjc3+DBpb2/HvHnz8Morr6BXr17Yltn13KghIy1tB9imJvogmiXSkg+33qSlaiAw7cRkhCz19HC+s7YlLXM5/aKWAsrCxsXp4cRdUiH4uDRhCUlLPj9sSUu2PVI3Kfi6QT09XPYbhRDTgdom2byOS1qyz1MXHqVSsqSlKVEYIunTw2VoaamScPzzsjJ1TVryZAVRtQvA/J1FZW5aDxlVJXr2rCVdZXBFWuryX6Z6U8VfKKjL0RVpyX6XkeIyckNFgLJQKCGFkIUT5gk7pus2sNi8oZwarUJc0pI6t3OxwLMBnw5ZO9KRXbq5gOz0cDYPhw2rfp41S72ZoyIt+fSZkpYygiNphHksmmuw811RP0I9PdwFaakjP2xIS9GGJ3XjSbUWiHN6uOrdVO1GlXeu+sWsk5bU+UmcsggRntwuUuOFz/H9U5geUb/lmrQ0fb5RTw+3mfvq7vOnh5PRkKTlySefjMWLF+OHP/whFixYgN133x0PPPBA5XCe2bNnI88U/vz587HHHntUvl977bW49tprcdBBB2Eq48x2o4Zr0rJQoJOWNp2TzW6JzYI3TketS6MsbPY51UTFtBOjKi2ppKWJEoF9J1ekJSX/RKSlad1xSVq6UFqaEC0sXCgtRXmRNmlJ7S9ckpY2Ssv29mr9sykzW6Ul22fYKC1F13VKS1PVJ1VpSak/PEyUliblwqdZl5YkSEvNoXBG8dgoLamkpSulpeqgIBdKSxlJqFucysK1VVoCQX/FuirQqUR0SkuTuYvADFkZtipdqmfjKo4oz4vmTHw52SotdSb3FKVlt27AkCHA/PkBabnNNvJ0ivqnRldahhtXurlGLqdXesvaJVsHklJaitJCGbP5OGVzfFOlJZUM1cXDXlO1G1X4pkpLl4IWEeISbiF068O4pKUqT7t1C8JXkZYmSkvTA4Xj5mFXVVpSy5ZikaZSWnrSEkCDkpYAcMEFF+CCCy4Q/sYTkcOHD0fZxJR2Y4Q3D7cP1zasuKYEcc3DZUpLW/PwfF4+qdctflnENQ/XqVFMy9jSHyKA2vfWEaAU0jJJpaVuYtFISkuX5uE2SkuWcKqX0lLl/y1tpSVb9/nnXZqHq+rTxqK0BIJ8UI0RlHfXKZ1E9Uu3eM/n3ZiH69SQcZSWSZGWOpNKlrTUqURckpaNbh6uC5cvJxlJy9YH0XvrypdCWgKBifj8+cCiRcDAgcE1UbtJUmmZNdLSxjxc9m46xXII10pLihm0a7Vxa2u8scZWaakK33SDT6VAd4G0zMMpQgrbuEPSUjQmykjmsE3zbT1UbZrANWmpm8cnRVrGXQskYR7ulZZkOLbB8GhU5NIwD6dO/G3io4DS6boaJAF9GuOah5t2Ynx8cZWWFHWtCOVy9s3D2Xf15uHiMGTPsKCQTo1gHs4rhSnhPf549bNNmek2JSj5pvJ1Z0Ja8rAxRVMpLdMyD29pib634CCbsmzx78Knpen4Yqu0BPT1x4XSUqbKtVVa5vPRfMuKT0sqKRdXaamLk32eVaGK8tukz0vLPNyFKZ0N2HJpapKnl2pWTIlHR1qGePfd2mdDdEXz8LDeujAPl5WRa5+WovtszcNt24CsP5dtZFHnVaq+Q+XT0kRpabuZE1cVFyIt8/A4PqZ194Wkpeo52XjNjy2mpuG6tFHgzcPlv4Vt2ysttfCkpUeAJMzDN3alpQvzcBXimofHVVqKdhkpSst6k5aU/GUXC2mah1MG2XoexJMFpWU9zMOpk1MWr75a/WxTZirTWFGaQrCLG5Wpt6zcklJass9QlZauzcOBqFlUS0vt/TJisB5KS1Z5Z6q01KGePi1lbbhnz2gcrnxaUlwpqEhLWb1zqbSkkJb1UFrWwzzcNYnBlpPqXakKPRnYPJf5tASipGVYjtRTh8P7qObhbBmw+Zc1pSXlMKk0zcN17ceVeXhcn5ay8SpppaWJT0tbpaUrJKXYjLtW4aHK0+7dzc3PZebhNqSl7l1dH8Rj6xogbfNwF0pLwlrek5YBPGnpEYAlMb73vern668X3//DH1Y/33yzeIenEX1apqm0tHnviy8O/re0ACNHiu/5zndqr4kWkkkoLbfcsmre99WvisMJ75Uh6dPDTZWWLg9j0hCgHZQTh134tMzSQTymE1Yb83Ab0vDUU6ufqcorGWzKjCUtP/e52t8pfaBoIRU+Z9If69wc8HGI0mujtDRxKyFLCw+WtGxtjd7fvbt8Qs+n8fTTq59vuaX2flE4fNq+8Y3q59/9rvb+666rfr7mGjOlpQ4uTg+XmYfr+gTZ77zZGtsG+vSpjUeVVvb3vn2BDT7P8aUvVa+79mmp65tM1Emie5PyadmzJzBxovi3OG2uHgfxiBbP7Duo/Hf++MfVz+Hc9/DDg/+7766Pm2oevuWWtc/KNgD4dhpHaakiLV35DxQhzNdcDjjssNp0hd9/85vq9+98R9//y+qm64N4KL+7Ji358Nm6yaJvX3lcFChIy7JKaakiUUx9WrI45pjg/3bb0Z/RQRc/ZYMLEI8Lxx4bfN56a1r4unTceaf4t27d5PVL9n4y8/BNNqGlhxJHCHY+pEqL7LvufirSNg93qbQEgC22EN7iScsADevT0sMxWBLj4IODiUV7O3DEEeL7d98dmDoVWLUqmOw+8kj096am9JWW+bx6IE2btHQRFz8B/9nPgL33BkaPli86L7sM2G23gOBctEgeX5jv1HLSddb5fFDur7wCPPMMcMIJ4nBEaaH+RrnPtXl4nEHO0KflmnBhzcKVeThFaZkFn5a33QYsXhx8fvll4O67o7/bmIebkD177QVcdBFw/PHyNKomoeecE7wDi7hKy9tuAw49FDj33Oo1isoECMqQDUtHWlLKiF8g82m57bZg8XHGGdVrbLlRlZY2pKVugcCSlvwicvhwuWKAj3uLLYDp04EPPwSOO672fpEqks+nkSOBp54CPvkEOPro2vsPOAC4//4g78aNA955R5w2G1CIdFvzcFulJa98Zettr17AihXV7zpikSchn30WePLJaLuW+TC0JS3rpbQUtQtT0vJPfwLuvRe44grg/ffNwqm30lIXLju/VZGW48YFc9liERg/Prj2178C990HTJigjgOgk5aivkFWd7p1i6ZfNo+hqNVVfl6TVFp+61sBCbXzzlWSTdSXfOYzQV736RPMYefMUacxLfNwyu9U0pI6n+T7ln32CermjTcC//539bqMrI5DpoR9EZ/fbL1VrbVM+0U2rD/8AfjPf6rtzwUopCXBRFco1AjTG5LxlOdU902aFLSRhx8Gfv3r6m/dusmtb3RkJj+2sEpvKnTvEM6HZs6MbvjzaQnRVczD47hhCMHW/2efBR59NDp35u/ZiOFJS48AockGEHSO+++vf+agg6qfRZ152j4tW1vlZEyYJptwbaGTy9uQlt27A1/8ovqZbt2AU04J1D8saRlXaUkxDweCHUd+1zFN83DZotfEPFw38NlCU9eFpKUr83Abn5b89zR8Wn75y9XP119vT1qyaTUhLYcPB047TX2Pqp848ED3pGXfvsCZZ0ZJS9vJko60pJjU6EjLvn2Dnfezz66qndl+xlShFsK10nLt2mg+jxgBfPCB+DlRfu21V/AngqjOidK2337SpCKXA448Uh2mLZI0D9f1CSpzaxkxx5NNJubhQNCuhw+PXpORGyrVJguXPi0p8yUTpaXJXCZ0PXD66cDtt0dJyzjm4bZKS5djLhD1DasiLYFgc4jFgAG1C0gZ2LxSmYeLSEtZHyhTWtps7tbLPLy1FTj5ZHm6wvjz+ejmja15uGulJeXQS53CPLyHWrdF5XHooUHbpJCWcTYIwrqhOj2cVanzMFVasmH1709vb1RQyiWsM6ZKy3799CpDE/PwQiHYBF2zppa0NHXjJjMPtyEtKf3NXnsBu+4qJi2zorR0bR7uQmnJ9ldbbhnUJ64NeKVlAG8e7hGA7QxtFtgiRUbaSkud78GskZZxTw83gWiHV+bTMo55uCp+6r0ufVqykyET83DVAtYE/ECjiXvNppuq0wK4MQ+n+rSMS1rG9WkpakM2Pi27daP3a5T6oUpzU1OUGAvjp4ANl99VF5mjUcKjtm9qugA9aRlC5l+TqrTk4Zq0ZH1GAnaTeRlExERcJX/aPi11/bbMPFxHBtgoLfk6pyMpKfXctXm4S6WlTiWSlE9Lk3Fd9owsXXEXeLZj8apV1c82/tyooCotRZsPsnkwP96bWIzwcddLaSmCjeuYNM3DTcdJ1+bhsvpA9WVqUz9CyEhLW6WlCWmZBEzMw1Ww6Rttwxet12R5rut/XSgt467LugppmeRBPAp40jKAJy09AAA5lsSwIUVEO6JUGbXNQk4UVtZIS10nY6O0NAH/rIyAoppw8flLnUCK0pUWackifE9K50/1caODwUBTHjIEJQop6EJpKQNfF+pNWoryz4a0BOgqNaqvSNVv/EKCWmZs/vKkpU5ZFkJkHi56zqReuyYts6K0FJGWrjaNqErLuGHagjLO65ROMqWljrRUKS3Z31hiTlfnTFw4hKCeHq5KL4ssnR5uS1q6dMng2qelC9JSp7SMgzjm4VSlZZg3cUnLeh3EE4LqakJ1D0VpqaozrpWWNqSlDHFJyzhtLcxnldLSpU/LpAkZitIyhImfUxeEFQs2bup8TxV+mN60lJYAfZ1fD/Nwk/Yngz+Ip67wpKVHgLhKS9EknzphtSEtu4LSkuKT0SXiKi11O0wmO9qqslCZ+FPC0JGWrCsEGepBWvKmiyGSMA8PoVt0p0Famu5AitSDIvBpparUKLv+qjQXCrULCepGENuH8fXUpL2FEJnqpklasmDTkaTS0sSnZZKkZe/edmWmQtaUlhSigYeJ0pI9SM3UPJyS19TTw12pR1Rpoig4klBatraqF3qUvpaaPy4WeDqIxoy0SMs45uEqn5bsPWEesmFSx+BGIy11myay+uRaaemKtKTcE6JepGVra/VZPr/ZeYzJ+QG6upUlpaWpT0sKbEhLk3mILB0ufVq6VlrqNqqTUFq6mNslbR4ugSctA3jS0iNAEubh/AAt6zBsOhJRB6Bb+GaNtEzTPBxwr7S0HcB1965cSQtDVla6Xcd6kZa6uiUjLSkmmRSInjNVz6bh05KFrA1RJjS2SkvdBFq3WxtHacmWEa+0tFGSARuf0lKHtEjLXK62zmVJaZmUT0vKwp3q05KFjrS0IYjjmoebLs5NlJaie018WlLbis7svisoLU18WsYBVWkpOvGZorRk84Wtu9RNsUY3D+fTKJsfyA7Y4mGiqtPBtdJSVh4q0tKUaOWfAaL1QjUuq+ZJuVw0nEYyDzchLall6cI8nPqcCPzYIltrxIkjhE40IvvOgzonVM1RbDYydUj6IB4JPGkZwJOWHgFY0tKFeXjYQNmOyZRkMokPcKO0dLEoDpHEQTxx4FppmZR5eFzSUjdoyk7gk4XhirTUhENWWtqmR0Q4mpZpFnxaArQJTVJKy3LZXGnpwjycB4UoBLJJWiaptNRN7tLyaQnU1rm4k2ZbwkVU/2yUlqZqCRFMlJYskjYPVyk0qGNNHOLHVGmpMw+n1rVGIi1tkTWfloVCcEI2C4pPS3ZsogoN2D5YpbS03Qy1hY3SkjrHdGEebqO0pJBjSfq05JW+FIiUlro0APpxlk1L1s3DbUjLfN59f6YyD7cJP+wv+LHFZo0fd22clE9L1RrGtaUL4JWWdYYnLT0CuDYPDzsctuORdfA2HYkoLF26KZ1u797maZHB1qfl5ptXP7syB8zl5Duq1IWFq4N4dKQllcCwJS1NlZauTNU04ZRlhImrBZwoX3UmYvUmLdn2yNZTygLLVmlp6vOURxyl5dCh1c8iNQ41Dew9WTEPZ8uMr0culZa68ttii+rnzTaL/tavn1ulu2ulpW3aRIsUysKFj4+ikKVs1tkoLU1JS0peU08Ppy7YdPVYlTemPi2zpLRMyzzc1lqHnVOxn12Dah4O1PYNFPNwlrSk+qGXkZZZU1ra+LSU1U2DeZcUKncmsvspKvMkfVrakJZ8eGw/pKoTJuubrJuHs32Cap6YlBIyhGvSMrxOXVOpEHezx9S6xtZ3vc6nZVzYKi1V5akTXMGTliE8aekRgCUtCQ2oBrKJLtsxuSQtXSotH3446CC32go49VTztMigW7zJ3vuPfwwmqv36AT/6kbv0yEz7XJ0eblKOsrLYbDPg7LNpYZgubMI466W0DNN76aXie2WkZZwdzuuuC/5PnChWaZmah4sm5kmSll/6ErDllkEdfeih6nUb0lK0AZDLAaNHA9tvX71GMQ/XTUBsfVreeWfQ9vv2BX7yE/W9tkrL8DmTes1PmGxIy623BnbbLYj3uOOiv7lUWorK79vfjn4eODCI8847ga9+Nbh+/vnBf5ekJV/nNt00fpjnnhv8v/BC+jOi+mdjHr7//kHehb995jO1z1AWsyqlZRg+D77/0i1ITJWWqgUjdWzTLbRUeVOv08N1bZmyeKSqxeKaGFIgmnfddVeQls03N2s3pqAqLYHavoF6EE8IqnUUVWlZb9LSxjx8wABg/Pjg8403Vq/L3D6YgH1uxx2BceOCz3fcIb+fYh7Ow9QFTtJKS3Ys7tEDC/fcM/h8/fXR+3TzJDbcrJuH//3vQXsYMEA+P+fDibPpKwPFnZruudtuC/7vv391TTFgAHDQQcFntp2YYP/9gVGjgnTddZf63s99rvbaIYdUN+ILBeCYY9RhuFBa5nLBu4fIktLy7ruDa7vsEuSNBp60DJDyKOWRVXTecQeebGvDfnvthSYbkoRiHp5Vn5aHHQbMmxd0qPffb54WGXSkpey9d9kFmD8/eJ84u1t8/LLJSRrm4RSl5Ve+AvziF3SCRxafa6VlHIhIy5/9DDjvPOCb3wT+9rfKz+Xhw4E33qgNI85AO3kycPLJwWLtpz+t/d20TEOVFNVnVFyflt27A++9B6xYESV8bA7i4XfQN98cePFFYNCggEwLEfcgnm7d7JWWO+4IfPxxkE861TdVaWmrdmLhgrQsFIL8Xrw4yPuTT67+lqTScs6cgPgO0a8fMHt24Odu4EBg772B7343eo8r8HXOhfn5TTcFCyuT9LoyD+/XD/joo6Cf2nJLYMiQ2md0k2udT0tRHuVyUbP+MByT7yJQTw9XhZXLVcdaXb+kmhNQzMNlSktRflLncXy+ujQPT0tpqcMBBwRzvN697Q+yo4DNq46OanlTlJampCWrtHRhHl5v0tLWPPzBB4Mxk1XQm/gSp6QvlwOefBJYuFDc54XxuCQts2AeDuDZ738fE/fYA828+yJKPx8i66TlnnsG/UP37rX9IQsXBLgKbP0wIanY9/vylwORwuDB0fAeeQRYsCDaTkyQzwPTp1fnbyr87W+BEIBdcwweDMydC7z5ZiAQ4q1ceLhQWgLBfGLp0uAztU2YxGdLWp50UlDnBg4kheFJywCetPQIsO22WLbttijvt5/d8xTz8Cz7tBw0KPjv0oekLWkJuD0lNoyLSlomYR7OQ3Tv0KFmvlZM61M9zMNlk+ctt6zNgy22cE9ahuHKwjFVWubzQT7qFszU8GTp4tPIK9QoJBcfl8i/YDj5Yu+Nax4eh7QE6Gbs1Hrhwjyc78tsSEsgqDuiCW+SSksRude9e7WvyeWiZvkuwdc5F6SlTXpdKS2BYFE3Zoz8GYp5uEppKcqjQqE2vTrz8DR8WobxuCAtKYshE6UltU3y7cWleXhWDuIB3KicdWDLQedzlO8bZHVHNifaGMzDKarffL6WiHFtHh5+lxGWYTxdkLQU5i9gRlrKyi0Mo94+LYGoIk+GpElL9j6KRZgsfFE9LRTsCcsQsvkbj1wO2GGH6LV8PrCWUM0d+Lgo0AkvRowIyFYgOmbawuVBPDrilo3Gk5YAvHm4hyvIJrpp+rR0cRCPS9Iya51MXPNwnRIkLmlpqoBoVPNw2XdZ/sV1gC2LD9AvXGRKS9U9uud52OSvTZ7wZKCMmBbt+utUyyy6d49HWlIhy7ckDuJxQVqq4kvTp6UOSfq0dH3QDxWufFpSQDEPVyktt9pK7MvOlLRMU2nJplMFE9JSlPdJ+LTkF3I6P4IiuFZamtY7l202Dtg815GWcZWWNubhLLKmtKTMDahpdKG0NH1OpSBXhSnrL+tFWlI3EOOah/OuFJJEEnPoJMzD2fvikJZZgM5Xsg7Uts63ExFp6RJJHMRDQC7pNtIgyGBN92hIyAiYRvBpycIl0eiSAHURP5//cZWWIhWeDBTz8KRJy6ydHr5sWfWzSjnlqk66UFrGJS11Jo9U2OyYqk5yNp1AmyotbU5r1IHi01JlHp62T0tVfEn7tDRBkj4ts0Ra2iotdYjr07KlpVYda6O0pKRd5vvOdkMujk9L16eHuyIt66G0lIHyfD3nXSakZVyfljbm4Ww5ZY20TOr0cFdKSx1slZayPiEtn5Z8eNQzDUwO4umKpGUSz7H1g2IRZhp+mohLWubztGdC0+8QaZOWLg7iIcArLQNksKZ7NCQo5uEufVo2gtIyjnm4a+RytfG5PoiH6tNSdm/SpGV4P2UyYLujykNlpjR7dvXzVlvJw2AXP3FOAawHaakjFmTXdDDZhQ4RR2lpQojENQ+nwtYsJUy7S6Ul1b+mDFlSWroEX+dU5oVJwpa0tGmblAPoZOUY9m/8QqNQqH2HJM3DbQhQIB7x49o83Ja0tCGKqErLLC6uXYLNK3aeEUdp6c3D5c/IUC+lpUvSMutKy7g+LdMkLV31O7bkp40ar6uRljZppMwLlyyJfk+atKRsLooQt4yyNK+tIzJY0z0aEjJSKiml5Zo1tdd0g3TWlJZJk5a6+MPOl3rCZ5yDePh0ie41VaPJ4hOlv1Co5jc7GZDFmYZ5+EcfVT8PGyYPI0nS0rRMQ5+WunBlz4uQFmmpUlqy70QxD0/SpyUVtkRKvZSWKmSJtEzSPLxeiwtb83BbpaVq7FEpLcN6wC80KObhJibdbFpDqPwYU60IdPXY5CCeuObh1DTzfWkWzMNN48kKkvBpmdbp4dQ+2BVs/F1T+6OsKi1Fv2fdp6UMcc3DdRvFLuEqfNu6lLR5uCslqUvEVVoCdhspXdU83JOWADxp6eEKsh1RttORDc42jXn58tpr8+ern0lDacm+b9Y7GZnSMomDeOqttJQtJlQnBarCo0I1eWbrMFVpGWdhQVEnm/q01JlwxDEtVMFkFzqEikAyPYgnyz4t+XtcEAd8v2iz2xy3nlDvyxJpmRU/RK5OD6cgrnk4IFZa8unVKStNlZa2Pi1ZxDEPj6O0NDUPZ9tvkubhGxtpmaZPy7inhzeC0tK2vFVueaiot0/LtMzDbUlLE6WlaF2l2yh2CZtNbhGy6tMyi2vNrJCWKkGIDVwexGMAT1oG8KSlhxtQzMNlgyjrz49yghsgJi11OyqUToNNC+WUNB4UkjYE9V1dQNSxynxayiZrffuq7zOZ5CVJWorCZt9x333Fn1mw18eONUsXCxVpycYxbpw8DHZRmbTSknIwj85XEX+/DmkpLQcOjOYBO6ky3fVX1fXW1vr6tOTBl4GLg3hs0qKKj7pQMu3DLU4FL9u4HpGBPa1zp53swnAB0eaMS9KS7Sc23TT63r17R+8tFOR5ERI3w4fXPpOET0v2JNN99pE/S1UtJn16uKuDeNix56CD5HHowpE9E8J2gWeK/fevft5zz2TioMDEPHzw4Oh3vp2EkLXTQw6pfla9M1VpmUXS0ladxM7ZbOdv9fZpKSOx+Xyql3k4ezq0aP6qM/9m6++uu9LitAU1L3RIWmnJhr/11tXPuj6N3cDICpI0D2c3fAYNiv5m66OVijopLfOetATgSUsPV5BNdCmD6OjRwHnnBQPXlCm0+PiwjjkG+OIX1c9QJiH77Qeccw4wahTwwAO0tLBgO1ndQn/oUOCSS4CRI4GnnjKPSwdd/Cql5aOPBgvLr3wlmJAcfTRw6KHR++KYh4s6cFNiRzYIiPzGsWm7+upgkTNhAvCDH0Tv22EH4LrrgJ/9DDjwwOCd+XtMoCItf/vboJ6dcQZw7LHyMNjFT5wBmJLnLNkAiMuYrS/1Ii1VB/Fsvz1w992113v3Br73vcAsb4stgO98R5xOHWkp8g8boqkp+GsEpWUc83AeNqTlgw8CO+4I/PSn9Pyh1KcDDwTOPjtoW/ffTwtXhV12se+fDz4YOPVUYLfdgP/7v/hpscXAgbXXunUDpk4Nxh8ZqBPtp58O8unii4M+dNQo4IILgjF96tTaMD//eeDkk2vDCRfMvAqtqSkZn5Y//nFQRoccEnyWhU21ItDll2pMphxa48qn5Te+EYx/48YF46Eq3jjm4S7UNpTnr7kGOOAA4PDDgUsvjRdHHLDlo1NaHnoo8JnPAL16ATvvHMy1RJCN+TffHJDuxx0nfxaQk5Z8udabtBTlkW19+elPAzL+0EOBH/3ILgybuG3Mw+P6tGQ3pNI8iOeLXwROOgnYe2/gL3+p/Z19V9E73nxz0P9MnAh87Wu0OG3Bzxd33hm46KJgrnjbbfRwXPm6l4EN84QTgjFyr72Av/89uPbww8Gc6bLLouNhI5CWNvnVp4/4+iGHAF/9ajC/+NOfor+J+pE//hHYbrtgzRUXMhGADi5cA3niEimPUh5dFrJJPjvwqoiGm26yj/snPwnIiMcfV99HJdXidGwmSksA+PnPg7+kYaq0POQQ4M031WHaLuzCfGlqik6sXCktRYpb9h0HDgSefDL4/NZb0ftmzqx+1tUnClRmSjvvDLzyij4MV+bhovzi85zd3QXEPi1NlJZxFXim6NcPePtt+e9XXBH88TAxD5eR7kA1P7uaT0sXSkseRxxR2/50oJLgv/udeXpE2H//al9hg1wumDDXG5ttVnute/dgYT9jRjD5f+ON2nuodWTMGOD116PXbrxRfG+hENSXu+4Cvv3tYFEWIuzf+PZDUVraKP/79AEee6z2uq3SUtdOTHxa6pSWOlJMleZu3eSbsi7Nw3n1YFJKywEDgCeeSCZsE+RyQX51durLp6kJuOcefZiy/N9yS+C55/TPy+qcDTntEhSlpS369q3dLEkaqnlBCJP6TzUPZ7+nqbTM58Wbw6JwRXOqwYOBZ56hxRUXbFvs06c61t1wg1k4SfuO5F2U3HVX9PfDDqvOmW68sUpWsv5tswIXpCW/eRmiUABuuSX4/Omntb/xOPXU4C8JpHUQD5Add0N1hFdaerhBHKVlXIQOzXWdYhrOillSKUu7IqKJq6lPSx5xfFqK7jcldmTxbbZZbViyCWDSE3XV6eFUJGkezucTRWmZBfNwGWx90pqah8vSHO5+8xO2OOVmmgYeIuLZ5HkgefNwKtLow01IqEYBb4oKRNu+rM4ncXAQ7xOXRdhObEhL2xO/RXAZFgvVnCBNpaWqLZqM67rweNIybj5m3aclUM0vnXk4FXHnKNQ5SFciLesB16QlVWnJwma9xafJlTmtjrRME2xf6Xrj3yVM6kfWlZaU8UwH/rCyEKo5RNqHEqWptPSkpSctPRwhjk/LuAh9Leo6hTQ6M1OlZT0hIy1tfeVRnwvzJS5pqTqIh/eJpjutNim4OMUyydPDeZNLnclWVszDZbAd1E3Nw02VlkkstqlEYRrm4ZS+vRFJy64CnrTM5aJ9n6zOJ5EXqgVHHKWljXm4DHH8NavgUmmZFGnZiErLLCEsC53S0jQ8W8jMw13HYwpb90JZRbmsf4eNlbSsN9mS5Ma/S3Ql0pKHTd7JSEu2ntuMVy5hu162Qb3bUQbgSUsPN5DtdnjSMhsQDYbhNVvS0rXS0pVPS0Bv5kwJwwWyRFqKykBEFLNqS5HphWulpcsysN3RNyEtAfnkMszPXr3s0mECm0NS2OdckpaUSXOjkJYsstSHxwHvrL5bt2h5yMbmJCbJKr9gMqWlyKeljqSM06/UwzycJylEccqUlqb+AKnvA8TzaematGwE0jMsC1ekZdyNVSppmfQGLo+NUWlp0ielRVrycGUV0tWVlvXaiA7RaKSla/PwEPVWWnrz8FThSUsPN5DtdlB9WsZB6Kw3C6QlG0ejLHhtZfxxB4u4SktVOnm/lrIJcdKLoCyRlhTz8FIJ2Gqr6vePPqoNI8s+LdMiLU2VlknAdofXJr91fVlXIi27onl4nz7Rfp4nAGV1njVxdYVGVFraqhZ5mCgtVRuNgF5pqerHXCstPWlZRZhfOlKZio1FabkxkJZJ+LSUPWNLWrpSWpr4CU8aSfqFd4murLT05uHx4/KkpSctPRyhnubh4W5MFnxaZmmgpi64bZWWtrJ8V+bhnrQ0A4W0LJejpOXs2dHfs2gezj7vgrQUhcG3JVlZynxaJgFKvqVlHp7WpLnRTQjrhebm6AKAb/eysTkJB/9sGVKVlkkdxCODbVi6MdfEp6VOacmWjWh8U823vHl4cjA11bcJzwSNQlo2Yt/Ob3Cl4dNSJf7wSksxXCktVWOXC9iSllk8iIeHV1rGj8uTlp609HAEbx5eG0eWVDomk1XbwdjUhC4uaakCT1rKyj5N0tI2rjR9WvJKy6VLo79n8SAeyoEiOrg6iCdMS48edukwga1PS/Y3KrKitEyD9OiKSsumpugCgO9rZXWe7XtcgaK05NtPU1N2fVq6Mg839WnJQtTP2iotZRvQKsjC48nnjekgHt01KlySiVkmLRtRacnW57TMw1UElVdaitEoPi1NwmfHw0ZQWtrUR4pPy3qTlrYHYtrAk5aetPRwBNnufFKk5Z57Vj+Hhwzwfgx5JDXhZQ99YQeSei94k1Za8jA1odtyy+rnwYPjTZb4HTmq0nKTTaqfR460j1+GL36x+vmrX7ULg33utNPs0yLKg27dgB12qH7v2xf43Oeq37/1rej9PGnpQt3M1rchQ/T3A8CkSdXPBx5Y/ZyUeTjVX17Y/tnwRCc3u4As77/xjerno4+WlwGbhyHGjhXfK8rXL32p+pktAxYXXlj9fOSR4nsyhtKZZ1a/sJ8bDTvtVP3cr190AcAviNlyYtVxSZiHU3xa8spKXuHNhyMKK63Tw3WkJdtnH3CAPByKmxbW3zALUd/Obj7tu2/0NxOfllkyD28EuCYtd9ut+nniRPPnTz65+vn88+X3pb3YNyUt0/a5SQFv5WFzEM/Xvia+V5Yfw4ZVP/P9CTvfPPdcdVpk6Iqnh59+evXz//yPfThZMg8/44zq5698xX1aXIBdU/FjAQWNoLSkwistnaABt7Y8MgnZ7nxSPi3//nfgF78AjjmmurgZMAD497+BRx4Bbryx9pmkJswPPQT88pfA8ccDl15avV7vgVqE6dOB228Hzjqres2V0tJ0sLj11iDfisVg0LWJd+rUoC5ccEH0OpW07N4daGsL/iZPNo9fhy98AZgzJ9gJZYkBE5x7LrBsWZBWdlJqCpH6r1s34P77geuvDxZE3bsDe+8d1JE33wzq8zXXVO/nfVrqiHGqGvDhh4F//Us+gedxww3AZpsBu+8OvPgi8OCDtPTIoCMt+XBldZVVrj7+OHDXXbV10xVkeXv55QH5s8UWwMEHA3/5i/i+sG6uWQPssgvw5JPAN78pvleUr9ddF/S5O+wAjBolfu4nPwnq3YgRtcSJDVIgPcpnnYW3nn4a22+3HQpf/nLi8SWG++6rjpGtrdEFAK+gnDw5UPD07Qu8/TZw223B9Xr5tASCehOqikRjS5KkpS4uE/zyl8HGxciRwK67yu+jKC2POAI49ljg3nuj10Xj2yabBH3qY48Fm09Dh1Z/S9o8/Pzzg/mQq7mFq+fTgCi/4hBBQ4YAd98NPP008O1vmz//2c8GY/jKlcnMcWxBNQ9/+mngz3+23/Q1wcsvA7/9bZQQUoHfsODr5znnVPtS9v7nnwd+/3vgy18GttkmmDfcfHNQRiFkJO2AAcA//xnMffn68PnPB2P6qlX0uRSPJMzD6022nHoqMG9esCaLQ/AlfRCPCb7wBWDuXGD1auC88+qbFhn++99gbXHkkeYHrQI0n5b1Pj2cKsbypKUTeNLSww3SNg/fZhvg17+uvX7cccGfiLRMCtttV03Ld79bvV5vpSWLsGPfa6/gj0UaSksWYb7svTfwpz/ZxRXioIOCPx79+gV/y5bp03bUUcFfEsjngUsuiRdGSwtw2WXx0yLys9itW0Ao8e2FVdGxECmeVKDWicMOC/6oGDgQuPba4PMrr9Cfk8F0gq1TWgKB+lCmQEwSvXoBP/tZ9bvKPJxd9Jx0UvT3fL668SLqy/r1A66+Wp2WPn2An/9cm2Qy0lgoFAp453Ofw7YTJ6KQ1V17CrbeOtquWaUDb2LYrRtwxRXB54suql5PYpKsIi3ZBTNL9IjqsI6kdFlXTMc2Fv37Rzd+ZKD4tCwUgnLiSUtZ+o4/PvjjYUJa2piHi+Zmuni7CkT5FVe9dtJJtf0zFbmcfDOKRdoLYqrSct993Wx4UbD77gF5SAVvHs7X71tuCYQCL78cvX/vvYO/EOEYedVV1WsqZekJJwR/PKhlrUJXVFoWCtG1mS2SVlqaIJertYTKGoYPB371K/vnG8E8nCrG8qSlE2SoBXo0NNI2D88qsuQPLW3zcBOTszTAqy03dohIS9PdT948nHJ/0nAxGTD1v6TzaZkGqO3btgxcHHDkkR2wdVPlFy3pOqxSSbALdd48nEdWlJauxjbK6eGAuHxM/QGmdRCPSbxpPJ8GRPnlSr2WJNLu47uCT0vdGFko0P2aq1TnaaIrkpYejQmKebjNJptLeKVlqvCkpYcb1PMgniyB33nNClSTJYovLQriqFGSAOvT6+OP04kzy5ApLU3Ak5a6smxE0tKV0jJp2G5KUJGlDZgQjUBaZBVU0tLGjMsEbNtRKS3jkpYu64qrg3hUoCgtAXH51Ju0pOb1xkpauiKCkkS9ScssqdiooLR96untNgdgJQFXBHuWDuJxhazMgzYWUMzDTX5LAlSlpT+IxwkacJTwyCTS9mlpg7RPnm2UgTrtg3jqQVrOn59OnFmGC9IynzebTKexEMkSaZk04cMiadIyixswjUBaZBXU00aTJlioSks2HaK5Q1aUlq5A8WkJiPts0wWR6n1cnh4ONIbK0CVE+dUIeVBv8/BG7NuTJC27ktKyK5ItjVhfGw0ypaVqTEqbtOT9g8vglZZO4ElLDzegmIc3CokXB1lSJ9mSGkkoLesxwLMHD3jUxzy8EUlLXT+Vy3nzcI/GA7Wtp2keTlVaig4E0ikrG11p2Ujm4arw2APgVApfChqBKPBKSxoa2V9wCIoJNHvdZLOgXqRlEgfxdJX5Q73XdBsbZP2mqh1lVWnpSUsn8KSlhxtQzMM3BmSJtGShmuyn4dOyHvCkZRRJmIfrkMYi00W9M1EFlMvePLxeaATSIqug1s2sKC115ux8O+XbpMvxKA0rAqrSMovm4SqwpOWaNfHCagQ0KmlZb6VlI6Irmod7n5Y0+LlINuFJyy6NjLEMHg0L2YC7sZGWWTSp1CENpSWLepiHe7gjLU0G3zTKuh7m4Y2ktHRhHp6VRYdfKNiDqrRM2pTV5vRwEWnJqy8b3Tyc6tOyuTk+seiatFT1RS5Jy0Zo/948nIaNhbRsNKWlK9KyK/q09Mg+ujJp6duRJy09HEE20a3XwCtCGhPeG26ofr7xxuTjU+HXv65+/sUv5PftvHN0orLnnnbxZc08fPToKnF56aXpx581tLTULqhsfFqalGW/fsA22wSfL7zQLC4qXExSvvWt6ud//EN9by4nn4CkuTilTmC6EmnpYY8vf7lKXP7+9/L7kibeVQfx6JSW3/lO8H/YsOCPRb3Mw++6q/r5+9+3j4N6enguV1tGpm3c5DR0Stg9egDbbRd8Pvfc2t9CxCUtL7883vNpoJGUlrffHvzv3h049dR04+4KpKVojDzooOD/iScG/3/72+o9V19NC0v0PS24msNcc031M5sHHtmzSssyzjqr9ppqbE+jXwn7zdZW4LTTaM84SFfOKy2xkcngPBKDNw8PsOeewHPPBSel77NPfdMydiwwbVrQwY8eLb9v002Bl18GHn0UGDIEOOYYu/iyprRsaQGefBJ46SVg4sR04sw6evYEli+vfrfxaWmCXA546ing2WeBI480e5YKFxPArbYCXnsNWLwYOOQQ+zjTXIil6dMyK6rxRlBaZRWbbgq8+CIwezZw+OHy++ppHq7zaXn55cG4Onq0/iCPtJSWEyYAU6cCfftWN2hsQFVaAkHesIcp1VtpmcsFY+20aUF+sGDHGFvS8s47gV13BXbYwe75NCHKr6wqLc84A9hiC2D4cPlJvUmhK5CWojHyX/8CHnus2sfuv38wB2ppAXbbTR5WVogsV/3/rrsCL7wQ9N377usmzHrD1TyouVnsp9mjFjfeGKxJw00AHdLoV9h+c5NNaM9483An2MgYJY/EQDk9fGPBmDH1TkEVVOJ0p52CvzjI2unhQEBGeTPxKnjS0sY8nAWlLDfbDDj+eLN4TOBqsr/rrvR7ZYv+NDdpNkbzcI94oPTz9TQP1yktW1uB444Th6s7TTwOdMrEUF3lMg5VnN27A59+Wo3ftA808a1HXQQOHizu510oLQ88MFggNgJE/W1WlZaFQi3JnGbcXRH9+wOf/Wz1ey4H7Lef/rms5IfL/l8llmh0xBlfWlo8aUlFz57R9qRDGu3Ipt/0pKUTZGRrx6PhQTk93KNrIys7xR5ysH4t83nz9lkoZE/tlka94wlCWZxdibT0SsuNE1lRWup8WvJIUmlZD0JBVddZQtemfZsoLeP2aSxpyapDTdBI7b6RzMPriayQdHHg0od9VubPvq7SEJe09EgGWe1XPGnpBBnpJT0aHo1gHt5IE99GRFYHC48qWNKyWzfzNpHFNpQlQqErmYdn8VCxLNa/roakF602Pi1tVClpKS2Tgs48PETSpGUWTg9vpHbfSObh9URXmC+y9TKuNYInLTce+P4gHurt09IGnrR0goz0kh4ND28e7pG1g3g8asGSli42FLJAZqUx2aequLJIWrpQWnrz8I0HWVFassScTT/TaKeHm8TJ5o1Nn2NyEI8nLc3glZY0ZJVcMIFLa4SskJaeUJPD1XzX53FyyGq/4iJdnrT0pKWHI3jzcI+sHcTjUQuWtOwqA2A9zMM3Bp+W3jx840RWfFrGJXoanbRU1XXTA9RMwk7SPHxjIC0byadlPZEVki4OvHn4xgWXB/F4JIOskpZeaekEGeklPRoenrT0oKo3skKAbIxgSUtb9VzWFpBZUkFlkbT05uEeJjA9nMsUbBlSzcPjxhMXafUxbP9BVVp2dJjHk8RBPDKwBGt7u10YjdTuvXk4DY1UpjJ48/CNF96nZf3gzcM3WmSkl/RoeMhIy002ST8tMvTpU+8UdG148/Dsw7XSMgtkVv/+1c9pTVhkE5C+fdOJH0heaTlsWPXzwIF2YbhG7971TkHXR9J5zLYdlduFwYPjpakRD+JRqVBZsKRlsWgej2o85vuLuKqgLbaoft5yy3hhNQK8efjGA3aMHDQoXlhZIS2zSvp0JQwZUu8UdF1ktf560tIJMtJLenQ5hBPfz3wGGDUqmLQ9+GB68V9xRfB/p52CCf4uuwCf/Wx68W+MyOpg4VGFDWn5058G/7/6VffpcYEvfAEYOTJo5w8/nHx8uZx40b/nnsCECcnHHyJp0vKPfww2ejbbDLj8crswXODBB4PxY9Qo4Jhj6peOjQXDhgFHHhn053fe6SbMm28OJu2f/3yUcFNN5E87Ddhxx0Cpd9995nE2utKSah5us5BRvc/xx1fDHzQIGD/ePHwW554LbLNNYCb+j3/YhdFIPnVF/a1XVolx9tnB/6uvrm86bHHnne7GyHqSltdeG/Q3Z55ZvzRsTLjoImD48Hqnomsiq+tQ0/b9u9/VPuNJS3jbXY9kEHYchQLw0kvAypXpqpB+8APgwguBfv2AFSuAXr2ys5PZVeF9WmYf7OKJOgB+97vAeecFbQnInmq2uRl47TVg9er01NR8X9LWFhCWafYxSZuH77ADMH9+kL/1XHQfcQSwcGGgtvN9eDpoawOWL6+2+bg491zglFNq5wCqvqSlBXjjDft23Yg+LW3Mw22gyvcDDgja/ccfA1tvHV8l2L078Pbb8frnRpozeKUlHb/7HXDNNVFriUaCyzGynmPbN74BfOlLjVsOacFVP9SrF/Duu8C//w187nNuwtyY0Ijm4abpOvts4MQTgWIRxfnz8cTTT+PAww5LJm0NBE9aeiQD3swpTcIyRLjg8mbh6cDkRFKP+sB2QHdFXiSFQiHdds7X5wED0l90JK20BKLK3HqiHuPHxoxczn2bF4WnazNx2nWjk5aqMTNpf5/9+rkt/7T753rCk5ZmaHSizNUYWe85cqOXQ9qIU165XNDX+3mNe2SVtLSZQ4RjcL9+WPXhhwHZvZHDyxY8koE/gGfjg1daZh+uB/SNtSxdH1ZhgzRISw+PJJHkQt1l2Gm1b7atqtp3lg4pSgONNM5483APj64JV/1Q2P9mlWBrZGQ1T72VkBP4XPRIBlntODySg2oh5E8PzwZcDJyNtuBNArKDx9JE0ubhHh5JI8mJfKMrLVXuO1ifljZotD68keYMXmnpYQPvr27jQTie+LmZHRrRPNyTlk7gc9EjGWS14/BIDo22ENoY4dulG/B1vR5qRq+09Gh0JDmRb/SDeFSngsdVWjYaGp209H2whw6etNx44JWWySGreepJSyfwueiRDPwkzcMje/Dm4XbQvWeWlZa+L/bIKpLc6Gp0pWVHh/w+bx6eXfD9bWtr4+W3R/ooleqdAg8TxPVpCXgiKwlklbTMaroaDL7FeCQD30A9WHjz8GzARbv0C7BaZJm09H2xR1bRKD4t01pcsm1VpbyKS1o22hjcSOnl+1tvGu5BgVdaZh/ep2X2kdU89QS1E/hc9EgGWe04PJKDapF46KHVz/vum3xaPMQYNar6+bDD6peOroa0+rsDD6x+HjmS9oxXWnpsjHC5SKjHQTxJKi0bDY10yi5fV/whPB4UeNIy+2BJSxebYn6dTAc7991lF/l9Wc1TT1o6gV/NeCQDv1D2YPGznwEffhhM4C+5pN6p2XhxwgnA2WcD770H3HFH/PAaSQGTJNLq7/74R+DMM4Gttw7KkgLfF3tkGTffHPRFP/uZ23C7snl4c3PyaakzOp58Eiu/9CX0OeMMFAYOrHdy6PBKSw8bePPwjQfhvDmrBFsW8Yc/BHPfbbcFjjtOfl9W89STlk7gVzMeySCrHYdHfdCnD3DfffVOhUcuB/zud/VORddDWv3dVlsBjz5q9ozviz2yjHPPDf5coxHNw6mkZdyNiAZw8VEeOxZPXHMNJk6ciIbqwUQ+LT08dPCk5cYHT2TRMWwY8Nhj+vuyOt/1Ze0EPhc9kkFWOw6P5NAACyEPB/DlXIss93deaemxMcIrLT3qAW8e7mEDbx7eWPDm4dlEVvM0q+lqMHjS0iMZ+Abq4dH14c3DA2SZGMxy2jw8kkJXVlp60jK78ObhHjbwpGX24Wq+683Dk0NW89QrLZ3A56JHMvAL5Y0PXoHnsbEiqxMlINtp8/BICo2otKSeHu7nV9kFXzZeaelBgTcPbyx4pWU2kdU89etjJ/CkpUcyyGrH4eHhEQ8b++Arev8s93ee4PDYGOGyn0qrz/NKy8aHV1p62MArLTc+ePWde2R1Lu7L2gl8Lnokg6x2HB4eHh5xIDIRyjIxmOW0eXgkhUZcJHjSsvHhSUsPG3jScuOBNw9PDlnN041d7OEIDTir82gI+IXyxgffKW988D4tA2R1ogRkO20eHkmhK5OWfn6VXXjzcA8bePPw7MP1fNfPzdwjq+O+Xx87QUZL16Ph4TtjD4+uidNOq36+5JL6pSNNnHtu9fP559f+nuX+zhMcHhsjGnGRQCUtR42qfj7xRFrY48ZVPw8aZJYuDzq6d49+90rL7CJLm67HH1/9fOmldUuGhwKnn1797GLum+V5YyNh552rn7M632XHgV12qV86GhwZLV2PhofvjD08uiaOOAL47W+BTz8FLryw3qlJB1/8YvC+pVKUtA2R5f4uq5M4D48k4VJxkTWfloMGAf/9LzBtGvC1r9HC/sc/gJtuAg4/vJZY83CH4cOj373S0oOCMWOAP/wBmDMHuPjieqfGQ4QjjwzmvsuWxZv7hmR5VlWBjYb//he49Vbg2GOzm6eFAvDUU8B99wFf/Wq9U9Ow8KsZj2TgF8obHxpR2eJhjlwOOOeceqciXeTz6klqVidKQLYJVQ+PpNCI4xH19HAAmDgx+KNiyBDgpz+1S5cHHSNGRL97paUHFaINUY/swPXc18/N3GDYMODKK+udCj322y/487BGhldaHg0N3xlvfGjERaKHR1eH30Dy2BjRlZWWHtkFr7T0pKWHh4cIfp3s4WEET1p6JAPfGXt4eHjUH5609NgY0YibaJ60bHz06BH97s3DPTw8WPjTwz08rOBJS49k4DtjDw8Pj/rD98UeGyOy7LJBBk9adj1k6bAXDw+P7KARxygPjzrCtxiPZNCIKgcPDw+PrgavtPTYGOHNwz3qhc03r37++OP6pcPDwyO78BvKHh5G8KSlh4eHG3ii2sMje/CkpcfGiEYcjzxp2TUwZEj18/z59UuHh4dH9uBPD/fwsIJvMR4eHm7gB2APj+zBt0uPjRGNWO+bm6ufGzH9HgHYw3ja2+uWDA8NGnFjw6PrwPfxHh5G8C3Gwx2+9KXg/8EH1zUZHinij38M/vfuDUyaVN+0eHikic9/Pvh/zDH1TYcOuRywzz7B5/PPr29aPDzSgktCIi1y49JLq8Tl//1fOnF6uMdVV1VVs9deW9+0eMhxwQVAt27BZ9/ePJLE9dcH/4cMAfbdN/jc0gLsuWfw+etfr0+6PDwaCN5uzMMdbr4ZOPlkYNy4eqfEIy1MmgSMGAFstVVAXHp4bCy4807g7LOB/fevd0r0ePBB4Lnn/IaSx8aDRlSxbL45MHMmsHQpsPfe9U6Nhy222QZ44w1g5Upg9Oh6p8ZDhk02Cdrbxx8DY8fWOzUeXRkXXQTssQcwcmR1YyqXAx59FHjhBeCgg+qbPg+PBoAnLT3cobUVOOKIeqfCI03kcsB++9U7FR4e6aNbt8bp7/r0AQ4/vN6p8PBID42otASArbcO/jwaGzvsUO8UeFAwbFjw5+GRJPJ58aZx377A+PGpJ8fDoxHRgFvRHh4eHh4eHh4eHhI0otLSw8PDw8PDw8OjBn5W5+Hh4eHh4eHh0XXgD9nw8PDw8PDw8OgSaGjS8qabbsLw4cPRrVs3jB07Fs8//7zy/rvvvhs77rgjunXrhl133RVtbW0ppdTDw8PDw8PDw8PDw8PDw8PDw8ODioYlLf/2t79h8uTJuOyyy/DSSy9h1KhRmDBhAhYtWiS8/5lnnsEpp5yCs88+Gy+//DKOP/54HH/88XjjjTdSTrmHh4eHh4eHh0dDwKs2PTw8PDw8PDzqhoYlLa+//nqcc845OOusszBy5Ejceuut6NGjB+644w7h/b/85S9x5JFH4lvf+hZ22mkn/PjHP8aee+6JX//61ymn3MPDw8PDw8PDoyHgSUsPDw8PDw8Pj7qhIU8Pb29vx4svvohLL720ci2fz2P8+PGYNm2a8Jlp06Zh8uTJkWsTJkzAv//9b+H969evx/r16yvfly9fDgD45JNPUCwWY75B9lAsFrFmzRosXboUzc3N9U6Oh8dGB98GPTzqD98OGxdsaRWXLnUWVke5jHLM8DzM4Nuhh0d94dugh0f90dXb4cqVKwEA5XJZe29DkpZLlixBZ2cnBg8eHLk+ePBgzJw5U/jMggULhPcvWLBAeP+VV16JH/3oRzXXR4wYYZlqDw8PDw8PDw+PxDFwoLuwTjjBXVgeHh4eHh4eHh4VrFy5En379lXe05CkZRq49NJLI8rMUqmETz75BAMGDECuC5oKrVixAkOHDsWcOXPQp0+feifHw2Ojg2+DHh71h2+HHh71h2+HHh71hW+DHh71R1dvh+VyGStXrsSQIUO09zYkaTlw4EAUCgUsXLgwcn3hwoXYbLPNhM9sttlmRve3traitbU1cq1fv372iW4Q9OnTp0s2Cg+PRoFvgx4e9Ydvhx4e9Ydvhx4e9YVvgx4e9UdXboc6hWWIhjyIp6WlBXvttRceeeSRyrVSqYRHHnkE48aNEz4zbty4yP0AMGXKFOn9Hh4eHh4eHh4eHh4eHh4eHh4eHvVBQyotAWDy5Mk444wzMHr0aIwZMwY33HADVq9ejbPOOgsAcPrpp2OLLbbAlVdeCQC46KKLcNBBB+G6667D0UcfjbvuugvTp0/Hb3/723q+hoeHh4eHh4eHh4eHh4eHh4eHhweHhiUtTz75ZCxevBg//OEPsWDBAuy+++544IEHKoftzJ49G/l8VUi677774i9/+Qu+//3v47vf/S622247/Pvf/8Yuu+xSr1fIFFpbW3HZZZfVmMR7eHikA98GPTzqD98OPTzqD98OPTzqC98GPTzqD98Oq8iVKWeMe3h4eHh4eHh4eHh4eHh4eHh4eHikhIb0aenh4eHh4eHh4eHh4eHh4eHh4eHRdeFJSw8PDw8PDw8PDw8PDw8PDw8PD49MwZOWHh4eHh4eHh4eHh4eHh4eHh4eHpmCJy09PDw8PDw8PDw8PDw8PDw8PDw8MgVPWnrgpptuwvDhw9GtWzeMHTsWzz//fL2T5OHRJXDllVdi7733Ru/evTFo0CAcf/zxePvttyP3rFu3Dueffz4GDBiAXr164cQTT8TChQsj98yePRtHH300evTogUGDBuFb3/oWOjo60nwVD48ugZ///OfI5XK4+OKLK9d8G/TwSB7z5s3DqaeeigEDBqB79+7YddddMX369Mrv5XIZP/zhD7H55puje/fuGD9+PN59991IGJ988gkmTZqEPn36oF+/fjj77LOxatWqtF/Fw6Mh0dnZiR/84AcYMWIEunfvjm222QY//vGPwZ7J69uhh4dbPPHEEzj22GMxZMgQ5HI5/Pvf/4787qrNvfbaazjggAPQrVs3DB06FFdffXXSr5YqPGm5keNvf/sbJk+ejMsuuwwvvfQSRo0ahQkTJmDRokX1TpqHR8Pj8ccfx/nnn49nn30WU6ZMQbFYxBFHHIHVq1dX7vn617+Oe++9F3fffTcef/xxzJ8/H5/97Gcrv3d2duLoo49Ge3s7nnnmGdx55534/e9/jx/+8If1eCUPj4bFCy+8gN/85jfYbbfdItd9G/TwSBaffvop9ttvPzQ3N+P+++/Hm2++ieuuuw79+/ev3HP11VfjV7/6FW699VY899xz6NmzJyZMmIB169ZV7pk0aRJmzJiBKVOm4L777sMTTzyB//mf/6nHK3l4NByuuuoq3HLLLfj1r3+Nt956C1dddRWuvvpq3HjjjZV7fDv08HCL1atXY9SoUbjpppuEv7tocytWrMARRxyBYcOG4cUXX8Q111yDyy+/HL/97W8Tf7/UUPbYqDFmzJjy+eefX/ne2dlZHjJkSPnKK6+sY6o8PLomFi1aVAZQfvzxx8vlcrm8bNmycnNzc/nuu++u3PPWW2+VAZSnTZtWLpfL5ba2tnI+ny8vWLCgcs8tt9xS7tOnT3n9+vXpvoCHR4Ni5cqV5e222648ZcqU8kEHHVS+6KKLyuWyb4MeHmngkksuKe+///7S30ulUnmzzTYrX3PNNZVry5YtK7e2tpb/+te/lsvlcvnNN98sAyi/8MILlXvuv//+ci6XK8+bNy+5xHt4dBEcffTR5S996UuRa5/97GfLkyZNKpfLvh16eCQNAOV//etfle+u2tzNN99c7t+/f2ROeskll5R32GGHhN8oPXil5UaM9vZ2vPjiixg/fnzlWj6fx/jx4zFt2rQ6pszDo2ti+fLlAIBNNtkEAPDiiy+iWCxG2uCOO+6IrbbaqtIGp02bhl133RWDBw+u3DNhwgSsWLECM2bMSDH1Hh6Ni/PPPx9HH310pK0Bvg16eKSB//znPxg9ejQ+97nPYdCgQdhjjz1w2223VX6fNWsWFixYEGmHffv2xdixYyPtsF+/fhg9enTlnvHjxyOfz+O5555L72U8PBoU++67Lx555BG88847AIBXX30VTz31FI466igAvh16eKQNV21u2rRpOPDAA9HS0lK5Z8KECXj77bfx6aefpvQ2yaKp3gnwqB+WLFmCzs7OyEIMAAYPHoyZM2fWKVUeHl0TpVIJF198Mfbbbz/ssssuAIAFCxagpaUF/fr1i9w7ePBgLFiwoHKPqI2Gv3l4eKhx11134aWXXsILL7xQ85tvgx4eyeODDz7ALbfcgsmTJ+O73/0uXnjhBXzta19DS8v/t3fvQVFddxzAvwvL7vJSVN4QEJKqUTEaNEqxJYg1aCbVCFIVYbHjI0ZGIa0aTImmxJopSa1gbLSJmgZMRgPWmEEb5KUmiGULZNGqbUVTG5QaJAIaHu7pH5abXfchkAXW+P3M7Mz1nnPuOXfvPSP8OA8F1Gq11I9M9TP9fujp6WmQLpfLMXToUPZDom548cUXcePGDYwaNQr29va4ffs2Nm3ahPj4eABgPyTqZ9bqc1euXEFQUJDRNbrS9JdiuV8xaElE1A9WrlyJ2tpanDhxYqCbQvTA+Pe//43Vq1ejsLAQKpVqoJtD9EDS6XSYOHEifvOb3wAAJkyYgNraWrz11ltQq9UD3DqiB8O+ffuQm5uLvXv3YsyYMaiurkZKSgp8fX3ZD4nIpnF6+APM3d0d9vb2RrukXr16Fd7e3gPUKqLvn+TkZHz88ccoKSmBv7+/dN7b2xvt7e1oamoyyK/fB729vU320a40IjJPo9GgoaEBjz/+OORyOeRyOcrKypCVlQW5XA4vLy/2QaI+5uPjg9GjRxuce/TRR/HFF18A+LYfWfp51Nvb22iTyM7OTjQ2NrIfEnXDmjVr8OKLL2L+/PkICQlBQkICUlNTsXnzZgDsh0T9zVp97kH4OZVByweYQqFAaGgoioqKpHM6nQ5FRUUICwsbwJYRfT8IIZCcnIwDBw6guLjYaOh+aGgoHBwcDPrguXPn8MUXX0h9MCwsDFqt1uA/rMLCQgwaNMjol0AiMhQVFQWtVovq6mrpM3HiRMTHx0vH7INEfSs8PBznzp0zOHf+/HkEBgYCAIKCguDt7W3QD2/cuIGKigqDftjU1ASNRiPlKS4uhk6nw+TJk/vhLojubzdv3oSdneGv/vb29tDpdADYD4n6m7X6XFhYGI4dO4aOjg4pT2FhIUaOHPm9mBoOgLuHP+g++OADoVQqxZ49e8SZM2fEsmXLhJubm8EuqUTUOytWrBCDBw8WpaWlor6+XvrcvHlTyvPcc8+JgIAAUVxcLCorK0VYWJgICwuT0js7O8XYsWPFjBkzRHV1tThy5Ijw8PAQaWlpA3FLRPc9/d3DhWAfJOprp06dEnK5XGzatEn84x//ELm5ucLJyUnk5ORIeV577TXh5uYmDh48KD7//HMxe/ZsERQUJG7duiXliY6OFhMmTBAVFRXixIkT4gc/+IFYsGDBQNwS0X1HrVYLPz8/8fHHH4u6ujqRn58v3N3dxdq1a6U87IdE1tXc3CyqqqpEVVWVACB+97vfiaqqKnHp0iUhhHX6XFNTk/Dy8hIJCQmitrZWfPDBB8LJyUns2LGj3++3rzBoSSI7O1sEBAQIhUIhnnjiCXHy5MmBbhLR9wIAk5/du3dLeW7duiWef/55MWTIEOHk5CSeffZZUV9fb3CdixcvipkzZwpHR0fh7u4ufvGLX4iOjo5+vhui74e7g5bsg0R979ChQ2Ls2LFCqVSKUaNGiZ07dxqk63Q6kZ6eLry8vIRSqRRRUVHi3LlzBnm++uorsWDBAuHi4iIGDRokFi9eLJqbm/vzNojuWzdu3BCrV68WAQEBQqVSieDgYPHSSy+JtrY2KQ/7IZF1lZSUmPxdUK1WCyGs1+dqamrE1KlThVKpFH5+fuK1117rr1vsFzIhhBiYMZ5ERERERERERERExrimJREREREREREREdkUBi2JiIiIiIiIiIjIpjBoSURERERERERERDaFQUsiIiIiIiIiIiKyKQxaEhERERERERERkU1h0JKIiIiIiIiIiIhsCoOWREREREREREREZFMYtCQiIiIiIiIiIiKbwqAlEREREdF9aPjw4ZDJZEhKShrophARERFZHYOWRERERD20fPlyyGQyyGQyFBcX96jsJ598IpVdvXp1H7WQiIiIiOj+xqAlERERUQ8lJiZKxzk5OT0q+95775m8zkApLS2VgqilpaUD3RwiIiIiIgAMWhIRERH1WHh4OB5++GEAQF5eHm7dutWtcq2trThw4AAAYMyYMQgNDe2zNhIRERER3c8YtCQiIiLqhYSEBADAjRs3cPDgwW6Vyc/PR2trq0F5IiIiIiIyxqAlERERUS8kJCRAJpMB6P4U8a6p4XZ2dli0aFGftY2IiIiI6H7HoCURERFRLwQHByM8PBwA8Je//AUNDQ0W83/55ZcoKioCAEybNg1+fn5Gef785z9j3rx5CAgIgEqlgpubGyZOnIhXXnkF169f71a7CgoKsGjRIgQHB8PZ2RkqlQpBQUGIiYnBnj17cPPmTQDAxYsXIZPJEBkZKZWNjIyU1rfs+uzZs8eojvb2dmzfvh2RkZHw8PCAQqGAt7c3Zs2ahZycHOh0OrPtS0pKgkwmw/DhwwEA9fX1WLduHcaMGQNXV9cer61pak3Offv2ISoqCh4eHnB0dMTIkSOxdu1aNDY2mr3Ok08+CZlMhieffNJifRs3bpTqM6UrbePGjQCAkpISzJkzB76+vnB0dMSjjz6KjIwMacRtl4KCAsyaNUvKN3r0aGzevBnt7e3d/i7++te/YsGCBXjooYegUqnw0EMPYfHixTh79my3yv/zn/9EamoqQkJCMHjwYDg6OiI4OBhJSUmorKw0W+7uZ6DT6bBr1y5ERkbCy8sLdnZ23OGciIiIek4QERERUa/s3LlTABAAxNatWy3mzczMlPL+6U9/MkhrbGwU06ZNk9JNfTw9PUV5ebnZ61+7dk1ERUVZvAYAsXv3biGEEHV1dffMq5+/S11dnRg1apTFMlOnThVfffWVyXaq1WoBQAQGBory8nLh7u5uVL6kpOSe332XkpISqVxRUZFYtGiR2XY98sgjor6+3uR1IiIiBAARERFhsb4NGzZI1zOlK23Dhg1i8+bNQiaTmWzLD3/4Q9HS0iJ0Op1YtWqV2TZHR0eLzs5Ok3UFBgYKAEKtVot33nlHyOVyk9dQKpVi3759Fu8rMzNTODg4mG2HTCYT6enpJsvqP4PDhw+L6dOnG5VXq9UW6yciIiK6G0daEhEREfVSXFwcVCoVAMNdwU3pSndxccHcuXOl821tbZg+fTqKi4thb2+PhIQEvP/++zh58iSOHz+OTZs2YdiwYWhoaMCsWbNw6dIlo2vfvHkTkZGR0kjO0NBQ7NixA59++ikqKytx4MABpKamwtfXVyrj5+cHrVaLXbt2Sed27doFrVZr8JkzZ46U3tLSgqioKGnk3pw5c/DRRx+hsrIS+/fvR0REBADgxIkTeOaZZ3D79m2z30dLSwtiYmLwzTff4KWXXkJpaSlOnTqFd955Bz4+Pha/S3PS09ORk5ODOXPmID8/HxqNBgUFBXj66acBfDuSsD8cPnwYaWlpmDJlCvbu3YvKykocOXIEM2fOBAB89tln2Lx5M7Zs2YKsrCzMnDkTeXl50Gg0OHjwIKZMmQIAOHLkCP74xz9arKu6uhrPPfccPD09kZ2djYqKCpSVlWHdunVQKpVoa2tDfHy82dGSmZmZWLNmDTo6OjBu3Dj84Q9/wNGjR1FZWYnc3FyEhYVBCIGMjAxkZWVZbMu6detw9OhR/PSnPzV4Bl33TURERNRtAx01JSIiIrqfxcXFSaPJzp49azJPTU2NlCcxMdEgbf369QKAcHNzE5WVlSbLX7x4Ufj4+AgAYuHChUbpqamp0vVXrlwpdDqdyeu0tbWJK1euGJzTHyV3rxGOv/zlL6W8v/rVr4zSdTqdiI+Pl/Js377dKE/XSEsAwsXFRVRXV1us81702w9AvPrqqybbNWPGDAFAyOVy0dDQYJTH2iMtAYiYmBijUZKdnZ1iypQpAoBwdXUVKpVKpKSkGF2ntbVVGkk5btw4k3V1peP/I1dNjSItLi6WRmBOmjTJKP306dPSCMsNGzaYfHdu374tjWB1cXERjY2NBul3PwNT7wYRERFRT3GkJREREdF3kJiYKB2bG22pf14/f0tLC958800AQEZGBkJDQ02WDwwMRHp6OgBg//79BushNjU1YceOHQDujLDcunWr2fUWFQoFvLy8unNbRtra2vD2228DAMaMGSOt2ahPJpNh+/btGDZsGABg27ZtFq+5du1aPPbYY71qjymhoaFYv369yXa98MILAIDOzk6Ul5dbrU5znJycsHPnTtjb2xuct7e3x7JlywAAzc3N8PDwwG9/+1uT5dVqNQDg888/x9dff22xvjfeeAPe3t5G5yMjI7F06VIAd9a8vHu05RtvvIGOjg5MnDgRGzZsMPnu2NnZITs7G0qlEi0tLfjwww/NtmPEiBEm3w0iIiKinmLQkoiIiOg7eOqpp6RAYG5uLoQQBuk6nQ579+4FAPj7+xtsfFNWViYFo2JjYy3W8+Mf/xgA0NHRAY1GI50vLi6WNtdZtWqVUZDMWjQaDZqamgDc2UzHXD2DBg1CXFwcAODMmTOor683e834+HirtnHhwoVmA7b6AeELFy5YtV5TfvKTn2Do0KEm0/QDtXPnzoWDg8M989XV1Zmta8iQIZg9e7bZ9J///OfS8dGjRw3SDh06BACIiYkx+90BgJubG0JCQgDAYtD3Zz/7WZ+9g0RERPRgYdCSiIiI6DuQy+VYuHAhgDs7cp84ccIgvaioCF9++SWAO0E6O7tvf/zSH/Xm4+NjtHO3/mfs2LFS3itXrkjHVVVV0vGPfvQj696cntraWul48uTJFvPqp+uX0+fi4oLg4GDrNO7/Ro0aZTZNP4DY3Nxs1XpNGTFihNk0Nze3Huez1OYJEyZALpebTR8/fjwUCgUAQKvVSucvXbqE//73vwCAtLQ0i++fTCaT3lf99+9u48aNM5tGRERE1BMMWhIRERF9R5amiJubGg4ADQ0Nvaqva2QlAFy7dk067u0GNt3R2NgoHXt6elrMqz9NWb+cPv2AnLU4OTmZTdMPFlvaIKi/22KNNt/recjlciloq/88rPH+3W3IkCG9uiYRERHR3cz/SZaIiIiIumX8+PEICQmBVqvF/v37pfX/WltbkZ+fD+DO9OTRo0cblNMPRP3tb38zO034bv7+/tZrfC9YmkbcXZxCbD29fR7679/LL7+MefPmdaucs7Oz2TQ+VyIiIrIWBi2JiIiIrCAxMRFr1qxBU1MTDh06hNjYWBw4cEDaNOfuUZYApA1rAMDDw6NXwUh3d3fpuL6+HkFBQb1o/b3pT6++evWqxWnN+tOHza3raGu6RjXqdDqL+fQ3QbIVV69etZje2dkpjbDUfx7675+Dg4PBEgREREREA43Tw4mIiIisID4+XhpllpOTA+DbqeEODg5YsGCBUZkJEyZIx59++mmv6n388cel42PHjvW4fHdH6ekHtCoqKizmPXXqlMlytszV1RUAcP36dYv5zp8/3x/N6ZHq6mp0dnaaTa+pqUF7ezsAw+cRHByMwYMHA+j9+0dERETUVxi0JCIiIrICHx8fTJ8+HQBQUFCA2tpaFBUVAQCio6Ph4eFhVGb69OnSmoZZWVlGO493R2RkpDRdNzs7u8frNapUKum4ra3NbL7Q0FBpHcp3333X7IjE5uZm7Nu3DwAwevToPl1n05q6RqieP3/e7KY3165dQ2FhYX82q1saGxulXcBN2bVrl3Tc9Y4Cd6Zyz5o1CwDwySef4O9//3vfNZKIiIiohxi0JCIiIrKSringHR0dmD9/vhRANDU1HLizGU1ycjIA4LPPPkNqaqrF6clXr17F22+/bXSN5cuXAwA0Gg1SUlLMBj87OjqMNl/RDyr+61//Mlu3UqnEkiVLANzZETwjI8MojxACycnJ0uZAXfd2P4iIiAAAtLe3Izs72yi9o6MDS5Yswa1bt/q7ad3ywgsvmJwmXlZWhp07dwK4E3ieNGmSQXpaWhrs7e2h0+kQGxuLy5cvm63j9u3byM3NtZiHiIiIyFq4piURERGRlTz77LNwdXVFc3MzTp8+DeDObsrPPPOM2TK//vWvUVZWhoqKCmzduhWlpaVYunQpxo8fD2dnZ1y/fh2nT5/G0aNHcfjwYYSEhEjBwy4ZGRkoLCyEVqvFtm3bUF5ejuXLlyMkJAQKhQKXL1/G8ePH8f777+PVV19FUlKSVDYgIAD+/v64fPkyXn/9dfj7+2PkyJHSVHcvLy9p6vTLL7+M/Px8XLhwARs3boRWq8XixYvh4+ODuro6bNu2DaWlpQCAsLAwLFu2zIrfbt96+umnERgYiEuXLiE9PR3Xrl3D3LlzoVKpcPr0aWRlZaGqqgpTpkzByZMnB7q5Bh577DGcOXMGoaGhSEtLwxNPPIG2tjYUFBRgy5Yt6OzshFwux5tvvmlUNiQkBK+//jpSU1Nx5swZjB07FsuWLcO0adPg5eWFb775BhcvXkR5eTk+/PBD1NfXQ6vVDvhmUERERPT9x6AlERERkZU4OjoiNjYWu3fvls7FxcVBqVSaLaNUKlFYWIikpCTk5+ejpqbG4gjFQYMGGZ1zcnJCcXExYmJicOzYMWg0mh4FDNevX4/nn38edXV1mD17tkHa7t27pSCnq6srioqKMHPmTJw9exZ5eXnIy8szul54eDg++uij+2onaYVCgZycHERHR6O1tRVbtmzBli1bpHR7e3v8/ve/R2Njo80FLcePH4/k5GSsWLHC5LujUCjw7rvvYvLkySbLp6SkwNnZGSkpKfj666+RmZmJzMxMk3kVCoXBkgJEREREfYXTw4mIiIisSK1WG/zb3NRwfa6ursjLy8Px48exZMkSjBw5Eq6urpDL5Rg6dCgmTZqElStXoqCgwOyaiu7u7igrK0N+fj5iY2Ph7+8PpVIJlUqF4OBgzJs3D7m5uSY3BFqxYgXy8vIwY8YMeHp6Qi43/3ft4cOHo6amBtu2bUNERASGDRsGBwcHeHl5ITo6Gu+99x6OHTt23+warm/q1KnQaDRISEiAr68vHBwc4OPjIwWDV61aNdBNNGvJkiU4fvw44uLi4OvrC4VCAT8/PyQmJqKqqgrz58+3WH7p0qW4cOECXnnlFYSHh8Pd3R1yuRzOzs4YMWIEYmJi8NZbb+E///kPHnnkkX66KyIiInqQyURvVnwnIiIiIiIiIiIi6iMcaUlEREREREREREQ2hUFLIiIiIiIiIiIisikMWhIREREREREREZFNYdCSiIiIiIiIiIiIbAqDlkRERERERERERGRTGLQkIiIiIiIiIiIim8KgJREREREREREREdkUBi2JiIiIiIiIiIjIpjBoSURERERERERERDaFQUsiIiIiIiIiIiKyKQxaEhERERERERERkU1h0JKIiIiIiIiIiIhsCoOWREREREREREREZFMYtCQiIiIiIiIiIiKb8j8NXk5rHU1PtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt',\n", + "2000, True, patience)\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "ACzX5dNuOfDV" + }, + "outputs": [], + "source": [ + "mse_stop_ae2 = 0.0121" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5TrqXtwE79SS", + "outputId": "bd2d4e6e-5d1e-43d4-f33d-3f2709558ff2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.47)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "IREth2" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "LgfmjxdIQ_L2", + "outputId": "375f4526-1ead-4f8f-ad9d-a52b367e3bf9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m222/222\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAe3JJREFUeJzt3Xl4lOW9//HPM5ksskyIkAQSQlAIKChqbGvBUlRARQWXqkj9FVSwWLXFVqh1BUTF9ZzacrSIovaIYK1i1aO1gGuLC4oaRAUREgKBJIRsbJNlnt8fk2cyeybrTJL367pykUyeeeaeJaOf+d739zZM0zQFAAAAAACizhbtAQAAAAAAADdCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAIKoMw9CCBQuiPYxu55lnnpFhGMrPz2/2dd99910ZhqF33323zcfV1Q0ePFhXXXVVtIfhY8GCBTIMQ/v27Yv2UFokFh9TAGgNQjoAtNBjjz0mwzB02mmntfpcb7zxBkG1A1VUVCgpKUmGYeibb74JesxVV10lwzCCfiUlJfkce++992rKlClKT09v9YcOZ5xxRsjb9f7i9dJ669ev14IFC1RRUdHqc33//feaPXu2jj32WCUlJcnhcOj000/Xo48+qsOHD7d+sACAbsMe7QEAQGe1YsUKDR48WJ988om2bdumoUOHtvhcb7zxhv7nf/6H4NVBXnzxRRmGof79+2vFihW65557gh6XmJioJ598MuDyuLg4n5/vuOMO9e/fX6eccoreeuutVo3t9ttv16xZszw/b9iwQX/6059022236fjjj/dcPmrUqFbdzi9+8QtdccUVSkxMbPZ1f/rTn+rw4cNKSEho1Riibf369Vq4cKGuuuoq9enTp8Xn+b//+z9ddtllSkxM1PTp03XCCSeopqZG//73vzVv3jxt3rxZTzzxRNsNHADQpRHSAaAFduzYofXr1+vll1/W7NmztWLFCs2fPz/aw+r2jhw5ooSEBNls4SeKPffcczrvvPOUnZ2t559/PmRIt9vt+n//7/81ebs7duzQ4MGDtW/fPqWmprZo7JaJEyf6/JyUlKQ//elPmjhxos4444yQ1zt48KB69uwZ8e3ExcUFfNgQKZvNFjCboLvasWOHrrjiCmVnZ+vtt9/WgAEDPL+74YYbtG3bNv3f//1fFEeI5oj0PQQA2hPvQADQAitWrFBKSorOP/98XXrppVqxYkXAMaHW7ebn58swDD3zzDOS3NOq/+d//keSfKYzWw4ePKibb75ZWVlZSkxM1PDhw/Xwww/LNM2A23zuued06qmn6qijjtLRRx+tK664QoWFhT7HnHHGGTrhhBP09ddf68wzz1SPHj2UmZmpBx98MOB8R44c0YIFCzRs2DAlJSVpwIABuuSSS/T99983e3xOp1O//e1vlZqaqt69e2vKlCnatWtX0Md39+7duuaaa5Senq7ExESNHDlSy5cvD/r4rlq1SnfccYcyMzPVo0cPVVVVBT2nZefOnfrggw90xRVX6IorrvB84NIagwcPbtX1m8taQ/z111/r5z//uVJSUvSTn/xEkpSXl6errrrKM+26f//+uuaaa1RWVuZzjmBr0gcPHqwLLrhA//73v/WjH/1ISUlJOvbYY/XXv/7V57rBXtvNeV0VFBRoypQp6tmzp9LS0vTb3/5Wb731VkTr3Kurq3XTTTdp8ODBSkxMVFpamiZOnKiNGzf6HPfxxx/r3HPPVXJysnr06KFx48bpP//5j89jOG/ePEnSMccc4/m7a+4a/QcffFAHDhzQU0895RPQLUOHDtWcOXNCXn///v2aO3euTjzxRPXq1UsOh0OTJk3Sl19+GXDsn//8Z40cOVI9evRQSkqKfvCDH+j5559v9mMTyr59+3T55ZfL4XCob9++mjNnjo4cOeJzTF1dnRYtWqQhQ4YoMTFRgwcP1m233San0+lzXKglGf7rx63X4X/+8x/97ne/U2pqqnr27KmLL75YpaWlPtc1TVP33HOPBg4cqB49eujMM8/U5s2bA24j0sc01HvIF198IcMw9N///d8B516/fr0Mw9DKlSubejgBoMWopANAC6xYsUKXXHKJEhISNG3aND3++OPasGGDfvjDHzb7XLNnz1ZRUZHWrFmj//3f//X5nWmamjJlit555x3NnDlTJ598st566y3NmzdPu3fv9vmfyHvvvVd33nmnLr/8cs2aNUulpaX685//rJ/+9Kf6/PPPfabzlpeX69xzz9Ull1yiyy+/XH//+991yy236MQTT9SkSZMkSfX19brgggu0bt06XXHFFZozZ46qq6u1Zs0affXVVxoyZEizxjdr1iw999xz+vnPf64xY8bo7bff1vnnnx/weBQXF+vHP/6xDMPQjTfeqNTUVL355puaOXOmqqqqdNNNN/kcv2jRIiUkJGju3LlyOp1NTsFeuXKlevbsqQsuuEBHHXWUhgwZohUrVmjMmDFBjw/WTCshIUEOhyPs7XSEyy67TDk5Obrvvvs8H4qsWbNG27dv19VXX63+/ft7plpv3rxZH330kc8HQMFs27ZNl156qWbOnKkZM2Zo+fLluuqqq3Tqqadq5MiRYa8byevq4MGDOuuss7Rnzx7NmTNH/fv31/PPP6933nknovt83XXX6e9//7tuvPFGjRgxQmVlZfr3v/+tb775Rrm5uZKkt99+W5MmTdKpp56q+fPny2az6emnn9ZZZ52lDz74QD/60Y90ySWXaOvWrVq5cqX++7//W/369ZOkZs+EeO2113TssceGfP00Zfv27XrllVd02WWX6ZhjjlFxcbGWLl2qcePG6euvv1ZGRoYkadmyZfrNb36jSy+91BOe8/Ly9PHHH+vnP/95xI9NOJdffrkGDx6sxYsX66OPPtKf/vQnlZeX+3xIM2vWLD377LO69NJLdfPNN+vjjz/W4sWL9c0332j16tUtegwk6de//rVSUlI0f/585efn649//KNuvPFGvfDCC55j7rrrLt1zzz0677zzdN5552njxo06++yzVVNT06LH1OL/HnLcccfp9NNP14oVK/Tb3/7W59gVK1aod+/euvDCC1t8XwGgSSYAoFk+/fRTU5K5Zs0a0zRN0+VymQMHDjTnzJnjc9w777xjSjLfeecdn8t37NhhSjKffvppz2U33HCDGewt+ZVXXjElmffcc4/P5ZdeeqlpGIa5bds20zRNMz8/34yLizPvvfden+M2bdpk2u12n8vHjRtnSjL/+te/ei5zOp1m//79zZ/97Geey5YvX25KMv/rv/4rYFwul6tZ4/viiy9MSeb111/vc9zPf/5zU5I5f/58z2UzZ840BwwYYO7bt8/n2CuuuMJMTk42Dx06ZJpm4+N77LHHei6LxIknnmheeeWVnp9vu+02s1+/fmZtba3PcTNmzDAlBf0655xzgp67tLQ04P601osvvhjwOpo/f74pyZw2bVrA8cEei5UrV5qSzPfff99z2dNPP21KMnfs2OG5LDs7O+C4kpISMzEx0bz55ps9lwV7bUf6unrkkUdMSeYrr7ziuezw4cPmcccdF/TvxV9ycrJ5ww03hPy9y+Uyc3JyzHPOOcfzOjVN9+NyzDHHmBMnTvRc9tBDDwU8Bs1RWVlpSjIvvPDCiK+TnZ1tzpgxw/PzkSNHzPr6ep9jduzYYSYmJpp3332357ILL7zQHDlyZNhzN/XYhGK9nqZMmeJz+fXXX29KMr/88kvTNBv/jmfNmuVz3Ny5c01J5ttvv+25LNTfgf/9t16HEyZM8Hm+fvvb35pxcXFmRUWFaZru12FCQoJ5/vnn+xx32223mZJa9JiGew9ZunSpKcn85ptvPJfV1NSY/fr187ktAGgPTHcHgGZasWKF0tPTdeaZZ0pyT+ucOnWqVq1apfr6+ja9rTfeeENxcXH6zW9+43P5zTffLNM09eabb0qSXn75ZblcLl1++eXat2+f56t///7KyckJqFL26tXLZ611QkKCfvSjH2n79u2ey1566SX169dPv/71rwPGZVVjIx3fG2+8IUkBx/lXxU3T1EsvvaTJkyfLNE2f+3LOOeeosrIyYOrujBkzdNRRRwV/AP3k5eVp06ZNmjZtmueyadOmad++fUEbviUlJWnNmjUBX/fff39Et9ferrvuuoDLvB+LI0eOaN++ffrxj38sSRFNex4xYoTGjh3r+Tk1NVXDhw/3eW2EEsnr6p///KcyMzM1ZcoUz2VJSUm69tprmzy/JPXp00cff/yxioqKgv7+iy++0Hfffaef//znKisr87x+Dh48qPHjx+v999+Xy+WK6LaaYi2t6N27d4vPkZiY6Fn/XF9fr7KyMvXq1UvDhw/3eb769OmjXbt2acOGDSHP1dRj05QbbrjB52frb9/6+7X+/d3vfudz3M033yxJrVp7/8tf/tJnlsfYsWNVX1+vgoICSdLatWtVU1OjX//61z7H+b+HSJE/ppZg7yGXX365kpKSfJYyvfXWW9q3b19EfSoAoDWY7g4AzVBfX69Vq1bpzDPP1I4dOzyXn3baaXrkkUe0bt06nX322W12ewUFBcrIyAgIAVaXb+t/YL/77juZpqmcnJyg54mPj/f5eeDAgQHTnlNSUpSXl+f5+fvvv9fw4cNlt4f+T0Wk4ysoKJDNZtOQIUN8jhs+fLjPz6WlpaqoqNATTzwRsht2SUmJz8/HHHNMyPH5e+6559SzZ08de+yx2rZtmyR3QBw8eLBWrFgRMP0+Li5OEyZMiPj8HS3Yfd+/f78WLlyoVatWBTxWlZWVTZ5z0KBBAZelpKSovLy8yetG8roqKCjQkCFDAo6LdHeEBx98UDNmzFBWVpZOPfVUnXfeeZo+fbqOPfZYSe6/BckdvEKprKxUSkpKRLcXjrXkobq6usXncLlcevTRR/XYY49px44dPh/09e3b1/P9LbfcorVr1+pHP/qRhg4dqrPPPls///nPdfrpp3uOaeqxaYr/+8eQIUNks9k86/Stv2P/56p///7q06eP5++9Jfxfd9bzY73urHP7jzE1NTXguYz0MbUE+zvq06ePJk+erOeff16LFi2S5P6ANjMzU2eddVZz7x4ANAshHQCa4e2339aePXu0atUqrVq1KuD3K1as8IT0UGt/27raLrn/p9QwDL355ptBO3b36tXL5+dQXb3NIM3oOpJV4fx//+//hQxZ/luPRVpFN01TK1eu1MGDBzVixIiA35eUlOjAgQMBj1UsC3bfL7/8cq1fv17z5s3TySefrF69esnlcuncc8+NqILcmtdGR7yuLr/8co0dO1arV6/Wv/71Lz300EN64IEH9PLLL2vSpEme+/jQQw/p5JNPDnqOtnqOHQ6HMjIy9NVXX7X4HPfdd5/uvPNOXXPNNVq0aJGOPvpo2Ww23XTTTT7P1/HHH68tW7bo9ddf1z//+U+99NJLeuyxx3TXXXdp4cKFkpp+bJor1HtYU30Nwgn1/teWr51IH1NLqPeQ6dOn68UXX9T69et14okn6tVXX9X1119P53cA7Y6QDgDNsGLFCqWlpXm6sXt7+eWXtXr1av3lL3/RUUcd5anuVFRU+BwXrNoU6n96s7OztXbtWlVXV/tUq7/99lvP7yV5mrgdc8wxGjZsWIvum78hQ4bo448/Vm1tbUAlvrnjy87Olsvl8lTnLVu2bPE5n9X5vb6+vs0r2O+995527dqlu+++22e/ccldrfvlL3+pV155pVNPZS0vL9e6deu0cOFC3XXXXZ7LrepyLMjOztbXX38t0zR9XvfWzIZIDBgwQNdff72uv/56lZSUKDc3V/fee68mTZrkma3hcDiafA21JmxaLrjgAj3xxBP68MMPNXr06GZf/+9//7vOPPNMPfXUUz6XV1RUeJrZWXr27KmpU6dq6tSpqqmp0SWXXKJ7771Xt956q2dLvHCPTVO+++47n6rytm3b5HK5PLsXWH/H3333nc/fUHFxsSoqKjx/75K7Eu7/3ldTU6M9e/ZE9Lj4s8793Xff+cwMKC0tDZjl0ZzHNJxzzz1XqampWrFihU477TQdOnRIv/jFL1o0fgBoDj4KBIAIHT58WC+//LIuuOACXXrppQFfN954o6qrq/Xqq69Kcv9PZVxcnN5//32f8zz22GMB57b2t/b/n9rzzjtP9fX1WrJkic/l//3f/y3DMDz/433JJZcoLi5OCxcuDKg8maYZsP1WJH72s59p3759AbdtnbM547P+/dOf/uRz3B//+Eefn+Pi4vSzn/1ML730UtDqpP+WTM1hTXWfN29ewHN37bXXKicnJ+hWem1p3759+vbbb3Xo0KF2Ob9VjfR/Dfg/ztF0zjnnaPfu3Z6/E8m9dn7ZsmVNXre+vj5gyn5aWpoyMjI8W4CdeuqpGjJkiB5++GEdOHAg4Bzer6FQf3eSe6s+68OmcH7/+9+rZ8+emjVrloqLiwN+//333+vRRx8Nef24uLiA5+vFF1/U7t27fS7z/xtOSEjQiBEjZJqmamtrI3psmuL/4eOf//xnSY1/v+edd56kwNfTf/3Xf0mSz3KRIUOGBLz3PfHEEy2eSTRhwgTFx8frz3/+s8/jFey1Helj2hS73a5p06bpb3/7m5555hmdeOKJATN5AKA9UEkHgAi9+uqrqq6u9ml45e3HP/6xp+oydepUJScn67LLLtOf//xnGYahIUOG6PXXXw9YJyy5g4Xkbqx2zjnnKC4uTldccYUmT56sM888U7fffrvy8/N10kkn6V//+pf+8Y9/6KabbvJUDYcMGaJ77rlHt956q/Lz83XRRRepd+/e2rFjh1avXq1f/vKXmjt3brPu7/Tp0/XXv/5Vv/vd7/TJJ59o7NixOnjwoNauXavrr79eF154YcTjO/nkkzVt2jQ99thjqqys1JgxY7Ru3bqg1dP7779f77zzjk477TRde+21GjFihPbv36+NGzdq7dq12r9/f7Puh+Teo/2ll17SxIkTPRVHf1OmTNGjjz6qkpISpaWlSXLvCf3cc88FPf7iiy/2hLz//d//VUFBgSd8v//++7rnnnskSb/4xS88VcAlS5Zo4cKFeuedd3TGGWc0+340xeFw6Kc//akefPBB1dbWKjMzU//61798+idE2+zZs7VkyRJNmzZNc+bM0YABA7RixQrP8xKuul1dXa2BAwfq0ksv1UknnaRevXpp7dq12rBhgx555BFJks1m05NPPqlJkyZp5MiRuvrqq5WZmandu3frnXfekcPh0GuvvSap8e/u9ttv1xVXXKH4+HhNnjxZPXv21PTp0/Xee+81Od16yJAhev755zV16lQdf/zxmj59uk444QTV1NRo/fr1evHFF332Bfd3wQUX6O6779bVV1+tMWPGaNOmTVqxYkXAOvKzzz5b/fv31+mnn6709HR98803WrJkic4//3z17t1bFRUVTT42TdmxY4emTJmic889Vx9++KFny8STTjpJknTSSSdpxowZeuKJJ1RRUaFx48bpk08+0bPPPquLLrrI00xTcm/Vdt111+lnP/uZJk6cqC+//FJvvfVWsyrZ3lJTUzV37lwtXrxYF1xwgc477zx9/vnnevPNNwPOGeljGonp06frT3/6k9555x098MADLRo7ADRbh/aSB4BObPLkyWZSUpJ58ODBkMdcddVVZnx8vGf7sNLSUvNnP/uZ2aNHDzMlJcWcPXu2+dVXXwVswVZXV2f++te/NlNTU03DMHy2Y6uurjZ/+9vfmhkZGWZ8fLyZk5NjPvTQQz7bEFleeukl8yc/+YnZs2dPs2fPnuZxxx1n3nDDDeaWLVs8x4wbNy7oVk4zZswws7OzfS47dOiQefvtt5vHHHOMGR8fb/bv39+89NJLze+//77Z4zt8+LD5m9/8xuzbt6/Zs2dPc/LkyWZhYWHQrZqKi4vNG264wczKyvLc7vjx480nnnjCc4y1fdKLL74Y8vnwflwkmU899VTIY959911Tkvnoo496Hg+F2IJNftt2WduPBfsKtnVaU9uMeQu3BVtpaWnA8bt27TIvvvhis0+fPmZycrJ52WWXmUVFRQGPc6gt2M4///yAc44bN84cN26c5+dQW7BF+rravn27ef7555tHHXWUmZqaat58882e5+ijjz4K+Vg4nU5z3rx55kknnWT27t3b7Nmzp3nSSSeZjz32WMCxn3/+uXnJJZeYffv2NRMTE83s7Gzz8ssvN9etW+dz3KJFi8zMzEzTZrP5PB7WcxqprVu3mtdee605ePBgMyEhwezdu7d5+umnm3/+85/NI0eOeI4LtgXbzTffbA4YMMA86qijzNNPP9388MMPAx7zpUuXmj/96U8992fIkCHmvHnzzMrKymY/Nv6s19PXX39tXnrppWbv3r3NlJQU88YbbzQPHz7sc2xtba25cOFCz3tCVlaWeeutt/rcR9M0zfr6evOWW24x+/XrZ/bo0cM855xzzG3btoXcgm3Dhg0+1w/2GquvrzcXLlzoeazOOOMM86uvvmrxYxrpe8jIkSNNm81m7tq1q8nHEgDagmGaUe4SBAAAur0//vGP+u1vf6tdu3YpMzMz2sMBPE455RQdffTRWrduXbSHAqCbYE06AADoUIcPH/b5+ciRI1q6dKlycnII6Igpn376qb744gtNnz492kMB0I2wJh0AAHSoSy65RIMGDdLJJ5+syspKPffcc/r222/bvXEfEKmvvvpKn332mR555BENGDBAU6dOjfaQAHQjhHQAANChzjnnHD355JNasWKF6uvrNWLECK1atYoghJjx97//XXfffbeGDx+ulStXhmw4CQDtgTXpAAAAAADECNakAwAAAAAQIwjpAAAAAADEiG63Jt3lcqmoqEi9e/eWYRjRHg4AAAAAoIszTVPV1dXKyMiQzRa+Vt7tQnpRUZGysrKiPQwAAAAAQDdTWFiogQMHhj2m24X03r17S5LuWvGeknr0ivJoAABdxRfVL2nMe5uV2eco7dt/WCN7n6GEjAzt6lkX0fVf75Mse59ESdKgQYPac6gAAKCDHTlwQPedfqonj4bT7UK6NcU9qUcvJfUkpAMA2saPe87Qp5Ne0KeSxq7L03bnf5RRmqHjkiZGdP36XbvkcKZrdUof7S0r0+DBg9t1vAAAoONFsuS624V0AADaS67Dvc/3B+PdQb02sUJFhWsium6ObYQSjrJrfOkWrRs2XPnKJ6gDANANEdIBAGhjuY6p+mC8+/tpG7dFdJ28srXKcGUoxzZC2rpFjtR0vdbwO8I6AADdByEdAIB2YFXVV+a+ENHxVuU9r2ytRmmCEo6ya/L2Yq1O6UNVHQCAboSQDgBAO7LCelOsyvvYdXnKq3JX1bOyJvpMf5eoqgMAYk+c6VKCyyVDZrSHEhWmDNUZhmoNm9QG23wT0gEAiAGh1rN7T3+nqg4AiDWOuhodf7hKCW0QTjsz0zRVZrPr+6N6q8YW16pzEdIBAIgh/uvZrbXqGUdlUlUHAMSUONOl4w9XKbV3b/U6+mipu+Z0U6qvrVWPsjL1OlihT3sdLbMVH1oQ0gEAiDHe69mpqgMAYlWCy6UEw1Cvo49WfFJStIcTVfFJSbLZ7TpcWKgkV70Ox7U8atvacFwAAKANuavqo7Qyd6i7qVzVWuXsl7IO2DV+6xbVlTuVn58f7WECALopzxr07lpB92PY3A9Ea9fmU0kHACCG+VfVraZybNUGAEDXRCUdAIBOwKqqO20KqKpP3l5MVR0AgC6CSjoAAJ2Ed1O5prZqiwSVdwAAYg8hHQCATiSSrdoiQeM5AEB3V7J3rx594H6tffNN7S0qUr/UNI08aZSuvfHXGnvWWfrfJ5/U6hde0KYvPteB6mp9u7dYyX36tPu4COkAAHRCwbZqG6UJSjgqsv+0jy9lPTsAoPsqzM/XlLPOlCM5WXcuvl/HnzBSdbV1emfNv3TrTXP077xNOnz4kM48+2ydefbZuu/OOzpsbIR0AAA6qVBN5SKRYxuhhKPsGvdxnmeaPEEdANBd/GHOb2QYht7893/Uo2dPz+XDR4zQtBlXSZJ++evfSJLWv/deh46NkA4AQCfnX1WPRF4ZXeIBALGlvl6Ki2v/2ynfv1/v/Otf+sPCu30CuqUjprSHQ0gHAKAL8K6qR8Jaz+49TX7y9mLWqgMAOty2rdLMy+3a+q1Nw45z6am/1WnosPa7vfzvv5dpmho6fHj73UgrENIBAOhCrLDelEi7xBPWAQDtbebldn3/nSFJ+v47QzMvt+u9L+ra7fZM02y3c7cFQjoAAN1QJF3iqaoDANpbfb209Vub18+Gtn5rtOvU92OGDpVhGNq2ZUv73EAr2Zo+BAAAdFXu9eyjtDJ3qHv6e9Va5eyXsg7YNX7rFtWVO5Wfnx/tYQIAuqi4OGnYcS7FxZkNP5sNP7ffbaYcfbTOmDhRzyz9iw4dPBjw+8qKiva78QgQ0gEA6OZyHVOV65iqlblD5bRJeVVr3VX1/dL4rVs0eXux8vPzCesAgHbx1N/qNCTHHdKH5Jh66m/tN9XdsviPj6q+vl6TfnK6Xl+9Wtu3faet336jJ/9niS4Y91NJ7n3Uv/ryS+34/ntJ0jdffaWvvvxS5fv3t+vYmO4OAAAkNXaJp6kcAKAjDR0mvfdFXYd1d5ek7GOP1b8+/EiPPnC/Ft5yi0r27lHf1FSNOuUUPfCnP0uS/rpsmR659x7PdS6e4G7o8scnlmnq9OntNjbDjPVV822sqqpKycnJum/1Z0rq2SvawwEAIOZsrHJ3iB+7Lk+JLimjV4YysiZq8+HdWjdsuOwpiZJoKgcA3V2P+lqderhKmdmDFJ+YFO3hRF2t84h2F+zUZ0c5dCgu3ud3R6qrdddJw1VZWSmHwxH2PEx3BwAAPqzp7x+MHyWnTY1N5fZLvyk8oMnbi1mrDgBAO2G6OwAACMqa/i65q+pFrqKQW7VFgso7AABNI6QDAICQItmqLRKsZwcAIDKEdAAA0CTvqvq0jdt8mspFYnypO9C/1vAzYR0AgOAI6QAAICJWVX1l7gsauy5PeVVrleHKiOi6ObYRdIkHgC7GlGF9A8nzOHgelxYipAMAgGbx36otEnlla0OuZyesA0DnVGcYMk1T9bW1ik+iu3vt4cNymaZqbK3rz05IBwAAzeY9/T0SodazU1UHgM6r1rCpzGZXj7Iy2ex2GbbWVZA7LdMd0Mv2lWqXPVH1BiEdAABEgTX9PRKh1rN7V9UJ6gDQyRiGvj+qt3odrNDhwsJojyaqXKapXfZEFST1avW5COkAAKDdhVrP7lNVL3fKnpJIWAeATqTGFqdPex2tJFe9jG66ON2UoRqbrdUVdAshHQAAdBj/9exU1QGg8zMNQ4fjiJZthUcSAAB0KO/17KGq6mzVBgDortqmHg8AANAMuY6pDWF9lJw2uavqVWuVs1/KOuDeqq2u3Kn8/PxoDxUAgA5FSAcAAFFjBfWVuUPltEl5VWtVVLhGWQfsGr91iyeoE9YBAN0FIR0AAERVsKp6UeEa5eyXxm/dQlUdANCtENIBAEBM8K6q+09/966qAwDQldE4DgAAxIxItmqjqRwAoCujkg4AAGIOTeUAAN1VVEP6ggULZBiGz9dxxx0X9jovvviijjvuOCUlJenEE0/UG2+80UGjBQAAHamppnKTtxfTVA4A0OVEvZI+cuRI7dmzx/P173//O+Sx69ev17Rp0zRz5kx9/vnnuuiii3TRRRfpq6++6sARAwCAjhKsqdyn3zxLVR0A0GVFPaTb7Xb179/f89WvX7+Qxz766KM699xzNW/ePB1//PFatGiRcnNztWTJkg4cMQAA6Ghs1QYA6C6iHtK/++47ZWRk6Nhjj9WVV16pnTt3hjz2ww8/1IQJE3wuO+ecc/Thhx+GvI7T6VRVVZXPFwAA6HzYqg0A0B1ENaSfdtppeuaZZ/TPf/5Tjz/+uHbs2KGxY8equro66PF79+5Venq6z2Xp6enau3dvyNtYvHixkpOTPV9ZWVlteh8AAEDHYqs2AEBXFtUt2CZNmuT5ftSoUTrttNOUnZ2tv/3tb5o5c2ab3Matt96q3/3ud56fq6qqCOoAAHRybNUGAOiqoj7d3VufPn00bNgwbdu2Lejv+/fvr+LiYp/LiouL1b9//5DnTExMlMPh8PkCAABdA1u1AQC6mpgK6QcOHND333+vAQMGBP396NGjtW7dOp/L1qxZo9GjR3fE8AAAQAyiqRwAoCuJakifO3eu3nvvPeXn52v9+vW6+OKLFRcXp2nTpkmSpk+frltvvdVz/Jw5c/TPf/5TjzzyiL799lstWLBAn376qW688cZo3QUAABADaCoHAOgqoromfdeuXZo2bZrKysqUmpqqn/zkJ/roo4+UmpoqSdq5c6dstsbPEcaMGaPnn39ed9xxh2677Tbl5OTolVde0QknnBCtuwAAAGKIO6i7v5+2cZvyytxr1TOOytT40i1aN2y48pUvibXqAIDYZJimaUZ7EB2pqqpKycnJum/1Z0rq2SvawwEAAO1kY5W7qdzAlB6Kd/ZRP9sIfXe05EhN1+qUPrKnJBLUAQAd4kh1te46abgqKyub7JMW1Uo6AABAewlWVR+lCUo4yh5QVY8EgR4A0BEI6QAAoMuKZKu2SKxO6aN85RPUAQDtjpAOAAC6PKuqPnZdnnurNq+qeiRYzw4A6CiEdAAA0C14T3/3rqpHwrvyTlUdANCeCOkAAKDbsKa/e1fVIxFqPTtBHQDQ1gjpAACg2/Guqkci1Hr21xp+T1gHALQVQjoAAOiWrKp6JEKtZ5+8vZjp7wCANkVIBwAAaEKo9ezpthEaf3QxVXUAQJuxRXsAAAAAnUGuY2pDWB8lp03uqnrVWuXsl7IOuKvqdeVO5efnR3uoAIBOjJAOAADQDFZQX5k7VE6blFe1VkWFa5R1wK7xW7d4gjphHQDQEoR0AACAZgpWVS8qXKOc/dL4rVuoqgMAWoyQDgAA0ELeVXX/6e/eVXUAACJF4zgAAIBWsLrEr8x9ga3aAACtRiUdAACgDdBUDgDQFgjpAAAAbYSmcgCA1iKkAwAAtKFwTeV+U3iAqjoAICxCOgAAQDsI1lSOqjoAoCmEdAAAgHZiVdWt6e9s1QYAaAohHQAAoJ2xVRsAIFJswQYAANAB2KoNABAJKukAAAAdiK3aAADhENIBAAA6GFu1AQBCIaQDAABEQbit2mgqBwDdFyEdAAAgiiJtKkdYB4DugZAOAAAQZf5btVnT36mqA0D3Q0gHAACIEVZVfe3EUWzVBgDdFFuwAQAAxBC2agOA7o1KOgAAQAxiqzYA6J4I6QAAADGKrdoAoPshpAMAAMQwtmoDgO6FkA4AANAJRLpVGwCgc6NxHAAAQCdBUzkA6PqopAMAAHQyNJUDgK6LSjoAAEAn5A7q7u+9q+rpthEaf3QxVXUA6KSopAMAAHRSwZrKUVUHgM6NkA4AANDJsVUbAHQdhHQAAIAugK3aAKBrIKQDAAB0IWzVBgCdG43jAAAAuhi2agOAzotKOgAAQBdFUzkA6HwI6QAAAF0YTeUAoHMhpAMAAHRx4ZrK/abwAFV1AIghrEkHAADoJtxB3f392HV5KnIVKcOVoaysiRpfukXrhg1XvvIlsVYdAKKFSjoAAEA3wlZtABDbCOkAAADdEFu1AUBsYro7AABAN8VWbQAQe6ikAwAAdHNs1QYAsYOQDgAAALZqA4AYQUgHAACAJJrKAUAsIKQDAADAR6RN5QjrAND2COkAAAAIYFXVrenve+LXU1UHgA5ASAcAAEBIbNUGAB2LLdgAAAAQlvdWbdM2btM+59dS4dcamTVRjvIKqVx6TWzTBgBtgUo6AAAAmuXk7BzP96MHnRLFkQBA10NIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGsAUbAAAAIrYyd6i0cYNKDxxSv927tUtS1eFi1aX0Ub7y2YYNAFqJkA4AAICIeO+XPnZdnvKq1irDlaEc2whp6xY5UtP1WsOxhHUAaBmmuwMAAKBZch1T9cH4UXLapNrECuVVrVXOfinrgF2Ttxerrtyp/Pz8aA8TADolQjoAAACazQrqK3OHymmT8qrWqqhwjbIO2DV+6xZPUCesA0DzENIBAADQIrmOqQFV9aLCNcrZL43fuoWqOgC0ACEdAAAAreJdVfef/u5dVQcANI3GcQAAAGg1msoBQNugkg4AAIA2Q1M5AGgdKukAAABoU+6g7v7eu6qebhuh8UcXU1UHgDCopAMAAKDNBWsqR1UdAJpGSAcAAEC7Yas2AGgeQjoAAADaFVu1AUDkCOkAAADoEGzVBgBNo3EcAAAAOgxbtQFAeFTSAQAA0OFoKgcAwRHSAQAAEBU0lQOAQIR0AAAARE24pnK/KTxAVR1At8OadAAAAESdO6i7vx+7Lk9FriJluDKUlTVR40u3aN2w4cpXviTWqgPo2qikAwAAICawVRsAENIBAAAQY/y3atvn+trTVO7i8gqCOoAuLWZC+v333y/DMHTTTTeFPOaZZ56RYRg+X0lJSR03SAAAAHQIa6s2STo5O0f7XF9LkkYPOkUXl1dEaVQA0P5iYk36hg0btHTpUo0aNarJYx0Oh7Zs2eL52TCM9hwaAAAAAAAdJuqV9AMHDujKK6/UsmXLlJKS0uTxhmGof//+nq/09PQOGCUAAAAAAO0v6iH9hhtu0Pnnn68JEyZEdPyBAweUnZ2trKwsXXjhhdq8eXPY451Op6qqqny+AAAAAACIRVEN6atWrdLGjRu1ePHiiI4fPny4li9frn/84x967rnn5HK5NGbMGO3atSvkdRYvXqzk5GTPV1ZWVlsNHwAAAACANhW1kF5YWKg5c+ZoxYoVETd/Gz16tKZPn66TTz5Z48aN08svv6zU1FQtXbo05HVuvfVWVVZWer4KCwvb6i4AAAAAANCmotY47rPPPlNJSYlyc3M9l9XX1+v999/XkiVL5HQ6FRcXF/Yc8fHxOuWUU7Rt27aQxyQmJioxMbHNxg0AAICOs6v8kKQNilcf1ezerV2S1EvubdiUr8GDB0d3gADQxqJWSR8/frw2bdqkL774wvP1gx/8QFdeeaW++OKLJgO65A71mzZt0oABAzpgxAAAAOhI/vul51WtVc3u3co6YNf4rVvYLx1AlxS1Snrv3r11wgkn+FzWs2dP9e3b13P59OnTlZmZ6Vmzfvfdd+vHP/6xhg4dqoqKCj300EMqKCjQrFmzOnz8AAAAaH/Wfukrc1/Q2HV5yqtaqwxXhnJsI6StW+RITddrDcdSVQfQFUS9u3s4O3fu1J49ezw/l5eX69prr9Xxxx+v8847T1VVVVq/fr1GjBgRxVECAACgvVlVdadNnqp6zn4p64Bdk7cXU1UH0GUYpmma0R5ER6qqqlJycrLuW/2Zknr2ivZwAAAA0Awbq16QJI1dl6dEl5TRK0MZWRO1+fBurRs2XPYUdy8iquoAYsmR6mrdddJwVVZWyuFwhD02pivpAAAAgLdcx9SAqnpR4Rrl7JfGb91CVR1Ap0dIBwAAQKcTrKmcNf3du6kcYR1AZ0NIBwAAQKdkVdVX5g6V0yblVa2lqg6g0yOkAwAAoFOzquprJ44KW1UHgM4galuwAQAAAG2FrdoAdBVU0gEAANBlsFUbgM6OkA4AAIAuxbupnPdadZrKAegMCOkAAADoctiqDUBnRUgHAABAlxXpVm0AECtoHAcAAIAujaZyADoTKukAAADoFmgqB6AzoJIOAACAbsMd1N3fe1fV020jNP7oYqrqAKKOSjoAAAC6lWBN5aiqA4gVhHQAAAB0S2zVBiAWEdIBAADQbbFVG4BYQ0gHAABAt2cF9fzLTlNtYoX2ub7WyKMyNXrQKbq4vCLawwPQjRDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAACgwYffl/n8vOvrTZ7v2YYNQEcgpAMAAAByb8MmSbvKD3n2S6/ZvVtVpcXslw6gwxDSAQAAgAbWfukrc4eqNrFCeVVrlbNfyjpg1/itWwjqANqdPdoDAAAAAGKJVVFfmfuCxq7LU17VWmW4MpRjGyFt3SJHarpeazh28ODBURsngK6JSjoAAAAQhFVVd9oUUFVn+juA9kJIBwAAAELwnv7utEl5VWtVVLgmYPo7YR1AWyGkAwAAAGHkOqYGVNWLCtcoZ7/0m8IDVNUBtClCOgAAADoNV330btu/qdw+19eqzKhU1gG7Li6vkMQ2bQBaj5AOAACAmFdSGK8HZmVr7qRhemBWtkoK46MyDqupXDCX6kgHjgRAV0VIBwAAQNREWhl/emGGSnclSJJKdyXo6YUZ7TgqAIgetmADAABAm3HVS7a4po8rKYzX0wszVLwzUemDnLp6fpHSsmpDnrN4Z2Ljzy5DxTsTI74tAOhMqKQDAACg1Zo7Hb05lXFbnJQ+yCmbzXT/bDPdPxPQAXRBhHQAAAC0WnNCt1UZd7kM989elfFQrp5fpNSBNZKk1IE1unp+UdsNHgBiCNPdAQAAuqiOmg7e3OnoVmW8dFeCXC5DNpup1IE1YceallWrW54saPP7xJR5ALGGSjoAAEAX05pO6C3Z4qwl09FbWhlvq0Dd2m7xu8oPqTaxQgc//kQ1u3erqrRYzu2V7JcOoNUM0zTNaA+iI1VVVSk5OVn3rf5MST17RXs4AAAAbe6BWdkBVepbniwIe53mNHKL9Pr9MmqbDNXRqmS35DHytrHqBUnStI3bVFp2SBm9MpSRNVGbD+/WumHDZU9xzywYPHhwewwfQCdzpLpad500XJWVlXI4HGGPZbo7AABAF9LSTujB1pQ3J7R6T0ffVxR54I9GQG+LbvHWfukrc1/Q2HV5qk2sUFHhGuXYRkhbt8iRmq7VKX2Ur3yCOoBmYbo7AABAFxLp1HPvae0taeQW7vZbsqd5S26rpdqyW3yuY6o+GD9KK3OHqjaxQnlVa5WzX8o6YNf4rVuY/g6g2QjpAAAAnUgkYTbceu9ga7Gt0GoYjasg4+wu7Stq3jpta3zNCfzNXRveVmG+LbvF5zqmKtcxVStzh8ppk/Kq1rqr6vul8Vu3aPL2YuXn5xPWAUSENekAAACdQEvWjAebvh1qLXZJYbwemp2t+jp3DcewmUpr5jrtpm4j2Pgemh3Zsa1dMx9KW6+J31jlnv4+MKWHSssOaZRjghIyM1XYq04vOfoooV8i09+Bbqg5a9KppAMAAPhpr6nXrTlvS6aQ2+Iin9beL6PWE9AlyWzFlPemqtTe1fNIq+4tuf+WcPch0oAe6ePgPf3dqqp//OWXuvH28Xry8jP0/PRR+vz9vVTVAYRE4zgAAIAG7VWtbe15W9LoLNRthtufPNjvQo3Huk6wMTS1p7l34JZMSe6Qbhim0rIC90tvaaO3tng+W3IOq6ncB+OlsevydM9rV2l3WQ9JUtXuo/SfW4fo3CUbaSoHICgq6QAAAA1aU61tr/NaQbS5jc5C3aZ3lduwmSremehZC+79u5T0WtXVGj5rxb0r4PfOGKx7ZwwOu5Y82Pj8q/lWQLfG4111d9W3/P6HewyaozXnyHVM1XtnnKTCfZlyme7Bukybdu5x6Mxvt9JUDkBQVNIBAADUNttyteV5/Su4U2aX6tWlqSremdhko7Nwt2lVue+fma19uwO3XLMq4NZace/fW99LUtmexlDe3C3b0gc5VVKYINM0fC531dvUL6NWJYXxWnZHpsr2uG+r74AaXXJjScT3v6nHwPtxD/c8tMVr4gcpl2vdIKdKdsXLdNlkM+o18OgSDa8wZbO2ait3yp7CWnUAboR0AAAANVZrQ00F7+jz+ldwX12aGnYKebjbtKaUPzQ7W1fPL2oIwuHDZ7Bw6ssIe31/3h869B1Qo5T0Wu3fmxD02KcXZvh8CFC2J75Z9z/YY+D/uEcyjb2tXhNXzy9qvK0+Rbr90iXKq9quUZqghKPsGl+6ReuGDWf6OwBJTHcHAADwaMttuVpz3nAN3iINiN63abEq3k1NH7fFuavX7nAvSab6DqjxuY77dy2bfr9/b7ziE8ygtyFZHxB4V9kju//+zd1m3Bn6cY90GntbvCas2QsPv7lV8144rA8m9mKrNgAhUUkHAABo0FTDs/Y4b7DL2qKCm5ZVq3lLCzR30jBZgdc77HtXdyMNn97XscWZctW76z0p6bUB1/e+X3U1vpV503SPY+aiXXp9WWpDNbtGM+4s8tz34p0JagzqptIH1YScph5uaUD6IKd+v2yH+mfX+lw30mnsbfmasK7v7gDvbipXm1ihvLK1nqr65O3FWp3Sh6o60I0R0gEAAPy0ZUAPdd6mplu3JERbrEAZLuw39cGBtR7czVDZngT1ywhcz24Ypuzxpmfs/tPaJfe5bHEuueoNeQfv15e5p7DvLYjXs4sy9OC1x3hC9stL0rzWpDd+CBDscfOvii+fnyGzYRZC6a4EPbvId718Sz4EaevXhBXURw/pq8Evfqx9zq/VM6OXsoqSdbEq9FpKetveIIBOg5AOAAAQBcGmW3sHyZZUcEMF5Di7S3IZQcN+sHOHC7GuevmsZ7eq4vfPzNY1C3wDs/e6cqvq3qixev3sIt/H4uUlabLHu6fB+3+AEexx86+Ky9X0evnWfAgCAO2JNekAAAAdLNyac3/NqeD6B2QrJJsuQ2lZTt3yZEHYPb69bz/UWux9RfHu0O/hDtP7dido+YKMINur+XZw91/HLgU+FmV7ElRS6FUZX5DhGV+wxy0ty3d9fZzd5bd23t2t3nubOO914k09LgDQkQjpAAAAHSySfb+DBfZwrHXfwQKyy2WopDD4hwCSfPY/t/Y8DxZiSwrj9dDsbNXXef8vpO9tBDaX8+c+3rCZmjK7NOhjIcmzPZt13gdmZWtfUXzQx+2aBb4fKFyzMHTTPH/ttbQBAFqKkA4AABAFoSrVwQJzONbxv79gmOLsLhlG87uvR9rpfPmCDL+A7s19W87DhgybGXC5//cul6FXl6ZKkqbMLvVcx7CZ6p3i2/Xde1zBHjf/DxSO/+EhzVtqLR1oerYCAMQS1qQDAABEQag1502tVffnfbzLZcgWZ6q+zlDfAe7p22V7EkKuuXbVh+50bjVzsxq0zbizyGcteiP3HuyWitIENQZs/6nujT+bXqH51aWpnkZvpsvQoWp7wHWscVnN60J1xff+vi33vW/rjv8AEAohHQAAIIr8p7hHsjWY9bP/8abLUL3L0IOvb5U9wV1lt9aJW1Voa9r6sjsyvTq4e4dqU3F2M6CZ27OLMhRnd6m+Ltg6c8l/X/NIeK9J977P3o3fLFbI9vwcQWBui+ZwTXXhb60Pvy/T4IbvD378iZKzJnp+l5/PNmxAd8R0dwAAgBjR1Fp1/6nwodZoWwHd3SzNHYBLvKaxuwO69zR67+BtqL7OFrRBm3uqe+jquD+joYmb+7655D3d3Rbn0tXz3fui90n1nd5u2AIbv6Wk16qu1vBZBuA/dd3/53DN4SKd9h7pUoCWyHVMlSTtKj+k2sQKFR0oUs3u3co64N4vva7cqfz8/Da7PQCdAyEdAAAghoRaqy4FD4yhjvdfP25NL6+rsfZADx6uraDvDte+QTlwzbv7eGu7N3+pmTW6+fECzV26Q4Yhee+RnpJW5wnN1eW+kzsNw/Dcp/RBNfr9sh2yx5sqL3Z/sFCyK0EPzW78sOKbDT3CruP3358+0jX/zenC31Lu/dJHaWXuUDltUl7VWhUVrlHWAbvGb93iCeqEdaD7YLo7AABADLGqv3U1kj2h8fJQU+GDrdH238vcEq55nCV1YI1m3FmkB689xutSd0h1T3X35XIZMk13NbyiNF7WlHnJ3ZXd9zyN5yvbk+BZE+/fLd5VL938WIFsce4t35YvyPDdm71hWr/UsEXb/AzPmvam1vE3Z81/W69rD8WqqH8wXhq7Ls9dVS9coxzbCGnrFjlS07U6pY/yxfR3oDugkg4AABBDvLu1e1d6m5oK7980LS3L6VX1dlfBrenl7sp3sK7rpn56Sbn6Z9cGOUbynxZv/X7/3gSvgB4Zaxr8/uL4gLHE2V2yJ7jvh3eoDsblck/Pj6Ta3VRlPNj0+XAzG9qad1W9NrFCeVVrlbNfAVV1AF0blXQAAIAYEq7SO+POIk/HdSsw+jeVsxqdlRQmyhbnkllvKC3LvZd4v4xaueqla+/Z7dc4rtGLf0zX6POq/C717eDeKFSzuKbDen2dTXMnDQtybkMul6mSwnj1y6j1mT0QjM1myrCZMl1GQ/h2n++h2dkBTd5CVcb3Ffk2h5syu1SvLk31aRbXL6PW06yvPVlV9ZW5L2jsujzlVa1VhivDp6r+WsOxVNWBrolKOgAAQIwIVendW+CurltTx+f+ZYenc7n/2mp3QG/Ykq3epji7SxdeV6pld2Rq7qRhmjtpmJbdkalr79mt+17e2nDL3tVxQ4cq/detR14hj0zjHu7Bzm26bFq+wN2gLS3LGfQMViU+dWCNrllY5NP5XXI/ju7GeY1rzkNVxv0/GFk+P/CDkn1Fzdu/vrWsqrrTpoCqOk3lgK7NME3Tfx5Tl1ZVVaXk5GTdt/ozJfXsFe3hAACAbiSSvbYfmJUdUOmV5LnMqhTH2V3u9eBex81bWtBQnfYVuHWaqT6pdbrjrzs0d1JOw2WN09e9j4s8oLuPNQxT7v+7bJtg33dAjcpL7HLV+9aWbHEuXb2gSCNPO+TZai7YOnxrFoH/NmpWZbzmsPSHCwMfM3/BKvDh9q9vKxurXpAkTdu4TfHOPpKkjKyJKuxVp8Rjk/V3JVFRBzqBI9XVuuuk4aqsrJTD4Qh7LJV0AACAdhaqo3iwqdP+ld4Zdxb5VNcbm7jZPM3SrIq7FLzyHLh1mqGK0njNnTRMPR1ttee3+/x90mrVdECPpEbkPqZsT7xnRoD35a56Q880bIf29MIM7dsdfN16SWFi0CUEWzb20LzzhjYEdNOzft/WsG2ctfbfMEylZTnbvct7KNb0d0k6OTsnzJEAugrWpAMAALQz/5C47I5M2eNNn8qutXba6u7uXXX3ruIG17gO+8LrSrV8vvf2a+Gr4Qer/PdLV8DPfQfUNOyrHj58x9ldqtwXyf9eBp7HFufyq5YHfijhf3l9naGawwq5bt0w3BXvYF3xn7orQ676xnFYc0tTB9ZoyuxSvbwkTWV7EmSa7tvpO6BG5cXx7drlHQAkKukAAADtKtg687I9CZ5141Zl1/t4/2nx3tV1q5JsGKZXddmtZFeCXl2aqnlLC5Q+yL+iHqp67T0N3p+7g/y19+yWLa7p6nd9nREwLT1SrnqbX0f6ULfX+HurC7x313vDZsoW535c0rJqdM2CIp/fN1bivWcXuB+D+/+xVbc8WaDjf3hI9njTcx1rf/aO6vIOoHujkg4AANCG/AP2vqL4hjXh7vBqdSI3zcDmcE/d1dhxve+AGl17z26lZdV6qut7C+I93d3Tsrz3M3efy2w4V/Gu+IDftWSN+NH9az3rtyML3829DXeV36pMW03cincmKs5uBt2X3XMbhqlefeo1d9Iw9R1Qo5T0WpXtSVBaw3msNeeSfM7re9vW+UzF2U0lHOW+JNie9GV7EvTwm+5Ge1TQAbQnQjoAAOh2Imng1lzW1mf+U9ifXug7rdpmM9UnvTZg6vSzizIappS7le2J99l+zX3dxmnZ1s/pg5wq3undid3U0/MHNlTZTZ/LvQOpbyO54PbvdVf53fur+09H99Z4brdIw7r7OMNmasrsUvXL8J3q/9WHPbR8fmaQ85mSaahyX3zDOOOVllWjh9/cGvR5Tcuq9WqqF/ihhS3O1DULi7x+Dt4ojnAOoCMw3R0AAHQboRq4tYVgzcmsiqxVNZfca6tn3r07aHM4/+ZuxTsTdf9M9zhLCuMbthRLbLgv7tv4xW1FAdezbifY5emDajT9Tv/r+GvcIq1kV4Ie/GV2E5V097ni7JE3hPO+DZfL0FN3NW4nt2VjD907Y7CWzx8YYpy+HzCYptH0fupxCjrt3bCZSs2s1fE/PORz/NXzi5SSXusZX/HORN07Y3C7b70GAIR0AADQbQQL0m0h1P7mkm8wtNnca7z7Z7srxg+/6V4D3T+7tmENuXfIdX+/b7d7nE8v9G4G1xhM+2fXelXNIxirS55Ku+G1jttXYwg2XU2tM2+8buAHA+EEv42SQvc+5d6zCiKRluX0VLqtruv+/06ZXSoZvtV+M0indle9u/puj/fez71xdkMo7dntfVf5IW3Yu0FFB4pUs3u3sg7Y5dxeyX7pQBfEdHcAANAtBFtnbIWz1k5jDjc92ns9tH/DMf/mcMvuaFyTboVI78DvzwqmV80v0lN3DmxilO4p6daHFN7T3VPSarV/b/AtzJo6X+BlCnK5N+/fBZ7D6qYeTpzdJVd947r+OLtL1ywo8llyYPUBsP5NH+SU87DhtfSgcYp+3wHu9eve10/LcgbZd939XNTVSHavh8u7V4B/t/62kOuYqg/Gu78fuy5PeVVrleHKUFbWRI0v3SJHarpeaziWPdOBzs8wTTOyj127iKqqKiUnJ+u+1Z8pqWevaA8HAAB0oAdmZQcEae81383hH+5DrUkPdXy48z74y2zt2+07TtOUSncnePZGj7O7NG9pgec2HpiV7bc2PVLht2hr++u19NyNl9niXEpJq3M3isty6poF7sfa+/n1XSdvhDin+7x9B9Tq9mfzA14fhs1/7b61nt8d+qfMLtWrS1MbPkTxbYLX0tdVUzZWvaCx6/I0MKWHSssOaZRjghIyM1XYq06rU/rInpJIUAdi0JHqat110nBVVlbK4XCEPZaQDgAAuo2mgnRzz+EdEC3NrcwHO977NvoOcK9dL9uT4FMV9u9g/s2GHnryzgyZrrZezdieYbzlDJtLhuHeSi3O7opwNkFoD76+Vb+/YFjA5d6d+W1xLk9nfivEmy4j6P71oZrYtYWNVS9IclfVE11SRq8MZWRN1ObDu7Vu2HDZU9wzAAjrQOwgpIdBSAcAAK2Z4u5uOJfgM9Xau6IdKf8PDGbcWaT+2b7ncNVLD80OrP57T6FPH+TUBdeW6ukFGV5rxzsqWDf3dtr6eN+O9f0yasNU0oNf17vyHawSb7OZ6pdZo7mPFwQN8cHOa1Xm25t3VT3e2Uf9bCP03dGSIzWdqjoQY5oT0mkcBwAAup2WBvRQ3dqb24DO6tRurTUv3pmgB689JqDjfKiGdMsXNDbAK96ZoKfuHOjX3C1UKA3Hu0lapDWc5t5OJAHdexxNHd+4nVp9nU2/uL3I0zXfFuc+R+iO8+7revcJuHp+kfpl1vj83uUyVFKYGNAd3mYzFWd3BXSL70juteqjtDJ3qGoTK5RXtVY5+6WsA3aN37qFpnJAJ0VIBwAAiJAtzt2szZ9/d/BwSgrj9eAvs306tVuB0NpWraQwXvfPzG6o3PqG5zi7SyWFiV5TrJu3J3n43zf3nN7cY0wfVKOZi3Y1dJxvqZbNAnh6QaZ+ekl5Q2M59zT4axYW6ffLdviMx2josm9117dmQaRl1eqaBUVBj7WaAHpvnXfNwsBQLxkq25MQ8vXQ1h3gcx1TleuYqpW5Q5Xat4fyqtaqqHCNRh6VqYvLKzR5ezFBHehkCOkAAADNEC7ERWK5z7R0X9a2at77ofuHZ6tjefjKrRnk94Hbu7WHkl3xstmkS24sCTOGwNtP7lejlPQa2WzexzZvzGV74vXiH9M93eHr62xadnumbDZp3tKChm3upLSG6nmw58y91Z3XHuyuhq3b5A7x3lvnHf/DQ/rDUwVBt9kL1mfggVnZnr3g22O/9fzLTlNq3x6en0cPOqXNbwNA+yOkAwAANENaVm3QwBcJV72CbOvlzR30fKvsjQzDVFqWM4L9yIP9zmji961l7TvuDsYv/jEtyO2ErtRX7otXeXGC3wyBUGMON4U98HrLF2TIFaaw772funsJgu/1X12a6nO8fwD3r7AHez08vbBxiULproRmL5EA0H2wTzoAAEAzWRXV5jags9Y1ezeei6SZmmFzyXTZZJqGyvbEq3dKrarLQ1VirfNF0nCtub+LVKjbD3fu5uy53rz7VlKYqAevPcZzTisk+zfgc3f7D9wf3VrO4P1ce//c1OuhMfw3/NzQW6A1DQwBdF1U0gEAAFqoJQHLHQRrvC4JX+F2NyeTGqvshqrL7fKfCt44BT+SgN3cKry/lk6Xb274D318v0xniHEEC/u+gd8KyU/cntmwt7y7Ad+yOzKbXM4Qbtp6qNdDsKZzzVkiAaB7IaQDAAB0IGu6/MNvbvUJbsG6q6cPcuq3/1PgN709+JTumx8vkC2uqbXqbaWpsB1sTXxb3oapfbv9p6U3XMtmqk9qjd+HFoHBPX2QU/v3Jsj7cS3bk6B+GYHLGWbc2Th9vaXT1iOZEg8AUgyF9Pvvv1+GYeimm24Ke9yLL76o4447TklJSTrxxBP1xhtvdMwAAQAAWsm7CvvQ7GxNmV3qCW59B9Sq7wB3l3HvbcNsNvk1inMHYCvcG4Y7cKYNrG1oSNeelfBINTXdviWaapTX8J3LPdOgcW17sK3lDNXVhh6fNX3998t2SJJne7y9BfFBt8SLpGO7f9M5q6O8pa27vgPovGIipG/YsEFLly7VqFGjwh63fv16TZs2TTNnztTnn3+uiy66SBdddJG++uqrDhopAABAy/lXYV9dmuoJbrc/m6/bn81XWpZTZkMItPZP751S77Pv92U3FXvCfVpWS6qyTa3pDvdzNPivMw/VkM6tvs7meQy9PzCIs5syGj7cKC+OD/jwo++AGp8p6M8u8n2+nl2U0eS09abCdlNd3/cWtLzr+4ffl0mSig4UqWb3bu36epOqSovZLx3oZKLeOO7AgQO68sortWzZMt1zzz1hj3300Ud17rnnat68eZKkRYsWac2aNVqyZIn+8pe/BL2O0+mU09m4n2lVVVXbDR4AACBC4ZqHeR/j27TMHS4rSu3qO6BWtyzLly3OHfRGn1fl03is7Sqx4QOwW0uay7WmIV3D9QxTMpt3DpvNVOrAGt38WEHDvvNuLpchuQxPo7j0Qb4fdoR6vmYu2qVnFmZILkOGzfRsz1ZSGB+kCZ1vtTwY7w9urA9lmnN9S65jqiRpZe4LGrsuT3lVa5XhylCObYS0dYscqel6reHYwYMHR3xeAB0v6pX0G264Qeeff74mTJjQ5LEffvhhwHHnnHOOPvzww5DXWbx4sZKTkz1fWVlZrR4zAABAcwVrHtZ3QI0emt1YRd1XFK/0QU4Zhn/12r1e+uFf+TYs867K2uKkvgNq1PaV70ias0WitdPfzRbdNWv9tz0hePO2PzwVfAp6qGZvry9L9VTpTVfj9mwtWatufRDgu+1c67Zoy3VM1QfjR8lpk2oTK5RXtVY5+6WsA3ZN3k5VHegMIg7pRUVt39xi1apV2rhxoxYvXhzR8Xv37lV6errPZenp6dq7d2/I69x6662qrKz0fBUWFrZqzAAAAMGEq2TXNTRz928eJskn2C1fkOFzjL/S3aFDYGOX8VBbmbVUc8J1e06Nb+46d1O/X7bDJ3x7P7aGzVTxzkTPhyPB+D9fM+4sCromva5GLVqrbn0Q4P+hTHPWugdjBfWVuUPltEl5VWtVVLhGWQfsGr91iyeoE9aB2BRxSB85cqSef/75NrvhwsJCzZkzRytWrFBSUlKbnddfYmKiHA6HzxcAAEBbCbYllxWuvtnQQ/POG6rfXzBM884bqrK98Z416POWFqhsT4JPsCspTNTTCzN0zYIiHd3fuyru/tcMEQJd9e5K7v7iYGGzrRu4hRMrgV6SDD3yK98t0tKyanXzYwU+6/6tD0ekwA9a/Ju99c+uDVpdD1Wlj2SLNd8t+dpui7Zcx9SAqnpR4Rrl7JfGb91CVR2IYYZpmhG9Qz722GO65ZZbdO6552rp0qU6+uijW3XDr7zyii6++GLFxTW++9TX18swDNlsNjmdTp/fSdKgQYP0u9/9zqcD/Pz58/XKK6/oyy+/jOh2q6qqlJycrPtWf6aknr1adR8AAAAemJWt0l3usG0YpmxxpurrbEof5NS+onjV11kVYFNxdlMPvbEt6HWtNduGzd25vb7Opji7y+tf70qyqfRB7srus4syfNZOd33W2vZI17ibuvbe3ZKk5fMzGrazC2Q91k2tBw+19ryla9ItewviPc9lS64fzsaqFyRJ0zZuU2nZIY1yTFBCZqY2H96tdcOGy57ifv2wVh1oP0eqq3XXScNVWVnZZOE44pAuSTt27NDMmTP19ddfa9myZZo8eXKLB1ldXa2CggKfy66++modd9xxuuWWW3TCCScEXGfq1Kk6dOiQXnvtNc9lY8aM0ahRo0I2jvNHSAcAAG2hpDBeyxdk+DV6a2QYpswgTc4efH2r7AmRncNmM9Uvsybo7/sOqFHZngQFD6vuy2xxroZt2YJr6vet4/5QwvfDheDHtV21P/i5rD3TvT8wcfMO+w2PWUOjuVueLAg4jzfvpn2RXB6p1l4/nI1V7qZyA1N6KN7ZRxlZE7X58G53U7lj3UtKCepA+2hOSG9Wd/djjjlGb7/9tpYsWaJLLrlExx9/vOx231Ns3LgxonP17t07IIj37NlTffv29Vw+ffp0ZWZmetasz5kzR+PGjdMjjzyi888/X6tWrdKnn36qJ554ojl3AwAAoNWeXpihfQ1rxIOFw8aA3hgC4+ymJ6BL7unUv3+iQA/NzlbJrgSvbcPcrCnw6YOcPtV6w2aqbE+oNejuy+b+ZYfs8dKDv8wOEcRN/f6JArlc0sPXhTqmNQzV10k9HbU6WJUQ9jj/cfle1vhz40wF31kF1vfuberMgPsSWD0Ptp1b4FKCcGHZu6u+fwO/1mivgC5Za9XdFXVJqsyo1MiiTBWqTpfqiP6u9luCCiByzd6CraCgQC+//LJSUlJ04YUXBoT0trRz507ZbI1vqmPGjNHzzz+vO+64Q7fddptycnL0yiuvBK26AwAAtBf/7bka9+F2yVVveAK6Lc4lw3BXcOPspq5Z2NiI13t6dN8BNe4p7i7f4GmzmUpJr5XzsOFZu27YAkNoMLY49wcJoY81VFcrPb0wsx2r6YYOVsWredXy0FvAmWb4wO2qt+n3y3bowWsHKzDE+1fPvb/3/7fpsNzS6e3tWSkH0DU0K2EvW7ZMN998syZMmKDNmzcrNTW1TQfz7rvvhv1Zki677DJddtllbXq7AAAAzWF15baq29a09GsWFOmh2dkNlV53o7fULPce3Xa/YrL3ll3798b7TY1vrOqWl9jlqvcOok2H3eR+NXp2UeP5g1WnbXGm/ve+DK+KfHtpy8Z1TZ8rbWCtLrupWC/+MV2+HeH9H9/Abe68/62rUcBz5i3Ylmvhpsi3ds06gO4j4o9Nzz33XN1yyy1asmSJXn755TYP6AAAAJ2J//Zc1ywoUr+MWp9Kr2m6p077V07998f2VN5t3t3czYZjbQo+PTt0W6E4e/D9t33HYGuYDdCR3d9bItL2Se59521x0vsvp4Q8yrB5V9G9/2187OPsrrAB3f/5i2TLtJbsow6ge4q4kl5fX6+8vDwNHDiwPccDAADQKVjbc/lPX/avsKcOrAkI6bY4q/FbvLynWhs2U3I13WjNsJkyXaFrLfv3JsiwuRrWuHtN5TbMhiwauJ47NjQG6MbGe02Nz7oPhurrDC38+WBV7guWsN3H+a/7b9QY2nun1KmkMD5kpdt/JoV17odmZwetkPsvj4h03TuA7iniSvqaNWsI6AAAAH78Q9aU2aWeaq1hMzVldmnE53LVuzuyu5l+/zYKF9D991T3/ZV/6I2lgC55T09Py6pp2Cu+6etYj3dFabwq9/lP33f/Ln1QTUOXd//HNXD2QlWZvclKt/dMCkuoCrkV6luyjzqA7qe9uoQAAAB0S68uTfUEZNNl6NWlgUsEXfVq2D7Nd8q1aRoRNHELFqzNIL8PtR67tSLevTfI8U1d11RallMPvr5V85YW6Jf37vb60MK6fuD5fD+QCN54rrHpnO9jkpZV4/Vz5NPX07JqNW+ptQa96ev5L4+4en5R4EEAoBZ0dwcAAEBwkU5rDjVd2ldLArb3efzXXkd6Xf9//bVmz/OmxuLecu73FwyTJPVJrQnSKK85MwEax1O6O0FxdvcSAGsrO1ucqZLCRKVlOVVfZ6i8OD7sMgV/wRoIhrpeqOURAOCPSjoAAEAbac605qvnF6lfpruyGmc3G/51udeNe5gyjNDTshuF6mDeVNW9qXM0T5/UWr/Kd+vOV1FqrdkPfa6j+1vT2C3BZhW4q+31dTZPNdsWZ3oav1n73bek0t3cCjkBHUBTqKQDAABEINIK6NXzizxbbYUKbdZ2XFYV1+oMv68o3mcLN8Nwh8n6OkN9B9SqtkaqKgvTdjyAf2U9dCM2m8302U6upDAx6HHhVJQ2Z2yRCB/w4+wu/fLe3ZKk5QsyGsYc+jrpg5y65ckC1dXIU62X3DMeyvYk6OE3t0pqXpCmQg6grVFJBwAACKOkMF4PzMrW3EnD9MCsbJUUht9X3AptD7+5Vbc8WRC0Q7g7oCc0nD9RD83O1r6i+KBbuNXX2fTg61tljzdVVdbcPc0jnxqeku4ep8vl7pLeO6VWwavuoSrx4dabN3cde2TXq6+zeRq1/eGpgoZGc8FnHMTZXZ4PTOwJbd/IjYAOoK0Q0gEAAMJo6f7WoUKbtW7d2htdagyb4abLh97TPFgXePee4d7nCj9W93Rxa2p9eXG8qstDTbhsaguzYGOLhOk3bT3cbTWe2/s5MfwOt5YRpGU5NW9p4wcmrvrAaepTZpc268MYAGgvTHcHAAAIoT32t7bFuUOj/3Ry67zBpstb4b14p3dHeEvgWvK+A2p17T3uaeDWucI1dTNNo6HbfOP9jFy4ZnHNWeduaMYdu/X6U6kqKUxU+iCn9hXFN0z9D93AznpO6mrkcx+sfdMffH2r7A0XW8sMine6z3/1fPcyA1uc9MCs7IAPY255skAA0NGopAMAAITQXvtbX7OgyKdqbHidt19G8OnyV88vUt8B3lPnfSvoNpt7+7KH39yq25/NV1pWrWebsLQsZ9jxWFuYWZV09/0Nvt1Z6KZ1AWcN8X2wY9xV9OULBnotA0jw2zLN/3q+43nk+mz1HVAT8FzZvXJ7sFkRtrjGD2OsDyci2YIt3O9i3a7yQ6pNrNDBjz9Rze7dqiotlnN7perKncrPz4/28IBuj5AOAAAQRlvvb+2qb9xjO32QOzynBZluva/Id7p1Wpa7Om5dp7EjvPtfw2Z61reXFMb7rKUP3lCtMejabO7p8dae4f0ya3TOL/Yp+Jr2SEK5/3GBt22Lc3nGLsnTLM97z3hrbIECq+tW+A71XIUL4s35MKa5PQpiTa5jqj4YP0orc4eqNrFCeVVrlbNfyjpg1/itWzxBnbAORI9hmmZLO3l0SlVVVUpOTtZ9qz9TUs9e0R4OAADoJFrbvTvYVOu0rFrPea3p1t77bftPt3aHwgSZZmMX9j88VRBw3X6ZNTIMqWRXgqdKHsAwFRdnqr7O5hmPyyU9c7e7S3qc3eU31TzUtPam9lUPpunr2GymUtJrZY83vabry+t6CnrdcB3awz3GoZ6f5pyjs9lY9YLGrstTokvK6JWhfrYR+u5oyZGartUpfWRPSdTgwYOjPUygSzhSXa27ThquyspKORyOsMeyJh0AACACrZ3iHmyq9S1PFvhMt7YEW/u+tyA+4JiSQvda7GCXN8lsXLO9vzhey+7I9FnT7d1l3q2pAB55QLfZJJcr1HXcwd2wmbrkxhId/8ND2vxxDy2fnyHTZY0p8HpWYA71PJUUxquu1vBU0lPSa30q7ZFspdYePQqiyV1Vd38/beM25ZWt1ShNUMJRdo0v3aJ1w4YrX/kEdaCDMd0dAACgnTW15jmS6dbPLsqQ/zpva821bxf3UGvHA6Vlua//9MIMle0JPW3bMIJ1Xm8pI0hjOu815g2PUb2hV5emSpKeWZjhNSPAfaz//TVs7op7qCnoTy/MUHlxvOf+2OPNoJXycGG7vXoURFOuY6pyHVO1MneonDYpr2qtigrXKGe/NH7rFk3eXsz0d6CDEdIBAADaWSThLtza98YKru867xl3Fnmu2y+zxnO577/efIN7fZ2hzR/3CLO9m1taVo2uWVik4M3ggt9O3wE16n20fwi2wn6w9eu+5zFN9wcZNYfl10DOfax1f9MH1ejo/jWeEB9smzz/D0msc0fS/M3/mLbuURArrLXqTpsC1qpP3l5MUzmgAzHdHQAAoAME21rNW7jp1lbI918L3T+71nNd/7Xp/iHasLl0dHpdw5R295Ty/Xvj9dSdmaEHbZhKa1hzvbcgXv4fEvhqXF9ubQH39MIMVZebUkMTuDi7qavmF+mpOwdG9JhZlX7f9fGm4uymfv9E4zrwuZOGeb4PNgU91OMXrgIeao16JNPiOyv/6e/7nF9LhV8rK2uiLlaFVqsP09+BDkAlHQAAoAOkZdU2BD2nincm6umFGUGnZYcKfpFUcL2P6Tug1rNlW/ogp25ZVqBbl+c3HOndQT3MWnJTuvC6UknBptv7M+ToW+PZAq5fRq27Qm82nr++zqbhpxxq6FDvX5X3Pbctzh3M504apt4p9TJsjR86mKb78odmu7vgRzIFvbkV8GA9BLyr6lYvga4m1zHV8/3J2Tme70cPOkUXl1dEYURA90MlHQAAoIM8vTBD+3YHNo+LhLV/ergKbrAqr/f37g8FmtOF3b0ufHhugU/DtFCqyhI8t+dfvTZs7nXkv79gmPqk1ih4Vb6x67tpyrOGvHKfXbY4Uy6ZMl2GJxxbj2FTsxRCPTahhGoQN3fSMKUPcmrK7FK9ujS1yU7wANAShHQAAIAO0NLO4JFuDebN+3ze3y9fkKHIA7qbNeb0QU4V70yQb6CWz89xdncIt8Y5ZXapls/PkFyGTJdU37AmvKLU/8MC6/vGdeemy2hsgdfQib6RbwO+SD7AsEQyRd3/Awbv+1q6K6Gh07zvGvjOug0bgNjDdHcAAIAO0NLO4P7Trt1BO7RgU7BLCuN1/8zsyLZm82J4jdHdpM4/KDf+HGc35ar3Da6vLk316sruG8LDr2+3hJpeH/wxbMs14t7T473H63IZqq+zhezUDwCtRUgHAADoIM1dFx1s67aSwuDbjJUUxuuBWdmaO2lYwO+9p9kHBt9gW7a5v0/zGmP/7Fr1HVDjd3zj9/V1toY17o3B1XvsgbfpG7QD16U3PS0/WBf8tmJNj3/4za0BH67E2V1dahs2ALGFkA4AANBBvIPfLU8WRDRtPdge6MG2GQvW6EwKDPqB09Xld3nj9/OWNo6xpDBe5SV2Ba+G+5/THWS9x27YGvda925qlzqwxqtKH0l13f27B19vfAzDfUDREv4N4vw/XLlmYdfchg1AbGBNOgAAQAdrTtX16vlFWr4go2GqeuAUa6vLeLj17umDnCopTJBpurcfcwf2YAG78fv0QTWec9vi3OvZXfWh6juBa8rr6wz94vYi/e+97vX0VlW+X0at9hXF+3zIYLMFW/NunVcBl6UPqpE9ofGSYB9QtGSbtOZsu3b8D7vmNmyWXeWHJG1Q6YFD6rd7t3ZJUi+590tnGzagXRHSAQAAYliwPdC99/n2DuLBfl9SGK9D1d5T0aXeKTU6WBnvOTYl3V3Vdu+hLkmGnIcN3TtjsMr2JCgtyxl0Pbt7/3Kb4uym6uvc13NzN5F7ePYxSh/k1Ny/7FDGsbWesfqH6mV3ZHpu11dgNT3ObgZMcQ/2AcUDs7Kb1WyvpDBeD83OVn2d+4OIkiAN4YLtX98Vee+XPnZdnvKq1irDlaGsrIkaX7pF64YNV77yJYmwDrQDQjoAAEAn4L/N2JTZpT5B1HtbMO8p2E8vzFB1ue//8h2qtit1YI3PsWlZtbp/pvuDANM0Gjqwu+3bnaA4u0uuesMT9uPsLs1bWqAap/Rf1x/jN1qjIbRLxTsT9PB1x3gCfepAp0p3+Ybqsj0JMoxwe7A3qq+zqV9GY+AO9gGFYTODVtbDWb4gwxPQJcmMsPt+V2Xtl/7BeHdQr02sUFHhGuXYRkhbt8iRmq7VKX2oqgPtgJAOAAAQA5oKg/5Trq3KuuQOoq8uTfX5vas+sMrs5p6KfvNjBZ79zK3b962WN1axXS5DchkNU9ITlZbl1IXXlXpNww/Gdzq9tYWaO6CbMmzuIGxNv7fCv6/Abd6safjevD/A6JdZ4zOmSLa6C7zvbjSE862qT9u4TXllazVKE5RwlN2nqk5QB9oOIR0AACCKmrsPelNr0K313tb5+g6oUdmeePlPRfde0201Sgu1N7g1fd76EGBfke/U8MAxuiTT8Ovs7vu9zeZSvctQ6sAa1dUaKi92T783DFO2OHe3+L4DalVfJ1WUugfbd0Bt0CZtoT7A8J/6H+4x9V63L7lnCtAQzs2qqq/MfcFn+rt3Vf21hmMJ60Dr0d0dAAAgikJ1ZQ8n3J7r/ueTpD6pjaE/zm7qmoXu8FlSGK97ZwzW3EnDNHfSMDkP2zzr0/07sFuB1bqNUAE9zu7SzLu99xgPPo29vs7m6dB+7T27PcenZdVo3lJ3B/xr79mtxKMatoPLcurae3Y3+QGG1Pyt7qzrpGVZY3D6dLaHm7uqPkpOm1SbWKG8qrXK2S9lHbBr8vZid1O5/PxoDxPo9KikAwAARElTXdn9j/W+zH+N+tXzi4Ker2xPgh5+c6vnHN4V9GV3ZDZU2d0qSu1KH1Sjh9/c6jMN3vt2g0+hd0vLcuqaBe6ZAH37FzWc33t/dneV2rCZShvY2KE9WPd0yfcDh327I1tbHu58bX2d7ijY9HfvpnJWVZ2KOtByhHQAAIB2Fir4hevKbmnOtmCu+vDn8w/bjQHaYgQE8GAdzdMHOVWyK0Gmq3Fq+M2PF6h/dmPl+emFGSovdn8AYHWQt8ebPtux+T8+4T4MsD7A2FsQ73M74bQkbBPQm5brmKqNVS8o/7LTNPjFjyWnVJlRqZFFmSpUXbSHB3R6THcHAABoJyWF8XpgVrbmThqmB2Zlq6QwPuCYpqZmNzUd3tpmzbqdulrDM2U90qne3tKymm6WNmV2qWeqfZzdpWsWFvkEZytgW2vSrYq+NY39lifdU8nDPT7WhwG+0+VNPbuo6eUAANCZEdIBAADaSSTrza2KuHd4tQQLu9Z0+FC3U14cL3u8GfR83mxxUt8BNfIOwXF2l65Z0HSof3VpqqeKbroMvbo0NeDcodbMh5rOHuzxmXFnkfwbzgW7/wDQlRDSAQAA2kGkAdsSbjp8sLDb1O1E4tp7dit9kLuKnz4osmZpkdwvV33TMwQiOU//7FqlD3J69lAPdv8BoKthTToAAEA7iGS9eSSCNYhrq9tpSbO0cLcXbP380em1Adu9WRX1SMbd1P0HgK6GkA4AANBO2iJgRhKkW3s7oc4b6jZD3Z739PWSXQmevdTTBzk1ZXapXl2a6hPgIxl3uPtPJ3YAXREhHQAAoJ205bZe4YJ0W28fFqqjvCVUZ3nvafamy1B9w1T20l0JWj4/w7OO3Vp/fsuTBRGPO5KO9wDQFbAmHQAAoJ21R7U3WGf0trqdSBreSb73y3/9vDeXy1B9nS3k+vPmjjvS8QFAZ0RIBwAA6ITCBdXWdD9vbsM7b97N4uLsLp+Gb3F2V9gGeB0xPgDoDJjuDgAA0Mn4Ty23guregng9u6jl08CtaeRupqSWN6LbVxTvs97ce016axrAtVVDPgCIVYR0AACAGBVqrXaooPrsosDq+i1PFkR8e97VeUtLG9EFW7d+/A/bZt08Hd8BdGWEdAAAgBgTSWM0/6A6484iPXjtMZ7fe08DjyQU+1fnJfd08nlLC1oVqv2v2xYV77ZulAcAsYSQDgAAEGOCrTf3r4gHC6qtmQbeGaeRx/LYAKClaBwHAAAQQ5rbGM07qHo3bmvJNPDWXh/dR65jqj78vky7yg+p6ECRDn78iWp271ZVabEmby9Wfn6+8vPzoz1MoFOikg4AABBDWlPRbu008I6YRs4U9a4j1zFVH4yXxq7LU21ihfLK1mqUJijhKLsmby/W6pQ+yle+Bg8eHO2hAp0KIR0AACDGtLYxWmtDcHvt697UOnt0PlZQl9xhPa9qrTJcGcrKmqjxpVvkSE3Xaw3HEtaByBimaZrRHkRHqqqqUnJysu5b/ZmSevaK9nAAAABC6kpV5wdmZQfMDmhO53nEvo1VL2jsujwNTOmh0rJDGuWYoITMTBX2qtPqlD6ypyQS1NFtHamu1l0nDVdlZaUcDkfYY1mTDgAAEKO6SkBv7jp7dE7uqvoorcwdKqdNyqtaq6LCNco6YNf4rVtUV+5krToQAUI6AAAA2pW1zt5mc0/gtNlM989d5EMINMp1TPWEdadNqk2sUFHhGuXsl8Zv3aLJ24s9YR1AcIR0AAAAtDs6x3cv3lX12sQK7XN9rZz9UtYBuy4ur5AkgjoQAo3jAAAA0O46onM8YkuuY6o2Vr0gSTo5O0dfFHytDGVKki7VEf1dSdEcHhCzqKQDAACgwxDQASA8QjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAA6FDO7ZXRHgIQs+zRHgAAAACArmtl7lDtWveeEl2SCtcoK2uiNh/erbqUPspXviRp8ODB0RwiEFOopAMAAABoF7mOqcp1TNUH40fJaZNqEytUVLhGOful8Vu3aPL2YtWVO5Wfnx/toQIxg5AOAAAAoF1ZQX1l7lDVJlYor2qtcvZLWQfsGr91C0Ed8MJ0dwAAAADtLtcxVZK0MvcFjV2Xp7yqtcpwZSjHNkLaukWO1HS91nAs09/RnVFJBwAAANBh/Ke/e1fVmf4OENIBAAAAdDDv6e9Om5RXtVZFhWsCpr8T1tEdMd0dAAAAQIezpr9/MF6atnGbauVuKjcya6Ic5RVSufTasenRHSQQBVTSAQAAAERV/mWn+fw8etApURoJEH2EdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRUQ3pjz/+uEaNGiWHwyGHw6HRo0frzTffDHn8M888I8MwfL6SkpI6cMQAAAAAALQfezRvfODAgbr//vuVk5Mj0zT17LPP6sILL9Tnn3+ukSNHBr2Ow+HQli1bPD8bhtFRwwUAAAAAoF1FNaRPnjzZ5+d7771Xjz/+uD766KOQId0wDPXv378jhgcAAAAAQIeKmTXp9fX1WrVqlQ4ePKjRo0eHPO7AgQPKzs5WVlaWLrzwQm3evDnseZ1Op6qqqny+AAAAAACIRVEP6Zs2bVKvXr2UmJio6667TqtXr9aIESOCHjt8+HAtX75c//jHP/Tcc8/J5XJpzJgx2rVrV8jzL168WMnJyZ6vrKys9rorAAAAAAC0StRD+vDhw/XFF1/o448/1q9+9SvNmDFDX3/9ddBjR48erenTp+vkk0/WuHHj9PLLLys1NVVLly4Nef5bb71VlZWVnq/CwsL2uisAAAAAALRKVNekS1JCQoKGDh0qSTr11FO1YcMGPfroo2GDtyU+Pl6nnHKKtm3bFvKYxMREJSYmttl4AQAAAABoL1GvpPtzuVxyOp0RHVtfX69NmzZpwIAB7TwqAAAAAADaX1Qr6bfeeqsmTZqkQYMGqbq6Ws8//7zeffddvfXWW5Kk6dOnKzMzU4sXL5Yk3X333frxj3+soUOHqqKiQg899JAKCgo0a9asaN4NAAAAAADaRFRDeklJiaZPn649e/YoOTlZo0aN0ltvvaWJEydKknbu3CmbrbHYX15ermuvvVZ79+5VSkqKTj31VK1fvz5kozkAAAAAADoTwzRNM9qD6EhVVVVKTk7Wfas/U1LPXtEeDgAAANCtbax6QZI0beM2lZYd0ijHBCVkZmrz4d1aN2y47CmJGjx4cHQHCbTSkepq3XXScFVWVsrhcIQ9NuqN4wAAAAB0X7mOqZKklbkvaOy6POVVrVWGK0M5thHS1i1ypKbrtYZjCevoDmKucRwAAACA7ifXMVUfjB8lp02qTaxQXtVa5eyXsg7YNXl7serKncrPz4/2MIF2R0gHAAAAEBOsoL4yd6icNimvaq2KCtco64Bd47du8QR1wjq6MkI6AAAAgJiR65gaUFUvKlyjnP3S+K1bqKqjyyOkAwAAAIg53lV1/+nv3lV1oKuhcRwAAACAmBSqqdzIrIk0lUOXRSUdAAAAQEyzquqpfXtIkiozKjXyqExJ0qU6Es2hAW2OkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAgE7l4MefeL53bq+M4kiAtkdIBwAAANAp7Co/pNrEChUdKFLN7t3KOmBXVWmx6sqdys/Pj/bwgDZhj/YAAAAAAKApuY6pOnjxVK2sekFj1+Upr2qtMlwZyrGNkLZukSM1Xa81HDt48OBoDhVoFSrpAAAAADqNXMdUfTB+lJw2qTaxQnlVa5WzX8o6YNfk7VTV0fkR0gEAAAB0KlZQX5k7VE6blFe1VkWFa5R1wK7xW7d4gjphHZ0RIR0AAABAp5PrmBpQVS8qXKOc/dL4rVuoqqPTIqQDAAAA6LS8q+r+09+9q+pAZ0HjOAAAAACdWq5jqiRpZe4LmrZxm/Y5v5YKv9bIrIlylFdI5dJroqEcOgcq6QAAAAC6lJOzczzfjx50ShRHAjQfIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiRFRD+uOPP65Ro0bJ4XDI4XBo9OjRevPNN8Ne58UXX9Rxxx2npKQknXjiiXrjjTc6aLQAAAAAALSvqIb0gQMH6v7779dnn32mTz/9VGeddZYuvPBCbd68Oejx69ev17Rp0zRz5kx9/vnnuuiii3TRRRfpq6++6uCRAwAAAADQ9qIa0idPnqzzzjtPOTk5GjZsmO6991716tVLH330UdDjH330UZ177rmaN2+ejj/+eC1atEi5ublasmRJB48cAAAAAIC2FzNr0uvr67Vq1SodPHhQo0ePDnrMhx9+qAkTJvhcds455+jDDz8MeV6n06mqqiqfLwAAAAAAYlHUQ/qmTZvUq1cvJSYm6rrrrtPq1as1YsSIoMfu3btX6enpPpelp6dr7969Ic+/ePFiJScne76ysrLadPwAAAAAALSVqIf04cOH64svvtDHH3+sX/3qV5oxY4a+/vrrNjv/rbfeqsrKSs9XYWFhm50bAAAAAIC2ZI/2ABISEjR06FBJ0qmnnqoNGzbo0Ucf1dKlSwOO7d+/v4qLi30uKy4uVv/+/UOePzExUYmJiW07aAAAAAAA2kHUK+n+XC6XnE5n0N+NHj1a69at87lszZo1IdewAwAAAADQmUS1kn7rrbdq0qRJGjRokKqrq/X888/r3Xff1VtvvSVJmj59ujIzM7V48WJJ0pw5czRu3Dg98sgjOv/887Vq1Sp9+umneuKJJ6J5NwAAAAAAaBNRDeklJSWaPn269uzZo+TkZI0aNUpvvfWWJk6cKEnauXOnbLbGYv+YMWP0/PPP64477tBtt92mnJwcvfLKKzrhhBOidRcAAAAAAGgzUQ3pTz31VNjfv/vuuwGXXXbZZbrsssvaaUQAAAAAAERPzK1JBwAAAACguyKkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAh7tAfQ0UzTlCQdOXQgyiMBAAAA0JZqDh3RIWeNqg8f1kGnUweOHFLVwWodPHxINQcP6kh1dbSHiG7qyAF3/rTyaDiGGclRXciuXbuUlZUV7WEAAAAAALqZwsJCDRw4MOwx3S6ku1wuFRUVqXfv3jIMI9rD6RKqqqqUlZWlwsJCORyOaA8HHYznH7wGwGuge+P5B68B8Bpommmaqq6uVkZGhmy28KvOu910d5vN1uQnF2gZh8PBH2U3xvMPXgPgNdC98fyD1wB4DYSXnJwc0XE0jgMAAAAAIEYQ0gEAAAAAiBGEdLRaYmKi5s+fr8TExGgPBVHA8w9eA+A10L3x/IPXAHgNtK1u1zgOAAAAAIBYRSUdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR1hLV68WD/84Q/Vu3dvpaWl6aKLLtKWLVuavN6LL76o4447TklJSTrxxBP1xhtvdMBo0dZa8vw/88wzMgzD5yspKamDRoy29vjjj2vUqFFyOBxyOBwaPXq03nzzzbDX4e+/a2nua4D3gK7t/vvvl2EYuummm8Iex/tA1xXJa4D3ga5lwYIFAc/ncccdF/Y6vAe0DiEdYb333nu64YYb9NFHH2nNmjWqra3V2WefrYMHD4a8zvr16zVt2jTNnDlTn3/+uS666CJddNFF+uqrrzpw5GgLLXn+JcnhcGjPnj2er4KCgg4aMdrawIEDdf/99+uzzz7Tp59+qrPOOksXXnihNm/eHPR4/v67nua+BiTeA7qqDRs2aOnSpRo1alTY43gf6LoifQ1IvA90NSNHjvR5Pv/973+HPJb3gDZgAs1QUlJiSjLfe++9kMdcfvnl5vnnn+9z2WmnnWbOnj27vYeHdhbJ8//000+bycnJHTcodLiUlBTzySefDPo7/v67h3CvAd4Duqbq6mozJyfHXLNmjTlu3Dhzzpw5IY/lfaBras5rgPeBrmX+/PnmSSedFPHxvAe0HpV0NEtlZaUk6eijjw55zIcffqgJEyb4XHbOOefoww8/bNexof1F8vxL0oEDB5Sdna2srKwmK27oPOrr67Vq1SodPHhQo0ePDnoMf/9dWySvAYn3gK7ohhtu0Pnnnx/w9x0M7wNdU3NeAxLvA13Nd999p4yMDB177LG68sortXPnzpDH8h7QevZoDwCdh8vl0k033aTTTz9dJ5xwQsjj9u7dq/T0dJ/L0tPTtXfv3vYeItpRpM//8OHDtXz5co0aNUqVlZV6+OGHNWbMGG3evFkDBw7swBGjrWzatEmjR4/WkSNH1KtXL61evVojRowIeix//11Tc14DvAd0PatWrdLGjRu1YcOGiI7nfaDrae5rgPeBruW0007TM888o+HDh2vPnj1auHChxo4dq6+++kq9e/cOOJ73gNYjpCNiN9xwg7766quwa1DQdUX6/I8ePdqnwjZmzBgdf/zxWrp0qRYtWtTew0Q7GD58uL744gtVVlbq73//u2bMmKH33nsvZEhD19Oc1wDvAV1LYWGh5syZozVr1tD4q5tqyWuA94GuZdKkSZ7vR40apdNOO03Z2dn629/+ppkzZ0ZxZF0XIR0RufHGG/X666/r/fffb/IT0P79+6u4uNjnsuLiYvXv3789h4h21Jzn3198fLxOOeUUbdu2rZ1Gh/aWkJCgoUOHSpJOPfVUbdiwQY8++qiWLl0acCx//11Tc14D/ngP6Nw+++wzlZSUKDc313NZfX293n//fS1ZskROp1NxcXE+1+F9oGtpyWvAH+8DXUufPn00bNiwkM8n7wGtx5p0hGWapm688UatXr1ab7/9to455pgmrzN69GitW7fO57I1a9aEXb+I2NSS599ffX29Nm3apAEDBrTDCBENLpdLTqcz6O/4++8ewr0G/PEe0LmNHz9emzZt0hdffOH5+sEPfqArr7xSX3zxRdBwxvtA19KS14A/3ge6lgMHDuj7778P+XzyHtAGot25DrHtV7/6lZmcnGy+++675p49ezxfhw4d8hzzi1/8wvzDH/7g+fk///mPabfbzYcfftj85ptvzPnz55vx8fHmpk2bonEX0Aotef4XLlxovvXWW+b3339vfvbZZ+YVV1xhJiUlmZs3b47GXUAr/eEPfzDfe+89c8eOHWZeXp75hz/8wTQMw/zXv/5lmiZ//91Bc18DvAd0ff6dvXkf6H6aeg3wPtC13Hzzzea7775r7tixw/zPf/5jTpgwwezXr59ZUlJimibvAe2B6e4I6/HHH5cknXHGGT6XP/3007rqqqskSTt37pTN1jgpY8yYMXr++ed1xx136LbbblNOTo5eeeWVsM3GEJta8vyXl5fr2muv1d69e5WSkqJTTz1V69evZ/1yJ1VSUqLp06drz549Sk5O1qhRo/TWW29p4sSJkvj77w6a+xrgPaD74X0AvA90bbt27dK0adNUVlam1NRU/eQnP9FHH32k1NRUSbwHtAfDNE0z2oMAAAAAAACsSQcAAAAAIGYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAEBI9fX1GjNmjC655BKfyysrK5WVlaXbb789SiMDAKBrMkzTNKM9CAAAELu2bt2qk08+WcuWLdOVV14pSZo+fbq+/PJLbdiwQQkJCVEeIQAAXQchHQAANOlPf/qTFixYoM2bN+uTTz7RZZddpg0bNuikk06K9tAAAOhSCOkAAKBJpmnqrLPOUlxcnDZt2qRf//rXuuOOO6I9LAAAuhxCOgAAiMi3336r448/XieeeKI2btwou90e7SEBANDl0DgOAABEZPny5erRo4d27NihXbt2RXs4AAB0SVTSAQBAk9avX69x48bpX//6l+655x5J0tq1a2UYRpRHBgBA10IlHQAAhHXo0CFdddVV+tWvfqUzzzxTTz31lD755BP95S9/ifbQAADocqikAwCAsObMmaM33nhDX375pXr06CFJWrp0qebOnatNmzZp8ODB0R0gAABdCCEdAACE9N5772n8+PF699139ZOf/MTnd+ecc47q6uqY9g4AQBsipAMAAAAAECNYkw4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMSI/w85X7FLzLUz5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 21\n", + "amount_ae: 294\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4U+UXx783abpLSxkF2tKyWpaUjaDQsgSEsldBRkGZskQFFAQHMkRAhkwBf8gSmS4QkI0KiGyEsndLgaYt3cn5/RFzaZq0TdLb5Kacz/PcB3ry5nzPue/JzZv3jlcgIgLDMAzDMAzDMAzDMAzDMIzEKOwdAMMwDMMwDMMwDMMwDMMwRROefGQYhmEYhmEYhmEYhmEYplDgyUeGYRiGYRiGYRiGYRiGYQoFnnxkGIZhGIZhGIZhGIZhGKZQ4MlHhmEYhmEYhmEYhmEYhmEKBZ58ZBiGYRiGYRiGYRiGYRimUODJR4ZhGIZhGIZhGIZhGIZhCgWefGQYhmEYhmEYhmEYhmEYplBwsncADMPIm4cPH+LIkSOIjY3Fo0ePEB8fj/feew9BQUH2Do1hGIZhGIZhGIZhGJnDVz4yDGOSK1euoE2bNvD390ePHj3w9ttv4+OPP8aSJUtw8OBBe4fHMIwZ3Lx5E4IgYNq0aTbRmzZtGgRBwM2bN22ixzAMwzAMwzCM/OHJR0Zy9D92zdmGDRtm73AZE1y5cgWNGzfG77//jgkTJiAmJgZarRZEBI1Gg/79+9s7RIZhCsDChQshCEKun+WnT5/C398f7u7uuHLlimgPDg5GcHCwjaJkGIZhGIZhGGkJDg5GREREoevoT8ofOHDApP1FO1nPt10zhUalSpXwxhtvmHzt5s2b+Pbbb20cEWMugwcPRlJSEn766Se0adPG3uEwDCMxb7/9NrZu3Yq1a9eiW7du6NSpk8HrI0eOxP379/HVV18hJCTETlEyDOMI3Lx5ExUqVDCr7dChQ7F06dJCjoixJxERETh48CCIyN6hMAzDmM2pU6fQqFEjVKxYEadPn4abm5tRm9dffx2//vor1q5dm+s8B5M7PPnIFBqVK1fO9Va/AwcO8OSjTDl37hyOHDmC8ePH88QjwxRRBEHA6tWr8dJLL2HIkCF45ZVXULJkSQDADz/8gA0bNqB58+YYNWqUnSNlGMZR4JPODMMwjKNSt25dfPjhh/j4448xadIkzJ8/3+D15cuX49dff0WXLl144tFK+LZrRpYEBwfneqv2mjVrjNqvXr0ajRo1gqenJzw9PdGoUSOT7Q4cOJDr888EQTB5+XVERAQEQTCy79+/H4MGDUJoaKioW79+fSxfvtzq3HJekj1w4EDJLsk+f/48evbsidKlS8PFxQUVKlTA2LFj8fjxY4N2x44dAwCEhoYiKioKfn5+cHZ2RlBQEIYPH44HDx6IbbVaLYKCglCiRAmkp6eb1G3WrBmcnJxw9+5dALnvT/3t+gMHDjSwW7qfTd0W+vDhQ4wYMQIVKlSAs7MzfH190aFDB/zxxx9G78/t8nhragcAzp49i969e6Ns2bLifhw1apTRfs/vcQUrV640aG9uf+aFvr4UCgVu3Lhh9Prhw4dF/Zx555VzbvsQMP+zunbtWigUCvTu3dvg6onc6uT48ePw9PRE3bp1kZSUZPBaUlISpk6diho1asDNzQ0+Pj5o06YNjhw5YjL+pKQkfPzxx6hVqxbc3d3h7e2NOnXqYMqUKcjMzLTo0RL6z65+n+g3hUKBsmXLon379uJnLjvbtm1DVFQUKleuLMbQtGlTbNmyxWTM1hAcHIwvv/wScXFxGD58OAAgNjYWw4cPh5eXF1avXi1+VvU537p1C7du3TLIxVbPk2QYRt7oTzqb2nIesxmGYRhGbnz44YeoU6cOFixYYLDGwY0bNzB+/HiUKlUKy5Yts2OEjg1PPjKyxdvbG1OnThW3nLcF6hk9ejQGDRqEe/fuYfDgwRg8eDDu3buH6OhojBkzptDimzVrFg4dOoQGDRrg7bffxhtvvIH4+HgMHToU48ePz/O9OXMLDw8vtDgB4MiRI2jUqBG2bduGli1b4p133kFQUBC++uorNGrUCPHx8WLbR48eAQCGDx+OzZs3IyIiAuPHj0e1atWwdOlS1K9fH7du3QIAKBQKvPnmm3jy5InJSZHLly/j8OHDaNu2LQICAqyKvSD7GQDu37+PBg0aYMmSJfD19cU777yDTp064ffff0ezZs2wdetWq+Iyh507d6Jhw4bYuXMnIiIiMHbsWLz00ktYtGgRGjdujKdPnxq9JywszKA29FvdunXFNpb0pzkoFAqTX6RLliyBUqm0PPFcsOSz2q9fP8yaNQubNm3CuHHj8vR75coVtG/fHqVLl8avv/4KLy8v8bUnT56gcePG+OSTT1C8eHEMGzYM3bp1w99//43mzZtj+/btBr7i4uLQsGFDTJs2DUqlEsOHD8egQYNQpkwZzJo1C8+ePYOPj49R/3h7ext9rqdOnQofHx8D/wMGDMDUqVPx4YcfIjw8HHv27EGrVq3w77//GrSbNGkSLly4gFdffRVjxoxBjx49cPnyZXTv3h0LFy60fOfnwpAhQ9CmTRvxaschQ4YgPj4e8+fPN1jRXp+zqTxt8cwchmGKNnzSWYeUJ52z52LufiUirFq1Cq+88gqKFSsGd3d31K9fH6tWrTLp/8qVK2jVqhXc3d1RtWpV7Nq1S3zt2rVriIiIgJubG6pXr47Nmzeb9HHr1i0MHjwY/v7+cHZ2RkBAAAYPHozbt2/nmk9aWhomTpyI8uXLw9XVFdWqVcPChQuNbvVes2ZNnvk+e/YM3t7eJmshtzo4ffo0lEqlkc/sJ0cvXLiA9u3bw8fHB56ennjttdfw999/S5a/fnN2dkZwcDDefPNNo/YZGRlYuHAh2rRpg8DAQLi4uKB06dLo2rUr/vnnHyPf+n1laj8Bpk/u51WvuZ0sBiw7gZ7X5yfn1Wfx8fEYO3YsKlSoIObbs2dPnD9/3mROpiiMmgHyPhYdPXoU7du3h6+vL1xdXVG1alVMnToVKSkpBu3OnTuH4sWLo1q1akb7ylT/PH78GNWqVUPx4sVx7tw5g9cs/awTEVavXo2mTZvCx8cH7u7uqFKlCoYOHSrWXl59ZerYo98n2TdfX180atQI//vf/4xi+Pvvv/H222+jZs2a8Pb2hpubG1566SXMnDkTmZmZJuO2FJVKhf/9739QqVSIjo5GcnIytFotBg4ciOTkZCxbtgylSpUyet+dO3cQFRUFX19feHp6Ijw8HIcOHZIkpiIFMYzE3LhxgwBQmzZtcm2zf/9+AkBDhw41+bq/vz8FBwcb2FavXk0AaPXq1aLt4MGDBICqVatGCQkJov3JkycUEhJCAOjQoUNGulOnTjXSBEDh4eFG9vDwcDL1Ubl+/bqRLTMzk1q3bk1KpZJu3bplMreAgACj3KZOnUoAaP/+/Qb2AQMGEAC6ceOGSV/moNFoqFKlSgSAdu3aZfDae++9RwBo0KBBRrEAoJ9//tmg/Zw5cwgAdejQQbTdu3ePnJycKCIiwkj73XffJQC0fft20RYREUEASKvVGrTV182AAQMM7Jbu56CgIAoKChL/7tWrFwGgvn37GmieOnWKnJ2dqXjx4pSYmGiUf86+sLR24uPjqVixYuTv7083b940eG3Dhg0EgN5+++1888+Jpf2ZF/r66tSpE5UqVYrS09PF1+Li4sjZ2Zk6d+5sMu/cPi9EpvehpZ9VPePGjSMANHPmTCIy3k/379+n4OBgKlWqFF25csXo/X369CEAtGLFCgN7bGwsBQYGUqlSpSg1NVW0d+vWjQDQBx98YOTr4cOHlJmZaTLnnHVnzj4hIlq8eDEBoPnz5xvYr127ZuQjKSmJXnrpJfL29qZnz57lqpUd/f4yVbd67t69Sz4+PuTi4mL0+c6JuXkW5JjFMIxjIcW4LygoiLy9vWnq1Kni1qlTJ6NxHxHRqFGjCAD5+/vT6NGjafTo0eTv708AaPTo0SZ1pRj3tWnThipVqkR9+/alCRMm0NChQykoKIgA0DvvvJNr7qZy02sUxrjPVC7m7FetVktRUVEEgKpUqUJDhw6lUaNGUdWqVQkAjR8/3qB9bGwslS1blgRBoC5dutDIkSOpRIkSVL58eQJAISEh1L17dxoyZAj5+vqSIAi0ZcsWAx+XL1+mUqVKEQCKjIykiRMnUocOHQgAlSpVii5fvmwyn8jISAoICKAxY8bQmDFjKCAgwGQ/6H87KJVKatSokdH+WbZsGSmVSpO1kFsdNG3aVBwnZ9+H+s9B06ZNydvbm5o3b04TJ06kqKgocnJyInd3d/rzzz8lyV/flxMnTqTmzZuLfZZ9jPLgwQNSKBQUHh5OQ4YMoQkTJlCPHj3IxcWFXF1d6fjx4yb3Vc660GPq+z+ves1tXHv48GFyd3cnJycn6t27N02cOFHMq1KlSvTo0SMj3ZyfH/2WvZ7i4uLE8XFERARNnDiRevXqRUqlktzd3enw4cMm88pJYdQMUe7Hou+//16MMTo6miZMmEB16tQhANSoUSODMSqRbjzt6upKjRs3ppSUFIP9lL1/nj17Ri+//DK5uLjQwYMHDXxY+lnXaDTUvXt38bg7bNgwev/996lnz57k4+ND27ZtIyKiefPmGfRPWFgYAaAxY8YY2P/55x+DfRIeHi6+NnToUCpRogQBoDVr1hjEMXToUCpXrhz17t2b3nvvPRo5ciTVqFGDAFDXrl1N7vfcCAoKyvV3DBHRjBkzCAANGTKEvvzySwJA/fr1M9n2/v374ndQmzZtaNKkSdS5c2dydnamNm3amDzWv6jjZZ58ZCRHikFo6dKlKTQ01MBm6ktx0KBBBIA2bdpk5GPdunVGEzFSDkJzY8uWLSYPmHpKlChBISEhBrbCnHw8dOgQAaB27doZvZaUlES+vr7k6uoqTjzpYzHVf5mZmVShQgUSBIHi4uJEe5cuXUgQBIqJiRFtGRkZVLp0aSpbtqzBYKhnz54mczJ38k1Pbvs5+5dvWloaqVQqUqlUdOfOHSMfb731FgGgtWvXijapJh/nzp1LAOh///ufyfjr1q1LJUuWFP82N39L+zMv9PX166+/EgBat26d+NqMGTPI3d2dtm3bJsnko6WfVT1arVacQPz2228N9pNaraawsDDy8PAwGkQTET169IiUSiW1aNHCZJwLFiwgAPTjjz8SkW6gLggCVapUiTIyMky+JzesnXz86quvxNzMQT8AOnDggFntzZl8JCKaPHkyASCVSkX379/PtR1PPjIMkxM+6Syvk87ZefXVV41yyW2Safny5QSAoqOjDb4D09PTKTIykgDQyZMnRfvo0aMJAC1evFi0HT16VDyRNWfOHNEeExNDXl5eFBAQQFlZWaJdP3G2bNkyg1j0J+Zyfn/r+yY0NNSg/xMSEig0NJQEQaATJ04Y5aqfcD116pSBv9q1a4snWc2ZSNq4cSMBoHr16uU6+QiAJk6caPC+Xbt2EQB66aWXDOzW5p+THj16EAA6ffq0aEtLS6O7d+8atT1//jx5enpSq1atDOy2mHy05gR6fuMOPdHR0QSAJk2aZGD/+eefCQBVrlyZNBpNvn6krhk9po5FarWavL29ycXFhc6cOSPaNRqNePHEJ598YuRr69atpFQqqUOHDuLnKft+yszMpPbt25NCoTCa8Cey/LO+cOFCAkAtW7Y0mPAkIkpJSaHHjx+bzDm/41lux+cLFy4QAOrcubOB/datWwbHDyLd7wT9b4wjR46Y1DFFfpOPWVlZ1KhRIwJAzs7OFBAQQE+fPjXZVp/nZ599ZmBftmyZeEzgyUcdfNs1I0sSExPh6uqabzv9bQOmbptp3rw5AN3tEYWB/jlyYWFh8PT0FC8X79atGwDd7b450Wq1UKvVcHd3t0hr/vz5mDZtGj755BMsWbIE+/btg1arNeu9ee0j/S1DaWlpuHz5ssFr+v2XHScnJzRt2hREhDNnzoj2oUOHgogMnku4c+dOxMXFITo6Gk5Oz9e2atSoEQDg/fffR2xsbL7xW7Of9c+kc3V1RWZmJipXrmzytu/CrJE///wTAPDXX3+ZfP5VWloa4uPjLb5F2tr+zIuqVauiRYsW4gqkWq0Wy5YtQ1RUlNFtw9m5efOmydxMPevR2s+qIAh45513AOhWYdff0pWeno7OnTvjzJkzaNasGRo0aGD03hMnTkCj0SA9Pd1knPo+0t/yfPLkSRARmjdvDpVKlWveBWHNmjWYNm0apkyZgl69euHdd99F27Zt0bNnT4N2cXFxeOedd1CtWjW4u7uLda9/1ICpureWuLg48bb7zMxM/PTTT5L5ZhiGMYfMzEy4uLjk206/aM20adPg7e0t2osXL46pU6cCQK63jRYUUyt6Ozk5YdiwYdBoNNi/f7/J96WmpsLZ2blQYsoPS7QXLVoEDw8PLF682OA70NnZGdOnTwcAbNiwQbT/8MMPKF68OIYOHSramjRpgpdffhkADB6NU7lyZfTs2RN3794Vv3tv376N/fv3o3r16njrrbcMYhk2bBiqVq2K33//HXfu3DGKdcqUKQb97+3tjcmTJ4OITC5sFBkZiYCAACxZskS0/fnnnzh9+rT4zOP8SE1NxXvvvYfq1atj2LBhubbz8fHBhx9+aGBr06YNWrZsiXPnzom3Xxck/5xkZWWJ2npcXFzg7+9v1LZGjRpo3rw5Dh06JNmtquZy9OhRXLt2De3atTNa1PKjjz6Cr68v1q9fj4yMDIv8ZmRkYMOGDShRogQmT55s8Nrrr7+O1q1b4+rVqzh69KjZPqWomfzYsWMH1Go1Bg0ahFq1aol2hUKB2bNnw8nJyeTxrEuXLli8eDF++ukng8+fniFDhuDnn3/GokWL0LVrV6PXLf2sf/3111AqlViyZInRCtBubm7w9fW1OPe80Ndz8eLFDezly5c3ehyUIAgYOXIkAGDv3r2SxaBUKsV9kZGRgfnz55v8TZSRkYFNmzahdOnSRo8De/PNN1GlShXJYioK8GrXjOxISUlBWlqayecp5CQxMREKhcJkWz8/PwiCgMTERMljzMjIQEREBE6dOoU6deqgX79+KFGiBJycnMQVHU0twBIbG4usrCyUK1fOIr2vvvrKyBYSEoLt27ejWrVqeb5Xn7+fn5/J18uWLWvQTj9RWKZMmTzbq9Vq0fbaa6+hQoUK+Pbbb/HZZ5/ByckJK1euhCAIGDx4sMH7R44ciW3btmHz5s25Pv9Hj7X72dvbG2PHjkViYiLmzZuXb+7Zc5GKJ0+eAAAWL16cZ7tnz56Jqwybg6X9aS7Dhw9Hjx49cOHCBdy8eRM3b97E8OHDjRZvyc6tW7fw8ccfmx23NZ9VjUaDYcOGoVixYqhYsSLefvttAMDmzZuh1WrRtGlT/Prrr9i+fTs6d+5s8F59Hxw9ejTPAeezZ88APK8DU4N1qcj5o6hkyZKoV6+ewTOCnjx5ggYNGuD27dt45ZVX0KpVK/j4+ECpVOL06dPYsWNHrgs8WcOwYcPw6NEjzJw5E3PmzBFXui9fvrxkGgzDMHmRmJgofn/lhb1POs+ZMwfbt2/HtWvXxO8OPXmddA4MDLRIS/9DV/+9GRISgubNm0OhsOy6kadPn5p1wjslJQXnzp1DuXLlMGvWLKPX9ZNU+pN1arUa9+/fR+PGjc1+NvRLL70EALhw4QJeeeUVsZ/Cw8ONnpOnUCjQrFkz/Pvvvzh9+rTR/mvatKmRf73N1PMMlUolhgwZglmzZmHOnDkoVqwYvv76a1SuXBmtW7c2K/5Zs2bhzp07+O2333Dv3r1c29WpUweenp4m49u3bx/++ecf1KtXr0D5658bmJ6ejj/++APHjh3Dhx9+aPCsZkD3WZg9ezaOHDmChw8fGk02xsfHG33utm/fbvIZjgkJCbmekDY1MZOQkGDUzpwT6L/99hsuX74s1os5/Pvvv0hLS0Pz5s1N1nvz5s2xZ88enD592mTtmKIgNWPquY6m9mle+6N8+fKoWLEirly5gqSkJIPnmQO6Z6NPnToV33zzjcFvtg8//BCrV69GqVKl0L9/fyO/ln7Wk5OTcenSJVSuXLnQJtIOHDgg7rMHDx5g8+bNCAkJwaRJkwzaZWRkYNGiRdi4cSP+/fdfJCcnGzznVcoT80SEzz77TPx769at4oUv2bl8+TLS0tLQokULowunFAoFXnnlFcTExEgWl6PDk4+M7Lh27RoAGD001xTFihWDVqvFo0ePULp0aYPX4uLiQEQoVqyY5DHu2LEDp06dwuDBg41WId64caPJs67A8wFxSEiIRXo3btxAcHAwiAj379/H7NmzsWDBAowaNSrfszz6/HO7yvDhw4cG7fRnr/T23NpnP+MsCAKGDBmCSZMm4ccffxQHDy1btkTFihUN3u/i4oKDBw/i119/xblz55CWlgZAN0jJOclq7X728fHBtGnTkJSUhHnz5uWbe/ZcpEK/P8+dO4eaNWtK7tfc/jSXzp07o2zZsliyZAlu3ryJBg0aoF69eiavYtQTHh5u8vVp06YZTUpa+1mdO3cuTp48iaVLl6Jz585o0qQJrl+/Do1Ggzlz5mD48OGoWbMmRowYgYiICIPBr97f+PHjMWfOnHz3gf69ef2oKCj79+8XB5mPHj3CmjVrMGHCBFy7dk08y/zNN9/g9u3b+PTTT43O4M+cORM7duyQLJ61a9di27Zt6NChAyZMmIDg4GD07t0bgwcPxp49eyTTYRiGyQ0+6WxMQU4669GPGXOOw0zx9OlTEBHu3buX50lF/YSr/sSkqUm23NC31fdPQU6mmnqP3pbbCeU333wTn3zyCdauXYvevXtj8+bN+Oyzz3JdICQ7t2/fxuzZs9GxY0e0bt06z6trc8snZ3wFyT9nH1WrVg2VK1c2sB07dgwtWrQAoLtIoEqVKuIdRNu3b8eZM2dM1uyOHTtyHWfkNvloql5NUVgn0AvLr7U1Y8mJeSDvuK9cuYLExESjyccPP/wQsbGxaNasGaZPny6eBPj888/RrFkzHDp0CB988IFR31j6WbfFifmDBw8arCytUqkQGRlpNJHcvXt3/PjjjwgJCUGvXr1QunRpqFQq8TeklCfmFyxYgAMHDqBfv364ffs21q9fjx49ehhd6KDfPzl/2+jJrW9fVPi2a0Z26G/HqF+/fr5t69SpAwAmJ0D0ttq1a0sVmoh+gtTUCtyHDx/O9X36icJmzZpZpSsIAvz9/TF//nx4e3vj5MmT+b4nr3307NkznDx5Em5ubggNDQUAcVVlU+01Gg2OHDkCQRCM9mt0dDRUKhVWrlyJVatWQavVGt1GokehUKB9+/aYOHGieAvs2LFjjdpZu5/1eHl5oXLlyrh69arJCaXCrBH97eV//PGHpH4t7U9zcXJywptvvolvv/0Wv/76q2S3lOix5rN69epVTJ06Fc2aNcOQIUPg5+eHTZs2AQDat2+P8ePHw93dHcuXL8eDBw/w7rvvGry/QYMGEATB7D6oX78+FAoF9u/fb5NbkUqVKoX33nsPL730EjZv3ixOxBe07s3l3r17GD16NHx9fcXVWnv16oXu3btj7969JldAVyqV0Gg0ksXAMAxj7UnnnNjqpPOpU6ewZMkSfPbZZ5g2bRratm2b6/sKctKZiKDVanH37l2MHj0aV65cwahRo8z2ob8azBxt/T6rV68eSLcmgMlNf2u5h4cHAN1VUeaib6ufhCzIyVRT79HbcjuhXLZsWXTu3BlLly7F6tWrAejGrubw3nvvQavVYu7cufm2zS2fnPEVJH99f2RlZeHatWuoW7cuoqOjDb63p0+fjvT0dOzduxc7d+7El19+iY8//hjTpk3L9e4mQLeSvKm+z3lVZXb09Zp9u3HjhlG7wjqBXlh+ra2ZvD47UsT9119/YcGCBejduzd+//13dOrUCRqNBhqNBp06dcLvv/+OXr16YdGiReLv6pya5n7W9fVamCfmp06dKuomJiZiy5Yt2LlzJ5o1a4bU1FQAukcp/fjjj2jTpg0uXryIFStWYPr06Zg2bRp69+4taTxXrlzBpEmTEBAQgIULF2LVqlXw8PDAsGHDjFYZ1++fuLg4k77MecTYiwRPPjKyQq1WY8GCBVCpVOjYsWO+7QcMGABAd4Yp+9kstVotns3Rt5ES/RfwkSNHDOwHDx7EihUrTL4nPj4ea9euha+vL9q1a1cg/QcPHiA5OdnoWRimeOWVV1CpUiX8+uuvRldJfvbZZ3j8+DGioqLEZwI1atQIISEh2LVrl/h8PT0LFy7EtWvXEBkZaXSrsJ+fHzp37oxdu3ZhyZIlKFmypNHZIUuxZj/nJDo6GpmZmZg0aZLBpflnz57FmjVrULx48QLHmZuul5cXPvzwQ1y4cMHo9ZSUFKMBgTlY2p+WMGTIEBQvXhyVK1eW/Ivc0s8qEeGtt94SnyWqP8usr7vs9deqVStER0fjm2++we+//y7ay5Qpg549e+LYsWP44osvDPpfz19//YWUlBQAuhru1q0brl27ZvJscFxcnPgcGql4+vQp7t27Z3AWPbe6X79+PX755RfJtAcPHoyEhAQsWrTI4Larr7/+WpwYvXXrlsF7fH19ER8fL06UMgzDFBQ+6Zw71px0tkbby8sL1apVw6VLl0zeLpuT4sWLw8/PD//++6/ZJ6TOnz8PAOKVm/p+OnTokNH3MxHh0KFDBu2yY2qf6236GjHF8OHDcf78eXz66afo2bOnWc+qO3z4ML7//nuMGzcOlSpVyrf9P//8Y3JSNmd8Bclfj1KpRMWKFbFw4UIAursZ9Fy7dg2+vr549dVXDd6TkpKCU6dO5ZtHYVBYJ9CrVq0KV1dXnDhxQhzTZacgxwZrasZc8tofd+7cwbVr11CxYkWDqx4zMjIwePBgFC9eHAsWLIBSqcSGDRtQsmRJlCxZEhs2bIBSqcSCBQvg4+ODwYMHGzxD09LPuqenJ6pXr44bN27Y5PZhLy8vREZGon///rh+/br42CT9Mbh9+/ZGj3qQ8sS8RqPBgAEDkJqaipUrV8Lb2xsVK1bErFmzEBsbKz7+SU9ISAhcXV1x8uRJo7GxVqvFsWPHJIutKMCTj4xs+OyzzxAaGorz58/jk08+MevZP82aNcOoUaNw8eJF1KxZE+PGjcPYsWNRs2ZN/Pvvvxg9erTJQZf+Ns7sG6B7VkROu/75EUuXLhUHfZGRkQgODsbs2bPRvn17TJgwAZ07d0bLli1NDkzXrFmDxo0b49GjRyhfvjxmzpxpcoGONWvWYPv27UbvX7duHZYuXYolS5ZgypQpaNy4MTQaDYYMGZLvPlIoFFizZg3c3d3x+uuvo2/fvvjggw/QvHlzzJw5E5UqVcLMmTPF9oIg4JtvvoGbmxsiIyPRu3dvfPDBB2jXrh3GjRsHf39/LFq0yKTWsGHDoNVqERsbiwEDBhT4AeuW7mdTjB8/Ho0aNcLatWvRsGFDTJw4EYMGDRL34cqVK03eNrRz506DOti5cyeA/GtHXy+lSpXChg0bkJycjLCwMHTo0AHvvvsuRo0ahcjISJQpU8bkM2Hyw9L+tISAgADcvn0bly9fNnqgdEGx9LO6fPly8Rkw5jxj5ssvv0SZMmUwZMgQg4Hn119/jdq1a+P9999HWFgYhg4digkTJqBPnz4ICQnByy+/bDAZ+vXXX6NatWqYPn066tati3fffRfjx49HZGQkAgMDLbrKwxT6BWemTZuGt99+G7Vq1cLjx4/Rr18/8Vkx/fr1g7e3N0aNGoWePXvivffew2uvvYZ+/fqZfHC4NSxbtgy7d+9G9+7dERUVZfBaqVKlsGTJEiQlJWHQoEEGP4patGiBtLQ0tGvXDh999BE+++wz8QcSwzCMpfBJZ/Ow5KQzAKSlpeHrr7+Gk5MTevXqZdZ7Ro8ejZSUFLz11ltGz7MEdFe3ZX9uXefOnfH06VODx+L88ccf4mTyl19+KdqvX7+O77//Hn5+fmjSpAkA3TPtmjdvjgsXLmDVqlUGWsuXL8elS5fQokULk8/L/PTTTw1ur1ar1eLtsHn1f4sWLdCkSRN4eXlhxIgR+ewRHaNHj0bZsmWNFpHJjYSEBHGhCj27d+/Gvn37ULNmTdSrVw9AwfLPyblz54xsQUFBePr0qcEJcI1Gg3fffdfklcO2oLBOoDs7OyMqKgrx8fGYMWOGwWu7du3C7t27UblyZbzyyisWx2xNzZhLp06d4O3tjdWrVxv0ExFhwoQJyMrKwsCBAw3eM336dFy4cAHz5s0THz/h5uYGDw8PeHh4iOP30qVLY968ebh48aJRPVr6WR85ciQ0Gg1GjBghXomoJy0tTXzGulQQkXiyQk9ux+ALFy4Y9XlBmD17Nv78808MGTLEYFGkESNGoEWLFti4cSO2bt0q2l1cXNCzZ0/ExcUZHPMAYOXKlbhy5YpksRUJJFs3m2H+48aNGwSA2rRpk2ub/fv3EwAaOnSoaAsPD6dWrVrRjh07TL5n9erVBIBWr15t9NqqVauoQYMG5O7uTu7u7tSgQQNatWpVrrrWblOnThV9Xb9+nbp160alSpUSNTdu3ChqZG8bHh5utsaAAQPE9w0YMMDo9VKlStErr7xCa9euzb0TTHD27Fnq3r07lSxZklQqFQUFBdGYMWPo0aNHJtufOXPGoH1gYCCNGDGCHjx4kKuGVqul8uXLEwC6dOmSRfHp6yZ7/kSW7WcioqCgIAoKCjKwJSUl0QcffECVK1cmZ2dnKl68OHXo0IGOHTtmFMfUqVMLVCP79+838Pfvv//S4MGDKSgoSNR+6aWXaPTo0XT8+PF8888NS/vTFPr6unHjRq5tctvPACg8PNzke/T7MOe+IDLvs3r37l0qVqwY1alThzIzMw1ey2s//fDDDwSA3nnnHQN7SkoKzZ49m+rVq0ceHh7k5uZGFSpUoM6dO9P//vc/Iw21Wk1TpkyhqlWrkouLC3l7e1Pt2rXpo48+ooyMDJM5m6o7U/sk+1a8eHGqV68eLVy40CiG06dP02uvvUbFixcnLy8vCg8Pp7179+Z5HDSFfn/lPHZ5enpS6dKl86yXqKgoAkCLFy8WbUlJSfTWW29R2bJlSalUGvnW55lXTTEMU7Swdtz36aefkp+fHwGgGTNmGL0nt+PdqFGjCAAFBgbS2LFjacyYMRQQEEAAaPTo0SZ127dvT0uWLDHYAFCVKlWM7FWqVCEAtGTJEjpx4gQR6Y59wcHBBIBef/11ev/996lTp06kVCqpe/fuRsfC1atXU+XKlQkA1a5dm6ZOnWqw6ceFAwYMoG3btonv038vf/bZZ7RkyRL6+uuvafLkyeLY6vPPP8+3P7Zt20Z169YlABQcHGyk3alTJwJAnTp1Mti3Wq1W1C9btiz169ePJkyYQAMHDqSXX36ZBEGgDRs2iO3v3r1LJUuWJEEQqFu3bvT2229TqVKlKCgoiABQ9erVqUePHjR06FAqUaIEAaB169YZxPrvv/+KPjp16kSTJk2ijh07iuPdy5cvG7TX77fIyEgKCAigMWPGGPR/zu9/c78zTY1pso/dv/3223z96j8HTZs2JW9vb2revDlNmjSJoqKiyMnJidzc3OjPP/+UJH99X06ePJn69+9PHh4eRnH++OOPBIB8fHxoyJAhNHr0aKpVqxaVKFGCIiIijL6r89tXpsY5eY0jcxuvHT58mNzd3UmlUlGfPn1o0qRJYjyVKlWiuLi4fHVNERcXRxUrViQA1KJFC4N97+7uTocPH87XB5E0NWOK3MbT33//PSmVSvLw8KBBgwbRhAkTqF69egSAGjZsSKmpqWLbc+fOkUqlorZt2xr5z20/tWnThlQqFZ07d060WfpZ12q11LNnTwJA/v7+NHz4cJowYQJFRUWRr6+vwTEsO/n9ztDvk/DwcLGmx48fL+ZftWpVSktLIyKirKwsatiwofgZe++996hXr17k5uYmHoPN/Q2l3185++/s2bPk7OxMFSpUoKSkJKP33Lhxw+T4+f79++Tv708AqG3btjRp0iTq3LkzOTs702uvvWbyN9GLOl7myUeGMZOgoCCjLwxzCQ8PN+uAaG47uXL//n1ycnKipk2b2jsUm6MfZJmacGMYe2Fq8rEweVEHUwzzIsMnneV10tmUj9w2UycRN23aRK1ataLixYuTSqUif39/ioiIoC+//NLohNWFCxeoefPm5OrqSqGhobRr1y4x92vXrlF4eDi5uLhQSEiI0cSjnps3b1J0dDSVLVuWnJycqGzZshQdHU03b940aqv3nZqaSu+//z4FBgaSs7MzhYaG0oIFC0ir1Rq0l2IiqVGjRmb5zT7Zdv78eXr99depWLFi5OHhQa1ataKTJ09Klr9+UygUVKZMGWrVqhX99NNPRu1/+OEHqlu3Lrm7u1PJkiWpZ8+edO3aNZOTQraafCSy7AS6uZOPRESPHj2i0aNHU1BQEKlUKipZsiR1797dYOItP2w9+UhEdOjQIWrXrh35+PiQs7MzhYSE0JQpUyg5OVlso5988/T0pFu3bhn5yG0/3bx5kzw9Palhw4aUlZVl8Joln3WtVksrV66kl19+mTw8PMjd3Z2qVKlCw4YNo9u3b5vM2dzJx+ybh4cHhYaG0oQJE4wmouPi4mjQoEFUrlw5cnV1pZdeeokWL15M169fL/DkY0ZGBtWuXZsEQcjzt9yyZcsIAPXo0cPAfuvWLerVqxf5+PiQu7s7NW3alA4ePJjrBRkv6nhZIDLxECyGYYwIDg7GwIEDrbpVNiIiAsHBwXmujmdJO7kyYcIEzJ49G+vXrze6lbOoc/PmTVSoUMFgNWOGsTf6upw6dapVxy5L0a90fuPGDbMWj2AYhpErjjruGzhwIG7evGnyOXLWtLOUiIgIHDx40ORzluXsu6Dov28HDBjgsON4hnlRCA4ORnBwsOTHP3N5UcfLTvYOgGEchb59+5r1MHRTDBw4ED4+PpK1kxNqtRpLlizBrVu3sHLlSlSvXh09e/a0d1g2x8vLC0OHDkW5cuXsHQrDMAzDMAzDMAzDyAaefGQYM8n5sF5LyPmw4IK2kxNPnz7FpEmT4OrqildffRVLly41WoXsRaBEiRLi4jMMwzAMwzg2jnrSuXPnzmatYmtuO4ZhGIaRAp58ZBimQAQHB8vy9heGYQAfHx9MnTrVZo8C0Os42hXcDMMwOXHUk86dO3eWtB3DMAzDSAE/85FhGIZhGIZhGIZhGIYp8syfPx8+Pj52u+vwwIEDOHDgAMaOHftCnbDnyUeGYRiGYRiGYRiGYRiGYQoFhb0DYBiGYRiGYRiGYRiGYRimaPLCPfNRq9Xi/v378PLygiAI9g6HYRiGYRjGYogISUlJKFeuHBQKPpfsiPCYlGEYhmEYR8aS8egLN/l4//59BAYG2jsMhmEYhmGYAnPnzh0EBATYOwzGCnhMyjAMwzBMUcCc8egLN/no5eUFQLdzihUrZhPNXr16YdOmTTbRspcm6zm2nj00WY/15K7Jeo6tZw9NW+olJiYiMDBQHNcwjoc4Jv3pOxTzcLeJZq8PPsemzz+wiRbrFQ1N1nNwvVnL+buX9WStZw9N1pMOS8ajL9zko/62lmLFitls8lGlUtlMy16arOfYevbQZD3Wk7sm6zm2nj007ZEj367ruIhjUg93FPP0sImmysnJZlqsVzQ0Wc/B9fi7l/VkrmcPTdaTHnPGo/yQIIZhGIZhGIZhGIZhGIZhCoUX7spHhmEYhmEYhpELizcHYmxUAgBg6dYAXL/njor+KRjW9S7cXLVITVOYbc/Px7lrnpi3vrxZbaXWs9aHJXHIUU/qOKztQ1vryaVm7FGjDMMwjDE8+cgwDMMwDMMwduLDr6tg0x4BEIBzMV5QKgkajYC1v5TD3sUn0WpkfZy5kr/925/K5euD4Ip354ea1VZKvYL4sCQOuekVRhzW9KGt9eRSM/ao0aMrj/MEJMMwjAl48pFhGIZhGIZh7ARBwNkYL/H/2izdc5POXPHCoE9r4MwVL2gpf7s5PgDBLnoF8WFJHHLTK4w4rOlDW+vJpWbsUaNLtwZgXJ/bYBiGYQzhycd80Gg0yMzMLJCPEiVKIC0tTaKI5KnJeo6tZw9NR9VzcnKCUqnkRR4YhmEYydB/pRA9tymVhOv33KFUElydtShZMhOCAKictEghJ1SsmIrMrOePb1cIujfrJlR0GLctASDNzLZ52y3RK5gPS+KQl17hxGF5H9paTy41Y48afZzqjLQ8llUoUdovz9elxtF/U6hUKiiVSkl8MQxjX3jyMReICA8fPkRCQkKBfQ0cOBA3btwoeFAy1mQ9x9azh6Yj6ymVSpQuXRre3t48CckwDMMUmOyTjno0GgEVA56hYXgSIiPVcHZ+Pknp5qJBarp5P8gN2w4EkPt3YW5+pdCz3oclcchPT/o4nmta4sPWenKpGVvrFffKxA0n31zfN3DkGNxw8jZLQwqKwm8KHx8flClThsfcDOPg8ORjLugnHkuXLg13d/cCHewEQUBwcLB0wclQk/UcW88emo6oR0TIyspCYmIiHjx4gNTUVJQtW1aaABmGYZgXEgGEsCpJoBzPlasdkoS5n17DnSwfeHj6QRDcQSTA1VmL4HKpuHnfDWkZCgiCbvLS1VkLApCew5a9LSAACDKrrTl2S/Ss9WFJHHLUkzoOa/vQ1npyqRlb61X0TxWvljT5eXd2QXCZ0lIeQvJEiHvssL8piAgpKSmIi4sDAB5zM4yDw5OPJtBoNOLEY4kSJQrsT6lUwtXVVYLI5KvJeo6tZw9NR9bz8vKCi4sL4uPjUbp0ab4dhGEYhrGa6SNiTK52/VbXu7jjURzVS3tDq/VAeoYCLs5alPLRQKFQoXoFDR4lKAzsAIxs2dvGPlHAzxdmtZVaz1oflsQhRz2p47C2D22tJ5easUeN5oVSoYCri7N1BwsrcPTfFG5ubgCAuLg4HnMzjINjuwdOOBD6Zzy6u7vbORKGYeSKh4cHiKjAz4RlGIZhGFNkCQpAEODu4mLvUBiGsQCtVkDsE2fcfuiK2CfO0GoF0ZaarhRtjHnof5PzmJthHBu+8jEP+LkSDMPkBh8fGIZhGCn48Osq2LRHAHLcdr3nn5L4Yu4d3LjvjrQMV/HWzsdqZ4SUf4Yrtz2Qkvb8ls/4BGdAAFKz2XK2BQTciXU1q62UegXxYUkcctMrjDis6UNb68mlZuReo1WDnkGhyP0WbUYHj7kZpmjAk48MwzAMwzAMYycIAs7GeIn/12bpfmj/e9MD8QkqeHjpJiz0i9KkpClw84GbOHGit6em629oyr2t/nVz2kqpVxAflsQhN73CiEP/Pkt82FpPLjUj9xp9lKCCn28GGIZhXgT4tmvGKp49e4Y7d+7g6dOn9g6FYRiGYRjGoRGE5ytZ61EqCVkawcguCM8XvzDHb0HbFiUfjhgz5229D0eImWEY5kWBj3iM2WzevBktW7aEl5cXPD09Ub58ecyePdveYTEMwzAMwzg0RBCvktKj0QhwUpKRnQhwcdYa2XPzW9C2RcmHI8bMeVvvwxFiZhiGeVHgyccXlAsXLuCNN96Av78/XFxcUK5cOfTt2xcXLlww2X7ixIno2bMnvLy8sGLFCuzZswd79+7FiBEjbBw5wzAMwzBM0UEAIaxKEmqFJEEhEFROWigEQrXgZyjpkwlXZy0AgiAQAIK7qxbBZVPh7prD7qKFW05bjrY6zGsrqV4O+08/rUaDBgIaNFCgQQMFXnnFFd26hWD27JFISX5gdRy56VkSs6R6hRCHVX1oaz0L4oiObogqVZ2xc8fXJvfp7l36WhEMakb/97lzf4htDx7YiClT3kDXrlXQoIGAEcMjrK5RW9RMKR9eQIVhmBcHfubjC8jWrVsRFRUFX19fDB48GBUqVMDNmzfxzTff4IcffsDGjRvRpUsXsf3Bgwcxa9YszJgxAxMnTrRj5AzDMAzDMEWL6SNiMDYqAQCwdGsArt9zR0X/FER3u48Hgg+C/FORlKJAeoYCLs66CQuFglA16BkeJagM7ACMbNnbxj4h+PmmmdVWar3sdi/3LADAxx9+iOCgIMQ/zcQff/2BLVuW4uSJn3H++B+oGmR+fPo4ctOzJGap9aSOw9o+tLWeOXHcu3cF58+fRHBQefy+9zuMHDLIaJ+WLZkOAHhn7EeoGBwEL3cNACApRYnMLAGN6gaIC7f8uONrnPznNGq9VA9JiY/h7qpFNQvys0fNMAzDvCjw5OMLxrVr19CvXz9UrFgRhw4dQqlSpcTXxowZg6ZNm6Jfv344e/YsKlasCACYM2cOmjRpwhOPDMMwDMMwEjOyxx24uXoAAMb1uS3a0/67QUkhkMlFKRQK0/a82iY+0xi8bolfKfT09hLeusmY19u0Qv26dXQvjuyL8ZO8MXfhYuz46RdE9exucRy56VkSc2HoSRlHQfrQ1nr5xfHNyu9QulQpfPn5Z+j+xgCkJsXAzcVwERaFoJugi+ra/HmtGKFrs3blUviXKweFQoGaDRoDIIvzs3XNMAzDvCjwbdcvGF988QVSUlKwfPlyg4lHAChZsiSWLVuGZ8+eGTzL8c8//0TNmjXRu3dv+Pr6ws3NDQ0aNMD27dvFNs+ePYOHhwfGjBljpHn37l0olUrMmDEDADBw4EAEBwcbtRMEAdOmTRP/vnXrFkaMGIHQ0FC4ubmhRIkS6NGjB27evGnwvgMHDkAQBBw4cEC0nThxAq1bt4aXlxc8PDwQERGBw4cPG7xvzZo1EAQBJ0+eFG3x8fFGcQDAkCFDTMb8119/oW3btvD29oa7uzvCw8Nx9OhRo3b37t3DoEGD4OfnBxcXF9SoUQOrVq0yamcKQRAgCALmz59v9FrVqlUhCALefvvtPPPKK7d//vkH7dq1Q506deDp6YmWLVvizz//NGizbNkyKBQKbN68WbTdvHkTgiBgzZo1ou3KlSvw9fVFnz59DN6fkJCAsWPHIjAwEC4uLqhcuTKWL18OrdbwWTdarRZfffUVXnrpJbi6uqJUqVJo27atmIt+X+S2RUREAHheE/rNxcUFr732GmbMmAHK8SAeff7FihXLNX+GYRiGKSwWbw5EapoCqWkKzFtfHqO+qIp568sj7b8VcrUkIPaJM24/dEXsE2dotbrVLLRaY7spW/a2qelKs9tKrZfd/lit+u9vQ7916rYAANy4dQtarYB/rydjyJhpqFbvFXj6+aNY2UC07dwdvx/51yiOW/e1mDv/a1R6qT5cS/ihbKVQdIl6A3+duovbD11x4swDCJ4+uW4RbTsY5PIwNh6DR7wNvwpV4FrCD9XrN8WCZd8b5H3p8i28+lonlKkYAhff0ggMrYEBQ8fj7L8pYmwHDh2G4OmDlWt/NorZo7Q/evR/W7Q9efIU4ydNRrV6r8CjtD+8yujyPXPunME+3frznxA8ffD91h1G+9/Tzx8DhowQ7V8t2wTB0wfHT/5j0Dbu0RMInj6Y+tlMA/vf/5xFuy7dUaxsIDxK++ONAYPwy97TRv195UYKxrw3CYGhNeDiWxoVatTFpI8X4UG8k9k1s3bjFnTr1Akd2rWFt3cxLP92m3HNkO7fh4+d8607/3KBeJTgitsPXZGlEQCYX6O/Hzwi1sK+w5cM2t+5+wDKYr5iP+p9DBgyAh6l/Y18f791BwRPH2za/pdBzCv+9xM6de0BtxJlULJ8RbwxeAju3H1gEF/UwDdRonwFxFy9Jh4j1ny3DoKnD27euiXaNm/dDoVXcSz7ZrXB8eTfy1fQvW9/+AYGw7WEH7p27YqdO3caHXcSEhIwbtw4BAcHw8XFBQEBAejfvz/i4+ONxtGmNv3viWnTphnYvby80K1bN4PfiWLMmzejXr16cHNzQ8mSJfHGG2/g3r17Jo+LDMMUPfjKxxeMH3/8EcHBwWjatKnJ15s1a4bg4GD8/PPPou3x48dYvnw5PD09MXr0aJQqVQrfffcdunbtinXr1iEqKgoeHh7o0qULNm3ahLlz50KpVIrv37BhA4gIffv2tSjWEydO4NixY+jduzcCAgJw8+ZNLFmyBBERESa/RPVcvXoVERERcHd3x3vvvQd3d3esWLECrVq1wp49e9CsWTOL4siN33//He3atUO9evUwdepUKBQKrF69Gi1atMDhw4fRsGFDAEBsbCxefvllcZKwVKlS+PXXXzF48GAkJiZi7Nix+Wq5urpi9erVBm2PHTuGW9kGIdZw4cIFNG3aFMWKFcNbb72FMmXKYNmyZYiIiMDBgwfRqFEjAMDQoUNx+fJlDBgwAMHBwWjQoIGRrydPnqBDhw6oVq0aVq9+PhBKSUlBeHg47t27h6FDh6J8+fI4duwYvvzyS2RmZhpMqg4ePBhr1qxBu3bt8OabbyIrKwuHDx/Gn3/+ifr162Pt2rVi28OHD2P58uWYN28eSpYsCQDw8/MziOmDDz5AtWrVkJqaitWrV+ODDz5A6dKlMXjwYKP833//fahUKpP5MwzDMExh8eHXVbBpjwAIwLkYLyiVBI1GwJ5/SuKLuXdw/Z4b0jJcIQi6RSoeq50RUv4Zrtz2QEqaQrTHJzgDApCazZazLSDgTqyrWW2l1MtpT0rR/QS58cANHrc8RB+nz98BAPj4+OLfWx44+c9l/Lr7R7Rs2R29goIhaO5iyYo16NS9DTZvvoCSJcshPsEZGq0Gb771Ok6c2IfXXuuNqKjRcFc9xs5dh3DkeAwiIqrjQbwLAOD1dr3R6OXXxZhdVIRFiz9ASpoCd2J1+zk1NRUDBkTizp2riOo9AqX9KmLfvh8wZvwQ3I9NRr9+o5GapkBiUhq8fcpjwIBIVCrvgiN/xWD9xiW4cTsWc+fuxGO1MzT/TUg9VqvwKMHZYN8RAWkZSnEfJcafwubtv6JFi+7o2q0CHj+OxfZtyxHetgO2bz0Hz2IBAAQ8euoMALj3yFWMWb//AUCd7CTan/w30XvjoRsUHs/bpqe6AwDi1Sqx7dWrFxAd3Q4+3l4YOOBdEJyxdetidOnZBmtW/Y5aYY2QmqZAenoKoqPb4tGjexg2eCBc3Cvh5Kk/MWvOFNy8E4cpH87Nt2YuXPgLN25eQ+Om30ChdEGL5l2xcfP36Nqjj0HN6PvtzoMUuF5O1j0DVQDS0tMhCAK8vUuYrNHMLAHP0hS4lK2+8qrR27GuAAAXF1esWLMe773XSIx5+cofoFI5Iz09DY/VKvx7ywMh5Z9BnewEIoj9qvd975HOV0KySvy8bd/xLSZPGYzq1V/C8BGfIynxIdatX4gDR45j7dpTKFbMB0TA+xPX4NbtFmjfvSf+2r8PxYv7GB0zjp/8GwOGDse4t0dg6OBo0X7h4iW80roN/MuWw8R3xsHD3R3fbvwenTt3xpYtW8THaiUnJ6Np06a4dOkSBg0ahLp16yI+Ph47d+7E3bt3Ua1aNYMx9/Lly3Hp0iXMmzdPtNWqVcsgJn37+Ph4fPXVV+jRowfOnz+P0NBQALqLI6Kjo9GgQQPMmDEDsbGx+Oqrr3D06FH8888/8PExzpNhmKIFTz6+QKjVaty/fx+dOnXKs12tWrWwc+dOJCUlwcvLS7xS7KeffkJ4eDgA3WRUvXr18M4776B79+4AgP79+2PdunXYs2cP2rZtK/r77rvv0KxZM5QvXx4AoFAojK4+M0X79u1F33oiIyPRuHFj7N692+hLT8/EiRORnp6O48ePo0aNGgCA6OhohIaG4p133jG6ItAaiAjDhg1D8+bN8euvv0IQdAPLoUOHokaNGpg8eTJ+++03AMCHH34IjUaDc+fOoUSJEgCAYcOGISoqCtOmTcPQoUPh5uaWp16HDh2wfft2/P3336hXrx4AYNWqVejatSvWr19vdR6TJ09GZmYmjhw5Ao1GgypVqqB///4IDQ3F+++/j4MHD4pt58yZg6tXr6JTp044fvy4gZ/MzEx069YNWVlZ2L59O1xcXMTX5s6di2vXruGff/5BlSpVxP3k6uqKRYsWYfz48QgMDMT+/fuxZs0ajB49Gl999ZX4/vHjx4v18sYbb4j2rKwsLF++HJ07dzZ5VSoAtG7dWrwaskmTJqhVqxZOnTolTj5mz1//mIHc8mcYhmGYwoAg4GyMl/h/bZZuTPHvTQ/EJ6jg4aWbINEPnVLSFLj5wE2cONHbU9P1NzTl3hYA0tIErF+vwL17gL+/gK5dAVfX3P0WVA8QTPj4b0LuSRIePHyC9PR0nDlzFCtXfgoXFzfUqtsZKWkKVK5cC1u2XIFCoQBA8PHKQp2Gg9GjRzVs374Kb745BanpCuzc+S1OnNiHceMmoU+fz8W2r3WY+t9K4oIYT+UqdfH66/0MeuCb1bP+myTU5bJt2wpcv34Jc75Yg/CI/gAEdOs2HEOGhGPhoo/Q7vXB8PAohqpVa+DjjzuLenVfdkJqWhZ++eV/Yt4PH7uI+0Gf9/N9h//2na6tV4n6+OGHy1Aonp/Ef/31fujRoxo2fr8ab775kegLADIyn8es3/9EEK/60/sGgPR00/2XmfW87dKlU5CVlYnv1h5AMZ8QAALat2+K7t3b4YsvJ2H58gMABHz33TzcvXsN3313CrVqVEBCkhM6dByOkiXL4bvvvkDfvuPhrCqbZ8388ss6+PkFomq1prj5QIMWLXtj67bVuHz5IkJDq4g1o8sRGDGiNXLi7OyCo0fTcq1RrVZAaj71rI8nPUMXW0REF+zatR5jxsyBSuWM1HQFtm//HyIiumL37vUG9azbzxD7NWfMOv8Ckp5pMHfeJFSqVBPLl6+Hi0tNAISGDZpgyLDOWL9+PoYO/RgAoCF3LF/6PSK7NEO3vv2we8dWg5zv3L2LTr36oHWLCHwx/VOD18a8PxHlAwJw4tB+cSzeukNHREdHY8KECeLk4xdffIHz589j69atBs/5nzx5MogIgiAYjLn37t2L27dvG9hykv01Hx8fREdH4+zZswgNDUVmZiYmTJiAmjVr4tChQ3B11U3Ovvrqq+jQoQPmzZuHjz/+OFffDMMUDex623XOy7QFQUDVqlVzbb9ixQo0bdoUxYsXR/HixdGqVSujSRA5k56aie3z/sTSUbuwfd6fSE+17QpnSUlJAAAvL6882+lfT0xMFG0NGjQQJx4BwM3NDSNGjMDDhw9x6tQpAECrVq1Qrlw5rFu3Tmx3/vx5nD171uALqXTp0oiLi0NGRt7PO8k+IZeZmYnHjx+jcuXK8PHxwcWLF43aq9VqxMXFYc+ePWjTpo048QgAJUqUwMCBA/H3338jNjY2T11zOH36NGJiYtCnTx88fvwY8fHxiI+Px7Nnz9CyZUscOnQIWq0WRIQtW7YgMjISRCS2i4+PR5s2baBWq8X9lxd+fn5o3769eEVhSkoKvv/+e0RHR+f6HrVabaD35MkTg9c1Gg1+++03dO7cWZx4A4CyZcuiT58+OHLkiEENKBQKbNiwASVKlEBkZCSePXsmvjZ8+HAcP34cP/30k9Ht/Js3bxY/t9njadKkCTQaDQ4dOgQA2LJlCwRBwNSpU41y0U/uWop+H9y+fRsrVqyAVqtFixYtrMqfYRiGKZrIYTwqCLotO0olIUsjGNkFAUjPUBjZc/ObvW1amoA33wTmzwe2btX9++abQFpa7n4LopeffeTI1mjdujQ6dAjEhx/2hru7J+bM2YrixQMhCLrJJd3EI6DVahAb9xQeHp4ICgrF5cvPx0/792+Fj09J9OzZz0gvvzGEIACkNWxz7NgvKFGiDF5r3UeM2clJhd69RyMlJRmnThmenHz2TI17Dx7hxIl9OHr0Z9Sp00z0nfHfZPKzZ0lISIg32HLGAbhBqdTlq9FokJDwGB4enggODsXly/8YxZ7Tp1odDyLjWgKA5GS1QdvERONx4Z9//oaIiM7w86ss+ihZsjTatOmDM2eOIDlZNy7at28zatduCm/v4ngY+wRqtc5nw4atoNFocPr0oTxrJisrC3v2bELr1r2gUOgm/ho0aAFf39LYtetHcX9k9/H++4uxaNEeLFr023/bHnz11a8m2+ZFfm2bNu0AQRBw6JDuLqt//jmM2Ni7aN26V64+su//h7FPkJKSZODz4sWTePIkDt27jxAnBQUBaNKkA4KDq+Lo0Z8NfBcrVgY///A9/jr5N0aMGy++lpz8DJE9eqNkiRJYv2ql+NkAgCdPnuL3g4fQs2sXJCUlIz7+MeLjH+Pp06do06YNYmJixFuct2zZgrCwMIOJx+f61o259eP7S5cuYcOGDfDw8MDLL78MADh58iTi4uIwYsQIceIR0F1oUrVqVYM77hiGKbrY/crHGjVqYO/eveLfTk65h3TgwAFERUWhSZMmcHV1xaxZs/Daa6/hwoUL8Pf3t0W4VpOemon3X1mD62dioVAK0GoI+9eew+yjA+HiprJJDPpJRf0kZG6YmqQ0NQivVq0aAN2z/3x9faFQKNC3b18sWbIEKSkpcHd3x7p16+Dq6ooePXqI72vSpAlmzZqFyZMnY/To0QZfQtlJTU3FjBkzsHr1aty7d8/gaklTOXTu3Fn8v/4S/9zizXl7rqXExMQAAAYMGJBrG7VajczMTCQkJGD58uVYvny5yXZxcXFmaUZHRyM6OhpffvklNm/ejOLFi4sTaaZo1apVnv4ePXqElJSUXPeVVqvFnTt3DCZxNRoN4uPj8fDhQ3Hi8+uvv8aJEycgCILJfomJicHZs2eNJiX16PO/du0aypUrB19f3zzjtoTsNaFQKDB58mR069YNgHX5MwzDMEUTe49HTd0QotEIcFKS0WtEgIuz1uDqubz8Zm+7das3rlzRXamVpVtwGleu6CYi+/Qx7bcgevnZ339/EcqXD4GTkwq+vn4ICgqFQiHAxTkLqekKaLVabNz4FX744Wvcv38DGo1GfK+3dwnx/3fvXkNQUKjYb5bGLORYdfjBg1soX74K3FyB9GxDm+DgauLr2Xn77bY4f/4vAEDjxm3x+eebRN/OTjrfn346KN84VE5Z+Gb1YvzwwxKjfIsVK2H0nk8/HZyrr5yMHGl85WB2nj59hLS0FJQvH2K074KDdeOi2Ng78PT0xu3bMYiJOYtWrUqb9PXkSVye+/+vv37D06ePUKNGQ9y+fRXFPLKQ+MwJ9eo1x2+//YRRo7T/1YFWzKVGjYaoXr0+9IvLPL9qUZoa1ePkpEK7dm9g585VaNmyO3buXI0WLbrB07OYkQ8iIDX1GVq3Nj3G1fPwoa5egoKejzn1PoKDq+L06SNG9vtJSUhNTcXKNf/DmXPnAQCDRryNM+fOo2yZMga1AQBXr18HEWHKp9Mx5dPpJuOIi4uDv78/rl27Jo6HpSL7ON/T0xPr1q1DYGAgAIiPiTI15q5atSqOHDliZGcYpuhh98lHJycnlClTxqy22a+oA4CVK1diy5Yt2LdvH/r3718Y4UnGr0v/xvUzsSAtQaPVfWlePxOLX5f+jc7jXrZJDN7e3ihbtizOnj2bZ7uzZ8/C398fxYrpvmTzuyU4O/3798cXX3yB7du3IyoqCuvXr0eHDh3g7e0ttunYsSMGDRqEL774Al988UWuvkaNGiU+57Bx48bw9vaGIAjo3bu30UIlgO624CpVquR7W7kU6PW/+OIL1K5d22QbT09PPH78GIDuVoTcJipzu308J+3bt4ezszO2b9+O1atXY8CAAQZnPHOyePFihISEiH8nJiYWeKAxZcoUpKWlYefOnejVS3cG+MSJE1iwYAE2bNiAESNG4MSJEwZxabVatG7dGu+//76Br7t37yIgIMAgRqmZM2cOwsLCkJmZiV27dmHWrFlwcnIyeXUlwzAM8+Jiz/GoAEJYlSRQjmc+Vgt+hpI+mSClFmkZJD6zzt1Vi+CyqbiSafg8PXcXLSjHMxhztr13T6W7ojLr+cSNUkm4dy8PvwXQ00EmfOjGwvXq1EeNmvVz9bFw8edYuvQjdOwYjdGjPkaNym64H++Oz2eO/28sRnB30ea4is2Uns4OACoVATDcn85OBKXiuR3QrbKcmw/n/3zo9SZ/OB8eqns49Od1LF8xCzNnDsMnn6yFu6sWZUqkAwDefHMK6tRpCiLA1VkLAvD2qM6iX3dXLTau/wzz5n2Gjh2jMWzYJyhWzBduLsC8eeMgQGOgCQDDhk1GzZrNxFxcnbV4e3RnOCmz56JrO/nDhShTNlRsm5WpxthxPaBy0rf9b/84kck+BABXF90+J9KiUaPWeGvweASUTsPdOFekZTzvw9CQynnWzK+/6j5Dkyb1NPmZOHXqAJq9Go7gsqn/7Wv8Fx+ZVXf6PlQqCG6uWrNq1MVZK/Ztx47ReOONurh581/s27cZixZuQ2bW832v9+GkJLi4uGLu3J3i/g8onYYdu05iydLP/ttvJE5AZ+8/vQ+l4nl++vh8vdLQbtx4NG7UEL26dsGY9ycCAM5fvISd329Av7eG4qPPPsf82TPFfab/bfLumFFo06qlaL8b/xQBAQEAgMqVK5vc31KwZ88eALpFSFevXo2ePXvip59+QuvWeU96Mwzz4mD3yceYmBiUK1cOrq6uaNy4MWbMmCE+GzA/UlJSkJmZKemVUoXFw+sJUCgFceIRABRKAQ+vJ9g0jg4dOmDFihU4cuQIXn31VaPXDx8+jJs3b2Lo0KGirUKFCrh8+bJR23///RcADJ63V7NmTdSpUwfr1q1DQEAAbt++jYULFxq995tvvsFHH32Ea9euiV+WOb+cfvjhBwwYMABffvmlaEtLS0NCQoLJ3OrVq4fw8HB4enqaHa+1VKpUCQBQrFixPK8wLFWqFLy8vKDRaPK9EjE/nJyc0K9fP0yfPh0XLlzId7Xshg0bon79+uLf8fGGt/eUKlUK7u7uue4rhUIhnrEEdLeaL168GF999RUiIyOxcuVK9O3bF2+99RZGjRqFpk2bon79+vj6668NVt+uVKkSkpOTjfKPiYkRnwGpb7d79248efJEss90vXr1xGc+Vq5cGWlpaZg1axamTJlicf4MwzBM0cWe49HpI2IwNioBALB0awCu33NHRf8URHe7jweCD4L8U5GUokB6hgIuzlqU8smEQkGoGvQMjxJUBnYARrbsbcsHZkBreMEUNBqgRtVMVA1Ky9WvtXqxTwh+vmlGdi933WWXwWVTUS0PvcOHNqPxy+FYvmixaNdqBUz56ClKl/RFoJ/Od7WQIPx54m8IyECAn7FeeoYC2nTdJKBf8QwE+qUZ5eHuqhXtFYIC8e/lc1AIGgMfJ5+eAwA0DPNDoF+amF/d0OpQKKrh9dcElPf3xahxb2LSu+NRN7QS4u7oxv6N6lXFa62bGWiOGauEq7NGzGPrju1o3qwpli9abBDf1GlqlCxRQtQsVVz36KLmTaogPOJVg7Zjxinh7Zkl5uLrrdOKbF0TQRUbiW0FzUOMHQeU9M5EoF8aShTzhpubOx4/uggnpWEfxsddgEKhQHgDX6Rr0xBUviI0WYmI7t1Y7BNza+bZs2c4fHgHItv3QMcOnVHMIwsKAdASkPjMCR98NBaHD/4PQ/rWh0JBKFtS12/FvTLF/ZRf3aVnKKBy0k3w5VVf2Ws0MS4NAOBfKg3hr1RBjeq1MfWjnvArXQIDejTEjl1/AgBKeGeiatAzKBQEb88sKJVKdGjTzMC3OlGNJUsBH09dzI3r6q4QTXx6Hs6qQIPPxP17/6J8YCBK+WSIPhYvW4Gz5y/g7yMHEPbSSzh/8RJWrPkWKxcvQOTr7fDZlMkYO2ESovv1RdhLLwEAKv73+0alUqFV8wjx8x1zP85gvA3oxtznz583/yBlBtnH+dWrV8elS5cwZ84ctG7dGkFBQQCAy5cvG921dfnyZfF1hmGKNnZ95mOjRo2wZs0a7Nq1C0uWLMGNGzfQtGnTfG8L1jNhwgSUK1cuz0md9PR0JCYmGmz2oExFH2g1hvdAaDWEMhV9bBrHe++9Bzc3NwwdOlS8Kk/PkydPMGzYMHGVaD2vv/46jh8/jmPHjom2tLQ0LFmyBGXKlBEXQNHTr18//Pbbb5g/fz5KlCiBdu3amYwlKCgILVq0QKtWrUz2oVKpNFqYZuHChUa3GWRHEAS89tpr2L17Ny5dumSQ27fffov69esX+JZrQDepValSJcyZMwfJyclGrz969EjMoVu3btiyZYvJL3l9O3MZNGgQzp07h2bNmhk8p9AalEolXnvtNezYsQM3b94U7bGxsVi/fj1effVV8epXIsKIESMQFhaG4cOHA9DdPp/939q1a2PkyJGYPHmywXM1e/bsiT/++AO7d+82iiEhIQFZ/9331a1bNxCRyQdOm7NAkTmkpqYiKysLWVlZFuXPMAzDFF1sMR4Fch+TjuxxB26uWri5ajGuz20sfO9fjOtz+7+rzHRX4Pn5ZqB8mTT4+WZA8d+VUgqFsd2ULXvb/m88QVgtLRQKgkqla1+nlgbvjUrN06+1em4uGpP2Ev9NiCkUeeu5OCvgojL0sWX7Njx4eB8uzlrR3r1zJJ48iceWH9Ya+ShdPB3ly6ShlI9uwk4QYFIPeB5H5/Yt8TA2Fpt+2CrGV65kMtau+xqenp5o3qxJrvllpuvGQF5uydl8Az6eWUb7ThAAD7fnPvRj3+zxbdm+Dffu3xfjc3PRwNfrv/2XSy5Ctprx9sgS97VBW8GwbQX/TLRp2Rw7f/4FN2/dEvN+lhSL7Tu/x6uNX4aPjxf8fDPQt2cnnPz7L+z5fa9Rbbgo4qDVZhrZ9fHt+PlHpKQ8w3ujo/Fmv/bo2bUTunfphJ5dO+HNfu3RPCICv+zajszMNLH+AaBMiQyz6658mTTx6k+za/Q/Hf0+HTaoDy5eOoeBfftAqYS4z308swz2syDA2Pd/V176+epibli/NkqXKoX1G1ZAKaSKbX/9bQ8uXb6Mzu1biz4ePYrFlM+m4+2hb4kTi01ebqj7t5Hu3+FvDUbYSzUxYty74hi5dOlSiGj6KpatWo0HDx8iJ9l/c3Tr1g1nzpzBtm3bjNpJMebWaDTIyMhA+n8T/vXr10fp0qWxdOlS0QYAv/76Ky5duoT27dsXWJNhGPlj1ysfs09K1apVC40aNUJQUBC+//57cTXa3Jg5cyY2btyIAwcO5PrMQACYMWOGycmMXr16QaUy/axF/eIkgiBAqVSabGMJKSkpqNLKG+Wq+uD+pafiMx/LVfVBlVbe4vMDpSQlJSVXvzNnzsS7776L6tWro3v37ggICMC9e/ewefNmPH36FHPnzoVWqxXf3717d/zvf/9DmzZt0L9/fxQvXhw7duzAxYsX8eWXX+LGjRsGevqHC2/btg19+vQxmNjJj8ePH4t+mjVrhrVr14KIUKlSJZw+fRrHjh2Dj48PsrKyxHZ3794V/42JicGbb76JXbt24dVXX0W/fv3g6uqK77//HgkJCZg/f774Pv0E2Y4dO3DmzBkAECcS//nnH3zzzTdiXPHx8UhOTsY333yDZs10DxGfNm0a3nzzTYSGhqJr167w8/NDbGws/vrrL3h6emLZsmUAgCFDhmDPnj1o2LAhevbsiUqVKkGtVuPixYs4duwYTpw4kW//JSQkICYmBk5OTvjrr7/g6upq8vXsed2+fdvgdnf9gjPZ9/Fbb72F3377DS+//DJ69OgBNzc3bNy4EWlpaRg1apTYbvPmzfjrr7+wadMmXLt2zWC/x8bGiu0GDhyIDRs2YOjQoeIt9V26dMHmzZvRoUMHdOnSBTVr1kRKSgouXryIffv24ffff4evry8CAgLQqVMnLFiwAKdPn0azZs2g1Wpx8uRJNGrUCP36ZV+Z8nmeN27cQGam4eJN+tg2bdqEkydPIisrC6dOncKWLVvQokUL8dkz2fPv06cPnJycTOZvCo1Gg7i4OMyePdtoIh8Ajh8/jo4dO+b6fqkp6nr20GQ9x9azh6Yt9XIe9xjrscV4FMh9TNooeh4q+uv689YDNzxLU8LDVYN6YcUwaNQYCM4u0GicoNEKUCoIzqrnj57JyFQY2U3Z9PZMTRpWrLiGLVu8ceeuCuXKZaFbNzWuP9Dm69cavfSMdFy4/tDIfidWN/F6O/YRvO/cz9VHw0avYOmyr9GlbzTq1a2NKzFX8OOPPyEgIBDPUjNF342bhqNBg4aYMWsWTp85h4YN6iE1NQXH/vgTPXv2QXh4Kzx8oJt8iU9Q48L1hwZ6GZmZSE3PEO2vNm+HSpVWYMDQ4dh7+AjKlAnAb7/9hpN/H8eHkybhYUISbj96hoWLF+DJ4ycIDa0MZ2dnXLx4EVu2bkNISCiU7iURc+c+7j7SjRHuxD7F2auxBjlqtYSniWnP82jSBIu/XoIufaNRq1ZdXL12Gb/8/CMCAwPF+NIz0nHjgW5M9+DxE6NciLRIfJYq2u89Uov72i1b2+RkXVyPE5PEtgMHDcNvv/+Ol1u8hj5RvSFAhU2bs42L/uurtpG98f22nejQvRe6dO6MmjWqIyk5DVeuxGDP3t3Yv28PfIsXN1kfy79dCx8fH3iWDDZZG42bvIrvN2/Giu82os1rrRH7JAEAsHrjNuw9cgJOSl37LI0CWgLq1qmDShV0z1o9ceIk/jz+N7QEPIiNgzoxEeM++AgarYA6dRqgYYP6udaovp/0+7RR07Y4fLAJfIu7I+bOfXGf34l9ipg79wEAic9SodWSUb8+eKxre+3eU5T6L8d3xo3FxA8+RO++/dD+9UgkJDzC/9Z+hwB/f7Tt0F308cGH78HF2QUDogcZ9eGNB3F4pnGBRivg3Xc/QN9+vTHzq0Xo/t9jld5//31EvfEGqtd/GT17dEdgQCAexsbi/PnzeBgbix+36yYbu3SMxPp169CjRw9069oVNWtUR4Jajd9/34+Pp01FtRzP+k9Uq5GVmYmYfy8hJ4/jdZ+rObNnAdCd6N+9Zy9u3ryJvn37imPpd955BxMnTkSjRo3QoUMHxMfH43//+x8CAgLQsWNHHnO/wHr20GQ96bBoPEoyo379+jRx4sQ823zxxRfk7e1NJ06cyNdfWloaqdVqcbtz5w4BILVanet7UlNT6eLFi5Sammpx/Ka4cuWKLpaUDNo29w9a8vavtG3uH5SWkiGJ/7w0c+Ps2bMUFRVFZcuWJZVKRWXKlKGoqCg6d+6cyfbXrl2j7t27k7e3N7m6ulKDBg1o+/btueq9/vrrBICOHTtmdswAaOrUqeLfT58+pejoaCpZsiR5enpSmzZt6N9//6WgoCDq0qWL2G7//v0EgPbv3y/a/v77b3rttdfI09OT3N3dqVmzZnTw4EEDvdWrV+sf2GPRlp1//vmHunbtSiVKlCAXFxcKCgqinj170r59+wzaxcbG0siRIykwMFDc3y1btqTly5eb3BfZ9ycAGjlyZJ77Lfvr+rxyfj4ePXpktI+JiE6dOkVt2rQhDw8Pcnd3p+bNmxv02+PHj6lkyZI0ZMgQg/fduHGDANDq1asN7OvWrSMABvs7KSmJJk2aRJUrVyZnZ2cqWbIk1a1bl+bMmUMZGc8/B1lZWfTFF19Q1apVydnZmUqVKkXt2rWjv//+2yhvfZ43btwwek1fE/rNycmJ/P39afTo0fT06VOT+etrJWf+uZHfcSIyMjJfH1JS1PXsocl6jq1nD01b6qnV6nzHM4z1SD0eJcp9TCoggcKqqCksRE0KQUsqJw0pBC21i3hE50+donNnkunECS2dPKmlEye0dOFcFmWq1XThXJaB/fzZLDqfw5az7YkTV8xuK6VeTvvUqasIAG3c8GeePo4eTaU33niHSpYsS66ubtTk5Zdp/XdHqG7dcKpbN9wgjsOHn9GgQcOpXLkK5OSkojJ+fvRa6260bdtVOnlSSzt2XCcANH78LCO9GtWqUYP6zQzshw7cpwFvvEHFi5cklcqZKld+iT76aJVB3rNmLaTq1RuQp2cxcnNzo/LlK1Pfvu/Q3r1xou+9P/1EAGjmzO+N9p2bmwd16DBAbJscF0cDB4yjkiXLkouLG4WFvULrvztCzV59VYzvxIkrtHTp7wSA5n65ySgXDw8P6tSxv2j/6KP/9vXGPw3aHjn0kADQiOFTDOw/fH+CXmvZktzdPcnV1Z3q13+ZvvnmqFF/HzyYSG+9OYEqV6xIKpUz+fiUpFq1mtCYMV/Q6VOpJmvm4P775OTkRK+/3i/Xmjl8+Cy5urpTq5adKVOtps8+/SbPcflHH60SfYwYPiXXdm+99VGeNbp61V6T+1Sft36fz5z5veijU8f+5ObmYZTL3C83EQBauvR3Ax+ff76RQkOrk7OzC3l7+1JUz570+95bot7Spbrx69pvvjHYd/o+3L3rqkFs3bu9SSVLlKDHt28QJScQJSfQtXOnqX+f3lTGz49UKhX5+flRh3Zt6IfvvhXbUHICPb59g94e+hb5lytHzs7OFODvTwP6RlH8resG7Sg5gQb0jaKg8oFGdkpOoKmTJhjsZzc3N6pcuTLNmzePtFqtwTFw06ZNVKdOHXJxcSFfX1/q27cv3b17N99jJ4+5i7aePTRZTzosGY8KRBLdzygBycnJKF++PKZNm4bRo0ebbDN79mxMnz4du3fvFq+ws4TExER4e3tDrVbnektlWloabty4gQoVKuR7Ftsccj7bzhbYWjOnXpcuXXDu3DlcvXrVJnqFTUxMDFQqFSpUqCDZLcD56b1oNeNoevkdJzp27IidO3dKppcfRV3PHpqs59h69tC0pZ454xnGOmwxHgWe9yGghgAvAABlW8G3QnAqVq+6Bg+vSgCyL/5H8PHKQkKSE7Kv+GtqFWDjtjEAqpjZVlo9631YEof89KSPw7o+tLWeXGrG1nq2rplAP93t2rkRc+c+qgSWy/X1wsDUcyYLAo+5i7aePTRZTzosGY/a9ZmP7777Lg4ePIibN2/i2LFj6NKlC5RKJaKiogDoVk6eNGmS2F6/UMSqVasQHByMhw8f4uHDhyafucfYjwcPHuDnn382uk2WYRiGYRhGbshhPCoIyLFis24V6iyNYGQXBCA9Q2Fkz81vQdsWJR+OGDPnbb0PR4zZGh8MwzCOgF2PVnfv3kVUVBRCQ0PRs2dPlChRAn/++SdKlSoFQPfMugcPHojtlyxZgoyMDHTv3h1ly5YVtzlz5tgrBSYbN27cwHfffYeoqCioVCqDFbOLAm5ubmjTpo29w2AYhmEYRkLkMB4l0m3Z0WgEOCnJyE4EuDhrjey5+S1o26LkwxFj5ryt9+GIMVvjg2EYxhGw64IzGzduzPP1AwcOGPxtycIljO05ePAgoqOjUb58eXz77bcoU6aMvUOSFD8/P+zatcveYTAMwzAMIyH2Ho8KIIRVSQIJwLkYLyiVBI1GQLXgZyjpkwlSapGWoVtVlwhwd9UiuGwqrmR6ICVN8dzuogUJQGp2W462OsistpLqFcCHJXHITq8Q4rCqD22tJ5eaccQatTCOUj68+BjDMI6BXScfmaLFwIEDMXDgQHuHwTAMwzAM4zBMHxGDsVEJAIClWwNw/Z47KvqnILrbfTwQfBDkn4qkFAXSMxRwcdZNNigUhKpBz/AoQWVgB2Bky9429gnBzzfNrLZS61nrw5I45KgndRzW9qGt9eRSM45Yo5bGwTAM4wjw5CPDMAzDMAzDMAzDOCBarcCTkgzDyB6efGQYhmEYhmEYO/Hh11WwaY8A5Ljtes8/JfHF3Du4fs8NaRmu4q2Wj9XOCCn/DFduG96WGZ/gDOS4LTNnW0DAnVhXs9pKqVcQH5bEITe9wojDmj60tZ5casYRa1SqOKoGPeMJSIZhZAVPPuYBmfOkX4ZhXkj4+MAwDMNIAUHA2Rgv8f/aLN0yt5dueCA+QQUPLwGAIC5AkZKmwM0HbuLEid6emq5/nlzubfWvm9NWSr2C+LAkDrnpFUYc+vdZ4sPWenKpGUesUanieJSggp9vBooCPOZmmKKBXVe7litOTro52aysLDtHwjCMXMnM1D17R6lU2jkShmEYxtERBN2WnadPnZCaJkAQUozapmcojNrn5regbYuSD0eMmfO23ocjxiylj6JCSoruGKhSqewcCcMwBYGvfDSBUqmEUqlEYmIivLy87B0OwzAyg4igVqvh4uLCAyGGYRimwJi6sCcpyQnn/3ZG7ZcfwcdHAOAO3dVNBCenLFC6E55fSQUAeifPbcZtNQDSzGybt90SvYL5sCQOeekVThyW96Gt9eRSM45Yo1LFoVCkIy09ExqtFmnptr0CUqPRIC0trcB+iAgpKSmIi4uDj48Pn/BnGAeHJx9NIAgCSpcujQcPHsDFxQUeHh4QzDn9lAtSHYDlrMl6jq1nD01H1CMiZGZmQq1WIzk5Gf7+/hJFxzAMw7yoCCCEVUkCCYbPfKwdkoToxncw/7eKaNAkDipngiAIcFZp4abMQKLaGRmZCugmJQQ4O2kBABlZ2WxGbeMAkJlt87FbolcgH5bEITO9QonDij60tZ5casYRa1SiONyVGUhSE+KeqkEZ6bAlceokSW+V9vHxQZkyZSTzxzCMfeDJx1zw9vZGamoq4uPj8ejRowL5iouLs/mzKmytyXqOrWcPTUfWc3Fxgb+/P4oVKyaJP4ZhGObFZfqIGIyNSgAALN0agOv33FHRPwXDut6Fm6sWH0RexYqd/ohNdEVgmTT0bh0LV40W/q4KbDxcBndjXRHgp7MDwMY9hrbsbdf+sgz9Xp9sVltz7JboWevDkjjkqCd1HNb2oa315FIzjlijUsUBALMXL8KSiW9Ldbgyi9lr1mHJkiWS+FKpVHzFI8MUEXjyMRcEQUDZsmVRunRp8dlu1jJ79mzJDsBy1WQ9x9azh6aj6imVSr7VmmEYhpGMkT3uwM3VAwAwrs9to9fdXLUY3fOOkd3VRYthHe4a2U3Z9G1/+f2Gwet5tS0MPWt8WBKHXPWkjKMgfWhrPbnUjCPWqBRxAMDjuFi4QmvytcLi8ePHcHV1takmwzDyhycf80H//MeCYI8DsK01Wc+x9eyhWdT1GIZhGMYcFm8OzPPKx9Q0hdn2/Hycu+aJeevLm9VWaj1rfVgShxz1pI7D2j60tZ5casYRa1TKvM3VYxiGKXToBUOtVhMAUqvVNtOMjIy0mZa9NFnPsfXsocl6rCd3TdZzbD17aNpSzx7jGUZa9H0oIIHCqqgpLERNCkFLKicNKQQt1QlV0+O9+6hOqHl2c3wIQgez20qpVxAflsQhN73CiMOaPrS1nlxqxhFrVOq8zdFLObyH6MRuybai/N3LekVDk/Wkw5LxKF/5yDAMwzAMwzB2giDgbIyX+H9tlm6RwzNXvDDo0xo4c8ULWsrfbo4P3fI2ttcriA9L4pCbXmHEYU0f2lpPLjXjiDUqdd7m6C3dGmDykQ8MwzBSorB3AAzDMAzDMAzzIiMIui07SiXh+j13KJVklt0SH7bWk4sPR4yZ8+a8bZE3wzBMYcOTjwzDMAzDMAxjR4h0W3Y0GgEV/VOg0Qhm2S3xYWs9ufhwxJg5b87bFnkzDMMUNjz5yDAMwzAMwzB2QgAhrEoSaoUkQSEQVE5aKARC7ZAkrJpyAWFm2s3xIQhkdlsp9Qriw5I45KZXGHFY04e21pNLzThijUqdtzl6+gVqGIZhChN+5iPDMAzDMAzD2InpI2LyXO366MrjZtvz87FgUxpG97psVlup9az1YUkcctSTOg5r+9DWenKpGUesUSnzNlePYRimsLHrlY/Tpk2DIAgGW9WqVfN8z+bNm1G1alW4urripZdewi+//GKjaBmGYRiGYZiiBo9HGYZ50UlNU2De+vIY9UVVzFtfHqlpfIMkwzASY4PVt3Nl6tSpVKNGDXrw4IG4PXr0KNf2R48eJaVSSbNnz6aLFy/S5MmTSaVS0blz58zWtGQpcKng5epZT+569tBkPdaTuybrObaePTRtqWeP8UxRxR7jUaLnfSgggcKqqCksRE0KQUsqJw0pBC3VCVXT4737qE6oeXZzfAhCB7PbSqlXEB+WxCE3vcKIw5o+tLWeXGrGEWtU6ryt1asTqqaUw3uITuy2eCvK372sVzQ0WU86LBmP2v22aycnJ5QpU8astl999RXatm2L9957DwDw6aefYs+ePVi0aBGWLl1amGEyDMMwDMMwRRR7jkcJAs7GeIn/12bpFoQ4c8ULgz6tgTNXvKCl/O3m+NA9YdL2egXxYUkcctMrjDis6UNb68mlZhyxRqXO21q9M1e8sHRrAMb1uQ2GYRgpsPv11DExMShXrhwqVqyIvn374vbt3A9wf/zxB1q1amVga9OmDf7444/CDpNhGIZhGIYpoth7PCoIui07SiXh+j13KJVklt0SH7bWk4sPR4yZ8+a87ZG33s4wDCMVdp18bNSoEdasWYNdu3ZhyZIluHHjBpo2bYqkpCST7R8+fAg/Pz8Dm5+fHx4+fJirRnp6OhITEw02hmEYhmEYhgFsMx4F8h6TEum27Gg0Air6p0CjEcyyW+LD1npy8eGIMXPenLc98tbbGYZhpMKut123a9dO/H+tWrXQqFEjBAUF4fvvv8fgwYMl0ZgxYwY+/vhjI3uvXr2gUqkk0ciP48ePo2PHjjbRspcm6zm2nj00WY/15K7Jeo6tZw9NW+plZmbaROdFwBbjUSD3MSnQC14euh/+ic+cIAgEIgFe7llIz0iAp7uPeXaPrHx9AMcBdDSrraR6BfBhSRyy0yuEOKzqQ1vryaVmHLFGJc7baj33LOw9/hT7T5pzdDPk+IXL6NisseVvtJLjV24U2e/6F0HPHpqsJx2WjEft/szH7Pj4+CAkJARXr141+XqZMmUQGxtrYIuNjc3zGT2TJk3CO++8I/6dmJiIwMBAbNq0CcWKFZMm8Hzo2LEjdu7caRMte2mynmPr2UOT9VhP7pqs59h69tC0pV5iYiK8vb1tovWiURjjUSD3MennIz7F2KgEAMDSrQG4fs8dFf1TMKzrXbi5apGapjDbnp+PBZtGYXSv2Wa1lVrPWh+WxCFHPanjsLYPba0nl5pxxBqVMu+C6Lm5avM8puVGx3emYudcUydaCoeOnywqst/1L4KePTRZTzosGY/KavIxOTkZ165dQ79+/Uy+3rhxY+zbtw9jx44VbXv27EHjxrmfWXFxcYGLi4vUoTIMwzAMwzBFkMIYjwK5j0lH9rgDN1cPADC5uIObq9Yie15t959MNnjd1nrW+LAkDrnqSRlHQfrQ1npyqRlHrFGp8i6oHsMwjFTYdfLx3XffRWRkJIKCgnD//n1MnToVSqUSUVFRAID+/fvD398fM2bMAACMGTMG4eHh+PLLL9G+fXts3LgRJ0+exPLly+2ZBsMwDMMwDOOg2Hs8unhzoM2ufDx3zRPz1pe32VVs2fVscVWZHPWkjsPaPrS1nlxqxhFrVMq8C0OPYRjGKsiO9OrVi8qWLUvOzs7k7+9PvXr1oqtXr4qvh4eH04ABAwze8/3331NISAg5OztTjRo16Oeff7ZIU61WEwBSq9VSpGAWkZGRNtOylybrObaePTRZj/Xkrsl6jq1nD01b6tljPFNUscd4lOh5HwpIoLAqagoLUZNC0JLKSUMKQUt1QtX0eO8+qhNqnt0cH4LQwey2UuoVxIclcchNrzDisKYPba0nl5pxxBqVOm+p9VIO7yE6sTvPLbLpy/m2kXIryt/1L4KePTRZTzosGY/a9crHjRs35vn6gQMHjGw9evRAjx49CikihmEYhmEY5kXC3uNRgoCzMV7i/7VZusVnzlzxwqBPa+DMFS9oKX+7OT4AwS56BfFhSRxy0yuMOKzpQ1vryaVmHLFGpc5bar2lWwP49myGYaxCYe8AGIZhGIZhGOZFRhB0W3aUSsL1e+5QKsksuyU+bK0nFx+OGDPnzXnLLW+GYRhr4MlHhmEYhmEYhrEjRLotOxqNgIr+KdBoBLPslviwtZ5cfDhizJw35y23vBmGYayBJx8ZhmEYhmEYxk4IIIRVSUKtkCQoBILKSQuFQKgdkoRVUy4gzEy7OT4EgcxuK6VeQXxYEofc9AojDmv60NZ6cqkZR6xRqfOWWk+/EA3DMIyl2PWZjwzDMAzDMAzzIjN9REyeq10fXXncbHt+PhZsSsPoXpfNaiu1nrU+LIlDjnpSx2FtH9paTy4144g1KmXehaHHMAxjDTz5yDAMwzAMwzB2YmSPO3Bz9QAAkws5uLlqLbLn1Xb/yWSD122tZ40PS+KQq56UcRSkD22tJ5eaccQalSrvwtBjGIaxBp58ZBiGYRiGYRg7sXhzYJ5XPqamKcy25+fj3DVPzFtf3qy2UutZ68OSOOSoJ3Uc1vahrfXkUjOOWKNS5m3LGmUYhskTesFQq9UEgNRqtc00IyMjbaZlL03Wc2w9e2iyHuvJXZP1HFvPHpq21LPHeIaRFn0fCkigsCpqCgtRk0LQkspJQwpBS3VC1fR47z6qE2qe3RwfgtDB7LZS6hXEhyVxyE2vMOKwpg9trSeXmnHEGpU6b1vVaMrhPUQndhOd2E2RTV8W/2+LrSh/178IevbQZD3psGQ8ylc+MgzDMAzDMIydIAg4G+Ml/l+bpVt19swVLwz6tAbOXPGClvK3m+NDt7yN7fUK4sOSOOSmVxhxWNOHttaTS804Yo1KnbetanTp1gC+RZthmDzh1a4ZhmEYhmEYxo4Igm7LjlJJuH7PHUolmWW3xIet9eTiwxFj5rw5b0fJm2EYJi948pFhGIZhGIZh7AiRbsuORiOgon8KNBrBLLslPmytJxcfjhgz5815O0reDMMwecGTjwzDMAzDMAxjJwQQwqokoVZIEhQCQeWkhUIg1A5JwqopFxBmpt0cH4JAZreVUq8gPiyJQ256hRGHNX1oaz251Iwj1qjUeduqRvUL1DAMw+QGP/ORYRiGYRiGYezE9BExea52fXTlcbPt+flYsCkNo3tdNqut1HrW+rAkDjnqSR2HtX1oaz251Iwj1qiUeduyRhmGYfKCJx8ZhmEYhmEYhmEYhrGa1DQFlm4NwLlrnpi3vnyeE5gMw7yA2GD1bVlhyVLgUsHL1bOe3PXsocl6rCd3TdZzbD17aNpSzx7jGUZa9H0oIIHCqqgpLERNCkFLKicNKQQt1QlV0+O9+6hOqHl2c3wIQgez20qpVxAflsQhN73CiMOaPrS1nlxqxhFrVOq85VijKYf3EJ3YLdlWlL/rXwQ9e2iynnRYMh7lKx8ZhmEYhmEYxk4QBJyN8RL/r83SLeZw5ooXBn1aA2eueEFL+dvN8aF7wqTt9Qriw5I45KZXGHFY04e21pNLzThijUqdtxxrdOnWAIzrcxsMw7xY8IIzDMMwDMMwDGNHBEG3ZUepJFy/5w6lksyyW+LD1npy8eGIMXPenHdRzJthmBcP2Uw+zpw5E4IgYOzYsbm2yczMxCeffIJKlSrB1dUVYWFh2LVrl+2CZBiGYRiGYYo09hiTEum27Gg0Air6p0CjEcyyW+LD1npy8eGIMXPenHdRzJthmBcPWUw+njhxAsuWLUOtWrXybDd58mQsW7YMCxcuxMWLFzFs2DB06dIF//zzj40iZRiGYRiGYYoq9hiTCiCEVUlCrZAkKASCykkLhUCoHZKEVVMuIMxMuzk+BIHMbiulXkF8WBKH3PQKIw5r+tDWenKpGUesUanzlmON6heiYRjmxcLuz3xMTk5G3759sWLFCnz22Wd5tl27di0+/PBDvP766wCA4cOHY+/evfjyyy/x3Xff2SJchmEYhmEYpghirzHp9BExGBuVAMD0qrBHVx43256fjwWb0jC612Wz2kqtZ60PS+KQo57UcVjbh7bWk0vNOGKNSpm3XGuUYZgXD7tPPo4cORLt27dHq1at8h3opaenw9XV1cDm5uaGI0eOFGaIDMMwDMMwTBHHXmPSkT3uwM3VAwBMLsLg5qq1yJ5X2/0nkw1et7WeNT4siUOuelLGUZA+tLWeXGrGEWtUqrzlWqMMw7x42HXycePGjTh16hROnDhhVvs2bdpg7ty5aNasGSpVqoR9+/Zh69at0Gg0ub4nPT0d6enp4t+JiYkFjpthGIZhGIYpOthzTLp4c2CeVz6mpinMtufn49w1T8xbX96stlLrWevDkjjkqCd1HNb2oa315FIzjlijUubtSDXKV0QyTNFGIMr5GFjbcOfOHdSvXx979uwRn6sTERGB2rVrY/78+Sbf8+jRI7z11lv48ccfIQgCKlWqhFatWmHVqlVITU01+Z5p06bh448/NrK3bdsWKpVKsnzy4vjx42jYsKFNtOylyXqOrWcPTdZjPblrsp5j69lD05Z6mZmZ2LVrF9RqNYoVK2YTzaKKvcekQFsU89At1JD4zAmCQCASUMwjC01qJeDYWR+z7fn5AI4DaGhWW6n1rPVhSRxy1JM6Dmv70NZ6cqkZR6xRKfN2pBp9tfZTKK1YkeL4lRtF9rv+RdCzhybrSYdF41GyE9u2bSMApFQqxQ0ACYJASqWSsrKycn1vamoq3b17l7RaLb3//vtUvXr1XNumpaWRWq0Wtzt37hAAUqvVhZGWSSIjI22mZS9N1nNsPXtosh7ryV2T9Rxbzx6attRTq9U2H88UVew9JgXUJEBLArT0fH1YIoWgpU7hD0khmGc3z0ekBW2l0yuYD0vikJde4cRheR/aWk8uNeOINSp93o5RowpBS3PHXSI6sdvirSh/178IevbQZD3psGQ8arfbrlu2bIlz584Z2KKjo1G1alVMmDABSqUy1/e6urrC398fmZmZ2LJlC3r27JlrWxcXF7i4uEgWN8MwDMMwDFN0kMOYVNBd+Ijs9yMplYTr99yhVBK0WUK+dkt82FpPLj4cMWbOm/N+kfJmGKboYsWFzdLg5eWFmjVrGmweHh4oUaIEatasCQDo378/Jk2aJL7nr7/+wtatW3H9+nUcPnwYbdu2hVarxfvvv2+vNBiGYRiGYRgHRg5jUv31P9nRaARU9E+BRiOYZbfEh6315OLDEWPmvDnvFylvhmGKLnabfDSH27dv48GDB+LfaWlpmDx5MqpXr44uXbrA398fR44cgY+Pj/2CZBiGYRiGYYo0hTkmFUAIq5KEWiFJUAgElZMWCoFQOyQJq6ZcQJiZdnN8CAKZ3VZKvYL4sCQOuekVRhzW9KGt9eRSM45Yo1Ln7Sg1WjskSVyghmGYooldV7vOyYEDB/L8Ozw8HBcvXrRdQAzDMAzDMMwLhy3HpNNHxOS52vXRlcfNtufnY8GmNIzuddmstlLrWevDkjjkqCd1HNb2oa315FIzjlijUubtSDXKq10zTNFGVpOPDMMwDMMwDMMwDMO8eKSmKXhSkmGKKjZYAEdW2GN1SF4xivXkrmcPTdZjPblrsp5j69lDU66rCzLyRN+HAhIorIqawkLUpBC0pHLSkELQUp1QNT3eu4/qhJpnN8eHIHQwu62UegXxYUkcctMrjDis6UNb68mlZhyxRqXO21FqNC97yuE9vNp1EdazhybrSYcl41GefLQB/AFmPbnr2UOT9VhP7pqs59h69tCU62CPkSf6PgTUJEBLArT0fIkGIoWgpU7hD0khmGc3z0ekBW2l0yuYD0vikJde4cRheR/aWk8uNeOINSp93o5Ro3nZ5467xJOPRVjPHpqsJx2WjEdlveAMwzAMwzAMwxR1BEG3ZUepJFy/5w6lksyyW+LD1npy8eGIMXPenPeLnLfezjCM48OTjwzDMAzDMAxjR/TX+WRHoxFQ0T8FGo1glt0SH7bWk4sPR4yZ8+a8X+S89XaGYRwfnnxkGIZhGIZhGDshgBBWJQm1QpKgEAgqJy0UAqF2SBJWTbmAMDPt5vgQBDK7rZR6BfFhSRxy0yuMOKzpQ1vryaVmHLFGpc7bUWo0L7t+1WyGYRwbXu2aYRiGYRiGYezE9BExGBuVAAAmV3k9uvK42fb8fCzYlIbRvS6b1VZqPWt9WBKHHPWkjsPaPrS1nlxqxhFrVMq8HalG87IzDOP48OQjwzAMwzAMw9iJkT3uwM3VAwAwrs9to9fdXLUW2fNqu/9kssHrttazxoclcchVT8o4CtKHttaTS804Yo1Klbej1WhudoZhHB+efGQYhmEYhmEYO7F4c2CeVz6mpinMtufn49w1T8xbX96stlLrWevDkjjkqCd1HNb2oa315FIzjlijUubtSDVqaRwMwzgYNlh9W1ZYshS4VPBy9awndz17aLIe68ldk/UcW88emrbUs8d4hpEWfR8KSKCwKmoKC1GTQtCSyklDCkFLdULV9HjvPqoTap7dHB+C0MHstlLqFcSHJXHITa8w4rCmD22tJ5eaccQalTpvR6lRS+NIObyH6MRuohO7i/R3/YugZw9N1pMOS8ajPPloA/gDzHpy17OHJuuxntw1Wc+x9eyhKdfBHiNP9H0IqEmAlgRo6fn6sEQKQUudwh+SQjDPbp6PSAvaSqdXMB+WxCEvvcKJw/I+tLWeXGrGEWtU+rwdo0YtjWPuuEs8+VhE9OyhyXrSYcl4lFe7ZhiGYRiGYRg7Igi6LTtKJeH6PXcolWSW3RIfttaTiw9HjJnz5rw5b9M+GIZxLHjykWEYhmEYhmHsiP6anuxoNAIq+qdAoxHMslviw9Z6cvHhiDFz3pw3523aB8MwjgVPPjIMwzAMwzCMnRBACKuShFohSVAIBJWTFgqBUDskCaumXECYmXZzfAgCmd1WSr2C+LAkDrnpFUYc1vShrfXkUjOOWKNS5+0oNWppHPqFaBiGcRx4tWuGYRiGYRiGsRPTR8Tkudr10ZXHzbbn52PBpjSM7nXZrLZS61nrw5I45KgndRzW9qGt9eRSM45Yo1Lm7Ug1amkcDMM4Fjz5yDAMwzAMwzB2YmSPO3Bz9QAAjOtz2+h1N1etRfa82u4/mWzwuq31rPFhSRxy1ZMyjoL0oa315FIzjlijUuXtaDVqSRwMwzgWspl8nDlzJiZNmoQxY8Zg/vz5ubabP38+lixZgtu3b6NkyZLo3r07ZsyYAVdXV9sFyzAMwzAMwxRJbD0mXbw5MM8rH1PTFGbb8/Nx7pon5q0vb1ZbqfWs9WFJHHLUkzoOa/vQ1npyqRlHrFEp83akGrW6D88B8+YBw4YBbm4WHX4ZhrElNlh9O1+OHz9OwcHBVKtWLRozZkyu7datW0cuLi60bt06unHjBu3evZvKli1L48aNM1vLkqXApYKXq2c9uevZQ5P1WE/umqzn2Hr20LSlnj3GMy8C9hiTCkigsCpqCgtRk0LQkspJQwpBS3VC1fR47z6qE2qe3RwfgtDB7LZS6hXEhyVxyE2vMOKwpg9trSeXmnHEGpU6b0ep0YL1YSQpFER16hClpEjwRZAPRXlsYQ89e2iynnRYMh61++RjUlISValShfbs2UPh4eF5DvRGjhxJLVq0MLC988479Morr5itx5OPrMd68tBkPdaTuybrObaePTTlOthjzMNeY1JATQK0JEBLz9d2JVIIWuoU/pAUgnl283xEWtBWOr2C+bAkDnnpFU4clvehrfXkUjOOWKPS5+0YNSpJHyqI5s619hvAfIry2MIeevbQZD3psGQ8avfVrkeOHIn27dujVatW+bZt0qQJ/v77bxw/fhwAcP36dfzyyy94/fXXCztMhmEYhmEYpghjzzGpIOi27CiVhOv33KFUkll2S3zYWk8uPhwxZs6b8+a8zfUBXL8OhmFkil0nHzdu3IhTp05hxowZZrXv06cPPvnkE7z66qtQqVSoVKkSIiIi8MEHH+T6nvT0dCQmJhpsDMMwDMMwDKPH3mNS/TU92dFoBFT0T4FGI5hlt8SHrfXk4sMRY+a8OW/O21wfQMWKYBhGpthtwZk7d+5gzJgx2LNnj9kP5j5w4AA+//xzfP3112jUqBGuXr2KMWPG4NNPP8WUKVNMvmfGjBn4+OOPjey9evWCSqUqUA7mcvz4cXTs2NEmWvbSZD3H1rOHJuuxntw1Wc+x9eyhaUu9zMxMm+i8CNh7TAr0gpeH7kd04jMnCAKBSICXexbSMxLg6e5jnt0jK18fwHEAHc1qK6leAXxYEofs9AohDqv60NZ6cqkZR6xRifN2mBqVog/dsrB3y1Ps32byECwZx6/cKLJjC3vo2UOT9aTDkvGoQJTzXIJt2L59O7p06QKlUinaNBoNBEGAQqFAenq6wWsA0LRpU7z88sv44osvRNt3332HIUOGIDk5GQqF8YWc6enpSE9PF/9OTExEYGAg1Go1ihUrVgiZGdOxY0fs3LnTJlr20mQ9x9azhybrsZ7cNVnPsfXsoWlLvcTERHh7e9t0PFNUsfeY9PMRJ2y22vWCTaMwutdCm61Cm13PFisJy1FP6jis7UNb68mlZhyxRqXM25FqVKo+LGw6frKoyI4t7KFnD03Wkw5LxqN2u/KxZcuWOHfunIEtOjoaVatWxYQJE4wGeQCQkpJiNJjTt8ttDtXFxQUuLi4SRc0wDMMwDMMUJXhMyjAMUzTIbVKTYRgZUMiL31hEzpUF+/XrRxMnThT/njp1Knl5edGGDRvo+vXr9Ntvv1GlSpWoZ8+eZmvwatesx3ry0GQ91pO7Jus5tp49NOW6uiBjObYckwpIoLAqagoLUZNC0JLKSUMKQUt1QtX0eO8+qhNqnt0cH4LQwey2UuoVxIclcchNrzDisKYPba0nl5pxxBqVOm9HqdHCPK6lHN5DdGK3ZFtRHlvYQ88emqwnHZaMR+125aM53L592+Cs8uTJkyEIAiZPnox79+6hVKlSiIyMxPTp0+0YJcMwDMMwDFOUKcwxKUHA2Rgv8f/aLN3zH89c8cKgT2vgzBUvaCl/uzk+AMEuegXxYUkcctMrjDis6UNb68mlZhyxRqXO21FqtDCPa0u3BmBcn9tgGMa+yGry8cCBA3n+7eTkhKlTp2Lq1Km2C4phGIZhGIZ5obD1mFT4b9HW7HdsK5WE6/fcoVSS+EM6L7slPmytJxcfjhgz5815c94Fz5thGPtj/DRshmEYhmEYhmFsBpHhD2YA0GgEVPRPgUYjmGW3xIet9eTiwxFj5rw5b8674HkzDGN/ePKRYRiGYRiGYeyEAEJYlSTUCkmCQiConLRQCITaIUlYNeUCwsy0m+NDEMjstlLqFcSHJXHITa8w4rCmD22tJ5eaccQalTpvR6nRwjyu6VfMZhjGvsjqtmuGYRiGYRiGeZGYPiIGY6MSAMDkKq1HVx43256fjwWb0jC612Wz2kqtZ60PS+KQo57UcVjbh7bWk0vNOGKNSpm3I9VoYR7XGIaxPzz5yDAMwzAMwzB2YmSPO3Bz9QAAk4siuLlqLbLn1Xb/yWSD122tZ40PS+KQq56UcRSkD22tJ5eaccQalSpvR6vRwjquMQxjf3jykWEYhmEYhmHsxOLNgXle+ZiapjDbnp+Pc9c8MW99ebPaSq1nrQ9L4pCjntRxWNuHttaTS804Yo1Kmbcj1ag9jmsMw9gQesFQq9UEgNRqtc00IyMjbaZlL03Wc2w9e2iyHuvJXZP1HFvPHpq21LPHeIaRFn0fCkigsCpqCgtRk0LQkspJQwpBS3VC1fR47z6qE2qe3RwfgtDB7LZS6hXEhyVxyE2vMOKwpg9trSeXmnHEGpU6b0epUXsc11IO7yE6sdvirSiPLeyhZw9N1pMOS8ajPPloA/gDzHpy17OHJuuxntw1Wc+x9eyhKdfBHiNP9H0IqEmAlgRo6fl6rUQKQUudwh+SQjDPbp6PSAvaSqdXMB+WxCEvvcKJw/I+tLWeXGrGEWtU+rwdo0btcVybO+4STz7KQM8emqwnHZaMR3m1a4ZhGIZhGIaxI4Kg27KjVBKu33OHUklm2S3xYWs9ufhwxJg5b86b8y68vBmGsR08+cgwDMMwDMMwdkR/PU52NBoBFf1ToNEIZtkt8WFrPbn4cMSYOW/Om/MuvLwZhrEdPPnIMAzDMAzDMHZCACGsShJqhSRBIRBUTlooBELtkCSsmnIBYWbazfEhCGR2Wyn1CuLDkjjkplcYcVjTh7bWk0vNOGKNSp23o9SoPY5r+gVqGIaxDbzaNcMwDMMwDMPYiekjYvJc7froyuNm2/PzsWBTGkb3umxWW6n1rPVhSRxy1JM6Dmv70NZ6cqkZR6xRKfN2pBq1x3GNYRjbwZOPDMMwDMMwDMMwDMO8UKSmKXhSkmFshQ0WwJEVvNo167GePDRZj/Xkrsl6jq1nD025ri7IyBN9HwpIoLAqagoLUZNC0JLKSUMKQUt1QtX0eO8+qhNqnt0cH4LQwey2UuoVxIclcchNrzDisKYPba0nl5pxxBqVOm9HqVG5HNfqhKop5fAeXu3axhT1HIuyniXjUZ58tAH8AWY9uevZQ5P1WE/umqzn2Hr20JTrYI+RJ/o+BNQkQEsCtPR8yQQihaClTuEPSSGYZzfPR6QFbaXTK5gPS+KQl17hxGF5H9paTy4144g1Kn3ejlGjcjmuKQQtzR13iScfbUxRz7Eo61kyHuUFZxiGYRiGYRjGjgiCbsuOUkm4fs8dSiWZZbfEh6315OLDEWPmvDlvztt2eevtDMNID08+MgzDMAzDMIwd0V93kx2NRkBF/xRoNIJZdkt82FpPLj4cMWbOm/PmvG2Xt97OMIz0yGbycebMmRAEAWPHjs2zXUJCAkaOHImyZcvCxcUFISEh+OWXX2wTJMMwDMMwDFOksfWYVAAhrEoSaoUkQSEQVE5aKARC7ZAkrJpyAWFm2s3xIQhkdlsp9Qriw5I45KZXGHFY04e21pNLzThijUqdt6PUqFyOa7VDksRVsxmGkRZZrHZ94sQJLFu2DLVq1cqzXUZGBlq3bo3SpUvjhx9+gL+/P27dugUfHx/bBMowDMMwDMMUWewxJp0+IgZjoxIAwOSqq0dXHjfbnp+PBZvSMLrXZbPaSq1nrQ9L4pCjntRxWNuHttaTS804Yo1Kmbcj1ahcjmu82jXDFA52n3xMTk5G3759sWLFCnz22Wd5tl21ahWePHmCY8eOQaVSAQCCg4NtECXDMAzDMAxTlLHXmHRkjztwc/UAAIzrc9vodTdXrUX2vNruP5ls8Lqt9azxYUkcctWTMo6C9KGt9eRSM45Yo1Ll7Wg1KpfjGsMw0mP3yceRI0eiffv2aNWqVb4DvZ07d6Jx48YYOXIkduzYgVKlSqFPnz6YMGEClEqlyfekp6cjPT1d/DsxMVHS+BmGYRiGYRjHx15j0sWbA/O88jE1TWG2PT8f5655Yt768ma1lVrPWh+WxCFHPanjsLYPba0nl5pxxBqVMm9HqlG5HNf4ykeGKRwEopyPZbUdGzduxPTp03HixAm4uroiIiICtWvXxvz58022r1q1Km7evIm+fftixIgRuHr1KkaMGIHRo0dj6tSpJt8zbdo0fPzxx0b2tm3bimeqC5vjx4+jYcOGNtGylybrObaePTRZj/Xkrsl6jq1nD01b6mVmZmLXrl1Qq9UoVqyYTTSLMvYckwJtUcxDt+hB4jMnCAKBSEAxjyw0qZWAY2d9zLbn5wM4DqChWW2l1rPWhyVxyFFP6jis7UNb68mlZhyxRqXM25FqVC7HtVdrP4Uyj5Uxjl+4jIY1QnNvIDHHr9wosmMZe2mynnRYMh6125WPd+7cwZgxY7Bnzx64urqa9R6tVovSpUtj+fLlUCqVqFevHu7du4cvvvgi14HepEmT8M4774h/JyYmIjAwEJs2bbLZYL1jx47YuXOnTbTspcl6jq1nD03WYz25a7KeY+vZQ9OWeomJifD29raJVlHH3mNSYBOSnnn9ZxXE1VqTUwguznFITiltlj3pGeXrA+gIYKdZbaXUK4gPS+KQm15hxGFNH9paTy4144g1KnXejlKjcjmuJacQWjW8nOet2B3fmYqdc02dSCocOn6yqMiOZeylyXrSYcl41G6Tj3///Tfi4uJQt25d0abRaHDo0CEsWrQI6enpRretlC1bFiqVysBerVo1PHz4EBkZGXB2djbScXFxgYuLS+ElwjAMwzAMwzgschiTCroLH8UfwACgVBKu33OHUknQZgn52i3xYWs9ufhwxJg5b86b87Zd3no7wzDSk8cFxYVLy5Ytce7cOZw+fVrc6tevj759++L06dMmn5fzyiuv4OrVq9Bqnz+H4cqVKyhbtqzJQR7DMAzDMAzD5IUcxqREhj+YAUCjEVDRPwUajWCW3RIfttaTiw9HjJnz5rw5b9vlrbczDCM9dpt89PLyQs2aNQ02Dw8PlChRAjVr1gQA9O/fH5MmTRLfM3z4cDx58gRjxozBlStX8PPPP+Pzzz/HyJEj7ZUGwzAMwzAM48DYe0wqgBBWJQm1QpKgEAgqJy0UAqF2SBJWTbmAMDPt5vgQBDK7rZR6BfFhSRxy0yuMOKzpQ1vryaVmHLFGpc7bUWpULse12iFJ4sI1DMNIi91Xu86L27dvQ6F4Pj8aGBiI3bt3Y9y4cahVqxb8/f0xZswYTJgwwY5RMgzDMAzDMEWZwhyTTh8Rk+dq10dXHjfbnp+PBZvSMLrXZbPaSq1nrQ9L4pCjntRxWNuHttaTS804Yo1Kmbcj1ahcjmu82jXDFA52Xe3aHugfiGnL1SH5oa2sJ3c9e2iyHuvJXZP1HFvPHpr2eMA3r3btuIh9uH8rinl62ETT5gslsJ7Da7Ie68lds8jr8YIzrCdjPUvGo7K+8pFhGIZhGIZhijKLNwfmeeVjaprCbHt+Ps5d88S89eXNaiu1nrU+LIlDjnpSx2FtH9paTy4144g1KmXejlSjcj+uMQxTQOgFQ61WEwBSq9U204yMjLSZlr00Wc+x9eyhyXqsJ3dN1nNsPXto2lLPHuMZRlr0fSgggcKqqCksRE0KQUsqJw0pBC3VCVXT4737qE6oeXZzfAhCB7PbSqlXEB+WxCE3vcKIw5o+tLWeXGrGEWtU6rwdpUblflxLObyH6MRuohO7KbLpy+L/bbEV5bGMvTRZTzosGY/ylY8MwzAMwzAMYycIAs7GeIn/12bpVl89c8ULgz6tgTNXvKCl/O3m+NAtb2N7vYL4sCQOuekVRhzW9KGt9eRSM45Yo1Ln7Sg1Kvfj2tKtARjX5zYYhrEeu612zTAMwzAMwzAMIAi6LTtKJeH6PXcolWSW3RIfttaTiw9HjJnz5rw5b3nkzTBMweDJR4ZhGIZhGIaxI0S6LTsajYCK/inQaASz7Jb4sLWeXHw4YsycN+fNecsjb4ZhCgZPPjIMwzAMwzCMnRBACKuShFohSVAIBJWTFgqBUDskCaumXECYmXZzfAgCmd1WSr2C+LAkDrnpFUYc1vShrfXkUjOOWKNS5+0oNSr345p+IRqGYayHn/nIMAzDMAzDMHZi+oiYPFe7PrryuNn2/Hws2JSG0b0um9VWaj1rfVgShxz1pI7D2j60tZ5casYRa1TKvB2pRuV+XGMYpmDwlY8MwzAMwzAMwzAMwzC5kJqmwLz15XHumifmrS+P1DSeSmEYi7DB6tuywpKlwKWCl6tnPbnr2UOT9VhP7pqs59h69tC0pZ49xjOMtOj7UEAChVVRU1iImhSCllROGlIIWqoTqqbHe/dRnVDz7Ob4EIQOZreVUq8gPiyJQ256hRGHNX1oaz251Iwj1qjUeTtKjTrqcS3l8B6iE7sLdSvKYxl7abKedFgyHuXJRxvAH2DWk7uePTRZj/Xkrsl6jq1nD025DvYYeaLvQ0BNArQkQEvPlzsgUgha6hT+kBSCeXbzfERa0FY6vYL5sCQOeekVThyW96Gt9eRSM45Yo9Ln7Rg16qjHtbnjLvHkowNqsp50WDIe5WuFGYZhGIZhGMaOCIJuy45SSbh+zx1KJZllt8SHrfXk4sMRY+a8OW/OW955MwxjHjz5yDAMwzAMwzB2RH+NTXY0GgEV/VOg0Qhm2S3xYWs9ufhwxJg5b86b85Z33gzDmAdPPjIMwzAMwzCMnRBACKuShFohSVAIBJWTFgqBUDskCaumXECYmXZzfAgCmd1WSr2C+LAkDrnpFUYc1vShrfXkUjOOWKNS5+0oNeqoxzX96tgMw+SPk70DYBiGYRiGYZgXlekjYjA2KgEAsHRrAK7fc0dF/xQM63oXbq5aHF153Gx7fj4WbErD6F6XzWortZ61PiyJQ456UsdhbR/aWk8uNeOINSpl3o5Uo456XGMYxjx48pFhGIZhGIZh7MTIHnfg5uoBABjX57bR626uWovsebXdfzLZ4HVb61njw5I45KonZRwF6UNb68mlZhyxRqXK29Fq1BGPawzDmAdPPjIMwzAMwzCMnVi8OTDPKx9T0xRm2/Pzce6aJ+atL29WW6n1rPVhSRxy1JM6Dmv70NZ6cqkZR6xRKfN2pBotSsc1viKSYUxgg9W3zWLGjBkEgMaMGZNrm9WrVxMAg83FxcUiHUuWApcKXq6e9eSuZw9N1mM9uWuynmPr2UPTlnr2GM+8KNh6TCoggcKqqCksRE0KQUsqJw0pBC3VCVXT4737qE6oeXZzfAhCB7PbSqlXEB+WxCE3vcKIw5o+tLWeXGrGEWtU6rwdpUaL0nGtTqiaUg7vITqxW5KtKI9l7KXJetJhyXhUFpOPx48fp+DgYKpVq1a+A71ixYrRgwcPxO3hw4cWafHkI+uxnjw0WY/15K7Jeo6tZw9NuQ72GPOxx5gUUJMALQnQ0vO1VokUgpY6hT8khWCe3TwfkRa0lU6vYD4siUNeeoUTh+V9aGs9udSMI9ao9Hk7Ro0WpeOaQtDS3HGXePJRxpqsJx2WjEftvtp1cnIy+vbtixUrVqB48eL5thcEAWXKlBE3Pz8/G0TJMAzDMAzDFGXsOSYVBN2WHaWScP2eO5RKMstuiQ9b68nFhyPGzHlz3py3Y+WttzMMY4jdJx9HjhyJ9u3bo1WrVma1T05ORlBQEAIDA9GpUydcuHAhz/bp6elITEw02BiGYRiGYRgmO/Yck+qvmcmORiOgon8KNBrBLLslPmytJxcfjhgz5815c96OlbfezjCMIXZdcGbjxo04deoUTpw4YVb70NBQrFq1CrVq1YJarcacOXPQpEkTXLhwAQEBASbfM2PGDHz88cdG9l69ekGlUhUofnM5fvw4OnbsaBMte2mynmPr2UOT9VhP7pqs59h69tC0pV5mZqZNdF4U7DkmBXrBy0P34zXxmRMEgUAkwMs9C+kZCfB09zHP7pGVrw/gOICOZrWVVK8APiyJQ3Z6hRCHVX1oaz251Iwj1qjEeTtMjRal45p7FvYef4r9J00c7q3g+JUbRXYsYy9N1pMOS8ajAlHOuX3bcOfOHdSvXx979uxBrVq1AAARERGoXbs25s+fb5aPzMxMVKv2f/b+Pz6q6t73x19rTwYC5AeoUCVBvdEkFDQhgpzSX9BirxRMsB65gFY8taenPvBc/HlbOGoVkQPtUVAuKlbkI9BSuFjab7RWCjkGFasBihCDhkhUBMUgmkkgmZDMXt8/4gwJ+TF7z+zZe63J63ke8zhmZeX9fC/2uyuLxd57fR2zZ8/GokWLuu3T0tKClpaWyNcNDQ0YMWIEAoEAMjIy4h6HFUpKSlBaWuqKyysnfXr7vHDSR5/qTvr09nnhdNPX0NCAzMxMV9czyYrXa9L/nLvLtdOuV2z635g38/+6dipsR58bJwmr6HM6j1ivods+VWpGxxp1ctw61WgyzWtOnnZd8tDKpF3LeOWkzznsrEc9u/Nxz549qKurwxVXXBFpC4VCePXVV7Fy5Uq0tLTA5/P1GsPv96OoqAjvv/9+j3369++P/v37O5Y3IYQQQghJHrgmJYQQQghJMAk//qYHGhoaZGVlZafPuHHj5I9//GNZWVlpKUZbW5vMz8+Xd955p2UvT7umjz41nPTRp7qTPr19XjhVPV2Q9I7Xa1KBelmYG5CFeQFpCFP6U0LSEKYsyg/IE9vLZFG+tXYrMYS4xnJfJ33xxLCTh2q+ROQRyzV026dKzehYo06PW5caTaZ5rSg/IJte28bTrhV20uccdtajnm0+dsfEiRPl7bffHvn6pptukvPnz498vXDhQrl161Z56NAhuWfPHjlr1iyZmpoqq6qqLDu4+UgffWo46aNPdSd9evu8cKq62CP2cXNNCgSkgCkFTHnmuAMpDWHK6ROPSUNYa7cWo9hGX+d88cWwk4davsTkYf8auu1TpWZ0rFHnx61HjSbTvGYIUy67811uPirspM857KxHPT1wJhqHDx+GYZw5kPvLL7/Ez372Mxw7dgxDhgzB2LFj8cYbb2DUqFEeZkkIIYQQQpKZRK9JxVeHpXZ8E7vPJ1F7dCB8PgmzTURttxPDbZ8qMXTMmePmuDluvcYdbieEdMaI3sU9ysvLO73Yu7y8HM8991zk6+XLl+Ojjz5CS0sLjh07hr/85S8oKipyP1FCCCGEEJK0uL0mDd8z05FQSCAnqwmhkLDUbieG2z5VYuiYM8fNcXPceo073E4I6YxSm4+EEEIIIYT0JQQkCnMbUZDXCENI+FNMGEJiTF4j1txfhUKL7VZiCCEt93XSF08MO3mo5ktEHrFcQ7d9qtSMjjXq9Lh1qdFkmtfG5DVGTs0mhJxB6ceuCSGEEEIISWYWz63BHbPrAQCrtmSj9uhA5GQ14dbrjmBAqomdqysst0eLsWJTEPNmVlvq67Qv1hh28lDR53QesV5Dt32q1IyONerkuHWq0WSa1wakmjH/TiAkWRFSnn1jcXLT0NCAzMxMBAIBZGRkuOIsKSlBaWmpKy6vnPTp7fPCSR99qjvp09vnhdNNnxfrGeIskWv4yhZkpA1yxVly1wMoXbbQFRd9yeGkjz7VnUnve2hl0q5lvHLS5xx21qO885EQQgghhBCPeGLziF7vfGwOGpbbo8WoPJSG5RsutNTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjfWFeI6RPk/CztxXDzlHgTsHj6ulT3eeFkz76VHfSp7fPC6ebPi/WM8RZwtdQoF4W5gZkYV5AGsKU/pSQNIQpi/ID8sT2MlmUb63dSgwhrrHc10lfPDHs5KGaLxF5xHIN3fapUjM61qjT49alRvvCvNb02jYpd221/UnmtYxXTvqcw856lJuPLsD/AdOnus8LJ330qe6kT2+fF05VF3tETcLXEAhIAVMKmPLMWatSGsKU0ycek4aw1m4tRrGNvs754othJw+1fInJw/41dNunSs3oWKPOj1uPGu0L89qyO9/l5qMiTvqcw856lKddE0IIIYQQ4iFCtH864vNJ1B4dCJ9PWmq3E8NtnyoxdMyZ4+a4Oe7kGTchfRluPhJCCCGEEOIh4ftjOhIKCeRkNSEUEpba7cRw26dKDB1z5rg5bo47ecZNSF+Gm4+EEEIIIYR4hIBEYW4jCvIaYQgJf4oJQ0iMyWvEmvurUGix3UoMIaTlvk764olhJw/VfInII5Zr6LZPlZrRsUadHrcuNdoX5rXwQTSE9FV42jUhhBBCCCEesXhuTa+nXe9cXWG5PVqMFZuCmDez2lJfp32xxrCTh4o+p/OI9Rq67VOlZnSsUSfHrVON9oV5jZC+jJDy7JuCk5uGhgZkZmYiEAggIyPDFWdJSQlKS0tdcXnlpE9vnxdO+uhT3Umf3j4vnG76vFjPEGeJXMNXtiAjbZArzpK7HkDpsoWuuOhLDid99KnuTHrfQyuTdi3jlZM+57CzHuWdj4QQQgghhHjEE5tH9HrnY3PQsNweLUbloTQs33Chpb5O+2KNYScPFX1O5xHrNXTbp0rN6FijTo5bpxrty/MaIX2ChJ+9rRh2jgJ3Ch5XT5/qPi+c9NGnupM+vX1eON30ebGeIc4SvoYC9bIwNyAL8wLSEKb0p4SkIUxZlB+QJ7aXyaJ8a+1WYghxjeW+TvriiWEnD9V8icgjlmvotk+VmtGxRp0ety412pfntabXtkm5a2uPn2Rey3jlpM857KxHufnoAvwfMH2q+7xw0kef6k769PZ54VR1sUfUJHwNgYAUMKWAKc+ckyqlIUw5feIxaQhr7dZiFNvo65wvvhh28lDLl5g87F9Dt32q1IyONer8uPWo0b48ry27811uPib5GJPZZ2c9ytOuCSGEEEII8RAh2j8d8fkkao8OhM8nLbXbieG2T5UYOubMcXPcHHfyj5uQvgA3HwkhhBBCCPGQ8H0wHQmFBHKymhAKCUvtdmK47VMlho45c9wcN8ed/OMmpC+gzObj0qVLIYTAHXfcYan/xo0bIYTAtddem9C8CCGEEEJI38HtNamARGFuIwryGmEICX+KCUNIjMlrxJr7q1Bosd1KDCGk5b5O+uKJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXal+e18AE1hCQ7Spx2vWvXLjz99NMoKCiw1P/DDz/EPffcg+985zsJzowQQgghhPQVvFiTLp5b0+tp1ztXV1hujxZjxaYg5s2sttTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjfXleI6Qv4PmdjydPnsSNN96IZ555BkOGDInaPxQK4cYbb8TChQuRk5PjQoaEEEIIISTZ4ZqUEEKIFzQHDSzfcCH+93+NxPINF6I56Pk2DSHO48IBOL0yZ84ceccdd0gppZw4caK8/fbbe+3/q1/9Sl577bVSSilvvvlmOX369F77B4NBGQgEIp+PP/7Y8mk8TsETo+hT3eeFkz76VHfSp7fPC6eqpwsSa3i1JhWol4W5AVmYF5CGMKU/JSQNYcqi/IA8sb1MFuVba7cSQ4hrLPd10hdPDDt5qOZLRB6xXEO3farUjI416vS4dalRzmtd25te28bTrulT3mdnPSqkPPt1qO6xceNGLF68GLt27UJqaiomTZqEMWPG4LHHHuu2/+uvv45Zs2bh7bffxnnnnYd/+Zd/QX19Pf785z/36HjwwQexcOHCLu1TpkyB3+93aCS9U1FRgfHjx7vi8spJn94+L5z06e17/Y23MOqyca75AODAO7tddb7/3p6kvobJ7vPC6aavtbUVL7/8MgKBADIyMlxxJjNerkmBKQC6X5Oef24Ljp3ob7k9eowKAD3XaCJ9scewk4d6PufziO0auu1TpWbc9qlSM277VKkZt32JrJnROSeRk9WMioMfJO1axisnfc5hZz3q2TsfP/74Y9x+++3Ytm0bUlNTo/ZvbGzETTfdhGeeeQbnnXeeZc+CBQtw1113Rb5uaGjAiBEjsGnTJtcW6yUlJSgtLXXF5ZWTPr19Xjjp09v37UnT8JsVm13zAcAv5s1w1bn0vllJfQ2T3eeF001fQ0MDMjMzXXElO16vSYFNMEQ6AMCUZ05C9aeYGDrkFE4EBqG1zYjabghpIUYJgFKLfZ3zxRfDTh5q+RKTh/1r6LZPlZrRsUadH7ceNcp5rWv798Ydwf/9P++h5KGVSbuW8cpJn3PYWY969jKBPXv2oK6uDldccQVSUlKQkpKCHTt2YMWKFUhJSUEoFOrU/9ChQ/jwww9RXFwc6b9u3TqUlpYiJSUFhw4d6tbTv39/ZGRkdPoQQgghhBACqLEmlbL905FQSCAnqwmhkLDUbieG2z5VYuiYM8fNcXPcfW/c4XZCkgnPNh8nT56MyspKvP3225HPuHHjcOONN+Ltt9+Gz+fr1H/kyJFd+peUlOB73/se3n777a/+5ZgQQgghhBDreL0mFZAozG1EQV4jDCHhTzFhCIkxeY1Yc38VCi22W4khhLTc10lfPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmvdW0Pn5pNSLLg2WPX6enpuOyyyzq1DRo0COeee26kfc6cOcjKysKSJUuQmprapf/gwYMBoEs7IYQQQgghVvB6Tbp4bg3umF0PAFi1JRu1RwciJ6sJt153BANSTexcXWG5PVqMFZuCmDez2lJfp32xxrCTh4o+p/OI9Rq67VOlZnSsUSfHrVONcl7r2k5IMuHZ5qMVDh8+DMPgMfOEEEIIIcQ7ErkmvW3GxxiQOggAcOcNh7t8f0Cqaau9t76v7D7Z6ftu+2KJYScPVX1O5hHPNXTbp0rN6FijTo1btxrlvEZI8qLU5mN5eXmvX5/Nc889l7BcCCGEEEJI38TNNekTm0f0eudjc9Cw3B4tRuWhNCzfcKGlvk77Yo1hJw8VfU7nEes1dNunSs3oWKNOjlunGuW8xjsfSZIj+xiBQEACkIFAwDVncXGxay6vnPTp7fPCSZ/evm9NnCp37jvl6sdtZ7Jfw2T3eeF00+fFeoY4S/gaCtTLwtyALMwLSEOY0p8SkoYwZVF+QJ7YXiaL8q21W4khxDWW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61Cjnta7tTa9tk3LX1qRey3jlpM857KxHlbrzkRBCCCGEkL6EhMD+mvTIf5tt7aee7juYjlsWjca+g+kwZfR2KzHaj7dx3xdPDDt5qOZLRB6xXEO3farUjI416vS4dalRzmtd21dtyeaj2CSp4AsVCSGEEEII8RAh2j8d8fkkao8OhM8nLbXbieG2T5UYOubMcXPcHHffG3e4nZBkgpuPhBBCCCGEeIiU7Z+OhEICOVlNCIWEpXY7Mdz2qRJDx5w5bo6b4+574w63E5JMcPOREEIIIYQQjxCQKMxtREFeIwwh4U8xYQiJMXmNWHN/FQottluJIYS03NdJXzwx7OShmi8RecRyDd32qVIzOtao0+PWpUY5r3VtDx9cQ0iywHc+EkIIIYQQ4hGL59b0etr1ztUVltujxVixKYh5M6st9XXaF2sMO3mo6HM6j1ivods+VWpGxxp1ctw61SjnNZ52TZIb3vlICCGEEEIIIYQQogjNQQPLN1yIykpg+XKgudnrjAiJExdO31YKO0eBOwWPq6dPdZ8XTvr09n1r4lS5c98pVz9uO5P9Gia7zwunmz4v1jPEWcLXUKBeFuYGZGFeQBrClP6UkDSEKYvyA/LE9jJZlG+t3UoMIa6x3NdJXzwx7OShmi8RecRyDd32qVIzOtao0+PWpUY5r/V2DYulYUhZVCRlU1PifzdxvUafHeysR/nYNSGEEEIIIR4hIbC/Jj3y32Zb+8ED+w6m45ZFo7HvYDpMGb3dSoz2N0y674snhp08VPMlIo9YrqHbPlVqRscadXrcutQo57XermH7ATb79gGrVgF33glCtISPXRNCCCGEEOIhQrR/OuLzSdQeHQifT1pqtxPDbZ8qMXTMmePmuDlujru9L1BbC0K0hZuPhBBCtKc12IqK9XuwdUkZKtbvQWuw1euUCCHEMlK2fzoSCgnkZDUhFBKW2u3EcNunSgwdc+a4OW6Om+Nu7wvk5IAQbeHmIyGEEC2QptntBmNrsBXrbt6Iskd3YO/z+1H26A6su3kjNyAJIVogIFGY24iCvEYYQsKfYsIQEmPyGrHm/ioUWmy3EkMIabmvk754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl7r7RoChgGMGQPceqvXv7EIiR2+85EQQogStAZbsXfzfnx5pB5DsgejaEYB/Kn+yPc+3vsJyl7fAeETkCGJyhcPYM7aWdi7eT/qqo9DSgnZ1v7PxHXVx7F3836Mv2msl0MihJCoLJ5bgztm1wMAVm3JRu3RgcjJasKt1x3BgFQTO1dXWG6PFmPFpiDmzay21NdpX6wx7OShos/pPGK9hm77VKkZHWvUyXHrVKOc13q4hn8C5s1r33gcMCCGXzKEKIKQ8uwbepObhoYGZGZmIhAIICMjwxVnSUkJSktLXXF55aRPb58XTvr09n170jT8ZsVmx+KF716sqz4e2Vwclj8Uc9bOgj/Vj4r1e7D0kZ9hHG6M/IwQApPvnogvj9Rj7/P7YbaZke8ZKQaKri/A1Qsmx5zT0vtmJfU1THafF043fV6sZ4izRK7hK1uQkTbIFWfJXQ+gdNlCV1z0JYeTPvpUdya976GVSbuW8cpJn3PYWY/yzkdCCCGeE+3uxS+P1Le/ebvDP5cJn4jcJSlDnf8dTYYkhmQPdm8AhBASI09sHtHrnY/NQcNye7QYlYfSsHzDhZb6Ou2LNYadPFT0OZ1HrNfQbZ8qNaNjjTo5bp1qlPNaD9ewEli+nHc+kiRA9jECgYAEIAOBgGvO4uJi11xeOenT2+eFkz69fd+aOFXu3HfKsc+vZpXK4pSH5TQ8FPkUpzwsfzWrVO7cd0ouv+dV+TXkd/r+NWKRXH7Pq7L8rXp5y8hV8hqxSBanPCyvEYvkLV9fJcvfqo8rp2S/hsnu88Lpps+L9QxxlvA1FKiXhbkBWZgXkIYwpT8lJA1hyqL8gDyxvUwW5VtrtxJDiGss93XSF08MO3mo5ktEHrFcQ7d9qtSMjjXq9Lh1qVHOa71dw2JpGFIWFUnZ1JT4301cr9FnBzvrUWU2H5csWSIByNtvv73HPn/84x/l2LFjZWZmphw4cKAsLCyU69ats+Xh5iN99KnhpE9v39mbj+Vv1cvl97wqfzWrNLIhaGejb/k9r8prxKJuNxfD8UekFfS4wRivn5uPyefzwqnqYo/Yw+01KRCQAqYUMOWZM06lNIQpp088Jg1hrd1ajGIbfZ3zxRfDTh5q+RKTh/1r6LZPlZrRsUadH7ceNcp5zcI1NKRctizOX3AW4HqNPjvYWY8q8dj1rl278PTTT6OgoKDXfueccw7uvfdejBw5Ev369cOLL76In/zkJxg2bBiuvvpql7IlhBDSke7e1xg+DCZ8YEw0imYUoPLFA53f+ThyKIpmtP9e8Kf6MaJoOCb/08RuD6Txp/ptHS7T2+E2hJC+i1drUiHa/7+UZ9p8PonaowPh80mYbSJqu50YbvtUiaFjzhw3x81xc9ztfYHaWhCiLYbXCZw8eRI33ngjnnnmGQwZMqTXvpMmTcKPfvQjfP3rX8cll1yC22+/HQUFBXj99dddypYQQsjZdHxfo9lmQkoZeV9jmNZgKyrW78HWJWWoWL8HrcHWTjH8qX7MWTsLk++eiKLrCzD57omY81znzUthGBh/01hcvWAyxt80NubNwvBmadmjO7D3+f0oe3QH1t28sUtOhJC+hZdr0vD9Lh0JhQRyspoQCglL7XZiuO1TJYaOOXPcHDfHzXG39wVyckCItni++Xjbbbdh2rRpuOqqq2z9nJQSZWVlqK6uxne/+90e+7W0tKChoaHThxBCiHN8eaQewtd50RQ+DAawvtkXvnvx+3e2z+n/vfzVbjcq48XKZikhpO/h1ZpUQKIwtxEFeY0whIQ/xYQhJMbkNWLN/VUotNhuJYYQ0nJfJ33xxLCTh2q+ROQRyzV026dKzehYo06PW5ca5bzW2zUEDAMYM6b90BlCdEVIefaeunts3LgRixcvxq5du5CamopJkyZhzJgxeOyxx3r8mUAggKysLLS0tMDn8+HJJ5/ELbfc0mP/Bx98EAsXLuzSPmXKFPj97jxiV1FRgfHjx7vi8spJn94+L5z0Ocvrb7yFUZeNc8134J3dEV/9kXp8fuhEx4OoIQCcd8m5GJw9OOr3OyJNEx/v/QSnT7Z8dbq1RL+0/hhRNBzvHviHI2M8XvM5Ap82oOOvPyEEMi/IwNDc87odoxu8/96epK5RzmvO0traipdffhmBQAAZGRmuOJMZL9ekIy/+DnKy2v+R5aNPB+BU0IdBqSFcdEEzfAYQMq23R4tRe7QSOVmXW+rrtC/WGHbyUNHndB6xXkO3farUjI416uS4dapRzmvWrmGiqTj4Addr9FnGznrUs3c+fvzxx7j99tuxbds2pKamWv659PR0vP322zh58iTKyspw1113IScnB5MmTeq2/4IFC3DXXXdFvm5oaMCIESOwadMm1xbrJSUlKC0tdcXllZM+vX1eOOlzlm9PmobfrNjsmu8X82ZEfN2983Fo3nkYPWUkGj5rxGcNdThifAKYZ35e+ASuuLIQVy+Y3Cluxfo9KHt9ByQkwruV4pTA5H+aiOeNpVj8mw1xv6uxYv0elD36lSOcDwQm3zCx03sjO47RDZbeNyupa5TzmrM0NDQgMzPTFVey4/Wa9K3/705kpA2KdxiWKLnrAZQum++Ki77kcNJHn+pO+hz2PbSS6zX6LGNnPerZ5uOePXtQV1eHK664ItIWCoXw6quvYuXKlZF/RT4bwzBw6aWXAgDGjBmDd999F0uWLOlxode/f3/0798/IWMghBBy5n2N4U3BjPPTUfXSeyhf8TqET8BsM7v8jAxJZHwtvUt7+BFu2dZhY/CrR7ilafZ4sA0Ay5uS0Q63IYT0Lbxekz6xeQTumF0PAFi1JRu1RwciJ6sJt153BANSTTQHDcvt0WJUHkrD8g0XWurrtC/WGHbyUNHndB6xXkO3farUjI416uS4dapRzmvxXUNCVMezzcfJkyejsrKyU9tPfvITjBw5Er/85S+7XeR1h2maaGlpSUSKhBBCziJ8SvTxms9RsX5PZJOv42nTFev34HjN55BSdtpE7ILo2jQkezBkqPPPyJDEkOzBCOxqQF3t8U5x66qPY/eGvTiwtdryadtnb5bGcgclT8smJHnwek1675O52LRNAAKorEmHzycRCgmsf2k4tj+xG1fdNg77DkZvX/vi8KgxJFJxz2P5lvo66Ysnhp08VPMlIo9YrqHbPlVqRscadXrcutQo57X4ruHO1RXcgCTK49nmY3p6Oi677LJObYMGDcK5554baZ8zZw6ysrKwZMkSAMCSJUswbtw4XHLJJWhpacFLL72E9evX46mnnnI9f0IIUZFEbop1fLw6gAaUPbqj202+7u5ePBsjxUDDscYu7T3dlXhZ8Sg0/vYUzn5NsfAJ1Lx6KHKATMdNyb2b90c2RLv7c+n4iHXHMYb71R+pR2uwtcufX3ePmfe22UkIURuv16QSAvtr0iP/bba1/8vMvoPpuGXRaOw7mA5TRm+3EqP9eBv3ffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvBbfNVy1JRt33nAYhKiMZ5uPVjh8+DAM48xbVU+dOoW5c+fiyJEjGDBgAEaOHInf/e53mDlzpodZEkKIGsS6KWZ1w7LjKdHh/+u4yReO81l1HcxQ7//6KkMSGeeno2L9Hpz48Auc/PwU0oYOwrkXnYPZT1+Pd144EMnnsuJR2PCzzQg2BLvEaX+kW/T4qLadP5ez+33edgLrbt7YpV+nP4ceNjsJIclFotek4qs7wTv++4rPJ1F7dCB8Phn5S2Zv7XZiuO1TJYaOOXPcHDfHzXFbiUGI6rhwXpJ1ysvLO50qWF5ejueeey7y9cMPP4yamho0Nzfjiy++wBtvvMGNR0II+YqOm2Jmmwkpz2wO9kR4w63s0R3Y+/x+lD26A+tu3ojWYGuXvuE7GjsS3uTrGOfo/k8jh8UYKUakX+RrAaRm9kfF7/+B7Y+UY+/z+1FTfgh7N+9H2aPl+MPPn0fRjAJcvWAyxt80Fu+8cAB1B493m3/asDTkTszp8VFtO38uXfoB3fbr7c+BEJIcuL0mlbLzXzIBIBQSyMlqQigkLLXbieG2T5UYOubMcXPcHDfHbSUGIaqj1OYjIYSQ2IllU8zKxlxrsBUV6/d0e0djeJOv092AHTYCff72d6WFH5eWZvsp1s2BIE4dP9UlHym7bvj1lr9hCFS+cAD9BrXfmWikGBBCdDpAxuqfi9V+vb2XkhBC7CIgUZjbiIK8RhhCwp9iwhASY/Iaseb+KhRabLcSQwhpua+Tvnhi2MlDNV8i8ojlGrrtU6VmdKxRp8etS41yXovvGoYPqCFEZZR+7JoQQoh1YtkU6+10aaDzo8gwELmjUQgBgTObfP+9/NWu73kUQGvzV3dQfrVnKc2vvt/bOTRn+bt7N2SYjt8zUgxcXjIKQ3PO6/ToeHd/LmabiYZjjdi6pCzyqLnVPz+elk0IcZLFc2t6Pe165+oKy+3RYqzYFMS8mdWW+jrtizWGnTxU9DmdR6zX0G2fKjWjY406OW6dapTzWnzXkBDV4eYjIYQkCbFsikXbcOt4RyNCZ/qkpvfH5H+bGNnkG5I9+Kv3L3YMFNs4wv4zG591ln7ObDPR9EUzxj/Q+b2LZ/+5mG0mUvqn4P0dhyB8RuQdkLOfvr5TP9GGbv/8nDgtmxBCCCGEECdoDhrckCTKw81HQghJEmLZFIu2YdndnZFGioH+af07Ha5SNKMAb67bjZN1J+MbhDiz4Xdm49P6j9cfDQDoeohOx0NsGo414v0dh9rfp/PVhmld9XG888KBTn9+tbvOxZznuj+sx5/q5+EyhBBHuPfJXGzaJgABVNakw+eTCIUE1r80HNuf2I2rbhuHfQejt699cXjUGBKpuOexfEt9nfTFE8NOHqr5EpFHLNfQbZ8qNaNjjTo9bl1qlPOa8/PaztUV3IAkSsHNR0IISSLsbopF27Ds6c5I/4CULnFyJ+bg7T9Wnnm0ugNGitH1zsiOCAASSBuahhmPX4u9m/fj7T9VRt4VaRVpSvz14W2o2VGLk3UnI9431+1G7sQcnHvROTDbzPY7HjvkE37Uu+OfX9m8VbybkRCScCQE9tekR/47fIrpvoPpuGXRaOw7mA5TRm+3EqP9DZPu++KJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXKec35eW3VlmzcecNhEKIK3HwkhJA+TscNt7PvGLyseFS3d0Z+cV5GlzjnXnROl0ethQAunXgJMs5Px2fVx/FJ5afdb0J+9XMn605i7Y834OTxk73e8XjOxUPwxUdfdvYJ4PNDJ3Digy8iG6Bh18m6k3j7j5VfbXAO6pIDD4whhHiJ+Oqsq47zns8nUXt0IHw+GfkLZW/tdmK47VMlho45c9wcN8fNccfalxCV4GnXhBBCAJw5XKbs0R3Y+/x+lD26A3/4+fOY/fT1mHz3RBRdX4DJd0/EnOdmQRhGp5+rWL8Hx2s/j5w6LQwBIYBhI4fh2l9Pw9ULJmPk5Nwud1F2R2Nd7xuPAPDFh19CGCLiGnjOwMhGZHd3XobbpZQ4efwk0oalQQjR7enYhBDiNlKiy7wXCgnkZDUhFBKW2u3EcNunSgwdc+a4OW6Om+OOtS8hKsHNR0IIIQA6Hy5jtpmQUkbehTj+prG4esFkjL9pbKdHkc9sWJZj35Z30HLyNID2jb5BQ9Mwe9X1kf5FMwowLH9oZNMvXsIbmdKUaPrCxgJLCFzyrf/RZUOVj1gTQrxAQKIwtxEFeY0whIQ/xYQhJMbkNWLN/VUotNhuJYYQ0nJfJ33xxLCTh2q+ROQRyzV026dKzehYo06PW5ca5bzm/LwWPjGbEFXgY9eEEEIAdH+4TPhdiD3R26Ewp46fwjsvHIgcHvPlkXqMujofo6bko/5oAFUvvYfTp04nYCQdEOjyKLg0JQ7t/AD/c/73uOFICPGcxXNrcMfsegDo9rTSnasrLLdHi7FiUxDzZlZb6uu0L9YYdvJQ0ed0HrFeQ7d9qtSMjjXq5Lh1qlHOa87Pa4SohJB23+avOQ0NDcjMzEQgEEBGRtd3liWCkpISlJaWuuLyykmf3j4vnPQ5y7cnTcNvVmyOK0bF+j0oe3RHp0NeOr6zseNhNL+YNwOLf7MBf7j1eRx5+5MuG3xA+yEzhddehk/eOdb5nZH5QzHq6ny88vhrtvLbhd/jStwYtZ+RYkCGTKQNTUPOty7Ge9sORu7I7MhV90zq9XCeX8ybEfefqR2W3jcrqWuU85qzeLGeIc4SuYavbEFG2iBXnCV3PYDSZQtdcdGXHE766FPdSZ/DvodWcr1Gn2XsrEd55yMhhBAA7Y9Fdz5cxoSvXwpqyg99taEnUfniAcxZOwvSNLHu5o34rLqu241HoP2x6JOfn8Jn79W1f/3VHZWfvVeHk5+f6vauRCcYfvkFGDk5N7JRavgMvL2l8yncRorR6x2dhBDiFk9sHtHrnY/NQcNye7QYlYfSsHzDhZb6Ou2LNYadPFT0OZ1HrNfQbZ8qNaNjjTo5bp1qlPOa8/MaISrBzUdCCCEA2k+9nrN2VuQR6YZjjagpPwTgzKnRddXHsXfzfgQ+aUBd7fFeNw/Pu+QcHPtq4/FsTn1+yvH8gfbDZ76WP7TTHY3nXtz1FO6eTrfueNp3/ZF6tAZb+Wg2ISSh3PtkLjZtE4AAKmvS4fNJhEIC618aju1P7MZVt43DvoPR29e+ODxqDIlU3PNYvqW+TvriiWEnD9V8icgjlmvotk+VmtGxRp0ety41ynnN+Xlt5+oKbkASpeDmIyGEkAj+VH9k427rkjIYKUZk4xFofwfke2U1aDjWGPXOxePvn0hwtl2RZtdNxa53dMpuT7cOH54T7vd52wmsu3kj5qzlYTSEkMQhIbC/Jj3y32Zb+0mm+w6m45ZFo7HvYDpMGb3dSoz2423c98UTw04eqvkSkUcs19Btnyo1o2ONOj1uXWqU85rz89qqLdm484bDIEQVuPlICCGkW4ZkD46cKB3GbDNxZO9RnMZpyEQ8Mx0n/Qb1w+ngafx10Tac/PwU0oYOwrkXnYPZT1+Pd144gC+P1Hd6d2VHOp72LdvaRxe+07O3d0MSQki8iPa/L3Y6vMvnk6g9OhA+n4z8hbK3djsx3PapEkPHnDlujpvj5rhj7UuIShheJ0AIIURNimYUYFj+UAghYKQY7Xc6fkXHbUdhiC4/6xWnT53GqyvfwN7n96Om/BD2bt6PskfL8YefP4+iGQX4/p3fBQD89/JXUbF+D1qDrZGfDZ/23ZFop30TQogTSNn5L44AEAoJ5GQ1IRQSltrtxHDbp0oMHXPmuDlujpvjjrUvISrBzUdCCCHdEn4H5OS7J6Lo+gJkjxnedXPOEDjvknORmaXuabtStt/BuHvDXqy7eSPKHt2Bvc/vR9mjO7Du5o2RDcju7vTs6d2QhBDiFAIShbmNKMhrhCEk/CkmDCExJq8Ra+6vQqHFdisxhJCW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNefntfBBNISogjKPXS9duhQLFizA7bffjscee6zbPlVVVfjVr36FPXv24KOPPsLy5ctxxx13uJonIYT0VQZkDuiyOQcJFE6/DKHWEF55/DVvErOA8AnUvHqo02PVwJnHqotmFCDUGkLq4FQ01zfD8BkQbej23ZCEkOTG7TXp4rk1vZ52vXN1heX2aDFWbApi3sxqS32d9sUaw04eKvqcziPWa+i2T5Wa0bFGnRy3TjXKec35eY0QlVBi83HXrl14+umnUVDQ+1/wmpqakJOTgxkzZuDOO+90KTtCCOmbnH0AiwyZSOmfgraWNgghICAwbORQXFY8Cvv+VInUzFQEA8GoB9F4gRkyIU3ZPo62M8kJn8C726qxc/VbaK5vbn8eQAL90/rj3HPOxZzneNgMIX0JrkkJIYQkC81Bg5uSRBk833w8efIkbrzxRjzzzDN4+OGHe+175ZVX4sorrwQAzJ8/3430CCGkz3L2ASwA0NbShsysTPRv7I9LCv8HBp03CKtnrMPJupORdz/6+vmQ8bV01B8JQJqK7ELK9tO3zVDnBZfZZuLovk87NLT/v+b6ZpwyT0XuiuQGJCHJj1dr0nufzMWmbQIQQGVNOnw+iVBIYP1Lw7H9id246rZx2HcwevvaF4dHjSGRinsey7fU10lfPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmvuTev7VxdwQ1I4gmebz7edtttmDZtGq666qqoC71YaGlpQUtLS+TrhoYGxx2EEJKMhA9g6XinIAAEjgYQRBDvv1YLYYjIBmP4/4daQvjycL3b6XZCpHTN+/Sp0+35Stkp754INgRR9ugOVL54AHPW8g5IQpIdr9akEgL7a9Ij/x0+xXTfwXTcsmg09h1Mhymjt1uJ0f6GSfd98cSwk4dqvkTkEcs1dNunSs3oWKNOj1uXGuW85t68tmpLNu684TAIcRsh5dlnI7nHxo0bsXjxYuzatQupqamYNGkSxowZ0+P7dTpy8cUX44477oj6fp0HH3wQCxcu7NI+ZcoU+P3u/EWyoqIC48ePd8XllZM+vX1eOJPd9/obb2HUZeNc8x14Z3fMPmmaCHzSgNbmNvgHpCBzeAaEYaD+SD0+P3Si2yeo63EEg5EdX9I2cdopRPtGZDSfAHDeJedicIIPnnn/vT1J/b8JzmvO0traipdffhmBQAAZGeoe+KQLXq5JgSkAuq5JhZBIGxDCyWYfpBRR27uja98KAN3XaCJ98cWwk4davsTkYf8auu1TpWbc9qlSM277VKkZt32q1Ixd30UXBHH5JSd7/NmKgx9wvUafZeysRz278/Hjjz/G7bffjm3btiE1NTVhngULFuCuu+6KfN3Q0IARI0Zg06ZNri3WS0pKUFpa6orLKyd9evu8cCa779uTpuE3Kza75vvFvBkx+SLvdaw9817HtMY0XPrdHAwek4mql9/D8YOfA0Cnjbpd+D2uxI2O5W8Fx51R/ukt7DNSDBRdWYCrF0x2zt0NS++bldT/m+C85iwNDQ3IzMx0xZXseL0mBTZBoONdLu0ISHz/yjq88Oowy+3RY5QAKLXY11lf7DHs5KGez/k8YruGbvtUqRm3farUjNs+VWrGbZ8qNWPHN29mda93PpY8tJLrNfosY2c9aiQ4lx7Zs2cP6urqcMUVVyAlJQUpKSnYsWMHVqxYgZSUFIRCIUc8/fv3R0ZGRqcPIYSQdjq+19FsMyEl0Fh3Em9vqUT5itcBCUy6/dvIGjPc61RdwfB3/bUoQxJDEnzXIyHEO7xekwpIFOY2oiCvEYaQ8KeYMITEmLxGrLm/CoUW263EEEJa7uukL54YdvJQzZeIPGK5hm77VKkZHWvU6XHrUqOc19yb18KnYxPiNp7d+Th58mRUVlZ2avvJT36CkSNH4pe//CV8Pp9HmRFCSN/hxEdfAAJd7gIMvw/xeM3n8KX4MHvVP2NV8Ro01vX8mIbuGH4DZlvXF3APGzkURTN6P/mWEKIvXq9JF8+twR2z6wGg21NJd66usNweLcaKTUHMm1ltqa/Tvlhj2MlDRZ/TecR6Dd32qVIzOtaok+PWqUY5r7k3rxHiBZ6+8/Fszn6/zpw5c5CVlYUlS5YAAE6fPo0DBw4AAKZOnYobb7wRN954I9LS0nDppZdacoRvC3XzHUl81Iw+1X1eOJPdp8Nj163BVjxVvAYno2woDjpvEMb/+AqMnvp1PPfjDThZd1Kbx66Fr/1gmdTMVPhSfDj1+Slbvhsm/QrX/nqaK4fN8LFr/Z1ePObCdz4mBlfXpK9sQUbaoISM42xK7noApcu6e+8kfTr4vHDSR5/qTvoc9vGxa/psYGc96vlp171x+PBhGMaZR+A++eQTFBUVRb5+5JFH8Mgjj2DixIkoLy/3IENCCNGP1mAr9m7ej/fKaqJuPALAqc9P4ZXHXkPVX9/Dv/zuBmz9zzLsfcMHnHYh2ThJzUjFN+aMw7gbirB7w1688vhrPfY9+wRsIQQyzk/nKdeEkISuSZ/YPKLXOx+bg4bl9mgxKg+lYfmGCy31ddoXaww7eajoczqPWK+h2z5VakbHGnVy3DrVKOc19+Y1QrxAqc3HsxdrZ3998cUX93oyKSGE9CXCm4hfHqlH/ZF6tAZbo26URQ6YqT5u21dXfRy/ve45nD55GiE48w60eDj/68Pw2cHjkKGefy80f9kMn98Hf6ofDZ81fnWoTtf+g84biFMnmjq1SSmRcX6643kTQtTHzTXpvU/mYtM2AQigsiYdPp9EKCSw/qXh2P7Eblx12zjsOxi9fe2Lw6PGkEjFPY/lW+rrpC+eGHbyUM2XiDxiuYZu+1SpGR1r1Olx61KjnNfcm9d2rq7gBiTxBKU2HwkhhFij4yai8Al83nYC627eiDlrZ/W6AdnxgJnuEALIGJ6BwNGGbr9/+mT77Y4q/DPQsXfrovYRhsCXR+oBAEOyB/e4UVn0zwV487ldaGvpvKn6zovvYtzsIt79SAhJGBIC+2vOnHZttrWfTLrvYDpuWTQa+w6mw5TR263EaD/exn1fPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmvuTevrdqS3etp14QkCs9OuyaEEBI7XU6pRvudiXs37+/15748Ug/hE12/IdofMx42chiuuL4wMUl7gDQlPquuw9/XVCDYGOy2j+EzUPnigS4bjwBw/P3PsfsPe1Gxfg+2LilDxfo9aA22JjptQkgfQ4j2T0d8PonaowPh80lL7XZiuO1TJYaOOXPcHDfHzXE77SPEC7j5SAghGtLdJqLwnbnLrye6vftPANljhmPy3RMx57lZGHdDEYblDXU4Y+84svcTvPL4a3j96Te7/b4ZMnu80xMAXl/1JrY/Uo5//L992P5IOdbdvJEbkIQQR5Gy/dORUEggJ6sJoZCw1G4nhts+VWLomDPHzXFz3By30z5CvICbj4QQoiHdbSLKkMSQ7MG9/lzRjAIMyx8KIQSMFANCCHxt5DDMXnU9xt80Fv5UP/ypfty8fja+d/t3kJmVmcBR6EF4ozF8GM1n79VFvcOUEEKsIiBRmNuIgrxGGELCn2LCEBJj8hqx5v4qFFpstxJDCGm5r5O+eGLYyUM1XyLyiOUauu1TpWZ0rFGnx61LjXJec29eCx9QQ4jb8J2PhBCiIUUzClD54oHIOx9FGzBs5FAUzSjo0rfjwTRDsgdj9tPX450XDkS+LppR0OWdhv5UPybcMh7jbijCups34rP3un+/4sDzBqLp8771L6gd3yNJCCHxsnhuTa+nXe9cXWG5PVqMFZuCmDez2lJfp32xxrCTh4o+p/OI9Rq67VOlZnSsUSfHrVONcl5zb14jxAuE7GPHRzc0NCAzMxOBQAAZGRmuOEtKSlBaWuqKyysnfXr7vHAmu+/bk6bhNys2J9TRcVPxj7uW4okNL3XZRAwfTPPZe3UQhoA0JdKGpeFfN8/BwMEDeo0Z3phsDbZh9fVrcfL4qUi/Xfg9vp15CwyfQPMX3b9L0Wl24fe4Eje64ormu+qeSRh/01hHfUvvm5XU/5vgvOYsXqxniLNEruErW5CRNsgVZ8ldD6B02UJXXPQlh5M++lR30uew76GVXK/RZxk761He+UgIIZriT/VHNsDK5q3q9kTmvZv3R+5aDD82fLLuJJ6dsQ63vnBLp59pDbZi7Zw/oO7gcQi0vz9m5+o3MfzyC3Dy81NdYrcEWhIwKvUxUgxcVjzK6zQIIUnCE5tH9HrnY3PQsNweLUbloTQs33Chpb5O+2KNYScPFX1O5xHrNXTbp0rN6FijTo5bpxrlvObtvMY7Ikmi4eYjIYQkMV8eqY/c8diRxrqT2Lt5f6e793b/YS/qqo8DAMK9m+uDOPTaB26l6wlpQwd1uqszGmbIxDsvHHD8zkdCSN/k3idzsWmbAARQWZMOn08iFBJY/9JwbH9iN666bRz2HYzevvbF4VFjSKTinsfyLfV10hdPDDt5qOZLRB6xXEO3farUjI416vS4dalRzmvezmvrXxqOnasruAFJEgo3HwkhJIkZkj24y8Yj0P17Cw++8r5LWanDpd/JwZT7r8JT1zyL0OlQ1w4CZ3Ziv8LwGfjySH23j6h3d/cpIYT0hoTA/pr0yH+bbe2nk+47mI5bFo3GvoPpMGX0disx2o+3cd8XTww7eajmS0QesVxDt32q1IyONer0uHWpUc5r3s5r+w6mY9WWbNx5w2EQkih42jUhhCQxRTMKkDYsres3ZOeTsVuDrair/ty9xBRgaO55+NEj16DqL+92u/E46JyByB7T/q/JHZEhiYzz07Hu5o0oe3QH9j6/H2WP7sC6mzdGTsYmhBA7CNH+6YjPJ1F7dCB8Pmmp3U4Mt32qxNAxZ46b4+a4Oe5E+8LthCQSbj4SQkgS40/14183z0H6VxuQwhAQAhg2clink7H3bt7f5zbOxFcrtZpXD3X7fbPNxOxV1+Nr+cMghICRYkAIgWEjhwISqKs+DiklzDYTUkrUVR/H3s373RwCISRJkLL905FQSCAnqwmhkLDUbieG2z5VYuiYM8fNcXPcHHeifeF2QhIJNx8JISTJGTh4AG594RZcdc8kXPG/CjH57kmY89ysTo8If3mkHsIneomSfNQdPI4npz2Lz2u/6LGPP9WPOWtnYfLdE1F0fQEm3z0Rc56bhYbPGrv8eQlf10fZCSEkGgIShbmNKMhrhCEk/CkmDCExJq8Ra+6vQqHFdisxhJCW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNW/ntTF5jZGDawhJFHznIyGE9AE6nozdHUOyBwN98B3Tp7o5xTuMkWJg65Kybt/nOCR7MGSo8z8zy1DnR9kJIcQKi+fW9Hra9c7VFZbbo8VYsSmIeTOrLfV12hdrDDt5qOhzOo9Yr6HbPlVqRscadXLcOtUo5zVv5zUeNkMSDe98JIQQgqIZBRiWP9TrNDwn/Ch2Sn8fmr5o6vF9juE/r7Mfx+74KDshhBBCCCGEEN75SAgh5CtGTclHsDGIwNEGr1PxhEHnDsSQC4egsa4RgaMNkGh/7yOAyPscw3ePhh/H5mnXhJB4uffJXGzaJgABVNakw+eTCIUE1r80HNuf2I2rbhuHfQejt699cXjUGBKpuOexfEt9nfTFE8NOHqr5EpFHLNfQbZ8qNaNjjTo9bl1qlPOat/Pa+peGY+fqCt79SBIKNx8JIaSP0xpsxbqbN6Ku+nife+9jR1pb2nD07U8gIbt8r7v3OXZ8lL012MqNSEJITEgI7K9Jj/y32dY+D+87mI5bFo3GvoPpMGX0disx2t8w6b4vnhh28lDNl4g8YrmGbvtUqRkda9TpcetSo5zXvJ3X9h1Mx6ot2bjzhsMgJFFYfuz6k08+SWQeWLp0KYQQuOOOO3rtt3nzZowcORKpqam4/PLL8dJLLyU0L0IISXb2bt7f6eRmAIAAMoZndNt/4DkD0G9gPxT+6DKkZvZ3MdPEYaQYOH3yNKSU6GbvEWabiYZjjdi6pAwV6/d0egQ7vHlb9ugO/GPzPmx/pBwrr34Gf///KvrcCeKEJJpEr0cBb9akQrR/OuLzSdQeHQifT1pqtxPDbZ8qMXTMmePmuDlujjvRvnA7IYnE8ubj6NGjsWHDhoQksWvXLjz99NMoKOj9XVlvvPEGZs+ejZ/+9KfYu3cvrr32Wlx77bV45513EpIXIYT0Bbo76drwGeg/qF+3vyWaA0FkjxmOaQ9ejXMvPtelLBNHZlYGLi8eBSOll1+JAqjZcajbd0B23LwNH0LTXN+MVx5/rcu7Igkh8ZHI9Sjg3ZpUyvZPR0IhgZysJoRCwlK7nRhu+1SJoWPOHDfHzXFz3In2hdsJSSSWNx8XL16Mn//855gxYwa++OILxxI4efIkbrzxRjzzzDMYMmRIr30ff/xxTJkyBf/n//wffP3rX8eiRYtwxRVXYOXKlY7lQwghfY3uTm42QyZON7V2ewK2DEl8/I+jqFi/Bxd/40KXskwMQghcOfsKDL3kvC5/Bp2Q7R+zzYSUMvIOSKD7zdvwz3TsRwiJn0StRwHv1qQCEoW5jSjIa4QhJPwpJgwhMSavEWvur0KhxXYrMYSQlvs66Ysnhp08VPMlIo9YrqHbPlVqRscadXrcutQo5zVv57UxeY2RU7MJSRSW3/k4d+5c/PCHP8RPf/pTjBo1Cs888wyKi4vjTuC2227DtGnTcNVVV+Hhhx/ute/f//533HXXXZ3arr76avz5z3/u8WdaWlrQ0tIS+bqhoW8epEAIIT1RNKMAlS8eiLzz0WwzAQk0HOt5vmwNtmL7I+Xw9fe5mGn8DM09D5+//zkgBKQpkTZ0EC4rHgV/akrkz0Ci+0evO9LxHZDdbd52148QEj+JWo8C3q1JF8+twR2z6wEAq7Zko/boQORkNeHW645gQKqJnasrLLdHi7FiUxDzZlZb6uu0L9YYdvJQ0ed0HrFeQ7d9qtSMjjXq5Lh1qlHOa97OazxshiQaIeXZN+lGZ+XKlbjzzjvx9a9/HSkpnfcv//GPf1iOs3HjRixevBi7du1CamoqJk2ahDFjxuCxxx7rtn+/fv2wdu1azJ49O9L25JNPYuHChfjss8+6/ZkHH3wQCxcu7NI+ZcoU+P3uHAZQUVGB8ePHu+Lyykmf3j4vnPQ5y+tvvIVRl42L2k+aJgKfNKC1uQ3+ASlIG5qG4zWf43Rz+6PBhk8g2NgSJQpQjyMYjOy487ZDvE4B4KLxF+LI25+g7XQbBNr3GPun9ceIouEAgMAnDTh5/BSaG4K9+gSA8y45F4OzB0OaJj7e+wlaTnb9c+vYLxrvv7cnqWuU85qztLa24uWXX0YgEEBGRvfvZ012nFqPAh6vSSeMgz/F8v0AcVFRVY3xo/NdcdGXHE766FPdSZ/ePgCoOPhB0q7Xkt1nZz1qe6Xz0UcfYcuWLRgyZAimT5/eZbFnlY8//hi33347tm3bhtTU1JhiWGHBggWd/mW6oaEBI0aMwKZNm1xbrJeUlKC0tNQVl1dO+vT2eeGkz1m+PWkafrNic699Iqda1x4HjPbHp3EIOK9DH2EISEN2+7h1R3bh97gSN8afuA2ccBp7DQxtPWtwJ4Gshgvw9R/ko2hG+3ve1t28EX95bznGp9wEs81ESv8UhE63QfgMyJDEsJFDMee5WZETrVuDrdi9YS/eXLcbzfXNMHro1xtL75uV1DXKec1ZGhoakJmZ6YpLRZxajwLer0m/W/RUr3c+NgcNy+3RYlQe+t/43rj/a6mv075YY9jJQ0Wf03nEeg3d9qlSMzrWqJPj1qlGOa+pOa+5QclDK5N2vZbsPjvrUVsrtWeeeQZ33303rrrqKlRVVWHo0KExJQgAe/bsQV1dHa644opIWygUwquvvoqVK1eipaUFPl/nx/nOP//8Lv+a/Nlnn+H888/v0dO/f3/0758cp7ESQkg8dDwYBaHu+0jT9s3wWmGevfH4FUf3fYpP9n+KyhcPYM7aWZizdhbeumEdiq4swJDswbiseBTeeeEAvjxSjyHZg1E0o6DThqI/1Y8Jt4zHuBuKsHfz/h77EULix8n1KOD9mvTeJ3OxaZsABFBZkw6fTyIUElj/0nBsf2I3rrptHPYdjN6+9sXhUWNIpOKex/It9XXSF08MO3mo5ktEHrFcQ7d9qtSMjjXq9Lh1qVHOa2rOaztXV/BxbOIYljcfp0yZgoqKCqxcuRJz5syJWzx58mRUVlZ2avvJT36CkSNH4pe//GWXRR4ATJgwAWVlZbjjjjsibdu2bcOECRPizocQQpKZ1mAr3iursdRXGCLpNyG7Q3Y4IGb8TWMxOHswrl4wOfL98TeNjRrDn+q31I8QEhtOr0cB79ekEgL7a9Ij/222tR9gte9gOm5ZNBr7DqbDlNHbrcRoP97GfV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa+pOa+t2pKNO284DEKcwPLmYygUwv79+5Gd7cw7vtLT03HZZZd1ahs0aBDOPffcSPucOXOQlZWFJUuWAABuv/12TJw4EY8++iimTZuGjRs3Yvfu3fjtb3/rSE6EEJKMhB+3/uy9Okv9B2SmounL5gRnpSYdD4iRpomK9Xt4FyMhCuH0ehRQY00q2v/+h45vYvf5JGqPDoTPJyN/Qeyt3U4Mt32qxNAxZ46b4+a4OW4vfYQ4hWG147Zt2xxd6Fnh8OHD+PTTTyNff/Ob38SGDRvw29/+FoWFhXj++efx5z//ucuCkRBCyBnCj1tbQqDPbjwCgNlmYkj2YLQGW/Hx3k9Q9ugO7H1+P8oe3YF1N29Ea7DV6xQJ6dN4sR4FEr8mlbLzX/oAIBQSyMlqQigkLLXbieG2T5UYOubMcXPcHDfH7aWPEKewvPnoBuXl5Z1OFSwvL8dzzz3Xqc+MGTNQXV2NlpYWvPPOO5g6daq7SRJCiGZ8eaQewiei9ht4zsD245/7ML7+PhTNKMDezftx+mQLpJQw20xIKSOPZAPtd5NWrN+DrUvKULF+DzclCUky3FyTCkgU5jaiIK8RhpDwp5gwhMSYvEasub8KhRbbrcQQQlru66Qvnhh28lDNl4g8YrmGbvtUqRkda9TpcetSo5zX1JzXwgfREOIEsR8NSAghRAuGZA9uP9m6F4RPYNC5AxFsCMJs67svlr5wbDb8qf72R6+F6LQZG34kO3JqePVxCJ+ADMnIQTV8LJsQYpfFc2t6Pe165+oKy+3RYqzYFMS8mdWW+jrtizWGnTxU9DmdR6zX0G2fKjWjY406OW6dapTzmprzGiFOodSdj4QQQpynaEYBhuUPhRACRooBdHcTpAkMzsrs0xuPAHDy+Cm0BlsxJHtwl+dPzJCJjPPTO50a3t1dkYQQQgghhBBCzsA7HwkhJMnxp/oxZ+0s7N28H18eqUfG+emoeuk9HK/5PHLn3rCRQ3H1f0zGB3//EG0tIa9T9ozP3z+BvZv3o2hGAfo91Q841eGbEqh66T1kFVzQ/ufWdmZzsuNBNYQQYod7n8zFpm0CEEBlTTp8PolQSGD9S8Ox/YnduOq2cdh3MHr72heHR40hkYp7Hsu31NdJXzwx7OShmi8RecRyDd32qVIzOtao0+PWpUY5r6k5r+1cXcG7H4ljcPOREEL6AP5UP8bfNDbydeGPLsdfHtiK+qMBDM7KxLSFV+OdFw706Y1H4Mwmoj/Vj/Rh6cAHnb9/vOZzZA7P6PIYuwzJ9rslCSHEJhIC+2vSI/8dPoF038F03LJoNPYdTIcpo7dbidH+hkn3ffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvKbmvLZqSzbuvOEwCHECPnZNCCF9jNZgK/7w8+fx/o5anPjgC7y/oxZ/+PnzOPHhFxAi+sE0yUzHTcS2lrb2x9Q7IHwCaUMHdXqMXQiBYSOHomhGgQcZE0KSASHaPx3x+SRqjw6EzycttduJ4bZPlRg65sxxc9wcN8ftpY8Qp+DmIyGE9DF6emfhyc9PQfbx4647biL6B6R0e4fjuRedgzlrZ2Hy3RNRdH0BJt89EXOe42EzhJDYkbLLa2YRCgnkZDUhFBKW2u3EcNunSgwdc+a4OW6Om+P20keIU3DzkRBC+hhfHqmH8HVedETu6Msb6lFW3pM76ZJOm4iZwzN6vMMx/Bj71QsmY/xNY7nxSAiJGQGJwtxGFOQ1whAS/hQThpAYk9eINfdXodBiu5UYQkjLfZ30xRPDTh6q+RKRRyzX0G2fKjWjY406PW5dapTzmprzWvgUbEKcgO98JISQPsaQ7MHd3tE3OCsT6V9LQ0tjEM2BIFqb2yDNvnEnpJFiIOP89E6biMIwOh3UMyR7cGTjkRBCnGLx3BrcMbseALBqSzZqjw5ETlYTbr3uCAakmti5usJye7QYKzYFMW9mtaW+TvtijWEnDxV9TucR6zV026dKzehYo06OW6ca5bym5rxGiFMIKc++wTa5aWhoQGZmJgKBADIyMlxxlpSUoLS01BWXV0769PZ54aTPWb49aRp+s2Jzp7bWYGu3G2etwVasu3kj6qqPR067Hpp3HmRI4vj7n1vy7cLvcSVuTMRQPHPmTroE1/56WmRz8RfzZnT5M00kS++bldQ1ynnNWbxYzxBniVzDV7YgI22QK86Sux5A6bKFrrjoSw4nffSp7qRPbx8AlDy0MmnXa8nus7Me5Z2PhBCShHS3wVj54gHMWdv+WPHZd/SFWkN45fHXvE7bNVL6+9B2OoSOr7isKT+EdTdvjPwZEUKIGzyxeUSvdz42Bw3L7dFiVB5Kw/INF1rq67Qv1hh28lDR53QesV5Dt32q1IyONerkuHWqUc5ras5rhDgFNx8JISQJ6XiojGxr32Grqz6OvZv3R95ROP6msZH+W5eUAQLo6bwZYYikeAQ7c3gGhl56HgadNxBH932Kzw+d6PT9jn9GhBDiBvc+mYtN2wQggMqadPh8EqGQwPqXhmP7E7tx1W3jsO9g9Pa1Lw6PGkMiFfc8lm+pr5O+eGLYyUM1XyLyiOUauu1TpWZ0rFGnx61LjXJeU3Ne27m6ghuQxDG4+UgIIUlI+FCZ8MYj0H6ozJdH6rvtPyR7cI8bj7mTLkHa0EGo+ut7OH3ytPPJuoSRYuB0UysOvfYBhE/AbOu6mOrtz4gQQhKBhMD+mvTIf5tt7QeC7TuYjlsWjca+g+kwZfR2KzHaj7dx3xdPDDt5qOZLRB6xXEO3farUjI416vS4dalRzmtqzmurtmTjzhsOgxAn4GnXhBCShPR0qMyQ7MHd9i+aUdDtSdfD8ofi2l9Pww/v+wHm/uVf0T+tX69ew6/urxUzZKK5vhlSym43HoEzf0atwVbUH6nH1iVlqFi/B63BVpezJYT0JYRo/3TE55OoPToQPp+01G4nhts+VWLomDPHzXFz3By3lz5CnELdvyUSQgiJmaIZBRiWPxRCCBgpBoQQGDZyKIpmFHTb35/qx83rZ+N7t38H2UXDkV2Uhe/++zcx+ocj8d/LX0XF+j3wp6bgZ1v+pecNSAGYrWo+miEEMGDwAAif6Pb7Hf+MLisehXU3b8Tnh05g7/P7UfboDqy7eSM3IAkhCUPK9k9HQiGBnKwmhELCUrudGG77VImhY84cN8fNcXPcXvoIcQpuPhJCSBISPlRm8t0TUXR9ASbfPRFznuv5IJXwydgNnzVi5OQ8XP/YdFRvfx/lj78e2YBbO+cP+H///ie0nDyNyJKl49olyishxdn/pOoil068BN+YMw44a29UiPbHyjv+Gb3zwoH292UCMNtMSCkj74IkhBCnEZAozG1EQV4jDCHhTzFhCIkxeY1Yc38VCi22W4khhLTc10lfPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmvqTmvhQ+iIcQJ+M5HQghJUs4+VKYnujsZ+811u3Hq+Mn2fwntcGBNGNnlP6Ijz/4nVZcQQiDj/HQUXnc5dv9hLxrrTkIYApASw0YOw7W/ntZpUzb8vky0dYjBd0ESQhLE4rk1vZ52vXN1heX2aDFWbApi3sxqS32d9sUaw04eKvqcziPWa+i2T5Wa0bFGnRy3TjXKeU3NeY0QpxDSq78NAnjqqafw1FNP4cMPPwQAjB49Gr/61a/wwx/+sNv+ra2tWLJkCdauXYujR48iPz8fv/71rzFlyhTLzoaGBmRmZiIQCCAjI8OJYUSlpKQEpaWlrri8ctKnt88LJ33O8u1J0/CbFZtj+tmK9XtQ9uiOLpuDvZ1wvQu/x5W4MSZfrMTj/O5t30J1WQ0+e68uMq60YWn4181zMHDwgE59w38eFfJ3EZ8QApPvnpjQU7CX3jcrqWuU85qzeLGeSVa8WI8CHa7hK1uQkTYo3mFYouSuB1C6bKErLvqSw0kffao76dPbBwAlD61M2vVasvvsrEc9vfMxOzsbS5cuRW5uLqSUWLt2LaZPn469e/di9OjRXfrfd999+N3vfodnnnkGI0eOxNatW/GjH/0Ib7zxBoqKijwYASGE6E+3J2P3svGoI//4f2/j5PFTABAZ16njp/DOCwe6bCgWzShA5YsHIN5rfxekDMle35dJCNEbr9ejT2we0eudj81Bw3J7tBiVh9KwfMOFlvo67Ys1hp08VPQ5nUes19Btnyo1o2ONOjlunWqU85pe8xohdvH0zsfuOOecc/Bf//Vf+OlPf9rle8OHD8e9996L2267LdL2z//8zxgwYAB+97vfWYrPOx/po08NJ33Okog7H9OHpeHk8VMQPtHldGjd7nwEum6oGikGiq4vwNULJnfp2xpsxW03TMU/XzkfQ7IHo2hGQY/vy3QK3vmov1PVf2km9kn0ehQ4cw0F6lGQKwABVNakw+eTCIUECvMasf2J3bjqtnHYdzB6++WXNkaNIVECgVJLfZ30xRPDTh6q+RKRRyzX0G2fKjWjY406PW5dapTzml7z2s7VFY5uQPLOR3192tz52JFQKITNmzfj1KlTmDBhQrd9WlpakJqa2qltwIABeP3113uM29LSgpaWlsjXDQ0NziRMCCFJQvhOv47vfBw2cihmr7oe77xwAF8eqUfDsUa8v+NQl5PwBp03CKdOnIJA11PyVKK7OzllSGJI9uDI1+FDd748Uo8h2YOROTyj241JQkjykqj1aPjnuluTSgjsr0mP/LfZ1n44176D6bhl0WjsO5gOU0ZvtxKj/Xgb933xxLCTh2q+ROQRyzV026dKzehYo06PW5ca5bym17y2aks27rzhMAixg+d3PlZWVmLChAkIBoNIS0vDhg0bMHXq1G773nDDDdi3bx/+/Oc/45JLLkFZWRmmT5+OUCjUaTHXkQcffBALF3Z9Z8GUKVPg9yf2LpYwFRUVGD9+vCsur5z06e3zwkmfs7z+xlsYddm4mH8+1BpCXfVxtAZb4U/1Y1j+UPj8vsj3pWni472f4PTJFkAIfCk/xtfSLkFWwQVo/KwRrc1tSElNASTQ8FkDTje1xj0mAQHZ4USbehzBYGTHGAvw9UtB6HRb+xHXUqJfWn+MKBoOYRhdxielREAcxSUXF2BwdgaEYcQ9nmi8/96epK5RzmvO0traipdffpl3PjpEotejQM9rUmAKgK5rUiEk0gaEcLLZBylF1Pbu6Nq3AkD3NZpIX3wx7OShli8xedi/hm77VKkZt32q1IzbPlVqxm2fKjXjtk8IiYsuCOLyS072moMdKg5+kLTrtWT32VmPer75ePr0aRw+fBiBQADPP/88Vq9ejR07dmDUqFFd+h4/fhw/+9nP8MILL0AIgUsuuQRXXXUV1qxZg+bm5m7jd/evzCNGjOBj1/TR57GTPmeJ57Hr7k67HpY/FHPWzur0qHHHOwP/uGspntjwUrePIv+/f/8T3n+tNuax9EQsj123n2qNLndynv0odXePnod9AwYPwDf+ZRzGzS5K6KPXfOxaf6eqj7mQ6CR6PQr0vCYFAhDoeNdJO4aQKP5uHV54ddhXd9v03i6++sea3mOUACi12Nc5X3wx7OShli8xedi/hm77VKkZHWvU+XHrUaOc1/Sa1x65o9rROx/52LW+Pjvr0cTfyhGFfv364dJLL8XYsWOxZMkSFBYW4vHHH++279ChQ/HnP/8Zp06dwkcffYT33nsPaWlpyMnJ6TF+//79kZGR0elDCCHkDHs370dd9XFIKWG2mZBSoq76OPZu3h/p090jyT1txDU39PyXb1cRwHmXnIvJd0/EnOdmYeDgARh/01hcvWAyxt80tlP+4UN3uqO5vhmvPP4a1t28Ea3B+O/oJISoR6LXo0DPa1IBicLcRhTkNcIQEv4UE4aQGJPXiDX3V6HQYruVGEJIy32d9MUTw04eqvkSkUcs19Btnyo1o2ONOj1uXWqU85pe81r4gBpC7KDMOx/DmKbZ6yMrAJCamoqsrCy0trbij3/8I/7X//pfLmVHCCHJR7enXfsEvjxSD6D7OyM/HvRJ5BFtlSmcflmX06y7Y0j2YMhQLw8CSEQ2ZK3EI4TojZvr0cVza3o97Xrn6grL7dFirNgUxLyZ1Zb6Ou2LNYadPFT0OZ1HrNfQbZ8qNaNjjTo5bp1qlPOaXvMaIXbxdPNxwYIF+OEPf4gLL7wQjY2N2LBhA8rLy7F161YAwJw5c5CVlYUlS5YAAN566y0cPXoUY8aMwdGjR/Hggw/CNE384he/8HIYhBCiNd1tvHU8jKXjnZHhDcqWky3YvWEvxt1Q1OmOyMuKR6H+EzUO9hqWNxRFMwos9Q0fuvNZdR3Qwx5kxw1ZQkjywPUoIYQQQkhi8XTzsa6uDnPmzMGnn36KzMxMFBQUYOvWrfjBD34AADh8+DCMDi/5DwaDuO+++1BbW4u0tDRMnToV69evx+DBgz0aASGE6E9Pp12HN+6+PFLf/pKOUOef+/vaXah6+T0cP/h55OfeWrcbp46fcn0MZ3POxUMwespI/PfyV7u837E7/Kl+zFk7C7v/sBdvPrcbzfVdHx0/+3RsQkhy4PV69N4nc7FpmwAEUFmTDp9PIhQSWP/ScGx/Yjeuum0c9h2M3r72xeFRY0ik4p7H8i31ddIXTww7eajmS0QesVxDt32q1IyONer0uHWpUc5res1rO1dX8O5HYhtPNx+fffbZXr9fXl7e6euJEyfiwIEDCcyIEEL6HuGNt453MHbcrOvpkeRgfRDBQBCQiNwR2Vh3EsIQkKanZ5kh8GkDyle8HtkUrXzxQJcDdMKc/T7Ln///foJ9Wyrxjyc3Am2A4TO6bMgSQpIHr9ejEgL7a84cOGO2tb9/dt/BdNyyaDT2HUyHKaO3W4nR/oZJ933xxLCTh2q+ROQRyzV026dKzehYo06PW5ca5bym17y2aku2owfOkL6Bcu98JIQQ4j7+VH+P7zIsmlGAnavf6no3oAAEBGTH55QFnN14FAAkkNLfB7Sc+ToaoZb22zTDm6KfvVeHP//yL7j219M6bUA21Tfj2RnrIpumkGc2Kv/HPy7EVf80qdsNWUIIcRLx1XlXssP85vNJ1B4dCJ9PRv7S11u7nRhu+1SJoWPOHDfHzXFz3Cr5wu2E2MXz064JIYSojT/Vj2/8y7j2jb+OSEBK2aXNSdK/loZzc85B21ebiZbjn50rgJryQ51OrG4NtmL1VxuPQPumqZRAXXUd9m7eD2EYPZ6OTQghTiJl57/0AUAoJJCT1YRQSFhqtxPDbZ8qMXTMmePmuDlujlslX7idELtw85EQQkhUxs0uwtfyh0EIASPFvV8djcdO4kTtF/Z/sIdNyvCJ1UD7QTonv9p47ITgwTKEEPcQkCjMbURBXiMMIeFPMWEIiTF5jVhzfxUKLbZbiSGEtNzXSV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa/pNa+FT8cmxA587JoQQkgnzn4HYvhx4/B7Id8rqwH2dv05Xz8DodNdXz4tfKL9LkkX3wOZNiyt243FjidWf3mkvtv3U0rzq4NlPnUhUUJIn2fx3BrcMbseALBqSzZqjw5ETlYTbr3uCAakmti5usJye7QYKzYFMW9mtaW+TvtijWEnDxV9TucR6zV026dKzehYo06OW6ca5bym17xGiF2E7PLMXHLT0NCAzMxMBAIBZGRkuOIsKSlBaWmpKy6vnPTp7fPCSZ+zfHvSNPxmxea447QGW7Hu5o2dT77OH9rpsJatS8rw9KZfYJy8IfJzRooBYaDbzcfUjFS0NLZ0fUTbJrvwe1yJG6P2Sx+Whp9unoO/PLAVNeWHOn1PCIHJd0/E+JvGomL9Hmx/pLzbn7/1hVtw7y9ucOTP1CpL75uV1DXKec1ZvFjPEGeJXMNXtiAjbZArzpK7HkDpsoWuuOhLDid99KnupE9vHwCUPLQyaddrye6zsx7lnY+EEEIi7N28H3XVxyGljBzWEn5UOXwgzZDswV1eDGO29fwvoOePHobP3juO5i+bu3wvdXAqgvVBWzkafgNma/e+tKGD8NPNczBw8ABc++tpXTdSO5xYXTSjAJUvHsBn79VF7oBM+2rjku93JIS4xRObR/R652Nz0LDcHi1G5aE0LN9woaW+TvtijWEnDxV9TucR6zV026dKzehYo06OW6ca5bym/7zGOyJJb3DzkRBCSIQvj9S3b9S1ndlc7PioMtC+addvVX+IUwLCJ2CGzB7fsWj4DXz498ORr1P6+3DhuBHIvCAD5158Dj586zDef63WVo6XXzMa51w4GAdfeR91B4+jNdgW+d7AIQPhT23/1dbxUfHuTqyO9n1CCHGDe5/MxaZtAhBAZU06fD6JUEhg/UvDsf2J3bjqtnHYdzB6+9oXh0eNIZGKex7Lt9TXSV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa/pP6+tf2k4dq6u4AYk6RFuPhJCCIkwJHswZOisdyCGJDK+lo6K9Xsim3RZBRdg8jcn4ssj9fisug5H93/a+ecEkHFBBho+aegUq60lhLqDx/HPy0rgT/XjxEc9HCYj0O2GphDA0EvOxfibxsLn9+GTymOdvl9Xcxy7/7AXE34yHkD7BmP4js3uiPZ9QghJNBIC+2vSI/9ttrWfLLrvYDpuWTQa+w6mw5TR263EaD/exn1fPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmv6T+v7TuYjlVbsnHnDWduOiCkIzztmhBC+jCtwVZUrN+DrUvKULF+Dy4rHoVh+UMjp1oLITA07zxUvfweyh7dgb3P70fZoztwdP+nuKx4VPsj2BBdNiwFBITo3nny+KnIidPnXnRO9/16uJNy2Mhhkcemw3dpnv1zbz63G63BVut/CIQQ4jFCoMtc6PNJ1B4dCJ9PWmq3E8NtnyoxdMyZ4+a4OW6OWyVftHZCeoKbj4QQ0kcJHy7TcVPxDz9/HrOfvh6T756IousLMPnuiRj9w5E4fvBzSClhtpmQUqLlZAuenbEOZY/uwCeVZ46FFj4BIQSGjRyKtPN6PkAh/Bj3ZcWjkDY0rf1njfYNywFDBsBI6fzrSQiB1IxUjPqf+fjv5a+iYv0eZJyf3v7I91k01zdHNjcJIUQHpOzyKl2EQgI5WU0IhYSldjsx3PapEkPHnDlujpvj5rhV8kVrJ6QnuPlICCF9lI6Hy4Q3Feuqj+OdFw5g/E1jcfWCyRh/01g0HGvscoehANBYdzLys+HGrIILMPnuiZjz3Czkfe/SHt1DsgejNdiKP/z8eTTWnYwc+DJoaBquvOGKLndSAhJtwTaUr3g9slFa9dJ7GJCZ2iX22e+oJIQQlRGQKMxtREFeIwwh4U8xYQiJMXmNWHN/FQottluJIYS03NdJXzwx7OShmi8RecRyDd32qVIzOtao0+PWpUY5r+k/r43Ja4wcXENId/Cdj4QQ0kexcrgM0MN7IIHIhmEYw2fga/nDIu9QHDe7CO/85V0cr/m8088Oy28/cTq8+QkgEufU8VPwpRgYlj+00ynVaUMHoa2uDRJnTuE+XvM5cr59MQ699kHngZlfnchNCCEasHhuTa+nXe9cXWG5PVqMFZuCmDez2lJfp32xxrCTh4o+p/OI9Rq67VOlZnSsUSfHrVONcl7Tf17jYTOkN7j5SAghfZSeDpc5e+OuaEYBKl880GkzMMWfArT2/rP+VD/+5Xc3YPcf9qJmRy0AidzvXoJxNxTBn+rvdvMTBlDz6iEMv+x8ZJyfjrShg3DuRefgxIdf4JU/ik7vghQ+gYyvpeNrI4d1ym3YyKGR90ISQgghhBBCCPEY2ccIBAISgAwEAq45i4uLXXN55aRPb58XTvqc5VsTp8qd+07Z+pS/VS9vGblKXiMWyeKUh+U1YpG85eurZPlb9d32XX7Pq/JXs0rl8nteld/45tWWf7anz/J7XpXXiEVyGh7q/BEPyeKUh+U08ZC8fvBv5LzvrJf/VviMHIb8Tv2uEYvk8nte7ZKbnRx6+8TyZxrPJ9lrlPOas3ixniHOEr6GAvWyMDcgC/MC0hCm9KeEpCFMWZQfkCe2l8mifGvtVmIIcY3lvk764olhJw/VfInII5Zr6LZPlZrRsUadHrcuNcp5Tf95rSg/IJte2yblrq22P8m8Xkt2n531KO98JISQPoo/1Y85a2dh7+b9+PJIPYZkD0bRjAL4U/3d9g0/Tg0Az+/yWf7Znjj7jsrIuyMlIv/dXB/s8li18AnAROQOx465tQZb48qJEELcRkJgf0165L/NtvZ37O47mI5bFo3GvoPpMGX0disx2t8w6b4vnhh28lDNl4g8YrmGbvtUqRkda9TpcetSo5zX9J/X9h1Mx6ot2bjzhsMgpDu4+UgIIX2YszcVrSJNM6ZNvrM3B2c/fT3eeeEAvjxSj8+qj+OTyk/PbEJ2x1eH2oycnNfFGT69u+Mj2JUvHsCctbO4AUkIURrx1ZleHU8b9fkkao8OhM8nI3+5663dTgy3farE0DFnjpvj5rg5bpV80doJ6QlPT7t+6qmnUFBQgIyMDGRkZGDChAn461//2mP/SZMmQQjR5TNt2jQXsyaEkL5Na7AVH+/9BGWP7oicPL3u5o1oDbZG/bl1N2/s9HN/+PnzKJpRgKsXTMbIybndnHLdmY6H2py9odjT6d17N++Pe8yEkORFhfWolJ3/0gcAoZBATlYTQiFhqd1ODLd9qsTQMWeOm+PmuDlulXzR2gnpCU83H7Ozs7F06VLs2bMHu3fvxve//31Mnz4dVVVV3fbfsmULPv3008jnnXfegc/nw4wZM1zOnBBC+i57N+/H6ZMtnTb5PnuvDn+49Y+oWL+nx03IaJuDRTMKMCx/KCC6/XEA3R+IEyZ8gE1Huju9mxBCOuL1elRAojC3EQV5jTCEhD/FhCEkxuQ1Ys39VSi02G4lhhDScl8nffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvKb/vDYmrzFyajYh3eHpY9fFxcWdvl68eDGeeuopvPnmmxg9enSX/uecc06nrzdu3IiBAwdy85EQQlzkyyP17c9nnPUvpEff/gRH3/6k20edW4OteK+spkusjpuD4XdQ7v7DXrz53G401zd37gv0epK11dO7CSGkI16vRxfPrcEds+sBAKu2ZKP26EDkZDXh1uuOYECqiZ2rKyy3R4uxYlMQ82ZWW+rrtC/WGHbyUNHndB6xXkO3farUjI416uS4dapRzmv6z2sDUnt5dRLp8wgpz77B1htCoRA2b96Mm2++GXv37sWoUaOi/szll1+OCRMm4Le//W2PfVpaWtDS0hL5uqGhASNGjEAgEEBGRoYjuUejpKQEpaWlrri8ctKnt88LJ33O8u1J0/CbFZtdcVWs34Olj/wM43Bjt98XQmDy3RM7HQKz7uaN+Oy9uqh9w4TfDXniwy9w8vNTSBs6CH/6x2/wxIaXenx/Y3fvfBw2cijmPBfbOx9/MW+Ga3+mALD0vllJXaOc15yloaEBmZmZrq5n+gKJWo8CvaxJX9mCjLRBceduhZK7HkDpsoWuuOhLDid99KnupE9vHwCUPLQyaddrye6zsx71fPOxsrISEyZMQDAYRFpaGjZs2ICpU6dG/bmKigr80z/9E9566y2MHz++x34PPvggFi7s+j+eKVOmwO935wCCioqKXnNMBid9evu8cNLnLK+/8RZGXTbO8bjSNBH4pAGtzW3wD0hB5vD2Xyr/eGMnMkPDz775EUD7hmLmBRkYmnseAKD+SD0+P3Si27790/pjRNFwCCP6W0Def29P1D9TM2Si7qMAgqdakTrIj2EXZcLwxfaGkWSvmWT3eeF009fa2oqXX36Zm48Okej1KNDzmnTkxd9BTlb76yo++nQATgV9GJQawkUXNMNnACHTenu0GLVHK5GTdbmlvk77Yo1hJw8VfU7nEes1dNunSs3oWKNOjlunGuW8pv+8FuOSGxUHP0ja9Vqy+2ytR6XHtLS0yJqaGrl79245f/58ed5558mqqqqoP/dv//Zv8vLLL4/aLxgMykAgEPl8/PHHEoAMBAJOpG+J4uJi11xeOenT2+eFkz5n+dbEqXLnvlOOfsrfqpe3jFwlrxGLZHHKw/IasUjeMnKVLH+rXn7zO1Pk8ntelT8vWi2niYfkNJz5XCMWyeX3vBqJ86tZpbI45eFOfaaJh+TPi1bL8rfqLeeT7NeQPv2dbvoCgYDr65lkJtHrUSl7XpMK1MvC3IAszAtIQ5jSnxKShjBlUX5AntheJovyrbVbiSHENZb7OumLJ4adPFTzJSKPWK6h2z5VakbHGnV63LrUKOc1/ee1ovyAbHptm5S7ttr+JPN6Ldl9dtajnm8+ns3kyZPlv/3bv/Xa5+TJkzIjI0M+9thjtuN7sVjnX7joU93nhZM+Z0nE5uPye16V14hF3W4shn3dblB+fVWnTcXe4tjJJ9mvIX36O1Vd7BH7JHo9KuWZawgEpIApBUx55sxRKQ1hyukTj0lDWGu3FqPYRl/nfPHFsJOHWr7E5GH/GrrtU6VmdKxR58etR41yXtN/XjOEKZfd+S43H/uYz8561NPTrrvDNM1O78Ppjs2bN6OlpQU//vGPXcqKEEL6HlZOjw4fEjP57okour4Ak++e2OUdi+FTrIUQMFIMCCF6PTiGEEK8xu31qBDtn474fBK1RwfC55OW2u3EcNunSgwdc+a4OW6Om+NWyRetnZCe8HTzccGCBXj11Vfx4YcforKyEgsWLEB5eTluvLH9EIM5c+ZgwYIFXX7u2WefxbXXXotzzz3X7ZQJIaTPYPX0aH+qH+NvGourF0zG+JvGdjncxcoGJSGEeIUK69HwvSMdCYUEcrKaEAoJS+12YrjtUyWGjjlz3Bw3x81xq+SL1k5IT3i6+VhXV4c5c+YgPz8fkydPxq5du7B161b84Ac/AAAcPnwYn376aaefqa6uxuuvv46f/vSnXqRMCCF9BifvWIy2QdkTrcFWVKzfg61LynCs9ku0NLfadhNCSG94vR4VkCjMbURBXiMMIeFPMWEIiTF5jVhzfxUKLbZbiSGEtNzXSV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa/pP6+NyWvErdcdift3IkleUryUP/vss71+v7y8vEtbfn4+5Nnb8oQQQhwnfMfi3s378eWRegzJHoyiGQWu3bHYGmzFups3oq76OIRP4HDbcfziW8/hNzv/Bf0H8K5JQogzeL0eXTy3BnfMrgcArNqSjdqjA5GT1YRbrzuCAakmdq6usNweLcaKTUHMm1ltqa/Tvlhj2MlDRZ/TecR6Dd32qVIzOtaok+PWqUY5r+k/rw1INW39/iN9CyH72E5eQ0MDMjMzrR0F7hAlJSUoLS11xeWVkz69fV446XOWb0+aht+s2Oya7xfzZiTcV7F+D8oe3RH5C/4u/B7jjR/jp49chWvv/EZC3UDy10yy+7xwuunzYj1DnCVyDV/Zgoy0Qa44S+56AKXLFrrioi85nPTRp7qTPr19AFDy0MqkXa8lu8/OetTTOx8JIYSQnggfeCPbzvwbmeETOFZb711ShBDiME9sHtHrnY/NQcNye7QYlYfSsHzDhZb6Ou2LNYadPFT0OZ1HrNfQbZ8qNaNjjTo5bp1qlPNa8s5rhAAAEnvwtnrYOQrcKdw+Wt0LJ316+7xw0ucs35o4Ve7cd8q1jxu+5fe8Kq8Ri+Q0PCSn4SE5DPnyGmOR/NOyv7vyZ5rsNZPsPi+cbvq8WM8QZwlfQ4F6WZgbkIV5AWkIU/pTQtIQpizKD8gT28tkUb61disxhLjGcl8nffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvJa881rTa9uk3LW1108yr9eS3WdnPco7HwkhhChJ0YwCVL54IPLOR9EG5Iz5Gn5461ivUyOEEMeQENhfkx75b7Ot/QTRfQfTccui0dh3MB2mjN5uJUb78Tbu++KJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXKeS1557VVW7Jx5w2HQYinp10TQgghPRE+8Gby3RNRdH0BLhw9FL95nYfNEEKSDyHaPx3x+SRqjw6EzycttduJ4bZPlRg65sxxc9wcN8etki+WGIQA3HwkhBCiMP5UP8bfNBZXL5iM83OGcOOREJKUSNn+6UgoJJCT1YRQSFhqtxPDbZ8qMXTMmePmuDlujlslXywxCAG4+UgIIYQQQohnCEgU5jaiIK8RhpDwp5gwhMSYvEasub8KhRbbrcQQQlru66Qvnhh28lDNl4g8YrmGbvtUqRkda9TpcetSo5zXkndeCx9EQ3oWjXkAAGbmSURBVAjf+UgIIYQQQohHLJ5b0+tp1ztXV1hujxZjxaYg5s2sttTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjnNeSd14jBOCdj4QQQgghhBBCCCGEkEThwunbSmHnKHCncPtodS+c9Ont88JJn7N8a+JUuXPfKdc+bvt27juV9NeQPv2dbvq8WM8QZwlfQ4F6WZgbkIV5AWkIU/pTQtIQpizKD8gT28tkUb61disxhLjGcl8nffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvJa881rTa9uk3LW1108yr9eS3WdnPcrHrgkhhBBCCPEICYH9NemR/zbb2l/iv+9gOm5ZNBr7DqbDlNHbrcRof8Ok+754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl5L3nlt1ZZs3HnDYRDCx64JIYQQQgjxECHaPx3x+SRqjw6EzycttduJ4bZPlRg65sxxc9wcN8etki+WGIQA3HwkhBBCCCHEU6Rs/3QkFBLIyWpCKCQstduJ4bZPlRg65sxxc9wcN8etki+WGIQA3HwkhBBCCCHEMwQkCnMbUZDXCENI+FNMGEJiTF4j1txfhUKL7VZiCCEt93XSF08MO3mo5ktEHrFcQ7d9qtSMjjXq9Lh1qVHOa8k7r4VPwSaE73wkhBBCCCHEIxbPrcEds+sBAKu2ZKP26EDkZDXh1uuOYECqiZ2rKyy3R4uxYlMQ82ZWW+rrtC/WGHbyUNHndB6xXkO3farUjI416uS4dapRzmvJO68RAgBCyrNvjk1uGhoakJmZiUAggIyMDFecJSUlKC0tdcXllZM+vX1eOOlzlm9PmobfrNjsmu8X82a46gOApffNSuprSJ/+Tjd9XqxniLNEruErW5CRNsgVZ8ldD6B02UJXXPQlh5M++lR30qe3DwBKHlqZtOu1ZPfZWY96eufjU089haeeegoffvghAGD06NH41a9+hR/+8Ic9/kx9fT3uvfdebNmyBV988QUuuugiPPbYY5g6dapLWRNCCCGEkGTB6/XoE5tH9HrnY3PQsNweLUbloTQs33Chpb5O+2KNYScPFX1O5xHrNXTbp0rN6FijTo5bpxrlvJa88xohAADpIaWlpfIvf/mLPHjwoKyurpb/8R//If1+v3znnXe67d/S0iLHjRsnp06dKl9//XX5wQcfyPLycvn2229bdgYCAQlABgIBp4YRleLiYtdcXjnp09vnhZM+Z/nWxKly575Trn3c9u3cdyrpryF9+jvd9HmxnklWvFiPSnnmGgrUy8LcgCzMC0hDmNKfEpKGMGVRfkCe2F4mi/KttVuJIcQ1lvs66Ysnhp08VPMlIo9YrqHbPlVqRscadXrcutQo57XkndeaXtsm5a6tvX6Seb2W7D4761FPNx+7Y8iQIXL16tXdfu+pp56SOTk58vTp0zHH5+YjffSp4aTPWbj56Dz06e3zwqnqYo/YJ9HrUSnPXEMgIAVMKWDKM+eFSmkIU06feEwawlq7tRjFNvo654svhp081PIlJg/719Btnyo1o2ONOj9uPWqU81ryzmvL7nyXm49J7LOzHlXmtOtQKISNGzfi1KlTmDBhQrd9SktLMWHCBNx222342te+hssuuwz/+Z//iVAo1GPclpYWNDQ0dPoQQgghhBByNolajwK9r0mFaP90xOeTqD06ED6ftNRuJ4bbPlVi6Jgzx81xc9wct0q+WGIQAihw2nVlZSUmTJiAYDCItLQ0/OlPf8KoUaO67VtbW4v//u//xo033oiXXnoJ77//PubOnYvW1lY88MAD3f7MkiVLsHBh1xemzpw5E36/39Gx9ERFRQVKSkpccXnlpE9vnxdO+pzl/ff2YOl9s5LWByT/NaRPf6ebvtbWVlc8fYVEr0eBntekwEyYsuuatLUNOP5lC1rb+ltqNzv/PbCHvhUASiz2dc4XXww7eajlS0we9q+h2z5VakbHGnV+3HrUKOe15J3XXtl9EiV3NXf9ZkfjwQ+Sdr2W7D5b61EX7sTslZaWFllTUyN3794t58+fL8877zxZVVXVbd/c3Fw5YsQI2dbWFml79NFH5fnnn99j/GAwKAOBQOTz8ccfW74t1Cn4qBl9qvu8cNJHn+pO+vT2eeFU9TEXEp1Er0el7HlNKlAvx3TzrqwrenivVk/tVmKE3+Xlti+eGHbyUM2XiDxiuYZu+1SpGR1r1Olx61KjnNeSd17jOx+T22dnPer5nY/9+vXDpZdeCgAYO3Ysdu3ahccffxxPP/10l74XXHAB/H4/fD5fpO3rX/86jh07htOnT6Nfv35dfqZ///7o379/l3ZCCCGEEEKAxK9HgZ7XpIvn1vR62vXO1RWW26PFWLEpiHkzqy31ddoXaww7eajoczqPWK+h2z5VakbHGnVy3DrVKOe15J3XCAEAZd75GMY0TbS0tHT7vW9961t4//33YZpnCvjgwYO44IILelzoEUIIIYQQYgeuRwkhhBBnaA4aWL7hQvzv/xqJ5RsuRHNQuW0o4gYu3InZI/Pnz5c7duyQH3zwgdy/f7+cP3++FELIv/3tb1JKKW+66SY5f/78SP/Dhw/L9PR0+e///u+yurpavvjii3LYsGHy4Ycftuzkadf00aeGkz76VHfSp7fPC6eqj7mQ3vFiPSrlmWsoUC8Lu3lcraiHR9t6arcSI/w4ndu+eGLYyUM1XyLyiOUauu1TpWZ0rFGnx61LjXJe63vzWsfHsZN5vZbsPjvrUU83H2+55RZ50UUXyX79+smhQ4fKyZMnRxZ6Uko5ceJEefPNN3f6mTfeeEP+0z/9k+zfv7/MycmRixcv7vTOnWhw85E++tRw0kef6k769PZ54VR1sUd6x4v1qJRnriEQkAKmFDAlICMfQ5hy+sRj0hDW2q3FKLbR1zlffDHs5KGWLzF52L+GbvtUqRkda9T5cetRo5zX+t68tuzOd7n5mAQ+bd75+Oyzz/b6/fLy8i5tEyZMwJtvvpmgjAghhBBCSF9ChfWoEO3/X8ozbT6fRO3RgfD5JMw2EbXdTgy3farE0DFnjpvj5rg5bpV8TsYgfQs+bE8IIYQQQoiHhO8H6UgoJJCT1YRQSFhqtxPDbZ8qMXTMmePmuDlujlsln5MxSN+Cm4+EEEIIIYR4hIBEYW4jCvIaYQgJf4oJQ0iMyWvEmvurUGix3UoMIaTlvk764olhJw/VfInII5Zr6LZPlZrRsUadHrcuNcp5re/Na+HTsUnfwdPHrgkhhBBCCOnLLJ5bgztm1wMAVm3JRu3RgcjJasKt1x3BgFQTO1dXWG6PFmPFpiDmzay21NdpX6wx7OShos/pPGK9hm77VKkZHWvUyXHrVKOc1/revEb6FkLKs2+OTW4aGhqQmZmJQCCAjIwMV5wlJSUoLS11xeWVkz69fV446aNPdSd9evu8cLrp82I9Q5wlcg1f2YKMtEGuOEvuegClyxa64qIvOZz00ae6kz69fQBQ8tDKpF2vJbvPznqUdz4SQgghhBDiEU9sHtHrnY/NQcNye7QYlYfSsHzDhZb6Ou2LNYadPFT0OZ1HrNfQbZ8qNaNjjTo5bp1qlPNa35vXSB8j4WdvK4ado8Cdwu2j1b1w0qe3zwsnffSp7qRPb58XTjd9XqxniLOEr6FAvSzMDcjCvIA0hCn9KSFpCFMW5Qfkie1lsijfWruVGEJcY7mvk754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl7re/Na02vbpNy1VcpdW5N6vZbsPjvrUW4+ugD/wkWf6j4vnPTRp7qTPr19XjhVXewRNQlfQyAgBUwpYMoz54VKaQhTTp94TBrCWru1GMU2+jrniy+GnTzU8iUmD/vX0G2fKjWjY406P249apTzWt+b15bd+S43H5PAZ2c9ytOuCSGEEEII8RAh2j8d8fkkao8OhM8nLbXbieG2T5UYOubMcXPcHDfHrZLPyRikb8HNR0IIIYQQQjwkfD9IR0IhgZysJoRCwlK7nRhu+1SJoWPOHDfHzXFz3Cr5nIxB+hbcfCSEEEIIIcQjBCQKcxtRkNcIQ0j4U0wYQmJMXiPW3F+FQovtVmIIIS33ddIXTww7eajmS0QesVxDt32q1IyONer0uHWpUc5rfW9eCx9QQ/oOPO2aEEIIIYQQj1g8t6bX0653rq6w3B4txopNQcybWW2pr9O+WGPYyUNFn9N5xHoN3fapUjM61qiT49apRjmv9b15jfQthJRn3xyb3DQ0NCAzMxOBQAAZGRmuOEtKSlBaWuqKyysnfXr7vHDSR5/qTvr09nnhdNPnxXqGOEvkGr6yBRlpg1xxltz1AEqXLXTFRV9yOOmjT3UnfXr7AKDkoZVJu15Ldp+d9SjvfCSEEEIIIcQjntg8otc7H5uDhuX2aDEqD6Vh+YYLLfV12hdrDDt5qOhzOo9Yr6HbPlVqRscadXLcOtUo57W+N6+RPkbCz95WDDtHgTuF20ere+GkT2+fF0766FPdSZ/ePi+cbvq8WM8QZwlfQ4F6WZgbkIV5AWkIU/pTQtIQpizKD8gT28tkUb61disxhLjGcl8nffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvNb35rWm17ZJuWurlLu2JvV6Ldl9dtaj3Hx0Af6Fiz7VfV446aNPdSd9evu8cKq62CNqEr6GQEAKmFLAlGfOC5XSEKacPvGYNIS1dmsxim30dc4XXww7eajlS0we9q+h2z5VakbHGnV+3HrUKOe1vjevLbvzXW4+JoHPznqUp10TQgghhBDiIUK0fzri80nUHh0In09aarcTw22fKjF0zJnj5rg5bo5bJZ+TMUjfwtPNx6eeegoFBQXIyMhARkYGJkyYgL/+9a899n/uuecghOj0SU1NdTFjQgghhBCSTKiwHg3fD9KRUEggJ6sJoZCw1G4nhts+VWLomDPHzXFz3By3Sj4nY5C+haebj9nZ2Vi6dCn27NmD3bt34/vf/z6mT5+OqqqqHn8mIyMDn376aeTz0UcfuZgxIYQQQghJJrxejwpIFOY2oiCvEYaQ8KeYMITEmLxGrLm/CoUW263EEEJa7uukL54YdvJQzZeIPGK5hm77VKkZHWvU6XHrUqOc1/revBY+oIb0HTw97bq4uLjT14sXL8ZTTz2FN998E6NHj+72Z4QQOP/8891IjxBCCCGEJDler0cXz63p9bTrnasrLLdHi7FiUxDzZlZb6uu0L9YYdvJQ0ed0HrFeQ7d9qtSMjjXq5Lh1qlHOa31vXiN9C2Xe+RgKhbBx40acOnUKEyZM6LHfyZMncdFFF2HEiBFR/1UaAFpaWtDQ0NDpQwghhBBCyNkkaj0KcE1KCCGEkL6LkPLsJ/PdpbKyEhMmTEAwGERaWho2bNiAqVOndtv373//O2pqalBQUIBAIIBHHnkEr776KqqqqpCdnd3tzzz44INYuHBhl/YpU6bA7/c7OpaeqKiowPjx411xeeWkT2+fF0766FPdSZ/ePi+cbvpaW1vx8ssvIxAIICMjwxVnMpPo9SjQ85oUmIKMQe3vw2o4lQIhJKQUyBjUhm8W1OON/YMtt0eLAVQAGG+pr9O+WGPYyUNFn9N5xHoN3fapUjM61qiT49apRjmv9a157dtjvoTvq1vhKg5+kLTrtWT32VqPJvzs7Si0tLTImpoauXv3bjl//nx53nnnyaqqKks/e/r0aXnJJZfI++67r8c+wWBQBgKByOfjjz+2fBS4U7h9tLoXTvr09nnhpI8+1Z306e3zwummLxAIuL6eSWYSvR6Vsuc1KRCQAqYUMOWZV/ZLaQhTTp94TBrCWru1GMU2+jrniy+GnTzU8iUmD/vX0G2fKjWjY406P249apTzWt+b15bd+a6Uu7ZKuWtrUq/Xkt1nZz3q6TsfAaBfv3649NJLAQBjx47Frl278Pjjj+Ppp5+O+rN+vx9FRUV4//33e+zTv39/9O/f37F8CSGEEEJIcpHo9SjQ+5pUfHUQqJRn2nw+idqjA+HzSZhtImq7nRhu+1SJoWPOHDfHzXFz3Cr5nIxB+hbKvPMxjGmaaGlpsdQ3FAqhsrISF1xwQYKzIoQQQgghfQW316Ph+0E6xxXIyWpCKCQstduJ4bZPlRg65sxxc9wcN8etks/JGKRv4enm44IFC/Dqq6/iww8/RGVlJRYsWIDy8nLceOONAIA5c+ZgwYIFkf4PPfQQ/va3v6G2thb/+Mc/8OMf/xgfffQR/vVf/9WrIRBCCCGEEI3xej0qIFGY24iCvEYYQsKfYsIQEmPyGrHm/ioUWmy3EkMIabmvk754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl7re/Na+HRs0nfw9LHruro6zJkzB59++ikyMzNRUFCArVu34gc/+AEA4PDhwzCMM/ujX375JX72s5/h2LFjGDJkCMaOHYs33ngDo0aN8moIhBBCCCFEY7xejy6eW4M7ZtcDAFZtyUbt0YHIyWrCrdcdwYBUEztXV1hujxZjxaYg5s2sttTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjnNf63rxG+haen3btNg0NDcjMzHT1dMiSkhKUlpa64vLKSZ/ePi+c9NGnupM+vX1eON30ebGeIc4SuYavbEFG2iBXnCV3PYDSZQtdcdGXHE766FPdSZ/ePgAoeWhl0q7Xkt1nZz3q+YEzhBBCCCGE9FWe2Dyi1zsfm4OG5fZoMSoPpWH5hgst9XXaF2sMO3mo6HM6j1ivods+VWpGxxp1ctw61SjntT48r1UCy5cDt94KDBhg/fcn0YyEn72tGHaOAncKt49W98JJn94+L5z00ae6kz69fV443fR5sZ4hzhK+hgL1sjA3IAvzAtIQpvSnhKQhTFmUH5AntpfJonxr7VZiCHGN5b5O+uKJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXKea2vz2vF0jCkLCqSsqkp8b9/k3l96LbPznqUm48uwL9w0ae6zwsnffSp7qRPb58XTlUXe0RNwtcQCEgBUwqY8sx5oVIawpTTJx6ThrDWbi1GsY2+zvnii2EnD7V8icnD/jV026dKzehYo86PW48a5bzGeQ2Q0jCkXLYs8b9/k3l96LbPznrU09OuCSGEEEII6esI0f7piM8nUXt0IHw+aandTgy3farE0DFnjpvj5rg5bpV8iYzh8wG1tSBJCjcfCSGEEEII8ZDw/SAdCYUEcrKaEAoJS+12YrjtUyWGjjlz3Bw3x81xq+RLZIxQCMjJAUlSuPlICCGEEEKIRwhIFOY2oiCvEYaQ8KeYMITEmLxGrLm/CoUW263EEEJa7uukL54YdvJQzZeIPGK5hm77VKkZHWvU6XHrUqOc1/r6vAYYBjBmTPuhMyQ54WnXhBBCCCGEeMTiuTW9nna9c3WF5fZoMVZsCmLezGpLfZ32xRrDTh4q+pzOI9Zr6LZPlZrRsUadHLdONcp5rQ/Pa38C5s3jadfJDu98JIQQQgghhBBCCCGEJAYXDsBRCp52TR99ajjpo091J316+7xwqnq6IFGT8DUUqJeFuQFZmBeQhjClPyUkDWHKovyAPLG9TBblW2u3EkOIayz3ddIXTww7eajmS0QesVxDt32q1IyONer0uHWpUc5rfX1eK5aGIWVRkZRNTYn//ZvM60O3fXbWo9x8dAH+hYs+1X1eOOmjT3UnfXr7vHCqutgjahK+hkBACphSwJRnXtkvpSFMOX3iMWkIa+3WYhTb6OucL74YdvJQy5eYPOxfQ7d9qtSMjjXq/Lj1qFHOa5zXACkNQ8plyxL/+zeZ14du++ysR/nYNSGEEEIIIR4iRPunIz6fRO3RgfD5pKV2OzHc9qkSQ8ecOW6Om+PmuFXyJTKGzwfU1oIkKdx8JIQQQgghxEPC94N0JBQSyMlqQigkLLXbieG2T5UYOubMcXPcHDfHrZIvkTFCISAnByRJ4eYjIYQQQgghHiEgUZjbiIK8RhhCwp9iwhASY/Iaseb+KhRabLcSQwhpua+Tvnhi2MlDNV8i8ojlGrrtU6VmdKxRp8etS41yXuvr8xpgGMCYMe0nXpPkJMXrBAghhBBCCOmrLJ5bgztm1wMAVm3JRu3RgcjJasKt1x3BgFQTO1dXWG6PFmPFpiDmzay21NdpX6wx7OShos/pPGK9hm77VKkZHWvUyXHrVKOc1/rwvPYnYN689o3HAQOs//4keiGkPPvm2OSmoaEBmZmZCAQCyMjIcMVZUlKC0tJSV1xeOenT2+eFkz76VHfSp7fPC6ebPi/WM8RZItfwlS3ISBvkirPkrgdQumyhKy76ksNJH32qO+nT2wcAJQ+tTNr1WrL77KxHeecjIYQQQgghHvHE5hG93vnYHDQst0eLUXkoDcs3XGipr9O+WGPYyUNFn9N5xHoN3fapUjM61qiT49apRjmv9eF5rRJYvpx3PiY9CT97uxeefPJJefnll8v09HSZnp4uv/GNb8iXXnqpx/5//OMf5dixY2VmZqYcOHCgLCwslOvWrbPltHMUuFO4fbS6F0769PZ54aSPPtWd9Ont88Lpps+L9Uyy4sV6VMoz11CgXhbmBmRhXkAawpT+lJA0hCmL8gPyxPYyWZRvrd1KDCGusdzXSV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa/19XmtWBqGlEVFUjY1xfMb3RrJvD5022dnPerp5mNpaan8y1/+Ig8ePCirq6vlf/zHf0i/3y/feeedbvu/8sorcsuWLfLAgQPy/fffl4899pj0+Xzy5Zdftuzk5iN99KnhpI8+1Z306e3zwqnqYo/0jhfrUSnPXEMgIAVMKWDKM+eFSmkIU06feEwawlq7tRjFNvo654svhp081PIlJg/719Btnyo1o2ONOj9uPWqU8xrnNUBKw5By2TInfrP3TjKvD9322VmPenradXFxMaZOnYrc3Fzk5eVh8eLFSEtLw5tvvtlt/0mTJuFHP/oRvv71r+OSSy7B7bffjoKCArz++usuZ04IIYQQQpIBFdajQrR/OuLzSdQeHQifT1pqtxPDbZ8qMXTMmePmuDlujlslXyJj+HxAbS1IkuLp5mNHQqEQNm7ciFOnTmHChAlR+0spUVZWhurqanz3u9/tsV9LSwsaGho6fQghhBBCCDmbRK1Hgd7XpOH7QTrnIpCT1YRQSFhqtxPDbZ8qMXTMmePmuDlujlslXyJjhEJATg5IkuL5gTOVlZWYMGECgsEg0tLS8Kc//QmjRo3qsX8gEEBWVhZaWlrg8/nw5JNP4gc/+EGP/ZcsWYKFC7ue1jRz5kz4/X5HxhCNiooKlJSUuOLyykmf3j4vnPTRp7qTPr19Xjjd9LW2trri6Sskej0K9LwmBWYifVD7X8AaTqVACAkpBdIHtqHldD3SBg621j6oLWoMoAJAiaW+jvriiGEnD+V8Ccgjpmvotk+VmtGxRh0etzY1ynmN8xpKkJ4ObN8OvPIKEkoyrw/d9tlZjwopz96fdpfTp0/j8OHDCAQCeP7557F69Wrs2LGjxwWfaZqora3FyZMnUVZWhkWLFuHPf/4zJk2a1G3/lpYWtLS0RL5uaGjAiBEjLB0F7hRuH63uhZM+vX1eOOmjT3UnfXr7vHC66WtoaEBmZqar65lkJtHrUaDnNel/zt3l2mnXKzb9b8yb+X9dOxW2o8+NU1pV9DmdR6zX0G2fKjWjY406OW6dapTzWh+e1/70C8ybV+raadfJvD5022dnPer55uPZXHXVVbjkkkvw9NNPW+r/r//6r/j444+xdetWS/29WKzzL1z0qe7zwkkffao76dPb54VT1cUesU+i16NAh2v4yhZkpA2KNVVblNz1AEqXdXf3JX06+Lxw0kef6k769PYBQMlDK5N2vZbsPjvrUc8fuz4b0zQ7/auw0/0JIYQQQgjpDTfXo09sHuHanY+Vh9KwfMOFrt0h1NHnxh07KvqcziPWa+i2T5Wa0bFGnRy3TjXKea0Pz2uVwPLlcO3OR+IRCT13Owrz58+XO3bskB988IHcv3+/nD9/vhRCyL/97W9SSilvuukmOX/+/Ej///zP/5R/+9vf5KFDh+SBAwfkI488IlNSUuQzzzxj2WnnKHCncPtodS+c9Ont88JJH32qO+nT2+eF002fF+uZZMWL9aiUZ66hQL0szA3IwryANIQp/SkhaQhTFuUH5IntZbIo31q7lRhCXGO5r5O+eGLYyUM1XyLyiOUauu1TpWZ0rFGnx61LjXJe6+vzWrE0DCmLiqRsanL0V3y3JPP60G2fnfWop5uPt9xyi7zoootkv3795NChQ+XkyZMjCz0ppZw4caK8+eabI1/fe++98tJLL5WpqalyyJAhcsKECXLjxo22nNx8pI8+NZz00ae6kz69fV44VV3skd7xYj0q5ZlrCASkgCkFTHnmvFApDWHK6ROPSUNYa7cWo9hGX+d88cWwk4davsTkYf8auu1TpWZ0rFHnx61HjXJe47wGSGkYUi5b5sRv9t5J5vWh2z4761FPH7t+9tlne/1+eXl5p68ffvhhPPzwwwnMiBBCCCGE9CVUWI+K9sOuIeWZNp9PovboQPh8EmabiNpuJ4bbPlVi6Jgzx81xc9wct0q+RMbw+YDaWpAkxfA6AUIIIYQQQvoy4ftBOhIKCeRkNSEUEpba7cRw26dKDB1z5rg5bo6b41bJl8gYoRCQkwOSpHDzkRBCCCGEEI8QkCjMbURBXiMMIeFPMWEIiTF5jVhzfxUKLbZbiSGEtNzXSV88MezkoZovEXnEcg3d9qlSMzrWqNPj1qVGOa/19XkNMAxgzJj2Q2dIcqLcadeEEEIIIYT0FRbPren1tOudqysst0eLsWJTEPNmVlvq67Qv1hh28lDR53QesV5Dt32q1IyONerkuHWqUc5rfXhe+xMwbx5Pu052eOcjIYQQQgghhBBCCCEkMbhwAI5S8LRr+uhTw0kffao76dPb54VT1dMFiZqEr6FAvSzMDcjCvIA0hCn9KSFpCFMW5Qfkie1lsijfWruVGEJcY7mvk754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl7r6/NasTQMKYuKpGxqSvzv32ReH7rts7Me5eajC/AvXPSp7vPCSR99qjvp09vnhVPVxR5Rk/A1BAJSwJQCpjzzyn4pDWHK6ROPSUNYa7cWo9hGX+d88cWwk4davsTkYf8auu1TpWZ0rFHnx61HjXJe47wGSGkYUi5blvjfv8m8PnTbZ2c9yseuCSGEEEII8RAh2j8d8fkkao8OhM8nLbXbieG2T5UYOubMcXPcHDfHrZIvkTF8PqC2FiRJ4eYjIYQQQgghHhK+H6QjoZBATlYTQiFhqd1ODLd9qsTQMWeOm+PmuDlulXyJjBEKATk5IEkKNx8JIYQQQgjxCAGJwtxGFOQ1whAS/hQThpAYk9eINfdXodBiu5UYQkjLfZ30xRPDTh6q+RKRRyzX0G2fKjWjY406PW5dapTzWl+f1wDDAMaMaT/xmiQnKV4nQAghhBBCSF9l8dwa3DG7HgCwaks2ao8ORE5WE2697ggGpJrYubrCcnu0GCs2BTFvZrWlvk77Yo1hJw8VfU7nEes1dNunSs3oWKNOjlunGuW81ofntT8B8+a1bzwOGGD99yfRCyHl2TfHJjcNDQ3IzMxEIBBARkaGK86SkhKUlpa64vLKSZ/ePi+c9NGnupM+vX1eON30ebGeIc4SuYavbEFG2iBXnCV3PYDSZQtdcdGXHE766FPdSZ/ePgAoeWhl0q7Xkt1nZz3KOx8JIYQQQgjxiCc2j+j1zsfmoGG5PVqMykNpWL7hQkt9nfbFGsNOHir6nM4j1mvotk+VmtGxRp0ct041ynmtD89rlcDy5bzzMelJ+NnbimHnKHCncPtodS+c9Ont88JJH32qO+nT2+eF002fF+sZ4izhayhQLwtzA7IwLyANYUp/SkgawpRF+QF5YnuZLMq31m4lhhDXWO7rpC+eGHbyUM2XiDxiuYZu+1SpGR1r1Olx61KjnNf6+rxWLA1DyqIiKZuaEv/7N5nXh2777KxHufnoAvwLF32q+7xw0kef6k769PZ54VR1sUfUJHwNgYAUMKWAKc+cFyqlIUw5feIxaQhr7dZiFNvo65wvvhh28lDLl5g87F9Dt32q1IyONer8uPWoUc5rnNcAKQ1DymXLEv/7N5nXh2777KxHedo1IYQQQgghHiJE+6cjPp9E7dGB8PmkpXY7Mdz2qRJDx5w5bo6b4+a4VfIlMobPB9TWgiQp3HwkhBBCCCHEQ8L3g3QkFBLIyWpCKCQstduJ4bZPlRg65sxxc9wcN8etki+RMUIhICcHJEnxdPPxqaeeQkFBATIyMpCRkYEJEybgr3/9a4/9n3nmGXznO9/BkCFDMGTIEFx11VWoqKhwMWNCCCGEEJJMeL0eFZAozG1EQV4jDCHhTzFhCIkxeY1Yc38VCi22W4khhLTc10lfPDHs5KGaLxF5xHIN3fapUjM61qjT49alRjmv9fV5DTAMYMyY9kNnSHLi6WnX2dnZWLp0KXJzcyGlxNq1azF9+nTs3bsXo0eP7tK/vLwcs2fPxje/+U2kpqbi17/+Nf7n//yfqKqqQlZWlgcjIIQQQgghOuP1enTx3JpeT7veubrCcnu0GCs2BTFvZrWlvk77Yo1hJw8VfU7nEes1dNunSs3oWKNOjlunGuW81ofntT8B8+bxtOtkx9PNx+Li4k5fL168GE899RTefPPNbhd7v//97zt9vXr1avzxj39EWVkZ5syZk9BcCSGEEEJI8sH1KCGEEKIGzc3AqlXt737MyeGGZFKR8ONvLNLW1ib/8Ic/yH79+smqqipLP9PQ0CBTU1PlCy+80GOfYDAoA4FA5PPxxx9bPo3HKXjCJ32q+7xw0kef6k769PZ54VT1dEFinUStR6XseU0qUC8LcwOyMC8gDWFKf0pIGsKURfkBeWJ7mSzKt9ZuJYYQ11ju66Qvnhh28lDNl4g8YrmGbvtUqRkda9TpcetSo5zX+vq8ViwNQ8rCwvaPYUjp97f//6IiKZua4v/93pFkXh+67bOzHhVSnv1aUHeprKzEhAkTEAwGkZaWhg0bNmDq1KmWfnbu3LnYunUrqqqqkJqa2m2fBx98EAsXLuzSPmXKFPj9/rhyt0pFRQXGjx/vissrJ316+7xw0kef6k769PZ54XTT19raipdffhmBQAAZGRmuOJOZRK9HgZ7XpMAUAN2vSc8/twXHTvS33B49RgWAnms0kb7YY9jJQz2f83nEdg3d9qlSM277VKkZt32q1IzbPlVqxm2f2zUzOuckcrKaLfmsUHHwg6RdH7rts7UeTfhWaBRaWlpkTU2N3L17t5w/f74877zzLP1L85IlS+SQIUPkvn37eu3HOx/po09NJ330qe6kT2+fF05V/6WZRCfR61Epe16TAu13fhjClGfOC5XSnxKSl1/aIP0pIUvt1mIU2+jrnC++GHbyUMuXmDzsX0O3farUjI416vy49ahRzmuc13qL8e//6yMpd2117JPM60O3fXbWo56edg0A/fr1w6WXXoqxY8diyZIlKCwsxOOPP97rzzzyyCNYunQp/va3v6GgoKDXvv3794+cXhj+EEIIIYQQEibR61Gg9zVp+K9ZHQmFBHKymhAKCUvtdmK47VMlho45c9wcN8fNcavk8yoG0R/PNx/PxjRNtLS09Pj93/zmN1i0aBFefvlljBs3zsXMCCGEEEJIX8DN9aiARGFuIwryGmEICX+KCUNIjMlrxJr7q1Bosd1KDCGk5b5O+uKJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXKeY3zWm8xwidpE73x9LTrBQsW4Ic//CEuvPBCNDY2YsOGDSgvL8fWrVsBAHPmzEFWVhaWLFkCAPj1r3+NX/3qV9iwYQMuvvhiHDt2DACQlpaGtLQ0z8ZBCCGEEEL0xOv16OK5Nbhjdj0AYNWWbNQeHYicrCbcet0RDEg1sXN1heX2aDFWbApi3sxqS32d9sUaw04eKvqcziPWa+i2T5Wa0bFGnRy3TjXKeY3zWm8xiP54euDMT3/6U5SVleHTTz9FZmYmCgoK8Mtf/hI/+MEPAACTJk3CxRdfjOeeew4AcPHFF+Ojjz7qEueBBx7Agw8+aMnZ0NCAzMxMV1/QXlJSgtLSUldcXjnp09vnhZM++lR30qe3zwunmz4v1jPJihfrUaDDNXxlCzLSBjkxlKiU3PUASpd1d+gNfTr4vHDSR5/qTvr09nnhLHloZdKuD9322VmPenrn47PPPtvr98vLyzt9/eGHHyYuGUIIIYQQ0ufwej36xOYRvd752Bw0LLdHi1F5KA3LN1xoqa/Tvlhj2MlDRZ/TecR6Dd32qVIzOtaok+PWqUY5r3Fe452PSU7Cj79RDC9Oh+QJn/Sp7vPCSR99qjvp09vnhVPV0wWJmoSvoUC9LMwNyMK89lOv/SkhaQhTFuUH5IntZbIo31q7lRhCXGO5r5O+eGLYyUM1XyLyiOUauu1TpWZ0rFGnx61LjXJe47zWW4ym17bxtGtFfXbWo9x8dAH+hYs+1X1eOOmjT3UnfXr7vHCqutgjahK+hkBACphSwJRnzvqU0hCmnD7xmDSEtXZrMYpt9HXOF18MO3mo5UtMHvavods+VWpGxxp1ftx61CjnNc5rvcVYdue73HxU1GdnParcadeEEEIIIYT0JYRo/3TE55OoPToQPp+01G4nhts+VWLomDPHzXFz3By3Sj6vYhD94eYjIYQQQgghHhK+x6MjoZBATlYTQiFhqd1ODLd9qsTQMWeOm+PmuDlulXxexSD6w81HQgghhBBCPEJAojC3EQV5jTCEhD/FhCEkxuQ1Ys39VSi02G4lhhDScl8nffHEsJOHar5E5BHLNXTbp0rN6FijTo9blxrlvMZ5rbcY4YNoiN54eto1IYQQQgghfZnFc2t6Pe165+oKy+3RYqzYFMS8mdWW+jrtizWGnTxU9DmdR6zX0G2fKjWjY406OW6dapTzGuc1nnad3Agpz76xNblpaGhAZmYmAoEAMjIyXHGWlJSgtLTUFZdXTvr09nnhpI8+1Z306e3zwummz4v1DHGWyDV8ZQsy0ga54iy56wGULlvoiou+5HDSR5/qTvr09nnhLHloZdKuD9322VmP8s5HQgghhBBCPOKJzSN6vfOxOWhYbo8Wo/JQGpZvuNBSX6d9scawk4eKPqfziPUauu1TpWZ0rFEnx61TjXJe47zGOx+TnISfva0Ydo4Cdwq3j1b3wkmf3j4vnPTRp7qTPr19Xjjd9HmxniHOEr6GAvWyMDcgC/MC0hCm9KeEpCFMWZQfkCe2l8mifGvtVmIIcY3lvk764olhJw/VfInII5Zr6LZPlZrRsUadHrcuNcp5jfNabzGaXtsm5a6tjn2SeX3ots/OepSbjy7Av3DRp7rPCyd99KnupE9vnxdOVRd7RE3C1xAISAFTCpjyzFmfUhrClNMnHpOGsNZuLUaxjb7O+eKLYScPtXyJycP+NXTbp0rN6Fijzo9bjxrlvMZ5rbcYy+58l5uPivrsrEd52jUhhBBCCCEeIkT7pyM+n0Tt0YHw+aSldjsx3PapEkPHnDlujpvj5rhV8nkVg+gPNx8JIYQQQgjxkPA9Hh0JhQRyspoQCglL7XZiuO1TJYaOOXPcHDfHzXGr5PMqBtEfbj4SQgghhBDiEQIShbmNKMhrhCEk/CkmDCExJq8Ra+6vQqHFdisxhJCW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNc5rvcUIH0RD9IanXRNCCCGEEOIRi+fW9Hra9c7VFZbbo8VYsSmIeTOrLfV12hdrDDt5qOhzOo9Yr6HbPlVqRscadXLcOtUo5zXOazztOrnhnY+EEEIIIYQQQgghhJDE4MIBOErB067po08NJ330qe6kT2+fF05VTxckahK+hgL1sjA3IAvzAtIQpvSnhKQhTFmUH5AntpfJonxr7VZiCHGN5b5O+uKJYScP1XyJyCOWa+i2T5Wa0bFGnR63LjXKeY3zWm8xml7bxtOuFfXZWY96uvn45JNPyssvv1ymp6fL9PR0+Y1vfEO+9NJLPfZ/55135HXXXScvuugiCUAuX77ctpObj/TRp4aTPvpUd9Knt88Lp6qLPdI7XqxHpTxzDYGAFDClgCnPvG5fSkOYcvrEY9IQ1tqtxSi20dc5X3wx7OShli8xedi/hm77VKkZHWvU+XHrUaOc1ziv9RZj2Z3vcvNRUZ+d9ainj11nZ2dj6dKl2LNnD3bv3o3vf//7mD59Oqqqqrrt39TUhJycHCxduhTnn3++y9kSQgghhJBkQ4X1qBDtn474fBK1RwfC55OW2u3EcNunSgwdc+a4OW6Om+NWyedVDKI/nm4+FhcXY+rUqcjNzUVeXh4WL16MtLQ0vPnmm932v/LKK/Ff//VfmDVrFvr37+9ytoQQQgghJNlQYT0avsejI6GQQE5WE0IhYandTgy3farE0DFnjpvj5rg5bpV8XsUg+qPMgTOhUAgbN27EqVOnMGHCBMfitrS0oKGhodOHEEIIIYSQs0nUehToeU0qIFGY24iCvEYYQsKfYsIQEmPyGrHm/ioUWmy3EkMIabmvk754YtjJQzVfIvKI5Rq67VOlZnSsUafHrUuNcl7jvNZbjPAp2ERvhJRn7y27S2VlJSZMmIBgMIi0tDRs2LABU6dOjfpzF198Me644w7ccccdvfZ78MEHsXDhwi7tU6ZMgd/vjzVtW1RUVGD8+PGuuLxy0qe3zwsnffSp7qRPb58XTjd9ra2tePnllxEIBJCRkeGKM5lJ9HoU6HlNOvLi7yAnqxUA8NGnA3Aq6MOg1BAuuqAZPgMImdbbo8WoPVqJnKzLLfV12hdrDDt5qOhzOo9Yr6HbPlVqRscadXLcOtUo5zXOa73FcJKKgx8k7frQbZ+d9ajnm4+nT5/G4cOHEQgE8Pzzz2P16tXYsWMHRo0a1evPWV3stbS0oKWlJfJ1Q0MDRowY4epivaSkBKWlpa64vHLSp7fPCyd99KnupE9vnxdON30NDQ3IzMzk5qNDJHo9CvSyJn1lCzLSBsU7BEuU3PUASpd13QClTw+fF0766FPdSZ/ePi+cJQ+tTNr1ods+O+vRFFcy6oV+/frh0ksvBQCMHTsWu3btwuOPP46nn37akfj9+/fn+yEJIYQQQkiPJHo9CvS8Jn1i8wjcMbseALBqSzZqjw5ETlYTbr3uCAakmmgOGpbbo8WoPJSG5RsutNTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjnNc4r/UWgyQBCT552zbf+9735M033xy130UXXSSXL19uO76do8Cdwu2j1b1w0qe3zwsnffSp7qRPb58XTjd9Xqxn+hKJXo9KeeYaCtTLwtyALMwLSEOY0p8SkoYwZVF+QJ7YXiaL8q21W4khxDWW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNc5rvcVoem2blLu2OvZJ5vWh2z4761FPNx/nz58vd+zYIT/44AO5f/9+OX/+fCmEkH/729+klFLedNNNcv78+ZH+LS0tcu/evXLv3r3yggsukPfcc4/cu3evrKmpsezk5iN99KnhpI8+1Z306e3zwqnqYo/0jhfrUSnPXEMgIAVMKWDKM2d9SmkIU06feEwawlq7tRjFNvo654svhp081PIlJg/719Btnyo1o2ONOj9uPWqU8xrntd5iLLvzXW4+Kuqzsx719LHruro6zJkzB59++ikyMzNRUFCArVu34gc/+AEA4PDhwzCMM28X/eSTT1BUVBT5+pFHHsEjjzyCiRMnory83O30CSGEEEKI5qiwHhWi/f9LeabN55OoPToQPp+E2SaittuJ4bZPlRg65sxxc9wcN8etks+rGER/HD43yB7PPvssPvzwQ7S0tKCurg7bt2+PLPQAoLy8HM8991zk64svvhhSyi4fbjwSQgghhJBYUGE9Gr7HoyOhkEBOVhNCIWGp3U4Mt32qxNAxZ46b4+a4OW6VfF7FIPrj6eYjIYQQQgghfRkBicLcRhTkNcIQEv4UE4aQGJPXiDX3V6HQYruVGEJIy32d9MUTw04eqvkSkUcs19Btnyo1o2ONOj1uXWqU8xrntd5ihA+iIXrj+WnXhBBCCCGE9FUWz63p9bTrnasrLLdHi7FiUxDzZlZb6uu0L9YYdvJQ0ed0HrFeQ7d9qtSMjjXq5Lh1qlHOa5zXeNp1csM7HwkhhBBCCCGEEEIIIYkhYcfeKApPu6aPPjWc9NGnupM+vX1eOFU9XZCoSfgaCtTLwtyALMwLSEOY0p8SkoYwZVF+QJ7YXiaL8q21W4khxDWW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNc5rvcVoem0bT7tW1GdnPcrNRxfgX7joU93nhZM++lR30qe3zwunqos9oibhawgEpIApBUx55nX7UhrClNMnHpOGsNZuLUaxjb7O+eKLYScPtXyJycP+NXTbp0rN6Fijzo9bjxrlvMZ5rbcYy+58l5uPivrsrEf52DUhhBBCCCEeIkT7pyM+n0Tt0YHw+aSldjsx3PapEkPHnDlujpvj5rhV8nkVg+gPNx8JIYQQQgjxkPA9Hh0JhQRyspoQCglL7XZiuO1TJYaOOXPcHDfHzXGr5PMqBtEfbj4SQgghhBDiEQIShbmNKMhrhCEk/CkmDCExJq8Ra+6vQqHFdisxhJCW+zrpiyeGnTxU8yUij1iuods+VWpGxxp1ety61CjnNc5rvcUIn4JN9CbF6wQIIYQQQgjpqyyeW4M7ZtcDAFZtyUbt0YHIyWrCrdcdwYBUEztXV1hujxZjxaYg5s2sttTXaV+sMezkoaLP6TxivYZu+1SpGR1r1Mlx61SjnNc4r/UWg+iPkPLsG1uTm4aGBmRmZiIQCCAjI8MVZ0lJCUpLS11xeeWkT2+fF0766FPdSZ/ePi+cbvq8WM8QZ4lcw1e2ICNtkCvOkrseQOmyha646EsOJ330qe6kT2+fF86Sh1Ym7frQbZ+d9SjvfCSEEEIIIcQjntg8otc7H5uDhuX2aDEqD6Vh+YYLLfV12hdrDDt5qOhzOo9Yr6HbPlVqRscadXLcOtUo5zXOa7zzMclJ+NnbimHnKHCncPtodS+c9Ont88JJH32qO+nT2+eF002fF+sZ4izhayhQLwtzA7IwLyANYUp/SkgawpRF+QF5YnuZLMq31m4lhhDXWO7rpC+eGHbyUM2XiDxiuYZu+1SpGR1r1Olx61KjnNc4r/UWo+m1bVLu2urYJ5nXh2777KxHufnoAvwLF32q+7xw0kef6k769PZ54VR1sUfUJHwNgYAUMKWAKc+c9SmlIUw5feIxaQhr7dZiFNvo65wvvhh28lDLl5g87F9Dt32q1IyONer8uPWoUc5rnNd6i7Hszne5+aioz856lKddE0IIIYQQ4iFCtH864vNJ/P/bu/vgKsqzf+DfPSevQBJBi0AIYDSJinLgeVAmaEXFquUlOLaKVqG0zrRKfMNSBxQMYJHaWkB+YmwF0WpDKG3opJUCkRIUUAMKiIAhkNgglfIM05wEQyI55/r9QRMT8ra7Z1/uPXw/M5kp657re9/dm5uLZZOtPNYDfr/oOm6khtN5qtTw4pg5b86b8+a8VcpzqwZ5H28+EhERERG5qPkZj9ZCIQ3pqfUIhTRdx43UcDpPlRpeHDPnzXlz3py3Snlu1SDv481HIiIiIiKXaBAEMuowLLMOPk0QGxOGTxMMz6zDa3P3I6DzuJ4amia6z7UyL5IaRsahWp4d4zBzDZ3OU2XNeHGNWj1vr6xR7mvc17qq0fwiGvI2V992nZ+fj/z8fHz++ecAgKFDh+KZZ57Bd7/73U4/s3btWsydOxeff/45MjIy8Pzzz2PcuHEOjZiIiIiIoonb/ejC6RVdvu16+4oy3ce7q7FsTQMenVyu61yr88zWMDIOFfOsHofZa+h0niprxotr1Mp5e2mNcl/jvsa3XUc3TeTcB1ud89e//hV+vx8ZGRkQEbzxxhv49a9/jd27d2Po0KHtzt+xYwduuOEGLFq0CBMmTEBBQQGef/55fPzxx7jqqqt0ZdbW1iIlJQXBYBDJyclWT6lDOTk5KC4udiTLrUzmeTvPjUzmMU/1TOZ5O8+NTCfz3OhnopUb/SjQ6hpuKUJyr55WTqlTOU/koXjxfEeymBcdmcxjnuqZzPN2nhuZOQteitr+0Ok8I/2oq08+Tpw4sc2vFy5ciPz8fHzwwQcdNnsvvvgibr/9dvz85z8HADz77LMoKSnBSy+9hFdeecWRMRMRERFR9HC7H12+Nq3LJx9PN/h0H++uxr4jvbCkYJCuc63OM1vDyDhUzLN6HGavodN5qqwZL65RK+ftpTXKfY37Gp98jHI2v3lbt6amJlm9erXExcXJ/v37OzwnLS1NlixZ0ubYM888I8OGDeu0bkNDgwSDwZavo0eP6n4VuFWcfrW6G5nM83aeG5nMY57qmczzdp4bmU7mBYNBx/uZ84Fd/ahI5z2phhoJZAQlkBkUnxaW2JiQ+LSwjMgKysl3NsuILH3H9dTQtAm6z7UyL5IaRsahWp4d4zBzDZ3OU2XNeHGNWj1vr6xR7mvc17qqUf9eicjOjZZ9RXN/6HSekX7U1W+7BoB9+/YhOzsbDQ0N6NWrFwoKCjr9mTlxcXF44403cO+997Yce/nllzF//nz8+9//7vAz8+bNw/z57R/hvf322xEbG2vNJLpRVlaGa6+91pEstzKZ5+08NzKZxzzVM5nn7Tw3Mp3MO3PmDDZs2MBvu7aI3f0o0HlPCtwOoOOetN+FjTh+Ml738e5rlAHofI3amWe+hpFxqJdn/TjMXUOn81RZM07nqbJmnM5TZc04nafKmnE6z+k1MzT9FNJTT+vK06PsUFXU9odO5xnqR22/FdqNxsZGqaiokF27dsmsWbPkoosu6vRfmmNjY6WgoKDNseXLl0vfvn07rc8nH5nHPDUzmcc81TOZ5+08NzJV/Zdm6p7d/ahI5z0pcPYpD58WFkBavmJjQnL1ZbUSGxPSdVxfjYkGzrUuL7IaRsahVp494zB+DZ3OU2XNeHGNWj9vb6xR7mvc17qq8fDd/+STj4rmGelHffbfC+1aXFwcLrvsMvzv//4vFi1ahEAggBdffLHDc/v169fuX5T//e9/o1+/fp3Wj4+PR3JycpsvIiIiIqJmdvejQNc9afNfs1oLhTSkp9YjFNJ0HTdSw+k8VWp4ccycN+fNeXPeKuW5VYO8z/Wbj+cKh8NobGzs8L9lZ2dj8+bNbY6VlJQgOzvbiaERERER0XnAyX5UgyCQUYdhmXXwaYLYmDB8mmB4Zh1em7sfAZ3H9dTQNNF9rpV5kdQwMg7V8uwYh5lr6HSeKmvGi2vU6nl7ZY1yX+O+1lWN5hfRkLe5+rbr2bNn47vf/S4GDRqEuro6FBQUoLS0FBs3bgQATJ06FampqVi0aBEA4LHHHsOYMWPwm9/8BuPHj0dhYSF27dqF3/3ud25Og4iIiIg8yu1+dOH0ii7fdr19RZnu493VWLamAY9OLtd1rtV5ZmsYGYeKeVaPw+w1dDpPlTXjxTVq5by9tEa5r3Ff49uuo5urNx9PnDiBqVOn4ssvv0RKSgqGDRuGjRs34jvf+Q4AoLq6Gj7fNw9njh49GgUFBZgzZw6eeuopZGRk4C9/+Quuuuoqt6ZARERERB7GfpSIiIjIZg78DEqluPED2vlD9pmnep4bmcxjnuqZzPN2nhuZqv6Ab1JT8zXUUCOBjKAEMs++eCY2JiQ+LSwjsoJy8p3NMiJL33E9NTRtgu5zrcyLpIaRcaiWZ8c4zFxDp/NUWTNeXKNWz9sra5T7Gve1rmrUv1fCF84ommekH+XNRwfwL1zMUz3PjUzmMU/1TOZ5O8+NTFWbPVJT8zUEgqIhLBravuHTp4Vl0pjj4tP0HddXY6KBc63Li6yGkXGolWfPOIxfQ6fzVFkzXlyj1s/bG2uU+xr3ta5qLJ5xkDcfFc3z1NuuiYiIiIjOZ5p29qs1v19QeawH/H7RddxIDafzVKnhxTFz3pw35815q5TnVg3yPt58JCIiIiJyUfMzHq2FQhrSU+sRCmm6jhup4XSeKjW8OGbOm/PmvDlvlfLcqkHex5uPREREREQu0SAIZNRhWGYdfJogNiYMnyYYnlmH1+buR0DncT01NE10n2tlXiQ1jIxDtTw7xmHmGjqdp8qa8eIatXreXlmj3Ne4r3VVo/kt2ORtrr7tmoiIiIjofLZwegUev7cGAPBK0UBUHuuB9NR6PHjnF0hMCGP7ijLdx7ursWxNAx6dXK7rXKvzzNYwMg4V86weh9lr6HSeKmvGi2vUynl7aY1yX+O+1lUN8j5N5NwHW6NbbW0tUlJSEAwGkZyc7EhmTk4OiouLHclyK5N53s5zI5N5zFM9k3neznMj08k8N/oZslbLNdxShORePR3JzHkiD8WL5zuSxbzoyGQe81TPZJ6389zIzFnwUtT2h07nGelH+eQjEREREZFLlq9N6/LJx9MNPt3Hu6ux70gvLCkYpOtcq/PM1jAyDhXzrB6H2WvodJ4qa8aLa9TKeXtpjXJf477GJx+jnO3v3laMkVeBW8XpV6u7kck8b+e5kck85qmeyTxv57mR6WSeG/0MWav5GmqokUBGUAKZQfFpYYmNCYlPC8uIrKCcfGezjMjSd1xPDU2boPtcK/MiqWFkHKrl2TEOM9fQ6TxV1owX16jV8/bKGuW+xn2tqxr175WI7Nxo2Vc094dO5xnpR3nz0QH8CxfzVM9zI5N5zFM9k3neznMjU9Vmj9TUfA2BoGgIi4awfPOuTxGfFpZJY46LT9N3XF+NiQbOtS4vshpGxqFWnj3jMH4Nnc5TZc14cY1aP29vrFHua9zXuqqxeMZB3nxUNM9IP8q3XRMRERERuUjTzn615vcLKo/1gN8vuo4bqeF0nio1vDhmzpvz5rw5b5Xy3KpB3sebj0RERERELmp+xqO1UEhDemo9QiFN13EjNZzOU6WGF8fMeXPenDfnrVKeWzXI+3jzkYiIiIjIJRoEgYw6DMusg08TxMaE4dMEwzPr8Nrc/QjoPK6nhqaJ7nOtzIukhpFxqJZnxzjMXEOn81RZM15co1bP2ytrlPsa97WuajS/iIa8jW+7JiIiIiJyycLpFV2+7Xr7ijLdx7ursWxNAx6dXK7rXKvzzNYwMg4V86weh9lr6HSeKmvGi2vUynl7aY1yX+O+xrddRzc++UhERERERERERET2cOAFOErh266Zxzw1MpnHPNUzmeftPDcyVX27IKmp+RpqqJFARlACmUHxaWGJjQmJTwvLiKygnHxns4zI0ndcTw1Nm6D7XCvzIqlhZByq5dkxDjPX0Ok8VdaMF9eo1fP2yhrlvsZ9rasa9e+V8G3XiuYZ6Ud589EB/AsX81TPcyOTecxTPZN53s5zI1PVZo/U1HwNgaBoCIuGsHzz4/ZFfFpYJo05Lj5N33F9NSYaONe6vMhqGBmHWnn2jMP4NXQ6T5U148U1av28vbFGua9xX+uqxuIZB3nzUdE8I/2oq992vWjRIlxzzTVISkpC3759cccdd6C8vLzbzy1duhRZWVlITExEWloaZsyYgYaGBgdGTERERETRRIV+VNPOfrXm9wsqj/WA3y+6jhup4XSeKjW8OGbOm/PmvDlvlfLcqkHe5+rNx61btyI3NxcffPABSkpKcObMGdx666346quvOv1MQUEBZs2ahby8PBw8eBArV67EmjVr8NRTTzk4ciIiIiKKBir0o83PeLQWCmlIT61HKKTpOm6khtN5qtTw4pg5b86b8+a8VcpzqwZ5n6s3Hzds2IBp06Zh6NChCAQCeP3111FdXY2PPvqo08/s2LED1113HX7wgx9gyJAhuPXWW3HvvfeirKzMwZETERERUTRwux/VIAhk1GFYZh18miA2JgyfJhieWYfX5u5HQOdxPTU0TXSfa2VeJDWMjEO1PDvGYeYaOp2nyprx4hq1et5eWaPc17ivdVWj+S3Y5G0xbg+gtWAwCADo06dPp+eMHj0ab731FsrKynDttdeisrIS69evx5QpUzo8v7GxEY2NjS2/rq2ttXbQRERERBQ17OhHgc570oXTK/D4vTUAgFeKBqLyWA+kp9bjwTu/QGJCGNtXlOk+3l2NZWsa8Ojkcl3nWp1ntoaRcaiYZ/U4zF5Dp/NUWTNeXKNWzttLa5T7Gve1rmqQ92ki5z7Y6o5wOIycnBzU1NRg27ZtXZ67bNkyzJw5EyKCpqYmPPjgg8jPz+/w3Hnz5mH+/Pntjt9+++2IjY21ZOzdaW5MneR0JvO8nedGJvOYp3om87yd50amk3lnzpzBhg0bEAwGkZyc7Ejm+cCufhTooifNHonYGGeeByjbX45rh2Y5ksW86MhkHvNUz2Set/PcyCw7VBW1/aHTeUb6UWWefMzNzcWnn37abaNXWlqK5557Di+//DJGjRqFw4cP47HHHsOzzz6LuXPntjt/9uzZeOKJJ1p+XVtbi7S0NKxZs8axZj0nJwfFxcWOZLmVyTxv57mRyTzmqZ7JPG/nuZHpZF5tbS1SUlIcyTqf2NWPAp33pDeMyO/yycfTDT7dx7urse/II7hp5P/Tda7VeWZrGBmHinlWj8PsNXQ6T5U148U1auW8vbRGua9xX3PqycecBS9FbX/odJ6hftTmN2/rkpubKwMHDpTKyspuz73++utl5syZbY69+eabkpiYKKFQqNvPG3kVuFWcfrW6G5nM83aeG5nMY57qmczzdp4bmU7mudHPRDsn+1GRb66hhhoJZAQlkBkUnxaW2JiQ+LSwjMgKysl3NsuILH3H9dTQtAm6z7UyL5IaRsahWp4d4zBzDZ3OU2XNeHGNWj1vr6xR7mvc17qqUf9eicjOjZZ9RXN/6HSekX7U1ZuP4XBYcnNzZcCAAXLo0CFdn/mf//kfefLJJ9scKygokMTERGlqaur287z5yDzmqZHJPOapnsk8b+e5kalqs0ddc6MfFfnmGgJB0RAWDWH55l2fIj4tLJPGHBefpu+4vhoTDZxrXV5kNYyMQ608e8Zh/Bo6nafKmvHiGrV+3t5Yo9zXuK91VWPxjIO8+ahonpF+1NW3Xefm5uKtt95CQUEBkpKScPz4cRw/fhynT59uOWfq1KmYPXt2y68nTpyI/Px8FBYWoqqqCiUlJZg7dy4mTpwIv9/vxjSIiIiIyKNU6Ec17exXa36/oPJYD/j9ouu4kRpO56lSw4tj5rw5b86b81Ypz60a5H2u3nzMz89HMBjEjTfeiP79+7d8rVmzpuWc6upqfPnlly2/njNnDn72s59hzpw5uPLKK/HAAw/gtttuw29/+1s3pkBEREREHqZCP9r8jEdroZCG9NR6hEKaruNGajidp0oNL46Z8+a8OW/OW6U8t2qQ97l681FEOvyaNm1ayzmlpaV4/fXXW34dExODvLw8HD58GKdPn0Z1dTWWL1+OCy64wPHxExEREZG3ud2PahAEMuowLLMOPk0QGxOGTxMMz6zDa3P3I6DzuJ4amia6z7UyL5IaRsahWp4d4zBzDZ3OU2XNeHGNWj1vr6xR7mvc17qq0fwiGvI2Zd52TURERER0vlk4vaLLt11vX1Gm+3h3NZatacCjk8t1nWt1ntkaRsahYp7V4zB7DZ3OU2XNeHGNWjlvL61R7mvc15x62zW5QxM598HW6Nb8KvBgMIjk5GRHMp1+tbobmczzdp4bmcxjnuqZzPN2nhuZTua50c+QtVqu4ZYiJPfq6UhmzhN5KF4835Es5kVHJvOYp3om87yd50ZmzoKXorY/dDrPSD/KJx+JiIiIiFyyfG1al08+nm7w6T7eXY19R3phScEgXedanWe2hpFxqJhn9TjMXkOn81RZM15co1bO20trlPsa9zU++RjlbHnftsKMvArcKk6/Wt2NTOZ5O8+NTOYxT/VM5nk7z41MJ/Pc6GfIWs3XUEONBDKCEsgMik8LS2xMSHxaWEZkBeXkO5tlRJa+43pqaNoE3edamRdJDSPjUC3PjnGYuYZO56myZry4Rq2et1fWKPc17mtd1ah/r0Rk50bLvqK5P3Q6z0g/ypuPDuBfuJinep4bmcxjnuqZzPN2nhuZqjZ7pKbmawgERUNYNITlm3d9ivi0sEwac1x8mr7j+mpMNHCudXmR1TAyDrXy7BmH8WvodJ4qa8aLa9T6eXtjjXJf477WVY3FMw7y5qOieUb6UVffdk1EREREdL7TtLNfrfn9gspjPeD3i67jRmo4nadKDS+OmfPmvDlvzlulPLdqkPfx5iMRERERkYuan/FoLRTSkJ5aj1BI03XcSA2n81Sp4cUxc96cN+fNeauU51YN8j7efCQiIiIicokGQSCjDsMy6+DTBLExYfg0wfDMOrw2dz8COo/rqaFpovtcK/MiqWFkHKrl2TEOM9fQ6TxV1owX16jV8/bKGuW+xn2tqxrNL6Ihb+PbromIiIiIXLJwekWXb7vevqJM9/Huaixb04BHJ5frOtfqPLM1jIxDxTyrx2H2Gjqdp8qa8eIatXLeXlqj3Ne4r/Ft19GNTz4SERERERERERGRPRx4AY5S+LZr5jFPjUzmMU/1TOZ5O8+NTFXfLkhqar6GGmokkBGUQGZQfFpYYmNC4tPCMiIrKCff2SwjsvQd11ND0yboPtfKvEhqGBmHanl2jMPMNXQ6T5U148U1avW8vbJGua9xX+uqRv17JXzbtaJ5RvpR3nx0AP/CxTzV89zIZB7zVM9knrfz3MhUtdkjNTVfQyAoGsKiISzf/Lh9EZ8WlkljjotP03dcX42JBs61Li+yGkbGoVaePeMwfg2dzlNlzXhxjVo/b2+sUe5r3Ne6qrF4xkHefFQ0z0g/ym+7JiIiIiJykaad/WrN7xdUHusBv190HTdSw+k8VWp4ccycN+fNeXPeKuW5VYO8jzcfiYiIiIhc1PyMR2uhkIb01HqEQpqu40ZqOJ2nSg0vjpnz5rw5b85bpTy3apD38eYjEREREZFLNAgCGXUYllkHnyaIjQnDpwmGZ9bhtbn7EdB5XE8NTRPd51qZF0kNI+NQLc+OcZi5hk7nqbJmvLhGrZ63V9Yo9zXua13VaH4LNnlbjNsDICIiIiI6Xy2cXoHH760BALxSNBCVx3ogPbUeD975BRITwti+okz38e5qLFvTgEcnl+s61+o8szWMjEPFPKvHYfYaOp2nyprx4hq1ct5eWqPc17ivdVWDvE8TOffBVucsWrQIRUVF+Oyzz5CYmIjRo0fj+eefR1ZWVqefufHGG7F169Z2x8eNG4e3336728za2lqkpKQgGAwiOTk5ovHrlZOTg+LiYkey3Mpknrfz3MhkHvNUz2Set/PcyHQyz41+Jlq50Y8Cra7hliIk9+ppevxG5DyRh+LF8x3JYl50ZDKPeapnMs/beW5k5ix4KWr7Q6fzjPSjrj75uHXrVuTm5uKaa65BU1MTnnrqKdx66604cOAAevbsuAkrKirC119/3fLrkydPIhAI4K677nJq2EREREQUJdzuR5evTevyycfTDT7dx7urse9ILywpGKTrXKvzzNYwMg4V86weh9lr6HSeKmvGi2vUynl7aY1yX+O+xicfo5zt79424MSJEwJAtm7dqvszS5YskaSkJDl16pSu8428CtwqTr9a3Y1M5nk7z41M5jFP9UzmeTvPjUwn89zoZ84XTvSjIt9cQw01EsgISiAzKD4tLLExIfFpYRmRFZST72yWEVn6juupoWkTdJ9rZV4kNYyMQ7U8O8Zh5ho6nafKmvHiGrV63l5Zo9zXuK91VaP+vRKRnRst+4rm/tDpPCP9qFI/8zEYDAIA+vTpo/szK1euxD333NPpv0w3NjaisbGxXUZtbW0EIzXmzJkzjua5kck8b+e5kck85qmeyTxv57mR6WRec46499NzopYd/SjQeU8qqMPeiqT/Hq1DuOns/9pTLpiSNwh7ygWi4/jeCum2BtD037zuz7UyL5IaRsahWp4d4zBzDZ3OU2XNeHGNWj1vr6xR7mvc17q6hktXX4Dcu47CKtHcHzqdZ6QfdfVnPrYWDoeRk5ODmpoabNu2TddnysrKMGrUKHz44Ye49tprOzxn3rx5mD/f2Z9ZQEREROSEo0ePYuDAgW4PI2rY1Y8C7EmJiIgoOunpR5W5+fjQQw/h73//O7Zt26a7if7pT3+K999/H5988kmn55z7r8w1NTUYPHgwqqurkZKSEvG4u1NbW4u0tDQcPXrUsR8I73Qm87yd50Ym85ineibzvJ3nRqbTeSKCuro6DBgwAD6fz/a884Vd/Shw/vWkzPN+JvOYp3om87yd50Ym86xlpB9V4tuuH374Yfztb3/Du+++q7vR++qrr1BYWIgFCxZ0eV58fDzi4+PbHU9JSXH07ZDJycmOv43S6UzmeTvPjUzmMU/1TOZ5O8+NTCfznLhhdT6xsx8Fzt+elHnez2Qe81TPZJ6389zIZJ519Pajrt58FBE88sgjWLduHUpLS3HJJZfo/uzatWvR2NiI+++/38YREhEREVE0Yz9KREREZC9Xv08nNzcXb731FgoKCpCUlITjx4/j+PHjOH36dMs5U6dOxezZs9t9duXKlbjjjjtw4YUXOjlkIiIiIooi7EeJiIiI7OXqk4/5+fkAgBtvvLHN8VWrVmHatGkAgOrq6nbfO15eXo5t27Zh06ZNhjPj4+ORl5fX4be92MHpPDcymeftPDcymcc81TOZ5+08NzLdmCNZw41+FIj+Nco872cyj3mqZzLP23luZDLPPcq8cIaIiIiIiIiIiIiiC1+PSERERERERERERLbgzUciIiIiIiIiIiKyBW8+EhERERERERERkS1485GIiIiIiIiIiIhsEXU3H999911MnDgRAwYMgKZp+Mtf/tLl+dOmTYOmae2+hg4dakseACxfvhxXXHEFEhMTkZWVhd///ve6sgBg0aJFuOaaa5CUlIS+ffvijjvuQHl5ebefW7t2LS6//HIkJCTg6quvxvr1623Le/XVV/Htb38bvXv3Ru/evXHLLbegrKzM1vk1KywshKZpuOOOO2zNq6mpQW5uLvr374/4+HhkZmbq+v/UbN7SpUuRlZWFxMREpKWlYcaMGWhoaLBtjmfOnMGCBQtw6aWXIiEhAYFAABs2bNCVl5+fj2HDhiE5ORnJycnIzs7G3//+907P379/P773ve9hyJAh0DQNS5cu1ZVjNq+oqAgjR47EBRdcgJ49e2L48OF48803bct7/fXX2+0vCQkJtuXdeOONHe5p48ePty0zkvVyrl/+8pfQNA2PP/54l+eZ3dPMZkayr5nJa83ovmY2z+y+ZjYvkn1t3rx57db45Zdf3uVnIlkzRvMi3dfI+9iPdoz9qPWZXulJ2Y+2FWk/aibTaz2pm/0o4HxPyn70LPaj1uUp149KlFm/fr08/fTTUlRUJABk3bp1XZ5fU1MjX375ZcvX0aNHpU+fPpKXl2dL3ssvvyxJSUlSWFgoR44ckdWrV0uvXr2kuLhYV95tt90mq1atkk8//VT27Nkj48aNk0GDBsmpU6c6/cz27dvF7/fLr371Kzlw4IDMmTNHYmNjZd++fbbk/eAHP5Dly5fL7t275eDBgzJt2jRJSUmRL774wpa8ZlVVVZKamirf/va3ZdKkSd2ebzavsbFRRo4cKePGjZNt27ZJVVWVlJaWyp49e2zJ+8Mf/iDx8fHyhz/8QaqqqmTjxo3Sv39/mTFjhm1zfPLJJ2XAgAHy9ttvy5EjR+Tll1+WhIQE+fjjj7vNKy4ulrffflsOHTok5eXl8tRTT0lsbKx8+umnHZ5fVlYmM2fOlNWrV0u/fv1kyZIluuZlNm/Lli1SVFQkBw4ckMOHD8vSpUvF7/fLhg0bbMlbtWqVJCcnt9lnjh8/btv8Tp482Sbr008/Fb/fL6tWrbItM5L10lpZWZkMGTJEhg0bJo899lin50Wyp5nNjGRfM5PXzMy+ZiYvkn3NTF6k+1peXp4MHTq0zVr/v//7v07Pj3TNGM2LdF8j72M/2h77UeszvdSTsh9tK9J+1Eym13pSt/pREed7UvajZ7EftTZPtX406m4+tqan+TrXunXrRNM0+fzzz23Jy87OlpkzZ7Y59sQTT8h1111nOE9E5MSJEwJAtm7d2uk5d999t4wfP77NsVGjRslPf/pTW/LO1dTUJElJSfLGG2/YltfU1CSjR4+WFStWyA9/+ENTm6LevPz8fElPT5evv/7aVIbRvNzcXLn55pvbHLN7zfTv319eeumlNsfuvPNOue+++0xl9u7dW1asWNHteYMHD7ZkU9Sb12zEiBEyZ84cW/JWrVolKSkppmsbzTvXkiVLJCkpSddfmMxmWrFe6urqJCMjQ0pKSmTMmDFdNgpW7WlGMs9lZl8zmhfpvmYkz4p9zUhepPtaXl6eBAIB3WOLdM0YzWvNqn2NvIv96FnsR63P9HJPyn60vUj70e4yo6EntbsfFXG+J2U/+g32o9bmtaZCPxp133YdqZUrV+KWW27B4MGDbanf2NjY7vH2xMRElJWV4cyZM4brBYNBAECfPn06Pef999/HLbfc0ubYbbfdhvfff9+WvHPV19fjzJkzhj5jNG/BggXo27cvHnjgAcMZRvOKi4uRnZ2N3NxcXHzxxbjqqqvw3HPPIRQK2ZI3evRofPTRRy2P1FdWVmL9+vUYN26c4Ty9mZ2t023bthnKCoVCKCwsxFdffYXs7GzjgzXIaJ6IYPPmzSgvL8cNN9xgW96pU6cwePBgpKWlYdKkSdi/f7/hLCN5ra1cuRL33HMPevbsaVumFeslNzcX48ePb7dXdcSqPc1I5rnM7GtG8yLd14zkWbGvGcmzYl+rqKjAgAEDkJ6ejvvuuw/V1dWdnmvFmjGSRxQp9qOR553LS/2o3kwv96TsR78RaT9qJNOrPalT/SjgfE/KfvQb7EetzVOOq7c+bQaD/9J87Ngx8fv9smbNGtvyZs+eLf369ZNdu3ZJOByWnTt3ysUXXywA5F//+pehvFAoJOPHj+/2znxsbKwUFBS0ObZ8+XLp27evLXnneuihhyQ9PV1Onz5tS957770nqampLY8cm/2XZr15WVlZEh8fLz/+8Y9l165dUlhYKH369JF58+bZkici8uKLL0psbKzExMQIAHnwwQcNZRnNvPfee+XKK6+UQ4cOSSgUkk2bNkliYqLExcXpyvnkk0+kZ8+e4vf7JSUlRd5++21dnzP7LzJG82pqaqRnz54SExMj8fHxsnLlStvyduzYIW+88Ybs3r1bSktLZcKECZKcnCxHjx61Ja+1Dz/8UADIhx9+qDvLTGak62X16tVy1VVXtewR3f0rpRV7mtHMcxnd14zmRbqvGc2LdF8z8/9nJPva+vXr5Y9//KPs3btXNmzYINnZ2TJo0CCpra3t8PxI14zRvNZU+Jdmchf70bPYj1qf6dWelP3oWZH2o0YzvdiTOtmPijjfk7IfbYv9qLV5ranQj/LmYyvPPfecXHjhhdLY2GhbXn19vfzoRz+SmJgY8fv9MmDAAHnyyScFgKGfuSEi8uCDD8rgwYO7/QPDqmZPb15rixYtkt69e8vevXsNZenNq62tlSFDhsj69etbjplt9vTOLyMjQ9LS0qSpqanl2G9+8xvp16+fLXlbtmyRiy++WF599VX55JNPpKioSNLS0mTBggWG8oxknjhxQiZNmiQ+n0/8fr9kZmbK9OnTJSEhQVdOY2OjVFRUyK5du2TWrFly0UUXyf79+7v9nNlN0WheKBSSiooK2b17t7zwwguSkpIiW7ZssS2vta+//louvfRSQ99WYzbvJz/5iVx99dW6c8xmRrJeqqurpW/fvm32CLsbPTOZrRnd14zmRbqvmZlfJPuamTwr9zURkf/85z+SnJzc6bdiWfXnoN681lRo9shd7EfPYj9qbaaId3tS9qNnRdqPmslszQs9qVP9qIjzPSn70fbYj1qb15oK/ShvPv5XOByWyy67TB5//HFH8r7++ms5evSoNDU1tfzQ71AopDsrNzdXBg4cKJWVld2em5aW1m6hPfPMMzJs2DBb8pr9+te/lpSUFNm5c6fuzxjN2717twAQv9/f8qVpmmiaJn6/Xw4fPmxpnojIDTfcIGPHjm1zbP369QJA918UjORdf/317X4u05tvvimJiYm2rZlmp0+fli+++ELC4bA8+eSTcuWVV+r+bGtjx46Vn/zkJ92eZ9WmqDev2QMPPCC33nqrY3nf//735Z577rE179SpU5KcnCxLly41nWM008x6WbduXbvfwwBafg+3bj6aRbqnmclsZmZfM5oX6b5mZn6R7Gtm8qza11obOXKkzJo1q8P/ZsWfg0byWlOh2SN3sR89i/2otZki3uxJ2Y92LtJ+1Eym13pSu/pREed7Uvaj7EdFzq9+lD/z8b+2bt2Kw4cPW/IzWvSIjY3FwIED4ff7UVhYiAkTJsDn6/5yiAgefvhhrFu3Dv/4xz9wySWXdPuZ7OxsbN68uc2xkpIS3T+DxGgeAPzqV7/Cs88+iw0bNmDkyJG6PmMm7/LLL8e+ffuwZ8+elq+cnBzcdNNN2LNnD9LS0iyf33XXXYfDhw8jHA63HDt06BD69++PuLg4y/Pq6+vbrQ2/399SrztmryEAJCQkIDU1FU1NTfjzn/+MSZMm6f5sa+FwGI2NjaY+60RepOMz8vlQKIR9+/ahf//+tuatXbsWjY2NuP/++03nGM00s17Gjh3b7vfwyJEjcd9992HPnj0ta721SPY0s5mA+X3NaF6k+5qZ+UWyr5nJi3RfO9epU6dw5MiRTn9fRbpmjOYRmcV+1Lo8wDv9qJlMwFs9KftR68+PtIYXe1K7+lHA+Z6U/Sj7UeA860edv99pr7q6Otm9e3fLnfrFixfL7t275Z///KeIiMyaNUumTJnS7nP333+/jBo1yva88vJyefPNN+XQoUPy4YcfyuTJk6VPnz5SVVWlK++hhx6SlJQUKS0tbfOK9fr6+pZzpkyZ0ubu9/bt2yUmJkZeeOEFOXjwoOTl5el+pbuZvF/+8pcSFxcnf/rTn9p8pq6uzpa8cxl5HNxMXnV1tSQlJcnDDz8s5eXl8re//U369u0rv/jFL2zJy8vLk6SkJFm9erVUVlbKpk2b5NJLL5W7777btjl+8MEH8uc//1mOHDki7777rtx8881yySWXyH/+859u82bNmiVbt26Vqqoq+eSTT2TWrFmiaZps2rSpw6zGxsaW30P9+/eXmTNnyu7du6WiokLX/IzmPffcc7Jp0yY5cuSIHDhwQF544QWJiYmRV1991Za8+fPny8aNG+XIkSPy0UcfyT333CMJCQm6vyXGaF6z66+/XiZPnqwrI9LMSNZLR879Fgkr9zSzmZHsa2byzhXpW1O7y4tkXzOTF+m+9rOf/UxKS0ulqqpKtm/fLrfccotcdNFFcuLEiQ7zIl0zRvMi3dfI+9iPsh81um9He0/KftTaftRMptd6Urf7URHne1L2o+xHrcxTrR+NupuPW7ZsEQDtvn74wx+KyNnfMGPGjGnzmZqaGklMTJTf/e53tucdOHBAhg8fLomJiZKcnCyTJk2Szz77THdeR1kAZNWqVS3njBkzpiW/2R//+EfJzMyUuLg4GTp0qO4fDmwmb/DgwR1+Ji8vz7b5tWZkUzSbt2PHDhk1apTEx8dLenq6LFy4sMtH4yPJO3PmjMybN08uvfRSSUhIkLS0NJk+fbruP0jNZJaWlsoVV1wh8fHxcuGFF8qUKVPk2LFjuvJ+/OMfy+DBgyUuLk6+9a1vydixY1uahI6yqqqqOhzfub9Prcp7+umn5bLLLpOEhATp3bu3ZGdnS2Fhoa4sM3mPP/64DBo0SOLi4uTiiy+WcePGyccff2xbnojIZ599JgDanGeE0cxI1ktHzm0UrNzTzGZGsq+ZyTuX1c2elfuambxI97XJkydL//79JS4uTlJTU2Xy5Mltvv3H6jVjNC/SfY28j/0o+1Gj+3a096TsR63tR81keq0ndbsfbc5wsidlP8p+1Mo81fpRTcTE86RERERERERERERE3eDPfCQiIiIiIiIiIiJb8OYjERERERERERER2YI3H4mIiIiIiIiIiMgWvPlIREREREREREREtuDNRyIiIiIiIiIiIrIFbz4SERERERERERGRLXjzkYiIiIiIiIiIiGzBm49ERERERERERERkC958JCKyQCgUwujRo3HnnXe2OR4MBpGWloann37apZERERER0fmA/SgRqUoTEXF7EERE0eDQoUMYPnw4Xn31Vdx3330AgKlTp2Lv3r3YuXMn4uLiXB4hEREREUUz9qNEpCLefCQistCyZcswb9487N+/H2VlZbjrrruwc+dOBAIBt4dGREREROcB9qNEpBrefCQispCI4Oabb4bf78e+ffvwyCOPYM6cOW4Pi4iIiIjOE+xHiUg1vPlIRGSxzz77DFdccQWuvvpqfPzxx4iJiXF7SERERER0HmE/SkQq4QtniIgs9tprr6FHjx6oqqrCF1984fZwiIiIiOg8w36UiFTCJx+JiCy0Y8cOjBkzBps2bcIvfvELAMA777wDTdNcHhkRERERnQ/YjxKRavjkIxGRRerr6zFt2jQ89NBDuOmmm7By5UqUlZXhlVdecXtoRERERHQeYD9KRCrik49ERBZ57LHHsH79euzduxc9evQAAPz2t7/FzJkzsW/fPgwZMsTdARIRERFRVGM/SkQq4s1HIiILbN26FWPHjkVpaSmuv/76Nv/ttttuQ1NTE7/dhYiIiIhsw36UiFTFm49ERERERERERERkC/7MRyIiIiIiIiIiIrIFbz4SERERERERERGRLXjzkYiIiIiIiIiIiGzBm49ERERERERERERkC958JCIiIiIiIiIiIlvw5iMRERERERERERHZgjcfiYiIiIiIiIiIyBa8+UhERERERERERES24M1HIiIiIiIiIiIisgVvPhIREREREREREZEtePORiIiIiIiIiIiIbMGbj0RERERERERERGSL/w/Lm11C1Lt72gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8Tfcfx/HXzd4hEiNBEhWj9ixKxaitKGrPKkUHalN71qhZlBKrqNHW+tmiVq2arb23RCQiOzf398d1r3tz782Sm+XzfDzyIPeM7/fc703uO/dzzvcoVCqVCiGEEEIIIYQQQgghhBBCCCFEtmOR2R0QQgghhBBCCCGEEEIIIYQQQqSNFPuEEEIIIYQQQgghhBBCCCGEyKak2CeEEEIIIYQQQgghhBBCCCFENiXFPiGEEEIIIYQQQgghhBBCCCGyKSn2CSGEEEIIIYQQQgghhBBCCJFNSbFPCCGEEEIIIYQQQgghhBBCiGxKin1CCCGEEEIIIYQQQgghhBBCZFNS7BNCCCGEEEIIIYQQQgghhBAim5JinxBCCCGEEEIIIYQQQgghhBDZlBT7hBBCCCGEECILUiqVzJ07l6pVq+Li4oJCoUChUNCyZUsAAgMDtY8FBgama9vm3LcQQgghRHYmOUkIkRVJsU+ILEo3OKT0a8CAAZndbZGMOnXqaMerQYMGKd7O398/1a+H0NBQg/2Ehoayd+9eJk+eTIsWLfD09NSu7+/vn34HKoQQQmQDpvKWlZUVbm5u+Pr68tFHHzFw4EA2b95MbGxshvavQ4cODBgwgFOnThEeHp6hbWcXkq2EEEKIzBcbG8u6devo2rUrJUqUIE+ePFhbW+Pu7k6lSpXo27cv+/btIyEhIbO7KtLRypUrtbnH0tKSBw8epGi7gICAVOewOXPmGOwnPj6es2fPsmTJEnr16kXZsmWxsrLSbnPnzp30PWAhsjirzO6AEEK8K+7evcuhQ4e03+/fv59Hjx7h6emZYX2oUKGChB0hhBAiGUqlkhcvXvDixQvu3LnD4cOHmTNnDh4eHnzzzTcMHz4cKyvz/il17NgxNm7cCEDTpk0ZMGAA+fLlQ6FQ4OLiYta2U2LcuHGMHz8eAJVKlSl9kGwlhBBCZL4tW7bw3XffGX0/fP78Oc+fP+eff/5h8eLFFCtWjNmzZ9O0adOM72gy7ty5g6+vLwArVqyge/fumduhbGDlypXa/yckJLBmzRqGDx+eYe1PnjyZcePGZVh7QmR1UuwTIhvo27cv/fr1S3Y9d3f3DOiNSKvVq1ejUqmwtbVFqVQSHx/PmjVrGDp0aKr2c/HixRStZ+yDQN0P4/Lly0eVKlXYvn17qtoXQgghcqLEeevVq1e8ePGCCxcusH//fvbt20dQUBDff/8927ZtY/v27Xh4eJitP/v27QPA0tKSX3/91ej7ur+/v9kKbebcd3qRbCWEEEJkrokTJzJmzBjt9x9//DGffPIJ77//Prly5SIkJISrV6+ybds29u7dy7Vr1xg1alSWLPalRnbISeZ2//597RSmTk5OvHr1itWrV6e62Ddp0iRatGiR7HoFChQweEx3DOzs7ChfvjxBQUHcvHkzVX0QIqeQYp8Q2UDevHkpXbp0ZndDvKXVq1cD0KxZM6Kioti5cyerV69O9QdSb/Na+Oqrr/D19aVq1aoUKlQIAIVCkeb9CSGEEDmFqbzVuHFjhg0bxn///Ufnzp05e/YsJ0+epFWrVhw4cAAbGxuz9Ofhw4eAuoCUFa7ky4okWwkhhBCZZ8WKFdpCX968efntt9+oXbu2wXr169enf//+XLp0iYEDBxIUFJTRXRVmoDnpytrampkzZ/Lll1/y33//cfr0aSpXrpzi/Xh5eaU5i1WvXp3FixdTtWpVypQpg5WVFd27d5din3hnSbFPCCEywN9//821a9cA6NSpE9HR0ezcuZNLly7xzz//ULFixQzpx+DBgzOkHSGEECKnef/99zl69CgffvghZ8+e5ejRoyxcuJCBAweapb2YmBgArK2tzbL/7E6ylRBCCJF5Hj58yFdffQWAo6Mjhw4dokSJEkluU7p0aXbv3s2vv/6aEV0UZqY56apx48Z069aNYcOGERYWxqpVq1JV7HsbDRs2zJB2hMguLDK7A0II81CpVDRs2BCFQoGVlRXHjx83ue68efO0N68dO3as0XXCw8OZNWsWdevWJX/+/NjY2ODi4kKFChX4+uuvOXr0qMn9K5VKVq5cSbNmzfD09MTW1pY8efJQs2ZNZs+eTVRUVJLHcubMGT7//HOKFSuGo6MjdnZ2FCpUiEqVKtG/f3+2bt1qdPqE6Oho5s2bh7+/Px4eHlhbW+Pm5kbx4sVp3Lgxs2fPzrB7rKxatQqA3Llz07RpU1q2bImzs7PeMiGEEEJkbfb29qxevVp75dbMmTOJi4szuf6TJ08YNWoUlStXxs3NDVtbWwoVKsRnn32mnaYzMU0m09wD5e7du9rHNF8agYGB2sc00yiZsnPnTjp37kyRIkW0ecrX15fWrVsTEBBAZGSk3vqm9h0QEIBCodDer0+3z7pf5s5Ykq2EEEKIzPPjjz9qs8OECROSLfRpWFhY0LlzZ5PLjxw5QpcuXfDx8cHOzo5cuXJRoUIFRo8enewVgY8fP+ann36iTZs2+Pn54ejoiK2tLV5eXrRo0YINGzaQkJBgdFuFQqG9Xx9Ajx49DLKN7r3hkstg3bt3R6FQ4OPjA0BoaChjxoyhVKlSODo6kitXLj766CPWrl2b5DFpbNu2jUaNGuHh4YGDgwPFihVjyJAhPHnyBAAfHx8UCkWG3Wfw5MmTXLlyBYDOnTtjZ2dHmzZtAFi/fn2S+VgIYUYqIUSWdPDgQRWgAlRjx45N0z4ePXqkypMnjwpQFSlSRPXy5UuDdS5duqSys7NTAaoPPvhAFRcXZ7DO3r17Ve7u7tr+mPoy5u7du6py5coluV3RokVVV69eNbr97NmzVRYWFsm2HR4ebnDs77//frLbfffdd2l4ZlMnJiZG5ebmpgJUvXv31j7erVs3FaDKmzev0eddV+3atZN8nt+GZr+1a9dO930LIYQQWVla81aDBg202x09etToOmvWrFE5OjommUM+//xzgwyQXHbRzQK6/T948KDRfgQHB6vq1auX7D5XrFhh8rnR3feKFStS1Mfbt2+n+PlMLclWQgghROZJSEjQfkbk6Oho9LOm1FIqlar+/fsnmS1cXV1Ve/bsMbp9fHx8ij47+vjjjw0+P1KpUpa/dLNichlMk0m8vb1VV65cUfn4+Jjcb//+/ZN8bvr162dy2/z586v++ecflbe3twpQdevWLTVPe5ppxsrV1VUVFRWlUqn0n5M///wzye1182TiDPq2NM+9ufOoEFmRXNknRA5WoEABli1bBsCtW7f45ptv9JbHxMTQsWNHoqOjcXR0ZM2aNVhZ6c/ue/DgQRo3bkxwcDCWlpZ0796d33//nTNnznD06FGWLl3Kp59+anSKqefPn1OzZk3Onz+Pra0tX331FRs3buTUqVMcPHiQESNG4ODgwI0bN2jcuDFhYWF621+4cIHBgweTkJCAr68vs2bNYv/+/Zw9e5a//vqLpUuX0rFjRxwdHQ3a/vrrr/nvv/8A9VlGW7Zs4e+//+bUqVNs3bqVMWPGUK5cubd6flNq+/bthISEaPuiofn/s2fP2LVrV4b0RQghhBBvr379+tr/Hz582GD5b7/9RpcuXYiIiKBIkSLMnj2bXbt2cebMGTZv3kyTJk0A+OWXXwzuL3fx4kUuXrxIixYtAPD09NQ+pvlKqcjISOrUqcP+/fsBqFSpEkuWLOHo0aOcPn2a33//nYEDB+Lp6ZnifbZs2ZKLFy/St29fgz7rfnl5eaV4n6kl2UoIIYTIPP/++y/BwcEA1KpVS3tl/dsYPnw4CxcuBMDX15fFixdz8uRJDh48yMCBA7G2tiYsLIxmzZpx/vx5g+1Vr2d7qlu3LjNmzNDmrsDAQJYvX0716tUB2Lt3L/379zfY/uLFi+zevVv7/aRJkwyyTb9+/VJ9XJGRkTRv3pznz58zevRoAgMDOX36NEuXLqVgwYIALFy4UK9tXT/88AM//fQTAIUKFWLhwoWcOHGCv/76i1GjRhEWFkabNm0MZmgwp7i4ONavXw9A69atsbOzA6B27dra+xfLLAtCZA65Z58Q2cCzZ8+4dOlSsusVL17coOjWsmVLevXqxbJlywgICKBp06baS+tHjhzJhQsXAJgzZw5FixbV2zY6OprOnTsTHx+Pg4MDO3bswN/fX2+dGjVq0KtXL+7fv2/Qn2+++Yb79+/j7e3NwYMH9aZEAPD396dt27bUqlWLW7du8cMPPzB58mTt8k2bNpGQkICjoyPHjx8nX758etvXqlWLXr16ERYWhoODg16/t27dCsB3333HzJkzDfrWvHlzxo8fr/2gyJw0IcfHx4eaNWtqH69bty6enp48evSIVatW0axZsxTtLyWvhdy5c5v1QzYhhBDiXaZ7PzjNfeM0goOD6d27NyqVip49e7JkyRK9k6kqVqzIp59+yqhRo5gyZQpz586lT58+FC9eHFDfzwYgV65cgPqefZrHUmv06NHa4mD//v2ZP3++3jSglSpVomXLlkybNo0XL16kaJ+5cuUiV65c5M2bV/tYWvuXVpKthBBCiMyjW2yrVKnSW+/v4sWLzJo1C1BnisOHD2tzEKg/O2rQoAFNmzYlNjaW3r17c+LECb19WFpacvXqVYPPtUBdhOrRowdjx45lwoQJrF69mtGjR+Pn56ddp3Tp0jg5OWm/9/LySpd8ExQURGxsLMePH6dUqVLaxytVqoS/vz9lypQhOjqan376yeD+c0+ePNHeaqdo0aIcP34cd3d37fJatWrRpEkT6tSpQ2xs7Fv3NaV27NjB8+fPAf2TrhQKBR07dmT69Ols376dFy9ekDt37mT39/DhwxRlsYzOm0JkR3JlnxDZwKJFiyhTpkyyXw8fPjS6/Zw5c7Qhpk+fPjx8+JB9+/bx448/Am8KgomtWrWKR48eATBlyhSDQp8uzdk7Gnfu3GHDhg0ALFiwwKDQp1GhQgXtWVUBAQF6yzRzjxcrVsyg0KfL1dUVC4s3v85CQkK084N/9NFHJrcDcHNzS3L523r+/Dk7d+4EoGPHjnofsFlYWNCxY0dAPf96aGhoivaZktfCqFGj0v1YhBBCCKGWJ08e7f8TF8kWLVpEWFgYXl5e/PTTTwazJmiMHz8eLy8vEhISzHL2c2hoKEuWLAHUHyjNnTtXL4fosrGxSTJrZSWSrYQQQojMpSn0AHon/6TVokWLtPfSW7ZsmV6hT6NRo0b07NkTUN8v7tSpU3rLFQqF0UKfrjFjxuDu7o5KpdKeIJ4RJk6cqFfo0yhatCgtW7YE1PcqTGzlypVER0cD6s/1dAt9GjVq1DB6paI5aXJrwYIFDT4n7NKlC6CeSUzzmWByRo8enaIsJoRInhT7hHgH6E7RGRISQseOHenevTsqlYoCBQqwdOlSo9tt375du/0XX3yRqjZ37NiBUqnEwcGBxo0bJ7mupiD36NEj7t27p328QIECAPz333+cPHkyxW3nyZMHGxsbAFavXk18fHyq+p6e1q1bpy08GrsJteax6OhoNm7cmKF9E0IIIUTa6J75HR4errdM8+FRs2bNsLW1NbkPKysr7ZRSx48fT/c+HjhwQDul0zfffIOlpWW6t5EZJFsJIYQQmUs3+xi7rUpq7du3D4BSpUrxwQcfmFxP93MpzTamJCQk8OjRI65evcqlS5e4dOkSly9f1k6daWwqUHPQXO1miubKyJCQEIOTlDTH6O7unuTnal27dn37jqZQSEgIO3bsAAxPugL1GJYvXx5Qfx4nhMhYUuwTIhsYO3YsKpUq2S8fHx+T+6hatar28v+//vqLhw8folAoWLFihdGzgwDOnj0LqMOH7jSZKXH69GlAPT+5lZUVCoXC5JfuFEuaq/kAOnTogLW1NTExMXz44Yc0b96cxYsXc+nSJe187MbY2trSrl07QD0VaNGiRRk6dCg7d+5M8Rne6WXlypWAesqukiVLGiwvV66cdiqClJ7Vn5LXQuKrJIUQQgiRfnQ/5HJxcdH+X6lUcu7cOQCWLFmSZP5RKBRs2rQJ0M8/6UWT40A9zVNOIdlKCCGEyFy69+iLiIh4q33FxMRw/fp1gCQLfaCeGUpz6xpj0z6qVCrWrFlDnTp1cHJywsvLixIlSuhdHabJaZp7Dpqbu7u73owQienONpX4BDLNMZYvX15vNqvEypQpoz3h3dzWrVunnTLU2ElXuo8fO3aMmzdvJrvPFStWpCiLCSGSJ8U+Id4hI0aMoEiRItrve/XqZTAnuC5N+NFcYZcaz549S30HQe+mwiVKlGDdunXkzp2b+Ph4tm/fTt++fSlTpgx58+alS5cuHD582Oh+FixYQPPmzQG4e/cuM2bMoGnTpuTJk4cqVaowY8YMwsLC0tTHlLp8+bK26GkqBMGbaQ6OHj3K7du3zdonIYQQQrw93Q+IdD+kCQkJSdOMArr5J73o9jEtWS4rkmwlhBBCZD7d4tXTp0/fal+606EnNyWotbW1tu2QkBC9ZdHR0TRt2pQuXboQGBhIVFRUkvtKbnl6Se7Eed0inlKp1FumeW48PDyS3IelpaXZb1GjoTmRqmzZsian1uzYsaN2RglzTFUvhDDN+A0khBA50o4dO7h165b2+yNHjhAVFYW9vX26t6UJKe7u7hw8eDDF2yW+t1/r1q2pX78+GzZsYPfu3Rw+fJigoCCCg4NZs2YNa9asoVu3bixfvlwvJLm4uLB161ZOnjzJb7/9RmBgIOfOnUOpVHL69GlOnz7NzJkz+eOPP7RTaKU33VAzaNAgBg0alOT6KpWKVatWaa/AFEIIIUTWpHvVXPHixbX/1/2QplevXnz77bcp2l9GnY2d3Um2EkIIITJfuXLltP//559/0m2/pu4tnBKTJ0/mf//7HwC1a9emf//+VKxYkfz582Nvb6/9vOijjz7i8OHDcqVYGly9elV7i50LFy6kaLzWrFnDuHHj3mpshRApJ8U+Id4RT58+pVevXoC6EPby5UsuX77MkCFDWLBggdFt3N3defDgAY8fP051e5qzrcLDwylZsuRb3SfG1dWV3r1707t3b0B9Vveff/7J/PnzefToEStXrqRChQpGP1CrWrUqVatW1fYlMDCQgIAAtmzZwrNnz2jdujU3b95M94JnQkICa9euTfV2q1evlg+khBBCiCxu79692v/XrFlT+3/ds6pVKpV2OsnMoDtN++PHjw1OqMpuJFsJIYQQWUOpUqVwd3cnODiYw4cP8/LlS71pzVMjd+7c2v8nd5VgfHw8z58/Bwwz17JlywD11OUHDhwwOe1l4isCs7LcuXPz5MkTgoKCklxPqVTqXSFpLmm5Su/WrVscOXIkR00pL0RWJsU+Id4RPXv2JCgoCAsLC7Zv387cuXPZvHkzCxcupFmzZjRq1Mhgm4oVK/LgwQNOnz5NZGRkqu7bV6FCBX799VdiYmI4ffp0snOvp0bJkiUpWbIknTp1omTJkkRERPDbb78le/a8s7MzzZs3p3nz5nz77bfMmzePx48fc+TIET7++ON06x/AwYMHuX//PgBff/01NWrUSHL9EydOMGfOHG7evMnRo0f58MMP07U/QgghhEgfly5dYv/+/QAUKlSIypUra5fZ2NhQqlQp/v33X44ePZpZXQTUOU7jr7/+SvdiX0afoS3ZSgghhMgaFAoF3bp1Y9asWURERLBs2bJkr7Y3xdbWFj8/P65fv86JEyeSXPfs2bPExcUB6J1QFRISor3/cdu2bU0W+l69esXVq1dN7j+rXX1WqlQpnjx5wrlz50hISDB5XBcvXiQmJsasfdHcDxHUU3iOGDEi2fV79uxJdHQ0q1atkmKfEBlEin1CvAN++ukndu7cCcCwYcOoVasWpUqV4u+//+bhw4f06NGDixcv6p0BDtC8eXO2bt1KZGQkP//8MwMGDEhxm82bN2fo0KGoVCrmzJnDunXr0vOQAPUHbMWKFePs2bOpvrlyvXr1mDdvHmCeGzNrzniytLRk9OjRyc49X79+fRYsWEB8fDyrVq2SD6SEEEKILCgqKoquXbtqp34aPHgwVlb6f1J98skn/Pvvv1y5coXdu3cneX9kc6pTpw6Ojo5EREQwf/58Onfu/FYzLSRmZ2en/X9MTAy2trbptm9jJFsJIYQQWcfAgQNZtGgRkZGRjBkzhiZNmlCiRIlkt0tISGDdunV06tRJ+1j9+vW5fv06//77LydPntTOzpSY5uo9zTYauvdLjoiIMNn2smXLkry3cuJsk9nq1avH/v37CQ4O5n//+x9NmzY1ul5G3BcvMDCQe/fuAdC1a1fat2+f7DYbNmzgzz//ZOPGjcyfP1/v+RVCmIfxUwKEEDnG1atXGTJkCACVKlVi/PjxgHrKg4CAABQKBU+ePNFOkamrc+fOeHl5ATBq1CgOHTpksp0HDx7ofV+8eHHatm0LwPr165k9e3aS/bx9+7ZBQfCPP/4gNDTU5Db379/nypUrgP69/m7dupVkXwH27Nmj/X/iM90DAwNRKBQoFAq6d++e5H6MiYiIYMuWLYB6ConkPowC9VRbtWvXBuC3337LEsFSCCGEEG/8999/1KxZU3u/vtq1a9O3b1+D9b799lucnJwA6NGjB//++2+S+92xYwcXLlxI9/7mypWLPn36AHDmzBkGDBhg8v40cXFxPHv2LFX7L1CggPb/N2/eTHJdyVZCCCFEzuLl5aW9JUxERAS1a9dO9nOY//77j0aNGjFjxgy9x/v27au9aq137968fPnSYNs9e/bwyy+/AOrbtVSpUkW7zMPDg1y5cgGwbt06o+/5p06d4vvvv0+yf3ny5NHeRzm5bJMRunXrpj2ZasCAAUZPVD9+/DgLFy5Mdl8+Pj7aLJYWugXF1q1bp2ibNm3aABAWFsaff/6ZpnaFEKkjV/YJkQ08e/aMS5cuJbuevb097733nvb7uLg4OnXqRGRkJPb29qxZswZra2vt8vr16/Ptt98yZ84cfv/9d5YvX07Pnj21y+3s7Fi9ejUNGjQgMjKS+vXr06VLF1q2bEnBggWJiYnhypUr7Ny5k61btxoEqkWLFnH69Glu3brFd999x59//knXrl0pVaoUtra2PH/+nPPnz7Nr1y4OHDhAq1at6NChg3b7OXPm0KlTJ5o2bUrdunUpWbIkrq6uvHjxgtOnTzN//nyioqIA+PLLL7Xb3bt3jzp16vD+++/TqlUrKleurC1a3r9/nw0bNvDbb78BUL58+XSdYhRgy5YtvHr1Ckh5CNKsu3//fkJDQ9m6dau2WJpYSl4LAN7e3jg7O+s9du7cOc6dO2d0/SdPnhAQEKD3WJs2bbQfWAohhBA5WeK8FRERwYsXL7hw4QL79+9n79692mJZtWrV2LRpk16u0siXLx8rV66kTZs2PH78mMqVK9O9e3caN25MwYIFiYuL48GDB5w8eZJNmzZx69Yttm3bRtmyZdP9mCZOnMjevXu5ePEiCxYs4Pjx4/Tp04cyZcpgY2PDgwcPOHz4MOvWrWPSpEmpKsTpTqM5cOBARo0aRYECBbQfIvn4+Bhc9ZhWkq2EEEKIrKdHjx48ePCAMWPG8OzZM/z9/WnQoAEtWrSgZMmS5MqVi5CQEK5du8aOHTvYtWsXSqWScuXK6e2nTJkyfPfdd8yYMYPz589TsWJFhg0bRoUKFYiIiGDbtm3MmzcPpVKJjY0NS5Ys0dvewsKCTp06sXDhQi5cuEDNmjUZNGgQfn5+hIWFsXPnTn766SecnJzw9PTk2rVrRo/HysqKKlWqcPToUZYvX06FChUoX768Nu+5ubnp3SvQ3Dw9PRk7diwjR47kxo0bVKpUieHDh1O5cmViYmLYvXs3s2bNwtPTk4iICIKCgswyFWlkZCSbN28G1BcR+Pj4pGi75s2bY2NjQ2xsLKtWraJdu3ZG13v48GGKspiLiwuFCxfWe+zVq1ds2rRJ77EbN25o/79p0ya9WczKly9P+fLlU9R/IbIllRAiSzp48KAKSNVXuXLl9PYxYsQI7bKFCxcabSc6OlpVunRpFaBycnJS3bx502CdXbt2qXLnzp1s+8Y8fvxYVatWrRT1v0ePHnrb1q5dO9ltLCwsVBMnTkzTc1eiRAnVrVu3knzuu3XrlsQoGVe/fn0VoFIoFKqHDx+meLsnT56oLCwsVICqWbNmqX4uEn/9/vvvBm2MHTs2Vfu4fft2qo9fCCGEyC5Sm7c8PDxUkydPVsXFxSW7761bt6rc3NxSlGUOHDhgsH23bt1UgMrb2ztF/T948KDRdYKCglQfffRRsv1YsWJFqvf92WefpShDSLaSbCWEECLn2rx5s8rHxydF74OlSpVS7d6922AfSqVS1a9fvyS3dXV1NbqtSqVShYaGqsqXL29yWzc3N9WhQ4e07/+1a9c2up/t27erFAqF0X2MHTtWu15yOSklOU6lUqlWrFiRZEZISEhQ9enTx+Rxubu7q06dOqUqVKiQClB9+eWXRtvx9vbWbpNaa9as0W47derUVG3bpEkTFaCysrJSPXnyRPu47nGn9KtFixYG+799+3aq9qE7hkLkRDKNpxA51JEjR5g+fToATZo0oV+/fkbXs7W1Ze3atdja2vLq1Ss6d+6MUqnUW6dhw4bcunWLKVOmUKNGDfLkyYOlpSUuLi5UrFiRAQMGcPLkSaP7z58/P3/99Rfbt2+nU6dOFClSBAcHB6ytrfHw8KBGjRp89913HDp0iOXLl+ttu27dOn7++Wc6duxI+fLlyZ8/P1ZWVjg5OVGqVCn69u3L2bNnGT16tN52tWrVIjAwkBEjRlCnTh2KFi2Ks7Mz1tbW5MuXjwYNGrB48WLOnTtnMIXn23r48CEHDhwAoHr16nh6eqZ423z58mnvJ7Nr1y6CgoLStW9CCCGESBkLCwtcXV0pXLgwtWrVYsCAAWzevJkHDx4wcuTIFF2x1rx5c27fvs3MmTOpW7cu+fLlw9raGnt7e3x9fWnWrBmzZ8/mzp071KlTx2zH4u7uzqFDh9iyZQtt2rShYMGC2NraYmdnR5EiRWjbti1r167Vm10hpdasWcMPP/xA1apVcXV11U7BlZ4kWwkhhBBZ26effsrVq1dZu3YtnTt3pnjx4uTOnRsrKyvc3NyoWLEi/fr148CBA1y8eJEGDRoY7MPCwoKFCxfy119/0alTJwoXLoytrS0uLi6UL1+ekSNHcv36daPbAri6unL06FEmTpxImTJlsLOzw8nJiZIlSzJ48GDOnz/PRx99lOyxNG3alP3799OiRQs8PT2NzuKQkRQKBYsXL+bPP/+kQYMGuLm5YWdnR9GiRfnmm284e/YslStX1k596urqmu59SMsUnonXj4+P59dff03XfgkhDClUKhM3bhBCCCGEEEIIIYQQQgghRJb04MEDChUqBMCyZcv4/PPPM7lHQojMIlf2CSGEEEIIIYQQQgghhBDZzLp167T/r1atWib2RAiR2eTKPiGEEEIIIYQQQgghhBAiC4mIiODly5cUKFDA6PKzZ89Su3ZtwsPDqVSpEqdPn87gHgohspLkbzYhhBBCCCGEEEIIIYQQQogMExQURMmSJWnZsiWNGjWiePHi2Nra8ujRI3bt2sUvv/xCVFQUCoWC2bNnZ3Z3hRCZTK7sE0IIIYQQQgghhBBCCCGykDt37uDr65vkOjY2NixdupSuXbtmUK+EEFmVFPuEEEIIIYQQQgghhBBCiCwkLi6O33//nV27dnHq1CmCgoIICQnBwcEBHx8f6tevz9dff423t3dmd1UIkQVIsU8IIYQQQgghhBBCCCGEEEKIbOqdu2dfQkICjx49wtnZGYVCkdndEUIIIcRbUKlUhIeH4+npiYWFRWZ3550nOUsIIYTIOSRnZS2Ss4QQQoicwVwZ650r9j169IhChQpldjeEEEIIkY7u379PwYIFM7sb7zzJWUIIIUTOIzkra5CcJYQQQuQs6Z2x3rlin7OzMwBdyhaklre7WdpYe/4eh+6F0KJYfpoWzw/A7RcRzD5+Ay8XewZ88B521pbp3kZyouOUzDlxk4cvoxhUvSi+uR3TvY2U2HH1MX9ee0qLYvloWryA2drRlbiN9B4PY20kJ7XjkZY2UiKnjseJByH8cvYeP//8M+3atUuHXhvXrl07NmzYYLb9SxvvZhsZ1U5OaOPly5cUKlRI+/4uMpdmHOY2LEP5Aq5maWPPzWdMPnyNn5uVp7i7k7QhbWSrdnJKG1eDX9F7+zkOHTpE+fLlzdIG5Iz3KWlD2sjObUjOylokZ0kb0kbObwMkZ0kb0sa70Ia5MtY7V+zTTHVQy9udLyr6mKWNs49DOXQvhMpeufmiog8nH75g8J5LVPLMza5O1XG2tU73NpITHhNHo7XHCY6M5a8eH1HVK3e6t5ESk/66yp/XnjKxTklGf1TcbO0kpttGuXyu6T4eidtI7jjSMh6pbSMlcvJ4OFhb8svZezg4OODi4pIu+zTG2trarPuXNt7NNjKqnZzSBiBTGWURmnEoX8CVj8x0UtX9l1EAVPLMRcUCuaQNaSNbtZNT2nCyUf8Z6eTkJDlL2pA2cnAbGpKzsgbJWdKGtJHz2wDJWdKGtPGutAHpn7Fk0nUzO/nwBR+vPkrpvC7pWshIDU1h6dKzl+zt8mGKC0vpbdJfV/n+4GW9wlJGe/AySsbjNRkPIYQQQgghhBBCCCGEECL7k2KfGWWFQoYUlvQFnLsr44GMhxBCCCGEEEIIIYQQQgiRU0ixz4wyu5AhhaU3nkbEAJDX0VbGQ8ZDCCGEEEIIIYQQQgghhMgxpNhnBlmhkCGFpTdOPnzBtquPAehWrrCMh4yHEEIIIYQQQgghhBBCCJFjSLEvnWWFQoYUlt7Q3DPRzd4GAFsrywzvg4zHG1lhPIQQQgghhBBCCCGEEEKInESKfekoKxQypLD0hmY8Sud1oVmx/JnSBxmPN7LCeAghhBBCCCGEEEIIIYQQOY0U+9JJVihkSGHpDd3x2NWpOjaWGf9Sl/F4IyuMhxBCCCGEEEIIIYQQQgiRE1lldgeyExUQZ+dCgqUVKBTaxy88fUnPQw+oW6EUy5qXZ+ax63iHKHD0KEC0Ux6z9MU1nyfe3iptGxGx8fTafY4wu9zs/boeZfO5EJ3ObaTEolO3WXYrktmf1aVvFd8U9SEt7SQl8XhY21jhmu9FurZhjO5xPLdxTffxSNxGSo7jXR4PmzyxeHt7Y2NjQ3R0ejz7xuXJk8es+5c23s02MqqdnNBGbKz6Zz02NjZDxuVdZ2lpibW1eaYoN5WzEtP8fle5ehDt5GKWvkgb714bGdVOTmlD5WqtbkOlkpwlbUgbObgNyVkZy5w5K87GAaW1XZIZC3LO+5S0IW1k1zZAcpa0IW28C22kJGOlJRcoVCqVKj06mF28fPkSV1dXfm5eni8q+qRom1g7Z575ViHSwxelnZNeOIpRJvA0IgYbCwvyOtpioYDnUXG8io0nl501rrbmqafqtuFsY8WziBhiExLI52iLbTpdNZXa4wiLiSc0Oi7Vx52ez5ex8UjvNkzRtOFqa0V0fEK6j4duGyk5jnd9PCLilARHxuLu7o6jo6NZ2gB49uwZefPmNdv+pY13s42MaicntJGQkMD9+/cpVKgQFhZy1XBGsLW1xd3dHRcXwz9wNTnrUPeafOTtnqL9JZWzjNH8fi/gZIeNZdLrppW08e61kVHt5JQ2YpUqHr+KpkCBAtjY2JilDcgZ71PShrSRnduQnJXx0jtnvXT3Jdi3MjG58oNF8reaySnvU9KGtJFd2wDJWdKGtPEutJHSjJVULjBGruxLRqRzXu5XaI6lW35yOzlgb2WBpUKBQgGRcQncCY2kkLMF3q72WL6uZNi8jOZFdBx5HW3I62hrln5p2vBwsCEiTomrbQI+uRxwsE6/AJ6a43gWEUNERCzv50v9MafX82VqPNKzjaRo2rC2UGCrIt3HQ7eN5I5DxgNeRMVBeDReXl7kzm2+KVQVCgU+Pj5m27+08W62kVHt5IQ2lEolUVFR+Pj4YGmZ8ffKfZeoVCri4uIICwvj4cOHACkOnKYklbNM0fx+L5TbMd3fZ6WNd7eNjGonp7QRGZdA3IsIChUqhIODg1nagJzxPiVtSBvZuQ3JWRnHHDnrpbsvDys0w8nNA3c7a6wtks5YkHPep6QNaSO7tgGSs6QNaeNdaCO5jJXWXCDFvmQE+1bG2sML79xOesWKiFgld0MjcbC2xM/NUW+Z1ev/W1lYYGdlnkCsaSMsJg5lAhTP44SjTfq2ldLjeBQezbOIWDyd7fB0tjNbO0lJajzSq43kaNqMT1BRwt053ccDUnYcMh6aNpQA2NjYYGeX+uchpSwtLc26f2nj3Wwjo9rJCW0oleqfdTs7O/kQKgPY29vj7OzMgwcPCA4OfusPoUzlrKTYWKrH3NbKfO8h0sa710ZGtZNT2lC+nhvG1tZWcpa0IW3k4DYkZ2Usc+QsJzcPCrrYoUiuyvdaTnmfkjakjezaBkjOkjakjXehjZRkrLTkApmHIQnx1vZE5H0PN0c7g0LfteevsDdRyMgImrlX45Qqipmh0JdSj8KjeRQenebCUnrICuOhTFARFh0HgLuDjYxHFhiPJxFyTwkhhDAHhUKBq6srMTExxMXFpXk/pnKWEEIIIcS7Kr1yVpyNAzG58uNqZ53iQp8QQgghspbU5gIp9iUh3sYeLC317rmWVQoZUlhSyyrjcT0kgvgEdQnWOh3v0ZcaMh5qmvGIVSZkeNtCCPGu0NwkWnM2WloYy1lCCCGEEO+69MhZSms7sLDEWk6oEkIIIbK11OQC+XQlKa/PftKcBJWVChlSWMpa4xEVp8TVzjrD29eQ8VDTHY8CTpnzPAghxLsgXc4QT5SzhBBCCCGE5CwhhBBCvJGaXCDFvhTKaoUMKSxlrfEolscp086Yk/FQSzwecqWIEEIIIYQQQgghhBBCiHeBfBqeApFxCVmukCGFpaw1HjKVqoyHEEIIIYQQQgghhBBCCJEZpNiXjBhlAndCI6WQgRSWNGQ83pDxEEIIIYQQQgghhBBCCCEyl1VmdyAru/D0JS8iYijkbJF0IePnIXrfer/+Si+WQIlEj711G71npGp1KSypZZXCUnhsPOEx8TIeWWQ8hBBCmFGinJXn9Zc5vVUbqcxYQgghhBCZRnKWEEIIkWPIlX0mnHz4gp5//oONhQXervaZUsjIKsJj45Mt9Pl84I/Cyy/FX+NmzUtVH6SwpE8KfVlrPN5FCoUCHx8fg8fHjh2LQqGgTJkyxMbGGt1WpVJRr149FAoFn3/+eara9fHxQaFQcOfOHaN9qlOnTqr2J4QQWZ25M5YQImvJqhnLWJ+EECK7k5wlxLtFcpbI6eTKPiNOPnzBx6uPUrdCKfI62r7ThT5IXWHpwyqVKOpT2OTyXYGHeRoUnKr2pbD0RmScEgBnWysp9GWB8RCGRo8ezdatWzl37hxjx45l6tSpBuvMnz+fAwcO4O3tzY8//pgJvRRCiOzHHBlLCJF9SMYSQgjzkZwlxLtNcpbIKaTYl4im0Fc6rwvLmpfn2Ttc50tLYalXh7Z0b9fa5HL/Np1SFZCksPTGo/BoIjRjYpM5P7oyHiI51tbWrFq1isqVKzNjxgxatGhBtWrVtMuvX7/OiBEjUCgULF++HBcXl0zsrRBCZB/pnbGEENlLchnrzp07krGEECKNJGcJ8W6TnCVyCpnGU4duoW9Xp+o4ZlJBJSuQwpJaViksae6Z6GideYUtGQ+RUmXKlGHcuHEolUq6detGVFQUgPb7yMhI+vfvT926dTO5p0IIIYQQ2UdSGWvYsGGSsYQQQggh0khylsgJpNj3WuJCn7OtdWZ3KdNkZmEp8NgJ7VzoTr4lqFi5MiXLVcCqUDHt48ZcuXGTHgOH4V21Nra+7+NWqjL1PuvKb1t3Gl1/3Kx5JudbD9iwGYWXH92+HWpQWLpz/wEKLz98PvA32O55SAjr16+nS++++Farg/17pXEpXp7KjVsxfeESoqNjkjz27gOGmpwX3qtEGX6YPBGHRGOi2SZgw+Yk951SARs241OqHFWqVOHTzt20jycu9DXq2F3bt8RtJ9enO/cf4FOqHJ988onR5abGcv2fOwzGIyEhgfZ9B6Dw8qNj/4EkJCTo7evnn3/G3d2dcePG6T2ekJBAx44dUSgUdOjQwWA7gDNnztCpUycKFy6Mra0tbm5uNGzYkJ07jb+mAOLj41m+fDn169fH3d0dW1tbChYsSP369Zk/f752PYVCkeKv7t27a7fz9/c3WO7s7EyJEiUYOHAg9+7dM+hTUFAQ8+bNo0mTJvj6+mJvb4+LiwuVK1dm+vTpREdHmzyetzF06FCqVq3KtWvXGDlyJADLli3j+PHjFC1alOnTp5vc9r///qNt27a4u7tjb29P6dKlmTlzJkql0ix9FUKId4FuxjL1ZYw5Mlb3AUMNliWVsYKfqzPWp917p3vGMtUfc2QshZcf7n6l6N27t8n1Pm7f7a0ylsLLjwr+HxtdnpqxTC5jTf5xPlWqVGHy5MkG20nGyviMNWPGDM6ePSsZSwghMonkrMzPWe5+pahSpQoNPutscr23zVnufqVS/VmW5CzJWZKzREZ6dy9d0yGFvjc0hT5PZzvilAnaq/syWp48eaj1YQ1cbKxQvL6AbOXG342uu2PfQdr0+Zro6BiKv1eETxs34FlwCIf+PsmBo8fZfegwY77/PtV9eBkbn6oryP46eoxZs2aRP19eihfxoVrFcgQ9f8GJs+cZPmUmf+7ez8GNq7G1tU1yP7pzxUfGKbl2+y7nz583KPSZ24nT/3Du0n/4FSuuV+i7cv0G+w4fM0ubyY1li08+Ye3cH7TjYWFhwep5M4iIjGTdH9txcXJi8fSJybbTt29f1q1bR7NmzVi9ejUWFvrnPcydO5dBgwaRkJBA+fLl+eCDD3jy5AmBgYHs2bOH8ePHM2bMGL1twsLCaNasGUeOHMHa2poaNWrg6enJkydPuHDhAvv37+frr78GoFu3bnrbvnr1is2bN+Po6EibNm30ltWsWdOg/w0bNiR//vwAhIaGcvjwYebMmcPatWu5cOGCdhnA7t27+fbbb/Hy8qJo0aJUq1aNoKAgTpw4wfDhw/nzzz85ePBgss9ZallaWrJy5UoqVKjA3Llz8fPzY968eVhYWLBy5UocHByMbnfkyBEaNWpEREQERYoU4eOPPyY4OJiRI0fy999/p3s/hRDiXZPPw51G/rX0HnubjPXDxPFm7/OBI0eZNWsWnvnz4efrnS4ZC+DGnXscPXXG3N03cPbsWS78e5nq5UvrPf7v1euZlrF2HzrML7Pe3JtEMlb6ZazkXpepZSxjjR07VjKWEEJkAZKzMj9nHTt5mnOX/qN86ff1HpecJTkrJSRniewuU4t948aNY/x4/Teu4sWLc+XKFaPrL126lFWrVnHp0iUAKlWqxJQpU6hatWqa+yCFvjd0C32eznbcDY3M8D68iokD4D1fXzYtnKU3VaSxgPQ0KJhOX39HdHQMk4YOZOQ3fVG8rg6ePn+RBh17sHz9JvxKvE/9ps1T1IcElfpfZYIqVVNFlnn/fZYvX07DGlX07nH4IjSM9v0GsOfQEeYtX8WQvl8Yb/d1w5q54jXjcXjvLgadP5+iPqSXihUrcv78eWYvW8nAYSP1pu6c98tKLC0tqVW1MoHHT6Rbm6bGUpmg4vfDJ/n8y378uXUrv9asyhed2mm3s7a2ZuOS+TTp0osla9bj4uzED6OHmWxnyJAh/Pzzz9StW5eNGzdiZaX/a3D37t0MHDiQPHnysHnzZj766CPtsosXL9KkSRPGjh1L7dq1qV27tnZZz549OXLkCBUqVGDLli34+Phol8XHx7Njxw7t9wEBAXpt3rlzh82bN+Pu7m6wDNT3udM1fPhw/P39td9HRERQu3Ztzpw5w6ZNm/jqq6+0yypVqsTx48f15hoHePHiBe3bt2fPnj3MmzePli1bmnrK0qxEiRJMmTKFQYMG0b9/f0D9/NeoUcPo+tHR0XTs2JGIiAgGDBjAzJkzsbRU//xduHCBevXqERws90kQIqWyQs4SWYfmjNKSRd8jYM4PesveJmOVLl2aWg2bmrXv5UupM9ZndWvozTyR1oylEbBhc4Z/CFWjahVOnPmHRQGrqT5H/8zgjM5YoD+W1SqWf+cyVmLmyFhDhgxJtt3UMpaxevXqJRlLiAwiGUskJjkra+QszWdZ85avYvnsaXrLJGdJzkopyVkiO8v0aTxLlSrF48ePtV9HjhwxuW5gYCAdOnTg4MGDHD9+nEKFCtGgQQMePnyYpral0PdG4kJfZohTJnAnJBwAF3vbFN0TbunaDYS9DKdS2dKM+raf9g0VoHK5Moz6ui8AP68ISFEflAkqnkaopyhwsbVK1T3hir5XhDJlyhg8njuXK/Mnqs+c2bh9l8nto2PU7VpbW+mNR267jH9dFihQgPp1avPb1h1Ev3qpLfSFvAhlzZatfNKgLt4FPdO1TWNjqblH33vFSjD8qy8BmLFomcG2dna2bA1YzAcVyjFj0TImz/3JaBuTJk1i5syZVKtWjT///BM7O8PX+tixY1GpVCxevFgvHIF6/u7Zs2cD6E1lcP78ebZs2YKdnR3btm3TC0cAVlZWtGjRIlXPR2o4OjpSvXp1AINpHEqWLGkQjgBy586tPYaNGzearW/9+vXD1dUVgLx58zJxoumz1TZv3sz9+/cpVKgQP/zwgzYcAZQtW5ZRo0aZrZ9C5FSZmbNE1hIXHw+oc0ZKpDRjLVi2Iv07m0ixou+lW8bKbIW9PKlVqxYbt+4gOCRE+3hGZywN3bHMihnr8uXLkrFM0M1Ynp6eDBgwwOS6krGESH+SsYQuyVlZI2cVKFCAJvXrsu7P7ZKzdEjOSj3JWSK7yvTfxFZWVnqX6SZl7dq1et8vW7aMzZs3s3//frp27Zqqdm+/iGDwnktS6CNrFPoAgiNjUcWrr+yzs7VJ0TaBx08C0K1tK6PLP+/QlsETp3H77j2CgoLwdC5kcl+awlKsUv0GY5WCYqPBPpRKDh//m2v/XuLxsyCioqNRqVSoXl8tePXmLZPbRkSqr6SMxipLjEerNp+xe98B9u/cRvVv+wGw9NcNREZF8U3PbgT8lj5zq2skHkvNeGimUvXt3I6RU37g+u07PHryFM/8+fS2d3J05H9rfuG9D+sx+ocfsbKz11s+f/58vv/+e3Lnzs3OnTtxcnIy6ENwcDAnT57E3t6e5s2NXwmqOQvp2LE30z/s2qUOvk2bNsXLyyttT0AahYWF8b///Y9Vq1bh4OBgtN9KpZLAwECOHTvG48ePiYqKev26VL8wr169arb+TZ48mbCwMACePXvGoUOHaNCggdF1AwMDAfjss8+wtjb8ndytWzcGDhxotr4KkRNlVs4SWU/U6/ta2Nqkb8a6decuQUFBlPRwTp+OmqBUKjl49Dhnz55Lc8ZysLc3uU5Gat++PYGBgfy8ZgMjv1F/AJSRGSsxzVimNGO5uuiPtTkz1uHDhwHJWMboZqxHjx5x8uRJSpUqZXRdyVhCpD/JWEKX5Kysk7P6du/Mtt17JWclIjkrdSRniewq04t9169fx9PTEzs7O6pXr87UqVMpXLhw8hsCkZGRxMXF4ebmZnKdmJgYYmLe3Ez25cuXAPxw5DqeLnbU9XFn7gnjb1qOHgWoXjmeZxExWFmYvggyfc8JyRiPwtVBJDw2nvCYeJxtrfQeB/X94jTr6D5ujPL1ZfsvouOSXDc2Xl1IC4+J1+sDgIVCQfQr9ZV9to5OJvej+/jdR48BcHHPZ3x9CxtyuboSGhbGs2fPCC9YgEfh0YTHxOv1Q6WC51ExxClV2mkLIuOUBvt8+ipGe7yJl/134zZfDRzErVumQ9DL8Fcmj+vOoyfqfdvY643Hi+g4bX8Sj4nm+x6DhtNj0HBAPb+0q4sLpUuWoEPbT/mkcSOT/UlM0xZA1cqVKVm8GD+t+lX7B8i8FWsoWbwYxcqUI3Ltb9ptjL1udPtkiu5rS3csH76M1o6Hu4MNYTFxemN59uY9cHQ12N/mHXt4Eap+Mx4xcSp+fuqbYG/evJl///1X3d8XL9iwYQNt27Y12P7s2bOoVCqioqKSnfc7KCiI58+fo1QquXv3LqC+1D8j1KlTx+CxSpUqsWLFCnx9ffUev379Oq1atdIevzGa34vp7fTp00ydOhVra2t69+7NwoUL6dWrFxcvXtSeIaXrwYMHAAbHoJE7d25cXV21gUsIkbyMyFmxsbHa7zW/T64Gv8LJJumYqXK1xkqpIjIuAaXK9HqOKept1pHS+x3HvD65KDqZ9TV/zMYkcy9lTRaL1VlPt41Hweqzm51dXEzuR/fx+4/VuaSAp6fR9a0dHHHL5UpIqDpjRft5a9tP3A8NTX/iE1QGyzT5QaUyXHb55m269fsm2Yxl6rjuP34KgIOz/rEn7o/u8xX/+vlMnLFyubpQrlRJurVrS+tmjU32JzHNvpUqFZUqVaJUCXXG6v9FTwAWBKyldIniVKlSmWXrN2m30e2vsT4Zo/lgTvPaSs1YXr//CNc87gbrbNlzQJuxvvl+IqVLFAdg27Ztehnr999/p127dgbb//fff6nKWBEREQDaq14kY+kzlrFGjRrFp59+KhlLiAxi7owFkrOMkZyVPXNW4vEwV84C9WdZpUsUN1vO0j0O9fFLzkopyVmSs4T5ZWqx74MPPiAgIIDixYvz+PFjxo8fT61atbh06RLOzsmftTJs2DA8PT2pX7++yXWmTp1qMJc6gBK4/zKaSYevmdzW2zuSkj3isIqINbkOZO9in0Z4TLy2AJZYUss0lK8DUmgyxT7NG7CxAqJSpeLGg0cAOLrmTlGxT/NmHBIVa3J93VyrORZNgdFYPzTLjBb7Xk/xqVQZFvu+HTyEW7duUbNmTbp27Yqvry9OTk5YWVkRFxenndvZWD8TEhK4e1/95uDp6an3nIfqFPs0wUGzXBPYypUrR8GCBQGIjY3lzp07/HXsOH8dO865Kzfo1auX0ecmsVCdYp9SpaLNZ+2YOHEiv25TX7n26PETevT8XK/QmHjMjfVJV1RUFAcOHNA7DtAfy8ev3uwvKPLNz59mLIMjDcc7KCiI0ZOmYW9vz48//sjYsWO5dk39833p0iXy58/P2LFjGTRoEMOGDcPb2xsPDw+9fWiCjoODg9EQktjt27cBdegCCAkJMbi/XkpogkF8fLzR7SMjI7l+/TpRUVEA1KpVC3d3dUCMjo7mypUrnDlzhs8++4zFixfj6fnmt1Lz5s25evUqderUoVevXhQtWhQnJyesra2JjY2ldOnSem2khqn+gvp12KFDB+Lj4/n222/p168fJ0+e5NSpU/Tq1YspU6YYbKMJnM+ePTO5X83UDrdv3yYuLs7o8rSMQWqk5bnKqu3khDY0f6ALQxmRs2bMmMHkyZMNHu+9/Vyy+/f29mZx3Z7EvYhIcr3Kye4pa7kcFJ6q9W8nc4/kuNfvj4/Co5Pct+b9Nzgy1mC926GRXLh1HwBrJ1eT+9F9XPNh0v2wKJPr6354qDmO4Nfv28b6oXnvDo2OM1wWon4dxCWoDJb1/HpgijKWsX4mJCRw65762OMccumtY6o/t0MjtZnIWMY6cPgYBw4f49jFKynOWJq2NOP0aVt1xlq0cRsADx49pluPnlwOCte2nXjMjfVJlyZjaXK5ZkxSM5Z3QiNxTLROUFAQg8ZO0stYFy+r70uVOGMNHDiQAgUKGGQszQeIKc1Yly9fVvf99Yfc5spYoH6fMmfGun79eqrfC1Obsc6cOcPff/9t1owVHx+fI3KDtJE6krOMy4iMBZKzjJGclT1zlub/muMwV87StNGq7Wdmy1m6xwGSs0ByluQsaSMtzJWxMrXY17jxm7M0ypYtywcffIC3tze//fYbn3/+eZLbTps2jfXr1xMYGGh0rmKNESNGMGjQIO33L1++pFChQnxYKDdl8xlW43W55vPEycaK3HbWaZrSMStztLYkIk6Jo7UlDjo34NUVHhtPdHxCkutoWLyek9rZxgoPB9PTFlhbqq+QdLC2JJedNWHRcSgUkKBS9+nhvTsAlC9ZzOR+dB/3yp+PO3fuEBb0xOj6L8PDtWdOeHh4aI9FczwO1pZYWyiIT1DhameNtYUC59dnyNlZWRrsM9reWnu8ustu3LrN9evXcXNz46c5s3Gx1z+T5tqNe0b7r3H+8jUiIiLIkycPZYronw2o2x87Kwu9MbGzUh9H57atadtKfx7ttb9tZNT4SaxetYrBfb8weim5rrgEFbqvckdrSzq1as7CBQvYslF9FV/uXLno8ukn2NnZaNtOPOZJ9Qng/sOH2oCk+9rSjOWTR49QgHY8NHTHskRhT4PnccjUKbx8+ZKJ34+iUa3qeC1ZRLeevQgJCSGvex7+XL2c93y8CR/2HUPHTWL29GmsX7ZIbx92fj4AKBQKxowZQx4HW3Ilcc/EV7HxBEXGaq8gfPbsmfb/qaEZGysrK6PbX79+HT8/P+xfT4sxYcIEvZsag3p+9gkTJjBjxgy2b98OwJUrV7h69Sp58+Zlz549Bjdw1j1DysHBIdV9N9VfUN88+saNG1SqVImZM2diZWXF9OnT+eSTT9i0aROff/45jRrpX3VarFgxDh8+TGRkpNH9hoaGEh6uDsa+vr4G88kDWFhYpGkMUkMzHuaWEe3khDaUSiVnz5412/6zs4zIWUOGDGHo0KHa7zU5a1StYslON2STJx/uDjZ4OdthY5npt5FON765HFK0nuY9xNPZDtskjl+TQT0cbJLct+b9N5edtXY93TaePlBnkWplSprcj+7jhT3zc+fOHaJDgoyunzhjaY5D876p2w8NzXu3s42VwTLLV/ba49Vddv3mLW3GWrt4Po6Jpnq/cv2G0f7rLo+IiCCvex6qlyiSZH90ny9N/urVoS0dWutPyxSw7jcGjxnPmtWrGPdt32Qzlm5bmnHq3qYFPy1YwJ+b1fcaccudiy/bf4q93Zu2E495Un0CuPfgIRUPHNDmcs2YpGYsK71XmAKJ1hkxeCovX77kh3Hf06ZeLcoXWU6zDl0Ifq7OWLvWBVDU14eo4CEM+n4Cc2dMZ/OKJXr7yPW++rm3tFCwbv4MLJKYNUUjOk6pnSLPXBkL1O9T5sxYfn5+qX4vTG3GWrduHaVLlzZrxrKyskpTXkytnJBNclIbkrOMy4iMBZKzjJGclT1zloeDjd54mCtngTr/9GnXymw5S9OG5nUlOUtyluQsaSMtzJWxMn0aT125cuWiWLFi3LhxI8n1Zs6cybRp09i3bx9ly5ZNcl1bW1ujlzB3K+/NFxV9ktw22ikPt+2t8XKx076x5xQRccpk7wl3NzSS6PhYXO2sk713nCYguTvY4J1kQHpT7AuPicfRxgo7KwuCI2NxsISTp04D0NK/hsn96D7eqFZ1jv59gm3bdzDuqy8M1v3xtw0A+HoXJm/evNpj0QSk+AQVCSoo4e6Mo42l9hgAnGwsDfqgCn8TkHSXPVSqr/hzd3cnj5O9wfO1eO8eo/0H9dlEO/bsBaBpnY8Mluv2x9nGSm9MnHT6nHi7AV0+Y9T4SURGReGYEEOBXKaL2xGxSq49f4Wtzutc3YYzX3Zuz5T56qLYsP69KZ7fTdsfY20n1Sd48xy+aUP9XDWoqR7Lrdu3M6Z/L+14aGjG0s/Xhw+K618av3TtBgIPH6F+rRqM6tNNfUNkv/f49NNPWbZsGV926UDV99W/oAf36srufQfYd+gvfv/jD3p1/Ey7nzy+BSlZvBiXr17j6rnTdGlm/N5yuoIiY6lbty4TJ05k586dPHr0SO9spIzSrl07JkyYwKFDh7SPhby+IbWnp6dBOAJYs2aNWfpy9OhRZs+eja2tLStXrtS2XbBgQWbMmEHfvn3p1asX//77r94UCLVr1+aXX37ht99+Y8qUKQahftWqVWbprxDvCnPlLGMfVDV4Ly8feRtOUaMr2ikPt60tyW1vnaNyVp4kTnpKLChS/Z7umMRJVZrCjZONVZL7trZUr+dgbam3XtDrjHXshPp+Io1qfmByP7qPf/xhNf469jeb/tzKiL49DdZdtWYrAEV8vLUZyzHRCVWJ29FMOWZrZWGwLFznhCrdZVej1WdOazJW4udq+86dRvuvsf/AfvVx+3+Uov5oxsT2dWY19rz37diawWPGExEZhSo6gjyueQ3aTUzTluZEpnyuTvRJlLEKurlo+2Os7aT6BLrPofp7zZikdCz9fH0oXUT//tZL125g36HD1K9Vg8G9uqBQKMhTqhjdO7Rj5oJF9OzYjnLF3gNgQI/O7Ni9j90HD7Fu42a9jFW0oCdlS5bgwuUrHD5ylCb1/JN9zgCqV6/OwoULJWO9Zipj+fj4MHToUMaOHSsZS4hMYI6MBZKzjJGclT1zlpONld54mCtngSb/2JktZ71pQ/1cSc56O5KzhEhfWer0nlevXnHz5k0KFChgcp0ffviBiRMnsmvXLipXzm4TDmQdyRX6zO15ZCz21pb4uTmiAOLi4vh+8jSCnofgX/0DfAsXSnYfAF90aoeLsxP/XPyXKfMW6V0Ce/bSv0ya+xMAvXt019su4fV6ccoEiuVxMigspVax93ywtLTk5s2bHDtxSm/Ztj37+XHpCqPbPQqP5p/rd9i0UX22Ud+uHd6qH7p27g8EwNHBAXe33CbX0xT67K0tyedoWBjv160jTev507SeP/27dU63/ulSJqio26QZTo6OXLlyhbmLfzY5lkP66k/jcPfBQ76bMBUXZyd+mTVVXeh7TfP/xI8tn61ef9D4Kdx98FC77FF4NL169wFg8KgxbNuz36CvKpWKE/+cY8+hw9rHypQpQ4sWLYiKiqJFixbcu3dPb5v4+Hi2bt2a6uclNdavXw+gnRIB1GcXWVpacvHiRe0NgzW2bdvGjz/+mO79iIyMpHv37iQkJDB+/HiDGxj36dOHevXq8fDhQwYMGKC3rE2bNnh5eXHv3j1GjBihneYA1NNXTJo0Kd37K8S7RHLWuykuLo7B4yabLWN91auHWfqtoZux/jp+Qm9ZUhkL4P7Dx8xfvhrInIyVnIzIWJDysTRnxgKYNHQAoL4XTkozVvHixWnWrJlkLJLPWO3bt5eMJUQmkYz17pKcJTlLctbbkZwlRPrK1Cv7Bg8eTPPmzfH29ubRo0eMHTsWS0tLOnRQv0l07doVLy8vpk6dCsD06dMZM2YMv/76Kz4+Pjx5or4JqpOTE05OTpl2HNlRZhX6NDc1tra0wM/NEUsLBRs2b+GHuQt4/vw5XvnzsWT6xBTvL5+HO2vnz6Ltl98wavpsVm/+gwql3+dZcAiH/j5JfHw8Pdq1pkPb1tp7vykTVIREqedHvnj2DBNnztbb58XLVwE4c/Ffhk+Zobcs7KX6susXYWEMnzKDts0aU6lsadzd3OjaoT0r1qylXY9e1PqgMp758nL15m3+ufgvo7/tp32D13gUHs3QidPYsX07oWFhODo4sHj1OhavXqe33o076jfbI6fO8N3I72nfuQueZfRvnrtx+/+4clM9R3dMTCxXbt5iz6EjAAzrZ3oKT91Cn5+bI38bma3Wq0B+tq9aanT79KBMUHE9JAJHl1ysmDuTLl8NSHIsv+j05mbEKpWKHgOHE/4qgl9mTaGwV8rOQirs5cnssSPpNXgkPQeNYN+GlTx+FcOj8GjaN22AVcRovpswjU96fElRH2+Kv+eLq4szQc9DOP/fFZ4FP2dY/95UqvKBdp8rVqygSZMm/P333/j5+VGjRg08PT158uQJFy9eJCgoKN3mY542bRoBAQGAOpBcvHiRK1fUc7p///332vXc3d356quvmDt3LvXq1aNWrVp4enpy9epV/vnnH0aPHp3uoWPo0KHcuHGDatWqMXjwYIPlCoWCX375hTJlyhAQEEDbtm1p0qQJAPb29qxdu5YmTZowa9Ys/vjjD6pUqcLz588JDAykefPmnDlzhrt376Zrn4XIqSRniTUbNzNx1lyzZqyu7doavR/OvsPHiI6J0XssrRmrV+cOLFm5hmadeqQoYwEMnjCNFRs2ExIamqKM1X3AUL78vCdWefLrrZPWjJUS5s5YGikdS3NlLM0HVc0b1GPuhJRlrAa1a2n3uWjRIoKDgyVjScYSIsuQjCVAclZqctZXQ0fSumNnSnqU0VtHcpbkLMlZQqSvTC32PXjwgA4dOvD8+XM8PDyoWbMmf//9t/ZGo/fu3dObZ3jRokXExsbSpk0bvf2MHTuWcePGZWTX9fXWfxO9GxqpnYs6n6Mt10MiiIpTpssVZMbaSEnh7lF4NI/CozP1ir6IWCVRr29q7GZvjeXrOYZu372Hm5sbnT9rzai+PfHIkydV+232cV3+2fUH0xf+zP4jx9m0YzeODvbUqlqZPp3b065FU+6+DkcqFVwPiSDu9Q10j5/+h+On/zG630tXrnHpyjWjy16Gv2L6wp8p8V4RKpVV3xR2zPAhFPQtwp9bNnPmwr+cs7xMmRLFWf/THNq1aKoXkDTjcejgQUJfz90dERnJyo2/mzzOm3fucfPOPT5u3MRg2c4Dh9h5QH3Ju4WFBbldXan7YTV6dfiMdi2aGt1f4kKfZSbcl1IzHpqfjwqN61MqmbHUtWDFag4e+5smdWvTs33bVLX9eYe2bN65m/8dOMTkRctp1LK19ufjm8+7UffD6sxfvoqDx06w/+hxLBQW5M/rToXS79O0nj+tmzTU21/u3Lk5dOgQy5cv59dff+XcuXMcO3aMvHnzUr58eVq2bPm2T5fW7t27tf+3tLTE3d2d5s2b8/XXX/Pxxx/rrfvjjz9StmxZfvrpJ86cOcO5c+coU6YM69evp127dukakA4cOMBPP/2Evb09AQEBWFoa/33n7e3NzJkz6dOnD1988QX//vsvuXLlAtTTH5w4cYKxY8cSGBjI77//TpEiRZgwYQKDBw+maNGi6dZfIXK6nJqznkfGcjs0kpIezklOy/Q2MqKNjHDrzl3c3Nz4vONnDP6im1ky1vPXJ1MldvTUGY6eOmN0WWoz1qRRw8lb2Jftf2xJNmNpbNqxi5DQUCDlGatVi0/wSlTsS0vGyopSMpa60itjLVixmq97dtUuk4yVNpKxhMhackzGAslZb0FyViiQ8pzl37CxwTLJWZKzJGcJkb4UqvQqz2cTL1++xNXVlZ+bl0/ZPfs+7IKvV/5UzXGuKcQVcLIjPDY+3Qt9um2kpHiX1kJfaguKSUmqsJSe7ZiiacPGUoEygbcejzv3H+BbrQ4rZk+je7vWem0kdxy641GjfiN8CnkRuGltsm0GbNhMj0HDWbx4Mc39P3yr5yqnjUdSbaRmPFJ7vJo/Unx9fcmTymCfGlnxxrMKhQJvb2/u3LljtjZSS6FQ4OXlxYMHD8zWBmTMeGRUOzmhDc1NjStUqGAylIv0Fx0dze3bt/H19dW7l4wmZx3qXjNl95JJQ87KKR9CSRvGGctYaWnD5wP/VGesP9aswKt46Wz1fOXkNiLilFwOCqdkyZI4OjqapQ3Ieu+FaclYqW0jtTR92rt3b5Z6rqQN87chOStzSM6SNszVRmbmrMWLF9O5kX+2ea4yq42Makdy1h2ztZFakrPezTZSk7FM5QJjMvXKvpzueVSM2QoZKZVVrujL9CvIXv8bp1RRwt1ZxkPGA8ga4yGEEEIIIYQQQgghhBBCvA0p9pmBFDLeyAqFJWWCirBo9T363B1s0mU8cru6MnXEYO20BylhbDxmfj8MpxSeQVOzamVmTJqAt7d3mvoMOXc80iIr/HwIIYQQQl9aMpYxqc1YK2ZPw6+IL4Z3xRFCCCGEyBkyK2fNnzbprT7LEkIIkTJS7EtnUsh4I6sUlq6HRBCfoC7BWltaJLNFyri6ODP8qz4pXt/UeLRpZjhnuSlFfb1pm9uDIBNzticnJ49HamWFnw8hhBBCGEptxjIltRmrqK+3dsokIYQQQoicKLNyVod8BSRjCSFEBsicT9pzKClkvJGVCktRcUpc7awzvH0NGQ81GQ8hhBBCCCGEEEIIIYQQIv3JlX3pJHEhI/T11X0ZLSsUMrJaYalYHieCI2MyvA8g46Eh45HzjB07lly5cmV2N/SMHTuWuLjM+d0rhBBCCJEesmrGymp9EkIIIYRIrayYabJin0T2JcW+dCCFjDeyYmHJ0caS4EyYLUDGQ03GI2caN25cZnfBwLhx47h+/Xpmd0MIIYQQIs2yasYCJGcJIYQQIluTnCVyOpnG8y0ZK2RkhqxQyMiqhaXMIOOhJuMhhBBCCCGEEEIIIYQQQpiXXNn3FqSQ8YYUlt4Ij40nPCZexkPGQwghhBBCCCGEEEIIIYQwOyn2pZEUMt6QwpI+GQ8ZDyGEEEIIIYQQQgghhBAio8g0nmkghYw3pLD0RmScEgBnWysZDxkPIYQQQgghhBBCCCGEECJDSLEvlaSQ8YYUlt54FB5NhGZMbDLnglkZjzeywngIIYQQQgghhBBCCCGEEBlBin2pIIWMN6Sw9IbmnomO1pl3haeMxxtZYTyEEEIIIYQQQgghhBBCiIwixb4UkkLGG1JYekMzHp7Odjhk0pjIeLyRFcZDCCGEEEIIIYQQQgghhMhIUuxLASlkvCGFpTd0x0OmUpXxEEIIIYQQQgghhBBCCCEygxT7kpGggrthUVLIQApLumQ81GQ8hBBCCCGEEEIIIYQQQojMlTk3fMsmImLjeRYRg6ttAsWTKGTUnWST6JHE36cHG8Al3do4MDo2VesnV1jy+cCfuw8epnh/Ywd9zbjvvklVH6Sw9EacMkEKfa9lhfEQ+nx8fLh79y4qlUrv8c2bNzNixAjy58/Pv//+i5ubm9Hte/ToQUBAAPXq1WPv3r0oFCl/fZ84cYJixYrRrVs3AgIC3uYwhBBZhPGc5WTmVtPeRmozVnIyImMJIbIHUxlrxYoV9OzZ06wZKzAwkDp16kjGEiKHkZwlOUsIoSY5S+QEUuwzITwmjl67z/Flpfb45HLItEJGVpCawtKHVSpR1KewyeW7Ag/zNCg41X2QwpK+4MhYHG2spNCXRcZDpEzr1q05cuQIO3bsoH///qxbt85gnW3bthEQEICLiwvLly/XC0f+/v4cOnSIgwcP4u/vn4E9F0KIzGeujCWEyP569OjBqlWrCAwMlIwlhBBpIDlLCGGK5CyRnUixz4jwmDgarT1OmF1u8jna4mD9bs92mprCUq8ObenerrXJ5f5tOqU6IElh6Y24BPXZJdaWCin0ZYHxiFEmZEq72dnSpUspXbo069evp3Xr1rRp00a77Pnz53zxxRcAzJkzh8KFTf+xJYQQ7xpzZCwhRM4xadIkPvnkE8lYQgiRBpKzhBBJkZwlsot3u4plhKbQd+nZS5a3qIit5bv7FElh6Y2sUFiKiFUSFh0HQB57WxmPLDAej19FZ0rb2VmBAgVYsGABAH379uXZs2faZf369ePp06c0b96cHj16ZFYXhRBCCCGynbx580rGEkIIIYQwA8lZIrvI1ErWuHHjUCgUel8lSpRIcpuNGzdSokQJ7OzsKFOmDDt37ky3/ugW+vZ2+ZCy+VyS3yiHyqzCUuCxEyi8/LRfVoWKUbJcBSpWroyTbwkUXn5Gt7ty4yY9Bg7Du2ptbH3fx61UZep91pXfthp/fYybNQ+Flx/jZs0zWBawYTMKLz+6DxgK6BeWYkODUXj54fOBv8F2z0NCWL9+PV1698W3Wh3s3yuNS/HyVG7ciukLlxAdHZPksXcfMFTv2BN/dfh6MFavx0FzNbhmm4ANm5Pcd0oFbNiMT6lyVKlShU87d9Nbplvo++7bb7Tjkbjt5Pp05/4DfEqV45NPPjG6PLmx1B2P/I42tO87AIWXHx37DyQhQf9Ku59//hmvEmUMxjkhIYGO/Qeqn9d+Awy2Azhz4RKdvhpE4SofafvRsGMPdu4P1N7D0ibRyQDx8fEsX76c+vXr4+7ujq2tLQULFqR+/frMnz9fu17i33tJfXXv3l27nb+/v8FyZ2dnSpQowcCBA7l3757BcQQFBTFv3jyaNGmCr68v9vb2uLi4ULlyZaZPn050dMYXLDt06EDr1q0JDg6mT58+AKxfv57ffvsNNzc3fv75Z731AwMDUSgUHDp0CIA6deroPQcyn7kQxmW1nCUyV+KMZezLGHNmLF137j8wmbGCn6sz1qfde5slYxnrjzkylsLLD3e/UvTu3dvkeh+376btV1oylsLLjwr+HxtdnpqxTEhISDJjTZ+3kCpVqjD5x/kG271NxjJFMlbKSMYSImNIxhKJSc7K/Jzl7leKKlWq0OCzzibXe9uc5e5XKs2fZemSnCU5S3KWMJdMn8azVKlS7Nu3T/u9lZXpLh07dowOHTowdepUmjVrxq+//krLli35559/KF269Fv1I3Ghr6pXbt7Va3Y0hQwrCwVxCSptYSkj5fNwp3r16igTVLjYWmFloWDlxt+Nrrtj30Ha9Pma6OgYir9XhE8bN+BZcAiH/j7JgaPH2X3oMGO+/z5N/Uh8BdmdUNPr/nX0GLNmzSJ/vrwUL+JDtYrlCHr+ghNnzzN8ykz+3L2fgxtXY2trm2SbieeKv3b7LsdP/4OlhQJXO2uCI9P3htSmnDj9D+cu/Uf50u/rFfrinz/m4NFjZmkzubH8fV8g3w0fqXdF3+p5M4iIjGTdH9txcXJi8fSJybbTd/gY1v2xnWb167B63kwsLPSLdnOXBTBo/FQSEhIoX6okH1Qox5OgYAKPn2DPoSN82acP3/b7kjz2NtwNiwQgLCyMZs2aceTIEaytralRowaenp48efKECxcusH//fr7++msAunXTL6S+evWKzZs34+joqDcVAEDNmjUN+t+wYUPy588PQGhoKIcPH2bOnDmsXbuWCxcuaJcB7N69m2+//RYvLy+KFi1KtWrVCAoK4sSJEwwfPpw///yTgwcPJvucpbdFixZx+PBh/vjjD2bMmMG0adMAWLhwoV7/AfLnz0+3bt3YtWsXT58+1Tt+gKJFi2Zo34XITrJKzhJZRz4Pdxr519J77G0y1g8Tx5u9zweOHGXWrFl45s+Hn693umWsG3fucfTUGXN338DZs2e58O9lqpfX/7n69+p19h3OnIy1+9Bhfpk1Vbu+hYVFpmSs8YO/YczAr/W2CQsLo127dtk2YyX3ukxvkrGEyBiSsYQxkrMyP2cdO3la+1mWLslZkrPSg+QskdVlerHPysrK4IfBlLlz59KoUSOGDBkCwMSJE9m7dy8LFixg8eLFae6DsULfu0pT6LO3tsTOyiLDCksaSqUSAG9vH8aMGas3VaSxgPQ0KJhOX39HdHQMk4YOZOQ3fbU3QT19/iINOvZg+fpN+JV4n/pNm6eqL5FxylRNFVnm/fdZvnw5DWtU0Vv/RWgY7fsNYM+hI8xbvoohfb8wun3C62lTdeeKj4hVMjNgHcdP/4OLjRUZVXetWLEi58+fZ97yVSydOVVv6s5BP67B0tKSWlUrE3j8RLq1mdxYftyhO+s3/07FcmUZ8vmbM7Wsra3ZuGQ+Tbr0Ysma9bg4O/HD6GEm2xkycRo/r91A3Q+rs3HJfIM/ynYHHmbguCnkyZ2LzUsX8FG1qtplJy78R4vuvVm8ZAlt69XCo0IF7bKePXty5MgRKlSowJYtW/Dx8dEui4+PZ8eOHdrvE5+9c+fOHTZv3oy7u7vRM3uuX7+u9/3w4cP1buobERFB7dq1OXPmDJs2beKrr77SLqtUqRLHjx+nWrVqevt48eIF7du3Z8+ePcybN4+WLVuaesrMwsPDg8WLF/Ppp58ydKj6TL+2bdvSvn17g3VLlChBQEAA/v7+PH361OD4hRCmZYWcJbIGTcYqWfQ9Aub8oLfsbTJW6dKlqdWwqVn7Xr6UOmN9VrcGjtZvphB/m4wF6rPAM/pDqBpVq3DizD8sClhN9TnT9ZbN+2VlpmQszVhWq1ieLzq1026XkRnr4uWrNOnSi7Ez51G7WlVqV/9Au6xv375my1iJmSNjaX6nZhTJWEJkDMlYQpfkrKyRs3Q/y1o+e5reMslZkrPSg+QskdVlerHv+vXreHp6YmdnR/Xq1Zk6darJG1keP36cQYMG6T3WsGFD/vjjD5P7j4mJISbmzSXnL1++BGDH1Sc8fRVDTLySlefv8Swihu7lvdlz8xl7bqrn3XX0KED1yvE8i4jByiKpGU9tUnawWcijcMPrFuOUCQRHxmJtqcDZxoqXMeppPMNj442ur0v5+s39RXRckuvGxqsvMQ+PebPPyDiltp3HL9VXSSksLXGztyYsJo6w1/0w1vc5K9YS9jKcsqXep0fPnjx+9WasPYv48VXvL5j4w0wWLw+gftPm2mMJj4k36IfGi9fTl0bGKXG2tdJr8+nr/SsTVAbbeRb2xrVAQcPny9KW0cOHsefQEX79cyedOncx+ty8iFAf+yulet+a8dDMoBoVr9R7rh6FR2u/T+55TynNsRcoUIA8uXPx6x/b6da7L04urrg72HDnaTCrt2ylQV1/nBwdjbadXJ+e6oyR7nOV1Fg6F/SlW/cezJ07l0W/BNDpszYG+10yfy7ten7BjEXLUNja0737m3myNeM8Z9ESZi7+hYrlyrJ43hxC4lQQp9/HET/MQaVSMWXs9xQtVVbbvzhlAlbungweNJAhw4Yza9lK5s1Sn4V58uRJtmzZgp2dHatWrcLZ2Znnz5/r7bdmzZoGj2mf9xcvAPWUDMbW0fzhYIqjoyPVq1fnzJkzBtM4lCxZ0ug2uXPnZv78+RQvXpyNGzdmeLEPoFWrVpQoUYIrV65ga2vLTz/9lOF9ECKny4icFRv75sQgTc66GvwKJ5ukY6bK1RorpYrIuASUqhQeUDYQEZf072yNGKX693V0MuurVCrt+kntW5PFYnXW020jPFo9ThZWlib3o/v4wtXrCXsZToUypRjQrw+R8W/eX0q+/z5D+vdh5OQfmL90BbUaNtUeR+zrNmON9FfTn/gElcEyTX5QqQyXefv6Yu1ewOC5snF0YvrYUeyp25gN2/5Hv149jR7Xq9fT/CRY6B974v7oPl/xCSl73lNKs28vzwLUcqjFxq07mDhiCO5u6pMMQ0JDWbNlK03q18XFydFo28n16c1ziPY4IOVj+cOipXRMnLEsrVi3dCHNO/VkxqJl2Ds6MfSrL7WvN81zN33+ImYu/oWqFcrx688LUFpaGfTx+xlzUalUzJk8jkqVKuktL1K0KFNGD6dr/wH8+MsqKleuTHSckmvXrrF161bs7OzYsGEDHh4eRERE6O23fv36Bo9pn5PIyNfPicrkOpqfMWPSI2Nl9IdQIBlLiIxg7owFkrOMkZyVPXNW4vEwV84qUKAABfK4se6P7YwdNtgsOUv3OEByFkjOkpwlspJMLfZ98MEHBAQEULx4cR4/fsz48eOpVasWly5dwtnZ2WD9J0+ekC9fPr3H8uXLx5MnT0y2MXXqVMaPN7zs/c9rT/jzmv52S87c0fve2zuSkj3isIpI7uq27HdvvyQLckoVj1+9WR4eE68tjpmifP3LOzSZopPmDdhYATE8Jp7HoeGA+gyXIBNXFepuF3hMfTZOg8ZNjLZbp1ETJv4wk7v37hEUFAQeHurjiY032Y/Q6DfFxcTH/jQiRnu8xtpTKpXsP3ySCxcuEBwcTExMjN4b2/Vbt00+Py/C1W+MUSpLvXU0gSMyTql9s9b0SxM2knveU0r32Fu3/Yy9+w/w2+Yt9OjRg6DIWFauWU9UVBQtWrdl27ZtRttOrk+a51D3OCD5sWzRogVz587l9t27nL91Hw8Pj0RrWDBz9o+0atWKH+bMR2X95urK8Nh4fly2kplzF+Di4sKM2T8SlmBBWOKxDw3l3IWL2NraUrpKNaP9KFehIgAn/zmrLY5q7rdQo0YNoqOjuX37tsF2SXn06BGgPmvK1LZXrlwhKioKgAcPHmiv9gsPD+fQoUMEBARgb29P6dKlDa4EVCqVnDhxgrNnzxIUFER0dDQqlUr72rx8+TKRkZEG26VVfLx6TBPvL3EbmzZt4sqVK4D6D9lFixYZPRtKw9jxJ6aZt/3ly5fpdjyJpedzldnt5IQ2kvrj4V2XETlrxowZTJ482eDx3tvPJds/b29vFtftSdwL438YvmGf7L6ykstB4ala/3ZoZJLL417ngEfh0UnuW/P+GxwZa7De7dBIrj9Tn1gSq7IwuR/dx3f9pZ7mqF7DxkbXr1avEUz+gdt376ozFh7a9k31Q/O+GhodZ7gsJEJ7vMbaUyqVbNgTaDJjXblxy+RxPXudL5/H6u/bVH9uh0ZqM1Fyz3tK6Z7k1r59ewIDA/lh2Wp69FCfnLRy5Roio6Jo2qq1NmMlbju5PmmeQ00u17y2UjqWN27f5a//bhnJWDBt1mxatWrFhJlziFJYa7N0aHQc4xYsY+asubi4uDB15mzuRyZApH47oaGhnD5/AVtbW4qUq2K0H/n91NNtHT31j3b58ePHAXXGCgsLIywszGC7pGgyVlxcHJcvXza5njkz1vXr19PtvdBUxgL991tzZKwHDx4A5s1YkDOySU5qQ3KWcRmRsUByljGSs7JnztL8XzMe5spZAM1bt2HH3n1my1m6xwGSs0ByluQsaSMtzJWxMrXY17hxY+3/y5YtywcffIC3tze//fYbn3/+ebq0MWLECL0zqF6+fEmhQoX4sFBuboREEBIVS/PiBcjnaDjHr2s+T5xsrMhtZ42VRSbcuM6MPBzeXI0Yl6AiLDoOq9f3hNMcaXhsPNHxCThaW+Kgcym/MRavL1F3trHS23di1pbqKyQdrC2162nasVDAy9dvLHndcpncj+7jIc+DASjpW9jo+h4Oecjl6kpoWBjPnj3DxzM/DjrHo9sP0D9Tx87K0mCf0fbW2uNNvOzS9Vt8M+g7bt26ZfL4IyIiTB5XSLD6WLw88qAA7Xg4vz5jz85KPbWq7pjYWamPY8KECUyYMAEAS0tLXF1cKFWyOO1af0qzRg1N9icxZ52zA6tUroSfnx9bNm9mUB/1z+OWTZsoUawYjWpVZ+//dmq30T0mY30yRfe1ZWwsNQVOR2tLPPK9GcvYsBA8vL0M9ndk/9/asx1nzpyJn5/6JthH/vqLK9euAerfARdPn6BlM8OpMB7dfIZKpSImJoYaNWok2ffQ0FDteIQEPQWgfPGi+OZySHI7Yyxfqf/AsrJQGGz/KjaeoMhYPDw8sLdXr9eli+HVoZUqVWLFihWUKVNG7/Hr16/Tpk0b/v33X5Ptv3r1CgcHB+3z9bY000kk3t/169e1j927d087t/mAAQOYM2cOM2bMoGvXrnh7exvdr+b4CxYsaLKvJ06oi8YuLi7pdjyJ6R6HOWVEOzmhDaVSydmzZ822/+wsI3LWkCFDtNOXwJucNapWMUp6GH7YpcsmTz7cHWzwcrbDxjKpGRSyl5S+D2h+v3s622GbxPFrMqiHg02S+9a8/+ays9aup9uGdZz6j0xPdzeT+9F9PPT1leYV/HyNr5/Lgdy5XHkRqs5Y5YoUwtbSglx21gb90NC8vzvbWBksS+q98OL1m3z+1YBkM5ap4wp7nTFKeOXTWydxf3SfL00mSpyxcrm4UOb9knT+rDUtmzQy2Z/ENG3ZWVlSqVIlShYvxh9btjDm6z4A/L55E6VKFKNNvVoE7v6fdhvd/hrrkzGaXK55baVmLK0iw/DNZfg+/Nuh/XoZq2TxYgAcPfwXl6++yVjXzp6mbYtmBtv/c+9mqjKWZjweP34MQKX3k/+dYoxDtPrsfWsLhdHto+OU3A6NxMZGPT7myFh+fn7p9l5oKmNp+uPn52e2jPXw4UPAvBkLckY2yUltSM4yLiMyFkjOMkZyVvbMWR4ONnrjYa6cBdDc/0PmlzBfzgL0XleSsyRnSc6SNtLCXBkr06fx1JUrVy6KFSvGjRs3jC7Pnz8/T58+1Xvs6dOnSc6Tbmtra/RmnY9fxRAVn8CRnrVN3qMv2ikPt+2t8XKx076x5xTer9+ANPfoc7Sxws/NEUudoubd0Eii42NxtbNO9p51moDk7mCj3bcxdlbqN8Ncdtba9e68bkelgoQIdbHPr5Cnyf3oPm79ut28jrYm19d84AFoj0U3IGm2exQeTURkrHaZk42lwT5V4W8CUuJljYYO49atW9T3r82Yb/rwvl9RXJydsLa2JjY2FlvfUgb910hISODhI/Uv9twe+fTGw/11aHGyscTZxkpvTJxe389Q90bI0TGxXLlxk8PH/ubwsb8JefyQ7wd+ZdCmMe46AUmlgoG9utNv2Cj+OX5U/Rw9ecL4777GO5eDtu3EY26sT7peRUSyeeduAL3XVuKx1IyH7j0TNWNZwNnO4Hl89OQpE6b9gKODA9tX/kynrwdz7XWB7/LVqxT28iTgx+k0796H8VOn07b+R3jm1z+78onj6+fa0ZHWTRoQn6DiZUw8lhYK9T0TE9X8NeOhmebX3tqSPEkUu00J1ykiJ95efaKh/lWuujf1jYyM5MKFC5w5c4YuXbqwdetWveljNOGoWbNmDB06lPfffx8XF5c3r8sMvpkxqM9e6dmzJy9fvqRnz578+OOPhIaGEhAQwOeff87evXu1c9wLIdKPuXKWnZ1hRmjwXl4+8nZPsj/RTnm4bW1JbnvrHJWzUvM+EBSpfk93TOKkKs17n5ONVZL7trZUr+eQ6L1I00ZYiPqDCF+v/Cb3o/u45nMxF1vT7SrQz1iOiU6oSrydZsoxWysLg2VJvRd+NWgwt27donE9f0b0720yYxnrZ0JCAvde//Fc3s9Xbx1j/dE8X7avM6uxjBV49BiBR4/x6P69FGcsTVuavPP1593oN3QUfx06BMDDx08YN+hr8jjYaNtOPObG+qRLk7E0cV4zJqkZS1c7a4N1Hj15yqhJU7UZq+u3Q/jvylUA/ruin7FGTprCJ3U+NMhYLq/zoSZjJSdxH2wsFEn+nJiieT0qFCnbXjKWECItzJGxQHKWMZKzsmfOcrKx0hsPc+UszXM16IvufP7dSLPkLE0bmteV5CzJWZKzRFaSpYp9r1694ubNm0Yr/QDVq1dn//79DBgwQPvY3r17qV69eqrbevgyir96fGSy0Pcu0BT67K0tDQp9GUX5+qpCUBeNbtxUn0lUqljKKude+fNz5cYtbt27b3R52MtwQkJDAYxeKq/xKDyaR+HReDrbkft1sS81rty4yZVr13Bzc+OXBXMonNtJb/n123eT3P7y9Zu8DH9Fnjx58C3klerxSHwjZIAlq9fx5fAxTP9pKcO/6oO1dfLHlaBzBbG7gw092rRgzPSZzFu+CoA8uXPTqdUnae4TwJ37D7QBSZfuWOqOh6bQpzuWXomCDUCvIaN4ERrGT1PG4V/jA9b8soQ2XXoQEhJCPg939q1fiV8RH34YNZT+o8bxxZBR7Fi9TG8fhTwLAKBQwPxpk7nxIjLJn4+7r6du8CqgDitXbpg+Ey4tlAkqnkQYTiVq7Ka+Y8eOZcKECfTr14/t27er+3PlChcuXCBv3rz8/vvvBjdwzoipKI356aef2L9/P4UKFeLHH38E4Mcff2Tv3r3s37+fJUuW8OWXX2ZK34TIyTIyZ4ms579r6g8gMzpjva0rN27y7xV1xlq3ZAGu9vp/2Kc0Y+XzcKeQV4FUt59eGSuxzz5pxphpGZ+xjEltxtq3fiU1W3Ug6Plz8rqnPmMtnz0NiyTvh/6G5gOh9M5YpkjGEkKkhWQsITkra+Wsji0/YdjkGZKzkiE5K3UkZ4nsIFOv5R88eDCHDh3izp07HDt2jFatWmFpaUmHDh0A6Nq1KyNGjNCu/+2337Jr1y5mzZrFlStXGDduHKdPn+arr1J2poeuQdWLSqEvCxT6rodEaO9JR4KSg8f+BqBm1Uop2od/9aoArNz4u9Hly9dvAsDXuzB58+Y1uo6xwlJqhbxQX5Ho7u5u8CYEsGbLn0luv26behqBmjWqp9t4dGnTEoCIyEiCQ14ku74yQaV3Pz1rSwvs7Gzp3ak9R06e5sjJ0/Tq2BZ7+7Q9R8nRjOWy9ZuNjodmLP18fbTFNY2lazfwvwOHqF+rBl927QhAER8fPv30UwD6dG6PXxEfAPp260i9mjXYeeAQy379TW8/nvnzUbZkCcJfRRCwbU+Kfz78a9UEYOeBQzx68jTJdVNK8/OhuQF3ctq1awfAoddnrgGEhIQA4Onpafx1uWZNOvQ0dW7evMmwYcNQKBQsX74cFxf1PU9z5crF0qVLAfV0NXfu3DHYVjP1g2YedSFE0jIzZ4msJS4uzmwZq4iPt8mMlR7eNmNt3rkLgIa1a6Vbn1KbsYzJjIyV3FimNGMVe8+Xbh0+A6Bnx89SnbF2HfwrxX3XfBCenhkrtbJLxrp3755kLCEyiGQsoUtyluQskJyVVpKzhEhfmVrse/DgAR06dKB48eJ89tln5MmTh7///lt71sq9e/e08weD+oahv/76Kz///DPlypVj06ZN/PHHH5QuXTrVbfvmdky348iOMrvQl6BSFzKi4pS42lkTFxfH95OnEfQ8BP/qH+BbuFCK9vNFp3a4ODvxz8V/mTJvkd7NLc9e+pdJc38CoHeP7ka3D4+Jf+tCH0Cx93ywtLTk5s2bHDtxSm/Ztj37+XHpCpPbXr3zgIUrVgMwpFfXdBuPnfsDAXB0cMDdLenCdlKFpX7dOtK0nj9N6/nTv1vndOmbMV90aoezkxMX/7vMprWrKeD05owy3bEc0reX3nZ3HzzkuwlTcXF24pdZU/Uumdf8P/Fjy2er1x80fgp3HzzU29/oQd8AMH7CBK6cOWEwHiqVihP/nGPPocPax0qXLEGLhvWJio6mRc++3Hv4SG+b+Ph4tu7Zn+LnQjMeUXFKCjil7HW5fv16QB3SNYoVK4alpSUXL14kMDBQb/1t27Zpz0TKKAkJCXTv3p2IiAj69OlD/fr19ZY3btyYnj178urVK3r27Glws9qCBQsCJDlnuxDijczMWSLriIuLY/C4yWbLWF/16mGWfmvoZqy/jp/QW5Zcxrr/8DHzl6szVt+uHdKtT6nJWEnJyIyVkrE0d8aaNHQAAD0GDWebkVxkLGMVL16cZh/XS7eMlRbZJWMNGzZMMpYQGUQyltCQnCU5S3LW25GcJUT6ytRpPDU/0KYk/oEGaNu2LW3btjVTj94dmVnoAwiJiiMqTkmxPE4sXL2OH+Yu4Pnz53jlz8eS6RNTvJ98Hu6snT+Ltl9+w6jps1m9+Q8qlH6fZ8EhHPr7JPHx8fRo15oObVsTFBlrsP3+I8eIiY3Rm9/74mX13NhnLv7L8Ckz9NYPexkOwIuwMIZPmUHbZo2pVLY07m5udO3QnhVr1tKuRy9qfVAZz3x5uXrzNv9c/JfR3/bTvsHr+nbsFFZu3EJYWBiODg4sXbOOpWvW6a1z4849AI6cOsN3I7+nfecueJYpobfOxu3/48rrKVBjYmK5cvMWew4dAWBYvy+SnPZAt7CU38lwzmuvAvnZvmqpye3Ti9LOifETJjByxAimz5nHn9u3Gx3LLzq1026jUqnoMXA44a8i+GXWFAp7eaaorcJensweO5Jeg0fSc9AI9m1YiUKhICJWSdEKVRk5dAg/zP6RVj2/pKiPN8Xf88XVxZmg5yGc/+8Kz4KfM6x/b4qXe3PW3orZ02jSpRd//3MOv5r1qVGpIp758/LkWTAXr1wl6HkIqofJTzWgOx7F8jgRHa80WGfatGkEBAQA6nnOL168yJUrVwD4/vvvteu5u7vz1VdfMXfuXOrVq0etWrXw9PTk6tWr/PPPP4wePZpJkyal6DlLDytWrODIkSP4+voyY8YMo+topkA4ePAgixYtol+/ftplrVu3ZsWKFQwdOpR9+/aRN29eFAoFPXv2TPYm1EK8iyRniTUbNzNx1lyzZqyu7dpy+/W01rr2HT5GdEyM3mNpzVi9Ondgyco1NOvUI8UZa/CEaazYsJmQ0FAcHRxYvHodi1ebzljdBwzly897YpVH/4zrt8lYycmojJXSsTRnxgJo3qAecyeM5rsJ0/ikR9IZq4HOFQKLZk4huEeft85YKZFdM9bs2bM5c+aMZCwhMohkLAGSs1KTs74aOpLWHTtT0qOM3jqSsyRnSc6SnCXSV5a6Z192dWC0fhHpbmgkQZGxeleLpcdUkcm1kZysMHWn5uSGOGUCxfI44Whjye2793Bzc6PzZ60Z1bcnHnnypGqfzT6uyz+7/mD6wp/Zf+Q4m3bsxtHBnlpVK9Onc3vatWiqvbeaRniM+tLp8+fPc/78eaP7vXTlGpeuXDO67GX4K6Yv/JkS7xWhUln12Xhjhg+hoG8R/tyymTMX/uWc5WXKlCjO+p/m0K5FU4OAFBGrZOOOXYSFqadNiIiMNHnZP8DNO/e4eeceHzduYrBs54FD7DygvuTdwsKC3K6u1P2wGr06fEa7Fk1N7jNxYem8ZeZc7Kv5+WjX5GMaVSyZ5FjqWrBiNQeP/U2TurXp2T51fzh93qEtm3fu5n8HDrFgxWp6du6k/fmY8PUXdGjoz/zlqzh47AT7jx7HQmFB/rzuVCj9Pk3r+dO6SUPidPaXO5crhzavZfn6Tfz6xzbO/XeZY2f+IW+ePJQvVZKWDT9OUb90x8PRxtJosW/37jfzxFtaWuLu7k7z5s35+uuv+fhj/XZ+/PFHypYty08//cSZM2c4d+4cZcqUYf369bRr1y7DAtLly5eZM2cOCoWCFStW4OTkZHQ9FxcXli1bRsOGDRk6dCiNGzfG19cXgKZNm7J06VIWLVrEgQMHiIxU/1zXrFlTApIQOVjinPU8MpbboZGU9HBO043kUyIj2sgIt+7cxc3Njc87fsbgL7qZJWM9N3IyFcDRU2c4euqM0WWpzViTRg0nb2Fftv+xJUUZC2DTjl3a+6OkNGO1avEJXomKfWnNWFlNSsZSV3pmrK97dtUu++bzbtT9sHqyGUtXbtf0yVgpkV0z1vfffy8ZSwiRJpKz0k5yViiQ8pzl37CxwTLJWZKzJGdJzhLpS6FKfG1pDvfy5UtcXV35uXl5vqjok+S60U55uP1hF3y98mNnlfIAkrgQl96FPmNtJCcthb60FBSTkriw5GhjaZZ2jNFtA3jr8bhz/wG+1eqwYvY07Y17U3McmvFo9klzihYuxKHNa5NtM2DDZnoMGs7ixYtp7v/hWz9XOWk8kmsjpeOR2kJ4ej5XpsZD84eQr68veVL5x0NqXL9+HT+/lN1MPDk+Pj7cvXvXYOqC9GzDlDVr1tClSxe6deumPWMsvWXEcWRUOzmhDaVSydmzZ6lQoQKWltn3w4LsJjo6mtu3b+Pr64ud3Zvff5qcdah7TT7ydk9iD2nPWTnlQyhpwzhjGSstbfh84I9PIS8CN6U8Y/2xZgVexUtnq+dL2ng7EXFKLgeFU7JkSRwdzXebh/R6LzSVsdKzDVMCAwOpU6eOWTMW5IxskpPakJyVOSRnSRvmaiMzc9bixYvp3Mg/2zxXmdVGRrUjOcuQ5CxpIyPbSE3GMpULjJEr+8zMHIW+1MoKV/SZKmRktPDYeMJj4rPMeFhbWKDIhJlUZTzekJ8PIYQQQgghhBBCCCGEENmZFPvMSAoZalmpkJFe45Hb1ZWpIwZrpz1IqcTjMfP7YTil8OyWmlUrM2PSBLy9vdPSZa2cOB5pJT8fQgghRNaS1oyVWGoz1orZ0/Ar4ovhXXGEEEIIIXKGzMpZ86dNeuvPsoQQQiRPin1mJIWMrFPIiIxT3/fM2dYqXcbD1cWZ4V/1SdU2xsajTTPDOctNKerrTdvcHgSZmLM9JXLqeKSF/HwIIYQQWU9aMpYxqc1YRX29tdMZCSGEEELkRJmVszrkKyAZSwghMoBFZncgJ5JChlpWKWQ8Co8mQjMmNplT35bxeEPGQy2rjIcQQgghhBBCCCGEEEKI7E2u7EtnUshQyyqFDM09Ex2tLbXjktFkPN6Q8VDLKuNhLgMGDCA0NDRT2vby8mLs2LGUL18+U9oXQgghhDCXzMxYPj4+fPXVV9SrVy9T2hdCCCGEMCfJWSInkGJfOpJChlpWKWRoxsPT2Y44ZUKmjImMxxsyHmpZZTzMacCAAZnWdsGCBRk3blymtS+EEEIIYS6ZmbF8fHz45ptv8PPzy7Q+CCGEEEKYi+QskRPINJ7pRLeQ4WCdOR/eSyHjDd3xkKlUZTxAxkMIIYQQQgghhBBCCCFEziTFvnQghQy1rFLIkPFQk/F4Q8ZDCCGEEEIIIYQQQgghRE4lxb63JIUMtaxSyMgK4xGnTJDxeE3GQy2rjIcQQgghhBBCCCGEEEKInEeKfW9BChlqWaWQkRXGAyA4MlbGAxkPjawyHkIIIYQQQgghhBBCCCFyJin2pZEUMtSySiEjK4xHXIIKAGtLhYyHjAeQdcZDCCGEEEIIIYQQQgghRM4lxb40kEKGWlYpZGSF8YiIVRIWHQdAHntbGQ8ZjywzHkIIIYQQQgghhBBCCCFyNin2pZIUMtSySiEjq4zHteevsHo9DoqMHw4ZDx0yHkIIIYQQQgghhBBCCCHeJVLsSwUpZKhllUJGVhoPe2tLXO2sM6UPMh5vyHgIIYQQQgghhBBCCCGEeNdYZXYHsoukChn3Hj4iOOSF9vvH4dG8iI7juYMNTxxt060PUXFK7oZFYWtlga2lBaFv0Ya7W24Ke3mmerusUsjIaoUlPzdHHryMyvA+yHi8IeMhhBA5U+KcFRodx6PwaGKeOmBvZZ7fs2/TRlozlhBCCCFERpOcJYQQQuQcUuxLgWcRMTyLiDVZ6CtZuxGRURlfWHgbDvb2XD60K1UhKasUMrJiYUmmUpXxyCrjIYQQOUl2zFlpyVhCCCGEEBlNcpYQQgiRs0ixLxlhMfFEmCj0AQSHvCAyKoo182dS0q8o8ObKPg8HGzzS4cq+M5eu8O3ocRQuXIglU8bh7OT4Vm1cvn6Dzl8PJjjkRYoDUnKFDJ8P/Ln74GGK+zB20NeM++6bVPUbpLCkoVJhtsLSjwsXMfenxcyeMpGB3dprH38W/JxSdRoTHPKCtQtm0bHVJ0bHI/DYCep+1gU7W1vO7dlKsfd8U9RuwIbN9Bg0nG5tWxEw5we9ZeNmzWP87PmsmD2N7u1a6y3L6eMhhLkoFAq8vLx48OCB3uNjx45lwoQJlC5dmjNnzmBjY2OwrUqlon79+hw4cICePXvyyy+/pKrtgIAAevTowdixYxk3blya+t+qVSt27drFlStXDJYpFAq8vb25c+eO3uPmPjYfHx/u3r3L7du38fHxoXHjxuzatYtbt27h62v8d2G3bt1YtWoVDRo0YPfu3UbXiY6OpmLFily+fJkJEybw/fffp7hPAOPGjWP8+PGsWLGC7t276y2rX78+J0+e5Nq1a+TPnz9V+80IxnKW5mxw39zmP+M8tW2kJWMlJ6MyljA/TZ4ZM2YMJXt21D5uLGMZk9aMpaF5LakeXn+r4xBCqJnKM1FRUTRs2JDbt28zefJkRo4caXT7K1euUKFCBWJiYjh48CC1a9dOUbuBgYHUqVOHqlWrcuLEiRT1KTU0Gev69esUKFBAb1lGZ6zHjx/j5eVFrVq1OHTokNF1nj17RqlSpQgODmbt2rV07NjR6HqBgYHUrVsXOzs7zp07R7FixZJtH948p926dSMgIEBvWXbOWGCenHXpyjX6jRzLe97eLJg8BkcHB4N1JGcJIYR5JJVNKlSowNWrV82STTT8/f05dOiQ9jORzGbqfTorZIdffvmFsmXLpvXQTJJiXxIWnbpNydJxvJ/PJtnCUkm/olQsUwqAu6GRBEWaLhCmxqGTZxk0diIlShTnwLoV5HJxTvc2kpOaQsaHVSpR1KewyeW7Ag/zNCg4Tf2QQt8bz6NiUCaQoYWlvO55WDR1PG37fMPXoydSsmwFlPbOeuMR/uoV3QcOQ6VSMXXEd6n+ECq13uXxEMJcRo8ezdatWzl37hxjx45l6tSpBuvMnz+fAwcO4O3tzY8//qi3LHHByxz27dvHH3/8weDBgylYsCBBQUEp2u5tjy21Wrduza5du9iyZQvfffed0XXmzp3L/v372bNnD0uWLKFPnz4G64wcOZLLly9TpUoVRowYobdM8frmvSqVKk19nDZtmna/K1asSNM+MoJuznoeGYtLaCQlPZxxtDbP79yMaCO1zJmxROZKnLHq1KhGgXx59dZJKmMldcKUECLj2dvb88MPP9C+fXvGjx9P8+bNKVOmjN46SqWSbt26ER0dzYABA1L9YZq5JM5YSqUyRduZKz8WKFCAGjVqcOTIEZ49e0bevHlJLG/evCxatIi2bdvy9ddfU6dOHYMiZXh4ON27d1f/Dp06NcUf1r2N7JKxIP1y1smz5/n6+wmUe78ku9b+grOTk9H1JGcJIUTGsre3Z+XKlXz44YdpyiaaE41q165NYGBgBvc+/aUkO7x69SrDs0N6sMjsDmhMmzYNhULBgAEDTK4TFxfHhAkTeO+997Czs6NcuXLs2rXLLP2Z9NdV5p64SS47a/Km4333UuPQybM069wDP7+ieoW+jPY8KibFVyz16tCWgDk/mPwqUbRImvoghT41zUe5cUpVphSW2jRrTPsWTQkJDeWbkWMMxmPguCncffAQ/+of8M3n3czaFxkPIczD2tqaVatWYWNjw4wZM/j777/1ll+/fp0RI0agUChYvnw5Li4uGd7HgQMHYmdnx/Dhw1O1XUYfW8uWLbG0tGTz5s0m18mVK5f2zPbBgwdz+/ZtveV//fUXc+fOxc7OjpUrV2JllfbztHr06GGQsypXrkyzZs1YuXIlp0+fzrCcJVLPXBlLZA26GeuLIaMMlmdkxhJCvL1y5coxZMgQYmNj6dq1K3FxcXrLp06dysmTJylevDhTpkzJpF4ayooZq3Xr1iQkJPDHH3+YXKdNmza0b9+ekJAQvvjiC4PlAwcO5O7du/j7+/PNN+l/VdaOHTsMPs/SzVjnz5/P0M+zMsPJs+f5uEN3ShcvlmShL6uSnCWEyOk++OADPv/882yXTcwluewwZcoUs2YHc8kSxb5Tp06xZMmSZC9dHD16NEuWLGH+/Pn8999/fPnll7Rq1YqzZ8+ma38m/XWV7w9e5tsP3sPVNnMufswKhb6sUsiQQp+aMkFFWLT6F7G7g02mjcfoESPIkycPR44cYdeObdrHd+4P5Jd1G3F2cmTFj9O0V5uYg4yHEOZVpkwZxo0bpz2zK+r1fTw030dGRtK/f3/q1q2b4X3bu3cvly5domXLluTJkyfV22fksbm7u1OrVi3+/vtvHj16ZHK9hg0b0rt3b169ekWPHj20V+lpvk9ISGDSpEmULFkyTf14+FA9NVGhQoWMLv/8889RqVT06NEjQ3KWEMK4hZPHkT+vBzv2B7J8/Ubt4xmZsYQQ6Wf8+PGULl2ac+fOMXHiRO3j58+fZ8KECVhaWrJq1Srs7e0zsZdvZNWM9emnnwIkefIUwMKFC8mfPz87duxg+fLl2sd37tzJL7/8grOzMytWrDDL79DAwECjn2dpMtbcuXMz7POszJDdC31CCPGu+Oabb7JVNjG3pLLDpk2bzJodzCXTi32vXr2iU6dOLF26lNy5cye57urVqxk5ciRNmjShSJEi9O3blyZNmjBr1qx064+m0DexTkn6VjHvFISmZIVCX2YVMgKPnUDh5af35VWiDFWqVMGrRBkUXn5Gt7ty4yY9Bg7Du2ptbH3fx61UZep91pXftu40uv64WfNQePkxbtY8g2UBGzaj8PKj+4ChgH5hyTriBVaFiuHzgb/Bds9DQli/fj1devfFt1od7N8rjUvx8lRu3IrpC5cQHR2T5LF3HzDU4Nh1v9r0/474BPUHwNaWFnrbBGxI+g+f9PIoPJooS1tmThwHqM8yv//wMS9Cw+j1+iz0WWNG4FOooNHt4+PjmbN0BQ1btubDDz+kTPWPaP1Ffy5evpriPqSm0Ld27VradvucgpVqasejZO2GDBw7mdv37husf/fBQ6YvXELdtl0oXOUjbH3fJ1fJitRs2Z4lq9eRkJAAvLmHZeLxMEYzfsaMnTlXu9zUGP51/G+GDx9OmTJlsLW1xcPDgypVqjB27FieP3+uXS8gIACFQmFwrwhQ/+Hu4OCAo6MjBw4cMNpOnTp1UCgUJr8SzzHdvXt3o4+/fPmScePGUb58eZycnLCzs8PPz49vv/2Wp0+fGrSbVL9BPaWPQqEwuC8IqF9Py5Ytw9/fHzc3N2xtbalbty59+/bl/n3D8Q0MDEShUODv72+0LVDPL65QKAymJTD1OMDBgwe1z5Op47h27Rp9+vTRnsnr6urKRx99xJo1a0z2o1ixYtqzn425d+8eVlZW2rbT29ChQ6latSrXrl3Tzuc+Y8YMjh8/TtGiRZk+fbre+pqxvHv3LgC+vr4oFArtcaTXVA8LFiwAMPlcp0Rqj03Xf//9R9u2bXF3d8fe3p7SpUszc+ZMk9NctW7dGpVKxe+//55kn2bOnImPjw+HDh1i3jz1e9PgwYO5desWNWvWZODAgXrrjxs3Tm/cE//Man5mXr16xZYtWwBwMHLPFICmTZvi7u7OpUuX+Pbbb82as0TmMZaxEn8ZY86MpevO/QcovPyMZqzg5+qM9Wn33mbJWMb6k9EZC8Atdy5+nq7+ozulGcvnA396DFJfgbNy4+8ovPxw9ytFlSpVaNSuy1v3KeRFKN2+HUqFBp/gUaYqNj7vk798dZq068TmzZuJjY012GbfX0f5evQEyn/cHPfSVbH1fZ+ClWrS7stvOXXuQqr7sGbjFpPjFBMTQ7GaHyf5Go6MimLO0hXUbNme3O9Xwtb3fbyr1qZ5t9789uc2vXVNvd+rVCp69+6NQqGgWrVqhIWFGbSjyRnGvjTvhYmZeg8/e/YsnTt3pnDhwtja2pIrVy4+/PBDfv75Z6PvN5rcYOy9Nrn88+jRIwYNGkTJkiVxcHDA2dmZKlWqsGDBAuLj4w3WN5UBNe7cuYNCoTCYytvU4xrdunXTPlemMsOmTZto1KgRHh4e2NjY4OXlRefOnfnvv/9M9kOhUODs7MzLly+N7nPy5MnJ5ri0srGxYdWqVVhbWzN16lTOnDmjdzb9sGHDqFq1qsntV61aRZUqVXBwcMDNzY1GjRpx+PDhdO2jrszIWKbyo+YrMDAQb29vKlWqxMGDBwkNDTXZtpubGz///DOgvpLv/v37vHjxgl69egEwa9Ysk6+/+Ph45syZQ5kyZbCzs8PDw4PWrVtz8eLFJI9X8zuwe/fuRj/P0mSsdevWsXLlSrN/npUZpNCnJjkrc3NWwIbNuPuVSvJepT4f+KPw8uPOff171v937TpjZ87lwxbt8KpUExuf98lTqgr123UzOQ5J0TzXKfky+TnQsb8ZMmQI71WphY3P++Qt+wGtPu/H8dPGTw7QfY0tXbuBSo1a4li0LLlKVqRJl178fcb0SQXx8fEs+/U3/Nt0wq1UZWx938e3Wh36Dh/D/YePTW738PEThkycRpl6TXEuVh7HomUpVvNjug8YyrFT/xisHxUVxaxZs6hWrRq5cuXCzs6O4sWLM3ToUL3PtjSS+gwmM7JNsWLF0pxtzPEZU1qlJZv4+/tTp04dAA4dOqT3Pp1et25J6rM/TbFNoVCk+X7EpmRGdjC3TL9nX//+/WnatCn169dn0qRJSa4bExODnZ3+lV329vYcOXIkyW1iYt68MWlC/o6rT3j6Sv8NK/BOEPtvB1PP1x1Q37OveuV4nkXEYGVh/MP8oIgY7b+PwqMBiIxT/wEWHhuvfSylTp09T6deffAr+h7rli0hUmFNpJF9vE0bxvqsS6VST90Z97qQEa1MSLYN5et1X7y+0bIpsfHqYkl4TLzR5ys4Uh2WPdzz8GGNGsQpE7C2tMDaQsHGP7YCGOx/X+Bf9Pl2ENExMbzn60Pj+vUJDgnh0N8nOXD0OL/vC2TM999r23gUHk14TLxBPzRevC5yRsYpuRsaSXBkLNaWCpxtrHgQFKs93sTb7f3rCLNmzSJf3rwU8S5MuTJleP4ihLPnLzJ8ykw27tzLxlXLsTVys3Ld56FKxQr4FH5z9cWde/c59c9Z4pUJ2FpZEB2foD0OzTbJPe+pEadUj1HicQ+PjSc8Jh5nWysa1PXns1Yt+O33P+k0YCh5cufm8dNn1Kn1IU0/aWG0LwkJCXzxzUB27TuAtbU1lSpVwi2XC6fO/0vVpq1p17ql9nlIvL1mvIIjY7kSHK4dj6cRpkNnZJySQ4cOERwURPFifrg4OxMdE8PZ8xeZsyyAX9ZvYvtvv1K0yJui/sJfNzFj7gIKF/TC27swFcuX51lQEKfOnefoqTNs3f8XS+bOJiQ6ljilymA8kpJ4+Z1795m+8Gft98bG8PtJU1m+5ldAfaZs7dq1CQsL4+rVq0yYMIE6deokWbgCdaGvRYsWKBQKtm/frn2DNqV169Y46fyBduTIEW7evJnkNhpPnz7lo48+4tq1a9jZ2eHv74+rqyvHjh1j3rx5rF69mn379lGxYsUU7S8p4eHhfPLJJwQGBuLk5ESlSpXw8PDgzJkzLF68mI0bN7J3714qVKjw1m0lJS4ujv79+ye5zsaNG+natSvR0dGUKFGCJk2aEBYWxokTJ+jSpQsHDhwwWdAD9f1NevbsafD4ggULUnwflbSwtLRk5cqVVKhQgblz5+Ln58fYsWOxsLBg5cqVBoWjokWL0q1bNzZt2kRERIT2tfTy5UtcXFzInz//W/cpOjqa3bt3Y21tzUcffZTm/aT22DSOHDlCo0aNiIiIoEiRInz88ccEBwczcuRIg+mqNFq1asU333zD5s2bk3ytaM4Yq1u3LiNGjMDS0pIlS5bg6OhIQEAAFolySPny5enWrRsrV64E1H9I6NL8HPfv3x8/Pz9OnDhhsm1ra2v8/f3ZtGkTN27c0FuWkpyl+2G/JmddDX6Fk03SMVPlao2VUkVkXAJKE7ccjIpXav+NeP2eF6N5n4oz3+s/rW0Y6+/btqG50jNGmZDkPjVZLFZnPd02NH3L6+7Ox7Vr6m27dvMfAAb733UgkM59vyU6Jga/Ir580vBjgp6/yVg7Dv7F1Anj9I4j9nWbsUb6q+lPfILKYJkm06hUhsv2/HWYWbNmUSBfPt7zKUzl8mUJDnnB6XPnGT5lJr/v2sfOdauwtTWesTQn51SvXJEi3m/ux3Pr7j2On/5H2x/d50uzTXLPe2ponhtNG8bUreNP5zatWLPpd7oNGo67mzpjfVy7Fh0/a2PQlxaNG3Dq7HmOn/6HIt6FqV65IrHKBCLjlFQs6ae3vua1lJrjeRAcwm/bdlKqRDGqVaqIg4M9T4OCOX7qDCf/OcepY0f4c9UyvW36DB/Dg8ePKennR7VKFbC0suTazdv8tm0nW/63h4D5s2jZuGGybWvGIy6J1830hUu5fvuO9vvEyx88ekzLbl9w5foNHOztqVa5Am65cvHo6TMOnzjN+ctX2fKHf5L9UKlU9Pk/e3ceFlXZhgH8Zt9kFZBFBVxQzBTXMk0xtcW9zLJcKf0szTCz1NTU1LRFMzO1zFKzMlMzt1wykdxBxRXBhUUFZJF9Gdbvj/HMAjPMALMc4P5dV9f3Ocyc5z3zAPPwPue87+TJ2LBhA5588kkcOnSoyiUImzRpgueff17pMeF3tTa2b9+OMWPGoLi4GM2aNcPw4cORk5ODY8eO4dSpU9i1axf27NkDSzV/U1RHWFgYhg8fjoyMDPj6+mLAgAGQSCQ4d+4cpk2bhr1792Lfvn2wsLCodayqnDhxAlu2bFH79ZKSEowePRrbt2+HlZUVunTpAm9vb8TExOCXX37Brl27sGvXrkrvuyA3Nxc//vhjpaWsi4uLsXbtWl2eSiWdOnXC3LlzsXDhQowbNw4vvPACLl++jA4dOmDBggVqXxcSEoLVq1fD1NQUvXr1gpeXFy5fvoygoCBMmzZN5+M0Vo2lrn4UCPXjiBEjcP78eezZswfjxo1TG3/IkCGYMGECNm3ahDfeeANubm5ISkrC888/r3KJLkD6d+rIkSOxe/duWFpaIigoCM7Ozjh79iy6d++usg4XHDggbQQ89thjCA8Pr/R1xRrL3Ny8RvNZYq6zIiIvY+jYN9DOvzV2bvoeplY2Wn3GsM6Sakh1VsV86LrOkmhRYwm5zi9W/v75fP2P2Pz7Dvi3bIF2/q3h6OCAe4mJOHbqDI6eOIX/Ii5g+fw5SnGq+r4S3ms7W1sMf+FZlc85HXEBd+ITVJ7/R0s/w+oNP8HU1BSB7R/DU9274N79JPx16B/sPfIv1iz7BGNfGaHyuNM+XoJvf9yCJ7t2xqABz+BadAz+/vc4joSdxJY1X2Ho8wOU3rO8vDwMemcKTp4NRyM7WwS2fwyujV1w7UYM1v/8G7bv+xt7f/4RHdu3U4pz7ORpjH07BJnZ2XBzbYygp56EhaUFEu7dx6+796GkrBwdAzvK3qekpCS89NJLuHLlClxcXNCtWzfY29vjwoUL+OKLL/DHH3/ILu6orbpS26ijzRxTbVW3Nnn++edhbW2NQ4cOVapzXV1d9TrWjIwMzJo1S68x1NUOTz/9tF5qB30zarNv27ZtuHDhgsqiSJXnnnsOK1euRO/evdGyZUscPXoUu3btqnKyc9myZVi0aFGlx/+KScZfMckqX3M0Ng1HY9Pg45OPgOBimOdVvmJVkPqoOZWaX6SyQSE0KbRx7do1TJ06FS1btsSqr1cjp9wMORoaCNWNoWnMNY1R+uhDM1ND00n4YFTVHMmRlCAlV7rUR3MfX8yd/7HS11U1+9LT0zF15iwUSiR4++23ERwcLLs69vr165g2bRq27fwTLdoE4MUXX5SdS05RidpxZCo0+4T3qqi0HEm5hbLmUml55WZfi9Zt8OOPP1ba4DQ7Oxtz587FmTNnsOqHzRg7VvVV1nmPxvTC4CEYMmSI7PG9e/ci/MJFlAMoVGiW5khKZEWEpve9OmRNXhVNN8XYb787HcdPncF/p6QT3Pb29pg5+yO149i+fTsO/vMvXFxcsH79evj5SZtsJSUl+PLLL7H5198BqGn2KeSrHPJ8aLJmzZpKEyGlpaVYsGABDh06hA2/bkdISIjsa4916orffvsNrVq1UnpNamoqQkJCcODIP9j61370799f+h5VyEdVKp7TBwuXQFJUBA8PDyQnJ1fK4e+//44ft/4KR0dHLF++HE8//bTSuVy6dAmmpqa4efMmAMjumsvOzpY9dvLkSbz99tswMTHBd999h6ZNm8q+VpFwddM777wDb29v2eOzZs3C7du38eDBA6XXCn9oKj4+adIkxMTEoGnTpti0aROaN5cW+sXFxViwYAF27NiBYcOG4eDBg7JzUTVuVeOKjY1VWk/8/fffl20Q/Omnn8qWGsrPz8f27dvx6aef4qWXXsLff/8NMzPpncn37kmv4CsoKFD7PgjLDd27d0/pOYqPOzs7y762YcMGREVFwcvLC4mJiZXOIzo6GmPGjIGJiQm++eYbPPecfHLz/v37eOutt/DTTz+hbdu2ePHFFyvFe/LJJ3HmzBn8+uuv6Natm9LXv//+e/To0QOnT58GALXnVJWysrIqX2dmZob33nsPy5YtkxWcEydOhJubW6XXNWnSBHPnzsU///yDvLw8TJ06FU2bNkV+fr5sYqfi92t6enq1xn3q1ClIJBI8/vjjsnwKf7RVV9u2bfHpp59ixowZsnP74IMP8NRTT6l8fmFhIV5//XXk5eVh+vTp+PLLL2XfW5cvX0a/fv2QlpZW6XXe3t548sknERYWhrS0tCqLYWECb/Xq1bKJvM8//xwtW7as9Nzhw4dj+PDhsglkVVchCnXWsGHDqmz2AcBTTz2FHTt24I8//pBeRaplnfXFF19g6dKllR7/377IKuMBgI+PD9Y/8waKM/LUPic2I1/2v1apOcpfy8zXGKO2qhujqvHWNIbwuZyYU4ioKo4p1ARp+UWVnhebmY/Yh7kAgGY+Ppg+W3lPOGESSvF16enpmPDuzCprrC3bd6JpqzZ48cUXZechXLilahzC51xmYXHlrz3Mk51vxa95+LbSWGMt+vYHtTVWRoF0TAMGDq5UY52OuFBpPLGZ+bJ6UNP7Xh3CeyPEUOfNqe/iyH+ncOzEKQDSGmv6h7NVjmPs/6bA6dF5BLR/vFJuFV8jfC9V53xKrR1xLDS00n6hycnJGDduHI6GncC+M5FKv6fefmcaOnfuXKkhFhoaitmzZ2Pq7I/h075zpUlvdYR6vGKeEhMT8fma9bJaquK5lZWVYcKbU3Dj5i08+eST+OSTT5TuvJFIJIiIiAAA3L17F2ZmZpXqgPLycsyfPx/bt29HYGAg1q5diwcPHqhcrUC4M8nX1xdz5yrnQfhdre4zT3g8MTER48ePR3FxMV555RUsWLBANhmVkJCACRMm4NChQwgJCcGMGTNkr1dXvwiPCc9R/FpqaiqGDRuGrKwsLFy4EKNGjZJdWJKRkYGQkBAcPnwYM2fOxDvvvANAWmepqgFVxSspKVH6urrHS0pKMHHiRJiZmaFx48ZISUmpdB4rV67E9u3b0bFjR6xcuVJpWeqDBw/ivffew6hRo3D06FHZ950Qz8vLCxYWFli1ahUGDhwIExMT5Ofn4+bNm9i3bx8SExNl9ZS6elSdquoZIQYAvPLKK/jjjz9w7do1XL9+HRYWFli8eLHse6aiY8eOYfXq1bC1tcWGDRuUasD169dj5cqVAKR/11SMq8saC6hZnVWdGqtXr17o1asXQkNDkZeXJ1vpoKIRI0bgo48+ws6dO6ts9gHAqlWrcPToUfzzzz8ApPsj//DDD2qfv27dOuzevRtNmjTBsWPHZMuml5SU4N1331XbEN62bRuSktTf9SIQaix3d/dqz2eJuc5SnL9avuIr3CsoBwqq93nJOqvh1FnC2ITz0HWdpTiXoi7nQq5vPcxDvrU8Zo++/TF81Gg0baq8ekJcXBymTp2KNRs3o+vTffHYY49pjAHI32sHR8dK3wuCzIULcSc+odL5//nnn1i94Sc0a9YMn332GVq3lt8ReuHCBcyYMQPvzl0I95ZtZfMtijZs3YZvv/1W6XPj559/xurVq/G/mXPQ2M8fLi4usq8tW7YMJ8+Go1evXpg/f77S13799Vd89dVXeG3KdGzfvl32t29ycjJemzwNubm5GD9+PCZPnqzUOHv48CESEhJk51VeXo5XX30VV65cwcsvv4yPPvpIdlGHMB/4448/YtSoUUrNserUNsJnbk1qG0D1/JaqeLqsbVSdX35+PubOnVvlHJMmmuoA4b2qTm0yYsQING3aFIcOHYKPj0+lOlfVeVWcw9NE3dzfwoULkZqaKns/hPNSrLOqItw1qi63gmnTpuHQoUOy2sHBwQHz5s1T+5qtW7di9+7dcHV1xZYtW2TzyCUlJViyZImsdlCVP2FMKSkpGsdfE0Zr9t29exchISE4cuSI1n/off3115g0aRLatm0LExMTtGzZEsHBwVXeETFnzhylP4Sys7PRrFkz9Gnugnbu0j8EIhIzEZ6YiW5eTujq5SR7rmMTLzSyNIeztQXM1SwV+MBa+gvN2doCbrbSyeucohIUlpTBzsIMthbaLX8Zcekypk6dilatWmLrhvWwt7Or8vk1iVHVmAHpHn1ZhcUoKSuHo7UFCktKtY5h+qgosbc0VzpmRcJyh7YWZirfLzsz6XHMzc3VxlU8/rYte5Gbm4vHH2uHWe+8pfS8Pl0DMW3yRCz9YiV+2boVL774ouyYwnEVxyGwf3SFnAkAC1MTOFpbQMh+oY2F7Hwrvs66dUuV75ebrSs+nT8HzwwahuP/HsWMyW+qfG9MSqW/2FzsrOFmaynLhxDb2twM1o/uJBNiWJubycZc1fteHcL3upWZKdxsLWVXPVU+LxdMeH0UPvvqawDA+9Om4DFf1ct3AsAfv0ubeTPeeRsBiu+VrSWWzp2FsOPHkZqWBmvzyjmxNpd+35iZmMDV1hKqfxqVSRuElpXGXV5eDjsraR7tKrxvQd1U3wXm5uONeR/MwPj/vY2jR4/i5cEvwMLUpFo/h4pxDv5zFKdOnUL/oD5wdHTEzr/2KOWwpKQEP/24EQCw+OP56Nq1Kzw8PJT2zlAs+gBpowWQfiC1bt0aR44cwZQpU2BmZob9+/ejT58+VY5P+CPT398fXl5esseFCZMmTZooxaz4+K1bt3D8+HEAwOrVq9GvXz+l42/evBmhoaG4d+8eLl26hNdffx0AZFduFRUVVTonALLJRT8/P9kf/lFRUdi3bx+8vLzw119/wd5evtTxzZs3sXTpUkRGRuLAgQO4desWBg8eDEC+b5mNjY3KWMLXAKBp06ZKz1F83NbWFq1bt8a9e/ewdu1aeHl5Yc6cOZg2bZrs/RfMnz8fRUVF+PLLL5WKSUCaw59//hndu3fH9u3b8eGHH1aK995772HcuHHYtWuX7D0DpBM9WVlZmD17NoYNGyY7XnWZmppqfN2CBQuwdu1aZGVlwcvLC2vWrIGVlZXa51fM2c2bN9V+vzZu3Lha4/7rr78ASK9EE15XWlpa471OpkyZgkWLFsnOTXHN+op27tyJu3fvolmzZvj8889lf+wAQIcOHTB37txKS20KXnrpJZw+fRq7d++WLQehzqxZs7BmzRqUlZWhS5cuePvtt2t0bop1lrCMZ1WEP17Ly8urVWd98MEHSt+7Qp0192l/BLhVvQy5ZeMmcLW1hLe9NSzVLIec/WivXi97a/g5SZvGuUUlSM0vgpe9NayqWEa5NmoaQ9V4axtD+Fx2s7Ws8phCTeBkbaHyvXK1flQzWFupPY7i47t+2YLc3Fx0bP8YFs9Q/v3l91RXxE2ZjAXLv8Bvv0hrLOE8nB7VmYrjEAifc/aW5pW+ZpZrIzvfSq97rI3q98rJFqs+mY8nnx2E/0L/xcfTJqs8L4ty6Wecp4Od0rErjkfx/RLqQU3ve3UI7w2AqvPuZIvJY1/HJ19+BQD4aPo0POHvq/a4VZ2HYgzhe0kX51OWK//7rbmjrdIx/YYPVPkav+EDcfr4MezadwD3blzFgKCq7x4SzkN43yp+38yfvQoSiQTL583GhHemS2MofP3AP/8iKioKTdzdsG39ajSq9PeVLfye74fEnEI0a9YMdnZ2Sp/3rVq1wuTJk7F9+3b06NEDBw8erPKOPmElhIq1gCJNj2/evBmFhYXw8PDApk2blPZLad26NVatWoWXX34Zv/zyC7766ivZ39FCE1NYPl2Ruvpn48aNyMzMxDvvvKPyKu4dO3bAz88Pv/32G1atWgUTExPcvHlTbW0oECb8zM3Nlb6u7vGvvvoK0dHRmDZtGi5fvoyUlBSlOuzhw4fYvHkzrK2tsX//fqWL0oT35caNG1i7di1Onz4tq7eEeBYWFpgxYwZCQkIQExODwYMHy2qT33//HR4eHpgwYQJOnz5dZe5UqaqeqVj/zJ8/H6NGjQIgnVAaOnSo2uNOmTJF9jzF+g+QLif177//IjIyEmZmZnqtsYCa11nVqbG04e/vj8ceewyHDx9Gbm6u0t1/FTk6OmLq1KmYPVu6xPEnn3xS6ftG0apVqwBIJxQV90c2NzfHypUr8eeff8ouKBAIddZLL72E9evXVzl2ocaytbVFy5Yt60WddeHSZUx75x081qY1ft/4PewbVT1/VRHrrIZXZ7nZWirF0HWdpTjfoi7nQq6bOdiguWLd0u9plcf0C2yHWdPexvvzFyHixHEM7tlNq++rqt5rgarzLysrw48bpRcmrF3xOTz8WinF8XumFxKnvoVFn6/A0QN78cnsDyodd8Jrr+CVAcpzPx9Pm4ywY0cReeUawg4dwHtv/w8AEBkVg8OHD8PD3R0/f7Oy0s/x3CkTceXCefxzPAy3L53Hc88EAQB++HY7cnNz8dwzQVgxr/ISrX5OtujSQjo3KCktw45D/+LChQsIDAzEb7/9VukCsg0bNuDcuXM4c+YMJBIJ2rdvD6B6tY3wmVuT2gZQP+8l0HVtI4wdUJ57+u+//zTOMWmiqQ5QrE+qU5toM5+meF6Kc3jaUDX3d/78eWzbtg2dOnXCoEGDsGTJEtl5qZpnUkWYR1WXW0UhISGy2mHJkiXw8/NT+5pff5WuwrZ48WK88MILSl/buHEj/v33XyQnJ6vMnzAmd3d3jeOvCaM1+86fP4+UlBSl5dxKS0sRFhaGNWvWQCKRKE2kAYCbmxt2796NwsJCpKenw8vLC7Nnz0aLFi3UxrGyslI5KTm6Y3NM6uyLJWHRCE+Mw+K+AZjXu43ScwobNUasjQW8HaxlH+wVpT8qNjztreHz6Bd0fGY+CkuK4GhtAS97zY3M4+cuYsKkt+BfjT36qhtD05iFPcjKyoG2rvawszSrVgzhQ9PV1lJ2TFWEpo2TtYXK96ukWHpFkL2NtdriVfH4kY/+8Jg0aoTKuDODR2PpFysRn5AgvRKgRTN42VsrFUgVX2dvJf2xMDczRXt3B6U94cpz5B/aFV8Xn5mPPEkBLl+NRMy1q0hKSUVBYSHKy8shXBAZGx+v9v0pL5beNdi8sSOaOtjI8uH56L1vZGkGe0tzpZw0erSXoqb3vTqEPwRsLMxgYWaKvEeFTMXvgZS0dGzcLL/q5p9/jmL+229UWmoOkK7lHZeQAAAIGTMS6cUmFb63bPHasIFYvXELGlmaKZ1LXlEpJI/uoGvqYANfLc9T8ftqw4YNiE24i5y8PERcuoqE+4nwcHfDnMkTKr1vEokEh4+fQPilK0hJS4ekqAhlZeVIypDuzZJ87y5audhViqHpZ0SIk19QgGVfrICNtTW+X7YAi1Z+A0A5h2cvRCL9YQZcXZzx2pDnEZdVoNU5C4SlOwsKCvDnn39qbPQB0ruWAFTZxFHlhx9+QGhoqGyPPEdHRwwfPrzS82xtbTFo0CBs3rwZx44dk01ctG3bFoD0av+4uDitioEDBw6gvLwcL7zwglKjT1FQUBAOHDiAU6dOyZp9uvbee+8hLy8PP/zwg+z9U1RWVoa///4bAPDqq6+qPEbXrl3RqFEjXLx4EYWFhZUufnF3d8eoUaOwdetWWaMJkDZUW7RoobdzU7R06VLZ3kSJiYk4fvw4nn1W9XIk+iZcpabY+K6N6pybsJb+K6+8onLJj/Hjx6tt9o0YMQIffPABdu3apbHZN3v2bNn+oFeuXMG1a9dkf/BUh2KdJRwvOjoaMTExKuss4T21s7NDcnJyteosVRdtPdvSHb19ql7So7BRY8RamMHZxkJtnaX4ed1Y4Y/41Hzp7167al7wVB01iaFuvLWJIVxQ1cjSvMpjWjy6YMrWwkzleyVMxDSysVJ7HMXHz0WcBwC8+epLKp//7rhRWLD8C8TGS2usALcWShe/VByHcA4AYGVuWulrOQoXVKmKl5xTgAvnI3DxYqTKGut2bJza8yqWSH9HN3FqpPQcVeMR3i+rRzWrpve9OhQvDKoq7ylp6Vj74ybZv/cfOowP/zdeZY0ljBFQfR6KMYTvpZqcz/2kZMz9bCXKysrxIC0N/52NQEFhIUYOHYQeHQIqPT8x+QH2Hw3FjVt3kJWTI7ta99btOwCApHt3tf4ZEd43xfPb/88xHDx6DM8FPY3xLw6SNfsUj3nqlPTOyDEvDoWPm+q94fPUrGShuHRns2bNcOjQIbU1h0C4krm6tRQg3yPt2LFjAKSfNYqNPsFLL70EZ2dnZGRk4Pz58+jZsycAaT116NAhbNmyBS+++GKlv6NV2b9/PwD1NYq3tzdat26N69ev4+bNm/D396/2eWmSlJSEhQsXokmTJli8eLHsAiZFx44dQ0FBAfr166e2YRMUFIS1a9fi1KlTlS6uAoDg4GDMmzcPq1evltVOZ8+exdmzZ7FgwQKdLIlalYKCAqVJxz179mDx4sUqlw0vKSmRLes4ZswYlccbN24cIiMjdTpGY9ZY2hoxYgQ++eQTHDhwAK+88ora56WkpODLL7+U/Xv79u2YOnWq6r9T79+XLWGu6v22trbGK6+8IttPWSDUWd999x0A4M0330RZWZnK+SzhPX348CGuXLlS7fkssdVZ5y5ewsvBk/B429rt0cc6q2HVWY0szZXyoes6S3FZW3U5F3LtbFP5+yc3Lw9//xuGi1evIy0jQ7Z8blJKKgDp3fVV1ViKNL3XAFSe//nLV5H8IAUtfZujR6cOiM3MrxRnUJ+nsOjzFbgYeUnlsd967WWVj7/xykt498o1nIuIQGNb6efkyVOnUF5ejuf69oavu+o66dmnn8Q/x8Nw9coVvD5Y+jv8+ImTAIB3xr2mMXd5xaU4eVL6/BEjRlRq9AHSC5B79+6Nq1ev4tSpU7K/fetzbaPOp59+WuUcky5VpzYxhrKyMkyZMgXl5eX49ttvcejQIb3GU1U7qKtbalo7GIrRmn39+vWrtGFhcHAw2rZti1mzZlX5Q2xtbQ1vb28UFxdj586dVRZ6VVkSFo35x6JUNvoM5fi5ixg8Jhitq9Ho0zWh0VdQXAr/xo1gZ6m/ibOq5BSVIDZZ+kHq2Vj1B01F9x9dYefXTPUdZU6ODnBxcsLDzEzp7bEtmql8niCvqBTJj/ZydLA0V2r0aRIbH48335mOO3fuqH1Odk6u2q/dT37waMxOSvm4pMWVbsEzZiN4hvTqAzMzMzg7OqBT+3aY+NoreGWo6qurNRH27FPV6AOAybPmI+1hBoY/PwCXrkfhxLkIrNqwCTMmV16X+F6SNE+uLs5oZGeHdBVLHqjKYV5RKWLSc2V3hFYjHUr2HvkX5y9flf07qMcT2PL1F2jm7an0vDPnL+LVt6cj4X6i2mPl5qlfBkUbS1atRfy9+1g08134NVf9/Rh/Txq/TcsWsiuNtBUREYHt27fLJpy2bt2qsvmmqLi4GLm5uTA1NYWjo2O14p08eVJWvAHyTXVVERpVwhVBgHTfsQEDBuDIkSMIDAxEUFAQnJycZF9XtSyi8DO2ceNGbNy4scrxpaamVnpM2FC4Ng4fPowdO3bgmWeewahRo1QuoZieni5bDkJxuSl10tPTVU5ihYSEYPPmzfj222+xfPlyHD58GFFRUVixYoXaiV9diYiIwLJly2BhYYH//e9/+PbbbzFx4kRcuXKl2t8ruiBMGlV1Z4W2qntuwhIdwhLEFTk7O8PR0VE2RkV+fn7o1KkTjh49iqysLLXv3V9//YWff/4ZTk5OGD58ODZt2oTx48fj7NmzKv8wqopinbV27VqsW7cOvr6+6NWrl8o6S3hPMzIydFZnkbikZ2QCAJy1/Nmtdo3VTv1kZW3djovH65PfqXWN1djZqdqx9VFjaVKdGstQMrKysfmPP2X/trAwx8SJE/HV3PcrPXfRym+wdPW6Kpfuyc5Vny9NCgslePfjxbCyssQ3iz9W+7z4R/Vc21bV/9788MMPlZb4DA0NVVqaTBVhSR7FpUK1VXFPP3WfNSYmJvDz80NGRoZSPTVlyhRs2LABe/fuRfv27dG5c2fZhSkV70gSCD9PTz+t+o4GRampqZUmxIKDgxEcHKzxtVV5//33kZ2djW+++UbtZ6MwzqNHj2qs31TVfYB0Kdzg4GB88803iIqKgrm5Ob7++mtYWlrirbfewsGDB2t1HprMmTMH0dHR6NGjB8rLy3HmzBnMnj1b5SRQenq6bIJP3feBusdrw5g1lraEZp+m2mTy5MlIS0vD8OHDcenSJZw4cQKrVq1SWvFJINR3rq6uau8WVPV+C3WWUGMtWrQIf/31l8r5LMUaC9DdfJYxnLt4CQNem4D2bWrX6KuPWGeJo87av38/Gj1q+Ghr7+GjCJ4xB+mPfkZVqer8deVOvPQC6ttxCXBt/ViVz01Nf6jycXVzTML3mTA3BwDxjy7Y3vz7Dmz+fUfV8R7K4wnzVW1bVd5qQhWhXpk/fz7mz59fdRyFz/EpU6bghx9+qJe1jSqHDx/GwYMHq5xj0qXq1CbG8MMPP+DcuXMIDg5Gjx499N7sU1U7bNq0CcuWLav03JrWDoZitGafvb19pSvV7ezs0LhxY9nj48aNg7e3t+yNPXv2LO7fv4/AwEDcv38fCxcuRFlZmdKyBtraH52Ev2IesNEnkkYfIN33rDBL+uHq5aGfW1mrIjSWhDvbqtsLeHv6TNy5cwf9g/rg43cno13rVnCwbwQLCwsUFRXByk/9h3VZWRli7z7aG8HBpdr56NmtC1r5StfrLpQU4cat2zgSdhJHwk4i+vYdzH+v8hWumhQWl6pt9P28Yzd2HzwCd9fG2PDFElyJikG/V8dh3udfYXD/vvBvWftfakI+bCzM4GJTu41zI/6WTk6lpqfj2MmzmL5wKfq8/DoO/fITWrfwBSC94274m1PwIDUNwa+OwNvjXodf8+Z4UGyCojLAJCsVnfq9UOP9wQAg5nYsVny/Ea18fTBryv9qdU7qXLt2Dba2tjhw4ABmz56NnTt3YuPGjXjzTdXLxwLSq20B6d3T1W0o/PTTT5gwYQJ27tyJl19+uUZj/vPPP/Hxxx9j27Zt2LNnj8b3WLhLKTAwEB07dlT6WnZ2ttIkxRNPPFHp9RU3FFZ08OBBlfvwKCoqKsK0adNgYWGBNWvWaBwnIL3rSxN1dwJ06tQJTz/9NH744QcsXLgQX3/9Nezs7KrMqS5IJBKMHz8eJSUl+OSTTzBv3jxcv34dx44dw4wZMzQ2WvVBaAQLTdSaMsa5jRgxAhcvXsTevXtVXv2VlpaG//1P+nth9erVGDlyJM6cOYMLFy5g2bJlGv8wqkixzhKWh7CyslJbZwmTfNbW1rhz506t6ywSH2Eixhg1Vm29MU16MdUL/YIwZ+r/alxj+Wlx4UVF+qixqmKIGqsm2rf1R/n9mygpKUHC/UR89eNWrPnhB+Q9TMUvq7+QNWF2HTiEhSukS2auWfIxnunZA14e7rCxtoaJiQk+WrYCy9asr1U9tfzb73An/i7mhUyR1XG6FhERgSeeeALz58/HsGHD8Oabb+Ly5cvw8PBQ+xphMktxOXRtCe/HkCFDsG/fvmq/3t/fH7/++ivWr1+P//77Dzdu3ND4GqFOefnll2GnYQsJVXd79ezZs9I+1wCQm5uLnTt3aowfGhqK3377DU8//XSVe7AJ42zVqpXsTkZ1hBUjVJk2bRq++eYbrFmzBq+99hp27NiBV155pcqc6sLx48exevVq2NjYYNOmTSgrK0OnTp2wZs0ajBgxQqsVOAyhLtRYHTp0QKtWrXDgwAGVK2IA0r2pdu/eDXd3d2zYsAFXrlxBv379MG/ePAwePFhnd3EIdZZQYzVt2lTtfNaIESMASOe7du3apZP5LGMQQ6MvL1//+zXXFOsscdRZTZs2RZ8nuqrcimnH/kOVvofuJyXj1beno6CwEB9OmYTRLw6FbzNvNLKzg6mpKQ4f/w/Pvf4GylHzukVbwuedh7sbgno+hZyiEjip2VbKVWFvvepQrL/KHu1h2KFdADo9pv7zEwCe6NSxyq9XRTivXr16qdyLXpHivoj+/v44ceIE5syZU+9qm4q0nWPSFbHXJunp6fjoo4/g7OyMzz77TO/x1NUOq1atQnBwsF7uANUnozX7tJGQkKB010JhYSHmzZuHO3fuoFGjRhg4cKDsCvjqYqNPPI0+YaNjeytz3I2PAwA85q/desTeHh64cesO7iTcVfn1rOwcPMzMBCBtZKij2FhqYlf9pXdu3LqNGzExcHFxwcY1q9DcWbnwvRmrevN1QdTN28jOyYVr48ZwauxW7XxMfG0kJrw6Qumx737+DW/N/hifrd2A2e9MVrnsnCrFpdIPR2sLM5WNvvtJyXj3Y+meC999thiuLi7o2/NJTBk/Gt9u2orgGbPx35+/Kf3sentI14xOe5jx6M64ysVK3F351cmK+WjtYidbbqG23Bo3xitDB8LG2gpDg9/CrE8/x64fpJumhp0Jx4PUNHR+/DH8uHK57OejqEz68xF67UKt478zbxGKioqxevH8Kpd4av7ojsOYO7Gyza61ZWtri7179+KZZ56Bj48PunTpgpCQEPTu3VvtWtPXr18HoFxYVZdw51pcXBzKy8tVXnktXP1S8e41Ozs7rFixAitWrKj0Gl9f30obBAuxevbsWakQ0mbd7rZt26q9SiooKEhjs2/jxo2IiYnBhx9+qLSvR0Wurq6wsbFBQUEBvvzyS7i6Vr3UTlXeffddjBw5EgsXLsTff/+Nt956S+931gmTM126dMGcOXNgYmIi27j9xx9/xMiRI9U2TfVFmFAR7p6oqZqcm/B9GxcXp/KYmZmZKu/qE7z00kuYN28edu7cqbLZN2XKFKSkpGDYsGEYO3YsAGDTpk3o2bOnbPmPDh061PCMVVOss4T3tKCgAO3atat1nUXicz1GutSIoWus2rpx6zau3ZDWWL99twaONsqfn9rWWE3cXCvd0a8NXdZYmtSkxjI0c3NztPBpjoWzZuLa7Tj8tusvjBryAoY+K92rd/te6fLVS2e9h/+NGVXp9Tdj42oV/058Aj5b+z18mzXFR9Oq3tO0uZc03zduqb9TQZ0nnngChw4dgqOjIz766CMsXrwYEyZMwN9//6327jJd1lNV3V0RGxsLoHI91a5dO9ny4YpCQ0PRt29flbFu3ryJWbNmoWvXrtUe68SJE2XLjyqKi4vTOCFWXFyMqVOnwtzcHN9++22VzxXekzZt2tTqKvdWrVph4MCB2LJlC3JyclBcXIx33323xsfTRm5uLoKDg1FeXo5PP/1UNlm0ePFifPDBB3jjjTdw+fJlpQnJxo0bw8rKChKJBHFxcSq/n9TVIrVhzBqrOl566SV8/vnnOHToUKWl0e7fvy/L6XfffQdXV1f07dsXU6ZMwbfffovg4GD8999/yn+nPvo5SktLU7sXYE3fb6HOEt5TJycnnc1nGZoYGn05ubl4Z+4nBo+rLdZZ4qizOnbsiO9WLFe5xGbo6XOVmn17j/yLgsJCvPjCAHw2t3LjXdP561KzR3VLY2cnrPn8U8Rm5iPAzb5aS93GJtxFYPt2lR6Puyedb2vqKb/AxfvR/3+yayd8t2yR1jGae3sh+vYd3Lh1G638fDQ+X9hDbtiwYZg5c6bWcQDpBd71sbap6IsvvkBMTAwmTZpU5RyTLuTl5VW7NjG02bNnIz09HWvXrtXr7z9AfLWDLhjvL0UVQkNDZZsjC/9WLOj79OmD69evo7CwEGlpadiyZUuNrpwEgGH+TRp0ow8AErILjN7oS8wpRN6jZp+1STmOnToDAOjVvYtWrw/q0R0AlJYVUvTjNumt6H4+zdVufFm5sVStUwAAPHy0n5urq6vKO6O27vqrytf/sV+6dMyTTz6ps3yMfXk4AOnVb2kP1S9HoCgxpxDFj67usVazfOibMz9CZlY2xrw0DMOfHyB7/LO5H6CFTzOciriAld8rbzLe1MsTLXykf6j/+ufeSseUSCSy96CkrFwpH9VZSlVbbo2lV0FF3bwte0wopJt7e6lshGvKoSZ/7P0bR8JOYvjzA/DCM1VfJdO14+NwdXFGavpD/HnwSLXivPzyy3jmmWcASCd9vvzyS+Tl5eH1119Xu5zW4cOHAUivtKqpTp06wdnZGVlZWfjzz8o/jwUFBbL104Xx1ZSw+e2ePXv0vo55RfHx8Vi/fj2aNm2Kjz9Wv3QYIF2GZMAA6c/I9u3baxX3xRdfRPPmzfHZZ5+hvLwc06ZNq9XxNDl58iRWrlwJKysrbN68WfZ7zdfXF1988QUAaSGsqrkl7Hsj7M+kS8I+v8KEak3U9NyEq9u2b9+u8mdpy5YtlR5TFBAQgICAABw6dAh5FZYD/u233/DHH3+gcePGsr1fAOlk88yZM1FcXIwJEyaojCv88avN+z179my1ddbVq9KljseMGaOTOovEpbi4WG81VgtfH71tLg7UvsbaeUBaXzzXR/NyPtqqSY2ljZrUWABgafno90Bpqc7Gog1hucqom7dkjwn1lE/TystSp6Sl48h/Jys9Xh3vzl+MwkIJVi2aCxubqvdLfr5vbwDAb3/tq/bdIMuWLZNdVPPxxx/jySefxKFDh/D111+rfH5xcbFsv73a1FNCjaS4JLuiP//8ExkZGXBwcKjRJJYioZ6qbY1SE6tWrcL169fxzjvv4PHHH6/yuf369YOlpSVCQ0OlS9nVQkhICHJzc/Hzzz/jiSeeQPfu3Wt1PE3ef/99xMbGonfv3ggJCZE9PmPGDDz11FO4c+cOZs2apfQac3Nz2R2Mv/zyi8rj/vzzzzofqzFrLED7+lG4S27Xrl2Vvvbmm28iMzMTY8aMUdrG4LPPPkOLFi1w6tQprFy5Uuk1TZs2le2Z9+uvv1Y6pkQiwR9//FHlmATq5rOEGisoKEhn81mGJJZG3/Oj38TteMM1XqqDdVbdqLNUeZgpPX8fFdtplJeXq5y/0pdugdJ5oOsxt3BDobaqjp93qs7Xzzt3A5BuaSPo11uaswP/HENhoUTrGM8HSV+34Vft6oennnoKAPDHH3/UamUHbdSV2kZRfHw8Pv30UzRt2hRTp07V4willi9fXu3aBNDvPI+ic+fOYePGjejSpQsmT56s11hA1bVDs2bN9F476IOomn2GNKhN9a840QUxNPpycqWTjJKSMqM3+hJzCmFnYYbi4mLMX7ocqekPEdTjCbXrTFc0afSrcLBvhAtXruHT1euUPjguXr2GJV9L79r6X/AEla8vKi3TSWPJv6UvzMzMcPv2bZw6G670tb2Hj+KrDT+pfW3cvUSs/lE6STzjzbE6y8eBo6EAADtbW7i6aN47RMiHRRXvwfdbt+FQ6H/w8miC1YuVl5Szs7XFTyuXw8TEBPO/WIXoCldRT584AQCwcOU3uHUnVvZ4aWkpZi7+DImPlr3IlpTopNGXkZmJ6OjoSo+nP8zA7GXSTVfb+ctvzw9oLV1O4OiJU/g7/LJSo+/7rdvw+54DNR4LAMxY9ClsbWywatFcjc81NzfHO5MnAZBONl24UPmuwvDwcNmdcooqXm0+depUDBo0CBERESqbU4cPH8b69ethYWGh8m4jbVlYWMgKhZkzZ8quOgekf/yEhIQgNTUVLVq0kP2RXlOdOnXCiBEjcPfuXbz00ksqr5jJy8vDL7/8ovEuveqaN28eCgoKsHLlSq2udFqwYAEsLS3xwQcfYPPmzUpLewquXr2qcsJCkZmZGRYvXoxBgwbhvffe0+vVXvn5+ZgwYQLKysqwaNGiSleUT548Gf369cP9+/cxffr0Sq9v2lS6H8C1a9d0PrannnoKVlZWuHTpkspJUE1qc24vv/wyvL29kZCQgDlz5ijl8urVq1iyZInG+CNGjEBBQYHS1YnJycl45x3p8jTffvut7MpHwaJFi9CuXTtcvHgRn376aaVj6ur9PnXqFIDaN+NJfIqLizFz4VK91VjvTKzdvhaaKNZYYafPKn1NU411934SvvlROin+9rjXdDam6tZY2qhNjSVcpS3cVaBLkVevI13FRNt/Z87K9s5o17pyPfX91m0oKpKvTpCVnYPx0z9EVnZOjcdy9MRp7D8aioHP9MGw5/prfP7QZ/uhU/t2SEx+gJGT3610HoWFEhw+FqbytYr1lLm5OX755RfY29tj9uzZuHz5stJzi4qK8O677yI1NRVBQUG12qNj2LBhaN26NR48eICQkBClizxiY2Px/vvSPRLffffdKleJ0MYHH3wAJycnrFy5EitWrFDKl2LMrVu31ipORVlZWfjkk0/g6emJRYs030nQpEkTTJs2DXl5eRgyZIhsP1pFEokEe/bs0bjE14ABAzBu3DgEBQVpvGirtv777z98//33sLOzw08//aT0PWVqaoqffvoJNjY2WLt2LUJDQ5VeK9Qg33zzjezzWfD555+r/NugtoxZYwHa1zPdunVDs2bNsGfPHqWfj++//x6HDh2Cl5dXpf2GFHMwf/78Sn8jCuNZuHCh0vdQaWkpZs6cKdvyoKbqco0lpkbf1egYrP1U+7uPDIV1Vt2os9QR6pYd+w8i6YH8gpLS0lJ8/MUqnIrQ/e9bdSwsLLBgxjSUl5dj3JR3ERkZWek5paWl+PfEaZw5f1HlMdZt+RWhp5Tz+NX3P+Hcxcuwb2SHN18bKXu8w2MBeOaZZ3AvMQkvTZqKuLuV55fy8vPxy66/8CA1TfbYjMlvwL6RHfYcPop5n62sdEFqSlo6TpyLkP27T58+6NKli2z/NVX762ZkZGD9+vW1biTVldpG0bx585Cfn4+VK1fC1tZWp+Oq6NChQ/j9999rVJsIn9M3b96scl/u2hJq3W+//Vbvq5loqh2WL19utNqhNkS9jGddonhFa1JOITIKi5Fua4lkhSUhz1+9gZB5C9G8eTN8Ne9D3IlPqHE8dTE0ycnNw/gZcwAAPo42Rmv05UhKkJhTCC97a2zdvgOff70G6enp8PZogu8+W6z1cZq4ueKXb1Zg5FvvYu5nK/Hzzt3o1L4dUtIe4viZcygpKUHwqyPw2sgRSM2v/Ev+79ATSM3Og7ONhWypyCtR0h/g81euYfanXyg9X5igyMjKwuxPv8DIwS+gS4f2cHVxwbjXRuGnrb/g1eCJePqJrvBq4o7o27G4cOUa5oVMkRVrimYsWoYff9+JrKws2NnaYvNvv2Pzb78rPedWnPT75ET4ebz/0XyMGjMWXo8rr6f9x76/ceO2dOJHIinCjdt3cPj4CQDArCmTNC57IDT6vOytYaHmjr64u/fw/ifLAQDff7YYzk6VlxDs/WR3THtjLFZv3IIJ783Cyb9+l/1ynjphDI6EncTeI/9i4Esj0blLFzRxccblq1eQlJKKiWNeww9bf4OZqYlO7uhLTErGmDFj4Nu8Gdq08IWLkyMepKbj1PkLKCyUwNXFGUs+fE/2/E7tH8PQZ/thz+GjeOnV19D7ye5wc3FC5LUoRN+OxUfT3sLS1etqPJ57SclY8uF7Kq90rzT2nEIMfPFl3I6Nw8/btmPy5MlYs2YNHnvsMWRnZ+PGjRu4c+cOjh07JvvArcqPP/6IDh064PPPP8fzzz+PPn36ID4+HiNGjMD58+dhamqKjz76SOPyl5p89NFHOH36NA4dOoR27dqhb9++cHBwwOnTp5GQkAAXFxfs3LlTdkVQbfz000/IzMzE33//jTZt2qBjx47w8/NDTk4O0tLScOnSJRQVFSEqKqpS86Q27t27h549e2LkyJGanwzpVdJbt27FhAkTMGHCBMybNw/t2rWDm5sbHj58iCtXruDevXt49dVX8dJLL1V5rHHjxlVr3fea+vDDD3Hr1i08+eSTKpfZMDExwcaNG/H4449j06ZNGDlyJAYOlG+ePmLECBw7dgxjxozBs88+C1NTUzg6OuKDDz5Amza1u6Pe2toazz33HPbs2YPQ0FDZlXuGODcbGxv88ssvGDhwIFasWIHdu3ejW7duSE9PR2hoKIYMGYLz589XWnZW0YgRI7BkyRKlPS4nTZqEhw8fYuTIkXj11VcrvcbKygqbNm1Cjx49sHTpUgwfPlxpr8oRI0bgyy+/RP/+/fHMM8/A3l56EdFnn32mch8CVYqLixEWFiZ7f8VIsc7KLCxGYk4hJA9sYWOunzqmpjGiangVrr5s/WMnFq/4Wq811rhXRyI2s/JdU//8dwqFEuWrhGtaY00c8xq+27wVg0cHa11jzfxkOX76fSceZmbCztYW63/+Det//k3pOYo11oTpH+KtN9+AeWPl/btqW2Npo7Y11pOdA+Hl0QQXr15H5+eGwb91KxSWmaBbO3/Mfad2ewRv2r4La7f8isDHAtDUswnMTM0QcycOl6Okf9S+0C8Ig/rLl1GaPnECtuzYjQP/HkeLHs/gyc6BKC4pwfEz52BrY4M3Rr0su1uhuu4lJcPa2qpSM1QdU1NT/LlxLZ57/Q38/e9xNO/eB726d0FjZyfcT36AS9dvwNHeHjt3a169oUWLFlizZg3Gjx+P119/HREREbC2tsbGjRsxb948JCcnw9vbW+nu7JqwsLDA77//jgEDBmDDhg04dOgQevTogZycHPz7778oLCzEwIEDddKoatq0Kf766y+MGDECM2fOxOeff4727dvD09MTWVlZiIqKwu3bt/HEE0/U6oKwijIf3f25fv16pX2Wq7J8+XIkJSXh119/le3Z3KJFC5ibm+PevXuIjIxEXl4e/v777yr37QOAzZs3a7Xse21kZmZi7lzpBX6ff/657OpvRf7+/li6dClmzJiBN954A1euXJFdSDZkyBBMnToV3377LZ5++mn07t0bnp6euHz5MqKiohASEqL2LtOaMmaNBVSuH4U7hyvWjyYmJnjppZfw9ddf499//8Vzzz2HuLg42eTg999/L3utot69e2PatGlYvXo1JkyYgJMnT8r/Tp06FUeOHMHevXvRsWNH9O3bF87Ozjh79iySkpLw9ttvY926mv0dWBdqLEB1nXUx7D7em78ILX18sPyjmTpdzlDbOisvPx/vzP0Et+PjsfbTRTBTM1dhLKyztK+z3vnwI4x4fQwC3JTveDJEnVWVIQOeQZcO7XH+8lX4P/0s+jzZDXa2tjh78RISH6Rg1tT/4bNvv9frGBS9EzwWCfcT8cW6HzBp0iSs9G8Nfz8f2FhbITklDZHXo5CZlY11yxbhyS6dKr1+8phReOaVsXj6ia7w9miCq9E3cSUqGmZmZvhxxTJ4uCsvifjxxx+jTFKAv/89jja9n0XHdgHwa9YU5eXliLt3H5euR6GoqBhRxw+iiZt0W5Lm3l7Y8f03ePl/07B09Tr88Nsf6NGlEyzMzRF//z4uXo3C68MHo1d36QoEpqam2LZtG0aOHInNmzdjx44d6NixI5o3b46ioiLcuXMHV65cQWlpKSZMmKDyDlNt1aXaRnDv3j0MGDAAI0eOxM2bN3U2pooyMzMxceJEADWrTZo3b46uXbsiIiICjz/+OLp27Qpra2u4urpi+fLlOhvnvXv3MHHiRDzxxBOan1wL2tQO3bp1M0rtUFts9tWSq4szbG1sMGaa9usOR8fcRNDLo/U4Ks1srK3RrEnN94+qrZyiEnjZW8PL3hqx8dImwJhXRmDu22/ATcvJScHgAc/gwsHd+Ozb73H0xGns2H8IdrY2eLp7V0weMwqvDhuE+ArFUdGjfekiL11C5KVLKo979UYMrt6IUfm17JxcfPbt92jbsgW6dJBuwP3x7A/Q1K8F/tq1E+cvX0OkWRQeb9sG29auwqvDBlUqkErLyvH7vr9ly5jk5eerXcIBAG7HJeB2XAIGvDCw0tcO/HscB/49DkD6Qers6Ihnej6Jia+9gleHDVJ7TEC50adqjz5AunxB8HuzkZuXh+BXRyhN6lS0bM5MHDh6HGcuROLL9T/gwyn/k41r1w/fYvXGLVj/y++4cOEC7Gxt0fuJrvh13RocOie9MsnB0lwnS3d6ejTBq6++iutXLiPi0lVkZmfDxtoabVr44bmgpzF94gR4NpEvh1FaVo4lny5Di4BfcOTg3zgdcQHWVlbo2rE9Vi+ej9Z+vrVq9rX288UHb0/U+DwhH94ONtiyYikGD3gGa7f8hqioKNy4cQNOTk7w8/PD+PHjtd6/y93dHZs2bcLAgQMxduxYXLp0CZmZmUhNTcWoUaMwbdo0nayDbWFhgX379uH777/Hli1b8N9//6G4uBjNmjVDSEgIRo4cicDAwFrHAQB7e3scPnwYv//+O7Zu3Yrz588jMjISdnZ2aNq0KUaPHo2hQ4dq3AC6uiwtLTF/vnaTjIKRI0eiW7duWL16NY4cOYKTJ0+itLQUTZo0QatWrfDOO+/IGj/G9u+//2Lt2rWyjZrNzFT/8e3j44Mvv/wSkydPxqRJk3Dt2jXZfiNvv/02cnJysHXrVhw4cEC21OqYMWNq3ewDgHfeeQd79uzBpk2bqjURpYtz69OnD86ePYsFCxYgNDQUf/75J1q0aIFPPvkEM2fOVLmZt6LAwEC0aNEC+/fvh0Qiwa+//op9+/bB3d0da9dW/iNa0K1bN3z44YdYtmwZxo8fj/DwcNkfvosXL5b+ft21C7t375ZdvThv3jytm3379u1DWloagoOD4VLDzd71pSZ1lrHZ2tjo/Spkbd2Ji4eLiwvefP0VzJw0Xi81VrqKi6kA4GT4eZwMP6/ya9WtsZbMnQ335n7Yt3uXVjUWIL1CW1hSUtsa68VhQ+FdodlXmxpLG7qosSwtLXHolx8x97OVOH3+Ii5dv4GysjKkJ3erdbNvcP++SEpJRcTlK7gecwuSoiK4ODkiqOdTePqZfpg5YZTSVbd+zZvh4qG/MO/zr/Df2QjsO3oMHm5ueG3YYCx8/12s21J5qZvq+PDtSWjpq3l/GIFPU29E/L0Lazf/gh37D+H0+YsoKi6Gh5sb+jzZHS8N0T6H48aNw99//41t27Zh5syZWLNmDW7evIkmTZpg4sSJePfdd3VST3Xq1AmRkZFYtmwZ/v77b/z555+wsrJCly5dMH78eLzxxhtqP8Oqq3fv3rh27RrWrFmD/fv3Izw8HBKJBO7u7mjevDnGjBlT6xUZVOnTpw9Gj9b+72Hh7soxY8bghx9+wNmzZ3H16lXY2dnB09MTQ4YMwdChQ9G7d2+dj7UmQkJCkJycjH79+uHtt9XvLRkSEoJdu3bhxIkT+OCDD5RqgTVr1qBLly749ttvcebMGVhZWaFbt26y/ap13ewDjFtjVad+FJp9O3fuxLPPPovg4GDZ/oiDBqn/mV62bBkOHDiAM2fO4Msvv8SHH0r35xLqqNWrV2Pjxo0IDQ1Fo0aN0KtXL/z555+4ePFijSfsxFxjAdrVWZejbqD3S68bcFSqjZ8uzRfrLKm6WGcFPVf594q+6yxNzM3NEbpjK5Z98x12HjiEoydPw6FRIzzVtTN2bliDnNw8gzb7AODzebPQNygIq3/aiutXLuNgaBgsLSzg6e6OoB5PYHD/vnjphWdVvvarRXPRpqUfvtu6DeGRV2BhYY7n+/bG/JCpeKpb50rPt7Ozw56fN2Lf3wexdedfOH/lGiKvRcGhUSN4NnHD6BeHYuiz/dDSp7nS657t8zSu/nsAK7/7EQdD/8PB0DCYm5nDq4k7xo4Yhkmvv6L0fE9PT5w5cwabNm3C77//jsuXL+PcuXNwcXGBl5cX3nrrLQwdOhTW1lUv0a6NulLbCCwtLfHNN9/ofDwVhYSE4N69e+jRo0eNa5OdO3dizpw5OHbsGH7//XeUlJTAx8dHp80+FxcXnR5PlfLyclHXDrVlUq7vBXNFJjs7G46Ojvh+SCAmdfat8rmFjRojtudY+Hl7wLqKq40S7icqrSMt3HXnZmsJNzsrFBSXIj6rAFbmpmjuYKOTRkbFGJqUlpUjIbsAkpIy+DjaoFkTVzT3rnp9+PjMfKTmF1XZBKouVY0lfcSpSDGGo5VFrZfujLt7D35P9sVPK5fLNhOuznkIe8I98/xAtGzeFP/t0jzxsen3nQieMRvr16/HkKCeOnmvVOVj+tIV+Hrteqz8dDHeGz+q1jFUqW4+Fq5YjUUrv1F6v6sTQ9t8VHcPS11/76rKR3p+EWIz8+Hn56f1xH1N6PsKZ8YQXxwTExN4e3urXA5Wl1Sdx6ZNmxAcHIwFCxZg4cKF1TpeeXk5OnTogJs3b+LevXtwdnbGxYsX0alTJ9nkkomJCXx8fIy6KbI6H3zwAb788kvs3bsXgwcPNkjMhQsXYtGiRfjpp59Ubjg+ZMgQ7N+/HxcuXNC6IV9YWIjY2Fj4+fkp/VEm1FnHJ/RCb5+qLyqqaZ0lXA3u56z/O/tqEsPVxVljjQXIf78HuNnDzkI/51EXY6iqsWoSw/eJIPg280boDtV7XikSaqzdW3+Cd5v2enu/hHrm448/xodvvG7wnPg+EYT4e/dRfr/2Vw3Xxe8tVfKKSxGVmoOAgACtlueuqfpSnzCGsqrqGWOdhy5rLFdXV5SWlirVWWKoscrKyuDl5YXy8nIkJSXpfZmvquijxgJYZ1WFdVbtGLPOWr9+PcY8H1Rn3itjxahJHBNv6WdBdWo81ln1M4amOkDf5xEUFITjx48jNjYWvr6+eouj7Xlo+pzWRYzqEsa0ceNGdOjQQWkuSx11dYEqvLNPB5p7eykVG6oaGZ2b134PMkU1aWS0cK9eI0PXtLmDTN+KdbRHX20oNpYsTE2MMgaA+RDUtNGna2LIB1FdYGJigpUrV+LZZ5/F8uXL8dlnnxl7SNUyadIk2NnZ1XqvJV0JDw/Hvn37MGHCBJ3deatrFeus9PwiOBjgD3l9xyAiIhKTijXWl19+aewhqWRqaorVq1fj+vXrSE9P18kdtfpQF2osgHUWERFRfcJmnx6xkSEnlkZGWn4R7CzNa50PZ0dHLJszU7bsgbYq5mPFx7PRSMurW3p174ovlnwCHx/tly5Sp77lo6b480FUNw0YMADDhw/Ht99+i2nTphl7ONXi7+9f7Svt9WnOnDmwt7fHsmXLjD0UIgA1r7Eq+nL+rGrVWD+tXI7WLfxQeVccIqKGQ7HGmj59Ojw9PY09JJVeeeUVzU8yMtZYJEbGqrO+Wb5EJ3NZRERUNTb79IiNDCkxNDKKy6Sr1VqYmegkH44O9pj9zuRqvUZVPl4erP1eCK38fDDS2Q2patZs11Z9zEdN8OeDqG7780/pvhClpaVITU018mjqrn/++cfYQyBSUpMaS5Xq1lit/HxkyxkRETVkQo0FSOssqhnWWCRGxqqzXmviyRqLiMgA2OzTAzYy5MTQyMgrKkVWYTEAoLGNFfPBfDAfRERERERERERU5+liP2Yiqh/Y7NMxNjLkxNDIyCsqRUx6LsxNTVBcVg4TI2yPV9fy8WS3rsifNAmPBbTV+Rhqmo+gHk8AM4DAxwJqPYa6lg8ifVmwYAGKi4uNEjswMBALFixAUFCQXo6/YMECODk56eXYdZHwPot5vxiihiCoxxPIn1YKf39/o8SfPnE8MrNzjBKbqD7Sdz1TE6yxDIs1FhERiYmxa5MJEybg8ccfF02tIMbPaWFMHTt2RHl5uc6Pz2afDrGxJCeGRoaQDxsLM1ibmyKtlstf1kRdzEeP7t3Qqn1HneetNvkIeuoJBD31RK3HUBfzQaQvCxcuxM2bxrkCMDAwUK/Flpj2xBODoKAgUU1EEjVUQU89gccDOxltGavpk4KNEpeovtJ3PVMTrLEMizUWERGJibFrkwkTJqBnz56iavaJ7XNaGFNpaSkuXryo8+Ob6vyIDZRiI8PR2sIoY2AjQ04xH61d7GCEvivzoYD5kBNDPoiIiIiIiIiIiIio/mCzTwfYyJATQyOjYj64lCrzwXwQERERERERERERUX3FZl9VHq2bWtXyqWxkyImhkSGGfJSXg/l4hPmQE0M+iIh0RSdry2tRZxERERE1NKyziIiISFCduoDNviqYFxUApaWQlJap/DobGXJiaGSIIR8AkF4gYT7AfCgSQz6IiHSpuLgYAGBmVvPfq5rqLCIiIqKGSBd1lllxIVBWiuIydvuIiIjqsurUBWz2VcG8uAB2KbfxMK8QpRUKJDYy5MTQyBBDPoTvkOLScuaD+ZARQz6IiHSpvLwcWVlZsLKygoVFzfcprqrOIiIiImqIdFVnWRTlwyozGVmFxbq5U5CIiIgMrrp1gbkBxlSnucZG4K6TJ2JLPeBoZwMbCzMUlZQjLisf1uamaOZgjeKyMhQrXJRe8mjCqqSsDIUlpXoZlxCjuLQcfs52MDOFzmNpcx4peRKk5BXB3c4SLjYWNRpDbd+v/OIyxGWqz4cuYmhSWlaOzAJpl93J2kIv+QA0nwfzIVWf8lH06I6XoqIiFBYW1m7AVSgtLdXr8RlDnHHqQ4zSUunPVWFhYa2ufibNysvLUVxcjKysLOTm5sLb27vWx1RVZ5mZmMCkimtEhN+LkpIymOnpWhLGaHgxDBWHMcQVQ1LyKIZEotfPkPrwecsYDTcGwDrLEPRVZ9138sA9uMHR2gIWplXXWED9+f3OGIxRV2MYKg7rLMZgDOPG0FRj1bQuYLNPA9ucFPid244Uv27IcPPDfXMbPMgvhqWZKazsrJCQn13pNekFxcgtKkFJrgXyrHT/FpeVA/dzClBWDjSyNMeD4jydxwA0n0eWpASZhcVwsrZAXrE5YjP1E6cqktIyPMiTwNJUfT5qG0OTsnJpU0dYhqzE2gJFOfr50arqPJgPqfqWj7ziUqTlFwEAMjNreBAtpKSk6P2KT8YQX5z6EKOsrAxpaWmIi4uDqSkXLDAEKysreHt7w8HBodbHqlhnpVk3gqZZKOH3okVhLiz19JcpYzS8GIaKwxjiilFUWo603EJYWFjA0tJSLzGA+vF5yxgNMwbrLMPTZZ3lkBYLXNyHNL+uuO/kAZhqnmyvL7/fGYMx6moMQ8VhncUYjGHcGNrWWNWtC9js04JlYQ6aRv2Lc/9k4vVDMXjcyxU/DO0EO0vVb9+W0Cj8dvU+Qp5oibe7+el0LHlFJZi4NxJXH2SiuAx6iSGo6jzWhcfi67O3dRK/pu/X5QfZeOOvC2jduBF+GBKoNh+1iaGJkI+b6bl4qpkLDt9OMUpOmA+p+piPvTFJ+ODwNXzxxRcYMmRIbYes1ueff45169bp7fiMIc449SFGbm4uBg0ahIiICDRq1EhvcUjKzMysVktKqSLUWeVRQLG1A8rMzKts+Am/F3e+0h1t3Gs/EcYYjGHIOIwhrhjXUrLx1vZz2LlzJ9q0aaOXGED9+LxljIYZg3WWYemjznJIi4VDWiyKLW1RamGt8aKq+vL7nTEYo67GMFQc1lmMwRjGjaFNjVWTuoDNPi2du5+BAT+fRHt3B2zp2wz2RVlAkernZj1IRHx8PPJa2MI6V3e/MHMkxRj6y2lcTclG/xZu2BWVpPMYitSdx5KwaMw/FoXFfQPwXoADkJuulzhVUcpHUNsq81HTGJoo5uPI2J7YFBmvl7wrUnUezIdUfc1HUfoDxMfHo6ioCNbW+tvzLz09Xa/HZwxxxqkPMYqKihAfHw9LS0uD5IX0xwSAZaHqO8IVCb8XTbL8YG1brJexMEbDi2GoOIwhrhgmWZnSGCYmrLMYgzFUYJ1Vf1gU5cOiKF/j8+rL73fGYIy6GsNQcVhnMQZjGDeGvmosrsOgBcVGxsHRPWBvpdsrrbSRIynG8wqNjCZ2VgYfA6DcyJjXW39XZVRFjPno7u1s8DEAzIeA+SAiIiIiIiIiIiKihko0zb7ly5fDxMQE06dPr/J5q1atQps2bWBjY4NmzZrhvffe0+tmiWxkyImhkcF8yDEfUswHEZFmYq2ziIiIiOo61llEREQkBqJYxjM8PBzfffcdOnToUOXzfv31V8yePRs//vgjnnrqKcTExGDChAkwMTHBypUrdT4uNjLkxNDIYD7kQuNScTQ2jflgPoiINBJrnUVERERU17HOIiIiIrEw+p19ubm5GD16NDZs2ABn56on6k+dOoWePXvi9ddfh6+vL5599lm89tprOHfunM7HxUaGXGhcKht9EE8+ABi9scR8KDN2PoiI1BFrnUVERERU17HOIiIiIjEx+p19U6dOxaBBg9C/f38sWbKkyuc+9dRT2Lp1K86dO4fu3bvjzp07OHDgAMaOHav2NRKJBBKJRPbv7OxsAMD+6GQ8yJWofM297AJsioyHu50VnvF1xddn71TrnCISMwFIm2Q1JSkpxeZLCUjJk2BCoA8O307B4dspOo2hiRDjaGwa+vm5ApDe4aevOOrOpbb50CaGJpryoYsY2thzIxkA0MLJFgDz0RDycSk5CwBw8uRJnR9bUUZGhl6PT0TGYaw6KzotF40s9VNmxmbkAwCiUnP0cnzGaJgxDBWHMcQVQzh2VFSU3mIAQEFBgV6PT0TGwTqLMRiDMepqHNZZRPWTSXl5ebmxgm/btg1Lly5FeHg4rK2tERQUhMDAQKxatUrta1avXo2ZM2eivLwcJSUleOutt7Bu3Tq1z1+4cCEWLVqkh9ETEdUvvXr10nhFam0If9jqU32JYag49SFGcXExDh48iKysLDg4OOgtTl3EOouISDz69+8PGxsbvR2/PnymM4b4YrDOUo91FhGReLDOYoy6FkNfNZbRmn13795F165dceTIEdna5pqKo9DQUIwaNQpLlizBE088gVu3biEkJASTJk3C/PnzVb5G1ZVQzZo1Q5/mLmjnrvxGPsiTYG90ElxsLDHY3wOWZjVb5fR4XBqup+Wim5cTuno5Veu1RaVl2BeTjIcFRRjSxhNN7Kx0HkMbEYmZCH90Z5S+YgjUnYuu8lFVDE20zUdtYmhDyIebjSVSC4r0mhPmQzNj5OPlAC8MD/CUPX77YR6WnYhBMwcbfNizNWwszGoc42RCOtZFxGHr1q0YPXq0Loat0tChQ7Fnzx69Hb8+xTBUnPoQIzs7G46OjpyEqsDYddbcp/0R4Gav8/MC5L+zFvcNgJ+zLWMwRp2KwxjijLH1xS56+50VlZqDMX+ex/nz59G5c2e9xADqx2c6Y4gvBuss1VhnMQZjMAZrUu1jsM5iDMaoTF81ltGW8Tx//jxSUlKUfhBLS0sRFhaGNWvWQCKRwMxMefJ6/vz5GDt2LCZOnAgAePzxx5GXl4f//e9/mDt3LkxNKzcfrKysYGVVuSEwumNzTOrsK/u3sAdZN2+XWu9BNmV/JK6n5WJoG89q7eEl7EFWUFKGE2/0qXIPsprG0MaSsGiEJ8ahm5cTwhMz9RJDkapz0WU+1MXQpDr5qGkMbQj5WNw3AIk5BVgXEafXnDAfVTNWPjp6OGL0480ASPMxZf8ldPZ00tmeiesi4mp9DCISD2PXWc+2dEdvH1cdn5Xcuog4DGzdBJ09nRiDMepcHMYQX4wAN3u9f28RUf3BOosxGIMxWJNqH4N1FpHhGK3Z169fP1y5ckXpseDgYLRt2xazZs2qVBgBQH5+fqUCSHhebW5QFBoZ7d0ddDZxXl1CI+NqSjaOjO2psZGhL0vCojH/WJSskSHc3WdIzIecYj7m9W6DKfsjDT4G5kOO+SCiukJMdRYRERFRfcI6i4iIiMTIaM0+e3t7tG/fXukxOzs7NG7cWPb4uHHj4O3tjWXLlgEAhgwZgpUrV6JTp06yZQ/mz5+PIUOGqCymtCGGiXM2MuSYD7mK+TAG5kOO+SCiukQsdRYRERFRfcM6i4iIiMTIaM0+bSQkJChd+TRv3jyYmJhg3rx5uH//Ptzc3DBkyBAsXbq0RscXw8Q5Gxly97ILmI9HmA8p5kNODPkgovpF33UWERERUUPFOouIiIgMTVTNvtDQ0Cr/bW5ujgULFmDBggW1jhWbkYeZh6+ykQFxNDIAYFNkPLp4OTMfzAcA5qMiY+eDiOo+Q9ZZRERERA0J6ywiIiIytso7ADcQK0/fYqMP4mhkPMiTAADc7ayYD+YDAPOhSAz5ICIiIiIiIiIiIiLxarDNPm8HGzYyRNDIOHc/A3ujkwAA4zs2Zz6YD+ZDgRjyQURERERERERERETi1mCbfdOfaMlGhggaGQN+PgkXG0sAgJW54TelZj7kmA855oOIiIiIiIiIiIiI6ooG2+yztmAjQwyNjPbuDhjs72GUMTAfcsyHHPNBRERERERERERERHVJg232GRobGXKKjYyDo3vA0szw34bMhxzzIcd8EBEREREREREREVFdw1lkA2AjQ65iI4NLqTIfzIecGPJBRERERERERERERHULm316xkaGnBgaGZKSUubjEeZDjvkgIiIiIiIiIiIiorrK3NgDqM/YyJATSyNj86UEZElKmA/mQ4b5ICIiIiIiIiIiIqK6jM0+PWIjQ0oMjYyi0jIAQEqeBGHBvZkP5gMA8yEoKC41eEwiIiIiIiIiIiIi0g0u46kHio0MNvqM38jIkRRjX0wyAGBCoA/zwXwAYD4EOZJifH7ypsHjEhEREREREREREZFusNmnY2xkyImlkfH8L6fxsKAIANDUwcbgYwCYDwHzISemfNzNLjB4bCIiIiIiIiIiIiLSDTb7dIiNDDkxNTKupmRjSBtPg8cXMB9SzIec2PIxp5e/weMTERERERERERERkW6w2acjbGTIia2RcWRsTzSxszL4GADmQ8B8yIkxHy1d7Aw+BiIiIiIiIiIiIiLSDTb7dICNDDkxNjK4lCrzATAfArHkg4iIiIiIiIiIiIh0g82+WhLLxDkbGVLMhxzzIcd8SIklH0RERERERERERESkO+bGHkBdJpaJczYypMSSj9C4VByNTWM+mA8Z5oOIiIiIiIiIiIiI9IXNvhoSy8Q5GxlSYskHAOYDzIci5oOIiIiIiIiIiIiI9InLeNaAmCbO2cgQTz4iEjMBAP38XJkP5gMA80FERERERERERERE+sdmXzWJZeKcjQwpseRjSVg0wh/lJMjXzShjYD7kmA8pseSDiIiIiIiIiIiIiPSHzb5qEMvEORsZUmLKx/xjUejm5WSU+ADzoYj5kBJLPoiIiIiIiIiIiIhIv0TT7Fu+fDlMTEwwffr0Kp+XmZmJqVOnwtPTE1ZWVvD398eBAwf0Pj6xTJyzkSEltnws7huArkbKCfMhx3xIiSUfRCQeYq+ziIiIiOoq1llEREQkBubGHgAAhIeH47vvvkOHDh2qfF5RUREGDBgAd3d37NixA97e3oiPj4eTk5NexyeWiXPFRkZiToHs7j5DYiNDTjEf83q3wZT9kQYfA/Mhx3xIiSUfRCQeYq+ziIiIiOoq1llEREQkFkZv9uXm5mL06NHYsGEDlixZUuVzf/zxRzx8+BCnTp2ChYV0Et3X11ev4xPLxDkbGVJizYcxMB9yzIeUWPJBROIh9jqLiIiIqK5inUVERERiYvRm39SpUzFo0CD0799fY3G0Z88e9OjRA1OnTsVff/0FNzc3vP7665g1axbMzMxUvkYikUAikcj+nZ2dDQDYH52MB7kSla+RvbakFJsvJSAlT4IJgT44fDsFh2+naDyniEd33IXGpWp8rjZC41JxNDYN/fxcAUgbG7qOoYpijHvZBdgUGQ93Oys84+uKr8/e0UucqtQ0H9WJoQ1V+dB1DHWEGH/dSMKSsBvMB5gPQW3ycSk5CwBw8uTJWo1Vk4yMDL0en4gqM1adFZ2Wi0aW+ikzYzPyAQBRqTl6OT5jNMwYhorDGA0vhnDsqKgovcUAgIKCAr0en4gqY53FGIzBGHU1Tn2JwTqLSJlJeXl5ubGCb9u2DUuXLkV4eDisra0RFBSEwMBArFq1SuXz27Zti7i4OIwePRpTpkzBrVu3MGXKFLz77rtYsGCBytcsXLgQixYt0uNZEBGRtnr16gVnZ/3dcXju3Dl0795db8c3VAxDxakPMYqLi3Hw4EFkZWXBwcFBb3HqItZZREQNS//+/WFjY6O349eHuoExqod1lnqss4iIGhbWWYyhS/qqsYzW7Lt79y66du2KI0eOyNY211Qc+fv7o7CwELGxsbIrn1auXIkvvvgCSUlJKl+j6kqoZs2aoU9zF7RzV/1GFpWWYV9MMh4WFGFIG080sbOq1rkdj0vD9bRcdPNyQlcvp2q9VlFEYibCEzNVHkdXMaoixDAF4GZnicH+HrA0M9VbHHXnUtt8aBNDG1XlQ1cxNPn71gPEZRagkYUZXm3vzXwwHzrNx8sBXhge4Fmjce6OSsSOqCS8HOCJ4QFelb5+MiEd6yLisHXrVowePbpGMbQxdOhQ7NmzR2/HN1QMQ8WpDzGys7Ph6OjISagKjF1nzX3aHwFu9ro9qUeE3yeL+wbAz9mWMRijTsVhjIYbY+uLXfT2ezEqNQdj/jyP8+fPo3PnznqJAdSPuoExqod1lmqssxiDMRiDNam4YrDOYoy6FkNfNZbRlvE8f/48UlJSlH5ISktLERYWhjVr1kAikVRaysDT0xMWFhZKjwcEBCA5ORlFRUWwtLSsFMfKygpWVpUnv0d3bI5JnX0rPS7seVVQUoYTb/Sp0Z5XU/ZH4npaLoa28azx/mFLwqIRnhindg8yXcTQZMT2s7ielgtvB2tcm9JPb3uQVXUuusiHphja0JQPXcTQ5Nz9DPxwIQ4AMP3Jllj8TDudxwCYD23Vx3x09HDE6MebVfv1S8KisSMqSeOeiesi4mo0PiKqPmPXWc+2dEdvH1cdnpGydRFxGNi6CTp7OjEGY9S5OIzRMGMEuNnr/fuXiAyDdRZjMAZjsCYVVwzWWURSRmv29evXD1euXFF6LDg4GG3btlW7ZnnPnj3x66+/oqysDKam0jtoYmJi4OnpqbIwqi5h4vxqSjaOjO1Z44nz2loSFo35x6I0Tpzr07n7GdgbLb26bHzH5npr9FWF+ZA7dz8DA34+CRcbSzzIK4KVueo1/fWJ+ZBjPuTEkA8iqkyMdRYRERFRfcA6i4iIiMRI92vOacne3h7t27dX+s/Ozg6NGzdG+/btAQDjxo3DnDlzZK95++238fDhQ4SEhCAmJgb79+/Hp59+iqlTp9Z6PJw4l1NsZABgI0Mk+Wjv7oDB/h5GGQPzIcd8yIkhH0SkmtjqLCIiIqL6gnUWERERiZHRmn3aSEhIUFq7vFmzZjh06BDCw8PRoUMHvPvuuwgJCcHs2bNrFYcT53JsZMiJLR8HR/fQy55wmjAfcsyHnBjyQUS1Y6g6i4iIiKihYZ1FREREhma0ZTxVCQ0NrfLfANCjRw+cOXNGZzE5cS5XsZEx659rBh8D8yFXMR9cSpX5YD6IqDaMUWcRERERNQSss4iIiMjYRH1nn75x4lxODI0MSUkp8/EI8yHHfEgxH0RERERERERERESkiqju7DOkwmJOnAvE0MgAgM2XEpAlKWE+mA8Z5kOO+SAiIiIiIiIiIiIiVRpss2/V2dtIyy9q8BPnYmhkFJWWAQBS8iQIC+7NfDAfAJgPAfNBRERERERERERERFVpsMt43s8uYKNPBI2MHEkx9sUkAwAmBPowH8wHAOZDwHwQERERERERERERkSYNttk3o0erBj1xLpZGxvO/nMbDgiIAQFMHG4OPAWA+BMyHHPMhJ4Z8EBEREREREREREZF6DbbZ5+dsZ5S4Ypg4F1Mj42pKNoa08TR4fAHzIcV8yDEfcmLIBxERERERERERERFVrcE2+4xBDBPnYmtkHBnbE03srAw+BoD5EDAfcsyHnBjyQURERERERERERESasdlnIGKYOBdjI4NLqTIfAPMhYD6IiIiIiIiIiIiIqLrY7DMAMUycs5Ehx3xIMR9yzIecGPJBRERERERERERERNozN/YA6jsxTJyzkSEXGpeKo7FpzAfzIcN8yIkhH0RERERERERERERUPWz26ZEYJs7ZyFDGfDAfipgPZcbOBxERERERERERERFVH5fx1CNjT5yzkSEXkZgJAOjn58p8MB8AmA9FYsgHEREREREREREREdUMm316IIaJczYy5JaERSP8UU6CfN2MMgbmQ475kGI+iIiIiIiIiIiIiEgX2OzTMTFMnLORISfsmdjNy8ko8QHmQxHzIcV8EBEREREREREREZGusNmnQ2KYOGcjQ07Ix+K+AehqpJwwH3LMhxTzQURERERERERERES6xGafjohh4pyNDDnFfHApVeYDYD4UiSEfRERERERERERERKQbbPbpgBgmztnIkGM+pJgPOeZDTgz5ICIiIiIiIiIiIiLdYbOvlsQwcc5GhpwY8nEvu4D5eIT5kGI+iIiIiIiIiIiIiEhf2OyrBTFMnLORISeGfADApsh45gPMh4D5ICIiIiIiIiIiIiJ9YrOvhsQycc5GhpQY8vEgTwIAcLezYj6YDwDMh6LbD/OMEpeIiIiIiIiIiIiovhNNs2/58uUwMTHB9OnT1T5n06ZNMDExUfrP2tracIN8RAwT52xkyIkhH+fuZ2BvdBIAYHzH5swH88F8KDh3PwPLTsQYJTYRSdWlOouIiIioLmGdRURERGJgbuwBAEB4eDi+++47dOjQQeNzHRwcEB0dLfu3iYmJPodWiVgmztnIkBJLPgb8fBIuNpZ4kFcEK3Mzg4+B+ZBjPuTElI9mDja4ybv7iIyiLtVZRERERHUJ6ywiIiISC6Pf2Zebm4vRo0djw4YNcHbWPCFuYmICDw8P2X9NmjQxwCilxDRx7mJjCQBsZIgkH+3dHTDY38MoY2A+5JgPObHl48OerY0yBqKGri7VWURERER1CessIiIiEhOj39k3depUDBo0CP3798eSJUs0Pj83Nxc+Pj4oKytD586d8emnn+Kxxx5T+3yJRAKJRCL7d3Z2NgBgf3QyHuRK1L2sktC4VByNTUM/P1cA0ol0dSISM2Wv0aV72QXYFBkPdzsruNla4UFekc5jKFJ1HpKSUmy+lICUPAkmBPrg8O0UHL6dovM4mlQnHzWNoYliPp7xdcWhR++DIXPCfMgxH3KizMet2r0PRFQzxqqzotNy0chSP2VmbEY+ACAqNUcvx2eMhhnDUHEYgzH0Qd8/G0SkGussxmAMxqircRhDe6yzqC4xKS8vLzdW8G3btmHp0qUIDw+HtbU1goKCEBgYiFWrVql8/unTp3Hz5k106NABWVlZ+PLLLxEWFoZr166hadOmKl+zcOFCLFq0SI9nQURE2urQoQN8fHz0dvxz586he/fueju+oWIYKk59iFFcXIyDBw8iKysLDg4OeotTF7HOIiJqWHr16qXV3UU1VR/qBsaoHtZZ6rHOIiJqWFhnMYYu6avGMlqz7+7du+jatSuOHDkiW9tcU3FUUXFxMQICAvDaa69h8eLFKp+j6kqoZs2aoU9zF7Rz1/xGRiRmIjwxE928nNDVy0mrcR2PS8P1tNxqvaYqD/Ik2BudBBcbSwz294ClmanOY6iiGKNDEwfsi0nGw4IiDGnjiSZ2VnqJo+lcapKP6sbQRFU+dB1DHSFGZw9H3M8pYD7AfCgScz5i0nJxNC4NW7duxejRo2sVoypDhw7Fnj179HZ8Q8UwVJz6ECM7OxuOjo6chKrA2HXW3Kf9EeBmX+vzUOVkQjrWRcRhcd8A+DnbMgZj1Kk4jMEY+hCbkY/5x6Jw/vx5dO7cWS8xgPpRNzBG9bDOUo11FmMwBmOwJm04MVhnMYY+6KvGMtoynufPn0dKSorSD0lpaSnCwsKwZs0aSCQSmJlVvR+dhYUFOnXqhFu3bql9jpWVFaysKk+8j+7YHJM6+1Z5/CVh0QhPjKv2nldT9kfielouhrbxrPVeWcKeV928XXBwdA/YW1noPIY6QoznWrrj37g0FJSU4cQbfXS+B5m251LTfFQnhibq8qHLGFURYqTmS5gPMB+KxJ6PX67cxdG4tBofm4iqx9h11rMt3dHbx7XmJ6DBuog4DGzdBJ09nRiDMepcHMZgDF27kJSJ+cei9HJsIqqMdRZjMAZjsCZtODFYZ1FdYrRmX79+/XDlyhWlx4KDg9G2bVvMmjVLY2EESIupK1euYODAgTof35KwaMw/FlWjiXNdESbO27s7VJo4N6TNlxKQJSnBkbE9dd7I0BbzIVVUWgYASMmTICy4N/PBfABgPoioMrHXWURERER1FessIiIiEiOjNfvs7e3Rvn17pcfs7OzQuHFj2ePjxo2Dt7c3li1bBgD45JNP8OSTT6JVq1bIzMzEF198gfj4eEycOFGnY+PEuRQbGXJiyEeOpBj7YpIBABMCfZgP5gMA80FEqom5ziIiIiKqy1hnERERkRgZrdmnjYSEBJiamsr+nZGRgUmTJiE5ORnOzs7o0qULTp06hXbt2uksJifOpdjIkBNLPp7/5TQeFhQBAJo62Bh8DADzIWA+5MSQDyKqGWPUWUREREQNAessIiIiMjRRNftCQ0Or/PdXX32Fr776Sm/xOXEuxUaGnJjycTUlG0PaeGJXVJLBxwAwHwLmQ04M+SAi7Rm7ziIiIiKqr1hnERERkbGZan5Kw8CJc6mKjQxjYT6kFPNxZGxPNLGrvDm3ITAfUsyHnBjyQURERERERERERERs9gHgxLmAjQw5MeaDS6kyHwDzQURERERERERERETKGnyzjxPnUmxkyDEfcsyHFPMhJ4Z8EBEREREREREREZGcqPbsMzROnEuJpZERGpeKo7FpzAfzIcN8yDEfRERERERERERERKRKg2327Y9Owl8xDxr8xLlYGhkA2MgA86GI+VDGfBARERERERERERGRKg12GU82+sTTyIhIzAQA9PNzZT6YDwDMhyLmg4iIiIiIiIiIiIiq0mCbfcP8mzToiXOxNDKWhEUj/FEzI8jXzShjYD7kmA8p5kNODPkgIiIiIiIiIiIiIvUabLNvUBtPo8QVw8S5mBoZ849FoZuXk1HiA8yHIuZDivmQE0M+iIiIiIiIiIiIiKhqDbbZZwximDgXWyNjcd8AdDVSM4P5kGM+pJgPOTHkg4iIiIiIiIiIiIg0Y7PPQMQwcS7GRgaXUmU+AOZDEfNBRERERERERERERNXBZp8BiGHinI0MOeZDjvmQYj7kxJAPIiIiIiIiIiIiItIem316JoaJczYy5O5lFzAfjzAfUsyHnBjyQURERERERERERETVw2afHolh4pyNDGWbIuOZDzAfAuZDmbHzQURERERERERERETVx2afHhl74pyNDLkHeRIAgLudFfPBfABgPhSJIR9EREREREREREREVDNs9umBGCbO2ciQO3c/A3ujkwAA4zs2Zz6YD+ZDgRjyQUREREREREREREQ1x2afjolh4pyNDDlhz0QXG0sAgJW5mcHHwHzIMR9yzAcRERERERERERER6QKbfTokholzNjLkhHy0d3fAYH8Po4yB+ZBjPuSYDyIiIiIiIiIiIiLSFTb7dEQME+dsZMgp5uPg6B6wNDP8tzrzIcd8yDEfRERERERERERERKRLnOHVATFMnLORIVcxH1xKlflgPuTEkA8iIiIiIiIiIiIi0h3RNPuWL18OExMTTJ8+Xavnb9u2DSYmJhg+fLhex6WJGCbO2ciQE0M+JCWlzMcjzIcc80FExlRX6ywiIiIisWOdRURERGJgbuwBAEB4eDi+++47dOjQQavnx8XFYebMmXj66af1PLKqiWHinI0MOTHkAwA2X0pAlqSE+WA+ZJgPIjKmulpnEREREYkd6ywiIiISC6Pf2Zebm4vRo0djw4YNcHbWPBFfWlqK0aNHY9GiRWjRooUBRqiaWCbON19KYKMP4shHUWkZACAlT8J8MB8yzIdUQXGpwWMSUd2ts4iIiIjEjnUWERERiYnR7+ybOnUqBg0ahP79+2PJkiUan//JJ5/A3d0db775Jv777z+Nz5dIJJBIJLJ/Z2dnAwD2RyfjQa5E3cuqdC+7AJsi4+FuZ4VnfF3x9dk7Sl+PSMwEAITGpdbo+No4ey8DAJCYU4iJnX1x+HYKDt9O0WkMbc4jNC4VR2PT0M/PFYC0saGPOFXRlA9dxNBEUlKK36/eBwA87u6ol3wAms+D+ZBiPuTEko91EbF6OTYRVc1YdVZ0Wi4aWeqnzIzNyAcARKXm6OX4jNEwYxgqDmOIM8aBmw8QlaafOCcT0vUeQzgPIjIs1lmMwRiMUVfjGDLGDxfi4GVvo5cYl5Iz9R4jMadAL8cl0geT8vLycmMF37ZtG5YuXYrw8HBYW1sjKCgIgYGBWLVqlcrnnzhxAqNGjUJkZCRcXV0xYcIEZGZmYvfu3WpjLFy4EIsWLdLPCRARUbV06NABPj4+ejv+uXPn0L17d70d31AxDBWnPsQoLi7GwYMHkZWVBQcHB73FqYtYZxERNSxdu3aFp6en3o5fH+oGxqge1lnqsc4iImpYOJ/FGLqkrxrLaHf23b17FyEhIThy5Aisra01Pj8nJwdjx47Fhg0b4OrqqnWcOXPmYMaMGbJ/Z2dno1mzZujT3AXt3Kv3Rj7Ik2BvdBJcbCwx2N8DlmaqV0E9HpeG62m56OblhK5eTtWKoUlRaRn2xSQjJa8I5YBeYgiqOo+IxEyEJ2bqJH5N3y9t81GbGJoI+XhYUARvBxvEZRYYJSfMh1R9zEdYXBqupeXCs90YOHl2rd2A1chMikDS9a3w7fY+bBya6SVGQfZdxIWvwIcffojRo0frJQYADB06FHv27NHb8Q0Vw1Bx6kOM7OxsODo66u34dZWx66y5T/sjwM2+RmPX5GRCOtZFxGFx3wD4OdsyBmPUqTiMIa4Yu6MSsSMqCQH9VsHOuZVeYqTFH0Nc+Aq9xsjLuIWoo9Mxffp01lmMoVOss1RjncUYjMEYrEk1++lCPI7GpcHrsTFw9FA/n1WQHY+EC+tg2cgDPoFvwdRc8+9VQdKNP5B5/yRcWwyEm9+zNR5rWUkh4iPXoyg3Gc07vw0bB3lTLys5AonXtmLkyJGYN29ejWNoUl9qB8bQjr5qLKM1+86fP4+UlBR07txZ9lhpaSnCwsKwZs0aSCQSmJmZyb52+/ZtxMXFYciQIbLHysqke3KZm5sjOjoaLVu2rBTHysoKVlZWlR4f3bE5JnX21Xq8wp5X3bxdNO55NWV/JK6n5WJoG0+d7tGVIynG87+cRkFJGV4M8MSuqCSdx1Ck7jyWhEUjPDFOZ3uQ1eT9qk4+ahpDE8V8nHijDzZFxmNdRJzBc8J8SNXnfFxLy4WTZ1d4+L9Y6+Opk3R9K1x9+sLe7XG9HD8n9Qriwlfo5dhEVJmx66xnW7qjt4/2k1nVtS4iDgNbN0FnTyfGYIw6F4cxxBMjNiMfO6KSYOfcSm81UF7GLQDQawwiMizWWYzBGIzBmlSzkwnpOBqXBkcP9fNZ2Q8iEfPffDRyewwdB22BuWWjasXITIpA5v2TaNQ4oMZzZiVFubi0fxyKC9LRadjvcGgSWOk5ide21ujYRIZmtGZfv379cOXKFaXHgoOD0bZtW8yaNUupMAKAtm3bVnr+vHnzkJOTg6+//hrNmunnbhRA3sho7+6gVSNDH4RGxtWUbBwZ2xObIuMNPgZA2siYfyxKZ42MmhBjPrp7OxslJ8yHFPNBRKSsLtVZRERERHUJ6ywiotrLfhCJyH1jYOfiX6NGny4Ijb68hzEIHLxVZaOPqC4xWrPP3t4e7du3V3rMzs4OjRs3lj0+btw4eHt7Y9myZbC2tq70fCcnJwCo9LgusZEhJ4ZGhljzYQzMhxTzQURUWV2ps4iIiIjqGtZZRES1w0YfkX4YrdmnjYSEBJiaqt/3S9/YyJATQyOD+ZALjUvF0dg05oP5ICKqMWPXWURERET1FessIiLV2Ogj0h9RNftCQ0Or/HdFmzZt0ttY2MiQE0Mjg/lQxnwwH0RE1SWmOouIiIioPmGdRUSkGRt9RPrFy4xUYCNDmbEbGcyHXERiJgCgn58r88F8EBERERERERERiR4bfUT6x2ZfBWxkyImhkcF8yC0Ji0b4o5wE+boZZQzMh5wY8kFERERERERERCRmbPQRGQabfQrYyJATQyOD+ZAT9kzs5uVklPgA85kmL/oAAJ0GSURBVKFIDPkgIiIiIiIiIiISs4LseDb6iAyEzb5H2MiQE0Mjg/mQE/KxuG8AuhopJ8yHnBjyQUREREREREREJHYJF9ax0UdkIGz2gY0MRWJoZDAfcor54FKqzAcREREREREREVFdYdnIg40+IgNp8M0+NjLkxNDIYD7kmA8p5oOIiIiIiIiIiKju8Ql8i40+IgNp0M0+NjLkxNDIuJddwHw8wnxIMR9ERERERERERER1k6m5tcFjstFHDVWDbfbFZuSxkfGIWBoZmyLjmQ8wHwLmg4iIiIiIiIiIiLTFRh81ZA222bfy9C02MiCORsaDPAkAwN3OivlgPgAwH4qEfBAREREREREREZFqbPRRQ9dgm33eDjZsZIigkXHufgb2RicBAMZ3bM58MB/MhwJpPpKNEpuIiIiIiIiIiKguYKOPqAE3+6Y/0ZKNDBE0Mgb8fBIuNpYAACtzM4OPgfmQYz7kxJSPxo/yQURERERERERERMrKSovY6CNCA272WVuwkSGGRkZ7dwcM9vcwyhiYDznmQ05s+Rjk38QoYyAiIiIiIiIiIhK7BzE72egjQgNu9hkaGxlyio2Mg6N7wNLM8N+GzIcc8yHHfBAREREREREREYlfeVkxAKAoP42NPiKw2WcQbGTIVWxkcClV5oP5kBNDPoiIiIiIiIiIiMSspCgX6fFHAQAebV5mo48IbPbpHRsZcmJoZEhKSpmPR5gPOeaDiIiIiIiIiIhI/EqKcnFp/zgUF2YCAKwaeRp3QEQiwWafHrGRISeWRsbmSwnMB5gPRcwHERERERERERGR+AmNvryHMXD16W/s4RCJCpt9esRGhpQYGhlFpWUAgJQ8CfPBfMgwH0REREREREREROKn2OgLHLwVFrauxh4Skaiw2acHbGTIiaGRkSMpxr6YZADAhEAf5oP5AMB8EBERERERERER1QUVG33co4+oMjb7dIyNDDkxNDKEPRMfFhQBAJo62Bh8DADzIWA+5MSQDyIiIiIiIiIiIjFjo49IO2z26RAbGXJiaGQI+biako0hbYy3USvzIcV8yIkhH0RERERERERERGLGRh+R9kTT7Fu+fDlMTEwwffp0tc/ZtWsXunbtCicnJ9jZ2SEwMBA///yz4QZZBTYy5MTQyFDMx5GxPdHEzsrgYwCYDwHzISeGfBBRw1PX6ywiIiIisWKdRUSkH2z0EVWPubEHAADh4eH47rvv0KFDhyqf5+Ligrlz56Jt27awtLTEvn37EBwcDHd3dzz33HMGGm1lFRsZmyLjjTIONjKkKuaju7ezUXLCfEgxH3JiyAcRNTx1vc4iIiIiEivWWURE+iGWRl9q7CGjxCWqCaPf2Zebm4vRo0djw4YNcHauen+7oKAgvPjiiwgICEDLli0REhKCDh064MSJEwYabWWqGhnGwEaGFPMhx3zIMR9E1FDV9TqLiIiISKxYZxER6YdYGn1x51cj7c7fRolNVBNGv7Nv6tSpGDRoEPr3748lS5Zo/bry8nL8+++/iI6Oxmeffab2eRKJBBKJRPbv7OxsAMD+6GQ8yJWoe5lWJCWl2HwpASl5EkwI9MHh2yk4fDsFEYmZAIDQuNRaHb8qijFC41JxNDYN/fxcAUgbG7qOocm97AJsioyHu50VnvF1xddn7+glTlXU5UOXMaoixPjpYjzuZObrPB+KMTSdB/NRf/Jx/lGMguy7yEm9UtOhVqkg+y4AIC/jll6Or3jskydP6i0GAGRkZOj1+ER1jbHqrOi0XDSy1E+ZGZuRDwCISs3Ry/EZo2HGMFQcxqh+jAM3HyAqTT9xLiVnAtBvDcQ6i6j+Yp3FGIzBGHU1jhDjhwtx8LK30UuMiPuZAIDU2MOyekgbZaVFeBCzE0X5afBo8zLS74Yh/W6YyucK82SZiWcQG1HrISvJTDyDzPsnYevcGvkZNxEaGqrbABUkJSXp9fjUMJiUl5eXGyv4tm3bsHTpUoSHh8Pa2hpBQUEIDAzEqlWr1L4mKysL3t7ekEgkMDMzw9q1a/HGG2+off7ChQuxaNEiPYyeiIiqw8LGFQ7ugXqNkR7/D3r16qXxytraOHfuHLp376634xsyTn2IUVxcjIMHDyIrKwsODg56i1MXsc4iImo4WGcxhj6wzlKPdRYREela165d4enpqbfj15f6pD7E0FeNZbQ7++7evYuQkBAcOXIE1tbWWr/O3t4ekZGRyM3NxdGjRzFjxgy0aNECQUFBKp8/Z84czJgxQ/bv7OxsNGvWDH2au6Cde83eyKLSMuyLScbDgiIMaeOJJnZWSl8/HpeG62m56OblhK5eTjWKoYkQA4De4mhzHg/yJNgbnQQXG0sM9veApVn1V4at7fulKR+6iKGNHdcSkVpQBO9G1hja1kMvMTSdB/MhZ4h8hMWl4VpaLjzbjYGTZ1e9xMhMikDS9a3w7fY+bBya1ekYRXnJ6DBwo16OLzi2zgdvvfUWRo8erbcYQ4cOxZ49e/R2fEPGqQ8xsrOz4ejoqLfj11XGrrPmPu2PADf72p6GSicT0rEuIg6L+wbAz9mWMRijTsVhDO3tjkrEjqgkBPRbBTvnVnqJkRZ/DHHhK1hnaam+1FmMoT3WWaqxzmIMxmCMul6T/nQhHkfj0uD12Bg4enRFQXY8Ei6sg2UjD/gEvgVTc+1/t6mTdOMPZN4/iUZuHWHv9rjG55eXFSM9/iiKCzPh6tMfFrauGl+TmXgWBZk3tY6hjZzUK8hNvSQ7phDDr/v7aNy8r05iVJSXcQtRR6dj2LBhmDdvnl5iAPWnPqkPMfRVYxmt2Xf+/HmkpKSgc+fOssdKS0sRFhaGNWvWyK50qsjU1BStWkn/2AsMDERUVBSWLVumtjiysrKClVXlZsPojs0xqbNvtcct7EFWUFKGE2/0UbkH2ZT9kbielouhbTz1tj9Y9w2hAIB+fq74Z1wvvcTQdB7CHmTdvF1qtQdZbd4vbfJR2xjaWBIWjdSCIgDAW9389Jb3qs6D+ZAzZD6upeXCybMrPPxf1EsMAEi6vhWuPn11VrgYK0bKrX16OzYRKTN2nfVsS3f09tH8x1lNrYuIw8DWTdDZ04kxGKPOxWEM7cRm5GNHVBLsnFvprT4Rlr9knUVE1cE6izEYgzHqek16MiEdR+PS4OjRFbaOfoj5bz4auT2GjoO2wNyykU5iZCZFIPP+Sbj69odf13erfK6wR19ZqQRdXtyp9R59N47PRUHmTa1iaCPu/GokXd8Kv+7vw7fLu0oxrO2b6bWWI9IFozX7+vXrhytXlPefCg4ORtu2bTFr1iyVhZEqZWVlSmuY65PQyLiako0jY3uqbWTo25KwaIQ/2scryNfNKGMQGkvt3R1q1ViqDTHlY/6xKHTzcpLlxdCYDzkx5IOIyNjqYp1FREREVBewziKi+qIgOx4x/82HnYu/Tht91SE0+vIexiBw8FatG326Fnd+NWLPrVBq9BHVNUZr9tnb26N9+/ZKj9nZ2aFx48ayx8eNGwdvb28sW7YMALBs2TJ07doVLVu2hEQiwYEDB/Dzzz9j3bp1eh8vGxlybCzJCflY3DcAiTkFRskJ8yEnhnwQEYlBXauziIiIiOoK1llEVF8kXFin8zv6qoONPiLdMlqzTxsJCQkwNZXvOZaXl4cpU6bg3r17sLGxQdu2bbF161a8+uqreh0HGxlybCzJKeZjXu82mLI/0uBjYD7kxJAPIqK6RCx1FhEREVF9wzqLiOoCy0YebPSJoNGXlx5jlLhU/4iq2RcaGlrlv5csWYIlS5YYbkBgI0MRG0tyFfNhDMyHnBjyQUQkdmKss4iIiIjqA9ZZRFQX+QS+xUafkRt92Q8iEf3fPKPEpvrHVPNTGi42MuTYWJITQz7uZRcwH4+IIR9ERERERERERER1iam5tcFjstEnl/0gEpH7xsDG0cco8an+YbNPDTYy5NhYkhNDPgBgU2Q88wHx5IOIiIiIiIiIiIjUY6NPTmj02bn4w7/XJ0YZA9U/bPapwEaGMjaWpMSQjwd5EgCAu50V8yGifBAREREREREREZFqbPTJKTb6Og7aAjMLG6OMg+ofNvsqYCNDjo0lOTHk49z9DOyNTgIAjO/YnPkQRT6SjRKbiIiIiIiIiIioLmCjT65io88YeyZS/cVmnwI2MuTYWJITSz4G/HwSLjaWAAArczODj4H5kBPy0fhRPoiIiIiIiIiIiEhZWWkRG32PsNFH+sZm3yNsZMixsSQnpny0d3fAYH8Po4yB+ZBTzMcg/yZGGQMREREREREREZHYPYjZyUYf2Ogjw2CzD2xkKGJjSU5s+Tg4ugcszQz/I8t8yIkhH0RERERERERERGJWXlYMACjKT2Ojj40+MpAGP1PNRoacGBoZzIdcxXxwKVXmg4iIiIiIiIiISMxKinKRHn8UAODR5mU2+tjoIwNp0M0+NjLkxNDIkJSUMh+PMB9yzAcREREREREREZH4lRTl4tL+cSguzAQAWDXyNMo42OijhqjBNvsKi9nIEIilkbH5UgLzAeZDEfNBREREREREREQkfkKjL+9hDFx9+httHGz0UUPVYJt9q87eZiMD4mhkFJWWAQBS8iTMB/Mhw3wQERERERERERGJn2KjL3DwVljYuhplHGz0UUPWYJt997ML2MgQQSMjR1KMfTHJAIAJgT7MB/MBgPkgIiIiIiIiIiKqCyo2+rhHHxt9ZBwNttk3o0crNjJE0Fh6/pfTeFhQBABo6mBj8DEAzIeA+ZATQz6IiIiIiIiIiIjEjI0+OTb6yNgabLPPz9nOKHHZyJASGktXU7IxpI1xNmoFmA8B8yEnhnwQERERERERERGJmVgafZmJZ9joI0IDbvYZAxsZUoqNpSNje6KJnZXBxwAwHwLmQ04M+SAiIiIiIiIiIhIzsTT6ACDz/kk2+ojAZp/BsJEhVbGxxKVUmQ+A+SAiIiIiIiIiIqoLxNLoy0m9AgBw8u7JRh8R2OwzCDYypNhYkmM+5JgPIiIiIiIiIiIi8RNLoy/u/Grkpl4CADh5PWmUMbDRR2JjbuwB1HdsZEiJpbEUGpeKo7FpzAfzISOGfBAREREREREREYmZmBp9sedWoJFbR1nDz9DY6CMxYrNPj9jIkBJLYwkA8wHmQ5EY8kFERERERERERCRmYmv0+XV/H4W5D4zS7GOjj8SKy3jqERsZ4mksRSRmAgD6+bkyH8wHAHHkg4iIiIiIiIiISMzE2OjjHn1ElYmm2bd8+XKYmJhg+vTpap9z7do1jBgxAr6+vjAxMcGqVasMNr7qYCNDSiyNpSVh0Qh/lJMgXzejjIH5kGM+iIgMrz7VWURERERiwjqLiOozNvrk2OgjsRNFsy88PBzfffcdOnToUOXz8vPz0aJFCyxfvhweHh4GGl31sJEhJabG0vxjUejm5WSU+ADzoYj5ICIyvPpUZxERERGJCessIqrP2OiTK8iOZ6OPRM/ozb7c3FyMHj0aGzZsgLNz1Q2Ibt264YsvvsCoUaNgZWVloBFqj40MKbE1lhb3DUBXI+WE+ZBjPoiIDK8+1VlEREREYsI6i4jqMzb6lCVcWMdGH4meubEHMHXqVAwaNAj9+/fHkiVLdH58iUQCiUQi+3d2djYAYH90Mh7kStS9rNpC41JxNDYN/fxckS0pkT2mL8JSoYox7mUXYFNkPNztrPCMryu+PntH5zE0kZSUYvOlBKTkSTAh0AeHb6fg8O0UncfRRDEf+opRUcUYus6HqhiaMB/6zcf5RzEKsu8iJ/VKrY+nSkH2XQBAXsYtvRzf0DGIyLCMVWdFp+WikaV+yszYjHwAQFRqjl6OzxgNM4ah4tS3GAduPkBUmn7iXErOBFB/aiDWWUT1D+ssxmAMxtBnnB8uxMHL3kYvMSLuZwIAUmMPq6wjykqL8CBmJ4ry0+DR5mWk3w1D+t2wasUQ5skyE88gNqJm48xMPIPM+yfh5N0T5eVAbMRqncfQZgwAYGZpD882I5EWd0TnMQpzWMuRbpiUl5eXGyv4tm3bsHTpUoSHh8Pa2hpBQUEIDAzUau1yX19fTJ8+vco10QFg4cKFWLRokW4GTEREotehQwf4+Pjo7fjnzp1D9+7d9XZ8Q8apDzGKi4tx8OBBZGVlwcHBQW9x6iLWWUREpGv1oc5iDO2xzlKPdRYREelaq1atEBAQoLfj15f6pD7E0FeNZbQ7++7evYuQkBAcOXIE1tbWeoszZ84czJgxQ/bv7OxsNGvWDH2au6Cde+3fyIjETIQnZqKbl5NsacLjcWm4npar9JiuKcZo5miDvdFJcLGxxGB/D1ia6WZ11uqcR1FpGfbFJONhQRGGtPFEEzvtl6XQ5fulKh+6jqGOECPAtRFuPczVeT4UY2g6D+YDCItLw7W0XHi2GwMnz656iZGZFIGk61vh2+192Dg0YwwjxyjIvou48BX48MMPMXr0aL3EAIChQ4diz549eju+IePUhxjZ2dlwdHTU2/HrKmPXWXOf9keAm71eYp5MSMe6iDgs7hsAP2dbxmCMOhWnvsTYHZWIHVFJCOi3CnbOrfQSIy3+GOLCV9T5+qS+xKhPdRZjaI91lmqssxiDMRhDnzXpTxficTQuDV6PjYGjh37ms5Ju/IHM+yfRyK0j7N0elz1eXlaM9PijKC7MhKtPf1jYutY4RmbiWRRk3qwUQxs5qVeQm3pJ42trE0OT4vw0pMX/AxNTc5SXFuolhqAgKxaZ909i/PjxmDdvnl5iAPWnPqkPMfRVYxmt2Xf+/HmkpKSgc+fOssdKS0sRFhaGNWvWQCKRwMzMrNZxrKysVK6HPrpjc0zq7FurYy8Ji0Z4ovSX/LzebWSPT9kfietpuRjaxlPpcV0SYnT2dMJvV++hm7eLzvcg0/Y8hD3hCkrKcOKNPtXeE05X75e6fOgyRlWEGHcy8vSSD8UYVZ0H8yGPcS0tF06eXeHh/6JeYgBA0vWtcPXpq7cPfMbQXk7qFcSFr9DLsYnqGmPXWc+2dEdvn5r/YajJuog4DGzdBJ09nRiDMepcnPoQIzYjHzuikmDn3Epvn+vCspd1vT6pLzFYZxHJsc5iDMZgDH3GOJmQjqNxaXD00N98VmZSBDLvn4Srb3/4dZXugyfs0VdWKkGXF3fWeo++G8fnoiDzplIMbcSdX42k61u12qOvpjE0yX4Qich9Y+DQpCNsnVoh+cbvOo+hKDnmT2TeP6mXY1PDYrRmX79+/XDlivIeV8HBwWjbti1mzZqlk8JIn5aERWP+sSiVjQxD2hQZjy5eznppLGlDaCxdTcnGkbE9q91Y0hUx5ONBnnQtfXc7K+ZDRPkgImqI6nqdRURERCRWrLOIqL4RGn15D2MQOHhrrRt9NRV3fjViz63QqtGnL0Kjz87FHx0HbcGt08uMMg6imjBas8/e3h7t27dXeszOzg6NGzeWPT5u3Dh4e3tj2TLpD1VRURGuX78u+//3799HZGQkGjVqhFat9LN8jCpiamSwsSSOfJy7n4G90UkAgPEdmzMfoshHslFiExGJQV2us4iIiIjEjHUWEdUnbPTJVWz0mVs2Mso4iGpKd5uJ6UFCQgKSkpJk/05MTESnTp3QqVMnJCUl4csvv0SnTp0wceJEg41JPI0MNpYA8eRjwM8n4WJjCQCwMjf8VXzMh5yQj8aP8kFERKqJsc4iIiIiqg9YZxFRXVBWWsRG3yNs9FF9YLQ7+1QJDQ2t8t++vr4oLy833IAqEFMjw8XGEg/yithYEkk+2rs7IMC1ETZeTDD4GJgPOTHkg4hIrMReZxERERHVVayziKguehCzEyVFOWz0sdFH9YSo7+wTE7E1Mgb7exhlDGwsySnm4+DoHrA0M/yPE/MhJ4Z8EBERERERERERiVl5WTEAoCg/jY0+ETT6ykoKDR6T6ifOhmuBjQwpNpbkKuaDS6kyH0RERERERERERGJWUpSL9PijAACPNi+z0WfkRl9JUS7iI9cbPC7VT2z2acBGhhQbS3JiyIekpJT5eEQM+SAiIiIiIiIiIhKzkqJcXNo/DsWFmQAAq0aeRhkHG31SQj6KcpMNHpvqJzb7qsBGhhQbS3JiyAcAbL6UwHxAPPkgIiIiIiIiIiISK6GxlPcwBq4+/Y02Djb6pBTz0bzz2waPT/UTm31qsJEhx8aSlBjyUVRaBgBIyZMwHyLIBxERERERERERkZgpNpYCB2+Fha2rUcbBRp9UxXzYOPgYfAxUP7HZpwIbGVJsLMmJIR85kmLsi5He1j0h0If5YKOPiIiIiIiIiIhIrYqNJe7RJ65Gn7HyQfUTm30VsJEhxcaSnFjy8fwvp/GwoAgA0NTBxuBjAJgPIiIiIiIiIiKiukAsjSU2+qTEkg+qv9jsU8BGhhQbS3JiysfVlGwMaWOcjXMB5oOIiIiIiIiIiKguEEtjKTPxDBt9EE8+qH5js+8RNjKk2FiSE1s+joztiSZ2VgYfA8B8EBERERERERER1QViaixl3j/JRp+I8kH1G5t9YCNDwMaSnBjzwaVU2egjIiIiIiIiIiJSRyyNpZzUKwAAJ++ebPSJIB/UMDT4Zh8bGVJsLMkxH3LMBxERERERERERkfiJpbEUd341clMvAQCcvJ40yhjY6KOGyNzYAzAmNjKkxNJYCo1LxdHYNOaD+ZARQz6IiIiIiIiIiIjETCyNpbjzqxF7bgUauXWUNfwMjY0+aqgabLNvf3QS/op50OAbGWJpLAFgYwnMhyIx5IOIiIiIiIiIiEjMxNJYEhp9ft3fR2HuA6M0+9joo4aswS7jyUafeBpLEYmZAIB+fq7MB/MBQBz5ICIiIiIiIiIiEjOxNJYUG33co8/4+aCGqcE2+4b5N2nQjQyxNJaWhEUj/FFzKcjXzShjYD7kmA8iIiIiIiIiIiLxE0tjiY0+KbHkgxquBtvsG9TG0yhxxdDIEFNjaf6xKHTzcjJKfID5UMR8EBERERERERERiZ9YGktiaPRJcpPY6CNCA272GYMYGhliaywt7huArkZqLjEfcswHERERERERERGR+ImlsSSGRh8AJEfvYKOPCGz2GYwYGhlibCxxKVXmAxBHPoiIiIiIiIiIiMRMLI0lMTT6ivPTAACWtq5s9BGBzT6DEEMjg40lOeZDjvkgIiIiIiIiIiISP7E0lsTQ6Mt+EIm0+H8AAE38R7DRRwQ2+/RODI0MNpbk7mUXMB+PMB9ERERERERERETiJ5bGklgafZH7xsDC2gkAYGpmafAxiCUfRIq0bvYlJibqcxxYvnw5TExMMH369Cqf98cff6Bt27awtrbG448/jgMHDuh1XLUhhkYGG0vKNkXGMx9gPoiIxIZ1FhEREZHu6bvGAlhnEZH+iaWxJKZGn52LPxr79DPKGMSSD6KKtG72PfbYY/j111/1Mojw8HB899136NChQ5XPO3XqFF577TW8+eabuHjxIoYPH47hw4fj6tWrehlXbRm7kcHGktyDPAkAwN3OivlgPoiIRId1FhEREZHu6bPGAlhnEZH+iaWxJLZGX8dBW2Biavj5RLHkg0gVrZt9S5cuxeTJkzFy5Eg8fPhQZwPIzc3F6NGjsWHDBjg7V938+Prrr/H888/jgw8+QEBAABYvXozOnTtjzZo1OhuPLoihkcHGkty5+xnYG50EABjfsTnzwXwQEYkO6ywiIiIi3dNXjQWwziIi/RNLY0mMjT7u0UdUmbm2T5wyZQpeeOEFvPnmm2jXrh02bNiAIUOG1HoAU6dOxaBBg9C/f38sWbKkyueePn0aM2bMUHrsueeew+7du9W+RiKRQCKRyP6dnZ0NANgfnYwHuRJ1L6uxe9kF2B0lbWS0cLbD12fv6DwGAEQkZgIAQuNSK31NUlKKzZcSkJInwYRAHxy+nYLDt1N0GkMboXGpOBqbhn5+rgCkjSZ9xKnKvewCbIqMh5WZGYrLSnH63kO146gtdeehq3xUFUMbDS0f5x+dR2ZShF6Or3jsvIxbeotRkH2XMbQkHPvkyZN6iwEAGRkZej0+NUz1rc6KTstFI0uty8xqic3IBwBEpebo5fiM0TBjGCpOfYmRmFMAoO7XDoyhPeHYsbGxuHDhgt7iFBQU6O3Y1DDpq8YCWGcxBmMwhn6kPrqJJOP+acRGrEJRbjKad34b+VmxyM+K1UmMgkfHyUw8g1gN02aZiWeQef8knLx7orwciI1YrVWMnNQrWsfQRJKbhOToHbC0dYWT11O4e/lHncdQR4jx8N4JJEX9hqL8NHi0eRnpd8OQfjdMJzFy06MASJeeZp1FtWFSXl5eXt0XrVmzBu+99x4CAgJgbq5cYFTnG3Lbtm1YunQpwsPDYW1tjaCgIAQGBmLVqlUqn29paYnNmzfjtddekz22du1aLFq0CA8ePFD5moULF2LRokVaj4mIiEiTXr16abx6t7bOnTuH7t27M4YGxcXFOHjwILKysuDg4KC3OIbEOouIiBqy/v37w8bGRm/Hrw/1j6Fi1Lc6S1c1FsA6i4iI6ibWWeKIoa8aq9qXAsXHx2PXrl1wdnbGsGHDKhVI2rp79y5CQkJw5MgRWFtb1+gY2pgzZ47S1VPZ2dlo1qwZ+jR3QTt33b2RD/Ik2BudBBcbSzhbW+JGei66eTmhq5eTzmIoOh6XhutpyjGKSsuwLyYZDwuKMKSNJ5rYWek8hjYiEjMRnpip9etqGqcqivkY7O+B03cf6jxGRRXPQ9f5UBVDGw09H929nNDlUT72xzxAekERhrTx0Ek+wuLScC0tF57txsDJs6sORl1ZZlIEkq5vhW+392Hj0IwxtIjxcoAXhgd4avWa3VGJ2BGVhJcDPDE8wEvj808mpGNdRBzeeustjB49urZDrtLQoUOxZ88extAgOzsbjo6Oeju+odWXOmvu0/4IcLPXS0zh53Bx3wD4OdsyBmPUqTj1LcbbXX3hZa+fyYLQ2FQcjUurN/VJXY9RkH0XceErsLhvAAa2bqKXGFGpORjz53l89tln6Ny5s15iAPWj/jFUjPpUZ+mqxgJYZzEGYzCGYWrSlwM84aaDuStVhDkzJ++esHH0U/mcnNQryE29hEZuHWHv9ni1Y2QmnkVB5s0avx4AivPTkBb/DyysndDYp1+lPfp0EUOTjMTTKMy8DcAUrr7PwsLWVecxCrJikXn/JN7u6ouJnX11fnyAdZbYYuirxqpWdbNhwwa8//776N+/P65duwY3N7caBz5//jxSUlKUvrlKS0sRFhaGNWvWQCKRwMzMTOk1Hh4ela54evDgATw8PNTGsbKygpVV5V+Mozs2xyQd/fCcu5+BAT+fRDdvFxwc3QOz/rmGG+m5GNrGU2/7ok3ZH4nrafIYwp5wBSVlOPFGH53sCVcxhjaWhEUjPDGuWnvC1SROVSrmw97KQucxVFGMEfJEC53no2IMbc6D+cjFEIV85JeU4sQbvXWaj2tpuXDy7AoP/xd1ckxVkq5vhatPX70VLvUtRkcPR4x+XPNE15KwaOyISqr2HpbrIuJqMUIi9epTnfVsS3f09tH9H0GCdRFxGNi6CTp7OjEGY9S5OPUpxsTOvnqNcTQurd7UJ3U9Rk7qFcSFr4Cfs63efw6JdE2XNRbAOosxGIMxDFOTznm6jd7iCHNmnm1HqpzPiju/GknXt9Zqj74bx+eiIPMmXH37w69r9Y8h7NHn0KSj2j36ahtDk5KiXJz5tQ8AwDNgFNoGLdN5DABIjvkTmfdPwsvehnUW1YrWzb7nn38e586dw5o1azBu3LhaB+7Xrx+uXLmi9FhwcDDatm2LWbNmVSqMAKBHjx44evQopk+fLnvsyJEj6NGjR63HU1NCI6O9u4OskWFoQqPvako2joztqbNGRnUtCYvG/GNR1Z441yUx5ENSUsp8PMJ8kFiJ4eeDSBHrLCIiIiLd03WNBbDOIqL6Le78asSeW1GrRl9tCY0+Oxd/tY0+fSspysWl/eNQXJgJALBqpN0KUkTGpHWzr7S0FJcvX0bTpk11Etje3h7t27dXeszOzg6NGzeWPT5u3Dh4e3tj2TJp1zwkJAR9+vTBihUrMGjQIGzbtg0RERH4/vvvdTKm6mIjQ04ME+diyAcAbL6UgCxJCfPBfJBIieHng6gi1llEREREuqfrGgtgnUVE9RcbfVJCoy/vYQxcffojLe6gwcdAVBOm2j7xyJEjOi2OtJGQkICkpCTZv5966in8+uuv+P7779GxY0fs2LEDu3fvrlRkGYKYGhls9IkjH0WlZQCAlDwJ88F8kEiJ4eeDSBXWWURERES6Z4waC2CdRUR1Dxt9UoqNvsDBW/WyRx+RvtR8R2I9CA0NrfLfADBy5EiMHDnSMANSQ2yNjLBg3e1BVl1imDgXQz5yJMXYF5MMAJgQ6MN8MB8kQmL4+SAyprpSZxERERHVNayziKguY6NPqmKjz6FJIBJv/GHwcRDVlNZ39pEUGxlyYpg4F0s+nv/lNB4WFAEAmjrYGHwMAPMhEEs+SFzE8PNBRERERERERCQmbPRJqWr0EdU1bPZVAxsZcmKYOBdTPq6mZGNIG+Nt1Mp8SIklHyQuYvj5ICIi+n979x4fZX3m//8NgYQIJIAQCKeAKAhqoBzspuARtRUF3N12q6Widtvdqt2vdttfV1ZZULGwXdtKd7dZW6n6Fam7ULV4AixL4AvKISjIIQ2KCUEIhCg5EiYhuX9/DJN7EjKZQ+ae+zMzr+fjkcejhJm5PuPbGa9eVzI3AAAAYJJTJetZ9IlFHxIHy74QsciwmTA4Ny2Pd++ersG902J+Bok8fEzJA2Yx4fUBAAAAAABgmspP32HRx6IPCYRlXwhYZNhMGJybmAcfpUoeMI8Jrw8AAAAAAAATDbzkVhZ9Biz6TpWsd6UuEg/LviBYZNhMGJyTh408vEzJA2Yx4fUBAAAAAABgqkGjv+pKXRZ9ttLdv1Llp++4UhuJp4fbBzAZiwybCYNz8rAVlJ7SxpJK8jAkD5jFhNcHAAAAAAAA2mLRZyvd/SuV7Py5Bl5yKws/RAXLvgBYZNhMGJyTR1vkYVYeMIvbrw8AAAAAAAC0xaLP5lv0jb76R+rVdwTLPkQFH+PZARYZbbk9OCcPW+HxKknSzNEDycOgPGAWN18fAAAAAAAAaItFn81/0efWNRORmFj2tcMiw8ZiycuUPJZsKdau85lcP2qQK2cgD5t/HjCLW68PAAAAAAAAtMWiz8aiD05i2eeHRYaNxZKXSXks3FSkaUP7uVJfIg9/JuQBAAAAAAAAmMxTV86i7zwWfXAay77zWGTYTFhkkIfNl8eTN4zXVJcyIQ+bCXkAAAAAAAAApjtRvIZFn1j0ITZY9olFhj8TFhnkYfPPg49SJQ8AAAAAAADAdE1nKiVJqRcNZNHHog8xkvTLPhYZNhMWGeRhIw8v8gAAAAAAAADiQ83JPao88idJ0uCxf82ij0UfYiSpl30sMmwmLDI+q2kgj/PIw4s8AAAAAAAAgPhQc3KP9rz5bfXs1U+S1D0lNeZnYNGHZJW0y76S0/UsMs4zZZHxwp4j5CHy8CEPAAAAAAAAID74Fn29B4zVxTkzXTkDiz4ks6Rd9v3i/U9YZMiMRcbJeo8kKat3GnmQhyTygLkOf1Hv9hEAAAAAAACM4r/om3jb/1W37rGfJ7LoQ7JL2mXfsIx0FhkGLDJ2HjutN4rLJUn3TBxJHuRBHjDWzmOntXTrIbePAQAAAAAAYIz2iz6u0ceiD+5I2mXfw18ewyLDgMXSzS9t04B072c3p/VIifkZyMNGHjYT8oBZfK+PERnpbh8FAAAAAADACCYs+lqaG1n0AUriZV+vniwyTFgsXZmVodvHDnHlDORhIw+bCXnALP6vj59Mv8zt4wAAAAAAALjOhEWfJJ089AcWfYCSeNkXaywybP6D83Xz8pSaEvt/DcnDRh42E/KAWdq/PtJd+EERAAAAAAAAk5iw6LNamiRJjWcqWfQBcnnZl5+fr9zcXGVkZCgjI0N5eXl65513At6+qalJTzzxhMaMGaNevXpp4sSJWrduXQxPHBkWGbb2g3M+SpU8yAOmMuH1AUQqWXosAACAWKPPApDsTFj0nWus0+dHNkqShoz7Oos+QC4v+4YPH65ly5Zp9+7dKiws1I033qi5c+fqwIEDHd7+scce07PPPqt///d/18GDB/X9739ff/mXf6kPP/wwxicPHYsMmwmDc8+5ZvI4jzxsJuQBs5jw+gC6Ihl6LAAAADfQZwFIZqYs+va+NV9NZ6skSWl9smN+BolFH8zj6rJv9uzZmjVrli677DKNHTtWTz31lPr06aPt27d3ePuXXnpJ//zP/6xZs2bpkksu0f33369Zs2bp5z//eYxPHhoWGTZTBucv7i0jD5GHPxPygFlMeX0AXZHoPRYAAIBb6LMAJCuTFn31XxzSwJybYl7fh0UfTNTD7QP4NDc3a/Xq1aqvr1deXl6Ht/F4POrVq1eb76Wnp2vr1q0BH9fj8cjj8bT+uaamRpL0VvEJnazzBLpblxQer5Ik/fvOT3X2XLPunZSjDYcrtOFwRdRrFJSe6vR2BaWntLGkUjNHD5TkXWxEu0Ywn9U06IU9R5TVO003jhqo5Ts+daROZ3Z8dlqSdLz2rL47eVTU85BCex5dySPUGsGQh62reew+X6Oh5qhqT+2L6JzBNNQclSTVn/7EkcdPxBpOvj72nqju0hkBNzjVY/nu11GfVVxZpz6pzrSZJafPSJKKTtU68vjUSM4asapDjdAdr22QlDj9SbzX8D12yekz+qC8ypEaTr/GASfQZ1GDGtSIxzqn6r3vLadKNrT2EcF46sp1oniNUi8aqH5Dv6KjH/2u09v75mRVx7erpLBr5/VpaW7UyUN/UOOZSg0Z93XVVh6Ieo32OnoeVce3q+rYNvUbNl2WJZUU/qpLNeo+L5Lk7X/ps9AV3SzLstw8wL59+5SXl6ezZ8+qT58+WrVqlWbNmtXhbb/1rW9p7969ev311zVmzBht3LhRc+fOVXNzc5sGyN/ixYv1+OOPO/kUAABJJjc3Vzk5OY7W2Llzp66++mpqBNHU1KR169apurpaGRkZjtWJR073WBJ9FgAg+mbMmKH+/Z371I9E6H9iVYM+KzD6LABAPKLPMqOGUz2W68u+xsZGlZWVqbq6WmvWrNFzzz2nzZs3a8KECRfc9tSpU/re976nN954Q926ddOYMWN000036Xe/+50aGho6fPyOfhJqxIgRum7kAE3Iin6z2tjcolX7PlPDuRaNH9hH148aGPUakrS5tFIHK+s0bWg/TR3a74K/LzxepV3HqwL+fTRqBHOy3qM3iss1ID1Vt48dotSUjj81tqt1OtPY3KI3D51QRX2jLMmRGj6dPY9o5BGsRjDkYYtWHltKK3Wgsk7ZE76tftlTu3bgAKrKC1V+cKVGTfuR0jNGUCOEGk6+Pg5V1mljaaVWrlypefPmReHUgc2ZM0dr166lRhA1NTXKzMxkCNUBp3ssKXCf9eg1YzV+UF9Hnte2ss+VX1iqJ28Yr9H9L6IGNeKqDjVC93rRca0pKk+Y/iTeazTUHFXprp/r/qmjNH3kxY7UKDl9Rgs3FWn37t2aPHmyIzWkxOh/YlWDPisw+ixqUIMaTolFnec/OKKNpZXqN2y60jNHd3rbpjOVqjzyJ/Xs1U8X58xUt+6hXeqk6vgONVR9rD6DJqrvoKu6dF6rpUmfH9moprNVGphzk3peNDDqNQLxryFJdaf2Rr1eQ3WJqo5t09fHZ+uO8UOj9rj+6LPMquFUj+X6x3impqbq0ksvlSRNmTJFu3bt0vLly/Xss89ecNtBgwbp9ddf19mzZ/X5559r6NCheuSRR3TJJZcEfPy0tDSlpaVd8P15E0fqe5NHRe15SFKtp0lfe/l9nWtpkSR966oRjl0D7IG39uhgZZ3mjMu+oMaSLcXadby0y9cg66xGML5rXk0bNiDoNa+6UqczvjwazrXoL8dn69Wi8qjX8BfoeUQrj85qBEMezuVxoLJO/bKnasjYv+zqkQMqP7hSA3NucKxxSbQaTr4+Xt53VBtLK6NxVMBxTvdYUuA+65YxWbo2x5kfeJKk/MJSzbpssCZn96MGNeKuDjVCU3L6jNYUlSdMfxLvNWpP7VPprp9r+siLNe8qZxaKH5RXaeGmIkceG4g2+ixqUIMaTnK6zrayz7WxtFLZl3+j03mW7xp9GYMnhn2Nvj9vflQNVR9r4KibNHpq5Ne0812jr6XZoyl/+QdlDJ4U9Rqd8dXokdpHVce2OXKNvhOHXlPVsW2aOKQffRa6pONfXXBRS0tLpx9jIEm9evXSsGHDdO7cOf3hD3/Q3LlzY3S6wHyLjP0VNZo9Ltu1cyzZUqyFm4qissiIlG9wfmVWRtDBuVP883j37uka3PvCBjkWyMOLPGAqE14fQKzEa48FAABgOvosAInGt+jrPWBs2Iu+aPEt+uq/OKRJt69ss+iLNacWfUA0ufqbfQsWLNCtt96qkSNHqra2VqtWrVJBQYHWr18vSZo/f76GDRumpUuXSpJ27NihY8eOadKkSTp27JgWL16slpYW/eQnP3HzaVywyHhhzxFXzmHCIsOEwXn7PK4e1t+VTMjDizxgKhNeH4BTEqXHAgAAMA19FoBEx6LPVntqnySp37DpLPpgPFeXfRUVFZo/f77Ky8uVmZmp3NxcrV+/XjfffLMkqaysTN272798ePbsWT322GP69NNP1adPH82aNUsvvfSS+vXr59IzYJHhz4TBeUd5uIE8vMgDpjLh9QE4KRF6LAAAABPRZwFIZCz6bKW7f6W6U3slSf2G/oUrZwDC4eqyb8WKFZ3+fUFBQZs/X3fddTp48KCDJwoPiwybCYNzU/IoKD2ljSWV5EEeMJQJrw/AafHeYwEAAJiKPgtAomLRZyvd/SuV7Py5+gya2LrwA0zn6rIvnrHIsJkwODclD0nkIfKAuUx4fQAAAAAAAJiERZ/Nt+gbffWPdLbuJMs+xI3uwW+C9lhk2EwYnJuSR+HxKknSzNEDyYM8YCATXh8AAAAAAAAmYdFn81/0cY0+xBuWfWFikWEzYXBuSh5LthRr1/lMrh81yJUzkIfNhDxgFhNeHwAAAAAAACZh0Wdj0Yd4x7IvDCwybCYMzk3KY+GmIk0b2s+V+hJ5+DMhD5jFhNcHAAAAAACASRpqjrDoO49FHxIBy74QsciwmTA4Ny2PJ28Yr6kuZUIeNhPygFlMeH0AAAAAAACYpuyDfBZ9YtGHxMGyLwQsMmwmDM5NzIOPUiUPmMeE1wcAAAAAAICJUvsMYdFnwKKvoeaIK3WReFj2BcEiw2bC4Jw8bORhMyEPmMWE1wcAAAAAAICpciZ9n0Wfy4u+mpN7VPZBviu1kXhY9nWCRYbNhME5edg+q2kgj/NMyANmMeH1AQAAAAAAYLLuPXrFvCaLPlvNyT3a8+a3ldpniCv1kXhY9gXAIsNmwuCcPNp6Yc8R8pA5ecAsbr8+AAAAAAAA0BaLPptv0dd7wFjlTPq+K2dA4mHZ1wEWGW25PTgnD9vJeo8kKat3GnkYlAfM4ubrAwAAAAAAAG2x6LP5L/om3vZ/XfkNSyQmln3tsMiwsViymZDHzmOn9UZxuSTpnokjycOIPE64Uhudc+v1AQAAAAAAgLZY9NnaL/rcuGYiEhfLPj8sMmwslmym5HHzS9s0ID1VkpTWIyXmZyAPmy+Pi8/nAbO48foAAAAAAABAWy3NjSz6zmPRB6ex7DuPRYaNxZLNpDyuzMrQ7WPduWAredj887ht7GBXzgAAAAAAAACY7uShP7DoE4s+xAbLPrHI8MdiyWZaHuvm5Sk1JfYvWfKwmZAHAAAAAAAAYDKrpUmS1HimkkUfiz7ESNJPqllk2ExYZJCHrX0efJQqeQAAAAAAAAAmO9dYp8+PbJQkDRn3dRZ9LPoQI0m97GORYTNhkeE510we55GHjTwAAAAAAAAA851rrNPet+ar6WyVJCmtT7Yr52DRh2SUtMu+s00sMnxMWWS8uLeMPEQe/sgDAAAAAAAAMJ9v0Vf/xSENzLnJtXOw6EOyStpl3zM7DrPIkBmLjMbmFklSRb2HPMijFXnARA1NzW4fAQAAAAAAwCj+i75Jt69Uz4sGunIOFn1IZkm77DtW08Aiw4BFRq2nSW8eOiFJundSDnmQhyTygJlqPU362baP3T4GAAAAAACAMdov+rhGH4s+uMPVZV9+fr5yc3OVkZGhjIwM5eXl6Z133gl4++uvv17dunW74Ou2224Lu/Y/5l3KIsOAxdLXXn5fXzQ0SpKGZ6TH/AwSefiQh82EPGAW3+vjaE2D20cBQuZmnwUAAJCo6LEAwMaiz8aiD25zddk3fPhwLVu2TLt371ZhYaFuvPFGzZ07VwcOHOjw9q+++qrKy8tbv/bv36+UlBR94xvfCLv26P69u3r8iLDI8PINzvdX1Gj2OHcu1CqRhw952EzIA2bxf30smDHW7eMAIXOzzwIAAEhU9FgA4GXKoq/q+HYWfYCkHm4Wnz17dps/P/XUU8rPz9f27dt1xRVXXHD7AQMGtPnzK6+8oosuuihuGiQWGV7+g/N3756uF/YcifkZJPLwIQ+bCXnALO1fHx9/Uef2kYCQJVufBQAAEAv0WABgzqJPkqqObWPRB8jlZZ+/5uZmrV69WvX19crLywvpPitWrNCdd96p3r0D/5aex+ORx+Np/XNNTY0k6a3iEzpZ5wl0ty4pPF4lSSooPdX6vYLSU9pYUqmZo70XJ12ypTjqNYL5rKZBL+w5oqzeabpx1EAt3/Fp1GsE4znXrBf3lqmi3qN7J+Vow+EKR+q0175GtPPoqEYw4eYRSY1gyMMWSR67z9doqDmq2lP7Ij1qpxpqjkqS6k9/4sjj+9eoPLLJsTpV5YUxq+Hk62PvieqoPDYQa7Hus4or69Qn1Zk2s+T0GUlS0alaRx6fGslZI1Z1qBG647Xej86ORQ9EjeB8j11y+ow+KK9ypIbTr3HACU71WBJ9FjWokYw1YlXnVL33veVUyYbWPiIcLc2NOnnoD2o8U6kh476uz49u0edHt7S5jW9OVnV8u0oKu37mjlSW/kmSdFH/y9Sr7widOPRa1Gs0VJdIkuo+L+rw8Rtqjqjsg3yl9hmi7HHfUGXpu2HXqD7h/Qd0vLaBPgtd0s2yLMvNA+zbt095eXk6e/as+vTpo1WrVmnWrFlB77dz5059+ctf1o4dO3T11VcHvN3ixYv1+OOPR/PIAIAkl5ubq5ycHEdr7Ny5s9P/vlHDq6mpSevWrVN1dbUyMjIcqxOv6LMAAPFmxowZ6t+/v2OPnwj9T6xq0GcF5nSPJdFnAQCijz7LjBpO9ViuL/saGxtVVlam6upqrVmzRs8995w2b96sCRMmdHq/v//7v9f777+vjz76qNPbdfSTUCNGjNB1IwdoQpYzzerm0kodrKzTtKH9JEm7jldp2tB+mnr+z9GuEexxT9Z79EZxuQakp+r2sUOUmhLapRrDqRFMY3OL3jx0Ql80NGr2uGwN7p3mSJ1AfDWG9emlY3VnHakV6vOINI9wagRDHrau5LGltFIHKuuUPeHb6pc9NQqnvlBVeaHKD67UqGk/UnrGCEdrDOubpmO1Hkfy8P2zunpoP00JmscJXZyeqtvGDo4oDydfH4cq67SxtFIrV67UvHnzIq4Rijlz5mjt2rXUCKKmpkaZmZkMoQJwq8969JqxGj+ob1SeQ3vbyj5XfmGpnrxhvEb3v4ga1IirOtQI3etFx7WmqDwmPZCTNRpqjqp018/19fHZmjiknyM19p6o0pqict0/dZSG9k13tIaTmZecPqOFm4q0e/duTZ482ZEaUmL0P7GqQZ8VmNM9lkSfRQ1qJGONWNV5/oMj2lhaqX7Dpis9c3TI97NamvT5kY1qOlulgTk3qedFAwPetur4DjVUfaw+gyaq76CronHsVrWn9qnu1F716jtCZ2uPalp2P00d1i+qNXx8c6Cvj8/WIL/5kBM16LOSp4ZTPZbrH+OZmpqqSy+9VJI0ZcoU7dq1S8uXL9ezzz4b8D719fV65ZVX9MQTTwR9/LS0NKWlXfhCnDdxpL43eVTE5+7MA2/t0cHKOmWk9dDGkkpHrkHmqzFnXHanj+27Btm0YQPCvgZZqDWC8V3zquFci7Z+5zpdPaztTw9Eq05nfDWO1Z117JpwoTyPruQRao1gyMMWjTwOVNapX/ZUDRn7l9E4dofKD67UwJwbot4cta9xrNbjaB4HKus0O6Q8+ncpDydfHy/vO6qNpZURPTbgBrf6rFvGZOnanMD/x6+r8gtLNeuywZqc3Y8a1Ii7OtQITcnpM1pTVB6THsjJGrWn9ql01891x/ihmneVMwvFl/cd1Zqicn138ijH8vDVcDLzD8qrtHBTkSOPDUSb0z2WRJ9FDWoka41Y1NlW9rk2llYq+/JvhDzP8l2jr6XZoyl/+Yeg1+j78+ZH1VD1sQaOukmjp0bvWnqlu3+l8oMrNfrqH6lX3xEq2viw5lzu3AzTNwdacM04R/usjaWV9FnostB/ZSJGWlpa2vzkUkdWr14tj8ejb3/72zE6VWScWvSFyjc4vzIrI6LBeTT4Buf7K2r07t3TLxicx4rv+m0zRw8kD/KQZEYepkn2PEx5fQBOSqQ+CwAAwBT0WAASmW/RV//FIU26fWXQRZ9TSnf/SiU7f67RV/9Io6ZEb4EIJApXf7NvwYIFuvXWWzVy5EjV1tZq1apVKigo0Pr16yVJ8+fP17Bhw7R06dI291uxYoXuuOMOXXzxxW4cOygWGV6mDM6XbCnWrvOZXD9qkCtnIA8beZgrmfMw5fUBRFOi9lkAAABuoscCkExY9AHxw9VlX0VFhebPn6/y8nJlZmYqNzdX69ev18033yxJKisrU/fubX/5sLi4WFu3btWGDRvcOHJQLDK8TBmcL9lSrIWbijRtaL/WXGKNPGzkgfZMyMOU1wcQbYnYZwEAALiNHgtAsmDRB8QXV5d9K1as6PTvCwoKLvjeuHHjZFmWQyfqGhYZXqYMzn15PHnDeB2vbXAlE/KwkQfaMyEPU14fgBMSrc8CAAAwAT0WgGTAog+IP8Zdsy9e+S8ypg7t58oZGJzb/PPgo1TJQzIjD9hMyMOU1wcAAAAAAIApWPQB8YllXxSwyPAyZXBOHl7kYTMhD9hMyMOU1wcAAAAAAIApWPQB8YtlXxexyPAyZXBuQh6f1TSQx3nkgfZMyMOU1wcAAAAAAIApWPQB8Y1lXxewyPAyZXBuQh6S9MKeI+Qh8kDH3M7DlNcHAAAAAACAKVj0AfGPZV+EWGR4mTI4NyGPk/UeSVJW7zTyIA+0Y0Ieprw+AAAAAAAATMGiD0gMLPsiwCLDy5TBuQl57Dx2Wm8Ul0uS7pk4kjzIA35MyMOU1wcAAAAAAIApWPQBiYNlX5hYZHiZMjg3JY+bX9qmAempkqS0HikxPwN52EzIAzYT8jDl9QEAAAAAAGCKlnNnWfQBCYRlXxhYZHiZMjg3KY8rszJ0+9ghrpyBPGwm5AGbCXmY8voAAAAAAAAwyZE9/8WiD0ggLPtCxCLDy5TBuWl5rJuXp9SU2L+cyMNmQh6wmZCHKa8PAAAAAAAA0zTWnWDRByQQpuEhYJHhZcrg3MQ8+ChV8oDNhDxMeX0AAAAAAACYaOTk+1n0AQmEZV8QLDK8TBmck4eX51wzeZxnQh6wmZCHKa8PAAAAAAAAU6Vn5LhSl0Uf4Iwebh/AZCwyvEwZnJOH7cW9Zar2nCMPQ/KAlyl5mPD6AAAAAAAAQFss+gDnsOwLgEWGzYTBOXl4NTa3SJIq6j3act+15GFIHjArD7dfHwAAAAAAAGiLRR/gLD7GswMsMrz8B+cs+tzPo9bTpDcPnZAk3TsphzwMyOOtQydjXtdEpuRhwusDAAAAAAAAbbHoA5zHsq8dFhlepgzOycPLd83ELxoaJUnDM9JjfgaJPHx8eXx+Po9kZlIebr8+AAAAAAAA0BaLPiA2WPb5YZHhZcrgnDy8fHnsr6jR7HHZMa/vQx5ebfMYEvP6JjEvD/deHwAAAAAAAGir6vh2Fn1AjLDsO49Fhpcpg3Py8PLP4927p2tw77SYn0EiDx9T8jABeQAAAAAAAKAzVce2segDYoRln1hk+JgyOCcPr/Z58FGq5GEK8gAAAAAAAEAgtaf2SZL6DZvOog+IkaRf9rHI8DJlcE4eXuRhIw+zkAcAAAAAAAACKd39K9Wd2itJ6jf0L1w+DZA8erh9ADexyPAyZXBeUHpKG0sqyYM8WpGHWcgDAAAAAAAAgZTu/pVKdv5cfQZNbF34AYgNV3+zLz8/X7m5ucrIyFBGRoby8vL0zjvvdHqfqqoqPfjgg8rOzlZaWprGjh2rt99+O+zabxWXs+iTWYNzFkvk4Y88zEIeQHxxs8cCAABIZPRZANAx36Jv9NU/Ut9BV7l9HCDpuPqbfcOHD9eyZct02WWXybIsvfjii5o7d64+/PBDXXHFFRfcvrGxUTfffLOysrK0Zs0aDRs2TEeOHFG/fv3Crv3HQydZZBgyOC88XiVJmjl6IHmQhyTyMA152F4vOu5KXSBcbvZYAAAAiYw+CwAu5L/oGzXl/+jPmx91+0hA0nF12Td79uw2f37qqaeUn5+v7du3d9gg/e53v9MXX3yh9957Tz17eofNo0aNiqj23LGDWWQYMDhfsqVYu84vl64fNciVM5CHjTy8TMnDBORhW7KlWGuKyl2pDYTLzR4LAAAgkdFnAUBb7Rd9ANxhzDX7mpubtXr1atXX1ysvL6/D26xdu1Z5eXl68MEH9cc//lGDBg3St771Lf3TP/2TUlJSOryPx+ORx+Np/XNNTc35/9VNS7YUR/tpSLJ/M6qg9NQFf/dZTYNe2HNEWb3TdOOogVq+49Oo1wjGc65ZL+4tU0W9R/dOytGGwxXacLgiqjVC4bsm3LA+vXSs7qxjdaTAzyVaeXRWI5hQ8+hKjVCQh1c4eew+X6OqvDDicwbje+zKI5tUf/oTR2vEex6xeH1cMaivDpyqjfrjA05yqseSAvdZxZV16pPqTJtZcvqMJKnIwdciNZKvRqzqUCN0x2sbJMmx/keSGmqOOl7D99glp8/og/IqR2okSuZOv8YBJ9BnUYMa1IjHOqfqve8t1Se6Ps86VbJelZ++o4GX3KpefUfoxKHXJEkN1SWSpLrPi1q/F22+8x+vbaDPCoI+Kzl0syzLcvMA+/btU15ens6ePas+ffpo1apVmjVrVoe3vfzyy1VaWqp58+bpgQce0CeffKIHHnhA/+f//B8tWrSow/ssXrxYjz/+uJNPAQCQZHJzc5WTk+NojZ07d+rqq6+mRhBNTU1at26dqqurlZGR4VideOR0jyXRZwEAom/GjBnq39+5T3JIhP4nVjXoswKjzwIAxCP6LDNqONVjub7sa2xsVFlZmaqrq7VmzRo999xz2rx5syZMmHDBbceOHauzZ8+qpKSk9aeffvGLX+jf/u3fVF7e8UerdfSTUCNGjNB1IwdoQpYzzerm0kodrKzTtKH9NHVoP0nSyXqP3igu14D0VN0+dohSU7pHvUYwjc0tevPQCX3R0KjZ47I1uHda1GuEovB4lXYdr2p9XKfq+GtfI9p5dFQjmHDziKRGKMjDqyt5XD20n6Y4lMeW0kodiHKN9nw1EiUPJ18fhyrrtLG0UitXrtS8efOiUiOQOXPmaO3atdQIoqamRpmZmQyhOuB0jyUF7rMevWasxg/qG/0nJWlb2efKLyzVkzeM1+j+F1GDGnFVhxrh17h/6igN7ZvuSI29J6q0pqg8JjUSJQ8na5ScPqOFm4q0e/duTZ482ZEaUmL0P7GqQZ8VGH0WNahBDafE8rl8fXy2BoUwb4mEb34Sixrxnjt9VvLVcKrHcv1jPFNTU3XppZdKkqZMmaJdu3Zp+fLlevbZZy+4bXZ2tnr27NnmYw7Gjx+vEydOqLGxUampqRfcJy0tTWlpF76hzJs4Ut+bPCp6T8TPA2/t0cHKOs0Zl63Hrh3Xes2racMGRO2aV+1rBOO75lXDuRZt/c51IV3zKtwaofBeE8775uV7TCfqtOdf45YxWVHPo32NYM8jkjzCrREK8vDqah6zHc7jQBRrdMRXI1HycPL18fK+o9pYWtnlxwZiwekeSwrcZ90yJkvX5gyM0jO5UH5hqWZdNliTs/tRgxpxV4ca4dX47uRRjtV4ed9RrSkqj0mNRMnDyRoflFdp4aYiRx4biDb6LGpQgxpOitVzWXDNOEd7oI2llTGpkQi502chGrr+6xpR1tLS0uYnl/xNnz5dn3zyiVpaWlq/d+jQIWVnZwdsjtzmW/RdmZUR1cF5OHyD8/0VNXr37ukhD86jbcmWYi3cVNRmcB5rn9U0kMd55OFFHjbysJmQBxBtidZjAQAAmII+CwAAuM3VZd+CBQu0ZcsWlZaWat++fVqwYIEKCgpaPxpt/vz5WrBgQevt77//fn3xxRd66KGHdOjQIb311lv66U9/qgcffNCtp9ApBuc2UwbnL+w5Qh4iDx/yaIs8vEzJA+iKRO+xAAAA3EKfBQAATOTqx3hWVFRo/vz5Ki8vV2ZmpnJzc7V+/XrdfPPNkqSysjJ1727vI0eMGKH169frhz/8oXJzczVs2DA99NBD+qd/+ie3nkKnXthzRFOG9mdwbsDg/GS99yfssnqnkQd5SCIPf+RhMyEPIBoSvccCAABwC30WAAAwkavLvhUrVnT69wUFBRd8Ly8vT9u3b3foRNHB4NxmwuB857HTeqPYe9HreyaOJA/yIA8/5GEzIQ8gWhK1xwIAAHAbfRYAADCRcdfsi3cMzm0mDM5910wckO79HPy0HilB7hF95GEjDxt5eJEHAAAAAAAAAHQNy74oYnBuM2Fw7svjyqwM3T52iCtnIA8bedjIw4s8AAAAAAAAAKDrWPZFCYNzmwmDc/881s3LU2pK7P9VJw8bedjIw4s8AAAAAAAAACA6WPZFAYNzmwmD8/Z58FGq5EEeNvKwmZAHAAAAAAAAAHQVy74uYnBuM2FwbkIennPN5HEeedjIw4s8AAAAAAAAACC6erh9gHjG4NxmwuDchDwk6cW9Zar2nCMP8mhFHjbyAAAAAAAAAIDoYtkXIQbnNhMG5ybk0djcIkmqqPdoy33Xkgd5SCIPH/IAAAAAAAAAAGfwMZ4RMG1wzqLP/TxqPU1689AJSdK9k3LIgzwkkYcPeQAAAAAAAACAc1j2hYnBuc2EwbkpeXzt5ff1RUOjJGl4RnrMzyCRhw952MjDZkIeAAAAAAAAAOAEln1hYHBuM2FwblIe+ytqNHtcdszr+5CHF3nYyMNmQh4AAAAAAAAA4BSWfSFicG4zYXBuWh7v3j1dg3unxfwMEnn4kIeNPGwm5AEAAAAAAAAATmLZFwIG5zYTBucm5sFHqZKHRB4+5AEAAAAAAAAAscOyLwgG5zYTBufkYSMPL/KwkYfNhDwAAAAAAAAAIBZ6uH0AkzE4t5kwOCcPW0HpKW0sqSQP8mhFHjYT8gAAAAAAAACAWGHZFwCDc5sJg3PyaIs8yMMfebTldh4AAAAAAAAAEEt8jGcHGJy35fbgnDxshcerJEkzRw8kD/KQRB7+TMgDAAAAAAAAAGKNZV87DM5tJgzOycO2ZEuxdp3P5PpRg1w5A3nYyMOLPAAAAAAAAADAXSz7/DA4t5kwOCcPm++aidOG9nOlvkQe/sjDizwAAAAAAAAAwH0s+85jcG4zYXBOHjZfHk/eMF5TXcqEPGzk4UUeAAAAAAAAAGAGln1icO7PhME5edj88+CjVMlDIg9/JuQBAAAAAAAAAG5zddmXn5+v3NxcZWRkKCMjQ3l5eXrnnXcC3v6FF15Qt27d2nz16tWrS2dgcG4zYXBOHjby8CIPG3nYTMgDMJ0JfRYAAECioccCAAAm6uFm8eHDh2vZsmW67LLLZFmWXnzxRc2dO1cffvihrrjiig7vk5GRoeLi4tY/d+vWLeL6DM5tJgzOP6tpII/zyMOLPGzkYTMhDyAeuN1nAQAAJCJ6LAAAYCJXl32zZ89u8+ennnpK+fn52r59e8AGqVu3bhoyZEiXa5ecrtePN+xncC5zBucv7DmiKUP7kwd5SCKP9sjDy5Q8gHjgZp8FAACQqOixAACAiVxd9vlrbm7W6tWrVV9fr7y8vIC3q6urU05OjlpaWjR58mT99Kc/DdhMSZLH45HH42n9c01NjSTpZ1s/1tCMXrpx1EAt3/Fp9J6IpMLjVZKkgtJTgc91rlkv7i1TRb1H907K0YbDFdpwuCKqNUJRUHpKG0sqNXP0QEneQXq0awQ/Q6UkqVePFEfykII/l67mEUqNUHSWR7RqBD8DefiQhxd52DaVOPt+CDgl1n1WcWWd+qQ602aWnD4jSSo6VevI41MjOWvEqg41qEGNwJx+jQNOcKrHkuizqEGNZKwRqzrUSL4a9FnJoZtlWZabB9i3b5/y8vJ09uxZ9enTR6tWrdKsWbM6vO3777+vjz/+WLm5uaqurtbTTz+tLVu26MCBAxo+fHiH91m8eLEef/xxJ58CACDJ5ObmKicnx9EaO3fu1NVXX02NIJqamrRu3TpVV1crIyPDsTrxij4LABBvZsyYof79nfsUiUTof2JVgz4rMKd7LIk+CwAQffRZZtRwqsdyfdnX2NiosrIyVVdXa82aNXruuee0efNmTZgwIeh9m5qaNH78eN1111168sknO7xNRz8JNWLECE0f0V+5gzOj9jz8bS6t1MHKOk0b2k9Th/Zr83eNzS1689AJfdHQqNnjsjW4d1rUa4Si8HiVdh2v6vT+Xa0RzMl6j94oLleP7t3VcK7FsTpS4OcSrTw6qxGKUPLoao1gyMNGHl7kYfPlcVHPHqr2nNPKlSs1b968qNZob86cOVq7di01gqipqVFmZiZDqADc6rMevWasxg/qG7Xn4W9b2efKLyzVkzeM1+j+F1GDGnFVhxrUoEZgJafPaOGmIu3evVuTJ092pIaUGP1PrGrQZwXmdI8l0WdRgxrJWCNWdaiRfDXos8yq4VSP5frHeKampurSSy+VJE2ZMkW7du3S8uXL9eyzzwa9b8+ePfWlL31Jn3zyScDbpKWlKS3twgH1PZNy9L3JoyI+d2ceeGuPDlbWac647DbXlPJd86rhXIu2fue6Ll3zKlCNUCzZUqxdx0uDXvOqKzWC2XnstG5+aZumDRug8QP7aMWHZY7U8enouUQzj0A1QhFqHl2pEQx52MiDPNrzz+O+SSP1vTf2RO2xAae51WfdMiZL1+YMjPzgQeQXlmrWZYM1ObsfNagRd3WoQQ1qdOyD8iot3FTkyGMD0eZ0jyXRZ1GDGslaI1Z1qJFcNeizkkN3tw/QXktLS5ufXOpMc3Oz9u3bp+zsbIdP1XW+wfn+ihq9e/f0Lg/OI7VkS7EWbioKaXDuFN/g/MqsDK2bl6fUlNj/a0geNvKwkYcXedja55HeM8WVcwDRkqh9FgAAgJvosQAAgNtc/c2+BQsW6NZbb9XIkSNVW1urVatWqaCgQOvXr5ckzZ8/X8OGDdPSpUslSU888YT+4i/+Qpdeeqmqqqr0b//2bzpy5Ii++93vuvk0gmJwbms/OO+b1jPmZyAPG3nYyMOLPGwm5AF0RbL0WQAAALFEjwUAAEzk6rKvoqJC8+fPV3l5uTIzM5Wbm6v169fr5ptvliSVlZWpe3f7t1pOnz6t733vezpx4oT69++vKVOm6L333gvpM9HdwuDcZsLg3HOumTzOIw8beXiRh82EPICuSoY+CwAAINbosQAAgIlcXfatWLGi078vKCho8+df/vKX+uUvf+ngiaKLwbnNlMH5i3vLVO05Rx7k0Yo8bOThZUoeQFclep8FAADgBnosAABgIleXfYmOwbmXCYPzxuYWSVJFvUdb7ruWPMhDEnn4kIfNhDwAAAAAAAAAIBzdg98E4fIfnLPoc39wXutp0puHTkiS7p2UQx7kIYk8fMjDZkIeAAAAAAAAABAuln1RxuDcZsLg3HfNxC8aGiVJwzPSY34GiTx8yMNGHjbyAAAAAAAAAIDIseyLIgbnNhMG57489lfUaPa47JjX9yEPL/KwkYeNPAAAAAAAAACga1j2RQmDc5sJg3P/PN69e7oG906L+Rkk8vAhDxt52MgDAAAAAAAAALqOZV8UMDi3mTA4b58HH6VKHhJ5+JCHzYQ8AAAAAAAAAKCrWPZ1EYNzmwmDc/KwkYeNPLzIw2ZCHgAAAAAAAAAQDT3cPkA8Y3BuM2FwbkoeBaWntLGkkjzIoxV52MgDAAAAAAAAAKKLZV+EGJzbTBicm5KHJPIQefgjj7bIAwAAAAAAAACii4/xjACDc5sJg3NT8ig8XiVJmjl6IHmQhyTy8EceAAAAAAAAAOAMln1hYnBuM2FwbkoeS7YUa9f5TK4fNciVM5CHjTy8yMNmQh4AAAAAAAAA4ASWfWFgcG4zYXBuUh4LNxVp2tB+rtSXyMMfeXiRh82EPAAAAAAAAADAKSz7QsTg3GbC4Ny0PJ68YbymupQJedjIw4s8bCbkAQAAAAAAAABOYtkXAgbnNhMG5ybmwUepkodEHv7IAwAAAAAAAABig2VfEAzObSYMzsnDRh428vAiD5sJeQAAAAAAAABALLDs6wSDc5sJg3PysH1W00Ae55GHF3nYTMgDAAAAAAAAAGKFZV8ADM5tJgzOyaOtF/YcIQ+Rhw95tOV2HgAAAAAAAAAQSyz7OsDgvC23B+fkYTtZ75EkZfVOIw/ykEQe/kzIAwAAAAAAAABijWVfOwzObSYMzsnDtvPYab1RXC5JumfiSPIgD/LwY0IeAAAAAAAAAOAGln1+GJzbTBick4fNd83EAempkqS0HikxPwN52MjDRh4AAAAAAAAA4C5Xl335+fnKzc1VRkaGMjIylJeXp3feeSfg7V999VVNnTpV/fr1U+/evTVp0iS99NJLUTkLg3ObCYNz8rD58rgyK0O3jx3iyhnIw0YeNvIAzGZSnwUAAJAo6LEAAICJXF32DR8+XMuWLdPu3btVWFioG2+8UXPnztWBAwc6vP2AAQP06KOP6v3339dHH32k++67T/fdd5/Wr1/fpXMwOLeZMDgnD5t/Huvm5Sk1JfYvWfKwkYeNPADzmdJnAQAAJBJ6LAAAYKIebhafPXt2mz8/9dRTys/P1/bt23XFFVdccPvrr7++zZ8feughvfjii9q6dau++tWvRnQGBue29oPzf/pTx42qk8jD1j4PPkqVPMjDZkIegOlM6LMAAAASDT0WAAAwkavLPn/Nzc1avXq16uvrlZeXF/T2lmXpf//3f1VcXKx//dd/DXg7j8cjj8fT+ueamhpJ0lvFJ1RWdUYv7i1TRb1H907K0YbDFdpwuKLLz6XweJUkqaD0VEi3Lyg9pY0llZo5eqAk7yA92jWC+aymQS/sOaKs3mm6cdRALd/xadRrBOKr86dPK/Sb3SVRz8O/RijPJZI8wq0RTEd5RLtGIORxIfKwJXsee09UO/bYgJNi3WcVV9apT6ozbWbJ6TOSpKJTtY48PjWSs0as6lCDGtQIzOnXOOAEp3osiT6LGtRIxhqxqkON5KtBn5UculmWZbl5gH379ikvL09nz55Vnz59tGrVKs2aNSvg7aurqzVs2DB5PB6lpKTo17/+tb7zne8EvP3ixYv1+OOPO3F0AECSys3NVU5OjqM1du7cqauvvpoaQTQ1NWndunWqrq5WRkaGY3XiFX0WACDezJgxQ/37O/cJFonQ/8SqBn1WYE73WBJ9FgAg+uizzKjhVI/l+rKvsbFRZWVlqq6u1po1a/Tcc89p8+bNmjBhQoe3b2lp0aeffqq6ujpt3LhRTz75pF5//fULPhbBp6OfhBoxYoQyUlPUcK5Zs8dla3DvtKg+p82llTpYWadpQ/tp6tB+AW9XeLxKu45XBb1dV2oEc7LeozeKyzUgPVW3jx3S5ppX0aoRzKaSSv358zp1l3TH+OjnIYX2XLqSR6g1guksj2jVCIY8bORhIw+vg6dqtfnI51q5cqXmzZvnSA2fOXPmaO3atdQIoqamRpmZmQyhAnCrz3r0mrEaP6ivE09J28o+V35hqZ68YbxG97+IGtSIqzrUoAY1Ais5fUYLNxVp9+7dmjx5siM1pMTof2JVgz4rMKd7LIk+ixrUSMYasapDjeSrQZ9lVg2neizXP8YzNTVVl156qSRpypQp2rVrl5YvX65nn322w9t379699faTJk1SUVGRli5dGrBBSktLU1rahcNxT3OLtn7nOkeuefXAW3t0sLJOc8ZlB7ye1ZItxdp1vDTia16FUiMY3zWvpg0b0OE1r6JRI5haT5Mu+/d3JUnfmzJK/3X7JEfqBHsuXc0jlBrBBMsjGjWCIQ8bedjIw6vW06QpvymI+uMCTnKrz7plTJauzRkYnSfRgfzCUs26bLAmZ/ejBjXirg41qEGNjn1QXqWFm4oceWwg2pzusST6LGpQI1lrxKoONZKrBn1Wcuge/Cax1dLS0uYnl6J9e59/zLvUkUVfKJZsKdbCTUVdGpx3lW9wfmVWRsDBudNqPU362svv64uGRknS8Iz0mJ9BIg8f8rCRh408vHx5HK1piHltIJpi1WcBAAAkE3osAADgNld/s2/BggW69dZbNXLkSNXW1mrVqlUqKCjQ+vXrJUnz58/XsGHDtHTpUknS0qVLNXXqVI0ZM0Yej0dvv/22XnrpJeXn54dde3T/3lF9LqFicO7lG5zvr6jR7HHZerWoPOZnkMjDhzxs5GEjDy//PBbMGKtFBX+O+RmASLjZZwEAACQqeiwAAGAiV5d9FRUVmj9/vsrLy5WZmanc3FytX79eN998sySprKxM3bvbv3xYX1+vBx54QJ999pnS09N1+eWXa+XKlfrmN7/p1lMIC4NzL//B+bt3T9cLe47E/AwSefiQh408bOTh1T6Pj7+oi/kZgEglW58FAAAQC/RYAADARK4u+1asWNHp3xcUFLT585IlS7RkyRIHT+QcBude7QfnVw/r78oygzy8yMNGHjby8OooD5Z9iCfJ1GcBAADECj0WAAAwkXHX7EtEDM69Ohqcu4E8vMjDRh428vAyJQ8AAAAAAAAACMbV3+xLBgzOvUwZnBeUntLGkkryII9W5GEjDy9T8gAAAAAAAACAULDscxCDcy+TBufkQR7+yKMt8jArDwAAAAAAAAAIBR/j6SAG5+YMzguPV0mSZo4eSB7kIYk8/JGHlyl5AAAAAAAAAEA4WPY5gMG5lymD8yVbirXrfCbXjxrkyhnIw0YeXuRhIw8AAAAAAAAAiBzLvihjcO5lyuDcd83EaUP7uVJfIg9/5OFFHjbyAAAAAAAAAICuYdkXRQzOvUwZnPvyePKG8ZrqUibkYSMPL/KwkQcAAAAAAAAAdB3LvihhcO5lyuDcPw8+SpU8JPLwRx5epuQBAAAAAAAAAF3Bsi8KGJx7mTI4Jw8v8rCRh408vEzJAwAAAAAAAAC6imVfFzE49zJlcG5CHp/VNJDHeeThRR428gAAAAAAAACA6GLZ1wUMzr1MGZybkIckvbDnCHmIPHzIoy3yAAAAAAAAAIDoYtkXIQbnXqYMzk3I42S9R5KU1TuNPMhDEnn4Iw8AAAAAAAAAcAbLvggwOPcyZXBuQh47j53WG8XlkqR7Jo4kD/IgDz/kAQAAAAAAAADOYdkXJgbnXqYMzk3J4+aXtmlAeqokKa1HSszPQB428rCRh5cpeQAAAAAAAACAE1j2hYHBuZcpg3OT8rgyK0O3jx3iyhnIw0YeNvLwMiUPAAAAAAAAAHAKy74QMTj3MmVwbloe6+blKTUl9i8n8rCRh408vEzJAwAAAAAAAACcxLIvBAzOvUwZnJuYBx+lSh7kYSMPAAAAAAAAAIgdln1BMDj3MmVwTh5ennPN5HEeedjIw8uUPAAAAAAAAAAgFnq4fQCTMTj3MmVwTh62F/eWqdpzjjzIoxV52EzIAwAAAAAAAABihWVfAAzObSYMzsnDq7G5RZJUUe/RlvuuJQ/ykEQePqbkAQAAAAAAAACx5OrHeObn5ys3N1cZGRnKyMhQXl6e3nnnnYC3/+1vf6trrrlG/fv3V//+/XXTTTdp586dUT8Xg3Mv/8E5iz7386j1NOnNQyckSfdOyiEP8pBEHj6m5AGYxNQ+CwAAIJ7RYwEAABO5uuwbPny4li1bpt27d6uwsFA33nij5s6dqwMHDnR4+4KCAt11113atGmT3n//fY0YMUK33HKLjh07FrUzMTj3MmVwTh5evmsmftHQKEkanpEe8zNI5OFDHjbyAMxlYp8FAAAQ7+ixAACAiVxd9s2ePVuzZs3SZZddprFjx+qpp55Snz59tH379g5v//LLL+uBBx7QpEmTdPnll+u5555TS0uLNm7cGJXzMDj3MmVwTh5evjz2V9Ro9rjsmNf3IQ8v8rCRB2A20/osAACARECPBQAATGTMNfuam5u1evVq1dfXKy8vL6T7nDlzRk1NTRowYEDA23g8Hnk8ntY/19TUSJLeKj6hk3X29wtKT2ljSaVmjh4oyTtIj1Th8arWxwzHZzUNemHPEWX1TtONowZq+Y5Po14jGM+5Zr24t0wV9R5dOqCPiirrol6jvY6eSzTzCFQjmHDyiLRGMP553DspRx+UR79Ge+QRGHnYkjWPvSeqJUnbtm1zrIbP6dOnHa+B5BHrPqu4sk59Up1pM0tOn5EkFZ2qdeTxqZGcNWJVhxrUoEZgvscuKipyrIYkNTQ0OPr4SC5O9VgSfRY1qJGMNWJVhxrJV4M+Kzl0syzLcvMA+/btU15ens6ePas+ffpo1apVmjVrVkj3feCBB7R+/XodOHBAvXr16vA2ixcv1uOPPx7NIwMAEBMzZsxQ//7OfYzyzp07dfXVVzv2+LGo0dTUpHXr1qm6uloZGRmO1YlX9FkAgHgyuHea45eQeOPQCd10001KT3fuE2wSoceS6LM643SPJdFnAQCiiz7LnBpO9ViuL/saGxtVVlam6upqrVmzRs8995w2b96sCRMmdHq/ZcuW6Wc/+5kKCgqUm5sb8HYd/STUiBEjdN3IAZqQlaHC41XadbxK04b209Sh/aLynDaXVupgZV3Ij3my3qM3iss1ID1Vt48dotSU4J+uGm6NYBqbW/TmoRP6oqFRs8dla3DvtKjXCMS/jqSo59G+RrDHjSSPcGsE01Ee0a4RCHlciDxs5OGt8eQN43W8tkH5haW6f+oofXfyqKjWKTpVq2+/tlsrV67UvHnzovrY/ubMmaO1a9c69vixqFFTU6PMzEyGUAG41Wc9es1YjR/UN2rPw9+2ss+VX1iqJ28Yr9H9L6IGNeKqDjWoQY3Oa3xWc1Zr7/oLRx7fp9vjr2v37t2aPHmyYzUSoceS6LM643SPJdFnUYMayVgjVnWokZw16LPMqeFUj+X6x3impqbq0ksvlSRNmTJFu3bt0vLly/Xss88GvM/TTz+tZcuW6U9/+lPQ5igtLU1paWkXfH/exJE6WefRruOlUb/m1QNv7dHByjrNGZcd9HF917yaNmxAWNe8CqdGML5rXjWca9HW71zXuuGPZo3O+OpkpPXQxpJKR65BFupziTSPcGoEEyiPaNboDHm0RR428rBr7D1RpTVF5a5eMxEIhVt91i1jsnRtzsCuHb4T+YWlmnXZYE3O7kcNasRdHWpQgxqB/ff+Y449NhBNTvdYEn0WNaiRrDViVYcayVeDPivxub7sa6+lpaXNTy6197Of/UxPPfWU1q9fr6lTp0Zc563icv3x0ElXB7W+wfmVWRlhD86jxTc4319Ro3fvnu74r/J2xqlFRqjIoy3yIA9/5NEWiz7Eq1j1WQAAAMmEHgsAALjN1WXfggULdOutt2rkyJGqra3VqlWrVFBQoPXr10uS5s+fr2HDhmnp0qWSpH/913/Vv/zLv2jVqlUaNWqUTpw4IUnq06eP+vTpE1ZtFn3mDM4Lj1dJkmaOHkge5CGJPPyRh5dpeXx9vLO/8QxEg5t9FgAAQKKixwIAACZyddlXUVGh+fPnq7y8XJmZmcrNzdX69et18803S5LKysrUvbt9Paj8/Hw1Njbq61//epvHWbRokRYvXhxW7bljBzM4N2BwvmRLsXadH55fP2qQK2cgDxt5eJGHjTxs/nncMX6oK2cAwuFmnwUAAJCo6LEAAICJXF32rVixotO/LygoaPPn0tLSqNW+bVx21B4rHAzObUu2FGvhpiJNG9qvdYAea+RhIw8v8rCRh82EPIBwudlnAQAAJCp6LAAAYKLuwW+CaGFwbvMNzp+8YbymDu3nyhnIw0YeXuRhIw+bCXkAAAAAAAAAQCAs+2KEwbnNf3DOR6mSh0Qe/sjDizwAAAAAAAAAIDQs+2KAwbnNhME5edjIw4s8bORhMyEPAAAAAAAAAAiGZZ/DGJzbTBicf1bTQB7nkYcXedjIw2ZCHgAAAAAAAAAQCpZ9DmJwbjNlcP7CniPkIfLwIY+2yMPLhDz2V9S4UhcAAAAAAABA/GHZ5yAG514mDM5P1nskSVm908iDPCSRhz/ysJmQx85jp/XAW3tdqQ0AAAAAAAAg/rDscwCDc5spg/M3isslSfdMHEke5EEefsjDZkoeN7+0TWMG9HalPgAAAAAAAID4w7Ivyhic20wanA9IT5UkpfVIifkZyMNGHjby8CIPm/81Xv/j1lxXzgAAAAAAAAAg/rDsiyIG5zbTBue3jx3iyhnIw0YeNvLwIg+bfx7r5uWpd2oPV84BAAAAAAAAIP6w7IsSBuc2EwfnqSmx/1edPGzkYSMPL/Kwtc/Djd8IBwAAAAAAABC/WPZFAYNzG4NzL/KwkYeNPLzIw2ZCHgAAAAAAAADiG8u+LjJhUMvg3GZCHp5zzeRxHnnYyMOLPGwm5AEAAAAAAAAg/nFRoC4wYVDL4NxmQh6S9OLeMlV7zpEHebQiDxt5eJmSBwAAAAAAAID4x7IvQqYMahmce5mQR2NziySpot6jLfddSx7kIYk8fMjDZkIeAAAAAAAAABIHH+MZARMGtf6DcxZ97udR62nSm4dOSJLunZRDHuQhiTx8yMNmQh4AAAAAAAAAEgvLvjCZMKhlcG4zJY+vvfy+vmholCQNz0iP+Rkk8vAhDxt52MgDAAAAAAAAQKJi2RcGEwa1DM5tJuWxv6JGs8dlx7y+D3l4kYeNPGzkAQAAAAAAACCRsewLkQmDWgbnNtPyePfu6RrcOy3mZ5DIw4c8bORhIw8AAAAAAAAAiY5lXwhMGNQyOLeZmAcfpUoeEnn4kIfNhDwAAAAAAAAAJDZXl335+fnKzc1VRkaGMjIylJeXp3feeSfg7Q8cOKC//uu/1qhRo9StWzc988wzjp/RhEEtg3MbedjIw4s8bORhIw8ku3josQAAAOIRfRYAADCRq8u+4cOHa9myZdq9e7cKCwt14403au7cuTpw4ECHtz9z5owuueQSLVu2TEOGDHH8fCYMahmc28jDVlB6ijxEHv7Iw0YegPk9FgAAQLyizwIAACbq4Wbx2bNnt/nzU089pfz8fG3fvl1XXHHFBbefNm2apk2bJkl65JFHHD2bCYNakwbnG0sqk35wbkoekshD5OGPPNoiD8DsHgsAACCe0WcBAAATubrs89fc3KzVq1ervr5eeXl5UXtcj8cjj8fT+ueamhpJ0lvFJ3SyztPhfT6radALe44oq3eabhw1UMt3fBpWzcLjVZK8S7JIec4168W9Zaqo9+jeSTnacLhCGw5XRLVGML4aG0sqNXP0QEne3/Bzqk6g59LVPEKpEUywPKJRIxRr/3xCknRJv4skkQd5kIe/WOaxrezzDv/+8Bf1Wrr1kEZkpOu+SSO19tCJiOqUnD4T6RGBCzjVY0mB+6ziyjr1SXWmzfS9PopO1Try+NRIzhqxqkMNalAjeA0gntBnUYMa1IjHOtRI3hpIbN0sy7LcPMC+ffuUl5ens2fPqk+fPlq1apVmzZoV9H6jRo3Sww8/rIcffrjT2y1evFiPP/54lE4LAEDs5ObmKicnx7HH37lzp66++mrHHj8WNZqamrRu3TpVV1crIyPDsTrxyOkeS6LPAgDEpxkzZqh/f+c+iSIReiyJPqsz9FkAAHSMPis4p3os15d9jY2NKisrU3V1tdasWaPnnntOmzdv1oQJEzq9X6gNUkc/CTVixAhdN3KAJmS1/Qd5st6jN4rLNSA9VbePHaLUlMguabi5tFIHK+s0bWg/TR3aL6z7Nja36M1DJ/RFQ6Nmj8vW4N5pUa8RisLjVdp1/jdYnKrhE+i5RCuPzmoEE2oeXakRCl8eg9JTdaqh0dFMyCM48vAiD7tGNPOQpEOVddpYWqmVK1dq3rx5XTx1YHPmzNHatWsde/xY1KipqVFmZiZDqA443WNJgfusR68Zq/GD+nb1KXRoW9nnyi8s1ZM3jNfo/hdRgxpxVYca1KCGuzVKTp/Rwk1F2r17tyZPnuxIDSkxeiyJPqsz9FnUoAY1nJIoz4UayVeDPit0TvVYrn+MZ2pqqi699FJJ0pQpU7Rr1y4tX75czz77bFQePy0tTWlpFw6g500cqe9NHtX6Z981lqYNG9Dlayw98NYeHays05xx2WFdM8p3zauGcy3a+p3rOr3mVaQ1QrFkS7F2HS/VtKH9tOt4lSM1/HX0XKKZR6AawYSTR6Q1QuHL48kbxut4bYPyC0sdzYQ8OkceXuThXB6S9PK+o9pYWtnlx0Fyc7rHkgL3WbeMydK1OQOjVqe9/MJSzbpssCZn96MGNeKuDjWoQQ33anxQXqWFm4oceWwkF/osalCDGk5KlOdCjeSqQZ/lvq796oEDWlpa2vzkUiz4BrVXZmVEbVAbLt/gfH9Fjd69e3rQwblTlmwp1sJNRXryhvGO/jZfZ8jD5p+HkwvXzpCHjTy8yMNmQh5AqNzosQAAAJIBfRYAAHCbq7/Zt2DBAt16660aOXKkamtrtWrVKhUUFGj9+vWSpPnz52vYsGFaunSpJO/HJBw8eLD1fx87dkx79uxRnz59Wn+iKlwmDGpNHZw/8NaemJ+BPGwsMrzIw0YeNvIAOmdCjwUAAJCI6LMAAICJXF32VVRUaP78+SovL1dmZqZyc3O1fv163XzzzZKksrIyde9u//Lh8ePH9aUvfan1z08//bSefvppXXfddSooKAi7vgmDWgbnts9qGsjjPPLwIg8bedjIAwjO7R4LAAAgUdFnAQAAE7m67FuxYkWnf9++6Rk1apQsy4pK7ZLT9frxhv0MzmXG4FySXthzRFOG9icP8pBEHu2Rhxd5AKFxs8cCAABIZPRZAADARMZdsy9WfvH+Jyz6ZMbg/GS993Pts3qnkQd5SCIPf+RhIw8AAAAAAAAAuFDSLvuGZaQzODdgcL7z2Gm9UVwuSbpn4kjyIA/y8EMeNvIAAAAAAAAAgI4l7bLv4S+PYXBuwOD85pe2aUB6qiQprUdKzM9AHjbysJGHF3nYTMgDAAAAAAAAADqStMu+Xj0ZnJswOL8yK0O3jx3iyhnIw0YeNvLwIg+bCXkAAAAAAAAAQCBJu+yLNQbnNv/B+bp5eUpNif2/huRhIw8beXiRh82EPAAAAAAAAACgM0wtY4DBua394JyPUiUP8rCRh408AAAAAAAAACA0LPscxuDcZsLg3HOumTzOIw8beXiRh82EPAAAAAAAAAAgFD3cPkAiY3BuM2Vw/uLeMlV7zpEHebQiDxt5eJmQR0NTc8xrAgAAAAAAAIhPLPscxODcy4TBeWNziySpot6jLfddSx7kIYk8fMjDZkIetZ4m/WzbxzGvCwAAAAAAACA+8TGeDvAfnLPoM2Nw/uahE5KkeyflkAd5SCIPH/KwmZLH115+X0drGmJeGwAAAAAAAEB8YtkXZQzObSYNzr9oaJQkDc9Ij/kZJPLwIQ8bedjIw8v/Gq8LZoyNeX0AAAAAAAAA8YllXxQxOLeZNjifPS475vV9yMOLPGzkYSMPL/883r17usYM6B3zMwAAAAAAAACITyz7ooTBuc3Ewfng3mkxP4NEHj7kYSMPG3l4tc/Drd8IBwAAAAAAABCfWPZFAYNzG4NzG3l4kYeNPGzk4WVKHgAAAAAAAADiF8u+LjJlUMvg3Is8bORhIw8v8rCRBwAAAAAAAIBE0cPtA8QzUwa1DM69TMmjoPSUNpZUkgd5tCIPG3l4mZIHAAAAAAAAgPjHsi9CpgxqGZx7mZKHJPIQefgjj7bIw6w8AAAAAAAAAMQ/PsYzAiYNahmcm5NH4fEqSdLM0QPJgzwkkYc/8vAyJQ8AAAAAAAAAiYNlX5hMGdQyOPcyJY8lW4q163wm148a5MoZyMNGHl7kYSMPAAAAAAAAAImKZV8YTBnUMjj3MimPhZuKNG1oP1fqS+Thjzy8yMNGHgAAAAAAAAASmavLvvz8fOXm5iojI0MZGRnKy8vTO++80+l9Vq9ercsvv1y9evXSVVddpbfffjsmZzVlUMvg3Mu0PJ68YbymupQJedjIw4s8bOSBZBZPfRYAAEC8oMcCAAAmcnXZN3z4cC1btky7d+9WYWGhbrzxRs2dO1cHDhzo8Pbvvfee7rrrLv3t3/6tPvzwQ91xxx264447tH//fkfPacqglsG5l4l58FGq5CGRhz/y8DIlDySneOmzAAAA4gk9FgAAMJGry77Zs2dr1qxZuuyyyzR27Fg99dRT6tOnj7Zv397h7ZcvX66vfe1r+v/+v/9P48eP15NPPqnJkyfrP/7jPxw7oymDWgbnXuRhIw8beXiRh408gPjoswAAAOINPRYAADBRD7cP4NPc3KzVq1ervr5eeXl5Hd7m/fff1z/+4z+2+d5Xv/pVvf766wEf1+PxyOPxtP65pqZGkvRW8QmdrPMEupv3vuea9eLeMlXUe3TvpBxtOFyhDYcrgj6XwvPX0ysoPRX0tqEoKD2ljSWVmjl6oCTvID3aNTriX+Ozmga9sOeIsnqn6cZRA7V8x6eO1OlMpHmEUyMUHeUR7RqB+Gr88c/lWrLlz+Qh8vAhj8TJQ5L2nqjuyjGBC8S6zyqurFOfVGfazJLTZyRJRadqHXl8aiRnjVjVoQY1qOFuDaffR5B8nOqxJPosalAjGWvEqg41qOEE+iz3dbMsy3LzAPv27VNeXp7Onj2rPn36aNWqVZo1a1aHt01NTdWLL76ou+66q/V7v/71r/X444/r5MmTHd5n8eLFevzxxx05OwAATsrNzVVOTo5jj79z505dffXVjj1+LGo0NTVp3bp1qq6uVkZGhmN14hV9FgAAF5oxY4b693fuUxcSoceS6LM643SPJdFnAQDiE31WcE71WK7/Zt+4ceO0Z88eVVdXa82aNbrnnnu0efNmTZgwISqPv2DBgjY/QVVTU6MRI0boupEDNCGr43+Qjc0tevPQCX3R0KjZ47I1uHdaWDU3l1bqYGWdpg3t16Vr6xUer9Ku41UdPk60anTGV6O7pEG9U3X72CFKTYn+J78Gey5dzSOUGqHoLI9o1QjmnU9OqrSqQX16puibVw4jD/IgDz+JkockHaqs08bSSv3kJz/RvHnzunjqwObMmaO1a9c69vixqFFTU6PMzEzHHj/eudVnPXrNWI0f1DcqNdrbVva58gtL9eQN4zW6/0XUoEZc1aEGNajhbo2S02e0cFORli9frsmTJztSQ0qMHkuiz+qM0z2WRJ9FDWokY41Y1aEGNZxAnxU6p3os15d9qampuvTSSyVJU6ZM0a5du7R8+XI9++yzF9x2yJAhF/zU08mTJzVkyJCAj5+Wlqa0tAuHrfMmjtT3Jo+64Pu+ayw1nGvR1u9cF9E1lh54a48OVtZpzrjsiK9XtWRLsXYdLw14zato1Ajmr/9nhw5W1mlYRi8deGCmY9e86uy5RCOPYDVCESyPaNQIZuex03rug1JJ0sN/MUZP3hi9/xPhjzxCQx428vCKVh6S9PK+o9pYWtnV4wKu9Vm3jMnStTkDu3j6wPILSzXrssGanN2PGtSIuzrUoAY13KvxQXmVFm4qcuSxkVyc7rEk+ixqUCNZa8SqDjWoEW30We6L/q89dFFLS0ubzyT3l5eXp40bN7b53rvvvhvwc9HD5RvU7q+o0bt3T+/SoLYrlmwp1sJNRZ0Ozp2289hpvVFcLkm6Z+JIxxZ9nSEP285jp3XzS9s0ID1VkpTWIyXmZyAPG3nYyMPLlDyAYNzsswAAABIVPRYAAHCbq7/Zt2DBAt16660aOXKkamtrtWrVKhUUFGj9+vWSpPnz52vYsGFaunSpJOmhhx7Sddddp5///Oe67bbb9Morr6iwsFC/+c1vunwWUwa1pg3OT9Y3JvXg3KQ8rszK0PiBfbTiw7KYn4E8bORhIw8vU/IA2jOpzwIAAEgU9FgAAMBErv5mX0VFhebPn69x48Zp5syZ2rVrl9avX6+bb75ZklRWVqby8vLW23/lK1/RqlWr9Jvf/EYTJ07UmjVr9Prrr+vKK6/s0jlMGdSaNji/fWznHynhFPKw+eexbl6eI9cgC4Y8bORhIw8vU/IAOmJKnwUAAJBI6LEAAICJXP3NvhUrVnT69wUFBRd87xvf+Ia+8Y1vRO0MpgxqTRyc/9OfDsT8DORha58HH6VKHuRhIw8gOBP6LAAAgERDjwUAAExk3DX7YsmUQS2Dcy/PuWbyOI88bOThRR428gAAAAAAAAAAm6u/2eems01mDGoZnNte3Fumas858iCPVuRhIw8v8gAAAAAAAACAtpJ22ffMjsOqPNPI4NyAwXljc4skqaLeoy33XUse5CGJPHzIw0YeAAAAAAAAAHChpP0Yz2M1DSz6DBic13qa9OahE5KkeyflkAd5SCIPH/KwkQcAAAAAAAAAdCxpl33/mHcpg3MDBudfe/l9fdHQKEkanpEe8zNI5OFDHjbysJGHlyl5AAAAAAAAAEB7SbvsG92/tyt1GZx7+Qbn+ytqNHtcdszr+5CHF3nYyMNGHl6m5AEAAAAAAAAAHUnaZZ8bGJx7+Q/O3717ugb3Tov5GSTy8CEPG3nYyMPLlDwAAAAAAAAAIBCWfTHC4Nyr/eCcj1IlD4k8fMjDRh4AAAAAAAAAEBqWfTHA4NzLlME5eXiRh408bOThZUoeAAAAAAAAABBMD7cPkOgYnHuZMjgvKD2ljSWV5EEercjDRh5epuQBAAAAAAAAAKFg2ecgBudeJg3OyYM8/JFHW+RhTh6vFx13pS4AAAAAAACA+MPHeDqIwbk5g/PC41WSpJmjB5IHeUgiD3/k4WVKHku2FGtNUbkrtQEAAAAAAADEH5Z9DmBw7mXS4HzX+UyuHzXIlTOQh408vMjDRh4230c/f318tiv1AQAAAAAAAMQfln1RxuDcy7TB+bSh/VypL5GHP/LwIg8bedj8r/F6x/ihrpwBAAAAAAAAQPxh2RdFDM69TBycT3UpE/KwkYcXedjIw+afh1u/EQ4AAAAAAAAgPrHsixIG514Mzm3kYSMPL/KwkYfNhDwAAAAAAAAAxC+WfVFgwqCWwbmNPLzIw0YeNvLwIg8AAAAAAAAAiYJlXxeZMKhlcG4zIY/PahrI4zzy8CIPG3nYTMgDAAAAAAAAQPxj2dcFJgxqGZzbTMhDkl7Yc4Q8RB4+5NEWeXiZkgcAAAAAAACA+MeyL0KmDGoZnHuZkMfJeo8kKat3GnmQhyTy8EceNhPyAAAAAAAAAJA4XF32LV26VNOmTVPfvn2VlZWlO+64Q8XFxUHv98wzz2jcuHFKT0/XiBEj9MMf/lBnz56NwYm9TBjUMji3mZDHzmOn9UZxuSTpnokjyYM8yMMPedhMyAPJIV57LAAAANPRZwEAABO5uuzbvHmzHnzwQW3fvl3vvvuumpqadMstt6i+vj7gfVatWqVHHnlEixYtUlFRkVasWKH//u//1j//8z/H5MwmDGoZnNtMyePml7ZpQHqqJCmtR0rMz0AeNvKwkYcXeSAZxWOPBQAAEA/oswAAgIl6uFl83bp1bf78wgsvKCsrS7t379a1117b4X3ee+89TZ8+Xd/61rckSaNGjdJdd92lHTt2OH5eEwa1/oPzk/WNDM4NyePKrAyNH9hHKz4si/kZyMNGHjby8CIPJKt467EAAADiBX0WAAAwkavLvvaqq6slSQMGDAh4m6985StauXKldu7cqauvvlqffvqp3n77bd19990d3t7j8cjj8bT+uaamRpL0VvEJnazzdHifjhSUntLGkkrNHD1QkndwG0jh8arW+0TTZzUNemHPEWX1TtOgi9J0sr4x6jX8dfQ8POea9eLeMlXUe3TvpBxtOFyhDYcrol4nmHDyiLRGMP553DhqoNaf/+cQy0zIw0YeNvKI7zwkae+J6ojOBwTiRI8lBe6zNhyu0NGahiidvq1tZZ9LkopO1Try+JJUcvoMNZKsRqzqUIMa1HC3htPvI0hOse6ziivr1CfVmXFeorzWqUGNeK0RqzrUoIYT6LPc182yLMvtQ0hSS0uL5syZo6qqKm3durXT2/7qV7/Sj3/8Y1mWpXPnzun73/++8vPzO7zt4sWL9fjjjztxZAAAHJWbm6ucnBzHHt83bHCS0zWampq0bt06VVdXKyMjw7E68cypHkuizwIAxKcZM2aof3/nPvEhEXosiT4rFPRZAAC0RZ8VnFM9ljHLvvvvv1/vvPOOtm7dquHDhwe8XUFBge68804tWbJEX/7yl/XJJ5/ooYce0ve+9z0tXLjwgtt39JNQI0aM0HUjB2hCVvB/kIXHq7TreJWmDe2nqUP7hfRcNpdW6mBlXVj36czJeo/eKC7XgPRU3T52iFJTuke9Rkf8a+QOztCbh07oi4ZGzR6XrcG90xypE+y5RJJHuDWC6SiPaNcIxFdj8pBMHattIA+Rhz/ySIw8JOlQZZ02llZq5cqVmjdvXuQHDmLOnDlau3atY48fixo1NTXKzMxkCNUJp3osKXCfNXfsEE116GNzfb8te//UUZo+8mJHamwr+1z5haV68obxGt3/ImokQY1Y1aEGNajhbo2S02e0cFORdu/ercmTJztSQ0qMHkuizwqFG33Wo9eM1fhBfaP+XKTEea1TgxrxWiNWdahBDSfQZ4XOqR7LiI/x/MEPfqA333xTW7Zs6bQ5kqSFCxfq7rvv1ne/+11J0lVXXaX6+nr93d/9nR599FF17969ze3T0tKUlnbhoHfexJH63uRRndZasqVYu46Xhn2NpQfe2qODlXWaMy67y9dm8l3zatqwAVo3L09903pGvUYgvhpfHZOl/y2tVMO5Fm39znVRv+ZVqM8l0jzCqRFMoDyiWaMzvhqnznjIQ+ThjzwSJw9JennfUW0srezKUQFJzvZYUuA+67ZxQ4L2WV2xsaRS00derHlXjXCsRn5hqWZdNliTs/tRI0lqxKoONahBDfdqfFBepYWbihx5bCQft/qsW8Zk6dqcgdF5Eh1IhNc6NagRzzViVYca1Ig2+iz3ubrssyxL//AP/6DXXntNBQUFGj16dND7nDlz5oImKCUlpfXxomXJlmIt3FQU8aA2GnyD8yuzMi4YnMfSi3vLVO05p3fvnh71wXmoyMOrsblFklRR79GW+64lD/KQRB4+5AHYTO6xAAAA4hl9FgAAMJGry74HH3xQq1at0h//+Ef17dtXJ06ckCRlZmYqPT1dkjR//nwNGzZMS5culSTNnj1bv/jFL/SlL32p9aMPFi5cqNmzZ7c2Sl1lwqCWwbmNPLxqPU1685D3NXLvpBzyIA9J5OFDHkBbpvZYAAAA8Y4+CwAAmMjVZZ/vQsTXX399m+8///zzuvfeeyVJZWVlbX766bHHHlO3bt302GOP6dixYxo0aJBmz56tp556KipnMmFQy+DcRh5etZ4mfe3l9/VFQ6MkaXhGeszPIJGHD3nYyMNmQh6Aj4k9FgAAQCKgzwIAACZy/WM8gykoKGjz5x49emjRokVatGhR1M9jwqCWwbmNPLx8eeyvqNHscdl6tag85meQyMOHPGzkYTMhD8CfaT0WAABAoqDPAgAAJrrwCsBJyoRBrYmDc7eQh5d/Hu/ePV2De194ce5YIA8v8rCRh82EPAAAAAAAAAAkL5Z9MmNQy+DcRh5e7fPgo1TJQyIPH/IAAAAAAAAAAK+kX/aZMKhlcG4jDy/ysJGHjTy8yAMAAAAAAAAAbK5es89tJgxqGZzbCkpPaWNJJXmQRyvysJGHF3kAAAAAAAAAQFtJu+x7q7hcfzx0ksG5IYNzSa4PzsmjLfIgD3/k0ZbbeQAAAAAAAACAT9J+jCeLPnMG54XHqyRJM0cPJA/ykEQe/sjDizwAAAAAAAAAoGNJu+ybO3Ywg3MDBudLthRr1/nh+fWjBrlyBvKwkYcXedjIw2ZCHgAAAAAAAADQXtIu+24bl+1KXQbnNt81E6cN7edKfYk8/JGHF3nYyMNmQh4AAAAAAAAA0JGkXfa5gcG5zTc4f/KG8Zrq0vCcPGzk4UUeNvKwmZAHAAAAAAAAAATCsi9GGJzb/AfnfJQqeUjk4Y88vMgDAAAAAAAAAELDsi8GGJzbTBick4eNPLzIw0YeNhPyAAAAAAAAAIBgWPY5jMG5zYTB+Wc1DeRxHnl4kYeNPGwm5AEAAAAAAAAAoWDZ5yAG5zZTBucv7DlCHiIPH/Joizy8TMjj8Bf1rtQFAAAAAAAAEH9Y9jmIwbmXCYPzk/UeSVJW7zTyIA9J5OGPPGwm5LHz2Gkt3XrIldoAAAAAAAAA4g/LPgcwOLeZMjh/o7hcknTPxJHkQR7k4Yc8bKbkcfNL2zQiI92V+gAAAAAAAADiD8u+KGNwbjNpcD4gPVWSlNYjJeZnIA8bedjIw4s8bP7XeP3J9MtcOQMAAAAAAACA+MOyL4oYnNtMG5zfPnaIK2cgDxt52MjDizxs/nmsm5en9J6x/+8HAAAAAAAAgPjEsi9KGJzbTBycp6bE/l918rCRh408vMjD1j4PN34jHAAAAAAAAED8YtkXBQzObQzOvcjDRh428vAiD5sJeQAAAAAAAACIbyz7usiEQS2Dc5sJeXjONZPHeeRhIw8v8rCZkAcAAAAAAACA+Ofqsm/p0qWaNm2a+vbtq6ysLN1xxx0qLi7u9D7XX3+9unXrdsHXbbfdFqNT20wY1DI4t5mQhyS9uLeMPEQe/sjDRh5epuSBxBXvPRYAAICp6LMAAICJXF32bd68WQ8++KC2b9+ud999V01NTbrllltUX18f8D6vvvqqysvLW7/279+vlJQUfeMb34jhyc0Z1DI49zIhj8bmFklSRb2HPMijFXl4kYfNhDyQ+OK5xwIAADAZfRYAADBRDzeLr1u3rs2fX3jhBWVlZWn37t269tprO7zPgAED2vz5lVde0UUXXRTTBsmEQa3/4HzLfdcyODfgo1TfPHRCknTvpBzyIA9J5OFDHjYT8kByiNceCwAAwHT0WQAAwESuLvvaq66ulnRhE9SZFStW6M4771Tv3r07/HuPxyOPx3NBjf93pDKiM5acrtcv3v9EwzLSdecVw/TKgWMX3OZgRY0kqfDYaf32g9KI6nTmbFOzVp+v++Vh/bX3ZLX2nqyOep1gz+Ot4nL98dBJzR07WIP7pEX8XLvyzyuUPLpaI5izTc16ZsdhnapvlCSdqD3rSO5S58+DPLzIw0YetnjKQ5J2fPaFJOnMmTOqqamJ6KyhaGpqcvTxY1HD99iWZTlWIxE40WNJ0e+zQlF47LQkqehUrbY4VKfoVK0kaffxKtU1nqNGEtSIVR1qUIMa7tYorqyTJNXV1dFjhYA+KzSx7rP2lEd//uOTKK91alAjXmvEqg41qOEE+qzQOdZjWYZobm62brvtNmv69Okh32fHjh2WJGvHjh0Bb7No0SJLEl988cUXX3zxlcBfR48ejUY7kpCc6rEsiz6LL7744osvvpLhiz4rMPosvvjiiy+++OIr0q9o91jdLMuMH9G6//779c4772jr1q0aPnx4SPf5+7//e73//vv66KOPAt6m/U9CVVVVKScnR2VlZcrMzOzyuTtSU1OjESNG6OjRo8rIyKCGAXWoQQ1qUCNeasSqTqLUsCxLtbW1Gjp0qLp3d/VSxMZyqseS6LOokTg1YlWHGtSgBjXipYZEnxUK+ixqUIMa8ViHGtSghrs1nOqxjPgYzx/84Ad68803tWXLlpCbo/r6er3yyit64oknOr1dWlqa0tLSLvh+Zmamo2/MkpSRkUENw+pQgxrUoEa81IhVnUSo4dSwIxE42WNJ9FnUSLwasapDDWpQgxrxUoM+KzD6LGpQgxrxXoca1KCGezWc6LFcXfZZlqV/+Id/0GuvvaaCggKNHj065PuuXr1aHo9H3/72tx08IQAAQPyhxwIAAHAGfRYAADCRq5/D8OCDD2rlypVatWqV+vbtqxMnTujEiRNqaGhovc38+fO1YMGCC+67YsUK3XHHHbr44otjeWQAAADj0WMBAAA4gz4LAACYyNXf7MvPz5ckXX/99W2+//zzz+vee++VJJWVlV3wuaXFxcXaunWrNmzYEHbNtLQ0LVq0qMOPQogWaphXhxrUoAY14qVGrOokSg10zI0eS0qcf6+okXw1YlWHGtSgBjXipQYCo8+iBjWo4aREeS7UoAY1Yq+bZVmW24cAAAAAAAAAAAAAED5XP8YTAAAAAAAAAAAAQORY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABxKuGWfVu2bNHs2bM1dOhQdevWTa+//nqnt7/33nvVrVu3C76uuOKKqNWQpP/8z//U+PHjlZ6ernHjxun//t//G/C2S5cu1bRp09S3b19lZWXpjjvuUHFxcdAaq1ev1uWXX65evXrpqquu0ttvv93p7SOp89vf/lbXXHON+vfvr/79++umm27Szp07o/5cfF555RV169ZNd9xxR9RrVFVV6cEHH1R2drbS0tI0duzYgP/MIq3xzDPPaNy4cUpPT9eIESP0wx/+UGfPno1ajaamJj3xxBMaM2aMevXqpYkTJ2rdunUBb5+fn6/c3FxlZGQoIyNDeXl5eueddwLe/sCBA/rrv/5rjRo1St26ddMzzzwT9DmHW+PVV1/V1KlT1a9fP/Xu3VuTJk3SSy+9FNUaL7zwwgWv8V69ekW1xvXXX9/he8ltt90WtRrh5t2RZcuWqVu3bnr44Yc7vV247yfh1gj3vSSSGv5CeS+JtEY47yWR1gjnvUSSFi9efMG/i5dffnmnNcLNPNwakbyfwDz0WaG9RuixzOqxIq1Dn0WfRZ8VuIa/ZOqzYtFjRVKHPiv+JUKPJdFn+SRTn5UoPVYkdeiz6LPos+Kvz0r4HstKMG+//bb16KOPWq+++qolyXrttdc6vX1VVZVVXl7e+nX06FFrwIAB1qJFi6JW49e//rXVt29f65VXXrEOHz5s/f73v7f69OljrV27tsPbf/WrX7Wef/55a//+/daePXusWbNmWSNHjrTq6uoC1ti2bZuVkpJi/exnP7MOHjxoPfbYY1bPnj2tffv2BbxPJHW+9a1vWf/5n/9pffjhh1ZRUZF17733WpmZmdZnn30WtRo+JSUl1rBhw6xrrrnGmjt3blSfh8fjsaZOnWrNmjXL2rp1q1VSUmIVFBRYe/bsiVqNl19+2UpLS7Nefvllq6SkxFq/fr2VnZ1t/fCHP4xajZ/85CfW0KFDrbfeess6fPiw9etf/9rq1auX9cEHH3R4+7Vr11pvvfWWdejQIau4uNj653/+Z6tnz57W/v37O7z9zp07rR//+MfW73//e2vIkCHWL3/5y4BnibTGpk2brFdffdU6ePCg9cknn1jPPPOMlZKSYq1bty5qNZ5//nkrIyOjzWv9xIkTUX0en3/+eZvH379/v5WSkmI9//zzUasRbt7t7dy50xo1apSVm5trPfTQQwFvF8n7Sbg1wn0viaSGT6jvJZHUCPe9JJIa4b6XWJZlLVq0yLriiiva/Dt56tSpgLePJPNwa0TyfgLz0GeF9hqhxzKrx4q0Dn0WfRZ9VuAaPsnWZ8Wix4qkDn1W/EuEHsuy6LMsK/n6rETpsSKpQ59Fn0WfFX99VqL3WAm37PMXSvPS3muvvWZ169bNKi0tjVqNvLw868c//nGb7/3jP/6jNX369JBqVFRUWJKszZs3B7zN3/zN31i33XZbm+99+ctftv7+7/8+pBqh1mnv3LlzVt++fa0XX3wxqjXOnTtnfeUrX7Gee+4565577gn5DS3UGvn5+dYll1xiNTY2hvy44dZ48MEHrRtvvLHN96Kde3Z2tvUf//Efbb73V3/1V9a8efNCqmFZltW/f3/rueeeC3q7nJyciN/QQq3h86Uvfcl67LHHolbj+eeftzIzM8N6vHBrtPfLX/7S6tu3b0j/ZyDUGl3Ju7a21rrsssusd99917ruuus6/Y9xpO8n4dRoL9T3knBrRPJeEk6NSN9LwqkRyXvJokWLrIkTJ4Z8nkgyD7eGv668n8Ac9Fmh91n0WKGLRY8Vah36rNBq0GfRZyVTnxWLHiuSOv7os+JfovRYlkWflYx9ViL1WOHU8aHPos+KVg36rOCYZV0o4T7Gs6tWrFihm266STk5OVF7TI/Hc8GvWKenp2vnzp1qamoKev/q6mpJ0oABAwLe5v3339dNN93U5ntf/epX9f7774d8zlDqtHfmzBk1NTWFfJ9QazzxxBPKysrS3/7t34Z8lnBqrF27Vnl5eXrwwQc1ePBgXXnllfrpT3+q5ubmqNX4yle+ot27d7f+Kvenn36qt99+W7NmzYpajUD/bm3dujXo4zc3N+uVV15RfX298vLyQjpTuMKtYVmWNm7cqOLiYl177bVRrVFXV6ecnByNGDFCc+fO1YEDBxx7HpL3veTOO+9U7969o1ajK3k/+OCDuu222y54n+hIpO8n4dRoL9T3knBrRPJeEk6NSN9LwqkR6XvJxx9/rKFDh+qSSy7RvHnzVFZWFvC2kWYeTg1ASt4+ix7LrB4r1Dr0WfRZ9FmdS9Y+KxY9Vrh1ABN7LIk+KxyJ0mclQo8VSR36LPos+qwLmdpnJXSP5fKy0VEK86ehjh07ZqWkpFj//d//HdUaCxYssIYMGWIVFhZaLS0t1q5du6zBgwdbkqzjx493et/m5mbrtttuC/oTND179rRWrVrV5nv/+Z//aWVlZYX0PEKt0979999vXXLJJVZDQ0PUavy///f/rGHDhrX+Cm04Pw0Vao1x48ZZaWlp1ne+8x2rsLDQeuWVV6wBAwZYixcvjloNy7Ks5cuXWz179rR69OhhSbK+//3vR/V53HXXXdaECROsQ4cOWc3NzdaGDRus9PR0KzU1NeB9PvroI6t3795WSkqKlZmZab311lshnSmcn14It0ZVVZXVu3dvq0ePHlZaWpq1YsWKqNZ47733rBdffNH68MMPrYKCAuv222+3MjIyrKNHj0b1efjs2LHDkmTt2LEjqs8jkrwty7J+//vfW1deeWXr6zTYT95E8n4Sbo32QnkvCbdGJO8l4daI5L0kkn9W4b6XvP3229b//M//WHv37rXWrVtn5eXlWSNHjrRqamo6vH0kmYdbw188/DQUgqPPCq3Poscyq8cKpw59Fn0WfVbgGsnaZ8Wix4qkjj/6rPiXCD2WZdFnJWOfFe89ViR16LPos+izAtewLPP6rETvsVj2+fnpT39qXXzxxZbH44lqjTNnzlj33Xef1aNHDyslJcUaOnSo9ZOf/MSSFPRzlr///e9bOTk5Qd/Eu7rsC7WOv6VLl1r9+/e39u7dG7UaNTU11qhRo6y333679XvhNEihPo/LLrvMGjFihHXu3LnW7/385z+3hgwZErUamzZtsgYPHmz99re/tT766CPr1VdftUaMGGE98cQTUatRUVFhzZ071+revbuVkpJijR071nrggQesXr16BbyPx+OxPv74Y6uwsNB65JFHrIEDB1oHDhwIeqZw3tDCrdHc3Gx9/PHH1ocffmg9/fTTVmZmprVp06ao1vDX2NhojRkzJuhHK0Ra4+/+7u+sq666KqSzhFMjkrzLysqsrKysNq/TaDdHkdTwF8p7Sbg1InkvieR5hPteEkmNrryX+Jw+fdrKyMgI+JEaXf1vSCg1/MVDg4Tg6LNCe43QY5nVY4VThz6LPos+q+Ma9Fm2WPRYodTxR58V/xKhx7Is+qxk7LPivceKpA59Fn0WfVbgGvHQZyVaj8Wy77yWlhbr0ksvtR5++GHHajQ2NlpHjx61zp0713qh4+bm5oC3f/DBB63hw4dbn376adDHHjFixAX/sv3Lv/yLlZubG/S+4dTx+bd/+zcrMzPT2rVrV0i3D7XGhx9+aEmyUlJSWr+6detmdevWzUpJSbE++eSTqDyPa6+91po5c2ab77399tuWpE4b5HBqzJgx44LPt3/ppZes9PT0qOXu09DQYH322WdWS0uL9ZOf/MSaMGFCyPedOXOm9Xd/93dBb9eVN7RQa/j87d/+rXXLLbc4WuPrX/+6deedd0a9Rl1dnZWRkWE988wzYT12ODXCyfu111674DUlqfU15f8fdZ9w308iqeET6ntJuDUieS+J5HmE+14SSY1I30vamzp1qvXII490+Hdd+W9IqDX8xUODhODos4K/RuixvEzpscKt40OfRZ8VCH0WfZZlxabHClbHH31W/Iv3Hsuy6LOSsc9KxB4rnDo+9Fn0WV2tQZ/VFrOs8HDNvvM2b96sTz75JKLP1Q5Vz549NXz4cKWkpOiVV17R7bffru7dL4zAsiz94Ac/0Guvvab//d//1ejRo4M+dl5enjZu3Njme++++26nn8ccSR1J+tnPfqYnn3xS69at09SpUzu9bbg1Lr/8cu3bt0979uxp/ZozZ45uuOEG7dmzRyNGjIjK85g+fbo++eQTtbS0tH7v0KFDys7OVmpqalRqnDlz5oJ8U1JSWh8vGjV8evXqpWHDhuncuXP6wx/+oLlz54Z835aWFnk8npBvH4lwa0RypnDu09zcrH379ik7OzvqNVavXi2Px6Nvf/vbYT12ODXCyXvmzJkXvKamTp2qefPmac+ePa3/TvoL9/0kkhpSeO8l4daI5L0kkucR7ntJJDXCfS/pSF1dnQ4fPhzw3/lI/hsSbg0kt2Trs+ixzOqxIq3jQ59FnxUIfRZ9Vix6rFDqIHmZ1GNJ9FnJ2Gclco8VSR36LPqsrtagz7Ixy4pA7PaKsVFbW2t9+OGHrVvwX/ziF9aHH35oHTlyxLIsy3rkkUesu++++4L7ffvb37a+/OUvO1KjuLjYeumll6xDhw5ZO3bssL75zW9aAwYMsEpKSjp8/Pvvv9/KzMy0CgoKrPLy8tavM2fOtN7m7rvvbrNx3rZtm9WjRw/r6aeftoqKiqxFixZZPXv2tPbt2xfweURSZ9myZVZqaqq1Zs2aNvepra2NWo32gv2qciQ1ysrKrL59+1o/+MEPrOLiYuvNN9+0srKyrCVLlkStxqJFi6y+fftav//9761PP/3U2rBhgzVmzBjrb/7mb6JWY/v27dYf/vAH6/Dhw9aWLVusG2+80Ro9erR1+vTpDms88sgj1ubNm62SkhLro48+sh555BGrW7du1oYNGzp8fI/H0/rvenZ2tvXjH//Y+vDDD62PP/64w8ePpMZPf/pTa8OGDdbhw4etgwcPWk8//bTVo0cP67e//W3Uajz++OPW+vXrrcOHD1u7d++27rzzTqtXr16dfoRBuDV8ZsyYYX3zm98M+LhdqRFu3oG0/zX7aLyfhFsj3PeSSGq0F87HqIRaI9z3kkhqhPteYlmW9aMf/cgqKCiwSkpKrG3btlk33XSTNXDgQKuioqLDGpFkHm6NSN5PYB76rNBeI/RYZvVYkdahz6LPos8KXKO9ZOmzYtFjRVKHPiv+JUKPZVn0Wf6Spc9KlB4rkjr0WfRZ9Fnx12cleo+VcMu+TZs2WZIu+Lrnnnssy/K+OK677ro296mqqrLS09Ot3/zmN47UOHjwoDVp0iQrPT3dysjIsObOnWv9+c9/Dvj4HT22JOv5559vvc11113XWs/nf/7nf6yxY8daqamp1hVXXBH04quR1MnJyenwPosWLYrqc/EX7A0t0hrvvfee9eUvf9lKS0uzLrnkEuupp54K+OvZkdRoamqyFi9ebI0ZM8bq1auXNWLECOuBBx4I+B+ySGoUFBRY48ePt9LS0qyLL77Yuvvuu61jx44F/Gf1ne98x8rJybFSU1OtQYMGWTNnzmz9D3FHj19SUtLhmdq/hrpS49FHH7UuvfRSq1evXlb//v2tvLw865VXXgn4+JHUePjhh62RI0daqamp1uDBg61Zs2ZZH3zwQVRrWJZl/fnPf7YktbldNGuEm3cg7f9jHI33k3BrhPteEunz8BeN5qir7yWR1Aj3vcSyLOub3/ymlZ2dbaWmplrDhg2zvvnNb7b5qIdoZB5ujUjeT2Ae+qzQXiP0WGb1WJHWoc+iz6LP6vx5+EuWPisWPVYkdeiz4l8i9FiWRZ/lL1n6rETpsSKpQ59Fn0WfFX99VqL3WN0sK8TPAAMAAAAAAAAAAABgFK7ZBwAAAAAAAAAAAMQpln0AAAAAAAAAAABAnGLZBwAAAAAAAAAAAMQpln0AAAAAAAAAAABAnGLZBwAAAAAAAAAAAMQpln0AAAAAAAAAAABAnGLZBwAAAAAAAAAAAMQpln0AAAAAAAAAAABAnGLZBwAAAAAAAAAAAMQpln0AEkZzc7O+8pWv6K/+6q/afL+6ulojRozQo48+6tLJAAAA4hc9FgAAgDPoswBESzfLsiy3DwEA0XLo0CFNmjRJv/3tbzVv3jxJ0vz587V3717t2rVLqampLp8QAAAg/tBjAQAAOIM+C0A0sOwDkHB+9atfafHixTpw4IB27typb3zjG9q1a5cmTpzo9tEAAADiFj0WAACAM+izAHQVyz4ACceyLN14441KSUnRvn379A//8A967LHH3D4WAABAXKPHAgAAcAZ9FoCuYtkHICH9+c9/1vjx43XVVVfpgw8+UI8ePdw+EgAAQNyjxwIAAHAGfRaAruju9gEAwAm/+93vdNFFF6mkpESfffaZ28cBAABICPRYAAAAzqDPAtAV/GYfgITz3nvv6brrrtOGDRu0ZMkSSdKf/vQndevWzeWTAQAAxC96LAAAAGfQZwHoKn6zD0BCOXPmjO69917df//9uuGGG7RixQrt3LlT//Vf/+X20QAAAOIWPRYAAIAz6LMARAO/2QcgoTz00EN6++23tXfvXl100UWSpGeffVY//vGPtW/fPo0aNcrdAwIAAMQheiwAAABn0GcBiAaWfQASxubNmzVz5kwVFBRoxowZbf7uq1/9qs6dO8dHIAAAAISJHgsAAMAZ9FkAooVlHwAAAAAAAAAAABCnuGYfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKf+fyBnmfcfIBfBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 13.0\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.07142857142857144\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "yOLwh85tbchO", + "outputId": "50b95adf-26f1-4f79-dfa0-ad0a95a0711d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m222/222\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeDFJREFUeJzt3Xl4VOXd//HPmawsCQTIQkJIkE1A0UJbBWtRgSIiLtQN/RVUpFiXohW0roBoUdGnVXm0EUXtI0iL26M+Wou4F7QoKogKIhACgSRsCWuWmfP7Y3Ims2eSTDKH5P26rlwkkzNn7lky+pnvfX9vwzRNUwAAAAAAIOYcsR4AAAAAAABwI6QDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAGLKMAzNnj071sNoc5577jkZhqGtW7c2+LoffPCBDMPQBx98EPVxtXb5+fm68sorYz0MH7Nnz5ZhGNq9e3esh9IodnxMAaApCOkA0EhPPPGEDMPQKaec0uRzvfXWWwTVFrR//34lJyfLMAx99913QY+58sorZRhG0K/k5GTPcd9//71uvfVWnXzyyUpJSVH37t01btw4ff75540a2xlnnBHydr2/eL003cqVKzV79mzt37+/yef68ccfNW3aNB133HFKTk5WamqqTjvtND366KM6cuRI0wcLAGgz4mM9AAA4Vi1evFj5+fn6z3/+o02bNqlPnz6NPtdbb72l//7v/yZ4tZBly5bJMAxlZWVp8eLFuu+++4Iel5SUpKeffjrg8ri4OM/3Tz/9tJ555hn9+te/1nXXXafy8nIVFBTo1FNP1T//+U+NGjWqQWO78847dc0113h+Xr16tR577DHdcccdGjBggOfywYMHN+i8/n7zm9/osssuU1JSUoOv+8tf/lJHjhxRYmJik8YQaytXrtScOXN05ZVXqnPnzo0+z//93//p4osvVlJSkiZNmqQTTjhBVVVV+uSTTzRz5kytX79eTz31VPQGDgBo1QjpANAIW7Zs0cqVK/XKK69o2rRpWrx4sWbNmhXrYbV5R48eVWJiohyO8BPFXnjhBZ1zzjnKy8vTkiVLQob0+Ph4/b//9//CnmvixImaPXu2Onbs6Lns6quv1oABAzR79uwGh/TRo0f7/JycnKzHHntMo0eP1hlnnBHyeocOHVKHDh0ivp24uDifDxsawuFw+MwmaMu2bNmiyy67THl5eXrvvffUvXt3z++uv/56bdq0Sf/3f/8XwxGiISJ9DwGA5sQ7EAA0wuLFi5WWlqZx48bpoosu0uLFiwOOCbVud+vWrTIMQ88995wk97Tq//7v/5Ykn+nMlkOHDumWW25Rbm6ukpKS1L9/fz388MMyTTPgNl944QUNHTpU7dq1U5cuXXTZZZepqKjI55gzzjhDJ5xwgr799ludeeaZat++vXJycvTQQw8FnO/o0aOaPXu2+vXrp+TkZHXv3l0TJkzQjz/+2ODxVVZW6uabb1Z6erpSUlJ03nnnafv27UEf3x07dujqq69WZmamkpKSNGjQIC1atCjo47t06VLdddddysnJUfv27VVRURH0nJZt27bp448/1mWXXabLLrvM84FLYw0dOtQnoEtS165ddfrpp4ecSt9U1hrib7/9VpdffrnS0tL0i1/8QpK0du1aXXnllZ5p11lZWbr66qu1Z88en3MEW5Oen5+vc889V5988ol+/vOfKzk5Wccdd5z+9re/+Vw32Gu7Ia+rwsJCnXfeeerQoYMyMjJ0880365133olonfuBAwd00003KT8/X0lJScrIyNDo0aO1Zs0an+M+++wznX322erUqZPat2+vESNG6N///rfPYzhz5kxJUq9evTx/dw1do//QQw/p4MGDeuaZZ3wCuqVPnz6aPn16yOvv3btXM2bM0IknnqiOHTsqNTVVY8eO1ddffx1w7OOPP65Bgwapffv2SktL009/+lMtWbKkwY9NKLt379Yll1yi1NRUde3aVdOnT9fRo0d9jqmpqdHcuXPVu3dvJSUlKT8/X3fccYcqKyt9jgu1JMN//bj1Ovz3v/+tP/zhD0pPT1eHDh104YUXqqyszOe6pmnqvvvuU48ePdS+fXudeeaZWr9+fcBtRPqYhnoP+eqrr2QYhv785z8HnHvlypUyDEMvvvhifQ8nADQalXQAaITFixdrwoQJSkxM1MSJE/Xkk09q9erV+tnPftbgc02bNk3FxcVavny5/ud//sfnd6Zp6rzzztP777+vKVOm6OSTT9Y777yjmTNnaseOHT7/E3n//ffr7rvv1iWXXKJrrrlGZWVlevzxx/XLX/5SX375pc903n379unss8/WhAkTdMkll+ill17SbbfdphNPPFFjx46VJDmdTp177rlasWKFLrvsMk2fPl0HDhzQ8uXL9c0336h3794NGt8111yjF154QZdffrmGDx+u9957T+PGjQt4PEpKSnTqqafKMAzdcMMNSk9P19tvv60pU6aooqJCN910k8/xc+fOVWJiombMmKHKysp6p2C/+OKL6tChg84991y1a9dOvXv31uLFizV8+PCgxwdrppWYmKjU1NSwt7Nr1y5169Yt7DFNdfHFF6tv377605/+5PlQZPny5dq8ebOuuuoqZWVleaZar1+/Xp9++qnPB0DBbNq0SRdddJGmTJmiyZMna9GiRbryyis1dOhQDRo0KOx1I3ldHTp0SGeddZZ27typ6dOnKysrS0uWLNH7778f0X2+9tpr9dJLL+mGG27QwIEDtWfPHn3yySf67rvvNGTIEEnSe++9p7Fjx2ro0KGaNWuWHA6Hnn32WZ111ln6+OOP9fOf/1wTJkzQxo0b9eKLL+rPf/6z57lKT0+PaByWN954Q8cdd1zI1099Nm/erNdee00XX3yxevXqpZKSEhUUFGjEiBH69ttvlZ2dLUlauHChfv/73+uiiy7yhOe1a9fqs88+0+WXXx7xYxPOJZdcovz8fM2bN0+ffvqpHnvsMe3bt8/nQ5prrrlGzz//vC666CLdcsst+uyzzzRv3jx99913evXVVxv1GEjSjTfeqLS0NM2aNUtbt27VX/7yF91www36+9//7jnmnnvu0X333adzzjlH55xzjtasWaNf/epXqqqqatRjavF/Dzn++ON12mmnafHixbr55pt9jl28eLFSUlJ0/vnnN/q+AkC9TABAg3z++eemJHP58uWmaZqmy+Uye/ToYU6fPt3nuPfff9+UZL7//vs+l2/ZssWUZD777LOey66//noz2Fvya6+9Zkoy77vvPp/LL7roItMwDHPTpk2maZrm1q1bzbi4OPP+++/3OW7dunVmfHy8z+UjRowwJZl/+9vfPJdVVlaaWVlZ5q9//WvPZYsWLTIlmf/1X/8VMC6Xy9Wg8X311VemJPO6667zOe7yyy83JZmzZs3yXDZlyhSze/fu5u7du32Oveyyy8xOnTqZhw8fNk2z7vE97rjjPJdF4sQTTzSvuOIKz8933HGH2a1bN7O6utrnuMmTJ5uSgn6NGTMm7G189NFHpmEY5t133x3xuEJZtmxZwOto1qxZpiRz4sSJAccHeyxefPFFU5L50UcfeS579tlnTUnmli1bPJfl5eUFHFdaWmomJSWZt9xyi+eyYK/tSF9XjzzyiCnJfO211zyXHTlyxDz++OOD/r3469Spk3n99deH/L3L5TL79u1rjhkzxvM6NU3349KrVy9z9OjRnsvmz58f8Bg0RHl5uSnJPP/88yO+Tl5enjl58mTPz0ePHjWdTqfPMVu2bDGTkpLMe++913PZ+eefbw4aNCjsuet7bEKxXk/nnXeez+XXXXedKcn8+uuvTdOs+zu+5pprfI6bMWOGKcl87733PJf5/11b/O+/9TocNWqUz/N18803m3Fxceb+/ftN03S/DhMTE81x48b5HHfHHXeYkhr1mIZ7DykoKDAlmd99953nsqqqKrNbt24+twUAzYHp7gDQQIsXL1ZmZqbOPPNMSe5pnZdeeqmWLl0qp9MZ1dt66623FBcXp9///vc+l99yyy0yTVNvv/22JOmVV16Ry+XSJZdcot27d3u+srKy1Ldv34AqZceOHX3WWicmJurnP/+5Nm/e7Lns5ZdfVrdu3XTjjTcGjMuqxkY6vrfeekuSAo7zr4qbpqmXX35Z48ePl2maPvdlzJgxKi8vD5i6O3nyZLVr1y74A+hn7dq1WrdunSZOnOi5bOLEidq9e7feeeedgOOTk5O1fPnygK8HHngg5G2Ulpbq8ssvV69evXTrrbdGNK7GuvbaawMu834sjh49qt27d+vUU0+VpIimPQ8cOFCnn3665+f09HT179/f57URSiSvq3/+85/KycnReeed57ksOTlZU6dOrff8ktS5c2d99tlnKi4uDvr7r776Sj/88IMuv/xy7dmzx/P6OXTokEaOHKmPPvpILpcrotuqj7W0IiUlpdHnSEpK8qx/djqd2rNnjzp27Kj+/fv7PF+dO3fW9u3btXr16pDnqu+xqc/111/v87P1t2/9/Vr//uEPf/A57pZbbpGkJq29/+1vf+szy+P000+X0+lUYWGhJOndd99VVVWVbrzxRp/j/N9DpMgfU0uw95BLLrlEycnJPkuZ3nnnHe3evbvePhUA0FRMdweABnA6nVq6dKnOPPNMbdmyxXP5KaecokceeUQrVqzQr371q6jdXmFhobKzswNCgNXl2/of2B9++EGmaapv375Bz5OQkODzc48ePQKmPaelpWnt2rWen3/88Uf1799f8fGh/1MR6fgKCwvlcDjUu3dvn+P69+/v83NZWZn279+vp556KmQ37NLSUp+fe/XqFXJ8/l544QV16NBBxx13nDZt2iTJHRDz8/O1ePHigOn3cXFxDWr8dujQIZ177rk6cOCAPvnkk4C16tEW7L7v3btXc+bM0dKlSwMeq/Ly8nrP2bNnz4DL0tLStG/fvnqvG8nrqrCwUL179w44LtLdER566CFNnjxZubm5Gjp0qM455xxNmjRJxx13nCT334LkDl6hlJeXKy0tLaLbC8da8nDgwIFGn8PlcunRRx/VE088oS1btvh80Ne1a1fP97fddpveffdd/fznP1efPn30q1/9SpdffrlOO+00zzH1PTb18X//6N27txwOh2edvvV37P9cZWVlqXPnzp6/98bwf91Zz4/1urPO7T/G9PT0gOcy0sfUEuzvqHPnzho/fryWLFmiuXPnSnJ/QJuTk6OzzjqroXcPABqEkA4ADfDee+9p586dWrp0qZYuXRrw+8WLF3tCeqi1v9Gutkvu/yk1DENvv/120I7d/mExVFdvM0gzupZkVTj/3//7fyFDlv/WY5FW0U3T1IsvvqhDhw5p4MCBAb8vLS3VwYMHGx2sq6qqNGHCBK1du1bvvPOOTjjhhEadpyGC3fdLLrlEK1eu1MyZM3XyySerY8eOcrlcOvvssyOqIDfltdESr6tLLrlEp59+ul599VX961//0vz58/Xggw/qlVde0dixYz33cf78+Tr55JODniNaH56kpqYqOztb33zzTaPP8ac//Ul33323rr76as2dO1ddunSRw+HQTTfd5PN8DRgwQBs2bNCbb76pf/7zn3r55Zf1xBNP6J577tGcOXMk1f/YNFSo97D6+hqEE+r9L5qvnUgfU0uo95BJkyZp2bJlWrlypU488US9/vrruu666+j8DqDZEdIBoAEWL16sjIwMTzd2b6+88opeffVV/fWvf1W7du081Z39+/f7HBes2hTqf3rz8vL07rvv6sCBAz7V6u+//97ze0meJm69evVSv379GnXf/PXu3VufffaZqqurAyrxDR1fXl6eXC6Xpzpv2bBhg8/5rM7vTqezwVuX1efDDz/U9u3bde+99/rsNy65q3W//e1v9dprrzVqKqvL5dKkSZO0YsUK/eMf/9CIESOiNewG2bdvn1asWKE5c+bonnvu8VxuVZftIC8vT99++61M0/R53VszGyLRvXt3XXfddbruuutUWlqqIUOG6P7779fYsWM9szVSU1PrfQ01JWxazj33XD311FNatWqVhg0b1uDrv/TSSzrzzDP1zDPP+Fy+f//+gMaDHTp00KWXXqpLL73U86HQ/fffr9tvv92zJV64x6Y+P/zwg09VedOmTXK5XMrPz5dU93f8ww8/+PwNlZSUaP/+/Z6/d8ldCfd/76uqqtLOnTsjelz8Wef+4YcffGYGlJWVBczyaMhjGs7ZZ5+t9PR0LV68WKeccooOHz6s3/zmN40aPwA0BB8FAkCEjhw5oldeeUXnnnuuLrroooCvG264QQcOHNDrr78uyf0/lXFxcfroo498zvPEE08EnNva39r/f2rPOeccOZ1OLViwwOfyP//5zzIMw/M/3hMmTFBcXJzmzJkTUHkyTTNg+61I/PrXv9bu3bsDbts6Z0PGZ/372GOP+Rz3l7/8xefnuLg4/frXv9bLL78ctDrpvyVTQ1hT3WfOnBnw3E2dOlV9+/YNupVeJG688Ub9/e9/1xNPPKEJEyaEPG737t36/vvvdfjw4cbejbCsaqT/a8D/cY6lMWPGaMeOHZ6/E8m9dn7hwoX1XtfpdAZM2c/IyFB2drZnC7ChQ4eqd+/eevjhh3Xw4MGAc3i/hkL93UnurfqsD5vCufXWW9WhQwddc801KikpCfj9jz/+qEcffTTk9ePi4gKer2XLlmnHjh0+l/n/DScmJmrgwIEyTVPV1dURPTb18f/w8fHHH5dU9/d7zjnnSAp8Pf3Xf/2XJPksF+ndu3fAe99TTz3V6JlEo0aNUkJCgh5//HGfxyvYazvSx7Q+8fHxmjhxov7xj3/oueee04knnhgwkwcAmgOVdACI0Ouvv64DBw74NLzyduqpp3qqLpdeeqk6deqkiy++WI8//rgMw1Dv3r315ptvBqwTltzBQnI3VhszZozi4uJ02WWXafz48TrzzDN15513auvWrTrppJP0r3/9S//7v/+rm266yVM17N27t+677z7dfvvt2rp1qy644AKlpKRoy5YtevXVV/Xb3/5WM2bMaND9nTRpkv72t7/pD3/4g/7zn//o9NNP16FDh/Tuu+/quuuu0/nnnx/x+E4++WRNnDhRTzzxhMrLyzV8+HCtWLEiaPX0gQce0Pvvv69TTjlFU6dO1cCBA7V3716tWbNG7777rvbu3dug+yG592h/+eWXNXr0aE/F0d95552nRx99VKWlpcrIyJDk3hP6hRdeCHr8hRdeqA4dOugvf/mLnnjiCQ0bNkzt27cPON46TpIWLFigOXPm6P3339cZZ5zR4PtRn9TUVP3yl7/UQw89pOrqauXk5Ohf//qXT/+EWJs2bZoWLFigiRMnavr06erevbsWL17seV7CVbcPHDigHj166KKLLtJJJ52kjh076t1339Xq1av1yCOPSJIcDoeefvppjR07VoMGDdJVV12lnJwc7dixQ++//75SU1P1xhtvSKr7u7vzzjt12WWXKSEhQePHj1eHDh00adIkffjhh/VOt+7du7eWLFmiSy+9VAMGDNCkSZN0wgknqKqqSitXrtSyZct89gX3d+655+ree+/VVVddpeHDh2vdunVavHhxwDryX/3qV8rKytJpp52mzMxMfffdd1qwYIHGjRunlJQU7d+/v97Hpj5btmzReeedp7PPPlurVq3ybJl40kknSZJOOukkTZ48WU899ZT279+vESNG6D//+Y+ef/55XXDBBZ5mmpJ7q7Zrr71Wv/71rzV69Gh9/fXXeueddxq9LWF6erpmzJihefPm6dxzz9U555yjL7/8Um+//XbAOSN9TCMxadIkPfbYY3r//ff14IMPNmrsANBgLdpLHgCOYePHjzeTk5PNQ4cOhTzmyiuvNBMSEjzbh5WVlZm//vWvzfbt25tpaWnmtGnTzG+++SZgC7aamhrzxhtvNNPT003DMHy2Yztw4IB58803m9nZ2WZCQoLZt29fc/78+T7bEFlefvll8xe/+IXZoUMHs0OHDubxxx9vXn/99eaGDRs8x4wYMSLoVk6TJ0828/LyfC47fPiweeedd5q9evUyExISzKysLPOiiy4yf/zxxwaP78iRI+bvf/97s2vXrmaHDh3M8ePHm0VFRUG3aiopKTGvv/56Mzc313O7I0eONJ966inPMdb2ScuWLQv5fHg/LpLMZ555JuQxH3zwgSnJfPTRRz2Ph0JswSavbbsiPc4067a6qm+bMW/htmArKysLOH779u3mhRdeaHbu3Nns1KmTefHFF5vFxcUBj3OoLdjGjRsXcM4RI0aYI0aM8Pwcagu2SF9XmzdvNseNG2e2a9fOTE9PN2+55RbPc/Tpp5+GfCwqKyvNmTNnmieddJKZkpJidujQwTzppJPMJ554IuDYL7/80pwwYYLZtWtXMykpyczLyzMvueQSc8WKFT7HzZ0718zJyTEdDofP42FtKRepjRs3mlOnTjXz8/PNxMREMyUlxTzttNPMxx9/3Dx69KjnuGBbsN1yyy1m9+7dzXbt2pmnnXaauWrVqoDHvKCgwPzlL3/puT+9e/c2Z86caZaXlzf4sfFnvZ6+/fZb86KLLjJTUlLMtLQ084YbbjCPHDnic2x1dbU5Z84cz3tCbm6uefvtt/vcR9M0TafTad52221mt27dzPbt25tjxowxN23aFHILttWrV/tcP9hrzOl0mnPmzPE8VmeccYb5zTffNPoxjfQ9ZNCgQabD4TC3b99e72MJANFgmGaMuwQBAIA27y9/+Ytuvvlmbd++XTk5ObEeDuDxk5/8RF26dNGKFStiPRQAbQRr0gEAQIs6cuSIz89Hjx5VQUGB+vbtS0CHrXz++ef66quvNGnSpFgPBUAbwpp0AADQoiZMmKCePXvq5JNPVnl5uV544QV9//33jW7cB0TbN998oy+++EKPPPKIunfvrksvvTTWQwLQhhDSAQBAixozZoyefvppLV68WE6nUwMHDtTSpUsJQrCNl156Sffee6/69++vF198MWTDSQBoDqxJBwAAAADAJliTDgAAAACATRDSAQAAAACwiTa3Jt3lcqm4uFgpKSkyDCPWwwEAAAAAtHKmaerAgQPKzs6WwxG+Vt7mQnpxcbFyc3NjPQwAAAAAQBtTVFSkHj16hD2mzYX0lJQUSdId//5CyR07xng0AAAAAIDW7ujBg/rTaUM9eTScNhfSrSnuyR07KjmCBwgAAAAAgGiIZMk1jeMAAAAAALAJQjoAAAAAADZBSAcAAAAAwCba3Jp0AAAAAED0xJkuJbpcMmTGeigxYcpQjWGo2nBIUdjmm5AOAAAAAGiU1JoqDThSocQohNNjmWma2uOI14/tUlTliGvSuQjpAAAAAIAGizNdGnCkQukpKerYpYvUVnO6KTmrq9V+zx51PLRfn3fsIrMJH1oQ0gEAAAAADZbocinRMNSxSxclJCfHejgxlZCcLEd8vI4UFSnZ5dSRuMZHbRrHAQAAAAAazLMGva1W0P0YDvcD0dS1+YR0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAoM0p3bVLd958k045vr/yUlM0tHdvTZpwoT5+7z1J0v88/bQmjB6tvund1D05SeX797fIuAjpAAAAAIA2pWjrVo0ZPkyffPCB7p73gN774gsteeMNDR8xQrffNF2SdOTIYZ35q1/p97fe1qJjYws2AAAAAECb8sfpv5dhGHr7k3+rfYcOnsv7DxyoiZOvlCT99sbfS5JWfvhhi46NSjoAAAAAIOaczpa5nX179+r9f/1LV0671iegWzp17twyAwmBkA4AAAAAiJlNG6URJ8erR4dEjTg5Xps2Nu/tbf3xR5mmqT79+zfvDTUSIR0AAAAAEDNTLonXjz8YkqQffzA05ZLmXZVtmmaznr+pWJMOAAAAAIgJp1Pa+L3D62dDG7835HRKcXHNc5u9+vSRYRjatGFD89xAE1FJBwAAAADERFyc1O94l+LizNqfzdqfm+8207p00RmjR+u5gr/q8KFDAb9vqa3WQiGkAwAAAABi5pl/1Kh3X3dI793X1DP/qGn225z3l0fldDo19hen6c1XX9XmTT9o4/ff6en/XqBzR/xSknsf9W++/lpbfvxRkvTdN9/om6+/1r69e5t1bEx3BwAAAADETJ9+0odf1TTrFHd/eccdp3+t+lSPPviA5tx2m0p37VTX9HQN/slP9OBjj0uS/rZwoR65/z7PdS4cNVKS9JenFurSSZOabWyGafdV81FWUVGhTp066d6vNyg5JSXWwwEAAACAY1J7Z7WGHqlQTl5PJSQlx3o4MVddeVQ7Crfpi3apOhyX4PO7owcO6J6T+qu8vFypqalhz8N0dwAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAADSYKcP6BpLncfA8Lo1ESAcAAAAANFiNYcg0TTmrq2M9FFuoPnJELtNUlaNpMZt90gEAAAAADVZtOLTHEa/2e/bIER8vw9G0CvIxy3QH9D27y7Q9PklOg5AOAAAAAGhphqEf26Wo46H9OlJUFOvRxJTLNLU9PkmFyR2bfC5COgAAAACgUaoccfq8Yxclu5wy2ujidFOGqhyOJlfQLYR0AAAAAECjmYahI3FEy2ihcRwAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNxDSkz549W4Zh+Hwdf/zxYa+zbNkyHX/88UpOTtaJJ56ot956q4VGCwAAAABA84p5JX3QoEHauXOn5+uTTz4JeezKlSs1ceJETZkyRV9++aUuuOACXXDBBfrmm29acMQAAAAAADSPmIf0+Ph4ZWVleb66desW8thHH31UZ599tmbOnKkBAwZo7ty5GjJkiBYsWNCCIwYAAAAAoHnEPKT/8MMPys7O1nHHHacrrrhC27ZtC3nsqlWrNGrUKJ/LxowZo1WrVoW8TmVlpSoqKny+AAAAAACwo5iG9FNOOUXPPfec/vnPf+rJJ5/Uli1bdPrpp+vAgQNBj9+1a5cyMzN9LsvMzNSuXbtC3sa8efPUqVMnz1dubm5U7wMAAAAAANES05A+duxYXXzxxRo8eLDGjBmjt956S/v379c//vGPqN3G7bffrvLycs9XUVFR1M4NAAAAAEA0xcd6AN46d+6sfv36adOmTUF/n5WVpZKSEp/LSkpKlJWVFfKcSUlJSkpKiuo4AQAAAABoDjFfk+7t4MGD+vHHH9W9e/egvx82bJhWrFjhc9ny5cs1bNiwlhgeAAAAAADNKqYhfcaMGfrwww+1detWrVy5UhdeeKHi4uI0ceJESdKkSZN0++23e46fPn26/vnPf+qRRx7R999/r9mzZ+vzzz/XDTfcEKu7AAAAAABA1MR0uvv27ds1ceJE7dmzR+np6frFL36hTz/9VOnp6ZKkbdu2yeGo+xxh+PDhWrJkie666y7dcccd6tu3r1577TWdcMIJsboLAAAAAABEjWGaphnrQbSkiooKderUSfd+vUHJKSmxHg4AAAAAoJU7euCA7jmpv8rLy5Wamhr2WFutSQcAAAAAoC0jpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmbBPSH3jgARmGoZtuuinkMc8995wMw/D5Sk5ObrlBAgAAAADQjOJjPQBJWr16tQoKCjR48OB6j01NTdWGDRs8PxuG0ZxDAwAAAACgxcS8kn7w4EFdccUVWrhwodLS0uo93jAMZWVleb4yMzNbYJQAAAAAADS/mIf066+/XuPGjdOoUaMiOv7gwYPKy8tTbm6uzj//fK1fvz7s8ZWVlaqoqPD5AgAAAADAjmIa0pcuXao1a9Zo3rx5ER3fv39/LVq0SP/7v/+rF154QS6XS8OHD9f27dtDXmfevHnq1KmT5ys3NzdawwcAAAAAIKpiFtKLioo0ffp0LV68OOLmb8OGDdOkSZN08skna8SIEXrllVeUnp6ugoKCkNe5/fbbVV5e7vkqKiqK1l0AAAAAACCqYtY47osvvlBpaamGDBniuczpdOqjjz7SggULVFlZqbi4uLDnSEhI0E9+8hNt2rQp5DFJSUlKSkqK2rgBAAAAAGguMQvpI0eO1Lp163wuu+qqq3T88cfrtttuqzegS+5Qv27dOp1zzjnNNUwAAAAAAFpMzEJ6SkqKTjjhBJ/LOnTooK5du3ounzRpknJycjxr1u+9916deuqp6tOnj/bv36/58+ersLBQ11xzTYuPHwAAAACAaLPFPumhbNu2TQ5H3bL5ffv2aerUqdq1a5fS0tI0dOhQrVy5UgMHDozhKAEAAAAAiA7DNE0z1oNoSRUVFerUqZPu/XqDklNSYj0cAAAAAEArd/TAAd1zUn+Vl5crNTU17LEx3ycdAAAAAAC4EdIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNxMd6AAAAAK3d1q1bYz0E28nPz4/1EADAlgjpAAAAzWjr1q2q2VepC/ftj/VQbOWN2n8J6wDgi5AOAADQTKyAPnLjBuW2y4n1cGxl/OYSvZrWWVu1laAOAF4I6QAAAFFmTW8fv7lEFWUl6rtXKnYtj+2gbCY3d7RGlm3Qin79tVVbJVFVBwCJkA4AABBV3tPbcw/Gq2qvtLbiXaV3bR/rodlKcdFy9XUMlDZuUGp6JlV1AKhFSAcAAIgCq3ruPb29uGi5ig8Wq9IhvTikT2wHaDMT12zS2j3varBGKbFdvE9VnaAOoC0jpAMAAIQRaWd2q3ruPb29Omm/Kg9LH48crCGplzbvQI8xLw75u05fsVZrK95Vtivbp6r+Rv1XbzCCP4BjBSEdAAAgiIZ2Za8oK1Fuuxyf6e1W9ZyAHmhI6qX6eKR0+oq1qk7a71NVH7+5JKq3xVR6AMcSQjoAAICfxnRlr/KuntdObyech2cFdUk+VfXc3NFRvR2m0gM4lhDSAQAAajWlK3vxwWKq541gPU7eVfXiouh2wvdpULevUvFpSYR1ALZFSAcAAFDTu7JXHqZ63hT+VfUeadHrhk+DOgDHEkI6AABo06LZlZ2A3jTeVfVoqq9BHWEdgJ0Q0gEAQJvlXT2nK7t9RPsxD9egjqZyAOyGkA4AAFqVSLdMk3yr53Rlb73CNajznv4uUVUHEHuEdAAA0Go0Zts0q3ruPb2dcN76hGpQ59NUjqo6ABsgpAMAgGNesHXlkfCunjO9vW3wrqpPXLOJpnIAbIeQDgAAjmnBurI3ZNs07+ZwBPS2wXqeXxzyd5rKAbAdQjoAADgmhevK3pBt06iet11WVZ2mcgDshJAOAACOOfV1ZWfbNEQqVFO5TMdAjexSQlUdQIsjpAMAgGOKFdDpyt42uZySIy665wzWVI6qOoBYIaQDAIBjgjW9ffzmErqyt0GlRQl6dk62SrYlKbNnpa6aVayM3Oqo3gZbtQGwA0esBwAAAFAfq3o+fnOJcg/Gq29t9bw6ab8qHawrP5a5nJEd9+ycbJVtT5QklW1P1LNzsptlPENSL60N64NV6VDdVm17pZEbN2j85hLV7Kv0fGgEANFGJR0AANhWuOZwdGW3p0inozekMu5ySiXbkup+dhkq2ZbULFPfLWzVBiBWCOkAAMCW6msOR/XcXho6HT1YZfy2pwuDHuuIkzJ7Vqpse6JcLkMOh6n0HlXNFtAtbNUGIBaY7g4AAGxl69atvs3h/Ka3vzikDwHdhhoyHd2qjLtchvtnr8p4KFfNKlZ6jypJUnqPKl01qzh6g6+H//T3tRXvqu9eKfdgPNPfAUQdlXQAAGAboarnNIdrnOacDu5/Ow2Zjt6YynhGbrVue7ow6vcp0vPRVA5ASyGkAwAAWwi3tdq7wwZLYu15pJrSCb0xIbgxofuqWcWeMTakMh6tgN6YxyjYVm3FRct9pr+zVRuApjJM0zRjPYiWVFFRoU6dOunerzcoOSUl1sMBAKDNC7a12m7Xt57qOVPbG+7Ba/ICAnOo9d6Wpm5xFuz63bKr6w3VLVXt99eYx8jbmoq/S3I3lSvbc1jZHbOVnTta64/s0Ip+/RWf5p5ZQFgHIElHDxzQPSf1V3l5uVJTU8MeSyUdAADEjPf09tyD8T7Vc5rDNU5jO6E3pJFbMN7T0XcXRx74YxHQo9Et3r+pHFV1ANFC4zgAANDigjWHKy5arrUV73rWnhPQG8eaeu5wuCdLOhym+2e/8OndpK0xjdzC3X5j9jRvzG01VqSPUSSspnIvDukT0FRu5MYNNJUD0GBU0gEAQItia7WmiaTaG269d6hp7Zk9K1ValCjTdAf1uHiXdhcnNGjKuzW+hlSpGzrNPlrT4xu7Jj4YtmoDEE2sSQcAAC3Gu3o+qF2Oqnbs8Exvf3FIH0k0hwulMWvGgwXaUGuxS4sSNH9anpw17omWhsNURgPXadd3G8HGN39aZMc2dc18KNFeE7+mwh3Ue6S1V9mewxqcOkqJOTkq6lijl1M7K7FbEkEdaINYkw4AAGwlWHM4O2+t1lzNzJpy3sasGXfE+d5muCp3t+xqT0CXJLMR67Qt9VWpvQO3t3BV96asmQ93HyK9b03Zqs25+2T96a3f68eSFHXucUhj79uotJ5HCesAgiKkAwCAZnUsNYdrrmptU8/bmEZn4aa1h9oqLdjvQo3HO/j7j6G+Pc29A7dkSnJPsTcMUxm5gVu3NbbRWzSez2hs1XbfG1dqx572kqSKHe3079t76+wFa2gqByAoGscBAIBmYTWHG7+5RCM3blDmhhLbN4drTMOz5j6vFUQb2ugs1G1eNavYE74Nh6mSbUl68Jo8lRYl+PwuLbNaNdWGZozt5/l9aVGCHrwmTzPG9tP9k/N1/+R8n9/7CzY+/yZ1VkC3xuNddXc5G3//wz0GDdGUcwxJvVQfnnGSinbnyGW6B+syHdq2M1Vnfr+RpnIAgqKSDgAAou5Yqp5borEtVzTP61/BPW9amV4vSI+o0Vm427Sq3A9MydPuHYHTx60KuLVW3Pv31veStGdnXShv6PRz/yZ1deN2qFt2tUqLErTwrhzt2em+ra7dqzThhtKI7399j4H34x7ueYjGa+KnaZdoRc9KlW5PkOlyyGE41aNLqfrvN+WwtmrbV6n4NNaqA3AjpAMAgKixqoKerdXa5ai4yHftuWTP5nBWtTbUVPCWPq9/Bff1gvSwU8jD3aY1pXz+tDxdNau4NgiHD5/BwqkvI+z1/Xl/6NC1e5XSMqu1d1di0GOfnZPt8yHAnp0JDbr/wR4D/8c9kmns0XpNeK/Rz+xcrDsvWqC1FZs1WKOU2C5eI8s2aEW//kx/ByCJ6e4AACBKrOq5Nb29716puKh2azVHXfXcjgHd4j3du6nbcjXlvOH2LY80IHrfpsWqeNc3fdwR565eu8O9JJnq2r3K5zru3zVu+v3eXQlKSDSD3oZkfUDgXWWP7P7777U++e7Qj3uk09ij8ZqwZi88/PZGzfz7EX08uqMqHe7ZJcVFy9V3rzRy4waN31ziWSYCoO2ikg4AAJrMe2u13HY5PtPb7Vw991dfw7PmOG+wy6JRwc3IrdbMgkLNGNtPVuD1DvuN2Sfc+zqOOFMup7vek5ZZHXB97/tVU+VbmTdN9zimzN2uNxem11azqzT57mLPfS/Zlqi6oG4qs2dVyGnq4ZYGZPas1K0Ltygrr9rnupFOY4/ma8K6vtUB/vQVa1WdtF9r97zrqaqP31yiV9M6U1UH2jBCOgAAaJKtW7fqIh1V5b5y5bbLUXl2uQ4VfesJ6MdCOPfXHNuv+Z+3vunWjQnRFitQhgv79X1wYK0HdzO0Z2eiumUHrmc3DFPxCaZn7P7T2iX3uRxxLrmchryD95sL3VPYdxUm6Pm52Xpoai9PyH5lQYbXmvS6DwGCPW7+VfFFs7Jl1s5CKNueqOfn+q6Xb8yHINF+TQTbqi3bla3c3NE+098lEdaBNoaQDgAAEAP17fvdmApuqIAcF++SXEbQsB/s3OFCrMspn/XsVlX8gSl5unq2b2D2XlduVd3r1FWvn5/r+1i8siBD8QnuafD+H2AEe9z8q+Jy1b9evikfgkSL/1Zt1Un73dPfHQMlq6kcVXWgzWFNOgAAQAsLt+bcX0MquP4B2QrJpstQRm6lbnu6MOwe3963H2ot9u7iBHfo93CH6d07ErVodnaQ7dV8O7j7r2OXAh+LPTsTVVrkVRmfne0ZX7DHLSPXd319XLzLb+28u1u99zZx3uvE63tcmpu7qj5YLw7p457+XvGu+u6Vcg/Ga+TGDWzVBrQxhHQAAIAWFsm+38ECezjWuu9gAdnlMlRaFPxDAEk++59be54HC7GlRQmaPy1Pzhrv/4X0vY3A5nL+3McbDlPnTSsL+lhI8mzPZp33wWvytLs4IejjdvVs3w8Urp4Tummev+Za2tBQVlPFF4f0oakc0MYR0gEAAGIgVKU6WGAOxzr+1nP7KS7eJcNoePf1SDudL5qd7RfQvblvq/KIIcNhBlzu/73LZej1gnRJ0nnTyjzXMRymUtJ8u757jyvY4+b/gcKAnx3WzAJr6UD9sxXsxKqqVzoUUFUfv7mEqjrQBrAmHQAAIAZCrTmvb626P+/jXS5DjjhTzhpDXbu7p2/v2ZkYcs21yxm607nVzM1q0Db57mKfteh13HuwW/aXJaouYPtPda/72fQKza8XpHsavZkuQ4cPxAdcxxqX1bwuVFd87++jue99tDv+hxOqqVymY6BGdilRanqm3qg9lrXqQOtDSAcAAE1Wubnc8/2hz/4Tw5Ece/ynuEeyNZj1s//xpsuQ02XooTc3Kj7RXWW31olbVWhr2vrCu3K8Orh7h2pTcfFmQDO35+dmKy7eJWdNsHXmkv++5pHwXpPufZ+9G79ZrJDt+TmCwByN5nD1deFvLsGayu2u/FZ99w70bNX2xnGZ2rqVpnJAa8N0dwAA0GjW/ugVZSXKPRivqh07VHywWNVJ+z37oyNy9a1V958KH2qNthXQ3c3S3AG41Gsauzuge0+j9w7ehpw1jqAN2txT3UNXx/0ZtU3c3PfNJe/p7o44l66a5d4XvXO67/R2wxHY+C0ts1o11YbPMgD/qev+P4drDhfptPdIlwI0F2v6uySdnNdXu13fen53kY626FgAtAwq6QAAoMGsNbHjN5eooqxEffdKxa7lKj5YrEqHjtn90e0gXPU3WGAMdbz/+nFrenlNlf8e6L6sivXu4gSvqrl7SntcvHuvc3dTN/dlDoeptMzqoOdMz6nSlfcUy+WS/nx9nrz3SE/LqPGE5gP7fP+X1DAMpedU1VavqzT57mKfyn7p9kRPAztrX/XXC9JDVrsbsj+9t0hnNgBANBHSAQBAg1jV8wv37XdXz/e6O1Gnd22vysPSxyMHE9CbwKr+1lRJ8V65N1RgDLZG238vc0u45nGW9B7uUPzQ1F5el7rDtTu0+3K5DJmmuxq+vyxB3qG+tCjJ7zx159uzM9GzJt6/W7zLKd3yRKEcce4t3xbNzvbdm712Wr9Uu0XbrGzPmvb61vE3ZM1/tNe1A0AkCOkAACAiVvW8Zl+lRm7coNx2OSou8q2eSyKgN1GoSm99gdG/aVpGrvtYayuzuPi66eVdu1fVTnevq2xb4fqXE/YpK686yDEK8r37ent3Jcq/gVx9rGnwe0sS/K7rXhNvfUDhHaqD8V/DHq7aXV9lPNja/2isaweAhiCkAwCAegWrnhe7lqs6aT/V8ygLV+m1pn17B0b/YGmF/NKiJDniXDKdhjJy3XuJd8uulsspTb1vh1/juDrL/pKpYedU+F0aKoCHC/DhOWscmjG2X5BzG3K5TJUWJahbdrVPqA7G4TBlOEyZLqN2Db37fPOn5QWd9h7sg47dxb4fjASbPt8tu9oT5AGgORHSAQBASOGq5+ld21M9j7JIt0Ob8dctik9Q0Iq7O6DXbsnmdCgu3qXzry3zCeVdu1dp6n07lJpWrTsm9JN30zhJOlzuv2498gp5ZLy7yQee23Q5tGh2tm59qlAZuZVBp+67O807lN6jyidUW0q2JWn+tDzNLKhrGBeqMu7/wUiw6fPe12vJLu8A2h5COgAACGv85hJJ8gT0k/P6qnrXfprDNUJ9DcdCVXq9m6aVbEvUw9f2cjdx8wuSMwsKAyrPzhqHFs3K9llPvmdngv76xx66629b5L/9miTddXG/2ssaMoXdfaxhmDJN63yh1H/O0qIkzRjbT127V8kR55LL6bspkWlKU+Zu16BTDqu0KKH2Nn3P7axxh/2rZwcGbKsyXnUk/BZw1gclDd2/HgAaiy3YAABAvYb1/Emsh3BM8986rbTIvf1ZsKnTV80q9uwHbjVx894Ora6Jm8NT7bWCpORei+4vcOs0Q/vLEjRjbD91SI1WNdh9/s4Z1ao/hJv1/L7umD07EzwzArwvdzkNPVe7Hdqzc7K1e0fwdeulRcED9oY17TXznD764/nuKfeGUbeNXVx83RZwhmEqI7cy6JZ0TH0H0ByopAMAADQz/5C48K4cxSeYQadOW93dvavu3tX14OrWYZ9/bVlt5dzh87tQDlX475eugJ+DN5ELFBfvUvnuSP73MvA8gdXywA8l/C931hgBlXCfWzHcMxGCLSF45p5suZx147Aq8db0+VcWZGjPTnfjPWeNoa7dq7SvJIEu7wCaHZV0AACAZmStM/euwu7ZmehZN25Vdr2P958W711dtyrJhmF6VZfdSrcn6vWCdM0sKFRmT/+KeqjqdfB14dZ1MntWaup9O+SIq7/67awxAqalR8rldCgjt9JT0Q493rrfx8W7FJ9Yu7WcVfl2mHLEuR+XjNwqXT272Of3dZV479kF7sfggf/dqNueLtSAnx1WfILpuc6+EvcHGd4zHOjyDqC5UEkHAACIIv+Avbs4wdPkTJKnE7m1NZp3c7hn7gls7paRW+2prns3kMvI9d7P3H0us/ZcJdsTAn7XmOZvXbKqPeu3IwvfDb0Nd5Xfqkx7N2eLizeD7svuuQ3DVMfOTs+69bTMau3ZmaiM2vNYa84l32Zxvrdtnc+97VtiO/clwRr47dmZqIff3igpfF8BAGgqQjoAAGhz6mvg1hih9jd/do7vtGqHw1TnzOqAqdPPz82unVLutmdnQkBzModDXg3S3D9n9qxUybZEee8z/uysHrVVdt/9x70DqTsAhw/Ve3fVdTYP1rytTt253SIN6+7jDIep86aVqVu271T/b1a116JZOUHOZ0qmofLdCbXjTFBGbpUefntj0Oc1I7daMwsKa7d8C/zQwhFn6uo5xV4/h9+THgCaE9PdAQBAmxGqgVs0BGtOZlVkraq55F5bPeXeHUGbw/k3dyvZlqQHprjHWVqUoPnT8jzbkZUWuW/jN3cUB1zPup1gl2f2rNKku/2v48+UFbhLtyfqod/m1VNJd58rLj7yhnDet+FyGXrmnmzP87JhTXvdPzlfi2b1CDFO3w8YTNMIuS7dYgVv/2nvhsNUek61BvzssM/xV80qVlpmtWd8JduSdP/k/Ki+ZgAgGEI6AABoM4IF6WgItu7cCo3ewdDhcK/xzspzV4wfftu9Bjorr7p2Dbl3yHV/v3uHe5zPzvFuBlcXTLPyqr2q5hGM1SVPpd3wWsftqy4Em6761pnXXTfwg4Fwgt9GaZF7n3LvWQWRyMit9FS6ra7r/v+eN61MMnyr/WaQTu0up7v6Hp9Q90GCVDe7IZTm7Pa+fd9hrd61WsUHi1W1Y4dyD8arcnO5avZVauvWrc13wwBaHNPdAQBAmxBsnbEVzpo6jTnc9Gjv9dD+Dcf8m8MtvKtuTboVIr0Dvz8rmF45q1jP3N2jnlG6p6RbH1J4T3dPy6jW3l3BtzCr73yBlynI5d68fxd4Dqubejhx8S65nHXr+uPiXbp6drHPkgOrD4D1b2bPSlUeMbyWHtRN0e/a3b1+3fv6GbmVnlkL3mMv2Zakmiop3uvh8u4V4N+tPxqGpF6qj0e6vz99xVqtrXhX2a5s5eaO1siyDUpNz9Qbtcfm5+dH7XYBxAYhHQAAtAnRXmccrAN7sDAebEu1YDJyq3Xn81vlckoP/TZPu3f4jtM0pbIdiZ690a1gKkmDTjkcZG26P/+12HVhteEBPdh5/b9v6HW9hfoAoLb6bbqb2u3ZmaiM3EpdPdsdih+8Js/vQ4i6fwMfm8Db9p5psXtHYm3A955a717Pf+u5/ZTZs1LnTSvT6wXptR+iuD+gsGZoePcSiIYhqZdKkj4e6Q7q1Un79fl3z2tw6igltovX+M0lejWts7ZqK0EdOMYx3R0AALQZ3luZNXYbLe917dZ6cakujFtT2P0rqaECuv8UaUecdPXsunGmZVarptpQaVGSZ9p8Zs9KzSwoVLfsuts4b1pZkGnrkagvWIfbuq25hOnqLvf2aXtL4uWIc6m0KEnzp+Vp/WftfZYchP5QIvC8e3YmqqYqcMmCuxJfd/8dcaanEl+23T0t3wr1/jMfmmvqu7uqPlgvDumjSoe0tuJdFRctV+7BeI3cuMEz/Z0p8MCxi0o6AABoMyKtaofz7Jxszx7nVkCcWVAXyiM9r383+Ml3FysrrzpgnPOn1VWHTZfhmU7tfd1zp5bp2dnZMl1W/SVYJbqx6msw15Dbid7xpsshs/YDBGeNoefmZPvMlPDtOB/sHL7bv1n7rftf33QZysit1IwnC3Xruf0813a5DMkV/LzW9PnmEqyqXly0XH0dA6WN7unvVNWBYxeVdAAA0OY0ZYp7sG7tDW1AZ3Vqt9aal2xL1ENTewV0nA/VkG7R7LoKbsm2RD1zdw+/5m6hQmk43k3SIq3IN/R2Igno3uOo7/i6KrmzxqHf3Fk3A8ER5z5H6I7z7ut6z6i4alaxuuVU+fze5aqdxRAX2AQwLt4V0C2+JXlX1auT9mttxbvqu1cBVXUAxxZCOgAACMr7f+63f7vO8/3qXau1fd/hINdo/Rxx7mZt/hoyvbm0KEEP/TbPp1O7FQitbdVKixL0wJS82sqtb3iOi3dP8Q6c1l2fSAJvQ8/pzZqKX6Upc7fXdpxvrMbNAnh2do5+OWFfbWM5d9O4q+cU69aFW3zGY9R22fdfmpCRW62rZxcHPdZqAui9XOLqOYGh3po+H+r1EO1p8ENSL9WQ1Ev14pA+Su/a3jP9fVC7HF24b7/Gby4hqAPHGEI6AAAIsHXrVtXsq9T4zSWqKCtR1Y4dKi5aruqk/dq+77A+HjnYM+W2rQkX4iKxaHZ2yC3NrG3VvPdD9w/PVsfy8JVbM8jvA7d3aw6l2xPkcEgTbigNM4bA2+/UrUppmVVyOLyPbdiY9+xM0LK/ZHo1jXNo4Z05cjikmQWFtdvcSRm11fNgz5l7qzuvPdhdtVu3KbDvwICfHdYfnykMus2e/7m9exn4z5iIlq0Xn6L0ru09Pw/r+ZOo3waA5kdIBwAAHlbDqZp9lRq5cYNyD8ar7153c6rqpP16cUifNh3QJXdQCxb4IuFyKsi2Xt6sNdbB/xfNMExl5FZGsB95+MZrzdP0zdp33B2Ml/0lI8jthK7Ul+9O0L6SRL8ZAqHGHG4Ke+D1Fs3OlitMYd97P3X3EgTf679ekO5zvH8Aj6QhoXfneKsDPAAEQ+M4AAAgqa56fuG+/aooK1HfvVKxy109r3RILw7p06bDubfGNqCz1jWXFiV6rWuvv5ma4XC5G6WZhvbsTFBKWrUO7AtVibXO19iGb9FoOhfq9sOduyF7rjfsvpUWJemhqb0857RCsn8DPvf+5oH7o1vLGbyfa++f63s91IX/2p+9OsA3Z4M5AMcmKukAAIDqeSM1JmC5g2CV1yXhK9zu5mRSXZXd0IF98fKfCl43BT+SgN3QKry/xk6Xj9Y+6lK3nMoQ4wgW9n0DvxWSn7ozp3b/dHcDvoV35dS7nCHctPVQr4dgTecaskQCQNtCSAcAoA2zpreP31yikRs3uKvnRcu1tuJdn+o5AT16rOnyD7+90Se4BeuuntmzUjf/d6Hf9PbgU7pvebJQjrj61qpHSyR7qzd1HOGr5bt3+E9Lr72Ww1Tn9Cq/Dy0Cg3tmz0rt3ZUo78d1z85EdcsOXM4w+e666euNnbYeyZR4AJBsFNIfeOABGYahm266Kexxy5Yt0/HHH6/k5GSdeOKJeuutt1pmgAAAtDLezeH8q+eVDlE9bwbeVdj50/J03rQyT3Dr2r1aXbu7u4x7bxvmcMivUZw7AFvh3jDcgTOjR3VtQ7rmrIRHqr7p9o1RX6O82u9c7pkGdWvbg20tZ6imOvT4rOnrty7cIkme7fF2FSYE3RIvko7t/k3nrI7ylmh3fQdw7LLFmvTVq1eroKBAgwcPDnvcypUrNXHiRM2bN0/nnnuulixZogsuuEBr1qzRCSec0EKjBQCg9bhw337lHoxXeXa5DhV9q/Su7bX14lO06sc9BPRm4F+Ffb0gPWAt8wNT8rR7R90U7Iem9lLn9GpV7I2Ty2koLt7UhBtK9dEraSrZlqSM3MZUZRuypjsaa9Sbyn8MoRrSuQXb3k5yf/jhcrmD/L6SBMXFu2o7uRuSTHXtXu0zBf35ub7P1/Nzs5XZs1Jl290N7hwOU+k9qkKuVQ8mWNd373Xxk+8uVlZedfArA2gTYl5JP3jwoK644gotXLhQaWlpYY999NFHdfbZZ2vmzJkaMGCA5s6dqyFDhmjBggUhr1NZWamKigqfLwAAIF2ko7EeQptiNQ8LV4W1ur/774G+vyxeaRk1eujNjXrwjU0adk5F2Kps04QPwG6NqcQ3pXpfOwaj4eew1n8/9OZGOWscMr0ef2eNw9MfILNnlabet8NzvVDP17lTy2RYsxgcpmd7tsZuseb9wY31oUxzbdEG4NgQ85B+/fXXa9y4cRo1alS9x65atSrguDFjxmjVqlUhrzNv3jx16tTJ85Wbm9vkMQMAADRUsOZhXbtXaf60umC3uzhBmT0rZQSEUfd66Yd/5xsCvauyjjipa/cqRX8qeyTN2SLR1Gq82ai7Zq3/jk8M3rztj88E/7AjVLO3Nxeme4K+6arbnq0xa9X9PwiwHiO2aAPatohDenFx9JtbLF26VGvWrNG8efMiOn7Xrl3KzMz0uSwzM1O7du0KeZ3bb79d5eXlnq+ioqImjRkAACCYcGuKa2qbufs3D5PkE+wWzc72OcZf2Y7QIbCu8hpqK7PGaki4bs617g1d527q1oVbfMK392NrOEyVbEvyfDgSjP/zNfnu4qDV9Zqq+mdJBGN9EOD/oUxD1roDaH0iDumDBg3SkiVLonbDRUVFmj59uhYvXqzk5OSonddfUlKSUlNTfb4AAACiJdg0Zytcfbe6vWae00e3nttPM8/poz27EjzT1GcWFGrPzkSfYFdalKRn52Tr6tnF6pLlXRV3/2uGCIEup7uSu7ckWNhsyfXkdgn0kmTokd/5ThvPyK3WLU8UKiO30vNYWh+OSIEftPg3e8vKqw5aXQ9VpY9kizXfLfnYog1AAxrH3X///Zo2bZpeffVVFRQUqEuXLk264S+++EKlpaUaMmSI5zKn06mPPvpICxYsUGVlpeLifN+ZsrKyVFJS4nNZSUmJsrKymjQWAACAxvKe5lxalKj50/LkrHEos2eldhcn1DYmc+9vvmhWtua/tckTvrybkFnN0Uq3153DamwWF2/KWSPVhWBTmT2rVLo9Qc/PdTcdO/Y09sMDq4lc/Q3tnDUOPTAlX1Pvd681XzQr26+pXN2HIzPP6eN53tzB2Xfqu+WqWcWeRm/eW6mFurw+1gcBuwrrnku2aAPatohD+nXXXaexY8dqypQpGjhwoBYuXKjx48c3+oZHjhypdevW+Vx21VVX6fjjj9dtt90WENAladiwYVqxYoXPNm3Lly/XsGHDGj0OAACAxigtStCi2dkqLaoLyKZpeEJ5aVGiTNO3I7mzxlBNlRTvzvS6alax1znq1jk7vdY8Z+RW+tyGda6aakMPTe2l4BVpd4B1xLlqt2ULrr7fN41Z++FCfdPUG9o93vD7t75zuT8ckeR5bry3YrOuY/3OWkpw29OFQW/dCtX+XdxDXR6prLymXR9A69GgLdh69eql9957TwsWLNCECRM0YMAAxcf7nmLNmjURnSslJSVg27QOHTqoa9eunssnTZqknJwcz5r16dOna8SIEXrkkUc0btw4LV26VJ9//rmeeuqphtwNAACAJnt2TrZnq7Rg4bAuoNdVfuPiTU9Al9zB7tanCjV/Wp5Ktyd6pmBbrCqvd8XdMEwZDlN7doZag+6+bMZftyg+QXrot3khgripW58qlMslPXxtqGOawpCzRuqQWq1DFYlhj/MfV6gt4AzDlCPOP/jX/d4R594T3f+++FfPg2/nFriUIJKt1PyPa2rAJqADaPA+6YWFhXrllVeUlpam888/PyCkR9O2bdvkcNS9qQ4fPlxLlizRXXfdpTvuuEN9+/bVa6+9xh7pAACgRVldueu4A15cvEsup+EJ6I44lwxDninrV8+pm8LsvT921+5VcjhMTwXdUwl3mErLrFblEcOzdt1wBIbQYBxx7g8SQh9rqKZaenZOTjNW0w0dqkhQw6rlobeAM83wgdvldOjWhVv00NR8BYZ4/+q59/f+/9Yflv33N/efIh8KlXIA9WlQwl64cKFuueUWjRo1SuvXr1d6enpUB/PBBx+E/VmSLr74Yl188cVRvV0AAICGsLpyW9Vth8NUt5wqXT27uHY9ed109fTcKt3yRKFPBV3yXcu+d1dCwNR4yV3V3VcaL5fTO4jWH3Y7davS83Przh+sOu2IM/U/f8r2qsg3l2g2rqv/XBk9qnXxTSVa9pdM+XaE9398A7e58/7Xe1lCMMG2XAs1RV5qfKgH0PZE/LHp2Wefrdtuu00LFizQK6+8EvWADgAAcCzx357r6tnF6pZd7VPpNU331Gn/yqn//tieyrvDu5u7WXusQ8GnZ4fujh4XH3z/bd8xOGpnA7Rk9/fGiLQLvHvfeUec9NEraSGPMhzeVXTvf+se+7h4V9iA7v/8RbJlWmP2UQfQNkVcSXc6nVq7dq169OjRnOMBAAA4JoRqFOZfYU/vURUQ0h1xUtfuVbVV7Lqp1obDlFz1N1ozHKZMV+hay95diTIcrto17l5TuQ2zNosGrue2h7oAbRhm7YcX9Y3Pug/u5m9zLs9X+e5gCdt9nP+6/zp1oT0lrUalRQkhK93+Mymsc8+flhe0Qu6/PCLSde8A2qaIK+nLly8noAMAAPjxD1nnTSvzVGsNh6nzppVFfC6X092R3c30+7dOuIDuv6e676/8Q6+dArrkPT09I7eqdq/4+q9jPd77yxJUvtt/+r77d5k9qxQX71Lg4xo4e6FiT3y9lW7vmRSWUBVyK9Q3Zh91AG1Pc3UJAQAAaJNeL0j3BGTTZej1gsAlgi6ntGdnovynXJumEUETt1Bbj/n/PtR67KaKdPp5sOPru66pjNxKPfTmRs0sKNRv79/h9aGFdf3A8/l+IBG88Vxd0znfxyQjt8rr58inr2fkVmtmgbUGvf7r+S+PYB90AKE0X2t2AACANibSac2hpkv7akzA9j6P/9rrSK/r/6+/pux5Xt9Y3FvO3XpuP0lS5/SqII3yGjIToG48ZTsSFRfvXgJgbWXniDNVWpSkjNxKOWsM7StJCLtMwV+wBoKhrtfUfdQBtB1U0gEAAKKkIdOar5pVrG457spqXLxZ+6/LvW7cw5RhhJ6WXSdUB/P6qu71naNhOqdX+1W+m3a+/WXWmv3Q5+qSZU1jtwSbVeCutjtrHJ5qtiPO9DR+s/a7b0ylu6EVcgI6gPpQSQcAAIhApBXQq2YVe7baChXarO24rCqu1Rl+d3GCzxZuhuEOk84aQ127V6u6SqrYE6bteAD/ynroRmwOh+mznVxpUVLQ48LZX9aQsUUifMCPi3fpt/fvkCQtmp1dO+bQ18nsWanbni5UTZU81XrJPeNhz85EPfz2RkkNC9JUyAFEG5V0AACAMEqLEvTgNXmaMbafHrwmT6VF4fcVt0Lbw29v1G1PFwbtEO4O6Im150/S/Gl52l2cEHQLN2eNQw+9uVHxCaYq9jR0T/PIp4anZbrH6XK5u6SnpFUreNU9VCU+3Hrzhq5jj+x6zhqHp1HbH58prG00F3zGQVy8y/OBSXxi9Bu5EdABRAshHQAAIIzG7m8dKrRZ69atvdGlurAZbrp86D3Ng3WBd+8Z7n2u8GN1Txe3ptbvK0nQgX2hJlzWt4VZsLFFwvSbth7uturO7f2cGH6HW8sIMnIrNbOg7gMTlzNwmvp508oa9GEMADQXprsDAACE0Bz7Wzvi3KHRfzq5dd5g0+Wt8F6yzbsjvCVwLXnX7tWaep97Grh1rnBN3UzTqO02X3c/IxeuWVxD1rkbmnzXDr35TLpKi5KU2bNSu4sTaqf+h25gZz0nNVXyuQ/WvukPvblR8bUXW8sMSra5z3/VLPcyA0ec9OA1eQEfxtz2dKEAoKVRSQcAAAihufa3vnp2sU/V2PA6b7fs4NPlr5pVrK7dvafO+1bQHQ739mUPv71Rdz6/VRm51Z5twjJyK8OOx9rCzKqku+9v8O3OQjetCzhriO+DHeOuoi+a3cNrGUCi35Zp/tfzHc8j1+Wpa/eqgOcq3iu3B5sV4Yir+zDG+nAiki3Ywv0OAJqCkA4AABBGtPe3djnr9tjO7OkOzxlBplvvLvadbp2R666OW9ep6wjv/tdwmJ717aVFCT5r6YM3VKsLug6He3q8tWd4t5wqjfnNbgVf0x5JKPc/LvC2HXEuz9gleZrlee8Zb40tUGB13QrfoZ6rcEG8IR/GNLRHAQA0FNPdAQAAwohW9+5gU629zxvJdGvvhnOmy1BGbqX++ExhwHUXzc6WYUil28N0WzekuNrO8Vagdbmk5+51d0l/98WuCt4d3l99e6MH53I6FG4vd4fDVFpmteITTK/p+tax3t/Xhe5wHdrr29M8kq78UvBqPNPiAUQTIR0AACACTZ3iHirceU+3tgRb+76rMCHgmNIi91rsYJfXy6xbs723JEEL78rxWdPt3WXerb4gHmlQN+VwSC5XqOu4Q7/hMDXhhlIN+Nlhrf+svRbNypbpssYUPNR7h25/pUUJqqk2PJX0tMxqnyAeyYcxzdGjAAD8Md0dAACgmdW35jmS6dbPz82W/zpva821bxf3UGvHA2Xkuq//7Jxs7dkZetq2YQTrvN5YRpDGdN5rzGsfI6eh1wvSJUnPzcn2rJu3jvW/v4bDXXEPNQX92TnZ2leS4Lk/8Qlm0O3xwoXt5upRAADeCOkAAADNLJJwF27te10F13ed9+S7iz3X7ZZT5bnc919vvsHdWWNo/Wftw2zv5paRW6Wr5xQreDO44LfTtXuVUrr4h2Ar7Adbv+57HtN0f5BRdUR+DeTcx1r3N7NnlbpkVXlCfLBt8vw/JLHOHUnzN/9jot2jAAD8Md0dAACgBdS35jncdOtQ66mz8qo91/Vem+4Oo74h2nC41CWzpnZKu3tK+d5dCXrm7pzQgzZMZfSo0m1PF2pXYYL8PyTwVbc23doC7tk52Tqwz5Rqm8DFxZu6claxnrm7R0SPmVXpj4t3eW3FZiou3tStT9WtA58xtp/n+2BT0Otbjx5MsB4CVsf8aPQoAIBQqKQDAAC0gIzc6tqgV6mSbUm1TeACp2WHCn6RVHC9j+navdqzZVtmz0rdtrBQty/aWnukdwf1MGvJTen8a8skBZtu789QatcqzxZw3bKr3RV6s+78zhqH+v/kcG2Hev+qvO+5HXHuYD5jbD+lpDllOOo+dDBN9+Xzp7m74EcyBb2hFfBgPQS8q+pWLwEAiDYq6QAAAC3k2TnZ2r2jcZ3Brf3Tw1Vwg1V5vb93fyjQkG7s7nXh/YcU+jRMC6ViT6Ln9vyr14bDvY781nP7qXN6lYJX5a2xmTJNedaQl++OlyPOlEumTJfhCcfWYxhJZ/aGVMBDNYibMbafMntW6rxpZXq9ID2gyg4A0UBIBwAAaAGN7Qweatp1ON7n8/5+0exsNXS7NGvMmT0rVbItUb6BWj4/x8W7Q7g1zvOmlWnRrGzJZch0Sc7aNeH7y/w/LLC+r1t3brqMuhZ4tZ3o6/g24IvkAwxLJFPU/T9g8L6vZdsTazvN+66BZxs2ANHCdHcAAIAW0NjO4P7Trt1BO7RgU7BLixL0wJS8yLZm82J4jdHdpM4/KNf9HBdvyuX0Da6vF6R7dWX3DeHh17dbQk2vD/4YRnONuPf0eP/92J01jpCd+gGgqQjpAAAALaSh66KDbd1WWhR8m7HSogQ9eE2eZoztF/B772n2gcE32JZt7u8zvMaYlVetrt2r/I6v+95Z46hd414XXL3HHnibvkE7cF16/dPyg3XBjxZrevzDb28M+HAlLt7FNmwAmg0hHQAAoIV4B7/bni6MaNp6sD3Qg20zFqzRmRQY9AOnq8vv8rrvZxbUjbG0KEH7SuMVvBruf053kPUeu+Go22vdu6ldeo8qryp9JNV19+8eerPuMQz3AUVj+DeI8/9w5eo5bMMGoPmwJh0AgDbqJSWrJs3QyLINGlSco0OSyvYcVv6yz7RqSB+tqfi7hqReGuthtkoNqbpeNatYi2Zn105VD5xibXUZD7fePbNnpUqLEmWa7u3H3IE9WMCu+z6zZ5Xn3I4493p2lzNUfSdwTbmzxtBv7izW/9zvXk9vVeW7ZVdrd3GCz4cMDkewNe/WeRVwWWbPKsUn1l0S7AOKxmyT1pBt1wb8jG3YADQPQjoAAG1Ufn6+tmqrVvTrr9R9+5WbO1rdduzQ2j3vauKaTdq+77A+HimCeowF2wPde59v7yAe7PelRQk6fMB7KrqUklalQ+UJnmPTMt1Vbfce6pJkqPKIofsn52vPzkRl5FYGXc/u3r/cobh4U84a9/Xc3E3kHp7WS5k9KzXjr1uUfVy1Z6z+oXrhXTme2/UVWE2PizcDprgH+4DiwWvyGtRsr7QoQfOn5clZ4/4gojRIQ7hg+9cDQLQR0gEAaMOsoP5GWqbGby5RRRfppzmTVVy0XEmuwzp9xVp9PNJ9LGE9tvy3GTtvWplPEPXeFsx7Cvazc7J1YJ/v//IdPhCv9B5VPsdm5FbrgSnuDwJM06jtwO62e0ei4uJdcjkNT9iPi3dpZkGhqiql/7qul99ojdrQLpVsS9TD1/byBPr0HpUq2+4bqvfsTJRhhNuDvY6zxqFu2XWBO9gHFIbDDFpZD2fR7GxPQJckM8Lu+wAQbYR0AADauPz8fEnSG5Jq0jr7VtUrqKq3lPrCoP+Ua6uyLrmD6OsF6T6/dzkDq8xu7qnotzxR6NnP3Lp932p5XRXb5TIkl1E7JT1JGbmVOv/aMq9p+MH4Tqe3tlBzB3RThsMdhK3p91b49xW4zZs1Dd+b9wcY3XKqfMYUyVZ3gffdjYZwAGKBkA4AACQFr6oP1ijtrvzWp6pOUI+uhu6DXt8adGu9t3W+rt2rtGdngvynonuv6bYapYXaG9yaPm99CLC72HdqeOAYXZJp+HV29/3e4XDJ6TKU3qNKNdWG9pW4p98bhilHnLtbfNfu1XLWSPvL3IPt2r06aJO2UB9g+E/9D/eYeq/bl9wzBWgIByAW6O4OAAA88vPzlZ+frzeOy9SKfv31QxcpO3e0BqeOUpJLmrhmk9ZU/F1rKv4e66G2GqG6socTbs91//NJUuf0utAfF2/q6jnu8FlalKD7J+drxth+mjG2nyqPODzr0/07sFuB1bqNUAE9Lt6lKfd67zEefBq7s8bh6dA+9b4dnuMzcqs0s8DdAX/qfTuU1K52O7jcSk29b0e9H2BIDd/qzrpORq41hkqfzvYA0JKopAMAgAABTeVycjxVdaa/R099Xdn9j/W+zH+N+lWzioOeb8/ORD389kbPObwr6AvvyqmtsrvtL4tXZs8qPfz2Rp9p8N63G3wKvVtGbqWunu2eCdA1q7j2/N77s7ur1IbDVEaPug7twbqnS74fOOzeEdna8nDni/Z17CZ/2WexHgKAKCCkAwCAoKygrn1Sj4EnarskFX2rn2X9TNLq2A7uGBMq+IXrym5pyLZgLmf48/mH7boAbTECAniwjuaZPStVuj1RpqtuavgtTxYqK6+u8vzsnGztK3F/AGB1kI9PMH22Y/N/fMJ9GGB9gLGrMMHndsJpTNg+1gK6Navl9BVrVeaSsjtmq5tjoNYf2aGibTV647jMGI8QQEMR0gEAAJpJJOvNg1XEvYXaA9xibbNmnaNr9yqlZVZrz87EiKd6e8vIrb9Z2nnTyrRoVracLkNx8S5dPafYJzjXV9G3zh/u8bE+DPDdO93U83Mjq6a3BWsq/q7TV6xVj7T2KnNJg1NHKTEnR+uP7NCKfv0Vn5bkaQwJ4NjBmnQAAIBmEsl6c6si/vDb7vXZ3iHeCrtWAzbv6fChbmdfSYLiE8yg5/PmiJO6dq+S95rxuHiXrp5df6h/vSDdU0U3XYZeL0gPOHeoNfOhprMHe3wm310s/4Zzwe5/W2QF9CSXlFDZWYNTR+mHLlJRxxp9eMpgAjpwDCOkAwAANINIA7Yl3HT4YGG3vtuJxNT7diizp7tZWmbPyJqlRXK/XM76m7dFcp6svGpl9qz07KEe7P63NVbjxolrNimptnqenTtaP3SRVvTrrzeOy/Q0gARwbGK6OwAAQDOIZL15JOqbDt+U22lMs7Rwtxds+nqXzOqA7d6sinok467v/rcl3tPb3dXz4fqhi5TasUYrcpneDrQWhHQAAIBmEo2AGUmQburthDpvqNsMdXve09dLtyd69lLP7Fmp86aV6fWCdJ8AH8m4w93/Y7kTe0N4N4ezprdn5472WXseLxHQgVaCkA4AANBMormtV7ggHe3tw+preBeqs7z3NHvTZchZO5W9bHuiFs3K9qxj926AF+m4I+l435pNXLNJqq2gZ+eOVlHHGqV2zKR6DrRCrEkHAABoZs1R7S0tStCD1+Rpxth+evCaPJUWJUTtdiJpeCf53i//9fPeXC5DzhpHyPXnDR13pONrbdzbH9ZJOq5TjEYCoDkR0gEAAI5B4YJqU7qfN7ThnTfvZnFx8S6fhm9x8a6wDfBaYnwAcCxgujsAAMAxJtg+5CXbkrSrMEHPz238NHBrGrmbKanxjeh2Fyf4rDf3XpPelAZw0WrIBwB2RUgHAACwqVBrtUMF1efnBlbXb3u6MOLb867OWxrbiC7YuvUBP4vOunk6vgNozQjpAAAANhNJYzT/oDr57mI9NLWX5/fe08AjCcX+1XnJPZ18ZkFhk0K1/3WjUfGOdqM8ALATQjoAAIDNBFtv7l8RDxZUmzIN/FicRm7nsQFAY9E4DgAAhPXGcZlate1LrT+yQ90cA/VV4Q8q23NYp69Y69m/GdHT0MZo3kHVu3FbY6aBN/X6iK41FX/Xmoq/6/QVa1W257C+KvzBsz/6q2md9ZKSYz1EAM2ASjoAAAjJ2n/5DUk1aZ2ljRs0qN1odduxQ2sr3tXENZv04hB3UB+SemnMxtmaNKWi3dRp4C0xjZwp6pGxwnmPtPYqc0mDU0cpMSdHRR1rtCK3P/ujA60YlXQAAFCv/Px8xaclaUW//irqWKMfurhDQ0JlZ01cs4mqepQ1taLd1BDcUvu6IzgroCe5pITKzhqcOko/dJGKOtbojeMyCehAK2eYpmnGehAtqaKiQp06ddK9X29QckpKrIcDAMAxZevWrZKkmn2VGrlxgwa1y1Fx0XIVHyxWpUP6eORgSVTVo6U1VZ0fvCYvYHZAQzrPtwXWB10T12xS2Z7Dnur5+iM7tKIf1XPgWHb0wAHdc1J/lZeXKzU1NeyxTHcHAAARswLCVm3Vin79lbpvv3Jzfae/b993WB+PJKhHQ2sJ6KH2dW9NH0I0lff0dnf1fLh+6CKlMr0daHMI6QAAoMHy8/O1VVv1Rlqmxm8uUUUXabBGaXflt0pyuZvKEdRhORY7x7cUn+q5S+pePVyJub7V83iJgA60IaxJBwAAjZKfn6/8/Hy9cVymVvTrrx+6SNm5ozU4dZSSXO7QYXWnBugcH8g7oCdUdlZ2x+y65nBe09sJ6EDbQiUdAAA0iVVVt6a/e1fVRy1fW7tWnap6W9cSneOPRcN6d5XWbJIkdTjl51LtZxdMbwfaLirpAACgyazu71TVUR8COgCERyUdAABERbCmct5VdZrKAQBQPyrpAAAgqkJV1RMqOyvJJc+e6lTVAQAIREgHAABRZzW7ik9L0op+/VXUsSZg+rsV1gEAQB1COgAAaDbeVfWijjX6oYs0OHVUQFUdAAC4EdIBAECz8t6qLTU9U4k5Oepwys+V3TFbPdLaa1jvrgR1tDnWaz5/2Wcq23NYktSpuJPWH9mhV9M6x3BkAGKNxnEAAKBF9Rh4osr3fxLrYQAxs6bi7zp9xVr1SGuvhMrOGpw6XD90kZwda7Qitz/brwFtHCEdAAAAaAFW9fz0FWuV5JISKjsrO3e01h/ZoRX93OE8XiKgA20cIR0AAABoZt7V8zKXuzdDYk6OiqieA/BDSAcAAACakRXQreq5Nb09tWON3jguk+o5AB+EdAAAAKAZWNPbJ67Z5FM9957eTjgH4I/u7gAAoMV1Ku7k+T5/2WcxHAnQPKzq+cQ1m2qr56P0Qxe5p7cT0AGEQSUdAAC0mDeOy5Q2f6mKIyXq6xio3ZXfqvhgsU5fsVYfj5SGpF4a6yECTUJzOABNRUgHAAAtwgolb0iqSessbdygQe1Gq9uOHVpb8a4mrtmkF4e4Aw5hHccimsMBiAZCOgAAaFH5+fnaqq1a0a+/UvftV0UXabBGaXflt5q4ZpO27ztMVR3HlGDV858OuFjrj+ygORyABiOkAwCAFmcF9TfSMn2q6sVFy5XkOkxVHccMqucAoo2QDgAAYsIKLt5V9dxc9/R3quo4FrC1GoDmQEgHAAAx5VNV31epkUfkU1W3mspJhHXYA1urAWhOhHQAABBz4arqVlM5quqwA+/p7f7Vc6a3A4gGQjoAALAN76r6+M0lPk3l/KvqkSDQI1rYWg1ASyGkAwAAW4lkq7ZIUHlHtNAcDkBLIqQDAABbCrdVWyRYz45ooDkcgJZGSAcAALYVaqu2SLCeHU1hhfOJftVzmsMBaG6EdAAAYGvBmspFItR6doI66hOues70dgDNjZAOAACOCd5V9UiEWs++fd+d+njkYMI6AkSytVofwjmAZkZIBwAAx4yGVC9DrWenqt62WME7EmytBsAOCOkAAKBVys/Pl/KlN7ZuDVlVf3GIO8AR1lsn767skShjazUANkBIBwAArVq4LvE0lWu9/NeVR2Jw6nC2VgMQczEN6U8++aSefPJJbd26VZI0aNAg3XPPPRo7dmzQ45977jldddVVPpclJSXp6NGjzT1UAABwDAvVJb64aDlbtbUyodaVR2L9kR1srQYg5mIa0nv06KEHHnhAffv2lWmaev7553X++efryy+/1KBBg4JeJzU1VRs2bPD8bBhGSw0XAAAcw4J1ic/N9W8qR1X9WOY9vd1/XXkkqJ4DsIOYhvTx48f7/Hz//ffrySef1KeffhoypBuGoaysrJYYHgAAaIW8q+rjN5fQVK4VsKrn3tPb/deVR4LqOQA7sM2adKfTqWXLlunQoUMaNmxYyOMOHjyovLw8uVwuDRkyRH/6059CBnpJqqysVGVlpefnioqKqI4bAAAce6wg9oZCb9VGU7ljg3f13Ht6O+vKARyrYh7S161bp2HDhuno0aPq2LGjXn31VQ0cODDosf3799eiRYs0ePBglZeX6+GHH9bw4cO1fv169ejRI+h15s2bpzlz5jTnXQAAAMeoSJvKRVNbD/0N2RItEt7V858OuNhdPc/tSFd2AMcswzRNM5YDqKqq0rZt21ReXq6XXnpJTz/9tD788MOQQd1bdXW1BgwYoIkTJ2ru3LlBjwlWSc/NzdW9X29QckpK1O4HAAA4dllNbGv2VWrkxg0a1C5HVbVV9fSukW3fFQl36B8sqe2Fde+GbtFUtuewT/X81bTOVM8B2M7RAwd0z0n9VV5ertTU1LDHxrySnpiYqD59+kiShg4dqtWrV+vRRx9VQUFBvddNSEjQT37yE23aFPrNPikpSUlJka1DAgAAbVOwpnLeVfVoSXIdbpMN6vwbukWTd3M4urIDaA1iHtL9uVwun8p3OE6nU+vWrdM555zTzKMCAABtQait2qKl244dbapBXaiGbtHk3RyOcA6gNYhpSL/99ts1duxY9ezZUwcOHNCSJUv0wQcf6J133pEkTZo0STk5OZo3b54k6d5779Wpp56qPn36aP/+/Zo/f74KCwt1zTXXxPJuAACAViRYVT1aKrqozTSoC9fQLZpoDgegtYlpSC8tLdWkSZO0c+dOderUSYMHD9Y777yj0aPdn7Bu27ZNDofDc/y+ffs0depU7dq1S2lpaRo6dKhWrlwZ0fp1AACAhvCuqkdLTVrnsA3qWktQtwK6VT33n5IeTUxvB9DaxLxxXEurqKhQp06daBwHAABaXLAGdcVFy1V8sFiVDh3zTeW8m8N5N3RjSjqAtu6YahwHAADQVgSbSp+b6zv9vTm2fWsp3s3hvKvnTEkHgMgR0gEAAFqY91T68ZtLfKa/Wx3gj0VlXs3hvKvnTEkHgMgR0gEAAGLACq1vSD6d5K0O8Mciq3rupHoOAI1GSAcAAIghq6ruvT97NLd9a0lUzwGg6QjpAAAAMea/P3s0t31rSVTPAaDpCOkAAAA24N1ULprbvrUkqucA0HSEdAAAABsh5AJA2+aI9QAAAAAAAIAbIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmYhrSn3zySQ0ePFipqalKTU3VsGHD9Pbbb4e9zrJly3T88ccrOTlZJ554ot56660WGi0AAAAAAM0rpiG9R48eeuCBB/TFF1/o888/11lnnaXzzz9f69evD3r8ypUrNXHiRE2ZMkVffvmlLrjgAl1wwQX65ptvWnjkAAAAAABEn2GaphnrQXjr0qWL5s+frylTpgT87tJLL9WhQ4f05ptvei479dRTdfLJJ+uvf/1rROevqKhQp06ddO/XG5SckhK1cQMAAAAAEMzRAwd0z0n9VV5ertTU1LDH2mZNutPp1NKlS3Xo0CENGzYs6DGrVq3SqFGjfC4bM2aMVq1aFfK8lZWVqqio8PkCAAAAAMCOYh7S161bp44dOyopKUnXXnutXn31VQ0cODDosbt27VJmZqbPZZmZmdq1a1fI88+bN0+dOnXyfOXm5kZ1/AAAAAAAREvMQ3r//v311Vdf6bPPPtPvfvc7TZ48Wd9++23Uzn/77bervLzc81VUVBS1cwMAAAAAEE3xsR5AYmKi+vTpI0kaOnSoVq9erUcffVQFBQUBx2ZlZamkpMTnspKSEmVlZYU8f1JSkpKSkqI7aAAAAAAAmkHMK+n+XC6XKisrg/5u2LBhWrFihc9ly5cvD7mGHQAAAACAY0lMK+m33367xo4dq549e+rAgQNasmSJPvjgA73zzjuSpEmTJiknJ0fz5s2TJE2fPl0jRozQI488onHjxmnp0qX6/PPP9dRTT8XybgAAAAAAEBUxDemlpaWaNGmSdu7cqU6dOmnw4MF65513NHr0aEnStm3b5HDUFfuHDx+uJUuW6K677tIdd9yhvn376rXXXtMJJ5wQq7sAAAAAAEDU2G6f9ObGPukAAAAAgJZ0TO6TDgAAAABAW0dIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE3Ex3oALc00TUnS0YMHYzwSAAAAAEBbYOVPK4+GY5iRHNWKbN++Xbm5ubEeBgAAAACgjSkqKlKPHj3CHtPmQrrL5VJxcbFSUlJkGEash9MqVFRUKDc3V0VFRUpNTY31cNDCeP7BawC8Bto2nn/wGgCvgfqZpqkDBw4oOztbDkf4Vedtbrq7w+Go95MLNE5qaip/lG0Yzz94DYDXQNvG8w9eA+A1EF6nTp0iOo7GcQAAAAAA2AQhHQAAAAAAmyCko8mSkpI0a9YsJSUlxXooiAGef/AaAK+Bto3nH7wGwGsgutpc4zgAAAAAAOyKSjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkI6x58+bpZz/7mVJSUpSRkaELLrhAGzZsqPd6y5Yt0/HHH6/k5GSdeOKJeuutt1pgtIi2xjz/zz33nAzD8PlKTk5uoREj2p588kkNHjxYqampSk1N1bBhw/T222+HvQ5//61LQ18DvAe0bg888IAMw9BNN90U9jjeB1qvSF4DvA+0LrNnzw54Po8//viw1+E9oGkI6Qjrww8/1PXXX69PP/1Uy5cvV3V1tX71q1/p0KFDIa+zcuVKTZw4UVOmTNGXX36pCy64QBdccIG++eabFhw5oqExz78kpaamaufOnZ6vwsLCFhoxoq1Hjx564IEH9MUXX+jzzz/XWWedpfPPP1/r168Pejx//61PQ18DEu8BrdXq1atVUFCgwYMHhz2O94HWK9LXgMT7QGszaNAgn+fzk08+CXks7wFRYAINUFpaakoyP/zww5DHXHLJJea4ceN8LjvllFPMadOmNffw0Mwief6fffZZs1OnTi03KLS4tLQ08+mnnw76O/7+24ZwrwHeA1qnAwcOmH379jWXL19ujhgxwpw+fXrIY3kfaJ0a8hrgfaB1mTVrlnnSSSdFfDzvAU1HJR0NUl5eLknq0qVLyGNWrVqlUaNG+Vw2ZswYrVq1qlnHhuYXyfMvSQcPHlReXp5yc3Prrbjh2OF0OrV06VIdOnRIw4YNC3oMf/+tWySvAYn3gNbo+uuv17hx4wL+voPhfaB1ashrQOJ9oLX54YcflJ2dreOOO05XXHGFtm3bFvJY3gOaLj7WA8Cxw+Vy6aabbtJpp52mE044IeRxu3btUmZmps9lmZmZ2rVrV3MPEc0o0ue/f//+WrRokQYPHqzy8nI9/PDDGj58uNavX68ePXq04IgRLevWrdOwYcN09OhRdezYUa+++qoGDhwY9Fj+/lunhrwGeA9ofZYuXao1a9Zo9erVER3P+0Dr09DXAO8Drcspp5yi5557Tv3799fOnTs1Z84cnX766frmm2+UkpIScDzvAU1HSEfErr/+en3zzTdh16Cg9Yr0+R82bJhPhW348OEaMGCACgoKNHfu3OYeJppB//799dVXX6m8vFwvvfSSJk+erA8//DBkSEPr05DXAO8BrUtRUZGmT5+u5cuX0/irjWrMa4D3gdZl7Nixnu8HDx6sU045RXl5efrHP/6hKVOmxHBkrRchHRG54YYb9Oabb+qjjz6q9xPQrKwslZSU+FxWUlKirKys5hwimlFDnn9/CQkJ+slPfqJNmzY10+jQ3BITE9WnTx9J0tChQ7V69Wo9+uijKigoCDiWv//WqSGvAX+8BxzbvvjiC5WWlmrIkCGey5xOpz766CMtWLBAlZWViouL87kO7wOtS2NeA/54H2hdOnfurH79+oV8PnkPaDrWpCMs0zR1ww036NVXX9V7772nXr161XudYcOGacWKFT6XLV++POz6RdhTY55/f06nU+vWrVP37t2bYYSIBZfLpcrKyqC/4++/bQj3GvDHe8CxbeTIkVq3bp2++uorz9dPf/pTXXHFFfrqq6+ChjPeB1qXxrwG/PE+0LocPHhQP/74Y8jnk/eAKIh15zrY2+9+9zuzU6dO5gcffGDu3LnT83X48GHPMb/5zW/MP/7xj56f//3vf5vx8fHmww8/bH733XfmrFmzzISEBHPdunWxuAtogsY8/3PmzDHfeecd88cffzS/+OIL87LLLjOTk5PN9evXx+IuoIn++Mc/mh9++KG5ZcsWc+3ateYf//hH0zAM81//+pdpmvz9twUNfQ3wHtD6+Xf25n2g7anvNcD7QOtyyy23mB988IG5ZcsW89///rc5atQos1u3bmZpaalpmrwHNAemuyOsJ598UpJ0xhln+Fz+7LPP6sorr5Qkbdu2TQ5H3aSM4cOHa8mSJbrrrrt0xx13qG/fvnrttdfCNhuDPTXm+d+3b5+mTp2qXbt2KS0tTUOHDtXKlStZv3yMKi0t1aRJk7Rz50516tRJgwcP1jvvvKPRo0dL4u+/LWjoa4D3gLaH9wHwPtC6bd++XRMnTtSePXuUnp6uX/ziF/r000+Vnp4uifeA5mCYpmnGehAAAAAAAIA16QAAAAAA2AYhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAhOR0OjV8+HBNmDDB5/Ly8nLl5ubqzjvvjNHIAABonQzTNM1YDwIAANjXxo0bdfLJJ2vhwoW64oorJEmTJk3S119/rdWrVysxMTHGIwQAoPUgpAMAgHo99thjmj17ttavX6///Oc/uvjii7V69WqddNJJsR4aAACtCiEdAADUyzRNnXXWWYqLi9O6det044036q677or1sAAAaHUI6QAAICLff/+9BgwYoBNPPFFr1qxRfHx8rIcEAECrQ+M4AAAQkUWLFql9+/basmWLtm/fHuvhAADQKlFJBwAA9Vq5cqVGjBihf/3rX7rvvvskSe+++64Mw4jxyAAAaF2opAMAgLAOHz6sK6+8Ur/73e905pln6plnntF//vMf/fWvf4310AAAaHWopAMAgLCmT5+ut956S19//bXat28vSSooKNCMGTO0bt065efnx3aAAAC0IoR0AAAQ0ocffqiRI0fqgw8+0C9+8Quf340ZM0Y1NTVMewcAIIoI6QAAAAAA2ARr0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJv4/S49EeqF0n0IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 21\n", + "amount_ae: 39\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+sFJREFUeJzs3Xd8U9X7B/DPTbp3KS2jhZZdkD1FhBaoFsECyizIVvZSUUBBQPEHKAgyZMqQrwyRIS4UkY3QsgsIxTLLKgW66E7O74+aa9MkbdImTVs+b195YU9OznPuzU16+tx7z5GEEAJEREREREREREREZqawdgeIiIiIiIiIiIiobGLykYiIiIiIiIiIiCyCyUciIiIiIiIiIiKyCCYfiYiIiIiIiIiIyCKYfCQiIiIiIiIiIiKLYPKRiIiIiIiIiIiILILJRyIiIiIiIiIiIrIIJh+JiIiIiIiIiIjIImys3QEiKtnu37+PI0eO4MGDB3j48CHi4+Px3nvvwd/f39pdIyIiIiIiIqISjlc+EpFe0dHRCA0Nha+vL3r16oWxY8di1qxZWL58OQ4ePGjt7hGREW7cuAFJkjBz5sxiiTdz5kxIkoQbN24USzwiIiIiIir5mHwks9P8sWvMY+TIkdbuLukRHR2N1q1b488//8TkyZNx9epVqNVqCCGgUqkwcOBAa3eRiIpgyZIlkCTJ4Gf5yZMn8PX1hZOTE6Kjo+XygIAABAQEFFMviYiIiIjMKyAgAMHBwRaPozkpf+DAAb3lz9rJet52TRZTo0YNvPHGG3qfu3HjBjZs2FDMPSJjDRs2DMnJyfjpp58QGhpq7e4QkZmNHTsWO3bswMaNG9GjRw9069ZN6/kxY8bg7t27+PLLL1G7dm0r9ZKISoMbN26gWrVqRtUdMWIEVqxYYeEekTUFBwfj4MGDEEJYuytEREY7ffo0WrVqherVq+Ps2bNwdHTUqdO5c2f8+uuv2Lhxo8E8BxnG5CNZTM2aNQ3e6nfgwAEmH0uoqKgoHDlyBO+++y4Tj0RllCRJWLduHRo0aIDhw4ejTZs2KF++PADg+++/x+bNm9G+fXuMGzfOyj0lotKCJ52JiKi0atq0KT788EPMmjULU6dOxaJFi7SeX7VqFX799Ve89tprTDwWEm+7phIpICDA4K3a69ev16m/bt06tGrVCi4uLnBxcUGrVq301jtw4IDB+c8kSdJ7+XVwcDAkSdIp379/P4YOHYo6derIcZs3b45Vq1YVetvyXpI9ePBgs12SfeHCBfTu3Rs+Pj6wt7dHtWrVMHHiRDx69Eir3rFjxwAAderUQXh4OCpUqAA7Ozv4+/tj1KhRuHfvnlxXrVbD398fXl5eyMjI0Bu3Xbt2sLGxQWxsLADD+1Nzu/7gwYO1yk3dz/puC71//z5Gjx6NatWqwc7ODuXKlcOrr76Kv/76S+f1hi6PL8yxAwDnz59H3759UalSJXk/jhs3Tme/FzRdwZo1a7TqG/t+5kdzfCkUCly/fl3n+cOHD8vx8253fttsaB8Cxn9WN27cCIVCgb59+2pdPWHoOImIiICLiwuaNm2K5ORkreeSk5MxY8YMPPfcc3B0dISHhwdCQ0Nx5MgRvf1PTk7GrFmz0LBhQzg5OcHd3R1NmjTB9OnTkZWVZdLUEprPrmafaB4KhQKVKlVCly5d5M9cbjt37kR4eDhq1qwp96Ft27bYvn273j4XRkBAABYsWIC4uDiMGjUKAPDgwQOMGjUKrq6uWLdunfxZ1WzzzZs3cfPmTa1tKa75JImoZNOcdNb3yPudTUREVNJ8+OGHaNKkCRYvXqy1xsH169fx7rvvwtvbGytXrrRiD0s3Jh+pxHJ3d8eMGTPkR97bAjXGjx+PoUOH4s6dOxg2bBiGDRuGO3fuYMiQIZgwYYLF+jdv3jwcOnQILVq0wNixY/HGG28gPj4eI0aMwLvvvpvva/NuW1BQkMX6CQBHjhxBq1atsHPnTnTs2BHvvPMO/P398eWXX6JVq1aIj4+X6z58+BAAMGrUKGzbtg3BwcF49913UbduXaxYsQLNmzfHzZs3AQAKhQJvvvkmHj9+rDcpcuXKFRw+fBidOnWCn59fofpelP0MAHfv3kWLFi2wfPlylCtXDu+88w66deuGP//8E+3atcOOHTsK1S9j7N69Gy1btsTu3bsRHByMiRMnokGDBli6dClat26NJ0+e6LymUaNGWseG5tG0aVO5jinvpzEUCoXeX6TLly+HUqk0fcMNMOWzOmDAAMybNw9bt27F22+/nW+70dHR6NKlC3x8fPDrr7/C1dVVfu7x48do3bo1Pv74Y3h6emLkyJHo0aMHTp06hfbt22PXrl1abcXFxaFly5aYOXMmlEolRo0ahaFDh6JixYqYN28enj59Cg8PD533x93dXedzPWPGDHh4eGi1P2jQIMyYMQMffvghgoKCsHfvXoSEhODy5cta9aZOnYqLFy/ixRdfxIQJE9CrVy9cuXIFPXv2xJIlS0zf+QYMHz4coaGh8tWOw4cPR3x8PBYtWqS1or1mm/VtZ3HMmUNEZRtPOucw50nn3Nti7H4VQmDt2rVo06YN3Nzc4OTkhObNm2Pt2rV624+OjkZISAicnJwQGBiIPXv2yM/FxMQgODgYjo6OqFevHrZt26a3jZs3b2LYsGHw9fWFnZ0d/Pz8MGzYMNy6dcvg9qSnp2PKlCmoWrUqHBwcULduXSxZskTnVu/169fnu71Pnz6Fu7u73mPB0HFw9uxZKJVKnTZznxy9ePEiunTpAg8PD7i4uODll1/GqVOnzLb9moednR0CAgLw5ptv6tTPzMzEkiVLEBoaiipVqsDe3h4+Pj54/fXXcebMGZ22NftK334C9J/cz+94NXSyGDDtBHp+n5+8V5/Fx8dj4sSJqFatmry9vXv3xoULF/Rukz6WOGaA/L+Ljh49ii5duqBcuXJwcHBAYGAgZsyYgdTUVK16UVFR8PT0RN26dXX2lb7359GjR6hbty48PT0RFRWl9Zypn3UhBNatW4e2bdvCw8MDTk5OqFWrFkaMGCEfe/m9V/q+ezT7JPejXLlyaNWqFb755hudPpw6dQpjx45F/fr14e7uDkdHRzRo0ABz585FVlaW3n6bytbWFt988w1sbW0xZMgQpKSkQK1WY/DgwUhJScHKlSvh7e2t87rbt28jPDwc5cqVg4uLC4KCgnDo0CGz9KlMEURmdv36dQFAhIaGGqyzf/9+AUCMGDFC7/O+vr4iICBAq2zdunUCgFi3bp1cdvDgQQFA1K1bVyQkJMjljx8/FrVr1xYAxKFDh3TizpgxQycmABEUFKRTHhQUJPR9VK5du6ZTlpWVJV566SWhVCrFzZs39W6bn5+fzrbNmDFDABD79+/XKh80aJAAIK5fv663LWOoVCpRo0YNAUDs2bNH67n33ntPABBDhw7V6QsA8fPPP2vVnz9/vgAgXn31Vbnszp07wsbGRgQHB+vEnjRpkgAgdu3aJZcFBwcLAEKtVmvV1Rw3gwYN0io3dT/7+/sLf39/+ec+ffoIAKJ///5aMU+fPi3s7OyEp6enSEpK0tn+vO+FqcdOfHy8cHNzE76+vuLGjRtaz23evFkAEGPHji1w+/My9f3Mj+b46tatm/D29hYZGRnyc3FxccLOzk50795d73Yb+rwIoX8fmvpZ1Xj77bcFADF37lwhhO5+unv3rggICBDe3t4iOjpa5/X9+vUTAMTq1au1yh88eCCqVKkivL29RVpamlzeo0cPAUB88MEHOm3dv39fZGVl6d3mvMedMftECCGWLVsmAIhFixZplcfExOi0kZycLBo0aCDc3d3F06dPDcbKTbO/9B23GrGxscLDw0PY29vrfL7zMnY7i/KdRUSliznGff7+/sLd3V3MmDFDfnTr1k1n3CeEEOPGjRMAhK+vrxg/frwYP3688PX1FQDE+PHj9cY1x7gvNDRU1KhRQ/Tv319MnjxZjBgxQvj7+wsA4p133jG47fq2TRPDEuM+fdtizH5Vq9UiPDxcABC1atUSI0aMEOPGjROBgYECgHj33Xe16j948EBUqlRJSJIkXnvtNTFmzBjh5eUlqlatKgCI2rVri549e4rhw4eLcuXKCUmSxPbt27XauHLlivD29hYARFhYmJgyZYp49dVXBQDh7e0trly5ond7wsLChJ+fn5gwYYKYMGGC8PPz0/s+aP52UCqVolWrVjr7Z+XKlUKpVOo9FgwdB23btpXHybn3oeZz0LZtW+Hu7i7at28vpkyZIsLDw4WNjY1wcnISx48fN8v2a97LKVOmiPbt28vvWe4xyr1794RCoRBBQUFi+PDhYvLkyaJXr17C3t5eODg4iIiICL37Ku9xoaHv939+x6uhce3hw4eFk5OTsLGxEX379hVTpkyRt6tGjRri4cOHOnHzfn40j9zHU1xcnDw+Dg4OFlOmTBF9+vQRSqVSODk5icOHD+vdrrwsccwIYfi76LvvvpP7OGTIEDF58mTRpEkTAUC0atVKa4wqRM542sHBQbRu3VqkpqZq7afc78/Tp0/F888/L+zt7cXBgwe12jD1s65SqUTPnj3l792RI0eK999/X/Tu3Vt4eHiInTt3CiGEWLhwodb706hRIwFATJgwQav8zJkzWvskKChIfm7EiBHCy8tLABDr16/X6seIESNE5cqVRd++fcV7770nxowZI5577jkBQLz++ut697sh/v7+Bv+OEUKIOXPmCABi+PDhYsGCBQKAGDBggN66d+/elX8HhYaGiqlTp4ru3bsLOzs7ERoaqve7/lkdLzP5SGZnjkGoj4+PqFOnjlaZvl+KQ4cOFQDE1q1bddr49ttvdRIx5hyEGrJ9+3a9X5gaXl5eonbt2lpllkw+Hjp0SAAQr7zyis5zycnJoly5csLBwUFOPGn6ou/9y8rKEtWqVROSJIm4uDi5/LXXXhOSJImrV6/KZZmZmcLHx0dUqlRJazDUu3dvvdtkbPJNw9B+zv3LNz09Xdja2gpbW1tx+/ZtnTbeeustAUBs3LhRLjNX8vGLL74QAMQ333yjt/9NmzYV5cuXl382dvtNfT/zozm+fv31VwFAfPvtt/Jzc+bMEU5OTmLnzp1mST6a+lnVUKvVcgJxw4YNWvspMTFRNGrUSDg7O+sMooUQ4uHDh0KpVIoOHTro7efixYsFAPHjjz8KIXIG6pIkiRo1aojMzEy9rzGksMnHL7/8Ut42Y2gGQAcOHDCqvjHJRyGEmDZtmgAgbG1txd27dw3WY/KRiPLiSeeSddI5txdffFFnWwwlmVatWiUAiCFDhmj9DszIyBBhYWECgDh58qRcPn78eAFALFu2TC47evSofCJr/vz5cvnVq1eFq6ur8PPzE9nZ2XK5JnG2cuVKrb5oTszl/f2teW/q1Kmj9f4nJCSIOnXqCEmSRGRkpM62ahKup0+f1mqvcePG8klWYxJJW7ZsEQBEs2bNDCYfAYgpU6ZovW7Pnj0CgGjQoIFWeWG3P69evXoJAOLs2bNyWXp6uoiNjdWpe+HCBeHi4iJCQkK0yosj+ViYE+gFjTs0hgwZIgCIqVOnapX//PPPAoCoWbOmUKlUBbZj7mNGQ993UWJionB3dxf29vbi3LlzcrlKpZIvnvj444912tqxY4dQKpXi1VdflT9PufdTVlaW6NKli1AoFDoJfyFM/6wvWbJEABAdO3bUSngKIURqaqp49OiR3m0u6PvM0PfzxYsXBQDRvXt3rfKbN29qfX8IkfN3guZvjCNHjuiNo09Bycfs7GzRqlUrAUDY2dkJPz8/8eTJE711Nds5e/ZsrfKVK1fK3wlMPubgbddUIiUlJcHBwaHAeprbBvTdNtO+fXsAObdHWIJmHrlGjRrBxcVFvly8R48eAHJu981LrVYjMTERTk5OJsVatGgRZs6ciY8//hjLly/Hvn37oFarjXptfvtIc8tQeno6rly5ovWcZv/lZmNjg7Zt20IIgXPnzsnlI0aMgBBCa17C3bt3Iy4uDkOGDIGNzX9rW7Vq1QoA8P777+PBgwcF9r8w+1kzJ52DgwOysrJQs2ZNvbd9W/IYOX78OADgxIkTeue/Sk9PR3x8vMm3SBf2/cxPYGAgOnToIK9AqlarsXLlSoSHh+vcNpzbjRs39G6bvrkeC/tZlSQJ77zzDoCcVdg1t3RlZGSge/fuOHfuHNq1a4cWLVrovDYyMhIqlQoZGRl6+6l5jzS3PJ88eRJCCLRv3x62trYGt7so1q9fj5kzZ2L69Ono06cPJk2ahE6dOqF3795a9eLi4vDOO++gbt26cHJyko97zVQD+o77woqLi5Nvu8/KysJPP/1ktraJiIyRlZUFe3v7AutpFq2ZOXMm3N3d5XJPT0/MmDEDAAzeNlpU+lb0trGxwciRI6FSqbB//369r0tLS4OdnZ1F+lQQU2IvXboUzs7OWLZsmdbvQDs7O3z66acAgM2bN8vl33//PTw9PTFixAi57IUXXsDzzz8PAFpT49SsWRO9e/dGbGys/Lv31q1b2L9/P+rVq4e33npLqy8jR45EYGAg/vzzT9y+fVunr9OnT9d6/93d3TFt2jQIIfQubBQWFgY/Pz8sX75cLjt+/DjOnj0rz3lckLS0NLz33nuoV68eRo4cabCeh4cHPvzwQ62y0NBQdOzYEVFRUfLt10XZ/ryys7Pl2Br29vbw9fXVqfvcc8+hffv2OHTokNluVTXW0aNHERMTg1deeUVnUcuPPvoI5cqVw6ZNm5CZmWlSu5mZmdi8eTO8vLwwbdo0rec6d+6Ml156Cf/88w+OHj1qdJvmOGYK8sMPPyAxMRFDhw5Fw4YN5XKFQoHPPvsMNjY2er/PXnvtNSxbtgw//fST1udPY/jw4fj555+xdOlSvP766zrPm/pZ/+qrr6BUKrF8+XKdFaAdHR1Rrlw5k7c9P5rj2dPTU6u8atWqOtNBSZKEMWPGAAD++OMPs/VBqVTK+yIzMxOLFi3S+zdRZmYmtm7dCh8fH53pwN58803UqlXLbH0qC7jaNZU4qampSE9P1zufQl5JSUlQKBR661aoUAGSJCEpKcnsfczMzERwcDBOnz6NJk2aYMCAAfDy8oKNjY28oqO+BVgePHiA7OxsVK5c2aR4X375pU5Z7dq1sWvXLtStWzff12q2v0KFCnqfr1SpklY9TaKwYsWK+dZPTEyUy15++WVUq1YNGzZswOzZs2FjY4M1a9ZAkiQMGzZM6/VjxozBzp07sW3bNoPz/2gUdj+7u7tj4sSJSEpKwsKFCwvc9tzbYi6PHz8GACxbtizfek+fPpVXGTaGqe+nsUaNGoVevXrh4sWLuHHjBm7cuIFRo0bpLN6S282bNzFr1iyj+12Yz6pKpcLIkSPh5uaG6tWrY+zYsQCAbdu2Qa1Wo23btvj111+xa9cudO/eXeu1mvfg6NGj+Q44nz59CuC/40DfYN1c8v5RVL58eTRr1kxrjqDHjx+jRYsWuHXrFtq0aYOQkBB4eHhAqVTi7Nmz+OGHHwwu8FQYI0eOxMOHDzF37lzMnz9fXum+atWqZotBRJSfpKQk+fdXfqx90nn+/PnYtWsXYmJi5N8dGvmddK5SpYpJsTR/6Gp+b9auXRvt27eHQmHadSNPnjwx6oR3amoqoqKiULlyZcybN0/neU2SSnOyLjExEXfv3kXr1q2Nnhu6QYMGAICLFy+iTZs28vsUFBSkM0+eQqFAu3btcPnyZZw9e1Zn/7Vt21anfU2ZvvkMlUolhg8fjnnz5mH+/Plwc3PDV199hZo1a+Kll14yqv/z5s3D7du38fvvv+POnTsG6zVp0gQuLi56+7dv3z6cOXMGzZo1K9L2a+YNzMjIwF9//YVjx47hww8/1JqrGcj5LHz22Wc4cuQI7t+/r5NsjI+P1/nc7dq1S+8cjgkJCQZPSOtLzCQkJOjUM+YE+u+//44rV67Ix4sxLl++jPT0dLRv317v8d6+fXvs3bsXZ8+e1Xvs6FOUY0bfvI769ml++6Nq1aqoXr06oqOjkZycrDWfOZAzN/qMGTPw9ddfa/3N9uGHH2LdunXw9vbGwIEDddo19bOekpKCv//+GzVr1rRYIu3AgQPyPrt37x62bduG2rVrY+rUqVr1MjMzsXTpUmzZsgWXL19GSkqK1jyv5jwxL4TA7Nmz5Z937NghX/iS25UrV5Ceno4OHTroXDilUCjQpk0bXL161Wz9Ku2YfKQSJyYmBgB0Js3Vx83NDWq1Gg8fPoSPj4/Wc3FxcRBCwM3Nzex9/OGHH3D69GkMGzZMZxXiLVu26D3rCvw3IK5du7ZJ8a5fv46AgAAIIXD37l189tlnWLx4McaNG1fgWR7N9hu6yvD+/fta9TRnrzTlhurnPuMsSRKGDx+OqVOn4scff5QHDx07dkT16tW1Xm9vb4+DBw/i119/RVRUFNLT0wHkDFLyJlkLu589PDwwc+ZMJCcnY+HChQVue+5tMRfN/oyKikL9+vXN3q6x76exunfvjkqVKmH58uW4ceMGWrRogWbNmum9ilEjKChI7/MzZ87USUoW9rP6xRdf4OTJk1ixYgW6d++OF154AdeuXYNKpcL8+fMxatQo1K9fH6NHj0ZwcLDW4FfT3rvvvov58+cXuA80r83vj4qi2r9/vzzIfPjwIdavX4/JkycjJiZGPsv89ddf49atW/jkk090zuDPnTsXP/zwg9n6s3HjRuzcuROvvvoqJk+ejICAAPTt2xfDhg3D3r17zRaHiMgQnnTWVZSTzhqaMWPecZg+T548gRACd+7cyfekoibhqjkxqS/JZoimrub9KcrJVH2v0ZQZOqH85ptv4uOPP8bGjRvRt29fbNu2DbNnzza4QEhut27dwmeffYauXbvipZdeyvfqWkPbk7d/Rdn+vO9R3bp1UbNmTa2yY8eOoUOHDgByLhKoVauWfAfRrl27cO7cOb3H7A8//GBwnGEo+ajveNXHUifQLdVuYY8ZU07MA/n3Ozo6GklJSTrJxw8//BAPHjxAu3bt8Omnn8onAf7v//4P7dq1w6FDh/DBBx/ovDemftaL48T8wYMHtVaWtrW1RVhYmE4iuWfPnvjxxx9Ru3Zt9OnTBz4+PrC1tZX/hjTnifnFixfjwIEDGDBgAG7duoVNmzahV69eOhc6aPZP3r9tNAy9t88q3nZNJY7mdozmzZsXWLdJkyYAoDcBoilr3Lixubom0yRI9a3AffjwYYOv0yQK27VrV6i4kiTB19cXixYtgru7O06ePFnga/LbR0+fPsXJkyfh6OiIOnXqAIC8qrK++iqVCkeOHIEkSTr7dciQIbC1tcWaNWuwdu1aqNVqndtINBQKBbp06YIpU6bIt8BOnDhRp15h97OGq6sratasiX/++UdvQsmSx4jm9vK//vrLrO2a+n4ay8bGBm+++SY2bNiAX3/91Wy3lGgU5rP6zz//YMaMGWjXrh2GDx+OChUqYOvWrQCALl264N1334WTkxNWrVqFe/fuYdKkSVqvb9GiBSRJMvo9aN68ORQKBfbv318styJ5e3vjvffeQ4MGDbBt2zY5EV/U495Yd+7cwfjx41GuXDl5tdY+ffqgZ8+e+OOPP/SugK5UKqFSqczWByKiwp50zqu4TjqfPn0ay5cvx+zZszFz5kx06tTJ4OuKctJZCAG1Wo3Y2FiMHz8e0dHRGDdunNFtaK4GMya2Zp81a9YMImdNAL0Pza3lzs7OAHKuijKWpq4mCVmUk6n6XqMpM3RCuVKlSujevTtWrFiBdevWAcgZuxrjvffeg1qtxhdffFFgXUPbk7d/Rdl+zfuRnZ2NmJgYNG3aFEOGDNH6vf3pp58iIyMDf/zxB3bv3o0FCxZg1qxZmDlzpsG7m4CcleT1vfd5r6rMTXO85n5cv35dp56lTqBbqt3CHjP5fXbM0e8TJ05g8eLF6Nu3L/78809069YNKpUKKpUK3bp1w59//ok+ffpg6dKl8t/VeWMa+1nXHK+WPDE/Y8YMOW5SUhK2b9+O3bt3o127dkhLSwOQM5XSjz/+iNDQUFy6dAmrV6/Gp59+ipkzZ6Jv375m7U90dDSmTp0KPz8/LFmyBGvXroWzszNGjhyps8q4Zv/ExcXpbcuYKcaeJUw+UomSmJiIxYsXw9bWFl27di2w/qBBgwDknGHKfTYrMTFRPpujqWNOml/AR44c0So/ePAgVq9erfc18fHx2LhxI8qVK4dXXnmlSPHv3buHlJQUnbkw9GnTpg1q1KiBX3/9VecqydmzZ+PRo0cIDw+X5wRq1aoVateujT179sjz62ksWbIEMTExCAsL07lVuEKFCujevTv27NmD5cuXo3z58jpnh0xVmP2c15AhQ5CVlYWpU6dqXZp//vx5rF+/Hp6enkXup6G4rq6u+PDDD3Hx4kWd51NTU3UGBMYw9f00xfDhw+Hp6YmaNWua/Re5qZ9VIQTeeusteS5RzVlmzXGX+/gLCQnBkCFD8PXXX+PPP/+UyytWrIjevXvj2LFj+Pzzz7Xef40TJ04gNTUVQM4x3KNHD8TExOg9GxwXFyfPQ2MuT548wZ07d7TOohs67jdt2oRffvnFbLGHDRuGhIQELF26VOu2q6+++kpOjN68eVPrNeXKlUN8fLycKCUiKiqedDasMCedCxPb1dUVdevWxd9//633dtm8PD09UaFCBVy+fNnoE1IXLlwAAPnKTc37dOjQIZ3fz0IIHDp0SKtebvr2uaZMc4zoM2rUKFy4cAGffPIJevfubdRcdYcPH8Z3332Ht99+GzVq1Ciw/pkzZ/QmZfP2ryjbr6FUKlG9enUsWbIEQM7dDBoxMTEoV64cXnzxRa3XpKam4vTp0wVuhyVY6gR6YGAgHBwcEBkZKY/pcivKd0Nhjhlj5bc/bt++jZiYGFSvXl3rqsfMzEwMGzYMnp6eWLx4MZRKJTZv3ozy5cujfPny2Lx5M5RKJRYvXgwPDw8MGzZMaw5NUz/rLi4uqFevHq5fv14stw+7uroiLCwMAwcOxLVr1+RpkzTfwV26dNGZ6sGcJ+ZVKhUGDRqEtLQ0rFmzBu7u7qhevTrmzZuHBw8eyNM/adSuXRsODg44efKkzthYrVbj2LFjZutbWcDkI5UYs2fPRp06dXDhwgV8/PHHRs39065dO4wbNw6XLl1C/fr18fbbb2PixImoX78+Ll++jPHjx+sddGlu48z9AHLmishbrpk/YsWKFfKgLywsDAEBAfjss8/QpUsXTJ48Gd27d0fHjh31DkzXr1+P1q1b4+HDh6hatSrmzp2rd4GO9evXY9euXTqv//bbb7FixQosX74c06dPR+vWraFSqTB8+PAC95FCocD69evh5OSEzp07o3///vjggw/Qvn17zJ07FzVq1MDcuXPl+pIk4euvv4ajoyPCwsLQt29ffPDBB3jllVfw9ttvw9fXF0uXLtUba+TIkVCr1Xjw4AEGDRpU5AnWTd3P+rz77rto1aoVNm7ciJYtW2LKlCkYOnSovA/XrFmj97ah3bt3ax0Hu3fvBlDwsaM5Xry9vbF582akpKSgUaNGePXVVzFp0iSMGzcOYWFhqFixot45YQpi6vtpCj8/P9y6dQtXrlzRmVC6qEz9rK5atUqeA8aYOWYWLFiAihUrYvjw4VoDz6+++gqNGzfG+++/j0aNGmHEiBGYPHky+vXrh9q1a+P555/XSoZ+9dVXqFu3Lj799FM0bdoUkyZNwrvvvouwsDBUqVLFpKs89NEsODNz5kyMHTsWDRs2xKNHjzBgwAB5rpgBAwbA3d0d48aNQ+/evfHee+/h5ZdfxoABA/ROHF4YK1euxG+//YaePXsiPDxc6zlvb28sX74cycnJGDp0qNYfRR06dEB6ejpeeeUVfPTRR5g9e7b8BxIRkal40tk4ppx0BoD09HR89dVXsLGxQZ8+fYx6zfjx45Gamoq33npLZz5LIOfqttzz1nXv3h1PnjzRmhbnr7/+kpPJCxYskMuvXbuG7777DhUqVMALL7wAIGdOu/bt2+PixYtYu3atVqxVq1bh77//RocOHfTOl/nJJ59o3V6dmJgo3w6b3/vfoUMHvPDCC3B1dcXo0aML2CM5xo8fj0qVKuksImNIQkKCvFCFxm+//YZ9+/ahfv36aNasGYCibX9eUVFROmX+/v548uSJ1glwlUqFSZMm6b1yuDhY6gS6nZ0dwsPDER8fjzlz5mg9t2fPHvz222+oWbMm2rRpY3KfC3PMGKtbt25wd3fHunXrtN4nIQQmT56M7OxsDB48WOs1n376KS5evIiFCxfK0084OjrC2dkZzs7O8vjdx8cHCxcuxKVLl3SOR1M/62PGjIFKpcLo0aPlKxE10tPT5TnWzUUIIZ+s0DD0HXzx4kWd97woPvvsMxw/fhzDhw/XWhRp9OjR6NChA7Zs2YIdO3bI5fb29ujduzfi4uK0vvMAYM2aNYiOjjZb38oEs62bTfSv69evCwAiNDTUYJ39+/cLAGLEiBFyWVBQkAgJCRE//PCD3tesW7dOABDr1q3TeW7t2rWiRYsWwsnJSTg5OYkWLVqItWvXGoxb2MeMGTPktq5duyZ69OghvL295ZhbtmyRY+SuGxQUZHSMQYMGya8bNGiQzvPe3t6iTZs2YuPGjYbfBD3Onz8vevbsKcqXLy9sbW2Fv7+/mDBhgnj48KHe+ufOndOqX6VKFTF69Ghx7949gzHUarWoWrWqACD+/vtvk/qnOW5yb78Qpu1nIYTw9/cX/v7+WmXJycnigw8+EDVr1hR2dnbC09NTvPrqq+LYsWM6/ZgxY0aRjpH9+/drtXf58mUxbNgw4e/vL8du0KCBGD9+vIiIiChw+w0x9f3UR3N8Xb9+3WAdQ/sZgAgKCtL7Gs0+zLsvhDDusxobGyvc3NxEkyZNRFZWltZz+e2n77//XgAQ77zzjlZ5amqq+Oyzz0SzZs2Es7OzcHR0FNWqVRPdu3cX33zzjU6MxMREMX36dBEYGCjs7e2Fu7u7aNy4sfjoo49EZmam3m3Wd9zp2ye5H56enqJZs2ZiyZIlOn04e/asePnll4Wnp6dwdXUVQUFB4o8//sj3e1Afzf7K+93l4uIifHx88j1ewsPDBQCxbNkyuSw5OVm89dZbolKlSkKpVOq0rdnO/I4pIipbCjvu++STT0SFChUEADFnzhyd1xj6vhs3bpwAIKpUqSImTpwoJkyYIPz8/AQAMX78eL1xu3TpIpYvX671ACBq1aqlU16rVi0BQCxfvlxERkYKIXK++wICAgQA0blzZ/H++++Lbt26CaVSKXr27KnzXbhu3TpRs2ZNAUA0btxYzJgxQ+uhGRcOGjRI7Ny5U36d5vfy7NmzxfLly8VXX30lpk2bJo+t/u///q/A92Pnzp2iadOmAoAICAjQid2tWzcBQHTr1k1r36rVajl+pUqVxIABA8TkyZPF4MGDxfPPPy8kSRKbN2+W68fGxory5csLSZJEjx49xNixY4W3t7fw9/cXAES9evVEr169xIgRI4SXl5cAIL799lutvl6+fFluo1u3bmLq1Kmia9eu8nj3ypUrWvU1+y0sLEz4+fmJCRMmaL3/eX//G/s7U9+YJvfYfcOGDQW2q/kctG3bVri7u4v27duLqVOnivDwcGFjYyMcHR3F8ePHzbL9mvdy2rRpYuDAgcLZ2Vmnnz/++KMAIDw8PMTw4cPF+PHjRcOGDYWXl5cIDg7W+V1d0L7SN87JbxxpaLx2+PBh4eTkJGxtbUW/fv3E1KlT5f7UqFFDxMXFFRhXn7i4OFG9enUBQHTo0EFr3zs5OYnDhw8X2IYQ5jlm9DE0nv7uu++EUqkUzs7OYujQoWLy5MmiWbNmAoBo2bKlSEtLk+tGRUUJW1tb0alTJ532De2n0NBQYWtrK6KiouQyUz/rarVa9O7dWwAQvr6+YtSoUWLy5MkiPDxclCtXTus7LLeC/s7Q7JOgoCD5mH733Xfl7Q8MDBTp6elCCCGys7NFy5Yt5c/Ye++9J/r06SMcHR3l72Bj/4bS7K+879/58+eFnZ2dqFatmkhOTtZ5zfXr1/WOn+/evSt8fX0FANGpUycxdepU0b17d2FnZydefvllvX8TPavjZSYfiYzk7++v8wvDWEFBQUZ9IRpbr6S6e/eusLGxEW3btrV2V4qdZpClL+FGZC36ko+W9KwOpoieZTzpXLJOOutrw9BD30nErVu3ipCQEOHp6SlsbW2Fr6+vCA4OFgsWLNA5YXXx4kXRvn174eDgIOrUqSP27Nkjb3tMTIwICgoS9vb2onbt2jqJR40bN26IIUOGiEqVKgkbGxtRqVIlMWTIEHHjxg2dupq209LSxPvvvy+qVKki7OzsRJ06dcTixYuFWq3Wqm+ORFKrVq2Majd3su3ChQuic+fOws3NTTg7O4uQkBBx8uRJs22/5qFQKETFihVFSEiI+Omnn3Tqf//996Jp06bCyclJlC9fXvTu3VvExMToTQoVV/JRCNNOoBubfBRCiIcPH4rx48cLf39/YWtrK8qXLy969uyplXgrSHEnH4UQ4tChQ+KVV14RHh4ews7OTtSuXVtMnz5dpKSkyHU0yTcXFxdx8+ZNnTYM7acbN24IFxcX0bJlS5Gdna31nCmfdbVaLdasWSOef/554ezsLJycnEStWrXEyJEjxa1bt/Rus7HJx9wPZ2dnUadOHTF58mSdRHRcXJwYOnSoqFy5snBwcBANGjQQy5YtE9euXSty8jEzM1M0btxYSJKU799yK1euFABEr169tMpv3rwp+vTpIzw8PISTk5No27atOHjwoMELMp7V8bIkhJ5JsIhIR0BAAAYPHlyoW2WDg4MREBCQ7+p4ptQrqSZPnozPPvsMmzZt0rmVs6y7ceMGqlWrprWaMZG1aY7LGTNmFOq7y1Salc6vX79u1OIRREQlVWkd9w0ePBg3btzQO49cYeqZKjg4GAcPHtQ7z3JJbruoNL9vBw0aVGrH8UTPioCAAAQEBJj9+89Yz+p42cbaHSAqLfr372/UZOj6DB48GB4eHmarV5IkJiZi+fLluHnzJtasWYN69eqhd+/e1u5WsXN1dcWIESNQuXJla3eFiIiIiIiIqMRg8pHISHkn6zVF3smCi1qvJHny5AmmTp0KBwcHvPjii1ixYoXOKmTPAi8vL3nxGSIiIirdSutJ5+7duxu1iq2x9YiIiMyByUciKpKAgIASefsLEQEeHh6YMWNGsU0FoIlT2q7gJiLKq7SedO7evbtZ6xEREZkD53wkIiIiIiIiIqIyb9GiRfDw8LDaXYcHDhzAgQMHMHHixGfqhD2Tj0RERERERERERGQRCmt3gIiIiIiIiIiIiMqmZ27OR7Vajbt378LV1RWSJFm7O0REREQmE0IgOTkZlStXhkLBc8mlEcekREREVJqZMh595pKPd+/eRZUqVazdDSIiIqIiu337Nvz8/KzdDSoEjkmJiIioLDBmPPrMJR9dXV0B5OwcNze3YonZp08fbN26tVhiWSsm45XueNaIyXiMV9JjMl7pjmeNmMUZLykpCVWqVJHHNVT6PAtjUsYr/TEZj/FKekzGK93xrBGT8czHlPHoM5d81NzW4ubmVmwDPVtb22KLZa2YjFe641kjJuMxXkmPyXilO541YlpjG3m7bun1LIxJGa/0x2Q8xivpMRmvdMezRkzGMz9jxqOcJIiIiIiIiIiIiIgsgslHIiIiIiIiIiIisggmH4mIiIiIiIiIiMgimHwkIiIiIiIiIiIii3jmFpwxlUqlQlZWVpHa8PLyQnp6upl6VDJjMl7pjmeNmKU1no2NDZRKJRd5ICKiYmOO8ShQen/3Mp71YjIe41kzpq2tLZRKpVnaIiLrYvLRACEE7t+/j4SEhCK3NXjwYFy/fr3onSrBMRmvdMezRszSHE+pVMLHxwfu7u5MQhIRkcWYczwKlO7fvYxnnZiMx3jWjunh4YGKFStyzE1UyjH5aIBmoOfj4wMnJ6cifdlJkoSAgADzda4ExmS80h3PGjFLYzwhBLKzs5GUlIR79+4hLS0NlSpVMk8HiYiI8jDneBQonb97Gc+6MRmP8awVUwiB1NRUxMXFAQDH3ESlHJOPeqhUKnmg5+XlVeT2lEolHBwczNCzkhuT8Up3PGvELM3xXF1dYW9vj/j4ePj4+PB2ECIiMjtzj0eB0v27l/GsE5PxGM+aMR0dHQEAcXFxHHMTlXJccEYPzZw6Tk5OVu4JEZVUzs7OEEKYZQ4uIiKivDgeJSL67zuQY26i0o3Jx3xwXgkiMoTfD0REVBz4+4aInmX8DiQqG5h8JCIiIiIiIiIiIotg8pEK5enTp7h9+zaePHli7a4QEREREREREVEJxeQjGW3btm3o2LEjXF1d4eLigqpVq+Kzzz6zdreIiIiIiIiIiKiEYvLxGXXx4kW88cYb8PX1hb29PSpXroz+/fvj4sWLeutPmTIFvXv3hqurK1avXo29e/fijz/+wOjRo4u550RERERUmq1fvx6SJMkPBwcH1K5dG2PHjsWDBw+s3T0qRi1btoQkSVi+fLne5/MeK3kfx48fBwA8evQIn3/+Odq1awdvb294eHjg+eefx9atW4tzc4iIyAAba3eAit+OHTsQHh6OcuXKYdiwYahWrRpu3LiBr7/+Gt9//z22bNmC1157Ta5/8OBBzJs3D3PmzMGUKVOs2HMiIiIiKis+/vhjVKtWDenp6Thy5AiWL1+OX375BRcuXOAq38+Aq1evIjIyEgEBAfj2228xatQog3U1x0peNWvWBAD89ddf+PDDD9G5c2dMmzYNNjY22L59O/r27YtLly5h1qxZFtsOIiIqGJOPz5iYmBgMGDAA1atXx6FDh+Dt7S0/N2HCBLRt2xYDBgzA+fPnUb16dQDA/Pnz8cILLzDxSERERERm88orr6B58+YAgDfffBNeXl744osv8MMPPyA8PNzKvSNL+9///gcfHx8sWLAAPXv2xI0bNwzWzX2s6PPcc8/h6tWr8Pf3l8tGjx6NkJAQzJs3D++//z6cnZ3N2X0iIjIBb7t+xnz++edITU3FqlWrtBKPAFC+fHmsXLkST58+1ZrL8fjx46hfvz769u2LcuXKwdHRES1atMCuXbvkOk+fPoWzszMmTJigEzM2NhZKpRJz5swBAAwePBgBAQE69SRJwsyZM+Wfb968idGjR6NOnTpwdHSEl5cXevXqpTMwOXDgACRJwoEDB+SyyMhIvPTSS3B1dYWzszOCg4Nx+PBhrddpbuM4efKkXBYfH6/TDwAYPny43j6fOHECnTp1gru7O5ycnBAUFISjR4/q1Ltz5w6GDh2KChUqwN7eHs899xzWrl2rU08fzW0lixYt0nkuMDAQkiRh7Nix+W5Xftt25swZvPLKK2jSpAlcXFzQsWNH+RYWjZUrV0KhUGDbtm1y2Y0bNyBJEtavXy+XRUdHo1y5cujXr5/W6xMSEjBx4kRUqVIF9vb2qFmzJlatWgW1Wq1VT61W48svv0SDBg3g4OAAb29vdOrUSd6W/G67kSQJwcHBAP47JjQPe3t7vPzyy5gzZw6EEHq3383NzeD2ExERkeV16NABAHD9+nUAwOPHjzFp0iQ0aNAALi4ucHNzwyuvvIJz587pvDY9PR2LFy9G7dq14eDggEqVKuH1119HTEwMgP/GLQWNITTi4uIwbNgwVKhQAQ4ODmjUqBE2bNigVefatWvo0KEDKlasCHt7e1SpUgUjR47E48eP5TqaMcn333+v02cXFxcMHjxY/tnY7TWlzcKOCzXjooEDB+odF+kb282bN09nbJefTZs2oWfPnnj11Vfh7u6OTZs2Gf3avKpVq6aVeARyxo3du3dHRkYGrl27lu/rc48dz549q/XcnTt3oFQqdfb54MGD4eLiotPW999/r/O3CZAzf/5rr70GR0dHlC9fHm+88Qbu3LmjVadfv37w8vLC1atX5TLNe5j7b6Bt27ZBoVBg5cqVWq+/fPkyevbsiXLlysHBwQGvv/46du/erdPHhIQEvP322wgICIC9vT38/PwwcOBAxMfH64yj9T00x83MmTO1yl1dXdGjRw+tvxNz97lZs2b5bj8RlV288vEZ8+OPPyIgIABt27bV+3y7du0QEBCAn3/+WS579OgRVq1aBRcXF4wfPx7e3t743//+h9dffx3ffvstwsPD4ezsjNdeew1bt27FF198AaVSKb9+8+bNEEKgf//+JvU1MjISx44dQ9++feHn54cbN25g+fLlCA4O1vtLVOOff/5BcHAwnJyc8N5778HJyQmrV69GSEgI9u7di3bt2pnUD0P+/PNPvPLKK2jWrBlmzJgBhUKBdevWoUOHDjh8+DBatmwJAHjw4AGef/55OUno7e2NX3/9FcOGDUNSUhImTpxYYCwHBwesW7dOq+6xY8dw8+bNIm3DxYsX0bZtW7i5ueGtt95CxYoVsXLlSgQHB+PgwYNo1aoVAGDEiBG4cuUKBg0ahICAALRo0UKnrcePH+PVV19F3bp1sW7dOrk8NTUVQUFBuHPnDkaMGIGqVavi2LFjWLBgAbKysrSSqsOGDcP69evxyiuv4M0330R2djYOHz6M48ePo3nz5ti4caNc9/Dhw1i1ahUWLlyI8uXLAwAqVKig1acPPvgAdevWRVpaGtatW4cPPvgAPj4+GDZsmM72v//++7C1tdW7/URERGR5mkShl5cXgJzk3q5du9CrVy9Uq1YNDx48wMqVKxEUFIRLly6hcuXKAACVSoVXX30V+/btQ9++fTFhwgQkJydj7969uHDhAmrUqCHHCA8PR+fOnbXiTp06VevntLQ0BAcH459//sHYsWNRrVo1bNu2DYMHD0ZCQoJ8sj0tLQ1+fn4ICwuDm5sbLly4gGXLluHOnTv48ccfTd5+Y7fXUvSNi5YuXaozLjI0tps6dSru3bun94R5XidOnMA///yDdevWwc7OTv67olevXnrrJyYmIj4+XqtMkiT5WDHk/v37ACCPFQuiGXN/+eWXctmGDRtgZ2eH9PR0o9rQZ/369RgyZAgaNGiAOXPm4MGDB/jyyy9x9OhRnDlzBh4eHgCAtWvXokOHDujSpQtOnDgBT09PnbYiIiIwaNAgvP322xgxYoRcfvHiRbRp0wa+vr6YMmUKnJ2dsWHDBnTv3h3bt2+Xp9VKSUlB27Zt8ffff2Po0KFo2rQp4uPjsXv3bsTGxqJu3bpaY+5Vq1bh77//xsKFC+Wyhg0bavVJUz8+Ph5ffvklevXqhQsXLqBOnTpa29+iRYt8t5+IyjDxjElMTBQARGJiosE6aWlp4tKlSyItLc0sMaOjo83STlFjJiQkCACiW7du+b62a9euAoBISkoSQggBQAAQBw4ckOukpqaKunXriooVK4rMzEwRHR0tfvvtNwFA/Prrr1rtNWzYUAQFBck/DxkyRFStWlUnLgAxY8YMrRh5/fXXXwKA+Oyzz+Sy/fv3CwBi//79QgghevToIZRKpbhw4YJcJz4+Xnh5eYlmzZrJZevWrRMARGRkpFz28OFDnX4IIURwcLDw9/eXf1ar1aJWrVoiNDRUqNVqrT5Xq1ZNvPTSS3LZsGHDRKVKlUR8fLxWm3379hXu7u56tzP3+wdA9OzZU9jY2IiTJ09qtduvXz8BQIwZMybf7TK0bd27dxd2dnYiJiZGjnn37l3h6uoq2rVrp/V6lUolwsLCRKVKlcTt27fF9evXBQCxbt06kZmZKYKDg0W1atVEXFyc1us++eQT4ezsrHNMDh8+XCiVSnHr1i0hhBB//vmnACDGjx+vsz9y7+O823n9+nWd5/IeE0IIceHCBaFQKMTo0aP1br+Goe3Pq6DvibCwsHxfb25lPZ41YjJe6Y5njZjFGc+Y8QyVbAW9h+YejwqRM75ITRXiiy+EGDs25189wxCzxtNH8zv8jz/+EA8fPhS3b98WW7ZsEV5eXsLR0VHExsYKIYRIT08XKpVK67XXr18X9vb24uOPP5bL1q5dKwCIqVOn6sTSjCE045bPP/9cp85zzz2nNVZdtGiRACD+97//yWWZmZmidevWwsXFRR4j69u+0aNHCxcXF/lnzZhk27ZtOnWdnZ3FoEGD5J+N2d7o6GiT2izsuFDjyJEjOuMiQ2O7KVOmaI3t8jN27FhRpUoV+f35/fffBQCxa9curXqa/ut72Nvb5xvj0aNHwsfHR7Rt29ZgHc02aPZpeHi48PLyEhkZGXKdWrVqyWPu3Pt80KBBwtnZWafNbdu2aY1DMzMzhY+Pj6hfv76IioqS6/30008CgPjoo4+0Xv/gwQMREBAg2rdvLzIzM7XGvLdu3RIVK1YUXbt21TlWOnbsKBo0aCDS09PlsitXrogXXnhB1KpVSy776KOPBACxY8cOnb7rG3MPGjRI6++g3GbMmCHyphQ0/f3uu+90tj/395mh7c+LY+6yHc8aMRnPfEwZj1r1tuu8l2lLkoTAwECD9VevXo22bdvC09MTnp6eCAkJQURERDH2uGgy0rKwa+FxrBi3B7sWHkdGWlaxxk9OTgYAuLq65ltP83xSUpJc1qJFCwQFBck/Ozo6YvTo0bh//z5Onz4NAAgJCUHlypXx7bffyvUuXLiA8+fP44033pDLfHx8EBcXh8zMzHz74ejoKP9/VlYWHj16hJo1a8LDwwOXLl3SqZ+YmIi4uDjs3bsXoaGheO655+TnvLy8MHjwYJw6dcosqyiePXsWV69eRb9+/fDo0SPEx8cjPj4eT58+RceOHXHo0CGo1WoIIbB9+3aEhYVBCCHXi4+PR2hoKBITE+X9l58KFSqgS5cu8hWFqamp+O677zBkyBCDr9GcIdY8ct8CBORcJfD777+je/fu8vyeAFCpUiX069cPR44c0ToGFAoFNm/eDC8vL4SFheHp06fyc6NGjUJERAR++uknndv5t23bJn9uc/fnhRdegEqlwqFDhwAA27dvhyRJmDFjhs62SJJU4D7Kbx/cunULq1evhlqtlm/pMnX7iYiobHqWxqPp6RLatAEmTQJWrsz5t00bIC3NOv0JCQmBt7c3qlSpgr59+8LFxQU7d+6Er68vAMDe3h4KRc6fKyqVCo8ePYKLiwvq1KmjNX7avn07ypcvjwEDBujEKMwY4pdffkHFihW15p20tbXF+PHjkZKSgoMHD2rVT0xMxIMHD7Bv3z78/PPPeu+ySU5O1hoH5b2Kz5TtNaXN3H0szLjQx8dHZ1xkaGwXEhKiNbYzJDs7G1u3bkWfPn3k96dDhw7w8fExeMXosmXLsHfvXq3Hr7/+ajCGWq1G//79kZCQgCVLluTbn9zCwsIgSZJ8l9Xhw4cRGxuLPn36GHxN3vdA8zeXxsmTJxEXF4fRo0fD3t5eLu/SpQsCAwO17jgDcvb5zz//jBMnTmD06NFyeUpKCsLCwlC+fHls2rRJPlaAnDuQ/vzzT/Tu3VvruHjy5AlCQ0Nx9epV+Rbn7du3o1GjRloLjGoUdsytiff3339j8+bNcHZ2xvPPP6+z/Q4ODgVuPxGVTVa/7fq5557DH3/8If9sY2O4SwcOHEB4eDheeOEFODg4YN68eXj55Zdx8eJFeZBSUmWkZeH9Nutx7dwDKJQS1CqB/Ruj8NnRwbB3tC2WPmiSinl/IealL0mpbxBet25dADlz6JQrVw4KhQL9+/fH8uXLkZqaCicnJ3z77bdwcHDQuoXihRdewLx58zBt2jSMHz9e65dQbmlpaZgzZw7WrVuHO3fuaM3Vp28bunfvLv+/5hJ/Q/3Ne3uuqTTzsAwaNMhgncTERGRlZSEhIQGrVq3CqlWr9NaLi4szKuaQIUMwZMgQLFiwANu2bYOnp6ecSNMnJCQk3/YePnyI1NRUg/tKrVbj9u3bWklclUqF+Ph43L9/X058fvXVV4iMjIQkSXrfl6tXr+L8+fM6SUkNzfbHxMSgcuXKKFeuXL79NkXuY0KhUGDatGno0aMHgMJtPxERlU3Pynh082Z3nDsHqNU5DwA4dw5YsQJ4++3i78+yZctQu3Zt2NjYoEKFCqhTp45WQkUzF/RXX32F69evQ6VSyc/lvt02JiYGderUyfd9M8XNmzdRq1Ytrb4A/40l8057ExoaihMnTgAAOnXqhK1bt+q0OXTo0ALjGru9prSpYc5xobFjO0N+//13PHz4EC1btsQ///wjl7dv3x4//fQT1Gq1zr5v2bJlvgvO5DVu3Djs2bMH33zzDRo1amT062xtbfHGG29g7dq16NmzJ9auXYsePXrAzc1Nb/2nT58a3A8amuNF374NDAzEkSNHdMqTkpKQlpaGNWvWyHN+Dh06FOfOnUOlSpW0jg0gZ9opIQSmT5+O6dOn6+1HXFwcfH19ERMTI4+HzSX3PnBxccG3336LKlWqACjc9hNR2WP15KONjQ0qVqxoVN3cV9QBwJo1a7B9+3bs27cPAwcOtET3zObXFadw7dwDCLWASp2TRLt27gF+XXEK3d9+vlj64O7ujkqVKuH8+fP51jt//jx8fX3lX7K5r0AsyMCBA/H5559j165dCA8Px6ZNm+RJpDW6du2KoUOH4vPPP8fnn39usK1x48bJ8xy2bt0a7u7ukCQJffv21TuZ9fz581GrVi1069bN6P4Wlib+559/jsaNG+ut4+LigkePHgEA3njjDYOJyrxzphjSpUsX2NnZYdeuXVi3bh0GDRqkMzDLTTOg10hKSiryQGP69OlIT0/H7t275TPAkZGRWLx4MTZv3ozRo0cjMjJS5w+Hl156Ce+//75WW7GxsfDz89Pqo7nNnz8fjRo1QlZWFvbs2YN58+bBxsZG79WVRET07HpWxqO3b9tCqfwv8QgASiVQwFocFlNQQun//u//MH36dAwdOhSffPKJfLJ74sSJJi1sYmlLlixBfHw8Ll26hDlz5mDkyJH43//+p1Xno48+0plzPSwsTOtnU7fXmDY1zDkuNDS20yhobKf5DPXu3Vvv8wcPHkT79u0L1TcAmDVrFr766ivMnTtX79WwBRk6dCiaNGmCK1euYNu2bfnONe/g4KBztebhw4fx8ccfmxxXQ6VSYfTo0WjdujX69OkjzzF64cIF7N69GwMGDMBHH32kNbem5viYNGkSQkND5XLNeBsAatasWeg+FWTv3r0AcpKx69atQ+/evfHTTz/hpZdeslhMIipdrJ58vHr1KipXrgwHBwe0bt0ac+bMQdWqVY16bWpqKrKyssx6pZSl3L+WAIVSkhOPAKBQSrh/LaFY+/Hqq69i9erVOHLkCF588UWd5w8fPowbN25oTV5crVo1XLlyRafu5cuXAUBrFej69eujSZMm+Pbbb+Hn54dbt27pvdXh66+/xkcffYSYmBj5l2XeX07ff/89Bg0ahAULFshl6enpSEhI0LttzZo1Q1BQEFxcXIzub2FpJi53c3PL90yyt7c3XF1doVKpCjzjXBAbGxsMGDAAn376KS5evFjgatl5B/R5b8Xx9vaGk5OTwX2lUCjkM5ZAzq3my5Ytw5dffomwsDCsWbMG/fv3x1tvvYVx48ahbdu2aN68Ob766iut1bdr1KiBlJQUne2/evUqatWqpVXvt99+w+PHj832mW7WrJm8emXNmjWRnp6OefPmYfr06SZvPxERlV3Pyni0SpUs5LlgCioVkOsu2xLl+++/R/v27fH1119rlSckJGgtIFKjRg2cOHECWVnmmdLI398f58+f17kCTzOWzLuqsmYhvldeeQU+Pj4YOHAgPvzwQ/lKSQBo0KCBzlgo9wKNgPHba0qbGuYcFxoa2xnj6dOn+OGHH9CnTx/07NlT5/kxY8bg22+/LXTycdmyZZg5cyYmTpyIyZMnF6qNBg0aoEmTJujduze8vb3Rvn17nVvtNZRKpc5+yPu3iuZ4uXLlis7Y8sqVKzrH01dffYXz58/j1KlTaNSoES5cuIDVq1djzZo1CAsLw+zZszFx4kQMGTJEvqpTc6u8ra2tVn/yjreBnPfvwoULRu4N4+SOWa9ePfz999+YP38+XnrpJa3tz3vXlr7tJ6KyyapzPrZq1Qrr16/Hnj17sHz5cly/fh1t27Yt8LZgjcmTJ6Ny5cr5/uLLyMhAUlKS1sMaKlb3gFoltMrUKoGK1T2KtR/vvfceHB0dMWLECPmqPI3Hjx9j5MiR8irRGp07d0ZERASOHTsml6Wnp2P58uWoWLEimjVrptXOgAED8Pvvv2PRokXw8vLCK6+8orcv/v7+6NChA0JCQvS+h0qlUutWayDnzHLe2wxykyQJL7/8Mn777Tf8/fffWtu2YcMGNG/evMi3XAM5Sa0aNWpg/vz5SElJ0Xn+4cOH8jb06NED27dv1/tLXlPPWEOHDkVUVBTatWunNR9PYSiVSrz88sv44YcfcOPGDbn8wYMH2LRpE1588UX56lchBEaPHo1GjRph1KhRAHJun8/9b+PGjTFmzBhMmzZNa17N3r1746+//sJvv/2m04eEhARkZ2cDAHr06AEhBGbNmqVTL+9xUFhpaWnIzs5Gdna2SdtPRERlV3GMR4GSMSYND09Eo0aAQgHY2ub827gxMHJksXfFKPrGgtu2bZPnrtPo0aMH4uPjda42BAo3hujcuTPu37+vdft0dnY2lixZAhcXF6150PPSJPUyMjJMjmvs9lqCoXFRfHy8zrjI2LGdPjt37sTTp08xZswY9OzZU+cRHByM7du3F2r/bd26FePHj0f//v3xxRdfmPz63IYOHYrz589j8ODBhZ4HUaN58+bw8fHBihUrtOa8//XXX/H333+jS5cuctmDBw8wffp0jB07Vk4s5h1zjxo1Co0aNcLo0aPl48XHxwfBwcFYuXIl7t27p9OH3H9z9OjRA+fOncPOnTt16pljzK1SqZCZmSm/h7m3P/f7qm/7iajssuqVj7mTUg0bNkSrVq3g7++P7777DsOGDcv3tXPnzsWWLVtw4MABg3MGAsCcOXP0JjP69OkDW1v9cy1qFieRJMng2UNTpKamolaIOyoHeuDu30/kOR8rB3qgVoi7PH+gOaWmphpsd+7cuZg0aRLq1auHnj17ws/PD3fu3MG2bdvw5MkTfPHFF1Cr1fLre/bsiW+++QahoaEYOHAgPD098cMPP+DSpUtYsGABrl+/rhVPM7nwzp070a9fP60BTEEePXokt9OuXTts3LgRQgjUqFEDZ8+exbFjx+Dh4YHs7Gy5XmxsrPzv1atX8eabb2LPnj148cUXMWDAADg4OOC7775DQkICFi1aJL9OkyD74Ycf5LlUNInEM2fOaJ11jo+PR0pKCr7++mt5EvGZM2fizTffRJ06dfD666+jQoUKePDgAU6cOAEXFxesXLkSADB8+HDs3bsXLVu2RO/evVGjRg0kJibi0qVLOHbsGCIjIwt8/xISEnD16lXY2NjgxIkTcHBw0Pt87u26deuW1u3umonFc+/jt956C7///juef/559OrVC46OjtiyZQvS09Mxbtw4ud62bdtw4sQJbN26FTExMVr7/cGDB3K9wYMHY/PmzRgxYoR8S/1rr72Gbdu24dVXX8Vrr72G+vXrIzU1FZcuXcK+ffvw559/oly5cvDz80O3bt2wePFinD17Fu3atYNarcbJkyfRqlUrndtmNNt5/fp1nSsdNH3bunUrTp48iezsbJw+fRrbt29Hhw4d5Llncm9/v379YGNjo3f79VGpVIiLi8Nnn32mk8gHgIiICHTt2tXg682trMezRkzGK93xrBGzOOOZ6wovKp7xKGD6mNTc41EAUKtTsWHDP9i82R23b9uiSpUshIcnIjbWPCf58jI0HjU0VsmrdevWWLZsGXr06IEmTZogOjoaP/74I6pUqYK0tDS57datW6NVq1aYM2cOzp8/j+bNmyMtLQ3Hjh1Dv379EBISIo8N4uPjdfqUmZmp1V6HDh1Qo0YNDBo0CH/88Qd8fX3x22+/ISIiAh9++CHu37+P+/fvY+HChXj8+DFq1aoFOzs7XLp0Cdu3b0edOnXg6OiIq1evynHv3bunE1cIgaSkJK3tKGh7U1NTTWqzsONCzbho8+bNOuMiQ2O76Oho/Pbbb/LYTp9Vq1bBw8MD3t7eeo+NF198Ed999x1Wr16N0NBQuf//+9//cODAAZ36TZo0QdWqVXHu3DkMGDAAHh4eqF+/vtadU7nr5aU5RvPu0+DgYBw/fhyurq4G38ekpCQIIXS2Q5P80/xtAgDvvPMOpkyZgvDwcHTt2hXx8fH45ptv4Ofnh65du8r1Jk2aBHt7ewwaNEjnPcw95p06dSp69+6NuXPnyleQvv/++wgPD0e9evXQu3dvVKlSBffv38eFCxdw//59+fbw1157DZs2bUKvXr3Qo0cP1K9fHwkJCfjzzz8xa9YsrSt2NduZ+2+v3DRj4Pnz5wPIOdH/22+/4caNG+jfv7/O9rdq1Qqvvvqqwe3Xh2Push3PGjEZz3xMGo+af7HtomnevLmYMmVKvnU+//xz4e7uLiIjIwtsLz09XSQmJsqP27dvF7gUeFpamrh06ZJIS0szuf/6REdH5/QlNVPs/OIvsXzsr2LnF3+J9NRMs7SfX0xDzp8/L8LDw0WlSpWEra2tqFixoggPDxdRUVF668fExIiePXsKd3d34eDgIFq0aCF27dplMF7nzp0FAHHs2DGj+wxAzJgxQ/75yZMnYsiQIaJ8+fLCxcVFhIaGisuXLwt/f3/x2muvyfX2798vAIj9+/fLZadOnRIvv/yycHFxEU5OTqJdu3bi4MGDWvHWrVsnAJj8yO3MmTPi9ddfF15eXsLe3l74+/uL3r17i3379mnVe/DggRgzZoyoUqWKvL87duwoVq1apXdf5N6fAMSYMWPy3W+5n9dsV97Px8OHD3X2sRBCnD59WoSGhgpnZ2fh5OQk2rdvr/W+PXr0SJQvX14MHz5c63XXr18XAMS6deu0yr/99lsBQGt/Jycni6lTp4qaNWsKOzs7Ub58edG0aVMxf/58kZn53+cgOztbfP755yIwMFDY2dkJb29v8corr4hTp07pbLdmO69fv67znOaY0DxsbGyEr6+vGD9+vHjy5Ine7dccK3m335CCvifCwsIKbMOcyno8a8RkvNIdzxoxizNeYmJigeMZKjxzj0eFMH1Mau7xqBAFjw/NzVA8Q2OVvNLT08W7774rKlWqJBwdHUWbNm3EX3/9JYKCgkRQUJBW3dTUVDFq1ChRrVo1eazVs2dPERMTI4T4b9zy+eef68R57rnndNp78OCBPA61s7MTDRo00BnzLFmyRLRo0UK4ubkJR0dHUbNmTfHuu++Khw8fynU0Y5Jt27bpxHV2dhaDBg0yaXujo6NNarOw40LNuOj555/XOy7SN7Z74YUXdMZ2efepjY2NGDBggN7nhcj5G8XJyUke6xc0Xte8J8bWy0tzjOa3Tw09P2jQIOHs7KxTd9u2bTp/mwghxNatW0W9evWEvb29KFeunOjfv7+IjY2Vnz9w4IAAIDZt2qT1OkNj3rfeekuUL19ePHr0SC6LiYkRAwcOFBUrVhS2traiQoUK4tVXXxXff/+91msfPXokxo4dK3x9fYWdnZ3w8/MTgwYNEvHx8TrbM2jQIOHv7693v8yYMUNrP2s+BwsXLhRqtVpn+5s0aWJw+w3hmLtsx7NGTMYzH1PGoyUq+ZicnCw8PT3Fl19+abDOvHnzhJubm/jrr78KFcOYnWOp5GNxsvbgsnv37qJGjRrFFs/SoqOj5UFrccUrbtY+ZkpbPA6EODBhvJIdzxoxS+pgj0xTHONRIQp+D8ty8pHxSk9MxmM8a8fkmLtsx7NGTMYzH1PGo1ad83HSpEk4ePAgbty4gWPHjuG1116DUqlEeHg4gJyVk6dOnSrX1ywUsXbtWgQEBMi3POibc4+s5969e/j5558LtbocERERUXHieJSIiIjIsqw652NsbCzCw8Px6NEjeHt748UXX8Tx48fh7e0NIGduktwrzC1fvhyZmZk6K6PNmDEDM2fOLM6ukx7Xr1/H0aNHsWbNGtja2mqtmF0WODo6IjQ01NrdICIiIjPieJSIiIjIsqyafNyyZUu+z+edVNiUhUuo+B08eBBDhgxB1apVsWHDBlSsWNHaXTKrChUqYM+ePdbuBhEREZkRx6NERERElmXV5COVLYMHD8bgwYOt3Q0iIiIiIiIiIiohrDrnIxEREREREREREZVdTD4SERERERERERGRRTD5mA8hhLW7QEQlFL8fiIioOPD3DRE9y/gdSFQ2MPmoh41NzlSY2dnZVu4JEZVUWVlZAAClUmnlnhARUVlka2sLAEhNTbVyT4iIrEfzHaj5TiSi0okLzuihVCqhVCqRlJQEV1dXa3eHiEoYIQQSExNhb2/PgRAREVmEUqmEh4cH4uLiAABOTk6QJKlIbapUKqSnp5uje4xnhXjWiMl4jGetmEIIpKamIi4uDh4eHjzhT1TKMfmohyRJ8PHxwb1792Bvbw9nZ+ciDfZK85c+4z0b8awRszTGE0IgKysLiYmJSElJga+vr5l6R0REpKtixYoAICcgiyouLq5Yb2FkvNIfk/EYz9oxPTw85O9CIiq9mHw0wN3dHWlpaYiPj8fDhw+L1FZZ+NJnvLIdzxoxS3M8e3t7+Pr6ws3NzSztERER6SNJEipVqgQfHx95uo+i+Oyzz7B8+XIz9IzxrBHPGjEZj/GsGdPW1pZXPBKVEUw+GmDOwV5p/9JnvLIfzxoxS2s8pVLJW62JiKhYaaYEKqpHjx7BwcHBDD1iPGvEs0ZMxmO80hCTiEo+Jh8LYI7B3rPwpc94pTueNWKW9XhERERERERExNWuiYiIiIiIiIiIyEKYfCQiIiIiIiIiIiKLYPKRiIiIiIiIiIiILILJRyIiIiIiIiIiIrIIJh+JiIiIiIiIiIjIIph8JCIiIiIiIiIiIouwavJx5syZkCRJ6xEYGJjva7Zt24bAwEA4ODigQYMG+OWXX4qpt0RERERU1nA8SkRERGRZVr/y8bnnnsO9e/fkx5EjRwzWPXbsGMLDwzFs2DCcOXMG3bt3R/fu3XHhwoVi7DERERERlSUcjxIRERFZjtWTjzY2NqhYsaL8KF++vMG6X375JTp16oT33nsPdevWxSeffIKmTZti6dKlxdhjIiIiIipLOB4lIiIishyrJx+vXr2KypUro3r16ujfvz9u3bplsO5ff/2FkJAQrbLQ0FD89ddflu4mEREREZVRHI8SERERWY6NNYO3atUK69evR506dXDv3j3MmjULbdu2xYULF+Dq6qpT//79+6hQoYJWWYUKFXD//n2DMTIyMpCRkSH/nJSUZL4NICIiIqJSrTjGowDHpERERPTskoQQwtqd0EhISIC/vz+++OILDBs2TOd5Ozs7bNiwAeHh4XLZV199hVmzZuHBgwd625w5cyZmzZqlU96pUyfY2tqar/P5iIiIQMuWLYsllrViMl7pjmeNmIzHeCU9JuOV7njWiFmc8bKysrBnzx4kJibCzc2tWGI+KywxHgWezTEp45X+mIzHeCU9JuOV7njWiMl45mPSeFSUMM2bNxdTpkzR+1yVKlXEwoULtco++ugj0bBhQ4Ptpaeni8TERPlx+/ZtAUAkJiaas9v5CgsLK7ZY1orJeKU7njViMh7jlfSYjFe641kjZnHGS0xMLPbxzLPE3ONRIZ7NMSnjlf6YjMd4JT0m45XueNaIyXjmY8p41OpzPuaWkpKCmJgYVKpUSe/zrVu3xr59+7TK9u7di9atWxts097eHm5ubloPIiIiIiJ9LDEeBTgmJSIiomeXVZOPkyZNwsGDB3Hjxg0cO3YMr732GpRKpXwby8CBAzF16lS5/oQJE7Bnzx4sWLAAly9fxsyZM3Hy5EmMHTvWWptARERERKUYx6NERERElmXVBWdiY2MRHh6OR48ewdvbGy+++CKOHz8Ob29vAMCtW7egUPyXH33hhRewadMmTJs2DR988AFq1aqFXbt2oX79+tbaBCIiIiIqxTgeJSIiIrIsqyYft2zZku/zBw4c0Cnr1asXevXqZaEeEREREdGzhONRIiIiIssqUXM+EhERERERERERUdnB5CMRERERERERERFZBJOPREREREREREREZBFMPhIREREREREREZFFMPlIREREREREREREFsHkIxEREREREREREVkEk49ERERERERERERkEUw+EhERERERERERkUUw+UhEREREREREREQWweQjERERERERERERWQSTj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBbB5CMRERERERERERFZBJOPREREREREREREZBFMPhIREREREREREZFFlJjk49y5cyFJEiZOnGiwTlZWFj7++GPUqFEDDg4OaNSoEfbs2VN8nSQiIiKiMo1jUiIiIiLzKhHJx8jISKxcuRINGzbMt960adOwcuVKLFmyBJcuXcLIkSPx2muv4cyZM8XUUyIiIiIqqzgmJSIiIjI/qycfU1JS0L9/f6xevRqenp751t24cSM++OADdO7cGdWrV8eoUaPQuXNnLFiwoJh6S0RERERlEcekRERERJZh9eTjmDFj0KVLF4SEhBRYNyMjAw4ODlpljo6OOHLkiKW6R0RERETPAI5JiYiIiCzDxprBt2zZgtOnTyMyMtKo+qGhofjiiy/Qrl071KhRA/v27cOOHTugUqkMviYjIwMZGRnyz0lJSUXuNxERERGVHRyTEhEREVmOJIQQ1gh8+/ZtNG/eHHv37pXn1QkODkbjxo2xaNEiva95+PAh3nrrLfz444+QJAk1atRASEgI1q5di7S0NL2vmTlzJmbNmqVT3qlTJ9ja2ppte/ITERGBli1bFkssa8VkvNIdzxoxGY/xSnpMxivd8awRszjjZWVlYc+ePUhMTISbm1uxxCyrOCZlvNISzxoxGY/xSnpMxivd8awRk/HMx6TxqLCSnTt3CgBCqVTKDwBCkiShVCpFdna2wdempaWJ2NhYoVarxfvvvy/q1atnsG56erpITEyUH7dv3xYARGJioiU2S6+wsLBii2WtmIxXuuNZIybjMV5Jj8l4pTueNWIWZ7zExMRiH8+UVRyTMl5piWeNmIzHeCU9JuOV7njWiMl45mPKeNRqt1137NgRUVFRWmVDhgxBYGAgJk+eDKVSafC1Dg4O8PX1RVZWFrZv347evXsbrGtvbw97e3uz9ZuIiIiIyg6OSYmIiIgsy2rJR1dXV9SvX1+rzNnZGV5eXnL5wIED4evrizlz5gAATpw4gTt37qBx48a4c+cOZs6cCbVajffff7/Y+09EREREpR/HpERERESWZdUFZwpy69YtKBT/Lcidnp6OadOm4dq1a3BxcUHnzp2xceNGeHh4WK+TRERERFSmcUxKREREVHglKvl44MCBfH8OCgrCpUuXiq9DRERERPTM4ZiUiIiIyHwUBVchIiIiIiIiIiIiMh2Tj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBbB5CMRERERERERERFZBJOPREREREREREREZBFMPhIREREREREREZFFMPlIREREREREREREFsHkIxEREREREREREVkEk49ERERERERERERkEUw+EhERERERERERkUUw+UhEREREREREREQWweQjERERERERERERWQSTj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBZRYpKPc+fOhSRJmDhxYr71Fi1ahDp16sDR0RFVqlTB22+/jfT09OLpJBERERGVaRyTEhEREZmXjbU7AACRkZFYuXIlGjZsmG+9TZs2YcqUKVi7di1eeOEFREdHY/DgwZAkCV988UUx9ZaIiIiIyiKOSYmIiIjMz+pXPqakpKB///5YvXo1PD0986177NgxtGnTBv369UNAQABefvllhIeHIyIioph6S0RERERlEcekRERERJZh9eTjmDFj0KVLF4SEhBRY94UXXsCpU6fkgd21a9fwyy+/oHPnzpbuJhERERGVYRyTEhEREVmGVW+73rJlC06fPo3IyEij6vfr1w/x8fF48cUXIYRAdnY2Ro4ciQ8++MDgazIyMpCRkSH/nJSUVOR+ExEREVHZwTEpERERkeVIQghhjcC3b99G8+bNsXfvXnleneDgYDRu3BiLFi3S+5oDBw6gb9++mD17Nlq1aoV//vkHEyZMwFtvvYXp06frfc3MmTMxa9YsnfJOnTrB1tbWbNuTn4iICLRs2bJYYlkrJuOV7njWiMl4jFfSYzJe6Y5njZjFGS8rKwt79uxBYmIi3NzciiVmWcUxKeOVlnjWiMl4jFfSYzJe6Y5njZiMZz4mjUeFlezcuVMAEEqlUn4AEJIkCaVSKbKzs3Ve8+KLL4pJkyZplW3cuFE4OjoKlUqlN056erpITEyUH7dv3xYARGJiokW2S5+wsLBii2WtmIxXuuNZIybjMV5Jj8l4pTueNWIWZ7zExMRiH8+UVRyTMl5piWeNmIzHeCU9JuOV7njWiMl45mPKeNRqt1137NgRUVFRWmVDhgxBYGAgJk+eDKVSqfOa1NRUKBTa01Rq6gkDF3Da29vD3t7eTL0mIiIiorKEY1IiIiIiy7Ja8tHV1RX169fXKnN2doaXl5dcPnDgQPj6+mLOnDkAgLCwMHzxxRdo0qSJfIvL9OnTERYWpndgSERERESUH45JiYiIiCzLqgvOFOTWrVtaZ5WnTZsGSZIwbdo03LlzB97e3ggLC8Onn35qxV4SERERUVnGMSkRERFR4ZWo5OOBAwfy/dnGxgYzZszAjBkziq9TRERERPRM4ZiUiIiIyHwUBVchIiIiIiIiIiIiMh2Tj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBbB5CMRERERERERERFZBJOPREREREREREREZBFMPhIREREREREREZFFMPlIREREREREREREFsHkIxEREREREREREVkEk49ERERERERERERkEUw+EhERERERERERkUUw+UhEREREREREREQWweQjERERERERERERWQSTj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBZRYpKPc+fOhSRJmDhxYr71EhISMGbMGFSqVAn29vaoXbs2fvnll+LpJBERERGVaRyTEhEREZmXjbU7AACRkZFYuXIlGjZsmG+9zMxMvPTSS/Dx8cH3338PX19f3Lx5Ex4eHsXTUSIiIiIqszgmJSIiIjI/qycfU1JS0L9/f6xevRqzZ8/Ot+7atWvx+PFjHDt2DLa2tgCAgICAYuglEREREZVlHJMSERERWYbVb7seM2YMunTpgpCQkALr7t69G61bt8aYMWNQoUIF1K9fH//3f/8HlUpl8DUZGRlISkrSehARERER5cYxKREREZFlWPXKxy1btuD06dOIjIw0qv61a9fw559/on///vjll1/wzz//YPTo0cjKysKMGTP0vmbOnDmYNWuWTnmfPn3kM9WWFhERga5duxZLLGvFZLzSHc8aMRmP8Up6TMYr3fGsEbM442VlZRVLnGcFx6SMVxriWSMm4zFeSY/JeKU7njViMp75mDQeFVZy69Yt4ePjI86dOyeXBQUFiQkTJhh8Ta1atUSVKlVEdna2XLZgwQJRsWJFg69JT08XiYmJ8uP27dsCgEhMTDTLdhgjLCys2GJZKybjle541ojJeIxX0mMyXumOZ42YxRkvMTGx2MczZRXHpIxXWuJZIybjMV5Jj8l4pTueNWIynvmYMh612pWPp06dQlxcHJo2bSqXqVQqHDp0CEuXLkVGRgaUSqXWaypVqgRbW1ut8rp16+L+/fvIzMyEnZ2dThx7e3vY29tbbkOIiIiIqNTimJSIiIjIsqyWfOzYsSOioqK0yoYMGYLAwEBMnjxZZ5AHAG3atMGmTZugVquhUORMVxkdHY1KlSrpHeQREREREeWHY1IiIiIiy7LagjOurq6oX7++1sPZ2RleXl6oX78+AGDgwIGYOnWq/JpRo0bh8ePHmDBhAqKjo/Hzzz/j//7v/zBmzBhrbQYRERERlWIckxIRERFZllUXnCnIrVu35LPJAFClShX89ttvePvtt9GwYUP4+vpiwoQJmDx5shV7SURERERlGcekRERERIVXopKPBw4cyPdnAGjdujWOHz9ePB0iIiIiomcOx6RERERE5mO1266JiIiIiIiIiIiobGPykYiIiIiIiIiIiCyCyUciIiIiIiIiIiKyCCYfiYiIiIiIiIiIyCKYfCQiIiIiIiIiIiKLYPKRiIiIiIiIiIiILILJRyIiIiIiIiIiIrIIJh+JiIiIiIiIiIjIIph8JCIiIiIiIiIiIotg8pGIiIiIiIiIiIgsgslHIiIiIiIiIiIisggmH4mIiIiIiIiIiMgimHwkIiIiIiIiIiIii2DykYiIiIiIiIiIiCyCyUciIiIiIiIiIiKyCCYfiYiIiIiIiIiIyCJKTPJx7ty5kCQJEydONFhn/fr1kCRJ6+Hg4FB8nSQiIiKiMo1jUiIiIiLzsrF2BwAgMjISK1euRMOGDQus6+bmhitXrsg/S5Jkya4RERER0TOCY1IiIiIi87P6lY8pKSno378/Vq9eDU9PzwLrS5KEihUryo8KFSoUQy+JiIiIqCzjmJSIiIjIMqyefBwzZgy6dOmCkJAQo+qnpKTA398fVapUQbdu3XDx4sV862dkZCApKUnrQURERESUG8ekRERERJYhCSGEtYJv2bIFn376KSIjI+Hg4IDg4GA0btwYixYt0lv/r7/+wtWrV9GwYUMkJiZi/vz5OHToEC5evAg/Pz+9r5k5cyZmzZqlU96pUyfY2tqac3MMioiIQMuWLYsllrViMl7pjmeNmIzHeCU9JuOV7njWiFmc8bKysrBnzx4kJibCzc2tWGKWZRyTMl5piGeNmIzHeCU9JuOV7njWiMl45mPSeFRYya1bt4SPj484d+6cXBYUFCQmTJhgdBuZmZmiRo0aYtq0aQbrpKeni8TERPlx+/ZtAUAkJiYWpfsmCQsLK7ZY1orJeKU7njViMh7jlfSYjFe641kjZnHGS0xMLPbxTFnFMSnjlZZ41ojJeIxX0mMyXumOZ42YjGc+poxHrbbgzKlTpxAXF4emTZvKZSqVCocOHcLSpUuRkZEBpVKZbxu2trZo0qQJ/vnnH4N17O3tYW9vb7Z+ExEREVHZwTEpERERkWVZLfnYsWNHREVFaZUNGTIEgYGBmDx5coGDPCBnYBgVFYXOnTtbqptEREREVIZxTEpERERkWVZLPrq6uqJ+/fpaZc7OzvDy8pLLBw4cCF9fX8yZMwcA8PHHH+P5559HzZo1kZCQgM8//xw3b97Em2++Wez9JyIiIqLSj2NSIiIiIsuyWvLRGLdu3YJC8d+C3E+ePMFbb72F+/fvw9PTE82aNcOxY8dQr149K/aSiIiIiMoyjkmJiIiICq9EJR8PHDiQ788LFy7EwoULi69DRERERPTM4ZiUiIiIyHwUBVchIiIiIiIiIiIiMh2Tj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBbB5CMRERERERERERFZBJOPREREREREREREZBFMPhIREREREREREZFFMPlIREREREREREREFsHkIxEREREREREREVkEk49ERERERERERERkEUw+EhERERERERERkUUw+UhEREREREREREQWweQjERERERERERERWQSTj0RERERERERERGQRTD4SERERERERERGRRTD5SERERERERERERBZRYpKPc+fOhSRJmDhxolH1t2zZAkmS0L17d4v2i4iIiIieHRyTEhEREZlXiUg+RkZGYuXKlWjYsKFR9W/cuIFJkyahbdu2Fu4ZERERET0rOCYlIiIiMj+rJx9TUlLQv39/rF69Gp6engXWV6lU6N+/P2bNmoXq1asXQw+JiIiIqKzjmJSIyLrS0oCFC4Fx43L+TUvTX5a7blSU8XWNKTclHhEZz8baHRgzZgy6dOmCkJAQzJ49u8D6H3/8MXx8fDBs2DAcPny4wPoZGRnIyMiQf05KSipSf4mIiIio7OGYlIjIetLSgDZtgHPnAKUSUKmADRtynouK+q9s40bgjz+AkJCcukIAkyYZV7egclPibdwIHD0KODpaZ38RlTZWTT5u2bIFp0+fRmRkpFH1jxw5gq+//hpnz541OsacOXMwa9YsnfI+ffrA1tbW6HaKIiIiAl27di2WWNaKyXilO541YjJe6Y535NgJvBjcpdjiAcClCyeLNeY/l0+V6fewrMezRszijJeVlVUscZ4VHJMyXmmIZ42YjFfK4x09gq7tWhdbPACIuHilUDGv3XHExWsuAAC1Oqfs3Ln/nteUnTkDPFc7A/cf2WsiQoiuRtUtqNyUeGfOAC3qp6C6r2UvgYyIvl6mj1FrxGQ88zFlPGq15OPt27cxYcIE7N27Fw4ODgXWT05OxoABA7B69WqUL1/e6DhTp07FO++8I/+clJSEKlWqYOvWrXBzcytU303VtWtX7N69u1hiWSsm45XueNaIyXilO96LwV3w2eJtxRYPAN4f36tYY86d1rdMv4dlPZ41YhZnvKSkJLi7uxdLrLKOY1LGKy3xrBGT8Up5vHatsfsL3ZMeFo35zoxCxRz3eSCib/khK/u/meEUkgAAqIUkl9naqOHt+RSPEp3/rdsVwG4j6+Zfbko8Wxs12jePxZL3Lpu8rabo+vHSMn2MWiMm45mPKeNRqyUfT506hbi4ODRt2lQuU6lUOHToEJYuXYqMjAwolUr5uZiYGNy4cQNhYWFymfrf0xE2Nja4cuUKatSooRPH3t4e9vb2OuVERERERByTEhFZX3XfVKhUklaZELr1VCoJ1X1TcTHGpdB1zdkGERnHasnHjh07IioqSqtsyJAhCAwMxOTJk7UGeQAQGBioU3/atGlITk7Gl19+iSpVqli8z0RERERUtnBMSkRkfSNfj8XGXyrjXLQrlEoBlUpCw5rJEBIQdfW/ssa1k7F2+kWEjHHEuWhXCAhIEEbVLajclHiNaydj5Oux1t5tRKWG1ZKPrq6uqF+/vlaZs7MzvLy85PKBAwfC19cXc+bMgYODg059Dw8PANApJyIiIiIyBsekRETW5+igxtE1EVixww/X7jihum+qnNzLW5a77uKt6Rjf54pRdY0pNyWeo4PaavuLqLSx+mrX+bl16xYUCkXBFYmIiIiILIRjUiIiy3N0UOPtfrd0yvWVaeruP5mi9Xx+dS0Rj4iMU6KSjwcOHMj357zWr19vsb4QERER0bOJY1IioqJLS1fovYrQlHJA/5WImrpRMS5YuKmqUXXNHa+wbeQtJ3oWlKjkIxERERERERGVbmnpCrR5s6XWnIobf6mMP5adRMiY5kaVb/ipMpBnDsa8dQUcMGlRHaPqmjNeUdrIXX50TQQTkPRMYPKRiIiIiIiIiMxmxQ4/nIt2hVpIUGfnrGJ9LtoVQz95zujy81ddAQAChusCEgQko+qaM15R2shdvmKHH2/jpmcCJ68hIiIiIiIiIrO5dscJSqXQKlMqhUnlkpTzMHfdktYG0bOAyUciIiIiIiIiMpvqvqlQqbSzcCqVZFK5EDkPc9ctaW0QPQuYfCQiIiIiIiIisxn5eiwa1U6GQhKwtVFDIQk0rp2MtdMvGl3eqFYyGhZQV5KE0XXNGa8obeQu1yxQQ1TWcc5HIiIiIiIiIjIbRwc1jq6J0Lu6synlgP6VozV1F29Nx/g+V4yqa+54hW2Dq13Ts4jJRyIiIiIiIiIqUFq6Qm8CTVMeFeOChZuq8oo+Exjap0RlCZOPRERERERERJSvtHQF2rzZEueiXaFUCqhUEjb+Uhl/LDuJkDHNcS7aFQIOmLSoDjb8VBmQgKirhusWVG5MG9aKV5Q2jCk/uiaCCUgqU5h8JCIiIiIiIqJ8rdjhh3PRrlALCersnMVTzkW7Yugnz8nlgAQBCeevugIABAzXLajcmDasFa8obRhTvmKHH97ud8ts7x2RtXHBGSIiIiIiIiLK17U7TlAqtZdyViqF3nJJynkYU9ccbRR3PEu2oSknKkuYfCQiolIvKz0LERtP4bc5+xCx8RSy0rOs3SUiIiKiMqW6bypUKu3Mmkol6S0XIudhTF1ztFHc8SzZhqacqCxh8pGIiEoFoVbrTTBmpWfhm0FbsG/BQZz5/jz2LTiIbwZtYQKSiIiIyIxGvh6LRrWToZAEbG3UUEgCjWsnY+30i3K5JAkoJIFGtZLRsIC6BZUb04a14hWlDWPKuWAPlTWc85GIiEqErPQsnNl2Hk9iE+Dp54EmvRrC1sFWfu72mbvYd+QgJKUEoRKI+ukSBm7oizPbziPuykMIISCyc041x115iDPbzqPlgGbW3CQiIiKiMsPRQY2jayL0rsysKV+8NR3j+1yRk2f51TWmvKA2rBmvsG0YW05UljD5SEREVqe5ejHuykOd5KKtgy3ObDuPzJQMCOgmGJ/EJuS8Jvu/e1wkpYQnsQlW2hoiIiKissnRQa13IRRN+f6TKVrP51fX2PKSHK8wbRhbTlSWMPlIRERWV9DVi09iE3Jm7841h44mwejp5wGh0p5cR6gEPP08im8DiIiIiMqQtHSF3qvxCiqPinHBwk1V870C0JS2C2rDmvEK24Yp/YiKAhYuBEaOBBwdi/soIDIfJh+JiMjqCrp60dPPQ2f2bk2CsUmvhoj66ZLWVZM+gd5o0qthMW4BERERUdmQlq5Amzdb4ly0K5RKAZVKwsZfKuOPZScRMqZ5vuUCDpi0qA42/FQZkICoq6a3oSk3pg1rxStKG6b0QwCYNAnYuBE4epQJSCq9SsyCM3PnzoUkSZg4caLBOjt27EDz5s3h4eEBZ2dnNG7cGBs3biy+ThIRkV5FXW26oKsXm/RqCDsXe0iSBIWNApIkyQlGWwdbDNzQFx3fDUKTng3R8d0gDFzfV54vkojIFByTEtGzbsUOP5yLdoVaSMjKVkAtJJyLdsXQT54rsFwICWoh4fxVV5wvZBuacmPasFa8orRhSj+EANRq4Nw5YMUKax8ZRIVXIq58jIyMxMqVK9GwYf5XqZQrVw4ffvghAgMDYWdnh59++glDhgyBj48PQkNDi6m3RESUW0HzNRqjoKsXbR1sUaVJZXRsFaR3QRpbB1uTFpfJb3EbInp2cUxKRARcu+MEpVJAnS3JZUqlMKlc+vd/c9+4Ysk2ijte8bcBXLsGolLL6snHlJQU9O/fH6tXr8bs2bPzrRscHKz184QJE7BhwwYcOXKEAz0iIisxZrXpgpJ9mqsX86sjKRRmWb3aHMlSIip7OCYlIspR3TcVKpWkVaZSSajum4qLMS5GleeZLcfibRR3vOJvA6heXbecqLSw+m3XY8aMQZcuXRASEmLS64QQ2LdvH65cuYJ27doZrJeRkYGkpCStBxERmY9mvsbccs/XqEn27VtwEGe+P499Cw7im0FbdG7N1ly92OHtnO/0PxceKtQt3AXJnSxVZ6shhJCTpUT07OKYlIgox8jXY9GodjIUkoCtjRoKSaBx7WSsnX6xwHJJElBIAo1qJaNhIdvQlBvThrXiFaUNU/ohSYBCATRunLPoDFFpJQmhL69ePLZs2YJPP/0UkZGRcHBwQHBwMBo3boxFixYZfE1iYiJ8fX2RkZEBpVKJr776CkOHDjVYf+bMmZg1a5ZOeadOnWBrWzxXuERERKBly5bFEstaMRmvdMezRkzGM68jx06gXv3mxRbv0oWTcryE2ATExzzKvRA1JADla3jBw8+jwOdzE2o1bp+5i8yUjH9Xtxawc7FHlSaV8fel02bZxodX45F4Lwm5f/1JkgT3Sm7wrlVe7zYWh38unyrTxyi/18wrKysLe/bsQWJiItzc3IolZlnGMSnjlYZ41ojJeKU83tEjaPlcnUK9VqUGbt5zxNN0JZwdVPCvlAalouDya3eiUN23AfwrpQEoXBu5ywtqw5rxCtuGKf3IG8/SIqKv83uN8YxmynjUardd3759GxMmTMDevXvh4OBg9OtcXV1x9uxZpKSkYN++fXjnnXdQvXp1ndtfNKZOnYp33nlH/jkpKQlVqlTB1q1bi22w3rVrV+zevbtYYlkrJuOV7njWiMl45vVicBd8tnhbscV7f3wvOZ6+25i9a5fHc50CkfQgGQ+S4hCruAuo/3u9pJTQtEUjhE7tqNVuxMZT2HfkIAQENNlK6amEjq2C8L1iLj79bFOR52qM2HgK+xb8G0PTH0jo2C9I67bu3NtYHOZO61umj1F+r5lXUlIS3N3diyVWWccxKeOVlnjWiMl4pTxeu9bY/YXuSQ+LxnxnBnZ/MYXxSmu8j5fye43xjGbKeNRqycdTp04hLi4OTZs2lctUKhUOHTqEpUuXymeR81IoFKhZsyYAoHHjxvj7778xZ84cgwM9e3t72NvbW2QbiIhId75Gt4quuPjLZRxYfASSUoI6W63zGqEScKvgqlOuuYVbM3ck8N8t3EKtNjhXIwCjk5IFLW5DRM8WjkmJ6FmXlq7Aih1+uHbHCdV9UzHy9VgA0ClzdFDrrZu7PCrGBQs3VS1SG6b0w5rxCtuGKf0wJp6jg+5Ym6iksVrysWPHjoiKitIqGzJkCAIDAzF58mS9gzx91Go1MjIyLNFFIiLKQ7NwzMOr8YjYeEpO8uVebTpi4yk8vBqvtQCNXpJukaefB4RK+zVCJeDp54HEyCTEXdNd2ObkpjO49NsVoxeQMWZxG2P3A1fLJir9OCYlomdZWroCbd5siXPRrlAqBVQqCRt+qgxIQNTV/8o2/lIZfyw7iZAxzbXq5i0XcMCkRXWK1IYp/bBWvKK0YUo/Coq38ZfKOLomgglIKvGslnx0dXVF/fr1tcqcnZ3h5eUllw8cOBC+vr6YM2cOAGDOnDlo3rw5atSogYyMDPzyyy/YuHEjli9fXuz9JyIqiSyZFMt9e3UikrBvwUG9ST59Vy/mpbBRIOl+sk65oasS64fVQ/Kqp8g7TbGklHD1UEyhVtvWt3J27noJsQnISs/S2X9cLZuobOGYlIieZSt2+OFctCvUQoI6O+fM8PmrOXenCPxXdi7aFUM/eU6nbt5yQIKAVKQ2TOmHteIVpQ1T+lFQvHPRrlixww9v97tV6GOAqDhYLflojFu3bkGh+G9W1adPn2L06NGIjY2Fo6MjAgMD8b///Q99+vSxYi+JiEqGwibFjE1Y5l4lWvNf7iSfpp0HV+KgVuV/9lWoBNwquiJi4yk8uvEYKfFP4eLtDC//cghf2RMXfrwk96d+WD1semsb0pPSddrJuaVbMnirtin7JW+9+OxH+GbQFp16WvvBQLKTiMoWjkmJqKy6dscJSqWQk1lAzpp/AJD7nK9SKfTWNVRe3G2Uxj6bsw2ikq5EJR8PHDiQ78+zZ8/G7Nmzi69DRESlSGGSYqYkLPObjzF3O1BAXixGYaOAOlstt62wUUCtUsPB3R4R357G04dPtWJIEnTiR2w8hbjoh3r77+LjglpB1XHn7F2tcs2t2qbsl7z1hIF6+e0HIiobOCYlomdFdd9UqFTac+EIPTevqFQSqvum4mKMi1Hlxd1GaeyzOdsgKumKYbF2IiIqDpqkWG4FJcVyJ9zU2WoI8d/VjBpZ6VmI2HhK7xWNmiSfVuIu15yNStucudI0t0sLdc4q1mmJ6TqJx5x60ImfX/8VCglRP16CnXNOolJho4AkSVoLyBi7X4ytl9+8lERERESlycjXY9GodjIUkoCtjRoKSaBRrWQ0zFPWuHYy1k6/qFM3b7kkiSK3YUo/rBWvKG2Y0o+C4jWunSwvUENUkpWoKx+JiKjwCpMUK+gqPkNXNEqSBAn/Jfn+XHhId55HCchKy8r5/39zlkL97/P5rUOTJ76+uSE1cj+nsFGgQdd68K5eXuvWcX37RZ2tRtL9ZPw2Z598q7mx+4+rZRMREVFZ4eigxtE1EUav2Kyvbu7yxVvTMb7PlSK1YUo/rBnP3PtOXxvGxONiM1QaMPlIRFRGFCYpVlDCLfcVjVD9V8fB1R4dhwfJST5PP49/51/M3VDhtkMT/7/EZ5xRr1Nnq5H6OA0tZ2jfYp53v6iz1bCxt8E/B2MgKRXyrebhK3tq1ZOyoXf/mWO1bCIiIqLilpauYOKqDOL7SqUBk49ERGVEYZJiBSUs9V0ZqbBRwN7FXmsexCa9GuL4NyeREpdStI2Q/kv4/Zf4NP7lCXcSAeguopN7EZuk+8n452AMhADEvwnTuCsPceHHS1r771qkFwau179Yj62DLReXISIiolIjLV2BNm+2xLloVyiVAiqVhI2/VMYfy04iZExzrfINP1UGJCDqasF185YLOGDSojpFasOUflgrniX2nb42Chvv6JoIJiCpRGHykYioDDE1KVZQwtLQlZG2jjY67dQKqo6z26P+u7U6F83CMwZJAATg4u2CXl92x5lt53F2Z5Q8V6SxhFrg19l7cfXgNaTEpchxj39zErWCqsPLv9y/C+Ao5MQj8N+t3rn3377xK3g1IxEREZUJK3b44Vy0K9RCkldLPhftiqGfPKdTfv6qKwBAoOC6ecsBCQJSkdowpR/WimeJfaevjcLGW7HDD2/3u2XqYUJkMUw+EhE943In3PJeMVg/rJ7eKyMfl3fTacfLv5zOrdaSBNQMqgG3iq54cOUh7kbd05+E/Pd1KXEp2PDGJqQ8TMn3isdyAZ54fPOJdjwJiI95hEfXH8sJUE2slLgUnN0e9W+C01mnD1wwhoiIiMqya3ecoFQKOUEFAEql0Fsu/fu/ucdihuqWlDZKY58tvd1EJQlXuyYiIgD/LS6zb8FBnPn+PPYtOIjNI75H+Mqe6PhuEJr0bIiO7wZh4Pq+kBQKrddFbDyFh9fi5VWnJYUESQJ8An3QfV4XhE7tiMCOtXSuotQnOS7/xCMAPL7xBJJCkmM5lXOSE5H6rrzUlAshkPIwBS4+LpAkSe/q2ERERERlTXXfVKhUklaZSiXpLRcCOmMxQ3VLShulsc+W3m6ikoTJRyIiAqC9uIw6Ww0hhDwXYssBzRA6tSNaDmimdSvyfwnLAzi34wIyUjIB5CT6nL1dEL6ip1y/Sa+G8KnjLSf9ikqTyBRqgdTHJgywJAk12lTTSajyFmsiIiIqq0a+HotGtZOhkARsbdRQSAKNaydj7fSLOuWNaiWjoZF185ZLkihyG6b0w1rxLLHv9LVR2HiaFbOJSgredk1ERAD0Ly6jmQvRkPwWhXn68Cku/HhJXjzmSWwC6oXWQb1OdZBwJxEXf7mMzKeZFtiSXP6dSzI3oRaIOXodL09pz4QjERERPRMcHdQ4uiZC76rI+soBGF03d/nirekY3+dKkdowpR/WjGfufaevjaLEIypJmHwkIiIAhhaXUSPpfjJ+m7NPZzGarPQsXN4XDZE3u/cvSSnh0Y3H+GbQFu05I+t4o15oHYslHhU2CgiVGi7eLqjeJgCX90bLV2RqpMSl4My281yxmoiIiJ4Zjg5qvYuQGCo3pa6mfP/JFK3nC9OGKf2wdjxz7jt9bRQlHlFJwuQjEREByLktWntxGTWUdja4eiDm34SeQNRPlzBwQ18ItRrfDNqCB1fidK4s1BAqgZT4p3hwOS7n53+vqHxwOQ4p8U/1XpVoDpUbVEJgx1pyolShVODsDu1VuBU2inyv6CQiIiIqa9LSFXqvkNNXDui/mq6gNqJiXLBwU9UitWFKP6wZz9z7Tl8blohHZA1MPhIREYCcVa8Hbugr3yKddD8ZVw/EAPhv1ei4Kw9xZtt5JN5NQty1h/kmD8vXKIf7/yYe83oa/9Ts/QdyFp+pUMdb64pGrwDdVbgNrW6de7XvhNgEZKVn8dZsIiIiKvXS0hVo82ZLnIt2hVIpoFJJ2PhLZfyx7CRCxjTXKt/wU2VAAqKuFlw3b7mAAyYtqlOkNkzph7XiWWLf6WvD3PGOrolgApKsgslHIiKS2TrYyom73+bsg8JGIScegZxbqS/vu4qk+8kFXrn48J9HFu6tLqHWTSrqXtEp9K5urVk8R1MvPvsRvhm0BQM3cDEaIiIiKt1W7PDDuWhXqIUEdXbOisnnol0x9JPndMrPX3UFAAgUXDdvOSBBQCpSG6b0w1rxLLHv9LVh7ngrdvjxFm2yCiYfiYhIL31zQKqz1Yg9cweZyDQ416M12TnbITM9E79+shcp8U/h4u0ML/9yCF/ZExd+vIQnsQk6c1dq5F7tW2TnbJ3mSk/ODUlERESl2bU7TlAqhZyIAgClUugtl/7939wLChqqW1LaKI19ttZ2E1mDwtodICKikqlJr4bwqeMNSZKgsFHkXOn4r9xpR0kh6bzWWjKfZuLQ0mM48/15XD0QgzPbzmPfggPYPOJ7NOnVEB3ebgcA+HPhIURsPIWs9Cz5tZrVvnMraLVvIiIiotKgum8qVCrtcY5KJektF0I7mZVf3ZLSRmnss7W2m8gamHwkIiK9NHNAdnw3CE16NoRf48q6yTmFhPI1vODu62alXhZMiJwrGE9uOoNvBm3BvgUHceb789i34CC+GbRFTkDqX+1b/9yQRERERKXJyNdj0ah2MhSSgK2NGgpJoHHtZKydflGnvFGtZDQ0sm7eckkSRW7DlH5YK54l9p2+NswdT7NADVFxKzG3Xc+dOxdTp07FhAkTsGjRIr11Ll68iI8++ginTp3CzZs3sXDhQkycOLFY+0lE9KxydHfUSc5BAI261YcqS4X9Xx62TseMICklXD0Uo3VbNfDfbdVNejWEKksFBw8HpCWkQaFUQMqG3rkhiahs45iUiMoiRwc1jq6J0Lv6sb5yQP8KygW1sXhrOsb3uVKkNkzphzXjmXvf6WvDEvGIrKFEJB8jIyOxcuVKNGyY/x94qampqF69Onr16oW33367mHpHRPRsyrsAi1CpYWNvg+yMbEiSBAkSfAK9UT+sHs7tjIKDuwPSE9MLXIjGGtQqNYRa5GxH9n+dk5QS/t57BUfXnEBaQlrO/QACsHexh1c5Lwxcz8VmiJ4lHJMSUVmQlgasWAFExbhg4aaqTDoRkdVZPfmYkpKC/v37Y/Xq1Zg9e3a+dVu0aIEWLVoAAKZMmVIc3SMiemblXYAFALIzsuHu6w77ZHvUaFQNzuWdsabXN0iJS5HnflTaKeFWwRUJsYkQ6hKShRQ5q2+rVdoDb3W2GnfO3ctVkPNPWkIanqqfyldFMgFJVPZxTEpEZUFaGtCmDXDuHCCEAyYtqoONv1TGH8tOImRMc5yLdoVSKaBSSQbLN/xUGZCAqKsF181bLpATsyhtmNIPa8WzxL7T14a54x1dE8FENFmF1ZOPY8aMQZcuXRASElLgQK8wMjIykJGRIf+clJRk9hhERGWRZgGW3FcKAkDinUSkIx3/HL4GSSHJCUbNv6oMFZ7cSiju7mqRbHT7nfk0M6e/Qmj125D0pHTsW3AQUT9dwsANvAKSqKzjmJSIyoIVK3ISj2o1AEgQkHAu2hVDP3kO56JdoRaSvAKyofLzV10BAAIF181brolZlDZM6Ye14lli3+lrw9zxVuzww9v9bplwRBGZhyRE3rWRis+WLVvw6aefIjIyEg4ODggODkbjxo0Nzq+TW0BAACZOnFjg/DozZ87ErFmzdMo7deoEW9vi+UMyIiICLVu2LJZY1orJeKU7njVilvV4R46dQL36zYst3qULJwsdT6jVSLybhKy0bNg62sC9shskhQIJsQmIj3mk9w7qBMTCA35F67SJzB1TknISkQXFkwCUr+EFDwsvPPPP5VNl+jPB7zXzysrKwp49e5CYmAg3t5K74FNpwTEp45WGeNaIyXhmjnf0CFo+V8eiMaJiXHDzngOEkABEAGgJSRJwcVQhJU35b3kOQ+X6GN9GTsyitWFKP6wTzzL7Th/zxvOvlI4GNVIMvjYi+jq/1xjPaKaMR6125ePt27cxYcIE7N27Fw4ODhaLM3XqVLzzzjvyz0lJSahSpQq2bt1abIP1rl27Yvfu3cUSy1oxGa90x7NGzLIe78XgLvhs8bZii/f++F6FiifP63jtv3kdXZJdULNddXg0dsfFPZfxMDoeALQSdZH4Fi3Q32z9N4bZYxZw6k0TT2GjQJMWDRE6taP5Yusxd1rfMv2Z4PeaeSUlJcHd3b1YYpV1HJMyXmmJZ42YjGfmeO1aY/cXuichzGnhpqqYtKjOv1fNdQWwGxIEOrSIw4+HfP4tz5FfOQCj62qX/xez8G2Y0g/rxTP/vtPXhnnjje9zJd8rH7t+vJTfa4xnNFPGowoL98WgU6dOIS4uDk2bNoWNjQ1sbGxw8OBBLF68GDY2NlCpVGaJY29vDzc3N60HERHlyD2vozpbDSGA5LgUnN0RhQOLjwACCJ7wInwbV7Z2V4uFwlb316JQCXha+KpHIrIejkmJqCwZ+XosGtVOhkISkCQBhSTQuHYy1k6/KJfb2qjzLW9UKxkNjaybt1wTsyhtmNIPa8WzxL7T14a542lWxyYqbla78rFjx46IiorSKhsyZAgCAwMxefJkKJVKK/WMiOjZ8ejmY72rU2vmQ3x4NR5KGyXCV/TAirC1SI4zfJtGaaewVUCdrTsBt0+gN5r0yn/lWyIqvTgmJaKyxNFBjaNrIrBihx8Wb03H+D5X5NWuNeXX7jihum9qvuUAjK5rKGZh2zClH9aMZ+59p68NS8QjsgarJR9dXV1Rv359rTJnZ2d4eXnJ5QMHDoSvry/mzJkDAMjMzMSlS5fk/79z5w7Onj0LFxcX1KxZs3g3gIiolMtKz8LVg9fyXXhFCIG/1kdCla3CoP/1w/o3NiGlFCUgJWXOwjIO7g5Q2ijxNP6pwbrqLN3BWK3gGug+rwsXmyEqwzgmJaKyxtFBjbf73cL+kylat9hqyg3Vz8uUuoZiFqYNU/ph7Xjm3Hf62rBEPCJrsPpq1/m5desWFIr/boG7e/cumjRpIv88f/58zJ8/H0FBQThw4IAVekhEVPpkpWfhzLbzuLzvqlGJxKfxT7F/0WFc/PUyBv+vH377v304c0wJZBZDZ4vIwc0Bzw9sjub9muDkpjPY/+Vhg3XzroAtSRLcKroy8UhEHJMSUamSlq7Aih1+iIpxwcJNVeUr3jTlea+E01cO6L+arqA2cscsbBum9MOa8cy97/S1YYl4RNZQopKPeQdreX8OCAjId2VSIqJniSaJ+CQ2AQmxCchKzyowUSYvMHPlocnx4q48xKrX1yMzJRMqmGcOtKKoWNcHD6IfQqgM/15Ie5IGpa0Stg62SHqQ/O+iOrr1ncs74emjVK0yIQTcKrqavd9EVPJxTEpEpVVaugJt3myJc9GuEHDApEV1sPGXyvhj2UmEjGmOc9GuUCoFVCrJYPmGnyoDEhB1teC6ecs1MYvShin9sFY8S+w7fW2YO97RNRFMQJJVlKjkIxERGSd3ElFSSojPfoRvBm3BwA19801A5l5gRh9JAtwquyHxTpLe5zNTci53LAl/ct//O67AOpJCwpPYBACAp5+HwURlkx4NcXx9JLIztJOqF376G83Dm/DqRyIiIioVVuzww7loV6iFhJz1jSWci3bF0E+ek8vV2TkrIBsqP3815+SrQMF185ZrYhalDVP6Ya14lth3+towd7wVO/x4KzZZhdVWuyYiosLTWaUaOVcmntl2Pt/XPYlNgKSUdJ+Qcm4z9gn0QdOejSzTaSsQaoEHV+Lw19oIpCen662jUCoQ9dMlncQjADz8Jx4nN59BxMZT+G3OPkRsPIWs9CxLd5uIiIioUK7dcYJSqX2yVakUJpVLUs6jNLVRGvtsre0msgYmH4mISiF9SURJ+d9VfobovfpPAvwaV0bHd4MwcH1fNO/XBD61vc3cY+uJPXMX+788jCMrj+t9Xq1SG7zSEwCOrDiOP+YfwOnvzuGP+QfwzaAtTEASERFRiVTdNxUqlfYYUaWSTCoXIudRmtoojX221nYTWQOTj0REpZC+JKJQCXj6eeT7uia9GsKnjjckSYLCRgFJklAh0AfhK3qi5YBmsHWwha2DLQZtDEf7CW3h7utuwa0oHTSJRs1iNA8uxxV4hSkR/X97dx8fVXnn//99ZhKSQG5AJQIJaFFuFA1QEDfaiitYEYu4rtS7Gq26WyqtN6vbhVZX0FJoV+vNTwtWUJE24mJjv5YiqCzBgmIIYoixkggqN4JgKyHcJCQz1++POONMMpNkJnPmzCSv5+Mxj4e5cs31vuYkHi8/OedcAAAnTL9yt0YOrZPLMrIsI5dlNGponZ65r8rfnpribbN95JA6FXSwb8t2X2ZnxohkHk7l2XHsQo0R6zzfBjVAvPHMRwBIQqOnFahyxQf+Zz5aTVLu8L4aPa2gVd/AjWn65PfWtU9dpff//IH/69HTClo90zA1PVWFN4/T2OtG6/kbl+nzD0M/X7HnST119Ivu9RfUwOdIAgAAJJKMdK82LCrTwpJ8Pf5ivW6/ept/l2Nfe8vdj0O1S6F3UG5vjMDMaMeIZB5O5sX62IUaw448wAkUHwEgCaWmp6poyTX+ouKOTSeq6LnWm834Nqb5/MP9slyWjNdo4/PlunV5kXr2zmg1bstC5ehpBbr2qau06KolOnzgSFDftJw0GW/3W8AYb/tXmAIAADglI92ru67bqbXlh4M2F/G1h+vfUiR9w2VGM0Yk83A6L5bHLtQYduQBTqD4CABJKjU9VeNuGCNJWnP7wpA7Mm9ZvtV/1aLvtuHD+w9r8bTnNf3PNwe9p7G+UUuKXtD+6gOy1Pz8mA2LNmrA2f11+IsjrcZuqG2w4VMlPleKS2dNOdPpaQAAAIR0rN6lhSX5qtyeqUeKB/mvePO1t7wSLlS7FPpquvbGCMyMdoxI5uFkXqyPXagx4pXHFZGwG8VHAOjCvtx90H/FY6C6/Ye1ZflWf/FSkspf2KL92w5Ikny9jx2s1/a/fhyv6Tois2+vVld1tsXr8er9P38QdOwAAAASwbF6l86/dZwqqrNklK57Hh2mpSsH6I0nyzVxxlhVVGfJ7TbyeKyw7UtWDJAsqbKm/b4t232ZnRkjknk4lWfHsQs1Rjzylq4coA2LyihAwlYUHwGgC+uT37tV4VEK/dzC6rUfxWlWieP0bw/WpPsmasF3F8tz3NO6g6WvK7Ffcbld+nL3wZC3qIe6+hQAACBeFpbkq6I6S15jSbJkZKmiOks3PzjC3+5tat4FOVz71posSZJR+31btvsyOzNGJPNwKs+OYxdqjHjkVVRnaWFJPrdow1bsdg0AXdjoaQXKzM1s/Q0T/NzCxvpG7d/2RfwmlgD6DjlJ//LQd1X1l7+FLDz2OqGn8kc1/zU5kPEYZffL0vM3LtOah9dpy0tbtebhdXr+xmX+nbEBAACcsGNPT7ndwX85dbtNRO2W1fxKpjGScc6J8rl97YCdKD4CQBeWmp6qW5cXKeurAqTlsmRZUu7w3KCdsbcs39rtCmfWVyu1mje3h/y+t8mraxdepZOH5cqyLLlSXLIsS7nD+0pG2r/tgIwx8jZ5ZYzR/m0HtGX51nh+BAAAgCCD847K4wmuRnk8VkTtxjS/kmmMZJxzonxuXztgJ4qPANDF9eydoel/vlkT77lQ3/zeSE24+8JWO2N/ufugLLfVxihdz/7qA/rtZYv1xY5/hO3j21V8wt3jNfqqAk24e7yKnrtGhz6va3W8LHfrW9kBAADiafqVuzVyaJ1clpFlGbkso1FD6/TMfVX+9tQUb5vtI4fUqaCDfVu2+zI7M0Yk83Aqz45jF2qMeOSNGlrn37gGsAvPfASAbiBwZ+xQ+uT3lrrhM6aPhNjF28eV4tLqeWtCPs+xT35vGU/wn5mNJ/hWdgAAgHjLSPdqw6IyLSzJ1+Mv1uv2q7f5dzP2tbfc5ThUuxR6B+X2xgjMjHaMSObhZF6sj12oMeKVx2YzsBtXPgIANHpagXKH9XV6Go7z3YqdkubW0X8cDfs8R9/xank7duCt7AAAAHY7Vu/SI8WD9JP/Ga5HigfpWD3/iw8g8XDlIwBAknTmpGGqr6tX7Z5DTk/FEb1O7Kk+g/qobn+davccklHzcx8l+Z/n6Lt61Hc7NrtdAwAApxyrd+n8W8epojpLbreRx2NpyYrmzfIqa7JklK57Hh2mpSsH6I0nyzVxxtigvuHaA8dor2/Ldl9mZ8aIZB5O5dlx7KL5GcYib+nKAdqwqIyrH2Erio8A0M011jfq+RuXaf+2A93uuY+BGhuatOe9z2RkWn0v1PMcA29lb6xvpBAJAADiamFJviqqs+Q1lrxNzWu4rTVZkiQjS5IlI0sV1Vm6+cERrfqGaw8co72+Ldt9mZ0ZI5J5OJVnx7GL5mcYi7yK6iwtLMnXXdft7MBvHRCdDl+T/dlnn9k5D82fP1+WZenOO+9ss9/y5cs1fPhwpaen6+yzz9bKlSttnRcAdHVblm8N2rlZkmRJ2QOyQ/bveUKGevTsoZH/cpbSc9LiOFP7uFJcOn74uIwxClF7lLfJq0P76rR63hqVLd0cdAu2r3i75uF1end5hd54qFRPXPK03n62rNvtIA7Yze71qMSaFEDy2LGnp9zu4IWLZTW/ArndJmTfcO3JOEYyzjlRPrevHbBTh4uPI0aMUHFxsS2T2LRpk5566ikVFLT9rKy33npL1157rW655RZt2bJFV1xxha644gq9//77tswLALqDUDtdu9wupfXqEfK/Esdq65U/aoAum32JTjz1xDjN0j45edk6e8qZcqW08Z9ES6pZtz3kMyADi7e+TWiOHTymtY/9tdWzIgF0jp3rUYk1KYDkMjjvqDye4DWcMc2vQB6PFbJvuPZkHCMZ55won9vXDtipw8XHuXPn6oc//KGmTZumf/zjHzGbwOHDh3X99dfr6aefVp8+fdrs+9hjj2nSpEn6z//8T51xxhl68MEH9c1vflNPPPFEzOYDAN1NqJ2bvR6vjh9tDLkDtvEY7Xp3j8qWbtap/zQoTrO0h2VZOufab6rvaSe1OgZBTPPL2+SVMcb/DEgpdPHW957AfgA6z671qMSaFEDymX7lbo0cWieXZZSa4pXLMho5pE4FX7VZlpHLMho1tE7P3FfVqm+49sAx2uvbst2X2ZkxIpmHU3l2HLtofoaxyBs1tM6/azZglw4/8/G2227TpZdeqltuuUVnnnmmnn76aU2ZMqXTE5gxY4Yuu+wyTZw4Ub/4xS/a7Pv222/rP/7jP4LaLrnkEv3pT38K+56GhgY1NDT4vz50qHtupAAA4YyeVqDKFR/4n/nobfJKRjq0L/z5srG+UW88VCp3mjuOM+28vkNO0hcffSFZlozXKLNvL5015Uylpqf4j4FR6FuvAwU+AzJU8TZUPwCdZ9d6VGJNCiD5ZKR7tWFRmRaW5GvHnp4anHfUX0RaWJKvx1+s1+1Xb9P0K3eH7dveGB3pG9gemBntGJHMw8m8WB+7aH+GschjsxnYzTKm5UW67XviiSd011136YwzzlBKSnD98t133+3wOMuWLdPcuXO1adMmpaen68ILL9SoUaP06KOPhuzfo0cPLVmyRNdee62/7be//a3mzJmjzz//POR7Zs+erTlz5rRqnzRpklJT47MZQFlZmcaNGxeXLKcyyUvuPCcyyYut9W+9ozPPGttuP+P1qvazQ2o81qTUjBRl9s3UgZovdPxY863BLrel+rqGdkaRDmq3eiu/0/OORGczLUmnjBuk3e99pqbjTbLUXGNMy0zTwNEDJEm1nx3S4QNHdOxQfZt5lqSTTjtRvfN7y3i92rXlMzUcbn3cAvu156MPN3fp31HOa7HV2NioVatWqba2VtnZoZ/P2tXFaj0qsSYlLznynMgkL8Z5G9Zr3Ihh8cur2hbXPCcyyYtxXvXHnNfI67BI1qMR73b96aefqqSkRH369NHUqVNbLfY6ateuXbrjjjv0+uuvKz09PaoxOmLWrFlBf5k+dOiQBg4cqBdffDFui/XLL79cr7zySlyynMokL7nznMgkL7a+deFl+vXjy9vs49/VescBydV8+7S2SycF9LFclozLhLzdOtAm/UHn6PrOTzwCsch0bXGpb2OLD3dYyjvUX2dcPEyjpzU/5+35G5fpLx8+onEpN8jb5FVKWoo8x5tkuV0yHqPc4X1V9Nw1/h2tG+sbVV68RRufL9exg8fkCtOvLfPvvaZL/45yXoutQ4cOKScnJy5ZiShW61GJNSl5yZPnRCZ5Mc67oFCv/Kb1HyE641i9K+yVcJXbf6J/Hvv/+a9sC9U3XLtvjI70DWwPzIx2jEjm4WRerI9dtD/DWOT5rny8/IEnOK+R12GRrEcjWqk9/fTTuvvuuzVx4kRVVVWpb9++UU1QkjZv3qz9+/frm9/8pr/N4/HozTff1BNPPKGGhga53cG38/Xr16/VX5M///xz9evXL2xOWlqa0tK6xm6sANAZgRujyBO6j/FGfDF8UvG2LDx+ZU/FXn22da8qV3ygoiXXqGjJNXrnuuc1+pwC9cnvrbOmnKn3//yBvtx9UH3ye2v0tIKggmJqeqoKbx6nsdeN1pblW8P2A9B5sVyPSqxJASSvY/UunX/rOFVUZ8ntNvJ4LC1ZMUCypMqaLBml655Hh2npygF648lyTZwxNqhvuPbAMdrr27Ldl9mZMSKZh1N5dhy7aH6GschbunKANiwq49Zr2KrDxcdJkyaprKxMTzzxhIqKijodPGHCBFVWVga1/eAHP9Dw4cP1X//1X60WeZJUWFioNWvW6M477/S3vf766yosLOz0fACgK2usb9SHa2o61NdyWV2+CBmKCdggZtwNY9Q7v7cumTXB//1xN4xpd4zU9NQO9QMQnVivRyXWpACS18KSfFVUZ8lrLHmbmje/21qTJUkysiRZMrJUUZ2lmx8c0apvuPbAMdrr27Ldl9mZMSKZh1N5dhy7aH6GscirqM7SwpJ83XXdzg781gHR6XDx0ePxaOvWrcrPj80zvrKysnTWWWcFtfXq1Usnnniiv72oqEh5eXmaN2+eJOmOO+7Q+PHj9fDDD+uyyy7TsmXLVF5ert/97ncxmRMAdEW+260//3B/h/pn5KTr6JfHbJ5VYgrcIMZ4vSpbupmrGIEEEuv1qMSaFEDy2rGnp9xu4y8iSZL11T8G7uzgdpuQfcO1J+MYyTjnRPncvnbATq6Odnz99ddjutDriJ07d2rv3r3+r8877zwVFxfrd7/7nUaOHKmXXnpJf/rTn1otGAEAX/Pdbt0hlrpt4VGSvE1e9cnvrcb6Ru3a8pnWPLxOW17aqjUPr9PzNy5TY32j01MEujUn1qMSa1IAiWlw3lF5PFZQmzHBhShJ8niskH3DtSfjGMk450T53L52wE4dLj7GQ2lpadCugqWlpXruueeC+kybNk3btm1TQ0OD3n//fU2ePDm+kwSAJPPl7oOy3Fa7/Xqe0LN5++duzJ3m1uhpBdqyfKuOH26QMUbeJq+MMf5bsqXmq0nLlm7W6nlrVLZ0M0VJoIthTQogGUy/crdGDq2TyzJKTfHKZRmNHFKngq/aLMvIZRmNGlqnZ+6ratU3XHvgGO31bdnuy+zMGJHMw6k8O45dND/DWOSNGlrn37gGsEv0WwMCAJJCn/zezTtbt8FyW+p1Yk/VH6qXt6n7Pmx60Jh8paanNt96bVlBxVjfLdn+XcO3HZDltmQ8xr9RDbdlAwCAeMlI92rDorKwux8//mK9br96m38341B92xujI30D2wMzox0jknk4mRfrYxftzzAWeWw2A7sl1JWPAIDYGz2tQLnD+sqyLLlSXFKoiyC9Uu+8nG5deJSkwweOqLG+UX3ye7e6h8Xr8Sq7X1bQruGhrooEAAAAAHyNKx8BoItLTU9V0ZJrtGX5Vn25+6Cy+2WpauWHOlDzhf/KvdzhfXXJzybo47c/UVODx+kpO+aLj/6uLcu3avS0AvVY0EM6EvBNI1Wt/FB5Bf2bj1vT18XJwI1qAAAA4uFYvUvn3zpOFdVZcruNPB5LS1YMkCypsiZLRum659FhWrpygN54slwTZ4wN6huuPXCM9vq2bPdldmaMSObhVJ4dxy6an2Es8pauHKANi8q4+hG2ovgIAN1Aanqqxt0wxv/1yH85W3+5f7UO7qlV77wcXTbnEr3/5w+6deFR+rqImJqeqqzcLOnj4O8fqPlCOQOyW93Gbjym+WpJAACAOFlYkq+K6ix5jeXfvXhrTZYkyciSZMnIUkV1lm5+cESrvuHaA8dor2/Ldl9mZ8aIZB5O5dlx7KL5GcYir6I6SwtL8nXXdTs78FsHRIfbrgGgm2msb9QLP3xJH63bob9//A99tG6HXvjhS/r7J/+QZbW/MU1XFlhEbGpoar5NPYDltpTZt1fQbeyWZSl3eF+NnlbgwIwBAEB3tWNPT7ndwX8QtazmVyC324TsG649GcdIxjknyuf2tQN2ovgIAN1MuGcWHv7iiEw33+46sIiYmpES8grHE085QUVLrtGEu8dr9FUFmnD3eBU9x2YzAAAgvgbnHZXHE1x5MqbVY6vl8Vgh+4ZrT8YxknHOifK5fe2AnSg+AkA38+Xug7LcwYsO/xV9Q/s6NCvnDbnwtKAiYs6A7LBXOPpuY79k1gSNu2EMhUcAABB306/crZFD6+SyjFJTvHJZRiOH1KngqzbLMnJZRqOG1umZ+6pa9Q3XHjhGe31btvsyOzNGJPNwKs+OYxfNzzAWeaOG1vl3zQbswjMfAaCb6ZPfO+QVfb3zcpR1cqYa6up1rLZejceaZLzd40pIV4pL2f2ygoqIlssVtFFPn/ze/sIjAACA0zLSvdqwqEwLS/K1Y09PDc476i8iLSzJ1+Mv1uv2q7dp+pW7w/Ztb4yO9A1sD8yMdoxI5uFkXqyPXbQ/w1jksdkM7EbxEQC6qMb6xpCFs9HTClS54gPt33bAv9t136En6f0Vf9OBj75wetqO8DZ5dWhfnRrrG4OKiy036gEAAEgkGenekBuF3HXdTq0tPxz0vXB92xqjo3197S0zoxkjknk4nRfLYxdqjHjmAXai+AgAXVBjfaOev3FZUIGxcsUHKlrSfFtxyyv6PI0erX3sr05PO25S0txqOu5R4CMua0q36/kbl/mPEQAAQKI7Vu8KeyVc5fZMPVI8yH9lW6i+4dp9Y3Skb2B7YGa0Y0QyDyfzYn3sov0ZxiKPKx9hN4qPANAFBW4qY5qaK2z7tx3QluVb/c8oDLyib/W8NZIlhdtvxnJZXeIW7JwB2ep7+knqdVJP7anYqy+2/z3o+4HHCAAAIJEdq3fp/FvHqaI6S263kcdjacmKAZIlVdZkyShd9zw6TEtXDtAbT5Zr4oyxQX3DtQeO0V7flu2+zM6MEck8nMqz49hF8zOMRd7SlQO0YVEZBUjYiuIjAHRBvk1lfIVHqXlTmS93HwzZv09+77CFxyEXnqbMvr1U9eqHOn74eOwnGyeuFJeOH23U9r9+LMttydvUeoHV1jECAABIJAtL8lVRnSWvseRtat5McGtNliTJyJJkychSRXWWbn5wRKu+4doDx2ivb8t2X2ZnxohkHk7l2XHsovkZxiKvojpLC0vyuRUbtmK3awDogsJtKtMnv3fI/qOnFYTc6Tp3WF9d8avLdOm9F+u2v9yqtMwebea6UhP3Pytej1fHDh6TMSZk4VH6+hg11jfq4O6DWj1vjcqWblZjfWOcZwsAANC2HXt6yu0OXu9ZVvMrkNttQvYN156MYyTjnBPlc/vaATsl7v8lAgCiNnpagXKH9ZVlWXKluGRZlnKH99XoaQUh+6emp+rGpdfqn+/4tvJHD1D+6Dxd8OPzNOLS4fq/R95U2dLNSk1P0b+V3BS+AGlJ3sbEvF3DsqSM3hmy3FbI7wceo7OmnKnnb1ymL7b/XVte2qo1D6/T8zcuowAJAAASyuC8o/J4gtc2xjS/Ank8Vsi+4dqTcYxknHOifG5fO2Anio8A0AX5NpWZcPd4jb6qQBPuHq+i58JvpOLbGfvQ53UaPmGornp0qra98ZFKH1vvL8AtKXpB//vjl9Vw+Lj8S5bAtUs7j4S0Wv5ZNo5OH3+a/qlorNSiNmpZzbeVBx6j9//cvBO4UfMu2MYY/7MgAQAAEsX0K3dr5NA6uSyj1BSvXJbRyCF1KviqzbKMXJbRqKF1eua+qlZ9w7UHjtFe35btvszOjBHJPJzKs+PYRfMzjEXeqKF1/o1rALvwzEcA6KJabioTTqidsTc+X64jBw43/zU1YMMaH9PqH9pnWv5ZNk4sy1J2vyyNvPJslb+wRXX7D8tyWZIxyh2eqyt+dVlQUdb3vEw1BYzBsyABAECCyUj3asOisrC7Hz/+Yr1uv3qbfzfjUH3bG6MjfQPbAzOjHSOSeTiZF+tjF+3PMBZ5bDYDuzlafFywYIEWLFigTz75RJI0YsQI/fd//7cuvfTSkP0bGxs1b948LVmyRHv27NGwYcP0q1/9SpMmTYrjrAGgawm1M/bhgAJdsjPGqNeJvfTCD1/yFx6N1ygzN1PXLryq1dWgkT4vE0ByYz0KIJllpHtDbhRy13U7tbb8cND3wvVta4yO9vW1t8yMZoxI5uF0XiyPXagx4pkH2MnR4mN+fr7mz5+vIUOGyBijJUuWaOrUqdqyZYtGjBjRqv+9996r3//+93r66ac1fPhwrV69Wv/yL/+it956S6NHj3bgEwBA8gu5M/ZXBbqu4t3/fU+HDxyRJP/nOnLgiN7/8wetrg4dPa1AlSs+kPVh87Mgjce0+bxMAMmN9SiAZHas3hX2SrjK7Zl6pHiQ/8q2UH3DtfvG6EjfwPbAzGjHiGQeTubF+thF+zOMRR5XPsJujhYfp0yZEvT13LlztWDBAm3cuDHkYm/p0qX6+c9/rsmTJ0uSfvSjH+mNN97Qww8/rN///vdxmTMAdDUhr/TzGmXlZurwgSOy3FbY3aGTxeEDR1oVVMPdSu17XuY71z2v0ecUqE9+b42eVhD2eZkAkhvrUQDJ6li9S+ffOk4V1Vlyu408HktLVgyQLKmyJktG6brn0WFaunKA3niyXBNnjA3qG649cIz2+rZs92V2ZoxI5uFUnh3HLpqfYSzylq4coA2LyihAwlYJ88xHj8ej5cuX68iRIyosLAzZp6GhQenp6UFtGRkZWr9+fdhxGxoa1NDQ4P/60KFDsZkwAHQRviv9Ap/5mDu8r65deJXe//MH+nL3QR3aV6eP1m1vdRd2r5N66cjfj8hSYt+hHepKzpa3Uvs23fly90H1ye+tnAHZumTWhDjPFICT7FqP+t7HmhRALC0syVdFdZa8xpK3qXljv601WZIkI0uSJSNLFdVZuvnBEa36hmsPHKO9vi3bfZmdGSOSeTiVZ8exi+ZnGIu8iuosLSzJ51Zs2MoyTu0A8JXKykoVFhaqvr5emZmZKi4u9v8luaXrrrtOFRUV+tOf/qTTTjtNa9as0dSpU+XxeIIWc4Fmz56tOXPmtGqfNGmSUlPjcxVLWVmZxo0bF5cspzLJS+48JzLJi631b72jM88aG/X7PY0e7d92QI31jUpNT1XusL5yp7r93zder3Zt+UzHDzdIlqUvzS6dnHma8gr6q+7zOjUea1JKeopkpEOfH9Lxo42d/kyWLJmAHW0Oard6Kz/KsSR3jxR5jjc1b3FtjHpkpmng6AGyXK5Wn88Yo1prj047tUC987NluVyd/jzt+ejDzV36d5TzWmw1NjZq1apVqq2tVXZ2dlwyuzK716NS91yTkpf8meTFOG/Deo0bMSxm41Vuz9Sne9NljBUuUdI4WZZRZoZHh4+5g/qGaw+l42M0Z3ZujEjm4UyePccuFPvzLMvolP71Ovu0wyqr/pjzGnkdFsl61PHi4/Hjx7Vz507V1tbqpZde0qJFi7Ru3TqdeeaZrfoeOHBA//Zv/6Y///nPsixLp512miZOnKhnnnlGx44dCzl+qL8yDxw4MK6L9csvv1yvvPJKXLKcyiQvufOcyCQvtr514WX69ePLo3pvqN2uc4f1VdGSa4JuNQ68MvCPm+bryeKVIW9F/t8fv6yP/roj6s8Szib9Qefo+oje07xpjlpdydnyVuqypZu15uF1QTty+/Iyemfon24aq7HXjrb11uv5917TpX9HOa/F1qFDh5STk0PxMUbsXo9K3XNNSl7yZ5IX47wLCvXKb1r/ESJajxQP0j2PDvvqirxm1ld/uG2+au5ySa/IZRlNuWC//vxmblDfcO3BY7Tdt3V7c2bnxohkHs7k2XPsQo1hf57LMnrozm2667qduvyBJzivkddhkaxH7b+Uox09evTQ6aefrjFjxmjevHkaOXKkHnvssZB9+/btqz/96U86cuSIPv30U3344YfKzMzU4MGDw46flpam7OzsoBcA4GuBu117m7wyxmj/tgPasnyrv0+oW5LDFeKOHQr/P99xZUknnXaiJtw9XkXPXaOevTM07oYxumTWBI27YUzQ/H2b7oRy7OAxrX3sr3r+xmVqrO/8FZ0AEo/d61GJNSmA2Jt+5W6NHFonl2WUmuKVyzIaOaROBV+1WZaRyzIaNbROz9xX1apvuPbAMdrr27Ldl9mZMSKZh1N5dhy7aH6GscgbNbTOv3ENYJeEeeajj9frbfOWFUlKT09XXl6eGhsb9cc//lHf+9734jQ7AOh6Qu52HbAZS6grI3f1+sx/i3YiGzn1rFa7WYcSatOdIEb+gmxHxgOQ3FiPAkgGGelebVhUFnb348dfrNftV2/z72Ycqm97Y3Skb2B7YGa0Y0QyDyfzYn3sov0ZxiKPzWZgN0eLj7NmzdKll16qQYMGqa6uTsXFxSotLdXq1aslSUVFRcrLy9O8efMkSe+884727NmjUaNGac+ePZo9e7a8Xq9++tOfOvkxACCphdztOmAzlsArI30FyobDDSov3qKx140OuiLyrCln6uBnibGJQu7Qvho9raBDfX2b7ny+bb8UpgYZbndsAMmN9SgAAIC9HC0+7t+/X0VFRdq7d69ycnJUUFCg1atX6+KLL5Yk7dy5U66Ah/zX19fr3nvv1Y4dO5SZmanJkydr6dKl6t27t0OfAACSX7jdrn2Fuy93H2x+SIcn+H1vL9mkqlUf6kD1F/73vfN8uY4cOBL3z9DSCaf20YhJw/V/j7zZ6vmOoaSmp6poyTUqf2GLNj5XrmMHW9863nJ3bABdA+tRAMnqWL1L5986ThXVWXK7jTweS0tWDJAsqbImS0bpuufRYVq6coDeeLJcE2eMDeobrj1wjPb6tmz3ZXZmjEjm4VSeHccump9hLPKWrhygDYvKuPoRtnK0+Lh48eI2v19aWhr09fjx4/XBBx/YOCMA6H58hbfAKxgDi3XhbkmuP1iv+tp6ych/RWTd/sOyXJaM19G9zFS795BKH1/vL4pWrvig1QY6Pi2fZ/nD//cDVZRU6t3fLpOaJJfb1aogC6DrYD0KIFktLMlXRXWWvMaSt6n52dVba7Ik+TYgsWRkqaI6Szc/OKJV33DtgWO017dluy+zM2NEMg+n8uw4dtH8DGORV1GdpYUl+brrup0d+K0DopNwz3wEAMRfanpq2GcZjp5WoA2L3ml9NaAlWbJkAu9TthTbwqMlyUgpaW6p4euv2+NpaL5M01cU/fzD/frTf/1FV/zqsqAC5NGDx7R42vP+oqnM14XKb7w7SBPPvTBkQRYAAMBpO/b0lNtt/EUkSbK++kcTsF5yu03IvuHak3GMZJxzonxuXztgJ8d3uwYAJLbU9FT9001jmwt/gYxkjGnVFktZJ2fqxMEnqOmrYmKHxw+xcXVN6fagHasb6xu16KvCo9RcNDVG2r9tv7Ys3yrL5Qq7OzYAAIDTBucdlccTvOgxJrgQJUkejxWyb7j2ZBwjGeecKJ/b1w7YieIjAKBdY68drZOH5cqyLLlS4vefjrp9h/X3Hf+I/I1hipS+Haul5o10Dn9VeAxisbEMAABIfNOv3K2RQ+vksoxSU7xyWUYjh9Sp4Ks2yzJyWUajhtbpmfuqWvUN1x44Rnt9W7b7MjszRiTzcCrPjmMXzc8wFnmjhtb5d80G7MJt1wCAIC2fgei73dj3XMgP19RIW1q/z93DJc/x1g+qttxW81WScXwOZGZuZsjCYuCO1V/uPhjy+ZTG+9XGMnvjMFEAAIAoZaR7tWFRmRaW5GvHnp4anHfUX0RaWJKvx1+s1+1Xb9P0K3eH7dveGB3pG9gemBntGJHMw8m8WB+7aH+GschjsxnYjeIjAMCvsb5Rz9+4LGjn68DNWsbdMKa5aPeeFXR1YVtXQ6b1SlNDXUMcZt8sKzdTtywv0l/uX62a0u1B3wvcsbpPfu+QBdGs3EyNnlaglzbFY7YAAADRy0j3htwo5K7rdmpt+eGg74Xr29YYHe3ra2+ZGc0YkczD6bxYHrtQY8QzD7ATxUcAgN+W5Vu1f9sBGWP8m7X4blX2bUjTJ793q4fLeJvC/7W034hcff7hAR378lir76X3Tlf9wfqI5uhKdcnbGDovs28v3bK8SD17Z+iKX13WqpAauGP16GkFqlzxgT7/cL//CsjMrwqXPN8RAAAkq2P1Li0syVfl9kw9UjzIf2Wbr73lFW+h2qXQV9O1N0ZgZrRjRDIPJ/NifexCjRGvPK58hN0oPgIA/L7cfbC5UNf0dXEx8FZlqblo12Nhmqwjliy3Ja/HG/YZi65Ulz55++u/rKakuTVo7EDl9M/WiaeeoE/e2amP/rojojme/d0ROmFQb1Wv/Uj7qw+osb7J/72efXoqNb35P22Bt4qH2rG6ve8DAAAkm2P1Lp1/6zhVVGfJKF33PDpMS1cO0BtPlmvijLGqqM6S223k8Vhh25esGCBZUmVN+31btvsyOzNGJPNwKs+OYxdqjHjkLV05QBsWlVGAhK0oPgIA/Prk95bxtHgGosco++QslS3d7C/S5RX014TzxuvL3Qf1+bb92rN1b/D7LCm7f7YOfXYoaKymBo/2Vx/Qv/7mcqWmp+rvn4bZTMZSyIKmZUl9TztR424YI3eqW59V7gv6/v6aAyp/YYsKfzBOkvy3iofT3vcBAACSycKSfFVUZ8lrLEmWjCxVVGfp5gdH+Nu9Tc27HYdr31qTJUkyar9vy3ZfZmfGiGQeTuXZcexCjRGPvIrqLC0syedWbNiK4iMAdGMtN5c5a8qZqlzxQdCtyn2HnqSqVR/qQPUX/rY9vfbqrHln6v0/f6DPtx1oVbC0ZMmyQmcePnDEfxv3iaecIMtqdRd32Cspc4fn+m+bDnWVpoy08blyjb12NFcwAgCAbmfHnp5yu42/sCRJbreJqN23hgtcnyX6GMk450T53L52wE7hdwgAAHRpvs1l1jy8Tlte2qo1D6/TCz98Sdc+dZUm3D1eo68q0IS7x2vEpcN1oPoLGWPkbfLKGKOGww1aPO15rXl4nT6r/HpbaMttybIs5Q7vq8yTeoXN9t3GfdaUM5XZN7P5va7mgmVGn4xWG9hYlqX07HSd+Z1h+r9H3lTZ0s3K7pfVfMt3C8cOHtOW5VtjcIQAAACSy+C8o/J4gv8C7PFYEbUb0/oPw4k+RjLOOVE+t68dsBPFRwDopgI3l/EVFfdvO6D3//yBxt0wRpfMmqBxN4zRoX11stzBixRLUt3+w/73+hrzCvprwt3jVfTcNRr6z6eHze6T31uN9Y164YcvqW7/Yf+GL736Zuqc677Z6kpKyaipvkmlj6/3F0qrVn6ojJz0VmO3fEYlAABAdzH9yt0aObROLsvIsoxcltGooXV65r4qf3tqirfN9pFD6lTQwb4t232ZnRkjknk4lWfHsQs1RjzyRg2t829cA9iF264BoJvqyOYyUpjnQEr+gqGPy+3SycNy/c9QHHvtaL3/l7/pQM0XQe/NHda847Sv+CnJP86RA0fkTnEpd1jfoFu/M/v2UtP+Jhl9vQv3gZovNPhbp2r7Xz8O/mDer3bkBgAA6GYy0r3asKhMC0vy9fiL9br96m3+3Yx97S13OQ7VLoXeQbm9MQIzox0jknk4mRfrYxdqjHjlsdkM7EbxEQC6qXCby7Qs3I2eVtDqOZApqSlSY9vvTU1P1U2/v07lL2xRzbodkoyGXHCaxl7X/DzGkM9sdEk1b27XgLP6KbtfljL79tKJp5ygv3/yD639oxX0LEjLbSn75CydPDw3aG65w/v6nwsJAAAA4GsZ6V42l0HcUXwEgG4qVFExVOEuNT1VRUuuCdqY5ou31iv3H+0X/VLTU1X4g3H+3acDhSt+7n7vM31WuU9ej1cZOekacHZ/1R+qlzGt+5546gma+J8XBs1t9LQCNpsBAADd0rF6l86/dZwqqrNklK57Hh2mpSsH6I0nyzVxxlhVVGfJ7TbyeKyw7UtWDJAsqbKm/b4t232ZnRkjknk4lWfHsQs1RqzzNiwq4ypHOILiIwB0U6GKiuEKd6npqf7bqSXppU3uDr83nJbFT/+zI438/3zsYH2r26ottyV55S92Bs6t5e7dFCIBAEB3srAkXxXVWfIaS5IlI0sV1Vm6+cER/nbfTsfh2rfWZEmSjNrv27Ldl9mZMSKZh1N5dhy7UGPEOm9hST5XPcIRFB8BoBtrWVTsKOP1RlXka1kcvPapq/T+nz/Ql7sP6vNtB/RZ5d6vi5ChfLWpzfAJQ1tl+nbvDrwas3LFBypacg0FSAAA0C3s2NNTbrfxF5wkye02EbVbX/1j4E0niT5GMs7Zqc8NOMHR3a4XLFiggoICZWdnKzs7W4WFhXr11VfD9r/wwgtlWVar12WXXRbHWQNA99ZY36hdWz7TmofX+Xeefv7GZWqsb2z3fc/fuCzofS/88CWNnlagS2ZN0PAJQ0Lsch0scFOblgXFcLt3b1m+tdOfGUDXxXoUQFcyOO+oPB4rqM3jsSJqNya4mJUMYyTjnJ363IATHC0+5ufna/78+dq8ebPKy8t10UUXaerUqaqqqgrZv6SkRHv37vW/3n//fbndbk2bNi3OMweA7mvL8q06frghqMj3+Yf79cL0P6ps6eawRcj2ioOjpxUod1hfyQr5dkmhN8Tx8W1gEyjU7t0AEIj1KICuZPqVuzVyaJ1clpFlGbkso1FD6/TMfVX+9tQUb5vtI4fUqaCDfVu2+zI7M0Yk83Aqz45jF2qMWOf5dscG4s3R266nTJkS9PXcuXO1YMECbdy4USNGjGjV/4QTTgj6etmyZerZsyeLPQCIoy93H2y+x6PFX1n3vPeZ9rz3WchbnRvrG/XhmppWYwUWB33PoCx/YYs2PleuYwePBfeV2tzJuqO7dwNAINajALqSjHSvNiwq08KSfD3+Yr1uv3qbpl+5O6h9x56eGpx3tM12SR3uGy4z2jEimYeTebE+dqHGsCMPcELCPPPR4/Fo+fLlOnLkiAoLCzv0nsWLF+uaa65Rr169wvZpaGhQQ0OD/+tDhw51eq4A0J31ye/d+v4Oyb8bte9qxsBNYJ6/cZk+/3B/6/e0KA76dscee+1obVm+VX//5B86/MURZfbtpU/eXaWi58I/v7Gju3cDQDh2rUcl1qQA4icj3au7rtupteWHgzYX8bWH699SJH3DZUYzRiTzcDovlscu1Bh25AFOsIwJ8X+QcVRZWanCwkLV19crMzNTxcXFmjx5crvvKysr07nnnqt33nlH48aNC9tv9uzZmjNnTqv2SZMmKTU1PhsQlJWVtTnHrpBJXnLnOZFJXmytf+sdnXnW2JiPa7xe1X52SI3HmpSakaKcAdmSpHff2qAcz4CWFz9KkizLUk7/bPUdcpIk6eDug/pi+99D9k3LTNPA0QNkudp/CshHH25u95h6PV7t/7RW9Ucald4rVbmn5Mjlju4JI139d6ar5zmRGc+8xsZGrVq1SrW1tcrOzo5LZldm93pU6p5rUvKSP5O8GOdtWK9xI4bZnuPxSp/uzdCOPZUanHe2Tul/TG7X1+1H6t3qle5ps13qeN/A9sDMaMeIZB5O5sX62IUaw468tpRVf8x5jbwOi2Q96njx8fjx49q5c6dqa2v10ksvadGiRVq3bp3OPPPMNt/3wx/+UG+//ba2bm17I4FQf2UeOHBgXBfrl19+uV555ZW4ZDmVSV5y5zmRSV5sfevCy/Trx5fHdMxQu0fnDuuroiXX6Gf3XKNp5/5MH66p1u73Pgu6BduyLE24e7z/ysfV89Zoy0tbg3extqT8UQN07cKrOrwT9fx7r+nSP0Pykj8znnmHDh1STk4OxccYsXs9KnXPNSl5yZ9JXozzLijUK79p/UeIWDpW79L5t45TRXWWjC6XpVc0cmid3niyXBNnjFVFdZbcbiOPxwrbfvbpdZIlVda037dluy+zM2NEMg+n8uw4dqHGiHXehkVlbd56ffkDT3BeI6/DIlmPOn7bdY8ePXT66adLksaMGaNNmzbpscce01NPPRX2PUeOHNGyZcv0wAMPtDt+Wlqa0tLSYjZfAOguAjeIMU3Bt1RbLpfG3TBGo6cVtC5QtrjVOdSzGC1ZGj5haIcLjwBgJ7vXoxJrUgDxsbAkXxXVWfIaS5IlI0sV1Vm6+cER/nZvU/MGfeHat9ZkSZKM2u/bst2X2ZkxIpmHU3l2HLtQY8Q6b2FJPrdiwxGOFx9b8nq9QX8VDmX58uVqaGjQ97///TjNCgC6H9/u0b7Co9R692jfJjFblm/Vl7sPqk9+b42eVhBUVORZjACSDetRAMlqx56ecruNv+AkSW63iajd+uofA++RTPQxknHOTn1uwAnRPQgrRmbNmqU333xTn3zyiSorKzVr1iyVlpbq+uuvlyQVFRVp1qxZrd63ePFiXXHFFTrxxBPjPWUA6DY6unt0anqqxt0wRpfMmqBxN4xpdTWjr0A54e7xGn1VgSbcPb7NjWMAIJ5YjwLoSgbnHZXHYwW1eTxWRO3GtN5bMNHHSMY5O/W5ASc4Wnzcv3+/ioqKNGzYME2YMEGbNm3S6tWrdfHFF0uSdu7cqb179wa9Z9u2bVq/fr1uueUWJ6YMAN3G6GkFyh3WV5ZlyZXikmVZUV+x2F6BMpzG+kaVLd2s1fPWaN+OL9VwrDHibABoC+tRAF3J9Ct3a+TQOrksI8sycllGo4bW6Zn7qvztqSneNttHDqlTQQf7tmz3ZXZmjEjm4VSeHccu1Bixzpt+5W6nf0XRTTl62/XixYvb/H5paWmrtmHDhsnhPXIAoFvoyC3Vdmq54c3OpgP66fnP6dcbblJaBldNAogN1qMAupKMdK82LCrTwpJ8Pf5ivW6/epumX7k7qH3Hnp4anHe0zXZJHe4bLjPaMSKZh5N5sT52ocawIw9wQsI98xEAkDh8Vyw6oeWGN0bSjorP9erCzbrirn9yZE4AAACJLiPdq7uu26m15YeDNhfxtYfr31IkfcNlRjNGJPNwOi+Wxy7UGHbkAU6g+AgASEihNrxxuS3t23HQuUkBAAAkqWP1rpBXwoVql0JfTdfeGJXbM/VI8aBOjRHJPJzMi/WxCzVGZ/KARELxEQCQkEJteOP1GPUb3NuZCQEAACSpY/UunX/rOFVUZ8ntNvJ4LC1dOUBvPFmuiTPGBrUvWTFAsqTKmvb7tmw3Stc9jw7r1BiRzMOpPDuOXagxos3bsKiMAiQSCsVHAEBCGj2tQJUrPvA/89FqkgaPOlmXTnfmNnAAAIBktbAkXxXVWfIaS96m5l2QK6qzdPODI1q1b63JkiQZtd+3Zbtkycjq1BiRzMOpPDuOXagxos1bWJLPLddIKBQfAQAJqeWGN/sq++rX69lsBgAAIFI79vSU2238BSpJcrtNyHbrq38M3FcrXN9EGSMZ52z35wYSicvpCQAAEI5vw5tLZk1Qv8F9KDwCAABEYXDeUXk8VlCbx2OFbDcmuJjVVt9EGSMZ52z35wYSCcVHAAAAAAC6sOlX7tbIoXVyWUapKV65LKNRQ+v0zH1VrdpHDqlTQQf7tmy3LNPpMSKZh1N5dhy7UGNEm+fbiAZIFNx2DQAAAABAF5aR7tWGRWUhd0UO1S6F3kG5vTEef7Fet1+9rVNjRDIPJ/NifexCjdGZPCCRUHwEAAAAAKCLy0j3sgkJAEdQfAQAAAAAoBs6Vu/S+beOU0V1ltxuI4/H0pIVAyRLqqz5um3pygF648lyTZwxNqhvy3ajdN3z6LBOjRHJPJzK68wYkcwj2rwNi8q4+hEJheIjAAAAAADd0MKSfFVUZ8lrLP8uyltrsiRJRl+3VVRn6eYHR7Tq27JdsmRkdWqMSObhVF5nxohkHtHmLSzJ5ypXJBQ2nAEAAAAAoBvasaen3O7g7ZItq/kVyO02IfuGa4/3GMk4Z7s/N5BIKD4CAAAAANANDc47Ko8nuHplTPMrkMdjhewbrj3eYyTjnO3+3EAiofgIAAAAAEA3NP3K3Ro5tE4uyyg1xSuXZTRySJ0KWrSNGlqnZ+6ratW3ZbtlmU6PEck8nMrrzBiRzCPaPN8u2ECi4JmPAAAAAAB0QxnpXm1YVKaFJfnasaenBucd9ReuWraF6xvY/viL9br96m2dGiOSeTiZF+tjF2qMzuQBiYTiIwAAAAAA3VRGujfk5iSh2sL19bWvLT8c9P1oxohkHk7nxfLYhRqjM3lAInH0tusFCxaooKBA2dnZys7OVmFhoV599dU233Pw4EHNmDFD/fv3V1pamoYOHaqVK1fGacYAAADoSliPAujujtW79EjxIP3kf4brkeJBOlbvCtkWrm9ge+X2zE6PEck8nMyL9bELNUZH8oBk4OiVj/n5+Zo/f76GDBkiY4yWLFmiqVOnasuWLRoxYkSr/sePH9fFF1+s3NxcvfTSS8rLy9Onn36q3r17x3/yAAAASHqsRwF0Z8fqXTr/1nGqqM6S223k8VhasmKAZEmVNV+3LV05QG88Wa6JM8YG9W3ZbpSuex4d1qkxIpmHU3mdGSOSebSXt3TlAG1YVMZt1kh4jhYfp0yZEvT13LlztWDBAm3cuDHkYu+ZZ57RP/7xD7311ltKTU2VJJ166qnxmCoAAAC6INajALqzhSX5qqjOktdY8jY176S8tSZLkmT0dVtFdZZufnBEq74t2yVLRlanxohkHk7ldWaMSObRXl5FdZYWluRz2zUSXsJco+vxeLRs2TIdOXJEhYWFIfu88sorKiws1IwZM3TyySfrrLPO0i9/+Ut5PJ6w4zY0NOjQoUNBLwAAAKAlu9ajEmtSAIlpx56ecrtNUJtlNb8Cud0mZN9w7fEeIxnnHMsxgERnGWNM+93sU1lZqcLCQtXX1yszM1PFxcWaPHlyyL7Dhw/XJ598ouuvv1633XabPvroI9122226/fbbdf/994d8z+zZszVnzpxW7ZMmTfL/tdpuZWVlGjduXFyynMokL7nznMgkj7xEzyQvufOcyIxnXmNjo1atWqXa2lplZ2fHJbMrs3s9KnXPNSl5yZ9JXpLnbVivcSOGtdlnx54MVe3I7NB4/U5s0L6/p7XTXiYp/Gfs2BiRzMO5vOjHiGQeAXn9pH37WvcYMUIaPLhD02gX5zXyIhHRetQ4rKGhwdTU1Jjy8nIzc+ZMc9JJJ5mqqqqQfYcMGWIGDhxompqa/G0PP/yw6devX9jx6+vrTW1trf+1a9cuI8nU1tbG/LOEM2XKlLhlOZVJXnLnOZFJHnmJnklecuc5kRnPvNra2rivZ7oyu9ejxnTPNSl5yZ9JXpLnffufjNm0us3X0b++bkYPqzUuy2tSUzzGZXnNqCG1ZuTQ4LZvDqs1f39jTau+Ldst67udHiOSeTiV15kxIpmHZU0xLpcx3/ymMX//uzGjRxvjchmTmmr87UePxvB3hvMaeRGIZD3q6DMfJalHjx46/fTTJUljxozRpk2b9Nhjj+mpp55q1bd///5KTU2V2+32t51xxhnat2+fjh8/rh49erR6T1pamtLSOvbXCAAAAHQ/dq9HJdakABJTRrpXGxaVaWFJvnbs6anBeUc1/crdktSqLVzfwPbHX6zX7Vdv69QYkczDybxYH7tQYzz+snT77dL06VJGhrRhg7RwobRjR/PVjr52INE5Xnxsyev1qqGhIeT3zj//fBUXF8vr9crlan5cZXV1tfr37x92oQcAAABEgvUogO4kI93basOSY/UJsz0EAmRkSHfd5fQsgMg5WnycNWuWLr30Ug0aNEh1dXUqLi5WaWmpVq9eLUkqKipSXl6e5s2bJ0n60Y9+pCeeeEJ33HGHfvKTn6impka//OUvdfvttzv5MQAAAJCkWI8CQLBj9S6df+s4VVRnye028ngsLV05QG88Wa6JM8a22W6UrnseHaYlKwZIllRZE/kYvvaOjOFUXmfGiGQeRtI990hLlzZf9chVjkhWjhYf9+/fr6KiIu3du1c5OTkqKCjQ6tWrdfHFF0uSdu7c6f+LsiQNHDhQq1ev1l133aWCggLl5eXpjjvu0H/913859REAAACQxFiPAkCwhSX5qqjOktdY8jY1b7tcUZ2lmx8c0W67ZMnI0taaLEmSUeRj+No7MoZTeZ0ZI5J5SJIxUkVF8+3WXPWIZOVo8XHx4sVtfr+0tLRVW2FhoTZu3GjTjAAAANCdsB4FgGA79vSU2238xTBJcrtNRO3WV/9ojOIyRrzz4j9G83MegWTFgxwAAAAAAIAkaXDeUXk8VlCbx2NF1G5McPHM7jHinRf/MZo3mAGSFcVHAAAAAAAgSZp+5W6NHFonl2WUmuKVyzIaNbROz9xX1W67ZRm5LKORQ+pUEOUYvvaOjOFUXmfGiGQeliW5XNKoUc07WwPJKuF2uwYAAAAAAM7ISPdqw6IyLSzJ1449PTU476imX7m7Q+2Pv1iv26/epulX7pakqMYIbG9vDCfzoh0jknk8/rJ0++3NhUc2m0Eyo/gIAAAAAAD8MtK9uuu6nRG3ry0/HPT9aMZoKZHzohkjknms/YhNZtA1UHwEAAAAAABRO1bv0sKSfFVuz9QjxYPavALQ17cj7e2N4WRetGN0tB3oSig+AgAAAACAqByrd+n8W8epojpLRum659FhWrJigGRJlTVZcruNPB5LS1cO0BtPlmvijLGqqG6/vSNjOJXXmTE60r5hURkFSHQpFB8BAAAAAEBUFpbkq6I6S15jSbJkZGlrTZYkyciSt6l5N+eK6izd/OAIf9/22jsyhlN5nRmjI+0LS/JD3ooNJCt2uwYAAAAAAFHZsaen3G4T1GZZza9AbrcJ2TdceyRjxDvPzjF87UBXQvERAAAAAABEZXDeUXk8wRU3Y5pfgTweK2TfcO2RjBHvPDvH8LUDXQnFRwAAAAAAEJXpV+7WyKF1cllGlmXksoxGDqlTwVdtqSleuSyjUUPr9Mx9Vf6+7bV3ZAyn8jozRkfafRvXAF0Fz3wEAAAAAABRyUj3asOiMi0sydfjL9br9qu3tbnrs69vR9rbG8PJvGjH6Gg70JVQfAQAAAAAAFHLSPfqrut2am354aCNUkJtmuLr29H2tvo6nRfNGB1tB7oSio8AAAAAACCmjtW7Ql7RF0m7FPoqQl/fyu2ZeqR4UIf6xjov0jGA7oziIwAAAAAAiJlj9S6df+s4VVRnye028ngsLV05QG88Wa6JM8Z2qH3JigGSJVXWhO9rlK57Hh3Wob6xzIt0jA2LyihAoluj+AgAAAAAAGJmYUm+Kqqz5DWWvE3NuzlXVGfp5gdHdLh9a02WJMkofF/JkpHVob6xzIt0jIUl+dxajW6N3a4BAAAAAEDM7NjTU263CWpzu01E7ZbV/Ip1X6fGALozR4uPCxYsUEFBgbKzs5Wdna3CwkK9+uqrYfs/99xzsiwr6JWenh7HGQMAAKArYT0KALE3OO+oPJ7gKpzHY0XUbkzzK9Z9nRoD6M4cLT7m5+dr/vz52rx5s8rLy3XRRRdp6tSpqqqqCvue7Oxs7d271//69NNP4zhjAAAAdCWsRwEg9qZfuVsjh9bJZRmlpnjlsoxGDa3TM/dVdbh95JA6FbTT17JMh/vGMi/SMXwb0QDdlaPPfJwyZUrQ13PnztWCBQu0ceNGjRgxIuR7LMtSv3794jE9AAAAdHGsRwEg9jLSvdqwqCzkrs+RtEuhd4729X38xXrdfvW2DvWNdV6kYwDdWcJsOOPxeLR8+XIdOXJEhYWFYfsdPnxYp5xyirxer775zW/ql7/8ZdiFoSQ1NDSooaHB//WhQ4diOm8AAAB0DXatRyXWpAC6n4x0b8hNViJpP1afGNtU+Oa2tvxw0BzDfRY2lwGCWca0fCJBfFVWVqqwsFD19fXKzMxUcXGxJk+eHLLv22+/rZqaGhUUFKi2tlYPPfSQ3nzzTVVVVSk/Pz/ke2bPnq05c+a0ap80aZJSU1Nj+lnCKSsr07hx4+KS5VQmecmd50QmeeQleiZ5yZ3nRGY88xobG7Vq1SrV1tYqOzs7Lpldmd3rUal7rknJS/5M8siLOHPDeo0bMSwmY3m80vr3+ujQkRRZlpExlrJ7Nem8goN6a2tvHTqSIqlM0jhl92qSpDb7dqQ91BjfGvWl3F/VQMuqP+7SP0POa+RFIqL1qHFYQ0ODqampMeXl5WbmzJnmpJNOMlVVVR167/Hjx81pp51m7r333rB96uvrTW1trf+1a9cuI8nU1tbG6iO0a8qUKXHLciqTvOTOcyKTPPISPZO85M5zIjOeebW1tXFfz3Rldq9Hjemea1Lykj+TPPIizvz2PxmzaXVMXr+562/GZXnN19u4GOOyvGbq+H0B7VOMZIwlr7HUXt+228ON8Zu7/uafU1f/GXJeIy8SkaxHHb/tukePHjr99NMlSWPGjNGmTZv02GOP6amnnmr3vampqRo9erQ++uijsH3S0tKUlpYWs/kCAACga7F7PSqxJgWASO3Y01Nut5G36esdpd1uE7Ld+uofA+/rDNc3mjEAdE5iPEAhgNfrDXoeTls8Ho8qKyvVv39/m2cFAACA7oL1KAA4b3DeUXk8VlCbx2OFbPddq9iRvtGMAaBzHC0+zpo1S2+++aY++eQTVVZWatasWSotLdX1118vSSoqKtKsWbP8/R944AG99tpr2rFjh9599119//vf16effqpbb73VqY8AAACAJMZ6FAAS0/Qrd2vk0Dq5LKPUFK9cltGooXV65r4qf7tlGbkso5FD6lTQTt/22sON4dvBGkD0HL3tev/+/SoqKtLevXuVk5OjgoICrV69WhdffLEkaefOnXK5vq6Pfvnll/q3f/s37du3T3369NGYMWP01ltv6cwzz3TqIwAAACCJsR4FgMSUke7VhkVlWliSrx17empw3lFNv3J3UPvjL9br9qu3+QuEbfXtSHu4MQB0jqPFx8WLF7f5/dLS0qCvH3nkET3yyCM2zggAAADdCetRAEhcGele3XXdzrDta8sPB32/rb4dbQ/VBqBzEu6ZjwAAAAAAAAC6BoqPAAAAAAAAAGxB8REAAAAAAACALSg+AgAAAAAAALAFxUcAAAAAAAAAtqD4CAAAAAAAAMAWFB8BAAAAAAAA2ILiIwAAAAAAAABbUHwEAAAAAAAAYAuKjwAAAAAAAABsQfERAAAAAAAAgC0oPgIAAAAAAACwBcVHAAAAAAAAALag+AgAAAAAAADAFhQfAQAAAAAAANiC4iMAAAAAAAAAWzhafFywYIEKCgqUnZ2t7OxsFRYW6tVXXw3bv6SkRGPHjlXv3r3Vq1cvjRo1SkuXLo3jjAEAANCVsB4FAACwV4qT4fn5+Zo/f76GDBkiY4yWLFmiqVOnasuWLRoxYkSr/ieccIJ+/vOfa/jw4erRo4dWrFihH/zgB8rNzdUll1ziwCcAAABAMmM9CgAAYC9Hi49TpkwJ+nru3LlasGCBNm7cGHKxd+GFFwZ9fccdd2jJkiVav349iz0AAABEjPUoAACAvRLmmY8ej0fLli3TkSNHVFhY2G5/Y4zWrFmjbdu26YILLgjbr6GhQYcOHQp6AQAAAC3ZtR6VWJMCAIDuyzLGGCcnUFlZqcLCQtXX1yszM1PFxcWaPHly2P61tbXKy8tTQ0OD3G63fvvb3+rmm28O23/27NmaM2dOq/ZJkyYpNTU1Jp+hPWVlZRo3blxcspzKJC+585zIJI+8RM8kL7nznMiMZ15jY6NWrVql2tpaZWdnxyWzK7N7PSp1zzUpecmfSR55iZ5JXnLnOZFJXuxEtB41DmtoaDA1NTWmvLzczJw505x00kmmqqoqbH+Px2NqamrMli1bzEMPPWRycnLM2rVrw/avr683tbW1/teuXbuMJFNbW2vDpwltypQpcctyKpO85M5zIpM88hI9k7zkznMiM555tbW1cV/PdGV2r0eN6Z5rUvKSP5M88hI9k7zkznMik7zYiWQ96ugzHyWpR48eOv300yVJY8aM0aZNm/TYY4/pqaeeCtnf5XL5+48aNUp/+9vfNG/evFbP3/FJS0tTWlqaLXMHAABA8rN7PSqxJgUAAN1Xwjzz0cfr9aqhocG2/gAAAEBbWI8CAADEjqNXPs6aNUuXXnqpBg0apLq6OhUXF6u0tFSrV6+WJBUVFSkvL0/z5s2TJM2bN09jx47VaaedpoaGBq1cuVJLly7VggULnPwYAAAASFKsRwEAAOzlaPFx//79Kioq0t69e5WTk6OCggKtXr1aF198sSRp586dcrm+vjjzyJEjuu2227R7925lZGRo+PDh+v3vf6+rr77aqY8AAACAJMZ6FAAAwF6OFh8XL17c5vdLS0uDvv7FL36hX/ziFzbOCAAAAN0J61EAAAB7JdwzHwEAAAAAAAB0DRQfAQAAAAAAANiC4iMAAAAAAAAAW1B8BAAAAAAAAGALio8AAAAAAAAAbEHxEQAAAAAAAIAtKD4CAAAAAAAAsAXFRwAAAAAAAAC2oPgIAAAAAAAAwBYUHwEAAAAAAADYguIjAAAAAAAAAFtQfAQAAAAAAABgC4qPAAAAAAAAAGxB8REAAAAAAACALSg+AgAAAAAAALAFxUcAAAAAAAAAtnC0+LhgwQIVFBQoOztb2dnZKiws1Kuvvhq2/9NPP61vf/vb6tOnj/r06aOJEyeqrKwsjjMGAABAV8J6FAAAwF6OFh/z8/M1f/58bd68WeXl5brooos0depUVVVVhexfWlqqa6+9VmvXrtXbb7+tgQMH6jvf+Y727NkT55kDAACgK2A9CgAAYK8UJ8OnTJkS9PXcuXO1YMECbdy4USNGjGjV/w9/+EPQ14sWLdIf//hHrVmzRkVFRbbOFQAAAF0P61EAAAB7OVp8DOTxeLR8+XIdOXJEhYWFHXrP0aNH1djYqBNOOCFsn4aGBjU0NPi/PnToUKfnCgAAgK7HrvWoxJoUAAB0X5Yxxjg5gcrKShUWFqq+vl6ZmZkqLi7W5MmTO/Te2267TatXr1ZVVZXS09ND9pk9e7bmzJnTqn3SpElKTU3t1Nw7qqysTOPGjYtLllOZ5CV3nhOZ5JGX6JnkJXeeE5nxzGtsbNSqVatUW1ur7OzsuGR2ZXavR6XuuSYlL/kzySMv0TPJS+48JzLJi52I1qPGYQ0NDaampsaUl5ebmTNnmpNOOslUVVW1+7558+aZPn36mIqKijb71dfXm9raWv9r165dRpKpra2N1Udo15QpU+KW5VQmecmd50QmeeQleiZ5yZ3nRGY882pra+O+nunK7F6PGtM916TkJX8meeQleiZ5yZ3nRCZ5sRPJetTx26579Oih008/XZI0ZswYbdq0SY899pieeuqpsO956KGHNH/+fL3xxhsqKChoc/y0tDSlpaXFdM4AAADoOuxej0qsSQEAQPflePGxJa/XG/Q8nJZ+/etfa+7cuVq9erXGjh0bx5kBAACgO2A9CgAAEDuOFh9nzZqlSy+9VIMGDVJdXZ2Ki4tVWlqq1atXS5KKioqUl5enefPmSZJ+9atf6b//+79VXFysU089Vfv27ZMkZWZmKjMz07HPAQAAgOTEehQAAMBejhYf9+/fr6KiIu3du1c5OTkqKCjQ6tWrdfHFF0uSdu7cKZfL5e+/YMECHT9+XFdddVXQOPfff79mz54dz6kDAACgC2A9CgAAYC9Hi4+LFy9u8/ulpaVBX3/yySf2TQYAAADdDutRAAAAe7na7wIAAAAAAAAAkaP4CAAAAAAAAMAWFB8BAAAAAAAA2ILiIwAAAAAAAABbUHwEAAAAAAAAYAuKjwAAAAAAAABsQfERAAAAAAAAgC0oPgIAAAAAAACwBcVHAAAAAAAAALag+AgAAAAAAADAFhQfAQAAAAAAANiC4iMAAAAAAAAAW1B8BAAAAAAAAGALio8AAAAAAAAAbEHxEQAAAAAAAIAtKD4CAAAAAAAAsIWjxccFCxaooKBA2dnZys7OVmFhoV599dWw/auqqvSv//qvOvXUU2VZlh599NH4TRYAAABdDutRAAAAezlafMzPz9f8+fO1efNmlZeX66KLLtLUqVNVVVUVsv/Ro0c1ePBgzZ8/X/369YvzbAEAANDVsB4FAACwV4qT4VOmTAn6eu7cuVqwYIE2btyoESNGtOp/zjnn6JxzzpEkzZw5My5zBAAAQNfFehQAAMBejhYfA3k8Hi1fvlxHjhxRYWFhzMZtaGhQQ0OD/+tDhw7FbGwAAAB0HXatRyXWpAAAoPuyjDHGyQlUVlaqsLBQ9fX1yszMVHFxsSZPntzu+0499VTdeeeduvPOO9vsN3v2bM2ZM6dV+6RJk5SamhrttCNSVlamcePGxSXLqUzykjvPiUzyyEv0TPKSO8+JzHjmNTY2atWqVaqtrVV2dnZcMrsyu9ejUvdck5KX/JnkkZfomeQld54TmeTFTkTrUeOwhoYGU1NTY8rLy83MmTPNSSedZKqqqtp93ymnnGIeeeSRdvvV19eb2tpa/2vXrl1GkqmtrY3B7DtmypQpcctyKpO85M5zIpM88hI9k7zkznMiM555tbW1cV/PdGV2r0eN6Z5rUvKSP5M88hI9k7zkznMik7zYiWQ96vht1z169NDpp58uSRozZow2bdqkxx57TE899VRMxk9LS1NaWlpMxgIAAEDXY/d6VGJNCgAAui9Hd7sOxev1Bj0PBwAAAIgn1qMAAACx4+iVj7NmzdKll16qQYMGqa6uTsXFxSotLdXq1aslSUVFRcrLy9O8efMkScePH9cHH3zg/+c9e/bovffeU2Zmpv+v1QAAAEBHsR4FAACwl6PFx/3796uoqEh79+5VTk6OCgoKtHr1al188cWSpJ07d8rl+vrizM8++0yjR4/2f/3QQw/poYce0vjx41VaWhrv6QMAACDJsR4FAACwl6PFx8WLF7f5/ZYLuFNPPVXG2c25AQAA0IWwHgUAALBXwj3zEQAAAAAAAEDXQPERAAAAAAAAgC0oPgIAAAAAAACwBcVHAAAAAAAAALag+AgAAAAAAADAFhQfAQAAAAAAANiC4iMAAAAAAAAAW1B8BAAAAAAAAGALio8AAAAAAAAAbEHxEQAAAAAAAIAtKD4CAAAAAAAAsAXFRwAAAAAAAAC2oPgIAAAAAAAAwBYUHwEAAAAAAADYguIjAAAAAAAAAFtQfAQAAAAAAABgC0eLjwsWLFBBQYGys7OVnZ2twsJCvfrqq22+Z/ny5Ro+fLjS09N19tlna+XKlXGaLQAAALoa1qMAAAD2crT4mJ+fr/nz52vz5s0qLy/XRRddpKlTp6qqqipk/7feekvXXnutbrnlFm3ZskVXXHGFrrjiCr3//vtxnjkAAAC6AtajAAAA9nK0+DhlyhRNnjxZQ4YM0dChQzV37lxlZmZq48aNIfs/9thjmjRpkv7zP/9TZ5xxhh588EF985vf1BNPPBHnmQMAAKArYD0KAABgr4R55qPH49GyZct05MgRFRYWhuzz9ttva+LEiUFtl1xyid5+++2w4zY0NOjQoUNBLwAAAKAlu9ajEmtSAADQfaU4PYHKykoVFhaqvr5emZmZevnll3XmmWeG7Ltv3z6dfPLJQW0nn3yy9u3bF3b8efPmac6cOa3ar776aqWmpnZu8h1UVlamyy+/PC5ZTmWSl9x5TmSSR16iZ5KX3HlOZMYzr7GxMS453YXd61Gpe65JyUv+TPLIS/RM8pI7z4lM8mInovWocVhDQ4Opqakx5eXlZubMmeakk04yVVVVIfumpqaa4uLioLYnn3zS5Obmhh2/vr7e1NbW+l+7du0ykkxtbW1MP0dbpkyZErcspzLJS+48JzLJIy/RM8lL7jwnMuOZV1tbG/f1TFdm93rUmO65JiUv+TPJIy/RM8lL7jwnMsmLnUjWo45f+dijRw+dfvrpkqQxY8Zo06ZNeuyxx/TUU0+16tuvXz99/vnnQW2ff/65+vXrF3b8tLQ0paWlxXbSAAAA6DLsXo9KrEkBAED3lTDPfPTxer1qaGgI+b3CwkKtWbMmqO31118P+0weAAAAIFKsRwEAAGLH0SsfZ82apUsvvVSDBg1SXV2diouLVVpaqtWrV0uSioqKlJeXp3nz5kmS7rjjDo0fP14PP/ywLrvsMi1btkzl5eX63e9+5+THAAAAQJJiPQoAAGAvR4uP+/fvV1FRkfbu3aucnBwVFBRo9erVuvjiiyVJO3fulMv19cWZ5513noqLi3XvvffqZz/7mYYMGaI//elPOuuss5z6CAAAAEhirEcBAADs5WjxcfHixW1+v7S0tFXbtGnTNG3aNJtmBAAAgO6E9SgAAIC9Eu6ZjwAAAAAAAAC6BoqPAAAAAAAAAGxB8REAAAAAAACALSg+AgAAAAAAALAFxUcAAAAAAAAAtqD4CAAAAAAAAMAWFB8BAAAAAAAA2ILiIwAAAAAAAABbUHwEAAAAAAAAYAuKjwAAAAAAAABsQfERAAAAAAAAgC0oPgIAAAAAAACwBcVHAAAAAAAAALag+AgAAAAAAADAFhQfAQAAAAAAANiC4iMAAAAAAAAAWzhafJw3b57OOeccZWVlKTc3V1dccYW2bdvW7vseffRRDRs2TBkZGRo4cKDuuusu1dfXx2HGAAAA6EpYjwIAANjL0eLjunXrNGPGDG3cuFGvv/66Ghsb9Z3vfEdHjhwJ+57i4mLNnDlT999/v/72t79p8eLFevHFF/Wzn/0sjjMHAABAV8B6FAAAwF4pToavWrUq6OvnnntOubm52rx5sy644IKQ73nrrbd0/vnn67rrrpMknXrqqbr22mv1zjvv2D5fAAAAdC2sRwEAAOyVUM98rK2tlSSdcMIJYfucd9552rx5s8rKyiRJO3bs0MqVKzV58uSQ/RsaGnTo0KGgFwAAABCKHetRiTUpAADovixjjHF6EpLk9Xp1+eWX6+DBg1q/fn2bfR9//HHdc889MsaoqalJ06dP14IFC0L2nT17tubMmdOqfdKkSUpNTY3J3NtTVlamcePGxSXLqUzykjvPiUzyyEv0TPKSO8+JzHjmNTY2atWqVaqtrVV2dnZcMrsDu9ajUvdck5KX/JnkkZfomeQld54TmeTFTkTrUZMgpk+fbk455RSza9euNvutXbvWnHzyyebpp582W7duNSUlJWbgwIHmgQceCNm/vr7e1NbW+l+7du0ykkxtba0dHyOkKVOmxC3LqUzykjvPiUzyyEv0TPKSO8+JzHjm1dbWxn090x3YtR41pnuuSclL/kzyyEv0TPKSO8+JTPJiJ5L1qKPPfPT58Y9/rBUrVujNN99Ufn5+m33vu+8+3XDDDbr11lslSWeffbaOHDmif//3f9fPf/5zuVzBd5KnpaUpLS3NtrkDAAAg+dm5HpVYkwIAgO7L0eKjMUY/+clP9PLLL6u0tFTf+MY32n3P0aNHWy3o3G63fzwAAACgo1iPAgAA2MvR4uOMGTNUXFys//f//p+ysrK0b98+SVJOTo4yMjIkSUVFRcrLy9O8efMkSVOmTNFvfvMbjR49Wueee64++ugj3XfffZoyZYp/0QcAAAB0BOtRAAAAezlafPQ9lPvCCy8Man/22Wd10003SZJ27twZ9Jfle++9V5Zl6d5779WePXvUt29fTZkyRXPnzo3XtAEAANBFsB4FAACwl+O3XbentLQ06OuUlBTdf//9uv/++22aFQAAALoL1qMAAAD2av00bAAAAAAAAACIAYqPAAAAAAAAAGxB8REAAAAAAACALSg+AgAAAAAAALAFxUcAAAAAAAAAtqD4CAAAAAAAAMAWFB8BAAAAAAAA2ILiIwAAAAAAAABbUHwEAAAAAAAAYAuKjwAAAAAAAABsQfERAAAAAAAAgC0oPgIAAAAAAACwBcVHAAAAAAAAALag+AgAAAAAAADAFhQfAQAAAAAAANiC4iMAAAAAAAAAWzhafJw3b57OOeccZWVlKTc3V1dccYW2bdvW5nsuvPBCWZbV6nXZZZfFadYAAADoKliPAgAA2MvR4uO6des0Y8YMbdy4Ua+//roaGxv1ne98R0eOHAn7npKSEu3du9f/ev/99+V2uzVt2rQ4zhwAAABdAetRAAAAe6U4Gb5q1aqgr5977jnl5uZq8+bNuuCCC0K+54QTTgj6etmyZerZsyeLPQAAAESM9SgAAIC9HC0+tlRbWyup9YKuLYsXL9Y111yjXr16hfx+Q0ODGhoaWmUcOnSoEzONTGNjY1zznMgkL7nznMgkj7xEzyQvufOcyIxnni/HGBOXvO7EjvWo1D3XpOQlfyZ55CV6JnnJnedEJnmxE8l61DIJsmr1er26/PLLdfDgQa1fv75D7ykrK9O5556rd955R+PGjQvZZ/bs2ZozZ04spwoAAJAQdu3apfz8fKen0WXYtR6VWJMCAICuqSPr0YQpPv7oRz/Sq6++qvXr13d4Ef3DH/5Qb7/9trZu3Rq2T8u/Mh88eFCnnHKKdu7cqZycnE7Puz2HDh3SwIEDtWvXLmVnZ9ue50Qmecmd50QmeeQleiZ5yZ3nRGa884wxqqur04ABA+RyOfoI7y7FrvWo1P3WpOQlfyZ55CV6JnnJnedEJnmxFcl6NCFuu/7xj3+sFStW6M033+zwQu/IkSNatmyZHnjggTb7paWlKS0trVV7Tk5O3P6FkqTs7Oy45jmRSV5y5zmRSR55iZ5JXnLnOZEZz7x4FKy6EzvXo1L3XZOSl/yZ5JGX6JnkJXeeE5nkxU5H16OOFh+NMfrJT36il19+WaWlpfrGN77R4fcuX75cDQ0N+v73v2/jDAEAANCVsR4FAACwl6P36cyYMUO///3vVVxcrKysLO3bt0/79u3TsWPH/H2Kioo0a9asVu9dvHixrrjiCp144onxnDIAAAC6ENajAAAA9nL0yscFCxZIki688MKg9meffVY33XSTJGnnzp2t7h3ftm2b1q9fr9deey3izLS0NN1///0hb3uxQ7zznMgkL7nznMgkj7xEzyQvufOcyHTiMyI2nFiPSl3/d5S85M8kj7xEzyQvufOcyCTPOQmz4QwAAAAAAACAroXtEQEAAAAAAADYguIjAAAAAAAAAFtQfAQAAAAAAABgC4qPAAAAAAAAAGzR5YqPb775pqZMmaIBAwbIsiz96U9/arP/TTfdJMuyWr1GjBhhS54kPfnkkzrjjDOUkZGhYcOG6fnnn+9QliTNmzdP55xzjrKyspSbm6srrrhC27Zta/d9y5cv1/Dhw5Wenq6zzz5bK1eutC3v6aef1re//W316dNHffr00cSJE1VWVmbr5/NZtmyZLMvSFVdcYWvewYMHNWPGDPXv319paWkaOnRoh45ptHmPPvqohg0bpoyMDA0cOFB33XWX6uvrbfuMjY2NeuCBB3TaaacpPT1dI0eO1KpVqzqUt2DBAhUUFCg7O1vZ2dkqLCzUq6++GrZ/VVWV/vVf/1WnnnqqLMvSo48+2qGcaPNKSko0duxY9e7dW7169dKoUaO0dOlS2/Kee+65VueX9PR02/IuvPDCkOe0yy67zLbMzvy+tDR//nxZlqU777yzzX7RntOizezMeS2avECRnteizYv2vBZtXmfOa7Nnz271Oz58+PA239OZ35lI8zp7XkPyYz0aGuvR2Gcmy5qU9Wiwzq5Ho8lMtjWpk+tRKf5rUtajzViPxi4v4dajpotZuXKl+fnPf25KSkqMJPPyyy+32f/gwYNm7969/teuXbvMCSecYO6//35b8n7729+arKwss2zZMrN9+3bzwgsvmMzMTPPKK690KO+SSy4xzz77rHn//ffNe++9ZyZPnmwGDRpkDh8+HPY9GzZsMG632/z61782H3zwgbn33ntNamqqqaystCXvuuuuM08++aTZsmWL+dvf/mZuuukmk5OTY3bv3m1Lns/HH39s8vLyzLe//W0zderUdvtHm9fQ0GDGjh1rJk+ebNavX28+/vhjU1paat577z1b8v7whz+YtLQ084c//MF8/PHHZvXq1aZ///7mrrvusu0z/vSnPzUDBgwwf/nLX8z27dvNb3/7W5Oenm7efffddvNeeeUV85e//MVUV1ebbdu2mZ/97GcmNTXVvP/++yH7l5WVmXvuuce88MILpl+/fuaRRx7p0OeKNm/t2rWmpKTEfPDBB+ajjz4yjz76qHG73WbVqlW25D377LMmOzs76Dyzb98+2z7f3//+96Cs999/37jdbvPss8/altmZ35dAZWVl5tRTTzUFBQXmjjvuCNuvM+e0aDM7c16LJs8nmvNaNHmdOa9Fk9fZ89r9999vRowYEfS7fuDAgbD9O/s7E2leZ89rSH6sR1tjPRr7zGRak7IeDdbZ9Wg0mcm2JnVqPWpM/NekrEebsR6NbV6irUe7XPExUEcWXy29/PLLxrIs88knn9iSV1hYaO65556gtv/4j/8w559/fsR5xhizf/9+I8msW7cubJ/vfe975rLLLgtqO/fcc80Pf/hDW/JaampqMllZWWbJkiW25TU1NZnzzjvPLFq0yNx4441RnRQ7mrdgwQIzePBgc/z48agyIs2bMWOGueiii4La7P6d6d+/v3niiSeC2q688kpz/fXXR5XZp08fs2jRonb7nXLKKTE5KXY0z2f06NHm3nvvtSXv2WefNTk5OVGPHWleS4888ojJysrq0P8wRZsZi9+Xuro6M2TIEPP666+b8ePHt7lQiNU5LZLMlqI5r0Wa19nzWiR5sTivRZLX2fPa/fffb0aOHNnhuXX2dybSvECxOq8hebEebcZ6NPaZybwmZT3aWmfXo+1ldoU1qd3rUWPivyZlPfo11qOxzQuUCOvRLnfbdWctXrxYEydO1CmnnGLL+A0NDa0ub8/IyFBZWZkaGxsjHq+2tlaSdMIJJ4Tt8/bbb2vixIlBbZdcconefvttW/JaOnr0qBobGyN6T6R5DzzwgHJzc3XLLbdEnBFp3iuvvKLCwkLNmDFDJ598ss466yz98pe/lMfjsSXvvPPO0+bNm/2X1O/YsUMrV67U5MmTI87raGa439P169dHlOXxeLRs2TIdOXJEhYWFkU82QpHmGWO0Zs0abdu2TRdccIFteYcPH9Ypp5yigQMHaurUqaqqqoo4K5K8QIsXL9Y111yjXr162ZYZi9+XGTNm6LLLLmt1rgolVue0SDJbiua8FmleZ89rkeTF4rwWSV4szms1NTUaMGCABg8erOuvv147d+4M2zcWvzOR5AGdxXq083ktJdN6tKOZybwmZT36tc6uRyPJTNY1abzWo1L816SsR7/GejS2eQnH0dKnzRThX5r37Nlj3G63efHFF23LmzVrlunXr58pLy83Xq/XbNq0yZx88slGkvnss88iyvN4POayyy5rtzKfmppqiouLg9qefPJJk5uba0teSz/60Y/M4MGDzbFjx2zJ++tf/2ry8vL8lxxH+5fmjuYNGzbMpKWlmZtvvtmUl5ebZcuWmRNOOMHMnj3bljxjjHnsscdMamqqSUlJMZLM9OnTI8qKNPPaa681Z555pqmurjYej8e89tprJiMjw/To0aNDOVu3bjW9evUybrfb5OTkmL/85S8del+0f5GJNO/gwYOmV69eJiUlxaSlpZnFixfblvfWW2+ZJUuWmC1btpjS0lLz3e9+12RnZ5tdu3bZkhfonXfeMZLMO++80+GsaDI7+/vywgsvmLPOOst/jmjvr5SxOKdFmtlSpOe1SPM6e16LNK+z57VojmdnzmsrV640//u//2sqKirMqlWrTGFhoRk0aJA5dOhQyP6d/Z2JNC9QIvylGc5iPdqM9WjsM5N1Tcp6tFln16ORZibjmjSe61Fj4r8mZT0ajPVobPMCJcJ6lOJjgF/+8pfmxBNPNA0NDbblHT161PzgBz8wKSkpxu12mwEDBpif/vSnRlJEz9wwxpjp06ebU045pd3/YMRqsdfRvEDz5s0zffr0MRUVFRFldTTv0KFD5tRTTzUrV670t0W72Ovo5xsyZIgZOHCgaWpq8rc9/PDDpl+/frbkrV271px88snm6aefNlu3bjUlJSVm4MCB5oEHHogoL5LM/fv3m6lTpxqXy2XcbrcZOnSoue2220x6enqHchoaGkxNTY0pLy83M2fONCeddJKpqqpq933RnhQjzfN4PKampsZs2bLFPPTQQyYnJ8esXbvWtrxAx48fN6eddlpEt9VEm/fv//7v5uyzz+5wTrSZnfl92blzp8nNzQ06R9i90IsmM1Ck57VI8zp7Xovm83XmvBZNXizPa8YY8+WXX5rs7Oywt2LF6r+DHc0LlAiLPTiL9Wgz1qOxzTQmedekrEebdXY9Gk1moGRYk8ZrPWpM/NekrEdbYz0a27xAibAepfj4Fa/Xa04//XRz5513xiXv+PHjZteuXaapqcn/0G+Px9PhrBkzZpj8/HyzY8eOdvsOHDiw1S/af//3f5uCggJb8nz+53/+x+Tk5JhNmzZ1+D2R5m3ZssVIMm632/+yLMtYlmXcbrf56KOPYppnjDEXXHCBmTBhQlDbypUrjaQO/49CJHnf+ta3Wj2XaenSpSYjI8O23xmfY8eOmd27dxuv12t++tOfmjPPPLPD7w00YcIE8+///u/t9ovVSbGjeT633HKL+c53vhO3vKuuuspcc801tuYdPnzYZGdnm0cffTTqnEgzo/l9efnll1v9OyzJ/+9w4OLDp7PntGgyfaI5r0Wa19nzWjSfrzPntWjyYnVeCzR27Fgzc+bMkN+LxX8HI8kLlAiLPTiL9Wgz1qOxzTQmOdekrEfD6+x6NJrMZFuT2rUeNSb+a1LWo6xHjele61Ge+fiVdevW6aOPPorJM1o6IjU1Vfn5+XK73Vq2bJm++93vyuVq/8dhjNGPf/xjvfzyy/q///s/feMb32j3PYWFhVqzZk1Q2+uvv97hZ5BEmidJv/71r/Xggw9q1apVGjt2bIfeE03e8OHDVVlZqffee8//uvzyy/XP//zPeu+99zRw4MCYf77zzz9fH330kbxer7+turpa/fv3V48ePWKed/To0Va/G2632z9ee6L9GUpSenq68vLy1NTUpD/+8Y+aOnVqh98byOv1qqGhIar3xiOvs/OL5P0ej0eVlZXq37+/rXnLly9XQ0ODvv/970edE2lmNL8vEyZMaPXv8NixY3X99dfrvffe8/+uB+rMOS3aTCn681qkeZ09r0Xz+TpzXosmr7PntZYOHz6s7du3h/33qrO/M5HmAdFiPRq7PCl51qPRZErJtSZlPRr7/p0dIxnXpHatR6X4r0lZj7IelbrZejT+9U571dXVmS1btvgr9b/5zW/Mli1bzKeffmqMMWbmzJnmhhtuaPW+73//++bcc8+1PW/btm1m6dKlprq62rzzzjvm6quvNieccIL5+OOPO5T3ox/9yOTk5JjS0tKgLdaPHj3q73PDDTcEVb83bNhgUlJSzEMPPWT+9re/mfvvv7/DW7pHkzd//nzTo0cP89JLLwW9p66uzpa8liK5HDyavJ07d5qsrCzz4x//2Gzbts2sWLHC5Obmml/84he25N1///0mKyvLvPDCC2bHjh3mtddeM6eddpr53ve+Z9tn3Lhxo/njH/9otm/fbt58801z0UUXmW984xvmyy+/bDdv5syZZt26debjjz82W7duNTNnzjSWZZnXXnstZFZDQ4P/36H+/fube+65x2zZssXU1NR06PNFmvfLX/7SvPbaa2b79u3mgw8+MA899JBJSUkxTz/9tC15c+bMMatXrzbbt283mzdvNtdcc41JT0/v8C0xkeb5fOtb3zJXX311hzI6m9mZ35dQWt4iEctzWrSZnTmvRZPXUmd3TW0vrzPntWjyOnteu/vuu01paan5+OOPzYYNG8zEiRPNSSedZPbv3x8yr7O/M5Hmdfa8huTHepT1aKTn7a6+JmU9Gtv1aDSZybYmdXo9akz816SsR1mPxjIv0dajXa74uHbtWiOp1evGG280xjT/CzN+/Pig9xw8eNBkZGSY3/3ud7bnffDBB2bUqFEmIyPDZGdnm6lTp5oPP/yww3mhsiSZZ5991t9n/Pjx/nyf//3f/zVDhw41PXr0MCNGjOjww4GjyTvllFNCvuf++++37fMFiuSkGG3eW2+9Zc4991yTlpZmBg8ebObOndvmpfGdyWtsbDSzZ882p512mklPTzcDBw40t912W4f/QxpNZmlpqTnjjDNMWlqaOfHEE80NN9xg9uzZ06G8m2++2ZxyyimmR48epm/fvmbChAn+RUKorI8//jjk/Fr+exqrvJ///Ofm9NNPN+np6aZPnz6msLDQLFu2rENZ0eTdeeedZtCgQaZHjx7m5JNPNpMnTzbvvvuubXnGGPPhhx8aSUH9IhFpZmd+X0JpuVCI5Tkt2szOnNeiyWsp1ou9WJ7Xosnr7Hnt6quvNv379zc9evQweXl55uqrrw66/SfWvzOR5nX2vIbkx3qU9Wik5+2uviZlPRrb9Wg0mcm2JnV6PerLiOealPUo69FY5iXaetQyJorrSQEAAAAAAACgHTzzEQAAAAAAAIAtKD4CAAAAAAAAsAXFRwAAAAAAAAC2oPgIAAAAAAAAwBYUHwEAAAAAAADYguIjAAAAAAAAAFtQfAQAAAAAAABgC4qPAAAAAAAAAGxB8REAYsDj8ei8887TlVdeGdReW1urgQMH6uc//7lDMwMAAEB3wHoUQKKyjDHG6UkAQFdQXV2tUaNG6emnn9b1118vSSoqKlJFRYU2bdqkHj16ODxDAAAAdGWsRwEkIoqPABBDjz/+uGbPnq2qqiqVlZVp2rRp2rRpk0aOHOn01AAAANANsB4FkGgoPgJADBljdNFFF8ntdquyslI/+clPdO+99zo9LQAAAHQTrEcBJBqKjwAQYx9++KHOOOMMnX322Xr33XeVkpLi9JQAAADQjbAeBZBI2HAGAGLsmWeeUc+ePfXxxx9r9+7dTk8HAAAA3QzrUQCJhCsfASCG3nrrLY0fP16vvfaafvGLX0iS3njjDVmW5fDMAAAA0B2wHgWQaLjyEQBi5OjRo7rpppv0ox/9SP/8z/+sxYsXq6ysTAsXLnR6agAAAOgGWI8CSERc+QgAMXLHHXdo5cqVqqioUM+ePSVJTz31lO655x5VVlbq1FNPdXaCAAAA6NJYjwJIRBQfASAG1q1bpwkTJqi0tFTf+ta3gr53ySWXqKmpidtdAAAAYBvWowASFcVHAAAAAAAAALbgmY8AAAAAAAAAbEHxEQAAAAAAAIAtKD4CAAAAAAAAsAXFRwAAAAAAAAC2oPgIAAAAAAAAwBYUHwEAAAAAAADYguIjAAAAAAAAAFtQfAQAAAAAAABgC4qPAAAAAAAAAGxB8REAAAAAAACALSg+AgAAAAAAALAFxUcAAAAAAAAAtvj/AUpnJC1CcyVjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUFNffBvBnKdIUELABCvqzxkqwxQa2WLGhsUbA3nvXBI3GrlHsFWzR2LsiKhgxVjSKsRF7B0URaVLm/YN3JrtsYSlL8/mcw1F2yvfO7uzuw5R7ZYIgCCAiIiIiIiIiIiIiIiKifEcvtxtARERERERERERERERERJnDk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERER5UHJyMpYvX466devC3NwcMpkMMpkMnTp1AgAEBQVJjwUFBWVrbV2um4iIiCg/Y04ioryIJ/uI8ij54KDtz5gxY3K72ZSOpk2bSq/X999/r/Vyrq6uGd4fPn78qLSeO3fuYNGiRWjfvj0cHR1hbGwMU1NTlC1bFj169MDx48ezcWuJiIjyNnV5y8DAAFZWVihbtiyaNGmCsWPHYt++ffjy5UuOtq9nz54YM2YMrl69iujo6BytnV8wWxEREeW+L1++YOfOnejbty8qV64Ma2trGBoawsbGBs7Ozhg6dChOnz6NlJSU3G4qZaMtW7ZIOUlfXx8vXrzQajk/P78M57Bly5YprScqKgo7duyAl5cXatasCQsLCxgaGqJYsWJo2rQplixZojK/ERVUBrndACKir8XTp09x7tw56fczZ87g1atXsLW1zZH6Hh4e2Lp1q8ppT548wZMnT/DHH3+gVatW2LVrFywtLXOkXURERHlNcnIyPnz4gA8fPuDJkyc4f/48li1bhmLFimHUqFGYMmUKDAx0+6fUX3/9hT179gAA2rVrhzFjxqBEiRKQyWQwNzfXaW1tzJw5E7NmzQIACIKQK21gtiIiIsp9+/fvx/jx4/HkyROlae/fv8f79+9x/fp1rF27FhUrVsTSpUvRrl27nG9oOp48eYKyZcsCAHx9feHp6Zm7DcoHtmzZIv0/JSUF27dvx5QpU3Kk9okTJ9C5c2ckJCQoTXv37h2CgoIQFBSExYsX4/fff0fTpk1zpF1EuYkn+4jygaFDh2LYsGHpzmdjY5MDraHM2rZtGwRBgJGREZKTk5GUlITt27dj0qRJGVpPaGioVvOlPRD48uVLAICVlRW6du0KV1dXODo6wsDAADdu3MDSpUtx//59+Pv7w83NDefOnYOeHm8AJyKir0PavPX582d8+PABt27dwpkzZ3D69GlERETgp59+wpEjR3D06FEUK1ZMZ+05ffo0AEBfXx+///67yhN8rq6uOjvRpst1ZxdmKyIiotw1e/Zs/Pzzz9LvLVu2RIcOHfDNN9/A0tISkZGRuH//Po4cOYKAgAA8ePAA06dPz5Mn+zIiP+QkXXv+/LnUhWnhwoXx+fNnbNu2LcMn++bMmYOOHTumO1+pUqUUfn///j0SEhKgp6eHli1bonXr1qhZsyYsLS3x4sUL7NixA3/88QfevHmD9u3b48KFC6hVq1aG2kaU3/BkH1E+ULx4cVSrVi23m0FZtG3bNgBA+/btERcXh+PHj2Pbtm0ZPiCV2X2hdOnSWLduHTw8PGBkZKQwrU6dOujTpw9atWqF4OBgBAcHY/v27ejbt2+mahEREeU36vJWmzZtMHnyZNy5cwd9+vTBjRs3cOXKFXTu3Blnz55FoUKFdNIe8URSiRIl8sSdfHkRsxUREVHu8fX1lU70FS9eHLt374aLi4vSfC1atMDw4cNx+/ZtjB07FhERETndVNIB8aIrQ0NDLF68GEOGDMGdO3dw7do11K5dW+v12NnZZSqLGRoaYvDgwZg2bRrKlCmjMM3JyQlubm5o2LAhRo0ahdjYWIwbNw5nz57NcB2i/ISXFRIR5YBLly7hwYMHAIDevXujT58+AIDbt2/j+vXrOdIGX19fDBo0SOlglMjU1BRr1qyRft+7d2+OtIuIiCg/+Oabb3DhwgU4OTkBAC5cuIBVq1bprJ7YJZGhoaHOauRnzFZERES55+XLlxgxYgQAwMzMDOfOnVN5ok9etWrV4O/vjwkTJuREE0nHxIuu2rRpAw8PD1hYWACA2i7Os1v37t2xdu1apRN98kaOHCmdeDx37hzevXuXI20jyi082UdUQAmCgFatWkEmk8HAwAAXL15UO6+Pj4804K23t7fKeaKjo7FkyRI0a9YMJUuWRKFChWBubg4nJyeMHDkSFy5cULv+5ORkbNmyBe3bt4etrS2MjIxgbW2NRo0aYenSpYiLi9O4LSEhIejfvz8qVqwIMzMzGBsbo3Tp0nB2dsbw4cNx+PBhld0nxMfHw8fHB66urihWrBgMDQ1hZWWFSpUqoU2bNli6dKnKPuV1QQw7RYsWRbt27dCpUycUKVJEYVpeUK1aNak72IcPH+Zya4iIiPIWExMTbNu2DTKZDACwePFiJCYmqp3/zZs3mD59OmrXrg0rKysYGRmhdOnS+OGHH6RuOtMSM5k4BsrTp0+lx8QfUVBQkPSY2I2SOsePH0efPn1Qrlw5KU+VLVsW7u7u8PPzQ2xsrML86tbt5+cHmUwmjdcn32b5H11nLGYrIiKi3PPbb79J2eGXX35B5cqVtVpOT09PukBHleDgYPz4449wdHSEsbExLC0t4eTkhBkzZqR7R+Dr16+xevVqdO3aFRUqVICZmRmMjIxgZ2eHjh074o8//kBKSorKZWUymTReHwB4eXkpZZuZM2dK09PLYJ6enpDJZHB0dAQAfPz4ET///DOqVq0KMzMzWFpaokmTJtixY4fGbRIdOXIErVu3RrFixWBqaoqKFSti4sSJePPmDQDA0dERMpksx8YZvHLlCu7duwcA6NOnD4yNjdG1a1cAwK5duzTm45zm6uoKIHVMwcePH+duY4h0TSCiPCkwMFAAIAAQvL29M7WOV69eCdbW1gIAoVy5csKnT5+U5rl9+7ZgbGwsABDq1asnJCYmKs0TEBAg2NjYSO1R96PK06dPhZo1a2pcrnz58sL9+/dVLr906VJBT08v3drR0dFK2/7NN9+ku9z48eMz8cxmTEJCgmBlZSUAEAYNGiQ97uHhIQAQihcvrvJ5l+fi4qLxec5O5ubmAgChevXqOq9FRESUmzKbt77//ntpuQsXLqicZ/v27YKZmZnGHNK/f3+lDJBedpHPAvLtDwwMVNmOd+/eCc2bN093nb6+vmqfG/l1+/r6atXGx48fa/18ZhSzFRERUe5JSUmRjhGZmZmpPNaUUcnJycLw4cM1ZgsLCwvh1KlTKpdPSkrS6thRy5YtlY4fCYJ2+Us+K6aXwcRM4uDgINy7d09wdHRUu97hw4drfG6GDRumdtmSJUsK169fFxwcHAQAgoeHR0ae9kwTXysLCwshLi5OEATF5+TQoUMal5fPk2kzaHYbOXKkVCskJESntYhyG+/sIyrASpUqhY0bNwIAHj16hFGjRilMT0hIQK9evRAfHw8zMzNs374dBgaKQ3kGBgaiTZs2ePfuHfT19eHp6YkDBw4gJCQEFy5cwIYNG9ClSxeVXUy9f/8ejRo1ws2bN2FkZIQRI0Zgz549uHr1KgIDAzF16lSYmpri33//RZs2bRAVFaWw/K1btzBhwgSkpKSgbNmyWLJkCc6cOYMbN27gzz//xIYNG9CrVy+YmZkp1R45ciTu3LkDIPUqo/379+PSpUu4evUqDh8+jJ9//hk1a9bM0vOrraNHjyIyMlJqi0j8f3h4OE6ePJkjbUnPjRs38OnTJwBAlSpVcrk1REREeVOLFi2k/58/f15p+u7du/Hjjz8iJiYG5cqVw9KlS3Hy5EmEhIRg3759aNu2LQBg06ZNSuPLhYaGIjQ0FB07dgQA2NraSo+JP9qKjY1F06ZNcebMGQCAs7Mz1q1bhwsXLuDatWs4cOAAxo4dC1tbW63X2alTJ4SGhmLo0KFKbZb/sbOz03qdGcVsRURElHv++ecfqTvExo0bS3fWZ8WUKVOk7tHLli2LtWvX4sqVKwgMDMTYsWNhaGiIqKgotG/fHjdv3lRaXvj/3p6aNWuGRYsWSbkrKCgImzdvxnfffQcACAgIwPDhw5WWDw0Nhb+/v/T7nDlzlLLNsGHDMrxdsbGxcHNzw/v37zFjxgwEBQXh2rVr2LBhA+zt7QEAq1atUqgtb+HChVi9ejWA1LGCV61ahcuXL+PPP//E9OnTERUVha5duyr10KBLiYmJ2LVrFwDA3d0dxsbGAAAXFxeULl0aQN7qZeHcuXMAUrvGL1++fC63hkjHcvtsIxGpJn9FzNChQ4XQ0NB0f758+aJyXQMGDJDWtWfPHunxcePGSY9v2LBBabm4uDjB1tZWACCYmpqqvWJcEATh2bNnSo/16tVLupLp0aNHKpe7fv26dNX7tGnTFKb99NNP0pVib968UVv748ePQnJyskK7DQ0Ntbpz7/379xqnZ4eOHTsKAARHR0chJSVFejw5OVl6frt166ZxHfJXn2uzL7x48SJTbe3atatUZ+/evZlaBxERUX6R2Tv7Tp8+LS3Xr18/hWkRERGChYWFNE3dHWbTpk0TAAh6enrCvXv3lKbLXxGuTftV5bSxY8cqXDUun0PkJSQkKGWt9Nbt7e2dY3fGpcVsRURElHu2b98ufbdNnz49y+u7deuWdFdetWrVhA8fPijNc+LECWmeunXrKk1PSUkRwsLCNNb5+eefBQCCTCYTHjx4oDT98ePHWt9tpu2dffj/u99u376tNE9YWJjU01aHDh2Upr9+/VqaXr58eSEiIkJpngsXLgiFChWSauXEnX0HDhyQ6p09e1Zh2uTJkwUAgpGRkRAZGal2HfJ39s2ZM0erLJYZR48eleq0b98+U+sgyk94so8oj5IPDtr+qOsu6fPnz0KFChUEAIKVlZXw4sULISAgQJDJZAIAoVOnTiqXW7dunbTuZcuWZaj9jx8/FvT19QUAwpEjRzTOO2nSJAGAYGtrq/D4wIEDBQCCk5NThmq/fPlS664DdO3du3fSice0JzMFQRAmTJggABCMjY1VBlqR/AEpbX4yE/D27t0rLe/s7Kz2gCAREVFBkdmTfTdu3JCW69y5s8K0X375RQAg2NnZCfHx8WrXkZiYKNjZ2anNCFk92ffhwwfB1NRU+l5PSkrSevvSW7cg5N7JPmYrIiKi3LV8+XLp+2358uVZXt/QoUOl9V26dEntfPIXsl+5ciXDdZKSkqTuRxcvXqw0XVcn+3x8fNSup0ePHtKxurTmz58vrePo0aNq1yF/cVdOnOzr3LmzAECwt7dXyja3b9+W2rJmzRq169C2W3j5n4x6//691L2pvr6+cP369Qyvgyi/YTeeRF8B+S46IyMj0atXL3h6ekIQBJQqVQobNmxQudzRo0el5QcOHJihmseOHUNycjJMTU3Rpk0bjfM2adIEAPDq1Ss8e/ZMerxUqVIAgDt37uDKlSta17a2tkahQoUAANu2bUNSUlKG2p6ddu7cKQ1MrGoQavGx+Ph47NmzJ0fbJu/u3bvw8vICAJiYmGDbtm2QyWS51h4iIqK8rHDhwtL/o6OjFaYdPnwYANC+fXsYGRmpXYeBgYHUpdTFixezvY1nz56VunQaNWoU9PX1s71GbmC2IiIiyl3y2UfVsCoZdfr0aQBA1apVUa9ePbXzyR+XEpdRJyUlBa9evcL9+/dx+/Zt3L59G3fv3pW6zlTVFaguyGQy9OrVS+10Z2dnAEBkZCQ+fvyoME3cRhsbG43H1fr27Zv1hmopMjISx44dAwD06tVLKdtUrVoVtWrVApB6PC63JCcno3fv3nj69CkAYMaMGXBycsq19hDlFJ7sI8oHvL29IaTeiavxx9HRUe066tatC29vbwDAn3/+iZcvX0Imk8HX1xc2NjYql7lx4waA1PBhamqaoTZfu3YNQGr/5AYGBpDJZGp/2rdvLy335s0b6f89e/aEoaEhEhIS0LBhQ7i5uWHt2rW4ffu21B+7KkZGRujevTsAYO/evShfvjwmTZqE48ePK4UnXduyZQsA4Ntvv1U5TkvNmjVRrVo1ANr3aa7NvuDn56d1G1+9eoW2bdsiOjoaMpkMmzdv5pgyREREGsgf5DI3N5f+n5ycjL///hsAsG7dOo35RyaTYe/evQAU8092EXMckDqeTkHBbEVERJS75Mfoi4mJydK6EhISEBYWBgAaT/QBgJOTEwwNDQEAt2/fVpouCAK2b9+Opk2bonDhwrCzs0PlypVRvXp16UfMaeKYg7pmY2MDa2trtdOtrKyk/6e9gEzcxlq1akFPT/0h/OrVq0sXvOvazp078eXLFwCqL7qSf/yvv/7Cw4cP012nr6+vVlksI4YNGyaN39y+fXv89NNPGVqeKL/iyT6ir8jUqVNRrlw56fcBAwagVatWaucXw494h11GhIeHZ7yBgMKgwpUrV8bOnTtRtGhRJCUl4ejRoxg6dCiqV6+O4sWL48cff8T58+dVrmflypVwc3MDADx9+hSLFi1Cu3btYG1tjTp16mDRokWIiorKVBu1dffuXemkp7oQBAA//vgjAODChQt4/PixTtuUVmRkJL7//ns8efIEALBixQr06NEjR9tARESU38gfIJI/SBMZGZmpHgXk8092kW9jZrJcXsRsRURElPvkT169ffs2S+v68OGD9P/ixYtrnNfQ0FCqHRkZqTAtPj4e7dq1w48//oigoCDExcVpXFd607NLehfOy5/ES05OVpgmPjfFihXTuA59fX2FPKpL4oVUNWrUQPXq1VXO06tXL6lHCW0vvMpOU6dOxfr16wGkXvC2e/fuAtPDBVF6DHK7AUSUc44dO4ZHjx5JvwcHByMuLg4mJibZXksMKTY2NggMDNR6ubJlyyr87u7ujhYtWuCPP/6Av78/zp8/j4iICLx79w7bt2/H9u3b4eHhgc2bNyuEJHNzcxw+fBhXrlzB7t27ERQUhL///hvJycm4du0arl27hsWLF+PgwYNSF1rZTT7UjBs3DuPGjdM4vyAI2Lp1q3QHpq5FR0ejdevW+OeffwAAs2fPxvDhw3OkNhERUX4mf9dcpUqVpP/LH6QZMGAARo8erdX6cupq7PyO2YqIiCj31axZU/r/9evXs229Wenu+tdff8WJEycAAC4uLhg+fDi+/fZblCxZEiYmJtLxoiZNmuD8+fMZvlOMgPv370tD7Ny6dUur12v79u2YOXNmjnVlvmDBAsyfPx9Aai8QR48e1ckxT6K8iif7iL4Sb9++xYABAwCkngj79OkT7t69i4kTJ2LlypUql7GxscGLFy/w+vXrDNcTr7aKjo5GlSpVsnQVjYWFBQYNGoRBgwYBSL2q+9ChQ1ixYgVevXqFLVu2wMnJSeUBtbp166Ju3bpSW4KCguDn54f9+/cjPDwc7u7uePjwYbZ/+aekpGDHjh0ZXm7btm05ckAqLi4Obm5uuHr1KgBg4sSJmDFjhs7rEhERFQQBAQHS/xs1aiT9X/6qakEQpO4kc4N8N+2vX79WuqAqv2G2IiIiyhuqVq0KGxsbvHv3DufPn8enT58UujXPiKJFi0r/T+8uwaSkJLx//x6AcubauHEjgNQ7uc6ePau228u0dwTmZUWLFsWbN28QERGhcb7k5GSFOyR1JTN36T169AjBwcE50qX86tWrMWXKFABAlSpV4O/vn+n9kii/4sk+oq9Ev379EBERAT09PRw9ehTLly/Hvn37sGrVKrRv3x6tW7dWWubbb7/FixcvcO3aNcTGxmZo3D4nJyf8/vvvSEhIwLVr19Ltez0jqlSpgipVqqB3796oUqUKYmJisHv37nSvni9SpAjc3Nzg5uaG0aNHw8fHB69fv0ZwcDBatmyZbe0DgMDAQDx//hwAMHLkSDRo0EDj/JcvX8ayZcvw8OFDXLhwAQ0bNszW9shLTEyEu7s7zp07BwAYMmQIFi5cqLN6REREBcnt27dx5swZAEDp0qVRu3ZtaVqhQoVQtWpV/PPPP7hw4UJuNRFAao4T/fnnn9l+si+nrtAWMVsRERHlDTKZDB4eHliyZAliYmKwcePGdO+2V8fIyAgVKlRAWFgYLl++rHHeGzduIDExEQAULqiKjIyUxj/u1q2b2hN9nz9/xv3799WuP6ezTXqqVq2KN2/e4O+//0ZKSora7QoNDUVCQoJO2yKOhwikduE5derUdOfv168f4uPjsXXrVp2f7Nu2bRtGjBgBAChXrhxOnz6tcOEb0deCJ/uIvgKrV6/G8ePHAQCTJ09G48aNUbVqVVy6dAkvX76El5cXQkNDlb4I3dzccPjwYcTGxmL9+vUYM2aM1jXd3NwwadIkCIKAZcuWYefOndm5SQBSD7BVrFgRN27cyPDgys2bN4ePjw8A3QzMLF7xpK+vjxkzZqTb93yLFi2wcuVKJCUlYevWrTo7IJWcnIxevXpJ3Vv8+OOPWL16tU5qERERFTRxcXHo27ev1PXThAkTYGCg+CdVhw4d8M8//+DevXvw9/fXOD6yLjVt2hRmZmaIiYnBihUr0KdPn2wdr8TY2Fj6f0JCAoyMjLJt3aowWxEREeUdY8eOxZo1axAbG4uff/4Zbdu2ReXKldNdLiUlBTt37kTv3r2lx1q0aIGwsDD8888/uHLlitQ7U1ri3XviMiL58ZJjYmLU1t64caPGsZXTZpvc1rx5c5w5cwbv3r3DiRMn0K5dO5Xz5cS4eEFBQXj27BkAoG/fvlqNR/zHH3/g0KFD2LNnD1asWKHw/Gan/fv3w8vLC4IgwN7eHmfOnIGtra1OahHldaovCSCiAuP+/fuYOHEiAMDZ2RmzZs0CkNrlgZ+fH2QyGd68eSN1kSmvT58+sLOzAwBMnz5dulpZlRcvXij8XqlSJXTr1g0AsGvXLixdulRjOx8/fqx0QvDgwYP4+PGj2mWeP3+Oe/fuAVAc6+/Ro0ca2woAp06dkv6f9kr3oKAgyGQyyGQyeHp6alyPKjExMdi/fz+A1C4k0jsYBaR2teXi4gIA2L17t06CpSAIGDhwIPbu3QsgdTxEX1/fPHf1GhERUV50584dNGrUSBqvz8XFBUOHDlWab/To0ShcuDAAwMvLSxq/TZ1jx47h1q1b2d5eS0tLDB48GAAQEhKCMWPGqB2fJjExEeHh4Rlaf6lSpaT/P3z4UOO8zFZEREQFi52dnTQkTExMDFxcXNI9DnPnzh20bt0aixYtUnh86NCh0l1rgwYNwqdPn5SWPXXqFDZt2gQgdbiWOnXqSNOKFSsGS0tLAMDOnTtVfudfvXoVP/30k8b2WVtbS+Mop5dtcoKHh4d0MdWYMWNUXqh+8eJFrFq1Kt11OTo6SlksM+RPKLq7u2u1TNeuXQEAUVFROHToUKbqpufUqVPo2bMnkpOTUbx4cZw+fRqOjo46qUWUH/DOPqJ8IDw8HLdv3053PhMTE/zvf/+Tfk9MTETv3r0RGxsLExMTbN++HYaGhtL0Fi1aYPTo0Vi2bBkOHDiAzZs3o1+/ftJ0Y2NjbNu2Dd9//z1iY2PRokUL/Pjjj+jUqRPs7e2RkJCAe/fu4fjx4zh8+LBSoFqzZg2uXbuGR48eYfz48Th06BD69u2LqlWrwsjICO/fv8fNmzdx8uRJnD17Fp07d0bPnj2l5ZctW4bevXujXbt2aNasGapUqQILCwt8+PAB165dw4oVKxAXFwcgtbsk0bNnz9C0aVN888036Ny5M2rXri2dtHz+/Dn++OMP7N69GwBQq1atbO1iFEi9qujz588AtA9B4rxnzpzBx48fcfjwYelkaVra7AsA4ODggCJFiki/T5gwAb6+vgBSu7yYNm0a7t69q3EduTnWEBERUU5Km7diYmLw4cMH3Lp1C2fOnEFAQIB0sqx+/frYu3evQq4SlShRAlu2bEHXrl3x+vVr1K5dG56enmjTpg3s7e2RmJiIFy9e4MqVK9i7dy8ePXqEI0eOoEaNGtm+TbNnz0ZAQABCQ0OxcuVKXLx4EYMHD0b16tVRqFAhvHjxAufPn8fOnTsxZ86cDJ2Ik+9Gc+zYsZg+fTpKlSolHURydHRUuusxs5itiIiI8h4vLy+8ePECP//8M8LDw+Hq6orvv/8eHTt2RJUqVWBpaYnIyEg8ePAAx44dw8mTJ5GcnIyaNWsqrKd69eoYP348Fi1ahJs3b+Lbb7/F5MmT4eTkhJiYGBw5cgQ+Pj5ITk5GoUKFsG7dOoXl9fT00Lt3b6xatQq3bt1Co0aNMG7cOFSoUAFRUVE4fvw4Vq9ejcKFC8PW1hYPHjxQuT0GBgaoU6cOLly4gM2bN8PJyQm1atWS8p6VlZXCWIG6ZmtrC29vb0ybNg3//vsvnJ2dMWXKFNSuXRsJCQnw9/fHkiVLYGtri5iYGEREROjkgqPY2Fjs27cPQOpNBNqeTHNzc0OhQoXw5csXbN26Fd27d1c538uXL7XKYubm5ihTpoz0+6VLl9C5c2d8+fIFhoaG+O2335CYmKhxXfb29tKJYaICSSCiPCkwMFAAkKGfmjVrKqxj6tSp0rRVq1aprBMfHy9Uq1ZNACAULlxYePjwodI8J0+eFIoWLZpufVVev34tNG7cWKv2e3l5KSzr4uKS7jJ6enrC7NmzM/XcVa5cWXj06JHG597Dw0PDq6RaixYtBACCTCYTXr58qfVyb968EfT09AQAQvv27TP8XKT9OXDggMI6HBwcMrwOIiKigiyjeatYsWLCr7/+KiQmJqa77sOHDwtWVlZaZZmzZ88qLe/h4SEAEBwcHLRqf2BgoMp5IiIihCZNmqTbDl9f3wyv+4cfflC7vsePH6tcF7MVERFRwbJv3z7B0dFRq+/BqlWrCv7+/krrSE5OFoYNG6ZxWQsLC5XLCoIgfPz4UahVq5baZa2srIRz585J3/8uLi4q13P06FFBJpOpXIe3t7c0X3o5SZscJwiC4OvrqzI7iVJSUoTBgwer3S4bGxvh6tWrQunSpQUAwpAhQ1TWkc8sGbV9+3Zp2Xnz5mVo2bZt2woABAMDA+HNmzfS4/Lbre1Px44dFdbt7e2d4XWkzbtEBQ278SQqoIKDg7FgwQIAQNu2bTFs2DCV8xkZGWHHjh0wMjLC58+f0adPHyQnJyvM06pVKzx69Ahz585FgwYNYG1tDX19fZibm+Pbb7/FmDFjcOXKFZXrL1myJP78808cPXoUvXv3Rrly5WBqagpDQ0MUK1YMDRo0wPjx43Hu3Dls3rxZYdmdO3di/fr16NWrF2rVqoWSJUvCwMAAhQsXRtWqVTF06FDcuHEDM2bMUFiucePGCAoKwtSpU9G0aVOUL18eRYoUgaGhIUqUKIHvv/8ea9euxd9//63UhWdWvXz5EmfPngUAfPfddxnqJ7xEiRLSeDInT55EREREtraNiIiItKOnpwcLCwuUKVMGjRs3xpgxY7Bv3z68ePEC06ZN0+qONTc3Nzx+/BiLFy9Gs2bNUKJECRgaGsLExARly5ZF+/btsXTpUjx58gRNmzbV2bbY2Njg3Llz2L9/P7p27Qp7e3sYGRnB2NgY5cqVQ7du3bBjxw6F3hW0tX37dixcuBB169aFhYWF1AVXdmK2IiIiytu6dOmC+/fvY8eOHejTpw8qVaqEokWLwsDAAFZWVvj2228xbNgwnD17FqGhofj++++V1qGnp4dVq1bhzz//RO/evVGmTBkYGRnB3NwctWrVwrRp0xAWFqZyWQCwsLDAhQsXMHv2bFSvXh3GxsYoXLgwqlSpggkTJuDmzZto0qRJutvSrl07nDlzBh07doStra3KXhxykkwmw9q1a3Ho0CF8//33sLKygrGxMcqXL49Ro0bhxo0bqF27ttT1qYWFRba3ITNdeKadPykpCb///nu2touIlMkEQc3ADURERERERERERERElCe9ePECpUuXBgBs3LgR/fv3z+UWEVFu4Z19RERERERERERERET5zM6dO6X/169fPxdbQkS5jXf2ERERERERERERERHlITExMfj06RNKlSqlcvqNGzfg4uKC6OhoODs749q1azncQiLKS9IfbIKIiIiIiIiIiIiIiHJMREQEqlSpgk6dOqF169aoVKkSjIyM8OrVK5w8eRKbNm1CXFwcZDIZli5dmtvNJaJcxjv7iIiIiIiIiIiIiIjykCdPnqBs2bIa5ylUqBA2bNiAvn375lCriCiv4sk+IiIiIiIiIiIiIqI8JDExEQcOHMDJkydx9epVREREIDIyEqampnB0dESLFi0wcuRIODg45HZTiSgP4Mk+IiIiIiIiIiIiIiIionzqqxuzLyUlBa9evUKRIkUgk8lyuzlERESUBYIgIDo6Gra2ttDT08vt5nz1mLOIiIgKDuasvIU5i4iIqGDQVcb66k72vXr1CqVLl87tZhAREVE2ev78Oezt7XO7GV895iwiIqKChzkrb2DOIiIiKliyO2N9dSf7ihQpAiD1iTQ3N9dZne7du+OPP/7Q2foLUo2cqsMarMEarJFfauRUnYJQ49OnTyhdurT0/U65izmLNfJzjZyqwxqswRqskV9qMGflLcxZrMEaX0eNnKrDGqzBGrlXQ1cZ66s72Sd2dWBubq7TcGRoaKjT9RekGjlVhzVYgzVYI7/UyKk6BaUGAHZllEcwZ7FGfq6RU3VYgzVYgzXySw0Rc1bewJzFGqzxddTIqTqswRqskbs1gOzPWOx0nYiIiIiIiIiIiIiIiCif4sk+IiIiIiIiIiIiIiIionyKJ/uIiIiIiIiIiIiIiIiI8ime7CMiIiIiIiIiIiIiIiLKp3iyj4iIiIiIiIiIiIiIiCif4sk+IiIiIiIiIiIiIiIionyKJ/uIiIiIiIiIiIiIiIiI8imD3G5AfiIIAhITE5GSkpLuvNbW1oiPj9dpewpKjZyqwxqswRqskV9q5FSdglDjy5cvcHBwwJcvX3Lkdfna6evrw9DQUCfrZs5ijdyukVN1WIM1WIM18ksN5qycpcuclZiYiOTkZK3mLSj7L2uwRn6tkVN1WIM1WCP3amiTsTKTC2SCIAjZ0cD84tOnT7CwsEBUVBTMzc21WubLly8IDw9HbGys1uEoPDwcxYsXz0pTv5oaOVWHNViDNVgjv9TIqToFoUZKSgqeP3+O0qVLQ0+PHRbkBCMjI9jY2KjMUcxZrJGfa+RUHdZgDdZgjfxSgzkr52V3zvr06RPevXuHhIQErdtQUPZf1mCN/Fojp+qwBmuwRu7V0DZjacoFqvDOvnTExsbi+fPn0NfXR9GiRWFiYgJ9fX3IZDKNy8lkMjg6Ouq0bQWlRk7VYQ3WYA3WyC81cqpOQaiRnJyMuLg4ODo6Ql9fX2d16L8776KiovDy5UsA0DpwqsOcxRp5qUZO1WEN1mAN1sgvNZizco4uctanT5/w8uVLFC5cGDY2NjA0NEw3YwEFZ/9lDdbIrzVyqg5rsAZr5F6N9DJWZnMBT/al4927dzA0NISDg0OGwq2+vj6MjY112LKCUyOn6rAGa7AGa+SXGjlVpyDUEO8EMzY25kGoHGBiYoIiRYrgxYsXePfuXZYPQjFnsUZeqpFTdViDNViDNfJLDeasnKWLnFW4cGHY29trdZJPVFD2X9ZgjfxaI6fqsAZrsEbu1dAmY2UmF7AfBg2SkpIQExMDKysrBlsiIiIipF7hZmFhgYSEBCQmJmZ6PcxZRERERIqyK2clJiYiISEBFhYWGTrRR0RERHlHRnMBT/ZpkJSUBCC1b1QiIiIiSiUOEq3tGHuqMGcRERERKcuOnCUuK66LiIiI8qeM5AKe7NMCr4IiIiIi+k92ZiPmLCIiIqL/MGcRERGRKCPf5TzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+ZRBbjegQJjZWemhCjlQNks1Zh7IrmYQERER6U5+y1nMWERERJRfMGcREREVGLyzj7KFo6MjZDKZ1j8zZ87M7SYTURbIZDI4OjoqPe7t7Q2ZTIbq1avjy5cvKpcVBAHNmzeHTCZD//79M1RX/Kx58uSJyjY1bdo0Q+sjIsrrmLGIvi55NWOpahMRUX7HnEX0dWHOooKOd/ZRtmrYsCHKly+vdvrJkyfx9u3bHGwREeWkGTNm4PDhw/j777/h7e2NefPmKc2zYsUKnD17Fg4ODvjtt99yoZVERPkPMxbR140Zi4hId5iziL5uzFlUUPBkH2WrAQMGwNPTU+10V1dXBiSiAszQ0BBbt25F7dq1sWjRInTs2BH169eXpoeFhWHq1KmQyWTYvHkzzM3Nc7G1RET5BzMW0dctvYz15MkTZiwiokxiziL6ujFnUUHBbjyJiChbVa9eHTNnzkRycjI8PDwQFxcHANLvsbGxGD58OJo1a5bLLSUiIiLKPzRlrMmTJzNjEREREWUScxYVBDzZR3lKUFBQun2kq3Lv3j14eXnBwcEBRkZGsLKyQvPmzbF7926V88+cOVNtf+t+fn6QyWQqr+p68uSJ2r6UIyIisHXrVrRt2xZly5aFiYkJzM3NUbt2bSxYsADx8fEat93T01Pjdqtqj7iMn5+fxnVrS9z2ihUrokmTJmrna9mypdSutLXTa5P4HKobWy0jr2VKSgp69OgBmUyGXr16ISUlRWG6j4+Pytc5JSUFvXr1gkwmQ8+ePZWWA4CQkBD07t0bZcqUkdrRqlUrHD9+XO3zkpSUhM2bN6NFixawsbGBkZER7O3t0aJFC6xYsUKaLyNjAsi/7q6urkrTixQpgsqVK2Ps2LF49uyZUpsiIiLg4+OT6f0ysyZNmoS6deviwYMHmDZtGgBg48aNuHjxIsqXL48FCxaoXfbOnTvo1q0bbGxsYGJigmrVqmHx4sVITk7WSVuJiL4GzFh5I2OJmUWd7MhY6sb8yM6MNXPmTFSsWJEZK49krEWLFuHGjRvMWEREuYQ5K2/krIJyLIs5izmLKLPYjSflSSVKlEDr1q0VHtuyZYvKeY8dO4auXbsiPj4elSpVQpcuXRAeHo5z587h7Nmz8Pf3x6ZNm3TeZn9/f8yZMwd2dnYoX7486tevj4iICFy+fBlTpkzBoUOHEBgYCCMjI43rSdtX/L///osLFy7ouvlKzp8/j7///hu1atVSePyff/7B6dOndVIzo6+lnp4etm3bhpiYGOzcuRPm5uZYu3ZtunWGDh2KnTt3on379ti2bRv09BSve1i+fDnGjRuHlJQU1KpVC/Xq1cObN28QFBSEU6dOYdasWfj5558VlomKikL79u0RHBwMQ0NDNGjQALa2tnjz5g1u3bqFM2fOYOTIkQAADw8PhWU/f/6Mffv2wczMDF27dlWY1qhRI6X2t2rVCiVLlgQAfPz4EefPn8eyZcuwY8cO3Lp1S5oGpO6Xo0ePTne/zG76+vrYsmULnJycsHz5clSoUAE+Pj7Q09PDli1bYGpqqnK54OBgtG7dGjExMShXrhxatmyJd+/eYdq0abh06VK2t5OI6GvDjJX7GevatWvMWF9Rxkpvv8woVRnL29ubGYuIKA9gzsr9nMVjWcxZWcGcRfldrp7smzlzJmbNmqXwWKVKlXDv3j2V82/YsAFbt27F7du3AQDOzs6YO3cu6tatq/O2Us4Qr3aoUqWK0tU0qgLS27dv0bt3b8THx2POnDmYNm2adMXUtWvX8P3332Pz5s2oX78+XF1dddp2Z2dn7N69G926dVN4/MOHD+jRowdOnToFHx8fTJw4UeXy4hU5afuK9/Pzy/GAVLduXYSEhMDHxwebN29WmObj4wN9fX00btwYQUFB2VYzI6/lwIEDpeUMDQ2xZ88etG3bFuvWrYO5uTkWLlyots7EiROxfv16NGvWDHv27IGBgeLHoL+/P8aOHQtra2vs27dP4aqw0NBQtG3bFt7e3nBxcYGLi4s0rV+/fggODoaTkxP279+vcMVcUlISjh07Jv2edt9+8uQJ9u3bBxsbG5VXkYWFhSn8PmXKFIX9OSYmBi4uLggJCcHevXsxYsQIaZqzszMuXryo0Nc4oLxfdurUSd1TlmmVK1fG3LlzMW7cOAwfPhxA6vPfoEEDlfPHx8ejV69eiImJwZgxY7B48WLo6+sDAG7duoXmzZvj3bt32d5OooKKOYvkMWPljYzl4uKC4OBgZqw8krHS0kXGUrdfZoWqjDVgwABmLKIcwoxFaTFn5Y2cxWNZzFnZgTmL8rNc78azatWqeP36tfQTHBysdt6goCD07NkTgYGBuHjxIkqXLo3vv/8eL1++zMEWky4lJiYCSP3S08aGDRsQFRUFZ2dnTJ8+XaFrhNq1a2P69OkAUm+51rUqVaooXTkEAEWLFpVue9+zZ4/a5cVb0LXddl2ys7NDhw4dsHPnToUvpMjISGzfvh0dOnSAg4NDttbMymtpbGyMw4cPo169eli0aBF+/fVXlTXmzJmDxYsXo379+jh06BCMjY2V5vH29oYgCFi7dq1S9w/Vq1fH0qVLAUChK4ObN29i//79MDY2xpEjR5S6xjAwMEDHjh21eyIywczMDN999x0AKHXjUKVKFaVwBGi/X2bVsGHDYGFhAQAoXrw4Zs+erXbeffv24fnz5yhdujQWLlwohSMAqFGjhrQPEJH2mLNIxIyVNzKWo6MjmjVrxoylZca6e/cuM5Ya8hnL1tYWY8aMUTsvMxZR9mPGInnMWXkjZ/FYFnNWdmHOovwq17vxNDAwULhNV5MdO3Yo/L5x40bs27cPZ86cQd++fXXRPMph4uCn2t6GLV6Nk/ZWclH//v0xYcIEhIWF4e3bt6hQoUK2tFOd5ORknDlzBn/99Rdev36NuLg4CIIAQRAAAPfv31e7bExMDACovSU8p40aNQoHDhzA+vXrpX6qN2zYgNjYWIwaNSrb+lYXZeS1fPXqFWxtbRWmFy5cGCdOnMD//vc/zJgxQ/pSFq1YsQI//fQTihYtiuPHj6Nw4cJKNd69e4crV67AxMQEbm5uKtshXoX0119/SY+dPHkSANCuXTvY2dlptb3ZJSoqCidOnMDWrVthamqqst3JyckICgrK1H6ZVb/++iuioqIAQOrG4vvvv1c5r7gP/PDDDyr/UPDw8MDYsWN11laigog5i0TMWHknY/Xt2xcBAQHMWGmoyljnz58HwIylinzGevXqFa5cuYKqVauqnJcZiyj7MWORPOasvJOzeCyLOSs7MGdRfpXrJ/vCwsJga2sLY2NjfPfdd5g3bx7KlCmj1bKxsbFITEyElZWV2nkSEhKQkJAg/f7p06cst5l05/379wBSr9TQhnglXNmyZVVOt7S0hJWVFSIjI/HmzZvsaaQaYWFh6NChg1KXi/I07X/itlhbW2e4tpeXF7y8vACk9i9dtGhRODk5YcCAAfjhhx8yvD4gNQjUqFEDa9aswaRJkwAAq1atQo0aNeDq6ppuQJJvkzYy8lq+ePFCKSABqf2kf/jwAUBqwKtcuTIA4ODBg7h16xaA1Fv+jx8/jt69eyst//jxYwiCgLi4uHRDekREhPT/p0+fAoBUT9dUDQjt7OwMX19fpecvLCwMnTt3xj///KN2fbr6XLx27RrmzZsHQ0NDDBo0CKtWrcKAAQMQGhqqFGAB4MWLFwDU7wNFixaFhYWFFLiIKH05kbO+fPki/c6clXcxY+WdjFWvXr18n7Fq1qwJQPcZ69WrVwCYsdJSlbGmT5+OLl26MGMR5RBdZyyAOSs/Yc7KOzmrIBzLYs5iziLKrFw92VevXj34+fmhUqVKeP36NWbNmoXGjRvj9u3bKFKkSLrLT548Gba2tmjRooXaeebNm6fUlzoAdO/ePd1bzK2treHp6QmZTKZwC25aur2+Rjc0fYnLi42N1WrepKQkAKl9VWuaX7za6f379wrziXXELzFjY2O165F/XAy+r169Uju/eCt4fHy8NI8YxNK2Q9wGIPVLI+008QM8KSlJaZqbmxvCwsLQtGlTDBgwAOXLl0fhwoVhaGiIL1++oFq1akrtl2/jw4cPVW5j2vbIvybiF9u3334rdUWQkJCAR48eISAgAAEBAfjrr7+kPqbTI9YSt69Hjx6YNm0aVq9eDQB4/vw5Bg8ejLCwMKl22tdcVZvkxcbGwt/fHykpKZl+LZ89e6YUot++fYsRI0bA1NQU69atw6RJk3D37l0Aqd1s2traYv78+RgyZAiGDx8OBwcHlChRQmEd4kk7MzMztXefyRNfD/ELOzIyUuv3ljxN+xXw3/tDfP80btwYNjY2AFL363v37iEkJAQ//PAD1q5dqxAe3dzccP/+/XT3S23f6/LUtRdIfT179uyJpKQkjB49GsOGDcOVK1dw9epVDBgwAHPnzlVaRrwiMDw8PN194PHjx1JXKWmnZ+Y1yIjMPFd5tU5BqCFe1UfKciJnqetu5mvOWRnZ37V5fzBj5VzGAv57vnSVsT59+oTY2FidZqykpCSFfUsXGevvv/8GoNuMBfzXLZquMhaQ+rzpMmOlze/ayGjGCgkJwaVLl3SasdLuV7rCGnmrBnOWajmRsQDmLFWYs/JvzuKxLOYs5izmLNb4j64yVq6e7GvTpo30/xo1aqBevXpwcHDA7t270b9/f43Lzp8/H7t27UJQUJDKvopFU6dOxbhx46TfP336hNKlS+OPP/6Aubm5xhrx8fF4/PgxHB0dNdbIj7TtAiAsLEyrecWBYUuUKKFxfhMTEwCpwVN+PrGO+AXduHFjteuRf7xs2bJ49OgR4uPjVc4fFRWFjx8/AgAcHBykecQrjtK2Q9wGADA3N1eaJgZqAwMDhWn37t3D/fv3YW1tjVOnTikNlCt/JYqqdv7zzz/4/PkzSpQoodS3dtr2yL8m4j48cuRIhYGQAWDdunUYMmQINm7ciEWLFmnVf7pYS9y+sWPHYunSpVI/2NbW1hg3bhxMTEyk2mlfc01tAlIH8C1btiz09PQy/Vp+9913Sl0MjB49GlFRUVi9ejX69OmDunXrokGDBnj//j1KlCiBoKAgVKhQAdHR0Rg+fDjmzZunMNAwkBqMAEBPTw979+6Fnl76w5qGhYWhevXqAFK/2DPTvYa6/Uq+RoUKFaT3zy+//KI0SLe3tzd++eUXLFq0CEePHgXw335ZvHjxdPdLU1PTDLddXXuB1MGj//33Xzg7O2Px4sUwMDDAggUL0KFDB+zduxf9+/dH69atFZapWLEizp8/j9jYWJXr/fjxI6KjowGk7i9p+5MHoLRf6YK2n4v5oU5BqJGcnIwbN27obP35WU7krIkTJ0pXzALMWYD2GQvQ7v3BjJVzGQv47/nSVcYyNzeHqampTjOWgYGBwve6LjJW48aNER4ertOMBUC6S0ZXGQtIfc11mbHS5ndtZDRj7dy5E9WqVdNpxkq7X+lKQcgmBakGc5ZqOZGxAOYsVZiz8m/O4rEs5izmLOYs1viPrjKWdu/+HGJpaYmKFSvi33//1Tjf4sWLMX/+fJw6dQo1atTQOK+RkRHMzc0VfihvSkxMRGBgIACgUaNGWi0jfkls2bJF5fTNmzcDSP3w17Y//cyIjIwEABQvXlzpSwgAtm/frnH5ffv2AQBatWqVbW368ccfAaReYSI/MHFGGBsbY9CgQQgODkZwcDAGDBggfUlnt4y8lmnD0YYNG3DixAm0aNECQ4YMAZD6ZdujRw8AwODBg6UP6KFDh6J58+Y4fvw4Nm7cqLAeW1tb1KhRA9HR0dI4fNoQv+iPHz8udYOQ07p37w4AOHfunPSYuF/a2tpmar/MrAsXLmDp0qUwMjLCli1bpNr29vbSoNQDBgxQ6sLAxcUFALB7926VVzpt3bpVJ+0l+lowZ329mLGYsYDszVji/3WdsRo3bgyAGUukLmM5OjpKJwSYsYhyni4yFsCclV8wZzFnAcxZmcWcRZS98tTJvs+fP+Phw4coVaqU2nkWLlyI2bNn4+TJk6hdu3YOto506cuXLxg1ahQiIiLg6uqqtp/jtAYOHAhzc3Ncv34dc+fOVbgF9saNG5gzZw6A1CszdKlixYrQ19fHgwcPpIFZRUeOHMFvv/2mdtnnz59jxYoVAFK/vLPL8ePHAaRe4SPeJp8Zw4YNQ7t27dCuXTutu1DIjMy+lk+fPsX48eNhbm6OTZs2QSaTSdPE/6d9bPPmzTA3N8e4ceOk7g5EYh0vLy8cOXJEqZ2CIODy5cs4deqU9FitWrXQsWNHxMXFoWPHjnj27JnCMklJSTh8+HCGno+M2rVrFwAovNbifhkaGprh/TKzYmNj4enpiZSUFMyaNUtpAOPBgwejefPmePnyJcaMGaMwrWvXrrCzs8OzZ88wdepUqZsDALh9+7b02hBR5jBnfZ2YsZix8nPG+uabb5ix/l96GatHjx7MWES5hBnr68WcxZzFnJU1zFlE2StXu/GcMGEC3Nzc4ODggFevXsHb2xv6+vro2bMnAKBv376ws7PDvHnzAAALFizAzz//jN9//x2Ojo7SILWFCxdG4cKFc207KGs2bdqEqVOnIiIiAnZ2dli3bp3Wy5YoUQI7duxAt27dMH36dGzbtg1OTk4IDw/HuXPnkJSUBC8vLwwcOFBlP7unT59GfHy8wmOhoaEAgJCQEEyZMkVhmnj1xocPHzBlyhR069YNzs7OsLGxwYgRI7B8+XI0b94cjRs3hq2tLe7fv4/r169jxowZKj/cJ0yYAF9fX0RGRsLMzAxr167F2rVrFeYRrw4MDg6Gp6cnevTooXQb8Z49e3Dv3j0Aqf2c37t3T/oCnzx5slbdHqhjZ2cn3UqvSxl5LUWCIMDLywvR0dHYtGmT1gOilylTBkuXLsWAAQPQr18/nD59WgpRbm5uWL58OcaPH48OHTqgfPnyqFSpEiwsLBAREYGbN28iPDwckydPVugL3dfXF23btsWlS5dQoUIFNGjQALa2tnjz5g1CQ0MRERGRbf0xz58/XxpUOjY2FqGhodLr/9NPP0nzZXa/zIpJkybh33//Rf369TFhwgSl6TKZDJs2bUL16tXh5+eHbt26oW3btgBSu0bZsWMH2rZtiyVLluDgwYOoU6cO3r9/j6CgILi5uSEkJEQp1BKRasxZxIyVsYw1ZcoUpXGNmLGYsZixiCgtZiwCmLN4LCsVc5b2mLOYsygHCLmoe/fuQqlSpYRChQoJdnZ2Qvfu3YV///1Xmu7i4iJ4eHhIvzs4OAgAlH68vb21rhkVFSUAEKKiotKdNy4uTrhz544QFxeXkc0SBEEQHjx4kOFl8nMN8bXx9fXVOJ+Li4vSazZ58mShcuXKwowZM4Tw8HC1y4qvtyp37twRPDw8BHt7e8HQ0FCwtLQUmjZtKuzatUvltnh7e6vclzL6I7+9KSkpwty5cwVnZ2ehcOHCgoWFhdCoUSOpDarar26f1vSzbds2aXkPDw+l6Xp6eoK1tbXQokULhe3Xhq+vrwBA6Ny5c7rzirXTvubqHhc9fvxYACDY2dmpnK7Nayny8fERAAht27ZVua4RI0Zo/Ixo06aNAEDw8fFRmhYaGioMGjRIqFChgmBsbCyYmpoK5cqVE1q1aiX4+PgIL1++FARBcb9KSEgQ1qxZIzRu3FiwtLQUChUqJNjb2wstW7YUVq1apbIN8s+Jg4ODyuliDfH9I/+jr68vlChRQnBzcxNOnTqltGxKSoqwadOmdPfLjH6eqGrvmTNnBJlMJpiYmAj37t1Tux2CIAjr1q0TAAi2trbChw8fFOYLDQ0VunTpIlhZWQlGRkZClSpVhHnz5gmJiYnSe+bx48cq26Ruv8pOOfHZm1N1CkKNpKQk4erVq0JSUpJO6+RHusxZ6jISc1b212DGyrmMFRgYKG2LrjKWh4dHuq97VjOWg4ODyhrZmbHE11mXGUsQ/tu3dJWxxBq6zFjy26GNzGQs+Rq6yljq9qvsxhp5qwZzlmq6PpbFnJVzNZizeCwrvcdFOXksizmLOUtXWCPv1MhIxsrId3qunuzLDQxHea9GTtXJzhriF1raEJDRGg4ODoKLi4tW84rhRT4g6Up+ez1YI+drpBfosqNGRmkK3tmJn4t5qwYPQuUOHoRiDV3VyM2MJX+yT5dYgzU0yUzGymiNjOJBqK+3BnNW7mDOYg1d1eCxrPxRI6fqfI01mLNYI6/U0NXJvjw1Zh8RERERERERERERERERaS9Xx+wjyq+KFi2KefPmwdnZOUvrWbx4sdZ99Ddq1Ai+vr4oV65clmoSERER5VW5mbEqV66M6OjoLNUlIiIiyqt4LIuIqGDjyT6iTLCwsFAa8DgzunbtqvW85cuXR/ny5VUOzkxERERUEORmxgLAk31ERERUYPFYFhFRwcZuPImIiIiIiIiIiIiIiIjyKd7ZR0REGebt7Q1LS8vcboYCb29vJCYm5nYziIiIiDItr2asvNYmIiIioozKi5kmL7aJ8i+e7CMiogybOXNmbjdBycyZM9k1CBEREeVreTVjAWDOIiIionyNOYsKOnbjSURERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRPGeR2AwqCZsOeqXjUCICqx7NT5mucXV0mW1vi6OiIp0+faj2/t7c3Zs6cma1tIKK8Qfw8EARB4fF9+/Zh6tSpKFmyJP755x9YWVmpXN7Lywt+fn5o3rw5AgICIJPJtK59+fJlVKxYER4eHvDz88vKZhBRHpHfchYzFhHpirqM5evri379+uk0YwUFBaFp06bMWEQFDHMWcxYRpWLOooKAJ/soWzVs2BDly5dXO/3kyZN4+/ZtDraIiPIKd3d3BAcH49ixYxg+fDh27typNM+RI0fg5+cHc3NzbN68WSEcubq64ty5cwgMDISrq2sOtpyIKPcxYxGROl5eXti6dSuCgoKYsYiIMoE5i4jUYc6i/IQn+yhbDRgwAJ6enmqnu7q6MiARfcU2bNiAatWqYdeuXXB3d0fXrl2lae/fv8fAgQMBAMuWLUOZMtl71SYRUX7GjEVEmsyZMwcdOnRgxiIiygTmLCLShDmL8guO2UdERDmmVKlSWLlyJQBg6NChCA8Pl6YNGzYMb9++hZubG7y8vHKriURERET5TvHixZmxiIiIiHSAOYvyi1w92Tdz5kzIZDKFn8qVK2tcZs+ePahcuTKMjY1RvXp1HD9+PIdaSzkhKChIaZ9I+6PKvXv34OXlBQcHBxgZGcHKygrNmzfH7t27Vc4v7nuq+lr38/ODTCZTeVXXkydPIJPJ4OjoqDQtIiICW7duRdu2bVG2bFmYmJjA3NwctWvXxoIFCxAfH69x2z09PTVut6r2iMtkV3/O4rZXrFgRTZo0UTtfy5YtpXalrZ1em8TnsGnTpiqnZ+S1TElJQY8ePSCTydCrVy+kpKQoTPfx8VH5OqekpKBXr16QyWTo2bOn0nIAEBISgt69e6NMmTJSO1q1aqXxMycpKQmbN29GixYtYGNjAyMjI9jb26NFixZYsWKFNF96+7i6193V1VVpepEiRVC5cmWMHTsWz54pj3kQEREBHx+fTO+XutCzZ0+4u7vj3bt3GDx4MABg165d2L17N6ysrLB+/XqF+cXPhXPnzgEAmjZtqvAcsD9zItWYs0geM1beyFhiZlEnOzKWqucQyN6MNXPmTFSsWJEZixmL6KvEjEVpMWfljZxVUI5lMWcxZxFlVq5341m1alWcPn1a+t3AQH2T/vrrL/Ts2RPz5s1D+/bt8fvvv6NTp064fv06qlWrlhPNpRxSokQJtG7dWuGxLVu2qJz32LFj6Nq1K+Lj41GpUiV06dIF4eHhOHfuHM6ePQt/f39s2rRJ52329/fHnDlzYGdnh/Lly6N+/fqIiIjA5cuXMWXKFBw6dAiBgYEwMjLSuJ60fcX/+++/uHDhgq6br+T8+fP4+++/UatWLYXH//nnH4X3bHbK6Gupp6eHbdu2ISYmBjt37oS5uTnWrl2bbp2hQ4di586daN++PbZt2wY9PcXrHpYvX45x48YhJSUFtWrVQr169fDmzRsEBQXh1KlTmDVrFn7++WeFZaKiotC+fXsEBwfD0NAQDRo0gK2tLd68eYNbt27hzJkzGDlyJADAw8NDYdnPnz9j3759MDMzU+gKAAAaNWqk1P5WrVqhZMmSAICPHz/i/PnzWLZsGXbs2IFbt25J04DU/XL06NHp7pc5bc2aNTh//jwOHjyIRYsWYf78+QCAVatWKbQfAEqWLAkPDw9pnAT57QegcWwFoq8dcxalxYyV+xnr2rVrzFhfUcZKb7/MbsxYRDmDGYtUYc7K/ZzFY1nMWbrEnEV5Xa6f7DMwMFB6M6izfPlytG7dGhMnTgQAzJ49GwEBAVi5cqVWH4qU9yUnJwMAqlSponSFg6qA9PbtW/Tu3Rvx8fGYM2cOpk2bJl0xde3aNXz//ffYvHkz6tevD1cdD4Lq7OyM3bt3o1u3bgqPf/jwAT169MCpU6fg4+Mj7b9piVfkpO0r3s/PL8cDUt26dRESEgIfHx9s3rxZYZqPjw/09fXRuHFjBAUFZVvNjLyWYl/YAGBoaIg9e/agbdu2WLduHczNzbFw4UK1dSZOnIj169ejWbNm2LNnj9IfZf7+/hg7diysra2xb98+havCQkND0bZtW3h7e8PFxQUuLi7StH79+iE4OBhOTk7Yv3+/whVzSUlJOHbsmPR72n37yZMn2LdvH2xsbFRe2RMWFqbw+5QpUxT255iYGLi4uCAkJAR79+7FiBEjpGnOzs64ePEi6tevr7COtPtlp06d1D1lOlGsWDGsXbsWXbp0waRJkwAA3bp1Q48ePZTmrVy5Mvz8/OD6/+MkpN1+IlKPOYtEzFh5I2O5uLggODiYGSuPZKy0dJGx1O2XusKMRZQzmLFIHnNW3shZPJbFnKVrzFmU1+X6mH1hYWGwtbVFuXLl0Lt3b5W37oouXryIFi1aKDzWqlUrXLx4Ue0yCQkJ+PTpk8IP5V2JiYkAUr/0tLFhwwZERUXB2dkZ06dPV+gaoXbt2pg+fToAYNGiRdnf2DSqVKmidOUQABQtWlS67X3Pnj1qlxdvQdd223XJzs4OHTp0wM6dO/Hu3Tvp8cjISGzfvh0dOnSAg4NDttbMymtpbGyMw4cPo169eli0aBF+/fVXlTXmzJmDxYsXo379+jh06BCMjY2V5vH29oYgCFi7dq1S9w/Vq1fH0qVLAUChK4ObN29i//79MDY2xpEjR5S6xjAwMEDHjh21eyIywczMDN999x0AKHXjUKVKFaVwBGi/X+pS586dpe5ujIyMsHr16lxpB1FBxpxFImasvJGxHB0d0axZM2YsLTPW3bt3mbEygRmLSPd0nbEA5qz8hDkrb+QsHstizsoJzFmUl+XqnX316tWDn58fKlWqhNevX2PWrFlo3Lgxbt++jSJFiijN/+bNG5QoUULhsRIlSuDNmzdqa8ybNw+zZs1Serx79+7pfhFZW1tLfTbr6+trmDNnbxnODmnvFFInNjZWq3mTkpIApF7Romn+uLg4AMD79+8V5hPrPHz4UFqfuvXIPy72Od2mTRuV84tXTISFheHJkyfS4+/fv1fZDnEbAODTp09K0168eKGxfdHR0diyZQtu3LiBiIgIxMfHQxAECIIAIPWLVN12iYO7fvz4UWGetO2Rf03EsJ/e864tsVZSUhJ++OEHHDhwAHPnzsXQoUMBAOvXr0dsbCy6dOmC/fv3q6ydXpvE5zAlJSXTr2VwcLDSZwEArFy5Ei1atMCMGTOQkJAgBe7379/jp59+wpw5c2BhYYEVK1bg9evXSstHRkbiypUrMDY2RuXKlVW2o0yZMgBSu4YQX4/t27cDSL1aX9v3jLz09itxneL758WLF9J80dHROHfuHPz8/GBiYoJq1aoprSM5ORmXL1/WuF9mpt3qiJ8HadeXtsbevXtx7949AKl/yK5Zs0bl1VAiVduflviHhqr3b3bJzucqt+sUhBrifkzKciJnqfuj9GvOWRnZ37V5fzBjpcqJjAX893zpKmN9+vQJP/zwAwICAnSWsZKSkhT2LV1krA8fPgDQbcYCgLNnzwLQXcYCUl9zXWastPk9K9RlLHE7xMd1kbHE51KXGQsoGNmkINVgzlItJzIWwJylCnNW/s1ZPJbFnMWcxZzFGv/RVcbK1ZN9bdq0kf5fo0YN1KtXDw4ODti9ezf69++fLTWmTp2KcePGSb9/+vQJpUuXxh9//AFzc3ONy8bHx+Px48dwdHRUedXEf9RfwZVXVahQQav5wsLCtJpXvH28RIkSGuc3MTEBkBo85ecT64iDltrb26tdj/zj4hdgvXr11M5vZWWFyMhIREVFSfNYW1urbIe4DQBgbm6uNE0M1AYGBkrTwsLC0KNHD40fBJ8/f1bbzo8fPwJIveJGfp607ZF/TcR9eMqUKZgyZQoAQF9fH0WLFoWTkxMGDBiAH374QW170hJrGRgYoE+fPli0aBH27NkjdSXwxx9/oEaNGujTp4/U13na11xVm1TR09PL9GtZqFAhlfNs374dUVFRAFKvfBKvtDl//jxu3boFILU/8vv376N3795Ky1+9ehWCICA+Pj7dsRMiIyOl1yMmJgZA6lVb2r635Gnar4D/3h/i++fHH39UmsfZ2Rm+vr6oXr260rJdu3bFP//8o7b+58+fYWpqmqm2qyJ+Hqh6j4iPPXv2TOrbfMyYMVi2bBkWLVqEvn37qr3STtx+TZ8Ply9fBqD6/ZtdtP1czA91CkKN5ORk3LhxQ2frz89yImdNnDhR6r4EYM4CtM9YgHbvD2asnMtYYq0KFSroLGOZm5vDxcUFNWrU0FnGMjAwUPhe10XGqlmzJgDdZiwAiIiIAKC7jAWkvua6zFhp83tWqMtYYnsqVKigs4z18uVLALrNWEDByCYFqQZzlmo5kbEA5ixVmLPyb87isSzmLOYs5izW+I+uMlauj9knz9LSEhUrVsS///6rcnrJkiWlqzVEb9++1dhPupGRUY4P1kmZJ3642dra5nJLMq5r164ICwtD+/btMWnSJHzzzTcwNzeHoaEhvnz5onE/TElJwePHjwEAZcuWzXBt+YGQ4+Pjce/ePQQEBCAgIAD379/HTz/9lKltGj16NPr3748DBw4AAJ4/f640mK82bZInDuCb3V69eoVRo0bBzMwMR48eRd++fXH37l0Aqd1slilTBn5+fnBzc8PIkSPRtGlTpf1M7DagcOHCcHd3z/Y2Zhf5QX1jY2Nx69YthISE4Mcff8Thw4elK7YASOEoM/ulrgiCgH79+uHTp0/o168ffvvtN3z8+BF+fn7o378/AgICFLq+IKLsoaucpfkAEuUVzFjMWJmlKmP9/fffAJixmLGICNBNxgKYs/IT5izmrMxizmLOIspOeepk3+fPn/Hw4UOVZ/oB4LvvvsOZM2cwZswY6bGAgACpf1/K/+7cuQMAqFq1qlbz29nZ4d69e3j06JHK6VFRUYiMjAQAlbfKZ5d79+7h1q1bsLa2xoEDB5QGyk3vtt+7d+/i06dPKFGiBEqXLp3h+mkHQgaAdevWYciQIViwYAGmTJmSqf7Te/XqhcmTJ8PHxwdA6tVjqq4i0rZNwH8D+KaVkdfSzs5OZb0PHz5g9erVcHV1xenTp9GgQQO8f/8eJUqUwOnTp1GhQgUsXLgQw4cPx8CBAxUGGgYgPfcymQybN2+Gnp52w5qKgUS8jV/XVA3q6+3tjV9++QXDhg3D0aNHpfbcunULxYsXz9R+qSurV6/GmTNnULp0afz2228AgN9++w0BAQE4c+aMtO8SUfZizvq6MWMxY2VnxmrcuDHCw8N1nrFKlSoFgBlLW8xYRLmDGYuYs5izmLPSx5xFpHvavft1ZMKECTh37hyePHmCv/76C507d4a+vj569uwJAOjbty+mTp0qzT969GicPHkSS5Yswb179zBz5kxcu3YNI0aMyK1NoGyUmJiIwMBAAECjRo20Wkb8ktiyZYvK6Zs3bwaQegt2elfNZYX4xV28eHGlLyEA0phu6oiBoVWrVtnWJvEPjZiYGIWBiTPC2NgYgwYNQnBwMIKDgzFgwADp9vPslpHXMm1A2rBhA06cOIEWLVpIX6wVK1aU+swePHiwdOv10KFD0bx5cxw/fhwbN25UWI+trS1q1KiB6OhonDx5Uuu2t27dGkBqX+2vXr3Serns1L17dwCQug8B/tsvbW1tM7Vf6sLDhw8xefJkKYSKXWVYWlpiw4YNAFK7q5Efl0BUqFAhAP/1o05EmjFnkYgZixkLyN6MJf5f1xmrcePGAJixtPHs2TNmLKIcwoxF8pizmLMA5qzMYs4iyl65erLvxYsX6NmzJypVqoQffvgB1tbWuHTpEooVKwYg9Y0kP/BogwYN8Pvvv2P9+vWoWbMm9u7di4MHD6bbHzHlfV++fMGoUaMQEREBV1dXrW//HzhwIMzNzXH9+nXMnTtXYXDLGzduYM6cOQBSP3B1qWLFitDX18eDBw8QFBSkMO3IkSPSFR+qPH/+HCtWrAAAafDg7CAOEmxmZgYbG5tMr2fYsGFo164d2rVrh+HDh2dX85Rk9rV8+vQpxo8fD3Nzc2zatEnhlnnx/2kfE7+Yx40bh6dPnyqsT6zj5eWFI0eOKLVTEARcvnwZp06dkh6rVasWOnbsiLi4OHTs2BHPnimOe5CUlITDhw9n6PnIqF27dgGAwmst7pehoaEZ3i91ISUlBZ6enoiJicHgwYPRokULhelt2rRBv3798PnzZ/Tr109psFp7e3sA0NhnOxH9hzmLAGYsZqz8nbG++eYbZiwtpKSkYPLkycxYRDmEGYtEzFnMWcxZWcOcRZS9crUbT/ENrU7aNzQAdOvWDd26ddNRiyg3bNq0CVOnTkVERATs7Oywbt06rZctUaIEduzYgW7dumH69OnYtm0bnJycEB4ejnPnziEpKQleXl4YOHCgytu8T58+jfj4eIXHQkNDAQAhISFKg/KKA+Z++PABU6ZMQbdu3eDs7AwbGxuMGDECy5cvR/PmzdG4cWPY2tri/v37uH79OmbMmCF98cqbMGECfH19ERkZCTMzM6xduxZr165VmEfs9z84OBienp7o0aOH0gChe/bskW67T0hIwL1796Qv8MmTJ2eq2wORnZ2ddCu9LmXktRQJggAvLy9ER0dj06ZNCv17a1KmTBksXboUAwYMQL9+/XD69GkpRLm5uWH58uUYP348OnTogPLly6NSpUqwsLBAREQEbt68ifDwcEyePBnff/+9tE5fX1+0bdsWly5dQoUKFdCgQQPY2trizZs3CA0NRUREhNIXfmbNnz8ffn5+AFL7OQ8NDZVef/k+7TO7X+qKr68vgoODUbZsWSxatEjlPGIXCIGBgVizZg2GDRsmTXN3d4evry8mTZqE06dPo3jx4pDJZOjXrx8aNGiQU5tBlG8wZxEzVsYy1pQpU6Cvr68wDzMWM1Z+yFhLly5FSEgIMxZRDmHGIoA5i8eyUjFnaY85izmLcoDwlYmKihIACFFRUenOGxcXJ9y5c0eIi4vLcJ0HDx5kpnn5toaDg4MAQPD19dU4n4uLiwBA8Pb2lh6bPHmyULlyZWHGjBlCeHi42mUBCOp22Tt37ggeHh6Cvb29YGhoKFhaWgpNmzYVdu3apXJbvL29pfVl5Ud+e1NSUoS5c+cKzs7OQuHChQULCwuhUaNGUhtUtV983jLys23bNml5Dw8Ppel6enqCtbW10KJFC4Xt14avr68AQOjcuXO684q1077m6h4XPX78WAAg2NnZqZyuzWsp8vHxEQAIbdu2VbmuESNGKO1v8tq0aSMAEHx8fJSmhYaGCoMGDRIqVKggGBsbC6ampkK5cuWEVq1aCT4+PsLLly8FQVDcrxISEoQ1a9YIjRs3FiwtLYVChQoJ9vb2QsuWLYVVq1apbIP8c+Lg4KByulhDfP/I/+jr6wslSpQQ3NzchFOnTiktm5KSImzatCnd/TI7P0/E/VrenTt3BCMjI0EmkwlBQUEal/f39xcACGZmZsKjR48Upm3YsEH49ttvBVNTU5Xvw23btgkABA8Pj+zaHCU58dmbU3UKQo2kpCTh6tWrQlJSkk7rkCJ1GYk5K/trMGPlXMYKDAyUtkVXGcvDwyPd1z2rGcvBwUFljezMWOLrrMuMJQj/7Vu6ylhiDV1mLPntyCp1GcvY2FjnGSswMFDnGUsQ8s5nL2ukYs7KHcxZOVeDOYvHstJ7XJSTx7KYs5izdCWvfPayRsYyVka+03myTwOGIx7UVkf8QksbAjJaw8HBQXBxcdFqXjG8yAckXclvrwdr5K0aqgJSdtdQhyf7vr4aPAiVO3gQijV0VSM3M5b8yT5dYg3WyCx1GSs7a6jDg1BfZw3mrNzBnMUauqrBY1n5o0ZO1WENRcxZrJGTNXR1si9Xx+wjIiIiIiIiIiIiIiIioszL1TH7iPKrokWLYt68eXB2ds7SehYvXozChQtrNW+jRo3g6+uLcuXKZakmERERUV6VmxmrcuXKiI6OzlJdIiIioryKx7KIiAo2nuwjygQLCwulAY8zo2vXrlrPW758eZQvX17l4MxEREREBUFuZiwAPNlHREREBRaPZRERFWzsxpOIiIiIiIiIiIiIiIgon+KdfURElK3GjBmDjx8/5kptOzs7eHt7o1atWrlSn4iIiEhXcjNjOTo6YsSIEWjevHmu1CciIiLSJeYsKgh4so+IiLLVmDFjcq22vb09Zs6cmWv1iYiIiHQlNzOWo6MjRo0ahQoVKuRaG4iIiIh0hTmLCgJ240lERERERERERERERESUT/FkHxEREREREREREREREVE+xZN9RERERERERERERERERPkUT/YRERERERERERERERER5VM82UdERERERERERERERESUT/FkHxEREREREREREREREVE+xZN9RERERERERERERERERPkUT/YRERERERERERERERER5VMGud2AguDZs2d49+6d0mPR0dE6r5vZGjY2NihTpkw2t4iIiIgoe+W3nMWMRURERPkFcxYREVHBwZN9WfTs2TNUqVIFsbGxud2UDDE1NcXdu3cZkoiIiCjPyo85ixmLiIiI8gPmLCIiooKF3Xhm0bt37xAbG4vt27cjJCRE+jlw4IDC71n52bJlC8zMzFCjRg38+eefWa6xfft2xMbGKl29lRWOjo6QyWRa/8ycOTPbalP2mjlzJipWrAg/Pz+Fx8PDw1GsWDHIZDL8/vvvapcPCgqCnp4eTE1N8eDBA63r+vn5QSaTwdPTU2WbZDKZUpuIKPNkMhmaNm2q9Li3tzdkMhmqV6+OL1++qFxWEAQ0b94cMpkM/fv3z3Bt8f2ele+Czp07w8TEBC9evFCaJpPJ4OjoqPS4rrdN/C588uQJAKBNmzaQyWR4/Pix2mU8PDwgk8nQqlUrtfPEx8fjm2++gUwmw+zZszPUJkDzZ2iLFi1gbm6ON2/eZHi9OSEncpa6n8zUYMYiTcT34v79+xUe13XGEon7EhFlD3V5Ji4uDq1atYJMJsPcuXPVLn/v3j2YmJhAT08P586d07puUFAQZDIZ+vTpo3WbMiIvZazXr19DT08PLi4uaufJq3+n5vWMBegmZ6k7fsWcRUSke5qySeXKlVGxYkWdZBORq6srKlasKB0TyW3qvqfzQnbYsmWL1uvLCN7Zl02qVKmCb7/9Vvq9SJEiqFChQpbXe+XKFYwcORI1a9bEyZMnUaRIkWyvkZ0aNmyI8uXLq51+8uRJvH37NgdbRNmlePHiWLNmDbp164aRI0eiadOmKFWqlMI80dHR8PT0hCAImDdvHipWrJhLrSWizJoxYwYOHz6Mv//+G97e3pg3b57SPCtWrMDZs2fh4OCA3377TWGao6Mjnj59isePH6s8GJQdTp8+jYMHD2LChAmwt7dHRESEVstlddsyyt3dHSdPnsT+/fsxfvx4lfMsX74cZ86cwalTp7Bu3ToMHjxYaZ5p06bh7t27qFOnDqZOnaowTTxwLwhCpto4f/58ab2+vr6ZWkdO0FXO0iSv5SxmrIIrqxnLz88PXl5e8PDw4IVRRHmAiYkJFi5ciB49emDWrFlwc3ND9erVFeZJTk6Gh4cH4uPjMWbMGI0ns3JS2oyVnJys1XK6yo+lSpVCgwYNEBwcjPDwcBQvXlxpvXn179T8krGA7MtZmo5fpcWcRUSUc0xMTLBlyxY0bNgwU9kkKCgITZs2hYuLC4KCgnK49dlPm+zw+fPnfHmMO8/c2Td//nzIZDKMGTNG7TyJiYn45Zdf8L///Q/GxsZSgCiorly5gpYtW6JatWrpBqW8YsCAAfDz81P7U7ly5dxuImVB165d0aNHD0RGRmLgwIFK08eOHYunT5/C1dUVo0aNyoUWElFWGRoaYuvWrShUqBAWLVqES5cuKUwPCwvD1KlTIZPJsHnzZpibm+d4G8eOHQtjY2NMmTIlQ8vl9LZ16tQJ+vr62Ldvn9p5LC0tsWnTJgDAhAkTlO4C/PPPP7F8+XIYGxtjy5YtMDDI/HVaXl5eSjmrdu3aaN++PbZs2YJr1659VTkrv2HGKtiYsYgKlpo1a2LixIn48uUL+vbti8TERIXp8+bNw5UrV1CpUiWNV9jntLyYsdzd3ZGSkoKDBw+qnSe3P0OPHTumdDxLPmPdvHmzwB/Pyo/Hr+QxZxFRQVevXj30798/32UTXUkvO8ydOzdf/v2VJ072Xb16FevWrUONGjU0zjdjxgysW7cOK1aswJ07dzBkyBB07twZN27cyKGW5pz8HpSo4Fq1ahVKliyJY8eOYfPmzdLjx48fx6ZNm1CkSBH4+vqymyiifKx69eqYOXOmdGVXXFwcgP+u9IqNjcXw4cPRrFmzHG9bQEAAbt++jU6dOsHa2jrDy+fkttnY2KBx48a4dOkSXr16pXa+Vq1aYdCgQfj8+TO8vLyku/TE31NSUjBnzhxUqVIlU+14+fIlAKB06dIqp/fv3x+CIMDLy+uryVlEeREzFlHBMmvWLFSrVg1///23QjfcN2/exC+//AJ9fX1s3boVJiYmudjK/+TVjNWlSxcA0HjxFJC7n6FBQUEqj2eJGWv58uUF+ngWj18REeUPo0aNylfZRNc0ZYe9e/fmy7+/cv1k3+fPn9G7d29s2LABRYsW1Tjvtm3bMG3aNLRt2xblypXD0KFD0bZtWyxZsiSHWpszvuagJI4/oOlHlXv37sHLywsODg4wMjKClZUVmjdvjt27d6ucX+wfV1V/65r61X3y5InacQoiIiKwdetWtG3bFmXLloWJiQnMzc1Ru3ZtLFiwAPHx8Rq33dPTU+N2q2qPuExOdtlkZWWF9evXA0i9QvL58+f48OEDBgwYAABYsmSJ2q77kpKSsGzZMlSvXh3VqlVDsWLF4O7ujtDQUJ20dfPmzWjWrBns7e2l16NKlSoYO3asyjG0nj59igULFqBZs2YoU6YMjIyMYGlpiUaNGmHdunVISUnJcBs07bfi2BaaXsOzZ89i1KhRsLe3h5GREYoVK4Y6derA29sb79+/l+bTtN8GBATA1NQUZmZmOHv2rMo6TZs21bj/pW2fun3v06dPmDlzJmrVqoXChQvD2NgYFSpUwOjRo1V2e6Kp3YDyGGjykpKSsHHjRri6usLKygpGRkZo1qwZhg4diufPnyvNL36+uLq6qqwFpPYvLpPJlLolUPc4AAQGBmp8nwLAgwcPMHjwYOlKXgsLCzRp0gTbt29X246KFStKVz+r8uzZMxgYGGjcx7Ji0qRJqFu3Lh48eIBp06YBABYtWoSLFy+ifPnyWLBggcL84mv59OlTAEDZsmUhk8mk7ciurh5WrlwJAGqfa21kdNvk3blzB926dYONjQ1MTExQrVo1LF68WG03V+7u7hAEAQcOHNDYpsWLF8PR0RHnzp2Dj48PgNQ7/R49eoRGjRph7NixCvOL32OitO9Z8T3z+fNnaXwwU1NTlbXbtWsHGxsb3L59G6NHjy7wOetrxYxVMDOWo6MjvLy8AABbtmyRtqlixYoav++0FRkZCQ8PDzg5OaFYsWIoVKgQSpYsiYYNG2Lnzp0qx+Y6ffo0Ro4ciVq1asHGxgZGRkawt7dH9+7dcfXq1Qy3QdN+k5CQIH3PqNuHY2NjsWzZMjRq1AhFixaFkZERHBwc4ObmpjRGh7rve0EQMGjQIMhkMtSvXx9RUVFKdTS9x8Q2pqWu3Tdu3ECfPn0U8mjDhg2xfv16ld83Ym5Q9V2bXv559eoVxo0bhypVqsDU1BRFihRBnTp1sHLlSiQlJSnNn957Q917WdN7HPhvDFt12wEAe/fuRevWraV90c7ODn369MGdO3fUtkMmk6FIkSL49OmTynX++uuv6ea4zCpUqBC2bt0KQ0NDzJs3DyEhIQpX00+ePBl169ZVu/zWrVtRp04dmJqawsrKCq1bt8b58+eztY3yciNjqcuP4k9QUBAcHBzg7OyMwMBAfPz4UW3t7Po71djYWOu/U8XPQE9PT5XHs8SMtXPnTmzZsqVAHs/6mo9fyWPOyt2cJW775MmT1c6j7tjCnTt34O3tjYYNG8LOzg6FChWCtbU1WrRoofZ10ET++ye9H3Xbf+bMGQwfPhylSpVCoUKFULx4cXTu3BkXL15UOb/8PrZhwwY4OzvDzMwMlpaWaNu2rdLd1vJUHVcpW7as2uMqopcvX2LixImoXr06ihQpAjMzM1SsWBGenp7466+/lOaPi4vDkiVLUL9+fVhaWsLY2BiVKlXCpEmTFI5tiTQdg8mNbFOxYsVMZxtdHGPKrMxkE1dXVzRt2hQAcO7cOYV9OLuGbtF07E882abusy8rciM76Fquj9k3fPhwtGvXDi1atMCcOXM0zpuQkABjY2OFx0xMTBAcHKxxmYSEBOl3dSE/r2BQSlWiRAm0bt1a4TF1A1ceO3YMXbt2RXx8PCpVqoQuXbogPDwc586dw9mzZ+Hv7y91kaZL/v7+mDNnDuzs7FC+fHnUr18fERERuHz5MqZMmYJDhw4hMDAQRkZGGteTtq/4f//9FxcuXNB18zPEzc0Nnp6e8PPzQ79+/VCsWDG8fv0arVu3VnnrMwCkpKSgW7duOHjwIAoVKoS6devCzs4Oly9fRt26ddGvX79sb+fp06cRGRmJGjVqwNLSEnFxcbh8+TKWLVuGzZs3S7eni7Zt24affvoJZcuWRcWKFdGwYUO8fv0aFy9exIULF3Dq1Cns3bs3W06sPHz4UOMJBSD1ipsVK1YAAGrVqoXGjRsjKioK9+/fxy+//IKmTZumeyAvICAAHTt2hEwmw9GjR6UvaHXc3d1RuHBh6ffg4GA8fPhQq216+/YtmjRpggcPHsDY2Biurq6wsLDAX3/9BR8fH2zbtg2nT59WGA8is6Kjo9GhQwcEBQWhcOHCcHZ2RrFixRASEoK1a9diz549CAgIgJOTU5ZraZKYmIjhw4drnGfPnj3o27cv4uPjUblyZbRt2xZRUVG4fPkyfvzxR5w9e1btCT0gdXwTVe+PlStXaj2OSmbo6+tjy5YtcHJywvLly1GhQgV4e3tDT08PW7ZsUTpxVL58eXh4eGDv3r2IiYmR9qVPnz7B3NwcJUuWzHKb4uPj4e/vD0NDQzRp0iTT68notomCg4PRunVrxMTEoFy5cmjZsiXevXuHadOmqf0DqnPnzhg1ahT27duncV8Rrxhr1qwZpk6dCn19faxbtw5mZmbw8/ODnp7i9Vm1atWCh4eH9N3o4eGhMF18Hw8fPhwVKlTA5cuX1dY2NDSEq6sr9u7di3///VdhmjY5S/5gf17PWcSMVdAyVteuXXHp0iVcuHAB//vf/9CoUSMAqe9FTScRtBUZGYndu3ejevXqaNiwIczMzPDmzRsEBwfjr7/+wsWLF3HixAmFZYYMGYLnz5+jatWqaNiwIQwMDHDv3j3s3r0b+/fvx65du+Du7p7ltgGpJxHCwsLUTn/+/Dlat26NO3fuwNTUFA0bNoS1tTVevnyJ8+fPIzQ0FAEBARprCIKAwYMHY8OGDahfvz78/f01dkGYkfeYKrt370afPn2QmJiI0qVLo1OnToiOjkZgYCD++usv7N+/H4cPH0ahQoW0Xqc6f/75Jzp16oQPHz7A0dERLVu2REJCgjTu1pEjR3D06FEYGhpmuZYmwcHB2Lp1q9rpSUlJ6N27N3bv3g0jIyM4OzvDzs4ODx48wI4dO7B//37s379f6XkXff78GZs3b1bqyjoxMRGrV6/Ozk1R4uTkhOnTp2PmzJno27cv2rRpg1u3bqFGjRrw9vZWu9zo0aPh4+MDPT09NGrUCLa2trh16xZcXV0xcuTIbG9nbmUsdflRJOZHd3d3hISE4PDhw+jbt6/a+tnxd6qrqyuKFi2q1d+px48fBwBUrVpV5cUM8hnLwMAgU8ez8nLO4vErZcxZeTtnqbJ06VJs2rQJlStXRvXq1WFpaYlnz54hMDAQZ86cwaVLl7B06dIMr9fMzAxdu3ZVOU3TcZYJEyZgyZIl0NPTQ+3atdG4cWM8e/YMhw4dwpEjR7BhwwbpQq+0xo0bh2XLlqFhw4bo2LEjQkNDceLECQQEBGD37t3o3LmzwvyfP39Gy5YtlY6rhIaGajyucubMGXTt2hUfP35E8eLF0bx5cxQqVAhPnjyRLqRq0KCBNP+rV6/QunVrhIaGwsrKCnXq1EGRIkVw/fp1LFq0CHv27JEu7siq/JJt1NHmGFNWZTSbtG7dGsbGxvD391f6jLOxsdFpWz98+KDxJH52UJcdGjdurJPsoGu5erJv165duH79utZXeLZq1QpLly5FkyZN8L///Q9nzpzB/v37NR7snDdvHmbNmqX0ePfu3dN9Y1tbW0tn9/X19VXO8+zZM+lf+WATGxur8Q9PVW7evAkvLy9UrFgRK1euxJs3b/DmzRu182emhqY2Z6WGeGXE27dvNc4vduXx/v17hfnEOuIVfY6Ojpg+fbrCsmJAkl/u3bt36NmzJ+Lj4zF27FgMGTJEOhETGhqKfv36YfPmzShbtizc3NykZcWrRtK2Q9wGIDVIp5324sULaXvTTrO2tsbWrVtRv359hcejoqIwduxYBAcH4+eff5auDkhLvErRzc1N6qoEAPbv348LFy5I7ZF/TcSwn97znhHic5PeOkeOHAl/f3+cPn0aAGBubo5p06apXWb79u04ePAgbGxssHXrVtja2sLU1BRJSUmYM2eO9Ie2qudd2zaltXr1alhaWio8lpycjEmTJuHIkSNYtGiRwpdGlSpVcPToUaVBV9++fYuBAwdi//79WLFiBdq0aSNN0/Y9knaeAQMGICEhAba2tnj16pXStm3duhUrVqyApaUlFi1apDAwLpD6eaGnpycto2q/vXDhAoYOHQqZTIZ169bB3t5ebVvF9/CIESNgZ2cnPT558mQ8fPhQqX2q9r2BAwfiwYMHsLe3h5+fH8qUKQMgNax4e3tj79696NixI06ePCkdoNL0fpNv1+PHjxX6Ex8/frw0QPDcuXOlroZiY2Oxe/duzJ07F126dMGJEyekz2/x/RsXF6f2eRA/o168eKEwj/zjRYsWlaZt2LABd+/elV7HtNtx//599OnTBzKZDCtWrECrVq2kaS9fvsSQIUPg6+uLypUrKwRvsV79+vVx6dIl/P7776hTp47C9PXr1+O7776Tru7LzGdASkqKxuX09fUxduxYzJs3TwqcAwYMQLFixZSWK1GiBKZPn47Tp08jJiYGw4cPh729PWJjY6UDO2n3V1WfwZr89ddfSEhIQPXq1aXXU+zyMqMqV66MuXPnYty4cdK2TZw4UeGPEnnx8fHo1asXYmJiMGbMGCxevFjat27duoXmzZvj3bt3SsvZ2dmhfv36+PPPP/Hu3TuNYVg8gOfj4yMdyFu4cCH+97//Kc3bqVMndOrUSfpuVHUVopizOnbsqPFkH5D6x9jevXuxZ88eTJw4UeuctWjRIvz6669Kj+fFnJVRmamRkYylbQ1mrJzLWPLPly4zVkJCQrZlrMGDB6NYsWK4cOECatSoIb224mev/DLivpSR7UlOTsb169eVxgt99eoVOnfujJMnT+L48eOoUKGCNG3cuHGoW7cuLCwsFJYJCAjA6NGjMWDAAFSsWFHpoLcqsbGxavebFy9e4Ndff5W+g9NuW0pKCrp27Yo7d+6gUaNGWLx4MaysrKTpCQkJuHjxosL7MG0OEAQBP/30E3bv3o1atWph9erVePv2rcreCjL6HpMnPv7q1St4eHggMTERP/zwA7y9vaXP0mfPnsHT0xP+/v4YPXo0xo0bJy2vLr+Ij4nzyE+LiIhAx44dERUVhZkzZ6JHjx7ShSUfPnzA6NGjcerUKUyYMAEjRoyQXo/03hvq3svqHk9KSsKAAQOgr68Pa2trhIeHK23H0qVLsXv3btSsWRNLly5V6Jb65MmTGDt2LHr06IEzZ85IJ2LFera2tjA0NMSyZcvQtm1byGQy6TU/evQoXr16JeUpdXlUHU15Rn6/+uGHH7Bnzx78888/uHPnDgwNDTF79mxpn0krMDAQPj4+MDU1xYYNGxQy4Nq1a6WDzsnJyWo/Z7MjYwGZy1kZyViNGjVCo0aNEBQUhJiYGKmng7Tc3d0xbdo07Nu3T+PJPgBYtmwZzpw5I32GWlpaYuPGjWrnX7NmDQ4ePIgSJUogMDBQ6jY9KSkJo0aNUntCeNeuXXj9+rXGtgD/ZazixYtn+HhWXs5ZGT1+lRZz1teXs3R5LEvcdlXbJ1J3bKFp06bo2bOndPxC9OjRI3h6euK3335DgwYNULNmTQDp71fic21paam0L4jUHWf5448/sGTJEjg4OGDRokWoVauWNO3q1asYNGgQBg8eDHt7e5WflWvWrIGfnx++++476bGNGzdi4cKF8PDwQKlSpRS6aZ4+fbrK4ypA6t+Xqo6rvH79Gp07d0Z0dDQGDRqEUaNGKVyA9P79ezx+/FjarpiYGPTo0QOhoaHo2rUrpk2bJl3UkZSUhMWLF2Pz5s3o0aOHwsmxjGQb8TXJTLYB0t8fdZFtVG1fbGwspk+frvEYU3rSywHic5WRbOLu7g57e3v4+/vDwcFBab9WtV1p32fpUff+nDlzJiIiIqTnQ9wubb9DsnKMe8aMGVof4xYvdMjIMe7w8PB0258pQi559uyZULx4ceHmzZvSYy4uLsLo0aPVLhMeHi507NhR0NPTE/T19YWKFSsKw4YNE4yNjdUuEx8fL0RFRUk/z58/FwAIUVFR6bYxLi5OuHPnjhAXF6d2npCQEAGAEBISovD4gwcP0l2/vMuXLwvm5uZCgwYNhE+fPmm1TEZriNS1OSs1HBwcBACCr6+vxvlcXFwEAIK3t7fKOidOnBAACC1btlRaFoCQdpedPXu2AEBwdnZWWW/x4sUCAKFChQoK2+Lt7a2yHYIgCL6+vgIAwcPDQ2na48ePBQCCg4ODynrqnq/79+8LAIQ6deqonC4IgtCtWzcBgLB9+3aN7ZGv4eHhodXznhHic6PNOufPny+9Lj4+PhrnLV++vABAWLNmjSAIitsRFxcnlCxZUu3znpE2yVP1eqSkpAg//vijAECYNGmS1uvy9/cXAAjdunVLt4Y8Vfvt/v37BQCCm5ubytcwMTFRKFasmABA2Ldvn1bvw7T7yalTpwQTExPBzMxMCAoKSnd5GxsbAYDw8uVLhcfV7WNpHw8LC5O2df/+/Urrj4mJkWrs2LFDenznzp0CAKFdu3Yq2yV+tjx+/Fh67M6dO4JMJhNsbW2VPi/F56pt27YCAOHIkSPStMDAQAGA4OLiovZ5ED+jAgMD1T4u1nj+/LlgZmYm2NraCitWrFC5/3bv3l0AICxevFhlvStXrqj8DBPr/fHHH4KRkZHg7u6uMH3NmjUCAOHQoUMq9zFtABDs7OzSnS8+Pl6wsLAQAAi2trZCfHy8xvnTvmaq9l9xf1X1GazJokWLBABC3759pceSkpKEq1evCklJSdJjmj6n5WVk27Zv3y4AEEqXLi18+fJFafpvv/0mvRby+6t8uzds2JBum16+fCno6elJ+0VKSorG+dW9/vI5S/wMrVSpktqcJX7GWVhYaJWzxIz08ePHfJGzMiMzNTKSsbStwYyluB1pZWfGkq+jy4w1f/78dOfNSMbStB3yxH0pO7x8+VKwsrISAAh37tzRermePXsKAIRjx45pNf+DBw/U7jcdOnSQspKqffjgwYMCAKFUqVJCdHS0xhoi+e/7lJQUYeDAgQIA4bvvvkv3cy2j7zFVj0+fPl0AIJQsWVKIjY1Vmn/v3r0CAKFIkSIKn52tWrUSAAh79uxRWkZd/pk8ebIAQBgxYoTK7Xnx4oVgaGgoFCtWTPouevDgQbrvDXXvZXWPL126VAAgjBw5UmUOe//+vWBiYiIYGxsLL168UFlz2LBhAgBhxYoVKustX75cIReKr3m9evWEkiVLCuvWrVP72aSJpjyT9j24a9cu6fUeN26cxvW2aNFCACBMnjxZ5fRatWoJAIS6detmqE2aqMpYgqCcs3SRsQRBdeZPq2rVqoKxsbHG97MoK3+nylP3d6qYs4YMGSK9H9QdzxIzVrVq1bQ+npXXc1Zmjl+lxZz19eUsXR7LEmt17txZ7TzafM6kJX4/TJw4UXosvf0qvedaEFRvf3JysmBraysAEK5du6ayzsKFCwUAwvjx4xUeF/exMWPGqKxXu3ZtAYDw66+/So9pOq4iUnVcZcyYMQKQejxLGxs3bhQACLVq1RISExOVpicnJwvVqlUTAAihoaHS4xnJNuJzlZlsIwjp74/ZnW0EQfWxpz///DPdY0zpSS8HyO9XGckm2hxPE4T/tisj7zNBUP3+vHbtmqCnpyc4OTkJM2bMUNgubb9DsnKMW1ONzGSHtG3atGmT0rEsdbT5Thfl2ph9ISEhCA8Px7fffgsDAwMYGBhI49QYGBiovLqpWLFiOHjwIGJiYvD06VPcu3cPhQsXRrly5dTWMTIygrm5ucJPXsOuD/4jXgGQXvcAIrFv47Tdl4n69+8PIPUqA1VX4Ga35ORknDlzBrNnz8awYcPg5eUFT09P6Wq8+/fvq102JiYGgPoxlfKa8PBwLF68WPp99+7dase0e/nypdQ1XJ8+fZSmGxsb44cfftBNQwHMmjULnp6ecHd3h6OjI7Zt24aSJUti2LBhSvMmJCTgyJEj+PnnnzFkyBDpNVy3bh0Aza+hNmJjYzF27FiYmJhg+fLlKucJCQlBREQEbGxslLpZ0IbYdWdcXBy2b9+udFegKmI//Nq+90QbN26Ep6cnBg8eDACwsLBAp06dlOYzNTVFu3btAKRerSyqXLkygNT3sqq+uVU5fvw4BEFAmzZt1H5eit2bquorPruMHTsWMTExWLJkiUJ3Q6KUlBSpa7Pu3burXEft2rVRuHBh3LhxQ+VYCMWLF0ePHj1w8OBBhf7yfXx8UK5cObRv3z6btka9X3/9VRqb6NWrVzh37pzOa6ojfo7LX3GYFRnZNvH75ocfflB5JbW67yEAUnd14th5mkyZMkX6LA0NDcU///yT7jKqyOesX375BUDq55e6nCU+p2ZmZgUuZ1EqZqyCmbFyysuXL+Hp6Ym+ffuiVatWKF++PCIjI9GzZ0/pLhh5r169woYNGzB+/HgMGDAAnp6e8PT0lD7Tspqnjh07hsOHD6NVq1YKdxHIO3nyJACgV69eKr+nNRHkuu4sXbp0ul13Ahl/j8kTn59t27YBSP2uMTExUZqvS5cuKFq0KKKjoxESEiI9LuaprVu3at3F97FjxwCozyh2dnaoUKECIiIidHYn9evXrzFz5kyUKFECs2fPVjlPYGAg4uLipLGUVEkv93l5eaFIkSLSmLgAcPnyZVy+fBmDBw/Oli5RNYmLi1PoFuvw4cOIjY1VOW9SUpLUraOqv5sApHtnW2bkZsbSlru7O+Lj46WuM9XJib9TxZwl/o3Yv39/tcezxOc0MjKyQBzP4vEr1Ziz8k/OUuXz58/Ys2cPpk2bhkGDBknfy/v27QOQ9dyijRs3buDVq1f43//+B2dnZ5XzpPd9p25/Er835MeHy+xxFTFfDRo0SO22yBNruru7K/UUAQB6enpS99HydQpytlFn7ty5Go8xZaeMZJPckJKSgmHDhkEQBKxatUrtHerZJT8d405PrnXj2bx5c6UBC728vFC5cmVMnjxZ44tobGwMOzs7JCYmYt++fbn6BGYVg5Ii8VZWVYNbq/Ly5UsAqQN5q2JpaQkrKytERkZmqEuJzAgLC0OHDh00fmFo6mNf3JbM/IHl5eUl9dmtr6+PokWLwsnJCQMGDNDZ+2Pw4MF49+4dOnXqhJs3byI4OBjLli1T6FJIJN7abmNjo/YLS91rmB2OHDmicEDE1dUVW7duVegCCAAuXbqE7t27S92DqJLVcRLmzJmDp0+fYtasWWq3WbxtvlKlShkeH/DatWvYvXu39MfG9u3bVZ58k5eYmIjPnz9DT09Pqcut9Fy4cEGhH35xUF1VxOdb3NeB1HHHWrZsiYCAANSqVQuurq4KXa+q6hbx0aNHAIBNmzalO4ZBRESE0mPigMJZIY7f2KxZM/To0UNlF4rv37+X9pe0+5oq79+/V3kQa/To0diyZQtWrVqF+fPn49SpU7h7967Uj78uXbt2DfPmzYOhoSEGDRqEVatWYcCAAQgNDc3wvpIdxING2XGgI6PbJn6OqXvfFi1aFBYWFlIb5ZUtWxZOTk44c+YMoqKi1D53hw4dwrZt22BpaYlOnTrBz88PHh4euHz5sso/jDSRz1mrV6/GmjVr4OjoiEaNGqnMWeJz+uHDhwKVs+g/zFgFM2PllA8fPiiMOWRoaIjhw4dLYwvLmzVrFn799VeNXfdkJU/Fx8dj1KhRMDIyUllfJOYp8WBRRkyaNAnXrl0DkDruX1BQENzc3DQuk9H3mLy04zmpe9/JZDKULVsWHz58UMhTw4YNw4YNG3DkyBFUq1YN3377rXRhirr3p5inGjdunG77IiIilLq5l39vZNb48ePx6dMnrFixQu13o9jOM2fOpJvfVOU+IHVcXC8vL6xYsQJ3796FgYEBli9fjkKFCmHIkCHSgUtdmTp1Ku7fv4/vvvsOgiDg0qVLmDJlisLJR9H79++lC8DU7Qe6+LspNzOWttzd3fHLL7+km01y4u9UMWeJGWvWrFk4dOiQyuNZ8hkLyN/Hs3j8Sj3mrLyRsw4cOJDhv/WPHDkCLy8v6TVUJSfGyxS/7x4+fJjp77v0vjfku2nO7HGVjOYr8aLln376CT/99JPWdYYNG4aNGzcWyGyjyqlTp3Dy5EmNx5iyU0aySW7YuHEjrly5Ai8vL3z33Xfw9/fXaT1V2cHPzw/z5s1Tmje3j3GnJ9dO9hUpUgTVqlVTeMzMzAzW1tbS43379oWdnZ30xF6+fBkvX75ErVq18PLlS8ycORMpKSmYNGlSjrc/OzAoKRNDgq2tbS63JOO6du2KsLAwtG/fHpMmTcI333wDc3NzGBoa4suXLxqv8EpJScHjx48BZO4DQX4g5Pj4eNy7dw8BAQEICAjA/fv30/1Czaht27bh4MGDKF68ODZs2IDQ0FA0b94cM2bMQPv27ZW+MHObeLAmIiICgYGBGDNmDFxcXODv7y+NMRMbG4tOnTrh7du38PLywtChQ1G+fHmYm5tDX18fDx48QKVKlTI9PhgAPHjwAEuWLEH58uV1NsDsP//8A1NTUxw/fhxTpkzBvn37sGnTJunKQFXEcW6KFSuW4RMKvr6+0hVv6gafTs+BAwfw888/Y9euXTh8+HC6z7F4dU2tWrWkfvNFnz59UjhIUa9ePaXlVQ2aLjp58mS6V05++fIFI0eOhKGhIVauXJluOwHNd32J1H1GODk5oXHjxti4cSNmzpyJ5cuXw8zMTONrmh0SEhLg4eGBpKQk/PLLL5gxYwbu3LmDwMBAjBs3LkcGi09LPBGc1T+2cmPb3N3dcePGDRw5ckTl1V/v3r2Tro708fFBt27dcOnSJVy/fh3z5s3L8Oe4fM4qXrw4gNR9TF3OEg/yGRsb49GjRwUiZ5EiZixmrKyoVq0aBEFAUlISnj17hrVr12LRokX49OkTtmzZIh2U2r9/P2bOnInChQtj5cqVaNasGWxtbWFiYgKZTIZp06Zh3rx5WcpT8+fPx6NHjzBjxgyFsQKz07Vr11CvXj389NNP6NixI/r3749bt26hZMmSapfJyntMfD7c3Nxw9OjRDC9fsWJF/P7771i7di3Onz+Pe/fupbuMmFO6du0KMzMzjfOqOoAr/96Q9/nzZ+lOCE2CgoKwc+dONG7cWOOdamI7y5cvj4YNG2pcp6YDjyNHjsSKFSuwcuVK9OzZE3v37sUPP/yg8TXNDuLdXiYmJvDz80NKSgqcnJywcuVKuLu7a9UDR07IDxmrRo0aKF++PI4fP474+HiV437m1GeomLPEjGVvb6/2eJbYw4OZmRn279+fb49n5YXjV+IdZHkRc1beyFllypRB06ZNVU7bu3ev0j708uVLdO/eHXFxcZg0aRJ69+4NR0dHFC5cGHp6ejh16hRatWqVpdyiLfH7rmTJkmjVqpXSsQ15msaB10R+OzQdV0lL1XEVbYl1GjVqpHIsenlVq1aV/l+xYkUEBwdj6tSpBS7bpKXtMabsktezyfv37zFt2jQULVoUCxYs0Hk9ddlh2bJl0ti0+UmunezTxrNnzxTuWoiPj8eMGTPw6NEjFC5cGG3btpWugM9v8kJQyovu3LkDQPEDXhM7Ozvcu3dPunojraioKERGRgJIPcCvK/fu3cOtW7dgbW2NAwcOKJ0wSe/28Lt37+LTp08oUaKEVncApSV2jyRv3bp1GDJkCBYsWIApU6akO4C3tl6+fIlRo0ZJNWxsbNC0aVMMGzYMq1atgpeXF86fP6/w3hXvVnr37h0+f/6s8soHbbtwzIpixYpJ3SJ16NABkydPlrrV+/PPP/H27Vt8++232Lx5s9Ky2XGL/4gRI/Dlyxf4+PhoDMziwNAPHjzIcKg0NTXFkSNH0KxZMzg4OMDZ2RmjR49GkyZN1B4Qy+j7ThVxv33y5AkEQVB5JZp49Uvau9fMzMywZMkSLFmyRGkZR0dHpQGCxVoNGzZUCkJhYWHpHvirXLmy2qukXF1d0z3Zt2nTJjx48ACTJk1S2XWZyMbGBiYmJoiLi8PixYszHcgBYNSoUejWrRtmzpyJEydOYMiQITq/s048OOPs7IypU6dCJpNh8+bNqF69OjZv3oxu3bqpPWmqK+IBFU1XXWojM9sm7rfqPqs+fvyo8q4+UZcuXTBjxgzs27dP5cm+YcOGITw8HB07dsSPP/4IIHVQ9IYNG2L27Nno2LEjatSokcktVk0+Z4nPaVxcHL755pt8n7NIGTNWwcxYOc3AwADlypXDwoULcfPmTWzbtg1du3ZFhw4dAKR2eQOkduGnqnunrOapR48eYcGCBXB0dMS0adM0zivmKW0ODqVVr149+Pv7w8LCAtOmTcPs2bPh6emJEydOqL3aPjvzlLr3HQDpoGraPPXNN99I3YfLCwoKUnngs3Tp0ggLC8PkyZNRu3btDLdV1XsDSP2eTO+AWGJiIoYPHw4DAwOsWrVK47zic1KpUqUsXeVevnx5tG3bFlu3bkV0dDQSExOl95uufP78GV5eXhAEAXPnzpUOFs2ePRsTJ05Ev379cOvWLYUDktbW1jAyMkJCQgKePHmicn/Sxd9NuZmxMqJLly5YuHAh/P390bFjR4Vpee3vVDFnic+ppaVlvj2elReOX0VHR2PEiBE5XldbzFl5I2c5Ozur/a4ICgpSOtl35MgRxMXFoXPnzipPKuiqq0dVxOfP2toafn5+Wh3bSOvx48eoVauW0uPi55i9vb1SPVXHVTQpU6YM7t+/j3v37qk8MZZWqVKlAAAdO3bEhAkTtK4DpJ6ILIjZJq1FixbhwYMHGDhwoMZjTNkhJiYmw9kkp02ZMgXv37/H6tWrUaxYMZ3WymvZITvk3l+KKgQFBWHZsmUKv8t/SLu4uODOnTuIj4/Hu3fvsHXr1nx51UxeCEp5UWJiojSWV6NGjbRaRuw/Om3XNyLxpE2FChV0etWmGMKKFy+u8s6o7du3a1xe/NJo1apVtrVJPFgcExOjsivEzOrfvz8+fvyIPn36KHQPuWDBApQrVw5//fUXli5dqrCMvb29NBbB77//rrTOhIQE7NmzJ9vamB7xy+Lu3bvSY+JrKB4YSiu91zA9e/bsQUBAADp16oQ2bdponLd27dqwsbFBREQEDh48mKE6Xbt2RbNmzQCkHvRZvHgxYmJi0KtXL7XdaZ06dQqA9u87VZycnFC0aFFERUXhwIEDStPj4uKk/tPF9mWW+PwdPnxY5Th3uvT06VOsXbsW9vb2+PnnnzXOq6+vj5YtWwL47+BnZnXu3BllypTBggULIAgCRo4cmaX1pefChQtYunQpjIyMsGXLFulzzdHREYsWLQKQGoRVndwSx71JSkrK9nZ9++23AP77YzozMrtt4tVtu3fvVvle2rp1q8a6VapUQZUqVeDv76/0R+bOnTuxZ88eWFtbS2O/AKkHmydMmIDExER4enqqrCv+8avN8z1lyhS1Oev27dsAUvucz+85i5QxYxXcjAXo9nNXEysrKwCq85SDg4PS/OHh4QgICMhSzVGjRiE+Ph7Lli1TOaadPPGEws6dOzN8N8i8efOki2p+/vln1K9fH/7+/mrHW87Me0wVMSPJd8ku78CBA/jw4QPMzc0zdRBLnpinsppRMmPZsmW4c+cORowYgerVq2uct3nz5ihUqBCCgoIQHh6epbqjR4/G58+fsW3bNtSrVw9169bN0vrSM378eDx+/BhNmjTB6NGjpcfHjRuHBg0a4NGjR0q9fRgYGEh3MO7YsUPlesWxHbNTbmYsQPvPMU3jIOf236nqjmeJGcvV1TVfHs/KC8evoqOj0bp1azx8+DDHa2uDOSt/5CxVNOUWQRBUfi7oSp06dWBjY4M7d+5ketx2dd8P4uPifgdk/riKmK82bNig1fzieHx79uzR+R2S+SXbyHv69Cnmzp0Le3t7DB8+XIctTDV//vwMZxMg5/7euHLlCjZt2gRnZ2cMHjxYp7UAzdmhdOnS+eIYd1p56mTf1yAvBKW82PXBly9fMGrUKERERMDV1VXr2/8HDhwIc3NzXL9+HXPnzlX44rhx4wbmzJkDAJg4caJO2i2qWLGi1NWj/IC3QOqVQr/99pvaZZ8/fy6NNzJ06NBsa5M4cLmZmVmW7iiSt379evj7+8PW1lapH2czMzP4+vpCJpPhp59+UhrAeMyYMQCAmTNnKlxhnZycjAkTJkhdSWaX9+/fq/xj9f3795gyZQqA1JNhIvHqmTNnzigtt379evzxxx9Zas+4ceNgamqq8AegOgYGBpg+fTqA1EGPr169qjTP1atXFfpbF6W92nz48OFo164drl27pvLk1KlTp7B27VoYGhqqvNtIW4aGhlJQmDBhgnTVOZD6x8/o0aMRERGBcuXKSX+kZ5aTkxPc3d3x/PlzdOnSReUVMzExMdixY0e2D2Y+Y8YMxMXFYenSpVpd6eTt7Y1ChQph4sSJ2LJli8oBfm/fvq3ygIU8fX19zJ49G+3atcPYsWN1erVXbGwsPD09kZKSglmzZildnTp48GA0b94cL1++lN7X8sSrBTP7B4omDRo0gJGREW7evKnyIGh6srJtXbt2hZ2dHZ49e4apU6cqvJa3b9+Wvm80cXd3R1xcnMLViW/evJGuUl61apXSlbuzZs3CN998gxs3bmDu3LlK68yu51scDD2rJ+Mp72HGKvgZS/wcyMpBenX+/vtvlXf6BAYG4siRIwBU56n169fjy5cv0uNRUVHw8PDQeAd0es6cOYNjx46hbdu2Snf0qNKhQwc4OTnh1atX6Natm9J2xMfHq7xaHFDMUwYGBtixYweKFCmCKVOm4NatWwrzZvY9pkrHjh1RoUIFvH37FqNHj1a4yOPx48cYP348AEhjFmbFxIkTYWlpiaVLl2LJkiUKr5d8zaxe8JZWVFQUfvnlF5QqVQqzZs1Kd/4SJUpg5MiRiImJgZubmzQerbyEhAQcPnw43bs4W7Zsib59+8LV1TXdi7ay6vz581i/fr3C+1ekp6cHX19fmJiYYPXq1UqfbWIGWbFihfT9LFq4cCGuX7+e7e3NzYwFaJ9n6tSpg9KlS+Pw4cMK74+8/Hdqfs5YeeH4lXii7/bt21i9enWO108Pc1b+yFnqiLll7969eP36tfR4cnIyfv75Z6XPYF0yNDSEt7c3BEFA586dpeFo5CUnJ+Ps2bO4dOmSynWsWbNG6XX87bffcOXKFRQpUkRhKBAnJye0atUqw8dVxo0bhyJFiuDw4cOYMWOG0gWp4eHhCA4Oln5v0aIF6tSpI42/pmq8wQ8fPmDt2rVZPpGUX7KNvBkzZiA2NhZLly6FqalptrYrLX9/f/zxxx+Zyibi93RYWJjGcbmzSsy6q1at0nlvJullh/nz5+eZY9wZkae78cxP5K9oBVK7bIiOjlZ47Pbt2xg2bBj+97//Yf78+Vm+HVxVjfTExMTofJynjNq0aROmTp2KiIgI2NnZKdzVkJ4SJUpgx44d6NatG6ZPn45t27bByckJ4eHhOHfuHJKSkuDl5YWBAweqfL5Pnz6tdAWL+AdkSEiIdFJIJB6g+PDhA6ZMmYJu3brB2dkZNjY2GDFiBJYvX47mzZujcePGsLW1xf3793H9+nXMmDFD5YHgCRMmwNfXF5GRkTAzM8PatWuxdu1ahXn+/fdfAEBwcDA8PT3Ro0cPpVv59+zZI324JCQk4N69e9LdWpMnT86W7qWePHkifeiuX79e5cDTTZo0wciRI+Hj4wNPT09cuHBB+nAePnw4AgICcOTIEdSsWRP16tWDnZ0dLl++jNevX2Po0KFYs2ZNltspev78OTp16oT//e9/KF++PKysrPD27Vv89ddfiI+Ph42NjcJr4uTkhI4dO+LQoUNwcnKCq6srrKys8Pfff+P+/fuYNm0afv3110y358WLF5gzZ47KK8ZUGT16NO7fv4+1a9eid+/eWLx4MSpVqoRPnz5J3X0EBgYqdMOgzubNm1GjRg0sXLgQrVu3houLC54+fQp3d3eEhIRAT08P06ZNy/K4N9OmTcPFixfh7++Pb775Bk2bNoW5uTkuXryIZ8+ewcrKCvv27ZOuCMoKX19ffPz4ESdOnEClSpVQs2ZNlC1bFtHR0Xj37h1u3ryJL1++4O7du9na7cmLFy/QsGFDdOvWTav5v/32W2zfvh2enp7w9PTEjBkz8M0336BYsWKIjIxEaGgoXrx4ge7du6NLly4a19W3b98M9fueWZMmTcK///6L+vXrq+xmQyaTYdOmTahevTr8/PzQrVs3tG3bVpru7u6OwMBA9OnTB99//z309PRgYWGBiRMnolKlSllqm7GxMVq1aoXDhw8jKCgo3btks3PbTExMsGPHDrRt2xZLlizBwYMHUadOHbx//x5BQUFwc3NDSEiIUrez8tzd3TFnzhyFMS4HDhyIyMhIdOvWDd27d1daxsjICH5+fvjuu/9j787Do6zv/f+/EsgGWSEsIUCCIhCFgIC0Ea0oUBEMYKunVWyU1p6jcs6BLkekxQMoNNhqK35tU4q4VMgPL6l6rAsUKZGCYhIQTCEFrNmEsASSyUIyCcn9+4MmELICc89935Pn47q4Lmdyz+f1mUyWt/PKzJ2kFStWaPbs2c3OqfDtb39bzzzzjKZMmaLbbrut6UmYp59+utXzELSmrq5O27dvb/r82lFn5ixPu5yMi/dpNWasS5uxHn/8cXXr1q3ZMU6Ysb7+9a9rwIAB+uyzzzR27FiNGjVKZ86c0YQJE674ScJXXnlFv/vd7zRmzBgNHDiw6QnBxsLrzjvv1IwZM5qOX7Bggf74xz/q/fff11VXXaWvf/3rqqur00cffaQePXro+9//fqtvl94ZX331lYKDg1v8z3hb/P399dZbb+n222/XBx98oMGDB+umm25S7969deTIEe3bt0+RkZGderXhVVddpRdeeEEPPPCA7rvvPmVnZys4OFhr167V4sWLdezYsUv+HmtNQECAXn/9dU2dOlVr1qzR5s2blZSUpIqKCv31r39VTU2Npk+f7pGiauDAgfq///s/ffvb39ZPf/pT/fKXv9TIkSMVExMjl8ul3Nxc/fOf/9TXvva1K/qDsIuVlZVJkn7/+9+3eS6ii61cuVLFxcVKT09vOrfQVVddpe7du+urr77S3r17VVVVpQ8++KDd8/ZJ515FczlvjXYpysrKmv5w75e//GXTX39faNiwYVqxYoV+/OMf6/vf/75ycnKa/pAsOTlZ8+bN029/+1vdfPPN+sY3vqGYmBh9/vnnys3N1fz589t8lenlsnLGklrOj40/By+eH/38/PStb31Lq1at0l//+lfdfvvtHv//1FtvvVVRUVEe+f9UJ8xYUutz1ieffOLR568u1pk5q6qqSv/5n/+pf/7zn/rd737X4ne01ZiznPFcVnuSk5M1btw47d69W8OGDdMtt9yinj176tNPP9XRo0e1cOFCr5wzrNF//ud/qrCwUL/61a903333acWKFRo6dKhCQkJ07Ngx7d27V2VlZUpLS9PXv/71Frf/j//4D9122226+eabFRsbq7///e/KyclRt27d9NJLL7V4lWhqaqrOnj3b4nkVwzCUn5/f6vMqgwcP1saNG3X33XdrxYoVevHFF5WUlKSAgAAVFBTos88+03333df0Kld/f3+9/fbbmjFjhl599VVt3LhRo0eP1uDBg1VbW6svv/xSOTk5qq+v14MPPtjqK0w7y0mzTaOvvvpKU6dO1T333GPq28aWlZXpoYceknR5s8ngwYM1fvx4ZWdna9SoURo/fryCg4MVHR2tlStXemyfX331lR566KErOk9kZ3RmdrjhhhssmR2umNHFuFwuQ5Lhcrk6PLa6uto4cOCAUV1d3eYxBQUFRo8ePQxJjvrXo0cPo6CgoMPPwaFDhzr1eY2LizMkGS+//HK7x91yyy2GJGPJkiVN1y1cuNAYMWKEsXjxYuPEiRNt3rZx7605cOCA8cADDxgDBw40AgICjMjISOPWW281NmzY0Op9WbJkiUc+jxfe34aGBuMXv/iFMW7cOCM0NNSIiIgwbrrppqY9tLb/xs/bpfx77bXXmm7/wAMPtPi4v7+/0bt3b2PKlCnN7n9nNX5uLr5vkyZNMiQZc+fObff2VVVVxtChQw1JxtNPP93sY3V1dcazzz5rXHvttUZgYKDRu3dvY9asWcbevXuNl19+2ZBkPPDAA53aU0dOnjxpfO973zPGjh1r9O7d2+jWrZsRGhpqjB492njssceMo0ePtrhNbW2t8atf/coYNWqU0aNHD6NXr17GN7/5TeMvf/mLkZeXZ0gy4uLimt2mo++RxsflmmuuMdxud4uPNz6Gbd23Dz74wJg8ebLRr18/IyAgwOjTp48xYcIEY9myZcapU6eajmvv89e4jp+fnzFo0CDj9OnTxt69e43Bgwcb3/3ud42dO3e2eT/a2l9b19fV1Rm//e1vja997WtGaGioERQUZAwdOtSYP3++sWPHjjY/T21p/B7Jy8tr8bH6+nojPT3dmD59etPnJzIy0hg5cqQxd+5c46233jJqa2ubjt+2bZshybjlllvazGv8GbVt27ZWrw8MDDQ2bdrU4nYdff7z8vKMH/3oR8bIkSONnj17GsHBwUZcXJwxadIkY+XKlcYXX3zRqX20pr2fjR3dLjY2ttl1W7duNfz8/IyQkBDjH//4R7u3X716tSHJGDBggFFaWtp0fX19vZGammpcd911RnBwcNP+LrwvjZ+vC38XdNZf/vIXQ5Lxb//2b4ZhGMbZs2eNrKws4+zZs83u28Xfq564b4ZhGDk5Oca3vvUto1evXkZQUJCRkJBgpKamGnV1de1+vTa66qqrjLCwMKOmpsZ46aWXDElG3759jZMnT7a7p0WLFhmSjNGjRzf7uq6urjYee+wxY+jQoUZgYGDT5/vCPXT0M/TNN9/s1M/3C7U1IzFndX7GMozOzVnMWN6bsbZt29Z0X8ycsVauXNnsvnlixsrJyTFmzpxp9OnTx/D392/1913j5+RSbNmyxfi3f/s346qrrjJ69uxpdO/e3ejbt68xdepUIzU1tdnP3kZ5eXnGnDlzjMGDBxtBQUFGXFyc8fDDDxvHjh1r+hx09uf/oUOHmn5nSDL+93//t9Xj2vsarqioMJ5++mnjhhtuMMLCwpr2NHPmTGPDhg3Nvn47+v373e9+15BkzJs3zzCMc99jo0ePvuzvsbauLyoqMh599FFjyJAhRmBgoBEWFmZMnDjR+MMf/tDq59ww2v550tH8c/z4ceOJJ54wxo4da4SFhRmBgYHGwIEDjRtvvNFYsmSJ8fnnnzfL6Gh2bWtmbry+vb109Pl///33jW9961tGbGxs08+jhIQE47vf/a6Rnp5uVFVVdbiPxvtxoY7muLa0Nc+kpKQYkozJkycbDQ0Nbd6+vr7euOmmmwxJxiOPPNLi4y+99JIxbtw4Izg42IiIiDCmTJlibNu2rekxnTBhQqf31BkXz1iG0XLOMmvG6sz82Oijjz4yJBk//OEPTfn/1KCgII/9f+rlzFiGwZzFnOWbc5aZz2U1fp/eddddbR7T1v+rVVRUGD/72c+M4cOHG8HBwUbfvn2N2bNnG9nZ2a3+Du3o66q93z+NOvpdunPnTmPmzJlGXFycERQUZISFhRnDhg0zZs+ebbz44ovG6dOnmx1/4WOUlpZmjBkzxggJCTHCw8ONadOmGTt37mw159ChQ60+r9K7d+82n1dpVFBQYMyfP7/p8xYaGmoMGzbM+P73v2988sknLT5fNTU1xu9//3vj1ltvNXr37t00U44ZM8aYN2+esXnz5vY+rc1c/Lhc/JhcymxjGB0/HmbMNhc+x9T4u/PC+2HWbJKUlHTZs0lBQYFx3333GTExMUb37t1b/Zw03q/2nhNpTeP3Z69evYySkpIWH7/4/yE621dcyXPchw4dMnV2WLt2bYvnstrSmd/pjfwMw+Q3zLWZ8vJyRUREyOVyddi219TUKC8vT0OGDFFwcHCbxxUWFrZ4H+nCwsI2z/3lKVeSER0d3anbmv1Xj97M8WRGfn6+hgwZopdffrnZyVsvNSM+Pl7x8fEtXh7dmldeeUVz587Va6+95tG/QLnY0qVLtWzZshb3zdMu5XN1uXty2tcVGWR4M8fPz0+xsbGtvh2sJ7V2Pxp/ni1ZskRLly69pPUMw1BiYqIOHz6sr776SlFRUfrss890/fXXN/21r5+fn+Li4iw9KXJb/ud//kfPPPOM/vznP+vOO+/0SmZHP0OTk5P13nvvac+ePa2e0L01bc1IzFmdn7Ek3/mZ5Ssz1rZt2xQbG2va56vxe3HlypWtngvDk1r7fMXHx6ugoMBj50tx2tcWGWR4OqO9ecaq++HJGSs6Olr19fXN5iw7zFgNDQ0aMGCADMNQcXGx6W/z1R4zZiyJOas9zFlXxpefy5Kc93h4Kqfx7Rgvdcbzlc8XGed1NAeYfT8mTZqkjz76SHl5eYqPjzctp7P340qe4zbrc9W4p7Vr1yoxMbHZc1lt6ezvdIm38fSIwYMHtxg2wsLCTP8h4I0MAADsxM/PT7/+9a/1zW9+UytXrvTq26p4wg9/+EP17Nnzis+15ClZWVl699139eCDD17Sk1DexJwFAID5Lp6xnnnmGau31Cp/f389//zzOnDggE6dOqU+ffpYvaVWOWHGkpizAADwJZR9wGWIiopSamqqxo0bd0XrPPPMMwoNDe3UsTfddJNefvnlVt9XGQC6kqlTp2r27Nn67W9/q//6r/+yejuXZNiwYZf8l/ZmWrRokcLCwpSammr1VgBJ1s5YI0aMMP1ckABgZxfOWAsWLFBMTIzVW2rVv/3bv1m9hQ4xY8GOeC4LAHwbZR9wGSIiIlqc8Phy3H333Z0+dujQoRo6dKipJ2wFAKd46623JEn19fU6efKkxbtxrg8//NDqLQDNWDljSaLsA9DlNc5Y0rk5C5eHGQt2xHNZAODbKPsAAAAAAAAAAHAYT52PGYDzUfYBaGbSpEk6deqUrc4rMGnSJEmy1Z4Ap1uyZInq6uosyR4zZoyWLFnS9L3taUuWLFFkZKQpazsRP0MBe2j8XhwxYoQl+QsWLFBZWZkl2YAvMnueuRzMWN7FjAUAsBOrZ5MHH3xQo0aNss2sYMff0417Gj16tClFPWUfgGYmTZqk2NhYW50se9KkSbb6n2jAFyxdutSyt1IZM2aMqcOWnc6JZwf8DAXsofF70aqfvQsWLLAkF/BVZs8zl4MZy7uYsQAAdmL1bPLggw9q4sSJtir77PZ7unFP9fX1+uyzzzy+vr/HVwQAAAAAAAAAAADgFZR9AAAAAAAAAAAAgENR9nUCJzoFAAA4z5OzEXMWAADAecxZAACg0aX8Lqfsa0f37udOaeh2uy3eCQAAgH3U1dVJkrp163bZazBnAQAAtOSJOavxto1rAQAAZ7qUuYCyrx3du3dXz549dfr0adXX11u9HQAAAMsZhiGXy6WgoCAFBARc9jrMWQAAAM15as4KCAhQUFCQXC4Xr+4DAMChLnUu6O6FPTladHS0ioqKlJeXp4iICIWEhKhbt27y8/Nr93b19fWqqakxdW++kuGtHDLIIIMMp2R4K8cXMhpLopqamiv662d0zDAM1dXVyeVyqbKyUrGxsVe8JnMWGXbK8FYOGWSQQYaTMiTmLG8wa846cuSIvvrqK0VERCggIKDDGUvyra9fMshwYoa3csgggwzrMjqasS53LqDs60CPHj00ZMgQnThxQqWlpSopKenU7U6cOGH6X0/5Soa3csgggwwynJLhrRxfyGhoaFBJSYny8/Pl788bFnhDUFCQYmNjFR4efsVrMWeRYacMb+WQQQYZZDglgznL+zw5ZzWuUVJSoiNHjnT6dr7y9UsGGU7N8FYOGWSQYV1GZ2esS50L/Iwu9nr+8vJyRUREyOVyXfLw1NioNjQ0dHjsI488orS0tMvdZqf4Soa3csgggwwynJLhrRxfyKisrNT48eOVnZ2t0NBQ03JwTrdu3dp96wjmLDKcnOGtHDLIIIMMp2QwZ3mXmXNWXV1dp9823Ve+fskgw6kZ3sohgwwyrMvozIzV0VzQGl7Zdwn8/PwUGBjYqWNPnTql4OBgU/fjKxneyiGDDDLIcEqGt3J8IaO2tlYFBQUKDAz0yuMC8zBnkWF1hrdyyCCDDDKcksGc5TsCAgI6/YShr3z9kkGGUzO8lUMGGWRYl2HWjMX7MAAAAAAAAAAAAAAOZZuyb+XKlfLz89OCBQvaPe65557T8OHDFRISokGDBulHP/qRV06MCgAA4FTMWQAAAOZgzgIAAHZgi7fxzMrK0urVq5WYmNjucenp6Xr88cf10ksv6cYbb9ShQ4f04IMPys/PT7/+9a+9tFsAAADnYM4CAAAwB3MWAACwC8tf2VdZWak5c+ZozZo1ioqKavfYjz/+WBMnTtR9992n+Ph4ffOb39S9996rzMxML+0WAADAOZizAAAAzMGcBQAA7MTysm/evHmaMWOGpkyZ0uGxN954o3bv3t00DH355Zd6//33NX369DZv43a7VV5e3uwfAABAV8CcBQAAYA7mLAAAYCd+hmEYVoVv2LBBK1asUFZWloKDgzVp0iSNGTNGzz33XJu3ef755/XTn/5UhmHo7Nmzevjhh5WWltbm8UuXLtWyZctaXD9t2jQFBAR44m60KjMzUxMmTDBtfV/K8FYOGWSQQYZTMryV4wsZdXV12rRpk1wul8LDw03LcSLmLDLIsGcOGWSQQYZTMpiz2sacRQYZZDg9hwwyyLAuw7QZy7BIYWGh0bdvX2Pfvn1N191yyy3G/Pnz27zNtm3bjH79+hlr1qwxPv/8c+PNN980Bg0aZDz55JNt3qampsZwuVxN/4qKigxJhsvl8uTdaSE5OdnU9X0pw1s5ZJBBBhlOyfBWji9kuFwur/xedxrmLDLIsG8OGWSQQYZTMpizWsecRQYZZPhCDhlkkGFdhlkzVnfP1YaXZvfu3Tpx4oTGjh3bdF19fb22b9+uF154QW63W926dWt2myeeeELf+9739NBDD0mSRo0apaqqKv37v/+7fv7zn8vfv+W7kgYFBSkoKMjcOwMAAGAjzFkAAADmYM4CAAB2ZFnZN3nyZOXk5DS7bu7cuRoxYoQWLlzYYjCSpDNnzrQYgBqPM6x7N1IAAABbYc4CAAAwB3MWAACwI8vKvrCwMI0cObLZdT179lTv3r2brk9JSVFsbKxSU1MlScnJyfr1r3+t66+/Xl/72tf0xRdf6IknnlBycnKrwxQAAEBXxJwFAABgDuYsAABgR5aVfZ1RWFjY7C+fFi9eLD8/Py1evFhHjhxRnz59lJycrBUrVli4SwAAAOdhzgIAADAHcxYAAPA2W5V9GRkZ7V7u3r27lixZoiVLlnhvUwAAAD6AOQsAAMAczFkAAMBqLc8ADAAAAAAAAAAAAMARKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKMo+AAAAAAAAAAAAwKEo+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKMo+AAAAAAAAAAAAwKEo+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAo25R9K1eulJ+fnxYsWNDucWVlZZo3b55iYmIUFBSkYcOG6f333/fOJgEAAByIOQsAAMAczFkAAMAOulu9AUnKysrS6tWrlZiY2O5xtbW1mjp1qvr27auNGzcqNjZWBQUFioyM9M5GAQAAHIY5CwAAwBzMWQAAwC4sL/sqKys1Z84crVmzRsuXL2/32JdeekmnT5/Wxx9/rICAAElSfHy8F3YJAADgPMxZAAAA5mDOAgAAdmL523jOmzdPM2bM0JQpUzo89p133lFSUpLmzZunfv36aeTIkfrFL36h+vr6Nm/jdrtVXl7e7B8AAEBXwJwFAABgDuYsAABgJ5a+sm/Dhg3as2ePsrKyOnX8l19+qb/+9a+aM2eO3n//fX3xxRd69NFHVVdXpyVLlrR6m9TUVC1btqzF9d/5znea/prKDJmZmZo5c6Zp6/tShrdyyCCDDDKckuGtHF/IqKurM21tp2POIoMMe+aQQQYZZDglgzmrbcxZZJBBhtNzyCCDDOsyTJuxDIsUFhYaffv2Nfbt29d03S233GLMnz+/zdtcc801xqBBg4yzZ882Xffss88a/fv3b/M2NTU1hsvlavpXVFRkSDJcLpdH7kdbkpOTTV3flzK8lUMGGWSQ4ZQMb+X4QobL5fLK73WnYc4igwz75pBBBhlkOCWDOat1zFlkkEGGL+SQQQYZ1mWYNWNZ9sq+3bt368SJExo7dmzTdfX19dq+fbteeOEFud1udevWrdltYmJiFBAQ0Oz6hIQEHTt2TLW1tQoMDGyRExQUpKCgIPPuCAAAgM0wZwEAAJiDOQsAANiRZWXf5MmTlZOT0+y6uXPnasSIEVq4cGGLwUiSJk6cqPT0dDU0NMjf/9zpBg8dOqSYmJhWByMAAICuiDkLAADAHMxZAADAjvytCg4LC9PIkSOb/evZs6d69+6tkSNHSpJSUlK0aNGipts88sgjOn36tObPn69Dhw7pvffe0y9+8QvNmzfPqrsBAABgO8xZAAAA5mDOAgAAdmTZK/s6o7CwsOkvniRp0KBB2rx5s370ox8pMTFRsbGxmj9/vhYuXGjhLgEAAJyHOQsAAMAczFkAAMDbbFX2ZWRktHtZkpKSkrRr1y7vbAgAAMBHMGcBAACYgzkLAABYzbK38QQAAAAAAAAAAABwZSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKMo+AAAAAAAAAAAAwKEo+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKNuUfStXrpSfn58WLFjQ5jGvvPKK/Pz8mv0LDg723iYBAAAciDkLAADAHMxZAADADrpbvQFJysrK0urVq5WYmNjhseHh4Tp48GDTZT8/PzO3BgAA4GjMWQAAAOZgzgIAAHZh+Sv7KisrNWfOHK1Zs0ZRUVEdHu/n56f+/fs3/evXr58XdgkAAOA8zFkAAADmYM4CAAB2YnnZN2/ePM2YMUNTpkzp1PGVlZWKi4vToEGDNGvWLO3fv7/d491ut8rLy5v9AwAA6AqYswAAAMzBnAUAAOzEzzAMw6rwDRs2aMWKFcrKylJwcLAmTZqkMWPG6Lnnnmv1+E8++USHDx9WYmKiXC6XnnnmGW3fvl379+/XwIEDW73N0qVLtWzZshbXT5s2TQEBAZ68O81kZmZqwoQJpq3vSxneyiGDDDLIcEqGt3J8IaOurk6bNm2Sy+VSeHi4aTlOxJxFBhn2zCGDDDLIcEoGc1bbmLPIIIMMp+eQQQYZ1mWYNmMZFiksLDT69u1r7Nu3r+m6W265xZg/f36n16itrTWuvvpqY/HixW0eU1NTY7hcrqZ/RUVFhiTD5XJdyfY7lJycbOr6vpThrRwyyCCDDKdkeCvHFzJcLpdXfq87DXMWGWTYN4cMMsggwykZzFmtY84igwwyfCGHDDLIsC7DrBmru+dqw0uze/dunThxQmPHjm26rr6+Xtu3b9cLL7wgt9utbt26tbtGQECArr/+en3xxRdtHhMUFKSgoCCP7RsAAMDumLMAAADMwZwFAADsyLKyb/LkycrJyWl23dy5czVixAgtXLiww8FIOjdM5eTkaPr06WZtEwAAwHGYswAAAMzBnAUAAOzIsrIvLCxMI0eObHZdz5491bt376brU1JSFBsbq9TUVEnSk08+qa9//esaOnSoysrK9Ktf/UoFBQV66KGHvL5/AAAAu2LOAgAAMAdzFgAAsCPLyr7OKCwslL+/f9Pl0tJS/fCHP9SxY8cUFRWlcePG6eOPP9a1115r4S4BAACchzkLAADAHMxZAADA22xV9mVkZLR7+Te/+Y1+85vfeG9DAAAAPoI5CwAAwBzMWQAAwGr+HR8CAAAAAAAAAAAAwI4o+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKMo+AAAAAAAAAAAAwKEo+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcyjZl38qVK+Xn56cFCxZ06vgNGzbIz89Ps2fPNnVfAAAATsecBQAAYA7mLAAAYAe2KPuysrK0evVqJSYmdur4/Px8/fSnP9XNN99s8s4AAACcjTkLAADAHMxZAADALiwv+yorKzVnzhytWbNGUVFRHR5fX1+vOXPmaNmyZbrqqqu8sEMAAABnYs4CAAAwB3MWAACwk+5Wb2DevHmaMWOGpkyZouXLl3d4/JNPPqm+ffvqBz/4gf72t791eLzb7Zbb7W66XF5efkX7BeAcpaWlWr9+vakZBQUFZHRSaWmpqesDaIk5C4BZqqurtWfPHlMzSktLTc8oLi5mzgJwWZizAJjFV+asgoKCTv18vBK5ubmmZxQXF5u6PuApfoZhGFaFb9iwQStWrFBWVpaCg4M1adIkjRkzRs8991yrx+/YsUPf/e53tXfvXkVHR+vBBx9UWVmZ3n777TYzli5dqmXLlrW4ftq0aQoICPDQPWkpMzNTEyZMMG19X8rwVg4ZXSujtLRUO3bsMG19XJ6bbrqpU3/1erl84WvXmzm+kFFXV6dNmzbJ5XIpPDzctBwnYs4igwx75vhCRnV1tT788EPT1sflYc4iw9OYs9rGnEUGGWSYhTnLnsaPH6+YmBjT1veVr18yOsesGcuyV/YVFRVp/vz52rJli4KDgzs8vqKiQt/73ve0Zs0aRUdHdzpn0aJF+vGPf9x0uby8XIMGDdLrr79u6rA6c+ZMvfPOO6at70sZ3soho2tlrF+/Xjt27NAj4+M1cXBvUzJe3lOgrfklujthgGYnnP+F/3buUW3MLdbdCTGanTDgyjI+K9DWvBLF3/ATRcfdeqVbblVJwTblZz2rhMnPqWfUUFMyqkq/UO7WBXr44Yc1Z84cUzIk3/ja9WaOL2SUl5crIiLCtPWdijmLDDLsm+MLGXv27NG4ceO07q5xSugTZkrG+4eP64ltuaZmvLgnX2nZ+abOQMxZZDg5gzmrdcxZZJBBhpl8Zc5K/dtBbcwt1oDr7ldE//FtHlddXqDCPWkKDO2vuDEPy797xz9XGxX/4w2VHdmp6Kumq8+Qb172XhvO1qhg7+9VW3lMg8c+opDwuKaPuY5l6+j+dZo1a5YWL1582Rkd8ZWvXzI6x6wZy7Kyb/fu3Tpx4oTGjh3bdF19fb22b9+uF154QW63W926dWv62D//+U/l5+crOTm56bqGhgZJUvfu3XXw4EFdffXVLXKCgoIUFBRk4j0BYGcTB/fWnFGDTFl7Z+Epbc0v0ej+EU0Zy7efG2aeujVBi78x3DMZeSUKCR+ksD6jrni91lSVfiFJ6hk11LQMAN7FnAXAGxL6hGlsTKQpa+eWVJieMSAsRJK5MxBzFuB7mLMAeIPT56w+Pc/9/IroP179h93V6jHlx/fq0N+eUGif6zR6xh/VPTD0kjLKirNVdmSnQnsntJnRkbO1ldr3Xorqqk/p+lmvK7zfmBbHHN2/7rLWBrzNsrJv8uTJysnJaXbd3LlzNWLECC1cuLDZYCRJI0aMaHH84sWLVVFRoVWrVmnQIHOezAeAzlq+/aCe2JbrsaIPAC4XcxYAAIA5mLMA4MqVH9+rve/er569hl1W0ecJjUVf1elDGnPnulaLPsBJLCv7wsLCNHLkyGbX9ezZU7179266PiUlRbGxsUpNTVVwcHCL4yMjIyWpxfUA4G0UfQDshDkLAADAHMxZAHBlKPoAc1hW9nVGYWGh/P39rd4GALQrI/+ktuaVUPQBcBTmLAAAAHMwZwFA6yj6APPYquzLyMho9/LFXnnlFdP2AgCdRdEHwAmYswAAAMzBnAUAHaPoA8zFnxkBwGXKPlomSZo8JJqiDwAAAAAAAGgFRR9gPso+ALgMy7cfVNa/yr5J8X2s3QwAAAAAAABgQxR9gHdQ9gHAJVq+/aCe2JarGwZEWr0VAAAAAAAAwJaqywso+gAvoewDgEvQWPQ9dWuCxlP2AQAAAAAAAK0q3JNG0Qd4CWUfAHTShUUf5+gDAAAAAAAA2hYY2p+iD/ASyj4A6ASKPgAAAAAAAKDz4sY8TNEHeAllHwB0gKIPAAAAAAAAuDT+3YO9nknRh66Ksg8A2kHRBwAAAAAAANgfRR+6Mso+AGiDHYq+41VuS3IBAAAAAAAAp6DoQ1dH2QcArbBD0Zd5pFR/PnjMkmwAAAAAAADACSj6AMo+AGjBLkXf1Nd2qndIoCX5AAAAAAAAgN011NdS9AGi7AOAZuxU9I3sG64Zw/pZsgcAAAAAAADA7o4f+hNFHyDKPgBoYreib9OcJAV248c0AAAAAAAAcCGjoU6SVHumhKIPEGUfAEiyZ9EXFhRgyT4AAAAAAAAAuzpbW6lTBVslSf2H303RB4iyDwAo+gAAAAAAAAAHOFtbqX3vpaiupkySFBQaY+2GAJug7APQpVH0AQAAAAAAAPbXWPRVnT6k6LgpVm8HsBXKPgBdFkUfAAAAAAAAYH8XFn1j7lyngB7RVm8JsBXKPgBdEkUfAAAAAAAAYH8XF32cow9oibIPQJdD0QcAAAAAAADYH0Uf0DmUfQC6FIo+AAAAAAAAwP4o+oDOs03Zt3LlSvn5+WnBggVtHvPmm29q/PjxioyMVM+ePTVmzBi99tpr3tskAEej6APQVTFnAQAAmIM5CwDMQdEHXJruVm9AkrKysrR69WolJia2e1yvXr3085//XCNGjFBgYKDeffddzZ07V3379tXtt9/upd0CcCKKPgBdFXMWAACAOZizAMAcdin6TuZttiQXuByWv7KvsrJSc+bM0Zo1axQVFdXusZMmTdJdd92lhIQEXX311Zo/f74SExO1Y8cOL+0WgBNR9AHoqpizAAAAzMGcBQDmsEvRl7/7eZV8+YEl2cDlsPyVffPmzdOMGTM0ZcoULV++vNO3MwxDf/3rX3Xw4EE9/fTTbR7ndrvldrubLpeXl1/RfgE4S+rfDmn/yQpNHhIt6Vzx5ynZR8skSRn5J9s97qvyar2yt0B9ewbptvhorfr0y05n7P5XRnV5kSpO5lzuVttVXV4kSaoq/cKU9S9ce+fOnaZlSFJpaamp6wNOw5wFwEy5JytMWzuv9Iwk6f3Dx5VbYk7OvmNlksydgZizAN/FnAXATN6Ys17ck68BYSGmZGQfKZMkncz7S9M81BkN9bU6fuhPqj1Tov7D79apou06VbS91WMbnycrO7pLedlXvOVmyo7uUtmRneoRdY3OlB5WRkaGZwMuUlxcbOr66Br8DMMwrArfsGGDVqxYoaysLAUHB2vSpEkaM2aMnnvuuTZv43K5FBsbK7fbrW7duul3v/udvv/977d5/NKlS7Vs2bIW10+bNk0BAea9siYzM1MTJkwwbX1fyvBWDhldK6OgoECff/65aevj0gWERCu87xhTM04VfKibbrqpw7+svRL8XLRXRl1dnTZt2iSXy6Xw8HDTcpyIOYsMMuyZ4wsZpaWlvBrFZpizyDADc1bbmLPIIIMMszBndV3jx49XTEyMaev7yveIL2SYNWNZVvYVFRVp/Pjx2rJlS9N7m3dmOGpoaNCXX36pyspKbd26VU899ZTefvttTZo0qdXjW/tLqEGDBpk+rM6cOVPvvPOOaev7Uoa3csjoWhnr16/X/fffr6sie+j2oX1NydieX6L9JZWKufZ+RcaMNyWjrDhbxQfWKf6GnygkfJCjM2qrjilx+lpT1m+0LS1O69at05w5c0zL4OeivTLKy8sVERHBk1AXYc4igwz75vhCxp49ezRu3Dg9dWuChkT1MCXj7dyj2phbrITJz6ln1FBTMkoKtik/61nmrE7ylTmLjM5jzmodcxYZZJBhJm/MWS/vKdDW/BINuO5+RfQfr+ryAhXuSVNgaH/FjXlY/t2Drzij+B9vqOzIToX2Ga2wPqM6PN5oqNOpgq2qqylTdNwUBfSI7vA2ZUc/VXXZ4U5ndEbFyRxVntzXtGZjxpAJP1Hvwbd6JONiVaVfKHfrAj311FNavHixKRmS73yP+EKGWTOWZW/juXv3bp04cUJjx45tuq6+vl7bt2/XCy+80PSXThfz9/fX0KHn/mdvzJgxys3NVWpqapvDUVBQkIKCgky5DwDs78nbEjRnlDlPrDz63l7tL6lUZMx49R92lykZklR8YJ2i42712OBiVcaJL941bW0AzTFnAfCG6df009iYSFPWzis9o425xeoZNdS0+aTx7S+ZswBcCuYsAN5g5py1s/CUtuaXKKL/ePWIGKJDf3tCoX2u0+gZf1T3wFCPZJQVZ6vsyE5Fx0/RkPH/3e6xjefoa6h3a9xdf+r0Ofr+8dHPVV12uFMZnZG/+3kVH1inIRN+ovhx/90sIzhskKmzHOAJlpV9kydPVk5O8/NPzZ07VyNGjNDChQtbHYxa09DQ0OwvnQAAALo65iwAAABzMGcB8BXV5QU69Lcn1LPXMI8WfZeiseirOn1IY+5c1+miz9Pydz+vvMxnmxV9gNNYVvaFhYVp5MiRza7r2bOnevfu3XR9SkqKYmNjlZqaKklKTU3V+PHjdfXVV8vtduv999/Xa6+9prS0NK/vHwAAwK6YswAAAMzBnAXAVxTuSfP4K/ouBUUf4FmWlX2dUVhYKH9//6bLVVVVevTRR/XVV18pJCREI0aM0Lp16/Sd73zHwl0CAAA4D3MWAACAOZizADhBYGh/ij4bFH1Vpw5ZkgvfY6uyLyMjo93Ly5cv1/Lly723IQAAAB/BnAUAAGAO5iwAThQ35mGKPouLvvLje3Xwb4styYbv8e/4EAAAAAAAAAAA4Cv8uwd7PZOi77zy43u19937FRIRZ0k+fA9lHwAAAAAAAAAAMA1F33mNRV/PXsM07KYnLdkDfA9lHwBcpuNVbqu3AAAAAAAAANgaRd95FxZ9o2f8Ud0CQizZB3wPZR8AXIbMI6X688FjVm8DAAAAAAAAsC2KvvMuLvqsOGcifBdlHwBcoswjpZr62k71Dgm0eisAAAAAAACALTXU11L0/QtFH8xG2QcAl6Cx6BvZN1wzhvWzejsAAAAAAACALR0/9CeKPlH0wTso+wCgky4s+jbNSVJgN36EAgAAAAAAABcyGuokSbVnSij6KPrgJTxTDQCdcHHRFxYUYPWWAAAAAAAAAFs5W1upUwVbJUn9h99N0UfRBy+h7AOADlD0AQAAAAAAAO07W1upfe+lqK6mTJIUFBpjyT4o+tAVUfYBQDso+gAAAAAAAID2NRZ9VacPKTpuimX7oOhDV0XZBwBtoOgDAAAAAAAA2ndh0TfmznUK6BFtyT4o+tCVUfYBQCso+gAAAAAAAID2XVz0cY4+ij5Yg7IPAC5C0QcAAAAAAAC0j6LvPIo+WK271RsAADuh6AMAAAAAAADaZ5eir+zoLpUd2UnRhy6PV/YBwL9Q9AEAAAAAAADts0vRJ4miD/gXyj4AEEUfAAAAAAAA0BG7FH0VJ3MkSZGxEyn6AFH2AQBFHwAAAAAAANABuxR9+bufV+XJfZKkyAFft2QPFH2wG8o+AF0aRR8AAAAAAADQPjsVfXmZzyq0z2hL8iWKPtgTZR+ALouiDwAAAAAAAGif3Yq+IRN+orA+oyzZA0Uf7IqyD0CXRNEHAAAAAAAAtM+ORR/n6ANask3Zt3LlSvn5+WnBggVtHrN//359+9vfVnx8vPz8/PTcc895bX8AfAdFH4CuhjkLAADAHMxZAHwZRd95FH2wO1uUfVlZWVq9erUSExPbPe7MmTO66qqrtHLlSvXv399LuwPgSyj6AHQ1zFkAAADmYM4C4Mso+s6rLi+g6IPtWV72VVZWas6cOVqzZo2ioqLaPfaGG27Qr371K333u99VUFCQl3YIwFdQ9AHoapizAAAAzMGcBcCXUfQ1V7gnjaIPttfd6g3MmzdPM2bM0JQpU7R8+XKPr+92u+V2u5sul5eXezwDwKUrLS3V+vXrTVt/586dkqS3c4uVV3pGX5VX65W9BerbM0i3xUdr1adfXnHG7qNlkqTq8iJVnMy54vVaU11eJEmqKv3ClPW9nQHAu5izgK6purpae/bsMW393NxcSdL7h48rt6TClIx9x8ok+c4MxJwF+B7mLKDrMXvGks7PWS/uydeAsBBTMrKPlEmSTub9pdU5oqG+VscP/Um1Z0rUf/jdOlW0XaeKtl9SRuPzZGVHdykv+/L2WXZ0l8qO7FRk7EQZhpSX/bzHMzqzB0nqFhimmOH3qCR/i8czaiqY5eAZfoZhGFaFb9iwQStWrFBWVpaCg4M1adIkjRkzplPvXR4fH68FCxa0+57okrR06VItW7asxfXTpk1TQIB5r+rJzMzUhAkTTFvflzK8lUOGfTJKS0u1Y8cO09ZH15aYmKi4uDjT1ufnor0y6urqtGnTJrlcLoWHh5uW40TMWWSQYc8cszOqq6v14YcfmrY+ujZfmLPI6DzmrLYxZ5FBRtfLYMaC2YYOHaqEhATT1veF70NfyTBrxrLslX1FRUWaP3++tmzZouDgYNNyFi1apB//+MdNl8vLyzVo0CC9/vrrpg6rM2fO1DvvvGPa+r6U4a0cMuyTsX79eu3YsUOPjI/XxMG9Tcl4+bMCbc0rUcy19ysyZrwpGWXF2So+sE7xN/xEIeGDyLA4o7q8SPlZz+qxxx7TnDlzTMmQ+Llot4zy8nJFRESYtr5TMWeRQYZ9c8zO2LNnj8aNG6d1d41TQp8wUzJe3JOvtOx8JUx+Tj2jhpqSUVKwTflZzzp+PvGVDF+as8joPOas1jFnkUFG18zwxowlSal/O6iNucUacN39iuhvzvNZxf94Q2VHdiq0z2iF9RnVdL3RUKdTBVtVV1Om6LgpCugRfdkZZUc/VXXZ4RYZnVFxMkeVJ/d1eNsryehI3ZkSlRR8KD//7jLqa0zJaFTtylPZkZ164IEHtHjxYlMyJN/4PvSVDLNmLMvKvt27d+vEiRMaO3Zs03X19fXavn27XnjhBbndbnXr1u2Kc4KCgng/dMCmJg7urTmjzHlCYmfhKW3NK1FkzHj1H3aXKRmSVHxgnaLjbjXtFz4ZnVdxMkf5Wc+asjbgNMxZABL6hGlsTKQpaze+pVTPqKGm/V5vfNtLp88nvpLBnAWcx5wFdG1mzliS1Kfnue/7iP7mPZ9VVpytsiM7FR0/RUPGnzsPXuM5+hrq3Rp315+u+Bx9//jo56ouO9wsozPydz+v4gPrOnWOvsvN6Ej58b3a++79Cu83Wj0ih+rYP173eMaFjh16S2VHdpqyNroWy8q+yZMnKyen+Tmu5s6dqxEjRmjhwoUeGYwAdF3Hq9wdHwQAPoo5CwAAwBzMWQB8TWPRV3X6kMbcue6Ki77Llb/7eeVlPtupos8sjUVfz17DNHrGH/XFJ6mW7AO4HJaVfWFhYRo5cmSz63r27KnevXs3XZ+SkqLY2Filpp77pqqtrdWBAwea/vvIkSPau3evQkNDNXSoOW8fA8B5Mo+U6s8Hj1m9DQCwDHMWAACAOZizAPgSir7zLi76ugeGWrIP4HL5W72B9hQWFqq4uLjp8tGjR3X99dfr+uuvV3FxsZ555hldf/31euihhyzcJQA7yTxSqqmv7VTvkECrtwIAtsacBQAAYA7mLABO0FBfS9H3LxR98AWWvbKvNRkZGe1ejo+Pl2EY3tsQAEdpLPpG9g1XQnSo1n5WaPWWAMA2mLMAAADMwZwFwImOH/qTztZWUPRR9MFH2PqVfQDQWRcWfZvmJCmwGz/eAAAAAAAAgAsZDXWSpNozJRR9Nij6Gs7WeD0TvolnwwE43sVFX1hQgNVbAgAAAAAAAGzlbG2lThVslST1H343RZ/FRd/Z2koV7P2913Phmyj7ADgaRR8AAAAAAADQvrO1ldr3XorqasokSUGhMZbsg6LvnMbHo7bymNez4Zso+wA4FkUfAAAAAAAA0L7GYqnq9CFFx02xbB8Ufedc+HgMHvuI1/Phmyj7ADgSRR8AAAAAAADQvguLpTF3rlNAj2hL9kHRd87Fj0dIeJzX9wDfRNkHwHEo+gAAAAAAAID2XVwscY4+exV9Vj0e8E2UfQAchaIPAAAAAAAAaJ9diiWKvnPs8njAd3W3egMA0FkUfQAAAAAAAED77FIslR3dpbIjOyn6bPJ4wLfxyj4AjkDRBwAAAAAAALTPTsUSRZ+9Hg/4Nso+ALZH0QcAAAAAAAC0zy7FUsXJHElSZOxEij4bPB7oGij7ANgaRR8AAAAAAADQPrsUS/m7n1flyX2SpMgBX7dkDxR96Ioo+wDYFkUfAAAAAAAA0D67FEv5u59XXuazCu0z2pJ8iaIPXRdlHwBbougDAAAAAAAA2meXYqmx6Bsy4ScK6zPKkj1Q9KEro+wDYDsUfQAAAAAAAED77FIsXVj0cY4+6x8PdE2UfQBshaIPAAAAAAAAaJ9diiWKvnPs8nig66LsA2AbFH0AAAAAAABA++xSLNmh6HNXFlP0AaLsA2ATFH0AAAAAAABA++xSLNmh6JOkYwc3UvQBouwDYAMUfQAAAAAAAED77FIs2aHoqztTIkkK7BFN0QeIsg+AxSj6AAAAAAAAgPbZpViyQ9FXfnyvSgo+lCT1G/Ztij5AlH0ALPTP01UUfQAAAAAAAEA77FIs2aXo2/vu/QoIjpQk+XcL9Poe7PJ4ABfqdNl39OhRM/ehlStXys/PTwsWLGj3uDfeeEMjRoxQcHCwRo0apffff9/UfQEwT+qOQxR9ACDmLAAAADOYPWNJzFkAzGeXYslORV/PXsPUO26yJXuwy+MBXKzTZd91112n9PR0UzaRlZWl1atXKzExsd3jPv74Y9177736wQ9+oM8++0yzZ8/W7Nmz9fe//92UfQEw16DwEIo+ABBzFgAAgBnMnLEk5iwA5rNLsWS3om/0jD/Kz9/7zyfa5fEAWtPpsm/FihX6j//4D91zzz06ffq0xzZQWVmpOXPmaM2aNYqKimr32FWrVmnatGn6n//5HyUkJOipp57S2LFj9cILL3hsPwC857GJ11D0AYCYswAAAMxg1owlMWcBMJ9diiU7Fn2cow9oqXtnD3z00Ud1xx136Ac/+IGuvfZarVmzRsnJyVe8gXnz5mnGjBmaMmWKli9f3u6xn3zyiX784x83u+7222/X22+/3eZt3G633G530+Xy8vIr2i8Az9n8xQkdq3R3fOBl2H20TJJUVpxtyvoXrl1V+oVpGdXlRWR0kplrA2ZjzgLgabknK0xb+2hFtSTnzw5kdB5zFpzKrBlLYs4CuiozZyxJOll17vu+9Mgnyst+TrWVxzR47CM648rTGVeeRzKq/7VO2dFdyuvgabOyo7tUdmSnImMnyjCkvOznO5VRcTKn0xkdcVcW69jBjQrsEa3IATeq6POXPJ7RlsaM01/tUHHu/6faMyXqP/xunSrarlNF2z2SUXkq1yPrAH6GYRiXeqMXXnhBP/rRj5SQkKDu3Zv3hXv27On0Ohs2bNCKFSuUlZWl4OBgTZo0SWPGjNFzzz3X6vGBgYF69dVXde+99zZd97vf/U7Lli3T8ePHW73N0qVLtWzZshbXT5s2TQEB5r2iKDMzUxMmTDBtfV/K8FYOGfbJKCgo0Oeff27a+ujaEhMTFRcXZ9r6/Fy0V0ZdXZ02bdokl8ul8PBw03K8iTmrY77wtUuG/TK8lWN2RmlpqXbs2GHa+ujafGHOIqPzfG3O8tSMJTFnkUFGV8xgxoLZhg4dqoSEBNPW94XvQ1/JMGvG6vQr+xoVFBTozTffVFRUlGbNmtViQOqsoqIizZ8/X1u2bFFwcPBlrdEZixYtavbXU+Xl5Ro0aJBef/11U4fVmTNn6p133jFtfV/K8FYOGfbJWL9+ve6//35Njo/WsGhzXnb/UX6JDpRUasKASI0bEKna+ga9d+i4TlXXKnl4f/XrGXTFGdvzS7S/pFIx196vyJjxHth1S2XF2So+sE7xN/xEIeGDyGhHdXmR8rOe1WOPPaY5c+aYkiHxc9FuGeXl5YqIiDBtfW9jzuocX/jaJcN+Gd7KMTtjz549GjdunJ66NUFDonqYkrGz8JTSsvP1yPh4DQgLMSUjI++ktuaXOH4+8ZUMX5qzyOg8X5qzPDVjScxZZJDRVTO8MWNJ5+esuxNi1McDz121pvE5s8jYiQqJGNLqMRUnc1R5cp9C+4xWWJ9Rl5xRdvRTVZcdvuzbS1LdmRKVFHyogOBI9Y6b3OIcfZ7I6Ejp0U9UU/ZPSf6Kjv+mAnpEezyj2pWnsiM79cADD2jx4sUeX7+RL3wf+kqGWTPWJU03a9as0U9+8hNNmTJF+/fvV58+fS47ePfu3Tpx4oTGjh3bdF19fb22b9+uF154QW63W926dWt2m/79+7f4i6fjx4+rf//+beYEBQUpKMicH4wArszcsXGaM8qcJyQefW+vDpRUKnl4jOZ/7SpNW/+Jzpyt147vf0MTYts/n8KlZOwvqVRkzHj1H3aXR9ZsTfGBdYqOu9W0wcVXMipO5ig/61lT1ga8gTkLgCdNv6afxsZEmrZ+Wna+Hhobb2rG1vwSx88nvpLBnAUn8+SMJTFnAV2d2TOWdG7OWnTzcNNyGp8zixlxT6vPZ+Xvfl7FB9Zd0Tn6/vHRz1VddljR8VM0ZPylr9F4jr7wfqPbPEfflWZ05GxtpXal3yJJikn4rkZMSvV4hiQdO/SWyo7sNGVtdC2dLvumTZumzMxMvfDCC0pJSbni4MmTJysnJ6fZdXPnztWIESO0cOHCFoORJCUlJWnr1q1asGBB03VbtmxRUlLSFe8HgG9yn63XtPWf6O8nyrXlexM9VvQBgCcxZwEAAHiep2csiTkLgG/L3/288jKfvaKi70o1Fn09ew1rs+gz29naSu17L0V1NWWSpKDQGK/vAbhUnS776uvr9fnnn2vgwIEeCQ4LC9PIkSObXdezZ0/17t276fqUlBTFxsYqNfVcaz5//nzdcsstevbZZzVjxgxt2LBB2dnZ+sMf/uCRPQHwPa/uK5TLfZaiD4CtMWcBAAB4nqdnLIk5C4Dvoug7p7Hoqzp9SNFxU1SSv8nrewAuh39nD9yyZYtHh6POKCwsVHFxcdPlG2+8Uenp6frDH/6g0aNHa+PGjXr77bdbDFkAUFvfIEk6UeWm6ANge8xZAAAAnmfFjCUxZwFwHoq+cy4s+sbcuc6Uc/QBZrn8MxKbICMjo93LknTPPffonnvu8c6GADhShbtO7x46Jkl6cEwcRR8AiDkLAADALMxZAJyMou+ci4u+8H5jdPQfb3h9H8Dl6vQr+wDACSrcdZq2/hOdrq6VJA0MD7F4RwAAAAAAAID9UPSd01rRBzgNZR8An9FY9P39RLmSh3PiXAAAAAAAAKA1J/M2U/SJog++g7IPgE+4sOjb8r2J6tczyOotAQAAAAAAALZU8uUHFH0UffAhlH0AHO/ioo9z9AEAAAAAAABti77qDoo+GxR9J/M2W5IL30PZB8DRKPoAAAAAAACAS9NnyO2W5FL0nZe/+3mVfPmBJdnwPZR9AByLog8AAAAAAABwBoq+8/J3P6+8zGcVfdUdluTD91D2AXAkij4AAAAAAADAGSj6zmss+oZM+Illr7CE76HsA+A4din6so+WWZILAAAAAAAAOAVF33kXFn1WnTMRvomyD4Cj2KXoW779oLIo+wAAAAAAAIA2UfSdR9EHM1H2AXAMOxV9T2zL1Q0DIi3JBwAAAAAAAOzOXVlM0fcvFH0wG2UfAEewW9H31K0JGk/ZBwAAAAAAALTq2MGNFH2i6IN3UPYBsD07Fn2LvzHckj0AAAAAAAAAdlZ3pkSSFNgjmqKPog9eQtkHwNYo+gAAAAAAAABnKD++VyUFH0qS+g37NkUfRR+8hLIPgG1R9AEAAAAAAADOUH58r/a+e78CgiMlSf7dAr2+B4o+dFWUfQBsiaIPAAAAAAAAcIbGoq9nr2HqHTfZkj1Q9KEro+wDYDsUfQAAAAAAAIAzXFj0jZ7xR/n5B3h9DxR96Ooo+wDYCkUfAAAAAAAA4AwXF32co4+iD9ag7ANgGxR9AAAAAAAAgDPYoehrqK+l6AMkdbd6AwAgUfQBAAAAAAAATmGHok+Sjh/6k87WVlD0ocuj7ANgOYo+AAAAAAAAwBnsUPQZDXWSpNozJRo7+w2KPnR5lr6NZ1pamhITExUeHq7w8HAlJSXpgw8+aPP4uro6Pfnkk7r66qsVHBys0aNHa9OmTV7cMQBPo+gDAM9jxgIAADAHcxaArs4ORd/Z2kqdKtgqSeo//G6KPkAWl30DBw7UypUrtXv3bmVnZ+u2227TrFmztH///laPX7x4sVavXq3/9//+nw4cOKCHH35Yd911lz777DMv7xyAJ1TX1VP0AYAJmLEAAADMwZwFoCuzS9G3770U1dWUSZKCQmO8vgeJog/2Y2nZl5ycrOnTp+uaa67RsGHDtGLFCoWGhmrXrl2tHv/aa6/pZz/7maZPn66rrrpKjzzyiKZPn65nn33WyzsH4Am/3HmYog8ATMCMBQAAYA7mLABdlZ2KvqrThxQdN8Xr+Y0o+mBHtjlnX319vd544w1VVVUpKSmp1WPcbreCg4ObXRcSEqIdO3a0ua7b7Zbb7W66XF5e7pkNA7hieaVn9IOxcfrLP0/oL/884dG1s4+WSZIy8k+2eUxG/kltzSvR5CHRks4Vf5di978yqsuLVHEy57L22ZHq8iJJUlXpF6as70sZZq4NOJlZM1bj7ZizAHvKPVlh2tp5pWdMzzhaUS3J+fOJr2QwZwGtY84Cuh4z5x/JO3PWyapzP1tO5v2laY7oiLuyWMcOblRgj2hFDrhRRZ+/1O7xjc+TlR3dpbzsK9tvo4b6Wh0/9CfVnilR/+F3q6Jkv8czLtba/Sg7uktlR3YqMnaiDEPKy37+ijIqT+Ve6TYBSZKfYRiGlRvIyclRUlKSampqFBoaqvT0dE2fPr3VY++77z7t27dPb7/9tq6++mpt3bpVs2bNUn19fbMB6EJLly7VsmXLWlw/bdo0BQQEePS+XCgzM1MTJkwwbX1fyvBWDhn2ySgoKNDnn39u2vro2hITExUXF2fa+vxctFdGXV2dNm3aJJfLpfDwcNNynMjsGUtiziLDtzK8lWN2RmlpaYdPIAOXyxfmLDI6jzmrbcxZZJDR9TKYsWC2oUOHKiEhwbT1feH70FcyzJqxLC/7amtrVVhYKJfLpY0bN+rFF1/URx99pGuvvbbFsSdPntQPf/hD/fnPf5afn5+uvvpqTZkyRS+99JKqq6tbXb+1v4QaNGiQ6cPqzJkz9c4775i2vi9leCuHDPtkrF+/Xvfff78mx0drWLQ5L/n/KL9EB0oqdcOASI0fENnsY9lHy5R1tKzVj12K7fkl2l9SqZhr71dkzPgr23AbyoqzVXxgneJv+IlCwgeR0Y7q8iLlZz2rdevWac6cOaZkSPxctFtGeXm5IiIieBKqFWbPWBJzFhm+leGtHLMz9uzZo3HjxumpWxM0JKqHKRk7C08pLTvf1Iy3c49qY26x4+cTX8nwpTmLjM5jzmobcxYZZHS9DG/MWJJ35qyX9xRoa36JImMnKiRiSLvH1p0pUUnBhwoIjlTvuMny8+/cHxuUHf1U1WWHFdpntML6jLqi/RoNdTpVsFV1NWWKjpuigB7RHs9oy4UZklR5cp/H86pdeSo7slNPPfWUFi9e7LF1L+YL34e+kmHWjGX523gGBgZq6NChkqRx48YpKytLq1at0urVq1sc26dPH7399tuqqanRqVOnNGDAAD3++OO66qqr2lw/KChIQUFBpu0fwOWbOzZOc0aZ84TEo+/t1YGSSs0cHtPsXHzLtx9U1tF8j5yj79H39mp/SaUiY8ar/7C7rnTLbSo+sE7RcbeaNrj4SkbFyRzlZ3HeC6CR2TOWxJwF2Nn0a/ppbEykaeunZeebmpFXekYbc4sdP5/4SgZzFtAccxbQdZk9Y0nmz1k7C09pa36JYkbc0+7zWY3n6AvvN/qSz9H3j49+ruqyw4qOn6Ih4y//nHaN5+hrqHdr3F1/Uni/MR7PaE9jRvfAUJUd2WnKOfqOHXpLZUd2enRNdE3+Vm/gYg0NDe2+jYEkBQcHKzY2VmfPntWf/vQnzZo1y0u7A+Bky7cf1BPbcj1S9AGA0zBjAQAAmIM5C4CvaSz6evYadslFn6c0Fn1Vpw9pzJ3rmhV93mZW0Qd4kqWv7Fu0aJHuuOMODR48WBUVFUpPT1dGRoY2b94sSUpJSVFsbKxSU1MlSZ9++qmOHDmiMWPG6MiRI1q6dKkaGhr02GOPWXk3ADgARR+AroQZCwAAwBzMWQB8HUXfeRUncyRJkbETKfpge5aWfSdOnFBKSoqKi4sVERGhxMREbd68WVOnTpUkFRYWyt///IsPa2pqtHjxYn355ZcKDQ3V9OnT9dprrykyMtKiewDACSj6AHQ1zFgAAADmYM4C4Mso+s7L3/28Kk/ukyRFDvi6JXsALoWlZd/atWvb/XhGRkazy7fccosOHDhg4o4A+JqM/JPamldC0QegS2HGAgAAMAdzFgBfRdF3Xv7u55WX+axC+4xuKvwAu7PdOfsAwJMo+gAAAAAAAIC2UfSd11j0DZnwE4X1GWXJHoDLQdkHwCdlHy2TJE0eEk3RBwAAAAAAALSCou+8C4s+ztEHp6HsA+Bzlm8/qKx/lX2T4vtYuxkAAAAAAADAhij6zqPog9NR9gHwKcu3H9QT23J1w4BIq7cCAAAAAAAA2FJ1eQFF379Q9MEXUPYB8BmNRd9TtyZoPGUfAAAAAAAA0KrCPWkUfaLog++g7APgEy4s+jhHHwAAAAAAANC2wND+FH02KPqqywssyYXvoewD4HgUfQAAAAAAAEDnxY15mKLP4qKv/PheFe5JsyQbvoeyD4CjUfQBAAAAAAAAl8a/e7DXMyn6zis/vld7371fgaH9LcmH76HsA+BYFH0AAAAAAACA/VH0nddY9PXsNUxxYx62ZA/wPZR9ABzJDkXf8Sq3JbkAAAAAAACAU1D0nXdh0Td6xh8teYUlfBNlHwDHsUPRl3mkVH8+eMySbAAAAAAAAMAJKPrOu7jos+KcifBdlH0AHMUuRd/U13aqd0igJfkAAAAAAACA3TXU11L0/QtFH8xG2QfAMexU9I3sG64Zw/pZsgcAAAAAAADA7o4f+hNFnyj64B2UfQAcwW5F36Y5SQrsxo9QAAAAAAAA4EJGQ50kqfZMCUUfRR+8hGeqAdieHYu+sKAAS/YBAAAAAAAA2NXZ2kqdKtgqSeo//G6KPoo+eAllHwBbo+gDAAAAAAAA7O9sbaX2vZeiupoySVJQaIwl+6DoQ1dE2QfAtij6AAAAAAAAAPtrLPqqTh9SdNwUy/ZB0YeuirIPgC1R9AEAAAAAAAD2d2HRN+bOdQroEW3JPij60JVR9gGwHYo+AAAAAAAAwP4uLvo4Rx9FH6xhadmXlpamxMREhYeHKzw8XElJSfrggw/aPH7SpEny8/Nr8W/GjBle3DUAM1H0AYBnMGcBAAB4HjMWAJxH0XceRR+s1t3K8IEDB2rlypW65pprZBiGXn31Vc2aNUufffaZrrvuuhbHv/nmm6qtrW26fOrUKY0ePVr33HOPN7cNwCQUfQDgOcxZAAAAnseMBQDn2KXoKzu6S2VHdlL0ocuztOxLTk5udnnFihVKS0vTrl27Wh2QevXq1ezyhg0b1KNHDwYkwAdQ9AGAZzFnAQAAeB4zFgDYp+iTRNEH/IulZd+F6uvr9cYbb6iqqkpJSUmdus3atWv13e9+Vz179mzzGLfbLbfb3XS5vLz8ivcKwDPezi1WXukZZeSf1Na8Ek0ecu7kvcu3H7zitbOPlkmSMvJPdur4r8qr9creAvXtGaTb4qO16tMvO7zN7n9lVJcXqeJkzuVutV3V5UWSpKrSL0xZ/8KMkoJtpuWUFWebntF4PwC0xJwFdD3vHz6u3JIKU9beWXhKkpR70pz1JeloRbUk78xAZHTMzLUBJzNrxpKYswC7MnP+kaS80jOm55ysOvez5WTeXy7ruZSG+lodP/Qn1Z4pUf/hd+tU0XadKtre7JjG58nKju5SXvaV77k1JfkfSpJ6RF2j4LBBOnboLY9nVLvyJEmVp3JbXb+6vECFe9IUGNpfMcPvUUn+lkvOcB0z6ROELsfPMAzDyg3k5OQoKSlJNTU1Cg0NVXp6uqZPn97h7TIzM/W1r31Nn376qSZMmNDmcUuXLtWyZctaXD9t2jQFBJj3qp3MzMx290WG93PIsE9GQUGBPv/8c9PWR9eWmJiouLg409bn56K9Murq6rRp0ya5XC6Fh4ebluNUzFlkkGG/HLMziouLlZ3NEwYwx/jx4xUTE2Pa+r7wPehLGcxZbTN7xpKYs8ggw24ZpaWl2rFjh2nrA77wfBYZnWPWjGV52VdbW6vCwkK5XC5t3LhRL774oj766CNde+217d7uP/7jP/TJJ590WBi09pdQgwYNMn1YnTlzpt555x3T1velDG/lkGGfjPXr1+v+++/XVZE99GXZGd0wIFLjB0R6NOOj/BIdKKnscO3jVW79+WCxeoUE6s5h/RXYzb/TGdvzS7S/pFIx196vyJjxHth1S2XF2So+sE7xN/xEIeGDTM2IDQvSkQq3KY9H4+dqwoBIjevw8Tim3iGBmjGs3yU9HodOVWprXonWrVunOXPmeGDXrePnor0yysvLFRERwZNQbWDOIoMM++V4a866O2GARvePMCWj8V0ZHhkfr4mDe5uS8XbuUW3MLfbKDGRmRnV5kfKzntXdCTEa3T/SlIx9x8q0MbdYj4yP14CwEFMyjlZUKy07X7t379bYsWNNyZB843vQlzKYs9pm9owlMWeRQYbdMvbs2aNx48bpqVsTNCSqh2k5OwtPKS0739Scl/cUaGt+iSJjJyokYkinb2c01OlUwVbV1ZQpOm6KAnpEt3ls2dFPVV12WKF9RiuszyhPbLtJxckcVZ7cp+CwQaqpKNINMZEaHxvp0YxGh0oqtTW/RHcnxKhPzyBTMk5WubUxt5g5qwtlmDVjWf42noGBgRo6dKgkady4ccrKytKqVau0evXqNm9TVVWlDRs26Mknn+xw/aCgIAUFmfONCODKfFl2xrRz9D363l4dKKnUzOExba7feI6+G2J7XdY5+h59b6/2l1QqMma8+g+7yxPbblXxgXWKjrvV48PRxRlHKtymPh77SyqV3KnHI+qyHo/1OUXamlfiie0CPoM5C+i6ZifEaM4ocwosSdqaV6KJg3ublpFXekYbc4u9MgOZmVFxMkf5Wc9qdsIA0z5X63OKtDG3WA+NjdfYmEhTMvYUlyktO9+UtQEnMnvGkpizALuafk0/037fNkrLzjc1Z2fhKW3NL1HMiHs6/XxW4zn6GurdGnfXnzo8R98/Pvq5qssOKzp+ioaM99y59PJ3P6/iA+s0ZMJPFBw2SLlbF2jmiLafa7pS63OKtDW/RItuHm7qnLUxt9iUtdG1dP4lE17S0NDQ7C+XWvPGG2/I7Xbr/vvv99KuAJjh7gTzfhl3pLFYGtk3/LKKJV80eUg0jwfg45izAAAAPI8ZC4Avayz6qk4f0pg713VY9Jklf/fzyst8VkMm/ETx4zxXIAK+wtJX9i1atEh33HGHBg8erIqKCqWnpysjI0ObN2+WJKWkpCg2NlapqanNbrd27VrNnj1bvXub85YxALxjdsIAS3Ipllo3Kb6PJbk8HoA5mLMAAAA8jxkLQFdC0Qc4h6Vl34kTJ5SSkqLi4mJFREQoMTFRmzdv1tSpUyVJhYWF8vdv/uLDgwcPaseOHfrLX/5ixZYBOBzFkr3weADmYc4CAADwPGYsAF0FRR/gLJaWfWvXrm334xkZGS2uGz58uAzDMGlHAHwZxZK98HgA5mLOAgAA8DxmLABdAUUf4Dy2O2cfAJiBYsleeDwAAAAAAADsh6IPcCbKPgA+j2LJXng8AAAAAAAA7IeiD3Auyj4APu2r8mqKJRvh8QAAAAAAALAfij7A2Sj7APi0V/YWUCzZCI8HAAAAAACAvVD0Ac5H2QfAJx2vckuS+vYMoliyAR4PAAAAAAAA+6HoA3wDZR8An5N5pFR/PlgsSXpg9GCKJYvxeAAAAAAAANgPRR/gOyj7APiUzCOlmvraTvUKCZQkBXXvZvGOujYeDwAAAAAAAPtpOFtD0Qf4EMo+AD6jsVga2Tdcdw7rb/V2ujweDwAAAAAAAHsq2Pt7ij7Ah1D2AfAJFxZLm+YkKbAbP96sxOMBAAAAAABgX7WVxyj6AB/Cs68AHO/iYolzwlmLxwMAAAAAAMDeBo99hKIP8CGUfQAcjWLJXng8AAAAAAAA7C8kPM6SXIo+wByUfQAci2LJXng8AAAAAAAA0BaKPsA8lH0AHMkOxVJtfYPXM+3KDo9HdV291zMBAAAAAADQMYo+wFyUfQAcxw7FUoW7Tu8dOu71XDuyy+Pxy52HvZ4LAAAAAACA9lH0Aeaj7APgKHYplqat/0Snqmu9nm03dno8isqrvZ4NAAAAAACAtlH0Ad5B2QfAMexULP39RLmSh/f3er6d2O3xWHTTMK/nAwAAAAAAoHVlR3dR9AFeQtkHwBHsVixt+d5E9esZ5PU92IUdH4+re/X0+h4AAAAAAADQurIjOyn6AC+h7ANge3YslibERnl9D3bB4wEAAAAAAIC2VJzMkSRFxk6k6AO8hLIPgK1RLNkLjwcAAAAAAADakr/7eVWe3CdJihzwdYt3A3QdlH0AbItiyV54PAAAAAAAANCW/N3PKy/zWYX2GW31VoAux9KyLy0tTYmJiQoPD1d4eLiSkpL0wQcftHubsrIyzZs3TzExMQoKCtKwYcP0/vvve2nHALyFYsleeDwAZ2HGAgAAMAdzFgC0rrHoGzLhJwrrM8rq7QBdTncrwwcOHKiVK1fqmmuukWEYevXVVzVr1ix99tlnuu6661ocX1tbq6lTp6pv377auHGjYmNjVVBQoMjISO9vHoBpKJbshccDcB5mLAAAAHMwZwFASxcWffHj/lv/+OjnVm8J6HIsLfuSk5ObXV6xYoXS0tK0a9euVgekl156SadPn9bHH3+sgIBzTzbHx8d7Y6sAvIRiyV54PABnYsYCAAAwB3MWADR3cdEHwBqWln0Xqq+v1xtvvKGqqiolJSW1esw777yjpKQkzZs3T//3f/+nPn366L777tPChQvVrVu3Vm/jdrvldrubLpeXl5uyfwCXbmfhqWaX/3m6Sqk7DmlQeIjmjhmsdw4du+y1D5VUSpIy8k9e0u3cZ+v16r5Cnahy68ExcfrLP0/oL/880eqxu4+WSZLKirMve58daVy7pGCbqkq/MDXj4s/VV+XVemVvgfr2DNJt8dFa9emXl52R/a/P1b5jLq3PKer07arr6vXLnYdVVF6tRTcN0+HTlTp8urLVYy/+egJwjlkzlsScBdiZmb8X9x1zSZLySs9oT3GZKRlHK6olybT5R5Kqy4tMz2hc28zPVV7pGUlS7skKU9Y3e23AyZizgK7H7N+J3vi9frLq3M8W17Erfz7rZN5mlXz5gaKvukPBYYN07NBbkqRqV54kqfJUbtN1nta4/6MV1cxZgCQ/wzAMKzeQk5OjpKQk1dTUKDQ0VOnp6Zo+fXqrx44YMUL5+fmaM2eOHn30UX3xxRd69NFH9d///d9asmRJq7dZunSpli1b1uL6adOmNf1FlRkyMzM1YcIE09b3pQxv5ZBhn4zS0lLt2LHDtPXRtd10002KijLv1X/8XLRXRl1dnTZt2iSXy6Xw8HDTcpzI7BlLYs4iw7cyvJXDnAUnmzJlikJCQkxb3xe+B30pgzmrbcxZZJDR9TKqq6v14YcfmrY+wJzVdTLMmrEsL/tqa2tVWFgol8uljRs36sUXX9RHH32ka6+9tsWxw4YNU01NjfLy8pr++unXv/61fvWrX6m4uLjV9Vv7S6hBgwaZPqzOnDlT77zzjmnr+1KGt3LIsFfGzTffrIcffti09Xfu3Km0tDRNjo/WsOjQDo+vrW/Qu4eO6XR1rZKHx6hfz6AOb/NRfokOlFRqwoBIjRsQ6YFdn3sFXNbRMt0wIFLjB0Rqe36J9ns442KNGY2Zx6vc+vPBYvUKCdSdw/orsJv/FWccKqnU1vwSPfLII5o4caIHdt263//+9/rb3/5m2voSPxftllFeXq6IiAiehGqF2TOWxJxFhm9leCvHF+asvLw8PfHEE3rq1gQNiephSsbOwlNKy87XI+PjNSDMnCc99h0r08bcYq9kmPm5yis9oye25WrdunVKSEgwJUOSFi5cqC1btpi2vuQ734O+ksGc1TbmLDLI6JoZU6dO1dNPP21qRm5uru6//36vzFl3J8SoTyee/7ocjc8DeSODOatzfOX70BcyzJqxLH8bz8DAQA0dOlSSNG7cOGVlZWnVqlVavXp1i2NjYmIUEBDQ7G0OEhISdOzYMdXW1iowMLDFbYKCghQUZM4PFACXLyoqSnPmzDE1Iy0tTXPHxmnOqEHtHtd4Trjqsw3a8f1bOn1OuEff26sDJZVKHh6jxd8YfsX7Xb79oLKO5uupWxOa1nv0vb3a78GM1jRmzBweo29e3VdTX9upG2J7efQcfetzirQ1v0QTJ0409XF//fXXTVsbcBqzZyyJOQuwK7PnrD179uiJJ57Q9Gv6aWxMpGk5adn5emhsvGkZ63OKtDG32CsZZn6u9hSX6YltuUpISNDYsWNNyZBk6l+aA07DnAV0TSEhIab+rr2QN+asRTcPN3UG2ppf4pUM5izgnCt/uYaHNTQ0NPvLpQtNnDhRX3zxhRoaGpquO3TokGJiYtocjgCgPY1F399PlGvL9yZ2uujztOXbD+qJbbnNij5v+6q8WlNf26mRfcM9WvQBsAdmLAAAAHMwZwEAAKtZWvYtWrRI27dvV35+vnJycrRo0SJlZGQ0/RVqSkqKFi1a1HT8I488otOnT2v+/Pk6dOiQ3nvvPf3iF7/QvHnzrLoLAByMoq+5V/YWUPQBPoIZCwAAwBzMWQAAwI4sfRvPEydOKCUlRcXFxYqIiFBiYqI2b96sqVOnSpIKCwvl73++jxw0aJA2b96sH/3oR0pMTFRsbKzmz5+vhQsXWnUXADgURd95x6vO/QVq355BFH2Aj2DGAgAAMAdzFgAAsCNLy761a9e2+/GMjIwW1yUlJWnXrl0m7QhAV0DRd17mkVL9+eC5k8I/MHowRR/gI5ixAAAAzMGcBQAA7Mh25+wDADNR9J2XeaRUU1/bqV4h584TEdS9Wwe3AAAAAAAAAADYDWUfgC6Dou+8xqJvZN9w3TmsvyV7AAAAAAAAAABcOco+AF0CRd95FxZ9m+YkKbAbvwoAAAAAAAAAwKl4hheAz6PoO+/ioo9z9AEAAAAAAACAs1H2AfBp1XX1FH3/QtEHAAAAAAAAAL6nu9UbAAAz/XLnYR2vclP0UfQBAAAAAAAAgE+i7APg04rKq/XRgzdT9Flc9FXX1Xs9EwAAAAAAAAC6At7GE4BPW3TTMIo+i4u+CnedfrnzsNdzAQAAAAAAAKAroOwD4NOu7tXTklyKvnMq3HWatv4TFZVXez0bAAAAAAAAALoCyj4A8DCKvnMai76/nyjXopuGeT0fAAAAAAAAALoCyj4A8CCKvnMuLPq2fG+iZa+wBAAAAAAAAABfR9kHAB5C0XfOxUWfVedMBAAAAAAAAICugLIPADyAou8cij4AAAAAAAAA8K7uVm8AAJwuI/+ktuaVUPRR9AEAAAAAAACA1/HKPgC4QhR9FH0AAAAAAAAAYBXKPgC4TNlHyyRJk4dEU/RR9AEAAAAAAACAJSj7AOAyLN9+UFn/KvsmxfexZA8UfQAAAAAAAAAAyj4AuETLtx/UE9tydcOASMv2QNEHAAAAAAAAAJAo+wDgkjQWfU/dmqDxFpV9FH0AAAAAAAAAgEaUfQDQSRcWfZyjj6IPAAAAAAAAAOzA0rIvLS1NiYmJCg8PV3h4uJKSkvTBBx+0efwrr7wiPz+/Zv+Cg4O9uGMAXRVF3zkUfYBzMGcBAAB4HjMWAACwo+5Whg8cOFArV67UNddcI8Mw9Oqrr2rWrFn67LPPdN1117V6m/DwcB08eLDpsp+fn7e2C6CLskPR91V5NUUfgEvCnAUAAOB5zFgAAMCOLC37kpOTm11esWKF0tLStGvXrjYHJD8/P/Xv398b2wMAWxR9kvTK3gKNGxBF0Qeg05izAAAAPI8ZCwAA2JGlZd+F6uvr9cYbb6iqqkpJSUltHldZWam4uDg1NDRo7Nix+sUvftHmMCVJbrdbbre76XJ5eblH9w3A3nYWnrrs276de1Qbc4t1d0KMhkT10PqcomYfP1RSKUnKyD95RXtsT0Z+iSQpuHs33RYfrVWffunxjOyjZZKkfcdcLe6jJFXX1euXOw+rqLxai24apsOnK3X4dOUlZVzJ4wDgyjFnATBD7skK09bOKz1DRieZuTaA9pk1Y0nMWUBX5/T5xFcymLPgJH6GYRhWbiAnJ0dJSUmqqalRaGio0tPTNX369FaP/eSTT3T48GElJibK5XLpmWee0fbt27V//34NHDiw1dssXbpUy5Yta3H9tGnTFBBg3qtjMjMzNWHCBNPW96UMb+WQ0bUySktLtWPHDtPWx+W56aabFBVl3qsCfeFr15s5vpBRV1enTZs2yeVyKTw83LQcp2LOIoMM++X4QkZ1dbU+/PBD09bH5ZkyZYpCQkJMW98XvnbJuDTMWW0ze8aSmLPIIKOrZjBn2RNzFhmeZNaMZXnZV1tbq8LCQrlcLm3cuFEvvviiPvroI1177bUd3raurk4JCQm699579dRTT7V6TGt/CTVo0CDTh9WZM2fqnXfeMW19X8rwVg4ZXS/j5ptv1sMPP2za+jt37lRaWpomx0drWHSoR9c+XuXWnw8Wq7u/v6rPNuiGAZEaPyDSoxmNDpVUamt+iR555BFNnDjRlAxJ+v3vf6+//e1vpq0v+c7XrrdyfCGjvLxcERERPAnVBuYsMsiwX46vZEydOlVPP/20aevn5ubq/vvv11O3JmhIVA9TMnYWnlJadr6pGXmlZ/TEtlytW7dOCQkJpmRI0sKFC7VlyxbT1pd852uXjM5jzmqb2TOWxJxFBhldNUNizuos5iwynJph1oxl+dt4BgYGaujQoZKkcePGKSsrS6tWrdLq1as7vG1AQICuv/56ffHFF20eExQUpKCgII/tF4BzREVFac6cOaZmpKWlae7YOM0ZNchja2YeKdXU13bqhtheSogO1drPCjVzeIxp5wxcn1Okrfklmjhxoqmfr9dff920tQG0jjkLgFlCQkI0duxY03OmX9NPY2MiTVs/LTvf1Iw9xWV6YluuEhISTP18mfmX5gBaMnvGkpizgK6MOatzmLOA5vyt3sDFGhoamv3lUnvq6+uVk5OjmJgYk3cFAN7RWPSN7BuuTXOSFNjNdj+mATgYcxYAAIDnMWMBAACrWfrKvkWLFumOO+7Q4MGDVVFRofT0dGVkZGjz5s2SpJSUFMXGxio1NVWS9OSTT+rrX/+6hg4dqrKyMv3qV79SQUGBHnroISvvBgB4xMVFX1iQeedhAOD7mLMAAAA8jxkLAADYkaVl34kTJ5SSkqLi4mJFREQoMTFRmzdv1tSpUyVJhYWF8vc//6qW0tJS/fCHP9SxY8cUFRWlcePG6eOPP+7Ue6IDgJ1R9AHwNOYsAAAAz2PGAgAAdmRp2bd27dp2P56RkdHs8m9+8xv95je/MXFHAOB9FH0AzMCcBQAA4HnMWAAAwI44GRQAWMgORV91Xb3XMwEAAAAAAAAAnkHZBwAWsUPRV+Gu0y93HvZ6LgAAAAAAAADAMyj7AMACdin6pq3/REXl1V7PBgAAAAAAAAB4BmUfAHiZnYq+v58o16Kbhnk9HwAAAAAAAADgGZR9AOBFdiv6tnxvoq7u1dPrewAAAAAAAAAAeAZlHwB4iR2LvgmxUV7fAwAAAAAAAADAcyj7AMALKPoAAAAAAAAAAGag7AMAk1H0AQAAAAAAAADMQtkHACai6AMAAAAAAAAAmImyDwBMQtEHAAAAAAAAADAbZR8AmICiDwAAAAAAAADgDZR9AOBhFH0AAAAAAAAAAG+h7AMAD6LoAwAAAAAAAAB4E2UfAHgIRR8AAAAAAAAAwNso+wDAAyj6AAAAAAAAAABWoOwDgCv0z9NVFH0AAAAAAAAAAEtQ9gHAFUrdcYiiDwAAAAAAAABgCco+ALhCg8JDKPoAAAAAAAAAAJag7AOAK/TYxGso+gAAAAAAAAAAlqDsA4ArFBLQzeuZFH0AAAAAAAAAAMnisi8tLU2JiYkKDw9XeHi4kpKS9MEHH7R5/Jtvvqnx48crMjJSPXv21JgxY/Taa695cccAYD2KPgCdwZwFAADgecxYAADAjrpbGT5w4ECtXLlS11xzjQzD0KuvvqpZs2bps88+03XXXdfi+F69eunnP/+5RowYocDAQL377ruaO3eu+vbtq9tvv92CewAA3kXRB6CzmLMAAAA8jxkLAADYkaVlX3JycrPLK1asUFpamnbt2tXqgDRp0qRml+fPn69XX31VO3bsYEAC4PMo+gBcCuYsAAAAz2PGAgAAdmRp2Xeh+vp6vfHGG6qqqlJSUlKHxxuGob/+9a86ePCgnn766TaPc7vdcrvdTZfLy8s9sl8AaLSz8JRpax8qqZQkZR8t1bg/ZKiovFqLbhqmw6crdfh0pUcyzNw/AHtgzgLgVLknK0xbO6/0jOkZZq4NwHpmzVgScxYA8zFnAb7FzzAMw8oN5OTkKCkpSTU1NQoNDVV6erqmT5/e5vEul0uxsbFyu93q1q2bfve73+n73/9+m8cvXbpUy5Yta3H9tGnTFBAQ4JH70JrMzExNmDDBtPV9KcNbOWSQ4WmlpaXasWOHaet720033aSoKPNeLegLj7m3MryV4wsZdXV12rRpk1wul8LDw03LcSrmLDLIsF8OGZ1TXV2tDz/80LT1vW3KlCkKCQkxbX1feMzJsF8Gc1bbzJ6xJOYsMsjoqhneyGHOujS+8rVFhn0yzJqxLC/7amtrVVhYKJfLpY0bN+rFF1/URx99pGuvvbbV4xsaGvTll1+qsrJSW7du1VNPPaW33367xdsiNGrtL6EGDRpk+rA6c+ZMvfPOO6at70sZ3sohgwwz3HzzzXr44YdNzfjlL3+pxx57zNSM3//+9/rb3/5maoavPOb8XLRXRnl5uSIiIngSqg3MWWSQYb8cMjpv6tSpHb7y5UrNnz9fq1atMjVj4cKF2rJli6kZvvKYk2GvDOastpk9Y0nMWWSQ0VUzvJXDnNV5vvK1RYZ9MsyasSx/G8/AwEANHTpUkjRu3DhlZWVp1apVWr16davH+/v7Nx0/ZswY5ebmKjU1tc0BKSgoSEFBQabsHQCioqI0Z84cUzNef/11r2QA8D3MWQCcLCQkRGPHjjU1IyoqyvQMM//SHIA1zJ6xJOYsAOZizgJ8j7/VG7hYQ0NDs79c8vTxAAAAXRVzFgAAgOcxYwEAAKtZ+sq+RYsW6Y477tDgwYNVUVGh9PR0ZWRkaPPmzZKklJQUxcbGKjU1VZKUmpqq8ePH6+qrr5bb7db777+v1157TWlpaVbeDQAAANthzgIAAPA8ZiwAAGBHlpZ9J06cUEpKioqLixUREaHExERt3rxZU6dOlSQVFhbK3//8iw+rqqr06KOP6quvvlJISIhGjBihdevW6Tvf+Y5VdwEAAMCWmLMAAAA8jxkLAADYkaVl39q1a9v9eEZGRrPLy5cv1/Lly03cEQAAgG9gzgIAAPA8ZiwAAGBHtjtnHwAAAAAAAAAAAIDOoewDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChKPsAAAAAAAAAAAAAh6LsAwAAAAAAAAAAAByKsg8AAAAAAAAAAABwKMo+AAAAAAAAAAAAwKEo+wAAAAAAAAAAAACHouwDAAAAAAAAAAAAHIqyDwAAAAAAAAAAAHAoyj4AAAAAAAAAAADAoSj7AAAAAAAAAAAAAIei7AMAAAAAAAAAAAAcirIPAAAAAAAAAAAAcCjKPgAAAAAAAAAAAMChLC370tLSlJiYqPDwcIWHhyspKUkffPBBm8evWbNGN998s6KiohQVFaUpU6YoMzPTizsGAABwBuYsAAAAz2PGAgAAdmRp2Tdw4ECtXLlSu3fvVnZ2tm677TbNmjVL+/fvb/X4jIwM3Xvvvdq2bZs++eQTDRo0SN/85jd15MgRL+8cAADA3pizAAAAPI8ZCwAA2FF3K8OTk5ObXV6xYoXS0tK0a9cuXXfddS2OX79+fbPLL774ov70pz9p69atSklJMXWvAAAATsKcBQAA4HnMWAAAwI4sLfsuVF9frzfeeENVVVVKSkrq1G3OnDmjuro69erVq81j3G633G530+Xy8vIr3isAAICTMGcBAAB4nlkzlsScBQAALo2fYRiGlRvIyclRUlKSampqFBoaqvT0dE2fPr1Tt3300Ue1efNm7d+/X8HBwa0es3TpUi1btqzF9dOmTVNAQMAV7b09mZmZmjBhgmnr+1KGt3LIIIMMMpyS4a0cX8ioq6vTpk2b5HK5FB4eblqOUzFnkUGG/XLIIIMMMpySwZzVNrNnLIk5iwwyumqGt3LIIIMM6zJMm7EMi7ndbuPw4cNGdna28fjjjxvR0dHG/v37O7xdamqqERUVZezbt6/d42pqagyXy9X0r6ioyJBkuFwuT92FViUnJ5u6vi9leCuHDDLIIMMpGd7K8YUMl8vlld/rTsWcRQYZ9sshgwwyyHBKBnNW28yesQyDOYsMMrpqhrdyyCCDDOsyzJqxLH8bz8DAQA0dOlSSNG7cOGVlZWnVqlVavXp1m7d55plntHLlSn344YdKTExsd/2goCAFBQV5dM8AAABOwJwFAADgeWbPWBJzFgAAuDSWl30Xa2hoaPae5Bf75S9/qRUrVmjz5s0aP368F3cGAADgbMxZAAAAnseMBQAArGZp2bdo0SLdcccdGjx4sCoqKpSenq6MjAxt3rxZkpSSkqLY2FilpqZKkp5++mn97//+r9LT0xUfH69jx45JkkJDQxUaGmrZ/QAAALAb5iwAAADPY8YCAAB2ZGnZd+LECaWkpKi4uFgRERFKTEzU5s2bNXXqVElSYWGh/P39m45PS0tTbW2t7r777mbrLFmyREuXLvXm1gEAAGyNOQsAAMDzmLEAAIAdWVr2rV27tt2PZ2RkNLucn4wrQ8cAACXDSURBVJ9v3mYAAAB8CHMWAACA5zFjAQAAO/Lv+BAAAAAAAAAAAAAAdkTZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJR9AAAAAAAAAAAAgENR9gEAAAAAAAAAAAAORdkHAAAAAAAAAAAAOBRlHwAAAAAAAAAAAOBQlH0AAAAAAAAAAACAQ1H2AQAAAAAAAAAAAA5F2QcAAAAAAAAAAAA4FGUfAAAAAAAAAAAA4FCUfQAAAAAAAAAAAIBDUfYBAAAAAAAAAAAADkXZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJR9AAAAAAAAAAAAgENR9gEAAAAAAAAAAAAORdkHAAAAAAAAAAAAOBRlHwAAAAAAAAAAAOBQlpZ9aWlpSkxMVHh4uMLDw5WUlKQPPvigzeP379+vb3/724qPj5efn5+ee+45720WAADAIZixAAAAzMGcBQAA7MjSsm/gwIFauXKldu/erezsbN12222aNWuW9u/f3+rxZ86c0VVXXaWVK1eqf//+Xt4tAACAMzBjAQAAmIM5CwAA2FF3K8OTk5ObXV6xYoXS0tK0a9cuXXfddS2Ov+GGG3TDDTdIkh5//HGv7BEAAMBpmLEAAADMwZwFAADsyNKy70L19fV64403VFVVpaSkJI+t63a75Xa7my6Xl5d7bG0AAAC7M2vGkpizAABA18acBQAA7MLPMAzDyg3k5OQoKSlJNTU1Cg0NVXp6uqZPn97h7eLj47VgwQItWLCg3eOWLl2qZcuWtbh+2rRpCggIuNxtdygzM1MTJkwwbX1fyvBWDhlkkEGGUzK8leMLGXV1ddq0aZNcLpfCw8NNy3Eis2csiTmLDN/K8FYOGWSQQYZTMpiz2sacRQYZZDg9hwwyyLAuw7QZy7CY2+02Dh8+bGRnZxuPP/64ER0dbezfv7/D28XFxRm/+c1vOjyupqbGcLlcTf+KiooMSYbL5fLA7tuWnJxs6vq+lOGtHDLIIIMMp2R4K8cXMlwul1d+rzuR2TOWYTBnkeFbGd7KIYMMMshwSgZzVtuYs8gggwyn55BBBhnWZZg1Y1n+Np6BgYEaOnSoJGncuHHKysrSqlWrtHr1ao+sHxQUpKCgII+sBQAA4BRmz1gScxYAAOiamLMAAIDd+Fu9gYs1NDQ0e09yAAAAXDlmLAAAAHMwZwEAAKtZ+sq+RYsW6Y477tDgwYNVUVGh9PR0ZWRkaPPmzZKklJQUxcbGKjU1VZJUW1urAwcONP33kSNHtHfvXoWGhjb9RRUAAEBXx4wFAABgDuYsAABgR5aWfSdOnFBKSoqKi4sVERGhxMREbd68WVOnTpUkFRYWyt///IsPjx49quuvv77p8jPPPKNnnnlGt9xyizIyMry9fQAAAFtixgIAADAHcxYAALAjS8u+tWvXtvvxi4ee+Ph4GYZh4o4AAACcjxkLAADAHMxZAADAjmx3zj4AAAAAAAAAAAAAnUPZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJR9AAAAAAAAAAAAgENR9gEAAAAAAAAAAAAORdkHAAAAAAAAAAAAOBRlHwAAAAAAAAAAAOBQlH0AAAAAAAAAAACAQ1H2AQAAAAAAAAAAAA5F2QcAAAAAAAAAAAA4FGUfAAAAAAAAAAAA4FCUfQAAAAAAAAAAAIBDUfYBAAAAAAAAAAAADkXZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJR9AAAAAAAAAAAAgENR9gEAAAAAAAAAAAAORdkHAAAAAAAAAAAAOBRlHwAAAAAAAAAAAOBQlH0AAAAAAAAAAACAQ1la9qWlpSkxMVHh4eEKDw9XUlKSPvjgg3Zv88Ybb2jEiBEKDg7WqFGj9P7773tptwAAAM7BnAUAAOB5zFgAAMCOLC37Bg4cqJUrV2r37t3Kzs7WbbfdplmzZmn//v2tHv/xxx/r3nvv1Q9+8AN99tlnmj17tmbPnq2///3vXt45AACAvTFnAQAAeB4zFgAAsCNLy77k5GRNnz5d11xzjYYNG6YVK1YoNDRUu3btavX4VatWadq0afqf//kfJSQk6KmnntLYsWP1wgsveHnnAAAA9sacBQAA4HnMWAAAwI5sc86++vp6bdiwQVVVVUpKSmr1mE8++URTpkxpdt3tt9+uTz75pM113W63ysvLm/0DAADoSpizAAAAPM+sGUtizgIAAJemu9UbyMnJUVJSkmpqahQaGqq33npL1157bavHHjt2TP369Wt2Xb9+/XTs2LE2109NTdWyZctaXP+d73xHAQEBV7b5dmRmZmrmzJmmre9LGd7KIYMMMshwSoa3cnwho66uzrS1fQFzFhlk2C+HDDLIIMMpGcxZbTN7xpKYs8ggo6tmeCuHDDLIsC7DtBnLsJjb7TYOHz5sZGdnG48//rgRHR1t7N+/v9VjAwICjPT09GbX/fa3vzX69u3b5vo1NTWGy+Vq+ldUVGRIMlwul0fvx8WSk5NNXd+XMryVQwYZZJDhlAxv5fhChsvl8srvdadiziKDDPvlkEEGGWQ4JYM5q21mz1iGwZxFBhldNcNbOWSQQYZ1GWbNWJa/si8wMFBDhw6VJI0bN05ZWVlatWqVVq9e3eLY/v376/jx482uO378uPr379/m+kFBQQoKCvLspgEAAByAOQsAAMDzzJ6xJOYsAABwaWxzzr5GDQ0NcrvdrX4sKSlJW7dubXbdli1b2nxfdAAAAJzHnAUAAOB5zFgAAMBqlr6yb9GiRbrjjjs0ePBgVVRUKD09XRkZGdq8ebMkKSUlRbGxsUpNTZUkzZ8/X7fccoueffZZzZgxQxs2bFB2drb+8Ic/WHk3AAAAbIc5CwAAwPOYsQAAgB1ZWvadOHFCKSkpKi4uVkREhBITE7V582ZNnTpVklRYWCh///MvPrzxxhuVnp6uxYsX62c/+5muueYavf322xo5cqRVdwEAAMCWmLMAAAA8jxkLAADYkaVl39q1a9v9eEZGRovr7rnnHt1zzz0m7QgAAMA3MGcBAAB4HjMWAACwI9udsw8AAAAAAAAAAABA51D2AQAAAAAAAAAAAA5F2QcAAAAAAAAAAAA4FGUfAAAAAAAAAAAA4FCUfQAAAAAAAAAAAIBDUfYBAAAAAAAAAAAADkXZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJR9AAAAAAAAAAAAgENR9gEAAAAAAAAAAAAORdkHAAAAAAAAAAAAOBRlHwAAAAAAAAAAAOBQlH0AAAAAAAAAAACAQ1H2AQAAAAAAAAAAAA5F2QcAAAAAAAAAAAA4FGUfAAAAAAAAAAAA4FCUfQAAAAAAAAAAAIBDUfYBAAAAAAAAAAAADkXZBwAAAAAAAAAAADgUZR8AAAAAAAAAAADgUJaWfampqbrhhhsUFhamvn37avbs2Tp48GCHt3vuuec0fPhwhYSEaNCgQfrRj36kmpoaL+wYAADA/pixAAAAzMGcBQAA7MjSsu+jjz7SvHnztGvXLm3ZskV1dXX65je/qaqqqjZvk56erscff1xLlixRbm6u1q5dq9dff10/+9nPvLhzAAAA+2LGAgAAMAdzFgAAsKPuVoZv2rSp2eVXXnlFffv21e7du/WNb3yj1dt8/PHHmjhxou677z5JUnx8vO699159+umnpu8XAADACZixAAAAzMGcBQAA7MhW5+xzuVySpF69erV5zI033qjdu3crMzNTkvTll1/q/fff1/Tp01s93u12q7y8vNk/AACArsSMGUtizgIAAGDOAgAAduBnGIZh9SYkqaGhQTNnzlRZWZl27NjR7rHPP/+8fvrTn8owDJ09e1YPP/yw0tLSWj126dKlWrZsWYvrp02bpoCAAI/svTWZmZmaMGGCaev7Uoa3csgggwwynJLhrRxfyKirq9OmTZvkcrkUHh5uWo6TmTVjScxZZPhWhrdyyCCDDDKcksGc1THmLDLIIMOpOWSQQYZ1GabNWIZNPPzww0ZcXJxRVFTU7nHbtm0z+vXrZ6xZs8b4/PPPjTfffNMYNGiQ8eSTT7Z6fE1NjeFyuZr+FRUVGZIMl8tlxt1okpycbOr6vpThrRwyyCCDDKdkeCvHFzJcLpdXfq87mVkzlmEwZ5HhWxneyiGDDDLIcEoGc1bHmLPIIIMMp+aQQQYZ1mWYNWNZes6+Rv/5n/+pd999V9u3b9fAgQPbPfaJJ57Q9773PT300EOSpFGjRqmqqkr//u//rp///Ofy92/+zqRBQUEKCgoybe8AAAB2ZeaMJTFnAQCAros5CwAA2ImlZZ9hGPqv//ovvfXWW8rIyNCQIUM6vM2ZM2daDEHdunVrWg8AAKCrY8YCAAAwB3MWAACwI0vLvnnz5ik9PV3/93//p7CwMB07dkySFBERoZCQEElSSkqKYmNjlZqaKklKTk7Wr3/9a11//fX62te+pi+++EJPPPGEkpOTmwYlAACArowZCwAAwBzMWQAAwI4sLfsaT0Q8adKkZte//PLLevDBByVJhYWFzf76afHixfLz89PixYt15MgR9enTR8nJyVqxYoW3tg0AAGBrzFgAAADmYM4CAAB2ZPnbeHYkIyOj2eXu3btryZIlWrJkiUm7AgAAcDZmLAAAAHMwZwEAADtqeQZgAACA/7+9uw+K4r7jOP49j0ctUDBFQREfEh9ifOgMGQc1asSJM5IWJ22irZrYZCaJwUxM6zikOsXaVDOpbWynxraGktQm0thAx4mEYFPB+hDwARQ1giItmOrY6QSfsMjDt3+0UJ4Odpc9uD3er5n9w3N3P7vu3e8+8rtbAAAAAAAAADgCk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQ/XrZN+WLVvkwQcflLCwMImOjpbFixdLeXl5t9vMmzdPXC5XpyU5ObmPjhoAAMC30bEAAAC8g54FAAB8Ub9O9hUWFkpqaqp8+umnsn//fmloaJBHHnlEbt++7XGb7OxsuXLlSuty5swZcbvd8vjjj/fhkQMAAPguOhYAAIB30LMAAIAvCujP8Ly8vHZ/fvvttyU6OlpOnDghc+bM6XKbqKiodn/OysqSwYMHU5AAAAD+h44FAADgHfQsAADgi/p1sq+j69evi0jnEtSdjIwMWbp0qQwZMqTLv6+vr5f6+vpOGTdu3OjFkfasoaGBDB/LIYMMMshwSkZf5fhDRsu+VdVrGf7AGx1LhJ5Fhn9l9FUOGWSQQYZTMuhZxtCzyCCDDCfmkEEGGf2X4bWOpT6iqalJk5OTddasWYa3KSoqUhHRoqIij+ukp6eriLCwsLCwsLD48VJTU2NHHfFL3upYqvQsFhYWFhaWgbDQszyjZ7GwsLCwsLBYXezuWC5V3/iI1qpVq+Sjjz6SQ4cOyciRIw1t89xzz8nRo0fl9OnTHtfp+Emo2tpaiY+Pl+rqaomIiOj1cXflxo0bEhcXJzU1NRIeHk6GD+SQQQYZZDglo69y/CVDVeXmzZsSGxsrgwb1668i9lne6lgi9Cwy/Cejr3LIIIMMMpySIULPMoKeRQYZZDgxhwwyyOjfDG91LJ+4jefq1avlww8/lIMHDxouR7dv35asrCzZtGlTt+sFBwdLcHBwp8cjIiK8OjCLiISHh5PhYzlkkEEGGU7J6Kscf8jw1g87/IE3O5YIPYsM/8voqxwyyCCDDKdk0LM8o2eRQQYZTs8hgwwy+i/DGx2rXyf7VFVefPFFycnJkYKCAhkzZozhbffs2SP19fWyfPlyLx4hAACA89CxAAAAvIOeBQAAfFG/3ochNTVVfv/738t7770nYWFhcvXqVbl69arcuXOndZ0nn3xSXnnllU7bZmRkyOLFi2Xo0KF9ecgAAAA+j44FAADgHfQsAADgi/r1m307duwQEZF58+a1ezwzM1NWrlwpIiLV1dWd7ltaXl4uhw4dkvz8fNOZwcHBkp6e3uWtEOxChu/lkEEGGWQ4JaOvcvwlA13rj44l4j/PKzIGXkZf5ZBBBhlkOCUDntGzyCCDDG/yl3Mhgwwy+p5LVbW/DwIAAAAAAAAAAACAef16G08AAAAAAAAAAAAA1jHZBwAAAAAAAAAAADgUk30AAAAAAAAAAACAQzHZBwAAAAAAAAAAADiU3032HTx4UL72ta9JbGysuFwu+dOf/tTt+itXrhSXy9VpmTx5sm0ZIiLbt2+XSZMmSWhoqEyYMEF+97vfeVx3y5Yt8uCDD0pYWJhER0fL4sWLpby8vMeMPXv2yMSJEyUkJESmTJkiubm53a5vJWfnzp3y0EMPSWRkpERGRsqCBQukuLjY9nNpkZWVJS6XSxYvXmx7Rm1traSmpkpMTIwEBwfL+PHjPf6bWc3Ytm2bTJgwQUJDQyUuLk5efvll+fe//21bRkNDg2zatEnGjRsnISEhMm3aNMnLy/O4/o4dO2Tq1KkSHh4u4eHhkpiYKB999JHH9c+ePSvf+MY3ZPTo0eJyuWTbtm09nrPZjOzsbElISJAvf/nLMmTIEJk+fbrs2rXL1oy3336702s8JCTE1ox58+Z1OZYkJyfblmH2enfltddeE5fLJWvWrOl2PbPjidkMs2OJlYy2jIwlVjPMjCVWM8yMJSIiGzdu7PRcnDhxYrcZZq+52Qwr4wl8Dz3L2GuEjuVbHctqDj2LnkXP8pzR1kDqWX3Rsazk0LOczx86lgg9q8VA6ln+0rGs5NCz6Fn0LOf1LL/vWOpncnNzdf369Zqdna0iojk5Od2uX1tbq1euXGldampqNCoqStPT023LePPNNzUsLEyzsrK0srJSd+/erV/60pd07969Xa6/cOFCzczM1DNnzmhpaakuWrRIR40apbdu3fKYcfjwYXW73fr666/ruXPndMOGDRoYGKhlZWUet7GS8+1vf1u3b9+uJSUl+tlnn+nKlSs1IiJCL1++bFtGi6qqKh0xYoQ+9NBDmpKSYut51NfXa0JCgi5atEgPHTqkVVVVWlBQoKWlpbZlvPvuuxocHKzvvvuuVlVV6ccff6wxMTH68ssv25axbt06jY2N1X379mllZaW++eabGhISoidPnuxy/b179+q+ffu0oqJCy8vL9fvf/74GBgbqmTNnuly/uLhY165dq7t379bhw4frG2+84fFYrGYcOHBAs7Oz9dy5c3rx4kXdtm2but1uzcvLsy0jMzNTw8PD273Wr169aut5/Otf/2q3/zNnzqjb7dbMzEzbMsxe746Ki4t19OjROnXqVH3ppZc8rmdlPDGbYXYssZLRwuhYYiXD7FhiJcPsWKKqmp6erpMnT273nPznP//pcX0r19xshpXxBL6HnmXsNULH8q2OZTWHnkXPomd5zmgx0HpWX3QsKzn0LOfzh46lSs9SHXg9y186lpUcehY9i57lvJ7l7x3L7yb72jJSXjrKyclRl8ulf/vb32zLSExM1LVr17Z77Lvf/a7OmjXLUMa1a9dURLSwsNDjOk888YQmJye3e2zGjBn63HPPGcowmtNRY2OjhoWF6TvvvGNrRmNjo86cOVPfeustfeqppwwPaEYzduzYoWPHjtW7d+8a3q/ZjNTUVJ0/f367x+y+7jExMfrLX/6y3WOPPfaYLlu2zFCGqmpkZKS+9dZbPa4XHx9veUAzmtHiq1/9qm7YsMG2jMzMTI2IiDC1P7MZHb3xxhsaFhZm6D8DRjN6c71v3ryp9913n+7fv1/nzp3b7Zux1fHETEZHRscSsxlWxhIzGVbHEjMZVsaS9PR0nTZtmuHjsXLNzWa01ZvxBL6DnmW8Z9GxjOuLjmU0h55lLIOeRc8aSD2rLzqWlZy26FnO5y8dS5WeNRB7lj91LDM5LehZ9Cy7MuhZPeNnWZ353W08eysjI0MWLFgg8fHxtu2zvr6+01esQ0NDpbi4WBoaGnrc/vr16yIiEhUV5XGdo0ePyoIFC9o9tnDhQjl69Kjh4zSS01FdXZ00NDQY3sZoxqZNmyQ6OlqeeeYZw8diJmPv3r2SmJgoqampMmzYMHnggQdk8+bN0tTUZFvGzJkz5cSJE61f5b506ZLk5ubKokWLbMvw9Nw6dOhQj/tvamqSrKwsuX37tiQmJho6JrPMZqiqfPLJJ1JeXi5z5syxNePWrVsSHx8vcXFxkpKSImfPnvXaeYj8dyxZunSpDBkyxLaM3lzv1NRUSU5O7jROdMXqeGImoyOjY4nZDCtjiZkMq2OJmQyrY8mFCxckNjZWxo4dK8uWLZPq6mqP61q95mYyAJGB27PoWL7VsYzm0LPoWfSs7g3UntUXHctsDuCLHUuEnmWGv/Qsf+hYVnLoWfQselZnvtqz/Lpj9fNko1eJyU9Dff755+p2u/UPf/iDrRmvvPKKDh8+XI8fP67Nzc167NgxHTZsmIqI/uMf/+h226amJk1OTu7xEzSBgYH63nvvtXts+/btGh0dbeg8jOZ0tGrVKh07dqzeuXPHtoy//vWvOmLEiNav0Jr5NJTRjAkTJmhwcLA+/fTTevz4cc3KytKoqCjduHGjbRmqqj//+c81MDBQAwICVET0+eeft/U8vvWtb+n999+vFRUV2tTUpPn5+RoaGqpBQUEetzl9+rQOGTJE3W63RkRE6L59+wwdk5lPL5jNqK2t1SFDhmhAQIAGBwdrRkaGrRlHjhzRd955R0tKSrSgoEAfffRRDQ8P15qaGlvPo0VRUZGKiBYVFdl6Hlaut6rq7t279YEHHmh9nfb0yRsr44nZjI6MjCVmM6yMJWYzrIwlVv6tzI4lubm5+v777+upU6c0Ly9PExMTddSoUXrjxo0u17dyzc1mtOWET0OhZ/QsYz2LjuVbHctMDj2LnkXP8pwxUHtWX3QsKzlt0bOczx86lio9ayD2LKd3LCs59Cx6Fj3Lc4aq7/Usf+9YTPa1sXnzZh06dKjW19fbmlFXV6ff+c53NCAgQN1ut8bGxuq6detURHq8z/Lzzz+v8fHxPQ7ivZ3sM5rT1pYtWzQyMlJPnTplW8aNGzd09OjRmpub2/qYmYJk9Dzuu+8+jYuL08bGxtbHfvrTn+rw4cNtyzhw4IAOGzZMd+7cqadPn9bs7GyNi4vTTZs22ZZx7do1TUlJ0UGDBqnb7dbx48frCy+8oCEhIR63qa+v1wsXLujx48c1LS1N77nnHj179myPx2RmQDOb0dTUpBcuXNCSkhLdunWrRkRE6IEDB2zNaOvu3bs6bty4Hm+tYDXj2Wef1SlTphg6FjMZVq53dXW1RkdHt3ud2l2OrGS0ZWQsMZthZSyxch5mxxIrGb0ZS1p88cUXGh4e7vGWGr19DzGS0ZYTChJ6Rs8y9hqhY/lWxzKTQ8+iZ9Gzus6gZ/1fX3QsIzlt0bOczx86lio9ayD2LKd3LCs59Cx6Fj3Lc4YTepa/dSwm+/6nublZ7733Xl2zZo3XMu7evas1NTXa2NjY+ouOm5qaPK6fmpqqI0eO1EuXLvW477i4uE5Pth/84Ac6derUHrc1k9PiJz/5iUZEROixY8cMrW80o6SkREVE3W536+JyudTlcqnb7daLFy/ach5z5szRpKSkdo/l5uaqiHRbkM1kzJ49u9P97Xft2qWhoaG2XfcWd+7c0cuXL2tzc7OuW7dO77//fsPbJiUl6bPPPtvjer0Z0IxmtHjmmWf0kUce8WrGN7/5TV26dKntGbdu3dLw8HDdtm2bqX2byTBzvXNycjq9pkSk9TXV9k29hdnxxEpGC6NjidkMK2OJlfMwO5ZYybA6lnSUkJCgaWlpXf5db95DjGa05YSChJ7Rs3p+jdCx/stXOpbZnBb0LHqWJ/QsepZq33SsnnLaomc5n9M7lio9ayD2LH/sWGZyWtCz6Fm9zaBntcfPsszhd/b9T2FhoVy8eNHSfbWNCgwMlJEjR4rb7ZasrCx59NFHZdCgzpdAVWX16tWSk5Mjf/nLX2TMmDE97jsxMVE++eSTdo/t37+/2/sxW8kREXn99dflRz/6keTl5UlCQkK365rNmDhxopSVlUlpaWnr8vWvf10efvhhKS0tlbi4OFvOY9asWXLx4kVpbm5ufayiokJiYmIkKCjIloy6urpO19ftdrfuz46MFiEhITJixAhpbGyUDz74QFJSUgxv29zcLPX19YbXt8JshpVjMrNNU1OTlJWVSUxMjO0Ze/bskfr6elm+fLmpfZvJMHO9k5KSOr2mEhISZNmyZVJaWtr6nGzL7HhiJUPE3FhiNsPKWGLlPMyOJVYyzI4lXbl165ZUVlZ6fM5beQ8xm4GBbaD1LDqWb3Usqzkt6Fn0LE/oWfSsvuhYRnIwcPlSxxKhZw3EnuXPHctKDj2LntXbDHrW//GzLAv6bl6xb9y8eVNLSkpaZ8F/9rOfaUlJif79739XVdW0tDRdsWJFp+2WL1+uM2bM8EpGeXm57tq1SysqKrSoqEiXLFmiUVFRWlVV1eX+V61apREREVpQUKBXrlxpXerq6lrXWbFiRbsZ58OHD2tAQIBu3bpVP/vsM01PT9fAwEAtKyvzeB5Wcl577TUNCgrSP/7xj+22uXnzpm0ZHfX0VWUrGdXV1RoWFqarV6/W8vJy/fDDDzU6OlpfffVV2zLS09M1LCxMd+/erZcuXdL8/HwdN26cPvHEE7ZlfPrpp/rBBx9oZWWlHjx4UOfPn69jxozRL774osuMtLQ0LSws1KqqKj19+rSmpaWpy+XS/Pz8LvdfX1/f+lyPiYnRtWvXaklJiV64cKHL/VvJ2Lx5s+bn52tlZaWeO3dOt27dqgEBAbpz507bMn74wx/qxx9/rJWVlXrixAldunSphoSEdHsLA7MZLWbPnq1LlizxuN/eZJi93p50/Jq9HeOJ2QyzY4mVjI7M3EbFaIbZscRKhtmxRFX1e9/7nhYUFGhVVZUePnxYFyxYoPfcc49eu3atywwr19xshpXxBL6HnmXsNULH8q2OZTWHnkXPomd5zuhooPSsvuhYVnLoWc7nDx1LlZ7V1kDpWf7Ssazk0LPoWfQs5/Usf+9YfjfZd+DAARWRTstTTz2lqv99ccydO7fdNrW1tRoaGqq/+c1vvJJx7tw5nT59uoaGhmp4eLimpKTo+fPnPe6/q32LiGZmZrauM3fu3Na8Fu+//76OHz9eg4KCdPLkyT3+8lUrOfHx8V1uk56ebuu5tNXTgGY148iRIzpjxgwNDg7WsWPH6o9//GOPX8+2ktHQ0KAbN27UcePGaUhIiMbFxekLL7zg8Y3MSkZBQYFOmjRJg4ODdejQobpixQr9/PPPPf5bPf300xofH69BQUH6la98RZOSklrfiLvaf1VVVZfH1PE11JuM9evX67333qshISEaGRmpiYmJmpWV5XH/VjLWrFmjo0aN0qCgIB02bJguWrRIT548aWuGqur58+dVRNqtZ2eG2evtScc3YzvGE7MZZscSq+fRlh3lqLdjiZUMs2OJquqSJUs0JiZGg4KCdMSIEbpkyZJ2t3qw45qbzbAynsD30LOMvUboWL7Vsazm0LPoWfSs7s+jrYHSs/qiY1nJoWc5nz90LFV6VlsDpWf5S8eykkPPomfRs5zXs/y9Y7lUDd4DDAAAAAAAAAAAAIBP4Xf2AQAAAAAAAAAAAA7FZB8AAAAAAAAAAADgUEz2AQAAAAAAAAAAAA7FZB8AAAAAAAAAAADgUEz2AQAAAAAAAAAAAA7FZB8AAAAAAAAAAADgUEz2AQAAAAAAAAAAAA7FZB8AAAAAAAAAAADgUEz2AQAAAAAAAAAAAA7FZB8Av9HU1CQzZ86Uxx57rN3j169fl7i4OFm/fn0/HRkAAIBz0bEAAAC8g54FwC4uVdX+PggAsEtFRYVMnz5ddu7cKcuWLRMRkSeffFJOnTolx44dk6CgoH4+QgAAAOehYwEAAHgHPQuAHZjsA+B3fvGLX8jGjRvl7NmzUlxcLI8//rgcO3ZMpk2b1t+HBgAA4Fh0LAAAAO+gZwHoLSb7APgdVZX58+eL2+2WsrIyefHFF2XDhg39fVgAAACORscCAADwDnoWgN5isg+AXzp//rxMmjRJpkyZIidPnpSAgID+PiQAAADHo2MBAAB4Bz0LQG8M6u8DAABv+O1vfyuDBw+WqqoquXz5cn8fDgAAgF+gYwEAAHgHPQtAb/DNPgB+58iRIzJ37lzJz8+XV199VURE/vznP4vL5ernIwMAAHAuOhYAAIB30LMA9Bbf7APgV+rq6mTlypWyatUqefjhhyUjI0OKi4vlV7/6VX8fGgAAgGPRsQAAALyDngXADnyzD4BfeemllyQ3N1dOnTolgwcPFhGRX//617J27VopKyuT0aNH9+8BAgAAOBAdCwAAwDvoWQDswGQfAL9RWFgoSUlJUlBQILNnz273dwsXLpTGxkZugQAAAGASHQsAAMA76FkA7MJkHwAAAAAAAAAAAOBQ/M4+AAAAAAAAAAAAwKGY7AMAAAAAAAAAAAAcisk+AAAAAAAAAAAAwKGY7AMAAAAAAAAAAAAcisk+AAAAAAAAAAAAwKGY7AMAAAAAAAAAAAAcisk+AAAAAAAAAAAAwKGY7AMAAAAAAAAAAAAcisk+AAAAAAAAAAAAwKGY7AMAAAAAAAAAAAAcisk+AAAAAAAAAAAAwKH+A+manqMeK4VuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 0.8571428571428571\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.5384615384615385\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nx46pWeWbwsb", + "outputId": "4e1d1a56-7edc-48cb-dba3-e94d5704bc80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATipJREFUeJzt3Xl4VOXdPvD7zEwyIcuEELKQhYQlhs2AiYqh8gINNFKMLBYj0gYUKa3Uoq8IRbCAiuD2/mprSyMo1hqKWkWrFxQRAbGgrEKgBtmyEZKwZMdMkpnz+2OYyazJJJmZM3Pm/lxXLsiZkzPPUHP3e57zLIIoiiKIiIiIZEIhdQOIiIiIXInFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDfkVQRCwatUqqZtBRD6G2eFbWNz4iL/85S8QBAGjR4/u8bW2bdvGX1IPqq2tRVBQEARBwHfffWf3nLlz50IQBLtfQUFBFueuWbMG99xzD2JiYhi41Clmh+9yZXYUFRVhyZIlGDVqFMLCwtCvXz9MmTIFhw8f9tTH8SiV1A0g5xQUFCA5ORkHDx7E2bNnMXjw4G5fa9u2bfjzn//MkPKQ999/H4IgIDY2FgUFBXjuuefsnqdWq7Fx40ab40ql0uL7FStWIDY2Frfccgt27NjhljaTfDA7fJcrs2Pjxo144403cO+99+KRRx5BXV0d8vPzcccdd+Df//43Jk6c6LbPIQUWNz7gwoUL2L9/Pz788EMsWLAABQUFWLlypdTN8nvNzc0IDAyEQtFxB+g777yDn/70p0hKSsLmzZsdBpRKpcLPf/7zTt/3woULSE5OxpUrVxAVFdWttpN/YHZ4JymyY9asWVi1ahVCQ0NNxx566CEMHToUq1atkl1xw8dSPqCgoAARERGYMmUKfvazn6GgoMDmnD179kAQBOzZs8fieHFxMQRBwFtvvQXA0IX55z//GQAsui+Nmpqa8MQTTyAxMRFqtRqpqal4+eWXYW/z+HfeeQcZGRno1asX+vTpg/vvvx9lZWUW54wfPx4jRozAf//7X0yYMAHBwcGIj4/Hiy++aHO95uZmrFq1CjfddBOCgoLQr18/zJgxA+fOnety+7RaLR5//HFERUUhLCwM99xzD8rLy+3++168eBEPPfQQYmJioFarMXz4cLz55pt2/323bNmCFStWID4+HsHBwaivr7d7TaPS0lLs27cP999/P+6//37T/9n0RHJyco9+nvwHs4PZYZSRkWFR2ABAZGQkxo4d6/CRly9jz40PKCgowIwZMxAYGIhZs2Zh/fr1OHToEG677bYuX2vBggWoqKjAzp078fe//93iNVEUcc8992D37t2YN28eRo0ahR07duDJJ5/ExYsX8f/+3/8znbtmzRo8/fTTuO+++/Dwww/j8uXL+NOf/oT/+Z//wbFjx9C7d2/TuTU1NbjrrrswY8YM3HffffjnP/+JpUuX4uabb8bkyZMBADqdDnfffTd27dqF+++/H4sWLUJDQwN27tyJkydPYtCgQV1q38MPP4x33nkHDzzwAMaMGYMvvvgCU6ZMsfn3qKqqwh133AFBEPCb3/wGUVFR2L59O+bNm4f6+no89thjFuc/++yzCAwMxOLFi6HVahEYGNjhv/c//vEPhISE4O6770avXr0waNAgFBQUYMyYMXbPv3Llis2xwMBAaDSaDt+HyB5mB7Ojs+yorKxE3759OzzHJ4nk1Q4fPiwCEHfu3CmKoijq9XoxISFBXLRokcV5u3fvFgGIu3fvtjh+4cIFEYC4adMm07GFCxeK9v6n/+ijj0QA4nPPPWdx/Gc/+5koCIJ49uxZURRFsbi4WFQqleKaNWsszissLBRVKpXF8XHjxokAxLffftt0TKvVirGxseK9995rOvbmm2+KAMT/+7//s2mXXq/vUvu+/fZbEYD4yCOPWJz3wAMPiADElStXmo7NmzdP7Nevn3jlyhWLc++//34xPDxcvH79uiiK7f++AwcONB1zxs033yzOnj3b9P1TTz0l9u3bV2xtbbU4b86cOSIAu1/Z2dl2r3358mWbz0NkxOxgdjjKDqMvv/xSFARBfPrpp51ul6/gYykvV1BQgJiYGEyYMAGAoTs4NzcXW7ZsgU6nc+l7bdu2DUqlEr/97W8tjj/xxBMQRRHbt28HAHz44YfQ6/W47777cOXKFdNXbGwsUlJSsHv3boufDw0NtXgeHBgYiNtvvx3nz583Hfvggw/Qt29fPProozbtMnZ9O9u+bdu2AYDNedZ3UqIo4oMPPkBOTg5EUbT4LNnZ2airq8PRo0ctfmbOnDno1auX/X9AKydOnEBhYSFmzZplOjZr1ixcuXLF7kDgoKAg7Ny50+Zr3bp1Tr0fkTlmB7Ojo+yorq7GAw88gAEDBmDJkiVOtcuX8LGUF9PpdNiyZQsmTJiACxcumI6PHj0ar7zyCnbt2oWf/OQnLnu/kpISxMXFISwszOL40KFDTa8DwJkzZyCKIlJSUuxeJyAgwOL7hIQEi2fzABAREYETJ06Yvj937hxSU1OhUjn+T9LZ9pWUlEChUGDQoEEW56Wmplp8f/nyZdTW1uL111/H66+/bvc9q6urLb4fMGCAw/ZZe+eddxASEoKBAwfi7NmzAAwhlJycjIKCApuubqVSKbtBfSQNZkf32ucv2dHU1IS7774bDQ0N+Oqrr2zG4sgBixsv9sUXX+DSpUvYsmULtmzZYvN6QUGBKaCsA8DI1XdoAKDX6yEIArZv324zTRmAzS+KvXMA2B1o6El6vR4A8POf/xxz5syxe05aWprF987eeYmiiH/84x9oamrCsGHDbF6vrq5GY2OjLEOFpMfscC9fzo6WlhbMmDEDJ06cwI4dOzBixIhuXcfbsbjxYgUFBYiOjjbNUDD34YcfYuvWrfjrX/+KXr16ISIiAoBh0SdzxjsSc47CLCkpCZ9//jkaGhos7nCKiopMrwMwDdAbMGAAbrrppm59NmuDBg3CN998g9bWVpu7t662LykpCXq93nRHZ3T69GmL6xlnQ+h0Opf3mOzduxfl5eV45plnTHeHRjU1NfjlL3+Jjz76yKmp30RdxezoXvvknh16vR55eXnYtWsX3nvvPYwbN85VzfY+nh/mQ864fv26GBYWJj700EN2X//Pf/4jAhC3bNkiiqIo1tbWikqlUnz88cctzrv33nttBgUuXbpUBCDW1NRYnGscdPf8889bHM/NzbUYdHf27FlRqVSKDzzwgGnAnpFer7cYYDdu3Dhx+PDhNu2fM2eOmJSUZPq+K4MCO2vfsWPHnB4UOHfuXDEwMFAsLCy0ed/q6mrT342DAt9//32b8+yZN2+eGBISIv7www92X09JSRHvuusu0/dz5swRQ0JCnLq2EQcUkz3MDstrdqV9cs+ORx55RAQg5ufnO3W+L2PPjZf617/+hYaGBtxzzz12X7/jjjsQFRWFgoIC5ObmIjw8HDNnzsSf/vQnCIKAQYMG4dNPP7V57gsY1jsADIPmsrOzoVQqcf/99yMnJwcTJkzA8uXLUVxcjJEjR+Kzzz7Dxx9/jMcee8z0HHrQoEF47rnnsGzZMhQXF2PatGkICwvDhQsXsHXrVvzyl7/E4sWLu/R58/Ly8Pbbb+N///d/cfDgQYwdOxZNTU34/PPP8cgjj2Dq1KlOt2/UqFGYNWsW/vKXv6Curg5jxozBrl27TM+uza1btw67d+/G6NGjMX/+fAwbNgzXrl3D0aNH8fnnn+PatWtd+hyAYZ2MDz74AJMmTbLZOsHonnvuwauvvorq6mpER0cDANra2vDOO+/YPX/69OkICQkBAPz9739HSUkJrl+/DgD48ssvTYt7/eIXvzDdhZJ/YnYwO8wZs+MPf/gD/vKXvyAzMxPBwcE255tnjCxIXV2RfTk5OWJQUJDY1NTk8Jy5c+eKAQEBprudy5cvi/fee68YHBwsRkREiAsWLBBPnjxpc/fV1tYmPvroo2JUVJQoCILF1M6Ghgbx8ccfF+Pi4sSAgAAxJSVFfOmll2zuskRRFD/44APxzjvvFENCQsSQkBBxyJAh4sKFC8XTp0+bznH27ksUDXecy5cvFwcMGCAGBASIsbGx4s9+9jPx3LlzXW7fDz/8IP72t78VIyMjxZCQEDEnJ0csKyuz29NRVVUlLly4UExMTDS9b1ZWlvj666+bzunK3dcHH3wgAhDfeOMNh+fs2bNHBCC++uqrpn8POJjOCUC8cOGC6WeNU2TtfVlP5yX/w+xgdtjLjq5kjBwIoijxyCwiIiIiF+I6N0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGTF7xbx0+v1qKioQFhYmMOlxInIvURRRENDA+Li4qBQ+MY9FrODSFpdyQ2/K24qKiqQmJgodTOICEBZWRkSEhKkboZTmB1E3sGZ3PC74sa4adrvC/YiKJg7Mkvp24YPMGtfIGrjwhHWNxqf9g6Hqrca/fv3l7pp5GbNjY14/kcZFpsYejtjW5/6zxEEcTd3Io/rSm74XXFj7E4OCg5FUAgDSkp3hMxBWcsS3Hl9MgJ1GujKy7ErOBVBPvR/eNQzvvR4x5QdoaH8b5RIQs7kht8VN+RdDuZkAJ9sh6Y+AACgjY9HcXExkpOTpW0YERH5LN8YyUeyla7JxcGcDHw+KQ1aBTD+1HG01WilbhYREfkw9tyQ5NI1uQCAfVlA3m4VtE2NEreIiIh8GYsb8hrpmlwUNS6B2JLi04+mlKIegXo9BIhSN0USIgS0KBTQCewYJnKWIIoI0uuYGy7KDRY35FUO5mQgb/cZFAQGAr5W3IgikpobkdCmhcKHBsq6g14UUa5SoyQoFPDzfwuizqj1OqQ11SLIz39VXJkbLG7Iq/hy701ScyMG6FsQGR2NgF69AH8NKhFo/eEHBFy5DDQ3oqQXZxYROSSKGPhDAyLUgYiIiYGg8NPgcHFusLghr6MODsCEM9/hQEQfIFnq1jhHKeqR0KZFZHQ0giMipG6O5AKCggAArdXVKBdD+IiKyIEAUY9IfRvCI6MR2KuX1M2RlCtzg4lDXqdp+ho0VB5Cc801FBcXS90cpwTq9VAIgqHHhgAAAb16QSEICNTrpW4KkddSiSIEQYAyIEDqpngFV+UGixvySsbem7YaLYqLi72+yDENAvTTHmW7BOMf/jlAksgZzA4rLsoNFjfklfZlpSG+UYXfljVi3Dcn0FR+1esLHCIi8g4sbsgrGQYWH0BF2U5EXPkvsouKuLgfERE5hcUNea2DORm4cL0CrepatFz9xqfG4Pia6spKLH/8MYwekookTRgyBg1C3ozp2PfFFwCAv2/ciBmTJiElqi/6BalRV1srbYOJyCt4a3awuCGvla7Jxb6sNPwjfTC0CpjG4JBrlRUXI3tMJr7aswdPr12HL44cweZPPsGYceOw7LFFAIAffriOCT/5CX67ZKnErSUib+HN2cGp4OTVuDWD+/1u0W8hCAK2f/UfBIeEmI6nDhuGWXPmAgB++ehvAQD79+6VoolE5IW8OTvYc0M+wTgGJ7uoyC8eTel0nnmfmmvXsPuzzzB3wa8swskovHdvzzSEiFyC2WHA4oZ8xsGcDPSt06Gp/KrUTXGbs98D40apkBASiHGjVDj7vXvfr/jcOYiiiMGpqe59IyJyK2aHJRY35DOMvTdiS4tse2/m3afCuTOGhR7OnREw7z73PjkWRa5BQyQHzA5LLG7Ip5gv7ic3Oh3wfZECOp1w43vhxvfue88BgwdDEAScPX3afW9CRG7F7LDF4oZ8ivXWDL6werGzlErgpiF6KJXije/FG9+77z0j+vTB+EmT8Fb+X3G9qcnmdU75JvJ+zA5bLG7I5xh7b3LOVyHnfJWsenHeeK8Ng1IMATUoRcQb77W5/T3X/uFV6HQ6TL7zR/h061acP3sG3xd9h41/fg13j/sfAIa1LE4eP44L584BAL47eRInjx9HzbVrbm8fEXWO2WGJU8HJ5+zLSkPebhXiGg3/+WoDG1FcXIzk5GRpG+YCg28C9n7bBp0Obr3rMpc0cCA+O/A1Xn1hHVYvXYrqykuIjIpC2i234IU//gkA8PaGDXhlzXOmn5k+MQsA8IfXNyA3L88zDSUih5gdlgTR20cFuVh9fT3Cw8Px/NYjCAoJlbo51E0hW5dDfWPTWLH3KBy4/UcYfIt0o/aDda3I+KEe8Un9EaAOkqwd3qRV24yLJaU40kuD60rLHY+bGxrw+5GpqKurg0ajkaiFXWPMjmeOn0ZQWJjUzSGZYHZYclVusOeGfNK+rDTT32//5BCaa4bKpveGiIh6hsUN+STjysUAoA4+gQlnvsOBiD5AsnRtIiIi78ABxeTz9mWlIb6RWzMQEZEBixvyeemaXFzQH0Z2URHOHvPONReIiMhzWNyQLOzLSkPfOp1kvTciBONfyEg0/iFI2w4iL8bssOKi3GBxQ7Ig9dYMLQoF9KKI1h9+8Ph7e6vWH36AXhTRomDMEDnSJggQRRG61lapm+IVXJUbHFBMsmFc3E+KgcU6QYFylRoBVy4DAAJ69YLfdliIhoC6euUyylVq6AQWN0SOtAoKXFWoEHz1KhQqFQSFnwaHi3ODxQ3JRtP0NdAWLJFsWnhJUCjQ3IjW6mooBD8NqBv0oohyldrwb0JEjgkCzvUKQ2hTLX4oK5O6NZJyZW5IWtysWrUKq1evtjiWmpqKoqIihz/z/vvv4+mnn0ZxcTFSUlLwwgsv4Kc//am7m0o+QsreGwgCSnqFoVwMQaBeD8FPH6KLENCiULitx4a5QXLTolDicGgfBOl1zA0X5YbkPTfDhw/H559/bvpepXLcpP3792PWrFlYu3Yt7r77bmzevBnTpk3D0aNHMWLECE80l7yccWsGKaeF6wQFflDyUYw7MTdIbkRBwA9Kyf8vWTYkT2CVSoXY2FjTV9++fR2e++qrr+Kuu+7Ck08+iaFDh+LZZ59Feno6XnvtNQ+2mLyZcVr4+FPHOS1cxpgbRNQRyYubM2fOIC4uDgMHDsTs2bNRWlrq8NwDBw5g4sSJFseys7Nx4MABhz+j1WpRX19v8UXyxkX95M/duQEwO4h8maTFzejRo/HWW2/h3//+N9avX48LFy5g7NixaGhosHt+ZWUlYmJiLI7FxMSgsrLS4XusXbsW4eHhpq/ExESXfgbyPlJPCyf38kRuAMwOIl8maXEzefJkzJw5E2lpacjOzsa2bdtQW1uL9957z2XvsWzZMtTV1Zm+yvx8NLq/UAcHYF7hebTVaKVuCrmYJ3IDYHYQ+TKvGr3Uu3dv3HTTTTh79qzd12NjY1FVVWVxrKqqCrGxsQ6vqVaroVarXdpO8n5N09fgeMESNNcM5G7hMueO3ACYHUS+TPIxN+YaGxtx7tw59OvXz+7rmZmZ2LVrl8WxnTt3IjMz0xPNIx9jnBbO3ht5Y24QkTVJi5vFixdj7969KC4uxv79+zF9+nQolUrMmjULAJCXl4dly5aZzl+0aBH+/e9/45VXXkFRURFWrVqFw4cP4ze/+Y1UH4G8GAcWyxNzg4g6I+ljqfLycsyaNQtXr15FVFQU7rzzTnz99deIiooCAJSWlkJhtr/EmDFjsHnzZqxYsQJPPfUUUlJS8NFHH3GtCrLLMC18OcafasOBkFCoIgyPGPiIyrcxN4ioM4Ioin61HGJ9fT3Cw8Px/NYjCArh0vByd7T+XeTtDkRNQm9oomKwNaI3VBFqFjgSa25owO9HpqKurg4ajUbq5jjFmB3PHD+NoLAwqZtD5He6khteNeaGyNWM08JTrgGJjSpkfX+aY3CIiGSOxQ3J3sGcDJyo/xwVZTuRcg0cg0NEJHMsbkj20jW50CqAC9crcKjxc27NQEQkc161zg2RuzRNXwPAOAaHM6iIiOSMPTfkV7g1AxGR/LG4Ib9zMCcD8wrPo6n8qtRNISIiN2BxQ34nXZOL47VfsfeGiEimWNyQX+LWDERE8sXihvwSt2YgIpIvFjfklwxbMxzmtHAiIhlicUN+i703RETyxOKG/BanhRMRyROLG/JrB3My8PNjZzgtnIhIRljckF9j7w0RkfywuCG/x2nhRETywuKG/N6+rDQ0VB6CtqmRvTdERDLA4ob8XromF+rgAIw/dZy9N0REMsDihgicFk5EJCcsbojAgcVERHLC4oboBk4LJyKSBxY3RDew94aISB5Y3BCZ4bRwIiLfx+KGyEzT9DWcFk5E5ONY3BBZ4bRwIiLfxuKGyAqnhRMR+TYWN0RWjAOLs4uK+GiKiMgHsbghsuNgTgb61uk4LZyIyAexuCGyg9PCiYh8F4sbIgc4LZyIyDexuCFywDgtvLnmGntviIh8CIsbog6w94aIyPewuCHqAKeFExH5HhY3RB3gtHAiIt/D4oaoE5wWTkTkW1jcEHWC08KJiHwLixsiJ3BgMRGR72BxQ+QETgsnIvIdLG6InMTeGyIi38DihshJnBZOROQbWNwQOSldk4sL+sPILirC2WOnpW4OERE5wOKGqAv2ZaUhvknqVhARUUdY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLG6IuSNfk4njtV1ypmIjIi7G4IeoirlRMROTdWNwQdRFXKiYi8m4sboi6yLhS8fhTx7lSMRGRF2JxQ9QN7L0hIvJeLG6IuiFdk4uixgMQW1o4sJiIyMuwuCHqpoM5GZhXeB5N5VelbgoREZlhcUPUTcZp4ey9ISLyLixuiHqA08KJiLwPixuiHuDAYiIi78PihqgHOC2ciMj7sLgh6iH23hAReRcWN0Q9xGnhRETehcUNkQtwWjgRkfdgcUPkApwWTkTkPbymuFm3bh0EQcBjjz3m8Jy33noLgiBYfAUFBXmukUQd4LRwaTA7iMiaSuoGAMChQ4eQn5+PtLS0Ts/VaDQ4fbp9VoogCO5sGpHT9mWlYf4+NQ5I3RA/wuwgInsk77lpbGzE7NmzsWHDBkRERHR6viAIiI2NNX3FxMR4oJVE5G2YHUTkiOTFzcKFCzFlyhRMnDjRqfMbGxuRlJSExMRETJ06FadOnerwfK1Wi/r6eosvIvJ9zA4ickTS4mbLli04evQo1q5d69T5qampePPNN/Hxxx/jnXfegV6vx5gxY1BeXu7wZ9auXYvw8HDTV2JioquaT0QSYXYQUUckK27KysqwaNEiFBQUOD2wLzMzE3l5eRg1ahTGjRuHDz/8EFFRUcjPz3f4M8uWLUNdXZ3pq6yszFUfgYgkwOwgos5INqD4yJEjqK6uRnp6uumYTqfDl19+iddeew1arRZKpbLDawQEBOCWW27B2bNnHZ6jVquhVqtd1m6ijmjbdFyp2M2YHUTUGcl6brKyslBYWIhvv/3W9HXrrbdi9uzZ+PbbbzsNJ8AQaIWFhejXr58HWkzUMa5U7BnMDiLqjGQ9N2FhYRgxYoTFsZCQEERGRpqO5+XlIT4+3vRc/ZlnnsEdd9yBwYMHo7a2Fi+99BJKSkrw8MMPe7z9RPYczMlA3u4zKAgMBJKTpW6OLDE7iKgzXrHOjSOlpaVQKNo7l2pqajB//nxUVlYiIiICGRkZ2L9/P4YNGyZhK4naGXpvlkBsSUFxcTGSWeBIgtlB5N8EURRFqRvhSfX19QgPD8fzW48gKCRU6uaQDIVsXY5AzSgcuP1HGHxLqtTN8UrNDQ34/chU1NXVQaPRSN0cpxiz45njpxEUFiZ1c4j8TldyQ/J1bojkpmn6GjRUHkJzzTWOvSEikgCLGyI34D5TRETSYXFD5Ab7stIQ36jitHAiIgmwuCFyA+O08OyiIj6aIiLyMBY3RG5yMCcDfet0aCq/KnVTiIj8CosbIjfhon5ERNLw6nVuiHydcWDxgYg+QLLUrSEiVzl77HSPr6GKUHMtLDdhcUPkRk3T10BbsATNNUO5qB+RjGibGvHkte7//KkfLmLXTam86XETFjdEbsbeGyJ5OXvsNLKLilCh7f5O8SmKYdjG2ZRuw+KGyM32ZaUhbzenhRPJhbapEfFNQGNIbbevcQn7kV10M/aEhHIlczdgcUPkZumaXFzQL0d2kRJfJUTy0RSRDysuLobY0oLjtV/h4NiMHl0rb7eONz1uwuKGiIioE8YZj03lV/HzY2fwdk4G0jW5Pbqm+Sa71ngT1DMsboiIiDpw9thpZH1vmB2la2hAUeMBpGte7PF1jePxgi9ftji+LT4exWCB0xMsboiIiDqgbWpEyjXgiv6/qGisgDo4AG0uuK5xNmV8W5LF8eyGBuwJuZUTEHqAi/gRERE5YBxjc6L+c7Sqa6FVGCYJuIo6OACt6lqLr5ar36C55hoX/+wB9twQERE5YBpjM6m9oOnpWBtz9gqlsbtOcPmIHmJxQ+Qh8U1AW42WYUXk5cx7TMSWFpeNsbHHXqG0LwtcPqKH+FiKyAOapq/B8dqv2NVM5APaarTIOV+FnPNVmHDmO6iDAzz6/oblIw4ju6jIJds8+CMWN0QeYpwZ0VajlbopRORAcXExtE2NSGxUIbFRhYbKQy4dY+OsfVlp6FvHdXC6i8UNkYfsy0pDfCO7mom8WVP5VTx0pAiHv/sbDn/3N6iDA1w6xsZZ6ZpcFDUegNjSwt7ebuCYGyIPMa5UPP5UGw5wyXUir2Ox+nBO++rD6RK1h/vSdR97bohcTK9z/Nq+rDQMbFZ7rjFE5LS2Gq1pjE26Jtf05Qn2cqNp+ho0VB7iWL1uYM8NkQvodcCVigBsWh2HqlI1Yvpr8eDKCkQntkrdNCJygnGsTUPlIRzMyfBIb40zucHem+5hcUPUTdbBpFTpodcLAIDL5YHYtDoOSzeWSNxKInJGW40W408dR4sHxthUlgTgb886lxv7stI4LbwbWNwQdVF1mVVBozMEk66t/SmvXi+gqlQNvQ5QKKVqKRE5S9vUiPhGFd7OSnNbr415dgAigM5zg2P1uodjbog6YO85+KbVcbhcHgjAEEyiKNico1CIiOmvZWFD5AOMA4kNi/X1vNfG0bg78+wAnM8NzrTsOhY3RHZUlwXghYeTsHjyTXjh4SRUlwVArzOEVlWp2tSNbE4QRChVegBAVEILHlxZYXrNOuwYUkTew7jFgvkMqe6wlxsAOsmOznOD08K7jo+liOwwv8OqLg/ESwuSoGtTIKa/FpH9WlBTFQC9XoCgEKFQiNC1KRCdaAimvnGtpjsv825ow2DBn+N47eMQWwaiuLgYycnJ0n1IIrLqtenZFgvmuXG5PBAbVsRDFSCafv/Ns8PwWEpATH9ncqMCA4IDMK/wPAo4sNgp7LkhsmJ9hyXqBdNzcWNwRcS0ml7rHdWGJRsuYOnGEkQntlp0KVuH3abVcVypmMiLmE//7gnr3NDrBVy9FIjqsvbff10bICgMY22UKhHzni13Oje4hUvXsLghsqJQwvDc+0YImTMGllIlQhAMr9dUGWY+mM7Rtf9pHXZVpWrsHT+Sz8+JvEBxcTGaa66hofIQmqav6dG1rHPD+KdxTJ5eL6D2cqBpAoKoF/DphiiLvDD+aS839Dpu4dIVLG6IrOh1wIMrKxCV0HLjiHmRIyKyXwuqy9QWoVVVqsZzeclYMyfZ9Lz9SkWATdjF9Nfi1oj7cEF/GONPHcf3h7kpHpFUXNVrYzTn6fbcEEw3R5Z/WufG4sk34cmfDu40NxRKy4HFHS0WSixuyM/YCwTjMfPBgJtWx91YTMv+HVJ0onnPjuHPa5UBuHrJEJLGrmTzsItKaMGcpw2DBT8dMgErX1+AjfeNx8s/6Yvq85xWReRpxunfnW2M6aiQsM6OF+cPAAD0iW2BaGfSgUKpN/X4GnLDOB3ccp0b85sr4yBjvc4wsPjA1QrsfHw0fpfSj9nRAUEURdu+dxmrr69HeHg4nt96BEEhoVI3hzzE3gA9ABbH2loFi4HCgiBCr3Nc/ytVeos1KhyJ6a/F3fMv49MNUZbvVamEXlRCUIiIGtiGxZ9dcdnn9XbNDQ34/chU1NXVQaPRSN0cpxiz45njpxEUFiZ1c6iHiouLcefn/8GVi1+hbbb9gcT2ciM6sdXmuHl2QBABO8tDdEV0ohbVZWpEJ2ox9VeX8a/89uxo0jbhenVv6EUFBKWIqAH+kx1dyQ3OliK/YG+AnvHvxj/Np2iKegGiaR0Kw6wGa4a7LeO9geO/Xy4PxFur40x3ctVlgRZr44h6AdVnA7jgH5EHNZVfRd86HbZ1sNWCvdxYurHE5rjF9G6nChvzrDB+L0ChECEoRFy5aLj2lYuBeHOldXa0700n6pgdjrC4IdkzDtAzfX/jWbfFOXa6kNs5es36uGD373q9AJgXTjfCT6EQb/QS6dE7sZnhROQhzkz/dpQbbS22x7vOfnaE9WlF3ZVA01FH2SEo9BD1CggKPaIG6pgddnDMDcmevVkMMf21VjOi2p9/2//eHkevG37WekyO8U+FwjAo2fhMvV/EVUx6orArH4mIesCZgcSOckMVaD2b0nXZ0VCjQkx/rc31jON0jNkRnWBYikIT04isFSc7eS//xOKG/IK9AXqWM6IEWPe8KFXWAWT9fUc9OoLDO7qohBbMf+4ilm4swQPvPoff3T0fvXpf5toVRB7Qlenf9nLD+ri97GhnfYNj75x2ep3iRq9Q++uCACiUoqkNxuxYvyAXf8j7E8LC6jr8DP6Kj6XIL0QntmLpxhKbZ9NLN5agsiQAr/w6yTQ4WBBERCUYpntbsl023XGBY/6a5Z9P5peY2nBrxH1QBx9HdlERvkr4Ubc+GxF1zV3nz6MhOABtnZznKDeiE1vx4MoKq00wBQiCeOPRkf3f/Y7ZzxNRFKBrE/Dip99D1f7ECv+ZNIK7hXeAPTfkV+w9m/7bs3EWvSwKpYhx99ag867mro3TEQRupknki+z9zlpugmnQJ7bV1MtiIEKh1Dv5LvbzxJgbKsu3urFbuGG9rLPHuF6WNRY35NeMgwbN16TQtSnwwZ+i7Zzd3emdhrAz7j1FRL7NdhNMw59KlWizJo5hOYnur7jSJ7bVYW5wt3DHWNyQXzMOGhTMtlpQqvQ3AsnRc/Su6xPbgqUbS9A3rrVH1yEi6TnKDcOjbHu50f0bI1WAiOjEVrsLCXK3cMdY3JDfe3BlhcU+Upbr17iCgGuVgabVj194OAnVZa5Z7p2IpOH+3AAAw/TzjrLjYE4G5hWeR1P5VRe/t29jcUN+r29cq9VKw9azH7rLEHSCIEKp0ttdRJCIPMtVm052LTe6VvQYp347kx3pmlwcr/2qS9f3ByxuyO/Z7gLenbsvez9zY/dfUYCuTWF3l1/A8Ny8b52Od15EHqBtakTfOl2n+0l1pmu50bWbJcFsR/GOsoMcY3FDBHvrVnRVZ3ds7bOtzHf5BfjcnMhTLFcmzu3x9XqeG/bpdeaPuBxnBznG4obIRk96cKyZDyg0Lp0u4p4Fly3OUgcHYMKZ71zWZU5EtpxZmbj7XJ0bttkREeN45hRZYnFDBMOaFdWmNStcdwdmL/B0bQq8uTLOYmBg0/Q1aKg8hOaaa+y9IXKDrqxM7Cx7a924Lj9si6Tay1x311ksbsjvGTfCE222S3BlkWN5LV2bwmZgIHtviNzH1b02jta6cR3b69nLDbKPxQ35reqyAKyZk4wld9/kxndxHHjWAwP3ZaVhYLP1lg9E5CoDm9U9HkgMGLJj7UPJPW9QN3BAsXPYx0V+a9PqOFy9ZH4X19FeUS4miIhJbOHAQCIfZJsdHsLccBqLG/JLxi5lSx4qbAAolSIHBhL5oMqSADvZ4RnMDefxsRT5Betu3CsVAXA8q8GVq4zav5auTcGtGIi8nHVuVJcF4JVfJzk4m7nhTdhzQ7JWXRaATavjUFWqRkx/LR5cWYHoxNYbg/Ic9dS4byCxgYjeUW3sWibyUh3lhuWqxObcnRs39q8qD0BsEguczrDnhmTNfKqmcely+4+kPKv2coDdfWK0bTru8EskMW/NDV2bgBfnD7DJDnVwALKLiriMhBkWNyRb1lM1jUuXA7Y7+nqWoT1VpYHYsCLedJQrFRNJr2u54ekMac8O8ynh3MLFFosbki3rvV8UChGR/Vrw0oIkVJWqTcdj+msR3rcFUgTV1UuBFs/1udYNkbTs5UZMfy2uVASgrVUwrYcV2a8F89dchFKlt7qCJ3LEco8p3hjZYnFDsma+90tUQgt0bYa7HsDQxWsoaoC6K4FQKKXqyWnHlYqJpGedGw+urMCGFfFm079F6NqAf+VHQdemgKAwL3A8M+uyT6zllHDeGFnigGKStejEVizdWGK6w1k82XzBPgF1VwJRd+NOS69TwKNr3UCEUmVbUBlD6kBEHyDZQ00hIhPz3FAoDY+qrl4y32ZBQO3lQBh7aUS9p/sJRAhWMdU0fQ20BUvQXDMUxcXFSE5O9nCbvAt7bsgvdDwzSXDwd1ey1yskQNemwOLJN1kMENyXlYb4RhUHFhO5UHd+nzqf0eiJGyH72XH1UiDWzbMdWHzX+fMeaJP3Y3FDfkOhNDwnd+3uvc6yPyXc2AbjjAyg/fk5EblGcXExxJYWHK/9Cuma3C7/vHdmB3DlYiD3mnKAxQ35lfnPXURMf8OzdOOf0hFgDC7jjAzuGUPkeq7YNNM8Ozy5mrl9zI3OeE1xs27dOgiCgMcee6zD895//30MGTIEQUFBuPnmm7Ft2zbPNJBkwfgs/eXt32PpxhL0ifV0gSPeaIcWkf1abGZkcGG/rmN2UEeKi4uhbWpEQ+WhHm2aaZ4d0YlSDNq9kRVKPQSBudEZryhuDh06hPz8fKSldfwf3v79+zFr1izMmzcPx44dw7Rp0zBt2jScPHnSQy0luTCGwb2PVkOKLubLFw2DE40zMvrGt3DPmG5gdlBn2mq0GH/qONTBAd16JGVNoQSm/uoypFrjRtQLppmdUQktmPM0c8MeyYubxsZGzJ49Gxs2bEBERESH57766qu466678OSTT2Lo0KF49tlnkZ6ejtdee81DrSW5+Vd+FAQJfgtEvWFA4JynKxDTX4vqMjU2rY6zWbGYHGN2kDO0TY2Ib1T1qNfGmmdzw7KIEsUbExHyLwCA3RWLqQvFTUWFe6rDhQsXYsqUKZg4cWKn5x44cMDmvOzsbBw4wMGX1HXGlUiNi3JJ4eVfJZnW3bFesVgOC3LVVVW67drMDnJWUeMBl/TaAFLkhu37KFV6bFwR7zA7qAvFzfDhw7F582aXvvmWLVtw9OhRrF271qnzKysrERMTY3EsJiYGlZWOA1Sr1aK+vt7ii8gopr8Wnu9ehuk9DWvrGMOrfcXigzkZmFd43ueXU/+/7Ak49vGHLr8us4OkYlzBGIJ0i37q2ozr7Fhlh8fX2/FeTv9LrFmzBgsWLMDMmTNx7dq1Hr9xWVkZFi1ahIKCAgQFBfX4eo6sXbsW4eHhpq/ExES3vRf5huoyw6aViyffdOPOR4qem47fM12Ti+O1X/l87032E0vxwYql+PvCX+J6bY1LrsnsIKlUlwXgmdnJhr2mRM8t9mlL6tla3s/p4uaRRx7BiRMncPXqVQwbNgyffPJJj974yJEjqK6uRnp6OlQqFVQqFfbu3Ys//vGPUKlU0Ols57bFxsaiqqrK4lhVVRViY2Mdvs+yZctQV1dn+iorK+tRu8n3Gca2GFcb9WRItK9rY/ln+98j+7UvqS6H5dTH/GIu/nfbLlyvrcHLPxmP/+76rMfXZHaQVDasiEftZU+PbRFgmROAYXVzPWyyQ2G9z5X/6tL2CwMGDMAXX3yB1157DTNmzMDQoUOhUlle4ujRo05dKysrC4WFhRbHHnzwQQwZMgRLly6FUmk7ty0zMxO7du2ymPK5c+dOZGZmOnwftVoNtVraberJe1SWBJh2+PW89kJKoRSh1wmI7NcKwLC0e0x/yxlT+7LSkLfb91cq7pPYHwsK3sd/3n4Tb//6YUQPSoFwY+34sWPHQqlUOp0bALODpFFZEmC1BYMnGQscg8h+rZjxm2r8Kz8KVaXq9uw4LFHzvFCX95YqKSnBhx9+iIiICEydOtWmuHFWWFgYRowYYXEsJCQEkZGRpuN5eXmIj483PVdftGgRxo0bh1deeQVTpkzBli1bcPjwYbz++uvdagP5n789GwfP7h9lKzrRMDsqpr8WD66sQHRiq2kPG3OGlYqX4KcXe6MEGdI01kVqLpbj5I7t6BUejuGTsqHX6XCp6L+YMmVKlwsIZgdJ4a1npF4J2JBZ5rkx9LYSy+xgcWPSpcpkw4YNeOKJJzBx4kScOnUKUVFR7moXAKC0tBQKRfuTszFjxmDz5s1YsWIFnnrqKaSkpOCjjz6yCToie4yzHKR25cYaN8YtF5ZuLJH1IlzfbCnAp8+vRsqYsXji33sQGhmJ5oYG7F7/J/zud7+DRqNx+XsyO8iV9Dqgusxednj+RsmYG0/mG3JDztnRE04XN3fddRcOHjyI1157DXl5eW5pzJ49ezr8HgBmzpyJmTNnuuX9Sd6MsxwulwdCL+H0b+N7G5dOXzcvCQ+tMtyJyc3GuQ+g7Pi3mLZqDTJmuO/3ltlB7mTMjuqyQIiiJzbadcyYG4sn32TRi0OWnB5QrNPpcOLECbcVNkSe8ODKCtOqwNJsgmf7vnLe/E7U6fD4ts/dWtgQeYKhiJA6O4xsN9wlS04XNzt37kRCQoI720Lkdsb9YeY9Ww6lSrr1bQzkv/nd/L+/i979GL7k+6TNDuvZUvLPjp7q3mhgIh/36YYosxVGPdm1bPtegiAiOrGFz86JfMCnG6LMHmtLt0oxwOzoCIsb8jvSDiw23n0Zp3YKiE7kpplEvkC67BChVIkQ9cKNworZ0RkWN+SXLAcWe3LGg4DIfi2mdW3mPF2B2CQOBiTyFdJkh4C5Ky/i0w3t69owOzrG4ob8RnVZADatjkNVqRqR/VoQEdPqoUW52gNQqdJj/nMX0TeulV3JRD7CcXZ45qZIqdIjKs4w5sfemlhki7tskd/YtDoOl8sNxUxNVYDZoEB3B1T79fU6AZtWxzGciHyI4+zwDF2bYJoVxexwDosb8gvGZ+Xma8xUl6mhUFruz+Juotj12Q26hgaf3jyTyJc5lx3uZsiNtpbOzyQDFjfkF4yLcCkUhjBSKETE9Ndi3jMVUCitB/m6k+H6Ly1IQnVZ5xvwqYMDoNVpfXrzTCJf5lx2AO7ODoVSjyV334QXHnYuO/wdixvyG+YL+EUltOCeBZfxr/wo6HUKWO+463qW13R28a2m6WvQUHkIzTXX2HtDJBHns8NdRNPSFVy4zzkcUEx+w7gIl3FAnuEOyDig2L3rVihVInRtAuwtvtXZM3R1cAAmnPkOByL6AMluaR4RdUDK7DDOrhRv1FBdyQ5/xp4b8jsKZftzdMt9YgDX34UZrifqBShVegiCZde2M+G0LysN8Y0qaJsaXdw2IuoKz2WH4VqCIEIVICI60faxGAubjrG4Ib9k/RzdcnE9V2rvqdG1KUyBGBHT6vTiW+maXBQ1HkB2UREfTRFJzDPZYbiWcQJCdZkawo33i0rgwn3OYHFDfuvBlRWIiDEugiVAodSbAqTnd2HW1xFtjnVlJ191MAcQEnmLexZcNmWFUiWid1SrnWKnJ2xzQ9emgFKl5y7gTmJxQ34rOrEVqgDR9KhI1AumgIrp34L//cuFHlzdcOdlOROr/dn81UuBqCxhwULki/6V3743neGRs2gacNy+c3hPmI/jae8R0rUp8OIvOVvKGSxuyG9ZPzsXRcOjI6OrVT0PkBc/PYsXP/3e7mt/e5YzHoh8jb11b65eCkRVqRpRCVrM/X3PHxnF9Nfi5e3fI6a/7RIQep2Cs6WcwOKG/Jb9Z+eGv1eVBuJvqxPQ/S5mEQqlHgoloAoE+sTa3s11dTE/IpJeR7lxuVyNF+cnmx3vDhEPrqyAQml4dK5U6W3OYHZ0jsUN+TXz9SusHx1Z/tlVAvQ6BSouBKC6LACC1WUEzngg8lmOcwNwRXZs/H0cvjsUjE2r4270JrcXSswO53CdG/JrxvUr2lqAJXff5OKri3h5wQAoVfoba9wYjgECorsx48G0UnGyi5tJJHNDQjPxdv27SNfkuuR65uveGMbAqF1yXWM+XLmoxobl8RavGHJE0a3s8EfsuSGC4dFRZL8W2HYl92Tmg6GgMdx5Wd7NPZlf0qUZD1ypmKh7QhIi8c4tKbj9kyMuv7ZCCcz9vf1HR91j3QPUnhu6NgVe/PR7LN3YtezwVyxuyO9VlwXghYeTcPVSoJ1X3b1juPOMKxVznyki5yUnJ0MIDMSQ0EwcrX/XZdc15saL8wegd1SbCwscx/goynksbsjvbVodh8vl1kupW+tKD07Ha9xE9mvpVkhxpWKi7lGHhOJiaBvG7jrhsmua58a1ygCLmZbtutrza73HXc9zw1+xuCG/Zj2t01L3H0mFaFoQ098w4DCyXysi+xm6kWP6t2D+cxe7dc10TS4u6A8ju6gIZ4+d7nbbiPzN4FtSsWf4SAxQ3OqS3hvr3GjfiqHnC/gJCkMPkKtyw19xQDH5NYUSiE7U4srFwBtBZRjQZ2BvBoQzBDTVB2L1u9+b3gOASza625eVhvn7enYNIn+kDgmFWuWarg/HuWGdE53lhgjrnBH1Al789HuobnQmc4PM7mHPDfkt4zNz831b2jlzB+boZ0QoVYY1bsxDiQFF5Pt6nhv2WGaHymz4n7O5cbT+XQxQ3IodQ4YgOTm5m+2QDxY35LfMn5nrdR2tb2O9L5SjjfIsZzZwkS0i+el5bpiz/fnuZsfYXSdwMbQN6pDQrv+wDLG4Ib/k6Jm5cZ8pS4a9Y4x/76yrWcFFtohkyZ25AfQsO7TXW7E7ZShUEa5ac8e3sbghv2S9hLpCYZiN0L7pXfvxmP5avLTNsEdUdKIWjrueDcejElow52kuskUkNz3JDfu7hlsei+rmAn0hW5cjLPY2BEX04SOpG1jckN8yX0I9KsEwG+HBlRU3FvMz3GVFxLTiwZUVqC4LwCuPGFcitX8HplSJmPdsOQDgxfkDbjyX5+69RHJiLzeWbizBvGfLTT01gkLEPQsuW+aGYO9xtuHvkf1a0Se2BVWlamxaHdfl3NBeb4VaqWavjRnOliK/Zb6EurEb+IWHk1BzYzdwQRChVImITmzFCw8nma2FYz3DwUDXpsAnr0fhykXDeZfLA7FpdRyWbizxwKchIk+wlxsA8OmGKIjGncJ1Av6VHwUA7bkhCqYtFKwplCKuVvQsN3YMGYLh7LUxYXFDfs98qnZVafudjygKqC5TY82cZKvVi+2viRPTv8Xi5/V6wbR7L8ffEMmL+e+0veww/x4w5AFslpsw3EBdLmduuBofSxHdYP083fgc/OqlAFg/J4/s14I+sS2mI5H9DI+vrJ/Hc2AxkfwZs8P+CsOW07znr7kIhdKwUJ9SJeKh1cwNd2DPDREMa1dsWh2HqlL1jeCx3LTOkoB5z1xEbFKracqmMYgeXFlhuk53BwcSke8wzw5LtrmhaxOQmn4dL28/i7YWmNaziYxlbrgaixsiWO0vdePZuKgXzFYfBQABgiAiOrEFsUmGZdGt764cPY8nInmy3JuuPSsUChGCQjTliEIhIiqhfX8o84X6mBuux8dS5Pes167Q6w0LaRlnRJjv8RKdaHtXZW/BLXcGlLZNx80zibrhfJDWpZtn2u5N197jG5XQgodWW86s6iw7upMbR+vfxZDQzK7/oMyx54b8nvF5+eXyQIs7LOs7Keu7KvPu6Jj+Wjy4sgLRia1ubath88zlGH+qDQdCQjH4llS3vh+RXAy+JRV7mhox+xsV3q5/F+ma3B5f01F2PJlfYsqKobfZ9si4MjvG7jqBi5pRXJnYCntuiGC7doXxDqujvaHMu6ON0zc9YV9WGuIbVey9IeoidUgoLoa2ubT3xl52WGeFu7LjaP270F5vxZ7hI7nGjRX23BCh68+8rad+enL6ZromF0WNSyC2pKC4uJgrkhI5SRWhxu6Uobh13yGXXVPK7Bi76wQCY2+DOiSUOWCFPTdEZpwNF3vLsHty+ubBnAzMKzyPpvKrnnlDIhlITk5GUEQfhMXehpCty116bSmyg/tJOcbihqibHD3K8oR0TS6O137lsfcjkgtj7432unvHx3XEldkhBAay18YOPpYi6iZO3yTyPcnJyThVfhVDQjNdNrC4q5gd7seeG6IeYjgR+RZ1SCiuhCtdOrC4O5gd7sPihoiI/MrgW1KxY8gQDFDciqP170rdHHIDFjdEROR33DEtnLwHixsiIvI73jCwuCeO1r+Lkb3vlLoZXovFDRER+Z3k5GQIgYGdn+ilxu46gfNBWq5M7ACLGyIiIh9ytP5dDFDcij3DR3ILFgdY3BAREfmQsbtO4GJoG3ttOsDihoiIyIdwZeLOsbghIiLyEcaBxFyZuGMsboh8WHZREYqLi6VuBpHPGhKa6VNr3dz+yRG8cfNAhCRESt0Ur8bihshHHczJQN86HTfPJOqmkIRIXAlX4vZPjkjdFKccrX8XQ0Iz2WvjBBY3RD4qXZOLosYDEFta2HtD1A3JycnYMWSIz/TecCCx81jcEPkwdXAAJpz5Dm01WqmbQuSTfGWlYk7/7hoWN0Q+rGn6GjRUHkJzzTX23hB1g6+sVMxem65hcUPk49TBAbjr/Hmpm0Hkk5KTkxEU0QdhsbchZOtyHK1/1ysfUXH6d9ewuCEiIr9m7L1R64FZR89i7K4TXlXghGxdjpG970RQRB8OJHYSixsiIvJrxn2m0jQTEaDtDbUeXjUGR3u9FW/cPJC9Nl3A4oaIiPxeSEIkXr05HjV9hyEwcrTXjMHh9O/uYXFDRER+Lzk5GSEJkdg7Og17Mm41jcGRGgcSdw+LGyIiIhgKnOTkZK+ZQcXp392nkroBRERE3iQ5ORmnyq9iSGgm3q5/F+maXI++v7HHaCyAi5pR7LXpBkl7btavX4+0tDRoNBpoNBpkZmZi+/btDs9/6623IAiCxVdQUJAHW0xEUmNukCeEJETinVtSPL41w9H6d6G93ooBwXEYEBzH6d/dJGnPTUJCAtatW4eUlBSIooi//e1vmDp1Ko4dO4bhw4fb/RmNRoPTp0+bvhcEwVPNJSIvwNwgT5Cq92bsrhMY0vtORCYOwakfLnL6dzdJWtzk5ORYfL9mzRqsX78eX3/9tcOQEgQBsbGxnmgeEXkh5gZ5ivnWDE3T3V/cHK1/F3mKW1EZG4broW3YlZjKXptu8poBxTqdDlu2bEFTUxMyMzMdntfY2IikpCQkJiZi6tSpOHXqVIfX1Wq1qK+vt/giInlwV24AzA4yLO63Z/hIaK+3emRRP+PMqF03peKTgTFQRajZa9NNkg8oLiwsRGZmJpqbmxEaGoqtW7di2LBhds9NTU3Fm2++ibS0NNTV1eHll1/GmDFjcOrUKSQkJNj9mbVr12L16tXu/AhE5GHuzg2A2UGGR1Nna7QIi70NY3d9i31Ztud093GVvWLp9uut+E/GUISyqOkxQRRFUcoGtLS0oLS0FHV1dfjnP/+JjRs3Yu/evQ6DylxrayuGDh2KWbNm4dlnn7V7jlarhVbbvmNyfX09EhMT8fzWIwjiCHSSgZCtyxEWMRpfTfyRzwRic0MDfj8yFXV1ddBoNF3+eXfnBuA4O545fhpBYWFdbjP5puLiYjSev4QfH/qHzWtahWHz2u5QFSyBJijA4pjYexQO3P4jTvt2oCu5IXnPTWBgIAYPHgwAyMjIwKFDh/Dqq68iPz+/058NCAjALbfcgrNnzzo8R61WQ63mM0siOXF3bgDMDjIwDiy+degci+MtFy/iq2rHs/Q6ErJ1uWHQ8IAhFsdf6gOEcIyNS3jNmBsjvV5vcbfUEZ1Oh8LCQvTr18/NrSIib8bcIHcKSYjEHxNDURbaZvo60wcYEprZrbE42uutuBgCi+uV3ViF2Fd6X72dpD03y5Ytw+TJk9G/f380NDRg8+bN2LNnD3bs2AEAyMvLQ3x8PNauXQsAeOaZZ3DHHXdg8ODBqK2txUsvvYSSkhI8/PDDUn4MIvIg5gZ5WnJyMopRjE8iYtoPDoxBY9Ql3P7J22ib7fy4m6P17yIvNBMFQ4YgJCHS4jXJH6XIiKT/ltXV1cjLy8OlS5cQHh6OtLQ07NixA5MmTQIAlJaWQqFo71yqqanB/PnzUVlZiYiICGRkZGD//v1OPWcnkjOtTou2Gi2QLHVL3I+5QVKw16Nivg6Os8buOoErEaPZS+Nmkg8o9rT6+nqEh4dzQDHJxtH6d5G3OxAFo4dj+J0ZUjfHKT0dUCwFY3ZwQDEZnT12GpkH/4No5fdO/0xo0814M2OIz/yuehOfGlBMRD2TrsnFBf1yjD/VhgMhoZxpQeQhxnVwZh+vdvpnLoaAe0V5AIsbIhnYl5WGvN0qaJsapW4Kkd8wroNT09f5R5w74uM5I8oDWNwQyUC6JhdFjUsgtqSguLiYz/KJPEQVocbe0WlOnx8C++N3yLVY3BDJxMGcDMzfdx4FEX38YmAxkTdgoeKdvG6dGyIiIqKeYHFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihkhGtG06aJsapW4GEZGkWNwQyUS6JhcX9Icx/tRxnD12WurmEBFJhsUNkYzsy0pDfKOKvTdE5NdY3BDJSLomF0WNByC2tKC4uFjq5hARSYLFDZHMHMzJwLzC82ir0UrdFCIiSbC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESyImlxs379eqSlpUGj0UCj0SAzMxPbt2/v8Gfef/99DBkyBEFBQbj55puxbds2D7WWiLwBc4OIOiNpcZOQkIB169bhyJEjOHz4MH784x9j6tSpOHXqlN3z9+/fj1mzZmHevHk4duwYpk2bhmnTpuHkyZMebjkRSYW5QUSdEURRFKVuhLk+ffrgpZdewrx582xey83NRVNTEz799FPTsTvuuAOjRo3CX//6V6euX19fj/DwcDy/9QiCQkJd1m4ib3G0/l3M39cLBf9zKwbfkip1c+xqbmjA70emoq6uDhqNpsfXc3duAO3Z8czx0wgKC+txm4moa7qSG14z5kan02HLli1oampCZmam3XMOHDiAiRMnWhzLzs7GgQMHHF5Xq9Wivr7e4ouI5MFduQEwO4h8meTFTWFhIUJDQ6FWq/GrX/0KW7duxbBhw+yeW1lZiZiYGItjMTExqKysdHj9tWvXIjw83PSVmJjo0vYTkee5OzcAZgeRL5O8uElNTcW3336Lb775Br/+9a8xZ84c/Pe//3XZ9ZctW4a6ujrTV1lZmcuuTUTScHduAMwOIl+mkroBgYGBGDx4MAAgIyMDhw4dwquvvor8/Hybc2NjY1FVVWVxrKqqCrGxsQ6vr1aroVarXdtoIpKUu3MDYHYQ+TLJe26s6fV6aLVau69lZmZi165dFsd27tzp8Fk7EfkH5gYRmZO052bZsmWYPHky+vfvj4aGBmzevBl79uzBjh07AAB5eXmIj4/H2rVrAQCLFi3CuHHj8Morr2DKlCnYsmULDh8+jNdff13Kj0FEHsTcIKLOSFrcVFdXIy8vD5cuXUJ4eDjS0tKwY8cOTJo0CQBQWloKhaK9c2nMmDHYvHkzVqxYgaeeegopKSn46KOPMGLECKk+AhF5GHODiDojaXHzxhtvdPj6nj17bI7NnDkTM2fOdFOLiMjbMTeIqDNeN+aGiIiIqCdY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLKikroBniaKIgCg+XqjxC0hco+W681o0gpoud6E5oYGqZtjV3Oj4ffP+PvoC0zZ0cjsIJJCV3JDEH0pXVygvLwciYmJUjeDiACUlZUhISFB6mY4hdlB5B2cyQ2/K270ej0qKioQFhYGQRBccs36+nokJiairKwMGo3GJdf0Bfzc/vW5Add9dlEU0dDQgLi4OCgUvvF03NXZwf+O/O+z83N7Ljf87rGUQqFw252iRqPxq/9gjfi5/Y8rPnt4eLiLWuMZ7soO/nfkf5+dn7v7nM0N37hlIiIiInISixsiIiKSFRY3LqBWq7Fy5Uqo1Wqpm+JR/Nz+9bkB//7srubP/5b++tn5uT33uf1uQDERERHJG3tuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4qab1q5di9tuuw1hYWGIjo7GtGnTcPr0aamb5RHr169HWlqaaUGmzMxMbN++Xepmedy6desgCAIee+wxqZvidqtWrYIgCBZfQ4YMkbpZPslfs4O5YcDc8ExusLjppr1792LhwoX4+uuvsXPnTrS2tuInP/kJmpqapG6a2yUkJGDdunU4cuQIDh8+jB//+MeYOnUqTp06JXXTPObQoUPIz89HWlqa1E3xmOHDh+PSpUumr6+++krqJvkkf80O5gZzw6O5IZJLVFdXiwDEvXv3St0USURERIgbN26Uuhke0dDQIKakpIg7d+4Ux40bJy5atEjqJrndypUrxZEjR0rdDFny5+xgbsiblLnBnhsXqaurAwD06dNH4pZ4lk6nw5YtW9DU1ITMzEypm+MRCxcuxJQpUzBx4kSpm+JRZ86cQVxcHAYOHIjZs2ejtLRU6ibJgj9mB3PDf0iVG363caY76PV6PPbYY/jRj36EESNGSN0cjygsLERmZiaam5sRGhqKrVu3YtiwYVI3y+22bNmCo0eP4tChQ1I3xaNGjx6Nt956C6mpqbh06RJWr16NsWPH4uTJkwgLC5O6eT7L37KDucHc8FRusLhxgYULF+LkyZN+NQYhNTUV3377Lerq6vDPf/4Tc+bMwd69e2UdVGVlZVi0aBF27tyJoKAgqZvjUZMnTzb9PS0tDaNHj0ZSUhLee+89zJs3T8KW+TZ/yw7mBnPDU7nB7Rd66De/+Q0+/vhjfPnllxgwYIDUzZHMxIkTMWjQIOTn50vdFLf56KOPMH36dCiVStMxnU4HQRCgUCig1WotXpO72267DRMnTsTatWulbopPYnYwN5gb7sOem24SRRGPPvootm7dij179vhtOBnp9XpotVqpm+FWWVlZKCwstDj24IMPYsiQIVi6dKlfBVRjYyPOnTuHX/ziF1I3xecwO9oxN5gb7sLippsWLlyIzZs34+OPP0ZYWBgqKysBAOHh4ejVq5fErXOvZcuWYfLkyejfvz8aGhqwefNm7NmzBzt27JC6aW4VFhZmMy4iJCQEkZGRsh8vsXjxYuTk5CApKQkVFRVYuXIllEolZs2aJXXTfI6/Zgdzox1zw/25weKmm9avXw8AGD9+vMXxTZs2Ye7cuZ5vkAdVV1cjLy8Ply5dQnh4ONLS0rBjxw5MmjRJ6qaRm5SXl2PWrFm4evUqoqKicOedd+Lrr79GVFSU1E3zOf6aHcwN/yNlbnDMDREREckK17khIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghn6DT6TBmzBjMmDHD4nhdXR0SExOxfPlyiVpGRN6KueG/uEIx+Yzvv/8eo0aNwoYNGzB79mwAQF5eHo4fP45Dhw4hMDBQ4hYSkbdhbvgnFjfkU/74xz9i1apVOHXqFA4ePIiZM2fi0KFDGDlypNRNIyIvxdzwPyxuyKeIoogf//jHUCqVKCwsxKOPPooVK1ZI3Swi8mLMDf/D4oZ8TlFREYYOHYqbb74ZR48ehUrFze2JqGPMDf/CAcXkc958800EBwfjwoULKC8vl7o5ROQDmBv+hT035FP279+PcePG4bPPPsNzzz0HAPj8888hCILELSMib8Xc8D/suSGfcf36dcydOxe//vWvMWHCBLzxxhs4ePAg/vrXv0rdNCLyUswN/8SeG/IZixYtwrZt23D8+HEEBwcDAPLz87F48WIUFhYiOTlZ2gYSkddhbvgnFjfkE/bu3YusrCzs2bMHd955p8Vr2dnZaGtrYzczEVlgbvgvFjdEREQkKxxzQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpKV/w+vkBc/Ln1nLgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lib.plot2in1(data, xx, yy, Z1, Z2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "grtL7WrBePEo" + }, + "source": [ + "Создали тестовый набор для теста энкодеров" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "9e_7wvKlcfAV" + }, + "outputs": [], + "source": [ + "test_data = np.array([[3.5, 4.2], [3.2, 4], [4.1, 3], [3.5,3.5], [3, 4], [3.5, 4.5]])" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "S5qqvBX6eYYn", + "outputId": "aa08001d-03c5-4312-f2d7-04f6731f3fc8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.5, 4.2],\n", + " [3.2, 4. ],\n", + " [4.1, 3. ],\n", + " [3.5, 3.5],\n", + " [3. , 4. ],\n", + " [3.5, 4.5]])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_data" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AvLSqStAeabQ", + "outputId": "842db2ad-7f3a-4fb6-90a5-183be3129748" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n" + ] + } + ], + "source": [ + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, test_data, IREth1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "id": "jQuw0fktemKe", + "outputId": "ec81ccfe-27e9-48bd-e7b5-07518f579326" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Аномалий не обнаружено\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjsJJREFUeJzs3Xl4lNXdP/7PBEJYAyqyiAi04oKIG7KoVdQKLlWx1baoRX2qXdRWS2t/pV/rUttiH7e61da6oLZUq1VsXUErIoILKm51X8ANFNm3EMj8/rifZDKSQICQuRNer+s6F5m5z0zOHXKSzHvOfT6ZbDabDQAAAACAlCgq9AAAAAAAAKoTWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgDUo9deey1OP/306NOnT7Rr1y4ymUxVe//99ws9PAAAaBSElgDARhsyZEhVMHfBBRfU2q96gPfF1qxZs+jQoUP07t07jjvuuLjhhhtiyZIlGzSG9W0nn3zyxn8RIuJf//pX7LHHHnHdddfFa6+9tl7jh83dueeemzcvf/jDH673c2yqnwPZbDbeeOON+Otf/xpnnXVW7LPPPtG6deuqx/bs2XPDTxwAqJHQEgBIhYqKili4cGG8/fbbcdddd8Vpp50WvXr1invuuafQQ6uTJUuWxMknnxxlZWUREdG1a9c47rjj4vTTT48zzjgjzjjjjCgtLS3wKDfcBRdcUKdgujE4+eSTq85l7NixhR5Og3j//fdTHbBls9m47bbb8u674447quZTIU2fPj06dOgQO+20U3znO9+Jq666KqZNmxbLly8v9NAAoElrXugBAACbp+HDh0e3bt2qbldUVMTcuXNj2rRp8eGHH0ZExNy5c+PYY4+Nu+66K4455pg6P/fee+8dAwYMqHP/QYMG1X3gtbjvvvti/vz5ERGxyy67xLPPPhutWrXa6OeFzcFjjz0Ws2bNyrtv/vz58a9//SuOO+64DXrO+vo5sGTJkli0aNEGjQEA2HBCSwCgIM4666wYMmTIGvdXVFTELbfcEj/84Q+jrKwsKioq4oc//GEMGzYsWrduXafnPvzwwxt8NeDzzz9f9fGIESMElrAebrnllqqPW7VqVbWK8ZZbbtng0LK+fw5sscUW0b9//9h7771j7733jjfeeCN+8Ytf1NvzAwD5XB4OAKRKUVFRnHLKKfG///u/VffNmTMnxo8fX7hB1UHlKsuI5NJwoG6WLFkS//znP6tuX3755VUfP/zwwzFnzpxCDKvKbrvtFm+99VbMmzcvJkyYEL/97W9j+PDh0blz54KOCwCaOqElAJBK3//+96Nly5ZVtydPnlzA0axbeXl51cdFRf7Egrr65z//GUuXLo2IiF69esX3v//92H333SMiYtWqVfG3v/2tgKNLVlhuv/32BR0DAGyO/EUNAKRSSUlJ7LzzzlW3P/744wKOpmbVi9NUv7z1lFNOWaMycW0FX5YsWRJXXXVVDBs2LLbddtto2bJlbLHFFtG3b98488wz4+mnn67TWKp/rkovvvhinHXWWdG3b9/YcsstI5PJxPDhw9frHCurMV944YVV91144YUbVH35nnvuiZNOOil22GGHaN++fbRs2TK6d+8ew4cPj1tuuSVWrVpVpzG9/vrr8fOf/zwGDRoUHTt2jBYtWkTLli2jU6dOsddee8Upp5wSt9xyS97q14iInj171un/qj6KDW3oGGtSXl4et912W3zzm9+ML33pS9GuXbto06ZN9OrVK0aMGBH33HNPZLPZGh87duzYyGQy0atXr6r7Zs6cWWsF7UKo/v9x4oknRiaTie985zs1HgcANh/2tAQAUqv6vpArVqwo4Eg2jfvuuy9OO+20mD17dt79ZWVlsWDBgnj11Vfj2muvjeOPPz7+8pe/1HlPz4gkUP3Nb34Tq1evru9hr7eXXnopTjrppJgxY8Yaxz788MP48MMP4957740xY8bE3XffHX369Kn1udZ2Xp999ll89tln8fzzz8fYsWPjhBNOiL/+9a/1eSp1Up9jnDRpUpx66qnxzjvvrHHs/fffj/fffz9uv/32GDRoUNx11115xa0ag5kzZ8akSZOqbp944okREXH88cfHz3/+81i9enW89NJLMWPGjKrVlwDA5kFoCQCkVvXVlWncP27AgAFxxhlnRETEo48+Gq+//npERBx88MGx00475fWtvmo0IuKOO+6IE044oSrYatasWey3336x/fbbx5IlS+KJJ56oOv9x48bFe++9F//5z3/yLpmvzSWXXFK1MvLLX/5yDBgwIFq3bh3vv/9+FBcXr9c5HnPMMdG3b9945pln4tlnn42I2qsy11R9efLkyXHkkUdWVV8uLi6OvffeO3r37h3FxcXx/vvvx5QpU2LFihXxxhtvxD777BPTpk1b4+sVEXHllVfmrfjs2LFjDBo0KLp27RqZTCbmzZsXr7/+erz22ms1BoYnnXRSfP755+v8v4qI9ao6XZ9jrO7OO++ME044oWrrgVatWsWgQYOiZ8+eUVRUFG+++WZMmzYtVq1aFU899VQMHjw4nn322by5svPOO8cZZ5wRixcvjltvvTUiItq1axcjR47coPOrb7fddlvVKtGBAwfGDjvsEBERXbp0iUMOOSQeeuihiEhWWwotAWAzkwUA2EgHHHBANiKyEZE9//zza+1X2Sciso899than/ONN97I63/NNdfUyxg2lZNOOqnq8998881r7fv2229n27ZtW9V/wIAB2bfeeiuvz+rVq7OXXXZZtqioqKrfj370o1qfs/rXqnnz5tn27dtn77nnnjX6rVixYkNOL3v++eev99f3k08+yXbq1KnqcSNHjsx+/PHHa/SbPXt29phjjqnqt+uuu2ZXrVqV16e8vDzbsWPHqj5jxozJrly5ssbP+/nnn2dvuumm7O9///saj6/P/9X6qM8xvvLKK9lWrVplIyKbyWSyP/vZz7Lz589fo98777yT3W+//ao+52GHHVbj87333ntVfXr06LGhp1jvevfuXesc/9vf/lZ1rFOnTtny8vJ1Pl9D/hy4+eabU/k1BYCmwkpLACB1Vq1aFWeddVbV7dLS0vj2t79d58c/8MADMXfu3Dr3//Wvfx1bbrnleo1xY/z617+OJUuWRETE9ttvHxMmTIj27dvn9SkqKopRo0ZFJpOJUaNGRUTEtddeGz/5yU/y9iesSUVFRfzrX/+K/ffff41jJSUl9XQW6/b//t//i08//TQiIn784x/HlVdeWWO/zp07x5133hlDhw6N//znP/Hyyy/HXXfdFd/61req+rz++utV/6f77rtv/OIXv6j182655ZZxyimn1OOZ1E19jvHHP/5xLF++PCIiLrvssvjJT35SY78vfelL8dBDD8WAAQPiv//9bzz44IPx9NNPx8CBAzfiTBrG1KlT46233oqIZAVu9f/viIjhw4dH27ZtY8mSJfHpp5/Ggw8+GEceeWSdnz/tPwcAgLUTWgIAqVBRURFz586NJ598Mi6++OJ45plnIiKiefPmcdNNN8VWW21V5+d69tlnqy5lrouf/exnDRZWLFiwIO64446q2//7v/+7RmBZ3VlnnRU33nhjvPrqq1FRURHXX399jBkzZq2f49hjj60xsGxIn332WdVejV26dInf//73a+3frFmz+O1vfxuDBw+OiIi//e1veSFW5eXlERFbb731JhjxxquvMb744ovxn//8JyIi9thjjzj77LPX2r9Nmzbxq1/9KkaMGBERydeuMYSW1QvsHHbYYdGxY8e8461bt45vfOMbVf1uueWW9Qot0/xzAABYN9XDAYCCOPDAA/OqFjdr1iw6d+4cX//616sCyx133DHGjx8f3/jGNwo82vozderUKCsri4hkv8N1hTBFRUXxP//zP1W3H3vssXV+jvVZlbqpPPLII7Fy5cqIiPj6179ep704Bw4cGG3atImIiClTpuQd6969e9XHjz32WLz55pv1ONr6UV9jfOCBB6o+HjFiRJ2qeh900EFVH3/xa5dGK1asiH/84x9Vt6tXC6+u+t6b//73v2PevHmbfGwAQDpYaQkApFLnzp3j1ltv3aCCKOeff35ccMEF9T+oevDCCy9UfTxgwIBo3nzdf47tu+++eY/PZrNrDbL22muvjRtkPZg2bVrVxy+99FKceeaZ6/X4+fPnx9KlS6tCzO7du8egQYPiqaeeioULF8Zee+0V3/nOd+KYY46Jfffdd70qq28q9TXG6l+7xx57LGbOnLnOx2T/r5hNRMQHH3yw/oNvYPfee28sWLAgIiI6dOhQa3g/ZMiQ2HbbbePDDz+MlStXxu233x6nn356nT5Hmn8OAADrJrQEAApi+PDh0a1bt6rbn3/+ebzzzjtVl3POmTMnvvKVr8Q///nP+NrXvlaoYda7zz77rOrjHj161OkxPXv2rPp45cqVsXjx4igtLa21fxoun65e+X3KlCkbtPpv/vz5VaFlRMSNN94YBx10UMyZMyeWLFkS1113XVx33XXRvHnz2H333WP//fePYcOGxcEHHxzNmjWrl/NYX/UxxupfuwcffHC9xzB//vwNHn9DqX5p+HHHHVfrXqtFRUVxwgknVG0vcMstt9Q5tAQAGjeXhwMABXHWWWfFNddcU9X+/ve/xzPPPBMvvvhi7LbbbhGRBHQjRoyId955p8CjrT+VBXgiIi+QW5sv9lu8ePFa+7dq1Wr9B1bPFi5cuNHPsWrVqrzbffr0iRdffDF+9KMf5e0DumrVqpg+fXpcfvnlMWzYsOjRo0fccMMNG/35N0R9jHFjv3arV6/eqMdvarNnz44JEyZU3T7xxBPX2r/6pePPPPNMvP7665tsbABAeggtAYBU6devX0yYMKFqFeaSJUvi1FNPLfCo6k/btm2rPl66dGmdHvPFfu3atavXMW0K1YPWyy+/PLLZ7Hq36itMK3Xu3DmuuuqqmDNnTkyaNCkuuuiiOOyww/JWnn700Udx2mmnxY9//OOGONV6H2P1r93dd9+9QV+7NPvrX/+aF6wecMABefvbfrH17ds37/HVV2kCAE2X0BIASJ1OnTrF1VdfXXV70qRJcf/99xdwRPWn+qXbs2bNqtNj3n///aqPW7Ro0ShCy86dO1d9PHv27Hp//pKSkjjggAPi3HPPjQceeCDmzp0bDz74YOy3335Vfa6++ur1qh6dljFu6q9doW1s6PjXv/41Kioq6mk0AEBaCS0BgFSqLF5S6dxzzy3gaOrPHnvsUfXxM888U6dLeadOnZr3+LpUk65v6/s5Bw4cWPXxk08+Wd/DWUNxcXEceuih8cgjj+StzPv3v/+9Rt9CfP0i6j7GTfG1K9Q5f9Hzzz8fr7zyStXtvffeOwYOHFinVlm06sMPP4xHH320UKcAADQQoSUAkFrVK//OmDEj/vWvfxVuMPVkn332qSo68tlnn61zBWlFRUXcfPPNVbcPOuigTTq+2rRs2bLq4/Ly8nX2HzZsWFXINHXq1HjxxRc32diqKykpiaFDh1bdnjNnzhp91vdc6tu6xli98NTdd99d4zmsr0Kfc6Xqqyx33XXXeOaZZ+Kpp56qUzv00ENrfB4AoGkSWgIAqfXVr3419tlnn6rbv/nNbwo4mvrRoUOH+Na3vlV1+5xzzllrYZ1rrrkmXn755YhIKil/73vf2+RjrMlWW21V9fFHH320zv7dunWrKrCSzWZj5MiRsWjRojp9roqKirwq6xFJRey6XhL8wQcfVH3cqVOnNY6v77nUVX2NccCAATFkyJCIiFi+fHl85zvfiZUrV9bpeVeuXFlj9fAOHTpEUVHyp/9nn31WkOCyvLw8xo0bV3V7XQV4vqh6/3vuuWedBakAgMZNaAkApNp5551X9fGzzz4bDz30UAFHUz/OO++8qoI8b775ZgwbNizefffdvD4VFRVx5ZVXxqhRo6ruO+OMM2osTtMQql/OPGHChDpVuP7tb38bXbt2jYiIl156KQYMGJBXNfqLPvzww7jiiitixx13jDvuuCPv2L333hs77LBDXHrppXl7fFZXVlYW11xzTdx1111V9x122GFrPZd77723zoHgutTnGK+++uqq75GJEyfG/vvvH08//XStn/vNN9+Miy66KHr27FnjJeUlJSXRu3fviEjCw/Hjx9fpnE4++eSqgjgb+71Xua9nRHK5+ogRI9br8UcddVTVfq7Lli2LO++8c6PGAwCkW/NCDwAAYG2GDRsWAwcOrApsLrroorzLRGtSPRypi9atW8f//u//btQ418eXv/zluOGGG+KEE06I1atXx7Rp02LHHXeMr3zlK/HlL385lixZEk888UTeKsBBgwY16Bi/aMCAAdG9e/f44IMP4pNPPomddtophg4dGh07dqzaL3HvvffOW0W6zTbbxL333huHH354zJ07N954440YNmxYdOvWLQYMGBBbb711lJeXx9y5c+OVV16J9957b61jeOedd+Kcc86Jc845J7bbbrvo169f1SrF2bNnx1NPPRXz5s2r6n/CCSfkrdStdNhhh0WrVq1i+fLlMWPGjNh5551jyJAh0aFDh6pzGTp0aN4l3HVVX2Ps27dv/P3vf49vfetbsWzZsnj66adj0KBB8eUvfzn23HPP2HLLLWPFihXx6aefxksvvVSnFaPf+MY34ne/+13V5x07dmxsv/32UVxcXNXn0ksvXe9zrqvql3Tvv//+0b179/V6fKtWreKYY46JW2+9ter5/ud//qfW/vX5c+DUU0+N6dOn591X/f/x448/jt13332Nx91www3Rv3//Oo8BAKgmCwCwkQ444IBsRGQjInv++efX2q+yT0RkH3vssTo///3335/32EceeWStY1jf1r59+/U/6S846aSTqp7v5ptvrtNj/v3vf2c7d+68zvGNGDEiu3Tp0rU+V/X+m8q///3vbIsWLWod50knnVTj495///3swQcfXOf/j86dO2cfeuihvOe48847s5lMpk6PLyoqyp5++unZlStX1nou11133Vqfb23fx7Wp7zFms9nsjBkzsnvttVedv3Y9e/bMvvDCCzU+14IFC7I77bTTWh//RdW/r3v06LHeX5NKc+fOzfve+ctf/rJBzzNhwoSq58hkMtl333037/im+jmwoc+7Pj/nAIB8VloCAKl3+OGHR//+/atWOv3617+Ogw8+uMCj2nhf+9rX4u23346bbrop7rvvvnj11Vdj7ty50apVq9hmm23iwAMPjJEjR+ZVky6kr33tazF9+vS49tprY8qUKTFr1qxYsmRJZLPZtT6uR48e8cgjj8S0adPizjvvjMmTJ8cHH3wQ8+fPj+bNm8dWW20VvXv3jv79+8fQoUNjyJAhVUV8Kh177LHxySefxIQJE+LJJ5+MF198Md59991YsGBBRES0b98+dthhh9hvv/1i5MiR0adPn7WO6Qc/+EHsuuuu8ec//zmefvrp+Oijj2LZsmXrPJe1qe8xRkTstttuMX369JgwYUKMHz8+nnzyyfj4449jwYIFUVJSEltvvXXsuOOOMXDgwBg2bFgMHjy41krh7du3j2effTb++Mc/xv333x+vvfZaLFiwoEH2t/z73/9edRl+SUlJHHvssRv0PAcddFB07do1Pvnkk8hms3HLLbfkFewCAJqOTHZj/jIDAAAAAKhnCvEAAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVZoXegCNRUVFRXz88cfRrl27yGQyhR4OAAAAADQq2Ww2Fi9eHNtss00UFa19LaXQso4+/vjj6N69e6GHAQAAAACN2gcffBDbbrvtWvsILeuoXbt2EZF8UUtLSws8mk2jvLw8JkyYEEOHDo3i4uJCDwc2O+YgFJ55CIVlDkJhmYNQeE19Hi5atCi6d+9elbOtjdCyjiovCS8tLW3SoWXr1q2jtLS0SU4MSDtzEArPPITCMgehsMxBKLzNZR7WZetFhXgAAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVmhd6AJuDbDYb5eXlUVFRUeihrFV5eXk0b948VqxYEatXry70cJq0Zs2aRXFxcaGHAQAAAJBKQstNaOXKlfHpp5/GsmXLGkUImM1mo0uXLvHBBx9EJpMp9HCavJKSkujYsWOUlpYWeigAAAAAqSK03ESWLVsWH3zwQTRr1iy22GKLaNWqVTRr1izVYWBFRUUsWbIk2rZtG0VFdg7YVCpX3i5cuDA++uijiAjBJQAAAEA1QstNZO7cuVFcXBw9evSIZs2aFXo4dVJRURErV66Mli1bCi03sVatWkW7du3iww8/jLlz5wotAQAAAKqRTG0Cq1atiqVLl8aWW27ZaAJLGl4mk4n27dtHWVlZlJeXF3o4AAAAAKkhtNwEVq1aFRHJnoWwNpXFeBrDnqcAAAAADUVouQmlef9K0sH3CAAAAMCahJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrSkoHr27BmZTCbGjh1bdd/YsWMjk8nktaKioigtLY099tgjRo8eHZ999lmtz/nFx9bWJk2atOlPEAAAAID11rzQA4DatGnTJo499tiISKprz5w5M6ZNmxYzZsyIm2++OZ544ono3bt3rY8fNmxYdOnSpdbjazsGAAAAQOEILUmtjh075q3AjIh49dVX44ADDog5c+bE2WefHffff3+tj//FL34RQ4YM2bSDBAAAAKDeuTycRmWXXXaJUaNGRUTExIkTo6ysrMAjAgAAAKC+CS1pdPr16xcREeXl5TFv3rwCjwYAAACA+tboQ8uLL744MplMnH322Wvtd+edd8ZOO+0ULVu2jF133TUeeOCBhhkg9W7RokUREdGsWbPo2LFjgUcDAAAAQH1r1KHls88+G3/+85+rVt7VZurUqTFixIj47ne/Gy+88EIMHz48hg8fHq+88koDjZT6VLmP5aGHHhrFxcUFHg0AAAAA9a3RFuJZsmRJnHDCCfGXv/wlfvOb36y175VXXhmHHnponHPOORERcdFFF8XEiRPjmmuuiT/96U8NMdw19e8fMXt2YT53LTIRUZrNRiaTWXvHLl0ipk9vkDFVqqwefv3118e4ceOiR48ecdVVV631MQceeGCtx9q3bx8LFiyo51ECAAAAUB8abWh5xhlnxBFHHBFf/epX1xlaTps2rap4S6Vhw4bF+PHja31MWVlZXpGXykuSy8vLo7y8fK2fr7y8PLLZbFRUVERFRUWNfTKzZ0fmo4/W+jwNLfN/bV2yEZGt5bw2VPWvVeW/M2fOrDFAHTBgQDz00EPRvn37Wr++ERFDhw6NLl261HisdevWa31sQ6moqIhsNhvl5eXRrFmzQg+HAqv82bKunzHApmMeQmGZg1BY5iAUXlOfh+tzXo0ytLz99tvj+eefj2effbZO/WfPnh2dO3fOu69z584xey0rHceMGRMXXnjhGvdPmDAhWrduvdbP17x58+jSpUssWbIkVq5cWWOftltvHUXZbB1Gnz4VW28dS/4vxN3o5/q/4HDFihVVwfCKFSsiIqJNmzZx1FFHRUQSIr/55pvxyiuvxDPPPBPf/e5346abblrrc//oRz+K/fbbr9bji+rpHDbGypUrY/ny5TF58uRYtWpVoYdDSkycOLHQQ4DNnnkIhWUOQmGZg1B4TXUeLlu2rM59G11o+cEHH8RZZ50VEydOjJYtW26yzzN69Oi81ZmLFi2K7t27x9ChQ6O0tHStj12xYkV88MEH0bZt29rH+Nxz9TncepHNZmPx4sXRrl27tV4iXhQRa/8K1F1RUbKtasuWLau+rpVfs44dO8Zf//rXvP533313jBgxIu655544+OCD44c//GGtz926det1/l8V2ooVK6JVq1ax//77b9LvZxqH8vLymDhxYhxyyCH2a4UCMQ+hsMxBKCxzEAqvqc/D9VlA1uhCy+eeey4+/fTT2HPPPavuW716dUyePDmuueaaKCsrW+My2y5dusScOXPy7pszZ06tlw5HRJSUlERJScka9xcXF6/zm2b16tWRyWSiqKioKpRrDCpXPVaOvSFV/1pV/9xfHMexxx4bL774YvzmN7+J888/P0488cRo3779Op8zrYqKiiKTydTp+4rNh+8HKDzzEArLHITCMgeh8JrqPFyfc0p3olODgw8+OF5++eWYMWNGVevfv3+ccMIJMWPGjBr3BRw8eHA8+uijefdNnDgxBg8e3FDDph6NHj06unbtGp9//nlcfvnlhR4OAAAAAPWs0YWW7dq1i759++a1Nm3axFZbbRV9+/aNiIiRI0fG6NGjqx5z1llnxUMPPRSXXXZZvP7663HBBRfE9OnT48wzzyzUabARWrduHb/61a8iIuIPf/hDzJ8/v8AjAgAAAKA+NbrLw+ti1qxZeZcF77PPPjFu3Lg499xz45e//GX07t07xo8fXxVy0viceuqpcdlll8U777wTl156afz2t79do8/FF18cY8eOrfU5jj/++Bg6dOgmHCUAAAAAG6JJhJaTJk1a6+2IiOOOOy6OO+64hhkQm1xxcXH85je/iREjRsTVV18do0aNiq222iqvz8MPP7zW59h9992FlgAAAAAp1CRCSxqv999/f437Tj755Dj55JPX+dhvf/vb8e1vf3uN+7PZbD2MDAAAAIBCaXR7WgIAAAAATZvQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWlJQPXv2jEwmE2PHjq26b+zYsZHJZPJaUVFRlJaWxh577BGjR4+Ozz77rNbn/OJja2uTJk1ar7FWjuvkk0/esJMFAAAAoE6aF3oAUJs2bdrEscceGxERq1evjpkzZ8a0adNixowZcfPNN8cTTzwRvXv3rvXxw4YNiy5dutR6/IvHMplMRERks9l6GD0AAAAAG0poSWp17NgxbwVmRMSrr74aBxxwQMyZMyfOPvvsuP/++2t9/C9+8YsYMmTIph0kAAAAAPXO5eE0KrvsskuMGjUqIiImTpwYZWVlBR4RAAAAAPVNaEmj069fv4iIKC8vj3nz5m30811wwQVVl4ZHrLkn5vvvv7/GY5YuXRqjR4+O7bffPkpKSqJLly5x0kknxUcffbTR4wEAAADY3Lk8nEZn0aJFERHRrFmz6Nix40Y/3+677x4nnXRS3HLLLRERcdJJJ+Udb9u2bd7thQsXxj777BOzZs2Kr3zlK9G3b9+YNm1a3HrrrfH444/Hiy++GO3bt9/ocQEAAABsroSWNDqV+1geeuihUVxcvNHPN3z48Bg+fHhVaPnFfTS/aPz48TFs2LB44oknorS0NCIi5s+fHwcddFDMmDEj/vjHP8bo0aM3elwAAAAAmyuhZYH0798/Zs+eXehhrCGbzeZdKl2TLl26xPTp0xtoRInK6uHXX399jBs3Lnr06BFXXXXVWh9z4IEH1nqsffv2sWDBgg0aS5s2beLmm2+uCiwjIrbYYov4xS9+Ed/+9rfjkUceEVoCAAAAbAShZYHMnj3b/ofrMHPmzBoD1AEDBsSECRPWeQn2sGHDokuXLjUea9269QaPq3///tG1a9c17t95550jIvy/AgAAAGwkoWWB1BamFVpdV1o2hDZt2sSxxx4bERFlZWXx2muvxYsvvhjPPPNMfP/734/bb799rY//xS9+EUOGDKn3cW233XY13l+58nLFihX1/jkBAAAANidCywJp6Mur66KioiIWLVoUpaWlUVRU+MLyHTt2XGN/ybvvvju+9a1vxR133BH7779/nH766Q0+rjR8bQAAAACaMukLjcrXv/71+MUvfhEREeedd14sXLiwwCMCAAAAoL4JLWl0Ro8eHV27do3PP/88Lr/88np73spK5KtWraq35wQAAABg/QktaXRat24dv/rVryIi4g9/+EPMnz+/Xp532223jYiIV199tV6eDwAAAIANY09LGqVTTz01LrvssnjnnXfi0ksvjd/+9rdr9Ln44ovX2BOzuuOPPz6GDh1adfsb3/hGXHrppfHVr341DjrooGjXrl1ERPz+97+Prbbaqt7PAQAAAICaCS1plIqLi+M3v/lNjBgxIq6++uoYNWrUGsHiww8/vNbn2H333fNCy4suuiiKiori7rvvjvHjx8fKlSsjIuLcc88VWgIAAAA0IKElBfX++++vcd/JJ58cJ5988jof++1vfzu+/e1vr3F/NpvdoLG0bNkyfv/738fvf//7Go+va1w9e/bc4M8NAAAAQI49LQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElptQNpst9BBIOd8jAAAAAGsSWm4CRUXJl3X16tUFHglpV/k9Uvk9AwAAAIDQcpMoLi6O4uLiWLJkSaGHQsotX748mjVrFsXFxYUeCgAAAEBqCC03gUwmE+3atYuFCxfG8uXLCz0cUmr16tWxcOHCaN26dWQymUIPBwAAACA1mhd6AE1Vx44dY/ny5TFr1qwoLS2Ndu3aRbNmzVIdTlVUVMTKlStjxYoVLlfehLLZbJSVlcW8efOioqIiOnXqVOghAQAAAKSK0HITadasWXTv3j3mzp0bixcvjgULFhR6SOuUzWZj+fLl0apVq1SHq01FmzZtokuXLtGiRYtCDwUAAAAgVYSWm1CzZs2ic+fO0alTpygvL4+KiopCD2mtysvLY/LkybH//vvbY3ETa968eTRvbvoBAAAA1ERq0gAymUyjWE3XrFmzWLVqVbRs2VJoCQAAAEDB2LgQAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFKlUYaW1113XfTr1y9KS0ujtLQ0Bg8eHA8++GCt/ceOHRuZTCavtWzZsgFHDAAAAADUVfNCD2BDbLvttnHxxRdH7969I5vNxi233BJHH310vPDCC7HLLrvU+JjS0tJ44403qm5nMpmGGi4AAAAAsB4aZWh55JFH5t3+7W9/G9ddd1089dRTtYaWmUwmunTp0hDDAwAAAAA2QqMMLatbvXp13HnnnbF06dIYPHhwrf2WLFkSPXr0iIqKithzzz3jd7/7Xa0BZ0REWVlZlJWVVd1etGhRRESUl5dHeXl5/Z1AilSeV1M9P0g7cxAKzzyEwjIHobDMQSi8pj4P1+e8MtlsNrsJx7LJvPzyyzF48OBYsWJFtG3bNsaNGxeHH354jX2nTZsWb731VvTr1y8WLlwYl156aUyePDleffXV2HbbbWt8zAUXXBAXXnjhGvePGzcuWrduXa/nAgAAAABN3bJly+L444+PhQsXRmlp6Vr7NtrQcuXKlTFr1qxYuHBh3HXXXXHDDTfE448/Hn369FnnY8vLy2PnnXeOESNGxEUXXVRjn5pWWnbv3j3mzp27zi9qY1VeXh4TJ06MQw45JIqLiws9HNjsmINQeOYhFJY5CIVlDkLhNfV5uGjRoujYsWOdQstGe3l4ixYtYvvtt4+IiL322iueffbZuPLKK+PPf/7zOh9bXFwce+yxR7z99tu19ikpKYmSkpIaH9sUv2mq2xzOEdLMHITCMw+hsMxBKCxzEAqvqc7D9Tmnok04jgZVUVGRtzJybVavXh0vv/xydO3adROPCgAAAABYX41ypeXo0aPjsMMOi+222y4WL14c48aNi0mTJsXDDz8cEREjR46Mbt26xZgxYyIi4te//nUMGjQott9++1iwYEFccsklMXPmzDj11FMLeRoAAAAAQA0aZWj56aefxsiRI+OTTz6J9u3bR79+/eLhhx+OQw45JCIiZs2aFUVFuUWk8+fPj9NOOy1mz54dW2yxRey1114xderUOu1/CQAAAAA0rEYZWt54441rPT5p0qS821dccUVcccUVm3BEAAAAAEB9aTJ7WgIAAAAATYPQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqdIoQ8vrrrsu+vXrF6WlpVFaWhqDBw+OBx98cK2PufPOO2OnnXaKli1bxq677hoPPPBAA40WAAAAAFgfjTK03HbbbePiiy+O5557LqZPnx4HHXRQHH300fHqq6/W2H/q1KkxYsSI+O53vxsvvPBCDB8+PIYPHx6vvPJKA48cAAAAAFiXRhlaHnnkkXH44YdH7969Y4cddojf/va30bZt23jqqadq7H/llVfGoYceGuecc07svPPOcdFFF8Wee+4Z11xzTQOPHAAAAABYl+aFHsDGWr16ddx5552xdOnSGDx4cI19pk2bFqNGjcq7b9iwYTF+/Phan7esrCzKysqqbi9atCgiIsrLy6O8vHzjB55ClefVVM8P0s4chMIzD6GwzEEoLHMQCq+pz8P1Oa9GG1q+/PLLMXjw4FixYkW0bds27rnnnujTp0+NfWfPnh2dO3fOu69z584xe/bsWp9/zJgxceGFF65x/4QJE6J169YbN/iUmzhxYqGHAJs1cxAKzzyEwjIHobDMQSi8pjoPly1bVue+jTa03HHHHWPGjBmxcOHCuOuuu+Kkk06Kxx9/vNbgcn2NHj06b3XmokWLonv37jF06NAoLS2tl8+RNuXl5TFx4sQ45JBDori4uNDDgc2OOQiFZx5CYZmDUFjmIBReU5+HlVcy10WjDS1btGgR22+/fURE7LXXXvHss8/GlVdeGX/+85/X6NulS5eYM2dO3n1z5syJLl261Pr8JSUlUVJSssb9xcXFTfKbprrN4RwhzcxBKDzzEArLHITCMgeh8JrqPFyfc2qUhXhqUlFRkbcHZXWDBw+ORx99NO++iRMn1roHJgAAAABQOI1ypeXo0aPjsMMOi+222y4WL14c48aNi0mTJsXDDz8cEREjR46Mbt26xZgxYyIi4qyzzooDDjggLrvssjjiiCPi9ttvj+nTp8f1119fyNMAAAAAAGrQKEPLTz/9NEaOHBmffPJJtG/fPvr16xcPP/xwHHLIIRERMWvWrCgqyi0i3WeffWLcuHFx7rnnxi9/+cvo3bt3jB8/Pvr27VuoUwAAAAAAatEoQ8sbb7xxrccnTZq0xn3HHXdcHHfccZtoRAAAAABAfWkye1oCAAAAAE2D0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqNC/0AEiPQYMGxcyZM6Nly5aFHgpstlasWGEOQoGZh1BY5iAUljkIhbdixYro0aNHPPfcc4UeSkEJLakyZ86c+Pzzzws9DAAAAIDNmjcPhJZU07lzZ++qQYGZg1B45iEUljkIhWUOQuGtWLEiOnfuXOhhFJzQkipPPfVUPPDAA3H44YdHcXFxoYcDm53y8nJzEArMPITCMgehsMxBKLzq83BzpxAPAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqdIoQ8sxY8bE3nvvHe3atYtOnTrF8OHD44033ljrY8aOHRuZTCavtWzZsoFGDAAAAADUVaMMLR9//PE444wz4qmnnoqJEydGeXl5DB06NJYuXbrWx5WWlsYnn3xS1WbOnNlAIwYAAAAA6qp5oQewIR566KG822PHjo1OnTrFc889F/vvv3+tj8tkMtGlS5dNPTwAAAAAYCM0ytDyixYuXBgREVtuueVa+y1ZsiR69OgRFRUVseeee8bvfve72GWXXWrsW1ZWFmVlZVW3Fy1aFBER5eXlUV5eXk8jT5fK82qq5wdpZw5C4ZmHUFjmIBSWOQiF19Tn4fqcVyabzWY34Vg2uYqKijjqqKNiwYIFMWXKlFr7TZs2Ld56663o169fLFy4MC699NKYPHlyvPrqq7Htttuu0f+CCy6ICy+8cI37x40bF61bt67XcwAAAACApm7ZsmVx/PHHx8KFC6O0tHStfRt9aPnDH/4wHnzwwZgyZUqN4WNtysvLY+edd44RI0bERRddtMbxmlZadu/ePebOnbvOL2pjVV5eHhMnToxDDjkkiouLCz0c2OyYg1B45iEUljkIhWUOQuE19Xm4aNGi6NixY51Cy0Z9efiZZ54Z9913X0yePHm9AsuIiOLi4thjjz3i7bffrvF4SUlJlJSU1Pi4pvhNU93mcI6QZuYgFJ55CIVlDkJhmYNQeE11Hq7POTXK6uHZbDbOPPPMuOeee+I///lP9OrVa72fY/Xq1fHyyy9H165dN8EIAQAAAIAN1ShXWp5xxhkxbty4uPfee6Ndu3Yxe/bsiIho3759tGrVKiIiRo4cGd26dYsxY8ZERMSvf/3rGDRoUGy//faxYMGCuOSSS2LmzJlx6qmnFuw8AAAAAIA1NcrQ8rrrrouIiCFDhuTdf/PNN8fJJ58cERGzZs2KoqLcQtL58+fHaaedFrNnz44tttgi9tprr5g6dWr06dOnoYYNAAAAANRBowwt61I7aNKkSXm3r7jiirjiiis20YgAAAAAgPrSKPe0BAAAAACaLqElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAIA0yGaj9ezZhR5FKggtAQAAAKCQVq6MuO22aN6/fxzws59FLFlS6BEVnNASAAAAAAph0aKISy+N+NKXIkaOjMzLL0eLJUuiaOzYQo+s4JoXegAAAAAAsFn58MOIK6+MuP76JLisZt4OO0TpDjsUaGDpIbQEAAAAgIbw0kvJysq//z1i1ar8Y0cdFat+8pN4YsGCOHzo0MKML0VcHg4AAAAAm0o2G/HIIxGHHhqx224Rt92WCyxLSiJOOy3itdci7r03svvuG5HJFHa8KWGlJQAAAADUt/LyiH/8I1lZOWNG/rEtt4w4/fSIM8+M6Ny5IMNLO6ElAAAAANSXxYsjbrgh4g9/iJg1K/9Yr14Ro0ZFnHJKRJs2BRleYyG0BAAAAICN9fHHSXGdP/85YuHC/GN77x1xzjkRxxwT0VwcVxe+SgAAAACwoV55JeKyyyL+9rfkkvDqvva1iJ/9LGL//e1VuZ6ElgAAAACwPrLZiEmTIi65JOLBB/OPtWgRceKJET/9aUSfPgUZXlMgtAQAAACAuli1KuKuu5Kw8vnn84916BDxwx9G/OhHEV27FmR4TYnQEgAgInm3fN68iIqKQo8EAIC0WbIk4sYbI664ImLmzPxjPXpE/OQnEd/9bkTbtoUZXxMktAQANl+rVkVMmRIxfnzE+PFRPHNmDNtiiyg69tiIr3894sADI0pKCj1KAAAK5ZNPIq6+OuK66yIWLMg/tueeSXGdY49VXGcT8BUFADYvy5ZFTJiQBJX//neyurKalvPnR/zlL0lr1y7i8MMjhg+POOywiPbtCzJkAAAa2H//mxTX+etfI1auzD922GFJWDlkiOI6m5DQEgBo+ubOjbjvviSonDAhYvnyNfs0bx4Vu+0W2ZdeimaVVR8XL464446kFRdHHHRQEmAedVTENts05BkAALCpZbMRkycn+1Xef3/+seLiiBNOSIrr9O1bmPFtZoSWAEDT9N57EffemwSVTzxR816VbdvmraRc3aZNPPzPf8ahRUXR/L77kqBz/vykb3l5xMMPJ+2HP4wYODB53PDhETvt1HDnBQBA/Vq1KuLuuyMuvTTi2Wfzj7VvH/GDH0T8+MfetG5gQksAoGnIZiNmzEhCynvvjXjxxZr7de4ccfTRSdh40EH5e1aWl8fqVq0ie/jhEd/8ZhJUVtvzMmbNyvV9+umkjR4dseOOuQBzwICIoqJNdJIAANSbpUsjbropKa7z3nv5x7p3T4rrnHpqsmUQDU5oCQA0XqtWJasoawoVq+vdO+KYY5JQceDAuoeKxcVJMZ4DD4z4wx9yoej48REvvZTr98YbEb//fdK6dEkuH68pFAUAoPDmzEmK6/zxj7mrairtvnuyX+VxxyV/C1IwQksAoHFZujRXSOe++9YopFNlwID8y7c3dpP0TCZijz2SduGFEe++m7v8fMqU3OXns2dHXH990tq1SzZqHz48uQxdIR8AgMJ5/fWIyy+PuPXWiLKy/GPDhiVh5UEHKa6TEkJLACD9Pvssv5DOihVr9mnoQjlf+lJyydBPflL7+BYvjvjHP5JWuWqzcnzdum3a8QEAkGwhNGVKUlzn3//OP9a8ecTxxyfFdfr1K8z4qNUGhZaLFi2KiIjS0tKN+uRLliyJ//znPxERcdRRR23UcwEATUxtKxmra9cur5BOwVYybr11xCmnJG3p0oiJE5Nx//vfuZWg5eVJoDlhQsTpp9f/SlAAAHJWr464556kuM7TT+cfKy2N+P73k+I6225bmPGxThsUWnbo0CGKioripZdeij59+qxx/OOPP45zzz03MplM3HjjjbU+z8yZM2P48OFRVFQUq1at2pChAABNRTYb8cILuaCy+p6R1XXpkiukc+CB6dszsk2bXBi5alV+IZ+ZM3P9nnkmab/8ZbLnZuVjBg1SyAcAYEMtWxYxdmxyGfg77+Qf69Yt4uyzI047zbY9jcAGXx6ezWZrPTZ//vwYO3bsOkPLujwXANCElZfnCunce2/thXR22CFXSKcxVedu3jxiyJCkXXFFUtG8MsCsXt38rbeSS5YuuSSpbl69kE/LlgUZOgBAo/LppxHXXpu0zz/PP9avX7Jf5Te/GdGiRWHGx3qzpyUA0LCWLo14+OFcIZ0vVmysNHBg/uXTjV0mk1Sj3H33iAsuiHjvvdyq0ieeyF3+PmdOxF/+krS2bfML+XToUKjRAwCk05tvJqsqb7llzX3PDzkk4mc/S/61FU+jI7QEADa9zz5L9nccPz7Z77G2QjoHH5xc+t0QhXQKrVev5PKks8+OmDs3v5DP8uVJnyVLIu68M2nNm+cX8rH/EgCwOZs6NblK5d57k22GKjVvHvHtbyfFdXbfvWDDY+MJLQGATeOdd3IrCZ98svZCOkcckQRxhx66+e4t1LFjxMknJ23ZsvxCPpWXN61aldw/cWLEGWdE7L13biXqzjtbPQAANH2rV0f8619JWDltWv6xtm0jvve95A3h7t0LMjzql9ASAKgf2WzE88/n9mx85ZWa+3XtmiukM2RI+grpFFrr1snX5+ijk6DyySdzX9P338/1e/bZpP2//5cU8qn8mg4aFNGsWWHGDgCwKSxfnlz+ffnlyV7g1W2zTcRZZyWBpa10mhShJQCw4crLIyZPzhXS+eCDmvvttFNuVeDeezeeQjqF1rx5xAEHJO3yy5OK6pUB5owZuX5vvRVx6aVJ69QpV8jn4IMV8gEAGq+5c5PCOtdck3xcXd++yX6VI0YortNECS0BgPWzZEl+IZ0FC2ruN2hQEpwdfXTTKKRTaJlMxG67Je3885NVl5WX30+enLv8/tNPI264IWlt2uQX8tliiwKeAABAHb39dvKG7dixub2+Kx18cBJWDhtme5wmTmhJ4qabotmTT0b3tm0jdtwxaSY/AJU+/TS/kE5Z2Zp9WrTIL6TTtWuDD3Oz0rNncinUWWclKw/uvz/5/3n44dwf90uXRtx1V9KaN08ux68MkhXyAQDS5qmnkv0q77knv7hOs2YR3/xmElbuuWfhxkeD2qjQMiPUajruvjuK7r8/9oyIuOqqiC5dIvbbL9d22y15sQPA5uPtt/ML6VT/w7FSaWl+IZ3S0oYeJRFJIZ+TTkpaZSGfe+9NNqqvXsjnkUeSduaZEf375y7Z79PHm5UAQGFUVCRvjl96acSUKfnH2rSJOO20pLhOjx4FGR6Fs1EpVN++fWs9VhloNrMRfPpls8lG/tXNnp1bmRGR/KAYPDgXYg4cmFTmAqDpqGshnW22yS+kYw+hdPliIZ+pU5P/z3vuyS/kM3160s49N2L77XMrMAcPVsgHANj0VqyIuPXWiMsui3jzzfxjXbokV5N8//u2t9mMbVRoma1pxQWNTyYT8d57sWratHjr5ptjx7lzo2jatIhFi3J9li7Nrc6ISF7M7LFHLsTcd9/khwoAjUt5ecTjj+cK6Xz4Yc39dt45tyqvf3+FdBqL5s0j9t8/aZddFvHyy7lQ+oUXcv3efjtXyGfrrXOFfL76VYV8AID69fnnEX/8Y1Jc59NP84/16ZNcAn788RElJYUZH6mxQaHl/vvv79LwpqZ168juv3+8uWRJbH/44VFUVJSssJkyJWlPPBHx0Ue5/qtX51Zo/OEPyX1f/nL+JeX2xQRIpyVLIh56KAmu7r+/5kI6mUyy4q5yxd6OOzb0KKlvmUxEv35JO++8iJkz8wv5rF6d9Pvss4gbb0xamzbJZf/DhyfbAFjpAABsqHffjbjiioibbkq2s6luyJAkrDzsMG+OU2WDQstJkybV8zBInWbNchVKzzgjuWRw1qxciDllypqXDb7zTtJuuSW53bFjsgKzMsTcc0+XEAIUypw5uUI6jzxSeyGdr341CaiOPNIK+qauR4+IH/84aZ9/nivk89BD+YV8/vnPpDVrll/Ip3v3Ag4eAGg0nnkmuZrjn/9M9q+sVFQUcdxxSVjZv3/hxkdqqaxC3WQyyYubHj0iTjghuW/+/GSfrMoQ85lnIlauzD1m7txkBce99ya3W7ZM9sKsDDEHD45o377hzwVgc/HWW7mVdFOn1lxIp337/EI67do19ChJg622ihg5MmnLliXB9vjxSdA9d27SZ/XqiEcfTdqPfhSx1165LQN22cXVFQBATkVFxAMPJJXAJ0/OP9a6dcSppybFdXr1KsjwaByElmy4LbZIXugecURye8WKiOeeSyrMVgaZ8+fn+q9Ykeyb9vjjye3Ky9SqX1K+7bYNfx4ATUU2m2zbUbln4X//W3O/bbbJhU0HHGAVPPlat072tDzqqCSorF7I5733cv2eey5pv/pVskVM5feUQj4AsPlasSLib39L9tJ+7bX8Y507J1d4/OAHEVtuWZjx0agUPLRctmxZXHfddfHTn/600ENhY7VsmVwOvu++ET//efLOyuuv519SXv3FTjYb8eKLSbv22uS+Hj3yQ8w+fexnAbA2K1fmF9Kpvv9wdX365EKlvfbys5W6adYs4itfSdqllyZbw1SG4s8/n+v3zjvJi5PLLksK+Rx5ZK6QT6tWBRo8ANBg5s2L+NOfIq66KtmWqLqddor46U8jTjxRgT/WS8FCy8WLF8dVV10VV155ZXz++edCy6aoqCh5kdynT8T3vpfc99FH+SsxX3wxf0+LmTOT9re/Jbc7dMjfF7N/fz/kABYvzi+ks3Dhmn0qC+lU7j+4ww4NPUqamkwmYtddk/arXyV7XVduP/D44/mFfG66KWmtW+cX8rGqAgCalvfeS4rz3nhjshd2dfvvn+xXecQR3jBngzR4aDlv3ry44oor4tprr42FCxdGNptViXxz0q1bxDe/mbSIiEWLIp56KhdiPvVUbvP/iKSi7f33Jy0iuYSxf/9ciLnPPsk+XABN3ezZ+YV0qu8hXKlFi4hDDskV0uncuaFHyeZku+2SvS1/9KNkdcX99ych5oMP5iqCLlsWcffdSWvWLNmOoDJI3267gg4fANgIzz2X7Fd5551rFtf5xjeSlZUDBxZufDQJGxVazpw5My677LJ45JFH4oMPPoji4uLo2bNnHHfccXH66adH+2pFVpYsWRKXXHJJXHHFFbF06dLI/l8xgI4dO8ZPfvKTjTsLGq/S0oihQ5MWEVFeHvHCC/mXlH/2Wa7/ypXJ3lpTp0b87/8m9/Xpk39Jec+eigEATcNbb+UuxZ02rfZCOl/7WhIEDRumkA6FseWWEd/5TtKWL0+K9YwfH/Gvf+V+j69eHfGf/yTtxz+O2HPP3JYFffv63Q0AaVdRkVztc8klEZMm5R9r1Sriu99Niut8+cuFGB1N0AaHlhMnToxvfOMbsfT/lv9WhpAvvvhivPjii3HrrbfGY489Fl26dIknn3wyTjjhhPjggw+q+nXr1i1+9rOfxfe+971oZa8jKhUXRwwYkLRRo5IX6G+/nR9ivvlm/mP++9+kXX99cnubbfJDzH79FAQAGoeKilwhnXvvrb2QTrduubBn//0V0iFdWrVKgvSvfS0JKqdNyxXyeffdXL/nn0/aeedFfOlLue/pffbxexsA0qSsLGLcuGR/6y/+fbr11slVF6ef7ipI6t0GhZafffZZjBgxIpYsWVJ1X5s2baJ58+ax8P/21XrzzTfjjDPOiLPOOiuGDRsWK1eujGw2G7169Ypf/OIXcfLJJ0dxcXH9nAVNVyYT0bt30k45JblvzpxkpWVliPn88xGrVuUe8/HHEf/4R9IiklVHgwfnQswBAyLatGn4cwGoycqVyTvVlUHlxx/X3G+XXfIL6ViVRmPQrFnu9+8ll0S8+mpu9fBzz+X6vftuxOWXJ61jx1whn0MOUcgHAApl/vyIP/85Ka7zySf5x3bYIbkE/Dvf8buaTWaDQsu//OUvMW/evMhkMvGNb3wjLr744vjSl74UERGzZ8+O3/3ud3HttdfGvffeG88++2yUlZVFu3bt4ne/+118//vfj+bNC160nMasc+eIY45JWkSy2e8zz+RCzKlTI6oF6rF4ccSECUmLiGjePLkkrbLAz7772vcNaFiLFuUX0lm0aM0+mUyy4qxy/7/evRt6lFC/MpnkMvC+fSPOPTcp5POvfyXzYNKkXCGfuXMjbr45aa1bJ9seVBbysYIDADa9mTOT4jo33JD/2joief18zjnJG4yK67CJbVB6OOH/wp9BgwbFPypXs/2fLl26xFVXXRWLFy+OW265JT788MPo0KFDPPHEE7HLLrts/Ijhi9q0iTjwwKRFJKsuX345F2I+8UT+u0KrViUh5zPPRFxxRXJf7975l5T37m0VE1C/Zs/OBTSPPlpzIZ2Sklwhna99zRsqNG3bbRdx5plJmz8/CfDHj08C/crqo8uWJZeV33NPsmpz//1zQX6PHoUcPQA0PS+8kFwZ8Y9/5N5MjEheGx9zTFIJfPDgwo2Pzc4GhZavv/56ZDKZOP3002vt8+Mf/zhuueWWyGQy8eMf/1hgScNp3jxijz2S9qMfJftivv9+/r6YX9yH4623knbzzcntrbfODzH32CPZbxNgfbz5Zu5S2KeeqrmQTocO+YV02rZt2DFCGmyxRcSJJyZtxYpcIZ97780v5PPYY0k766zkd3Pllgm77urNRgDYENlsxMMPJ/tVPvpo/rGWLZNt2kaNith++8KMj83aBoWW8+fPj4iI7dfyTdu72mVsX/nKVzbk00D9yGQievVK2ne+k9z3+ee5fTGffDLi2WfzVz199lluZUdEskfHoEG5EHPQoKTyOUB1FRXJz5N7700Cl9deq7nfttvmF9LxpgjktGyZXAp+xBERf/pTEvhXFvJ5551cvxdeSNr55ye/46sX8rEVEQCs3cqVEX//exJWvvJK/rGOHZMrIU4/PVnQAwWyQX/RlZeXRyaTiXbt2tXap221lSJdunTZkE9TqzFjxsTdd98dr7/+erRq1Sr22Wef+P3vfx877rjjWh935513xq9+9at4//33o3fv3vH73/8+Dj/88HodG43EVlsle3AceWRye8WKpGJv5UrMJ5+MWLAg13/58tzqjohk747ddsuFmPvum1TzBTY/K1cmPxsqV4V9cZPySn375kKVPfe0Kgzqolmz5HfsvvtG/O//JldKVK5enj491++995ItX664InmhVbl6+ZBDkn0xAYDEwoVJcZ0rr1yzAOT22yfFdUaO9PuTVGiQt6Ez9fzC7PHHH48zzjgj9t5771i1alX88pe/jKFDh8Z///vfaFNLVeipU6fGiBEjYsyYMfG1r30txo0bF8OHD4/nn38++vbtW6/joxFq2TIXQEYkq6X++9/8S8pnzsz1r6jIrfC4+urkvl698i8p32knGxNDU7VoUcSDDybByQMP1F5IZ999c/vvuaQGNk4mE7HLLkn7f/8v4oMP8gv5rFqV9Js7N2Ls2KS1apUr5PO1rynkA8Dm64MPkuI6f/lLUqy2usGDk+I6Rx2VvGEIKdEor5156KGH8m6PHTs2OnXqFM8991zsv//+NT7myiuvjEMPPTTOOeeciIi46KKLYuLEiXHNNdfEn/70p00+ZhqZoqJchdMf/CC574MPkhWYlSHmSy/l70/33ntJu+225PaWWyaXqFWGmP37J0U2gMbpk0/yC+mUl6/Zp6QkYujQJKQ88siITp0afJiw2ejePeKMM5I2f37yBsL48ckbCpWFfJYvz63MbNYs4itfyb2R0LNnwYYOAA3mxReTS8Bvvz33Bl9E8mbg0UcnxXX23bdw44O12KjQ8pRTTql1ZeP69MtkMvHoFzd8XQ8LFy6MiIgtt9yy1j7Tpk2LUaNG5d03bNiwGD9+fI39y8rKoqysrOr2ov9bRVNeXh7lNb1QbQIqz6upnt9G69Il4hvfSFpExMKFkXnqqcg8+WRkpk6NzDPPRGbFilz/efMi7rsvaRGRLSmJbP/+kd1nn8juu29kBw9OCg/A/zEHU+iNN6LoX/+KzL/+FUVPP11jl+wWW0T28MOj4qijInvIIfmFdPxfNjrmYSPVtm3EN7+ZtBUrIvPYY8nc/fe/I/Ppp0mf1auTFZmTJkWcfXZkd9stKo46KiqOOiqiXz9bNqSEOQiFZQ42EdlsZB55JIquuCKKHnkk/1BJSVSMHBkVP/5xROUWe/6/U6Wpz8P1Oa9MNltTKdO1KyoqqrdLvrPZbGQymVi9evUGPb6ioiKOOuqoWLBgQUyZMqXWfi1atIhbbrklRowYUXXfH//4x7jwwgtjzpw5a/S/4IIL4sILL1zj/nHjxkVreztQg0x5eXR4773Y8r//ja1eey22fO21KKnpktFqFm23XXzep0/M23nn+HznnWP51lt70QSFVFERW7z9dnR5+uno+vTT0e7DD2vstqxjx5g9cGB8MnBgfN6nT2QV/YB0Wr06tnjrrej61FPR9emno20te84u7dQpZg8YEJ8MHBjz+vSJrEvjAGiEMqtWRbcpU2L78eOj/fvv5x0ra9cu3jv88HjvsMNiZYcOBRkfREQsW7Ysjj/++Fi4cGGUrqPA8QaHlvVpY0LLH/7wh/Hggw/GlClTYtttt6213/qGljWttOzevXvMnTt3nV/Uxqq8vDwmTpwYhxxySBSrZLvxstmIN9+MzNSpUVS5GvPtt9f+kG23rVqJWbHPPsnl6V44bTbMwQIpK4vMpEnJasr77otMLaFGtm/fZFXW0UdH7L67NxiaKPOwCctmI157Lbd6unohn+rdttwyskcckVs97c3qBmUOQmGZg43UokVRdOONUXT11ZH5wpvu2S99KSrOPjsqFNdpNJr6PFy0aFF07NixTqHlBi0Nqaio2KCB1bczzzwz7rvvvpg8efJaA8uIpIL5F8PJOXPm1FrZvKSkJEpq2H+wuLi4SX7TVLc5nGODqdwX83vfS27Pnp2/L+YLLySXq/2fzIcfRuYf/4j4xz+iWUREaWluX8x9940YMMAvms2AOdgAFi7ML6Tzxc3II5K9basV0sl8+cvRLCK8jbB5MA+bqN12S9qvfhXx4Ye5fWofe6xqn6/MvHmRue22KLrttqSQz9ChuUI+HTsWdPibE3MQCsscbCQ+/DDiqquSauBfvMpvwICIc86JzDHHRLNmzfwN2wg11Xm4PufUKK9ny2az8aMf/SjuueeemDRpUvTq1Wudjxk8eHA8+uijcfbZZ1fdN3HixBg8ePAmHCl8wRf3xVyyJOLpp3Mh5rRpueIBEckvnoceSlpERPPmEXvtlSvus+++EVtv3fDnAY3Rxx/nAor//KfmvXtatswV0vna1xTSgaZs220jTj89aQsW5BfyWbIk6bN8ecS99yatqCi/kE8d/v4EgE3ipZciLrssYty4/OI6EUkF8J/9LHm96MogGrlGGVqeccYZMW7cuLj33nujXbt2MXv27IiIaN++fbRq1SoiIkaOHBndunWLMWPGRETEWWedFQcccEBcdtllccQRR8Ttt98e06dPj+uvv75g5wHRtm3EwQcnLSL5hfPii7kQc8qUZHVmpVWrkpDz6aeTX1IRyebJlSHmfvtFfPnLfjlBpddfz1UOrqWQTmyxRVLpe/jwJLCsQ4E5oInp0CHi+OOTtmJF8sZGZVhZeaVORUXE448n7Sc/SVZsDh+etN1287sXgE0rm01+P11yScTDD+cfa9EiYuTIiJ/+NGKnnQozPtgEGmVoed1110VExJAhQ/Luv/nmm+Pkk0+OiIhZs2bl7b25zz77xLhx4+Lcc8+NX/7yl9G7d+8YP3589O3bt6GGDetWuZJyr70izjor+cX07rv5Iebrr+c/5o03knbjjcntzp3zQ8zdd0+eFzYHFRURzzyTCyrfeKPmftttlwsb9tsvogledgFsoJYtIw4/PGnXXZe84TF+fMQ990S89Vau34svJu3CCyN69MitwPzKV/zeBaD+lJdH3HlnxKWXJtuLVbfFFskVA2eemVzVB03MBv1F9etf/7q+xxHnnXdenfvWpXbQpEmT1rjvuOOOi+OOO259hgWFlckkKye//OWIk05K7ps7N2Lq1FyIOX16/mWuc+ZE/POfSYtIVo0NGpQLMQcNSlZ4QlNRVpa86zx+fHL5d/XVydX165cLKhXSAeqiqChi8OCkXXxx/urtZ57J9Zs5M+LKK5O25ZbJ9hJWbwOwMRYvjrjhhog//CFi1qz8Yz17RowaFfE//+P3DE3aBoWWF1xwQWTq+cXe+oSWsFnr2DHZp+Soo5Lby5dHPPtsLsR88sn8TZiXLo149NGkRSTVyHffPX9fzK5dG/w0YKMsXJi//1xthXS+8pVk5dPRR0d86UsNPkygCclkInbeOWmjR0d89FH+PrmVe4rNmxdx661Jq9wnt7KQj32oAViXjz9Oiuv86U/J37zV9e8fcc45EV//ulX9bBY2+Lu8Lqsd66q+A1DYrLRqFbH//kmLSKqRv/pqLsR84omkqlyl1asjnnsuaVdemdz35S/nAsz99kv2QTEvSZvqAcFjj9VeSGfYMJV+gU2vW7eIH/4waQsWJG+gjB+fvKFSWchnxYrk59a//pW8kbLffrnLyL2RAkB1r76a1C3461/X/Dv3iCOSsHL//b1OY7OyQaHlY489Vt/jAOpLs2bJZbD9+iX7m0QklxNU3xfzlVeS/TIrvfNO0m65Jbm91Va5AHO//ZI9Nlu0aPhzYfOWzdZ+KWZ1W26ZK6RzyCEukQEaXocOESNGJK22LSsqKiImT07aqFG2rAAg+Xt30qSkuM6DD+Yfa9Ei4sQTk+I6ffoUZHhQaBsUWh5wwAH1PQ5gU9puu1xV1IiI+fMjpk1LLiWfMiUpMlBWluv/+ee5lSERyeq1AQNyIebgwckLNKhvFRW5ohfjx0e8+WbN/SqLXlQW0nF5DJAWJSURhx2WtOuuyxUHu+ee/J9pL72UtF//Or84mEI+AE3fqlURd92VFNd57rn8Yx06JKv4f/Qj23ix2fMXEWyOttgiVxk1Igksn38+fzXmvHm5/itW5FaHRCSrQXbdNb9KeffuDX8eNA0rVuSvSpozp+Z+u+2We1G/225WJQHpV1SUFMAbNGjNQj5PP53rN2tWsn/ZVVclv6MrC/kMG2b1OEBTsmRJxI03RlxxRVLErboePSJ+8pOkuE67doUZH6SM0BJIVoVUVkc955xktdsbb+SHmO++m+ufzeZWiPzxj8l9222XH2LuskvyYg1qsmBBfiGdyv3fqqsspFO5/1uvXg08SIB6ttNOEb/4RdI+/ji/kE/l/mXz50fcdlvSWrZMtr0YPjzZBkMhH4DGafbsiKuvTlbgz5+ff2zPPZPXYMcea6U9fIEZAaypqChXIfW005L7Pv44dzn5lCkRM2Yk4WalWbMixo1LWkRE+/YR++yTCzH33jspGsTm66OPIu69N1dIp7LSbnWtWuUK6RxxhEI6QNO1zTYRP/hB0hYuzC/ks3hx0mfFioh//ztpRUXJftOVK84V8gFIv9deS4rr3HZbxMqV+ccOOywJK4cMcQUR1EJoCdTNNttEHHdc0iKSF1RPPZULMZ96KmLZslz/yhdglRtKFxdH9O+fCzH33Tcp+EPTlc0mf6hVXgr57LM199tqq/xCOq1bN+AgAVKgffuIb387aWVlSVGG8eOTN3o++STpU1ER8cQTSfvpT5NtWioDzD328IIXIC2y2WRbrUsvjbjvvvxjxcURJ5yQ/Bzv27cw44NGRGgJbJh27ZKA6ZBDktvl5cnqy+qXlH/6aa5/eXlS/GfatKQ6XkSykrP6JeW9ennR1ditXp1fSOett2ru17Nn7sX2vvu6FAagUklJsuJ82LCIa69N3vCp/Jn6+uu5fi+/nLSLLkr2la5eyKe4uDBjB9icrVoVcffdSVj5xTfr27dPVtb/6EcR3boVZnzQCHmVCNSP4uLkEvC99042kM5mI95+O/+S8jfeyH/Ma68l7S9/SW537ZofYvbrJ8xqDFasiHj00WRF0NoK6ey+e+5Fdb9+AmqAdSkqihg4MGljxiShZeU2G089lev3wQfJXmlXX50U8jniiFwhn7ZtCzV6gM3D0qURN98ccfnlEe+9l3+se/eIs8+OOPXUiNLSggwPGjNpALBpZDIRvXsn7eSTk/s+/TRi6tRciPncc/n7Gn7yScSddyYtInmhNXhwLsQcOFAV1bSYPz+/kM7SpWv2KSqK2H//XCGdnj0beJAATcxOOyXt//v/kt+ZlYV8Hn00v5DPX/+atJKS/EI+nToVcvQATcucORHXXJMUJp03L//Y7rtH/OxnEd/8ptXvsBGElkDD6dQpt9IuItkD85lnciHm1Km54gMRSUXpiROTFhHRrFlSXa/6vpidOzf0WWy+Pvwwt8Jn0qTaC+kcemiukI59SwE2ja5dI77//aQtWpRfyGfRoqRPWVmyn9p99yVvJlYW8jn66Ijtty/k6AEarzfeSIrr3Hpr8nO2umHDkrDy4INdVQT1QGgJFE7r1km1vCFDkturVyf7c1WGmE88kVQtr7R6dbI/zLPPRlxxRXLf9tvnX1K+ww7+QKgv2WzEf/+b20tt+vSa+221VcRRRyUvhL/6VYV0ABpaaWnEt76VtJUrc4V8xo/PFfLJZnO/X3/2s6QAROUbiXvu6XcnwNpks8m2V5dckqxyr65584gRI5Kfrf36FWZ80EQJLYH0aNYsuZRi990jzjwz+eNg5szci6wnn4x45ZX8x7z9dtLGjk1ub711spKkMsTcY4+IFi0a+EQasdWrk33SKl/svv12zf169cq92N1nH3uPAqRFixYRQ4cm7ZprkjecKn+mv/Zart8rryTtN7+J2Hbb3M/0/fd3KSNApdWrk5+fl16av5dwRFKY9PvfjzjrrOTnKFDvvMoE0iuTSfZB7Nkz4sQTk/vmzUsqkFcGmc88k6wqqfTZZ7kXZxHJ5coDB+ZCzMGDbYL9RZWFdMaPT945rl71vbo99si9qN11V6tyANKuqChiwICk/e53ySWNldt8TJuW6/fhh0nAec01ER065Ar5HHqoQj7A5mnZsmRRxOWXR7zzTv6xbt2S4jqnnZZUBQc2GaEl0LhsuWXyYuqII5LbK1YkBX2qr8acPz/Xf/ny5DK5SZOS20VFyWUb1ffF3BzfGZ0/P+L++5MXrg89VHMhnWbN8gvp9OjR0KMEoD7tuGPEz3+etE8+ifj3v3OFfCrfAFywIOJvf0taSUmy7UdlIR/7SANN3WefJW/gXHttxOef5x/bddeIc85JtuJwJRc0CKEl0Li1bJkEj/vum1RTrahILn+rDDGnTIl4//1c/4qKiBkzknbNNcl9PXvmX1Lep08SbjY1H3yQW2Hz+OM1F9Jp3TpZWXP00QrpADRlXbtGfO97SVu0KHkDa/z45A2t6oV87r8/aZlMsh1I5Yp7hXyApuStt5LiOrfckiyKqO6rX03CykMOcaURNDChJdC0FBVF7LJL0r7//eS+Dz9MVmBWhpgvvpjsl1np/feT9re/Jbc7dMgPMfv3T8LRxiabjXj11dzl8s89V3O/jh3zC+m0atWAgwSg4EpLI775zaStXJm8sVX5u6OyIF5lEYonn0xevO+ySy7A3GsvL+SBxmnq1GS/yvHj818fNGsW8e1vJ8V1dt+9UKODzZ7QEmj6tt02V1U1ImLhwmQj7coQ8+mnk8vIKy1YkFtZEpFc/rH33rkQc599ksvU02j16mSfssoXm1/cg6fSl76UX0inWbOGGyMA6dWiRbKa6JBDIq6+OnnDq/J3yn//m+v36qtJ++1vk/3djj46+Z1ywAEumwTSbfXqZB/3Sy9NQsvq2rZNVqCfdVbEdtsVZnxAFaElsPlp3z5i2LCkRSSrSl54Ibcn5pQpyX42lVauzK0u+f3vk/t22SUXYu63X7LfY6FWmSxfnl9Ip/rYq9tzz1xQ2bevVTEArF1RUfKm3d57J+Hkm2/mF/KpXJX00UcRf/xj0tq3zy/k065dIc8AIGf58ohbb00uA3/rrfxj22yTBJXf+15y1RWQCkJLgBYtkgrjAwdG/PSnyYuwt97K3xfzi3/YVK4w+fOfk9vduuWHmLvuumlXL86blyuk8/DDtRfSOeCAXCEd7xYDsDF22CG5NPyccyJmz84V8nnkkVwhn4ULI8aNS1qLFrlCPkcdpZAPUBhz5yaFda65Jvm4ur59k0vAR4ywShxSSGgJ8EWZTPLCbIcdIv7nf5L75szJ3xfz+eeTS0sqffRRxB13JC0iWVmyzz65EHPAgKTIzcaYNSu/kE71z1+pdeuIww7LFdJJ62XsADRuXbpEnHZa0hYvzi/ks3Bh0mflyogHHkja978fMXhwbsV/794FHDywWXj77Ygrroi4+eb8raAiIg46KAkrDz3U1UeQYkJLgLro3Dni619PWkSysvHpp3Mh5rRpEUuW5PovXpysgHz44eR28+bJ5dmVIea++0Z06rT2z5nNRrzySm4vseefr7nf1lvnCukcfLBCOgA0rHbtIo47LmmVhXwq32T76KOkTzab7B03dWrEz38e0adPfiGfoqICngDQpDz9dMQll0TcffeaxXW++c3kyqq99irc+IA6E1oCbIg2bZJ3aA86KLm9alXESy/lX1L+ySe5/qtWRTzzTNIuvzy5b4cd1twXc/XqyEyZEnHffcmLvXffrfnzf+lLEccck7zYGzxYIR0A0mFthXxefTXX77//Tdrvfpcr5HP00cmbegDrq6Ii+fv5kkuSv8Ora9MmWRV+1lkRPXsWZHjAhhFaAtSHypWUe+4Z8eMfJ+/qvv9+fohZvepqRFLQ4M03I266KXmKTp3i0BUrovmiRTV/jr32yq1K2WUXl7IAkG6ZTET//kn7zW+S/aErV2BOnVpjIZ/mpaUxsHfvaPavf0V07Zpc6dClS/Jv5celpX4HAokVKyJuuy0prvPGG/nHunRJ/i7/wQ8ittiiMOMDNorQEmBTyGQievVK2ne+k9z3+efJi7TKEPPZZyPKy3MP+fTTKKn+HM2bRwwZklt90r17Q54BANSv3r2TPeR+9rNkr+jqhXzKyiIiIrNoUXR57rlkhWZtSkpqDjMrP65+W8AJTdPnn0dcd12yovvTT/OP7bxz8nPmhBOSnxdAoyW0BGgoW20VceSRSYtINgSfPr0qxMw++WSsLiuLosMPj6Kvfz3i8MO9KwxA09S5c8Sppyatch/oe++N7H33RWbBgrU/tqwsKU43a9a6P09JSe3h5hc/btdOwAlp9+67SXGdm26KWLYs/9gBB0Scc05SlNI+udAkCC0BCqVVq4ivfCVpEbFq5cp44MEH4/DDD4+i4uICDw4AGki7dhHHHhtx7LGxasWKePT22+PgXXaJ4nnzkhWZs2cn/37x47lz84ts1KSsLGLmzKStS8uWa1+1Wf1jASc0rGefTfar/Oc/k/0rKxUVJT8/fvaziL33Ltz4gE1CaAmQFl78ALC5a9YsyrbYImL33SPW9QbeqlURn31Wc6D5xY8//3zdAeeKFesXcNZ1BWfbtn7Hw4aoqIh44IEkrJw8Of9Y69YR3/1uxE9+kmzHBDRJQksAAKDxad48KdbTteu6+1YGnLUFm9Vvz5277udbsSIpuPf+++vu26pV3VdwCjghWSH9178mxXVeey3/WOfOET/6UcQPfxix5ZaFGR/QYISWAABA07Y+AWd5+fqt4FyX5cvXL+BcnxWc0JTMn58rrjN7dv6xHXdMLgE/8cRkpTOwWRBaAgAAVCoujthmm6StS/WAc23h5pw5dQ8433svaevSuvX6reCEtHr//Yg//CHihhsili7NP/aVryTFdY44QnEd2AwJLQEAADbE+gacn3667hWcdQ04ly1bv4CzLis4BZw0pOeeS/arvPPONYvrfP3rycrKgQMLNz6g4ISWAAAAm1pxcUS3bklbl5Ur676Cc968dT/fsmUR776btHVp06Zul6d37pz0hfWRzUY8+GDEpZdGPPZY/rFWrSL+53+S4jpf/nJhxgekitASAAAgTVq0WP+Ac13hZl0DzqVL1y/grOsKTgHn5q2sLOLvf0/CyldfzT+29dZJcZ3TT4/YaqvCjA9IJaElAABAY7W+AWflJeq1VU+v/Hj+/HU/39KlEe+8k7R1adu27is4W7de9/PROCxYEPHnP0dceWXEJ5/kH9thh4if/jTiO99JVlkCfIHQEgAAYHPQokXEttsmbV0qA866rOCsS8C5ZEnS6hpw1nUFp4AznWbOTILKv/wl+X+vbt99k/0qjzpKcR1grYSWAAAA5FufgLOsrG5FhmbPTlbercuSJRFvv520dWnXru4rOK3m2/ReeCG5BPyOOyJWr87dn8lEHHNMElYOHly48QGNitASAACADVdSEtG9e9LWpTLgXFv19MrbdQk4Fy9OWl0Dzrqu4BRw1l02GzFhQlIJ/NFH84+1bBlx8skRo0ZF9O5dkOEBjZfQEgAAgIaxPgHnihV1X8G5cOG6n68y4HzrrXX3LS2t+wrOli3X/XxN0cqVEbffnqysfPnl/GMdO0aceWZSXGfrrQszPqDRE1oCAACQPi1bRmy3XdLWpXrAua59OOsScC5alLS6BpxrW7VZ/XZTCDgXLoy4/vpkz8qPPso/tv32yarKk06y3yiw0YSWAAAANG7rG3BWvxx9bUHn+gScb7657r7t29d9BWdJybqfryF98EESVF5/fbJitbpBgyLOOSfi6KMjmjUrzPiAJkdoCQAAwOajZcuIHj2Sti7VA851reBctGjdz7dwYdLqGnDWdQXnpgw4X3wxuQT89tsjVq3K3Z/JJBXAzzknqQgOUM+ElgAAAFCT9Qk4ly9fe5Gh6h+vT8D5xhvr7tuhQ91WcHbqVLeAM5uNmDgxKa4zcWL+sZKS5PLvUaMidtxx3c8FsIGElgAAALCxWrVav4BzXdXTKz/+4qXYNVmwIGl1DThrWbWZ2Wqr6P7YY9H8vPMiXnop/3FbbhlxxhlJgZ1Ondb9eQA2ktASAAAAGlKrVhE9eyZtXSoDzrqs4FyfgPP119c41Dwi9vzinV/6UrKq8uSTI9q0WffzA9QToSUAAACk1foEnMuW1a3A0OzZEUuWrP25BgxI9qs85hjFdYCCEFoCAABAU9C6dUSvXklbl8qAs1qYufrjj+OdV1+NL51+ejQ/8MCk2A5AgQgtAQAAYHNTQ8BZUV4erz3wQPT6ylcElkDBFRV6AAAAAAAA1QktAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASJVGGVpOnjw5jjzyyNhmm20ik8nE+PHj19p/0qRJkclk1mizZ89umAEDAAAAAHXWKEPLpUuXxm677RbXXnvtej3ujTfeiE8++aSqderUaRONEAAAAADYUM0LPYANcdhhh8Vhhx223o/r1KlTdOjQof4HBAAAAADUm0YZWm6o3XffPcrKyqJv375xwQUXxL777ltr37KysigrK6u6vWjRooiIKC8vj/Ly8k0+1kKoPK+men6QduYgFJ55CIVlDkJhmYNQeE19Hq7PeWWy2Wx2E45lk8tkMnHPPffE8OHDa+3zxhtvxKRJk6J///5RVlYWN9xwQ9x2223x9NNPx5577lnjYy644IK48MIL17h/3Lhx0bp16/oaPgAAAABsFpYtWxbHH398LFy4MEpLS9fad7MILWtywAEHxHbbbRe33XZbjcdrWmnZvXv3mDt37jq/qI1VeXl5TJw4MQ455JAoLi4u9HBgs2MOQuGZh1BY5iAUljkIhdfU5+GiRYuiY8eOdQotN6vLw6sbMGBATJkypdbjJSUlUVJSssb9xcXFTfKbprrN4RwhzcxBKDzzEArLHITCMgeh8JrqPFyfc2qU1cPrw4wZM6Jr166FHgYAAAAA8AWNcqXlkiVL4u233666/d5778WMGTNiyy23jO222y5Gjx4dH330Udx6660REfGHP/whevXqFbvsskusWLEibrjhhvjPf/4TEyZMKNQpAAAAAAC1aJSh5fTp0+PAAw+suj1q1KiIiDjppJNi7Nix8cknn8SsWbOqjq9cuTJ++tOfxkcffRStW7eOfv36xSOPPJL3HAAAAABAOjTK0HLIkCGxtvpBY8eOzbv985//PH7+859v4lEBAAAAAPVhs93TEgAAAABIJ6ElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqdIoQ8vJkyfHkUceGdtss01kMpkYP378Oh8zadKk2HPPPaOkpCS23377GDt27CYfJwAAAACw/hplaLl06dLYbbfd4tprr61T//feey+OOOKIOPDAA2PGjBlx9tlnx6mnnhoPP/zwJh4pAAAAALC+mhd6ABvisMMOi8MOO6zO/f/0pz9Fr1694rLLLouIiJ133jmmTJkSV1xxRQwbNmxTDRMAAAAA2ACNMrRcX9OmTYuvfvWrefcNGzYszj777FofU1ZWFmVlZVW3Fy1aFBER5eXlUV5evknGWWiV59VUzw/SzhyEwjMPobDMQSgscxAKr6nPw/U5r80itJw9e3Z07tw5777OnTvHokWLYvny5dGqVas1HjNmzJi48MIL17h/woQJ0bp160021jSYOHFioYcAmzVzEArPPITCMgehsMxBKLymOg+XLVtW576bRWi5IUaPHh2jRo2qur1o0aLo3r17DB06NEpLSws4sk2nvLw8Jk6cGIccckgUFxcXejiw2TEHofDMQygscxAKyxyEwmvq87DySua62CxCyy5dusScOXPy7pszZ06UlpbWuMoyIqKkpCRKSkrWuL+4uLhJftNUtzmcI6SZOQiFZx5CYZmDUFjmIBReU52H63NOjbJ6+PoaPHhwPProo3n3TZw4MQYPHlygEQEAAAAAtWmUoeWSJUtixowZMWPGjIiIeO+992LGjBkxa9asiEgu7R45cmRV/x/84Afx7rvvxs9//vN4/fXX449//GP84x//iJ/85CeFGD4AAAAAsBaNMrScPn167LHHHrHHHntERMSoUaNijz32iPPOOy8iIj755JOqADMiolevXnH//ffHxIkTY7fddovLLrssbrjhhhg2bFhBxg8AAAAA1K5R7mk5ZMiQyGaztR4fO3ZsjY954YUXNuGoAAAAAID60ChXWgIAAAAATZfQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFRp1KHltddeGz179oyWLVvGwIED45lnnqm179ixYyOTyeS1li1bNuBoAQAAAIC6aLSh5R133BGjRo2K888/P55//vnYbbfdYtiwYfHpp5/W+pjS0tL45JNPqtrMmTMbcMQAAAAAQF002tDy8ssvj9NOOy1OOeWU6NOnT/zpT3+K1q1bx0033VTrYzKZTHTp0qWqde7cuQFHDAAAAADURfNCD2BDrFy5Mp577rkYPXp01X1FRUXx1a9+NaZNm1br45YsWRI9evSIioqK2HPPPeN3v/td7LLLLjX2LSsri7KysqrbixYtioiI8vLyKC8vr6czSZfK82qq5wdpZw5C4ZmHUFjmIBSWOQiF19Tn4fqcVyabzWY34Vg2iY8//ji6desWU6dOjcGDB1fd//Of/zwef/zxePrpp9d4zLRp0+Ktt96Kfv36xcKFC+PSSy+NyZMnx6uvvhrbbrvtGv0vuOCCuPDCC9e4f9y4cdG6dev6PSEAAAAAaOKWLVsWxx9/fCxcuDBKS0vX2rdRrrTcEIMHD84LOPfZZ5/Yeeed489//nNcdNFFa/QfPXp0jBo1qur2okWLonv37jF06NB1flEbq/Ly8pg4cWIccsghUVxcXOjhwGbHHITCMw+hsMxBKCxzEAqvqc/DyiuZ66JRhpYdO3aMZs2axZw5c/LunzNnTnTp0qVOz1FcXBx77LFHvP322zUeLykpiZKSkhof1xS/aarbHM4R0swchMIzD6GwzEEoLHMQCq+pzsP1OadGWYinRYsWsddee8Wjjz5adV9FRUU8+uijeasp12b16tXx8ssvR9euXTfVMAEAAACADdAoV1pGRIwaNSpOOumk6N+/fwwYMCD+8Ic/xNKlS+OUU06JiIiRI0dGt27dYsyYMRER8etf/zoGDRoU22+/fSxYsCAuueSSmDlzZpx66qmFPA0AAAAA4AsabWj5rW99Kz777LM477zzYvbs2bH77rvHQw89FJ07d46IiFmzZkVRUW4h6fz58+O0006L2bNnxxZbbBF77bVXTJ06Nfr06VOoUwAAAAAAatBoQ8uIiDPPPDPOPPPMGo9NmjQp7/YVV1wRV1xxRQOMCgAAAADYGI1yT0sAAAAAoOkSWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFWElgAAAABAqggtAQAAAIBUEVoCAAAAAKkitAQAAAAAUkVoCQAAAACkitASAAAAAEgVoSUAAAAAkCpCSwAAAAAgVYSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0BAAAAABSRWgJAAAAAKSK0BIAAAAASBWhJQAAAACQKkJLAAAAACBVhJYAAAAAQKoILQEAAACAVBFaAgAAAACpIrQEAAAAAFJFaAkAAAAApIrQEgAAAABIFaElAAAAAJAqQksAAAAAIFUadWh57bXXRs+ePaNly5YxcODAeOaZZ9ba/84774yddtopWrZsGbvuums88MADDTRSAAAAAKCuGm1oeccdd8SoUaPi/PPPj+effz522223GDZsWHz66ac19p86dWqMGDEivvvd78YLL7wQw4cPj+HDh8crr7zSwCMHAAAAANam0YaWl19+eZx22mlxyimnRJ8+feJPf/pTtG7dOm666aYa+1955ZVx6KGHxjnnnBM777xzXHTRRbHnnnvGNddc08AjBwAAAADWpnmhB7AhVq5cGc8991yMHj266r6ioqL46le/GtOmTavxMdOmTYtRo0bl3Tds2LAYP358jf3LysqirKys6vbChQsjImLevHlRXl6+kWeQTuXl5bFs2bL4/PPPo7i4uNDDgc2OOQiFZx5CYZmDUFjmIBReU5+HixcvjoiIbDa7zr6NMrScO3durF69Ojp37px3f+fOneP111+v8TGzZ8+usf/s2bNr7D9mzJi48MIL17i/V69eGzhqAAAAAGDx4sXRvn37tfZplKFlQxg9enTeysyKioqYN29ebLXVVpHJZAo4sk1n0aJF0b179/jggw+itLS00MOBzY45CIVnHkJhmYNQWOYgFF5Tn4fZbDYWL14c22yzzTr7NsrQsmPHjtGsWbOYM2dO3v1z5syJLl261PiYLl26rFf/kpKSKCkpybuvQ4cOGz7oRqS0tLRJTgxoLMxBKDzzEArLHITCMgeh8JryPFzXCstKjbIQT4sWLWKvvfaKRx99tOq+ioqKePTRR2Pw4ME1Pmbw4MF5/SMiJk6cWGt/AAAAAKAwGuVKy4iIUaNGxUknnRT9+/ePAQMGxB/+8IdYunRpnHLKKRERMXLkyOjWrVuMGTMmIiLOOuusOOCAA+Kyyy6LI444Im6//faYPn16XH/99YU8DQAAAADgCxptaPmtb30rPvvsszjvvPNi9uzZsfvuu8dDDz1UVWxn1qxZUVSUW0i6zz77xLhx4+Lcc8+NX/7yl9G7d+8YP3589O3bt1CnkDolJSVx/vnnr3FZPNAwzEEoPPMQCsschMIyB6HwzMOcTLYuNcYBAAAAABpIo9zTEgAAAABouoSWAAAAAECqCC0BAAAAgFQRWgIAAAAAqSK0JCZPnhxHHnlkbLPNNpHJZGL8+PGFHhJsVsaMGRN77713tGvXLjp16hTDhw+PN954o9DDgs3GddddF/369YvS0tIoLS2NwYMHx4MPPljoYcFm6+KLL45MJhNnn312oYcCm40LLrggMplMXttpp50KPSzYrHz00Udx4oknxlZbbRWtWrWKXXfdNaZPn17oYRWU0JJYunRp7LbbbnHttdcWeiiwWXr88cfjjDPOiKeeeiomTpwY5eXlMXTo0Fi6dGmhh/b/t3f30Tnf9x/HX5dcuSFStwkhhMxBkaBhaLQE7YRjTMhKSGJzs46pOG2d2BSltU0ddVOKFl3RHiQZ3QnqLkHrLikWzKwVNhMyDSZpReL6/v7wy3dX5LpSLFxXdz0f5+Scb76fu/d1fb9/5LzzuQE8QkhIiH77298qJydH2dnZ6tOnjwYPHqxTp065OjTA4xw9elQrVqxQRESEq0MBPE779u2Vn59v/hw4cMDVIQEe49q1a4qKipK3t7e2bdum06dPa8GCBapXr56rQ3Mpq6sDgOvFxMQoJibG1WEAHmv79u0Vfl+7dq2CgoKUk5OjZ5991kVRAZ5j0KBBFX5/4403tHz5ch06dEjt27d3UVSA5ykqKlJ8fLxWrVqluXPnujocwONYrVY1btzY1WEAHul3v/udmjVrpjVr1pj3WrZs6cKI3AMzLQHAzdy4cUOSVL9+fRdHAnieO3fu6OOPP1ZxcbF69Ojh6nAAjzJx4kQNHDhQ/fr1c3UogEf629/+piZNmigsLEzx8fH6+9//7uqQAI+xdetWdenSRcOHD1dQUJA6d+6sVatWuTosl2OmJQC4EZvNpilTpigqKkodOnRwdTiAx8jNzVWPHj1069Yt1a5dW+np6WrXrp2rwwI8xscff6wvvvhCR48edXUogEfq1q2b1q5dqzZt2ig/P1+zZ8/WM888o5MnTyogIMDV4QH/886dO6fly5dr6tSpmj59uo4eParJkyfLx8dHiYmJrg7PZUhaAoAbmThxok6ePMkeQsBj1qZNGx0/flw3btzQ5s2blZiYqKysLBKXwGPwj3/8Qy+99JJ27twpPz8/V4cDeCT77cIiIiLUrVs3hYaGauPGjfr5z3/uwsgAz2Cz2dSlSxe9+eabkqTOnTvr5MmTevfddz06acnycABwE5MmTdKf/vQn7d27VyEhIa4OB/AoPj4+atWqlSIjIzVv3jx17NhRixYtcnVYgEfIyclRQUGBnnrqKVmtVlmtVmVlZWnx4sWyWq26c+eOq0MEPE7dunXVunVrffnll64OBfAIwcHBlf5Z/uSTT3r8Ng3MtAQAFzMMQ7/61a+Unp6uzMxMNlwG3IDNZlNJSYmrwwA8Qt++fZWbm1vh3pgxY9S2bVtNmzZNXl5eLooM8FxFRUX66quvNHr0aFeHAniEqKgo/fWvf61w7+zZswoNDXVRRO6BpCVUVFRU4T9oeXl5On78uOrXr6/mzZu7MDLAM0ycOFEbNmzQli1bFBAQoMuXL0uS6tSpo5o1a7o4OuB/X0pKimJiYtS8eXPdvHlTGzZsUGZmpnbs2OHq0ACPEBAQUGkfZ39/fzVo0ID9nYHH5OWXX9agQYMUGhqqS5cuaebMmfLy8tKIESNcHRrgEZKTk/X000/rzTffVFxcnI4cOaKVK1dq5cqVrg7NpUhaQtnZ2YqOjjZ/nzp1qiQpMTFRa9eudVFUgOdYvny5JKl3794V7q9Zs0ZJSUmPPyDAwxQUFCghIUH5+fmqU6eOIiIitGPHDj333HOuDg0AgMfi4sWLGjFihL7++msFBgaqZ8+eOnTokAIDA10dGuARunbtqvT0dKWkpOj1119Xy5Yt9fbbbys+Pt7VobmUxTAMw9VBAAAAAAAAAEA5DuIBAAAAAAAA4FZIWgIAAAAAAABwKyQtAQAAAAAAALgVkpYAAAAAAAAA3ApJSwAAAAAAAABuhaQlAAAAAAAAALdC0hIAAAAAAACAWyFpCQAAAAAAAMCtkLQEAAAAvodatGghi8WipKQkV4cCAABQ7UhaAgAAPKAJEybIYrHIYrFoz549D9T2008/Ndu+9NJLjyhCAAAA4PuNpCUAAMADSkhIMK/XrVv3QG0//PBDh/24SmZmpplEzczMdHU4AAAAgCSSlgAAAA8sKipKP/jBDyRJqamp+vbbb++rXXFxsdLT0yVJ7du3V2Rk5COLEQAAAPg+I2kJAADwEEaPHi1J+ve//60tW7bcV5u0tDQVFxdXaA8AAACgMpKWAAAAD2H06NGyWCyS7n+JePnS8Bo1amjUqFGPLDYAAADg+46kJQAAwEMICwtTVFSUJGnHjh0qKCiosv6lS5e0e/duSVKfPn3UtGnTSnX++Mc/avjw4WrevLn8/PxUt25ddenSRbNnz9a1a9fuK66MjAyNGjVKYWFh8vf3l5+fn1q2bKnY2FitXbtW33zzjSTp/Pnzslgsio6ONttGR0eb+1uW/6xdu7bSGLdv39ayZcsUHR2twMBA+fj4qHHjxhowYIDWrVsnm83mNL6kpCRZLBa1aNFCkpSfn69p06apffv2CggIeOC9NR3tyblx40b17dtXgYGBqlmzptq0aaNXX31VhYWFTvvp3bu3LBaLevfuXeV4s2bNMsdzpLxs1qxZkqS9e/dqyJAhatKkiWrWrKknn3xSc+bMMWfclsvIyNCAAQPMeu3atdO8efN0+/bt+/4ujh49qhEjRqhZs2by8/NTs2bNNGbMGJ05c+a+2n/55ZdKTk5WeHi46tSpo5o1ayosLExJSUnKzs522u7eZ2Cz2bR69WpFR0erUaNGqlGjBiecAwCAB2cAAADgoaxcudKQZEgyFi1aVGXd+fPnm3X/8Ic/VCgrLCw0+vTpY5Y7+gkKCjIOHjzotP+rV68affv2rbIPScaaNWsMwzCMvLy876xrX79cXl6e0bZt2yrb9OzZ0/j6668dxpmYmGhIMkJDQ42DBw8aDRs2rNR+79693/ndl9u7d6/Zbvfu3caoUaOcxtWqVSsjPz/fYT+9evUyJBm9evWqcryZM2ea/TlSXjZz5kxj3rx5hsVicRjL008/bRQVFRk2m82YPHmy05j79+9vlJWVORwrNDTUkGQkJiYa77//vmG1Wh324evra2zcuLHKzzV//nzD29vbaRwWi8WYMWOGw7b2z2Dbtm1Gv379KrVPTEyscnwAAIB7MdMSAADgIcXFxcnPz09SxVPBHSkvr127toYOHWreLykpUb9+/bRnzx55eXlp9OjR+uijj3To0CHt379fb7zxhho0aKCCggINGDBAFy5cqNT3N998o+joaHMmZ2RkpFasWKHPPvtM2dnZSk9PV3Jyspo0aWK2adq0qXJzc7V69Wrz3urVq5Wbm1vhZ8iQIWZ5UVGR+vbta87cGzJkiLZu3ars7Gxt2rRJvXr1kiQdOHBAgwYN0p07d5x+H0VFRYqNjdWtW7f061//WpmZmTpy5Ijef/99BQcHV/ldOjNjxgytW7dOQ4YMUVpamnJycpSRkaGBAwdK+s9Mwsdh27ZtSklJUffu3bVhwwZlZ2dr+/btiomJkSR9/vnnmjdvnhYuXKjFixcrJiZGqampysnJ0ZYtW9S9e3dJ0vbt27Vq1aoqxzp+/Lh+8YtfKCgoSEuWLNHhw4eVlZWladOmydfXVyUlJYqPj3c6W3L+/Pl65ZVXVFpaqoiICC1fvly7du1Sdna21q9frx49esgwDM2ZM0eLFy+uMpZp06Zp165d+vGPf1zhGZR/bgAAgPvm6qwpAADA91lcXJw5m+zMmTMO65w4ccKsk5CQUKFs+vTphiSjbt26RnZ2tsP258+fN4KDgw1JxsiRIyuVJycnm/1PnDjRsNlsDvspKSkxLl++XOGe/Sy575rh+PLLL5t1f/Ob31Qqt9lsRnx8vFln2bJlleqUz7SUZNSuXds4fvx4lWN+F/v4JRlz5851GNfzzz9vSDKsVqtRUFBQqU51z7SUZMTGxlaaJVlWVmZ0797dkGQEBAQYfn5+xpQpUyr1U1xcbM6kjIiIcDhWebn+f+aqo1mke/bsMWdgdu3atVL5qVOnzBmWM2fOdPju3Llzx5zBWrt2baOwsLBC+b3PwNG7AQAA8KCYaQkAAPBfSEhIMK+dzba0v29fv6ioSO+8844kac6cOYqMjHTYPjQ0VDNmzJAkbdq0qcJ+iNevX9eKFSsk3Z1huWjRIqf7Lfr4+KhRo0b387EqKSkp0XvvvSdJat++vblnoz2LxaJly5apQYMGkqSlS5dW2eerr76qjh07PlQ8jkRGRmr69OkO45o6daokqaysTAcPHqy2MZ2pVauWVq5cKS8vrwr3vby8NH78eEnSzZs3FRgYqN///vcO2ycmJkqS/vznP+vGjRtVjrdgwQI1bty40v3o6GiNGzdO0t09L++dbblgwQKVlpaqS5cumjlzpsN3p0aNGlqyZIl8fX1VVFSkzZs3O42jdevWDt8NAACAB0XSEgAA4L/wox/9yEwErl+/XoZhVCi32WzasGGDJCkkJKTCwTdZWVlmMmrYsGFVjvPss89KkkpLS5WTk2Pe37Nnj3m4zuTJkyslyapLTk6Orl+/LunuYTrOxnniiScUFxcnSTp9+rTy8/Od9hkfH1+tMY4cOdJpwtY+IXzu3LlqHdeR5557TvXr13dYZp+oHTp0qLy9vb+zXl5entOx6tWrp8GDBzst/9nPfmZe79q1q0LZJ598IkmKjY11+t1JUt26dRUeHi5JVSZ9f/rTnz6ydxAAAHgWkpYAAAD/BavVqpEjR0q6eyL3gQMHKpTv3r1bly5dknQ3SVejxn/+/LKf9RYcHFzp5G77nw4dOph1L1++bF4fO3bMvH7mmWeq98PZOXnypHndrVu3Kuval9u3s1e7dm2FhYVVT3D/r23btk7L7BOIN2/erNZxHWndurXTsrp16z5wvapi7ty5s6xWq9PyTp06ycfHR5KUm5tr3r9w4YL+9a9/SZJSUlKqfP8sFov5vtq/f/eKiIhwWgYAAPAgSFoCAAD8l6paIu5sabgkFRQUPNR45TMrJenq1avm9cMeYHM/CgsLzeugoKAq69ovU7ZvZ88+IVddatWq5bTMPllc1QFBjzuW6oj5u56H1Wo1k7b2z6M63r971atX76H6BAAAuJfzf8kCAADgvnTq1Enh4eHKzc3Vpk2bzP3/iouLlZaWJunu8uR27dpVaGefiPriiy+cLhO+V0hISPUF/xCqWkZ8v1hCXH0e9nnYv3+vvfaahg8ffl/t/P39nZbxXAEAQHUhaQkAAFANEhIS9Morr+j69ev65JNPNGzYMKWnp5uH5tw7y1KSeWCNJAUGBj5UMrJhw4bmdX5+vlq2bPkQ0X83++XVV65cqXJZs/3yYWf7Orqb8lmNNputynr2hyC5iytXrlRZXlZWZs6wtH8e9u+ft7d3hS0IAAAAXI3l4QAAANUgPj7enGW2bt06Sf9ZGu7t7a0RI0ZUatO5c2fz+rPPPnuocZ966inzet++fQ/c/n5n6dkntA4fPlxl3SNHjjhs584CAgIkSdeuXauy3tmzZx9HOA/k+PHjKisrc1p+4sQJ3b59W1LF5xEWFqY6depIevj3DwAA4FEhaQkAAFANgoOD1a9fP0lSRkaGTp48qd27d0uS+vfvr8DAwEpt+vXrZ+5puHjx4konj9+P6Ohoc7nukiVLHni/Rj8/P/O6pKTEab3IyEhzH8oPPvjA6YzEmzdvauPGjZKkdu3aPdJ9NqtT+QzVs2fPOj305urVq9q5c+fjDOu+FBYWmqeAO7J69Wrzuvwdle4u5R4wYIAk6dNPP9Vf/vKXRxckAADAAyJpCQAAUE3Kl4CXlpbqhRdeMBOIjpaGS3cPo5k0aZIk6fPPP1dycnKVy5OvXLmi9957r1IfEyZMkCTl5ORoypQpTpOfpaWllQ5fsU8qfvXVV07H9vX11dixYyXdPRF8zpw5leoYhqFJkyaZhwOVf7bvg169ekmSbt++rSVLllQqLy0t1dixY/Xtt98+7tDuy9SpUx0uE8/KytLKlSsl3U08d+3atUJ5SkqKvLy8ZLPZNGzYMF28eNHpGHfu3NH69eurrAMAAFBd2NMSAACgmvzkJz9RQECAbt68qVOnTkm6e5ryoEGDnLZ5/fXXlZWVpcOHD2vRokXKzMzUuHHj1KlTJ/n7++vatWs6deqUdu3apW3btik8PNxMHpabM2eOdu7cqdzcXC1dulQHDx7UhAkTFB4eLh8fH128eFH79+/XRx99pLlz5yopKcls27x5c4WEhOjixYt66623FBISojZt2phL3Rs1amQunX7ttdeUlpamc+fOadasWcrNzdWYMWMUHBysvLw8LV26VJmZmZKkHj16aPz48dX47T5aAwcOVGhoqC5cuKAZM2bo6tWrGjp0qPz8/HTq1CktXrxYx44dU/fu3XXo0CFXh1tBx44ddfr0aUVGRiolJUU//OEPVVJSooyMDC1cuFBlZWWyWq165513KrUNDw/XW2+9peTkZJ0+fVodOnTQ+PHj1adPHzVq1Ei3bt3S+fPndfDgQW3evFn5+fnKzc11+WFQAADgfx9JSwAAgGpSs2ZNDRs2TGvWrDHvxcXFydfX12kbX19f7dy5U0lJSUpLS9OJEyeqnKH4xBNPVLpXq1Yt7dmzR7Gxsdq3b59ycnIeKGE4ffp0/fKXv1ReXp4GDx5coWzNmjVmkjMgIEC7d+9WTEyMzpw5o9TUVKWmplbqLyoqSlu3bv1enSTt4+OjdevWqX///iouLtbChQu1cOFCs9zLy0tvv/22CgsL3S5p2alTJ02aNEkvvviiw3fHx8dHH3zwgbp16+aw/ZQpU+Tv768pU6boxo0bmj9/vubPn++wro+PT4UtBQAAAB4VlocDAABUo8TExAq/O1sabi8gIECpqanav3+/xo4dqzZt2iggIEBWq1X169dX165dNXHiRGVkZDjdU7Fhw4bKyspSWlqahg0bppCQEPn6+srPz09hYWEaPny41q9f7/BAoBdffFGpqal6/vnnFRQUJKvV+f+1W7RooRMnTmjp0qXq1auXGjRoIG9vbzVq1Ej9+/fXhx9+qH379n1vTg2317NnT+Xk5Gj06NFq0qSJvL29FRwcbCaDJ0+e7OoQnRo7dqz279+vuLg4NWnSRD4+PmratKkSEhJ07NgxvfDCC1W2HzdunM6dO6fZs2crKipKDRs2lNVqlb+/v1q3bq3Y2Fi9++67+uc//6lWrVo9pk8FAAA8mcV4mB3fAQAAAAAAAOARYaYlAAAAAAAAALdC0hIAAAAAAACAWyFpCQAAAAAAAMCtkLQEAAAAAAAA4FZIWgIAAAAAAABwKyQtAQAAAAAAALgVkpYAAAAAAAAA3ApJSwAAAAAAAABuhaQlAAAAAAAAALdC0hIAAAAAAACAWyFpCQAAAAAAAMCtkLQEAAAAAAAA4FZIWgIAAAAAAABwKyQtAQAAAAAAALiV/wMIsY745eikNwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE1\n", + "lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)\n", + "lib.ire_plot('test', ire1, IREth1, 'AE1')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IQ5H5q4qetns", + "outputId": "ad3ea59b-a7ac-445c-f31d-1731c10cb9b3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n" + ] + } + ], + "source": [ + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, test_data, IREth2)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 900 + }, + "id": "2vQM2NaBe1-x", + "outputId": "afbbf6f7-942b-4d07-a5cf-50ea6f874336" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] [0.5] 0.47 \n", + "1 [1.] [0.73] 0.47 \n", + "2 [1.] [0.94] 0.47 \n", + "3 [1.] [0.6] 0.47 \n", + "4 [1.] [0.93] 0.47 \n", + "5 [1.] [0.71] 0.47 \n", + "Обнаружено 6.0 аномалий\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApd9JREFUeJzs3Xd0VNXXxvFnUggECAhI7whKkSJKVUCqqCgISJUmqBRBsIE/pSiKBRELgoo0GygioCCCCIJ0UKog0kLvNZSQMu8f+51MIi2BJHcm+X7WyjJzzp3JnpjLzOx7zt4ut9vtFgAAAAAAAAD4iACnAwAAAAAAAACA+EhaAgAAAAAAAPApJC0BAAAAAAAA+BSSlgAAAAAAAAB8CklLAAAAAAAAAD6FpCUAAAAAAAAAn0LSEgAAAAAAAIBPIWkJAAAAAAAAwKeQtAQAAAAAAADgU0haAgAAJKPNmzerR48eKlOmjLJmzSqXyxX3tWvXLqfDAwAAAPwCSUsAAHDD6tSpE5eYGzx48BWPi5/A++9XYGCgsmfPrpIlS6ply5YaO3asIiIiriuGpH516tTpxn8JkmbOnKlKlSpp9OjR2rx5c5LiB9K7l19+OcF52b179yQ/Rkr9O3Dw4EF98cUXevzxx3XnnXcqZ86cCg4OVvbs2XXbbbepY8eO+vHHHxUbG3sDvwEAABAfSUsAAOATYmNjderUKW3btk1Tp05Vt27dVKxYMf3www9Oh5YoERER6tSpkyIjIyVJ+fLlU8uWLdWjRw/17NlTPXv2VFhYmMNRXr/BgwcnKjHtDzp16hT3XCZMmOB0OKli165dcc+5aNGiTodzCbfbrS+++CLB2JQpU+LOJ6fs3r1bdevWVYECBdShQweNGzdOa9as0fHjxxUdHa1Tp07pn3/+0aRJk/TQQw/pjjvu0IYNGxyNGQCAtCLI6QAAAED61LRpUxUoUCDudmxsrI4ePaply5Zp7969kqSjR4+qRYsWmjp1qpo1a5box77rrrtUpUqVRB9frVq1xAd+BT/99JNOnDghSSpbtqxWrVqlTJky3fDjAunBggULtHv37gRjJ06c0MyZM9WyZcvreszk+Hdg//79WrBgQYKxIkWKqGLFisqdO7fOnj2rVatW6d9//5UkrVu3TjVr1tT8+fN11113XVfcAADAkLQEAACO6NOnj+rUqXPJeGxsrCZOnKju3bsrMjJSsbGx6t69uxo1aqTQ0NBEPfb999+f6qsB//zzz7jv27RpQ8ISSIKJEyfGfZ8pUyadP38+bvx6k5bJ+e9A/vz51aVLF3Xs2FG33HLLJfMzZsxQ165ddfToUZ05c0YtW7bU5s2b+XcAAIAbwPZwAADgUwICAtS5c2e9/fbbcWOHDh3S9OnTnQsqETyrLCXbGg4gcSIiIvT999/H3R4xYkTc97/88osOHTrkRFiSpLCwMI0YMULbt2/Xa6+9dtmEpSQ9/PDDmj17tgIDAyVJ4eHhmjRpUmqGCgBAmkPSEgAA+KQnn3xSGTNmjLu9aNEiB6O5tqioqLjvAwJ4iwUk1vfff6+zZ89KkooVK6Ynn3xSFStWlCRFR0frq6++ciy2MmXKqG/fvgn+LbqSu+66S82bN4+7PWvWrJQMDQCANI931AAAwCeFhISodOnScbf379/vYDSXF785TfztrZ07d76kM/GVGr5ERETogw8+UKNGjVSwYEFlzJhRN910k8qVK6devXppxYoViYol/s/yWLdunfr06aNy5copR44ccrlcatq0aZKeo6cb85AhQ+LGhgwZkuTuy263Wz/88IM6duyoUqVKKVu2bMqYMaMKFSqkpk2bauLEiYqOjk5UTFu2bNELL7ygatWqKVeuXMqQIYMyZsyo3Llzq3LlyurcubMmTpyYYPWrJBUtWjRR/6+So9nQ9cZ4OVFRUfriiy/06KOPqnjx4sqaNasyZ86sYsWKqU2bNvrhhx/kdrsve98JEybI5XKpWLFicWPh4eFX7KDthPj/P9q3by+Xy6XHHnvssvO+rmbNmnHf79q1y7lAAABIA6hpCQAAfFb8enAXLlxwMJKU8dNPP6lbt246ePBggvHIyEidPHlSmzZt0qhRo9S2bVt99tlnia7pKVlCdejQoYqJiUnusJNs/fr16tixo9auXXvJ3N69e7V3717NmDFDw4YN07Rp01SmTJkrPtbVnteRI0d05MgR/fnnn5owYYLatWunL7/8MjmfSqIkZ4wLFy5U165dtX379kvmdu3apV27dmny5MmqVq2apk6dmqC5lT8IDw/XwoUL4263b99ektS2bVu98MILiomJ0fr167V27dq41Ze+LH7i1xfOPQAA/BlJSwAA4LPir67MkyePg5FcXpUqVdSzZ09J0vz587VlyxZJUr169XTbbbclODb+qlFJmjJlitq1axeX2AgMDNTdd9+tW265RREREVq8eHHc8//666+1c+dO/fbbb4napvrOO+/ErYwsUaKEqlSpotDQUO3atUvBwcFJeo7NmjVTuXLltHLlSq1atUrSlbsyX6778qJFi9SkSROdPn1akhQcHKy77rpLJUuWVHBwsHbt2qU//vhDFy5c0D///KMaNWpo2bJll/y+JOn9999PsOIzV65cqlatmvLlyyeXy6Xjx49ry5Yt2rx582UTRh07dtSxY8eu+f9KUpK6TidnjPF99913ateuXVzpgUyZMqlatWoqWrSoAgICtHXrVi1btkzR0dFavny5qlevrlWrViU4V0qXLq2ePXvqzJkzcTUWs2bNqg4dOlzX80tuX3zxRdwq0apVq6pUqVKSpLx586pBgwaaM2eOJFtt6Q9Jyw0bNsR9X6hQIQcjAQAgDXADAADcoNq1a7sluSW5Bw0adMXjPMdIci9YsOCqj/nPP/8kOP6jjz5KlhhSSseOHeN+/vjx46967LZt29xZsmSJO75KlSruf//9N8ExMTEx7nfffdcdEBAQd9zTTz99xceM/7sKCgpyZ8uWzf3DDz9cctyFCxeu5+m5Bw0alOTf74EDB9y5c+eOu1+HDh3c+/fvv+S4gwcPups1axZ33O233+6Ojo5OcExUVJQ7V65ccccMGzbMffHixcv+3GPHjrnHjRvnfuutty47n5T/V0mRnDFu3LjRnSlTJrckt8vlcj/33HPuEydOXHLc9u3b3XfffXfcz2zcuPFlH2/nzp1xxxQpUuR6n2KyK1my5BXP8a+++ipuLnfu3O6oqKhrPp6T/w6cOXPGfdNNN8X9/HfeeSdVfz4AAGkNKy0BAIDPiY6OVp8+feJuh4WFqXXr1om+/+zZs3X06NFEH//qq68qR44cSYrxRrz66quKiIiQJN1yyy2aO3eusmXLluCYgIAA9evXTy6XS/369ZMkjRo1Sn379k1Qn/ByYmNjNXPmTNWqVeuSuZCQkGR6Ftf2v//9T4cPH5Yk9e7dW++///5lj8uTJ4++++47NWzYUL/99ps2bNigqVOnqlWrVnHHbNmyJe7/ac2aNdW/f/8r/twcOXKoc+fOyfhMEic5Y+zdu7fOnz8vSXr33XfVt2/fyx5XvHhxzZkzR1WqVNHff/+tn3/+WStWrFDVqlVv4JmkjqVLl+rff/+VZCtw4///lqSmTZsqS5YsioiI0OHDh/Xzzz+rSZMmiX781P53YPDgwXE1SrNkyaKOHTte92MBAAC2hwMAAB8RGxuro0ePasmSJXrzzTe1cuVKSVJQUJDGjRunnDlzJvqxVq1aFbeVOTGee+65VEtanjx5UlOmTIm7/fbbb1+SsIyvT58++vzzz7Vp0ybFxsbq008/1bBhw676M1q0aHHZhGVqOnLkSFytxrx58+qtt9666vGBgYF6/fXXVb16dUnSV199lSCJ5dleLkk333xzCkR845IrxnXr1um3336TJFWqVEnPPPPMVY/PnDmzXnnlFbVp00aS/e78IWkZv8FO48aNlStXrgTzoaGhat68edxxEydOTFLSMjX/HZg/f75GjhwZd3vAgAE++3cKAIC/oHs4AABwxL333puga3FgYKDy5MmjRx55JC5heeutt2r69Olq3ry5w9Emn6VLlyoyMlKS1Tu8VhImICBAXbp0ibu9YMGCa/6MpKxKTSm//vqrLl68KEl65JFHElWLs2rVqsqcObMk6Y8//kgwF78+4IIFC7R169ZkjDZ5JFeMs2fPjvu+TZs2ierqXbdu3bjv//u780UXLlzQt99+G3c7frfw+OLX3vzxxx91/PjxFI8tqcLDw9W6deu4GqV33323XnzxRYejAgDA/7HSEgAA+KQ8efJo0qRJ19UQZdCgQRo8eHDyB5UM/vrrr7jvq1SpoqCga78dq1mzZoL7u93uqyayKleufGNBJoNly5bFfb9+/Xr16tUrSfc/ceKEzp49G5fELFSokKpVq6bly5fr1KlTqly5sh577DE1a9ZMNWvWTFJn9ZSSXDHG/90tWLBA4eHh17yP+/+b2UjSnj17kh58KpsxY4ZOnjwpScqePfsVk/d16tRRwYIFtXfvXl28eFGTJ09Wjx49EvUzUuPfgWPHjqlx48Zx29ALFiyob775RoGBgSn6cwEASA9IWgIAAEc0bdpUBQoUiLt97Ngxbd++PW4756FDh3TPPffo+++/14MPPuhUmMnuyJEjcd8XKVIkUfcpWrRo3PcXL17UmTNnFBYWdsXjfWFbavzO73/88cd1rf47ceJEXNJSkj7//HPVrVtXhw4dUkREhEaPHq3Ro0crKChIFStWVK1atdSoUSPVq1fPsaRRcsQY/3f3888/JzkGT11FXxZ/a3jLli2vWGs1ICBA7dq1iysvMHHixEQnLVNaRESE7r//fm3evFmSlDNnTv3yyy8qWLCgw5EBAJA2sD0cAAA4ok+fPvroo4/ivr755hutXLlS69atU4UKFSRZgq5Nmzbavn27w9EmH08DHkkJEnJX89/jzpw5c9XjM2XKlPTAktmpU6du+DGio6MT3C5TpozWrVunp59+OkEd0OjoaK1evVojRoxQo0aNVKRIEY0dO/aGf/71SI4Yb/R359mm7KsOHjyouXPnxt1u3779VY+Pv3V85cqV2rJlS4rFllgXLlzQQw89FFfKImvWrPr5559VpkwZhyMDACDtIGkJAAB8Svny5TV37ty4VZgRERHq2rWrw1ElnyxZssR9f/bs2UTd57/HZc2aNVljSgnxE60jRoyQ2+1O8lf8FaYeefLk0QcffKBDhw5p4cKFeu2119S4ceMEK0/37dunbt26qXfv3qnxVJM9xvi/u2nTpl3X786XffnllwkSq7Vr105Q3/a/X+XKlUtw//irNJ0QFRWl5s2bx9WXzZQpk3788UfdddddjsYFAEBaQ9ISAAD4nNy5c+vDDz+Mu71w4ULNmjXLwYiST/yt27t3707UfXbt2hX3fYYMGfwiaZknT5647w8ePJjsjx8SEqLatWvr5Zdf1uzZs3X06FH9/PPPuvvuu+OO+fDDD5PUPdpXYkzp353TbjTp+OWXXyo2NjaZokmamJgYtW3bNq5ZUnBwsKZOnaratWs7Eg8AAGkZSUsAAOCTPM1LPF5++WUHo0k+lSpVivt+5cqVidrKu3Tp0gT3T0w36eSW1J9ZtWrVuO+XLFmS3OFcIjg4WPfdd59+/fXXBCvzfvzxx0uOdeL3JyU+xpT43Tn1nP/rzz//1MaNG+Nu33XXXapatWqivjxNq/bu3av58+eneuyxsbHq1KmTpk6dKkkKDAzU119/rfvvvz/VYwEAID0gaQkAAHxW/M6/a9eu1cyZM50LJpnUqFEjrunIkSNHrrmCNDY2VuPHj4+7Xbdu3RSN70oyZswY931UVNQ1j2/UqFFckmnp0qVat25disUWX0hIiBo2bBh3+9ChQ5cck9TnktyuFWP8xlPTpk277HNIKqefs0f8VZa33367Vq5cqeXLlyfq67777rvs46SWp556Sl9++aUkSwKPGzdOLVq0SPU4AABIL0haAgAAn1W/fn3VqFEj7vbQoUMdjCZ5ZM+eXa1atYq7/fzzz1+1sc5HH32kDRs2SLJOyk888USKx3g5OXPmjPt+37591zy+QIECcQ1W3G63OnTooNOnTyfqZ8XGxibosi5ZR+zEbgnes2dP3Pe5c+e+ZD6pzyWxkivGKlWqqE6dOpKk8+fP67HHHtPFixcT9bgXL168bPfw7NmzKyDA3vofOXLEkcRlVFSUvv7667jb12rA81/xj//hhx+u2ZAqOfXr10+fffZZ3O1Ro0apQ4cOqfbzAQBIj0haAgAAnzZw4MC471etWqU5c+Y4GE3yGDhwYFxDnq1bt6pRo0basWNHgmNiY2P1/vvvq1+/fnFjPXv2vGxzmtQQfzvz3LlzE9Xh+vXXX1e+fPkkSevXr1eVKlUSdI3+r7179+q9997TrbfeqilTpiSYmzFjhkqVKqXhw4cnqPEZX2RkpD766KO47buS1Lhx46s+lxkzZiQ6IXgtyRnjhx9+GPc3Mm/ePNWqVUsrVqy44s/eunWrXnvtNRUtWvSyW8pDQkJUsmRJSZY8nD59eqKeU6dOneIa4tzo356nrqdkKxXbtGmTpPs/9NBDcfVcz507p+++++6G4kmsQYMG6b333ou7/fbbb6t79+6p8rMBAEjPgpwOAAAA4GoaNWqkqlWrxiVsXnvttQTbRC8nfnIkMUJDQ/X222/fUJxJUaJECY0dO1bt2rVTTEyMli1bpltvvVX33HOPSpQooYiICC1evDjBKsBq1aqlaoz/VaVKFRUqVEh79uzRgQMHdNttt6lhw4bKlStXXL3Eu+66K8Eq0vz582vGjBm6//77dfToUf3zzz9q1KiRChQooCpVqujmm29WVFSUjh49qo0bN2rnzp1XjWH79u16/vnn9fzzz6tw4cIqX7583CrFgwcPavny5Tp+/Hjc8e3atUuwUtejcePGypQpk86fP6+1a9eqdOnSqlOnjrJnzx73XBo2bJhgC3diJVeM5cqV0zfffKNWrVrp3LlzWrFihapVq6YSJUrojjvuUI4cOXThwgUdPnxY69evT9SK0ebNm+uNN96I+7kTJkzQLbfcouDg4Lhjhg8fnuTnnFjxt3TXqlVLhQoVStL9M2XKpGbNmmnSpElxj9elS5crHp8c/w7Mnj1br776atztPHnyKDw8XL169UrUY7766qvKkSNHomMAAADxuAEAAG5Q7dq13ZLcktyDBg264nGeYyS5FyxYkOjHnzVrVoL7/vrrr1eNIalf2bJlS/qT/o+OHTvGPd748eMTdZ8ff/zRnSdPnmvG16ZNG/fZs2ev+ljxj08pP/74oztDhgxXjLNjx46Xvd+uXbvc9erVS/T/jzx58rjnzJmT4DG+++47t8vlStT9AwIC3D169HBfvHjxis9l9OjRV328q/0dX0lyx+h2u91r1651V65cOdG/u6JFi7r/+uuvyz7WyZMn3bfddttV7/9f8f+uixQpkuTficfRo0cT/O189tln1/U4c+fOjXsMl8vl3rFjR4L55P53YPz48df9eJLcO3fuvK7nCQAA3G5WWgIAAJ93//33684779Tq1asl2eqlevXqORzVjXvwwQe1bds2jRs3Tj/99JM2bdqko0ePKlOmTMqfP7/uvfdedejQIUE3aSc9+OCDWr16tUaNGqU//vhDu3fvVkREhNxu91XvV6RIEf36669atmyZvvvuOy1atEh79uzRiRMnFBQUpJw5c6pkyZK688471bBhQ9WpUyeuiY9HixYtdODAAc2dO1dLlizRunXrtGPHDp08eVKSlC1bNpUqVUp33323OnTooDJlylw1pqeeekq33367PvnkE61YsUL79u3TuXPnrvlcria5Y5SkChUqaPXq1Zo7d66mT5+uJUuWaP/+/Tp58qRCQkJ0880369Zbb1XVqlXVqFEjVa9e/YqdwrNly6ZVq1bp448/1qxZs7R582adPHkyVepbfvPNN3Hb8ENCQq67gU3dunWVL18+HThwQG63WxMnTkzQsAsAAKQdLveNvDMDAAAAAAAAgGRGIx4AAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8ClBTgfgL2JjY7V//35lzZpVLpfL6XAAAAAAAAAAv+J2u3XmzBnlz59fAQFXX0vpl0nLRYsW6Z133tGaNWt04MAB/fDDD2ratGmi7rtkyRLVrl1b5cqV09q1axP9M/fv369ChQpdX8AAAAAAAAAAJEl79uxRwYIFr3qMXyYtz549qwoVKqhLly565JFHEn2/kydPqkOHDqpXr54OHTqUpJ+ZNWtWSfZLDQsLS9J9/UVUVJTmzp2rhg0bKjg42OlwgHSHcxBwHuch4CzOQcBZnIOA89L6eXj69GkVKlQoLs92NX6ZtGzcuLEaN26c5Ps99dRTatu2rQIDAzV9+vQk3dezJTwsLCxNJy1DQ0MVFhaWJk8MwNdxDgLO4zwEnMU5CDiLcxBwXno5DxNTetEvk5bXY/z48dqxY4e+/PJLDR069JrHR0ZGKjIyMu726dOnJdkfT1RUVIrF6STP80qrzw/wdZyDgPM4DwFncQ4CzuIcBJyX1s/DpDyvdJG0/Pfff9W/f38tXrxYQUGJe8rDhg3TkCFDLhmfO3euQkNDkztEnzJv3jynQwDSNc5BwHmch4CzOAcBZ3EOAs5Lq+fhuXPnEn1smk9axsTEqG3bthoyZIhKlSqV6PsNGDBA/fr1i7vt2XPfsGHDNL09fN68eWrQoEGaXoIM+CrOQcB5nIeAszgHAWdxDgLOS+vnoWcnc2Kk+aTlmTNntHr1av3111/q1auXJCk2NlZut1tBQUGaO3eu6tate8n9QkJCFBIScsl4cHBwmvyjiS89PEfAl3EOAs7jPAScxTkIOItzEHBeWj0Pk/Kc0nzSMiwsTBs2bEgw9vHHH+u3337T1KlTVaxYMYciAwAAAAAAAHA5fpm0jIiI0LZt2+Ju79y5U2vXrlWOHDlUuHBhDRgwQPv27dOkSZMUEBCgcuXKJbh/7ty5lTFjxkvGAQAAAAAAADjPL5OWq1ev1r333ht321N7smPHjpowYYIOHDig3bt3OxUeAAAAAAAAgBvgl0nLOnXqyO12X3F+woQJV73/4MGDNXjw4OQN6ircbreioqIUGxubaj/zekRFRSkoKEgXLlxQTEyM0+GkaYGBgWmyNgUAAAAAAEBy8Mukpb+4ePGiDh8+rHPnzvlFEtDtditv3rzas2ePXC6X0+GkeSEhIcqVK1ea7UYPAAAAAABwvUhappBz585pz549CgwM1E033aRMmTIpMDDQp5OBsbGxioiIUJYsWRQQEOB0OGmWZ+XtqVOntG/fPkkicQkAAAAAABAPScsUcvToUQUHB6tIkSIKDAx0OpxEiY2N1cWLF5UxY0aSliksU6ZMypo1q/bu3aujR4+StAQAAAAAAIiHzFQKiI6O1tmzZ5UjRw6/SVgi9blcLmXLlk2RkZGKiopyOhwAAAAAAACfQdIyBURHR0uymoXA1Xia8fhDzVMAAAAAAIDUQtIyBfly/Ur4Bv5GAAAAAAAALkXSEgAAAAAAAIBPIWkJAAAAAAAAwKeQtAQAAAAAAADgU0hawlFFixaVy+XShAkT4sYmTJggl8uV4CsgIEBhYWGqVKmSBgwYoCNHjlzxMf973yt9LVy4MOWfIAAAAAAAAJIsyOkAgCvJnDmzWrRoIcm6a4eHh2vZsmVau3atxo8fr8WLF6tkyZJXvH+jRo2UN2/eK85fbQ4AAAAAAADOIWkJn5UrV64EKzAladOmTapdu7YOHTqkZ555RrNmzbri/fv37686deqkbJAAAAAAAABIdmwPh18pW7as+vXrJ0maN2+eIiMjHY4IAAAAAAAAyY2kJfxO+fLlJUlRUVE6fvy4w9EAAAAAAAAguZG0hN85ffq0JCkwMFC5cuVyOBoAAAAAAAAkN5KW8DueOpb33XefgoODHY4GAAAAAAAAyY1GPE65807p4EGno0jAJSnM7ZbL5br6gXnzSqtXp0pMHp7u4Z9++qm+/vprFSlSRB988MFV73PvvfdecS5btmw6efJkMkcJAAAAAACA5EDS0ikHD0r79jkdRQKu///yFeHh4ZdNoFapUkVz585VtmzZrnr/Ro0aKW/evJedCw0NTZYYAQAAAAAAkPxIWjrlCsk0J7kluf9/peVVk5epFHvmzJnVokULSVJkZKQ2b96sdevWaeXKlXryySc1efLkq96/f//+qlOnTipECgAAAAAAgORE0tIpqby9OjHcsbE6ffq0wsLC5Apwvtxprly5NGHChARj06ZNU6tWrTRlyhTVqlVLPXr0cCY4AAAAAAAApBjnM1NAEjzyyCPq37+/JGngwIE6deqUwxEBAAAAAAAguZG0hN8ZMGCA8uXLp2PHjmnEiBFOhwMAAAAAAIBkRtISfic0NFSvvPKKJGnkyJE6ceKEwxEBAAAAAAAgOVHTEn6pa9euevfdd7V9+3YNHz5cr7/++iXHvPnmm5fUxIyvbdu2atiwYQpGCQAAAAAAgOtB0hJ+KTg4WEOHDlWbNm304Ycfql+/fsqZM2eCY3755ZerPkbFihVJWgIAAAAAAPggkpZw1K5duy4Z69Spkzp16nTN+7Zu3VqtW7e+ZNztdidDZAAAAAAAAHAKNS0BAAAAAAAA+BSSlgAAAAAAAAB8CklLAAAAAAAAAD6FpCUAAAAAAAAAn0LSEgAAAAAAAIBPIWkJAAAAAAAAwKeQtAQAAAAAAADgU0haAgAAAAAAAPApJC0BAAAAAAAA+BSSlgAAAAAAAAB8CklLAAAAAAAAAD6FpCUAAAAAAAAAn0LSEgAAAAAAAIBPIWkJAAAAAAAAwKeQtISjihYtKpfLpQkTJsSNTZgwQS6XK8FXQECAwsLCVKlSJQ0YMEBHjhy54mP+975X+lq4cGGSYvXE1alTp+t7sgAAAAAAAEiUIKcDAK4kc+bMatGihSQpJiZG4eHhWrZsmdauXavx48dr8eLFKlmy5BXv36hRI+XNm/eK8/+dc7lckiS3250M0QMAAAAAAOB6kbSEz8qVK1eCFZiStGnTJtWuXVuHDh3SM888o1mzZl3x/v3791edOnVSNkgAAAAAAAAkO7aHw6+ULVtW/fr1kyTNmzdPkZGRDkcEAAAAAACA5EbSEn6nfPnykqSoqCgdP378hh9v8ODBcVvDpUtrYu7ateuS+5w9e1YDBgzQLbfcopCQEOXNm1cdO3bUvn37bjgeAAAAAACA9I7t4fA7p0+fliQFBgYqV65cN/x4FStWVMeOHTVx4kRJUseOHRPMZ8mSJcHtU6dOqUaNGtq9e7fuuecelStXTsuWLdOkSZP0+++/a926dcqWLdsNxwUAAAAAAJBekbSE3/HUsbzvvvsUHBx8w4/XtGlTNW3aNC5p+d86mv81ffp0NWrUSIsXL1ZYWJgk6cSJE6pbt67Wrl2rjz/+WAMGDLjhuAAAAAAAANIrkpYOufPOO3Xw4EGnw7iE2+1OsFX6cvLmzavVq1enUkTG0z38008/1ddff60iRYrogw8+uOp97r333ivOZcuWTSdPnryuWDJnzqzx48fHJSwl6aabblL//v3VunVr/frrryQtAQAAAAAAbgBJS4ccPHiQ+ofXEB4eftkEapUqVTR37txrbsFu1KiR8ubNe9m50NDQ647rzjvvVL58+S4ZL126tCTx/xUAAAAAAOAGkbR0yJWSaU5L7ErL1JA5c2a1aNFCkhQZGanNmzdr3bp1WrlypZ588klNnjz5qvfv37+/6tSpk+xxFS5c+LLjnpWXFy5cSPafCQAAAAAAkJ6QtHRIam+vTozY2FidPn1aYWFhCghwvrF8rly5LqkvOW3aNLVq1UpTpkxRrVq11KNHj1SPyxd+NwAAAAAAAGkZ2Rf4lUceeUT9+/eXJA0cOFCnTp1yOCIAAAAAAAAkN5KW8DsDBgxQvnz5dOzYMY0YMSLZHtfTiTw6OjrZHhMAAAAAAABJR9ISfic0NFSvvPKKJGnkyJE6ceJEsjxuwYIFJUmbNm1KlscDAAAAAADA9aGmJfxS165d9e6772r79u0aPny4Xn/99UuOefPNNy+piRlf27Zt1bBhw7jbzZs31/Dhw1W/fn3VrVtXWbNmlSS99dZbypkzZ7I/BwAAAAAAAFweSUv4peDgYA0dOlRt2rTRhx9+qH79+l2SWPzll1+u+hgVK1ZMkLR87bXXFBAQoGnTpmn69Om6ePGiJOnll18maQkAAAAAAJCKSFrCUbt27bpkrFOnTurUqdM179u6dWu1bt36knG3231dsWTMmFFvvfWW3nrrrcvOXyuuokWLXvfPBgAAAAAAgBc1LQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFqmILfb7XQI8HH8jQAAAAAAAFyKpGUKCAiwX2tMTIzDkcDXef5GPH8zAAAAAAAAIGmZIoKDgxUcHKyIiAinQ4GPO3/+vAIDAxUcHOx0KAAAAAAAAD6DpGUKcLlcypo1q06dOqXz5887HQ58VExMjE6dOqXQ0FC5XC6nwwEAAAAAAPAZQU4HkFblypVL58+f1+7duxUWFqasWbMqMDDQp5NTsbGxunjxoi5cuMB25RTkdrsVGRmp48ePKzY2Vrlz53Y6JAAAAAAAAJ9C0jKFBAYGqlChQjp69KjOnDmjkydPOh3SNbndbp0/f16ZMmXy6eRqWpE5c2blzZtXGTJkcDoUAAAAAAAAn0LSMgUFBgYqT548yp07t6KiohQbG+t0SFcVFRWlRYsWqVatWtRYTGFBQUEKCuL0AwAAAAAAuByyJqnA5XL5xWq6wMBARUdHK2PGjCQtAQAAAAAA4BgKFwIAAAAAAADwKSQtAQAAAAAAAPgUkpYAAAAAAAAAfApJSwAAAAAAAAA+haQlAAAAAAAAAJ/il0nLRYsWqUmTJsqfP79cLpemT59+1eOnTZumBg0a6Oabb1ZYWJiqV6+uX375JXWCBQAAAAAAAJAkfpm0PHv2rCpUqKBRo0Yl6vhFixapQYMGmj17ttasWaN7771XTZo00V9//ZXCkQIAAAAAAABIqiCnA7gejRs3VuPGjRN9/MiRIxPcfuONNzRjxgz9+OOPqlSp0mXvExkZqcjIyLjbp0+fliRFRUUpKioq6UH7Ac/zSqvPD/B1nIOA8zgPAWdxDgLO4hwEnJfWz8OkPC+/TFreqNjYWJ05c0Y5cuS44jHDhg3TkCFDLhmfO3euQkNDUzI8x82bN8/pEIB0jXMQcB7nIeAszkHAWZyDgPPS6nl47ty5RB+bLpOWw4cPV0REhB599NErHjNgwAD169cv7vbp06dVqFAhNWzYUGFhYakRZqqLiorSvHnz1KBBAwUHBzsdDpDucA4CzuM8BJzFOQg4i3MQcF5aPw89O5kTI90lLb/++msNGTJEM2bMUO7cua94XEhIiEJCQi4ZDw4OTpN/NPGlh+cI+DLOQcB5nIeAszgHAWdxDgLOS6vnYVKeU7pKWk6ePFldu3bVd999p/r16zsdDgAAAAAAAIDL8Mvu4dfjm2++UefOnfXNN9/ogQcecDocAAAAAAAAAFfglystIyIitG3btrjbO3fu1Nq1a5UjRw4VLlxYAwYM0L59+zRp0iRJtiW8Y8eOev/991W1alUdPHhQkpQpUyZly5bNkecAAAAAAAAA4PL8cqXl6tWrValSJVWqVEmS1K9fP1WqVEkDBw6UJB04cEC7d++OO/7TTz9VdHS0evbsqXz58sV99enTx5H4AQAAAAAAAFyZX660rFOnjtxu9xXnJ0yYkOD2woULUzYgAAAAAAAAAMnGL1daAgAAAAAAAEi7SFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHyKXyYtFy1apCZNmih//vxyuVyaPn36Ne+zcOFC3XHHHQoJCdEtt9yiCRMmpHicAAAAAAAAAJLOL5OWZ8+eVYUKFTRq1KhEHb9z50498MADuvfee7V27Vo988wz6tq1q3755ZcUjhQAAAAAAABAUgU5HcD1aNy4sRo3bpzo48eMGaNixYrp3XfflSSVLl1af/zxh9577z01atQopcIEAAAAAAAAcB38MmmZVMuWLVP9+vUTjDVq1EjPPPPMFe8TGRmpyMjIuNunT5+WJEVFRSkqKipF4nSa53ml1ecH+DrOQcB5nIeAszgHAWdxDgLOS+vnYVKeV7pIWh48eFB58uRJMJYnTx6dPn1a58+fV6ZMmS65z7BhwzRkyJBLxufOnavQ0NAUi9UXzJs3z+kQgHSNcxBwHuch4CzOQcBZnIOA89LqeXju3LlEH5sukpbXY8CAAerXr1/c7dOnT6tQoUJq2LChwsLCHIws5URFRWnevHlq0KCBgoODnQ4HSHc4BwHncR4CzuIcBJzFOQg4L62fh56dzImRLpKWefPm1aFDhxKMHTp0SGFhYZddZSlJISEhCgkJuWQ8ODg4Tf7RxJceniPgyzgHAedxHgLO4hwEnMU5CDgvrZ6HSXlOftk9PKmqV6+u+fPnJxibN2+eqlev7lBEAAAAAAAAAK7EL5OWERERWrt2rdauXStJ2rlzp9auXavdu3dLsq3dHTp0iDv+qaee0o4dO/TCCy9oy5Yt+vjjj/Xtt9+qb9++ToQPAAAAAAAA4Cr8Mmm5evVqVapUSZUqVZIk9evXT5UqVdLAgQMlSQcOHIhLYEpSsWLFNGvWLM2bN08VKlTQu+++q7Fjx6pRo0aOxA8AAAAAAADgyvyypmWdOnXkdruvOD9hwoTL3uevv/5KwagAAAAAAAAAJAe/XGkJAAAAAAAAIO0iaQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8JcjoAAAAAn3DypFxLligoIsLpSAAAAIB0j6QlAABI31atksaMkb75RkHnz6tetmxyBQZKrVs7HRkAAACQbrE9HAAApD9nz0pjx0p33ilVqSKNGyedPy9JynjqlILatJFatpQOHXI4UAAAACB9ImkJAADSj40bpV69pPz5pW7dpDVrvHNhYYqtXt17e+pUqWxZ6euvJbc79WMFAAAA0jGSlgAAIG27cEH66ivp7rul22+XRo2STp/2zleubKsu9+9XzMKFWv3ss3LnzGlzx45J7dpJTZtK+/c7Ej4AAACQHpG0BAAAadO//0rPPy8VLCi1by8tWeKdCw2VHn/c6lmuXm3fZ84suVzad889il63zraHe8ycaasuJ0xg1SUAIG06flyB3burUceOCuzQQVqxwumIAKRzJC0BAEDaERUlTZsmNWgglSolDR9uqyU9ypaVPvxQ2rfPW9PycnLnlr791raI585tYydPSp07S/ffL+3Zk+JPBQCAVOF222te6dIK+PxzZTx1SgGTJ0vVqlnd5y++kCIjnY4SQDpE0hIAAPi/PXukgQOlIkWk5s2lX3/1zmXIYFu8Fy+WNmywmpbZsyfucZs3l/7+2+7vMWeOJT8//ZRVlwAA/7Znj/Tww1KrVtLhw5fOr1oldeggFS4svfKKXfQDgFRC0hIAAPinmBjp55+lhx6SihaVXntNOnDAO1+ihPT229LevdKXX1pNS5cr6T8nZ067/8yZ1sBHks6ckZ580lZ07tyZLE8HAIBUExtrNZ7LlJF+/NE7/NBDmjd6tKLHjpUqVfIef/iwNHSovd62amUlV7hwByCFkbQEAAD+5dAhadgw6ZZbbKv2jz/ahy9JCgyUHnlEmjtX2rrValrefHPy/NwmTaRNm6QuXbxj8+dbc5+PPvLGAACAL/v7b+mee2znQUSEjeXNK33/vWKmTtW5fPnk7tBBWrNG+uMPS1IGBdlx0dG2lfzuu62R3fjx0vnzzj0XAGkaSUsAAOD73G5p4UL74FSokPTSS9KuXd75ggWlIUOk8HDp++9tBWRACrzNyZ5d+vxz2yJeqJCNnT0rPf20dO+90rZtyf8zAQBIDpGR0uDBUsWK0tKl3vFu3aTNm+2iX3wul1SzpjR5sr2+vvKKt86zJP31l13IK1RIGjBA2r07NZ4FgHSEpCUAAPBdx49LI0dKpUtbUvDbb63ZjmQfpho3lmbMsC3aAwdKBQqkTlyNGkkbN0pPPeUdW7RIKl9eGjHCtq4DAOArli617d5DhnhfR0uWtAuCn3567VrP+fNLr75qickvvrAGPR7HjklvvikVK2a1oBcuZOs4gGRB0hIAAPgWt1tavlzq1MmSkH37Sv/8452/+Wapf39b1Th7ttW09GxbS01hYdLo0bZFvFgxGzt/Xnr2Wds2t3lz6scEAEB8p09LPXsmfF0KCrIdC+vXS7VrJ+3xQkKk9u2lFSvstbpdOyk42OZiY6Vp0+wiY4UKlgw9dy55nw+AdIWkJQAA8A1nzkhjxthKkOrVpYkTpQsXvPN16tgWtb17raZl8eKOhZpA3br2wa93b2+jn+XL7Xm8+abV/wIAILXNnGmNdj7+2Lvy8a67rFbl669LGTPe2ONXrWqN6nbvthWc+fJ55zZssIZ1BQtafWma1gG4DiQtAQCAs9atk7p3t61n3bvbbY/s2aU+faxpwIIFVtMyQwbHQr2iLFmk99+3LeIlS9pYZKTV+KpWzT68AQCQGg4elB59VHr4YWnfPhsLDZXee09atsxKmSSnvHmtRMuuXdI330g1anjnTpyQhg+XSpSweH79la3jABKNpCUAAEh958/bSsrq1a0hwJgx3g6mkq3eGD/ePmx5alr6g7vvltaulZ57ztsIaM0a67D66qveOmIAACQ3t1saN85eM7/7zjveqJG0aZP0zDNSYGDK/fwMGaTWraUlS6TVq6WOHW07uSe2mTOtUV7ZslZeJf7rPgBcBklLAACQev75R+rXz2pVdupk26g9Mme2rWR//umtaRka6lSk1y80VHrnHWt64Em2RkVJgwbZtry//nI2PgBA2rNtm1SvnvT449LJkzaWM6dt3/75Z6lo0dSNp3JlacIEac8e24pesKB3bvNmqUcPG+vb12IHgMsgaQkAAFLWxYvW9btuXem222x72okT3vnbb7d6W/v3e2tapgVVq1qC8qWXvCtb1q2zxOXLL9v2cQAAbkRUlPTWW/ZaumCBd7x9e0sOtmvnrbfshJtvttfBnTtt9WetWt65U6dsN0WpUtIDD0hz5lgzHwD4fyQtAQBAyti1S/rf/6TCha0WZfwPUyEhUocOthrRU9MyLMyxUFNMSIitMFmxwltDLCbGxipXllaudDY+AID/WrNGqlJF6t/f27iuSBFL/n3xhSUMfUVQkNSihfT771ZG5fHHvY2A3G5p9mypcWPbofDBB9b1HEC6R9ISAAAkn5gY6ccfbcVE8eLSG29Ihw5550uWlN5912pVempaOrkCJLVUriytWiUNHmwf3CSrL1a9uvTCC1bjEwCAxDh71monV6liCUDJ6ij37Stt3Gg1LH1ZhQrS2LHS3r22SrRIEe/c1q3WgK9AAenpp62sDIB0i6QlAAC4cQcOSEOHSsWKSQ89ZCsmPN1Bg4Kkli2l+fO9NS1z5nQ2XidkyGB1Ldeske64w8ZiY63+ZcWK1rgAAICrmTfPtoK/+653K3X58lYLesQIKUsWZ+NLipw57cLd9u3SDz9YGRmPiAjpo4+srEyjRtJPP7F1HEiHSFoCAIDrExsr/fqrbfcqXFh65RUruO9RuLAlMvfs8da0TA+rKq+lfHnbLv7GG5bIlGxlyT33WGfXs2cdDQ8A4IOOHbNu3A0bWn1IyUqQvPGGdeq+6y5n47sRgYFS06Z2cXPDBmvKF78R39y5UpMmtltjxAhvoyEAaR5JSwAAkDRHj0rDh0u33io1aCB9/70UHW1zLpf04IO2ImLHDqtpmTevs/H6oqAgacAAa9RTtaqNud3S++9bUnPhQkfDAwD4CLdb+vprq/U4aZJ3vHZtaf16ey0JDnYuvuRWrpw15du711aTFi/unduxQ3r2Wds63r27lVkBkKaRtAQAANfmdtv25ccekwoWlJ5/Xtq2zTufN691xN6501vT0tMxG1dWpoz9XocP9zYk2LFDuvdeqUcP6cwZZ+MDADgnPNxeT9u1k44csbFs2aTPPpN++826bqdVN91k5WS2brX3FQ0beufOnbPEZrlyUr160vTpVlMbQJpD0hIAAFzZqVPSqFG2+u/uu6Uvv5QiI73z9epJ330n7d4tvfZawmL6SJzAQFs5sm6d/Y49Ro+2D2Rz5zoXGwAg9cXE2Mr7smWln3/2jjdvLm3eLHXtao130oPAQNvB8csv9tx79kxYt/O336RmzaQSJaS335aOH3cuVgDJLp38SwcAAJLkzz+lJ56wLVi9elk3Uo8cOSzJ9s8/3pqWaWlrmlNKlZJ+/1364ANvLa/du60BQdeulkAGAKRtGzZINWokrHGcP781qpk6VcqXz9HwHHXbbdacZ98+S+qWLOmdCw+XXnzR3rd062Zb5wH4PZKWAADAnDsnjRsnVakiVa5s28/iN4WpUUP64gv7sDB8eNreluaUgADp6aftQ+u993rHP//cVtzMmuVcbACAlHPhgjW0u+MOaeVK7/hTT0l//22NamDCwqTevaUtW2wl6v33e+cuXJDGjpUqVLC6n1OneutuA/A7JC0BAEjv/v5b6tPHVnI8/ri0apV3LmtWq624bp3VXmzf3lt7ESmneHFbxTpmjP0/kCxZ/OCDUocObH8DgLRk0SKpYkVp6FBvgu2222x89GirY4lLBQRI991nF/S2brX3MmFh3vlFi6SWLaVixazLuqcuKAC/QdISAID0KDJS+uYbW4VQtqxtSY6//bhSJenTT6X9+701LZG6AgKkJ5+0rfnxGxB88YX9P5s+3bHQAADJ4NQpW0lZu7aVXJGs3Morr0h//SXdc4+z8fmTkiWlkSPtAt+oUdZt3WPvXul//5MKFZI6d7YSOAD8AklLAADSkx07rOZTwYJS27a2CsEjUyZ7M79ihbRmjdWEil/sHs4oXFiaM8e27ntW2xw8aI0HWrdm5QgA+KMffrDE2iefeMeqVrWE2quvsqvhemXJYjtENm2S5s2THnpIcrlsLjJSmjDBSuDUrClNnixFRTkaLoCrI2kJAEBaFx1tq/Luu8/bXfPoUe986dJW0H7fPm9NS88bfPgGl8sSyps22RZxjylTpDJl7L9ut3PxAQASZ/9+6wL+yCPSgQM2liWL7XhYskQqV87Z+NIKl0uqX1+aMUPavl167jkpe3bv/NKlUps2UpEiliQ+dMixUAFcGUlLAADSqn37pMGDpaJFbVXeL79454KDbZXewoWWCOvdW7rpJocCRaIVKCDNnCl9+aV1cZcsAd26tX0IPnjQ2fgAAJcXG2tlV8qUkaZN847ff7+9Dj/9tBQY6Fx8aVmxYtI779g28U8+SZgYPnBAGjTIto4/9ljCJkgAHEfSEgCAtCQ21pKTzZrZ6oEhQyx56VGsmPTmm/bG3VPTklWV/sXlktq1sw+5jzziHf/hB/sw/MUXrLoEAF/yzz/SvfdanWJP/eibb7bX4Z9+sjIgSHmZM0tPPCGtXy8tWGCvoQH/nxKJirILglWr2teXX9p2cgCOImkJAEBacPiw9NZb0i232Dbw6dOlmBibCwiQHn5Y+vlnads2q2mZO7ej4SIZ5M0rTZ0qffutffiVpBMnrLv4Qw8lTFYDAFLfxYvS669LFSokrCHdqZO0ebOtkufCYepzuaQ6daTvv5d27pT695dy5vTOr1xpqy4LF5YGDrQt/QAcQdISAAB/5Xbbh6A2bayxTv/+9ubbI39+2/IUHu6taRnAS3+a4nJJLVvaqss2bbzjP/1kqy4//5xVlwDghJUrpTvvlF5+2btir1gxaw4zfnzCJBmcU7iwNGyYtGePvWZWrOidO3xYeu0127nSurXVweQ1FUhVfHIBAMDfnDxpBfvLlrXt3f/tftmokW0VDg+3mpYFCzoVKVLLzTdLX39tyem8eW3s9Gmpa1dLVoeHOxoeAKQbERFS375StWrShg02FhAgPf+8tHGjNYeB78mUSerSxbq3L14sPfqot8ZodLQ1vKtZ0xLREyZIFy44Gi6QXpC0BADAH7jdtmqjSxdbQdmnj20t88iVS3rhBdv+PWeO1LSpFBTkWLhwyMMP26rLjh29Y3PnWtOB0aOt5ikAIGX8/LP9eztypHdFXqVK9vr99ttSaKij4SERXC7p7rstSRkebitlPSVYJEtqdu5sjXteeslWaAJIMSQtAQDwZRER0mef2ZX9qlVtS9n58975WrVshd3evVbTskQJ52KFb8iRw1aBzJpl3cYl+zvq0UOqV0/ascPR8AAgzTlyRGrf3jqBe1a2Z8xoicqVK6XKlZ2ND9enQAHbHr57tzRxor0X8zh61LaVFysmtWgh/f47W8eBFEDSEgAAX7Rhg9Szp62qfOIJu7LvkS2b9PTTts3s99+tlmFIiHOxwjfdf7+tuuzWzTu2cKF0++3S+++z6hIAbpTbLX3xhVS6tPTVV97xunXtdfz559n1kBZkzGhN7laulJYtk9q2lYKDbS4mxhr61Klj9TDHjpXOnXMyWiBNIWkJAICvuHBB+vJL25ZUvrz08cfSmTPe+bvusiLx+/Z5a1oCV5Mtm/Tpp9b4oUgRGzt3TnrmGVulu3Wro+EBgN/audNqBnfoIB07ZmM33SSNGyf9+qt0yy3Oxofk53JZrdKvvvLWDffUkZak9evtQmHBglayZ9cupyIF0gySlgAAOO3ff6XnnrNtSI89Ji1Z4p0LDbVmKqtXe2taZs7sXKzwT/Xre1fveixZIlWoIL3zjq0UAQBcW3S0NGKE1a6cO9c73qqV1Zru3NmSW0jb8uWTBg2y5OXXX1sy0+PECXttLVHCaozPn8/WceA6kbQEAMAJUVG2nahBA6lUKendd6Xjx73zZctKH30k7d9vNS2ph4UblTWr/U0tXOitfXrhgq0GqVFD+vtvR8MDAJ+3bp1Uvbr07LPeLcAFC0ozZ0qTJ0t58jgbH1JfhgxWpmfZMmnVKlt5myGDzcXGSjNm2IXDcuWkMWOsxjSARCNpCQBAatq9W3rlFalwYSvc/uuv3rkMGaR27aQ//vCuisuWzblYkTbVrm1b2Pr29a4GWrnSOty+8YYl1AEAXufPSwMG2AXE1attzOWSevWy2sFNmjgbH3zDnXdaw549e6ShQ73N8CS7MNi9uyW5+/WTtm93Lk7Aj5C0BAAgpcXEWCfnJk2sy+TQodLBg975EiVsG9G+fVbTsmZNtpYhZYWG2vbGP/6Qbr3Vxi5elP73P+tSv26ds/EBgK9YsMDqTL/5preURpkyVmLjww+lsDBn44PvyZ3bXk937pSmTLFa5R6nTknvvSeVLCk9+KD0yy80xgOugqQlAAAp5eBBW7lWooS9Mf3pJ+8b08BA6ZFHrEHK1q1W0zJXLmfjRfpTo4b011+2RTzg/98W/vWXrRYZPNgSmQCQHp04YU1V6taVtm2zseBgacgQ6c8/bZs4cDXBwdKjj0qLF9tra5cu1olcshqXs2ZZM6fSpa18S/zmiwAkkbQEACB5ud3Sb7/Zm9RChexKe3i4d75gQenVV22b+PffW52jAF6O4aBMmaS33pKWL/d2pI+Otg/md94prVnjbHwAkJrcbmnqVEskjR3rHa9RQ1q7Vho4UAoJcSw8+KmKFaXPP5f27rVVu4ULe+e2bpWeftq2k/fubbcBSCJpCQBA8jh+3Lb73HabVK+e9N13lviRbKv3/fdbof6dO62mZf78zsYL/Nddd1mC8uWXbSWwZLVVq1a1Wm4XLjgbHwCktL17rdtzy5bSoUM2ljWr9PHHtlquTBlHw0MakDOn9OKLVtNy2jSpTh3v3JkzVnLg1lttBeasWWwdR7pH0hIAgOvldlu3yI4dLQnZr1/Cq+O5c0svvSTt2OGtaRkU5Fy8wLWEhEivvWYdUCtWtLGYGFsVcscdthoTANKa2Fhp9GhLSs6c6R1v0sTbQIVdEUhOQUFSs2ZWM3X9eumJJ2zng8cvv1hpoVKl7KL4yZOOhQo4iX95AQBIqjNnpDFjrNtyjRrSpElSZKR3/t57rfD6nj3S669LRYs6FipwXSpVso7ir75qNbkkafNm+3t/9lnp3Dln4wOA5LJ5s1SrltSjh7emYJ480rffSjNmWFkXICXdfrv0ySfWkHH4cGva6LF9u10UL1jQ/kb//tu5OAEHkLQEACCx1q6VnnrKVlV2756ww/JNN0l9+9qHH09NywwZHAsVuGHBwVbK4M8/rbalZKuLR4yQKlSwrZIA4K8uXrQLMxUrWidwj8cft9fyli2tvAuQWm66yS4M/vuvJczr1/fOnT1rq4HLlrXxGTO83eyBNIykJQAAV3P+vDRxolStmq0+++QTKSLCO1+tmjRhgl0dHzHCaloCaUm5clYG4a23vM0ntm2zlUlPP53wfAAAf7BsmZW8GDTIkpeSdMstdtFx7FhLHgFOCQyUHnpImjfPVlb26CFlzuydnz/faq/ecov0zjtWVx1Io0haAgBwOVu22MrJ/PmlTp2kFSu8c1my2IrLv/7y1rSMX4cISGuCgqQXXrDVxtWre8c/+kgqX94+6AOArztzxi621KwpbdpkY4GBUv/+Vlfw3nudjQ/4r9KlpVGj7OL4yJGWqPTYtctemwsWtJqYGzY4FSWQYkhaAgDgcfGi1bC69157kzhyZMLC5+XL29ac/fvtv55GJUB6cdttti38vfe8ifqdO6V69aQnn5ROn3Y2PgC4kp9+skY7H31kpS4kqXJlafVqadgwLj7Ct2XLJvXpI/3zjzR7tnUX9zh/XvrsM3ufWqeO9P33UnS0Y6ECyYmkJQAAO3dal+9ChaRWraSFC71zGTPaSsply7w1LbNmdSpSwHmBgdIzz9iqpFq1vOOffmpbyefMcSw0ALjEoUNS69bWCXzvXhvLlEl6911p+XIuQMK/BARIjRtLP/9sCczevRO+L/39d6lFC6l4cUvGHz3qXKxAMiBpCQBIn6KjpZkzpfvvl0qUsDd2hw9750uVshqV+/ZZzcpq1SjID8R3yy3SggW2bc1Ta2vPHvsw1bmzdOKEs/EBSN/cbmn8eNs5MWWKd7xBA2njRuvIHBTkXHzAjSpVSnr/fXuv+tFHCeuq79ljF+QLFpS6dLGSRoAfImkJAEhf9u+3bqHFikkPP2xXqj3bxIKCrOv3b795a1rmyOFsvIAvCwiwBgEbNybscjphgnU4/fFHx0IDkI5t327JyS5dvBdQcuSQJk2SfvnFVqEBaUXWrFLPnta0Z+5cW1XsudAeGWnJ+zvukO6+2xL4UVHOxgskAUlLAEDaFxtrHRibN5cKF7ZuoZ4tYpJUpIj0xht2VXrKFKtpyapKIPGKFrUPSp99JoWF2diBA9b9tF076dgxR8MDkE5ER1s35dtvtw7LHm3bSps3S489xus70i6Xy5L1M2dK27bZauJs2bzzS5ZYqYSiRaXXXrPSCYCPI2kJAEi7jh61Dy+lSkkNG0rTpkkxMTYXEGBXomfNshUZAwZIefM6Gy/gz1wuqWtXW3XZuLF3/OuvrfnF9987FxuAtO/PP6UqVayb8vnzNla4sDUt+eorKXduZ+MDUlPx4la3dd8+acwY2/3gsX+/NHCgnR8dOkirVjkXJ3ANJC0BAGmL2y398YfUvr1UoIB9eNm+3TufL5/0yivWfMdT0zIw0Ll4gbSmUCG7GDBhgpQ9u40dPmyNAVq2TFg7FgBu1Llz9lpfpYq3bp/LZZ2WN21KeBEFSG8yZ5aefFLasMHKHzVrZhfuJeniRemLL+zcqVbNkvsXLzobL/Affpu0HDVqlIoWLaqMGTOqatWqWrly5VWPHzlypG699VZlypRJhQoVUt++fXXhwoVUihYAkOJOnbIi5LffLt1zz6VvvOrXl6ZOlcLDraZl4cLOxQqkdS6X1LGj1dd6+GHv+NSpturym2+8tWQB4HrNn2+v+++8491JUa6ctGyZNHKklCWLo+EBPsPlsvJH06ZJO3ZYoj9+3fYVK+yCv6eM0oEDzsUKxOOXScspU6aoX79+GjRokP78809VqFBBjRo10uErXLn/+uuv1b9/fw0aNEibN2/W559/rilTpuill15K5cgBAMluzRqpWzcpf37p6adtVYVHzpzSc89JW7d6a1oGBzsXK5De5Msn/fCDJSlz5rSxY8esvlyzZnwoAnB9jh2TOne2C5I7dthYSIg0dKi9L6ha1dn4AF9WpIj01ltW333sWKlCBe/coUPei/tt29oFAC4ywkF+mbQcMWKEunXrps6dO6tMmTIaM2aMQkNDNW7cuMsev3TpUtWsWVNt27ZV0aJF1bBhQ7Vp0+aaqzMBAD7q7Fnp88+lu+6S7rzT3nCdO+edr1nTtrvs3WurL0qWdC5WIL1zuazw/99/2/ZwjxkzbNXlxIl8IAKQOG63NHmy/dsxYYJ3vFYtad066X//kzJkcCw8wK9kyiQ9/riVVVi0yF6jPSWToqPtgmONGvZ+e+JEiZ2qcECQ0wEk1cWLF7VmzRoNGDAgbiwgIED169fXsmXLLnufGjVq6Msvv9TKlStVpUoV7dixQ7Nnz9Zjjz12xZ8TGRmpyMjIuNunT5+WJEVFRSkqKiqZno1v8TyvtPr8AF/HOZgImzYpYOxYBXz5pVynTiWYcmfNqtj27RXbtattFfPg94kk4DxMQTfdJH31lVzNmyuwd2+5Dh+WTp6UOnVS7OTJihk1yuphIl3jHMQV7d6twN69FTB7dtyQOyxMMW++KXeXLlanj7+bG8Y5mE5Vq2Zfe/cq4JNPFPD553IdPWpza9ZInTrJ/dxzin38ccU++aRUsKCz8aZxaf08TMrzcrnd/nVpe//+/SpQoICWLl2q6tWrx42/8MIL+v3337VixYrL3u+DDz7Qc889J7fbrejoaD311FMaPXr0FX/O4MGDNWTIkEvGv/76a4WGht74EwEAJEpAVJTyLV2qor/8olx//33J/MnixbXrvvu09557FJMpkwMRAkiq4NOndfvnn6vQ77/HjUVlyqRNnTsrvEEDW50JAJIUE6NiP/+sMl9+qaB4K732V6umDU88oQvx6/IBSBYBFy+qwB9/qPisWcoev6GlpNiAAB2oVk07HnhAx8uU4TUbSXbu3Dm1bdtWp06dUlhY2FWPTRdJy4ULF6p169YaOnSoqlatqm3btqlPnz7q1q2bXnnllcv+nMuttCxUqJCOHj16zV+qv4qKitK8efPUoEEDBVPzDUh1nIP/sW2braqcNMl7pff/uTNlkrtVK8U+8YTclSvzZgnJhvMwdbl++kmBvXrJtX9/3Fhs3bqKGTNGKlrUucDgGM5BJLBpkwKfekoB8T7jufPlU8zIkXI3a+ZgYGkX5yAScLvlWrFCAaNGyfX993JFRyecLl9eMT17yt26tW03R7JI6+fh6dOnlStXrkQlLf1ue3iuXLkUGBioQ4cOJRg/dOiQ8ubNe9n7vPLKK3rsscfUtWtXSdLtt9+us2fP6oknntD//vc/BQRcWtozJCREISEhl4wHBwenyT+a+NLDcwR8Wbo+B6OjpR9/lMaMkebOvXS+dGmpe3e5HntMruzZ/bMwM/xCuj4PU1OzZtbNtF8/afx4SVLAb78poFIlaxLQvbtt+US6wzmYzkVGSm+8IQ0blnDL9xNPyPXWWwrKnt2x0NILzkHEuece+9q/X/rkE/v6/3yMa/16BT35pDRggNS1q9SjhzX6QbJIq+dhUp6T370LzJAhgypXrqz58+fHjcXGxmr+/PkJVl7Gd+7cuUsSk4H/X2DWzxaaAkDatGePNGiQvcl55JGECcvgYKlNG+n3360z+NNPS3xYAdKO7NmlceOkOXO8NS3PnpV69bKE5rZtjoYHIJX98YdUsaJ1MPYkLEuVsvcBn3zCewDAKfnzS0OGSLt3S19+KVWt6p07flx6+22peHG7IPnbbzTZQ7Lwu6SlJPXr10+fffaZJk6cqM2bN6t79+46e/asOnfuLEnq0KFDgkY9TZo00ejRozV58mTt3LlT8+bN0yuvvKImTZrEJS8BAKksNtaSFE2b2jbQV1+1K7gexYvbSqu9e6Wvv7bOoGwDB9KuRo2kjRulJ5/0ji1aJJUvL733nhQT41xsAFLeqVO2Suuee6QtW2wsKEh6+WXrDF6rlrPxATAZMkjt2knLl0srV0qPPWZjkr2/nz5dqlfPGmN+8oldiASuk99tD5ekVq1a6ciRIxo4cKAOHjyoihUras6cOcqTJ48kaffu3QlWVr788styuVx6+eWXtW/fPt18881q0qSJXn/9daeeAgCkX4cP26qqTz+Vdu5MOBcYKDVpYltC69dnWyiQ3oSFWXmIRx+1bWY7d0rnz9v28e++s387brvN6SgBJLcZM6SePaV9+7xjVapIY8da4gOAb7rrLmnSJOmdd6TPPpNGj/YuQti0SXrqKal/f6lLFzvHixd3Nl74Hb/9NNirVy+Fh4crMjJSK1asUNV4S5MXLlyoCRMmxN0OCgrSoEGDtG3bNp0/f167d+/WqFGjlJ2tBQCQOtxu29bVpo1UsKDVvYmfsCxQQBo8WNq1S/rhB6lhQxKWQHpWt660fr2Vg/BYtsy2jL71ltW/BeD/DhyQWra0XReehGXmzNLIkdLSpSQsAX+RJ4+tit61S5o8WapZ0zt38qQ0YoR0yy22OGHuXLaOI9H4RAgASDknTkjvvy+VKSPVqWNvYuIX1G/UyLaQ7NplNS0LFnQoUAA+J0sW6YMPbIt4yZI2FhlpKzaqV7et5AD8k9ttqyhLl5amTvWON25sq7P69LHdFwD8S3Cw1KqV1ab980+pc2fJ0+DY7ZZ++sne/5cuLY0aJZ0542y88HkkLQEAycvttvo2nTtbwe5nnvHWppKkm2+WXnxR2r7dalo+/LDVrAKAy7nnHmntWunZZ70rsFevlu64Q3rttYQXQgD4vn//tdXU3bpZHUtJypVL+uoradYsOg8DaUWlSlbWZe9e6Y03vM32JOmff6zhXoECdpHi33+dixM+jaQlACB5RERYncrKla2b4IQJ0oUL3vlataRvvrFO4W++SU0bAIkXGioNHy4tWWKrMyRLVg4caPW0/vrL2fgAXFtUlDRsmG35XrjQO/7YY9LmzVLbtjTcA9KiXLmsNNSOHbayunZt79yZM7arolQpW2k9e7Y18wH+H0lLAMCNWb/eun3mz29df+MnD7Jlk3r3tq1ev/8utW7t3SICAElVrZptNxswwLt1dN06S1y+/LJtHwfge1atku68U3rpJe95WrSo9Msv1sQjVy5HwwOQCoKCpObN7aLFunW22jpTJu/8nDnSAw9It95q5aU8K7GRrpG0BAAk3fnz0hdfWJHtChWsU2D8mjRVqth2kP37vTUtASA5ZMxo28xWrPA26YiJkV5/3VZ6r1zpbHwAvM6elfr1swsO69fbWECAlXvYuNEa7wFIf8qXtx1ae/da5/GiRb1z27ZZeakCBazj+ObNTkUJH0DSEgCQeFu32geNggWlDh2ss6dHaKhdMV292pIJnTvbGACkhMqV7d+bwYO9dXE3bbImPS+8YBdXADjnl1+kcuWk997zbvesUMHeIwwfbl3CAaRvOXJIzz1nicrp06V69bxzZ89KH39six8aNJBmzrSLlEhXSFoCAK4uKsrqz9SrZ9s1RoyQjh/3zpcrZ93/9u/31rQEgNSQIYM0aJC0Zo015pEsOfLOO9YAIP6FFQCp4+hRu7B5333Srl02ljGj1bP0bBMHgPgCA60556+/2gXI7t0TXtj49VebL1nSLnqcOOFcrEhVJC0BAJcXHm414goXllq2lH77zTsXEmKF85cs8da0zJbNuVgBpG/ly0vLl9u28QwZbOyff6S775b69rXVGgBSltttHcBLl7YSMh516th7hf79peBgx8ID4CfKlLEVlnv32krtEiW8czt3Ss8/b7u+nnzSykwgTSNpCQDwiomRZs2SHnxQKlbMasQdPOidv+UWu7q5d68Vzq9Rg06fAHxDcLA16PnrL6lqVRtzu6WRI21LavxuxQCS165d1vm3fXtbaSlJ2bNLY8faRc+SJZ2MDoA/yp7daltu3Sr99JPUqJF37tw52+F1++3SvfdK06ZJ0dFORYoURNISAGCJyddfl4oXt4TlrFn2YV+yWnEtWti2jH/+sZqWdPkE4KvKlLFV4O+8Y1tSJWn7dvtQ07NnwqZhAG5MTIxdGChb1mpYerRsac0zHn+ci5sAbkxAgHUVnzNH2rJFevppKWtW7/zChdaVvEQJ6a23pGPHHAsVyY+kJQCkV263NH++fbAoVMi2gu/e7Z0vVEh67TUb++47q2kZwMsGAD8QGGiF/detsy3iHh9/bKsy5s1zLjYgrVi/3hpf9e1rq54k6/Y7fbr07bdS3ryOhgcgDbr1VumDD2zX14cf2m2P3butDEXBgnbBZO1ax8JE8uHTJwCkN8eOWTOd226T6te3Jjue7RQul13J/PFHqxnz8stSvnzOxgsA16tUKen336X335dCQ20sPFxq2FDq1k06dcrZ+AB/dOGC9L//WeO9Vau84z16SH//bc0yACAlhYVJvXrZvzlz5tjnF8+q7gsXpHHjrCHfPffYRZSoKGfjxXUjaQkA6YHbbV10O3SwVRDPPmv1YTzy5JFeeknascNqxjz4oK1UAgB/FxAg9e4tbdhgW8Q9xo61La2zZzsXG+Bvfv/dasS+8Yb3gudtt0mLF0ujRlkiAQBSS0CA1br86Sfp339t5Xf85qB//CG1amW1+ocOlQ4fdi5WXBeSlgCQlp0+LY0eLVWsKNWsad08IyO983Xr2tXH3butpmXRok5FCgApq3hxq807erSUJYuN7dtnqzM6dpSOH3c2PsCXnTwpPfGEdQL3XPQMDpYGDbItmPHLMACAE0qUsN1ke/faa32ZMt65ffukV16x8lcdO0qrVzsXJ5KEpCUApEV//SU9+aSUP79t11q/3jt30012FXLLFm9NywwZnIsVAFJLQID01FPSpk22Rdxj0iRbdTl9umOhAT5r2jSpdGnps8+8Y9Wq2XuNwYOlkBDHQgOAS2TJYq/1GzfaZ52HH/bW5b940V7z77rLavJ+/bWNwWeRtASAtOLcOWn8eKlqVemOO6RPP5XOnvXOV68uTZxoVxpHjEhYuBoA0pPCha0G1uefe7eRHTwoNWsmtWkjHTnibHyAL9i3z86J5s3t/JAsGfDhh7blsmxZZ+MDgKtxuWxX2fTp0vbt0vPP2+INj+XLpXbtpCJF7ALMgQNORYqrIGkJAP5u82bpmWesVmWXLtLKld65LFmk7t1t65anpmWmTE5FCgC+w+WyfzM3bbI6vh6TJ1sy5ttvrR4wkN7ExkpjxtjWyvirjx980Jpe9OpF3WsA/qVoUentt23r+GefSeXLe+cOHpSGDLHkZbt2lszk9d9nkLQEAH8UGWkfrOvUsQ8V779v9aY8KlSwDxz790sff2y3AQCXKlBAmjnTav56VmAcOWKF+1u08K4wA9KDLVuk2rXtgufp0zaWO7e955g50+rBAYC/Cg2Vuna1BR0LF9pKcs9FmKgo2y5evbpUpYptI4/fCwCOuK6k5enTp3Xa8yJ2AyIiIjRz5kzNnDnzhh8LANKFnTulAQPsQ0ObNtbF0yNjRqlTJ7s66KlpmTWrY6ECgN9wuaT27W0V2SOPeMenTbNVl19+yaoLpG0XL1pn3QoVbOu3R+fOtqOjVSs7TwAgLXC57ALN1Knez1c5c3rnV6+2hj2FCkkvv2zlMuCI60paZs+eXTly5NDff/992fn9+/erS5cuevzxx6/6OOHh4WratKkeif/mEACQUHS0NGOG1LixdcV7882E9dZuvVV67z1bVempackHCwBIurx57QPMlClSrlw2dvy49Nhj0kMP8aEFadPy5VLlytZZ19OQonhx6ddfpXHjpBw5nI0PAFJSoULSG2/Y1vHx4603gMeRI9Lrr9vW8UcflRYv5iJmKrvu7eHuq/yPOnHihCZMmKAJEybc8GMBQLq1b5/06qtSsWJS06bWNMLz72VwsK16WLDAW9MyfmFpAMD1cbnsg8nff0utW3vHf/rJVl2OG8cHFqQNZ85IffpINWpYl13Jtkm+8IK0YYNUr56z8QFAavLsWlu9WlqyxD5rBQXZXEyM9N13Uq1altQcN046f97RcNMLaloCgC+JjZVr3jzbnlikiDRokF318yhaVBo2TNqzx1vTklWVAJD8br5Z+uYb6YcfbAWmJJ06JT3+uHTffdLu3c7GB9yI2bOlcuWkDz7wJuErVbJmfm+9ZXXfACA9crnsYs7kyVJ4uK1Cz53bO792rb0XKFRI6t+f9wMpjKQlAPiCkycVMGKE6vXooaAHHrAPyTExNhcQYNsSZ8+Wtm2zF8c8eZyNFwDSi6ZNrcN4hw7esblzbdXlmDHWaRnwF4cPS23bSg884P2gnSmT9M47lrCMvy0SANK7/Plt59vu3dawr0oV79yxY3aRp1gxW3CycCE7MVIASUsAcNKOHbY1q2BBBfbvryzxu9TmyycNHCjt2uWtaenpbgcASD05ckgTJ0qzZlm3cUmKiLAOy/Xr27/lgC9zu+1vuHRpW0HsUa+ebQV/7jnvNkgAQEIhIdawb8UKqwPcrp2V65Ls4uUPP0j33iuVLy99+ql09qyz8aYhJC0BILW53VYnpXlzqWRJ25oV74Uttn596fvvbTvCkCG29QAA4Lz777dVl127escWLJBuv93+LWfVJXzRjh1Sw4ZWq+34cRu76SZrODFvnjX5AwAkTtWq0pdf2urLIUNsoYnHxo3Sk09KBQvaxaCdO52LM40gaQkAqSU6Wvr2W6l6denuu6Vp07wfcDNlUsyTT2r+qFGKmT3bthh4rt4BAHxHtmzSZ5/ZFvEiRWzs3DlbNV+rlrR1q7PxAR7R0dLw4Va78tdfveOtW1sTv06dqIsNANcrb17vrrhvvrE6mB4nT0rvvmsXhR56yC4QsXX8upC0BICUduqUNGKEvWi1amXbCjzy5pVef13as0exH36oCM+2QwCAb2vQwLbV9ujhHVuyRKpQwRJFnrrEgBP++stWAz3/vLfDbaFC0k8/2YdramMDQPLIkMEuBi1ZIq1ZYxeEQkJszu2WfvzRVruXLSt9/LGVl0GikbQEgJSya5fUr599SHj22YSd5SpUsNpSu3ZJL70k5czpVJQAgOuVNas0apRtES9e3MYuXLBEUY0a0t9/Oxsf0p/z561h3113SX/+aWMul/T001ba4IEHnI0PANKyO+6w0ht79tjClIIFvXObN0s9e1pt7Geekf7917Ew/ckNJS1dbCcAgEstXy49+qitrHzvPenMGe/cAw9I8+fbCogOHbxX4QAA/qtOHWn9evsQ4nl/vHKlVKmS9MYbUlSUk9EhvfjtN6uv+tZb3pW+ZctKS5dazdWsWZ2NDwDSi5tvtoUpO3dK331n5WM8Tp+W3n9fKlXKamX//DM1sa/ihpKW5cqVU2Bg4CVf5cuXj0toXm4+/nEAkCbExEhTp9rKmurV7cXJ8+KTMaMVZN682bZl1a1LDSkASGsyZ7YLVYsX2wcRSbp4Ufrf/6Rq1aR165yND2nX8ePS449bJ/Dt220sQwbp1VdttWW1as7GBwDpVVCQ1KKF9Pvv0tq11sgvY0bv/M8/W+Lyttvs4tLp046F6qtuKGnpdrtv+AsA/NqZM3alrGRJqWVLadky71yePNJrr9n2gDFj7MUIAJC21axpH0xeeEEK+P+32n/+Kd15pzR4sCUygeTgdluDv9KlpXHjvON3321/g6+8YslLAIDzKlSwRn5799qKeE8zP8m2ivfpY1vHe/WStmxxLk4fE3Q9d6pVqxZbwwGkb7t3Sx9+KH366aVXxMqVs1qWbdokvJIGAEgfMmWyDyQtWkidO1stwehoacgQado0q3dVubLTUcKf7dljtdF+/NE7ljWr9Pbb0hNPeBPmAADfkjOnXdh89ln7N/zDD628h2RNekaNUvCoUapeoYJcoaHW+C8du66k5cKFC5M5DADwE6tWWSfw7767tDPsffdZsrJ+fbZ/AwCsGcqaNdLQodKwYfa6sWGDdXV+4QVp4EAubiFpYmOl0aOt2U78DrQPP2xNoQoUcC42AEDiBQZKTZva16ZN0kcfSZMmSefOSZJyr1unmHXr0n3SkktwAHAtMTHSDz9I99wjVakiTZ7sTViGhFhtko0brSZJgwYkLAEAXiEhVipk1SrbGibZa8iwYdZldPlyZ+OD//j7b3sv0quXN2GZN6/V1P7hBxKWAOCvypa1C1J790rvvit38eKKDglRbMeOTkfmOJKWAHAlERG2XL9UKemRR6Q//vDO3Xyz1Sbbvdtqk5Qt61iYAAA/UKmSJS5ffVUKDraxzZutBuZzz0nnzzsbH3xXZKS956hY0TqBe3TrZonM5s25YAoAacFNN0n9+il60yYtevttKXt2pyNynONJy3Pnzundd991OgwA8Nq717ZdFSok9e4t7djhnStTRho71pKVgwZJuXM7FycAwL8EB1tzlDVrrDGPZNt9333XVmEuXuxsfPA9S5dawnvIECkqysZKlpQWLLC62jfd5Gx8AIDkFxioM/Eb9aRjjiUtz5w5o9dff11FixbVCy+84FQYAOD1559S+/ZSsWLWQOHkSe9cgwa2/XvjRunxx6lBBgC4frffLi1bJr35pm0fl6xzaO3adrHs7Fln44PzTp+2beB3320rciUpKEgaMEBat06qU8fR8AAASA2pnrQ8fvy4XnnlFRUpUkQDBw7U0aNHUzsEAPCKjZVmzrQ3/5UrS199ZR1eJSlDBuv6un69NHeuNdph+xUAIDkEBUkvviitXStVq2ZjbreVJbn9dm8nUaQ/M2fazo5Ro+xvQrKVuatXS2+8Yd3pAQBIB24oaRkeHq7evXurTJkyypo1q3LkyKE77rhDw4YN06lTpxIcGxERoUGDBqlo0aJ64403dPLkSbndbuXKlUtDhw69oScBAEl29qz08cfSbbdZx83ff/fO5cxp2/fCw6Vx4+zDIwAAKeG226xm8ogR3mTUzp1SvXrSU0/ZijukDwcPSo8+au9L9u2zsdBQ+9tYvtzbyAkAgHQi6HrvOG/ePDVv3lxn/3/7ivv/rwKuW7dO69at06RJk7RgwQLlzZtXS5YsUbt27bRnz5644woUKKDnnntOTzzxhDJxtRBAatm/31YujBkjHT+ecO7WW6V+/WyLeGioM/EBANKfwECpb1+pSRMrQbJokY1/8ok0e7Y1fGvUyNkYkXLcbmn8eOnZZxOWpmnUyLrJFivmWGgAADjpulZaHjlyRG3atFFERITcbrfcbrcyZ86sbNmyxd3eunWrevbsqUWLFql+/fpxCctixYrpk08+0Y4dO9SnTx8SlgBSx9q1UseOUtGitrUqfsKybl3pp5+sA+cTT5CwBAA445ZbrMHKRx9JmTPb2J49Vp6kSxfpxAln40Py27ZNql/fktWehGXOnNIXX1gtbRKWAIB07LqSlp999pmOHz8ul8ulFi1aaNu2bTpz5oxOnDih/fv3q1evXpKkGTNmqH379oqMjFSWLFn04Ycf6p9//lG3bt0UHBycrE8EAC4RGyvNmmVb7CpVkiZN8nbeDA6WOnSQ/vpLmj9feuABKcCx3mQAAJiAAKlnT2v8Vr++d3z8eKlsWenHH52LDcknKsqa/v23fmn79tZ4p3176mgDANK969oePnfuXElStWrV9O233yaYy5s3rz744AOdOXNGEydO1N69e5U9e3YtXrxYZcuWvfGIAeBazp2zFQrvvSf980/CuZtukrp3tw+E+fM7Ex8AANdStKg1gRs71rYNnzkjHTggPfSQ1K6d9P77tiIP/mfNGqlrV9sF4lGkiJWuue8+x8ICAMDXXNeyoi1btsjlcqlHjx5XPKZ3796SJJfLpd69e5OwBJDyDh60BjqFC1vzgvgJy5IlrfHOnj3S66+TsAQA+D6XS+rWTdq0SWrc2Dv+1VfWXfr7752LDUl39qz03HNSlSrehGVAgNUz3biRhCUAAP9xXUnLE/9fT+eWW2654jElS5aM+/6ee+65nh8DAImzYYPV+ipSRBo6VDp2zDtXu7Y0Y4a0ZYutsPTUCAMAwF8UKmTlTiZMkLJnt7HDh6UWLazb9OHDTkaHxJg3z7aCv/uula+R7PayZdYdPEsWZ+MDAMAHXVfSMur/a8JlzZr1isdkiffCmzdv3uv5MQBwZW63NGeO1LChVL681fq6eNHmgoJs69zq1dLChbaVjnqVAAB/5nJZQ7lNm+x1zeO772zV5Tff2GsjfMuxY/b/rWFDaedOGwsJsV0fa9bYqksAAHBZqfIp3kURaQDJ5cIFq+9VrpxtlZs3zzuXPbv04ov2oeDLL6XKlR0LEwCAFJE/vzR9uvT1196alseOSW3bSs2aWd1LOM/ttv9HpUtbI0CP2rWl9eull16ypoAAAOCKWHoEwD8cPiwNHmz1Krt1k/7+2ztXooT04YdWr/LNN6WCBR0LEwCAFOdySW3a2Gthy5be8RkzbNXlxImsunRSeLj0wAO26+PIERvLlk369FPrFF6qlLPxAQDgJ66re7hH586dlTkR9eGudZzL5dL8+fNvJBQAadWmTdLIkdYNPDIy4dw990j9+klNmkiBgY6EBwCAY3Lnlr791hry9OhhF/hOnpQ6dZKmTLEkGRfyUk9MjDRqlK2iPHvWO968uV1czZfPudgAAPBDN5S0XL169VXnPdvCr3ac2+1m+ziAhNxu6ddfrTD9nDkJ5wIDbVVJ377UgQIAQLKkWJ06Up8+1llckn7+WSpbVho+XOra1VZnIuVs2GA7QVas8I7lz29JzKZNHQsLAAB/dt3bw91ud7J8AUCcyEhrqFO+vBWsj5+wDAuTnntO2rHDmg2QsAQAwCtnTqvnPGOGd0Xf6dPSE0/Ya+quXY6Gl2ZduCC98op0xx0JE5ZPPWXb90lYAgBw3a4raRkbG5usXzExMcn9vAD4kyNHpNdek4oUkbp0kTZu9M4VLWrbw/fuld55x2paAgCAy3voIUuWde7sHfv1V2tgN2qUFBvrXGxpzeLFUsWK0tChUnS0jd16q7RokTR6tNWxBAAA141GPACcs2WL9OSTlogcOFA6dMg7V6OGNHWq9O+/tt0ta1bn4gQAwJ9kzy6NG2dbxAsVsrGzZ6VevaS6daVt2xwNz++dOmUrKWvVkv75x8aCgmzF5dq1VnMbAADcMJKWAFKX222dMx98UCpd2poEXLhgcwEBVq9y2TJpyRKr0RV0Q6V3AQBIv+67z3YvPPmkd+z3360My3vvWeMYJM0PP9j7l08+8Y5VrSr9+af06qtSxozOxQYAQBpD0hJA6rh4UZo0SapUSapXT5o1yzuXNas11tm+3bqgVqvmXJwAAKQlYWHSmDG2RbxoURs7f17q189WBG7Z4mh4fmP/fruY+sgj0oEDNpY5s/T++3ah9fbbnY0PAIA06LqWML366qvJHYcGDhyY7I8JwAccO2arET76yPsm36NwYdv6/fjj1H0CACAl1atnHa5fekn68EMbW7bMajIOGSI9+yy7Gy4nNlYaO1Z64QXbFu5x//3Sxx9bPW4AAJAiruudyeDBg+VyuZI1EJKWQBqzdas10JkwwVZ0xFelin04euQRPiABAJBasmSRPvjASrF06WK1LSMjpf79rY70+PHWsAfmn3+s+/qiRd6xm2+21ZWtW0vJ/HkIAAAkdN3bw91ud7J9AUgj3G6rlfXQQ9Jtt1nnTE/CMiDAtlUtWSItXy49+igJSwAAnHDPPdK6dXYBMeD/Pw6sXi3dcYf02mtSVJSz8TktKkp64w2pQoWECcuOHaXNm6U2bUhYAgCQCq4rY7BgwYLkjgOAP7t4UfruO2nECCtEH1/mzLb9u08fqXhxZ+IDAAAJhYZKw4dLLVpInTtbbcuoKGngQGnaNOs+XqmS01GmvpUrpa5dbSu9R7FiVuqmQQPn4gIAIB26rqRl7dq1kzsOAP7oxAnr/v3hh9K+fQnnChaUeveWunWTsmd3JDwAAHAN1apJf/1lna/ffts6iq9da6Vc+veXXn5ZCglxOsqUFxEhvfKKbf327AQLCLCGRYMH20VYAACQqugeDiDptm2Tnn7aEpP9+ydMWFauLH39tbRjh/T88yQsAQDwdRkz2nboFSu8XbCjo6WhQ+11fdUqZ+NLaXPmWC3PkSO9CcuKFW3V5TvvkLAEAMAhJC0BJI7bLS1eLDVrJpUqZd3Az52zOZdLatrU6j6tWmW1noKDHQ0XAAAkUeXKVtty0CBv3elNm2w15osvShcuOBtfcjtyRGrfXmrcWAoPt7GMGaU337SEZeXKzsYHAEA6R9ISwNVFRUmTJ9s2sVq1pOnTvasQQkOlXr2sU/gPP1hhfwrTAwDgvzJksO3Qq1d7a1rGxtrW8YoVpaVLnYwuebjd0hdfSKVLS1995R2/916rZfnii1x8BQDAB5C0BHB5J09agf4SJWzl5OrV3rn8+aVhw6Q9e6ye5S23OBYmAABIARUq2Hbx11+3RKYk/fOPdPfdUt++3t0W/mbnTum++6QOHaRjx2wse3bp88+l+fN5TwMAgA8haQkgoZ07pWeekQoVspqUe/Z45ypWtJUJO3daLcscOZyKEgAApLTgYOmll6Q//7QdF5KtUhw5UipfXvr9d0fDS5LoaGnECKtdOXeud/zRR6XNm6UuXdgtAgCAjyFpCcA+gCxdKrVoYSsM3n/fumh6NGkiLVhgH1rat/euuAAAAGlf2bL2PuGdd6zmoyRt3y7VqSP17CmdOeNoeNe0bp1Uvbr07LPeFaIFC0ozZ0pTpkh58zobHwAAuCySlkB6Fh0tffutvZGvWVP6/nurWyVJmTJJ3btLW7bYm/o6dViBAABAehUYKD33nCUAa9b0jn/8sXUc//VX52K7kvPnbaWop8GQZO9leva0BkNNmjgbHwAAuCqSlkB6dPq09N57tqqyVSurWeWRN680dKi0e7d9ELn1VufiBAAAvqVUKWnRItuVERpqY+HhUoMGUrdu0qlTzsbnsWCBbWEfNkyKibGx0qWlP/6QPvpICgtzNj4AAHBNJC2B9CQ83LZGFSwo9etntz3Kl5cmTJB27ZL+9z8pVy6nogQAAL4sIEDq3Vtav952YniMHWtbyWfPdiw0nThhydO6daVt22wsONg6ov/1l1SjhnOxAQCAJCFpCaQHK1bYisrixa0IffzaU/ffb1u61q6VOnaUQkIcCxMAAPiREiWs4/bo0VKWLDa2b5/0wAP2nuL48dSLxe2Wpk611ZRjx3rHq1e39ziDBvEeBwAAP0PSEkirYmKsRmXNmlK1ala70lOvMmNG6YknpL//lmbNkurVo14lAABIuoAA6amnpI0bpYYNveOTJtmqyxkzUj6GffukZs2kli2lQ4dsLGtWadQo2w5epkzKxwAAAJIdSUsgrTlzxupMlSxp3cCXLvXO5c4tvfqq1av85BNbjQAAAHCjihSR5syRPv9cypbNxg4elJo2ldq0kY4eTf6fGRtrqzxLl06YHG3SxBrt9OhhSVUAAOCXeBUH0oo9e6QXXpAKFZKeeUbaudM7V7asfYgID5deeUW6+WbHwgQAAGmUyyV16WIJwwce8I5PnmyrHb/7Lvl+1ubNUq1alpj0lL3Jndt2lsyYYe+HAACAXyNpCfi71aultm2lYsWkd95J2LWzUSPpl1+kDRvsQ0TGjM7FCQAA0ocCBaQff5S++EK66SYbO3JEevRR2wXi2cJ9PS5etF0jFStKS5Z4x7t0sURmy5aUvAEAII0gaQn4o5gYafp0W2Fw113SN9/YmCRlyCA9/rglKufMsfpSvHkHAACpyeWS2re3+tnNmnnHv//eVl1++aU1z0mKZcukO+6wpjoXL9qYpxnQ559LOXIkX/wAAMBxJC0BfxIRIX30kXTrrfYBYPFi71yuXPYmfvdu65pZrpxzcQIAAEhS3ryWqJwyxd6rSNZV/LHHpIcesiY613LmjPT009ZccNMmGwsMlF580S7S1q2bcvEDAADHkLQE/MHevVL//laf6emnpe3bvXOlS0uffWbJysGDpTx5HAsTAADgEi6XbQ3/+2+pVSvv+E8/Wd3t8eOvvOryp59sZeZHH3mPqVxZWrVKevNNKVOmlI8fAAA4wm+TlqNGjVLRokWVMWNGVa1aVStXrrzq8SdPnlTPnj2VL18+hYSEqFSpUpo9e3YqRQtcpz//tJUIxYpJb70lnTzpnatfX5o9W9q4UeralTftAADAt918szXlmTbNe5H11CmrR9m4sV2A9Th0SGrd2jqB791rY5kyScOHS8uXS5UqpX78AAAgVQU5HcD1mDJlivr166cxY8aoatWqGjlypBo1aqR//vlHuXPnvuT4ixcvqkGDBsqdO7emTp2qAgUKKDw8XNmzZ0/94IFriY2VZs2SRoyQFi5MOBccLLVrJ/XtK5Uv70h4AAAAN6RZM6l2bemZZ6xZj2SNA8uVU8Cbb6rQli0K6txZOnHCe58GDaQxY6TixR0JGQAApD6/TFqOGDFC3bp1U+fOnSVJY8aM0axZszRu3Dj179//kuPHjRun48ePa+nSpQoODpYkFS1aNDVDBq7t3Dlp4kTpvfekf/9NOJczp9S9u9Sjh5QvnzPxAQAAJJccOaRJk2y7+JNPWm3LM2cU2LOn7vjvce+9ZztPaCwIAEC64ndJy4sXL2rNmjUaMGBA3FhAQIDq16+vZcuWXfY+M2fOVPXq1dWzZ0/NmDFDN998s9q2basXX3xRgYGBl71PZGSkIiMj426fPn1akhQVFaWoqKhkfEa+w/O80urz81n79ytg9GgFfPaZXMePJ5hylyql2D59FNuunRQaaoP8/0mzOAcB53EeAqmsYUNp7VoFvviiAsaNSzAV27q1YoYPl3LnlqKjHQoQSF94HQScl9bPw6Q8L79LWh49elQxMTHK859mI3ny5NGWLVsue58dO3bot99+U7t27TR79mxt27ZNPXr0UFRUlAYNGnTZ+wwbNkxDhgy5ZHzu3LkK9SSP0qh58+Y5HUK6ELZzp0rMnKmCixcr4D9vxI/cfru2P/ywDt1xhxQQcOk2caRpnIOA8zgPgVT20EO6uXBhlfv/xOWmDh10+M47pdWrHQ4MSJ94HQScl1bPw3PnziX6WJfbfaVWfb5p//79KlCggJYuXarq1avHjb/wwgv6/ffftWLFikvuU6pUKV24cEE7d+6MW1k5YsQIvfPOOzpw4MBlf87lVloWKlRIR48eVVhYWDI/K98QFRWlefPmqUGDBnHb6JHMYmPl+uUXBbz/vgJ++y3BlDsoSO5WrRTTuzfF5dMpzkHAeZyHgLM4BwFncQ4Czkvr5+Hp06eVK1cunTp16pr5Nb9baZkrVy4FBgbq0KFDCcYPHTqkvHnzXvY++fLlU3BwcIKt4KVLl9bBgwd18eJFZciQ4ZL7hISEKCQk5JLx4ODgNPlHE196eI6p7vx5KzT/3nvSf1cE33ST9NRTcvXsKVeBAgpwJkL4EM5BwHmch4CzOAcBZ3EOAs5Lq+dhUp6T3+VHMmTIoMqVK2v+/PlxY7GxsZo/f36ClZfx1axZU9u2bVNsbGzc2NatW5UvX77LJiyBZHPwoDRwoFS4sBWZj5+wvOUWadQoac8e6Y03pAIFnIsTAAAAAADAh/hd0lKS+vXrp88++0wTJ07U5s2b1b17d509ezaum3iHDh0SNOrp3r27jh8/rj59+mjr1q2aNWuW3njjDfXs2dOpp4C0bsMGqUsXqUgR6bXXpKNHvXO1a0szZlgCs0cPKXNm5+IEAAAAAADwQX63PVySWrVqpSNHjmjgwIE6ePCgKlasqDlz5sQ159m9e7cCArz52EKFCumXX35R3759Vb58eRUoUEB9+vTRiy++6NRTQFrkdktz50rvviv9t2BuUJD06KNSv35S5crOxAcAAAAAAOAn/DJpKUm9evVSr169Lju38DKdlqtXr67ly5encFRIly5ckL76ShoxQvr774Rz2bLZtvBevaRChZyJDwAAAAAAwM/4bdIScNzhw9Lo0VaX8siRhHPFi0vPPCN17ixlyeJIeAAAAAAAAP6KpCWQVH//bV3Av/hCioxMOHf33bYF/KGHpHjd6gEAAAAAAJB4JC2BxHC7pV9/tS3gc+YknAsMlFq0sGRllSrOxAcAAAAAAJCGkLQEriYyUvrmG0tWbtiQcC4sTOrWTXr6aesSDgAAAAAAgGRB0hK4nKNHpTFjpI8+kg4dSjhXpIjVq+zSxRKXAAAAAAAASFYkLYH4tmyRRo6UJk60ruDxVa9uW8CbNpWCOHUAAAAAAABSCpkXwO2WFiywLeCzZiWcCwiQmjeX+va1pCUAAAAAAABSHElLpF8XL0qTJ1uyct26hHNZskhdu0q9e0vFijkTHwAAAAAAQDpF0hLpz/Hj0iefSB9+KB04kHCuUCGpTx9LWGbL5kx8AAAAAAAA6RxJS6Qf//5r9SonTJDOnUs4d9dd0rPP2lZw6lUCAAAAAAA4iuwM0ja3W1q0yLaA//ij3fZwuaRmzay5To0adhsAAAAAAACOI2mJtCkqSvr2W0tW/vlnwrnMmaXHH7d6lSVKOBMfAAAAAAAAroikJdKWEyekzz6TPvhA2rcv4VyBApao7NZNuukmZ+IDAAAAAADANZG0RNqwfbv0/vvSuHHS2bMJ5+64w+pVtmwpBQc7Ex8AAAAAAAASjaQl/JfbLS1ZYlvAp0+/tF7lQw9Zvcp77qFeJQAAAAAAgB8haQn/ExUlff+9JStXrUo4Fxoqde4s9ekjlSzpTHwAAAAAAAC4ISQt4T9OnfLWq9yzJ+Fc/vzS009LTzwh5cjhTHwAAAAAAABIFiQt4ft27rRE5dixUkREwrmKFW0LeKtWUoYMjoQHAAAAAACA5EXSEr5r2TLbAj5tmhQbm3DuwQctWVmnDvUqAQAAAAAA0hiSlvAt0dHSDz9YsnL58oRzGTNKnTpJzzwj3XqrE9EBAAAAAAAgFZC0hG84fVr6/HPp/fel8PCEc3nzSr16SU8+KeXK5Ux8AAAAAAAASDUkLeGs8HCrV/nZZ9KZMwnnbr9devZZqXVrKSTEmfgAAAAAAACQ6khawhkrV9oW8KlTpZiYhHONG1u9ynr1qFcJAAAAAACQDpG0ROqJiZFmzLBk5ZIlCedCQqQOHaxeZZkyjoQHAAAAAAAA30DSEinvzBlp/Hhp5Ehp586Ec7lzSz17Sk89Zd8DAAAAAAAg3SNpiZSzZ4/04YfSp59Kp04lnCtTxraAt2tnXcEBAAAAAACA/0fSEslv9WrbAv7tt5fWq2zY0JKVDRtSrxIAAAAAAACXRdISySMmRvrpJ0tWLlqUcC5DBql9e6lvX6lcOWfiAwAAAAAAgN8gaYkbc/asNGGC1avcti3hXK5cUo8e9pUnjxPRAQAAAAAAwA+RtMT12bdP+ugj6ZNPpBMnEs7ddpttAW/fXsqUyZn4AAAAAAAA4LdIWiJp/vrLtoBPnixFRyecq1fPkpX33ScFBDgTHwAAAAAAAPweSUtcW2ysNHu29O670sKFCeeCg6W2ba1eZYUKjoQHAAAAAACAtIWkJa7s3Dlp0iTpvfekrVsTzuXIIXXvLvXsKeXL50x8AAAAAAAASJNIWuJSBw5In34qjR4tHT+ecK5UKVtV2aGDFBrqTHwAAAAAAABI00hawmvdOlV6/30F/fGHFBWVcO7ee61e5f33U68SAAAAAAAAKYqkJaQzZ6RHHlHwr7+qcPzxoCCpdWtbWXnHHU5FBwAAAAAAgHSGpCWkLFmk06fjbrqzZ5frqaekXr2kAgUcDAwAAAAAAADpEft8IblcUr9+cpcoofVPPKHoHTukYcNIWAIAAAAAAMARJC1hWrRQ9MaN2nn//bbyEgAAAAAAAHAI28NhAgOl2FinowAAAAAAAABYaQkAAAAAAADAt5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8JcjoA+I5q1aopPDxcGTNmdDoUIN26cOEC5yDgMM5DwFmcg4CzOAcB5124cEFFihTRmjVrnA7FUSQtEefQoUM6duyY02EAAAAAAACka1w8IGmJePLkycNVNcBhnIOA8zgPAWdxDgLO4hwEnHfhwgXlyZPH6TAcR9IScZYvX67Zs2fr/vvvV3BwsNPhAOlOVFQU5yDgMM5DwFmcg4CzOAcB58U/D9M7GvEAAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBTSFoCAAAAAAAA8CkkLQEAAAAAAAD4FJKWAAAAAAAAAHwKSUsAAAAAAAAAPoWkJQAAAAAAAACfQtISAAAAAAAAgE8haQkAAAAAAADAp5C0BAAAAAAAAOBT/DppOWrUKBUtWlQZM2ZU1apVtXLlykTdb/LkyXK5XGratGnKBggAAAAAAAAgyfw2aTllyhT169dPgwYN0p9//qkKFSqoUaNGOnz48FXvt2vXLj333HO65557UilSAAAAAAAAAEnht0nLESNGqFu3burcubPKlCmjMWPGKDQ0VOPGjbvifWJiYtSuXTsNGTJExYsXT8VoAQAAAAAAACRWkNMBXI+LFy9qzZo1GjBgQNxYQECA6tevr2XLll3xfq+++qpy586txx9/XIsXL77qz4iMjFRkZGTc7dOnT0uSoqKiFBUVdYPPwDd5nldafX6Ar+McBJzHeQg4i3MQcBbnIOC8tH4eJuV5+WXS8ujRo4qJiVGePHkSjOfJk0dbtmy57H3++OMPff7551q7dm2ifsawYcM0ZMiQS8bnzp2r0NDQJMfsT+bN+7/27j3K6rLeH/h7YJgZFRCVuyBKHSUVxMALURmK92Vx8pahICetU3JMWZULT4pGhWXmPU1L7aRmmpfqLKQQBa0wBcWDeqxTamZx0TAFLBiZ/fvDH7sZ5yIQsr/DvF5rzVp7vs/zfL+fPXs/a7HePN/vM7vSJUCHZg5C5ZmHUFnmIFSWOQiVt7XOw9dff32D+7bL0HJjrVy5Mqecckquv/769OzZc4PGTJ06NVOmTCn//tprr2XgwIE57LDD0r1793eq1Iqqr6/P7Nmzc+ihh6ZLly6VLgc6HHMQKs88hMoyB6GyzEGovK19Hq6/k3lDtMvQsmfPnuncuXOWLVvW5PiyZcvSt2/fZv1///vf5/nnn88xxxxTPtbQ0JAkqa6uzm9+85u8613vajKmtrY2tbW1zc7VpUuXrfJL01hHeI9QZOYgVJ55CJVlDkJlmYNQeVvrPNyY99QuN+KpqanJiBEjMmfOnPKxhoaGzJkzJ6NGjWrWf8iQIVm8eHEWLVpU/vnwhz+cMWPGZNGiRRk4cOCWLB8AAAAAaEO7XGmZJFOmTMnEiRMzcuTI7L///rnsssuyevXqTJo0KUkyYcKE7LzzzpkxY0bq6uqy9957Nxnfo0ePJGl2HAAAAACorHYbWp544ol56aWXcv7552fp0qUZPnx4Zs2aVd6c54UXXkinTu1yISkAAAAAdGjtNrRMksmTJ2fy5Mktts2dO7fNsTfddNPmLwgAAAAA+KdZiggAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFDadWh59dVXZ9ddd01dXV0OOOCAPPLII632vf766/OBD3wgO+ywQ3bYYYeMHTu2zf4AAAAAQGW029Dyhz/8YaZMmZJp06blscceyz777JPDDz88y5cvb7H/3Llzc9JJJ+WBBx7I/PnzM3DgwBx22GH505/+tIUrBwAAAADa0m5Dy29+85s5/fTTM2nSpOy555659tprs+222+aGG25osf8tt9ySz3zmMxk+fHiGDBmS73znO2loaMicOXO2cOUAAAAAQFuqK13Apli7dm0WLlyYqVOnlo916tQpY8eOzfz58zfoHK+//nrq6+uz4447tti+Zs2arFmzpvz7a6+9liSpr69PfX39P1F9ca1/X1vr+4OiMweh8sxDqCxzECrLHITK29rn4ca8r3YZWr788stZt25d+vTp0+R4nz598swzz2zQOc4555z0798/Y8eObbF9xowZufDCC5sd//nPf55tt91244tuR2bPnl3pEqBDMweh8sxDqCxzECrLHITK21rn4euvv77BfdtlaPnPuuiii3Lbbbdl7ty5qaura7HP1KlTM2XKlPLvr732Wvk5mN27d99SpW5R9fX1mT17dg499NB06dKl0uVAh2MOQuWZh1BZ5iBUljkIlbe1z8P1dzJviHYZWvbs2TOdO3fOsmXLmhxftmxZ+vbt2+bYb3zjG7noooty3333ZdiwYa32q62tTW1tbbPjXbp02Sq/NI11hPcIRWYOQuWZh1BZ5iBUljkIlbe1zsONeU/tciOempqajBgxoskmOus31Rk1alSr477+9a9n+vTpmTVrVkaOHLklSgUAAAAANlK7XGmZJFOmTMnEiRMzcuTI7L///rnsssuyevXqTJo0KUkyYcKE7LzzzpkxY0aS5Gtf+1rOP//83Hrrrdl1112zdOnSJEnXrl3TtWvXir0PAAAAAKCpdhtannjiiXnppZdy/vnnZ+nSpRk+fHhmzZpV3pznhRdeSKdO/1hIes0112Tt2rU57rjjmpxn2rRpueCCC7Zk6QAAAABAG9ptaJkkkydPzuTJk1tsmzt3bpPfn3/++Xe+IAAAAADgn9Yun2kJAAAAAGy9hJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAAqlXYeWV199dXbdddfU1dXlgAMOyCOPPNJm/zvuuCNDhgxJXV1dhg4dmpkzZ26hSgEAAACADdVuQ8sf/vCHmTJlSqZNm5bHHnss++yzTw4//PAsX768xf6/+tWvctJJJ+UTn/hEHn/88YwbNy7jxo3Lk08+uYUrBwAAAADa0m5Dy29+85s5/fTTM2nSpOy555659tprs+222+aGG25osf/ll1+eI444Ip///Ofznve8J9OnT8973/veXHXVVVu4cgAAAACgLdWVLmBTrF27NgsXLszUqVPLxzp16pSxY8dm/vz5LY6ZP39+pkyZ0uTY4YcfnnvuuafF/mvWrMmaNWvKv7/66qtJkhUrVqS+vv6ffAfFVF9fn9dffz1/+ctf0qVLl0qXAx2OOQiVZx5CZZmDUFnmIFTe1j4PV65cmSQplUpv27ddhpYvv/xy1q1blz59+jQ53qdPnzzzzDMtjlm6dGmL/ZcuXdpi/xkzZuTCCy9sdny33XbbxKoBAAAAgJUrV2b77bdvs0+7DC23hKlTpzZZmdnQ0JAVK1Zkp512SlVVVQUre+e89tprGThwYP74xz+me/fulS4HOhxzECrPPITKMgehssxBqLytfR6WSqWsXLky/fv3f9u+7TK07NmzZzp37pxly5Y1Ob5s2bL07du3xTF9+/bdqP61tbWpra1tcqxHjx6bXnQ70r17961yYkB7YQ5C5ZmHUFnmIFSWOQiVtzXPw7dbYbleu9yIp6amJiNGjMicOXPKxxoaGjJnzpyMGjWqxTGjRo1q0j9JZs+e3Wp/AAAAAKAy2uVKyySZMmVKJk6cmJEjR2b//ffPZZddltWrV2fSpElJkgkTJmTnnXfOjBkzkiSf/exnc9BBB+WSSy7J0Ucfndtuuy0LFizIddddV8m3AQAAAAC8RbsNLU888cS89NJLOf/887N06dIMHz48s2bNKm+288ILL6RTp38sJH3f+96XW2+9NV/84hdz7rnn5l/+5V9yzz33ZO+9967UWyic2traTJs2rdlt8cCWYQ5C5ZmHUFnmIFSWOQiVZx7+Q1VpQ/YYBwAAAADYQtrlMy0BAAAAgK2X0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJbkwQcfzDHHHJP+/funqqoq99xzT6VLgg5lxowZ2W+//dKtW7f07t0748aNy29+85tKlwUdxjXXXJNhw4ale/fu6d69e0aNGpV777230mVBh3XRRRelqqoqZ511VqVLgQ7jggsuSFVVVZOfIUOGVLos6FD+9Kc/5eSTT85OO+2UbbbZJkOHDs2CBQsqXVZFCS3J6tWrs88+++Tqq6+udCnQIc2bNy9nnHFGHn744cyePTv19fU57LDDsnr16kqXBh3CgAEDctFFF2XhwoVZsGBBDj744HzkIx/JU089VenSoMN59NFH8+1vfzvDhg2rdCnQ4ey1115ZsmRJ+ecXv/hFpUuCDuOVV17J6NGj06VLl9x77715+umnc8kll2SHHXaodGkVVV3pAqi8I488MkceeWSly4AOa9asWU1+v+mmm9K7d+8sXLgwH/zgBytUFXQcxxxzTJPfv/KVr+Saa67Jww8/nL322qtCVUHHs2rVqowfPz7XX399vvzlL1e6HOhwqqur07dv30qXAR3S1772tQwcODA33nhj+dhuu+1WwYqKwUpLgIJ59dVXkyQ77rhjhSuBjmfdunW57bbbsnr16owaNarS5UCHcsYZZ+Too4/O2LFjK10KdEj/93//l/79+2fw4MEZP358XnjhhUqXBB3GT37yk4wcOTLHH398evfunX333TfXX399pcuqOCstAQqkoaEhZ511VkaPHp2999670uVAh7F48eKMGjUqf//739O1a9fcfffd2XPPPStdFnQYt912Wx577LE8+uijlS4FOqQDDjggN910U/bYY48sWbIkF154YT7wgQ/kySefTLdu3SpdHmz1nn322VxzzTWZMmVKzj333Dz66KM588wzU1NTk4kTJ1a6vIoRWgIUyBlnnJEnn3zSM4RgC9tjjz2yaNGivPrqq/nRj36UiRMnZt68eYJL2AL++Mc/5rOf/Wxmz56durq6SpcDHVLjx4UNGzYsBxxwQAYNGpTbb789n/jEJypYGXQMDQ0NGTlyZL761a8mSfbdd988+eSTufbaazt0aOn2cICCmDx5cv77v/87DzzwQAYMGFDpcqBDqampybvf/e6MGDEiM2bMyD777JPLL7+80mVBh7Bw4cIsX748733ve1NdXZ3q6urMmzcvV1xxRaqrq7Nu3bpKlwgdTo8ePbL77rvnd7/7XaVLgQ6hX79+zf6z/D3veU+Hf0yDlZYAFVYqlfIf//EfufvuuzN37lwPXIYCaGhoyJo1aypdBnQIhxxySBYvXtzk2KRJkzJkyJCcc8456dy5c4Uqg45r1apV+f3vf59TTjml0qVAhzB69Oj85je/aXLst7/9bQYNGlShiopBaElWrVrV5H/QnnvuuSxatCg77rhjdtlllwpWBh3DGWeckVtvvTU//vGP061btyxdujRJsv3222ebbbapcHWw9Zs6dWqOPPLI7LLLLlm5cmVuvfXWzJ07Nz/72c8qXRp0CN26dWv2HOftttsuO+20k+c7wxbyuc99Lsccc0wGDRqUP//5z5k2bVo6d+6ck046qdKlQYdw9tln533ve1+++tWv5oQTTsgjjzyS6667Ltddd12lS6sooSVZsGBBxowZU/59ypQpSZKJEyfmpptuqlBV0HFcc801SZIPfehDTY7feOONOfXUU7d8QdDBLF++PBMmTMiSJUuy/fbbZ9iwYfnZz36WQw89tNKlAcAW8eKLL+akk07KX/7yl/Tq1Svvf//78/DDD6dXr16VLg06hP322y933313pk6dmi996UvZbbfdctlll2X8+PGVLq2iqkqlUqnSRQAAAAAArGcjHgAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAABoh3bddddUVVXl1FNPrXQpAACbndASAGAjfepTn0pVVVWqqqpy//33b9TYn//85+Wxn/3sZ9+hCgEAoH0TWgIAbKQJEyaUX998880bNfb73/9+i+eplLlz55ZD1Llz51a6HAAASCK0BADYaKNHj8673vWuJMmdd96Zv/3tbxs0bvXq1bn77ruTJHvttVdGjBjxjtUIAADtmdASAGATnHLKKUmS1157LT/+8Y83aMxdd92V1atXNxkPAAA0J7QEANgEp5xySqqqqpJs+C3i628N79SpU04++eR3rDYAAGjvhJYAAJtg8ODBGT16dJLkZz/7WZYvX95m/z//+c+ZM2dOkuTggw/Ozjvv3KzPPffck+OPPz677LJL6urq0qNHj4wcOTIXXnhhXnnllQ2qa+bMmTn55JMzePDgbLfddqmrq8tuu+2WY489NjfddFNef/31JMnzzz+fqqqqjBkzpjx2zJgx5edbrv+56aabml1j7dq1+da3vpUxY8akV69eqampSd++fXPUUUfl5ptvTkNDQ6v1nXrqqamqqsquu+6aJFmyZEnOOeec7LXXXunWrdtGP1uzpWdy3n777TnkkEPSq1evbLPNNtljjz3yhS98IStWrGj1PB/60IdSVVWVD33oQ21e74ILLihfryXr2y644IIkyQMPPJBx48alf//+2WabbfKe97wn06dPL6+4XW/mzJk56qijyv323HPPzJgxI2vXrt3gv8Wjjz6ak046KQMHDkxdXV0GDhyYSZMm5Zlnntmg8b/73e9y9tlnZ+jQodl+++2zzTbbZPDgwTn11FOzYMGCVse99TNoaGjIDTfckDFjxqRPnz7p1KmTHc4BgI1XAgBgk1x33XWlJKUkpcsvv7zNvhdffHG573/91381aVuxYkXp4IMPLre39NO7d+/S/PnzWz3/yy+/XDrkkEPaPEeS0o033lgqlUql55577m37Nu6/3nPPPVcaMmRIm2Pe//73l/7yl7+0WOfEiRNLSUqDBg0qzZ8/v9SzZ89m4x944IG3/duv98ADD5THzZkzp3TyySe3Wte73/3u0pIlS1o8z0EHHVRKUjrooIPavN60adPK52vJ+rZp06aVZsyYUaqqqmqxlve9732lVatWlRoaGkpnnnlmqzUfccQRpTfeeKPFaw0aNKiUpDRx4sTSd7/73VJ1dXWL56itrS3dfvvtbb6viy++uNSlS5dW66iqqiqdd955LY5t/Bnce++9pbFjxzYbP3HixDavDwDwVlZaAgBsohNOOCF1dXVJmu4K3pL17V27ds1HP/rR8vE1a9Zk7Nixuf/++9O5c+eccsop+cEPfpCHH344Dz30UL7yla9kp512yvLly3PUUUflD3/4Q7Nzv/766xkzZkx5JeeIESPy7W9/O7/85S+zYMGC3H333Tn77LPTv3//8pidd945ixcvzg033FA+dsMNN2Tx4sVNfsaNG1duX7VqVQ455JDyyr1x48blJz/5SRYsWJA77rgjBx10UJLkF7/4RY455pisW7eu1b/HqlWrcuyxx+bvf/97/vM//zNz587NI488ku9+97vp169fm3/L1px33nm5+eabM27cuNx1111ZuHBhZs6cmaOPPjrJP1YSbgn33ntvpk6dmgMPPDC33nprFixYkFmzZuXII49MkvzqV7/KjBkzcumll+aKK67IkUcemTvvvDMLFy7Mj3/84xx44IFJklmzZuX6669v81qLFi3Kv//7v6d379658sor8+tf/zrz5s3LOeeck9ra2qxZsybjx49vdbXkxRdfnM9//vOpr6/PsGHDcs011+S+++7LggULcsstt2TUqFEplUqZPn16rrjiijZrOeecc3Lfffflwx/+cJPPYP37BgDYYJVOTQEA2rMTTjihvJrsmWeeabHPE088Ue4zYcKEJm3nnntuKUmpR48epQULFrQ4/vnnny/169evlKT08Y9/vFn72WefXT7/GWecUWpoaGjxPGvWrCktXbq0ybHGq+TeboXj5z73uXLfL37xi83aGxoaSuPHjy/3+da3vtWsz/qVlklKXbt2LS1atKjNa76dxvUnKX35y19usa7DDjuslKRUXV1dWr58ebM+m3ulZZLSscce22yV5BtvvFE68MADS0lK3bp1K9XV1ZXOOuusZudZvXp1eSXlsGHDWrzW+vb8/5WrLa0ivf/++8srMPfbb79m7U899VR5heW0adNa/O6sW7euvIK1a9eupRUrVjRpf+tn0NJ3AwBgY1lpCQDwT5gwYUL5dWurLRsfb9x/1apVufrqq5Mk06dPz4gRI1ocP2jQoJx33nlJkjvuuKPJ8xD/+te/5tvf/naSN1dYXn755a0+b7GmpiZ9+vTZkLfVzJo1a/Kd73wnSbLXXnuVn9nYWFVVVb71rW9lp512SpJcddVVbZ7zC1/4QvbZZ59NqqclI0aMyLnnnttiXVOmTEmSvPHGG5k/f/5mu2Zrtt1221x33XXp3Llzk+OdO3fOJz/5ySTJypUr06tXr3z9619vcfzEiROTJP/zP/+TV199tc3rXXLJJenbt2+z42PGjMnpp5+e5M1nXr51teUll1yS+vr6jBw5MtOmTWvxu9OpU6dceeWVqa2tzapVq/KjH/2o1Tp23333Fr8bAAAbS2gJAPBPOPzww8tB4C233JJSqdSkvaGhIbfeemuSZMCAAU02vpk3b145jDruuOPavM4HP/jBJEl9fX0WLlxYPn7//feXN9c588wzm4Vkm8vChQvz17/+Ncmbm+m0dp3u3bvnhBNOSJI8/fTTWbJkSavnHD9+/Gat8eMf/3irgW3jQPjZZ5/drNdtyaGHHpodd9yxxbbGQe1HP/rRdOnS5W37Pffcc61ea4cddshHPvKRVtv/7d/+rfz6vvvua9L205/+NEly7LHHtvq3S5IePXpk6NChSdJm6HviiSe+Y99BAKBjEVoCAPwTqqur8/GPfzzJmzty/+IXv2jSPmfOnPz5z39O8mZI16nTP/751XjVW79+/Zrt3N34Z++99y73Xbp0afn1448/Xn79gQ98YPO+uUaefPLJ8usDDjigzb6N2xuPa6xr164ZPHjw5inu/xsyZEirbY0DxJUrV27W67Zk9913b7WtR48eG92vrZr33XffVFdXt9o+fPjw1NTUJEkWL15cPv6HP/whL730UpJk6tSpbX7/qqqqyt/Xxt+/txo2bFirbQAAG0NoCQDwT2rrFvHWbg1PkuXLl2/S9davrEySl19+ufx6Uzew2RArVqwov+7du3ebfRvfptx4XGONA7nNZdttt221rXFY3NYGQVu6ls1R89t9HtXV1eXQtvHnsTm+f2+1ww47bNI5AQDeqvX/kgUAYIMMHz48Q4cOzeLFi3PHHXeUn/+3evXq3HXXXUnevD15zz33bDKucRD12GOPtXqb8FsNGDBg8xW/Cdq6jXhDuYV489nUz6Px9+/888/P8ccfv0Hjtttuu1bbfK4AwOYitAQA2AwmTJiQz3/+8/nrX/+an/70pznuuONy9913lzfNeesqyyTlDWuSpFevXpsURvbs2bP8esmSJdltt902ofq31/j26mXLlrV5W3Pj24dbe65j0axf1djQ0NBmv8abIBXFsmXL2mx/4403yissG38ejb9/Xbp0afIIAgCASnN7OADAZjB+/PjyKrObb745yT9uDe/SpUtOOumkZmP23Xff8utf/vKXm3Td9773veXXDz744EaP39BVeo0DrV//+tdt9n3kkUdaHFdk3bp1S5K88sorbfb77W9/uyXK2SiLFi3KG2+80Wr7E088kbVr1yZp+nkMHjw422+/fZJN//4BALxThJYAAJtBv379Mnbs2CTJzJkz8+STT2bOnDlJkiOOOCK9evVqNmbs2LHlZxpeccUVzXYe3xBjxowp36575ZVXbvTzGuvq6sqv16xZ02q/ESNGlJ9D+b3vfa/VFYkrV67M7bffniTZc88939HnbG5O61eo/va3v21105uXX345s2fP3pJlbZAVK1aUdwFvyQ033FB+vf47mrx5K/dRRx2VJPn5z3+e//3f/33nigQA2EhCSwCAzWT9LeD19fX52Mc+Vg4QW7o1PHlzM5rJkycnSX71q1/l7LPPbvP25GXLluU73/lOs3N86lOfSpIsXLgwZ511VqvhZ319fbPNVxqHir///e9bvXZtbW1OO+20JG/uCD59+vRmfUqlUiZPnlzeHGj9e2sPDjrooCTJ2rVrc+WVVzZrr6+vz2mnnZa//e1vW7q0DTJlypQWbxOfN29errvuuiRvBs/77bdfk/apU6emc+fOaWhoyHHHHZcXX3yx1WusW7cut9xyS5t9AAA2F8+0BADYTP71X/813bp1y8qVK/PUU08leXM35WOOOabVMV/60pcyb968/PrXv87ll1+euXPn5vTTT8/w4cOz3Xbb5ZVXXslTTz2V++67L/fee2+GDh1aDg/Xmz59embPnp3Fixfnqquuyvz58/OpT30qQ4cOTU1NTV588cU89NBD+cEPfpAvf/nLOfXUU8tjd9lllwwYMCAvvvhivvGNb2TAgAHZY489yre69+nTp3zr9Pnnn5+77rorzz77bC644IIsXrw4kyZNSr9+/fLcc8/lqquuyty5c5Mko0aNyic/+cnN+Nd9Zx199NEZNGhQ/vCHP+S8887Lyy+/nI9+9KOpq6vLU089lSuuuCKPP/54DjzwwDz88MOVLreJffbZJ08//XRGjBiRqVOnZv/998+aNWsyc+bMXHrppXnjjTdSXV2dq6++utnYoUOH5hvf+EbOPvvsPP3009l7773zyU9+MgcffHD69OmTv//973n++eczf/78/OhHP8qSJUuyePHiim8GBQBs/YSWAACbyTbbbJPjjjsuN954Y/nYCSeckNra2lbH1NbWZvbs2Tn11FNz11135YknnmhzhWL37t2bHdt2221z//3359hjj82DDz6YhQsXblRgeO655+Yzn/lMnnvuuXzkIx9p0nbjjTeWQ85u3bplzpw5OfLII/PMM8/kzjvvzJ133tnsfKNHj85PfvKTdrWTdE1NTW6++eYcccQRWb16dS699NJceuml5fbOnTvnsssuy4oVKwoXWg4fPjyTJ0/Opz/96Ra/OzU1Nfne976XAw44oMXxZ511VrbbbrucddZZefXVV3PxxRfn4osvbrFvTU1Nk0cKAAC8U9weDgCwGU2cOLHJ763dGt5Yt27dcuedd+ahhx7Kaaedlj322CPdunVLdXV1dtxxx+y3334544wzMnPmzFafqdizZ8/Mmzcvd911V4477rgMGDAgtbW1qaury+DBg3P88cfnlltuaXFDoE9/+tO58847c9hhh6V3796prm79/7V33XXXPPHEE7nqqqty0EEHZaeddkqXLl3Sp0+fHHHEEfn+97+fBx98sN3sGt7Y+9///ixcuDCnnHJK+vfvny5duqRfv37lMPjMM8+sdImtOu200/LQQw/lhBNOSP/+/VNTU5Odd945EyZMyOOPP56PfexjbY4//fTT8+yzz+bCCy/M6NGj07Nnz1RXV2e77bbL7rvvnmOPPTbXXntt/vSnP+Xd7373FnpXAEBHVlXalCe+AwAAAAC8Q6y0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAofw/AvvugAHJG7YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lib.ire_plot('test', ire2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "v2XXEddTe7LU", + "outputId": "fb9b9404-bbdd-4a32-a0c1-dbc3f11f614f" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVMRJREFUeJzt3Xt8U+X9B/DPSdKm0BulhJbS0nKzXLRoq2KZ/JCBQwREdFiQWVBEN5lDN5UfggMUBt5+zt0cgpepxTJUYPLCMWTAcKBcLQgU5dLSUkoL9A5Nm5zn90dI2qRJSdskJzn5vF+vvqCnJydPUD58z3OeiySEECAiIiJSCY3SDSAiIiLyJBY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREakKixsiIiJSFRY3FFQkScKiRYuUbgYRBRhmR2BhcRMg/vKXv0CSJAwdOrTD19q0aRP/kvpQZWUlwsLCIEkSjh075vScGTNmQJIkp19hYWF25y5duhT33HMP4uLiGLh0TcyOwOXJ7MjPz8dzzz2HG2+8EZGRkejRowfGjRuHffv2+erj+JRO6QaQe3JycpCSkoI9e/bgxIkT6NevX7uvtWnTJvz5z39mSPnI2rVrIUkS4uPjkZOTgyVLljg9T6/XY9WqVS2Oa7Vau+8XLFiA+Ph43HTTTdi8ebNX2kzqwewIXJ7MjlWrVuGdd97B/fffjyeeeAJVVVVYsWIFbrvtNvzzn//E6NGjvfY5lMDiJgCcPn0au3btwmeffYbHH38cOTk5WLhwodLNCnr19fUIDQ2FRtN6B+hHH32Eu+++G8nJyVi9erXLgNLpdPjZz352zfc9ffo0UlJScOHCBRgMhna1nYIDs8M/KZEdU6dOxaJFixAREWE79sgjj2DgwIFYtGiR6oobPpYKADk5OYiJicG4cePw05/+FDk5OS3O2b59OyRJwvbt2+2OFxQUQJIkvP/++wAsXZh//vOfAcCu+9Kqrq4Ov/nNb5CUlAS9Xo/U1FS89tprcLZ5/EcffYSMjAx06tQJXbt2xZQpU1BUVGR3zh133IHrr78eR48exciRI9G5c2f07NkTr7zySovr1dfXY9GiRbjuuusQFhaGHj164L777sPJkyfb3D6j0Yinn34aBoMBkZGRuOeee1BcXOz0z/fs2bN45JFHEBcXB71ej8GDB+Pdd991+uebm5uLBQsWoGfPnujcuTOqq6udXtPqzJkz2LlzJ6ZMmYIpU6bY/rHpiJSUlA69noIHs4PZYZWRkWFX2ABAbGwshg8f7vKRVyBjz00AyMnJwX333YfQ0FBMnToVb731Fvbu3Ytbbrmlzdd6/PHHUVJSgi1btuDDDz+0+5kQAvfccw+2bduGmTNn4sYbb8TmzZvx7LPP4uzZs3jjjTds5y5duhQvvPACHnjgATz66KMoLy/HH//4R/zP//wPDh48iC5dutjOraiowF133YX77rsPDzzwAD755BPMnTsXN9xwA8aOHQsAMJvNGD9+PLZu3YopU6Zgzpw5qKmpwZYtW/Ddd9+hb9++bWrfo48+io8++ggPPvgghg0bhn//+98YN25ciz+P8+fP47bbboMkSfjlL38Jg8GAL774AjNnzkR1dTWeeuopu/NfeuklhIaG4plnnoHRaERoaGirf94ff/wxwsPDMX78eHTq1Al9+/ZFTk4Ohg0b5vT8CxcutDgWGhqKqKioVt+HyBlmB7PjWtlRWlqKbt26tXpOQBLk1/bt2ycAiC1btgghhJBlWSQmJoo5c+bYnbdt2zYBQGzbts3u+OnTpwUA8d5779mOzZ49Wzj7T79+/XoBQCxZssTu+E9/+lMhSZI4ceKEEEKIgoICodVqxdKlS+3OO3z4sNDpdHbHR4wYIQCIDz74wHbMaDSK+Ph4cf/999uOvfvuuwKA+L//+78W7ZJluU3t+/bbbwUA8cQTT9id9+CDDwoAYuHChbZjM2fOFD169BAXLlywO3fKlCkiOjpaXL58WQjR9Ofbp08f2zF33HDDDWLatGm2759//nnRrVs30djYaHfe9OnTBQCnX2PGjHF67fLy8hafh8iK2cHscJUdVv/5z3+EJEnihRdecLtdgYKPpfxcTk4O4uLiMHLkSACW7uCsrCzk5ubCbDZ79L02bdoErVaLX/3qV3bHf/Ob30AIgS+++AIA8Nlnn0GWZTzwwAO4cOGC7Ss+Ph79+/fHtm3b7F4fERFh9zw4NDQUt956K06dOmU79umnn6Jbt2548sknW7TL2vXtbvs2bdoEAC3Oc7yTEkLg008/xYQJEyCEsPssY8aMQVVVFQ4cOGD3munTp6NTp07O/wAdHDp0CIcPH8bUqVNtx6ZOnYoLFy44HQgcFhaGLVu2tPhavny5W+9H1Byzg9nRWnaUlZXhwQcfRO/evfHcc8+51a5AwsdSfsxsNiM3NxcjR47E6dOnbceHDh2K119/HVu3bsVPfvITj71fYWEhEhISEBkZaXd84MCBtp8DwA8//AAhBPr37+/0OiEhIXbfJyYm2j2bB4CYmBgcOnTI9v3JkyeRmpoKnc71/5Lutq+wsBAajQZ9+/a1Oy81NdXu+/LyclRWVuLtt9/G22+/7fQ9y8rK7L7v3bu3y/Y5+uijjxAeHo4+ffrgxIkTACwhlJKSgpycnBZd3VqtVnWD+kgZzI72tS9YsqOurg7jx49HTU0NvvrqqxZjcdSAxY0f+/e//41z584hNzcXubm5LX6ek5NjCyjHALDy9B0aAMiyDEmS8MUXX7SYpgygxV8UZ+cAcDrQ0JdkWQYA/OxnP8P06dOdnpOWlmb3vbt3XkIIfPzxx6irq8OgQYNa/LysrAy1tbWqDBVSHrPDuwI5OxoaGnDffffh0KFD2Lx5M66//vp2XcffsbjxYzk5OejevbtthkJzn332GdatW4e//vWv6NSpE2JiYgBYFn1qznpH0pyrMEtOTsaXX36Jmpoauzuc/Px8288B2Abo9e7dG9ddd127Ppujvn374ptvvkFjY2OLu7e2ti85ORmyLNvu6KyOHz9udz3rbAiz2ezxHpMdO3aguLgYL774ou3u0KqiogKPPfYY1q9f79bUb6K2Yna0r31qzw5ZlpGdnY2tW7fi73//O0aMGOGpZvsf3w/zIXdcvnxZREZGikceecTpz//73/8KACI3N1cIIURlZaXQarXi6aeftjvv/vvvbzEocO7cuQKAqKiosDvXOujud7/7nd3xrKwsu0F3J06cEFqtVjz44IO2AXtWsizbDbAbMWKEGDx4cIv2T58+XSQnJ9u+b8ugwGu17+DBg24PCpwxY4YIDQ0Vhw8fbvG+ZWVltt9bBwWuXbu2xXnOzJw5U4SHh4srV644/Xn//v3FXXfdZft++vTpIjw83K1rW3FAMTnD7LC/Zlvap/bseOKJJwQAsWLFCrfOD2TsufFT//jHP1BTU4N77rnH6c9vu+02GAwG5OTkICsrC9HR0Zg8eTL++Mc/QpIk9O3bFxs3bmzx3BewrHcAWAbNjRkzBlqtFlOmTMGECRMwcuRIzJ8/HwUFBRgyZAj+9a9/YcOGDXjqqadsz6H79u2LJUuWYN68eSgoKMC9996LyMhInD59GuvWrcNjjz2GZ555pk2fNzs7Gx988AF+/etfY8+ePRg+fDjq6urw5Zdf4oknnsDEiRPdbt+NN96IqVOn4i9/+QuqqqowbNgwbN261fbsurnly5dj27ZtGDp0KGbNmoVBgwbh0qVLOHDgAL788ktcunSpTZ8DsKyT8emnn+LOO+9ssXWC1T333IM333wTZWVl6N69OwDAZDLho48+cnr+pEmTEB4eDgD48MMPUVhYiMuXLwMA/vOf/9gW93rooYdsd6EUnJgdzI7mrNnx+9//Hn/5y1+QmZmJzp07tzi/ecaogtLVFTk3YcIEERYWJurq6lyeM2PGDBESEmK72ykvLxf333+/6Ny5s4iJiRGPP/64+O6771rcfZlMJvHkk08Kg8EgJEmym9pZU1Mjnn76aZGQkCBCQkJE//79xauvvtriLksIIT799FNx++23i/DwcBEeHi4GDBggZs+eLY4fP247x927LyEsd5zz588XvXv3FiEhISI+Pl789Kc/FSdPnmxz+65cuSJ+9atfidjYWBEeHi4mTJggioqKnPZ0nD9/XsyePVskJSXZ3nfUqFHi7bfftp3TlruvTz/9VAAQ77zzjstztm/fLgCIN9980/bnARfTOQGI06dP215rnSLr7MtxOi8FH2YHs8NZdrQlY9RAEkLhkVlEREREHsR1boiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREalK0C3iJ8sySkpKEBkZ6XIpcSLyLiEEampqkJCQAI0mMO6xmB1EympLbgRdcVNSUoKkpCSlm0FEAIqKipCYmKh0M9zC7CDyD+7kRtAVN9ZN036bswNhnbkjs5K+rfkUU3eGojIhGpHdumNjl2jouujRq1cvpZtGXlZfW4vf/SjDbhNDf2dt6/P/3Y8w7uZO5HNtyY2gK26s3clhnSMQFs6AUtJt4dNR1PAcbr88FqHmKJiLi7G1cyrCAugfPOqYQHq8Y8uOiAj+P0qkIHdyI+iKG/IveyZkAJ9/gajqEACAsWdPFBQUICUlRdmGERFRwAqMkXykWulRWdgzIQNf3pkGowa440geTBVGpZtFREQBjD03pLj0qCwAwM5RQPY2HYx1tQq3iIiIAhmLG/Ib6VFZyK99DqKhf0A/mtIKGaGyDAlC6aYoQkBCg0YDs8SOYSJ3SUIgTDYzNzyUGyxuyK/smZCB7G0/ICc0FAi04kYIJNfXItFkhCaABsp6gywEinV6FIZFAEH+Z0F0LXrZjLS6SoQF+V8VT+YGixvyK4Hce5NcX4vecgNiu3dHSKdOQLAGlQAar1xByIVyoL4WhZ04s4jIJSHQ50oNYvShiImLg6QJ0uDwcG6wuCG/o+8cgpE/HMPumK5AitKtcY9WyEg0GRHbvTs6x8Qo3RzFhYSFAQAay8pQLML5iIrIhRAhI1Y2ITq2O0I7dVK6OYryZG4wccjv1E1aiprSvaivuISCggKlm+OWUFmGRpIsPTYEAAjp1AkaSUKoLCvdFCK/pRMCkiRBGxKidFP8gqdyg8UN+SVr742pwoiCggK/L3JsgwCDtEfZKcn6S3AOkCRyB7PDgYdyg8UN+aWdo9LQs1aHXxXVYsQ3h1BXfNHvCxwiIvIPLG7IL1kGFu9GSdEWxFw4ijH5+Vzcj4iI3MLihvzWngkZOH25BI36SjRc/CagxuAEmrLSUsx/+ikMHZCK5KhIZPTti+z7JmHnv/8NAPhw1Srcd+ed6G/ohh5helRVVirbYCLyC/6aHSxuyG+lR2Vh56g0fJzeD0YNbGNwyLOKCgowZlgmvtq+HS8sW45/79+P1Z9/jmEjRmDeU3MAAFeuXMbIn/wEv3pursKtJSJ/4c/Zwang5Ne4NYP3/e+cX0GSJHzx1X/ROTzcdjx10CBMnT4DAPDYk78CAOzasUOJJhKRH/Ln7GDPDQUE6xicMfn5QfFoymz2zftUXLqEbf/6F2Y8/nO7cLKK7tLFNw0hIo9gdliwuKGAsWdCBrpVmVFXfFHppnjNie+BETfqkBgeihE36nDie+++X8HJkxBCoF9qqnffiIi8itlhj8UNBQxr741oaFBt783MB3Q4+YNloYeTP0iY+YB3nxwLwTVoiNSA2WGPxQ0FlOaL+6mN2Qx8n6+B2Sxd/V66+r333rN3v36QJAknjh/33psQkVcxO1picUMBxXFrhkBYvdhdWi1w3QAZWq24+r24+r333jOma1fcceedeH/FX3G5rq7Fzznlm8j/MTtaYnFDAcfaezPh1HlMOHVeVb047/zdhL79LQHVt7/AO383ef09l/3+TZjNZoy9/UfYuG4dTp34Ad/nH8OqP/8J40f8DwDLWhbf5eXh9MmTAIBj332H7/LyUHHpktfbR0TXxuywx6ngFHB2jkpD9jYdEmot//saQ2tRUFCAlJQUZRvmAf2uA3Z8a4LZDK/edTWX3KcP/rX7a7z58nIsnjsXZaXnEGswIO2mm/DyH/4IAPhg5Uq8vnSJ7TWTRo8CAPz+7ZXIys72TUOJyCVmhz1J+PuoIA+rrq5GdHQ0frduP8LCI5RuDrVT+Lr50F/dNFZ0uRG7b/0R+t2k3Kj9zuZGZFypRs/kXgjRhynWDn/SaKzH2cIz2N8pCpe19jse19fU4LdDUlFVVYWoqCiFWtg21ux4Me84wiIjlW4OqQSzw56ncoM9NxSQdo5Ks/3+1s/3or5ioGp6b4iIqGNY3FBAsq5cDAD6zocw8odj2B3TFUhRrk1EROQfOKCYAt7OUWnoWcutGYiIyILFDQW89KgsnJb3YUx+Pk4c9M81F4iIyHdY3JAq7ByVhm5VZsV6bwQk62/ISlh/kZRtB5EfY3Y48FBusLghVVB6a4YGjQayEGi8csXn7+2vGq9cgSwEGjSMGSJXTJIEIQTMjY1KN8UveCo3OKCYVMO6uJ8SA4vNkgbFOj1CLpQDAEI6dULQdlgIS0BdvFCOYp0eZonFDZErjZIGFzU6dL54ERqdDpImSIPDw7nB4oZUo27SUhhznlNsWnhhWARQX4vGsjJopCANqKtkIVCs01v+TIjINUnCyU6RiKirxJWiIqVboyhP5oaixc2iRYuwePFiu2OpqanIz893+Zq1a9fihRdeQEFBAfr374+XX34Zd999t7ebSgFCyd4bSBIKO0WiWIQjVJYhBelDdAEJDRqN13psmBukNg0aLfZFdEWYbGZueCg3FO+5GTx4ML788kvb9zqd6ybt2rULU6dOxbJlyzB+/HisXr0a9957Lw4cOIDrr7/eF80lP2fdmkHJaeFmSYMrWj6K8SbmBqmNkCRc0Sr+T7JqKJ7AOp0O8fHxtq9u3bq5PPfNN9/EXXfdhWeffRYDBw7ESy+9hPT0dPzpT3/yYYvJn1mnhd9xJI/TwlWMuUFErVG8uPnhhx+QkJCAPn36YNq0aThz5ozLc3fv3o3Ro0fbHRszZgx2797t8jVGoxHV1dV2X6RuXNRP/bydGwCzgyiQKVrcDB06FO+//z7++c9/4q233sLp06cxfPhw1NTUOD2/tLQUcXFxdsfi4uJQWlrq8j2WLVuG6Oho21dSUpJHPwP5H6WnhZN3+SI3AGYHUSBTtLgZO3YsJk+ejLS0NIwZMwabNm1CZWUl/v73v3vsPebNm4eqqirbV1GQj0YPFvrOIZh5+BRMFUalm0Ie5ovcAJgdRIHMr0YvdenSBddddx1OnDjh9Ofx8fE4f/683bHz588jPj7e5TX1ej30er1H20n+r27SUuTlPIf6ij7cLVzlvJEbALODKJApPuamudraWpw8eRI9evRw+vPMzExs3brV7tiWLVuQmZnpi+ZRgLFOC2fvjboxN4jIkaLFzTPPPIMdO3agoKAAu3btwqRJk6DVajF16lQAQHZ2NubNm2c7f86cOfjnP/+J119/Hfn5+Vi0aBH27duHX/7yl0p9BPJjHFisTswNIroWRR9LFRcXY+rUqbh48SIMBgNuv/12fP311zAYDACAM2fOQNNsf4lhw4Zh9erVWLBgAZ5//nn0798f69ev51oV5JRlWvh83HHEhN3hEdDFWB4x8BFVYGNuENG1SEKIoFoOsbq6GtHR0fjduv0IC+fS8Gp3oHoNsreFoiKxC6IMcVgX0wW6GD0LHIXV19Tgt0NSUVVVhaioKKWb4xZrdryYdxxhkZFKN4co6LQlN/xqzA2Rp1mnhfe/BCTV6jDq++Mcg0NEpHIsbkj19kzIwKHqL1FStAX9L4FjcIiIVI7FDaleelQWjBrg9OUS7K39klszEBGpnF+tc0PkLXWTlgKwjsHhDCoiIjVjzw0FFW7NQESkfixuKOjsmZCBmYdPoa74otJNISIiL2BxQ0EnPSoLeZVfsfeGiEilWNxQUOLWDERE6sXihoISt2YgIlIvFjcUlCxbM+zjtHAiIhVicUNBi703RETqxOKGghanhRMRqROLGwpqeyZk4GcHf+C0cCIiFWFxQ0GNvTdEROrD4oaCHqeFExGpC4sbCno7R6WhpnQvjHW17L0hIlIBFjcU9NKjsqDvHII7juSx94aISAVY3BCB08KJiNSExQ0ROLCYiEhNWNwQXcVp4URE6sDihugq9t4QEakDixuiZjgtnIgo8LG4IWqmbtJSTgsnIgpwLG6IHHBaOBFRYGNxQ+SA08KJiAIbixsiB9aBxWPy8/loiogoALG4IXJiz4QMdKsyc1o4EVEAYnFD5ASnhRMRBS4WN0QucFo4EVFgYnFD5IJ1Wnh9xSX23hARBRAWN0StYO8NEVHgYXFD1ApOCyciCjwsbohawWnhRESBh8UN0TVwWjgRUWBhcUN0DZwWTkQUWFjcELmBA4uJiAIHixsiN3BaOBFR4GBxQ+Qm9t4QEQUGFjdEbuK0cCKiwMDihshN6VFZOC3vw5j8fJw4eFzp5hARkQssbojaYOeoNPSsU7oVRETUGhY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGqA3So7KQV/kVVyomIvJjLG6I2ogrFRMR+TcWN0RtxJWKiYj8G4sbojayrlR8x5E8rlRMROSHWNwQtQN7b4iI/BeLG6J2SI/KQn7tboiGBg4sJiLyMyxuiNppz4QMzDx8CnXFF5VuChERNcPihqidrNPC2XtDRORfWNwQdQCnhRMR+R8WN0QdwIHFRET+h8UNUQdwWjgRkf9hcUPUQey9ISLyLyxuiDqI08KJiPwLixsiD+C0cCIi/8HihsgDOC2ciMh/+E1xs3z5ckiShKeeesrlOe+//z4kSbL7CgsL810jiVrBaeHKYHYQkSOd0g0AgL1792LFihVIS0u75rlRUVE4frxpVookSd5sGvkhrbEeaRtzEV1ahKr4JBwaPwVmvfL/UO0clYZZO/XYrXRDggizg9pCV38FQ3I+RJeiQlQmJSNv2kMwhXVSulnkBYoXN7W1tZg2bRpWrlyJJUuWXPN8SZIQHx/vg5aRP9Ia65H19FQYTh6D0GghyWYM3LoBa9742C8KHPIdZge1ha7+Ch6cPBGGo0chtBpIZhmD13+C1Ws3sMBRIcUfS82ePRvjxo3D6NGj3Tq/trYWycnJSEpKwsSJE3HkyJFWzzcajaiurrb7osCVtjEXhpPHoBECWrMJGiFgOHkMaRtzlW4a+Rizg9piSM6HMBw9Co2QoTWZoBEyDEePYkjOh0o3jbxA0eImNzcXBw4cwLJly9w6PzU1Fe+++y42bNiAjz76CLIsY9iwYSguLnb5mmXLliE6Otr2lZSU5KnmkwKiS4sgNFq7Y0KjRXRpkUItIiUwO6ituhQVQmjt/8kTWg26FBUq1CLyJsWKm6KiIsyZMwc5OTluD+zLzMxEdnY2brzxRowYMQKfffYZDAYDVqxY4fI18+bNQ1VVle2rqIj/CAayqvgkSLLZ7pgkm1EVz394ggWzg9qjMikZklm2OyaZZVQmJSvUIvImxYqb/fv3o6ysDOnp6dDpdNDpdNixYwf+8Ic/QKfTwWw2X/MaISEhuOmmm3DixAmX5+j1ekRFRdl9UeA6NH4KyvsOhCxJMGt1kCUJ5X0H4tD4KUo3DQBgNJm5UrGXMTuoPfKmPYTyQYMgSxqYdTrIkgZlgwYjb9pDSjeNvECxAcWjRo3C4cOH7Y49/PDDGDBgAObOnQutVuvilU3MZjMOHz6Mu+++21vNJD9j1odhzRsf++VsKctKxc9BNPRHQUEBUlJSlG6SKjE7qD1MYZ2weu0GzpYKEooVN5GRkbj++uvtjoWHhyM2NtZ2PDs7Gz179rQ9V3/xxRdx2223oV+/fqisrMSrr76KwsJCPProoz5vPynHrA/DwftnKN0Mp/ZMyED2th+QExoKsLjxCmYHtZcprBP2z3xM6WaQDyg+Fbw1Z86cgUbT9OSsoqICs2bNQmlpKWJiYpCRkYFdu3Zh0KBBCraSqAl7b/wDs4MouElCCKF0I3ypuroa0dHR+N26/QgLj1C6OaRC4evmIzTqRuy+9Ufod1Oq0s3xS/U1NfjtkFRUVVUFzFgWa3a8mHccYZGRSjeHKOi0JTcUX+eGSG3qJi1FTele1Fdc4j5TREQKYHFD5AXcZ4qISDksboi8YOeoNPSs1XFaOBGRAljcEHmBZWDxbozJz+ejKSIiH2NxQ+QleyZkoFuVGXXFF5VuChFRUGFxQ+Ql1t4b0dDA3hsiIh/y63VuiAKddWDx7piuQIrSrSEiTzlx8HiHr6GL0XMtLC9hcUPkRXWTlsKY8xzqKwZyUT8iFTHW1eLZS+1//ZErZ7H1ulTe9HgJixsiL2PvDZG6nDh4HGPy81FibP9O8f01g7CJsym9hsUNkZftHJWG7G2cFk6kFsa6WvSsA2rDK9t9jXPYhTH5N2B7eARXMvcCFjdEXpYelYXT8nyMydfiq8RYPpoiCmAFBQUQDQ3Iq/wKe4ZndOha2dvMvOnxEhY3RERE12Cd8VhXfBE/O/gDPpiQgfSorA5ds/kmu454E9QxLG6IiIhaceLgcYz63jI7ylxTg/za3UiPeqXD17WOx+tcXm53fFPPnigAC5yOYHFDRETUCmNdLfpfAi7IR1FSWwJ95xCYPHBd62zKnqZku+NjamqwPfxmTkDoAC7iR0RE5IJ1jM2h6i/RqK+EUWOZJOAp+s4haNRX2n01XPwG9RWXuPhnB7DnhoiIyAXbGJs7mwqajo61ac5ZoTR86yEuH9FBLG6IfKRnHWCqMDKsiPxc8x4T0dDgsTE2zjgrlHaOApeP6CA+liLygbpJS5FX+RW7mokCgKnCiAmnzmPCqfMY+cMx6DuH+PT9LctH7MOY/HyPbPMQjFjcEPmIdWaEqcKodFOIyIWCggIY62qRVKtDUq0ONaV7PTrGxl07R6WhWxXXwWkvFjdEPrJzVBp61rKrmcif1RVfxCP787Hv2N+w79jfoO8c4tExNu5Kj8pCfu1uiIYG9va2A8fcEPmIdaXiO46YsJtLrhP5HbvVhyc0rT6crlB7uC9d+7HnhsjDZLPrn+0clYY+9XrfNYaI3GaqMNrG2KRHZdm+fMFZbtRNWoqa0r0cq9cO7Lkh8gDZDFwoCcF7ixNw/owecb2MeHhhCbonNSrdNCJyg3WsTU3pXuyZkOGT3hp3coO9N+3D4oaonRyDSauTIcsSAKC8OBTvLU7A3FWFCreSiNxhqjDijiN5aPDBGJvSwhD87SX3cmPnqDROC28HFjdEbVRW5FDQmC3BZDY1PeWVZQnnz+ghmwGNVqmWEpG7jHW16Fmrwwej0rzWa9M8OwAB4Nq5wbF67cMxN0StcPYc/L3FCSgvDgVgCSYhpBbnaDQCcb2MLGyIAoB1ILFlsb6O99q4GnfXPDsA93ODMy3bjsUNkRNlRSF4+dFkPDP2Orz8aDLKikIgmy2hdf6M3taN3JwkCWh1MgDAkNiAhxeW2H7mGHYMKSL/Yd1iofkMqfZwlhsArpEd184NTgtvOz6WInKi+R1WWXEoXn08GWaTBnG9jIjt0YCK8yGQZQmSRkCjETCbNOieZAmmbgmNtjuv5t3QlsGCP0Ne5dMQDX1QUFCAlJQU5T4kETn02nRsi4XmuVFeHIqVC3pCFyJsf/+bZ4flsZSEuF7u5EYJencOwczDp5DDgcVuYc8NkQPHOywhS7bn4tbgiolrtP2si8GE51aextxVheie1GjXpewYdu8tTuBKxUR+pPn0745wzA1ZlnDxXCjKipr+/ptNgKSxjLXR6gRmvlTsdm5wC5e2YXFD5ECjheW599UQas4aWFqdgCRZfl5x3jLzwXaOuelXx7A7f0aPHXcM4fNzIj9QUFCA+opLqCndi7pJSzt0LcfcsP5qHZMnyxIqy0NtExCELGHjSoNdXlh/dZYbsplbuLQFixsiB7IZeHhhCQyJDVePNC9yBGJ7NKCsSG8XWufP6LEkOwVLp6fYnrdfKAlpEXZxvYy4OeYBnJb34Y4jefh+HzfFI1KKp3ptrKa/0JQbku3myP5Xx9x4Zux1ePbuftfMDY3WfmBxa4uFEosbCjLOAsF6rPlgwPcWJ1xdTMv5HVL3pOY9O5ZfL5WG4OI5S0hau5Kbh50hsQHTX7AMFtw4YCQWvv04Vj1wB177STeUneK0KiJfs07/vtbGmK4KCcfseGVWbwBA1/gGCCeTDjRa2dbja8kN63Rw+3Vumt9cWQcZy2bLwOLdF0uw5emh+N/+PZgdrZCEEC373lWsuroa0dHR+N26/QgLj1C6OeQjzgboAbA7ZmqU7AYKS5KAbHZd/2t1st0aFa7E9TJi/KxybFxpsH+vUi1koYWkETD0MeGZf13w2Of1d/U1NfjtkFRUVVUhKipK6ea4xZodL+YdR1hkpNLNoQ4qKCjA7V/+FxfOfgXTNOcDiZ3lRvekxhbHm2cHJAE4WR6iLbonGVFWpEf3JCMm/rwc/1jRlB11xjpcLusCWWggaQUMvYMnO9qSG5wtRUHB2QA96++tvzafoilkCcK2DoVlVoMjy92W9d7A9e/Li0Px/uIE251cWVGo3do4QpZQdiKEC/4R+VBd8UV0qzJjUytbLTjLjbmrClsct5ve7VZh0zwrrN9L0GgEJI3AhbOWa184G4p3FzpmR9PedMLM7HCFxQ0FHK2xHmkbcxFdWoSq+CQcGj8FZn2Yy/OtA/Rs31991m13jpMu5CaufuZ4XHL6e1mWgOaF09Xw02jE1V4iGV2S6hlORF6mq7+CITkfQnPkO/QMjcAPIReQHvW603Nd5YapoeXxtnOeHZFdG1F1IdR21FV2SBoZQtZA0sgw9DEzO5xgcUMBRWusR9bTU2E4eQxCo4UkmzFw6waseeNjlwWOdRaD9Q5LoxG259lNd13O7qSaf++M8x4d62s1GtitZ9H87iwmrtG2/kWPmIu4/TenAPRy+8+BiNpGV38FD06eCMPRo5A1GmhlMy7GRmP1lHqn2eEqN3Sh9sc9mR01FTrE9TLi/JlQu+tJkqWwccyOqLhajFpwEkB8O/5E1I0DiimgpG3MheHkMWiEgNZsgkYIGE4eQ9rG3FZf52yAnv2MKAmOPS9aneNwNMfvW+vRkVze0RkSGzBryVnMXVWIB9cswf+On4VOXcq5dgWRFw3J+RCGo0ehETJ0ZhMkIdD1YlWr2eEsNxyPO8uOJo4zppyd00Q2a672CjX9XJIAjVbY2mDNjrcez8Lvs/+IyMiqVj93sGLPDQWU6NIiCI0WMJtsx4RGi+jSolZf1z2pEXNXFbZ4Nj13VSFKC0Pw+i+SbYODJclyh1ZWpHe4Sstl010XOM1/Zv/rsysKbW24OeYB6DvnYUx+Pr5K/FGrn4GI2q9LUSGEVgOYZNuxa2WHq9zontSIhxeWOGyCKUGSxNVHR87/7rfOeZ4IIcFskvDKxu+ha3pihf/eeT13C28Fe24ooFTFJ0FymJcpyWZUxSe59Xpnz6b/9lKCXS+LRisw4v4KOK5v437PjfOfSRI30yRSSmVSMiSzbHfM3exw9nfWfhNMi67xjbZeFgsBjdb+PV1znifW3NDZv9XV3cIt62WdOMj1shyxuKGAcmj8FJT3HQhZkmDW6iBLEsr7DsSh8VPadT3roMHma1KYTRp8+sfuTs5u7/ROS9hZ954iIt/Lm/YQygcNsmSHRgMBtDs7Wm6CaflVqxMt1sSxLCfR/hVXusY3uswN7hbuGh9LUUAx68Ow5o2P2zRbqjXWQYNlxaG2Asf5+jUdW7eia3yDrXubiHzPFNYJq9duQNIf30Tanv24qK/B3nkftis7XOWG60fZ7b8x0oUIdE9qdDrd27Jb+HMQDf25Ea8DFjcUcMz6MBy8f4bHrvfwwhLLrt9XQ6pp/ZqOFTRNJFwqDcXLjya3WAyMiHzHFNYJ2yZPQWNMEmoqvmn3TRHgi9wAAMv089ayY8+EDMzaeQrvhoYCLG5s+FiKgl63hEaHnhrH2Q/tZemKliQBrU52uoggEfmWpzadbFtutO2xlHWLBneyIz0qC3mVX7Xp+sGAxQ0FvZa7gLfn+biz11zd/VdIMJs0Tnf5BSzPzbtVmVFXfLEd70tEbWGsq0W3KvM195O6lrblRttulqRmO4q3lh3kGosbIjhbt6KtrnXH1jTbqvkuv4D1ufluiIYGrnVD5EUFBQUQDQ3Ir92N9KisDl+v47nhnGxuvjig6+wg11jcELXQkR4cR80HFFqXThe45/Fyu7P0nUMw8odjHusyJ6KWTBVGjPzhGPSdQ7xwdU/nRsvsiIlzPXOK7LG4IYJlzYoy25oVnhwQ2DLwzCYN3l2YgLKipoCtm7QUNaV7UV9xib03RF5QUFCA+opLqCndi7pJSz1yTWdr3XguP1oWSZXlnAPkLhY3FPSsG+GJFtsleHbWQ3Nmk6bFwED23hB5j6d7bVytdeM5La/nLDfIORY3FLTKikKwdHoKnht/nRffxXXgOQ4M3DkqDX3qHdfJICJP6VOv7/BAYsCSHcseSel4g9qBA4rdwz4uClrvLU7AxXPN7+I8vUZFKySBuKQGDgwkCkAts8NHmBtuY3FDQcnapWzPR4UNAK1WcGAgUQAqLQxxkh2+wdxwHx9LUVBw7Ma9UBIC17MaPDHbofVrmU0adEvgCsVE/swxN8qKQvD6L5JdnM3c8CfsuSFVKysKwXuLE1osXW4ZlOeqp8Z7A4ktBLoYTOxaJvJTreVGy33nrLydG1f3ryoOQXwyC5xrYc8NqVrzqZrWpcudP5LyrcryELz8aLLddHAAMJrM3OGXSGH+mhtmk4RXZvVukR36ziEYk5/PZSSaYXFDquU4VdO6dDlgWTZd0niyG7ktLO05fyYUKxf0tB3lSsVEymtbbvg6Q5qyo/mUcG7h0hKLG1Itx71fNBqB2B4NePVxyw671uNxvYyI7tYAJYLq4rlQu+f6XOuGSFnOciOulxEXSkJgapRs62HF9mjArKVnodXJDlfwRY7Y7zHFG6OWWNyQqjXf+8WQ2ACzyXLXA1i6eC1FDVB1IRQarVI9OU24UjGR8hxz4+GFJVi5oGez6d8CZhPwjxUGmE0aSJrmBY5vZl12jbefEs4bI3scUEyq1j2pEXNXFdrucJ4Z23zBPglVF0JRdfVOSzZr4NO1biCg1bUsqKwhtTumK5Dio6YQkU3z3NBoLY+qLp5rvs2ChMryUFh7aYTs634CAckhpuomLYUx5znUVwxEQUEBUlJSfNwm/8KeGwoKrc9Mklz83pOc9QpJMJs0eGbsdXYDBHeOSkPPWh0HFhN5UHv+Pl17RqMvboScZ8fFc6FYPrPlwOK7Tp3yQZv8H4sbChoareU5uWd373WX8ynh1jZYZ2QATc/PicgzCgoKIBoakFf5FdKjstr8ev/MDuDC2VDuNeUCixsKKrOWnEVcL8uzdOuvypFgDS7rjAzuGUPkeZ7YNLN5dvhyNXPnmBvX4jfFzfLlyyFJEp566qlWz1u7di0GDBiAsLAw3HDDDdi0aZNvGkiqYH2W/toX32PuqkJ0jfd1gSOutsOI2B4NLWZkcGG/tmN2UGsKCgpgrKtFTeneDm2a2Tw7uicpMWj3alZoZUgSc+Na/KK42bt3L1asWIG0tNb/x9u1axemTp2KmTNn4uDBg7j33ntx77334rvvvvNRS0ktrGFw/5NlUKKLufysZXCidUZGt54N3DOmHZgddC2mCiPuOJIHfeeQdj2ScqTRAhN/Xg6l1rgRsmSb2WlIbMD0F5gbzihe3NTW1mLatGlYuXIlYmJiWj33zTffxF133YVnn30WAwcOxEsvvYT09HT86U9/8lFryUprrMdNn76PO/78Em769H1ojfVeeY23/WOFAZICfwuEbBkQOP2FEsT1MqKsSI/3Fie0WLGYXGN2BCZd/RVkvPM2Ri2aj4x33oau/opHz3dkrKtFz1pdh3ptHPk2N+yLKCGuTkRYcRoAnK5YTG2YCl5SUoKEBM8PXJo9ezbGjRuH0aNHY8mSJa2eu3v3bvz617+2OzZmzBisX7/e4+0i17TGemQ9PRWGk8cgNFpIshkDt27Amjc+hlkf5rHXeJs/LKf+2s+TIZvtVyye/7cCALAtyBXIUzqrzpciOi7eK9dmdgQeXf0VPDh5IgxHj0JoNZDMMgav/wSr126AKaxTh893Jb92N9KjXvHIZ/B9brQc36PVyVi1oCcqyy0FjTU7fnevD5vl59yuPQcPHozVq1d79M1zc3Nx4MABLFu2zK3zS0tLERcXZ3csLi4OpaWlLl9jNBpRXV1t90Udk7YxF4aTx6ARAlqzCRohYDh5DGkbcz36Gl+I62WE77uXYXtPy9o61vBqWrF4z4QMzDx8KuCXU/+/MSNxcMNnHr8usyMwDcn5EIajR6ERMrQmEzRChuHoUQzJ+dAj5/uCdQVjSMot+mk2WdfZccgOn6+347/c/pNYunQpHn/8cUyePBmXLl3q8BsXFRVhzpw5yMnJQViY9+7cly1bhujoaNtXUlKS194rWESXFkE4jGATGi2iS4s8+hpvKSuybFr5zNjrrq5WrMTMh9bfMz0qC3mVXwX8cupjfjMXny6Yiw9nP4bLlRUeuSazI3B1KSqE0Nr/syO0GnQpKvTI+d5WVhSCF6elWHpuhO8W+2xJ6dla/s/t4uaJJ57AoUOHcPHiRQwaNAiff/55h954//79KCsrQ3p6OnQ6HXQ6HXbs2IE//OEP0Ol0MJtbzm2Lj4/H+fPn7Y6dP38e8fGuu73nzZuHqqoq21dRke//MVWbqvgkSA5zDyXZjKp41+Hfntd4i2Vsi3W1UV+GRNO6Nva/Nv0+tkfTkupqWE592EMz8OtNW3G5sgKv/eQOHN36rw5fk9kRuCqTkiGZ7fdikswyKpOSPXK+t61s9ijIdyTY5wRgWd1cRovs0DjucxW82tSH1bt3b/z73//GggULcN999yEtLQ3p6el2X+4aNWoUDh8+jG+//db2dfPNN2PatGn49ttvodW2nNuWmZmJrVu32h3bsmULMjMzXb6PXq9HVFSU3Rd1zKHxU1DedyBkSYJZq4MsSSjvOxCHxk/x6Gu8obQwBOfP6CF8dtfVXNO6NtbZDrE9GhHboxGAZd2dWUvO2s5Wy0rFXZN64fGctRj1yzn44BeP4v/GjsJbWZMAAMOHD29TbgDMjkCWN+0hlA8aBFnSwKzTQZY0KBs0GHnTHvLI+d5UWhhydQsG5Xt6Y3s04pHFJXZrdjXPDmrH3lKFhYX47LPPEBMTg4kTJ0Kna9/2VJGRkbj++uvtjoWHhyM2NtZ2PDs7Gz179rQ9V58zZw5GjBiB119/HePGjUNubi727duHt99+u11toPYx68Ow5o2PkbYxF9GlRaiKT8Kh8VNaHRjcntd4w99eSoBv949qqXuSZXZUXC8jHl5Ygu5JjbY9bJqzrFT8HO4+2wWFyFCmsR5ScbYY323+Ap2iozH4zjGQzWacyz+KcePGQa9v2+BMZkfgMoV1wuq1GzAk50N0KSpEZVIy8qY95HJwcFvP96b3X1R6JWBLZjXPjYG3FNpnxz7lWudv2lSZrFy5Er/5zW8wevRoHDlyBAaDwVvtAgCcOXMGGk1T59KwYcOwevVqLFiwAM8//zz69++P9evXtwg68j6zPgwH75/h9dd4kj/MjgIsS6YDTVsuzF1VqOpFuL7JzcHG3y1G/2HD8Zt/bkdEbCzqa2qw7a0/4n//93+90iPC7PBfprBO2D/zMa+d7w2yGSgrcpYdvr9RsubGsyssuaHm7OgIt4ubu+66C3v27MGf/vQnZGdne6Ux27dvb/V7AJg8eTImT57slfcndbPOcigvDoUsK9dzY31v69Lpy2cm45FFljsxtVk140EU5X2LexctRcZ93vt7y+wgb7JmR1lRqMMjbd/niDU3nhl7nV0vDtlze8yN2WzGoUOHvFbYEPnCwwtLbKsCK7MJXsv3VfPmd8JsxtObvvRqYUPkC5YiQunssGq54S7Zc7u42bJlCxITE73ZFiKvs+4PM/OlYmh1yq1vY6H+ze9mfbgGXXowfCnwKZsdjrOl1J8dHdW+0cBEAW7jSgOE3LQAlu+0fC9JEuie1MBn50QBYONKQ7PH2r7KDufvw+xwjcUNBR1lBxZb776sa1dI6J7ETTOJAoFy2SGg1QkIWbpaWDE7roXFDQUl+4HFvpzxICG2RwMungtFXC/Ljr7xyRwMSBQolMkOCTMWnsXGlQacP6NndriBxQ0FjbKiELy3OAHnz+gR26MBMXGNVxfl8ramANTqZMxachbdEhrZlUwUIFxnh29uirQ6GYYEy5gfZ2tiUUvcZYuCxnuLE1BebClmKs6HNBsU6O2Aarq+bJbw3uIEhhNRAHGdHb5hNkm2WVHMDvewuKGgYH1W3nyNmbIiPTRa+/1ZvE2Its9uMNfUBPTmmUSBzL3s8DZLbpgarn0mWbC4oaBgXYRLo7GEkUYjENfLiJkvltj2eWoa5OtNluu/+ngyyoquvQGfvnMIjGZjQG+eSRTI3MsOwNvZodHKeG78dXj5UfeyI9ixuKGg0XwBP0NiA+55vBz/WGGAbNbAccddz7O/pruLb9VNWoqa0r2or7jE3hsihbifHd4ibEtXcOE+93BAMQUN6yJc1gF5ljsg64Bi765bodUJmE1Nu4I3X3zrWs/Q9Z1DMPKHY9gd0xVI8UrziKgVSmaHdXaluFpDtSU7ghl7bijoaLRNz9Ht94kBPH8XZrmekCVodTIkyb5r251w2jkqDT1rdTDW1Xq4bUTUFr7LDsu1JElAFyLQPanlYzEWNq1jcUNByfE5uv3iep7U1FNjNmlsgRgT1+j24lvpUVnIr92NMfn5fDRFpDDfZIflWtYJCGVFekhX38+QyIX73MHihoLWwwtLEBNnXQRLgkYr2wKk43dhjtcRLY61ZSdffWcOICTyF/c8Xm7LCq1OoIuh0Umx0xEtc8Ns0kCrk7kLuJtY3FDQ6p7UCF2IsD0qErJkC6i4Xg349V9Od+Dqljsv+5lYTc/mL54LRWkhCxaiQPSPFU1701keOQvbgOOmncM7ovk4nqYeIbNJg1ce42wpd7C4oaDl+OxcCMujI6uL5zseIK9sPIFXNn7v9Gd/e4kzHogCjbN1by6eC8X5M3oYEo2Y8duOPzKK62XEa198j7heLZeAkM0azpZyA4sbClrOn51bfn/+TCj+tjgR7e9iFtBoZWi0gC4U6Brf8m6urYv5EZHyWsuN8mI9XpmV0ux4ewg8vLAEGq3l0blWJ7c4g9lxbSxuKKg1X7/C8dGR/a9tJUE2a1ByOgRlRSGQHC4jccYDUcBynRuAJ7Jj1W8TcGxvZ7y3OOFqb3JTocTscA/XuaGgZl2/wtQAPDf+Og9fXeC1x3tDq5OvrnFjOQZI6N6OGQ+2lYpTPNxMIpUbEJGJD6rXID0qyyPXa77ujWUMjN4j17Xmw4Wzeqyc39PuJ5Yc0bQrO4IRe26IYHl0FNujAS27kjsy88FS0FjuvOzv5p5dUdimGQ9cqZiofcITY/HRTf1x6+f7PX5tjRaY8Vvnj47ax7EHqCk3zCYNXtn4Peaualt2BCsWNxT0yopC8PKjybh4LtTJT729Y7j7rCsVc58pIvelpKRACg3FgIhMHKhe47HrWnPjlVm90cVg8mCB4xofRbmPxQ0FvfcWJ6C82HEpdUdt6cFpfY2b2B4N7QoprlRM1D768AicjTBh+NZDHrtm89y4VBpiN9OySVt7fh33uOt4bgQrFjcU1Bynddpr/yOp8KgGxPWyDDiM7dGI2B6WbuS4Xg2YteRsu66ZHpWF0/I+jMnPx4mDx9vdNqJg0++mVGwfPAS9NTd7pPfGMTeatmLo+AJ+ksbSA+Sp3AhWHFBMQU2jBbonGXHhbOjVoLIM6LNwNgPCHRLqqkOxeM33tvcA4JGN7naOSsOsnR27BlEw0odHQK/zTNeH69xwzIlr5YaAY84IWcIrG7+H7mpnMjfIbB/23FDQsj4zb75vSxN37sBcvUZAq7OscdM8lBhQRIGv47nhjH126JoN/3M3Nw5Ur0Fvzc3YPGAAUlJS2tkO9WBxQ0Gr+TNz2dza+jaO+0K52ijPfmYDF9kiUp+O50ZzLV/f3uwYvvUQzkaYoA+PaPuLVYjFDQUlV8/MrftM2bPsHWP9/bW6mjVcZItIlbyZG0DHssN4uRHb+g+ELsZTa+4ENhY3FJQcl1DXaCyzEZo2vWs6HtfLiFc3WfaI6p5khOuuZ8txQ2IDpr/ARbaI1KYjueF813D7Y4Z2LtAXvm4+IuNvQVhMVz6SuorFDQWt5kuoGxItsxEeXlhydTE/y11WTFwjHl5YgrKiELz+hHUlUud3YFqdwMyXigEAr8zqffW5PHfvJVITZ7kxd1UhZr5UbOupkTQC9zxebp8bkrPH2Zbfx/ZoRNf4Bpw/o8d7ixPanBvGy43Qa/XstWmGs6UoaDVfQt3aDfzyo8mouLobuCQJaHUC3ZMa8fKjyc3WwnGc4WBhNmnw+dsGXDhrOa+8OBTvLU7A3FWFPvg0ROQLznIDADauNEBYdwo3S/jHCgMANOWGkGxbKDjSaAUulnQsNzYPGIDB7LWxYXFDQa/5VO3zZ5rufISQUFakx9LpKQ6rFztfEyeuV4Pd62VZsu3ey/E3ROrS/O+0s+xo/j1gyQO0WG7CcgNVXszc8DQ+liK6yvF5uvU5+MVzIXB8Th7bowFd4xtsR2J7WB5fOT6P58BiIvWzZofzFYbtp3nPWnoWGq1loT6tTuCRxcwNb2DPDREsa1e8tzgB58/orwaP/aZ19iTMfPEs4pMbbVM2rUH08MIS23XaOziQiAJH8+yw1zI3zCYJqemX8doXJ2BqgG09m9h45oansbghgsP+UlefjQtZarb6KABIkCSB7kkNiE+2LIvueHfl6nk8EamT/d50TVmh0QhIGmHLEY1GwJDYtD9U84X6mBuex8dSFPQc166QZctCWtYZEc33eOme1PKuytmCW94MKKPJzM0zidrhVJjRo5tnttybrqnH15DYgEcW28+sulZ2tCc3DlSvwYCIzLa/UOXYc0NBz/q8vLw41O4Oy/FOyvGuqnl3dFwvIx5eWILuSY1ebatl88z5uOOICbvDI9DvplSvvh+RWvS7KRXb62ox7RsdPqheg/SorA5f01V2PLui0JYVA29p2SPjyewYvvUQzkbdyJWJHbDnhggt166w3mG1tjdU8+5o6/RNX9g5Kg09a3XsvSFqI314BM5GmDzae+MsOxyzwlvZcaB6DYyXG7F98BCuceOAPTdEaPszb8epn76cvpkelYX82ucgGvqjoKCAK5ISuUkXo8e2/gNx8869HrumktkxfOshhMbfAn14BHPAAXtuiJpxN1ycLcPuy+mbeyZkYObhU6grvuibNyRSgZSUFITFdEVk/C0IXzffo9dWIju4n5RrLG6I2snVoyxfSI/KQl7lVz57PyK1sPbeGC97d3xcazyZHVJoKHttnOBjKaJ24vRNosCTkpKCI8UXMSAi02MDi9uK2eF97Lkh6iCGE1Fg0YdH4EK01qMDi9uD2eE9LG6IiCio9LspFZsHDEBvzc04UL1G6eaQF7C4ISKioOONaeHkP1jcEBFR0PGHgcUdcaB6DYZ0uV3pZvgtFjdERBR0UlJSIIWGXvtEPzV86yGcCjNyZWIXWNwQEREFkAPVa9BbczO2Dx7CLVhcYHFDREQUQIZvPYSzESb22rSCxQ0REVEA4crE18bihoiIKEBYBxJzZeLWsbghCmBj8vNRUFCgdDOIAtaAiMyAWuvm1s/3450b+iA8MVbppvg1FjdEAWrPhAx0qzJz80yidgpPjMWFaC1u/Xy/0k1xy4HqNRgQkcleGzewuCEKUOlRWciv3Q3R0MDeG6J2SElJweYBAwKm94YDid3H4oYogOk7h2DkD8dgqjAq3RSigBQoKxVz+nfbsLghCmB1k5aipnQv6isusfeGqB0CZaVi9tq0DYsbogCn7xyCu06dUroZRAEpJSUFYTFdERl/C8LXzceB6jV++YiK07/bhsUNEREFNWvvjV4Gph44geFbD/lVgRO+bj6GdLkdYTFdOZDYTSxuiIgoqFn3mUqLGo0QYxfoZfjVGBzj5Ua8c0Mf9tq0AYsbIiIKeuGJsXjzhp6o6DYIobFD/WYMDqd/tw+LGyIiCnopKSkIT4zFjqFp2J5xs20MjtI4kLh9WNwQERHBUuCkpKT4zQwqTv9uP53SDSAiIvInKSkpOFJ8EQMiMvFB9RqkR2X59P2tPUbDAZyNupG9Nu2gaM/NW2+9hbS0NERFRSEqKgqZmZn44osvXJ7//vvvQ5Iku6+wsDAftpiIlMbcIF8IT4zFRzf19/nWDAeq18B4uRG9Oyegd+cETv9uJ0V7bhITE7F8+XL0798fQgj87W9/w8SJE3Hw4EEMHjzY6WuioqJw/Phx2/eSJPmqueQntMZ6pG3MRXRpEarik3Bo/BSY9fzHKlgwN6i9dPVXMCTnQ3QpKkRlUjLypj0EU1gnp+cq1XszfOshDOhyO2KTBuDIlbOc/t1OihY3EyZMsPt+6dKleOutt/D111+7DClJkhAfH++L5pEf0hrrkfX0VBhOHoPQaCHJZgzcugFr3viYBU6QYG5Qe+jqr+DByRNhOHoUQquBZJYxeP0nWL12g8sCp/nWDHWTvF/cHKheg2zNzSiNj8TlCBO2JqWy16ad/GZAsdlsRm5uLurq6pCZmenyvNraWiQnJyMpKQkTJ07EkSNHWr2u0WhEdXW13RcFrrSNuTCcPAaNENCaTdAIAcPJY0jbmKt000gB3soNgNmhNkNyPoTh6FFohAytyQSNkGE4ehRDcj50+RpdjB7bBw+B8XKjTxb1s86M2npdKj7vEwddjJ69Nu2k+IDiw4cPIzMzE/X19YiIiMC6deswaNAgp+empqbi3XffRVpaGqqqqvDaa69h2LBhOHLkCBITE52+ZtmyZVi8eLE3PwL5UHRpEYRGC5hNtmNCo0V0aZGCrSJf83ZuAMwOtelSVAih1QAm2XZMaDXoUlTo8jUpKSk4UWFEZPwtGL71W+wc1fKc9j6uclYs3Xq5Ef/NGIgIFjUdpnhxk5qaim+//RZVVVX45JNPMH36dOzYscNpUGVmZtrdnQ0bNgwDBw7EihUr8NJLLzm9/rx58/DrX//a9n11dTWSkpI8/0HIJ6rikyDJZrtjkmxGVTz/mwYTb+cGwOxQm8qkZEhm2e6YZJZRmZTc6uus08J/vPdbjN5iv2qxUYN2P6669fP9iAoLsTsm4m/hGBsPUby4CQ0NRb9+/QAAGRkZ2Lt3L958802sWLHimq8NCQnBTTfdhBMnTrg8R6/XQ6/nM0u1ODR+CgZu3WA35qa870AcGj9F6aaRD3k7NwBmh9rkTXsIg9d/YjfmpmzQYORNe6jV11kHFt88cLrd8YazZ/FVmetZeq0JXzffMmi49wC74692BcI5xsYjFC9uHMmyDKPR6Na5ZrMZhw8fxt133+3lVpG/MOvDsOaNjzlbiuwwN+haTGGdsHrtBrdnSzUXnhiLP4QbMami0nasuisw4HL7ZlIZLzfibAxwOcJkd1wf3oW9Nh6iaHEzb948jB07Fr169UJNTQ1Wr16N7du3Y/PmzQCA7Oxs9OzZE8uWLQMAvPjii7jtttvQr18/VFZW4tVXX0VhYSEeffRRJT8G+ZhZH4aD989QuhmkEOYGtZcprBP2z3ysza9LSUlBAQrweUxc08E+cag1nMOtn38A0zT3i5sD1WuQHZGJnAEDEJ4Ya/czv+ttCGCK/lmWlZUhOzsb586dQ3R0NNLS0rB582bceeedAIAzZ85Ao2ma0FVRUYFZs2ahtLQUMTExyMjIwK5du1wOJCQKFkazEaYKI5CidEu8j7lBSnDWo9J8HRx3Dd96CBdihkIfHsFeGi+ShBBC6Ub4UnV1NaKjo/G7dfsRxiWtSQUOVK9B9rZQ5AwdjMG3ZyjdHLfU19Tgt0NSUVVVhaioKKWb4xZrdryYdxxhkZFKN4f8wImDx5G557/orv3e7ddE1N2AdzMGBMzfVX/SltxgLxhRgEuPysJpeT7uOGLC7vAIbrBH5CPWdXCm5ZW5/Zqz4eBeUT7A4oZIBXaOSkP2Nh2MdbVKN4UoaFjXwano5v4jzs09e3JGlA+wuCFSgfSoLOTXPgfR0B8FBQV8lk/kI7oYPXYMTXP7/HA4H79DnsXihkgl9kzIwKydp5AT0zUoBhYT+QMWKv7Jb/aWIiIiIvIEFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiFTEaDLDWFerdDOIiBTF4oZIJdKjsnBa3oc7juThxMHjSjeHiEgxLG6IVGTnqDT0rNWx94aIghqLGyIVSY/KQn7tboiGBhQUFCjdHCIiRbC4IVKZPRMyMPPwKZgqjEo3hYhIESxuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqKFrcvPXWW0hLS0NUVBSioqKQmZmJL774otXXrF27FgMGDEBYWBhuuOEGbNq0yUetJSJ/wNwgomtRtLhJTEzE8uXLsX//fuzbtw8//vGPMXHiRBw5csTp+bt27cLUqVMxc+ZMHDx4EPfeey/uvfdefPfddz5uOVFLWmM9bvr0fdzx55dw06fvQ2usV7pJqsTcIDXR1V9BxjtvY9Si+ch4523o6q8o3SRVkIQQQulGNNe1a1e8+uqrmDlzZoufZWVloa6uDhs3brQdu+2223DjjTfir3/9q1vXr66uRnR0NH63bj/CwiM81m4KblpjPbKengrDyWMQGi0k2YzyvgOx5o2PYdaH+bQtB6rXYNbOTsj5n5vR76ZUn763u+pravDbIamoqqpCVFRUh6/n7dwAmrLjxbzjCIuM7HCbiXT1V/Dg5IkwHD0KodVAMssoHzQIq9dugCmsk9LN8zttyQ2/GXNjNpuRm5uLuro6ZGZmOj1n9+7dGD16tN2xMWPGYPfu3S6vazQaUV1dbfdF5GlpG3NhOHkMGiGgNZugEQKGk8eQtjFX6aapmrdyA2B2kPcNyfkQhqNHoREytCYTNEKG4ehRDMn5UOmmBTzFi5vDhw8jIiICer0eP//5z7Fu3ToMGjTI6bmlpaWIi4uzOxYXF4fS0lKX11+2bBmio6NtX0lJSR5tPxEARJcWQWi0dseERovo0iKFWqRu3s4NgNlB3telqBBCa//PsNBq0KWoUKEWqYfixU1qaiq+/fZbfPPNN/jFL36B6dOn4+jRox67/rx581BVVWX7KiriPzbkeVXxSZBks90xSTajKp7/IHqDt3MDYHaQ91UmJUMyy3bHJLOMyqRkhVqkHooXN6GhoejXrx8yMjKwbNkyDBkyBG+++abTc+Pj43H+/Hm7Y+fPn0d8fLzL6+v1etusCusXkacdGj8F5X0HQpYkmLU6yJKE8r4DcWj8FKWbpkrezg2A2UHelzftIZQPGgRZ0sCs00GWNCgbNBh50x5SumkBT6d0AxzJsgyj0ej0Z5mZmdi6dSueeuop27EtW7a4fNZO5CtmfRjWvPEx0jbmIrq0CFXxSTg0forPBxMHK+YGBSJTWCesXrsBQ3I+RJeiQlQmJSNv2kMcTOwBihY38+bNw9ixY9GrVy/U1NRg9erV2L59OzZv3gwAyM7ORs+ePbFs2TIAwJw5czBixAi8/vrrGDduHHJzc7Fv3z68/fbbSn4MIgCWAufg/TOUbobqMTdITUxhnbB/5mNKN0N1FC1uysrKkJ2djXPnziE6OhppaWnYvHkz7rzzTgDAmTNnoNE0PTkbNmwYVq9ejQULFuD5559H//79sX79elx//fVKfQQi8jHmBhFdi6LFzTvvvNPqz7dv397i2OTJkzF58mQvtYiI/B1zg4iuRfEBxURERESexOKGiIiIVIXFDREREakKixsiIiJSFRY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREakKixsiIiJSFRY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREakKixsiIiJSFRY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREakKixsiIiJSFRY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDREREakKixsiIiJSFZ3SDfA1IQQAoP5yrcItIfKOhsv1qDNKaLhch/qaGqWb41R9reXvn/XvYyCwZUcts4NICW3JDUkEUrp4QHFxMZKSkpRuBhEBKCoqQmJiotLNcAuzg8g/uJMbQVfcyLKMkpISREZGQpIkj1yzuroaSUlJKCoqQlRUlEeuGQj4uYPrcwOe++xCCNTU1CAhIQEaTWA8Hfd0dvD/o+D77PzcvsuNoHsspdFovHanGBUVFVT/w1rxcwcfT3z26OhoD7XGN7yVHfz/KPg+Oz93+7mbG4Fxy0RERETkJhY3REREpCosbjxAr9dj4cKF0Ov1SjfFp/i5g+tzA8H92T0tmP8sg/Wz83P77nMH3YBiIiIiUjf23BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcVNOy1btgy33HILIiMj0b17d9x77704fvy40s3yibfeegtpaWm2BZkyMzPxxRdfKN0sn1u+fDkkScJTTz2ldFO8btGiRZAkye5rwIABSjcrIAVrdjA3LJgbvskNFjfttGPHDsyePRtff/01tmzZgsbGRvzkJz9BXV2d0k3zusTERCxfvhz79+/Hvn378OMf/xgTJ07EkSNHlG6az+zduxcrVqxAWlqa0k3xmcGDB+PcuXO2r6+++krpJgWkYM0O5gZzw6e5IcgjysrKBACxY8cOpZuiiJiYGLFq1Sqlm+ETNTU1on///mLLli1ixIgRYs6cOUo3yesWLlwohgwZonQzVCmYs4O5oW5K5gZ7bjykqqoKANC1a1eFW+JbZrMZubm5qKurQ2ZmptLN8YnZs2dj3LhxGD16tNJN8akffvgBCQkJ6NOnD6ZNm4YzZ84o3SRVCMbsYG4ED6VyI+g2zvQGWZbx1FNP4Uc/+hGuv/56pZvjE4cPH0ZmZibq6+sRERGBdevWYdCgQUo3y+tyc3Nx4MAB7N27V+mm+NTQoUPx/vvvIzU1FefOncPixYsxfPhwfPfdd4iMjFS6eQEr2LKDucHc8FVusLjxgNmzZ+O7774LqjEIqamp+Pbbb1FVVYVPPvkE06dPx44dO1QdVEVFRZgzZw62bNmCsLAwpZvjU2PHjrX9Pi0tDUOHDkVycjL+/ve/Y+bMmQq2LLAFW3YwN5gbvsoNbr/QQb/85S+xYcMG/Oc//0Hv3r2Vbo5iRo8ejb59+2LFihVKN8Vr1q9fj0mTJkGr1dqOmc1mSJIEjUYDo9Fo9zO1u+WWWzB69GgsW7ZM6aYEJGYHc4O54T3suWknIQSefPJJrFu3Dtu3bw/acLKSZRlGo1HpZnjVqFGjcPjwYbtjDz/8MAYMGIC5c+cGVUDV1tbi5MmTeOihh5RuSsBhdjRhbjA3vIXFTTvNnj0bq1evxoYNGxAZGYnS0lIAQHR0NDp16qRw67xr3rx5GDt2LHr16oWamhqsXr0a27dvx+bNm5VumldFRka2GBcRHh6O2NhY1Y+XeOaZZzBhwgQkJyejpKQECxcuhFarxdSpU5VuWsAJ1uxgbjRhbng/N1jctNNbb70FALjjjjvsjr/33nuYMWOG7xvkQ2VlZcjOzsa5c+cQHR2NtLQ0bN68GXfeeafSTSMvKS4uxtSpU3Hx4kUYDAbcfvvt+Prrr2EwGJRuWsAJ1uxgbgQfJXODY26IiIhIVbjODREREakKixsiIiJSFRY3REREpCosboiIiEhVWNwQERGRqrC4ISIiIlVhcUNERESqwuKGiIiIVIXFDQUEs9mMYcOG4b777rM7XlVVhaSkJMyfP1+hlhGRv2JuBC+uUEwB4/vvv8eNN96IlStXYtq0aQCA7Oxs5OXlYe/evQgNDVW4hUTkb5gbwYnFDQWUP/zhD1i0aBGOHDmCPXv2YPLkydi7dy+GDBmidNOIyE8xN4IPixsKKEII/PjHP4ZWq8Xhw4fx5JNPYsGCBUo3i4j8GHMj+LC4oYCTn5+PgQMH4oYbbsCBAweg03FzeyJqHXMjuHBAMQWcd999F507d8bp06dRXFysdHOIKAAwN4ILe24ooOzatQsjRozAv/71LyxZsgQA8OWXX0KSJIVbRkT+irkRfNhzQwHj8uXLmDFjBn7xi19g5MiReOedd7Bnzx789a9/VbppROSnmBvBiT03FDDmzJmDTZs2IS8vD507dwYArFixAs888wwOHz6MlJQUZRtIRH6HuRGcWNxQQNixYwdGjRqF7du34/bbb7f72ZgxY2AymdjNTER2mBvBi8UNERERqQrH3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhUhcUNERERqQqLGyIiIlIVFjdERESkKixuiIiISFVY3BAREZGqsLghIiIiVWFxQ0RERKrC4oaIiIhU5f8B+mELbP/dwmYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# построение областей аппроксимации и точек тестового набора\n", + "lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, test_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SJp3OZO9R99K" + }, + "source": [ + "**Задание 2**\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nuBl5GGrfs--" + }, + "outputs": [], + "source": [ + "# загрузка многомерной обучающей выборки\n", + "train = np.loadtxt('letter_train.txt', dtype=float)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2xDolaRzSXCF", + "outputId": "15d3d01c-c943-4709-8354-80567271860f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходные данные:\n", + "[[ 6. 10. 5. ... 10. 2. 7.]\n", + " [ 0. 6. 0. ... 8. 1. 7.]\n", + " [ 4. 7. 5. ... 8. 2. 8.]\n", + " ...\n", + " [ 7. 10. 10. ... 8. 5. 6.]\n", + " [ 7. 7. 10. ... 6. 0. 8.]\n", + " [ 3. 4. 5. ... 9. 5. 5.]]\n", + "Размерность данных:\n", + "(1500, 32)\n" + ] + } + ], + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(train)\n", + "print('Размерность данных:')\n", + "print(train.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2FGQM-u6VcxO", + "outputId": "45474032-2ec6-4f8e-9c2c-2672c6d373a9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 35 28 21 14 7 14 21 28 35\n", + "\n", + "Epoch 1000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 2000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 3000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 4000/100000\n", + " - loss: 3.0102\n", + "\n", + "Epoch 5000/100000\n", + " - loss: 1.9365\n", + "\n", + "Epoch 6000/100000\n", + " - loss: 1.6535\n", + "\n", + "Epoch 7000/100000\n", + " - loss: 1.2880\n", + "\n", + "Epoch 8000/100000\n", + " - loss: 0.9965\n", + "\n", + "Epoch 9000/100000\n", + " - loss: 0.8667\n", + "\n", + "Epoch 10000/100000\n", + " - loss: 0.7913\n", + "\n", + "Epoch 11000/100000\n", + " - loss: 0.7403\n", + "\n", + "Epoch 12000/100000\n", + " - loss: 0.6898\n", + "\n", + "Epoch 13000/100000\n", + " - loss: 0.6478\n", + "\n", + "Epoch 14000/100000\n", + " - loss: 0.6166\n", + "\n", + "Epoch 15000/100000\n", + " - loss: 0.5921\n", + "\n", + "Epoch 16000/100000\n", + " - loss: 0.5718\n", + "\n", + "Epoch 17000/100000\n", + " - loss: 0.5587\n", + "\n", + "Epoch 18000/100000\n", + " - loss: 0.5409\n", + "\n", + "Epoch 19000/100000\n", + " - loss: 0.5349\n", + "\n", + "Epoch 20000/100000\n", + " - loss: 0.5182\n", + "\n", + "Epoch 21000/100000\n", + " - loss: 0.5090\n", + "\n", + "Epoch 22000/100000\n", + " - loss: 0.5011\n", + "\n", + "Epoch 23000/100000\n", + " - loss: 0.4904\n", + "\n", + "Epoch 24000/100000\n", + " - loss: 0.4827\n", + "\n", + "Epoch 25000/100000\n", + " - loss: 0.4767\n", + "\n", + "Epoch 26000/100000\n", + " - loss: 0.4691\n", + "\n", + "Epoch 27000/100000\n", + " - loss: 0.4649\n", + "\n", + "Epoch 28000/100000\n", + " - loss: 0.4628\n", + "\n", + "Epoch 29000/100000\n", + " - loss: 0.4562\n", + "\n", + "Epoch 30000/100000\n", + " - loss: 0.4492\n", + "\n", + "Epoch 31000/100000\n", + " - loss: 0.4447\n", + "\n", + "Epoch 32000/100000\n", + " - loss: 0.4428\n", + "\n", + "Epoch 33000/100000\n", + " - loss: 0.4394\n", + "\n", + "Epoch 34000/100000\n", + " - loss: 0.4350\n", + "\n", + "Epoch 35000/100000\n", + " - loss: 0.4343\n", + "\n", + "Epoch 36000/100000\n", + " - loss: 0.4290\n", + "\n", + "Epoch 37000/100000\n", + " - loss: 0.4292\n", + "\n", + "Epoch 38000/100000\n", + " - loss: 0.4245\n", + "\n", + "Epoch 39000/100000\n", + " - loss: 0.4286\n", + "\n", + "Epoch 40000/100000\n", + " - loss: 0.4191\n", + "\n", + "Epoch 41000/100000\n", + " - loss: 0.4171\n", + "\n", + "Epoch 42000/100000\n", + " - loss: 0.4190\n", + "\n", + "Epoch 43000/100000\n", + " - loss: 0.4138\n", + "\n", + "Epoch 44000/100000\n", + " - loss: 0.4127\n", + "\n", + "Epoch 45000/100000\n", + " - loss: 0.4110\n", + "\n", + "Epoch 46000/100000\n", + " - loss: 0.4101\n", + "\u001b[1m47/47\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE3 (100000 эпох)\n", + "patience= 5000\n", + "ae3_trained, IRE3, IREth3= lib.create_fit_save_ae(train,'out/AE3.h5','out/AE3_ire_th.txt', 100000, False, patience)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XO4KnMXJbOqR" + }, + "outputs": [], + "source": [ + "mse_stop_ae3 = 0.4101" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "id": "eAGwr2_mb54w", + "outputId": "29b2f1b8-a806-4bc2-ed1c-cf409c1530c1" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FOXZx/HfOYeOgiIqqNiNGuxBTMSCBVGiBqNR0SiYWBI1FtQovnZN7L3EWCKWiBoLNizYsVEUUBFRqnTph3ra7vvHuntm98zMTp/ZPd/PdXGxZ3d25tnZqffe9/NUpNPptAAAAAAAAAAgBpVxNwAAAAAAAABA80WAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAJSsyZMn6+yzz9Yvf/lLrb/++qqoqMj9mzlzZtzNa5aGDh2a+w4GDRoU6bKN3z8AAABKBwFKAABKTO/evXNBmGuuucZyOmOwpvBfVVWVNthgA+2www76wx/+oEceeUSrVq3y1Aa3/4IKWr3yyivac8899a9//UuTJ0921X4AeOedd/KOTTvvvLPreVxzzTWej4Vbb7216Tzr6ur02Wef6Y477tDAgQO1zz77qGvXrmrbtq1atmypzp07q0ePHjr77LM1atQon2sBAIBkaBF3AwAAQPRSqZRWrFihFStWaOrUqXr++ec1ZMgQPfTQQzrmmGPibl5Rq1at0qBBg1RTUyNJ6tq1q/bbbz9tvPHGuey5Dh06xNlEX6655hpde+21kqSrr77aNhANJNXWW2+tWbNmSZJmzJhhGZCLy+OPP57393fffacxY8aoZ8+eMbUo4+WXX9Yf/vAHy9eXLFmiJUuW6IsvvtC//vUvHXLIIfrPf/6jLbfcMsJWAgAQLAKUAAA0A/3799fmm2+e+zuVSmnx4sX67LPPNGfOHEnS4sWLddxxx+n55593FaTce++9Xd3Q//rXv3becAuvvfaali1bJknq3r27xo4dq7Zt2/qeL4DmYeXKlXrxxRebPP/44497DlButtlmro6dG220UdFpWrVqpZ133lnbb7+9OnXqpHQ6rQULFujzzz/X4sWLJUnvvvuu9ttvP3388ccEKQEAJYsAJQAAzcD555+v3r17N3k+lUrp8ccf11//+lfV1NQolUrpr3/9q/r27at27do5mne/fv0iz/D78ssvc48HDBhAcDJBBg0aFHnfk1npdDqW5aL0PP/881qzZo0kqW3btlq7dq0k6ZlnntGdd96pVq1auZ7nDjvsoPvuu89327p27aorrrhChx9+uHr06KHWrVs3maa+vl5PPPGEzj33XK1du1azZ8/W2Wefrddee8338gEAiAN9UAIA0IxVVlbqtNNO0y233JJ7buHChRo+fHh8jXIgmz0pZW7mAcANY3n3pZdeqk033VSStHTpUr366qtxNUuS1KtXL11//fXq1auXaXBSklq0aKE//elPevDBB3PPjRgxIpcRDwBAqSFACQAAdNZZZ6lNmza5vz/66KMYW1NcXV1d7nFlJZczAJybOXNm7hhXUVGhgQMHasCAAbnXC/umTDJjBnk6ndaECRPibRAAAB5xRQ8AANS6deu8EWznzZsXY2vMGUfLNQYQTjvttCaj4w4dOtR0HqtWrdI999yjvn37aosttlCbNm204YYbapdddtG5556r0aNHO2qLcVlZEydO1Pnnn69ddtlFnTp1UkVFhfr37+/qM2ZHR88OkCNJ1157raPR0AcNGtTk8y9fvlx33323DjjgAG2++eZq0aKFKioqtHz58rz3/vTTT3rsscc0cOBA7bnnnurUqZNatmypDTbYQDvttJNOO+00vfXWW44+w9ChQ4uO2P7BBx/kpjF2PfDee+/pxBNP1Lbbbqs2bdpoo4020gEHHKD77rsvLyhtxex7KbT11lvnppk5c6Ykac6cObryyiu1++67a4MNNlD79u2100476W9/+1tukBenRo4cqRNPPFFbbrml2rRpo65du2r//ffX/fffr9WrV0vK35aD6h5h8eLFuu2223TooYdqs802U5s2bXLfYffu3XXcccfpjjvu0IwZMxzN791339Vf/vIXde/eXZ06dVLr1q212WabqW/fvrrvvvtyJdGFZs6cmftsxnW3zTbbmG7HH3zwQRAf35Unnngi1x3Afvvtp6233lqnnHJK7vU33nhDP/30U+Tt8qJly5bq2LFj7u+VK1fG2BoAALyjD0oAACBJef04rlu3LsaWhOO1117TGWecoQULFuQ9X1NTo+XLl2vSpEm6//77ddJJJ+nhhx923AenlAk43XDDDWpoaAi62Z598sknGjBggGbPnm073T333KPBgwebtj070vuUKVM0dOhQHXzwwXruueccDe7hRm1trc4991w9/PDDec/X1NRo1KhRGjVqlB577DG99dZb6ty5c6DLHj58uAYNGqQVK1bkPT9lyhRNmTJFjz76qP73v//pt7/9bdHP8Oc//1lPPfVU3vMLFizQggUL9PHHH+v+++/XSy+9FGj7pcyoz6eddlpe1wdZ2e/w22+/1QsvvKA77rjDtgx49uzZOvXUU00Dh/Pnz9f8+fP19ttv68Ybb9Qzzzyj/fffP8iPEoknnngi9zgbmNxrr73UvXt3TZo0SfX19Xr66ad1wQUXxNRC5xYvXqxFixbl/k7aSOkAADhFgBIAAEjKz5rM9seWJD179tQ555wjKZPd9d1330mSDjnkEO2000550xqzQSXp2Wef1cknn5wLwlVVVWm//fbT9ttvr1WrVmnUqFG5z//0009rxowZeu+99/LK3q3ceuutuYzH7bbbTj179lS7du00c+ZMtWzZ0tVnPOaYY7TLLrtozJgxGjt2rCTrUdLtRkOfOnWqLrjgAq1YsULrr7++DjjgAG222WZatmxZk/L9efPm5dbLtttuq5133lkbb7yx2rRpo+XLl+vrr7/WpEmTJGUyHA899FB9/vnnln3jeXHmmWfq8ccfV2VlpfbZZx/ttNNOSqVS+vzzzzVlyhRJmYGRTj31VI0YMSKw5b7zzjv6y1/+ooaGBm255Zb6zW9+ow4dOmjGjBn64IMPVF9fr7Vr1+r444/XN998o2222cZyXgMGDMgbFbpTp07q3bu3OnXqpNmzZ+vDDz/U5MmT9dvf/lZHH310YJ9h3LhxOu6441RfXy8p80PDr3/9a2299dZq3bq1qqurNW3aNH399de5QWGsTJ48WYcccojmz58vKZORutdee+mXv/yl2rZtq7lz5+qjjz7SypUrNW/ePPXp00dvvPGGDjrooNw8OnTokNtPn3jiiVxG36mnnqr111+/yTI333zzQNaDUx9//LGmTZsmKZM5/oc//CH32imnnKLLLrtMUqbMO+kBynQ6rb///e+5/XfLLbfU3nvvHXOrAADwKA0AAErKgQcemJaUlpS++uqrLafLTiMp/f7779vOc8qUKXnT33fffYG0ISwDBw7MLf+xxx6znXbq1Knp9dZbLzd9z5490z/88EPeNA0NDenbb789XVlZmZvub3/7m+U8jeuqRYsW6Y4dO6ZfeumlJtOtW7fOy8dLX3311a7Xr3GdtGjRIi0pfc4556RXrlyZN11tbW26oaEh9/ejjz6avvfee9Nz5syxnPfEiRPTPXr0yM3/+uuvt5z2sccey003cOBA02nef//93DStW7dOS0rvvffe6cmTJ+dNl0ql0nfddVfe+v7www8tl22czspWW22Vt+z27dunn3zyyXQqlcqb7ptvvklvvvnmuWlPO+00y3k+8sgjecu+6KKLmnz3CxcuTB9xxBF5nzmI/ad///65eR177LHppUuXmk63du3a9Ouvv54+66yzTF9ftWpVeuedd87N64gjjkhPnTq1yXQrVqxI//Wvf81N17Vr1/Ty5ctN52lc1zNmzPD8GYN0+umn59p03HHH5b02e/bsvGPAxIkTi87PuK8eeOCBIbW6UV1dXXru3LnpF154Ie843LJly/Trr78e+vIBAAgLGZQAADRz9fX1Ov/883N/d+jQQSeeeKLj948YMUKLFy92PP11112nTp06uWqjH9ddd51WrVolSdp+++319ttv5/XZJmUG2hk8eLAqKio0ePBgSdL999+vCy+80DZrTpJSqZReeeUVHXDAAU1eCzLL0I36+nqdfvrpuu+++5q8VpjV+ac//ano/HbbbTe988472mmnnbRgwQI98MADGjJkiKqqqny3taamRjvssIPee+89rbfeenmvVVRU6Pzzz9fHH3+s559/XpI0bNgw03XtRW1trYYPH67DDz+8yWvdu3fXv//9bx155JGSpP/973966KGH1KJF/uVzQ0ODrr766tzfZ511lm677bYm89tkk000fPhw7bfffrns2CCMGjVKUmZbGzp0aJN1mNWmTRv169dP/fr1M339jjvu0OTJkyVlMnmff/550wGoOnTooAceeEBr1qzR448/rvnz5+vBBx/UpZdeGtAnCs/atWv13HPP5f429jspSVtssYV69+6t9957T1Imi/L22293PP8ffvhB5557ruPpTznlFO2zzz5Fp9t+++1zWZ9munbtqmHDhunAAw90vGwAAJKGACUAAM1QKpXS4sWL9cknn+imm27SmDFjJEktWrTQf/7zH1d9DI4dO9ZVwOXiiy+OLEC5fPlyPfvss7m/b7nllibBSaPzzz9fjz76qCZNmqRUKqWHHnpIN954o+0yjjvuuMACZkFp06aNbrnllkDn2bFjRx1zzDH617/+pfnz5+vbb7/VrrvuGsi8b7rpJsvAmpQJomYDlNltNQhHHnmkaXAyq1+/furSpYsWLFigVatWafLkyU0+85tvvqm5c+dKktq3b6+bbrrJcn6tWrXSbbfdFmggqbq6WpLUrl0723Vop66uLhfMbt26tR588EHT4KTRP//5z9xgM//9739LIkA5fPjw3PraaKONdMQRRzSZ5pRTTskFKP/73//q5ptvbhKUtjJv3jzdf//9jtvTo0cPRwFKO3/+85919913q3379r7mAwBA3AhQAgDQDBj7iLOy44476vbbby86GEgp+fTTT1VTUyNJ6ty5s4466ijb6SsrK/WnP/1JF110kSTp/fffL7oMN9mmUTnssMO04YYbun7fTz/9pM8//1yTJ0/WsmXLtHr16txox1Kmv8OsCRMmBBKgbNOmTdHvZc8998w9zo68HQRj/4NmKioqtPvuu+cGVpo5c2aTz2wcTOa3v/2tNthgA9t5HnDAAdpyyy31448/empzoW7dumn69OlatmyZnn32WZ1wwgmu5zFu3LjcqNWHHHKINtlkk6Lv2WyzzbTTTjtp8uTJ+uabb7RixQrb4H8SPP7447nHJ554omkfsccdd5zOOeccrVmzRgsXLtRbb70V+zHxlFNOyQ2Es27dOs2bN0+jR4/W0qVL9eijj2rEiBG6+eabm2SEAgBQSghQAgAAbbrppnriiSdMB2Mp5uqrr9Y111wTfKMCMH78+Nzjnj17OsqE6tWrV9770+m0KioqLKf/1a9+5a+RIXDbpm+//VaXXnqp3njjDccjkbsp67ez4447Fh1MyJjRm82AC4KTAGuxZU+YMCH32Gk2XM+ePQMLUB5//PG5rM0BAwbkgpQHHXSQo0CjJH322We5x3PmzHFcprx8+XJJmcFa5syZk+gA5bx58/TOO+/k/rYK5q233nrq37+/nn76aUmZoKbTAOWBBx5oOvq5X8YuBLJqa2v15JNP6qKLLtL8+fN16qmnaubMmbryyisDXz4AAFEgQAkAQDPQv3//vNFylyxZomnTpuVKsxcuXKj9999fL7zwQq7PvXKQzTqSpK222srRe7beeuvc49raWq1cuVIdOnSwnH7jjTf23L6wuGnTW2+9pd/97ne5TFOnsqMz++UkqGUMYGZHq45j2XV1dU1eN25j3bp1c7TcLbbYwtF0TlxxxRX64IMP9PnnnyudTuull17SSy+9JEnaYYcdtP/+++uQQw7RUUcdZTqKtqTcCPaS9NVXX+mrr75y3Y5ly5Z5+wAReeqpp3LB9x122ME2mHzKKafkApSvvPKKli1b5ikjOUytWrXSn//8Z+26667ab7/9VFdXp6uvvloHH3xw3o8sAACUCvvOZQAAQFk4//zzdd999+X+DRs2TGPGjNHEiRO1++67S8oE4wYMGGA7GEOpyQ6OI8lxH22F0xULxLVt29Z9w0LmtE2LFi3SCSeckAtObrXVVrrxxhv18ccfa968eVqzZo1SqZTS6bTS6XReJlcqlQqkrXbZqWELYtnGbaxdu3aO3uO1r0gz7du314cffqhbb701L7guZQZt+c9//qOTTz5ZXbp00d///netXbu2yTxWrFjhux1BBo7DYCzv/uMf/2g7bZ8+fdSlSxdJmUGcjP3YJk3Pnj116qmnSspkst55550xtwgAAG8IUAIA0Izttttuevvtt3PZlatWrdLpp58ec6uCYwwErV692tF7CqezyjorBw8//HAuOLX77rvrq6++0mWXXaZevXqpa9euatu2bV4QL6isyXJi3MbWrFnj6D1Ot0WnWrVqpYsvvljTp0/XhAkTdM899+jEE0/My5pes2aNbr31Vh100EFNgpTGoPx5552XC0i7+de7d+9AP1OQxo0bp2+//Tb399VXX62KigrLfy1atMj1OyrlBzeTqE+fPrnHn3zySYwtAQDAOwKUAAA0c5tssonuvffe3N8ffPCBXn/99RhbFBxjqbPTPv+Mg7C0atWqrAOU7777bu7xFVdcYVvKLkmzZs0Ku0klp3PnzrnHc+bMcfQep9O5lR3U529/+5uGDRumOXPm6Msvv9Rpp52Wm2b06NFNRpredNNNc4+Ngbly4TfA+Pnnn+v7778PqDXBM5afL1myJMaWAADgHX1QAgAAHXPMMerVq1cu++aKK66IfeTaIBhHfx4zZowaGhpUVVVl+55PP/007/1xlCBHtUxj34PFBoxpaGggO8vEHnvskQv0jh492tF7xowZE2aT8uy55576z3/+o6qqKj3yyCOSMv0qXnzxxblpjP0xfvrpp0UHhnIqzvL9rNraWg0bNiz394477lh0pPWsH374QUuXLpWUCXL+4x//CKOJvs2fPz/3uFOnTjG2BAAA78igBAAAkpQ3EveECRP0yiuvxNeYgOy7775q3bq1pEx/i8UyQ1OplB577LHc3wcffHCo7bPSpk2b3GOzgVmCUlnZeClYrDx5+PDhZZld55extPn1118v2p/jxx9/HEsm6tFHH517vHDhwrzXevXqlQvazZkzR6+++mogy4xqO7bz+uuv57IKW7RooY8++kiff/65o3+XX355bj5PPvlkYP2uBu21117LPd55551jbAkAAN4RoAQAAJKkQw89VPvuu2/u7xtuuCHG1gRjgw020AknnJD7+5JLLrHtR/G+++7T119/LSkTvDvzzDNDb6OZjTbaKPd47ty5oS1n2223zT22C0gvWrRIF154YWjtKGWHH364NttsM0mZPlyNQa1CtbW1eZmLftXU1OQN0mNn9uzZucebbLJJ3mutW7fWBRdckPv77LPPdrXdFQY8s6Laju0Yy7v79OnT5LPbGTBgQC6IP3v2bL3//vuBt69QfX29q0GLRowYoRdeeCH397HHHhtGswAACB0BSgAAkHPVVVflHo8dO1ZvvvlmjK0JxlVXXZUbyOT7779X3759NX369LxpUqmU7r77bg0ePDj33DnnnNNkVOSo7LLLLrnHb7/9diCjLJs56qijco9vvPFGPfXUU02m+fLLL3XggQdq9uzZjkdCb05atGiRl338wAMP6NJLL1VtbW3edIsWLdKxxx6r0aNH57J6/Zo/f766deumiy++WOPGjbOcbuTIkXkjsB9xxBFNprnooovUvXt3SZlgYo8ePfS///3PMmtw8eLFeuihh7TXXnvp1ltvNZ3GuB3/73//c/SZhg4dmjdgjbFPWLcWL16sESNG5P4++eSTXb1/s80200EHHZT7O4rBclatWqVtttlGV111laZMmWI53bJly3TDDTfo97//vdLptCRp++231xlnnBF6GwEACAN9UAIAgJy+fftqn332yfWld/311+vwww+3fc+IESO0ePFix8to166dbrnlFl/tdGO77bbTI488opNPPlkNDQ367LPPtOOOO2r//ffXdtttp1WrVmnUqFF5GV6//vWvI21joZ49e6pbt26aPXu25s+fr5122kmHHXaYOnfunOvXb++9987LDvVi4MCBuv322/X999+rpqZGp5xyiv75z39q9913V5s2bfTNN9/kAl+77767+vbtG+t6SarTTz9dr7/+ul5++WVJ0i233KJHH31UvXv3VqdOnTRnzhy9//77Wrdunbbddlv97ne/05133ikpv8zei+XLl+v222/X7bffrk6dOmnPPffU5ptvrjZt2uinn37SV199lReQ/8UvfqHzzz+/yXzWW289vfLKKzr00EM1Y8YMLViwQMcff7w6d+6sX//61+rSpYvS6bSWLl2qb7/9Vj/88EMueGnVFcKxxx6rf//735IygdsvvvhCe+21l9q1a5eb5q9//au22247X+vAytNPP50rLW/fvr369+/veh4nn3xyro/RF198UQ888EDeyO1GP/zwg84991xX8x8yZEjeaOtSJvh4/fXX6/rrr9dmm22m3XbbTZtssonatWunVatWaerUqfryyy/zguBdunTRK6+8EljwGwCAqBGgBAAAea666qrcADmffvqp3n33XR1yyCGW048dO1Zjx451PP+OHTtGHuQ64YQT1L59e51++ulauHCh6uvr9f7775uWbA4YMECPPPJIXv95UausrNQDDzygY489VrW1tVqwYIGeeOKJvGkGDhzoO0DZunVrvfrqqzriiCNyQazJkydr8uTJedP16tVLzz77rB5++GFfyytXFRUVevbZZzVo0CA988wzkjKjKRtLb6VM/4AvvfRS3ndZbOR0Oy1btlTr1q1VU1MjSVq6dGneyOyFevfurWHDhllmwm677bYaN26c/vKXv+j5559XOp3W4sWL8/o4LLTBBhtYDrDUp08fDRgwIDdIzejRo5sMJHTkkUeGFqA0Zjz279/fUwbwscceq7PPPlvr1q3T6tWr9fzzz2vQoEGm086bN6/JCOnFnH766XkBysrKSrVo0UL19fW5eRoHszLz+9//Xvfcc0+TQCcAAKWEACUAAMjTr18/9ejRI5c5d91119kGKEvFkUceqalTp+o///mPXnvtNU2aNEmLFy9W27Ztc6Wcp556at6IxnE68sgjNW7cON1///36+OOP9eOPP2rVqlW5cs6g/OIXv9D48eN1//3368UXX9SUKVNUW1urLl26aNddd9VJJ52k448/vujo581d69atNWzYMJ122ml65JFH9Nlnn+mnn37ShhtuqO23314nnniiTjvtNLVv3z43MrQkxyNKm9l88821ZMkSvffeexo1apS++OILTZ06VYsWLVJtba3WX399bbXVVrls20MPPbToPDt16qTnnntO33zzjYYNG6YPPvhAM2bM0JIlS1RZWakNNthA22+/vfbaay8deuih6tOnj20w/7///a+OPPJIDRs2TBMmTNDixYu1bt06z5/ZqW+++UZffvll7m+35d1ZHTp00FFHHZUrUR86dKhlgDIIHTp00JIlS/TOO+/ok08+0fjx4zV9+nQtWrRINTU1at++vTbccEN1795d++yzj0466SRtv/32obUHAICoVKSDvsoFAAAAYKlXr1769NNPJUmff/55YoLiAAAAcSFACQAAAERk1qxZ2m677dTQ0KBWrVppxYoVsXYnAAAAkASM4g0AAABEIJ1O6/zzz1dDQ4Mk6ZhjjiE4CQAAIAKUAAAAgG9XXXWV7r77bssR7WfOnKljjjkmN9J3VVWVLr744iibCAAAkFgMkgMAAAD49OOPP+r666/XxRdfrF133VU77bSTOnbsqFWrVum7777T+PHjc5mTknTFFVeoR48eMbYYAAAgOQhQAgAAAAGpr6/X+PHjNX78eNPX27Ztq+uuu47sSQAAAAMGyQEAAAB8Wr58uV5++WW99957mjRpkhYtWqTFixeroaFBnTp10o477qhDDjlEf/7zn9W1a9e4mwsAAJAoBCgtpFIpzZs3T+uvv74qKiribg4AAAAAAABQUtLptFauXKnNNttMlZXWQ+FQ4m1h3rx56tatW9zNAAAAAAAAAEra7NmztcUWW1i+ToDSwvrrry8pswI7dOgQc2uCV1dXp7fffluHHXaYWrZsGXdzUCbYrhAGtiuEhW0LYWC7QljYthAGtiuEge0KRtXV1erWrVsuzmalJAOUH330kW699VZ98cUXmj9/vl566SX1799fUmZHuOKKKzRixAhNnz5dHTt21KGHHqqbbrpJm222meNlZMu6O3ToULYBynbt2qlDhw4cMBAYtiuEge0KYWHbQhjYrhAWti2Ege0KYWC7gpli3SdaF38n2OrVq7X77rvr/vvvb/LamjVr9OWXX+rKK6/Ul19+qRdffFFTpkzR0UcfHUNLAQAAAAAAANgpyQzKI444QkcccYTpax07dtTIkSPznrvvvvvUs2dP/fjjj9pyyy2jaCIAAAAAAAAAB0oyQOnWihUrVFFRoQ022MBympqaGtXU1OT+rq6ulpRJTa6rqwu7iZHLfqZy/GyID9sVwsB2hbCwbSEMbFcIC9sWwsB2hTCwXcHI6XZQkU6n0yG3JVQVFRV5fVAWWrdunXr16qWddtpJ//3vfy3nc8011+jaa69t8vzTTz+tdu3aBdVcAAAAAAAAoFlYs2aNTjrpJK1YscJ2jJeyDlDW1dXp2GOP1Zw5c/TBBx/YrgizDMpu3bpp8eLFZTtIzsiRI9WnTx86rUVg2K4QBrYrhIVtC2Fgu0JY2LYQBrYrhIHtCkbV1dXq3Llz0QBl2ZZ419XV6fjjj9esWbP03nvvFQ0ytm7dWq1bt27yfMuWLct6hyr3z4d4sF0hDGxXCAvbFsLAdoWwsG0hDGxXCAPbFSQ53gbKMkCZDU7+8MMPev/997XRRhvF3SQAAAAAAAAAJkoyQLlq1SpNnTo19/eMGTM0YcIEderUSV27dtVxxx2nL7/8Uq+99poaGhq0YMECSVKnTp3UqlWr0NtXV1enhoaG0JfjR11dnVq0aKF169Ylvq2lrrKyUi1btlRFRUXcTQEAAAAAAEickgxQjhs3TgcddFDu78GDB0uSBg4cqGuuuUavvPKKJGmPPfbIe9/777+v3r17h9au6upqLV68OK8vy6RKp9Pq0qWLZs+eTeAsAlVVVWrXrp022WSTSILkAAAAAAAApaIkA5S9e/eW3dg+cYz7U11drblz52q99dZT586dE58xl0qltGrVKq233nqqrKyMuzllK51Oq6GhQWvXrtWKFSs0c+ZMbbHFFowMDwAAAAAA8LOSDFAm0eLFi7Xeeutpiy22SHRgMiuVSqm2tlZt2rQhQBmB9dZbT506ddKsWbO0ePFibbnllnE3CQAAAAAAIBGITAWgrq5ONTU16tixY0kEJxGPqqoqderUSatXr1Z9fX3czQEAAAAAAEgEApQByA4y43TodDRfrVu3liQClAAAAAAAAD8jQBkgsidRDNsIAAAAAABAPgKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUpEZuutt1ZFRYWGDh2ae27o0KGqqKjI+1dZWakOHTpozz331JAhQ7Ro0SLLeRa+1+rfBx98EP4HBAAAAAAAgGst4m4AIEnt27fXcccdJykzKvqsWbP02WefacKECXrsscc0atQo7bDDDpbv79u3r7p06WL5ut1rAAAAAAAAiA8BSiRC586d8zIrJWnSpEk68MADtXDhQl1wwQV6/fXXLd9/2WWXqXfv3uE2EgAAAAAAAIGjxBuJ1b17dw0ePFiSNHLkSNXU1MTcIgAAAAAAAASNACUSbbfddpMk1dXVaenSpTG3BgAAAAAAAEEjQIlEq66uliRVVVWpc+fOMbcGAAAAAAAAQSNAiUTL9jt5+OGHq2XLljG3BgAAAAAAAEFjkJyo9OghLVgQdytyKiR1SKdVUVFhP2GXLtK4cZG0KSs7ivdDDz2kp59+WltttZXuuece2/ccdNBBlq917NhRy5cvD7iVAAAAAAAACAIByqgsWCDNnRt3K3Iqfv6XFLNmzTINlvbs2VNvv/22OnbsaPv+vn37qkuXLqavtWvXLpA2AgAAAAAAIHgEKKNiETyLS1pS+ucMSttAZUTtbt++vY477jhJUk1NjSZPnqyJEydqzJgxOuuss/TMM8/Yvv+yyy5T7969I2gpAAAAAAAAgkSAMioRl0kXk06lVF1drQ4dOqiiMv6uSDt37qyhQ4fmPffiiy/qhBNO0LPPPqsDDjhAZ599djyNAwAAAAAAQGjij0wBFn7/+9/rsssukyRdddVVWrFiRcwtAgAAAAAAQNAIUCLRhgwZoq5du2rJkiW644474m4OAAAAAAAAAkaAEonWrl07XXnllZKku+66S8uWLYu5RQAAAAAAAAgSfVAi8U4//XTdfvvtmjZtmm677Tb94x//aDLNTTfd1KQPS6OTTjpJhx12WIitBAAAAAAAgBcEKJF4LVu21A033KABAwbo3nvv1eDBg7XRRhvlTfPWW2/ZzmOPPfYgQAkAAAAAAJBABCgRmZkzZzZ5btCgQRo0aFDR95544ok68cQTmzyfTqcDaBkAAAAAAADiQh+UAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUis/XWW6uiokJDhw7NPTd06FBVVFTk/ausrFSHDh205557asiQIVq0aJHlPAvfa/Xvgw8+cNXWbLsGDRrk7cMCAAAAAADAkRZxNwCQpPbt2+u4446TJDU0NGjWrFn67LPPNGHCBD322GMaNWqUdthhB8v39+3bV126dLF8vfC1iooKSVI6nQ6g9QAAAAAAAPCKACUSoXPnznmZlZI0adIkHXjggVq4cKEuuOACvf7665bvv+yyy9S7d+9wGwkAAAAAAIDAUeKNxOrevbsGDx4sSRo5cqRqampibhEAAAAAAACCRoASibbbbrtJkurq6rR06VLf87vmmmty5d1S0z4sZ86c2eQ9q1ev1pAhQ7T99turdevW6tKliwYOHKi5c+f6bg8AAAAAAEBzR4k3Eq26ulqSVFVVpc6dO/ue3x577KGBAwfq8ccflyQNHDgw7/X11lsv7+8VK1Zo33331Y8//qj9999fu+yyiz777DM98cQT+vDDDzVx4kR17NjRd7sAAAAAAACaKwKUSLRsv5OHH364WrZs6Xt+/fv3V//+/XMBysJ+LwsNHz5cffv21ahRo9ShQwdJ0rJly3TwwQdrwoQJeuCBBzRkyBDf7QIAAAAAAGiuCFBGpEePHlqwYEHczciTTqfzyp3NdOnSRePGjYuoRRnZUbwfeughPf3009pqq610zz332L7noIMOsnytY8eOWr58uae2tG/fXo899lguOClJG264oS677DKdeOKJeueddwhQAgAAAAAA+ECAMiILFiygz0Ibs2bNMg2W9uzZU2+//XbRMuq+ffuqS5cupq+1a9fOc7t69Oihrl27Nnl+5513liS+UwAAAAAAAJ8IUEbEKngWJ6cZlFFo3769jjvuOElSTU2NJk+erIkTJ2rMmDE666yz9Mwzz9i+/7LLLlPv3r0Db9eWW25p+nw2o3LdunWBLxMAAAAAAKA5IUAZkajLpItJpVKqrq5Whw4dVFkZ/2DunTt3btIf5IsvvqgTTjhBzz77rA444ACdffbZkbcrCesGAAAAAACgnBF9QWL9/ve/12WXXSZJuuqqq7RixYqYWwQAAAAAAICgEaBEog0ZMkRdu3bVkiVLdMcddwQ23+yI4PX19YHNEwAAAAAAAO4RoESitWvXTldeeaUk6a677tKyZcsCme8WW2whSZo0aVIg8wMAAAAAAIA39EGJxDv99NN1++23a9q0abrtttv0j3/8o8k0N910U5M+LI1OOukkHXbYYbm/jz32WN1222069NBDdfDBB2v99deXJN18883aaKONAv8MAAAAAAAAMEeAEonXsmVL3XDDDRowYIDuvfdeDR48uEkQ8a233rKdxx577JEXoLz++utVWVmpF198UcOHD1dtba0k6YorriBACQAAAAAAECEClIjMzJkzmzw3aNAgDRo0qOh7TzzxRJ144olNnk+n057a0qZNG9188826+eabTV8v1q6tt97a87IBAAAAAADQiD4oAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAZoHQ6HXcTkHBsIwAAAAAAAPkIUAagsjKzGhsaGmJuCZIuu41ktxkAAAAAAIDmjihJAFq2bKmqqiqtXbs27qYg4VauXKmWLVuqZcuWcTcFAAAAAAAgEQhQBqCiokLt2rXTihUryKKEpbVr16q6ulrrr7++Kioq4m4OAAAAAABAIrSIuwHlYpNNNtHMmTM1a9YsderUSa1bt050ECqVSqm2tlbr1q2j3DhE6XRaDQ0NWrlypaqrq9W6dWt17tw57mYBAAAAAAAkBgHKgLRq1UpbbLGFFi9erPnz58fdnKLS6bTWrl2rtm3bJjqQWi5atmypDTbYQJ07d1ZVVVXczQEAAAAAAEgMApQBateunbbcckvV19ervr4+7ubYqqur00cffaQDDjiA/hBDVllZqZYtWxIIBgAAAAAAMEGAMgQtWrRQixbJXrVVVVWqr69XmzZtCFACAAAAAAAgNnQ+CAAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJTkgHKjz76SEcddZQ222wzVVRUaPjw4Xmvp9NpXXXVVeratavatm2rQw89VD/88EM8jQUAAAAAAABgqSQDlKtXr9buu++u+++/3/T1W265Rffcc48efPBBjR49Wu3bt1ffvn21bt26iFsKAAAAAAAAwE6LuBvgxRFHHKEjjjjC9LV0Oq277rpLV1xxhX73u99Jkp544gltuummGj58uE488UTT99XU1Kimpib3d3V1tSSprq5OdXV1AX+C+GU/Uzl+NsSH7QphYLtCWNi2EAa2K4SFbQthYLtCGNiuYOR0O6hIp9PpkNsSqoqKCr300kvq37+/JGn69OnabrvtNH78eO2xxx656Q488EDtscceuvvuu03nc8011+jaa69t8vzTTz+tdu3ahdF0AAAAAAAAoGytWbNGJ510klasWKEOHTpYTleSGZR2FixYIEnadNNN857fdNNNc6+ZGTJkiAYPHpz7u7q6Wt26ddNhhx1muwJLVV1dnUaOHKk+ffqoZcuWcTcHZYLtCmFgu0JY2LYQBrYrhIVtC2Fgu0IY2K5glK1QLqbsApRetW7dWq1bt27yfMuWLct6hyr3z4d4sF0hDGxXCAvbFsLAdoWwsG0hDGxXCAPbFSQ53gZKcpAcO126dJEkLVy4MO/5hQsX5l4DAAAAAAAAkAxlF6DcZptt1KVLF7377ru556qrqzV69Gj95je/ibFlAAAAAAAAAAqVZIn3qlWrNHXq1NzfM2bM0IQJE9SpUydtueWWuuCCC3TDDTdohx120DbbbKMrr7xSm222WW4gHQAAAAAAAADJUJIBynHjxumggw7K/Z0d3GbgwIEaOnSo/v73v2v16tU688wztXz5cu23335688031aZNm7iaDAAAAAAAAMBESQYoe/furXQ6bfl6RUWFrrvuOl133XURtgoAAAAAAACAW2XXByUAAAAAAACA0kGAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEJsWcTcA0Vu9erVeeeUVjR8/XmvWrFGLFmwGCEZ9fT3bFQLHdoWwsG0hDGxXCIunbWvxYqmmRtp883Abh5LFMQthYLtyr2XLlurfv3/czYgVW0oztHjxYp100klxNwMAAAAAAKDZ23DDDZt9gLIsS7wbGhp05ZVXaptttlHbtm213Xbb6frrr1c6nY67aQAAAAAAAAAMyjKD8uabb9a//vUvPf744+revbvGjRun0047TR07dtR5550Xd/Nit+GGG+qWW27R5MmTtfPOO6uqqiruJqFMNDQ0sF0hcGxXCAvbFsLAdoWwuN62nnlGGjs287hNG+kf/wi3gShJHLMQBrYr99q0aRN3E2JXlgHKTz/9VL/73e/029/+VpK09dZba9iwYRozZkzMLUuGDh066IILLtCIESPUr18/tWzZMu4moUzU1dWxXSFwbFcIC9sWwsB2hbC43ra++64xQFlZKQ0eHG4DUZI4ZiEMbFfwoiwDlPvuu68eeughff/99/rFL36hiRMn6uOPP9Ydd9xh+Z6amhrV1NTk/q6urpaU2bHq6upCb3PUsp+pHD8b4sN2hTCwXSEsbFsIA9sVwuJ226qsrFQ2byldV6d6tkmY4JiFMLBdwcjpdlCRLsOOGVOplC6//HLdcsstqqqqUkNDg/7xj39oyJAhlu+55pprdO211zZ5/umnn1a7du3CbC4AAAAABGqXRx7Rdq+9JklKV1TolZdeirlFAIDmaM2aNTrppJO0YsUKdejQwXK6sgxQPvPMM7rkkkt06623qnv37powYYIuuOAC3XHHHRo4cKDpe8wyKLt166bFixfbrsBSVVdXp5EjR6pPnz6kXCMwbFcIA9sVwsK2hTCwXSEsbretyksvVdWddza+v7Y2zOahRHHMQhjYrmBUXV2tzp07Fw1QlmWJ9yWXXKLLLrtMJ554oiRp11131axZs3TjjTdaBihbt26t1q1bN3m+ZcuWZb1DlfvnQzzYrhAGtiuEhW0LYWC7Qlgcb1sF9zZsj7DDMQthYLuC5Pz8UxlyO2KxZs0aVVbmf7SqqiqlUqmYWgQAAAAAESIoAAAoIWWZQXnUUUfpH//4h7bcckt1795d48eP1x133KE//elPcTcNAAAAAMJHgBIAUELKMkB577336sorr9TZZ5+tn376SZtttpnOOussXXXVVXE3DQAAAADC16Isb/UAAGWqLM9a66+/vu666y7dddddcTcFAAAAAKJHBiUAoISUZR+UAAAAANCsEaAEAJQQApQAAAAAUG4IUAIASggBSgAAAAAoNwQoATRHr74q3X67tHp13C2BS2XZByUAAAAANGtVVXG3AACi9f330tFHZx4vXCjdcku87YErZFACAAAAQLlJp+NugXdLl0p33CGNHRt3SwCUktdfb3x8663xtQOekEEJAAAAAOWmlAOUZ5whvfhi5vHq1VK7dvG2B0BpqKiIuwXwgQxKAAAAACg3pRygzAYnJWnWrPjaAaC0EKAsaQQoAQAAAKDclHKAEgDQ7BCgBAAAAIByUy4BSjKiAKBZIEAJAAAAAOWmXAKUAOAUP2iUNAKUAAAAAFBuyiVAScABAJoFApQAAAAAUG5SqbhbAADR4geNkkaAEgAAAADKTblkUAIAmgUClAAAAABQbgoDlA0N8bQDaE6+/1565x0ymONCBmVJI0AJAAAAAOWmMEBZWxtPO4DmYskSqXt3qU8f6amn4m5N80SAsqQRoAQAAACAclMYoKyri6cdfhFwQKl49FGpvj7zeODAeNsClCAClAAAAABQbsolg5IAJUoF22r8+A5KGgFKAAAAACg35RKgBEoFwTHAFwKUAAAAAFBuCFAC0aokvAL4wR4EAAAAAOWGACUQLTIo48d3UNIIUAIAAABAuWGQHCBaZFDGj+NFSWMPAgAAAIByQwYlEC0ClPEjQFnS2IMAAAAAoNyUSwYlytOsWdLJJ0v33Rd3S4LjJjg2d660dGl4bQFKEAFKAAAAACg3hQHKwr+BOJ1wgvT009Lf/iZNmRJ3a4LhNED55ZfSVltJ3bpJCxaE26bmhgzKkkaAEgAAAADKTbkEKEu13bA3enTj48mT42tHkJwGx04+WWpokNaska64Itw2ASWEACUAAAAAlBsClCgV5fIdO+2DcvnyxserVoXSFKAUEaAEAAAAgHJTGPRJpeJph1/lErwqRaNGSWecIY0fH3dLSoPTAKVxOrbvYFHiXdJaxN0AAAAAAEDAyKCEXwcckPn/kUf4HpxwGhwzBihL9YeDpCJAWdLIoAQAAACAckOAEqWiXL5jLxmUBCiDRYCypBGgBAAAAIByQ4k3EC0yKAFfCFACAAAAQLkhgxKloly+YwKUgC8EKAEAAACg3BQGPgiEIKkIUCIoSSzxTqeltWvjbkVJIEAJAAAAAOWGDEqUinL5jumDEoXSaenww6WNNpJeey3u1iQeo3gDAAAAQLkhQAlEiwBl/JKWQfnll9Lbb2ceH3UUx7MiyKAEAAAAgHLDIDlAtCjxjl/SApTV1XG3oKQQoAQAAACAckMGJUpFuXzHZFACvhCgBAAAAIByQ4ASpaJcvmOn2XvG6QhQBitpGZTlsm1HhAAlAAAAAJQbSryBaHnJoGT7Lm98v64QoAQAAACAckMGJUpFuXzH9EEZPzIoSxoBSgAAAAAoN+USoAzSggXSI49k/kdylMu2SR+UKFQu23ZEWsTdAAAAAABAwCjxbuqII6QJE6Q99pDGjw9uvoBEBmUSJC2DEq6QQQkAAAAA5aZcMiiDbPeECfn/w1qpbi+lgEFywpO0ACX7kSsEKAEAAACg3BCghB9Rrvdy+Y6dfg4yKJuHjz+WPvww7laUFEq8AQAAAKDcUOJd3OrV0u9/LzU0SC++KHXoEN6ySg0ByvAQoAxPUjIoR4+W9t8/7laUHDIoAQAAAKDckEFZ3LXXSm+/Lb37rnT55eEtpxSV6vYSJzIovRk5MtMv7F13+Z9XUrbbiy+OuwUliQAlAAAAAJQbApTFjR7d+Pizz8JbTimKMnBWqttmIS8BynL57H4cdpg0caJ04YWZbGY/WJ8ljQAlAAAAAJQbSrwz1qzJZEmuXRv8vMsZ68Y9Mij987s+krLdJqUdJYYAJQAAAACUm3LJoPTr5JOlvn2lU06xny4pfdclBduPe07XEaN4W2N9NGsEKAEAAACg3JRLgMlvu4cPz/z/wgu+m9KsRLn9lOq2WYgSb//IoGzWCFACAAAAQLmhxBt+RLn9NLfvuJRKvH/8Ufrhh+iWVy4BSnhCgBIAAAAAyg0ZlPCjMFBEgLK4cuuDcuZMadttpV/8Qho7NpplMkhOs0aAEgAAAADKDQFK+FEuGbhRKrcA5WWXNQYM//jHaJZZLhmUSWlHiSFACQAAAADlJsoMuDBxox8PApTulVuAsra28fG6ddEskwzKZo0AJQAAAACUGzIo4513qaMPSvfKLUAZx8j25ZJBCU8IUAIAAABAuSmXDDgCDvEol+0nSuUWoDSKaj8slfWBUBCgBAAAAIByUy4ZlFGJI1ssyRgkJzylEqA07hNRfUeUeDdrBCgBAAAQvHnz/N9oAPCuXAKUpdruUkeJt3vllkFJibd3SWlHiSFACQAAgGA9/ri0xRZSr15cpANxKZcSXfqgjAcBSvfKLUBpRAYlIkCAEgAAAMEaNChzkzB6tDRpUtytAZonMijdzZcS73wEKN1z+jmM21qSA5RxlHiTQdmsEaAEAABAeOrq4m4B0DwRoIxnvuWCPijd85JBmeTPTok3IkaAEgAAAADKDSXe8cy3XES5/ZTqtukVJd7W4irxXrtWqq31t2z4RoASAAAAAMqN2wzKDz+UhgyR5swJr01ehBUYSaXKN0i5erX/eRCgdK/c+qBsLiXe06Zl+s3eemtpyRJ/y4cvBCgBAAAAoNy4CVDW1Ei9e0s33ST17x9mq5KjXPugfPxxacMNpQED/M2HPijdK+cAZVT8ZlB68ec/S0uXSvPnS1dcEf3ykUOAEgAAAADKjZsA07JljY+/+CKc9ngVZgZlORo0KNP37zPP5H+vbpFB6V65DZJjVM4ZlLNmNT6eP9/f8v20AwQoAQAAAKDshD1ITn19sPOz4qfddu8tDISUY0DBTzZalIPklEqQrhin25BxuiR/9jhKvOPog7JcsqfLAAFKAACA5iSdjqeECkC03AQo3d7UP/mk1LGjdM457tvlVlgBynIMSAaJDEr3nO5zBCitlcso3klpR4khQAkAANBc1NdLvXpJ3bpJX38dd2sAhCnMANOpp0pr1kgPPBD+yLdRZVCSRZWPPij9I0DpXtwBynLdFksEAUoAAIDmYuhQ6bPPMn0sRTUQBjf9QDzCLvHOCjvA4qfddm1rDoEIP8dfMijdc7rOSjFAGRVKvJs1ApQAAADNxZw5jY+nT49mmc0hCAAkUZgl3lGKKoMS+QhQulduAUqj5pJBGZSktKPEEKAEAAAAgHLjJsAUVhAwCGFlUKZS5R9E8JMZFuUgOeXyPRR+DqtsQOO6THKAshQHyfGrXLbFEkWAEgAAAADKTVQZlEEHWIIMELj5zJR55iOD0j0vGZRJDojFsU/EkUEZRyAWpghQAgAAAEC5iaoPyqDnWxigCDODMummTZN23VU68khvmWVBZsYSoMx8By+/LH3+ufnrlHj7F3eAErEiQAkAAAAA5SaqEt2wMyibc4DyxBOlb76RXn9devJJ9+8nQBmsYcMyA8z95jfS1KnFp7cKKpdiBmWplHgneX2iKAKUAAAAzQUX7kDz4SbQ5ydAlOQAZbES76QfE8eNa3zsJCBWyO7zLVokPfectHKls/fSB6V0yimNj++/v+nrXjIo3frrX6Xdd5cmTvQ+D6eaS4l3GJLSjhJDgBIACtXUSEcdJfXuLS1eHHdrAAAA3IsqQBn0jXhcGZTlWOZpt+4OPVQ64QRVnXGG+etRDpJTKhmUVVWNj80y/cIOUI4eLT34oPTVV1KfPt7m4VVzyaAksBgrTwHK6upqVVdX+174qlWr9Morr+iVV17xPS8ACMztt0uvvSZ9+KF0wQVxtwYAAMC9qEbxLuUMynJn9xm/+kqSVPnii87eS4AyP0BZX9/09bADlHPnNj5etMjbPNyIo8S7XPqgbA7HlxC08PKmDTbYQJWVlfrqq6/0y1/+ssnr8+bN0xVXXKGKigo9+uijlvOZNWuW+vfvr8rKStWb7eAAEIcvvmh8/OGH8bUDAIIWxwVzOWYlAaWgVEu8GSTHnJf1UCp9UJZKMKdFC6m2NvPYSYDSSR+UblRGXABbiiXeKGmet/C0zU61bNkyDR06VEOHDvU9LwAAAACAS24CTM21xLvc70Pdfr7x46Xvvzd/LxmUxUu8CwWdQWlcftSaS4k3YkUflAAAAM0FF+5A81GqGZRBHqfKqcQ75AzKik8+kfbaS9ppJ2nGjKbf67Bh0v77SyNGuG9HMeUSoAy7xDvqAGVzLPEO6nOW2vElIQhQAkChOE7GAAAAQXIToCzXPiiLZVCWexcULtZd1amnNr5nyJCm733gAenjj6Xf/jbABv6MAKUzzaHEO44MSu79EoMAJQAU4iQFoFzFcbPBcRSIR1Ql3kkOUJZTBqUXbj6jsU/FdDra9VMq34XbAKVVsM3rPkMGZXGlsi3BFAFKAACA5oILd6D5iKrEO+jjSpSD5JTSMTHIEm+z543PVVREu25KJYOyhWGM4ThG8Y4zQBnVdxR3gLKUjglliAAlAAAAAJQbSrzdZY2WY7m31bor9p0RoDQXVom303VNiXdxfku8ESsClAAAAABQbijxpsTbTQZloSiDhqXyXbgdxdtqGq8jpDeHUbxLJVhdTKls0wlDgBIAAKC54IIZaD5KtcQ7rgzKpPOyHqw+o9nzQa53t0rluwgrg9Jp1mDUmX5x9EEZdAYl1z0lxVeAsoJUWABovpYsyfwDAADJE1WAMujgUpB9UBbLoCz34AUl3sGKO0AZ9fYaR7wn6D4o3a6zoNZxuR9bQtKi+CTWdtllF8vXssHLqjjTkAEA4Zg+XerePfN40iRp223jbQ8AZ+K4YOYiHYiHmzLSJPdB6Uc59UEZ5CA5ZFB6E9YgOUkNUMax7DgClEnf95sRXxmU6XTa9z8ASDSOU+bOOUdaty7z7+yz424NgCTjOArEgxLv8D5zqfDaB2XUGZSlcp5wm0HptA9KpwHKqLfZchgkpzns52XEUwblAQccQHk3kimdln76Sdp007hbglLG8a245csbH69YEVszAJSAUrnxBMpNqZZ4R9UHJSXe9tNGGdgplSBS3CXeca6ncs6g9DM9AuUpQPnBBx8E3AwgIH/8o/T009KNN0qXXRZ3a1AOOEkBgD8cR5EUjzwi/fCDdPnlUseOcbcmfOVS4h3VIDlJ/4E67BLvIJbnVbkEKAuVeol3cxkkJ47PCVOM4o3y8vTTmf+HDIm3HShtSb9ABYBSwsU+kmDcOOmMM6RbbpEuuSTu1kSjVEu8oxwkp9y5KfE2PscgOebCKvF2uq6bQ4l32INumQnjczaH40sIyjZAOXfuXP3xj3/URhttpLZt22rXXXfVuHHj4m4WAABAUytWSFddJT3zTNwtCR4X6UiC995rfPzww/G1I0qUeLvLoEz6sSrKDEr6oDRnHCTHT4l34fNO9yEGySkuzsGe4FvsAco1a9bo9ttvD3Sey5YtU69evdSyZUu98cYb+vbbb3X77bdrww03DHQ5AAAAgbjkEun666UBA6Rvvw1vOYzijeaqhaeerUqbmxLvcg1QltMgOVGXeCepD8p0WvrXv6TbbjMfPTsqxgzKIEfxdrqu48ygLNUSb7frjGuWWMV2pl65cqXuuece3X333VqyZIkuuuiiwOZ98803q1u3bnrsscdyz22zzTaBzR8AACBQxoyu99+XfvnL+NoSNC72EYW1a6X77pM231w66aSmrxsDC82FmwzBsIKAQcwvzEFyjMqxix8/g+QkqcT7rbeks8/OPG7VSjrvPG/LWbdOatPG23ul4DIoKfG2Vi4ZlFz7eBJ5gHLp0qW68847df/992vFihVKp9OBjwj+yiuvqG/fvvrDH/6gDz/8UJtvvrnOPvtsnXHGGZbvqampUU1NTe7v6upqSVJdXZ3q6uoCbV8SZD9TWX22dFotDX+W1WcrEeWyXVWlUrn08rSk+hL/PGEwrqNUOq2GENdRuWxXSJ4kbVvG81dDfb1SIbWpsr5exjBNWJ/d+Hnq6+uVTsA6jkqStqvmpPLGG1V1/fWSpPqttlK6Z8/81ysqItn2w+R22zKeqyWpoaHB8thSUVubd2NYbBl519y1tVKQ67O2Nv8Y0tDg/RhSU5M3L6P62lpVptORXc94kXduSKUcnRscfTcF61hSXkAllU4rVVdnGSwIYv8xLj/V0GC77quGDm28Nr/+etX/9a+ul1f54IOqvOgipc44Q6m77nL9fkmqqqxsbEddXZN7hMJzbH1Njem2W7hv1tXUONqHKgq+k7CPY5WpVO7zpNNpV/dEbo5Xedt5ba2va6Am1zkOjk8tJGUjUkEdB1qk0zKLcpXiuScITj+3rwDlrFmzdPvtt+udd97R7Nmz1bJlS2299db6wx/+oLPPPlsdDaPjrVq1SrfeeqvuvPNOrV69WumfD4CdO3fWhRde6KcZTUyfPl3/+te/NHjwYF1++eUaO3aszjvvPLVq1UoDBw40fc+NN96oa6+9tsnzb7/9ttq1axdo+5Jk5MiRcTchOKmUfmf4c8SIEbE1pbkr9e2qx/z52vznxzU1NXqLbamJ/ZcvV6efHy9fvlyjIlhHpb5dIbmSsG0Zz1+TJk3SjJD2qZ2nT9cvDH+Hda40fp5PP/1Uy5YuDWU5SZaE7ao5+d3PwUlJmnHbbfp20KC817f67jvtYfi7lK8TnW5b+y1Zoo0Mf/84c6a+svjcG0+cqH0NfxdbP3n7+KhRWr5ggaM2OdF24UIdZvj764kT9aPH76vj9OnqbfHaZ59+ql1WrFC2E7Bly5bp44RtF8b1PGP6dE1y0D7je0Z99JFWzprVZJrWS5fq8ILn6urq1Ornx3PnztWPn3+uXhbLCGL/MbZz7uzZ+tJmnrutWKFsPWR62TJPy//dz1mXVQ88oNcOO6zI1OZ+vXSpNv358arqar1X0I5f/PCDdjb8Pebzz7Vo7dom8yncN99/912t3WSTosvfdMwY/drwd9jHsV1mztR2Pz+uSKc9Lc/J8cq4LUyZPFk/+Phcv5w2TTsY/n77zTdVv956tu85aOVKdfj58eLFi/VZAOv1oOrq3DyNSvnc48eaNWscTec5QDly5Egde+yxWr16tSTlAo4TJ07UxIkT9cQTT+j9999Xly5d9Mknn+jkk0/W7Nmzc9Ntvvnmuvjii3XmmWeqbdu2XpthKpVKqUePHvrnP/8pSdpzzz31zTff6MEHH7QMUA4ZMkSDBw/O/V1dXa1u3brpsMMOU4cOZptWaaurq9PIkSPVp08ftWxp9btiiSlIs+/Xr19MDWm+ymW7qvrvf3OPW7dqxbZkourn46skbbDhhqGuo3LZrpA8Sd22unfvrp1D2qcqP/kk7+8ojm/7/vrXSu+7b/EJy0RSt6vmZNutttLWBdt2RUEArRTP7W63rapbbsn7e8tu3bSFxeeuaNUq728366fXvvsqvffejqcvasaMvD933XVX7eL1+/ryS8uXfrPPPqp8/vnc3xuGdT2zdq0qH3tM6e23V9pjYEzKdFm2lcv27b/fftKuuzZ9Ye7cJk8Zt6nNN99cXQuykI2CXk+bd+2qLjbzrPzkE+nNNzOPGxp8L9/r+6seekgaP16StF6bNk3mU/nFF3l/9+zRQ+k+fZrOp2DfPOjAAyUHXdJVFPR7GfZxrNI4uJjL5Xk9F+64/fbawcfnqhw1Ku/vw/r0kYqMRdLi//4v97jzRhsFsl6N8zQqxXNPELIVysV4ClAuWrRIAwYM0KpVq3LPtW/fXi1atNCKFSskSd9//73OOeccnX/++erbt69qa2uVTqe1zTbb6LLLLtOgQYNCu2jr2rWrflnQd9POO++sF154wfI9rVu3VuvWrZs837Jly7K+uCznz1eun6sUlPx2VdlYdFEhtiVThq45KisqVBnBOir57QqJlbRtq6qqSlVhtacyf3zEKD53i6oqKUHrNypJ267KnmHU4ap0uuk+VHCdX8rfjddtq6qiwvrY4uPY0KKyMth9vGBAI1/zt+l7tEVlZf71TGVlONcz11wjZX/YnTpV2m4728mt2H5/Flq2aGG+7swGjTKUeFdWVamy0no83aD3n0rJft136pT3p9/le36/Yb1VNDQ0nU/BOnO67bZ0ep4s2J5btmgRbj+RhcvzsN7cHq+8bOf5Myhos5N1a/jeim6LTll8L6V87vHD6ef2NIr3ww8/rKVLl6qiokLHHXecpk6dqpUrV2rZsmWaN2+ezj33XEnSyy+/rD/+8Y+qqanReuutp3vvvVdTpkzRGWecEeoX06tXL02ZMiXvue+//15bbbVVaMtEAtARLQAAycP5GVEw3pSaDV7BKN7NcxRvN4Pk2FmzRnroIenTT923wVB1otdfd/9+P7yO4m0I+Eei2LKSUtFY7DhT+DmsRqQOapCcsEc0by6D5JTjAFklytOZ+u2335Yk/frXv9Zzzz2X91qXLl10zz33aOXKlXr88cc1Z84cbbDBBho1apS6d+/uv8UOXHjhhdp33331z3/+U8cff7zGjBmjhx56SA899FAky0dMuAFCUIwnKbYrAOUkjotwjqOIQlVV4826WVCgOY7i7eZGPUmjeLsZfdztvJy+Vujaa6VsWe6CBdKmm9pPbyXqY3C5jOJd0AWBb+m0t+/CbYDS6SjeTrdFswBlmBl5cVwzWAV1nUrKKN7wxFMG5XfffaeKigqdffbZltOc93MntBUVFTrvvPMiC05K0t57762XXnpJw4YN0y677KLrr79ed911l04++eTI2oAYBP3rLQAA5SaOC3VuDhAFMiibIoPS/r2plPN5G/sMfOcd7+1JcoDSKOoMymLtCXsbc6rYccbpcrwGKAvfF3YGZRyCzqB0O7+gtnuufTzxdKZetmyZJGn77be3nGaHHRrHTtp///29LMaXI488UkceeWTky0WMOAgAAJA8nJ8RBQKUTbkJ9JVrgNJNibfT4KFN34xF+QlQelkPTgNkZs8lqcQ76G0slfL2PSYxgzJMzSWDkhLvxPB0dK2rq5Mkrb/++pbTrGcYyr1Lly5eFgO4QwYlgDjMmyf96lfSIYdINTVxtwblIMybQjIoUa6KBQ4o8XYXoHzySWn2bG/L8SvI+YURlPUTzPAT3JwxQ9p9d+nII50HcfxkUEZ5b+U2g9Lv9ZbXbcz4Q4dZcNDpPue1G4PC6X6Oy4SmHPqgJEZQUnwcIZ2rICKNKHADBCAOf/ub9OWX0nvvSbffHndrmrd0Wjr1VGm33aRJk+JuDbI4PyMKxQKUzfF+xM2NeuG0p54q/eY3zpZTLhmUTsUVoHz5ZemrrzID7TzxhLP3lEsflIX79M8VnZ6FVeLtdB2WSgZlHOIYJCcMXPt4EkmAEogEBwEEhUFyimO9NPrss8bHEyfG1w5I776byfr5+mupX7+4WwMgSsUCB+WWRbN2rXT44dIBB0hLlphP47fEe+5cZ+f7MMpvjZLQB6WRnwBlUIHyqVOdTeemxNso6X1Q+g1Qet1mjeukOZR4R6Hw2tlviXcht9sx9zix8tUZy2mnnab27dv7nq6iokLvvvuun6YA5XfhiWCNHZs5iTvNBgCcMo4sSYl3vGbNanz844/xtSPJKPFGuXKb2VTqbrpJeuutzOMLLzTPqAuiD8pUqnh5fKlmUJZCibdVoNDpfLyWeNu9Nwxu+6Bcuzbc5Tl5XxwZlFGXeIe9Dfz4o7THHvnPxVHiHUaGfbmdcyLiK0A5btw429ezpd1206XTaUrAEQwOAu6MHCldeqk0aJB03nlxtyZcX30l9eyZefzJJ9K++8bbHpSX1q0bHxOgjBfngWQqx+/lttukYcMy3Tr07h13ayA1vwDlF180Pv7kE/Np/JR4ZzU0FA9Qht0HZZgl3l7uQ5OQQem0T1U/Jd5J7oPSb2AurAxKu+ntnk9qBmXYx8277276XByD5PiZXsq0+Z13pO7dpS22cP9+5Hgu8U6n04H8AwLD9uTOYYdJ48dL559f/utu8ODGx2edFV87ygk/LDUyBihra+NrB5BU5XaOWbtWuuSSTN+zBx0Ud2uQ1dxKvI2szslBZFA6CRYkOYMyjEFyohzF22r6sAOUfku8J0zIJAg4bZfbAKXfwFwQGZROBslxWuLttD3lFqA0m3/cGZRePvPdd2e63NhzT5IVfPKUQZkq5xM8ShfbpXdef0EuFcYR95xcaJfzugjDZ59lbtjbto27JfEwlngToEQQyi2gV26fh5uPZGpuGZROEKAsnkFZqn1Q+i3xdvK5va73L7+UfvWrzOOvvpJ23bX4vN2WeEcZoJw/XzrtNKlbt/x2mM2DEm//8y/FQXIuuijz/+LF0kcfSX36hL/MMsUgOSgfzfHCMyjlvu6MAUq3FzTlvm6CcvLJcbcgPvRBCdjjOIooEKBsyk0QxE2AMuwAQJSD5Bg5DR7GNYq3URgZlE7fW8yZZzY+PvdcZ/OOOoPSTRDszDMz/b0+8kimaw87YQcoyy2D0kyYJd5//7vUt680c2b+NEEmp5Do4gsBSpSPUrrwrKuTPv44OcGMUlp3Xhgv4sphtLskeumluFsQH/qgRCkplUFyXn1VOvjgzP+AE825xNuKm0CiXR+UxaYNO4PSj6QNkhNUibdVoNPpdx5mibeT9xUuv9h3Ubgd+s0cdPPZXnut8XGxdnot8faaQVlqAcqJE6UFC+ynCavE+8MPpVtvld5+WzrhBH/L8NIOOEKAEuWjlC48//xnaf/9pQED4m5JRrkfQP1kUALFUOIN2PNyjjn6aOn99zP/J025nDNvukk66ihp6tS4WxKM5pZB6aVEN6gS76gDlGGWeHuRhAxKvwHKYuXJFRXBfK9BZRDGmUHpRtQZlGGXeAdp+PDMiN077CAtX555zmz9+M2gLJRdxrffNj43Zkzx6b0ig9IXT31QXnfddUG3Q1dddVXg80QzU0oXnk8+mfk/KVlnpbTuvPDTB2W5rxv4R4AyOdhfk6ncvpdy+DzffisNGZJ5PGOG9M038bYnCM0tQGlkvG5Zs0b6/ntp991Lt8Q7ykFykt4HpdtBcvxkUBYuN8wAbin1QRnGcprjIDnHHJP5f9Uq6d//li691Hy6uAfJCUo5n3NC5ClAec0116gi4C+RACV84yAAK5R4B4/9rREl3ghamPsX+65/YWXevPiiNHRoJnD4m9+Es4ysKVMaH0+aFO6yotKcA5RZ6bTUs2fmO739dnd9Obop8XZbnutWkH1QusmgdHp/G+Uo3m7b4HTdhdkHpZN5RJ1BGdXAKV4DxM2lxDvLLvOzFAfJMSKD0hdPAUpJSgf4RQcd7EQzVUol3klT7hftlHgjTAQoAXvldo4J63rj2GMz/7/6avjrLOgSuiRw2wdlQ4PzgUZKxZQpjQHniy6Sdtop//XmWOLt5TMXk4QS7zAyKINa714yKN0GKN2WNhdux1GVeAfdB2XUJd5hnYuynyOMEu+wj08IlacA5fvvvx90OwD/yu0GKErlvu7clngDblDijaCV2w+35XaOKYebnaScC+vqpFmzpO239z8vtxmUdXXlF6Aslj0XVIl3kBmOZqLqg7IcB8lx+t0UW6d+SrydiLrEu3A7jjuDMqgAZalmUIaxX2b5PX4E1QdluV37RMRTgPLAAw8Muh2Af+VwwxCXcj2AzpkjXXWV9Nhjjc+RQYmgEaBE0MrtmMznKS7qa5gkBCjTaemAA6TPP5fuvFO64AJ/8/MSoGzTxt8yk6YwaMUgOcVLvKPugzIpg+Q4yaAsp0Fy/GRQugnWhh2gLJcS7ygzKJ18BsYfSAxG8Ub54GDiXbmuu5NOyg9OSgQoETxKvAF75XaOCSOYGHXAMAnnwrlzM8FJSbrwQmfveeUV6bTTpMmTm77mtsS7lEa/NWO2XxUGztzcqLvpg7KUApRugrJOA49RZrm7HSQnqD4owx4kx64PxvnzpbPOkh5+uPG5wu0wKRmUbgOrVsv3OkhOqZd4u33NibgHySm3KpiIEaBE+Si3G6Aoleu6GzWq6XNuR/EGijFmUJbrvlQqWP/FxbGOyu17CSNAGXXAMAkZlG7bUFsr/e53mYGEevdu+rqXDMpykb1uKRagzG67w4dLZ54pTZvW9LVCcZR4B7mPuRkkJ4pjVVDL8NsHpZN2xDFITkODdMQR0kMPZbbR7IBecfZBaXdfUNgOSrydCTNAWajcrkHKHAFKlA9KvL1rTgduJydy0vzhBgFtwF65HUcJUAbD7bFz7drGxz/91PT15hygzHKSQblqlXTMMZnstCOPbHytXEu8wxgkJ6z2uBF0ibdZubuXjFvJ2yA52eX/5jfSxImNz0+YkPnfb2DOT1Ddriw/2+7sMclvgHLo0ExG+eLFzt5XqgHK7HyTOEhOUH1QwhMClCgf5XYDFCXWnbXmvG7GjpXOPbfx4hDm+HEEsFdux9FyCFAmocTbrWI3fQQonQUojYGP776znjbLSQZlkgOUYWRqhdUeM1GVeBcGKCsq3GWfulX4/i++kI49NnPtaSbOQXLsjj2plDRggLTpptIttzgPjplNN3lypguLu+6S/vpX6+XZzSdoYc0/+32Yzd/JPjJ9unTeedLbbzd9zW8flEEpt2ufiBCgRPngIOAd6w5mevaU7r9f2nPPuFuSbOw/CFqY2xQl3v6VQ4AyqhFtg+Q3QFlufVCacVLi7bZPQifB3qC3n6gyKAtfcxqk8HMMiDqg5CZAWWxeTl9zMp3Z8y+91PS57HcS9yA5VlIp6dlnM48vvdR7BmU6LX32WePfzz/v7H1h/0geR4m3kwzKI46Q7r1X6tu36QCVcXTdYFTsOFIK59sYEaBE+SCLyTsOlHCLbaYR6wKwV277SDkGKPfbL3k3cYWKtY8MSmcZlGEEKMmgdC6odeUn8GjyvOne6CZAme0+wCmn69AqQOm3D8qgjnfF5uumxNtJm8olg9Jv1wvff9/4uHC7S0qJt5vgPHIIUKJ8sLN7x7oDvOPHESBYST8nhdG+uEu8P/20cUTtpCp2rG1uAcrCctzC58z+TqWstzWr9Ws2fdgl3kEGYYoFKL3MO8oMSqtAvpvMPDNOSrydBihTKWnffaWNN5beesv6PXbLdzu92XaZTkuPPirddlvTrLqwMiiLZfu5KfH2EqAs9QxKryXeRoV9hJJBWdIIUKJ8sLN7x7oDvCuX/WfaNOnKK6Ptc/S55zJ9Nq1ZE90ym7tSKPFOetC/HDMoJWn16mjb4JbfDMrmUOJd7MY8nW4auLGaNosSb3fzLCao44fVfILsg9Lpunv33cwPHOvWSYcf7m2QnGIKt0OzY+bIkdLpp0uXXJIp/7V7v5vl2w2S4zWD0izQ6KRNUQffgpy/cbuwC1DGMUhOlAPblMt9Q0haxN0AIDBJv6EBUJ7K5ULjoIOk2bOlG26I5jNNmCCdcELm8YoV0j/+Ef4yURoByiSMMG2nHAKUSRgkx+0NIRmUxfkJULop8WaQHG/v8/LeMDIo6+qke+7JX4zZvJwOklNdbT2dk/fbcVPi/eSTjY9vukm66KLGv8MaJKfwWOqnxNuJUs6grKxs/B789kFpVGwduP0Mfj9zsfeXy31DSMigRPlgZ/eOdZcvyl/Rsurr+R5KVeH3loQbfy9mz452ecbO8P/5z2DmyT5UXCkEKJP+g2M5BCiTEAQO+qYxiABlqR6/s4plz6VS1oHZJPdBGda8vAZCkzBIjp8A5YMPNh392Gw6N+vO7XR+zwtJGSSnWIDSaYl3YQarlVIPUGbZtTvoEdqdfAbjd+z3MwcdMG1mCFCifLCze8e6yxd1gPLbb6Vu3aS997bObEByFV6IrFsXTztKTdT7WUODNHSo9MwzyT/mhdk+PzczUWUbEaAMn5OgU9iC3i78lni/+KK04YbSaae5a1eEKkaP1nYvvywtX24+gZMMSqtzlNMS74kTM11zGJVLH5R+g25+2xPEfJysu2uuafqcWYDMa4AyjBJvvwHKsAaXiXqQnLj7V/TDGKDMfn9WGb5uOPlhppggr0mzyw8qON/MUOKNaKXT4d2UJv2GJsk4UFqLYt0ce6y0YEHm34MPSuedF/4yEZzCbYQgszN2fTrV1UlPPZXpcP/II4NZ3rBhjYGHjTaS+vQJZr6lxusx7eWXpUGDMserRx4Jd5lJyO6zUw4BSqsBJqIUdIDSOD8vGZTHHpv5f+jQTHnoppu6a1/YqqvVYv/9tYukVF1d0/4CpeLBi48/lnr3Np+/kwzKVEraY4+m0yS5D0o3Jd5RBCiTUOJtMs8mzxTL6Isqg9KqxDvKDEq765UgS7zjzKBMp6UXXsj8gHHSSY2fOawMyocekg491Hy6oIPPUZ/byKD0hQxKROfJJ6VOnaT/+79w5s/O7h3rzloU6+a77xofz58f/vKCEEcZfFKFXepWruwu+B95RPrTn6SjjpK++CKY5V17bePjgr63mhWvx7T+/TNZW48+mvkxJcxlJn0fKocAZRKCwEGXeLsNUNqtgyT+0PTVV7mHlU89ZT6NnywxJwFKqwHNktwHZdJKvIMMKDmZv9l0ZuffwoBksYCZ3wxKv6N4u82yi6oPykJhZ1AGtT299570hz9Ip5ySGcDQanl+FG53xx9vPp3b8+HixdJ990nffJP5O+7rcgKUvhCgRHROPTVzcxNUX2OF2Nm9Y90lRykH/prrdhRW2VC5s9vWBw9ufPzww42PGxqkZ59t2neWW835OzJur16PN2vXupu+3DIow9h+mmOA0m+AopDbAKXd/Izl4knhJGjqJ7DnpMTbartJcoAyrgzKoMo7rY7Tbvo2LGQVoCz82+kgOV7EnUEZVoDS6XEmqAzKoM5Hd9zR+Piqq4Kfv+Rsu5PcB59PO03629+kXXc179M/+7fTa56gtm1KvD0hQInykfSMiyTjQJkcdlllSWK2zTTX7SjuX2pLlZfg2NNPSyeeKPXtK40fH/7yylEQ+6nbdUkGZXGUePufvliA0k1pZHMMUDrJoLTaTpNc4l0sC9D4elAByvPOk7bYwvzHtCRkUJZSiXdW4T6dlEFyguqD0mv2blDbUwtDz3/GdRt2gNKM2+/WWGmzdKn1uvWb9esUGZS+lMidMOBAqe7scbTb7qS4YkWm/6WZM6NsEbJKOYiS9KBCWMoxQBnFcclLMP7ccxsf33tv09eTfB5YskR67DFp3rzi04b5OQhQ+lcOAcokZFAGvV0EmUGZRE4ClGGXeLsdAdyrKAfJ8bIcu3nOn585P82bl/kxrVBQx3c/GZRmx/CoS7xLKYPSTtR9UIZ1HCvlAGXhMtyso9WrM93QTZnifZmFyKD0hQAlykepXWhmJS1A+Ze/ZFLl99qrdNdpKSvlAGU5nHBvvFHadltp+HDn7yn1m14zUXyXXrZ14w1GEjOc7Bx3XKZfzYMOircdQZR4h32cSkLwzE65BiijPoYnucQ7icdxLxmUTj5H9j1OApRWbSjlEm/j8czp57Brz4oV3ttjJqJBcpROq6IwmzRJGZRB90EZ1SA5pVLiHUWA0my7+/e/mz7n9rs1sisjN1v+3/+e6YZuyRLvyyyU/Y6cfvfIQ4AS8QhjxyzVnT2Odtud3J55JvP/smXu+xmDfwQo45NOS5dfLs2YIR1zjPP3lWMflIWfYdasTKfpQR4T4gxQxvEdffBB5v/vvy8+bZjHATIo/SvXAGXUwizxNvuO3JRGJnEbLAwOGj+v01G8zWS3PatpnWRQhl3i7VZNjfT889LUqdGXeEdV3umnxNtpH5RJyKDMSmoflMUCn0FnUFLiXZxVkNjsszzwQPH3e10+GZSeEKBEPAhQNkpagNJuuuYiziBhqfRBaabUtxev+2I5ZlAaP0NDQyaj+oQTMr80B8VuP3MyKIDbAKVxnkk/X4TZviC2z6ADS4W83kjOmiW99FL4IzCXQ4Ay6uWZCbPE28nrpR6gNOPlB7Ns0DFJJd5+MyhvuCEzIvGuu1qPPC41DQoFUeJdbF0Eta4CLvE27YMyiEFypk2TXn656bYTdYm3nx+T3QySUyyj0qo9zaHE2+l1m5/zk9l6DPuaxawNdvNJ+jVozEr4ThglLYwdM4kXk07EcZByevNXquvUrzgDGUnJoPTyuUv9hOs1o6jcA5Rz5mQ6HZek++4LbhlegvHGdpVyMD9OQeynYV/se8kQqa2V9thD+v3vM8GJMJVDgDIJJd5JDlAm8XwW1iA52fmWW4BSktatk8aMsV+Ose1BZFAWu5ZIQgalVR+UhfMJosR76VKpf//8UaKz83cj6AzKoAbJKWxH4T7iJ5BspnB+M2ZIb7zh/xwSVIDyhhsy5+JRo5q+5vQep1iJt5usaOP0Ud1jZZdHibcnXN0jHmRQNoojmOF0mUkoAWtukhJ08bJdluo+mOV1Xwyr3CZOXm7Y3PJb4u2kRM3t8mbPlkaOjP/YF+a+FMS83W7jUWRQTpggLV+eeXz99e6W51YY308SApRRC3o7KvZ6uZV4m/ES9MgGA5yUeFu1Ieh9IspBcuwyKL/9Vtp3X+nCC523p1jb3X6WMPqgDLvE28xll/l7f9B9UAa1zRbO12mmqNcS78JpHn5Y6tfP/w/IQQQoly2TrrxSmjhROuCApq8HVeJtd/4yW4/FMhoLkUEZq4TcCaPZCePCr1R2dr8XKkFweuE3alTprNdykZQApZfvPYk3dG4ElUFZDvtMFN+l0wCl1c2jWamQn4vPtWulPfeUDjvMvE+iKEVV4u01myDsAGXS+3UNo31JKPEmg9L5suJQU2P/+g8/NA0KNNcSb6fvLRag/O1vpc8+k+66q+n7rBTL1AtqkByr+XjMoDQt8Q4yQClJPXtm+rN28/5sWwvXa5QZlG4GyQk7QGnV7sIgultOA5R2bVy1yn4ZTu9xigWf7V4PosTbLzIofUnInTCaneZc4p2EGy+nbejf391oxqXCzbbSXEu8yaB0rhxLvO1u2JYtk957z38Glt9gvNsAZbF96623GkdxPO887+0KQpjbUClkUHo5T0Z5/AkjazoJGZRJD1D6zaAs9QClXQZlRUVmcLd16/KfJ0BZvJTf7nw3c6b1+5wuL6zMPT8ZlGbnQ7PjmtduEKzOt2PHZvqzLvZ+M0kdJCeoEu9i67vY/PwKIkBZrI9Jp9d9DQ32y7H77u0yKAu/xwULnLXHLTIofSFAiXg05xLvuH/Vkdzd/P3+9+G2JQ5JGBzASlIyKL1kqiTxhs6NUghQXn+9dOih0uTJ4S1Dsi/x7tVLOuQQ6Zpr/C0jjACln3Xv5b033phZF9984325ZqLKoIxqHn5LvJ0sjwBlspdnxm8fdIXKPUBZLDNr0qSm7wk6QBlViXeUGZRB90FZuB6zP3xZve5VwCXevjIovXw/Tt+TXV+l2gdl4ef8+utMv5FBlXgHxRigtPtu7ZZf7LrOzXWf3Y/gdhmUZu3LPlf42r77Om+PG1bLK3wdphJyJ4xmhwCl9d9RCOvX3FLhtt+aKNldBI0dK/XpI/373+G3I8yLzaTymhEYVR+UU6ZIV10lvfuudPjhzt5TWyuddpo0YEDx0hsju8+QDY76HYjES4m3kdmFbpQByunTpcsvz2ST9unjfblBtMUN4/ospxLvqI4/c+dmbjCNSjFAGXUflPX10hlnSMcf39hXaNgl3sUCkqU2SE6xEm8zTj5HbW2m/12rH1qizKBMp6XPP5dWrGj6vJ952r3mJdDmpsS7Z0/n7XEj4BJv0/3HaYAyzKobqwDl1KnSkUdm+jx0Iq4MSuNyRo2SdttN2mEHafVqb+2JIoPSyM0PO8XOK24ClHb3al4zKAvNmGH+vN991GqbDWr+Zc5iSwRCRol3o6RnUJajJAco7U7e2Yvcd96R/vhHqX378NpBibdzUf3oYCw1+/FHZ++55x5p6NDM4803l267zdn7ojiehlEi7if7xe1nnj278XHQZUJh7ktBzLuhQRo3TtppJ2m99fzPz2z+Rk7aHMU2+9NP0nbbNQ0UBRHsS0KAMszt7uGHpUceyTzu1El68MHwS7xTqfxM61LPoHQySE4hJ+t49mzp6KOt5x9lgPKmmzI//ATJrm21tZlAV1YYGZRz5jhvj5kwBskJehTvwuOJkx+/nK6H7HIKp1+8WHr99cy/fv2k3/zG3fKCOt4VGyTHuNzjjzd/T3a6OM91VgFKN8sv1jY3P4ranRPd9kFpVeIdFjIofSGDEvEI4+BaKjt7EjIom3uAstiNYJz9QDpd9po14bbDyzaRxBs6N4IaJGfatHD6tfHynbz7buPj1193/j4vJW9u2W0vTvYDtyXexeYZ1E1jEKIq8fb6GW66Sdp7b2mffcLJbkxqBuVNN5lnsZViBmXUy/vww8bHL7+c+T/IEu///ld67bX85wq/qzIKUKb9ZqAb3XqrffDTSYAyqP3PKjgZVgZl4Y92QQQoi11LuP0spTBIjpfrJ78ZlEbfflt8PkkYJMduP0tSibfd8vxs+24yKO3OUXavmW23xfqEDBoZlL4QoEQ8mnOJdxKCg0loQ5zcZFBGvW6cnrzDDqKSQelc4ec++mhpq60ypaBx8/qdRPFdhpFB6SeoENRNYxCiKvH2+j2//37m/2+/zWSxuFmmE0ntgzLM7LGoA4ZmnyXqY3hQGZT19ZmqgkKFAUo3Jd5Ov9NJk6S1a51N65chuFGRTksjRxZ/TxAZWU76oAw7oOtn23TTtjBKvP20x46fDEonFQjptPNuEAqnc3J+DDJA6WReYZV4F8ugdPM5k5hBGWSJd7FBdIzs7tXcZlC6vd70ey486aRMN0BkUHpCgBLxaM4l3m4O9GGhD8q4W2DNadAjzODIunXS2We7f1+pb0dB9UEpZW7i/u///LWnkN/1a5eFccklTZ8LarlW/AYo3Y7iXYzb9pRqBmUQ8zYGKZystygyKKPgNpPJjSQEKMPkpKS0GKv1bPVZ3GRQerk2u+8+aZddMtnEUVzLFRvF24yTdrVrZ/96HKN4F0pagNJuumL7clDHM6v5xNEHZRQZlH6vGZIySI6VYus7q5QDlH5KvJctk/70p0yfo2GXeAexj/bvTwalRwQoEY/mnEFJiXf8klzinYRRvG++OVMu51ap/EhgJagMyqx167y3JUpDhzYtc4u7D8owSryNzL4zSrydM94cJCVAGed5rBQDlFEvL4h9zu124SZA6eWH27/9LfP/pElNB04Kg5c+KJ3sn23bOp9H2CXeVsIq8fY6rZ8AZVDnV6fBD68ZlG76oAwzgzI7nd/1FtcgOU7bnUr5P5+ecIL00UfOllfIKrvRzX1rsc/qp8T7ooukxx7LDNA4fLh9G+Iu8ZYy5wSr5Z1wQmaAxawlSzJ9XEMSAUrEJYoMyqQG3ZLQziS0IU5kUNp77jlv7yv17SjoAGUS1oeTNrzxRtPn4u6D0gk/fVCafabmWOLtVbEMSr8/xHm5kYxifyv3DMqojlkVFVJ1tfsbMqubTqv17yZAWbj+3X6nXoKHboUVoGzd2vk8SjGD0s173QSTrASdQel2kJzm2AelE0kYxdtOKuXsM9pN89xz0oEHOlueU0FmUPoZxfuxxxofG4N7hczWt58+5u1KtZ2838yoUdIhh2Qez54tdeuWGcjSSV+qzQABSsQjikFykhAcMJOEdpZ6pptfbm4Eo/5+kpBB6TXwktR9zqkgS7yl4NdHWOu3WLAuqSXefkbxNhPlcbFYO6PKoHTq/vvz/zbeOJgdT/2e58igDP/zOPnewrJ4ceaG7Oij3b3Pqg9Jq/VfmMVu1wel3wBlECO5FxPWKN7FfrQt9T4o3Xw3SSzxjmsU77ADlG6DwUEHKJNW4h1EBqUfTq9lowpQev3RLsgS79NOk7bbLpO96bUtxVxxRaYf4/p66dRTvS2nzCTgThjNUhQl3kkNliShnW5+RYyz3DksSQ7QRtk/ip82BFGulzRBZ1AmgbFtbrK/jM+F9b06vaGxWr9uB8lJ0ijexbaZqDIonXyGMWOkc8/Nf8544xBEBmV9vbRwofU8kzJITpQZlGEfT82CUlEdw+vqMhmUbhV+x9ntxOpY4iaD0mtZZlYUGbBmI8hHMV+nJd5vvSWdcUY4WUB+9u8wBkYs9RJvJwHKYhl9SSrxzk5jN89yKfEO6zjtJ+CdFWSJt9dqN7sApVuPP575/847vb3fyTZmHGRt/nxvyykzBCgRD0q8GyUhg9KuDUnI6AtaFJkOXjld33EHKM0kdZ9zyk8JiJvnkybpAUorpdwHZbFlhbntuJ33u+/av+43QJlKSXvtJW22mfTii43POX2/m2nCUooZlFEHKIP4PG4zKKMs8Y7iusIukOjneFRsFHLjurEKGjQ0SIcfLj3yiHTAAd7b4lV9vbRokfVrTrktO/ayvKD2bUq83bHLoC4mqFG8i63POAOUYWRQFr43igxKs+02266orxOcfFfGPoDXrAmvLSWkDCMPKAlkUFr/HQU3N3/NMYMyzs9cKhmUZtOQQens+bi4KROLIkAZRVcfRnFmULo97kdV4u3kM6xaZf+63xLv997LdCafSknHHpt5Lql9UFoJIjgVdQZlnCXeVoYOtX/db4AyzBLvKDIowxp4rdh8nZR4G4MyS5b4b1OhYseQLbbI/MjxyitNX1+8OJjlOJ2uFDIonXSR4iZA6eUzhRGgdBNIDCqD0k2A0k45lngX7gt+RvF2yi6DMur7FCfflTFAWezHomaCACXiQYDS+u8oNPcAZRj9EQUlqABlKiWtXOm/PW4kdZ9zKug+KIMW5UWp8bmwlus3qBN0NwNhfo9uMwKTlMlWLEDp93s0C46QQVl+GZROnHaaNGGC9etuS7wLty27G+3CoJrb9R93ibefa7UgSrzDHnzQ7vs47LBMFxH19dKrrzZ9febMYJZTOF11tfk+E3cflE6On0GP4h1FBqXfc00SSrzt5lOspN5sfkEKo8S7cF3EXeIdxA8QbqZ3G6AMqxuPEkOAEvEI4+CahNJpJ/yUGASFPiiDmce990rXXVf8F681a5wvM4gAZV2dtNtu0qabSh984Gx+Xtrgpk2Fli2TrrpKeuEFb8sKQ7lnUFox+9x+MyOc8HuzUazdQcwvqOndnp+SVOK9enXx14sF19yeY7ycJ6PY3+iDMnzvv2/9Wlgl3qefLu26q/2yiomixDsJGZRJDFAa2+c3UOz0ODJyZOYa61e/klasyH8t6AzKiAbJMS3xdtoHZZgByux0fo9PVn0b19cXv44PapCcYsG9oEq8gxy0yE8GZWHGtVnXPFbs9qNi6zHqAKXVOnFb4g1JBCgRFzIorf+OAn1Q2r/u5DsZPVo67zzp6qulP/zBeroxY6QuXaRddnE2AmcQfVA+84w0aVLmgqtfP2fzM/IaoHRz8Xj++dL110vHHSdNn+5teUGXQpRjgNJJG8w+9/ffS5deKo0da79e/HwHdvuhk22wWOannSCyL0s1QOn2cxbLoOzVS9pmm8yPDlluznNmx7xSK/EuxQxKs5u/JAQoi2UYmf1dbJCcdeukW25pWkKeff+jjxZfVjF+AmN1dc4CfGFl15R6gNLI7zbsdDlvv51ZbxMmSBtsID33XONrUfVB6TQo4jBAGWiJd5CD5Dgpz3UyL7PzyurV0o47Sl27ZroaseImQOn1Pi/IEm8n9xtO5+vm8xQrd4+ixPvmmzM/IJi1K+7+O81eb9cu+PaUuDKMPKAkEKC0/jsKzb3Eu9gJymx9TJ+eyfjLlp8ZR1p7/XVpxgzzeR1xRKbUevJk85ugQkFkUC5Y0PjYSwApigzKJ59sfPzpp+6Xde+9UocOTUcX9iPoEu+g920v8/Ma2DnnnMwNfc+e9uulQwfpr3913y7Jf9a72yBj0H1Qupne7ajUpVTiLUlz5mR+rLFaht8MSq+B9qiUYgal2X6dhAClHasSb6t2ZwNvt9yS+cHFGES3e1+x18x4vZlesEDaemtpq63yz91BLqOYoPugNJNO+wuwOj1uhdF1iBMnnND4OKo+KAPOoPQVoAwyY89qujAyKO++O3N9v2JF5gdzK24ClIXc/HAaVAallwCl3wzKJ55oOtq1l3Zk2R1T7LbL//2v6XNuMyjd8ppBmUqRQWmCACXiEcYBolRLvJMeoCSDMuPggzMZf3vumfm7cB1a3VgsXWr+2M2yzYSV1SY5u3A143Vbrq6Wbr1VeuMN5+8577zMReH993tbppmgMyiTxk156qxZjY+//956nvX10oMPemtP4U2x1X7ptJ8tu2mdCKqkx8m05ZRBmTVnTuNjvwFKLxmUUQTXoizxDvu44mT09Th4yaAsVuJtDJ7bzc/pa2a8Bg8vvFCaNy/zo+f553tfhp8fk8PIoDRuS3V1mVLorl2lceOavvenn6R//EP67DPrNiQtg9JO0BmUbqs0girxdtMHZZgZlG5KvO3Kqc3OK8YBlOyudfwEKLPt+Oqrpj+SGAWZQeklo9np9mT2Pbz7rjRwoDR8uH073Gz7duvVbeAzrhLvYhoapDZtvL23jLWIuwEoI/X1UguHm1QUGZRJVWoZlOUYoPSSQWkM2JjNI6jvMYiTZ1gByqAz0LIuu6xxQJ8ZMzLZJHHwkgFQXx9dibff+XkNrnz+efF5O9k+jJ56Snr44fzn3JxDssss5OfmtLmUeBvnHcQo3lnGm4mgMyjD6nMrKHFnULrdd8yW53aZbgWxTVvdKBcr8baSSgWXAe91+zNeWxQbzCWsbbxYMMNJgLIwYLBuXWNm0OOPS+PHZx4fdVR+BYok/fGPTUsyCzn9oSquDEqjqAKUfkq8gx7FO4pBcsLIoGzZ0tl73YziXSj7OXff3X46u+NR4XTFBJFB2dBg3mek2fdW2H2GVTuCClC67Y83rhLvYurry7NS0acyjDwgFv/+t9Sxo3T55c6mD+MAkYTAnxNJaGdzHyQniFG83ZZs+l2em+n8dqQfdQalcbTx997zNo8guP0OX3pJ6tQp88uxmSQeg8xuOIq100mA0u26O+WUps8ZL0bLrQ9KtxmBSQoUFRskJ8trgNLsRjmpJd5Jy6BMpaRDDslkpjnZT42SWuLtJoOy2E2nnwCl23XhtQ9G4+ct9p0nOUBZ+PyaNY2PFy5sfGxWbVIsOOm0bVJpZFC6baPfDMr77296Xeg0QOm2DNsNtwFKu+0/O41xfyo8lpgdY53+sOMnQOlmHcZZ4l34fWTn4SSD0uq7tBvRvBi745Lb+5zsdx91iXcxDQ3JOO8mDAFKBOMvf8lcjNx4o7PpKfFulPQMynIMUHrJoCw2j6RmUHopHXDaN1GhIE6ycZ6o3d78/f73+cHVpFuxIjNS7XbbZUoKs4qtc7uyp6wg+kZzOw+zbdDpsSzqAGWSMiiNbUlCBmVQg+Q0xz4oR4zI/KizeLF00EHulpfUAKUdq8xaq2O3k9Jlq/dGFaA0KoUApdM+KI0ByiDabbVuCveb5pRB6TSz8ttvMwOHGJmVeJsForxmUEZd4l3sez/rrEw3AoXzDSKDMqjvO8gS7yAyKLP7tJMApdN2BJVB6bZS7P/+T3rkkWQGKJMar4gRAUrEI4oS76Tu8Elop5sDaTkGKIMYxdvLDXQYF2xmjCduL50vR51BaVTqQQajsPftf/xD+vFH52348cfM6O4zZkinn974fLHP7SRwGMQNqNVy3JS3JanE25it6rZkOUkZlEko8Ta+f+7czCBZhdu+3TY4caL0r39lgvR+WB3Dw9j+nXxPxv7TvJa8GSU9QGl1o5ykDMp0Wnr22UyGfVDXBVl2x2I/55swSryN1yFRBihnzJDuucf7csL4scHvMtxuo2br6ppr8v82C1CaHXdLpcTbbp0vWiQ99JD5fIPIoAwqQJlOl0YGpYtjTYWfvpWDzKCUpDPOcFdl46atXo9x9fXJP+/GgAAl4tGcMyj9/BIVFPqgtH/duD6cBkeSVOLtN4PS7fLcTBPFPLwq9h02NGRuPN95x9n8gv4shfO74grzUmknPvnEer6FnAQow8ygdHNzZvcdRjmK98qV0t57S7vskilvdPuDxn33uRs0yo04ApR23GZQ9u2bGSTrwAPzp7H6PtaulfbYQzr77Mz7whBXBqWfHxDN9rcwj79O5x11iXdQGZTZm/kXXpBOPDGTYW836EtWUCXefr67YjfXfku8g9g/nJaQTphQfLAhL8txI2kZlGa8BCife856+V7K1t2Wj3vNoDRui4VtiCKDslgmqnG6oAKUXjK6/WRQhlHiHWQflFluguJu9tMgS7yTGr+IUBlGHlASmnMGZdgHoro6adgwafRo62nog9L+9XIq8Y4ygzKuEu+g1n2x7eLJJzM3nn36ZEZjjKpddj76yNv7qqsbHzsJzBYTRIaM1QW1m9G9/ew/brc9u8987bXSF19kSuvOO8/b8aJfP3ftccptibfT9WJcH0FnUBr/njQp83/hgCJW38e0aY2Pn3jCuh1+lFqA0m1G1htvSK++Gv91ldWNchIGyckevy68sPG5224r/r6gApRh/tjtt8Q7zABlED+OFS7nzTf9be9R9UHpZ9t1EqAsDNJss430pz+ZL6dw23RynR1VBqXd+osqgzLIAGVYJd5OMyjjKPEufF/YAUq3GZRBlngXO281A4zijXgEeSGVSknHHCO98kr+83FfSFsJM5A6bZp03HGZX5AlafZsaYstmk5HH5T2r5d6ibfxxF1qJd5e5pFKmY806GU+dv7618bH//pX8fkl4RgURGA57hLvqDIo3X4Gu2V9803j46++StYv5E4yxI0qK52ds5PaB6XXc9jHH2dKqI8+unglQRgByqDLg43cZA1++GFjsPyddzKD8njhtK1uMiiLBS6K3cQGWeKdvRFfvrzxuQ03LP4+NwFKu2NxVAFKpxmUcZV4+zV/vnTEEZnHI0Z4m0fcGZROj+sFTDMoC3/QstpeC98bVNDOuByvGZR26ymqPiid7J92x6PC6YoJsw9KP2XaXt9bOB+vAUo3Jd5m5xurawGvx1+zEu/Vq4OrfitRZFAiHkHenL3wQtPgZNDLCFJYAcr6+swAGNngpJQpRzXT3Eu8/WZQmp24Jk+WdttN+sMf/F00uv1F2Uxz64MyqgxK40VoEAFRt8I6pkXR55afeViVcQaRBelk+VbslmV8rbLSW8AtLEFl7xQKsn+8wjbutJN05pnu3pPl5Rw2aZK0//6ZHz//97/G58McxdvLaMSF7Rk82Nuy7JY5ZIj5Y7fCOD8Uy6B89tniWYdu1kU2u+7jj5u+lg0IGLtE2GAD62VnGbdPP9nsSQtQlmoGpdGll3p7X9yjeHtd38VKvO0ClIXbZpABSr8l3qUSoEynm36OqVPNpysmqRmUXku8CwOSXn/0cLPN2VVymE3vhVkG5erV3uZVRsow8oDYRRXIyLIaJCKpAcqwMmnmz3c+qhkBSn/vN7uIOPdc6euvpeefz3SO72fefqejxDucZRu/cycByqCPQUGvm0WLik/jVNAZlMZtMDtvJyWwhZ9l8WKpV69MWb5xvzD7zE4/w3nnZfqWtOtGwzh/swzEMIMJxRTecBbjtK1eMyidBJobGqSHH5bGjbOej9X35yXL8M47Gx+fcUbx6ePKoCw8P995pzRrlvtlZZl9DuONYRRZHXbfV+E6KdYH5cqV0tNPW8/vvvusz9dm8xwxIpNdt//+Tbv5MAvcBZlBWSzIQYAyOYLOoHSb5evxeq1oiXfcAUq7c7SX7OKgSryLXTs4Ld02m2633ZqW/EaVQZlti58ApZ8MSuN3GlTZs58S7zB+IDLrg5IAJSXeCIGTcssgb9xbtQp/GUEKs8TbqebeB6XfEu9iNwozZpg/T4l3xmWX+Z+HUVA3Zm62CycXtUkIUNr53e+kTz8NJ/vLi2JBEycBysLnLrgg8xn9LN/o668zI0hLjX0hmiksiyvlEm8vGZR+A5RW29P8+dbzCTKD0rh84/uTnkEpZUqMt9rK3bKyzL4Lvz94BcltibckXX21/TytAtBm8zzrrMbH11+f/5pZQMBJBqXTAGWx7SGqAKXVcuxG8Q6zbV4GA3HK63G6FDIonQQoC4M0lZXBlXgXBj/t+C3xtjveOa2G8ROgdFPiXTivtWul776Tdt89f7piFi3KJEwceqiz41C2nUZWAUqz783qu6ytzb9P91ri7bWku5CfEu8wApT19daZq81YGaZGIXZRZ1BapecnNUCZhBtVN20oxwCl3xJvp/3EeBF0BqVVAN9OmBmUM2ZIN9/sbx6FoirxNiqVDEo72RFmS6XE20mGWeFnMSvFtOLk+58zx9m8Cku8k3DczzK2xcmPMU55DVA6CTQ7mY/V9+clQFn4/bmZ3iuzHw5/+kk66KDMiNB1dZkbl1dflebNs56Pk3O2m7Jmvz94ueWlD0q7fdesH24nih1fCrcLs0CZk/OE0wBl0Fl5bjgJUJJB2agU+qA0mcZXH5SF+2CxwLHToJ3kv8Tb7sdPp99FVH1Qmn2OwmONkzYPHJjpcuqEE4pPa1y+kVWA0s21clCjeAcVoHRzjxVVibebQGgzQYASwfP4y51nXgIwcUpCBqXVzbJZW8qxxNtNppzVL4VhnUCCCFAabwy8bF9OApRufkE1ypYVW0lSBqVdW+Log9JPOZeX+boRZgalnxJvrwE2K06zdQoDGUnqg9JNBmUUAUo3GZRebhDc/si2bl0mCJhl3NfDzKA0277/9jfpgw8yZcj33y/dcENm0J59981Mb3Z+DjpAafzBy0+JdxDbvNsSbyk/88iNYseXwnVvlvXiNgvWSwDe6bKc9rVXbN5W7bALUFplJLtRVye99Za0YEH+82EGKIPMoNxss8bHr7/edHtpaJBOPlk6+OCmmeJuMyW9ZlCaHbedlni7zaD0UuJt97myy3NzPnETJPUToHSa1GA1XeGy3Zxv3n7b+bRWpdxxlnj/8IM0apTzLsyKcbPNRZFBadYHZRJ/dIlYGUYeEDsnO2lzzqD0c6B3y+nNlF2AsrlnUFoF4rx8b3GUeHsJHDFITvG2RBGg/OqrTF9nV12V+dtPOZedpGdQWpV4p9OZPgmnTGk6rXEaM2bPO/kMTj9nkjMo3QQo3Wwbxv3H7Eb36aelffaRhg8vvgynwXi7DB6r9xTzt79Jy5Y1/u0koBJEgN4siD1yZOPfEyY0lhXPmiV9/735sTrMAGUpZlC2bu2tHcW2S7MMSi+ZMFEFKPff3/sP+sZ5+y3x9nrufOYZ6fDDM8cQ43G4VAKUxu1w4cKmXQ88/njmGPn++9I55zhrh58MSifH3cIMwyD7oHSTvegmg9LNud3Ntbzf7Gan98Zm+7mfAKUbTjMonfw4/LMKPwHKOXMy/X0fcIA0bJjz99lxc4/lJnPUT4k3GZRNEKBE8KIOUJZaH5Rh3ai6CSRaZfOUS4By+PDMwBhW3GRQWr0/yRmUYfT9FFSJd7HtKc4AZdAZlH7b1adPpkT5+uszQTirdeN19ORsNlQQ6y+KDMrCC93335f23lv65S8b+311mrnnJsvCyGkGZWGmVZIClG5KvL2WY5l9DyefLI0ZkxkZu/C1Qk4DaE5KT90eUx55JP/vqPqgNMugLAwOGNXWej8/J3mQHDtWN8p269/rvuY2QFlbK61YUXwehaIKULZq5bw/Xrtl+y3x9vvj3o8/St9+2/h3ErONzNpUuO/cdFP+31980fj4tdfyX3NbPeHxeq3C7N4grAClmwzK7HROMiiN09TUSCeemOmH0YzTzEZjG+yWbfder4PkSE2P82FdPzjNoCxs41tvZX5AMFNbq3YLFkjjx+fP04mHH2784aNwf/HKzfdNiXdsCFAieAQo7fkpQQyK1c2y2XdXiiXexxxjfyHutw9KrxmUTgRxsWTMZAgr09NMEFmWYZd4//hj5kLJSVDEbr5RDJLz00+Nj3/80VuA0o7dDxNuWe1TH38s9e4tXXttJvvlT3+y7kvIahRvqwzK7A1dKtWYjeJnv/Rb4m11s2ZW4h1m5nwxVhmU6bQ0eLD029829rUZVIm3HT8ZlE4CJ363bycBlTC6SSh2A19XF3wGpdnyjOcTP2XCTrnJoMx+jjAyW4ptl2YB4yVL3C87qD4oiy2rokLadNPi7Sk2b6cBSqv3BH1NWSqD5LjJ5HUakAq6xNvs3qDwx7aklnibdfewcqX07LP5GfGFbSi2rsaPz5wP/f544PQ7cdIHZdwZlIVtPPxwy1lWPPmk+vzlL2q5zz7Su+/Gf2/uJihOiXdsGMUbwXOS+u33ALV2babcqWfP0i/xTkKA0u75UsygLCaIDMqwLhCCyKA0osS70aJF0i9+kflV/bXXMoEYu2X7LfEOct82KwMxvualDU4u+p2yasP++2f+//DDxueqq93Nw6oPSrP3+slUdLKv2LVhyRKpc+em7SiVDMq33pLuvDPzeODAzM1EkBmUVsxec3qOMn5nXvqtdCKuQXKKZVCGEaAs9jmiuHHyUuIdVwZlRUXj/Ovq8rMGpWhLvIt9zsLsNzeMn9vpNYXVe4IIUBo/axJv5p1kUBZye4z08ryRkwBl4bVu0IPkuAlQFpversTbbr52x47XXpOOOirz3W28sfV0YQ+SYzZdGKwCkW5KnQtUfvll4x8nnSR16OCxcQFxu80ZUeIdmRJMjULime38VmnjXvXtm+kk/u9/t77YSWqAMgk3qm4yKMvxQOn3Mzkt1/A6byec7kNe9jWzfaqwXWY3OkFcNHnZH5y+58knM8FJSTryyKavJ63E28isDCTL6w1akAFKN/vDCy+YP+8nQGmVDermBs4qg9PI7qZrxx0bs82SXOJtlfXy1VeNj997r+m0xQQ5irfTDL8wSrwLRRWgLDZKvdMApRNOApTptDRxYv7rZgPBRMlLibfX76bYtWxlZf55oLbW3Y9cWVGVePsJUDrZz+zaE2YGZSn2QVmM020i6AxKs+O20xJvtxmUZgEgK04CfFY/UvqZ71FHZf5ft06aPdt6Oic/Hjj9TpxUFPi9frjjjsxnM/bfbbYcqzZ7vf8Js/rMKTdVam4Ch17XiVkGZTned7tEgBLBiyKDctSozP933BFeWVdYwsqg/O4759NaneyclL2WAzIo7YWZQRlGH5RO37PeevavJ22QHCOvGZR24gpQWil2s+WkvNrPZ3GS5WPXhqVLG0fMLMw6KdVRvJOWQWnXz1lQg+QUimoU72IZlIWs+qB00hYnfVD+5z/SHnvkvx5mOW2WmwzKceMyPzrZHX/CzKA0dvWR9EFyqqqCyaD0G6AM4twZVQalm+tqI6cZlNkfTKWm3/0ll2QyzpYutV6OnwxKk2mKlngH3Qelm22p2LRmJd7FBBUwC2oUb6vkBy8/fJiZPl361a+kiy7KZIf269d0+UYBZFDmadUq/ntzP0HxMH4IM0s+SGJWeMQIUCJ4YQco/WTIJEHQAcqhQzMXyX36OH+P1c2yk1/uykEQfVAGFfhzu2y303n5/sIMUAYZEHGzXEnaZBN3y7ZrSxR9UBp5zaAsVvo4YEBmNGC/grigKhaUcpJB6SfTwDh/swDl/Pn2WRRS475TGMhIUgal2xs4p6LIoCx8PooMyqT0QVl4XK6pMd9Ozdpy552ZwSJmzTJfltl7Tz+96et+MiiD2OYL53HxxdJhh4Vz41jseqiiItoMSr99UBb2H+hGkAHKwm3Wb9VEEm/mnWZQWvWNWFMj3XZbZuTiwhG9jazWndcMSrPtN6wMSrcl3mFkUJrN18u1fdiD5AT1A+cxx0jGkuvp05su3+zvoAKUrVvHf2/uJ0AZVok3GZRNEKBE8MJOT3c6r7gPglaCXBcrVkinneb+YGbVBjc3iqUs7AxKP/12hhGgXL1a+utfM10iuL1hcrO8IG7SjctZskSaNy+a5UruLgKjClpkec2gLLb/Wo286FaYGZR+Sry9ZgAW7gNTp0pbbll8JMnsdlGYMRRUBkQQrIKHfrtt8JrF5iaDsnAbiLoPyqhH8TYqXPbatcW/s6lTpd12ywx+9OyzmSCl5D3bNIoMSrfB7I8+sg+cer3GOvNM6bLLrANtFRX5P1QlvcS7stJ7ebWT/czuPXYBSr8Bxii2SbecZlDaZUdmPfus9Wt+KsicBCgLg4h2g+S4zaAsliFeOG1UGZRefoQJuw/KoK4fjN24mHGaQTl5srflt2oVf9KLmx9Y3AQOg8ygLMf7bpcIUCJ4UWdQ+jlBx8HPDXQhJxc3Zpp7gNJNBqXZdlTsYiPI7dvtdGYn1Ouukx58ULr1Vunxx4vP20mA0mq9+JWdx4IFmYDQlltmRlF08p5iCr/3wtGk3VwEOglQBrnv2AUow+gXx62gA5RmmRleMijdnB/sSrzPOcfZjXQ2YFEYyIi6xHvuXGnVKvPX/GY3WomixNsuQFnuGZSFCo9fZm056ijp668b//78c/Nlmb3XTBTBIC/ZkGHcOErSzTdLTz/d+HdhsKawxNtvJoyfAGWxY4rTDMpBg5o+5zeD0u7Y6iVAWY4ZlH4zSZ08b+Q0maTwXBbHIDlOAnxeApRmgU9j2b1TQZV4hx2gdLJ8I6sA5YUXSvfc437+xgzKoPuidSqJJd6FbUriMS1iBCgRPCeBCz8H11LPoAy6xNuO02wPq+wjKZkBytpaac4c7+93k0FpdfMcVIm314xap9t9KiU99VTj32+8UXzecWZQZudx5ZWZEVEbGtTilFPs3+M1QFm4Dbnpg9JJiXeQFxlmFzFOlhPV/ht0ibdZxo6TUnY/v0Qb518YlFq50tk8zAKUUZd4f/hhJrC/9dbm7XbTFq/tdHPOd/PDmJcSb7/r2kkGZRD7mVkGpV2J99q1xYMMVn3oOemD0kwUg+R4+fHPyY8XXmX7lS2cV2Vl/t9BZFDaCSKD0smyzM5tfgOUhRnlRn7PHUm8mfdb4u1U2CXeZt1MOC3xLrbfuQlQ3n23dMgh9tMENUiOl2NckIPkhFniXYzVedtseeef737+xj4onVxDh8FPgPK996Q//lH67LOm03u9/2EUb1MEKBG85pZBuWJF5p9TQd6oBjWCp10GZdzp+IUaGjIla1tuKT33nPd52HFyYWW3Xqy+FyeZQmEEKP2UnBdbnttpismuD2Ngpbra2XuKKfze5861n4/d53GyTqPKoExCgDLoDEqzx05KiP38GGacv9d9JgkBysMPzyxvyRLp/vubvh5WBqXdPN2Wf1sttzArx8kgOX7PYUGN4p1KuRsJtnC9FG6T69Z5/1ExjgxKN+Wcbl9zMoCWV8bvvzCbzPi32SA5bgOUdm312wel01G8zQIHXkq8rY7nQZd4l0qA0qzE2xig9HKc8nP/4yRAafYjidMMSifLd7Nvjh5t/3qSMyidBihff12aNKnp834zKL0ee60yKL0ylnjHFaB08wNL4ec++2zpv/+V9t3X+3wLMYq3KQKUCJ7TsoGg5h9npuT06dJmm0lbbCH9+KOz90SZQWnFah26yWSJy1tvSVOmZNp8wgne5uEmg9Lq/UGtF6+/jDr95dzL/MMcJMfpPOwyh7wut1gJkpuLQCfLDHLfcTpIzrhx0hlnSJ9+Gnwb7MSdQRlEiXexQXKcaNmy6XIrK73v514ueo2lv2vXFp9nti1e93szbi643Zx34i7x9tMH5e9/b9+PqdtRvJ1kUFopFqA0ljUbxZ1B6eVHmiAD1HY/PJhlUDo5/lrNv1BUfVCGnUFJiXcjY4DSS2AsyRmUxTgN2jmVXeduzllBZVAGNUiOFTfVPVbL9zKdXQalF8YS7+y1UtSC7FbAyE+AsvC9STymRYwAJfxzkrESZFDOzw1o0M46K1OGumqVdNFFzt4T5LoIYkRGYxtKIUDpJlvVit/P5PXCKsgSb6c3414yKJNQ4l2sPUZeA5TFgih+A5RBXmQ4zaDce2/pkUekXr2Cb4OdMDMowwhQFiuj8hqgzG6rhaWgXjMg/K5Xs88RRwal2xJcp4GoqAfJsVJsGamU9PLLmcdDhphPU/jZzIIDRj/9lLn+cNsWyX6QnLlzpZNPNn897j4orbbVMDMojQFqu/3a7EYzyAzKcinxLtyfvGxTxnVRyoPkGCtFrPqUtZNOZwbCOucc664I7N5bwDRAWfjdGbehzz7LDMA4fry3/laDvE8LapAcL4FiJ/umn/OQ0/uEHXc0f95L1rPxfVbLM/sB1E6pl3jb8fr9UuJtigAl/HNyQRZmibfTUtcwLFjQ+Hj5cmfvCTID1Ot7rdrg5kYxLl4uHgoFkUEZ1HoJOoOy2A8GSc+gDLLMqVCxAKSbdRV1BmVzK/E2y4zzUuLtJmhll0Hp9oeDwnJxr8d9v8c7J/tytm1+R/G2W0acGZRBlvh6zVhyEkQpdnwq/H7uuEM69VT3bZHs+6C0G6G18HPU1EirVxdfnhulmkFZLgFKs0GhnOxndu0JepAc47yTmG1k9l2ZZVAa9ycvAcpUSjrsMOmBB6S+fRvnF1QGZWEWd2EG5aWXZgZg3Guv0gxQml3LxzmKtxWnx5VLL3X2fitW522rAVnnz3c236zWrRvbkvQSb7fbp58MSkq8myBACf+8BCijOFBHEaA0npScHmzdBGvTafv+94p9xksuMS89d3PTnrQDpZeLuEJB9EEZdYm30+3G7Jc4pzdAWXEGKGtqMr/Kui3TcSLIDEo/QQAvnJZ4m70vCkGWeBdeGIaRQRl2gLIwkFFs27PLiPBTVmuW/Rd0IN7J+4Lqg7JwG4i6D0o325ORkxFtzb4XL+vfTwZlsfcat8WFCzPd22y+eaa7m6B4yaC0Ozb4zbCzCuoV/vBgdox2cvwNqg/KYttKUBmUTs8pVkHNIAbJMc47SQHKdFq67z7phx+avmaWQek3QJlOSzNmNJ2Hx4oX1yXeReZXdPlB3qcFNUhOnH1QWinc56wSYtq3d/Z+K2bXT9dc07S/9iy3AUpjBmXSS7zdJqL4CVAWvjdJx7SYEKCEf04CLEFmDTqdV9QByjfflL75pvh73AQoDz9c2mgj6ZlnzF8vdtJpaJCOPrrp82brcNWq0ghQlnIGpdmF3UcfOVu20+3e7AKjlEq8774706+r8QK/WPvDyqD0cqNstzw/mlMGpdVNvt0yGhoy5a5+ApTG+Xs9f9x9t3T77fk3nlVVxfdfq+XNm2d9/HeiFEq8zb4zq+UWBmuj7oMyrAxKs23bLHvJCb+D5Ngtx/g5LrlEWrw40+3Kuec6a5sTXn4Yslu/fvvNtCrxLww6lEIGpZPuCswCB8Z5O92fjD+uF/5gY1ROAcpXX5X+9jfz18LKoHTzfJFpfAUoyyWDMowApdd7BuP7s55/PnPcNWMVoLRbtnEbNPth8dprrd87f767z5WEEm83GZRu7gG8fr/19WRQmiBACf+8ZFAGWdaclAxKKVPmUIzTC9hp0zJ9ytTXSwMGOJuXmYkTmz5XeDH/739LG2xgXi7mdDlRCSJA6SaD0mw7CiqDMpVqGkAOI4PSyfuM4syglDK/Dk+Y4Hz6oDIo3dxc+slS8qI5Byizf9t9zhEjpI03lj780Fm7imVQej3mPfecdPHF0pw5jc85KfG224ZXrfLWFsldgDKIQXKs+qxy0wdlQ4P19+YlQBlkiXdYGZRmn9csOOCE3wxKu+UY1/+sWY2P3WbS2ElagNKs5FlqGpAMO4PSb+WH01G8gyrxfuUV6aSTmr4n6BLvJPVB+dRT1q+FlUFp9rfXH5TNromMz9ll4bo9ZyYhQGkWhKqvd/9dONk3gxok5w9/sJ6udevi+28hYz/Gbn9gmT/f3ecylnhbHVfD5rS9xQKUhcetIDMoCVASoEQAog5QOt2R4whQOrlQcrouwspYW7NGuvzy/OdeeimzHt9/P7jlhKXYhUMQ681JiXcQ68TsxslvBqXZBWYYGZRuyjL9CmuQHD/BXCfLjLvE+8Ybpdmzg2uDnSA+q9UNhpMMSilzbCscNMRrBmWQ27KTQXLstic/pVB+B+Zyux6y50A3GQFm37eXDEqnwWi3nymKPijN9h+vGZROPp/V/ppOO8+gNP5YaJYdZjZvJ7xkrocZoGxoyGRGP/540+eTlEFZTNSD5EjSsGGZgWCC7oMyqRmUdt9fGBmUVsfZIEu8je0KMoPSb1ZhIS8l3jU1Tdt9yCGZKp6vvnK/bCt+7xmcvreyUmrb1t37jQPduM3kW7PGfYAyuwyvAxH65SZAabcfFZ5X/AQo3fyg20zElF+LshJ3BqXVxWccAUonnKyLujpnF/xeLlifeML9exoa4kvHL1Qsg9LJSeI//5G22046/XTzX/HCKvEuZHZTFXaJt9f9IqgMSi/LL7wg9lpaEWQGZRwl3laBKqvjUOEPEWEKMoOycF5O+qD0uiwjuwxKP+cTP31QSv6OvW5+bAhikJy6ukymUJIyKM0CoG5ujoznCKtlFNv+yyWD0k+A0ikvGZR225ffAOXjj5uPlh51gNLv8S/qPiizCrP/C6+5/I7i7Wa9bLmldP75mfX8+OPS11+7X7Ydu+87jAxKs2NbXZ33Eu/C7/bHH/P7sa+qst6G3H6PYWVQupnnddeZP79smXTBBe6XbSXIEm872QBlYdWF1wzKYgOg1da62/+qquyvN6Lgpj9Ou/VeU5NZ1488kjlmdunirT2M4m0qIREHlDQnF2R+Mxjs3htngNLLQaTYje/xx0tvvCHdfLP7eTlh/LXMqXHjpF693L8vDEEEKJcskf7yF6lDB/Py+ahKvM1O7GGUeBsDW6VQ4u12OVbfUSqVfzPkNoPSb4l30BmUViUxSfi1NchBcqzOF0FetBXLoAxyWzbLnnATZPcToIx6kJyaGmn99Zs+7yaD0u7GoPB872WQnMJjYjFRZFAG2QdlVCXecQQorda/3fHHb7cwZsFJyfyHlCBLvNPpTMnw1KmZvtus+pdzymkflEFmUEpNj39xjuJdWSkNHpx5PGyY++UWE3cG5RNPSFdc4ew636StTTIoC9kFKK32E7vlB3me9ZJBacfYhYVffjMonV77+M2gLJxu2TL75dXWursuM66HpAcoi31nNTWZbizOOivz98CB3ttDBmUTBCjhn5ObnTBLvMspg3LKFOl//8s8Puec4vPycsO++ebu37PffpnPGlefIUbGmw2zi2036+SWW6z797QTZgal0ywgq+miKvE242SdBLFfFjuerFsn7btvZpTZ997LjIQsuc+g9Bu4CTqD0ipQlYSLmaAyKBctku6913zepZpBaXa8iCqD0k0flEF025Bdh8UuuI2lxGFnULotWysURR+UViXeZm0ptqyoBslxE6B0sx15+WEozBJvK4XLNNvP/WRQvvqqdb/gXjjNoCx2XeX2mFC4XuIs8TYuO4zr2bgDlBdd5Py9Jt/j9sOH27+nRQvrbahYtl2hoAOUq1ZJ998vjR4dzPy22kqaPj2YeQVZ4l1RYb3eKiuldu2aPu80g7Jwvk4ClG72P+OPbnGVeDttb7Hts6ZGuuOOxr8LuwBxij4oTdEHJfyjxNsdu3XhdjAELyc8rze7QQxOEwTjRZzZBZ+bdWKVkVBs2/GaQVl4YRdVibeT9xmFmUEZRIl3sc/4wAPS+PGZEZCznfRL0WdQJmGQnKg0NEjffJPpq81qhMliUqnMDfn11zd9PruMoLgNUPphFnBzc0700wel0wDlCy+Y39y63V+tApR2n79wXdtt60H0Qel2f4lrFG+zEm8nASY/2d1eMyi//jrzw8KKFU3f8/nn0iabSMWCH8Y2uH0tzBJvK4XfqdcSbyPj9228+Q2CkwClVYacnwzKwv056AClm9Ji42dLWoDSyzV2wGXDLYtlXtplULoNUKZS+d/9AQe4e3+hH36Qzj3X3zyMvCRzWAmyxHvjja2ns8ugtNo2/WRQmvXhacd4TktKBqXV+iwWVK6ttf8unLrvPmnUqPznCFASoEQAnNzUx5FBGQW/pSmStxIuq3k5UeoHvmJZG1EEKMPMoAw6QNnQ4L4PyjADlEGst2LHE+MIyl9+2fjYLIvLrm3Gv70cw4IMHNr1K5WEAGVtbaYbiAsukAYN8jaPVEp6882mz0eVQRlWibffDEo/N9JO+pVMpaTjjjN/v9v91ekgOXbdaGy8sfVouIU38V77oHQjrlG8zUq8nbTdz48nxbZ7q4DKrFnSeedJF17Y9D0nn5zpVsUpLyXecWRQmgXLvWxrVueZoK/VgghQesl6q69PziA5YQco7bZds+tV4zYURAalG16uxYIMUKbT+e/xet0QFrM+Q73y2y2U8b1eApTZvknNRJ1BmbQS7+7dpaFDm05X7D6vpkbq3Nl/e2bNkr7/Pv+5JFzTx4wAJfxz8otxkOVyScqg9HLC8RqsNZvOy/K9niSDzCjyw3hTZHYBEVUGZdQBSqfbjdn+WG4l3sWOJ1ZZwn5KvIsFN50sz4+kByhXrpSqqzOPX3/d2zysPp/TUbz9LivKEm838/fzud2UeJsJKoOycBv1mpFl1wellwDlt99KDz/cuO2aiWsU72LHJyt+ApTFbspSqcb3mmV8PfZY0+fclkkGnUEZVvVHUBmUVgHKoK+5KiqKl1VaBTGz37nXH8Xtvp8o+6CMM4PSLBP+pZcyfYym04nIoCzKrsTb7fe40075A9F06OC+PWFy26emnSBLvO36oq2oMA9QvvSS9fZll0G5dKl9u9wGKI0/cCSlxLuiQurUqel0Tkq8gwhQmin1RKIANIsA5U033aSKigpd4GZELjjnpcQ7yJNqUAHKdDozQM1222XKQ52wOjAvXy716CH96ldND/B268sukGRWehFlBmVSApRRl3hb9cuW1BJvP/0qZpV6ibfTAKWbEm+z/saK8Rs4NH6O2tpkByiDHCTH6vmgBx0qZAxSRV3ibbe8OAOUYWVQ2mUn23FT4m3Vt+aqVZl+lXfaKZM9ceaZmew/K8bjT9QZlMWmMfPSS9Lbb7tfXnaZTkckd5KZGHTQpRxLvI3TLFkibbGF9NFHwf/I7jSD0m5gLS/Hxfr6/O9nzBjp4osb/45yFO+kBSgl6eCDvWVPFlteMV6+S6f9mHphNrhanNxmhNrxW3XlpCsTyTqD8oILrH849ptB6eb6xFgVEFcG5Tvv5P9t1XVKsaCy1YCAQSBAWf4ByrFjx+rf//63dtttt7ibUr68BCijKPF2u4x33skMUDN9utS3r7e2ZF16qfTFF5ny0iuvtG+X03aanSzLKUC5Zk2mrK8w1b1QHCXeZn/bLcfqxFs4nzhKvJ1IWol3YXuKfT9BZVDaZWlEkUFp/BxJz6AsPA57OcbHmUG5Zo39hbofb74pzZ2b/5yb84Cfz+2kxDvIAKWXDMqgApRWn6vw+X/+U/rkk8ygdFl2Hdw7aWux9VQsSBZkBuV//5u5hvn8c3fLkzLr4dNP7eefPW85CT5++23xaQqVSol34TLNyji9lOTPnSv961/BX3MFUeIdRIBSkm6/vbHsv5xKvL0EKGfPtt9XvS6vGLffZXbbCCuwtN564czXqyADlEFmUBq39w02yJ/OKkApSX//u/nzxuuewjY66YOy1Eq8CzNjrTLLnfRBGdZ9cRKu6WNW1qN4r1q1SieffLIefvhh3XDDDbbT1tTUqMZwsVX9cyZFXV2d6rz8updw2c9k+tnq6lTx6qtK77hjJrugmJoaGU+79XV1ShfOt7a2+DROFcyrYe1amV1m1NXWuvpltmLmzMYdYtEiR9+72eVGXV2dWowereyhN/XNN2owzKuiri5vx8tbF/X1pvOUpLrly5ucjCpqahztxMbPUlFb62nHd7I+bberIiovu0xV996rdKtWql+yxHJU0Kp163K/rKRbt1Z94bIKtkc7DW3bKmXS1qpUqnEZkuoL5llXU6OqujrLX3ga6utz883bVhsa8pZXsXZtk++icJocp/tQQVvTP59Ac9tjKpW3PZqpSqebfLbC779FOq3Cy4v62tqi+3Xh9u9E+ueL8Nx2ZfJ9GNtWWVGRd0zIvq+ytjbv+cL2VtbV5b/P+JnXrMn/LgumNdXQkJmHxwuxFlVVjd9bTY3SFstsqKkx3d6i1FBTk7/uFi2SNtzQVXus1mm6oUH1dXWqLFiGH+lUSvWG83v9woX5bU2l8o5jxmOCJ1ddlfdnk/23YP/Om3bdOlfny7ztNJ1ucjwp3HfrLJZdV1dn2y4zdWvXZvaZgvelCo6XdbNnq+LTT5U+4ogm+52dVE1N3nzqf94vJDU5JtfV1EgtWjQ556UmTDD9Luvq6qR0usnnTTU05I6ZlfX15vtgXV3eei48FxYe65ucI9eta7Lc+sJ225xzzKSuvdbycxYeC/MU/qha+P41a6Q2bayvVYznuO++c328N54/C1ltK6na2rzPmq6oUMXP5410bW2Tc1UQCpcpSfUF33Oqvr74+ba+vsl80u+8o/TWWweaRZI9Ftjtz+nKSqVSqabrOJXKnMtMttOiy33lFVV9/XWT5+vmz5c6dFDFunWutxHjubuq4JhgJy3lrhmrKisDz9JJ2Zwn6mR9fm544QVP57ZUQ4Orz2DcN82u4eykq6oy52Gz7SMAdTbHlDikVq8ObPtIpVJKebz3kiSdcorqdt5Z2m03taivV4WkdPv2UmVl/rm8oUFVrVubtju9dq3p9228fiy8zkkvW2a7jaQnT1bqiSecn78bGlTx83aXrqgI5bjsViqdViqVMv1uCs/Bea+tXq0Ku/OoD4XXE+XEaXygrAOU55xzjn7729/q0EMPLRqgvPHGG3Xttdc2ef7tt99Wu3btwmpi7EaOHNnkue2GD9cuP3cYO+Kpp1RX5FetdgsXqo/h708//ljLCkZxbfvTTzrM8Pe4sWO10OMvf+3mz89b3pxp07SVyXQfjxql6tmzHc2z07ffav/LL897bsSIEUXf9zuT50aMGKGDlyxRNvF7cXW1PjPMq8vYsdrHMP3YMWP008+/BneYPl0HWSxr1JtvauWWW+Y9t9HXX2u/oq3M/yxbTpigPR28p9DIt95SncM+Ysy2q2J+d++9kjIB1I8feUTV22xjOt3+CxYo21vI8nXr9FHB99Rq+XId4XCZU+fO1Xcm33OvJUtk7FnkjREjdLTh749HjdLOCxeqi8V8J0+erGk/z9e4jUz+7rvc85K04ZQpOqDgvTOmTdMkkza1Xr5chxv+HjNmjBaZHOjbLlyYt6+l6uq0ds0aZffinxYu1Ogi23aP+fNVOH7hRx9+qFXTpuX+PrC6WhsUTDNxwgTN6djRdt6dv/5avWynaGrtz90bZLerFmvW6LeG1z8eNUrVhgy1HaZN0y8Nr2e3/+5Tp2p7m/buNmOGjFvdxx99pOqfB9xpvWxZ3vr/fsoU7eyg7SNee81zpkY/Q7Bk/o8/as3atdrBZLpvv/pK0022tyj9OHVq3rr76PnntWrzzV21Z8rkyXnfW1a6oUEjRozQLyZPdrTOnahZu1ZvGfaD0a+/rt4F04x4/fVccPnAFSuabO9+fPrpp1pm6P6jxapVedu00dcTJujHjTZyPG/jOv960iTNKtjf+xUED9995528bTtrxIgR6jBjhuU5ycxnH32kjv/5j3Z/6KG855ctXizjJ1h3yCFaf84c/bTHHprfs6d2dzj/6kWL8r6H8V98oXk/Z4z0mDcv77j1xogRSrdooa5ffKGehudXLloks6PUiBEjpFSqyTa7aOFCff7zOtx91ixtbfLeHz/5RIsvv1wLe/RQg6Fv5JFvvaUet92mzQuyEvOuL9JpHXT++U1uzseOGaPfGP6ePXOm6bWOlSVz58psOIURI0Zo26+/1q4u5mX07htvqGbDDS33beNn22L0aP3K5fxnTpumbyzOUTtPnapfmDy/YPZsbWYxvwaTHwKDsOynn1S4V349fnze9dWCefM0tsj5tueCBepa8Ny8X/xC7RcuDPSYM33mTH07YoTtMbm2oUHfTZpkuj+OeP11VdXU6EiXy62yyNz69K23tHzaNG0+bpx6uJznV+PHa/bPP9jv9eOP6ubwfatWr9Z7P38f+yxZYnkN59Win37SphavffDxx3n3Lka1zzwji7w3W8uWLGmyDdox7ptHWvzYYqWhoiJzHv7hh8DOw0bvf/FF3rVr3FbOn296nvCietkyfTd6tH7tYx4Nffrorcce08ErVmh9SfXptFL19TKmcnz86afaetEimd09NaxaZXocnPTVV5rx83bRa/HivHufiiJZ8hVff23644OVObNna4tUShWSVpjcQ8RhyeLF+mHcOO1r8trnn3xieY/9xaefquP06dophDbNmjZNXzuIQZSiNQ77di3bAOUzzzyjL7/8UmPHjnU0/ZAhQzR48ODc39XV1erWrZsOO+wwdUhax71+zZypFj17qr62VhXHHaf0I4/kvdyyf//c48Nqa5Xu189+flOn5v25769/rfS+Bbv6zJl5f/b41a+Kz9fh8rptan45sF+vXtLuzm57jJ85q5/H9vXr108tWrXK/d15iy3y5lVRUG60d48eSh/xc0htwgTL+R7Qo4fSPfIv4yocjjJnXH5lYamhQ30OOSR/9LhFi1QxapTSffvmSqXr6uo0cuRI9enTRy2tylkc2O/AA6VddjF9rcU11+Qed9xkk6bf04IFjpez/bbbaluT77nq9tvz/j7i8Pzb9/323VdVb71lOd9dHntMv/zuOzUMG5b3/M4776wdjduCybFlm2220VZm2978+Xl/9vzVr5Q+3CSsUDAgQaWk9oZS9k3M1lmBqv/+t8lzB+y/v7Rz42Wp8XvI2n3XXbVbkXlXWJWf2Gj7849Eue1q+fK81/fr1Uvas/G2sHLSpLzXs5+38t13bdtb+dpr1vM1jgwu6Rc7mIUKm+rXt69kOB640aJt21w5SteNNlJ6661Np/vlL36hnbweTwOy1Wb54YEDd95Z6f2K/3yS3nhjVSxaJEna0WKdVqRS6tevnyq/+MJ/Q3/WumVL9evXL3fM+vX22zeZpt8RR+RKf1qY/IDpx7777KN0L0Oo3qaUatfu3bWLx+93l913V/eC97YoCJgfcvDBpu896vnnVfHss66Wt+/ee6uFSUBio8mT8/5e/+f9aZMJE7SRi9FbOxYcP/bcZRft8fPnqyoYifOIvn2l1q1VUdB/cweL/bFfv36mpVUbb7RR7hhS9fLLpu/d5s03tc2bb6rhjDOUuv/+3HZ1+OLFam1SMp13TTB8uFr8+GOTafb+VX5or9vmhT8b2dvIon+sfv36qdJY3u7SIQccIHWzDgnlfTYX5+OsrbfaSltabO+Vn3xi+nyXwsEKKipy5a9hZLhI0oYmP97vtlP+7WqXjTcufr4tCOZLUtdNNmmy3fq17fbba+sibWnVtq12segSq9/hhwc6cEiv3XZTundvVRQrIzWx2y67aNfsPvnUU47ft9766zfuy48+6nq5xWxs80NS70MPtXytrZtR7g023HBDV9Pn3Qu4XFZVq1aZY8dXX7l8pzMHHX10pj/ghOhg1VWQBx07dFCPvfbyNY82y5Zl7i9/vu9r0bZt5sdvQ9/Z+x1wgCpnzJBM7k+qLLq66L7zzto5u0/cdpuvNhazxWab5TLb/7+98w6Xmlq7+Jo5M+fQe+9gQUEUBFRERQFR4arYUETE3rCgnw3vtRdU7L2LXuyKHQsCYrnYQBRFsYBYEFARKSqcku+PmDOZzE6yk+yUOWf9noeHOTMpO8lOsrOy3vdtZA1Pj4nmLVui6Y47Cn/bqX9/2/n6brNNaA7Qzh06oGPMY/qwWOtUkNBEjRQof/jhB5xxxhmYMWMG6kgKOGVlZSgThJRms9lAQksi+ecBPwug6u+/kXbYvswxxwCPPgo8+SRgdyO0POxk0unCXCuWC71wGlks60vb5GrIZjL+1wH4Pu7ZbDYv4XW6Xr38fWzdXyUluXY6HYuNGwt/l6yCpqIPZ83tBPQcV599BowbB1geDIOeN9k6dez3hekmm85kCvuvh8pwJQBKXNqZ0jS9L5nbl8m45h5Jz52L9Jln5q+vpCR/fQIXcUkqJW6T9RyyHo/cSvLbb6ninQYcz3nRMgDB+SQIW7ZtkxkflftS/6yrul9Zj4d1vZZreXVftOxvt/YWLNdEiWTYdjaVUnKtSzvkMivRNL3PqC6q4AFr+zKrV9vnAjWR2mkn4MUXAejhRcJpjHNQ4falqqryrlEZi+gN/HP8jW1QnC+poO85uGwzmua7D2VE90HLfrRe3wzSHh78q9fneQ491FKWlDVc3Xx+ibYrmy245liXUT29zTmU1rTcNdOlH5Tce2+e4JSxEQLz7o9LlwqnsQrJaY/5rtI2D6R22ylL1qU/5m2bj1xajvdlm/1v3Tcp03SpkPJ5ia7JJZb9KnW/FS0bUH49L8lm3cc76TRKbK4H2XRaaeXdzJ9/6v3Ix3bmnfceCjGl0ulc/wzh2c5p72Qln0c9rc/jvss7Nz1eT1IlJcLxlyqyCRGsDFIKc1Cm8M9zb0Cy2Wz1NTUlOA7ZsjLb3Popm+Od98wR8hjSfF1Lh5ED1gfpVAppm5eWGYf7fcZc8Ecx1WP6GoisNlAji+TMmzcPq1atwvbbb49MJoNMJoM5c+bglltuQSaTQWVtr45kvkjK3KDeeAM45xz732WK5FjcE4kskqMSc0U+66DEqUCB08NP0orkfPaZ/r+luEDn115DZocdACd7+oMP6hXOX3hB/LvTjcu8b+0qbMtity9kiqfIrOfNN/P/jqKKt0yRnHff1Ys42SFTJEe0/riqePstkuN27XKq4i27HUHuN7JFcox1hF3IygnrdXjlSrn2mAeGTo4hmerCXrAKGiIHS5j7M6oiOSKs2/WPg9WVIUPcp/GTN8nLfvZSJMeusIeToOF2T/FbNMgJ2Wu5133rtJ1B+pSXdvgpUKOiSI55nBtWwYH5893b4adIjvGd6uuPzEsWuyI5YbTpjz/0/4MWyVm+XH6+OIvkhCHsRVkkJ6SXddXLLi2Nr3CKiCQVyTFjnC+ZTOELA6ciOXaYz6Wwn5uTUMVbhJ147HT93rgxvGrbtV2nQg0VKIcMGYKFCxdiwYIF1f/69euHMWPGYMGCBShJiGofG14FSgCYPdv+Nzex4McfgREjnKfxgnVerwLlXXcBvXsDzzzjvw1umEU0qzNXZRVvPxcxFQKlQ5t733knUgsWFB5zM8ccow/u97fJhuQ0kDPvW7uBvSx208pU8ZbZj9aBwv/9H/D227m/wxAo3dr+xhvALrsA/fsDzz0ntwyZ5YraKLtsN7wKlHbrcKvi7SRgOlUhdiLIw7H5XiVTxTtOgdLal3/5Ra495repTg8ElZVqhYaqKqCiAqlZs1C2Zg1gyZsMINzBelQCpcy5vJs1E64NMmMnP8dIVRVv63668kr9WvfRR/nfOwl3bvcUr30iSKJ7awhqUgTKf86dwG1wWr7X36ztievh13qMRO3dsEEPwTReyEQlUMo4uJwEyooKwEM6BldUCZRe0haZ94H1eqYinZfT9SFqQdRtPq/zGu0P49xq0MC+mnJcrFunblkqz2fjfCkpUSNQBnkB5xXz8pMiUDpVpo9LoGQV75oZ4t2wYUNsY8lfV79+fTRv3rzg+1qJ+USUvRh5GTBa/7788sJ54nRQ/uc/wG+/AQcfDCxcaJvrMBDmQbnVQenmzrMjSQ5K2eOnaf5uQk7zqBQoZR2UomMmsx7RQGG33XLLcxMof/hBz6nZr5+8oCFql3laY52aBhxwgP63VRD2K1DK9AsVAyC3c8ju5u7VQSnab3ZtsCOIQGE+Lps2FZdAuWGD3LXG7KBcv95+uvfeAyZP9tc2EVVVwPXXI3P++RjUrBlSBxwgniYsvAiUxvGtrNRzdK1cqbvQzTmBZdcj+s4QCtyQcQBF7aA0n+vW5Vx1lf6/NW9hEIFS8iVM+tRTsdNHHyFlyc1qN72Qf1IfVJMkgVI2P2JcDsokC5SHH65Hjxx0EPD00+JpKivjESjTaft9d//9gCVPcyCMtBp+HsaNfVNerl8PZXFyUKpwODodszAESr99xM8zWJgOSiOfa1JEK0DtC0pZU4MMZgel9fgXg4PSIEliNB2UiSNBvYNEhvlElL0YBREoZcJFvRDUQWkO5fvvf/23wwnzxcXqoJR1wllJkoNSdlAkyOvmeV1mNC1/mXEJlH4dlFacBMrVq4Hu3YEddgCef95/iLfddwai8M4wBUo/535lJXrfdhtKRo3Si4m47QtZgdKLg9KvQBmkqID5Wp10B6W1eMj69XLtMV8fnRyUgwb5a5cdVVXA+ecDAOquXo3UBx+IpzFQPXCXSY1iYPTLhx4CHngAePllwJLf1pbx44H99ssvHua3nxSbg1J2GWZUOCiffBIl99yD1vPnFxTeCoRKgTKIQ6OyUj780Y+D0mkfF5uDUtQnjdQ2RhRP0hyUdtM5FAb0RRCB0tivK1Z4u344CZQqcr4VS4i3n74VtoMyrGUngShDvAX1NByJ0kFpvh4m6Vj7ESg3baJAGSI10kEp4k1rLrjajJ8Qby8DRpllBrkIeskn5Tavk2PH67IMrPvKzUFp/ttpP4sequJyUMqu97vv7IsrOWG3H9audX9YjEqg9OugNOMkUN55Z86lcsABBdXrpUO8Ae8hcwkL8U599x06f/ed/kfz5oWubL8OSplco3bLlO1ndtcYTdNDT7t3tw8tszo4kyxQWtmwQa49ZgelypxPboicB07TqBYo/YR4z52b+84uPYOV8nLdiXfSSbl5/G5LEhyU1vu9Uw5KO5zaqMJBaQ0pF2GOLgjLjR2mg1LWGRlViHcxOSitJE2gtNt3P/+stj0qBEov4d1A+A7KqEO8vfYR47qTNAelUdglSaKVSlSez0bfFwmUfooyhjnOsWI+15NyrBninUjooKyN+BEoZdwdXpYZV4i3dbAc5IZht17rMlUJlEHFuCDzWOeTPX7Llvlbv9001kIWUTkoRcKVCoFSdBMy1u3mEvQb4m1FtA+SHOIt4ya1O65u1yonAdNN3LTDTnS76SbdHbv99vb7xOrgLCaBUtZBaRYog7hNvWIVEkRCyl9/6TnXjj7an9DihJ8Qb/M0dgNqS9GyaswOV7/9ROYBPk4HpYr+r8JB6bUwjgphVURYAuX8+fJtjirEW5WD8qKL/M1n4CZQyo7jqqrUiwVBQ7w/+URte4LkoDT2mVeB0kwYAqXTeZWEHJRBCupF4aCUDftNUniwDGE5KK3HIp32LlBWVgLffw8sWRL+GJIh3nLQQUmBslYSdoi3dZmqQrwffxzYd1/g/ffzv7cbtIvWYR0sB7kY2w3+rcu0Dnqc9pdX50DSQryt+9xwvZmRGYzGLVBa8RvivXix8+9ODkqvhWHsprP7zuv0MToo80ilwgvxdnJQ+nGKA/YOyrPO0v//9lv7Bz9z+zZtcn84//FHuTZFgZ8clFE6KGUEyuuv1wW/KVOAL75Qu34/DkpznxPdVzdtkiti4fcclHnADttB6fRSQcWgXoWDUmYfmNsaVj5HuzFK0Hxoxx0H3HZbsDY48eCD9tfEsEO8g4b5uoV4y0bCxJWD0slBqZo4HJTmfWAdm4ctUIYR4v3xx96mN/qUn76VpByUYexLVYiMCV9+GU4OSlGIt9dr2JdfAt26AZtt5r0/eaUmhXhv3Bie05ECZe0J8SYm/BTJCRLirUKgrKwERo/WP1tzOsXloJQVKGXChe1+c1qu3XduRClQigQTr+4SM1aBMqoQb78OSrfk7U4CpfWGKSuQqRAok5aD0owoPMlviLfbPnVyTsluh0waCbuBmhcH5bffAj16yLUpCvw4KKMUKK2Yi28ZPPtseOsLKlCKBtSy4mCYId5+HHMTJ3qfx8CpSI4fonJQmpcpK1B6FX/t7m9VVcEfrK6/Xm46v87jXXfVU7pYCTvEO6jw4ZYKRHSsowrxltknUQqUhoMyyIt2s0DZpk1+rl0RYeegjNpB6ZWkOii9hnhns/7uNVHQqJH4PDdeSgdFtYPy8cdzn8MO8U6iQOk3xPuTT4BmzcJpE0O86aCslbg5KEUXNy8Ch1cXlabpb3CcTkirMGXGi0AZhYPSiyBp/TvJDkqZdlq/v/56YOrU/O+COChXr3afzsv2yQqUIuedijdcogdOY5usN0xZQcOrcFhsId6iZbg5KBctEn8vc5wNvvzSeV47ZARKu7e3XnJQnnGGXHuiQjYHpfl+kzSBMswQJC/3TdkQ77BfEMg8YIvSeoTJV1/lUgOE5aDcuDHnhpfp0zL3OD8OSj/uVLt1R+XQ8CsirFsn/j7sEG/VDko3gdJOiAxDoJQN8Y4q9NLYV376oijEu2NH9/mcBEqv1Y9FOG1LEgQZo33W8YwMYQqUxovKmuCgtKb1MvBbNNTMX3/lroGqHJRRYj4/ij3E+403gCefDKc9dFBSoKyVuOWgNDtaDFQ7KM3TXHopsPXWwIgR9usQVRo2kBUKRdNG4aB0+7smOShF348dm3tTDqh1UIYV4u0mXKl6eEhqiLdfgTKqEG+3tliPV8+ewKRJ/h2U110HnHii87R2qHJQVlQ4C5RR5m+UYf167yHecW6D6Hoe5gOlHwelm0Aps7+DDHxlHgqvusr/8v3w4IO6c3jjxvAclJ99Bmy1FXDttXLXr99/97aesEK87diwAbj9djXLckN17takOyjdQrytx9ruxVNVVTw5KCsqohPSjH2jykHZqZP7fE4CpQqHY9KFhaoq4MYbgX79vM8bZoi3sWxZ0SrJAqXXKtpe6N0797mkRCxQip7hk0ISHZSAP4EyTJJ+HYkACpS1ETeBUvT2xelkCeqgvPRS/f/XX7cfkDkJlHE5KO3cDF4ESevvKnIFuhFliLeBWVgUCZR33WW/LmO5S5cmJ8Q7aMLrF14Axo0T59kqZoEyihBvwP0cE/WxCy5wz0FpJ2Cec07h8qJwUHoRKJM02APooHQjqEApalsSBMo4WLZMD8cPy0FpcN55cn162jT3aeJ0UFqjGsJEdRimrIPS77mrWqB0c1Bu2mQfCRKHg3LlyuIQKC++WA/nNgTKhg2Bxo3d5wtboFR9zFRTWek/1DiIg9JtHq/iZ1LvRYCcQOm3/V99lb8MFSHeUZJEgTKVSp5AyRBvCpS1EjuBcsUKfXAVdYi3zPeqBEqVDkpZF2GYOSiTViRHRri0DuAXLQJOPtl+egA4/ng9ibMhZjutLwqBsqoq2I1r//2Bhx8G/vtf+3Vbb5jWNq1aJV62V9G22EK8ZRyUYeSgtCK7HTKiW9AQ7/Ly5Az2DNavByZPdp/OfL+J0UGZEu3bpAiUoirtRts++ww45hjg1VfDFyiTkEPNjvffD89BaUaVqy1OB+VTT6lZjgxBHJRVVYVFUJxe0phJkoPy+++BE04AHn1UXqCMK8T7l1+KQ6AE9H1q9I/27eVD2A2s1zOZvnrllc6/J11YUPGCyk//eP994O231S3biwiXSunj7aiQcTCqcDkyxFsdfnJQhgkdlBQoayWiIjnPPaff4Hv1Ej+EeMlhZ53WS64su5MyiQ5K2YGyF0elmyDy11/54WNhOijHji1cv9t6ZQRK6/4RVY2zLuf+++XXF0WId1AHpROyDsrTTgNmzy6c34+DctWq/GmSHOItWo+MgxLwXsXbqa1JclAm0bWxbh1w003u0yV5MB3mw6Zb3zPjFOK95556mPM++8hd24NsU5JdKzfdBMyfH3w5bueSqnMtTgfllluqWY4MQQTKvfYCOnTIrxguG+LtlzAclIccAtx7LzBmTGGO1qQJlF6mC4pxDvi9Jr34Yu6lVvv2hc8uJ5xQOI+Tg9LtPOzXDzj3XOdpklq4xSBIn/L7gmrwYKB/f2CXXYDzzxdPY4wDwnBQ1qmjP88cf7z8PEGQER9VjHuKXaBM0kt1OigTBwXK2oioSM4BB+g3rsWLxVXwgjgovQiUduspJgel1QWkqkjO8uX6IKxDB2DhQvfp7ZC94G61FXDSSeK2eQ3x/u47XVB76aXCC6/XnKdu0xWDg9IJWYESAIYOLfxONmTb4OGH9eqXu+ySmy7JId6plLuQ6NdB6fa70zrtkBEo7TCv38lBWVmZrMGeF5KcL8mcO1c1qnJQmu/XMn2tpjooVeF2XqtyUN58c+6zrHNYlQgnEwobBPM+CiLYvPGG/v9ppwGnnKK/kJMN8Qb8CW1hFMn54IPc3+YQTSBagVL2HlEsDkozIgfl4Yc7z+NVoKyqct83SRco43BQmqe3mzfMHJRG8aOo+rVMiLcqByVDvIOTxBBvOigpUNZK3HJQiqisBG64Abj8cncXoswyvTqBnARKL2KZSgel3QXEGtLpJeTb6eHnvvt09+Sff+r5d5za4ITsPOl0/iAgiINy//11F8S++xYWEBDdqGWPS1gOSrdlRuGgdAvxFrXLy3QG11+vzzN3rh4uareMYgrxtjuufnNQipDdDhnRSNZ5XBMFyiQPplVU3bTDi1tXFOItOt4yxVlqYg5Klbid16oEiCuuyAlwUYd4y67PL+Y+pqpIzp136k4sWQelpvm7JoZdJMd6X9+0SXzuV1bKi+GyYoes+FOMAmWjRnI5JYM4KGu7QOk3B6W539n1wTBzUBpVtVUXnbKDDkp7RGlq3GjRIpy2mLHrd3E5GSlQohaMNkkBfgTKP/8E/u//9M9lZflhDn4ESqPCq3WA4Eeg9EIUDkqrIOEljNTL8fAyvRkvAqVdXxGt95FHkH7vPfGyzA4Ra04przlP3aaLykEZd4i3HUH2ifFwJSN81sQQbzf3s9Oy7AgiUFrPOSfhtVgFyiQ7KMMUcvw4KN0G9zICZZABd21wULpdw1avVreul17SXfBRh3iLCkKppKIiJyCoruJttw/sHJReH/TCLpJjFbBUOCjr1JETxsIUKNNp72MilQKlaB+4CZRW3M4Lmfus6v6uGhUh3m77oKwsfz94cVCGKVBGhR8HZd263scbIoEylUq2QOnHQbnttsAOOwBXXx1Om5wclBdeGM463WCINx2UtRI/AqWZG27I/9tPiPdppwE9e8oLhr/+6q2NQHw5KK03GVUOSjNbbKH/H6aD0nrRdhIoP/0UOOIIlJhzRcmuP0iId5w5KJMQ4i3Ca4i3UxucvoszxDusIjnr1jn/7rQsO2SK5Mi6wO0eQotZoEzyYDpMjGP7xx968a8nn7Sf1inE2wwdlMGQccarFCiN+2vUAmXYDkrz9Ve1o8wuHF50zY/DQemWg9z6wkqFQGmEsLohI1AecIC//ebnvq5SoCwrEzsorfeXU0/NfbaeB3RQOiMrIjZokP+3ud/FIVDKnh+qkBEorf3Sj4hajCHe5uuj7LEuKZHbp0GwuzaGfa+0gw5KOihrJaIiOV7wKsDZXYQWL9aT+zsty8DPG/+wc1DaXUCsbfUiUMq2p2lTb9ObCcNBaYSq+Vm/m4PSax5ALxf2JDsoZUK8RQQRbY1zNczwbRUh3qpyUFrn8yJQRhHi7ea+MShmgTLJDsowMfre+ecDd93lPK3Rn80Cleh4y4SkBxn4JvnBRwWVlckWKFU9tEThoDRQ7SiTzdfpN8RbdQ5K6zGzvrBKmkB52216xeUokCmSc911wNlnuy+rTp3Cfl1SohdhfOQR/T7cowcwalTud+t55+ZaOuMM93bUZIFS1kHZoAHw22+5v72EeMu6fL2cp1ELlH5CvOvWlXvBaKakpHaEeGcy4UdvJKmiOECBEhQoay1aKoWUpvl762kdIPoJ8TYw38Ts5t20yd/JamxfeXnuhhGFg9I6SJIRu+ymtUOUk0yWMARKLxd3t5xMQP5+cHKN0EFpP7+feZ2WkRQHJeB+zZHNQenmbklSiDdg/7AvSpdRLCR5MB0mRt9yEyeBXF8zH3+/Id4skmOPjEDp9SHSCeMaH7VLwzxGETnSgxKmg9LLvvLz0Bl2DkpZgVKmLxrIuq/c9sc22wDt2iUnB+Xxx+uppWQFSuv1KZPRI7Wuuko8j7kv1atnL37vuCNw2GHA0Ue7t0OVyzksgjzzyLoc69fP/zspId5R5aD0E+Lt10FZbAKlnxDvkpJwxx6pVPJe8DPEmyHetRbjoubnZmU9cbwUlrDiJt6dfLKe/NrPG93ycn1g0apVbn5ZB6XMxUpWoAzDQWkcAz8Pm7LrSKft3bYqBUo3kdHpQh1UoJQNra0tOSi9OChrQoi3Nb1CGCHeMm4lhnjXPrxcPx5/HFi1So1AGWTgW9NDvJ0KUYWBVwelKszrC+OYhumglEmZASSnSI5V9LK+sPr77+Q4KI1rcVJCvK1ClxN16hRun5uoYT4PnPbh+PHAhAk14/oX5AWVsX+d+kdJSaHYFneId9Q5KGUclKoEymIL8fYjUGYy4Z97YTsozz/fW7QQHZQUKGst/5yMKRWDcT85KA2chKCKCt1d4neA++KLwIcf6jm+hg7Vv5N1UMpcrGRDvL0UyQnTQek134/VQekkpHp5u+WWo8m6Lqc30kHdgn5DvKOo4m09b4KEeEeVg7KqCnjnHb0yuF24aRgh3ta//eSg/Osvb25w2fNI5vqlwkFJgbK48HpOHn20feEBA5nwYzoo7fHiWlNBOp2L8ogS8xgljPMvCSHeQDIclNaXBlaBddgwYOXKwuVUVclfI2TFDbd7hFeRKChuY1Ivx6+sLDyBsljvrSJUOJqd9kc2W9gfZRyUXsXxYhcordddP6luitFB+e23uc+y53fYDkovbfHLyJH6S+a775abngIlBcpaSxAHpZUgId5O8wZtm/lNtfFZ1kEpc7GK00FpDIJlL2InnaTnrXzqqXCK5HgZwFkHSHZCl7GOMB2UsvsijhBvax+MIsRbxkFpLEs0zerVwK676iFZEybIt88LYTkoRaHYKkK8zdecNWuAm24CPvhAbj2yOSirqpKXQ0eW2p6DUpbp0/P7kqiPh52D0uqqr2nE4aCM40HELMyELVDGGeKdhByU1vNUdJ8RfefFQakqxLuYBUpRiLebqGEWu+MQKI86So/wihIVbm2n/ZHJFIY4JyUHZVT92k+RHNH27Lmn8zKKUaA040WMFqVvUNmOsPtGNgs0bizfvxniTYGy1mKcjElzUJoHKkHb1qRJ4XcqHZR+c1CqqOLt1UF59916+OqoUfHnoJQ5Bq+9pg/cxo5NRg7K2hLibW2D9bsDDgDatAHefls8zQ035D4/9JD8sr2iqkiOeTnW8G7RepyWZYdZVDrjDODMM/XUEzLrsW4XHZQ1Bz/ngfneIhJ+wg7xtr60qmnE4aA039969y4sHBgGUTkoKyvVC7BeiuQkwUFpRTZE3UtfVBXi7VUkCopqgTIsB2VY++O663TzQJSIzh+v2+cmUNb2EG9VAqXbtVkU4p1KFc+YyksOSuvxVl3VO+xrnvEiXnab6aCkQFlrMU7GKMQCvyHeQR8URCe49QHfbvvDdFA67S+vOSiTUiTHi/1exsU6aZJeQGnqVOCzz+yXFWeId9gOStnvrajIQSma/u23geeeA375BRg82P+1Q8U1x+34yBbJMS8nCoHy4YfF08iGeJvDY/y0JYkUy2BaNX7OA3Nf8itQBnVQ1mSBMmoHZSqVLxi3aBFNxdmoHJSqw7sBbyHeSXBQWpEpmgbEk4PSEAGiqnrsVsXby/ErK/PuoDz00Nzno46yny6sl38lJdFHEIjOH6/hs14dlHEXyTH6c1RFcvzkoBRtj4xAKTqniyUVi+xYIp0u3CbV503Y4xqvKQyKeUyviBqQ8Zf4whrinc36z4MUVoh30BNU5GSMIwellxBv2Ruo1xBvM3E7KGXD7A2sld7d5q0pDkq3NtgRJAel3boB4Oefc58rKvwP9sLIQSnroHTKf+o1xFt2O4LkoJTdx0EdlEOGADNn+p8/CLVVoPRzHlgFSmv/oEAZDD8Oyvr15V1xVqwOymw2mv1rHqOEWSRHdXg3UPwOSqcQ25ISoHVrYPlyxzGGlskgZb6XqQrxNq7FjRrJLS8oRp7NsByUbvvl2GOBZcv0Npx2GvDyy+L7YG0QKL08/3nNQeklxLu2OCitx100DnLbRjuBsliiaWTbmUqFK1BGERnStm1uXTIwxJsOylqLVaAMcrIHESivuMJ+3qBChlUo/O03sTgmWo+1OMyYMcBmmwEffeTeviAh3klyUHrJQak6xNtperd5wxAoRc67sAVKv+dVkLfETgKlrPtYdh1BUBXiHYWDUibMUdZB6bSOIIPSOEWnqB7QkuYqCOqgLC8v7OdhC5QM8S6kYUP/60un84+hKGQvDMxjlDDOP0PsCEOg9EIcVbzdHiyd9knHjjlxw+klqFVwUe2gjEqgBPRtDCsHpVt+x2xWj9a5+mp926dMEU9XkwRKkUCu2kFp3SYvDkrZY+7HQRkGbdsWCpIy61MR4l1SUjxipAgvAmXYId5h70fjmipzrg0aBOyyS7jtKQJq8EiTOCJyUPrFKa8b4O3EVylQWgWVww4Ti2OiwZH5JvnOO8CjjwJLluihrW7tc3MIqigMlDQHZZAiOW7tcXKgiR7y3ZZ3yCHu08o4KMOy4BvrchPh3OYPsm7RumSKG8kQRpEc6zarEii//94+l6aX4+/mogziejXa4uUc9JqrK0yiclCqHtAGxc958Msvuc+bNhW6Xv74w30ZQd7Mp9PhOO6Sgp8Q76ACZRwOSvO1LswQ77hdIHEIlG5ONCeB0jzmclqO9VqmykFp3AeiFCidXuAFdVB6PZc6dACuvbbw+7DEi0wm+giCKEK8rQJlTc5BmU7ruYMNmjYF6tVzn09VDspifmGYTgOvv64f86ZN7acL20FptMULhx3mb9ws0+433wReeMH7smsYRdyzSSCsuebCdFD6FSiDCkBWUWDmzMJwYRmB0hzaah7Y27XP+oYyCUVyzIQhUHp52LYeF7f2qHRQNm4MPPlk7mYYJAdlUh2UQdoVhYMyihBvu+NqPpetbRGFeF90kX1uKrd+26BB7nPSBEqnEKyoUf2AduWVwMSJhd/XBIHSitu9RkRQB2VNrrpeWen9uAQRKAHg+edzn7PZ6B0xYYZ4x5lHyy3Ee/PNxTmB4xYojYdep3uGX4HSrW/5FShHj/Y2vRkngdJo70svuS+nrAxYu9Z/OwxExz+s+2OSQry9EGYV72ITKKuq9DQfBk2ayI1pZARKvyHeMsye7W8+laRSeqXyb78Fli51ns7aR72O5yZPdl6+1/3Ytq3+QkOGHj1yn6NON1DEUKCsrViL5KgUKIM8eIXpoAQKXVIyAqXdDdNvkZxiCfH2IlB6cUpYB+hBQqK8CpTGb8bNzm+Id9gOytdeA+bPL/xeBhXnX5IdlKJlyIZ4Oy1H5KB0wu14NG6c++wW6mhd1m+/AY8/Lt8Wr33ROrgL6qAM8lCv+gGtZ898cTis9QRl3Lh8R6QfvBQMMQiagzJp+1ElfhyUor4my7PPAuPH5/6OwxETxvEsBgdlKiU+F8IukuN0LzA/KDtN5yekFHDvW8bvssvLZvX0R7feKje9CBkH5YgR7mJAnTrADz/k/vZ7XvoRivwSx/XUi0DZuXP+38Z4yS0HpZ8Qb69FRLycp0Gu0QCw7bb2v2la/jNf48ZybVNVJMdvIbDttvM+n2qMtnftmj9etiKK3PAqULpd+7zux1RKTmwsKckfyyftRXmCoUBZWwkqUJoHT0FyUFoJs0gOUOg4iUKglHHj2U1rRxQh3l5yUBaLQGnsXzeB0opbGoOgmF04zz0H7L13YWhx3CHebv1aFhUh3m7XHNn+aJ7Pq0Dp1nfMAy43B6V1nxx4oP7g56UtcToog7wVVu2gTKfF+yKJxXhOPz3Y/MuWeZ8naIh3TRYo/eSgDNL3rS+haoqD8thjnYufRIGbgzKdFrcv7ByUTgKm+aWw03Ks56CqEG/jd9k+OGkSMHUq0Ly53PQiKivtt9VriLdZoOzY0V97rPeJNm2Affbxtyw3RI70sM9/LwLlCy+IheEwQ7xV56Bs2tS5QrsMt9/u/Ls5tUqjRnJtkymSE1aId1SpRNyQbYPIQel1PCd77fOyPJnr7jffAL165f6mg1KaBPRQEgvWHJReb4rmqpVhhXiH4aBUKVCGUcW7WB2UXioAes1B6SRQisSuMByUQQRZGZzeHtq1Ieh0TvOK9qs1BDqMEO/99gOaNXOeX5SDUoWD0qm6qgi3ftukSe6z1xDvt97y1paqqngFSr9vhc0hjaqwqzSdRGFt1qxg8++6q/d5GOJtjx8HpUqBL+oHx7CKLHz9tX4Ni1OgBPw5KGWPZ7du/trkhN21y0pYDkqv12IVfVVlDsohQ3J/H3aYv/ZYhY9Fi8K95sk46VTiRaC0+75YclBusQXw1Vc5B+XOO8st20qzZrpQLULT8lMLyDooVYV4+3VQJkGgDFLFW1ag3HNPYM4c5+31E+ItK1B26ZL/Nx2U0iSgh5JYsAqUXgeSMgLll18C773nbblhVvEGonFQuhXJKaYclOZtVyVQWvdPEh2UUQuUMjmf7LarXz/g1Vfdp5MhCoHSaT4ZwSosB6XoeiE7r4ggAqVXgjoog4qEft8Kl5SoHyinUuJ9kcSBYRxVjhnibY8fB6VKQSGqKt4GYRbHWrw4/hBvt4dSt7GfEzNm+GuTE5IvbLSwqnh7vRar6D8yOShlKCvTHemjRgFjxwLnn++vPdbz2al4hx9OOkn/f9Ag/X8ZoUolXgRKu/7gVaA033ujzEHZvz/QokXu73HjgBNPBIYOlVuHQZMm9u3WtHwHpUqBMiwHZWlpvIURDYJU8ZY5/oMH60V4dttN/bUvlfI3pqSDUpoaXI6ROGItkuN1IOkmUH7/vZ4LrKoqv8KZG+aBiuoiOUChyBKGQOlWuMBJsExyFW+ndsbloKwpAqWMg9JO2Js3Tw9BcipwI4tdBXGgMAQ6LIFSZqDgt0iOU1u8CpRhOii94lWgtD7QxhXiHYZAWUwOSrd+EQZ0UNpT2xyUYTocN26MP8Tb6ZqYTouPtey9PQynm18HpeoQb1mS5qCsUwd44olg7Qn7/LvlFuDQQ3XxDCgUiuJwUNpd0+0c1tbv2rUDli/XP2ezzv3Tq4MykxGfkzIioChS5K679H1gLmzjRpMmzoLegQcCU6bonwcP9hfiLToGNT3EO4iDUmYfm5evOgelrIPSShJflCeUBPRQEgtBHZTmm5woP9+ll+aWvWCB/HLDdlCa33QZ63ATKO0ubGEUyYnCQSk7j5cclF6cQAzxLiSIg9LvdE7zivarKoHSqX0yD2gqQ7zNbfEqFhWzQJkUByUQjkAp2hdJFNbiECiZg9KeuB2U2az6/MZOhCkgrllTnA5KLwViVCMrUFqvt0kQKP/1L2/zGqgSKFU9+IftLMtmgd13zwlkQXPreeXRRwu/s7umyzoozS5F0T3Ci0BpXafd+Shz3bXrE/XqATfcoId8jxzpvpy6dZ0dlJMmAcOGAUcfrbs0/RTJGTOmcFvdttFvio5sVtzPo87THXYOSpnneGP5YYV4W6GDUhoKlLUVa5EcrwNJpyI5mqZGvAgjB+WaNYXrCzsHpZuY4mebjeMVpYMyLIGyGEK8rdPVxhyUUTgoRQMR0TSqQryDOCjd9rO58JEXgTLMc9ogKUVy3ApZiNhjD73qox2pVP6+NwhTWJM5f0U49SG/+bLcoIPSnrgdlHZuoTAJWrTMjp9/Lr4clNdeK38uh+FCkhUoreegrKjqJmYEyUF59926e2zcOG/uNBUCZWmputQIUTvLrOsL20EpwslBKcK6r83Tie4RQUK8gwiUTuOSM88E3n03F2rvhJOApWl6fsrXXgMeeECfzk+Id5MmwOefO09jRbWD0vxSPUn4DfGWFShlfhe1iQ7KUKFAWVuxOii9DorNIb1JquJ93HG5zyLBQeRuDLuKt9v+CVLFuxiL5MSZg1KVg1L1g5eMg1K2b6gI8RYtw3zc0ul4Q7zDcFCqDvE2D168CJReziVzW4rVQen1wXL4cOcH8nRaXME1zIHhhReqXd7WWwMvvaR2mcZ+Zg5Ke/w4KEtKcnnlgoob2Wz8rkNVLF8e77a4hXiLBMpzzpFfflgCpcy12Hotk3U+qX5IN9OuHTBzZi7UVRanKt6y9waVrqSoc/NF7aAUEdRB6bY8GQelsd1RCZQGbvcz41yz6xei8axM26zHuaSksKBK1AKl3xetduy1FzBwIKqOOQYbRc84svcHvyHeXgTKMEK899678DsKlNJQoKytBA3xdnJQqhIo/SzHfBGTERyiKJLjJqbUtireKgRKqwPYjNP2GdMb869bB+y7L/DFF+LpDE4+Of9vPyKSE8XgoDSTzYYX4u3HQZnEHJTmgYgXgdJP4ZSgAmWcDkqvA8PycvfcciKBMswHvz591C5vv/3UF2cwYIi3PX4dlNdfD0ybBsyeHWz9cTgowyrKkwQHpdN1LZ3W3X7GNPffn/ttxx3dl+1XHHDCb4i3rKjmtmzzcmRyx6tIRyDroHQab6gUKMNyUNqdZ1HnoBRhJ5r4qeItclAGyUFpJ1D6yUEpwk0wMsbmXvqFnxBvUbi223K6d/cf4i0qJuhFoOzfHzjkEOdpttgCeOcdVN51FzTR/kuKQBlGiPczzwCPP174PUO8paFAWVsJ6qCMQqD0M7g1X2Rk8nvZCZTffgv89JPuyDzttPzf/voLOOGEnGvCiqhSuBkVAmUcRXLiykEpOo7GzUmUTsCLgxLQnUp77unchl9+yf9bdfXdYshBaSZIGocwiuSoCPFWnYPSPAA1lm03GDa3w69AGSRfV5wOSq+Ul7sPNkUCZZjCmsz564UwKzkzxNsevzko69UDDjgAaNs22PqzWfUvv9yIKsQ7auFFxkHZsiXw6afAyy/rYqXBiy+6F1uxy+MmS/36QKtW+d/5LZIje+334qB85hmgb1/n6e3OFS99SkWIdzE4KGUFymJ0UFqPd5AiOdZ11qvnPL0TMm41t/uZEfbsFOJtxU+It2h7nLZx0CBghx2A1q3d12W3bus2yYZ4P/EEMH06cN99zueLNfTfiuxYJI4QbxnHpfW6Y/TVa6/VCyeJBF86KKWhQFnbCctBGVcOSvNFRUaksBMoAaBDB/2t+nff5X9/9dXAvffK56AMI8Q7CgellyI5Qap4W/evFZGzzXxz8iJQGlhvqj/9pK/niy+Ar78uzLdoRXVxC5Uh3lEIlJs2hZeDsqaEeJsHIkaftxucBA3xrqoqXgelVzZudHdQNm5cmIcyTGHN7iHKL2EIlMZLBYZ42xM0B2VQEa4mhXj/8AOwbFnu7zj6jduLDADo2VNPG2EeE7RsCYwaJc5laxA0xDuTEV+HJZapRSFQdusGfPQRcMcd9tNH6aB0uiaqfOgPy0Fpt9wkOChlc1Aa92uvId5JzEFp4HZdcnNQ+g3xFjkorTgJnUbUhiiM2A1judZ1yjooR43SCyM1agQcdpj9dKbla6I+I3uvE0VWhR3iPXgwMGKE87Kt151584CnngLOOMN+vjheQBQpFChrK2EXyfGLSoFSdn1eH9imTXP+3WuRnCAh3sXooLSKe7ff7jy9SDgyX+T9OHhFg4H+/YEePYAttyys9m5FtYNSZYh3WDkorfh1+oQR4m3+24sIE2aRHFGIt4xA6ddB6QXVOSijfCu8aZN76CYAdOqU/71TYZ2ghBHqGQZOYoAMdFAWYj53gp5HmYzcdXXUqGDriQqzKzGOfuP2IsMN1WGBZkpKxAKlnxyUsi80/OSglEmZI/u9iKDXJEC+SJAMYTko7fZ9TSiSYz7eUYV4RyVQGq5CL/3Cj4PSq0BpbNvgwfLtsi7X2vf85KB02i9uLxiChHirruJtbV8qBUyd6rxsaxu22go4+GDnPhVmdEwNgwJlbcUc4u3HVWF+iLbOG2eIt9fBhR+B0g2rAOclxLs2FMnxKsBE4aAEgM8+k2+TaoHSyalhkKQQb8D/Pgga4p1KOZ9DXs7nMByU7drpA5uoBUovAx/roD+oIOZXfPAjpsuEeAO6A97M0KH62/7NNgO23977ep1QLSiGNYitqGAOSieKwUE5aJDu+is2ou43miZ3nXAizKIyARyUBftSth1u2+w1T5wqB6XdOmTv5SoFytqYg1JlkZwkCZQyL05lc1B6KZLjNwelFadtNPZLvXp6DuQ2bYC77nJfr7l91nXKPIdYcTpfVDkoVYR4+xlTOa1D1CaiFAqUtRWzQOlnkBFFFe+kOijdsF503QS02lYkR7VAabTlxx/1dvgVKL2gWqCUedMru49VnH8qHjzsUCFQOp1DXs5n1TkojzxSTxcwZox/gbIYq3hHKVBu2iTnjKpfP//7khLgsceAb77x5zpwImqB0rptslRUJD/Ee7PNwl2+E5WV3vukaoHS7fwvLY2+0rAK4ghtczqPGjRwnz9MgbKkRJxLUmaZ1uOfTgM77+w+n2oHpYpxwpFHAqtWiX+TFTCK2UGZ5ByUforkiJZnHm+4hXhbf0+Kg1J1iLeMg9KpL5q37ayz9Jy/J56Y+85aO0G0bvM2lZX5i4QJkoMyyiI5XnETIEUOSqIUCpS1FbNA6cdRUQxVvGUImpNLhqoqPaehETbsJFh6zUHpp+2yAoiXHJRBiuS4IRKOrCHejz2mh3T27i23fUEHoapzUMrcbGWPW1Qh3kHXIUI2xM3pHPrzT39tUeGgNA/CRAKl3cA+7hDvuByUfujcWS7E2+kBQDYZvCxRC5R+nA6AmhDvsF0Dxx8f7vKduPVW7+MOcz9TEeLdpk3u77ZtgXfeyZ+mtDQ8l1dQ7rgDGDhQ/FvSHJQy4YxuxzPI8Q7ioBQVdHjmGeC224ClS+XnsyLaHj8CpZfxw8KF9r/F4aCMW6AsdgclUCh0mf9OWhXvoDkoRagK8XZap1ufnzTJvsq2SKCsW9df35MUKGN3ULrlvpdZp3XZFChDJaGjHBI6xgnp10EYlkBpbkvQKt4yhOGgtPL993rYZ/v2wJIlaqt4+9nXsuJaOp1/4VbloPQq7lmrogOFId6HH67/v2gRMGOG+zKT5qBUIVAa/SiqEG+/BC2S4+ag/P13f22JQqC0OzZBBUrA24smNwflaad5q0gcpYPy9NPdQ8yAmiFQPvCA+He/VcOtId5PPglcd538/LIvEIIQ56D/3Xe9pfoA8veHCgflQQfpDt927YBXXikU/Pw6KCdMCNY2Gbp0sT9+SctBKXMO+RH0ZBHloBQ5hURYtyud1oXt8eP1Y2BHVDkoVRGHg7JZM3XLMlOMId4lJUCvXrm/u3XT/3er4u0nxNu4biQtxPvoo/X/VVfxtu4j0fY4na9u4mv9+sBxx4l/E4V4l5X5u/cWi4PS67XK7VqcSlGgDBkKlLUVc5Ec1Q7KOIvkJCEHpZX584H164ENG4BTT1VbxTuouOxEWEVywgrxNrALFzKTNIFS5kbnJlAafaGYBUpZAUSVQGlejlfhXLSf/QqU5vb7LT7kZT43B+X22+spE+wEMitRiQ8zZugPLH4clOZ5vBbMcXOMqM4ZabT16KOBk08u/D2IQGm+Z2Qy3gbZsgJKEOLO6/Txx96mN7dXhYOypASYOVOvgr3ddoXT+HVQqhRxROy9t/6vWARKGQdlUnNQihyUMkQV4q1q/GB+NnFapsq+3bu3XuiiaVPg9dfF02y5pf6/TJoAA9kiOUkK8U6n9byGXbroeW8vukj/vlhyUAZxUI4Zo78gMvL9eslBqaqKt9P9RKbP252fdiHefvqezFgMChyUcQiUbqmE4h6r1HAoUNZWwg7x9jtACVokJwoHZZCH0V9+UVvFO0wHZTZrf4GPOwelUxVvGYEqaQKlCgdlkD5hkASB0u0c1jTnEO84HZTmtpsHoFE4KIMIlHbhRbLXU78PVX7z/cnkoHRyUO69NzBkiLyT0u1hIMwQb9E+UhXiXVLibZDtpU/4JW5XQosW3qY/6KDcZxUOSgO7/VxWplagVHGtv+su/WHeKSyuGEO8k5qDUuSglKHYBMo4QrwB4Kmn9LH6nnuKf3/9dT2Edt488cuuK68Ebr5Zj5oyKMYQ75ISoGNH4Ntv9VB8474TZg7KqAVKu/vNSSfp4wQD1Q7KoCHeMttmd40zjo95naWlzi917ZCt4u21AJcZvyHebuMo0XRO35lhiHfoUKCspWhmgTKoCy+sKt5JLZIjypnTt6/cvCUl6hyUmuZvH8muo6QknCI5XtvsJlBat2fNGvdlFmMOSrebuXEMgjwcGPOqesAQHWu3HJRu57CosJe5vatXe29fVZV3YTBpId4qHZTG/pR9GROV+GCXSN+M0WbrOWU+59Np4I03gF9+gWat9i2iXj3739wEIyNEzAt2qTUM/AqUIgell3O9Njgovdyfnn8e2Gab3N8qBUo7/IZ4O/XhoJjbXSwOShUh3m6/77ij/W+ZTKH44leglL1O+9mesKt4O2Fet9M2huEOdjrHOncGzj9fd1LOmlW439q311ORDBmS+042xDtpDkrjf3P7vQqUXnJQWvelnRAXtkApKkQlwq9AKfuS2A6ZPr/TTsBee9nPa32hbt2nMg7hIDkoZZ+9w3ZQ+hEoVYV4z50rX329lkGBsrYS1EGZ1CrecYV4y9wIAb19KhyUQPCCB25kMuGEeHvFa4j3hg3uy0yag1JFiHcSHZSia0vQEG9Rpd2gDko/grObQGk+pm7HJmgVb/M6ZJCt4i3K/yrCT/VHwHs/M9oZtEiOQSaDSpnBoVPV7Hr1nNvjZxDrJlCqykFZUuLtHhJFDsq4BUov14L99sv/W0WItxt+Q7ztHjZVpCewu+6ZiUOgVFkkRzT95ps7z++0zSUlhaKx7PnlN8Tb7Vh7LZJTE3NQeqVLF+DCC/O/M5z55mu3Kgdlw4Z6v7r/fnH6Dz/YrVO2SI61H1jHA0FCvO3GFqpyUNpdr2TPMT8h3ul04T1ctHzZKt52pFLAq68Wpiow5rUKlNZ94TTukWmjWw5KLwVbres54AD3+czXLj8h3k6oCvEuL6cT0wYKlLWVf06+VBg5KP/+u2aHeIuQvcC4CZRe9lt5ebhvsJMiUIoeGK0CpdeHrGJ0ULrt4yCFkwxUC5SicytokRw3B6WfHJTm4yn7IC3az+a2m/uYsR/srjVJc1AarF8vt7yoHZRBQ7xNaDLudyf3Wf364QqUrVsX/q4yxNvL9SKKEG/ZQX/37uGsP8i9LKjYJ+ugVClQqrjWm9tjtw1RP4RpWnAHpXn+LbYAzjhDP2cmT9a/u/9+55QATgJJSUmhAFBTQrxVUQwCJVC435o21f83X7uNAjNWvDooH3wQ+OMP4Jhj5I0RbtiNh+3OnyA5KN1ycaoUKGX2j91yrPvESw5K6zZaxxiNGhWuV7RP02ngk0+ACy4A3nwz/zcvx946fpEVKIM6KFXloBSJgb17A088oadaGD9ePJ95/BqGQKninlZeHv6YqkjhXqmtmE8I1QLl/fcDX33lr13FEOItQvahKp12Fle8bHNFRXIESr+uL79YQ7y9PrAnzUGpIsTb+F1FkaowHZRhh3j7cVCaXbqyDztuDkrzMXUrYBS3QGl3PiRVoJQJ8ZYUKAtEAtHA1EmgdCva42ffmJd37rl6HjAzqorkiF6YORFFiLfsoN+vSOuG6pdPXvBT/VUW0cPmK6/4W5YVGYEyaQ5KmXPIfE2tVw+46SZdHDr7bP27rl31YmLl5cC0aYXb7rTNmUzxC5R2145iz0HpFet+M/rWhRcCHTrojsr//lduXhn3nXH/VnUt9vrcFEYVb7vfnfJjuhFEoLTuE6/7+thj9WXcdJMuopkRCZR2bdh2Wz2n6dZb5//mpc9b12XsF/Nx8ytQOvUdNwdlkBBvABg1Sk+1YOf0lBUojbZ5OcaqQrw3bQp/TFWkUKCsrZgvKn4eiJ1yUALAe+95XyYQnUBp3PTiEChVhXhbHzZVIxIoFyzQb5Y//pg/bZgOShFWB6XXB/ZiFCjdBCiVDkpVwvcllwCLF+d/FzTEW1SEK2iIt1mglM3V5iZQmrcjihBvL/OJijOIkBUoo3JHGfvUj4PSqeiIG04POt26ObfHjzBjXl6jRsCSJfm/B8lBaX5pkMl4D/FOioNSdeV0g6jvZWZkQ7z9bLv1unbzzflFIIJg92LGTBxFcpz2k8zDt/m+YDwEWx+Gy8r0bT7ggEIhwum6GMRBaZ0mzByUDPF2x66wS+PG+rV7+XJ7x7dXB6V5elXChtfriVeBUiYHpYG1D9rdn2XOkyD39iA5KAHgvvv0fPhnnFF4TWzcWO7YmaexExllsM5r9E/zue03xNvKccflPg8eXP0xkINyxAjn/WXXp9aty32WeaYxb79MP5UtsuhEeTkFShsoUNZWzBdbPw/E5kG8HwemHUFDvGVPdCOfUNQCpcixYt7mJId4V1YCffoA//mP/s/aligx7+85cwoFUzeKUaB0W2cSc1DecAOwww753wWt4l1Zqb5IjvlBVObB1TyvGTuBMmkOSqcCMkBuf5oHeE6oFCjPO8/+NxkHpccQb9eHLcD+YaBRI+Duu9U7KK1tsh4vvw7KoCHeSSiSk0oBjz8enkBZUx2U1vmaNfO3HBGqHJR+HoidcDovZUR+ry+urIKI0/G0c1DKnF/Wvi8rVvgRKPfdN/f5nHOA007L/T1smHg5YUZgiIhboLTuN3N7slnn9nnNQRmGQBnUQWn9zdrvzX+7rUs2xFvm+i9zXjRrpucSdnMlexUogdw1xq9AaV6nncgog/V4GPvFfH6JBMouXdyXbR0/TJ4MTJwIPPyw7v408CpQnnOO/px5773AwIH+8j16DfH2KlAOHao/E2cywAsvyLfrX//Kfd52WwqUNlCgrK2odFCGJVCG6aCMS6BUHeIdpYPyzz/tp40zxHvUKO/zF6NAKVPFe+ZM4I47/LdDtUAJAGvXitchQkYA+eEHXfg0EzTE2yxKyD4ki849uwGlm0B5yy254k5RCJSyg2/zw6kTKgVKp4cKmSI5XkO8/bbpxhuBn3/WK7qqzkHp5vzwW5FZFOKtskjOrbf6a5cZp2vhNdcAv/wCHHooBUo3rAVcnESDoKgSKN99Fxg3Tk2bAOc+IiNQmouEydwXvAiUdkVy/IR4y14P/AiUgwfr5/UFFwAXX6xH0Jx/vl55duBA8XJqu0Dpxd1WEwVKpyrzqkK8VTkoAeC55/T7ihlZB6UM1v7ZqFFwgTKIg9JOoLROd9117i5B65i2SRPgqquAsWPzvvbsoGzQALj88pwjM6iDUibE24tAaeTL/+gjYOVK+bEyoKfBO/NM4LHH9PEjBUohFChrK+aTz4+4ZJ7Hr0BpuYAByH9YCstBaX6jmbQQby8Du6hzUDoJP1GHxQV9uAoappjEEO8lS/Q3eitW+G9HEIGyVSv732T7uOwD2hdf5P9tPg9kXX/m+cJ2UD7xBPDxx/bXmiVLcq5k0XE+5BD39ni5DsvmVxo+XBeFzjvP2dmocoDl9FARQpEcKUQPAw0b5oQB1QKlyLlw2WX6/4cc4v/6ZxUoMxn7/n7NNXoiejNuRayOOspfu8w4XQuzWaB5c/1zWKHmxRDiLUPPns7zqQy5lqniLdNne/QApkzRH9qComnBc1Car6l+BEqn4xkkB6WTY8/LfFbsrpGnnqoLk/Xr69e9SZOAE0+UW2cQiiUHpV9HK+BdCEu6QBl0XlmBUqYNXtKFGPcVA9kxksxYuW3b/L8bN5Zrm1OItwoHpVuId+vWenqCGTPsly37DOpVoLTu1zAFSgOvDkrjf6/RCK1a6SaLww7LXxbJg3ultmI+IUaO9D6/Cgel6AIbhYOyYcPcdEkI8fbroAwa4u12AbYKlGvW2E8bZw5KPyTNQSnTHrd1Pv988HYEESidjkmHDsDBB+vLVSFQWjEv08sLF1EOyiBhhua2W4/p9tvnXJIibrpJ/190nGWcAG7bvfvu+v/jxsk7KFMpvUjL1Vc7P3QFPR/NyAiUKkO8rbRrV/idaNvNbVAd4i2q+Hrhhbp7+Ikn/AuUlZX59+uSEj2Zf5s2hdOee6744VmyaqdvnLZNdp8HIU6BUtZBaXfvHjNG//+00wrPI2s/TKKD0lhOjx7B2wTY76fBg51fqInwE+LtdF1UWcVb1kHpNf9f3AwfLjdd3AKlX8FYNK8Xl6vMPe2AA9ynUZ2DMsi6rNsfxEEZhKA5KM2Yq7kD/hyU1unDcFCKrt116zq7KOMQKK0vl+z6lNcQby9jNZX9jw5KIQm7G5HIMJ9cfhxX5kG83/Be0cUgqEApc6I3aqReoJQd7ItyfgVxUAZpu0wybvOF38lBGWcOyjjmVx0GaN3XItxeBKhwxAQRKJ360/LlwDPPAG+/7V7F28/N2q9AabTFfDxlHZQizPtA1Mdk9qtIIJG5vrht9w03AEuXAg8+6L1yKOB83FQKlDIh3k7rCxrifcwxzlVIDWTFMj9CUNeu4u87dNC3z7r9sg+YohDvevV0B6+osJ3o4VlGHA6C07E1L78mhngHcVCm03ql4G+/1QvguIV0q3RQqhIojWO6xRbB2yQqktOmDfDdd8Drr3tfnuoQb785KLfd1n9Isdv5ufPOcsuJgmOOkYscAJInUHq5HwZxUIqmveSS/L+ffhp4+WXnZUbpoLSua/RofVxot2w/OSiHDPF3jptR6aBUkYNStniQzPpFRXKyWfvrlVP/kHxO10TL8Br189JLwJFH6qlAzNj1BfPynY6TMeY3b79b21SOP5L2YighcK/UVoKeEK++qju2qqr8OyhFF8OgRXLiclDKPvy+8IKet8yMXwfl/fcX5vfzgtsDgxcHZdQCZdA3TkHdI2E4KN1ueG77OG6BUmZQvnJlOA5Kv1WwVTsozf3Kbx8VtV+mv7pdh0tK9NBhUZiuNR+b6Bg5HTeVb4BlnJpOg/OgDsqSEl3gcWtTWAJl69buIrl1mUb4txvl5YUCJaA/sIico9btcssRq6IfyDo0a2IVb5m+4lTVNpXKVZV3EySN353O6zlz3NtjrNsgSBVv45iqEpxEIoPfnF9ROCizWedrScOGer48pxx/ToiWfe65ep63668HBgyQW44bKnJQXnaZ/HbFLVD6PR6A2hDv++8HLrqocHmbbeatDW5Yt8/I6Q/kxhKzZxeKj6J5p04FdtnF/ndrLt3Ro/WQY6f9NHUqsOee9r/LoDIHpZV69bxX8Q7Sx2SL5Nhdr5zWZR57e91HXrWDESOAhx4Cttkm/3u79pm3x+6aVK+enr4CyN9Pbs8RKvsDBUoh3Cu1FRU5+EaO1AU3vwKl6GIYhYMyzhBvQBd3zfh1UE6eDHz1lfz0VtwehrwIlCoLJckQ9OE0qEAZh4OyJgiUVVXuyar9XJsuuyxXyd1LXwySg1KEm4PSoGdPoGPHwu81TSyQyFzX3PqH02BXpmCE03GLykFprMepr9sJlLL9auPGQqHBTaB0One9npei8G4r1m2Treq9YkX++WE+bqL9I3JQOokBKgbabi8wDGqigzJIkRzr/pAVKO3o2RPYbTf39ljXrcJBqcrdad0nQQT0MHJQWkXP1q2dz6GHHtLd1X77vmjZrVrplXLPOsvfMkWoECi9HKu4Bcog1z3rdrodWyeBslcvfX5DnLvgAvF0VoKGeN97r76ObFYXugE9pcyjj+aLj6J5RS/BzLRtqwuvo0cDX3+tL3PoUOc2h/GiLEiIt5W//pIbM6kSruxCvN1yUBq0b5/7bM0PbH5Od9jvwiI5TtfUIGkDWrTQ/zenvRItr0UL/bnBCMGPS6AMayxT5FCgrK2oOiFOOSU8B2Ux5aAMInj5dVAGxatA6aU6ctgEvTmozL+lgkzG/Zx0c/aoEImN/uenH8rs06qqcEK8AWCvvfSqeE5CuhWRg1KVQOm0HfXqAXfeWfj96tXi4yzT370MqKzLkxG4kuCgNNbj5KA0ziProFy2jRs3yoV4u4XaGXgVW/r1c5/Geq7JCMyAHv4rclBaPxuIHh6POAJo2VL/e+hQ5+n94HQ/ruk5KIOGeDsty06gtLvveAkhVBXi7bYMr8iGacogI4IFdVC2bSvXr92meecdPffgHXd4my9J1FaBMoiD0hC8X34ZWLgQuOIK/W+360rQftGzJ/D993qOZFGBNy/rEt1zjjlGFybNbkqn5agYj6gM8baybp33EO8g2DkozZSW5r8cNafZaNUKuO8+PeXCa6/lz2cezzs8w6Ss+ymVAp56yqXhkljX+803+j9zDtvtty+cr3NnoGnT3N/me5TbeFqlqEiBUkgR3a2IUlRd+Kqq/If3ujkowwzxNl8QVAg7QRxE5m32++bZz/H0KlCuWuV9HWERtP+qzL+lAhUOSrPI5pe4HZR+Q7wBYNEi4PDDdZHPWJZMe4B811QUId5GOKaVn38WH2cVAqWToBamg3LYMODoo92XbyBTJMePg9LheFSZf/PjoFQZ4j12rPs0fh2US5bYC5SyDsp69XQny5dfAgcemP+7ioG2bK5T2cIgXikGB6VoP1uPlVsOSgO789pL8cSkCpRubi0v+BEonbZDJFC2a+d83zCOldt5NnAgMG0asP/++d9HJVDWNgelyqrW1mMkylNqYCdQZrN6GKyxbLd92bevXFsNRNfodu0Ki8GI8FrF2256p+WoiOhQHeJ90km5z7vuKtdnVL34lakAns3qOa5vv11/ufHii/m/H3ss8OSTQPfu+d+bz3WHfZQy95mtttIFxF13zZ/IXNBphx1sl+VK48aFaQ123hm4/PL875yiCtxeVNJBGToUKGsrqk4ITUtWiLdXByUQnkApe3NR4aD0I7h5FSiTRNwh3qqRESjdHpxvuy14O8IWKGWqeKsalMk4gMLMQenmnhGdW8uXJ8NB6TUHpdO29uql5w6SJYYclFXmaVULlF4elnbdNVwHpVWgNLdNxkFp/N24sf6gsu22ud+soXx+cboHNm+e+3zTTbn2yITFyxK2QDlkSLD57e5dXkO8Rfu5Xz/drXTMMXpuQllkQry93HOT6KCUKUTjNcTbr4NSdvxjXX9Sx3MivFw34xYow8xHZ+0jMg5KK277cuBA4OKLUSVT8RsIJkB7FSjt9m2xOSivvho47DBg/Hhg1Ch/bdhvP/1/Ly98ATkHpdFHTjlFf7lhFSLtMI8nnI6JeT+1aiW+Z991l75vzjsv3/3ohuz18D//yb8POr3EYw7K2FGYOIoUFSodlH4FPtFDplkgmTXL2/JkL1L16+dvv4oCL6KBoGx7VAiU2ax3B51MFe+kXjhrWoi3zL6OIvQwrCreBprm3Mf95qAUUVam5/pxaw+gLsTbTfAxsHOKrlolPs4y15I4HZRO21q3ru60mzBBDwFr2BCYMsV+eifx0ViPYgdlZTaLjNEHRAKlqE2y+RBl+3Pdunponsyx9uug/PbbXH4mwLuD0tq2gQOBCy8EPvkEuOUWuTa44dTPzALlFlvkQtbPPlsXX4uBVq3sf5MRWuzSgbg5KK3njGg/l5Xp+d68oqpIjp9pnVCZg1K1QFlSUni83QRKI8RVdpzoNb+hKg45JHj4prXtTuOLuAXKMCv6NmiQH73kR6CU6feXXILK8nKkZc69IKmoonBQJjEHZePGegoiL1jX+dRTwLx5QP/+3pZjl4PSjN99JlkkJyUzXatWwBNPeG+Dl/PPWhjIjBeBkiHeoZNQ9YGEThIEStGN0LiIPfss8Mgj3paXSsmd6KWl+du/fLm39YgQCZSy+9i4wS1cCHz4ob/1+xHc3AYiKsUi1dQ0gVKm70YReljMId5WZByUYRbJcTp/7LZz0yb/Id5uDw1h5qB0OvZ16+r74sYbgaefdhZogOAOSuM8CuKglMlBKdtPZacbNEjeCWnd37Lz/fwz8Oefub+95qAUbctll+nJ6K3J8/0yaBDQpo3++eST838zi6uAnu9ss83UhJRGhV0/vOMOOfe2bKVV2RBvFcQR4v3ww+5u47gdlE7bIYpQEQmUZ5yh51e+9NKcY1l2LCDjoAzj4fi22/Tw8pNP9r9867EyngfSaf3FiJm4BUoVeewNRAKlmTAclF4Jcr31moPSz3RhOCjDeBYaPFj///jj5dpQWgoMGOD9eFqX4+Sg9IpsFW9zn1GZs9wr5vYyxDvRJFR9IKGj6oRQLVAaN/qDDvK+PDvXovU768DQqDoXhKAOykWL9MGnV9eoQRgh3kDNFSiTloMScO8vKnJMuhG2g1JGoIwyxPurr4D33gsnByVgvy12AmV5uf8QbzecBEoZUTaIg9KMWz+XCd9WnYPSLcQ7yAOw7LHz0u+t2+alzxrV7q3r9OOgDIPSUuDTT/VCH+PH5/9mFSjDxgilC3JNsCI6zpdcUijG2iErUFqnS6WAyZP1z+3bi104KqpDRyVQdukCvPSS8zRx56B0c1BasUb3AMDWWwOvvgpcdFHuO7fIALv1RzWea9UKeO45XXSXDRu2Yt0/Awbo14XFiwvzy8U9TlX58jhIiLfdPUS1IBSlg9LPdGE4KMMQ1V54AZg5U8/7KCKs+61KgVI2B6XkdL7wu59kHJR2oj8FytBJqPpAQkfVyaVp/kOknRyUfrBzoVnXE0ZuxSAOyo0bgyUEBvy5I2RuSHEP/OyoaTkogeIXKGUGcDJVvKN0UC5bpj/4PPpo7jtVDkrAn0Apup6qGMA4iVGy7lc7nOa3DvDctkXm3PSTg9KhX1VZB6YyOShliUKg9CL+/PBD7rPfHJRh07Kl7pKyrs9ccdNMWA7K0aOBd98FPv9cfp7TT3f+XfTysm1b+eXLPkiKzqOzzgJmzwbmz1d7D5TJQenlAVimP9ep494fkxzibfy27776/0Z+OWsbRcuQHQskIQflHXcAe+8NjBvnrTK86Fj16qWHucfpwBIRpkDpxcA054cAAGEeSURBVEFpR5IclFEIlKpf6KpappX69XUXZdTPI6KXLX7PKckclFIh3n4JU6B85x09v/YRR6hZpwgKlEISqj6Q0ElCiLdTDko/2LkWrRehMHIrBhEo770X2LAh2PrpoPRGMQqUsq6JIBgDzziL5EQpUBosXZr7rNJBabdP7K5BmzaJw8XCdlBaUVkkx6uDUraSsR12Id4O2/zxaafl/rjmmsK+Y3XsmNfjhupQcEC+n4lYty73OYkOSqf1221nWAJlSYle/dNL+PrkycArr0Dr1ct5uWbatZNfvuw+EJ1H6TSw++75aRbuuCP32W8eURkHpZc+KnMNEAmUzZrZtwsIJmyFUcUb0F+OvfQSMHWq/rdMn1cZ4h02rVsDr7yi5x32sv6wQ3hVEqWD0st93MC6v446ynbSX3v00D+MHWu/vKDPaU6ovq/6JQoHpRth3W9F16WQQ7yLQqA0/20IlH36AG+/DVx8cf60Krchqc/ZMcO9UltJgkAZlYNS9FY7CoEyyoc5P4IbBcpkUVsclE7LTqWiDfEWEVWIt+h4l5eLBUrRtPvso+cnk8VNjHJDVYi3GzIOVj8OSofz6/fu3VHxzjvARx/pLh3r8rfbDjjnHPd2Wdljj2gclG4PF1bhRrTOJDkoDeJ2FvjZ3tJSYO+9odnldRXlpvXioMxm/RVSsqN/f+CDD/S+36dP4e9GNdUBA+yXYd4eu77o1p7WreWnBcQCpZG71MAt7N2NCy7Q/+/YMVegxgkvDkrjXtugATBiRC6PrIxAaR4LOO0rmfM3ynNs6FDx98cdl8uvKUPSxqXF5qDcc0/bST+44AJUPPOMXlHZjjBDvGWPbdj9Nu57HxDeizfRvvM77pYN3U6iQOmlineYL3viHucklIRd5Ulk1ESB0u6hX/QwZ7f9fkP5gjgoVRCWQJnUC6dMu3bc0f63YsxBGYWD0jj//JyHMgMctyreDRrE46A0U7eu/zbICkdOId4yDsorrgCmT9crQ8piXoaor3XrlvvcpUvh76oclFtvnfu8yy76/2+8AWyzDTBpkpxA6ScHpQvaDjsAffuKl59OA9dem/+d0/n63//qBYGmTUuGQNmxo/h783bKOCijfkiTHVvY9U1rDkuvBLn/2RXOEL2E8SpQipBxUNrRv3+u71t59NFcX7ZDRYi3V4GyrMxd6LX+7jWH6UUX6QUb//c/OXFTJjzbwK5/SAiUKfNYwGnMKlsROSruvjt3zTdz773A3Lnyy0mag9KtoIYXwhAoPVREL2/QANq++9rn3gOSkYMyagdl0kRx1fh1UG63Xe7zoEG2k6XCLJITpoPSQJTTWRVxX5cTSg0/44gtSS2SE3cOSr/FEEThhFFedPzcXGREuqTelGXadeutuSp5VorRQamyUqQdYVfx/ukn4Lvv7H/v2FGdeOxXoKxTx/9gLWgOyk2bxNdTu4dWLwM987QiN+6LLwK9e+vhXyKniyqBcswY4OCD9Qq8Dz+sfzdkCLBwIXD++XLntp8q3l7w23cM2rTRC701aZJcgbKsLPkh3r//LjeduW9uvrkuKM2eDVx5ZbD1B7n/ueXaNUil3Cvbm5EN8VaVd65xY70v27lwAbkQb7fz0ex+9JuD0s1Baf3djbIyYORIoEMHb/MZ+BEoveag9DJmjXs817atHi75wAOFv3m5tiRNoDQ7KIOOLd1CvP1su8pcrEDyc1CqIO6Xc0DynyEBPYpnn330VCi33WY/XZhFcszudrNg6oaXKt50UEZOQtUHEjoqHZR+i+QkMQdlsToo/dxcanqId/v2eoW8++4r/K0YBcooCDvE+/LLdeHAjtouUMqGeBvr8fKgYV6f6DrXowfw8cfAgw+K+6LfEG+rEyOdBp56CvjwQ6BrV+d22iHjoAwi0AQVKM3716/Lxcu0btvaqVPhd04OGYO4H9K23z7nEp44UX6+AQP0XIuNG+vVhP0SZHtlHZStW7sfP8MJWr++2N0sQvU9zmlfqMhBaRYP/YZ4t2xp3y7rOqLA6ZwO4KDMEyi9jFmTMp4TPTN4aZt53yVhLGcWKIPeO7w4KP2GlmcywBZb6J+NIk1eqA05KFXmr00C99+vR8nce6/4d7/bV1amR/O8+67ji7ZQc1AefLD+b9tt9bGlLDJFcgzCFCiTcl1OGNwrtRVVJ0R5ue6KArw/ENo5KP06xVTkoPTroIw7B6Wfm0sxC5Qy+9Z4sJUJ+08CxS5QqnDsJEGgtDrLvBBViLcfgdI8bYcO+pvvbt2cBWMzqhyUbshsk58clF5QKVDKXkO9XGu9OihFDw4igfKqq/SCME8/LW6T12vUjBneprdSt64e+vnII3q4rR3mvhmkQraVAMXrUk4CpXm/yohm11yjpw1YsMA+B2WQEG8ZnM5LmRDvKHJQuuWdNa8jLG69VX8hMGWK8/liF3kkIVBq3bvn/nDKDeq2bCCecYcoJNrL9c88f9BrtQrM7Qk6fvFSJCeIQDl7NvDQQ7koBi+E6aCMMwfltGn6/e+KKwp/S+qzkCzHHAN8+62e71VEyAJsqCHexkvvTz7JCe8yOAmU1uszHZSRU+RnHPFNGBdbrwMF0Y38p5+AtWv9rV/WQRmVQEkHZXjItMt4AJfpE0kgCTepuAXKRo3UPXD4PcZROCiDVvE22ufl/LROe9NN+oB1993l5o+qSE5QB6WKEG+ZvuN0vvoRKL0M2hs21Iv2tG+vVwB2eyGWzRY6rUQC5cSJegqGgw7S/w7qoJSZ3i18duutgcMPd3aKhSVQeincYcXpRav54Ucmj2z9+sARR+RC2WRcT6oFSqf+pcJB2bu3+zLMyBQLisNBeeqpwLJlwLhxzu2TdVAK9kXVuedidffu0LbbThdEZUnCGAMQOyi9tE2lIKiCYnNQlpTo944jj9TTkHilpuagPOAA/f73738X/nbssbnPXnJ/ByHpJhcPhOqg9IuTQGmFOSgjJyG9hEROUgXKe+4BXn7Z3/rtTnK/AmX37sD++8utmwJltMi0y+gPomlVPrypWlYSblJhh3jLoOqBw885kUrpx1OVQOnHQSly1vgJ8X7++fy/w8w7pdJBGTQHpQoHpcy+ilOgBPSiPT/+qFcABpyPQSZTeBxkqtWHLVBecIFzTloV+BWlJkxwntcQce1weog3h+jKhNpbadMGeO8952lU5aCUwXyc7dbr1J4RI4DDDsv9LfuCoKwsJ0D/61/uRWGiDvH2I1DKpG9o2BBvX3MNKj78sDCsvRgwnztXX63/79dBmQSB8swzc5+vvz7YsrwIlKJc0jIEvTYEcVCqCvGOmi23BObM0YuGHX98NOuUKRioirDvFzVNoFS5DU75nWsxCeklJHLCuAl4HSjYTT92rL/1y4Z4y+agTKXkL9pxh3hToLQn7BBvVQPkJAzM4nZQAur2p59jXKeOt/PebZ2qclD6KZJjPYZBz2UnwUWlQClDCFW8lRKFQGnFTaCUcVBaCRri7bbtTvdiLzg5KP32gz33tP+tdWv7XF4GTiHe5pcQMkKxiB13BEaNyv3955/5vwcREbwSxEH5yis5F7DbMqykUsCsWXpxhilTxL+biSLE22n9ZoLkoCx2OnXSxZ4HH9RfBADeri1m52ASBMqddtL78GOPAYceGmxZUeWgDEISHJRxsNtuwOjR4Z6Tr76qp2Q5/ng93DwqQr7OpMIskuMX630mLoGye3e9OGXr1sAbb6hbbpFTA+98RAYtCQ5K1bljVIR4WwVK2YdG0cUrygeE2lbF28sgJmyBkg5KnSACS9Omep45IF4HpXFNikKgFB1vuxBvPw5K1QKlE16K5Mhw/vnAnXcCN9+sD9yshF3FOyhJFCitQnEURXJkBErV1z3R8nr0ABYt0n+TvbY57Z9TTtGvWU7I5tL2c34YOIXHRzn+MO9zu+Npdz6K+r2Xc3errfR/Iqz9L2qB0omkCJRxjTt2203/56cdSctBCeSc7EFJp4E99sjlhhYV+TQw9+fNNpNfR5KreMveY6K8vlkJ85zZay9gxYroz8soc1Am5bnSi4PSun9UH58HH9T7dBKeAxNCQnoJiZwkCJSq33zaOShlBUrr93RQJudGYiVI7j3Aue95FTZUHeck3JjiECi32gr49Vdgn330v+N2UALqBEq7Y1qMDkq/Id5eqswaTJoErF6t53ETURMFyqDHJ6kOyksvtf9d1UOR2/Xq1Vf1kHgv7gQn56/MfrBzGVnn9eugBPSiYklApu+GJVA6Yd3XUYZMitZvJikCZZxCj1+SFuKtknRaDyO+7jrgs88Kzw9z/zjySGCHHfTUBc89J7+OOB2UqkK8a6pAGcXyRbRoEe7yzX0mKRXRvQiU1mMSxrNxEp4BE0RC1QcSOnYnV5CTLm6BUtZBaRdWVlZWGCoWxEHJHJThEWaIt1dHi6p9lISbkzGI8DMADTLoNe9DVY6IIAKlqiredoNou2uQXQ5KOyebUzv9JL93wqlPWNtx2WW6wHPqqf73pdN5FXaRHAC48kq9Pxg50uzWIyJuB6X1XBQJlFHloLzoIj3PZKdOuSIvdu30i1OIN6ALeeecA2yzjf0yrNvmdB+QuVY7hXjLrscNJ4EyrhBvu/U2auQ+r4GqsWHQ/huUsHJQ1nZqukDZpg3wf/8H9OxZ2GfN/aO0VM9F++OPztc2K0H71KBBuc8nneRtXlUh3jVZoIyK2bP1ceLee+cf0xAoiiI5Xq4lSdmGGgz3cG1FdRVrIH6BUjYHpZ2Dsk4dtQJllPgZcMjMk9SLsNsAwZzH1GuRHC/nwOzZyXBQ/utfatoQh4PSut1xhnirdlDa7UevDkq7t7d2+3zwYPnq3LJ4qeJ9zDHAH394qzDrhjmMU+ZeE/S8vOACYO1a4LzzvM9r7j9O11DzdCJh2gvmYyC656kI8fabg7JzZ2DJEmDx4vzfVTkpTjkl9/mcc+ync3LzWvdZUAelbIh3WA7KuEK87ejcWZyfT2URO7ciOUkiKQ7KJO8jO5KWg1Il1uNhvUaKQk29XkeDXnc7dABefx2YPFl3pnvBrb/JVsiOU6A0h9YnxcXuh913B1at0vMAh3wdyAvxTqqD0su1pBivm0VGQtUHEjp2J1eQt/nFlIPSTsi03vRkL6TWAXU6Lf+AogI6KHPfX3EFcNNNue+8Oii9hKT26ZMMgVLVID0OgdK6rjhDvFXnoLTDTqC0y0Fp5wQS9dV27YCZM9UPoJz6hEhAVRWmOX8+cPHFepiuQVQPpV5CfuxwOi/Mx++vv+SWZ4e5z1r7haoQ7yA5KEWuYVUPKvvtB9x3H3D77XrYox1OYw7rsaaDUh7zce3aVTxNKgU8/jhwwAH534cZ4h33+CUJId433KAvw1xputhJYg5KVbhdI1X0aRWi9557AmefDTRs6G0+t+vS0KFqlhMmJ5ygO1abNgWefz6+dqggqlQ4xeCg9LIvkrINNRjGDtRW7E6uIDd7VVW8/eIlB6UIUYi37I1cNIgIkqfFK34e9GqiQDlkCPDvf+d/J9MnzHhxUDoVXPKKX0EpnU6GQJm0Kt5JKJLjx0EpE+Jt9JU2bQqn9ZPzUQYvfULldaNPH/2fmWJ6KHXaF3XrAuvX659VCpRhOShVF8kpL/e2PDtSKeDYY92n85J7OGj1eVmBMoiD0qnoS1wCZaNG+guSOXP0VA9WrH1TpYPSStwuFz8CpfX637x5sDaceaYehmvXn+PeR36oySHeUeS6i9PB5vZcNHiw3HLiFCjLyoBPP9X7YTGNRWIkkSHe1vvMHnvkPh93nPO8SdmGGgz3cG0lCTkoVb+58ZKDUjQ4DJKDUvQgl3QHpczALqmDV7t2iQYtXh+AvAg82ay6feT33GveXN0gqSYJlEkokmOHqhDvdu3Eyw4DL0nUwx68yfaR007T991VV4XbHkB3eaZSeu4wM24CpUHUDko/OSj9hnjbYYizUeHUfi8OShlkX1AGWU86DZx8sr5dV16Z/9tOO+U+H364/3XIYN2vgwfbF0eScdH6vQdEIe54wam/HXOM+zzZrJrK40HF9qg46SR9+ydPdp6uJguUfqO4vBBnXlO3sWW9erm0KhMm+F9O2KRSFCc9UBRVvDffHHj6aT1vtts1KKnPxjWIhPQSkhiCXDi8ijWqT3AvOShFIoD1AS6oQBmlgzLpId6vv65mOQZ27RLt8zBDvO3SBfjB73KaNVProLz4Yudp7PqaqoG0qkFfENFeVZEcO4KGeBt9pW1b92lVMXGiLog2bOgueIQ9AJXtI7fcAqxZo7ddNVZh6ZJL9HVdd13+97IC5d9/B2uPm4My7hBvEevWeVtemJj3XyolV4jJiSgclABwxx16v7vggvzvu3YFnnpK7/u33BJsHW4EKVpXkx2U/fuLv7/wQmD0aPFvw4fr9/TGjfX0FrWJO+/U+/LZZztPN3587vO4caE2KXKswlsY99I4BUqZ56Krr9b7wY032k9jTm/RsmXgZpFwKQqBEgAOOkh/ueZWZDIp21CD4R6urdjdJIIM6LLZeE9aLzko6aCMTqAcOxbo0SP4cszYtUuFg1LWbZBKqa3WHoZA2aWLt2VVVYnD8gyyWft9VxMclMa6ww7xLikRH29ZB6Xxd5MmciGTKmjcGFi6FFi+3P18ToqDErCvHuyHZ5/V+0bfvsBuu8mty2lfRJmDMs4iOWYaNMh9TpJAaT5369Ur3FbzPpUp5BBFDkoDuz5+8MG6ezhomLAbdn3ceNl1/PG579yKgNh9J4NTkZw4nHZduwJPPFFYuOm88+z3WZcuwLJl+nXWS2XmmoLM9frkk4HLLweuvx445JDw2xQnYTgo4wzxlnU+ul1jGzcGXn5ZT2Hw9NPB20VCJS/EOylFcoK8CKNAGTrcw7UVO4EyyEmXycR74fGSgzIKgZIOSvXLcVueaPATVg5KY/8l2UH51FPeluXWZ0tLw3dQFnMOStn5VOWgTKUKXZRhuoZKS3WBye0hI+zBW1z3mZEjgRUrgA8+kN/GqARK83qS4qAU9UWzQGmEeJ96qv6/NTw+bMznq/l+KLoHvPaa3v87d7YPzzUTRRXvpGDXLy65RK8Se889ue9kHJSqrmHmYxBXKPCoUYWVjt3uEw0aqBGuZYjbZeqH0lLgP/8BzjqrONvvRBQh3sUgUMowfLheBEqU6oYkl6SIe0FMFTXtupNAEtJLSOSE4aCMW6C0u+jJ5qCsU6fw5il7ARMNuilQql+OQZg5KGUFSmOfx+2g7NLF/uGrbVv9AUkWt8FjNmvf1+igLDyGXovkeK3iDRQOzs2/GYKPW8Jvr8QtUMZJ8+beti+qHJTmfhOWg1LFOW6u8myIc7feCvz8c2F4fNjMm6e7+958M3/bRPtmt910V9tXX8mlAYnSQRk3Tvcua/hlWJXcgfyKwg0bJrfac1SVc2UolvyUtYUoQrzjvD+H8VwU5bMWCU5SxodBxjNJ2YYaDPdwbSUsB2WcJ23QHJS1LcRbRghKqkAZ1EHpdFy9CpRxOigbNNBdKnYPX40aedv3td1BGVSglCVokRzz31YHpXm5110HfP99voNJBUkQKN94Azj6aOCVV8JfVxCiykFp7jfW60FJiRoHpQq335Qp+nlWv35+OglRRfqw2XZb/dwYNCh/2+z6d/Pm8ten2iRQqs5B6ZfTTgNatdKv39OnJ7eYStwPt6++qrehY0c9BQ9JDlE4KOMkDDEx7oI5xBtJ6dNB2hH3NbwWwD1cW2GId+F0DPEuRNVFWHW/CCpQOiFbJCcJId4//aRXV7b28aFD9dxXDRuqFSidHJR+j7H1mMVZJCdoiLcVrw5KO4HSOq15H1lzdlmn7dhRfThKEgTKIUOABx4Att8+/HUFwWlftGqV+2x2f/nB3G+s56IoxFumKnvQHJSifrLllrpb8ocfgA4dvC1PBR9+CBxxBDBjRv73222X+/zDD8HXI/uCspgcbKecov+/77753ydFoGzQQM+T+8MPwC67ABs35n5LkkAZN3vtBfz4o+4GTpKzlETjoIyTMMRECpTFRVL6dJDnUoZ4h05CegmJmlQYAmVNKJJjpSY7KGtziLcTxRTibYga1j7+3//mQrujEiiTFuLtZ9AatIq3bBtKSuxDvO1yUD70kP55iy3yC7RYz+MorsFu/STK+0BSBrt2OPWlSZP0600mA9x7b7D1mPuN9VwUhXi3b+++zLD2bbNmQNOm4SzbjX799Ovj0KH53ysWulOyDkrZF2JJ4LbbdFHrwQfzv/dy71IR4u3Ud+rVy7lxkxrinQTati2uvldbUTUWMb+QkinyFRYUE0lSxmwM8U403MO1lThyUDZp4n/ZMsg6KGVzUKZS4gtY/frAhAn534XpoJQRbGqbQBnEseGG7KA9CSHexjyiPm7gZV+JxDEzTiHeSRMo/Zx/SQ7xPvJI4JtvgE8/zT++cQiUSXBQxrEuP7RpA3Tvrn8+9tj839q21Z1My5YFF8i8OijjCKlOMr17R7OeYhYoUyn9BYm1f0XloGzQQJ//+eflpk9qiDchdoQV4v3mm8ChhwKPPhpvYa4wIsvMkQjWlDckeSRlzMYiOYkmIb2ERI7oJtG9e7gCZdgXJTsHpeoclO3aAQMH5n8nGnSreFM4f75eqc4NP4MYmYtzsQmUUTookxDibSByCRt42f7ycuffwwjxtmLzIPnb1luj6rDD5JeTBIHSKcRbdLzdQrw326xQ0KBAGd26/JBO61W/FywAJk4s/L1ZMzVVSL06KGX6+IYNuc9+zu9icsvssAPQq5f++aqrAi9Oc7qPGLk3d9hBLtQ+aQQRGa3zyvarpk11IX/JEmDXXeXmoUBJio2wQrx79gQefxwYPVrN8vwSxv26WTPg/vuBgw4CZs5Uv3yilqSM2YKM84tpbFOkJKSXkMixPryPHKm/lQ6zSE7YORntHJTWB3jZEG87gbJp00L3iVOVXb/Mmwf06VO4rGuuKZw26Q5K1Tko7Sre7rNP4Xdehb9iCvE2EInwBlEJlCE7KNe3b4/Khx+2r0puDfvzc71RnYPSDjsH5dq14nY7nasM8Y5uXX5p1EjPcRjmoNbNQemnT//xR+5znGGBUVBSAvzvf8DHHwPnnx94cZXPPAMA0KxupVQK+M9/9PXMmVOcTowguUn9ipvPPqsLEV26yK+LAiUpNmp6kZxddwU6d9Y/3323uuUecwzw9NPA1lurWyYJhzj7dLNmuc8tW/pfDivHh04RjOxJKJhPrubN9cFf9+7hFskJI6zAKsQEyUEpCvEWbc/IkUDr1vnfhSFQGgNx67IGDQLOPDP/u7CqeKdShW5RP6gWEX75pfC7PfcEzj47+LqLKcTbQFWIt/mBzm49YTsobcS4cqPard16vvwy/28/OWCjdFB6OS5Og+44BEo3ohRdkrC9soQpULo5KM1ioyzmeazFmGoiDRrood4K+q82dChm3nYbKhYvLvwxldLXU0zh3WaCjHf85KBcvFgf93iFOShJsVHTi+RkMnqamgULgOOPj7s1JA7i7NOzZulRiXfemS9WeoUCZejUsCsfkcZ8cpkH40GL5LgJlHffDQwbplfS9IN1+eaH86A5KEUh3tYHvV131UWwMByU1ocVYxmiZYseQL0i46AECqud+kHlDemee4BVqwq/f+gh8UOI3cPm2LHi772GeCfBQekU4u1FOExCiLfN/qxwEyjNeYiAYCHeYRfJ8SpQ9uxp/5v12CchxDtKislhEqeD8u+/vS9z7drc55ruoAyB9R066Nelgw/Ofdm/f3wNUkWQ8Y6sg/LUU/X/d9tNr/zuhyRV8T7gAP3/ww+Ptx2kuCim+5ssRkRBMbrHSXDi7NPbbQe8/DJw0knBlhNlEdxaCgXK2or54d08QAyag9JpoJpOAyecALz2ml5J0+867P5WnYMSKLyQTpmiizQNGuR/H4ZAaWyLKJxK9ADqFatAaX4IGDEi97luXXkx0w4VoslOOwHvvw8cd5xYoLTbB3Z9+v779RC7W2/N/95riLfXc8Yuf1axOyhDDot2dVBaqawEzjhD/7zjjnLzBAnxPuEE+Wntqnjb4eS0SkqI95w5usvJWuE3bIrJYRLmW3c3B+XYsbl+NG2a3DL9OCgnTdL/79YN6NFDbp6azu23A/vtB5x8MuAlj25SUSlQ2l3Pb7wReOst4JVXvLXNTJIEysce06+RUV8fSXFR00O8CSmmMZsdFChDpwb0EuKLsARKp5upW4VgN559Vo2DMpMRt0WmSI6xr1KpnIh38ME1w0F5+OHAiSfqeRzvvdf78pxQcUNq1UovKpBKATvvXPi7Xd+zW3c2q7szrNXlwxYor78eGDCg8HuVAqV5m5NeJEfCVaY1aoTvhwzxtp6qKuC66/SQDlkXsN8Q72OOKRS6ATUOSrciGkkpkrPbbnql0KOOCn/9ZoppsBunQNmypZ4G4f339TQlMvhxUJ57ri7EfPghH64NWrXSc3zfcUfNcA1FkYMyk9Ff5hkvpvyQpBDvsjL9Ghm3UEqSTU0P8Sa1kg+N9Fv16tWM0H6GeIdOjbzyTZo0Cf3790fDhg3RqlUrjBw5EotFeYBqM+aTy6/byoqbQGlX2ESGl14C9t+/cPnmwZ5d21XmoDSv47HH9Lf7Dz9c+ECo0kEpGtCHIVDWrQvcdRcwfTrQtq335Tmh4qHMfCzOOqvwd68OSgPrg4tsXjC/Id6lpcDuuxd+r7JIjt+0DW4OymzWXsQMS4x44w1UzJ+PCiOHrdN6dtkl97lHD71P7LEH0LCh3Lr8CpRDhnh78JQVKAcO1F1ETiTFQRkXxfQAF5VAaeew79w595JHBrMDTdZBmU7rQkyQ/E4k2QSp4m29v4YpYrNIDik26KAkNZDlAwei4s03gUWLCgtaFgtm80qQAjtEiiIa2cszZ84cjB8/Hu+99x5mzJiB8vJyDBs2DBs2bIi7acnBzkEZ5GGvXTvn+f/80/+yBw4UC4ZmYUY2xNspB6UZN4GyYUNg7731i5YKgdLq3LNzUIpyY1r/lgmLsgobTsKcTO40UXVxQJ1jxLrvX3gh/3e7gVy7drnPIjeGdbvbt5drj18HpV3fUOmglFmfCDcHZWkp8Pvv4t/8hni7bffgwUCnTrm/nbZn6lRdHDn2WGDffb23xW+It58+4HZcRowA3nnHvSplUhyUcUGBUsd8T1PxAgvQ02AA+j6+7DJ/yyA1jyARI9aIhTDPXwqUpNigg5LURFIpaDvvnKvgXoy8846eLuqii4CuXeNuTY2nRl75Xn31VRx11FHo2bMntttuO0yZMgXff/895s2bF3fTkkMYRXL22sv5bV8QgdhYrnn5mUz+Mps1C1bFW6ZIjlM4ktN0zZuL5zMTNMTbSL7eu7cunF53nfP6rPslaEXRc88Vf69KzLD2LWt77R7Ct9gCOP98Pe+pyI1mXU6nTsDFF7vn3fQrUKZS4n2SBIFSxkH522/i38J60y+bswzQBz9z5gD33edvf/otkmO3j51CvN3aJ9uG2i5QFlPI7NZb54o5TZyodtnmY6IiRzGg39PnzAE+/hjYbDP/bSM1C+s55+UcjFKgTFIOSkJkoIOSkGSy/fbAe+8Bl14ad0tqBeFWNUgIf/yT6L2ZQ8jRxo0bsdE0mFn7T+6l8vJylLu5ioqQVFVVtTqtpdOo+GcbS+BftS5v2hSZdBq2Q9VNmwr2pWzplfLKSqC8HJmSkurla9ks8Pvv1X9XNWuGqsrKgk5dnk7nradc05CpqChoZ0Umg7Rpv1QBqNK0vOWVV1TYuszM66hC/n6sPO00pN5+G+mZM223saqsLG8eY13WY1JeWYl0KgXzsKVC06DdfjtS++0HbbfdgPJypKuq4DS0Kbe0uSKTgWazbRlNsz+uxvLKy4XHs6qqCpU2v3mhKpVCpal9qWw2/9hUVdk7AC+7LOcAskyTymTyl1NZCfz738ABByDbu7d9e9JpVJaXo6ROHU/nTHllJdIVFXnHpry8HJlUynUfFyzL2JZUKr+Pm7YxDTj2gzyWLHH8uaqkBOk1a4S/VQjOPRm0qqrq64+BdVuM7SkvLy/o+wBQecopqHK5Tsv0v4p0GprNOhznq6wUnjsZQHhMKwFUVVY6tsna3+1IpdN5+112viCkKysL+m+c2PV9Gcx9KxLmzkVq/nxo++zj7lj2gHkfVFr6b7mm+V+XkS+3Bo6DwiTyfhUxeefcP+MzGVINGsjftwOS2bSp+vpbmc263iOKhZret2obedfuior8fmoZJ4R5zNmvSBiwXxEzsv2gxguUVVVVmDBhAgYOHIhtttnGdrpJkybhUoEq/vrrr6NekCTdCWWHFStgZBn886+/8Mb06QCAgWvWwKUkQx5fjxyJth98gAUnn4zfpk/HoPXr0cRh+un/rMdgf8n1vPr666gqK8Ne5eUw/G4VqRSyJifk0nXrsPy992CukVxerx7e+PBD7GNuw+uvY89162A9qh8tXIit1qypbv/q1avx3cKFMNcbnzl7NjZaHQAAMuvXw1T3Git/+QXmLI5fLlmCym7dsK2DQPnbhg0wZ7V45bXXoGUy6P3TTzCb4t9+5x20/Oor9DJ99/HChVjeuLHuBvzgAwBAty+/zJtGS6WQMr2dnfnWW9jbvIwvvsByy/Ex2E/CMTV9+nTh8fzpp58w3+Y3L/y0YgXmm9rX+JtvsLt5/a+95stN1eTrrzHI9PfrM2eiol49NPjxRwxxmO+3lSvxv+nTsWNlJdp4WN9bb7+NTt9+iy1M302fPh2D1q2zPXeWDRmCzoK+Y5xPDb//HoMF3wNAj6VL89YVhB9WrYJdgMYHH34IQekiVzZs2ICZln7X7pxzsPUjj2DJiBFYavptxowZ2Ob772H2cn14zjlY0a8fqmz6roFM//vwk0+wKpvFVt99h+4etuHjBQuw3MiRaWLPP/8suM4AwKIvv8SSV17Ja9OvPXuixeefV//98y+/4COXbQKADp9/jr6mv3/59Ve8JzFfELZZsiTvGFiv61Fj3o9+2zJDtpCSCrJZ4I03lC7SvA++XbYMW5r+fm3mTFQGdcgTX0TaryLE3N9eff11VEk6FFt/8w128jmvV3bu0QMtP/0UAPBZVRW+i/k6pZqa2rdqG+Zz6csvv8Q3pn6a+euvvGeLKO617FckDNivCAD8KZnur8YLlOPHj8dnn32Gd955x3G6iRMn4ixT4Y21a9eiY8eOGDZsGBrJJocvItJ33VX9uV7Dhhg+fDgAoOSGG1znrTzrLKRfeAGVd92FLrvtBgDY8Z/fSi67DFi61HZeYz1e2Xv4cKCsDJn69atz4GXq1s3La9mlXz90tlR3zmyxBYbutVd+G/71L2QEFR37DRyIkpdfrv67WfPmaNK3b940Q/bcU5wcd/36vD9bt8mXrLbq2dO1OnTz9u2BhQur/95n+HAgk0HJiy/mTbfroEFIW3KZ9enfH70t+zb97bf5K2jYsLoqq5ZOY8jQofnLGDCgYBlesDu27Tt0QJvhw6FttRVSX37pe/ntO3ZEG/M6Fi3KX/+IEfCFaZ8DwLB99gHq1we++spxtuZNm2L48OEomTYN+Ogj6dXttvvuSFvOkeHDhyNzySW283SwyXdSvc+/+Ub8PYD0u+/m/VZ1+OFILViAqpEjUXLVVdLtdmoHAOzQv7/r/FrDhkitW5f3Xf369Qv7zvDhwJVXYmsAW0N/4zZjxgzsueeeKJszJ2/S3ldeKdt8V/rvsgu0wYOR9pgOpM/22wvPnYyNKNRjm22wlWX6Zm3aACaBsm2HDlLXy5Tl2tOydWvf11lZzE5wLZUKfX1e8NoWc9/KuqV1KBI223LLvL/3Gj48eAoP4oma2K/s2HuffaSrZKcaNQJM1+y9R4xwT6fil549oR1yCLR27dDjxhvRw2+qg4RRm/pWbUDbemukvvgCANB92DBsab6H/f133rRh3mvZr0gYsF8RM0aEshs1425tw6mnnoqXXnoJb731Fjp06OA4bVlZGcoEA6xsNlsjTyizvJUqKclto0Q+oJLrrweuv17ceVzypUjvy+23B+bPz81XVqYPYk3LT1mWVdK6dcFDWGrzzfV5rW0Q5KDMWBxQ6XQaacvyqtthxSI+pi0D4ZJs1jUHUtqyjGxZmTDfZLasrOBhIFOnTmG7LPOlGjWqFihTjRoha2lPpkGDQA8Kdsc2nUohnc0CM2fKF6ARLSeb1ZdjYHlx4Ps8bdAgfznGvnR54EpXVentMXLKSZItLdXzYhrssIPedvO5l83qgvLq1cABB6DEpu9Ub7Ol7+btC8t+ST/yCACg5MknPbUbAEocRI6M28PfwQcjtXAhsHhx3tepVEr62GWzWZRYzweF1+dMvXr6/vLoms/88Yenc6ckm9WvCSbSlv5W0N/tsLQ1XVIiN58ivBy/KPDblqK/1/fpo+eKBFBiESizovsDiYSi71cS2I6LRLTIj9HJlpWFl2dv882Bjz9GCjUz4X5t6Fu1gmefBQ48ENhyS2RGjy4cC154IfDww8Ctt0ZyvNmvSBiwXxFAfoxeE+/Z0DQNp556Kp599lnMmjULXVltqRDZIjkdO+oFV2SxDjT97vtGjfSbdrt2ej5Ao0Obl2/t5C1aAD17Fq5fJLredFPhd1bxxa2Ktxm3QhUlJe6DcNH6RcuSqeItmq9hw9xnkSs4aBVvN8zVtP3gViTHL3bFidyOV0WF/n8Ll6QIV1xRuPzjjgOGDgW22gp49FH9e/N5WFqquzLvu0+vpOvWFj9FckSFotwwhFM/lJT4L9ZhXU5YGPvRa9+yc407FcmxW7dBsRTJKaYiNTWZxx7TX3zsvTcwdiwwbZp+zf3PfyhOknBJahVvQoqB7t316IlnnxWfD5ddBnz3HbDvvpE3jRBC4qBGjgzGjx+PqVOn4tFHH0XDhg2xYsUKrFixAn/99VfcTUsO5gdM8w3R/LC5zTbAsmXAEKdMfBasD9Vu4o1dpelGjYCRI4Eff8wXeJwEyubNC8WTunXFN/yDDwauvTb/O1EVb+v22D2MiyptW/+2Lsvq0LMTKK3ChV0VbyvWtpq3rVGjwt8lQ7Q8o0rAsO5Tl5B5aaz73ThObg9OhsDn1sdFFU8zGWDGDD1M3aiOaxUou3YFjj0WaNrUfR/6ESgNgdUL2Szw8su68DFmTP5vDkXIABSHQGmcA17PhbFjxd/36SP+XnRMXBzQtlCg1ENGW7YEpkyJuyXx0b277k5+5RX9HDngAP3+efnlcbeM1HSCCJRJuH4QQgghJDHUSIHyzjvvxB9//IHdd98dbdu2rf73xBNPxN205GB2T5kHl+bPVVVikc4J60C1eXPn6U87TX+onDUrX+Bo3Fj/3zp4dRIomzbV/7/33tx3Bxwgbn86DRx2WP53MgKl3UDc2k4ZB6UltNjWtaVKoDRVqRcKlGE7KINi3X9hCZTGsZMVKN36uBW7FwJWgdJMGALlsGHOy7Rbz6676sLH1KnAW28BbdoAhx4KuOWgLClR4+QK84FW1kF51ln6+bv77sBLLxU6tw3uvFMsdoquSXRQ+ueCC4CVK4Fx4+JuSbyIXoYQEjZe+pl13EMIIYQQYqJG5qDUkiCmJB1ziLf5QdgqUFp/d8M6rZt4U1qae6j844/c93aFiczLtz7QG2/mjzlG/79ZM93BZBbmzFhFvTp1CoU4WYHSishBaf2ufn3gt9/y1y/CKnDICpTW9W3alPvsVaAMglXM8Ht+Wo+Fqsqf5u1OpexD663IhnhbkRG5RaK0E34EytatdYHxs8+AU05xXr6BIYYZbd11V2D5crkHVFG/9UOY13djP7o5KK+/Xnd/u213+/bA118DnTrlf88Qb/UkpR2EEHt4nhJCCCHEgRrpoCTuVJ1+eu6P88/PfT7jjNznf/9b/z9MgdJMr165z5Yk/9WYBY5sVk8sbWDkODRy/Bm/2T2wW8USkYPSOo1fgVLkoLQ6AO0cgSI3nVVACdtBue229r9FhSgXpwqy2dyyzMfIrd/LhnhbsWt3EAelkzPRqc/uuitw8snOy3Zbj+xxsAvx9io4WirYK8VLDkrZ7ZZ5eQAU7ttiESiZQ44QQgghhBCiAD5Z1FK0ESMw74wzUHHPPcCoUbkf9t5bD9287z5g9Gj9uyAh3l7EmylT9DxiffoAJ54onsYa4n3nncCkScCHH9q7yOweoEU5If2GeLutU0agtHNtidx0u+7qPA1QKKD8+Wfus1eB8vHHdcedHRMn2v9mF8bslbByD6ZSuW23cxOL8CtQyjgoraKT235z+l2lgOTmWr3mGvt+pMpBGaZA6TcHpRN2KSasWPet3xyUKvaxG3ZF1gghxA3jBXS9evG2gxBCCCGJgwJlbSWVwo977AHtqKMKc+KNGaMX5zAerIM4KL2IN9ttB/z0EzBvnr1AYBYQs1mgVSvdAdqvn/1yvTgozagUKEVFcqyDczthQRTi3bw58MIL+jJ69RI7HK1tCCJQbr018MMPwA035H///PP6d//5j/28qsJBRU67+vX1/1u29L9cILeP/QiUXnNQyjgovQqUAHDmmbrIddtt+d+rFCjdckieey6wdq34t6qq4gnxVpnuQFagVOWgjCLH2xFH5D5femn46yOE1Bxef12/brz3XtwtIYQQQkjCqJE5KIliggiUbdp4W5ebAGJ27siKHXbijkyIt2wVbysiB6VbFWq7/WwX7rvvvsDvv4vdmaK2brYZ8O23+ucuXbznoMxmC8Wh/fZznsetTV4wF3Yy+PBD4LHHgMMP979cILftdgWjnNqTSgEjRujVrWWwW655+/wIlDfcoLuJRYK2KmTyftqdwxUVwULEDZIS4i2L6Ny0fte0qf8clNb5ohAod91Vd9r/8ou3FAGEENK5M3DRRXG3ghBCCCEJhA5K4k6QEO9u3YCDD9bFwIceCt4Wu+I+frDOn8mEl4NS5KCUFSidBKfSUvv5rG149FGgYUPdDXnCCYXCkIz45Me9pirEWyRMbb01cNllwFZb+V8uIA7xdutfRpEcAHjgAaBjR7l12e2DRYtyn418qm7zWJGtGO2XIFW4KyvV5KBU7aDs3Dn32egHYYd4G8fzk0/09Ahz56orkhNVldwxY4AJE9TuK0IIIYQQQkithQ5K4k4QB2XdusBTTwHr16t5cDaLVEGdYTJiSZg5KK0h3rIOStk2WEWtHXYAVqzQRZh0Or+qt2h6EUHFIdUCpSq6dgW++y5fZJR1UAJ6qoGlS+VcvXbLHTYMmDZN/2wNmQ+y31Q6KIPkDLMTKL2iuh+8/DLw8MPAv/6VOwfDdlAaot622+bSM/jNJRmXQEkIIYQQQgghCqFASdwJIlAagoaqh2aVAqVo/rBCvGUclHbb47Wis9N0ZoHJj+jlRxySFTUvvRS4+GL730Uh3qq49Va9MJQ5VNyLQAnInyd2+33yZKBtWz10f8cd5eaRQaVA2bWr/3mTKlB27aoX9zETtoNStPxic1ASQgghhBBCiEIY4k3cCRLibRXhgmIWhbwIL+PG6f9fcUXuO5Ho4yZQyiIjUFpdWn5CvL20wYof0SssB+Vvv7nnpApToOzZE7jxRqB//9x3bvvPa35Vt+V266YXuNlrr8LfggiUMvOedJLcsrp189+Oigo1Id4qXlK0apX7LBILo3JQmqFASQghhBBCCKnFUKAk7qhwUKrCrzjx4IPAqlXAv/8tP48oB6UsMkVyjArU5mlEqArxVoHqHJSZDDB9OtCsmftywgzxFuHU7+vW1cOCZbBusx9RLWwH5Z136rkQ3QhSLb2yEvjpJ//zG6ioCj9rFnDKKXo1WdFxDlugFC1fVYi39bpCCCGEEEIIIUUABUriThAHpcoHfcC/QJlKyYkrUToore1Jp4Fzz9U/H3107nur20pWlHFzHEYV4m23zmOOAZYvB/bZJ5p1e0XUv+65B9iwQW93r17+lutnvwcRKGX7sLlYTBjtqKxUEzqtwkHZvTtw++3AnnuKf1cZ4p1KFe43OigJIYQQQgghJA8KlMSdIA5K1S4+lVW8AeCww/T/DWEwiEDp5BQUFcmxCpQlJXouvO+/B+6/P/e9XweltQiOU3tl8ZPD0s7xVlLizZEXZoi3COt+PvFE4Pjj9X3QpIm65cog2tdO+TrNyLqYVadjsFJRARx3XOH3XvuhXwflVVfp/w8f7u5OVP1ixS29A0CBkhBCCCGEEFKroUBJ3AnioFSNWaBUIX4++ijw7bfA1VeLf/crzlZVAQMG5P7eems5gRLQK0mbty0sgdIPxx+vtzud1sNjoyRqgdLav2REK2v1bZnl+mnLkiXAJZfIzXvooUCHDvoyXnjBfjq77TPyTj7yiNz67KioAEaN0qul77Zb7vuoclBOnKjvtxdfdJ/WKvoFxXruixyU1nXKXnusYisFSkJI2Jx6qv7/2LHxtoMQQgghNQpW8SbueBHp1q7NfW7bVn1bVFbxBnTRxlz4I4iD0tyeqirg8ceBCy8EBg7U17FqVf705kId1vnN+A3xdhMozcKGrGOsfn1d5FmzRhe9ZLBzlgYRpqLAj0B52WXAkUcCW25pP40KB6WXatplZcBXXwG//AJ06mQ/nZ2D8rPPgJUrgS5d5NcpwhCYO3cGGjXyv5wg1wDZ/aba+e3HQSmbg9LaVgqUhJCwueUW4LTTgC22iLslhBBCCKlBUKAk7ngR6ZYvz31u3159W8yiVhhuTatA6aVIjrk9lZW6GPTQQ7nvZB2UVvw6KMvLnX/PZoEnngCeftpb8aAGDbyJIGaBtZgESisyAmUq5f7AFnUOSkAXH53EScB+++rWDS5OAuocsGFfA8IgTAelFQqUhJCwSaWcX8QRQgghhPigSJ7uSKx4EQHMVXrbtVPfFtUOSitW0SyIg9KKX4HSKmaoDPEeNQp48klgu+3klulC5ZVX5v5IpfS2X3pp/ncGXgXKqEO8rajK0Rh1FW9ZRALlf/+rbvmqjp/qNA8y7LJLsPmt+1ZlkRwrFCgJIYQQQgghRQgFSuKOFxEgbAdl2AKlWTgoKwuWg9LpdwBo2DD/b7vtSVIOSheqzj4bs2+4AeV//AF88w2wbFl+qH9Nd1DK4EdUi8IpaBVgL70UOOIIdcuvqMh9Nvdpa/92w+w0lC0AFJSHHw42f/36+X+rLJJjJexiR4QQQgghhBASAhQoiTt+xZGOHdW2A8h3YYUh2hiOsZIS4Npr/TsoRW4xtwrnsiHeqnJQhkEqhbXduukiSbduQOvWBb878uyz9r/F7aBUJVD66beqi7aIsG5fr15ql28+ftddl9sPXsW/iy7K7Y+nnlLTNjf8ioUGVlejSJRVFeIdlauUEEIIIYQQQhRCgZK44+WBd+pU/f8mTYCTTlLflrAdlP36AYsX65W9u3Txn4NS5PZza28cId5xInJQjhypVzwXUawCpfX88dNvTzop58KbNs1fO9ywOu+89H0ZzMeva1e92NLixUDfvt6W066dPu+iRcCuu6ptox1B94XZQZnJiPuAVbQMI0UGIYQQQgghhCQUFskh7ngRKEePBjbfXH+4btpUfVvCFiiB/MTvYYZ4y/6uwkGpWmzyi0yI95QpwI476p9LSnLCVtwh3qpCZ/043Jo00Stxr1gBbL+9mnZYsQqwQV2DVqzb3bmz/2XJVpBXhUoHpV0/tp7nAwbIL/+FF4DJk4EJEzw3jRBCCCGEEEKSQEJUC5JovAqB/fuH0w4gGoHSjMoQb7eq2nbbIyqoIYNZyNp/f3/LUI2MQLnDDsCnn+rbfdttwK236t8PHBh++5yIMwcloIv+YbrqrNunWtS++261y4uSoO5ds4PSTqC0rsOao9aJfffV/xFCCCGEEEJIkUKBkriTpJxm5od71Q4vESqreG/Y4G9dfrdz3Dhg9mxg1Srgjjv8LUM1skVyjPyHV1wBLF2qi5Vnnx1u29yIW6AMG6tDNMj5deutwGmnAc2aAa+9poudvXsHal7knH22nitz662Du8FlKmv37Ak0bgz88Qdwww3B1kcIIYQQQgghRQYFSuJOkgSVqB2UXrbdLcS7Tx+9aMzKlcCkSc7zq6CkJFf0p1hp1Ah48cW4W6ETRKB8/XXg/POBo49W1x7VqHRQnnwysNVWQPfu4RTLioIrrwT22EN39AY9N61VvO2mWbAA+PJLYM89g62PEEIIIYQQQooMCpTEnSiEQFmiFii94OagLC0FPvxQD18eNsx5/tqAk4MyiQTJQbnnnskXnaz9L4goV1ICDB0arD1xU1oKDB+uf66oCLYsGYES0AtzdekSbF2EEEIIIYQQUoRQoCTu1GYHpRfcclACupvMzlEWRch63MiGeCcRVSHexUJSCislgaDXQJkQb0IIIYQQQgipxSRM4SGJJElCoFmgTJJwCriHeLuRpP0cFrVRoExaP5WlNgjmsgQ9N2ubuE0IIYQQQgghHqkFiggJTJIElmJxUPoRKINWCi4GaqNAWazQQZkj6DUwm1XTDkIIIYQQQgipoSRM4SGJJEkC5c475z5vsUV87RAhE+LtBAXKZBMkB2UxQgelOij2EkIIIYQQQogjFCiJO0lyKj70kF4dePBg4KSTolnnjTcCbdoA993nPF3QEG8ngXLKFL0N117rfblJIklit1e8OCgnT859PvRQ9W2JAopq6uC+JIQQQgghhBBH+NRE3Nlyy9zno46KrRkAgG7dgEWLohW6JkwAzjjDfZ1BQ7ydKgWPGwcceWRxC3xWis1B6UWgPP10oHVroGvX4q3KXJP6mgrq1gX++gvYbTfv81KgJIQQQgghhBBH+NRE3KlXD/j4Y2DuXGDMmLhbE49wIrPOsEO8a4JgVMwh3l5EptJSYOzY8NoSBU6CeW3kk0+AV1/154ilQEkIIYQQQgghjvCpicjRu7f+j9jDIjnubLMNsGKF/rlYnYW1hfLyuFuQLLbYwn/e27Ztc58bN1bTHkIIIYQQQgipQSQouSAhRU7QHJS1Qbi47z6gUydg662B//wn7ta4c/vtuoP43/+OuyXRU9uKAoXJiBF63tzmzYFXXom7NYQQQgghhBCSOOigJEQVfkK833wT2H9/oG9fXcCo6XTuDCxZou+rYghZP+UU4IQTak+I7ksvAYcdBuy5py4iEzWk08DMmXrYfG3pS4QQQgghhBDiAT4pEaKKCROAI47QP592mtw8gwYBv/wCZLOhNStxmJ2mxUBtEpRGjAB++03PoUnUU5v6EiGEEEIIIYR4gE9LhKhi9Ghg7VrdGXjIIfLz1SZxkiQfipOEEEIIIYQQQiKGAiUhqkingZNPjrsVhBBCCCGEEEIIIUUFi+QQQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJio0YLlLfffju6dOmCOnXqYMcdd8QHH3wQd5MIIYQQQgghhBBCCCEmaqxA+cQTT+Css87CxRdfjPnz52O77bbDXnvthVWrVsXdNEIIIYQQQgghhBBCyD/UWIHyhhtuwPHHH4+jjz4aPXr0wF133YV69erhgQceiLtphBBCCCGEEEIIIYSQf8jE3YAw2LRpE+bNm4eJEydWf5dOpzF06FDMnTtXOM/GjRuxcePG6r//+OMPAMDq1atRXl4eboNjoLy8HH/++Sd+++03ZLPZuJtDagjsVyQM2K9IWLBvkTBgvyJhwb5FwoD9ioQB+xUxs27dOgCApmmO09VIgfLXX39FZWUlWrdunfd969at8eWXXwrnmTRpEi699NKC77t27RpKGwkhhBBCCCGEEEIIqQ2sW7cOjRs3tv29RgqUfpg4cSLOOuus6r+rqqqwevVqNG/eHKlUKsaWhcPatWvRsWNH/PDDD2jUqFHczSE1BPYrEgbsVyQs2LdIGLBfkbBg3yJhwH5FwoD9ipjRNA3r1q1Du3btHKerkQJlixYtUFJSgpUrV+Z9v3LlSrRp00Y4T1lZGcrKyvK+a9KkSVhNTAyNGjXiBYMoh/2KhAH7FQkL9i0SBuxXJCzYt0gYsF+RMGC/IgZOzkmDGlkkp7S0FH379sXMmTOrv6uqqsLMmTMxYMCAGFtGCCGEEEIIIYQQQggxUyMdlABw1llnYdy4cejXrx922GEH3HTTTdiwYQOOPvrouJtGCCGEEEIIIYQQQgj5hxorUB566KH45ZdfcNFFF2HFihXo3bs3Xn311YLCObWVsrIyXHzxxQVh7YQEgf2KhAH7FQkL9i0SBuxXJCzYt0gYsF+RMGC/In5IaW51vgkhhBBCCCGEEEIIISQkamQOSkIIIYQQQgghhBBCSHFAgZIQQgghhBBCCCGEEBIbFCgJIYQQQgghhBBCCCGxQYGSEEIIIYQQQgghhBASGxQoayG33347unTpgjp16mDHHXfEBx98EHeTSIKZNGkS+vfvj4YNG6JVq1YYOXIkFi9enDfN33//jfHjx6N58+Zo0KABDjroIKxcuTJvmu+//x4jRoxAvXr10KpVK5xzzjmoqKiIclNIgrn66quRSqUwYcKE6u/Yr4hffvrpJxxxxBFo3rw56tati169euGjjz6q/l3TNFx00UVo27Yt6tati6FDh+Lrr7/OW8bq1asxZswYNGrUCE2aNMGxxx6L9evXR70pJCFUVlbiwgsvRNeuXVG3bl1sttlmuPzyy2GuNcl+RWR46623sO+++6Jdu3ZIpVJ47rnn8n5X1Y8+/fRT7LrrrqhTpw46duyIa6+9NuxNIzHi1K/Ky8tx3nnnoVevXqhfvz7atWuHI488EsuXL89bBvsVseJ2vTJz0kknIZVK4aabbsr7nv2KeIECZS3jiSeewFlnnYWLL74Y8+fPx3bbbYe99toLq1atirtpJKHMmTMH48ePx3vvvYcZM2agvLwcw4YNw4YNG6qnOfPMM/Hiiy/iqaeewpw5c7B8+XIceOCB1b9XVlZixIgR2LRpE/73v//hoYcewpQpU3DRRRfFsUkkYXz44Ye4++67se222+Z9z35F/PD7779j4MCByGazeOWVV7Bo0SJcf/31aNq0afU01157LW655RbcddddeP/991G/fn3stdde+Pvvv6unGTNmDD7//HPMmDEDL730Et566y2ccMIJcWwSSQDXXHMN7rzzTtx222344osvcM011+Daa6/FrbfeWj0N+xWRYcOGDdhuu+1w++23C39X0Y/Wrl2LYcOGoXPnzpg3bx4mT56MSy65BPfcc0/o20fiwalf/fnnn5g/fz4uvPBCzJ8/H9OmTcPixYux33775U3HfkWsuF2vDJ599lm89957aNeuXcFv7FfEExqpVeywww7a+PHjq/+urKzU2rVrp02aNCnGVpFiYtWqVRoAbc6cOZqmadqaNWu0bDarPfXUU9XTfPHFFxoAbe7cuZqmadr06dO1dDqtrVixonqaO++8U2vUqJG2cePGaDeAJIp169ZpW2yxhTZjxgxt0KBB2hlnnKFpGvsV8c95552n7bLLLra/V1VVaW3atNEmT55c/d2aNWu0srIy7bHHHtM0TdMWLVqkAdA+/PDD6mleeeUVLZVKaT/99FN4jSeJZcSIEdoxxxyT992BBx6ojRkzRtM09iviDwDas88+W/23qn50xx13aE2bNs27F5533nla9+7dQ94ikgSs/UrEBx98oAHQli1bpmka+xVxx65f/fjjj1r79u21zz77TOvcubN24403Vv/GfkW8QgdlLWLTpk2YN28ehg4dWv1dOp3G0KFDMXfu3BhbRoqJP/74AwDQrFkzAMC8efNQXl6e16+22mordOrUqbpfzZ07F7169ULr1q2rp9lrr72wdu1afP755xG2niSN8ePHY8SIEXn9B2C/Iv554YUX0K9fPxxyyCFo1aoV+vTpg3vvvbf696VLl2LFihV5fatx48bYcccd8/pWkyZN0K9fv+pphg4dinQ6jffffz+6jSGJYeedd8bMmTPx1VdfAQA++eQTvPPOO9hnn30AsF8RNajqR3PnzsVuu+2G0tLS6mn22msvLF68GL///ntEW0OSzB9//IFUKoUmTZoAYL8i/qiqqsLYsWNxzjnnoGfPngW/s18Rr1CgrEX8+uuvqKyszHuYB4DWrVtjxYoVMbWKFBNVVVWYMGECBg4ciG222QYAsGLFCpSWllYPcAzM/WrFihXCfmf8Rmonjz/+OObPn49JkyYV/MZ+RfyyZMkS3Hnnndhiiy3w2muv4eSTT8bpp5+Ohx56CECubzjdC1esWIFWrVrl/Z7JZNCsWTP2rVrK+eefj8MOOwxbbbUVstks+vTpgwkTJmDMmDEA2K+IGlT1I94fiRN///03zjvvPIwePRqNGjUCwH5F/HHNNdcgk8ng9NNPF/7OfkW8kom7AYSQ4mH8+PH47LPP8M4778TdFFLk/PDDDzjjjDMwY8YM1KlTJ+7mkBpEVVUV+vXrh6uuugoA0KdPH3z22We46667MG7cuJhbR4qVJ598Eo888ggeffRR9OzZEwsWLMCECRPQrl079itCSNFQXl6OUaNGQdM03HnnnXE3hxQx8+bNw80334z58+cjlUrF3RxSQ6CDshbRokULlJSUFFTBXblyJdq0aRNTq0ixcOqpp+Kll17C7Nmz0aFDh+rv27Rpg02bNmHNmjV505v7VZs2bYT9zviN1D7mzZuHVatWYfvtt0cmk0Emk8GcOXNwyy23IJPJoHXr1uxXxBdt27ZFjx498r7beuut8f333wPI9Q2ne2GbNm0KisdVVFRg9erV7Fu1lHPOOafaRdmrVy+MHTsWZ555ZrUDnP2KqEBVP+L9kYgwxMlly5ZhxowZ1e5JgP2KeOftt9/GqlWr0KlTp+qx/LJly/B///d/6NKlCwD2K+IdCpS1iNLSUvTt2xczZ86s/q6qqgozZ87EgAEDYmwZSTKapuHUU0/Fs88+i1mzZqFr1655v/ft2xfZbDavXy1evBjff/99db8aMGAAFi5cmHeDMgZGViGB1A6GDBmChQsXYsGCBdX/+vXrhzFjxlR/Zr8ifhg4cCAWL16c991XX32Fzp07AwC6du2KNm3a5PWttWvX4v3338/rW2vWrMG8efOqp5k1axaqqqqw4447RrAVJGn8+eefSKfzh80lJSWoqqoCwH5F1KCqHw0YMABvvfUWysvLq6eZMWMGunfvjqZNm0a0NSRJGOLk119/jTfeeAPNmzfP+539inhl7Nix+PTTT/PG8u3atcM555yD1157DQD7FfFB3FV6SLQ8/vjjWllZmTZlyhRt0aJF2gknnKA1adIkrwouIWZOPvlkrXHjxtqbb76p/fzzz9X//vzzz+ppTjrpJK1Tp07arFmztI8++kgbMGCANmDAgOrfKyoqtG222UYbNmyYtmDBAu3VV1/VWrZsqU2cODGOTSIJxVzFW9PYr4g/PvjgAy2TyWhXXnml9vXXX2uPPPKIVq9ePW3q1KnV01x99dVakyZNtOeff1779NNPtf3331/r2rWr9tdff1VPs/fee2t9+vTR3n//fe2dd97RtthiC2306NFxbBJJAOPGjdPat2+vvfTSS9rSpUu1adOmaS1atNDOPffc6mnYr4gM69at0z7++GPt448/1gBoN9xwg/bxxx9XV1NW0Y/WrFmjtW7dWhs7dqz22WefaY8//rhWr1497e677458e0k0OPWrTZs2afvtt5/WoUMHbcGCBXnjeXPlZPYrYsXtemXFWsVb09iviDcoUNZCbr31Vq1Tp05aaWmptsMOO2jvvfde3E0iCQaA8N+DDz5YPc1ff/2lnXLKKVrTpk21evXqaQcccID2888/5y3nu+++0/bZZx+tbt26WosWLbT/+7//08rLyyPeGpJkrAIl+xXxy4svvqhts802WllZmbbVVltp99xzT97vVVVV2oUXXqi1bt1aKysr04YMGaItXrw4b5rffvtNGz16tNagQQOtUaNG2tFHH62tW7cuys0gCWLt2rXaGWecoXXq1EmrU6eO1q1bN+3f//533sM9+xWRYfbs2cJx1bhx4zRNU9ePPvnkE22XXXbRysrKtPbt22tXX311VJtIYsCpXy1dutR2PD979uzqZbBfEStu1ysrIoGS/Yp4IaVpmhaFU5MQQgghhBBCCCGEEEKsMAclIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIUVAly5dkEqlcNRRR8XdFEIIIYQQpVCgJIQQQghx4cQTT0QqlUIqlcKsWbM8zfv6669Xz3vGGWeE1EJCCCGEEEKKFwqUhBBCCCEuHHnkkdWfp06d6mne//73v8LlxMWbb75ZLZi++eabcTeHEEIIIYQQCpSEEEIIIW4MHDgQm222GQDgmWeewV9//SU134YNG/Dss88CAHr27Im+ffuG1kZCCCGEEEKKFQqUhBBCCCESjB07FgCwdu1aPP/881LzTJs2DRs2bMibnxBCCCGEEJIPBUpCCCGEEAnGjh2LVCoFQD7M2wjvTqfTOOKII0JrGyGEEEIIIcUMBUpCCCGEEAm6deuGgQMHAgBee+01rFq1ynH65cuXY+bMmQCAwYMHo3379gXTPPfcczjkkEPQqVMn1KlTB02aNEG/fv1w6aWX4vfff5dq1/Tp03HEEUegW7duqF+/PurUqYOuXbvioIMOwpQpU/Dnn38CAL777jukUinsscce1fPuscce1fkojX9TpkwpWMemTZtwxx13YI899kDLli1RWlqKNm3aYPjw4Zg6dSqqqqps23fUUUchlUqhS5cuAICff/4Z5513Hnr27ImGDRt6zoUpyqH55JNPYsiQIWjZsiXq1q2L7t2749xzz8Xq1attl7P77rsjlUph9913d1zfJZdcUr0+EcZvl1xyCQBg9uzZGDlyJNq1a4e6deti6623xuWXX17tpDWYPn06hg8fXj1djx49MGnSJGzatEl6X3z44YcYPXo0OnbsiDp16qBjx444+uij8eWXX0rN/8033+DMM89Er1690LhxY9StWxfdunXDUUcdhY8++sh2PusxqKqqwgMPPIA99tgDrVu3RjqdZqVxQgghhHhDI4QQQgghUtxzzz0aAA2AdvPNNztOO3ny5OppH3744bzfVq9erQ0ePLj6d9G/Vq1aaXPnzrVd/q+//qoNGTLEcRkAtAcffFDTNE1bunSp67Tm6Q2WLl2qbbXVVo7z7LLLLtpvv/0mbOe4ceM0AFrnzp21uXPnai1atCiYf/bs2a773mD27NnV882cOVM74ogjbNu1+eabaz///LNwOYMGDdIAaIMGDXJc38UXX1y9PBHGbxdffLE2adIkLZVKCduy8847a+vXr9eqqqq0008/3bbNe++9t1ZRUSFcV+fOnTUA2rhx47T7779fy2QywmWUlZVpTz75pON2TZ48Wctms7btSKVS2oUXXiic13wMXnnlFW3o0KEF848bN85x/YQQQgghZuigJIQQQgiRZNSoUahTpw6A/OrcIozfGzRogAMPPLD6+40bN2Lo0KGYNWsWSkpKMHbsWDz22GN477338Pbbb+PKK69E8+bNsWrVKgwfPhzLli0rWPaff/6JPfbYo9qh2bdvX9x9991499138dFHH+HZZ5/FmWeeiXbt2lXP0759eyxcuBAPPPBA9XcPPPAAFi5cmPdv5MiR1b+vX78eQ4YMqXbkjRw5Ei+88AI++ugjPPXUUxg0aBAA4J133sG+++6LyspK2/2xfv16HHTQQfj777/x73//G2+++SY++OAD3H///Wjbtq3jvrTjwgsvxNSpUzFy5EhMmzYN8+bNw/Tp0zFixAgAOYdgFLzyyiuYOHEidtppJzz66KP46KOP8Oqrr2KfffYBAPzvf//DpEmTcOONN+KWW27BPvvsg2eeeQbz5s3D888/j5122gkA8Oqrr+Lee+91XNeCBQtw0kknoVWrVrj11lvx/vvvY86cOTjvvPNQVlaGjRs3YsyYMbYuyMmTJ+Occ85BeXk5tt12W9x5551444038NFHH+GRRx7BgAEDoGkaLr/8ctxyyy2ObTnvvPPwxhtvYL/99ss7BsZ2E0IIIYRIEbdCSgghhBBSTIwaNaraJfbll18Kp/nkk0+qpznyyCPzfrvgggs0AFqTJk20jz76SDj/d999p7Vt21YDoB1++OEFv5955pnVyx8/frxWVVUlXM7GjRu1FStW5H1ndr+5ORfPPvvs6mn/85//FPxeVVWljRkzpnqaO+64o2Aaw0EJQGvQoIG2YMECx3W6YW4/AO2KK64QtmvYsGEaAC2TyWirVq0qmEa1gxKAdtBBBxW4HysqKrSddtpJA6A1bNhQq1OnjjZhwoSC5WzYsKHaIbntttsK12X8jn8cqSJ36KxZs6qdlf379y/4/fPPP692Tl588cXCvlNZWVntTG3QoIG2evXqvN+tx0DUNwghhBBCvEAHJSGEEEKIB4488sjqz3YuSvP35unXr1+P22+/HQBw+eWXo2/fvsL5O3fujAsvvBAA8NRTT+XlL1yzZg3uvvtuALpz8uabb7bNj1haWorWrVvLbFYBGzduxH333QcA6NmzZ3WORTOpVAp33HEHmjdvDgC47bbbHJd57rnnYrvttvPVHhF9+/bFBRdcIGzXWWedBQCoqKjA3Llzla3Tjnr16uGee+5BSUlJ3vclJSU44YQTAADr1q1Dy5Ytce211wrnHzduHADg008/xR9//OG4vuuvvx5t2rQp+H6PPfbA8ccfD0DPUWl1UV5//fUoLy9Hv379cPHFFwv7Tjqdxq233oqysjKsX78eTz/9tG07ttxyS2HfIIQQQgjxAgVKQgghhBAP7LXXXtWi3yOPPAJN0/J+r6qqwqOPPgoA6NChQ15Rmjlz5lQLTwcffLDjenbbbTcAQHl5OebNm1f9/axZs6oL35x++ukFgpgq5s2bhzVr1gDQC93YradRo0YYNWoUAGDRokX4+eefbZc5ZswYpW08/PDDbcVZs/i7ZMkSpesVseeee6JZs2bC38yi7IEHHohsNus63dKlS23X1bRpU+y///62vx9zzDHVn994442831588UUAwEEHHWS77wCgSZMm6NWrFwA4CryHHnpoaH2QEEIIIbUHCpSEEEIIIR7IZDI4/PDDAeiVsd95552832fOnInly5cD0AW5dDo33DK72dq2bVtQQdv8b5tttqmedsWKFdWfP/744+rPu+66q9qNM/HZZ59Vf95xxx0dpzX/bp7PTIMGDdCtWzc1jfuHrbbayvY3s1i4bt06pesVseWWW9r+1qRJE8/TObW5T58+yGQytr/37t0bpaWlAICFCxdWf79s2TL88ssvAICJEyc69r9UKlXdX839z8q2225r+xshhBBCiCwUKAkhhBBCPOIU5m0X3g0Aq1at8rU+wzEJAL/++mv1Z7/FZWRYvXp19edWrVo5TmsONTbPZ8YsvqmiXr16tr+ZhWGn4j1Rt0VFm92ORyaTqRZozcdDRf+z0rRpU1/LJIQQQggxY//qlRBCCCGECOnduzd69eqFhQsX4qmnnqrO17dhwwZMmzYNgB5i3KNHj7z5zKLT/PnzbUN9rXTo0EFd433gFAosC8OA1eH3eJj730UXXYRDDjlEar769evb/sbjSgghhBAVUKAkhBBCCPHBkUceiXPOOQdr1qzBiy++iIMPPhjPPvtsdUEbq3sSQHUxGQBo2bKlL+GxRYsW1Z9//vlndO3a1Ufr3TGHSK9cudIxNNkcAmyXhzFpGG7Fqqoqx+nMBYqSwsqVKx1/r6ioqHZOmo+Huf9ls9m8NAKEEEIIIXHCEG9CCCGEEB+MGTOm2j02depUALnw7mw2i9GjRxfM06dPn+rP7777rq/1br/99tWf33rrLc/zy7rvzOLV+++/7zjtBx98IJwvyTRs2BAA8PvvvztO99VXX0XRHE8sWLAAFRUVtr9/8skn2LRpE4D849GtWzc0btwYgP/+RwghhBASBhQoCSGEEEJ80LZtWwwdOhQAMH36dHz22WeYOXMmAGDvvfdGy5YtC+YZOnRodQ7CW265paACuAx77LFHdcjtrbfe6jm/Yp06dao/b9y40Xa6vn37VueNfOihh2ydhuvWrcOTTz4JAOjRo0eoeTFVYjhPv/rqK9uCNL/++itmzJgRZbOkWL16dXU1bhEPPPBA9WejjwJ6OPbw4cMBAK+//jq++OKL8BpJCCGEEOIBCpSEEEIIIT4xwrjLy8tx2GGHVYuFovBuQC8Uc+qppwIA/ve//+HMM890DDFeuXIl7rvvvoJlnHjiiQCAefPmYcKECbZCZ3l5eUFhFLOA+O2339quu6ysDMcddxwAvTL35ZdfXjCNpmk49dRTqwv3GNtWDAwaNAgAsGnTJtx6660Fv5eXl+O4447DX3/9FXXTpDjrrLOEod5z5szBPffcA0AXmfv375/3+8SJE1FSUoKqqiocfPDB+PHHH23XUVlZiUceecRxGkIIIYQQFTAHJSGEEEKITw444AA0bNgQ69atw+effw5Ar2q877772s5z2WWXYc6cOXj//fdx8803480338Txxx+P3r17o379+vj999/x+eef44033sArr7yCXr16VQuFBpdffjlmzJiBhQsX4rbbbsPcuXNx4oknolevXigtLcWPP/6It99+G4899hiuuOIKHHXUUdXzdurUCR06dMCPP/6I6667Dh06dED37t2rw9Vbt25dHf580UUXYdq0aViyZAkuueQSLFy4EEcffTTatm2LpUuX4rbbbsObb74JABgwYABOOOEEhXs3XEaMGIHOnTtj2bJluPDCC/Hrr7/iwAMPRJ06dfD555/jlltuwccff4yddtoJ7733XtzNzWO77bbDokWL0LdvX0ycOBE77LADNm7ciOnTp+PGG29ERUUFMpkMbr/99oJ5e/Xqheuuuw5nnnkmFi1ahG222QYnnHACBg8ejNatW+Pvv//Gd999h7lz5+Lpp5/Gzz//jIULF8ZeqIkQQgghNRsKlIQQQgghPqlbty4OPvhgPPjgg9XfjRo1CmVlZbbzlJWVYcaMGTjqqKMwbdo0fPLJJ47Ow0aNGhV8V69ePcyaNQsHHXQQ3nrrLcybN8+TOHjBBRfglFNOwdKlS7H//vvn/fbggw9WC5oNGzbEzJkzsc8+++DLL7/EM888g2eeeaZgeQMHDsQLL7xQVBWdS0tLMXXqVOy9997YsGEDbrzxRtx4443Vv5eUlOCmm27C6tWrEydQ9u7dG6eeeipOPvlkYd8pLS3FQw89hB133FE4/4QJE1C/fn1MmDABf/zxByZPnozJkycLpy0tLc1LC0AIIYQQEgYM8SaEEEIICcC4cePy/rYL7zbTsGFDPPPMM3j77bdx3HHHoXv37mjYsCEymQyaNWuG/v37Y/z48Zg+fbptDsQWLVpgzpw5mDZtGg4++GB06NABZWVlqFOnDrp164ZDDjkEjzzyiLBYz8knn4xnnnkGw4YNQ6tWrZDJ2L+z7tKlCz755BPcdtttGDRoEJo3b45sNovWrVtj7733xn//+1+89dZbRVO928wuu+yCefPmYezYsWjXrh2y2Szatm1bLfyefvrpcTfRluOOOw5vv/02Ro0ahXbt2qG0tBTt27fHkUceiY8//hiHHXaY4/zHH388lixZgksvvRQDBw5EixYtkMlkUL9+fWy55ZY46KCDcNddd+Gnn37C5ptvHtFWEUIIIaS2ktL8ZGcnhBBCCCGEEEIIIYQQBdBBSQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNigQEkIIYQQQgghhBBCCIkNCpSEEEIIIYQQQgghhJDYoEBJCCGEEEIIIYQQQgiJDQqUhBBCCCGEEEIIIYSQ2KBASQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNigQEkIIYQQQgghhBBCCIkNCpSEEEIIIYQQQgghhJDYoEBJCCGEEEIIIYQQQgiJDQqUhBBCCCGEEEIIIYSQ2KBASQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNj4f6Ss92SM/BnFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3, IREth3, 'AE3')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nBma50PudXII", + "outputId": "74947ac3-2873-459c-f41f-a459e2a755c0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(8.08)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "IREth3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eTRv1t1ldZdc", + "outputId": "77da3446-25a5-4391-a3f5-b397d7f45aaa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходные данные:\n", + "[[ 8. 11. 8. ... 7. 4. 9.]\n", + " [ 4. 5. 4. ... 13. 8. 8.]\n", + " [ 3. 3. 5. ... 8. 3. 8.]\n", + " ...\n", + " [ 4. 9. 4. ... 8. 3. 8.]\n", + " [ 6. 10. 6. ... 9. 8. 8.]\n", + " [ 3. 1. 3. ... 9. 1. 7.]]\n", + "Размерность данных:\n", + "(100, 32)\n" + ] + } + ], + "source": [ + "test = np.loadtxt('letter_test.txt', dtype=float)\n", + "\n", + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(test)\n", + "print('Размерность данных:')\n", + "print(test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "JUDXD96Bh7V0", + "outputId": "fba6cef6-a2a2-4add-c768-8cba808d7e55" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n", + "\n", + "i Labels IRE IREth \n", + "0 [1.] [8.21] 8.08 \n", + "1 [1.] [8.11] 8.08 \n", + "2 [1.] [21.57] 8.08 \n", + "3 [1.] [10.96] 8.08 \n", + "4 [1.] [13.73] 8.08 \n", + "5 [1.] [18.86] 8.08 \n", + "6 [1.] [9.99] 8.08 \n", + "7 [1.] [14.7] 8.08 \n", + "8 [1.] [10.12] 8.08 \n", + "9 [1.] [8.5] 8.08 \n", + "10 [1.] [8.54] 8.08 \n", + "11 [1.] [23.98] 8.08 \n", + "12 [1.] [11.08] 8.08 \n", + "13 [1.] [15.61] 8.08 \n", + "14 [1.] [17.03] 8.08 \n", + "15 [1.] [19.87] 8.08 \n", + "16 [1.] [14.7] 8.08 \n", + "17 [1.] [19.34] 8.08 \n", + "18 [1.] [8.91] 8.08 \n", + "19 [1.] [11.21] 8.08 \n", + "20 [0.] [6.66] 8.08 \n", + "21 [0.] [6.11] 8.08 \n", + "22 [1.] [15.71] 8.08 \n", + "23 [1.] [11.59] 8.08 \n", + "24 [1.] [8.59] 8.08 \n", + "25 [0.] [6.51] 8.08 \n", + "26 [1.] [9.] 8.08 \n", + "27 [0.] [6.58] 8.08 \n", + "28 [1.] [10.06] 8.08 \n", + "29 [1.] [15.31] 8.08 \n", + "30 [1.] [19.46] 8.08 \n", + "31 [1.] [16.36] 8.08 \n", + "32 [1.] [22.98] 8.08 \n", + "33 [1.] [9.48] 8.08 \n", + "34 [1.] [8.98] 8.08 \n", + "35 [1.] [16.78] 8.08 \n", + "36 [1.] [11.85] 8.08 \n", + "37 [1.] [16.4] 8.08 \n", + "38 [1.] [9.8] 8.08 \n", + "39 [1.] [16.85] 8.08 \n", + "40 [1.] [13.35] 8.08 \n", + "41 [1.] [15.94] 8.08 \n", + "42 [1.] [16.8] 8.08 \n", + "43 [1.] [21.08] 8.08 \n", + "44 [0.] [6.86] 8.08 \n", + "45 [0.] [6.58] 8.08 \n", + "46 [0.] [6.67] 8.08 \n", + "47 [1.] [16.87] 8.08 \n", + "48 [1.] [8.74] 8.08 \n", + "49 [1.] [15.99] 8.08 \n", + "50 [1.] [17.04] 8.08 \n", + "51 [1.] [9.3] 8.08 \n", + "52 [0.] [5.44] 8.08 \n", + "53 [0.] [8.04] 8.08 \n", + "54 [1.] [17.42] 8.08 \n", + "55 [0.] [8.01] 8.08 \n", + "56 [1.] [19.94] 8.08 \n", + "57 [1.] [10.37] 8.08 \n", + "58 [1.] [13.31] 8.08 \n", + "59 [1.] [13.22] 8.08 \n", + "60 [1.] [16.56] 8.08 \n", + "61 [0.] [6.8] 8.08 \n", + "62 [1.] [20.66] 8.08 \n", + "63 [1.] [17.57] 8.08 \n", + "64 [0.] [6.42] 8.08 \n", + "65 [1.] [19.49] 8.08 \n", + "66 [1.] [18.69] 8.08 \n", + "67 [0.] [6.21] 8.08 \n", + "68 [0.] [6.48] 8.08 \n", + "69 [1.] [8.4] 8.08 \n", + "70 [1.] [15.84] 8.08 \n", + "71 [1.] [9.87] 8.08 \n", + "72 [1.] [14.28] 8.08 \n", + "73 [1.] [8.48] 8.08 \n", + "74 [1.] [13.11] 8.08 \n", + "75 [1.] [10.2] 8.08 \n", + "76 [0.] [6.42] 8.08 \n", + "77 [1.] [8.2] 8.08 \n", + "78 [1.] [10.06] 8.08 \n", + "79 [1.] [16.75] 8.08 \n", + "80 [1.] [11.04] 8.08 \n", + "81 [0.] [5.49] 8.08 \n", + "82 [1.] [9.63] 8.08 \n", + "83 [0.] [5.43] 8.08 \n", + "84 [0.] [5.02] 8.08 \n", + "85 [1.] [23.79] 8.08 \n", + "86 [1.] [10.32] 8.08 \n", + "87 [1.] [28.27] 8.08 \n", + "88 [1.] [9.9] 8.08 \n", + "89 [1.] [9.96] 8.08 \n", + "90 [1.] [8.23] 8.08 \n", + "91 [1.] [13.01] 8.08 \n", + "92 [0.] [4.92] 8.08 \n", + "93 [1.] [17.82] 8.08 \n", + "94 [1.] [10.09] 8.08 \n", + "95 [1.] [19.41] 8.08 \n", + "96 [1.] [16.23] 8.08 \n", + "97 [1.] [13.8] 8.08 \n", + "98 [1.] [8.55] 8.08 \n", + "99 [1.] [21.5] 8.08 \n", + "Обнаружено 81.0 аномалий\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYG+W99vFb2uZdr3fdvTZugA3GgOk2phiHYgMBApgcQkgoSUjBEAJvcgI5kEACIeQkkALhhIRDOYQUCL3aFFNtMCQuFAO2ccPdXm+xt2h39f4xHs1IK2lHo5FmtPp+rsuXR1pp9KxWM5q55/c8TygajUYFAAAAAAAAAD4I+90AAAAAAAAAAMWLgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAMClDz/8UJdeeqkmTpyofv36KRQKxf6tWrXK7+YBAAAABYGAEgAAZGT69OmxEO76669P+Th7WJf4r6SkRP3799f48eP1xS9+UX/+85/V3Nzsqg2Z/rvooouyfxMkPfHEEzrkkEN055136sMPP8yo/UCxu/baa+O2y+985zsZryMX+4HGxkY999xzuuGGG3TOOefooIMO0qBBg1ReXq4+ffqorq5O06dP17XXXqtPPvkky3cBAACYCCgBAEDedXV1qaGhQcuXL9fDDz+sSy65RHvuuaceffRRv5vmSHNzsy666CK1tbVJkoYPH64vfvGLuvTSSzV79mzNnj1bNTU1PrfSveuvv95RCF0ILrrootjvcu+99/rdnLxYtWpV7HceO3as383pJhqN6v/+7//i7vv73/8e25789KMf/UinnHKKrr/+ev3zn//UkiVLtH37dkUiEbW1tWnTpk165ZVXdNNNN2nChAm67LLL1Nra6nezAQAoeKV+NwAAAPR+Z555pvbYY4/Y7a6uLm3dulXz58/XunXrJElbt27VOeeco4cfflhnnXWW43UfccQRmjx5suPHH3nkkc4bnsJTTz2l+vp6SdL++++vhQsXqrKyMuv1AsXg5Zdf1po1a+Luq6+v1xNPPKEvfvGLrtaZi/1AbW2t9ttvP+25556qqalRe3u7Pv30Uy1YsECtra3q6urSHXfcoWXLlum5555TaSmnVgAAuMW3KAAAyLkrrrhC06dP73Z/V1eX7rvvPn3nO99RW1uburq69J3vfEczZ85UVVWVo3Wfeuqpea/y+9e//hVbPu+88wgngQzcd999seXKykq1tLTE7ncbUHq1Hzj00EN16623asaMGZo4caJCoVC3xzQ2Nur666/XbbfdJkl68cUX9Zvf/Ebf//73s359AACKFV28AQCAb8LhsC6++GL98pe/jN23adMmPfbYY/41ygGzelIyuncDcKa5uVn//Oc/Y7dvvfXW2PLzzz+vTZs2+dGsmK997Wu68sortf/++ycNJyWppqZGt956qy6++OLYfX/84x/z1UQAAHolAkoAAOC7b33rW+rTp0/s9quvvupja3oWiURiy+Ewh1OAU//85z+1c+dOSdKee+6pb33rWzr44IMlSR0dHfrLX/7iY+sy87WvfS22vHz5cibKAgAgCxxRAwAA31VUVGi//faL3V6/fr2PrUnOPnGMvYvqxRdf3G2G4FSTsTQ3N+t3v/udZs6cqZEjR6pPnz4aMGCADjjgAF122WV66623HLXF/lqmxYsX64orrtABBxyggQMHKhQK6cwzz8zodzRnRb7hhhti991www0Zz4YejUb16KOP6sILL9Q+++yj2tpa9enTR6NGjdKZZ56p++67Tx0dHY7atGzZMv3nf/6njjzySA0ePDg2m/LQoUN12GGH6eKLL9Z9990XV9UqSWPHjnX0t/JiIiC3bUwmEono//7v//Qf//Ef2muvvdSvXz/17dtXe+65p8477zw9+uijikajSZ977733KhQKac8994zdt3r16pQzWfvB/vf4yle+olAopK9+9atJfx50Q4YMibvd1NTkU0sAACh8jEEJAAACwT6OY2+cFfepp57SJZdcoo0bN8bd39bWph07duj999/XHXfcoS9/+cv605/+5HgMTskIT2+88UZ1dnZ63eyMLVmyRBdeeKEWLVrU7Wfr1q3TunXr9Pjjj+vmm2/WI488ookTJ6ZcV7rfa8uWLdqyZYv+9a9/6d5779X555+vBx54wMtfxREv2zhv3jx94xvf0IoVK7r9bNWqVVq1apX+9re/6cgjj9TDDz8cN/FUIVi9erXmzZsXu/2Vr3xFkvTlL39Z//mf/6nOzk4tWbJEixYtilVVBtkHH3wQW66qquoWWAIAAOcIKAEAQCDYqyaHDRvmY0uSmzx5smbPni3JmBRj2bJlkqQTTjhBEyZMiHusvRpUkv7+97/r/PPPj4VYJSUlOuaYYzRu3Dg1Nzfrtddei/3+Dz74oD799FO99NJLcd3eU/nv//7vWMXj3nvvrcmTJ6uqqkqrVq1SWVlZRr/jWWedpQMOOEBvv/22Fi5cKCn17MjJZkF+9dVXdfrpp6uxsVGSVFZWpiOOOELjx49XWVmZVq1apddff12tra366KOPdNRRR2n+/Pnd3i9J+u1vfxtXyTl48GAdeeSRGj58uEKhkLZv365ly5bpww8/TBoOXnjhhdq2bVuPfytJGc3+7GUb7R566CGdf/75seEDKisrdeSRR2rs2LEKh8P6+OOPNX/+fHV0dGjBggWaOnWqFi5cGLet7Lfffpo9e7aampp0//33S5L69eunCy64wNXv57X/+7//i1V/TpkyRfvss48kqa6uTieddJKee+45SUYVZdADSnOiHNOZZ57JLN4AAGQjCgAAkIHjjjsuKikqKfqTn/wk5ePMx0iKvvzyy2nX+dFHH8U9/vbbb/ekDbly4YUXxl7/nnvuSfvY5cuXR6urq2OPnzx5cvSTTz6Je0xnZ2f017/+dTQcDsced/nll6dcp/29Ki0tjdbW1kYfffTRbo9rbW118+tFf/KTn2T8/m7YsCE6dOjQ2PMuuOCC6Pr167s9buPGjdGzzjor9rgDDzww2tHREfeYSCQSHTx4cOwxN998c7S9vT3p627bti36v//7v9Fbbrkl6c8z+Vtlwss2vvfee9HKysqopGgoFIp+//vfj9bX13d73IoVK6LHHHNM7DVPOeWUpOv79NNPY48ZM2aM21/Rc+PHj0+5jf/lL3+J/Wzo0KHRSCTS4/ryvR9obW2NfvLJJ9H/+Z//ie61116x166rq4uuWbMm568PAEBvxmU+AADgq46ODl1xxRWx2zU1NfrSl77k+PnPPPOMtm7d6vjxP/3pTzVw4MCM2piNn/70p7HJM8aNG6c5c+aotrY27jHhcFhXXXWVQqGQrrrqKknSHXfcoSuvvDJuPMFkurq69MQTT2jatGndflZRUeHRb9Gz//qv/9LmzZslSd/97nf129/+Nunjhg0bpoceekgzZszQSy+9pKVLl+rhhx/WueeeG3vMsmXLYn/To48+WldffXXK1x04cGDcbMr54mUbv/vd76qlpUWS9Otf/1pXXnll0sfttddeeu655zR58mR98MEHevbZZ/XWW29pypQpWfwm+fHmm2/qk08+kWRU1tr/3pJRgVhdXa3m5mZt3rxZzz77rE4//XTH68/FfmDdunUaNWpU2sdMmTJFDz30UI+PAwAA6RFQAgCAvOvq6tLWrVv1xhtv6Be/+IXefvttSVJpaan+93//V4MGDXK8roULF8a6Izvx/e9/P28B5Y4dO/T3v/89dvuXv/xlt3DS7oorrtDdd9+t999/X11dXbrrrrt08803p32Nc845J2k4mU9btmyJja1YV1enW265Je3jS0pKdNNNN2nq1KmSpL/85S9xgZXZRVzqPhFJUHjVxsWLF+ull16SJB1yyCH63ve+l/bxffv21XXXXafzzjtPkvHeFUJAaZ/85pRTTtHgwYPjfl5VVaVZs2bFHnffffdlFFDmez9QWVmpX/ziF/rud7/reh0AAMDCLN4AACDnPve5z8XNHlxSUqJhw4bp7LPPjoWT++67rx577DHNmjXL59Z6580331RbW5skY3zCngKXcDisr33ta7HbL7/8co+vkUm1aa688MILam9vlySdffbZjsbOnDJlivr27StJev311+N+Zq9Ge/nll/Xxxx972FpveNXGZ555JrZ83nnnOZpd+/jjj48tJ753QdTa2qp//OMfsdv2Wbvt7GNlPvnkk9q+fXvO25ZOdXW1Zs+eHft3wQUX6Nhjj1WfPn3U0tKiK664QoceemhGwSgAAEiOCkoAAOC7YcOG6f7773c1WclPfvKTuMkqguTf//53bHny5MmOJtE4+uij454fjUbThlaHHXZYdo30wPz582PLS5Ys0WWXXZbR8+vr67Vz585YYDlq1CgdeeSRWrBggRoaGnTYYYfpq1/9qs466ywdffTRGc1wnitetdH+3r388stavXp1j8+J7p5oRpLWrl2beePz7PHHH9eOHTskSf37908Z1E+fPl0jR47UunXr1N7err/97W+69NJLHb1GLvYD/fv31+23397t/u3bt+uWW27Rf//3f+vf//63pk2bpieeeEInnXSSp68PAEAxIaAEAAA5d+aZZ2qPPfaI3d62bZtWrFgRqzzatGmTjj32WP3zn//Uaaed5lczPbdly5bY8pgxYxw9Z+zYsbHl9vZ2NTU1qaamJuXjg9AF2j4D++uvv+6qqq++vj4WUErS3XffreOPP16bNm1Sc3Oz7rzzTt15550qLS3VwQcfrGnTpmnmzJk64YQTVFJS4snvkSkv2mh/75599tmM21BfX++6/fli7979xS9+MeXYqOFwWOeff35siID77rvPcUCZTwMHDtQtt9yiuro6XXXVVWptbdX555+v5cuXp91WAQBAanTxBgAAOXfFFVfo9ttvj/3761//qrfffluLFy/WQQcdJMkI48477zytWLHC59Z6x5wcR1Jc+JZO4uOamprSPr6ysjLzhnmsoaEh63V0dHTE3Z44caIWL16syy+/PG7czo6ODr3zzju69dZbNXPmTI0ZM0Z//vOfs359N7xoY7bvXWdnZ1bPz7WNGzdqzpw5sdtf+cpX0j7e3v377bff1rJly3LWtmxdccUVGj9+vCTjYsT999/vc4sAAChcBJQAAMA3kyZN0pw5c2LVlc3NzfrGN77hc6u8U11dHVveuXOno+ckPq5fv36etikX7KHqrbfeqmg0mvE/e+WoadiwYfrd736nTZs2ad68efrZz36mU045Ja5K7bPPPtMll1zi22Ql2bbR/t498sgjrt67IHvggQfiQtTjjjsubjzaxH8HHHBA3PPt1ZdBEw6HdcIJJ8Ruv/HGGz62BgCAwkZACQAAfDV06FD9/ve/j92eN2+enn76aR9b5B179+s1a9Y4es6qVatiy+Xl5QURUA4bNiy2vHHjRs/XX1FRoeOOO07XXnutnnnmGW3dulXPPvusjjnmmNhjfv/73/s6WYnbNub6vfNbtgHjAw88oK6uLo9a470BAwbElrdt2+ZjSwAAKGwElAAAwHfmxCKma6+91sfWeOeQQw6JLb/99tuOuuO++eabcc93Mquz1zJ9zSlTpsSW81FFVlZWppNPPlkvvPBCXMXdk08+2e2xfrx/kvM25uK98+t3TvSvf/1L7733Xuz2EUccoSlTpjj6Z04otW7dOr344ot+/Qo92rBhQ2x54MCBPrYEAIDCRkAJAAACwT4D76JFi/TEE0/41xiPHHXUUbEJQbZs2dJjZWhXV5fuueee2O3jjz8+p+1LpU+fPrHlSCTS4+NnzpwZC5TefPNNLV68OGdts6uoqNCMGTNitzdt2tTtMZn+Ll7rqY32SaEeeeSRpL9Dpvz+nU326skDDzxQb7/9thYsWODo38knn5x0PUHS3t4eN77mfvvt52NrAAAobASUAAAgEE488UQdddRRsds33nijj63xRv/+/XXuuefGbv/gBz9IO+nN7bffrqVLl0oyxrf75je/mfM2JjNo0KDY8meffdbj4/fYY4/Y5CfRaFQXXHCBGhsbHb1WV1dX3GznkjEztdNuvWvXro0tDx06tNvPM/1dnPKqjZMnT9b06dMlSS0tLfrqV7+q9vZ2R+ttb29POot3//79FQ4bh/lbtmzxJaSMRCJ68MEHY7d7mhwnkf3xjz76aI+TRXmhoaEho0mHrrvuurhZ2M8+++xcNAsAgKJAQAkAAALjxz/+cWx54cKFeu6553xsjTd+/OMfxybL+fjjjzVz5kytXLky7jFdXV367W9/q6uuuip23+zZs5NOHJMP9i7Jc+bMcTTT9E033aThw4dLkpYsWaLJkyfHVZclWrdunW677Tbtu++++vvf/x73s8cff1z77LOPfvWrX8WNyWnX1tam22+/XQ8//HDsvlNOOSXt7/L44487Dv964mUbf//738c+I3PnztW0adP01ltvpXztjz/+WD/72c80duzYpN3CKyoqYrNLRyIRPfbYY45+p4suuig2WU22nz1zHE7J6HJ+3nnnZfT8M844Izb+6q5du/TQQw9l1R4nXn75Ze2///668847u4XmditXrtRXv/pV/fKXv4zd95WvfEUHHnhgztsIAEBvVep3AwAAAEwzZ87UlClTYuHMz372s7iunsnYgxAnqqqq4oKFXNt777315z//Weeff746Ozs1f/587bvvvjr22GO19957q7m5Wa+99lpcdd+RRx6Z1zYmmjx5skaNGqW1a9dqw4YNmjBhgmbMmKHBgwfHxjc84ogj4qpDR4wYoccff1ynnnqqtm7dqo8++kgzZ87UHnvsocmTJ2vIkCGKRCLaunWr3nvvPX366adp27BixQr94Ac/0A9+8AONHj1akyZNilUfbty4UQsWLND27dtjjz///PPjKnBNp5xyiiorK9XS0qJFixZpv/320/Tp09W/f//Y7zJjxoy4bthOedXGAw44QH/961917rnnateuXXrrrbd05JFHau+999ahhx6qgQMHqrW1VZs3b9aSJUscVYLOmjVLP//5z2Ove++992rcuHEqKyuLPeZXv/pVxr+zU/Zu2dOmTdOoUaMyen5lZaXOOuss3X///bH1fe1rX0v5eK/2Ax999JEuvfRSXXbZZRo3bpwmTpyogQMHqqysTPX19Xr//ff1/vvvxz3n6KOP1h/+8AfHrw0AAJKIAgAAZOC4446LSopKiv7kJz9J+TjzMZKiL7/8suP1P/3003HPfeGFF9K2IdN/tbW1mf/SCS688MLY+u655x5Hz3nyySejw4YN67F95513XnTnzp1p12V/fK48+eST0fLy8pTtvPDCC5M+b9WqVdETTjjB8d9j2LBh0eeeey5uHQ899FA0FAo5en44HI5eeuml0fb29pS/y5133pl2fek+x6l43cZoNBpdtGhR9LDDDnP83o0dOzb673//O+m6duzYEZ0wYULa5yeyf67HjBmT8Xti2rp1a9xn509/+pOr9cyZMye2jlAoFF25cmXcz73eDzzzzDMZraO8vDx6zTXXRHft2uXq9wMAABYqKAEAQKCceuqpOvzww/XOO+9Ikn7605/qhBNO8LlV2TvttNO0fPly/e///q+eeuopvf/++9q6dasqKys1YsQIfe5zn9MFF1wQN6uzn0477TS98847uuOOO/T6669rzZo1am5uVjQaTfu8MWPG6IUXXtD8+fP10EMP6dVXX9XatWtVX1+v0tJSDRo0SOPHj9fhhx+uGTNmaPr06bEJdkznnHOONmzYoDlz5uiNN97Q4sWLtXLlSu3YsUOSVFtbq3322UfHHHOMLrjgAk2cODFtm7797W/rwAMP1B//+Ee99dZb+uyzz7Rr164ef5d0vG6jJB100EF65513NGfOHD322GN64403tH79eu3YsUMVFRUaMmSI9t13X02ZMkUzZ87U1KlTU87YXVtbq4ULF+oPf/iDnn76aX344YfasWNHXsaj/Otf/xrrSl9RUaFzzjnH1XqOP/54DR8+XBs2bFA0GtV9990XN5mW10455RStXbtWc+bM0YIFC7R06VJ9+umn2rFjhzo7O9WvXz8NHTpUBx10kI477jide+65cWOcAgAA90LRbI7MAAAAAAAAACALTJIDAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElAAAAAAAAAB8U+p3A4Kqq6tL69evV79+/RQKhfxuDgAAAAAAAFBQotGompqaNGLECIXDqeskCShTWL9+vUaNGuV3MwAAAAAAAICCtnbtWo0cOTLlzwkoU+jXr58k4w2sqanxuTXORCIRzZkzRzNmzFBZWZnfzQGKGtsjEAxsi0BwsD0CwcH2CARHb98eGxsbNWrUqFjOlgoBZQpmt+6ampqCCiirqqpUU1PTKz/UQCFhewSCgW0RCA62RyA42B6B4CiW7bGn4ROZJAcAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAb0r9bkBvFIlE1NnZ6cvrlpaWqrW11ZfXR3LhcFhlZWUKhUJ+NwUAAAAAACBwCCg91NjYqK1bt6qtrc2X149Go6qrq9PatWsJwwKmpKREVVVVGjp0qMrLy/1uDgAAAAAAQGAQUHqksbFRn332maqrqzV48GBfKua6urrU3Nys6upqhcP03g+CaDSqzs5OtbS0qKGhQatWrdLIkSNVVVXld9MAAAAAAAACgYDSI1u3blV1dbVGjhzpW/ViV1eX2tvb1adPHwLKgKmurtbAgQO1evVqbd26VaNHj/a7SQAAAAAAAIFAiuWBSCSitrY21dbW0rUaKZWUlGjgwIHauXOnOjo6/G4OAAAAAABAIBBQesCckKasrMznliDoKioqJImAEgAAAAAAYDcCSg9RPYme8BkBAAAAAACIR0AJAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElMibsWPHKhQK6d57743dd++99yoUCsX9C4fDqqmp0SGHHKJrrrlGW7ZsSbnOxOem+jdv3rzc/4IAAAAAAADIWKnfDQAkqW/fvjrnnHMkGbOir169WvPnz9eiRYt0zz336LXXXtP48eNTPn/mzJmqq6tL+fN0PwMAAAAAAIB/CCgRCIMHD46rrJSk999/X8cdd5w2bdqk733ve3r66adTPv/qq6/W9OnTc9tIAAAAAAAAeI4u3gis/fffX1dddZUkae7cuWpra/O5RQAAAAAAAPAaASUCbdKkSZKkSCSi7du3+9waAAAAAAAAeI2AEoHW2NgoSSopKdHgwYN9bg0AAAAAAAC8RkCJQDPHnTz55JNVVlbmc2sAAAAAAADgNSbJyZfDD5c2bszpS4Qk1USjCoVC3q20rk565x3v1ueAOYv3XXfdpQcffFBjxozR7373u7TP+dznPpfyZ7W1tdqxY4fHrQQAAAAAAIAXCCjzZeNG6bPPcvoSod3/CtHq1auTBquTJ0/WnDlzVFtbm/b5M2fOVF1dXdKfVVVVedJGAAAAAAAAeI+AMl9ShGdeikqK7q6g9CyozEO7Jalv374655xzJEltbW368MMPtXjxYr399tv61re+pb/97W9pn3/11Vdr+vTpeWgpAAAAAAAAvERAmS956CYd7epSY2OjampqFAoX1vCigwcP1r333ht33yOPPKJzzz1Xf//73zVt2jRdeuml/jQOAAAAAAAAOVNYKVYSv/jFLxQKhfS9730vdl9ra6tmz56tQYMGqbq6WrNmzdKmTZv8ayRcOfvss3X11VdLkn784x+roaHB5xYBAAAAAADAawUdUC5cuFB//OMfNWnSpLj7r7zySj355JN66KGH9Morr2j9+vU6++yzfWolsnHNNddo+PDh2rZtm2699Va/mwMAAAAAAACPFWxA2dzcrPPPP19/+tOfNGDAgNj9DQ0Nuvvuu3Xrrbfq+OOP12GHHaZ77rlHb775phYsWOBji+FGVVWVrrvuOknSb37zG9XX1/vcIgAAAAAAAHipYMegnD17tj7/+c/rxBNP1I033hi7/91331UkEtGJJ54Yu2/ChAkaPXq05s+fryOPPDLp+tra2tTW1ha73djYKEmKRCKKRCJp2xKJRBSNRtXV1aWurq5sfq2sRKPR2P9+tqMn9vfJ3s5Ubf7a176mX//611qxYoX++7//O+7vbbr55pt1zz33pHzN8847TzNmzMiy5dnr6upSNBpVJBJRSUmJ381BDpn7jZ72HwByi20RCA62RyA42B6B4Ojt26PT36sgA8q//e1v+te//qWFCxd2+9nGjRtVXl6u/v37x90/bNgwbdy4MeU6b775Zt1www3d7p8zZ46qqqrStqe0tFR1dXVqbm5We3u7s18ih5qamvxuQlJmANna2hoLgFtbW2M/M+9L5pprrtE3vvEN3X777frGN76hgQMHxv18zpw5aV97woQJKcPpfGpvb1dLS4teffVVdXR0+N0c5MHcuXP9bgIAsS0CQcL2CAQH2yMQHL11e9y1a5ejx4WiZtldgVi7dq0OP/xwzZ07Nzb25PTp03XwwQfrN7/5jR588EFdfPHFcdWQkjR58mR97nOf0y233JJ0vckqKEeNGqWtW7eqpqYmbZtaW1u1du1ajR07Vn369MnyN3QvGo2qqalJ/fr1UygU8q0dSK21tVWrVq3SqFGjfP2sIPcikYjmzp2rk046SWVlZX43ByhabItAcLA9AsHB9ggER2/fHhsbGzV48GA1NDSkzdcKroLy3Xff1ebNm3XooYfG7uvs7NSrr76q22+/Xc8//7za29u1Y8eOuCrKTZs2qa6uLuV6KyoqVFFR0e3+srKyHj8gnZ2dCoVCCofDCof9G9bTrFA024LgCYfDCoVCjj5X6B34WwPBwLYIBAfbIxAcbI9AcPTW7dHp71RwAeUJJ5ygpUuXxt138cUXa8KECfrhD3+oUaNGqaysTC+++KJmzZolSfroo4+0Zs0aTZ061Y8mAwAAAAAAAEih4ALKfv366YADDoi7r2/fvho0aFDs/q9//eu66qqrNHDgQNXU1Ojyyy/X1KlTAzEGIQAAAAAAAABLwQWUTtx2220Kh8OaNWuW2traNHPmTP3hD3/wu1kAAAAAAAAAEvSKgHLevHlxt/v06aM77rhDd9xxhz8NAgAAAAAAAOAIM6kAAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJfJm7NixCoVCuvfee2P33XvvvQqFQnH/wuGwampqdMghh+iaa67Rli1bUq4z8bmp/s2bNy+jtprtuuiii9z9sgAAAAAAAHCk1O8GAJLUt29fnXPOOZKkzs5OrV69WvPnz9eiRYt0zz336LXXXtP48eNTPn/mzJmqq6tL+fPEn4VCIUlSNBr1oPUAAAAAAABwi4ASgTB48OC4ykpJev/993Xcccdp06ZN+t73vqenn3465fOvvvpqTZ8+PbeNBAAAAAAAgOfo4o3A2n///XXVVVdJkubOnau2tjafWwQAAAAAAACvEVAi0CZNmiRJikQi2r59e9bru/7662Pdu6XuY1iuWrWq23N27typa665RuPGjVNFRYXq6up04YUX6rPPPsu6PQAAAAAAAMWOLt4ItMbGRklSSUmJBg8enPX6Dj74YF144YW67777JEkXXnhh3M+rq6vjbjc0NOioo47SmjVrdOyxx+qAAw7Q/Pnzdf/99+uVV17R4sWLVVtbm3W7AAAAAAAAihUBJQLNHHfy5JNPVllZWdbrO/PMM3XmmWfGAsrEcS8TPfbYY5o5c6Zee+011dTUSJLq6+t1/PHHa9GiRfrDH/6ga665Jut2AQAAAAAAFCsCyjw5/PDDtXHjxpy/TjQajevCnK26ujq98847nq3PCXMW77vuuksPPvigxowZo9/97ndpn/O5z30u5c9qa2u1Y8cOV23p27ev7rnnnlg4KUkDBgzQ1VdfrS996Ut64YUXCCgBAAAAAACyQECZJxs3bmTMwjRWr16dNFidPHmy5syZ02M36pkzZ6quri7pz6qqqly36/DDD9fw4cO73b/ffvtJEn9TAAAAAACALBFQ5kmq8MxruaigzIe+ffvqnHPOkSS1tbXpww8/1OLFi/X222/rW9/6lv72t7+lff7VV1+t6dOne96u0aNHJ73frKhsbW31/DUBAAAAAACKCQFlnuSjm3RXV5caGxtVU1OjcLiwJmgfPHhwt/EgH3nkEZ177rn6+9//rmnTpunSSy/Ne7sK7X0EAAAAAAAoNKQvCKyzzz5bV199tSTpxz/+sRoaGnxuEQAAAAAAALxGQIlAu+aaazR8+HBt27ZNt956q2frNWcE7+jo8GydAAAAAAAAyBwBJQKtqqpK1113nSTpN7/5jerr6z1Z78iRIyVJ77//vifrAwAAAAAAgDuMQYnA+8Y3vqFf//rXWrFihX71q1/ppptu6vaYX/ziF93GsLT78pe/rBkzZsRuz5o1S7/61a904okn6vjjj1e/fv0kSbfccosGDRrk+e8AAAAAAACA5AgoEXhlZWW68cYbdd555+n3v/+9rrrqqm4h4vPPP592HQcffHBcQPmzn/1M4XBYjzzyiB577DG1t7dLkq699loCSgAAAAAAgDwioETerFq1qtt9F110kS666KIen/ulL31JX/rSl7rdH41GXbWlT58+uuWWW3TLLbck/XlP7Ro7dqzr1wYAAAAAAICFMSgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaA0kPRaNTvJiDg+IwAAAAAAADEI6D0QDhsvI2dnZ0+twRBZ35GzM8MAAAAAABAsSMl8UBZWZlKSkrU0tLid1MQcE1NTSorK1NZWZnfTQEAAAAAAAgEAkoPhEIhVVVVqaGhgSpKpNTS0qLGxkb169dPoVDI7+YAAAAAAAAEQqnfDegthg4dqlWrVmn16tUaOHCgKioq8h5CdXV1qb29Xa2trXQhDohoNKrOzk41NTWpsbFRFRUVGjx4sN/NAgAAAAAACAwCSo+Ul5dr5MiR2rp1qzZs2OBLG6LRqFpaWlRZWUmFXsCUlZWpf//+Gjx4sEpKSvxuDgAAAAAAQGAQUHqoqqpKo0ePVkdHhzo6OvL++pFIRK+++qqmTZvGGIcBEg6HVVZWRmgMAAAAAACQBAFlDpSWlqq0NP9vbUlJiTo6OtSnTx8CSgAAAAAAABQEBioEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+KciA8s4779SkSZNUU1OjmpoaTZ06Vc8++2zs59OnT1coFIr79+1vf9vHFgMAAAAAAABIptTvBrgxcuRI/eIXv9D48eMVjUZ133336Qtf+IL+/e9/a//995ckXXLJJfrpT38ae05VVZVfzQUAAAAAAACQQkEGlKeffnrc7Ztuukl33nmnFixYEAsoq6qqVFdX50fzAAAAAAAAADhUkAGlXWdnpx566CHt3LlTU6dOjd3/l7/8RQ888IDq6up0+umn67rrrktbRdnW1qa2trbY7cbGRklSJBJRJBLJ3S/gIbOdhdJeoDdjewSCgW0RCA62RyA42B6B4Ojt26PT3ysUjUajOW5LTixdulRTp05Va2urqqur9eCDD+rUU0+VJN11110aM2aMRowYoSVLluiHP/yhJk+erEceeSTl+q6//nrdcMMN3e5/8MEH6R4OAAAAAAAAZGjXrl368pe/rIaGBtXU1KR8XMEGlO3t7VqzZo0aGhr08MMP689//rNeeeUVTZw4sdtjX3rpJZ1wwglavny59t5776TrS1ZBOWrUKG3dujXtGxgkkUhEc+fO1UknnaSysjK/mwMUNbZHIBjYFoHgYHsEgoPtEQiO3r49NjY2avDgwT0GlAXbxbu8vFzjxo2TJB122GFauHChfvvb3+qPf/xjt8dOmTJFktIGlBUVFaqoqOh2f1lZWcF9QAqxzUBvxfYIBAPbIhAcbI9AcLA9AsHRW7dHp79TOMftyJuurq64Cki7RYsWSZKGDx+exxYBAAAAAAAA6ElBVlBec801OuWUUzR69Gg1NTXpwQcf1Lx58/T8889rxYoVsfEoBw0apCVLlujKK6/UtGnTNGnSJL+bDgAAAAAAAMCmIAPKzZs364ILLtCGDRtUW1urSZMm6fnnn9dJJ52ktWvX6oUXXtBvfvMb7dy5U6NGjdKsWbN07bXX+t1sAAAAAAAAAAkKMqC8++67U/5s1KhReuWVV/LYGgAAAAAAAABu9ZoxKAEAAAAAAAAUHgJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4pyIDyzjvv1KRJk1RTU6OamhpNnTpVzz77bOznra2tmj17tgYNGqTq6mrNmjVLmzZt8rHFAAAAAAAAAJIpyIBy5MiR+sUvfqF3331X77zzjo4//nh94Qtf0Pvvvy9JuvLKK/Xkk0/qoYce0iuvvKL169fr7LPP9rnVAAAAAAAAABKV+t0AN04//fS42zfddJPuvPNOLViwQCNHjtTdd9+tBx98UMcff7wk6Z577tF+++2nBQsW6Mgjj/SjyQAAAAAAAACSKMiA0q6zs1MPPfSQdu7cqalTp+rdd99VJBLRiSeeGHvMhAkTNHr0aM2fPz9lQNnW1qa2trbY7cbGRklSJBJRJBLJ7S/hEbOdhdJeoDdjewSCgW0RCA62RyA42B6B4Ojt26PT36tgA8qlS5dq6tSpam1tVXV1tR599FFNnDhRixYtUnl5ufr37x/3+GHDhmnjxo0p13fzzTfrhhtu6Hb/nDlzVFVV5XXzc2ru3Ll+NwHAbmyPQDCwLQLBwfYIBAfbIxAcvXV73LVrl6PHFWxAue+++2rRokVqaGjQww8/rAsvvFCvvPKK6/Vdc801uuqqq2K3GxsbNWrUKM2YMUM1NTVeNDnnIpGI5s6dq5NOOkllZWV+NwcoamyPQDCwLQLBwfYIBAfbIxAcvX17NHso96RgA8ry8nKNGzdOknTYYYdp4cKF+u1vf6tzzz1X7e3t2rFjR1wV5aZNm1RXV5dyfRUVFaqoqOh2f1lZWcF9QAqxzUBvxfYIBAPbIhAcbI9AcLA9AsHRW7dHp79TQc7inUxXV5fa2tp02GGHqaysTC+++GLsZx999JHWrFmjqVOn+thCAAAAAAAAAIkKsoLymmuu0SmnnKLRo0erqalJDz74oObNm6fnn39etbW1+vrXv66rrrpKAwcOVE1NjS6//HJNnTqVGbwBAAAAAACAgCnIgHLz5s264IILtGHDBtXW1mrSpEl6/vnnddJJJ0mSbrvtNoXDYc2aNUttbW2aOXOm/vCHP/jcagAAAAAAAACJCjKgvPvuu9P+vE+fPrrjjjt0xx135KlFAAAAAAAAANzoNWNQAgAAAAAAACg8BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAkAvvvSetW+d3K4DAI6AEAAAAAADw2osvSgceKI0bJ23c6HdrgEAjoAQAAAAAAPDayy8b/7e1SW+95W9bgIAjoAQAAAAAAPDazp3JlwF0Q0AJAAAAAADgNQJKwDECSgAAAAAAAK8RUAKOEVACAAAAAAB4jYAScIyAEgAAAAAAwGsElIBjBJQAAAAAAABea262lgkogbQIKAEAAAAAALxGBSXgGAElAAAAAACA1wgoAccIKAEAAAAAALxGQAk4RkAJAAAAAADgNQJKwDECSgAAAAAAAC9FowSUQAYIKAEAAAAAALzU0mKElCYCSiAtAkoAAAAAAAAvJQaSu3b50w6gQBBQAgAAAAAAeCkxoKSCEkiLgBIAAAAAAMBLBJRARggoAQAAAAAAvJQsoLSPSQkgDgElAAAAAACAl5qb429Ho1Jrqz9tAQoAASUAAAAAAICXknXppps3kBIBJQAAAAAAgJcIKIGMEFACAAAAAAB4iYASyAgBJQAAAAAAgJcIKIGMEFACAAAAAAB4iYASyAgBJQAAAAAAgJcSZ/GWCCiBNAgoAQAAAAAAvEQFJZARAkoAAAAAAAAvEVACGSGgBAAAAAAA8FKyMHLXrvy3AygQBJQAAAAAAABeooISyAgBJQAAAAAAgJeYJAfICAElAAAAAACAl6igBDJCQAkAAAAAAOAlAkogIwSUAAAAAAAAXiKgBDJCQAkAAAAAAOAlM4wsK+t+H4BuCCgBAAAAAAC8ZIaRQ4d2vw9ANwSUAAAAAAAAXunqssLIIUOs+wkogZQIKAEAAAAAALzS0mItDxgglZQYywSUQEoElAAAAAAAAF6xB5F9+xr/Eu8HEIeAEgAAAAAAwCv2ILK6moAScICAEgAAAAAAwCtUUAIZI6AEAAAAAADwSqqActcuf9oDFAACSgAAAAAAAK80N1vL9oCyvV3q6PCnTUDAEVACAAAAAAB4JVUFZeLPAMQQUAIAAAAAAHgl1SQ5iT8DEENACQAAAAAA4BUqKIGMFWRAefPNN+uII45Qv379NHToUJ155pn66KOP4h4zffp0hUKhuH/f/va3fWoxAAAAAAAoCgSUQMYKMqB85ZVXNHv2bC1YsEBz585VJBLRjBkztDNhQ7/kkku0YcOG2L9f/vKXPrUYAAAAAAAUhVST5EgElEAKpX43wI3nnnsu7va9996roUOH6t1339W0adNi91dVVamuri7fzQMAAAAAAMWKCkogYwUZUCZqaGiQJA0cODDu/r/85S964IEHVFdXp9NPP13XXXedqqqqkq6jra1NbW1tsduNjY2SpEgkokgkkqOWe8tsZ6G0F+jN2B6BYGBbBIKD7REIDrbH3Ao3Nalk93JHRYVCffpYtxsaFOV9h01v3x6d/l6haDQazXFbcqqrq0tnnHGGduzYoddffz12/1133aUxY8ZoxIgRWrJkiX74wx9q8uTJeuSRR5Ku5/rrr9cNN9zQ7f4HH3wwZagJAAAAAABgd/Dtt2vMCy9Ikl767W81ZOlSHfjnP0uS3v3e97Ru+nQfWwfk165du/TlL39ZDQ0NqqmpSfm4gg8ov/Od7+jZZ5/V66+/rpEjR6Z83EsvvaQTTjhBy5cv1957793t58kqKEeNGqWtW7emfQODJBKJaO7cuTrppJNUVlbmd3OAosb2CAQD2yIQHGyPQHCwPeZWyVe+ovA//iFJinz0kULz5qn0W9+SJHXecYe6LrnEz+YhYHr79tjY2KjBgwf3GFAWdBfvyy67TE899ZReffXVtOGkJE2ZMkWSUgaUFRUVqqio6HZ/WVlZwX1ACrHNQG/F9ggEA9siEBxsj0BwsD3mSEtLbLGsf3/JFsqUtLaqhPccSfTW7dHp71SQAWU0GtXll1+uRx99VPPmzdOee+7Z43MWLVokSRo+fHiOWwcAAAAAAIoWs3gDGSvIgHL27Nl68MEH9fjjj6tfv37auHGjJKm2tlaVlZVasWKFHnzwQZ166qkaNGiQlixZoiuvvFLTpk3TpEmTfG49AAAAAADotewhZGVlfEC5a1f+2wMUgIIMKO+8805J0vSEgWXvueceXXTRRSovL9cLL7yg3/zmN9q5c6dGjRqlWbNm6dprr/WhtQAAAAAAoGiYAWVVlRQOU0EJOFCQAWVP8/qMGjVKr7zySp5aAwAAAAAAsJsZQlZXG/8TUAI9CvvdAAAAAAAAgF7DDCHNYJKAEugRASUAAAAAAIBXCCiBjBFQAgAAAAAAeKGry5oIh4AScIyAEgAAAAAAwAv2WbrNYLKy0rqPgBJIioASAAAAAADAC/YA0pwkJxw2ZvRO/DmAGAJKoJhEo363AAAAAAB6L3sAae/abS4TUAJJEVACxeLOO6WhQ6XbbvO7JQAAAADQO6UKKKmgBNIioASKxa9+JW3dKv3yl363BAAAAAB6p+Zma5kKSsAxAkqgWGzfbvy/dStdvQEAAADA1NgorVvnzbp66uK9a5cx0zeAOASUQDGIRqWmJmO5o0NqafG3PQAAAAAQBDt2SGPHSqNHS/PmZb++ngJKSWptzf51gF6GgBIoBq2tUmendXvHDt+aAgAAAACBsWCBVF9vFHU880z260s2i7cUH1DSzRvohoASKAZm9aSpocGfdgAAAABAkNjDwsZGb9eXqoKSgBLohoASKAaJASUVlAAAAAAQHxZ6UchBQAm4QkAJFAMqKAEAAACgu127rGUvzpN6msVbIqAEkiCgBIoBFZQAAAAA0B0VlEAgEFACxYAKSgAAAADojoASCAQCSqAYUEEJAAAAAN153cWbWbwBVwgogWJAQAkAAAAA3VFBCQQCASVQDOjiDQAAAADd2cPCpiapszO79TFJDuAKASVQDKigBAAAAIDuEsPCxHOnbNZnDyWrqlK/JgACSqAoUEEJFK4dO6S775aWL/e7JQAAAL2PfQxKKftzJTN8DIWkykrrfioogbQIKIFiQAUlULh+8APpG9+QZs6Uurr8bg0AAEDvkhgWNjZ6s76+fY2Q0kRACaRFQAkUAyoogcL1xhvG/ytXZn/ADAAAgHiJYaFXFZT2QDLxdmLVJgACSqAoUEEJFKZoVFqzxrrNxQUAAABv5aqLd7qAkgpKoBsCSqAY2GeSkwg5gEJRXx9/AMu2CwAA4C2vKyjNcy8CSiAjBJRAMUisoGxuljo6/GkLAOdWr46/TUAJAADgLS8Dys5OqbXVWCagBDJCQAkUg8SAUiLoAAqBvXu3xHYLAADgNS+7eNvXRUAJZISAEigGBJRAYUoMKJkkBwAAwDvRqLcVlPZ1VVfH/6yszPiX+DgAkggogeKQLKBkohwg+OjiDQAAkDutrUZIaedVQJlYQWm/j4AS6IaAEujtotHuk+RIBB1AIaCLNwAAQO4kdu+WCCgBnxBQAr3dzp3drwpKVFAChYCAEgAAIHeSBYXZHG/ZC0MIKIGMlLp5UuPuMbBqamqyevHm5ma99NJLkqQzzjgjq3UBSCFZ926JoAMoBHTxBgAAyB2vA0oqKAHXXAWU/fv3Vzgc1pIlSzRx4sRuP1+/fr2uvfZahUIh3X333SnXs3r1ap155pkKh8Pq6Ohw0xQAPbEHlGVlUiRiLFNBCQRbW5u0cWP8fQSUAAAA3kkWFGYzKaHTgLKjQ2pvl8rL3b8W0Mu47uIdTdZldLf6+nrde++9uvfee7NeF4As2QPKPfawlgk6gGBbt677fWy3AAAA3snlGJSJs3hLUlVV8scCYAxKoNezB5SjRlnLVFACwZbYvVvK7oo+AAAA4vnVxTvVawNFjIAS6O3sAeXIkdYyASUQbIkT5EhUUAIAAHgpVRdvt708nU6SIyWv3gSKGAEl0NulqqAk6ACCjYASAAAgt5KFhF1d8UFjJqigBFwjoAR6OyoogcJEQAkAAJBbqUJCt8dcBJSAawSUQG9nDyjr6qSSEmOZoAMINvsYlHvvbfyfTZcjAAAAxLOHhP36WcteBJTJJskhoARSIqAEejt7QNmvn9S/v7FMBSUQbGYFZXW1NHassZxNlyMAAADEs3fxHj7cWqaCEsg7AkrkBhU+wZEqoKSCEgiuaNQKKEePlmprrZ+x7QIAAHjDHhKOGGEtE1ACeZdVQBkKhbxqB3qL5mZp8mRp0iRp0ya/WwOpe0BpBh07dhAkA0G1ZYvU2mosjx4t1dRYPyOgBAAA8IbXAWUms3gTUEIyqni7uvxuRSCUZvPkAw44IOXPzPCyxBzvDsXhqaekhQuN5X/8Q7r8cn/bg9QVlJ2dxs4w2RcnAH/ZJ8gZM0bq08e63diY//YAAAD0Rqm6eLs93qKCEpk69liV/vvfOrlfP6NIoYhlFVBGqb5Coq1brWUqKIMhVQWlZFRRElACwWMPKEePltrarNtUUAIAAHjDHhJ6OQZlKBR/gdlEQIlEDQ0KRaNG78Yi76XsKqCcNm0a3buRnH1Hvm2bf+2AJVUFpWQElHvske8WAeiJfQbv0aOlzZut2wSUAAAA3sjVGJTV1cnDJgJKJNo9eW1HVZXK/W2J71wFlPPmzfO4Geg1CCiDxwwoy8qkigom2wAKARWUAAAAuZerWbxT9VIjoIRdNBr7rEX69i36gJJZvOEtAsrgMQPKfv2M/xMrKAEET+IYlFxYAAAA8J49JKyrs5ZzFVBWVSV/bRSnXbukjg5JRkBZ7Ago4S37YMIElMGQGFASdADBZ3bxDoeN7kZstwAAAN4zQ8KqqvhCjmxn8aaCEk7YPmcElAEIKHft2qVf//rXfjcDXqGCMniooAQKj1lBOWKEMTxDTY31MwLK3m/TJumEE6SvflXq7PS7NQAA9F72isdsLwh3dlrD8jgJKO3dy1GcbOfjHfbq2iLlW0DZ1NSkm266SWPHjtV//ud/+tUMeM2+I9++3b92wNDRIbW0GMtUUAKFoaVF2rLFWB4zxvjfvt3aK9XRO91+u/TSS9IDD0ivv+53awAA6L3MkLBvX2PW7bIy47ab8yR7RSQVlHCCCso4ribJycb27dt122236Y477lBDQ4Oi0Sgzgvcm9h35rl1Sa6uxo4c/zC4GEhWUQKFInCBH4sJCsXn3XWt50yb/2gEAQG9n7+IdChnHXFu3Zh9QVlcnf0xlpfE60SgBJeLOxyNUUGZXQbl69Wp997vf1cSJE9WvXz8NHDhQhx56qG6++WY1JGzQzc3N+slPfqKxY8fq5z//uXbs2KFoNKrBgwfrxhtvzOqXQIAk7sjp5u0vs3u3lDygJOgAgoeAEkuWWMtUzAIAkBvRaHwFpWQdc+WqgjIUsibKIaAEFZRxXFdQzp07V7NmzdLO3RtVNBqVJC1evFiLFy/W/fffr5dffll1dXV64403dP7552vt2rWxx+2xxx76/ve/r29+85uqrKz04FdBICQLKPfYw5+2IHlAaQ86qKAEgidxBm/JuNpeWmoM20BA2btt2yZ99pl1m4ASAIDcaG01Qkqpe0DZ2Gj8LJPenvbea+nCpr59jXCSgBL2MSgJKN1VUG7ZskXnnXeempubFY1GFY1G1bdvX9XW1sZuf/zxx5o9e7ZeffVVnXjiibFwcs8999Qf//hHrVy5UldccQXhZG/S2RkfiElUUPqtpwpKAkogeMwZvCWrgtLsciQRUPZ2ixfH3yagBAAgN+wBoVnVaE5MaB/L3836egooEx+P4kQFZRxXAeWf/vQnbd++XaFQSOecc46WL1+upqYm1dfXa/369brsssskSY8//ri+8pWvqK2tTdXV1fr973+vjz76SJdcconKzMFn0XskhpMSAaXfkgWUzAYMBFuyLt4SAWWxIKAEcu/Xv5bOOSd+fwug+CQLFLMZVoeAEpliDMo4rrp4z5kzR5J05JFH6h//+Efcz+rq6vS73/1OTU1Nuu+++7Ru3Tr1799fr732mvbff//sW4zgSrYDJ6D0V7KAsrTUGLS5uZkKSiCIknXxlqyLCw0NmXc5QuEgoARya9066fvfN5b79pXuu8/f9gDwjzn+pJQ6oBw+3Pn6nEySY3+tlhapq0sKZzU1CAoZFZRxXG0Jy5YtUygU0qWXXpryMd/97nclSaFQSN/97ncJJ4sBAWXwJAsoJSqxgCAzA8ra2viKZ3O7ddPlCIWDgBLIrfXrreUXXrDGnwNQfJJ18c5nBaUUH5Ki+FBBGcdVQFlfXy9JGjduXMrHjB8/PrZ87LHHunkZFBoCyuBJFVCa41BSQQkES1eXtHatsWzv3i3FHzATWvVOkYj0wQfx9/G3Brxl36bWr5c++cS/tgDwl99dvBOfg+JDBWUcVwFlJBKRJPWzBx4Jqm0lzXV1dW5eBoUm2UkUAaW/eqqg3LXLOCEGEAybNknt7cayvXu3lN0BMwrDsmXW39/E3xrwVuI29fLL/rQDgP+cdPHORCazeJsIKIubfRZvKijdBZSZCjFOVnGggjJ4eqqglDj5BYIk1QQ5EgFlMUjs3i1RQQl4LXGbIqAEipdfXbztQRQBZXHb/RmL9u2raKmrKWJ6FUZjhXeS7cC3b89/O2AhoAQKy+rV1jIBZfFZsqT7fQSUgLcS95/z5jEOJVCs6OINv5kVlPbPXRHLKqK9+OKL1ddBP/meHhcKhfTiiy86ft2bb75ZjzzyiJYtW6bKykodddRRuuWWW7TvvvvGHtPa2qr/9//+n/72t7+pra1NM2fO1B/+8AcNGzbM8esgQ1RQBk9PXbwlxqEEgiTVDN4SAWUxsFdQ1tYaf2cCSsBbidvUpk3Shx9KEyf60x4A/vG6i3ems3gntgHFx/yMEVBKyjKgfOedd9L+3Ozane5x0Wg04y7gr7zyimbPnq0jjjhCHR0d+tGPfqQZM2bogw8+iAWhV155pZ5++mk99NBDqq2t1WWXXaazzz5bb7zxRkavhQwQUAaPkwpKAkogOOjiXdzMgHLQIGmvvaSFC439eFeXFKbTC+CJZPvPl18moASKUU9dvDO9SEgFJTLR0REbtzRKQCkpi4Ay6mNXiOeeey7u9r333quhQ4fq3Xff1bRp09TQ0KC7775bDz74oI4//nhJ0j333KP99ttPCxYs0JFHHulHs3s/+wFfaamxwW3fzomVn5xUUBJ0AMGRrot3TY21zHbb+2zaZPyTpIMOsr43o1Hj5CXNxIQAMpAscHj5ZWn27Py3BYC/kgWK2RxvEVAiE/bvI3sBURFzFVB2dXV53Y6sNOzecQwcOFCS9O677yoSiejEE0+MPWbChAkaPXq05s+fnzSgbGtrU1tbW+x24+4PSyQSic1aHnRmO/1qb0l9fWxQ0+iYMQqtWCF1dSmydas0YIAvbSp2JY2Nsb9JpKIiNmN3uF8/ley+v2PbNkUL5DNeSPzeHlGYSlevVkhStLRUHYMHx7ZZSQr17Rv70u6sr1cXny1HCmVbDL37rvX3PfBAhVavtvbf27ZJffr41TT0Bh98YITco0b52owgbI9xx6vhsEJdXYrOm6eOtjYuqKOoBGF79Fu4sdE6J6qoMM6JqqpUtvu+rvp6dWbw/pQ0NVnf3eXlccdxdqE+fWLf+R2NjZyLFastW6zP2u4hAXrr9uj09yr4aYK6urr0ve99T0cffbQOOOAASdLGjRtVXl6u/gkp9LBhw7Rx48ak67n55pt1ww03dLt/zpw5qiqw6d7nzp3ry+tOWb5cdbuXt1RXa+ju5VceeUQ7hw/3pU3F7nPr16tGUkd5uZ6ZMyd2/x4rV+rw3csfLliglUOHJn1+EFRu3qyS9nY1jxzpd1Nc8Wt7RGE6ZeVKlUvaNXCgXnj++bifDVi2TNN2L69avFjvPfNM3ttXyIK+LY579FHtv3t5cTSqwY2NMmtoX33qKTX7HCyhcA1aulTHXHedOktL9cL//I9aBw/2u0m+bo9Hrlwpc0T6bfvtp8Hvv6/Qtm16/X/+R41jx/rWLsAvQf9+zKUDly3TXruX31i0SDuam1XS0qLTdt+3beVKvZnB8dbRa9fK3MM+99pr6iovT/q4kZ98osN2L3+4cKFWMk9GUapduVLTdy+v3d3Vu7duj7scjrVa8AHl7Nmz9d577+n111/Paj3XXHONrrrqqtjtxsZGjRo1SjNmzFCNvcw7wCKRiObOnauTTjpJZWVlPT/BYyX//d+x5cGHHx4bS2v6gQcqOnly3tsDqfSKKyRJJf3769RTT43dHyopkX79a0nSxOHDNcH2s0D5+GOVnnuuQm1t6njpJUWPOcbvFjnm9/aIAtTcrLLdwzJU7rtv3DYryZg05+qrJUl7Dhyo0UHdbgOmULbFkr//PbZ84PnnK/x//ye99JIk6biDD1Z0yhS/moYCF377bUlSSUeHTigvV9THfUcQtseSm2+OLQ+44ALphz+UJE3r7FQX+1UUkSBsj34reeSR2PJRJ55ojEUbjSpaUqJQZ6cGlZV1Px5Lt76f/lSSUZ198he+IKWYayMUiUi33SZJmjhmTHDPxZBToXnzYssjJ07UEqnXbo+NDsdzLeiA8rLLLtNTTz2lV199VSNt1VV1dXVqb2/Xjh074qooN23apLq6uiRrkioqKlRRUdHt/rKysoL7gPjWZvNDV1GhsO3vUdrQIBXYe9hr7A47Qv36xX8mBg2KLZY0N6skqH+fhx+Wdg+9UPr889LnPudzgzJXiPsQ+GTDhthieMwYhRM/N7aqp3BTU/efI63Ab4tLlxr/l5aq7KCDpCefjP2odNcuvkfhnu2koLS+PhCfJV+3R3N87r59VTJzZiygLHn1VZXYihWAYhH478dcammJLZb172/tH2tqpPp6hRsbMzve2l0lFqquVlmK6klJcfMBlLS2BvdcDLllG380vHu4wt66PTr9nVwFlD/dfWXASz/+8Y8dPzYajeryyy/Xo48+qnnz5mnPPfeM+/lhhx2msrIyvfjii5o1a5Yk6aOPPtKaNWs0depUT9sNG3MQ4dpaafcGJomZvP1kHoQnTq5QKLN427ql66OP/GsHkA/2GbzHjOn+cya36r3a2qRly4zlCROkiorsZhEF7Ozf81u3+taMwDD3nzU10oEHGhdtt22TXnlF6uyUSkrSPx9A72HvdmqfuKa2Vqqvdz9JTroJchJ/ziQ5xcv+/cws3pJcBpTXX3+9QinKld3KJKCcPXu2HnzwQT3++OPq169fbFzJ2tpaVVZWqra2Vl//+td11VVXaeDAgaqpqdHll1+uqVOnMoN3LpknULW1cRV6BJQ+aWuzBmZOF1AGNejYsUN66y3rNgElert0M3hLUnW10VUoGg3udgt3PvxQ6ugwlg86yPjfPrwMASWyUV9vLW/Z4l87gsJ+vBoOS8cdJz3yiHHcsXixdOihvjYPQB7Zw0H7vBNmWJTp8dbucQQJKOGI7fMVJaCUJLmeqi4ajXr2L1N33nmnGhoaNH36dA0fPjz27++28Ztuu+02nXbaaZo1a5amTZumuro6PWIbYwIei0YJKIPGrJ6UugeU9h1gUCsoX3zRqGQwLV9uncADvZG9gjJZQBkKWaEVAWXvsnvMZkkElPAeAaWls9M6PjK3MfvwMS+/nP82AfCPGQ6GQlJlpXW/ea7U3i61tma+PgJKOEEFZTeuKihf9vnL20mo2adPH91xxx2644478tAiqLlZ6uoylhMDyu3b/WlTsUsXUFZWGmOsRCLBDSjt3bslo62rVknjxvnSHCCtaNSo+B06VNprr54fn0xPXbwlY//a0EBA2dsQUCKXCCgtZnWTZJ0MJgaU/+//5a89Dz0k/eUv0pVXGpWcAPLL7OJdVRU/oU3isDp9+vS8ro4OI9CUCCjhjP14vn//+O/rIuUqoDyOL1Aksm9cVFAGQ7qAMhQy/k5btwYz6IhGpeef737/xx8TUCKYHn5Y+o//MA44ly2TbBOFOWYPKEeNSv4Y84CZwKp3IaBELhFQWuzbkrmNTZxoXFzavFl67TUjZCjNwzyiXV3SN79pXCh+7jnpiSekGTNy/7oALGY4aO/eLXX/Dh42zPm6JGNYnnTsr0dA6Z3OTum3vzX24ZdfnnIW9cCwFQpFd0/MVOxcd/EG4hBQBk+6gFKyxqEMYgXlxx9b4/GFbbspL8eh3LVL+vnPjeoFIFuPP278v3OncZLphvmZHzgw9YGtGVC2tlpX6VHYolEroBw2zDoJIqCEVwgoLYnHq5JxAjt9urHc2Cj9+9/5aUtzs3UM1tYmfeEL0ksv5ee1ARhSdcl2MzGhPWikgtIfzzxjVMFfcYX02GN+t6ZniRWUIKCERxIP+GpqrKvPBJT+6CmgtA/+7GIs2Jyyd+8+6yxr2cuA8ve/l/7rv6Rzz5VWrvRuvShOixZZy26GQenslNatM5ZTde+WmMm7N1q/3vqeNKsnJQJKeKO11Qi/TNu2xY/vXGySVVBK/oxDmbgPb22VTj9devXV/Lw+AKuLd74DytJSqbw8vg3I3gcfWMvPPutfO5xiDMpuCCjhjcSAMhQyqoAkAkq/OK2g7OqKH5MpCOzduy+/3Fr2MqB84w3j/2iUGcKRnZYWo1u3ad68zEP/DRus0CDZBDkmAsrex969e9Ika9kenvC3hluJ3cWi0eIeGzxZBaXkT0BpPzEtKTH+37VLOvVU6xgFQO5Eo/FjUNq5Od6yn0/1FFDaH0MFpXc2b7aW583zrRmOmZ+tkhJnn5kiQEAJb9h33OZJldnNm4DSH04rKKVgnfy2tVknB3V10rRp0uDBxm0vg8T337eW+YwiG++9F1+RtHVr/OfLCbN7t0RAWWySjT8pxe+3qaCEW8nGsyrmbt6pKij32UcaPtxYfu01Y2K+XLPvw7/9bSOYlIyw4pRTpAULct8GoJi1tFgXlPNdQWl/DAGld+zfb598YhQABJl5ocos8AIBJTyS7Iq0GVDu3BnfvQj54bSCUgrWOJRvvmldzZwxw9hZ77uvcXvDBm9O1HfujO/WTUCJbNi7d5syrcBxMoO3RFVdb5QqoCwrsyo6CCjhFgFlvFQVlKGQVUW5c6f0zjv5bcvQodI//2lNktPUJM2cmZ92AMXK3rWagLJ3sFdQStIrr/jTDqfMzxbjT8YQUMIb6QJKiQDID5kElEEKOuzdu2fONP43A0rJuBqWrQ8/jL/N5xPZ8DqgpIKyuCxZYvxfXi5NmBD/MzOQJqCEWwSU8VJVUEr57+adOPZYnz7GpA7HH2/c19gonXRS/ibtAYpNukAx24Cyp1m87a+5c2fw5gMoVInfb0EOKKPR+ApKSCKghFcIKIMnky7eQaqgtAeUJ51k/G8PKL3o5p3Y/Xbr1uzXieJlP3k0t7VXXjHGd3XKTRdvQqvC19Ji7dMmTjSqJu0IKJGtZN/vxRxQJhuSyJTvgDLZ7K2VldITTxjD20jG3++kk6SlS3PfHqDY2ANFL8agdFtB2dkptbc7ew2kV0gVlC0tUkeHsUwFZQwBJbxhP3kyd+jmJDmSPwHlww9L110XrPAtnwqxi/emTVY12qGHSkOGGMu5DigJ0OFWZ6dVAbfnntIJJxjL27dndkLptIs3FZS9y/vvW0G2vXu3yR5QUl0BN6igjJfseNW0117SqFHG8htv5H54olTdzfv2lZ5+Wjr6aOP2tm3Gd4t9dloA2fO6gtLtJDmJbYE70Wj377cPP+weWgYFM3gnRUAJbwStgnLVKuncc6Ubb5R+97v8vnZQFOIkOXPnWstm927J+4DyvffibxNQwq0VK6yDyoMPdl+BYwaU5eXGWGSpBHG7hXupxp80mQFlV1f8WFmAUwSU8dJVUNrHoWxpkd5+O7dtsZ+cJlbPVFdLzzwjHXmkcXvLFqPr97JluW0TUEyCMgZl4nPhTlNT8gtLr76a/7Y4kayKHgSU8EhPAeX27fltz7vvWlUpmc6m21sUYgVlsvEnJaOqoaTEWKaCEkFi7959yCHxAeW8ec7XY3bxHjVKCqf5aiag7F2cBpQS3bzhDgFlvHQVlJI0fbq1nOtu3qkqKE01NdJzz0mHH27c3rTJCCm9GIsbQPou3m6+fwko/WX/brPnEEHt5k0FZVIElPBG0Coo7SFWUMu6c63QKii7uqwKyupqaepU62fl5Ub3WUn6+OPsujo2NcV3p5UYgxLu2SfIOfhgaf/9rX3fK68YXcB70tBgHfymG39SCt52i+zYA8pJk7r/nIAS2SKgjJeuglLK7ziUPQWU5v1z5hgXwCRpwwbp1FOtccsAuJcuUOzXz6iqlqigLBT2c/7TT7cu+Ac1oKSCMikCSnjD3MDKyoxZCKXgBJSbNuX3tYPCDChDoeRfkkGroFyyxPpbfe5zRihpZ3bz3rVL+uwz96+TbAwnKijhVmJAGQ5bFTg7dsQHUKk4HX9SIqDsTaJR6/MxYoQ0eHD3x9gDFP7ecIOAMp4Z9IdCyWfZHTvW+CdJ8+dLra25a0u6Lt52AwYYF3AnTjRuL1/efagaAJlL18U7HLYKPHI9i3fic+GO/btt3DhjPgPJGBM+iMUoVFAmRUAJb5g77tpa62pTUALKYq+grK62/iZ2QQs65syxlu3du01ejUOZrMt/S4vxD8iU2cV70CBp5EhjOdMKHKczeEsEVr3JmjXW3zBZ926JCkpkz34CZIbgxRxQmttcTU3yYyPJ2oe3tRkhZa7bYrYnnUGDjIogU7LgGUBm0nXxlqxzpVxVUNpfk4Aye/Zz/iFDpOOOs26/9lr+29MTKiiTIqCEN+wBpcmvgDIajQ+wtm2TIpH8vX5QmAFlsu7dUvAqKO3jT86Y0f3nXgWU9qoD+3tAFSUytXGjVfV78MHWyW6m41DaKygJKItHT+NPSvHfqQSUcMMMsvr0sS6ibN1avLPCm9tRumqVfHXzNo+9+vaVSkt7fnzQjtuAQtdToJhpQMks3v6yB5RDh8YHlEHs5k0FZVIElMheNBp/RdrkV0C5ZUv3A7dirBboKaAMUtCxc6f0+uvG8p57GmX5ifbZx1r2qoLy2GOt5SCW/iPYErt3m/bbz5qJ+9VXex4rLJMu3iUlVrchAqvCtmSJtUwFJXLFDCgHDDAqSiRjn1SsAVey49VE+QoozbY4rZwhoAS8la6Lt2SFRi0tzopdshmD0t4WuGM/3x8yxDjPM4sHghhQUkGZFAElsrdrlzURhD39Ly+3TqTzGVAmC6+KrZt3NGpdxUsVUJaUWD/z+0D3lVek9nZjeebM5N2uvO7iPWCAMaGJiQpKZCpxBm9TKGSNQ9nYGP+4ZDLp4i1lfkUfweSkgpKAEtlKFlBKxXnhtr3dGlMyXbXKyJHWhdK33spdcJCs91E6AwZYy34ftwG9gdMu3pKzYy4myfFXYgVl//7W8dXixcEbGoMKyqQIKJG9dLMQmlWUfgeUxTZRzq5dxqzYUuqAUrKu1vh9oNtT925JqquzfpePP3b3Ojt2WBPsHHBA/KQUBJTIVKoKSimzbt72CspRo3p+XQLK3sEMKPv0kcaPT/4YAkpkIxKxTnoJKOO3oZ7GfDT34ZGI9Oab3rfF/rdxemJKBSXgLaddvKXMAsrS0u6TfSZDQOmtxApKyermHY1avfWCggrKpAgokT0nAeX27fkb74iA0ureLaUPKIMSdJgBZUmJdPzxyR8TCllVlKtWuZtZ0969e//9/Z3ICYXPrIzs0ye+wleyKiilnrsImgHl0KFSZWXPr2tutzt39tx9HMG0c6cxE69kXCxJNf4cASWyYQ+xCCjjt6GeQsFcd/O2t4Uu3oA/nHbxljILKPv2TT0Jlx0BpbfMCsqyMutvF+RxKKmgTIqAEtlLd8BnBkCdnfkLwZYt635fsXXxdhpQmge7LS1WF+t8W73aCpWnTk2/gzZDoGjUOrnPRLqAkjEokYmmJuszeOCB3QOmffc1qn4lY+bAVGMXRSLS+vXGspPu3RITp/QGS5daF+0mTUr9OAJKZMPenY2AMrMKykwuMrmR7uJ+KgSUgLd6qqDMdLx+e0DpBAGlt8zvtSFDrIDYPt9A0AJKN98DRYCAEtlLt3ENHGgt56tCjQrKzCsoJf+qKOfMsZZTde82ZTsOJRWU8Io9YErs3i0ZB0ZmBU5zs/Tuu8nX89ln1nAMTgPKIE1wBXecjD8pEVAiO/aAsn9/AspMTgaHD5cmTDCWFy6Mn53XC24qZwgoAW9lMgalk+9gcz9BQJl/0aj1vWZOVCkZw3kdcICx/K9/BetYytyPV1UZVZ+QREAJLzjp4i0Z3bxzrb1dWrnSWLbv9KmgTC4IB7v28Sdnzkz/2Gxn8rYHlIxBiWzYJ75JFlBKzsahzGQGb1MQLiwgO24CSv7WyBQVlPEyqaCUrH14R4f3Y5e5GXvMvu8noASyl6sxKAko86+hweqtZP+uk6yK+K6uYI1DaX6mGH8yDgElsuc0oMxHALRypTWj+NFHW/dTQZmc30FHR4f04ovG8sCB0mGHpX98thWU771n/D9kiPGPCkq4ZZ8gxz6Dt52TLoL2gJIu3sXDHlDSxRu5QkAZL9PudLkch9JN174+fYx/EgEl4AVzDMpQyNq27DI5T4pErICMgDL/EmfwtgvqOJTmfpzu3XEIKJG9IAWU9tBqyhRrXDgCyuT8rqBcuNB63RNPNCbJScc+022mM3lv22Z9Dvbf3/i/f39rjBLGoEQmzIAyFDLGoExm3Dhpjz2M5ddfTz7O6+rV1rKbgJKqusLT1SUtWWIsjx5tBEeplJdbJ00ElMgUAWW8TCsoczkOpf2YK5PqGfOxBJRA9sxQsKoq+aQ2mRxv2QPG6mpnr1/MAeUbb0j/8z/xExVlI9kM3qZp06zloASUHR3WkABUUMYhoET2ghpQTphgXUGhi3dy9h2iH0FHJt27JeOLfNQoY/mjjzKbGT5x/EnJCETNcIAKSjgViRhjUErGsAOpDkTt41Du2mUE8ono4l18Vq2yDkrTde82mUEKASUylTiLd//+1oXAYgwoM61aHDLEGrvs3Xe93d+6nRyBgBLwTk9dst0GlFRQprdtm1GY8p3vSL/9rTfrTFdBOXSotN9+xvI773g/prAb6SYZLnIElMheUAPKffeVhg0zljdvtiaiKAZuunj7cbCbyQQ5JrObd319ZlWPieNPmszPKAElnProI6mtzVhONf6kyV6Bk2wcymy7eBNQFh6n40+aCCjhVuIkOeGwNfZyMQaUmVZQStZFpq4u6bXXvGtLtgFlY6M1pBEAd8zqPS8CSnvo5TSgrKgw9stScQWUy5dLra3GcrKL926kq6CUrG7enZ3Sm29685rZcDMOcZEgoET27BtY4gGfnwHlPvtYV1A6OuIP1Hu7QujiXV8vvfWWsTxxojRypLPnuZ0oxxx/UrIqKCXrZM0+uDKQjn38yZ4Cyp7GMDO7eFdWxk/alA4BZWHLJqDMpGocSOziLVknblu2FN/nyU0omKtu3tl28ZbY/wPZsnfxTibXFZShkPXaxRRQ2vd/69d7s850FZRS8MahtL8HVFDGIaBE9oJUQblsmfH/iBFGMGdWUErF1c27ECbJefFFq6rVSfduk9uJcpJ18ZbyP9M8Cp99Bu9UE+SY9tzTqox84w2r8lIywgGzgnL06OTjHyXDzM6FzW1A2dFhVRwATiQLKM0LIW1txXVCLLmroDzuOGvf7GVAmW0FpUQ3byAbXV3eVlC6CSjtjy2m/bH9vfQqoLRXUBZCQEkFZUoElMheUALKbdus1zBDLHtAWUwT5RRCBaW9e7fbgDKTiXLMgLKuzpgx3MRM3shUJhWUoZBVgdPaKr39tvWz+nrrgNRp926JCspCZwaUVVXSXnv1/Hhm8oZb6SoopeLr5u0mFBw0yJoIbdEi73paEFAC/rJf8EsVKNrPoXIdUHo1WUwhsO+7NmzwZhg2eyFSsi7ew4dbk62+/bb/7zcVlCkRUCJ75g67pKT7Drm21hqQPdfhT+L4k1L8FRQqKLvzK+iIRq0JcioqpGOPdf5cNxWUmzdb41Xax5+UCCiRmWjUCijr6uIvgqSSqpu3mxm8JQLKQtbYKH36qbF84IHW92M6BJTF4ze/kS6/3LvgyVxPWZnVjbCYA0o3FZSStX+ORr3/20iZVc+YQXPiOgBkxh4opuriXVpqndvmYhZviQrKjo7M5hRIpacu3pJVRRmJSAsWZP+a2aCCMiUCSmTPPOCrqeneRTEUsqrV8hlQTphg/E8FZTArKD/6yOraOm1a6gODZEaPNkJNcz1OpBp/Uoof94+AEj1Zu9YaCqCn7t2mVAGlmwlypPiAksCqsCxZYi076d4t0aW/WCxZIl15pXT77dJdd3mzTrOCcsAA6/ismANKc/spL5f69HH+PHuvC6+GgjHbEg5nFmZQQQl4w2nFo3nM1dPxVrYVlK2txTPxVeK+y4tu3ub3WUVF6n1qkLp5U0GZEgElsmceZKXauPI1S3KyCkoCymBWULqZvdsUDlsl+itWGFfeepJq/EkpvoLSiyt46N0y6d5tGjPGGItSkubPt7oV2QPKMWOct4EKysKV6fiTEhWUxeKTT5IvZ8MMKO2hVjEHlPYL6pnIZUCZ7OJ+OgSUgDfsXXydBJS5mMU78bF+dzvOl8T30ouA0qygHDo09T7VHlDOm5f9a2aDCsqUCCiRvZ4CSvPArrlZam/PXTvo4m0xA8rSUqvaMJk+fYxKAim/B7pm924ps/EnTebfNxKxukum4zSgpIISPXETUErWOJRtbVa3ErddvMvKjFm/JQLKQuMmoKRitjjYw0IvgsPOTmv/YO8WXMwBZU/Hq6nkIqA0j7kyPTEloAS84aSLt2TtL5qb01c4ZltBmbiO3szrCsquLqvIJNn4k6ZRo6yxv996y9+JB6mgTImAEtlpbbVCx54qKKXczpJsBpQVFdbJfrFXUPbrl/7KfChkHezmK+hoa7OuWg0f3n1MSCcyHYeSgBJeyWQGb7tk3bzddvGWnF/RR7DYu3hPmuTsOVRQFgf7RVQvLqja9w0ElMb4kUGpoIxG3YelBJSANzLt4i2l/w4moHQu8dh1w4bs1ldfb4XHqcafNJlVlG1tRkjpFyooUyKgRHaczEKYjwCoo0NavtxYHj/emnjAPr5gMVZQpuvebTL/bvk60H3jDasLw4wZmXVtMmUyk3c0agWUI0d2/5wyBiUyYVZQVldLe+/t/HlmBaXUPaAMhYzPZibME2wCysLR2SktXWos77WXs/2zREDp1saNxv6/UHhdQZlsBm+peAPKlhZrSBi/A0onF/dTIaAEvJFpF28p/TFXtpPkJK6jN/O6gtL+XZauglIKzjiUVFCmRECJ7AQloPz0U6O7rxQfXpWVWa9frBWUPbFXUHZ15axJMc89Zy276d4tZVZBuWGDdaKWWD0pUUEJ53bskFatMpYPOsgYD9WpUaOsQPOtt4wDYzOgrKtLPxRDMub+tqkpP9stsrdihXVC5LR7t0RA6cYVVxgV+l/6kt8tcc5+EdWL4NB+8kNAGb/t+N3FO5vKGQJKwBtuKiidBpRUUKbndUDpZAZvU1ACSiooUyKgRHaCElAmG3/SZHbzLpaAsrPTOgnOpIIyGo0f4DkXtm+X/vQnYzkclk480d169tnHWu4poEzXvVtikhw453b8SZPZzbu93TgoMru0ZNq9W4rfbu2TYiG47ONPOu3eLRFQZuq++6Tf/c5Y/sc/jG5chcAeFjY0ZN9uewWl/eTH/p1XTAGl/XjV7wpKJ8fOqRBQAt7IdAxKiYDSK15PkpNJBeXYsdZx9/z5uZ0fIx1z/11SktnnpQgQUCI7Tg74/A4ozSspu3YVx47fHjJmUkEp5f5g98Ybrde44IKev0RSGTDAem4mAWWy8S7Ly62uGFRQIh2vAkpJuv9+azmTGbxNTJzi3OrV2uO11/zf/7uZIEcqrIDyhRekr35Vevddf17/gw+kSy+Nv2/jRn/akqnEsDDbC2apuniXllqBWzEFlEGqoMyma5/98QSUgHteV1B6MYu338cp+eJnBaVkVVG2tEgLF2b32m6Zn6WaGnfDnfViBJTIThArKCdMiP9ZsU2UY6+myqSCUsrteHYrV0q3324sV1ZKP/tZduszg+iNG9OftPdUQSlZ41ASUCIde0CZyQQ5Jvs4lI89Zi1nU0Ep5W8cyo4O6amnpGXL8vN6XujsVOlJJ+nwX/9a4Wuu8bctxRBQXnyx9MAD0ve+l//X3rVL+o//iB9XTMr+xCdfEsfJzjY8TBVQStYFvmIKKINaQZlp176KCuMYSor/GwPIjNMxKO37Cyoos9fZ2b3nz8aN6WdI70kmFZRSMLp5myEt3bu7IaBEdoIYUKbq4i0RUCaTrwrKH/3IGif0qqsynxQkkdOJct57z1qeODH5Y8zP6PbtjOeH1MwZvEtKUofd6YwYYQ1P0Npq3V8oAeUf/yidfro0ZUrhhPmffabQ7nFDw08+6V87Xn5ZmjPHWO7Xz+hi5JTTkyO/tbVJ69YZyz1VtufCd78bf0HKVAgBZVdX94rJbCf2cxJQNjfH74t6s2wqKGtrrQoXv7t4S9ZxGxWUyMbixSqdMEFH3HJLcR770sXbH8kutHZ1Zfed57aCUvInoIxGrc8SE+R0Q0CJ7AQtoBw2rHs77DuqYpjJO4gVlG+9Jf3978bykCHSf/5n9ut0MlFONGp0+ZOMbrSpZtUzP6OdncEOAOCftjbrs7TfflKfPu7WY+/mbcq2i3e+PrOvvWb839hobNOFwAzMJIU++0xauzb/bfj3v6UvfMEa5+gb38hsgqVCqaC0f79v2WJdkMqHBx6Q7r7bWO7b17ggZiqEgDLZxbF8VFB68TqFwr7tZFpBGQ5b76HXXbzdVM8QUMILd96p0MqVGjF/vkLvvON3a/LPTRfvdN/B5vrKyozho5yyh6PFEFCmOmbN5rs60wrKvfeW9tjDWH7jjfwer0hG13LzNamg7IaAEtlxckU61wFlQ4NVGZlYPSlRQdmTXFdQRqPS979v3b7++sxPDpJxElCuW2d9RpONP2liJm/05P33jS7Okrvu3aZkAWWhVFDaDx4LpZt3YiD55pv5ff0VK6RTTrH2y5//vHTLLZmto08f62QnyAGl1xWATi1bJn3729btO++M384KIaBMFhJmGxymmsVbKpyAsqvL2Iai0ezXlW3VotnNO0gVlM3N1vcSkKndvQskSZ984lszfOO0i3emFZSZTnhif3ziECW9UapzzWy+qzOtoAyFrCrKnTvzP252tt8BvRwBJbIThArKdN27JSooe5LroOPxx6XXXzeW991XuuQSb9brZCZvJ+NPStYYlBIBJZLLdoIck71biclNQOlHt19z1nFJ+vDD/LxmtmwVlJKMGRvzZeNGacYM68LYUUcZs0qXlWW+LvPvHeSAMnHfaf+85EpLizHupHliePHFxiQ9I0ZYjynUgNLLLt6JFRqFElB++cvSuHHejGmaTQWlZAWU9fXZd4fN9uTUHjjT6wNurVkTWwytXOljQ3zidRdvc5KcbALKYqugtO/LvKigrKpy/v772c072yr6Xo6AEtlxcpBVUWHtLLy48pyop4CSCsr0cllBGYnEd+e+5RZ3J+fJ7LWXMRaglDqgtI8/mS6gpIISPfEqoKyrM7qIm6qru1c3OZHvCspoNP7gsVACysQKynwFlA0NRuWkedK3//7Sk0+mPwlKpxACysQKynwElN/7nrR0qbE8caL0+98by4UWUCYLI4u9i3dDgxHoS9Kjj3qzPlM2FZT2scPc8qqLd+K6AKeiUQJKr2fx9qKCshgCSvs+yz43gBcVlE66d5v8DCipoEyLgBLZcbqBmQd2uQh/7F0NCSiDFVDedZfVbeTYY6UzzvBu3eXlRkgpGZPkJKtocFpBaQ8oE0+yAcmaIEfKLqCU4rufjh5tTb6QiXwHlI2N8V2PvO7i/eSTxvv6xz96u97ECsp//9uousul1lZjzEkz1B49Wnr++fiZgDNViAHlxo25fb2//c34jpGMWY3/8Q/rRK+21prpuBACylx08TYDynC4+7FAIQSU8+dbXbu3bMm+m7dXFZRS9hfbveriLRFQwp36+vgwbMUK/9rilyB28S62gNJ+wd7td3Vnp3X84aR7t2mffayM4PXX8ztcBhWUaRFQIjtOD7LMAGjbNm/GErKji3e8oHTxbmgwxps0/epX7oKYdMy/d0uL9Nln3X9uBpShUPyXYCIqKJFOV5e0eLGxPHp0dkGT1D2gdMPpoO1eSTxw3LbN22Dj6quN9/gHP/D2OyKxgjISye1YQ52d0vnnW1fjBw0ywklzMHa3zEClvd2YsCmI8tnF+5NP4ocLueOO+ItQoZBVRVkIAWWyYxOvunj37999UqZCCCjNoWEkI/TPdmw2ryooJQJKFD5b9aREBWXWXbzb262Ai4AyPft76EUF5fbt1nFjJhWU9nEom5rie0rlGhWUaRFQIjvmBhYKpZ4hWbICoI6O+ADNC2ZAWVYm7bln959XVVlto4Kyu1wd6N5yi3VF60tfkiZP9m7dpnQT5XR1WbMu77VX+oMPAkqk8+mn1naVbfWkJB1/vLXdHX20u3Xku4IyWdjkVTfv1larIrOpydvAJLGCUspdN+9oVLr0UumRR4zbfftKzzwjTZiQ/boLYSbvfHXxbm01xp00x/v66leliy7q/jgzoNyxI/dVs9nK5SQ5yYaQKLSAUsq+nUGqoKSLN/yWGFBu3uz9+VnQmWFgKGRMRpdKWZlVkZ/qeMseLKY7H06m2AJK+z5r3DiptNRYdhtQZjpBjp1f3bypoEyLgBLZMXfUNTXdr9Db5SoA6uy0uhDbd3KJzBJuAsruchF0rF0r3XabsVxeLv38596sN1G6gHL1auuLPl33bolJcpCevXt3NjN4mwYONE6+//pXo2LQjXwHlMkOHL3q5r1sWfwQDatXe7PeSCQWkrXbTwByFVD++MdWl+OyMiOo9OrCTCEGlLnq4n3VVValw4QJ0h/+kLw63z4OZT7Gw8yGPXyrqOh+X6aiUesEKNnJT9ADyvZ26a234u/LdvgV+37S74DSbEt5efpgJBUCSmQrIaCUZI2ZXCzMquy+fXvu4WXuM5wElFRQppc4Sc7w4cay24DS/h2WSQWlFB9Qvvyyu9d3gwrKtAgokR17QJlOrgLKNWus7m7JunebzCsq9fXGgW9vlmlAWVNjfTF7daB73XVGlYskXXZZ8spWL6Sbydvp+JMSY1AiPa8myLHbf3+jstgMIzIVhIDSqwpK+2RWUvITJzc2bIh1+9l2wAGKmu/Zm296P9TI738v3Xijdfu++4wZvL3ix6ztmcpHF+9//EO6805juU8f43aqapVCmijHXgFiVtw2NLjvzt/UZFzAlZJXUNovygUxoPzXv6xjCJNXFZRVVakvZqeTi4DS7YkpASWylex7ttjGocxkzEhzW031/WtW9Dtdn529h1cxBJSJ1YPmd/XmzcaF5UxlU0E5caIVkL7wQvzfMZeooEyLgBLZcXqQlauAsqfxJ032iXKCeDDupUwDSvsA+l6c+C5aJN1/v7E8YID0X/+V/TpTSVdBaQ8oDzgg/Xro4o107AGlFxWUXqioMKr0pMLv4p0YUHpVQWnr3r1ryBBFzWrGTZukVau8eQ3JmKzliius27/9rXTeed6tXyrMCkqvA8oVK6RvfMO6/bvfSQcemPrxhRRQmscllZXS2LHW/W4vmKWbwVsy9h/mZyqIx0SJ3bsl7yoo3YaCueji7fbElIAS2SKgtMLAdENAmcz9RlNT8kk5s6mgLCmxKqmLIaBMrB60f1e76XmRTQVlKCSdeaax3NZmDMuTD1RQpkVACffa260r3EEPKItpopxMA0rJOtjN9kA3Go2f5OLaa7OfUCSdYcOsk6xsKij79jW6WkkElOjO7OLdv7/7SW28Fgr1fEXfS4VYQWmbIKd10CBFjzzS+plX3bznzpUuuMDa5/3Xf0nf/a4367bL96RIbiTr4u1VpWpXl1FxbH6/nXdefFiZTCEFlOZxyZAh8ccrbsPDngJK87WyeY1ceu217vd5VUHppnu35F1A2dVltcWLCkr73xpwioAyvot3T8xtNRpNXmWXTUBpf04xBJSpKigld9/V2VRQStKsWdayOYZ4rlFBmRYBJdzLJP33O6C0V1D29nEo3QSUXgUdzz9vlMhLRrfu2bOzW19PQiHr775mTfxECGboEQ6n/2yY6zG7vBFQwm7zZuuA6eCDvZ+JPht+BZQHHWT8v2aNNwfTuQoobRWULYMHxweUb76Z/frXr5fOPtvqknTJJdLPfpb9epMphArKxH1ne7t34cnSpdI77xjL48dLf/xjz9tioQSUXV3WezdkSHwFiNsLqpkElDt2uOtWlytdXdIbb3S/P5sKyq4u69jI7wrK5marAosu3vDL7u/ZqL16cPlynxrjg64udwGllPyYK5tJcuxtKIaA0nz/wmHjvcr2uzqbCkrJGIfS3L8//XT34UVygQrKtAgo4Z79JMmvgNI+SQMBpcE8CO/Tx/k4S+bBbmur+x1zZ2f8hB833+x+fL1MmH/3aNQ6uOrstKq7xo1zNgi9+RndutX78elQuBYvtpaD0r3bZO53Gxtz/5k1Dxr795cOPdS6P7FyOVONjd27dHvVxdtWQdkyaJDRxdsMtbyooPzHP6xKii98IfVkLV4IekDZ1pZ8BlivunnbPxNf+Yqzi2+FElBu324FVkOHejOBjT206imglII19vJHH1nHifaK9WwqKJubrX2k3xWU9hPTYuniff/90he/KH3wgd8tgWRckNi9T4zut58iZkhZTBWU9oKGTLp4Sz0HlFRQpmfus2prjWMmvysoS0uNYzjJ+K6YMyfzdWTKvt8moOyGgBLuBamCctCg+NdIVIxdvJ1WT0rxB7tuq7HuvdeqhJo8WfqP/3C3nkwlmyjn00+toLWn8SdN5uenrc26qgrYZ/D2aoIcr5j73c7O3H5mo1EraBoxwprEQ8q+m3eyE9YcVVCqttYa7mHx4uxPBJ580lr++c/dTbzhVNADylTf617N5G37W2rkSGfPMQe+l4IdUNqPSXLRxTtVCBbUmbzt40+edZa1nE0bvahWsQe9XgWUbttif17QA8qmJumb35Qeflj68Y/9bg0k6bPPrMB+9GjtNPeVa9b0/olETZkGij0FlNlMkiNZIemuXb2/SMIeUEr+V1BK+e/mbX6GKiutIcYQQ0AJ99wGlNkOLm5qarJ2ZD114S3GCspMAspsZwTeudOYudv0q1/lrytssolyMhl/0tQbJ8r54APp2GOlH/7Q75YUrlzM4O2VfM3k3dBgVRsMHy7tt5/1M3sVuxtLl3a/b+tWb6oIdldQRkMhtZrVT1OnGv93dkoLF7pf944d0quvGst77RX/nuRCoQaUXlVQfvaZtbzHHs6e06+f9T0Y5IDSfnKVWEGZjy7eiW3wmz2gNKtapOyqPO3bjNsKytJS6/OUzXGsF5Uz5eVWoBH0gHLNGms2evuxGfxjuwgYHT1aO+vqjBtdXd71YAg6+0Vdr7t4Z1NB2dVlbS+9UTRqvX/mxTOvKiirq43Az40TT7T27088kfthT7KdKK2XI6CEe35XUH78sbVMQGnJtoLSzcHurbdaJ6Jf+IIRiuVLsoDSPqad04DSHINS6j0B5e9+Z5zs/fKX3cf5gzNmQFlenvsQKlP5CijtB4wjRsS/D9lWUNo/l/bgydY92zWz6q6uTlGzutEMKKXsunk/95zU0WEsn3FG7i/IBD2gtIdH9lmovQoo3VRQSlYVZaEElIljUOZjkpxsXicXzICyokI66ihvZhv3arwv80KH31287c8NekBpv7jw6afJZ0BGftl7KYwaZQWUUvF087YHikHq4p24rt6mpcUK/7wKKM3vBjfdu00VFdJppxnL9fXSvHnu1+WE+Rmie3dSBJRwL5MDvtpaYzBcybvwxz72mb3LYTLF0sW7vd3qnpGvCspdu4wATJJKSqRbbsns+dkaP95aNkPrbCsogzQeVzbsIY85wQSc27XL2s8ccIBUVuZvexLZQ6t8BpR77ml1SfEyoDzlFGs5227ekUgsHIvag8+jjrKWswkon3jCWj79dPfrcaqQAkr7sBp+dvGWrBOfpqbkY2QGQa67eBdSQLl+vbRypbE8ebJx0mhePPS7glKKDyjddsP0Kiw1/66FFFC2tXl30QLu2SsoCSidBYo9HW8RUDqTbP83YIA1Z0Gm+4eOjvhJ5rJx9tnW8j//md260unstI5HqKBMioAS7mVykBUOWwdTuQgoe6qg7N/fChd6cwWlmxm8pewqKJcutcZeOffcnv8WXquqsgbS/+gj46TBDChLS+PHqEynN3bxtp902rsqw5mlS61qj6B175byV0FpP2AcMcK4EGFuV598YlUSumEGlMOGSYcdZt2fbTezDRusAMEeaO2zjxUyzJ/vLmSIRKRnnzWWa2vzUzGerzDaLfs+88ADrWWvu3j37ZtZwGSvzAhqMJLYxdtezZ+vSXKCElDaZ+8+5hjjf7Od27e739d4XUHZ0RE/5lwm7H8bLyood+4M1izsiRIroj791J92wGK/AGjv4i0VT0CZyy7e2czinbiu3ibZ/s8+UU6mFZT2Y49sKigl4yK52UX8sceMIDEXMplkuEgRUMK9TA/4zADIj4AyFLJ2XL25gtJtQJlN0GGvgJo8ObPnesX8++/YYVTsmOPi7bOP88GHe3tAaZ/sBc7YQ92gzeAt+dPF2+wya3bzjkSsiqdMbd5s7Y8POEAaM8b6WbYVlLbq4ag9oAyFpCOPNJa3bpWWL8983a+/bh1kn3JKfiprC7WC0otQMBq1KihHjsysO30hzOSdWEFZXm5t216MQelkkpyg9Bqwjz+ZGFBK7rtWe11BmU1bvApLvZjcMB/sFZSS++8LeCddBaWb78RCRBdvf6Ta/5nf1du2ZTYGZ+L3Zzb69pVOPtlY3rRJevPN7NaXilcXqXoxAkq4Z9/JODngMwOgxkZvrvaaAWVJiTFJQU/McSg3b+69Y+D4UUFpDyidzpjtNXuV5NNPW93cnXbvlnrnGJSJFZS99XOfK0GewVvybwxKyZtxKO1DMRxwgFUJLWVfQZmuS3C23bzts3efcUbmz3ejstKaJTzoAeXYsdbJlhcBZUODdcKWSfduqTACysQKSvv/xTaLtxlQhkLWdupFRalXFStBDSiD3M07MaCkgtJ/ZkBZUSENGaLWQYMUNbvYFksFZdBm8S6WgDJVOGde/JYyO26wB5TZVlBK+enm7dV3QC9GQAn33FZQStnP5N3VZQWUe+3lrErODCg7O72bSTxo/KigtM/C61dAaa+gfeQRazmTgLK3jUHZ0hJ/kNPYyIlBpuwVlAcd5FszUrJvt7kMrRK7eEvx4/66DSgTL27YA0ovKygTZ322T5ST6RXyaNQaf7KkxLranmuhkHUhMIgBpf2izqBB1smGF2NQ2gOO3h5QmqGh+X9Dg3XBLRNmQFlTY3xOkwlaQNnUZO1zDzzQOnn1op2ZXlBPxYuA0usu3onrDBoqKIMlGrUuAI4ebXy3hMPG2NKS8fcphovZQZ3FO3FdvU1PFZRSZt/Vyb4/s3HaaVavmEcecT/WcDpUUPaIgBLuZRNQZluhtm6dEcBIzsc8LIaJcvysoBwyJH629HyyfwZeeMFaziQw7W1dvJOdyDEOpXPRqPXZ3muvzLanfAlCF2/JGlIhU4kBZb9+1nh52QaU9grKUaPifzZ5sjVpW6YVlMuWWRUm06alHt8vF4IcUNov6gwebH1OGhqs72q37H/LxLC5J4UQUJrHI5WV1klqtqGcGVCm+3xWVVnjbQUhoJw/3wpGzO7dUnwFpduLh729izcBJZxqaLCq/WwXBaNmT7TW1uCO1+ulbLp4J/sOJqB0JlU45/a72usKyv79pRNOMJbXrs3NBKNUUPaoIAPKV199VaeffrpGjBihUCikxx57LO7nF110kUKhUNy/k/NV5VBM/AwoMxl/0mQPz3rrRDn5Dii3bLHeS7+qJ6X4z4B9+AC3FZS9IaBMdiLHOJTOrV9vHSTaw7ggyXdAOWCA1KePsbzPPtZYgF5UUE6caPxvnjCtXZvdAOXpKiirq6VJk6w2ZBL45Xv2brtCCCjDYeP7xD6mWbYnu25n8JYKa5Ic+8lVNjN5R6POAkrJCkKDEFAmG39S8r6Cki7e+ROJdD/epieHvxImyDFF997bur8Yunl73cWbgNIZ+74qiBWUkjRrlrVs75XnFSooe1SQAeXOnTt10EEH6Y477kj5mJNPPlkbNmyI/fvrX/+axxYWiUyvSPsdUNoP+Ako47kNOoIw/qRkVEiZwYmpvFwaN875Ovr3t6qqekNAmexEjoDSuY8/tpadzgSfb/kIKKNR62DRfgBZVWVNavPhh5l3g7FXqI4ZY32HmOvs6Miue7AZatlnh7Qzu3l3dUlvv+18vX6MP2ky36PWVnfdfnPJ3GcOHGh0KbaPJ5VtN+9sunjb2xHECsrOTivctZ9cZRPKtbRYF+qcBpTbtvnfrTNVQNnbKihTnaBnyn5iax9zNEg2buz+3fDZZ8Y+DP5IEVDGjeVfDAFlpl28+/SxhhNLF1CWl7ubOK9YAkr7exfECkpJ+sIXrPPBf/7T+27eVFD2qCADylNOOUU33nijzjrrrJSPqaioUF1dXezfgHx2wyoW5gZWXZ16jCO7XAWU9rHQ0rFXUNLFO559B5nJlXh7QHnggc6f57VwWBo/Pv6+ffe1JpVwug7z5KO3BpR08XauEAJK+4l2rgLKHTusGRUTgz6zsrSpKfPqtLVrrdDAvu/waqIcs4Kyri75yYJ9HEqn3by3bLHGrNxvP8lecZIP9r+3fV8fBGZwZH7Pux3wPplsunhXVVknQUEMKLdvt05+7CdX9oAy0+MVJxPkJL5OV5e/Y3NHItKCBcby6NHxwzL01grKvn0zO0ZJVAgVlIndu02rVuW1GbBJVUFZbAGlm4pHc9+RLqB0Uz2Z+LzeHFB63cU7FxWUQ4YYQ/hI0iefxE/o6AUqKHuUxTdjsM2bN09Dhw7VgAEDdPzxx+vGG2/UIHtAlqCtrU1ttmntG3efOEUiEUW8mHE6D8x25qu9pQ0NCkmK1taqw8FrhmprYx+4zi1b1JVFO0uWLYul65G99nI0K3ho0CDr9devz+r1gyq8Y4fMqLijslJRp79jSYlKKyoUamtTdMcOR39PSQovWWK93oQJzl8vB0rGj1fYNmFP18SJ6sywPaUDByq0dauiW7c6fg9Syff2mCi8caO6XTZYv16Rzz7z7ipjLxZetsz6bO+1l6+f7ZSqqmRGb107dmT8eXdk9WrrNYYNi3uN8L77quTZZyVJHUuXKprBwWFo0SJrf7zffrH9cXjkSOt9X7lS0SOOyLzNkYhKN25USFLXHnsk3xaPOML6vd5809F7F3riCZXuDpM6P//5vH+HlFRXW99727ZlVwnmpfZ2le0OTLsGDVJnJKLQkCHW33fduuy+79eutX7vYcMcfd/blQ4frtCOHYquX6+O9nZraIIgWL/e+hzufu8kKTRwoPX+bdyY2fu3ebO1ztratJ/tkkGDrPd2/fq8VHMk2x5DCxeqdPdYpV1HHRXf5tpa6/fZvNnVfq6koUFhSdFQSB3l5Rl/hmL69bPasnWrq7ZkeuycSqi62vqMbNsWyGPa0OrVsTZG+/RRaHflZMcnn8R3KUbehD/91PqOHTHC2h5Hj479rbo+/jg3xxMBEm5qir0PEYf7hNLaWoW2bFG0oaHbtlva3Gxs1337utquQxUV1vbc2BjI7dkLJfX11ndOVZX1vg8ZYu1bP/vM8eevZNMma339+7vftycIn3mmSubNkyR1/uMf6nLaW9PJuuvrrW2wb9+48wu/zx1zzenv1SsDypNPPllnn3229txzT61YsUI/+tGPdMopp2j+/PkqSVHpd/PNN+uGG27odv+cOXNU5WTw3ACZO3duXl7n89u3q1RSUzisl595psfHD16+XEfvXl65cKE+cPCcVE5avFhVktr79tWzCxc6OuGo+fRTfW738tp//UuLs3j9oJq4eLHMOsK3PvhAW51Utu42s7JSfdra1LJxo+Y6fG+Oef11mbH/8+vWqcPH93RCSYnsXx8flZbq4wzbc0w4rEGSQk1NevbxxxV1000jQb62x0T7LVggs+6vYcwY1e6uRlv4pz9pyyGH+NKmQjLl9ddljqL34rp1ag3i/iIa1enhsMJdXWpcs0av5KCNQxYt0lG7l5e3tOhD22uMjkRkfpI++Oc/9WkG3fbGPfKIzBFiF3V0aN3u9Y7YulVmJPnR3Lla7mJyosotWzRjd5C4sbRUC3dvg3HbYjSqk2trVdHQoI7XXtOzTz1ldelJ4Yg//1nmNf43Bw3S9jx/Jg7asUNjdy+//vTTarRXvPioYvt2maN8b+ro0NvPPKMha9dan5s33tCysWNdr3/6hx+qVlJnaameefvtHv9OiaaWl2uopNCuXZrz8MPqcFvhkgODli6V2Zl5RVNT7LhoyKefxt6/FQsW6MMMhisZ+P77Onb38sr6er2f5nO6f1OTzDW/9dRT2pbH8QHt2+Pejz8uc5CYpbW1WmVrc+nOnfr87uWty5Zpvovt7oT161Ut48LtM88957rNfbZv18zdy5s+/FBvu2jL57dtM46dS0ocHTun0n/5ch23e3nNkiVaEsDvqL1eeEFmffy2vffW4N2VSB889ZQ+9XtIgSJ12FtvyRwoY97Kldq5uzjnheXLdVoopFA0qoZ//1uvBvDz5KVDPv5YZv3oq++8o2YHQ5Ec19Wl/pKiDQ165umn4849T21oUJmk5mhUL7l47wa9/37su2Dl++9ndY4cZFM++SR2bP3CO++o3eytFI3q8xUVKm1r086PP3b8Hp6wapWqZYSdz7z4omft7NOvX2xf33z//Zp32GGerfvgpUu1ezAjvbpkiZqSVOT6de6Ya7vsQyuk0SsDyi996Uux5QMPPFCTJk3S3nvvrXnz5ukEc2amBNdcc42uuuqq2O3GxkaNGjVKM2bMUE1QqhR6EIlENHfuXJ100kkq8yBYSaujQ6W7T0ar99hDp556as/PGTlSuu46SdLe/ftrrJPnJLNrl8p2l3SX7r+/Tv3853t4wm4bN0pXXilJGl1erj3cvn6AhW0H3lNOPFHRDHaopUOGSDt2qLK93dnfMxpV6QUXGIujR2vGOedk3F4vhbZvlx56KHZ7/JlnalyGf+OSP/0pNiPxKVOmxE/0kKG8bo9JlNgm86g++2zpttskSVPKytTVCz/7Xiv9/vclSdGqKh3/la8Eq+rKJlRbK9XXqzYcdrbdZrp+25hvex9zjPa0vUaotlbaPRb0/iUl2i+D1y+xbauTvvxlTTroIGOdgwZJv/qVJGlCVZX2cfE7hcxu2JKGHX64TjrppKTbYsm0adKTT6p8506duvfe6SdDam1V6fnnS5KigwfryO99z9nQJh4Kv/qqNGeOJOnYgw5S9Nhje3hGntgq14dNnGh8DkeOlHZf9B3ft6/2yuKzWfq1r0kyqmtPPe20jJ9f8vDD0uLFkqQZBxwQqEmvQraD9b2mTLGOi0aMkK6/XpI0rqYmbrvrcZ22yaX2PPRQjUnz3PB778Umfjpy770VzcN3Q7LvxpJ77on9fOI3v6mJ9mEfolFFL7pIoUhEQyRX+7nS3WFY6aBB2e0nW1qk3Z/HYeXlma/LzbFzKsuXS7u/p8bU1mpkAL/Xw6+9FlsecMYZsa6S+/ftm9H3BbxT8stfxpaP+8pXFCkt1dy5c3XCqacaQyusWaP+27bl5HgiSEruvz+2PO2UU+KHlUj1nN/8Rlq5UuGuLp163HHGEGeScT60O+itHjrU3XtXVyf9139JkvYaNsz9OXLA2T9/J86aFTcET8moUdLy5apuanL8Hpbu/g4tHTHC889s1113KfzWW6pdvVqnjh/ffSgxl0ruuy+2fOxpp8V99vw+d8y1RoeTPPbKgDLRXnvtpcGDB2v58uUpA8qKigpVVFR0u7+srKzgPiB5abNt/Ktw//4KO3k9W9gTrq939pxkbGPXhCdMcL6e4cONkCEaVXjLFvevLxljPJWUBKeLnck2bknpgAGZDdS8e5zWUGOjykpKeq5SWbMmNoZc6MAD/d9OEmbsLj3ooMwHqrZ1fS5rbHR0wNIT3/YhtnE0S04+ORZQlixdqhK//1ZBF4nEZhoN7bOPysyB0YNod0AZamjIzefMNr5PyahR8Z8dW4hQ8vHHmX2uPvhg9xNLVHbAAda2auv2V7JunbvPqq0SomTMmNj70m1bPPro2KQ3Ze+8Y83sncyLL8b2r6HPf15liZNy5YNtLO3SXbvcDcSfC7ar/+GhQ43vVtvYZuFNm9x/3+7aFRvrLzRypLvPuG3cyrItW9L/nfPNNo5hSV2d9Xm3tTm8bVtm719zs7XOwYPTb0O247LS+vq8fqZi22M0ao3tWlursoMP7n78MXiwtGGDQlu3uvsM7P6Mhmprs9tPlpVJlZVSS4u741jbyZnjY+dUbENqhBsbs1tXrtj3xccdJ918s7G8ahXHIX4xx2ceMkRlNTWxLrFlZWUKjRsnrVmjUH29ypqbe55kq5DtHlJCkspqa53t+2zjBZbt2mW9P21txoRnkkL9+rnbx9iG1yhpaem924d5vFBVpbLEHqojRkjLlxvHs+3tPY/n2d4eG88xNGSI98fAs2ZJb70lSSp78knphz/0Zr2274GyIUOSfvYKMX9ywunvVJCT5GRq3bp12rZtm4bbB21HdtwMOG4fXDybSUh2V7hJcj6Dt2QMRm6OQ5rNJDkffmiEnSNGZDeJQy64nSRHsv6O0aizCRiCMoO3yT6RSZ8+8TMSOmUfp9btbKFBYR84+phjJPMCDDN59+zTT2MHm4GdIMeUbtB2L9gHK0/8Dh00yDpJ/vBD5+vs7LQCyvHjje3VNGyYNVOm2/2reQImpZ/12T5Rjq3qMik/Z+822S+IObwKnRf273NzxuVBg6wJQLKZxTubGbxNbgffzwf7fto+NrB95upMJ4axT5LjdBZvN6/jlU8+sV776KOTXxw127llS+YzqkYiVhjhxUVl81jWzSQ5qWawdaPQJsmZPNnaJ6xc6U97il1Hh/U3sU9IZ7KPC9rbJ8rJZpIcKX5bdrOuRMUySY75viXLDuzf1U4m17Ofp+VibP1Zs6zlRx7xbr3mexAOW1W4iFOQAWVzc7MWLVqkRbtnpP3000+1aNEirVmzRs3NzfrBD36gBQsWaNWqVXrxxRf1hS98QePGjdPMmTPTrxjO2XfMTg/4KiuNf1J2AaV9Bu9MB601Z/LetCnzg1zTQw8ZV8t27pQee8zdOnIlm4Ay04NdW7e+QASU/ftLEycay0cd5a77pZczzfvNPOGrrTVmsjX/Rp98EldhgyQKYQZvk3mQ194uZTAGpGP2QCdxFm9JmjDB+H/DBuch6YoV1szgifuOcNiqXLbPNpoJ+6zP6aqgDz/cOmFON5N3NGoFlOXl0owZ7tqVraAGlPaTBHMfGg5b37fZzOJtDzgyncHbVCgBpT0sLC+3tu18zOKd2JZ8ev11aznVsAVmYNvenvn3l31b8WISIK8CymzbUlpqndwGPaCsrjbC8jG7R1779FP3x+Bwb/16yRz7s9gDSnN4jXDYuoDfk1QBpX2fRECZnrmvSvbdlOl3daoLfF7Zay/p4ION5bffjr/4nQ3zPaitDezwUX4ryIDynXfe0SGHHKJDdk/0cNVVV+mQQw7Rj3/8Y5WUlGjJkiU644wztM8+++jrX/+6DjvsML322mtJu3DDJbcHWebJi18BpbkDa2lxH9LsHkNHUnwVYRDYA8pMvyQzDSjtv7t9vCg/PfywdNNN0t13u3t+bwwozRM7c2KcaFRassSfNhWKbPYx+WYPrXJRRWkPl5L1QrCP52evbk+np+pr88SpocHd7+S0grKqyjr4/OCD1Pu9xYutdR5/vH9XvAshoLRX/pmfl82brYrkTNnD5t5YQWkPH+1hoWQdr/T2Ckp7QHnMMckfk0077duKlxWUra1x3UQdse9jvAhLzeO2IAaU0agVUJoXF8yeLY2N7gJeZMd+0a/YA0ozBKyqch4S2bdZ+36FCkpnOjqsc++eKiidfFen+/70ytlnW8uPPurNOtNVkUJSgQaU06dPVzQa7fbv3nvvVWVlpZ5//nlt3rxZ7e3tWrVqle666y4NM6/kwxteBJRur56a4UEoJGUws6Ukq6JDct/N2+yaKAU3oKyuznim05RXBlMxf/eSkuCEOPvtJ/3oR5LbGWPtJ9eFHFBGItYJi/mlbZ+5m27e6RViBaWUm4DSPEgcNCh5lYE9oHTazbun6mv7iZObKkoz1AqFkld92tm7eS9YkPwxtgmndPrpmbfHK0ENKJN18Zas8Q27utyHX709oExVQWm/3dBgVA46VagBZXm5UdWcjP1zlenwK15WLUrxwxVlGrJ52cXbvo4gBpQNDVaVmhlQ7rmn9fM8zhiP3TIJKJcvz317/GSGgJkEirns4l1ebvX86q0Bpf24pRAqKKX4bt7//Gf264tG01eRQlKBBpQIgGwDykjEXQVjNGoFlHvuGT92mRP2gHLTpsxfPxKJr656//1gdVMxA8pMu3dLmVVQdnRYYUTiGHKFrLeMQWkPDMwTULNSTCKg7Ik9oPRo1r6cyWVAGY1aB4mpxnA2u3hLzgPKnqqvzW6AkruA0qx2rKvreeD7o46yllN187aPP0lA2V2yLt5S/GfGbTdvL7p429sRtIDSvFBaVdX9xNZteJhJQFlTY20jfgSUGzcaw45I0hFHpD6WCGIFpZRdQOllBeWuXZmF2PmQbNu1jw3OOJT5RwWlxQzPgxJQhkLWc3trQGk/t/QioMxHBeV++1lFOK+95i47sGttjU1MRQVlagSUcMftmD7ZdqHdsMEKNt1U7dmvsLipoFy+3NqxSEYg6NWYFF7IJqDMJOhYvtwaQy4o3bu90Fu6eCerypk0yerGsnv8XqRgBpRDhgR/FstcBpTbt1snvakqEbPp4l1REX9CZLKfOGU6UU4kYk3Kkm78SZO9gjJZQLl+vfTOO8bywQc7W2euFEJAmayLt+Q+oPSigrKiwtq3By2gNPfVyU6u7McrmYRyPZ0E2oVC8RPQ5Nsbb1jLqbp3S72ngjKTv40T9nXkaqI0t/IVUHZ1WcejSK+ngLKmxtrWentAae/i7ZSTgDKbIWB6e0DZ0744m4AyVxWUoZBVRRmNSo8/nt36vP4O6KUIKOFOthWUkrsAKNux4bKtoLR37zYFpZu3ffbtXFdQBm0Gb6/05oCyutrqrrx0aXzQDktzs3VgFJShC9JJNSaSF+yhUqqActQo6wDfSQVla6tVMTVxYvLJrLKpoFy/3qpqdxJojR5tBWkLFnQfK/Gpp6xlv2bvNuV6vFG3zH1lOBz/PWJ28Zbcz+RtBpThcPz6MmV+fu2fD791dlrvXbKTq2wrKKuqjG6DPTFfZ+vW/L83TsaflKigTMW+vdkrZ4MgWUDpdRfvxkbje3r48OAciwdZTwGlZF00/OyzzMdYLRRdXdbvlknFY6rvYC8qKO3P7a0BZU/hXKa9HdINkeIl+ziU2Xbz9vo7oJcioIQ7XgSUbgbI9jugtE+QYwrKQVFLizU7X64rKAkogy3Vl7Y5DmV7u/PuuMWmkMaflHJbQWk/QEzVxTsctvbF9tm5U/noIysETLXvyGYMSqczeJtCIaubd1NT94tQQRl/Ugp+BeWAAfGBs5ddvIcN67m7fjpmQNneHpwgxz4Wd7KTK/t9mfT4MH8/p9Xf5utEIvkPvu0BpX24hUT296KQKyhzGVAGbRzKfFRQPvWU0aOnvl564IHs19fbmd+n5eWpK87sY/v31nFC7cGrF128vZjF2/7c3hpQ9rT/q662jnOCUkEpSYceas1t8NJL2R1DUEHpCAEl3PGrgtLehdCPLt5BrqC0z+Cd6wrKnia5KFRlZdaXYyGPQZkqoGQcyp4RUFrsB4jpJpsxu3l3dVnVkak4ubhhDxYz7eLtdAZvu1TdvHfulF580VgeMcI4SPVT377W5GdBDCjt3XCl7ANKe3d9t927TUGcKKenAf7ddvF2G1Bm+jrZam62vof23z8++Etk/2wVcgVlLrt4F0JAOWCA9TfwIqC0H4sypmXPzIBy1KjUE2kWwziUbiseczkGpf257e3GWP+9jZP9Xya9HezfBYnHH14Khawqyo6O+HHJM0UFpSMElHCnWLt4mxWUpaXWl3uyqko/ZBtQuqmg7NMn+Rhyhcw+03yh6qmCUmIcylQKLaDMZbdfJ128pczGoXQSUFZWWuFMNhWUbgLKN9+0ll94weiSLkmnnZb6hC5fQiHr7x2UgLK93fruSTxByLaL94YNmXXXTyeIAWVPA/y7CQ7b2qzqoIAHlKG337aqqdN175a86+JNBWX+JAsoQyGrinLNmuxDmCVLrOXeGqZ5paHB+vyl6t4tFV9A6fUYlF4ElInr7C2c7P/M7+qdO+PPa5Mxv0MHDMiuh4UT9m7ejzzifj1UUDpCQAl3/A4oq6tTdzlMx16RkGlAaZ/Be999rdl9P/ig+7hlfshXBWVLi9GlRko9hlwhMz+j9fVWl/lCQwWle4UWUAapglLqeegAp8NDmCdQ69dnNl6qvYLS6YQ2hx5qjdVnr6C0XyX3e/xJU9ACSvv3uP37XYoPKN1UUHoxg7cpiAFlT+Nnuenibf/uDnpA6XSCHCn+s5VNF2+/KyiLMaAMh+OLA8yAsqMj/oKSG/YKyhUrgjO+bBDZvxudBpTmsX5vY87gLQWrgtIeltrb2FtkUkEp9XzckG6SOa9NnWod0zz/fHy3/kxQQekIASXccXvAl01A2doqrVplLO+7rzUjcSYqK63wLtMu3itWWCfKEydaJ9etrcHoWpKvgHLZMiu4603du01mFVBXV/AO+J1KdeI7dKj15b9oEQfzyZgXIUKh+LGYgsrvMSglacIEa9lpQNmvX/oA0Zwop6srPqjqiZsKyj59rO7bH39sfDd1dVkT5FRWSscf77wNuRS0gDLVDN6SMXu2Gea4CSi9mMHbFPSA0qtJcuxjYwU9oLRXKx97bPoHl5VZxyiFXEFpHlOEw9nN9msqhICyrs7odWTyaqKc+vr40K2hITjjywaRkwlypOKroMwkUKyqsooycjmLd+I6e4tMKiil9N/VbW3Wvj2X40+awmHprLOM5dZW6Zln3K2HCkpHCCjhjrmTqazMrKzafmCXaUC5fLkVqGQzu655JTfTCkp7V+79948P54IwDmW2AWV1tRX6pgs67FesDzww89cJumwqNYIi3bgsZjfvhgYr8IchGrUqKMeONQKWoMtXQJluBuXx462D9nRdvJuarM/cAQekv8jkdqIc84Q1FEpf9ZnI3s17wQJp4ULrO2LGDOO7LgjMgHLXrmCMUWX/Hk82BpT5udm4MfMLIr09oMxFF297QOP05MeHgDLU2anQggXGjZEj0wcmJvPz1RsqKGtqvBkyIqgBZSRifb4Tq5+9mign2XF3bw3UvGAfzznd9jZsmBWU9db3020X71DIOuayX/igi7czTsI5pzN552sGb7tZs6xlt928qaB0hIAS7pgbWKYbVzYVlPbxJ+0VO5kyr7Ts2GGMn+WUfYKciRONkNLUGwLKcNj6e6Y70O2tM3ibesNM3uYJXGVl94Ml+ziUdPOOt3mzddBZCN27pfh9sNdVdWbV2+DB6cPa8nKr6sJeYZ3IfpGnp32H/QQqk4lyzFCrri6zi2f2GYTffDNYs3fb2QOWnsZnygd7WJTYxVuyTjZaWjL/fNorZ7MNKJ2e9ORTTxWU5eXW9u20x0eBVFDWfPqpQuYJ+DHHOOsRY7Zzx47Mhn3wuoKyb19r3+I2oPTqxNT+Nw5SQGkfPzYxoLRXUGYTUNrHn/Rifb2d0wpK+zihq1YFYwgrr2UTKJrbbi5n8ZaKN6B0ejExXzN42x13nHWB6umnrTHKM0EFpSMElHDH7UFW//7WgWg2AaUXFZRSZt28e3sFpZT8izcRAWXwpRuXhYAytUIbf1IytnUnlc+Zikatg0MnlYjmRaOWltQVj/Z9R0/V12YXb8l5BaV91men40+aEmfyto8/+fnPZ7auXLIHlEHo5p2ui7eU3Uze9grKbMegtFcAByWg7KmC0n5/L+viPcg+FERP40+a7J+vTL6bzf1iWZk3VfGhkHWS6raLt1cnpkGtoEw3fqy9gjKbLt723jym3lrx5wWnAaVkDW8TicR3o+8t3I5BKcWfJ5khPBWUznjZxduPCsrSUut4sLk5+T6oJ1RQOkJAicx1dlphWKYbV0mJddCcafhjn7xg4sTMnmvndiZv+wze48cbX+DmxApBmMnbi4DSPNhNd6Br7pD798/+pDGI3J4EBUVXl9XuZF/aTJSTmj2gzOYiSD6Fw9b27mVAuW2bVaXkZEIyJzN5Z3Jxw00F5fr17md93mMPK9R84w1rPzdlSvru7fmWy1nb3XDaxVvKfCZvLwPKsjKryiIoAaWTEyyzzQ0Nznp8FEhAOdBNQOm2nWaQX1vrbuzyZNwElK2t1t/QqxPTQgwox4yx/g5eV1ASUKZmDyh7uoDX28ehdNvFW7K23UjEqqAjoHTG3EeVlKR+n4JcQSlJkyZZy/ZzBqeooHSEgBKZs5eyuznIMivUMgl/2tqkl14yluvq4rtXZ8q+I3NaQdnRYVVw7rOPcbJTVmZVDX30UWbdxXPBywrK9vbkpes7dlgnjT2NIVeoCn0Myvp6q0tOspPePfe0/s6LFuWtWQXBXqVdKBWUkrPK50w5ncHb5GQm70wCSjcVlPZAK9MKSsnq5m3flwepe7cU7ArKdF28pcwrKM2QY9Agb8YANT/HGzakHoYgn8yQrW/f1CfJmYZybmbxHjDAGkM2HwFlNKpB5pA5NTXOe2K4DSjt4z56xQwom5udH/vlonLG/jsVSkDZp4+1LboNKLu6rO8T+4URuninZn6PDhrUc4hWTAFlpoFisouEBJTO2Htfpjp/dDMGZT4DSvu5gZuAkgpKRwgokblsNy7zJKahwfkg/6+9ZpXkz5yZXTDmpoJy+XKrmsgejpoH1h0d7nZUXvKyglJKfrCbyRhyharQu3j3VJUTCllVlJ99ltdZWwOvELt4S9YBs5cBpT1MyqSLt9RzQDl0aM9dcuyhlNOA0t4Vzc2YhfZu3qYzzsh8PbmUyzFH3chVF2/77O1eVeqbn+OOjmBcfDIvkKbbFjIN5dxMkhMOW997+fg+WLFCfczji6OOssLRntg/X07/ftFofAWlV+wT5TidOToXlTOlpdbxXpACSnuwkGz7Nbt5b9kSX/Tg1OrV1jHv1KnW57c3hmle6Oiw9qdOJqSyB5TLl+emTX7yoou31D2grKiIn7E+U709oHQyxEVlpXVxzWkFZb66eEvZB5Tme1BZafXCRDcElMicVwGl5PzA7rnnrOVTTsn8Ne3sV1qcBpSJE+SYgjRRjpcVlFLysKO3jz8p9f6AUqKbdyrmwUZFhbsKPL+Y221LS2aTR6RjPzB00sW7p4ByyxZrf+tk3xEKWSdSq1c7mwE62wrKxIByzJjg7eeCVkGZqy7eW7ZYn+VsJ8gxBWkm785Oq3twuuoP+88yDSidVlBK8WNdZjrbeoZCb75p3XDavVtyV0HZ2mp9jnJRQSk57+adq8oZJ0Pz5Fu6Ckop+3Eo7WO/TZpkrW/dOqPHFeJt2GD1rMk0oOyNoa8XXbwla5s2Q/ZsqicTn9/bAspo1Pn8FeZ3tX3YnkR+VVDutZd1Uc3e68oprydK66UIKJE5LwNKpwGQGVCGw9JJJ2X+mnZuJslJnCDHFKSJcvJRQWk/KOxpkotCVQwBpX2iHLp5Gzo7rUqB8eONfU2h6OnCghuZdvGurbUel2wMSjfV12Y37127nIUA2VZQHnyw0f3QdMYZwRvGImgBpVnJFgolr4pwW0Hp5QzepiAFlNu2WSdeTisonRyvZBtQtra6OzHOINQMv/GGdSOTgNJNBaV9G/E7oLQfU+UioHR6wT8fegoo7TN5uwko7eNPHnigFahFo8bM04iXyQQ55mPMSsDeHlB6WUFJQJnarl1Wr8meKsjN7+rW1tQXXvyqoCwvt/ZfH3+c+QU9rydK66UK6AwMgZHvgHLtWuvkdsqU+ANDN9x08XYSUPo9UU4+Akp7CJvNOKBB5uYkKEgyDSipoDSsWmVV2hTKBDmmXASUmXbxlqxxKLdu7b7tuKm+znSinGwrKMvLpcMPt24HbfxJKbgB5cCBybvqug0ovZwgxxSkgNLpyVU2XbzdBJROX8fumWeMCpb+/Y1qts9/XvrOd6Sf/1x64AHplVeMEGr3WI2h3QFltKxMmjw5t23MVdVithWUXp6cmutqbU0+drgfzICyX7/kx6P2Cko340YmVlDaK/4Yh7K7TAPK0lLrAuGKFTmvqs67XHXxJqBMLZN9sZPvavM7NBRKPv51LpndvHfuzOy4JptJhosMASUyl++A0t69++STM3+9RG4myTG7eJeWGrN3m8aOtboH9IYKynRBRzRq/Y7D/3979x0nVXX3D/wzO1uB3aXvsnREQBABwYINUaKi8RF7F00sMRhFfkmMSWyPJkZNYuxo8lgSNZbYE01EEJQICCgICipVkbLUhaVsm/v743D2nJmdmb393pn5vF8vXlx2Z2cus3Pb536/53Tz/4DglzZtVBVVpldQJmu5BESQJMc+YUApZOr4k4A34xJaraAE0rd56xeUVisoAXPjUMoKykjEXFt6MlddJX5+xAjg+OPtPYeXwhZQyn1kqn1NWZnan9oNKLOxgtJse5rdFu+iImsTC+nhn9Ubc3fcIX6mpkZs52+/DUydCvzqV8Cll4rtqF8/8Tno1g2R/ftaY+RIa+uY6RWUXrd4J75GUAyj9fFj9QpKO4GirKAsKhIdD3rgmY0Vf05ZDSgBFfrW1mbfWOVuVlAaBgNKM6yMwWvmWC0/kx07Ohv30w6741DqxyNWUKbFgJKs8zugfOcdtex0/ElArLMMZ8xUUCbO4K0PapuXpyoJV66MvyvnNxlQRqPxbYpWpKug3LRJ/b6ytb1bsjPTfFiYqaAsKFAh0Vdf2RukPttkS0DpRYu3XnWejj6Td2Kbt53qa/1CykxAKUOtbt3EZ9yOyy4TYyXOn2//ObwUpoCyvl6tQ6obVnpYbGUMSq9bvK3OKO42OxWUZm6oyuO2lerJxNexEkZs3w4sWCCWCwvTbzOGEfcZMI46yvt1DFMFpReT5CQ+VxjGoaypUefCqQJKJ2NQ7tunjteDB4twwqsxE/ftExN2ZTo7AaVejJFtoa9bY1Du3CnGPJWfkXbtnK0XA0rBSgWln+NPSnYDSs7gbRoDSrJO38Ds3JG2ElA2NADvvSeWO3cGRo60/nqJIhF1wW0moFy5srk1KW6CHElebBtG6tlr/SADytJS++OmpQs67FRAZSo9oMy01ha9siTdha9s8zaM+N9trmJAGU+eFHbpYn6mQT2g1PeFevV1797mjxt6BWVrLd719Sr8cBpode1qfmZhv4UpoGxtghxJBpTbtpmfwCLbW7zNVlDabfG2GoDZDShnzlQX5z/+sQh0NmwAPv4Y+Mc/gPvvB6ZMAc45RwzRU1UFIxLBvg4dELv6amvr2K6dqJgDWEGpC1tA2dr4k4CYPEveSLdaQfnFF+ozJ2+WO20ZT2bhQnGtMHhw8Ptap5xUUALZN5O3my3eTqoxE+lhaZAFL15ws8V7zx71vvs5/qSkXyNYmSjHq5tUWcjnmljKCk5PsvQTu9YCyo8+UsHbSSe5N3FF166iHXDzZnGik+55U40/KSVOlONGiGqHHlDale5ENxdm8JbkxXZ9vTgIOr0r6iczFZRAy3EoE2cwzjV6QJlpY1DqF95uBJSxmAr7zLZ3A6lbvNetUxd4VvYdViooN2xQNxPcqrgLI7d/105YDSgB8bnSg+dUvGjx7tpVHOtjsXAFlG6NQdnYqM4D/KqglDeQAWDcOPH+VlaKP4cdlnw19+zBf959F6fqoZIZkYj4nH33XWZWUDKgVPLyxBBJy5eLCkrDMH9jPXH8Sfk6RUXiBohb1X5PPy2OWzt3Aq+9Bkyc6M7zBkEePwsKxLZpRjbP5O1mi7fegZSNLd5z5wJ//ztw9dXO5h5ws4IyqBm8Jf0agRWUnmAFJVnnZ4u3Pv6kG+3dkqygjMVaXwerAWVQ3Ago01Vi6f+3XGnxBjJvohx54C4oSL99Dh+uljkOpboL2rFj5o2v6nYF5datasIgKwFlt24qQNMDSrs3N7p3VxetrVVQ6jN425kgJ1OEqYJS3zem22b0C2Kzbd4y5GjXzr3Kt2hUrUvQAaXZFu/CQrV9t9birV8A+hVQTpsm/s7PB447ztzPFBTY7/KQ67lli7nuhjBVUOZKi7eZgBJQVY9795qfsBJoOYM3IAJPOa7lqlXudL7oxy35Oc9UMqDs0cN8oUcuBJR5eeY7RKTEm4RuVlCGLaA0DOCCC4AHHwQmTXL2XG5WUJq9weeVqipV7WoloGQFpWkMKMk6PwNKffzJk06y/lqp6HdcWjsxkhPkAMlbvMMwk3cspg5mXlVQyrvWkUh8K2c2sjpOapjIA3fnzukvAocNU99ftMjz1Qq1PXtUwJVp7d2A+wGlfkJoZbIZfd+wdq1qUbIbUBYWqhPV1ioovai4C6N27dR2G6aA0mwFpZmxHw1D/T71kNoN+niYTU3uPa9VVipA5AVYa8Gh3Rm89dcw8zrS2rXA11+L5dGjnZ17mCU/Zw0N5j7/uVBBqf+uMymgtDtRTrIKSiA+8LQy3m0q+vn8e+9l3nA/0s6d6nNhtr0byO6Jh+S5Sdu21o8vfrV4hyGgrK5WN4f1a2E7rIRz+k3NZAGlfrMuiArKvDwxORcg9l3yhn5rWEFpGgNKsk4/KfQyoFy/Hli8WCyPGuXuTkif9KG1qgR5kpKfr3ZIuqoqtbMNqoJSbzHwooIyFlPvQ79+zg/CYZepAaVhqIvL1u4qtmunPs9Llpg/wGYjfXwlBpT2ZvCW9DZvWZXqZHgIeUG1aZMY3y6VXKmgzMtT+/igA0o7Ld5mAkr9os/tsFl+nmMxc5POeMVsBSWgzn1qatR42Mk4qaDUf39mA8rp09XyuHHWXs8uq0GqVxWUZWWqEi3ogDLTKygBaxPlyArKzp3jz+XdrPirro7/fG3alLljdevHRisBZZs2at+dbQGlk1m3vQwo8/KAkhKxHIaAUg8lN292dp1gZf9XWKj29WGsoATUtUJjo/n9FysoTWNASdY5Pclq00YNjp0u/PnPf9TyKadYf5109JOadBWU+gzeBx6YvBUgElGt399+G8y4YLK9G3AvoNR3pGvWqDuO2d7eDcRfrGVSQLlrl7qANXPQlm3edXUtZ13OJZk8QQ7QclZJp/QQyWpAmWyiHBlQ5uXFB5hm6OMV6hdaiXKlghJQQUvQAaXZCkqrLd5ezOAthWWiHHmB1batuiBNxWwop1dQWr340W/KmQ0oE8ef9IP+OTMz/IpXoWBengqBrbZ4Fxaqc2A3ZENAabaCsrpanbMfckh89ZubE+Uk64bK1DZvOxPkSDL0ra6Ov87IdDL8szqDNxDfxZAYULoxXr0MOcMWUALWhmJIZDWck8fqDRvUpFhS0BWUgL1xKFlBaRoDSrJObmBFRWpGRavkyXC6Ezuvxp8E4ndo6aoo9Bm80w0OHHSbt1sBZVGRuljSDya5NEEOkLljUFq9q6hPlJPLbd76LHyZNkEOEK4KSj2gXL5ctNHKk9wDD7R+YW52opxcqaAEwhlQphuD0moFpRczeEthCyjNXFzZCSitVlAWFKifMRNQxmIqoCwtBQ4/3Nrr2RWWCkpAtXlbraAsL3d32IKwBpTRaHwxQCI7Ld56FWPizXI3KygZUAr6e+rW7Ohh4KSCMi9P7UvcrqDUnyOMAaWZ43cqVsM5eaxuaGhZKBKmCkrAfEDJCkrTGFCSdfpJll3yYmbr1uTjujQ2qpOB9u3dP/k1W0HZ2gQ5UtAT5bgVUALq96ofTPSTwlwLKDOpgtJJQJnLE+VkUwVlkGNQAi0rKFeuVK3ZdvYd+gVVuolyZKgViVhf50wjL45qa4MdR9GrFm8vq2HDEFA2Nqr3zsx+Wg8xvQoo9XUxE/wtWaIeN3asGALHD1YrKJ0OSZSODCh37DC3Hbpx7pxMWAPKykoRUqaiB5RmWyRTjT8JuBum6efxMkz+4IP0w4yElZOAsn9/tawPhZPJYjH1e7QbKOrXSW7O4q0/R7YFlHYrKIGWx+owVFDaCShZQWkaA0qyzs2Asq5OtQ7rPv5YnWyfdJL7J79mA8rWJsiRsqWCElAHDlZQCpkaUKYLDCTO5C3oJxf6CXmm0Ld5NwJKJy3effuqoTCWLXO+79BbvM1UUHbrJqrBspleCaZfHPnNbIt3ly5qvD62eMcfU6xWUKbr+HAroNy1S5ybpRNEezdgvYJS3x+6PYmPPlFOa8GgYah1cbtyRn8+/TMQhIYG9Rltrfq5rEyda5kNFJPN4C3pgaebFZT/8z/i7717gY8+cva8QXCrgjJbxqHUrznttHgD8QGlVxWUe/YEPzFTYkDpZPIpfR9ppYISaHmstjLJnFf0OSlYQek6BpRkjWGoO9JuBJRA8gBIb+92e/xJwHyLt9kKSv172VJBuWuXqgqQ/6eCgsysMLMqU8egtFpBWVGhqpsWLQr+ZCgo8uSiZ0/7J6xBKihQ6+1mBWUkkr5FLxl9MrGvv44fOsBpBWWqgLK+Xt1oyvbxJ4H4gDLINm8ZUEYi6U+2o1F1zGWLt7UJchIf40cFZWuvA8S3uwYVUFqpoGzTxv0bF1Zm8q6tVeOouV05o+8Pgq6g3LBBnUeY2XbluJHr1rUeigOqglIf+10qKVHbt5MwzTDUuX/37sC556rvZWKbt37ctDr8STYGlG4EinIbrquL3++6GVAahgjFg7JlS8vrYzdavNu2NVd0ZKaCMi8vfj/sp44d1bWiPkxUOqygNI0BJVmjn2Q5Gc+ntYDynXfU8skn23+dVDp3Vm0bZiooU83gLXXpoi7AMj2g1C80d+4UF/9yApVBg7K/OgnI3DEo9XU1Oy6LbPPesSN9C2222rpVXVxm4viTUrKhGeySJ4Ndutjb3mWbd3098NZb6ut2JtjSKyhTfT71i+JsH38SiD/2BjEpmyT3Nx07pm/lBNSNkE2bWg54nyjbW7yt3kgy2+LtZBbvxHVJ9zp1daLdFRABjtWJr5ywOtu43D7cHn8SsBZQenlhGo2q/1/QAaVe/Wym+l4GlIaRvkIeEDfM5fl1//7JbybK56uutl9dvmGDCp0OPjg+gM/kgLJDB+vXB9kYUOoVlE4DSiA+tHNzkhwg2DZvOcmhzo0Wb7OVg2YqKDt3Vt0ZQZDXDOvXm9vfyPcgL8+dz0oWY0BJ1rh1kpUuoKyuBhYsEMvDhllvMTQjGlUnuqkCysZGFcylmsFbJ6uDqqvTV2V6wYsKSkD8vr/6SrwXQG60dwPiPZAX3NlcQQlwHEr9zmcmVwe7FVDGYqqNx+6+Vw8sZAVlUVH8xY5Z5eXq4jvVBaw+QQ4rKP0j941mhpOQM3nr4y+mIkOOwkJzz21F586qeiMMAaVXLd522sfMBpRz5qjKnnHj3J3wpTV2J8nxolrFSkDpdWtfsqF5gmB2Bm/JykQ5+njGieNPSm6MQ5nYOVVRoV7vk08y65ywqUnd8LHa3g2Iz7jcdrIloNRDP7sdM/oxWP/Mu1lBCQQbUCa2dwPuVFCa3RenGrvaMNRxMKgJciT9muHrr1t/vH7DLMhgNQPw3SFr/Ago331XLXvR3i3J1sXq6uStrWZn8JaCHIfSqwrKHTviK0LtVEBlokhEXXxk0smonYAy18ehzPQJciS5P3Y6ccqWLeqGhN2AUp8oR/+a3bGE5YXVN98kr77TK+5yoYJSP/YGFVDW16vXTjeDt2Rlohz5++ze3f2T+Lw8tS5s8bb3OkGNPwnEh4KtdTfEYuozms0VlEDmBpSy4hFofaKcdONPSl4ElADwve+Jvw0DmD7d3vMGYeNGdTy3E1BGIuo9/eYbdU2Uydxs8QbijyMMKJNraFD/F6cVlLt3qxtkQY0/KVmdKMdqFWkOY0BJ1rh1kqWf2CUGQPr4k+PH23+N1siAct+++IBPMjtBjhTkTN5eVlDm2gQ5kj7TfKZwWkGpjxeYK7ItoASS78/M0k8E3Qwonew7ZJt3fX3yCjJWUPrP7AzektmAcs8eFfa4Pf6kJD/X1dXiwslvTioozQSU0ai99jGzr6O3uZ54ovXXcSI/X50/tlZBuXu3uvkcpgpKLwPKurpgZ5r2soIy3Qzekh542q34S3bOKwNKILPavJ1MkCPJgDIWy45hgNxu8XY7oNSrOpNNIusX/Rq4qEj8bXeSHP08xez+r6JCVefr77Gd6xyvWA0o3ZhkOEcwoCRrvK6gjMWA//xHLJeWAkcdZf81WtPaRDlmJ8iRsrWCUj8pzKWAUl5019aaG7w9DOSBW68AbU3fvirwYAVlcOvhVOKNBbv0E0E9VLIi2fvoZN+hX1glu0DKtQrKTAwoZYs3kP4ix8sZvCU9eE83BrVXrFZQFhaq7dtMi3eHDvbars0ElNu3qyF4Dj7Y/j7CCfl5a62CUt8PhqmC0ssWbyDYKkonFZStBZRWKyjtBpT6+bssTjj2WDXM07RpmTOhoJsBJQCsWOFsfcLA7QpK/RiSjRWUHTuqYXs2brT32bczxEV+viok0s9L9WNgmCooW5soZ98+VYHMgLJVDCjJGjt3QZJJFVAuXKhOOseN83ZCFn122mQXKfrdIzMBpV5lmS0VlHqLd7t28RNWZLvWJnIKI3lR2alT65NWSHl5YqxXQAQ9mTQpkBvkSUVBAdCnT6Cr4ogXAaXdCsq2bVvuK9yooASSj0PJCkr/6fsJN1u8/Q4og2jztlMBIh9nZpIcO+3dieuS6nVmzlTDLPjd3i3J9dy5M/3NQ7fOV1MJY4s3kFkBZc+e6lyltRZvebO8TZv4YFNnJfBMRp/Bu3dvVYncpg1wzDFiee3azAnq3Ago+/dXy9kwDqUbY1Dq27A+7Ey2BJQ7dqhj4+DB6vjd0GDvesju/k8eqzduVEMXhamCsn9/dTOwtQpKr8chzjIMKMkaryso9dm7vRx/Eoi/85IsoJQnKa3N4C2Vl6vqnaVL/b3D6lUF5fr16iRvyJDcGtQ3kwNKqwftXJ0oJxZTA1v3728+1A0jt2Z21sMjJxOUJbZ5u1VBmSyglBWUkUgwFV1+C1tA6WaLt14N63WLN5A5AaU8X6mpST4OXCzmfHwrMwFlkONPSvrnLd2xOUwVlH5NkpP4Wn6TAWVpqblz0YICdd6cLlCsrVXh2MEHpz4X7dJFhYp2wrRvv1Xn04nHrExs83a7gjIbAkq3W7x12RJQ6jN46wElYG8cSrv7P3msbmpSx6QwVVAWF6sb6F99lf663+ubVFkmh9IGcoUXAaV+YqePP+l1QKlXUCa2TVmdwVuSJzQ1NfF3kr3mVUD50UdqOZfau4HMCyj37lUnM04Cylwah/Lbb1UFTia3dwPhqqAE4gPKdu3sXxwBrbd4ywrKbt28rboPizAElF61eOsBpVcVlPrFVhABpTzfaNcOKCkx9zOthYc7d6qLIy8rKGUwk58PHHecvddxyuxYmblUQan/zoMKKA1Dnfdaubkgqx537Iif6Emnt12nGn8SiJ/UZc0a6xPGpRvaiQFldgSUbrd4S8XF7tzkDkNAmTgHQ9ABJaCO1WGqoATUtUNNjbkOB4AVlCYwoCRr3DrJ0sdIkhc627YB8+aJ5cGDnV3QmpGuxXvVKlWlYGaCHCmoiXK8avH+73/Vcq4FlPpFdya0PesHRjOBgS5XKyizZfxJIFxjUAJqzCJA7DvsjIknpWvxrq9X++9caO8GwhFQssXbPrmvtlL90Voo53QGb0BMhCDPH5K9xtq1quJ89Gjn5xp2mQ0ova6g1C8ygw4ow1BBuWOHml3XSkCpT5STqs3bzPiTkgw8Gxvjh/8wI11AOWKE2te9/76aHTvM5PEyGrV/PO/eXU2Skm0BpRst3pIb1ZOJzxPGgNLORDlOW7wBdawOUwUlYH4cSlZQWsKAkqxxawOLRtUJlQwop01TY3l4XT0JpG/xtjpBjhR0QFlU5LyCSD/R1S96WjspzDaZVkHp5K7iQQepz02uBpQDBwa3Hm5wK6CU4VEkEn8Txyp9v+l039Gtm6jYAlpWUK5fryrHcmGCHMC9dn4nrLZ4l5Soz2gut3g3NKgwy8p+2o+AUn+dZK8xfbpaDqq9GzB/89DrCsr8fPW8bPG2Pv6kZGbcSDMzeEtOKv6SzeAt5eWpWetratRkUWEmA8oePexX9+XlqRB51ar4MRczkVct3tkcUOodEKygjKdfO6Qbh5IVlJYwoCRr3LwDIAMgGf7o7d3jxzt7bjPStXhbnSAn2WP9nMlbBpRuVDSk+r3mWgVlpgWU+oWa1YN2YaH6/X75ZbAzB/pJv9uZTRWUTqrq5ElgRYUKBe0YPRo45xxx8nb99fafBxAXVrKaLrGC0o+W4LAJQwWl1RZvQF3kmGnxzsuLvyhyU5ABpf6+WdlP6zdU/Qgot28XYaouDONPAuGpoARUmzcrKN0JKN2soASsT5Qjz9sjkfguACmT2rxra9Xn0mlHmgx99+2zF1CFiVct3tkYUJaVieOl0xbvXKmgTBdQsoLSEgaUZI2bJ3wyANqxQ7RKyICyTRvg2GOdPbcZZisorbR4H3SQamUMooLSjYAy2Z2dzp3DcSDwU6YFlE7vKso2b8OIr1bIZmzxjtfUpMIjp5PN5OUBL78sxvJ14+aGvMDatk1ceEl6C1+uVFDq+/lMafEG1Geqtjb+d6iTIUdlpXfjiXbsqMaV9jug1PfTdlu8E2+oAvGhlBsBJRB/3IvFVEBZWgocdpj913AqLBWUQHxAma6yzM9281TjOHrNbkCpt3gnCxT1c5Kqqtb3N3YrKGMxFcz065e8/TeTAkr92OhWQAlkzgzmqbjR4p1sG86WgHLXLnUjePDglpMPhqWCUu/EDJLZgJIVlJYwoCRrvKigNAxg5kx1YXzCCWq8Ey8VF6uDTOIJvwwoo1FrwUWbNupA/vnn/rVCuBlQtmvXcobEoUOdjSGXiTJ5DEo7AeXw4Wo5V9q85clEWVnmB/BuBJSbN6tJBZxMkOOFVDN552IFZTSqZqoNOqCMRMwHYq1d5DQ0qPMAr9q7AbHO8vPtd0Cpn2t41eLt5OIn1essWaL+PXZssJNRhbGCMhaLHws8kbw4bdvWm/cuWyookwWU69erSkAzw4XoYZqVCso1a1T7b6qbar17i4kzAWDOnPS/86C5MUGO1L+/Ws70cSjdqKBMtj+Rx2Sngg4o5QSxgCrQCWMFZZcuLa9Vg9Czp8osWEHpmhD8ZimjyA0sP9/87JOp6HdBn3tOLfsx/qQk27z1CsrGRtX6aWUGb0me2Ozdm7pdxU0NDWomYjcCykik5c4z19q7gdyroDz0ULU8Z47z9Qm7ujpxQQKImxCZHsC7MS6hfuIZtoAy1UQ5uVhBCajfd9At3h07mh/brLWB9jdsUOOJeh02y8/31q3q+OkHuxWUfrd4J75OWNq7gXBWUALp27zlPtmr9QhDQKmH/VYCys6dVSiT7JzZyviTgAjj5D7JSphmdux5WUXZ2AjMmmX++f3mZkCZTTN5uzEGpX6T0OlzJQo6oEwcfxKIH0PaziQ5dqsHu3RR27Icb9zOJHNeikZVgL9ihbrJn4gVlJYwoCRr9JMspxf0egD0yitq2c+AUu7gamrE2CqAuOMqL1isjD8p+T1RjpszeEsMKOMvPHIhoBw1St10mD5dBQXZasUK9X/M9AlyAHcqKPULzLAFlPoFlj5RTi5WUALBB5QyGDLb3g20PtC+HzN4S/rn288x1dyooEzW4p1LAWUYKygBBpR2KygjEVVFuWZNywt8K+NPAqJCVR4vVq40fy5jNaAEwt3mzYAyOTdavIGW23I2B5SAOn77WUGZl6dubK5fL6535fV5GCbIkeQ1RH19y4kcJVZQWsKAkqxx8yRLP7GTIduBB8YfCL2mT5QjT3TtTpCT7Gf8mCjHi4Ay8e5Ors3gDcTP0JkLAWVRkRr7df36+AlkslE2jT8JuB9QOh2D0m2tVVDqJ7K5QAYuu3b5P6tqfb0KRs1OkAO03ibmxwzeUlAT5djdT+vvs98VlHV1qlKsqir55CF+atNGDNEDmK+gDDKgbGxUY656VTlTVqaKBoIOKKPR+HNrM2RA2dAQH3QC1isoAXUdUVNjfkzOdDN468aOVVVduRJQ9umjPl/ZFFA6CRVzLaA0M4Z0KnKflJ9vPRSWx+rq6vhjdVgqKAFz41CygtISBpRknmGoEz43AspklRd+Vk8C8SdRss3b7gQ5UjZUUCbuPO0EtdlAXhRm2hiUVkID3YknquUZM5ytT9hlW0BZVKTGwcnGFu/WxqD0clKVMJKBi2H4fxGjBzFeBZR+VlAGFVBaucAqKlLnXckCSi8myZGvM2eOGLIGENVjQQ+HEYmo9UxXQSnPVyMR98aHS2QmoPSj1TwvT+0Tgg4oKyvND/sg6RPlJLZ5ywrKaNR8OK6Pa2k2UNPHnk/XVVFeDhx+uFhetix+vxUmbgaURUVqCJVMDyhli3c0an0IL50fAaXeju4XGVC2bRs/bI6TcSjlPql9e+vHD3msTpzAM0wVlGYCSlZQWsKAkszbu1fcCQa8CyjHj3f+vFYkm8nbbJtHKgMGiLtEQOYGlPrvt1cv76oPwk6faT7VuCLJbNmCvEcfRbvESgAvyQu18nL7J116QDl9uvN1CrNsCygBtd3mSot3fb3ab+fS+JNA/D7Z7zZvOzN4A/Et3snGsQqqxdvPgNJui7f++NZavN2eJCdM7d2SXM8tW1JXEMv9YGmpd5MpmAko/bowlb/3IALKhgb1ubRT/ZxqopyGBhECAiKcNDuBptWJcpqa1Ov079/66+ht3vr2ESYyoCwvd+ccXr6n27enH84g7OQNvbZtnd1sSdyW3boJUlCgriH9vvm4Z4+6QXDQQfH7TScBpZPuS/1YvWiRWs7UCsriYn8mAs5wDCjJPLdPshIvbIqKgDFjnD+vFXoFpTy5knePolE1W58VhYXq7uvy5eIEy0teV1Dm4viTkj7TvNk2IQC48kpEJ0/G6Ntv96/9Ul5M2q2eBMRM3rL65v33rYWymSabA0q7gVWYA8q2bdX2KC+85KDpQG6NPwm4MymSXXpAyRZva5wMxSEfX1MjwnmdPD4lm+TOzmsAyQNK/SZWkOTnrqkp9effzY6fVMwElH619ukBpd9jSOsTXNnZdlNVUH75pTqHtjLUkNUKypUr1dh2Zs55wz4OZSymhj9xWj0pZcs4lDL0czL+JOBdBaX+XH4HlF9+qbbjxA7C1ia5S8Uw1D7azv5PP1YvXqyWw1pBmWp4LK/HIc4yDCjJPK8DyuOPd37AsCqxxbupSYSKgAgn7d7lkCc4DQ3A1187W8fWeF1BmYvjT0p2ZvKurgbeegsA0Gbz5vg2G680NKiLICcH7WhUbIeAuODV71ZmG3kSUVXlXfuf3/SA0s4Fqgxq8vLCdXdakhda69aJan490GIFpX/0faGVgLJDB1XdHaaA0s9JcmToV1qqxlE0S98mE4cdkQFlebmzakH9+LFli3je+fPFvw8+ODzjvJqZKEees3rZARLGCsr6ejXpo1/sTpAjpaqgtDP+JGA9TLPaOXXEEep8+733/B8HuDWbNqlglwFlPNk27TRQzMaAMtX4k0Drk9ylsnu3KnbI1grKzp1VcUdrFZQcf9IUBpRkntcBpd/jTwLxO7jqauczeEv6z3rd5u1FQKmPYZXLFZT6xbfZgPKVV+JOViN+TJSkr5vTu4q50Oa9fbu6qM2W6klAXYjHYtYHMQfUSWdFhfUxxPwgJ8ppahLrKitEgNyroNSPwZnS4h2JqIucdC3enToBJSX2188MPWgLosXbzn463UzeMqB0Mv4kIC6M5Xu/eTMwc6Y6noWlvRuIPzYnGyO6sVEFEWGqoPRyXfTfvd9t3k4Dyj591LIeUFqdwVtKFXimYjWgLChQN3Orq+OD1DBwc/xJqX9/tZzJAaXe4u1E4o2PbA8o7bZ4O60g1wNKfT8TpgrKSERdS3zzjRqzWYrF1LU6KyhNYUBJ5nkdUPo9/iTQsoLS6QQ5kh7qeR1QeRFQTpggqsq6dwdOO82d58xE+mfU7EQ5L7wQ909fAkqnM3jrciGg1KuasymgdDKTd1OTCo3C1t4tJU6U4+ekKmETljEorQ4pIS9yNm+OH/4kFlMXH15XTwJiW5FBnF8BZUODChLtVH+kqhrUhyBxGlDqr7N5czjHnwRar6D0YwZvwHoFpR8t3kDmBZRt2qibF3qLt90KyvJydf5mJkwzO4O3Lsxt3l4ElHoF5YoV7jyn35qaVHUxW7xb8iKgdJodpDofDVMFJRB/LZG4fehdTaygNIUBJZmn72TcOOFr00Y9T58+wQQFiZPkOJ0gR/JzJm8vAsrhw8VF25o17lzwZCqrLd7r1wMffhj3pYgfEyW5GVAOHKhOCD78UFUUZ5NsHH8ScBZQVlerSqmwtHEmkhWUgJgoR6+gZIu3f+y2eAPxny05wREQH1j6ETZHImo/51dAqQe7dvbT+vmKvs/XW+jcDCi3bAHefVcs5+cDxx3n/Lnd0loFpR8zZwPx73dYWryBzAsoAVX1uHGjqn6VFZTl5db38TJQW7eu9fMYee5fUGB+7PlcDigztYJSr2zLhBbvhgbv5zHQyYCyuDi+qhkIRwWlLkwVlED6cSg5g7dlDCjJPLc3sEgEuOceYNgw4MEHnc2mZldZmRpnsro6/d0jK/r1U+NLZWJAKZ9LziSXq6wGlC+/3GLsv4yroIxEVBXl3r3A3LnOni+M9JMHOaFVNnASUIZ5ghyJFZRKWCoorbR4A6ln8vZzBm9Jfs537FCBiJec7qdTtXi7NYN34uvEYqoSZPRod88vnGqtgtLtG+qpFBWpMCEsk+QA1ib1c4MbAaU+Uc6aNeJ9kzehhg61fo0gA0/DEM+XSkODOicYMECElGYMHKj2VR984P+4n+l4EVCWlambJJlaQalXJLodULo5lrm+bn5VUdbVqd/roEEth/lp315dL1uZJMdpdtCxoxq7WiooCF/Ql24mb7+OAVmEASWZ58UdgB/9SAx6e/rp7jyfVZGIavPWKyijUWeVVdGoCjhXrGg5HoWbvAooyXpA+eKLzYuGPAjps1B6xc2AEohv854xw/nzhQ0rKFvS74hnQkCpV1Dm5YW36tMrYQkonVRQ6p+5IMJmvyfK0ffTbrZ462GUmxWUujC1dwMtJ/NJ5FcFJaDavFlBKTitoATEuJF6e7edyRrNVvx9/bU6R7My5nokoqoo9+0D/vtf6+voFS8CSkBVl27Y4H/7sRv0dc6EFm/Av/f5q69UF02yAh19DGk/KygjkZbnd126BFPUlI5e7JAYULKC0jIGlGRetm5g8kJhyxZ3ZvCW5IlOLKae1wsMKL3TWhuZbu1aYM4csTx0KIz9F3SR+nrv7zZ7GVBm4ziU8uQhGo2v2sh0TiZOyYQKSr3FW6+grKw0X/WSLcLQ4h2JWA/EzASUfoxBCcR/zv1o89arHt1s8c7FgFI/NgdZQQnEB5QJHRQt1iXbA8qyMvuVZOkCSivjT0p6QJluohwnQzuFtc1bBpR5ee4ez/WJcjKxilKvlM+EFm/Av4DSTAehPH5v2QLU15t7XjfG4E38DIdt/EkgfttgBaVjDCjJvGwNKGUFZSymxqlx0t4t6Sc6Xrb5MqD0jpUKypdeUsvnnw/Dz5nc3Q4oe/RQlYXz5tmbETqsDEOdPPTrl13Bllst3mGtRuzSRd04WrFCjWGYa+NPAuGooOzQwfps72Fs8Qb8CSjdrKBM1eLtRUBZWgocdpjz53WTlUly/KqgrK9PPlRAEC3efgaUhuHOBFf6zcLVq+3P4C3pgWe6CkonAaV+MzeMAWX37u4O1ZTpAaWXLd65FFAC8WNIp6Pvi+zuizMhoGzbVp27sILSMQaUZJ6fJ3x+0mfylpxMkCP5NVEOA0rvWAkotfbujA8oAXXi3dgoxlfKFuvXq4vIbBp/EogPrbKxxTsvT7WrffWVqlbKtfEnAWe/a6dkQGm1vRsIb4t3JlRQpqoa9DqgHDs2fDdyOnRQLX7JuhuCqKAEkrd5Z3sF5Y4dahgjJwFlugpKK63XktkKSjszeEtdu4pJJQHg009b77Txw549aj3cbO8GsiugZIt3PKsBpdk2bzdu0CSek4ZtghxJFnZs3Rp/zcgKSssYUJJ52XoHINmdGDcqKIMIKN0cpJmAkhLxB0gfUK5YASxcKJYPPRTo3x+GnzO56xerdkKDZE44QS1nU5u3PkFONo0/CWT/JDlA8gsuVlD697oNDer1vAoos7XF2+mNpKIitY3rz+X2xU/i7zVs7d2AqNyVNxDDUkEJpA8oIxFvz9GCCijdGH8SENujDMJXrlQBZe/e9n6HVVWq4t5MBWVRUXyoaZZs8zaMcJwrybGZAQaUiVhBmZoMKAsKUm8H+vHb7EQ5bmQHmVBBCaQehzJb8xMPMaAk87J1A/OqgrJnT1XR6EdA2batqDAid8mLtXR3xvXqyQsuEH/37YtGOfOc1wGlXLeSEvdOksaOVRUqYTjpdku2TpADuBNQRqPhvTsNJL/gyvUKSj8DSv1GjZ2AsmtXtV9J1uLdrp33FW9SprV4A2rb9LPFO4wBJZD+2BymCkoZFpaXe3uOlukBZTQK9Okjlr/4Qp3b2hl/EhDvtWwbX7Uq+figdXVikhwAOOgg60NWAOEbh9KrCXKAzA8o3RyDMnG/4rQiU6evW7JhI9zW0KC2g4EDUw8LoA/RwgrKllLN5M0KSsuYZpB58oQvGnX3TlHQEi8UnM7gLUUiqopy7VrvLiLlSRzbu70hqzS2bk1+ggvEB5TnnSf+jkZRKyu7vJ7JXV74unnQ7tRJtS4tXpy8SiUTMaBMTgY0FRX2LtL8ok+UI+ViBWV+vrog8jOg1MMgfQgMswoKVLAkL3AMQ1VQ9ujh3+ycejVIJrR46z9XU6MmKfAyoKyqAgYNcv6cXpDrWVsrZlHWhbGC0uv1yPSAElBt3vq5lp3xJyVZCbZ3b/KKry+/BJqaxLLdwoRjjlGVmtOmpT5P9IuXAWX79mr/nYkBpZsVlAUFqsOqpMTd8yY97PSjgnLlSjWTfboOQjst3rlUQZkqoMzWAi8PMaAk8+QGVlbm3wWEHxIrKPv3dz6Dt6Sf8Ojje7iJAaW35EV4Y2N8O720bJlqRTryyLgAZac8OYzFxOO8EIupqia37yrqA8C//767zx0U/aQh28agtBtQNjaq8CTM7d0AKyh1soIjkyooAXWRs3GjuJivqVEXYX61dwPimCmPm35WUJaV2T/H0C/MZFjsdkDZq5d6nfPOC+/5nv75S6yiDFMFpV8BZWmp+l1lakCpT5Qj2a2gBFqfKMfJBDlSSYkIKQERDspKtKB4GVACqopy3Tp/qvvc5OYYlIC6KeD20A1+t3ibGX8ScD4Gpd19MSsocw4DSjLPr5MsvyUGlG60d0v6OIRezORtGAwovdbaRDkJk+PodurVXl61eW/frioAvAwos6XNW45B2bZteGertstuQFldLYJuIPwBJSsolSACSj0IshtQyjax+nqx/wpiBm9Jft79rKB0sp9ONpO32wFlUZGYGO2ZZ4C77nL+fF5JN5N3WCoo9+0TbcSA9xemeXnq/5qpAaUeKEpuVFACySfK0c/L7UzEI4WpzduvgBJIP/lQGLnZ4g2oc/5zz3X+XLpsCijluWi7dvZnlM+UCso+fdQ4uvp496ygtCwjA8oPPvgAp59+OqqqqhCJRPD666/Hfd8wDNx6663o1q0bSkpKMG7cOHwd9B2tbKBXUGaTxB2dGxPkSF5PlLJvnwqnGFB6I12VhmEAL7wgliORFicpu/STQ68CSi9m8JaOPVYdbGfMcPe5g1BfD6xeLZYHDAhvZZBdJSXqBNBKaKWHM2EPbRMvuPLy4sdFyiV6QOlXW6HTFm+g5UVOEDN4S/LCp7Y2eYW8WxoaVGjkVkAp9/1eVGcMHAhcdlm4h/NJF1CGpYLS7wtTGVBnakCZWEFZWOhsKJbWKij18zInxQl6QDlzpv3ncYOfAWWmtXm72eINAPffL86fHnnE+XPpwhpQdu2qxtG1WkHp5NhUXq7a6YHwVlDm56ubIl9/rW78y/cgEuG1ukkZGVDu3r0bw4YNwyMpdgj33nsvHnzwQUydOhXz5s1D27ZtcfLJJ2Nf4hg1ZN6+fWq8o2xL/zt1ih+43KsKyvffd/8iUr+g4k7PG+kqKD/7TN0lO/bYFifnOzM9oGzbVrStA+JEVD/xzUSrV6tAP9vGnwTEyY/cP1upoMyUGbyBlgFWZaUK0XONDF5iMf9a7dxs8QZaBpR+tngnWxev6MGuk+oP/Wflvl9WUDqpUMlE6W4eyhs0BQVAcbG36xGmgFKGADt2+HfTQgaU0ajzyqbECsrBg519pvUKynQt3m3aqAl67Bg2TIVK8+fbfx43yPO00lJvPnPZElC6NamNFzd1gwooo1HgwANTP06fRNHqLN5OAspIJP7cNKwVlIC6tti3T53b6AVenMzWlIw8kxk/fjzGjx+f9HuGYeBPf/oTfv3rX+OMM84AAPz1r39FRUUFXn/9dVwgZ9hNUFdXhzrZhgFg5/6Tm4aGBjTIgWNDTq6nJ+u7ZQvkJWCstBRNGfKemJXfpQsimzYBABoGDFCDBTvVsSOihx6KvE8+ARYvRuO//gXj5JPdeW4A2LZN/V7ats2630sY5LVvDzn0deOmTTC09zjv+eebv9d0zjmIad9raGjAvk6dYJSXI1JTA2PpUjR68PuJbNjQvCNv6tgxbh3ckHf88Yh++CEAoPHdd2FMnOjq8/spsnixeq8OOMD19yoM8svKENm6FUZNjenPW966deozXlER9xkPnWgU+ZWViOw/OY716NHqfs/TY2OAou3aNd9lbti6VVQbeSyvulp9Vtq3t/VZyevSRT3HunWIfPON+ndlpa+fv7zKSvXa33wDI9kYeG747jt1rO7UyfaxOtKhg9qHbdiAWEMD8rdvRwSA0aGDJ8cYt7m1Pca9Fxs3xu3P82tqxHtSVobGxkZHr9Oq0lL1u92yJe53G9myRa1jWZnnx5xoebnYJzQ0oKGmxpcK2PzvvhPvdWUlGmMxVTVkR8+e0G83xQ4+2Nl5bY8e6nezcmX8c+3Zg/yVKxEBEDvoIDQ1NakbmDZEDz0UeR9+CKxdi4bvvgsmRKmuRv6aNeL30auXqc++1e0x0qeP+kx/9VVGnUfl1dY27+8bCgvdu9ZzWaSoSL3Hu3Ylf4/37BE3ZrZuRWTrVqC2Fsbo0S2HLWtNUxPyly8Xn5n+/dEYiaR9X/IrKxHZtAnGxo1orKtLH7jV16Ng/83TWFmZo205euihyFu5EsYBB6CxqCi0v7u8/v3VOcUXX8Do1g35O3aI97d9+1aP0dl6viqZ/X9lZECZzurVq7Fx40aMGzeu+Wvl5eU44ogjMGfOnJQB5d1334077rijxdffffddtHHrLotPpnkw/knb776DfEe/270bn7z9tuuvEaQxbduiPYBYNIp/r1qF2Lffuvbc3b73PRz+yScAgJqf/QyzGxtday0tW7UKY/cvf7N9OxZn2e8lDHp8+y1G7l9eNns2Vsm7gIaBcc88g7YAjLw8TCsrQ13i+x+JYFtVFTrV1CDy7bd49+WX0ejyBUPvmTMxfP/yZxs24BuXPwMdS0pw7P7lDc8+i0/C2lphwuC//x3y3vACw8DGLNxexgBoD8DYsQNv/+tfpvY1Az/4AHKe3vnr1qE65O/LcaWl6LA/oNwYjWK+yfX14tgYpBG7dkHWaH/w1luo9aE9+tDFiyFH/Jy1dClqbbSSVm3YgMP2L385cybarl+PPvv/PXvNGtT4+Pnrt2MH5Ah3i95+G995VK3SZfFiHLV/ecXOnVhm8//YZfXq5udZOXculvXvj+9v3YoogJ3RKGaGfNvVOd0e9fdixdy5WK5Vy52yZQuKAOzJz8d7Hr8n0bo6fH//8tYVK/CR9npdFi1S67h5M5Z7vC6H7dsHWWc049VXsc/uMAwmRRoa8D/7x0Ld0aYNPnDh/ze+bVsU7t8Ov8jPx0qHz3lSx44o2bYN9cuW4T/ac5WvXInj91eZrisrw6cOX2dIx46QtYULp07FplGjHD2fHQe+/DIG7w8lVxx4IL6w8H8yuz0W7NqFU/cvb5s3L+7zHnaHfvWVOn4tWIDdXlbNO1D6zTc4Yf/ynjfeQM1nn6Fo504U7NrV/He+7GrU7O7aFe8/9BCaLEzC1nbDBozbX6C1oUOHVs+njoxGUQEg0tiI9158EfVpqnQLa2ogy8mq6+sxz8Fnpei009C9tBTVI0ag9p13bD+P13rv29d8TfbFa69hdV0dvr99uzhGRyKmj9HZdr4q7THZ7ZN1AeXG/RctFQl3ECoqKpq/l8zNN9+MKVOmNP97586d6NmzJ0466SSUZciYiw0NDZg2bRq+973vocDllrfIggXNy1UHHYTKU09N8+jME9m1C8ZNN8G4+mqcsr/y1jWnnALjzTcRWbYMnZYvx2nt2sEYM8aVp47Mnt283HPIEHTPst9LGESiUeBPfwIADO7aFYP2v8eRhQuRv7/q1hg7FidedFHcz8ntseyoo5pn8D65Rw9xh9NFeYsWNS8PPeEEHOz2Z2DcOBh33YXInj3o8eWXqBw/PmPHbozee2/z8qGTJoW7TcSm6B//CKxejbymJpw6dqypNqbom282L486/XRgxAgvV9Gx6N/+1jxTasVhh+HUVj7zXh4bg5T37rti6BAAY0aMgHHYYa38hHPRxx9vXj7urLNstXlHysqA3/8eADCoffvm7gUAOPq883zdLiO1tcCTTwIARlRUYJhHx9CI1up7wJFHoq/d16mqAvbfTO9fXo6+Y8ciur8iobRXr1a3hTBwbXvs1k29F+3bo5/2f8/fP6RTm8pK798Tw4BRVIRIXR06RyJxrxfRLsb6H3po3Dp6Ifraa8DcuQCAEw491N0hi5JZu7Z5sXzwYFfe6/wBA4BPPwUADDr3XAzUx3e0ITp4MDB7NopranDqccc1z7gcefbZ5sd0P+kkdHO47pHaWuCNNwAAhwGI+b0tNjYi/7rrAABGJII+99yDPiYqwu1sj8b11yOyfTs679iREfscKfr0083LY8aP93/MY7PWrGleLP3uO5Tq47ym0ba6GuM3b0bs6qtNv1TkrbealyvGjm319xl9/XVgf9HNuCFDgEMOSf1gbQiArv37O/+sXHRR8830sIq0awc8+igAYEhhIQ464QR1jO7ZM2fPV6WdJsfHz7qA0q6ioiIUJbnjUFBQkHEfEE/WWTvJinbogGiGvSetuuQS4JJLEAWaS7Nd9etfAxdfDADI/93vAK3C15G9e5sXo+Xl2fd7CQPtZkd0xw71Hv/jH81fz7vgAuSleO/ztIN3/vLlwHHHubt+2phX+V6Mx1dQINb53/9GZONGFKxY4e5EUn6prwcWLhTL/fujwO+x7vyijfNTsGePuTGotICooHfv8I/pqI0VFu3Vy/R+LxOP52lpMzbn79njz+9NjkEZiaCga1cxJpVV2qzr0epqNQZqYSEKunXzd4wmbZzg6KZN3h1DtZm2o5WV9l9HG4crb8sW5NXWqn937JjyOBRGjrdHbXKs6LZt6j3VxkyPtG/vzzbfsSOwYQMi27fHv55WkRvt1Mn7czRtPMyC3bu93yfImeQB5PXs6c7n75BDRECZn4/8UaOc/x8OOADYfzO/4NtvVaCyfHnzQ6LDhjn/3Wg3n6OffOL/+fhbbzWPeRf5/vdRYHGcbUvbY//+wPz5iHz7LQqamrwf59Ut2lwUBe3bh/dcp18/YNCguM8oALG+nTqJG4Py786dxfv/wAMAgOgDDyD6ox+ZPzZ/9VXzYnTo0NY/t9q5c8GWLenfQ23/l2nHJ9u0m0LRFSsQ1fKTvPbtTb8HWXe+up/Z/1PWjdRZuf+EZZN2wSX/XZmrM326we+BvrPNeeepgaWnT2++w+0YJ8nxXrJJcmIx4KWXxHJ+PnDWWSl/3NArGLyYKEefHMCr9usTT1TL06d78xpe+/RTQI4z7HIVa6jo+2ezE+XIgEgfAD3M9IB8UNjvp3tI7+6wMmu7E3J/06GDvXASiJ91XZ8kp3t3/weQ1wfe1yeLcps+mZmTClG9YnXz5vjZmrXAOickvheSvi341QElg8GwTJID+DOTt5szeEu33QZMnAg89ZQ71dSpJsqRE+QA7lSa9u2rzhfnz/dvkiLp4YfV8v5KSs/I6xnDEJMPZgq3Z/H2SjQqbqjPmAF8/DGwapXYl9TViWPmkiVitvh//AOYOlV0eZ2wvyn8669FWG2W2Rm8Jf343dpEObmYHVRUqOvxr76K3w87mSgox2RdQNm3b19UVlZiunYRvXPnTsybNw+js/mi1Gu5uJNxU34+8ItfqH//5jfuPC8DSu8lCyjnzgXkOKXf+178LJ4JDP2A70VA6eUs3lI2BJQffaSWjzoq9eMynb5/NhtayWDG7+o1uy66CJg0Cfj5z4EUE+blhCACSrkPtDuDNyBaLPe3WWLVKhXqBFHVrM/A6mVAqVWaOdpPFxWpbXzz5rjKzJy7+GnTRg1hod+oC+J8VZ4D7NkTV6Xl+8VpNgSUffsCTz8tOpvcoAeUq1apZRlQlpbGVXXbFokActzJzZvVbNp++OKL5uE+cOCB7nVppeL2TN6GAfzf/wHPPef8udKRAWU0Gt7qSalNG2DsWOCww8Q2UVaWfniln/5ULf/hD+ZfRwaUeXlqBup09GNma2N45mI4F4mo93HNmvhjP/MT0zLgSqSl2tpaLFq0CIv2j722evVqLFq0CN988w0ikQgmT56Mu+66C2+++SaWLFmCyy67DFVVVZgwYUKg653RGFA6d+ml6iTon/9sHmPHEQaU3isrEwEzoC6CXnxRfT/FxFvNOndWdxyXLHH/rroMKAsKvNs2hw1TQe3MmYDXs6J6IRcDSjMVlI2N6gRKP/EMs+JiUS1yzz2ZEah6xe+AsqFBfaacBJSA+qzpF/FBjAfWpo26cMqECkpABZzV1fEBZa5VUALqvQhLBSUQ/zthBWXw+vVTy7KCsrZWjfM3ZIh742rr4wDPn+/Oc5rxyCNqedIk74+LbgeUr70GXHmlCKVl0OoFGVC2bZuxY6mndMopqgJy9mxznXqxWPMY+ejXDygpaf1nrASUuZodyIAyFmserxNA7oS0LsjIM/sFCxZgxIgRGLF/IP8pU6ZgxIgRuPXWWwEAP//5z/GTn/wEV199NQ477DDU1tbi3//+N4ozZYyMMMrVnYybCguBm25S//7tb50/JwNK70UiKpzbuhVoalLt3YWFgJlJlQ4+WPy9ZUv83TQ3yAuzzp29O+HKyxN3cgGxL3AjXPeTYaiAsrTU+4kDgqRfkJsJKDdtUqG53u5K4ed3QCmrJ4H4ynI7kg25E9SEBfJzv369d22Z+n7fabgrQ7mamvjnzeWAcutWcTEIxO/3gggo9TbvbA8o9VA/rAFlsgpKva3VzfOBIALKmhrgmWfEctu2oj3eawceqJbdCChnzFDLM2c6f75U5HiAYW7vtisSsV5F+c036j0xO7Y8KyhbN3CgWv74Y7XM/MS0jAwojz/+eBiG0eLP0/tn54pEIvjf//1fbNy4Efv27cN7772HARYHC6YEDCjd8YMfqAuzV16JP0mygwGlP/SA8sMP1bgr48eb2x5kQAm42+ZtGCqg9HrswExu8/72W3UhdcQR9sfOywT653HqVDUUQSr6BSYDyswSZEDpVgWlLqiAQ37u9+41P26rVXI/XVYm2rSd0Pf12gQHORlQys9hLKYqF/Vtwe8WbyA+oGSLd/A6d1ZDSsgKSrfHn5SCCCj/+ldVGXjppf58ztyuoNzfEQkAWLzY+fOlIt8nOTREtrnoInWN+eqr8WOuJmN1/Emg5RjS6ejH01wKKPXMSQ8oc+k9cCgjA0oKQBB3pLNRSYm6w2UYwN13O3s+BpT+kAHlnj3qTjUAnH++uZ/3KqDctat5tlIGlGnkSns3INrxpenTxUnnww+Lyt9k9IAyU1q8SfA7oNTH+fMioAy6ghLwrs1bBpRuTPqhP0euB5T6cU++x6ygFPwMKMvKVAgYNpGIqqJcs0YMa6Kfh+nnZ05166aC2oULVVWvV2Kx+MlxJk3y9vWkzp3VtvX1186eKxaLDyX1sNJteot3NioqAq6/XizHYmLynHTsBJQlJWpf1tokOfo+KJeKm/SAUg/wc+k9cIgBJZnDCkr3XHONCryef771O1zpMKD0h97O+MIL4u+SEuD00839vFcBpR8T5Ej9+6sxVGfPjp8IIOzmzFHL2T5Z2pFHivGc5F3u2lrgJz8Bjjkm+WePFZSZy2o7v1N6QJmNLd6ANwFlfb26UHNjP60/hx4O5GJ1hh6Uy89nmCoo5XZZUCDGzvWanwGlYaiAMqzVk5IMKBsbgXXrvKugBFQV5c6d8TcQvDB9unqN4493N2xNJxJRVZRr16ob5XasXCnOU6S1a+PHcXVLU5OYBRvI3oASENeY8v/35JPxnQ+J7ASUgLrByBbv5PQhEHS59B44xICSzGFA6Z527YAbbxTLsZiY6MEuBpT+0C+CZDD3/e+brxjwaiZvPwPKSAQ44QSxvG9ffOgXdnoF5ZFHBrcefpkwQQx8fvXV6mtz5wKHHgrcemt8uKyfYDKgzCzZ1uIdhoBy7Vr3n18Pdt2ooEwVULKCUvwdpgpKeYHevr0/k3LonwGvA8odO8SwCED4A8rEiXJkQNm+vfudA362eevVk9dd5+1rJZIBZSymJhyyI1nFpBdt3nKsRSC7A8qOHYEf/lAs79kjhvpJRQ8oBw0y/xpym9m9O/46NFGuZgdlZclvwubSe+AQA0oyR+5kIhEGYW6YNEmdOD/9dOvjxKXCgNIfyaqFzLZ3A+J306ePWF661L2JGPwMKIHMbPPes0edAA8Zkjt3MNu3Bx5/HJg1S7WbNDQAd94JDB8uxlIFWEGZybKpxTsvL/kJvR/0CiovJgDTJ7JxYz+th5yyIgjIzYAyUyoo/VqPdu3UDM5eB5SZMP6kpE+U88knoooSEBWHbgfHhx+ulr0MKNesAd56Syz36GFuwkY3uTUOZbJ9rhdt3rK9G8jeMSilyZPVfuChh5J3PBmGCij79LEW2pqdKCdXKyiB+IlypFx7DxxgQEnmyJOs0lK10yP72rcXbZeACA3uu8/e88iAMi9PtByTNxIDynbtgFNPtfYcQ4eKv2trxcx5btADSqeBgRmZGFAuWCDauoDsb+9O5rjjRDXCr38N5OeLr335pfj6NdfEt6BxDMrMUlio2kb9DijdbvGurFSfT78deqhaXrDA/ed3+0ZSqufIxYAyzBWUhuF/QBmJqItgL9pkdZkUUOoVlP/8p1p2u70bAEaNUsteBpRTp6qb3T/6kf/7T7dm8mYFpfv69gXOOUcsb9oEPPdcy8d89526hrTS3g2YDyj9HuIiTJJNzswKStOYNJE58uKHG5d7Jk9Wd/H+/OfWBxtORh5cSkv9aR/KVYkX42ecYT0Q9mIcSj0w8KOCsqpKtYHMn+9dKLJ2rRhH0Y1xLnNpgpxUiotF5eQnn4hZzKUnnlCVlPn5/oTc5C4ZwGR6i3dQ7d2ACHTkxfaiReKmoZv0gNLtFm+ppMT57OCZKMwVlLW1apIUPytn5GuxglLRKyhnz1bLXgSU+v7k00+djc+Yyt69wF/+IpYLCoArr3T/NVrjdgVleTkQjYplrysosz2gBNSErADwhz+0nLDJ7viTQPwNxnTXrn4PcREmDCgdYUBJ5vh9FzgXdO4MXHutWN63D/jjH60/hx5QkncSL8attHdLXgSUfrd4A6qKsqlJtA+7be9e4OijgbPOAn7xC+fPx4BSGToU+O9/gQceaHmC3q0bq+MzkZ8BpZst3p06xVf8BB1wyKqnurr4CTTc4GWLt5SL1ZNAuCsogxp/TQ8o3RpOJplMCih79VLhlx7UeDWpjByHsq7O3XHHpRdfVDeMzjsPqKhw/zVaoweUdmfy3rhRBVwjR6q22M8/dz/YzaUWb0B8Bo87TiwvWwa88078950ElFYrKHMxO0gMKIuKcq+K1AFejVDrGhrUQNi5uJPx0v/7f6rq4dFH08+2lgwDSn/oFZTl5cBJJ1l/Dv1EeMkS5+sEBBtQAsCMGe4//7Rp6sLnr391Vs1kGGoyn44dk9/RzDXRKHD99eLk9LTT1NcPOii4dSL79IDSyzACUAFlJOI8EMvLi7+oDrKCEohvy3S7zdvt/XSycDhXx7ZKFlDqYb1fAWVpqQrAwhJQNjXFhzJuy6SAsqBAhJSJvKigBLydKMcwxLiCkt+T40gVFepGp90KSr1ScsQIMT42IM77li1zsnYt5VKLt6RXUf7+9/Hf8zqg1Ie4yMXjU+L1Ri6+Bw4woKTW5eosXH7o1k21ZuzeDTz4oPmfjcVECxHAgNJrffuq6rJzz7XXSjdwoLqAyeQKyuOPV++FF+NQvvaaWt6+HZg50/5zrVihQpXRo3OvxSSdXr3EAPuvvirGw33ggaDXiOyQAUxjoztDIqQjb6B16KD2ZU7oFzm5ElC60eJdVNQyeMvVCsr27dVnUe7r5TlrSYkIpvwQiagqShlQBjVBhP5aXrZ5Z1JACcS3eQMi6Hdje0zGy4By3jwxXAsgqg71YVv8FImoKso1a+zdTNYDyuHDVUAJuD8OZa61eAPiJrSsSp05M/7YpgeUVm9QmwkogxriIiz69Ys/T2J+YgkDSmodA0pv/fznqtXtwQfj3+909IMtA0pvVVWJ2dZ/8hPgnnvsPUdRkbqjtmyZmrjFCXnhq18cea1DBzWpxJIl8e2LTjU2qlkppVdesf98snoSYHt3MpEIcOaZYr8jxxalzOLnTN4yAHJrrFL9IifogGPECHUDw+2A0u0Wb6BlsJKrAWVenupwSKyg9Pt8NTGgDLqCEvAnoIxGvQv63KRPlAN4194NiP2JDCfcDigfflgtX3ddsDdeZUDZ2Ghv8kd9Bm+9ghJwfxzKXGvxBsT+8f/9P/XvP/xB/K3P4N2jh/VKczMBpb7vycXsoLBQFLdIuRjSOsCAklrHgNJbvXoBl10mlnfsEK3eZsj2boABpR8uvVQEOU6CQHlCXF/vbFBxSV6QderkTkWTWV61ec+e3XKYg9deE61qdujjT+biDN6U/fQLC7M3t+xoaFDP73QGbylMFZSlparS5LPPxNhxbvGi0j3xeXI1oARUYJ5YQelXe7ckzw127ozfXoDsrqDs1s3f8w+7EisovWrvBkQAJp//88/j24ud2LQJeOklsdypk73x0N3kdCZvGUIWFYn977BhLb/nllxs8QbEtYu8gfDyy6LaddMm0aEEWG/vBkQWIDvJUk2SE1QFeZjobd7MTyxhQEmtC2LA8Vzzi1+ottk//tHcuEEMKDOP2xPlyAtfv9q7pRNOUMtutnm//rpalgfz6moxsYsdMqCMRuNbroiyhV8VlLIqDHCvgvLCC8Wg8YMHA0ce6c5zOiHbvBsa3BsnGFAVlOXloqrCDQwoFfle7Nkjzp2CrqAExMV5UBVEfgSU9fXqcx109bNZfgaUgDrnaGqKrxR04i9/Ua3UV14phjEIkpOZvGtr1eQ6Q4eKTrKuXdWNq0WL3B1XORdbvAFxjJXjlDY1ieF8nIw/CYiqXfl7SlVByeKm+IAyV0NamxhQUuu4k/HegQcCF1wglrdsAe6+G/jwQ+Dtt8VsfX/5C3D//cD//i/ws58BP/oRMGWK+nkGlJnBzYBy7151wuV3QHnMMepC+9133TmJNAw1/mRBAfCb36jv2Wnz3rlTvcfDhgHt2jlfR6Kw0Y/JXgaUbs7gLR1/vAg5PvvM3ri+bvNqHEovbiQlttTm8sWP/nlcu1Ydj4KqoAREoJ/NLd56KJEpAaWfLd6A++NQNjYCjz0mlvPyxHVA0JwElJ99prbVESPU12Wb9/btwLp1jlYvTi62eEvXXqvC7D//Of6mv52AElAB5datyWdcZwWl6soAmJ9YlB/0ClAGYEDpj1/+Enj+ebH8m9/EBzStydWdf6ZxM6AMYoIcqU0bES68+64Yd+jDD4HjjnP2nJ9+qsYwOuEE4OKLgRtvFNUCr74qAvo8C/fU5s1TJ79s76Zs5VcFpR5QutXiDYTr5poXAWV9vTqHcnOcPlZQKvp7sXKlWg6ygnLbtuyeJCfTJsgBWgaUflVQAu4ElG+8od73008H+vRx/pxO6QGlrIY0K3GCHH35nXfUY3r2tLduiXK1ghIQN3GuuEIMIbZ7N3Dvvep7TgNKQLR59+oV/31mB/HvbUVFcOuRgVhBSa3jTsYfQ4YAZ59t/ee6dROtchR+Bxwg2i0AdwNKtyqarJg4US0//bTz59PbuydMEBdZ48aJf69bZ/0EXx9/khPkULbyK6DUx4YNYn/jh+HD1U0QtwJKr24kMaBU9M+jXsXFCkoGlLrychUSdO/u/cSCQ4eqynA3AsrEyXHCoFs3VZlntYIycYIcyauJcnJ1DErpxhvVhEq1terrVmfwlior1XKyNm9WUIpusyuuAI4+GvjhD4Nem4zCCkpqHQNK/zz+ONC7tzh4lJa2/FNW1vJrHTuqWcAp3KJRcUftk0/E3eZ9+1RgaZVe0eR3BSUgQsSyMhGKvPSSmEDISRu1bO8GgDPOEH+ffba6k/7KK8ARR5h/Ps7gTbkgiArKbA0o27YV++elS8WfvXudj/GmB5RuVlByFm8lrBWU2RxQfv65Ws6UgBIAfvc74L77gJtv9v61CgpE8DZ3rjjf27HDflCzdCkwc6ZYHjgwfqLCIOXliRvvS5cCq1aJMQ7NTpgkw8dIRIS5klcT5eRyBSUgql0nTIg/166stB/UJ1ZQJmJ2ILaPJ58Mei0yElONXGXlxFu/6MnVnYxfOnUC/vCHoNeCvHTwwSKgjMWAZcvi7xxbEWSLNyDavM8/X4xns3u3CBD1qkorVqxQFaVHHqlOfM44A7jmGnHS+8orwD33qDvA6cRiKqCsrBShP1E2yvQW77AZNUrsi5qagMWLnU/eIycSAVhB6ZVUAWXQFZRBVRDpnwU5U6+bmpqAp54Sy5EIcOyx7r+GVy6/XPzxy2GHiYASEFXZsivEqkceUcuTJpk7D/LLgQeKfWZDA/Dtt+Zaz/WJyAYMiL+53b+/OL/cs8e7gDLXxqCUfvrT+IDSbns3EB9QsoKSXMYW71xUXy8OBl27ioqk888Xs0hPnQr85z/AV1+Jyi6Jd0GI3OPWOJRBB5SAaF2QnLR56+3dZ56pljt3BsaMEcurVolB1c344gsV1hx1VLhO5oncxBZvd7k9DiVbvL2nfx7DWkHpZ1jqdQXlO++o8aJPPZU3ANNxYxzKHTuAv/5VLLdrZ/9GsFfsTJTz5ZdAXZ1Y1lu6AVGBecghYnnVKveOa7ne4g2I82F9THYvA0p9/8eAkixiBWUu+uYbUWG0ebP48/HHyR9XVSXuhMkTEYABJZFT2RRQHnmkaDf68kvRfrRqVcuB6M3Q7+hOmBD/vbPPBmbMEMuvvBLf/pMK27spV7DF2116QLlwofPn86vFO5cvAPXj35o1ajnoCkp5gd6mjWj39YvXAeXUqWo5DDNJh5keUKa61mrNU0+pcO2yy/z/XLcmMaA0UyWaavxJafhwVXn62WdiLD+ncr3FW/rFL9QwSk7Oj61UUDI7IIsihiGnOSXdzp07UV5ejpqaGpSF7WCQQkNDA95++22ceuqpKEh3MvT55xh15JHYuHevaNWwols3azPpEuWwffv2oThxjMmmJjVeS3Gx/XbJ7dvVSWvXrv5eAOl27VLBiBwn1YpYTJ3c5Oe3nOlOf7+SfT8Z/b3p0gUoLLS2TpR1km6L2aCxEdi0SSyXlHg38cPWraqzIpvPAwwDWL9eLJvd36Szc6fYRwIi2JWTZrhBn6ikqiqjKsVd3R71Y4SuY0fnY4hakbgt1tWJ41teXvzFvB/kZ6OgwN1gXH+vo9H4iTIoufXrxX7F7udg40Z1rVZR4cmY8462x7o6dQOrXTtzYVRNjZqoJdl+cfduFXC1b+9OoLh5s+ggBDJr3FQv7N0r9k1O3lf93D3ZtcyWLapKNsOOT0Hbt28fevfujYVu3CQNGbP5GgPKFLI6oATQo0cPfKef3BIRERERERERUSC6d++OdevWBb0arjObr7HFO0dVmr3raRjizl1Tk6hC4h0QItNS3pXW7+TavbMYprvB+p1Sq1VC+s+mqgStrVXtcnIm+1T0u7qFhcG1v1OoZG0FJaCqpbz8vMsqnkhE7LOymZsV2Hr1k9tVJNXVYrIJNyo9feb69iir1HRBVM/rlYsNDWI5iOOQV9vrhg3iGAtkdyW1m/RqwU6dRLWZWfp5ntsV2BrH26P83JvdF7VWVapXsrtVBbxpk6hyzoVjmF/k/iDZ75Hvt2379u1DRYYd011nUFI1NTUGAKOmpiboVTGtvr7eeP311436+vqgV4Uo56XdHq++2jDEKZhhfPSRvRc48EDx8+XljtbTFS+8oP4/l15q/udqagyjsFD8XI8ehhGLJX/c6tXq+UeMSP+cb72lHjtlivl1oayV9cdGuQ0NH+7da5SXi9cYMMC71wiLqVPVPuRPf7L/PEuWqOcZN8699ZNmzzaM8883jPfec/+5PeTJ9ti3r3qv5Z+lS917frM6dBCv3bGjWo9TTvF/PUaOFK+dl5f6uGrViy+q/9O557rznLng5ZfV+/brX5v/ufnz1c8NHuze7zGBK9vj4MFiPYuKDKOpKf1j16xR/69TT039uIED1XM2NNhfN6lHD/F83bo5fy4SRowQ72l+fsvfe2Wl+F7PnsGsW4bK9vNVs/kab30REfnNjYly5OQLYZiw4owz1MD8//iH+ck63nlHVQdMmJC6uqhPH2DkSLH86adiMp5UPvpILXOCHMoFsk3Gq0lyGhpUBbPdMXMziVszeb/1llo+/XT7z5PK0UcDL7wAnHii+8+daZJVKAYxMYMcA3bbtmDXQx6PYzFVvefUY4+p5Wuvdec5c4Hdmbzvv18tT54c7g42OVFOXV382LjJLFqklhNn8NbJ79XViYkYnZJV8bk8QY7bZNVkY2P8RHpA/BiiRBYxoCQi8tvQoWrZTkDZ0KAO/mFoYS4uBi68UCzv3Qu8/LK5n9Nn7z7zzPSPPftstfzqq6kfp8/gPXq0ufUgymReB5R62BKGGyJeO/hg1RrsJKB880217EVASUqyz2UQ48cnm6QqyIAScGcm72XLgJkzxfLAgcDxxzt/zlzRq5c6T5s/v+VQBMl89x3w0ktiuXNn4JJLvFs/NyTO5J2OPoN3uoBy2DC1rIeadslZvBlQukcfLk6fybuuTk2qxxm8yQYGlEREfhsyRC3bCSi3blXLYQgoAeCKK9Ty00+3/vi6OuDtt8Vyhw7Ascemf7weUL7ySvLHNDQAH38slnv35rg3lBu8Dij1yohcCCiLioBDDhHLX35p732trgbmzRPLQ4YAffu6t37UUuJxMBIRMwr7LVlAGUQFkdsB5eOPq+Uf/Sjc1XxhE4kAhx8ulrdtA1avbv1nHnlEVKUB4v32czZ6O/SA8uuv0z9WDxtHjEj9OD28dBpQNjWpsc7btHH2XKTo407qAaXsuABYQUm2MKAkIvJbly5qIPElS6z/vGzvls8VBqNGAYMHi+XZs1s/SZ0xA9i1SyyffnryyXF0Awao1vi5c4Fks9t99plq42F7N+UKGVDW16uLMDfpN0RyocUbUG3ehhFf8WPWv/6lKqVYPem9xOC8tDSYCVyysYJyzx7gmWfEcnExcNllzp4vF1lp896zRwXCBQXAj3/s3Xq5xUoFpQwbS0uBfv1SP04PKBcvtrtmgjwvBFhB6SY9oNy4US0zoCSHGFASEQVBhm2bN4tqGyvCGFBGIvFVlPKCJhW9vXvCBHOvoVdR6j8v6e3dDCgpV+itrPqFgVtyrYIScD4OpdfjT1K8xONgEO3dQHZWUL74onqOCy5I/n+k9KwElH/9qxpW44ILks9yHTZmA8pt24C1a8XysGHpbyJUVqrZuxctMtcan4ps7wYYULopVQWlvs9hizfZwICSiCgITibKCWNACYhxkqJRsfzMM6KtJpmmJuCNN8RySQlw8snmnr+1Nm99ghyOP0m5Qg9jvGjzZkBp7Wf37QPefVcsd+kCHHGEe+tFySV+LoO6KM7GCkp9cpwf/cjZc+UqswFlLAY88ID69403erdOburVS3XBpAso9UrIdONPAuKmt3zM5s3xAZhVDCi9wRZv8ggDSiKiIGRjQFlZCYwfL5bXrRNt3MnMnauqRk8+2fyYQAcfDBx4oFj+8MOWlacyoGzTRo0hR5TtvA4oc7HFe/Bg0c4KWA8oZ85UF8SnnaZu2pB3wlxBGURA2aGDWt6+3f7zLFyoArURI9RYimRNly5iXGxAvKepbt7+5z/A8uViecyY9GM0hkk0qtq1V6xIXe2oD5dh5v/m1kQ5ekDJMSjdk2qSHFZQkkMMKImIgpCNASUAXH65Wk41WY6d9m5A3FGXVZSxmKrCBID161Xr0OGHtz6mJVG20C8AWEHpjoICVb2zYoW1kIezd/svzBWUmdziPXWqWubkOM7IKsrdu1UImej++9Xy5Mmer5KrZJv33r2pqx31kLG1CsrExzgZh5JjUHrDTIs3KyjJBgaURERBkBPKANkVUJ5+uqqyevXVlhdHhgG8/rpYjkaB73/f2vOfdZZa1tu89fEn2d5NuYQt3t7Q27w/+cTczxgG8M9/iuXCQuCkk9xfL2qJFZTx3Agoa2qA558Xy6WlwEUXOV2r3Ka3eX/8ccvvL10KTJsmlvv1y7ybG2bGoZQVlPn5wJAhrT+nWzN5s8XbG8XFal+TapIcVlCSDQwoiYiCUFamWn6WLrU2AHiYA8rCQnUhs28f8NJL8d9fuhRYuVIsH3ec9ZbRUaPEeEcAMH26qmzSx5/kBDmUS9ji7Q0741AuXgx8+61YHjsWaNfO/fWilhKPg2GqoMzUgPJvf1OVZ5deys+yU62NQ6mPPXnDDZk3NIQeUH79dcvv79sHLFsmlgcPBoqKWn/OAQPUUBts8Q4nWUW5YYO6jmEFJTnEgJKIKCiyzXvXLnVRa4YeUIaxokmfzfupp+K/J6snAeDMM60/dySiqigbG9VsuXoF5ZFHWn9eokzlVwVlJBI/tl22sxNQcvbuYJSXi6osKUwVlJnY4m0Y8e3d117rdI1o5EjVIp8YUG7eLAJhQHx29XOoTNFaBeXSpWrsTbNja+bnq/Pkr7+ODxqtYIu3d2RAuWePuJYBWEFJjjGgJCIKytChatlKm7cMKEtKwnmyNXy4mqRm7tz48Zb08SfPOMPe8yfO5r1vnxh4HhB33MMY2hJ5xa+AskOH+BAo2w0apKptGFCGWyQSv98PSwVlJBJM5aHTgHL2bODzz8XyMcfEj5lN9pSVAQMHiuXFi4G6OvW9qVPVv6+8UrTUZxo5gSGQPKC0Ov5k4mMNA1iyxMaKgS3eXko2UQ4rKMkhBpREREHRT/qtnHjJwCBs7d1SJBJfASAny1mzRo1BNHKkatW26qij1EnRf/4DfPABUF+vvkeUS/xq8c6l9m5AtFgeeqhYXrMmfizOZNavV5VRw4bZ37+RPXpAGVQFZWKFcVkZkBfApVabNupmgp2AMnFyHHKHbPNuaAA++0ws19UBjzwilvPygJ/8JJh1c6p3b/WZSxZQWp3BW3JjHEq2eHsn2UQ5egUlA0qygQElEVFQ7MzkHYupwCCsASUgxqGUJ6t/+5to7dFn3bbT3i3l5amfr6sDbrlFfY8BJeUaPYzRLwzc0NCgAo5crEzW27xllXYq//qXWmb1pP/042FQFZQFBfHVb0FdnEci6rWtBpSbNwP/+IdY7twZOOccN9cstyUbh/LFF4FNm8TyWWcBffr4vlquyM9X675iRctx1fVwcdgw88/rRkDJFm/v6AGlnChH3+ewxZtsYEBJRBSUgQPVQOhmA8rt29U4PmEOKLt2BU47TSyvXy9mp9TbuydMcPb8epu3PiMmZ/CmXKMHlH/9K/CDHwAzZqj9hBPbtqnlXA8oW2vzZnt3sMJQQQnEV1EGeXFuN6B86inVkXDFFeYmMyFzDj9cLc+fL0K8++9XX5s82fdVcpUch7K2FqiuVl+PxURbOwD07WstuJfDBQHuVFAyoHRXugrKoiI1yRGRBQwoiYiCUlysxu1ZtkxM+tKaMM/gnUhv8/7974EPPxTLBx4oZnF0YsyYli2nZWXOn5co0/TsqQKZ2loRMJx4omgx/tnPxEVdYjWLWbk6g7dkNqDcuxd47z2xXFkZ/3PkjzBUUALx41CGIaCsqREBkRmxGPD44+rf11zj+mrltGHDVGfJ/IarkRMAACvKSURBVPnArFkqdDvssMzvAEk1k/eKFSoktDL+JCAqkg84QCx/9pm9G29s8fZOsoBS3hRh9STZxICSiChIss27rg5YubL1x2dSQHnqqWodp09XF0kTJqjZLO3Kz285yc7o0cGM90UUpJISEf5PnBg/Icf69eLGwIgRYkKuu+8G1q5t/fl27QK++EKM7/rcc+rruVhBeeCBqmU3XUA5fboIKQHg+9/nfigI48aJv9u1U2OHBkEPKIMcf02+diwmblyYMW0asGqVWD7pJBUMkTuKi1VF4BdfAHfdpb53443Oz4uClmomb7sT5CT+zN69yce3bA1bvL2TbpIcjj9JNvEMiogoSPo4lDfdFF+xlEwmBZQFBcAll7T8upPxJ3V6mzfA9m7KXYccIiaj2rQJeOEF0WKsz7j9+efAL38pxgg77jgxCcbf/gb89rfAtdeK4RgOOUS0p5aVAUOGAKecIr4v5WIFZV6emNALANatU2NsJWJ7d/DOPFNMxPH11y0nq/FT2CooAfNt3o89ppavvdbNtSFJjkNpGOLGBgB0754dY32mmsnb7gQ5ktNxKNni7Z3ECspYTE3WxwpKsokBJRFRkE4/XVXbvPGGqHR6993Uj8+kgBIALr88/t+VlcARR7jz3CeeGD/WWKa3RxE51aYNcP75wJtviouFRx9tuV18+KEIHy67DPjVr0RY+fbbwJIlqYOMoiJg/HjPVz+UWpsoJxZTAWVxsarkI/8NHx5f0ROEMAaU27e3/vh169TnuHt3UQlM7tMnypGuu07c0M10XldQJj6XWWzx9k55uRpncuNG0YEhh5RhBSXZxICSiChIhx4KvPyyuqjZsAE4+WTghhtUy6Au0wLKQw6Jb7c74wz32h+LikQYA4iTpCOPdOd5ibJB584iiPzvf8XwEXfeCQwalPrxBQVAv35ifNdLLhEVl489Bvzzn8CaNdZmXs0mrY1D+cknqrXtxBN5AZzrwtLirVeRtlZBuWSJaDGWw7BcdVV8BTa5JzGgbNMGuPrqYNbFbX36qPO7ZBWUnToBPXpYf1792GMnoGSLt3ciEVVFuWGDmiAHYAUl2cajDxFR0M46S4Rrl18uxoACgAcfFJMuPPdc/N1jPaDMlDHhrrlGDbZ/4YXuPvfvfy/a5I86So0VR0Tx+vUDfv1rUTH56adifMmSEjHBTq9e4u+uXTl2YjKtBZRs7yZdGCsokwWUX38NvPiiGBLi88/V16NR4MorvV673DV4sNj3yhvQEyfGf2YyWWEh0Ls3sHq1CCgNQww7smmT+P7w4fbG2ezRQ7xH27ap2cCtYIu3t7p1E7/zbdvU7xpgBSXZxoCSiCgMqqqAf/8bePhh4Oc/F5PmfPEFcPjhYiD1//f/xIVDplVQAupip0MHUZ3lprIy4Prr3X1OomwViYiK5iAnEck0/fqJC60dO0RAaRjxF9l6QMm2WNIrxKqqgluPZAHlt9+qUDLZcAV5eeImRvfufqxhbsrPF1WUH3wg/n3DDcGuj9v69xdhVU2NGFPd6fiTgNjfDh8OzJghqvQ2bQIqKsz/vAwoCwqyo5U+bPRhNb78Ui0zoCSbeKuciCgs8vJE2LZwoaqabGgQk+eceKKYgXfLFvX4TAko8/JEC9O55wa9JkRE1kQiqopy40YxO7q0bp26AB85ksEOicl6LrxQDD9y1lnBrYceDrz0EnDssaJa+mc/axlOHn20uDm6fj1wxx2+rmZO+u1vgWOOAe6/Hxg4MOi1cZc+DuXXXzsffzLZz1qtopQBJYff8IY+Uc7y5WqZLd5kEysoiYjCZsgQYO5c4LbbgHvvFRU7s2aJ8Rzl3d+CAh78iYj8MGqUGHIDEFWUMoj85z/VY9jeTYCYMOL554Nei/iA8u23W35/5EjggguA884TwSX55+ijxWRl2ShxJm83KiiBlhPlnHSS+Z+VY1CyvdsbqQJKVlCSTaygJCIKo6Ii4He/A95/X1087NwpWmYAMf6knbF8iIjImlTjUL75plpmQElh0rVry68NHiwmy/rqK/E5/ulPGU6SuxJn8pYVlMXFwIAB9p/XyUQ5soKSAaU39IBy2TK1zCIKsokVlEREYTZmDPDZZ8B11wHPPqu+nint3UREmS5ZQLl7txgTDRAVlU6qg4jcduihwCWXiAlwxo8X1ZIHH8wbm+QtPaD89FPR5g2IDiAnM8MPGiQm4amvZ4t32OgBpfx9A6ygJNsYUBIRhV15OfC3vwGnnQZce60Y8P6444JeKyKi3NCrl6ha37JFTZQzbZqYzAwQk+Mw+KEwycsT5w1EfurbV+wLDQN49131dSfjTwIinBwyRISey5eLWdBLSlr/ucZGEWoCrKD0ij5JTkODWmYFJdnEFm8iokxxwQWiZWb6dDG4OhEReU+fKGfLFuCbb+Jn7/6f/wlmvYiIwqS4GOjZUyzLGziAOxXmMuSMxYClS839jBx/EmBA6RW9glLHCkqyiQElEVEm6dQJOOEEZ60yRERkjd7m/fHHwL/+JZbbtBH7ZCIiim/zlpxWUAL2xqGU7d0AW7y90qWLqNhOxApKsokBJRERERFROnpA+dhjwKZNYvl73xNVQ0REFD+TNyDCq0MOcf68eshpdhxKVlB6LxoFKipafp0VlGQTA0oiIiIionT0gPL999UyZ+8mIlISKygHDHCnetFpBSUDSu8ktnlHIkBpaTDrQhmPASURERERUTpVVfGTAUinneb/uhARhVViQOlGezcgKvL69BHLixeLsShbwxZvfyQeG8vKkrd9E5nATw4RERERUTr6RDnS4YcnDy2JiHJVYkDpxgQ5kgw7a2uBVatafzxbvP2RWEHJ9m5ygAElEREREVFrEgNKzt5NRBSvX7/4f7tVQQnEt3mbGYeSLd7+SAwoOUEOOcCAkoiIiIioNYkBJcefJCKK16YN0L27+rebAaX+XJ980vrjGVD6gxWU5CIGlERERERErdEDyl69gKFDg1sXIqKwOvlk8ffo0UDXru49rx5Q3nMPcPXVwLffpn48x6D0BysoyUUMKImIiIiIWlNRAVx2GVBQAPz612JcSiIiivfoo8C0acA777j7vL17qxtFTU3An/8MHHggMGUKsHlzy8dzDEp/JI7FzApKcoABJRERERGRGc88IyZouOqqoNeEiCicioqAcePcr6SLRID33wfuvFPMFA0AdXXA/feLsS9vvRWoqVGPZ4u3P1hBSS7KyoDy9ttvRyQSifszaNCgoFeLiIiIiDJdYWHQa0BElJvatRMV7KtXAzfdBJSUiK/X1orgsm9f0f69Zw9bvP3CCkpyUVYGlAAwZMgQbNiwofnP7Nmzg14lIiIiIiIiInKiY0fgd78DVq4EJk0SQ28AwPbtwC9+ARxwQHyLOSsovVNcDHTooP7NgJIcyNqAMj8/H5WVlc1/OnfuHPQqEREREREREZEbunUDHn4Y+PJLYOJEIG9/vLFxY/xM3wwovaW3ebPFmxzID3oFvPL111+jqqoKxcXFGD16NO6++2706tUr5ePr6upQV1fX/O+dO3cCABoaGtDQ0OD5+rpBrmemrC9RNuP2SBQO3BaJwoPbI1F4ZNX22KOHmDTnxhsRveMO5L32Wty3GwoLgWz4f4ZUtKICeV98AQBobNcOBt9ry7Jqe0zC7P8rYhiG4fG6+O6dd95BbW0tBg4ciA0bNuCOO+7Ad999h6VLl6K0tDTpz9x+++244447Wnz9+eefRxuOWUFEREREREQUeu1XrMCg555DxaefoqZPH8z84x9VdSW57tD770fPWbMAAB/dfjs2Dx8e7ApR6OzZswcXXXQRampqUCYnuUoiKwPKRDt27EDv3r3xxz/+ET/84Q+TPiZZBWXPnj2xZcuWtG9gmDQ0NGDatGn43ve+hwI5DgcRBYLbI1E4cFskCg9uj0ThkRPb46ZNYnxETm7mqbz77kP0V7+CEYmgcflyMVkRWZLt2+POnTvRuXPnVgPKrG3x1rVv3x4DBgzAihUrUj6mqKgIRUVFLb5eUFCQcR+QTFxnomzF7ZEoHLgtEoUHt0ei8Mjq7bFHj6DXIDf85CdAfT0iAweiYMCAoNcmo2Xr9mj2/5QTdc61tbVYuXIluumDtxIRERERERERkX2lpcDttwMXXhj0mlCGy8qA8qc//SlmzZqFNWvW4KOPPsKZZ56JaDSKC7nBEBERERERERERhUpWtnivW7cOF154IbZu3YouXbrgmGOOwdy5c9GlS5egV42IiIiIiIiIiIg0WRlQvvDCC0GvAhEREREREREREZmQlS3eRERERERERERElBkYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgsjqgfOSRR9CnTx8UFxfjiCOOwMcffxz0KhEREREREREREZEmawPKF198EVOmTMFtt92GTz75BMOGDcPJJ5+M6urqoFeNiIiIiIiIiIiI9svagPKPf/wjrrrqKlxxxRUYPHgwpk6dijZt2uDJJ58MetWIiIiIiIiIiIhov/ygV8AL9fX1WLhwIW6++ebmr+Xl5WHcuHGYM2dO0p+pq6tDXV1d879ramoAANu2bUNDQ4O3K+yShoYG7NmzB1u3bkVBQUHQq0OU07g9EoUDt0Wi8OD2SBQe3B6JwiPbt8ddu3YBAAzDSPu4rAwot2zZgqamJlRUVMR9vaKiAsuXL0/6M3fffTfuuOOOFl/v27evJ+tIRERERERERESUC3bt2oXy8vKU38/KgNKOm2++GVOmTGn+dywWw7Zt29CpUydEIpEA18y8nTt3omfPnvj2229RVlYW9OoQ5TRuj0ThwG2RKDy4PRKFB7dHovDI9u3RMAzs2rULVVVVaR+XlQFl586dEY1GsWnTprivb9q0CZWVlUl/pqioCEVFRXFfa9++vVer6KmysrKs/FATZSJuj0ThwG2RKDy4PRKFB7dHovDI5u0xXeWklJWT5BQWFmLkyJGYPn1689disRimT5+O0aNHB7hmREREREREREREpMvKCkoAmDJlCiZOnIhRo0bh8MMPx5/+9Cfs3r0bV1xxRdCrRkRERERERERERPtlbUB5/vnnY/Pmzbj11luxceNGDB8+HP/+979bTJyTTYqKinDbbbe1aFUnIv9xeyQKB26LROHB7ZEoPLg9EoUHt0chYrQ2zzcRERERERERERGRR7JyDEoiIiIiIiIiIiLKDAwoiYiIiIiIiIiIKDAMKImIiIiIiIiIiCgwDCiJiIiIiIiIiIgoMAwos8QjjzyCPn36oLi4GEcccQQ+/vjjoFeJKOvdfffdOOyww1BaWoquXbtiwoQJ+PLLL+Mes2/fPkyaNAmdOnVCu3btcPbZZ2PTpk0BrTFRbvjd736HSCSCyZMnN3+N2yKRf7777jtccskl6NSpE0pKSjB06FAsWLCg+fuGYeDWW29Ft27dUFJSgnHjxuHrr78OcI2JslNTUxNuueUW9O3bFyUlJTjggANw5513Qp8nl9sjkTc++OADnH766aiqqkIkEsHrr78e930z2962bdtw8cUXo6ysDO3bt8cPf/hD1NbW+vi/8BcDyizw4osvYsqUKbjtttvwySefYNiwYTj55JNRXV0d9KoRZbVZs2Zh0qRJmDt3LqZNm4aGhgacdNJJ2L17d/NjbrzxRrz11lt4+eWXMWvWLKxfvx5nnXVWgGtNlN3mz5+Pxx9/HIccckjc17ktEvlj+/btOProo1FQUIB33nkHX3zxBf7whz+gQ4cOzY+599578eCDD2Lq1KmYN28e2rZti5NPPhn79u0LcM2Jss8999yDxx57DA8//DCWLVuGe+65B/feey8eeuih5sdweyTyxu7duzFs2DA88sgjSb9vZtu7+OKL8fnnn2PatGn45z//iQ8++ABXX321X/8F/xmU8Q4//HBj0qRJzf9uamoyqqqqjLvvvjvAtSLKPdXV1QYAY9asWYZhGMaOHTuMgoIC4+WXX25+zLJlywwAxpw5c4JaTaKstWvXLuPAAw80pk2bZowZM8a44YYbDMPgtkjkp5tuusk45phjUn4/FosZlZWVxn333df8tR07dhhFRUXG3//+dz9WkShnnHbaacYPfvCDuK+dddZZxsUXX2wYBrdHIr8AMF577bXmf5vZ9r744gsDgDF//vzmx7zzzjtGJBIxvvvuO9/W3U+soMxw9fX1WLhwIcaNG9f8tby8PIwbNw5z5swJcM2Ick9NTQ0AoGPHjgCAhQsXoqGhIW77HDRoEHr16sXtk8gDkyZNwmmnnRa3zQHcFon89Oabb2LUqFE499xz0bVrV4wYMQJ//vOfm7+/evVqbNy4MW57LC8vxxFHHMHtkchlRx11FKZPn46vvvoKALB48WLMnj0b48ePB8DtkSgoZra9OXPmoH379hg1alTzY8aNG4e8vDzMmzfP93X2Q37QK0DObNmyBU1NTaioqIj7ekVFBZYvXx7QWhHlnlgshsmTJ+Poo4/GwQcfDADYuHEjCgsL0b59+7jHVlRUYOPGjQGsJVH2euGFF/DJJ59g/vz5Lb7HbZHIP6tWrcJjjz2GKVOm4Je//CXmz5+P66+/HoWFhZg4cWLzNpfs3JXbI5G7fvGLX2Dnzp0YNGgQotEompqa8Jvf/AYXX3wxAHB7JAqImW1v48aN6Nq1a9z38/Pz0bFjx6zdPhlQEhG5YNKkSVi6dClmz54d9KoQ5Zxvv/0WN9xwA6ZNm4bi4uKgV4cop8ViMYwaNQq//e1vAQAjRozA0qVLMXXqVEycODHgtSPKLS+99BKee+45PP/88xgyZAgWLVqEyZMno6qqitsjEYUOW7wzXOfOnRGNRlvMRLpp0yZUVlYGtFZEueW6667DP//5T7z//vvo0aNH89crKytRX1+PHTt2xD2e2yeRuxYuXIjq6moceuihyM/PR35+PmbNmoUHH3wQ+fn5qKio4LZI5JNu3bph8ODBcV876KCD8M033wBA8zbHc1ci7/3sZz/DL37xC1xwwQUYOnQoLr30Utx44424++67AXB7JAqKmW2vsrKyxcTHjY2N2LZtW9ZunwwoM1xhYSFGjhyJ6dOnN38tFoth+vTpGD16dIBrRpT9DMPAddddh9deew0zZsxA3759474/cuRIFBQUxG2fX375Jb755htun0QuOvHEE7FkyRIsWrSo+c+oUaNw8cUXNy9zWyTyx9FHH40vv/wy7mtfffUVevfuDQDo27cvKisr47bHnTt3Yt68edweiVy2Z88e5OXFX/JHo1HEYjEA3B6JgmJm2xs9ejR27NiBhQsXNj9mxowZiMViOOKII3xfZz+wxTsLTJkyBRMnTsSoUaNw+OGH409/+hN2796NK664IuhVI8pqkyZNwvPPP4833ngDpaWlzWOBlJeXo6SkBOXl5fjhD3+IKVOmoGPHjigrK8NPfvITjB49GkceeWTAa0+UPUpLS5vHfpXatm2LTp06NX+d2yKRP2688UYcddRR+O1vf4vzzjsPH3/8MZ544gk88cQTAIBIJILJkyfjrrvuwoEHHoi+ffvilltuQVVVFSZMmBDsyhNlmdNPPx2/+c1v0KtXLwwZMgSffvop/vjHP+IHP/gBAG6PRF6qra3FihUrmv+9evVqLFq0CB07dkSvXr1a3fYOOuggnHLKKbjqqqswdepUNDQ04LrrrsMFF1yAqqqqgP5XHgt6GnFyx0MPPWT06tXLKCwsNA4//HBj7ty5Qa8SUdYDkPTPU0891fyYvXv3Gj/+8Y+NDh06GG3atDHOPPNMY8OGDcGtNFGOGDNmjHHDDTc0/5vbIpF/3nrrLePggw82ioqKjEGDBhlPPPFE3PdjsZhxyy23GBUVFUZRUZFx4oknGl9++WVAa0uUvXbu3GnccMMNRq9evYzi4mKjX79+xq9+9Sujrq6u+THcHom88f777ye9Vpw4caJhGOa2va1btxoXXnih0a5dO6OsrMy44oorjF27dgXwv/FHxDAMI6BslIiIiIiIiIiIiHIcx6AkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiygB9+vRBJBLB5ZdfHvSqEBEREbmKASURERFRK6655hpEIhFEIhHMmDHD0s++++67zT97ww03eLSGRERERESZiwElERERUSsuu+yy5uVnn33W0s/+7W9/S/o8QZk5c2ZzYDpz5sygV4eIiIiIiAElERERUWuOPvpoHHDAAQCAV155BXv37jX1c7t378Zrr70GABgyZAhGjhzp2ToSEREREWUqBpREREREJlx66aUAgJ07d+KNN94w9TOvvvoqdu/eHffzREREREQUjwElERERkQmXXnopIpEIAPNt3rK9Oy8vD5dccoln60ZERERElMkYUBIRERGZ0K9fPxx99NEAgP/85z+orq5O+/j169dj+vTpAIATTjgB3bt3b/GY119/Heeeey569eqF4uJitG/fHqNGjcIdd9yB7du3m1qvt99+G5dccgn69euHtm3bori4GH379sXZZ5+Np59+Gnv27AEArFmzBpFIBGPHjm3+2bFjxzaPRyn/PP300y1eo76+Ho8++ijGjh2LLl26oLCwEJWVlTj11FPx7LPPIhaLpVy/yy+/HJFIBH369AEAbNiwATfddBOGDBmC0tJSy2NhJhtD86WXXsKJJ56ILl26oKSkBAMHDsTPf/5zbNu2LeXzHH/88YhEIjj++OPTvt7tt9/e/HrJyO/dfvvtAID3338fEyZMQFVVFUpKSnDQQQfhzjvvbK6kld5++22ceuqpzY8bPHgw7r77btTX15t+L+bPn48LL7wQPXv2RHFxMXr27IkrrrgCy5cvN/XzK1aswI033oihQ4eivLwcJSUl6NevHy6//HIsWLAg5c8l/g5isRiefPJJjB07FhUVFcjLy+NM40RERGSNQURERESmPPHEEwYAA4DxwAMPpH3sfffd1/zYv/71r3Hf27Ztm3HCCSc0fz/Zn65duxpz5sxJ+fxbtmwxTjzxxLTPAcB46qmnDMMwjNWrV7f6WP3x0urVq41Bgwal/ZljjjnG2Lp1a9L1nDhxogHA6N27tzFnzhyjc+fOLX7+/fffb/W9l95///3mn5s+fbpxySWXpFyv/v37Gxs2bEj6PGPGjDEAGGPGjEn7erfddlvz8yUjv3fbbbcZd999txGJRJKuy1FHHWXU1tYasVjMuP7661Ou8ymnnGI0NjYmfa3evXsbAIyJEyca//d//2fk5+cnfY6ioiLjpZdeSvv/uu+++4yCgoKU6xGJRIxbbrkl6c/qv4N33nnHGDduXIufnzhxYtrXJyIiItKxgpKIiIjIpPPOOw/FxcUA4mfnTkZ+v127djjrrLOav15XV4dx48ZhxowZiEajuPTSS/H3v/8dc+fOxYcffojf/OY36NSpE6qrq3Hqqadi7dq1LZ57z549GDt2bHOF5siRI/H444/jv//9LxYsWIDXXnsNN954I6qqqpp/pnv37liyZAmefPLJ5q89+eSTWLJkSdyfCRMmNH+/trYWJ554YnNF3oQJE/Dmm29iwYIFePnllzFmzBgAwOzZs3H66aejqakp5ftRW1uLs88+G/v27cOvfvUrzJw5Ex9//DH+7//+D926dUv7XqZyyy234Nlnn8WECRPw6quvYuHChXj77bdx2mmnAVAVgn545513cPPNN+PII4/E888/jwULFuDf//43xo8fDwD46KOPcPfdd+P+++/Hgw8+iPHjx+OVV17BwoUL8cYbb+DII48EAPz73//Gn//857SvtWjRIvzoRz9C165d8dBDD2HevHmYNWsWbrrpJhQVFaGurg4XX3xxyirI++67Dz/72c/Q0NCAQw45BI899hjee+89LFiwAM899xxGjx4NwzBw55134sEHH0y7LjfddBPee+89/M///E/c70D+v4mIiIhMCTohJSIiIsok5513XnOV2PLly5M+ZvHixc2Pueyyy+K+98tf/tIAYLRv395YsGBB0p9fs2aN0a1bNwOAcdFFF7X4/o033tj8/JMmTTJisVjS56mrqzM2btwY9zW9+q21ysWf/vSnzY/99a9/3eL7sVjMuPjii5sf8+ijj7Z4jKygBGC0a9fOWLRoUdrXbI2+/gCMu+66K+l6nXTSSQYAIz8/36iurm7xGLcrKAEYZ599dovqx8bGRuPII480ABilpaVGcXGxMXny5BbPs3v37uYKyUMOOSTpa8nvY39FarLq0BkzZjRXVh522GEtvv/55583V07edtttST87TU1NzZWp7dq1M7Zt2xb3/cTfQbLPBhEREZEVrKAkIiIisuCyyy5rXk5VRal/XX98bW0tHnnkEQDAnXfeiZEjRyb9+d69e+OWW24BALz88stx4xfu2LEDjz/+OABROfnAAw+kHB+xsLAQFRUVZv5bLdTV1eEvf/kLAGDIkCHNYyzqIpEIHn30UXTq1AkA8PDDD6d9zp///OcYNmyYrfVJZuTIkfjlL3+ZdL2mTJkCAGhsbMScOXNce81U2rRpgyeeeALRaDTu69FoFFdffTUAYNeuXejSpQvuvffepD8/ceJEAMBnn32GmpqatK/3hz/8AZWVlS2+PnbsWFx11VUAxBiViVWUf/jDH9DQ0IBRo0bhtttuS/rZycvLw0MPPYSioiLU1tbiH//4R8r1GDBgQNLPBhEREZEVDCiJiIiILDj55JObQ7/nnnsOhmHEfT8Wi+H5558HAPTo0SNuUppZs2Y1B0/nnHNO2tc57rjjAAANDQ1YuHBh89dnzJjRPPHN9ddf3yIQc8vChQuxY8cOAGKim1SvU1ZWhvPOOw8A8MUXX2DDhg0pn/Piiy92dR0vuuiilOGsHv6uWrXK1ddN5nvf+x46duyY9Ht6KHvWWWehoKCg1cetXr065Wt16NABZ5xxRsrv/+AHP2hefu+99+K+99ZbbwEAzj777JTvHQC0b98eQ4cOBYC0Ae/555/v2WeQiIiIcgcDSiIiIiIL8vPzcdFFFwEQM2PPnj077vvTp0/H+vXrAYhALi9PnW7p1WzdunVrMYO2/ufggw9ufuzGjRublz/99NPm5WOPPdbd/5xm6dKlzctHHHFE2sfq39d/TteuXTv069fPnZXbb9CgQSm/p4eFu3btcvV1kxkwYEDK77Vv397y49Kt84gRI5Cfn5/y+8OHD0dhYSEAYMmSJc1fX7t2LTZv3gwAuPnmm9N+/iKRSPPnVf/8JTrkkENSfo+IiIjILAaURERERBala/NO1d4NANXV1bZeT1ZMAsCWLVual+1OLmPGtm3bmpe7du2a9rF6q7H+czo9fHNLmzZtUn5PD4bTTd7j97q4sc6t/T7y8/ObA1r99+HG5y9Rhw4dbD0nERERkS71rVciIiIiSmr48OEYOnQolixZgpdffrl5vL7du3fj1VdfBSBajAcPHhz3c3ro9Mknn6Rs9U3Uo0cP91behnStwGaxDdg9dn8f+ufv1ltvxbnnnmvq59q2bZvye/y9EhERkRsYUBIRERHZcNlll+FnP/sZduzYgbfeegvnnHMOXnvtteYJbRKrJwE0TyYDAF26dLEVPHbu3Ll5ecOGDejbt6+NtW+d3iK9adOmtK3JegtwqnEYw0ZWK8ZisbSP0ycoCotNmzal/X5jY2Nz5aT++9A/fwUFBXHDCBAREREFiS3eRERERDZcfPHFzdVjzz77LADV3l1QUIALL7ywxc+MGDGiefm///2vrdc99NBDm5c/+OADyz9vtvpOD6/mzZuX9rEff/xx0p8Ls9LSUgDA9u3b0z7uq6++8mN1LFm0aBEaGxtTfn/x4sWor68HEP/76NevH8rLywHY//wREREReYEBJREREZEN3bp1w7hx4wAAb7/9NpYuXYrp06cDAE455RR06dKlxc+MGzeueQzCBx98sMUM4GaMHTu2ueX2oYcesjy+YnFxcfNyXV1dyseNHDmyedzIZ555JmWl4a5du/DSSy8BAAYPHuzpuJhukpWnX331VcoJabZs2YJp06b5uVqmbNu2rXk27mSefPLJ5mX5GQVEO/app54KAHj33XexbNky71aSiIiIyAIGlEREREQ2yTbuhoYGXHDBBc1hYbL2bkBMFHPdddcBAD766CPceOONaVuMN23ahL/85S8tnuOaa64BACxcuBCTJ09OGXQ2NDS0mBhFDxBXrlyZ8rWLiopw5ZVXAhAzc995550tHmMYBq677rrmiXvk/y0TjBkzBgBQX1+Phx56qMX3GxoacOWVV2Lv3r1+r5opU6ZMSdrqPWvWLDzxxBMARMh82GGHxX3/5ptvRjQaRSwWwznnnIN169alfI2mpiY899xzaR9DRERE5AaOQUlERERk05lnnonS0lLs2rULn3/+OQAxq/Hpp5+e8mf+93//F7NmzcK8efPwwAMPYObMmbjqqqswfPhwtG3bFtu3b8fnn3+O9957D++88w6GDh3aHBRKd955J6ZNm4YlS5bg4Ycfxpw5c3DNNddg6NChKCwsxLp16/Dhhx/i73//O+666y5cfvnlzT/bq1cv9OjRA+vWrcPvf/979OjRAwMHDmxuV6+oqGhuf7711lvx6quvYtWqVbj99tuxZMkSXHHFFejWrRtWr16Nhx9+GDNnzgQAjB49GldffbWL7663TjvtNPTu3Rtr167FLbfcgi1btuCss85CcXExPv/8czz44IP49NNPceSRR2Lu3LlBr26cYcOG4YsvvsDIkSNx88034/DDD0ddXR3efvtt3H///WhsbER+fj4eeeSRFj87dOhQ/P73v8eNN96IL774AgcffDCuvvpqnHDCCaioqMC+ffuwZs0azJkzB//4xz+wYcMGLFmyJPCJmoiIiCi7MaAkIiIisqmkpATnnHMOnnrqqeavnXfeeSgqKkr5M0VFRZg2bRouv/xyvPrqq1i8eHHaysOysrIWX2vTpg1mzJiBs88+Gx988AEWLlxoKRz85S9/iR//+MdYvXo1zjjjjLjvPfXUU82BZmlpKaZPn47x48dj+fLleOWVV/DKK6+0eL6jjz4ab775ZkbN6FxYWIhnn30Wp5xyCnbv3o37778f999/f/P3o9Eo/vSnP2Hbtm2hCyiHDx+O6667Dtdee23Sz05hYSGeeeYZHHHEEUl/fvLkyWjbti0mT56Mmpoa3HfffbjvvvuSPrawsDBuWAAiIiIiL7DFm4iIiMiBiRMnxv07VXu3rrS0FK+88go+/PBDXHnllRg4cCBKS0uRn5+Pjh074rDDDsOkSZPw9ttvpxwDsXPnzpg1axZeffVVnHPOOejRoweKiopQXFyMfv364dxzz8Vzzz2XdLKea6+9Fq+88gpOOukkdO3aFfn5qe9Z9+nTB4sXL8bDDz+MMWPGoFOnTigoKEBFRQVOOeUU/O1vf8MHH3yQMbN364455hgsXLgQl156KaqqqlBQUIBu3bo1B7/XX3990KuY0pVXXokPP/wQ5513HqqqqlBYWIju3bvjsssuw6effooLLrgg7c9fddVVWLVqFe644w4cffTR6Ny5M/Lz89G2bVsMGDAAZ599NqZOnYrvvvsO/fv39+l/RURERLkqYtgZnZ2IiIiIiIiIiIjIBaygJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLA/H/mcXHz52CFTAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#тестирование АE3\n", + "predicted_labels3, ire3 = lib.predict_ae(ae3_trained, test, IREth3)\n", + "\n", + "lib.anomaly_detection_ae(predicted_labels3, ire3, IREth3)\n", + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3, IREth3, 'AE3')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ct8sXWouiWqt", + "outputId": "8437e250-7629-49d1-bfa1-21a81ff49758" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.81)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predicted_labels3.sum()/predicted_labels3.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZEGW4yEdkJHC" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/labworks/LW2/is_lab2.ipynb b/labworks/LW2/is_lab2.ipynb new file mode 100644 index 0000000..38f44ef --- /dev/null +++ b/labworks/LW2/is_lab2.ipynb @@ -0,0 +1,8369 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pCa-oj1IGPf-", + "outputId": "00c56128-0694-4a1e-b8f2-79c25a0d6899" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "mkdir: cannot create directory ‘Notebooks/is_lab2’: No such file or directory\n" + ] + } + ], + "source": [ + "mkdir drive/MyDrive/Colab Notebooks/is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zTHlvvZGq6o", + "outputId": "7f7f3d4c-a9ac-48d1-b4de-86dfc94d2db0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[Errno 2] No such file or directory: 'drive'\n", + "/content\n" + ] + } + ], + "source": [ + "cd drive" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zTgwV0j1G34f", + "outputId": "ea6e5222-71f7-41c5-d2f9-21aad2d4302d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[Errno 2] No such file or directory: 'MyDrive/'\n", + "/content\n" + ] + } + ], + "source": [ + "cd MyDrive/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X1emctxUG5_a", + "outputId": "7a2f6c7d-5ead-4b46-da37-8ba360d6dcb7" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[Errno 2] No such file or directory: 'Colab Notebooks'\n", + "/content\n" + ] + } + ], + "source": [ + "cd Colab\\ Notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZILuaysRG8AA", + "outputId": "15e01956-2375-41d5-d71d-6bfd286845cc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "mkdir: cannot create directory ‘is_lab2.ipynb’: File exists\n" + ] + } + ], + "source": [ + "mkdir is_lab2.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xR3GRzOMG_Xp" + }, + "outputs": [], + "source": [ + "mkdir is_lab2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "myqtSP8YHeOG" + }, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3ryig5GRIEP4", + "outputId": "96066a71-471c-4cd3-968e-d0b0c9a08be6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2025-11-11 14:23:21-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 23354 (23K) [text/plain]\n", + "Saving to: ‘lab02_lib.py’\n", + "\n", + "lab02_lib.py 100%[===================>] 22.81K --.-KB/s in 0s \n", + "\n", + "2025-11-11 14:23:22 (84.0 MB/s) - ‘lab02_lib.py’ saved [23354/23354]\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "R7ls5L_fIP-s", + "outputId": "6b191d16-794d-475b-9571-5d874edd8138" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2025-11-11 14:24:05-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘letter_train.txt’ not modified on server. Omitting download.\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DCcRAZQMIqnD", + "outputId": "0ba95764-3a79-4a46-d42b-4399f6fc9bf1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2025-11-11 14:24:06-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘letter_test.txt’ not modified on server. Omitting download.\n", + "\n" + ] + } + ], + "source": [ + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Qgqz050IvsY", + "outputId": "b1901b07-8f3b-4dd1-9219-78b1f3722a9c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘out’: File exists\n" + ] + } + ], + "source": [ + "mkdir out" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "xag0MrqqI6P8", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "84509dac-5e58-4b35-e0de-54ce4fa2fe9a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:444: SyntaxWarning: invalid escape sequence '\\X'\n", + " hatch='/', label='Площадь |Xd| за исключением |Xt| (|Xd\\Xt|)')\n", + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:452: SyntaxWarning: invalid escape sequence '\\X'\n", + " facecolor='none', label='Площадь |Xt| за исключением |Xd| (|Xt\\Xd|)')\n" + ] + } + ], + "source": [ + "# импорт модулей\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "svNJLDxrI9CM", + "outputId": "c3b8168e-51a4-4306-bb62-cdfd96635388" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApOhJREFUeJzt3X98FdWd+P93cmOCCkH0UYsilXojIQGjtnZ30fXHp2LVslbApbWrH9TP9tv6o1tbl62lxVptFbZl1f74SG3rdrv+WPrBDXYrsmq1tOvDH7UKBQlEQSkUddnabaKiCbm53z9mJ5k7md9zZubM3Nfz8eAB93Jz58w5ZybznvM+Zxqq1WpVAAAAAABA5hqzLgAAAAAAADAQpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAUECXXnqpTJs2LdLPfuUrX5GGhga1BQIAAIEQpAMAkKKGhoZAf9avX591UXPv3nvvldtuuy3rYgAAEEpDtVqtZl0IAADqxd13313z+p//+Z/lkUcekbvuuqvm/bPOOkve/e53R97O/v37ZXh4WFpaWkL/7NDQkAwNDcm4ceMib18Hf/EXfyHPP/+87Ny5M+uiAAAQWFPWBQAAoJ5cfPHFNa+feuopeeSRR8a8b7dv3z456KCDAm/ngAMOiFQ+EZGmpiZpauISAQCALJDuDgCAZs444wyZNWuWPPvss3LaaafJQQcdJF/84hdFROQnP/mJzJ07V4488khpaWmRcrksX/3qV6VSqdR8h31O+s6dO6WhoUFWrFgh3/ve96RcLktLS4t84AMfkGeeeabmZ53mpDc0NMinP/1puf/++2XWrFnS0tIiM2fOlH//938fU/7169fLSSedJOPGjZNyuSx33HFH4HnuL774olxwwQUyefJkGTdunBx11FFy4YUXSl9fX83n7r77bnn/+98vBx54oBx66KFy4YUXyu7du2vqcO3atfLb3/52ZApB1Dn6AACkidvkAABo6PXXX5dzzz1XLrzwQrn44otHUt//6Z/+ScaPHy/XXHONjB8/Xh577DH58pe/LP39/fKNb3zD93vvvfdeeeONN+RTn/qUNDQ0yNe//nVZsGCBvPTSS76j748//rh0d3fLlVdeKRMmTJBvfetbcsEFF8iuXbvksMMOExGRDRs2yDnnnCNHHHGE3HDDDVKpVOTGG2+Ud73rXb5lGxwclLPPPlsGBgbkb/7mb2Ty5MmyZ88eeeCBB+SPf/yjTJw4UUREbrrpJrnuuuvkox/9qHziE5+Q//qv/5Jvf/vbctppp8mGDRvkkEMOkS996UvS19cnv/vd7+TWW28VEZHx48f7lgEAgMxVAQBAZq666qqq/dfx6aefXhWR6ne/+90xn9+3b9+Y9z71qU9VDzrooOo777wz8t4ll1xSPfroo0dev/zyy1URqR522GHVP/zhDyPv/+QnP6mKSPWnP/3pyHvXX3/9mDKJSLW5ubm6ffv2kfd+85vfVEWk+u1vf3vkvfPOO6960EEHVffs2TPy3osvvlhtamoa8512GzZsqIpIdfXq1a6f2blzZ7VUKlVvuummmvc3b95cbWpqqnl/7ty5NXUAAEAekO4OAICGWlpa5LLLLhvz/oEHHjjy7zfeeEN+//vfy6mnnir79u2Tbdu2+X7vxz72MZk0adLI61NPPVVERF566SXfn50zZ46Uy+WR111dXdLa2jrys5VKRX72s5/JvHnz5Mgjjxz5XFtbm5x77rm+32+OlD/00EOyb98+x890d3fL8PCwfPSjH5Xf//73I38mT54sxx57rPz85z/33Q4AADoj3R0AAA1NmTJFmpubx7y/ZcsWWbp0qTz22GPS399f83/2edtO3vOe99S8NgP2//7v/w79s+bPmz+7d+9eefvtt6WtrW3M55zes3vve98r11xzjdxyyy1yzz33yKmnniof+chH5OKLLx4J4F988UWpVqty7LHHOn5HnAXzAADQAUE6AAAaso6Ym/74xz/K6aefLq2trXLjjTdKuVyWcePGyXPPPSfXXnutDA8P+35vqVRyfL8a4ImscX42qH/4h3+QSy+9VH7yk5/Iww8/LJ/5zGdk2bJl8tRTT8lRRx0lw8PD0tDQIOvWrXMsD/POAQB5R5AOAEBOrF+/Xl5//XXp7u6W0047beT9l19+OcNSjTr88MNl3Lhxsn379jH/5/Sem+OOO06OO+44Wbp0qTzxxBNyyimnyHe/+1352te+JuVyWarVqrz3ve+V6dOne35PkNXkAQDQDXPSAQDICXPk2DpyPTg4KLfffntWRapRKpVkzpw5cv/998srr7wy8v727dtl3bp1vj/f398vQ0NDNe8dd9xx0tjYKAMDAyIismDBAimVSnLDDTeMGcGvVqvy+uuvj7w++OCDA00BAABAJ4ykAwCQEyeffLJMmjRJLrnkEvnMZz4jDQ0NctdddylNN4/rK1/5ijz88MNyyimnyBVXXCGVSkW+853vyKxZs2Tjxo2eP/vYY4/Jpz/9aVm4cKFMnz5dhoaG5K677pJSqSQXXHCBiIiUy2X52te+JkuWLJGdO3fKvHnzZMKECfLyyy/LmjVr5JOf/KQsXrxYRETe//73y49//GO55ppr5AMf+ICMHz9ezjvvvKSrAACAWAjSAQDIicMOO0weeOAB+du//VtZunSpTJo0SS6++GI588wz5eyzz866eCJiBMbr1q2TxYsXy3XXXSdTp06VG2+8UbZu3eq7+vzxxx8vZ599tvz0pz+VPXv2yEEHHSTHH3+8rFu3Tv7sz/5s5HNf+MIXZPr06XLrrbfKDTfcICIiU6dOlQ996EPykY98ZORzV155pWzcuFF++MMfyq233ipHH300QToAQHsNVZ1uvwMAgEKaN2+ebNmyRV588cWsiwIAgNaYkw4AAJR6++23a16/+OKL8uCDD8oZZ5yRTYEAAMgRRtIBAIBSRxxxhFx66aVyzDHHyG9/+1tZuXKlDAwMyIYNG1yfbw4AAAzMSQcAAEqdc8458i//8i/y2muvSUtLi8yePVtuvvlmAnQAAAJgJB0AAAAAAE0wJx0AAAAAAE0QpAMAAAAAoIm6m5M+PDwsr7zyikyYMEEaGhqyLg4AAAAAoOCq1aq88cYbcuSRR0pjo/dYed0F6a+88opMnTo162IAAAAAAOrM7t275aijjvL8TN0F6RMmTBARo3JaW1szLg0AAAAAoOj6+/tl6tSpI/Gol7oL0s0U99bWVoJ0AAAAAEBqgky5ZuE4AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJqou4XjwqpUKrJ///6si4GCOuCAA6RUKmVdDAAAAACaIEh3Ua1W5bXXXpM//vGPWRcFBXfIIYfI5MmTA630CAAAAKDYCNJdmAH64YcfLgcddBABFJSrVquyb98+2bt3r4iIHHHEERmXCAAAAEDWCNIdVCqVkQD9sMMOy7o4KLADDzxQRET27t0rhx9+OKnvAAAAQJ1j4TgH5hz0gw46KOOSoB6Y/Yy1DwAAAAAQpHsgxR1poJ8BAAAAMBGkAwAAAACgCYJ0AAAAAAA0QZAO5S699FKZNm1apJ/9yle+Qvo3AAAAgLpFkF5HGhoaAv1Zv3591kXNvXvvvVduu+22rIsBAAAAIGcaqtVqNetCpKm/v18mTpwofX190tra6viZd955R15++WV573vfK+PGjUu5hMm5++67a17/8z//szzyyCNy11131bx/1llnybvf/e7I29m/f78MDw9LS0tL6J8dGhqSoaGh3Nf7X/zFX8jzzz8vO3fu9P1sUfsbAAAAAEOQONTEc9LryMUXX1zz+qmnnpJHHnlkzPt2+/btC/U4ugMOOCBS+UREmpqapKmJbgkAAACgPmmT7r58+XJpaGiQz372s66f6e7ulpNOOkkOOeQQOfjgg+WEE04YMwqMeM444wyZNWuWPPvss3LaaafJQQcdJF/84hdFROQnP/mJzJ07V4488khpaWmRcrksX/3qV6VSqdR8h31O+s6dO6WhoUFWrFgh3/ve96RcLktLS4t84AMfkGeeeabmZ53mpDc0NMinP/1puf/++2XWrFnS0tIiM2fOlH//938fU/7169fLSSedJOPGjZNyuSx33HFH4HnuL774olxwwQUyefJkGTdunBx11FFy4YUXSl9fX83n7r77bnn/+98vBx54oBx66KFy4YUXyu7du2vqcO3atfLb3/52ZApB1Dn6AAAAAOqLFkOWzzzzjNxxxx3S1dXl+blDDz1UvvSlL8mMGTOkublZHnjgAbnsssvk8MMPl7PPPjul0hbf66+/Lueee65ceOGFcvHFF4+kvv/TP/2TjB8/Xq655hoZP368PPbYY/LlL39Z+vv75Rvf+Ibv9957773yxhtvyKc+9SlpaGiQr3/967JgwQJ56aWXfEffH3/8cenu7pYrr7xSJkyYIN/61rfkggsukF27dslhhx0mIiIbNmyQc845R4444gi54YYbpFKpyI033ijvete7fMs2ODgoZ599tgwMDMjf/M3fyOTJk2XPnj3ywAMPyB//+EeZOHGiiIjcdNNNct1118lHP/pR+cQnPiH/9V//Jd/+9rfltNNOkw0bNsghhxwiX/rSl6Svr09+97vfya233ioiIuPHj/ctAwAAAABINWNvvPFG9dhjj60+8sgj1dNPP7169dVXh/r5E088sbp06dLAn+/r66uKSLWvr8/1M2+//Xa1p6en+vbbb4cqS1BDQ4l8bWhXXXVV1d4FTj/99KqIVL/73e+O+fy+ffvGvPepT32qetBBB1XfeeedkfcuueSS6tFHHz3y+uWXX66KSPWwww6r/uEPfxh5/yc/+UlVRKo//elPR967/vrrx5RJRKrNzc3V7du3j7z3m9/8pioi1W9/+9sj75133nnVgw46qLpnz56R91588cVqU1PTmO+027BhQ1VEqqtXr3b9zM6dO6ulUql600031by/efPmalNTU837c+fOrakDL0n3NwAAAADZChKHmjJPd7/qqqtk7ty5MmfOnFA/V61W5dFHH5Xe3l457bTTXD83MDAg/f39NX+y0tsrMnOmSFOT8Xdvb2ZF8dTS0iKXXXbZmPcPPPDAkX+/8cYb8vvf/15OPfVU2bdvn2zbts33ez/2sY/JpEmTRl6feuqpIiLy0ksv+f7snDlzpFwuj7zu6uqS1tbWkZ+tVCrys5/9TObNmydHHnnkyOfa2trk3HPP9f1+c6T8oYcekn379jl+pru7W4aHh+WjH/2o/P73vx/5M3nyZDn22GPl5z//ue92AAAAAMBLpunuq1atkueee27MvGQvfX19MmXKFBkYGJBSqSS33367nHXWWa6fX7Zsmdxwww0qihvbggWjgXlvr/F6y5Zsy+RkypQp0tzcPOb9LVu2yNKlS+Wxxx4bc7PDPm/byXve856a12bA/t///d+hf9b8efNn9+7dK2+//ba0tbWN+ZzTe3bvfe975ZprrpFbbrlF7rnnHjn11FPlIx/5iFx88cUjAfyLL74o1WpVjj32WMfviLNgHgAAAACIZBik7969W66++mp55JFHQj12asKECbJx40Z588035dFHH5VrrrlGjjnmGDnjjDMcP79kyRK55pprRl739/fL1KlT4xY/tEpFpKdn7OtKRaRUSr04nqwj5qY//vGPcvrpp0tra6vceOONUi6XZdy4cfLcc8/JtddeK8PDw77fW3LZ0WqApwDG+dmg/uEf/kEuvfRS+clPfiIPP/ywfOYzn5Fly5bJU089JUcddZQMDw9LQ0ODrFu3zrE8zDsHAAAAEFdmQfqzzz4re/fulfe9730j71UqFfnlL38p3/nOd0ZGyu0aGxtHRkZPOOEE2bp1qyxbtsw1SG9paYn0vG7VSiWRzk5jBN0MzNvb9QvQ3axfv15ef/116e7urple8PLLL2dYqlGHH364jBs3TrZv3z7m/5zec3PcccfJcccdJ0uXLpUnnnhCTjnlFPnud78rX/va16RcLku1WpX3vve9Mn36dM/vCbKaPIDwdLyxCQAAoFJmc9LPPPNM2bx5s2zcuHHkz0knnSQXXXSRbNy40XXk1G54eFgGBgYSLq0a3d1GYC5i/N3dnW15wjDbwzpyPTg4KLfffntWRapRKpVkzpw5cv/998srr7wy8v727dtl3bp1vj/f398vQ0NDNe8dd9xx0tjYONK/FixYIKVSSW644YYxI/jValVef/31kdcHH3xwoCkAAILJy5oe9cz2NE4AABBRZiPpEyZMkFmzZtW8d/DBB8thhx028v6iRYtkypQpsmzZMhEx5pefdNJJUi6XZWBgQB588EG56667ZOXKlamXP4r2dmMOeh5Hgk4++WSZNGmSXHLJJfKZz3xGGhoa5K677lKabh7XV77yFXn44YfllFNOkSuuuEIqlYp85zvfkVmzZsnGjRs9f/axxx6TT3/607Jw4UKZPn26DA0NyV133SWlUkkuuOACEREpl8vyta99TZYsWSI7d+6UefPmyYQJE+Tll1+WNWvWyCc/+UlZvHixiIi8//3vlx//+MdyzTXXyAc+8AEZP368nHfeeUlXAVBYeVnTox6Z7dHTY2SMWW9IAwCA8LR4TrqbXbt2SWPj6GD/W2+9JVdeeaX87ne/kwMPPFBmzJghd999t3zsYx/LsJTh5S1AFxE57LDD5IEHHpC//du/laVLl8qkSZPk4osvljPPPFObZ9S///3vl3Xr1snixYvluuuuk6lTp8qNN94oW7du9V19/vjjj5ezzz5bfvrTn8qePXvkoIMOkuOPP17WrVsnf/ZnfzbyuS984Qsyffp0ufXWW0cWJJw6dap86EMfko985CMjn7vyyitl48aN8sMf/lBuvfVWOfroownSgYjytKZHPeIGCgAAajVUdRoKTUF/f79MnDhR+vr6pLW11fEz77zzjrz88svy3ve+N9SidtDTvHnzZMuWLfLiiy9mXRRH9DfAn5nibl3Tg0Awe5WKMQXBbmiIGygAAFgFiUNNmT8nHVDp7bffrnn94osvyoMPPui6sCCAfMjzmh5FZi6Kagbk9tcAACA8rdPdgbCOOeYYufTSS+WYY46R3/72t7Jy5Uppbm6Wz3/+81kXDUAMeV7To+i6u0fnpHMDBQCA+AjSUSjnnHOO/Mu//Iu89tpr0tLSIrNnz5abb75Zjj322KyLBkABAnT9cAMFAAC1CNJRKD/84Q+zLgIA1CUCdAAA1GBOOgAAAAAAmiBIBwAAAABAEwTpHurs6XTICP0MAAAAgIkg3cEBBxwgIiL79u3LuCSoB2Y/M/sdAAAAgPrFwnEOSqWSHHLIIbJ3714RETnooIOkoaEh41KhaKrVquzbt0/27t0rhxxyiJRYdQkAAACoewTpLiZPniwiMhKoA0k55JBDRvobAAAAgPpGkO6ioaFBjjjiCDn88MNl//79WRcHBXXAAQcwgg4AAABgBEG6j1KpRBAFAAAAAEgFC8cBAAAAAKAJgnQAAAAAADRBkA4AAIBCqFSyLgEAxEeQDgAAgFzr7RWZOVOkqcn4u7c36xIBQHQE6QAAAMi1BQtGA/PeXuM1AOQVQToAAAByq1IR6ekZTXW3vwaAvCFIBwAAQG6VSiKdncbfTq8BIG8I0gEAAJBr3d0i7e3Gv9vbjdcAkFdNWRcAAAAAiKO9XWTLFiPFnRF0AHnHSDoAAAAKgQAdQBEQpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAFVKlkXQIAABAFQToAAAXS2ysyc6ZIU5Pxd29v1iUCAABhEKQDAFAgCxaMBua9vcZrAACQHwTpAAAURKUi0tMzmupufw0AAPRHkA4AQEGUSiKdncbfTq8BAID+CNIBACiQ7m6R9nbj3+3txmsAAJAfTVkXAAAAqNPeLrJli5Hizgg6AAD5w0g6AAAFRIAOAEA+EaQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAIARlUrWJQCA+kaQDgAAAOntFZk5U6Spyfi7tzfrEgFAfSJIBwAAgCxYMBqY9/YarwEA6SNIBwAAqHOVikhPz2iqu/01ACA9BOkAAAB1rlQS6ew0/nZ6DQBID0E6AAAApLtbpL3d+Hd7u/EaAJC+pqwLAAAAgOy1t4ts2WKkuDOCDgDZYSQdAIA6xpxj2BGgA0C2CNIBACiYIIE3j9sCAEBPBOkAABREmMCbx20BAKAngnQAAAoiaODN47YAANAXQToAAAUQJvDmcVsAAOiLIB0AgAIIG3jzuC0AAPREkA4AQEGECbzNx20NDRl/mz8HAACyxXPSAQAoiCjPuSbFHQAAvTCSDgBAwRB4AwCQXwTpAAAAAABogiAdAACgzvC4PQDQF0E6AABAnejtFZk5U6Spyfi7tzfrEgEA7AjSAQAA6sSCBaOBeW+v8RoAoBeCdAAAoB2vdGxStaOpVER6ekbrz/4aAKAHgnQAAKANr3RsUrXjKZVEOjtHV/+3vwYA6IEgHQAAaMMrHZtU7fi6u0Xa241/t7cbrwEAemmoVqvVrAuRpv7+fpk4caL09fVJa2tr1sUBAAD/o1IxRsnthoaMv93+j5Hg8CoV6g0A0hQmDmUkHQAAaMErHZtUbbVU1htz2gFALYJ0AACgDa90bFK19cIaAcFxIwNAGKS7AwAA7XilY5OqrQczMDfbo71dZMuWrEulF3PthJ4eI/PDeqMJQH0h3R0AAOSaVxBOgJ49HucWDIsdAohCmyB9+fLl0tDQIJ/97GddP/P9739fTj31VJk0aZJMmjRJ5syZI7/61a/SKyQAAABYIyAAbmQAiEqLIP2ZZ56RO+64Q7q6ujw/t379evn4xz8uP//5z+XJJ5+UqVOnyoc+9CHZs2dPSiUFAACACGsE+OFGBoCoMg/S33zzTbnooovk+9//vkyaNMnzs/fcc49ceeWVcsIJJ8iMGTPkBz/4gQwPD8ujjz6aUmkBAAAgMjoHfWjI+Ju51mNxIwNAFJkH6VdddZXMnTtX5syZE/pn9+3bJ/v375dDDz3U9TMDAwPS399f8wcAACCPdEyVZmTYHTcyAESRaZC+atUqee6552TZsmWRfv7aa6+VI4880jPAX7ZsmUycOHHkz9SpU6MWFwAA7egYtOVJXuqPx53lGzcyAISRWZC+e/duufrqq+Wee+6RcePGhf755cuXy6pVq2TNmjWeP79kyRLp6+sb+bN79+44xQYAQAsEbfHkrf5YJRwA6kdmz0m///77Zf78+VKy3FqsVCrS0NAgjY2NMjAwUPN/VitWrJCvfe1r8rOf/UxOOumkUNvlOekAgCLgGdXx5Kn+KhXjZoLd0BAjtACQF2HiUIdTfjrOPPNM2bx5c817l112mcyYMUOuvfZa1wD961//utx0003y0EMPhQ7QAQAoAvNRTvbXZsAJb3mrP3NVcPtNBR3LqoqubQEAacgs3X3ChAkya9asmj8HH3ywHHbYYTJr1iwREVm0aJEsWbJk5Gf+/u//Xq677jr5x3/8R5k2bZq89tpr8tprr8mbb76Z1W4AABBZ1PnQPNopnjzWX72sEp63aQgAkITMV3f3smvXLnn11VdHXq9cuVIGBwflL//yL+WII44Y+bNixYoMSwkAQDgqApF6CdqSkrf6q5dVwpl7DwAZzknPCnPSAQBZUzkfmrTgeNKsP9rKG3PvARRZmDhU65F0AACKxjr/2el1WAQv8aRRf6RwB5PHaQgAkASCdASWl2fJAoDOkgpEOEfrixTu4PI2DQEAkkCQDl+MAACAWioDEc7RelOdOVF09TL3HgC8MCcdvvL0LFkAyBMVc5Q5R+uPNgIAMCcdyjACAADJUZHinqdztK7lskqijKRwAwDCIEiHJxZxAYCxvAK5tALR3l6Rrq6x7zc363eOzkNKfpJlJIUbSEYebvwBURCkwxcjAABg8Ark0g5EFywQ2bZt7PuDg/pduOZh4bQ0yhjk5olubQfoKA83/oA4mJOOwHi+K4B65zW3OM15x27Pk9ZxvnMenn2tQxnNGwM9PUbGmvUGOYBarPOAPGJOOhKhy8UUAGTBa/532nPD3aYe6ZjtlIdpU0HKGLYtw34+D9kGgA7ythYHEAVBOoDC4hc2VPIK5LIIRK0jrZ2dxiiSrvOd8zBtyq2Mbmm1bueXKGm4BB1AcHm48QfERZAOoHCYq4akeAWbaQei9sXIOjuT3V4ceVg4za2M9hHuuXO9zy9RRsTrJejgpgNUycONPyAO5qQDKBzmqiFpXmt0sH5HcXjN/Xc6v8SZ217kOelF3jdki/Mt8iRMHEqQDqBQdFgACkBxWG/6NTaKDA+P/Yz1/BL3JmERgw5unAIAC8cBqGP1kjYKhEGacXTWUd8ZM0TKZe/zS9w03KKdq5hvDwDhEaQDKBzmqgEG1meIzz5Xfe1a7/OLbvPvsw6GuXEKAOERpAMoHN0ukoGsFOWxXlkHmiKjQWXQ80vWQahON2i4cQoA4RCkAyisrC+SgSwVIc1Yp0DTLonzi8q20ekGDTdOASAcgnQAAAqoCGnGOgWaSVJ9M0LXGzR56nsAkCWCdACA9rIOLvIqL2nGTu2ra6CZBNU3I4pwgwYA6hlBOgBAWzqnO+eB7mnGXu1bL4FmUjcj8nKDBgAwFkE6AEBb9ZLunDRdA1u/9q2HQDOpmxG636ABALhrqFar1awLkaYwD5EHMFalou8FP4qlUjFGWO2GhuiDRRCmfb3OO0U4J5k3KHp6jADdenMCAFAMYeJQRtIBBELaMdJWL+nOVkWcb+0mTPs6ved1TspbPTLqDQCwIkgHEAhpx8hCPaQ7ixTzJliQQDlO+zqdk/Jej0W+AQUACI50dwC+SDtG1oqQ0uzFDCjN/TRHVlVKqw6jpG6HLZvbOamjQ+SFF5KtRwAAoiDdHYBS9Zh2DL0Uua8l/aixtEeXo2TdhG1fp3NSR4fI1q318cg2u3rYRwCoJwTpAAKpl7RjIG1J3wRLc6pK0BsOKoJK+zlpzZr6u5mY9/R+GLjJAsCOIB1AICxsBCTHHnCuXq3me5Mepbfzu+GgMqh0OifV281E1grJN26yAHBDkA4glCKPSgFxxAl8zYDTnD89c6aai/Yspqp4BcpJBJXWfamnm4lp34CBetxkAeCGIB0AgBhUjoYtXKj+oj3t0WW3QDnNoLIebiayVki+cZMFgBeCdAAAYlA1GpbURXtWo8v2YDEvQWWQ+tYlkKq39H4VdGm7vBwPALJBkA4AQEQqA+ukL9p1uPjXOagMkhGh2xziekrvj0u3thPR+3gAkC2ekw4ASI1OzztXVRaVzziP8oxxXYSpT536gSlIO6bxPPui0aWtdW47XeoIQLJ4TjoAQCs6jWKpLovK0bA8joxGqU/dApIgGRHMIQ5Hp2Ne97bT7XgAkD1G0gEAidNpFCupstTraJhObRsHI+lq6VZXupUHQP1hJB0AMqTL6IwudBrFSrIs9Rig69S2cQXJiGAOcTA69gvaDkCeEKQDgCJO6Z15DFZU02kVY53KUgRFqs8gUw3yOB0hCzr2C9oOQJ4QpAOAItZHcW3bJtLVpcd8zLhU3GhYvVqfUSxG1LyFbe+i1WeQQDKPNyHSpmu/oO0A5AFBOgAoYE/nHB4WGRw0/h3n2dlZirLwkz3AM79j5kzj9ZYt2Y9iFWFELYkMjagLfRWhPtNWDxk29AsAiI4gHQAU8Ern1GE+ZhTWzAC/Gw1uAZ79OxYuTLbMYeRxRC3JFbPDtLeTPNZn2nRa8Twt9AsACI/V3YGE1OtKz/XM+ozr5majD+R1JeFKxQgk7IaGnPu108rJmzaF+w74S3Jl+qBtxbktOlYYB4D6xeruQIbqcaQEBmt656ZNes7HDCrMwk9uKzmL6Ld4VJ4lvTK9X1txbotHxxXPAQB6IkgHFIubMor8s46Q5Xk+ZtCFn7wCPF0Xj8ojt5scXV1qAma/tuLcFo+OK54DSeIGFBAd6e6AQmFThJFPRU33dduvIPtrTfXv7KwN+IJ+R72IUxfWejapTpt2Kh/nNjXWrROZN89YVLK5WeT++0XOPTfrUgFqWc9THR0ia9bk80Y1oBrp7kBGGCkptqKm+/rtV5D+65c54Pcd9TDioqL/mHP9rVSnTTu1VT2d25Lsi4sX16a7L16c3LaArCxYYDyGVERk61Z12T5APSFIBxQjvbe44qT76hyEqkxjDhu0FfXGh5Mo9ezUb7IKmPN4bgtz3CXdF+POSdf5HAKYzH49PDz63uCgyPz52ZUJyCOCdECxIsxFxlhRL7B1D0KzXsyqXuY5h61nv36TRcCcp3NblOMu6b4Y9eaK7ucQwKpUMlLc7bZu5UYTEAZz0gEgoCiPT8rDI5eyKmOR5zk7zesOU89BP8tcf2dh+3RafTHKXN08nEMAq95eI8V9cNB4Tb8FDMxJB4AEhB29zHqUOqis0piLOM/Za9QzaD2H6TdB6kq3/pa0KMddWn3RbPeODmNk0Tp67yQv5xDAylw7wxxRz8v0GEAnBOkAEFDYdN+8BKFZpjHncZ6zF6+U6aD1rKrf1GOatDnaHKX+0uqLCxaIvPCC8W+/tPq8nEMAu/Z244ZSHqbHADoiSAeAkMJcIOcpCM3iwj9P85z9BBn1DJqerqLf1Mt8f5GxNyRWrAhff2H7YpTR7Cgj43k6hwB23FAComFOOgCkgLnDYxWxTtzmD/s9R95N1Doq8nx/J271nkQfi9qWfmX1U8TjBQDqCXPSAUAzaV5c6z5ftchp2G6jnlFHtaP2mzhp0rr3Hzuv0ekkjru4GQpRR8azCNDz1hcAoCgI0gGgIPIS/BY5DdspZTqrxb+sweD06f7BoE79x143URZ9S6pccdsyD1M8dOoLAFCPCNIBpI7RmWTkIfitl9WqzYAxzkJmcYVdSTzt/uPU5vbgcN26YMGi9YbEtGkiAwPxAky3/qiyLXVOXc/DuQQAiowgHUBqGJ1JTl6C33pZrVrFQmYqBF1JPM3+43YeqFTGBofz5gULFq2j0y0tIjt3+v9MmLJZJbGQm07HaVp9Qad9BgDdsHAcgNREXTAJweSlfuMuvJUHaS5k5ibM4nGVikhXVzr9x14306YZgXVPT7Cf91r8Lu6CeWGOIRVtqeuxEPdc4lU3uu4zACSNheMAaCcvI715lpdHNeVhTm4caS9k5iZI1oJ15HhgwAiYRZLrP051s2OHyLZtzuVvbg6XdRF3wbww5ygVbblgwei+65RWHvVcEiQTgVR6APBHkA4gFfWS5pylvAW/RW17nfq6X7BlDZh27jRGtJPsP051IyIyPDz2s+3tIvffHz5YjLN6eprt1tNj/DH3Xacbl1HPJX4BODdrASAY0t0BpIY0R9SLsH096VF2p+/P6lnq1rrp6BAZHDRuEFhTqzdtqi1DlPqJ8jNpnqNmzhyb4t/ZqecUlSCC9qcoqfQ8Ix5AEZDuDkBLeRvpRf64jcilPVIXtK97LaKmklOAo8uq8yJj0+ztZUhr9fS0zlHmCLLd6tXJbC8NQftTmEwHFhsFUK8I0gGkTucREdIu88ntYj7ri3y/vm5PD547d7S8nZ3JlzerdQysq86nkWYfVtLnKLeANqnnu6clSH8KcyOE+esA6hXp7gAgpOLnnVsKrc4r3rulB5dKozeLmpuN1O+k+6Kuq87rKmh91esq5yr6k+79JOo+kroP1C/S3QEgJEZs8sttMarBQb0XqbKPpjb+z29ka/kGB0Xmz0+nLGnRaWG9sIJmZgT5nK7Tf1QcHyraUtd+EjU7J+usHgD5QpAOoG54zVfWOZirV0Hr3+1ivrlZz4t8K+vo6YwZIuXy2M9s3Vq8vpiXxwXaed3Ms7ZRmJt+Xs98T5OOQaSO/STqDV1uBAMIgyAdQOH5XXzqOmJTr6IEC24X8zpe5IuMBmD20dS1a42bC6bGxmL2RXO/Bwb0GkX24nYzr6entr+a70W96ZdVsKxjEKlbtkHUG7pxbwQX7SYdAH8E6QAKL8jFpz2Yy/Mqy3kXJVhwu5i3v9/Wlly5g3ALwMwg3Hz8WEeH8XrGDH1uLKhk1kNLiz6jtn7cbuYtXFjbXxcudL6x0tUVbD+zCJZ1zybS5SZV1Bu6UX9Ox+wGAOkgSAdQaEEvPs1gzlxUbObMbC6KdLkozkrcYMH+bG3T9u16XOwGCcDa24191mX0MAk6jtoG4XQzz6m/rl49tt2C7GdWwTLZRMFFzc6J8nN5PU4AxMfq7gAKL8wK31mtBm5f6Xn16vw/jimquG3gtGq2ebGb5Srvuq9WnZYi1IN1hW63/hp1P3U5B6lebT7KquY6r4Se9OruRThOANRidXcAsAg6ghFnvmFc1hETc45rvaY3Bmkvrzq3jz7Nn69HKm/eRiuTqJ/eXiPt20r3enBiLatbf43a3lmto5DU/G+vlG2nPlap5CPNO2p/DfpzeTtfAFCLIB1A4QW9+Ax7UaTqQtItaNy2rT7TG73ay6/OnW60bN1qzPHW4WJX14XsrJIMkKw3UEy61kNQXv01SntnvVia6uPCKWXbqY9Z37PO36/nNO88nC8AJIN0dwCwCJPyqTIt1fpddvWU3uiXChqkzp0+Y6a8J5XKG5bOabxJpVsXOX3Xrz11bu8kubV5R4fICy/U9jER93OgSDH6SVT12n+Aoslluvvy5culoaFBPvvZz7p+ZsuWLXLBBRfItGnTpKGhQW677bbUygegPgQdxVK9wJNT0FhP6Y1BRm+D1rnT6JOq0cm4KeDmz+vapkkuXJZl+q6qdrMLmnWga3snzanNOzqM7BanR9k51XM9nQfd1PO+A/VKiyD9mWeekTvuuEO67BPVbPbt2yfHHHOMLF++XCZPnpxS6QDUo6QeqePGurq8uWBc2umNWa4sH2QV46B17hWQR22fuCngeZhjK5J8IJ12+m7S7cbq2/7sbb5mjXMfs77X2CjS3Dz6M6R5A6g3mae7v/nmm/K+971Pbr/9dvna174mJ5xwQqAR8mnTpslnP/tZz5F3EZGBgQEZGBgYed3f3y9Tp04l3R1AbEmuhpxmemPSqzr7CZMGnVVZ46aAZ7VidxRx6zhI302rfyfZbkVO3w8jaHuLjH7OqY+JjH2vra2+6hJAseUq3f2qq66SuXPnypw5cxL5/mXLlsnEiRNH/kydOjWR7QCoP0ku8JTmhWnWo4FhRm+zWFQrbgp4Vs++jipqHYcZtU6qf1vrNOl2q5fVt+Ok+rstBufUx5zeK1pdAkBQmQbpq1atkueee06WLVuW2DaWLFkifX19I392796d2LYA1Kc8X0jqEkCGTYNOs87jBmNZBHOq5pCH4XSzJ61+5BQwJtVuVkVefdsvCJ871zhXiBh/z5079jv8bgA6tYX1PV1vZAFA0jIL0nfv3i1XX3213HPPPTJu3LjEttPS0iKtra01fwAABl1GA5McIVdxoR83GEsrmMtq7rvbzZ6gz8aOyy0YDFrvbmWy/vy0aSIDA7X7lPXj0pLkFWBXKiI7dtR+fscOdZkMeVnDAQCSklmQ/uyzz8revXvlfe97nzQ1NUlTU5P84he/kG9961vS1NQkFW6fAnVNt1NA2PLoVn4vOo0Gqrw5EPRCP0hbxQ3G0lpdPqupC143d7yeja2CVzDoV+9+ZbL+fEuLyM6dtftk3f8i8arT3l6R447z/444NwCznoKD9OXpdyaQhsyC9DPPPFM2b94sGzduHPlz0kknyUUXXSQbN26UUtF+4wEIRLcRlLDl0a38QRR1NNDvQj9KW8X91ZTk6vJJTF0I87NuC8yZ5Zg/P5nAK0gw6FbvYYJBHaaFqOJXbq86XbDAeMa5Xbk8tp6j3ADUZQoO0pHH35lAGjIL0idMmCCzZs2q+XPwwQfLYYcdJrNmzRIRkUWLFsmSJUtGfmZwcHAkoB8cHJQ9e/bIxo0bZfv27VntBgDFooygJHnxFrY8eR4BKtK90SAX+nlqK5WPqAsi7IWzfdQ66LOxVR27SQeDukwLiStMuzrVqVsddXSIrF079jui3AAsSl0jmDydh4E0Zb66u5ddu3bJq6++OvL6lVdekRNPPFFOPPFEefXVV2XFihVy4oknyic+8YkMSwlAlbAjKEnfgQ9bHhUjQIwWqeF3oZ+n0bowZVU1dSHohbPbgm1Bn42tKvCKEww2Wq6EmptF3O776zQtJKowAZHbautON2B6erzrPGw7F6Gu4S9P52EgbZk/Jz1tYZ5PByB9YZ5rnMazp8NuI2qZsn5WeRH51Wmenl0etqxxnkMe5vnffuWylkPHPt7bazwabHDQeJ103WZJ1XPd02xHHetaxzLlWZ7Ow0BcuXpOOgBYhVmNOY078GFHdKKOAJHyF0yY9vUbXc3TaJ1fWe31EieIKJWM+cVWTvONgxyD1p/Rce2DtrbRAF0k2HnEr251HQVUlUaeZjvqEAyb7cnc6WTk6TwMpIkgHYBWgl4ApjVvMewFaZQL2DA3HHQNAJIW5wLZ7bnLaa24roJbWbMMHKIegzoEXqYs5/FnQWVApFM7JsHennPnciM1CTrevAN0QJAOQEtBLgDTvAMf9oI0zOeDBAp5CACSFDfTwKv+klxxXTV7Wf3qJcoNBLdnYFtHnE0qjsGsbzylPY8/SwREwVnbc9u22ufAO91Izbof513Rb/oAYTEnHUDuZTFHUPU2izR/WjUVc2mTqL+s28SrXrZvjzdv2L5vpZIRpLt9lxmgZDW3WcXxmNY8fhXby5u87atbe5ZKY493HddaAKAn5qQDyFyaowppXvwlNXrqNcJV7yvgxk1JTur54Sq+M04Z/J5lHWdU1xpolEpGv3T7LnPxtbDHhIqRZ5XHY9x5/E59sqtrbJnqKSsmr/vqdGyVy84ZF3nIoACQPwTpAJTK60VZUElfkDkFCjw3OF5KchL1F/c7VR0nQZ5lHeUGgnnTaGDAGEEfHnb/rjDHhFuZot7k0ClAchpBdSqTTmVOmqp9zeKGpP3YWrt27I3Uer+BCiA5pLsDUCrrFGAV3FIzVT3CKIosUip1TFGNWiZr/XV0GM/tjlt/cdpE9XFirxe3749Sf15lHRwUaWkZ+zP2Y6KnR2Thwtq6MgO4qHWQ5fHoxq9MOpY5KSr2VYdUcr9jpgi/8wCkg3R3AJnI+6iC3+hmliPaaS74pHM2RNS6NkeZOzpEtm6tHeHz4tV3raPNYdokiePEXi/2UcAVK6K36erVY0frzT7S0iLS3CzS2DhaDusxYX5u5kxjH833FiwwymQ9llasCL/PumWY+JVJxzInRcW+6pB14FdeHiEGIAkE6QCUyfsFaJALwqwvyNKoSx0ujJOwYIHICy8Y//bbryA3KqyBapjAN43jxH5TZ/Hi8G1qDbBFjO8xb0ZY+4h1xNR+TCxYYKyMbWXelPjbv629UbF4cfj9tB6P06frESB5nSMqlezPIWmKs69JrSWhGivmA0gC6e4AlNIhPTGKsKmZOqaCq6AiRVXHugm7X0FSWOOkuaZ5nERtU6+UeafvGxgwRtX9tlsqGQH11q3hy+Skt1dk/nzj+3Q651iPA6f2bmvT7zhJStRzgqpU8rz+XgJQLKS7A8hMXkcVwo5uugXueRdnlFf3NPmg+xVkBC/uKF+ax0mUNvXaP7fvswbo5orvTtrbjTUBwrSHlzAZEmmy7otTdoouAXoa562o+1pPz7AHACuCdACJ0OUCNAz7BeHq1cF+Lk5wqmNgH/XCWPcL4aD7FTSoVZGyntZxErZN/erA7/uc5vx3dtamzPt9R5DjKg/rYIQpY5rl1vmmmknFzaw89JG4irQvAAwE6QDwP8wLQjOd0pyP63fxGiU41fkCOcqFcdEuhN0CSGu7DQyITJs29jM6itKm3d1GWrr589b98/o+t7bftMkI1IN+R5DjSqd1MNz6epAyZnE+0P2mmlWWj0vUmc6/RwDEw5x0ALAJMw9S9XzfPNN9n6KUL8ijzTZtKsYFv5V1Du+MGSL33x9uFDNqX7A+qs2J03GV9XzjINv3+0zax04e156Is72s+0hSdD/nAqgVJg4lSAcAiygXr2EvlIr6rGRdL4TNEU4VQUkR282JtU+LGPPNN20K3p5efcEp2LJ+3knQ4yqLdgh7U89exqz6VdQAL+3jXOX2dFzUMqp6Oh8BRcHCcQAQUZTUSNXzffNKt0UDramgXV0i5XK8Ok+z3dKYJuC2Dad09cFBYwX1oJz6glNqrrkNv+fWBz2u0hZ2modTGUslkY6O9M8HeVl7QuX28n6OtSrq7xEABoJ0ALAJe/Eadb5vUZ+VrMtFov3iXiR+nSfdbmnMMfXbhhk02m3dGv7mgdsK59u2GTdOmpqMwMIpsG1sNP5Pl5s+TuIGSmZbbN06+jNpnQ90WHvC7+eKttaFakX+PQLUO9LdAcBFGqmRYbZRpFTNpHmlgorEr8c4beH1s2nMMQ2yDfMRaoODxuvGRmNuetSyuLWHiFGGUsn4jDX40mnKhJc46dj2tpg+3T3lP2tmGVX00TB1xrxrf/xuAPKBdHcAUCBOEKZyG0VYwTftkS+vEc4w7RombdnvO/zaUdWoodfng27DXBDPHFGfMSPeKJ3fc9AHB0dXkrc/qk13Uad5OLVFlGwF6/epVqmM7bcrVkQfvXWa3uCXws5osT8CdKB4CNIBQJGkguk8PSrJLssbDHEu7lWU2/4dc+d6t6Oq1GmvMofZRnu7EUTag8+owaC1PZqbx5bBui3ro9rywq2d4jyaLYgkjjH7eg7bto2+v3hx+JsS1u+zT2/wuxml21oXcZCmDyAognQAUCSJYDrvczKzvMEQ5+JeRbntc7B37PBvx7A3Fqw/H7TMURY6NL/TbeG3IKztYV0p3lqGIo0I9vT4B88qRomTOMas3zk4KDI8bPzb2m/DtJX1+154wfkmjd/3xekbWZ8vi5ANBSBdzEkHAAWSfBxOXudk5vURQUHK7RekuH2HOfc6yqO6rOxzelevNvqJV5nDbsOus9MIsCoVY456U5MRwMWZO17EubROj5ML2t5h6yOJY8xv/YCw5x+37+voMNL7k1x7QJfHQub1HA5ALeakA0DKknwcTl7nZObpEUHWkTavcgcdEXP6jnI5eDv61ZF99HThwvB1HSaNvrOzdr708PDoonJxRm917AtxLVgwmh5u8suA2b492kjr9u1j37OOUkfh1Hebm41/Rzn/uB1P5vQGa1aFajpMFcp7NpRK9bjPQFQE6QCgSFLBdJ7nZOp+g8Et6HYrd5wFr9auVdOObhf9q1cnU9cLFhgj6EHLE1QRL9jNujDTw01+N02iBpNOz64fHKztG27l9GLvu5s2xeu3TseT+QSBpFLAdQmOzbZvtFxxNzc732ApKtL9gfBIdweQiSKmuZqi7ht1kj6/NFRruaOmFiex717lVrk9r9RnU9jHs+mSgpwUp/n6XvsZp1+5pZGvWeNcx2HrXnXftX6fLo8bTENvr8hxx4ns3z/6XrnsHqjrer6MSpd2ALJGujsAbdXDHXUdVmfWjY4XnEFG2qzljpq+n8S+e2UoqHx0YJB9DPt4trRSkLMaqbe2TZDHyYXtV+Z+OX2uuXk0QHeq47B1r7rvWm94pTHKrUsmT1tbbYAuUruQpKmIvwt0yWgA8oYgHUCqdJgjqJNKRZ86qbeLpihBty4X/SqnQPgFBtZ9LpeNPyLRnmeexgV71oGOvW2CPE4uyFQFp/2ytk1Hh5GW3tbmXMeDg/oES2mtV5G3qUK6/C5QKU9rkwA6IUgHkBruqI+yXnBnXSdZBzVZCht063bRr+JC1/6oOHtgYN3n7duNP1GfZ57GBXuSgU6Y4zLIPpnHnrkyv9dND+uCdOZ+Wdtm82bjtVsdNzerqXtV56Y0b3hlHRCaC0dalcu15Sry70ddbm4CeUKQDiA1US/Qi3CRYmcNJKyyGGUo4uiNnVsfihp0Z33Rr4o9EBgeNl5bHx9msqf+R5XkBXtSgU5SN7KcVul3YraJ0/PKnRZgc6vjOHWvug50u+GVtLVrR29qdXYar62KPOJc9LYu4jVKHhWtHQjSAaQqzEViUUd4vQKHtEcZijx6IxLukWn1yAwE7NyCRSdh+0qSF+xJBTpJ3MgKc+w5tYe5X05lc6vjOHUftQ78+ke9HHtB6r7oI85Fa+uiXqPkTVHbgdXdAWQiyOq1RV4R1mnfNm3K5iImbj3rvBKxjn1Ip/oyR2LNdGsrv9XFdV2lXXW5oq6+HoRb/wzyVIFjjhH56U+jtV1YUepA1/6RBzqdI+BOx98v9ShP7cDq7gC0FyTFPe8jvF5ldRoxUbkqdxhRR290v3utWx/Sqb6sZVm4sHZ+bNDRZ12nSQQZsQw7tzypNGT7sbdixdg+4ra93/7WaLs0UqSD1IG9Tt36R57O4VkhQNefbr9f6lWR24EgHYCW8jw/r7fXKKtXMKYi5VdV0Be1LEkHaXF/yerWh3QKau1lEQl3oyYPF0ZO7Rz1mOnuFpk+3fi3yjRk+7G3eLFzH7Fu32TWeZCV4VVwu5nnVKdu/cPvvAjkhW6/X+pVkduBdHcAqYiSvhcnXTKrdEFzEafBQeN1Y6PxHOkkUq+CpnglURdJpgCHbXev/dMl5TbJ+jK/P+j3eJVFJPj3qE4xTOOYjVLm3l6R+fNFtm41HnO2Zk0yfShIH+noEHnxRefyp3XOs2/HrU7t7zc2Ggvf5SElFQhCl98v9S5P7UC6OwBtxBntjTLCm3VK8fz5owG6yOhq2WFHGP0+H2Qk068u4ox6Jnn3OuiIc5C21mVV4aTqy20UM2pZwpRH1SJXaR2zUUb/zZtuW7eOvo6bAeG2Pa92Meto27bR/7fXeVo3JYM+NszaP0olkf3742de6JSpEUTeyotwdPn9Uu+K2g4E6QASpSLFN8zFZ5YpxZXK6MW8VUdH8H0IGnQ5BXnNzcYzrE1udaEqKEpiJeIwgVSYto7zLGidnwttrwP7o7iSLIuqC6O0jtkoN0pU3XQTCXbcubWLtY4qFeOcosPFqFedmv2jo2NsfYW9SZX1zVcvTn1B5/JCvSKkVhdB0dqBdHcAiUk6xTfr7TmxB9bNzcaq7UEvpu0poqWSESQ4pXB5pdZ71UVXl95pykFSknt6gq1qHbZs1rS5ctl4b8eO6GnOTttXVV9ubSwSvF2zXkU67WM2TFqkW9k6OpyfI+8nTKp9kNXd0zyvefGqU686DHM86bh6s9d+61heANkj3R2AFtJe0EOHBUSsF2odHeECdKdRZDMAdxphbGtzH+VzqouODuPfqhf8Ulm/vb0iAwOj5Zk2zXmU1+u50eb3RBnJso5Y7thh/BExMiTMmxtB98Np+yqDYq/+HbRdsw7y0j5mw4z+l0qjN2pMBxxgBJdhhU21t+9/1uc1L1516nYe6umJd17UYZFCr9XrdSwvgHwhSAeQqCRSfHXanl1b2+gFa5gLUZHwQZdfgGOfE2oGmlEet5WWBQtEdu40/t3YKNLSMrYOzbqwW7269nvCplD7XUwPDgYP1O3bnzs32k0Dvwt7r5Hg5mZ92tVN0JsycTmlW0fxnvdESzGPcjPCeqNnYMCoG5FszmtBuO2L/Zwc9iaHDjdfRcZOgXELxHUpL4B8I0gHkKi0F/TIagER+8ipdW54GNYL2uZmI1AVcb/Q87op4TQnNMrjttJiv/B1m/9rr4vGRuN1Z6fz94QZVfa7mB4cFDnuOO8g22n7O3YYi36JBLtpEDQToL3dyNYYGHAuq+6jd0FuysQRZ26w2W5WO3ZEr9OwNxCtN3p27jTqJo8LI6k4J2d589WpD4W5QarTORZAfjAnHUBhpTnfNonHUW3fHm7+rNsIvIrHbaUlaD36zS2O2h72Oem7dhmrUtv5zUu2b98psPOaUxyk/PY6GBgwgrmofTDt+elB5lrHLVPc4zKJucVe+2TtLzrPQ89KFmsouPWBIOsbhC1v1mtEAEgWc9IB1LW0V9ZNYg6i9WIw6PxZt/dVPG4rLUFHoPzqJupIlvV7t28X2bzZyGiw27rVu33t2w8zxSBof7Kn1O/aFS1tPKuVqM16aLRciZhPKFBRJhXHZRIjok7t7pSJQ8r0WFmkuLv1oSDn5yKsXg8gG4ykAyicLFbW1Xk13zArWmfFPoKkcgX0oN/j9tneXiPF3RxRD9O+5neGbQO//uS1srt1lf8gksgCMUeD/ere/oQCc/vm/8Utk6p9S3qE017O6dONudu6H7d5FrRNkzq3W7ev8+8PAOowkg6gbmW1sq7OcxCzmqcfhNsIksoV0KOWwdTeboyom6vjh2lfc/th28CvP3mNrIZ5lrfK48Vajy0twUYF7U8oMLevqkyqjsskAnS3/atUjEyN+fON8iZ13Ka1XoFu6yKEHbVWfW63b19lfwdQHIykAyicLEcl8j6nMO3yp91WTvsX9fnVafDannV0vrnZCOaGh8PXo6r9t36PKUhZWlpqA/XmZiN4T2J0XwdOWRXm1IWwdadq+0ncuNM1gyfqOUdVH3Lavggj6UA9YCQdQF3LclRbl0AgrCzmRKaZ9eD13PI4z69Ooqz2QM2NdXR+0yYjxd18P0yfD3K8WOuvs3Ns/3CrN7/6rFRqA3QR4/Xq1cGO4aD1H3bxrqRUKs6PB+zuNlLc7Z9N4niI8nhCnbcTRpxzjqrpN07bD9rfEQ1ZCcgjgnQAhaNzereusrigTvN5wm77F6QMThd4SdzUcEqDDcIcedu0KVqfD3K8WOtv69axz4t3azu/NnWr/85O7zKFqf+gF+hxH9fm9X/W73YK0trajL87OpI9HtK6MZbmDbgw35n1M8yj9ndEw4J8yDOCdACFlddR7bRlNY9fJJ2sB7/9cyuD1wVeEjc1rN/Z02Ns02nU2s5aTnvwHEbQ1eZFjNHu+fNrP2etR3NF/CBt6tUH3MoUpP7DXqBHaVOvbQRpF2vQVqkYi8XZ60Llcbh9e+3TCpIKUtMIhqMGYFmvHxKlvyMaHbM5gKCYkw4AyHx14bjzPd1+3nw/yP7Zv8PtZ9xWVo/zDGuv1dqbm41RcrfRtTTarrPTGEG3c9rnMKu7O/1ckM8Fqf+wc+2jtKnXNpzm6Nt1doqsWCGyeHHt3O22NiOgVj2ne+ZMkW3bjLULRPz7VhxJz0mP2++zXqcg6+0XXRLnaSAu5qQDADzZA4c4cyJVjPT5XTS5bcNtNM3+/ooV/vtnT3F3G313GhU0n+8dlddIo9OodZByhuH3+TVrakdgGxvdy2sdPQ3D6/P2efpBpiiEXWsg6Miv16rs5muv7ZnfbaY2L148drSvVFI/CmiWyQzQRYy+1dbm/vk4kpx25Ne+ceaYpzV/mUAxuChtkvXUBiAugnQAsbAgizpp1KU9eF23zvh75kzj/7dsCX5BrWq+n9d++23DLZCxv794cbiAwe8Cr7u79mJvaCh+EOU10rh1q3fAF/VC1GtBPStzzrv5GLoZM4wbO0lzK1/YR9TZXzvVpd932suyfbv7NkolkXK59ucPOKD2u81sA6dgc3BQ/RSUoH1F9Txev8UWVQZg27e7l91vO077XfTfb7rvX9y+mPXUBiCWap3p6+uriki1r68v66IAubZtW7Xa2Vmtihh/b9uWdYnyK8267OysVkslY1ulUrXa3Fz7urMz+nf5/ezQUO3rIPvtto2hIeOPyNg/AwPO79u378erfFu2qNmGky1bjHYxv7Ox0btut2yJ3n/s9Vsu+39XnO2F5dfHvOrbqf2C9Dm373Qqi9f3lcu1faNcdv5u6/eafzo7jc9HPTbD1EmQ/VTBvu0HH4zXj5z2JWwbWTmdG/P++82tL+fl97eqvqjivAyoECYOJUgHEElSF3K6S+KXfVp16RbURgk03b5ry5axn3W7IAwSgDltwwx+vAIZlXXqFljZy6Wy3bZtq1Y7Orwvou316lT3Xtzqt7HRu96y7q9Bj0Hzc9bPRy27X1nsZQpTdms7mn+C3jAJw7pttzqMW+deVN4gtJfZq+wdHf7b8To32m8O5oFfEJ6H399J9kUgKwTpHgjSgfjq8ZdnUiMPadel6pH0IIGq0wVh0P122kaQQCZoe0Wp5zA3KOLyKp+KC22nUVyvNsm6vwbZR7e2j5v9ELYsYT7vVa9x6zbsuSuJAE7lDcIwZTdvdAXZjt+x4HfTLIosjps8/f7Ow80EIAyCdA8E6YAa9fbLM8n9Vf3dYVKA46ScBgl6vC4Ig+y32zaCBjJJpXtay+6Xjp4EVRfa27bVptbbb4KEGUkPO8IdtHxh28mtfG43fIJ+b9iyuH0+TDq9CmG/N6kbkk79LI10/qD775TRkFRZw/aNMIKcG/Ly+zsvaflAUATpHgjSATXy9sszzsVP0iMPquoyzPc4pedG0dkZPT066Nxm6zaCBJFByx3nIlWH/h92H5za2GuEM2iavdONHr+07rB1FuYGgNO+uK1TEKX93VLc/T7vt/9J9Kk45y6VI6teqehJHEPWsoetV6++our8bz92VU9t8Ds36HD+CkPHUf6ioq6TRZDugSAdUEv3E7qqi5E0Rh5Up3qmMToSpH79gjq/NHHrz5fLtXPSo7SnypsuWfb/oH07yvzUMEGcPavAbcEtlf0zyjQAv3TmoG0Z9ZwSdP9V96m4mQ9FKUeY7djLqmr+vFkOp/7nd7MzjCSn+6CY8nbjJq8I0j0QpAP1RVVgoPsvMBWBZ9xsg6Cf8WuTIKnrebyhkZSBAe//jzuq5jedIMgItcr0/LA3hZzWKUjzqQbVarbzgFWvqq6qHLqdQ62SrjN7H0qqbxCEI6gi/U7UWZg4tKFarVazePRbVvr7+2XixInS19cnra2tWRcHQIIqFeP5qnZDQ8GfI+30nVF/Ninm88F7ekbfK5WM58Ju2RLu5zs7vZ/XHZdXm2zfnl457Pu8erXxd1pU9KMg7RbmGLCXqbdXZO5ckR07jNflssjatWO34fdMaXNbLS3G879Nzc0iAwPB9tVpW3593K2OBwdFXn45Wl+Lc04JU/YkmNvVpRx5YC+rqrLbj92BAZGdO7NrE9S3JK6V4CxMHNqYUpkAIDC3i/2wSiXjAsj8JWN/HWWbSf/CirLvCxYYF31W7e1G4BH2582Lx6R4tYlbOVT1ByvzIti8EJ45czR4SVJvr7Gdpqb42wvSbmGOAft7CxaMBugixr+dtmENcJubnbdVqdQG6CLG6zBtW6kYQY35M/bXfvtj1n1Li7Ef3d3GReiWLeFuBgWtTztrPYU5PlUx2yFMHSZVjrywl1VV2c3zj9n/rDe/sugbKqXZl6BGmN8TSA9BOgBtqAxgTH4XxnG3qeqCJGo53C6yN20KPjKY9kW7U5u4laOzU21/sFu4ML0bFCLqboh4tZu97aIEh+b32Tn1DWvAYe131m2puAiM+x1OdR/0Z63H58CAyLRpxvthAip7YJZUlogXLsajSep8aNa7Dn0jriR+fyM9Wd9ExFikuwPQRpJpmG5pilG3qTpFPM6+x/nZSkWkqyub9Fd7m9j3wxz5cyqXirTTtFP8VG/PXl/TphmjxG59MmydzZw5NlDv7AzWN5y2peKYifodceve6RjbtCmfwW2a01vyjroKLutpFFAjT9NR8ihMHEqQDkALWcyJirLNJOZ1xt33KBeS1p8pl42lil56KdsLUfscaCdbthij3zrcHMl6e0nPaw06Jz2sqBeB1p8z/x3mu4LWvdM85CLO1+Ri3B+BZzBFPUYA1ZiTDiB3skjDDLNNaypfZ6faFPG4+x4lVdKa+rtjhxGgd3RkO1LU3m6MBDd6/GY68US16elpp/ip3J49zXzHDrXTFtrbjcX8hoZGF/ZT0TfCHtNOabTbt4dPrY069aWoKeJ5KX9Wc5zjTAWqt3nZRT1GgCwRpAPQRhZzooJu0xrUvvCC+wJZSZfDS9Dtu11svvBC8nOyvZjlGh52/4x1sTFVgWiac0GT2J45NSCpi2Tz+9NkbVOnueRR5va3tXnXvdd36jRfs14CwKznOEc5prIuc5Z0OkaAIiDdHYB2skjD9NqmWypfR4fI1q1qU8TT2veZM0W2bXMOiLNMUbSnl06fbtSxE9JPa4WZ9qDbMWZyejTezJnBvt+t36p8VF3YelNZz7rMj3bapyT6kw6p5mHrXIcyZ41pFIA70t0B5FoWv+C9tuk2otLTE21E1GskLK197+4WmTFj7LazTlG0j8asWVNbpsZGI4vB/H9GNEcFGaXPYqTPbZtO9WcfzV640PnYCzPCqfJRdVFWg1dVz2k+KtGJ0z4l1Z90eFScSLjMF13KnDUCdEANgnQACMAtlS/MBYlOqZDW54R3do6+l3WKotNFsbXuZ8ww5l9n+agindrRiVefzCLQs29z7tza+jNXkHcLclavHnvsBU2tDRM4qUzXDVLPST4jPgmqph0Eodsc5yDbVVXmegvqATgj3R0AQoiTyqdzKmTQ1bKzTGVMcttJrBKeNR1WKXfbptnXTGYqsRn0BX3sXpB2C9tecfuZXz1HTVv32o+kj0u3fXKiqj/pkt4fRpwy53F/AYRDujsAJCTqxacOI2Fe/FbLdho9TrvsSQQhYUfF3dpxcFB92YKyt4NOq5SXSsaj2/zKvG2bEaB4jWY7lTNI2cOOkMetD796jjr63N1trNEgMrofaWV1uO1Tkv3J/vQCHQNWez+OszBk1tMZAOiFIB0AUqBb+qad3wWi/f+7uvRN9w4j7IWxvd3MOfItLenXhVuApvsq5QccMLbfDw8bNzv8VmB343XDyB44tbVFL3tQbvUc9Wad2Y5bt9Y+KjHNwM5pn5LuT7qea/xujkRJcdf5Ji6ADFQ1sWzZsqqIVK+++mrPz/2///f/qu3t7dWWlpbqrFmzqmvXrg21nb6+vqqIVPv6+mKUFgDC27atWu3srFZFjL+3bcu6RIahIaNM9j9DQ97/L1KtlkrGvvh9v4789tuNtR2bm406CFoXbuWIorNz7LaD7lNabeJWno6O8P3IidMx5bZvWRx/TmVxajc/cdpaNafvT2qbUeoqDUmUS9d9BaBOmDhUi5H0Z555Ru644w7p6ury/NwTTzwhH//4x+Wv//qvZcOGDTJv3jyZN2+ePP/88ymVFACiS/uZ3EH5jfJ7jfp7jfj09ERPxQ0yghR3lClqdoPZjgMD8Z7bHidV2W3kTcR5n+zSyuAwt99oudpobjZW7VexaGGYDI8s0omd6jns6HPYto47n95P1GkHUcqi4+hyUuXSIcsFgD4yD9LffPNNueiii+T73/++TJo0yfOz3/zmN+Wcc86Rv/u7v5OOjg756le/Ku973/vkO9/5TkqlBYD4dElxt/K7QLT+f3PzaNDlFBiYwad15e6gQVGQwFXlPNw4F8bNzWNT38MESW5BY9BAyS1As+7TtGnGzYS00oXdVk23LjpWqRj72tkZ76aVU7Bkrg1g7286BXxhb9YFbWuz/0bZJx2fWKDrFKGkyhW2X2R9swLOaBeoknmQftVVV8ncuXNlzpw5vp998sknx3zu7LPPlieffNL1ZwYGBqS/v7/mDwCglt8Fon0RJ/MZ606BrTX4NAUNioKMdqocEY2b3dDdbQTCIsa86oGBYAGOW9DY2Rk8UHK7wWDdp5YWkZ07jfeTHD32CvLa2moX1rPve9TgJkyGh44BX5htB2lrc3X8KIG2rouW6Tq6HKZcYYM2v36h4w0V0C5IQArp967+5V/+pTpr1qzq22+/Xa1Wq9XTTz/dc076AQccUL333ntr3vu///f/Vg8//HDXn7n++uurIjLmD3PSAdQzFXNI3eamOs2TbWwMNnfdb45tVvNwvQSZSxpkbnLU+e1u+55mXfnVQZj5tmHKZ18foLHRfRu6rgkRhlfdRJ3TrOMxZadTWay8ypVUf2Puup5oFwSRiznpu3fvlquvvlruueceGTduXGLbWbJkifT19Y382b17d2LbAgDdqbzb7zY31WmEcsaMYI++8hvtVDkiqiIt0S+N2qu+raNx06dHn9/utu9pjR4HSSUPMvIYpW+GyfDQdU2IMNzaLmw6v/X9sGtQZCHrFHc3XuVKIjtBp2kbGEW7IAmZBenPPvus7N27V973vvdJU1OTNDU1yS9+8Qv51re+JU1NTVJx6NmTJ0+W//zP/6x57z//8z9l8uTJrttpaWmR1tbWmj8AUK/SSGu1BmTmvOOgQVGQYC5uCqzqGxVRn4ltDRrNVHfVAXUa6cJBgrwgAXKcvlkqBQ/CdQ344ggaaLv1fb9+Uk+pvGncvItKx2kboF2QjMyC9DPPPFM2b94sGzduHPlz0kknyUUXXSQbN26UkkPPnj17tjz66KM17z3yyCMye/bstIoNALmVxIWj08/agyWn1cXdpDHaqfpGRdxnYpu/7pIIqNvbjRHmpEePg5Zd1UiwF90vjK37qFKQNnDr+37Hna5z1lVK8+ZdHLrO09dRmiPZtAtUa6hWq9WsC2E644wz5IQTTpDbbrtNREQWLVokU6ZMkWXLlomI8Qi2008/XZYvXy5z586VVatWyc033yzPPfeczJo1K9A2+vv7ZeLEidLX18eoOoBUVSrZBxDmxadZFvPiPCzzQt0cAbZeoCQtzj5UKrUrjZuGhuK3jVP7Rimrqn6SRRvFKXvcvqnD8eXF2h7Nzcb0hiTaxa0eovb9JI8Znag6N5pUH3/2dtW9v2cpy99PtAu8hIlDM1/d3cuuXbvk1VdfHXl98skny7333ivf+9735Pjjj5f77rtP7r///sABOgBkQadU0SjPaHaS1cha3BHXJEe4VDwT2+17otDlueBBdXcbc/NF3OvKqZ3TPr6ijs5Z28PtUXEqRF2jwG2/6iGVN4ksI1VZQW79u0j1r1qWmR+0C1TRaiQ9DYykA0ib6hEaFfzu9nuNRKgeWQs78tDSUvtIr+Zm49FnQeVthDnq9vI0+mltk44OkTVratvEq83SOr7C9BunUU+n9jCl1S5O+yDiv19ZjkymRcfztM7l0lXezn2oL2HiUIJ0IADSlxBVXi8Y/C4MVVw4RrnwV1mfRT+u83RxH7W/pXl8BanPoDcTTFm1i7Xvh+knRT5mdLwRkdffH1nL07kP9aUw6e5A1nRKUy6aenk0SZqPwVL5XSoeqeUnSkqiyvos+kVuXhYy8utvXq+TPL6s/T1oOrRXn7a2R3Oz8bd9ocG0WFPcw6R5F/mY0fERffUw1SAJeTn3AV4I0gEP9bCibdrq8cZHkhcMSdRn2EdqbdoU/oI2zhxQLsCC0THocOLX3/xeq+4PTsdUkGPCr09b22NgYLRdRLKbU08QOJZu+875Lry8nPsALwTpgIuknnNaBHHqoN5ufFQqyV4wRKlPVYFwb69IV1e04CJOcJBEfebhuI5aRt2CDif2/rZ6tff/W/uj6v7gdkx5laG3V+S442q/x9qn7YGx9W+n7SXRH6M+Ix2GrM4RBJzR5eHcB7ghSAdcMMIwVtxR23q68eE2GqdS2PoM035OF4ZhUnuDiBsceD1zOyhdMju8ypxWGbM8Ds3+Zh1Ztu5rkEBFVYq72zHlVgbzZtXWrWP3acUK77Zz214SbR31Gen1TpdzRD1fewD1iCAd8MAIQ624QVk93fhII2MgbH1GnQNuv0g1g4q4N1xUBwdRLqazzuzwK3OlknwZdQlCRET+8i+99zXpc0WQY8pehvnza582YNq0SWTxYv/9cTtm47Z12Dn1UZ/MUHRZnyMA1CdWdwcCKPKKtkGpWmVWxxV03URt9zRX5A1an3HK5LQqdWenMa925059VtANu6Jv1DpReT5wK3NPj8jChcbfTlT2JR1WQu7tNYJd+2i0SPorWfs9Ds7KrQ91dIhs3Gg8LtDOvj/W7TlRdY5V2c72baxebfxdNKyuDkAlVncHFOOXsbpR8DykVsYdWUwzYyBofUYtk9sIuTUN2fw7y0yTKCP7YeskbL/wG2V0K3Nn52jGgl+Z40pqCkrYn1+wQOSFF2rfyyrTxuzLHR3GTQPrSKqdWcZGy9XUAQcYI+stLcYq7ub/ue2P9RhWcd6IMqc+LOs2enrGTk8oinrK/gKgF4J0AIGpvMjT+SJHRXpj2lMlgtRnlDI5BSEiRhC2Y4eR0qvDDZeoF9Nh6iRovwgazDuVubl5bLBqpbovqQ5CotzgcrsxMH16djd+rDcN/M4B3d0iM2YY/+7oEHnPe4wME5HakVi/tiuVjBFpe38Mc8Mjypz6sLxu3DnVU95T4pM4l+e9TgAkj3R3AKEVOf1fdXqjjnVlXiAGLZdTOq4O6e12caZS+LVTmH4RJq3YWuYZM0S2bRv7mcZG4/82bUqmL6mcghI1pdr+c9Onu6d/xxHkeIwzDULE+WcHBkafje5UFqf08VIpWrukMX2hrc24SedkyxajvGlObQrarnGOHxXn8jxN9wKgHunuABKlW9CpktvIYpzv00mUx6ZZV9426yLuiJLbSFKcEaY4I4V+7RR0xDls+rg1tXrbNiOQs3/njBnGZ4L2JadtedVrUiOsYVLn7aOV992ndrQxzAh/1OyCUsn4Uy7Xvl8u1wboTmWxZ2ksXBg9oyfrBU8XLjT+TmPBtSDtGqbt/abHxMUidACCIkgHABvrRe60acYomA4rX6sQ5yKxs9MI4gYGogdzbhfMKlcYT+rGSJDgJ0qAZ02tto7WmvXtVdfWoMKpDs35wkGD0zjipM5bbwQNDIyWua0tel+w1k3Yfh820A1zQ2H+/NqyzJ/vfHMj6g2PpNf9MKe6uOnpMebkp/G4zSDt6vUZszxpPOGgnh5BCkCBap3p6+uriki1r68v66IA0NTQ0OjfnZ3VaqlUrYoYf3d2Zlu2OIaGjP2w/zH318+2bcb+ixh/b9sWvgxu9ZmnevarrzD15NYmAwPe23Xahr0Om5trvzONeo3bR8yftf4JW2Z7GbZsid7v/T6zZUvwbW3bVq12dDj/f0fH2P6v8zFhLZtbH0u6/EHOZ26fsbdbuZxOXevcpgCSFyYOJUgHgP+h8uLeSdSfUynORWLcC0yvgFRlPesiaPn96jVIQO4W/GVVr1G24dY/gpTZ+v9O9ak6OLK2iT1AddtWuewe1Dq1sYqbYk71o4K1bOXy6L5Zy6my/G6CtGuQ/pDWcZJGnego7+fyOOp53zEWQboHgnQAbpK6uNfpwixqWeKOwpuKMJLuJ2yd+LVJ0IDcOhrr9EfHerWPeoYdSQ96Y80+cmqv4zj9OMi23I6fjo7astjrI0rZrKIc72G251TeKJ+JKsj+Be0jjY3pHSf1Erjp9LsvbfW873BHkO6BIB1IV14uRoKmRapM8c6SUzq1nyRvWAS5oMmiL4XZZtyLMqdtufXLY44Z2xbWdOrm5tGgwxrs6nKh6DYSWy5Xq1Onjpa5XPYuc9gba/Y6jhrEugV5btsKmpodtUxuwhyzSQYVSQcsYacu2OulXNYzoMrL7083Ov7uS0s97zvcEaR7IEgH0pHHu8hhLu6DUjUCrYI5LzZqu6SRfuv0fhZ9Kco2k7oocxpdtgcVDz44+rqjo/a1OXqoE7eRaLPehoaCpbjHvbEWtc2cyu+3LXu6e7lsvG/va6rmR4c99yQZVOgWsLgd32mdl1Wua6ErnX73pa2e9x3ewsShPCcdQCLSeFavakk9wzbrurDuV3Ozserz8HD0sqT97Pcs6i/sNqM+WzsIc4V2p+8WMb7frbxpt5XJa7tudWUVtN682slv3+O0mdNzzf0e1eh2frHuQ2OjcWxGKZOToP04yf6b5HfHlfbxEfR3TNa/M1Qpyn5EUc/7Dnc8Jx1ApvL6qJmkHl2U9XOLrY8gGhwcDQKitkuaF7VZ9CW3bfb0uP9MnMeP+ensNP40No797lLJu47SDoKCPMrKq27C1pvXsRXkueZxHxlnniv8AnSnn2lvH9t25rGpqh8FPfck2X+T/O640i5DkEfG5fX3p5Osf/dlqZ73HWoQpANQTueLMif2ix97OeNeHCX93GIvXhd4ureLSDZ9ydyG3cKF3j+X5EVZd7fIjBnO363T8eYXhJj90FpX5bLxRyR8vbkFvkHFbbModWz/GXvblcvq+lGYc0/S/bfeA5agwbdOx3NcWf7uy1o97zvUIEgHkIg8XJT5jfoFGRUMI6mLLK+gxOmCr7nZ+Le9XZy+R4fRG6++lFT5Vq8e+57faFaSF2V+3x3leFNdd15BiP1YEhndn+3bjT9x6q1Uina8ZnUhbS3rwIDItGmj5Vm7trZMbW3xtxclOyDN/huUDuejqMIE33n4/RlGHm8wqFLP+454CNIBJCIPd5H9Rv2CpCZmKWhQYr/g27Sptl2cvkf1DYo4nPpS0uVzSzEPwm8edBxu3x3meEuq7ryCELdjybo/cS9m4xyvWaY979wp0tIytu22b8/mGEw6SyUKnc5HcQQNvt2O5zzfpAAQDgvHAahLfosZJbHYkeo5wlEWN3PavtP3iOi96E3URXnCtMG6dSLz5hnz+A84QGTyZJHdu6MtKhhnUcKs+00YTvvZ1pb8wmE6L05mF7SsLDw1KkxdZLVYYhhhy5jUoqYA0sXCcQDgwy/1UOW8wCRGgaIsLuRUdq9F0lQtXJRmWrWbKG2wePHod+7fbwTo5neFzaqIMsqrS78Jw2kE0H7sNDaqn2Obp3m8QcpapMXD4gpaF3kabQ/bL3XP6gKgHkE6gLrV3T06F7RSMeaGWi/sVM0LTOICS1VQ4vY9Kr47yEVzlKDDrTxdXe4X5mHbwCsoChswRQ24dO43QbZjZT3WhofHHmsq5Gker19Z83TTIWlB60LXQDbujRVu2AD1iSAdQN1qbzfmgprzjnfurL2wUzGvPskLLFVBidP3qPhur4vmuKNeTumeKh9p5BUUhQ2YogRceeg3YZmZCCIiL7+sPogyj9eBgezXwfBrpyDnljzddEhad7fI9OnGv53qQsdAVtXIPjdsgPrEnHQAdSuteaxJzy1VNQfT6Xuifrdf3aqokzDt57U9t320zgM1HxG2Y0d6c9KtZTapmo9aqRh/zJX+k57H29kpsnXr2PdVHmtZz9utVIzF3lSXIQ9zrJNkbdeODpE1a5zrVLc5/CrLk3XfBqBGonPSL7nkEvnlL38ZuXAAoIu0RiiSHhFTVV63UeOo3+VWt6pGveI+0shvpMs62hn3MWFRsjLCZAsE1ds7upBbS4vI0UePvk5qHm+l4hygd3SoPdaySne29qOuLpFt29SWIYkAPU+p0tZ2feEF9zrVKfNA9ch+Hp6WAkCt0CPp8+bNkwcffFCOPvpoueyyy+SSSy6RKVOmJFU+5RhJB2CV5ghFvY2IedWtqlGmIO1nrXfrv3UbeXOiOttj5kyjrpwkWQf2rIDmZuNRgKqOtSxXd3fKeEi7DEHlbUQ2Srvqcp7Nw/kFQLoSHUm///77Zc+ePXLFFVfIj3/8Y5k2bZqce+65ct9998n+/fsjFxoAspDmCIUOF45p8qpbVaNeXttwGim3Buu6zWF1Eifbw74v5j56fT6pOrC2d0eH2gBdJL2sGLc6daozneYOm+VLM9tART+K0q5OU3ayoNPIPoD8ibRw3Lve9S655ppr5De/+Y08/fTT0tbWJv/7f/9vOfLII+Vzn/ucvPjii6rLCQCJ0uFC2oluQWMUTnWr+uaI0zacAhKzPvO0GFPYi323NH5zH90kWQfW9u7pUX8zrFJJJigy+4tfnVr7kTnPX4fAzFruzs50bkypfhRa1HbN+pFsRUhRL8LvHyCvYq3u/uqrr8ojjzwijzzyiJRKJfnwhz8smzdvls7OTrn11ltVlREA6k7WF5hpURUQ+o1wmq+t9ZmXka6gF/tuo6Xz549+prt7dBE8EZH3vGf0dRp1oPoGgPU4WbDAKL+KoMh+/M2d6z4Cbe9HmzYlE5hFCZjs87mbm5O/MRVntN5pH6MGu7o8kk3HG39+6uX3D6Cz0HPS9+/fL//2b/8mP/zhD+Xhhx+Wrq4u+cQnPiF/9Vd/NZJbv2bNGvk//+f/yH//938nUug4mJMOIEtB50vqPJ9RlzmfIsHnvVsFXd09L+yrX7st0mZdFduaUWC+1r0OnMoY9Tjxe5KB9XsbG41nu9vZ50UPDo6Ooqvk1cfd2s1sX6f53GYfiTMn3Wu7UdYGUD1XPs9z2XWg8+8fIM8SnZN+xBFHyP/3//1/cvTRR8uvfvUr+fWvfy2XX355zYb+1//6X3LIIYeELjgAFFWYkQld50vrOLriNVq2erXzhb69PvN+Ye41Wmqyr4pdKtV+Ruc6cOt3UY4Tp++yv9fTU/s9ZoDuNgJt/nxLSzLHhVMfd6sT+0rz5fLYcvf0RB/p9zsHRJ1GonrUO0w5dDyvZSnKcZX17yagkKoh/fM//3P17bffDvtj2ujr66uKSLWvry/rogCoI52d1WqpVK2KGH93dqr9fBpUlWloSE15hoaMstj/bNlilE3E+Nt8rVt9BuVVX251MGOG8/tu36WyTVTzajsVx1WQ98rl2j61bVv0MoTh1r4dHc7bDFPuKILs67Zt4bbpto9x+1LQcuT53JCUoHUStq2BehcmDg0dpOcdQTqAtEW5CN22zbgQ1+XiR8WFdBIXdNaLSZFqtbnZCEzsF5hJbDuJgNQqbpDR3FzbVs3N0bfhxLr/SV2s+/W7MNt1+64gN3rM77W3eVIBppW9fc3zgv3PwIB7WVSUJ+y++t1c8tpH1Tc6vP4v6fbLI25wAMkIE4fGWjgOAOAvbAqome65dasxf1SHZxmrWA09iYWcurtryzA0JLJjx9hUzbY2dSst+6XHOi1iF0XQ+uruFpk+3fi3ufhbpWLMkbYaHBxbliht4rT/SS3S5dfvwiwq5vZdbu85fa+9v6fxlAD7wnRr1jhvs7nZvSzWtQeiCruvYVLLk1zE0e9xbXl5ykOaghxXuk7LAgojhZsGWmEkHYBqQUZdwoz46To6EXfUNYkRK7fvbWxMrv7c2sdePw8+mHx9WbfZ0REuDTtqmwQd2VU1GqlylN7pu6KkZydVPq9tBslcCPt+WHG/J0ifTBsp286CtIWuv6sAXYWJQ0Ov7p53rO4OQJUoKxL7rSAcdXXkNEVdBTmpFYPt3zttmrGIl6qVoq282qerq7YcpZLx76j7G6S+vD7j1z8rlbFlnj7d+HzY/e/oMBanS3I1aJWrb/ut7u70/0HqM4lHzEXZpv191cdelH3V/dzG6u6GML/XVK/KDxRdoqu7AwAMUVJ8/S4C85B+GbUsSaW02r937drknlXt1j4iY1M/renlUVJB/erLL93ULWXVmnI8MGDc1DD3ZetW7xWu3fbf+ni3pJ63rvIYcPquUsl7KoPf8Z7EMRp1m9b3k0hLjrKvup/bdClH1sL8Xov6DHsA/hhJB3KMO//ZSXJUqOijE2H6bdjPbt+efN25tY99tDLuSLp1v9zqIMoIqdPPVKvBR8KjPLc7L9zqM4tRYJXb1OW513k6t+W9L0ehe7YDkHeMpAMFx3Nds5fkqFDRRyeC1FGUPl4qqV3AzG2k0a197CPf99+vZnTZDPadBBltt792GlXdujX4SKtX/3RKIc8LrxHnLEaBVW4zyYXZwkjj3Ba3z9Xz79cgfS5PxzSQZwTpQA4ltZKybnS/GEj6wreeRy7C9nFzxFpFWq/TRbrTd9jbxx6AnHtu/IDEL2AIktJu/bkwK5wHmZoRtdw68gtQsgh0VW1Ttxt/SZzbVPW5evn96satz+XxmAbyjHR3IGfqIR0tTymRIvWZFpmkMH3c3lcGBkR27oyX1msNzBsbjbIMDqbXF639KWqactgF5URG3+voqJ1jHoVfuXU9ZoKce7Iou671pRMVKf1+5556aoekFx8E6lGYOJQgHcihov+yLPL+1dNFXhz2PuC26rjqld3dLtJFku+L9gBx9Wpj/+yGhkbL4yToTQ57X+ztFZk/30h9j3NDwmv7aawZoALHab4kPX+/uzsf/TYp9TA4AKSBOelAytJOy9ZlfmESkliJWAekCoZj7eNuq4479ZUdO+Kt7O6V6p10X7Sn2S5cODb9ulw2Hpvm1Y+CzmW2v16wwFg8ztx+1DRfr+3rkEocpP0IPPIl6fn7OvTbLOm+Mj9QRATpQAxZBV66zS9UqagXA1le5OXxBofZxzs6RstvrzevvhKnv7iNkiXZF91uTq1eXRswiATrR2Fv5Km+Oea0/axvwHGjrNiSmr/f1lbMG8dhFXlwANAR6e5ADEVOy85S3uak+8kqVTBv9WhPMQ5Sb0nuY2en8f3Dw8br5mZjlD6pOvQ6n5gBQdh+FCZtO4nzmU7zWjlf14ckpirQd0YxFQSIjnR3IAVZjwoVmU6ZAiraM6vsgLykaIZdidwqqb5SqRgp9maALmIsHtfW5v75uLxGqszsAK9+FGQF+qjbj8q+fdXbCFrvKs7XnNvzIYnzKqPIowjQgXQQpAMRFTUtWydJ1qXfBbfq1Ni0L/LydBPJ62aCtd6mTTNWb3dqE9V9JejxrbKfBLnh4NSPVJUhjZtjqrYRdp/jnK9Jk4dON44B1AfS3YEY8pZOjOBtllR6Y5qpgnlI0QyzEnlXV7r7E6SvBKnjJNpcxWPa8sjcxyj7HPV8XS/1SxozACSLR7B5IEhHEri4yY+gQVURHjej+02kMAFXlm1iPb7t//YqUxr1X5S+6sdalx0dxlQEu6D7HOZ8XQ/1q/t5AgCKgjnpQMqKcrGWlbRSsIOmgCc5lSHNdHNdUzTt6cMrVvhPBTAfP2ZVLqcXoDulPPv1kzTWBFDZV3WcCmGy1uULLxiL+EXd5zB1UyoZNwWKPK0pL2tXIDydj2kA3gjSAWQm7bmeYQIa1XPIs5zXqltAYQ8KFi/W72aCvb3mznUOZNweNTY4mN6aAHH7api+mcVFv9PNtcFBkenTjddJrfFg1svWraPHUNEWDcvT2hWqFHnfTKyjAOQf6e4AMpPFXM+wqZ2qpjIUbV5r1HqJmj6cdtqxtb0aG2tXeXfadqUisn27Eczv2GG8d8ABxvvDw+m0edQ2CdI300yJdtoPtzImOdXIvs3p0439DypK2bKYOlW0c5Obekrrr5c2BfKGdHcA2stqBCdsCriqFPeijFbFHaGJ8hixID+nkr19zADda9ulkhEAmAG6iMj+/aM3FtIYgY160yRI30wjJdqrb7llCyQV0DrVy9atzv3T/l6UYyTLkc96ebxYvaT1F+n3DVDPCNIBZCLrR9ilOVqV9L6mefGl4kI36mPE0gomnNqrXK7d9urVtT9jXgjbDQ4aj43TJY3fLkjfTOui36tvqVhfIUx5g9SLW5+NcoxkGUDqunaFSjoFrklvM+vfrQDUIEgHkJl6GcERSWZf0x59U3Wh6xQUBAlS0gwm7O21dq2xTTNldObM2jo3L4TtOjuNRc505tc307joD7OoY1hRjxO/enHqs1GOEdUBZNSfK3IQl9XCk1Zpnq+T/t3KqDyQPOakA8hcPT3CTuW+ZjHvMIltpj3fPOwjuKyf9dr/3t7aOenlshHcx72ZkNbx4bWdNObzJtWf436vU7149dmurvDbU7Hv9TTnOoq2ttrpKOWysY5EWrI4X6s+d9DHgHiYkw4gV/IWoMcZRVCZ4p5F+mYSIzRppWdGGckKk/bd3m5c9A8NGX+2b493AZvF0w/cpJHFsHq12r5Vqag5TpzqxavPRjlGVBxX9TLnOopKpTZAFzFe6/b4T9VUn0PpY0B6CNIBICCdHmuT1bzDpIK1NKY+xL3ADFrnpZKadnArr/VCP21J9C/zuJo503htTiuI2resx2lXV21as8rjxK3PRjlG4h5XOs251lHW87Sz3r4K9DEgXQTpABCQbqMIWc7pV31xaQ9S2trUfr+qC0wVdR5km27l7ew0gs+WFj1uFnkJWrf242rhwnjbtX+fiHObxQ0u/ALrKMdI1OMqb0FgFoFd1mugZL39uPLWx4C8I0gHgAB0HEXQZVVmlXWwfXsy2QqqLjDj1HmYTAyn8jY3i7zwgvF6cHD0O7O+WWQXZj+TWDTN/n07dohs2jTaZiLe5TPT5IPSJUjJQxCYZTZS1ufLrLevQh76GFAUBOkAEECcIC9v8w6DSuKCO8lsBZUXmFHqPOy+WedoT59uBOb2vqTDzSK7sPupcnTOaxVv8zvdytfba2RwNDUZf9ra9M1ScJKHIFCHbKSsb6pkvf048tDHgKIgSAeAgMIGeTrNYU+C3wV32BFJt1FVc9Q4riwvMMOMGDvN0TZT3Z3mv+uUchp0P63HxsCAyNFHG+8nPTrnVb4FC2oXF9uxQ78shSB06Qt2OmYjIRpd+xhQJATpABBQ2CAvqVEjHS5qvS64e3qijUjaA87GRiPFu6VFfep72sJkYrjN0bbeJDKfva5bymnQ/bTu444dIi+9JNLREf+RTn6reLuVT8Tot3YEkeowpxkAgiNIB4CQgqa4qx410mlk3umCu1w2VtOeOTP6iKQ1SGtqGq2vJFNj0wrCgmRiePUb602igYHkMgKCLmznxm8/vUbX7SvYhxUkEHQqnzVYt0oziFTRD3W/oVCPc5p1bxMAeiJIB4AEJDFqpMN8Tiv7BbeI+42DoDcozEB0YKB2DnYSqbFp3/QIkokRpN9Y/0+lIPUR5DNBVj13OhaGh2tXsI/aJn6BoFv5urtr57OXy+kEkSr6oU438LzU05xme5s4ZWoAgJuGarVazboQaerv75eJEydKX1+ftLa2Zl0cAAVmBtJm4BEnlbdSMS727IaGsk8XNQNnp/KZOjtHV9YOygw2KhVjH80LfFWS/v6oVPabMILUh6o6s+6jyVzczVzLIOr3x60/a2p8GtraajNPymXjKQdhBG0X8/+RPGubmNI8ngHoJ0wcSpCOusNFCtKmqs/FCZDS6PdOF6UiRtCxdm34C9Mkg1Wdb3qY0jxXBakPr8+IRCtrT48x576nx5iTvnWrdxmCCBP0Zv37QEU/DPIdWd34SVLWbefFrU0aG0VmzNDjZiCA9IWJQ0l3R93ISzogikfVhWSU+Zxp9ntr+cyR86EhI0CKEhAkmRqbxiJWcVPz0wxAgqbZu61DELV/WfuJfQX7KG0yOOi9cJypSL8PnNqlo6O23nSbKhNHlm0X9Jj2m9LBPHUAfgjSUTeKdJFSL7iQqRUlaE2z39vLpyroTSpYTWoRq7wGgEHqw2sdgjj9y2zjqG1i1nlLS7DP6/L7wOu57mFY661UMjISrJktRXr0WRZtF+WYdspWYEV7AEFlmu6+cuVKWblypezcuVNERGbOnClf/vKX5dxzz3X8/P79+2XZsmXyox/9SPbs2SPt7e3y93//93LOOecE3ibp7vUpD6mtRRY2LbGIqZlZoN8HozptVte57kEFqQ+vdQjC9i+n7YVtE7epFiJj0911Oy6s57uODpE1a6Kf7zo7RV54YWzfS7tPJpWKnlXbxak/65QOfp8B9S036e5HHXWULF++XJ599ln59a9/LR/84Afl/PPPly0uZ76lS5fKHXfcId/+9relp6dHLr/8cpk/f75s2LAh5ZIjb3g+azaijijqMsqVd/T7YFSnuHuNWuZh9DJIfZiLvMXpX17nh7BBvtvIcGensR6Cvew6HRdmxoA5J996/gujUjF+3qnvpfXos6SzSLJoO7djOuhq7dYpHUVf0R6AQlXNTJo0qfqDH/zA8f+OOOKI6ne+852a9xYsWFC96KKLAn9/X19fVUSqfX19scqJ/Nm2rVrt7KxWRYy/t23LukTF19lZrZZKRp2XSsZrP0NDxuftf4aGki+vblTsM/0+fU793toOHR3FaYc4/SvK+SHMd3kdP7odF6rqwu97kj6PqmxTN1m0nbk9658k9i1r9fh7FkhTmDhUmznplUpFVq1aJW+99ZbMnj3b8TMDAwMybty4mvcOPPBAefzxx12/d2BgQPr7+2v+oD7V0/NZdRB1HqRuo1xZUDkaVc/9Pu6oddSfdxq1tI6Obt1qLLaWl7nqXqL2L9XzpJ3q3OucodNxobIu/EbMvepExfGSxtz3LNpu9eqx7+V5Xr9dXtfRAIos8yB98+bNMn78eGlpaZHLL79c1qxZI52dnY6fPfvss+WWW26RF198UYaHh+WRRx6R7u5uefXVV12/f9myZTJx4sSRP1OnTk1qV5AT9RTsZSlOsJ1WaqYOnC7yvNL9o14U1lO/j3vBGffn7UFEW9vYC/rBQZH58/2/K8kgQOV3h+1fqm/GRQ3cdDguVNZFlHpQFaClfYM1zbbr7DT+NDaObrtIN4+ZYgboJ/Mgvb29XTZu3ChPP/20XHHFFXLJJZdIj8tEn29+85ty7LHHyowZM6S5uVk+/elPy2WXXSaNje67sWTJEunr6xv5s3v37qR2BYBN1GBbp1GupLhdGHvNf2SkI5i4F5yqLljtj8Sys84ftktyZEuXUbMkbsblNWhSXRdh6kFlgFbkG6zd3cYzzkWKtW+qMyCKkl0AZC3T1d2dzJkzR8rlstxxxx2un3nnnXfk9ddflyOPPFK+8IUvyAMPPOC62Jwdq7sD6Utqpd8881ot2On/RPK9Ynha4q7+nNTq0b29Ror74KDxurHRuOB3a0N7H5g+PfhCVX50W32+yOeHsPuWdl0k1d9p03yxPx2huVlk06ZwN8h5KgvgLzeruzsZHh6WgYEBz8+MGzdOpkyZIkNDQ/Kv//qvcv7556dUOgBRFO2CJi6/kQv7aNTq1fo951jX0ZK4KbdJpey2tRkXveaI+owZ7iNxTv1j61ajHHFHvXV8ZnZezw9edRY1WyHtukiqv+e1TYMo4r7Z13AYGsouAwmAIdMgfcmSJfLLX/5Sdu7cKZs3b5YlS5bI+vXr5aKLLhIRkUWLFsmSJUtGPv/0009Ld3e3vPTSS/If//Efcs4558jw8LB8/vOfz2oXACA0vwtje7q/OR9Sh8X0skyVDhpIxk25VZmya62vBQuMZ2D7TeNwa98XXnC+8A0TYLMwY3xBjoE8BSxB+ruuN+WgRlvbaJaPiMjwcLibdzre/EN0tJseMg3S9+7dK4sWLZL29nY588wz5ZlnnpGHHnpIzjrrLBER2bVrV82icO+8844sXbpUOjs7Zf78+TJlyhR5/PHH5ZBDDsloDwAgmiAXxtbAKWjgmPQv1yyCj7A3BuKuaeC08FsUlYpzfQVdPHH69LHfZ73wjXrDpMjzhtPgdwzoHrDYy+F1vOiyfgGSpWsGEtLF8a4X7eakJ4056QB0omrOahrzAZOav+onqznUYevULJ/155yEqa+2NpEdO0Zfl8si27cb/45bL6rm1uo4RzepMgU9BnSb9y8S7Ryh434gGXF/hzAnPf843pOX6znpAFBPojy6ykkaI9xpjZZYR/qyHJUMWqf20Ye5c51HIFTWl4p6iVsOHUddki5T0GNAx2yFsOcI3TMCoJbqDCQC9HzheNcPQToA5Fyav1yTDD6cAqys0ijD1Kk1+Nm2zRj5dvpc2PqqVGpH0UVGv9uvXrK6iZH1BV0aN6uCHAO6BSxRzhE69DGkj0UD6xNTFvRDkA4AOWO/OE7zl6s1+Ni0Kfp8bSduAVYWo5JB69Qe7AwPj37e+nNewZpbsONXBqd6SWt02y3oy3JUPa2bVWECcF0ucKOeI7LsY3bcFPBG/SAuHTOA6hlBOgDkhNfFcZq/XHt7jW00NRl/2tqSfTRYVqOSQRf3swc/5fLYn3NbR8Av2PEqg1O9pLWw3/btxrOUnVi3W6mkFzykPRKkSwAeVJRzRJZ9TMToOzpOq9AJ9QNVdMsAqncsHAcAORFkUZc0FvGaOXPsomidnfEXLdNl0Rp72fzq1G3BJL+fC7O/Qdo1zYX9rGV3c8wxIi+9ZPy7XBZZuzb5iz4Wr/IX5xyRVh+ztmNzs/H9w8Pxzgs6LnCoQhrnzaLWHZA2Fo4DgBSlMVIYNJU3rbnadkHTinXJBghTNr86dRt98Pq5sKnZQdo1zYX9nMra2Di63ebm0QBdxJhLn8bj+rIcCVJ5HkjynBKnP6joY0H2zTpaPzg4Oo0kyhSGIo80Jz3Fo8h1B+iOIB0AIkrzAkaXRV3M7doFLYtXqmzWqXZx03jDtEWpJNLRob4907jR4ZbiP2OG8Xr6dCOwsktzpeA0jwu/80DRAsqofSzovnkFmmGOE/Pn00zPT1vSvxeKXHeA7gjSNcdCIIC+glzAqDyGsx5ptpajXB59XS4HK4su2QBxyqaCGaxs3Tq6r6raM60bHfa+uHbt6HbNVHO7oq4U7HYeiBJw5yEoitrHgu6bU+Bprn8Q5Dix1ntnZ/EfK5XU7wUeyQVkiznpmmJeHaA3v7mZSR7DuswPNC/WwpRFl3nnTtzKprq+7duZPt15CkEeuNVNb6/xvHjzEXJpzUlPm9d5oKsrXF9Pc02BqKIeC2H3zen82dYWbNv246tUGl3AULdzjkpJ/F7Q+XwN5BFz0gsgD3fTgXrml2aY5DGsywW7eQEchi7ZAE7sZVuxQn3qsdPo1Nat+R2dcmv/9nZjBfihIePP9u3FC9BF3M8DIuqfS56luGn4YffNabQ+aIq7vd4HB40bYeb36nTOUSmJfqLz+RooOkbSNZSHu+kAvFf15hj2lnQ2QNwVrEul5FbTZ3SqWNzOA04r4Ptl1eiaRaeiz6a1b2llxNQT6g5QI0wcSpCuKS7igPyI8jgxLnqSoSoQSHI6g66BmBv6ajD2erK2syno73Od6lz1Tcek9y1vxxeA+kG6ewGQYgQkT1WKsdMFp9sxnIfVm/NM1TSDJKczZL2KfVD01XDs54H2dpFNm2rfC7r4li4Buoj6NHxV++ZWh3k5vgDAC0G6pvglAyQnjeDD7RhmvYnkqF6N2O1GS72sehy2rxZt/1XQeZ55GNZjYfr0bAcOgp6/81bHAGBFkK45fskA6qkMlMOMiNVLcJcV1c8ed7vREjfwSuImkeo+FKavMuLurQiZcWa5OzqMhQ6t59C0caMze/zOApJHkA6grqgKlKMEJkUZVdNRks8eDzOdIQiVQUZSAXKYvkrQ5E3HzLgoQdaCBSIvvGD8O6t25kZntrghB6SHheOABOm0+A9GqViYMep3sKhROEGPoayePR72GFe9CFeSi4wG6atpP8mAc2o8Uc8/Oj2xgoV1s0PdA/GwcByQMe42x5fkyEjc9NM4ozk6jqrpKMwxlOWzx8MGKCqzKZIeVQzSV9PKDtHpnJrnUduoWQ/bt4s0N4++zjILqAjTB/KILAYgXQTpQAJI/4wuy0XdglIRmDAa6C3MMZS3aQSqgow4+x3mwtrv+9IImqz9Ydu2bM6pOt0oiCJOkLVggXG+NJVK2QXH3OjMRt7Os0Deke4OKKZTWmAe5SWdjrT15EQ5hvLYHipSt8Pud5L1lFQqult/2LLF2Ie05OXc5CXKPkQ5HpmWUEx5PM8COgkThxKkAwkowsVcFvJ4g6OoF6NZ75f1GDIFuSjMutx2aZUn6tz9vJybZs4cu8ZAZ2d6Zc/juclJ1CAraL8hiKsPUdbiyNNxAiSFOelAxpgzF00e0+l0LlsUuqT0Ol3cB5k6okt7JF2P9hTloCnuQdOddZtnunr12PfSnA+bx3OTk6ip4kF/p0WZ6qVbX4M/rwwKK11+nwB5RJAOJIA5c9FxgyNbuqyn0N4usmlT7Xt5WqgoqXqMc9EbJNDU9aK6szP7ILlI56aw9Rbkd1rYOe+69jWE59aWuvw+AfKIdHcAWiI9Ln06pvTmMT07yXqMWx9+6cg617cuqdT1eG5KYjqFzn0N4Ti15aZN+v0+AbJGujuA3MvrL3GdRnmtI1pBqE7pVVEXeRy9TCo1WsUjkLxGRHV/xJIuGUp5PTdFEXa0O+jxqntfQ3BubSmSffYLkGcE6UAOcSGjH51SN61laWkJVyYVQbHKunAKzHTo/35lCFOPSdxE8ftOp5/Jy7xr3cpTJPZ+M3fuaMDV02O89hL0Rkpe+hr8ebVlHm+yArogSAdyRKdAELV0mntnLcvgYLgyqRitTKIuSiU9+n/QMgSpxyj743fRG7eOuKiuT079plIR2bGj9nM7dgS7qRQk2KavFYdbW+qS/QLkEXPSgRxhDp+edJrL7VYWU9JlilMXfvNedej/Ksvg9l1B5v+6fUZV+fI67zqv5c5alnOKabPioC0Bb8xJBwqIOXz60il1023baZUpSl0EGf3Vof+rLIPbd3V2BhsFd0txV1W+vF1o65BlkVdec4rL5drPlsvq+oa5vbz1NbijLQF1CNKBnNApEMRY3d0i06cb/846ddOaetjcnH6ZwqaxBkmP16H/qyyD03c1N4u88ILxOso0AR3qKCs6TTfJG69+s3at8W8R4++1a+NvjxsqSAuDGMgzgnQgR5jDpyczKNi6VaSjI7tHQ5ms8wAHBtKfDxhmHmKY0V8d+r/KMli/a/p0Y/2AuKPgOtRR2nTIssi7NOcUc0MFSeNGEIqAOelADjHvSy86zJVWJWjfUtkHw9afDv1fZRnM71LZj3SoozQV6RjMUtL9Rqf1O1BcnA+gK+akAwXHxYw+ijKKF3TkIYkRirCjv3H6v6p2UXkMmt+lchS8qOcIt/arxwyCJOi4ZgUQRlF+JwME6QAQQ1EuOoOmoCaRqprGY3rykP7I44rc+bVfmnXHxX483FBBkoryOxkgSAeAmPJ+0Rl05CHpEYokL6LyNA+Wi8mxgrZfknWXhxs9ecDNqFrc9FEv77+TARHmpGddHAAFkud5wEHn8AX9nE51wTzYfNOl/bKa56rTsRRXkfYlLvNmk/noxawXHC0i+ht0w5x0AMhAni8Ggo48+H1Ox9FG0h+dZTmCF2bbfu2Xxn5kMc9Vx2MpqiLtiyp5yu7Jq3o/xyPfCNIBAIFTUP0+p+uFZz2mP7oFkFkGTFG37dR+aeyHWYelkki5XPt/5TJTNIIq0r6owOJmAPyQ7g4AUEKXtGQv9ZD+6JdGGydtO279xU0Zt24/yfRzpzqcO1dkx47Rz5TLItu3q9meXR6OpaCKtC8q8ZgwoP6Q7g4ASF0e0srTLksWI2Neo5ZRR/BUjFqrGD20prgnORJpr8P582sDdBHjdVLtm/axlGQ/zcN5IQv1mN0DIDiCdACAMlx4GrJKKfcLXqMGTCrSlVUGa0kGfk51uHWrSEdHuoFm1GMpTMCdVj/lvDAWq9wD8EKQDgAhMGfQGxeehqzm4AYJXsMGTCpHrVUGa0kFfm51uGZNuoFm2GMpSsCdVj/lvOCu3jMKADhjTjoABMDjctKT93njWc/BDdpXw9Sz6vmzKts4if7iVYe69s+wbZR1P1VB17YAACfMSQcAxVidOHlFeUxT1nNwg45ahimP6lFrlXWRRL161aGOQWGUbIes+2kcqs4VZEYB0BVBOgD44HE56SjSjRAd5uCqDLbqNV05DwGrSPSAW4d+GkXcc0VRbggCKC7S3QEgAB6Xk6wipN46IR0XaYkzJSdP/VTFuYLzOYAskO4OAIrldcQpL/Kceusl7+VHfsTJdshTP417riAzCkAeEKQDQAD1mu6bJm6EAPHlKeCOKs65oqg3BAEUi0PCEADATZwLuTyllGbBvBFCPemN9kHW4p4rurtHpwZwQxCAjhhJB4CEsUhROASAeqIfQzdRzxXWzKhNm8iMAqAfgnQASFiRVi1HdrKeM0s/RpH09op0dXHTCYCeCNIBIEF5W6RI13LVMx1GsPPWjwE/3HQCoDOCdABIUF4WKdIhEIQzHYIJFStqA7rgphMA3RGkA0DCdF+1vFLRIxDEWDoFE1H6MTd/oKO83DwFUL8aqtVqNetCpCnMQ+QBQCXdVsU2g/GeHuf/HxrSq7xJiNMmabWnGdya2zMXvcpKmP1WVXbdjp08og5rWc9/nZ21N6EAIAlh4lBG0gEgJbpdIFtHz63qYVQpzghv2qPDWWZiOI3Yh0lxj5sFwEh8fNShM+sK71u2EKAD0Asj6QByjxGi8CoV46LdST2MKsUZ4c1qZDvNfq5qlDFuXemWRZBH1CEA6IGRdAB1gRGi6NzmZBZxVMk+chtnhDfLOeJp3ohStUaBPQtg9ergP6vTfPy8og4BIJ8I0gHkVpEXO0vjItopjbpIGQluN3GcblB0dATb9zALTuU1EFId2Jn5etu3G+0Q9IYai3vFRx0CQD4RpAPIpaKOEKWZHVD0OZleN3GsNyhKJZGtW4PXt98c8bxneKgK7Hp7Rbq6jLoVERkcHH0/6A013Z+MkAfUIQDkD3PSAeRWEVeOZv6oGm5z7u0r1nd2irzwQrT6dus3RWhDvznpQY6Zzs7RAN1JmKcHpHWM6nQuUK3I+wYAecCcdAB1Ie4IkW4jnkXNDshCkNHgSsUIIqPWt1uKexHa0C3LIugxY9atkygj80kHl7qdC5JAgA4A+UGQDiC34qZr6zannfmjavndxEmivovWhvZyBz1mvPY77A21NG5w6HYuAADUN4J0ALkXJQDSdcST+aPqBLmJk0R9F7UN3Y6Znh7nz1vroaNDZNu2cDfU0hrd1vVcAACoX8xJB1C3dJ47zPzRdMWtb6efL2Ibzpw5Nijv7PQ+bqLWQ5rHp87nAgBAMTAnHQAC0HnEs2jBne6i1rfXaG8R29DpOed+o855yHTR+VwAAKg/jKQDqHtFHPFEOupxBHbmTCN1fXg42X3Oom45FwAAksJIOgCEwEU5oqjXuczd3SIzZhj/TnLUOYvRbc4FAAAdODxFFgAA+DFXMLeP9hY90DNHtJMedU5rOwAA6IaRdAAAIqrnucxpBc4E6ACAesNIOgAAETHaCwAAVGMkHQCAmAjQAQCAKpkG6StXrpSuri5pbW2V1tZWmT17tqxbt87zZ2677TZpb2+XAw88UKZOnSqf+9zn5J133kmpxAAAAAAAJCfTdPejjjpKli9fLscee6xUq1X50Y9+JOeff75s2LBBZs6cOebz9957r3zhC1+Qf/zHf5STTz5ZXnjhBbn00kuloaFBbrnllgz2AAAAAAAAdTIN0s8777ya1zfddJOsXLlSnnrqKccg/YknnpBTTjlF/uqv/kpERKZNmyYf//jH5emnn3bdxsDAgAwMDIy87u/vV1R6AADCY/46AADwos2c9EqlIqtWrZK33npLZs+e7fiZk08+WZ599ln51a9+JSIiL730kjz44IPy4Q9/2PV7ly1bJhMnThz5M3Xq1ETKD0Cdoj9nGvWpt1dk5kyRpibj797erEsEAAB01FCtVqtZFmDz5s0ye/Zseeedd2T8+PFy7733egbd3/rWt2Tx4sVSrVZlaGhILr/8clm5cqXr551G0qdOnSp9fX3S2tqqdF8AxNPbK7JggUhPj/H8aevjrYCsqBr5NgNz6zPVt2yJ/71uGLEHAEAf/f39MnHixEBxaOYj6e3t7bJx40Z5+umn5YorrpBLLrlEenp6HD+7fv16ufnmm+X222+X5557Trq7u2Xt2rXy1a9+1fX7W1paRhamM/8A0NOCBaOji2bADmRF5ch3pWLcfDKzROyvVWLEHgCAfMt8JN1uzpw5Ui6X5Y477hjzf6eeeqr82Z/9mXzjG98Yee/uu++WT37yk/Lmm29KY6P/PYcwdzAApKdSMYIKu6EhRgORDdUj32mNpPtthxF2AADSl6uRdLvh4eGa9HSrffv2jQnES/9zpaHZvQYAIZVKRoq7GTzYXwNpSmLk2zp9o73deK2aV7mLMMLOehUAgHqQaZC+ZMkS+eUvfyk7d+6UzZs3y5IlS2T9+vVy0UUXiYjIokWLZMmSJSOfP++882TlypWyatUqefnll+WRRx6R6667Ts4777yRYB1AfqURxABBJHHTyBzRHhoy/k5ivQWvcud5OkkRbjAAABBUpo9g27t3ryxatEheffVVmThxonR1dclDDz0kZ511loiI7Nq1q2bkfOnSpdLQ0CBLly6VPXv2yLve9S4577zz5KabbspqFwAoZAYxpONCB93dowsZqrxplHTfdiq3OaJuso6w5+FYc7rBkOSiewAAZEm7OelJY046AGQvL8GhSL7KamUvd9qry6vCehUAgCLI9Zx0AEBx5TFtOa+BoL3ceZ1OwnoVAIB6Q5AOAEhNnudF510ac+KTktcbDAAARJHpnHQAQP3I+7zooshjXbNeBQCgnjCSDgBIhe5pyzzeS3+69BUAAJJEkA4ASI2Oact5nCcPAACKi9XdAQCp0yltOa+rngNp0OlYBYA8Y3V3AIDWdLnot86Ld3oNFEmYfk2GCQBkhyAdAFC3dJ8nD6gQJeDmSQwAkB2CdACoI4wQj6XjPHlApbABNxkmAJAtgnQAqAOkrrrL8/PDAT9RAm4yTAAgWwTpAFAHSF31RwCCIooacJNhAgDZIUgHgIIjdRWob1ECbjJMACA7TVkXAACQLHPkzP6YMUaOgfpgBtxRHqfGeQIA0sdIOoBcYfQ3GlJXARBwA0A+EKQDyAUWPouH1FUAAIB8IEgHkAssfKYGI2kAAAB6I0gHoD0WPgMAAEC9IEgHoD2e2Ys84iYSAACIgiAdQC6w8BnygvUTgHC4oQUAtQjSAeQCC58hL1g/AQiGG1oA4IwgHUCukOIOnbF+AhAcN7QAwBlBOgAAirB+AhAMN7QAwB1BOgAA/0NFgMD6CYA/bmgBgDuCdABA3VM5N5b1E4BguKEFAM4aqtVqNetCpKm/v18mTpwofX190tramnVxAAAaMAPzSsUYyTMDbQDJM487ACiyMHEoI+kAgLrG3FggWwToAFCLIB0AUNeYGwsAAHRCkA4AqHvMjQUAALpoyroAAABkzZyDztxYAACQNUbSAQD4HwToAAAgawTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAqEM8AxwAAEBPBOkAUEd6e0VmzhRpajL+7u3NukQAAACwIkgHgDqyYMFoYN7ba7wG0kYmBwAA7gjSAaBOVCoiPT2jAZL9NZA0MjkAAPBHkA5oiKAJSSiVRDo7R58Fbn8NuFF1TiKTAwAAfwTpgEYYZULSurtF2tuNf7e3G68BNyrPSWRyAAAQTEO1Wq1mXYg09ff3y8SJE6Wvr09aW1uzLg5Qw7wIrlSM0c32dpEtW7IuFYrI7GOAF9XnJM5xAIB6FSYOZSQd0ASjTEgTATr8JHFOIpMDAAB/TVkXAIDBnB9sH2UimAKQhSTOSebIOZkcAAC4YyQd0AijTAB0ktQ5iQAdAAB3jKQDGmGUCYBOOCcBAJA+RtIBDXExDEAnnJMAAEgPQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBOZBukrV66Urq4uaW1tldbWVpk9e7asW7fO9fNnnHGGNDQ0jPkzd+7cFEsNAAAAAEAymrLc+FFHHSXLly+XY489VqrVqvzoRz+S888/XzZs2CAzZ84c8/nu7m4ZHBwcef3666/L8ccfLwsXLkyz2AAAAAAAJCLTIP28886reX3TTTfJypUr5amnnnIM0g899NCa16tWrZKDDjqIIB0AAAAAUAiZBulWlUpFVq9eLW+99ZbMnj070M/ceeedcuGFF8rBBx/s+pmBgQEZGBgYed3f3x+7rAAAAAAAJCHzheM2b94s48ePl5aWFrn88stlzZo10tnZ6ftzv/rVr+T555+XT3ziE56fW7ZsmUycOHHkz9SpU1UVHQAAAAAApRqq1Wo1ywIMDg7Krl27pK+vT+677z75wQ9+IL/4xS98A/VPfepT8uSTT8qmTZs8P+c0kj516lTp6+uT1tZWJfsAAAAAAICb/v5+mThxYqA4NPMg3W7OnDlSLpfljjvucP3MW2+9JUceeaTceOONcvXVV4f6/jCVAwAAAABAXGHi0MzT3e2Gh4drRr6drF69WgYGBuTiiy9OqVQAAAAAACQv04XjlixZIueee6685z3vkTfeeEPuvfdeWb9+vTz00EMiIrJo0SKZMmWKLFu2rObn7rzzTpk3b54cdthhWRQbAAAAAIBEZBqk7927VxYtWiSvvvqqTJw4Ubq6uuShhx6Ss846S0REdu3aJY2NtYP9vb298vjjj8vDDz+cRZEBAAAAAEiMdnPSk8acdAAAAABAmnI9Jx0AAAAAgHpFkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAADRRqWRdAgBA1gjSAQAAMtbbKzJzpkhTk/F3b2/WJQIAZIUgHQAAIGMLFowG5r29xmsAQH0iSAcAAMhQpSLS0zOa6m5/DQCoLwTpAAAAGSqVRDo7jb+dXgMA6gtBOgAAQMa6u0Xa241/t7cbrwEA9akp6wIAAADUu/Z2kS1bjBR3RtABoL4xkg4AAKAJAnQAAEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AADIpUol6xIAAKAeQToAAMiV3l6RmTNFmpqMv3t7sy4RksTNGAD1hiAdAADkyoIFo4F5b6/xGsXDzRgA9YogHQAA5EalItLTMzq6an+N4uBmDIB6RZAOAAByo1QS6ew0/nZ6jWLgZgyAekaQDgAAcqW7W6S93fh3e7vxGsXCzRgA9YwgHQAA5Ep7u8iWLSJDQ8bfZsCOYuFmDIB61ZR1AQAAAKJgVLXYzJsxlQptDaC+MJIOAAAAbRGgA6g3BOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJjIN0leuXCldXV3S2toqra2tMnv2bFm3bp3nz/zxj3+Uq666So444ghpaWmR6dOny4MPPphSiQEAAAAASE6mz0k/6qijZPny5XLsscdKtVqVH/3oR3L++efLhg0bZObMmWM+Pzg4KGeddZYcfvjhct9998mUKVPkt7/9rRxyyCHpFx4AAAAAAMUyDdLPO++8mtc33XSTrFy5Up566inHIP0f//Ef5Q9/+IM88cQTcsABB4iIyLRp09IoKgAAAAAAidNmTnqlUpFVq1bJW2+9JbNnz3b8zL/927/J7Nmz5aqrrpJ3v/vdMmvWLLn55pulUqm4fu/AwID09/fX/AEAAAAAQEeZjqSLiGzevFlmz54t77zzjowfP17WrFkjnZ2djp996aWX5LHHHpOLLrpIHnzwQdm+fbtceeWVsn//frn++usdf2bZsmVyww03JLkLAAAAAAAo0VCtVqtZFmBwcFB27dolfX19ct9998kPfvAD+cUvfuEYqE+fPl3eeecdefnll6VUKomIyC233CLf+MY35NVXX3X8/oGBARkYGBh53d/fL1OnTpW+vj5pbW1NZqcAAAAAAPgf/f39MnHixEBxaOYj6c3NzdLW1iYiIu9///vlmWeekW9+85tyxx13jPnsEUccIQcccMBIgC4i0tHRIa+99poMDg5Kc3PzmJ9paWmRlpaW5HYAAAAAAABFtJmTbhoeHq4Z+bY65ZRTZPv27TI8PDzy3gsvvCBHHHGEY4AOAAAAAECeZBqkL1myRH75y1/Kzp07ZfPmzbJkyRJZv369XHTRRSIismjRIlmyZMnI56+44gr5wx/+IFdffbW88MILsnbtWrn55pvlqquuymoXAAAAAABQJtN0971798qiRYvk1VdflYkTJ0pXV5c89NBDctZZZ4mIyK5du6SxcfQ+wtSpU+Whhx6Sz33uc9LV1SVTpkyRq6++Wq699tqsdgEAAAAAAGUyXzgubWEm7AMAAAAAEFeYOFS7OekAAAAAANQrgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAE5k+Jz0L5hPn+vv7My4JAAAAAKAemPFnkCeg112Q/sYbb4iIyNSpUzMuCQAAAACgnrzxxhsyceJEz880VIOE8gUyPDwsr7zyikyYMEEaGhqyLg5s+vv7ZerUqbJ7925pbW3NujhICO1cH2jn+kA71wfauT7QzvWBds5GtVqVN954Q4488khpbPSedV53I+mNjY1y1FFHZV0M+GhtbeWkUQdo5/pAO9cH2rk+0M71gXauD7Rz+vxG0E0sHAcAAAAAgCYI0gEAAAAA0ARBOrTS0tIi119/vbS0tGRdFCSIdq4PtHN9oJ3rA+1cH2jn+kA766/uFo4DAAAAAEBXjKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOlKzcuVK6erqktbWVmltbZXZs2fLunXrXD9/xhlnSENDw5g/c+fOTbHUCCtsO4uI3HbbbdLe3i4HHnigTJ06VT73uc/JO++8k1KJEUXYdt6/f7/ceOONUi6XZdy4cXL88cfLv//7v6dYYqiwfPlyaWhokM9+9rOen1u9erXMmDFDxo0bJ8cdd5w8+OCD6RQQsQVp4y1btsgFF1wg06ZNk4aGBrnttttSKx/UCdLW3//+9+XUU0+VSZMmyaRJk2TOnDnyq1/9Kr1CIrYg7dzd3S0nnXSSHHLIIXLwwQfLCSecIHfddVd6hcQYBOlIzVFHHSXLly+XZ599Vn7961/LBz/4QTn//PNly5Ytjp/v7u6WV199deTP888/L6VSSRYuXJhyyRFG2Ha+99575Qtf+IJcf/31snXrVrnzzjvlxz/+sXzxi19MueQII2w7L126VO644w759re/LT09PXL55ZfL/PnzZcOGDSmXHFE988wzcscdd0hXV5fn55544gn5+Mc/Ln/9138tGzZskHnz5sm8efPk+eefT6mkiCpoG+/bt0+OOeYYWb58uUyePDml0kGloG29fv16+fjHPy4///nP5cknn5SpU6fKhz70IdmzZ09KJUUcQdv50EMPlS996Uvy5JNPyqZNm+Syyy6Tyy67TB566KGUSooxqkCGJk2aVP3BD34Q6LO33nprdcKECdU333wz4VJBNa92vuqqq6of/OAHa9675pprqqecckoaRYNCXu18xBFHVL/zne/UvLdgwYLqRRddlEbRENMbb7xRPfbYY6uPPPJI9fTTT69effXVrp/96Ec/Wp07d27Ne3/6p39a/dSnPpVwKRFHmDa2Ovroo6u33npromWDWlHbulqtVoeGhqoTJkyo/uhHP0qugFAiTjtXq9XqiSeeWF26dGkyhYMvRtKRiUqlIqtWrZK33npLZs+eHehn7rzzTrnwwgvl4IMPTrh0UCVIO5988sny7LPPjqTPvfTSS/Lggw/Khz/84TSLihiCtPPAwICMGzeu5r0DDzxQHn/88TSKiJiuuuoqmTt3rsyZM8f3s08++eSYz5199tny5JNPJlU8KBCmjZFvcdp63759sn//fjn00EMTKBlUitrO1WpVHn30Uent7ZXTTjstodLBT1PWBUB92bx5s8yePVveeecdGT9+vKxZs0Y6Ozt9f+5Xv/qVPP/883LnnXemUErEFaad/+qv/kp+//vfy5//+Z9LtVqVoaEhufzyy0l3z4Ew7Xz22WfLLbfcIqeddpqUy2V59NFHpbu7WyqVSsqlRlirVq2S5557Tp555plAn3/ttdfk3e9+d8177373u+W1115LonhQIGwbI7/itvW1114rRx55JDdzNBelnfv6+mTKlCkyMDAgpVJJbr/9djnrrLMSLCW8MJKOVLW3t8vGjRvl6aefliuuuEIuueQS6enp8f25O++8U4477jj5kz/5kxRKibjCtPP69evl5ptvlttvv12ee+456e7ulrVr18pXv/rVlEuNsMK08ze/+U059thjZcaMGdLc3Cyf/vSn5bLLLpPGRn4N6Wz37t1y9dVXyz333DMmEwLFQBvXj7htvXz5clm1apWsWbOGvqKxqO08YcIE2bhxozzzzDNy0003yTXXXCPr169PrqDwlnW+PerbmWeeWf3kJz/p+Zk333yz2traWr3ttttSKhVU82rnP//zP68uXry45r277rqreuCBB1YrlUoaxYMiQY7nt99+u/q73/2uOjw8XP385z9f7ezsTKl0iGLNmjVVEamWSqWRPyJSbWhoqJZKperQ0NCYn5k6deqYOcpf/vKXq11dXSmVGmFEaWMr5qTnR5y2/sY3vlGdOHFi9ZlnnkmxxIgi7jFt+uu//uvqhz70oYRLCzekuyNTw8PDMjAw4PmZ1atXy8DAgFx88cUplQqqebXzvn37xoymlkolETHmRSE/ghzP48aNkylTpsj+/fvlX//1X+WjH/1oSqVDFGeeeaZs3ry55r3LLrtMZsyYIddee+3IsWo1e/ZsefTRR2se9/PII48EXn8E6YrSxsinqG399a9/XW666SZ56KGH5KSTTkqjqIhB1TEd5Hc6kkOQjtQsWbJEzj33XHnPe94jb7zxhtx7772yfv36kcc7LFq0SKZMmSLLli2r+bk777xT5s2bJ4cddlgWxUZIYdv5vPPOk1tuuUVOPPFE+dM//VPZvn27XHfddXLeeedxcaixsO389NNPy549e+SEE06QPXv2yFe+8hUZHh6Wz3/+81nuBnxMmDBBZs2aVfPewQcfLIcddtjI+/a2vvrqq+X000+Xf/iHf5C5c+fKqlWr5Ne//rV873vfS7388BeljQcHB0emtgwODsqePXtk48aNMn78eGlra0t3BxBYlLb++7//e/nyl78s9957r0ybNm1kbYnx48fL+PHj090BBBKlnZctWyYnnXSSlMtlGRgYkAcffFDuuusuWblyZerlh4EgHanZu3evLFq0SF599VWZOHGidHV1yUMPPTSyKMWuXbvGjKj29vbK448/Lg8//HAWRUYEYdt56dKl0tDQIEuXLpU9e/bIu971LjnvvPPkpptuymoXEEDYdn7nnXdk6dKl8tJLL8n48ePlwx/+sNx1111yyCGHZLQHUMXe1ieffLLce++9snTpUvniF78oxx57rNx///1jLhqRH/Y2fuWVV+TEE08ceb1ixQpZsWKFnH766cxhzTl7W69cuVIGBwflL//yL2s+d/3118tXvvKVlEsHVezt/NZbb8mVV14pv/vd7+TAAw+UGTNmyN133y0f+9jHMixlfWuokk8KAAAAAIAWWFYXAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AADz913/9l0yePFluvvnmkfeeeOIJaW5ulkcffTTDkgEAUDwN1Wq1mnUhAACA3h588EGZN2+ePPHEE9Le3i4nnHCCnH/++XLLLbdkXTQAAAqFIB0AAARy1VVXyc9+9jM56aSTZPPmzfLMM89IS0tL1sUCAKBQCNIBAEAgb7/9tsyaNUt2794tzz77rBx33HFZFwkAgMJhTjoAAAhkx44d8sorr8jw8LDs3Lkz6+IAAFBIjKQDAABfg4OD8id/8idywgknSHt7u9x2222yefNmOfzww7MuGgAAhUKQDgAAfP3d3/2d3HffffKb3/xGxo8fL6effrpMnDhRHnjggayLBgBAoZDuDgAAPK1fv15uu+02ueuuu6S1tVUaGxvlrrvukv/4j/+QlStXZl08AAAKhZF0AAAAAAA0wUg6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGji/weJJmoeVvWuSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# генерация датасета\n", + "data = lib.datagen(4, 4, 1000, 2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ocj6d5ekc_O1", + "outputId": "8b20954e-6d51-462c-e701-f3fbbfc82493" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.11400687, 4.05019492],\n", + " [4.12588472, 3.88535961],\n", + " [4.17197212, 4.02212561],\n", + " ...,\n", + " [3.90510583, 3.78811391],\n", + " [4.1136694 , 4.1751791 ],\n", + " [4.06629658, 3.90804897]])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OD4s_l9kJQQl", + "outputId": "be781253-c6b3-432e-a868-adf4e7df0004" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходные данные:\n", + "[[4.11400687 4.05019492]\n", + " [4.12588472 3.88535961]\n", + " [4.17197212 4.02212561]\n", + " ...\n", + " [3.90510583 3.78811391]\n", + " [4.1136694 4.1751791 ]\n", + " [4.06629658 3.90804897]]\n", + "Размерность данных:\n", + "(1000, 2)\n" + ] + } + ], + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(data)\n", + "print('Размерность данных:')\n", + "print(data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e_fQEkQeR6Ie", + "outputId": "8d62d4ae-85fe-4495-f5d2-87093adc0cbe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 1\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 1\n", + "Epoch 1/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step - loss: 16.1546\n", + "Epoch 2/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 16.0744\n", + "Epoch 3/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.9942\n", + "Epoch 4/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.9142\n", + "Epoch 5/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.8342\n", + "Epoch 6/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.7543\n", + "Epoch 7/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.6743\n", + "Epoch 8/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.5942\n", + "Epoch 9/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.5140\n", + "Epoch 10/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.4337\n", + "Epoch 11/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.3534\n", + "Epoch 12/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.2730\n", + "Epoch 13/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.1926\n", + "Epoch 14/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.1123\n", + "Epoch 15/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.0319\n", + "Epoch 16/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 14.9516\n", + "Epoch 17/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.8715\n", + "Epoch 18/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 14.7914\n", + "Epoch 19/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 14.7116\n", + "Epoch 20/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.6319\n", + "Epoch 21/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.5524\n", + "Epoch 22/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.4733\n", + "Epoch 23/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.3944\n", + "Epoch 24/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.3158\n", + "Epoch 25/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.2376\n", + "Epoch 26/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.1597\n", + "Epoch 27/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.0823\n", + "Epoch 28/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 14.0054\n", + "Epoch 29/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.9289\n", + "Epoch 30/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.8529\n", + "Epoch 31/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.7775\n", + "Epoch 32/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.7026\n", + "Epoch 33/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.6283\n", + "Epoch 34/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.5547\n", + "Epoch 35/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.4817\n", + "Epoch 36/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.4094\n", + "Epoch 37/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.3377\n", + "Epoch 38/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 13.2668\n", + "Epoch 39/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 13.1966\n", + "Epoch 40/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.1272\n", + "Epoch 41/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 13.0585\n", + "Epoch 42/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 12.9906\n", + "Epoch 43/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.9235\n", + "Epoch 44/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.8572\n", + "Epoch 45/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.7917\n", + "Epoch 46/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.7271\n", + "Epoch 47/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.6633\n", + "Epoch 48/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 12.6003\n", + "Epoch 49/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.5382\n", + "Epoch 50/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.4769\n", + "Epoch 51/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.4165\n", + "Epoch 52/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.3570\n", + "Epoch 53/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.2982\n", + "Epoch 54/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.2404\n", + "Epoch 55/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.1834\n", + "Epoch 56/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 12.1272\n", + "Epoch 57/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.0719\n", + "Epoch 58/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.0174\n", + "Epoch 59/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.9638\n", + "Epoch 60/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.9109\n", + "Epoch 61/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.8589\n", + "Epoch 62/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.8077\n", + "Epoch 63/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.7573\n", + "Epoch 64/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.7077\n", + "Epoch 65/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.6588\n", + "Epoch 66/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.6107\n", + "Epoch 67/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.5634\n", + "Epoch 68/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.5168\n", + "Epoch 69/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.4709\n", + "Epoch 70/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.4258\n", + "Epoch 71/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.3814\n", + "Epoch 72/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.3376\n", + "Epoch 73/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.2946\n", + "Epoch 74/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.2522\n", + "Epoch 75/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 11.2105\n", + "Epoch 76/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 11.1694\n", + "Epoch 77/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.1289\n", + "Epoch 78/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.0891\n", + "Epoch 79/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.0498\n", + "Epoch 80/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 11.0112\n", + "Epoch 81/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.9731\n", + "Epoch 82/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.9356\n", + "Epoch 83/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.8987\n", + "Epoch 84/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.8622\n", + "Epoch 85/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.8264\n", + "Epoch 86/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.7910\n", + "Epoch 87/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.7561\n", + "Epoch 88/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.7218\n", + "Epoch 89/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 10.6879\n", + "Epoch 90/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.6544\n", + "Epoch 91/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.6215\n", + "Epoch 92/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.5890\n", + "Epoch 93/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.5569\n", + "Epoch 94/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 10.5252\n", + "Epoch 95/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.4940\n", + "Epoch 96/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.4632\n", + "Epoch 97/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.4327\n", + "Epoch 98/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.4027\n", + "Epoch 99/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.3730\n", + "Epoch 100/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.3437\n", + "Epoch 101/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.3147\n", + "Epoch 102/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 10.2861\n", + "Epoch 103/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.2579\n", + "Epoch 104/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.2300\n", + "Epoch 105/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.2024\n", + "Epoch 106/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 10.1751\n", + "Epoch 107/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.1481\n", + "Epoch 108/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.1214\n", + "Epoch 109/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.0951\n", + "Epoch 110/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 10.0690\n", + "Epoch 111/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 10.0432\n", + "Epoch 112/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 10.0176\n", + "Epoch 113/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.9924\n", + "Epoch 114/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.9674\n", + "Epoch 115/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 9.9426\n", + "Epoch 116/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 9.9181\n", + "Epoch 117/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.8939\n", + "Epoch 118/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 9.8699\n", + "Epoch 119/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 9.8461\n", + "Epoch 120/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.8225\n", + "Epoch 121/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 9.7992\n", + "Epoch 122/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 9.7760\n", + "Epoch 123/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 9.7531\n", + "Epoch 124/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.7304\n", + "Epoch 125/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.7079\n", + "Epoch 126/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 9.6856\n", + "Epoch 127/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 9.6635\n", + "Epoch 128/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 9.6416\n", + "Epoch 129/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.6198\n", + "Epoch 130/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.5983\n", + "Epoch 131/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.5769\n", + "Epoch 132/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.5557\n", + "Epoch 133/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 9.5346\n", + "Epoch 134/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 9.5137\n", + "Epoch 135/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 9.4930\n", + "Epoch 136/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 9.4725\n", + "Epoch 137/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 9.4521\n", + "Epoch 138/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.4318\n", + "Epoch 139/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 9.4117\n", + "Epoch 140/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 9.3917\n", + "Epoch 141/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 9.3719\n", + "Epoch 142/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 9.3523\n", + "Epoch 143/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.3327\n", + "Epoch 144/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.3133\n", + "Epoch 145/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 9.2940\n", + "Epoch 146/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 176ms/step - loss: 9.2749\n", + "Epoch 147/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.2559\n", + "Epoch 148/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 9.2370\n", + "Epoch 149/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 9.2182\n", + "Epoch 150/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 9.1996\n", + "Epoch 151/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 9.1810\n", + "Epoch 152/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 9.1626\n", + "Epoch 153/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 9.1443\n", + "Epoch 154/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 9.1261\n", + "Epoch 155/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 9.1080\n", + "Epoch 156/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 9.0900\n", + "Epoch 157/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 9.0721\n", + "Epoch 158/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 9.0544\n", + "Epoch 159/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 9.0367\n", + "Epoch 160/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 9.0191\n", + "Epoch 161/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 9.0016\n", + "Epoch 162/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 8.9842\n", + "Epoch 163/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.9669\n", + "Epoch 164/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 8.9497\n", + "Epoch 165/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 8.9326\n", + "Epoch 166/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 8.9156\n", + "Epoch 167/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 8.8987\n", + "Epoch 168/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.8818\n", + "Epoch 169/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.8651\n", + "Epoch 170/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.8484\n", + "Epoch 171/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.8318\n", + "Epoch 172/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.8153\n", + "Epoch 173/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.7989\n", + "Epoch 174/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.7825\n", + "Epoch 175/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.7662\n", + "Epoch 176/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.7500\n", + "Epoch 177/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.7339\n", + "Epoch 178/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.7178\n", + "Epoch 179/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.7018\n", + "Epoch 180/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.6859\n", + "Epoch 181/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.6701\n", + "Epoch 182/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.6543\n", + "Epoch 183/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 8.6386\n", + "Epoch 184/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.6230\n", + "Epoch 185/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.6074\n", + "Epoch 186/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.5919\n", + "Epoch 187/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.5764\n", + "Epoch 188/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.5611\n", + "Epoch 189/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.5457\n", + "Epoch 190/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.5305\n", + "Epoch 191/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.5153\n", + "Epoch 192/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.5002\n", + "Epoch 193/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.4851\n", + "Epoch 194/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.4701\n", + "Epoch 195/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.4551\n", + "Epoch 196/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.4402\n", + "Epoch 197/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.4253\n", + "Epoch 198/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.4106\n", + "Epoch 199/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.3958\n", + "Epoch 200/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.3811\n", + "Epoch 201/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.3665\n", + "Epoch 202/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.3519\n", + "Epoch 203/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.3374\n", + "Epoch 204/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.3229\n", + "Epoch 205/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.3085\n", + "Epoch 206/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.2941\n", + "Epoch 207/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.2798\n", + "Epoch 208/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.2655\n", + "Epoch 209/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.2513\n", + "Epoch 210/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.2371\n", + "Epoch 211/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.2230\n", + "Epoch 212/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.2089\n", + "Epoch 213/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.1948\n", + "Epoch 214/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.1808\n", + "Epoch 215/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.1669\n", + "Epoch 216/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.1530\n", + "Epoch 217/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.1391\n", + "Epoch 218/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.1253\n", + "Epoch 219/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.1115\n", + "Epoch 220/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.0978\n", + "Epoch 221/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.0841\n", + "Epoch 222/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.0704\n", + "Epoch 223/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.0568\n", + "Epoch 224/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.0432\n", + "Epoch 225/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.0297\n", + "Epoch 226/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.0162\n", + "Epoch 227/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.0028\n", + "Epoch 228/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.9893\n", + "Epoch 229/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.9760\n", + "Epoch 230/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.9626\n", + "Epoch 231/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.9493\n", + "Epoch 232/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.9361\n", + "Epoch 233/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 7.9228\n", + "Epoch 234/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.9097\n", + "Epoch 235/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.8965\n", + "Epoch 236/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.8834\n", + "Epoch 237/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 7.8703\n", + "Epoch 238/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.8573\n", + "Epoch 239/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.8443\n", + "Epoch 240/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.8313\n", + "Epoch 241/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.8183\n", + "Epoch 242/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.8054\n", + "Epoch 243/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.7926\n", + "Epoch 244/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.7797\n", + "Epoch 245/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.7669\n", + "Epoch 246/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.7542\n", + "Epoch 247/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.7414\n", + "Epoch 248/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.7287\n", + "Epoch 249/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.7160\n", + "Epoch 250/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.7034\n", + "Epoch 251/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.6908\n", + "Epoch 252/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.6782\n", + "Epoch 253/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.6656\n", + "Epoch 254/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.6531\n", + "Epoch 255/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.6406\n", + "Epoch 256/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.6282\n", + "Epoch 257/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6157\n", + "Epoch 258/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.6033\n", + "Epoch 259/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5910\n", + "Epoch 260/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5786\n", + "Epoch 261/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.5663\n", + "Epoch 262/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.5540\n", + "Epoch 263/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.5418\n", + "Epoch 264/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.5296\n", + "Epoch 265/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.5174\n", + "Epoch 266/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 7.5052\n", + "Epoch 267/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 7.4930\n", + "Epoch 268/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.4809\n", + "Epoch 269/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4688\n", + "Epoch 270/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.4568\n", + "Epoch 271/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.4447\n", + "Epoch 272/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4327\n", + "Epoch 273/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4208\n", + "Epoch 274/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.4088\n", + "Epoch 275/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.3969\n", + "Epoch 276/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3850\n", + "Epoch 277/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.3731\n", + "Epoch 278/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.3612\n", + "Epoch 279/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.3494\n", + "Epoch 280/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3376\n", + "Epoch 281/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3258\n", + "Epoch 282/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.3141\n", + "Epoch 283/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.3024\n", + "Epoch 284/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 7.2907\n", + "Epoch 285/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.2790\n", + "Epoch 286/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.2673\n", + "Epoch 287/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2557\n", + "Epoch 288/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.2441\n", + "Epoch 289/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.2325\n", + "Epoch 290/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.2210\n", + "Epoch 291/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2094\n", + "Epoch 292/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.1979\n", + "Epoch 293/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.1864\n", + "Epoch 294/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.1750\n", + "Epoch 295/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.1635\n", + "Epoch 296/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.1521\n", + "Epoch 297/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.1407\n", + "Epoch 298/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.1293\n", + "Epoch 299/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.1180\n", + "Epoch 300/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.1067\n", + "Epoch 301/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.0954\n", + "Epoch 302/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.0841\n", + "Epoch 303/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.0728\n", + "Epoch 304/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.0616\n", + "Epoch 305/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0504\n", + "Epoch 306/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0392\n", + "Epoch 307/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.0280\n", + "Epoch 308/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.0168\n", + "Epoch 309/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.0057\n", + "Epoch 310/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.9946\n", + "Epoch 311/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.9835\n", + "Epoch 312/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.9724\n", + "Epoch 313/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.9614\n", + "Epoch 314/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.9503\n", + "Epoch 315/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.9393\n", + "Epoch 316/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.9283\n", + "Epoch 317/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.9174\n", + "Epoch 318/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 6.9064\n", + "Epoch 319/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.8955\n", + "Epoch 320/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.8846\n", + "Epoch 321/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.8737\n", + "Epoch 322/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.8628\n", + "Epoch 323/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.8520\n", + "Epoch 324/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.8412\n", + "Epoch 325/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.8304\n", + "Epoch 326/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.8196\n", + "Epoch 327/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.8088\n", + "Epoch 328/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 6.7980\n", + "Epoch 329/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 6.7873\n", + "Epoch 330/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 6.7766\n", + "Epoch 331/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 6.7659\n", + "Epoch 332/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.7552\n", + "Epoch 333/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 6.7446\n", + "Epoch 334/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 6.7339\n", + "Epoch 335/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 6.7233\n", + "Epoch 336/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.7127\n", + "Epoch 337/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.7021\n", + "Epoch 338/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 6.6916\n", + "Epoch 339/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 6.6810\n", + "Epoch 340/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.6705\n", + "Epoch 341/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 6.6600\n", + "Epoch 342/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 6.6495\n", + "Epoch 343/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 6.6390\n", + "Epoch 344/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.6286\n", + "Epoch 345/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 6.6181\n", + "Epoch 346/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.6077\n", + "Epoch 347/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.5973\n", + "Epoch 348/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.5869\n", + "Epoch 349/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 6.5766\n", + "Epoch 350/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.5662\n", + "Epoch 351/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 6.5559\n", + "Epoch 352/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.5456\n", + "Epoch 353/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.5353\n", + "Epoch 354/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 6.5250\n", + "Epoch 355/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.5147\n", + "Epoch 356/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 6.5045\n", + "Epoch 357/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 6.4942\n", + "Epoch 358/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 6.4840\n", + "Epoch 359/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 6.4738\n", + "Epoch 360/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 6.4636\n", + "Epoch 361/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 6.4535\n", + "Epoch 362/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 6.4433\n", + "Epoch 363/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 6.4332\n", + "Epoch 364/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 6.4231\n", + "Epoch 365/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.4130\n", + "Epoch 366/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.4029\n", + "Epoch 367/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 6.3929\n", + "Epoch 368/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 6.3828\n", + "Epoch 369/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 6.3728\n", + "Epoch 370/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 6.3628\n", + "Epoch 371/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.3528\n", + "Epoch 372/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.3428\n", + "Epoch 373/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.3328\n", + "Epoch 374/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.3229\n", + "Epoch 375/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.3129\n", + "Epoch 376/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 6.3030\n", + "Epoch 377/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.2931\n", + "Epoch 378/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.2832\n", + "Epoch 379/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.2733\n", + "Epoch 380/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.2635\n", + "Epoch 381/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 6.2536\n", + "Epoch 382/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.2438\n", + "Epoch 383/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.2340\n", + "Epoch 384/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 6.2242\n", + "Epoch 385/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.2144\n", + "Epoch 386/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.2047\n", + "Epoch 387/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.1949\n", + "Epoch 388/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.1852\n", + "Epoch 389/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.1755\n", + "Epoch 390/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.1658\n", + "Epoch 391/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 6.1561\n", + "Epoch 392/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.1464\n", + "Epoch 393/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.1367\n", + "Epoch 394/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.1271\n", + "Epoch 395/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.1175\n", + "Epoch 396/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.1079\n", + "Epoch 397/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.0983\n", + "Epoch 398/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.0887\n", + "Epoch 399/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 6.0791\n", + "Epoch 400/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 6.0695\n", + "Epoch 401/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.0600\n", + "Epoch 402/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.0505\n", + "Epoch 403/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.0410\n", + "Epoch 404/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.0315\n", + "Epoch 405/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 6.0220\n", + "Epoch 406/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.0125\n", + "Epoch 407/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.0031\n", + "Epoch 408/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.9936\n", + "Epoch 409/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.9842\n", + "Epoch 410/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.9748\n", + "Epoch 411/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.9654\n", + "Epoch 412/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.9560\n", + "Epoch 413/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.9466\n", + "Epoch 414/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.9373\n", + "Epoch 415/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.9279\n", + "Epoch 416/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.9186\n", + "Epoch 417/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.9093\n", + "Epoch 418/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.9000\n", + "Epoch 419/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.8907\n", + "Epoch 420/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.8814\n", + "Epoch 421/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.8722\n", + "Epoch 422/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.8629\n", + "Epoch 423/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.8537\n", + "Epoch 424/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8445\n", + "Epoch 425/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.8353\n", + "Epoch 426/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.8261\n", + "Epoch 427/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.8169\n", + "Epoch 428/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.8078\n", + "Epoch 429/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.7986\n", + "Epoch 430/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.7895\n", + "Epoch 431/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.7804\n", + "Epoch 432/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.7712\n", + "Epoch 433/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.7621\n", + "Epoch 434/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.7531\n", + "Epoch 435/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.7440\n", + "Epoch 436/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.7349\n", + "Epoch 437/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.7259\n", + "Epoch 438/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.7169\n", + "Epoch 439/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 5.7079\n", + "Epoch 440/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.6988\n", + "Epoch 441/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6899\n", + "Epoch 442/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.6809\n", + "Epoch 443/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.6719\n", + "Epoch 444/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.6630\n", + "Epoch 445/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.6540\n", + "Epoch 446/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 5.6451\n", + "Epoch 447/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.6362\n", + "Epoch 448/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6273\n", + "Epoch 449/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.6184\n", + "Epoch 450/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6095\n", + "Epoch 451/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.6007\n", + "Epoch 452/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.5918\n", + "Epoch 453/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.5830\n", + "Epoch 454/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.5742\n", + "Epoch 455/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 5.5654\n", + "Epoch 456/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.5566\n", + "Epoch 457/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.5478\n", + "Epoch 458/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.5390\n", + "Epoch 459/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.5302\n", + "Epoch 460/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.5215\n", + "Epoch 461/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.5128\n", + "Epoch 462/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.5040\n", + "Epoch 463/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4953\n", + "Epoch 464/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4866\n", + "Epoch 465/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4779\n", + "Epoch 466/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.4693\n", + "Epoch 467/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.4606\n", + "Epoch 468/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.4520\n", + "Epoch 469/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4433\n", + "Epoch 470/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.4347\n", + "Epoch 471/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.4261\n", + "Epoch 472/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.4175\n", + "Epoch 473/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4089\n", + "Epoch 474/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.4003\n", + "Epoch 475/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.3918\n", + "Epoch 476/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.3832\n", + "Epoch 477/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.3747\n", + "Epoch 478/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3661\n", + "Epoch 479/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.3576\n", + "Epoch 480/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.3491\n", + "Epoch 481/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.3406\n", + "Epoch 482/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.3322\n", + "Epoch 483/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 5.3237\n", + "Epoch 484/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.3152\n", + "Epoch 485/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.3068\n", + "Epoch 486/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.2984\n", + "Epoch 487/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 5.2899\n", + "Epoch 488/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 5.2815\n", + "Epoch 489/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.2731\n", + "Epoch 490/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.2647\n", + "Epoch 491/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.2564\n", + "Epoch 492/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.2480\n", + "Epoch 493/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.2397\n", + "Epoch 494/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.2313\n", + "Epoch 495/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.2230\n", + "Epoch 496/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.2147\n", + "Epoch 497/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.2064\n", + "Epoch 498/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.1981\n", + "Epoch 499/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 5.1898\n", + "Epoch 500/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 5.1815\n", + "Epoch 501/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 5.1733\n", + "Epoch 502/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.1650\n", + "Epoch 503/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.1568\n", + "Epoch 504/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.1486\n", + "Epoch 505/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 5.1404\n", + "Epoch 506/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.1322\n", + "Epoch 507/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.1240\n", + "Epoch 508/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.1158\n", + "Epoch 509/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.1076\n", + "Epoch 510/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 5.0995\n", + "Epoch 511/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0913\n", + "Epoch 512/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.0832\n", + "Epoch 513/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0751\n", + "Epoch 514/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0670\n", + "Epoch 515/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.0589\n", + "Epoch 516/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.0508\n", + "Epoch 517/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 5.0427\n", + "Epoch 518/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.0346\n", + "Epoch 519/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 5.0266\n", + "Epoch 520/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 5.0185\n", + "Epoch 521/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 5.0105\n", + "Epoch 522/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.0025\n", + "Epoch 523/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 4.9945\n", + "Epoch 524/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 4.9865\n", + "Epoch 525/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 4.9785\n", + "Epoch 526/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 4.9705\n", + "Epoch 527/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 4.9626\n", + "Epoch 528/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 4.9546\n", + "Epoch 529/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 4.9467\n", + "Epoch 530/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.9387\n", + "Epoch 531/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 4.9308\n", + "Epoch 532/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.9229\n", + "Epoch 533/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 4.9150\n", + "Epoch 534/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 4.9071\n", + "Epoch 535/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.8992\n", + "Epoch 536/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 4.8914\n", + "Epoch 537/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.8835\n", + "Epoch 538/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 4.8756\n", + "Epoch 539/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 4.8678\n", + "Epoch 540/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 4.8600\n", + "Epoch 541/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 4.8522\n", + "Epoch 542/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 4.8444\n", + "Epoch 543/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.8366\n", + "Epoch 544/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 4.8288\n", + "Epoch 545/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 4.8210\n", + "Epoch 546/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 4.8133\n", + "Epoch 547/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.8055\n", + "Epoch 548/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 4.7978\n", + "Epoch 549/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 4.7900\n", + "Epoch 550/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.7823\n", + "Epoch 551/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.7746\n", + "Epoch 552/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 4.7669\n", + "Epoch 553/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 4.7592\n", + "Epoch 554/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 4.7516\n", + "Epoch 555/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 4.7439\n", + "Epoch 556/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 4.7362\n", + "Epoch 557/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 4.7286\n", + "Epoch 558/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.7209\n", + "Epoch 559/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 4.7133\n", + "Epoch 560/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 4.7057\n", + "Epoch 561/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6981\n", + "Epoch 562/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.6905\n", + "Epoch 563/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.6829\n", + "Epoch 564/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.6754\n", + "Epoch 565/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.6678\n", + "Epoch 566/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.6602\n", + "Epoch 567/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.6527\n", + "Epoch 568/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 4.6452\n", + "Epoch 569/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6376\n", + "Epoch 570/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.6301\n", + "Epoch 571/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.6226\n", + "Epoch 572/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.6151\n", + "Epoch 573/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.6077\n", + "Epoch 574/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.6002\n", + "Epoch 575/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.5927\n", + "Epoch 576/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5853\n", + "Epoch 577/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.5778\n", + "Epoch 578/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.5704\n", + "Epoch 579/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.5630\n", + "Epoch 580/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.5556\n", + "Epoch 581/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.5482\n", + "Epoch 582/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.5408\n", + "Epoch 583/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.5334\n", + "Epoch 584/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 4.5260\n", + "Epoch 585/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.5187\n", + "Epoch 586/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.5113\n", + "Epoch 587/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.5040\n", + "Epoch 588/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4966\n", + "Epoch 589/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.4893\n", + "Epoch 590/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.4820\n", + "Epoch 591/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4747\n", + "Epoch 592/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.4674\n", + "Epoch 593/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.4601\n", + "Epoch 594/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.4529\n", + "Epoch 595/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.4456\n", + "Epoch 596/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.4384\n", + "Epoch 597/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.4311\n", + "Epoch 598/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.4239\n", + "Epoch 599/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 4.4167\n", + "Epoch 600/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.4094\n", + "Epoch 601/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 4.4022\n", + "Epoch 602/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.3950\n", + "Epoch 603/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.3879\n", + "Epoch 604/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3807\n", + "Epoch 605/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3735\n", + "Epoch 606/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3664\n", + "Epoch 607/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.3592\n", + "Epoch 608/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.3521\n", + "Epoch 609/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.3450\n", + "Epoch 610/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3378\n", + "Epoch 611/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.3307\n", + "Epoch 612/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 4.3236\n", + "Epoch 613/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.3166\n", + "Epoch 614/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.3095\n", + "Epoch 615/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.3024\n", + "Epoch 616/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.2954\n", + "Epoch 617/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.2883\n", + "Epoch 618/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.2813\n", + "Epoch 619/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.2742\n", + "Epoch 620/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.2672\n", + "Epoch 621/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2602\n", + "Epoch 622/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.2532\n", + "Epoch 623/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.2462\n", + "Epoch 624/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2392\n", + "Epoch 625/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2323\n", + "Epoch 626/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.2253\n", + "Epoch 627/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2183\n", + "Epoch 628/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 4.2114\n", + "Epoch 629/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.2045\n", + "Epoch 630/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 4.1975\n", + "Epoch 631/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.1906\n", + "Epoch 632/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.1837\n", + "Epoch 633/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.1768\n", + "Epoch 634/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.1699\n", + "Epoch 635/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.1630\n", + "Epoch 636/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 4.1562\n", + "Epoch 637/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.1493\n", + "Epoch 638/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 4.1425\n", + "Epoch 639/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.1356\n", + "Epoch 640/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 4.1288\n", + "Epoch 641/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 4.1220\n", + "Epoch 642/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.1151\n", + "Epoch 643/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1083\n", + "Epoch 644/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.1015\n", + "Epoch 645/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.0948\n", + "Epoch 646/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.0880\n", + "Epoch 647/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.0812\n", + "Epoch 648/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.0744\n", + "Epoch 649/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.0677\n", + "Epoch 650/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.0610\n", + "Epoch 651/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.0542\n", + "Epoch 652/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 4.0475\n", + "Epoch 653/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 4.0408\n", + "Epoch 654/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.0341\n", + "Epoch 655/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 4.0274\n", + "Epoch 656/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.0207\n", + "Epoch 657/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 4.0140\n", + "Epoch 658/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.0073\n", + "Epoch 659/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.0007\n", + "Epoch 660/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.9940\n", + "Epoch 661/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.9874\n", + "Epoch 662/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.9808\n", + "Epoch 663/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.9741\n", + "Epoch 664/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.9675\n", + "Epoch 665/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9609\n", + "Epoch 666/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.9543\n", + "Epoch 667/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.9477\n", + "Epoch 668/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.9411\n", + "Epoch 669/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.9346\n", + "Epoch 670/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9280\n", + "Epoch 671/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9215\n", + "Epoch 672/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.9149\n", + "Epoch 673/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.9084\n", + "Epoch 674/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.9019\n", + "Epoch 675/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.8953\n", + "Epoch 676/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.8888\n", + "Epoch 677/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.8823\n", + "Epoch 678/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.8758\n", + "Epoch 679/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.8694\n", + "Epoch 680/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.8629\n", + "Epoch 681/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8564\n", + "Epoch 682/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.8500\n", + "Epoch 683/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.8435\n", + "Epoch 684/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.8371\n", + "Epoch 685/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.8306\n", + "Epoch 686/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.8242\n", + "Epoch 687/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.8178\n", + "Epoch 688/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.8114\n", + "Epoch 689/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8050\n", + "Epoch 690/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.7986\n", + "Epoch 691/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.7922\n", + "Epoch 692/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.7859\n", + "Epoch 693/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 3.7795\n", + "Epoch 694/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 3.7732\n", + "Epoch 695/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.7668\n", + "Epoch 696/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.7605\n", + "Epoch 697/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.7542\n", + "Epoch 698/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 3.7478\n", + "Epoch 699/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.7415\n", + "Epoch 700/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 3.7352\n", + "Epoch 701/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.7289\n", + "Epoch 702/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.7227\n", + "Epoch 703/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 3.7164\n", + "Epoch 704/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 3.7101\n", + "Epoch 705/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 3.7039\n", + "Epoch 706/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.6976\n", + "Epoch 707/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 3.6914\n", + "Epoch 708/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.6851\n", + "Epoch 709/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 3.6789\n", + "Epoch 710/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 3.6727\n", + "Epoch 711/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 3.6665\n", + "Epoch 712/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 3.6603\n", + "Epoch 713/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 3.6541\n", + "Epoch 714/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 3.6479\n", + "Epoch 715/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.6417\n", + "Epoch 716/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 3.6356\n", + "Epoch 717/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.6294\n", + "Epoch 718/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.6233\n", + "Epoch 719/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.6171\n", + "Epoch 720/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 3.6110\n", + "Epoch 721/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.6049\n", + "Epoch 722/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 3.5988\n", + "Epoch 723/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 3.5927\n", + "Epoch 724/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 3.5866\n", + "Epoch 725/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.5805\n", + "Epoch 726/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.5744\n", + "Epoch 727/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.5683\n", + "Epoch 728/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 3.5623\n", + "Epoch 729/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 3.5562\n", + "Epoch 730/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.5501\n", + "Epoch 731/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.5441\n", + "Epoch 732/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.5381\n", + "Epoch 733/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.5320\n", + "Epoch 734/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 3.5260\n", + "Epoch 735/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.5200\n", + "Epoch 736/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.5140\n", + "Epoch 737/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.5080\n", + "Epoch 738/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.5021\n", + "Epoch 739/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4961\n", + "Epoch 740/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.4901\n", + "Epoch 741/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.4842\n", + "Epoch 742/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.4782\n", + "Epoch 743/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.4723\n", + "Epoch 744/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.4663\n", + "Epoch 745/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.4604\n", + "Epoch 746/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.4545\n", + "Epoch 747/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.4486\n", + "Epoch 748/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4427\n", + "Epoch 749/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4368\n", + "Epoch 750/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.4309\n", + "Epoch 751/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4250\n", + "Epoch 752/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4191\n", + "Epoch 753/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.4133\n", + "Epoch 754/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.4074\n", + "Epoch 755/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.4016\n", + "Epoch 756/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 3.3957\n", + "Epoch 757/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.3899\n", + "Epoch 758/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.3841\n", + "Epoch 759/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.3783\n", + "Epoch 760/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.3725\n", + "Epoch 761/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.3667\n", + "Epoch 762/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.3609\n", + "Epoch 763/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.3551\n", + "Epoch 764/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.3493\n", + "Epoch 765/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.3436\n", + "Epoch 766/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.3378\n", + "Epoch 767/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.3321\n", + "Epoch 768/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 3.3263\n", + "Epoch 769/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.3206\n", + "Epoch 770/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.3149\n", + "Epoch 771/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.3091\n", + "Epoch 772/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.3034\n", + "Epoch 773/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.2977\n", + "Epoch 774/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.2920\n", + "Epoch 775/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2863\n", + "Epoch 776/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2807\n", + "Epoch 777/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.2750\n", + "Epoch 778/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.2693\n", + "Epoch 779/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.2637\n", + "Epoch 780/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.2580\n", + "Epoch 781/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2524\n", + "Epoch 782/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2468\n", + "Epoch 783/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2411\n", + "Epoch 784/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.2355\n", + "Epoch 785/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.2299\n", + "Epoch 786/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2243\n", + "Epoch 787/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.2187\n", + "Epoch 788/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.2131\n", + "Epoch 789/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.2075\n", + "Epoch 790/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2020\n", + "Epoch 791/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.1964\n", + "Epoch 792/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.1909\n", + "Epoch 793/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.1853\n", + "Epoch 794/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.1798\n", + "Epoch 795/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1742\n", + "Epoch 796/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.1687\n", + "Epoch 797/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.1632\n", + "Epoch 798/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.1577\n", + "Epoch 799/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.1522\n", + "Epoch 800/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1467\n", + "Epoch 801/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.1412\n", + "Epoch 802/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.1357\n", + "Epoch 803/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.1303\n", + "Epoch 804/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.1248\n", + "Epoch 805/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.1193\n", + "Epoch 806/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.1139\n", + "Epoch 807/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 3.1084\n", + "Epoch 808/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.1030\n", + "Epoch 809/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.0976\n", + "Epoch 810/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.0922\n", + "Epoch 811/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.0868\n", + "Epoch 812/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.0814\n", + "Epoch 813/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.0760\n", + "Epoch 814/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.0706\n", + "Epoch 815/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.0652\n", + "Epoch 816/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.0598\n", + "Epoch 817/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.0544\n", + "Epoch 818/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.0491\n", + "Epoch 819/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0437\n", + "Epoch 820/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.0384\n", + "Epoch 821/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 3.0331\n", + "Epoch 822/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.0277\n", + "Epoch 823/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.0224\n", + "Epoch 824/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 3.0171\n", + "Epoch 825/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.0118\n", + "Epoch 826/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.0065\n", + "Epoch 827/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.0012\n", + "Epoch 828/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.9959\n", + "Epoch 829/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.9906\n", + "Epoch 830/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9854\n", + "Epoch 831/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9801\n", + "Epoch 832/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.9748\n", + "Epoch 833/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.9696\n", + "Epoch 834/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.9644\n", + "Epoch 835/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.9591\n", + "Epoch 836/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9539\n", + "Epoch 837/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.9487\n", + "Epoch 838/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.9435\n", + "Epoch 839/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.9383\n", + "Epoch 840/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.9331\n", + "Epoch 841/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.9279\n", + "Epoch 842/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9227\n", + "Epoch 843/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.9175\n", + "Epoch 844/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.9124\n", + "Epoch 845/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.9072\n", + "Epoch 846/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.9020\n", + "Epoch 847/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.8969\n", + "Epoch 848/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.8918\n", + "Epoch 849/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.8866\n", + "Epoch 850/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.8815\n", + "Epoch 851/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.8764\n", + "Epoch 852/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 2.8713\n", + "Epoch 853/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.8662\n", + "Epoch 854/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8611\n", + "Epoch 855/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.8560\n", + "Epoch 856/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 2.8509\n", + "Epoch 857/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.8458\n", + "Epoch 858/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.8408\n", + "Epoch 859/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.8357\n", + "Epoch 860/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 2.8307\n", + "Epoch 861/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 2.8256\n", + "Epoch 862/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.8206\n", + "Epoch 863/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.8156\n", + "Epoch 864/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.8105\n", + "Epoch 865/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 2.8055\n", + "Epoch 866/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.8005\n", + "Epoch 867/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.7955\n", + "Epoch 868/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.7905\n", + "Epoch 869/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.7855\n", + "Epoch 870/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.7805\n", + "Epoch 871/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 2.7756\n", + "Epoch 872/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 2.7706\n", + "Epoch 873/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.7656\n", + "Epoch 874/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 2.7607\n", + "Epoch 875/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 2.7557\n", + "Epoch 876/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.7508\n", + "Epoch 877/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.7459\n", + "Epoch 878/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 2.7409\n", + "Epoch 879/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.7360\n", + "Epoch 880/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.7311\n", + "Epoch 881/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 2.7262\n", + "Epoch 882/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.7213\n", + "Epoch 883/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.7164\n", + "Epoch 884/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.7115\n", + "Epoch 885/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.7067\n", + "Epoch 886/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.7018\n", + "Epoch 887/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.6969\n", + "Epoch 888/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 2.6921\n", + "Epoch 889/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.6872\n", + "Epoch 890/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.6824\n", + "Epoch 891/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 2.6775\n", + "Epoch 892/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.6727\n", + "Epoch 893/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 2.6679\n", + "Epoch 894/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 2.6631\n", + "Epoch 895/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.6583\n", + "Epoch 896/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 2.6535\n", + "Epoch 897/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 2.6487\n", + "Epoch 898/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.6439\n", + "Epoch 899/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.6391\n", + "Epoch 900/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.6343\n", + "Epoch 901/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.6296\n", + "Epoch 902/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.6248\n", + "Epoch 903/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.6200\n", + "Epoch 904/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.6153\n", + "Epoch 905/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.6106\n", + "Epoch 906/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.6058\n", + "Epoch 907/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.6011\n", + "Epoch 908/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.5964\n", + "Epoch 909/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.5917\n", + "Epoch 910/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.5870\n", + "Epoch 911/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.5823\n", + "Epoch 912/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5776\n", + "Epoch 913/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.5729\n", + "Epoch 914/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5682\n", + "Epoch 915/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5635\n", + "Epoch 916/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.5589\n", + "Epoch 917/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.5542\n", + "Epoch 918/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5496\n", + "Epoch 919/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.5449\n", + "Epoch 920/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5403\n", + "Epoch 921/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5356\n", + "Epoch 922/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5310\n", + "Epoch 923/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.5264\n", + "Epoch 924/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.5218\n", + "Epoch 925/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.5172\n", + "Epoch 926/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.5126\n", + "Epoch 927/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.5080\n", + "Epoch 928/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 2.5034\n", + "Epoch 929/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4988\n", + "Epoch 930/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.4943\n", + "Epoch 931/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.4897\n", + "Epoch 932/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4851\n", + "Epoch 933/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.4806\n", + "Epoch 934/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4760\n", + "Epoch 935/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.4715\n", + "Epoch 936/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 2.4670\n", + "Epoch 937/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.4624\n", + "Epoch 938/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.4579\n", + "Epoch 939/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.4534\n", + "Epoch 940/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.4489\n", + "Epoch 941/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.4444\n", + "Epoch 942/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.4399\n", + "Epoch 943/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.4354\n", + "Epoch 944/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.4309\n", + "Epoch 945/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.4265\n", + "Epoch 946/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.4220\n", + "Epoch 947/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 2.4175\n", + "Epoch 948/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.4131\n", + "Epoch 949/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.4086\n", + "Epoch 950/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4042\n", + "Epoch 951/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.3998\n", + "Epoch 952/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.3953\n", + "Epoch 953/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.3909\n", + "Epoch 954/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.3865\n", + "Epoch 955/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.3821\n", + "Epoch 956/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 2.3777\n", + "Epoch 957/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.3733\n", + "Epoch 958/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 2.3689\n", + "Epoch 959/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.3645\n", + "Epoch 960/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.3601\n", + "Epoch 961/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.3558\n", + "Epoch 962/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.3514\n", + "Epoch 963/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.3470\n", + "Epoch 964/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.3427\n", + "Epoch 965/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.3383\n", + "Epoch 966/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.3340\n", + "Epoch 967/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.3297\n", + "Epoch 968/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.3253\n", + "Epoch 969/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.3210\n", + "Epoch 970/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.3167\n", + "Epoch 971/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.3124\n", + "Epoch 972/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.3081\n", + "Epoch 973/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 2.3038\n", + "Epoch 974/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.2995\n", + "Epoch 975/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.2952\n", + "Epoch 976/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 2.2910\n", + "Epoch 977/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 2.2867\n", + "Epoch 978/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 2.2824\n", + "Epoch 979/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.2782\n", + "Epoch 980/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 2.2739\n", + "Epoch 981/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.2697\n", + "Epoch 982/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.2654\n", + "Epoch 983/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.2612\n", + "Epoch 984/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.2570\n", + "Epoch 985/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.2528\n", + "Epoch 986/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.2485\n", + "Epoch 987/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 2.2443\n", + "Epoch 988/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2401\n", + "Epoch 989/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.2359\n", + "Epoch 990/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.2317\n", + "Epoch 991/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.2276\n", + "Epoch 992/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.2234\n", + "Epoch 993/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.2192\n", + "Epoch 994/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.2151\n", + "Epoch 995/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.2109\n", + "Epoch 996/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.2067\n", + "Epoch 997/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2026\n", + "Epoch 998/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.1985\n", + "Epoch 999/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 2.1943\n", + "Epoch 1000/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.1902\n", + "Epoch 1001/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.1861\n", + "Epoch 1002/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.1820\n", + "Epoch 1003/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.1779\n", + "Epoch 1004/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.1738\n", + "Epoch 1005/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 2.1697\n", + "Epoch 1006/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.1656\n", + "Epoch 1007/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.1615\n", + "Epoch 1008/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 2.1574\n", + "Epoch 1009/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 2.1533\n", + "Epoch 1010/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 2.1493\n", + "Epoch 1011/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.1452\n", + "Epoch 1012/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 2.1411\n", + "Epoch 1013/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 2.1371\n", + "Epoch 1014/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 2.1331\n", + "Epoch 1015/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 2.1290\n", + "Epoch 1016/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 2.1250\n", + "Epoch 1017/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.1210\n", + "Epoch 1018/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 2.1169\n", + "Epoch 1019/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1129\n", + "Epoch 1020/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.1089\n", + "Epoch 1021/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 2.1049\n", + "Epoch 1022/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.1009\n", + "Epoch 1023/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 2.0969\n", + "Epoch 1024/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 2.0930\n", + "Epoch 1025/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 2.0890\n", + "Epoch 1026/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 2.0850\n", + "Epoch 1027/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 2.0811\n", + "Epoch 1028/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.0771\n", + "Epoch 1029/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.0731\n", + "Epoch 1030/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 2.0692\n", + "Epoch 1031/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.0653\n", + "Epoch 1032/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.0613\n", + "Epoch 1033/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 2.0574\n", + "Epoch 1034/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.0535\n", + "Epoch 1035/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.0496\n", + "Epoch 1036/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 2.0456\n", + "Epoch 1037/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.0417\n", + "Epoch 1038/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 2.0378\n", + "Epoch 1039/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.0339\n", + "Epoch 1040/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.0301\n", + "Epoch 1041/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.0262\n", + "Epoch 1042/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.0223\n", + "Epoch 1043/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.0184\n", + "Epoch 1044/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 2.0146\n", + "Epoch 1045/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.0107\n", + "Epoch 1046/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0069\n", + "Epoch 1047/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.0030\n", + "Epoch 1048/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.9992\n", + "Epoch 1049/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.9953\n", + "Epoch 1050/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9915\n", + "Epoch 1051/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.9877\n", + "Epoch 1052/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.9839\n", + "Epoch 1053/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9800\n", + "Epoch 1054/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 1.9762\n", + "Epoch 1055/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.9724\n", + "Epoch 1056/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.9686\n", + "Epoch 1057/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9649\n", + "Epoch 1058/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.9611\n", + "Epoch 1059/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.9573\n", + "Epoch 1060/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.9535\n", + "Epoch 1061/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.9498\n", + "Epoch 1062/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.9460\n", + "Epoch 1063/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.9422\n", + "Epoch 1064/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 1.9385\n", + "Epoch 1065/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9348\n", + "Epoch 1066/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.9310\n", + "Epoch 1067/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9273\n", + "Epoch 1068/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9236\n", + "Epoch 1069/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.9198\n", + "Epoch 1070/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.9161\n", + "Epoch 1071/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.9124\n", + "Epoch 1072/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.9087\n", + "Epoch 1073/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9050\n", + "Epoch 1074/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9013\n", + "Epoch 1075/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.8976\n", + "Epoch 1076/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.8940\n", + "Epoch 1077/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.8903\n", + "Epoch 1078/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.8866\n", + "Epoch 1079/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.8829\n", + "Epoch 1080/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.8793\n", + "Epoch 1081/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.8756\n", + "Epoch 1082/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.8720\n", + "Epoch 1083/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.8683\n", + "Epoch 1084/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.8647\n", + "Epoch 1085/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.8611\n", + "Epoch 1086/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.8575\n", + "Epoch 1087/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.8538\n", + "Epoch 1088/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.8502\n", + "Epoch 1089/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.8466\n", + "Epoch 1090/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.8430\n", + "Epoch 1091/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.8394\n", + "Epoch 1092/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.8358\n", + "Epoch 1093/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.8322\n", + "Epoch 1094/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8287\n", + "Epoch 1095/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.8251\n", + "Epoch 1096/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.8215\n", + "Epoch 1097/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.8179\n", + "Epoch 1098/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.8144\n", + "Epoch 1099/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.8108\n", + "Epoch 1100/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.8073\n", + "Epoch 1101/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.8037\n", + "Epoch 1102/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8002\n", + "Epoch 1103/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.7967\n", + "Epoch 1104/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.7932\n", + "Epoch 1105/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.7896\n", + "Epoch 1106/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7861\n", + "Epoch 1107/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.7826\n", + "Epoch 1108/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.7791\n", + "Epoch 1109/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.7756\n", + "Epoch 1110/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.7721\n", + "Epoch 1111/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.7686\n", + "Epoch 1112/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7651\n", + "Epoch 1113/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.7617\n", + "Epoch 1114/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 1.7582\n", + "Epoch 1115/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.7547\n", + "Epoch 1116/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7513\n", + "Epoch 1117/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.7478\n", + "Epoch 1118/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7444\n", + "Epoch 1119/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.7409\n", + "Epoch 1120/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.7375\n", + "Epoch 1121/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7341\n", + "Epoch 1122/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.7306\n", + "Epoch 1123/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7272\n", + "Epoch 1124/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7238\n", + "Epoch 1125/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.7204\n", + "Epoch 1126/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7170\n", + "Epoch 1127/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7136\n", + "Epoch 1128/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.7102\n", + "Epoch 1129/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 1.7068\n", + "Epoch 1130/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.7034\n", + "Epoch 1131/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.7000\n", + "Epoch 1132/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.6966\n", + "Epoch 1133/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.6933\n", + "Epoch 1134/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.6899\n", + "Epoch 1135/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.6865\n", + "Epoch 1136/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.6832\n", + "Epoch 1137/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.6798\n", + "Epoch 1138/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.6765\n", + "Epoch 1139/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.6732\n", + "Epoch 1140/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.6698\n", + "Epoch 1141/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.6665\n", + "Epoch 1142/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6632\n", + "Epoch 1143/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.6599\n", + "Epoch 1144/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.6566\n", + "Epoch 1145/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 1.6532\n", + "Epoch 1146/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.6499\n", + "Epoch 1147/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 1.6466\n", + "Epoch 1148/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 1.6434\n", + "Epoch 1149/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.6401\n", + "Epoch 1150/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 1.6368\n", + "Epoch 1151/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 1.6335\n", + "Epoch 1152/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 1.6302\n", + "Epoch 1153/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 1.6270\n", + "Epoch 1154/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.6237\n", + "Epoch 1155/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.6205\n", + "Epoch 1156/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 1.6172\n", + "Epoch 1157/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 1.6140\n", + "Epoch 1158/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 1.6107\n", + "Epoch 1159/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 1.6075\n", + "Epoch 1160/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 1.6043\n", + "Epoch 1161/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.6010\n", + "Epoch 1162/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 1.5978\n", + "Epoch 1163/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.5946\n", + "Epoch 1164/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 1.5914\n", + "Epoch 1165/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 1.5882\n", + "Epoch 1166/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 1.5850\n", + "Epoch 1167/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 1.5818\n", + "Epoch 1168/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.5786\n", + "Epoch 1169/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.5754\n", + "Epoch 1170/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.5723\n", + "Epoch 1171/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.5691\n", + "Epoch 1172/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.5659\n", + "Epoch 1173/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.5628\n", + "Epoch 1174/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.5596\n", + "Epoch 1175/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.5565\n", + "Epoch 1176/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 1.5533\n", + "Epoch 1177/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.5502\n", + "Epoch 1178/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 1.5470\n", + "Epoch 1179/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 1.5439\n", + "Epoch 1180/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.5408\n", + "Epoch 1181/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.5376\n", + "Epoch 1182/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 1.5345\n", + "Epoch 1183/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 1.5314\n", + "Epoch 1184/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.5283\n", + "Epoch 1185/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 1.5252\n", + "Epoch 1186/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.5221\n", + "Epoch 1187/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.5190\n", + "Epoch 1188/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.5159\n", + "Epoch 1189/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.5128\n", + "Epoch 1190/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.5098\n", + "Epoch 1191/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.5067\n", + "Epoch 1192/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.5036\n", + "Epoch 1193/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.5006\n", + "Epoch 1194/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4975\n", + "Epoch 1195/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4945\n", + "Epoch 1196/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.4914\n", + "Epoch 1197/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.4884\n", + "Epoch 1198/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 1.4853\n", + "Epoch 1199/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.4823\n", + "Epoch 1200/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.4793\n", + "Epoch 1201/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.4762\n", + "Epoch 1202/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.4732\n", + "Epoch 1203/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.4702\n", + "Epoch 1204/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.4672\n", + "Epoch 1205/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.4642\n", + "Epoch 1206/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.4612\n", + "Epoch 1207/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.4582\n", + "Epoch 1208/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.4552\n", + "Epoch 1209/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.4522\n", + "Epoch 1210/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.4492\n", + "Epoch 1211/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.4463\n", + "Epoch 1212/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4433\n", + "Epoch 1213/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.4403\n", + "Epoch 1214/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.4374\n", + "Epoch 1215/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.4344\n", + "Epoch 1216/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.4315\n", + "Epoch 1217/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4285\n", + "Epoch 1218/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.4256\n", + "Epoch 1219/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.4226\n", + "Epoch 1220/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.4197\n", + "Epoch 1221/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.4168\n", + "Epoch 1222/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4139\n", + "Epoch 1223/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.4110\n", + "Epoch 1224/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.4080\n", + "Epoch 1225/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.4051\n", + "Epoch 1226/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.4022\n", + "Epoch 1227/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.3993\n", + "Epoch 1228/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.3964\n", + "Epoch 1229/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3936\n", + "Epoch 1230/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.3907\n", + "Epoch 1231/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.3878\n", + "Epoch 1232/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.3849\n", + "Epoch 1233/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.3820\n", + "Epoch 1234/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3792\n", + "Epoch 1235/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.3763\n", + "Epoch 1236/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 1.3735\n", + "Epoch 1237/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.3706\n", + "Epoch 1238/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.3678\n", + "Epoch 1239/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3649\n", + "Epoch 1240/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.3621\n", + "Epoch 1241/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3593\n", + "Epoch 1242/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.3564\n", + "Epoch 1243/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.3536\n", + "Epoch 1244/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3508\n", + "Epoch 1245/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3480\n", + "Epoch 1246/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3452\n", + "Epoch 1247/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 1.3424\n", + "Epoch 1248/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3396\n", + "Epoch 1249/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.3368\n", + "Epoch 1250/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.3340\n", + "Epoch 1251/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.3312\n", + "Epoch 1252/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.3284\n", + "Epoch 1253/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 1.3256\n", + "Epoch 1254/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 1.3229\n", + "Epoch 1255/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.3201\n", + "Epoch 1256/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.3173\n", + "Epoch 1257/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.3146\n", + "Epoch 1258/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.3118\n", + "Epoch 1259/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.3091\n", + "Epoch 1260/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3063\n", + "Epoch 1261/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.3036\n", + "Epoch 1262/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.3009\n", + "Epoch 1263/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2981\n", + "Epoch 1264/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.2954\n", + "Epoch 1265/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.2927\n", + "Epoch 1266/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.2900\n", + "Epoch 1267/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.2873\n", + "Epoch 1268/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.2845\n", + "Epoch 1269/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.2818\n", + "Epoch 1270/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.2791\n", + "Epoch 1271/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.2765\n", + "Epoch 1272/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2738\n", + "Epoch 1273/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.2711\n", + "Epoch 1274/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.2684\n", + "Epoch 1275/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.2657\n", + "Epoch 1276/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.2631\n", + "Epoch 1277/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.2604\n", + "Epoch 1278/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.2577\n", + "Epoch 1279/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2551\n", + "Epoch 1280/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2524\n", + "Epoch 1281/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.2498\n", + "Epoch 1282/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.2471\n", + "Epoch 1283/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 1.2445\n", + "Epoch 1284/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.2418\n", + "Epoch 1285/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.2392\n", + "Epoch 1286/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.2366\n", + "Epoch 1287/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 1.2340\n", + "Epoch 1288/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 1.2313\n", + "Epoch 1289/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 1.2287\n", + "Epoch 1290/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.2261\n", + "Epoch 1291/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 1.2235\n", + "Epoch 1292/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 1.2209\n", + "Epoch 1293/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.2183\n", + "Epoch 1294/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.2157\n", + "Epoch 1295/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 1.2131\n", + "Epoch 1296/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.2106\n", + "Epoch 1297/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 1.2080\n", + "Epoch 1298/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 1.2054\n", + "Epoch 1299/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 1.2028\n", + "Epoch 1300/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.2003\n", + "Epoch 1301/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 1.1977\n", + "Epoch 1302/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.1952\n", + "Epoch 1303/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.1926\n", + "Epoch 1304/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 1.1901\n", + "Epoch 1305/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.1875\n", + "Epoch 1306/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.1850\n", + "Epoch 1307/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 1.1824\n", + "Epoch 1308/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.1799\n", + "Epoch 1309/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.1774\n", + "Epoch 1310/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 1.1749\n", + "Epoch 1311/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 1.1723\n", + "Epoch 1312/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.1698\n", + "Epoch 1313/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 1.1673\n", + "Epoch 1314/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.1648\n", + "Epoch 1315/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 1.1623\n", + "Epoch 1316/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.1598\n", + "Epoch 1317/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 1.1573\n", + "Epoch 1318/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.1548\n", + "Epoch 1319/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.1524\n", + "Epoch 1320/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 1.1499\n", + "Epoch 1321/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 1.1474\n", + "Epoch 1322/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.1449\n", + "Epoch 1323/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.1425\n", + "Epoch 1324/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 1.1400\n", + "Epoch 1325/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.1375\n", + "Epoch 1326/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.1351\n", + "Epoch 1327/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.1326\n", + "Epoch 1328/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.1302\n", + "Epoch 1329/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1278\n", + "Epoch 1330/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.1253\n", + "Epoch 1331/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.1229\n", + "Epoch 1332/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.1205\n", + "Epoch 1333/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.1180\n", + "Epoch 1334/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.1156\n", + "Epoch 1335/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.1132\n", + "Epoch 1336/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1108\n", + "Epoch 1337/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.1084\n", + "Epoch 1338/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.1060\n", + "Epoch 1339/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.1036\n", + "Epoch 1340/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.1012\n", + "Epoch 1341/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.0988\n", + "Epoch 1342/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.0964\n", + "Epoch 1343/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.0940\n", + "Epoch 1344/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 1.0916\n", + "Epoch 1345/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.0893\n", + "Epoch 1346/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.0869\n", + "Epoch 1347/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.0845\n", + "Epoch 1348/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.0822\n", + "Epoch 1349/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.0798\n", + "Epoch 1350/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.0775\n", + "Epoch 1351/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.0751\n", + "Epoch 1352/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.0728\n", + "Epoch 1353/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.0704\n", + "Epoch 1354/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 1.0681\n", + "Epoch 1355/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.0657\n", + "Epoch 1356/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.0634\n", + "Epoch 1357/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.0611\n", + "Epoch 1358/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0588\n", + "Epoch 1359/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.0565\n", + "Epoch 1360/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.0541\n", + "Epoch 1361/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.0518\n", + "Epoch 1362/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.0495\n", + "Epoch 1363/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.0472\n", + "Epoch 1364/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.0449\n", + "Epoch 1365/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.0426\n", + "Epoch 1366/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.0404\n", + "Epoch 1367/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.0381\n", + "Epoch 1368/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.0358\n", + "Epoch 1369/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0335\n", + "Epoch 1370/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.0312\n", + "Epoch 1371/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.0290\n", + "Epoch 1372/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.0267\n", + "Epoch 1373/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.0244\n", + "Epoch 1374/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.0222\n", + "Epoch 1375/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.0199\n", + "Epoch 1376/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.0177\n", + "Epoch 1377/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0154\n", + "Epoch 1378/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.0132\n", + "Epoch 1379/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.0110\n", + "Epoch 1380/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.0087\n", + "Epoch 1381/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 1.0065\n", + "Epoch 1382/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 1.0043\n", + "Epoch 1383/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.0021\n", + "Epoch 1384/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.9998\n", + "Epoch 1385/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.9976\n", + "Epoch 1386/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.9954\n", + "Epoch 1387/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.9932\n", + "Epoch 1388/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.9910\n", + "Epoch 1389/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.9888\n", + "Epoch 1390/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.9866\n", + "Epoch 1391/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.9844\n", + "Epoch 1392/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.9822\n", + "Epoch 1393/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.9801\n", + "Epoch 1394/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.9779\n", + "Epoch 1395/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.9757\n", + "Epoch 1396/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.9735\n", + "Epoch 1397/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.9714\n", + "Epoch 1398/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.9692\n", + "Epoch 1399/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9671\n", + "Epoch 1400/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.9649\n", + "Epoch 1401/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.9627\n", + "Epoch 1402/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9606\n", + "Epoch 1403/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.9585\n", + "Epoch 1404/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.9563\n", + "Epoch 1405/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.9542\n", + "Epoch 1406/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.9520\n", + "Epoch 1407/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.9499\n", + "Epoch 1408/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.9478\n", + "Epoch 1409/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.9457\n", + "Epoch 1410/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.9436\n", + "Epoch 1411/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.9414\n", + "Epoch 1412/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9393\n", + "Epoch 1413/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9372\n", + "Epoch 1414/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.9351\n", + "Epoch 1415/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.9330\n", + "Epoch 1416/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.9309\n", + "Epoch 1417/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.9289\n", + "Epoch 1418/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.9268\n", + "Epoch 1419/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.9247\n", + "Epoch 1420/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.9226\n", + "Epoch 1421/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.9205\n", + "Epoch 1422/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.9185\n", + "Epoch 1423/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.9164\n", + "Epoch 1424/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.9143\n", + "Epoch 1425/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.9123\n", + "Epoch 1426/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.9102\n", + "Epoch 1427/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 178ms/step - loss: 0.9082\n", + "Epoch 1428/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.9061\n", + "Epoch 1429/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.9041\n", + "Epoch 1430/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.9020\n", + "Epoch 1431/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.9000\n", + "Epoch 1432/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.8980\n", + "Epoch 1433/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.8959\n", + "Epoch 1434/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.8939\n", + "Epoch 1435/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.8919\n", + "Epoch 1436/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.8899\n", + "Epoch 1437/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.8878\n", + "Epoch 1438/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.8858\n", + "Epoch 1439/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.8838\n", + "Epoch 1440/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.8818\n", + "Epoch 1441/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.8798\n", + "Epoch 1442/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.8778\n", + "Epoch 1443/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.8758\n", + "Epoch 1444/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.8738\n", + "Epoch 1445/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.8718\n", + "Epoch 1446/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.8699\n", + "Epoch 1447/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.8679\n", + "Epoch 1448/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.8659\n", + "Epoch 1449/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.8639\n", + "Epoch 1450/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.8620\n", + "Epoch 1451/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.8600\n", + "Epoch 1452/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.8580\n", + "Epoch 1453/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.8561\n", + "Epoch 1454/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8541\n", + "Epoch 1455/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.8522\n", + "Epoch 1456/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.8502\n", + "Epoch 1457/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.8483\n", + "Epoch 1458/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.8464\n", + "Epoch 1459/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8444\n", + "Epoch 1460/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.8425\n", + "Epoch 1461/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.8406\n", + "Epoch 1462/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8386\n", + "Epoch 1463/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.8367\n", + "Epoch 1464/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.8348\n", + "Epoch 1465/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.8329\n", + "Epoch 1466/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.8310\n", + "Epoch 1467/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8291\n", + "Epoch 1468/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.8272\n", + "Epoch 1469/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8253\n", + "Epoch 1470/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8234\n", + "Epoch 1471/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.8215\n", + "Epoch 1472/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.8196\n", + "Epoch 1473/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.8177\n", + "Epoch 1474/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.8158\n", + "Epoch 1475/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8139\n", + "Epoch 1476/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8121\n", + "Epoch 1477/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.8102\n", + "Epoch 1478/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8083\n", + "Epoch 1479/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.8065\n", + "Epoch 1480/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8046\n", + "Epoch 1481/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8027\n", + "Epoch 1482/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8009\n", + "Epoch 1483/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.7990\n", + "Epoch 1484/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.7972\n", + "Epoch 1485/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.7953\n", + "Epoch 1486/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.7935\n", + "Epoch 1487/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.7917\n", + "Epoch 1488/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7898\n", + "Epoch 1489/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7880\n", + "Epoch 1490/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.7862\n", + "Epoch 1491/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7843\n", + "Epoch 1492/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.7825\n", + "Epoch 1493/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.7807\n", + "Epoch 1494/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.7789\n", + "Epoch 1495/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.7771\n", + "Epoch 1496/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.7753\n", + "Epoch 1497/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.7735\n", + "Epoch 1498/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.7717\n", + "Epoch 1499/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7699\n", + "Epoch 1500/1500\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.7681\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "patience = 300\n", + "ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt',\n", + "1500, True, patience)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "twXXzEr1Oq7s" + }, + "outputs": [], + "source": [ + "mse_stop_ae1 = 0.7681" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ghEHU6XSOznl", + "outputId": "1c90eb77-adf1-4080-c511-5bf20b09e183" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(1.54)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "IREth1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "mb5m37JhKfHU", + "outputId": "978a8810-bb9e-496d-9a3a-f4ef170f0f22" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYFEX+BvB385KWIJJVzCjmQwwoYsR8mOE8BT3vzIfxFH+e4cw5hzOCp5gV46kYUFSCmFEMqCA558278/ujrndqaqqqq3t6ZnqX9/M8PMzuzvT09HR8+1tVBYlEIgEiIiIiIiIiIiKimCjM9wwQERERERERERERyRhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERUYsxY8YMnHXWWdh2223Rrl07FBQUNP2bNWtWvmdvvTR69Oim72DEiBE5fW/5+yciIiKi5oWhJRERUTM3aNCgpmDmqquuMj5PDnDUf0VFRejQoQO23HJLHHfccXjkkUewdu3aUPMQ9F9UQdarr76KnXfeGQ888ABmzJgRaP6JiN59992UfdM222wTeBpXXXVV6H1h7969rdOeP38+XnnlFVx++eU4+OCDscEGG/DGDBERtWjF+Z4BIiIiyr/GxkasWrUKq1atwsyZM/HCCy9g1KhReOihh3DUUUfle/Z8rV27FiNGjEBNTQ0AoHv37thrr72w4YYbNlXZVVRU5HMWM3LVVVfh6quvBgBceeWV1nCaKK569+6N2bNnAwB+++0335Au18aMGZPy8w8//ICpU6eif//+eZqjpB49emDBggX5ng0iIqKcYmhJRES0HhoyZAh69uzZ9HNjYyOWLl2KSZMmYe7cuQCApUuX4thjj8ULL7wQKLjcddddA13k77777u4zbvD6669jxYoVAIC+ffvis88+Q6tWrTKeLhGtH9asWYOXXnop7fdjxowJHVr26NEj0L5zgw02MP6NgSUREa2PGFoSERGth0aOHIlBgwal/b6xsRFjxozBmWeeiZqaGjQ2NuLMM8/E4MGD0bp1a6dpH3rooTmvBPziiy+aHg8bNoyBZYyMGDEi531ZehKJRF7el5qfF154AZWVlQCAVq1aoaqqCgDwzDPP4I477kBpaWngaW655Za49957I5vH8vJy7LTTTth1112x6667omvXrhg8eHBk0yciIoob9mlJRERETQoLC3HKKafg5ptvbvrdokWLMG7cuPzNlAOvyhIQTcOJiIKQm4Zfcskl6Nq1KwBg+fLleO211/I1W02++OILrFmzBpMmTcLdd9+Nk046CVtttVW+Z4uIiCirGFoSERFRmtNPPx3l5eVNP3/00Ud5nBt/dXV1TY8LC3l6Q0TuZs2a1bSPKygowPDhwzFs2LCmv6t9XebDzjvvjOJiNpIjIqL1C8/qiYiIKE1ZWVnKyLnz58/P49zoyaP0yqHCKaeckjYq7+jRo7XTWLt2Le6++24MHjwYvXr1Qnl5OTp27IjtttsO55xzDqZMmeI0L/J7eb7++muMHDkS2223HTp16oSCggIMGTIk0Gf0RmX3BuEBgKuvvtppFPYRI0akff6VK1firrvuwsCBA9GzZ08UFxejoKAAK1euTHnt4sWL8fjjj2P48OHYeeed0alTJ5SUlKBDhw7o06cPTjnlFLz99ttOn2H06NG+I8VPmDCh6TlytwXvv/8+hg4dis022wzl5eXYYIMNMHDgQNx7770pQbWJ7ntR9e7dO2305blz5+Kf//wndtxxR3To0AFt2rRBnz59cO655zYNJONq/PjxGDp0KDbeeGOUl5eje/fu2HvvvXHfffdh3bp1AFLX5ai6Vli6dCluvfVWHHDAAejRowfKy8ubvsO+ffvi2GOPxe23347ffvvNaXrvvfcezjjjDPTt2xedOnVCWVkZevTogcGDB+Pee+9tak6tmjVrVtNnk5fdpptuql2PJ0yYEMXHD+SJJ55o6kpgr732Qu/evXHSSSc1/f2///0vFi9enPP5IiIiWt/xdh0RERFpyf1CVldX53FOsuP111/HX//6VyxcuDDl9zU1NVi5ciW+++473HffffjTn/6Ehx9+2LlPT0CEUNdeey0aGhqinu3QPvnkEwwbNgxz5syxPu/uu+/GBRdcoJ13b4T5H3/8EaNHj8Z+++2H5557zjqASBi1tbU455xz8PDDD6f8vqamBhMnTsTEiRPx+OOP4+2330bnzp0jfe9x48ZhxIgRWLVqVcrvf/zxR/z444949NFH8fzzz+Owww7z/Qx/+ctf8OSTT6b8fuHChVi4cCE+/vhj3HfffXj55ZcjnX8AeOWVV3DKKaekdJvg8b7D77//Hi+++CJuv/32psG3dObMmYOTTz5ZGyYuWLAACxYswDvvvIMbbrgBzzzzDPbee+8oP0pOPPHEE02PvbByl112Qd++ffHdd9+hvr4eY8eOxXnnnZenOSQiIlo/MbQkIiIiLbm60uvfLU769++Ps88+G4CoAvvhhx8AAPvvvz/69OmT8ly5ahQAnn32WZx44olNwVxRURH22msvbLHFFli7di0mTpzY9PnHjh2L3377De+//35Kk3mTW265pakycvPNN0f//v3RunVrzJo1CyUlJYE+41FHHYXtttsOU6dOxWeffQbAPDq7bRT2mTNn4rzzzsOqVavQrl07DBw4ED169MCKFSvSmv7Pnz+/ablsttlm2GabbbDhhhuivLwcK1euxLfffovvvvsOgKiEPOCAAzB58mSUlZUF+mw2f/vb3zBmzBgUFhZit912Q58+fdDY2IjJkyfjxx9/BCD6+Dv55JPx5ptvRva+7777Ls444ww0NDRg4403xh577IGKigr89ttvmDBhAurr61FVVYXjjz8e06dPx6abbmqc1rBhw1JGo+7UqRMGDRqETp06Yc6cOfjwww8xY8YMHHbYYTjyyCMj+wzTpk3Dsccei/r6egDi5sPuu++O3r17o6ysDKtXr8Yvv/yCb7/9tmngGZMZM2Zg//33bxq5uqCgALvssgu23XZbtGrVCvPmzcNHH32ENWvWYP78+TjwwAPx3//+F/vuu2/TNCoqKpq20yeeeAJr1qwBAJx88slo165d2nv27NkzkuXg6uOPP8Yvv/wCQFSYH3fccU1/O+mkk3DppZcCEE3EGVoSERHlWIKIiIiatX322ScBIAEgceWVVxqf5z0HQOKDDz6wTvPHH39Mef69994byTxky/Dhw5ve//HHH7c+d+bMmYm2bds2Pb9///6Jn3/+OeU5DQ0Nidtuuy1RWFjY9Lxzzz3XOE15WRUXFyfat2+fePnll9OeV11dHebjJa688srAy1deJsXFxQkAibPPPjuxZs2alOfV1tYmGhoamn5+9NFHE/fcc09i7ty5xml//fXXiX79+jVN/5prrjE+9/HHH2963vDhw7XP+eCDD5qeU1ZWlgCQ2HXXXRMzZsxIeV5jY2PizjvvTFneH374ofG95eeZbLLJJinv3aZNm8R//vOfRGNjY8rzpk+fnujZs2fTc0855RTjNB955JGU977wwgvTvvtFixYlDjnkkJTPHMX2M2TIkKZpHXPMMYnly5drn1dVVZV44403Eqeffrr272vXrk1ss802TdM65JBDEjNnzkx73qpVqxJnnnlm0/O6d++eWLlypXaa8rL+7bffQn/GKJ122mlN83Tsscem/G3OnDkp+4Cvv/7ad3rytrrPPvtkaa6F3377LWU9i8syJSIiigorLYmIiChFfX09Ro4c2fRzRUUFhg4d6vz6N998E0uXLnV+/r/+9S906tQp0Dxm4l//+hfWrl0LANhiiy3wzjvvoH379inPKSwsxAUXXICCggJccMEFAID77rsP559/vrW6DgAaGxvx6quvYuDAgWl/i7IaMYj6+nqcdtppuPfee9P+plZ/nnrqqb7T22GHHfDuu++iT58+WLhwIe6//36MGjUKRUVFGc9rTU0NttxyS7z//vto27Ztyt8KCgowcuRIfPzxx3jhhRcAAE8//bR2WYdRW1uLcePG4eCDD077W9++ffHvf/8bhx9+OADg+eefx0MPPZQ2OEpDQwOuvPLKpp9PP/103HrrrWnT69KlC8aNG4e99tqrqYo2ChMnTgQg1rXRo0enLUNPeXk5Dj30UBx66KHav99+++2YMWMGAFHx+8ILL2gHuaqoqMD999+PyspKjBkzBgsWLMCDDz6ISy65JKJPlD1VVVV47rnnmn6W+7EEgF69emHQoEF4//33AYhqy9tuu815+j///DPOOecc5+efdNJJ2G233ZyfT0RE1NIxtCQiIiI0NjZi6dKl+OSTT3DjjTdi6tSpAIDi4mI89thjgfos/OyzzwKFMBdddFHOQsuVK1fi2Wefbfr55ptvTgssZSNHjsSjjz6K7777Do2NjXjooYdwww03WN/j2GOPjSxEi0p5eTluvvnmSKfZvn17HHXUUXjggQewYMECfP/999h+++0jmfaNN95oDNsAEax6oaW3rkbh8MMP1waWnkMPPRTdunXDwoULsXbtWsyYMSPtM7/11luYN28eAKBNmza48cYbjdMrLS3Frbfein322SeaDwBg9erVAIDWrVtbl6FNXV1dU8BdVlaGBx98UBtYyq6//vqmAW2eeuqpZhFajhs3rml5bbDBBjjkkEPSnnPSSSc1hZZPPfUUbrrpJudRvOfPn4/77rvPeX769evH0JKIiEjC0JKIiGg9JPc5Z7L11lvjtttu8x1wpDn59NNPUVNTAwDo3LkzjjjiCOvzCwsLceqpp+LCCy8EAHzwwQe+7xGkKjVXDjroIHTs2DHw6xYvXozJkydjxowZWLFiBdatW9c0yjIg+k/0fPXVV5GEluXl5b7fy84779z02BvxOwpyf4Y6BQUF2HHHHZsGb5o1a1baZ5YHrDnssMPQoUMH6zQHDhyIjTfeGL///nuoeVZttNFG+PXXX7FixQo8++yzOOGEEwJPY9q0aU2jZe+///7o0qWL72t69OiBPn36YMaMGZg+fTpWrVplvSEQB2PGjGl6PHToUG2fs8ceeyzOPvtsVFZWYtGiRXj77bdb1D6RiIgozhhaEhERUZquXbviiSee0A744ufKK6/EVVddFf1MReDLL79sety/f3+niqkBAwakvD6RSKCgoMD4/D/84Q+ZzWQWBJ2n77//Hpdccgn++9//Oo+AHqRLAJutt97ad8AiufLXq5SLgkvo6vfeX331VdNj16q5/v37RxZaHn/88U3VncOGDWsKLvfdd1+n8BEAJk2a1PR47ty5zk2cV65cCQBIJBKYO3durEPL+fPn49133236WW0a7mnbti2GDBmCsWPHAhBBp2touc8++2hHXSciIiI3DC2JiIjWQ0OGDEkZpXfZsmX45Zdfmpp1L1q0CHvvvTdefPHFpj78WoIlS5Y0Pd5kk02cXtO7d++mx7W1tVizZg0qKiqMz99www1Dz1+2BJmnt99+G3/84x+bKlJdeaNCZ8ol6JJDTW+U7Hy8d11dXdrf5XVso402cnrfXr16OT3PxeWXX44JEyZg8uTJSCQSePnll/Hyyy8DALbcckvsvffe2H///XHEEUdoR+8GRKDn+eabb/DNN98Eno8VK1aE+wA58uSTTzYF8ltuuaU1YD7ppJOaQstXX30VK1asCFW5TERERMHYO6chIiKiFmnkyJG49957m/49/fTTmDp1Kr7++mvsuOOOAERAN2zYMPzyyy95ntvoeAPwAKK/QRfq8/zCuVatWgWfsSxznaclS5bghBNOaAosN9lkE9xwww34+OOPMX/+fFRWVqKxsRGJRAKJRCJlwJnGxsZI5tVWxZptUby3vI61bt3a6TVh+57UadOmDT788EPccsstKYE7IAaGeeyxx3DiiSeiW7du+Mc//oGqqqq0aaxatSrj+YgyTM4GuWn4n//8Z+tzDzzwQHTr1g2AGChK7heXiIiIsoehJRERETXZYYcd8M477zRVYa5duxannXZanucqOnI4tG7dOqfXqM8zVae1BA8//HBTYLXjjjvim2++waWXXooBAwage/fuaNWqVUqwF1V1ZUsir2OVlZVOr3FdF12Vlpbioosuwq+//oqvvvoKd999N4YOHZpSXV1ZWYlbbrkF++67b1pwKQf1f//735tC6iD/Bg0aFOlnitK0adPw/fffN/185ZVXoqCgwPivuLi4qR9TIDXwJCIiouxhaElEREQpunTpgnvuuafp5wkTJuCNN97I4xxFR24m7dqHoDzQS2lpaYsOLd97772mx5dffrm1GTwAzJ49O9uz1Ox07ty56fHcuXOdXuP6vKC8gYPOPfdcPP3005g7dy6++OILnHLKKU3PmTJlStoI1127dm16LId1LUWmoePkyZPx008/RTQ3REREZMI+LYmIiCjNUUcdhQEDBuCTTz4BIAKsljBirjzq9NSpU9HQ0ICioiLraz799NOU1+ej+XKu3lPuy9BvUJqGhoam9YOSdtppp6bwd8qUKU6vmTp1ajZnKcXOO++Mxx57DEVFRXjkkUcAiH4aL7rooqbnyP07fvrpp76DT7nKZ9N/T21tLZ5++ummn7feemvfEd49P//8M5YvXw5ABJ/XXXddNmaRiIiI/oeVlkRERKQljwD+1Vdf4dVXX83fzERkzz33RFlZGQDRf6NfBWljYyMef/zxpp/322+/rM6fSXl5edNj3eAvUSksTJ4a+jVtHjduXIuswsuU3Cz6jTfe8O0f8uOPP85LxeqRRx7Z9HjRokUpfxswYEBTkDd37ly89tprkbxnrtZjmzfeeAPLli0DABQXF+Ojjz7C5MmTnf5ddtllTdP5z3/+E1k/rkRERKTH0JKIiIi0DjjgAOy5555NP1977bV5nJtodOjQASeccELTzxdffLG1X8Z7770X3377LQAR6P3tb3/L+jzqbLDBBk2P582bl7X32WyzzZoe20LqJUuW4Pzzz8/afDRnBx98MHr06AFA9AkrB12q2tralArHTNXU1KQMBGQzZ86cpsddunRJ+VtZWRnOO++8pp/POuusQOudGoJ6crUe28hNww888MC0z24zbNiwpmB/zpw5+OCDDyKfPyIiIkpiaElERERGV1xxRdPjzz77DG+99VYe5yYaV1xxRdNgKT/99BMGDx6MX3/9NeU5jY2NuOuuu3DBBRc0/e7ss89OG405V7bbbrumx++8804kozvrHHHEEU2Pb7jhBjz55JNpz/niiy+wzz77YM6cOc4jsK9PiouLU6qU77//flxyySWora1Ned6SJUtwzDHHYMqUKU3Vv5lasGABNtpoI1x00UWYNm2a8Xnjx49PGfn9kEMOSXvOhRdeiL59+wIQAWO/fv3w/PPPG6sLly5dioceegi77LILbrnlFu1z5PX4+eefd/pMo0ePThkUR+5jNqilS5fizTffbPr5xBNPDPT6Hj16YN999236mQPyEBERZRf7tCQiIiKjwYMHY7fddmvqm++aa67BwQcfbH3Nm2++iaVLlzq/R+vWrXHzzTdnNJ9BbL755njkkUdw4oknoqGhAZMmTcLWW2+NvffeG5tvvjnWrl2LiRMnplSC7b777jmdR1X//v2x0UYbYc6cOViwYAH69OmDgw46CJ07d27qJ3DXXXdNqSINY/jw4bjtttvw008/oaamBieddBKuv/567LjjjigvL8f06dObwrAdd9wRgwcPzutyiavTTjsNb7zxBl555RUAwM0334xHH30UgwYNQqdOnTB37lx88MEHqK6uxmabbYY//vGPuOOOOwCkNtEPY+XKlbjttttw2223oVOnTth5553Rs2dPlJeXY/Hixfjmm29SQvqtttoKI0eOTJtO27Zt8eqrr+KAAw7Ab7/9hoULF+L4449H586dsfvuu6Nbt25IJBJYvnw5vv/+e/z8889NgaapG4VjjjkG//73vwGIMPfzzz/HLrvsgtatWzc958wzz8Tmm2+e0TIwGTt2bFOz9DZt2mDIkCGBp3HiiSc29Vn60ksv4f77708ZMV72888/45xzzgk0/VGjRqWM8u558MEH8eCDD6b8Tg3CDz30UJSWlqb87owzzsAZZ5wRaB6IiIjigqElERERWV1xxRVNg/B8+umneO+997D//vsbn//ZZ5/hs88+c55++/btcx58nXDCCWjTpg1OO+00LFq0CPX19fjggw+0zT2HDRuGRx55JKU/vlwrLCzE/fffj2OOOQa1tbVYuHAhnnjiiZTnDB8+POPQsqysDK+99hoOOeSQpmBrxowZmDFjRsrzBgwYgGeffRYPP/xwRu/XUhUUFODZZ5/FiBEj8MwzzwAAli1bhhdffDHledtssw1efvnllO/Sb8R2m5KSEpSVlaGmpgYAsHz58pQR4VWDBg3C008/bayY3WyzzTBt2jScccYZeOGFF5BIJLB06VK8/vrrxml26NDBOIjTgQceiGHDhjUNhDNlypS0wYoOP/zwrIWWcmXkkCFDQlUKH3PMMTjrrLNQXV2NdevW4YUXXsCIESO0z50/f37ayOx+TjvtNG1ouXDhQnz99dfW16rbqfc6IiKi5orNw4mIiMjq0EMPRb9+/Zp+/te//pXHuYnO4YcfjpkzZ+Kuu+7CgQceiB49eqC0tBTt27fHNttsg7POOguTJ0/G2LFjUyrB8jm/06ZNw+mnn46+ffuiXbt2WRmNeauttsKXX36J66+/Hv369UO7du1QVlaGTTbZBIcffjjGjh2LDz/8UBusUFJZWRmefvppvP322zjuuOPQq1cvlJaWomvXrhgwYADuuecefPbZZ9h6662bRqQG4DyStU7Pnj2xbNkyvPrqq7j44oux3377YeONN0arVq1QVFSEDh06YMcdd8Rpp52G8ePH44MPPkC3bt2s0+zUqROee+45fPPNN7jsssuw5557onv37igtLUV5eTm6deuGvfbaC3//+9/x6quvYsGCBRg+fLhxek899RSeeuopHH744ejVq1fObgZMnz4dX3zxRdPPQZuGeyoqKlK6URg9enSms0ZEREQGBYlEIpHvmSAiIiIiWl8NGDAAn376KQBg8uTJ2G233fI8R0RERET5x9CSiIiIiChPZs+ejc033xwNDQ0oLS3FqlWr8toVAREREVFcsHk4EREREVEeJBIJjBw5Eg0NDQCAo446ioElERER0f8wtCQiIiIiitgVV1yBu+66C0uXLtX+fdasWTjqqKOaRhgvKirCRRddlMtZJCIiIoo1jh5ORERERBSx33//Hddccw0uuugibL/99ujTpw/at2+PtWvX4ocffsCXX37ZVGEJAJdffnnKgFdERERE6zuGlkREREREWVJfX48vv/wSX375pfbvrVq1wr/+9S9WWRIREREpOBAPEREREVHEVq5ciVdeeQXvv/8+vvvuOyxZsgRLly5FQ0MDOnXqhK233hr7778//vKXv6B79+75nl0iIiKi2GFo6aixsRHz589Hu3btUFBQkO/ZISIiIiIiIiIialYSiQTWrFmDHj16oLDQPtQOm4c7mj9/PjbaaKN8zwYREREREREREVGzNmfOHPTq1cv6HIaWjtq1awdALNSKioo8z0306urq8M477+Cggw5CSUlJvmeHaL3DbZAo/7gdEuUft0Oi/OI2SJR/LX07XL16NTbaaKOmnM2GoaUjr0l4RUVFiw0tW7dujYqKiha5URDFHbdBovzjdkiUf9wOifKL2yBR/q0v26FL14v2xuNEREREREREREREOcbQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawU53sG1geJRAJ1dXVobGzM96wY1dXVobi4GNXV1WhoaMj37LR4RUVFKCkpyfdsEBERERERERHFEkPLLKqtrcXixYtRWVkZ+yAwkUigW7dumDNnDgoKCvI9O+uFsrIydO7cGRUVFfmeFSIiIiIiIiKiWGFomSWVlZWYM2cOioqK0LFjR7Rq1QpFRUWxDQQbGxuxdu1atG3bFoWF7DUgm7zK21WrVmHevHkAwOCSiIiIiIiIiEjC0DJLli5dipKSEmyyySYoKirK9+z4amxsRG1tLcrLyxla5kCrVq3Qrl07zJ07F0uXLmVoSUREREREREQkYTqVBfX19Vi3bh06derULAJLyo+CggK0b98eNTU1qKury/fsEBERERERERHFBkPLLKivrwcg+iwksvEG44l7n6dERERERERERLnE0DKL4tp/JcUH1xEiIiIiIiIionQMLYmIiIiIiIiIiChWGFoSERERERERERFRrDC0JCIiIiIiIiIiolhhaEl51bt3bxQUFGD06NFNvxs9ejQKCgpS/hUWFqKiogI777wzRo0ahSVLlhinqb7W9G/ChAnZ/4BERERERERERBRYcb5ngMikTZs2OPbYYwGI0bVnz56NSZMm4auvvsLjjz+OiRMnYssttzS+fvDgwejWrZvx77a/ERERERERERFR/jC0pNjq3LlzSgUmAHz33XfYZ599sGjRIpx33nl44403jK+/9NJLMWjQoOzOJBERERERERERRY7Nw6lZ6du3Ly644AIAwPjx41FTU5PnOSIiIiIiIiIioqgxtKRmZ4cddgAA1NXVYfny5XmeGyIiIiIiIiIiihpDS2p2Vq9eDQAoKipC586d8zw3REREREREREQUNYaW1Ox4/VgefPDBKCkpyfPcEBERERERERFR1DgQT7706wcsXJjvuWhSAKAikUBBQYH/k7t1A6ZNy/o8ybzRwx966CGMHTsWm2yyCe6++27ra/bdd1/j39q3b4+VK1dGPJdERERERERERBQFhpb5snAhMG9evueiScH//sXJ7NmztSFq//798c4776B9+/bW1w8ePBjdunXT/q1169aRzCMREREREREREUWPoWW+GMK0fEkASPyv0tI3vMzRvLdp0wbHHnssAKCmpgYzZszA119/jalTp+L000/HM888Y339pZdeikGDBuVgTomIiIiIiIiIKEoMLfMlx82r/SQaG7F69WpUVFSgoDAeXZ127twZo0ePTvndSy+9hBNOOAHPPvssBg4ciLPOOis/M0dERERERERERFkTj3SKyNHRRx+NSy+9FABwxRVXYNWqVXmeIyIiIiIiIiIiihpDS2p2Ro0ahe7du2PZsmW4/fbb8z07REREREREREQUMYaW1Oy0bt0a//znPwEAd955J1asWJHnOSIiIiIiIiIioiixT0tqlk477TTcdttt+OWXX3DrrbfiuuuuS3vOjTfemNYnpuxPf/oTDjrooCzOJRERERERERERhcHQkpqlkpISXHvttRg2bBjuueceXHDBBdhggw1SnvP2229bp7HTTjsxtCQiIiIiIiIiiiGGlpRXs2bNSvvdiBEjMGLECN/XDh06FEOHDk37fSKRiGDOiIiIiIiIiIgoX9inJREREREREREREcUKQ0siIiIiIiIiIiKKFYaWREREREREREREFCsMLYmIiIiIiIiIiChWGFoSERERERERERFRrDC0JCIiIiIiIiIiolhhaElERERERERERESxwtCSiIiIiIiIiIiIYoWhJREREREREREREcUKQ0siIiIiIiIiIiKKFYaWREREREREREREFCsMLYmIiIiIiIiIiChWGFoSERERERERERFRrDC0JCIiIiIiIiIiolhhaEl51bt3bxQUFGD06NFNvxs9ejQKCgpS/hUWFqKiogI777wzRo0ahSVLlhinqb7W9G/ChAmB5tWbrxEjRoT7sERERERERERE5KQ43zNAZNKmTRsce+yxAICGhgbMnj0bkyZNwldffYXHH38cEydOxJZbbml8/eDBg9GtWzfj39W/FRQUAAASiUQEc09ERERERERERGExtKTY6ty5c0oFJgB899132GeffbBo0SKcd955eOONN4yvv/TSSzFo0KDsziQREREREREREUWOzcOpWenbty8uuOACAMD48eNRU1OT5zkiIiIiIiIiIqKoMbSkZmeHHXYAANTV1WH58uUZT++qq65qahoOpPeJOWvWrLTXrFu3DqNGjcIWW2yBsrIydOvWDcOHD8e8efMynh8iIiIiIiIiovUdm4dTs7N69WoAQFFRETp37pzx9HbaaScMHz4cY8aMAQAMHz485e9t27ZN+XnVqlXYc8898fvvv2PvvffGdttth0mTJuGJJ57Ahx9+iK+//hrt27fPeL6IiIiIiIiIiNZXDC2p2fH6sTz44INRUlKS8fSGDBmCIUOGNIWWaj+aqnHjxmHw4MGYOHEiKioqAAArVqzAfvvth6+++gr3338/Ro0alfF8ERERERERERGtrxha5km/fv2wcOHCfM9GikQikdJM2qRbt26YNm1aDuYoyRs9/KGHHsLYsWOxySab4O6777a+Zt999zX+rX379li5cmWoeWnTpg0ef/zxpsASADp27IhLL70UQ4cOxbvvvsvQkoiIiIiIiIgoAwwt82ThwoXs/9DH7NmztSFq//798c477/g2wR48eDC6deum/Vvr1q1Dz1e/fv3QvXv3tN9vs802AMDvlYiIiIiIiIgoQwwt88QUpuVTkErLXGjTpg2OPfZYAEBNTQ1mzJiBr7/+GlOnTsXpp5+OZ555xvr6Sy+9FIMGDYp8vjbeeGPt773Ky+rq6sjfk4iIiIiIiIhofcLQMk9y3bzaT2NjI1avXo2KigoUFsZjUPnOnTun9S/50ksv4YQTTsCzzz6LgQMH4qyzzsr5fMVl+RARERERERERtVRMX6hZOfroo3HppZcCAK644gqsWrUqz3NERERERERERERRY2hJzc6oUaPQvXt3LFu2DLfffntk0/VGIq+vr49smkREREREREREFBxDS2p2WrdujX/+858AgDvvvBMrVqyIZLq9evUCAHz33XeRTI+IiIiIiIiIiMJhn5bULJ122mm47bbb8Msvv+DWW2/Fddddl/acG2+8Ma1PTNmf/vQnHHTQQU0/H3PMMbj11ltxwAEHYL/99kO7du0AADfddBM22GCDyD8DERERERERERHpMbSkZqmkpATXXnsthg0bhnvuuQcXXHBBWrD49ttvW6ex0047pYSW11xzDQoLC/HSSy9h3LhxqK2tBQBcfvnlDC2JiIiIiIiIiHKIoSXl1axZs9J+N2LECIwYMcL3tUOHDsXQoUPTfp9IJELNS3l5OW666SbcdNNN2r/7zVfv3r1DvzcRERERERERESWxT0siIiIiIiIiIiKKFYaWREREREREREREFCsMLYmIiIiIiIiIiChWGFoSERERERERERFRrDC0JCIiIiIiIiIiolhhaElERERERERERESxwtCSiIiIiIiIiIiIYoWhZRYlEol8zwLFHNcRIiIiIiIiIqJ0DC2zoLBQLNaGhoY8zwnFnbeOeOsMERERERERERExtMyKkpISlJSUYO3atfmeFYq5qqoqFBUVoaSkJN+zQkREREREREQUG80ytLzhhhuw6667ol27dujSpQuGDBmCH3/80fd1zz//PPr06YPy8nJsv/32ePPNN7MyfwUFBWjXrh1WrVqFqqqqrLwHNX8NDQ1YtWoVWrdujYKCgnzPDhERERERERFRbBTnewbC+PDDD3H22Wdj1113RX19PS677DIcdNBB+P7779GmTRvtaz799FMMGzYMN9xwAw4//HCMHTsWQ4YMwRdffIHtttsu8nns3Lkzqqqq8Pvvv6OiogLt2rVDUVFRbMOpxsZG1NbWorq6mk2VsyyRSKCmpgbLly9HY2MjunTpku9ZIiIiIiIiIiKKlWYZWr711lspP48ePRpdunTB559/joEDB2pfc9ddd+Hggw/GxRdfDAC45pprMH78eNx777148MEHI5/HoqIibLTRRli6dCnWrFmDlStXRv4eUUokEqiqqkKrVq1iG6y2NG3atEG3bt1QWlqa71khIiIiIiIiIoqVZhlaqlatWgUA6NSpk/E5kyZNwgUXXJDyu8GDB2PcuHHa59fU1KCmpqbp59WrVwMA6urqUFdX5zxvnTp1QseOHVFfX4/GxsbYjhZdX1+PTz/9FHvuuSeKi1vEahFbBQUFKCoqalrOQdYnarm89YDrA1H+cDskyj9uh0T5xW2QKP9a+nYY5HM1+3SqsbER5513HgYMGGBt5r1w4UJ07do15Xddu3bFwoULtc+/4YYbcPXVV6f9/p133kHr1q0zm+kY++ijj/I9C0TrtfHjx+d7FojWe9wOifKP2yFRfnEbJMq/lrodVlZWOj+32YeWZ599NqZPn46PP/440umOGjUqpTJz9erV2GijjXDQQQehoqIi0veKg7q6OowfPx4HHnggR7ImygNug0T5x+2QKP+4HRLlF7dBovxr6duh15LZRbMOLc855xy8/vrr+Oijj9CrVy/rc7t164ZFixal/G7RokXo1q2b9vllZWUoKytL+31JSUmLXGk8Lf3zEcUdt0Gi/ON2SJR/3A6J8ovbIFH+tdTtMMhnapbDRCcSCZxzzjl4+eWX8f7772PTTTf1fc0ee+yB9957L+V348ePxx577JGt2SQiIiIiIiIiIqIQmmWl5dlnn42xY8filVdeQbt27Zr6pWzfvj1atWoFADj55JPRs2dP3HDDDQCAkSNHYp999sFtt92Gww47DM888wymTZuGhx56KG+fg4iIiIiIiIiIiNI1y0rLBx54AKtWrcKgQYPQvXv3pn/PPvts03N+//13LFiwoOnnPffcE2PHjsVDDz2EHXfcES+88ALGjRtnHbyHiIiIiIiIiIiIcq9ZVlomEgnf50yYMCHtd8cddxyOO+64LMwRERERERERERERRaVZVloSERERERERERFRy8XQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERERHFCkNLIiIiIiIiIiIiihWGlkRERERERERERBQrDC2JiIiIiIiIiIgoVhhaEhERERERERERUawwtCQiIiIiIiIiIqJYYWhJREREREREREREscLQkoiIiIiIiIiIiGKFoSURERERERERZd+MGcDvv+d7LoiomShIJBKJfM9Ec7B69Wq0b98eq1atQkVFRb5nJ3J1dXXYZpttUF1dne9ZIVpvVVdXo7y8PN+zQbRe43ZIlH/cDonyK2vbYG0tsGSJeNytG1BUFP17ELUQ1dXV2GSTTfD555/ne1YiFyRfK87RPFEzsHLlSixbtizfs0FEREREREQt2cKF+Z4DotjjDTyGliTp0KEDNwqiPGJlCVH+cTukFm/tWiCRANq1y/ecGHE7JMqvrG2DCxYAjY3icatWQKdO0b8HUQtRXV2Nrl275ns28o6hJTW57bbbcOihh6KkpCTfs0K03qmrq8Obb77JbZAoj7gdUov3yivAkCHi8WWXAZdcktfZ0eF2SJRfWd0Gu3YFFi8Wj4cMAcaOjXb6RC2EvB2u7zgQDxERERHR+kAOCO68M2+zQUTrqYKC5GMOrUFEDhhaEhERERGtDwqlU3+viSYRUa5wH0TN2aJFwE47AXvsIbpaoZxgaElEREREtD6QAwNWORFRrrHSkpqzkSOBr78GJk8Grrkm33Oz3mBoSURERES0PmBoSUT5xNCSmrNp05KPp0/P33ysZ5plaPnRRx/hiCOOQI8ePVBQUIBx48ZZnz9hwgQUFBSk/Vu4cGFuZpiIiIiIKN/kwIBNM4ko19g8nJoz3vjLi2YZWq5btw477rgj7rvvvkCv+/HHH7FgwYKmf126dMnSHBIRERERxQyrnIgon7gPouaMN/7yojjfMxDGIYccgkMOOSTw67p06YIOHTpEP0NERERERHHHKiciyieGlkQUULMMLcPaaaedUFNTg+222w5XXXUVBgwYYHxuTU0Nampqmn5evXo1AKCurg51dXVZn9dc8z5TS/xsRM0Bt0Gi/ON2SC1dUSLR1MwqkUigPobrOrdDovzK5jZYXFgIL7ZsrK9HA7dzakaKCwqS629jY1bX35Z+LAzyudaL0LJ79+548MEH0a9fP9TU1OCRRx7BoEGDMGXKFOyyyy7a19xwww24+uqr037/zjvvoHXr1tme5bwZP358vmeBaL3GbZAo/7gdUku107x52OR/jxtqa/Hmm2/mdX5suB0S5Vc2tsEDKivR5n+PFy1ahKkx3gcRqfZbtw7t/vd46eLFmJSD9belHgsrKyudn1uQSDTvuuyCggK8/PLLGDJkSKDX7bPPPth4443xn//8R/t3XaXlRhtthKVLl6KioiKTWY6luro6jB8/HgceeCBKSkryPTtE6x1ug0T5x+3QRyKBopNPRsHUqWgYOxaJP/wh33NEARWdeSYKH30UAJBo3Rr1K1fmd4Y0uB0S5cHSpSg+9FAkSkpQ/dprGD95cla2weI+fVDw668AgMZDD0WDz4C6RHFSvOOOKJgxAwDQuN9+aHjrray9V0s/Fq5evRqdO3fGqlWrfPO19aLSUqd///74+OOPjX8vKytDWVlZ2u9LSkpa5ErjaemfjyjuuA0S5R+3Q4OPPgKefRYAUDx4MLBqVZ5niAIrKmp6WJBIxHo953ZIlEOjRgFffYUCAGXXXw/st192tkGpX93CggIUchun5kQ6hhYCOVl/W+qxMMhnapajh0fhq6++Qvfu3fM9G0RERETNw/z5ycf/6+ubmhkOxENEOl980fSw4Ntvs/c+HIin+Zg5E/jll3zPRbxEPXr4woXAN99kPp0WrllWWq5duxYzZ85s+vm3337DV199hU6dOmHjjTfGqFGjMG/ePDzxxBMAgDvvvBObbrop+vbti+rqajzyyCN4//338c477+TrIxARERER5RYDAyLSkW9oZHPfwH1Q8/Ddd8B224nH06cDffvmd37iIsr1d8UKYIstgHXrgFdfBY44IrPptWDNMrScNm0a9t1336afL7jgAgDA8OHDMXr0aCxYsAC///57099ra2tx4YUXYt68eWjdujV22GEHvPvuuynTICIiIiILXmA2f7kKJoioeYm6gsyE1d7Nw9lnJx+fey7w/vv5m5c4iTK0fOABEVgCwJFH8phs0SxDy0GDBsE2ftDo0aNTfv7HP/6Bf/zjH1meKyJqtj77DPjPf4C//hXYfvt8zw1RZhobgVtvBRoagIsvBoqb5aGeiLIhV8EEETUvuQoTWWnZPMgjO9fW5m8+4ibK9beuLrPXr0d4JUNE1L+/+P+RR1IP0kTN0ZgxwCWXiMdduwKnnprf+aGWgxeYLQtDSyLyMLQkmbwOFK63w6CkY2uFvOAaSETkqarK9xwQZe7BB5OPH3oof/NBRPHT0JB8zAsuIvLkKoxh6NM8yN8NQ8sktlbIC66BRERELUl1dfJxeXn+5oNaHl5gppozRwxUMHBg6nYXZ3JoSUTkcQ1j6uuBwYOBrbcGfv45e+9D+cVKSz1WCucF10AiWr/xhIlaGjk8adUqf/NB1NKdfroYYXXiROCOO/I9N27q6/M9B0QUR64VkE8/DbzzDvDTT8CxxwZ/H4Y+zQNDS70oK4XlbYGsuAYS0fqtpibfc7B++uUX8Y+ix0rLlmX+fGD69HzPBelMmZJ8/MMP+ZuPIBhaEq3fli4FPv88PXBxrYCcMyf5+Jtvgr8/Q8vmQa7Kdw0tq6qATz5p2RX9UVYKc/13xtCSiNZvzaVJX0vy3XfAFlsAW24JfP99vuem5WFo2XIsWQJsvjmw/fbA+PH5nhueYKuaYzNHhpZE66+qKmCbbYB+/YAnn0z9m+tAPK1bZzYPDC2bB3kdcK0IPPRQYK+9gPPPz848xQGrI/OCoSURrd/U0LK5XHg2Z2ecIf5PJIBzz83vvLREDC1bjltvTX6fRx6Z33mhdLkabTdKDC2J1l8vvigqLQHg5JNT/ybtzwoYWlKY5uETJoj/77kn8tmJjSjXXwagzhhaEtH6TW0eXleXn/lYn6xbl3zM5R09hpYth7x9xKEqnBeYqaIOLR98ELjiCqCyMvNpmcQ9tPzuOxSefz46/vhjNNNbswa4/HLg0UejmV4+fPghcN55wMyZ+Z4Tau5s51yuffVlGlq2hNHDp0wBRo4ULYdaqqCjh7fkJuGyXLSwWLYMuOQSFDz3XHam3wwV53sGiIjySg0CamuBsrL8zMv6Qj7IFxXlbz5aqtra5GOGlhSl5nqBmS1RhpYTJwJnnike19UBN9yQ2fRM4h5a7r8/ihYtwkAAdVE0Mbz6auC228TjbbcF9tgj82nmUiIBDBokHr/yCvDbb3mdHWrmbPtw1zAm03Nk+X2aa9C1++7i/zFjgJUr8zorWRO00nJ9KULIReh+zjnAM8+gGEDrBx7Izns0M6y0JKL1mxpacmCe7JNPUhlaZldpab7ngDIRt6ZDzaUJdK5EGVq+/nry8Y03ZjYtm7iHlosWJR9Hsb55gSUAvPZa5tPLNfl4OWtW3maDWghbyOIaxkR5HGiuoaVn1ap8z0H2MLTUy0X3Bs880/Sw008/Zec9mhmGlkS0ftNVWlJ2sdIyd5r7BUFLl0gAQ4cCm20mRnNVxS20jHvglWtRVly0bZvZ61VnnglsvDHwwQepv1f3CXGunl27NtrpNceLau7Dzf7xD6BXL+CNN/I9J81HFJWWmR4H5HW6OW6Tcd5nRomhpV6OB+Cz9i+7HmHzcCJav6mVlQwts08+YXXt3JvCYcgUbx98ADz7rHg8eHBygAQPQ8t4i/LiJcrQcuZM0T8mAOy3X+pFtvodNjQAxTG9HFi1Cthgg+im1xwvqhla6q1cCdxyi3h8+OHrT5CUKddKS9v+LNN1Un59czymNMf9SBhBRw9fX5ZLlDcrHZYrQ0uBV4tEtH7LdvPwWbOAIKX91dXAxx9nHp7W1kYznWxgpWXuxO2CYN064JNPUi9apk8H5s3L3zzl09y5ycfLlqX/naFl7jU2Ap9+mjpgmEmUzcOjDC3V8FumfodxvtCMoq+4kpLk4zh/VhOGlnrZHKyqJYsitNTd+AiiuYeWcRgULxdYaakXZfNwl9cztATA0JKI1nfZbB7+yy/A5psDW28NTJvm9JKi444D9t4bOOOMzN775JPFdP7858ymkw2stMwe9QQoThcEiYSo+tprL2DUKPG78eOB7bcX28nixfmdv3zwOxmNW2i5PgQo//wnMGAAMHCg/wVFlKFlq1aZvV5m2+7Vv8Xxxtb/FKxenflE5NAyxp/VaH3Y5sLghXw4UfRpqa6TQbtxaO7Nwxla6jXH7zKMXPRpKb8d93UAGFoS0foum6HlZZclD/rDhzu9pPDtt8WDxx/P7L29JqfPP5/ZdLJBvmhmpWW01PU3TqFlZSUwdap47DXrO/JI8X9NDXDHHfmZr3zyO+GNW2gZp/UpW66/Xvz/xRf+F+NRhpZRXvwECS3jfKHJSkuGlibN8buMA9c+LYOElmvWBJsHVlo2D/I64HIu0hxvCoURZWjp0jycXV8AYGhJROs7tTl4lM3D5ZOxMBUjzfFkzkUcmofPnw9ceCHwyiv5ef9sUUOWOK1DulE25ZP/9fFucnOrtIzT+pQLft9PlKFllMu2hYSWReeeCzz5ZGYTCRpaPv44cPnl4Y7Z2cDQUi/qrnxs3nhDnC9k2o3Ju+8C558P/PZbNPMVhhqAjBwJfPuteOxaaanuQ0zbyujR4ua9euyXX98cjym5XPfyST6mueyH1P1rSw3bouzL2uX16+O5sUZMe94mIsqRbFZalpVlNt1Fi4CePaObn7iQT37yFVqed56oQr39dmDhQqBr1/zMR9TiHFr6VU3J4cL6ormdjMZpfcoFv/12lKFllOFUc20erizDgrlzgZNOAvbYQ3QhEUaQ0HLaNODUU8Xj1auBu+8O955RYmipl6vgaOVKMdAPIKqvP/gg3HSqq4EDDxSPv/wSmDAhirkLTt1P3X038O9/i/lzDWNcKi2//BI45RTxeOVK4P779a+P8U0To/Wl0lJeB1yO/ep3WVcHlJZGO09xIIexmQazDvt3Ng8XWGlJROu3bA7EIx+sXaarHpha6uAkcai0lJvNf/VVfuYhG+IcWuoqLWUMLdPFrdJyfQtQ/C6ooxxFVN1WMzkWNddKS9O8fPZZ+GkGCS297lkA4J57wr9nlNa3bc5VrsL2X39NPs4kaJw9O/n4ww/DTycbvH1N2NHDdZWW48cnHz/wgPn1cTpHccXQUk8XWrZE8nKJ+rivwebhAkNLytzf/w5stJFo9pBNp50GbLKJGBG5uXnzTaBXL+Dii/2fu2ABsN12wJ575n50xGuuAXr0SPaHGCezZgHbbisG8ojyZFW9MMxjpWWheiIoh5aJBDB0KNC7t/+gPnE/wGV7IJ733hP7pHPPdXv+8uWZvd/MmcBWW4ltNt8ns2poGacLXr9Ky+L/Nf7w9kPPPZf1Wcq75hZaxv0C84MPgI03Bs480/+5K1cCf/iD+Ldihf45fvvtKJuJqduqX8hvY5tv9X3iVGlpusjt1Cn8NOWbh83xIjpO+/A4yVWlZVT7vEWL/J9zyiniHO/TT83POf10sY8LG3xmY/RwXaWl7dyOoWVw3nXkRRfl7j3ldUDdd06dCmy6qRjs01un1pfQUl5/c9AtDCstBYaWlJm5c8Xd6Llzk80esuHbb4FHHwV+/12MiNzcHHaYCKBuvdW/n6RTTgG++w6YNAl4+OHczJ/niitEaDp0aG7f18Xw4cCMGeKi9N//jm662WweLl8sOUy3QD14yaHlZ5+JMHn2bP9tIO4nCtluHn7AAWKfdO+9wJw5/s9ftiyz9xs8GPj5Z7HNypU6+dASKi29/dAJJ2R/nvKNA/FEa7/9xDb/4IPAL7/Yn3vhhaK55xdfANddp39OPpuHZzIIjS3QaY6VlpnciAsyenjctjeAoaVJrkLLqJb/ggX2v3/zjegDcvZsYMAA/XN+/BF46CGxjxs0KNx82PZTYQfi0V3XuIaWcdr/uFLXvVwUCnjXkbfdFs0AZS5slZb77y+KSZ56Cpg8WfxO/S7jdEMsSlGGiGwe7oyhJWVG3XEmEmLnZQrmGhqATz4BqqqAr78Wfcm5WLo09edPPsnfznDevGSn1WH4XfTJoYdL4BKVuFfnffRR8rHfxWgQ2WweLldaOhyYrJWW69YlH/vd5Q2ybTQ0iLv6LqM/fvGFW7WAy3t6/CotFy0S+4qwTBVUMr+LCZv581Obj+Vym9WJc2jp0qdl3PdDrr7/XnRB8MMP9uf57ReiCFG++06E+FGI0/rkx+8GoVypNGOG/jlBQstEQrzn5Mnh1mN12WZSadlcQ0vT8s7kuFwsdd/vt/7Gcf/D0DLVDz+IY25zq7T06+7HJYhyOZ/x4zp6OCstzdRz8FyHSuo+u6oKmDgx+utieV1Rvyf5XNO7LlDfP07HlijJ628OmofH8riUBwwtKTPqydTNN4sO03fdVb8Tv/BCYK+9gNatgZ12Arbc0u1ArV647bVXfqoBFy8GttgC2GEH4K23wk0jyAG6V69w7xFGczoxLo5wDLFcVVo6sFZatmnjPiH1M9hOqK6+WtzV33NP+4Fx7FjRjHKbbTK7mFbnx1ZpuWqV2N522gkYNy7ce7ms15n0HTp6dOrP+R5xNs6hpd96U1zcvPZDJhMnAn37AscfL7YXrwpBJ9s33yZMEN2NbL65+01Cm+b0/fjdEJHPPTp00D/H76JLPjeprwf69xfnQDfd5DKHqaKstLTd2IrzQDym5Z1Jc8zm3jw8TvvwfPvsM7FP3XJL842GqOUqtGzVyn8aUXSnY9uHuw4wEmWlZXNcv9X9Ub6Pi0ccAQwcCJxzTrTTde3T0vuu15dKS/n7zvS7Z6WlM4aWlBl1Y7v0UvH/Tz/pK0zuuiv157VrRVOHMF5+OdzrMnHvvcmD1VFHhZtGkJPmKMM5P83pxCHKJsXZ7NMyYGhprbQMst6on8n23V5zjfh/+vT0imbZiSeK/1esAJ54wn1edFybhz/6aDKEC7u9mT57+/bJx5mEluqF0+LF4acVhTiHln4hTEFBvOY3LHWwBls/zNlurnr00cn3ueGGzKYFtIzvxyOvj/L+QBak0nLGDNF8EwBGjQo+P1FWWgYJLeMU5GWj0jJI8/A4yncgEifHHy/+b2wE/vWv3LxnNkJL3bm9SyAZReW9bXt3HWDEZfRw19CyoaH5VZKp+9dcHxfVSr/33hOPo+5STP5cts/orZfrS5+W8naS6f6ZfVo6Y2hJqdatE/2JqSO9mbjesbNx2anFpZ8heV7D3vm37aDUwCGXnT03p4tR9YTv99+B888P159gNpuHBwydrZWWLs1xPOqFmet3KzdBtwlbsbVokRiMqqoq+TtbaKkeqKdPB0aODDaSrLePevpp4JJLkoPuyE33Mwkt1W12yZLw04pCnENLNYRRv9+6uvT5Pe+8/PcTGlSQwZD89jeZHvvkbTqKC4io1qfHHwcuv9ytW4qw/Jat/L14lZbqOukXcsn7r0yXDSstzetoVKFlkMrZuGgpoWUiIfrju+aa8OvcrFmRzpKTqM4J5fOMLl3S/+6yf45iXbDtp1wHGFGn4VJpOX26GLh1ypT0zxGn8xQXQQoDgmpsBG65Bbj+evP3Lf9ePW93PY93IW+nYULLsNv5O++Ic798bO8uoqwUZvNwZzks46LmoPCRR5KVV5ttJgaYsLEdZF1P/lzuIMTlRFI++Q3LtszUvhoZWuqpQdfxx4sToTvvFIFBkKbU2WweHvAEM63Scv785GN1vZk3D+jTRz8h9YTKtM65nHh6ioqSnyfsaNunnQa8/nrq72x349XvuV8/8dnuvtv9IF5dLfq/+tOfxM9z54qOw+XgNMrQMt+VlmoIFKftWg1h1PWyvj59fu+6S/xbvRpo1y6rsxeZIMFxtkNLeTuJ4jgaxUXzZ58Bp54qHq9eLbbnbAgSNnjH9kz65Ir64mV97NMy36FlHLWU0PKpp5IjH2+yCXDyyZlNr2PH3HTHEtV5uF+lpcu6GUWAattPyddjtmuzMJWWu+8uArV77klvhVRfH831Va5ks9LypZeAf/xDPG7fHjj77PTnyO+nnlf98ovowixTDQ320cN18xNFpWV1dTJ7mDgR+Pzz4NPItihDSzYPd8ZKS0pRePPNyR8eecT/BbYDqOvOqjndQQjTXDvIRdDMmak/56qjcSB9xxvn70X9HqZMST4OWgWYzdAy4MEsLbSsrEw+1oWWJq6VluqgOraqpw02SD4OO9q2GlgC9iBF/Z7DbA/V1cDUqcmfx44V/8uh5erV6UGTq7iFluqgQnEKLdUQRletYJrfXPVfFoU4hZbyyW4U/aFFsT7997/Jx/fck/n0TILsL7znBu0uRN5nZ3q8Vvf/bB6elElwJG9DcfqsrlpKaHnbbcnH99+f+fTUm1jZurCPIrRMJFJvQuv2oy7rZhTnp7b3ca20VNdJ3Xypxxu5AjDO+yAX2ezTUu5+6dZb9c+R3089TqjXkWEFabHlLY8oQkv583zxRfDX54JrX58uHF6fdm24nmJoSal69Eg+dqk+sh3MXU/gM6m0zCRYGztWfN4g/XyFuRMY5AJWPdjks9IyTk3GVLYmxUEPkup6GmVQHPBAk9Y8vKEhOQ31b7bRgF1PNtRt3Fa10KlT8nHQ0PKee4Du3fV/s23/fjcJ1q0Td++3394cVldXpzYFB/Th2NZbi8rV334TP7/0EtCzp+guw8bUPPzyy4GuXYH//Mf++qip32k2T3YWLxaDJO2+u1voq55c627omNbVuDYT0gmyz/fbz2Z6IR51paX6WcLMX65aTtiWremiW32N3/cjL49ML7zVZZut5uEugUO+ZKPSUl6uP/4o9vWmC3uXdTORAIYMEYPEfftt+PlypX5fcam6efllcYz85z/dni8fm6IYZDJXIxUHWfduvRXo1k10fyFbtix1Orp5dWlam8tKS9v1lUvoaNuW1HU4TjdXXWSj0nLyZKB3b+C115K/Mx0DbJWW+Qwtgx4/Xd43jvwqLX/8EdhqK+CQQ/zPwV36tGRoCYChJSkSQUNL2wHU9eDqEjyaTtIyOUk58URRlXTZZeGn4UK9gLXN85w5qT/nM7TM5XsHZQstgx7wYlRpqT0wefMTpNLStb8ddRq2SsuOHZOPg4aWf/+7OVS0HYz9Qst77hFVttOnA2eeqX9OVRVQXp7+O9X8+eJEw2uydswx4nfXXGOfR11o+dNPwHXXiVDv//7P/hmipn6n2bwYuPhi4OuvxXdw1VX+z1dPrnUnxetbaBmk38Uwsh1axvlk2rZs1X2Yty4GrbSMcvtyGZHXVUurtMwkrFGX608/AX/9a/jpjRsHvPKKaIYZdoC4INT5j8s2d/TR4hh57bVu24Hc37N8reFKXTfUvvuydawLci588cWiBYvX/YVHrrIE3EJL3flYFOenUfRp6dInZZBwvbmFltno03LQIGD27NTfmULLllxpGedrT4/f6OEnnwz8/DPw1lv+A5e6NA+Pyz4/zxhaUio5mMg0tHTd8bgc2EwbrLxTXbRIXEBnU5idaZDQUv1bPpuH64Idnc8/Tz8hc9XQAHzySWozaE9lpfib7ru3hVlBD5L57tPy+++bAhltE4AgoeX8+aLyIxuVlvI0ohxsxrb9+40S/9NPycemwVqqq9OnY1u3dSM927ZDXUB13XXJn9UbES5mzxZBbBi20LKhAfj00+gGP5Gb7nz1lf/z1ZNrdbu3hZZqf79xFmVomc9Ky/p6sQ+Wt5coBlCIsuuRuXOT3T+oy8q2bNVuHEyhpd/xxPb5EwlRPeMaPkYZJgbp0zIXlS0rV4rvye+7z0alpe64OnFi+OnJN1BysV8Kss3V1YljWJjltXQpMG1auO2zrk4sC9fAJExXFWrXJ+rxw1t3vvkm/GCBOmFDFHk5qvsbl+bhuuO03/c6axbwww/icXW1WBeCBEm6SsvaWjEd26AsVVXp612QY0Ocbpy4yEalZZBtNm6Vlt68RzEQj3p+rh7X580Lf34cFb/m4XKXVN72aOLSPLy5hfpZwtCSUsk7TbUTXr/nB/mbLJPQ0ttBrl4NbLmlaKr40ktu7+syfZVrkCcLcgGrzkfcKy3HjhWDo2y/fbh+Di+9FNhrL2D//dP/dsAB4m9eh9QyW5gVdJllc/Rwv4vQjz8G+vYV6+7vv6c3D5fnxy+0XLIE2Hxz0QG33LxENx+madguruXltHBhdHfGM6m09Eb8BczbZnV1+rILuh0HCS2B1DurulFCbX7/XTRf3H574IMPgr22piY9UJa/p6uuAgYMENtVFMGR3Jm+y8mpenKthpi25uFRnYjnQpSjh0d5hz1oUDBypFhXjjgi+bs4VVouXAjsvDOw227A6NHB9uXqdpKNSsubbwb22APo3z/ceU4mF/Km42BjY/q2n+3AoL5enJvttpt/H6bS8l68007J30cdWrZurX+uy/eU6+bZQSot//Y3YO+9RUuBIKqqgG22AXbdFRgzJvg8fvONOI/Zckt9oKDuE8OcS6vnK7rQ8rXXgB13FE33V6wI/h46Yc/D5QEL1f2NS6Wl7nxM3R/J2/Jvv4nPvc02ovXDkUeKdUEdyCVgpWXRySeL6Qwfrn8eALz7rnjOsGFu76NqbqFMNvu01LEdd9XzqJ9/juY9baGlegzJZqWl/PkWLRLr+PbbA+PHB592VPyah8s3iP32day0dMbQklKpG5dftWWuQkvTAc3bqY4enbwrGfRkTZ6OnyhCS5cR2DxxDy0vuED8v3y5GLk7KK+T6cmTU5dLQwMwaZJ4fPvt6a+zrTOZBlLZrLRUT7K9dbW+HoX33GOvtPQbWfaOO5Lfmdzhve61niDNw+X1obExfRCfsDLp07J9e//pV1Wlf6dB1xHTtlBf77+dVFQEe69LL02uk95Iq67UShQg9bu/9lrx/zffhB9MSRYktKyvT98XquuwrdKyOYeW+WweLgtaaekNlvHee8nfRRFaRtWn5fnni+owQMyrul3b1knXSstMQstLLxX///ij+OcnykpL2z5Lle1KyylTks0eR460P1f6zPWtWiV/n8m5kG4dlactcwlPcn0BGaTS8sMPxf9BK0n/+9/ktnTKKcFeC4iw1AsyTj89/e9qRWoUoaWuKvrII8XjdeuABx4I/h46YQNzeX6zVWkp//yPfyTXlTPOSIY6Dz/s/94ezejhhV4hyDPPJP9m2gZeftntfVTNPbTM9vzbmqOrN4MXLozmprQttFTnJ5uhpRz+33578u9HHx182lGRt5OGhvTlLR9f/PZ1Dv2Es9JSYGhJAIDCf/0L/W6+GYVvvpn6B78LxSgG4nHZuZo2WG+HmOlJZNjQ8txz/ZsHBQktTZWWU6aIfgGzWRIfpnm4fPEpl8OHIS+XTC4UMw2kamvF9K+/XlTKZFJVoc6nGlrKJ7LFxcH6tAxSlRt1paXutWGFXb6NjW4nRNXV6fuiqCot1T61dPxONmbMEBfyn3wifpabvPuFtirdd2J6/ygqiuWByfy2Wd26FSS0nDMn2ps4zz8vLvIMXR0UPPKIGEzJ5TtWZToQz4IFwIUXin7zsh2QrFwJXHIJ8OST9ufV1opuD8aNS/19LgKcTz8V24g8gnxtbepFdKtW6dt1mObhQQf3cP38Luc5uai0DDtqsatffgHOOy+1SjxkM9F6uS/iqAbi8ZhCS5dlke/Q0vb+3jlG0CDarysWP3LApntv9VoiitBSpX53UV3oh+3qyhZa6oKOMJWW8rzJlaW27cW0jicS7n1augSf2Q4tV68Wx+jHHjM/Z906MZjiQw8Fn75NNvq0NGlstFd26s6jXAZG9GM7Fqrbrym0jKJ5uBxaystd9xkbGsR12403Znc/7bdPziS09KYl7ZMZWgoBr4iopSr44AP0/PTT9D/88guw777mF+a7ebi3Q8z0hCtsaHnvvaJPR92y82RSaektw913F/+PGZN+gIpKmErLnXcWd+gB4MsvM3v/2tpkk618hpY1NaJy1xtApXt34KSTgk3To663tnnbcEMU2u6s+52QBxnp0aNW5tkqLdV5d+3H1O9i3XZi4fc3NVBqaEjfF1RXp69PQU/oTPsyl+n4nTgdc4wIY+6+Wywrub+0TTZxnkUAwULLMGGcSq609LvY1+231AoBW/Nwb9n06RNkDvV+/x04/njx+NdfgRdeSPlzh5kzUexVuVZVpVcu+8mk0rKxEfjLX8R+9fbbU5vbZUrXPPyss4CnnxaP997bvM7dc4+4QFTlok/LAQPE/2PHJkPmjz5KfU7nzsFCS6+qzJPtgXhcqkuj7GvS9NmzHVoeeaTop/muu8R7FRUF+76lz5xSaZmr5uEu32ecm4d720DQdce0PFzJ76f7vqOotNS1JJBlq5sD19DS1oWP7uZYfX3qjT913XOptJTnTb4pru5v5HMj0zqudgmmW88bG8VxxG9wwoqK7PdpecUVYj8DANttJ7rhUD3xhBhMEQD23FM8Lwq5rLRcuTJYpSUggr527TJ7X1ulpVqA4c1f0Jt+OrZKS78ubsaOFTdhAWCDDTIbcM1GV/0uFxkEaSWg27+XlKRsZ2weLrDSkoS2bfW/9zuxiGIgnigqLYOGlmEvDnTLw2vGbBJln5aZjCbqJ0xoKQ/ctGRJZgfuIJWWLiftrnSVlg8+mPxZfhyUX6WlrG3bYM3DHZoUGJ/rUZdVkEpL1+Xsd4EXZIRK9W9q8KZWMwD65uF+Awmp+ySX0LKsTP8cl0pLz+rVqc22e/a0v1ZlCy3VzxR1aOm3zer2J0EqLQH79hPE558nH7/4Ytqfu8gDDOm6p7BpaNAPMGSia+Lo3QgCRAAUFV1w5gWWgH0wJVNwm8uTaTloVEPHqqpgoaWpKXmcRg+PstLS2/5tx5goyOtrmO3V1Dw86tCyOVdauuwjGxuDrZvZvvGv9i8ZJrT0W5/U7y6qbihc1z11edsqLQH/prS68zFbqxH5sfrZ5WOtab1obPQfFdl7D9s24IVo2a609AJLAFBbCXp++y35WB2ZOxO57NNy8eL0791WaQmkBn1h2ULLbFZa2kJLv2360UeTj++7L/h7u1KvW9T1N5NKS+9nVlqmYWhJQps2+t/77YhtB/PVq4GBA8VAI3PmmMPJKAbiCdqMMuyI0WFOtNS7pc2lT0vTZ73hBqBrV1H1qX6WTC6w5e8gW5WW06eLTpz/+MfkeqfrI0gOY/xGYT3gADFNufPradOATTcVFZsy20l3XV2wgXiiqLR0ubPvUddF1wvqTJpX+gX8avCmC+10lZZ+/XGq3/ncuaKqeOedU0cllUPLTp300wpysqHO/513im3t2GOBDTfUV7qp86nylq/63eY6tNT9PWhomaMTt7pMqo5023jQ0FIWZaDkd8K/4Ybmv5m242z3aWnar+luogTp01L9PG+/LapM1cGvMhk9XJVIiArfzTYD5GDcNK0oQ0vve/KrtJw+XQym4h0jTzhBHMumTQs+D94+Jmylpdw8POo+LeVpy5pDaGk7H5a/3402Ao47zm35Z1qlGLR7kDDn0n7zmK3Q0rbuVVWJSvC+fdNDMb/Q0m97152P2ZqH284v5eDHti+XrscKdE3YvXMe237PO67nsk9L0zYhr2dRHktzWWm5ZEm4SstMBam0jKJPy+pqkRkMHZr6+yChpVw84C2zu+8WLTF0N6DPPFPkBx07ioGmevUS3Zv4ibJ5uOmmlBRastJSYGhJgqnS0m9HbDuY33ST6Az8++9Fx9ymjS6KgXiC3iUOcnFje52LTPu0zNUdFtfA9LLLxAnYiBHpn+WHH8K/vy20DFJpYPuOjj5aNFN69dVk32y6ANu1L6233xaDVPzyCzB4cPL3++2X2szXIx/o1YN+ba290jIXoaWp0lIXJrmul34nLZlUWqrLcN689OmFCS3VZmjPPSeq0L76CjjqqOTvow4tdZVuixeLasClS0WfgjbyRZJ3cue9v3oSm+vQUrcdBWke7v09B+ozCS11XQYE6dMyl6FlkGpt07LP9vHJ9L66iqMglZa66f7+u7gpJ4uq0rKxUQyS8vzzovrnoIPSn5PNSktvPv0G4hkyRPQ/+OqrouuA554TxzL1QtKFt48JcsGVq0pLv9Y7NvluHu7acmLhQtH1hTyQlkmm+xm/70cN4FpKaPnvf4vuob7/Hjj55NS/yTcRda07oqi0lOfNVmkpH/9dKy2B9Bvp3vEt6krLTI/tLqFlFP14m6aVzePg4sXB+rQEshdaetcZpmNtJucv99yjH0Ask9By2TLRH/ayZaKfcNnixaIlXUODWGefeEKcQ991l39rLL99chSVllJTeO214XqIoSUBABJhQ0vbQUBuDjJpUmYniX6vzXelpS0wcmkeXl0t+uhSn1tTk93RrW3zpTtRUz+nWhlWWSlOTidNCn5ibwstdc0tV64Uo46r82Q7QMjVkLNmiXlU36u2Vn+3bt06YMKE1O9DDn7kZiimikX5c2hGwtRWWrqGlmGah9sqLVetEsu3thZ4993017qeZPrtQ8L2aTl1anowPG9e+nzpmofrqh7U6cjki4/Jk8V2Wlub2oxX7ipBVlcntgdbFavnllv8n2NbJvJ8e30TmkLLKJpa57rS8qefUpvTh+VXeZTJxW7Q0NKv0tKlwuzXX91GV1f7g5ozJ/XnIOGqR7c+zpsHfPut//y4MO1nXCotwwxGoYoqtKyrS71ZIncDYZqWaR4XLPBfvqbmhH6VlnLfg/L+TTfg4M8/2wci9PYxtu/hq69Sp5GN0FL3mU3nCX7f5/ffR9vM1IVrpaXpM8mtA0zU9TxoX9RxrLSMirqvkc+15PM+udsRIPNKS5eBeOTl6Fpp6dqnJYAiU3/gfpWW332nv3FvYprejz+6Tce0TcjLpLlWWuqah2er0rK2Fvj4Y/G/bnl560c2Ki1NA83aQstPP01dZ9VrN7m5OJC63Gzn5N5nX7xY3PiZODF1n+jXPFwufAk7EI8cWrJ5OACGluQxNQ/PJLSUFRT4V0vaRD0QT9ShpW1ADpdKyzPPBPbZB3j//dTfV1enz2sUFVI6Ls3D1e/7s89Sf66sFJ1d77kncO21wd7f1qelLsz9wx+APfYA7rjDf751Ghr033tNjT60PPZYMSjViScm/6b2i+UXMNhCS1Olpff+fpWOUVZaNjQA/fqJ5VtWBhxySPpro2oeHrbS8sAD0ysTdaFlmEpL9btRv+dnnxWVxjfdlPydqdJy7VqxPeyxh/+FoMtgVrZ9lTffHTsmO2HPZqVlkNHDowgtTz0V2HZb/36EM1SYycWNaURLE7/Q0m+wpx9+EN1TbLml+aTfRL6JA0QTWi5ZIuZnhx2At94KNj8u7+stn+YWWtbXp4b8Oi6VlsuXJ5fvG2+YpxW20lJmqzb5+mtgq63EemdqYeHtY0zfwzvviC43tt8+2bWMNC8NUY0ebuubT2VbLz76SDQD/s9/ws9LGJmGli7nx0H3O7oBxGzyUWkZFVtgZLpZCSSPxzU1+gDSL+AJOhCPvEzVdcS1ebjyOmNoaTumvfyyGPDmmWfMz1Hp9kuffSYG3tt8c3FjLujrgdw1D8+0Es627uayT8thw8SAfMOH65eXN5+ufVoG2SZN58fyDT41tBwwILXbJLVrr3//O/X5cl/Ytuu1ujqxrvfpI7rYGDgwtRWGX6WlfA3J5uGRYWhJgqnSMpM+LWWZhpZ+lZb5bh6uu9Pl8QstGxrS+z70VFenL+OgIx+7cqm09Nv5/vRT8sL5yivtz1UPULZKS7UT96lTkycxasm/68lwfb3+M+oqLadNS16AywN3qPP59df295TnTRNaZlRpGWWflr/84l+5FeRi3SZspaXOypVuoWXQSks14Pvuu9QBTABzaCm/Rq0YCDqKMmDeVyUSyRHde/ZMVp9nM7SUK9xz0Tzcc/TR/s/JQGEmJ95RV1r6Veiec05yPTrjDPtz1e1J3cbl+XQNStTf33dfcr96xBH2+XGhrlfeepur0NL2vETCfR/lElqq64lum7rvvuTNr8MPN08rSGhp2h/Ky1O+QQGI9Q4Qy+D88/Wv974r077h8ceT7+M1P5eWd2NRERLesTjqPi1N07N933/+c/h5yIRr83BTpZ3L+bH6HdnOaXXP99OS+rSUl39Fhfl1y5eL7cMU/kdRaWnq01J9rWvzcLXS0nT9YdvvPfaY+W8muu/Wa27f2Ojfn7dLpWWUzcOjrrS0VcmuWRO80lJXye/ipZfE/888o9/Gvfc1hZa6lmuuTDc+/JqHy2GifO22bFl62C0f62zHlOpq4JtvUq895abrfpWW8voYRfNwVloCYGhJnmz0aSnLVqWld6BTm735ibrSUneny+PXPNzW3NEUWtbVif7tbr01XPChowstq6uBq68G7r1XvI/fzjfI6Oa2vk/U70MNXGzvE6TS0hRayhdoNTXi8+uon2HqVPt72iot6+oy69Myiubh3nJ1OdnPd6Wl6b1cmocHrbRUTyh1d7H9QksgfL+gMtPyXLYsua/o2TN5oZrN0FL+7vy+5ygqLT0uzR0zkHaCqI5UbRN1aOlXwSTvw/yOx+p82EJL12Oi7eZJFCfa6vIwVe9lOhCPiW0aQbpAqa/378bGpdLSdb6DDMTj0rWAOkiTvE803Uj1q7SU15VvvxX7KGl5NxYXJy9CgwQO774rglTvJlGQSssg26pObS1wzTViEDX58/34o+hb7c03Rb/gXmDrItNKS5fuk9T13HZOC9iXhe6cVFdp+cknYpm49oWeaaXlb7+JsH38eLf386jb0m+/ARdcILpPsO0fEgnxWtNNAb+bY88+m97k3DZ6uEz9/lybh7tWWkYdouimJ38G3Tovh/FBBuL58EMx2Ira0kBnzhzxXautBqLu09J23aLrJuyKK8R1SV1dcl/cvn3y7/L3/eSTwMUXpxd/+LGFluo5salPyygqLV2qhD1yaKkj30CwnS/V1KTvs2w3dW03IPzOy0zTkpYHQ0shYEeA1FJlpU9LWUGBeWeTSaWl99qg4UY+Q0t1OUyZYn6t7mC1di3wyCPJO4+9eoXrJF+lax5+xx3AVVeJnzffXDQFs3Hpt89ju1j3Cy1tgUumoWVNTer7r1snTh49cqCnzqduRFiZT/NwbRMAU/NwdT2KotKytla8n8vNiHz3aamjCy2jqLRUT9B0IZatmZjHpZp5iy3sIYJpXyXPc8+eyX1SY6NYN7IRWtpO4lQulZauoWWmfEL5InUdWrwY6N7dbdpRD8QThN/NBnU+1P4Iw4SW6vfud9EQVL4rLW3LIci6Wl8ffCRy3fNdb9CaLqp18/zzz2IfYVt/Onc2z4cpvPULLdXv65VXUj5zorhY9A22erX7uWZNjeg6BBDd7Xz9dWbNw+Xl4lcpC4gg4YorxOPevcXARgCw//5iH3333cnnbrstsNtu/tPMtNLSJbRUP7dfpWXQqjVdpeVee4nHL78sBsHyEzS0VH/u318cu59+WoQXYbelYcNEyH7HHeYqY8+6deErLQHgb39LDS5NlZamUb49IUYPB0I2Dw/Dr69d3bZXVGS/GQOk92mZSACDBomf339fVNPZHHOMaKZ+xx3is3tdqUXdPNxWaak7J//2W+Dcc4EOHZK/23TTZJdJ3vc9Zw5w0kni8eLFwJgx7vOk20f6VVpmMhCPS6Wl337H7/zDtdJS16VD2NAybJ+W0nuwebjASksS4t6npV/z8KAbdJyah9uq86qr099z7VoxyppH7Wg4LF2gcuutyZ+fftp/5+t3d15mG2BI/ZsauNjC0SDNw3Xrb21t6sGsri71Z1uTWL+m+/KJiRqc1dbq76a5VlraTuh1000k9L9fs8ZtkJbmUmmpCy391lO/0FJ3gRWm0lJ30jRggH0arqGlvJ42NGQ/tPTjUmnp2jwcyKzC3Ge9SuvT0m8kSVmmlZZ+nz/Kz61WrEYRWsr9EJoE+Qz5Di2D7ldtz/Vbpi6Vli5V8Lrw3/tZt+6vWuXfB1rr1qk/RxFaqsfAZcsyr7SU9yleIGFqHq5bD3Xd93h0F8Rq8HX77cnHTz2VfKweUwBg7Nj03+nkok/LKCstddRzNvkzqAOCmQQN/eXPNHVq8majUtHrSxcYeby+WE0qK83nUy5VaWqXMqY+Lf1uNIccPTztWJit0FL32eX3VrunAFLPcVz6tKypSb1WcxksTu63X25yncvm4briFc/DDycf9+6dfOx933IhxRNP2OdB3R/qjgmmSsts9mkpn6tm0k0IECy0tFVaqsc8W4i5bl2wohLNsZqVlgJDSxLi1Kflyy+Li+5//tN/PrzX+m3QlZUiDNh+e9HvW5hKS1vz6KDNwxsbgT/+UVQu+vX/ou44165NH7X3/POBLl2S/ZGEoQtU1JMCv0AwSPMDW98nfpWWtgusKPq0tE2jri55wPILElWW0LLAr9LS771s26JuvkwXmmvWuC3DOPZp6do83I9fn5a60SxdQkt1fdOtf36VN4sWAbvsAuy6a+p+R57nXr1St91LLwVuuy11OlGMHu733f74o9jHHXSQPiQN2zwcCN/RPOB7Ip3Wp6VfZa7MFFrefLOo1pQvHBobg5/k20L+oJWW6ueSt7ewzcNdKi3V7frRR8WyufPO9Oeq8+Gtt+q2k0ikr081NeL3J54oLujkG4Su65n6/ldfDXTrJgKnIBcSun2TyuVGlEtoqTsW2CotAf8m4uo0XULLBQvEfurvf9f/XV3/ampS+7QME1rqjhmm459L83v5Z11wogaC8sXpCy8AG29svjE9d67+9576emDwYFFtJwsaWrrIZp+WjY3h+mIfOVIcy95+W/wctNLSm8f/+7/042qQbdcWbvh1HbJunXlZuWzv6nubmof7fV9y4NZcmofL722qtPS4Ng8PcixXyedUQW82fvwxsMkmwGmnie/5wAPFIC9eawfb+ZjXAkpHvubacMPkzSXv/EjdNwe5kadbt7t3F83rTTcIM6m0NG1nQfol9dtHuDYPr642V1omEv59WsrzkUjYiwRMgaf0Hqy0FBhakpCL5uGuoeXRR4tg8dpr/U+0XSstb70V+PRTMUjMOeeECy1tn9V0wpBIiBN3WV0dMG4c8Oqr4kLBbxmrO041tFy9WlzsLVkimjKEbV6Y69Ayk+bhNlE0D/e7m+fNnzqffuuhHEDrKi0z6dPSNs+6dcy03rmGlnGttNQtl6ChpbrNqieUukpfl+bhLqGl12TO5NxzxSjj06aJfaTHVmmpBpZAbiotzzlH7OPGjwceeij977p12vViyKUfPhO/0NIv3LMxhZaXXCIqG4cPT/7eNjqnia0PST/qa9UK0igqLV2aoqrzcdppYtnomlq69mkJpB8namuBCRNEwDh7duoATmGbh191lbhxcOKJ2a+01D0/bGjp14zSb3tS91UuoeUVV4j9lIm6/imhZaK4OHmu41pho/t8QUI+28WnX3CiM2eO+UaUX2j56KNihHW/efSYgg+X9TSblZZhAstly0RT+nnzxOBTgP/n0AUmdXXihpEqqtDSrwp/3brUZSUH37ZzOnm9l/fxpubhft9XS20e7nEZiKe2NlirCZUcWgWttNx7b9FC59FHRf+S774rbuqeeGL6fKpslZbyNVdFRfLmufd9q8dE22Ch6nuYBvMZNCg7lZamsQqiDC2jqLTUHe/8bkDYxmFgpaUzhpYEIIM+LbM9EI+34fu91u8A6o1oDQCTJ4drHq7upOVmcKYThlmz0nf8dXXiAsqVOu21a1NPfNSd4bhx7tOWqcu4qir1fbIdWgaptLRxDS1N4aTaPNz0Wu+5svp6e4ggnzCpJ0+mSktTNXG2QktdlwQ6UfVpGWYAIRPvIkX222/uHf171GXpUpXoUmnpLdclS0SzHfV9HnootYmPjtxc6bvvko9toaVONkJL+SbSxx+LE3OPX3+v3uvjEFqqf89W83DdBYTf92JbPi6VlqtWiX6U161Lf68oQstMunvRcW0eDqQfJ2pqxIWhR95Gwtx0UT9rkDBbF1rqjh+m9/a4hJa6ZTNhglge8ntstVXysWulZSIh1h/5vCNogOG1WlEvCpX+pBuLipDwzrOC9GmpMs2fbjm5BEmywkIxnQkTglevy82ia2vFPlNeJ+TzVlnQSkvvM6xeDUyapD/mqp973Dj7thwktAwyQKNH7rrCO68MU2lZVRXs/EfH9lldKi3l18tdcdm2d29UcrUi2NQ83K/SMmTzcOPo4VGHKMuWiXVTPn+W58Wvytllm6ipMe+zp0/376bA+x7q6tLP8z/5xL17LLmPUm9Mg6B9Wnrka6527VJDS11f5rbuyNTv2rZuy+d2QLDQctUq/X7I1O1XdXXyuX77Hb/zj0z6tPQ+S5jQ0talmfpab12W3oehpcDQkoS49mnpV0kZtk/LMJWW8sHvqKPEyIEe0wmD7gARtBJSnbZaaaleeP7738Gm7/GrtKyr8w+zgoSL+Qgt5Qu+ykpzn5Z+n9NW/Wh7rRd+NDZqQ0vtgcm1eXhUoWVNTbTNw/3W92w3Dwfsg125cPmsrpWW69YBW28N/OEPwOjRyb+dcw7w17/qT85N5H7m4hBaeuvNRReJyoIw03Ndr1xG/jTxWSfTqkvmz3efti601G1PU6YAu++e/nu/wczUbUK+ePKruqytFevd7ruLLgNUuQotg2zXmYaWphtpYSot1ddMmuQ2DUAsW/X16roSVZ+WumXzt7+JSlP5O+7TJ/nYb3vyjkN33y3WHzlQ8y6uXL/X+nr9jYDq6vRKS695uKbpqnU+Zd7r/vAH4IQTkr/XbZe2i25d1wdFRcCppwL77gsceWSwyme5on/YMLHPHDEi+TtTkOFSVSbzuiTadVdgzz2BG29Mf466nY0fnzovqmyHlnK44G0nYUJL03lRVJWWfkG1GlrKBSK2da1dO/37q9+Ttw77BWauzcPzVWk5cqR53QT8+7R0rbTUhZbvvy+6DttiC/ux3ltuuvXhvvvE/sVluej6fQ5baSmfx8mVljU1YpqZhJamSktAFP/IvGXid2OuoUEMiKX7rm37CW/6uWoebqu0dOmCRP3Z9tlMzcM5EE8ahpYk5KJPS9POJJNKy6hCS5fPIZ/gtmoFtG+f/Nl0wqA7QAS9Y+JXaamGD0GrykzzVV2d3pQlkz6TVPloHi7fma2sNDcP9zsRtVVa2sIg74Rp+fL0u3V1dfZKS11oKV8gBe3TsjlUWkYVWtq4hI1+Nt9c9Cfkp7oaeO65ZJAiD9rgnci6NK/1tGqVfOyFlqWlYqTffISW3naj65vQdXqu+8dM+qYK2jz81Vfd93265ao7Yb38cv3r/ZpSZnLH/dtvk31o3Xuvfdph+7TMtNJSDX1MzcNdQ0vTDcUwoaW6j/30U7dpAPpKS11/17LGxvT9o8uIx6aLsTffTH2PzTdPPtYNFCPzPvt556X/zdTHs4mpmaZaaSmHlvI8+E1blkgkjyNFRamBQRTNw9esEYMUAsB77/nPn8pbP73+yL1pAeZ9tGn7sVVa/v478NNP4uf/+7/05+i2W3leVLbvQt2G/W7E6MQltNQ1BQ4ibKWlKbQMW2kpfwcB+rQsNFVaZitEuewy/e/9moebmpfLv6+p0e93Dj9c/F9bCzzwQPL3pmORaTv75Re3wX10AWzY0FLWrl2yQhcQ37l6TLSFsuo+wK+KWJ1HwL/ScuZM837Itp8w9WXt8b4r3T6ie/fkKOtRjB7uElpmUmnJ5uFGDC1JkA+QsrhXWp5/vggB/A6ganVCmObhamjp7QSB7FZa6vq0tIWWYYNFXdVU0D4tXb3/PnDWWam/y0Wlpfx5qqrMBy2/98s0tNSdOPmNHq77m3xBG6TS8pVXxJ1tneuv11/UqJ54QlRr+S2rOFRa2rg067bZZx/ggw/cBiCpqjJ/Ju/1LiO9euQLcK9/tB49xP5ONx055DSdJM+ZI/arciU5IAZDuOAC0Z+fRxfu6UINV0Gah2cSugZtHr58OfDMM+lPfOwxsQ3IN5Z026HuhNUUKgettJS5VOHZZKPS0nVgFNPrTZWWLn1aqpWW8vYSJrRU5+XRR92mAehDy1NPTb3I1S0rdT7D9mkpz4enoiJZrf3RR+ZjAmA/vnjzHWSZ6m46qAPxFBWl7lddwiP1s8vHyOLi1H2gS/Nwv9BSFaTSEhCVnxdeqJ+GaR8Xpnm433oT9LgZpJ/oMJWW8jlSPkNLvy5//KgD8cihpW1dk8Onc88Fnn9ePNb1abl8udiX2NTW+m+nmpskaZWWixaJG25y1zT54tc8XHedp+53zjsv9Xm2myTeOmM7Rrucs+pu1NuuW2wD8cgqKlL3b1VV6cdE0/bw/PPp+/8g1111deKz+w3EY9tv2PYT3vmqaTl4341u3e7ZM1lU4Bpa2gbi0X1///2vWJe8QTr9+rRcvFj0bfrii+nrTEND2j6HlZZCgJIOatHCNg/Pd5+WDQ3ipO+cc9J/Lx/Q1JOOTJuHu1Za6vpxC3pyqKu0VEcmk4UdFTiK5uGu77P//um/z3Voaaq0BNw7oQ8aWi5dKg54ugu22loU6IIm0x1M7/2817iGlvPnA0OGmJ87YYL5b7J164CbbhLTk0dEtr23Tj4rLdWL4jD++ldgo43c5lWtXpZ5gUpBgVhP5eVWVKSfvhc4yCenPXuK/3Wh2FlniUqCykrzevqnP4m+1e68U5yct20rAtEjjhDL9ttvRdNBIP27Pf10/TRdBam0zGVoCYjQ8pRTkj9Pngz85S/icYcOyebWLqFlIiFGFdbxCy0zueMeZHTxqELLtWtTj5Xq+6hqalK3SdfRwwH9QDxyaClXVYfp0zLogF7qdNTXv/eeqPLx+rg2VQvJyyNs83B5ep7iYqBLF3Gh1dgomn6b2C6aTf2ZmdhCS7XSUg4KXS7c1efI62dRUfpFvSrXoeU776QPtrN2rSgkCFppaWtO7vfdmNbt6mp9c9YgzcPlfZp6bDMJU2mpC6kyDS0zqbIE0rshClNp+dxz4t+vv+pHD7/+erfz/upq8f4BKi3TQssPPhD/ck03z2FCS7Vg4K67Un/u0iX5WK2E974fW2sIl+1f91miqrQME1r+/jtw/PHpvw9y3eXNp1+lpSmYbGiwn9P5hZbeubUptCwrE12grF4t+svt1i3a5uFeU/f33we++ca/efhZZ4nAUqe+Pr3iuaEBjC1ZaUkeU3VPvistbVVmMrWi0e/iIorQUr4Tqqu0rKtL7mjlExCXu94yXZ+WtmBO7rQ4CL/QMqpKS9M08tE8PMiJt8zWZNt24G1oEBfRhtDSWmlpCi09rtU1H31kfl4Y//mP/e9xrrTcfffMq9O8bbuoyL9Ksrra/Bz5wlANNk03lbwwQ27yYwst27ZNTsu0nn78cfKxNxjCgw8ml+u77yarLKJushKT0LJI93e1f6fHHks+HjUq+Vje/3jrlq76oHNn/ZtnElqq63LQ/iaz0Txcd5Fi265tfR0D9ubh6nupzcPl1hFRNA8PQtenJSAuGD227kGCsL1Gvjj2QksXdXXm8wrXUEmeP1PzcLVPS3m/GEVo6dc83HbR7VIFH8U+0TvfibLS0rZcAPM6Yzr3Ctunpev6Jp8jrVuXPiCNjhomxSG0jKJPS8/EifpKyw8/dJsXb/3IpE/LfIkitLQNxOORbxCZuu/INLTUzWvYgXhkLpWWun2EPDCQLOgNGKVPYgDpP5sKQvy6xfELLW3FHZtumtrH+sMPJ+fXxNY83HZ97bWcUOdDfS9TYOm9jxpaZlrx3UIwtCS7qPq0nDNHNKM0/W2bbcRdRFMfIn7zob7O70AbRfPw4uLkCcjkyelNauXny5UmDz0kml+60lVa+t1VVT/fSSeJarBPPjG/Rtc8POjo4S5cwmv1+3AdlQ+wz6O8nqiVlvKgJn6++UZ02q1WpjQ0+H83ixdrL9gKTKOHz50L7LRTsrpNJi9L10rLICPXRyGXlZa60cNtzj472PR15JsXfoPoVFWZ+6STT5bVwNEUWnrLRx2ERzcNQOyvvPXcJfRraBDL9KGHUn9/333i/6hDyzg2D/e+F3X7+u235ONu3ZKP5eeZvrfqavPn9Dt5b2gAXn5ZdANw+eX2E1m/E2fdtD1RVVrqQli/5uFr14obCttvn+z2wGMLLVULFqSOcpppaJnJBbyuebjuOaowzcNt7yNvN8XFbn3x+k03TGipCw+Ui9605uFRV1rq1iFb9ZvL53NdR1q3Ng+KETa0tA3E43cjWP77rruan+cJW2nZtav+OZ9/DmyyiajoV0Ntb7T5qEPLhgbg0EPFwHimvuAzuVEBAP/4R+qAI0FHD5etXJk+PytXAl9/LR63aycCGhPv3NjWPNxv9PB8qasT3dP06AG8/rr4nXyO88YbwFZbietIj7o9mPY76vucdZa4Xnr11fS/AfZjtLqd3XVX6vkBEC60dG0eLl/HuFZaBumSyEZXaakuD1NXan43azMJLbfcUrQC8s69vZvwQSstg4yhEfTcS3bIIfruiNivJUNL8hFVpaWfH34QOxV1w/ZrHu5RdyJ+8xVFpSWQ2sTvpptSpyMfhHQnIK7Uuz1r1vgHY/Lff/gBePJJcfG3117m1+RqIB6XAZkyuTisqTEHYer3I68HQfo2HD48OaCFzK/SEhAnTUEqLV99NXlSqns/TyahZZDBX4KKU6VlWVmy0qNNG+CYY4JNX0euiPBrPlhdbQ4tbZWWpkDd288FCS39Ki1llZXA99+nh+xef5f5rLQM2w0G4B5aFhQkb0ypxxR5+zeFlqYB7qqqzPs4l0rLo48Wgdx117l1r6KbN9O0PVGFlrpKS7/m4bfcIkZXnz49vb8/W5+WQYRpHp5ppaXfMnXp09KlFYXtfeQL7iCVloD581dWujVBludPNzJtNgbiibJ5uMu+yXUZtG1rDpi8oMEWQurYKi3V5aLu0+X57t07fV5UYfu0NK1vt98uqo5ff13cDFbPkdRukXSChpaTJ4tj2U8/AU89pX9eppWWKtc+LXWVlitWpG8DkycnX3f00fqm/J4QlZaFcam0nDkTuOMOcdwbOlT8Tg3bfv45tesjl+bhqhkzRBc6c+em9/HoElqq68t556X2Aw4Ebx7u2qelrnm4up/Vrc9Rnf9XV6fvF/wqLb358ev31vsuTdujqcsuQBSY9O6dHHBp/nxg2rTwfVq6FFFlEloCwIgR6b8L2rVcC8TQkuxsJ2n19eGaIZt88kl0oaW340okxB1cdcS0qELLe+5JnQd5Jyc/3zTQkYtMKi1//hn46qvUv8mVOdOnJwOPXDUPNy3rqEJLQN9JeCKReuBXm4ebQsvddweOPRb485/939cltFyyxBxaBg3pogotTRVhUYhTn5ZlZWLwjMMPB157za2PMj/yDQmX0NJEvthwrbT0tpMwoWVlpX9zk3Xr9Ovz77+LbSeOzcNnzxadyn/2mfnzqeuI8rym0LK8PPm9VFaK0aLXrhUX8nKlpVw94O0jS0rM/aXqTu49QZuHyxdQK1aIsM80kmY+QsuglZY1NebmakCwSktV0Ko5INpKS7/3dKm0zDQ4Uystg4SWtmW+bl2wZaqblqZ5eCLTgXjk5aU2N3cJLSsrRZcZuioiHdd1RN63qHLRPFw9B5HnW74Jk6tKS7klyU03hQst1b5B/UJLub9bUxCVzdDSVmmpu+G1fHn6+iV/hv797ecgfqGlrtIyX6GleuyeNCn52NsudBWC8sBm6nVSVZX/iNjeQCo6Ls3D5fUlyE2HqCot5dBy1Sq3gVqjqrT87TcRKsv8Ki1XrBDBu9qiQuXSpyWg30dssYX4/+CDk7/77LPwfVr65R6rV6d/x1EUeDG0ZGhJPmyhQdQH8/Jyc2jpF16Ymns/9RTQr196s+gomocDwH77Je/6Aak7Ofn5mVRahgktKyvFwXurrYBhw1L/NmeO+H/8eNH8bvPNxZ1AdYdYVZV64hCm0lK3czfteKMa8AAAdtgh/eRDHZFNrbTcYIP06RxxhDhZev55sSz9uFZa6u721tUFHyEuTJ+Wch9qHlNFWBTiVGlZWpoMLPfdN9i0TYKElrYKuzB9WmYSWiYS/vvwykr9Nt/YKLavbDQPdz0x021nc+aIpkDHHy8u4J58Uv9adb6Vn5v6tCwrS34v8+cDAwaIbk6mTUt9vW5EyvJycwWDru8nT9DRw+ULqJ9+EjdZvJtp6nv4nTjHsU9LVXMOLaOotHTZ5lybhxcVBWsebvtu1q513x/YQsv/zXuioACJwsLo+7QM2jz85JNFf2jHHee2zrjeyM8ktAw6EI9u3bOFlnKwGCa0VAMneR9gCi232Sb5eOlSsS+TuYSW6rmNX2gpLy/TtKO+znHp07KwUN+6Yv58+3LfbTe30NL0WXV9Wuarebi6vuoqs01hm/f51HOXhQv9t0/d+6jTdQ0t5fMymW6ZRtGnpVppqXt/3XQy7dfdoxtgVV3X1NDy//4P2GMPYPBg+7QzaR7utYjs3z/5uylT7Mt07dr0v7tWWi5c6D/4bxgMLRlakg+/iogolZWlH2RcKy3Vg4g3byedpH9+mEpL+QRSDhHkKkpTpWUmoWXQgXgAsYO/6CL937x+lI49VvxfUyP6XdFV8MjLJUylpUvliCfKSksgfRRsdZpVVf6hpXwC4DLKtGtoKa8n3rphah7u937e/35V0YA4kOruJGcztMx2paV8wuXXJ2IUlZUqefv369PSVmEnr1+ZNA/v1Uv8rwvM2rVL3Xf5ravr1plPtmbOjF+l5SefpO5fTINO+XQWX6gLLT1ffJFeCSiPxu4SWtrCa78+LdXlo1sOXrO2OFRaBm0e7ve+ttHD/WQaWmZyzlNXZ/5s3j4wqkrLIH1aRtE8HHALlTym5o5yNWNJidi353v0cC8Ie+21aPd33v5B111IPiot5c8ddaWlPF+68yzb+3iCrF8eNbSUj6PquZrLeWkUbJWW3s8lJanrqef33+3nS1tv7R9aNjaap+Eyeniu2EI8bx0yHV+9llbq9uDXNBywr4culZbydmEKLXXbte3ayqXSsrw8fb0xhZamsSOywW98gscfd5tOJqGlt55sv33yPHvqVPs5hK4i1zW0dA2Lg2JoydCSfOQytMyk0lLXl42JrgNelwOzXAEjh5DyY1OlZSbNw9XKG9c+LU3LzAst5YtJXVPPdetSP0NtbfDQUreTzVVoqZ70qeurS5+WcmARVWi5ZIm+GZBpIB6/9wPcK6iWLNGfcNmah8tdIJj8+KMISuSRpz2ZVFq6XCROmiSqhb33kt9PvfObjdBSXs9cmoe7VFpm0jy8Rw/xv64KQR6IB0iuq6+/Ljq51w16Im8j222XfBzH0FI9IXap6tb8bA0tgWS1usy7IPL2kd5gbTrqeiBX/QYNLW2VmUFPcuPSPNy2T1i3Tvw9zLoXtH9C9TXyZ9OFCja2SsuzzxaDK7mMHt5SQkt5v+JtJ3IFsrcvlY+7o0alhwIXXCACRdM8+o0e/uuvot+5998Xv7N9higvGr3Ppdu/LF8e7mae6bzQG1BNpgY48t+7d0+dF50g5//ycpMHpZTZKtwAsR8Jus2r65l8c9YvtKyuBq66SvSjGCX5WD53ruiz9/nnxWA9Xt/lJSX69ULukkSnvNw/tAzYsqUwX0GJS2hp6h98yhT9NPyOrUBqc3tVVJWWus/m16el2vWByrvG9AstEwn/fiejtGgRcMklwNix4mfTQDx+vO6MTMc2W2jpKS0Fdt5ZPJ45M73bOJku4HZtHq6bLkPLSDC0JLt8h5beDipopaXtpL2qKlzzcF11nPo4G5WWqqVL/fuiq6w0V2epTRsBcdGgW8by3SbdcvMTJLSMsnk44H8x3diY+n3pKgCiCi3l6cyfbwwtQ1daulZQySMrymyVlqec4j8fgwaJzvP33tv83iaZVFp27CiaRHmViWpoqfZDqjuhD9o0Rh5ZVX19vpqHe/0IbbBBcj31ax4OiHV1xQrRDcIdd6R3JaHeuMhFaOl6YqYLt9QT4kxDy/Jy/Xavu3j0KpfCNA8/+ujkY7/m4erfbdtPLkLLbDQPt1W7rFsX/twjyubh8kjkLmzr9oMPinVAF9xku0/LKJuHhw0tvSBLHojH2wfK5zHTpqWOqnrOOWK/deSRyXMVW8irax5+2GGipcn++/sPJhRFn94eb39vCi1t+4EoBuLJtHl4kHM0eZmazoX9Ki3VG1IuMgktb7oJuPpq4IUXgr+vjXz8ve46MQDR8ceLQN5jCi1tlYKFhWJ79gstA4bysay09PZDpmOfd40TZnu1LeOgfVqa+mnUfTaXgRFtvO1K3r+ZQrkwRTthLV0K3HwzcOKJ4pwxzHYMpI9BoDKFlvINGCC1ifgXX5inp1sPvCplv+sS3XJnn5aRYGhJTT696iok2rQBBg5M/jLXfVqGbR6uHrxsOwhdP21BKy3lykn5cTb6tAyjstIcdOj6NCwq0i9jecdt6t/OJp+Vli4dIcsnylE1D9edkGyySfL7+OILfcVOLiotTd+fLbRs1Qp49lnx+Y85Rh/yLVyYfBy06UkmoaVXTehd4NbWpr5faWmwSkgXe+5p/lsmzcPDVFp637u3zsnfoym0lNfjurrUIFutlFUrLbffPvnYNbTUjZBrq+wNcnKnbmvqCbFpWWdaaakLLb19ZZjm4fLy8AstbZUgKpeTXPn4FZdKS91AZR51nTRVbul4yyORCNb/ordPk9fNMKFlmONanJqH+/UBFia0LCxMrv9q83AAjUcemfraH35IPh43LvnYG4BD3X/IPxcXpzcPl6dXVWVfvmEvuM84I/133n5Fd16xbJm9IimbA/EUFqYG2VFXWm6ySbjpBdnveYKEluo2c911wd/PhUtXPKbm4TbeuY1faBmwa4689GnZ2OgWWpq2g59/Fv/7tUizTVsnqkpLXUAZtgLRo6u0NE0zl6GlbMqU8J+zqsr+3egG4qmoEK2IZGqICYjriJtvTv2dacCm+vr8NQ/P1w2EGGFoSU2W7LQT6hcsEH0BemX3uay0/OorYK+9Un/n2jxcZdu4Ewn/i9uLLhIDWsg7vEwqLTNpHh5GVZW50nLevPRg6YYbgPvv10/HEya01K0/QUcPf/VV9/eTQyO/CiAg9YTcr3m4S+DV0KA/ISkrEwNCASI09pqXlpYmL1rkSsuiIrf3C1ppadqOTCfSpaViX3D88eJk44UXzEGMR30Pv4vsTAbi8ebFVGlZUpIaCEURWu6xh/lvmTQPD9OnpVqJLr/OFFrKv/frA1QNiDbeOLmuvPWWvXmN9xx1EDTAHloGOblTt7UoKi0TCf1APDJTpaU8uFGrVuaBAtT1QP5+/ZqwuV68v/56amWsSefOycfy9pavPi1rauzVLuo62bGjff4GDkz20VdXJ5qp6fb1Nt5nzLTSMmxo+dFHotuHoUOjDy2DVlqa1ukgoeWRRyb7hZWrmeVKS29fuvnmYqRXjynQ9o7l6nlpnz7Jx2rzcHVfo+vvTaZbl13ce29qE3bAv9LSFpAGbR6uW/fUbUxuli9vH6Zm22FDy80397+5p5Pt0NLnRlZkbMc+j6nS0sbbhjIJLeNSaVlbaw8cve/UL7SMsjIaiK5PS9134Fdp7EdXaWnaX4Up2olCaWn2Ky29z9KrlzhW7LJL+jyoysuBiy9OHfncFFq+8UbqoGE6ptBy1CgRmr70kv31Jqy0ZGhJivJyUUnlXdjaDnBRV1rquFZaqvxOqNQTMXmnvXYtcNtt4oL8iCOSv3eptIwqtPQLhvzYKi2rq8OdACYSwV8XRfPw3XcHevd2ez/5QjLq0DKT5uFFRanNEryDY0lJ00G0IJFIVniVlLi/H5B5aGlaV+R58JaF3wWHuu3lstJS7burpCQ1ENKdsJxwQvKxKRyU/eEPycdy5aFp+jLX5uFBKy29ZSy/zhRaqsG+rbJPvVHRqlX6Z7bp2jV93uWgXifIhYa6rUXRp2V9PQq84KKsTD+vuu9w8eLUdd+vebip0tKvmZjrPlg+dtnIFeZxGIhnxQr7MliyRPSh6/ELLbt0SYYVa9eKZmpBqz28z5RppWWYi466OjFi/YIFouL9l1/cXmMib+/FxW7HGU91tXmfHGagFCB1FG1NpSWA5OBigDnQ9i4ybed+fgPx+N0wCBNalpaK91Urgv36tLSto1E0D1cvyuWwuE2b5PKPutKyvFxffe8nG6Gly+jhUSoocAsjw1RauoaWQZuHZ7vSUnfOVVPjPzANYD53nD9fHENcKy1NN2JUUVVa6mQaWuoqLU3ndqaxI8Lo2dP9uaWlwY698jVZ0Obhpq59dNcv3jbp0mpD7srHRHczf+lS0W/twoWixVoYUXfH1AwxtCQ9XWjZ0CDu+Hs7nUz74HCRjUpLIH3HKT/fdKBzqbT8+ONkPybqxX6QIDLTyszKSvtJT5CDqcyvs3SVejCcN09U1OqYKi1LS4GJE5OjndvIJ4QuzcPlE+Fsjh5eXJwaWnpKS1NOMou9kwkpzLSqqwM+/RR48kn/+QKCV1rqDpJ+oWXQgSOiqLSUl9X48cnH6nLULdOLLgLOPFMMJHT++fb3A8QF3XPPAUcdBTz2WOrf/L6zL75IVgGoMunT0qXS0uvvSq20tN35VqvaWrUSfXC56tAh/aJEWefTRFlpqTsO/PST+CeT91PyfsJUaemRBwJYsiR13v2ah8vv6VJ94wlz8W4jV1p669HSpcB777m93u/mkG79sm3XfsemRCJ1cAy/8LBz5+R2Eaa5IJAMSeXP5heWqmyjh9t88EHqzy6VKrb3kY/h3n5frQI0sV2shw0t5RsDcpgv78vkddRUaeldKNo+uxpaqsvSZaCOoLx9hLofyXWlpXr+Y+oH3hu13QsMvDDl55+TXYmsXZscuEjH1kVMSQmwxRbm15rkutIyG8rK3KpM81VpqRlIsTDbVXi6Su+amsyahwNiXXW9AerSZB8I3qel63VWdXX4Y5PHr9JSPleR5/Gnn1JvAga15Zbuzy0sdDt+/eUvwJ/+BDz9dPJ3fqHl+++L7Vl300tmqrQEgt3As9GFlt6I9hkoYKUlQ0sy8O48yQeFSy8Vd/z32EOclGTjBE8VttIy6IFWfr56oPNOwLy7VmoTIzlgHDdO7MQXLEgPLYM0icm0D8zKSnsFW9jQMujdQPl7W7hQNA0yBUO20LJXLzHCoqk/JI8ttNStE36hZZSVlrvtlv57JVRruqvtGlrecQcwYIBo3u83X0A0oaVf+B50ZMIoKy2B1Iv8kpLUv5nust5/P3DnnW7bXVERcNxxoomH1+TfNn1ZZaVYj3VslZZ+zcNdKi3bthUXo/I81tXZ73yroWV5uah8Hj7c/BpZ+/bpgwOUltqXUyahpV+l5ZdfAltvDUyfbn6eWi1pu3j0RqIExCiZrjeqbM3D/WRakaFSKy2rqsR3rGvWr+NXaalbv2zHc93I7Co5ZPNr6i2HlmHtsou4EImyefhf/uL2unvvTf1ZvbjVNWcOGloefjhwzTX+82KrNFyzJnylpXdsbWxMbv/qDRjvezZVWnrnNH6VlvL2rJ4HZfNGvCm0DNOnpW770Y0QLj9f/Zt6/q6O2u4t72XLxI3mrbYSYeMPP4guF3R9o5vI60Vxcf5CS7X/3nyEli7FC2FCyyj6tLznnrRfZb15uO7mj19o2djo37fgzJnRh5ZBKi0bGlKbG9vY+nCWHXig+W+6Skt5Xyiv+95y+eILcT4k3wQMqndv90rVtWvdwtkrrgCeekrsczyVlfZzw8cfB/bdN7PQ0hvMKlO662tTc/MgGFoytCQDtdJy+XLg1lvF4x9+ED/HObT0dtaFjqu4rdLSO1nyTtgrKlIHI1GDjupqMRpovistbTu4ICecsqAVr/I83HSTWyfXQHpo6fE7OAYNLb33LCjQX4QG7dOyvl5fSVdcLIJXtfpVDS3lCzaXkPTdd/2f480XYA4ITZVeunUoaPPwXPZpqVJDS7/puYRHtnUwkz4zw/Rp6S1rXaWlOp/eibm8H6qv96+0lPdjQe9Ie/tGef3yqzYJ0jxc3Vf7VVr+9a/66YSttNx22+TjtWvdKy3VirIgoVq2Ky1Hj3ZrguzxCy1161fY0FLXl5St4rG8HDjrrMxDS0BUIcnrRtBKS7l5eEGBe3Wt2sRPDdZ0+zTbsV9ef+SLdZdt2taVxNKlmYeWQHIZq9+ZN2CQfIGvCyCDNA9XLy6zcU7rnSsGqbSsrRU3QUx037ltv+kSWqp9iXpNJdetA/72N/E4kQBOP13c/AlCrbTcbLNgrwfC7fcaG1O3l+ZUaRlV83B5/+7XPFwj66Glbr/jF1p6z/ELLV2rF133xUH6tKysdL9ecg03bTfKvL+Z1hv5mtI7Tzn9dLf3tWnbNtlntB/XcNbbTuXP4ldpCYi+j3U3vWS25uHq47Cy1YyboSVDSzJQQ0u1GWRVVW5CS++AGbZ5uOvFiq3S8vPPgQsvTIZRaqCoCxhXr85/paVtB/f995lNX2UKcs46SzTtBvz7g9JVWhYWpk7bL/iVT4Bcmod7ysv1Jy5Bm4c3NKSOxuwpKhIXL+o01Obh3udWq9NMXPuH8au0DFLp5bceX3SRCD4A0YxaVwUqN/WPutJSVlycXllok8/QMkyflj//LPZNXrWVX6UlkFmlpbc9uJ7YectKHQwpX5WWpn3QWWclu62Q39/Up6VHrvxuaAjXPNxveaiiDi3lSsu6OuDhh4O93u/mUNBKS697FZ2ddkr/nS48POUUMYDb5Mmi4/soQsuSktTPFmTUciA1OPLr19VGvRDX7dNcg4agoaXtGD5vXjSh5f8k1N95oeXatclzK3l/7RJaqqOH56LS0gst1c9j69MSsG8HQUPLhgZ9X9O6cy5vW5GXrVzdGqaVjrdeFBaKf0H6wfOE3e/J62y+Q0u1exaT4uLomofLy9qv0lKjMOi1V1C6ffOZZ/rfkK+utp87/vxz9JWWV1wB3HWX/eaNbhRrP34DGnpsx5yuXcX/LqHl3/4mrsui2N+1apV6DO7SRbQmOumk9OfabsTIvO9D3ge99pq4nnAVptISiK6JeDZw9HBEUAdLLZJ3sekd4J55JvXvVVXmHXdFRfhRFlWZNA9PJNwPHLbQ8rjjUi+G1UBRFzA2NmYWWmZaael3RzXq0LKiQn9SOXGiaErU2Oh/l0x3Aq0eYPxO+OSDj/r5bTv88nJ9YBXVwcybb3Uapmbgrs3DbSdtMr/Q0muO5BIY+a3Hzz8v/rVpkzrIjezII8U6+P332a+0VCsLbTINLTMJR2yVlrZKALmPSVuflmErLdUgTp1XF0EqLbPZp6Vpe5kyRTSJrq4OVmm58cbJx/X16QFvc6i0lEPLGTPSm877CVNpGbZPS7my1dO6tVjW8vG2TZvUgYiiCC3VkCeT5uGulfQ6amhZW5t+oZqt0NJ2sR42tDRtY+r8yH3fLVkitj35Ow/TPNyv+jAKYSotAXvFse44FrTSEhCf12sGrp5zycdCeT8bZv+jNtnMVaUl4B5a5iIQyEeflj17Al9/LR6HCC0jV1qauqx1AbZLCyKXSkvXfbRrpWVVFXDeecmfy8rS9zdhQssoKi29/aNLaDlzprgu69PH7X1tWrdOXed69xZFCZMnpz/XpdJSvvZRP8vNN7vPV5ShZUlJPKoc4zAPecZKS9LzLra8g4Laj5Ct0jJIx7x+MmkeXlvrHurYQkv1osul0nLp0vTQMohWrdybtutUVtqXWaadAqs7dr/K0AULch9aujQPl1+nq26MKrT0gi51+qZBSTK5qNXxCy2D3Nl37ebgwgvNfyspSS4T2zbqt937VVqqgVBcKy1LS1O7nHDt01KVjUpL3X7Mb90sLgauvTb5c5BKy7Cjh9fXm/tp89jWNW//FKRPSznwa2hIb0rvElq6Vt94stmn5ezZwV/vF1quWZP+HNt2bVsfdaGlrkped3MoqN69U3+uq8u8eXgUlZZqUN9CKy3T9qVepSUgLn4TidTtbfly8bPfQDzFxebtLZuVlkH6tATsoaXuOG5rCmsLLT1qn5bZDC133hk49NBg08hGaJnN0cN1fcQG6dMy6DWDqU9LtdIyk8/p0u+tSWGhKH5RP9dxx6X3De5CF1qWlia/47lz3c8lggyEJ9NVPqpd9rhwDS1tlZbe/tG03uiqSV3f10YtyPHWL13A6lLMJM+na4sznbDNw3X74yAt0bKJoSVDSzJQm4erJ0Q77ghcfbX+tXLnuZnKZPTwIKOx2UJLlRrQ6ari5s1Lv9gPcie3uDizHaWueXhBQfJ7dW2OYKIePP1Cy5kz/T+/rk9LdbmG6dPyxhtFnysPPWR+nXegUk9egjYPN8lWpaWr118Hjj/e/B0UF7t/PtcAwLaOlZQkQ/mGBuCf/wR69ABefDH1eWFGD1ffJ5PQUncym43QUr2gDVJpaXpdFJWWaufnrpWWa9YA//d/yZ/l5aoOBqQKW2mpOyEOElr+T4G8jfhVWsrfi1ppWV5uXlfi1Dxc7vPMVkln4hdaAunfTdhqH9fQ0m97cnHUUakDFGRaaVlXl/qdh91XqOu0bp/mcnGjVh26zI/tolMdqMhVmNByyRL9TdD58/0rLQHzhb1rpWW/fsk+3v1ko9Jy0iRg002BE09Mdg3iV2mpWy7e500k0puHq/3JeXQDP+lcfLFosvrMM+l9LhcUAG+8IY77NvLNe5dRh3XCNA93/Yw2xx2Xvr3kq9LSk2ml5ZFHhjtG7LGHWIdOOCH985eWAlOnAn//e7Bp6kJLr+94QFyDuV4DujYPV+mOAfmqtPT2j3JBgExXXBN2m5K1bq0/x9YFrC77V/W7MB1TbrgBeO8983RMxzO/Skvddpfn0LLxsMPw1mOPIXHIIXmdjzhgaEl6amgZpPolTNMPk0wqLbMVWup2/uqOVRdaBjmIZSu09Po9yZRaZaIbeVs2c2Z+Ki0bGoBRo0RfKv/9r//r1Itf+QAa5CJTvSgyVVraQsuo+1Z5/nkxwp6O2vejjevzbIGjfGJVVyeq8hYsSO3r0m8aQPSVlur35p0A697T9H5hqCdKrn1aqmyVlt6NBXV5ZKN5uPp55OVaV2fflsKGlrrP4do83PT+fn1a2kLL5tg8PAyXinb1uwl74dyrV/pFTVlZ+rEySGi56ab637dqlXqsVystM+nTMsr9e9hKy7ZtU6u7wzYP95Z1XR2wcKH/NHSvdwkt5ebhixfrz9PmzcsstHSttNStcybeMlbXQb8+LW3LcsIEYNYsYOxYMUAUkFmlZUNDMqjTVVoGNX26CHUXLwYuv9w8oq/uXFr+3ouLw1fBeeTgUN1fm0LLMBW3asuo4mLx+eTfZ3P08FyEliUl4QI+ubJcd05fUBC8H//qan1o6X3eykr3/VG+Q8so+rSU94+6/VumXY6ZptOqFfCnPyV/9vqy1C0bl+3K9bsoK7OHuFE2Dw9a9RyxxKaboqZTp2gGCWrmQoWWq1evxuoI+ixcu3YtXn31Vbz66qsZT4siJvdpqTbD8ZPpIDKysJWW770XrF/NTCotddSmCUFDy6Ki9JPGIJUdutCysTG6na/adM6veUe+QktbZ/a618kntQUFwHbbJX8OcpHp9RPlMVUE2pqHBwlJt95aDCbSo4f9eRMm6H9fXOxeXRCkKauJXGmZyUA8QUcPD1ppqetvKR+Vlq4XkLZKS+9mklppGaZ5eNCTJ3m+6uvtIdKyZe7TlS/UdZ9D/b791qdEIliflvL+IpPm4UFCS9cuT1zJlZZh1NaK4MQLQHThiPrdhB3coawM2GKL1N9l2jz88MOBK69M/72u2Zv82YIeS6NqHq7KJLSUhWkefvXVwJ//nPx51iz/aahM25it0vLFF/UhnakC0+Ntj6Zt2jWsCnKTzyMHxPI8ZLoeeBWZYfu0BFLXoShCS3n7/uUXc2ipW4by+6oDJ4XhrbPquZYttHS9djj+eOC004DzzweGDk39m/fZ5PMF1329OgClC9fQMujI77KwN2Xl46Cp9VTQ7aCmJv1YWFSU+nm9wVP95Du0jLJPSyD60HLTTcUxcsQI4N//Tv1b69bAX/8qKmVPPz1ZMRtVpaWJ6WaXJ8rQMt/NwzPpKq6FCbUkOnTogE6dOuF7w2Ae8+fPx6mnnoq//OUv1unMnj0bQ4YMwdFHHx1mNiib5D4t6+qCXShlemdUFrbScsIEwGf9SxF1aFldnXr3LIpKS/mk3Y+p7xrXEwO/gFStTtl0U3uY9fPP/qGlS/PwoKHlzJn253u85SIfHLbdNvVAH+SkSn2u6cQsqubhnToB990XfORfT5DQMopBLYqL3U7Kc11pqW5z3bun/lxQkH7xKQsbWqrrRTYqLb2wJ5NKS+/zBb3AUN8zinUIiL7SsqYmfGipax5uGz08bJ+WUVNvsAR1553A3nsDBx4otlfdMo6q0rK42C20DFJpWVICXHWV2H/K/ELLoNt6fX1q83DbNhRk2mGbh4cJLeVKy0suEaPpyiFBmNDSdPFpGj0cECPJ6poW+4WWUTUPD1IdbTpe+DUPd+V93kyah8vrtW708ExUVAQLLeWwwy+YcOGF2+r+WL5xBKRuM65NoCsqxDnX7benr1Pee8nnOa6Vln7nykD6+5lCS/lG9oQJwNln+0/bJOxxWw1udX8LE1raKi0B93PauPZpqe4bbNdl8vKLOrT0jpGPP55eGOG1KLnrLuDBB5PzHLbS0nU+/VrBtKQ+LYPewGjBQse3CcvOYMWKFRg9ejRGjx6d8bQoT+Tm4UGqLIFoQ0vvpCLMRc6kScHfBwjXPFxHDsxatQoW/OoqLTt2dL+41VVaAm4nBgUF/heyahcAJSXADjuYnx9VpWXQPi1dQ0vvdT/+mPzdzjunPifISZUpbA1SaRnk7q/33LChWXGxfv185BH9vGVKrrS0yffo4eq27rf+hV3+6slvFH1aqvPqhT1BKi0rK5P7w/Ly5AV40AsM+T0zDS3lbVw+CXaptPTbB6ujh/sNxCP3W9nQEKx5uBxgtW9vbqacbVFV/E2ebG6Op343YY7nJSVi/dt339Tf77yzf2hpO25666K6TrZqlbo919amrhthQku5ebjt9UGqy3QVdGEqLU3zIy9LuQLNe362Qkt1frbfPvXnt95Kf83ixf4D8QDRhJau33+uQstMmofrwvioLtSLioKFljfckHz82GPRNYlUQ0v1RkqYSktbBaH32dTm4S7HPpdrLrV4wjQQT+fO0e3jdfNuu4mre446DVPXSX5cQktX5eXhqtmiqrRctEj/e/V7c21tl43Q0jRt0740qkrLk0/WP8/vxl++Ki2zURXpso2tJ1hzSnqZhpau4dqIEfYKwrDNw4Oqq3Pr0Bxwb/7uXagVFga/SNdVWpaXpx602rVLbRIgM4WWLicGxcX+/XXlK7T0W6/kA06Y0FIONeSm4bp5sTGFrUH6tAxSWWsKLV3v0KmVln37Aq+8Agwfrp+3TNlCS3k9yHelpekE2yTsslFPtNX1vKzM7WQoaKVlba290jKRSPahmMmgVGpQmsk6JO8DvdBy5UrRNElVVyduRIwcKZow+4WWVVXplZa2zyqHluqx0lZpWVmZOjhFYSHw4YfAs8+KCv2nnwbGjLHPa1SiPMk2tL5pWseqq8UATUuWuE1PvnnmrTN/+xvwwgvAbbeJoLRPn8wrLYH0fadfpWXQbSBI8/AgoWW2m4fL8+IXWs6b5/++KkNomVC/j06dUpu26vp2XbzYrdLSFITlstLSr09LV15IYjtvbWhwr7T0lrvLOnjHHcAuu9ifs3ZtsNByt91EwcHbbwODB7stn7FjxT8bdX+sBpPyMnCttJTn39RaIkyfli79OqshlKnSslOn6LqF8qtSM5GPu7mstHQVtIsWj2toeeqpbsdz3XmfzLUf5ahDS3m+1O/bFOjplk2Y0PK++4DNN09/XthKy2wPxGO6Js8EKy2bMLQkPdOFmIvWrYE993R77oEHAvvvb/572ObhYXjvFabS0rZTadUq+J2SoiJ98w+5sqhfv/SLNe8ESRdabrut24lBYaH/wVGtCiopAQYOND9/7Vrgu+/s0/TmN5FIrUKSZat5uPc6+XPvumvqc4IcOFxPzKIOLf2aGZuooeX224uRInWvj6pPS9PylEO0KEYPl9fVrbayT089OVE/a65CS5eLO7/3V+fdW5/k369c6R/keX1M2k7s5HBJt34E6dPSjzwImHcSfN99IrBQ1dYCBxwA3H23aMLstz6plZZ+zcPlC+EgzcPli2Jv3d1oI9FHWvfuon+0TTaxz2tUCgqiOyk2hZbeDbzLLweuv959evLAcd56WlwMHHMMcMEFIuAAMuvT0lZpGWXzcLkPtmyHllE2D5fnRV5vveeHCQnU93VpHg4AO+6YPMfRBTuZNg/PRp+WuhHvgej6tIyi0lJeX4I0Dz/rLKBbN/tz6uqSy1VdZrr9Y7t2wO67AwcdJPZNLqFYt27AsGH258Sh0tI1HAtTaWkKLVu1yn9oKZ9bRhVaVlenn7uEDS1dK2BVttBSvmbt2DG1718TdYBTdVnlK7SUl41tkEWZX6WlqTWfelxq21Zfbel3bpav5uFBrttcMbRswtCS9OSDcdCR9Nq0AUaPduvg32+UvFxVWgLJkzq/EwZddwavvy52bLoT1DAnDLpKy06dUudt113NfZ6ooWWHDuJOtMuJQX19uNDyz39OXkSG4S1/Xafwnmz3aTlmjJjGgQcCgwa5vVYn0+bhm28e7I6dd6BXw3HXsFwNLW2vy3alpdyUNIpKy0svTS7Pxx6zT69VK1FdWloqnhu00jJs1ZpfpaWp+b5Kfp26n9KNYusy6I3cPNyj7kcOPRTYay+x79c124yyebh8kew1R/7pp9Tn9Okj/m9oSB2My2/fXl2NAvnEum3b8M3D5b+pdBVrqrBdDQRx113i/6j61JRDS3kd8QKC224LNj05tLRVH+Wq0tLWPNzv2CqHSn6hZZDqu1xWWupCW7/Qyo+pCwZTU1Tb+ZRfpaW3nmcaWrpUWhYWimPO44/r/x5V83CXSstsNA9v29Z8/qLyjkUuN+PC9LXqTee118zfbZDQ0rXS0hZa6vq0dA27XUJL10pLILeh5Zgx6ftj+dzFdE6V70rLMMdbXas7b/+j3ghwGVxJDS3VZWLqMkp9XjYrLdVpm/YTuveTvy9TPqD7jLr1Lmy/0NluHp6N0JID8TThkiA9eSfldwBXN/I2bUSoNX++aMbl9z4uoWWmlZZ33WXub8uzZg2wzz7+F1a65XHwwSIAmD49/cQ3zAmDrk9LNcTabrv0aetCy4IC8dl33NHtxKChwf8Ap7sjWFIimvXce6//e3jefRfo3188rq0VJ7e2ahb1oK/Op7wu1daKkStdeK/74x9Fs7N33snsQJFppeVuu4WrtFSrLVyaGQHpoVguQkvTCdxWW4mgEci8T8viYrGO/PSTCK/8Ki0BccNl1SrglFOCV1ra2CrM/CotXcNn+XXyQGAy+TMtXeo2XcDePLy0FPjoIzE9XeW8WmmZSSDXunVy2/Caoy5fnvz7ggXmbcdve6iqSg0UKyr87+abulKx9Wkpv0eQioAojR+fHOkzSGj50kvA11/r/yaHlvJ3sHKl+6AIMtd9oK4rFVk2Ki1Ng62ZyPvmKPu0vO8+UZ178smiOregAJgyxf91rn1amubFe/4GG/jvny69NPXmgcy1T0v5+SZxah4+Z474zFtuqf97VM3Dox6IxzW09CqlguzL/UJLXWWly/LxpnP44eJY8K9/pT/HL7Ssr0/uo8JUWpqqu+XzyETCbV8bJrQ09WkJ6LfhCy/0fw+V95nUwYVkgweL8wC5u6hcNg/v2jX4eVrY5uG6gE3XPNyvRZBHLRZxPcao64Lu+w47QjoQrtLS7zvYYAP973XzqVtufkFzlH1aBjke+52z6Jq6+2GlZROGlqQnbyR+oaUaYHl32UpK/C9UXCstMw0tO3TQ7yTlO2U33ywuvP2Yqgm9gSpatwZ6907+PqpKyy5dgMMOS/68117mSsvq6uTBU74j5XqC6dpvp8c7QBQUBDs4tmuXOk8NDfbQUj3hU9c9eXksXOjetYF8ZziKjt8zrbTs3z9caCmvd3/4g/vr1UpLW2AbVfNw23vcdJNYf6OotATEewW5uPLWgaCVljYdO5o/s1+lpSv5dfLAFUcfnXwsfybXvgUB+4ldcbG9KZ8a/mQSyJWUJJfXwoViHZFDy86dw0+/ujr1eNeunfliytvfe8tcV2npElrmq9JS3k+r82m7aVVebj6myaGlfJNt1Srg99+Dz6PrPjCKSkuX0FIOftTn+93kylal5bPPiu3gP/8JtoxdK9r8qnuKi80XoJ7ycvM65Tp6uPx8k0wH4tFVWm60UfrvXCrm2rSxb8NhBzVT5at5uBdaBtnXqvsZ9bWtW6cH4EFCS+/5umXqF1oCyeuMKCotvf2BvF9oaAgWWqrntzJTpaXunEm3vtumbaILLdX9nndNJz9HPreUq+eBZMVd0OOdrnl4UZH4p76Hn7DNw02hpdzFFWA+xqjU5uauy+S001J/1m27ue7T0o+p0lI36KRuOZSVhSuu8KsWjrpPS/W1/fq5T8vD0LIJQ0vSk3dSfnef1R2tvNPxCxuLi+0nbbbm4cce674xt26tH2DGG5wCAP77X//pXHWVve9G3XSDNq8H9JWWXboAt98OHHcc8O9/i2pW9WREvsjz+niz3Q02CXqAkw8EQQ7+asVJbW2w0FL9PuUDjq6PO496wIx65N4MBuJJdOggqjOCNA/3vq/evUWl69Ch/lXOsnw0D/fbdqur3fYftnnKtFlFlJWWJSXmi2W/Sssg7+HZfXfgyitFBdbDDyd/L38m0zaiO3HzCy1tohyIp6QE6NVLPG5oECNves3cKyrEe4UN/D78EAWzZyd/tlVaer+X+392DS3l5+UrtHQZtEmntNS8HcjhsVppOXVqsPkrLXW/sI6iT0u/5uGzZycrGEtKgnfFsWBB8nGUfVqG5Rpatm6tbwIuLy+/Y1VZmXl9NvVpGbTyExD7AduNyiCjh/fpI/qYff/99O/WpdLS9UI3G5WWjzwizhM92WgeHia09Ku01AUWQUNLwFxN5RdaetcbUfRp6a0z8jlIY6Nbqwnv+PDBB+I654470p9j6tNSd72mW9+Dhk1FRcl5lz+3bttQfy+Hi5dfLlo07bmnaNXm3WgPGt7rtnNvvoIGslFWWjY2ihZeX3yR/J3pGKNSr2dczgH+9jfgiitSfxeH0cP9mG50+fWJ7vFbNmErLXX7G91+yUS90aquI7Zikr59gaOOSv89m4c34ZIgvSDNw9WdVpDQ0q/S0juZ0k3n+eeBv/wlfXq33pr+XO8ArXb+KzcXlS9Wdf7v/0QI4EIOwcKMqKmrtNxwQzG/zz0nDlRA+rKTwzgvkJB33q4nBuoJkd8B3RZa9u1rf538/Nra1JMRv+bh6sFEXhdtoaV6YLFdpIdhClt1zWrV0LJfP3GQClNpCQBnny1GH5arLv3ko3m434G4qirzSstMBa209FturqFlFJWWBQXiJsuYMfpRmAER+OnoRrqU513d7wQJLdV5cCEvV7nSEhD7Vy8sC3MhLbvsMhS++GLy53bt/EPLMM3DZbZBpGwyXedtoaVtECDXEXDlIGvZsuChZVmZ+8ADmVRamm58tGqV+t289FLqvKmCNH8vKWk+oWVhof74KD/f71hlCwVMfVqGqbT0+w6CNA8/5xxRxbrFFunnYn7N+4uK3LdPv1DOr9WLF3DJlZb9+onzRG++wzQP91sHcxVaBunT0uMSWuqCyaChpcu5tRpauvDmY8cdxXWObiASU6WlruJW910GCWIA8zm+KbQ0fe5ttwXGjQM++UQMpuYJGlrqPqf3/boeN+T3jiq0BETRgRwkuoaWagGQ3zI56SRRwOISJEZVaake+8Meq0yVlrpzaFPzcJuwoaXu8wT5jOoNvCCh5VFHAS++mH5txErLJhmFlgVBR0Sm5iNIaKmeKMoneEceaW8unGmflurOpKhIPyqZS2jp199ZkGbPXiVQWLrRw3UXBrZRfD1RhJYjRiTn58EH7e+hHizkZqoqNbSrrQVeeSX588Ybpz5fPWDaLlazHVra1ocglZY77ZTyq8Shh4oHQZroZ9JfDRCseXguKy0zGT18993DzZtu+p5MTh6Ki80nP0FvEpi4vM6v0vKQQ8TozLb+YoNWWo4cmTwZffbZ4J9PDWPl0HLu3PTQMqoqRVulpbcMbAPxuIR7QU6uZd5gQzpyNyImtguRDTbQbz9lZeJ9XbaDDTZI7mc/+QT48kv/16jvlYvQ0rXSUuY99847k8/VVUiYNKdKy4IC/fFRXl5+oWVDg1hn5H7uPFH0ael6/POrtJSr7+T9n/p8v0pLUxWbF2RsuKEIpAD/0LJHD/vfdZWW3vzKN1S8YFL+XJlUWnoX53GstHRpHq67rvGWw4oV/u8J2CstPfK+0jW0fPbZ1J910zaFlkcfnVxm3rl61KGlbf/vLZOgYW2UlZZq+GcaqdoTZaWljl+LII96vPM7f7DdCFJF1adlkL/Z+k3NNLT01pfBg4PNV7abh6vHQnU7VYt45IHaDjgg2cWcjKFlk4xCy+222w5FRUVp/3bYYYemQFP3d/l5FFNB+rRUQ0v5AFlRAXz2GXDuufrX6kLLRx5JPvYbPTzT0NLUSbpOkJ1+mBHsZKY+LVXq5w8aWrZtC0ycKEYil6k72o02AiZPBl5+Ob26VX0P9UBrW8ZqxUJNjRhYwHPqqanP9wstXU981GW52WZur5PZQkXXPi1LSoCttwYmT0bDzTfjs4svRuMZZ4i/BbkplMvQMhd9WgKZ9Wl5/vmp4XdYUfZpaau0VPktY/Wk3PV13nzoPPGE6Bdv7FjxOdV9Qiah5cYbA59/DrzxhmjuFvQCQX2+vH/94YfkepJppaXKr09LIDUYCBNahm0evvXW5r+NGSO+Rxt53tT1ulMnsf08/bSoxn36adE1ybRp4mLDZTsoK0seK+rqgPfe83+N+vpchpZ+fVqq8wYAZ50lqoY+/zxYk0S/QQSi6FfZex8T14F4TJWWQUJL76bzW28lg16PIbRMBAktbZXBMr/Rw2XyPkY9F/Pr09I0/csuE922TJ6c/Mx+5yx+LSa8ijM5xPHmV+5v1wvk5PU0kz4tveUT5HwgTqGljrccbDe8ZS6hpdqnpc2hhyaPkTLdtNXzT3lgrGnTxP7b2//qvsugzcNNN7nU81Tv2KAOQOQn6I1GXbdbpkpLv6KEsKOHu553h20eLm+XtumqgvQR7MK23diuU/71r/QA3mMKLXXXBbbm4U89pT/XMS0buR9yj19oGWWlpXqsHDIEmDBBDEq7zz7id+q2yebhTTJaEolEIuN/FFNB+rRU76KpOzGvbyCdwsL0nelJJyUfR1Vp6T3PVmnpJ0gwJE83TEWyy+jhQPBKS/WgWV4uBvTxqvs8uhOiHXYQO1i/Pkd0naubqKHlJ58AM2eKxwccAGyzTerzg1Ra2qgHjqB3nYFwlZa65uEAsNtuaDzvPMwfMCBcKBhFaLnttsmfbZXCuaq0dGkebrqDfcopwZrX+03fk0nz8CB9LfotY1PlQNBKS9m22wJ//nMyEO3fP/XvttHDXdbZnXcW+5nCwmgrLb/5Jvk4wtAy4d1Qi7J5+IAB6dMJG1raKi032AAYNsz+elulZceOYvsZOjT5//nnA9ttp38+IAayk5WWAmecEf6Eu7zc/cJafV42+rSUec8tKRH9s22zTfDwJheVlrbpqMcM0/fk0jzcr09L7zyue3exb1ank2mflmqLDBO/5uEyW2gZttKyrExUscs3SW3zUlCgHwhI5oU3cnNZXaWlV5HZunXy7965va5LHtfQMo7Nw019MmcztIyiebh8jJTplrGp0hIQ1VxHHmkP6YOGlq6Vlt45kKlPS5Momod7IzOrN3XV/ZeuyjyblZZhm4f77adM67PufTIpNgh7PtW6tbj27949/W8dO+rPl3XHElvzcO9cR+132basddfBnqBV9Sr13FxdR9TP3KqVCCv33z/5O1ZaGoVaiwcOHMim4S1dkObhfneDgGAjZco7iLo6ccAzBdzqdONSabnXXsCBB4oqxueeE797/31xIuEXAgP6Sktd1UmmzcO916s7avWEyG+nLR8EdBUrJiUlqXfcpk9PPt577/Tn+/Vp6XIxUlBgvsvn55FHgDPPFMH655+bn+caRAQ9GejcGbj++mSfpp4oQssxY8R626EDcPHF5udGcQDNdqVlVBf9UVdaqq8vK9P3H+l3gmmqQMuk0lLdd6ihpe1udNATYnU7OOEEccNi7lz989Xpy4HCt98mH0fZPLxdO7Gv8Ku0lJuHewMCFRSIGz/q973//uJzyoI0Y5LZQkvPe++JUE13zLGFln5dU+i2A7Uyt7RUhEkbbwzMmuU/r6qyMvcL62xVWpoG0dOtX0H25X7Nw6OoZgfEZ9ANOAK4HzOiaB4uNz9W982mcDpIpeXOO7sNpOjXPFzmF1raii6CHH90o/F6gUyXLv7bgLeOujYPLy0V331VVXK/II867zVHj0toqfu+S0tT16moQ8slS+zP84RtHn755cCNN4o+py+/3P99CgrEZ5SvtUwD8ehE3TzcVmnpyXbzcDW07NULuOUW8Vg9P/LCTE9FReoxMWzzcNd+Im3dGMnU+d5uOzFfEyYAzzyT/vwglZYlJcA//iFaTOy2W/p5iKe0VHQxIL+fut1ccw1w9dXAqFHGj+I7P6Wl4nvwjk+lpaIrMXkAMfm5ftNUj2e277O0NHX9sZ3blpQEOx6r36FuO3v4YdFK409/MleFyxhaNgl1ZjRhwoSIZ4NiJ0hoqRuVUGULk9S/eeXb9fXiIG0LLjINLTt2FAcev88IBAuGCgqAd94RJ4beCcO++4qToa22AubMsb9eV2mpOznItHm497M6nUwG4tGV3nfqlDqyrPw6+eLg55+Tj3U7e3Xa6jJyCS27dDFfyPn5y1+AE08U72PrUFk9yHoXOKZKSxf33y+ay+v6hositNxiCzGoSXGxPVCMokI+6j4tsxVaRt2npfz6vfYCxo/Xr7N+25vp+86k0jJIaBmm0lKmzmf37sCvv4pBpOSRzj3qvk/eZ3z3XfJxlM3DvX2g6bN5y0AOBrwKHa8Jtfra7bcXlQTyRXE2Ki09++0n3uvcc1O7XZHnW30M+AcWuu1A7WJDrkYMI9+hZdAL2SD7hqIi+0V6VK2QbMvP9ZhRWJh+0Q8ECy11zY895eX6Y32Q0HKffcTNPD+uoWW7dqmBhK55uO3YlEloWV6evKDu2dN/HfSeq7sIt4WWS5YkgxuvdQuQvJHv9xmyEVrq1ldTc01baJlJ8/DGRn1o6V2TqL+zvSegDy2vuUYM7Fle7hZaAuJ7k7cjW6WlSv0udS3cVHJ4DphbU7mEli77s0z6tDzoINGs3tSnZceOYll73beoyy5saOm6nZuOMSpdtz9vvinmO8h5om5ZFhcDN90kwsZPPhEt2VSbbSbOpz75JDW0VN/n8suBiy5yb9mme15xsQj4Vq0S69CqVWK+ww7EEyS0tN3kUOc16Lqhfoe6df+008R1pGn9UeeBzcObcEmQXpA+Lf/8Z//pBam0BJI7ibo6+wjkLqGlV/UCiFJylWv/k2GCIV1VgWuw4HJAUJ+j+3xRVFr6XUDLO1VdgGTq09QWWupOYP0qLV1OfHr2FAGy55xz/F8jUyusdNTl5Z2sBq20HDIk+XiXXcwj90YRWgJi/vwOkK6dydsUFWV39PB8VVrusUfysRpqq0FtQ4N5G/e7uDJtj2ErLYuK0m9UqPtFedsy9dnqSp0Hr484U7+A6olf+/b67zjKSku/bUoNBhoakqGlF+LoKhjV9SLM6OElJf593cnzqZuWLbT0q8IpL9f3gynztt1MQstNN03+LHdfofI7DoRpHl5QYP5uvIpaWZBtYMkS+zpaWBjNhYottPQbnMJz+OHiQkxtneDXPHzo0OTjgQPN0zeFlqZjual5uMv24No8XN33qfNXUgJ07Zr8WT1fCtL0Vv2ccgVYz57+65VaaVlenlx3vNfW1CS3x7Ky5IX18uUiEJFDS6+qtqjIvo7ms09Lv0r/TCotV67UX3PovlNb10ueP/0p+fjww9PnUR4ZXNe6yDT9IOfo6jZTVuZ/LmMrXJBfawokgzYPD3rMlgNV9bxYrXZr1Sr12iiq5uGu++ggfVqedlry50GDxP+m/ZVraCkfT2zdrhQVib+7nN8F6XfZFKJ63Xr06CGmZwrAdZ8z00pLma15eGmpfb+hLgf19a7jcdimyUrLJhG1QaEWx7VPy7/+VZSc9+8PPPaYebQwW5hkampVVSXuptqCC93OVX2vwYOTJ0O6E/WePcVgDn4yDYY8LgfHoqJwFaxhm4er0wlaaSmflOjuYo0aJQZ0UEceLy0NFlqqdBcTRUX2daZnTzG67sUXA0uXAjfc4P8+OrYTFlOlZdDQ8t//FienffqIJh1AdkNLF5mElsccI/qfKSiIpnm4qdlNviot994buO464McfxYjZckClVlraPlvYoMfldbrnmPoXatMmeVEsNyFUv7tMQ0vvZ5f1uKBA/GvfPn0E0Sj7tKyogLUTHPXmRV1dshLGC3F0oaXaX6xpXm1d8HTpYh6MSUf3/WQSWpaWin3oq6+aX+M19Q/7XZSXi8/56KPA22+LTv1N1PdWl51t/bRVwZjm3dRqwNXs2fZ9SSIhQlq5u5QwTPvBLbZI7y9atf32ohrHu4jecktxvPT4VVredZf4DjfaKL3PbJmpora0VB8emSrvdtvNvxsC14F41NBSvZlSUiJCkMceE4MLXXhh8vjsMn2Zek4mn/f16uW/XqmhpbwsvXVMDnhKS0Vrny+/FMegL79MhpZt26Z+l61bm89DvXPEfPRp6VdJnUloaerP0ruhK5//uDQPv+QSYOFC8Tn++tf0v99+u9hfbbqpqBg08assC1Jpabr5LWvfXsy3J27Nw+WuO9R9qXpsbN1anBvMmyd+VtfpMJWWuvPXYcPEgCpqpW6QPi1vvlksrx49RHdiNq59Wroe373rFL/tNChTYdLNNwO33prez7HKpTuWqELLoM3D27RJHYBR3R78rmF0lG0hwUrLJnkPLSsrK/HAAw/gQlPYRfnh0jz8wgvFDgcQFzCHHWaenu2ApDvoZVJpqZIr6UyhpYtchpbFxekX5DpBm4erO2tv+anzFLTSUr7bqjuBLCsDHnhAXPS88ELqc+XlLwfkuhN/+QBQWJh+8C0u9m+61bOneK06cERQQSotwzYP79JFjOos0x1Awwwk5DdNk0yaLsrfvV8AWFnp/16mSsuoRt8N06flZZeJ/+UTfm9arqGl30mK6ULB5XvUPcdUdbXDDsCkSeKxbXCCKCotAf+TaSD52du1S1/GUTYP9+uvSq20lJkqLdu1Sw94wlSFdukSvDmyKpPQEhDHVTm09AYN8bo+8aoRM6m0BESXGKeean+u3/yGqbT0e50qyPexcqX977W14kZwtkLLv/7Vf4DARx9N7ad0iy2S+wIg9VimCy033BB4/HH/ebRVWuoG2zCFln37+r+Xa/Nw9ZxQ3T9668Upp4h/6rlakEpL276zRw//Y6A6EI/82bxpyxfVZWVi3fK+m08+SYa9W2yRul60bm1eV73nZRJauux3XCotowota2v16xyQrLiSAy+X5uHl5eLc12SDDYDRo+3z5b2/p6Qk/TMGDS0zqbQMGlpmo3m4/D2pn8Wv0nL16vT3Dnoc1p2jjR0rjn/qwGCmboxU7duLGySPPuo2D66Vli43BwBzi7BM+1g2VVrusQfw4ov+r9cNbKp+59lsHu4XWupaXnjCXC+x0tIob/HtmjVrcN1116F37974xz/+ka/ZIBOX5uFBghLdTqt9e9HkVXcXTg4tg/ZpCYjBBwDRkfEhhyT/rrs490ZE9ZPrSsvDDkue/N53n/556udv3z79JMKl0jLMXStvu+3aNbXPK3UHL58wqQefwkJzaKw78ZcD7OLi9HVQ14+c+p6uIbWfO+5IPj7+ePt7hq201FE/n+2E6+yzw03TJorm4YB/MGcaBENmOhmMaqC4TPq0VF8bpNJS59prxf+dOgE77aR/TthKS1No+eCDye/JdpyOKrTUhQlyk3uZbrCYqAfi8ehuyHn7Ut06YWserjalDTOvu+8e7PlRV1oCYlChnXcWj71j7JNPJv/u3YjONLR04RcShenT0u91qiDbgF91f11dep+yQS/qAf1y6dpVDCbnR/3s6mA88nrbsWPqOUNxsfs+2GuO6Hfc9uj2Ea1aicEjvPeUm+TKwjYPV/eP6rxm0j1Jhw7J/mDV43WnTsGbh8vfue61paWp69YLLyTPq9Tv2CV8jUPzcHVdy6RPS9PNuZISe1/OURxzbOTpl5WZ+6fX0XVT5XcuowZ/ptDSJKrRw00tCmyhpa7S0hZaZlJp6e1rtt9e/G8aBMd7HxvTAIsmrqGl6/E9bDdWfkyhpSuXPmvVPrVz1Tzc71zp739Prp/PPmt/rm5+APZpKcl5peXy5ctxxx134L777sOqVauQSCQ4EnkcuVRaBrmbrG6EL7wgLnjKyvxDyzCVlmPGAK+9Ji6s5A1eFzyedJL9gtz22jBcKy07dgSmThVNpk1VrLpQpUMHYMUK/fu5hpbqTlJ3sL36alGJseuuqa+33cXSHWzatEl2yCzzCy2LisyVlrJevcQgH56oQsv+/YGPPhLr77ffJkeJB9I/p+lkIMyJrvr5dP2Yem6+WTRZXrNG3zTJNE2bqEJL3UnznnsCn34qHtu6pVCnEUVlnU6YSkuP7sLWNbTU3Z296CLRTcCOO6YPqmJ6T9fn2CotP/5YnOTbmq5FFVqq2/zTT4smqlttlfydd75gCy2jWB/k6f/nP6KJ8rBhyd/lutJy771F9wodO4qAJgi/0FJdr12O7YWFYsTm8eOTx6eBA4EPPhB/86r0XL+LgoLU9T5ISOf33LChZUGBf3cjLu8he+st+7YEiGouubkxINaTmhq39/Coy2XsWPG9uIx6GyS0LCgA+vUTo9wC9nM20zy2aZNyDpAwLU9bpeXEiaLpftu24rOqoq60VKfrCXJuXFgIfPihOO4dfnjqDeqOHc2Vf57aWrG8bZWWMm+U3rIysT5NmZL8W5jQMtvNw11CS9fXZNo8vG3b1OuhfIaWQc4lwzQPj7LS0uWc0RTMdOigr/aVq5vV1+oqLeVtWL2mzSS0fPBB0Yzb63/SVrHvt47ozmlsTN9h2EpLUz/UmVZamgbiceWyrp96amrruSAt4TJtHm7TpYu4jl+4EDj4YPtzPbo+SQlAhpWWs2fPxt///ndsu+22+P/27jzeieru4/g3d2cHWS6rLC4ggsiigKiIogg8VhQ3REHcFR4FWrW4oaVKlSpuuLWitu770getCAIqiIJiUSvWijuLlh0VLtx5/pgmdzJ3kkySSXJy7+f9evEiN5lJTiZzZs785nfOadCggfbYYw/16tVL06dP12ZXAGLbtm2aOnWqOnTooBtvvFGbNm2SZVlq1qyZfh/OIIE5/IxpmU6m5ciRVXdGvA7U4YNKoqClV9q4ZJ+0zjjDnpXWyeuuXcuW/gZxT6YhGo/fTEvJboiPGBF7Ha8Dc7wGtt+gpZvX62Vl0kknSe3bx182UdBS8g4kem1v58Wj1wzrXkFLd2ZTUEFLyQ4kDBxY/Tv77R4eRKZlvAkV6taVTj018f6dqe7h8U62Xq9dfHHV43QyLYNiUqZlaal93Nx77+hJIJyCzrSU7EzHIUPiZ04l26iN1f3IfXF12mn2BCBe+5xX4CXATEvL+f5NmkRPLCLFD1rGGtPSK2jpd9/t3NkeJ3XMmORvoGWie7hk74dnnBE95t8RR0RPvOL3t3Afl5MZ4iHRje942zhWFryfdZ1i1Umn7t1j1yXn962oqN7dOZVMS/d3GjWqemAqFvfx2b2euzzuzFC/wtvX76R6XpOwhPffAQOk445L3F5yH2fc+3+yQctQKPq5ZMdUbtvW7q3hbs/4GdNSstvo4S7giYKW4UlHevWq/pr7N47V9u/cuepxkEFLrzafnzEt/bzuN2jpNXO4ZNcH93E33o2foDnrcklJepmWfrqHu8dxdW5T537i7GXl5JxEzZ0Fl4xYmZbJjGlZp070RG5ex9Zk25Dhz2zQwG5jh4//XucRv+3UZPehVDMtY13Lmppp6Sdo6TwmJXr/ZIKWiQLaidpKRUX2sXbYMP/BR7qHx5Ry0HLu3Lnq3r27Zs2apVWrVmn79u3atGmTPvzwQ1199dXq16+f1v53vKm3335b3bp10+9//3tt27ZNlmWpTZs2mjlzpr766itNmTIlsC+EgPjJtEzmwjBeZT38cDvwU6+enc0ixe8eXlxsT1Ai+RvT0ql9e/vCv7RUeuKJqudfecX7wv3uu+3Pu/DC4O52+DlY+z1IeZUpXgM71piWiX7LdLrJORtMQQYtvbqHewUt3dsjyKCl83Odstk93M8ssIn2p0xlWsa7c+wuUygU3dj0E7SsTZmWThdeaGdduvnN4nbzO5NwMu8Zj99MyzCv7eG1b4UvtLI5pmW87uHu1woLU+8enk7D1ev3cb5fqkFLP/z+Fu4JipIN0l1+uf09ZsxIrgzhm6KFhfakM8XF0p/+VPW61+/zwgvVnzv5ZDvbMJ54Nz6d+/POnXY5pkyxy3XddakF4ktKpP/9X/u97roruXXdx/l4mZZSckHLv/zFXn/06Kpjvnuf89s93CuoEev3Du/n7otC98zoyXYPd39mOhPB/e1v9vpHHSUdeqi/+uOcGMpP93Cpqjurk/s3dvZQOessO+O9cePq45L7lahbfaYzLRO14d2Zlu76Gm/YpExnQ2U7aNm1qyr/e/PJKimJnuV85ky7jrRubU+45eXGG+2xHVu2tK+j/Pj1r71v9DmFt3kyY1rWrWu3mbp1s/df95iRQU3EIyXXPdx93EmW34l4/LZjY12nZCLTMpntHeu61e3dd+1jyL772jGFWOJlkqY7e7hk9/KsU8e+Qel3+Ll470nQMiKlo+wPP/ygUaNGRQKQlmWpXr16atSoUeTvzz77TOPHj9eiRYs0ePBgffPNN7IsSx07dtR9992nL774QpdeeqnqBDXLK4LlrCSxuiQFdZIOhewuZT/+WNVtKlb38FGj7K6K559v/51s0FKyG1ybNtl3x8K6dLEbK+4Bsy+6yP68eANpJ8vPcAh+TxJ+Mi3jDRaeTqal32WDzLRMNKal6UHLZCfi8fNZJgct4x3f3cePsrLo5f10Dw+XO1Nds0zKtHSqU0f6+OPq2X9+fsdkMy39SDdoGf7bT3vAORGPU926VceaIPaHRGUJ1+Vkuoc7XwvLRdCysDD6PGRC0NJ9XE42aHnTTfYN1t/8JrkyhGd8l+xg5ZYtVTNme627eHHVmNlORUX2RdOqVbE/K94+5Qxahst04432cXDq1NT26cJC6Y477O/kd3zjMPeNAvcxwl0ed3f2eM480+4K7hwD1X2+j/V93Rd0XseuWMejWJmWXhmO8T4j0fin6fTKGT7cDkK+/rpdR/0cW52zuvvpHi55Z9zus0/sz+jbV/rnP6V166IvxE0Y09ItVnZmou3pDlq694N4mZbZDFoWFqY/pmWi8hYVaffcufr77Nna9f33dtA6rLzcnrzpyy/tyde8NG1qB72//jr2Mm5//KN3122n8PeMF7R01786dezv/I9/SGvWSL17R79eXBxc0LKwsPprsYKW++2X3Ge6xbqWTJRpGUu4TWpapmWinmxhBx1kX9t/9FH8Nky8c2myE/F4XQ/9z//Yx/BXXkltfH3GtIwppS3xpz/9SRs2bFAoFNJJJ52kzz//XFu3btXGjRv1/fffa8J/Z2t+8cUXdcYZZ2jHjh2qX7++7rzzTq1atUrnnXeeijOVGYNgeFVSd8UJsiKFQtEVNbx/hMfrcZYrXhDM74WdV6OnsNAeUy8sPP5EUDMRh/k5iPn9Hl7Lubt1+Oke7uzi4XUH3jljYiLxgpaxThatW1d/LtHs4X7HtGzcOPq9kh3s2g+voKXzd851pmWiBkIyAZFkuoc7y+Yee9P9meGGZVi+Z1q6lw0y01Kyj7/u/d/PdvA6bsfqguVXsueCWHe6nV18Yk02FGtMS+e+FsT+kCioHC/TMlb3cKl6doXfsnp9jjP7JR6vAHq8v4O8mZytTEsp9rk63viM7qEzEs1MHO/8EQrFv1iKt13POKPqsXMM63B5Utke4eCn3zaMsxtny5bxl3Xvj86gs5+x2dxlSrV7eBBBS3dAyH1jIdmgZbr1x6stHI+zS3OiTMvw7+oOWtapU304pREjqh6Hx4dPpw2T6HzqN2iZKCjs1c6MN5xHWEVF1UzqUvT2sKz4QUvncd2rPZsuZ33wCr4mm2mZSEGBFArplz328K7PRUXVx/tztwMKC5M/F5eVRY9h7R5+ymt/cH+u+xorvL+4rzOd6yd7UzBemyfWMFDu/dL5PVPpQu83aOn3NwgH4PJxTEvn+yb6vs71vZInnBKNaRmrnRi+SZKKVOMatUBKUafXXntNktSvXz899dRT6uSobC1bttQdd9yhMWPGqLKyUt9++60aN26sxYsXa/z48SpKd+dHdnj9Tu4TX7IV8tVX7QkEFi1KvGz4oLNrV/XJV5xijWmZqgMOkG691c7ovP/+9N4rHX7rideJM94A2rGClm3a2N/31FOl556r/p7h8ZL8cJ8w/HQPdwdapeAm4qlbV5o3TzrhBOmll4KbWdr9uU5+g5amZFoms02SybSsV8+eTOWkk6T586Nfc++7qQQtw9simUBqMtLJtHRvU/e+mU6mZVgqjUv3+GtS+pOMJTs5U6xyt21rD/1xyinS009Xve5nTEu/Qct99pGuusoeuP2ee+zhQrw4M/C8+JmIx2t/8Zs14OZ1rL/ttugMmFjc5UgUtAzyGJmtTMtkyvDKK3aW8j332F0Yk1k3Ubni1UF3G+rdd+397/nnpSuusHt2XHqpdMEF1ddN5VyRzM1GSZozx657Dzzg3XXx3Xft86ize3BYKGRPyjRihHcbIhG/3cP9BC0TjWnpfg/nb9qqVfX64ido6SxvUOOfx/osN2d2oHM7eh1/wvuWO2i5997V6/3NN9vDHtx7b+wszHSClu7P8wpauutbKFR9iA03r+CUn6Dl1q3Shx/aj7t0qf47us85zvdq1Mge9uDkk+16EDR3fXBvu2Qn4knUZvLb1gmF7OPByJHSe+/5WyeRl16qOg65f+tYCSfx+LmJkGwbJl7QMlb3aq/M4ieftK+Lne0dv4LOtMyXMS3TbRs4v49X8oT7s5PNtEwX3cNjSimC+OmnnyoUCuli56QJLpdccokefvhhhUIhXXLJJdrfPfAtzBYraOkMJCSbXTNkiP3PD+dBxdk9PdHdxSAq96RJ6b9HutLJtEwmaOn8+7zzYs8wncyspe7fyE/3cK/slaDGtCwrsycTSeVCyi+vYHpBQdUJLfx/tifiiVW+dCRzki4osIMD7m7MXmVyBy2TmT08mdlqk5FOpqXXewXVPdz5nvH+jqWoKDool25mULLbP16w9fzzq4b/iCdepmW8C7jGjSXn5H8XXujd+E+0n8e6CC4qqspcTRT4lNILWjZpIj34oJ2Ncv31sddNNtMySKlmWgbZw8Er0/Lxx1NbN9EFU7xjhPucdtBB0QHAeGO/pXKhlmzQsnNn+yI6loMOin8eHTzY/pcKv5mW7mNVEJmWzs/yGj7GfVM1k2Nauvk558Qah9Fdzueeq8oedGd2xeou/tRT8T873rGjqCj63JDoWOAn07JpU391oaws+ma7n6DlsmVVdebgg6tPyhMv01Kyhz0488zEZUuFcz/wOl9lItPSr5EjY9/8S4XzOHTFFdGvedWtIIKWybbHkglaxsq0LC62g7OnnJLcZ4fFClqmGnTM5piWmege7le8TEuvxJJUMi3TQffwmFLaEhs3bpQk7R1nFsJ9HHflDjvssFQ+BrnkdRKoU0eaNct+XL++97hOQXEeOH7+uepxoqBlPmTyBjmm5bBhVY3UW2+1/481cLUUf9Y0t9tus/+vX18aOtRfedyf5/6MWI0ld/dUr25IUvWhAtwXgYWFme3qGIvp3cODDFpefXX15yZPTv5zvTItnb9VMpmWe+1VdTF2+eWJ1/MryKBlUVF0YGn27NjLDh9eta+E67WXVBuXfmZtTUayDbdkM0T/+teqx+GJ+1LtHu6jK3xlYaEqneMaegkfy7wmAQjXfee4W7H43XbxgqjOIO9f/lL99URBykzeyU919vBMZlqms26iYGoymZbJSOVCLZmbjbnmd6iLILqHl5ZWzSZ8wQWJg5Z+zttBjWnplmzQ0rkd3dvBeXPYvb39zirvFq9u+clQdfLabu7fu3lzf9skVq+iePXz7berHh98cPU2XKKgZSalkxnpFbRs3Tr+EBCmZHe5z3t+My0vvND+f7/9vI+74SE4wvGJZG+8ep1nw2IlJ7jbHulmMGZqTEuvoY3Ska0xLf2KF7R0b9NE451mI2hpSl00QEpH3IqKCoVCITWIM7tmfcfBvWWisXFgnliZluefbzfqwrMIZorzIOEMWrorbz6O/RDkmJYNGkjvv28PkB4+CafSPdzLxRfbGTydO/sboyos3gVxrJON12x/Xtsp0ZiWBQXxMz0zxfTu4UE2rjt3lpYutSdS2Hdfu8vg//yPd3At3h3CIDMti4rsCTLee0867rjE6/kVZHCnuNi+UH7nHbsb2lFHxV62YUO7m9qqVfaNiXjvGe/vWLyGUEhHsg23ZIOtxx0n/f3vdsZT+IZovO7h8epVgjFtd199td7cYw8NcGf+uYU/I96NNOe5K5ZNm2K/VlhYtW3jbePWraUVK6Rvv60ai9kpmUzLoCe18rtPursjmxK0TLZrWrx9OZ16lo3u4bnkdS73kk738LBQSHrtNemtt+x20wknVL3mZ6K+TI9p6eSnvbhuXdXjeEHLeG129ziefiUKWjoDqkFkWrZo4e88nEr38I8+qnrct689XIJTvNnDsynZ4Tu8JuIpLLTbbk895T15mSnXUqkGLWfMkI44Qjr0UO/t9cgj9pBl4cxwv22YoUPt3njxMspjtW/cNwbS3X/8zmCe7JiWXkMbpSPd2cPd3zOT3cPdctE93CuukaneZHkmK7eJQpkYQw6ZFStoWVSU2QzLsFhBS6/gkJMpJ9p0JXOS6Nw5egKLeJmWycw4WFwcPRC7X/Hqu99My1gXd85ZCPfd13s7mRK07NrVDiRIVVmAQXQPTzTelp910nXwwVWP3QOlO8ULWiYa0zKZoKVkT6jhnlQjXUFnWkr+Z9nt0sX+F0+qA6ablmnpJ8hwzDHRz2Uo07Ly5JO1efXq+OWRogPmTs5zkvNY7Hze2XUx3rb3G7SUpB497H/xyhrmLrOzLgZ9vPR7jHMHk00JWgbZPTydYFY2uofnkt9jUDrdw50Xfm3a2GN4S9F100/QMpvdw/10DfQbtHTXsXbtpG++sR8nukkTS7xzjnvyvVSClu79PuigZZ061W8ulZTY49u7mZJpmW7QMrxN27Wzh+7xClqa0iXVnWHqVbe8ylq/flX99tK4cfSwRX7bMIccIh19dPxlYmVmBx20zNSYlm65zrR0S/fGqnN/SbSfJwpa7r23nYgQJLqHx8SWgDc/YyVmEpmWqb9/UJmWmRDr4O9uTMdq9N9wg93QatnSnkTBz2fkqnv444/b2UP77FPVfTqITEv3/uO+MPCSq3qRre7hmRJ0pmXQTMm0DHJMS79SnYgnQaal7/NceP+NNzncr34l9eljv6dzIqr58+3nevWyl4klqDFQE2VaOn+/IIOFkv990h1MDvLclM5xItk6Rvfw1MSbdd0pne7hsY5TibqHu3lt10x1Dw8yaOmuY48/bgd3eva0JwNJRZDdw/1kWjZv7m+buNcL171EgVxJmjChem8ZKbdBSy833WSXwT3uo1u8MS1jtWlMuZZyBtJizf4dRFn9tmFSGZogvN/vtZf386nK1Ozhbrke09It3aCl83umErR8+WX7uNGrlz1Z1IAB9rHBPdloqugeHlNae+K4ceNUz0dDI9FyoVBI8+bNS6coCJrXASWT3cHdnAdZ52Da2ZiIJ9OCHNPSS7ygZTJjWmZCrO/uN9OyaVPpiy/su6+xTsSmZFp26SJ99539WvjEGPSsfFL2u4cnI1599Ooe7qzPzqBlSYl31lCm63uQmZaZKGtNybRMZf90H+ecwftEE/HEE2fYmyjhY1m8TMtwF7wdO6KPQ/37290mvS6MnbIVtHQGYXLVPdy9D5qYaVlYmPj8nalMy9rWPTyWdLqHBxW03Lq1+nPO38fUTEv3MXPAAHuymdLS5LP3woIMWnq97pVpmWh8R6/1YmVaNm4srV1b9feIEdItt1R/P5PGtAz/VpdfLl1ySfLj7Dq3Taz9y5TsrmwFLf128/XzWbHa+e4Aebr7j9+JeGpapmW6bQPn90z0exYXVy/rYYfZx9xw++3NN6u38dJBpmVMadWYZcuWxX093C083nKWZdF93EReB5REGSpBch6UfvzR+3kpuxMKZFM63yOZ7uHZDlrGOvh6jWkZS6KTnSlBS+f/YUF0D3fLRfdwv+INL+DeF8LjmJaW2g0AZ/fwOnW8L8DzKdMyE+e5XGZajhghvfCC/figg5Jb17RMy3r1qoLk7gvTWPxkWkqxL7SSncE1nbGTEm1vZ9AyV5mW7vphatAykXgXGAMGpF4Ov9tjn32kf/3LfpzqrLS54Ddo6Q4IevU0iHU8iTWUSXjc/VAo9oQ0hx8uLVpkP9533+qvZyrT0s95I9bs4X4m1Ei3fRRk0NKLuz61aCGtWZN4Pff3CtefRNmnXt3CpdwHLWNJ5fdzrmN6pqUzWFtQkNrs4X44bwq6Z5538hNA8hs0THecwnTGtDzpJOmZZ6KfO/ts7/fLRKZlOr9ZujdWnb91KpmWpaXR2zhWGy9V+ZiMlSUp74mWnztdyF+5zrR0Xlh+8EHV444d46+XD5U7l5mWyYxpmY5XXpH+9Cdp4sTo5+MNrh8KVTVQkmn0v/mmNHOmdN559t+mdA/3EkT3cDc/F3vZrhe9etl3I52zGru5yxS+IKhTxw6iOIM0derYE/8keo+gBZlpmQm5nD38vvvsY02XLvZg98nIRKal34l4vM5jixZJN95oj3Hl9652eDm/dT8VzvdOJ9MyUYaHCUFLNxODlqnceHjlFenRR6Vu3ezx0FLld7+69FLp88/t3/TXv07987Itk93DTzjBHhPXOSa206WX2tl2hxwSe5lHH7W74fbuXTXzuFMux7R0ipdpmQnpjmn51lv2JH7nnOPv85o3t3uwJOLeT2JlxjdpEv13vExb0zItU+Wne7gp1/jurrxewaEgMtGcAcQ6dWIHLdPpHu729df+yhZLrP3AvT289tNZs+x23z772EOwrVtnt4G8BJ1pWVCQ3m8WZKZlonIUFgY/e3kidA+PKaUjbmUmZkuCWbwqSTYzLZ2ftXx51eNYd8HD8qFyZ3pMy3iZlu4DdKayEI891nsW23jfvbi4KpsumSDKoYdGB01MyrR085P5kKxM70+puO8+eyy/eNz7YviCwOv3ivUb5lOmZSYElWmZykV2ixbSww8nv54UTNDSfQGZTqZlr15VWQcVFf4+PxtBS+f+lk5WRi6DlqlujyDLkc5FvrP8qVxoDR7sfS5Mlt/tUa+efRMv32Sye/gzz8T/7Tp0sMd3jKdtWztwGUsux7R0ynbQMt1MywEDkstAbtHCX9a53zaD+9jonJAo0ZiWuZo9PF1+uoenc5MsSNnqHu78vnXqSBs3ei+XTvdwSdpzz6pg5X/+k1wZ3fye17z202Tab+nu5+7fLN33C3JMy0S/5+7d8ScuzAS6h8fEloA3kzItP/mk6nFNCFr6kalMSzdTuodL0SeidBr9uQhaJuoiGkuqJ9+jjrL/HzbM3/LZuHi55hr7/2bNYnexcoqVaen1e8UKqpmeaXn88fb/ztnWgxTUmJbZyEZ2CmJsV/exxG+mZTrfNTzWWb16VTOIplr3/Qiqe7hJmZZemWxTp1Z/LsiL5oYNq3ppXHxxcuvGu+kXS7i+n3hicMdev/tVts/pQfF7znd/P6+bEO7fKRsXfb162f+3a2dnAwYl2YB7rOBvprKDMt093M1v0DLWcSxR93AyLW3pdl0OSra6h99wQ9XjBx+MvVwqQUvn8eeRR6oep5IJH74hVVwsHXecv3XS3U/TXT/V2cxjyXT3cGf9qqzM/jAQZFrGZMCAHDBSrse09AqQ1q1bNfZQLPlQubOdaRnvgJup7uGxxPvuzhNROuUyuXu4W6qN+CeflF57TRoyxN/y2agXV11lByt79fL3/WNlWnr9XrF+Q9MzLR9+2O4eGg4yBy2ITMvS0uzfyXVvxyB+R7+ZlukcW/73f6VOnaT99qs6zmYr0zKdIJ77fJrLoGX//tJjj9kXxXvuaQ//8j//U329n38OrgwFBfYQAIsXe39WPKkELV9+WXr9dWno0OQ+K56aHrT0m2np55ici3Hyr7nGnoW7T59gz0vpZFo6J7Pzu32TFe+7uoOWQWyX5s2DzbTMx6BluvwELU3MtIzVPTyI9m337vb54eefpUGDYi/npz66z6HO49Fhh0lvvGE/l8rN7AkT7BtwnTv7vyZP92ZB0JmWQQdBk5Woe3hhYVXQ3ivTMtNc38/Kh7hGlhC0hDeTMi3D9t7buzFaUFB1EDJhYOwgpPM93OualGkZb9IY50VZkDPlmtQ93C3VxkDTptKoUf6Xz8ZJr7TUHtzbr2QyLWP9hpn+Xu4GTbKf16iRPU5ipgSRaZntGxdS9eN4EMdtZ2A7Xr1K5zxWXFx9cqlMZloGFbQ0KdOyuDh6OI9OnbzXCzrI0rZtahPTJDsRj2Rng51+evKfFY/f3yUX9TkImR4nLNPKypI7//mVbLJArKCl3wnGkpXtTMsmTfwF8FINWjrH4XSep0yaiCfdoLyz3LGCcKZkWrZuXfV4v/0yF7SU7BtqXurUqbqJ5ieLOtGx7IgjkipWlKKiqh48yayTjnRvagedaZnucSRR93B30DLbN/VjjceL1IKWv/vd74Iuh6699trA3xNpyPWYll4XlrG6hhcVVY2FWFPuSAT5PUwKWg4aJA0caI9T+vzz0a85y+l3XDkv+RS0zNbJyF2+UEi66CJ7sqQ77shOGdySGdMyV5mWbqYdX4LItDQhWJDq73jLLfbkGP/7v9F1yf2dXnjBDvIfeaSdURGkfBjTMtHFdraDlrHMny/96ld2xvbgwcGWI1XO41Qux5ZKNDROWL5mWiZzDPjNb6Tbbos9cURN0revPRTF4sX2sSXWWHthzm7227ZVPc5UpmU2gpa33253pb3oougkhXj8Bi3dk3vGa5OZkmmZbrvR+V6mZ1r+5jf2WLKbNtldq198sfoymTguX3KJdM89dhujZ09p+HA7aHrCCYnXNaFN5ZRukC/dLN+gMy3T/b0TdQ8PalieVNE9PKaU9pzrrrtOoYAvtglaGsbUTEsv+Ra0zPZdE5OClqGQ3TVix47qn+080Yd/z1SY0D3ctP3QXZ7CQnv2wFtuyd1Fbj6MaZnrz0skiNnDTZhMINVG7OTJ9hiFiRrFxx8vbdiQmX09W0HLdBrPoZBdrvBx1dSg5aBB0g8/2GUwJbvAPRFErvjtSpivQctkjkMzZkjTpuXvd01GKCT9/e92Hb3gAukvf4m/vEmZlsmMrx7PJZdI559f9Xv7ORbGOg67j33t2/svh3vc1Xzt2eVn9mRTMi3r15dWrbLLU1KS2UxLp9tvl266qerz1q3zf14yLds93f003aBl0JmW6Z6H/XQP91o2WwhaxpRyuNqyrMD+wUC5Dlp6fdZee3kv66zQ+TDLltcB191FLsh6kanx3VIVawbAmpRpacoFd5hX0FLK7UVfPoxp6WZa4yHViYJqSqal5L0POy/cw939MrWv50P3cCk6aOHe3qNHVz1OdszHRJLNBi4rM+v46ecCPxu6dPG3XL4G8vbcs+qxn++ar98zFeE2U6K6425bZSPTMt6x2z2+ejo3yJzfy0/7OFZddZa3Tp3ooOV++0Uv6zwWjhpV/VifzeOUs0vwqaem915+bsSYkmkp2b9l+LyaqYl4vDj3uWTOSya0qZxynWnpvs7M9Y1y5wRGXsNsBdnuSoV7e+VDXCNLUrpSeOONN4IuB0yT6+7hXp/Vtq33ss5GiEknWr9OOUX63e/8X5QkK942Manhn6lMy1wELeN56y3p1lulc87JXHncYgUtc4lMy/Sl2vhzNr5z3YDMRBnq1rUzkl58Ubr++mDf2y0fJuKR7KDFhg3V31eSrr7a7nbauLE0Zkx6n+MWxEzxuZRo/Kts8fvZpmX5+NWihfTAA3ZW4bRp6b/fa69J995rZ+nVFImOLfXqRR/bnUHLXGRaZqrup3Mj4aefqh536GBP7nnvvfbQFO7hBs45x87y275duvLKlIsbiAsvlD7/3G4bX3ZZeu/lJ3vMlExLt2xlWqbDtGNwkJmJqQi6e3i63+fcc+16/csv0m9/W/115zEl3O76v/+zz0+TJ6f32X6QaRlTSnvOwIEDgy4HTGPi7OE1JWjpPODuvbc9E7RbkJmW8WZhNekC0tnATafBlMxEREFJ5iQ8YID9L5vcDXsT7ty5yxDOymBMS/9S3bed9cuEY0Amfsczz7T/ZVq+BC2dQQt3JnuDBtL996f3/rGkOu6qKUzJtJTswN769fGXMelGZLLOPtv+J6XX20Kyx4E8+uj0y2SSRHXHnU35yy9Vj3MRtExn2Xic7eNYdTJWG/qrr6oed+hg/3/BBfY/t8JCewgdExQV2eO4BsHP9YWp11Jex7dcH5fdTMi0dI79mm7QsaZ1Dy8qkmbOjP26V/fwYcPsf9mQag+qWsCwmg5jNGsW/XdpaXYbw2Vl1Q/8bdp4L+s8AJp6d9DJeTf33nurHofv4DRvXn1w8HQ4G66SPQacZHe3z1RDNhV33VX1OJ2GYi7GGTL9pBIKRZfRhPLG6h4evpBwItPSW6oXgc6AgAlBpHwdG0zKbPfwWbOqHt90U3rvFWusu0wjaBmcp5+uehxrjO98DloivmSDln/+c9Xj664LvDiSkqsTJmRaegUtk3Hiifb/hxyS/Lq5dN999v+lpf66l591VkaLk7Jsdg9PlSlBy7BUgpbhbPcGDdLf14POtMy0hx+uenzVVdn/fHdQNtftDoMYvucgZ7p0sRtA4YubbI5nGda4cVVWQWlp9ZkIw4KaYTVbDjjAngny55/tiQfCbrhB6tfPHnA/yIO6O9Py5pvtGbwPOcSsg2HfvtLChfZdvb59U3+fXJwQTT8JS3Y9Cd89N6GRF6t7+Lhx0vTp0Xd3/c4EmmkmbDenVC8CncMvmNDAzof6E0smMy0PO8yeuKy4WOrdO733ct6gcnYbzTSClsE5/HBpwQK7TI89ZncXdTOtayKCk6juuCeKOfZYu7t948aZG34omawnE4KWTqkELWfPlk4+WTryyNQ/NxfOPltq1cpOiAiP8+zliivsMY7Ly9PPds4Euof749XFORmXXy517Wpfr6Y7mam73uc60zKRoUPt4UUaNpQ6d87sZ/lh2v6dQ3l8pYCMKiyU+vSxg0hS9Wy9bGjUqCpo2aZN7ANVvmVaSlL//tWfKyuzG0NBaNtW+vZb+7E72Fuvnj2OpokOPzz99yBo6a2oqCpYZcJJMFam5d57242GOXOqXiPT0luqATIyLYOTyUzLUEg64ohg3otMy9SYFLSU7BuOkvT8896v59v2hX/JZlqGQtIxx2SuPMkK6vzZqlXVY/fkOYk0aiRt3mw/7tYt+c9u1Eg67bTk18u1oqLoCUhiGTFC6t4948VJWT4ELU24EZzuDNglJVVZxekKTxAWjiOYHrQMhcwaWsSEdoch2BKI7aCDqh6HT/LZ5GygtW4de7l8G9MyG156yb67vv/+0tixuS5NdhG09GZa9/B4wZ4JE6JfY0xLb0F0DzehgZ0P9SeWTGZaBolMy9SYFrQM87p4P/NMOzsENVOyQUsTPPywfUw844zqs4mn6te/lvbZxx7G6rHHvJeJNQ7fk0/aGalHHGFnoiKa6ediuof7k2738KA5s0/zrQ2Qa6bt3zlk+NEJOdW1a24/35kNEm8SoHzrHp4NPXtKa9faJweTLrSygaClN9OClu790nn3dMiQ6NfWrfN+j9qeaRlE93ATGpCmbddk5EvQMleZljVp9nCTzqXuLoirVkn77pubsiA78jFoOWaM3bMnyLFW69WTPv3Ubu8ne7wdMkT6z38Y+zUW04/P+TARjwnb0LSgZVlZVfKT6ZmWpsnn9nHADKvpMIpzlng/3QqC5swGidcYI2jprbTUvJN5NuTiAJ8P29m0oGW8MhQUSBMnVv3dq5f3cmRapraeCd3DnRkTpgb6/Mhk9/AgOc+hucy0zIcbPE6mBi3dF+9BZbHBXO5ji3t/NDFoKWUmQFhQEP9Y6xxW45xzMl+emsL043M+dA83IaiW7piWQXPeZEtlH3NOHpVvk2Cly6R2R44ZfnRCTnXqZM9u/frr9iQx2ea8sIo3yzXdw+EUq1tQpj37rN1VacqU3Hx+Is56YsJJMFEZbrrJrs87dkjHHy+98IL017/a29nvewTNhO3mlM9ByyVLpN//XjrpJDMyE1KVL5mW8c6hmUT38MxwX7zn23ZF8ty/cePG0oYNVX+bGrTMheHDpWuuscd2nzEj16XJH6YfR/Khe7gJ54l0x7QMmvN8lUrQ8s477ffYe+/8mwQrXSbsT4YgaIn4LrjA/pdr8bIICFrCKVczHp54YnADV2eCaZmWiU7EJSXSHXdU/X388fY/513sbN/RzlVAPJZ8HtOyRw/p6adz89lBysdMy2yqSUFLE46bYQQtax/3b9yoUXTQ0j17eG0WCkm/+12uS5F/TD+O5EOmpQlBJtO6h6ebadm8ufTQQ4EVJ6/QgzTCgJoFxPDww/b/xcXSpEmxl8vH2cOROewD3kwLWjrHVUwVQcvU1jNtTMt8li+ZluecU1XWBx/M3ufme9DyppuqHs+albtyuLnHtMy37YrkuX/jfv2i/+7TJ3tlQc2Uj93DTQgSOpnQPbymZVrWNuPH2//vuafUtGluy2IQ9hyY6+ST7S5trVpJ7dvHXo4xLeHEPuDN2VAwIWj588+5LkHyTGj8OeVzpmVNkS9By5YtpeXLpa++koYNy97n5nvQsmdP6a237ED/4YfnujRV3Bfvpu53CI677vTubV/cLl1qd5scPjw35ULNYfrxmUzL5MtgQg9EZg9Pzs032/OK9Otnxv5kCIKWMFdBgb9GGJmWcHIGZLijV8W0TMuffkr/PdzZRplWUzItO3e2L3Ql+04uUpcv3cMl6YAD7H/ZlO9BS0kaMCDXJajOffFuwjEdmeU1qdWAAWbun8hPpreZwxMwOXuLmHbsMyHI1KWLtGaN/bht29yWRSLTMll169qJW1LuhjwzkAE1C0gTQUs4OfcBTo5VakrQ8rHH7GDlaafZ49xkk2mZlqWl0tln2434Bx7wv95DD0nNmkn77CNdfnnGilcr5EumZa64t0c+Bi1N5A5amtAlEZnlrksmnMdRs+TD8dn0GzYmHIsfeEBq0ULq0MGekCrX0h3TElCeBi0XLVqk4447Tq1bt1YoFNILL7yQcJ0FCxaoV69eKi0t1d57762HauuArjURE/HAiaClt5oStBw1Stq0SXr88UCL44tpmZaS3TjdvNkOXvrVpYs9q+qnn+ZuVumagqBlfDUh09JE2c4yR+55ZVoCQcqHfco9g7gJ7VknEzItO3aUvvlG+vxzqXHjXJeGTEsEwoCalbzt27erR48emuVzUPTVq1dr+PDhGjRokFasWKGJEyfq3HPP1d///vcMlxRZcfzxVY/D6dSovZyp9FwgV3E2FExoVB1ySNXj0aOTW9drXKNsMC3TMiyV7VFaasZ+kO/yqXt4LhC0zIxcHQORO+66Y1qwBvkvH47P7mOfae0Y5xAsuRwHuaTEnGMEmZYIQF7uOUOHDtXQoUN9L3/vvfeqY8eOuuWWWyRJ++23n9566y3NnDlTQ4YMyVQxkS0XXij9+9/2xB6XXZbr0iDXyLT0Zlqm5dFHS1On2hOD/PfYbDwTMy2RW2RaxkfQMjMIWtY+ZFoi0/JhnzI903L//aXbbpPefVf6wx9yXRozkGmJANSKPWfJkiUaPHhw1HNDhgzRxIkTY66zY8cO7dixI/L3li1bJEkVFRWqqIGDooa/U95+t5tuqnqcr98BgSjcuTOSQm4VFWlXnuwPma6DRZLCI+1UFhRotwnb5aqrqh6bUB4PzsvE3RUVqjS0nAhGsvUwZFlRDamKUMjYfTlXnHVoVygki+2TvoKCqO2at223GPK+TZoBoVAo6lizy7KMqEuxbkPw2+WHqOPI7t2RYbZMrYNFpaVyjhppSj2IcvHF9j+J9oCkguJihUPLuwsLaUcnwdR6GJRkvletCFquXbtW5eXlUc+Vl5dry5Yt+vnnn1XHfddG0vTp03X99ddXe/61115T3bp1M1bWXJs7d26uiwCkpf7AgTrqmWckSe+cd57Wz5mT4xIlJ1N1cODmzWr838cbNm/W23m2XXLFMfiE/vXZZ1rFdqsV/NbDRv/+t45w/P3m0qXaGp61E5Ki69Di997Txs2bc1aWmqLed9/JeSt+Tg09LtEmrdLk00/l7Gy64qOP9J0Bv/vxMZ6vqftkTdNr4EC1W7hQW9u21XyP38y0Ojhg1y41c/y9+N13tfG/iUUwU7fvv9de/3385Tff6COODUkzrR4G5ack5jeoFUHLVEyZMkWTJ0+O/L1lyxa1a9dOxxxzjBo2bJjDkmVGRUWF5s6dq6OPPlrFdN9Cntt14IHStm3qc+SRZszk50Om62CR4ybMHnvsoWHDhgX+GTXdPnvtpb3YbjVa0vXwH/+I+vOwo46yZ2WHp/4DB0o9e+a6GPnv66+j/qxpx3PapNWFXMkXB/burR4G/+41bZ+ssQ4/XLvmzFHZ4YdrWMuWkadNrYOFTzwhffxx5O9DBgyQ1bdvDkuERAreflt6+WVJUod99tGeHBt8M7UeBmVLEjccakXQsmXLllq3bl3Uc+vWrVPDhg09sywlqbS0VKUeszMWFxfXyJ0mrKZ/P9QShx6a6xKkLGN10DFYeUEopALqedIKCwpUyHarFXzXQ9fYgsX16jFuYxzFZWVsnyA0aBD1Z01tt9EmdXBdrxQZXpf43fJEkyZxJ0M0rg62axf1Z1FpqdH1AJIcPVQLS0poR6fAuHoYkGS+k2FTbmVG//79NW/evKjn5s6dq/79++eoRACQQ0wokxpTZw9H7jART3JqYKM7JzxuqqOGY/ZwQGrTJvpv6oH5mIgHAcjLoOW2bdu0YsUKrVixQpK0evVqrVixQl//t7vMlClTNGbMmMjyF154ob744gtdfvnl+vTTT3X33Xfrqaee0qRJk3JRfADIPmc3eYKWqWG7wc19wUTQMj6ClsFg9vDah9nDAYKW+ch5k43jFlKUl0HLZcuWqWfPnur533GRJk+erJ49e+raa6+VJK1ZsyYSwJSkjh076v/+7/80d+5c9ejRQ7fccov+/Oc/a8iQITkpPwBkXZ6M7Wkcxw2wfB52ABlCpmVyCFoGw7mfsU1rh3zKtDzttFyXADUVQcv847zJxvkKKcrLcPcRRxwhK07Gy0MPPeS5zgcffJDBUgEAapyZM+1Gcbt20tChuS4NTEPQMjlcsAQjFJKeeUZ6/HHpyitzXRpkQz5kWoZC0tix0owZuS4Jaip30LIgL/OvahcyLREA9hwAqG3o5uzfHntIs2fnuhQwlTvLg6BcfGyf4Iwcaf9D7eC+IWJihtlVV0nTpuW6FKjJWrWK/tvEeoBojGmJAHB7AgAAIBXuBjhZH/ERtARSkw+ZlkxWh0zLp2ESYPvvcH6SpAMPzFkxkN8MPOMBAALHRDxA8EwMHJiMoCWQmnwI1hC0BOC2337SkiXS9u3SkUfmujTIU7S2AQAAUmFi4MBkbC8gNaZmWu61l/Tvf9uPW7TIbVlQ++zenesSwI9+/XJdAuQ5+jEBQG1ApiUQPFMCByabPdsej2/cuOixrQD4Z2qm5XPP2WM/d+0qXXRRrkuD2uDFF+1zybHHSvvum+vSAMgCWtsAUBs4g5YAgmFK4MBk48ZJo0YRsATS4T6Hm3LD5IADpO+/t4OqjOmLbPjVr6SNG+1ZqWnbArWCIWc8AACAPGNK4MB0BCyBYJl0w6S0NNclQG3DOQWoVbglBgC1Dd3DgWCQWQQgF7hhAgCoJWhtAwAApIKuaQBywaRMSwAAMoigJQDUBkzEA2RG9+72/6NG5bYcAGoPMi0BALUEZzwAAIBUzZ0rLVggDRuW65IAqC3ItAQA1BIELQGgNiDTEsiM8nLp1FNzXQoAtQmZlgCAWoLu4QBQGzD2HgAANQOZlgCAWoKgJQAAAADkCzItAQC1BEFLAKht6B4OAED+ItMSAFBLELQEAAAAgHxB0BIAUEsQtASA2oCJeAAAAAAAeYSgJQAAAACY7IIL7P/bt5fq189tWQAAyBJGcQaA2oBMSwAA8tett0pHHikdcohUQN4JAKB2IGgJALWBM2gJAADyS9260imn5LoUAABkFbfpAAAAAAAAABiFoCUA1DZ0DwcAAAAAGI6gJQAAAAAAAACjELQEgNqAiXgAAAAAAHmEoCUAAAAAAAAAoxC0BIDa4I9/rHp8++25KwcAAAAAAD4U5boAAIAs6NNHeustqaJCOuywXJcGAAAAAIC4CFoCQG0xYECuSwAAAAAAgC90DwcAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCh5HbScNWuWOnTooLKyMvXt21fvvvtuzGUfeughhUKhqH9lZWVZLC0AAAAAAAAAP/I2aPnkk09q8uTJmjp1qt5//3316NFDQ4YM0fr162Ou07BhQ61Zsyby76uvvspiiQEAAAAAAAD4kbdBy1tvvVXnnXeexo0bp65du+ree+9V3bp1NXv27JjrhEIhtWzZMvKvvLw8iyUGAAAAAAAA4EdRrguQip07d2r58uWaMmVK5LmCggINHjxYS5Ysibnetm3b1L59e1VWVqpXr1668cYbtf/++3suu2PHDu3YsSPy95YtWyRJFRUVqqioCOibmCP8nWridwPyAXUQyD3qIZB71EMgt6iDQO7V9HqYzPcKWZZlZbAsGfH999+rTZs2Wrx4sfr37x95/vLLL9fChQu1dOnSaussWbJE//rXv3TAAQdo8+bN+uMf/6hFixbp448/Vtu2bastf9111+n666+v9vxjjz2munXrBvuFAAAAAAAAgBrup59+0umnn67NmzerYcOGcZfNy0zLVPTv3z8qwHnIIYdov/3203333adp06ZVW37KlCmaPHly5O8tW7aoXbt2OuaYYxJu1HxUUVGhuXPn6uijj1ZxcXGuiwPUOtRBIPeoh0DuUQ+B3KIOArlX0+thuCezH3kZtGzWrJkKCwu1bt26qOfXrVunli1b+nqP4uJi9ezZU59//rnn66WlpSotLfVcrybuNGE1/fsBpqMOArlHPQRyj3oI5BZ1EMi9mloPk/lOeTkRT0lJiXr37q158+ZFnqusrNS8efOisinj2b17t1auXKlWrVplqpgAAAAAAAAAUpCXmZaSNHnyZI0dO1Z9+vTRwQcfrNtuu03bt2/XuHHjJEljxoxRmzZtNH36dEnS7373O/Xr10977723Nm3apBkzZuirr77Sueeem8uvAQAAAAAAAMAlb4OWp556qn744Qdde+21Wrt2rQ488EC9+uqrKi8vlyR9/fXXKiioSiTduHGjzjvvPK1du1ZNmjRR7969tXjxYnXt2jVXXwEAAAAAAACAh7wNWkrShAkTNGHCBM/XFixYEPX3zJkzNXPmzCyUCgAAAAAAAEA68nJMSwAAAAAAAAA1F0FLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAABUzuKoAAB8bSURBVAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKHkdtJw1a5Y6dOigsrIy9e3bV++++27c5Z9++ml16dJFZWVl6t69u+bMmZOlkgIAAAAAAADwK2+Dlk8++aQmT56sqVOn6v3331ePHj00ZMgQrV+/3nP5xYsXa9SoUTrnnHP0wQcfaMSIERoxYoQ++uijLJccAAAAAAAAQDx5G7S89dZbdd5552ncuHHq2rWr7r33XtWtW1ezZ8/2XP7222/Xscceq8suu0z77befpk2bpl69eumuu+7KcskBAAAAAAAAxFOU6wKkYufOnVq+fLmmTJkSea6goECDBw/WkiVLPNdZsmSJJk+eHPXckCFD9MILL3guv2PHDu3YsSPy9+bNmyVJGzZsUEVFRZrfwDwVFRX66aef9J///EfFxcW5Lg5Q61AHgdyjHgK5Rz0Ecos6COReTa+HW7dulSRZlpVw2bwMWv7444/avXu3ysvLo54vLy/Xp59+6rnO2rVrPZdfu3at5/LTp0/X9ddfX+35jh07plhqAAAAAAAAAFu3blWjRo3iLpOXQctsmDJlSlRmZmVlpTZs2KCmTZsqFArlsGSZsWXLFrVr107ffPONGjZsmOviALUOdRDIPeohkHvUQyC3qINA7tX0emhZlrZu3arWrVsnXDYvg5bNmjVTYWGh1q1bF/X8unXr1LJlS891WrZsmdTypaWlKi0tjXqucePGqRc6TzRs2LBGVgogX1AHgdyjHgK5Rz0Ecos6COReTa6HiTIsw/JyIp6SkhL17t1b8+bNizxXWVmpefPmqX///p7r9O/fP2p5SZo7d27M5QEAAAAAAADkRl5mWkrS5MmTNXbsWPXp00cHH3ywbrvtNm3fvl3jxo2TJI0ZM0Zt2rTR9OnTJUmXXnqpBg4cqFtuuUXDhw/XE088oWXLlun+++/P5dcAAAAAAAAA4JK3QctTTz1VP/zwg6699lqtXbtWBx54oF599dXIZDtff/21CgqqEkkPOeQQPfbYY7r66qt15ZVXap999tELL7ygbt265eorGKW0tFRTp06t1iUeQHZQB4Hcox4CuUc9BHKLOgjkHvWwSsjyM8c4AAAAAAAAAGRJXo5pCQAAAAAAAKDmImgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtIRmzZqlDh06qKysTH379tW7776b6yIBNcL06dN10EEHqUGDBmrRooVGjBihVatWRS3zyy+/aPz48WratKnq16+vkSNHat26dVHLfP311xo+fLjq1q2rFi1a6LLLLtOuXbuy+VWAGuEPf/iDQqGQJk6cGHmOOghk3nfffaczzjhDTZs2VZ06ddS9e3ctW7Ys8rplWbr22mvVqlUr1alTR4MHD9a//vWvqPfYsGGDRo8erYYNG6px48Y655xztG3btmx/FSAv7d69W9dcc406duyoOnXqaK+99tK0adPknJOXeggEa9GiRTruuOPUunVrhUIhvfDCC1GvB1Xn/vGPf+iwww5TWVmZ2rVrp5tvvjnTXy2rCFrWck8++aQmT56sqVOn6v3331ePHj00ZMgQrV+/PtdFA/LewoULNX78eL3zzjuaO3euKioqdMwxx2j79u2RZSZNmqSXX35ZTz/9tBYuXKjvv/9eJ554YuT13bt3a/jw4dq5c6cWL16shx9+WA899JCuvfbaXHwlIG+99957uu+++3TAAQdEPU8dBDJr48aNGjBggIqLi/XKK6/ok08+0S233KImTZpElrn55pt1xx136N5779XSpUtVr149DRkyRL/88ktkmdGjR+vjjz/W3Llz9be//U2LFi3S+eefn4uvBOSdm266Sffcc4/uuusu/fOf/9RNN92km2++WXfeeWdkGeohEKzt27erR48emjVrlufrQdS5LVu26JhjjlH79u21fPlyzZgxQ9ddd53uv//+jH+/rLFQqx188MHW+PHjI3/v3r3bat26tTV9+vQclgqomdavX29JshYuXGhZlmVt2rTJKi4utp5++unIMv/85z8tSdaSJUssy7KsOXPmWAUFBdbatWsjy9xzzz1Ww4YNrR07dmT3CwB5auvWrdY+++xjzZ071xo4cKB16aWXWpZFHQSy4YorrrAOPfTQmK9XVlZaLVu2tGbMmBF5btOmTVZpaan1+OOPW5ZlWZ988oklyXrvvfciy7zyyitWKBSyvvvuu8wVHqghhg8fbp199tlRz5144onW6NGjLcuiHgKZJsl6/vnnI38HVefuvvtuq0mTJlFt0iuuuMLq3Llzhr9R9pBpWYvt3LlTy5cv1+DBgyPPFRQUaPDgwVqyZEkOSwbUTJs3b5Yk7bHHHpKk5cuXq6KiIqoOdunSRXvuuWekDi5ZskTdu3dXeXl5ZJkhQ4Zoy5Yt+vjjj7NYeiB/jR8/XsOHD4+qaxJ1EMiGl156SX369NHJJ5+sFi1aqGfPnvrTn/4UeX316tVau3ZtVD1s1KiR+vbtG1UPGzdurD59+kSWGTx4sAoKCrR06dLsfRkgTx1yyCGaN2+ePvvsM0nShx9+qLfeektDhw6VRD0Esi2oOrdkyRIdfvjhKikpiSwzZMgQrVq1Shs3bszSt8msolwXALnz448/avfu3VEXYpJUXl6uTz/9NEelAmqmyspKTZw4UQMGDFC3bt0kSWvXrlVJSYkaN24ctWx5ebnWrl0bWcarjoZfAxDfE088offff1/vvfdetdeog0DmffHFF7rnnns0efJkXXnllXrvvfd0ySWXqKSkRGPHjo3UI6965qyHLVq0iHq9qKhIe+yxB/UQ8OG3v/2ttmzZoi5duqiwsFC7d+/WDTfcoNGjR0sS9RDIsqDq3Nq1a9WxY8dq7xF+zTkUS74iaAkAWTB+/Hh99NFHeuutt3JdFKDW+Oabb3TppZdq7ty5Kisry3VxgFqpsrJSffr00Y033ihJ6tmzpz766CPde++9Gjt2bI5LB9QOTz31lB599FE99thj2n///bVixQpNnDhRrVu3ph4CMBrdw2uxZs2aqbCwsNosqevWrVPLli1zVCqg5pkwYYL+9re/6Y033lDbtm0jz7ds2VI7d+7Upk2bopZ31sGWLVt61tHwawBiW758udavX69evXqpqKhIRUVFWrhwoe644w4VFRWpvLycOghkWKtWrdS1a9eo5/bbbz99/fXXkqrqUbz2aMuWLatNErlr1y5t2LCBegj4cNlll+m3v/2tTjvtNHXv3l1nnnmmJk2apOnTp0uiHgLZFlSdqw3tVIKWtVhJSYl69+6tefPmRZ6rrKzUvHnz1L9//xyWDKgZLMvShAkT9Pzzz2v+/PnVUvd79+6t4uLiqDq4atUqff3115E62L9/f61cuTLqhDV37lw1bNiw2kUggGhHHXWUVq5cqRUrVkT+9enTR6NHj448pg4CmTVgwACtWrUq6rnPPvtM7du3lyR17NhRLVu2jKqHW7Zs0dKlS6Pq4aZNm7R8+fLIMvPnz1dlZaX69u2bhW8B5LeffvpJBQXRl/6FhYWqrKyURD0Esi2oOte/f38tWrRIFRUVkWXmzp2rzp0714iu4ZKYPby2e+KJJ6zS0lLroYcesj755BPr/PPPtxo3bhw1SyqA1Fx00UVWo0aNrAULFlhr1qyJ/Pvpp58iy1x44YXWnnvuac2fP99atmyZ1b9/f6t///6R13ft2mV169bNOuaYY6wVK1ZYr776qtW8eXNrypQpufhKQN5zzh5uWdRBINPeffddq6ioyLrhhhusf/3rX9ajjz5q1a1b13rkkUciy/zhD3+wGjdubL344ovWP/7xD+v444+3OnbsaP3888+RZY499lirZ8+e1tKlS6233nrL2meffaxRo0bl4isBeWfs2LFWmzZtrL/97W/W6tWrreeee85q1qyZdfnll0eWoR4Cwdq6dav1wQcfWB988IElybr11lutDz74wPrqq68sywqmzm3atMkqLy+3zjzzTOujjz6ynnjiCatu3brWfffdl/XvmykELWHdeeed1p577mmVlJRYBx98sPXOO+/kukhAjSDJ89+DDz4YWebnn3+2Lr74YqtJkyZW3bp1rRNOOMFas2ZN1Pt8+eWX1tChQ606depYzZo1s379619bFRUVWf42QM3gDlpSB4HMe/nll61u3bpZpaWlVpcuXaz7778/6vXKykrrmmuuscrLy63S0lLrqKOOslatWhW1zH/+8x9r1KhRVv369a2GDRta48aNs7Zu3ZrNrwHkrS1btliXXnqpteeee1plZWVWp06drKuuusrasWNHZBnqIRCsN954w/NacOzYsZZlBVfnPvzwQ+vQQw+1SktLrTZt2lh/+MMfsvUVsyJkWZaVmxxPAAAAAAAAAKiOMS0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAgDzUoUMHhUIhnXXWWbkuCgAAQOAIWgIAACTpggsuUCgUUigU0vz585Na97XXXouse+mll2aohAAAAEB+I2gJAACQpDFjxkQeP/LII0mt+9e//tXzfXJlwYIFkSDqggULcl0cAAAAQBJBSwAAgKQNGDBAe+21lyTp2Wef1c8//+xrve3bt+v555+XJO2///7q3bt3xsoIAAAA5DOClgAAACk488wzJUlbtmzRiy++6Gud5557Ttu3b49aHwAAAEB1BC0BAABScOaZZyoUCkny30U83DW8oKBAZ5xxRsbKBgAAAOQ7gpYAAAAp6NSpkwYMGCBJ+vvf/67169fHXf7777/XvHnzJElHHnmk2rRpU22ZF154QSeffLL23HNPlZWVqXHjxurTp4+uv/56bdy40Ve55syZozPOOEOdOnVSvXr1VFZWpo4dO2rkyJF66KGH9NNPP0mSvvzyS4VCIQ0aNCiy7qBBgyLjW4b/PfTQQ9U+Y+fOnbr77rs1aNAgNW/eXCUlJWrZsqWGDRumRx55RJWVlTHLd9ZZZykUCqlDhw6SpDVr1uiKK67Q/vvvrwYNGiQ9tqbXmJxPPfWUjjrqKDVv3lx16tRR586ddfnll2vDhg0x3+eII45QKBTSEUccEffzrrvuusjneQm/dt1110mS3njjDY0YMUKtW7dWnTp1tN9++2natGmRjNuwOXPmaNiwYZHlunbtqunTp2vnzp2+t8V7772nUaNGqV27diorK1O7du00btw4ffrpp77W//zzzzVp0iR1795djRo1Up06ddSpUyedddZZWrZsWcz13L9BZWWlZs+erUGDBqm8vFwFBQXMcA4AAJJnAQAAICX333+/JcmSZN1+++1xl50xY0Zk2b/85S9Rr23YsME68sgjI697/WvRooW1ZMmSmO//448/WkcddVTc95BkPfjgg5ZlWdbq1asTLutcPmz16tVWly5d4q5z6KGHWv/5z388yzl27FhLktW+fXtryZIlVrNmzaqt/8YbbyTc9mFvvPFGZL158+ZZZ5xxRsxy7b333taaNWs832fgwIGWJGvgwIFxP2/q1KmR9/MSfm3q1KnW9OnTrVAo5FmWQw45xNq2bZtVWVlpXXLJJTHLfOyxx1q7du3y/Kz27dtbkqyxY8daDzzwgFVUVOT5HqWlpdZTTz0V93vNmDHDKi4ujlmOUChkXXPNNZ7rOn+DV155xRo8eHC19ceOHRv38wEAANzItAQAAEjRKaecorKyMknRs4J7Cb9ev359nXjiiZHnd+zYocGDB2v+/PkqLCzUmWeeqccff1zvvPOO3nzzTd1www1q2rSp1q9fr2HDhumrr76q9t4//fSTBg0aFMnk7N27t+677z69/fbbWrZsmZ5//nlNmjRJrVu3jqzTpk0brVy5UrNnz448N3v2bK1cuTLq34gRIyKvb9u2TUcddVQkc2/EiBF66aWXtGzZMj399NMaOHCgJOmtt97Scccdp927d8fcHtu2bdPIkSP1yy+/6KqrrtKCBQv07rvv6oEHHlCrVq3ibstYrrnmGj3yyCMaMWKEnnvuOS1fvlxz5szR8OHDJVVlEmbDK6+8oilTpqhfv3567LHHtGzZMr366qsaOnSoJGnx4sWaPn26Zs6cqTvuuENDhw7Vs88+q+XLl+vFF19Uv379JEmvvvqq/vSnP8X9rBUrVujCCy9UixYtdOedd2rp0qVauHChrrjiCpWWlmrHjh0aPXp0zGzJGTNm6LLLLlNFRYUOOOAA3XPPPXr99de1bNkyPfroo+rfv78sy9K0adN0xx13xC3LFVdcoddff12/+tWvon6D8PcGAADwLddRUwAAgHx2yimnRLLJPv30U89lPvzww8gyY8aMiXrtyiuvtCRZjRs3tpYtW+a5/pdffmm1atXKkmSdfvrp1V6fNGlS5P3Hjx9vVVZWer7Pjh07rLVr10Y958ySS5Th+Jvf/Cay7NVXX13t9crKSmv06NGRZe6+++5qy4QzLSVZ9evXt1asWBH3MxNxll+S9fvf/96zXMccc4wlySoqKrLWr19fbZmgMy0lWSNHjqyWJblr1y6rX79+liSrQYMGVllZmTVx4sRq77N9+/ZIJuUBBxzg+Vnh1/XfzFWvLNL58+dHMjAPOuigaq9//PHHkQzLqVOneu47u3fvjmSw1q9f39qwYUPU6+7fwGvfAAAASBaZlgAAAGkYM2ZM5HGsbEvn887lt23bplmzZkmSpk2bpt69e3uu3759e11zzTWSpKeffjpqPMRNmzbpvvvuk2RnWN5+++0xx1ssKSlReXm5n69VzY4dO/TnP/9ZkrT//vtHxmx0CoVCuvvuu9W0aVNJ0l133RX3PS+//HL16NEjpfJ46d27t6688krPck2ePFmStGvXLi1ZsiSwz4ylbt26uv/++1VYWBj1fGFhoc4//3xJ0tatW9W8eXPdfPPNnuuPHTtWkvSPf/xDmzdvjvt5t9xyi1q2bFnt+UGDBum8886TZI956c62vOWWW1RRUaE+ffpo6tSpnvtOQUGB7rzzTpWWlmrbtm165plnYpZj33339dw3AAAAkkXQEgAAIA1DhgyJBAIfffRRWZYV9XplZaUee+wxSVLbtm2jJr5ZuHBhJBh10kknxf2cww8/XJJUUVGh5cuXR56fP39+ZHKdSy65pFqQLCjLly/Xpk2bJNmT6cT6nIYNG+qUU06RJH3yySdas2ZNzPccPXp0oGU8/fTTYwZsnQHhL774ItDP9XL00Udrjz328HzNGag98cQTVVxcnHC51atXx/ysJk2a6Pjjj4/5+tlnnx15/Prrr0e99vLLL0uSRo4cGXPbSVLjxo3VvXt3SYob9D311FMztg8CAIDahaAlAABAGoqKinT66adLsmfkfuutt6Jenzdvnr7//ntJdpCuoKCq+eXMemvVqlW1mbud/7p16xZZdu3atZHHH3zwQeTxYYcdFuyXc/joo48ij/v27Rt3WefrzvWc6tevr06dOgVTuP/q0qVLzNecAcStW7cG+rle9t1335ivNW7cOOnl4pW5Z8+eKioqivn6gQceqJKSEknSypUrI89/9dVX+uGHHyRJU6ZMibv/hUKhyP7q3P/cDjjggJivAQAAJIOgJQAAQJridRGP1TVcktavX5/S54UzKyXpxx9/jDxOdQIbPzZs2BB53KJFi7jLOrspO9dzcgbkglK3bt2YrzmDxfEmCMp2WYIoc6Lfo6ioKBK0df4eQex/bk2aNEnpPQEAANxi35IFAACALwceeKC6d++ulStX6umnn46M/7d9+3Y999xzkuzuyV27do1azxmIev/992N2E3Zr27ZtcIVPQbxuxH7RhTg4qf4ezv3v2muv1cknn+xrvXr16sV8jd8VAAAEhaAlAABAAMaMGaPLLrtMmzZt0ssvv6yTTjpJzz//fGTSHHeWpaTIhDWS1Lx585SCkc2aNYs8XrNmjTp27JhC6RNzdq9et25d3G7Nzu7DscZ1NE04q7GysjLucs5JkEyxbt26uK/v2rUrkmHp/D2c+19xcXHUEAQAAAC5RvdwAACAAIwePTqSZfbII49IquoaXlxcrFGjRlVbp2fPnpHHb7/9dkqf26tXr8jjRYsWJb2+3yw9Z0Br6dKlcZd99913PdczWYMGDSRJGzdujLvcZ599lo3iJGXFihXatWtXzNc//PBD7dy5U1L079GpUyc1atRIUur7HwAAQKYQtAQAAAhAq1atNHjwYEnSnDlz9NFHH2nevHmSpGOPPVbNmzevts7gwYMjYxrecccd1WYe92PQoEGR7rp33nln0uM1lpWVRR7v2LEj5nK9e/eOjEP58MMPx8xI3Lp1q5566ilJUteuXTM6zmaQwhmqn332WcxJb3788UfNnTs3m8XyZcOGDZFZwL3Mnj078ji8j0p2V+5hw4ZJkl577TX985//zFwhAQAAkkTQEgAAICDhLuAVFRU67bTTIgFEr67hkj0ZzYQJEyRJixcv1qRJk+J2T163bp3+/Oc/V3uPCy64QJK0fPlyTZw4MWbws6KiotrkK86g4r///e+Yn11aWqpzzz1Xkj0j+LRp06otY1mWJkyYEJkcKPzd8sHAgQMlSTt37tSdd95Z7fWKigqde+65+vnnn7NdNF8mT57s2U184cKFuv/++yXZgeeDDjoo6vUpU6aosLBQlZWVOumkk/Ttt9/G/Izdu3fr0UcfjbsMAABAUBjTEgAAICAnnHCCGjRooK1bt+rjjz+WZM+mfNxxx8Vc53e/+50WLlyopUuX6vbbb9eCBQt03nnn6cADD1S9evW0ceNGffzxx3r99df1yiuvqHv37pHgYdi0adM0d+5crVy5UnfddZeWLFmiCy64QN27d1dJSYm+/fZbvfnmm3r88cf1+9//XmeddVZk3T333FNt27bVt99+qz/+8Y9q27atOnfuHOnqXl5eHuk6fe211+q5557TF198oeuuu04rV67UuHHj1KpVK61evVp33XWXFixYIEnq37+/zj///AC3bmYNHz5c7du311dffaVrrrlGP/74o0488USVlZXp448/1h133KEPPvhA/fr10zvvvJPr4kbp0aOHPvnkE/Xu3VtTpkzRwQcfrB07dmjOnDmaOXOmdu3apaKiIs2aNavaut27d9cf//hHTZo0SZ988om6deum888/X0ceeaTKy8v1yy+/6Msvv9SSJUv0zDPPaM2aNVq5cmXOJ4MCAAA1H0FLAACAgNSpU0cnnXSSHnzwwchzp5xyikpLS2OuU1paqrlz5+qss87Sc889pw8//DBuhmLDhg2rPVe3bl3Nnz9fI0eO1KJFi7R8+fKkAoZXXnmlLr74Yq1evVrHH3981GsPPvhgJMjZoEEDzZs3T0OHDtWnn36qZ599Vs8++2y19xswYIBeeumlvJpJuqSkRI888oiOPfZYbd++XTNnztTMmTMjrxcWFuq2227Thg0bjAtaHnjggZowYYIuuugiz32npKREDz/8sPr27eu5/sSJE1WvXj1NnDhRmzdv1owZMzRjxgzPZUtKSqKGFAAAAMgUuocDAAAEaOzYsVF/x+oa7tSgQQM9++yzevPNN3Xuueeqc+fOatCggYqKirTHHnvooIMO0vjx4zVnzpyYYyo2a9ZMCxcu1HPPPaeTTjpJbdu2VWlpqcrKytSpUyedfPLJevTRRz0nBLrooov07LPP6phjjlGLFi1UVBT7vnaHDh304Ycf6q677tLAgQPVtGlTFRcXq7y8XMcee6z++te/atGiRXkza7jToYcequXLl+vMM89U69atVVxcrFatWkWCwZdcckmuixjTueeeqzfffFOnnHKKWrdurZKSErVp00ZjxozRBx98oNNOOy3u+uedd56++OILXX/99RowYICaNWumoqIi1atXT/vuu69Gjhype++9V99995323nvvLH0rAABQm4WsVEZ8BwAAAAAAAIAMIdMSAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKP8P8J+fF6MLaNyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "AqAL8cJZOpmE", + "outputId": "610dc4b2-5545-45a1-f8c7-ab5acf1c8a48" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 2\n", + "Epoch 1/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 4s/step - loss: 16.7992\n", + "Epoch 2/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 16.7294\n", + "Epoch 3/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 16.6601\n", + "Epoch 4/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 16.5913\n", + "Epoch 5/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 16.5231\n", + "Epoch 6/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 16.4554\n", + "Epoch 7/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 16.3882\n", + "Epoch 8/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 16.3217\n", + "Epoch 9/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 16.2557\n", + "Epoch 10/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 16.1904\n", + "Epoch 11/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.1257\n", + "Epoch 12/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.0616\n", + "Epoch 13/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.9981\n", + "Epoch 14/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.9353\n", + "Epoch 15/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.8731\n", + "Epoch 16/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 15.8115\n", + "Epoch 17/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.7505\n", + "Epoch 18/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.6902\n", + "Epoch 19/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.6303\n", + "Epoch 20/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.5711\n", + "Epoch 21/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.5123\n", + "Epoch 22/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.4541\n", + "Epoch 23/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.3963\n", + "Epoch 24/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.3390\n", + "Epoch 25/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.2822\n", + "Epoch 26/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.2257\n", + "Epoch 27/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.1697\n", + "Epoch 28/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 15.1139\n", + "Epoch 29/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.0585\n", + "Epoch 30/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 15.0033\n", + "Epoch 31/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 14.9483\n", + "Epoch 32/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.8935\n", + "Epoch 33/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.8388\n", + "Epoch 34/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.7842\n", + "Epoch 35/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.7297\n", + "Epoch 36/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.6751\n", + "Epoch 37/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.6205\n", + "Epoch 38/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.5658\n", + "Epoch 39/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.5109\n", + "Epoch 40/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.4559\n", + "Epoch 41/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.4007\n", + "Epoch 42/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.3453\n", + "Epoch 43/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.2896\n", + "Epoch 44/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.2337\n", + "Epoch 45/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 14.1774\n", + "Epoch 46/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 14.1209\n", + "Epoch 47/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.0640\n", + "Epoch 48/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.0068\n", + "Epoch 49/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.9492\n", + "Epoch 50/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.8913\n", + "Epoch 51/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.8331\n", + "Epoch 52/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.7745\n", + "Epoch 53/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.7156\n", + "Epoch 54/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 13.6563\n", + "Epoch 55/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.5967\n", + "Epoch 56/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.5368\n", + "Epoch 57/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.4765\n", + "Epoch 58/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.4160\n", + "Epoch 59/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.3552\n", + "Epoch 60/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.2941\n", + "Epoch 61/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.2327\n", + "Epoch 62/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.1710\n", + "Epoch 63/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.1092\n", + "Epoch 64/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.0471\n", + "Epoch 65/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.9847\n", + "Epoch 66/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.9222\n", + "Epoch 67/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 12.8596\n", + "Epoch 68/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.7967\n", + "Epoch 69/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 12.7337\n", + "Epoch 70/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 12.6706\n", + "Epoch 71/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.6074\n", + "Epoch 72/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.5441\n", + "Epoch 73/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.4807\n", + "Epoch 74/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.4172\n", + "Epoch 75/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 12.3537\n", + "Epoch 76/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 12.2901\n", + "Epoch 77/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.2266\n", + "Epoch 78/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 12.1630\n", + "Epoch 79/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 12.0995\n", + "Epoch 80/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.0360\n", + "Epoch 81/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.9725\n", + "Epoch 82/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.9091\n", + "Epoch 83/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.8458\n", + "Epoch 84/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.7825\n", + "Epoch 85/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.7193\n", + "Epoch 86/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.6563\n", + "Epoch 87/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 11.5934\n", + "Epoch 88/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.5306\n", + "Epoch 89/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 11.4679\n", + "Epoch 90/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.4054\n", + "Epoch 91/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.3431\n", + "Epoch 92/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.2810\n", + "Epoch 93/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.2190\n", + "Epoch 94/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 11.1572\n", + "Epoch 95/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 11.0956\n", + "Epoch 96/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 11.0343\n", + "Epoch 97/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.9731\n", + "Epoch 98/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.9122\n", + "Epoch 99/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.8515\n", + "Epoch 100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.7911\n", + "Epoch 101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.7309\n", + "Epoch 102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.6709\n", + "Epoch 103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.6112\n", + "Epoch 104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.5518\n", + "Epoch 105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 10.4926\n", + "Epoch 106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.4337\n", + "Epoch 107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.3751\n", + "Epoch 108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.3167\n", + "Epoch 109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.2587\n", + "Epoch 110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.2009\n", + "Epoch 111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.1434\n", + "Epoch 112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.0862\n", + "Epoch 113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 10.0293\n", + "Epoch 114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.9727\n", + "Epoch 115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.9164\n", + "Epoch 116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.8604\n", + "Epoch 117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.8047\n", + "Epoch 118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.7493\n", + "Epoch 119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.6943\n", + "Epoch 120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.6395\n", + "Epoch 121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.5850\n", + "Epoch 122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.5309\n", + "Epoch 123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.4770\n", + "Epoch 124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.4235\n", + "Epoch 125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.3703\n", + "Epoch 126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.3174\n", + "Epoch 127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.2648\n", + "Epoch 128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.2125\n", + "Epoch 129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.1606\n", + "Epoch 130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 9.1089\n", + "Epoch 131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.0576\n", + "Epoch 132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 9.0066\n", + "Epoch 133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.9558\n", + "Epoch 134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.9054\n", + "Epoch 135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.8554\n", + "Epoch 136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.8056\n", + "Epoch 137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.7561\n", + "Epoch 138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.7069\n", + "Epoch 139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.6581\n", + "Epoch 140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.6095\n", + "Epoch 141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.5613\n", + "Epoch 142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.5134\n", + "Epoch 143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.4657\n", + "Epoch 144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.4184\n", + "Epoch 145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.3714\n", + "Epoch 146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.3246\n", + "Epoch 147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.2782\n", + "Epoch 148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.2320\n", + "Epoch 149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.1862\n", + "Epoch 150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.1406\n", + "Epoch 151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.0954\n", + "Epoch 152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.0504\n", + "Epoch 153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.0057\n", + "Epoch 154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.9613\n", + "Epoch 155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.9172\n", + "Epoch 156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.8733\n", + "Epoch 157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.8298\n", + "Epoch 158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.7865\n", + "Epoch 159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.7435\n", + "Epoch 160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.7007\n", + "Epoch 161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.6583\n", + "Epoch 162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.6161\n", + "Epoch 163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.5742\n", + "Epoch 164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.5325\n", + "Epoch 165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.4911\n", + "Epoch 166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.4500\n", + "Epoch 167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.4091\n", + "Epoch 168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 7.3685\n", + "Epoch 169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.3282\n", + "Epoch 170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.2881\n", + "Epoch 171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.2483\n", + "Epoch 172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.2087\n", + "Epoch 173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.1693\n", + "Epoch 174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.1302\n", + "Epoch 175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.0914\n", + "Epoch 176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.0528\n", + "Epoch 177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.0144\n", + "Epoch 178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.9763\n", + "Epoch 179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.9384\n", + "Epoch 180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.9007\n", + "Epoch 181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 6.8633\n", + "Epoch 182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 6.8261\n", + "Epoch 183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 6.7891\n", + "Epoch 184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 6.7524\n", + "Epoch 185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 6.7158\n", + "Epoch 186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.6795\n", + "Epoch 187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 6.6435\n", + "Epoch 188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.6076\n", + "Epoch 189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 6.5720\n", + "Epoch 190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 6.5365\n", + "Epoch 191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.5013\n", + "Epoch 192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 6.4663\n", + "Epoch 193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 6.4315\n", + "Epoch 194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 6.3969\n", + "Epoch 195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 6.3626\n", + "Epoch 196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 6.3284\n", + "Epoch 197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.2944\n", + "Epoch 198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 6.2606\n", + "Epoch 199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.2270\n", + "Epoch 200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 6.1937\n", + "Epoch 201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 6.1605\n", + "Epoch 202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.1275\n", + "Epoch 203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 6.0947\n", + "Epoch 204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 6.0620\n", + "Epoch 205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 6.0296\n", + "Epoch 206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 5.9973\n", + "Epoch 207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 5.9653\n", + "Epoch 208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 5.9334\n", + "Epoch 209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.9017\n", + "Epoch 210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 5.8702\n", + "Epoch 211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 5.8388\n", + "Epoch 212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 5.8076\n", + "Epoch 213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 5.7766\n", + "Epoch 214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 5.7458\n", + "Epoch 215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 5.7151\n", + "Epoch 216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 5.6846\n", + "Epoch 217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.6543\n", + "Epoch 218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 5.6242\n", + "Epoch 219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 5.5942\n", + "Epoch 220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.5643\n", + "Epoch 221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.5346\n", + "Epoch 222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.5051\n", + "Epoch 223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4758\n", + "Epoch 224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4466\n", + "Epoch 225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.4175\n", + "Epoch 226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.3886\n", + "Epoch 227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.3599\n", + "Epoch 228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3313\n", + "Epoch 229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 5.3028\n", + "Epoch 230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2745\n", + "Epoch 231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.2464\n", + "Epoch 232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2184\n", + "Epoch 233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 5.1905\n", + "Epoch 234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 5.1628\n", + "Epoch 235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1352\n", + "Epoch 236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 5.1077\n", + "Epoch 237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.0804\n", + "Epoch 238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 5.0532\n", + "Epoch 239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 5.0262\n", + "Epoch 240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 4.9993\n", + "Epoch 241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 4.9725\n", + "Epoch 242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.9459\n", + "Epoch 243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 4.9194\n", + "Epoch 244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 4.8930\n", + "Epoch 245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.8667\n", + "Epoch 246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.8406\n", + "Epoch 247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 4.8146\n", + "Epoch 248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 4.7887\n", + "Epoch 249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.7629\n", + "Epoch 250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.7373\n", + "Epoch 251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 4.7118\n", + "Epoch 252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.6863\n", + "Epoch 253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 4.6611\n", + "Epoch 254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.6359\n", + "Epoch 255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.6108\n", + "Epoch 256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5859\n", + "Epoch 257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.5610\n", + "Epoch 258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.5363\n", + "Epoch 259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.5117\n", + "Epoch 260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.4872\n", + "Epoch 261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.4628\n", + "Epoch 262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.4385\n", + "Epoch 263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.4143\n", + "Epoch 264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.3903\n", + "Epoch 265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.3663\n", + "Epoch 266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.3424\n", + "Epoch 267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.3186\n", + "Epoch 268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2950\n", + "Epoch 269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.2714\n", + "Epoch 270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 4.2479\n", + "Epoch 271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.2245\n", + "Epoch 272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.2013\n", + "Epoch 273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.1781\n", + "Epoch 274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1550\n", + "Epoch 275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.1320\n", + "Epoch 276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.1091\n", + "Epoch 277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.0863\n", + "Epoch 278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.0635\n", + "Epoch 279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.0409\n", + "Epoch 280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.0183\n", + "Epoch 281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.9959\n", + "Epoch 282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9735\n", + "Epoch 283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.9512\n", + "Epoch 284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.9290\n", + "Epoch 285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.9069\n", + "Epoch 286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.8849\n", + "Epoch 287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8630\n", + "Epoch 288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.8411\n", + "Epoch 289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.8193\n", + "Epoch 290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.7977\n", + "Epoch 291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.7761\n", + "Epoch 292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7546\n", + "Epoch 293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.7332\n", + "Epoch 294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.7118\n", + "Epoch 295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.6906\n", + "Epoch 296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.6694\n", + "Epoch 297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6484\n", + "Epoch 298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.6274\n", + "Epoch 299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.6065\n", + "Epoch 300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.5857\n", + "Epoch 301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.5650\n", + "Epoch 302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.5444\n", + "Epoch 303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.5239\n", + "Epoch 304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.5035\n", + "Epoch 305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4832\n", + "Epoch 306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.4630\n", + "Epoch 307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4428\n", + "Epoch 308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4228\n", + "Epoch 309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.4029\n", + "Epoch 310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 3.3831\n", + "Epoch 311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.3634\n", + "Epoch 312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.3438\n", + "Epoch 313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3244\n", + "Epoch 314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.3050\n", + "Epoch 315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.2857\n", + "Epoch 316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2666\n", + "Epoch 317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.2475\n", + "Epoch 318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.2286\n", + "Epoch 319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.2098\n", + "Epoch 320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.1911\n", + "Epoch 321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1725\n", + "Epoch 322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.1540\n", + "Epoch 323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1356\n", + "Epoch 324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.1173\n", + "Epoch 325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.0992\n", + "Epoch 326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.0811\n", + "Epoch 327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.0632\n", + "Epoch 328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.0454\n", + "Epoch 329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.0276\n", + "Epoch 330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0100\n", + "Epoch 331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.9925\n", + "Epoch 332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.9751\n", + "Epoch 333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9578\n", + "Epoch 334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.9406\n", + "Epoch 335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9234\n", + "Epoch 336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9064\n", + "Epoch 337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.8895\n", + "Epoch 338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.8727\n", + "Epoch 339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.8560\n", + "Epoch 340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.8394\n", + "Epoch 341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.8229\n", + "Epoch 342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8064\n", + "Epoch 343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.7901\n", + "Epoch 344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.7738\n", + "Epoch 345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.7577\n", + "Epoch 346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.7416\n", + "Epoch 347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.7256\n", + "Epoch 348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.7097\n", + "Epoch 349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6939\n", + "Epoch 350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6782\n", + "Epoch 351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.6626\n", + "Epoch 352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.6471\n", + "Epoch 353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6316\n", + "Epoch 354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.6162\n", + "Epoch 355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6009\n", + "Epoch 356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5857\n", + "Epoch 357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.5706\n", + "Epoch 358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5556\n", + "Epoch 359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5406\n", + "Epoch 360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5257\n", + "Epoch 361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.5109\n", + "Epoch 362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.4962\n", + "Epoch 363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4815\n", + "Epoch 364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4670\n", + "Epoch 365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.4525\n", + "Epoch 366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.4381\n", + "Epoch 367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.4237\n", + "Epoch 368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.4095\n", + "Epoch 369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.3953\n", + "Epoch 370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.3812\n", + "Epoch 371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 2.3671\n", + "Epoch 372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.3532\n", + "Epoch 373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.3393\n", + "Epoch 374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 2.3255\n", + "Epoch 375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.3118\n", + "Epoch 376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.2981\n", + "Epoch 377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.2845\n", + "Epoch 378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.2710\n", + "Epoch 379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 2.2576\n", + "Epoch 380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 2.2442\n", + "Epoch 381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.2309\n", + "Epoch 382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.2177\n", + "Epoch 383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 2.2045\n", + "Epoch 384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 2.1914\n", + "Epoch 385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 2.1784\n", + "Epoch 386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.1655\n", + "Epoch 387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.1526\n", + "Epoch 388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 2.1398\n", + "Epoch 389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 2.1271\n", + "Epoch 390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.1144\n", + "Epoch 391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.1018\n", + "Epoch 392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.0893\n", + "Epoch 393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.0769\n", + "Epoch 394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 2.0645\n", + "Epoch 395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.0522\n", + "Epoch 396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 2.0399\n", + "Epoch 397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.0277\n", + "Epoch 398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.0156\n", + "Epoch 399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 2.0036\n", + "Epoch 400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.9916\n", + "Epoch 401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 1.9797\n", + "Epoch 402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.9678\n", + "Epoch 403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.9561\n", + "Epoch 404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.9443\n", + "Epoch 405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.9327\n", + "Epoch 406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.9211\n", + "Epoch 407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 1.9096\n", + "Epoch 408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 1.8981\n", + "Epoch 409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.8867\n", + "Epoch 410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.8754\n", + "Epoch 411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.8641\n", + "Epoch 412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8529\n", + "Epoch 413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.8418\n", + "Epoch 414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8307\n", + "Epoch 415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.8197\n", + "Epoch 416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.8088\n", + "Epoch 417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.7979\n", + "Epoch 418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.7871\n", + "Epoch 419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.7763\n", + "Epoch 420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.7656\n", + "Epoch 421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7550\n", + "Epoch 422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.7444\n", + "Epoch 423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.7339\n", + "Epoch 424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7234\n", + "Epoch 425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7130\n", + "Epoch 426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7027\n", + "Epoch 427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6924\n", + "Epoch 428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6822\n", + "Epoch 429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.6720\n", + "Epoch 430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6619\n", + "Epoch 431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.6519\n", + "Epoch 432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6419\n", + "Epoch 433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6320\n", + "Epoch 434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.6221\n", + "Epoch 435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6123\n", + "Epoch 436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.6026\n", + "Epoch 437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5929\n", + "Epoch 438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.5833\n", + "Epoch 439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5737\n", + "Epoch 440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5641\n", + "Epoch 441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5547\n", + "Epoch 442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5453\n", + "Epoch 443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.5359\n", + "Epoch 444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5266\n", + "Epoch 445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5174\n", + "Epoch 446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5082\n", + "Epoch 447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4990\n", + "Epoch 448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.4899\n", + "Epoch 449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4809\n", + "Epoch 450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.4719\n", + "Epoch 451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.4630\n", + "Epoch 452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4542\n", + "Epoch 453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4453\n", + "Epoch 454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.4366\n", + "Epoch 455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.4279\n", + "Epoch 456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4192\n", + "Epoch 457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4106\n", + "Epoch 458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4020\n", + "Epoch 459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.3935\n", + "Epoch 460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.3851\n", + "Epoch 461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3767\n", + "Epoch 462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3683\n", + "Epoch 463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3600\n", + "Epoch 464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3518\n", + "Epoch 465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3436\n", + "Epoch 466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3354\n", + "Epoch 467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.3273\n", + "Epoch 468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3192\n", + "Epoch 469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3112\n", + "Epoch 470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3033\n", + "Epoch 471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.2954\n", + "Epoch 472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2875\n", + "Epoch 473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2797\n", + "Epoch 474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2719\n", + "Epoch 475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.2642\n", + "Epoch 476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2565\n", + "Epoch 477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2489\n", + "Epoch 478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2413\n", + "Epoch 479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2338\n", + "Epoch 480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2263\n", + "Epoch 481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2188\n", + "Epoch 482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2114\n", + "Epoch 483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.2041\n", + "Epoch 484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1968\n", + "Epoch 485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1895\n", + "Epoch 486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.1823\n", + "Epoch 487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.1751\n", + "Epoch 488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.1680\n", + "Epoch 489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1609\n", + "Epoch 490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1538\n", + "Epoch 491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1468\n", + "Epoch 492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1399\n", + "Epoch 493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.1329\n", + "Epoch 494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1261\n", + "Epoch 495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1192\n", + "Epoch 496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1124\n", + "Epoch 497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1057\n", + "Epoch 498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0990\n", + "Epoch 499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0923\n", + "Epoch 500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.0857\n", + "Epoch 501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0791\n", + "Epoch 502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.0725\n", + "Epoch 503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.0660\n", + "Epoch 504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0596\n", + "Epoch 505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0531\n", + "Epoch 506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0468\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0404\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0341\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0278\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0216\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0154\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0092\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0031\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.9970\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9910\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9850\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9790\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9731\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.9672\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9613\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9555\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9497\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9440\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9382\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9326\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9269\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9213\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.9157\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9102\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9047\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.8992\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.8937\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8883\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8829\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.8776\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.8723\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.8670\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8618\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8565\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8514\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8462\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8411\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8360\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8309\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8259\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8209\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.8160\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8110\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8061\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.8013\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.7964\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.7916\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.7868\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7821\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7773\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.7726\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7680\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.7633\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.7587\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.7541\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.7496\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.7450\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.7405\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.7361\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.7316\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 183ms/step - loss: 0.7272\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 270ms/step - loss: 0.7228\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.7185\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.7141\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.7098\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.7055\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.7013\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.6970\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.6928\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.6886\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.6845\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.6804\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.6762\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.6722\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.6681\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.6641\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.6601\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.6561\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.6521\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.6482\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.6443\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.6404\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.6365\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.6327\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.6289\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.6251\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.6213\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.6176\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.6138\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6101\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6065\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6028\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.5992\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5956\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5920\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5884\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5849\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.5813\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5778\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5743\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5709\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.5674\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5640\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5606\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5572\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.5539\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.5505\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5472\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5439\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.5406\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5374\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.5341\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5309\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5277\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5245\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5213\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5182\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5151\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5120\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5089\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.5058\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.5028\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.4997\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4967\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4937\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.4907\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4878\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.4848\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.4819\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.4790\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4761\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4732\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.4704\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4675\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4647\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4619\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4591\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.4563\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4536\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4508\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4481\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4454\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4427\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.4400\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4374\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.4347\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.4321\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.4295\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.4269\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4243\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4217\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.4192\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.4167\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4141\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4116\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4091\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4067\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4042\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.4018\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3993\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3969\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3945\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3921\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.3897\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.3874\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3850\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.3827\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.3804\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.3781\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.3758\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.3735\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3712\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.3690\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3667\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3645\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.3623\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.3601\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3579\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.3557\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3536\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.3514\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.3493\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3472\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3451\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3430\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3409\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.3388\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.3367\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.3347\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3327\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.3306\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3286\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3266\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3246\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3226\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3207\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.3187\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3168\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3149\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3129\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3110\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3091\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.3072\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3054\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.3035\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3016\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.2998\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.2980\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 0.2961\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.2943\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.2925\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.2907\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.2890\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.2872\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.2854\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.2837\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.2820\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.2802\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2785\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2768\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 179ms/step - loss: 0.2751\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.2734\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2718\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.2701\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.2684\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.2668\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.2651\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.2635\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.2619\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.2603\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.2587\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.2571\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.2555\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.2539\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.2524\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.2508\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.2493\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.2478\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.2462\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2447\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.2432\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2417\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2402\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2387\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2373\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2358\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2343\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2329\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2315\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2300\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2286\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.2272\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.2258\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2244\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2230\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2216\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2203\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2189\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2175\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2162\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2148\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.2135\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2122\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2109\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.2096\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2083\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2070\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.2057\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2044\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2031\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.2019\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2006\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1994\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1981\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1969\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1957\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1945\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1933\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1920\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1909\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1897\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1885\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1873\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1861\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1850\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1838\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1827\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1815\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1804\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1793\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1782\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1770\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1759\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1748\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1737\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1727\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1716\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1705\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1694\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1684\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1673\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.1663\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.1652\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1642\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1632\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1621\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1611\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1601\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1591\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1581\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1571\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1561\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1551\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1542\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1532\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1522\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1513\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1503\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1494\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1484\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1475\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1466\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1456\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1447\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1438\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1429\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1420\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1411\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1402\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1393\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1385\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1376\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1367\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1359\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1350\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1341\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.1333\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1324\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1316\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1308\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1300\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1291\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1283\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1275\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1267\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1259\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1251\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1243\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1235\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1227\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1220\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1212\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1204\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1196\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1189\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1181\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.1174\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1166\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1159\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1152\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1144\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1137\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.1130\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.1123\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.1116\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1108\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 182ms/step - loss: 0.1101\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.1094\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.1087\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.1081\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.1074\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.1067\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1060\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1053\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1047\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1040\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.1033\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.1027\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.1020\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1014\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1007\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1001\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0995\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0988\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0982\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0976\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0969\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0963\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0957\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0951\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0945\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0939\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0933\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0927\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0921\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0915\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0910\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0904\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0898\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0892\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0887\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0881\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0875\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0870\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0864\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0859\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0853\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0848\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0842\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0837\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0832\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0826\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0821\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0816\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0811\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0806\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0801\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0795\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0790\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0785\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0780\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0775\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0770\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0766\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0761\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0756\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0751\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0746\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0742\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0737\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0732\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0728\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0723\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0718\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0714\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0709\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0705\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0700\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0696\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0691\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0687\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0683\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0678\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0674\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0670\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0666\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0661\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0657\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0653\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0649\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0645\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0641\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0637\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0633\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0629\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0625\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0621\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0617\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0613\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0609\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0605\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0602\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0598\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0594\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0590\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0587\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0583\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0579\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0576\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0572\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0569\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0565\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0561\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0558\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0554\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0551\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0548\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0544\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0541\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0537\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0534\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0531\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0527\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0524\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0521\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0518\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0514\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0511\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0508\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0505\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0502\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0499\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0496\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0493\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0490\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0487\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0484\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0481\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0478\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0475\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0472\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0469\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0466\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0463\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0460\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0458\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0455\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0452\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0449\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0447\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0444\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0441\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0438\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0436\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0433\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0431\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0428\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0425\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0423\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0420\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0418\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0415\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0413\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0410\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0408\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0405\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0403\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0401\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0398\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0396\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0393\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0391\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0389\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0386\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0384\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0382\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0380\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0377\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0375\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0373\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0371\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0369\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0366\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0364\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0362\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0360\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0358\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0356\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0354\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0352\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0350\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0348\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0346\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0344\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0342\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0340\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0338\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0336\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0334\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0332\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0330\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0328\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0326\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0325\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0323\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0321\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0319\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0317\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0316\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0314\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0312\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0310\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0309\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0307\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0305\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0303\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0302\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0300\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0298\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0297\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0295\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0294\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0292\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0290\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0289\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0287\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0286\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0284\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0283\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0281\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0280\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0278\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0277\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0275\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0274\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0272\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0271\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0269\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0268\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0266\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0265\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0264\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0262\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0261\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0260\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0258\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0257\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0256\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0254\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0253\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0252\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0250\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0249\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0248\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0247\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0245\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0244\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0243\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0242\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0240\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0239\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0238\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0237\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0236\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0235\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0233\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0232\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0231\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0230\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0229\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0228\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0227\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0226\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0224\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0223\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0222\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0221\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0220\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0219\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0218\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0217\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0216\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0215\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.0214\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 271ms/step - loss: 0.0213\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0212\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0211\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0210\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 172ms/step - loss: 0.0209\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0208\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0207\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0206\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0205\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0205\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0204\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0203\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0202\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0201\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0200\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0199\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0198\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0197\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0197\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0196\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0195\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0194\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0193\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0192\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0192\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0191\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0190\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0189\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0188\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0188\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0187\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0186\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0185\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0185\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0184\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0183\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0182\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0182\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0181\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0180\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0179\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0179\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0178\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0177\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0177\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0176\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0175\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0175\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0174\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0173\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0173\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0172\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0171\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0171\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0170\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0169\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0169\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0168\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0167\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0167\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0166\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0166\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0165\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0164\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0164\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0163\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0163\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0162\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0162\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0161\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0160\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0160\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0159\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0159\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0158\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0158\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0157\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0157\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0156\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0156\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0155\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0155\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0154\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0154\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0153\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0153\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0152\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0152\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0151\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0151\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0150\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0150\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0149\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0149\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0148\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0148\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0148\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0147\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0147\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0146\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0146\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0145\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0145\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0145\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0144\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0144\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0143\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0143\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0143\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0142\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0142\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0141\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0141\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0141\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0140\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0140\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0139\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0139\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0139\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0138\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0138\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0138\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0137\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0137\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0137\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0136\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0136\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0136\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0135\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0135\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0135\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0134\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0134\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0134\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0133\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0133\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0133\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0132\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0132\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0132\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0131\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0131\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 279ms/step - loss: 0.0131\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0131\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step - loss: 0.0130\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0130\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0130\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0129\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0129\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0129\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0129\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0128\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0128\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0128\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0127\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0127\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0127\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0127\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0126\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0126\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0126\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0126\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0125\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0125\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0125\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0125\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0124\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0124\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0124\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0124\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0124\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0123\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0123\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0123\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0123\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0122\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0122\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0122\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0122\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0122\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0121\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0121\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0121\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0121\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0121\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0120\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0120\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0120\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0120\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0120\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0119\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0119\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0119\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0119\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0119\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0118\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0118\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0118\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0118\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0118\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0118\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0117\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0117\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0117\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.0117\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0117\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0117\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0116\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0116\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0116\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0116\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0116\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0116\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0116\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0115\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0115\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0115\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0115\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0115\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0115\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0114\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0114\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0114\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0114\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0114\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0114\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0114\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0114\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0113\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0113\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0113\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0113\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0113\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0113\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0113\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0113\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0112\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0112\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0112\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0112\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0112\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0112\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0112\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0112\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0111\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0111\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0111\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0111\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0111\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0111\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0111\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0111\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0111\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0110\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0110\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0110\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0110\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0110\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0110\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0110\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0110\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0110\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0110\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0110\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0109\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0109\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0109\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0109\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0109\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0109\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0109\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0109\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0109\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0109\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0109\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0108\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0108\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0108\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0108\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0108\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 255ms/step - loss: 0.0108\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0108\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0108\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0108\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0108\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0108\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0108\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0108\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0107\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0107\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0107\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0107\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0107\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0107\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0107\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0107\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0107\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0107\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0107\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0107\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0107\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0107\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0107\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0106\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0106\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0106\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0106\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0106\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0106\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0106\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0106\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0106\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0106\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0106\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0106\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0106\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0106\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0106\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0106\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0106\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0106\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0105\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0105\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0105\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0105\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0105\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0105\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0105\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0105\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0105\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0105\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0105\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0105\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0105\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0105\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0105\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0105\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0105\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0105\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0105\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0105\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0105\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0104\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0104\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0104\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0104\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0104\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0104\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0104\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0104\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0104\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0104\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0104\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0104\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0104\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0104\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0104\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0104\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0104\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0104\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0104\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0104\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0104\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0104\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0104\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0104\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0104\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0104\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0104\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0104\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0104\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0103\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0103\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0103\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0103\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0103\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0103\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0103\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0103\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0103\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0103\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0103\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0103\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0103\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0103\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0103\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0103\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0103\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0103\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0103\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0103\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0103\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 279ms/step - loss: 0.0103\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0103\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0103\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0103\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0103\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0103\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0103\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0103\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0103\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0103\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0103\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0103\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0103\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0103\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0103\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0103\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0103\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 267ms/step - loss: 0.0102\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0102\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0102\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0102\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0102\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0102\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0102\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0102\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0102\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0102\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0102\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0102\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0102\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0102\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 287ms/step - loss: 0.0102\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0102\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0102\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0102\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0102\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0102\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0102\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0102\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0102\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0102\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0102\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0102\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0102\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0102\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0102\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0102\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0102\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0102\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0102\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0102\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0102\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0102\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0102\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0102\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0102\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0102\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0102\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0102\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0102\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0102\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0102\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0102\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0102\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0102\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0102\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0102\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0102\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0102\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0102\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0102\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0102\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0102\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0102\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0102\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0102\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0102\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0102\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0102\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0102\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0101\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0101\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0101\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0101\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0101\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0101\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0101\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0101\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0101\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0101\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0101\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0101\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0101\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0101\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0101\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0101\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0101\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0101\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 183ms/step - loss: 0.0101\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0101\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0101\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0101\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0101\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0101\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0101\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0101\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0101\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0101\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0101\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0101\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0101\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0101\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0101\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0101\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0101\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0101\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0101\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0101\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0101\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0101\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0101\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0101\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0101\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0101\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0101\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0101\n", + "Epoch 1756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0101\n", + "Epoch 1757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0101\n", + "Epoch 1761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0101\n", + "Epoch 1762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 1764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0101\n", + "Epoch 1766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0101\n", + "Epoch 1767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0101\n", + "Epoch 1770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0101\n", + "Epoch 1771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0101\n", + "Epoch 1773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0101\n", + "Epoch 1776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0101\n", + "Epoch 1777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0101\n", + "Epoch 1778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0101\n", + "Epoch 1779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0101\n", + "Epoch 1780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0101\n", + "Epoch 1781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0101\n", + "Epoch 1783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0101\n", + "Epoch 1788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0101\n", + "Epoch 1795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0101\n", + "Epoch 1802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0101\n", + "Epoch 1803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 1804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 1808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0101\n", + "Epoch 1809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0101\n", + "Epoch 1810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0101\n", + "Epoch 1811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0101\n", + "Epoch 1812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0101\n", + "Epoch 1814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0101\n", + "Epoch 1815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0101\n", + "Epoch 1816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0101\n", + "Epoch 1817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0101\n", + "Epoch 1819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0101\n", + "Epoch 1820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0101\n", + "Epoch 1822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0101\n", + "Epoch 1823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0101\n", + "Epoch 1824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0101\n", + "Epoch 1825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0101\n", + "Epoch 1826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.0101\n", + "Epoch 1827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0101\n", + "Epoch 1829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0101\n", + "Epoch 1830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0101\n", + "Epoch 1831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0101\n", + "Epoch 1834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 185ms/step - loss: 0.0101\n", + "Epoch 1836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0101\n", + "Epoch 1837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0101\n", + "Epoch 1838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0101\n", + "Epoch 1839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.0101\n", + "Epoch 1841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0101\n", + "Epoch 1842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0101\n", + "Epoch 1843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0101\n", + "Epoch 1844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0101\n", + "Epoch 1846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0101\n", + "Epoch 1847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0101\n", + "Epoch 1853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0101\n", + "Epoch 1854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0101\n", + "Epoch 1855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0101\n", + "Epoch 1856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0101\n", + "Epoch 1860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0101\n", + "Epoch 1863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0101\n", + "Epoch 1864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0101\n", + "Epoch 1866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0101\n", + "Epoch 1868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0101\n", + "Epoch 1869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0101\n", + "Epoch 1870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0101\n", + "Epoch 1871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0101\n", + "Epoch 1874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 1878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0101\n", + "Epoch 1880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0101\n", + "Epoch 1881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0101\n", + "Epoch 1884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0101\n", + "Epoch 1890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 1891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0101\n", + "Epoch 1892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0101\n", + "Epoch 1894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0101\n", + "Epoch 1895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0101\n", + "Epoch 1898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0101\n", + "Epoch 1899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0101\n", + "Epoch 1900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0101\n", + "Epoch 1903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0101\n", + "Epoch 1904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0101\n", + "Epoch 1905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0101\n", + "Epoch 1907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0101\n", + "Epoch 1909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0101\n", + "Epoch 1911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 1912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 1913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0101\n", + "Epoch 1917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0101\n", + "Epoch 1918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0101\n", + "Epoch 1919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0101\n", + "Epoch 1921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0101\n", + "Epoch 1922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0101\n", + "Epoch 1923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0101\n", + "Epoch 1932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0101\n", + "Epoch 1936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0101\n", + "Epoch 1939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0101\n", + "Epoch 1940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0101\n", + "Epoch 1941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0101\n", + "Epoch 1942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 1946: early stopping\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe8FNX9//H33kIVVESqKLZYYyXYomJBIlGDJVH0q0BiF0vQRMnP2BV77L2gMZbE2MWKYIkoNlARCyq9S2+37u+PdffO7p2Zndnpe1/Px4MHe3dnZ870M5/9nHNS6XQ6LQAAAAAAAACIiYqoCwAAAAAAAAAARgQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAEDZmDp1qs4880xtv/326tChg1KpVO7f9OnToy5eizR69OjcPhg6dGioyzbufwAAACQLQUsAABKuX79+ucDMZZddZjmdMYBT+K+yslIbbLCBtt56a/3+97/XAw88oFWrVpVUBrf//ApkvfDCC9p111119913a+rUqa7KDwBvvvlm3rVpu+22cz2Pyy67rORrYe/evS3nu3r1ar300kv685//rP3331/du3dX69at1b59e2222WYaNGiQ7r33Xq1evdrDFgAAIF4IWgIAADU2Nmr58uWaNm2ann76aZ1yyinafPPN9eyzz0ZdNEdWrVqloUOHqqamRpLUvXt3/f73v9eZZ56ps846S2eddZY6duwYcSlLZwyE2AWmgTjr3bt3rDOfH3nkkby/v/76a02cODGi0jT5v//7P3Xp0kWHH364brnlFr3zzjuaP3++amtrtWbNGs2cOVPPP/+8Tj/9dPXu3VvPPPNM1EUGAMAXVVEXAAAAhG/QoEHq2bNn7u/GxkYtXrxYEyZM0OzZsyVJixcv1jHHHKOnn35aRx55pON5/+pXv1Lfvn0dT7/nnns6L7iFl156SUuXLpUk7bDDDvroo4/Utm1bz/MF0DKsXLnSNNj3yCOPuLqeGfXo0cPVtXOjjTYyff/pp5/O/SAjSRtuuKH69u2rHj16KJ1Oa+rUqZo4caLS6bQWL16so48+WnfffbdOP/30ksoNAEBcELQEAKAFOvfcc9WvX79m7zc2NuqRRx7RGWecoZqaGjU2NuqMM87QgAED1K5dO0fzHjhwYOjZgJ9++mnu9eDBgwlYxsjQoUND78syK51OR7JcJM/TTz+tNWvWSJLatm2rtWvXSpKefPJJ/eMf/1CrVq1cz3PrrbfWHXfc4Uv52rVrp8GDB+uPf/yj9txzT1VU5DeYmzJliv7v//5PkyZNkiQNHz5c++yzj375y1/6snwAAKJA83AAAJBTUVGhYcOG6frrr8+9t2DBAj333HPRFcqBbJallGkaDgBuGJuGX3jhherataskacmSJXrxxRejKpYk6eyzz9YPP/ygBx54QHvvvXezgKWUyTB/6623tNlmm0mSGhoadM0114RdVAAAfEXQEgAANHPaaaepTZs2ub/feeedCEtTXF1dXe612QM9AFiZPn167hqXSqU0ZMgQDR48OPd5YV+XYbvhhhtyQVQ7G264oS688MLc32PGjAmyWAAABI5aPQAAaKZ169Z5I+fOnTs3wtKYMw5OYwwqDBs2rNmovKNHjzadx6pVq3TbbbdpwIAB2mSTTdSmTRttuOGG2nHHHTV8+HB9+OGHjspiXFbW5MmTde6552rHHXdUp06dlEqlNGjQIFfrmB2V/fLLL8+9d/nllzsahX3o0KHN1n/ZsmW69dZbtd9++6lnz56qqqpSKpXSsmXL8r67cOFCPfzwwxoyZIh23XVXderUSdXV1dpggw207bbbatiwYXrttdccrcPo0aOLjhQ/fvz43DTGbgveeustHXfccdpiiy3Upk0bbbTRRtpvv/10xx135AWqrZjtl0Jmg8PMnj1bf//737Xzzjtrgw02UPv27bXtttvq7LPP1owZMxytd9Ybb7yh4447TptuuqnatGmj7t27a99999Wdd96ZG+k5iIGWFi9erBtvvFEHH3ywevTooTZt2uT24Q477KBjjjlGN998s3788UdH8xs7dqxOP/107bDDDurUqZNat26tHj16aMCAAbrjjjtyzakLTZ8+Pbduxm23+eabmx7H48eP92P1XXn00UdzXQn8+te/Vu/evXXiiSfmPn/llVe0cOHC0MtVin322Sf3esWKFVqyZEmEpQEAwBv6tAQAAKaM/UKuW7cuwpIE46WXXtIpp5yi+fPn571fU1OjZcuWacqUKbrzzjt1/PHH6/7773fcp6eUCUJdddVVamho8LvYJfvf//6nwYMHa9asWbbT3XbbbRoxYoRp2ZcvX67ly5frm2++0ejRo3XggQfq3//+t+UAIqWqra3V8OHDdf/99+e9X1NTo3fffVfvvvuuHn74Yb322mvq3Lmzr8t+7rnnNHToUC1fvjzv/W+++UbffPONHnzwQf3nP//Rb3/726Lr8Kc//UmPPfZY3vvz58/X/Pnz9d577+nOO+/Us88+62v5Jen555/XsGHD8rpNyMruw6+++kr//e9/dfPNN+cG3zIza9YsnXTSSabBxHnz5mnevHl6/fXXNWrUKD355JPad999/VyVUDz66KO519lg5W677aYddthBU6ZMUX19vR5//HGdd955EZXQucIAfZyuQQAAuEXQEgAAmDJmVzppmhi2vn376qyzzpKUyQL7+uuvJUkHHXSQtt1227xpjVmjkvTUU0/phBNOyD3QV1ZW6te//rW22morrVq1Su+++25u/R9//HH9+OOPeuutt/KazFu54YYbcpmRW265pfr27at27dpp+vTpqq6udrWORx55pHbccUdNnDhRH330kSTr0dntRmGfNm2azjvvPC1fvlwdOnTQfvvtpx49emjp0qXNmv7PnTs3t1222GILbbfddtp4443Vpk0bLVu2TF988YWmTJkiKZMJefDBB+uDDz5Q69atXa2bnVNPPVWPPPKIKioqtMcee2jbbbdVY2OjPvjgA33zzTeSMoMvnXTSSb42gX3zzTd1+umnq6GhQZtuuqn22msvdezYUT/++KPGjx+v+vp6rV27Vn/4wx/05ZdfavPNN7ec1+DBg/NGo+7UqZP69eunTp06adasWXr77bc1depU/fa3v9URRxzh2zp8/PHHOuaYY1RfXy8p8+PDnnvuqd69e6t169ZasWKFvv/+e33xxRe5gWesTJ06VQcddJDmzZsnKRMQ22233bT99turbdu2mjNnjt555x2tXLlSc+fOVf/+/fXKK6/ogAMOyM2jY8eOufP00Ucf1cqVKyVJJ510kjp06NBsmT179vRlOzj13nvv6fvvv5eUyTD//e9/n/vsxBNP1EUXXSQp00Q8CUHLL774Ive6bdu2vgf1AQAIVRoAACTa/vvvn5aUlpS+9NJLLafLTiMpPW7cONt5fvPNN3nT33HHHb6UIShDhgzJLf/hhx+2nXbatGnp9dZbLzd937590999913eNA0NDembbropXVFRkZvu7LPPtpyncVtVVVWl119//fSzzz7bbLp169aVsnrpSy+91PX2NW6TqqqqtKT0WWedlV65cmXedLW1temGhobc3w8++GD69ttvT8+ePdty3pMnT0736dMnN/8rr7zSctqHH344N92QIUNMpxk3blxumtatW6clpX/1q1+lp06dmjddY2Nj+pZbbsnb3m+//bblso3TWdlss83ylt2+ffv0P//5z3RjY2PedF9++WW6Z8+euWmHDRtmOc8HHnggb9nnn39+s32/YMGC9KGHHpq3zn6cP4MGDcrN6+ijj04vWbLEdLq1a9emX3755fRpp51m+vmqVavS2223XW5ehx56aHratGnNplu+fHn6jDPOyE3XvXv39LJly0znadzWP/74Y8nr6KeTTz45V6Zjjjkm77NZs2blXQMmT55cdH7Gc3X//fcPqNTW+vfvn1v+b3/729CXDwCAn8i0BAAAeerr63Xuuefm/u7YsaOOO+44x98fM2aMFi9e7Hj6K664Qp06dXJVRi+uuOIKrVq1SpK01VZb6fXXX9f666+fN01FRYVGjBihVCqlESNGSJLuvPNO/fnPf7bNrpOkxsZGvfDCC9pvv/2afeZnNqIb9fX1Ovnkk3XHHXc0+6ww+/OPf/xj0fnttNNOevPNN7Xttttq/vz5uuuuuzRy5EhVVlZ6LmtNTY223nprvfXWW1pvvfXyPkulUjr33HP13nvv6emnn5YkPfHEE6bbuhS1tbV67rnn9Jvf/KbZZzvssIPuvfdeHXbYYZKk//znP7rvvvtUVZVfnW5oaNCll16a+/u0007TjTfe2Gx+Xbp00XPPPadf//rXuSxaP7z77ruSMsfa6NGjm23DrDZt2mjgwIEaOHCg6ec333yzpk6dKimT8fv000+bDnLVsWNH3XXXXVqzZo0eeeQRzZs3T/fcc0/egDBxtXbtWv373//O/W3sx1KSNtlkE/Xr109vvfWWpEy25U033eR4/t99952GDx/uePoTTzxRe+yxh+PpC7300kt64403cn9nM1wBAEgqgpYAAECNjY1avHix/ve//+naa6/VxIkTJUlVVVV66KGHXPVZ+NFHH7kKwlxwwQWhBS2XLVump556Kvf39ddf3yxgaXTuuefqwQcf1JQpU9TY2Kj77rtPo0aNsl3GMccc41sQzS9t2rTR9ddf7+s8119/fR155JG6++67NW/ePH311Vf65S9/6cu8r732Wstgm5QJrGaDltlj1Q+HHXaYacAya+DAgerWrZvmz5+vVatWaerUqc3W+dVXX9WcOXMkSe3bt9e1115rOb9WrVrpxhtv1P777+/PCigz+IoktWvXznYb2qmrq8sFuFu3bq177rnHNGBpdM011+QGtPnXv/6ViKDlc889l9teG220kQ499NBm05x44om5oOW//vUvXXfddc0C1Vbmzp2rO++803F5+vTpU3LQct68eTr11FNzf/fv3990fQAASBKClgAAtEDGPuesbLPNNrrpppuKDjiSJO+//75qamokSZ07d9bhhx9uO31FRYX++Mc/6vzzz5ckjRs3rugy3GSlhuWQQw7Rhhtu6Pp7Cxcu1AcffKCpU6dq6dKlWr16dW6UZSnTf2LWpEmTfAlatmnTpuh+2XXXXXOvsyN++8HYn6GZVCqlnXfeOTd40/Tp05uts3HAmt/+9rfaYIMNbOe53377adNNN9XMmTNLKnOhXr166YcfftDSpUv11FNP6dhjj3U9j48//jg3WvZBBx2kLl26FP1Ojx49tO2222rq1Kn68ssvtXz5ctsfBOLgkUceyb0+7rjjTPucPeaYY3TWWWdpzZo1WrBggV577bXYXRNra2t1zDHH5Poe3WijjTR69OhoCwUAgA8IWgIAgGa6du2qRx991HTAl2IuvfRSXXbZZf4XygefffZZ7nXfvn0dZUzts88+ed9Pp9PNRug12n333b0VMgBuy/TVV1/pwgsv1CuvvOJ49GE3XQLY2WabbYoOWGTM/M1myvnBSdC12LInTZqUe+00a65v376+BS3/8Ic/5LI7Bw8enAtcHnDAAY6Cj5I0YcKE3OvZs2c7buK8bNkySVI6ndbs2bNjHbScO3eu3nzzzdzfhU3Ds9Zbbz0NGjRIjz/+uKRMoNNp0HL//fc3HXXdT+l0WkOGDNH7778vKdPdwxNPPKEePXoEulwAAMJA0BIAgBZo0KBBeaP0/vTTT/r+++9zzboXLFigfffdV//9739zffiVg0WLFuVeb7bZZo6+07t379zr2tparVy5Uh07drScfuONNy65fEFxU6bXXntNv/vd73IZqU5lR4X2ykmgyxjUzI6SHcWy6+rqmn1uPMZ69erlaLmbbLKJo+mcuPjiizV+/Hh98MEHSqfTevbZZ/Xss89Kkrbeemvtu+++Ouigg3T44Yebjt4tZQJ6WZ9//rk+//xz1+VYunRpaSsQksceeywXkN96661tA8wnnnhiLmj5wgsvaOnSpSVlLgdh+PDhevLJJyVlMsMfeeQR9e/fP+JSAQDgD/vOaQAAQFk699xzdccdd+T+PfHEE5o4caImT56snXfeWVImQDd48GB9//33EZfWP9kBeKRMf4NOFE5XLDjXtm1b9wULmNMyLVq0SMcee2wuYLnZZptp1KhReu+99zR37lytWbNGjY2NSqfTSqfTeQPONDY2+lJWuyzWoPmxbOMx1q5dO0ffKbXvSTPt27fX22+/rRtuuCEv4C5lBoZ56KGHdMIJJ6hbt27661//qrVr1zabx/Llyz2Xw89gchCMTcP/7//+z3ba/v37q1u3bpIyA0UZ+8WN0siRI3XXXXfl/r7zzjs1ePDgCEsEAIC/CFoCAICcnXbaSa+//nouC3PVqlU6+eSTIy6Vf4zBodWrVzv6TuF0Vtlp5eD+++/PBax23nlnff7557rooou0zz77qHv37mrbtm1eYM+v7MpyYjzG1qxZ4+g7To9Fp1q1aqULLrhAP/zwgyZNmqTbbrtNxx13XF529Zo1a3TDDTfogAMOaBa4NAbqzznnnFyQ2s2/fv36+bpOfvr444/11Vdf5f6+9NJLlUqlLP9VVVXl+jGV8gOeUbn66qvzBnm67rrrdPrpp0dYIgAA/EfQEgAA5OnSpYtuv/323N/jx4/Xyy+/HGGJ/GNsJu20D0HjQC+tWrUq66Dl2LFjc68vvvhi22bwkjRjxoygi5Q4nTt3zr2ePXu2o+84nc6t7MBBZ599tp544gnNnj1bn376qYYNG5ab5sMPP2w2wnXXrl1zr43BunLhNej4wQcf6Ntvv/WpNO7dcsstuvjii3N/X3zxxfrrX/8aWXkAAAgKfVoCAIBmjjzySO2zzz763//+JynzUBy3EXNLYRx1euLEiWpoaFBlZaXtd7IDXGS/H0Xz5bCWaezLsNigNA0NDbnjA0122WWXXPD3ww8/dPSdiRMnBlmkPLvuuqseeughVVZW6oEHHpCU6afxggsuyE1j7N/x/fffLzr4lFNRNv3Pqq2t1RNPPJH7e5tttik6wnvWd999pyVLlkjKBD6vvvrqIIpo67777tOf//zn3N/nnnuurrzyytDLAQBAGMi0BAAApowjgE+aNEkvvPBCdIXxyd57763WrVtLyvTfWCyDtLGxUQ8//HDu7wMPPDDQ8llp06ZN7rXZ4C9+qahoqhoWa9r83HPPlWUWnlfGZtEvv/xy0f4h33vvvUgyVo844ojc6wULFuR9ts8+++QCebNnz9aLL77oyzLDOo7tvPzyy/rpp58kSVVVVXrnnXf0wQcfOPr3t7/9LTeff/7zn7714+rUY489ltcE/E9/+pP+8Y9/hFoGAADCRNASAACYOvjgg7X33nvn/r7qqqsiLI0/NthgAx177LG5v//yl7/Y9st4xx136IsvvpCUCeideuqpgZfRzEYbbZR7PWfOnMCWs8UWW+Re2wWpFy1alJfthSa/+c1v1KNHD0mZPmGNga5CtbW1eRmOXtXU1OQNBGRn1qxZudddunTJ+6x169Y677zzcn+feeaZro67wiBoVljHsR1j0/D+/fs3W3c7gwcPzgX2Z82apXHjxvlePivPPPOMhg4dqnQ6nSvLfffdF4vsVQAAgkLQEgAAWLrkkktyrz/66CO9+uqrEZbGH5dccklusJRvv/1WAwYM0A8//JA3TWNjo2699VaNGDEi995ZZ53VbDTmsOy4446516+//rovozubOfzww3OvR40apccee6zZNJ9++qn2339/zZo1y/EI7C1JVVVVXpbyXXfdpQsvvFC1tbV50y1atEhHH320Pvzww1z2r1fz5s1Tr169dMEFF+jjjz+2nO6NN97IG/n90EMPbTbN+eefrx122EFSJsDYp08f/ec//7HMLly8eLHuu+8+7bbbbrrhhhtMpzEex//5z38crdPo0aPzBsUx9jHr1uLFizVmzJjc3yeccIKr7/fo0UMHHHBA7u+wBuR59dVXNXjwYDU0NEiSfve73+nRRx/Ny4wGAKAc0aclAACwNGDAAO2xxx65vvmuvPJK/eY3v7H9zpgxY7R48WLHy2jXrp2uv/56T+V0Y8stt9QDDzygE044QQ0NDZowYYK22WYb7bvvvtpyyy21atUqvfvuu3mZYHvuuWeoZSzUt29f9erVS7NmzdK8efO07bbb6pBDDlHnzp1zmVa/+tWv8rJISzFkyBDddNNN+vbbb1VTU6MTTzxR11xzjXbeeWe1adNGX375ZS4YtvPOO2vAgAGRbpe4Ovnkk/Xyyy/r+eeflyRdf/31evDBB9WvXz916tRJs2fP1rhx47Ru3TptscUW+t3vfpdr5us1ELVs2TLddNNNuummm9SpUyftuuuu6tmzp9q0aaOFCxfq888/zwvS/+IXv9C5557bbD7rrbeeXnjhBR188MH68ccfNX/+fP3hD39Q586dteeee6pbt25Kp9NasmSJvvrqK3333Xe5gKZVNwpHH3207r33XkmZYO4nn3yi3XbbTe3atctNc8YZZ2jLLbf0tA2sPP7447lm6e3bt9egQYNcz+OEE07I9Vn6zDPP6K677sobMd7ou+++0/Dhw13Nf+TIkXmjvC9evFhHHXVULuhdWVmpjTfeOC8T1s6JJ56Y10cpAABJQtASAADYuuSSS3KD8Lz//vsaO3asDjroIMvpP/roI3300UeO57/++uuHHvg69thj1b59e5188slasGCB6uvrNW7cONPmnoMHD9YDDzyQ1x9f2CoqKnTXXXfp6KOPVm1trebPn69HH300b5ohQ4Z4Dlq2bt1aL774og499NBcYGvq1KmaOnVq3nT77LOPnnrqKd1///2elleuUqmUnnrqKQ0dOlRPPvmkJOmnn37Sf//737zptttuOz377LN5+7LYiO12qqur1bp1a9XU1EiSlixZkjcifKF+/frpiSeesMyY3WKLLfTxxx/r9NNP19NPP610Oq3FixfrpZdespznBhtsYDmIU//+/TV48ODcQDgffvhhs8GKDjvssMCClsbMyEGDBpWUKXz00UfrzDPP1Lp167R69Wo9/fTTGjp0qOm0c+fObTYyezEnn3xyXtBy1apVWrt2be7vhoaG3ABKTvTp04egJQAgsWhTAAAAbA0cOFB9+vTJ/X3FFVdEWBr/HHbYYZo2bZpuvfVW9e/fXz169FCrVq20/vrra7vtttOZZ56pDz74QI8//nheJliU5f3444912mmnaYcddlCHDh0C6c/uF7/4hT777DNdc8016tOnjzp06KDWrVtrs80202GHHabHH39cb7/9dl5gBc21bt1aTzzxhF577TX9/ve/1yabbKJWrVqpa9eu2meffXT77bfro48+0jbbbJMbkVqS45GszfTs2VM//fSTXnjhBf3lL3/RgQceqE033VRt27ZVZWWlNthgA+288846+eST9cYbb2jcuHHq1q2b7Tw7deqkf//73/r888/1t7/9TXvvvbe6d++uVq1aqU2bNurWrZt+/etf65xzztELL7ygefPmaciQIZbz+9e//qV//etfOuyww7TJJpuE9mPAl19+qU8//TT3t9um4VkdO3bM60Zh9OjRXosGAAAspNLZ3pwBAAAAhG6fffbR+++/L0n64IMPyIwDAAAQQUsAAAAgMjNmzNCWW26phoYGtWrVSsuXL4+0KwIAAIC4oHk4AAAAEIF0Oq1zzz03Nyr0kUceScASAADgZwQtAQAAAJ9dcskluvXWW7V48WLTz6dPn64jjzwyN8J4ZWWlLrjggjCLCAAAEGuJDVreeeed6t27t9q0aaM99thDEydOtJ1+2bJlOuuss9S9e3e1bt1av/jFLzRmzJiQSgsAAICWZObMmTrvvPPUvXt37bbbbjr++ON1xhln6MQTT9SvfvUrbbXVVrmApSRdfPHFeQNeAQAAtHRVURegFE899ZRGjBihe+65R3vssYduueUWDRgwQN988426dOnSbPra2lr1799fXbp00dNPP62ePXtqxowZnkZnBAAAAIqpr6/XZ599ps8++8z087Zt2+qKK64gyxIAAKBAIgfi2WOPPfSrX/1Kd9xxhySpsbFRvXr10tlnn62LLrqo2fT33HOPbrjhBn399deqrq4Ou7gAAABoYZYtW6bnn39eb731lqZMmaJFixZp8eLFamhoUKdOnbTNNtvooIMO0p/+9Cd179496uICAADETuKClrW1tWrXrp2efvppDRo0KPf+kCFDcpXDQgMHDlSnTp3Url07Pf/889p44411/PHH68ILL1RlZaXpcmpqalRTU5P7u7GxUUuWLNFGG22kVCrl+3oBAAAAAAAA5SydTmvlypXq0aOHKirse61MXPPw7C/UXbt2zXu/a9eu+vrrr02/88MPP+itt97SCSecoDFjxmjatGk688wzVVdXp0svvdT0O6NGjdLll1/ue/kBAAAAAACAlmzWrFnaZJNNbKdJXNCyFI2NjerSpYvuu+8+VVZWavfdd9ecOXN0ww03WAYtR44cqREjRuT+Xr58uTbddFP9+OOP6tChQ1hFD01dXZ3GjRunAw44gCb0QAQ4B4HocR4C0eM8BKLFOQhEr9zPw5UrV2rzzTd3FFtLXNCyc+fOqqys1IIFC/LeX7Bggbp162b6ne7du6u6ujqvKfh2222n+fPnq7a2Vq1atWr2ndatW6t169bN3u/UqZM6duzocS3ip66uTu3atdNGG21UlicFEHecg0D0OA+B6HEeAtHiHASiV+7nYXadnHS9aN94PIZatWql3XffXWPHjs2919jYqLFjx2qvvfYy/c4+++yjadOmqbGxMffet99+q+7du5sGLAEAAAAAAABEJ3FBS0kaMWKE7r//fj3yyCOaOnWqzjjjDK1evVrDhg2TJJ100kkaOXJkbvozzjhDS5Ys0bnnnqtvv/1WL7/8sq655hqdddZZUa0CAAAAAAAAAAuJax4uSccee6wWLVqkSy65RPPnz9cuu+yiV199NTc4z8yZM/NGIOrVq5dee+01/fnPf9ZOO+2knj176txzz9WFF14Y1SoAAAAAAAAAsJDIoKUkDR8+XMOHDzf9bPz48c3e22uvvfTBBx8EXCoAAAAAAAAAXiWyeTgAAAAAAACA8kXQEgAAAAAAAECsELQEAAAAAAAAECuJ7dMySdLptOrq6tTY2Bh1USzV1dWpqqpK69atU0NDQ9TFKXuVlZWqrq6OuhgAAAAAAACxRNAyQLW1tVq4cKHWrFkT+0BgOp1Wt27dNGvWLKVSqaiL0yK0bt1anTt3VseOHaMuCgAAAAAAQKwQtAzImjVrNGvWLFVWVmrDDTdU27ZtVVlZGduAYGNjo1atWqX11ltPFRX0GhCkbObt8uXLNWfOHEkicAkAAAAAAGBA0DIgixcvVnV1tTbbbDNVVlZGXZyiGhsbVVtbqzZt2hC0DEHbtm3VoUMHzZ49W4sXLyZoCQAAAAAAYEB0KgD19fVavXq1OnXqlIiAJaKRSqW0/vrrq6amRnV1dVEXBwAAAAAAIDYIWgagvr5eUqbPQsBOdjCeuPd5CgAAAAAAECaClgGKa/+ViA+OEQAAAAAAgOYIWgIAAAAAAACIFYKWAAAAAAAAAGKFoCUAAAAAAACAWCFoiUj17t1bqVRKo0ePzr03evRopVKpvH8VFRXq2LGjdt11V40cOVKLFi2ynGfhd63+jR8/PvgVBAAAAAAAgGtVURcAsNK+fXsdc8wxkjKja8+YMUMTJkzQpEmT9PDDD+vdd9/V1ltvbfn9AQMGqFu3bpaf230GAAAAAACA6BC0RGx17tw5LwNTkqZMmaL9999fCxYs0HnnnaeXX37Z8vsXXXSR+vXrF2whAQAAAAAA4DuahyNRdthhB40YMUKS9MYbb6impibiEgEAAAAAAMBvBC2RODvttJMkqa6uTkuWLIm4NAAAAAAAAPAbQUskzooVKyRJlZWV6ty5c8SlAQAAAAAAgN8IWiJxsv1Y/uY3v1F1dXXEpQEAAAAAAIDfGIgnKn36SPPnR12KnJSkjum0UqlU8Ym7dZM+/jjwMhllRw+/77779Pjjj2uzzTbTbbfdZvudAw44wPKz9ddfX8uWLfO5lAAAAAAAAPADQcuozJ8vzZkTdSlyUj//i5MZM2aYBlH79u2r119/Xeuvv77t9wcMGKBu3bqZftauXTtfyggAAAAAAAD/EbSMikUwLSppSemfMy2LBi9DKnv79u11zDHHSJJqamo0depUTZ48WRMnTtRpp52mJ5980vb7F110kfr16xdCSQEAAAAAAOAngpZRCbl5dTHpxkatWLFCHTt2VKoiHl2ddu7cWaNHj85775lnntGxxx6rp556Svvtt5/OPPPMaAoHAAAAAACAwMQjOgU4dNRRR+miiy6SJF1yySVavnx5xCUCAAAAAACA3whaInFGjhyp7t2766efftLNN98cdXEAAAAAAADgM4KWSJx27drp73//uyTplltu0dKlSyMuEQAAAAAAAPxEn5ZIpJNPPlk33XSTvv/+e9144426+uqrm01z7bXXNusT0+j444/XIYccEmApAQAAAAAAUAqClkik6upqXXXVVRo8eLBuv/12jRgxQhtttFHeNK+99prtPHbZZReClgAAAAAAADFE0BKRmj59erP3hg4dqqFDhxb97nHHHafjjjuu2fvpdNqHkgEAAAAAACAq9GkJAAAAAAAAIFYIWgIAAAAAAACIFYKWAAAAAAAAAGKFoCUAAAAAAACAWCFoCQAAAAAAACBWCFoCAAAAAAAAiBWClgAAAAAAAABihaAlAAAAAAAAgFghaAkAAAAAAAAgVghaAgAAAAAAAIgVgpYAAAAAAAAAYoWgJQAAAAAAAIBYIWgJAAAAAAAAIFYIWgIAAAAAAACIFYKWiFTv3r2VSqU0evTo3HujR49WKpXK+1dRUaGOHTtq11131ciRI7Vo0SLLeRZ+1+rf+PHjXZU1W66hQ4eWtrIAAAAAAABwpCrqAgBW2rdvr2OOOUaS1NDQoBkzZmjChAmaNGmSHn74Yb377rvaeuutLb8/YMAAdevWzfLzws9SqZQkKZ1O+1B6AAAAAAAAlIqgJWKrc+fOeRmYkjRlyhTtv//+WrBggc477zy9/PLLlt+/6KKL1K9fv2ALCQAAAAAAAN/RPByJssMOO2jEiBGSpDfeeEM1NTURlwgAAAAAAAB+I2iJxNlpp50kSXV1dVqyZInn+V122WW5puFS8z4xp0+f3uw7q1ev1siRI7XVVlupdevW6tatm4YMGaI5c+Z4Lg8AAAAAAEBLR/NwJM6KFSskSZWVlercubPn+e2yyy4aMmSIHnnkEUnSkCFD8j5fb7318v5evny59t57b82cOVP77ruvdtxxR02YMEGPPvqo3n77bU2ePFnrr7++53IBAAAAAAC0VAQtkTjZfix/85vfqLq62vP8Bg0apEGDBuWCloX9aBZ67rnnNGDAAL377rvq2LGjJGnp0qU68MADNWnSJN11110aOXKk53IBAAAAAAC0VAQtI9KnTx/Nnz8/6mLkSafTec2krXTr1k0ff/xxCCVqkh09/L777tPjjz+uzTbbTLfddpvtdw444ADLz9Zff30tW7aspLK0b99eDz/8cC5gKUkbbrihLrroIh133HF68803CVoCAAAAAAB4QNAyIvPnz6f/wyJmzJhhGkTt27evXn/99aJNsAcMGKBu3bqZftauXbuSy9WnTx9179692fvbbbedJLFfAQAAAAAAPCJoGRGrYFqU3GRahqF9+/Y65phjJEk1NTWaOnWqJk+erIkTJ+q0007Tk08+afv9iy66SP369fO9XJtuuqnp+9nMy3Xr1vm+TAAAAAAAgJaEoGVEwm5eXUxjY6NWrFihjh07qqIiHoPKd+7cuVn/ks8884yOPfZYPfXUU9pvv/105plnhl6uuGwfAAAAAACAckX0BYly1FFH6aKLLpIkXXLJJVq+fHnEJQIAAAAAAIDfCFoicUaOHKnu3bvrp59+0s033+zbfLMjkdfX1/s2TwAAAAAAALhH0BKJ065dO/3973+XJN1yyy1aunSpL/PdZJNNJElTpkzxZX4AAAAAAAAoDX1aIpFOPvlk3XTTTfr+++9144036uqrr242zbXXXtusT0yj448/Xoccckju76OPPlo33nijDj74YB144IHq0KGDJOm6667TRhtt5Ps6AAAAAAAAwBxBSyRSdXW1rrrqKg0ePFi33367RowY0Syw+Nprr9nOY5dddskLWl555ZWqqKjQM888o+eee061tbWSpIsvvpigJQAAAAAAQIgIWiJS06dPb/be0KFDNXTo0KLfPe6443Tcccc1ez+dTpdUljZt2ui6667TddddZ/p5sXL17t275GUDAAAAAACgCX1aAgAAAAAAAIgVgpYAAAAAAAAAYoWgJQAAAAAAAIBYIWgJAAAAAAAAIFYIWgIAAAAAAACIFYKWAAAAAAAAAGKFoCUAAAAAAACAWCFoGaB0Oh11ERBzHCMAAAAAAADNEbQMQEVFZrM2NDREXBLEXfYYyR4zAAAAAAAAIGgZiOrqalVXV2vVqlVRFwUxt3btWlVWVqq6ujrqogAAAAAAAMQGQcsApFIpdejQQcuXL9fatWujLg5iqqGhQcuXL1e7du2USqWiLg4AAAAAAEBsVEVdgHLVuXNnrV27VjNnzlTHjh3VoUMHVVZWxjY41djYqNraWq1bt46mygFLp9OqqanRkiVL1NjYqC5dukRdJAAAAAAAgFghaBmQyspK9erVS4sXL9bKlSu1bNmyqItkK51Oa+3atWrbtm1sA6vlpn379urWrZtatWoVdVEAAAAAAABihaBlgCorK9W1a1d16dJFdXV1amxsjLpIlurq6vTOO+9ov/32o3/FEFRVVamqitMPAAAAAADADFGTEKRSqdhn01VWVqq+vl5t2rQhaAkAAAAAAIBI0XkhAAAAAAAAgFghaAkAAAAAAAAgVghaAgAAAAAAAIgVgpYAAAAAAAAAYoWgJQAAAAAAAIBYIWgJAAAAAAAAIFYIWgIAAAAAAACIFYKWAAAAAAAAAGKFoCUAAAAAAACAWCFoCQAAAAAAACBWCFoCAAAAAAAAiBWClgAAAAAAAABihaAlAAAAAAAAgFghaAkAAAAAAAAgVghaAgAAAAAAAIiVRAct77zzTvXu3Vtt2rTRHnvsoYkTJ1pOO3r0aKVSqbx/bdq0CbG0AAAAAAAAAJxIbNDyqaee0ogRI3TppZfq008/1c4776wBAwZo4cKFlt/p2LGj5s2bl/s3Y8aMEEsMAAAAAAAAwInEBi1vvvlmnXLKKRo2bJi233573XPPPWrXrp0eeughy++kUil169Yt969r164hlhgAAAAAAACAE1VRF6AUtbW1+uSTTzRy5MjcexUVFTr44IM1YcIEy++tWrVKm222mRobG7Xbbrvpmmuu0Q477GA6bU1NjWpqanJ/r1ixQpJUV1enuro6n9YkPrLrVI7rBiQB5yAQPc5DIHqch0C0OAeB6JX7eehmvVLpdDodYFkCMXfuXPXs2VPvv/++9tprr9z7f/3rX/X222/rww8/bPadCRMm6LvvvtNOO+2k5cuX68Ybb9Q777yjKVOmaJNNNmk2/WWXXabLL7+82fuPP/642rVr5+8KAQAAAAAAAGVuzZo1Ov7447V8+XJ17NjRdtpEZlqWYq+99soLcO69997abrvtdO+99+rKK69sNv3IkSM1YsSI3N8rVqxQr169dMghhxTdqElUV1enN954Q/3791d1dXXUxQFaHM5BIHqch0D0OA+BaHEOAtEr9/Mw25LZiUQGLTt37qzKykotWLAg7/0FCxaoW7dujuZRXV2tXXfdVdOmTTP9vHXr1mrdurXp98rxoMkq9/UD4o5zEIge5yEQPc5DIFqcg0D0yvU8dLNOiRyIp1WrVtp99901duzY3HuNjY0aO3ZsXjalnYaGBn3xxRfq3r17UMUEAAAAAAAAUIJEZlpK0ogRIzRkyBD16dNHffv21S233KLVq1dr2LBhkqSTTjpJPXv21KhRoyRJV1xxhfbcc09ttdVWWrZsmW644QbNmDFDJ598cpSrAQAAAAAAAKBAYoOWxx57rBYtWqRLLrlE8+fP1y677KJXX31VXbt2lSTNnDlTFRVNiaRLly7VKaecovnz52vDDTfU7rvvrvfff1/bb799VKsAAAAAAAAAwERig5aSNHz4cA0fPtz0s/Hjx+f9/Y9//EP/+Mc/QigVAAAAAAAAAC8S2aclAAAAAAAAgPJF0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAAAAAADECkFLAAAAAAAAALFC0BIAAAAAAABArBC0BAAAAAAAABArBC0BAAAAAAAAxApBSwAAAAAAAACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMRKooOWd955p3r37q02bdpojz320MSJEx1978knn1QqldKgQYOCLSAAAAAAAAAA1xIbtHzqqac0YsQIXXrppfr000+18847a8CAAVq4cKHt96ZPn64LLrhA++67b0glBQAAAAAAAOBGYoOWN998s0455RQNGzZM22+/ve655x61a9dODz30kOV3GhoadMIJJ+jyyy/XFltsEWJpAQAAAMTSlCnS3LlRlwIAABSoiroApaitrdUnn3yikSNH5t6rqKjQwQcfrAkTJlh+74orrlCXLl30pz/9Se+++67tMmpqalRTU5P7e8WKFZKkuro61dXVeVyD+Kmrq9P555+vM888U6lUKuriAC1OOp1WTU2NWrduzTkIRITzEIhe6OfhunXSTz9lXnfrJlVWBr9MIMa4FwLRy56Hm266qT788MOoi+M7NzG1RAYtFy9erIaGBnXt2jXv/a5du+rrr782/c57772nBx98UJMmTXK0jFGjRunyyy9v9v7rr7+udu3auS5zEixbtkw/ZSttAAAAQEsyf37UJQAAIM+YMWOiLoLv1qxZ43jaRAYt3Vq5cqVOPPFE3X///ercubOj74wcOVIjRozI/b1ixQr16tVLhxxyiDp27BhUUSNTV1enDTbYgF/UgIjwqzYQPc5DIHqhn4dz5jS9Xm89af31g18mEGPcC4HoGTMtBw4cGHVxfJdtyexEIoOWnTt3VmVlpRYsWJD3/oIFC9StW7dm03///feaPn26Dj/88Nx7jY2NkqSqqip988032nLLLfO+07p1a7Vu3brZvKqrq1VdXe3HasTOTTfdpIEDB5bt+gFxVldXpzFjxnAOAhHiPASiF/p5aAzKnHKKdPPNwS8TiDHuhUD0yv08dLNOiRyIp1WrVtp99901duzY3HuNjY0aO3as9tprr2bTb7vttvriiy80adKk3L8jjjhCBxxwgCZNmqRevXqFWXwAAAAAAAAANhKZaSlJI0aM0JAhQ9SnTx/17dtXt9xyi1avXq1hw4ZJkk466ST17NlTo0aNUps2bbTjjjvmfX+DDTaQpGbvAwAAAAAAAIhWYoOWxx57rBYtWqRLLrlE8+fP1y677KJXX301NzjPzJkzVVGRyERSAAAAAGGj/z4AAGIlsUFLSRo+fLiGDx9u+tn48eNtvzt69Gj/CwQAAAAAAADAM1IRAQAAAAAAAMQKQUsAAAAAAAAAsULQEgAAAAAAAECsELQEAAAAAAAAECsELQEAAACA0cMBAIgVgpYAAAAAAAAAYoWgJQAAAACQaQkAQKwQtAQAAAAAAAAQKwQtAQAAAAAAAMQKQUsAAAAAoHk4AACxQtASAAAAAAAAQKwQtAQAAAAAAAAQKwQtAcAPTz0lHXGENHFi1CUBAAAAACDxqqIuAACUheOOy/z/4otSOh1tWQAAAAAASDgyLQEAAACAgXgAAIgVgpYA4BWZlQAAAAAA+IqgJQB4RdASAAAAAABfEbQEAK8IWgIAAAAA4CuClgDgFUFLAACSjz4tAQCIFYKWAOAVQUsAAJKPoCUAALFC0BIAvCJoCQAAAACArwhaAoBXBC0BAAAAAPAVQUsA8IqgJQAACNJPP0m33y5NmRJ1SYB4mjlTuvVWadasqEsCwEdVURcAABKPoCUAAAjSkCHSyy9nXtfXS5WV0ZYHiJt+/aQff8wE96dNi7o0AHxCpiUAeEXQEgCA5IvzQDzZgKUkrVoVXTmAuPrxx8z/338fbTkA+IqgJQB4RdASAAAAAABfEbQEAK8IWgIAgLDEOSMUAAAfEbQEAAAAAAAAECsELQHAKzItAQAAAADwFUFLAPCKoCUAAMlHs2sAAGKFoCUAeEXQEgAAAAAAXxG0BACvCFoCAJB8Scm0pN4BAGghCFoCgFc8PAAAgLBQ7wBanu+/l1avjroUQOgIWgKAVzw8AAAAAAjCf/4jbbWVtN12Um1t1KUBQkXQEgC8ImgJAEDy0TwcQBz94Q+Z/2fNkp57LtKiAGEjaAkAXvHwAAAAwkK9A2i5amqiLgEQKoKWAOAVDw8AACAs1DuAlovzHy0MQUsA8IrKAwAACAv1DgBAC0HQEgC84uEBAACEhXoH0HJx/qOFIWgJAF5ReQAAIPkYiAdA3DU2Rl0CIFQELQHAKx4eAABAWKh3APbK+Rwp53UDTBC0BACvqDwAAAAA8VDOdfNyXjfABEFLAPCKygMAAAgL9Q7AXjmfI+W8boAJgpYA4FUSKg8rVkh77CHtvrv0009RlwYAgPihT0sgWHPmSL/8pbTfftK6dcEtp5z7feT8RwtD0BIAvEpC5eHvf5cmTpQ+/VS64IKoSwMAQPwQtASCdeqp0pdfSu++K910U3DLIWgJlA2ClgDgVRIqD59/3vR60qTIigEAADxKQr0DMPPBB02vv/kmuOUQtATKBkFLAPCKygMAAAgL9Q6UgyAzmzlHgLJB0BIAvKJiBAAAwkK9A0kV1rFLpiVQNghaAoBXSag8JKGMAACgOO7pSCrjsRtkpmU5By3Led0AEwQtAcArHh4AAEg+BuIBwkPQsjSc/2hhCFoCgFdJqzwk5aEMAAAA5YPm4d4l7bkD8IigJQB4ReUBAACEhXoHkiqs5uHlfI6U87oBJghaAoBXVB4AAEBYqHcgqejT0jvOf7QwBC0BwCsqDwAAICzUO5BUBC0BuETQEgC8SsLDQxLKCABAlJLS5zP3dJQDgpal4fxHC0PQEgC8SlrlISkPZQAAhCkp98ek1TuArLCO3XI+R8o5IAuYIGgJAF6Vc8UIAADEC/UOJBXNw73j/EcLQ9ASALyi8gAAAMJCvQNJRdDSO85/tDAELQHAKyoPAAAAgD2Clt7x3IEWhqAlAHhF5QEAAISFegeSKqigZeE5Uc7nSDmvG2CCoCUAeEXlAQCA5EvK/Twp5QQKhRW0LOdMS6CFIWgJAC0BDzgAANhLyr0yKeUECtE83DvOf7QwBC0BwKukVR6CrCQCAJBUSbmfJ6WcQFhaUqYl5z9aGIKWAOAVlQcAAJIvKffzpJQTCEtL6tOynAOygAmClgDgVTlXjAAAQLxQ70BS0aeldw0NUZcACBVBSwDwiocHAACSLyn386SUEyhEn5belfO6ASYIWgKAVzw8AACQfNzPgWCRaekdmZZoYQhaAoBXPOQAAJB8SbmfJ6WcQKGwgpblfI6Uc0AWMEHQEgC8KueKEQAALUVS7udJKSdQiExL78i0RAtD0BIAvOLhAQAAhIV6B8oBQcvSlPO6ASYIWgKAV0l4eEhCGQEAiFJS7pVJKSdgh4F4SkOmJVoYgpYA4FXSHh6CrCQCAJBUSbmfJ6WcQFjo0xIoWwQtAcCrcq4YAQDQUiTlfp6UcgJ2aB5eGjIt0cIQtAQAr5Lw624cywRI0pIl0rp1UZcCAJJzr0xKOQE7BC1LQ9ASLQxBSwDwKglBSyOahyMuPvpI6tFD6t1bWrky6tIAAIByUM5By3JeN8AEQUsA8CppQUsgLo48UqqpkRYskG68MerSAGjpknL/Tko5ATtBZlqW8zlCpiVaGIKWAOBVS6ooAX6aM6fp9fLl0ZUDAKTk3L+TUk7ADs3DS1PO6waYIGgJAF4RtAS8o9sCAFFLyv07KeUE7BC0LA2ZlmhhCFoCgFcELQHvOG8ARC0p16GklBOwQ9CyNOW8boCJqlK+tGLFCklSx44dPS181apVeuuttyRJRxxxhKd5AUBkCFoCpUmlOF8AwC2um4C9cg7skWmJFqakoOUGG2ygiooKff7559p+++2bfT537lxdfPHFSqVSevDBBy3nM2PGDA0aNEgVFRWqr68vpSgAED2CloB3nDcAopaU61BSygnYYSCe0pRzQBYwUXLz8LTNhWDp0qUaPXq0Ro8e7XleABB7LamiBPiJfiwBxElc79/UM1COaB5eGjIt0cLQpyUAeMXDBOAd5w2AqMX1OkQ9A+WIoGVpCFqihSFoCQBe8TABAEDyxfX+HddyAV4QtCxNOa8bYIKgJRCGceOkX/5SuvrqqEuCIBC0BAAAQaGegaAtWyYddJD0m99Ia9aEs8wgu4gp53OETMvoLFkiHXCANHCgtG5d1KVpMQhaAmE48EDpyy+liy+WVqyIujTwWxIqRkkoIwAAUYrrvZKgJYJ20UXSW29Jr72milGjwlkmmZalKed1i7vzz5fGj5deeUW69tqoS9NiELQEwrZ2bdQlgN+S8DBhLBODnyAuOBYBxEkc799SMuoZSLZ33829TH3ySYQFKVFLClqSaRmdt99uep3E8yShCFoCgFdJe5ggUIQ4ivt5A6D8xfU6VBiAiWs5kVzGY6oigSGCcg9aGuvu5bZuSUISSCQSeEUCgJhJWtASiAsqfADiJK73b+oZCJoxEFYO9+ZyO0eM+4RMy+gQtIyEp6Blih0FADxMAACA4FDPQNCiCMb4eRy3pExLgpbxQCwsNFVevrzjjjtafpYNaFZWVnpZBADEHw8TgHecNwCiFtfrEPUMBC2K5uEELZ2jeXg8cO2NhKegZZqdBgA8TACl4ldqAHES1/t3XMuF8hFF83CCls6RaRkPNA+PRElBy/322y8WTcPvvPNO3XDDDZo/f7523nln3X777erbt6/ptM8884yuueYaTZs2TXV1ddp66611/vnn68QTTwy51GjxYnDuwGcELQEASL643r+pZyBo5Ra0LLdzhEzLeCBoGYmSgpbjx4/3uRjuPfXUUxoxYoTuuece7bHHHrrllls0YMAAffPNN+rSpUuz6Tt16qT/9//+n7bddlu1atVKL730koYNG6YuXbpowIABEawBgLJR7hUlAABagrjev6lnIGhJbx5eqNwCe2Raxg9By9AkdvTwm2++WaeccoqGDRum7bffXvfcc4/atWunhx56yHT6fv366cgjj9R2222nLbfcUueee6522mknvffeeyGXHC0eFc3yw8MEgKDce6906aXS6tVRlwTlIJ2Wbr1VuvJKqaYm6tLAKeoZCFq5ZVqWW9DSqJzXLe7ItIyEpz4to1JbW6tPPvlEI0eOzL1XUVGhgw8+WBMmTCj6/XQ6rbfeekvffPONrrvuOtNpampqVGOozK1YsUKSVFdXp7q6Oo9rED/ZdSrHdYuDasPrupoaie1cVlJ1dXkX07raWtf7OOhzsDKdzv1K1ZhOq4FjEDFQJSlb5WtoaFBjxMdl3O6FqbffVtXpp0uSGtauVePVV0dcIiRd6vnnVXXeeZKkhspKNf7lL9EWyETY56GxjtbY0BDP+2NNTV456+vqlI5jOZFYVel07n6cDYkFcQ4aj+OG+nr/7vu1tWV9jlQ1Njbtn/r6eF6nWoC886SxMdD9ELc6qd/crFfkQcs1a9bo7rvv1vnnn+/4O4sXL1ZDQ4O6du2a937Xrl319ddfW35v+fLl6tmzp2pqalRZWam77rpL/fv3N5121KhRuvzyy5u9//rrr6tdu3aOy5o0b7zxRtRFKEu/M7x+a+xYrevUKbKywH/dPvlEexj+Hvvmm6rZYIOS5hXUObjv0qXKHnXLli3Tu2PGBLIcwI3D0mlV/vx65owZ+jwmx2Vc7oU7PvCAtvz5deUNN+ilffaJtDxIvt1vvVWb/Py67sYb9doOO0RaHjthnYfGOtrMmTM1OSbXIaPqlSs10PD3RxMnamF9fWTlQfk5ZM0atf359YJFiyQFcw4az7cfvv9eX/l0vrVdtEiHGP7+YvJkzYzhuVyqww1ByxVLl+rtMlq3JBmwdq3a/Px63oIF+jiE/RCXOqnf1qxZ43jayIKWK1eu1G233aZbb71VP/30k6ugZak6dOigSZMmadWqVRo7dqxGjBihLbbYQv369Ws27ciRIzVixIjc3ytWrFCvXr10yCGHqGPHjoGXNWx1dXV644031L9/f1VXVxf/Akp24AEHSD17Rl0M+ChV8EvRQQceKHXr5moeQZ+DlaNG5V5vsMEGGjhwoM3UQDgqDP1mbbrpptok4uMybvfCijffzL1Op1Kct/Cs8vHHc69bt24dy2MqyvNw0002Uc8YbhP99FPen7/q00fp3/wmosKgHFW1bp173bV7d0kK/BzcYost1Nuv823mzLw/f7njjtoxjudyiVKGZsnrr7deLK/dLYHxPOnevXug+yFudVK/ZVsyOxF60HLJkiX6xz/+oTvvvFPLly9XOp12PRJ5586dVVlZqQULFuS9v2DBAnWzCRRUVFRoq622kiTtsssumjp1qkaNGmUatGzdurVaGw7KrOrq6rI8aLLKff3ioLqyUmIbl5fKyrw/q6uqSt7HgZ2DhutsRUWFKjgGEQeG47KyokKVMTkuY3MvNGyfVCoVjzIh2Qz3q1Q6HetjKorzsCKViuf9sSr/ka2KuiT8ZugnMfuDYtDnYKXk332/8BxJpcrrHDEELVONjbG+drcUFZWVodwvYlMn9ZmbdfI0EM+MGTN0zjnnaPvtt1eHDh3UqVMn7bbbbho1apSWL1+eN+2qVat06aWXqnfv3rrmmmu0bNkypdNpde7cWVdddZWr5bZq1Uq77767xo4dm3uvsbFRY8eO1V577eV4Po2NjXn9VgKhoPP08kMH+QCCQIfv8JvxOGIwh+biev+Oa7lQPqK43zAQjzPpdP76ldO6JQ3X4kiUnGn5xhtv6Oijj9bqn0ezTP+8AydPnqzJkyfr0Ucf1bhx49StWzf973//0wknnKBZs2blpuvZs6cuuOACnXrqqWrbtq3lcqyMGDFCQ4YMUZ8+fdS3b1/dcsstWr16tYYNGyZJOumkk9SzZ0+N+rlJ5KhRo9SnTx9tueWWqqmp0ZgxY/TPf/5Td999d6mbACgNF7vyQ9ASQBAIWsJvxuOIe1VyUM9A0IzHVIWnvKbSlun3vMrpHClcl4aGaMoB6mURKSlouWjRIg0ePFirVq3Kvde+fXtVVVXlMiy//fZbnXXWWTr33HM1YMAA1dbWKp1Oa/PNN9dFF12koUOHekpzPfbYY7Vo0SJdcsklmj9/vnbZZRe9+uqrucF5Zs6cmddX1urVq3XmmWdq9uzZatu2rbbddls99thjOvbYY0suA1CScrqJIoN9CiBoVI7hB2MwgntXc3HdJuUckEE8GLP3yLSMl3Jet6QhaBmJkoKW999/v5YsWaJUKqWjjz5a1157rbbYYgtJ0vz583XNNdfozjvv1PPPP6+PPvpINTU16tChg6655hqddtppqqrypyvN4cOHa/jw4aafjR8/Pu/vq666ynUzdCAQ3GjKTxIeJuJYJsCIY7Q5tgn8RvNwe3E955JQz0CyJT3TslA5Xd8K14VMy3ggaBmakqKHr7/+uiRpzz331L///e+8z7p166bbbrtNK1eu1COPPKLZs2drgw020LvvvqsddtjBe4mBpKOiWX54mABKQ4XPHr/ow280D7cX121SGLSIazmRXMZjLIlBy3LORizndUsa6mWRKOmK9PXXXyuVSunMM8+0nOacc86RlBnt8pxzziFgCWRR0Sw/SQtacpMF/LN0qfTSS9Latf7PO8zMly+/lD74wP/rV02N9PLL0uLF/s4XpSFoaS+u2yRp9QwkD83D4yvpmZZffBFM/SIKUZwnKC1ouXTpUknSVlttZTnN1ltvnXu97777lrIYoDyV000UGTxMAN4l9bz57W+lww+Xfv6x1ldh/aL//ffSL38p7bWXVNC9jmcXXigddph0wAHJ3cflhD4tk4l6BoJWbqOHl9M5kuSA7HffSTvtlKlfvPNO1KXxjkzLSJQUtKyrq5MkdejQwXKa9dZbL/e6W7dupSwGKE/ldBNFRjlXlIAglUOF76OPMv9//LH/8w7rWvL//l/T6+OP93fet96a+f/LL6V16/ydN9wj09JeXLcJ9QwELel9WiY5sFdMkjMtL7qo6fVJJ0VXjiCUQx02IUK5IqXYoUATKprlh4cJwLuknjfZcgfxgBTWL/pRPKwiGgQt7cV1m1DPQNCS3jy8UDkFLQu3U5KCluV2rSq39UkIaqZA2LjYlR8eJoCWK3u+B/EQEVbQMooBGBANRg+3F9f7d1zLhfJhOMbSZFrGS+G6JHXdyiGRjebhkShp9PCsYcOGqX379p6nS6VSGjt2rJeiAMmR1BsNrCUhaBnHMgHlIMhMSyOClvADmZb24rpNklDPQLKV2+jh5XSOJLl5eDntB4mgZUQ8BS0/LtJ/U7ZZuN106XSa5uNoWcrt4o3kVZS45gL+IdPSubhfG1sCBuJJpsKgBfsOfosiGOPnj33lnGlZzuuWZDxPhabkoGWamyVQGs6d8pO0oCUQF0mv8BnP9SAeIsLqYyyKvjMRDZqH24vrMUo9A0FL+ujhhcrp+pbkTMtyw7U3EiUFLRvL6SIAhI2LXfnhYQLwLonnjbHMQT9ElEPQkvpj9Ggeni8p9++klBPJVW7Nw8vpflMu65b0H6olmodHhI6LgLAl9UYDazxMAKVJeoUv6EzLsK4lNA9vOQha5kvK/Tsp5URyJX308HI+R5KcaVlO+0EiaBkRgpZA2Mrh4r16ddQliJdyrigBYUnieRN0piV9WsJv9GmZLyn37ziXc+3aZAVRYM54TJFpGS+F65bU863cgnzltj4xRtASCFucKpqlOPtsqWNH6cYboy5JfMT5YQKIs6RX+MLMtCRoCT+QaZkvKYGNuNYzPvtM6t5d2m67TPASyZX0Pi3LOWhZuC7ltG5JE5drbwtTUp+WV1xxhd/l0CWXXOL7PIFYSvqN5o47Mv//5S/SBRdEW5a4iOvDBBB3ST9XyjFoyUA85Y2gZb6k3L/jWq6jjpKWL8/8u+OOTN0QyZfEoGWhpD9vGRWuSzqd+ZeEH37jeu0qFc3DI1FS0PKyyy5TyuedRNASLUa5XbzBPgVaqnJpHs7o4S0HQct8SQ1axqWc06c3vV60KLJiwGfl0Dw8LueIH8zWpbFRqqwMvyxelEOQj6BlJEoKWkpS2scLgd8BUCDWyukmioxyrigBQUr6/d+Y/ZDkTMuw+jIrp8yXpEr6Oee3pNy/zTKt4iaOZUJpgrpOBHm+taTm4VLmh9IkBC3L+brA/TQ0JQUtx40b53c5gJajnC/eLVUSHnriWCbAKInHaNCZlkb0aQk/hJVBlRRJuH9LySknYCfI4Hs5By2tMi0RPq69kSgpaLn//vv7XQ6g5eAmU36S9jDBL4OIi6Qfi2H2aRkkgpYtR9LPOb8l5ZhMQj0jjmVCaYJ6VgnzOC6n5y2rTEuEj+bhkeDnViBsVOrKDw8TQMtULn1aErRsOXjIypeE+7eUnHKiPAR1fIWZaVlO50i5ZFqWw/2HoGUkCFoCYSunmygyklZR4iaLOIr7eWMmzEzLsPqaZCCe8sb1P19S7t9JKGccy4TShBW09PO+Wc7Nw5OcaVnO1wXup6EhaAmErZxuoshIwsMEEEdJr/CVS6Ylo4e3HPRpmS8p9+8klDOOZUJpgnpWoU/L0iQ5aGmU9DqfRKZlRKi5AGFLcqUuyWUPUhIeJgD4L8zRw4PE6OEtBw9Z+ZJy/45ruVCeyqF5eDndb8qleXg54FocCYKWQNiSfLFLctnt/Pvf0q9/Lb30UmnfT8pDD9ybN0/67W+l009nv/rpf/+T9ttPWrEi6pJ440fz8L/9TTr4YOm77+znH5c+Lf/f/7MubzGcQ9YaG6VTTpEOO0xasCC45RC0zJeUYzIJ9Qy/y/T445m62auv+jtfFBfXTMtx46Q+faStt5auvtp+2jieI6VKcqZlOe0HiUzLiJQ0ejgAD5J88S7XX/WOPTbz/+GHl7Z/kvAwgdKceqo0Zkzm9YEHSn/4Q7TlKRe//nXUJfBHYdAynXZXif3oI2nUqMzrQYOkKVOsp41D0PKTT6Rrrsm8PuIIaepUd8vh2mjt8celBx7IvD7zTOm//w1mOTQPz5eU+3eQGWpxdcIJmf8PPbRlrG+cxDXT8qqrMvchSbrkkswPyhttZD6vcnpmKZdMy3IL8pXb+sQYNRcgbEm8yWRRaTSXlIceuGfMvv3ss+jK0RIk8bzxeu5/+23T66++Kj7/oDgdiGfatKbXX3/tfjlJ3Mdh+fjjptfPPhvccnjIypeUYGAS6hlxLBNKE9eg5fLl+fNatcp6Xkl+3ipEpmV8kGkZCYKWQNiSfPEupwqAn5LwMAHAf4Xnut8PEVH0NWm3HK/XNq6NiJuk3L/jWk7jQ3tcygTvgqrvez2OC8tlvOeWc9CyXDItywHXuUgQtATCluSLXZLLHqS4PkwASZLE8ybohySnGZBeMXo4Wqqk3L/jWk4yjcpTXDMtC79vd88tp6BekjMtyxnXv9AQtATCluSbaJLLHqa4PEwACJZd1ocTbiq8YQUTGT28vHF/ypeU7RHXoKVRHMuEkqTiGrS0+6EwCedIqcol07Lcgnzltj4xRtASCFuSb6JJLnuQyrmiBMBa0JmWUfRpGWTQkmtj9JL4oBukpNy/41pOHtrLU1xHD7fLtCzn5uFJzrSMy7UqCFz/QkPQEghbki/e5VQB8FNcHyYABMtrn5bFKrxhNduOohk6rAW5ndgH+ZJy/05COeNYJpQmrpmWBC2bJCVoaVRuQb5yW58YI2gJhC3Jlboklz1ISdguSSgjkDRhZlqGFbQk07K8sQ/yJSEYKMW3XEENxBPX9W0p4hq0dNM8vJyCluXSPLzcELQMDUFLIGjldBNNctmDlJSHnixusoijuJ83ZsolaOl0OYweHpywrsvcx/Ml5f7tNdgTlKCOW47TaIXVPNztctx8Py7niB+SnGlZTvuhEM9ToSFoCRg98YR0221Sba1/80xKhdiJJJc9SEnYx3Esk19efFG6/npp1aqoSxIP6bT0wAPSvffy4Bc0rwPxFBNF0JKBeKIR1sNPOd8LSpGU7dHS6hlxula884501VXSokVRlyQ8cc20bKnNw6PItGxslO6/P/PPr2WVW5DPj/V55hnpppukNWu8z6uMVUVdACA23n1XOv74zOv6emnECH/mG9dfx0tRThUAPyXhYcKonCoN06ZJRxyReT1/vnTzzdGWJw7++1/plFMyr9dbTzrhhGjL41TczxszXh+S4tinJc3Dyxv7IF9S7t9xLWe5Z1quXCntv3/m9cSJ0gsvRFuesMQ1aNlSm4dHkWn5739Lp56aed2hg3TccaXNJy7Xqjj6/HPp6KMzr5ctk668MtLixBmZlkDWo482vb70Uv/mG9eKZimSXPYgldM+TprXXmt6/Y9/RFeOOLnttqbXbJNgeR2Ix821Ig5BS5qHJ185Pcj7ISn37ySUsxwzLb//vun1iy9GV46wBbX9vR7HZFo2CXr9jEkAt94a7LKSyus175lnml5fdZW3eZU5gpZA0MrpJprkslvxo5KdhIcJtBxhZc0h3D4tg8To4S0H+yBfUu7fcS1nUNeLuPTXV471XifimmnpJmgZl3PED1H3aVlOLbT8VE7HWMzxNAMErZyahye57FYIWqLchBWA8lsSzxuvmZY0D0fYWmoQxkpS6mhJqGeUY6ZlHLdzEMI6D4JsHl5sWUlmti5Br59fx0BY9ZgotJTrQwwQtASCloSKplPlVAHI8mOdkraP414+N8qtAuSHpGZaJvH6EmamZVjBRDIto8FAPNFIyvaIaz3DeNyWY9AyLuUIWuEPbmGNHk7zcGfMthOZltGjy5zQJOhpBkgouxts0pTjxZWgZbJRkWrOeExXVkZXDreSeFx6HT08LpmWjB7eciTxPAtSUu7fcS1XuQ/EE5dyBK3w3pXETMtyDlpG3TzcL+VWZ4/rdbkMEbQEgpaUCrET5VQByCJoiXKT1ObhSby+lGOfljQPL29JPM+ClJT7dxKasZNpmVxJCVq21D4toxiIp5y2X1DYRqEhaAkELQkVTaeSXHYrfuyfpFWU4l4+eBNW1pzfknhchhm0DKtPS5qHR4Pm4dFIyv07ruUs90zLuGznoIXVKizIoGWxaZMs6kxLL+d5OZ9D5bxuMZOgpxkgoeJa0SxFOQVgs/wIOiRtH8e9fPAmqZmWSTwuvQ7E4wYD8cAP7IN8Sbl/J6GcfpYprMy/Ysop8GUnKZmWLbV5eLlkWiapTuoEfVqGhqAlELRyuomW07pk+fHrctIeJuJYvnJUXy+9955UUxPuchmIJzxer4lu+rQMktPsXCro8bFmjfT+++4D5Uk8z7z6/HNp/nzzz5Jw/5biW07jNWzevMy29kNcfiSPy3YOSkOD9L//SatX579fbL3nzZO++ML98rwexy11IJ4oMi39aumR9HNo3brMOVJfL334Yf5n1IlCk6CnGSCh4lLx8kM5DSqURdAy2eL8q+1pp0n77isdfXS4y6V5eHiCzrSMYoAcmodHw+12P+QQaZ99pAsvdPe9lrYPXn5Z2nlnacstpSVLmn+elO0R13qG8bh96aXMtn7pJe/z9TrImV/KoZ5rZ8QI6de/zlxPjOzWe8kSaautpJ12ksaMcbc8r3Vu+rRsEuaxGee6dtCOOipzjlRXS3vumf9ZOR1jMZegpxkgocrpJlpO65JF0BJBeeihzP8vvxzucsm0DE/QP+SUWzAxifs4jtLpTOaHJN10k/vvtiSHHZb5f80a6Y47mn+ehPu3lJxyStLhh3ufR1x+JI/zdvbDbbdl/v/qq/z37db7ttsy55Mk/fa37pZH8/DSRN2nZUv2yivWn5X79SFGEvQ0AyRUXCpefiindclqKX1almvQsiX/+mslqUHLJB6X5dinZZD7IYn7OI683HvL4b5dqrq65u8l4f4txbecYQ3EE9Vx21LPF7vjq76+9PkyEE9pzNYlLteAYsIaUDAKSdkHZSBBTzNAQsW1olmKcvwVk0xLlBuCluEplz4tCVomi5d7b0veB2brnoT7txTfcgUlLs3DW2o2m93x5iXwFGTQshyfUbIYiCee6NMyNAl6mgESKikVYifKqX/OLD8qxknYDgQtW46kjh6exAeMMPu0JNMSWQQtS5PkoGVc619BXZcKr6VR3R8IWjYXZdDSTfPwuJwjfjA7/sMMWiapLhkmgpahIWgJBC2uFc1SlOOvmC0x0xLljYF4whP0NTGshwanP2pQQQ+Om/3rZ/PwcriPOxX1YBZexLWeUe7Nwwla+otMy9JEfe1qqUHLYsdnXK7DLUCCnmaAhCqnm2g5rUsWfVomW0utSNlJavPwJF5Pgr4mhpU1S6Zl9MIKWpbjfdypJGdaJqWcfolL83Av/Tcmmd11Ia7Nw4tNm2RRZ1rGYT5RKLaNk7xuCZOgpxkgocop07Kc1iWrJWZaxrF88E9Sm4cn8bj0+mBdbP9EMXp4kA9C5fQQGSU/g5YtKZOMoKX/yLQsT0E1D/d6HLfU0cPLJdMySXVSqfj5H5frcAtA0BIIWlwrmqUoxwoBQctkK4dj0G9JzbRM4nFJpqW9JFwbk4jm4aVxMgJvXI/RpJTTL3E5TltqpmU5NA8vp3OETMtoBB20TPK2CVmCnmaAhCqnm2hcKpF+CjpomU7HYzuVa9AyKVkQYW7zpAYt43CeuBV01prdA5mfywoqaFn4wJ/Ea09jo/2x2dAQ/nqRaVkaMi39F1ampdvjNJ3259j2Yx5+lcVPxcqTxObh5ZhYkeXkB5cgudnncTvWnTIrN5mWsZGgpxkgocop0BfXSrMXfjzAWW2XZcuk7baTttxSmjOnpOL5plyDlkk5nwhaFpfE4zLMTEvj67fekjbeWDriCH+2WxAD8Zx9ttSxY+nfj4OlSzPX8K22kubNa/75Dz9Im28u7byztGZNeOWiT8vSOAlaxlVc619xHD28tlbq21fadFNp6lRv5fCaablunbTbbtJmm0nffedtXn5Ip6VDDpG6dZP+9z/76awkZfTwcrq2Rd083KkLL5TWX1966KGoS+LOs89KG24oDRuW/36x8z8u1+EWIEFPM0BCxbWiWYpyCsBmBZlp+frr0jffSNOnSy+8UFLxfFOuQcuk/KIb5rli3L9JClom8XoSVablQQdlAmovvih99FFwy7Gbzk5trXTHHZkHdqOkXXv+3/+Tvv1W+vFH6Zxzmn8+dKg0a5b0xRfSddeFVy4/m4cn5RrqBzItk8NL3ezuu6WPP5bmzpV+/3tv5fB6ftx+uzRpUuaH68GDvc3LD6+8Ir3xhrR4sfTrX1tPF9egJQPx2L/np1KuMddfL61eLf3pT+bziWuflg89JK1cKY0eLa1Y0fQ+zcNjI0FPM0BCldPgNeX4K2aQQcuamqb3Ch/ewxbW6MBhS8oDd5jnCpmW4fF6/Si2zsbj22paYwW7VFYZnXbT2bE6L5N2zzBmRpllbH3xRdPrGTO8LYvRw4OX5KBlXPdTHJuHz57d9HrKFG/l8JppOWtW0+vPPvM2Lz8sWuRsurCah3u9Z5JpGY5yH4hn7dqm13V1Ta9pHh4bCXqaARKqnG6i5RSAzQoyaGm82UXdmTuZltGKKmgZ1wqimSQel14zLYuts5MfG/wITAfRPDyI74ctzPMnqqBlUq6hfkhy0DIp5fSLl7pZkP3yulVZ2fQ6DvV/p/eLOGZaFgvclfM5kpRMy6QyBiqN603QMjYIWgJBK6ebaDkFYLP8WCerfWycF0HLYCTlgZvm4cUl8Xri9frhJmhpNW+/97EfzcOt5pHka0/QZXczf5qHl4agpf/CyrSM6v7g9fwwBi3jwOn+Cur48hK0LBa4K8dnlKxyybSMK2PQ0rhdCVrGRoKeZoCEKqfsxLhUIv1EpmWyJeWBm+bhxSXxuPT6kFRs+rAyLY38CFpaTZfEfRwWN8cOzcOdMz5sMxCP/+LYPNzPMvmZaZkkQTUP93Ict+SgZdSZln7u8ziKKmiZhG0TEwl6mgESKq4VzVKU07pk+ZF1QqZldKLKYHQ7Lc3Di0viA0a5NA838qN5eLlkWhYLePkpqqBlUn74KZXboGVcj9GklNMvXkYPD7IcbsUtaOlHpmVcm4e7+SxpzNYlTtn/TqePa53U+IxG0DKWCFoCQSun7MRyWpesIDMtCVoGL8wHbi8ZAWRaFpfE4zIOzcP9figm0zIaYQUty/E+bqdY0DIprWHiGrQs9+bh5ZZp2ZKah8flHPFDEpqHJ/m+X2qmJUKToKcZIKHK6SZajk0vglgnmoeHJ8wKhZegQlRBy7g9MNlJ4vXEa6Z2sXPRyejhfgem/chcsZouafuYTMvkM54fZFomR1z6Xm2pmZZ21xgv9xz6tCxNFM3D3UryNclqIJ5iz25JXueEIWgJBK2cKppJyUhwg0zLZItr0DLKpm1JbR6exOMyDn1a+o3m4dHwcn1xo5wf7M3QPDxYZFraS2rQMonNw8v52hZ1pqUTcbkmlSKq5uFwjKAl/PXVV9KRR0r33x91SeIjLhUvPyShQtDQIJ17rjRsmLRqVdP72WPzvvvypw8iaGk2L+OveMW8/750+OHSf//rvixW4hS0rKmRTj9d2n136fjjpcWL8z9fskQ68UTpL39xl4nmxMsvZ7bt+PHuviclJ9PSuM1oHh6sOPRpeeqpmX/r1rlbdillamnNw4sFvPwM2PidaXnPPZl73tdf23+3lADounWZY+6MM9zd25x45x1VDhqkbhMn+jO/chmIJ471Lan8g5ZefxitqvKnHH4p5+bhbj5LmiQMxOPkvh/XH9LjNBDPpEnS734nPfKIt3mXmZhdSZF4Bx0kzZ8vPfecNGiQtPHGUZcoenH9dbwUcalE2nnoIem22zKvN9xQuvnmzOsBA6TZszPH5pFHNh2bQWZalto8fJ99Mv+/9JJ/x0ucjruXXpLuvTfz+tNPM8HL889v+vyvf5Ueeyzzum9f6fe/t56X2/112GFNZQiik/GsuGRaJiloGcfrSTFx6NPy888z/3r1kv7+d3fLNyuDH0HLcsy0TFLz8HnzMgFFKXONnTGj6TM/fny84YamH6c33zxzzfbL/vurQtIeY8ao7rLLvM+PTMtgxXH0cD+3TUvNtLS7LkSVaUmflvnCDFr6NT1By+L6988kc7zwgnTEEf7PP6ES9DSDRJg/v+n1woXRlSNOyqlJdRIqBG+80fT6qaeaXs+e3fR63rym137070XzcHd++in/78JMy9Gjm16//bb9vOLaPDwufVrGtYJoJurjshRxyLTMev55d8vOKiyzH83DyzHTMmheH96N5sxpej1zpv1ySrmGGo+1F190//0wEbQMVlDnCKOHB8Ph/krFMdOyJTcPj7pPSyfHTVyuSaUwPqMZ1yOKoKXxmajw+agFI2gJBC2uFc1SJCHT0gm77KWo+7Rcu9b98p2IU9CycPmF28ZYyS+2P+IatCwsV1SjnCcpaJnE60mYmZZBnbdugpYtrXm4UZIyLd18t5Rrk7HJa9Q/yBVD0DKZvBynft73yi3T0ik/7gNO5htkpmUS6xRWyiXTMq7i1DzcKKhnwgQiaAkErVwCfVIyKgRORns1vh+35uHGDBk/RTGgh5XCbVy4bYxNmotVGJIStAzzXEnqaMBRH5el8Hr9cBOUD+oYcnOsem0eHsd7hp0wg/5hBS39uI9XVze99jNoGUR9iaBlsOjT0l7cumjxo3m4l23iZb+25KCl2bqEeQ3wq0/LuIpT83CD1OrVgc4/SWJ2JUVZSVKGT5DiWtEsRRKauhsriFY30BhnWqYKg5ZB9GkZ9X4rlmnpZB9mxTVoGZeBeKLe124kqaxZcWoeXio31/WW1jzcqFwyLf1oHm7MtPRzIB7j4Hl+zbtcBuIpp7qkE3EJWnoNysdtP/kxEI+fmd5+Ng93Mn1SlUvz8LjGBuI6eviKFcHOP0EIWgJZQV14yqmimYRfMeOUaVlK83Bj35tm8y5VnAJZfjYPD/PBJimZlnFYbimSVNasODUPL/W8pnm4tXLMtPTjmhlU8/DCB7TaWu/zJNMyWHEciMdPXpcbt5YPfmRaRhW0bMmZljQPD5bxBzLjehS7vwXdPJygZQ5BSyBocfm12A9JyLR0ErS06nBZirx5eLNMS7+OlyQFLb00Dw/yASEpmZZGUe9rN5JU1qxyyLQMYiAeJz8YJU1QQeMsP4OWbvZhKddM4w9Lfl5zCx/Q/M60dNLEMq7HaFzLWe7Nw70G5eNW5/cj09LP5uEELZ2JOtPSiaT+WNnQYJ3MQqZlbBC0RHDimgJuJajyxrWiWYokVAic7Eervkuk6EcPLwxa+vVAGKegpZs+Ld02D7fbXmEGFeKSaRn1vnYjjteTYrxeE91kEofVpyWZlk3KMdPSj/t4UjMtze4PSamjJfH66EVcgpYtNdMyic3Dk/CMUioyLYNT+ONYmEHLIt9PrVzpbf5lhKAlELQkZCc6FZdKpB0nmZZ2Qcuo+7ScNct7eczEKWjpZ/NwN0FLr9vSS0YAzcOLi/q4LEVLy7RsyUHLcunT0o8f6oIaiCfoTEuzsiYlaBnXcgYV2PfSisLPbVNumZZOJbF5eKG4nCN+iDrT0kuflsb345jQVHiOk2kZSwQtUR6efVZ64ol4Vg7iWtEsRRLWpVhTMCk/eyPIoCXNw825aR7uZ9DSa8aDVVnq66VHH5VefdV6WUFdm6ZOlW67TVq82PzzqPe1G9myfvttZp0WLoy2PE54vX4U2z/G4yisoKUfD4FW05V6HsybJ916q/T996V9v1BtrfTww9Kbb9pPF+YDlteHd6fz8qN5eFAD8YSRaTlxonT33U2D/hRuy2nTpIceKr7sSZOkO++Uli/3XkYnklD/8pPZtbWxMVPXv/DCzD3Xz4C5FTfnx48/Zq5Tc+eW9n0/ffeddMst0vz5+e8nuXl4UjItJ0yQ7r1XWrPG/PPXX5dGj3Z37Qwj03L69Mwxk+1bP4hMyzgGLQv3g3E9CFrGRlXxSYAShXVhGjdOOuqozOvqaumYY8JZrlNxuYn6IS7ZY3acZMYYH0aC7NOylObhxspuqeUxE6egpZvm4X72aRlU0PLBB6XTT8+8njRJ2nnncM6VxkZp++0zr195JfOvUNT72o3sNtplF2nt2syPUePGRVqkorxeP9xkWmZfWx3Hpe5rNw+RUWVaHn649Mkn0rXXZgKYXt19t3TeeZnXX38tbbNN8e+US6ZlS24evnixtMcemddff50JMJnt1z/9KTPtX/9qPs+1a6Vdd828/vDDTAAtaHENWobZp+Xrr0vHH9/0Xtu20u9/H2yZ3Bzfe+0lLViQCUh99lnmvajqyXvuKS1ZkrmHPv980/tRNw/3chwnoU/LhQulvffOvJ42TbrhhvzPv/pKGjAg83rVKmn4cGfzDSPTsl8/acYM6YUXpLfecp8hmdQWFjFuHi6ah+eQaYnku/76ptcXX1z6fIK6qJZT8/A4VAiKSXjz8Ga/zJZj0NLP5uFumjoGFbQ8++ym1/ffb76sIM6Vmpqm18Ysz6CXG5TscbF2beb/8eMjK4pjXrPW3Bzf2WX5nV2UhObhn3yS+b8wa6hU2YClJD32mPV05dinpR/Nw8MKWvrdPPzdd5te33Zb5n+rY/LCC63n+e23Ta//+c/Sy+ZGSw9aNjRkAs1GhX8Hwc35sWBB5v9Jk0r7vl/WrMkELKVMAMrIa7a8FN/m4XF4RnnrrabXN97Y/POHHmp6baw7FmO2Ln5eAxobMwFLyfzHYi/Nw8Po5saLGDcPT5FpmUPQEsnnV59TQd3c4lrRLEUS1sVtpmXMmocHVulKUtDSS/Nwu+3sdVtafd9Yhuzxx0A87mWb/yVJmJmW2Wn9bI4rMXq4H5lHfvAzaOmmiX+MMy1TfgctzTI3S9mvUVynklD/8pNZ3czN/d4vhctwu92jCFoWdjNk5PTYLYfm4XE8R0otU9DNw/3ojsdq+8fp+cNMnDMtCVrmELREcMLKUIh70LKcMi3LsXl43DItg9rGcao0FC6/sMJgzLRMQvNw4/vZgGsY54qT/Rj1vnYjnQ7nIdRPXjMtkxa0jCrTMkgVHqrCftZz/Axa2h2HfvdpmaTm4WZKOSajOI7jGpAJs3m4l8F5SuXm+mgmimeAbJ+EZso509LNZ0EJq9We1XulsjtmnLKq98Y909KuT8ti9zf6tAwNQUsEJ6wLU9yDlnForuCXJKyL2+bhfjzA+Rm09KM8xeYbdaWhWJ+WQY0eHlTQ0ihb9jAyLZ3sxzieo1bKIWjpZ6al1byttlGp53VLD1raBV3CGAgpK6xMSz9+UElq83AzZFp6E1Q5zO7t5ZBpGUaZ/QhaBhUMLPfm4cXENdPS7JhxW1ar7R+n5w8zcWsebvghlebhTQhaIjhxvFnYCepCGteKZimSkDUah0zLrFKahweVoRenXzqDbB4eddCSTMvi7Po9SlrQ0mv/gG6a4AWVaenmWPWapRPHeoHToGXQyLQk09JOHM8dKbzMMrP7QxSZlm73Q+H0fl+/zcyaZf1ZS2oeHocfF9x+biXoTEu7Y0YqrU/L7HFiLGccr2Nxah5e2E0SA/HkELREcMi0NJ9vHIMITsWhQlCMMeDlJNMybs3Dg9rGcfql003QslgF303QKIygZZh9WjqZZ9T72oxdf4dJC1p6PV/dZLMUC1qWa6Zl0MewXfNw4/GYpExLu2ud35mWfgaOyLS0FtcfwMMMWjrNWvSzTHZZWE4UltmPQHwxSWoe7vW6l7SgpZ/zDTPTspSgZVKbh4cZtCz2owaZljkELRGcsG4WcQ9axuEm6pcwsse8Mh4PVuVr6X1aRs1N83DjCNlmwsy0dLINw8y0dDLPOJ6j5ZRpGWSfllZBy5Y2enjQx4Rd0NLN/vQ748KOl+bhfmda+imITMtifZYStPTGbFv40c+l2Q+ScejTMgmZlsYAVOG56vUa7mYeTr4bZPPwKM6RpGZa+tE83KreG6ekCTN2XUCEGbRMpZqXZcWKeG6zCBC0RHDItDSfb5IvPnGoEPjB+CDkR1DZarsweri5YpmWxnPaz6Cl123ppnl4XPq0jHpfmyHT0vr7dvPK/t3SRg8vdg3wyi7AUo6Zli0taFkMQUtv4php6efgQE4zLa3ejzrTcuON8z/zI9Myrs3D3XwWFbfZi2bfs3uvVMZjplWr5p/71Tw8Ltctozg1Dy8oS6quThVh/NCRAAQtERw/LkwzZkjLl9tPE/egZVwrmqUIM9Oyvl6aOtX99nI7EE9LzLQM8xisq5O+/tp++YXbxvh3NmBRXy999VXmu19/3VTxN3uImTLFvKLh9yigZuKWaWm1jrNnS0uX+lsepwhaWn/fbl7FmocXs3KlNH168/fjnmkZdNDSr0xLo3Q6c71y8303D/NeMi39uDZ5GXHdThDNw4utn9tjcvFiac4c+2mWLCk+jRvZ+59RXOqSYf3gbxa0XLcuUx8IktMfIJ2+X2rQcuFCaf58Z9MaA1CFwSan+6uUe5PRokVN5W1oaKq/eXkmcptp6Xb+bjQ0ZOqaYT3jOVl3t/ccI+Mx065dafOwqg/FKWnCTJybh0uqWrPG2zLKBEFLBMdrRWb8eGnzzaXevaVly6ynI2gZnjCbug8cKG2/vXT55e6+Z9anpV2l0awJkls+Zlqm/MiCMRNVpeGgg6TttpOuvdZ6+U6CloMGSTvsILVunZnfvvtm5lO4fc47T9pxR+noo5uXxe9mXmbCzLQ0m6eTc/SDD6TNNpM23TTzAB42u4e7pAUtvV4/3ASXvAQt16yRttwyc0995ZX8z9wcq14feEs5D4IOWtqVyXg8uin7BRdkrle//33p5fCyH4LOtAzq3l/4I7UfQUs/HzrnzJF69ZKOPdZ6moULM9fWzTaTPvrI+bztHHqo9Mgj+e/FpS5pVg4/Mh2djB7+8MOZ+sD113tfnhW/My1LOaanT88cd716NQ9eF1q3LhMwtCqX0+PGzfWncB1nzMiUdZNNMoG9bP1t5Mhwm4dbfccPxx2XqWuec46775WaaVls3c8/P7ON//AHd+XJlskYtCy1ywcnmZZxzH61C1oWq5MG3TxcUvXatd6WUSYIWiI4Xk/ko47KzGPZMum226ynCyJo6WdlMMzsxKCF1dQ9nZbeeCPz2m3Q0qxPS7vmOXHKtAyywhVF0HLFCunddzOv//a3pvcL16lw2xgrENmAxcsv5382caK0YEHzfTtuXOb/559vXp4wg5ZhnPdOjhezaY45JjPdqlXS1Vf7X65iyLS0/r6R1fFayuATjzzS9CA7cKD5fJ3Mx+sDrx+Zln5fv+yCCMZt7Sa4d/PNmf+ffdb5d/wMWtp9HkSXKH4pyChJ+dGU1su2KjRyZCYoZOeyy6TVqzPHy+DBzudtpb5eevPN5u/HOWjpByeZllkXXhhMGSTn9QarsvnRPPyvf818r75e+uMf7actzFYutd7j5t5U+PfIkZnrdkODNGyY9NJLmfevuy7Y5uFmnwfV7+nTT2f+v+OO/PeLrY+fzcON6/6Pf2T+f+YZ5/PMWrvWvNssr62RkpJpGZc+LSXT+khl0D/cJgRBSwTH64lsbLpoN3oWmZbhCSvT0st8zY4Hu6BYEA9wBC0zrJoQFsu0NO4fuwfEykpv2QBBBC2jHj3cyXKN19Yomp3YZeElPWgZxkA8pWTq2J1HSWseHmbQsli2vJ9953kJWro5Dv1oXRDUjzCFAZ24ZVquXFl8mlWrml7btRJyyirIFZe6ZKlZWW7naxe0DJLXTEsHQYmiVq9uev3TT/bTFruOOD1u3NwHCveLsV5hzPr0Uh6z71q9ZxR2nSLM5yK/lmV1jLu9xlg9TwWVFOSXGPdpKUmpJCc7+YigJYLj50kWxglb6q9fxYSVnRiGsLJG/QpaZhXekMPKtHTZPLxZ0/BSy2MmTr90um0ebvcwYFehKGxS4XVfJ6F5uNt+O6M4Fsi0tP6+3by8BC0rK60/CyJoabeP3SoMWvp9LtllPhmPx1KPzVIDvV6ClkFnWgZxPTO7loeRaenmmCyliaRXVud71PfxrLAyLRsaSh/Q0Aun10enGZilHNPGgVGKXf+LXUe8/vBk9lnhOhrLW7i+YTcPj9sgJkFlWnrhV33V6sezOD1/mIlLn5YWzcMJWmYQtERwvJ7IZs18i02XhEzLJF98wsoaDTPTkubhwXGabVWsebjVfOrr3QUtW0LzcK+DDYWBTEvr7xtZPdyVso3cDDbT0pqH2wURSuiXuBmnD81hZVp6PWbN5uEHs/0Qt0xLJ4z7xo8Bi8IYbdqLsH68jnumpVXZCqf3GrQs9v0wMi2LjeJuF2QNu3l4GEFL4z0qqObhUWdaOlmW1bFnfD+Oz8B253gMmocTtMwgaIngeD2RjZW9cgpaxjGI4FTSMi2z84kq0zJOQctiywmC0+ZSxYKWVpWGsIOWTrZb3DIt41jZIdPS2fRW16ZSMq/8Clp6zdKJY9DSaZ+WpR6bToMUbo6lYvctN83D45Jpabadkp5p6UerHTItm/6OImjpdfRwPwbiqa52/v1i1xGv2fJm87DLtCyWKR90pmUYdQq7Lsz8EmampdmynOwnmoe75yBoGct6fAQIWiI4Xk8yY3O2JActvdyg4yasrNGgMy3NOpzOinD0cNPm4X5U0qMKnDttImrXPDzb+byZYkHLwv4a3Qb0Sjnes8dfGAH+UpuH+3XNLJXdcRG3plzFuAkWmQmrebhd0NJLhp8Vt00o7UTZPDzKTEs3gUcvzcPjkmlptp38CFqGnWnpd9CypfZp6WT0cCt+dvFUap+WZj9eS9E3D/eaLW/2WZyDlkHUKQrLYQxaBtUlj9m6+3UNcJJpWUrQMqnNw41lpE/L2Eh00PLOO+9U79691aZNG+2xxx6aOHGi5bT333+/9t13X2244YbacMMNdfDBB9tODx9EkWnp5cQm07K4sAKwfgUts+LQPDydLi3jw4/jMqrAuR/NwyXrQUTq6+23j9dMy1KODbOAtdPvukXz8Oh5/SEn6c3D3QYn45hp6aZPy1KW7TRIkaTm4WFlWvoRcEh6pmXcg5bFfhgrlZdMSz+3Tamjh1vVBbxmWrptHh7F6OHG8ha7fvvZPNxMEEHLwvUtNWgZVPNwt8e/k2PETf238Dtxz7T00jzcK+Oy6NPSVmKDlk899ZRGjBihSy+9VJ9++ql23nlnDRgwQAsXLjSdfvz48Ro8eLDGjRunCRMmqFevXjrkkEM0Z86ckEvegvgZtLS7aCQt0zLJF5+wMi297Mc4DcRTrBl0gcAG4olbpqXddmlsbP651QjXQTcPL+XYyC4jqkxLp1khUbKraBO0bGL1EByn5uFRBC29HtNOmmNl+fHjQxh9Wvr5XSfCyrSMW9DSLZqHl84s+BZF0LLUTMtsWf0YiMdN83C/Mi39ah5e7Lturj9xybT0ErQsDFI5Zfd84LUe4uQYd3LcWO3bpGVaGtejWJ3Uz+bhqRSZljYSG7S8+eabdcopp2jYsGHafvvtdc8996hdu3Z66KGHTKf/17/+pTPPPFO77LKLtt12Wz3wwANqbGzU2LFjQy55C+L1JIuyT0s/L6rlnGkZVqDXjTgFLYt1Vl5sPqWWp9h845xpabaNSg1aFn7P7b4u5djIThOXPi2DyoLxwk2mZdyvl16z1uweKK0eHPxuHh5E0NLt+3b8zrQsnJ/TTEuzv42sytUSMi39yEYJok/LUls4WIli9PC4Z1qabd+oMy39vN+W2qel1Q+YXpuHu61HllrHdXP98RK0DLp5eBA/hNoFLYsptTx26+61vml2XqXTxesjZt8xm6/xu3EMwMW8T0uClhlVURegFLW1tfrkk080cuTI3HsVFRU6+OCDNWHCBEfzWLNmjerq6tSpUyfTz2tqalRjqNiu+PmCVFdXp7qk9bnlQHadSlm3ihEjVPH882q47768A6q+rk5pD9uqqqJC2WpPY12dGizmVZlO56Lv6XRa9SUus7KhoWk+UsnzKZSqrc3bLo0NDZbr4pvvvlPVoEFK9+6thhdeyO8f1IOK+noZ59Tw6aequPhipXfYQQ3/+Y9/wZCaGhl+V84clz/+qKojjlC6Wzc1vPyyZaWoIp3OK2NdXZ20dm3e/Bpra3P7oKKuLn+d6urU6HL/GI8dSWqor1djXV2z9+vWrs3/xbygnGaZlvW1tc3Oo4o77lDF9der4dJLlf7Tn0znV3Hffaq4+mo1jhypxj/+MW/9vZwnjtTWqvLww5WaPFnGIyJ7faloaMjb5un6+qbyrFmjwi1Ut3x5s/ckqW7dOlU1NMjqqKtfuTJv26VqavLOxXSvXmo88UQ13nVX7r2Kiy9WxWOPqeG225Tu3z//uLE4d43TNNTWqrGurtl5b7YfPautbX6erFuXX+bGxmZlrpKarq0mnweuoNxZ6XRaDevW5W23upoa365fTtjdC1MTJ6ryhBOU3msvNTzyiJRKKVVfn399r693tT0Lr6l561twHZSkutraZsdxlt15nUqn87er3XlhM59m17SaGtNrWuHxn5W9NrqRWrMmv+y1td6yZ1atyj9Hamry9lnqxRdVec45ajzhBFUUXF/q1q7NCwBbnUt55+Xq1ZnyptOqPOEEpT79VPVPPCHtumtesQqvZXU1NZbrmaqra75NDPuh2eeG+VSl03nLybvnffmlqv7wB6W33VYNTz9tGexudtyuWSO1aWM6rWOrVzc73htralwfL5JUcfvtqrj+ejX+/e+yu3rU1dU121aFnxtVNjaaZnsYp8urS6ZSnu+1hcd/VuOyZVLfvqr46COlt9pK9f/9r7Tddp6WZamuLnNPnztX9c89J22xRe6jwuNJKl6Hrjj7bFWMGaOGBx9Uul8/82kK65s/7yurn1+M+6DZ8enlWaS+3tl5WXDvzV7LKwvLfPzxqm/TRunDDnNchoqKCufrU3DfSDc25u2Lwm1j6ef6qNmyKuvr8+8D69blbZOKykrLZTQULN9NfdTsXDXec83WrW7NmuL3i1WrVHnooUqtXav6l1+Wuna1n75gX9cvWZKr3xXWCZpdQ2pqSro+FNabJcO6F9Sb66ZPV9VRRyndoYMaXnlFatfOfuYFz0hS5p7iuq5YWCf9+VwxXiMCf/4oZuXKzL5et071Y8ZIXbqooqYmb9sa4xeFz4iFvNahC2MPhXXgzAfpsow9Se6uzYkMWi5evFgNDQ3qWnBR6dq1q77++mtH87jwwgvVo0cPHXzwwaafjxo1Spdffnmz919//XW1K3byJ9gbb7zhavo2ixdrwB13SJKqDj0077MPJkzQTytXllyWQxsalA1Lzf3hB30yZozpdLvPnatNfn5dW1urVy2mK2afn35S559fNzQ0aEyJ8ym0yaRJ2t3w96wZMzTJp3lbOeCcc9Rx5kylvvtOn/3tb5q9//6+zHeLL7/ULw1/V95wgyQp9f33mnj55VrQt68vy2m1YoWMR9OYMWP0q2uvVY9vvlHqm2809cwzNe2oo0y/u8MPP2irgu92mD5dBxreW7pggd77eR/0/uIL7Wz47OupUzXN5f7pu3Chuhvn8fXXmjZmjPZauFBdDO+/8corquvQwXI+VSZBy/f/9z8t/emnvPd+N2JEZvozztDz3bs3+44k/W74cElS5TnnaEz37jrc8Fmjj8e3mS2fe047jhvX7P3sMnf4/vu8fZRqaNCYl1+WUilVrVql3xZ8b8K4cdrPZDkT3nlHv1q9Wm0tyvHZ//6nuYZA+saTJ2tv43JralT5wAMav+uuWtWzpypqanT49ddLkqqOOUYvPfmkjI8Vy5cu1Tsm2+13htfff/utpo4Zo00+/TTvvP/s00811+d7x3pz5uggw99jxoxRu/nz1d/w3uIFCzShoMy/NVSqZ86apckBX48KVa9YoYEm7zfU1+uTDz/UHob3XnnpJaUtAv1BMrsXHnzqqWq/cKFSM2ZownbbafHOO2uzzz/XLoZpFsydq4kutud206bpF4a/XxkzRumfg5bt58xRYQ1lzMsva7NPP81bZtbKlSs1zmLZvT7/XLsZ52OYrucnn6iP4bO1q1frDYv57DZrlnoVltdk/3T55BPtZfL9r776Sj+4PN42++STvPV9/dVXVd++vat5GLVeulS/Mfy9aM4cfWAo0++OPlqSVHn99Wqoqsp7YHl9zJi8Zf+mtlatf349Z84cffrzfIzXhPfGjdOKH39U58mTtc/TT0uS0gcfrFf++c+8cvVbtkzrG/5+6803tc7ih/Xen3+ed996/dVXVd+26UrYe/LkvM+N+/vgVatk3HrffPWVvvv584NPO03VCxYoNW2aPr70Us3by2wvSjvNmKHNjct/6SXVe7y+rf/DD+pX8N686dP1WQnXp9+df74kqfLn+6CVMWPGqNfkyXnnRuHnRn3mz1fPItP1mTcvN826mhq97vH62umrr7SvyfvpMWNUmQ2UTJumH6+4QlNPPNHTsqxs/vLL2umttyRJK448Uu+NGpX77DCTQFFjY6NlHaP9nDk6+N57JUlVhxyi5597znS6HaZNy6snfPf111p/zhyZ13jy98Evf/hBW1h85tbAggDV+HHjtMbkWbPtggU6xPD366+8ovq2bbXHggXqVjBt1VFHWa63mW1nztQ2hr/t1me92bPz6gWpgn2x+RdfaCcHy2z4OSPQ7F5YWLd9+623tPqbb3J/bzNtmra1mO/s777TZoa/3dRHO3/+ufYpeG/+vHn66Ofvbz5lSrN1e//tt7Vs7lzb+W7/yCPa+sMPJUkLBg/WJxdcYDt99apVeXWYKRMmaPoGG0iSNvvii7z7VeG67T5zZu6ZtcHmPCm084wZ6l3w3oJ58zRxzBhVrV6dV29ectxx6vrll0pJ+u7UU/X18cfbzrvwGUmSXnn5ZR2ydq2yP0UtXriwWV2yUMcfftABhr/fffttrZwxQwMM81m7Zo1l/SIM248era1/HtNkweDB+uT887X1l19qe8M0kz79VHPWW0+S9Mvvv8+7lhRatnSp3vWwPr+aO1c9fn6dTqf18YQJ2rNgmlRDg+v4TFKssWpJZyKRQUuvrr32Wj355JMaP3682lj8Mjxy5EiN+DkwIGUyLbP9YHbs2DGsooamrq5Ob7zxhvr3769qNw+IU6ZYfrRn376Wv6A6UdWmjbR6tSSpx4YbqutAs8dcqfLJJ3OvW1VXa6DFdMVkA3CSVFlVVfJ8CqWWLs37u9cmm6iHT/O2Uj1oUO71Ll26aCefllcxbZrlZ7/q1k2Nfq1XQd+0AwcOVNXZZ+f+3u6nn/QLi2VVFATLBg4cKH32Wd57G663Xm7/VkyfnvfZtlttZTlvK5X33Zc/j2220S8GDlTlLbfkvd//gAOkLl1kpq6uTuOffbbZ+3vvsYfS+xRW05o4OU5/M2BA3t8VqZRvx7eZymeeMX1/4KGHSqlUs30kSQMHDJCqqqTFi5t9tvfOOzd7T5L27ttXlTbNkHbddlvtYljPVJX5LW//HXZQeu+9peXL894f0L9/3t8bdOhQdLtt2bu3Nh84UKmC9dh1p53yyuKLqVPz/hw4cKD03Xd573Xu3LlZmSsN22HTTTZRz4CvR82Y7GNJqkyltHvBvj70kEOktlZhaf/Z3QurDdelPdu3V+PAgaqYPTtvmq4bb+zq3Kr43//y/j50wICmLHKTB+OBv/mNKiz64u5guK4VSplcU3OfLVuW91nbNm0s52O83+bKa1KPSllk3W+/zTba1uXxVvH993l/H9K/v/TzA2JJZszI+3PjDTawXt+CpnyHHHigtNFGub+rDNefnj17qtvAgc2ae+27xx5K7767UkuW5N5rtXJls2VWXXxx3t8H7r+/1KuXzFTMnJlfrv79JUPdtKJgHY3Lqio4n7bZemtt/fPn1QsW5N7fvUsXy3t65Ysv5i//gAPytkspUiaDY/bo3Fnd3V6fVq1yPOlAk2t14edGlQWBZrPpKkePzr1u066d53ttyuL6V1mQobJljx7aPKBreYXhgbnTN9/krVOFybleUVFhfS16++28v62mqyjovmvrLbdUyiYRIq9Mr77qaBlOVBWsX7/99pO23rr5hD/8kPfnIQcfLK2/virvvtt0vq7uE59+6vy7X33VfFk/170kqaKgnFYqf57e7F5YeeuteX/v/+tf52X5VnzwgeV8C69obuqjqdatm73XzXDPNVu3ffbYQ+k9C8NA+SrvuSf3uuf8+ZbPmzmLFuX9ueOmm2r7n7+TKgiQNruGPPpo0+vKSsfrXvn8883ey9U3CsrT5ccfc6+3rq/XFsWWUfCMJGXu7VWG7d15o42Kl7VgPvvuvbe0yy5590m7+kUYKg0tq3ouWKCuAweqoqDcu+y0k3bOHlOvvGI7vw3WX9/T+lQ+/HDudaqiQn1MnndSjY3u4zMJscJF1wqJDFp27txZlZWVWmCoXEnSggUL1K1b4e9Z+W688UZde+21evPNN7XTTta/NbVu3VqtTS6O1dXVZXnQZLleP5tme1WVlZZNYR0xNEuqqKlRhdW8DGVIpdOl7x9DlltK8m8/FzSvqkilrNclAJXrr69Kv5Zn0/y7sqLCv+UUHFfV1dVS9+7SrFmSpIqFCx1vw+rq6mblrqira/p+wWeVqZT79SicR3ZbFGROVqdS9ueESaZlVeF3CufpoKzVBcE6X49vMxbp/tUVFZnApMlxZLdtqiz6gKqSbPubqaqry5+nxfGb28aFx10J261Syuz7gvO+qqLC2/XQTEH5qk2WWyHZnisVFRWhXo8kNSt3VmETZunnYyaCe26xe2HlggWm+7kinXa3PQu+X11V1bS+JvfX6qoqyz6hUqmU4/O62ua8sL2PFkybV14ji2bFJd0nCgKH1V7rFgXbr6K+3vn9xOY6lTuXCrtjaGw0v74UWabtejrdD2bLKriH5K5ZBSorK633VeHy02nv56nJcV3R0OD++mQxIKcZs2tms8+NLOq8VueTm3PSksM+0yrTaf/qYDZSFRW2x5NU5BpS0Kes0+1TmUrZbgu7+XjaBwV1DMvzsvBanr13WZTZVZkKfhiy/a7J/TVX95Kcd+P0c7lN74UF52rRuq1BYaKAq+c2k/Mvr45jci5Xubw2OTpnC5ZTuWpV07lXeBwUzstwPHm9PuTWveAYM/aB6KiOZ7LdCuu/xeqSkprXSbPniqE8qcbGaOMohnXNXcsKjue8+nqR66+j7eJQSuaBuew2K8f4k5t1SuRAPK1atdLuu++eN4hOdlCdvSyaskjS9ddfryuvvFKvvvqq+vTpYzkdXLDrHNbP0cPt0of9GkCnXAfi+TnF3Rd2ZfdzvcyOK2Mz6Hnz3JWjnEYPL6UT97CPwXXrzN/Plt1uH5kFPIMaiCfL6YjfbkYPj8tAPHHswNvNQDx+DPDhlw03bHqdzabwOmqn3TFm1Tl+KR35233Hy0A8TgelcDJvK1EOxFPIybYvnCaK0cPtzhun09oFN/y4LxUy206lzLcg+7mouI8e7nQbBDHgSJZxfxcGjooNjlLo5xZUrpYpJW/0cKtBUkph8UOfo3IUvhfG6OF2x6IhC9BVecyWW/heqaOHG7/n5Jz1Mnq4sTxurg92I3oXrqPbY85sf5VS/7WqDwX1fO0XuwEggx6Ip/D7DMRjKZGZlpI0YsQIDRkyRH369FHfvn11yy23aPXq1Ro2bJgk6aSTTlLPnj016ud+V6677jpdcsklevzxx9W7d2/Nnz9fkrTeeutpPT+DOi2Nm0q1W8YTee1a6+mMF5Q4Bi3DGnHbip/Hd5BB6mLLcRq0NPuu3UOk16CD2TyCHD3cRf8flvONMmjZrp39PvJz9PDC64bVtNn3iz2cuBk9PIzz3kmAvtjo4VFUIO1Glnb6gBiF7t2lbHcf2SbaXkditjs3/Rw93K5cboKWTq8l5TJ6eKFSgpZRjB7u5l7txz3Pj0ECzLZTKYG4IIOWcRo9vFCQP/AYj5HCrCwn9RajUoOWcR89vHA6qx9Dg+ZX0NLL6OFufjSJ2+jhXoOWxZT644LdeVZ4jfBj9PBS9pPVcWH8bhyDlnEZPTyVMg9axnGbRSCxQctjjz1WixYt0iWXXKL58+drl1120auvvpobnGfmzJmqMNxY7777btXW1uqYY47Jm8+ll16qyy67LMyil5cgg1jGBwu7QE0QQUs/KxlRZ1r6mU4eVtnNlmPs18lNhUgqr0xLuwC+lbCPwcKgQFb2Zuw209JqneMYtIxbpmUcKzt2WXhxzrTs0aOpvzC/Mi3tvm/1gFZKgKicMi29nkuF83OzPeOaaVkseN7Y2BRschpoDzvT0mweScy0dJu1VYzT4yesTMvCoKXVjyvptPn6O+1zNA5By8ZG59d4N5mWbuvlbtanWGDP6bzszotiQUo3x6Kb889tgFzy5weVQnHJtMy+Zxd0c8Iq09JtsDGpmZZ226+UZBM3HDwnkmmZkdigpSQNHz5cwy1GBhw/fnze39ML+tCAT4JsLmx8sAg707KcgpZBZ0CGtRyzB2uzG77ZdwtvSDENWraITEur5YfRPDzMoGUYmZZOzpM4VnaS2jzcOAhfNtvb76Clk0xLq+uIm4dMIzcZFU6nDTJoSaZl8WnN/s4Gm4K45yWxeXi2mXOQmZZhNg+PU6Zl9jtmfYCG0Tzcr/uekww0q/etfsCUMj+AueFmfYrVI8NoHu7mWIxb83AnvGRalhq0jCLTslh9pJBVfSjumZZ2df8wMy0lmofbSGSflogRN5VqN9Lp8glaemkKEcTyvQgySG3kJBjz00/Oy2GX+VKs8uWET83DyybTMsygpd3x7TTT0qppupOHe6uspTCCh2bb0UnWnB8P0l64aR4ep6ClsdwrV2b+9nr9sDvGrI63oDMt3fw45TY4Wcp5EOdMS7Nzya+gpZdAs90+DSLTMqjm4aXMN8igpRMtKdPSTWAry2mmpdkxHHbQ0klff1lumocb+0d2ws/AnsNtYxsoKXatCupYLCVo6aQsbs9ZL5mWpW4bu3X3GrQ0K1Mpzw1Wx0VQz9d+KbzGGteVoGVsELSEN0Fl3tXX53/fLrvMr5tjUL8E+dF/lBdhBS395CRoafVgYvZdu4dIP/ZPkJmWhetdStAy7GOuWPNwu33kZ5+WbgfiKSVo6aSSZrdsL5xmJMeNXZm8digfpMLtvWJF+JmWjY3R9mlJpqX7aey6xTDykmlZ7Di0+3G3lGtT4XfItGzSkjItSwlaeunT0ml9P8hMS6fXvOzfbrI1rbiZvli9wI86QbHMSq99O7uZzu9MyzAH4vGakZpdd6/Nw1t6pmWUfVoWHnsELS0RtIS9f/1L+uMfJavm9W6DlpMnSyedJI0ZY/6d997LfD5uXP77bjMtP/ooM5+33rL+XqG4ZFquWyedd550ySXhZ6W8+mpmu02ebP55UEFqJ8sJKmgZRFO5UoOWToJifjQPN773zTfS0KHSM8/Yz2PhQunUU6WDD5b+/nf7/R1WpmVdXfE+LdNp6corM+fUypXm03kJWlpVduLSp2XcKjsvvSQNGWL9eeH2nDs3c9zdc0+w5SpQcdNN0vDh0rJlTW8WbsvZs5sfy3PnSqeckjlPLr206fOxYzPX1k8+yZ/eLoDkdvRwu3My7D4t7bJp3XJzT/vxR+lPf5Ief9z5/PwOWtp1R2LHS9CyWOaTXf3Gj9YFAfVpmQoyaJldh7hnWsZh9HDjMeJnpqWxr/Ji3/fSPHzIEGnKFPNp//nPzDVjxozmn7nJtHT6A6bdPKx4DVqW+nzjNEBbSqZl69buy1TKtgwiaFm4fqUGLd2cs2FnWrp9djWbJjuPYoHlYpYskc46S/rHP5ree/75zHmd7Wfci8L1P+886fLLM2UNeyAeN9ecFibRfVoiYPPnS//3f5nXX38tvf9+82ncDojSp0/mhPznP81P9H33zfz/z3/mv19Xl/lelckhaxa07Nu3aT5OLyiFF9V02p8Kp9sU+2uukW69NfN6112lI490t7zCvlXcXOz++MdMX22LF5sHlkupoJbCSeAxO3pvKd+1ax7uZ9DSbfNwszcLy+NXpmX2+O7fX5o1S3rkkUxw0Ooh4t57pfvvz7weOzZzrh5yiPm0VkHLUgfiscrMqKuz319r10rPPpv5AUCSNt7YfLrsPIqNvO3kV/wkNA9387mfGhqkww+3n6Zwe/7xj02V0v33l7bbLpiyGXT+/HNVZo+ZdeukBx7IvC7ch3PmNN9+P/yQ+SdlzpP995cOPDATxJSa35PcZlraNQ+3ux+bHdvZ+5td0yiz5TuZNqpMy0GDpM8/lx56KHNtMzvnwx6Ix2nQyU0GZLEHSj+ah9tx0KTNNT+ah9fWZuovTpiNbOuHqJqHR5Fp6eYYzTL+eLjees6/39hYetDy0UczP5gVdis0b17mxyQp82P9xx/nf+4mS9LqnPMj09LNMVpKNqIVpwHawmuek+vkJptI33/vrkxBZVoaec20LLZvjdvG64BFVkFLt5xkWpYStPRr9PA//zlzDkuZOMIee2Tu9ZL05pvWz4NOFR4j69ZJl10mbbMNzcNjhExLWPvmm6bXEyaYT2N3wS21bxErVsGaIPq09Dovu/kUu/jcdFPT6xdfdL88L0HL7OASCxaYfx7WhdNJBpnVTdrJcdfQYP4LoNWyi4l7pqVdE6dZs5reW77ceh7z5+f/PXWq9bRWzcOdZFqabSOrchWrqK1ZI73yStPfixaZT+elT0urPhj9OK6KcXKexKkpjpOKdeE0xl/RP/3U3/JY6PzFF01/PPhg02uza1Cx7Wt3nkj29wc/g5aFnxnnUXhu+5FpGVXQ8vPPm17PnOlsfmE1Dy/GS6all+bhpfRpGUSmpdl2chtwsLr3mCklaBnn5uFh9WlpHFynlB+yjXXU9u2df99N0NKsXEuWNH/P2IqsMAteCi7T0mvfx263e4mZlpZHrx/Nw9dfv+l1KcklZu/5/dxpxS4hwU3mZ2OjtyzT7Pp6/dHIqk9Lt8eN1T2s1EzfrGzAUpLefjv/h4+5c93Pr5DV9nvxRYKWMULQEtassqWM3AQt3WRzmCk1aFnqL7N+XSTcBkONQakOHdwvr9SgpZObipsMHC+cVPLcPCybHadWWX9Jy7R0st2ddLJdbF6F5bBrglesebjdPjKrPCxdaj8/K2vXmmdnW83Hj+bhYWZaOjnW41TZKaVpbRSsAg1mx0Ox869YU1W7+4PVA5rVdnSTaWk8dwrL6OY64LYZeNDNw0uZXzmOHh508/C4Zlq6OTay568fmWdGUQUt49anpVV5Sg1aBjF6eLH6gZfRwwszLdu1kzbYwF35rOZtd0yUEtizElbz8CCDlmGMHu4mKFdqv9126x7XTEuzoKXXZ8V02p8fyYysjtdUKtw+LS3KQtAyg6AlrDlphmp3Yyo8ybJZfFafF2OVYVYsaOkk+GpWHr8uEm6bhxvZNZ2xUmrQ0skvhXbz8jNo6ST47DVoaRVA83P08CAyLQvPSyf7Ny5By1Kbh1sFLYtl1axZE13QMoxMy1KbhxsfpMPMxCwl0zICaTdBy2L71azfy7yFxSDTsvBcdnOdd3uvKOU8KHUgHqv9aNY83Ok8nfxQG4fRw+2uPw4ekiSFn2lpNg+383V7fLkNWjqpH0TVPDyK0cPdBNazjHVUu+0Txujh1dX2n/s5enhlZVN9pJTj1Miu7uNnpmWpQcti+8m4LaTom4e7PWe9BC1LaUov2a97EJmWhfUbtz/YSP41Dy9cRindZNmx236lDKDqhnG7MhCPLYKWsOZ3pmXhg5Hb4JCTTEuzE9vpxS0umZZGpTwIlBq0LLYdpfACHE4yLa2OH69BSz8zLV0GLU2rSoXrWRi8d3IeOQ1auvkRwi5oaTWfUpuHlxq0XLu2+EOJ1FRJ8KN5eGF2hd13vXJyniSteXgMMi3TFRZVI7MHNSeZlm7uk8UyLe2ClnbHWNiZln7eQ4LOtJScPzg6uUbGYfRwu/ul0+bhdtxkfjnlx+jhbtfF2FWME06OEzItm3/HyFhHdROYj3vQslimZUVF07bz2jzcbdCy1G60rKYtVh8vdp60bl3aj6dOftgvFMQ5a1bPsmphVajwOuf03hNFpqXbDMkwMi0bG8MLWoaRaekgaBmrenyECFrCmtdMy2JBS7cPHk6ClmYXF6d9AIaVaWk3X7vOnZ0qh0xLJ8EYNw/Fds3Dgwxa2mU3mYk609KufG6Cllb8bh7uJGhZzpmWXs6TKDgJSMYgaGnJbJ86CVrarZPd/cHqQaKU5uFWfQLX1zdvBeFHn5ZBNg/3eq8xu244fegr3JfGB1yroGUUzcPt/nb6Y5rdw3vhPJLYPFxy9sND4fRukGnZnNNBS8x+JPI7aFls/3hpHl7YVUxlZVN/oG6PUzdBy2LZiG6WHVSmZVBBy1IzLY1KCVoay1Fs+5YatLTbr16Dlk76tHSyj6zuO35nWpbSt7+duAQtJZqH2yBoCWvGjm6teMnMclv5s7pIFY7EVngBcfqLjJdm3H7Nt3AAnDCDll4zLeMStHSbaekmqGzFacUuiD4tnZxHdgPxGLk5n+fMcb+tSm0ebnUeOGke7iTTMql9WpbaPDwqCWkeLqeZln4ELe0y5txmWrrp0zI7jwUL3B0zTu9nQWZaBhG09CMwZNU8PA6ZlnYPn25aLVjNIy6ZlkEHLcm09JZpmU57y7T0kpVWynROf/CVijcPN2Zauj1O/Wwe7uJ4L7l5uJNMS6fHkVEYzcOd8BK0LLV5uN1+9fqjkZNMSyfHrJPm4X7Uhf3OtIxLn5YW9TuClhkELWHNScDMTaalcZRiKZhMS7O/k9Q8vDCwS6ZlE6tRmkv5rhTL5uGOMi2DbB7uJiOsrk5auLD4so1KbR5uxa9MSy/Nw+OeaRmnoKXXTMsgH8oNLPu0NLvXFNu+69Y1H507b2E2P5r4GbS0yrQsvC+blcmqfFZltHs/rs3D/RihOcpMy2I/vtk1Dy0lc7dw/gH1aZmqrQ02EzKITEvjtimX0cON6+0laLl2bfHWUVbfb2z0P9Oy2Pz8HIinsjK65uF+Z1oWe+6KU6al2/PCyTlrNk+rul+hpGRaFgYtS20e7ndCUJh9WoadadnYaB60DKnuG3cELWHN76BlGH1aSs1v5klqHh5l0LKlZVpG0Tw8qkxLp5UiNxlhkvsm4qVmWloJevRwJ5Utq2B6XPq0NJvGjwfpUnjNtCwWpPaJ4z4tCyv1Vn780WZhNsdYkJmW2e1sdg57CZYVe7+U8yDpmZZJHT3c7ngy+xHLK8N2ShsHIXRTV3R7fDnJljaKItPS6baNItPSzTEqNa+fuglaBtE8vJRMS6d1T7OBeMJoHu5npqXTZcSlT8skZFr62adlttxh9Gnp5Jg1Oy7cJO440dgYXvNwKdygZTpN83AbBC2Rr7FRev556f33vQctC08yuz4tv/pK+ve/7Zf12WfSk082HyCo2EAlScm0XLNGuvrq/PfM9kF9vfTss5ntYaZY0HLlSumhh6Qbbshsd+N8rb5T7H3JfL3Wrs3ss2+/tf6e0+WU2qfl44+bb8eoRg9fulT65z/Ns6+KVci++EIaPTr/cydNv5127Pzcc5lzf9Ik6b//zf+eWdneeUd67DFp1Sr7+WaV2qellWJBrMI+eaxYZVo++mj+31FnWtbXZ/bRJ59k/o5b8/AZM6R//Sv/eDDyOhBP4f7OnkuFfTIGxWyfOtm+06dbf2b1o1Z9vfT00+ZlsLrv2h1jVv3rmgUt3fw45WemZW2t9J//ZK5zRoX7vaFBeuUV6d13reclOR89PLtsJ7wMxFOMk2bbY8dKb77Z/LN//Stz/ll91+7BPi6Zlsbt1L590+uPP3Y+D7fX2SAyLaNqHh5Wn5bZwNvKlZnrr5WFC6W775b+8Y+ma6Bd0LKxURozRnrvveafZT93Gki3Og5qaqSnnpKmTLGfzqx8xeZtdc75MRBP4TE6enTmWWj16sy5b/xhzOx4rqnJ1OkmTXJ3jmSnXbEiU9fLZuYXzmP0aGn58qa/g8q0LNY83EwYo4cb3yv2nBTH5uFmZXjyyfz5mnVR8O9/N51LZtOY/bAbx0xLr83Df/zRvu5rp/DebJZpGacWUxFykIKCliT1n/9IJ56YOVH79i3+BT8yLVeskHbYofiyLrss8//FF0tXXtl8PlmFF7O4ZVpaXXyuuEL69NP898yCbffdJ511Vub13LlS9+723ylcj4suku66K/P6qqsy82jf3numpZlLLpFuvDHTr+CKFVKbNs6+5yRo6bR5+AknmE8XZJ+WdkHLwYOl117LHPNffmk/H+M8VqyQ9torU0k1chK0dNo8/IorMv+ybrtNOvts83WRpPPPz/x/+umZhxPJPpAYdvNwyVllzirT8oYb8v92ErQsfFCx+65bo0dLp5ySeT17trOs4mLnrF+VocZGaffdpZ9+kv74R+nBB5tP42ZfmCn8weqEEzLBq+22y/8BxiNfRw+XmmdaNjQ0PfhbXTv+9a/mQfPs50FnWrpp8uk2o9Ju3nfdJf35z5nXixdLG22UeV14nr/0UuY+JkmTJ0s77WQ9TzNBBS2DzrR8913p4IMzr3ffPf+zyy+X7rgjEyiqqLD/Mc5JcNTufbN5+N083Bi03GsvackSacMNi88j6Obh9GnZFHg744zMdcrKkCFNdZw778z8eG0XtHzhBenIIzOvP//c/HwoFki3uq5m3XJL5tpRXZ25xhTbZn5nWpbap2Xh9Lfdljkf5s3LPBN06pQ59ysrzed9++3S/fdnXg8Z4ny52e14+unSE09IvXtLP/zQfLuNGyeNGNF0309apqWR14F43HTTIsWjebhZuf7+d/vlX3995hlPkpYtk9Zf31nzcK91YT+Dltmyecm0rK+X+vTJ3KNOPVW6997SyiBltg19Wloi0xJ5qk48MfMinZY+/LDpA6uHODdBS6tgy1tvuSvkVVeZzycrbpmWToOWkyc3f88saJkNWErmFcbCB/vC9fj88/z5z5yZeR1EpuWNN2b+r6szXz+n80qnvTUPN+NnRpyb5uGvvZZ5bfx18memVaXsPN5/v/k5JBWvxJmVw1hGO+ecY7+crHvuaXptd7753TzcSdDSyXpaBS0LOQkSBtk8PBuwlDIBTLMAUhjN0s0sXZoJWEqZTG4zfmdavvJK5v+pU4vP1w2rh5ZSMy2XLMn/2y6DOfv30KHm8zLbx1luHpayZTDLDHATtHQbnLSbdzZgKWUCGFmF51g2YCk1b53ghJdRqqPs0/KCC5peZ7OtjX76qSnbyU3zcD8yLf3I8jNsp8b+/fM/+/57Z/OIQ6alUTmPHm4XsJTyf5T9/vtM3aDwemOc76mnNr2+9lrzeozTY9LqOMheO+rqMlnLxY6X7D3Najl275tlWvrVPFzK/FBx332Z10uWNA3kaTZtNmApZTJNHcpleD3xROb/6dPNm/xK+ff9YudJmzb554bT7VFK0NLtDw1OlNo83OxcLqX7puwAk34FLZ2UoXC9sgFLqek53uwHsSAyLcMcPbzYtlmwoKmOlz0f3Sg8fmkebomgJZyxypBz0wee1d9eL2BxD1o6na/xQtWpU+b/FSvc9yNZLGhhlbEY5z4tzX5h9xq0tKpgBJ1p6aRMZu9ls44K+Zlp6bZsZuwqE340D+/du+m1X0HL7DKLLdtJpmWQzcONKiudBffN1r+UDIdinDyc+x20DIjlQDylBi0Lf2wwno9W1w5jplnhMq2OpVIyLY3fyT4IubnO+5lpaWTcZnbrZXfcWS3LbmC2Yrw0Dy92DSh2zXDzYGo3ryAyLf3I8jOc+40jR2rp1ls3feYlqGEn6ExLP8Qh09I4b6skhmIaG931ye0209JJHdZozZri07np89eqbm2Waem1ebiZUrM43S7XSbc7QWVaFmseXmqmZVjNw822i9OgpbH+07Zt/rKCGD28kJN95KSOFKfm4dl9bbcPSsnGdqPwxxYyLS0RtIQzVhdxN5mWTpv3ulUuzcON2/IXv2h6rzBzsti83AYtzZrllhIQLLa93GQcOKmsWh0/bpuZxChoaTsQj9MRjZ0u1++gZfZGa1eZcNs8vF275tPtu2/z+Tkplx0vmZZWQcugMx6rqpxlWobVPNwJr83DQwpaOj7XnAY8Cu9Bdv1EZffpxhubzyudtl6mm0xLs2PeSdDSadaEn0FLu3OnlKCl2XEYRvPwMIOWdvdLJz9qmc3Drmx+1OeM69eqlZZsu637+bsth9MfHtzM3+/m4XHNtCxlHoXXQrfHmNN+9J0GLa3qw1nZPhztymX1fmFdwO9My0LZ/eLjPd/06LXL9s8Kqk/LYpmWZsJuHh5UpmW2/lNV1TTAZJSZlkbZbWZWnwki0zKs5uEVFeEGLa26/yFoKYmgJZyyuiC6CVoGlWlZWAa/Mi397OvNyXzNMi0l+wGR/My0dBK0tNsmfv7KH2ampR/9rbhpHu6kTGbvucmGiSLTcu7czP9+Ng83yy5t3brpddB9WhayyxDNCjPT0st5kuXXeeumGb6dpGVaOn04NrILWmb/tgta2l2fnWYXZstglmnp5scpt/cKp+dBNmhZLKvH7gHT6ntmx1iQzcPjlmnpNOAYdtDSuA9atcrvWzbumZaF/ZJllRrgM4pDpqVfQUunmZaplPtMy1KCloXTFd5j3PT5a3XOZcvsZ5+WZpxk+rllVSctdt0Ps09Lux9knJSl8HtOgpZ2fZ0GHbQ0bru4ZVqaJSsFkWkZZvPwYtvG6/lWuD3ItLRE0BI5KbsLZ12d+5tBsQp49kLgd/PwUjMt/QheOZmvk4dKY4fzQQcts8t10rTGbbMHI6+ZllbBoWLftWJVwSul4h9GpqWbB8sgMi2LTZ+t3DtpHu40aGkM3mc5CVoaH6qcVOasRg8v5CTT0mp/BZFpWWrz8CDK5eS8CTLT0s+MUadBS6cBD7vm4VY/anXubD6vYkE8q8/8yrQMu3m4lwx+q+8G1Ty8WKal24cfq31mx+oHs1Lu3V5a0pTCuH7V1fk/HsQlaOmkhYffmZZxGD08jObhxY6pYkHLUpqHF87PSdDS6TU26ObhXbrYL8/NvCxY1kmtlpHdfkFlWgbVPNytKJuHt27dPPgdRqal3T4qDKJmWR0rXuprcWse7pWDHycJWmYQtERO66VL7Sdwe7F1UgExm86tcuvTsrIyMwpbltugZeE+IdPSfjo/9rtPQcuSMi3tvpPlJBuzmGLbJVu5d5JpaZexWCzTslWrptdWQazNNmu+TDtOMy2dVIjjlmlZbD/7dd46Wb8gMy19vP743qdlKc3Ds82/zMpgt62ttoOTQFp2mW6ah7u9DtvN2/iDRJBBy7AzLZ00Dy/2MG6cjx2r+5rdj8RxybQsaB6eFxwLqnl4Q4O7a7OTTMuomocnIdOy8Fro5geYYvsqrExLp9e8wrqb383Du3XL/zuAoKXldcnqWMs+ryRt9HC356xdsoDdeehXpmVhVwBBjB5eyO64smsebrZPvDz3m11HSlWsebiTTEuvCFo6RtASOW3NRskzMrsoemkeHlSmZdyClm4zLauqpI4dm973O9OycJ/5lWlZ7MLud5+WSQhaumwebjt6uJt+x5w2D3dz7jkNWnrNtDSWtdTm4W6Dll4yLcMcPdzIaZ+WZsstJYOpGCcVuyCDln5mGVk9lIcRtMz+bbWuxTItnQagzI75bKalHavM0EJu35fy+7DNbjMv9xU3QUvjsWkXlCkl09JJ83AnQUsn17Jimd5OrmFZdtveyT3Grez6/RzciWXzcCc/HpZjpqVx/bKBt1Lm4WUgHjcD5fkRtEyn/enT0izT0o+gZeFgbdn9X+x4dpNpmU6bJ0JYlT/7vBJVn5Z+NA93Iso+Lc0yLb1mk/q1jcySlfzOtJT8y7TMstt+BC1jg6AlcooGLd1ebIsFg4LKtEz6QDxBBy2jyrRkIJ7m54uTLgmK/XrrpXm4m3X1I9PSLmhpNoJ3sebhVg9zPXo0n6+dIAbiCSPT0uz4KXaMFQoz0zLI5uFRZFo6DXgU3oPsRg/PLsPvoKWbTEuzclm972empfEh3GmmpZ1Sg5Z2vGRaugnQmL3nJtPSTcuWuGVa/hw8D6V5uNMfHrKs9r9xucX62HOrnDItgwxaOtnuxvpDsebhK1Y079rDrFxmyzdOZ8y0NAabvGY8FmuO7mZedtMW7jMnQUsnmZbG48iv5uFmym308CCah3vNtMwyqx/4HbQ0OyZLnV92X9tlWgb5Y5DUvOwELS0RtERO28WL7SfwkmlpltW1cKE/AyvEPdPSbL6rV0vLl2deL1iQed8qaLl8ufW8/Qha+p1p2dgozZ9vPZ2dlSsz/5z01edXpqXTh3A7pQYtnSyrlKCl00xLNzdjP4KWdhlHM2fmTyOVnmlpbELuZ9BSar5tgxg9fM0aqVh3HWbNw9Pp5s3ZwgpaRp1p6XY96usz9yAzTkcPT3KmpV2flmblyvIr07KmRvr00/zj1Sxo6VemZWOjNG9e5rXZeW4cJMztQ2eWVaalk+bhfgctre77bjKR3GRa+hm0/Pn6nQ6jefjs2f5nWrrtW7EYLwH1pUsz9+S6OmnRIvPvLV9uHpwz8itoadY83Gz7mw3E40emZWE2t12mpVnTcLt5O8m0NGapWtXfJ02Spk8vvszC/f3TT5l97XfQ0myfFWse7jXTcv58Z9fEwvdKbR5uFMXo4dl708KF1tfjdesy//sZtFy+XFq1Ktg+LUsJNBcrh5tuJorNy+z50igGmZa+/PhVBghaIqdNkM3DzS4o/fpJW2/tPc077kFLs5vxJptkssG6dpW6d5ceeSS6TEuzZrleMi0POSSzTvfck/95sYrAzJlSz56Z7fLjj/mfmVWS/ApaBpVp6aSSWTCN6a9pQWZaBhG0LLV5+C23SDfe6E/zcOODgZ/Nw6XiD1Jeg5ZLl2aat3fvLn32mfV0ZsfYf/4j3X23u+UG9eOMGScV6zAyLRsapF12yWzjZ59t/rnTgJ1dxolRYUDAeMxYXX+s1rXYMq0+s2qybBW0dHp9dXsdzv5ot9VW0u67S5tuKj32WOazUjItnQYtf/vbzL3lttvsMy2LPRwUbkezbMBSmoeHlWlptpy4ZFpmt1M20zKM5uGHHipdeqnz6Z30aRlV0LJwH3z+eaZO1aVL5l+PHtLrr+dP8/XXmevgJps0/YBuJqhMS+O8i/2AXGw7uA1arlrlPGi5wQbF5231o1Z2vYyZlmbzaWyU+vSRdt1V2nxz6aab7JdZeCzuvXfmelrsWc6FlFlWm9257keflqNHZ47V/fZz1xqpcD5ZbjPlwg5ann12Zn032SRzLu62m/mPg343D//uu8z1oWdP824QCkXZPLzwWCk8Jr1kQ9p9lz4tY4WgJXJa2wXHJG/Nw61O+lmzpAceKF44O4VliFvz8ML5fPedtGxZplyLF2cuwEOH5gctzR7ezPjZPNyPTMsFC6SxYzN/n3GG9bRmhg/PZFmuWpV5Xbhcp83Dne43q6YcpdygSg1aFi7L7hfJuGdaZivKdg8WxQIDf/lL/nXG+KCQVSxoecQR7kcPd5Np6TR7ttTryU03Za4LNTXSscdaT2fWNPm555pPZ5XFYpyPH5zMx00A2YxfQcu33pKmTMnsk6OOcv49s2uFk8p3Ybntmoc7ybQspZsOq0xL4/tOMi2ddndi98PXhAlNAYF0WnriiczroDItly2TXn018/rcc+0H4il2nobZPPz/s3fe4VJU9xt/d2+n96KAiL1gAwt2I7ERSzRWbGg0MRpbNEZj/RmjscTeY4mxm1iiwYJgFwtW7L2hgIhI55ad3x/D3D179vQ5Mzt77/fzPDzs3Z05c6ac9s77PcekfZClI6t/fDktkxAtOaelUz2V9OCuEk5L10Wifv3rsD+8cGFYBlpbQ/FetM28ecDpp8vTZs8jzpyWov646JqKxAKdaGly3VnRcsECdXj43LnFz+xK3TZOSzZ9dk5LPr9A+LL+zTeLf99/f/GzabmdMwc45xxx/lRpqbbl75mJaBnHaTlhQvj3Cy8AH35Ynh8eH05LWxHNZ3j4p5+G/8+YEe47fXrYR2Fhz8GX0/Kxx8J2dv58YOJE/faq80p6IR7+5aCNkK5LV/V8kGiZKUi0JNrJ6yp2307LCJ1YqkI0gPPltPRlxzZNhxUt2cGj7RukSjstZeiug+4tv6lzzfR6Z9Fp6SJamjh00hAtZSHxLGwIpm4boHSAESFbPXzrrYELLgBuuild0dK305KdDiLqzIpobTVzoujKQ9aclmmIlpp8SDuIorrCpZ0wWT2cPVdeTNS9PBJh4rQ0mdPStL5UiZ58mx8JmKwY4tNpuXBh6feicm46H5xJyHRSTksTZO2F6vxkoeNph4dH1ykKD3eZ01KVj7XXBo4+2t0pCJjNaWnSl7LB1WkpmqaHzz/rJpSFj4vSdiGu09JHeHhjY/Hz/PlqpyX7m8vUGbzLjF09XLQ9f36650j2LLJiqwhb0TIKS45Q3Qffq4fzx3KpJ5MQLUXnp+urm+YFKC8n7HPJXrs4TkvWEOPrGonKsA+nJY9qnnAbdOOgSoiWgvyQaBlCoiXRjla0jOO0VBW4OJWXqDJxdVr6mNvQJF0ZMtFSdV+y5LRsbVUPBkxFL9m+pvNBmt43046yCSb3AdCfgyqdSoeHm4pfqutnMrcbm6empvLfZU7LzTcHTjkF6NevdGBgco5JhIe7iuGsKKsTp0wGdXFEGBt8OS1Nw8PjiCasOCdA+PIASEe05J2WgweHTnz2mC6ipS+npenLPZWYKRMt2bz4dFryx1OVkySdlmmKli5OS9kLTdVxInw6LaPwcJXAY5ovlsMPB666KnTbumLrtPR5XXTwzm9R++mKaX9el4ZItDR9IesjPJwt+9G88ixsG8Pmi20zZGmL+t4qp6WpoUB2zLgrRhuQCwLkbEJxXZ2Wccq3b6dl2uHhJvCipQ+npe3UbCb3SPRM+5jTUhceHqeerbTT0iAyjkTLEBItiXbyugF7HKelzRt7G0TpujgtfU8U7JIOK1qyHSRVherg5kvUaakTHlXoBnS+w8N9Oi15knZass+Ha3i46nsRpvfPp9NSJ1ryLgbR56QX4pGF/Ls6LdnzU9Haqs5L9Iyk5bQ06dj5dFqa1gciWHFOhOkLEdPwcB5VXcs7LUWOFB9OS9Ezn9bq4byIOHdu+Uq+Pp2WJqJlkk5LX6uHmyBz+6hEy2hb3fQlLEk4LZMOD4/aBdfwZqAyc1raCB3s8USRCq74Ei1Nw8NFx7FZPVyWR351cFV4OJuGiWipc1rqwsNVf4vKbdz1AEwQhYer+klRpIgvp6UoPzw60dK2X5f26uEmyETLKN9piJaqe6QKD/fhtORXmvc1p6UuPBzIhtMy6TxUCSRaEu1ULDw8TqfOl2jpa8AgIsnwcBenpYnI4ipa2g7KTNMWiZa+nJY+REtP4eHKDhm7L+vGS8tp6UO0NFnsQhceLhP12IGorWiZJaelqWipc1qaipa+OkMm52fSsVblh+248/fK5lnWOS1lP4jqINn1VQ18bJyWtqKlqQsoyoPsZUhcp6VNeDgQzufF3sOFC8Nt03Ja6hztES5OS5PwcF8vTmX1sGpALXNa2rTncRZCiEg6PDxqI+KIlrZOy7j9SNt2WhepoHthI0MnDJmmEcdp6SM8nBctVU5L9jfXRcrYc9OFh9s6LU2jyGKQA8rvmUl4eJw5LVUk5bRkyYLTkj8PndPSxcFp+/yo7lH0W1pzWtrMs6pDV78m7XKUtaVMnSON/ulkkGhJtFOx8PA4+AoPT1K0dHFaphkebuO01Dl84ojTvkTLrMxp6RAebuy0ZIUtE6elbJssipZsnkSipWzQxQ4GbFcP9zmnpc7ppCOO05LNS3SdRMfN8kI8Knw5LV07qaK6QrZtfb188GMzpyU7QIm2T8JpWVtrFq4X12lZKIhFy2++Kc17a2s4l5ruvpq0OfzxFiwo39bUaclfR/Z66JyWtu1jZ3VaJrV6eJRe0nNa+hQtbetM9tgi0dLVfenLaWkqWuZy5cexCQ+X9THYNmThwvLrG8dpKWqTVE5LnfAvW7AtyksKoqXwnunCw036liRa2pH18PDouovGmz6clkmuHm4bzegb2ZiCMadQeHgIiZZEOzVJOi1dw8N1b8Q7g9OyEnNaivaTHY9NJymnpUgEjBseHu3vY/Dl6rTkj2UqWure+mfVaalzHPXsqQ8Pr6kRO+XiOC19rh4e12kpe/5Ez6lKQI2ekbTCw305LVWonJY25VbzTBjPaakKD6+pkQvsutXDg0DutFQJpVGedMcEykOWa2rMBpGmTkuV6GkiWgJiJxSP6l5G6fHHEz2HruHhIjFHdK11rlHRcXXhoap0bERLH07LuKIl+2IyGqypQmlN88Xiw2mZtmhpW2fqnJaVFi1FQpvs2ZS5w2XYhocDpQvf8b/bipYmTkvX8HA27ah8+HA3axA6LXWipcnzYSpa8gKiiyPdZdofHUmHh/PnzT6XjY1+REufTkvZeErWX4k7LRx/vnHaH5M+RJLIXgSbzm/fiSDRkmgnk+HhXbuq89RRRUu2g+Q7PNzEaSnaT/Ydm24WnJa2joxqdFrqwsNN5rTMotOyT5/KiJZJhIe7Oi1lK2SLXBgqATW6RroOY5pOS5+iZZJOS1MhrlCQb5vPl5ZTFp3Tkv3d15yWMgFA5rS0uQYibMPDZaKlj3Bt0fF4fDgtZaJllH4cp6WsXpDtI2v3VeJoJZ2W7DMfhYe7OC1V+Yg7p6WJ04jPQ9qiJXtskUDpKlr6OCcbp6XoOD4W4uHTmDev9O+k57T0ER7uGuLvQuCwEI9JXZA1p6UP0VL2wsg2LyKSCA/36bSUvXiQ9ZFs6xC2LRCJrXEEfJsF55JAdgw2PJxESwAkWhIM2oV4kgoPV1XwjY3qBlp0fFF4uIvbKE0HEuDmtBRRSadlHNFSt2+1iZaidOLMaWkjWurcgNGxsiZaFgp6p4iJaFnJ8PC4TkuZOMF/L3L5mTotfQ6qbdLxGR6eBaelD9FSVAfIXBXR7yaOBx5fTkvZHJw8WXBa2oiWJvUXoG6HZOHhQHi9bZ2W7HemrhjZwFk2qASy4bRkxaQoPNzX6sIRcZ2Wpv1d9lr4FHNNYPPY2Fj+e6VFyzgL8diUTR+iJZueyUr2ojKnclqa9s2B0nIra1cSIBcEdgvxzJ9v1o/qyKKl6jmt5vBwnbFEtE0S4eE2dYgJWQsPjyDRsgwSLYl2EnVaqioU1W8NDWLRcs01gVtuMXNaAmIh4KGHgHXWAa6+2rxSbWsD9tkH2Hxz4Ouv5fnWpaMiC3NaRvvNnAlstRWwxx5hPnTis8kg5/e/BzbaCHj77dLfbZ2W7N/PPAOsuy5w9tl2nZ/f/hZ48EFxPm1wFS2/+y68vrvuCjQ3i8USkajMi5bz5wPbbw+MHVtcwEJ13CiPaYuW778P9OsHPPWU+Pe2tuLzXlMj7pzLRMu0Vg/XCcK2Tku2HgLK66roXvLfmzotdW+5bTt7//1vmN/jjwc22QQ45BB96GtUb955p92xeKIw2yhN/hgs//d/wMiRYd3Ao3smfISH5/PyF246pyU/QIkTHv7tt8CWWwKzZonzkJTT0la0vOYa4L33Sr8zce2YDDj4EFARvpyWp58O3Hhj+X7NzfYv9W65JSxrd9xhPsBcuBDYeWfg9dfF6dvMacn//b//hfm57DK/omUQAOPHF/8WOS3Z9G+4IczHv/9dnpbqGsd1WpqKuCbzg5tiK0bcfXd4bW68UXyvVaJlEIT15rrrlrfRPs7JxmkpmtNSx4YbApdeWjyWCT/+WPq3idPy2GOB664rT0tUJnjhk32mX3klvNa9ewP7719el8mueYqipfX8ga+/Dqy/vj5d36uH77ADsGiR+qWMKSZ5kbnpo/ywrLMOcNdd4WdT0XK33YCf/azYVsr6BHGclkmEh5u+2I0jWi5aVP57dD8WLgyfhbFjxXNXi/KRhGj5xRfAZpsBBxzgbtihOS3LINGSaMf7Qjym4eE60VLUQH/4IXDYYeaipaijtMce4SDpmGPM7eu33Qbcdx8wdSpw+OHyfOvSUZFkeLjIpaMSWY46Cnj++VBYue46dUMjElH49F5/HbjqKuCNN0KRTXcu7L4ql+K22wLvvguccw4wd648HZZnnwWuv158LFtMw8P5MnTGGeH1feQR5C++2N1pefbZwJQpwOTJwHnnmQ0obUVLU7ey6voFAfDDD/LfWdGSLwcRSTgto/tViYV42HoIKBcno/pM5LRU5UUVHs5+Z/u87757mN/LLwdefTWsEx94QJ3OPfeE9aYPZAIze71/+gk46yzgnXfCuoFHJTxB0UEU3VPZtiqnpW5OS5VoqQsP53875hjghRfKtxM5LU3CcU3c4arvC4WiiFhbC3TrJt4OCAcdaTktZe2gbDv+GED4ku+888T7uYiWb70VlrUDDzQXLf/2N+Cxx8q/14WHi9os/u9f/CLMzwkn+A0Pf/tt4OGHi3/37QtAER7+m9+E+dh77/K0VPmohNMy7mDTVlg49tjw2hx5pDi/ouiFiK++CuvNd98Fdtyx9Lc0REvZ3G42nHii3b6m4eH8C6ijjipPS9TvYr/jVw+/7LLwWs+bF4rNU6eW72+SlyQRiZa6PtUnn+jTFS0wZ4Lsvk6aFNa9rk5Lk2Ow2Dgt33svFK9s8/LUU8XnWea0jM630gvxyF6KyfpIvkXL6H785S/hszB5cvgC0QTVPXENOz/wQODll0OxWtf3lV0LEi3LINGSaMe709J0YKxKQyZaRpiKlrpz0w3sI955p/h50iR1mhFJOi1N3Hw6V5XKafnEE8W/p0/Xi8+6Rm3mzOLfc+aU/q4TREXpieDfnMuQdaySdFry9/L559s/5qZMcZvTslAodZM9/7zeDRjl0cVpKVtZ0US07N69/Luzzy5+ZoXDujpx5zyft5vT0vQcm5vdJmz3vRAPL06K3rRHx1XlxTQ8PG74IhCKDnw67HFNBjGmRNdBJbDYvoBburTkT2/h4Uk4LW3ntJw8Wb2drdPSVFgwcVr27h2+xJKhc+8Dyc9pucYapeKYSvBWHWfJEvvwcBZT8eqVV9Tpy+6r6KWNKr9xpmfg4Z2wf/hD+L/v8PC4q4erzjGpOS1nzHDfV1QPqvpZrNPZ1PVnw7Jl5n05F6dlhK6OZOEFEBOnpQxdeDj/Yoh3v/PlQPZyK+3wcJ3Tkhe4TTB1WppORwKEIpEIE6HQ9kWua3i46dzEEVEkWBJzWvp0WsraF1k0im3ZZp8VUeRE9Ey+9FLxu2efNUtX1Yfg+obGsC+KP/hAvS05LY0h0ZJop6rCwyNEFYqLaGkyLyBgL0C67JNkeLgqpEHX4aqt1YcH6AZlDQ3y31Vpi66B7O28aUMsy6vL4MtUtOTL0IAB7R9zM2eqG3f23tkuxCMbvLiIlrLyqOuwXXVV6Crk+fOfgVVXDT+zTkuZaJnEQjyAuWipE4Rtw8N5TEVLldMylyteD12H0UdnaOFCtYioW1DNhug66EJZVfDPBF9n+AgPl01vwB9f5FyUDVCi321ES1ke+Oe0EquH9+gRTi+wzjryNJJ0WrLtkUi03GefcMDBOvJV4rwqr0uW6F3oKkxdMTIXoYloqXNasvBtWZyFENh7eNppwHrrAeDmtDRtl01Ey2pyWn7zjfu+JtFR7N8qt5bKHW6KyCEFyPswrkK4Sb0RsXBh6d9xREud05IXLVWh6dH+orRTDg9XLsSz776hs3vkSLt0XUVLXfl2DQ+3fZEr2sZkihFb0TKKTFKJlrq+vOza+nRaql7W+3ZaikTL6Phs2TCNslJtZyvsukCipTEkWhLt1PheiMe0Mx/HaSly1Zm4D01+91VJ2KbDh8X6FC1tnZbsdzU18Z2WqntpK1pGxzKZr0yE7Jnw5bQUXWt+UNC/f/HzzJnuq4frOnY+nZayzrtOtMzlxA4XVmBrbS0NDxdtLxMt2e9sw8Oj7XyIltEUDC5OS95lB6idljLRkhWgdC5yH07LhQvV1yUJ0VIlsNi68/jOuy+npUt4uM5pqRuQm4qWfL1fidXDe/QoHluEidPSl2gpqr9EIpcqkkHlyli8WN8+qjAdYMpchLoBdWurnXuSb8vi1COiuXihCA9XkWR4uKlTNiuipag909V9Jmm5nhMvEEbIrqvqOCozg+plki5PNqKlrt/Fv/jnw8NVoelAZlYPV4aHR2VUZUgQYSpaqtobvq6rqSlNh31xazPtR1ynpepYtqKlaD/+Raau3yo7n7QW4vE9p6XKacmWDdOQeVUfQlZn+UR2f2ghnjJItCRCWlv1hSKp8HDVbzqnpWkosIuL1FclEddpaetgsBUtfTotdfdZ1bGxFbaj7V079UmLliZOy3792j/m5s93n9NSlx+foqVMNNSJlvm8OLScFS15p2UuV17+s+60BMRii2lHmO/URh00m9XDWdEyjfDwBQvUIqJq3kJbZE5Lm0EH/0xwnfeytjASokWDVN/h4XHntEzaaWkarifL4+LFxXunEy35NkhEnPBwndMyqkfY/KmclirSCg+P47SslGjJlge2zIhES911yprTMm79mrTT0vS58iFa2jgtdeHhur6kaR75PLEvHvj+L4+uvOiclvxLDlWZqmR4uGr18KgsxRUtTV9+sX/z94R3WppGrAF+RUufTkvRfrxoqUtT1Rbb4CJaJuG0FLXnrk5LXXi4rM7yiexasM+3q7u9g0GiJRFiUpFWKjxc1UCbLrpSSdHSxWmZVHi4rdOSxcRpqRuUyeZDBNzDw1079S5v92W4ipb89VDdTxvRMkmnJe8W4H+P47RkB85RGUhLtPTltATEAr6raGnjtIzywg6O0goP59Nhn0vV4g+2RAM91YBRJxhrwsPLHM8ycVLl6FE5LZOc05L/TTaYjK4R67Q0WRjB9LmWfc+6JEyclrYCtCgPMtGysbH0WOw+gL3TUkVaTktX0bK11S48XBXKaotEtBSGh+uOo7qOSToto+vKv9yopNNSJ1oGgdwdzLa7vPCQlGhpEwqsm+veNI9xnJayRfjYv3mnpWo+VdWUC2zaaa8ezj8jbL4q6bTk7wlfrm1ES9vnO63wcEA/ZYyraJlEeHgaoqUIV6elLjw8DdFSdl2Zfjw5LUNItCRCTCrSLK0eHmEqWurEiKw5LdMMDzedg48PvRCloxuUqX53DQ/PqmhpEh7O/Z03DTlhG2YTp6VsG1fR0tVpaSJask5LQNwxtVk93HQw7dNpKXKImTxXra3x5rRkRUtZeLjJs2GLbk5Ln2+JTcLD+XPmB6a24eGyFzKqOs00PFx0f1QDFJW7M8ori6nTkg8PNxUjTR2ZEWxIZM+exWPLjpVWeLioHfTttIwjWpq6YlzDwyvptLQJD9fV0ap8xF2Ix8Rp6VLvq0gyPFw1ncHgwcXPvs7JJjw8LadlHNFS9wJD5LRUCeaqMsWmk2J4eA5QOy0rKVry15J3WrJtn029kTWn5Q8/qF9k6sQ5UX5MX9KzmDgtRWVA9+LcBJ1oGd0PG6HaZDsX0dK2v6sSLZc/4yRahpBoSYQk4bQ0fXOlEy0rFR7ua6CdZHi4SoSM8OW0rK3V38dqEi2zEB7O/d2gmqNV5rTkRQyVmMXn0Wa17ChNVmQU5dNGtIw6IiLRMhok8OXfdvVwU3yHh7s4LW1ES9Hq4aJQX51I6aMztGiR2mnpQxiNMAkP54/Hi1a2TkuRqxVQC4hZWT1cJ1qKhG5RvlT5FZGW01I3Pyg7hyaPzmkZ1Smq+cNMy48oPNzGkVcJp6WqPvS5erjMaekiWlbKaSnLX5adliohPCqb/D6Af6el7Nl0FS1tnJZxVg/nr6+obY3jtGTr+gqFh6NQUK8e7is83FS0zEp4uGpRU9+i5TffqF9kuoiWti5LWTr8b5V2WmYhPNzm3FTbkmhZBomWREi1hof7Ei1VolhcbNOJwvSiRkmVd9EgSCWWJOm0FA16+PRMwqtEiJ69uOHhsmfXZfBl+iZRI1p2+f57eTqq8HC2A7JggV/Rku+MuDotReHhItHSd3i4Kb7Dw13EQZvwcNXATBUerhIXXdE5LX12uFycljrRUue0lImWqvBw09XDk57TUhceLnNaugwiTb63ES1tnZaiZ10Vlm06pyXvBmcxHaCI8mH6YheIL1rKwvfY3+MIkQmIlhCFh/twWiY5p6XPl0JLlwKiPoEpuj676plizyNp0VJ2z3RjAxk2Tksen+HhfD/A1mkZpcGnneaclkD56uE+FuKJ5iyP8BUeLhN3bURLk7osTaelTrR0CQ93ES1NIjxMp9bxLVqKnJY+wsNdFuKxaQtJtLSCREsiJInw8EIBuOoq4Jxz1G90VRWGL9Gy2sLDgWLly18ftvI2GWSw56EKF6q001L1WxJOS1mj7ctpaRIezpW7pjlz5PlRiZasKCNa0Ed03597Djj66PLveaJ9o3yo5rQ86STgv/8VpyNyGYgGkdE1iSNaugxKr7gCeO01/XZ//nMoDL/1FnDcccDLL5dvIxMtgwC4/HLg3HPlA0qRaPnRR8BRR5VvqxItZeHhLg7QCFlnTCdapuG0ZP/mj/fhh+Gz+fDD4d+2C/HI6jad09LX6uH8XJOVdFqaipZpOS3Zeyl6tmUuS8B89XCgWKdMmwYcf3xYJkXHlCEKD7cRLeOGh//+98BjjwGnnCL+XTWn5aRJwAknqI+r62M99FBYBmfOBL74Ikxv0qTyfeOGh1fKafnVV8CJJxbrGJP86Pj22+LnPn3s9xf1601FS3Y7X6KlTAA45pjydlRXz/ma05In6fBwG6cleww2nUqvHu4jPDyXM2tv2tqAK68E9t4bOPnkUhE/yfDwF18M+3cffBCOM//0J+COO8Tbs/vJfouolNPyscfCOvfLL8PvbBfhiQgC4M03gWOPLT8G+3+ErCzKhMxIM3j44dL86owIojktfYSHm6bBYtPfVdVTzJiJRMsQSU+R6HSo5raJsHVaPvZY2MEHzMQAEUmFh/MVpqloqXvbI8LFaRn9v2xZ+TXO5Yr5VwkFouOrnJYmoqXvOS2DQL3KcYRqIZ4ZM+T7qUhatHRwWipFS/b+8A4hXrQ0cQMecUT5dyJaW8PjsaKlrBxccok8HZXTUjRnHFsOWJJyWt5yi9l2//kPMGIE8Pe/qx0iIoHi4YdDwQMIO9S8gCByWv70E7D//sDs2eXbysoM65rThYfbdLBkHTjdQjxJiJY2Iumee4b/X3IJMGeOfgVdkegveuZU9yCp1cN1L39sREtWdDV1WsYND2evfffuxWPL8qh7dlTzg+pES9OFeKI8RvX15ZcD995r1/aIwsPZY+lebvpwWu68s3w/mdNy6VJghx30x1Xdp9mzgT32CD+//z7w9dfA9OnAZZeF6ZssxCMTLdk+BLudiCSdlgceKO6Pxqn72Odr2DDzOdwjdH12lXChclq6Tp3EOi0bGor13GuvAZttVhqSrqvnVOMCX6Ilew18hYerrp1I0BI52NJeiCeJ8HDArL158UX5ixb+nvD9UhvXHf8CaYstws933AGMGwfcdlv490YbAWutpR5LZc1p+dNPxbr//ffDsbmL0xII79OGG5Z/z0dksd+bRqI99lj4co1lypTQIOCyEI+P8HAXbOoe3Us2clqWQE5LAgCQM7FR2zotI8ESKH/7bEpS4eF8vqvJacniQ7SMroVJeLhusGwbHs5ed9c5LU0EdxEZFC3zqvAgmdOyubl0MCASLeMMnEydljpM5rRksXVast+5LrRgykUX2T/rhQJw993Fv//+9/L9RE7LxYuB118Xb6tyWpqGh9s877J2ohLh4SqXuep4n36qd1qKhF6fTkuVO9AkPNxkQvwIlduTD110WT3cNjycJRroqsLDk3Ra2oiWfB313Xd2bXvc8HCTPhoQT5ATlWFToUxVH77zTvHzxImhYBkxb548PJy9/qYvV5MMD1elLeuLxqn7WFGxVy/5drLyk2WnZbdu6m11wqOqjVfVyzrYa6JzWpqEh/NOS9Wzp7pfbDpphocHQXndEzc8/I9/XJ64gWj51lvydPh70tJSmg77jOnmJpT1H374oShYAsDzz5dvz+8ne275tt2UpUvjiZbvvlv8/Pjj4f9xnJYiVOHhpk7Le+4p/+7tt83yFR3f1likCw93wZfTkq0vSLQEQKIlEZHEnJY+SCo8PE3R0tVpaRIenqbTMonVw9kOom6+TFF6onyaIhM7fYmWJuHhPlYPZ8Mto+11qyXbIBItZYMkFXw4UPQdYCdamizE4zoo9YXMacnmWzYXJl8XywaWqvKmCvWNI2jLOnfLlqndvZV2WvJoFuIROi1lZVN2D1ROS9vwcFWdz2PjtOSdRC6rh9s6LVlkbmpZHkX4Fi15ZxSfVxYbYUQUHm4j7CctWsqclqZth+o+6aYRYn+3XYjHRlATLaxkg0s7qnvJYHo89lnlkf0W9XH69Qudmnyark5L1z4XKxyJREt+HnzdfG8y4jgtZaKlqC7XXReR09I2PFz0MiXt8HBVmbMVLS++GPjb38LPJqLl11/L0+KfgWXLStPp2bP4WdUOAOZ1cZRnF9FS1L8zgd/PVrQUCbauTktde2/6wtd2nktTp6VLHe0iWo4fL3acAnZ1D81paQWJlkRIlkXLJMLD+b+z6LSM/heFh0ek6bRMYk5LttPsGh7uuzJP0mnJwz13OVPRkhUiRGWAFzJ9i5a+nJYq50va4eE26M5fJLaYiJYip6WscylaPZzNn2xAECc8XCWcVIvTUhQO5DqnpS483NdCPCLHmQwb0ZIP83MJD7ed05JFJ1qKHMs8KnFcJ1rqFuLRvQixea4XL1a3sb5EyziCnKgMm0YyqO6TalBYKJT+zs5paRIebiOoJem0VOEqWrLXRSUKyUTL6JlpaAC6dAk/V9JpqRMtZccXoXNa+hYtXcLDRU5L1zkt2WcoRdEyJ3KixQkPj55DwMzZ/9VX8rT4e+JLtDRxa7uEh7uKlny/0HZOSxFxwsNFyARbmes5qYV4bMc6ruHhjY3yPCXgtCTRMoRESyIkiYV4fKBzWpqGLlWjaJk1p6VuPh6X8HBZB5FHFR7u08Xlml4lRUtRGZg3r/TvOOEPvpyWSYeHpyla6sKzTJyWMiFeFB5ueowIVaivqVNOhKpzrBIRs+S0FA3CdOHhslB8H+HhIqclKxTFdVqarhbtunq4KhROh4nTMm54OP8Ch8VmIZ4knJY2oqVpHe7aJ5M5LU3DCF1FS7482oaH26x4HnchHtdr69qXZK+Li9OSXdRO9BI8zurhLkKsTXi47nlPymnJPu+yFxgRuvBwkdMy7urhrv0vV3SiZVRGVc8nC1umTdobW9GSxVW0VJVzn05Ldg5XXd5UfQIXIdQ1PFx1bkC88HBVnWK6EI9tHe0aHi6KHIuwqXt0L9mihXhcX3x1MEi0JEJklR7bKGTRaWnqAuDzmaZomfXwcFOnpU6IU82xF6XnGh6uuj9ZdVqaCDVcuTMOD6+k0zKXcxv0qRbi8S1aJh0ebiJaujgtW1rKn3WV09I0PFwljvgIDwfKn7msOi0B+/Bw2SBYNXivqTELDxfVsz7Dw2Xb889oJZyW0fWJ47Ss1JyWouOpiCtamrppXOt6kdOytdXckeMqWra1yRfi8R0e7uK0VLnUTXGt/3yFh8tES5VwoXNaupwT67SMFuGSEUe0zJLTkq9j464ensulL1r6DA9n2xiX9oZFFx7OioI60ZK916pnL8qzasoqVZsbte0NDaWiqgqfTsuofnV1WsraF1V4uOlCPCp8Oi35/PgWLclpmRgkWhIhMtGS7QxlcU5LU3QL8YgqLV9vNpIMDzdxGZiKlibz8/ie05LCw0v+FDZMLqIl77SM43Tjw5N8Oi2rNTzc1WnJiliiulPUkUw6PNyX01L1zGXJaQnow8NNnZZJhIcXCvHCw01FaRenpc3gw0d4uIljir0HtqKlLjzcp9MyrfDwLDotVXkSPYfLCURivY85LW1ESza9ONfWBVOnZVOTOp3aWv9Oy7iipW5Oyzjh4XGclkuXivtcovJvsigUX5+4zmkZt//lSL5QKO+XxgkPlzktXe6XzZyWKsc9UHqvTUTLuOHhDQ12TktfouXgweH/rk5LmVHIh9MyDjZOSzY/uVzyTkvVs01zWlpBoiURIqv02M5QFsPDTalkeHiaTkvV2z/Z71EaOjFD1xGMGx7uunq47/DwSoqWqvvD/mYrWmZhTss0nZaVFi1FzzrvtBQ9I6IJ05MOD/fltOSfw7Sdlir3IktLizY83IvT0ueclqoXVTxxnJa6OcZsBh++wsNNnk++jorgRcuBA0t/ryanpWlUietUILI5LU0dOarnUjethMxp6TKnpep5ie6nTftQSadl3PDwCNZpyYr8cea0dDknXXi4qXAE6EXLOKJIVNZsnZai8s3Xsbbh4aL+V5pzWsoiQiKSdlqq4MujrzktVc+eak5LXfSXq2ipc1rahIf37Rv+7+q01C1gamp28b0Qj+yllmrsGB3TZXxk47TUjYtlkGhZBomWBAAgJ6v02IaIb1B1zjsf6MLDTalkeHjW57SsVqelroPgii/R0mawvRyn8HBeoASSX4jH95yWovSyvHq4jzkto+1YZKs8igalqvBw1UrQNm+BeVTig0q0zJLTkhdJgDJhWOgskZVN2fXLyurhrk5Lletb953qexaThXhM0onupw/Rkr1eaa4erkvLdSocU2ROSx/h4TpxTCZasvW4qWiZRadllkRLoHiv4qwenoTT0ka01M1pGYfoeWXPUVSX+16IRzQO41+mpBwenteZVWxFS9s5LVXw/RFX0TIISvdzdVomJVqy+0X331W0jPLmKlrK9ovSjbN6uAqRQMheA9k4VlTH+QgPz+fNRUtVu2EqWvo251QpJFoSISbh4boQ6yTwJVq2tADvvAO89JL4zUoSouWMGcDjj9tXiPxArqWltJJNaiEendNS11F1ES3nzQP+9z/ghx86Z3g4h7fVwzuS09I0PJz9rtJOy6+/BhYsKP1OJFqqRPyIJUvkz79teHhzM/Dww6Xb8h12FZUSLVnHv8mclqrjtbSU7ztvHvCf/wA33QR8+aV5xzuJ8HDfc1rKyj4vxIqemSVLgEceKdYnJu6IV18FXnvNX3i4ybPz2GNydzM7WB00qPR33UI8WVo93HRg6nNOS1/h4bq5EyXh4cLnPu05LRcuDOvMefP8Oi1ffRV48031fuy5uaweHsGLllG6KuGiuTks+3Pnll9jmzaDhU1HJ1rGCQ+Ps/AgEN7zJ58EPv+8+J1LeDhfJ+nCw0Vl3Nf0PI7kRfchTni4T6elSLRkMRUtbUSmOOHhrGPSdU7LqD/gGh5u8sJCxUMPqdMVvYSNG7Uho0+f8uOLpv6ZPx/473+LffK0w8M9iJaJG8SqBBItiRBZh7hr12LB5LdJS7T0IUB88AGw3nrAmDHAM8+4Oy1tBvcbbwzstFPY8bNB5DDjK9mIrDktbcPDjz4a+MUvgLFj1ZW3y6TXrrik5+q05HASLUUNbtKipavTkm/kTea0zGJ4uO5Fys47l39XKJTvZ+K0XLhQXm5tw8PPOCMsczymz6pNeLhpuLYJvXsXP5s4LW3Dw594AvjVr4Bf/xq1W2yBWt7VJrvWPsLDRfVsnDktfTktgwA45hhg113DOlqUV/67V18FNtkEGD06FC51+HJa7rVXKDjrnJYq0VIXHu7qtIwEpayHh8d1WqrKgqvTMqnwcBvR8tBDgd12A/bZx5/T8qWXwnKy4YbAu+/K9/PltGTntASK56ETLnbdNWzLfDktWUSiJZum7jlW9UHijk0uvxz4+c/DlyGq4+nCw0VOS90CQjx8vZS2aCkqT3HCw306Lfnr77oQj82zXGmnZXSdXZ2WohcWutBrlpNPFn+vCg83HUurngFRGmy/UDaOXbIkrMN33x3Ye+/ytNIID3cVLdnVw32bc6oUEi2JELbS+9vfip9vuKHYidR1FpOgocHPG4Yrryymc8AB7qKl6eB+6lTgu+/s8hghEmvY/FbSaek7PDwSOt58U91JTTM83GU+JE9Oy7xKFJCJliJ48SuOsFtpp2U1rh4uwkS0FA0iZW/RVeVNtnr4hRfK82ZCpRbiEYmWcZyWiromN3s2un/9dXnatqKl6erhorqD/b2uzs5pqQpB5r/XOS1vvjn8/MIL4rT5/J91VvHzF1+o8wn4c1oCwJFH+gkPl4mWLk7LQw8tuoQXL05HtPTttLQJI5Sdg6to6Xv1cJfw8MiZPmmSP6flyy8XP0+bJt/PVLTUCUYyp6XJM/XKK2JxLm6/S7R6OFuX6Nxje+5Z6rRiieu0vPTS8u9cVg+3dVqK4Ptf1R4enrTT0iU83KZcm4iWqjbXdU7L6JpH9aOraBnl7fvvi9+tuKL5/jJ8hIfbipZsHSJzWi5eDDzwQPj58cfFx6mk05IW4rGCREsihK30NtggDKV+443wbXDUwbN5e+AL04bQFtfwcNPGLc61SVu0tHFa+g4PZ7EVLV3Cw02nGrAdnPgKD/clWvp0Racxp6WNaCnrtGdpIZ6IQYOKdVihUH6eJk5LFn4OH5fVw0WYPu+u4eFxO1y9ehU/x3Vaiua05GiaM6d8n7TCw/mBLn8v03Ra8ujCvETuKRW+nJaivER/R4PVhobS5yj6LsK30/LWW4HrrgO6dAn/XrIk2+HhIqdla6tdGKHsWXMNDxc5jH2Eh7u2D+w9OOkkYNttzfbj88Smo6qL2HPzOadllC6bj3//OxRTt966fH/+/snK5fjxwAUXqPMChPVMVC5k6ISE7t2B6dOBCRPKf0tibCLqo+iePZHT0lW0zFJ4ON8+Admc07Jbt+LxfImWMpMH+52sDmL7HrZOyyjt6Hqz184lPPybb4rfrbOO+f66dE3Dw23vt+iasnWIbBzL9+VEafkWLX05LUm0LINESyKED0dbZ51QvASKDWSlnJYyDj3ULc0gcHdamp5znApGNJBjj1spp6XOgShbrIJNT/W76tqq7o9Nh8O0s2fbiHkKDxciOk+d+JqkaJnLuTkZRaKlSXi4bv7KiCyKlgcdVBxQijpvJk5Llp12KgovOqelbiVoFtP6SlUuTJ2Wph11FpFo6XNOS456dpXbKD2X8HBZOdXNackPCpMKD1cdx/RFDLsdH36tw6fTElCLlj16lM6NCiTrtNxtt7D/Eh0z6+HhovY7CPyIlmk6LVXPi4vTkoV9MbPyysBWW5ntx+fJVLQ0dVrq2iNZeDibj5EjQ5OCqCzyL9Nk9d7IkcVxg4qmJv090AkxNTXACisA221X/ltcp6UIH6uHu0Sp8PVSyk5L76uHJyla8i8X8/lif8OXaCkTxwB99BdbD9o6LaM0o+cn7pyWkWjZ2AgMH26+vwyZ09JHeLisvmHbc9lLrY8+0h/Hd3i4jdOSREsrSLQkQthKj298ogYya07LVVZxT5fvbIg6OaJK0rRxiyNY6ZyWLCYddlenpUjEVFWcOqHOt9PSJTzctLNn+2ybTjTtgkhUrkanpa/wcNl3WQwP79GjeM4i0Z5/RnROy7q64rnp5rTUrQTN4sNpyT9zMuejy7OT9JyWOmQvZFR1msppqZrvU+e01JVlX05LU6c9+x0ffq3DxGmZpGgpclryIgOfVxbVQDtKmw0Pd31mgco4LYFwTl2bNETonJY+57Q0cVr6EC1tXHMqp6XqfiUdHs6bFQBz0VJ0nUVtvIimJv12pquHi9JJYmziunq46sWQCVl0WmY1PBworyd9i5Yqp6VuTMKWI1enpcgt7hIeHomWQ4aYLwikQnbuMrOLzfiopUW8Pduey8axItHSh9My7dXDXRc/62CQaEmEsJUe3zliB8ksaYmWsopBJ1rKOnlxVg83Pee0REuTypE9D1Woh8oNEKWjqzRVlX+ceZDSDg/34bT0JVqKBmsiMYTteCQhWrKdZl9OS1fRstJOS1N0oqWt07K+vvQlkq/wcB9OSx6Z89FlwGXitGT/1jm6bcu3zGmZRHi4yGmZVHi46jgiN4LOHWF7b02cljb1qOjcWdGSD0ll+wiiQVec1cOjQXx0zKVL1QKbL6elzzktATvRUnZsndOSn8M1wnd4eFyn5dy5xc+1tX5ESx/h4bqXaDaipejamIqWpnM2dunix2kZHZMnLaelbXi4y5yWfD83bdFSN6dlnPBwm2gQEaK8sfVkLmcmWtq0MdG5u4SHs/07n05LW9Fy/vzi9RgyxC36RZQuEM9pKaO5WS9aytqHjz8u349NSxR5aUIac1ry9QW5LUm0JEJyos5LRKWdlrJCvfLK6n1Vc+YkvRCPD9FSFh7OXg8f4eGyN1Qi0VJXaao6mrauGRaV07IzhoeLOogjRhQ/i1Y/diUNp6UqBNwlPDxpp6VpOA4vWooGNSw6p2V9vZnTkh9QpzGnpSrNuE5Ln3NaGoSHlyG71kmEh/PPSVKiZaFgN6elKkTeNG88SYeHL1lSvNYipyUr9ujCw01Eiwh2lWD2mKK5AWV550kiPJw9J5nTcsEC8/R8hIczefIeHp5Fp6VphIlKFNIJRibh4Wk7LXX3wNRpaTLXpAjdPKA8PsLDdauHixBNz1Npp2Wc8HCfTksRMtFy8WL5c1HtTkvbftmMGcW/edHStW5UhYebhoLLngET0dLUacm/aOb7QaakPKelMN1OCImWRIhKtJQ5LZN4m8mjaghFqw+yyETLNOa0TNJpqRokqt7+6X7nf+MHSVlzWkb5sensJBUezpOE01IXHs6Klr6dlux19rkQj2oQaeu0lC3gkASuomVcpyXrmLFxWuqeRdNn1VW0TMNpqavnIlzCw1WCneoemISH61548OVG17bYvOVn6wkfTkvbeibphXjYeVZFTsva2vKFBmWipaiOkj1HbL+FPaZI/InQtWM2bhpT2LrVh9My6+Hhvp2WskErjw/RMunw8Ch9E6elrN9l6iT0NadldEwek3rI1l3msno43264hIfzDrZqDw/3OaelCJloCchfwNiM11ROS52RIo7TMkrTh9OSXYSHFy1No9F4VOHhcZ2WLS3i7dm21dRpyYeaJ+G0JNEyMUi0JEKy7LSUVQy6RrJrV/H3nU20TNNpmZRoKQtrt+3oVHN4OHvvROfBOo+TEC0jXMPDRY18tYaHmz4ftqIlOzgUrcRs6rRMavVwm3IhC9d26RR37148bxOnpe/wcNm1TiI8XOTOSWJOS6C03dO5c7PutKyv14uWvNOSnSPWxWlpIlqyx+QFQBunpc0LA1PYspiW05JvA0xFSx/h4XFXD2edlr7Cw1XluRLh4SZOS0B8r02dllkID9eZHnh8LcTjOqdlpcLDdaKlbXi4zGnpq7+sEi1lIeK+nJa24eGmc0mybW/cOS1bW0tFy6FDS/PhKlqqwsNN57RMwmkp+ptvdysZHk6ipRUkWhIhqoV4Kj2npawi0zWSqvBw1zkt+UpD5kKI44oQDeTYwZdqcO4iWvp0WqYdHu46SDY53rJlZo1ZoVDuJKnE6uGs09JnWeUbeZ9OS5Vo2RHDw/lngq9j2OeIdRdG8E5LlWjpOzw8CEoH7Tp8hoc3NRXrexOnpe/wcJVgJzuWaXg4v39ac1oCpe2UbiGen34CPvmkPI2sOC0bGsoHpezzWu2iZRLwTku2nxHhIlry58nWayIHLz9NQbRp1lYP//LL0rRMBSg+T1kLD2cFWNG1mTWr/DtRWfe5EI+paCnKr2r+wggfoqXtnJYu4eF8vZSF8PAknZZxHZeyhXiAsA0T4dtpaSpa+nJa2kbAqJyWpotM8sjCw22clnFES9lLLR7etekqWtouxBMEpS9/ojZS9byTaFkGiZZESJadli6/AemEh/fqBdxwQ/l2PkRLdkCx+ebAv/5Vnq8knZa8aKkSSSLSDg+3Tc+0s/f55+EbyGHDxB32iGXLgHXWKf+ed1qahpGJ4EVlWaeVFS1labggEi19LcTjMzw8TadlUuHhbKeGXTE7gndaphkevueewFln6beL8BkeLhItXZ2WvlcPd3FaqsLDdU5Ln6Il+xzr3Lkrrxy2QzxZcVouWABsuWXpdzbh4aKXQ77Dw/l6w1RoTwq2br3wQuCqq8q3sQ0Pv/76sF908MHF723mtJQtxOMjPDzunJbsXHBpLMSTVng4u7+oLN55Z/l3ov6/ad/AxGnJIjq/KJ+ie3DUUfo00wgPN3Fa6trD6DpXKDw859tpmbRo6eK0tKl7VeKYrWhpKpyLnJbstbMVLb/+uvh30qKlbJxmI1rGWT1cl5ZoYV4RIsOFqWjZ0gJssw3Qrx8wcSJw441hG3nQQXqnJS3EUwKJlkSIy5yWSYuWgweHedl9d/HvDQ3AmWfK95eFhwP+FuJpawN+85vy7XyLlkBxEMDmy8Rl4Oq0dFk9PCmnpShdExGVxzT04eijge+/B2bOBP7wB/l2N94IfPBB+fe8aGnaoRPBD6Zlb+uHDXM/hgpetHR9069aiCcN0XLIELN8muBrIR7+xYCJaGnqtPQZHj5rFvDgg+ptVGnGdVp26eLPaekSHi671rrw8KFDxb+xdavvOS19OS1NB49ZcVqKYF2CXbuKnZbRtRU5Ldk6xdVpqRKbKu20ZM/p00/F29g6LX/72/D/f/2reH1MRUvuWU8sPNyHE3+llfzMaakqM5UQLU2vTZzwcJM5LfnteaLzcb2XoulXVLiEh/MvXUTuXN2CQHy9lIXw8CQX4rGpB0XiNC9asvdZ9gLGl9PSNjzc9Bn0PaflnDnFvwcMCOuyqJ+90krmafHpAuIpEmwEShHNzeLtXZyWqvBwVX3O10Eq0ZIfH0yeDDz3XPhsjhsHHHlkmN/bb1fP98y/BCKnJYmWREjw85/j6222QWHPPctFApnTMsmFeIYMAe69Nyy0G28M3HYbsN9+pds0NACnnQace27odlx77dLfVU5Lk/BwUSVpOihLQrSMqJTT0mQAqRMtfTstkwoP//zz4ufPPpNvxzb+LLzw4Pr2EjAXLUXhxDb8/vfi75N0WpqEh7uIlqL0unUDpkwBxo83y68KX05LvsPCCgR9+5anx4az6ua0tAkP9+HE5EnKaRnVS3Gclrbimuxa65yWQ4YA99wTPnN/+EPxxcKyZWbOBJGrIo5oeeGFwA47FP+2cVrKyIrTUgR7fnV18cLDXZ2WqhdllRYtTV7ixVmIJ/pbtxBPVB655yBz4eERF18MbLRR8k5L9txU9yrunJY6p6UubxE+F+JhEQl7Uf/eNapCJISqcAkP59t81tkdoRMt+TktsxAezs+FDJQ/n1tuCfzjH8Dqq3MJapyWNvXgGWcA55xT+nKQFy3ZsiErazZtjMzkAdg7LWtqQjFr4ED9MaM0fYSH89NO9O8fjrf//GfghBPM02JJMjzct9NSFh6uKlf8820jWur6ozIoPLwMEi0JAEDh1FPx+gknoO3uu8sLYiWclhdfXBrqddBBYePEUl8fVrinnw4ccUR5pWLjtJSJYjymlYbvOS1leTIJ2Vc5M9k0fDgt0wwP180bucMOwB57lH5n2tkzfYsp6zDzTksfoiU7sBN1+G3DnXj++lexG1G0EE+aTkuXOS1F96WmBthuu1C4UXHsserfAbNOYj4f1kGuomWfPuVp8k5LX+HhunotrmjJ7u8y0bvJnJbs36r8prl6OADss0/4Rv3ii4FVVin+Hg2u+HTZei1Kw4doucIKwMknlwoU1eC09CVa1tbGWz3cxmnJChHVLlqqBEceWZk0dVry+UkqPDzO9CE9ehSjL9IMD1e1uXHntDR1Wg4eXJ4Gi8+FeFhEAmP0XSVFS5PVw/lQaj6/unsXpVmp1cNFz6dItOTHjeecAxx+uLzPx3/WiZYigahHjzDa7rDDit+pREtZv82301KWHi9aAuE49+KL9ceM0oy7EA8vWkb3b489gL/8JRQwXVC9hDVdiEeG7zktZeHhqvaQL3Mq0dLmfpBoaQWJloSeSjgtRR0RVYdW9LvNnJaiSsZkTksZSTktv/++9O+sOS11oqVrpStLV3U/RG/9TQUT07eYskYr6fBwUfloanJf+Q+Qi6FpzGkp6oT7Dg83HbCaCMwmdV+PHqWDOB9OS9PVw20FqDjlWoZPp6UoPDztOS1dwsN52E52dO9Vc1qKXBWuoqXIZca2U7buXDa/pnnjMXFaxhHz+MF1JZyWque9GkRLG0TPXhA4i5bC8HDdC2fdHGHs/y6wL/aSXj1cNtcnT1pOS9YIICrrNk5LG7FR5EaMyrLrvdQ5HHl8hIeL5kG1dVpmITxcJFryRM+UrM8H2ImWoj60KDSdH3ux5abSTkt2+h8bd7POaWk73uQjEFhcXwKowsNNnZYy4qwezqMKD6+EaKnalkTLMki0JPSwnXq2oqm0aMnDVypxw8Mr7bQUnS+7eqUoPz7ntExi9XCfTkvV94D4rX+aTss0w8MbGtQLf5ggW1jA1+rhSc9pyX4nSk/U2RNhcg1NynfkfFWJlvxgnv1dFh4uGnzyiAQoVdnV1WtxRcu4c1ryTktRHZ7knJaq8HDZsUTPGdsmRfdeNaelyGmp65TL3PeiOeBsVg+XkaTT0md4eG1tuUCQxurhpk7LuAtQuJC0aNnaWiyvMtIMD/cxpyUbimo6p6UqisVHeHhac1qyc/BVek7LagkP552WtuHhfL2URng4k0fvoqWr01L0jEf7s7+5OC1txiW801LUZpqGh0foygIb0ix6+W4THg6UXiNR2LMLqvBw01BwVXi46De2P2XjtJSFh9uIlqrVw32KlrQQTwkkWhJ62MLKFpq0RUtdQx3Haem6eriMpMLDv/qq9O8knZb8OZi4XpIKD5ddd9XxXFZqZPeN8OG0jCMm8qKyqOMbPetxBqGyuTJ9Oi3562Uyp6VpeDh7z5J2Wpp0Ek1ES1Xopc5pCciff1F4uKruqianZSRYujotdSKKCJl4FsdpKRMtRU5LH+HhIpeZak5LF9HSVmCM8pLUQjx8GJyoPWDLJ1B6DknPaSkT2l0Hjrak4bRUuSwBc6elj/DwLDotKxUeHgTxnJay8PAkVg/PQni4qKyYhIf7clqmGR5uI1rK6pBKOS3Z9iiJOS35/jB7/jK3YYSraMm300A8pyUrWorEOBdU4eFZclqqwsNt57SUYXM/VGMJWoinDBItCT1soWErhCTntHRxWpqKloC/1cNlJOW0TEK0lL2hcnFaph0erhMt+YbFdJDG7qe6l5UKD+c7OVHjHUcclQ04qsFpyd9r2ZyWst9Ex1Uheo75cxCJlnydohItRXNa8o4ZU9FS9KKGRVcuXep6dh82/bhzWgJhmVQ5rFTnoxNRRLguxMNjEh7O1h0uC/HIrosuPJx3Wprec92cyTLYZzQppyWLbAoKldPSx+rhLuHhtisbu+Jb/BAJiro5MU3ntJT1U9JePTyL4eEuTkt2rmrT55XtU1dyIZ5crpjnLIeHJ+G0TFm0zMV1WspeVPOffYmW/LHYcuNjTku+TWL73Loxkg/RUtQncBUtRX3+uOHhcea0lF072fn5EC2TCA+3cb6qtqXw8DJItCT0sIWVLTRZDw9XLcTjGh5e6Tktk3RamoSH61wvaYeH285pWanw8GoQLaO0edKY0zKuaMnvL0rP1Gnp6j7i73GlnZZ8eHgc0TJL4eFAWCZVdZ+qnrFZWIRN24doKQoP59MVhYf7nNOSvf4qp6VpW+fqtGTzkZTTUna8iKyuHq7qu/jEt9OSL1umTkvJQgiZXD08TadlkquHs/07EwGlrq70OGkuxMMbEJqainVVWk5LWd+IJY05LdMID2fST3ROS9EcynHDw3mSWIiHvSa8aGna9/DptLQND4/qH1GdEtdpKSoDpgJlHNHSNDycX1iU5rSsKki0JPTInJZJipYqEUNGGuHhaTotRZ0Bfk5Lkw67q9PSZfXwpERLWbrsfeQ7LnHmtJSFUPJkxWnpIzw8SpuHFy1dO80i0dJXeLjJ22Kfc1qa7JeUaOnitKz28PDGxmw6LVXh4aJn2nUhnqTCwyvptDQRLSvttExzTsuOIFouXFj6d2urXXg4P6el7/DwuEIXUCpamobx83liBUOT8HCdGOgSHs6WfROnJb94jqhcJuW05AVG9m+foqUqOstl9XCR05LPbxZXD9eFh5tMWxCJsWmHh7PwTktfC/HIIkd07VVWRMuo/hHdO99zWtqEh8v6UryBJoJ3WormOufxGR7uw2lJoqUV6S1BRlQvbEH+8EPgtNOAUaOANdZI7pg+5rSMXEmigm4iWooqUFmF2Npamr+0nZZXXQXccw+w2mrl+6TptKxkeHh9fel1F3WgXcLDbTsEEb7mtBSJlvx5VYPTMsnwcBPRMotOS9WAXhYebiKo+wgP//FH4NBDgZ49gcMOk+9rkmZcpyUbDggA550H3HVX6TZs3ayqp1xEyySclmPHAiecYL8QT1KiJV+v7Lyz+jgRZ54Z7jtpEvD002b7ANlwWtbWFq/Hjz8C224LrL568XcfTsssh4f7Fi0XLCj9u60tO+HhuntpygoriNNUETc8XHefTJyW/IJZMtFSdm140XLs2PJtbBbisREbeTciW4/6DA/v2lX+vPpaPdw2PPzdd4Htty++EMiCaGnitIyeWdOFeGROvQgXp6XpQjy2TktVeLip05K97y7h4T7mtPTptJSFh8+eDRxxRPn2NnNayvqfvNPSpK/Ai5Y//VT8XAmnpS48nBbiKYFES0IPW6HuvXfo9nvyyXBAmxQuoiX/e319WAnxDZJoAC8afNg4LZctS0e0nDGjPD+LFgEnnhiew/PPl++jc8JEbqEsOy3Z+5PPi10XfMfdV3i46UT5LOwk94D9/Eks/LmKOr5RJz6uaCkqd3w4hWunudLh4T7ntBTRpw8wa1bx7wEDSo9n47Ssrwe6dxd/b+q0tAkPF5XLP/0J+O9/w8+8g8oEn05LoHRgcs015sfjcQkP97V6OO/uufRScZpJhofLRG/eaWnDn/9sv0/aTktZPcJe22eeCf9FuDot2XrY1GnJ3ouOIlrGnNPSa3g4+9zHES1XXLH42XSAz+fJdiEe3X0ymdOS7wfaOi27dNGfb1qrhyfltOzWDfj+e/H2Ji8tXJyWur7hzTeX/p2F8HD2u0o5Ldl944qWNuMSldNSN8ZZtKj42cZpyeJjIZ4kw8NNxUgbp6UMfo5dk0gPfjzD0rOnfD+b1cN9zWlJC/GUQeHhhB62sLLhyW++mdwxRRVnLgdccQWw4YbA44+X/85XwHV18s6e7zkt+UYjqfBwkZPhm2/MBQlZpScSVHinpcmbrKRWD5dNSK8KD48jWrrkiyUIgO++K/7NhpTZYuO0dB2E3nprMW2eNJyWqhBwVei47G/f4eFHHw3ssot6v113BXbfPRQrN98cOPzw0uOJnn/ZgL6pKeyQiRaSMpnTkheg2Hl7RIjqhUceKX6eMkW+r0ma7HmbPqMnnABssEHx2TQNo+OPx+PqtJRNreG6EI8MndOSbYP22QfYZhtg661L86RKS+W0TGvVasDcaanqqG+1lf3xHn887ENccYV+tWNXp6WpaMmeG9tejBgh38eGVVdV/550eHhbW3mfhYcdbCYZHs4L0KIXBjr++tfSaTtEZfz440NnnCxPfF1iMqdldF3uuSesE3l0LyttwsNNnZYiTPsGfDumgxf2khAtc7lidASP7LzSmNNSlBef/dhRo4Dnniv9jnVa6qaGYfPy1FPARhsBF11UFJRMnZa2oqXuhVKUvu/wcJXTUjdGYutH9vmzuZ+mEUMqoj5QGnNa6rbXfaeCd1qaiJa805LltNPk+9mEhyc1pyU5LclpSRgg61y4OFZMkVWcv/99+E+EKDxc1BiIXEemFajKaan62waV05K/5kEAfP21Oj0T0ZJviIHsrh7OhoHz37PECQ83fVMm2y4IQjE5Yvhws/RERNeMFR/4xjJOePhddwH77VdMm8fX6uGiN5Mm4eEmrmuf4eH8NXzgAWCPPcLPG20EvPGGeL9u3YAHH5Qf18ZpGblauncH5s8vzZtsIRUWUXi47ZyW7DWVzSmkIq7Tct99gb//vfi3jWiZ1pyWccLDZbDidpSGLDx82LBQyJgxo/hiRBeWbzqnZdKYOi1VHfX77wfOOSecHsX0eDvsEP6LUIknrquHm5wbUHpubDsumubFhalTgf795b+L2sNDDgEGDgQuvND+eKI5Ldn6S8SyZcUyJBoYRsQND+fv8/HHh+kff7w6fxG77gqceqo8fxH9+4eRSKefHk5jweeJ7xvaOC332Sf8t+qqwKefFrczcVqy9UKSTksTMVI0L7cKXmBMIjw8n1eLlqJzNwkP160ebjvfuU/RcvhwYNq08u914eEsbF623RZ47bXS35NyWppO9+A7PJy/pzbh4ewLHPaZjuu0tCXKo885LWXh4TJE29mOD9kybOq0bGkRH3vffYFx4+T7VSo8nHk2cuS0JKclYYCsgWSt7r5xqZBFoqWoU64LlYyotNPSVGDjF+fhkYmWbPqiilMUHq5705NUeLjMqaUKD4+zEI/p/VM5LaNBaH09MGiQWXoiRE5LnjgL8bDXJItzWrqIlj7Dw03DCmXXnj0eX3+onJZA+SDKdfVwF6elTNwyJa5oaTu4SzI83Neclj6cluy5iaZXkF2HLDstZWVHFx6ez5sP+mXPXRJOS/Z8TMPD2ZdcvkRL28ULgfB6ugpBokgQnWjJvkQQiJYB+9IHcA8PV73IMsF0/+g5k81FxtelPua0NBEt03JamlxT0RQ3KtIID/chWorCw3VOS9tr4TM8XFbfM+nnbERLEUk5Ldl9VU7LLM1pyfYVXIV3H07LiKyFh9uKcny/xzQ8XPeSXoSNaEkL8SQGiZaEHllhTlK0dOk085WKLDzcZIUxIJtOSxFffKH+XSZaso2tKL9JOC192NttwsP5RsW3aGnitFxxRf8L8fDEcVq6iJZpzGkpGvzxv0Uk6bTUua10v6nmR5W5/qL7yc+xww8+TVcPd1mIJ868b4B8YRzTZ4ffrpLh4UmsHi7DZk5L0fQK7HXXiZa+5rR0wcdCPDU16YmWNk7LOKJlz57F+XBF2JRLXR9CdE5xREsXpyXbzxDlJ7oHvp2WbNommO4vetnm6rSMzk3lQM3nzcRpH6uH6+oHG6elzbVPIzy8pkY+p51MtDQJD9fNaWkbKu/TaSm7dq5OSxH8M5Om0zKp1cNlZgmbOZjjOi19tNVJLMRjOsbzIVqy9Y2N0zJp0TIhpyWFh5NoSZgga5QqER6uwjQ8HPDvtOQFvqTmtBThKlqynQBRfpNwWvp4U8R2EmzDw33PaSk730WLwtVogTBsM85xbZyWLqIlm56sY+7DaSm6H2mGh5t29lydli6ipSo8HIjntPQZHu5CVp2WWVk9XEbSTkvZgnG2QkJcfCzEk1WnpYmLFCh1p0Si5ZAhanHbRPiO0JVh305L0ZyW7OqsIlROS6B0eg3Az5yWqu9kmO7vU7SMfhMNmCNqaswWqYzrtPQZHm7rLuTrTR/h4bZOS1G/QRceLnJa8vmtpGgp6wv5FC3TCA+P67S0EYPiOC1ZXEVL1ct327Kgeklki63T0mZ8rSI6B5s5LUV51D3HNnNa+lqIh++TkdOSREvCAFlFaFMwbfEhWqoW4nEVLbPotHQND0/CaZlUeDgLm2/b1cN9h0DKniN2frI0RMs4C/Gk5bSsdHi4aH5AESrR0rfT0jY83MZp6TM8XIXsesZdiIe/nroFC0ydlj5XDw8CO5HE1WmZVHg4OS3VfQ0fTkuTOS1/+KHYBvsSLU1eLslES9f2SrR6eJzwcKB4DnHDwyvptGTz5CM83Fa09OW0NAkPT2JOyySclrZzWpqIlvyzZ+K0rGR4uOzaMenX2CzEY3KMJMLDTee0TMJpabN6OIur8K6a5sjWtFDt4eGAvdPSV3i4rE4A/C3Ew9enJFqSaEkY4NudZoJLxcnnUzWnpUnlJqpU05jT0lRciXAVLXVOS9Hq4VkID5d1QkSdGtFbXpdnS5ZvmUg7b17x89Ch8UVLXXhtnPBwnZOQb+RF19UE2/DwqOyKykEcp6UOkfhtkoaJKJLmnJY24eFxnJYyMTFtp6UsLJrHpQ5SOf5s5tAzdVryC/HIBJCOMqdlR3NamoaHR+fGzmc5dKj6OUlDtKzUnJZJhofHdSaJtlW1TbKwPt/h4SYCoI85LSvptOTPny0fPsPDZaKlLK+6Z89kTsuMOy21ZN1pqZu7H0hv9XAWtt/kS7Ssq7MrD6L6v5oW4gHcnJYu/V1fTkv+WaU5La0g0ZLQEzdM0IWshocn7bRk3S6mYYwzZqh/Z8+DrdSTCA9PavVwFtkcNaZOS5dnS3YvTNzGrk7L6DkQva3niRMebuK0ZDsYroMEldNSdH2SmtNSRxaclqrwcPY4suePHxzpXtTEcVqaiJZZmtPSBdnb+eg3EUk5Ldnj+RQtO6vTUvWc68q+r/BwVrT06bS0dZUDfkXLSjgtO2N4uE4stAkPz6LTkt/WNbRWlgagd1qK8LF6eMbntNRSKael6ZyWWVo9PIKfH9bmfqrCw21FyyTCw9Oa05Lv+8RdPdzWaek6pyXfxtnMaUmiJYmWhAHV4rQ0DQ9PY/Vw3qVoCnutTUVLXUXmc07LLISHm64eLnP2uTxbzz4LHHMM8Ic/AB9+WPze5DlyFS2jfXix13d4uK3T0mQwLCLJOS11IqbsOxFZmNPSNDxcNl8c75rThYd3BKel6ZyWNsdk05PVXTZOy7RXD2frR5EDjJyWyTstTcLD+elEVM+JiVsXMCu/Sc9pedFFwH//q97H95yWWQwPP/tsYNas8LMuPHzuXOCvfwUmTzYPDxdtw+cprtPSRLQ0jcKwdVqqRMu0wsNFRPfnX/8CrrhCHJ3E18Gi8HCb/qGpm9U0LRE2+amU09J09XC2XNx/P3DJJWGd8/HHwFlnAe+9Z9dfePJJ4LLLin+z445HHgmPoUPk8jUlaadlmuHhX3wR1o1vvx1+Z3MfouuQltPSRrS0cVrSQjxWVECNIqqOSjgtXY7pOzxcVIEm7bRkz9t0MKbDdU5LUTpxF+JJe/VwX6LlLrsUP7/yCvDcc+FnE6fliiuWO1BMqK0tnl9aTkvRteEb+ThOS76RV4mWUb66dpX/FuEzPDzrTktTJ0taq4fL6qlqdFrW1YmvhYvTUlVOVbDTcMQVLTv6nJZpipauc1q6OC1V87faOC11yERLV3jR8okn9PuwQo9qEJ1EeHgSTktRhMBbbwETJgATJ+qdliecANx2W+l3JqKlrm2K67Ts0qW4uKCMpFYP59NMOzxcdozWVuCpp4CDDxb/zr90EZ23i9PS9ZxFaYlIy2nJR4MAyTotAeCkk8KFMq+7DvjuO+Dqq4FLL5XnX8QttxQ/8+kfe6x+/ziipcppKRLFVSSxerjNQjw77BCKx+ecU/qy1gS+P5P2nJauTkvb8HDZ1ECdFHJaEnqq1WkpCw83dVqKKpOk57Ts1q34+Re/ANZaKzyvDTZwSw9wd1qK0tE1SCqHqa/wcLbBV4WHy+a0lM1NddhhZsf/5BPx8WX07x/PackfR+W0jDunpYilS/2IlrZzWkbP53rrAVtuGW5z113hd3EW4lEhCt+K67SUiURA+SA/QjWnpcmzxHd2klw93MZpaTMfKn98m4V4TOuZYcNK/5aVn+bm9MLDRS8odHNayn63ndPS12DYhLhOy8jxrXsudMdQnXPSc1rKRMtu3YDddxfvYytaygQVoLS/EdHQAPTpU/79UUfpj+nyck43p6Wv8PAknJaiQassQuDRR8P/daIlL1gCZi/LVNuk5bQ0DQ/36bR0NTjwLwBNnJYTJpR+39IC3Hyz/Dgip2Xc8PDomRs/Pvz/ggvk2+rSzdKclrrwYhenJSBu0886KxQsgXARtDjjEpc+N//yMktOS9cXly7h4R9/XPpdHNEy7urhWRQt+fqUREsSLQkDqlW0jLt6OB+erRLt2IpH5crRwXaaamtD2/ysWfIBjAk+RUvdeekWwLggOKMAAJNGSURBVPDhtGQ7rLI5OgFxGLNIOJs4EZg9G/jd78yOzz47Jk7LHj3cyhDbWJmKlnFXDxexZElyoqXMadnYWNw2lwOeeSYsB/vtJ86zL6elSLjRua10v6lESxmq8HAXp6XP1cO32ab0bxOnJRvubPr88NdT51K0FS3vvRcYPbr0O1n5WbYsvfBwkWgpm9NSNHCTLUhUjU5LnWgJZNNpaXJugFy0BIAHHgCOO658H1PRMjqvW28FpkwRb9Oli9jRHOUhont34JprwnZy5MjS39hrJHsJoyKt8PC0nJaqaU0Au9XD+TQjfDstWeFfNaelrn4wfSklejmo257PS4RLf6RHj/JVuE1Ey5tuAr7/HhgxIvxbN44wWT3cxWkJhCHp338PnHKKelvT+o3FZ3i4qA8u+i0pp6VJnziOGOTS5/bhtJS9MLEpDyZzWp52GnD88aXfnXtu+X668PCBA4G//KX4d9w5LeOIlj4W4lFNk6Xq5/PXVxcefthhaJk2DVMuvxzBttuq89gJINGS0FOJ8HCXjohNeLiJaMmHbqoqVLYDGGflcL7TVFsL9O5tPlAREQTFBiJOeLjJ6uEqfImWrHhhuxCP6Lu6OqBfP/POB9vImIhQ3bsn77SMEx6uK9+LF/sLDzcVLUWT5PftW/w7qYV4RIOKuE5Lk4VzeEwX4pGRZHg4L2jInG5sB5JdDdtUGNM9Ezy24eHDhpUfQ1Z+li3zs3q4SVsqWmhH5Ejhj8F23kV50zktsyhaqtqM6DyyPqelzerh3boVy3wuBwwYUL6P6ZyW7LMzaJB4m1yuvI4RiZbRNv37i18OR5gMGnlMRcu44eGi+xdHOGPzxiKaO5bFZiGeiDTDw2X5Nlk9XBU5wecnzrWPGx4ePc/sdVWFh7Mvj9i+osm9Y6OPZHNamkSKRLDlul8/9bF1oeSVcFomsRCPak5Lk/5S2k7LJOe0tEnLJDy8T5/ya8+3D4A+PLxv39Jyy29nG4nH1zWmoqXMVKR7TmxWD7fRAHSi5cCBwHrrYcFKK8nrp04EiZaEnmp2WsrybhLSxzstVRViUqJlhOlAhYVtTEWiZRJOS93+aYaHizpsIlHKJLyKhW1kdJ3WxkZzoYlH5ojqSE5L2SBH97y7hIebOhRVaVWT0zKp8HC+A1tfL34msu607NHDTrT0ER5ugs5pKQoPZ7fViZYyEZ0XupNGN5cuUHmnpa7s+wgPD4KiaDl0qHzOtwiXOS1l5x4EdqKlKK24/UNe1OHxFR6eVaelLFyRRRSaGOFbtFQ5LXXXK8qXbjtbpyWfp7jh4SLR0sRpyeentdVuyiTT8HBVnWZTR+ucr7LfKhEeHmchHpXTUjSvJU81hYeLpoSJSGJOS1G/QPSiWue0bGiQv3wFzOekZPMFlJbFrISHq/r5fB51c1oSJZBoSeipFqelaE5L2/Dw1VYrfuZFy0o4LSNcnJbsuYs6/EnMaanbP83wcNmclrIOqKngZxMeHt3PuE5LPoyTx5fTUnR/edHSVdiI47Tk0YmWojxmwWlpWjfInJb5vJvT0md4uOjlgKjsiJyPNqKl7TMhcnaqEImWSYeHmyByVbNpxRUtZdNOVNJpKTtulpyWSYWHz5tXjOrgxcI4oqXJy5a2NrFo2dQURnhEsNuonJYqZPeYvYbVtnq4zZyWEaI2QCeaVIvTUrWwHp+fONfel9PSNjw8wtVpaRoerqrTbIV2F6elTX/V1H0rOmYaTktAX0eZvkwWkTWnZdzwcJMptVSiper+ie53REtLtsPDfc1pyT9rOqclUQKJloSeSjgtXQorn0/ZnJaqUMlhw4qNIx8eXkmnpS/RMumFeHT7V9pp6UO0ZM8jLdEyyYV4dHlbvLj0vvt0WkaNvspJIUInWkbH023DoxMtK+205NNT5cUmPDyO0zKfFz93IvHMJjzc9plwcVry99qn09K1w2kzp2Vc0ZLFRlD2gWnYXlbmtEwiPLxQAL7+uvi3T9GS3VeWh9ZWsWgJAL16Fb9jF+xxFS3Z6T1kZHn1cNvwcBvRUjfYzsLq4aYL8bB5kmHrtFS9wPLltKypkbv544iWrPlB1v+slGgZ12lp8qIrKaelrm5m0fWLeYOKDT6cljbjA5+ipYnTUtRnE4mWuvDwrIiWaawerurnk2gZi6oVLa+++moMHz4cjY2N2HTTTfHKK69It3333Xex1157Yfjw4cjlcrjsssvSy2hHoFqdlipXkqxyGzKk2KBkyWmpC40UNT460dJlTss4+HBa8iH/LqIl/zzbhocDxYZG12mNI1rKHFG+w8PZ9ESNsK/wcBunpW14uCqsMMLUaanaL67T0rQMqURLk46ZbXi4Tdl2ES19OC1twsN19UwuB3Tt6sdp6Ts8XFTWXcPD+ZVr2e14Kum0lJGG09J0UJ9UeLhoER5V3nyGh8uclkA4F3OEKoTbtM0RrVTO0xnDwwF9PyLN8HCVw96n0zKOaMm2N3Gclnx4uKz+k73oDgJ9WxOVnSj6QdTmiObjl2FTR7s6LW1ES5M8yI7pKzw8rtOSrd9sqdRCPJUMDxe1ubbh4fx2ra3VtXq4qr6wcVrqVg8nSqjKK3LPPffgxBNPxFlnnYXXX38d66+/PnbccUfMnj1buP3ixYsxYsQIXHDBBRgkm5CckFOtc1rKvlO5joYMKTYolXBa9uwp/l43UFljjfLvfDstXSbZZ/EhWjY0lD4bokF5RFJOS6D4/GTFaRknPNzEaelrTkvZSpK2ocAmLkoXp6Wo0+fTaWmKLDwcCFdR12EbHi4ql7LyLhItdeHhrNPS9Pnht/PptOzWTfwCw9RpaSJEu5YTkZMyqfBwlkrOaSmjWp2W7LF8i5am5+saHh65aNjv588vfubPx7RtM+ljiK5V9ExmMTw8LdEyC05Lk7rbxmkZ59qbzIerQiZaypA5LQH9vYsEMZkDN+nwcNP6jcW0n+4iWro4LUXzUpq8TI7ST9Jp6RKhkOXwcJMxk2t4OJsOv52t05Kva0xFS9mYTXcPbBbiUY0LecGUnJZWVKVo+fe//x1HHHEEJkyYgLXXXhvXXXcdunTpgptvvlm4/cYbb4yLLroI++23HxpMO3xEkWp1Wsq+a20FvvtOnAbvtGxpAZ5/PhRusuy0XHPN8grUt9PSh2gZ163JN3zPP1/8LHqjm5RoGTU0SYqWbLmbPl38fUSc8HBd+W5pAZ5+uvh3FpyWPGmFh8d1WpoS3U/W7RQxc6Z+f16AMlk9fMmSsDxF29mIliqn5dtvAzNmiPNlmn/Ar9MySstGtGTTN5mn1Ido6RoeHrVb7GBMJ1qm7bQ0qW/b2vROS9N6O805Ldk8qcr/smXALbcU/zYRLRcskKcn21cVcSJzWrLfs8d0DQ83EQZUzp+5c4H33y+vl154IZwXNMLGaenicGJRzWkpSpvPa0Sc8HCTSBFetFy6FPjf/4p/mzgtTcQZ04V4bOsaPk+mbbIMUb9MlY7KkW8qWsrEJpHrVNWPs2lXdAvxyO6BxABURlpOS9GLUZP6LQ3R0tbdCPhZiEdW99ikpXpJxB7PxGlZLeHhrqKlTXi4zXl8+638NxIty6iAhS4ezc3NeO2113Dqqae2f5fP5zF27FhMnTrV23GWLVuGZcxgZP7yN80tLS1oMZnHpMqIzkl0bvlcDmkXnZZo4GVBDqUPdEtLC2ryeStlvnXQINQ0NiIHIFiyBIUTT0TNVVehsPnmaLvtNsi6521LlqCwPL+5RYucC1Zb167t6bDk6uqUabYNGYJ89+7IMY6IoK4OUZXasmwZ0NCAmtbW9uvRVlvbfl/bFi/W3uOgpQVxhrSF5a6ZOG9KgoYGFIBiXl94of23tiAoOYe2IAD47xDWF+x5tESCThBI7y9Py+LFQEsLajXXpNCtG9os044IamqKaR9xRDHNXA5tLS0l6bXU1gItLcjl89bPXgsjaNXI7s8ZZ7R/bAsCBG1t9sdpa0OuUCjZrwCE16dQKDmfQkND+L2Cku2XXxOWWvb6Ibz3UdmS3YugpgatXF5aGJdiPp+XlpNWhGWEx6X+bK2ra0+rJC8tLaj58UdtGWoNAuSYZ7+1pQW5Zcuk+WhraUFu3Djkn3oKbUccgcLVV6OmpUV4HLbeAIBCPo9cfX1ZOSi0tqLw4IOo/eUv278L8nkUuDIpIqitRavgWtbm88hJRImgra19H1ne27ft0gWtLS1l96ZQVyfcL1i6FIWWlvZtg7o65DQhZW1BIKzLdfVAgcl79FznmPIWtLW1X2v2GLW1tWG71dqK4NBDkb/zTgQDBhS3zeVQaGlBLgiEZbelUEC+UEitrS/k8yVlVnRdgkIBAdNmlfxWUxPe7+Zmo7q1RSLc1+Ry0meF7YeIrluhuVm4b2suV1IXSPPH9GMBoGXQoJI85gVlpe2nn4zuUZDPF8uQpP1pa24GunUrSa8lnwdaWlDTs2f7uQWtrcWyxfWpguXPnTY/QaDdLnpGgWJftKQdXHttcdqjRqH13XeBmhrUFgrC4/DPG4Cy9kiZN6CsPIv2j54zYdpbbilMO+pPAOJnpS2fLzl2LXMto/OqqamRP8fL+0LtaT/0UOnvy+85UN6PjmgtFJDT1A+thQKClpaytrcsP8vbVNM+UStX9lqAYjlpa7PuW0X97Frm2Q1yObRK8hT9FsFe64KurVmyJKyXozaN61+05nLI82VK0J5GFIKg7DmW9meWC07StJh+E5tG8MMPZmVa0k6z1ARBybmV1KlMGWlrbQ3bp+bmsucvyOfRhtLnsuSecNe0/VgtLWE/XVNHFRYvdh6XtAHI19QgZ2HqaKuvL61LJPmXHa8gqV8KNTXIceMbZVo1NeV9FK48tQIlfUkAaKmpKctvUCigtaVFOoYo1NUhYOqP1paW0jK9eDFqmb6Njqj9b2+PCgW0Llmirc8LS5eK+7UIr6t0jM/1FVsLBeS5Z9s3UT2p0mc6AjbnVXWi5Zw5c9DW1oaBAweWfD9w4EB88MEH3o5z/vnn45xzzin7/oknnkAXWxdQFTFp0qSy74a//z7WTzkfk596Csv69LHaZ8Cbb2IM8/fEiROx3rffYmWLNJ77/HNssGwZegPILVmCmquuAgDkX3wRk598Ej+X7Dfj00/xxsSJAIBBr7yCTa1yXuTNzz7DN8vTYen+5Zf4mWK/9+bPx4imJnRlRMuFS5ci8mk98dhjaO3WDVt+/z36Lv/u42++wZrLP3/+3ntYVZJ2kMshFwRYtGABDGalkjJ3zhwUamsxIEYai9va8M1nn0EQDI8PPv4Y6zB/f/r552htagI7zHnvgw8wYulSdGW+e+aFF7Dos8+QX7YMuxrm46nHH8eSAQOwy+LFys7Glz/+iLcnTkTDvHnYyTDtiHnLn0Oer2bMwFsTJ2KDsWOx0pNPYsGKK2LKE08AAIa89x5GWR7nyaeeQvPyaQk2mT0bgzXbf/r55/h4/fWxy3IBad4qq6DXp59qj/PEk0+i67ffYlvmu+/nzMFLEyeiadYs7MB8P2PuXLwuKAcsuzOfZ82Zg1e47XfhOoKfffEF3lu+DbtvwAhhi5cuxbNTpmBn5vcpzzyDpcvronW+/FJaTp6bOhXzBaHbI7/5BiOUZ1LO82+8gZ+Wu5u2WGcd9Hv3XXy36aZ4ZeJE9Bk7FltNnqzc/+Vp09CPKSevvPQS+rz/fnt55/ngjTew1nPPAQCWPvQQnhw3DlvNmQNRDfzuJ59gPebv2d9/j65MXRMxd9Ys9GMESwBY2tKCj957T9uetCGsv3nG1dejViIWtjU3t++z8bffYgVF+gtaW/HUxIkY+fXXJfdmzrx5wvqpddEifPLhh1hr+d8tAHSe5unvvYcvBeew5t57Y4377pPu98N336H/8s/fzp6N1yZORL/p07HF8u+WLV6MKDjrnXffxRfLjzF22TJ0jX6/804AQI5xzETP/4rTp2O04LhPPP00hr3/PkYqzmlx//7o8v33ii3M+fLbb/E2c312F2zTsnQpFs2dK6wHlzY344mJE4G2NvzcIF8TH3tM6IxYf8YMDJfs8+wLL2DhF18AAPq++y54yWn+Dz+gl2C/krogCITnxrO0Z09M+uQTFJiFeYYLysqLI0Zgi3we+UIBn+66K1Z5+GFheouWLsXk5dc339wsbNs++fBDFGpq2p9rAJjywgtY+v776Lrlltj+nnuQKxTw8sEHY9bytEb98ANYP+iCJUsgiQ8p4a0DDsAG116r3Gbq0qX4gSszCxct0qaf++wzPHPzzVi04orYYdEiiCaSmDd/Pp7j0u7/xhvY3CDvAPDJZ5/hA27/Pu++i6247Z5+4QUs/uQTDJk+3bgtfuqJJ7Bk+ZhG9Kx8OWMGpjPH3mb+/Pbnbt6CBXhu4kRstXChsL4GgEcnTULt4sXYRfDbkr59MWnaNATLnUQ9P/mkpI0GgGU9euCJ2bOxxhdfYHXFebz08sv4YfFi7NjSAkEAaTsTn3gCyOex7fDh6Lm8fKl44aWXMGiffbDGvfdiac+eeOKrrxBE0VKFglH5Ynnvm2/w2cSJ2Gbx4vbrOH/hQjw9cSLW/cUvsMojj5RsP3/RIjzNXP9N585FNNHYnG+/VfZpo75FS6GARydORMOPP5b0BadOm4a1589v75cDwI+LF0vv5czvv8er3HMoO//m1lYEgPRe/Pjjj3he0Cd6f8wYrPXpp8hpFt5c1taGxzX9tA2/+w7DmL+nPP00lvbrBwAYNn06Nlz+/TvTp+OLiRPR7+2329u6iEIuh6nTppWUtfltbSX3ZLfl4xSWx594Am0NDdh22TJIJt4CAMz45BMMVZ6FnHc//BBrS14Eyvjo66/xEXvdDNsIoFgPrfDOO9iY+23m3LnoyY1vVHz25ZftfeKI2sWLMY75++3p09E0Z05JG/H01KllY+HmpUvx2MSJ2HTWLIgm4ft69mzMe/fd9vbs7bfewkbM789OmYKtly0zFm8XLlmCKRMnYssFC9rLztvTprWnGQieBwCY9c03wjHOux9+iM8nTpTeh/c+/rikbzR9+nT0+eYbrGSYXxeeevZZLGF0LZE+0xFYzE/FpyKoMmbMmBEACF588cWS708++eRgk0020e6/0korBZdeeql2u6VLlwY//fRT+7+vv/46ABDMmTMnaG5u7nD/Fi1aFDz44IPBokWLyn5rufba5e9p0/vX/M031ufQ8thjpWk0NwetxxyjPE5h6NDSfWbODNq22Uacp+nTpem07btvez5ar7jC+bxb7r9ffH4ffKDe7847g7Yttyw9t5EjS86rubk5aNtss/bvWs87r/j5iCPk16hLl/D/lVaKdU/bttgiaNtuu1hpFNZYI2j985+Fv7X+7W+lf//pTyXnGABB66WXBoVVVim9rx99FF7jxYvNn8933w2am5uDQlOTcrvWk08O05450/56jR0rTvPII8M0584NWm6/PWj+8stiGbj9duvjNM+a1b5/2y9+od2+9dRTw+3ffjto+c9/gpZ//MPsOHPnBs2vvFJ6jjvtFKb16aelx/j1r7XlvSSdX/6y7PdCr16laZ50knDfQkND8fOqq5bdq+avvy6W7ZNOkp/f668L89l67LH29+S994ppfPtt0PKvfwXNs2eHfy9bFrT8+9/K/VsmTQpaTz21+PfEiUHrn/4kv6fMb4W6uqB56dKgbaONxNtefXXptf/FL4LCeuuVP79bbFH2XWHYsKD1qqu051/o0UN4LQv9+5fm5ZJLgsKIEe33sf053nVXddnaaCNh+9C2yy7i/NTXB62nn178e8AA7Tm0XHed+NmdPz9ovfJKed622qr4eb/9wnL95JPCY7dcc03x2iyv1wp9+4rv2/K6qOWuu8TP3OLFQeull6qv2447Bi1Tpwatf/+79TNdlp/f/U5antvPtVcv6XNYGDasuP8nnwift/Zta2ul9UjrkUdK94vq+ebm5qDl6afL0117bfF+b7xR+tzW1mqvR0mZj/ImKCvNn3wSNL/yStDy4INB88svy8959dWLaUnattY//jFoveSS0vS/+654zi+8ELQ8/HDQvGxZsWyNH196nA020JeF++4Lmt9+W/08/N//lRwn6pO2rbuu0fPU/P774bUePFj87G6+eXmf8dFHzZ/XM84o31/wTDR/9ln42223GafN3nvhsY8/vvR52nDD4nmNGRPeF8Xz37xsWdA8Z474t6j/E/3j2ujWk05qv7atp5yivs9PPhnmb8gQ9flGx/r666Dt8MP11+eVV4LmBQuClrvuCpo//FDZFzD513LjjeE123jjkue4ubk5aJ43L2j9y19Kn/H11is5XttuuxWv/7bbGh2z0L9/uP+MGaV5efbZkjo/AIK2rbeWpiPq60iPOXBgUBg0SJ7WVlsJ02i5/fag+aWXgjZN2S4MGaLtp7UdfHDpvfz882L5YfqOrVdeKS2ThS5dgpYXXijN+847a+vY5p9+CvMgaUPa09L0F1T/Wq+6Kih07Wq3z9/+5vwMR/VQy4MPlp/H/vu394eM0vrTn8rv2dy5pc/CTTcFrWefXXYPy+5Rnz7htd55Z/GxfvOboOWaa4rpXn99aZqvv251HQtrrRUejyk7bPqytNp22EGcv+XPn/RaceP6lhtuCNomTHB+bsrOR1DWmj/9tKQtFOkzHeHfnDlzAgDBTz/9pNXmqs5p2a9fP9TU1GAW52iZNWuW10V2GhoahPNf1tXVoc5ltbAqQXh+LvPkxc1HQ4P9qmzc5MB1dXXqvO+3H3IffABEzoamJtQNGCCdO61OMU9avqUF+Si/svkyDajt00d83rK5LqP9hg8Hhpa+K8wxz29dTU2YbjTXRi6Hmq7F93E1ilDHXH09sHgxcjHno8xHVXEMco2NqJHc0xruutXU1pZdyxrBnC91TU3iFRwV1AHhPpo5LWt69w6P6eDOzvfqJU6zvj5Ms3dvYPz40h8djlPX2KhfPIA9fm1tePyRI8N/y11d2uM0NJTNhZPP58Nyw5Xdmq5dy+6ninxdXbH8tSdSep/brxtHrr6+fV7CXG1tmE8+39F+ivqk/Tnicag/6/r2LaY1eDBw4IGlG+yk9u3WcvVnbU2NsuzVzJ3b/jnX0oK6H3+UzstTwz1j+dpa4TnmBfVlLp83uq+5mhpxO8tNYF8zYQJwxx3hPq2txX009Uy+a9fweeGOkZfMeZ1rbi4JDcrJ5t5jzrlWkD6A8LsDDwR+/3tx3pjr3v5cM+mwYWglx1j+vMvq6fbnX3SOdXXh86upA/N1dchvthnQpw9w4onKbXXIymOUHywPi5dNB5DL54v3e5VVgAMOKJkupGTb2lp5v03xPJaUfcHiA7KQwLouXcpXEFeFD+64I+rWWqv8e0He6pqagI2Xe2zeekuaZMk5S+5rDRC2I2z63boVj7u5wIfIXYecQf1Wu8su6rm7ANTstZewbc8Ztst1hUKYb8nzkq+pKW8jLOpm4fMquz+6vie/jyQt6bGZ+i1fWyusy4o716Cuvl7cN+jfH3WrrVb6HV/Hjh+PmjWXe/Q1dXdtfb1+Xj32uRwyJOzD3HSTMt26xsZw8bT99lNuZ0pt795l9yiH5WOGnj3DPJ1+evE3vj1i9ssbzofYngZX/9YK6t18tKCK4FkWPseyY2rmtGzvf3HU1tcDm26Ktn32Ad58U56+ql5tT6z03ErqVGbfmqhvIMhvLp9HLVfv5IcOLc17bW1ZHVsXPY+asphftEh9Dgpq6uut5x6s6dbNqn/LH6+mrk4433k+WmDQNK3GxvJ8cNeK70sCy9sIjlyhoHwWarjnvJbrp9QB4jZy3LjS+Xej40XliU2T2T/X1AQI7mteEoqs7I8AqOHLre38oRpy48aVlbWSsRk6rv5kc05VtxBPfX09Ro0ahclMeFyhUMDkyZMxZswYxZ6EM9W8ergq7/X1pb8PGRKGj8lWqVUtVsP+xq4GaovrQjxDhpRP4q9aiKemprTzJGu02Yo5i6uHs/ANiO3q4bmc+bPe3Gy2sFCchXgkoqWyoUxi9XAe1WqQKlQL8fB50K0UzWOyEI8sn2w50S3Ek9bq4ZqXFNp7xi90oFs9nJ94/5tv/C3Ew2K6EI/s/PjnoqGhuK3NQjxROjYLILAvdkT5479TlQvVcUQL7bDXzGb1cBbVQjzR9dDdG9kKuC7o2mZA3WaoVhS2OVYSq4fbLlbDt92i44vyobpfslV6WdraQpGGRbdYJf/smgw4BC8Qy5DUeYHpsxaVz6RWDxdt67J6uAj2ORLlk792bJnQrR6uWqhHdE9Ui86YLsRjs2Cd6QJ5PhH1y9hrqus7sPuZCl42q4fX1MjP2efq4bJ6ITpG3H4Im5bomHwfhf2fJTJdsPB1pigvpgvxmC5uJsLHQjw2RMcS9ZGbmuzyolr4jP2bf05Uq4fLXhjzC/HwbWdrq7jult07UX+GHYfLrnEaq4e70FUQ1E8L8ZRRdU5LADjxxBNxyCGHYPTo0dhkk01w2WWXYdGiRZgwYQIA4OCDD8aKK66I888/H0C4eM97773X/nnGjBl488030a1bN6y6qmyGMqKdal49XNWo1tWFq4JHRI2grLKrpGipEnHy+dCNlYRoWV9fvBdZXD2cxUSgVImWgN4RE7F8gm8t0f10eTvmIlq6HMe2fLuKlrL7IcqDbadOVM5NVw9nO0WiwULaq4fL3HD8NipsVw/n5wNMSrQUPQMiZNeZfy4aGkq3LRTC9HX1jO3q4UDpCqMy0ZLtEPsQLUUrzrqKllGeRdc2uh6moqWPzrpOtFy0KDwX2fmo6nGbYyUhWvLH09UBNqIlm5bqGTMpZ6LVw3V55esek/pN5QSMkPV9TNuXqA+W1OrhpqIn53w2gi3z9fXlqxmnKVry29mIltHvqu1U7avpPnGJhHq+7ZAdT/WCxFS0lL00EkX51NSE34nqF1vR0qWOWP59IHDzleAiWspepkRil+nq4XydGedlfhzRUvSiW4ftS3n+eIC4j9yli11eTPrNomfIZfXwxka1aClbPVzhIC/5HzATLWXjeJ+rh7sgyi+JlmVUpWi577774vvvv8eZZ56JmTNnYoMNNsBjjz3WvjjPV199hTxTyL799ltsuOGG7X9ffPHFuPjii7HNNtvg6aefTjv71Ue1OC1N3C8s9fXAzJnFvwcvn543rtOSmUjfGlnHXREugsGDw/NM02lZX68NjS7Dl9PS9A20qLEVdTDYZ8TGaWly/tH91DU+ouvZEZ2WfCMvc2b4cFqaDo7YayZ6a56207JHD31nKHq2VS409jyCQC3GxxEtRS4IQO60NHleTJ2WvMjc1qa+LhFRB1HkepHBvuAyGezbDNxZRK4r9nkQOTHZbTuC0zK6vllyWooGY1l2WprUO21t5X0O3TNg67SMXqDo2hlByGH7/iboRMu0nJYuZYR9jkSiJX/t2DJuKlpG94CtP0yclqYieXQMURqy9HTb2mxjg6hfJrqmEUk6LWtr7ZyWNkKJTrTUOS15FzaPT6elTrTkj2XjtNTVUXGdlrbPZxzRUue0tMmLidNSFB0jOobKKQuUG074trO5WdzG2jgt2WgY2TV2dVomLVqS09KIqhQtAeCYY47BMcccI/yNFyKHDx+OIOZcep2aanFaiioQ3cCImcsN0ZyocZyWQZCM0zKXC/O1cGH5b1Hjzc1paSVaylbvYp2WbKeua9fKiZZJhYcD5k5FW9FSNGBgaWgoT0/WYWRWiC/DRbS0LWs+nZayQY6t0zJOeDjvtFSJlmk4LXUhWWy6qg6YTXh4mk5Lk46e7F7p3ka3tZXO3SvDJTycFRJMBvu6waLsxY/IaZm18PA0nJZAOk5LU3E5SdGSb7tVeWPPxTQ8XIZItNRhe25RflXbde9uHkEhI+qDmT4vNmkD4nIjuv5xw8NFdRB/7VxEy+gzW7+YvOhnj60r9yaiZRacltEzz94jldPSVrQU9fVErnlAHh4uu582z5VmTkttmUsiPNzFaSl6McrXmarymbTT0nZcEyc8XOW09BEezpdxUZ9NdAzb8HC+7yMbX2clPLwSoqWPl8MdDLoihJ5KOC1dOimiytJkYBQRiZayNzSKxWraK8u5c9Xb6VCFhcryFYmWaYaHiypYHWmHh4s6bL5ES9vwcF3aooZZ5rRULfRkGx4ueouqIw3RMok5LWV1Cj+npWrA4iKMJCVaqu61bXj4jz+W/q0SLfln1Ua0NHVayjq+oudC5JZxFS1V11QXHm47GJd1xnVOS5loGeVJdt9UoqXMecqTttOyra06nZZJhoez+U0iPFwH/9yahpOrypYqD0mGh2fRaSm6Tj7Cw0Xp+J7TMvq9WpyWPkRL0Qt/0fMsm54j6TktXZyWy4+d6fDwFVfU58XUaSkyg5iiMiPISMppmVZ4uAhdeLhuTkvfoiV/faJzlR3HZJ54Ft+ipa5vSwAg0ZIwQVdwfBbcCJdBUdKipYnTknVZqt6muZyfLL1owDNgQOn3PpyW7Gp+7GDZ5U1hJcLDRW8IVYPdpJyWurRFYrXMaakSLW2dli6NYpzwcNm+aYSHm4jdOqeli/gh+l71csKXaGkTHs6jEi3544oGFIB4f9MOsKyeMBUtTcPDbZyW7MAmbni4LA1AHP4tG1yz9ZuuLFeT05I9X50Ia5JeRwoPN3VauoaH67AND48rWtqEh6tezsQNDzd9MRbdE5u0f/hBvZCQSrSMjuNLtFQJ7qbnZOO0NEnT9+A9eukuCw/X9XHYayKqF0R9N5nTUhYeLrufPsPDdX0iH6KlbEog/nPUn5bN48kfi8+b6hnR9YvjjEtqaswMDCw+5rRMaiEeUSi4yTNnEh7OpsObe2RmH9m9E9V7bBr8GDXaztdCPD5dkI2NZmMYgkRLwgBdw6RbNMKFNERLvhLyER7OipYrryzfnn9LaILOaal6Q54Vp2UWw8NNRSmW5mZ7p6UqbVEZkjktv/1Wno6taOniovYpWqYZHm4yR5Ru/h6XToToGvfuLd8+CaelLjyc5+uvxWKRyBVi67TUzaMV5VeELjw8ynMS4eGTJxc/mzgtdeVCdixdeLjsGGmKlkk7Ldn0Zc+tr/DwSouW3brZLULD5tdHeLhtW267EE+0vWo7lThi+qzNmwdsuKF8UJqG09LGlciy995A377A3XeL6y7+2rmKliYO4DhOyyhfqu2y4LQU9TtcnZYiRM+zrO7M8urhurrBp9PylFOAHXcE9tmnPA2ViKvKi2l4eBxcnJam/VtVv1a0gndS4eGmL5qDwNxpefHFpb/LREtfC/FE6WRx9XDZfSPRsgwSLQk9uoKTFdFypZWKnzfeOPxf57TcYYfi3+utF/4fx2k5a1bxO37OFbbh/PnPxflRIcvX2msXP7NCF3vuUYcsalxra+2dlmynTjZpvgpf4eGmnTmT8HBeRLEJDzdxWrJv3H05LX/3O3k6LuHhLCZz/5rMbyOjkuHh7N+yzrhIVGP/VtUnso6oKG8yQRrQT35vkhfT8PC+fcX7f/ONeHu2PoiQOS1FdYoqPFz0koVH9Fyw9WZUJnV11Y47FvMjy4MKH07LSomWoucmC6uHjxhR/MyWj+g51C0GkLRoKXoJqVupPUL1XA0ebHZ/gfI2LW54+G67lR7bRMDkn9uBA0vPVxa2qXphoepPmLYvf/878NZb8t/jOllE2/Lnw8+PbMPixcB114kFEF6gSNNpaSNaRv0HG6elyXVKaooq0/Bwm7oGEL+EkDktRaJlba3dnJa77178zPctXObzjb5nX66qQt5VyPp8ALDCCqW/PfGEPA22bhLVxary6dMVJzqurdPSVLRUvVTI58vrBR/h4TyiiDUZOtFSlTdbp+X48eH/7H1n5yblXxxE9VgWVw9vahKnRaJlGSRaEnqqxWnZrx9w773Ab34D3Hdf+J1OtLz+euDII8P9lq8+7yRaRhUuO1DnxYfLLgsFp5tvBtZZp/S3ww8HXn1Vnj5Qfp2bmoCzzwZ22qn43QsvhGk99pj4LXLUIa6rK01P1WDYii4yknZa8t8Hgdhtpxrou4aHd+8OHHVU6TZ9+5Z2KlRpizoxomv8hz8Axx4rT8e2c5+m01K1L99g24qWJg0++/dLLwG//jUwaZI6f7o0gfA+PfywvB4UXWOVs8iH07K2Vh0evu++wC23AKNGifdvbhYv+CQLZRN1LGfOLP9O9dbeVbRkr2XUaY3EpFwOePHF8F7fdx9w3HHAVVcBY8YU88Ni6sgwWcDCNTxcN6el7BjV7rR8/PGwLf7vf0sHqNH10F3fpEXL/v2Be+4BdtlFvn0Efx1Vx1e1pTq3uGt4+M9+Bvz1r8Avfxn+/fTTYb/huefk+0TwZaR//7Au+cUvgAMPBC65pPR39jmXXQfVIF52HquuWpreRx/J0wDiOy1NXoyx9ZNLGZk3TyyE80JwkqKlSqAzdVqqnr0knJbPPx+6VXnOPBO49daw333//eEzPnVq8Xf2fFxXDxchevEoe+Fj06aK9geAG24AjjkGuOkmYN11i98XCuq+hq5dqa/HS6efjsJhhwGPPFK+XVyn5ZZbAocdZpZGQwPw0ENhW/7442Z5ic4vrllCRW1tuVC3887qet20j6d70cLXmz5WDxcdz7Qui9yWIninJY+N0/Lss4EJE4r5i/jyy+Ln4cNL99HNaZmEaPmvfwGnnx4+DypkYnOSYnuVktDrK6JDUQmnpesbjL33Lu286MLDhw8PhUuWOOHh7GINfMM0bFhR2Lr00tLf/vEPedoR/HW+4IJyAWvttYtp3X138fuoM8kOAE3uGxsezsKfW12d/m1joRD/zZRNeHihoHda2nZGI/iFeA45BLjyyrBjHLlt+XnKbF16/DX+1a/KQyp44oqWLis7+3Ba8sRZXVF2LPbvddcFbrwx/GziLo0QXd9//CMcsMsQ1Z9duoTnLjp2GuHh114buij+9z+zY7HHFF1X0QBLdG4qtxWbho1oyV6vSGhlB88jRxbv9a9+VZ4fljhOS9tyYeO0NHlRY9rplj2PQGWdlquuWmyLL7+8+D3bZokEXVl6pr+p7hN/jH32AbbYQj4HpQxfi9DY1Neq87rkEmCDDYp/b7NN+M8EUZjcgQeG/wDgnXfk2/P3MMJl/u/Ro4FzzwX23z/8m68z8nm1e06Vtmk+fIuW8+eLnZb885ZkeHgWnZa6bbbYAlh//aJZAQhfzJ1zTvj5kEPC/yORXpSuz/BwldOSp65OLOTK6gzRPRgwIOx/AqFQEhEEbotcMd/PGj0abbvsgvxPP5VvF9dpmcsB558fGjlURNdut93Cf6ptRMdKUrTkj3vEEaGIfNNNocAqQjdXaIRuoRy+P2TrtDTp79g4LVUL5zU0yCP6AHOn5WmnAWedVfxbJlqykRtA/PBwW9Fy+PBimwiEfc///Ee8rchp6Xuhnw4CybiEnko4LX1hsxBPRJzwcLZS5humuNeJ319XyYpCX6IBA++0lCESKQBxWIKOtMPDTURLvlFwdVpG+33/ffE7fnoAW6cl/+yaiFm2oqVL+EEc0VIVes1i67QUCWQ6l5ILLgNfWYiPaE4iwFy0jBMeHj2Ltotw2ISHi1A5LdnzkdUTojqbdbVEomW0v61z1tRpaTqBvW0agHghnrSclqbPchJOSxY2/aw4LU22l6EqH6rpIHR1mGt4eJxwW76M6O6DSjSLcBEtGxrUfRgT57NvpyV7Hq6ipaju40VL0aIxSTkt2brHh2hp60jXpSdLx1ZQc12IR4RNKLWt09KmTSsU1G28rF0RfS86blynJWDWBzF5RlR5sZ1z0gb+uFGdJMtz167mbYhuzlm+n+xjTkseG9EyCaelrr1hr8ecOeH/ffqUt6vRucry51u05J9rVfoi0ZJCw4WQaEno0RWeJCc5jovOaSnCxWnZ2hpW2CqnpW/RUtc4+RAtZU5LUai6jrQX4pGJlux2/O+uomVUBtjz4wcatqIl34glIVpWOjw8jtOSF+V4TB0dstUsRZgsXGDye02N/BxN54uNs3q4q2jJh50DdqKlKtRI5nrhj8Wjc1rq8sMSJzzcdq5X33Na6sqyz/DwpFcPZ/MoEy3TntPSJC2X4yfltLQRjmzQraKqci+nKVqa1P/V4LSsqyt/AS4KZU5qTksWXbk3qXeTcFq6pivqI/Pfi/726bTM5eKHh8vyVijYvRRRHcOXaMmn3dCg7z/EFbaTFC3540Z1kuw+2fS5dE5LUXi4Tb1jcv98hoer0pGNr0XOfj5/PEOG2C8YZyta6sRc/j6rzl3kkCXRUgiJloSeanZaqhpDn07L6HdWtEzaaekiWsoW4pFhKlqaOi3TnNOyrS298HDRcxZXtHR5I511p6XpviYiuE60jJNPGT6dlrJzNF3NN054eJQnX05L0+dI1dGTDSBZRMcRiZauTktT8TVJ0VIUAm1S58VxWtqGh6fptIyehayIlr6dlpUID/fptNTN31kp0TINp6VqLmYXYb+lpbzu69OnfDtRKLOLaKkTRWx+A4rtsM2z50u0dOnLmbwoE6WtaydsF60RiZY24eGytFydlqbH9eG0zOX0/RCT+6+qG7PktDRdaFGUNqB2WmY9PDxpp2XEkCH2ZVb3LNuuHk5Oy0Qg0ZLQU4k5LX2RVnh49Hua4eG2oiUbIho3PFzntBQ1EJUIDxcJCSrRMq7TkiXunJZ83k0ceLqG12ROqwjTTnMSTksfoqWL80KH7SBPdlyV09JUtHQND2edHWmLlqq39rzIqtsmQiVa2kyhAaQ7p6XsWCJBwiSMz0d4eBadlrLtbUSKSjstfYmWvsLD49SFtoPIuOHhsrzqREudI1SVtggT0ZM9D9ncabb07Vv+na85LU3rO/5YMqrZaanqm9q8IAHsnJai3+KEh7N5c53TUlS/i74zqQtNXubp+iEuTsu0RMtqdlpWw0I8ttORAOVTcwH6c610eDg5LY0g0ZLQU81Oy7TCw6PfsxweznbK6urkc+qxyFYP14mWonP14bRsbIwXHs43wK6iRUuLvWipSlt0L1zEQV1Z5RtzVcMoKwfVIlqm5bS07exE+8jO0XQRItvwcPaFRYRLeLhogGXjtDRxDfoKD7cVlOPMNeXLaSnKT2dYPZzFRCz05bS0Ff5cBhNZCw+Pc/904XppOi1VfRjf4eEm+7N1uq6/aIpP0dIkPFyFqdPSZmoCFxelCN1zqEvXxmnpc05LwG94eNadlroXj6bHtslL0quHs+iclnFFS5XT0nb1cNP7l8aclrL60tVpabtege662S6UYyNaRgtzsvjoY3VA6KoQejqqaFnJ8HCbFYtF+wP2oiX7trG2Nvyna4xMnZb84CEp0dImPDzJ1cObm/2Fh8uEYRc3ky7//fqZby8rB3EaV1Mh0fYNfloL8fhyWubz6YeHs1NDRPhyWpqWGz5ffDoRvsLDTYU8VfoiTBbiqSbRMhKNTF08urrJpO4ip2VIHKela3h4HGwHkR0lPNzWaSlzDtmiCw+vNtHSxi2sS4vFJbzSNTw8Daela3g4P6elL6dlJUVLF6dtZ3BaZm0hnrY2+RQR9fXqdNixsyqPpnNa8mOCuHNaJilaUni4MSRaEnooPDzENjw8aaelTegjP6ddXV1YSeryZDqnJb+NTLRMMzzcZE5LX6uHxwkPl52Ty6BT90z06mW+vczFkobT0gTb8PCknJY2gwg2HdlA3dRpqRNp2Otzzz3AO++En+M4LU3DwwcMEO+vCjUyCdWzdVpWUrTUpWU6YGD/l/1ucrzod9FzY+u01L18MhFk44qWvpyWqheIouvhMphIak5L1/DwONjOaVmp8PA0nJaqOS19OS35F42Av/BwWwHeR3i4rdPSdf5VW0FN1Te1FS15w4JuH1FdVsnVw02P60u01M3z6OK0zOqcljZ9Ll1kD19vykwmMnyHh2+4IfDqq+FnkcinSufOO8XfuzoteeI6LUX9XlX54Z9p1bnTQjzGkGhJ6NE1TD5WDx89On4aIlzCw7t3F1cwujfnNk7LESOKn9dYQ52uaH/A3mkpcgb6Ei35Clo2p2VHWT2cDw8X7cc75mRpy0TLXA5Yb73i3+wzI0O0EiXL6quX/s2XD/Z4Y8aI08iKaGl7rKSclrbCWPSd7OXI4MFmebEJD3/kkeJndm5UUQdalW5trZloKeo0RtuauDtk9cQqqxQ/R/Umew4//RT+77oQT00NApNn0kTA8Om0NJmqwXTwr3JamoqWPqIvbEO2dS8hXEVL2zbJRQz0FR5u47RUPQ+mbm4RurkiXcLDVW2bq9OSn1MyrtPSNjx80CDztFVsvHH5d6zAliWnZfSySrWd7Ysi13a7kuHhorrdpn6qrZXfG5/h4XGdxi6ipYiknZYbbaTf35UknZbrrKM+nqgPWcnw8Bkzip/5fbp2devv69ob0fmusAIwcGDpNrr+VpSOrO9KTstMQKIloce30/L554FVVwX22y/skG2xBXDhhe75U+HitOzSBTjlFGD48FLhZuHC4ufu3UMBiBVbWdEylysfGLDXaffdgV/9Clh7beCBB4xOxXt4uChNHlV4+JQpoYhw4onASivp8+bLaZlkeDjfQI4aBRx2GLDaasB11xW/b24uFaijzsPNNwPDhgFXXVWePxfR8u67gbXWAvbcM3xmTOCf+TvvDMvbhAnlQiR/3FNPBbbZJnyuL7sMuOii8vTjiJaihj/ippvC54i9zqZpmYSHi9wPMq6/PszLP/5R+n2STsuBA4HjjwdWXtksjzbh4SynnVb8LOpAi+ZQY48ZR7Q0DQ+Xud923RXYe++wTPznP+F3cZyWtm/PVfB1m+65MHU5AGGdcthh5b/7Cg+3dVp261b6HPGY9Als5iNkjy3bxlW0tG2TdC+GRGRh9fBJk0Jx8I9/FLv3TPEdHn7wwcC228qP5ypaslEvonyp0jbNhyo8fJttgPHj5entvTfw858DI0eG90TEuHHA4YeXf590ePiVV4bt3623ln6vul5HHAFssEH42afT0nXwXsnwcNF1ZY917bXh9b355vLfgFDwdnVa8u2oi9MyyfBwEUnMacmew5lnAptvrk/DBdlLGlun5SOPhH2/Qw8F1l8f2Hln4Le/Ld+OTVf0MtNkwU4+rypkL5r/9z91XzWXAx5/PNzmlFPCfmVaomXXrqHg+9vfhmOf554rFTFFROn8739h/5InadGSnJZGOPruiU6F7zktt9gC+Pjj0u9ef90uDVNcREsA+Otfw3/nnQdMnRp+x4qWt98O7LYbcMIJwLRp4XdseHhTU3lly16nXA647z7z8+D3ByrvtNxuO+CTT8K/Tzqp9HdRhauapNmUhobS82DxIVryz0RNTSimAcD06cXvW1pKRcuo8zBhQvhPhG14eC4XNp7vvSfeT0ZtbWlo2mabFcsbH4LB56lLF+Dpp4t/n3RSKC78/vfF73w6Ldm/DztMLMzIsA0Pt3nDfeSR4T8eX3Naiuas+uwz89BwQD1HqqxDtfXWwO9+V/xbdE169wZmzpQfMymnpUknLZcD7r239DvVnJYOTkvk88UBbFOTeK4lUR3Eh6D5dFoCYT10222lx2GPYTpnUxzRkn3mzjsvHIj84Q/l25mcm+08hrrQaJ1DWIbLi7TaWrv9srB6+NixwKefyrc3xTY8XCVaXnUVcPTR6uO5hofzoqWJe9c2HyqnZS4X9hNPO03smOrWrViX3XZb+e977CF/oc0KbKppH/jvTcPDjzkm/Mcjqx8eeSQUWPk8iciq09Ln6uGi8s7u89vflgpSovbTdSEevt/fEZyWJmmonpMePYAXXgC23z40W8iorbUPJZc9G7ZOy3HjSssQEOZZdTyR09Kmn2v64lTUv95ll7DPuu++5X0yILxnO+wQbhPhIlrqogtE9z06r2uvLX6nMwdF6ay3XjjmOuww4JZb5Mclp2VFIKcloUdXeHyszOYScmWCS3i4bP8FC4qfo8aC7TSzTsumpvjzB/FUQrSsqxPff93COzKnpS4UTyfa6MLD2YpfNKclv42JaCn6Tea0VCF73kQroscJm1a9cXZpGHVvOisVHm7rtLSdv1GEbo4hETKhk39mbOtAWX2ietPP30vRXFL8vKf8/qJBp2+npQ2NjcVr4WNOSzZ/MjdgJURLQF0W4zgtbcPDdcc0OTdVnenbaalq6136L7bzFVbCaZnUoMfW+aISzUzKvKvTku9rJOG0VM1pGSHLI/u97WrTWQsPt3EJZdVpqXqhbuu0tJ1GRtR+ui7EYyNa2jgtRd9lKTzcpG7U5dfmpbEszei+ya6tbv5OFl2dJcpv3IV+RMezcSFHmLp1dejaDJO+AiDvk5oeJ0nRUrSyelKaSJVDV4XQo6vYdB14E0GnEqKl7aCRFS2jxoId1LJOyy5d7AYYJvgMD/c9p6WpaBl1tmXXwkS0VIkefLiPriHQuXXY9NjfmptLnRxxREuR0zJOeVA1vjpXjG16or9VVLto6dNpyT/rvkJOo3rNpNMuCplXiZamc1oOHSreX+W0dH0WcrnivfXhtGSRlWuRG4MXMn2Eh+teqrDXzEd4uO1UByoXnA5bp6WqbhblzfQ3Hy9ddVRiTsuk+lQ6p6VNeHiSoqVJOjbXyET0FD3TrqKlaXtg47TMgmhp29dJy2lps11cpyWPjdMyDdHSdHuT58fkGEk4LV1ES5N+vO64ruHhInTidxpOS5+ipQ+npUlZFJ2XTrTUHSdJ0VIUwUROSyEkWhJ6dIVHt0CNSUOQVAHNktMyLrzrx2a+Nt5paTqnpatoKQsPjxo/1XyiKhoayifYj+AFEVl4ODtI5Rsd1Xxd7G+y8HAVNuHhPp2WKtGyIzst44SHy3Bx68g6nny9mIZoKRJ++Ll3e/eWH1O0AqRNeHgUfi0ijsgiEy3jOi1lbZfIacl/pzu2i9NSVT/5EC1tnZYqQUmHrdPSZfBi8lvcxeFMUPU1VHPt6s7RJjzcF7btgUq0NKnzZKJy1G6a1ptxRUuT/dNyWory4DM8XHcs3feq62orXCfptExTtLQRcvv3dw8P5/tFqkW3bF8g2l4H1TFYkp7TUrYNj4toKStTPhbi0fU3ReeTRHi4qo2UPdcmznQTdO2+KjycJa5oKfrbRrTU1YkUHm4EiZaEHl1Fv2SJukCqJtyPqAanJTunZSVEy0qFh/t0WkaNn+y4JqKlzNnLCyIy0VI0iX2Eys3Dh4dXi9NSFR5u8ozy+Y4TxhBH8ORJciEeGbZhX7LfRaKl7bXwER4OlHeuVE7LOXPiiZaqjp5P0TIq4zZ1ZPQ3+52NaEnh4UXihoeLrl1WFuJxwbUfonMCVyI8XOe05IkbHi6bwzrqQ5i6LeOGhyfptBSFjNqKsZV0WtoMuEXPsOo+JOm0dBW8XcLDbZyW+by/8HDV9rYiUqVES9tQf6BzOC3jpl+NTkuTusYlPFx3HHJaZgISLQk9usKzeLG6Yarm8HB2f9bhF3VO2Y7nkiVFQU0UHh6XrC3EY5s3Njxcdu11z4pKtOQFB9Gclvl8qcClC79UhYfbOi1tRMssOS19hofrOgI22ExID8ivP/s86BaK8um0dJk/icVHeDhQ3rlSOS1nzjQTLVdcUby/ymkZ51mIzmHZsvCfL6elzZyWSYSHJ+G0FD0Drk7LOKKl6vk3GYj4clqmIVr+9JPbfrpzzEJ4uM1z7iJayhbGsBUt4zotRc9kpea0ZMmCaGkz4LYVYlz70dXktBS1J77Cw023ZekITkuXbXw4LXVzWvp0WoqOkeU5LSvptBw40P7FAUuSoiU5LY0h0ZLQE9dpWc3h4bJ8iZyW7MAki05LtvNf6fDwJJyWvHji4rQ0XYiHDw83ecZtwsOz7LRMyi0ZB5PwcB/4nNPSpYPM4iM8HLBzWs6aZSZaNjWFK0vzJB0eDoTTePhaiCdOeHgSTss4omX07Iry5dtp6TLthG5/3bFdhY80RMtZs8zywqMboCXhUNOhc96rts+a09LmGpmInqL6QlbOfc1paSNaphUe7lO0TNJpadrm2Li6Afs5LWfONEsDsF89XEW1OC1N0qiU01JWpjqK07KmRt1GyvLjayEeW9Eyl5PX9Sus4H4cW9GSn5ZB57SkhXiMoKtC6NFVkj5Ey2pwWrKIRMu//rX4OWtOy6lTgSuuKP4dd/VwF6dlc7PeaWkiWsrmUDUJD+fnZ8lKeLiugbRBJzKyuIgLPkXLtMLDVfM6qURdHpeBr0zojOu0lB03yfDwJUvEYpFpOE5S4eFseOX8+fEW4nEVLW3Dw11emvkID+fDMdlQRF+ipcm9tHUJ2s45xVJp0ZIVJQYPNt+vIzgtVU6/NEXLJJyW/P6iOl12j9h8Nza6C4ppOi1N625bETIJ8b2STktbsenbb4uf+/cP/3d1Wur6RTZp6bb3JVqq+meAW0RQWquHy9ropJyWPkXLJJ2Wou/TcFqqzkkVIu5btLRxTlJ4uDEkWhJ6dI1Ojx7qAlbNoqWN05J1UzQ1+T+nOKLl//0fcOedxb8rER7OpyvCRLRUdeaiDh8QdoTiOi3Z39lnyWUhnizOaZlkeLhJ2nHE2QEDip9F81WaipY2ZMlpqQvNdXFa1taWX6s+fUr3F91/0fUVdRBVTst+/UrzYQN7Dj/9FM9pySK7R6LnLYk5LV3rJxHsubHbNjUVnxUbAYpPk0U3j7XudxNhw6ZTr7o2bN3drZt5mjawx1h1VfP9TFwlpvv6wratykp4uMvUHrptTZyWMth853J24YSi7aplTsssOS3Zelx1LWzFOlunJVuvr712+XeqvKh+d3Vams6n6Uu01JVhkzSyshBP1LbJ8mwzt7quvynqd5mKlvwLWhmuomWl5rRUleM0RUse1TPctSuFhxtCoiWhR2S3/v3vw4JWVwdcf73anWOyEE9Ww8NF+9fV6cOro4HguHHh32eeqT+WjjiiJY9peLjpQjz8YK+mBjj9dHm6suMOHKjep0sX4JBDxNvl88A994Tn1r17eM11oqVu9XD2uczlis8MP6elyTOexTktTcQ8V6dl0qLl3XcX77XoWWOnEfAlRojuoa3QAyQrWqre9OvmtGxoKM/XhAnA0KFhevfdJ77/u+wCjBgR/n3vveH/e+1Vfqx8Xny9VlstLLsDBoS/P/qo+NxksM/x4sXmTkvRubDf1dUBO+5YeozttgMuv7z8OvGOPd3z79IuxnFasvtG7RIA7Lpr8bOv1cO33RZYY43ws6js6c5dlC7fx7ARnFT9gGOOCacyqKkB/vc/4De/Cb//9a/l+xx7rPmxAeDii8O2pUsX4LbbgC22CL+/9FL1fjqRIAmHmg7beYnjrh7u6rS88srSv5NwWprMaQkABxxQ/h2fb37fLDotTV1Vts9lEqKlyX5HHVVscx57TL6djVj34IP2c1qedVbxhfw//hF+5zM8/Oqr9dvedFP4/3rrARttpN8e8CdajhgBbLxxvDRcXsDzqMaxffvK+3833BB+3nBDYP31w8+i+7TzznZlTvccHXBAGPKcy4VtF2AuWqrmLueP57J6uC/RUtfm2YiWqvtra84QRQ0dfHD4/9FHl6cvu06rrw5sv315+qq8dmJItCTM4Av00KHAN98AX38dNnKqNxhZdVqaNHKibVjXhG5uxoceAj7+GDjnHP2xdJjMG8miuqa+nZZ8Q5nPA+eeG577ppuK0xUxfLg8L0OGhI1Ely7Ap5+WDryB8HpstFHxuezfXzxPiGt4OPs7Gx7e2GjWGFdqTkuVaGnSwXEVLU06tHFEy1Gjwvsc3WuehQuLn32JlqLyYuvmi75LKjw8Klui+6JzWkYvBli6dwc+/BD44gtg993F97+2Fnj33XCbvfcOv58wAfjss/I88/f82WeB6dPDfHz2GfDll8DYseJzk8G2MYsX+5vTMp8PBwMffxw+T598AjzxRLH9mzBBnrauDLvM9axauVl3ruyz++9/Ay+/DLzyCnDHHeL0RJiKTrkc8NZbwOefh+H6H31UFH8BN6fl0KFmxxahqot69Aif26++ArbeGrj22jC/0UBUxGWXyQVHUb7WWy98rmfMCNuxp58O27Djj1fnO4tOS9vjqOZUTCI8fNy48H7us0/p92k4LWV1+r/+FT5TLC7zgouwcVpmdU5LF1FEh8m5desWtjlffQX87Gfy7UzEun//Oyzju+8u/l2Vn9VWC/sx331XdGL7cFpG/O534Xluu23p92z9cdhh4TavviqvV1zmRDfp4+VywAsvAHvuKf49rfBwUT8yYvTo8B7ttFP5b0ccEV67l1+WRy28/DLw8MPq4/OI+ptsuk1NYd/kyy/DF8eAuWjJt6cydE5LmRM+7kuiCN3YyKZOU413fTgtb701vB/8CzNR+gBwySXA22+LF+IxvT+dDM+T7hEdFtHgjn0TMHRoWCmLyKpo6So0seejcloC4XWyCQdT4dNpmYZoCYTnLrqGsg6Zar4vVhjv2rVc4IyOybowRQKL6+rh0e+LF4cDqchZZSo+VcppqQoPN+nguIaH+5wIX8agQfLfWNHSV3i4rhMpIm2nZZzwcJHTsrY2/G7YsPBv2f1vbARWWqn0t5VXLt+W33/48OJ17drV7V6xeV60qDxvMkxES7YOX2WV4m99+qjrK92x+XqjW7fSZ1aUvzgL8bDPbj4PbLJJ+Ta+RMsgCI8X1dGrrWY2VyibP56kREsgvPbRi41cLsyvilyu6KjhkeWLratqa4vOZBW6AVoWRMukF+KxDQ/v3Tush77/Xn8sm3bWRPSUPdf5fPkzpRMtq9lpaeucZKMiBg4snWopSaclYNbmmIiWvXoV20hbpyVQLpj5mNOSZeWV9fPR8u217tg++3h1dUV3vksaJn3oOKJlbW34bIoWGATKrx1//NVXt3+WTV6Sd+lS2peQPcu8+GgjWqrmfWb7WyyVWj1cVaclLVrmcvLxvujejxhRzBOJlkaQ05IwQ/c2Q+W0zGp4uAmifNmIlj7Jcni4aj4m0f6yDlldndwVxz9jJgMgXXi4rdMyyjfrtDS91zYL8WTZaWm6yl3S4eE6suK0rNRCPK7h4Xy+dEKJzbPKLwJju78MNs/sfffhtFShal9snZaicCCf4eEmc//ZLkSlEi152IGPi9OSr/99hYe7Iqv3ffZldAO0SoSH8+juQ9qrh0d1gY2QZkIcp6WIjiRaxp3TkhctTdNS4bPMmzgM+ZdCLgIfi4/wcN1vWVk9XJeeSRpJOy2jfW3LpexvE1xekpuaCFRjdhZdeHhHFS1106DYzmmpmxaDPy/T+9PJINGSMEM3WIkrWlbCaem6v014uE8q5bQUVba86ChzWsryIbsvNTXhHC0idKKliROCb4B1TiZZg8guxGMqWtqEh2fJaZnV8HAdpk5LVmDRrbbp0omUdVaSdlq6hofz+dKJ1jbCYFub/Zx4JrB59ila2rjIeHT78teZXQE9QucEtxEtTdphXZ5N772oHC1dap4XE9HSp9PSBVkbn6RoWY1Oy5jh4Tlb0TIqV3FeroiIM6elCF/h4dF5yeqirIWH686Lj55I2mnpgk60FG1jmx+f4eGy32zLRNKipewZdpnKy0W07NFDft1tRUsfC6vU1vp7+eIqWurCw/nokAjR9df1r0Xo7qsv0ZK/znxekxYt+bRItBRCoiVhRhynpYnDI6uiZUd1WsYJDxe5L/kV8XSipUrochUtfTgtdeEzrNMyEi2TCA/PktMyy+HhKpJwWuZy+meEJ0sL8biGh6uwEW1bW+O7PUTInJa2dWQ+bydaxmlf+HpDJFqm7bSMO4iNiCtaitIlp2V1zmmZVHi4rA8T3RcXgSauc1UmeIjoSE5Lm2utOy/eaeladn2Web4+MxEt+Wtrm580RMusOS1NVy0XYZIX3TYNDfI+cSWclrmc+8sMHhujEYuraCk6X9ZRbYqt09J1Tkse36KlbnxKTksjSLQkzIjjtDSpKJJ6Kxo3Xdc5LTuK01IkUJqEyOrCw2X3JWmnJd8A842OaXj4smXFQbiP8PCO6LSsdHg4G7aiEi1tRCrAvhMpe8Mat46Qdc5UTksf4eE8NqJlW1syomVSTksdcQbGLuHhrk7Lmho/5TGO05IdsNg6LRsayucSq7TTshKipY3TshrCw03yKHNaRucuCw93cTrZCD6qPJnAt6txnZZpiJay8/PptFRNNWSDz+ffRLTk6zRdX1KHa3i4zYuManFamqThw2nZ0CB+ecju6+q0dH2JZDvuM82Pr/BwG6cl++LSlLTCw3n4Mq97wa2DnJZeINGSMCOO09Lk7XNS4kXcdEUVjUl4uM0bd1N8rh5uOqelyGkp24fttCXhtOQnJk7DaSlrEOfPL35nKj7ZhIdnyWlZreHhzc3Fz76cloB9JzLrC/GwnfSknZZphIf7XIhHF85kO+hncXFaqkRLHw4D23shewZFg5zImQ7YOy2HDIk3COwo4eFZdFpWaiGeCJ9Oyzhimy38dXN1Wkb5MhEtkwoPjzunJQu/sEgW5rQkp6V4/7TmtDR5BlzmtOT7OllzWkZ5YnEtD65OPp/h4dUkWvLnnPaclqKX2ASJloQhOqelTGgCkhHw0sLVacmKWr5Iw2kpagBMRUtWGHIVLWtqgBVXFP/mKzw87urhQGkaSSzE49NpmeXw8CRFS5ZKipZJzWkpO26Ww8OTclr6XIiHzV8c0VK3L3+dRWXRV3i4aWddNTgB/M1pqXv2TSI5yGlpt29S2Ly0SUO0jLMQTyVF4GpwWpqGh8cRf5uaSuegzoLTkieNOS1dXYc2omVnd1ryc537FC2z7rSUjbN4fIaHu4iWOjG6WsLDbZ2WaY2NqgwSLQkzdG9o477dyGoBdV2I58cf/efFtsPhIlry52vjtGSFId0KvLIOXG2tvDHlV/Yz6RSKOg4+Vg9nSSI83KfTMsvh4WkNrJMULXXnKapD8vn4555UeLitQyQLoqUsPDxpp6XP8PC6unL3nu6lCptXH6Ilu8K3Ca6ipa3TknfZi7ZRkYRoKTsHn8dyEd5cto2DjbDvIlrKwsMjfC7EU8lwe/55SsJpWQ2iZZcufkTLJMcUlXRaxlk9PK4wYrKKum4fFWnPacn3CzuT09I0QkwXHm6zejgbbWGKbmzkW4uISFu0XLDAPK1ODImWhBkmFefWW4v3HTq0WNEceKB4m65di430L3/plsckEJ2nidPykEOSyQ+LrhFUOVyjip7vKItEOtH8YiLYjibbOMkckGutVf79ZpsBY8eWf7/GGvrGysRpyTfAOlGA/100UE0iPDxLTstqDQ//+9+Ln/fZR77d+ecXP59+uj5dX05LoCjGbLed/rgm6QL2TsvBg4svBNZdt/x33X20cTMmFR7OlkG28+fitGSxdVqOH1/8zK+Cy8PXG7mcfj63pJ2WOtFyjTVK/5Yd86CDyr9j24SknJbbby9Oj3fU+ED23F5yib9jVIPTUvfMsPfJQbRsu+gi9QYjR4r/dhF8VdvI8rrSSuH/sv4vy9FHFz/zdW0aTsu44eE+5rTU3XPeaemyeAfgt2/hIzzcVmxyjVBL02lpInqnFR7u4rTccMPi56YmYOWVk3Nauj6PLk7Lv/yl/LvLLwc23TT8vNlm6v3HjQv/79IlzPeECcXfrrqqdNvrrhOnITrf3XdXH1dEVua0THohntVWKz57v/udebqdjARePxMdEr4iF1Xc994L3H8/cO65wHffFb/v1g145x3gueeAffcVp5/PA9OnA089pRYY0sY2PHzECOCGG8L/k0bXeKkEqahi1y264RoernM75fPApEnAf/8L/PznwDPPABttVMzza68Bb7wBbLst8PjjwK67lqdRiTktRde0ozstdeEZWRUtf/e7cPGOVVcVO7Uixo0L6636emCbbfTpukzTkMuVdoKi+/3cc8DEicBee+mPK0pXhO2clo2NwOTJwEsvAfvtV/570k5LH+KKq9NSlJc4Tsurrw7Fi6220g/o+Hojnw/L48yZxe9s5rRMMjz8xhvDAY8ozyybbAJcdJG4/WOdlrr88OmaipZ33w38+9/APfcATz+t3t83f/4zsMEGwJ57+kuzGkRLXfg2W54cRMtgr73CsnTvveG95Tn00PB5+uSTcDA+enT5cQ2PpdxGVr6efhp49FGzOvyCC8JnZJNNyvte1bB6uKw+tKnTTURLti8pc3LpqLRoGVcglt0bXZtkM8VB3DktTV7YpxUe7jKn5UUXhS+M58wBfvGLcB7B7t3V6bs6LV1xeZlx0klhm7f66mF/6Mcfw/pp662BRx4B9thDvf9ttwH33Re+BMzlQkHt6aeBGTOAvfcu3Xb//cNrMmAA8PvfA++/H34vuv6DBgEvvhi2lU89Vf77z34G9OsX1vWy89WJlkmEh4sESh/zf7PfNTWF4+Bp08T9cAIAiZaEKSYr+g0cCBx1FPCvf5WKlg0NoatO5KxjWX318F+W0C3Ew1egRx0ld3v4xodoyQ9CRYNkF9FStxhGNHflUUeFf6+6aunvG20U/gPkb51MwsN1oqXt6uFJiJb19X7dZzaipUkjXq2rhzc0AAcfbJYHG3e3SyeypqZ0cB/ts9JKxTJgi0t4uOwZHDmy3LGkO06ErWiZ5kI8Sc9pyV+bnj2BI49U7yM7tonTMmnRUuaa+/Wvxd/zxzz4YLnjjH3+bVcPF4mOoueuXz/gt78NO/5pi5a77AJsvrnfNKshPDyOaGk6hcjee4dOXZFoWV8vjmxxuXYuYtvw4eZ1eLdu8rJUDXNayl5q2CzEo6vv+fDwahAta2r0ji9fTkvdvMNpOi1N+r5piZYuTsv+/UOhjUU2lVBcp6UrLk7LhgZxnTh0qFld1acP8JvflH4ne6FfWxsKl0Dp/ZPlc8yYsA4UiZYHHRTupxItdXVNEgvx5HL6F9w6dKIlEL7Q2mAD8zQ7IRQeTphh4rSMMBW5qgGd05LHxLnmC10nSJWX6Lx0i27YOC3ZjiYbomnigHQhK05L0/BwWWNaV1c5p6UJOtFSNT+pjrTcQD5x6UTGnZRfhEt4uMt8e9Uwp6XPhXjY/OgGiHFWD+ephvBwHl14vYykF+LhnzFdqL4PkngBUw1OS92ckzGdlu3Y1plpOS19UQ1OS1l9mGR4+OLFZnnjiVseVY57/lqL6tek5rT0KVpmzWmZ9urhomssm0qkmpyWlYK9NqpnS/ZsNzXpRck44eG6l6Us/IKtSc9pSRhRhSNGoiKYOC0jXNxcWUXntOTp2TO5vPDoGkVVXmTh4b6clibh4XFJYvXwJJ2Wss6OSBj26bSMi+vq4ZV2WiaFi2jpU5TWpWEbHq6jGkTLalyIhyfLTksZrqKl7UI8pk5L2W9pDA6SEAnjnEcHCQ9vR1cWeVxcZZVciKca5rSU1Q82z6muvm9qKu2XZsFpycOLGKL6NanVw7MkWmbZaSnCZNGWrDstsyx0sddTdf6y+ywaW+tePlUyPJxEy9Qh0ZIww8Zp2ZFEyyw7LZMID/e1ejjb0RRV7D4qax/h4TqnJf97EuHhSTstWVw6UrpOgyyvcQeJWcWlE5mE09JneLgKnVigu89sPpMKD2dFsLhOSxt8Oi2jOS3571THY3/30VnPimjJpxMtFGV6LNb9Z+OuiIOtqGZCHKdlWgMi3TOjekaTFC1tQpZN8pO0COzqtIzOq6M4LRsashceLoK9rllyWtrMaVkt4eFJOS1F6foSLZNyWmY5Oom9f6p2QeW01BHHaekaHu7DaZmUeaeTQVeMMMPGadmRwsNF55kV0VJXYZqEh+ucliJBzUS0ZBddEDkxKuW0rKmpjvDwpJyW7H1xxfRtvck5VGOj7cNpWU3h4c3NbvkQ/d7amozTMp8vilNxF+Jhv+tsTkvdgJjHdRBs67S07fCzixmtsIJZnuLiusqximpwWqYVHh5XtIzr1uoITsu05rRUXWtdfZ8V0VLnuE9atKwGp2Va4eEuZde1/6MLDzctl53Racm/oJahmt9fB39dTdyzEeS0rHqqcMRIVAQ+1LgzOy1VDXWaoqWu89K1q7xSNXVa8gtTAGaiJYtoMOfDlWIyABJ1plWiZaXCw9NyWrJzjbriczDcEZyWJueQhNMyrfBwnSiRhfBwoFgOWWE+6TktKy1asnntSOHhJgKg6lgzZhQ/pyVa+nghxFMNc1qmFR5uK6jz6XdUp6VOtGTr/Ljh4Wk4Levr5cKRDZUWLeO2+UnMaeki5Mv2z+XM2hWb+5D06uEm/R+daGl6PuS0lG8ne7ZN7k+lwsNFL1JJtEydDD/9RKagOS2LZMVpaeJwkOXHdPVwIL5oKRrM6dxbJiSxerjOaSmaJ7SanJYkWsbHpT5LwmmpG6T6Cg/XlVVb0TKJ8HBAXA6TntPSZ3h4czMtxBPx7bf2x5bt35FES5t6I60BUdKrh0e4vOhkj23Sbqm2yarTstrCw22dlq5UWrTs6AvxNDb6j6aJEx6eltPS9Jp1Rqcle/9U7UKSoiU5LTs0JFoSZtDq4UVUA67u3ZPLC49usADoRUt+oC86X9P7KWvsRa4ZHwM8kzertnNaJum0VImWPt1nSYuWPoXGziJaxnEYyZB1eFROSxdnYLU5LWXHFiFyOKcpWrLP0tKl5S9FOutCPN99p99W9dx9/33xc0cSLavRaVmpOS359OMuDJd1p6Usf1kTLTuL01LXl9Qhu/9ZmdPS9GW9D9HSxWnpuo1uTktTkhIts+y0jBsebnKNSbTs1GT46ScyRUdzWu64o9l2ovPkG+vevYufkxYtR4wofh40SL+9TLSMGof6erUTAihvJGSDyM02K37eZZfiZ5FomYTT0lS03H//4t9sPgH9IFx0PU072LIGeeBAtYPKFlXDv/HGxc977umWvmneTAaZWe6AyfDhtPTh0Ft7bfH3kbAlqrtMj7vDDsXP66+v3lZ3D/feu/h5993jD5xkiERL0QIuLCJ3ho1oOXx48fMaa6i3FcGLlrqFeJIWLTfc0Gw72TFVedh88+LndddVp/uznxU/H3OM2bFZDj+8+Jmv432yzTbFz7LyGIeszmnJlmm23Y8YPbr4mS0XcURL9tlk6ycVtk7LX/5S/lvaoqXqXo8ZU/y8zjrqdH2uHr7mmuLvbRY9EvXThg4tfh40CNhii+Lfu+1mnj/2Wqy8svl+LuhEy4EDS/8eMMAufZkgohMtN920+PkXvyj9LU59wu9v+rK+2ua0XGUV8fcUHq4nbnj4iivqj6Gra3yFh/teiIdESy94nJCJ6NB0FKdlbS2w337A3/5mvj0P31hPngycdx6wzz5+wwVFPPoocMYZwM9/btYJ0jktc7lQhI0mO6+pAZ59FrjsMuCII8Lv+PspS3OjjYBLLgFefx244ILi9yIHio9FC1zeyuVywJ//DMydG573r39tt7/o3E0aWqD82dh777BT2atXudidlNNy662B//s/4NNPgYsvdkufwsPt9+HviY+XG6uuClx1FfD888Dddxe/j54z0csF0/rplluAU04B1lsvLNcqdM/DH/4QhuvmcqEANX9+6e9Jhof/7nfqfXTz4OpEy8GDgRtvBJ58Ejj3XH0eeRobi9dDJFqmHR6+0UbARRcBb70FbLstMHEicOKJ8u1tBOg77gBOOy0UL3UC7777AtOmAYsXy6+r6ljnnRe+GFtzzbCtTIo77gjLyUYbASNH+k8/jtMyyQHRNdeE5W2VVUoF5oj77gvv9RZblIoAcUXLiy8G3ngDuPBCs31snZa//31Y/t94I+wHueTTFRun5d13A6eeGgrGrJD44IPAv/4F/Oc/4nTiuv9WWw248sqwn/fFF8XvbeoB0W+PPQacfXaxP7TJJmE99Oab5vcaAB56CDj99LDuYoXQJNCJln/8Y9jP/O678Lxkgq8tOtFys83C8c0775RfO9O+vIxqclq6ipaDBgE33QTcdhvwzDN2++qO70KWxs86XMPD99kH2Gkn/UtmIFtOSxtEz3CWBeiMQqIlYUYcp6XJimBp8Yc/lApqOkyclhtuCPz73/HyZcrqqwP33GO+vU60BEIRNhIta2uBrbYK/0WYuA0jRANckUBZKdESCO/ftdeaHcPk3F1Fy3vvLX7mw0KTcloCoegdBxIt7fcxmRvVhaOPDv+xomVU34oGFaYd7xVWCAe/JugGvvX14UA3Iq3w8Gef1ZfNuKIlEL740L38kMHm2US0VDktfTkMTjqp+Jl1LIqwcVoOHw7ceadZHmprgUsvtTs2y8CB4aAzaVZcEbj99uTSt3Gw8SQ5IOrXD7j1Vvnvsnsdd5qMP/zBbntbp2VDQ/jC9r33Sl17aThibJyWw4aFgjnP7ruH/2TRM3wfxKXuPeaYMGKDddjGndNy7bVL+0NAaT1kyiqrAHfdZb+fiLjh4autVioe+8KkTfrjH8Xf+xQtk3BaygQnk+fUl9MSAA47DNh111JjSFacllmGvb4q0ZK/zzZj2jiipY3wzJYzWT/RZnE4clp6gWRewgwbp2VSCy34wHYFSts5LbOGyfwsrCPLZDEb245O1kRLG3SiZc+e5q45VX75dJNyWvrA52C4Gt80+nBaJrlgl2yRLfY3n8SZFwtIzmk5ZEj8NF3m0bOBrXuz4LS0JYkFpkypxrojLllxWrqSxNy+Ktj0bUJM44jFrrjOaalDFR7uimguYNXvqm2zSlzRMilsxzAscfvy7HUwPWcf4eEmfQRfc1pGxHG5A+S0dAkPB/R9Ll1dY6NNqFAt2Brlw6Z/SKKlF6qk9SAqTpzw8Cxh2+Dbrh6eNVSLv0SwjaLJnJa2HR1ReHgSC/GI8C1aNjSUHtdGGNGELQRsQ56k0zIuPue0zNILDVN8OC2TFC2j5yiromVSL7X483VdgMXWaRkHW9GS7+yzee1somVn7PBnxWnpSpzVw12wDQ+Ptklq3l0VSa0SzKbjq/7XudpItEyOSoqW7Fz0usXUImza96w4LUXpkdNSj6loGace4q8/f0991XF8eLgoH+S0TJ0qaT2IisO7yWzDP7KC7SBU1MiZzuWSBUxES3YgbOK0tA1tTWshHhFxn0VRR4gNe7CZN0nXmLIdyM7itMxyXSEj605LVXh4FkTLtMLDXTv7bH7iDBBNINHSnWoRP3ySxdXDbUjbaWkbHt4RnZbseSclWsYND88iunxWo2jJn1McA0IS5xzn+TSZ09Lm2SOnpT0+nJa66xYnPNwGEi0zSQZ7NUQmcbVgZ2k+S8C+wRd1dDuC01I2z5HJCtydKTxct78vpyVQel2z7LQ07YyR07IIW3/W1CRbh6jCw5N4NrIiWupevpiS5jPJipZLlpS/HOSvlaoO6WyiZWfs8NuccxavTyXDw02uR7R9R3JaZk20zKKY7kI1ipY+o6ZMnZY2xOmfmIiWNqYVmWhJTks5pvcvji4QJzzcBhPRMs7zJPuOUEJXjHDDtFOSNdHS1mmZy5Weaz6f/ArhPpFV4DKnpcgBmYRoWa3h4Tw2oqUuv6xgkWWnZdIhs1knrtOyW7dkhbGoPNfX24lermQlPJxdlbxPH/d00gwP5xfi0QkXqva0EqJlJcSdiCyKcklDTks7yGlpvliXa5omf7NU44tKCg8PYfvySYiWSYeH21w7clraY9q/jNMPJadlpyaDvRqiKjB1WmZB4Isb7sdWLF26VFenS3b92XNKWrQUkVZ4eNKiZf/+5mlpykLAXteWFvN0eZIWLVVhHywm5aQaBdC4TsuuXf3lRUT0nOVy5W7LLIiWSTktf/ih+LlfP/d0KjmnJY9Nh7yzOS2zKMolTUeb05KclkWSclqaTiFhA81pWTnRMk6bxF9700UkI1zCw33MaWmCSb/Xh2hJTks5HVW0lK0eTgvxpE6VtB5E5jB9k5oFp2XcQSjbGFZTaDhg9uaSvUcisSyJRUSqJTxc16jYzO+pywvbgVywwDxdnqRFS3ZOz85IXKdl0nPisuWZr6+yGB7ui7lzi5/79nVPh81fpUVL/lplzWlJ4eHpQquH22HrtIy276hOS190tjktsyRa+nRa2uY7aadlnGfexGnpIzzclM7otDS9RnGuja5u9iVamqweTk7L1CHRknCjmkTLuINQ3mlZTay6qn4bW6el7dvZ1Vcv/2799e3SEJGGaCmCFW2HD/eXbrduxc8LF7qnk7RoWW3CvW9cOpFsvZO005Itz3x9lYTT0rYDmtSgdZ11ip833dQ9nTQX4llrreLnkSP126vaU1W57IiiZbU4tnxic32zONjN+urhUf4q8VwnJVom0We1FS3ZdmfAAP/5SYKNNip+Xnnl8t8rJVoOG+a+b9w6kxUt03RamqRhMqdlr17meZHNlTh4cPG73r3l+3dGp6WPOmvgwOJnUd2V1pyW7NhZNF4lp2VF6IS9PsKZBx8MK+nf/lY9ZxjrxMpCeDhbybkMQqvZaXnEEcDmm6u3sRUtbRuFf/87nPtxzBhg442BlVYCbrnFLg0RJs9W3I6DKBT6oYfC8NM999RfW54zzgg7TjffXP4bK1pmzWn5yCOhe+3XvwZWWMFsH5MGvbOEhy9eXPyc9IsPtlykER5uS1Ji0wUXACNGAOutB5x1lvl+F10UOqYvuyz8O00n0MknA6NGhYPiG24Iv/vnP8P8/OlP5dur7t+KKwL77Rd+ZusSoGOKlp2xwy+q26+4InxefvnLoiC0ySbA1lunmzcTsui0vPfesF97/PFF9xg/7Uu1hYc/9FDYR//tb8vP5eyzw+clqm9csBUtn346FCN22w3Ydlv346bJrbeG9fLo0cAJJ5T/ztbFSdWv0bM5blzYb950U+B3v3NPL+5zzI7tkjjnOM887/wUteMjRwL77x+WicmT1enJxj2/+AWw886hePn44/L9O6PT0ub+RfXQjTeWfv/zn4fXeNAgYMqU8v3SclqeeiqwwQbAKquU5zHKRxynZS5XPa7zDJGwJYfoUOy+OzBnjr7hY4Wvjua0rDbRsr4eeOGFsNO43XbybSJMREtbRo4EvvyymE6h4GcQkIbTUiRabrstMGuWW9r/939hYy3YN2AdrKzIZUsSouW4ccDs2f4Hb51RtEzTaZlGeLgtSXXUhg4FPv7YvjN40knAiSeKn+00FuKZNq20Tjz4YODAA8X50bWnd90VvhCprS3dNqmBD3+d03Q/ktMy5Pe/B44+Orwera2hGyrpOsaVSs5pKTvW3nsDe+1V+ntjY/hics6c8O9qc1ruthvw/fficz7rrPDlaZxrr5uXmP99882Bb7+trjI7YgTwySfy9iQNpyX7bProN/tse5MID5dhkm/Tsdmdd5pdS/6Y7JyWEyfq0yCnpRpZPZTLAQ8/bP68J7XYZNeuwOuvF/PEE3f18GqqCzMEXTXCDpOCljXRMm64X5rz0SWFqkFPWrTk0/BVWZs0kHE7abJFZ3x2+CN8DTSTEqaSaGSrUbR06awvWlT8nKbTkj9WEoKh7T1M8u1yPu+Wvqx+Suv5NO3QmnTIm5rKt0trgElOy2SR1e3R81Jbm13BEsjuQjyifAwZ4j8/Kny7lpMUVFzmtKzGQbqqPWGf5STrV9niUC74mEs+Ik0xzaRNt+nruFxL27rLVz8nTXE4LrZ1lksdxffJZOKyD1QvwOM6LTtj/8UDVdiKEJmHXcwla+GInc1pGaHqYLD3SCRaZtXCnoZomfScdiy2c4XKyIKbriNTzU7LLJDV+iQizTktbXF9CZjWAJPmtEyWah/oZDE8XAYrWv7wg5/82JDldjzO6uEdhUrNaRkHdq70uPcoa2Ia39fx3c+wLY+d0WmZRrnX9cnS0hxItKwInbDXRyQOOS2zh6rh0zktfb6d9UkanXqZ0zIJ+HnoXMnKYIfmtCySFadlEmRdhLRFt2psJSHRsjLHygpZqdtdyarTUgQrWsZZGM+VLD/furxlOe++qHbRMu5LclPRMq3+QU1Nad+n0qJlZ5zTMo32SdcnS0u0zOfjLcTTGerIBCDRkvBP1kTLuE7Lal6IJyKOaFmJDrsJHUy0DDqaaGlC1kQhE7LutOwIzvAKEmRZtHTt6JJo2TGoprpdRNqrh/tyWlaCLN9rEi2rX7SM29/MWng4UPqSlkTL9MmCaJlWvUlOy4pAoiXhn6yFh8d1WnYEEcBUtGTvXUSclayTpIOJlh3OaWlC1kQhE1w6kex5punWrtb6qpJkWbR0HQh1RNGSwsOrj2p1WlaCLN9rEi1JtMya0xJItr9j26/21XeolmcLSKfcZ8VpSQvxVAS6aoR/sua0jDsI7Uzh4SLYjk6WKtqOJlp2tDktsyb4+CJuJzLNhTKqtb6qJFkWLV1Ja+BDq4cnS1bqdleqdU7LSpDle627lp2hbHZ20TKLTktWtKy009IX1fJsATSnpQpyWnqhE7QsROpkTbSkhXj8iZZZWpk0jY5xmgtxdEanZTUStxPZ0ZyWHUXYi+iIomVaHeQ0O+IdbS5VE6p9oENOS3OyfK/JaVmdoiUbNVVNoqUpWQoP74xOyzTGHroxWZrh4TSnZeqQaEn4hw0xzoJoyTbOLvnp6HNa6jovbMd/wAA/+fFBGoPWFBuWoEcPPwllRbQ0KSvVKArF7UT27OknHyakUV91NFcNO/DJ2gqprqRVJ5BomSxZqdtdqaRoaXusFVf0mxdbsjyoJdGyOkVL1oXWr1+8tExfvvqoszqz0zILY2hT0rhGuvuqc1r27u0nH/k8OS0rQAcbbRCZIGtOy3vuCf+vrwfOOcd+f7ZyqdZwy/p6YPPNw8+nnlr621FHAZFg9vDD5fueeWaxMbr77uTy6MLYseH/xx8v3+YXvwj/P+ooszQfeST8v3t34IgjnLNmzeqrY/6wYeHnCy5wT6cSnSv++vfqBfznP8AKK4R/33pryhlKkJoaYOutw89//KPZPnfeGf7fvz+w//7+83TAAaX/RyRVX116afj/6qsD662XzDEqRNuVVyLI5xHk88A111Q6O+Xst1/4/4EHqrc7++zw/1GjgL59E81SOyRaJku1D3T4tinpe8imb3vtunUDttkm/Hziif7ypOKUU8L/t9oq2/eaRMvis9G3LzByZGXzYsp114VlorYWuPhi+/2vvz78f6WVgJ/9zGyfDTYAVlst/Hz55frtjzmm/DuXhXhEi4rGwbZf3bcvMHp0+Nll3BmRywHbbRd+TqseciWpcn/lleH/q6xSvKYydKLlgw+Wf/fQQ/Z5snVa1tcDY8YU/952W/tjEqjy17ZEJmEbiywsxLPZZsDHH4ehzYMH2+/fEZyWADB5MjB9enml37Mn8OmnwOzZwNprl++30krA558Dy5aFjUaWeOQR4O23w4G5jP/8B3jzTfU2LOPGAe++G7pK03TF5fN49sILsePw4ajbZBP3dCohWl5ySSiYrbde+CwNHAj06QO89x7w5ZdyYasanZYA8PjjYVkyfab23x9Yd90w5DAJIfGf/wSOOw7YaKPS75Oqr447Lhy0rbZax3NarrkmJl1/PbbbdlvUrbpqpXNTzr/+BZxwQvm95jnzzLAuW3vt9AQ+WognWardaZm2mBXHaQkAjz4KvPOOeT0fl7/+Fdhrr+yLYLr6pDOIlvvsE9atK6xQPWaG0aPDsVBjo5uT+IgjgE02AUaMMB/b5fPA66+Hx91gA/32l18OHHxweBxb2P7OkiX2+6twWT382WfDsUTc+uPRR/XjnCyQVLk/+mhgyy2BVVfVH0N3n7beGvjww9CoU1cHzJolHvfqsJ3TEgCmTAGeeioUMKOXHoQVVd4DIjJJ1sLDgbCyc6UjOC2BsKOy8cbi3/r1U4eLVHp+JxkNDfJziqivt+8AuTRiHmhrbAzFiDgiQyUGtvl88T6w165nT7UTr1pFS1VZkpHkQLS2VvyMJ1Vf5XLAhhsmk3YGWNK/f/iyJovI7jVPLqd3JfgmTSGRnJbVR9pCc5yFeIBQBLGt5+PAtqPVTGd5obDuupXOgT1xjAe5nJnwyNOtm3l/IU4ZYEXLpUvd0pDh0q9uavLTBpuMc7JAUmMPm+fORExfffXiZ9coFBfRsrER2Hlnt+MRACg8nEiCrIWHx6WjOC2JzkEW3M2mVKtoWS1QfUWkCYWHJ0u1Oy3TJs5CPIQ7dK0Jn7iEh/sWLaupX10pslDuK7V6eGfsj1QAEi0J/7S1FT93hIq+I6weTnQeaGBLRHSE+peoHki0TJYsDAqribhOS8INek6JSpCl8PDOSBbKfZqrh7OiJbUvqUBXmUiWjua0rObwcKJzQJ0rIoJESyJNSLRMFqrb7SCnZWWga01UAla0ZKcp8wHVvXqycI3S6vPm86WRYiRapgJdZSJZOoJoSU5LoprIQsfBFAoPTxYSLYk0IdEyWUgMsoOclpWBnlPCJy7h4b6h+kNPFso9hYd3aKgUEsnSEQbN5LQkqolqEi2JZOkI9S9RPaQ5sOuMg0iq2+0gp2Vl6Ixlk6g8SZpKSJTSk4U6Ns3wcHJapg5dZSJZyGlJEOmShY6DKeS0TBYSLYk0IadlslRT3Z4F2IEkDSrTg55TwidZcFoSerLwUo2clh0aasWJZOkIoiWtHk5UE9U0OCPRMlmy0IkkOg9p1j2dcZBAYpAdFB5eGeg5JXxiWtfT+KyyZKHck9OyQ0NXmfDPaacVP++6a+Xy4YtVVw3/794dGDy4snkhCB0NDcXPW25ZuXyYQKJlsmywQfHzoYdWKhflDBgQ/t+nT2XzQcRn442Ln5MWEtn+xNChyR4rK2yxRfFzR3gJEd23Xr2SP1bUdxsxonOK3EnSt2/4/6BB5b+xA/hNN00nP0TH4tRTi5/HjTPbx7doucYa4f8dwXyTBuusU/y8//7pHZcd56TptJwwofj3X/+aznE7OR2gB0Rkjj//ORyUrrEGsMoqlc5NfE45Jeygbbop0K1bpXNDEGryeeCNN4DHHgMOOaTSuSEqSe/ewHPPAVOnAr/+daVzU+TFF4F77gH22afSOSHi8uCDwD//aT6wjMPNN4f/ttmm87hq7rsvvL477dQxhLdnngHuugv41a+SP9bFFwMjR6bzbHY2XnoJuPdeYN99xb+/9Rbwv/9RH4Rw4/TTQ0F89dWLLx90+A4Pf+IJ4I47gF/+0m+6HZWePYHnnw/7d2n2N++9t9hGpuV4zOeBMWOAf/8b+P574PDD0zluJycXBGR1MWH+/Pno2bMnfvrpJ/To0aPS2fFOS0sLJk6ciF122QV1NA8aQaROpymD7MD77LOBs86qWFYIgqfTlEOCyDBUDgmislRdGXzgAWDPPYt/k7xB+IQdu6T4bFVdObTERl+j8HCCIAiCIAiCIAiCIKqPzuK+J4hOComWBEEQBEEQBEEQBEFUHyRaEkSHhkRLgiAIojJQ+A5BEARBEAQRBxItCaJDQ6IlQRAEURlItCQIgiAIgiDi0NhY6RwQBJEgJFoSBEEQlYFES4IgCIIgCCIO5LQkiA4NiZYEQRAEQRAEQRAEQVQf5LQkiA4NiZYEQRBEZSCnJUEQBEEQBBEHcloSRIeGREuCIAgiPXbdtfh51KjK5YMgCIIgCIKofrp3r3QOCIJIEBItCYIgiPS44QZg992B444L/ycIgiAIgiAIVxoagH/8A9h+e+DFFyudG6KjMWUK8LOfAXfcUemcdFpqK50BgiAIohMxaBDw4IOVzgVBEARBEATRUTj88PAfQfhmu+3Cf0TFIKclQRAEQRAEQRAEQRAEQRCZgkRLgiAIgiAIgiAIgiAIgiAyBYmWBEEQBEEQBEEQBEEQBEFkChItCYIgCIIgCIIgCIIgCILIFFUtWl599dUYPnw4Ghsbsemmm+KVV15Rbn/fffdhzTXXRGNjI0aOHImJEyemlFOCIAiCIAiCIAiCIAiCIEypWtHynnvuwYknnoizzjoLr7/+OtZff33suOOOmD17tnD7F198Efvvvz8OP/xwvPHGG9hjjz2wxx574J133kk55wRBEARBEARBEARBEARBqKha0fLvf/87jjjiCEyYMAFrr702rrvuOnTp0gU333yzcPvLL78cO+20E04++WSstdZaOPfcc7HRRhvhqquuSjnnBEEQBEEQBEEQBEEQBEGoqK10Blxobm7Ga6+9hlNPPbX9u3w+j7Fjx2Lq1KnCfaZOnYoTTzyx5Lsdd9wRDz74oHD7ZcuWYdmyZe1///TTTwCAuXPnoqWlJeYZZI+WlhYsXrwYP/zwA+rq6iqdHYLodFAZJIjKQ+WQICoPlUOCqCxUBgmi8nT0crhgwQIAQBAE2m2rUrScM2cO2traMHDgwJLvBw4ciA8++EC4z8yZM4Xbz5w5U7j9+eefj3POOafs+5VXXtkx1wRBEARBEARBEARBEARBLFiwAD179lRuU5WiZRqceuqpJc7MQqGAuXPnom/fvsjlchXMWTLMnz8fQ4cOxddff40ePXpUOjsE0emgMkgQlYfKIUFUHiqHBFFZqAwSROXp6OUwCAIsWLAAK6ywgnbbqhQt+/Xrh5qaGsyaNavk+1mzZmHQoEHCfQYNGmS1fUNDAxoaGkq+69Wrl3umq4QePXp0yEJBENUClUGCqDxUDgmi8lA5JIjKQmWQICpPRy6HOodlRFUuxFNfX49Ro0Zh8uTJ7d8VCgVMnjwZY8aMEe4zZsyYku0BYNKkSdLtCYIgCIIgCIIgCIIgCIKoDFXptASAE088EYcccghGjx6NTTbZBJdddhkWLVqECRMmAAAOPvhgrLjiijj//PMBAMcddxy22WYbXHLJJRg3bhzuvvtuTJs2DTfccEMlT4MgCIIgCIIgCIIgCIIgCI6qFS333XdffP/99zjzzDMxc+ZMbLDBBnjsscfaF9v56quvkM8XjaSbb7457rzzTpx++uk47bTTsNpqq+HBBx/EuuuuW6lTyBQNDQ0466yzykLiCYJIByqDBFF5qBwSROWhckgQlYXKIEFUHiqHRXKByRrjBEEQBEEQBEEQBEEQBEEQKVGVc1oSBEEQBEEQBEEQBEEQBNFxIdGSIAiCIAiCIAiCIAiCIIhMQaIlQRAEQRAEQRAEQRAEQRCZgkRLgiAIgiAIgiAIgiAIgiAyBYmWBK6++moMHz4cjY2N2HTTTfHKK69UOksE0SE4//zzsfHGG6N79+4YMGAA9thjD3z44Ycl2yxduhRHH300+vbti27dumGvvfbCrFmzSrb56quvMG7cOHTp0gUDBgzAySefjNbW1jRPhSA6BBdccAFyuRyOP/749u+oDBJE8syYMQMHHngg+vbti6amJowcORLTpk1r/z0IApx55pkYPHgwmpqaMHbsWHz88cclacydOxfjx49Hjx490KtXLxx++OFYuHBh2qdCEFVJW1sbzjjjDKy88spoamrCKqusgnPPPRfsmrxUDgnCL88++yx23XVXrLDCCsjlcnjwwQdLfvdV5t5++21stdVWaGxsxNChQ3HhhRcmfWqpQqJlJ+eee+7BiSeeiLPOOguvv/461l9/fey4446YPXt2pbNGEFXPM888g6OPPhovvfQSJk2ahJaWFuywww5YtGhR+zYnnHACHn74Ydx333145pln8O2332LPPfds/72trQ3jxo1Dc3MzXnzxRfzzn//ErbfeijPPPLMSp0QQVcurr76K66+/Huutt17J91QGCSJZfvzxR2yxxRaoq6vDo48+ivfeew+XXHIJevfu3b7NhRdeiCuuuALXXXcdXn75ZXTt2hU77rgjli5d2r7N+PHj8e6772LSpEl45JFH8Oyzz+LII4+sxCkRRNXxt7/9Dddeey2uuuoqvP/++/jb3/6GCy+8EFdeeWX7NlQOCcIvixYtwvrrr4+rr75a+LuPMjd//nzssMMOWGmllfDaa6/hoosuwtlnn40bbrgh8fNLjYDo1GyyySbB0Ucf3f53W1tbsMIKKwTnn39+BXNFEB2T2bNnBwCCZ555JgiCIJg3b15QV1cX3Hfffe3bvP/++wGAYOrUqUEQBMHEiRODfD4fzJw5s32ba6+9NujRo0ewbNmydE+AIKqUBQsWBKuttlowadKkYJtttgmOO+64IAioDBJEGpxyyinBlltuKf29UCgEgwYNCi666KL27+bNmxc0NDQEd911VxAEQfDee+8FAIJXX321fZtHH300yOVywYwZM5LLPEF0EMaNGxccdthhJd/tueeewfjx44MgoHJIEEkDIHjggQfa//ZV5q655pqgd+/eJX3SU045JVhjjTUSPqP0IKdlJ6a5uRmvvfYaxo4d2/5dPp/H2LFjMXXq1ArmjCA6Jj/99BMAoE+fPgCA1157DS0tLSVlcM0118SwYcPay+DUqVMxcuRIDBw4sH2bHXfcEfPnz8e7776bYu4Jono5+uijMW7cuJKyBlAZJIg0+O9//4vRo0dj7733xoABA7DhhhvixhtvbP/9888/x8yZM0vKYc+ePbHpppuWlMNevXph9OjR7duMHTsW+XweL7/8cnonQxBVyuabb47Jkyfjo48+AgC89dZbeP7557HzzjsDoHJIEGnjq8xNnToVW2+9Nerr69u32XHHHfHhhx/ixx9/TOlskqW20hkgKsecOXPQ1tZWMhADgIEDB+KDDz6oUK4IomNSKBRw/PHHY4sttsC6664LAJg5cybq6+vRq1evkm0HDhyImTNntm8jKqPRbwRBqLn77rvx+uuv49VXXy37jcogQSTPZ599hmuvvRYnnngiTjvtNLz66qs49thjUV9fj0MOOaS9HInKGVsOBwwYUPJ7bW0t+vTpQ+WQIAz405/+hPnz52PNNddETU0N2tracN5552H8+PEAQOWQIFLGV5mbOXMmVl555bI0ot/YqViqFRItCYIgUuDoo4/GO++8g+eff77SWSGITsPXX3+N4447DpMmTUJjY2Ols0MQnZJCoYDRo0fjr3/9KwBgww03xDvvvIPrrrsOhxxySIVzRxCdg3vvvRd33HEH7rzzTqyzzjp48803cfzxx2OFFVagckgQRKah8PBOTL9+/VBTU1O2SuqsWbMwaNCgCuWKIDoexxxzDB555BE89dRTGDJkSPv3gwYNQnNzM+bNm1eyPVsGBw0aJCyj0W8EQch57bXXMHv2bGy00Uaora1FbW0tnnnmGVxxxRWora3FwIEDqQwSRMIMHjwYa6+9dsl3a621Fr766isAxXKk6o8OGjSobJHI1tZWzJ07l8ohQRhw8skn409/+hP2228/jBw5EgcddBBOOOEEnH/++QCoHBJE2vgqc52hn0qiZSemvr4eo0aNwuTJk9u/KxQKmDx5MsaMGVPBnBFExyAIAhxzzDF44IEHMGXKlDLr/qhRo1BXV1dSBj/88EN89dVX7WVwzJgxmD59ekmDNWnSJPTo0aNsEEgQRCnbb789pk+fjjfffLP93+jRozF+/Pj2z1QGCSJZtthiC3z44Ycl33300UdYaaWVAAArr7wyBg0aVFIO58+fj5dffrmkHM6bNw+vvfZa+zZTpkxBoVDApptumsJZEER1s3jxYuTzpUP/mpoaFAoFAFQOCSJtfJW5MWPG4Nlnn0VLS0v7NpMmTcIaa6zRIULDAdDq4Z2du+++O2hoaAhuvfXW4L333guOPPLIoFevXiWrpBIE4cZRRx0V9OzZM3j66aeD7777rv3f4sWL27f57W9/GwwbNiyYMmVKMG3atGDMmDHBmDFj2n9vbW0N1l133WCHHXYI3nzzzeCxxx4L+vfvH5x66qmVOCWCqHrY1cODgMogQSTNK6+8EtTW1gbnnXde8PHHHwd33HFH0KVLl+D2229v3+aCCy4IevXqFTz00EPB22+/Hey+++7ByiuvHCxZsqR9m5122inYcMMNg5dffjl4/vnng9VWWy3Yf//9K3FKBFF1HHLIIcGKK64YPPLII8Hnn38e3H///UG/fv2CP/7xj+3bUDkkCL8sWLAgeOONN4I33ngjABD8/e9/D954443gyy+/DILAT5mbN29eMHDgwOCggw4K3nnnneDuu+8OunTpElx//fWpn29SkGhJBFdeeWUwbNiwoL6+Pthkk02Cl156qdJZIogOAQDhv1tuuaV9myVLlgS/+93vgt69ewddunQJfvnLXwbfffddSTpffPFFsPPOOwdNTU1Bv379gj/84Q9BS0tLymdDEB0DXrSkMkgQyfPwww8H6667btDQ0BCsueaawQ033FDye6FQCM4444xg4MCBQUNDQ7D99tsHH374Yck2P/zwQ7D//vsH3bp1C3r06BFMmDAhWLBgQZqnQRBVy/z584PjjjsuGDZsWNDY2BiMGDEi+POf/xwsW7asfRsqhwThl6eeeko4FjzkkEOCIPBX5t56661gyy23DBoaGoIVV1wxuOCCC9I6xVTIBUEQVMbjSRAEQRAEQRAEQRAEQRAEUQ7NaUkQBEEQBEEQBEEQBEEQRKYg0ZIgCIIgCIIgCIIgCIIgiExBoiVBEARBEARBEARBEARBEJmCREuCIAiCIAiCIAiCIAiCIDIFiZYEQRAEQRAEQRAEQRAEQWQKEi0JgiAIgiAIgiAIgiAIgsgUJFoSBEEQBEEQBEEQBEEQBJEpSLQkCIIgCIIgCIIgCIIgCCJTkGhJEARBEARBEFXI8OHDkcvlcOihh1Y6KwRBEARBEN4h0ZIgCIIgCMKS3/zmN8jlcsjlcpgyZYrVvk888UT7vscdd1xCOSQIgiAIgiCI6oZES4IgCIIgCEsOPvjg9s+333671b7/+te/hOlUiqeffrpdRH366acrnR2CIAiCIAiCAECiJUEQBEEQhDVbbLEFVlllFQDAf/7zHyxZssRov0WLFuGBBx4AAKyzzjoYNWpUYnkkCIIgCIIgiGqGREuCIAiCIAgHDjroIADA/Pnz8dBDDxntc//992PRokUl+xMEQRAEQRAEUQ6JlgRBEARBEA4cdNBByOVyAMxDxKPQ8Hw+jwMPPDCxvBEEQRAEQRBEtUOiJUEQBEEQhAMjRozAFltsAQB4/PHHMXv2bOX23377LSZPngwA+NnPfoYVV1yxbJsHH3wQe++9N4YNG4bGxkb06tULo0ePxjnnnIMff/zRKF8TJ07EgQceiBEjRqBr165obGzEyiuvjL322gu33norFi9eDAD44osvkMvlsN1227Xvu91227XPbxn9u/XWW8uO0dzcjGuuuQbbbbcd+vfvj/r6egwaNAi77LILbr/9dhQKBWn+Dj30UORyOQwfPhwA8N133+GUU07BOuusg+7du1vPrSmak/Pee+/F9ttvj/79+6OpqQlrrLEG/vjHP2Lu3LnSdLbddlvkcjlsu+22yuOdffbZ7ccTEf129tlnAwCeeuop7LHHHlhhhRXQ1NSEtdZaC+eee2674zZi4sSJ2GWXXdq3W3vttXH++eejubnZ+Fq8+uqr2H///TF06FA0NjZi6NChmDBhAj744AOj/T/55BOccMIJGDlyJHr27ImmpiaMGDEChx56KKZNmybdj78HhUIBN998M7bbbjsMHDgQ+XyeVjgnCIIgCMKegCAIgiAIgnDihhtuCAAEAILLL79cue1FF13Uvu1tt91W8tvcuXODn/3sZ+2/i/4NGDAgmDp1qjT9OXPmBNtvv70yDQDBLbfcEgRBEHz++efabdntIz7//PNgzTXXVO6z5ZZbBj/88IMwn4ccckgAIFhppZWCqVOnBv369Svb/6mnntJe+4innnqqfb/JkycHBx54oDRfq666avDdd98J09lmm20CAME222yjPN5ZZ53Vnp6I6LezzjorOP/884NcLifMy+abbx4sXLgwKBQKwbHHHivN80477RS0trYKj7XSSisFAIJDDjkkuOmmm4La2lphGg0NDcG9996rPK+LLrooqKurk+Yjl8sFZ5xxhnBf9h48+uijwdixY8v2P+SQQ5THJwiCIAiC4CGnJUEQBEEQhCP77LMPGhsbAZSuCi4i+r1bt27Yc889279ftmwZxo4diylTpqCmpgYHHXQQ7rrrLrz00kt47rnncN5556Fv376YPXs2dtllF3z55ZdlaS9evBjbbbddu5Nz1KhRuP766/HCCy9g2rRpeOCBB3DCCSdghRVWaN9nxRVXxPTp03HzzTe3f3fzzTdj+vTpJf/22GOP9t8XLlyI7bffvt25t8cee+C///0vpk2bhvvuuw/bbLMNAOD555/Hrrvuira2Nun1WLhwIfbaay8sXboUf/7zn/H000/jlVdewU033YTBgwcrr6WMM844A7fffjv22GMP3H///XjttdcwceJEjBs3DkDRSZgGjz76KE499VRsttlmuPPOOzFt2jQ89thj2HnnnQEAL774Is4//3xceumluOKKK7DzzjvjP//5D1577TU89NBD2GyzzQAAjz32GG688Ublsd5880389re/xYABA3DllVfi5ZdfxjPPPINTTjkFDQ0NWLZsGcaPHy91S1500UU4+eST0dLSgvXWWw/XXnstnnzySUybNg133HEHxowZgyAIcO655+KKK65Q5uWUU07Bk08+id12263kHkTnTRAEQRAEYUylVVOCIAiCIIhqZp999ml3k33wwQfCbd566632bQ4++OCS30477bQAQNCrV69g2rRpwv2/+OKLYPDgwQGA4IADDij7/YQTTmhP/+ijjw4KhYIwnWXLlgUzZ84s+Y51yekcjieddFL7tqeffnrZ74VCIRg/fnz7Ntdcc03ZNpHTEkDQrVu34M0331QeUwebfwDBX/7yF2G+dthhhwBAUFtbG8yePbtsG99OSwDBXnvtVeaSbG1tDTbbbLMAQNC9e/egsbExOP7448vSWbRoUbuTcr311hMeK/ody52rIhfplClT2h2YG2+8cdnv7777brvD8qyzzhI+O21tbe0O1m7dugVz584t+Z2/B6JngyAIgiAIwhZyWhIEQRAEQcTg4IMPbv8sc1uy37PbL1y4EFdffTUA4Nxzz8WoUaOE+6+00ko444wzAAD33XdfyXyI8+bNw/XXXw8gdFhefvnl0vkW6+vrMXDgQJPTKmPZsmX4xz/+AQBYZ5112udsZMnlcrjmmmvQt29fAMBVV12lTPOPf/wj1l9/faf8iBg1ahROO+00Yb5OPPFEAEBrayumTp3q7ZgyunTpghtuuAE1NTUl39fU1ODII48EACxYsAD9+/fHhRdeKNz/kEMOAQC8/fbb+Omnn5THu+SSSzBo0KCy77fbbjscccQRAMI5L3m35SWXXIKWlhaMHj0aZ511lvDZyefzuPLKK9HQ0ICFCxfi3//+tzQfq6++uvDZIAiCIAiCsIVES4IgCIIgiBjsuOOO7ULgHXfcgSAISn4vFAq48847AQBDhgwpWfjmmWeeaRejfvWrXymPs/XWWwMAWlpa8Nprr7V/P2XKlPbFdY499tgykcwXr732GubNmwcgXExHdpwePXpgn332AQC89957+O6776Rpjh8/3mseDzjgAKlgywrCn332mdfjivj5z3+OPn36CH9jhdo999wTdXV12u0+//xz6bF69+6N3XffXfr7YYcd1v75ySefLPnt4YcfBgDstdde0msHAL169cLIkSMBQCn67rvvvok9gwRBEARBdC5ItCQIgiAIgohBbW0tDjjgAADhitzPP/98ye+TJ0/Gt99+CyAU6fL5YveLdb0NHjy4bOVu9t+6667bvu3MmTPbP7/xxhvtn7faaiu/J8fwzjvvtH/edNNNlduyv7P7sXTr1g0jRozwk7nlrLnmmtLfWAFxwYIFXo8rYvXVV5f+1qtXL+vtVHnecMMNUVtbK/19gw02QH19PQBg+vTp7d9/+eWX+P777wEAp556qvL5y+Vy7c8r+/zxrLfeetLfCIIgCIIgbCDRkiAIgiAIIiaqEHFZaDgAzJ492+l4kbMSAObMmdP+2XUBGxPmzp3b/nnAgAHKbdkwZXY/FlaQ80WXLl2kv7FisWqBoLTz4iPPuvtRW1vbLtqy98PH88fTu3dvpzQJgiAIgiB45K9kCYIgCIIgCCM22GADjBw5EtOnT8d9993XPv/fokWLcP/99wMIw5PXXnvtkv1YIer111+XhgnzDBkyxF/mHVCFEZtCIcT+cL0f7PN35plnYu+99zbar2vXrtLf6L4SBEEQBOELEi0JgiAIgiA8cPDBB+Pkk0/GvHnz8PDDD+NXv/oVHnjggfZFc3iXJYD2BWsAoH///k5iZL9+/do/f/fdd1h55ZUdcq+HDa+eNWuWMqyZDR+WzeuYNSJXY6FQUG7HLoKUFWbNmqX8vbW1td1hyd4P9vmrq6srmYKAIAiCIAii0lB4OEEQBEEQhAfGjx/f7jK7/fbbARRDw+vq6rD//vuX7bPhhhu2f37hhRecjrvRRhu1f3722Wet9zd16bGC1ssvv6zc9pVXXhHul2W6d+8OAPjxxx+V23300UdpZMeKN998E62trdLf33rrLTQ3NwMovR8jRoxAz549Abg/fwRBEARBEElBoiVBEARBEIQHBg8ejLFjxwIAJk6ciHfeeQeTJ08GAOy0007o379/2T5jx45tn9PwiiuuKFt53ITtttuuPVz3yiuvtJ6vsbGxsf3zsmXLpNuNGjWqfR7Kf/7zn1JH4oIFC3DvvfcCANZee+1E59n0SeRQ/eijj6SL3syZMweTJk1KM1tGzJ07t30VcBE333xz++foGQXCUO5ddtkFAPDEE0/g/fffTy6TBEEQBEEQlpBoSRAEQRAE4YkoBLylpQX77bdfu4AoCg0HwsVojjnmGAD/3979hTTVx3Ec/zw4z8yxLkoc2qiIyJtGgqiFgdBFKCJRLummMpiKJTG9M0hMu1NYfxaECBIm3bRddGEXVjgHWRdDZEy6SQsmIYghEqWWdiENZU6e58Hy+Dzv193O73zP+Z2xq8/O7/eVXr9+raampk2XJ09PT6unpyfpGvX19ZKkSCQir9ebMvxcWlpKar6yNlR8//59yntbrVZ5PB5Jqx3BOzo6ks5ZWVlRY2NjojnQr2fbCUpLSyVJi4uLun//ftL40tKSPB6Pvn79+qen9rc0NzdvuEw8FAqpu7tb0mrwXFhYuG68paVFaWlpWl5eltvtVjweT3mPHz9+qL+/f9NzAAAAtgp7WgIAAGyRs2fPym63a35+XrFYTNJqN+XKysqUNe3t7QqFQnr79q3u3r2roaEh1dbWKj8/XzabTZ8/f1YsFtOLFy/0/PlzuVyuRHj4S0dHhwYHBxWNRuX3+zUyMqL6+nq5XC4ZhqF4PK5wOKwnT57o9u3bqqmpSdTu379fTqdT8XhcXV1dcjqdysvLSyx1dzgciaXTra2tCgaDmpiYUFtbm6LRqK5cuaKcnBxNTk7K7/draGhIknTixAnV1dVt4bf7e1VUVOjAgQP6+PGjbt68qZmZGZ07d04ZGRmKxWK6d++eRkdHdfz4cb1582a7p7vOsWPHND4+roKCArW0tKioqEgLCwsaGBiQz+fT9+/fZbFY9ODBg6Ral8ulrq4uNTU1aXx8XEePHlVdXZ1OnTolh8Ohb9++6cOHDxoZGdHTp0/16dMnRaPRbW8GBQAA/vsILQEAALbIrl275Ha71dvbmzhWXV0tq9WassZqtWpwcFA1NTUKBoMaGxvb9A3F3bt3Jx3LzMzUq1evVFVVpeHhYUUikX8UGN64cUNXr17V5OSkzpw5s26st7c3EXLa7Xa9fPlS5eXlevfunQKBgAKBQNL1SkpK9OzZsx3VSdowDD1+/FhlZWX68uWLfD6ffD5fYjwtLU137tzR7Oys6ULL/Px8NTY2qqGhYcPfjmEYevTokYqLizes93q9stls8nq9mpubU2dnpzo7Ozc81zCMdVsKAAAA/C4sDwcAANhCly9fXvc51dLwtex2uwKBgMLhsDwej/Ly8mS322WxWLRnzx4VFhbq2rVrGhgYSLmnYlZWlkKhkILBoNxut5xOp6xWqzIyMnTo0CGdP39e/f39GzYEamhoUCAQ0OnTp5WdnS2LJfX/2gcPHtTY2Jj8fr9KS0u1d+9epaeny+FwqKysTH19fRoeHt4xXcPXOnnypCKRiC5evKjc3Fylp6crJycnEQZfv359u6eYksfjUTgcVnV1tXJzc2UYhvbt26dLly5pdHRUFy5c2LS+trZWExMTunXrlkpKSpSVlSWLxSKbzaYjR46oqqpKDx8+1NTUlA4fPvyHngoAAPyf/bXyb3Z8BwAAAAAAAIDfhDctAQAAAAAAAJgKoSUAAAAAAAAAUyG0BAAAAAAAAGAqhJYAAAAAAAAATIXQEgAAAAAAAICpEFoCAAAAAAAAMBVCSwAAAAAAAACmQmgJAAAAAAAAwFQILQEAAAAAAACYCqElAAAAAAAAAFMhtAQAAAAAAABgKoSWAAAAAAAAAEyF0BIAAAAAAACAqRBaAgAAAAAAADCVn70xjxdATV3yAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt',\n", + "3000, True, patience)\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ACzX5dNuOfDV" + }, + "outputs": [], + "source": [ + "mse_stop_ae2 = 0.0101" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "LgfmjxdIQ_L2", + "outputId": "4da9634a-4d64-4a8a-ed1f-83f7822bad57" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m229/229\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAf91JREFUeJzt3Xl4VOXd//HPTJYJW0KAkJCFRCCgoFGxrYKlaIEiKm5VEfsUVLD2qVa0at1FRIvrr3WpFnf6FNGi4lN9tDbg2qIWRA2CBRECgYEsQBLCkm3O74/JmcyZLTPZZpK8X9fFZTI5c+aemQzyOd/7/t42wzAMAQAAAACAqLNHewAAAAAAAMCNkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAIgqm82mu+++O9rD6HFefPFF2Ww2FRcXR3zfDz74QDabTR988EG7j6u7y8vL02WXXRbtYVjcfffdstlsqqioiPZQWiUWX1MAaAtCOgC00pNPPimbzaaTTz65zed6++23CaqdqLKyUklJSbLZbPrmm28CHnPZZZfJZrMF/JOUlGQ59r777tM555yj9PT0Nl90OO2004I+rvcffl/abvXq1br77rtVWVnZ5nN99913uuqqqzRs2DAlJSUpOTlZp556qh599FEdPny47YMFAPQY8dEeAAB0VUuXLlVeXp7+/e9/a8uWLRoxYkSrz/X222/rj3/8I8Grkyxfvlw2m00ZGRlaunSp7r333oDHORwOPfvss363x8XFWb6/4447lJGRoRNPPFHvvvtum8Z2++23a+7cuZ7v16xZo8cee0y33XabjjnmGM/tBQUFbXqcn//857rkkkvkcDgivu+PfvQjHT58WImJiW0aQ7StXr1aCxYs0GWXXab+/fu3+jz/93//p4suukgOh0OzZs3Sscceq7q6Ov3zn//UTTfdpA0bNujpp59uv4EDALo1QjoAtMK2bdu0evVqvf7667rqqqu0dOlSzZ8/P9rD6vGOHDmixMRE2e2hJ4r95S9/0Zlnnqnc3Fy99NJLQUN6fHy8/uu//qvFx922bZvy8vJUUVGhtLS0Vo3dNGXKFMv3SUlJeuyxxzRlyhSddtppQe938OBB9enTJ+zHiYuL87vYEC673e43m6Cn2rZtmy655BLl5ubqvffe05AhQzw/u/rqq7Vlyxb93//9XxRHiEiE+3cIAHQk/gYCgFZYunSpUlNTddZZZ+nCCy/U0qVL/Y4Jtm63uLhYNptNL774oiT3tOo//vGPkmSZzmw6ePCgbrjhBuXk5MjhcGjUqFF6+OGHZRiG32P+5S9/0UknnaRevXppwIABuuSSS1RSUmI55rTTTtOxxx6rjRs36vTTT1fv3r2VlZWlBx980O98R44c0d13362RI0cqKSlJQ4YM0QUXXKDvvvsu4vHV1tbq+uuvV1pamvr166dzzjlHO3fuDPj67tq1S1dccYXS09PlcDg0ZswYPf/88wFf35dffll33HGHsrKy1Lt3b1VXVwc8p2nHjh36+OOPdckll+iSSy7xXHBpi7y8vDbdP1LmGuKNGzfq0ksvVWpqqn74wx9KkoqKinTZZZd5pl1nZGToiiuu0N69ey3nCLQmPS8vT2effbb++c9/6gc/+IGSkpI0bNgw/fnPf7bcN9DvdiS/V9u3b9c555yjPn36aPDgwbr++uv17rvvhrXO/cCBA7ruuuuUl5cnh8OhwYMHa8qUKVq3bp3luM8++0xnnHGGUlJS1Lt3b02cOFH/+te/LK/hTTfdJEk66qijPJ+7SNfoP/jgg6qpqdFzzz1nCeimESNGaN68eUHvv2/fPt1444067rjj1LdvXyUnJ2vatGn66quv/I59/PHHNWbMGPXu3Vupqan63ve+p5deeini1yaYiooKXXzxxUpOTtbAgQM1b948HTlyxHJMQ0ODFi5cqOHDh8vhcCgvL0+33XabamtrLccFW5Lhu37c/D3817/+pd/85jdKS0tTnz59dP7556u8vNxyX8MwdO+99yo7O1u9e/fW6aefrg0bNvg9RrivabC/Q7788kvZbDb9/ve/9zv36tWrZbPZtGzZspZeTgBoNSrpANAKS5cu1QUXXKDExETNnDlTTz31lNasWaPvf//7EZ/rqquuktPpVGFhof7nf/7H8jPDMHTOOefo/fff15w5c3TCCSfo3Xff1U033aRdu3ZZ/hF533336c4779TFF1+suXPnqry8XI8//rh+9KMf6YsvvrBM592/f7/OOOMMXXDBBbr44ov16quv6uabb9Zxxx2nadOmSZIaGxt19tlna9WqVbrkkks0b948HThwQIWFhfr66681fPjwiMY3d+5c/eUvf9Gll16q8ePH67333tNZZ53l93qUlpbqlFNOkc1m0zXXXKO0tDS98847mjNnjqqrq3XddddZjl+4cKESExN14403qra2tsUp2MuWLVOfPn109tlnq1evXho+fLiWLl2q8ePHBzw+UDOtxMREJScnh3ycznDRRRcpPz9fv/vd7zwXRQoLC7V161ZdfvnlysjI8Ey13rBhgz799FPLBaBAtmzZogsvvFBz5szR7Nmz9fzzz+uyyy7TSSedpDFjxoS8bzi/VwcPHtSPf/xj7d69W/PmzVNGRoZeeuklvf/++2E951/+8pd69dVXdc0112j06NHau3ev/vnPf+qbb77R2LFjJUnvvfeepk2bppNOOknz58+X3W7XCy+8oB//+Mf6+OOP9YMf/EAXXHCBNm/erGXLlun3v/+9Bg0aJEkRz4R48803NWzYsKC/Py3ZunWr3njjDV100UU66qijVFpaqsWLF2vixInauHGjMjMzJUnPPPOMrr32Wl144YWe8FxUVKTPPvtMl156adivTSgXX3yx8vLytGjRIn366ad67LHHtH//fstFmrlz52rJkiW68MILdcMNN+izzz7TokWL9M0332jFihWteg0k6de//rVSU1M1f/58FRcX6w9/+IOuueYavfLKK55j7rrrLt17770688wzdeaZZ2rdunX6yU9+orq6ula9pibfv0OOPvponXrqqVq6dKmuv/56y7FLly5Vv379dO6557b6uQJAiwwAQETWrl1rSDIKCwsNwzAMl8tlZGdnG/PmzbMc9/777xuSjPfff99y+7Zt2wxJxgsvvOC57eqrrzYC/ZX8xhtvGJKMe++913L7hRdeaNhsNmPLli2GYRhGcXGxERcXZ9x3332W49avX2/Ex8dbbp84caIhyfjzn//sua22ttbIyMgwfvrTn3pue/755w1Jxv/7f//Pb1wulyui8X355ZeGJONXv/qV5bhLL73UkGTMnz/fc9ucOXOMIUOGGBUVFZZjL7nkEiMlJcU4dOiQYRjNr++wYcM8t4XjuOOOM372s595vr/tttuMQYMGGfX19ZbjZs+ebUgK+Gfq1KkBz11eXu73fNpq+fLlfr9H8+fPNyQZM2fO9Ds+0GuxbNkyQ5Lx0UcfeW574YUXDEnGtm3bPLfl5ub6HVdWVmY4HA7jhhtu8NwW6Hc73N+rRx55xJBkvPHGG57bDh8+bBx99NEBPy++UlJSjKuvvjroz10ul5Gfn29MnTrV83tqGO7X5aijjjKmTJniue2hhx7yew0iUVVVZUgyzj333LDvk5uba8yePdvz/ZEjR4zGxkbLMdu2bTMcDodxzz33eG4799xzjTFjxoQ8d0uvTTDm79M555xjuf1Xv/qVIcn46quvDMNo/hzPnTvXctyNN95oSDLee+89z23BPge+z9/8PZw8ebLl/br++uuNuLg4o7Ky0jAM9+9hYmKicdZZZ1mOu+222wxJrXpNQ/0dsnjxYkOS8c0333huq6urMwYNGmR5LADoCEx3B4AILV26VOnp6Tr99NMluad1zpgxQy+//LIaGxvb9bHefvttxcXF6dprr7XcfsMNN8gwDL3zzjuSpNdff10ul0sXX3yxKioqPH8yMjKUn5/vV6Xs27evZa11YmKifvCDH2jr1q2e21577TUNGjRIv/71r/3GZVZjwx3f22+/LUl+x/lWxQ3D0Guvvabp06fLMAzLc5k6daqqqqr8pu7Onj1bvXr1CvwC+igqKtL69es1c+ZMz20zZ85URUVFwIZvSUlJKiws9Ptz//33h/V4He2Xv/yl323er8WRI0dUUVGhU045RZLCmvY8evRoTZgwwfN9WlqaRo0aZfndCCac36u///3vysrK0jnnnOO5LSkpSVdeeWWL55ek/v3767PPPpPT6Qz48y+//FLffvutLr30Uu3du9fz+3Pw4EFNmjRJH330kVwuV1iP1RJzaUW/fv1afQ6Hw+FZ/9zY2Ki9e/eqb9++GjVqlOX96t+/v3bu3Kk1a9YEPVdLr01Lrr76asv35mff/Pya//3Nb35jOe6GG26QpDatvf/FL35hmeUxYcIENTY2avv27ZKklStXqq6uTr/+9a8tx/n+HSKF/5qaAv0dcvHFFyspKcmylOndd99VRUVFWH0qAKAtmO4OABFobGzUyy+/rNNPP13btm3z3H7yySfrkUce0apVq/STn/yk3R5v+/btyszM9AsBZpdv8x+w3377rQzDUH5+fsDzJCQkWL7Pzs72m/acmpqqoqIiz/ffffedRo0apfj44P+rCHd827dvl91u1/Dhwy3HjRo1yvJ9eXm5Kisr9fTTTwfthl1WVmb5/qijjgo6Pl9/+ctf1KdPHw0bNkxbtmyR5A6IeXl5Wrp0qd/0+7i4OE2ePDns83e2QM993759WrBggV5++WW/16qqqqrFcw4dOtTvttTUVO3fv7/F+4bze7V9+3YNHz7c77hwd0d48MEHNXv2bOXk5Oikk07SmWeeqVmzZmnYsGGS3J8FyR28gqmqqlJqampYjxeKueThwIEDrT6Hy+XSo48+qieffFLbtm2zXOgbOHCg5+ubb75ZK1eu1A9+8AONGDFCP/nJT3TppZfq1FNP9RzT0mvTEt+/P4YPHy673e5Zp29+jn3fq4yMDPXv39/zeW8N39878/0xf+/Mc/uOMS0tze+9DPc1NQX6HPXv31/Tp0/XSy+9pIULF0pyX6DNysrSj3/840ifHgBEhJAOABF47733tHv3br388st6+eWX/X6+dOlST0gPtva3vavtkvsfpTabTe+8807Ajt19+/a1fB+sq7cRoBldZzIrnP/1X/8VNGT5bj0WbhXdMAwtW7ZMBw8e1OjRo/1+XlZWppqaGr/XKpYFeu4XX3yxVq9erZtuukknnHCC+vbtK5fLpTPOOCOsCnJbfjc64/fq4osv1oQJE7RixQr94x//0EMPPaQHHnhAr7/+uqZNm+Z5jg899JBOOOGEgOdor/c4OTlZmZmZ+vrrr1t9jt/97ne68847dcUVV2jhwoUaMGCA7Ha7rrvuOsv7dcwxx2jTpk1666239Pe//12vvfaannzySd11111asGCBpJZfm0gF+zuspb4GoQT7+689f3fCfU1Nwf4OmTVrlpYvX67Vq1fruOOO09/+9jf96le/ovM7gA5HSAeACCxdulSDBw/2dGP39vrrr2vFihX605/+pF69enmqO5WVlZbjAlWbgv2jNzc3VytXrtSBAwcs1er//Oc/np9L8jRxO+qoozRy5MhWPTdfw4cP12effab6+nq/Snyk48vNzZXL5fJU502bNm2ynM/s/N7Y2NjuFewPP/xQO3fu1D333GPZb1xyV+t+8Ytf6I033ujSU1n379+vVatWacGCBbrrrrs8t5vV5ViQm5urjRs3yjAMy++9ObMhHEOGDNGvfvUr/epXv1JZWZnGjh2r++67T9OmTfPM1khOTm7xd6gtYdN09tln6+mnn9Ynn3yicePGRXz/V199Vaeffrqee+45y+2VlZWeZnamPn36aMaMGZoxY4bq6up0wQUX6L777tOtt97q2RIv1GvTkm+//dZSVd6yZYtcLpdn9wLzc/ztt99aPkOlpaWqrKz0fN4ldyXc9+++uro67d69O6zXxZd57m+//dYyM6C8vNxvlkckr2koZ5xxhtLS0rR06VKdfPLJOnTokH7+85+3avwAEAkuBQJAmA4fPqzXX39dZ599ti688EK/P9dcc40OHDigv/3tb5Lc/6iMi4vTRx99ZDnPk08+6Xduc39r33/UnnnmmWpsbNQTTzxhuf33v/+9bDab5x/eF1xwgeLi4rRgwQK/ypNhGH7bb4Xjpz/9qSoqKvwe2zxnJOMz//vYY49ZjvvDH/5g+T4uLk4//elP9dprrwWsTvpuyRQJc6r7TTfd5PfeXXnllcrPzw+4lV57qqio0H/+8x8dOnSoQ85vViN9fwd8X+domjp1qnbt2uX5nEjutfPPPPNMi/dtbGz0m7I/ePBgZWZmerYAO+mkkzR8+HA9/PDDqqmp8TuH9+9QsM+d5N6qz7zYFMpvf/tb9enTR3PnzlVpaanfz7/77js9+uijQe8fFxfn934tX75cu3btstzm+xlOTEzU6NGjZRiG6uvrw3ptWuJ78fHxxx+X1Pz5PfPMMyX5/z79v//3/yTJslxk+PDhfn/3Pf30062eSTR58mQlJCTo8ccft7xegX63w31NWxIfH6+ZM2fqr3/9q1588UUdd9xxfjN5AKAjUEkHgDD97W9/04EDBywNr7ydcsopnqrLjBkzlJKSoosuukiPP/64bDabhg8frrfeestvnbDkDhaSu7Ha1KlTFRcXp0suuUTTp0/X6aefrttvv13FxcU6/vjj9Y9//EP/+7//q+uuu85TNRw+fLjuvfde3XrrrSouLtZ5552nfv36adu2bVqxYoV+8Ytf6MYbb4zo+c6aNUt//vOf9Zvf/Eb//ve/NWHCBB08eFArV67Ur371K5177rlhj++EE07QzJkz9eSTT6qqqkrjx4/XqlWrAlZP77//fr3//vs6+eSTdeWVV2r06NHat2+f1q1bp5UrV2rfvn0RPQ/JvUf7a6+9pilTpngqjr7OOeccPfrooyorK9PgwYMlufeE/stf/hLw+PPPP98T8v7nf/5H27dv94Tvjz76SPfee68k6ec//7mnCvjEE09owYIFev/993XaaadF/DxakpycrB/96Ed68MEHVV9fr6ysLP3jH/+w9E+ItquuukpPPPGEZs6cqXnz5mnIkCFaunSp530JVd0+cOCAsrOzdeGFF+r4449X3759tXLlSq1Zs0aPPPKIJMlut+vZZ5/VtGnTNGbMGF1++eXKysrSrl279P777ys5OVlvvvmmpObP3e23365LLrlECQkJmj59uvr06aNZs2bpww8/bHG69fDhw/XSSy9pxowZOuaYYzRr1iwde+yxqqur0+rVq7V8+XLLvuC+zj77bN1zzz26/PLLNX78eK1fv15Lly71W0f+k5/8RBkZGTr11FOVnp6ub775Rk888YTOOuss9evXT5WVlS2+Ni3Ztm2bzjnnHJ1xxhn65JNPPFsmHn/88ZKk448/XrNnz9bTTz+tyspKTZw4Uf/+97+1ZMkSnXfeeZ5mmpJ7q7Zf/vKX+ulPf6opU6boq6++0rvvvhtRJdtbWlqabrzxRi1atEhnn322zjzzTH3xxRd65513/M4Z7msajlmzZumxxx7T+++/rwceeKBVYweAiHVqL3kA6MKmT59uJCUlGQcPHgx6zGWXXWYkJCR4tg8rLy83fvrTnxq9e/c2UlNTjauuusr4+uuv/bZga2hoMH79618baWlphs1ms2zHduDAAeP66683MjMzjYSEBCM/P9946KGHLNsQmV577TXjhz/8odGnTx+jT58+xtFHH21cffXVxqZNmzzHTJw4MeBWTrNnzzZyc3Mttx06dMi4/fbbjaOOOspISEgwMjIyjAsvvND47rvvIh7f4cOHjWuvvdYYOHCg0adPH2P69OlGSUlJwK2aSktLjauvvtrIycnxPO6kSZOMp59+2nOMuX3S8uXLg74f3q+LJOO5554LeswHH3xgSDIeffRRz+uhIFuwyWfbLnP7sUB/Am2d1tI2Y95CbcFWXl7ud/zOnTuN888/3+jfv7+RkpJiXHTRRYbT6fR7nYNtwXbWWWf5nXPixInGxIkTPd8H24It3N+rrVu3GmeddZbRq1cvIy0tzbjhhhs879Gnn34a9LWora01brrpJuP44483+vXrZ/Tp08c4/vjjjSeffNLv2C+++MK44IILjIEDBxoOh8PIzc01Lr74YmPVqlWW4xYuXGhkZWUZdrvd8nqY72m4Nm/ebFx55ZVGXl6ekZiYaPTr18849dRTjccff9w4cuSI57hAW7DdcMMNxpAhQ4xevXoZp556qvHJJ5/4veaLFy82fvSjH3mez/Dhw42bbrrJqKqqivi18WX+Pm3cuNG48MILjX79+hmpqanGNddcYxw+fNhybH19vbFgwQLP3wk5OTnGrbfeanmOhmEYjY2Nxs0332wMGjTI6N27tzF16lRjy5YtQbdgW7NmjeX+gX7HGhsbjQULFnheq9NOO834+uuvW/2ahvt3yJgxYwy73W7s3LmzxdcSANqDzTCi3CUIAAD0eH/4wx90/fXXa+fOncrKyor2cACPE088UQMGDNCqVauiPRQAPQRr0gEAQKc6fPiw5fsjR45o8eLFys/PJ6Ajpqxdu1ZffvmlZs2aFe2hAOhBWJMOAAA61QUXXKChQ4fqhBNOUFVVlf7yl7/oP//5T4c37gPC9fXXX+vzzz/XI488oiFDhmjGjBnRHhKAHoSQDgAAOtXUqVP17LPPaunSpWpsbNTo0aP18ssvE4QQM1599VXdc889GjVqlJYtWxa04SQAdATWpAMAAAAAECNYkw4AAAAAQIwgpAMAAAAAECN63Jp0l8slp9Opfv36yWazRXs4AAAAAIBuzjAMHThwQJmZmbLbQ9fKe1xIdzqdysnJifYwAAAAAAA9TElJibKzs0Me0+NCer9+/SRJt/3rcyX17Rvl0QAAAAAAursjNTX63aknefJoKD0upJtT3JP69lVSGC8QAAAAAADtIZwl1zSOAwAAAAAgRhDSAQAAAACIEYR0AAAAAABiRI9bkw4AAAAAaD9xhkuJLpdsMqI9lKgwZFODzaZ6m11qh22+CekAAAAAgFZJbqjTMYerldgO4bQrMwxDe+3x+q5XP9XZ49p0LkI6AAAAACBicYZLxxyuVlq/fuo7YIDUU3O6ITXW16v33r3qe7BSa/sOkNGGixaEdAAAAABAxBJdLiXabOo7YIASkpKiPZyoSkhKkj0+XodLSpTkatThuNZHbRrHAQAAAAAi5lmD3lMr6D5sdvcL0da1+YR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAD1O2Z49uv3663Ty0aOUm9xPJw0frlkXnK+P33tPkvQ/zz6rC6ZMUX7aIA1JcqiqsrJTxkVIBwAAAAD0KCXFxZo6fpz++cEHunPR/Xrv88/10ptvavzEibr1unmSpMOHD+n0n/xE1/725k4dG1uwAQAAAAB6lFvmXSubzaZ3/vkv9e7Tx3P7qNGjNXP2ZZKkX/z6WknS6g8/7NSxUUkHAAAAAERdY2PnPM7+ffv0/j/+ocuu+qUloJtS+vfvnIEEQUgHAAAAAETNls3SxBPild0nURNPiNeWzR37eMXffSfDMDRi1KiOfaBWIqQDAAAAAKJmzsXx+u5bmyTpu29tmnNxx67KNgyjQ8/fVqxJBwAAAABERWOjtPk/dq/vbdr8H5saG6W4uI55zKNGjJDNZtOWTZs65gHaiEo6AAAAACAq4uKkkUe7FBdnNH1vNH3fcY+ZOmCATpsyRS8u/pMOHTzo9/PO2motGEI6AAAAACBqnvtrg4bnu0P68HxDz/21ocMfc9EfHlVjY6Om/fBUvbVihbZu+Vab//ONnv3jEzp74o8kufdR//qrr7Ttu+8kSd98/bW+/uor7d+3r0PHxnR3AAAAAEDUjBgpffhlQ4dOcfeVO2yY/vHJp3r0gfu14OabVbZntwampangxBP1wGOPS5L+/MwzeuS+ez33OX/yJEnSH55+RjNmzeqwsdmMWF81386qq6uVkpKie77apKR+/aI9HAAAAADokno31uukw9XKyh2qBEdStIcTdfW1R7Rr+w593itZh+ISLD87cuCA7jp+lKqqqpScnBzyPEx3BwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAAETMkM38ApLndfC8Lq1ESAcAAAAARKzBZpNhGGqsr4/2UGJC/eHDchmG6uxti9nskw4AAAAAiFi9za699nj13rtX9vh42extqyB3WYY7oO+tKNfOeIcabYR0AAAAAEBns9n0Xa9+6nuwUodLSqI9mqhyGYZ2xju0Palvm89FSAcAAAAAtEqdPU5r+w5QkqtRth66ON2QTXV2e5sr6CZCOgAAAACg1QybTYfjiJbthcZxAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxIiohvS7775bNpvN8ufoo48OeZ/ly5fr6KOPVlJSko477ji9/fbbnTRaAAAAAAA6VtQr6WPGjNHu3bs9f/75z38GPXb16tWaOXOm5syZoy+++ELnnXeezjvvPH399dedOGIAAAAAADpG1EN6fHy8MjIyPH8GDRoU9NhHH31UZ5xxhm666SYdc8wxWrhwocaOHasnnniiE0cMAAAAAEDHiHpI//bbb5WZmalhw4bpZz/7mXbs2BH02E8++USTJ0+23DZ16lR98sknQe9TW1ur6upqyx8AAAAAAGJRVEP6ySefrBdffFF///vf9dRTT2nbtm2aMGGCDhw4EPD4PXv2KD093XJbenq69uzZE/QxFi1apJSUFM+fnJycdn0OAAAAAAC0l6iG9GnTpumiiy5SQUGBpk6dqrfffluVlZX661//2m6Pceutt6qqqsrzp6SkpN3ODQAAAABAe4qP9gC89e/fXyNHjtSWLVsC/jwjI0OlpaWW20pLS5WRkRH0nA6HQw6Ho13HCQAAAABAR4j6mnRvNTU1+u677zRkyJCAPx83bpxWrVplua2wsFDjxo3rjOEBAAAAANChohrSb7zxRn344YcqLi7W6tWrdf755ysuLk4zZ86UJM2aNUu33nqr5/h58+bp73//ux555BH95z//0d133621a9fqmmuuidZTAAAAAACg3UR1uvvOnTs1c+ZM7d27V2lpafrhD3+oTz/9VGlpaZKkHTt2yG5vvo4wfvx4vfTSS7rjjjt02223KT8/X2+88YaOPfbYaD0FAAAAAADajc0wDCPag+hM1dXVSklJ0T1fbVJSv37RHg4AAAAAoJs7cuCA7jp+lKqqqpScnBzy2Jhakw4AAAAAQE9GSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEfHRHgAAAOjeiouLoz2EkPLy8qI9BAAAPAjpAACgQ5jhvGF/rc7fXxnVsQSzIrW/ilUsibAOAIgNhHQAANDuiouLPeG8urxUOb2yoj2kgK6tqVHJ/kpPWCeoAwCijZAOAADajXf1fNLmTcrplSVnxUY5tTG6AwshJ2eKJpVv0qqRo6iqAwCijpAOAADahW/1PH+f5HQVqt5RGe2hheQsKVS+fbS0eZOS09KpqgMAooqQDgAA2iRQ9bxun1RUvVJpA3tr2dgR0R1gCyasKpLT5VSmK1OZvbKoqgMAooqQDgBANxKNTurBque1dmnZ2BEamzyj08cUiY8nuYN6vaMyaFW9s3FhAAB6LkI6AADdQDQ7qZuN4QJVz2M9oEvuMX48yf31zHVbVLR3pQo0WYm94jWp3B3WOxMd5wGgZyOkAwDQxUW7k3pdU/XcWePsMtVzX+Z4l419RRNWFamoeqUyXZnKt49WYq/O/eeSeWGAtfEA0DPFTEi///77deutt2revHn6wx/+EPCYF198UZdffrnlNofDoSNHjnTCCAEAiC3B1oI7XYWdOg5njVNpA3ur9pD08aSCLhfQvQWqqme6Mjt1DKkSa+MBoAeLiZC+Zs0aLV68WAUFBS0em5ycrE2bNnm+t9lsHTk0AABiUix1Uq891Fw9H9vpj97+fKvq0XhN6TgPAD1X1EN6TU2Nfvazn+mZZ57Rvffe2+LxNptNGRkZnTAyAABikxnQY6mTeleungfjXVXvbGbHee+18VTVAaBniHpIv/rqq3XWWWdp8uTJYYX0mpoa5ebmyuVyaezYsfrd736nMWPGBD2+trZWtbW1nu+rq6vbZdwAAHS2YNXzrrwWPNZF6/U0O87vTlithJL+VNUBoAeJakh/+eWXtW7dOq1Zsyas40eNGqXnn39eBQUFqqqq0sMPP6zx48drw4YNys7ODnifRYsWacGCBe05bAAA2k0kW6YFq56vHOdeLkZA7z5a6jjvXVUPB4EeALoOm2EYRjQeuKSkRN/73vdUWFjoWYt+2mmn6YQTTgjaOM5XfX29jjnmGM2cOVMLFy4MeEygSnpOTo7u+WqTkvr1a/PzAACgtbwr4+Ewq+cVro2e6nlXb9SGlq2rdq+Nd7ikzL6ZGmQfrW8HKOyt4Vak9ld8qoOgDgBRdOTAAd11/ChVVVUpOTk55LFRq6R//vnnKisr09ixzS1mGhsb9dFHH+mJJ55QbW2t4uLiQp4jISFBJ554orZs2RL0GIfDIYfD0W7jBgCgrQJ1ZQ+Hd/W8O3RSR3hCVdXDYW7p9mbT94R1AIhtUQvpkyZN0vr16y23XX755Tr66KN18803txjQJXeoX79+vc4888yOGiYAAO3Ku3qeUxOvun3S2uolShvYu+U7J8iy9rw7dFJHeHw7zu9OWC2VtXy/8r2HVJDsDvTTt5aynh0AuoCohfR+/frp2GOPtdzWp08fDRw40HP7rFmzlJWVpUWLFkmS7rnnHp1yyikaMWKEKisr9dBDD2n79u2aO3dup48fAIBIBKqeO0usTd/CRfW854q04/yEVUUqqnbv9Z5uH61JA0rpEg8AMS7q3d1D2bFjh+x2u+f7/fv368orr9SePXuUmpqqk046SatXr9bo0aOjOEoAAEILtac509YRqUh+V8wu8fWOSs80+TElNSrZX0lVHQBiVNQax0VLdXW1UlJSaBwHAGiT1nRlH+NTPf94El3Z0fHWVb8iSZbmc5k5U7Th8C6tGjlK8anh9+4h0ANA63SJxnEAAHRVre3KTvUc0WD+nnlX1Z0lhZa918NhVt4lwjoAdCRCOgAAYfKdtt6aruzm2nMCOjqb93r2CauK5HQ5lenKVGaYv8dml3imyQNAxyKkAwAQBjOgm03f6poq4+God1RaurID0RKsqh6OfPtoJfaK16TyTZ7mcwR1AGh/hHQAAEIw155P31pqmbburHGGt22aRPUcMcd37/VwFO11d4n3nia/Yn+t4lMdhHUAaEeEdAAAggi0p7k5bb32UPjbphHOEYu8914Ph2+XeKrqANAxCOkAgB4lkq7sZvU8fZ/kdG3029Oc8I3uINzf44Pnz9Cy6lcse697V9XfbDqOsA4AbUNIBwD0CGY4j6Qre6DqOV3Z0ZOZ0+QDVdWnby2lqRwAtANCOgCg22ttV3bvPc2pngNuvl3izap6un20Jg0opaoOAG1ESAcAdFve1fNIu7KbjeGongP+AnWJp6oOAO2DkA4A6JZ8q+dmV/Z6R2VY9/duDEdABwILVlXPyZliaSonUVUHgHAR0gEA3U6gPc3NdeXhdmSXCOdAOAJV1dd+s0QFyZObt2qjqg4AYSOkAwC6jWDVc+915QRvoGMEq6pn9sqiqg4AESCkAwC6hVDV85XjCiRRGQc6WqCqurOk0LJVG1V1AAiNkA4A6NLM5nDmnuZUz4Ho862qO11OT1M5quoAEBohHQDQZYWqntOVHYgu36r67oTVSijpT1UdAFpASAcAdDnhVs/HRneYAGStqs9ct8WyVZt3VZ2gDgBuhHQAQJfi3Rwupyae6jnQBZifyWVjX7E0lbNU1ffXKj7VQVgH0OMR0gEAXYJZPTent6fvk5yujZbquURzOCCWUVUHgJYR0gEAUWMG73BQPQe6h3Cq6m9GcD4CPYDuhpAOAIgK72nr4aguL1VOryw5SwqpngPdgFlVN7dq866qT/ysSMlp6S2ew2w8JxHWAXQfhHQAQKfynbae0ysrrPvVNTWHq3dUUj0Hugnfrdq8q+qJvVr+Z+q1NTUq2V9Jl3gA3QohHQDQabyr595d2cNhVs8/Hlcgieo50F34btVmVtUzXZlh3T8nZwp7rwPoVgjpAIBOEWpP83BQPQe6N9+qer2jMqz7OUsK2XsdQLdCSAcAdKhg1XPfdeXhIKAD3Zt3VT1cE1YVyelyKtOVqcxeWVTVAXR5hHQAQIcJVT2nMg4gmEj+XvCeJk9VHUB3QEgHALQ7sznc9K2lQavnY5NnaGx0hwn0OK5GyR4X++eMRLh7r0tU1QF0DYR0AEC78p7ezp7mQGwoK0nQCwsyVbrDofShtbp8vlODc+pj7pytFc7e61TVAXQV9mgPAADQPRQXF6u4uFjTt5Zq0uZNSt9UKmdJoYqqV3qq5wR0IDpeWJCp8p2JkqTynYl6YUF4ndM7+5xt5a6qF2jllAJ3l/jqlcrfJ+XUxGvS5k1q2F/rmekDALGKSjoAoM2ongOxy9Uole5wNH/vsql0h6NN09Q74pztJZyq+ptNx1JVBxCLqKQDAFrNrJ57msPVxFM9B2KMPU5KH1oru91wf2833N+3IUx3xDnbytVo/d6sqtfa5VdVn/hZEVV1ADGLkA4AaBUznE/fWqprS2qUv09a+80S1TsqVWtvrp4T0IHou3y+U2nZdZKktOw6XT7fGZPnbI2ykgQ9MDdXN04bqQfm5qqsJMHzs7HJM3Tw/Pu0bOwI1drdM3ycJYXK3ydN2rxJ07eWei42AkCssBmGYUR7EJ2purpaKSkpuuerTUrq1y/awwGALsf8x6xZPR/TK0vOkubO7R9PKpDEnuZALOqO3d0fmJur8p2JcrlsstsNpWXX6eZnt/sdt67aPf09O7W3yvceUkHyZCVmZamkb4NWpPZXfKqD6e8AOsyRAwd01/GjVFVVpeTk5JDHsiYdABA277Xn3lur1TsqWXsOdAFtCdPBwni0p7iHuzbee6s277Xq6fbRmjSglLXqAGIGIR0A0CLf6nlOryxPc7hau/TxOKrnQHcVS1ut+TLXxvtW0oNdODD/jvp4kjuo1zsqLfuqT99aylZtAKKONekAgJC8155P2rzJXT0vKdTuhNWsPQd6gFjcas1ba9bGm03lfNeq+27Vxlp1ANFAJR0AEJSlc7tX9TxtYG8tGztCEtVzoDuL5a3WTINz6nXzs9sjHlOgqvrab5aoIHmyZ6s2quoAooGQDgDwE2ztudkcbtnYEYRzoAeIdDp5Rwg3fLd2TMHWqmf2ytKk8k1aNXKUilUsibXqADoHIR0AYBGqer6StedAj3P5fKdnTXpadp1m39k5W6115lr4QFV1Z0mh8u2jqaoD6HSEdACApObmcNO3llI9BxBQhTNBD155VKc0kAu0Fj7Q1mrtybuqPnPdFktTOarqADoLjeMAAJ7q+cTPipRTE6/8pup5vaPS0hwOQM/jHZYbG2ySOr6BnLkW3uVyP573WviOZjbCNJvK7U5Y7a6q75Mmbd6k6VtLPY3lAKAjUEkHgB4s3Or52OgOE0CU+DaOk/xDs+9acPO2tjSXq3AmKC7epcYGdz3JZjM0OKdz18KHW1Wnog6gvRHSAaCH8m4Ol1MTb1l7XnuI6jkA/8ZxkiEpcAM57zXkZsBu7bT4FxZkeqro7nEYuny+s03BvzX3Nf8OXDb2FUtTOcta9f21ik91ENYBtBtCOgD0MGb13GwOl75Pcro2WqrnEs3hALh5N46LizfU2GALuB95qGnx4W6RZk5nt1bvpcYGe6ubyLVHAzqq6gA6k80wDCPag+hM1dXVSklJ0T1fbVJSv37RHg4AdCq/6vmuXZ7q+c79h6ieA/BwNbqnnZsBd3BOra6426lBmfUBp7jfOG1k0HMNzqlVWUngkOz7OOlDa9VQb9P+0gTPtm82uyHDZbNsAxdu8H9gbq7fFnJtaUC3rtpdVXe4pMy+mcrMmaINh3cpOS1dbw5Ll0RTOQD+jhw4oLuOH6WqqiolJyeHPJZKOgB0cZE0L/LeWs1ZUkj1HD1aW6ZOd2e+09Zdjf5VcV+hpsXb7IYqdvl3aQ/1OKnp9UrLrlPpDocGZdWprKS5sm6uh79/Tm7Q4O851mdNfai19OEyq+oz122RaqWqzCqNcWapRA26UEf0qpJad2IAaEJIB4Auynva+vn7K8O6j3dzuHpHJWvP0SN15v7bXYk51dw6bb15IyDDcAfcPdsTlJHr/3rNvtOpJQv9p8UHC8nBHsflsmnv7kQ9/M5mSe4w7VsNDxb8fflePAi0lr61rxMAdBRCOgB0Qd7T1qvLS5XTKyus+zkrNqqoqXr+8bgCSVTP0fNEY//tcESrsl9WkqBn7sjS3t2JYRxtaMlC6+vle9Hjt89sU0Zuvef5PDA3V2UliTIMd6XcHufS7y7P0749gR8vUJD2XhcfKvgHev187+u7lj5c3s8zJfuXmnDWwzqq75FWnQsAQiGkA0AXYwZ0c9p6XVNlPBxUz9HTdcT057aKdmX/hQWZ2rs7wesWs12RLcDR/tV034seSxZm6qbF2z2v5+XznXroqlxPMzlXo90roBtej+P+Oi27TrPvtAbpwTn1uvnZ7dqzPUFLFmZajm+pOm7et63vsffzrHYO1L2vXavnZj/Y+hMCQBCEdADoInyr5957mqcN7B3WOVh7jp6uI6Y/hyNUQOysyn6wPc19O6kHDufemqvpwS563DhtpKfR3ID0est09uCP1fz1g1ceFfCCxZKFza+VKdzqeFunuHs/T8NlV0lFlhpdLb1WABA5QjoAdAGBqufee5qb4bslhHOg/aY/h6OlKnlnVPZDjcG8aFG6I1HeFW33mnJ7037nNvmGae8xpg+tVWlJomRYK+JlJQ7dPydPks2zb3pgZjXdXcEPdsHC/4KC+/G8q/Ytae3r6ntxx2Z3KXvAbsXZe9QmSQA6CSEdAGKY2Rxu+tZSv+q52ZV9bPIMjY3uMIEupb2mP4ejpSp5Z1T2Q43B1ei+aOG9Jt0eZ3g6rbuDtRlEm8P0wCHubdjKShLUUG/zCuhSoOq4d8d3fzafY+W5j/fFgHBfq0Dva3ssKfC+uJOcuVdzf/ignDVOZX72b6XkTFF1eamSJWlYkoqL2TMdQOsFu6QJAIgys3o+fWupcmrild9UPa93VLobv7GuHGiTzpjiXrrD0RRQraHT2+XznUrLrpMUfOp2Q13rxlB3OPAY9mxP0ANzc3XjtJF6YUGmLrimTINzapvGbfc0eXOzyR7n8jt3WUmCHroqN6yGc4bLtxrvbiDXP61Odrv3RQDvyrSh9KG1fg3kgr1WZSXNz8ndrK55nX2gCxWRMi/uPPzOZs1/fr++vXCQau3uXh9rv1mi/H1STk28pm8tVcP+2oi2xwQAbzbDMHrUPJ3q6mqlpKTonq82Kalfv2gPBwD8BKqeV7g2eqrnH0+iKzsQC8KpxPtuHZaWXRd0vXmg832zpreen5/pmXp+xQKnjvn+oRbH9M2a3nrurky5Gr0r4c1jkOS3pZnhsrVQ8bZKy65V+U7f9ey+rFPZm792P25qer3i4g3LPujezE7xkrUabq53966GB3utXY3SjdNG+p374Xc2t/lCzbrqVyRJE1YVyeGSMvtmKjNnijYc3qVVI0cpPtX9vKiqAzhy4IDuOn6UqqqqlJycHPJYKukAEEPCrZ4T0IHoCVWx9RVOldwUKDC6A7o59dym5+cHrgB7j+m+2Xl65vaspoBuZXZO962uNzbYPd8HD+iG5b/BA7rhqbzHxXuHc99p7e790MtK3FPQBw5prqrbbO4quvd+7N7V8Ipd1mp4qFkL5jR589x2u3+FPpiWZjCYfx9/PKnAU1V3lhQqf580afMmquoAWoU16QAQA8x/wHk3h3OWWNeeS1TPgVgQSTf21q5/LytJ0HNNFfRmNjU22OTclqDMo+otx7q3OHMf695OzX9deFp281ps37XdgSvpLVXUfX/u/j59qPtihMslvXhPpspKHLLHuZrWufue3z2+0h2J7rXwTSF7QEa95YJGSw32WlqvHmmzwEhnMLiDuvvrCauK5HQ5VaDJSuwVr0nlm7Rq5CgVq1gSVXUALaOSDgBR5l09n7R5k/L3SWu/WUL1HIhB4a4z9xWouVkoLyzI1F6n917i8nz9P/dZK8jP3+0f5gPxrj77VvgvuKZMNr9O5b7n8a20W3/+22eKdf//btZNi7fL5ZIe+e9czzR2sxGd//maz2VW/m02Q/EJhl9jN+9quFlpD3e9uvd68puf3d5i07hwZzB4862q705YTVUdQKtQSQeAKAlYPa/YqCKq50DMams39nC6jAfbasz82mz8tmRhZoA9zk3+VXDDaL6gMCizXjct3u55Tg/MzVVjYzjT3f0r7Xa7oeSB9Xrkv3Mj3g894KN4jbPC2fx69U+rl9H0mIZhU+1hu8pKEjQo091pPpxZC+FOcQ80g6GhTopvuUeepao+c90WFe1dGbCqTkUdQDCEdACIArN6fv7+SsvWavWOStUeonM7EMvass96S1PlvddQmxcCAjV+W7Kw+TzWpmzurumpgxsCdl0fkFGnRVfkeX42cEid5tyzK0TY9xY4xKdl16l8V0KQarm38BrSeV/4eGFBpspK3GOtLLf+s7WyPN4zzd/7god3EPcO7OEuOYhPlM/+8O5948MJ6Cbz7+9lY1/RhFVFKqpeqUxXpvLto6XNm5Sclq4V+2sVn+ogrAPwQ0gHgE4UqHpe19QcrtYufTyOzu1ArGvtOvNQ66q9K8bugOheCy2XTQOHuCvte3cnKi27Tv91s1OPXH2U15mbg6931/P75+SqfFdi0/ZnblUV8Z5p3O5zuivy6UNrI6rKez/u9Y9v1y3n+ndPD3Z8S+ftP9i9Hn3P9oQQMwrc35vPxfeCh/eMhYFD3FPg9+5O9IR5s/oezBULnJ4p73Hxhq5YEP6FGG9U1QG0BiEdADpJyOo5+54DXU6k23eFmirvXWH3Xgttj3N5wuWF1+7RiicHNwV0o6nI23yeG57cbqn2XnF3c8XfDMT+09HdFwp++8w2PfzL3IAd4ZvDceBQXbEnWHd77+P9t2ALxlyP/sDc3BDnsPJtJOf9erob6bmVlSQGrL77Oub7h/TQ21vCnuIeSjhV9TebjiWsA5BoHAcAncIM6JM2b/LbWm3Z2BEEdKCH8G1uNvtOp18zukDN1Mp3JurVx9ItVXAzs6am16uh3qbfnm3dEm5wTr1m3+n0OacvQ3HxLi1ZmBkkoDcbnFPnuY/3/X9/dW7A4+1ep7PZDfXp3+D3/AIpK3Gooc6cdeC7lj348zAbyQV+Pd1fG0bzhQqz+h6KGdBbavQXDt+t2oqqVyp/n5RTE6+JnxXRVA6AB5V0AOhAwarn3lurEc6BnsOcKm82fnvwyqM8e4TvL03wCpZW/re7v7//fzfr97/ODbrOfcnCTIWuXLunjJeWBF7f3sxQWYlDqel12l+a6Hf/wGP2urfLpoOVCfKvjFsr6zabocE5ddpXmuCZ9h8em35+m/uCRKg1/dbxWavvgYTT6C8SY5Nn6OD5M7Ssmqo6gOCopANABwlVPV85pYDqOdADmRVZ78ZvpTsStXd3otcWaNZKtfVr6/f7yhKCbgnXvAY+0Fpw35v8q85W7tv2l5pBO8A5/M4fqKO7/232OCllkLtKPzinztOYr+VGdN6PZyhzmDs8l5UkqPawzfOa2OMM9U9z/ywu3uV5ne12/23cfAVq9NceQlXV2aoNAJV0AGhn5j+spm8tpXoOQJK1Ijs4p9azf7hbU8ButCl5YL2q9yb4/cz/azez6Vugde6uxkAV5VBTxqVQ675D3249pm//etVUxodxvCFXo01JvQ1d9cw2ZeTWB9iCruXHk6Q92xOUkVuv5+/OVGV582voarTrwP54/faZbbLbFXZn/lCN/iLtRxCId1M576p6un20Jg0o9TSVk6iqAz2NzTCMUJdCu53q6mqlpKTonq82Kalfv2gPB0A34109H9MrS3W7dqmoeqXSBvbWzv2HqJ4DPdQDc3MtQdpmN2S4bEGmt4e3VZnpt89s03N3ZXm2VeufVqe4eHc384FD6mQY0r494XY/aymkh3uOlhvE+d5n4JB63b6kWJJ03+y8poZvwc7jO073/eMTjKABf3BOrW55zr0MwAzaLQVu3/ctLbvOsmVee1nXNP09O7W3yvceUkHyZCVmZamkb4NWpPZnqzagGzhy4IDuOn6UqqqqlJycHPJYKukA0A7CrZ6Pje4wAURBoIqsXDavbc/cIdRuN5pCe/DmaNafGUofWqeMXHc4tdkMGYbNUkXeX5qgtOy6IBX1QNoSzn3PEckFCJv27k7Uhs9665jvHQrjfv5r9PfuTpTdsmTAekxZSXMV3HvLu1Brzc2p9+FU3tsiWFU9J2eKZas2iao60BNQSQeANvJuDpdTE0/1HIAf34rsoKw63fJccwM5Myw21Nu8KsihxcW7dMUCp0aNPaQbp4Xep3zOwp1665m0CKeRmyKr7IeSPrRWZTsTmvZub80sAv8LFeFV7d0/Tx9aq9l3Oj09AVqqkIdbcW9Pgarq3w6QktPSqaoDXVgklXRCOgC0klk9957e7ixprp5/PKlAkgjoACxr0s2u5WYFd1Cmu4Jrj3Ovq37wyqPCOqfNbmhwU7h0b72WKMMI1M3cXXG/afH2FsN8x3BPRb/1+WJJimAMrb84YLMbGpBer7h4o2n9f8th/uF3NnuCeGu7urdXmF9X/Yok6dTCr9VLLmX2zVRmzhRtOLxLq0aOUnyq+2ILYR3oOpjuDgAdzK96vk9aW71EaQN7q/aQqJ4DsDC3XjMr6pJUtjNRD12V6wnss+90KiO33mdqenBGUyMz57YE1dfZmgK6lDKoXlUV1m3SzIZn7in2iWqvynho1kZ1m9b11t8Wp0Vw/0jGaL0wYbcbuvLeXRqUWd90UcB3Cn7z8d7N9kyBurqHWove3lu1ZVf9l15YkKm/7HBoSGqJ7r74Camk0LJV24rU/ipWMUEd6IbYgg0AIlBcXOy3tZqzpFBF1Ss9a88J6AAC2bPdul2a4bJ59gEv3ZGoB688Sg/MzdU5V5UrLdu9JZk9zqXQ251JD191lFdjOKOpq7o897PZDcXFu/Tbs0eqwhneVHrv+7dWvwENnu3O9u5O1DO3ZzVdIOgI1unzjQ12Dcqsl7M4ocXjfdeamz0EAm1rF0x7b9Xmfb49VVn67f/dqHpHpSpcGz1btZ2/v1KS2KoN6IaopANAmLyr597N4eodlVTPAbRoycJMhWqcJkllJYn62+I03fzs9qap73lBjg/GpsYG6/F2u+G5zfdn/oJ1Uo+08m7owD7fgNwR1Xvvaezux7DbDaWm12vRFXmejve+x5vV85sWb/ebnm6PU9Bt7QJp763afM9nuOyq2pmmRpdN38/N15fbNypTWZKkC3VEryop8gcBENMI6QDQAt+15zm9suSs2Kgic+35ONaeAwgt6N7fNkMymsOrYTQHvBfvyVTbgq0ZzO1+t7V0H+vXrRlDewTycJrC+Y/R5bKpsjw+yAUJ9202u6FzrioPGqLD6epuhvBIQ31LAp2vX2aF4uw9qo0U0KMR0gEgBKrnANqDPc69T3fFLnfwstkMDcjw3te7OZDGxbvDmLvhWaS812YbsscZcjV21OrG9uv6Hvrc4e+Vbn5vvTDhr7HBpr8tTtMx398esIO72UPA+zbz60Drz9t7qzbf8/3ghuVSaZtOCaALIaQDQACBqud1++TZWm3Z2BGSqJ4DaJkZ6spK3J3d5bJpcE6dp7O7b2OzxgabynYmeLrANzNks6tp+7JgrD9rW0BvKYR3RkAP9Vje09wjHY97xsL9c3I974t3x32z6VugUN5Qb9P+UvdUfu+mcr6hPpSWjvO9SLCuei8hHehBCOkA4CNY9dzcWm3Z2BGEcwBh824CZrjce3WbncLNjuvN26e59z9/9s4sS3d3e5xLqYMbtL80oSmW+laRA2lriO6MDvCRPq5vgI+0CV5z1T0u3lDFLvf7Yk6N9w7dZkD2fv+83yfJf/15SwE90i7wnbU3O4DYQkgHAC+Wzu0+1fOVrD0HEKFgTcX2bE/QkoXusDZwSJ3scdbmbs3d2s3z2H2aoHXmFmoddZ/Ijk1Nr9f+0tZ2h/evzFvXrFs7uT8wN9cTpC1N3IzmLd5as/480q3dWlK7tUoaRuM4oLuJmS3Y7r//ftlsNl133XUhj1u+fLmOPvpoJSUl6bjjjtPbb7/dOQME0K2ZW6tN31qqSZs3uavnPlurjU2eQUAHEBGzCZi9qemX3W4ofWitlixsDmv79iQEae7mPZXbCHBbR+vohnGBj7XHBXqONq+A7vvzSL/3eiy79XW1N21X5x2k4+Jdlvdv4JA6zxZ5kaw/b83Wbt527j+kNXvWyFnjVN2uXcqpiVd1eaka9teyDRvQzcRESF+zZo0WL16sgoKCkMetXr1aM2fO1Jw5c/TFF1/ovPPO03nnnaevv/66k0YKoDsyq+cTPytSTk288puq5/WOSnf3dprDAWiDy+c7LaFu9p1O637pTdVZm803TLZXp/VgvANqoAsCvl93NPdjuRoDPcdQ42hpbXrwix7mPu5ms75BWXVqbLBbgnRjg12Dsprfvyvv3aWbn92uh9/ZrJuf3W6Zrh4qcAe7YBNOFX5s8gwdPP8+LRs7QrV29/+jnCWFyt8nTdq8SdO3lnouNgPo+myGYUR1P4eamhqNHTtWTz75pO69916dcMIJ+sMf/hDw2BkzZujgwYN66623PLedcsopOuGEE/SnP/0p4H1qa2tVW1vr+b66ulo5OTm656tNSurXr12fC4CuxfzHzPStpZ615xWujZ6154RzAL5au/e1730fmJtr2WIrNT1wp/fgodzaxT2y8N6eXdk7q8N7ywbn1Oqyu5x65L9zW+zubjKnq3uvQfd9b3x/Lvn/HoS71jzSNemBrKt+RRNWFSk7tbfK9x5SQfJkJWZlqaRvg1ak9ld8qkN5eXkRnRNAxzty4IDuOn6UqqqqlJycHPLYqFfSr776ap111lmaPHlyi8d+8sknfsdNnTpVn3zySdD7LFq0SCkpKZ4/OTk5bR4zgK7PrJ5P31pK9RxAi8pKEvTA3FzdOG2kHpibq7KShDadb/ad1uq6WZ397TPblD7UfbtZ3XWzTstOH1qnW54r1qCsWkUekn0ry62r19jsLtlanc/DeczgFyjscS6/W8tKHHrxnswglfjAj+vb+E3yn/lgTmc3O70H+j0ItNY8ELNre6AqfLjGJs/Qx5MK/Krq6ZtKqaoD3URUG8e9/PLLWrdundasWRPW8Xv27FF6errltvT0dO3ZsyfofW699Vb95je/8XxvVtIB9Ey+1fP0fZLTq3rO1moAAmlLwy/v6unAIe7wt3d3otKH1uq3z2xTRm5zUMvIbd56S5LKdibo4V/mWrZSG5DhDo7P352pil3h7KUerCLdtin0hivcWk84MwMiYdPld+/SiwsyPRVzm93Q4Ow6S5O3YPf1HVv6UGvjt0B7pJsC/R7ctHh7wOaAoWZdtLVru/n/qI8nSRNWFaneUamivStVoMlK7BWv6VtLtSK1v4pVTFUd6IKiFtJLSko0b948FRYWKimp47pSOhwOORzh/A8MQHfnvbVaTk28pXN77SGq5wACC9ahPdyp797Bbu/u5gp8+c5ELVnoH/a9Q31cvMtnr3N353d3QPdupNaardi8w7PvceEE6nC2gfP+eWu2TgvstcfSdcUCp15/YrD27k6U4bKpfJf52ga6KBD8QsXsOwM3frPHyW+Ke6DfA8m91tx3inxnbJ/mrqq7v56wqkhF1SuV6cpUTs4UTSrfpFUjR6lYxZJEWAe6kKiF9M8//1xlZWUaO3as57bGxkZ99NFHeuKJJ1RbW6u4OOvfbhkZGSotLbXcVlpaqoyMjE4ZM4DYE8l0Pu+t1ZwlhVTPAYTFbPjVmhDmG+y8g2KgsF9WkqAHrsz1VKkDra0ekFGnspLA5wwt2B7joarsoXTmPurWsVeWJ+j5+Znqn9Ygm82QYdi8prmHuijQfGHBfB+9ZzKYgq0dD/Z7cPl8p565I0t7d7t/1lBvU1lJQqums0cqUFV97TdLVJA8WWNKalSyv5KqOtDFRC2kT5o0SevXr7fcdvnll+voo4/WzTff7BfQJWncuHFatWqVZZu2wsJCjRs3rqOHCyDGmOHcrIyHw2wOt7Z6CdVzABG5fL7TE9oi2XbLN+B7h02bzdDgnDpLQH/oqtwWppEbstnc5ywrSfR0hg92rJv/FO+2TT93388Mxx3LHKP/4zQ2tLR3fKDn1/y9zW7onKvKAz5qsOUNwX4PBue4G/+Zr8n+0oQ274EeKarqQPcRtZDer18/HXvssZbb+vTpo4EDB3punzVrlrKysrRo0SJJ0rx58zRx4kQ98sgjOuuss/Tyyy9r7dq1evrppzt9/ACix3vaenV5qXJ6ZYV1P2fFRhVRPQfQCqHWKbfEO9h5s8cZlrD/gtca6+Bs2rs7UXMW7mxakx0qbAcLqL7/jTSsu49NTa9XVUV80xg6Kqy35bzu+8bFu3zG6H6+jQ02vf7EYN2+pNhyr1DLG4L9HrR1SUR7CVRVd5YUKt8+Wtq8Sclp6VTVgS4g7JDudDqVmRm4U2VH2bFjh+z25v9ZjR8/Xi+99JLuuOMO3XbbbcrPz9cbb7zhF/YBdF9mQDenrdftk5yuwrDuW++opHoOoE1aE7gG59TrpsXbdeO0kfIOnY0Ndg3KdE+H9p8W76u5+h0Xb+itZ9KagqcUOMiGu1483GP8VZbH+6yXD1dLFwUCbS8X6D4tPUf3TIXpvyjXc3dme93e/Lrt3Z0YcGu1wTm1qtgVfHmD7+9BW5ZEdATfqrrT5fQ0laOqDsS+sEP6mDFj9Mc//lGXXnpphw3mgw8+CPm9JF100UW66KKLOmwMAGKTb/U8vymcO2ucShvYO6xzUD0HEC0thTjz58GDenOwbGywtaKLeftzNdplj/NtbOctnAp/6Cnpprh4Q40NNtnsLq/lAKGfoz3O0Lm/LNffFqeFGIubb7O+xga74uJdkssW9vKG1i6J6Ci+VfXdCauVUNKfqjrQBdgMwwhrc8wnn3xSN998s8444wwtXrxYAwYM6OixdYjq6mqlpKTonq82Kalfv2gPB0AYvKvnY3plqW7XLk9XdjN4h4NwDqCjhZreHKgZ2aDMer816dYp776V5EAd2cOpMkdSWY89NrshwxXsufpyH2O3GxqU5dtkz3rcwCH1un1Jse6bndfUed9muX9adl3E68o7e4p7ONZVvyJJmrlui8r3HlJB8mQlZmVpw+FdWjVylOJTHQR1oIMdOXBAdx0/SlVVVUpOTg55bNghXZK2bdumOXPmaOPGjXrmmWc0ffr0Ng+2sxHSga7Dd0/z/H1Shdee5kxbBxAtvkEsWDfwYPetcAY+vqwkQc/fnamyEkdTlbrl9d4Dh9SprtamA/sSQhzVmiZx4UxLb4/9z9tr//TA7HEuGS5bU5M7o6kqb7dcKHEvRQjs4Xc2x1zobq111a9owqoiOVxSZt9MZeZM0YbDu5Sclq43h6VLYvo70FEiCekRNY476qij9N577+mJJ57QBRdcoGOOOUbx8dZTrFu3LvIRA4CPQGvP2dMcQLQFC+PBuoEHYo9zN4krK/E/fnBOvX77tLsx2W/PDh4cTWnZtSrf6R5LoqNO+0sTPNPp3d3kTa0Jwa3Z/1wKXv0PJLyA3nIn+eB7orsabZ7p8ulD6/xmMDTUBT9n+tDorSvvCOZa9Znrtki1UlVmlcY4s1SiBl2oI3pVSdEeIgC1orv79u3b9frrrys1NVXnnnuuX0gHgLYIVD03157TlR1AtAUK4zct3h5RZ+892xMCHr9ne4KWLGxeF+0WfLq7Pc5Qxa7msaSm1ystu86zJrr2sE2V5eYU7mhoeVr6Lc8Vuy9Y7Exsms7uf4xkkz3OCNjJ3lw/HnhP9ObvGxtsuv9/NyuxV/Ot3hdcAq+tt2n2ndFdVw6gZ4ooYT/zzDO64YYbNHnyZG3YsEFpaWkdNS4APZB3c7icmniq5wBiSrBttqTIOnsvWZgp38pv+tA6LVnYfAGguXO7yVq1HpBRr317mvcId7ncncrTh9b63Cfc6nOgnynEz73v73uelhvBmbf/6ZZsSYYnoA8cUqfzflWmN59Os6wlN1w2z8wF35kM5oUT6z701tc3Lt7QLeeODDr7IdB697h4l+ytaV4PAG0U9l89Z5xxhm6++WY98cQTev311wnoANpNcXGxdXp7TbycJYUqql7pqZ4T0AFEm9mB3W53B1i73XB/H+fu7J2W7Z43Haqzd3PQt4ban9/udFffXdYw7t/4zZA9zqWERMPrNvftcfEuT+gsK0lsqqKHEiqAh7P3ebBmdeGrLI/3jNNmc9/fGtDdj+GZneDyP4f3ax+IOdVdap79YL4P5uvtnkpvkz2u+QFcjTa9sKBztx8GACmCkN7Y2KiioiLNmjWrI8cDoIcxw/n0raW6tqRG+fuktd8sce9p7tUcjoAOIJpcje7/Bgvjg3PqdfOz2/XwO5s9a8sD8Q36Nps76GceVW+53T/wNod2V6M9YNBvbLD7hM5gfAN+qOPCuW+o/dpb0nwxwDDcswGaA3rzY5kXRLxnG5iBe3BOva5/fLvX+Zr/O+/RbZbp8L6zH3wvuHhPeTeM5mULANCZwg7phYWFys7O7sixAOhBqJ4D6ArKShL0wNxc3ThtpB6YmytJIcN4OE3GZt/pVGq6+36GYVNDvU1lJQk+FeFQ09D9g3JcvEsDh9T53R5YOFXyYGPw3eO8rbyfS6Dw7368tOw6zb7TOtvADNwPzM3VLeeODHAuQ4/OO0q+Mw4GDqkLOvthcE7gmRIA0Jno+gag03mvPfduDlfvqGTtOYCYEqxre2uCm3ejsrh4l2fv7/2lCZ7z3vysu7P7Q1fleq2z9hY4XPtPk+8I5prt9nysljrQux+zod6m5+7Kstxmtxuy2Q3P+2OzSYE3FrY+hnmMOfvBe0u8spKmpn0umwZlBV+20FbR3kt95/5DcrgOKfOzf6uXfbSqB0jJkjQsScXFxWzDBkQZ7TAAdJpA1fPUio0qql6pbYecVM8BxBTfdcveXdtbwzvwNzbYPc3SfM/rW+V1d3oPXbU2mhrHea+p9vqpfKvJgY8JR3tUz92aO9iH4n6N9u5O1N7d1jX2g7LqAkzxt+l3r29WqNkC+/Ykel5rMyw/c0eWSnc0N+2Li3eprMTRFNxbWtsfPt+ZGe157nC5t2ErUK1dqndUqqh6pfL3STk18Zq+tVQN+2s9O60AiA4q6QA6BdVzANHQloqluX483K7tLY3DuzO85XECnNe7yrtnR4IevuqoFh7BsDRIs7BJMlqqWLd2+nvoMQXeu9z9dcCxhvX47v9edpdTj/x3btOac8lmNzQ4u86yzZrfGWyGBufUeSrnpTscGpxTq727E72P8ms0F2zP+0gFm5nR2cz90iVpwqoiFVWvVKYrU+n20Zo0oFSrRo5SsYoliao6EAWEdAAdyrwa76me98qybK3GvucAOoL31HLvbbci5b3lV6iu7S3xDfw2m9G097fd77zmhYWykgQ9c0eWV4AMtWVasNBr+AR0n5813TdSNpvhNbXcen+b3ZDdHuSCgeV4/5/b49xVf/89y725X4cHr8yznMNompGw6Io89U+r89oj3mhaWmDX4Jw6y7Ztkjx7zQfS0p73kQi2hV+0pr6b/9/9eJI7qNc7KlW0d6UKNFljSmpUsr9SK1L7q1hMfwc6GyEdQIcJVj131jg9zeEI5wA6QntVLL0r2r5BKtJw5R34zbA4IL1e8U0Z0ffCQkO9zW+KdzDpQ2tlGLLsLe4WfJ138J+3zDAMBVs16Q7ovj+z6cG3NuvW80Y0hffAe5q7XJKMllZjhh773t0JGjikXulD65peS/drPSizXva4wGG56VnJt9rfltkTvtpzZkZ7ClZVz8mZoknlm6iqA1FASAfQISxrz32q5yvHFUiieg6gY3RExdL7fq2t0gdqVOZ9Dt8LC8Gbxlkr6nHxLk8l/v45eWo5eLcloLun1RsuW8A9yyX3ent7nMtTDTenodvj5BPeA4zD8H2Oran2u9fnP/zOZkn+73mgsJyaXu835V2SUtPr27V5XHvNzGhvgarqzpJC5dtHS5s3KTktnao60IloHAegXZnN4aZvLdWkzZvc1XOfrdXY9xxAR/Ldi7y9t9IKVKU3hdNUzh7nf47n7870a1LnFqhRW3NgHZxTq+v/uN0zLmuwDXc/9FD87+/drC3Q8e6A3vxzm83Q5fOdqnAmtNgszm43fJrfhbtdnHUM5vsd7D333X7tynt3KX1orXyf797diXrmjqx2a/BmXqgJtoVftJlN5ZaNHaF6R6UqXBuVWrFROTXxOn9/JU3lgE5CSAfQbszq+cTPipRTE6/8pup5vaNStXaawwHoPIH2wG4PwTq+79keftfuQOcoK3FYLizYbMEryOZFhzkLd2rvbndTufvn5Hm6k9vsks3ukmRrWuMdSks/D1XN9zcgo76pgt58P1ejXYMy6/XCgkxLePe+mGAG87TsOr/7t8w6loFDWq5+BwrLs+90BnzcvbsTLBdi3M8pguEFEO0p7qF4/3/6hNx8z9fjhp6o8/dXRmFEQM/DdHcAbWZeVZ++tTTk2vOx0R0mgB4k1Frytgi2rnjJwvDXwAc7h++a9fJd5lZh1mnf5rEPXZXr1ZzN2kDNs8a7MXjYtce5NOcep569M1OGK9K6je953V3Tb3xqu3579ki/o/fsSAjQ3d59DnPNuLk+/4G53nvEh2qW53ueWs2+06mM3ODVad/fB++vM3LrNTinNuC6fnO5RKBlCrFWDQfQ9RHSAbSJd3O4nJp4y9pztlYDEG0dUbH0XVc8+06nHryyeYu0cNbAB1qb7H1hQZJunOYddt1B9MG3Nis+UWqo813fHUzwgOtqtOtvi9NaEdAl36ZvA4fUq7HB1hTQfYO1of+5L9Ov43r/tHrd8ediv+B7zlXl+t8/pTWF5ZYCuqH0oXW6afH2kO91uH0ErrjbvPjh/Zq4HyPQMoVobaEGoHsjpANoFd/qefo+yenaaKmeSzSHA9D9BKrSR9q1O1Sl3+xAHoh5bHyiu2Fcc6f0SDRX5ct3Jiou3tXUCC6cyrXvz20aOMS9rGB/abAp/ramKrr1vgf2x/sF37KdiXp+fmZTSPYP+4Gm37unqTcL9JqGG64H59TrpsXbLVvfmdPnY20LNQDdFyEdQMSongOANZi1tmt3sHBX4UywdEiXDA0cUm85/ooFzqZA27QXuE0ygu6J7j6HbyM2l8smuWwBpnn7bkcmBZriLtm0vzTBp5Gc/3Fx8b7bsrn3da87bA2+hsumxiBN6exxRsDp+0sWul9382LB3t2Jlmp5pOF6cE69bl9S7LlQ4n1MLG6hBqD7oXEcgLCZnds9W6vVxPt1biegA+iJ2rtr9wsLMv0C997diZamdMd8/5AeenuLHnxrs255rtjTKM/aSM3a4X1ARl3Azve/fdqsKgfans0W4Havde8hO9G7jw00Nd8e51JiL2snft/7eXvwrS1NQby54VxcvMtTId+7O8Gzr3zpDndXdvfjtK7bf6Du8B3VkBAAvBHSAYTFDOfeW6ut/WaJX+d2AjqAnqy1VVXv6e1m5dcIUJ02t2vz9u1XvfXQVbkqK3HIHufSRdeVanBOrdf9moP1vj2Jmn2nU/0Huy8iuFw21R62adEVeU3HNAfZuHiXV5f5YP81vw5UeXd3qU8fWqv0obVe53IfM+ced8D1Dr7uLdqsgd08hz1OTVuluY8dnFPnsx2c9bnu3Z3oeV3bK1zH+hZq7WnZ2BFas2eNnDVO1e3apZ0b16u6vJRt2IBOYDMMo60baHYp1dXVSklJ0T1fbVJSv37RHg4Q88z/EZvV8zG9suQsae7c/vGkAkmsPQeA1gjU0GxQZr0eusq7w7k/7+ncN505wmttuntq+UNvb5GrUZbz2O2GUtPrFZ9g+KwR957O7r7Nvd7dv5YT7PZm1qnxcfEu3bTYXaV//u5MlZU4NDinVlfc7d+4zeye7tu4zTyH9/HmVHVrJ3h/D7+z2XLhhPXjkVlX/YomrCqSwyVl9s3UIPtofTtASk5L15vD0iVJeXl50R0k0EUcOXBAdx0/SlVVVUpOTg55LJV0AEEFqp47SwqpngNAO7E0TStJ1ENXufdab6i3KTXdHUoDVbTN5mfNXd6bK8iNDXY11LnDqG8F2byveWzzf63T2Rsb3EHde4r44JxaPfDmlhaekXXNu7vS7X6e5l7wgQK65B7voMx6v4sAjQ3ufdZ9j5VCVeENDRziv16cgB6Zsckz9PGkAtXapXpHpYqqVyp/n5RTE6+JnxVRVQc6CI3jAPjxrZ7n9MqyNIejczsAtJ1vQzPDsHn2Pd9fmqC07Do9/M5mVTgTPFVo73XgpTscssf5dnl3V9Ljm3J46G3dQnGPxWwoZ04RN9d3l+5IlO+acX/usbTHHvLBwrX387Nu5cZ68fYyNnmGDp4/Q8uaqupF1SuV6cpUvn20tHmTu6redCxVdaB9UEkHYBGser47YbWnORzVcwBoO3ucNDgncNM0M4RL7iB6y3PbgzY/u2KBU3Hx7tvj4g1dscA/nJpN0KxN2gKtL28WF+/SFXc7PeuvzWr2z25xKrxt39xV/dIdDs90dO/O6sG0Zv24+7XsOevFoyFUVX36VtaqA+2JNekAPLw7t4/plaW6XbuongNAB/Bei26u846Ld8nlssnwqiB7V5wDrV/3DqINdfJU0L15r8MO9riB9iW32Q0NbgrJvvcJtI7drfl28zlI8quMB6ukBxs3Yse66lckibXqQIQiWZNOSAdg2fe8urxU+fukCtdGS3M4wjkAtB/vhmdmcPUOw4FCuCnc8Boq1AduvGYN6abBObWq2GU9xmYz5P4XpHvt+mXznRp14iF9+1Xvpr3b3eH/igVODcyoD+t5hUJgjz3rql/RzHXuHgUJtf2VmTNFklTSt0FvDksnpAM+IgnprEkHejjLvuc+a89XjqNzOwC0N9+16OYU8EGZzeurQwXSQD8LdB/vpnS+a8HtcdKe7QmWcZgB3W43LBcPAh1j7uF+//9uVmKv5p/+bXGaZ+s4w2XT3xan6eZnt4f1vAI9J+s689YFfHSc4otOVt7yzyRJVZlVSnGmRHlEQPdASAd6KHPd2PStpZ7qudPVvLWaufYcANC+WmqOFkmQDVYtD3YhwDsoL1mYKd+p6gOHNG/R5l3d9622m2P2DugtPWa4z8t3Sr65nr2lpnMA0F3QOA7ogczq+cTPipRTE6/8puq579ZqAICOcfl8p2eLNZfLpoZ6m8pKEiI+T6BqueTfJM670ZzkHai9p7fbNOeeXbppsbX5mnWbM/f5AjV0a+kxW/OcGhvsnsq8b9O5UM3nAKAro5IO9CDhVM8lprcDQEcbnOOuWLvXdtu0vzQh4ipxS5Vr7zXuvqHat5pvsxkakFGvJQv9q/Le25zZ40KvDw/1mK15Tt7M6j1T4AF0d4R0oIfwbg6XUxNvWXtee4jqOQB0pnCmo7ekpWnzvuHa1zlXlev5+ZmSyyZ7nKHGBml/afD9zMOZjt/SY0b6nGw2o2lsdr/p98HGCQBdHSEd6ObM6rl3czhnCdVzAIimlgJ2uMKpXAc7p2+Tt8ry5v3bWnPRIJzHDIf3cxqc435OgzLrPVX8tl7cAIBYR0gHurFA1fO11UuongNAO2tNSGzr1PC2CBR2JXmm34dz0cD3ObdXUA5VjW+vixsAEMsI6UA3RPUcADpHqL3IW9LWqeFS6G3WQgkUdlPT/Tu7B+L7nM+5qlx/W5zW7mvEO2rdOwDEOkI60M14V8+9m8PVOyqpngNAO2uP9dGtDehtnfodKOya27eFur/vc35+fqZn2nxnrBFvj4sbABDLCOlANxGoem42h6u1Sx+PK5BE9RwA2ku010e3dep3sLDb0hR3v2nyLpvl+856DQjoALor9kkHugGzej59a6kmbd7krp6XFGp3wmrLvucEdABoP+21L3hbeO9h3tqp35GMN9Bzjot3RfU1AIDuhko60MWZAd23ep42sDdrzwGgg0V7fXQ0pn77PmfvNemsEQeAtiOkA11UsLXn3s3hCOcA0LFiZX10Zz52oOd8zPej/xqg833y3V7lSXLWOJX52b+VkjNF1eWlakjtr2IVKy8vL8ojBLomQjrQBYWqnq9k7TkAdLqeGE4DbY+GnsP8d8aysa9owqoiOWucUkmh8u2jpc2blJyWrhX7axWf6iCsAxEipANdiNkcbvrWUqrnAAAg6sYmz9DHk9xfz1y3RUV7V6pAk5XYK16Tyjdp1chRVNWBCBHSgS4iVPWcrdUAAEC0+FbVi6pXKtOVaamqv9l0LGEdaBkhHYhx4VbPx0Z3mAAAoIczq+oTVhWp3lFpqapP/KyIqjoQJkI6EMO8m8Pl1MRTPQcAADHNe/o7VXWgdQjpQAwyq+fm9Pb0fZLTtdFSPZdoDgcAAGKP+e8T76p6Re1G5e8brcRe8Zq+tVRvDktXcTFVdSAQe7QHAMDKrJ5P31qqa0tqlN9UPa93VKrW3lw9J6ADAIBY5q6qu3edOSE3XxWujZ6fXagj0RoWEPOopAMxwrd6ntMrS86SQqrnAAAAQA9CSAdigPfac7M53NrqJaw9BwAAAHoYQjoQRQGr5xUbVUT1HAAAAOiRCOlAlASqnjtdhe6151TPAQAAgB6JkA50skDVc++t1aieAwB6GlejZI+L9igAIDYQ0oFOFLJ63jS9nXAOAOgpykoS9MKCTJXucCh9aK0un+/U4Jz6aA8LAKKKLdiATmIG9EmbNymnJt6ytdqysSOY3g4A6HFeWJCp8p2JkqTynYl6YUFmlEcEANFHJR3oYMGq595bqxHOAQA9jatRKt3haP7eZVPpDgdT3wH0eFTSgQ4Uqnpea6c5HACg+3I1hv65PU5KH1oru91wf2833N9HGNBbehwA6GqopAMdwGwON31racjq+djoDhMAgHYXyTrzy+c7PcemZdfp8vnODnkcAOhKCOlAO/Oe3p5TE2/p3M7WagCA7i7QOvObn90e8NjBOfW6+dntrZriHsnjAEBXQkgH2olv9Tx9n+R0bbRUzyW2VgMAdF+tXWfeminurGfvWtbsWaME9ZckVZeXKlmShiWpuLhYeXl5URwZEHtYkw60A7N6Pn1raci15wR0AEB31l7rzGPlcdB2Y5NnaNnYEdq5/5CcNU45SwqVv88d1KdvLVXD/lpPoQOAGyEdaIPi4mK/5nDOkkIVVa/0VM+Z3g4A6Ekun+9UWnadJEW8zjwWHwdtNzZ5hj6eVKCVUwpU76hUUfVK5e+TcmriNWnzJoI64MNmGIYR7UF0purqaqWkpOierzYpqV+/aA8HXZjf2vNduzxrz3fuP0Q4BwD0aJ019Zwp7l3LuupXNGFVkRwuKbNvpgbZR+vbAVJyWrreHJYuSUx/R7d05MAB3XX8KFVVVSk5OTnksVTSgQhRPQcAoGWdFZwJ6F2LWVWvtcuvqj7xsyKq6oBoHAdExLt67r21Wr2jks7tAAAAYRibPEMHz5+hZU1V9aLqlcp0ZSrfPlravMldVW86lqo6eiJCOhAG84qup3reK8uztVqtXfp4XIEkOrcDAACEy11VlyasKnJX1feuVIEmK7FXvKZvLdWK1P4qFt3f0fMQ0oEWhKye26meAwAAtJYZ1McNH6i85Z+ponajMpWlcUNPlHZ8oTdT06M9RKDTEdKBECxrz72q52kDe7PvOQAAAIB2R0gHAghWPXfWOD3N4QjnAAAAANobIR3wEap6vpK15wAAAAA6ECEdaGI2h5u+tZTqOQAAAICoIKQDCl09Z2s1AAAAAJ2FkI4eLdzq+djoDhMAAABAD0FIR4/l3Rwupyae6jkAAACAqCOko8cxq+fm9Pb0fZLTtdFSPZdoDgcAAACg89mj+eBPPfWUCgoKlJycrOTkZI0bN07vvPNO0ONffPFF2Ww2y5+kpKROHDG6OrN6Pn1rqa4tqVF+U/W83lGpWntz9ZyADgAAACAaolpJz87O1v3336/8/HwZhqElS5bo3HPP1RdffKExY8YEvE9ycrI2bdrk+d5ms3XWcNGF+VbPc3plyVlSSPUcAAAAQEyJakifPn265fv77rtPTz31lD799NOgId1msykjI6MzhoduwnvtuXdzuHpHJWvPAQAAAMSUmFmT3tjYqOXLl+vgwYMaN25c0ONqamqUm5srl8ulsWPH6ne/+13QQC9JtbW1qq2t9XxfXV3druNG7ApYPa/YqKKm6vnH4wokUT0HAAAAEDuiHtLXr1+vcePG6ciRI+rbt69WrFih0aNHBzx21KhRev7551VQUKCqqio9/PDDGj9+vDZs2KDs7OyA91m0aJEWLFjQkU8BMYjqOQAAAICuKOohfdSoUfryyy9VVVWlV199VbNnz9aHH34YMKiPGzfOUmUfP368jjnmGC1evFgLFy4MeP5bb71Vv/nNbzzfV1dXKycnp/2fCGJCoOq599ZqrD0HAAAAEMuiHtITExM1YoQ7OJ100klas2aNHn30US1evLjF+yYkJOjEE0/Uli1bgh7jcDjkcDjabbyIXSGr503N4QjnAAAAAGJZ1EO6L5fLZVlDHkpjY6PWr1+vM888s4NHhVhnBnSq5wAAAAC6sqiG9FtvvVXTpk3T0KFDdeDAAb300kv64IMP9O6770qSZs2apaysLC1atEiSdM899+iUU07RiBEjVFlZqYceekjbt2/X3Llzo/k0EEXm9PbpW0st1XPvrdUI5wAAAAC6iqiG9LKyMs2aNUu7d+9WSkqKCgoK9O6772rKlCmSpB07dshut3uO379/v6688krt2bNHqampOumkk7R69eqgjebQvYWqntMcDgAAAEBXFNWQ/txzz4X8+QcffGD5/ve//71+//vfd+CI0BWEWz0fG91hAgAAAEDEYm5NOhCKd3O4nJp4qucAAAAAuhVCOroE3+p5+j7J6dpoqZ5LNIcDAAAA0LUR0hHzqJ4DAAAA6CkI6YhZZvXcuzmcs6SQ6jkAAACAbouQjpjkXT03m8OtrV5C9RwAAABAt0ZIR0wJWD2v2KgiqucAAADd1iff7VVe09d1u3ZppyT1dX9fXFysvLy8gPcDuiN7y4cAncOsnk/fWqpJmze5t1YrKVS9o1K19ubqOQEdAACg+zD/bbdz/yHVOypVVL1Sdbt2KacmXtO3lqphf62nkAP0BFTSEXWBqudmc7hau/TxuAJJVM8BAAC6q7HJM/TxJPfXE1YVqah6pTJdmcrJmaJJ5Zu0auQoFatYkqiqo9sjpCOqAq09d7r8q+cAAADo3sx/8308yR3U6x2VWvvNEhUkT9aYkhqV7K/UitT+KhbT39G9EdIRNWZA962epw3szdpzAACAHoqqOno6Qjo6XbDquffWaoRzAACAnitQVd1ZUqh8+2hp8yYlp6VTVUe3RUhHpwpVPV/J2nMAAAB48a2qO11OFWiyEnvFU1VHt0VIR6cwm8NN31pK9RwAAABh866qz1y3RRW1G9Uns6/GOLOUvL9SjtQUvaqkKI8SaD+EdHS4UNXz2kM0hwMAAAAAEyEdHSac6rnE9HYAAAAAMBHS0SG8m8Pl1MRTPQcAAACAMBDS0a7M6rn39HZnCdVzAAAAAAgHIR3tJlD1fG31EqrnAAAAABAmQjrajOo5AAAAALQPQjraxLt67t0crt5RSfUcAAAAACJESEerBKyeV2xUUVP1/ONxBZKongMAAABAJAjpiBjVcwAAAADoGIR0hC1Q9dx7azXWngMAAABA2xDSEZZg1XPv5nCEcwAAAABoG0I6WmQG9EDV85WsPQcAAACAdkNI76HMqevhmL61lOo5AAAAAHQCQnoPY4bz6VtLwzq+urzUr3pOczgAAAAA6BiE9B7Ee115Tk14b31dkOr52A4eKwAAAAD0RIT0HiDgnuYlhWHd11njpHoOAAAAAJ2EkN7NBerKvrZ6idIG9g7r/rWHxNZqAAAAANBJCOndVMDqecVGFXlNWw8X4RwAAAAAOgchvRsKtqd5vaOSaesAAAAAEMMI6d1IoOq52ZW91i59zJ7mAAAAABDTCOndRMjquZ3qOQAAAAB0BYT0bsAM6L7V87SBvWn6BgAAAABdCCG9CwtWPffd0xwAAAAA0DUQ0ruoUNXzlaw9BwAAAIAuiZDexZjN4aZvLaV6DgAAAADdDCG9CwlVPWdrNQAAAADo+gjpXUA41XOJ6e0AAAAA0NUR0mOcd3O4nJp4qucAAAAA0I0R0mOUWT33nt7uLKF6DgAAAADdGSE9BgWqnq+tXkL1HAAAAAC6OUJ6DKF6DgAAAAA9GyE9RnhXz72bw9U7KqmeAwAAAEAPQUiPsoDV84qNKmqqnn88rkAS1XMAAAAA6AkI6VFE9RwAAAAA4I2QHgWBqufeW6ux9hwAAAAAeiZCeicLVj33bg5HOAcAAACAnomQ3onMgB6oer6StecAAAAA0OMR0juBOb19+tZSqucAAAAAgKAI6R0sVPWc5nAAAAAAAG+E9A4SbvV8bHSHCQAAAACIIYT0DuDdHC6nJp7qOQAAAAAgLIT0duS7tVr6Psnp2mipnks0hwMAAAAABEZIbydUzwEAAAAAbUVIbyPf6nlOryw5SwqpngMAAAAAIkZIbwPv6rnZHG5t9RKq5wAAAACAViGkt0LA6nnFRhVRPQcAAAAAtAEhPUKBqudOV6HqHZVUzwEAAAAAbUJID1Og6rl3cziq5wAAAACAtiKkhyFk9bxpejvhHAAAAADQVoT0FpgBneo5AAAAAKCjEdKDCFY9995ajXAOAAAAAGhPhPQAQlXPV44rkET1HAAAAADQ/gjpXszmcNO3llI9BwAAAAB0OkJ6k1DVc7ZWAwAAAAB0hh4f0sOpnktMbwcAAAAAdLweHdK9m8Pl1MRTPQcAAAAARFWPDek7duyQvS7eM73dWUL1HAAAAAAQXT02pJ9RXKajG5NVt09aW72E6jkAAAAAIOp6bEjPPhgvZznVcwAAAABA7OixIX33zveUmHyY6jkAAAAAIGb02JC+/fAerT3tJElUzwEAAAAAsaHHhvTVE8foFMI5AAAAACCG2KM9gGg5od9Poz0EAAAAAAAsohrSn3rqKRUUFCg5OVnJyckaN26c3nnnnZD3Wb58uY4++mglJSXpuOOO09tvv91JowUAAADQ2dZVv6J11a9owqoile89JElKcaZow+FdWpHaX68qKcojBNpXVEN6dna27r//fn3++edau3atfvzjH+vcc8/Vhg0bAh6/evVqzZw5U3PmzNEXX3yh8847T+edd56+/vrrTh45AAAAgI5mhvOZ67bI4ZIKkicrM2eKSvo2aNXIUYpPdSgvL095eXnRHirQbmyGYRjRHoS3AQMG6KGHHtKcOXP8fjZjxgwdPHhQb731lue2U045RSeccIL+9Kc/hXX+6upqpaSk6HcrPldSn77tNm4AAAAA7WNd9SuSpAmriuRwSZl9MzXIPlrfDpCS09L15rB0SSKco8s4cuCA7jp+lKqqqpScnBzy2JhpHNfY2Kjly5fr4MGDGjduXMBjPvnkE/3mN7+x3DZ16lS98cYbQc9bW1ur2tpaz/fV1dXtMl4AAAAA7c+snmen9lZ5U/U8MStLGw7vslTPge4q6iF9/fr1GjdunI4cOaK+fftqxYoVGj16dMBj9+zZo/T0dMtt6enp2rNnT9DzL1q0SAsWLGjXMQMAAABof2ZAd7ikhNr+Kkge766e923QhwUFihfVc3R/UQ/po0aN0pdffqmqqiq9+uqrmj17tj788MOgQT1St956q6X6Xl1drZycnHY5NwAAAIC2M6e3z1y3heo5eryoh/TExESNGDFCknTSSSdpzZo1evTRR7V48WK/YzMyMlRaWmq5rbS0VBkZGUHP73A45HA42nfQAAAAANqFd0A3q+eJWVnu5nA5BHT0PDG3T7rL5bKsIfc2btw4rVq1ynJbYWFh0DXsAAAAAGLfuOEDPV8nZmUpe/RxkkRAR48U1Ur6rbfeqmnTpmno0KE6cOCAXnrpJX3wwQd69913JUmzZs1SVlaWFi1aJEmaN2+eJk6cqEceeURnnXWWXn75Za1du1ZPP/10NJ8GAAAAAADtIqohvaysTLNmzdLu3buVkpKigoICvfvuu5oyZYokaceOHbLbm4v948eP10svvaQ77rhDt912m/Lz8/XGG2/o2GOPjdZTAAAAAACg3UQ1pD/33HMhf/7BBx/43XbRRRfpoosu6qARAQAAAAAQPTG3Jh0AAAAAgJ6KkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAAAAAAMQIQjoAAAAAADGCkA4AAAAAQIwgpAMAAAAAECMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAICrWVb8iScpb/pnK9x7SIPtoSdInO77QitT+URwZED3x0R4AAAAAgJ5nXfUrmrCqSA6XlNA3UwXJ4/XtACm5b4NWpPZXfKpDeXl50R4m0OkI6QAAAAA6jVk9n7lui8pdUkHyZCVmZWnD4V1aNXKU4lMdipcI6OixCOkAAAAAOoVZPc9O7a2E2v6W6vmqnFFUzwER0gEAAAB0MLN67pneXttfmTlTqJ4DARDSAQAAAHQYS/W8d6YG2Ufr2wFSI9VzICC6uwMAAADoEL7T2zNzprint6el681h6QR0IABCOgAAAIAOk53aW9/P+L7n++S0dDmGpUhiejsQCCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgRhHQAAAAAAGIEIR0AAAAAgBhBSAcAAAAAIEbER3sAAAAAALqXddWvSJImrCpSuUvaWZ+gzJwp2nB4l1bljFK8HFEeIRC7COkAAAAA2s266lc0YVWRslN7K6F3pgbZR+vbAVJy3wZ3QE91KC8vL9rDBGIWIR0AAABAm3lXzx0uKaG2f3P1fKQ7nMdLBHSgBYR0AAAAAG3iXT0vd0kFyZOVmJWlEqrnQMQI6QAAAABaJVD1/HvHXNS09rwv1XOgFQjpAAAAACJG9RzoGIR0AAAAABExK+jZqb3da8/79vcE9DeHpVM9B9qAfdIBAAAARGzc8IGer/uc/APLzwjoQOsR0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRvS47u6GYUiSjhyqifJIAAAAgK6p7tARHa45rEO1dYqvrZUOHVLckQQdjGtQ3cGDOnLgQLSHCMSUIzXu/Gnm0VBsRjhHdSM7d+5UTk5OtIcBAAAAAOhhSkpKlJ2dHfKYHhfSXS6XnE6n+vXrJ5vNFu3hdEvV1dXKyclRSUmJkpOToz0cdCLe+56N97/n4r3vuXjvey7e+56L9751DMPQgQMHlJmZKbs99KrzHjfd3W63t3jlAu0jOTmZD24PxXvfs/H+91y89z0X733PxXvfc/HeRy4lJSWs42gcBwAAAABAjCCkAwAAAAAQIwjpaHcOh0Pz58+Xw+GI9lDQyXjvezbe/56L977n4r3vuXjvey7e+47X4xrHAQAAAAAQq6ikAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQjIosWLdL3v/999evXT4MHD9Z5552nTZs2tXi/5cuX6+ijj1ZSUpKOO+44vf32250wWrSn1rz3L774omw2m+VPUlJSJ40Y7empp55SQUGBkpOTlZycrHHjxumdd94JeR8+991DpO89n/vu6/7775fNZtN1110X8jg++91POO89n/3u4e677/Z7H48++uiQ9+Ez3/4I6YjIhx9+qKuvvlqffvqpCgsLVV9fr5/85Cc6ePBg0PusXr1aM2fO1Jw5c/TFF1/ovPPO03nnnaevv/66E0eOtmrNey9JycnJ2r17t+fP9u3bO2nEaE/Z2dm6//779fnnn2vt2rX68Y9/rHPPPVcbNmwIeDyf++4j0vde4nPfHa1Zs0aLFy9WQUFByOP47Hc/4b73Ep/97mLMmDGW9/Gf//xn0GP5zHcQA2iDsrIyQ5Lx4YcfBj3m4osvNs466yzLbSeffLJx1VVXdfTw0IHCee9feOEFIyUlpfMGhU6VmppqPPvsswF/xue+ewv13vO5734OHDhg5OfnG4WFhcbEiRONefPmBT2Wz373Esl7z2e/e5g/f75x/PHHh308n/mOQSUdbVJVVSVJGjBgQNBjPvnkE02ePNly29SpU/XJJ5906NjQscJ57yWppqZGubm5ysnJabH6hq6hsbFRL7/8sg4ePKhx48YFPIbPffcUznsv8bnvbq6++mqdddZZfp/pQPjsdy+RvPcSn/3u4ttvv1VmZqaGDRumn/3sZ9qxY0fQY/nMd4z4aA8AXZfL5dJ1112nU089Vccee2zQ4/bs2aP09HTLbenp6dqzZ09HDxEdJNz3ftSoUXr++edVUFCgqqoqPfzwwxo/frw2bNig7OzsThwx2sP69es1btw4HTlyRH379tWKFSs0evTogMfyue9eInnv+dx3Ly+//LLWrVunNWvWhHU8n/3uI9L3ns9+93DyySfrxRdf1KhRo7R7924tWLBAEyZM0Ndff61+/fr5Hc9nvmMQ0tFqV199tb7++uuQ61TQPYX73o8bN85SbRs/fryOOeYYLV68WAsXLuzoYaKdjRo1Sl9++aWqqqr06quvavbs2frwww+DhjV0H5G893zuu4+SkhLNmzdPhYWFNADrYVrz3vPZ7x6mTZvm+bqgoEAnn3yycnNz9de//lVz5syJ4sh6FkI6WuWaa67RW2+9pY8++qjFq6MZGRkqLS213FZaWqqMjIyOHCI6SCTvva+EhASdeOKJ2rJlSweNDh0pMTFRI0aMkCSddNJJWrNmjR599FEtXrzY71g+991LJO+9Lz73Xdfnn3+usrIyjR071nNbY2OjPvroIz3xxBOqra1VXFyc5T589ruH1rz3vvjsdw/9+/fXyJEjg76PfOY7BmvSERHDMHTNNddoxYoVeu+993TUUUe1eJ9x48Zp1apVltsKCwtDrmdE7GnNe++rsbFR69ev15AhQzpghOhsLpdLtbW1AX/G5757C/Xe++Jz33VNmjRJ69ev15dffun5873vfU8/+9nP9OWXXwYMaXz2u4fWvPe++Ox3DzU1Nfruu++Cvo985jtItDvXoWv57//+byMlJcX44IMPjN27d3v+HDp0yHPMz3/+c+OWW27xfP+vf/3LiI+PNx5++GHjm2++MebPn28kJCQY69evj8ZTQCu15r1fsGCB8e677xrfffed8fnnnxuXXHKJkZSUZGzYsCEaTwFtcMsttxgffvihsW3bNqOoqMi45ZZbDJvNZvzjH/8wDIPPfXcW6XvP57578+3wzWe/52jpveez3z3ccMMNxgcffGBs27bN+Ne//mVMnjzZGDRokFFWVmYYBp/5zsJ0d0TkqaeekiSddtpplttfeOEFXXbZZZKkHTt2yG5vnqQxfvx4vfTSS7rjjjt02223KT8/X2+88UbIhmOIPa157/fv368rr7xSe/bsUWpqqk466SStXr2aNcxdUFlZmWbNmqXdu3crJSVFBQUFevfddzVlyhRJfO67s0jfez73PQuf/Z6Lz373tHPnTs2cOVN79+5VWlqafvjDH+rTTz9VWlqaJD7zncVmGIYR7UEAAAAAAADWpAMAAAAAEDMI6QAAAAAAxAhCOgAAAAAAMYKQDgAAAABAjCCkAwAAAAAQIwjpAAAAAADECEI6AAAAAAAxgpAOAAAAAECMIKQDAAAAABAjCOkAACCoxsZGjR8/XhdccIHl9qqqKuXk5Oj222+P0sgAAOiebIZhGNEeBAAAiF2bN2/WCSecoGeeeUY/+9nPJEmzZs3SV199pTVr1igxMTHKIwQAoPsgpAMAgBY99thjuvvuu7Vhwwb9+9//1kUXXaQ1a9bo+OOPj/bQAADoVgjpAACgRYZh6Mc//rHi4uK0fv16/frXv9Ydd9wR7WEBANDtENIBAEBY/vOf/+iYY47Rcccdp3Xr1ik+Pj7aQwIAoNuhcRwAAAjL888/r969e2vbtm3auXNntIcDAEC3RCUdAAC0aPXq1Zo4caL+8Y9/6N5775UkrVy5UjabLcojAwCge6GSDgAAQjp06JAuu+wy/fd//7dOP/10Pffcc/r3v/+tP/3pT9EeGgAA3Q6VdAAAENK8efP09ttv66uvvlLv3r0lSYsXL9aNN96o9evXKy8vL7oDBACgGyGkAwCAoD788ENNmjRJH3zwgX74wx9afjZ16lQ1NDQw7R0AgHZESAcAAAAAIEawJh0AAAAAgBhBSAcAAAAAIEYQ0gEAAAAAiBGEdAAAAAAAYgQhHQAAAACAGEFIBwAAAAAgRhDSAQAAAACIEYR0AAAAAABiBCEdAAAAAIAYQUgHAAAAACBGENIBAAAAAIgR/x+fcaJpVpherwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 21\n", + "amount_ae: 183\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U1XjBvDnJi3di9Iy2kLZey8RgQJVUCigzMLLVvZUFFAQUHwBBUGGTBnykyEyxAUislFbdgGhWPYsZbSF7uT8/uiba9MkbdJmts/XTz7Sk5PznHtzk56euyQhhAARERERERERERGRmSls3QEiIiIiIiIiIiIqmjj5SERERERERERERBbByUciIiIiIiIiIiKyCE4+EhERERERERERkUVw8pGIiIiIiIiIiIgsgpOPREREREREREREZBGcfCQiIiIiIiIiIiKL4OQjERERERERERERWYSTrTtARPbt/v37OHr0KB48eICHDx8iISEB7777LipUqGDrrhERERERERGRneORj0SkV2xsLDp06ICgoCD07NkTY8aMwaxZs7B8+XIcOnTI1t0jIiNcv34dkiRh5syZVsmbOXMmJEnC9evXrZJHRERERET2j5OPZHaaP3aNeYwYMcLW3SU9YmNj0aJFC/z++++YPHkyrly5ArVaDSEEVCoVBgwYYOsuElEhLFmyBJIkGfwsP3nyBEFBQXB3d0dsbKxcHhoaitDQUCv1koiIiIjIvEJDQxEWFmbxHM1O+YMHD+otL24763naNVlM5cqV8Z///Efvc9evX8eGDRus3CMy1tChQ5GcnIwff/wRHTp0sHV3iMjMxowZgx07dmDjxo3o3r07unbtqvX86NGjcffuXXzxxReoVq2ajXpJRI7g+vXrqFixolF1hw8fjhUrVli4R2RLYWFhOHToEIQQtu4KEZHRTp06hebNm6NSpUo4c+YM3NzcdOq89tpr+OWXX7Bx40aD8xxkGCcfyWKqVKli8FS/gwcPcvLRTsXExODo0aN45513OPFIVERJkoR169ahbt26GDZsGFq2bIlSpUoBAL777jts3rwZbdu2xdixY23cUyJyFNzpTEREjqpRo0b44IMPMGvWLEydOhWLFi3Sen7VqlX45Zdf8Prrr3PisYB42jXZpdDQUIOnaq9fv16n/rp169C8eXN4enrC09MTzZs311vv4MGDBq9/JkmS3sOvw8LCIEmSTvmBAwcwZMgQVK9eXc5t0qQJVq1aVeBly31I9qBBg8x2SPb58+fRq1cvBAYGwsXFBRUrVsSECRPw6NEjrXrHjx8HAFSvXh2RkZEoXbo0SpQogQoVKmDkyJG4d++eXFetVqNChQrw9/dHenq63tzWrVvDyckJt2/fBmB4fWpO1x80aJBWuanrWd9poffv38eoUaNQsWJFlChRAiVLlkTnzp3xxx9/6Lze0OHxBdl2AODcuXPo06cPypYtK6/HsWPH6qz3/C5XsGbNGq36xr6fedFsXwqFAteuXdN5/siRI3J+7uXOa5kNrUPA+M/qxo0boVAo0KdPH62jJwxtJ1FRUfD09ESjRo2QnJys9VxycjJmzJiB2rVrw83NDb6+vujQoQOOHj2qt//JycmYNWsW6tWrB3d3d/j4+KBhw4aYPn06MjMzTbq0hOazq1knmodCoUDZsmXRqVMn+TOX086dOxEZGYkqVarIfWjVqhW2b9+ut88FERoaigULFiA+Ph4jR44EADx48AAjR46El5cX1q1bJ39WNct848YN3LhxQ2tZrHU9SSKyb5qdzvoeub+ziYiI7M0HH3yAhg0bYvHixVr3OLh27RreeecdBAQEYOXKlTbsoWPj5CPZLR8fH8yYMUN+5D4tUGPcuHEYMmQI7ty5g6FDh2Lo0KG4c+cOBg8ejPHjx1usf/PmzcPhw4fRtGlTjBkzBv/5z3+QkJCA4cOH45133snztbmXrU2bNhbrJwAcPXoUzZs3x86dO9G+fXu8/fbbqFChAr744gs0b94cCQkJct2HDx8CAEaOHIlt27YhLCwM77zzDmrWrIkVK1agSZMmuHHjBgBAoVDgzTffxOPHj/VOily+fBlHjhxBx44dERwcXKC+F2Y9A8Ddu3fRtGlTLF++HCVLlsTbb7+Nrl274vfff0fr1q2xY8eOAvXLGLt370azZs2we/duhIWFYcKECahbty6WLl2KFi1a4MmTJzqvqV+/vta2oXk0atRIrmPK+2kMhUKh9xfp8uXLoVQqTV9wA0z5rPbv3x/z5s3D1q1bMXHixDzbjY2NRadOnRAYGIhffvkFXl5e8nOPHz9GixYt8NFHH8HPzw8jRoxA9+7dcfLkSbRt2xa7du3Sais+Ph7NmjXDzJkzoVQqMXLkSAwZMgRlypTBvHnz8Pz5c/j6+uq8Pz4+Pjqf6xkzZsDX11er/YEDB2LGjBn44IMP0KZNG+zbtw/h4eG4dOmSVr2pU6fiwoULeOmllzB+/Hj07NkTly9fRo8ePbBkyRLTV74Bw4YNQ4cOHeSjHYcNG4aEhAQsWrRI6472mmXWt5zWuGYOERVt3OmczZw7nXMui7HrVQiBtWvXomXLlvD29oa7uzuaNGmCtWvX6m0/NjYW4eHhcHd3R40aNbBnzx75ubi4OISFhcHNzQ21atXCtm3b9LZx48YNDB06FEFBQShRogSCg4MxdOhQ3Lx50+DypKWlYcqUKShfvjxcXV1Rs2ZNLFmyROdU7/Xr1+e5vM+fP4ePj4/ebcHQdnDmzBkolUqdNnPuHL1w4QI6deoEX19feHp64pVXXsHJkyfNtvyaR4kSJRAaGoo333xTp35GRgaWLFmCDh06ICQkBC4uLggMDMQbb7yB06dP67StWVf61hOgf+d+XturoZ3FgGk70PP6/OQ++iwhIQETJkxAxYoV5eXt1asXzp8/r3eZ9LHENgPk/V107NgxdOrUCSVLloSrqytq1KiBGTNmICUlRateTEwM/Pz8ULNmTZ11pe/9efToEWrWrAk/Pz/ExMRoPWfqZ10IgXXr1qFVq1bw9fWFu7s7qlatiuHDh8vbXl7vlb7vHs06yfkoWbIkmjdvjq+//lqnDydPnsSYMWNQp04d+Pj4wM3NDXXr1sXcuXORmZmpt9+mcnZ2xtdffw1nZ2cMHjwYz549g1qtxqBBg/Ds2TOsXLkSAQEBOq+7desWIiMjUbJkSXh6eqJNmzY4fPiwWfpUpAgiM7t27ZoAIDp06GCwzoEDBwQAMXz4cL3PBwUFidDQUK2ydevWCQBi3bp1ctmhQ4cEAFGzZk3x9OlTufzx48eiWrVqAoA4fPiwTu6MGTN0MgGINm3a6JS3adNG6PuoXL16VacsMzNTvPzyy0KpVIobN27oXbbg4GCdZZsxY4YAIA4cOKBVPnDgQAFAXLt2TW9bxlCpVKJy5coCgNizZ4/Wc++++64AIIYMGaLTFwDip59+0qo/f/58AUB07txZLrtz545wcnISYWFhOtmTJk0SAMSuXbvksrCwMAFAqNVqrbqa7WbgwIFa5aau5woVKogKFSrIP/fu3VsAEP369dPKPHXqlChRooTw8/MTSUlJOsuf+70wddtJSEgQ3t7eIigoSFy/fl3ruc2bNwsAYsyYMfkuf26mvp950WxfXbt2FQEBASI9PV1+Lj4+XpQoUUJ069ZN73Ib+rwIoX8dmvpZ1Zg4caIAIObOnSuE0F1Pd+/eFaGhoSIgIEDExsbqvL5v374CgFi9erVW+YMHD0RISIgICAgQqampcnn37t0FAPH+++/rtHX//n2RmZmpd5lzb3fGrBMhhFi2bJkAIBYtWqRVHhcXp9NGcnKyqFu3rvDx8RHPnz83mJWTZn3p2241bt++LXx9fYWLi4vO5zs3Y5ezMN9ZRORYzDHuq1ChgvDx8REzZsyQH127dtUZ9wkhxNixYwUAERQUJMaNGyfGjRsngoKCBAAxbtw4vbnmGPd16NBBVK5cWfTr109MnjxZDB8+XFSoUEEAEG+//bbBZde3bJoMS4z79C2LMetVrVaLyMhIAUBUrVpVDB8+XIwdO1bUqFFDABDvvPOOVv0HDx6IsmXLCkmSxOuvvy5Gjx4t/P39Rfny5QUAUa1aNdGjRw8xbNgwUbJkSSFJkti+fbtWG5cvXxYBAQECgIiIiBBTpkwRnTt3FgBEQECAuHz5st7liYiIEMHBwWL8+PFi/PjxIjg4WO/7oPnbQalUiubNm+usn5UrVwqlUql3WzC0HbRq1UoeJ+dch5rPQatWrYSPj49o27atmDJlioiMjBROTk7C3d1d/Pnnn2ZZfs17OWXKFNG2bVv5Pcs5Rrl3755QKBSiTZs2YtiwYWLy5MmiZ8+ewsXFRbi6uoqoqCi96yr3dqGh7/d/XturoXHtkSNHhLu7u3BychJ9+vQRU6ZMkZercuXK4uHDhzq5uT8/mkfO7Sk+Pl4eH4eFhYkpU6aI3r17C6VSKdzd3cWRI0f0LldulthmhDD8XfTtt9/KfRw8eLCYPHmyaNiwoQAgmjdvrjVGFSJ7PO3q6ipatGghUlJStNZTzvfn+fPn4oUXXhAuLi7i0KFDWm2Y+llXqVSiR48e8vfuiBEjxHvvvSd69eolfH19xc6dO4UQQixcuFDr/alfv74AIMaPH69Vfvr0aa110qZNG/m54cOHC39/fwFArF+/Xqsfw4cPF+XKlRN9+vQR7777rhg9erSoXbu2ACDeeOMNvevdkAoVKhj8O0YIIebMmSMAiGHDhokFCxYIAKJ///566969e1f+HdShQwcxdepU0a1bN1GiRAnRoUMHvd/1xXW8zMlHMjtzDEIDAwNF9erVtcr0/VIcMmSIACC2bt2q08Y333yjMxFjzkGoIdu3b9f7hanh7+8vqlWrplVmycnHw4cPCwDi1Vdf1XkuOTlZlCxZUri6usoTT5q+6Hv/MjMzRcWKFYUkSSI+Pl4uf/3114UkSeLKlStyWUZGhggMDBRly5bVGgz16tVL7zIZO/mmYWg95/zlm5aWJpydnYWzs7O4deuWThtvvfWWACA2btwol5lr8vHzzz8XAMTXX3+tt/+NGjUSpUqVkn82dvlNfT/zotm+fvnlFwFAfPPNN/Jzc+bMEe7u7mLnzp1mmXw09bOqoVar5QnEDRs2aK2nxMREUb9+feHh4aEziBZCiIcPHwqlUinatWunt5+LFy8WAMQPP/wghMgeqEuSJCpXriwyMjL0vsaQgk4+fvHFF/KyGUMzADp48KBR9Y2ZfBRCiGnTpgkAwtnZWdy9e9dgPU4+ElFu3OlsXzudc3rppZd0lsXQJNOqVasEADF48GCt34Hp6ekiIiJCABAnTpyQy8eNGycAiGXLlsllx44dk3dkzZ8/Xy6/cuWK8PLyEsHBwSIrK0su10ycrVy5Uqsvmh1zuX9/a96b6tWra73/T58+FdWrVxeSJIno6GidZdVMuJ46dUqrvQYNGsg7WY2ZSNqyZYsAIBo3bmxw8hGAmDJlitbr9uzZIwCIunXrapUXdPlz69mzpwAgzpw5I5elpaWJ27dv69Q9f/688PT0FOHh4Vrl1ph8LMgO9PzGHRqDBw8WAMTUqVO1yn/66ScBQFSpUkWoVKp82zH3NqOh77soMTFR+Pj4CBcXF3H27Fm5XKVSyQdPfPTRRzpt7dixQyiVStG5c2f585RzPWVmZopOnToJhUKhM+EvhOmf9SVLlggAon379loTnkIIkZKSIh49eqR3mfP7PjP0/XzhwgUBQHTr1k2r/MaNG1rfH0Jk/52g+Rvj6NGjenP0yW/yMSsrSzRv3lwAECVKlBDBwcHiyZMneutqlnP27Nla5StXrpS/Ezj5mI2nXZNdSkpKgqura771NKcN6Dttpm3btgCyT4+wBM115OrXrw9PT0/5cPHu3bsDyD7dNze1Wo3ExES4u7ublLVo0SLMnDkTH330EZYvX479+/dDrVYb9dq81pHmlKG0tDRcvnxZ6znN+svJyckJrVq1ghACZ8+elcuHDx8OIYTWdQl3796N+Ph4DB48GE5O/97bqnnz5gCA9957Dw8ePMi3/wVZz5pr0rm6uiIzMxNVqlTRe9q3JbeRP//8EwDw119/6b3+VVpaGhISEkw+Rbqg72deatSogXbt2sl3IFWr1Vi5ciUiIyN1ThvO6fr163qXTd+1Hgv6WZUkCW+//TaA7Luwa07pSk9PR7du3XD27Fm0bt0aTZs21XltdHQ0VCoV0tPT9fZT8x5pTnk+ceIEhBBo27YtnJ2dDS53Yaxfvx4zZ87E9OnT0bt3b0yaNAkdO3ZEr169tOrFx8fj7bffRs2aNeHu7i5v95pLDejb7gsqPj5ePu0+MzMTP/74o9naJiIyRmZmJlxcXPKtp7lpzcyZM+Hj4yOX+/n5YcaMGQBg8LTRwtJ3R28nJyeMGDECKpUKBw4c0Pu61NRUlChRwiJ9yo8p2UuXLoWHhweWLVum9TuwRIkS+OSTTwAAmzdvlsu/++47+Pn5Yfjw4XLZiy++iBdeeAEAtC6NU6VKFfTq1Qu3b9+Wf/fevHkTBw4cQK1atfDWW29p9WXEiBGoUaMGfv/9d9y6dUunr9OnT9d6/318fDBt2jQIIfTe2CgiIgLBwcFYvny5XPbnn3/izJkz8jWP85Oamop3330XtWrVwogRIwzW8/X1xQcffKBV1qFDB7Rv3x4xMTHy6deFWf7csrKy5GwNFxcXBAUF6dStXbs22rZti8OHD5vtVFVjHTt2DHFxcXj11Vd1bmr54YcfomTJkti0aRMyMjJMajcjIwObN2+Gv78/pk2bpvXca6+9hpdffhn//PMPjh07ZnSb5thm8vP9998jMTERQ4YMQb169eRyhUKBTz/9FE5OTnq/z15//XUsW7YMP/74o9bnT2PYsGH46aefsHTpUrzxxhs6z5v6Wf/yyy+hVCqxfPlynTtAu7m5oWTJkiYve14027Ofn59Wefny5XUuByVJEkaPHg0A+O2338zWB6VSKa+LjIwMLFq0SO/fRBkZGdi6dSsCAwN1Lgf25ptvomrVqmbrU1HAu12T3UlJSUFaWpre6ynklpSUBIVCobdu6dKlIUkSkpKSzN7HjIwMhIWF4dSpU2jYsCH69+8Pf39/ODk5yXd01HcDlgcPHiArKwvlypUzKe+LL77QKatWrRp27dqFmjVr5vlazfKXLl1a7/Nly5bVqqeZKCxTpkye9RMTE+WyV155BRUrVsSGDRswe/ZsODk5Yc2aNZAkCUOHDtV6/ejRo7Fz505s27bN4PV/NAq6nn18fDBhwgQkJSVh4cKF+S57zmUxl8ePHwMAli1blme958+fy3cZNoap76exRo4ciZ49e+LChQu4fv06rl+/jpEjR+rcvCWnGzduYNasWUb3uyCfVZVKhREjRsDb2xuVKlXCmDFjAADbtm2DWq1Gq1at8Msvv2DXrl3o1q2b1ms178GxY8fyHHA+f/4cwL/bgb7Burnk/qOoVKlSaNy4sdY1gh4/foymTZvi5s2baNmyJcLDw+Hr6wulUokzZ87g+++/N3iDp4IYMWIEHj58iLlz52L+/Pnyne7Lly9vtgwiorwkJSXJv7/yYuudzvPnz8euXbsQFxcn/+7QyGunc0hIiElZmj90Nb83q1WrhrZt20KhMO24kSdPnhi1wzslJQUxMTEoV64c5s2bp/O8ZpJKs7MuMTERd+/eRYsWLYy+NnTdunUBABcuXEDLli3l96lNmzY618lTKBRo3bo1Ll26hDNnzuisv1atWum0rynTdz1DpVKJYcOGYd68eZg/fz68vb3x5ZdfokqVKnj55ZeN6v+8efNw69Yt/Prrr7hz547Beg0bNoSnp6fe/u3fvx+nT59G48aNC7X8musGpqen448//sDx48fxwQcfaF2rGcj+LHz66ac4evQo7t+/rzPZmJCQoPO527Vrl95rOD59+tTgDml9EzNPnz7VqWfMDvRff/0Vly9flrcXY1y6dAlpaWlo27at3u29bdu22LdvH86cOaN329GnMNuMvus66lunea2P8uXLo1KlSoiNjUVycrLW9cyB7Gujz5gxA1999ZXW32wffPAB1q1bh4CAAAwYMECnXVM/68+ePcPff/+NKlWqWGwi7eDBg/I6u3fvHrZt24Zq1aph6tSpWvUyMjKwdOlSbNmyBZcuXcKzZ8+0rvNqzh3zQgjMnj1b/nnHjh3ygS85Xb58GWlpaWjXrp3OgVMKhQItW7bElStXzNYvR8fJR7I7cXFxAKBz0Vx9vL29oVar8fDhQwQGBmo9Fx8fDyEEvL29zd7H77//HqdOncLQoUN17kK8ZcsWvXtdgX8HxNWqVTMp79q1awgNDYUQAnfv3sWnn36KxYsXY+zYsfnu5dEsv6GjDO/fv69VT7P3SlNuqH7OPc6SJGHYsGGYOnUqfvjhB3nw0L59e1SqVEnr9S4uLjh06BB++eUXxMTEIC0tDUD2ICX3JGtB17Ovry9mzpyJ5ORkLFy4MN9lz7ks5qJZnzExMahTp47Z2zX2/TRWt27dULZsWSxfvhzXr19H06ZN0bhxY71HMWq0adNG7/MzZ87UmZQs6Gf1888/x4kTJ7BixQp069YNL774Iq5evQqVSoX58+dj5MiRqFOnDkaNGoWwsDCtwa+mvXfeeQfz58/Pdx1oXpvXHxWFdeDAAXmQ+fDhQ6xfvx6TJ09GXFycvJf5q6++ws2bN/Hxxx/r7MGfO3cuvv/+e7P1Z+PGjdi5cyc6d+6MyZMnIzQ0FH369MHQoUOxb98+s+UQERnCnc66CrPTWUMzZsw9DtPnyZMnEELgzp07ee5U1Ey4anZM6ptkM0RTV/P+FGZnqr7XaMoM7VB+88038dFHH2Hjxo3o06cPtm3bhtmzZxu8QUhON2/exKeffoouXbrg5ZdfzvPoWkPLk7t/hVn+3O9RzZo1UaVKFa2y48ePo127dgCyDxKoWrWqfAbRrl27cPbsWb3b7Pfff29wnGFo8lHf9qqPpXagW6rdgm4zpuyYB/Lud2xsLJKSknQmHz/44AM8ePAArVu3xieffCLvBPjvf/+L1q1b4/Dhw3j//fd13htTP+vW2DF/6NAhrTtLOzs7IyIiQmciuUePHvjhhx9QrVo19O7dG4GBgXB2dpb/hjTnjvnFixfj4MGD6N+/P27evIlNmzahZ8+eOgc6aNZP7r9tNAy9t8UVT7smu6M5HaNJkyb51m3YsCEA6J0A0ZQ1aNDAXF2TaSZI9d2B+8iRIwZfp5kobN26dYFyJUlCUFAQFi1aBB8fH5w4cSLf1+S1jp4/f44TJ07Azc0N1atXBwD5rsr66qtUKhw9ehSSJOms18GDB8PZ2Rlr1qzB2rVroVardU4j0VAoFOjUqROmTJkinwI7YcIEnXoFXc8aXl5eqFKlCv755x+9E0qW3EY0p5f/8ccfZm3X1PfTWE5OTnjzzTexYcMG/PLLL2Y7pUSjIJ/Vf/75BzNmzEDr1q0xbNgwlC5dGlu3bgUAdOrUCe+88w7c3d2xatUq3Lt3D5MmTdJ6fdOmTSFJktHvQZMmTaBQKHDgwAGrnIoUEBCAd999F3Xr1sW2bdvkifjCbvfGunPnDsaNG4eSJUvKd2vt3bs3evTogd9++03vHdCVSiVUKpXZ+kBEVNCdzrlZa6fzqVOnsHz5csyePRszZ85Ex44dDb6uMDudhRBQq9W4ffs2xo0bh9jYWIwdO9boNjRHgxmTrVlnjRs3hsi+J4Deh+bUcg8PDwDZR0UZS1NXMwlZmJ2p+l6jKTO0Q7ls2bLo1q0bVqxYgXXr1gHIHrsa491334Varcbnn3+eb11Dy5O7f4VZfs37kZWVhbi4ODRq1AiDBw/W+r39ySefID09Hb/99ht2796NBQsWYNasWZg5c6bBs5uA7DvJ63vvcx9VmZNme835uHbtmk49S+1At1S7Bd1m8vrsmKPff/31FxYvXow+ffrg999/R9euXaFSqaBSqdC1a1f8/vvv6N27N5YuXSr/XZ0709jPumZ7teSO+RkzZsi5SUlJ2L59O3bv3o3WrVsjNTUVQPallH744Qd06NABFy9exOrVq/HJJ59g5syZ6NOnj1n7Exsbi6lTpyI4OBhLlizB2rVr4eHhgREjRujcZVyzfuLj4/W2ZcwlxooTTj6SXUlMTMTixYvh7OyMLl265Ft/4MCBALL3MOXcm5WYmCjvzdHUMSfNL+CjR49qlR86dAirV6/W+5qEhARs3LgRJUuWxKuvvlqo/Hv37uHZs2c618LQp2XLlqhcuTJ++eUXnaMkZ8+ejUePHiEyMlK+JlDz5s1RrVo17NmzR76+nsaSJUsQFxeHiIgInVOFS5cujW7dumHPnj1Yvnw5SpUqpbN3yFQFWc+5DR48GJmZmZg6darWofnnzp3D+vXr4efnV+h+Gsr18vLCBx98gAsXLug8n5KSojMgMIap76cphg0bBj8/P1SpUsXsv8hN/awKIfDWW2/J1xLV7GXWbHc5t7/w8HAMHjwYX331FX7//Xe5vEyZMujVqxeOHz+Ozz77TOv91/jrr7+QkpICIHsb7t69O+Li4vTuDY6Pj5evQ2MuT548wZ07d7T2ohva7jdt2oSff/7ZbNlDhw7F06dPsXTpUq3Trr788kt5YvTGjRtarylZsiQSEhLkiVIiosLiTmfDCrLTuSDZXl5eqFmzJv7++2+9p8vm5ufnh9KlS+PSpUtG75A6f/48AMhHbmrep8OHD+v8fhZC4PDhw1r1ctK3zjVlmm1En5EjR+L8+fP4+OOP0atXL6OuVXfkyBF8++23mDhxIipXrpxv/dOnT+udlM3dv8Isv4ZSqUSlSpWwZMkSANlnM2jExcWhZMmSeOmll7Rek5KSglOnTuW7HJZgqR3oNWrUgKurK6Kjo+UxXU6F+W4oyDZjrLzWx61btxAXF4dKlSppHfWYkZGBoUOHws/PD4sXL4ZSqcTmzZtRqlQplCpVCps3b4ZSqcTixYvh6+uLoUOHal1D09TPuqenJ2rVqoVr165Z5fRhLy8vREREYMCAAbh69ap82STNd3CnTp10LvVgzh3zKpUKAwcORGpqKtasWQMfHx9UqlQJ8+bNw4MHD+TLP2lUq1YNrq6uOHHihM7YWK1W4/jx42brW1HAyUeyG7Nnz0b16tVx/vx5fPTRR0Zd+6d169YYO3YsLl68iDp16mDixImYMGEC6tSpg0uXLmHcuHF6B12a0zhzPoDsa0XkLtdcP2LFihXyoC8iIgKhoaH49NNP0alTJ0yePBndunVD+/bt9Q5M169fjxYtWuDhw4coX7485s6dq/cGHevXr8euXbt0Xv/NN99gxYoVWL58OaZPn44WLVpApVJh2LBh+a4jhUKB9evXw93dHa+99hr69euH999/H23btsXcuXNRuXJlzJ07V64vSRK++uoruLm5ISIiAn369MH777+PV199FRMnTkRQUBCWLl2qN2vEiBFQq9V48OABBg4cWOgLrJu6nvV555130Lx5c2zcuBHNmjXDlClTMGTIEHkdrlmzRu9pQ7t379baDnbv3g0g/21Hs70EBARg8+bNePbsGerXr4/OnTtj0qRJGDt2LCIiIlCmTBm914TJj6nvpymCg4Nx8+ZNXL58WeeC0oVl6md11apV8jVgjLnGzIIFC1CmTBkMGzZMa+D55ZdfokGDBnjvvfdQv359DB8+HJMnT0bfvn1RrVo1vPDCC1qToV9++SVq1qyJTz75BI0aNcKkSZPwzjvvICIiAiEhISYd5aGP5oYzM2fOxJgxY1CvXj08evQI/fv3l68V079/f/j4+GDs2LHo1asX3n33Xbzyyivo37+/3guHF8TKlSuxd+9e9OjRA5GRkVrPBQQEYPny5UhOTsaQIUO0/ihq164d0tLS8Oqrr+LDDz/E7Nmz5T+QiIhMxZ3OxjFlpzMApKWl4csvv4STkxN69+5t1GvGjRuHlJQUvPXWWzrXswSyj27Led26bt264cmTJ1qXxfnjjz/kyeQFCxbI5VevXsW3336L0qVL48UXXwSQfU27tm3b4sKFC1i7dq1W1qpVq/D333+jXbt2eq+X+fHHH2udXp2YmCifDpvX+9+uXTu8+OKL8PLywqhRo/JZI9nGjRuHsmXL6txExpCnT5/KN6rQ2Lt3L/bv3486deqgcePGAAq3/LnFxMTolFWoUAFPnjzR2gGuUqkwadIkvUcOW4OldqCXKFECkZGRSEhIwJw5c7Se27NnD/bu3YsqVaqgZcuWJve5INuMsbp27QofHx+sW7dO630SQmDy5MnIysrCoEGDtF7zySef4MKFC1i4cKF8+Qk3Nzd4eHjAw8NDHr8HBgZi4cKFuHjxos72aOpnffTo0VCpVBg1apR8JKJGWlqafI11cxFCyDsrNAx9B1+4cEHnPS+MTz/9FH/++SeGDRumdVOkUaNGoV27dtiyZQt27Nghl7u4uKBXr16Ij4/X+s4DgDVr1iA2NtZsfSsSzHbfbKL/uXbtmgAgOnToYLDOgQMHBAAxfPhwuaxNmzYiPDxcfP/993pfs27dOgFArFu3Tue5tWvXiqZNmwp3d3fh7u4umjZtKtauXWswt6CPGTNmyG1dvXpVdO/eXQQEBMiZW7ZskTNy1m3Tpo3RGQMHDpRfN3DgQJ3nAwICRMuWLcXGjRsNvwl6nDt3TvTo0UOUKlVKODs7iwoVKojx48eLhw8f6q1/9uxZrfohISFi1KhR4t69ewYz1Gq1KF++vAAg/v77b5P6p9luci6/EKatZyGEqFChgqhQoYJWWXJysnj//fdFlSpVRIkSJYSfn5/o3LmzOH78uE4/ZsyYUaht5MCBA1rtXbp0SQwdOlRUqFBBzq5bt64YN26ciIqKynf5DTH1/dRHs31du3bNYB1D6xmAaNOmjd7XaNZh7nUhhHGf1du3bwtvb2/RsGFDkZmZqfVcXuvpu+++EwDE22+/rVWekpIiPv30U9G4cWPh4eEh3NzcRMWKFUW3bt3E119/rZORmJgopk+fLmrUqCFcXFyEj4+PaNCggfjwww9FRkaG3mXWt93pWyc5H35+fqJx48ZiyZIlOn04c+aMeOWVV4Sfn5/w8vISbdq0Eb/99lue34P6aNZX7u8uT09PERgYmOf2EhkZKQCIZcuWyWXJycnirbfeEmXLlhVKpVKnbc1y5rVNEVHRUtBx38cffyxKly4tAIg5c+bovMbQ993YsWMFABESEiImTJggxo8fL4KDgwUAMW7cOL25nTp1EsuXL9d6ABBVq1bVKa9ataoAIJYvXy6io6OFENnffaGhoQKAeO2118R7770nunbtKpRKpejRo4fOd+G6detElSpVBADRoEEDMWPGDK2HZlw4cOBAsXPnTvl1mt/Ls2fPFsuXLxdffvmlmDZtmjy2+u9//5vv+7Fz507RqFEjAUCEhobqZHft2lUAEF27dtVat2q1Ws4vW7as6N+/v5g8ebIYNGiQeOGFF4QkSWLz5s1y/du3b4tSpUoJSZJE9+7dxZgxY0RAQICoUKGCACBq1aolevbsKYYPHy78/f0FAPHNN99o9fXSpUtyG127dhVTp04VXbp0kce7ly9f1qqvWW8REREiODhYjB8/Xuv9z/3739jfmfrGNDnH7hs2bMi3Xc3noFWrVsLHx0e0bdtWTJ06VURGRgonJyfh5uYm/vzzT7Msv+a9nDZtmhgwYIDw8PDQ6ecPP/wgAAhfX18xbNgwMW7cOFGvXj3h7+8vwsLCdH5X57eu9I1z8hpHGhqvHTlyRLi7uwtnZ2fRt29fMXXqVLk/lStXFvHx8fnm6hMfHy8qVaokAIh27dpprXt3d3dx5MiRfNsQwjzbjD6GxtPffvutUCqVwsPDQwwZMkRMnjxZNG7cWAAQzZo1E6mpqXLdmJgY4ezsLDp27KjTvqH11KFDB+Hs7CxiYmLkMlM/62q1WvTq1UsAEEFBQWLkyJFi8uTJIjIyUpQsWVLrOyyn/P7O0KyTNm3ayNv0O++8Iy9/jRo1RFpamhBCiKysLNGsWTP5M/buu++K3r17Czc3N/k72Ni/oTTrK/f7d+7cOVGiRAlRsWJFkZycrPOaa9eu6R0/3717VwQFBQkAomPHjmLq1KmiW7duokSJEuKVV17R+zdRcR0vc/KRyEgVKlTQ+YVhrDZt2hj1hWhsPXt19+5d4eTkJFq1amXrrlidZpClb8KNyFb0TT5aUnEdTBEVZ9zpbF87nfW1Yeihbyfi1q1bRXh4uPDz8xPOzs4iKChIhIWFiQULFujssLpw4YJo27atcHV1FdWrVxd79uyRlz0uLk60adNGuLi4iGrVqulMPGpcv35dDB48WJQtW1Y4OTmJsmXLisGDB4vr16/r1NW0nZqaKt577z0REhIiSpQoIapXry4WL14s1Gq1Vn1zTCQ1b97cqHZzTradP39evPbaa8Lb21t4eHiI8PBwceLECbMtv+ahUChEmTJlRHh4uPjxxx916n/33XeiUaNGwt3dXZQqVUr06tVLxMXF6Z0UstbkoxCm7UA3dvJRCCEePnwoxo0bJypUqCCcnZ1FqVKlRI8ePbQm3vJj7clHIYQ4fPiwePXVV4Wvr68oUaKEqFatmpg+fbp49uyZXEcz+ebp6Slu3Lih04ah9XT9+nXh6ekpmjVrJrKysrSeM+WzrlarxZo1a8QLL7wgPDw8hLu7u6hataoYMWKEuHnzpt5lNnbyMefDw8NDVK9eXUyePFlnIjo+Pl4MGTJElCtXTri6uoq6deuKZcuWiatXrxZ68jEjI0M0aNBASJKU599yK1euFABEz549tcpv3LghevfuLXx9fYW7u7to1aqVOHTokMEDMorreFkSQs9FsIhIR2hoKAYNGlSgU2XDwsIQGhqa593xTKlnryZPnoxPP/0UmzZt0jmVs6i7fv06KlasqHU3YyJb02yXM2bMKNB3l6k0dzq/du2aUTePICKyV4467hs0aBCuX7+u9zpyBalnqrCwMBw6dEjvdZbtue3C0vy+HThwoMOO44mKi9DQUISGhpr9+89YxXW87GTrDhA5in79+hl1MXR9Bg0aBF9fX7PVsyeJiYlYvnw5bty4gTVr1qBWrVro1auXrbtldV5eXhg+fDjKlStn664QERERERER2Q1OPhIZKffFek2R+2LBha1nT548eYKpU6fC1dUVL730ElasWKFzF7LiwN/fX775DBERETk2R93p3K1bN6PuYmtsPSIiInPg5CMRFUpoaKhdnv5CRICvry9mzJhhtUsBaHIc7QhuIqLcHHWnc7du3cxaj4iIyBx4zUciIiIiIiIiIiryFi1aBF9fX5uddXjw4EEcPHgQEyZMKFY77Dn5SERERERERERERBahsHUHiIiIiIiIiIiIqGgqdtd8VKvVuHv3Lry8vCBJkq27Q0RERGQyIQSSk5NRrlw5KBTcl+yIOCYlIiIiR2bKeLTYTT7evXsXISEhtu4GERERUaHdunULwcHBtu4GFQDHpERERFQUGDMeLXaTj15eXgCyV463t7dVMnv37o2tW7daJctWmcxz7DxbZDKPefaeyTzHzrNFpjXzkpKSEBISIo9ryPEUhzEp8xw/k3nMs/dM5jl2ni0ymWc+poxHi93ko+a0Fm9vb6sN9Jydna2WZatM5jl2ni0ymcc8e89knmPn2SLTFsvI03UdV3EYkzLP8TOZxzx7z2SeY+fZIpN55mfMeJQXCSIiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFlHsbjhjKpVKhczMzEK14e/vj7S0NDP1yD4zmefYebbIdNQ8JycnKJVK3uSBiIisxhzjUcBxf/cyz3aZzGOeLTOdnZ2hVCrN0hYR2RYnHw0QQuD+/ft4+vRpodsaNGgQrl27VvhO2XEm8xw7zxaZjpynVCoRGBgIHx8fTkISEZHFmHM8Cjj2717m2SaTecyzdaavry/KlCnDMTeRg+PkowGagV5gYCDc3d0L9WUnSRJCQ0PN1zk7zGSeY+fZItMR84QQyMrKQlJSEu7du4fU1FSULVvWPB0kIiLKxZzjUcAxf/cyz7aZzGOerTKFEEhJSUF8fDwAcMxN5OA4+aiHSqWSB3r+/v6Fbk+pVMLV1dUMPbPfTOY5dp4tMh05z8vLCy4uLkhISEBgYCBPByEiIrMz93gUcOzfvcyzTSbzmGfLTDc3NwBAfHw8x9xEDo43nNFDc00dd3d3G/eEiOyVh4cHhBBmuQYXERFRbhyPEhH9+x3IMTeRY+PkYx54XQkiMoTfD0REZA38fUNExRm/A4mKBk4+EhERERERERERkUVw8pEK5Pnz57h16xaePHli664QEREREREREZGd4uQjGW3btm1o3749vLy84OnpifLly+PTTz+1dbeIiIiIiIiIiMhOcfKxmLpw4QL+85//ICgoCC4uLihXrhz69euHCxcu6K0/ZcoU9OrVC15eXli9ejX27duH3377DaNGjbJyz4mIiIjIka1fvx6SJMkPV1dXVKtWDWPGjMGDBw9s3T2yombNmkGSJCxfvlzv87m3ldyPP//8U667detW/Oc//0HVqlUhSRLCwsKstBRERJQfJ1t3gKxvx44diIyMRMmSJTF06FBUrFgR169fx1dffYXvvvsOW7Zsweuvvy7XP3ToEObNm4c5c+ZgypQpNuw5ERERERUVH330ESpWrIi0tDQcPXoUy5cvx88//4zz58/zLt/FwJUrVxAdHY3Q0FB88803GDlypMG6mm0ltypVqsj/Xr58OU6ePImmTZvi0aNHFukzEREVDCcfi5m4uDj0798flSpVwuHDhxEQECA/N378eLRq1Qr9+/fHuXPnUKlSJQDA/Pnz8eKLL3LikYiIiIjM5tVXX0WTJk0AAG+++Sb8/f3x+eef4/vvv0dkZKSNe0eW9n//938IDAzEggUL0KNHD1y/ft1g3ZzbiiEbN25EUFAQFAoF6tSpY+beEhFRYfC062Lms88+Q0pKClatWqU18QgApUqVwsqVK/H8+XOtazn++eefqFOnDvr06YOSJUvCzc0NTZs2xa5du+Q6z58/h4eHB8aPH6+Tefv2bSiVSsyZMwcAMGjQIISGhurUkyQJM2fOlH++ceMGRo0aherVq8PNzQ3+/v7o2bOnzsDk4MGDkCQJBw8elMuio6Px8ssvw8vLCx4eHggLC8ORI0e0Xqc5jePEiRNyWUJCgk4/AGDYsGF6+/zXX3+hY8eO8PHxgbu7O9q0aYNjx47p1Ltz5w6GDBmC0qVLw8XFBbVr18batWt16umjOa1k0aJFOs/VqFEDkiRhzJgxeS5XXst2+vRpvPrqq2jYsCE8PT3Rvn17rVNYAGDlypVQKBTYtm2bXHb9+nVIkoT169fLZbGxsShZsiT69u2r9fqnT59iwoQJCAkJgYuLC6pUqYJVq1ZBrVZr1VOr1fjiiy9Qt25duLq6IiAgAB07dpSXJa/TbnKeXqPZJjQPFxcXvPLKK5gzZw6EEHqX39vb2+DyExERkeW1a9cOAHDt2jUAwOPHjzFp0iTUrVsXnp6e8Pb2xquvvoqzZ8/qvDYtLQ2LFy9GtWrV4OrqirJly+KNN95AXFwcgH/HLfmNITTi4+MxdOhQlC5dGq6urqhfvz42bNigVefq1ato164dypQpAxcXF4SEhGDEiBF4/PixXEczJvnuu+90+uzp6YlBgwbJPxu7vKa0WdBxoWZcNGDAAL3jIn1ju3nz5umM7fKyadMm9OjRA507d4aPjw82bdpk9Gv1CQkJgUJRsD9vc44dz5w5o/XcnTt3oFQqddb5oEGD4OnpqdPWd999p/O3CZB9/fzXX38dbm5uKFWqFP7zn//gzp07WnX69u0Lf39/XLlyRS7TvIc5/wbatm0bFAoFVq5cqfX6S5cuoUePHihZsiRcXV3xxhtvYPfu3Tp9fPr0KSZOnIjQ0FC4uLggODgYAwYMQEJCgs44Wt9Ds93MnDlTq9zLywvdu3fX+jsxZ58bN26c5/ITUdHFIx+LmR9++AGhoaFo1aqV3udbt26N0NBQ/PTTT3LZo0ePsGrVKnh6emLcuHEICAjA//3f/+GNN97AN998g8jISHh4eOD111/H1q1b8fnnn0OpVMqv37x5M4QQ6Nevn0l9jY6OxvHjx9GnTx8EBwfj+vXrWL58OcLCwvT+EtX4559/EBYWBnd3d7z77rtwd3fH6tWrER4ejn379qF169Ym9cOQ33//Ha+++ioaN26MGTNmQKFQYN26dWjXrh2OHDmCZs2aAQAePHiAF154QZ4kDAgIwC+//IKhQ4ciKSkJEyZMyDfL1dUV69at06p7/Phx3Lhxo1DLcOHCBbRq1Qre3t546623UKZMGaxcuRJhYWE4dOgQmjdvDgAYPnw4Ll++jIEDByI0NBRNmzbVaevx48fo3LkzatasiXXr1snlKSkpaNOmDe7cuYPhw4ejfPnyOH78OBYsWIDMzEytSdWhQ4di/fr1ePXVV/Hmm28iKysLR44cwZ9//okmTZpg48aNct0jR45g1apVWLhwIUqVKgUAKF26tFaf3n//fdSsWROpqalYt24d3n//fQQGBmLo0KE6y//ee+/B2dlZ7/ITERGR5WkmCv39/QFkT+7t2rULPXv2RMWKFfHgwQOsXLkSbdq0wcWLF1GuXDkAgEqlQufOnbF//3706dMH48ePR3JyMvbt24fz58+jcuXKckZkZCRee+01rdypU6dq/ZyamoqwsDD8888/GDNmDCpWrIht27Zh0KBBePr0qbyzPTU1FcHBwYiIiIC3tzfOnz+PZcuW4c6dO/jhhx9MXn5jl9dS9I2Lli5dqjMuMjS2mzp1Ku7du6d3h3luf/31F/755x+sW7cOJUqUkP+u6Nmzp976iYmJSEhI0CqTJEneVsxFM+b+4osv5LINGzagRIkSSEtLK3C769evx+DBg1G3bl3MmTMHDx48wBdffIFjx47h9OnT8PX1BQCsXbsW7dq1Q6dOnfDXX3/Bz89Pp62oqCgMHDgQEydOxPDhw+XyCxcuoGXLlggKCsKUKVPg4eGBDRs2oFu3bti+fbt8Wa1nz56hVatW+PvvvzFkyBA0atQICQkJ2L17N27fvo2aNWtqjblXrVqFv//+GwsXLpTL6tWrp9UnTf2EhAR88cUX6NmzJ86fP4/q1atrLX/Tpk3zXH4iKsJEMZOYmCgAiMTERIN1UlNTxcWLF0VqaqpZMmNjY83STmEznz59KgCIrl275vnaLl26CAAiKSlJCCEEAAFAHDx4UK6TkpIiatasKcqUKSMyMjJEbGys2Lt3rwAgfvnlF6326tWrJ9q0aSP/PHjwYFG+fHmdXABixowZWhm5/fHHHwKA+PTTT+WyAwcOCADiwIEDQgghunfvLpRKpTh//rxcJyEhQfj7+4vGjRvLZevWrRMARHR0tFz28OFDnX4IIURYWJioUKGC/LNarRZVq1YVHTp0EGq1WqvPFStWFC+//LJcNnToUFG2bFmRkJCg1WafPn2Ej4+P3uXM+f4BED169BBOTk7ixIkTWu327dtXABCjR4/Oc7kMLVu3bt1EiRIlRFxcnJx59+5d4eXlJVq3bq31epVKJSIiIkTZsmXFrVu3xLVr1wQAsW7dOpGRkSHCwsJExYoVRXx8vNbrPv74Y+Hh4aGzTQ4bNkwolUpx8+ZNIYQQv//+uwAgxo0bp7M+cq7j3Mt57do1nedybxNCCHH+/HmhUCjEqFGj9C6/hqHlzy2/74mIiIg8X29uRT3PFpnMc+w8W2RaM8+Y8QzZt/zeQ3OPR4XIHl+kpAjx+edCjBmT/X89wxCz5umj+R3+22+/iYcPH4pbt26JLVu2CH9/f+Hm5iZu374thBAiLS1NqFQqrddeu3ZNuLi4iI8++kguW7t2rQAgpk6dqpOlGUNoxi2fffaZTp3atWtrjVUXLVokAIj/+7//k8syMjJEixYthKenpzxG1rd8o0aNEp6envLPmjHJtm3bdOp6eHiIgQMHyj8bs7yxsbEmtVnQcaHG0aNHdcZFhsZ2U6ZM0Rrb5WXMmDEiJCREfn9+/fVXAUDs2rVLq56m//oeLi4uBtvP/Z4aolkGzTqNjIwU/v7+Ij09Xa5TtWpVecydc50PHDhQeHh46LS5bds2rXFoRkaGCAwMFHXq1BExMTFyvR9//FEAEB9++KHW6x88eCBCQ0NF27ZtRUZGhtaY9+bNm6JMmTKiS5cuOttK+/btRd26dUVaWppcdvnyZfHiiy+KqlWrymUffvihACB27Nih03d9Y+6BAwdq/R2U04wZM0TuKQVNf7/99lud5c/5fWZo+XPjmLto59kik3nmY8p41KanXec+TFuSJNSoUcNg/dWrV6NVq1bw8/ODn58fwsPDERUVZcUeF056aiZ2LfwTK8buwa6FfyI9NdOq+cnJyQAALy+vPOtpnk9KSpLLmjZtijZt2sg/u7m5YdSoUbh//z5OnToFAAgPD0e5cuXwzTffyPXOnz+Pc+fO4T//+Y9cFhgYiPj4eGRkZOTZDzc3N/nfmZmZePToEapUqQJfX19cvHhRp35iYiLi4+Oxb98+dOjQAbVr15af8/f3x6BBg3Dy5Emz3EXxzJkzuHLlCvr27YtHjx4hISEBCQkJeP78Odq3b4/Dhw9DrVZDCIHt27cjIiICQgi5XkJCAjp06IDExER5/eWldOnS6NSpk3xEYUpKCr799lsMHjzY4Gs0e4g1j5ynAAHZRwn8+uuv6Natm3x9TwAoW7Ys+vbti6NHj2ptAwqFAps3b4a/vz8iIiLw/Plz+bmRI0ciKioKP/74o87p/Nu2bZM/tzn78+KLL0KlUuHw4cMAgO3bt0OSJMyYMUNnWSRJyncd5bUObt68idWrV0OtVsundJm6/EREVDQVp/FoWpqEli2BSZOAlSuz/9+yJZCaapv+hIeHIyAgACEhIejTpw88PT2xc+dOBAUFAQBcXFzk02hVKhUePXoET09PVK9eXWv8tH37dpQqVQr9+/fXySjIGOLnn39GmTJltK476ezsjHHjxuHZs2c4dOiQVv3ExEQ8ePAA+/fvx08//aT3LJvk5GStcVDuo/hMWV5T2szZx4KMCwMDA3XGRYbGduHh4VpjO0OysrKwdetW9O7dW35/2rVrh8DAQINHjC5btgz79u3Tevzyyy955hREREQEJEmSz7I6cuQIbt++jd69ext8Te73QPM3l8aJEycQHx+PUaNGwcXFRS7v1KkTatSooXXGGZC9zn/66Sf89ddfGDVqlFz+7NkzREREoFSpUti0aZPWKeaPHz/G77//jl69emltF0+ePEGHDh1w5coV+RTn7du3o379+lo3GNUo6Jhbk/f3339j8+bN8PDwwAsvvKCz/K6urvkuPxEVTTY/7bp27dr47bff5J+dnAx36eDBg4iMjMSLL74IV1dXzJs3D6+88gouXLggD1LsVXpqJt5ruR5Xzz6AQilBrRI4sDEGnx4bBBc3Z6v0QTOpmPsXYm76Jin1DcJr1qwJIPsaOiVLloRCoUC/fv2wfPlypKSkwN3dHd988w1cXV21TqF48cUXMW/ePEybNg3jxo3T+iWUU2pqKubMmYN169bhzp07Wtfq07cM3bp1k/+tOcTfUH9zn55rKs11WAYOHGiwTmJiIjIzM/H06VOsWrUKq1at0lsvPj7eqMzBgwdj8ODBWLBgAbZt2wY/Pz95Ik2f8PDwPNt7+PAhUlJSDK4rtVqNW7duaU3iqlQqJCQk4P79+/LE55dffono6GhIkqT3fbly5QrOnTunMympoVn+uLg4lCtXDiVLlsyz36bIuU0oFApMmzYN3bt3B1Cw5ScioqKpuIxHN2/2wdmzgFqd/QCAs2eBFSuAiROt359ly5ahWrVqcHJyQunSpVG9enWtCRXNtaC//PJLXLt2DSqVSn4u5+m2cXFxqF69ep7vmylu3LiBqlWr6lw/UDOWzH3Zmw4dOuCvv/4CAHTs2BFbt27VaXPIkCH55hq7vKa0qWHOcaGxYztDfv31Vzx8+BDNmjXDP//8I5e3bdsWP/74I9Rqtc66b9asWb43nDEHZ2dn/Oc//8HatWvRo0cPrF27Ft27d4e3t7fe+s+fPze4HjQ024u+dVujRg0cPXpUpzwpKQmpqalYs2aNfM3PIUOG4OzZsyhbtqzWtgFkX3ZKCIHp06dj+vTpevsRHx+PoKAgxMXFyeNhc8m5Djw9PfHNN98gJCQEQMGWn4iKHptPPjo5OaFMmTJG1c15RB0ArFmzBtu3b8f+/fsxYMAAS3TPbH5ZcRJXzz6AUAuo1NmTaFfPPsAvK06i28QXrNIHHx8flC1bFufOncuz3rlz5xAUFCT/ks15BGJ+BgwYgM8++wy7du1CZGQkNm3aJF9EWqNLly4YMmQIPvvsM3z22WcG2xo7dqx8ncMWLVrAx8cHkiShT58+ei9mPX/+fFStWhVdu3Y1ur8Fpcn/7LPP0KBBA711PD098ejRIwDAf/7zH4MTlbmvmWJIp06dUKJECezatQvr1q3DwIED87yotmZAr5GUlFTogcb06dORlpaG3bt3y3uAo6OjsXjxYmzevBmjRo1CdHS0zh8OL7/8Mt577z2ttm7fvo3g4GCtPprb/PnzUb9+fWRmZmLPnj2YN28enJyc9B5dSURExVdxGY/euuUMpfLfiUcAUCqBq1dt05/8JpT++9//Yvr06RgyZAg+/vhjeWf3hAkTTLqxiaUtWbIECQkJuHjxIubMmYMRI0bg//7v/7TqfPjhhzrXXI+IiND62dTlNaZNDXOOCw2N7TTyG9tpPkO9evXS+/yhQ4fQtm3bAvXNHIYMGYKGDRvi8uXL2LZtW57Xmnd1ddU5WvPIkSP46KOPCpyvUqkwatQotGjRAr1795avMXr+/Hns3r0b/fv3x4cffqh1bU3N9jFp0iR06NBBLteMtwGgSpUqBe5Tfvbt2wcgezJ23bp16NWrF3788Ue8/PLLFsskIsdi88nHK1euoFy5cnB1dUWLFi0wZ84clC9f3qjXpqSkIDMz06xHSlnK/atPoVBK8sQjACiUEu5ffWrVfnTu3BmrV6/G0aNH8dJLL+k8f+TIEVy/fl3r4sUVK1bE5cuXdepeunQJALTuAl2nTh00bNgQ33zzDYKDg3Hz5k0sWbJE57VfffUVPvzwQ8TFxcm/LHP/cvruu+8wcOBALFiwQC5LS0vD06dP9S5b48aN0aZNG3h6ehrd34LSXLjc29s7zz3JAQEB8PLygkqlynePc36cnJzQv39/fPLJJ7hw4UK+d8vOPaDPfSpOQEAA3N3dDa4rhUIh77EEsk81X7ZsGb744gtERERgzZo16NevH9566y2MHTsWrVq1QpMmTfDll19q3X27cuXKePbsmc7yX7lyBVWrVtWqt3fvXjx+/Nhsn+nGjRvLd6+sUqUK0tLSMG/ePEyfPt3k5ScioqKruIxHQ0IykeuAKahUQI6zbO3Kd999h7Zt2+Krr77SKn/69Kl8szkgewzx119/ITPTPJc0qlChAs6dO6dzBJ5mLFmhQgWt+pob8b366qsIDAzEgAED8MEHH8hHSgJA3bp1dcZCOW/QCBi/vKa0qWHOcaGhsZ0xnj9/ju+//x69e/dGjx49dJ4fPXo0vvnmG5tOPtatWxcNGzZEr169EBAQgLZt2+qcaq+hVCp11kPuv1U028vly5d1xpaXL1/W2Z6+/PJLnDt3DidPnkT9+vVx/vx5rF69GmvWrEFERARmz56NCRMmYPDgwahfvz4AyKfKOzs7a/Un93gbyH7/zp8/b+TaME7OzFq1auHvv//G/Pnz8fLLL2stf+6ztvQtPxEVTTa95mPz5s2xfv167NmzB8uXL8e1a9fQqlWrfE8L1pg8eTLKlSuX5y++9PR0JCUlaT1soUwlX6hVQqtMrRIoU8nXqv1499134ebmhuHDh8tH5Wk8fvwYI0aMkO8SrfHaa68hKioKx48fl8vS0tKwfPlylClTBo0bN9Zqp3///vj111+xaNEi+Pv749VXX9XblwoVKqBdu3YIDw/X+x4qlUqtU62B7D3LuU8zyEmSJLzyyivYu3cv/v77b61l27BhA5o0aVLoU66B7EmtypUrY/78+Xj27JnO8w8fPpSXoXv37ti+fbveX/KaesYaMmQIYmJi0Lp1a63r8RSEUqnEK6+8gu+//x7Xr1+Xyx88eIBNmzbhpZdeko9+FUJg1KhRqF+/PkaOHAkg+/T5nP9v0KABRo8ejWnTpmldV7NXr174448/sHfvXp0+PH36FFlZWQCA7t27QwiBWbNm6dTLvR0UVGpqKrKyspCVlWXS8hMRUdFljfEoYB9j0sjIRNSvDygUgLNz9v8bNABGjLB6V4yibyy4bds2+dp1Gt27d0dCQoLO0YZAwcYQr732Gu7fv691+nRWVhaWLFkCT09Preug56aZ1EtPTzc519jltQRD46KEhASdcZGxYzt9du7ciefPn2P06NHo0aOHziMsLAzbt28v0PozpyFDhuDcuXMYNGhQga+DqNGkSRMEBgZixYoVWte8/+WXX/D333+jU6dOctmDBw8wffp0jBkzRp5YzD3mHjlyJOrXr49Ro0bJ20tgYCDCwsKwcuVK3Lt3T6cPOf/m6N69O86ePYudO3fq1DPHmFulUiEjI0N+D3Muf873Vd/yE1HRZdMjH3NOStWrVw/NmzdHhQoV8O2332Lo0KF5vnbu3LnYsmULDh48aPCagQAwZ84cvZMZvXv3hrOz/mstam5OIkmSwb2HpkhJSUHVcB+Uq+GLu38/ka/5WK6GL6qG+8jXDzSnlJQUg+3OnTsXkyZNQq1atdCjRw8EBwfjzp072LZtG548eYLPP/8carVafn2PHj3w9ddfo0OHDhgwYAD8/Pzw/fff4+LFi1iwYAGuXbumlae5uPDOnTvRt29frQFMfh49eiS307p1a2zcuBFCCFSuXBlnzpzB8ePH4evri6ysLLne7du35f9fuXIFb775Jvbs2YOXXnoJ/fv3h6urK7799ls8ffoUixYtkl+nmSD7/vvv5WupaCYST58+rbXXOSEhAc+ePcNXX30lX0R85syZePPNN1G9enW88cYbKF26NB48eIC//voLnp6eWLlyJQBg2LBh2LdvH5o1a4ZevXqhcuXKSExMxMWLF3H8+HFER0fn+/49ffoUV65cgZOTE/766y+4urrqfT7nct28eVPrdHfNhcVzruO33noLv/76K1544QX07NkTbm5u2LJlC9LS0jB27Fi53rZt2/DXX39h69atiIuL01rvDx48kOsNGjQImzdvxvDhw+VT6l9//XVs27YNnTt3xuuvv446deogJSUFFy9exP79+/H777+jZMmSCA4ORteuXbF48WKcOXMGrVu3hlqtxokTJ9C8eXOdi8hrlvPatWs6Rzpo+rZ161acOHECWVlZOHXqFLZv34527drJ157Jufx9+/aFk5OT3uXXR6VSIT4+Hp9++qnORD4AREVFoUuXLgZfb25FPc8Wmcxz7DxbZFozz1xHeJF1xqOA6WNSc49HAUCtTsGGDf9g82Yf3LrljJCQTERGJuL2bfPs5MvN0HjU0FgltxYtWmDZsmXo3r07GjZsiNjYWPzwww8ICQlBamqq3HaLFi3QvHlzzJkzB+fOnUOTJk2QmpqK48ePo2/fvggPD5fHBgkJCTp9ysjI0GqvXbt2qFy5MgYOHIjffvsNQUFB2Lt3L6KiovDBBx/g/v37uH//PhYuXIjHjx+jatWqKFGiBC5evIjt27ejevXqcHNzw5UrV+Tce/fu6eQKIZCUlKS1HPktb0pKikltFnRcqBkXbd68WWdcZGhsFxsbi71798pjO31WrVoFX19fBAQE6N02XnrpJXz77bdYvXo1OnToIPf///7v/3Dw4EGd+g0bNpSPUo6OjpbH1ffv30diYiIm/u9ipk2bNpWPUM1Js43mXqdhYWH4888/4eXlZfB9TEpKghBCZzk0k3+av00A4O2338aUKVMQGRmJLl26ICEhAV9//TWCg4PRpUsXud6kSZPg4uKCgQMH6ryHOce8U6dORa9evTB37lz5CNL33nsPkZGRqFWrFnr16oWQkBDcv38f58+fx/379+XTw19//XVs2rQJPXv2RPfu3VGnTh08ffoUv//+O2bNmqV1xK5mOXP+7ZWTZgw8f/58ANk7+vfu3Yvr16+jX79+OsvfvHlzdO7c2eDy68Mxd9HOs0Um88zHpPGo+W+2XThNmjQRU6ZMybPOZ599Jnx8fER0dHS+7aWlpYnExET5cevWrXxvBZ6amiouXrwoUlNTTe6/PrGxsdl9SckQOz//Qywf84vY+fkfIi0lwyzt55VpyLlz50RkZKQoW7ascHZ2FmXKlBGRkZEiJiZGb/24uDjRo0cP4ePjI1xdXUXTpk3Frl27DOa99tprAoA4fvy40X0GIGbMmCH//OTJEzF48GBRqlQp4enpKTp06CAuXbokKlSoIF5//XW53oEDBwQAceDAAbns5MmT4pVXXhGenp7C3d1dtG7dWhw6dEgrb926dQKAyY+cTp8+Ld544w3h7+8vXFxcRIUKFUSvXr3E/v37teo9ePBAjB49WoSEhMjru3379mLVqlV610XO9QlAjB49Os/1lvN5zXLl/nw8fPhQZx0LIcSpU6dEhw4dhIeHh3B3dxdt27bVet8ePXokSpUqJYYNG6b1umvXrgkAYt26dVrl33zzjQCgtb6Tk5PF1KlTRZUqVUSJEiVEqVKlRKNGjcT8+fNFRsa/n4OsrCzx2WefiRo1aogSJUqIgIAA8eqrr4qTJ0/qLLdmOa9du6bznGab0DycnJxEUFCQGDdunHjy5Ine5ddsK7mX35D8viciIiLybcOcinqeLTKZ59h5tsi0Zl5iYmK+4xkqOHOPR4UwfUxq7vGoEPmPD83NUJ6hsUpuaWlp4p133hFly5YVbm5uomXLluKPP/4Qbdq0EW3atNGqm5KSIkaOHCkqVqwoj7V69Ogh4uLihBD/jls+++wznZzatWvrtPfgwQN5HFqiRAlRt25dnTHPkiVLRNOmTYW3t7dwc3MTVapUEe+88454+PChXEczJtm2bZtOroeHhxg4cKBJyxsbG2tSmwUdF2rGRS+88ILecZG+sd2LL76oM7bLvU6dnJxE//799T4vRPbfKO7u7vJYP7/xes73ZMaMGQbr5V5ODc02mtc6NfT8wIEDhYeHh07dbdu26fxtIoQQW7duFbVq1RIuLi6iZMmSol+/fuL27dvy8wcPHhQAxKZNm7ReZ2jM+9Zbb4lSpUqJR48eyWVxcXFiwIABokyZMsLZ2VmULl1adO7cWXz33Xdar3306JEYM2aMCAoKEiVKlBDBwcFi4MCBIiEhQWd5Bg4cKCpUqKB3veRe55rPwcKFC4VardZZ/oYNGxpcfkM45i7aebbIZJ75mDIetavJx+TkZOHn5ye++OILg3XmzZsnvL29xR9//FGgDGNWjqUmH63J1oPLbt26icqVK1stz9JiY2PlQau18qzN1tuMo+VxIMSBCfPsO88WmfY62CPTWGM8KkT+72FRnnxknuNkMo95ts7kmLto59kik3nmY8p41KbXfJw0aRIOHTqE69ev4/jx43j99dehVCoRGRkJIPvOyVOnTpXra24UsXbtWoSGhsqnPOi75h7Zzr179/DTTz/pnCZLREREZG84HiUiIiKyLJte8/H27duIjIzEo0ePEBAQgJdeegl//vknAgICAGRfmyTnHeaWL1+OjIwMnTujzZgxAzNnzrRm10mPa9eu4dixY1izZg2cnZ217phdFLi5uaFDhw627gYRERGZEcejRERERJZl08nHLVu25Pl87osKm3LjErK+Q4cOYfDgwShfvjw2bNiAMmXK2LpLZlW6dGns2bPH1t0gIiIiM+J4lIiIiMiybDr5SEXLoEGDMGjQIFt3g4iIiIiIiIiI7IRNr/lIRERERERERERERRcnH4mIiIiIiIiIiMgiOPmYByGErbtARHaK3w9ERGQN/H1DRMUZvwOJigZOPurh5JR9KcysrCwb94SI7FVmZiYAQKlU2rgnRERUFDk7OwMAUlJSbNwTIiLb0XwHar4Ticgx8YYzeiiVSiiVSiQlJcHLy8vW3SEiOyOEQGJiIlxcXDgQIiIii1AqlfD19UV8fDwAwN3dHZIkFapNlUqFtLQ0c3SPeTbIs0Um85hnq0whBFJSUhAfHw9fX1/u8CdycJx81EOSJAQGBuLevXtwcXGBh4dHoQZ7jvylz7zikWeLTEfME0IgMzMTiYmJePbsGYKCgszUOyIiIl1lypQBAHkCsrDi4+Otegoj8xw/k3nMs3Wmr6+v/F1IRI6Lk48G+Pj4IDU1FQkJCXj48GGh2ioKX/rMK9p5tsh05DwXFxcEBQXB29vbLO0RERHpI0kSypYti8DAQPlyH4Xx6aefYvny5WboGfNskWeLTOYxz5aZzs7OPOKRqIjg5KMB5hzsOfqXPvOKfp4tMh01T6lU8lRrIiKyKs0lgQrr0aNHcHV1NUOPmGeLPFtkMo95jpBJRPaPk4/5MMdgrzh86TPPsfNskVnU84iIiIiIiIiId7smIiIiIiIiIiIiC+HkIxEREREREREREVkEJx+JiIiIiIiIiIjIIjj5SERERERERERERBbByUciIiIiIiIiIiKyCE4+EhERERERERERkUXYdPJx5syZkCRJ61GjRo08X7Nt2zbUqFEDrq6uqFu3Ln7++Wcr9ZaIiIiIihqOR4mIiIgsy+ZHPtauXRv37t2TH0ePHjVY9/jx44iMjMTQoUNx+vRpdOvWDd26dcP58+et2GMiIiIiKko4HiUiIiKyHJtPPjo5OaFMmTLyo1SpUgbrfvHFF+jYsSPeffdd1KxZEx9//DEaNWqEpUuXWrHHRERERFSUcDxKREREZDk2n3y8cuUKypUrh0qVKqFfv364efOmwbp//PEHwsPDtco6dOiAP/74w9LdJCIiIqIiiuNRIiIiIstxsmV48+bNsX79elSvXh337t3DrFmz0KpVK5w/fx5eXl469e/fv4/SpUtrlZUuXRr37983mJGeno709HT556SkJPMtABERERE5NGuMRwGOSYmIiKj4koQQwtad0Hj69CkqVKiAzz//HEOHDtV5vkSJEtiwYQMiIyPlsi+//BKzZs3CgwcP9LY5c+ZMzJo1S6e8Y8eOcHZ2Nl/n8xAVFYVmzZpZJctWmcxz7DxbZDKPefaeyTzHzrNFpjXzMjMzsWfPHiQmJsLb29sqmcWFJcajQPEckzLP8TOZxzx7z2SeY+fZIpN55mPSeFTYmSZNmogpU6bofS4kJEQsXLhQq+zDDz8U9erVM9heWlqaSExMlB+3bt0SAERiYqI5u52niIgIq2XZKpN5jp1ni0zmMc/eM5nn2Hm2yLRmXmJiotXHM8WJucejQhTPMSnzHD+Tecyz90zmOXaeLTKZZz6mjEdtfs3HnJ49e4a4uDiULVtW7/MtWrTA/v37tcr27duHFi1aGGzTxcUF3t7eWg8iIiIiIn0sMR4FOCYlIiKi4sumk4+TJk3CoUOHcP36dRw/fhyvv/46lEqlfBrLgAEDMHXqVLn++PHjsWfPHixYsACXLl3CzJkzceLECYwZM8ZWi0BEREREDozjUSIiIiLLsukNZ27fvo3IyEg8evQIAQEBeOmll/Dnn38iICAAAHDz5k0oFP/Oj7744ovYtGkTpk2bhvfffx9Vq1bFrl27UKdOHVstAhERERE5MI5HiYiIiCzLppOPW7ZsyfP5gwcP6pT17NkTPXv2tFCPiIiIiKg44XiUiIiIyLLs6pqPREREREREREREVHRw8pGIiIiIiIiIiIgsgpOPREREREREREREZBGcfCQiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFsHJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisgi7mXycO3cuJEnChAkTDNbJzMzERx99hMqVK8PV1RX169fHnj17rNdJIiIiIirSOCYlIiIiMi+7mHyMjo7GypUrUa9evTzrTZs2DStXrsSSJUtw8eJFjBgxAq+//jpOnz5tpZ4SERERUVHFMSkRERGR+dl88vHZs2fo168fVq9eDT8/vzzrbty4Ee+//z5ee+01VKpUCSNHjsRrr72GBQsWWKm3RERERFQUcUxKREREZBk2n3wcPXo0OnXqhPDw8Hzrpqenw9XVVavMzc0NR48etVT3iIiIiKgY4JiUiIiIyDKcbBm+ZcsWnDp1CtHR0UbV79ChAz7//HO0bt0alStXxv79+7Fjxw6oVCqDr0lPT0d6err8c1JSUqH7TURERERFB8ekRERERJYjCSGELYJv3bqFJk2aYN++ffJ1dcLCwtCgQQMsWrRI72sePnyIt956Cz/88AMkSULlypURHh6OtWvXIjU1Ve9rZs6ciVmzZumUd+zYEc7OzmZbnrxERUWhWbNmVsmyVSbzHDvPFpnMY569ZzLPsfNskWnNvMzMTOzZsweJiYnw9va2SmZRxTEp8xwlzxaZzGOevWcyz7HzbJHJPPMxaTwqbGTnzp0CgFAqlfIDgJAkSSiVSpGVlWXwtampqeL27dtCrVaL9957T9SqVctg3bS0NJGYmCg/bt26JQCIxMRESyyWXhEREVbLslUm8xw7zxaZzGOevWcyz7HzbJFpzbzExESrj2eKKo5JmecoebbIZB7z7D2TeY6dZ4tM5pmPKeNRm5123b59e8TExGiVDR48GDVq1MDkyZOhVCoNvtbV1RVBQUHIzMzE9u3b0atXL4N1XVxc4OLiYrZ+ExEREVHRwTEpERERkWXZbPLRy8sLderU0Srz8PCAv7+/XD5gwAAEBQVhzpw5AIC//voLd+7cQYMGDXDnzh3MnDkTarUa7733ntX7T0RERESOj2NSIiIiIsuy6Q1n8nPz5k0oFP/ekDstLQ3Tpk3D1atX4enpiddeew0bN26Er6+v7TpJREREREUax6REREREBWdXk48HDx7M8+c2bdrg4sWL1usQERERERU7HJMSERERmY8i/ypEREREREREREREpuPkIxEREREREREREVkEJx+JiIiIiIiIiIjIIjj5SERERERERERERBbByUciIiIiIiIiIiKyCE4+EhERERERERERkUVw8pGIiIiIiIiIiIgsgpOPREREREREREREZBGcfCQiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFsHJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEXYz+Th37lxIkoQJEybkWW/RokWoXr063NzcEBISgokTJyItLc06nSQiIiKiIo1jUiIiIiLzcrJ1BwAgOjoaK1euRL169fKst2nTJkyZMgVr167Fiy++iNjYWAwaNAiSJOHzzz+3Um+JiIiIqCjimJSIiIjI/Gx+5OOzZ8/Qr18/rF69Gn5+fnnWPX78OFq2bIm+ffsiNDQUr7zyCiIjIxEVFWWl3hIRERFRUcQxKREREZFl2HzycfTo0ejUqRPCw8Pzrfviiy/i5MmT8sDu6tWr+Pnnn/Haa69ZuptEREREVIRxTEpERERkGTY97XrLli04deoUoqOjjarft29fJCQk4KWXXoIQAllZWRgxYgTef/99g69JT09Henq6/HNSUlKh+01ERERERQfHpERERESWIwkhhC2Cb926hSZNmmDfvn3ydXXCwsLQoEEDLFq0SO9rDh48iD59+mD27Nlo3rw5/vnnH4wfPx5vvfUWpk+frvc1M2fOxKxZs3TKO3bsCGdnZ7MtT16ioqLQrFkzq2TZKpN5jp1ni0zmMc/eM5nn2Hm2yLRmXmZmJvbs2YPExER4e3tbJbOo4piUeY6SZ4tM5jHP3jOZ59h5tshknvmYNB4VNrJz504BQCiVSvkBQEiSJJRKpcjKytJ5zUsvvSQmTZqkVbZx40bh5uYmVCqV3py0tDSRmJgoP27duiUAiMTERIsslz4RERFWy7JVJvMcO88Wmcxjnr1nMs+x82yRac28xMREq49niiqOSZnnKHm2yGQe8+w9k3mOnWeLTOaZjynjUZuddt2+fXvExMRolQ0ePBg1atTA5MmToVQqdV6TkpIChUL7MpWaesLAAZwuLi5wcXExU6+JiIiIqCjhmJSIiIjIsmw2+ejl5YU6depolXl4eMDf318uHzBgAIKCgjBnzhwAQEREBD7//HM0bNhQPsVl+vTpiIiI0DswJCIiIiLKC8ekRERERJZl0xvO5OfmzZtae5WnTZsGSZIwbdo03LlzBwEBAYiIiMAnn3xiw14SERERUVHGMSkRERFRwdnV5OPBgwfz/NnJyQkzZszAjBkzrNcpIiIiIipWOCYlIiIiMh9F/lWIiIiIiIiIiIiITMfJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFcPKRiIiIiIiIiIiILIKTj0RERERERERERGQRnHwkIiIiIiIiIiIii+DkIxEREREREREREVkEJx+JiIiIiIiIiIjIIuxm8nHu3LmQJAkTJkzIs97Tp08xevRolC1bFi4uLqhWrRp+/vln63SSiIiIiIo0jkmJiIiIzMvJ1h0AgOjoaKxcuRL16tXLs15GRgZefvllBAYG4rvvvkNQUBBu3LgBX19f63SUiIiIiIosjkmJiIiIzM/mk4/Pnj1Dv379sHr1asyePTvPumvXrsXjx49x/PhxODs7AwBCQ0Ot0EsiIiIiKso4JiUiIiKyDJufdj169Gh06tQJ4eHh+dbdvXs3WrRogdGjR6N06dKoU6cO/vvf/0KlUhl8TXp6OpKSkrQeREREREQ5cUxKREREZBk2PfJxy5YtOHXqFKKjo42qf/XqVfz+++/o168ffv75Z/zzzz8YNWoUMjMzMWPGDL2vmTNnDmbNmqVT3rt3b3lPtaVFRUWhS5cuVsmyVSbzHDvPFpnMY569ZzLPsfNskWnNvMzMTKvkFBcckzLPEfJskck8M+cdO4ourVtYL+/CZavm2SIzKvZa0d5minieLTKZZz6mjEclIYSwYF8MunXrFpo0aYJ9+/bJ19UJCwtDgwYNsGjRIr2vqVatGtLS0nDt2jUolUoAwOeff47PPvsM9+7d0/ua9PR0pKenyz8nJSUhJCQEiYmJ8Pb2Nu9CGdClSxfs3r3bKlm2ymSeY+fZIpN5zLP3TOY5dp4tMq2Zl5SUBB8fH6uOZ4oqjkmZ5yh5tshknpnzWrfA7s91d0JYLO/tGVbNs0Vml4+WFu1tpojn2SKTeeZjynjUZkc+njx5EvHx8WjUqJFcplKpcPjwYSxduhTp6enyYE6jbNmycHZ21iqvWbMm7t+/j4yMDJQoUUInx8XFBS4uLpZbECIiIiJyWByTEhEREVmWzSYf27dvj5iYGK2ywYMHo0aNGpg8ebLOIA8AWrZsiU2bNkGtVkOhyL5cZWxsLMqWLat3kEdERERElBeOSYmIiIgsy2Y3nPHy8kKdOnW0Hh4eHvD390edOnUAAAMGDMDUqVPl14wcORKPHz/G+PHjERsbi59++gn//e9/MXr0aFstBhERERE5MI5JiYiIiCzLpjecyc/NmzflvckAEBISgr1792LixImoV68egoKCMH78eEyePNmGvSQiIiKiooxjUiIiIqKCs6vJx4MHD+b5MwC0aNECf/75p3U6RERERETFDsekREREROZjs9OuiYiIiIiIiIiIqGjj5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFcPKRiIiIiIiIiIiILIKTj0RERERERERERGQRTrbuABERERERERFZVmqaAit2BOPqHXdUCkrBiDduw81VrbccgNF1c5bHxHli4abycjkREcDJRyIiIiIiIqIiLTVNgZZvNsPZWC8olQIqlYSNP5fDb8tOIHx0E63yDT+WAyQg5kr+dXOXC7hi0qLq2PhzORxbE8UJSCICwNOuiYiIiIiIiIq0FTuCcTbWC2ohITNLAbWQcDbWC0M+rq1Tfu6KF84ZWTd3uRCSXL5iR7CtF5uI7AQnH4mIiIiIiIiKsKt33KFUCq0ypVLoLZek7IcxdfMrJyICOPlIREREREREVKRVCkqBSqU9o6hSSXrLhch+GFM3v3IiIoCTj0RERERERERF2og3bqN+tWQoJAFnJzUUkkCDaslYO/2CTnn9qsmoZ2Td3OWSJORyzY1riIh4wxkiIiIiIiKiIszNVY1ja6L03qlaXzmg/27X+bWxeGsaxvW+zLtdE5EWTj4SERERERERFXFurmpM7HvT6HJT6mrKD5x4pvd5Iire7Oa067lz50KSJEyYMMFgnfXr10OSJK2Hq6ur9TpJREREREUax6REZGupaQos3FQeYz+rgYWbyiM1TaG3LL+6MXGe+dY1R17O8pyZBW3DmH4QkWOxiyMfo6OjsXLlStSrVy/fut7e3rh8+bL8s5T7NlxERERERAXAMSkR2VpqmgIt32yGs7FeUCoFVCoJG34sB0hAzJV/yzb+XA6/LTuB8NFNDNYVcMWkRdUN1jWmjfzq5i7XZBamjfz6cWxNFE/pJnIwNp98fPbsGfr164fVq1dj9uzZ+daXJAllypSxQs+IiIiIqLjgmJSI7MGKHcE4G+sFtZCgzsreqXHuihcAQODfsrOxXhjyce086wISBCSDdY1pI7+6ucs1mYVpI79+rNgRzFO7iRyMzY9ZHj16NDp16oTw8HCj6j979gwVKlRASEgIunbtigsXLuRZPz09HUlJSVoPIiIiIqKcOCYlIntw9Y47lEqhVSZJ2Y+clEpR6LqO3AYRORZJCCHyr2YZW7ZswSeffILo6Gi4uroiLCwMDRo0wKJFi/TW/+OPP3DlyhXUq1cPiYmJmD9/Pg4fPowLFy4gODhY72tmzpyJWbNm6ZR37NgRzs7O5lwcg6KiotCsWTOrZNkqk3mOnWeLTOYxz94zmefYebbItGZeZmYm9uzZg8TERHh7e1slsyjjmJR5jpBni8win3fsKJrVrm69vAuX8827escNF656GtVeGf903H/kklcigGZ51s2/jfzrapf/m1nwNvJWu9IzVApKzU4zYp2aU1TstaL9meD3GvNMYNJ4VNjIzZs3RWBgoDh79qxc1qZNGzF+/Hij28jIyBCVK1cW06ZNM1gnLS1NJCYmyo9bt24JACIxMbEw3TdJRESE1bJslck8x86zRSbzmGfvmcxz7DxbZFozLzEx0erjmaKKY1LmOUqeLTKLfF6rF4SI3mu1hzF5KUf2iYbVE4VCUgtnJ5VQSGrRoGqiqF9Nu6xR9UTx6Lf9edaVpM551jWmjfzq5i7XZBamjfz6kXJkn0nr1KzvYVH/TPB7jXkmMGU8arNrPp48eRLx8fFo1KiRXKZSqXD48GEsXboU6enpUCqVebbh7OyMhg0b4p9//jFYx8XFBS4uxu1BISIiIqLihWNSIrInbq5qHFsThRU7gnH1jjsqBaVgxBu3AUCnLL+6i7emYVzvy3nWNUdezvKcmQVtw5h+EJFjsdnkY/v27RETE6NVNnjwYNSoUQOTJ0/Od5AHZA8MY2Ji8Nprr1mqm0RERERUhHFMSkSWlpqmwIodwYiJ88TCTeXlCTRNOSfWTKdvnQKcqCSyVzabfPTy8kKdOnW0yjw8PODv7y+XDxgwAEFBQZgzZw4A4KOPPsILL7yAKlWq4OnTp/jss89w48YNvPnmm1bvPxERERE5Po5JiciSUtMUaPlmM5yN9YKAKyYtqo6NP5fDb8tOIHx0E5yN9YJSKaBSSQbLN/xYDpCAmCum1bVGXu5yTWZh2jClH/nlHVsTxQlIIjtgs8lHY9y8eRMKxb835H7y5Aneeust3L9/H35+fmjcuDGOHz+OWrVq2bCXRERERFSUcUxKRAW1YkcwzsZ6QS0kABIEJJyN9cKQj2vL5eqs7Fs6Gyo/d8ULACBgWl1r5OUu12QWpg1T+pFf3oodwZjY96ZZ3ksiKji7mnw8ePBgnj8vXLgQCxcutF6HiIiIiKjY4ZiUiMzl6h13KJVCnhADAKVSmFQu/e+fQsCsdYtSG3nVJSLbU+RfhYiIiIiIiIhMVSkoBSqVpFWmUkkmlQuhPalmrrpFqY286hKR7XHykYiIiIiIiMgCRrxxG/WrJUMhCUiSgEISaFAtGWunX5DLnZ3UeZbXr5qMegWoa4283OWazMK0YUo/8svT3IiGiGzLrk67JiIiIiIiIioq3FzVOLYmCit2BGPx1jSM631Zvguzpjz33Zn1lQP67+ScV11r5RlaxoK2YUo/jMkjItvj5CMRERERERGRCVLTFHonuvSVk22Z8l5xspLIMjj5SERERERERGSk1DQFWr7ZDGdjvaBUCqhUEjb+XA6/LTuB8NFNtMo3/FgOkICYK14QcMWkRdUN1jWmDXvLy12uySxMG6b0w5x5G38uh2NrojgBSWQBnHwkIiIiIiIiMtKKHcE4G+sFtZDkOy6fjfXCkI9r65Sfu+IFABCQAEgQkAzWNaYNe8vLXa7JLEwbpvTDnHlnY72wYkcwJva9WbANg4gM4g1niIiIiIiIiIx09Y47lErtWysrlUJvuSRlP4ypa442rJ1nL22YI09TTkTmx8lHIiIiIiIiIiNVCkqBSqU906VSSXrLhch+GFPXHG1YO89e2jBHnqaciMyPk49ERERERERERhrxxm3Ur5YMhSTg7KSGQhJoUC0Za6df0CmvXzUZ9f5XJkkiz7rGtGFvebnLNZmFacOUfpgzr0G1ZN4giMhCeM1HIiIiIiIiIiO5uapxbE2U3jsl6ysHsq8TuXhrGsb1vpxn3fzasMe8nOU5Mwvahin9MHcebzZDZBmcfCQiIiIiIiIygZurWu+NSQyVT+x7EwdOPNN6riBt2Guepjx3ZkHaMKUflsgjIvPj5CMREREREREVe6lpCqOPvNNX11C5po2YOE8s3FS+UG3YY17O8pyZ5lx3ts4josLh5CMREREREREVa6lpCrR8sxnOxnpBqRRQqSRs+LEcIAExV/4t2/hzOfy27ATCRzfRqmuoPGcbAq6YtKh6odqwt7zc5ZpMc687W+YdWxPFCUiiQuLkIxERERERERVrK3YE42ysF9RCgjor+y7I5654AQAE/i07G+uFIR/X1qlrqDxnG4AEAalQbdhbXu5yTaa5150t81bsCObp2USFxLtdExERERERUbF29Y47lEqhVSZJ2Y+clEqht66hcmu34Yh9doTlJqLC4eQjERERERERFWuVglKgUmnPPAmR/chJpZL01jVUbu02HLHPjrDcRFQ4djP5OHfuXEiShAkTJhhVf8uWLZAkCd26dbNov4iIiIio+OCYlKh4GvHGbdSvlgyFJODspIZCEqhfNRn1cpU1qJaMtdMv6NQ1VJ6zDUkShW7D3vJyl2syzb3ubJmnuRENERWcXVzzMTo6GitXrkS9evWMqn/9+nVMmjQJrVq1snDPiIiIiKi44JiUqPhyc1Xj2Jooo+9+rK9ufm0s3pqGcb0vF6oNe8zLWZ4z05zrztZ5RFQ4Nj/y8dmzZ+jXrx9Wr14NPz+/fOurVCr069cPs2bNQqVKlazQQyIiIiIq6jgmJSo+UlOBhQuBmDhPLNxUHqlpNv+zmOxcapoCCzeVR0xM9raTmmrrHhE5Fpsf+Th69Gh06tQJ4eHhmD17dr71P/roIwQGBmLo0KE4cuRIvvXT09ORnp4u/5yUlFSo/hIRERFR0cMxKVHxkJoKtGwJnD0LCOGKSYuqY+PP5fDbshMIH90EZ2O9oFQKqFQSNvxYDpCAmCv/lhmqa0wbAnnnmaMf1s7LXa7JNPe6s588YNIkYONG4NgxwM3N1ls0kWOQhMh9SVXr2bJlCz755BNER0fD1dUVYWFhaNCgARYtWqS3/tGjR9GnTx+cOXMGpUqVwqBBg/D06VPs2rXLYMbMmTMxa9YsnfKOHTvC2dnZTEuSt6ioKDRr1swqWbbKZJ5j59kik3mOnXf0+F+oVaeJ1fIA4OL5E1bN/OfSySL9Hhb1PFtkWjMvMzMTe/bsQWJiIry9va2SWZRxTMo8R8izRabV844dRbPa1S2acfWOGy5c9dQkAshevjL+6bj/yMWoNgzVzb+N/PPM0Q9r52mX/5tZ8DZM6Yft8mpXeoZKQZY9BDIq9lqR/szbIpN55mPKeNRmRz7eunUL48ePx759++Dq6ppv/eTkZPTv3x+rV69GqVKljM6ZOnUq3n77bfnnpKQkhISEYOvWrVYbrHfp0gW7d++2SpatMpnn2Hm2yGSeY+e9FNYJny7eZrU8AHhvXE+rZs6d1qdIv4dFPc8WmdbMS0pKgo+Pj1WyijqOSZnnKHm2yLR6XusW2P257iS9OY39rAZibwYjM0sBoAuA3XB2UiPA7zkeJXr8rzybQso+Tkct/r0rsqG6xrWRd545+mHtPN3y7Ezzrzv7ynN2UqNtk9tY8u4lWFKXj5YW6c+8LTKZZz6mjEdtdnGLkydPIj4+Ho0aNYKTkxOcnJxw6NAhLF68GE5OTlCpVFr14+LicP36dURERMj1v/76a+zevRtOTk6Ii4vTm+Pi4gJvb2+tBxERERERwDEpUXFTKSgFKpWkVaZSSXrLhch+GFPXXtpwxD478nITkXFsNvnYvn17xMTE4MyZM/KjSZMm6NevH86cOQOlUqlVv0aNGjr1u3TpgrZt2+LMmTMICQmx0ZIQERERkaPimJSoeBnxxm3Ur5YMhSQgSQIKSaBBtWSsnX5BLnd2UkMhCdSvmox6ucoM1TWmjfzyzNEPa+flLtdkmnvd2Vteg2rJ8t2xiSh/Njvt2svLC3Xq1NEq8/DwgL+/v1w+YMAABAUFYc6cOXB1ddWp7+vrCwA65URERERExuCYlKh4cXNV49iaKKzYEYzFW9MwrvdljHjjtlb51TvuqBSUIk8u5S4zVDe/NozJM0c/rJ1naJ2ac93ZY56bq9pKWy2R47P53a7zcvPmTSgUNjs4k4iIiIiIY1KiIsbNVY2JfW/iwIlnmNj3pk55bvrKDNXNqw1j88zRD2vnGVqn5lp39ppHRMaxq8nHgwcP5vlzbuvXr7dYX4iIiIioeOKYlMjxpKYpjD6KTVM3Js4TCzeV1yk3pQ1jyjVtGJNnjn5YO8/QOjXnurPHPFPbICrO7GrykYiIiIiIiMgUqWkKtHyzGc7GekGpFFCpJGz4sRwgATFX/i3b+HM5/LbsBMJHN8HZWC8IuGLSouo65aa0kV95zjbyyzNHP6ydZ2idmnvd2VueqW0cWxPFCUgq1jj5SERERERERA5rxY5gnI31glpIUGdl35X43BUvAIDAv2VnY70w5OPacl1AgoCkU25KG/mV52wjvzxz9MPaeYbWqbnXnb3lmdrGih3BPF2bijVevIaIiIiIiIgc1tU77lAqhVaZJGU/clIqhd66hsodsQ1H7HNxWW6i4oyTj0REZDaZaZmI2ngSe+fsR9TGk8hMy7TIa4iIiIg0KgWlQKXSnvERIvuRk0ol6a1rqNwR23DEPheX5SYqzjj5SEREZpGZlomvB27B/gWHcPq7c9i/4BC+Hrglz8nEgryGiIiIKKcRb9xG/WrJUEgCzk5qKCSB+lWTUS9XWYNqyVg7/YJcV5KE3nJT2sivPGcb+eWZox/WzjO0Ts297uwtz9Q2NDeiISqueM1HIiIyi9PbziH+8kMIISCysnf5xl9+iNPbzqFZ/8Zmew0RERFRTm6uahxbE2X0XYc1dRdvTcO43pd1yk1pw5hyTRvG5JmjH9bOM7ROzbnu7DHP1DaIijNOPhIRkVk8uf0UklKSJxEBQFJKeHL7qVlfQ0RERMVXapqCEzvkkLjtUnHGyUciIjILv2BfCJX2RW6ESsAv2NesryEiIqLiKTVNgZZvNsPZWC8olQIqlYSNP5fDb8tOIHx0E63yDT+WAyQg5orhugKumLSoeqHaMKUf+eWZox/WzjO0Ts297uwtz1zr7tiaKE5AUrHAyUciIjKLhj3rIebHi4i//DD7aEaVQGCNADTsWc+sr8lPZlomTm87hye3n8Iv2BcNe9aDs6tzgdsjIiIi+7BiRzDOxnpBLSSos7Jv9HE21gtDPq6tU37uihcAQMBwXUCCgFSoNkzpR3555uiHtfMMrVNzrzt7yzPXuluxIxgT+94EUVHHyUciIjILZ1dnDNjQx6SJv4K8Ji+aG9jknMyM+fEiBmzowwlIIiIiB3f1jjuUSiFP3gCAUin0lkv/+2fOOw8bqluU2nDEPhf35SYqDni3ayIiMhtnV2c0698YHaa2R7P+jY2a8CvIawzJeQMbdZYaQgj5BjZERETk2CoFpUClkrTKVCpJb7kQ2hNAedUtSm04Yp+L+3ITFQecfCQiIqvLTMtE1MaT2DtnP6I2nkRmWqZZ2tXcwCYn3sCGiIioaBjxxm3Ur5YMhSTg7KSGQhJoUC0Za6df0CmvXzUZ9fKpK0mi0G2Y0o/88szRD2vnGVqn5l539pZnrnWnuTs2UVHH066JiMiqLHlqNG9gQ0REVHS5uapxbE2U3jsG6ysHkGfdxVvTMK735UK1YUo/jMkzRz+snWdonZpz3dljnrnWHVFxwMlHIiKyqpynRous7IlCzanRzfo3LlTblriBDREREdkPN1e13ht0GCrPq+6BE8+0ni9IG6b0w9g8c/TD2nmG1qm51p295plj3REVB5x8JCIiq9KcGq2ZeATMd2q0uW9gQ0RERLaTmqYw+qiygtSNifPEwk3lC9WGKf0wJs8c/bB2nqF1as51Z495ltxmeEQkFTWcfCQiIqsy56nRmWmZeicaC3sEJREREdlWapoCLd9shrOxXlAqBVQqCRt+LAdIQMyVf8s2/lwOvy07gfDRTUyuK+CKSYuqF6oNU/qRX545+mHtPEPr1Nzrzt7yLLnNbPy5HI6tieIEJBUpdnPDmblz50KSJEyYMMFgndWrV6NVq1bw8/ODn58fwsPDERUVZb1OEhFRoTXsWQ+B1QMgSRIUTgpIklSgU6M1147cv+AQTn93DvsXHMLXA7eY7eY1RFQ8cUxKZB9W7AjG2VgvqIWEzCwF1ELCuSteOJer7GysF4Z8XLtAdYWQCt2GKf3IL88c/bB2nqF1au51Z295ltxmzsZ6YcWOYFt/BInMyi4mH6Ojo7Fy5UrUq5f3H54HDx5EZGQkDhw4gD/++AMhISF45ZVXcOfOHSv1lIiIzKFWh+ooV68MvEp7olzdMqj1SnWT28h57Uh1lhpCCPnakUREBcExKZH9uHrHHUql9pkSkpT9yEmpFIWuW5TacMQ+c7n1lxMVJTaffHz27Bn69euH1atXw8/PL8+633zzDUaNGoUGDRqgRo0aWLNmDdRqNfbv32+l3hIRUWFojlY8uPgI7py9h8Q7Sbhz7h4OfHHE5KMWNdeOzMlc144kouKHY1Ii+1IpKAUqlfbveSGyHzmpVFKh6xalNhyxz1xu/eVERYnNJx9Hjx6NTp06ITw83OTXpqSkIDMzEyVLljRYJz09HUlJSVoPIiKyjX+PVtR9ztSjFr1Le0GdpX0tnIJeO5KIiGNSIvsy4o3bqF8tGQpJwNlJDYUkUL9qMurlKmtQLRlrp18oUF1JEoVuw5R+5Jdnjn5YO8/QOjX3urO3PEtuMw2qJcs3riEqKiQh9P0JaB1btmzBJ598gujoaLi6uiIsLAwNGjTAokWLjHr9qFGjsHfvXly4cAGurq5668ycOROzZs3SKe/YsSOcna1z99OoqCg0a9bMKlm2ymSeY+fZIrOo5x09/hdq1WlitbyL5084RN7DKwlIvJcEfb96JEmCd2lPqDLVyEzLhLOrMwKrB0DprNTJFGo1bp26g/TnGVptuHiUQEijIEiKwu9bs/Y6/efSySL9meD3mnllZmZiz549SExMhLe3t1UyizKOSZnnCHm2yIw6dhTNapt+aZQC5124rJWnUgM37rnheZoSHq4qVCibCkC3TKkoWN2rd2JQKahuodowpR/G5JmjH9bOM7ROzbnu7DHPktuMUqH/M2FpUbHXiv73GvPMxpTxqM3udn3r1i2MHz8e+/btMzhIy8vcuXOxZcsWHDx4MM/XT506FW+//bb8c1JSEkJCQrB161arDda7dOmC3bt3WyXLVpnMc+w8W2QW9byXwjrh08XbrJb33rieDpEXtfEk9i84BAE9+70EoEhQ/Hs043PA6aQTxvw6DO6+blqZURtPYv9R3XaqNK6E1z/rDGdX7T/kDd0V2xLLWFBzp/Up0p8Jfq+ZV1JSEnx8fKySVdRxTMo8R8mzRWaX1i2w+3PdSXNzS01TYMWOYMTEjUXbJksw4o3bcHNVy+VX77ijUlCKfDRY7rKC1l28dSyGdjVfXn5tGJNnzuW2Vp6hdWrOdWePedbYZnJ/Jiyty0dLi/73GvPMxpTxqM0mH0+ePIn4+Hg0atRILlOpVDh8+DCWLl2K9PR0KJVKva+dP38+5s6di99++y3fC4K7uLjAxcXFrH0nIqKCadizHmJ+vIj4y/E6p16X8CyBjGfaRzJmpWfhpxl70fOLblrlmus9iiztRv45fBVfD9yCARv6yJOLmutMxl9+mP0alUDMjxe16hBR8cUxKZFtpaYp0PLNZjgb6wUBV0xaVB0bfy6H35adQPjoJjgb6wWlUkClkrDhx3KABMRc+besMHXNmWdMG/nlmXu5rZFnaJ2ae93ZW54ttplja6KsMgFJZAk2m3xs3749YmJitMoGDx6MGjVqYPLkyQYHeZ9++ik++eQT7N27F02aWO90OCIiKjxnV2dEruyBn2bszb4xjACC6pVFQOVSOLMrBgn/PNJ5za3TdxC18SSEWi0fwfjgcjzUKv2DL821I5v1bwxA+67YmsnK3HWIqPjimJTItlbsCMbZWC+ohQRAgoCEs7FeGPJxbblcnZV9Q45zV7wAAAL/lhWmrjnzjGkjvzxzL7c18gytU3OvO3vLs8U2s2JHMCb2vQkiR2SzyUcvLy/UqVNHq8zDwwP+/v5y+YABAxAUFIQ5c+YAAObNm4cPP/wQmzZtQmhoKO7fvw8A8PT0hKenp3UXgIiITJKZlokTm0/jz/UnkPo0NftO1WpA6azEK1Pa4caJW3onH9OS0vDb/IO4XuImlnZYhdSnadm3SzN0xWIJOPv9eQDZR1rqO0qSd8UmIg2OSYls6+oddyiVQp54AQClUugtl/73z5xnT5ijblFqwxH7zOU2vg0iR2Xzu13n5ebNm7h375788/Lly5GRkYEePXqgbNmy8mP+/Pk27CURke1kpmUiauNJPLySgKiNJ5GZlmnrLumlOfX5wBdHkPo0+0LcQiUghMCDS/E4ve0cOs3qACcXPfvE/jfwyspQZU88AkAeZ5wItUBC3CPsX3AIXw/cAu8yXhAq7ZlK3hWbiEzBMSmR5VQKSoFKJWmVqVSS3nIhoHPZFnPULUptOGKfudzGt0HkqOxq8vHgwYNadxU8ePAg1q9fL/98/fr17NPmcj1mzpxp9b4SEdmaZkJv/4JDSLyXJE+22dMEZGZaJv5YF4VVb6zHg0vxBo9WvPf3fZz/4SJqv1YTpSr7w8XbuOuiSUoJbn5ukCQJkuLfgZtQZ/9+iL/8EBBAYPUASJIEhZMCkiQhsEYAGvbUf302R5nQJSLL4ZiUyHpGvHEb9aslQyEJSJKAQhJoUC0Za6dfkMudndRQSAL1qyajXq6ywtQ1Z54xbeSXZ+7ltkaeoXVq7nVnb3m22GY0N6IhckQ2O+2aiIgKR+tahv/7z1zXMizI3aH1tbFhwObsCcB8/L3nMi7+fFm+IYxHKXekIz3f1wmVwAsDsq+1FvXNKTxPeK71vKSUkPQgGQM29DFqeXLenCYR2RO6vDkNERGR5bi5qnFsTdT/7iSchnG9L8t39tWUG3Mn4YLUNXdefm0Yk2fO5bZWnqF1as51Z495tthmiBwVJx+JiByUpa5laK67Q5/edg7xsflPPAKA+n+nRWuW5dnD53lVlzm7OUOlUuHSvit4/kj3NZrTq51dnY2akLXkhC4RERHp5+aqxsS+N3HgxDOtG2poynPTV1aQupbIy6sNY/PMtdzWzDO0Ts217uw1z9rbDJGj4uQjEZGD8gv2tci1DAtzd+icR0w+uPwQEgzfF8YcstIycXjpcYPP53V6tT68OQ0REZF5pKYpjD4iTFM3Js4TCzeV1yk3pQ1b5uXXhjF55lxua+UZWqfmXHf2mGeLbYbIUXHykYjIQTXsWQ8xP17MPkLxf/+ZOtmm7/Tqgk7A5T5iUp1l+QFS7otxa0iShKAG5RC5ortJR2taakKXiIioOElNU6Dlm81wNtYLSqWASiVhw4/lAAmIufJv2cafy+G3ZScQProJzsZ6QcAVkxZV1yk3pQ1b5RnTRn555l5ua+QZWqfmXnf2lmeLbebYmihOQJLD4uQjEZGDcnZ1lq9lGLvpB7Tv28akazMaOr26VsfqBZqA03fEpC3VaF9Va10Ycx1Lc0zoEhERFXcrdgTjbKwX1EKCOiv7hnDnrngBAAT+LTsb64UhH9eW6wISBCSdclPasFWeMW3kl2fu5bZGnqF1au51Z295tthmVuwI5inY5LA4+UhE5MA01zL8LrqUydckNHR6da0O1RFYPUBrUjK/CbjMtExc2h8LkfskawmQFJLOZKalSJIEAYFSVfyhylRh75z98Av2RZ2IWtg8/Lt8r2NZ2AldIiIiAq7ecYdSKeTJFACQ/vfPnGctKJVCb11D5aa0Ye08e2nDEfvM5Ta+DSJHpbB1B4iIyDY0p1fnlPPu0O3faYOGPeohbPxLqN6uCjaP+A5fD9qCP9ZFQaizT/nITMvEH+uisOSVVbh9+q7uBR4FrDLxqFkOAQEI4PGNJzi4+AhOf3cO+xccwlc9v8aDS/EQQkCdpYYQ/95IJjfNhG5A1ewJXU48EhERmaZSUApUKu0xhhC6l0tRqSS9dQ2Vm9KGtfPspQ1H7DOX2/g2iBwVJx+JiIq4zLRMRG08ib1z9iNq40lkpmUCyPv6hpoJuHYTW+PCz5dweNlx3D59F7dP38GBRUdw69QdpDxNxdcDt+DAoiNIS0yzxaJlk3JMcP7vf6oMFYSAPNGYHP8MkkJ3opU3kiEiIjK/EW/cRv1qyVBIAs5OaigkgfpVk1EvV1mDaslYO/2CXFeShN5yU9qwVZ4xbeSXZ+7ltkaeoXVq7nVnb3m22GY0N6IhckQ87ZqIqAgzdF3HARv6aF/f0MDp1Sc2n0Z87EOddtOfZ+DH6Xvw4FK8NRdHP/G/U7vVho+w1Pd8zutYpjxNxU8z9uLpnUT4Bvmg06wOluwxERFRkebmqsaxNVFG3wVYU3fx1jSM631Zp9yUNmyZl18bxuSZc7mtlWdonZpz3dljni22GSJHxclHIqIizNB1HU9vO4dm/RvL1zfUdxOWzLRM/Ln+hMG2r/15wyrLkB/PAA88T3iedyUh4BnoiecPn+tMtKY8TcXSV1YhKz0LAPDwSgKWvrIKqsYqK/SeiIjIsaWmKfROqBCR+fHzRo6Kk49EREWY5rqOOe8+nfN0Y83p1fqc3nYOqU9TDbatyrCPybnAagG4l6lG6tNUeWLRycUJqowsSEqFPNEYuaIHzv9wUWeiddfkn+SJR42s9CzEX9Y94pOIiIj+lZqmQMs3m+FsrBeUSgGVSsLGn8vht2UnED66iVb5hh/LARIQc8VwXQFXTFpUvVBt2CrPmDbyyzP3clsjz9A6Nfe6s7c8e9pmjq2J4gQk2T1OPhIRFWF5Xdcxp8y0TJ0jIOWJy0LcMMannDcS7yYV+PXGuHrsOhRO/17C2LusN+p1qQVnV2ckPUjWmmjUN9H69E6i3nY118YkIiIi/VbsCMbZWC+ohSTfrfdsrBeGfFxbp/zcFS8AgIDhuoAEAalQbdgqz5g28ssz93JbI8/QOjX3urO3PHvaZlbsCMbEvjdBZM84+UhEVIQZc11HQ9eFrN6+ap7XUTTGs/xOhzYTdVb23l6hEki6l4SjK/+EZ4AH3vxuINx93fJ8rW+QDx5eSdAp512uiYiI8nb1jjuUSiFPhACAUin0lkv/+2fOu/gaqmuONqydZy9tOGKfudyFb4PI3vFu10RERZizqzMGbOiD9u+0QcMe9dD+nTYYsL6P1sRazutCau4O/eBSPP5cHy3fPbqgbHlq9rOHz/FVz6+R8jQVf6yNwteDNmPDgM34duxO/DJ7n3zn706zOsDJRXtfnJOLEwKrB9io50RERI6hUlAKVCpJq0ylkvSWC6E9mZJXXXO0Ye08e2nDEfvM5S58G0T2jpOPRERFnOZ04w5T26NZ/8Y6R/RpTq/OLeN5hk6ZQk89AChV2d88nTWz5PhnWNNjAw58cQS3T9/FnbN38c/hqzi97Rz2LziIrwdugbOrE8b8OgxVwyojoGopVA2rjDG/DoPSWWnr7hMREdm1EW/cRv1qyVBIAs5OaigkgQbVkrF2+gWd8vpVk1Evn7qSJArdhq3yjGkjvzxzL7c18gytU3OvO3vLs6dtRnN3bCJ7xtOuiYiKOX3XhTREraeem58bar1aHSe3nMHzBPvb8/rsof5Tv4XQvvN3zy+6WbdjREREDs7NVY1ja6L03n1XXzmAPOsu3pqGcb0vF6oNW+bl14YxeeZcbmvlGVqn5lx39phnT9sMkb2zmyMf586dC0mSMGHCBIN1Lly4gO7duyM0NBSSJGHRokVW6x8RUVHVsGc9BFYPgCRJWjduMVZ6cjqOLDuO54/sb+IxPznv/J2ZlomojSexd85+RG08CaHmQI6oOOKYlEi/1DQFFm4qj7Gf1cDCTeWRmmY3f0oSFWv8bJIjsIsjH6Ojo7Fy5UrUq1cvz3opKSmoVKkSevbsiYkTJ1qpd0RERZvmupAnNp3GlcNxSH7wzKQ7VGtu9uKINHf+1nfTnVsed5GZlskbzxAVIxyTEumXmqZAyzeb4WysF5RKAZVKwsafy+G3ZScQPrqJUeUbfiwHSEDMFcN1BVwxaVH1QrVhqzxj2sgvz9zLbY08Q+vU3OvO3vLsZZsxlHdsTRSPiCS7YvPJx2fPnqFfv35YvXo1Zs+enWfdpk2bomnTpgCAKVOmWKN7RETFxsW9lxF/OV7nAtcOTwFAz9hLkiDf+TvnTXdEVvYKyHiWLp+STURFH8ekRIat2BGMs7FeUAtJvtPu2VgvDPm4ttHl5654AQAEDNcFJAhIhWrDVnnGtJFfnrmX2xp5htapudedveXZyzZjKG/FjmBM7HsTRPbC5sfjjh49Gp06dUJ4eLhF2k9PT0dSUpLWg4iI/pWZloldk3/Cg0tFcOIR0Jl4dHZ3Rv3X66L9O2Hynb/13nRH+veUbCIq+jgmJTLs6h13KJXagwSlUphULknZD2u1Ye08e2nDEfvM5bbMchPZE5se+bhlyxacOnUK0dHRFsuYM2cOZs2apVPeu3dvODtb51S6qKgodOnSxSpZtspknmPn2SKzqOf9c+kk5k7rY7W8i+dP4L1xPU1+nVCrcev0XaQ/SzfpdU9xG9H4xuS8wjBbZgpw7rAHnP5ygvNOJ/iU80bi3SQkZD1CzuHcU3Eb26PnYv+4FYXPNMI/l04W6c8Ev9fMKzMz0yo5xQXHpMxzhDwAiDp2FF1at7Be3oXL6PL2DFy944bMLE+t5zKzgIdP0pGZ5WJUuVrPDk7dulEAuhSyDdvkGddG3nnmX27L5xlap+Zfd/aVZy/bjKG8AyeeocvbqbpP5iMq9hrHa8wzminjUZtNPt66dQvjx4/Hvn374OrqarGcqVOn4u2335Z/TkpKQkhICLZu3Qpvb2+L5ebUpUsX7N692ypZtspknmPn2SKTeeb1UlgnfLp4m8mvi9p4EvuPHoKAnpFLHqLxDZqin8l5hWHWzEeAwkkBoRIIdA5A5Noe2Dz8O61rPp712IZlm3622jUf507rU6S3UX6vmVdSUhJ8fHysklXUcUzKPEfJA4AurVtg9+e6k9gWy3t7BnZ/PkvvNR8bVEvGPj3XoDNUXq9KMkSua9PlrivQBRK+L1Qbtsozpo388sy93NbIM7ROzb3u7C3PXrYZQ3lHC3jNxy4fLeV4jXlGM2U8arPJx5MnTyI+Ph6NGjWSy1QqFQ4fPoylS5ciPT0dSqWy0DkuLi5wcXHJvyIRUTGkOd1Yc53D4kRzo5z4yw9x/oeLGLChD05vO4cnt5/CL9gXj/86xpvNEBUDHJMS5c/NVY1ja6KwYkcwrt5xR6WgFIx447bJ5QDyrLt4axrG9b5cqDZsmZdfG8bkmXO5rZVnaJ2ac93ZY569bDOG8ojsic0mH9u3b4+YmBitssGDB6NGjRqYPHmyWQZ5RESUN79gXwiV7sSje0l3pDxOsUGPrE9SSnh0/bHWxGPDnvXw3f+39+7xUVXn/v9nzSSQQC6igkKC2mgSCpqQSmmjVWzxigIejxQvR/RoLyg9WNTvKVgpoFVsa1E5WvAn0lp7IhQaPVQRBI4gojbgQYgREwQVQRCLMgnkQjLz/P6IM2SSSWbvmTX7MvN5v17zqqysed5rZT3debKyZ6/Ntj8WmRBiAaxJCTFGZkYg4gEWZtt76vvaliNhX48lht2+nmIY9emat5W+7r6nVueMG3NUxxrycBnidGzbfMzOzsbZZ58d1ta3b1+cdNJJofZJkyYhLy8Pc+fOBQAcO3YM77//fui/9+3bh3fffRdZWVk466yzrJ0AIYQkAWUTSrB9RQ0O1n0R1t73pD5QXoWjXxy1aWTWEWgL4MPXd+Pdv1WHPnJd/dL7kP78izEhqQBrUkK60tTswcLKfFTvysKjFaf1eHdVsK+R9mgxOvpijWGnL1oMIz6d87bK19331OqccWOO6lhDsz5C7MDWA2eisWfPHng8x+88+eyzz1BWVhb69yOPPIJHHnkEo0aNwvr1620YISGEuJv0jHQMGzMEB3d+gY6Pffxi5z9RcP4Z2NPQgrbmNvsGaAFZ/fviyBdHIILQx88P1n4BX2v7SbStza1d7ors6ePYZvsTQpwPa1KSSnR8vqMgA/c8VoxnXxoEdHqu3HMrB2FthGfQddduJEbQF08Mu3xGYkTz6Z63Fb7uvqdW54wbc1THGpr1bYrxWZCExIujNh87F2ud/33GGWdAJPWeS0YIIYmk/kADPF5P6BmIQXZv+hi9+ib/plnuoBw0ftUE6TB/5VVobWpDa3Mr/nzzkrCDaKpfan8+ZKQNRbP9CSHOhDUpSWUWVuZjW102AqIAKAgUtu/MBgAIFAJtCgCwrS4btz4wLNQ3WruRGEFfPDHs8hmJEc2ne95W+Lr7nlqdM27MUR1raNa3sDKfH9EmtsAHWhFCSIqTc2p2l43HIMeOtlo8GmvxpHmgPKrLcy/FL0jPTMPWZdtxsPYLiAgCbQGICA7WfoGty7ZHjGe2PyGEEOI0du/rA683/OeiUu2vjni9ErFvd+1Wx3DjmDlvztuKeRNiB9x8JISQVCeFb94JtAVQeOGZGFDcH0qp9s1IpTBgSH/kDsoJnQbeEeVV+Grv4YjxzPYnhBBCnEZBXiP8/vCfZSLtr474/Spi3+7arY7hxjFz3py3FfMmxA64+UgIISlO/ecNXTbMUoWs/n0x4oYyTHr2Ooy+exTKri3B6LtH4fqF18L3WT0+r/2iy12h4hf0yz8hYrxIp4f31J8QQghxGpOv2YvSogZ4lEApgUcJSgsbUPJ1W3paAB4lGF7UgMUza0J9o7UbiRH0xRPDLp+RGNF8uudtha+776nVOePGHNWxhmZ9wQNqCLEaRz3zkRBCiPXknJLdZcMsVTjWeAzPT16OwgvPxIgb2g+P2FKxFU9d/Ud88dUhfJa2P9RXeRUQAAYM6Y+yCSUR45VNKEH1S++HPfOxp/6EEEKI08jMCGDToiosrMzH/KXNmDqxtscTdYN9jbRHi9HRF2sMO33RYhjx6Zy3VT6n5Iwbc1THGpr1EWIH3HwkhJAUprW5FTWrPrB7GLZx7Ggr9m79DHu3fob3Xt4B5VU4WPtF6Ouhux4VkFcyEENGF4VOr+7uVOtJz17H064JIYS4gqZmDzcnCCGEJBxuPhJCSAqzddl2fFH3z65fUEi5Z0F+8WGE78PXeLwenFI8ACNvOhdA9FOtg/0IIYQQp9LU7MH5PxqJbXXZ8HoFfr/CcysHYe2TW3DxlBHYVpcNQQbueawYz740CFBA9c7u+0ZrNxIj6Isnhl0+IzGi+XTP2wqfU3LGjTmqYw3N+jYtquIfGIgtcPOREEJSmOABKdLWaacxxTYeo9H5uY0dT7UOfu+Cp1pz45EQQogbWFiZj2112QiIQqCt/dnP2+qycesDw0LtgIJAYfvObACAoPu+0dqNxAj64olhl89IjGg+3fO2wueUnHFjjupYQ7O+hZX5mHbDHhBiNTxwhhBCUphIB6SQTqiuz3nkqdaEEELczu59feD1htcAXq9EbFeq/WWkr1NiuHHMnDfnbcW8CbEDbj4SQkgKUzahBAOK+9s9DOfxdRGX2S8TF95xPoZeWoz/ffR1VD33DlqbW3mqNSGEENdTkNcIvz9818LvVxHbRdpfRvo6JYYbx8x5c95WzJsQO+DmIyGEpDDBA1IKLzrT7qE4BwXkDx+E/meehJ+++O+oXbcT6+e/ga3Lt2Pd7zfgzzcvwdljh2JAcX8opeBJ80ApxVOtCSGEuIrJ1+xFaVEDPEqQnhaARwmGFzVg8cyaULtSAo8SlBY2oCRK32jtRmIEffHEsMtnJEY0n+55W+FzSs64MUd1rKFZX/B0bEKshs98JISQFCc9Ix1X/+bKsANUAm0BKI+CBFLkI9mq/VAZ8QsGDOmPax+7Gm/cuhjLf/4iPq89CAjCnu343t/f56nWhBBCXE1mRgCbFlVFPO062D5/aTOmTqwNbVj01NdIe7QYHX2xxrDTFy2GEZ/OeVvlc0rOuDFHdayhWR8hdsDNR0IISWJam1t73CDr+PXi0YXI6t8X9QcacEJeLkbfPQp/ue2vOHLwiI0zsAAPkF86CKcUD0C//BNw9tiheP6ny/HPXYewV33W5fCd4LMdeao1IYQQt5OZEYh4+ESw/bUtR8K+3lNfo+1mfLHEsNvXUwyjPl3zttLnlJxxY47qWEMzcQmxA24+EkJIktLa3Bp2N6P4BdUvtd+xl56R3uXrgbb2v4Qqr8I/PzyE+gMNuOUvN+D5ny7HoY++tHk2CSQADBldFNpIrHrunfaTrIGIp37z2Y6EEELcRlOzJ+IdUNHaq3dl4dGK03q8u8pM7GgxOvpijWGnL1oMIz6d87bK55SccWOO6lhDHT7eEUkSDTcfCSEkSdm6bHv7JppI2EeGty7bjpE3nRvx6wBCB6kcrD2IP9743zj6xVFbxh8XChE3DiOR2S8z8knWbZ1Cfn2UIJ/tSAghxE00NXtw/o9GYltdNrxegd+v8NzKQVj75BZcPGVEj+2CDNzzWDGefWkQoIDqneZjBNuNxAj64olhl89IjGg+3fO2wueUnHFjjupYQx2+51YOwqZFVdyAJAmFm4+EEJKkBDfROm4sBj8y3N3XOyKAOzceAcMbjwDw3ZtHAGi/4/GrvYdRf6AhdBdoR3IGZSN7QBYKL+ThPIQQQtzDwsp8bKvLRkAUAm3tf0jbVpeNWx8YFrUdUBAobN+ZDQAQmI8RbDcSI+iLJ4ZdPiMxovl0z9sKn1Nyxo05qmMNdfi21WVjYWU+P6JNEgo3HwkhJEnpl39C6C7GIB0/Mhzp6+GdEzg4h5DWOw3Dxnyz08fTA0jrnQa0AJ40DwJt7f+u/6weDZ8fwb539+P91bWhj68TQgghTmb3vj7weiW00QAAXq+Yav/65n9Ih9rA6THcOGbOm/O2Y97BdkISicdox88++yyR48DDDz8MpRR+/vOf99hv2bJlGDJkCDIyMnDOOedg5cqVCR0XIYS4lbIJJRhQ3B9KKXjSPFBKhX1kOPh1qCiBkpi2ljasfmhd6OPngbYARAD/sTZkndQXZdeWoPCiM+E/1gYRfP11CX18nRBiLYmuRwHWpCT5KMhrhN8f/sPe71em2kXCNzfcEMONY+a8OW875h1sJySRGN58HDZsGCoqKhIyiM2bN+Opp55CSUnPz9B68803cf311+O2227D1q1bcfXVV+Pqq6/Ge++9l5BxEUKIm0nPSMekZ6/D6LtHoezaEoy+exQm/en43XrBr+cPH5TSG5ChZzx2QHk9SOudhstmjEbOqdlQXk+nrx//+DohxDoSWY8CrElJcjL5mr0oLWqARwnS0wLwKMHwogYsnlkTtV0pgUcJSgsbUBJjjGC7kRhBXzwx7PIZiRHNp3veVvickjNuzFEda6jDN7yoIXRwDSGJwvDHrh988EH89Kc/xQsvvICnnnoKJ554opYBHDlyBDfeeCOefvpp/PrXv+6x7+OPP47LL78c/+///T8AwAMPPIA1a9bgiSeewMKFC7WMhxBCkon0jPTQKc7dfX3I6CLse3c/JBU+Zx2Bpq+aujzjUfyC9Mz2H5HRPr5OCLGORNWjAGtSkrxkZgSwaVFVxNNto7XPX9qMqRNrezxR10zsaDE6+mKNYacvWgwjPp3ztsrnlJxxY47qWEMdPh42QxKN4Tsf77jjDmzfvh2HDh3C0KFD8fe//13LAKZMmYIrr7wSF198cdS+b731Vpd+l112Gd56661u39PS0oL6+vqwFyGEkONE+nh2cOMtFTh6qOvHTAYM6Y/cQTkAon98nRBiHYmqRwHWpMR9NDV78GjFafiP3w3BoxWnoanZ02M7IYR0R/C6UV0NPPoo0NRk94hIsqFEOj8hIDpPPPEEpk2bhm9+85tISwv/BfX//u//DMdZsmQJHnzwQWzevBkZGRm46KKLMHz4cDz22GMR+/fq1QvPPvssrr/++lDbH/7wB8yZMweff/55xPfMnj0bc+bM6dJ++eWXIz3dmoMCqqqqMHLkSEtcdjnpc7fPDmey+9548x8YevYIy3zvv7clLp8EAvB9Vo/WpjakZ6Yh4Bcc+vjLbvsfxl6cgPyYfbFgldPj9eCM75yG2tqtoe9p5+9P7qAcKI/eX+Y+/OCdpP7/BK9remltbcWqVavg8/mQk5NjidNp6KpHAdak9MXo2/QGRg4rtswHAFU1tRg5rBj+APDGu/1QfzQNSglEFHL6tuG8ksN4c/sJXdoBGO7bsR2oAjAyrhhmxtHRp2MuVvuixTDi0zlvq3xOyRk35qiONUyU73vDv4LXgr9dVNV9lNw/K5LYZ6YeNX1ryyeffILKykr069cP48eP71LsGeXTTz/FnXfeiTVr1iAjIyOmGEaYMWMG7rrrrtC/6+vrMXjwYCxdutSyYn3cuHFYsWKFJS67nPS522eHM9l937voSvx2/jLLfP85dYJhX2tzK7Yu246v9h5Gv/wTUDahJPQcyODXDn38JXYe3YUjXxyNGGMz/hvfxo3axm8Ey5x+4OLzLsLy9IctXcOH77suqf8/weuaXurr65Gbm2uJy4noqkcB1qT0xeG7sBwr5nXdUE6o865ZWDFvDh6tOA2r3iwGoEKHTRxpFPTudRBHGgeEtTccDd5rEr1v53ZgHIAVccUwM46gT8dcrPYZiRHNp3veVvickjNuzFEda5hI38UjazHthj1INOPufyK5f1Yksc9MPWqqUnv66adx99134+KLL0ZNTQ369+8f0wAB4J133sHBgwfxrW99K9Tm9/vx+uuv44knnkBLSwu8Xm/Ye0499dQuf03+/PPPceqpp3br6d27N3r37h3zOAkhxO103GzMOTUbNSs/wBc7/wnlVRC/oPql9zHp2esAAH++eQkO1n4B5VUItAXQK6sXjh05ZvMM9JPZLxOZuRn48uOvIn6dh8kQ4lx01qMAa1LiTnbv6wOvVxBoO35gmtcrEdvV1//Z8fNu3fVNphhuHDPnzXk7bd6E6MLwTbSXX345fvGLX+CJJ55AZWVl3IXe6NGjUV1djXfffTf0GjFiBG688Ua8++67XYo8ACgvL8e6devC2tasWYPy8vK4xkIIIclKa3Mr/nzzEqz7/QZsXb4drz2+EQfrvoCIINAWgIjgYO0X2LpsO7ZUbMXnHxwMfQ1AUm485ubl4qcv/jv8x/zd9uFhMoQ4E931KMCalLiTgrxG+P0qrM3vVxHbRcI3FXrqm0wx3Dhmzpvzdtq8CdGF4c1Hv9+P7du3Y9KkSVrE2dnZOPvss8Neffv2xUknnYSzzz4bADBp0iTMmDEj9J4777wTq1atwu9//3t88MEHmD17NrZs2YKf/exnWsZECCHJxtZl23Gw9vhmY6QDrZVX4dAnX+LtP2+xfoA6UdG7AAACgoofL4Pvs8iHPaRnpvMwGUIciu56FGBNStzJ5Gv2orSoAR4lSE8LwKMEw4sasHhmTZf20sIGlBjs27ldKYk7hplxBH065mK1z0iMaD7d87bC55SccWOO6ljDRPqCJ2kTogPDH7tes2ZNIscRkT179sDT4YH+5513HioqKnDffffh3nvvRWFhIV588cVQYUgIISScr/Yebv94dVv3Z4uJX3Dki6NoOuzyY+0EOPnMk/DPXYd67ObbXw/s7/7rIyedG3oGJiHEWdhRjwKsSYnzyMwIYNOiKiyszMfufX1QkNeIydfs7bYdgOG+HdvnL23G1Im1ccUwM46OPh1zsdoXLYYRn855W+VzSs64MUd1rGEifYToIvancyeA9evX9/hvAJgwYQImTJhgzYAIIcTl9Ms/AeKPvPHoSfNA/IIBQ/oj6+S+8Hg9oY9buxHlVejdtxc86R4EWmOfx87XduG8W609lZkQ4ixYkxI3kJkRiHgYRHftZvoG21/bciTs67HEMDOOzj4dc7Ha11MMoz5d87bS55SccWOO6ljDRPkI0YWjNh8JIYToIXRq9Sdfom//vjhy8Ehos7F/0ckYdvkQ1H/eEDrteuuy7d1uUroF8Qv2Ve+P+NFyM3yx85/Yumy7nkERQgghGmhq9mBhZT6qd2Xh0YrTerzbKdjXyJ1Rkfp2bI/VF+s4Ovp0zMVqX7QYRnw6522Vzyk548Yc1bGGifQRogtuPhJCSJIRPGQmeGq1+APIHpCFsy4swElnnIiyCSVdPlZ89tihePvPW3Dk4JH2ZycKjv+vmzA5XqUUpNMTtpVX8bRrQgghjqGp2YPzfzQS2+qyIcjAPY8V49mXBgEKqN6ZDa9X4PcrPLdyENY+uQUXTxmBbXXH28307dweiy+ecQR9OuZitc9IjGg+3fO2wueUnHFjjupYw0T6Ni2q4gYk0QY3HwkhJMnoeMhM8FmPR744ipPOOBEjbzq3S//W5lY8/9Pl7RuPwPENPLdtPJrkxDP6wd8agG+fL6xd/NJ+2nUPz4UkhBBCrGJhZT621WUjIAqAgkBh+85sAIBAIdDWfuLatrps3PrAsFDfYLuZvp3bY/HFM46gT8dcrPYZiRHNp3veVvickjNuzFEda5hI38LKfH4Em2jD8GnXhBBC3EHwkJmO9HQ3X3CzMtXwfVbfZeMRAPoXnWzotOvW5lZUPfcOVs9dh6rn3kFrc2sihkkIISTF2b2vD7zeTnfpq/ZXR7xeibtvMsVw45g5b87bafMmRBfcfCSEkCQj0iEzobv5IhBpszKI8irklQ5Eembynf7sP+aP+b3Bj7av+/0GbF2+Het+vwF/vnkJNyAJIYRopyCvEX5/+M9pkfZXR/x+FXffZIrhxjFz3py30+ZNiC64+UgIIUlG2YQSDCjuD6UUPGkeKKUwYEj/bu/m6+lEbASAou+fhQFFJydwxM7ii7roB850/Gh7oC0AEcHB2i94UA0hhBDtTL5mL0qLGuBRAqUEHiUoLWxAyddt6WkBeJRgeFEDFs+sCfUNtpvp27k9Fl884wj6dMzFap+RGNF8uudthc8pOePGHNWxhon0BQ+iIUQHfOYjIYS4iOAp1l/tPRw6qbrz4THpGemY9Ox1UfsFKZtQguqX3sfnHxwMa1eq/SPINSs/wMG61PlYtpEDZ4J3iwafqWn0fYQQQohZMjMC2LSoCgsr8zF/aTOmTqzt8YTbYF8jp+FG6qvDF+s4Ovp0zMVqX7QYRnw6522Vzyk548Yc1bGGifQRogtuPhJCiEvoeoq1oPql9zHp2eu69E3PSI94uEwkOm5WHvr4Sxz551Fk9e+LE/Jyseedvdi18SPdU7GFvif1wVmjClC94n0E2rovpgJtgagHzpj9aDshhBBihKZmT8TNAkIIsQNek4guuPlICCEuIdIp1kY/6hvtjsn0jHSUTSjB1mXb4UnzIOeUbNS88kFSHUTT58Q+6F9wcvcfMf8a5VU4e+xQLN/cfZ/g3aIdN4J7+mg7IYQQEo2mZg/O/9FIbKvLhtcr8PsVnls5CGuf3IKLp4zAtrpsCDJwz2PFePalQYACqnd23zfYbqavDl884wj6dMzFap+RGNF8uudthc8pOePGHNWxhnbk6KZFVdyAJKbh5iMhhLiEWD/q29Mdk8ENyM59erozsCPpfdLQ2tgW85ys5IS83LBNQyhAAl03IsUv2PZCdY+xzH60nRBCCInGwsp8bKvLRkAUAm3tB0Jsq8vGrQ8MC7UDCgKF7TuzAQCC7vsG28301eGLZxxBn465WO0zEiOaT/e8rfA5JWfcmKM61tCOHF1YmY9pN+wBIWbggTOEEOISYv2ob6TDUT7/4CBe/MXLodOZO/cxQlpvLwJtPd9F6BSUR+HKOZeFNg1H3z0Kw//1HKT1jvw3uLf+uBkS6Pn7EPxo+2UzRmPkTedy45EQQkhc7N7XB15v+M9Vr1citivV/tLdN5liuHHMnDfn7ZZ5E2IWbj4SQohLMHuKdZDgHZOd2bl+F/588xK0Nrd226cn2lr88B/zm3qPXVxw+3noc0ImgOObhlfcdwnO+M5pEfs3+5px4P2DWD13Haqeeye0SUsIIYQkioK8Rvj94T+L/X4VsV2k/aW7bzLFcOOYOW/O2y3zJsQs3HwkhBCX0PGuvbJrSzD67lGY9Kfrot5xF+mOySDBZ0b21Mdp9D3J3F9bT/nmAHxn0rlobW5F1XPvhG0oZp+S1e37jhw6iq3Lt2Pd7zeENmkJIYSQRDH5mr0oLWqARwnS0wLwKMHwogYsnlkTaldK4FGC0sIGlETpG2w301eHL55xBH065mK1z0iMaD7d87bC55SccWOO6lhDO3I0eDo2IWbgMx8JIcRFmDnFOkjwOYeff3Cwy9eCz4z8wbQLuxyg0r/oZLQ0tMD3Wb2u4Wvh6JfG/9p68pknYdKf2k8Dj/Tcy6GXF/f4/uBH0IObtGa/94QQQohRMjMC2LSoKuLJssH2+UubMXVibeiX/576dmw301eHL9ZxdPTpmIvVvmgxjPh0ztsqn1Nyxo05qmMN7chRQszCzUdCCElygndMvviLl7Fz/a6wrwWfGdndASoVP17muM1HmLhBs7XpGNb+bj2O/PNoaPO140nhQy8rxoDi/lFP9TZysA8hhBBilKZmD3+hJ4QQkjJw85EQQlKA9Ix0XP2bK7vc/dfxmZGd76psbW6Fb7/DNh5N4vusAVuXb4/4NeVVqP+8ATf/+XpseX4rdm7YDUDQO6s3dm38KKyvkYN9CCGEECM0NXtw/o9GYltdNrxegd+v8NzKQVj75BZcPGVEj+2CDNzzWDGefWkQoIDqndFjmOmrwxfPOII+HXOx2mckRjSf7nlb4XNKzrgxR3WsoR05umlRFf9YQkxj6+bjggULsGDBAnz88ccAgGHDhuFXv/oVrrjiim7f89hjj2HBggXYs2cPTj75ZFx77bWYO3cuMjIyLBo1IYS4k+7ubuzumZFbl23H0X8e7dLeq286Tv/mYPTa0QvHjh5L9LATRse7Psv/fSTK/30kgPZN1z/fvATqA8CT5umySUsISS5YjxKrWViZj2112QiIQqCt/TCHbXXZuPWBYVHbAQWBwvad2QAAQfQYZvrq8MUzjqBPx1ys9hmJEc2ne95W+JySM27MUR1raEeOLqzMx7Qb9oAQM9i6+Zifn4+HH34YhYWFEBE8++yzGD9+PLZu3Yphw4Z16V9RUYHp06dj8eLFOO+881BXV4dbbrkFSinMmzfPhhkQQoi7MPPMyPYTsD2QtvC/bB472ooDOz7H0FOz8c9dh3oOomDqY9JWEG1DMbhJ+48b/oyyb5dE3aQlhLgb1qPEanbv6wOvV0K/zAOA1yum2tXX/9nxhFodfZMphhvHzHlz3m6ZNyFmsfW067Fjx2LMmDEoLCxEUVERHnzwQWRlZeHtt9+O2P/NN9/E+eefjxtuuAFnnHEGLr30Ulx//fWoqqqyeOSEEJK8BE+F/rz2IAL+yB+paDl6LPrGI6B941F5VLdf69u/L/JKB7ZveHbDyWeeZOik8PSMdJyQfwIumzEaI286lxuPhCQxrEeJ1RTkNcLvD/9h5fcrU+0i4RsFuvomUww3jpnz5rzdMm9CzGLr5mNH/H4/lixZgqNHj6K8vDxin/POOw/vvPNOqLjbvXs3Vq5ciTFjxnQbt6WlBfX19WEvQgghkQl+5Hjd7zdg77bPYts81PyTpXd2b/Q9uS/6ntgHU1b9GFkDsiL2G3njt3DD/zcBpxQP6DbW4G/lcUORENItiapHAdak5DiTr9mL0qIGeJQgPS0AjxIML2rA4pk1UduVEniUoLSwASUGY5jpq8MXzziCPh1zsdpnJEY0n+55W+FzSs64MUd1rKEdORo8HZsQMyiRznvc1lJdXY3y8nI0NzcjKysLFRUVPRZv8+fPxz333AMRQVtbGyZPnowFCxZ023/27NmYM2dOl/bLL78c6enW/OJZVVWFkSNHWuKyy0mfu312OOnTyxtv/gNDzx4Rd5zDew/jn7sORd1zPIy9OAH5XdrTM9KQ1isNTfXNcY8lSPDvrT7vZ/jWeefjiw8PoX5/fdgYlVLIHZiD/oUnQwIBHHj/II4cOtolzslnnoQTDB4c8+EH7yR1ziS7zw6nlb7W1lasWrUKPp8POTk5ljiTmUTXo0Bq1qRJ79v0BkYOK47pvf4A8Mn+TBxt9qJvhh+nD2yC1xO9ffe+ahTknYPTBzYBMB7DTF8dvljH0dGnYy5W+6LFMOLTOW+rfE7JGTfmqI41tCNHdVJV91Fy/6xIYp+ZetT2zcdjx45hz5498Pl8WL58ORYtWoQNGzZg6NChXfquX78e1113HX7961/jO9/5Dj788EPceeed+PGPf4yZM2dGjN/S0oKWlpbQv+vr6zF48GBLi/Vx48ZhxYoVlrjsctLnbp8dTvr08r2LrsRv5y+LO87queuwdfl2BDo957Ezm/Hf+DZu7NL+/TsvQP3nDXhn6bvaP3K9Bf+N6fc8DQBY9/sN6PjjSymF0XePCj3PMngHZ+eTvXv6qHVnHr7vuqTOmWT32eG00ldfX4/c3FxuPmoi0fUokJo1adL7LizHinldN5QT6rxrlqVO+uhzupM+d/sAYNz9TyT3z4ok9pmpR209cAYAevXqhbPOOgsAcO6552Lz5s14/PHH8dRTT3XpO3PmTNx000340Y9+BAA455xzcPToUfzkJz/BL3/5S3g8Xbfge/fujd69eyd2EoQQkgS0Nrei/kBD9xuPUQ6PGVDcHyNuKMPWZdsNbTz2zumNlvqW6B1DfoWv9h7GD6ZdiOqX3u+ysdjx8BizJ3sTQlKbRNejAGvSVKap2YOFlfnYva8PCvIaQx9Z7NyWmRGI2Ldje/WuLDxacZrpGFb7Yh1HR5+OuVjtixbDiE/nvK3yOSVn3JijOtbQKTmamdHzzQsktbF987EzgUAg7K/CHWlsbOxS0Hm9XgCAzTdwEkKIqzl+p+DBbvsoAH0HZOHoF0ehoKAAZPXPwlkXFuCkM04Mbe6VTSjB9r/X4GDtFz06TW08AoAI+uWfYHhj0czJ3oQQ0hHWo0QXTc0enP+jkdhWlw2vV+D3Kzz70iBAAdU7j7c9t3IQ1j65BRdPGRHWt3O7IAP3PFZsKobVvnjGEfTpmIvVPiMxovl0z9sKn1Nyxo05qmMNnZKjz60chE2LqrgBSbrF1s3HGTNm4IorrsBpp52GhoYGVFRUYP369Vi9ejUAYNKkScjLy8PcuXMBtJ9GOG/ePJSVlYU+5jJz5kyMHTs2VPQRQggxz9Zl23Gw9osuJ90BgCfNE7q78PqF1+K9v7+Puoq/Y/QNF4U2/VqbW8M2A2/4/ybgpZmr8OHru+MeW9Dfq2/v0N2N3FgkhOiC9ShJJAsr87GtLhsBUQi0tT/FePvObACA4Hjbtrps3PrAsC59O7cDCgJlKobVvnjGEfTpmIvVPiMxovl0z9sKn1Nyxo05qmMNnZKj2+qysbAyH9Nu2ANCImHr5uPBgwcxadIk7N+/H7m5uSgpKcHq1atxySWXAAD27NkT9pfl++67D0op3Hfffdi3bx/69++PsWPH4sEHH7RrCoQQkhR8tfdw+0eY2zo8R9GrkFcyEKcUDwi7u3DkTedi+eaTe3y+YvVL7+PUoQOgPAoSMHYnkLeXF/5j/i7tg84ZiCGjC/HlPzZ1ubux86YnP1pNCDEL61GSSHbv6wOvV0K/oAOA+vo/O/7Bz+uViH27azcTw2qfU2K4ccycN+ft1nkH2wnpDls3H5955pkev75+/fqwf6elpWHWrFmYNWtWAkdFCCGpR7/8EyD+TpuEAWDI6KKIdxhKIICq597BV3sPo/5AAw7WHoQIQpuXB2sP4qu9hw1vPAJARk4Gmg43hT1z0pPmwSnF/b/e8Dz+y39rcyu2VGzF23/egqbDTfB4PaFNz0nPGj9UhhBCWI+SRFKQ1wi/X4W1RfqUgd+vUJDXiJpdWYbazcSw2ueUGG4cM+fNeZuN4ZQxB9sJ6Q7Nh6QTQghxI2UTSjCguD+UApSn/ZekrP59cfbYrie9tja34tOtn2Hd7zdg6/Lt2Ll+V9eiRSkcO3LM1BgGDj2lywao+Nuf89jZ/+ebl+C1xzei6asmQIBAWwAigoO1X7QfeEMIIYQ4gMnX7EVpUQM8SpCeFoBHCUoLG1DSqW14UQMWz6zp0rdzu1JiOobVvnjGEfTpmIvVPiMxovl0z9sKn1Nyxo05qmMNnZKjw4saQgfXEBIJxx04QwghxHrSM9Jx/VPXYtGEP+PIwSNQHoWGg0fw/E+Xd7mTcOuy7Th2pAUCCfuYdkckIBE/cp2Rk4H80kE4/JkP/9x9CAoKAsGAov646oHL8fxPl/d4inXQ391hNsrbfiI2IYQQ4gQyMwLYtKjK8Om0kfp2bJ+/tBlTJ9aajmG1L9ZxdPTpmIvVvmgxjPh0ztsqn1Nyxo05qmMNnZKjPGyG9AQ3HwkhhAAA3vv7+zj6xVEACG0aBu8k7PjR66/2Hm5/OEwPh9Nk9e+LhoNHuny95UgLdr3xEfoXnozv33kB6g80hD2r0cgp1pGeTxkk4A/g89qDqHruHT7/kRBCiKU0NXv4yzghhBASAW4+EkIIAdD9oTOd7yTsl39CxIfDFF50JnJOzUa//BNw9tihqPjxMhysC79DMbip+cXOf8Kb5sVlM0aHfd3IKdYRn08ZEgD7tu/Hvnf38/mPhBBCLKOp2YPzfzQS2+qy4fUK/H6F51YOwtont+DiKSPC2p99aRCggOqd0ft2bhdk4J7Hik3FsNoXzziCPh1zsdpnJEY0n+55W+FzSs64MUd1rKFTcvS5lYOwaVEV/+BCuoWbj4QQQgBE3tSL9MzFsgkl6LWwN9RRFfbx6Kt/c2Voo6+1uRVQaH9F2CeM5+PRZRNKUP3S++0fvfa0jzE9Mx2tTa2hMQOR79okhBBCEsHCynxsq8tGQFToBNhtddm49YFhXdq378wGAAii9+3cDigIlKkYVvviGUfQp2MuVvuMxIjm0z1vK3xOyRk35qiONXRKjm6ry8bCynxMu2EPCIkENx8JIYQACN/U6+mZi+kZ6cgrGYizehXg8D4fTsjLxZVzLuvyXMgv6v4ZceMRiLypaZRIH88+9PGX2Pbie2EnZfP5j4QQQqxi974+8Hol9Is4AHi9ErFdff2fHT9E0F1fHTGs9jklhhvHzHlz3m6dd7CdkO7gadeEEJIitDa3ouq5d7B67jpUPfdO+92JHQhu6o2+exTKri3B6LtHYdKfun5subW5Ffu278eHG3bj0Edf4sMNu/H8T5eHxQt+hLsLClBKhTY1g2N65ddrsOzOF/HKA2sijq0zwY9nXzZjNEbedC5OOuNEQ3dtEkIIIYmgIK8Rfn/4zz2/X0VsF+n69JLu+uqIYbXPKTHcOGbOm/N267yD7YR0BzcfCSEkBWhtbsWfb16Cdb/fgK3Lt2Pd7zfgzzcvibgB2XFTL9LzEkOnXYsg0BaAiIQ+4hwk4nMZFZA/fFBoUxPA12Naj63LtmPn+l3Yunw71j6yPuLYeqJsQgkGFPeHUgqeNE/YBichhBCSaCZfsxelRQ3wKEF6WgAeJRhe1IDFM2u6tJcWNqDEYN/O7UqJ6RhW++IZR9CnYy5W+4zEiObTPW8rfE7JGTfmqI41dEqODi9qCJ2aTUgk+LFrQghJAbYu246DtV9AREIHysT6TMRIp113/ohzdx/hvn7htaENzarn3vl6TF0dZsdm9KRsQgghJBFkZgSwaVFVxNOuI7UDMNy3Y/v8pc2YOrHWdAyrfbGOo6NPx1ys9kWLYcSnc95W+ZySM27MUR1r6JQc5WEzpCe4+UgIISmA0ZOsjRDptOvOH3E2shkYaUzxjM3ISdmEEEJIosjMCEQ8bKG7djN9g+2vbTkS9nUn+2IZR2efjrlY7esphlGfrnlb6XNKzrgxR3WsoVNylJDu4OYjIYSkAEZPsjZCd6ddRzqYpqfNwIgfzY5zbIQQQkiiaWoCFi4Eqndl4dGK00J3/DQ1eyLeCRSpHYh8p1K0GB2dZmJY7Yt1HEa+pzrnrdsXLYZVOWO1zyk548Yc1bGGTslR3vlIeoKbj4QQkgIYPcnaCOkZ6RhcNgijvzMqro84Hx/TwS4fvebzGgkhhDiRpibg/POBbdsAkQzc81gxnls5CGuf3IKLp4zAtrpseL0Cv1912/7sS4MABVTvjN63c7ug3WkmhtW+eMYR9OmYi9U+IzGi+XTP2wqfU3LGjTmqYw2dkqPPrRyETYuquAFJuoWbj4QQkgLofiai8nji/ohzxzEd+uRLHPniKLJO7ouTzjiRz2skhBDiSBYubN94DAQAQEGgsK0uG7c+MAzb6rIREIVAW/spsN21b9+ZDQAQRO/buT3oNBPDal8844j2PdU9b50+IzGsyBmrfU7JGTfmqI41dEqObqvLxsLKfH4Um3QLNx8JISRFcOIzEZ04JkIIIaQ7du8GvN7g5mM7Xq9g974+8Hol9It4T+3q6//seNd/ImNY7XNKDDeOmfPmvN0672A7Id3hsXsAhBBCCCGEEOIGCgoAvz+8ze9XKMhrhN+vDLWLdDm3LaExrPY5JYYbx8x5c95unXewnZDu4OYjIYQQQgghhBhg8mSgtBTweAClBB4lGF7UgMUza1Ba1ACPEqSnBXpsLy1sQInBvp3bg04zMaz2xTOOaN9T3fPW6TMSw4qcsdrnlJxxY47qWEOn5OjwoobQwTWERMLWj10vWLAACxYswMcffwwAGDZsGH71q1/hiiuuiNj/oosuwoYNG7q0jxkzBi+//HIih0oIIYQQQpIQ1qPEDJmZwKZN7c9+nP9IM6ZOrA2d8rppUVXE018jtQORT6eNFmP+0uNOMzGs9sU6jo4+HXOx2hcthhGfznlb5XNKzrgxR3WsoVNylIfNkJ6wdfMxPz8fDz/8MAoLCyEiePbZZzF+/Hhs3boVw4YN69K/srISx44dC/370KFDKC0txYQJE6wcNiGEEEIISRJYj5KeaGpq32jcvbv9I9eTJ9s9IkIIcSZNzR5uSJJusXXzcezYsWH/fvDBB7FgwQK8/fbbEYu9E088MezfS5YsQZ8+fVjsEUIIIYSQmGA9SrqjqQk4//z206293vZnPT77bPvXqqsBkQzc81gxnls5CGuf3IKLp4zAtrpseL0Cv1912/7sS4MABVTvjN63c7ug3WkmhtW+eMYR9OmYi9U+IzGi+XTP2wqfU3LGjTmqYw2dnqObFlVxA5IAcNBp136/H8uWLcPRo0dRXl5u6D3PPPMMrrvuOvTt27fbPi0tLWhpaQn9u76+Pu6xEkIIIYSQ5CNR9SjAmtSNLFzYvvEYCBw/3Xr79vb/bT+cQUGgsK0uG7c+MAzb6rIREBU6Aba79u07s9tjIHrfzu1Bp5kYVvviGUe076nueev0GYlhRc5Y7XNKzrgxR3WsodNzdGFlPqbdsAeEKJHO5xpZS3V1NcrLy9Hc3IysrCxUVFRgzJgxUd9XVVWF73znO/jHP/6BkSNHdttv9uzZmDNnTpf2yy+/HOnp6XGN3ShVVVU9jjEZnPS522eHkz53+9548x8YevYIy3wA8P57Wyx1fvjBO0m9hsnus8Nppa+1tRWrVq2Cz+dDTk6OJc5kJtH1KJCaNanlvk1vYOSwYm3xqndl4ZP9GRBR3fSoAjASSgmyMv040uQN69tdeySMx2h3molhtS++cfT8PdU/b30+YzESnzNW+5ySM1b7nJIzVvvMjuP0gc0458wjPfarqvsouX82JbHPVD0qNtPS0iI7d+6ULVu2yPTp0+Xkk0+WmpqaqO/7yU9+Iuecc07Ufs3NzeLz+UKvTz/9VACIz+fTMXxDjB071jKXXU763O2zw0mfu33njxojm7YdtfRltTPZ1zDZfXY4rfT5fD7L65lkJtH1qEhq1qSW+y74rsjm1dpe86btEI8KSPt9ju0v1X6vz9f/HiuAiEcFZPyoA136dtceHqPnvl3bx5qOYbUvvnH0/D3VP299PmMxEp8zbsxRHWvoxhzVsYZOz9F503ZEvdYm/c+mJPaZqUc9id8L7ZlevXrhrLPOwrnnnou5c+eitLQUjz/+eI/vOXr0KJYsWYLbbrstavzevXsjJycn7EUIIYQQQkiQRNejAGtSNzL5mr0oLWqARwnS0wLwKEFpYQNKvm5TSuBRguFFDVg8s6ZL3+7aO8aI1rdze9BpJobVvnjGEe17qnveOn1GYliRM27MUR1r6MYc1bGGTs/R4EnahDjmmY9BAoFA2PNwIrFs2TK0tLTg3/7t3ywaFSGEEEIISRVYjxIAyMwIYNOiqi6ntwLAwsp8zF/ajKkTa0MnukbqGy2Gkb4d2zs6zcSw2hfrOIx8T3XOW7fPKTnjxhzVsYZuzFEda+j0HCUEsHnzccaMGbjiiitw2mmnoaGhARUVFVi/fj1Wr14NAJg0aRLy8vIwd+7csPc988wzuPrqq3HSSSfZMWxCCCGEEJIksB4lPZGZEYh4WMK0G/bgtS1Hwr7WXd+eYhjtG2zv7HSyL5ZxGP2eOtnnlJxxY47qWEM35qiONXRyjhIC2Lz5ePDgQUyaNAn79+9Hbm4uSkpKsHr1alxyySUAgD179sDjCf9keG1tLd544w28+uqrdgyZEEIIIYQkEaxHCQA0NXsi3rETqR1ov7unelcWHq04rce+0WIY6duxvaPTTAyrfbGOw8j3VOe8dfuckjNuzFEda+jGHNWxhk7PUUIAABY8g9JR2PGAdj5knz6n++xw0uduHw+c0Q997nc69QHfxJmkQk3qlgNnGjeukbJin3hUQNLT/OJRASkr9smhteu6tJcW+qS0qL1Nqat67GskRrS+nduDTjMxrPbFM45o31Pd89bpc0rOuDFHdayhG3NUxxo6PUcbN67hgTNJ7DNTyzjumY+EEEJIJCQQQNVz7+CrvYfRL/8ElE0oQXpGut3DIoQQ4nIWVuZjW112+1mtbQoAsK0uG7c+MKxL+/ad2QAAgQKgIFDd9jUSI1rfzu1Bp5kYVvviGUe076nueev0OSVn3JijOtbQjTmqYw2dnqMLK/P5UWwCwIEHzhBCCCGdaW1uxadbP8O6NzZAeRXEL6h+6X1MevY6bkASQgiJi937+sDrldAvzADg9UrEdvX1f4ogal+nxHDjmDlvzpvzTp55EwIAnuhdCCGEEHvZumw7jh1pgYgg0BaAiOBg7RfYumy73UMjhBDicgryGuH3q7A2v19FbBcJ/+W6p75OieHGMXPenDfnnTzzJgTg5iMhhBAX8NXew8f/pPo1yqva2wkhhJA4mHzNXpQWNcCjBOlpAXiUYHhRAxbPrOnSXlrYgJKv25SSHvsaiRGtb+f2oNNMDKt98Ywj2vdU97x1+pySM27MUR1r6MYc1bGGTs/R4EE0hPBj14QQQhxFa3Mrti7bHvZsx375J3T5c6r4pb09ynv5sWxCCCE9kZkRwKZFVRFPaY3UDrQ/J3L+0mZMnVjbY99oMYz07dje0WkmhtW+WMdh5Huqc966fU7JGTfmqI41dGOO6lhDp+coIQA3HwkhhDiI1uZW/PnmJThY+0XYsx2vf+pa9FrYG+qoCrUPGNIfZRNKor6Xz4UkhBASpKnZw1+OCSGEEKtJ+NnbDsPMUeC6sPpodTuc9LnbZ4eTPnf7zh81RjZtO6r99eg9r8tV6gG5EveHXlepB+TRe16X8y64XB6953X51XUr5NF7Xpf1/zhs+L2xjCXZ1zDZfXY4rfTZUc8QvaRCTWq574Lvimxe3e2rceMaKSv2iUcFJD3NLx4VkLJinxxau85we2mhT0qL2tuUuiruGGbHEXSaiWG1L55xRPue6p63Tp9TcsaNOapjDd2YozrW0Ok52rhxTY/XZdm8Ovl/NiWxz0wtwzsfCSGEOIav9h5uv2ux7fhHrIPPdlQeD0bedG5M7yWEEEIWVuZjW102AqJCp7Ruq8vGrQ8MM9y+fWc2AECgACgIVFwxzI4j6DQTw2pfPOOI9j3VPW+dPqfkjBtzVMcaujFHdayh03N0YWU+pt2wB4TwwBlCCCGOoV/+CRB/9Gc76n4vIYSQ5Gf3vj7wesN/Tni9YqpdqS7nnzk+hhvHzHlz3px38sybEICbj4QQQhxE2YQSDCjuD6UUPGkeKKW6PNsxEe8lhBCS/BTkNcLvD//t2O9XptpFupx/5vgYbhwz5815c97JM29CAG4+EkIIcRDpGemY9Ox1GH33KJRdW4LRd4/CpD8ZOzAmnvcSQghJfiZfsxelRQ3wKEF6WgAeJRhe1IDFM2sMt5cWNqDk6zalJO4YZscRdJqJYbUvnnFE+57qnrdOn1Nyxo05qmMN3ZijOtbQ6TkaPAWbED7zkRBCiKNIz0jv8dmOiXovIYSQ5CYzI4BNi6oinnZtph1of37k/KXNmDqxNq4YZsfR0WkmhtW+WMdh5Huqc966fU7JGTfmqI41dGOO6lhDp+coIQA3HwkhhBBCCCFJSFOzJ+Ivx4QQQqwj0rWYm5IpiAWnbzsKM0eB68Lqo9XtcNLnbp8dTvrc7Tt/1BjZtO2opS+rncm+hsnus8Nppc+OeoboJRVqUst9F3xXZPNqkc2rpXHjGikr9olHBSQ9zS8eFZDSQp+UFoW3lRX75NDadV36dtfeMYZSV8Udw+w4gk4zMaz2xTOOaN9T3fPW6XNKzrgxR3WsoRtzVMcaujFHy4p90rhxTeh6nfQ/m5LYZ6aW4Z2PhBBCCCGEkKRiYWU+ttVlIyAKgbb2gxG278wGAAiOt22ry8atDwzr0re79o4xAAWBiiuG2XEEnWZiWO2LZxzRvqe6563T55SccWOO6lhDN+aojjV0Y45uq8vGwsp8TLthD0jqwANnCCGEEEIIIUnF7n194PWGH72qVPurI16vROzbXbsbY7hxzJw35815J/+8SWph6+bjggULUFJSgpycHOTk5KC8vByvvPJKj+85fPgwpkyZgoEDB6J3794oKirCypUrLRoxIYQQQghJJliPJicFeY3w+8N/ExZpf3XE71cR+3bX7sYYbhwz5815c97JP2+SWti6+Zifn4+HH34Y77zzDrZs2YIf/OAHGD9+PGpqaiL2P3bsGC655BJ8/PHHWL58OWpra/H0008jLy/P4pETQgghhJBkgPVocjL5mr0oLWqARwnS0wLwKEFpYQNKOrUNL2rA4pk1Xfp2194xhlISdwyz4wg6zcSw2hfPOKJ9T3XPW6fPKTnjxhzVsYZuzFEda+jGHB1e1MADwFIQW5/5OHbs2LB/P/jgg1iwYAHefvttDBs2rEv/xYsX48svv8Sbb76J9PR0AMAZZ5xhxVAJIYQQQkgSwno0OcnMCGDToqqIp11HOnU1Ut9oMeYvbcbUibVxxTA7jo5OMzGs9sU6DiPfU53z1u1zSs64MUd1rKEbc1THGroxR3naderhmANn/H4/li1bhqNHj6K8vDxinxUrVqC8vBxTpkzB//zP/6B///644YYb8Itf/AJerzfie1paWtDS0hL6d319fULGTwghhBBC3E2i6lGANakdZGYEIh5oEKmtu749xXhty5Gwr8USw+w4Ojud7ItlHEa/p072OSVn3JijOtbQjTmqYw3dmKMktVAinT+Zby3V1dUoLy9Hc3MzsrKyUFFRgTFjxkTsO2TIEHz88ce48cYbcccdd+DDDz/EHXfcgalTp2LWrFkR3zN79mzMmTOnS/vll18e+mt1oqmqqsLIkSMtcdnlpM/dPjuc9NHndCd97vbZ4bTS19railWrVsHn8yEnJ8cSZzKT6HoUSM2atGrTGxg5rDjhHn8A+GR/Jnbvq0ZB3jk4fWATvJ7j7Uebveib4cfpA5sAdG3rrm+0GEZ8usfR0WkmhtW+WMehew2t9jklZ9yYozrW0I05qmMN3Zij3g4PAKyq+yhp67Vk95mqR8VmWlpaZOfOnbJlyxaZPn26nHzyyVJTUxOxb2FhoQwePFja2tpCbb///e/l1FNP7TZ+c3Oz+Hy+0OvTTz8VAOLz+bTPpTvGjh1rmcsuJ33u9tnhpI8+pzvpc7fPDqeVPp/PZ3k9k8wkuh4VSc2adOwF3xXZvDqhr8aNa6Ss2CceFRClrhKPCkhZsU8OrV0Xak9P84tHBaS00CelReFt3fU1EiOaLxHjCDrNxLDaF884dK6h1T6n5Iwbc1THGroxR3WsoRtztKzYJ40b14Su48lcryW7z0w9avvmY2dGjx4tP/nJTyJ+7cILL5TRo0eHta1cuVIASEtLi6H4dhTr/IWLPqf77HDSR5/TnfS522eH06nFHjFPoutRkdSoSa3YfJw3bYd4VODrc1bHCiDiUQEZP+pAh/b2l0JAFMLbuutrLEbPvsSMY6zpGFb74huHvjW02ueUnHFjjupYQzfmqI41dGOOelRA5k3bwc3HJPCZqWVsPe06EoFAIOx5OB05//zz8eGHHyIQOP5w0rq6OgwcOBC9evWyaoiEEEIIISSJYT3qHnbv6wOvV8LavF6J2K5U+8tI32SK4cYxc96cN+ed/PMmqYWtm48zZszA66+/jo8//hjV1dWYMWMG1q9fjxtvvBEAMGnSJMyYMSPU//bbb8eXX36JO++8E3V1dXj55Zfx0EMPYcqUKXZNgRBCCCGEuBjWo+6mIK8Rfn/4b7x+v4rYHrzvxkjfZIrhxjFz3pw355388yapha2bjwcPHsSkSZNQXFyM0aNHY/PmzVi9ejUuueQSAMCePXuwf//+UP/Bgwdj9erV2Lx5M0pKSjB16lTceeedmD59ul1TIIQQQgghLob1qLuZfM1elBY1wKMESgk8SjC8qAGLZ9aE2tPTAvAoQWlhA0o6tXXX10iMaL5EjCPoNBPDal8849C5hlb7nJIzbsxRHWvoxhzVsYZuzNHhRQ2YfM1eu398EItJs1P+zDPP9Pj19evXd2krLy/H22+/naAREUIIIYSQVIL1qLvJzAhg06IqLKzMx/ylzZg6sRaTr9kb1r57Xx8U5DWGftnt3NZd32gxjPh0j6Oj00wMq32xjkP3Glrtc0rOuDFHdayhG3NUxxq6MUczM44/uoSkBrZuPhJCCCGEEEKIUZqaPRF/4SWEEEKIg7HgABxHkQonC9rhpM/dPjuc9NHndCd97vbZ4XTq6YLEmaRCTar7tOvGjWukrNgnHhWQ9DS/eFRASgt9UlrU3qbUVeJRASkr9smhtet67Bts666vkRjRfIkYR9BpJobVvnjGoXMNrfY5JWfcmKM61tCNOapjDd2Yo2XFPmncuIanXSeBz0wtw81HC+AvXPQ53WeHkz76nO6kz90+O5xOLfaIM0mFmlT35uO8aTvEowJy/GgDEYWAKATbxgog4lEBGT/qQJS+0mNfYzF69iVmHGNNx7DaF9849K2h1T6n5Iwbc1THGroxR3WsoRtz1KMCMm/aDm4+JoHPTC1j64EzhBBCCCGEEGKE3fv6wOuVsDal2l8d8Xol7r7JFMONY+a8OW/OO/nnTVILbj4SQgghhBBCHE9BXiP8/vDfboP30nTE71dx902mGG4cM+fNeXPeyT9vklpw85EQQgghhBDieCZfsxelRQ3wKEF6WgAeJSgtbEDJ121KCTxKMLyoAYtn1vTYN9jWXV8jMaL5EjGOoNNMDKt98YxD5xpa7XNKzrgxR3WsoRtzVMcaujFHhxc18LCwFISnXRNCCCGEEEIcT2ZGAJsWVUU87XphZT7mL23G1Im1mHzN3qh9O7Z111eHT/c4OjrNxLDaF+s4dK+h1T6n5Iwbc1THGroxR1P5ukZSCyXS+ebY5Ka+vh65ubnw+XzIycmxxDlu3DisWLHCEpddTvrc7bPDSR99TnfS526fHU4rfXbUM0QvqVCTjruwHCvmzbHOd9espPbZ4aSPPqc76XO3DwDG3f9E0tZrye4zU8vwzkdCCCGEEEKIo2hq9kS8UyZSO9B+t031riw8WnGaob5G4urw6R5HR6eZGFb7Yh2H7jW02ueUnHFjjupYQzfmaCpf10iKkfCztx2GmaPAdWH10ep2OOlzt88OJ330Od1Jn7t9djit9NlRzxC9pEJNOvaC74psXm361bhxjZQV+8SjApKe5hePCkhZsU8OrV3Xpb200CelRe1tSl1luG+0uDp8iRhH0GkmhtW+eMahcw2t9jklZ9yYozrW0I05msrXtcaNa0LX/GSu15LdZ6aW4eajBfAXLvqc7rPDSR99TnfS526fHU6nFnvEmaRCTRrr5uO8aTvEowJy/PxUEY8KyPhRB7q0KwREIdg21kTfnuPq8CVmHGNNx7DaF9849K2h1T6n5Iwbc1THGroxR1P5ujZv2g5uPiaBz0wtw9OuCSGEEEIIIY5h974+8HolrM3rlYjtSrW/dPdNphhuHDPnzXlz3sk/b5JacPOREEIIIYQQ4hgK8hrh94f/Fuv3q4jtwXtpdPdNphhuHDPnzXlz3sk/b5JacPOREEIIIYQQ4hgmX7MXpUUN8ChBeloAHiUYXtSAxTNrurSXFjag5Os2pcRw32hxdfgSMY6g00wMq33xjEPnGlrtc0rOuDFHdayhG3M0la9rwQNqSOrA064JIYQQQgghjiEzI4BNi6oino4aqR1oP2F1/tJmTJ1Ya6ivkbg6fLrH0dFpJobVvljHoXsNrfY5JWfcmKM61tCNOZrK1zWSWnDzkRBCCCGEEGILTc0e/lJKCCGEJDsWHIDTLX/4wx/knHPOkezsbMnOzpbvfve7snLlSkPvff755wWAjB8/3pQzFU4WtMNJn7t9djjpo8/pTvrc7bPD6dTTBUnP2FGPiqRGTRrttOvGjWukrNgnHhWQ9DS/eFRAyop9cmjtOsPtpYU+KS1qb1PqKsN9rfAlYhxBp5kYVvviGYfONbTa55SccWOO6lhDN+ZoKl/XGjeu4WnXSeAzU8vYuvm4YsUKefnll6Wurk5qa2vl3nvvlfT0dHnvvfd6fN9HH30keXl5csEFF3Dz0SFO+tzts8NJH31Od9Lnbp8dTqcWe6Rn7KhHRVKjJo22+Thv2g7xqIAcP6pAxKMCMn7UAcPtCgFRCLaNNdE38b7EjGOs6RhW++Ibh741tNrnlJxxY47qWEM35mgqX9fmTdvBzcck8JmpZWw9cGbs2LEYM2YMCgsLUVRUhAcffBBZWVl4++23u32P3+/HjTfeiDlz5qCgoMDC0RJCCCGEkGSD9ah97N7XB16vhLV5vWKqXan2l+6+yRTDjWPmvDlvzjv5501SC8ecdu33+7FkyRIcPXoU5eXl3fa7//77MWDAANx2222G4ra0tKC+vj7sRQghhBBCSGcSVY8CrEkjUZDXCL8//LdVv1+Zag/eS6O7bzLFcOOYOW/Om/NO/nmT1ML2A2eqq6tRXl6O5uZmZGVl4YUXXsDQoUMj9n3jjTfwzDPP4N133zUcf+7cuZgzZ06X9okTJyI9PT3WYZuiqqoK48aNs8Rll5M+d/vscNJHn9Od9LnbZ4fTSl9ra6slnlQh0fUo4JCadNMbGHdh95uq2n01tRh316xuv+4PAFl9+qH+aBqUEogoZPdpQ8uxw8jqc4Kx9r5tAID6o2kAqgCMM9TXEl8CxhFymolhtS+OcWhdQ6t9TskZN+aojjV0Y46m8HVtbdVXeG1Lh58VVv5sqvsoaetDq31m6lEl0nl/2lqOHTuGPXv2wOfzYfny5Vi0aBE2bNjQpeBraGhASUkJ/vCHP+CKK64AANxyyy04fPgwXnzxxW7jt7S0oKWlJfTv+vp6DB48GD6fDzk5OQmZU2fGjRuHFStWWOKyy0mfu312OOmjz+lO+tzts8Nppa++vh65ubmW1jPJTKLrUcAhNemF5Vgxr+sGaMJ8d82K6uvutGsz7QCwsDIf85f+B6ZO/C9Dfa3y6R5HR6eZGFb7Yh2H7jW02ueUnHFjjupYQzfmaCpf18z8rNDJuPufSNr60GqfmXrU9s3Hzlx88cU488wz8dRTT4W1v/vuuygrK4PX6w21BQLtCevxeFBbW4szzzwzanw7inX+wkWf0312OOmjz+lO+tzts8Pp1GKPmCfR9ShgU03qwM1H+pztpI8+pzvpc7fPDic3H/Vhppax/WPXnQkEAmF/FQ4yZMgQVFdXh7Xdd999aGhowOOPP47BgwdbNURCCCGEEJLEsB5NDIm+Y6d6VxYerTjNsjuEjPh0j6Oj00wMq32xjkP3Glrtc0rOuDFHdayhG3OU17WuTpKkJPjk7R6ZPn26bNiwQT766CPZvn27TJ8+XZRS8uqrr4qIyE033STTp0/v9v0333yzjB8/3pTTzFHgurD6aHU7nPS522eHkz76nO6kz90+O5xW+uyoZ5IVO+pREZtq0gu+K7J5tWWvjr7GjWukrNgnHhWQ9DS/eFRASgt9UloU3lZW7JNDa9d16dtde8cYSl1luK8VvkSMI+g0E8NqXzzj0LmGVvuckjNuzFEda+jGHOV1rauzceOaxP9sSuL60GqfmVrG1jsfDx48iEmTJmH//v3Izc1FSUkJVq9ejUsuuQQAsGfPHng8jjmQmxBCCCGEJBmsR61hYWU+ttVlIyAKgbb2k0+378wGAAiOt22ry8atDwzr0re79o4xAAWBMtTXCl8ixhF0molhtS+ecehcQ6t9TskZN+aojjV0Y47yutb1e7qwMh/TbtgDknzYuvn4zDPP9Pj19evX9/j1P/3pT/oGQwghhBBCUg7Wo9awe18feL0S+uUTANTX/9nxCfRer0Ts2127mRhW+5wSw41j5rw5b8479eYdbCfJCf+MSwghhBBCCEkoBXmN8PtVWJtI+C+qAOD3q4h9u2s3E8Nqn1NiuHHMnDfnzXmn3ryD7SQ54eYjIYQQQgghJKFMvmYvSosa4FGC9LQAPEpQWtiAkk5tw4sasHhmTZe+3bV3jKGUGO5rhS8R4wg6zcSw2hfPOHSuodU+p+SMG3NUxxq6MUd5XevqDB5cQ5IPx512TQghhBBCCEkuMjMC2LSoyvDpqJH6Rosxf2kzpk6sNdTXKp/ucXR0molhtS/WceheQ6t9TskZN+aojjV0Y47yutbVSZIT3vlICCGEEEII0UZTswePVpyG6l1ZeLTiNDQ181cOQgghJKWx4PRtR2HmKHBdWH20uh1O+tzts8NJH31Od9Lnbp8dTit9dtQzRC+21KQXfFdk8+qEvho3rpGyYp94VECUuko8KiBlxT45tHZdqD09zS8eFZDSQp+UFoW3ddfXSAyn+RIxjqDTTAyrffGMQ+caWu1zSs64MUd1rKEbc5TXta7Oxo1rEv5zKpnrQ6t9ZmoZfuyaEEIIIYQQooWFlfnYVpeNgCgACgKFbXXZuPWBYaH24Omm23dmAwAEx9u662skhtN8iRhH0GkmhtW+eMahcw2t9jklZ9yYozrW0I05yuta1+/pwsp8TLthD0jywc9AEEIIIYQQQrSwe18feL3hR556vRKxXan2l5G+OmJY7XNKDDeOmfPmvDnv1Jt3sJ0kJ9x8JIQQQgghhGihIK8Rfn/4b6B+v4rYLtL+MtJXRwyrfU6J4cYxc96cN+edevMOtpPkhJuPhBBCCCGEEC1MvmYvSosa4FECpQQeJRhe1IDFM2tC7elpAXiUoLSwASWd2rrraySG03yJGEfQaSaG1b54xqFzDa32OSVn3JijOtbQjTnK61pXZ/DUbJJ88JmPhBBCCCGEEC1kZgSwaVEVFlbmY/7SZkydWIvJ1+wNa9+9rw8K8hpDv2R2buuub7QYTvTpHkdHp5kYVvtiHYfuNbTa55SccWOO6lhDN+Yor2tdnSQ54eYjIYQQQgghxDRNzZ6Iv1ASQgghhIRhwenbjsLMUeC6sPpodTuc9LnbZ4eTPvqc7qTP3T47nFb67KhniF5sqUkv+K7I5tVaXo0b10hZsU88KiDpaX7xqICUFfvk0Np1oXalrorYHuxfWuiT0qKeY0Rr7xjDab5EjCPoNBPDal8849C5hlb7nJIzbsxRHWvoxhzlda2rs3HjGm0/p7p7JXN9aLXPTC3DzUcL4C9c9DndZ4eTPvqc7qTP3T47nE4t9ogzcfvm47xpO8SjAnL8mAERjwrI+FEHOrSP7aa9/aUQEIVoMXpuD4/hLF9ixjHWdAyrffGNQ98aWu1zSs64MUd1rKEbc5TXta7OedN2cPPRRT4ztQwPnCGEEEIIIYSYYve+PvB6JazN6xVT7Uq1v6yKYbXPKTHcOGbOm/PmvFNv3sF2kpxw85EQQgghhBBiioK8Rvj94b9p+v3KVHvwPhirYljtc0oMN46Z8+a8Oe/Um3ewnSQn3HwkhBBCCCGEmGLyNXtRWtQAjxKkpwXgUYLhRQ1YPLMm1K6URGwP9i8tbEBJlBjR2jvGcJovEeMIOs3EsNoXzzh0rqHVPqfkjBtzVMcaujFHeV3r6gyemk2SD1tPu16wYAEWLFiAjz/+GAAwbNgw/OpXv8IVV1wRsX9lZSUeeughfPjhh2htbUVhYSHuvvtu3HTTTRaOmhBCCCGEJAusR2MjMyOATYuqIp52HWyfv7QZUyfWdmnv2B9AjzGMtAdjONGnexwdnWZiWO2LdRy619Bqn1Nyxo05qmMN3ZijvK51dZLkRIl0vjnWOv7+97/D6/WisLAQIoJnn30Wv/vd77B161YMGzasS//169fjq6++wpAhQ9CrVy+89NJLuPvuu/Hyyy/jsssuM+Ssr69Hbm4ufD4fcnJydE8pIuPGjcOKFSsscdnlpM/dPjuc9NHndCd97vbZ4bTSZ0c9k6zYUY8CNtWkF5Zjxbw5lrgAYNxds+hzuZM++pzupM/dPjuc4+5/ImnrQ6t9ZmoZW+98HDt2bNi/H3zwQSxYsABvv/12xGLvoosuCvv3nXfeiWeffRZvvPGGqWKPEEIIIYQQgPVoZ5qaPRHvUInUDkS+yyXYt3pXFh6tOC2uGGbG4USf7nF0dJqJYbXPKTnjxhzVOW835aiONXRjjvK61tVJkpQEn7xtmLa2Nnn++eelV69eUlNTE7V/IBCQtWvXSp8+feTVV1/ttl9zc7P4fL7Q69NPPzV8FLgurD5a3Q4nfe722eGkjz6nO+lzt88Op5U+n89neT2TCiSqHhVxSE16wXdFNq/u9tW4cY2UFfvEowKSnuYXjwpIWbFPDq1d16W9tNAnpUU991XqqrhjmBmH03yJGEfQaSaG1T6n5Iwbc1T3vN2SozrW0I05yutaV2fjxjU9/pzS8Urm+tBqn5l61NaPXQNAdXU1ysvL0dzcjKysLFRUVGDMmDHd9vf5fMjLy0NLSwu8Xi/+8Ic/4NZbb+22/+zZszFnTtdbeC+//HKkp6drmUM0qqqqMHLkSEtcdjnpc7fPDid99DndSZ+7fXY4rfS1trZi1apV/Ni1JhJdjwI91KTlI5CeZs2HkapqajFyWHG3X9+9LxM1u7O6tJ96UgsOHOptyBHetwrAyDhjmBmH83z6x3HcaSaG1T6n5IzVPqfkjNU+p+SM1T6n5IzVvkTmzLCCIyjIazIUO1aq6j5K2vrQap+ZetTWj10DQHFxMd599134fD4sX74cN998MzZs2IChQ4dG7J+dnY13330XR44cwbp163DXXXehoKCgy0dggsyYMQN33XVX6N/19fUYPHgwli5dymc+0kefjU766HO6kz53++xw2vGMHaKHRNejQA816UP3Iierr+4pRSTac7X+43dDULcnH61tnlBbeloA/fsdxSFf37B2j2q/fyEgqoe+4wCsiDOGmXE4y5eYcbQ7zcSw2ueUnHFjjuqftztyVMcaujFHeV3r+j39/oi9+K//9wESCZ/5qA8z9agnepfE0qtXL5x11lk499xzMXfuXJSWluLxxx/vtr/H48FZZ52F4cOH4+6778a1116LuXPndtu/d+/eyMnJCXsRQgghhBASJNH1KOCOmrQgrxF+vwpr8/tVxHaR9peRvk6J4cYxc96cN+fNeTvJl8gYwXaSnNi++diZQCCAlpaWhPUnhBBCCCGkJ1K1Hp18zV6UFjXAowTpaQF4lGB4UQMWz6zp0l5a2ICSKH2VkrhjmBmH03yJGEfQaSaG1T6n5Iwbc1T3vN2SozrW0I05yutaV2fw4BqSfNj6sesZM2bgiiuuwGmnnYaGhgZUVFRg/fr1WL16NQBg0qRJyMvLC/0lee7cuRgxYgTOPPNMtLS0YOXKlXjuueewYMECO6dBCCGEEEJcCuvR42RmBLBpUVXEU0kjtQORTzYN9p2/tBlTJ9bGFcPMOJzo0z2Ojk4zMaz2OSVn3JijOuftphzVsYZuzFFe17o6SXJi6+bjwYMHMWnSJOzfvx+5ubkoKSnB6tWrcckllwAA9uzZA4/n+M2ZR48exR133IG9e/ciMzMTQ4YMwV/+8hdMnDjRrikQQgghhBAXk6r1aFOzJ+Ivg4QQQggh2kn42dsOw8xR4Lqw+mh1O5z0udtnh5M++pzupM/dPjucVvrsqGeIXkJr+FqlyObVlrzGXvBdkc2rpXHjGikr9olHBSQ9zS8eFZCyYp8cWrvOcHtpoU9Ki3ruq9RVcccwMw6n+RIxjqDTTAyrfU7JGTfmqO55uyVHdayhG3OU17WuzsaNaxL/szCJ60OrfWbqUdtPuyaEEEIIIYRYx8LKfGyry0ZAFAJt7Q/831aXjVsfGGa4ffvObACAoPu+gIJAxRXDzDic5kvEOIJOMzGs9jklZ9yYo7rn7ZYc1bGGbsxRXte6fk8XVuZj2g17QJIPxx04QwghhBBCCEkcu/f1gdcbfiyp1yum2pVqf7kphhvHzHlz3pw35+0kXyJjBNtJcsLNR0IIIYQQQlKIgrxG+P3hvyX6/cpUu0j7y00x3Dhmzpvz5rw5byf5Ehkj2E6SE24+EkIIIYQQkkJMvmYvSosa4FGC9LQAPEowvKgBi2fWGG4vLWxASZS+SkncMcyMw2m+RIwj6DQTw2qfU3LGjTmqe95uyVEda+jGHOV1raszeGo2ST74zEdCCCGEEEJSiMyMADYtqop42rWZdgA99p2/tBlTJ9bGFcPMOJzo0z2Ojk4zMaz2OSVn3JijOuftphzVsYZuzFFe17o6SXKiRDrfHJvc1NfXIzc3Fz6fDzk5OZY4x40bhxUrVljisstJn7t9djjpo8/pTvrc7bPDaaXPjnqG6CW0hq9VIierryXOcXfNwop5cyxx0ZccTvroc7qTPnf77HCOu/+JpK0PrfaZqUd55yMhhBBCCCFJTFOzBwsr81G9KwuPVpzW4x0qwb5G2qPF6OiLNYaZcTjRp3scsa6h1T6n5Iwbc1TnvN2UozrW0I05yutaVydJUiTF8Pl8AkB8Pp9lzrFjx1rmsstJn7t9djjpo8/pTvrc7bPDaaXPjnqG6CW0hq9VimxenbBX48Y1UlbsE48KiFJXiUcFpLTQJ6VF7W3paX7xqICUFfvk0Np1ob7R2o3ECPriiWFmHE7zJWIcsayh1T6n5Iwbc1T3vN2SozrW0I05yutaV2fjxjUJ/Zkom1cndX1otc9MPcrNRwvgL1z0Od1nh5M++pzupM/dPjucTi32iDOxavNx3rQd4lGBr88hHSuAiEJAFIJt7S+PCsj4UQc69O253ViMsRpimBmHs3yJGYf5NbTa55SccWOO6p+3O3JUxxq6MUd5XevqnDdtBzcfXeQzU4/ytGtCCCGEEEKSlN37+sDrlbA2pdpfHfF6JWLf7trdGMONY+a8OW/Om/N2ki+RMYLtJDnh5iMhhBBCCCFJSkFeI/z+8N8Ig/efdMTvVxH7dtfuxhhuHDPnzXlz3py3k3yJjBFsJ8kJNx8JIYQQQghJUiZfsxelRQ3wKIFSAo8SlBY2oOTrtvS0ADxKMLyoAYtn1oT6Rms3EiPoiyeGmXE4zZeIccSyhlb7nJIzbsxR3fN2S47qWEM35iiva12dwYNrSPLB064JIYQQQghJUjIzAti0qAoLK/Mxf2kzpk6s7fFU0mBfI+3RYnT0xRrDzDic6NM9jljX0GqfU3LGjTmqc95uylEda+jGHOV1rauTJCfcfCSEEEIIISQJaGr2RPwFjxBCCCHEViw4AMdR8LRr+uhzhpM++pzupM/dPjucTj1dkDgT3addN25cI2XFPvGogKSn+cWjAlJW7JNDa9eF2pW6SjwqIKWFPikt6rlvtHYjMYK+eGKYGYfTfIkYRyxraLXPKTnjxhzVPW+35KiONXRjjvK61tXZuHENT7t2kc9MPcrNRwvgL1z0Od1nh5M++pzupM/dPjucTi32iDPRvfk4b9oO8aiAHH/sv4hHBWT8qAMd2scKIKIQEIVofXtuNxZjrIYYZsbhLF9ixmF+Da32OSVn3Jij+uftjhzVsYZuzFFe17o6503bwc1HF/nM1KO2HjizYMEClJSUICcnBzk5OSgvL8crr7zSbf+nn34aF1xwAfr164d+/frh4osvRlVVlYUjJoQQQgghyUSy1KO79/WB1ythbV6vRGxXqv1lpG8yxXDjmDlvzpvz5ryd5EtkjGA7SU5s3XzMz8/Hww8/jHfeeQdbtmzBD37wA4wfPx41NTUR+69fvx7XX389XnvtNbz11lsYPHgwLr30Uuzbt8/ikRNCCCGEkGQgWerRgrxG+P3hv/n5/Spie/D+EyN9kymGG8fMeXPenDfn7SRfImME20lyYuvm49ixYzFmzBgUFhaiqKgIDz74ILKysvD2229H7P/f//3fuOOOOzB8+HAMGTIEixYtQiAQwLp16yweOSGEEEIISQaSpR6dfM1elBY1wKME6WkBeJRgeFEDFs+sCbUrJfAoQWlhA0qi9I3WbiRG0BdPDDPjcJovEeOIZQ2t9jklZ9yYo7rn7ZYc1bGGbsxRXte6OoOnZpPkwzGnXfv9fixbtgxHjx5FeXm5ofc0NjaitbUVJ554Yrd9Wlpa0NLSEvp3fX193GMlhBBCCCHJR6LqUSDxNWlmRgCbFlVFPO062D5/aTOmTqwN/XLXU18j7dFidPTFGsPMOJzo0z2OWNfQap9TcsaNOapz3m7KUR1r6MYc5XWtq5MkJ0qk882x1lJdXY3y8nI0NzcjKysLFRUVGDNmjKH33nHHHVi9ejVqamqQkZERsc/s2bMxZ86cLu2XX3450tPT4xq7UaqqqjBy5EhLXHY56XO3zw4nffQ53Umfu312OK30tba2YtWqVfD5fMjJybHEmcwkuh4FeqhJy0cgPc2a+wGqamoxclixJS76ksNJH31Od9Lnbp8dzqq6j5K2PrTaZ6Yetf3Ox+LiYrz77rvw+XxYvnw5br75ZmzYsAFDhw7t8X0PP/wwlixZgvXr1/dY6M2YMQN33XVX6N/19fUYPHgwli5dalmxPm7cOKxYscISl11O+tzts8NJH31Od9Lnbp8dTit99fX1yM3NtcSVCiS6HgV6qEkfuhc5WX1Nj7mp2WP4rpNg3+pd/4Hvj/gvQ32NtJvxxRrDzDic6NM9jljX0GqfU3LGjTmqc95uylEda+jGHOV1rasz0Yy7/4mkrQ+t9pmqRxN+9rZJRo8eLT/5yU967PO73/1OcnNzZfPmzabjmzkKXBdWH61uh5M+d/vscNJHn9Od9LnbZ4fTSp8d9Uwqkeh6VKTDGr5WKbJ5talX48Y1UlbsE48KSHqaXzwqIKWFPiktCm8rK/bJobXrQn2Vuspw32jtZnzxxDAzDqf5EjGOWNbQap9TcsaNOap73m7JUR1r6MYc5XWtq7Nx4xrTPxPNvpK5PrTaZ6Yeddzm4/e//325+eabu/36b37zG8nJyZG33norpvjcfKSPPmc46aPP6U763O2zw+nUYo+YJ9H1qEh8m4/zpu0QjwrI8fNFRRQCohDe5lEBGT/qQIe+Y0307bndjC++GGbG4SxfYsZhfg2t9jklZ9yYo/rn7Y4c1bGGbsxRXte6OudN28HNRxf5zNSjtn7sesaMGbjiiitw2mmnoaGhARUVFVi/fj1Wr14NAJg0aRLy8vIwd+5cAMBvfvMb/OpXv0JFRQXOOOMMHDhwAACQlZWFrKws2+ZBCCGEEELciRvr0d37+sDrFQTaVKhNff2fIsf7eb0Sd99kiuHGMXPenDfnzXk7yZfIGMF2kpx47JQfPHgQkyZNQnFxMUaPHo3Nmzdj9erVuOSSSwAAe/bswf79+0P9FyxYgGPHjuHaa6/FwIEDQ69HHnnErikQQgghhBAX48Z6tCCvEX6/CmsL3lPSEb9fxd03mWK4ccycN+fNeXPeTvIlMkawnSQntm4+PvPMM/j444/R0tKCgwcPYu3ataFCDwDWr1+PP/3pT6F/f/zxxxCRLq/Zs2dbP3hCCCGEEOJ63FiPTr5mL0qLGuBRgvS0ADxKUFrYgJJObcOLGrB4Zk2or1JiuG+0djO+eGKYGYfTfIkYRyxraLXPKTnjxhzVPW+35KiONXRjjvK61tUZPLiGJB+2n3ZNCCGEEEIIMU5mRgCbFlUZPmk02Hf+0mZMnVhrqK+RdjO+WGOYGYcTfbrHEesaWu1zSs64MUd1zttNOcrrGq9rVp12TeyBm4+EEEIIIYQ4lKZmT8Rf2gghhBBCXEPCjr1xKDztmj76nOGkjz6nO+lzt88Op1NPFyTOxMhp140b10hZsU88KiDpaX7xqICUFfvk0Np1XdpLC31SWtRzX6WuMtxXpy+eGGbG4TRfIsYRyxpa7XNKzrgxR3XP2y05yusar2vB9saNa3jatYt8ZupRbj5aAH/hos/pPjuc9NHndCd97vbZ4XRqsUeciZHNx3nTdohHBeT4o/xFPCog40cd6NKuEBCFaH3HmuirzxdfDDPjcJYvMeMwv4ZW+5ySM27MUf3zdkeO8rrG61qwfd60Hdx8dJHPTD1q64EzhBBCCCGEkMjs3tcHXq+EtXm9ErFdqfaX7r7JFMONY+a8OW/Om/N2ki+RMYLtJDnh5iMhhBBCCCEOpCCvEX5/+G9zfr+K2B68p0R332SK4cYxc96cN+fNeTvJl8gYwXaSnHDzkRBCCCGEEAcy+Zq9KC1qgEcJ0tMC8CjB8KIGLJ5Z06W9tLABJVH6KiWG++r0xRPDzDic5kvEOGJZQ6t9TskZN+ao7nm7JUd5XeN1LdgePDWbJB887ZoQQgghhBAHkpkRwKZFVRFPu47UDqDHvvOXNmPqxFpDfXX7Yo1hZhxO9OkeR6xraLXPKTnjxhzVOW835Siva7yuBdtJcqJEOt8cm9zU19cjNzcXPp8POTk5ljjHjRuHFStWWOKyy0mfu312OOmjz+lO+tzts8Nppc+OeoboJbSGr1UiJ6uvJc5xd83CinlzLHHRlxxO+uhzupM+d/vscI67/4mkrQ+t9pmpR3nnIyGEEEIIITbT1OyJeGeImXYg8l0nwb7Vu7LwaMVphvrq9sUaw8w4nOjTPY5Y19Bqn1Nyxo05qnPebspRXtd4XeOdj0lOws/edhhmjgLXhdVHq9vhpM/dPjuc9NHndCd97vbZ4bTSZ0c9Q/QSWsPXKqVx4xopK/aJRwUkPc0vHhWQsmKfHFq7znB7aaFPSot67qvUVYb76vTFE8PMOJzmS8Q4YllDq31OyRk35qjuebslR3ld43Ut2N64cY3I5tUJfSVzfWi1z0w9ys1HC+AvXPQ53WeHkz76nO6kz90+O5xOLfaIM+m4+Thv2g7xqIAcPy9UxKMCMn7UAcPtCgFRiNZ3rIm++nzxxTAzDmf5EjMO82totc8pOePGHNU/b3fkKK9rvK4F2+dN28HNRxf5zNSjPO2aEEIIIYQQG9m9rw+8Xglr83rFVLtS7S/dfZMphhvHzHlz3pw35+0kXyJjBNtJcsLNR0IIIYQQQmykIK8Rfn/4b21+vzLVHrynRHffZIrhxjFz3pw35815O8mXyBjBdpKccPOREEIIIYQQG5l8zV6UFjXAowTpaQF4lGB4UQMWz6wx3F5a2ICSKH2VEsN9dfriiWFmHE7zJWIcsayh1T6n5Iwbc1T3vN2So7yu8boWbA8eXEOSD552TQghhBBCiI1kZgSwaVFVxNNAzbQDkU8aDfadv7QZUyfWGuqr2xdrDDPjcKJP9zhiXUOrfU7JGTfmqM55uylHeV3jdY2nXSc3tt75uGDBApSUlCAnJwc5OTkoLy/HK6+80uN7li1bhiFDhiAjIwPnnHMOVq5cadFoCSGEEEJIsmF3PfrkssFoauaHkQghhBCSxFhwAE63rFixQl5++WWpq6uT2tpauffeeyU9PV3ee++9iP03bdokXq9Xfvvb38r7778v9913n6Snp0t1dbVhJ0+7po8+Zzjpo8/pTvrc7bPD6dTTBUnP2FGPihxfQ4XDUlrok9Iin3hUQNLT/OJRASkr9smhteukrNhYu5EYSl1luK9OXzwxzIzDab5EjCOWNbTa55SccWOO6p63W3KU1zVe14LtjRvX8LRrF/nM1KO2bj5Gol+/frJo0aKIX/vhD38oV155ZVjbd77zHfnpT39qOD43H+mjzxlO+uhzupM+d/vscDq12CPmSXQ9KnJ8DQGfKAREISDHH9kv4lEBGT/qgHiUsXZjMcaa6KvPF18MM+Nwli8x4zC/hlb7nJIzbsxR/fN2R47yusbrWrB93rQd3Hx0kc9MPeqYz3j4/X4sWbIER48eRXl5ecQ+b731Fi6++OKwtssuuwxvvfVWt3FbWlpQX18f9iKEEEIIIaQziapHgZ5rUqXaXx3xegW79/WB1yuG2s3EsNrnlBhuHDPnzXlz3py3k3yJjBFsJ8mJ7QfOVFdXo7y8HM3NzcjKysILL7yAoUOHRux74MABnHLKKWFtp5xyCg4cONBt/Llz52LOnDld2idOnIj09PT4Bm+QqqoqjBs3zhKXXU763O2zw0kffU530udunx1OK32tra2WeFKFRNejQPc1KTARAelak7a2AV981YLWtt6G2gPhv8N107cKwDiDffX54othZhzO8iVmHObX0GqfU3LGjTmqf97uyFFe13hdCzpfqwHG3d81lk6SuT602meqHrXgTsweaWlpkZ07d8qWLVtk+vTpcvLJJ0tNTU3Evunp6VJRURHW9uSTT8qAAQO6jd/c3Cw+ny/0+vTTTw3fFqoLftSMPqf77HDSR5/TnfS522eH06kfcyHRSXQ9KtJ9TapwWIZHeFbWt7p5VlZ37UZiBJ+rZbUvnhhmxuE0XyLGEcsaWu1zSs64MUd1z9stOcrrWqpf18aKxyPyrW+JNDZq+9HeLclcH1rtM1OP2n7nY69evXDWWWcBAM4991xs3rwZjz/+OJ566qkufU899VR8/vnnYW2ff/45Tj311G7j9+7dG7179+7264QQQgghJLVJdD0KdF+TPnjHTvz8+sMAgIWV+di9rw8K8hox+Zq9yMwIYNOiKsPt0WLMX9qMqRNrDfXV7Ys1hplxONGnexyxrqHVPqfkjBtzVOe83ZSjvK6l8HXtBWDqVGDyZCAzs4cfpMTVOOaZj0ECgQBaWloifq28vBzr1q0La1uzZk23z+QhhBBCCCHELKxHCSGEkMSSmRHAtBv24JxzgGnTuPGY9FhwJ2a3TJ8+XTZs2CAfffSRbN++XaZPny5KKXn11VdFROSmm26S6dOnh/pv2rRJ0tLS5JFHHpEdO3bIrFmzJD09Xaqrqw07edo1ffQ5w0kffU530udunx1Op37MhfSMHfWoyPE1VDgspRE+rlbWzcfVums3EiP4cTqrffHEMDMOp/kSMY5Y1tBqn1Nyxo05qnvebslRXtdS77rWuHENT59OAp+ZetTWzcdbb71VTj/9dOnVq5f0799fRo8eHSr0RERGjRolN998c9h7/vrXv0pRUZH06tVLhg0bJi+//LIpJzcf6aPPGU766HO6kz53++xwOrXYIz1jRz0qcnwNAZ8oBEQhIICEXh4VkPGjDohHGWs3FmOsib76fPHFMDMOZ/kSMw7za2i1zyk548Yc1T9vd+Qor2upd12bN20HNx+TwOeaZz4+88wzPX59/fr1XdomTJiACRMmJGhEhBBCCCEklXBCPapU+/+KHG/zegW79/WB1ysItKmo7WZiWO1zSgw3jpnz5rw5b87bST6dMUhq4bhnPhJCCCGEEJJKBO8H6Yjfr1CQ1wi/XxlqNxPDap9TYrhxzJw35815c95O8umMQVILbj4SQgghhBBiEwqC0sIGlBQ1wKME6WkBeJRgeFEDFs+sQanBdiMxlBLDfXX64olhZhxO8yViHLGsodU+p+SMG3NU97zdkqO8rqXedS14OjZJHWz92DUhhBBCCCGpzIN37MTPrz8MAFhYmY/d+/qgIK8Rk6/Zi8yMADYtqjLcHi3G/KXNmDqx1lBf3b5YY5gZhxN9uscR6xpa7XNKzrgxR3XO2005yuta6l3XSGqhRDrfHJvc1NfXIzc3Fz6fDzk5OZY4x40bhxUrVljisstJn7t9djjpo8/pTvrc7bPDaaXPjnqG6CW0hq9VIierryXOcXfNwop5cyxx0ZccTvroc7qTPnf7AGDc/U8kbb2W7D4z9SjvfCSEEEIIIcQmnlw2uMc7H5uaPYbbo8Wo3pWFRytOM9RXty/WGGbG4USf7nHEuoZW+5ySM27MUZ3zdlOO8rqWetc1kmIk/Oxth2HmKHBdWH20uh1O+tzts8NJH31Od9Lnbp8dTit9dtQzRC/BNVQ4LKWFPikt8olHBSQ9zS8eFZCyYp8cWrtOyoqNtRuJodRVhvvq9MUTw8w4nOZLxDhiWUOrfU7JGTfmqO55uyVHeV1Lveta48Y1IptXi2xendT1WrL7zNSj3Hy0AP7CRZ/TfXY46aPP6U763O2zw+nUYo84k+AaAj5RCIhCQI6fFyriUQEZP+qAeJSxdmMxxproq88XXwwz43CWLzHjML+GVvuckjNuzFH983ZHjvK6lnrXtXnTdnDzMQl8ZupRnnZNCCGEEEKIjSjV/uqI1yvYva8PvF4x1G4mhtU+p8Rw45g5b86b8+a8neTTGYOkFtx8JIQQQgghxEaC94N0xO9XKMhrhN+vDLWbiWG1zykx3Dhmzpvz5rw5byf5dMYgqQU3HwkhhBBCCLEJBUFpYQNKihrgUYL0tAA8SjC8qAGLZ9ag1GC7kRhKieG+On3xxDAzDqf5EjGOWNbQap9TcsaNOap73m7JUV7XUu+6FjyghqQOPO2aEEIIIYQQm3jwjp09nna9aVGV4fZoMeYvbcbUibWG+ur2xRrDzDic6NM9jljX0GqfU3LGjTmqc95uylFe11LvukZSC975SAghhBBCCCGEEEIISQwWHIDjKHjaNX30OcNJH31Od9Lnbp8dTqeeLkicSXANFQ5LaaFPSot84lEBSU/zi0cFpKzYJ4fWrpOyYmPtRmIodZXhvjp98cQwMw6n+RIxjljW0GqfU3LGjTmqe95uyVFe11Lvuta4cQ1Pu04Cn5l6lJuPFsBfuOhzus8OJ330Od1Jn7t9djidWuwRZxJcQ8AnCgFRCMjxR/aLeFRAxo86IB5lrN1YjLEm+urzxRfDzDic5UvMOMyvodU+p+SMG3NU/7zdkaO8rqXedW3etB3cfEwCn5l6lB+7JoQQQgghxEaUan91xOsV7N7XB16vGGo3E8Nqn1NiuHHMnDfnzXlz3k7y6YxBUgtuPhJCCCGEEGIjwftBOuL3KxTkNcLvV4bazcSw2ueUGG4cM+fNeXPenLeTfDpjkNTC1s3HuXPn4tvf/jays7MxYMAAXH311aitre3xPa2trbj//vtx5plnIiMjA6WlpVi1apVFIyaEEEIIIcmE3fWogqC0sAElRQ3wKEF6WgAeJRhe1IDFM2tQarDdSAylxHBfnb54YpgZh9N8iRhHLGtotc8pOePGHNU9b7fkKK9rqXddC56OTVKHNDvlGzZswJQpU/Dtb38bbW1tuPfee3HppZfi/fffR9++fSO+57777sNf/vIXPP300xgyZAhWr16Nf/mXf8Gbb76JsrIyi2dACCGEEELcjN316IN37MTPrz8MAFhYmY/d+/qgIK8Rk6/Zi8yMADYtqjLcHi3G/KXNmDqx1lBf3b5YY5gZhxN9uscR6xpa7XNKzrgxR3XO2005yuta6l3XSGqhRDrfHGsfX3zxBQYMGIANGzbgwgsvjNhn0KBB+OUvf4kpU6aE2v71X/8VmZmZ+Mtf/hLVUV9fj9zcXPh8PuTk5Ggbe0+MGzcOK1assMRll5M+d/vscNJHn9Od9LnbZ4fTSp8d9UyqYEU9CnRYw9cqkZMVeZNTN/BCEjsAACx7SURBVOPumoUV8+ZY4qIvOZz00ed0J33u9gHAuPufSNp6Ldl9ZupRW+987IzP5wMAnHjiid32aWlpQUZGRlhbZmYm3njjjW77t7S0hP5dX1+vYaSEEEIIISQZSUQ9GnxPpJr0yWWDe7zzsanZY7g9WozqXVl4tOI0Q311+2KNYWYcTvTpHkesa2i1zyk548Yc1TlvN+Uor2upd10jqYVj7nwMBAIYN24cDh8+3GPhdsMNN2Dbtm148cUXceaZZ2LdunUYP348/H5/WEEXZPbs2Zgzp+vO/eWXX4709HStc+iOqqoqjBw50hKXXU763O2zw0kffU530udunx1OK32tra1YtWoV73zUTKLqUaD7mhS4HDl92x/GX380DUoJRBRy+rbhvJLDeHP7CYbbo8UAqgCMNNRXty/WGGbG4USf7nHEuoZW+5ySM27MUZ3zdlOO8rqWWte17w3/Ct6vTyCpqvsoaeu1ZPeZqkfFIUyePFlOP/10+fTTT3vsd/DgQRk/frx4PB7xer1SVFQkd9xxh2RkZETs39zcLD6fL/T69NNPBYD4fL5ETCMiY8eOtcxll5M+d/vscNJHn9Od9LnbZ4fTSp/P57O8nkkFElWPinRfkwI+UQiIQkCOnxcq4lEBGT/qgHiUsXZjMcaa6KvPF18MM+Nwli8x4zC/hlb7nJIzbsxR/fN2R47yupZ617V503aIbF4tsnl1Utdrye4zU4/aetp1kJ/97Gd46aWX8NprryE/P7/Hvv3798eLL76Io0eP4pNPPsEHH3yArKwsFBQUROzfu3dv5OTkhL0IIYQQQgjpSCLrUaDnmlSp9ldHvF7B7n194PWKoXYzMaz2OSWGG8fMeXPenDfn7SSfzhgktbB181FE8LOf/QwvvPAC/vd//xff+MY3DL83IyMDeXl5aGtrw9/+9jeMHz8+gSMlhBBCCCHJiBPq0eD9IB3x+xUK8hrh9ytD7WZiWO1zSgw3jpnz5rw5b87bST6dMUhqYevm45QpU/CXv/wFFRUVyM7OxoEDB3DgwAE0NTWF+kyaNAkzZswI/fsf//gHKisrsXv3bmzcuBGXX345AoEA/vM//9OOKRBCCCGEEBdjdz2qICgtbEBJUQM8SpCeFoBHCYYXNWDxzBqUGmw3EkMpMdxXpy+eGGbG4TRfIsYRyxpa7XNKzrgxR3XP2y05yuta6l3XggfUkNTB1tOuFyxYAAC46KKLwtr/+Mc/4pZbbgEA7NmzBx7P8T3S5uZm3Hfffdi9ezeysrIwZswYPPfcczjhhBMsGjUhhBBCCEkW7K5HH7xjZ4+nXW9aVGW4PVqM+UubMXViraG+un2xxjAzDif6dI8j1jW02ueUnHFjjuqct5tylNe11LuukdTC1s1H6XxfbgTWr18f9u9Ro0bh/fffT9CICCGEEEJIKsF6lBBCCCEkwST48BvHYcfpkDzhkz6n++xw0kef0530udtnh9OppwsSZxJcQ4XDUlrok9Iin3hUQNLT/OJRASkr9smhteukrNhYu5EYSl1luK9OXzwxzIzDab5EjCOWNbTa55SccWOO6p63W3KU17XUu641blzD066TwGemHuXmowXwFy76nO6zw0kffU530udunx1OpxZ7xJkE1xDwiUJAFAJy/JH9Ih4VkPGjDohHGWs3FmOsib76fPHFMDMOZ/kSMw7za2i1zyk548Yc1T9vd+Qor2upd12bN20HNx+TwGemHrX1wBlCCCGEEEJSHaXaXx3xegW79/WB1yuG2s3EsNrnlBhuHDPnzXlz3py3k3w6Y5DUgpuPhBBCCCGE2EjwfpCO+P0KBXmN8PuVoXYzMaz2OSWGG8fMeXPenDfn7SSfzhgkteDmIyGEEEIIITahICgtbEBJUQM8SpCeFoBHCYYXNWDxzBqUGmw3EkMpMdxXpy+eGGbG4TRfIsYRyxpa7XNKzrgxR3XP2y05yuta6l3Xgqdjk9TB1tOuCSGEEEIISWUevGMnfn79YQDAwsp87N7XBwV5jZh8zV5kZgSwaVGV4fZoMeYvbcbUibWG+ur2xRrDzDic6NM9jljX0GqfU3LGjTmqc95uylFe11LvukZSCyXS+ebY5Ka+vh65ubnw+XzIycmxxDlu3DisWLHCEpddTvrc7bPDSR99TnfS526fHU4rfXbUM0QvoTV8rRI5WX0tcY67axZWzJtjiYu+5HDSR5/TnfS52wcA4+5/ImnrtWT3malHeecjIYQQQgghNvHkssE93vnY1Owx3B4tRvWuLDxacZqhvrp9scYwMw4n+nSPI9Y1tNrnlJxxY47qnLebcpTXteS9rhECAEj42dsOw8xR4Lqw+mh1O5z0udtnh5M++pzupM/dPjucVvrsqGeIXoJrqHBYSgt9UlrkE48KSHqaXzwqIGXFPjm0dp2UFRtrNxJDqasM99XpiyeGmXE4zZeIccSyhlb7nJIzbsxR3fN2S47yupa817XGjWtENq/u8ZXM9Vqy+8zUo9x8tAD+wkWf0312OOmjz+lO+tzts8Pp1GKPOJPgGgI+UQiIQkCOnxcq4lEBGT/qgHiUsXZjMcaa6KvPF18MM+Nwli8x4zC/hlb7nJIzbsxR/fN2R47yupa817V503Zw8zGJfWbqUZ52TQghhBBCiI0o1f7qiNcr2L2vD7xeMdRuJobVPqfEcOOYOW/Om/PmvJ3kiyUGIQDAzUdCCCGEEEJsJHifSEf8foWCvEb4/cpQu5kYVvucEsONY+a8OW/Om/N2ki+WGIQA3HwkhBBCCCHENhQEpYUNKClqgEcJ0tMC8CjB8KIGLJ5Zg1KD7UZiKCWG++r0xRPDzDic5kvEOGJZQ6t9TskZN+ao7nm7JUd5XUve61rwIBpCeNo1IYQQQgghNvHgHTt7PO1606Iqw+3RYsxf2oypE2sN9dXtizWGmXE40ad7HLGuodU+p+SMG3NU57zdlKO8riXvdY0QgHc+EkIIIYQQQgghhBBCEoUFB+A4Cp52TR99znDSR5/TnfS522eH06mnCxJnElxDhcNSWuiT0iKfeFRA0tP84lEBKSv2yaG166Ss2Fi7kRhKXWW4r05fPDHMjMNpvkSMI5Y1tNrnlJxxY47qnrdbcpTXteS9rjVuXMPTrpPYZ6YetXXz8aGHHpIRI0ZIVlaW9O/fX8aPHy8ffPBB1Pc9+uijUlRUJBkZGZKfny8///nPpampyZCTm4/00ecMJ330Od1Jn7t9djidWuyRnrGjHhU5voaATxQCohCQ44/sF/GogIwfdUA8yli7sRhjTfTV54svhplxOMuXmHGYX0OrfU7JGTfmqP55uyNHeV1L3uvavGk7uPmYxD4z9aitH7vesGEDpkyZgrfffhtr1qxBa2srLr30Uhw9erTb91RUVGD69OmYNWsWduzYgWeeeQZLly7Fvffea+HICSGEEEJIMuCEelSp9ldHvF7B7n194PWKoXYzMaz2OSWGG8fMeXPenDfn7SRfLDEIAWx+5uOqVatwyy23YNiwYSgtLcWf/vQn7NmzB++8806373nzzTdx/vnn44YbbsAZZ5yBSy+9FNdffz2qqqosHDkhhBBCCEkGnFCPBu8T6Yjfr1CQ1wi/XxlqNxPDap9TYrhxzJw35815c95O8sUSgxDAYQfO+Hw+AMCJJ57YbZ/zzjsP77zzTqi42717N1auXIkxY8ZE7N/S0oL6+vqwFyGEEEIIIZFIRD0KdF+TKghKCxtQUtQAjxKkpwXgUYLhRQ1YPLMGpQbbjcRQSgz31emLJ4aZcTjNl4hxxLKGVvuckjNuzFHd83ZLjvK6lrzXteAp2IQokc770/YQCAQwbtw4HD58GG+88UaPfefPn4977rkHIoK2tjZMnjwZCxYsiNh39uzZmDNnTpf2yy+/HOnp6VrGHo2qqiqMHDnSEpddTvrc7bPDSR99TnfS526fHU4rfa2trVi1ahV8Ph9ycnIscaYCiapHge5r0iFnXICCvFYAwCf7M3G02Yu+GX6cPrAJXg/gDxhvjxZj975qFOSdY6ivbl+sMcyMw4k+3eOIdQ2t9jklZ9yYozrn7aYc5XUtea9r0aiq+yhp67Vk95mpRx2z+Xj77bfjlVdewRtvvIH8/Pxu+61fvx7XXXcdfv3rX+M73/kOPvzwQ9x555348Y9/jJkzZ3bp39LSgpaWltC/6+vrMXjwYEuL9XHjxmHFihWWuOxy0udunx1O+uhzupM+d/vscFrpq6+vR25uLjcfNZOoehToviZ96I7N+Pn1hwEACyvzsXtfHxTkNWLyNXuRmRFAU7PHcHu0GPOX/gemTvwvQ311+2KNYWYcTvTpHkesa2i1zyk548Yc1TlvN+Uor2vJe12Lxrj7n0jaei3Zfabq0YQefWOQKVOmSH5+vuzevTtq3+9973tyzz33hLU999xzkpmZKX6/P+r7edo1ffQ5w0kffU530udunx1Op54uSIxhZT0qcnwNFQ5LaaFPSot84lEBSU/zi0cFpKzYJ4fWrpOyYmPtRmIodZXhvjp98cQwMw6n+RIxjljW0GqfU3LGjTmqe95uyVFe15L3uta4cQ1Pu05in5l61NbNx0AgIFOmTJFBgwZJXV2dofd861vfkv/8z/8Ma6uoqJDMzExpa2uL+n5uPtJHnzOc9NHndCd97vbZ4XRqsUd6xo56VOT4GgI+UQiIQkCOP7JfxKMCMn7UAfEoY+3GYow10VefL74YZsbhLF9ixmF+Da32OSVn3Jij+uftjhzldS15r2vzpu3g5mMS+8zUo7YeODNlyhT85S9/QUVFBbKzs3HgwAEcOHAATU1NoT6TJk3CjBkzQv8eO3YsFixYgCVLluCjjz7CmjVrMHPmTIwdOxZer9eOaRBCCCGEEJfihHpUqfZXR7xewe59feD1iqF2MzGs9jklhhvHzHlz3pw35+0kXywxCAFsPu16wYIF8Pl8uOiiizBw4MDQa+nSpaE+e/bswf79+0P/vu+++3D33Xfjvvvuw9ChQ3Hbbbfhsssuw1NPPWXHFAghhBBCiItxQj0avE+kI36/QkFeI/x+ZajdTAyrfU6J4cYxc96cN+fNeTvJF0sMQgCbNx9FJOLrlltuCfVZv349/vSnP4X+nZaWhlmzZuHDDz9EU1MT9uzZgyeffBInnHCC5eMnhBBCCCHuxu56VEFQWtiAkqIGeJQgPS0AjxIML2rA4pk1KDXYbiSGUmK4r05fPDHMjMNpvkSMI5Y1tNrnlJxxY47qnrdbcpTXteS9rgUPoiEkze4BEEIIIYQQkqo8eMfOHk+73rSoynB7tBjzlzZj6sRaQ311+2KNYWYcTvTpHkesa2i1zyk548Yc1TlvN+Uor2vJe10jBACUSOebY5MbU0eBa8Lqo9XtcNLnbp8dTvroc7qTPnf77HBa6bOjniF6Ca3ha5XIyepriXPcXbOwYt4cS1z0JYeTPvqc7qTP3T4AGHf/E0lbryW7z0w9yjsfCSGEEEIIsYknlw3u8c7HpmaP4fZoMap3ZeHRitMM9dXtizWGmXE40ad7HLGuodU+p+SMG3NU57zdlKO8riXvdY0QAEBCztt2MGaOAteF1Uer2+Gkz90+O5z00ed0J33u9tnhtNJnRz1D9BJcQ4XDUlrok9Iin3hUQNLT/OJRASkr9smhteukrNhYu5EYSl1luK9OXzwxzIzDab5EjCOWNbTa55SccWOO6p63W3KU17Xkva41blwjsnl1j69krteS3WemHuXmowXwFy76nO6zw0kffU530udunx1OpxZ7xJkE1xDwiUJAFAJy/LxQEY8KyPhRB8SjjLUbizHWRF99vvhimBmHs3yJGYf5NbTa55SccWOO6p+3O3KU17Xkva7Nm7aDm49J7DNTj9p62jUhhBBCCCGpjlLtr454vYLd+/rA6xVD7WZiWO1zSgw3jpnz5rw5b87bSb5YYhACANx8JIQQQgghxEaC94l0xO9XKMhrhN+vDLWbiWG1zykx3Dhmzpvz5rw5byf5YolBCMDNR0IIIYQQQmxDQVBa2ICSogZ4lCA9LQCPEgwvasDimTUoNdhuJIZSYrivTl88McyMw2m+RIwjljW02ueUnHFjjuqet1tylNe15L2uBQ+iIYSnXRNCCCGEEGITD96xs8fTrjctqjLcHi3G/KXNmDqx1lBf3b5YY5gZhxN9uscR6xpa7XNKzrgxR3XO2005yuta8l7XCAG4+UgIIYQQQgghhBBC4iAzI4BpN+yxexjEqVhwAI6j4GnX9NHnDCd99DndSZ+7fXY4nXq6IHEmwTVUOCylhT4pLfKJRwUkPc0vHhWQsmKfHFq7TsqKjbUbiaHUVYb76vTFE8PMOJzmS8Q4YllDq31OyRk35qjuebslR3ldc/91razYJ40b10Q92ZqnXSeXz0w9ys1HC+AvXPQ53WeHkz76nO6kz90+O5xOLfaIMwmuIeAThYAoBOT4I/tFPCog40cdEI8y1m4sxlgTffX54othZhzO8iVmHObX0GqfU3LGjTmqf97uyFFe19x/XfOogMybtoObjynmM1OP8sAZQgghhBBCbESp9ldHvF7B7n194PWKoXYzMaz2OSWGG8fMeXPenDfn7SRftHZCuoObj4QQQgghhNhI8N6Rjvj9CgV5jfD7laF2MzGs9jklhhvHzHlz3pw35+0kX7R2QrqDm4+EEEIIIYTYhIKgtLABJUUN8ChBeloAHiUYXtSAxTNrUGqw3UgMpcRwX52+eGKYGYfTfIkYRyxraLXPKTnjxhzVPW+35Civa+6/rg0vagideE1IJHjaNSGEEEIIITbx4B078fPrDwMAFlbmY/e+PijIa8Tka/YiMyOATYuqDLdHizF/aTOmTqw11Fe3L9YYZsbhRJ/uccS6hlb7nJIzbsxRnfN2U47yuub+61pmRsDUzz+SWiiRzjfYWsfcuXNRWVmJDz74AJmZmTjvvPPwm9/8BsXFxT2+7/Dhw/jlL3+JyspKfPnllzj99NPx2GOPYcyYMVGd9fX1yM3Nhc/nQ05Ojq6p9Mi4ceOwYsUKS1x2Oelzt88OJ330Od1Jn7t9djit9NlRzyQrdtSjQIc1fK0SOVl9dUwlKuPumoUV8+ZY4qIvOZz00ed0J33u9gHAuPufSNp6Ldl9ZupRW+983LBhA6ZMmYJvf/vbaGtrw7333otLL70U77//Pvr2jVyEHTt2DJdccgkGDBiA5cuXIy8vD5988glOOOEEawdPCCGEEEJcj9316JPLBvd452NTs8dwe7QY1buy8GjFaYb66vbFGsPMOJzo0z2OWNfQap9TcsaNOapz3m7KUV7X3H9d452PpEcSfva2CQ4ePCgAZMOGDd32WbBggRQUFMixY8dicpg5ClwXVh+tboeTPnf77HDSR5/TnfS522eH00qfHfVMqmBFPSpyfA0VDktpoU9Ki3ziUQFJT/OLRwWkrNgnh9auk7JiY+1GYih1leG+On3xxDAzDqf5EjGOWNbQap9TcsaNOap73m7JUV7X3H9dKyv2SePGNSKbV5t+JXO9luw+M/Woo5756PP5AAAnnnhit31WrFiB8vJyTJkyBf/zP/+D/v3744YbbsAvfvELeL3eLv1bWlrQ0tLSxVFfX6959N3T2tpqqc8OJ33u9tnhpI8+pzvpc7fPDqeVvqBH7Ht6TtKSiHoU6L4mFTRg287sr1sbEGhr/693awU3zToN79YKxED7tp0SNQbQ9rUvel+dvnhimBmH03yJGEcsa2i1zyk548Yc1T1vt+Qor2vuv669Wyt47PkTMGXCpzBLMtdrye4zVY8mfCvUIH6/X6688ko5//zze+xXXFwsvXv3lltvvVW2bNkiS5YskRNPPFFmz54dsf+sWbMEAF988cUXX3zxxVfSvT799NNElGUpS6LqURHWpHzxxRdffPHFV3K+jNSjth4405Hbb78dr7zyCt544w3k5+d326+oqAjNzc346KOPQn9ZnjdvHn73u99h//79Xfp3/ivz4cOHcfrpp2PPnj3Izc3VP5FO1NfXY/Dgwfj0008teyC81U763O2zw0kffU530udunx1Oq30igoaGBgwaNAgejyfhvlQhUfUokHo1KX3ud9JHn9Od9LnbZ4eTPr2YqUcd8bHrn/3sZ3jppZfw+uuv91joAcDAgQORnp4e9pGWb37zmzhw4ACOHTuGXr16hfXv3bs3evfu3SVObm6upadD5uTkWH4apdVO+tzts8NJH31Od9Lnbp8dTit9VmxYpRKJrEeB1K1J6XO/kz76nO6kz90+O5z06cNoPWrrn8pFBD/72c/wwgsv4H//93/xjW98I+p7zj//fHz44YcIBI6fpFRXV4eBAwdGLPQIIYQQQgjpDtajhBBCCCGJxdbNxylTpuAvf/kLKioqkJ2djQMHDuDAgQNoamoK9Zk0aRJmzJgR+vftt9+OL7/8EnfeeSfq6urw8ssv46GHHsKUKVPsmAIhhBBCCHExrEcJIYQQQhKLrR+7XrBgAQDgoosuCmv/4x//iFtuuQUAsGfPnrDPjg8ePBirV6/GtGnTUFJSgry8PNx55534xS9+YcjZu3dvzJo1K+LHXhKB1T47nPS522eHkz76nO6kz90+O5x2zJHowY56FEj+HKXP/U766HO6kz53++xw0mcfjjlwhhBCCCGEEEIIIYQQklzweERCCCGEEEIIIYQQQkhC4OYjIYQQQgghhBBCCCEkIXDzkRBCCCGEEEIIIYQQkhC4+UgIIYQQQgghhBBCCEkISbf5+Prrr2Ps2LEYNGgQlFJ48cUXo76npaUFv/zlL3H66aejd+/eOOOMM7B48eKE+f77v/8bpaWl6NOnDwYOHIhbb70Vhw4dMuSbO3cuvv3tbyM7OxsDBgzA1Vdfjdra2qjvW7ZsGYYMGYKMjAycc845WLlyZcJ8Tz/9NC644AL069cP/fr1w8UXX4yqqqqEzi/IkiVLoJTC1VdfnVDf4cOHMWXKFAwcOBC9e/dGUVGRoe9prL7HHnsMxcXFyMzMxODBgzFt2jQ0NzcnbI6tra24//77ceaZZyIjIwOlpaVYtWqVId+CBQtQUlKCnJwc5OTkoLy8HK+88kq3/WtqavCv//qvOOOMM6CUwmOPPWbIE6uvsrISI0aMwAknnIC+ffti+PDheO655xLm+9Of/gSlVNgrIyMjYb6LLrqoi08phSuvvDJhznjypTMPP/wwlFL4+c9/3m2feHMmFmc817VYfB0xe12L1RfrdS1WXzzXtdmzZ3fJ8SFDhvT4nlh/Dsbi05kvxJ2wHo0M61H9TrfUpKxHw4m3Ho3F6baa1M56FLC+JmU92g7rUX0+p9WjSbf5ePToUZSWluLJJ580/J4f/vCHWLduHZ555hnU1tbi+eefR3FxcUJ8mzZtwqRJk3DbbbehpqYGy5YtQ1VVFX784x8bev+GDRswZcoUvP3221izZg1aW1tx6aWX4ujRo92+580338T111+P2267DVu3bsXVV1+Nq6++Gu+9915CfOvXr8f111+P1157DW+99RYGDx6MSy+9FPv27UuIL8jHH3+Me+65BxdccEHUvvH4jh07hksuuQQff/wxli9fjtraWjz99NPIy8tLiK+iogLTp0/HrFmzsGPHDjzzzDNYunQp7r333oTN8b777sNTTz2F//qv/8L777+PyZMn41/+5V+wdevWqL78/Hw8/PDDeOedd7Blyxb84Ac/wPjx41FTUxOxf2NjIwoKCvDwww/j1FNPNTSneHwnnngifvnLX+Ktt97C9u3b8e///u/493//d6xevTohPgDIycnB/v37Q69PPvkkYfOrrKwMc7333nvwer2YMGFCwpzx5EtHNm/ejKeeegolJSU99os3Z2JxxnNdi8UXJJbrWiy+eK5rsfjiva4BwLBhw8Jy/Y033ui2bzw/B2Px6coX4l5Yj3aF9ah+p5tqUtaj4cRbj8biBNxVk9pVjwLW16SsR9thParX57h6VJIYAPLCCy/02OeVV16R3NxcOXTokCW+3/3ud1JQUBDWNn/+fMnLy4vJefDgQQEgGzZs6LbPD3/4Q7nyyivD2r7zne/IT3/604T4OtPW1ibZ2dny7LPPJszX1tYm5513nixatEhuvvlmGT9+vGmXUd+CBQukoKBAjh07FpPDrG/KlCnygx/8IKztrrvukvPPPz9hzoEDB8oTTzwR1nbNNdfIjTfeGJOzX79+smjRoqj9Tj/9dHn00UdjcsTiC1JWVib33XdfQnx//OMfJTc3N+bYZn2defTRRyU7O1uOHDmSMKeOfGloaJDCwkJZs2aNjBo1Su68805D74snZ2J1isR2XTPri/e6Zsan47pmxhfvdW3WrFlSWlpqeGzx/hw06+tMPD8HifthPdoO61H9TjfXpKxHuxJvPRrNmQw1aaLrURHra1LWo8dhParX1xm769Gku/PRLCtWrMCIESPw29/+Fnl5eSgqKsI999yDpqamhPjKy8vx6aefYuXKlRARfP7551i+fDnGjBkTUzyfzweg/a9n3fHWW2/h4osvDmu77LLL8NZbbyXE15nGxka0traaeo9Z3/33348BAwbgtttuM+0w61uxYgXKy8sxZcoUnHLKKTj77LPx0EMPwe/3J8R33nnn4Z133gndIr17926sXLkyoTnT0tLS5WMYmZmZPf5lJRJ+vx9LlizB0aNHUV5ebn6wJjHrExGsW7cOtbW1uPDCCxPmO3LkCE4//XQMHjw46l+kdfg68swzz+C6665D3759E+bUkS9TpkzBlVde2eValUjiccZyXTPri/e6Zsan47pmxqfjurZz504MGjQIBQUFuPHGG7Fnz55u++r4OWjG15l4fg6S1ID1qH5fZ9xUjxp1urkmZT16nHjrUTNOt9akVtWjgPU1KevR47Ae1evrjO31qC1bnhYBA3/5veyyy6R3795y5ZVXyj/+8Q95+eWX5fTTT5dbbrklIT4Rkb/+9a+SlZUlaWlpAkDGjh0b0+6+3++XK6+8MurOfHp6ulRUVIS1PfnkkzJgwICE+Dpz++23S0FBgTQ1NSXEt3HjRsnLy5MvvvhCRCTmvzQb9RUXF0vv3r3l1ltvlS1btsiSJUvkxBNPlNmzZyfEJyLy+OOPS3p6eihnJk+ebMpl1nn99dfL0KFDpa6uTvx+v7z66quSmZkpvXr1MuTZvn279O3bV7xer+Tm5srLL79s6H2x/sXQrO/w4cPSt29fSUtLk969e8szzzyTMN+bb74pzz77rGzdulXWr18vV111leTk5Minn36aEF9H/vGPfwgA+cc//mHYFYsz3nx5/vnn5eyzzw5dI6z4K3M8ThHz1zWzvniva2Z98V7XYvl+xnNdW7lypfz1r3+Vbdu2yapVq6S8vFxOO+00qa+vj9g/3p+DZn2difXnIEkOWI+2w3pUv9OtNSnr0XbirUfNOt1Yk1pZj4pYX5OyHg2H9aheX2fsrkdTfvPxkksukYyMDDl8+HCo7W9/+5sopaSxsVG7r6amRgYOHCi//e1vQ0lzzjnnyK233mrKJSIyefJkOf3006P+wNBV7Bn1dWTu3LnSr18/2bZtmymXUV99fb2cccYZsnLlylBbrMWe0fkVFhbK4MGDpa2tLdT2+9//Xk499dSE+F577TU55ZRT5Omnn5bt27dLZWWlDB48WO6//35TPjPOgwcPyvjx48Xj8YjX65WioiK54447JCMjw5CnpaVFdu7cKVu2bJHp06fLySefLDU1NVHfF2uxZ9bn9/tl586dsnXrVnnkkUckNzdXXnvttYT5OnLs2DE588wzTX2sJlbfT37yEznnnHMMe2J1xpMve/bskQEDBoRdIxJd6MXrNHtdM+uL97oWy/ziua7F4tN5XRMR+eqrryQnJ6fbj2Lp+jlo1NeReH4OkuSA9Wg7rEf1OkXcW5OyHm0n3no0FmdH3FCTWlWPilhfk7Ie7QrrUb2+jjihHk35zcdJkybJmWeeGdb2/vvvCwCpq6vT7vu3f/s3ufbaa8PaNm7cKADks88+M+yaMmWK5Ofny+7du6P2HTx4cJcL4a9+9SspKSlJiC/I7373O8nNzZXNmzcbfo9Z39atWwWAeL3e0EspJUop8Xq98uGHH2r1iYhceOGFMnr06LC2lStXCgBpaWnR7vve974n99xzT1jbc889J5mZmeL3+w35zDqDNDU1yd69eyUQCMh//ud/ytChQw2/tyOjR4+Wn/zkJ1H76XrGjlFfkNtuu00uvfRSy3zXXnutXHfddQn1HTlyRHJycuSxxx6L2WPWGUu+vPDCC13+Pwwg9P/hjsVHJGLJmXicsVzXzPriva7FMr94rmux+HRd1zoyYsQImT59esSv6fg5aMYXJJ6fgyR5YD3aDutRvU4Rd9akrEe7J956NBan22rSRNWjItbXpKxHWY+KpFY9mvLPfDz//PPx2Wef4ciRI6G2uro6eDwe5Ofna/c1NjbC4wn/tnu9XgDtz/uIhojgZz/7GV544QX87//+L77xjW9EfU95eTnWrVsX1rZmzRrDzyAx6wOA3/72t3jggQewatUqjBgxwtB7YvENGTIE1dXVePfdd0OvcePG4fvf/z7effddDB48WPv8zj//fHz44YcIBAKhtrq6OgwcOBC9evXS7rMjZ4JkZGQgLy8PbW1t+Nvf/obx48cbfm9HAoEAWlpaYnqvFb54x2fm/X6/H9XV1Rg4cGBCfcuWLUNLSwv+7d/+LWaPWWcs+TJ69Ogu/x8eMWIEbrzxRrz77ruhXNdJrM5Yr2tmffFe12KZXzzXtVh88V7XOnPkyBHs2rWr2/9fxfNzMBYfEHu+kNSE9ah+H+CeejQWJ+CumpT1qP7+8cZwY02aqHoUsL4mZT3KehRIsXrU6t3ORNPQ0CBbt24N7dTPmzdPtm7dKp988omIiEyfPl1uuummsP75+fly7bXXSk1NjWzYsEEKCwvlRz/6UUJ8f/zjHyUtLU3+8Ic/yK5du+SNN96QESNGyMiRIw35br/9dsnNzZX169fL/v37Q6+OH8m56aabwna/N23aJGlpafLII4/Ijh07ZNasWZKeni7V1dUJ8T388MPSq1cvWb58edh7GhoaEuLrjJnbwWPx7dmzR7Kzs+VnP/uZ1NbWyksvvSQDBgyQX//61wnxzZo1S7Kzs+X555+X3bt3y6uvvipnnnmm/PCHP0zYHN9++23529/+Jrt27ZLXX39dfvCDH8g3vvEN+eqrr6L6pk+fLhs2bJCPPvpItm/fLtOnTxellLz66qsRXS0tLaH/Dw0cOFDuuece2bp1q+zcudPQ/Mz6HnroIXn11Vdl165d8v7778sjjzwiaWlp8vTTTyfEN2fOHFm9erXs2rVL3nnnHbnuuuskIyPD8EdizPqCfO9735OJEycacsTrjCdfItH5IxK6cyYWZzzXtVh8nYn31NRovniua7H44r2u3X333bJ+/Xr56KOPZNOmTXLxxRfLySefLAcPHozoi+fnYCw+3flC3AfrUdajZq/byV6Tsh7VW4/G4nRbTWp3PSpifU3KepT1qE6f0+rRpNt8fO211wRAl9fNN98sIu3/hxk1alTYe3bs2CEXX3yxZGZmSn5+vtx1112Gn68Ti2/+/PkydOhQyczMlIEDB8qNN94oe/fuNeSL5AIgf/zjH0N9Ro0aFfIH+etf/ypFRUXSq1cvGTZsmOGHA8fiO/300yO+Z9asWQmbX0fMXBRj9b355pvyne98R3r37i0FBQXy4IMPRr0VP1Zfa2urzJ49W84880zJyMiQwYMHyx133GH4B2kszvXr18s3v/lN6d27t5x00kly0003yb59+wz5br31Vjn99NOlV69e0r9/fxk9enSoSIjk+uijjyKOr/P/b3T5fvnLX8pZZ50lGRkZ0q9fPykvL5clS5YYcsXi+/nPfy6nnXaa9OrVS0455RQZM2aM/N///V/CfCIiH3zwgQAI62cGs8548iUSnQsF3TkTizOe61osvs7oLvZ0Xtdi8cV7XZs4caIMHDhQevXqJXl5eTJx4sSwj//o/DkYi093vhD3wXqU9ajZ63ay16SsR/XWo7E43VaT2l2PBh1W1qSsR1mP6vQ5rR5VIjHcT0oIIYQQQgghhBBCCCFRSPlnPhJCCCGEEEIIIYQQQhIDNx8JIYQQQgghhBBCCCEJgZuPhBBCCCGEEEIIIYSQhMDNR0IIIYQQQgghhBBCSELg5iMhhBBCCCGEEEIIISQhcPOREEIIIYQQQgghhBCSELj5SAghhBBCCCGEEEIISQjcfCSEEEIIIYQQQgghhCQEbj4SQogG/H4/zjvvPFxzzTVh7T6fD4MHD8Yvf/lLm0ZGCCGEEEJSAdajhBCnokRE7B4EIYQkA3V1dRg+fDiefvpp3HjjjQCASZMmYdu2bdi8eTN69epl8wgJIYQQQkgyw3qUEOJEuPlICCEamT9/PmbPno2amhpUVVVhwoQJ2Lx5M0pLS+0eGiGEEEIISQFYjxJCnAY3HwkhRCMigh/84Afwer2orq7Gf/zHf+C+++6ze1iEEEIIISRFYD1KCHEa3HwkhBDNfPDBB/jmN7+Jc845B//3f/+HtLQ0u4dECCGEEEJSCNajhBAnwQNnCCFEM4sXL0afPn3w0UcfYe/evXYPhxBCCCGEpBisRwkhToJ3PhJCiEbefPNNjBo1Cq+++ip+/etfAwDWrl0LpZTNIyOEEEIIIakA61FCiNPgnY+EEKKJxsZG3HLLLbj99tvx/e9/H8888wyqqqqwcOFCu4dGCCGEEEJSANajhBAnwjsfCSFEE3feeSdWrlyJbdu2oU+fPgCAp556Cvfccw+qq6txxhln2DtAQgghhBCS1LAeJYQ4EW4+EkKIBjZs2IDRo0dj/fr1+N73vhf2tcsuuwxtbW38uAshhBBCCEkYrEcJIU6Fm4+EEEIIIYQQQgghhJCEwGc+EkIIIYQQQgghhBBCEgI3HwkhhBBCCCGEEEIIIQmBm4+EEEIIIYQQQgghhJCEwM1HQgghhBBCCCGEEEJIQuDmIyGEEEIIIYQQQgghJCFw85EQQgghhBBCCCGEEJIQuPlICCGEEEIIIYQQQghJCNx8JIQQQgghhBBCCCGEJARuPhJCCCGEEEIIIYQQQhICNx8JIYQQQgghhBBCCCEJgZuPhBBCCCGEEEIIIYSQhMDNR0IIIYQQQgghhBBCSEL4/wE06sObpEFtMgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKCNgABX0RNZaI2GIDW6zY0FgjYO+9a4LGXqPYK9hiYu8RUcGIsVeMNXaxgKKoNCnz/cE3k122sJSleX7Pw6NMu3d2ZncPd2bulQmCIICIiIiIiIiIiIiIiIiI8h293K4AEREREREREREREREREWUOL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERHlQcnJyVi2bBlq164Nc3NzyGQyyGQydOjQAQAQEhIiTQsJCcnWsnW5bSIiIqL8jDmJiPIiXuwjyqPkg4O2P6NGjcrtalM6GjduLB2v77//Xuv13N3dM3w+fPjwQWk7Hz58QFBQEGbPno327dvD1tZWWt7d3T37dpSIiCgfUJe3DAwMYGVlhbJly6JRo0YYPXo09uzZgy9fvuRo/bp3745Ro0bh0qVL+PTpU46WnV8wWxEREeW+L1++YMeOHejduzcqVqwIa2trGBoawsbGBq6urhg8eDBOnDiBlJSU3K4qZaPNmzdLuUdfXx8vXrzQar2AgIAM57ClS5cqbScpKQnXrl3D2rVr0a9fP1SrVg0GBgbSOk+ePMneHSbK4wxyuwJERF+Lp0+f4vTp09LvJ0+exMuXL2Fra5tjdXBxcWHYISIiSkdycjLev3+P9+/f48mTJzhz5gyWLl2KYsWKYcSIEZg0aRIMDHT7p9Tff/+NXbt2AQDatGmDUaNGoUSJEpDJZDA3N9dp2dqYPn06ZsyYAQAQBCFX6sBsRURElPv27t2LsWPHqvw+fPfuHd69e4erV69izZo1cHZ2xpIlS9CmTZucr2g6njx5grJlywIA/P394e3tnbsVygc2b94s/T8lJQXbtm3DpEmTcqz82bNnY/r06TlWHlFex4t9RPnA4MGDMWTIkHSXs7GxyYHaUGZt3boVgiDAyMgIycnJSEpKwrZt2zBhwoQMbScsLEyr5VQ1BMo3xpUoUQK1atXC4cOHM1Q+ERFRQZQ2b33+/Bnv37/HzZs3cfLkSZw4cQKRkZH46aefcOjQIRw+fBjFihXTWX1OnDgBANDX18dvv/2m8nvd3d1dZxfadLnt7MJsRURElLtmzpyJn3/+Wfq9efPmaNeuHb755htYWloiKioK9+7dw6FDhxAUFIT79+9j6tSpefJiX0bkh5yka8+fP5e6MC1cuDA+f/6MrVu3Zvhi36xZs9C+fft0lytVqpTSNPljYGxsjOrVqyMyMhIPHz7MUB2ICgpe7CPKB4oXL44qVarkdjUoi7Zu3QoAaNu2LeLi4nD06FFs3bo1ww1SWTkXhg0bhrJly6J27dooXbo0AEAmk2V6e0RERAWFurzVqlUrTJw4Ebdv30avXr1w7do1XLx4ER07dsSpU6dQqFAhndQnPDwcQOoFpLzwJF9exGxFRESUe/z9/aULfcWLF8fOnTvh5uamtFyzZs0wdOhQ3Lp1C6NHj0ZkZGROV5V0QLzpytDQEIsWLcKgQYNw+/ZtXL58GTVr1tR6O3Z2dpnOYt999x3WrFmD2rVro2rVqjAwMIC3tzcv9tFXixf7iIhywPnz53H//n0AQM+ePREfH4+jR4/i1q1buHr1KmrUqJEj9Rg3blyOlENERFTQfPPNNzh79izq16+Pa9eu4ezZs1i5ciVGjx6tk/ISEhIAAIaGhjrZfn7HbEVERJR7wsPDMWzYMACAmZkZTp8+jYoVK2pcp0qVKggMDMRvv/2WE1UkHRNvumrVqhW8vLwwceJEREdHY8uWLRm62JcVLVq0yJFyiPILvdyuABHphiAIaNGiBWQyGQwMDHDu3Dm1y/r5+UmD1/r6+qpc5tOnT1i8eDGaNGmCkiVLolChQjA3N4eLiwuGDx+Os2fPqt1+cnIyNm/ejLZt28LW1hZGRkawtrZGgwYNsGTJEsTFxWnclytXrqBv375wdnaGmZkZjI2NUbp0abi6umLo0KE4ePCgyu4T4uPj4efnB3d3dxQrVgyGhoawsrJChQoV0KpVKyxZsiTHxljZsmULAKBo0aJo06YNOnTogCJFiijMIyIiorzNxMQEW7dulZ7cWrRoERITE9Uu//r1a0ydOhU1a9aElZUVjIyMULp0afzwww9SN51piZlMHAPl6dOn0jTxRxQSEiJNE7tRUufo0aPo1asXypUrJ+WpsmXLwtPTEwEBAYiNjVVYXt22AwICIJPJpPH65Oss/6PrjMVsRURElHt+/fVXKTv88ssv6V7oE+np6aFXr15q54eGhuLHH3+Eo6MjjI2NYWlpCRcXF0ybNi3dJwJfvXqFVatWoXPnzihfvjzMzMxgZGQEOzs7tG/fHn/88QdSUlJUriuTyaTx+gDAx8dHKdvIjw2XXgbz9vaGTCaDo6MjAODDhw/4+eefUblyZZiZmcHS0hKNGjXC9u3bNe6T6NChQ2jZsiWKFSsGU1NTODs7Y/z48Xj9+jUAwNHRETKZLMfGGbx48SLu3r0LAOjVqxeMjY3RuXNnAMDvv/+uMR8TkQ4JRJQnBQcHCwAEAIKvr2+mtvHy5UvB2tpaACCUK1dO+Pjxo9Iyt27dEoyNjQUAQp06dYTExESlZYKCggQbGxupPup+VHn69Knw7bffalzPyclJuHfvnsr1lyxZIujp6aVb9qdPn5T2/Ztvvkl3vbFjx2bilc2YhIQEwcrKSgAgDBgwQJru5eUlABCKFy+u8nWX5+bmpvF1zgpxu25ubtm+bSIiorwss3nr+++/l9Y7e/asymW2bdsmmJmZacwhffv2VcoA6WUX+SwgX//g4GCV9Xj79q3QtGnTdLfp7++v9rWR37a/v79WdXz8+LHWr2dGMVsRERHlnpSUFKmNyMzMTGVbU0YlJycLQ4cO1ZgtLCwshOPHj6tcPykpSau2o+bNmyu1HwmCdvlLPiuml8HETOLg4CDcvXtXcHR0VLvdoUOHanxthgwZonbdkiVLClevXhUcHBwEAIKXl1dGXvZME4+VhYWFEBcXJwiC4mty4MABjevL58m0GTSrxNde13mUKC/ik31EBVipUqWwYcMGAMCjR48wYsQIhfkJCQno0aMH4uPjYWZmhm3btsHAQLF33+DgYLRq1Qpv376Fvr4+vL29sW/fPly5cgVnz57F+vXr0alTJ5VdTL179w4NGjTAjRs3YGRkhGHDhmHXrl24dOkSgoODMXnyZJiamuLff/9Fq1atEB0drbD+zZs3MW7cOKSkpKBs2bJYvHgxTp48iWvXruGvv/7C+vXr0aNHD5iZmSmVPXz4cNy+fRtA6l1Ge/fuxfnz53Hp0iUcPHgQP//8M7799tssvb7aOnz4MKKioqS6iMT/R0RE4NixYzlSFyIiIsq6Zs2aSf8/c+aM0vydO3fixx9/RExMDMqVK4clS5bg2LFjuHLlCvbs2YPWrVsDADZu3Kg0vlxYWBjCwsLQvn17AICtra00TfzRVmxsLBo3boyTJ08CAFxdXbF27VqcPXsWly9fxr59+zB69GjY2tpqvc0OHTogLCwMgwcPVqqz/I+dnZ3W28woZisiIqLc888//+Dt27cAgIYNG0pP1mfFpEmTsHLlSgBA2bJlsWbNGly8eBHBwcEYPXo0DA0NER0djbZt2+LGjRtK6wv/39tTkyZNsHDhQil3hYSEYNOmTfjuu+8AAEFBQRg6dKjS+mFhYQgMDJR+nzVrllK2GTJkSIb3KzY2Fh4eHnj37h2mTZuGkJAQXL58GevXr4e9vT0AYOXKlQply1uwYAFWrVoFAChdujRWrlyJCxcu4K+//sLUqVMRHR2Nzp07K/XQoEuJiYn4/fffAQCenp4wNjYGALi5uUnjF7OXBaLcwTH7iPKBiIgI3Lp1K93lKlSooHTRrUOHDujXrx82bNiAgIAAtGnTRnq0fsqUKbh58yYAYOnSpXByclJYNz4+Hr169UJSUhJMTU1x5MgRuLu7KyxTr1499OvXD8+fP1eqz4gRI/D8+XM4ODggODhYoUsEAHB3d0eXLl3QsGFDPHr0CAsWLMDs2bOl+bt370ZKSgrMzMxw7tw5lChRQmH9hg0bol+/foiOjoapqalCvQ8ePAgAGDt2LBYtWqRUNw8PD8yYMUNqKNIlMeQ4OjqiQYMG0vQmTZrA1tYWL1++xJYtW9C2bVuttqfNuVC0aFGdNrIRERF9zeTHgxPHjRO9ffsWAwYMgCAI6NOnD9auXatwM1WNGjXQqVMnTJ06FXPmzMGyZcswcOBAVKhQAUDqeDYAYGlpCSB1zD5xWkZNmzZNujg4dOhQLF++XKEbUFdXV3To0AHz5s3D+/fvtdqmpaUlLC0tUbx4cWlaZuuXWcxWREREuUf+Ypurq2uWtxcWFobFixcDSM0UZ86ckXIQkNp29P3336NNmzb48uULBgwYgAsXLihsQ19fH/fu3VNq1wJSL0L5+PjA19cXv/zyC7Zu3Ypp06ahfPny0jJVqlRB4cKFpd/t7OyyJd9ERkbiy5cvOHfuHCpXrixNd3V1hbu7O6pWrYr4+HisWrVKafy5169fS0PtODk54dy5c7CxsZHmN2zYEK1bt0bjxo3x5cuXLNdVW0eOHMG7d+8AKN50JZPJ0KNHD8yfPx+HDx/G+/fvUbRo0XS3Fx4erlUWy+m8SZQf8ck+onxg9erVqFq1aro/4eHhKtdfunSpFGIGDhyI8PBwnDhxAr/++iuA/y4IprVlyxa8fPkSADBnzhylC33yxLt3RE+ePMEff/wBAFixYoXShT6Ri4uLdFdVQECAwjyx73FnZ2elC33yLCwsoKf338dZVFSU1D94o0aN1K4HAFZWVhrnZ9W7d+9w9OhRAECPHj0UGtj09PTQo0cPAKn9r3/48EGrbWpzLkydOjXb94WIiIhSWVtbS/9Pe5Fs9erViI6Ohp2dHVatWqXUa4JoxowZsLOzQ0pKik7ufv7w4QPWrl0LILVBadmyZQo5RF6hQoU0Zq28hNmKiIgod4kXegAo3PyTWatXr5bG0tuwYYPChT5Ry5Yt0adPHwCp48VdunRJYb5MJlN5oU/ezz//DBsbGwiCIN0gnhNmzpypcKFP5OTkhA4dOgBIHaswrc2bNyM+Ph5Aarue/IU+Ub169VQ+qahLYm61t7dXaif88ccfAaT2JCa2CaZn2rRpWmUxIkofL/YRfQXku+iMiopCjx494O3tDUEQUKpUKaxfv17leocPH5bW79+/f4bKPHLkCJKTk2FqaopWrVppXFa8IPfy5Us8e/ZMml6qVCkAwO3bt3Hx4kWty7a2tkahQoUAAFu3bkVSUlKG6p6dduzYIV14VDUItTgtPj4eu3btytG6ERERUebI3/n96dMnhXli41Hbtm1hZGSkdhsGBgZSl1Lnzp3L9jqeOnVK6tJpxIgR0NfXz/YycgOzFRERUe6Szz6qhlXJqBMnTgAAKleujDp16qhdTr5dSlxHnZSUFLx8+RL37t3DrVu3cOvWLdy5c0fqOlNVV6C6ID7tpo74ZGRUVJTSTUriPtrY2GhsV+vdu3fWK6qlqKgoHDlyBIDyTVdA6jGsXr06gNT2OCLKWbzYR5QP+Pr6QhCEdH8cHR3VbqN27drS4/9//fUXwsPDIZPJ4O/vr/LuIAC4du0agNTwId9NpjYuX74MILV/cgMDA8hkMrU/8l0siU/zAUD37t1haGiIhIQE1K9fHx4eHlizZg1u3bol9ceuipGREbp27QogtStQJycnTJgwAUePHtX6Du/ssnnzZgCpXXZVqlRJaf63334rdUWg7V392pwLaZ+SJCIiouwj38hlbm4u/T85ORnXr18HAKxdu1Zj/pHJZNi9ezcAxfyTXcQcB6R281RQMFsRERHlLvkx+mJiYrK0rYSEBDx48AAANF7oA1J7hhKHrlHV7aMgCNi2bRsaN26MwoULw87ODhUrVlR4OkzMaeKYg7pmY2Oj0CNEWvK9TaW9gUzcx+rVqyv0ZpVW1apVpRvedW3Hjh1Sl6GqbrqSn/7333/j4cOH6W7T399fqyxGROnjxT6ir8jkyZNRrlw56fd+/fop9QkuTww/4hN2GREREZHxCgIKgwpXrFgRO3bsQNGiRZGUlITDhw9j8ODBqFq1KooXL44ff/wRZ86cUbmdFStWwMPDAwDw9OlTLFy4EG3atIG1tTVq1aqFhQsXIjo6OlN11NadO3eki57qQhDwXzcHZ8+exePHj3VaJyIiIso6+QYi+UaaqKioTPUoIJ9/sot8HTOT5fIiZisiIqLcJ3/x6s2bN1nalnx36Ol1CWpoaCiVHRUVpTAvPj4ebdq0wY8//oiQkBDExcVp3FZ687NLejfOy1/ES05OVpgnvjbFihXTuA19fX2dD1EjEm+kqlatmtquNXv06CH1KKGLruqJSD3VA0gQUYF05MgRPHr0SPo9NDQUcXFxMDExyfayxJBiY2OD4OBgrddLO7afp6cnmjVrhj/++AOBgYE4c+YMIiMj8fbtW2zbtg3btm2Dl5cXNm3apBCSzM3NcfDgQVy8eBE7d+5ESEgIrl+/juTkZFy+fBmXL1/GokWLsH//fqkLrewmH2rGjBmDMWPGaFxeEARs2bJFegKTiIiI8ib5p+YqVKgg/V++kaZfv34YOXKkVtvLqbux8ztmKyIiotz37bffSv+/evVqtm1X3djC2pg9ezb+/PNPAICbmxuGDh2KGjVqoGTJkjAxMZHaixo1aoQzZ87wSbFMuHfvnjTEzs2bN7U6Xtu2bcP06dOzdGyJSHu82Ef0lXjz5g369esHIPVC2MePH3Hnzh2MHz8eK1asULmOjY0NXrx4gVevXmW4PPFuq0+fPqFSpUpZGifGwsICAwYMwIABAwCk3tV94MABLF++HC9fvsTmzZvh4uKiskGtdu3aqF27tlSXkJAQBAQEYO/evYiIiICnpycePnyY7Rc8U1JSsH379gyvt3XrVjZIERER5XFBQUHS/xs0aCD9X/6uakEQpO4kc4N8N+2vXr1SuqEqv2G2IiIiyhsqV64MGxsbvH37FmfOnMHHjx8VujXPiKJFi0r/T+8pwaSkJLx79w6AcubasGEDgNSuy0+dOqW228u0TwTmZUWLFsXr168RGRmpcbnk5GSFJyR1JTNP6T169AihoaEFqkt5oryMF/uIvhJ9+vRBZGQk9PT0cPjwYSxbtgx79uzBypUr0bZtW7Rs2VJpnRo1auDFixe4fPkyYmNjMzRun4uLC3777TckJCTg8uXL6fa9nhGVKlVCpUqV0LNnT1SqVAkxMTHYuXNnunfPFylSBB4eHvDw8MDIkSPh5+eHV69eITQ0FM2bN8+2+gFAcHAwnj9/DgAYPnw46tWrp3H5CxcuYOnSpXj48CHOnj2L+vXrZ2t9iIiIKHvcunULJ0+eBACULl0aNWvWlOYVKlQIlStXxj///IOzZ8/mVhUBpOY40V9//ZXtF/ty+g5tZisiIqK8QSaTwcvLC4sXL0ZMTAw2bNiQ7tP26hgZGaF8+fJ48OABLly4oHHZa9euITExEQAUbqiKioqSxj/u0qWL2gt9nz9/xr1799RuP689fVa5cmW8fv0a169fR0pKitr9CgsLQ0JCgk7rIo6HCKR24Tl58uR0l+/Tpw/i4+OxZcsWXuwjyiG82Ef0FVi1ahWOHj0KAJg4cSIaNmyIypUr4/z58wgPD4ePjw/CwsIU7gAHAA8PDxw8eBCxsbFYt24dRo0apXWZHh4emDBhAgRBwNKlS7Fjx47s3CUAqQ1szs7OuHbtWoYHV27atCn8/PwA6GZgZvGOJ319fUybNi3dvuebNWuGFStWICkpCVu2bGGDFBERUR4UFxeH3r17S10/jRs3DgYGin9StWvXDv/88w/u3r2LwMBAjeMj61Ljxo1hZmaGmJgYLF++HL169cpSTwtpGRsbS/9PSEiAkZFRtm1bFWYrIiKivGP06NFYvXo1YmNj8fPPP6N169aoWLFiuuulpKRgx44d6NmzpzStWbNmePDgAf755x9cvHhR6p0pLfHpPXEdkfx4yTExMWrL3rBhg8axldNmm9zWtGlTnDx5Em/fvsWff/6JNm3aqFwuJ8bFCwkJwbNnzwAAvXv3Rrdu3dJd548//sCBAwewa9cuLF++XOH1JSLdUH1LABEVGPfu3cP48eMBAK6urpgxYwaA1C4PAgICIJPJ8Pr1a6mLTHm9evWCnZ0dAGDq1Kk4ffq02nJevHih8HuFChXQpUsXAMDvv/+OJUuWaKzn48ePlS4I7t+/Hx8+fFC7zvPnz3H37l0AimP9PXr0SGNdAeD48ePS/9Pe6R4SEgKZTAaZTAZvb2+N21ElJiYGe/fuBZDahUR6jVFAaldbbm5uAICdO3fmiWBJRERE/7l9+zYaNGggjdfn5uaGwYMHKy03cuRIFC5cGADg4+ODf/75R+N2jxw5gps3b2Z7fS0tLTFw4EAAwJUrVzBq1Ci149MkJiYiIiIiQ9svVaqU9P+HDx9qXJbZioiIqGCxs7OThoSJiYmBm5tbuu0wt2/fRsuWLbFw4UKF6YMHD5aeWhswYAA+fvyotO7x48exceNGAKnDtdSqVUuaV6xYMVhaWgIAduzYofI7/9KlS/jpp5801s/a2loaRzm9bJMTvLy8pJupRo0apfJG9XPnzmHlypXpbsvR0VHKYpkhf0HR09NTq3U6d+4MAIiOjsaBAwcyVS4RZQyf7CPKByIiInDr1q10lzMxMcH//vc/6ffExET07NkTsbGxMDExwbZt22BoaCjNb9asGUaOHImlS5di37592LRpE/r06SPNNzY2xtatW/H9998jNjYWzZo1w48//ogOHTrA3t4eCQkJuHv3Lo4ePYqDBw8qBarVq1fj8uXLePToEcaOHYsDBw6gd+/eqFy5MoyMjPDu3TvcuHEDx44dw6lTp9CxY0d0795dWn/p0qXo2bMn2rRpgyZNmqBSpUqwsLDA+/fvcfnyZSxfvhxxcXEAgEGDBknrPXv2DI0bN8Y333yDjh07ombNmtJFy+fPn+OPP/7Azp07AQDVq1fP1i5GAWDv3r34/PkzAO1DkLjsyZMn8eHDBxw8eFC6WJqWNucCADg4OKBIkSIK065fv47r16+rXP7169cICAhQmNa5c2epwZKIiKggS5u3YmJi8P79e9y8eRMnT55EUFCQdLGsbt262L17t0KuEpUoUQKbN29G586d8erVK9SsWRPe3t5o1aoV7O3tkZiYiBcvXuDixYvYvXs3Hj16hEOHDqFatWrZvk8zZ85EUFAQwsLCsGLFCpw7dw4DBw5E1apVUahQIbx48QJnzpzBjh07MGvWrAxdiJPvRnP06NGYOnUqSpUqJTUiOTo6Kj31mFnMVkRERHmPj48PXrx4gZ9//hkRERFwd3fH999/j/bt26NSpUqwtLREVFQU7t+/jyNHjuDYsWNITk7Gt99+q7CdqlWrYuzYsVi4cCFu3LiBGjVqYOLEiXBxcUFMTAwOHToEPz8/JCcno1ChQli7dq3C+np6eujZsydWrlyJmzdvokGDBhgzZgzKly+P6OhoHD16FKtWrULhwoVha2uL+/fvq9wfAwMD1KpVC2fPnsWmTZvg4uKC6tWrS3nPyspKYaxAXbO1tYWvry+mTJmCf//9F66urpg0aRJq1qyJhIQEBAYGYvHixbC1tUVMTAwiIyN10hVpbGws9uzZAyD1IQJHR0et1vPw8EChQoXw5csXbNmyBV27dlW5XHh4uFZZzNzcHGXKlFGY9vnzZ+zevVth2r///iv9f/fu3Qq9mFWvXh3Vq1fXqv5E+ZJARHlScHCwACBDP99++63CNiZPnizNW7lypcpy4uPjhSpVqggAhMKFCwsPHz5UWubYsWNC0aJF0y1flVevXgkNGzbUqv4+Pj4K67q5uaW7jp6enjBz5sxMvXYVK1YUHj16pPG19/Ly0nCUVGvWrJkAQJDJZEJ4eLjW671+/VrQ09MTAAht27bN8GuR9mffvn1KZfj6+mZoG48fP87w/hMREeUXGc1bxYoVE2bPni0kJiamu+2DBw8KVlZWWmWZU6dOKa3v5eUlABAcHBy0qn9wcLDKZSIjI4VGjRqlWw9/f/8Mb/uHH37QKkMwWzFbERFRwbVnzx7B0dFRq+/BypUrC4GBgUrbSE5OFoYMGaJxXQsLC5XrCoIgfPjwQahevbrada2srITTp09L3/9ubm4qt3P48GFBJpOp3Iavr6+0XHo5SZscJwiC4O/vrzEjpKSkCAMHDlS7XzY2NsKlS5eE0qVLCwCEQYMGqSzHwcFBWiejtm3bJq07d+7cDK3bunVrAYBgYGAgvH79Wpouv9/a/rRv315p+48fP87QNuSPIVFBxG48iQqo0NBQzJ8/HwDQunVrDBkyROVyRkZG2L59O4yMjPD582f06tULycnJCsu0aNECjx49wpw5c1CvXj1YW1tDX18f5ubmqFGjBkaNGoWLFy+q3H7JkiXx119/4fDhw+jZsyfKlSsHU1NTGBoaolixYqhXrx7Gjh2L06dPY9OmTQrr7tixA+vWrUOPHj1QvXp1lCxZEgYGBihcuDAqV66MwYMH49q1a5g2bZrCeg0bNkRISAgmT56Mxo0bw8nJCUWKFIGhoSFKlCiB77//HmvWrMH169eVuvDMqvDwcJw6dQoA8N1338HW1lbrdUuUKCGNJ3Ps2DFERkZma92IiIhIO3p6erCwsECZMmXQsGFDjBo1Cnv27MGLFy8wZcoUrZ5Y8/DwwOPHj7Fo0SI0adIEJUqUgKGhIUxMTFC2bFm0bdsWS5YswZMnT9C4cWOd7YuNjQ1Onz6NvXv3onPnzrC3t4eRkRGMjY1Rrlw5dOnSBdu3b1foXUFb27Ztw4IFC1C7dm1YWFhIXXBlJ2YrIiKivK1Tp064d+8etm/fjl69eqFChQooWrQoDAwMYGVlhRo1amDIkCE4deoUwsLC8P333yttQ09PDytXrsRff/2Fnj17okyZMjAyMoK5uTmqV6+OKVOm4MGDByrXBQALCwucPXsWM2fORNWqVWFsbIzChQujUqVKGDduHG7cuIFGjRqluy9t2rTByZMn0b59e9ja2qrsxSEnyWQyrFmzBgcOHMD3338PKysrGBsbw8nJCSNGjMC1a9dQs2ZNqetTCwuLbK9DZrrwTLt8UlISfvvtt2ytFxEpkwmCmoEbiIiIiIiIiIiIiIgoT3rx4gVKly4NANiwYQP69u2byzUiotzCJ/uIiIiIiIiIiIiIiPKZHTt2SP+vW7duLtaEiHIbn+wjIiIiIiIiIiIiIspDYmJi8PHjR5QqVUrl/GvXrsHNzQ2fPn2Cq6srLl++nMM1JKK8JP3BJoiIiIiIiIiIiIiIKMdERkaiUqVK6NChA1q2bIkKFSrAyMgIL1++xLFjx7Bx40bExcVBJpNhyZIluV1dIsplfLKPiIiIiIiIiIiIiCgPefLkCcqWLatxmUKFCmH9+vXo3bt3DtWKiPIqXuwjIiIiIiIiIiIiIspDEhMTsW/fPhw7dgyXLl1CZGQkoqKiYGpqCkdHRzRr1gzDhw+Hg4NDbleViPIAXuwjIiIiIiIiIiIiIiIiyqe+ujH7UlJS8PLlSxQpUgQymSy3q0NERERZIAgCPn36BFtbW+jp6eV2db56zFlEREQFB3NW3sKcRUREVDDoKmN9dRf7Xr58idKlS+d2NYiIiCgbPX/+HPb29rldja8ecxYREVHBw5yVNzBnERERFSzZnbG+uot9RYoUAZD6Qpqbm+usnK5du+KPP/7Q2fYLUhk5VQ7LYBksg2XklzJyqpyCUMbHjx9RunRp6fudchdzFsvIz2XkVDksg2WwDJaRX8pgzspbmLNYBsv4OsrIqXJYBstgGblXhq4y1ld3sU/s6sDc3Fyn4cjQ0FCn2y9IZeRUOSyDZbAMlpFfysipcgpKGQDYlVEewZzFMvJzGTlVDstgGSyDZeSXMkTMWXkDcxbLYBlfRxk5VQ7LYBksI3fLALI/Y7HTdSIiIiIiIiIiIiIiIqJ8ihf7iIiIiIiIiIiIiIiIiPIpXuwjIiIiIiIiIiIiIiIiyqd4sY+IiIiIiIiIiIiIiIgon+LFPiIiIiIiIiIiIiIiIqJ8ihf7iIiIiIiIiIiIiIiIiPIpXuwjIiIiIiIiIiIiIiIiyqcMcrsC+YkgCEhMTERKSkq6y1pbWyM+Pl6n9SkoZeRUOSyDZbAMlpFfysipcgpCGV++fIGDgwO+fPmSI8fla6evrw9DQ0OdbJs5i2Xkdhk5VQ7LYBksg2XklzKYs3KWLnNWYmIikpOTtVq2oJy/LINl5NcycqoclsEyWEbulaFNxspMLpAJgiBkRwXzi48fP8LCwgLR0dEwNzfXap0vX74gIiICsbGxWoejiIgIFC9ePCtV/WrKyKlyWAbLYBksI7+UkVPlFIQyUlJS8Pz5c5QuXRp6euywICcYGRnBxsZGZY5izmIZ+bmMnCqHZbAMlsEy8ksZzFk5L7tz1sePH/H27VskJCRoXYeCcv6yDJaRX8vIqXJYBstgGblXhrYZS1MuUIVP9qUjNjYWz58/h76+PooWLQoTExPo6+tDJpNpXE8mk8HR0VGndSsoZeRUOSyDZbAMlpFfysipcgpCGcnJyYiLi4OjoyP09fV1Vg799+RddHQ0wsPDAUDrwKkOcxbLyEtl5FQ5LINlsAyWkV/KYM7KObrIWR8/fkR4eDgKFy4MGxsbGBoappuxgIJz/rIMlpFfy8ipclgGy2AZuVdGehkrs7mAF/vS8fbtWxgaGsLBwSFD4VZfXx/GxsY6rFnBKSOnymEZLINlsIz8UkZOlVMQyhCfBDM2NmYjVA4wMTFBkSJF8OLFC7x9+zbLjVDMWSwjL5WRU+WwDJbBMlhGfimDOStn6SJnFS5cGPb29lpd5BMVlPOXZbCM/FpGTpXDMlgGy8i9MrTJWJnJBeyHQYOkpCTExMTAysqKwZaIiIgIqXe4WVhYICEhAYmJiZneDnMWERERkaLsylmJiYlISEiAhYVFhi70ERERUd6R0VzAi30aJCUlAUjtG5WIiIiIUomDRGs7xp4qzFlEREREyrIjZ4nritsiIiKi/CkjuYAX+7TAu6CIiIiI/pOd2Yg5i4iIiOg/zFlEREQkysh3OS/2EREREREREREREREREeVTvNhHRERERERERERERERElE/xYh8RERERERERERERERFRPmWQ2xUoEKZ3VJpUPgeKzVIZ0/dlVzWIiIiIdCe/5SxmLCIiIsovmLOIiIgKDD7ZR9nC0dERMplM65/p06fndpWJKAtkMhkcHR2Vpvv6+kImk6Fq1ar48uWLynUFQUDTpk0hk8nQt2/fDJUrftY8efJEZZ0aN26coe0REeV1zFhEX5e8mrFU1YmIKL9jziL6ujBnUUHHJ/soW9WvXx9OTk5q5x87dgxv3rzJwRoRUU6aNm0aDh48iOvXr8PX1xdz585VWmb58uU4deoUHBwc8Ouvv+ZCLYmI8h9mLKKvGzMWEZHuMGcRfd2Ys6ig4MU+ylb9+vWDt7e32vnu7u4MSEQFmKGhIbZs2YKaNWti4cKFaN++PerWrSvNf/DgASZPngyZTIZNmzbB3Nw8F2tLRJR/MGMRfd3Sy1hPnjxhxiIiyiTmLKKvG3MWFRTsxpOIiLJV1apVMX36dCQnJ8PLywtxcXEAIP0eGxuLoUOHokmTJrlcUyIiIqL8Q1PGmjhxIjMWERERUSYxZ1FBwIt9lKeEhISk20e6Knfv3oWPjw8cHBxgZGQEKysrNG3aFDt37lS5/PTp09X2tx4QEACZTKbyrq4nT56o7Us5MjISW7ZsQevWrVG2bFmYmJjA3NwcNWvWxPz58xEfH69x3729vTXut6r6iOsEBARo3La2xH13dnZGo0aN1C7XvHlzqV5py06vTuJrqG5stYwcy5SUFHTr1g0ymQw9evRASkqKwnw/Pz+VxzklJQU9evSATCZD9+7dldYDgCtXrqBnz54oU6aMVI8WLVrg6NGjal+XpKQkbNq0Cc2aNYONjQ2MjIxgb2+PZs2aYfny5dJyGRkTQP64u7u7K80vUqQIKlasiNGjR+PZs2dKdYqMjISfn1+mz8vMmjBhAmrXro379+9jypQpAIANGzbg3LlzcHJywvz589Wue/v2bXTp0gU2NjYwMTFBlSpVsGjRIiQnJ+ukrkREXwNmrLyRscTMok52ZCx1Y35kZ8aaPn06nJ2dmbHySMZauHAhrl27xoxFRJRLmLPyRs4qKG1ZzFnMWUSZxW48KU8qUaIEWrZsqTBt8+bNKpc9cuQIOnfujPj4eFSoUAGdOnVCREQETp8+jVOnTiEwMBAbN27UeZ0DAwMxa9Ys2NnZwcnJCXXr1kVkZCQuXLiASZMm4cCBAwgODoaRkZHG7aTtK/7ff//F2bNndV19JWfOnMH169dRvXp1hen//PMPTpw4oZMyM3os9fT0sHXrVsTExGDHjh0wNzfHmjVr0i1n8ODB2LFjB9q2bYutW7dCT0/xvodly5ZhzJgxSElJQfXq1VGnTh28fv0aISEhOH78OGbMmIGff/5ZYZ3o6Gi0bdsWoaGhMDQ0RL169WBra4vXr1/j5s2bOHnyJIYPHw4A8PLyUlj38+fP2LNnD8zMzNC5c2eFeQ0aNFCqf4sWLVCyZEkAwIcPH3DmzBksXboU27dvx82bN6V5QOp5OXLkyHTPy+ymr6+PzZs3w8XFBcuWLUP58uXh5+cHPT09bN68GaampirXCw0NRcuWLRETE4Ny5cqhefPmePv2LaZMmYLz589nez2JiL42zFi5n7EuX77MjPUVZaz0zsuMUpWxfH19mbGIiPIA5qzcz1lsy2LOygrmLMrvcvVi3/Tp0zFjxgyFaRUqVMDdu3dVLr9+/Xps2bIFt27dAgC4urpizpw5qF27ts7rSjlDvNuhUqVKSnfTqApIb968Qc+ePREfH49Zs2ZhypQp0h1Tly9fxvfff49Nmzahbt26cHd312ndXV1dsXPnTnTp0kVh+vv379GtWzccP34cfn5+GD9+vMr1xTty0vYVHxAQkOMBqXbt2rhy5Qr8/PywadMmhXl+fn7Q19dHw4YNERISkm1lZuRY9u/fX1rP0NAQu3btQuvWrbF27VqYm5tjwYIFassZP3481q1bhyZNmmDXrl0wMFD8GAwMDMTo0aNhbW2NPXv2KNwVFhYWhtatW8PX1xdubm5wc3OT5vXp0wehoaFwcXHB3r17Fe6YS0pKwpEjR6Tf057bT548wZ49e2BjY6PyLrIHDx4o/D5p0iSF8zkmJgZubm64cuUKdu/ejWHDhknzXF1dce7cOYW+xgHl87JDhw7qXrJMq1ixIubMmYMxY8Zg6NChAFJf/3r16qlcPj4+Hj169EBMTAxGjRqFRYsWQV9fHwBw8+ZNNG3aFG/fvs32ehIVVMxZJI8ZK29kLDc3N4SGhjJj5ZGMlZYuMpa68zIrVGWsfv36MWMR5RBmLEqLOStv5Cy2ZTFnZQfmLMrPcr0bz8qVK+PVq1fST2hoqNplQ0JC0L17dwQHB+PcuXMoXbo0vv/+e4SHh+dgjUmXEhMTAaR+6Wlj/fr1iI6OhqurK6ZOnarQNULNmjUxdepUAKmPXOtapUqVlO4cAoCiRYtKj73v2rVL7friI+ja7rsu2dnZoV27dtixY4fCF1JUVBS2bduGdu3awcHBIVvLzMqxNDY2xsGDB1GnTh0sXLgQs2fPVlnGrFmzsGjRItStWxcHDhyAsbGx0jK+vr4QBAFr1qxR6v6hatWqWLJkCQAodGVw48YN7N27F8bGxjh06JBS1xgGBgZo3769di9EJpiZmeG7774DAKVuHCpVqqQUjgDtz8usGjJkCCwsLAAAxYsXx8yZM9Uuu2fPHjx//hylS5fGggULpHAEANWqVZPOASLSHnMWiZix8kbGcnR0RJMmTZixtMxYd+7cYcZSQz5j2draYtSoUWqXZcYiyn7MWCSPOStv5Cy2ZTFnZRfmLMqvcr0bTwMDA4XHdDXZvn27wu8bNmzAnj17cPLkSfTu3VsX1aMcJg5+qu1j2OLdOGkfJRf17dsX48aNw4MHD/DmzRuUL18+W+qpTnJyMk6ePIm///4br169QlxcHARBgCAIAIB79+6pXTcmJgYA1D4SntNGjBiBffv2Yd26dVI/1evXr0dsbCxGjBiRbX2rizJyLF++fAlbW1uF+YULF8aff/6J//3vf5g2bZr0pSxavnw5fvrpJxQtWhRHjx5F4cKFlcp4+/YtLl68CBMTE3h4eKish3gX0t9//y1NO3bsGACgTZs2sLOz02p/s0t0dDT+/PNPbNmyBaampirrnZycjJCQkEydl1k1e/ZsREdHA4DUjcX333+vclnxHPjhhx9U/qHg5eWF0aNH66yuRAURcxaJmLHyTsbq3bs3goKCmLHSUJWxzpw5A4AZSxX5jPXy5UtcvHgRlStXVrksMxZR9mPGInnMWXknZ7EtizkrOzBnUX6V6xf7Hjx4AFtbWxgbG+O7777D3LlzUaZMGa3WjY2NRWJiIqysrNQuk5CQgISEBOn3jx8/ZrnOpDvv3r0DkHqnhjbEO+HKli2rcr6lpSWsrKwQFRWF169fZ08l1Xjw4AHatWun1OWiPE3nn7gv1tbWGS7bx8cHPj4+AFL7ly5atChcXFzQr18//PDDDxneHpAaBKpVq4bVq1djwoQJAICVK1eiWrVqcHd3TzcgyddJGxk5li9evFAKSEBqP+nv378HkBrwKlasCADYv38/bt68CSD1kf+jR4+iZ8+eSus/fvwYgiAgLi4u3ZAeGRkp/f/p06cAIJWna6oGhHZ1dYW/v7/S6/fgwQN07NgR//zzj9rt6epz8fLly5g7dy4MDQ0xYMAArFy5Ev369UNYWJhSgAWAFy9eAFB/DhQtWhQWFhZS4CKi9OVEzvry5Yv0O3NW3sWMlXcyVp06dfJ9xvr2228B6D5jvXz5EgAzVlqqMtbUqVPRqVMnZiyiHKLrjAUwZ+UnzFl5J2cVhLYs5izmLKLMytWLfXXq1EFAQAAqVKiAV69eYcaMGWjYsCFu3bqFIkWKpLv+xIkTYWtri2bNmqldZu7cuUp9qQNA165d033E3NraGt7e3pDJZAqP4Kal2/trdEPTl7i82NhYrZZNSkoCkNpXtablxbud3r17p7CcWI74JWZsbKx2O/LTxeD78uVLtcuLj4LHx8dLy4hBLG09xH0AUr800s4TP8CTkpKU5nl4eODBgwdo3Lgx+vXrBycnJxQuXBiGhob48uULqlSpolR/+To+fPhQ5T6mrY/8MRG/2GrUqCF1RZCQkIBHjx4hKCgIQUFB+Pvvv6U+ptMjliXuX7du3TBlyhSsWrUKAPD8+XMMHDgQDx48kMpOe8xV1UlebGwsAgMDkZKSkulj+ezZM6UQ/ebNGwwbNgympqZYu3YtJkyYgDt37gBI7WbT1tYW8+bNw6BBgzB06FA4ODigRIkSCtsQL9qZmZmpffpMnng8xC/sqKgord9b8jSdV8B/7w/x/dOwYUPY2NgASD2v7969iytXruCHH37AmjVrFMKjh4cH7t27l+55qe17XZ66+gKpx7N79+5ISkrCyJEjMWTIEFy8eBGXLl1Cv379MGfOHKV1xDsCIyIi0j0HHj9+LHWVknZ+Zo5BRmTmtcqr5RSEMsS7+khZTuQsdd3NfM05KyPnuzbvD2asnMtYwH+vl64y1sePHxEbG6vTjJWUlKRwbukiY12/fh2AbjMW8F+3aLrKWEDq66bLjJU2v2sjoxnrypUrOH/+vE4zVtrzSldYRt4qgzlLtZzIWABzlirMWfk3Z7EtizmLOYs5i2X8R1cZK1cv9rVq1Ur6f7Vq1VCnTh04ODhg586d6Nu3r8Z1582bh99//x0hISEq+yoWTZ48GWPGjJF+//jxI0qXLo0//vgD5ubmGsuIj4/H48eP4ejoqLGM/EjbLgAePHig1bLiwLAlSpTQuLyJiQmA1OApv5xYjvgF3bBhQ7XbkZ9etmxZPHr0CPHx8SqXj46OxocPHwAADg4O0jLiHUdp6yHuAwCYm5srzRMDtYGBgcK8u3fv4t69e7C2tsbx48eVBsqVvxNFVT3/+ecffP78GSVKlFDqWzttfeSPiXgODx8+XGEgZABYu3YtBg0ahA0bNmDhwoVa9Z8uliXu3+jRo7FkyRKpH2xra2uMGTMGJiYmUtlpj7mmOgGpA/iWLVsWenp6mT6W3333nVIXAyNHjkR0dDRWrVqFXr16oXbt2qhXrx7evXuHEiVKICQkBOXLl8enT58wdOhQzJ07V2GgYSA1GAGAnp4edu/eDT299Ic1ffDgAapWrQog9Ys9M91rqDuv5MsoX7689P755ZdflAbp9vX1xS+//IKFCxfi8OHDAP47L4sXL57ueWlqaprhuqurL5A6ePS///4LV1dXLFq0CAYGBpg/fz7atWuH3bt3o2/fvmjZsqXCOs7Ozjhz5gxiY2NVbvfDhw/49OkTgNTzJW1/8gCUzitd0PZzMT+UUxDKSE5OxrVr13S2/fwsJ3LW+PHjpTtmAeYsQPuMBWj3/mDGyrmMBfz3eukqY5mbm8PU1FSnGcvAwEDhe10XGathw4aIiIjQacYCID0lo6uMBaQec11mrLT5XRsZzVg7duxAlSpVdJqx0p5XulIQsklBKoM5S7WcyFgAc5YqzFn5N2exLYs5izmLOYtl/EdXGUu7d38OsbS0hLOzM/7991+Nyy1atAjz5s3D8ePHUa1aNY3LGhkZwdzcXOGH8qbExEQEBwcDABo0aKDVOuKXxObNm1XO37RpE4DUD39t+9PPjKioKABA8eLFlb6EAGDbtm0a19+zZw8AoEWLFtlWpx9//BFA6h0m8gMTZ4SxsTEGDBiA0NBQhIaGol+/ftKXdHbLyLFMG47Wr1+PP//8E82aNcOgQYMApH7ZduvWDQAwcOBA6QN68ODBaNq0KY4ePYoNGzYobMfW1hbVqlXDp0+fpHH4tCF+0R89elTqBiGnde3aFQBw+vRpaZp4Xtra2mbqvMyss2fPYsmSJTAyMsLmzZulsu3t7aVBqfv166fUhYGbmxsAYOfOnSrvdNqyZYtO6kv0tWDO+noxYzFjAdmbscT/6zpjNWzYEAAzlkhdxnJ0dJQuCDBjEeU8XWQsgDkrv2DOYs4CmLMyizmLKHvlqYt9nz9/xsOHD1GqVCm1yyxYsAAzZ87EsWPHULNmzRysHenSly9fMGLECERGRsLd3V1tP8dp9e/fH+bm5rh69SrmzJmj8AjstWvXMGvWLACpd2bokrOzM/T19XH//n1pYFbRoUOH8Ouvv6pd9/nz51i+fDmA1C/v7HL06FEAqXf4iI/JZ8aQIUPQpk0btGnTRusuFDIjs8fy6dOnGDt2LMzNzbFx40bIZDJpnvj/tNM2bdoEc3NzjBkzRuruQCSW4+Pjg0OHDinVUxAEXLhwAcePH5emVa9eHe3bt0dcXBzat2+PZ8+eKayTlJSEgwcPZuj1yKjff/8dABSOtXhehoWFZfi8zKzY2Fh4e3sjJSUFM2bMUBrAeODAgWjatCnCw8MxatQohXmdO3eGnZ0dnj17hsmTJ0vdHADArVu3pGNDRJnDnPV1YsZixsrPGeubb75hxvp/6WWsbt26MWMR5RJmrK8XcxZzFnNW1jBnEWWvXO3Gc9y4cfDw8ICDgwNevnwJX19f6Ovro3v37gCA3r17w87ODnPnzgUAzJ8/Hz///DN+++03ODo6SoPUFi5cGIULF861/aCs2bhxIyZPnozIyEjY2dlh7dq1Wq9bokQJbN++HV26dMHUqVOxdetWuLi4ICIiAqdPn0ZSUhJ8fHzQv39/lf3snjhxAvHx8QrTwsLCAABXrlzBpEmTFOaJd2+8f/8ekyZNQpcuXeDq6gobGxsMGzYMy5YtQ9OmTdGwYUPY2tri3r17uHr1KqZNm6byw33cuHHw9/dHVFQUzMzMsGbNGqxZs0ZhGfHuwNDQUHh7e6Nbt25KjxHv2rULd+/eBZDaz/ndu3elL/CJEydq1e2BOnZ2dtKj9LqUkWMpEgQBPj4++PTpEzZu3Kj1gOhlypTBkiVL0K9fP/Tp0wcnTpyQQpSHhweWLVuGsWPHol27dnByckKFChVgYWGByMhI3LhxAxEREZg4caJCX+j+/v5o3bo1zp8/j/Lly6NevXqwtbXF69evERYWhsjIyGzrj3nevHnSoNKxsbEICwuTjv9PP/0kLZfZ8zIrJkyYgH///Rd169bFuHHjlObLZDJs3LgRVatWRUBAALp06YLWrVsDSO0aZfv27WjdujUWL16M/fv3o1atWnj37h1CQkLg4eGBK1euKIVaIlKNOYuYsTKWsSZNmqQ0rhEzFjMWMxYRpcWMRQBzFtuyUjFnaY85izmLcoCQi7p27SqUKlVKKFSokGBnZyd07dpV+Pfff6X5bm5ugpeXl/S7g4ODAEDpx9fXV+syo6OjBQBCdHR0usvGxcUJt2/fFuLi4jKyW4IgCML9+/czvE5+LkM8Nv7+/hqXc3NzUzpmEydOFCpWrChMmzZNiIiIULuueLxVuX37tuDl5SXY29sLhoaGgqWlpdC4cWPh999/V7kvvr6+Ks+ljP7I729KSoowZ84cwdXVVShcuLBgYWEhNGjQQKqDqvqrO6c1/WzdulVa38vLS2m+np6eYG1tLTRr1kxh/7Xh7+8vABA6duyY7rJi2WmPubrposePHwsABDs7O5XztTmWIj8/PwGA0Lp1a5XbGjZsmMbPiFatWgkABD8/P6V5YWFhwoABA4Ty5csLxsbGgqmpqVCuXDmhRYsWgp+fnxAeHi4IguJ5lZCQIKxevVpo2LChYGlpKRQqVEiwt7cXmjdvLqxcuVJlHeRfEwcHB5XzxTLE94/8j76+vlCiRAnBw8NDOH78uNK6KSkpwsaNG9M9LzP6eaKqvidPnhRkMplgYmIi3L17V+1+CIIgrF27VgAg2NraCu/fv1dYLiwsTOjUqZNgZWUlGBkZCZUqVRLmzp0rJCYmSu+Zx48fq6yTuvMqO+XEZ29OlVMQykhKShIuXbokJCUl6bSc/EiXOUtdRmLOyv4ymLFyLmMFBwdL+6KrjOXl5ZXucc9qxnJwcFBZRnZmLPE46zJjCcJ/55auMpZYhi4zlvx+aCMzGUu+DF1lLHXnVXZjGXmrDOYs1XTdlsWclXNlMGexLSu96aKcbMtizmLO0hWWkXfKyEjGysh3eq5e7MsNDEd5r4ycKic7yxC/0NKGgIyW4eDgILi5uWm1rBhe5AOSruS348Eycr6M9AJddpSRUZqCd3bi52LeKoONULmDjVAsQ1dl5GbGkr/Yp0ssg2VokpmMldEyMoqNUF9vGcxZuYM5i2Xoqgy2ZeWPMnKqnK+xDOYslpFXytDVxb48NWYfEREREREREREREREREWkvV8fsI8qvihYtirlz58LV1TVL21m0aJHWffQ3aNAA/v7+KFeuXJbKJCIiIsqrcjNjVaxYEZ8+fcpSuURERER5FduyiIgKNl7sI8oECwsLpQGPM6Nz585aL+vk5AQnJyeVgzMTERERFQS5mbEA8GIfERERFVhsyyIiKtjYjScRERERERERERERERFRPsUn+4iIKMN8fX1haWmZ29VQ4Ovri8TExNyuBhEREVGm5dWMldfqRERERJRReTHT5MU6Uf7Fi31ERJRh06dPz+0qKJk+fTq7BiEiIqJ8La9mLADMWURERJSvMWdRQcduPImIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKYPcrkBB0GTIMxVTjQComp6dMl/GqVVlsrUmjo6OePr0qdbL+/r6Yvr06dlaByLKG8TPA0EQFKbv2bMHkydPRsmSJfHPP//AyspK5fo+Pj4ICAhA06ZNERQUBJlMpnXZFy5cgLOzM7y8vBAQEJCV3SCiPCK/5SxmLCLSFXUZy9/fH3369NFpxgoJCUHjxo2ZsYgKGOYs5iwiSsWcRQUBL/ZRtqpfvz6cnJzUzj927BjevHmTgzUiorzC09MToaGhOHLkCIYOHYodO3YoLXPo0CEEBATA3NwcmzZtUghH7u7uOH36NIKDg+Hu7p6DNSciyn3MWESkjo+PD7Zs2YKQkBBmLCKiTGDOIiJ1mLMoP+HFPspW/fr1g7e3t9r57u7uDEhEX7H169ejSpUq+P333+Hp6YnOnTtL8969e4f+/fsDAJYuXYoyZbL3rk0iovyMGYuINJk1axbatWvHjEVElAnMWUSkCXMW5Rccs4+IiHJMqVKlsGLFCgDA4MGDERERIc0bMmQI3rx5Aw8PD/j4+ORWFYmIiIjyneLFizNjEREREekAcxblF7l6sW/69OmQyWQKPxUrVtS4zq5du1CxYkUYGxujatWqOHr0aA7VlnJCSEiI0jmR9keVu3fvwsfHBw4ODjAyMoKVlRWaNm2KnTt3qlxePPdU9bUeEBAAmUym8q6uJ0+eQCaTwdHRUWleZGQktmzZgtatW6Ns2bIwMTGBubk5atasifnz5yM+Pl7jvnt7e2vcb1X1EdfJrv6cxX13dnZGo0aN1C7XvHlzqV5py06vTuJr2LhxY5XzM3IsU1JS0K1bN8hkMvTo0QMpKSkK8/38/FQe55SUFPTo0QMymQzdu3dXWg8Arly5gp49e6JMmTJSPVq0aKHxMycpKQmbNm1Cs2bNYGNjAyMjI9jb26NZs2ZYvny5tFx657i64+7u7q40v0iRIqhYsSJGjx6NZ8+UxzyIjIyEn59fps9LXejevTs8PT3x9u1bDBw4EADw+++/Y+fOnbCyssK6desUlhc/F06fPg0AaNy4scJrwP7MiVRjziJ5zFh5I2OJmUWd7MhYql5DIHsz1vTp0+Hs7MyMxYxF9FVixqK0mLPyRs4qKG1ZzFnMWUSZlevdeFauXBknTpyQfjcwUF+lv//+G927d8fcuXPRtm1b/Pbbb+jQoQOuXr2KKlWq5ER1KYeUKFECLVu2VJi2efNmlcseOXIEnTt3Rnx8PCpUqIBOnTohIiICp0+fxqlTpxAYGIiNGzfqvM6BgYGYNWsW7Ozs4OTkhLp16yIyMhIXLlzApEmTcODAAQQHB8PIyEjjdtL2Ff/vv//i7Nmzuq6+kjNnzuD69euoXr26wvR//vlH4T2bnTJ6LPX09LB161bExMRgx44dMDc3x5o1a9ItZ/DgwdixYwfatm2LrVu3Qk9P8b6HZcuWYcyYMUhJSUH16tVRp04dvH79GiEhITh+/DhmzJiBn3/+WWGd6OhotG3bFqGhoTA0NES9evVga2uL169f4+bNmzh58iSGDx8OAPDy8lJY9/Pnz9izZw/MzMwUugIAgAYNGijVv0WLFihZsiQA4MOHDzhz5gyWLl2K7du34+bNm9I8IPW8HDlyZLrnZU5bvXo1zpw5g/3792PhwoWYN28eAGDlypUK9QeAkiVLwsvLSxonQX7/AWgcW4Hoa8ecRWkxY+V+xrp8+TIz1leUsdI7L7MbMxZRzmDGIlWYs3I/Z7EtizlLl5izKK/L9Yt9BgYGSm8GdZYtW4aWLVti/PjxAICZM2ciKCgIK1as0OpDkfK+5ORkAEClSpWU7nBQFZDevHmDnj17Ij4+HrNmzcKUKVOkO6YuX76M77//Hps2bULdunXhruNBUF1dXbFz50506dJFYfr79+/RrVs3HD9+HH5+ftL5m5Z4R07avuIDAgJyPCDVrl0bV65cgZ+fHzZt2qQwz8/PD/r6+mjYsCFCQkKyrcyMHEuxL2wAMDQ0xK5du9C6dWusXbsW5ubmWLBggdpyxo8fj3Xr1qFJkybYtWuX0h9lgYGBGD16NKytrbFnzx6Fu8LCwsLQunVr+Pr6ws3NDW5ubtK8Pn36IDQ0FC4uLti7d6/CHXNJSUk4cuSI9Hvac/vJkyfYs2cPbGxsVN7Z8+DBA4XfJ02apHA+x8TEwM3NDVeuXMHu3bsxbNgwaZ6rqyvOnTuHunXrKmwj7XnZoUMHdS+ZThQrVgxr1qxBp06dMGHCBABAly5d0K1bN6VlK1asiICAALj//zgJafefiNRjziIRM1beyFhubm4IDQ1lxsojGSstXWQsdeelrjBjEeUMZiySx5yVN3IW27KYs3SNOYvyulwfs+/BgwewtbVFuXLl0LNnT5WP7orOnTuHZs2aKUxr0aIFzp07p3adhIQEfPz4UeGH8q7ExEQAqV962li/fj2io6Ph6uqKqVOnKnSNULNmTUydOhUAsHDhwuyvbBqVKlVSunMIAIoWLSo99r5r1y6164uPoGu777pkZ2eHdu3aYceOHXj79q00PSoqCtu2bUO7du3g4OCQrWVm5VgaGxvj4MGDqFOnDhYuXIjZs2erLGPWrFlYtGgR6tatiwMHDsDY2FhpGV9fXwiCgDVr1ih1/1C1alUsWbIEABS6Mrhx4wb27t0LY2NjHDp0SKlrDAMDA7Rv3167FyITzMzM8N133wGAUjcOlSpVUgpHgPbnpS517NhR6u7GyMgIq1atypV6EBVkzFkkYsbKGxnL0dERTZo0YcbSMmPduXOHGSsTmLGIdE/XGQtgzspPmLPyRs5iWxZzVk5gzqK8LFef7KtTpw4CAgJQoUIFvHr1CjNmzEDDhg1x69YtFClSRGn5169fo0SJEgrTSpQogdevX6stY+7cuZgxY4bS9K5du6b7RWRtbS312ayvr69hyZx9ZDg7pH1SSJ3Y2Fitlk1KSgKQekeLpuXj4uIAAO/evVNYTizn4cOH0vbUbUd+utjndKtWrVQuL94x8eDBAzx58kSa/u7dO5X1EPcBAD5+/Kg078WLFxrr9+nTJ2zevBnXrl1DZGQk4uPjIQgCBEEAkPpFqm6/xMFdP3z4oLBM2vrIHxMx7Kf3umtLLCspKQk//PAD9u3bhzlz5mDw4MEAgHXr1iE2NhadOnXC3r17VZadXp3E1zAlJSXTxzI0NFTpswAAVqxYgWbNmmHatGlISEiQAve7d+/w008/YdasWbCwsMDy5cvx6tUrpfWjoqJw8eJFGBsbo2LFiirrUaZMGQCpXUOIx2Pbtm0AUu/W1/Y9Iy+980rcpvj+efHihbTcp0+fcPr0aQQEBMDExARVqlRR2kZycjIuXLig8bzMTL3VET8P0m4vbRm7d+/G3bt3AaT+Ibt69WqVd0OJVO1/WuIfGqrev9klO1+r3C6nIJQhnsekLCdylro/Sr/mnJWR812b9wczVqqcyFjAf6+XrjLWx48f8cMPPyAoKEhnGSspKUnh3NJFxnr//j0A3WYsADh16hQA3WUsIPWY6zJjpc3vWaEuY4n7IU7XRcYSX0tdZiygYGSTglQGc5ZqOZGxAOYsVZiz8m/OYlsWcxZzFnMWy/iPrjJWrl7sa9WqlfT/atWqoU6dOnBwcMDOnTvRt2/fbClj8uTJGDNmjPT7x48fUbp0afzxxx8wNzfXuG58fDweP34MR0dHlXdN/Ef9HVx5Vfny5bVa7sGDB1otKz4+XqJECY3Lm5iYAEgNnvLLieWIg5ba29ur3Y78dPELsE6dOmqXt7KyQlRUFKKjo6VlrK2tVdZD3AcAMDc3V5onBmoDAwOleQ8ePEC3bt00fhB8/vxZbT0/fPgAIPWOG/ll0tZH/piI5/CkSZMwadIkAIC+vj6KFi0KFxcX9OvXDz/88IPa+qQllmVgYIBevXph4cKF2LVrl9SVwB9//IFq1aqhV69eUl/naY+5qjqpoqenl+ljWahQIZXLbNu2DdHR0QBS73wS77Q5c+YMbt68CSC1P/J79+6hZ8+eSutfunQJgiAgPj4+3bEToqKipOMRExMDIPWuLW3fW/I0nVfAf+8P8f3z448/Ki3j6uoKf39/VK1aVWndzp07459//lFb/ufPn2Fqapqpuqsifh6oeo+I0549eyb1bT5q1CgsXboUCxcuRO/evdXeaSfuv6bPhwsXLgBQ/f7NLtp+LuaHcgpCGcnJybh27ZrOtp+f5UTOGj9+vNR9CcCcBWifsQDt3h/MWDmXscSyypcvr7OMZW5uDjc3N1SrVk1nGcvAwEDhe10XGevbb78FoNuMBQCRkZEAdJexgNRjrsuMlTa/Z4W6jCXWp3z58jrLWOHh4QB0m7GAgpFNClIZzFmq5UTGApizVGHOyr85i21ZzFnMWcxZLOM/uspYuT5mnzxLS0s4Ozvj33//VTm/ZMmS0t0aojdv3mjsJ93IyCjHB+ukzBM/3GxtbXO5JhnXuXNnPHjwAG3btsWECRPwzTffwNzcHIaGhvjy5YvG8zAlJQWPHz8GAJQtWzbDZcsPhBwfH4+7d+8iKCgIQUFBuHfvHn766adM7dPIkSPRt29f7Nu3DwDw/PlzpcF8tamTPHEA3+z28uVLjBgxAmZmZjh8+DB69+6NO3fuAEjtZrNMmTIICAiAh4cHhg8fjsaNGyudZ2K3AYULF4anp2e21zG7yA/qGxsbi5s3b+LKlSv48ccfcfDgQemOLQBSOMrMeakrgiCgT58++PjxI/r06YNff/0VHz58QEBAAPr27YugoCCFri+IKHvoKmdpbkCivIIZixkrs1RlrOvXrwNgxmLGIiJANxkLYM7KT5izmLMyizmLOYsoO+Wpi32fP3/Gw4cPVV7pB4DvvvsOJ0+exKhRo6RpQUFBUv++lP/dvn0bAFC5cmWtlrezs8Pdu3fx6NEjlfOjo6MRFRUFACoflc8ud+/exc2bN2FtbY19+/YpDZSb3mO/d+7cwcePH1GiRAmULl06w+WnHQgZANauXYtBgwZh/vz5mDRpUqb6T+/RowcmTpwIPz8/AKl3j6m6i0jbOgH/DeCbVkaOpZ2dncry3r9/j1WrVsHd3R0nTpxAvXr18O7dO5QoUQInTpxA+fLlsWDBAgwdOhT9+/dXGGgYgPTay2QybNq0CXp62g1rKgYS8TF+XVM1qK+vry9++eUXDBkyBIcPH5bqc/PmTRQvXjxT56WurFq1CidPnkTp0qXx66+/AgB+/fVXBAUF4eTJk9K5S0TZiznr68aMxYyVnRmrYcOGiIiI0HnGKlWqFABmLG0xYxHlDmYsYs5izmLOSh9zFpHuaffu15Fx48bh9OnTePLkCf7++2907NgR+vr66N69OwCgd+/emDx5srT8yJEjcezYMSxevBh3797F9OnTcfnyZQwbNiy3doGyUWJiIoKDgwEADRo00God8Uti8+bNKudv2rQJQOoj2OndNZcV4hd38eLFlb6EAEhjuqkjBoYWLVpkW53EPzRiYmIUBibOCGNjYwwYMAChoaEIDQ1Fv379pMfPs1tGjmXagLR+/Xr8+eefaNasmfTF6uzsLPWZPXDgQOnR68GDB6Np06Y4evQoNmzYoLAdW1tbVKtWDZ8+fcKxY8e0rnvLli0BpPbV/vLlS63Xy05du3YFAKn7EOC/89LW1jZT56UuPHz4EBMnTpRCqNhVhqWlJdavXw8gtbsa+XEJRIUKFQLwXz/qRKQZcxaJmLGYsYDszVji/3WdsRo2bAiAGUsbz549Y8YiyiHMWCSPOYs5C2DOyizmLKLslasX+168eIHu3bujQoUK+OGHH2BtbY3z58+jWLFiAFLfSPIDj9arVw+//fYb1q1bh2+//Ra7d+/G/v370+2PmPK+L1++YMSIEYiMjIS7u7vWj//3798f5ubmuHr1KubMmaMwuOW1a9cwa9YsAKkfuLrk7OwMfX193L9/HyEhIQrzDh06JN3xocrz58+xfPlyAJAGD84O4iDBZmZmsLGxyfR2hgwZgjZt2qBNmzYYOnRodlVPSWaP5dOnTzF27FiYm5tj48aNCo/Mi/9PO038Yh4zZgyePn2qsD2xHB8fHxw6dEipnoIg4MKFCzh+/Lg0rXr16mjfvj3i4uLQvn17PHumOO5BUlISDh48mKHXI6N+//13AFA41uJ5GRYWluHzUhdSUlLg7e2NmJgYDBw4EM2aNVOY36pVK/Tp0wefP39Gnz59lAartbe3BwCNfbYT0X+YswhgxmLGyt8Z65tvvmHG0kJKSgomTpzIjEWUQ5ixSMScxZzFnJU1zFlE2StXu/EU39DqpH1DA0CXLl3QpUsXHdWIcsPGjRsxefJkREZGws7ODmvXrtV63RIlSmD79u3o0qULpk6diq1bt8LFxQURERE4ffo0kpKS4OPjg/79+6t8zPvEiROIj49XmBYWFgYAuHLlitKgvOKAue/fv8ekSZPQpUsXuLq6wsbGBsOGDcOyZcvQtGlTNGzYELa2trh37x6uXr2KadOmSV+88saNGwd/f39ERUXBzMwMa9aswZo1axSWEfv9Dw0Nhbe3N7p166Y0QOiuXbukx+4TEhJw9+5d6Qt84sSJmer2QGRnZyc9Sq9LGTmWIkEQ4OPjg0+fPmHjxo0K/XtrUqZMGSxZsgT9+vVDnz59cOLECSlEeXh4YNmyZRg7dizatWsHJycnVKhQARYWFoiMjMSNGzcQERGBiRMn4vvvv5e26e/vj9atW+P8+fMoX7486tWrB1tbW7x+/RphYWGIjIxU+sLPrHnz5iEgIABAaj/nYWFh0vGX79M+s+elrvj7+yM0NBRly5bFwoULVS4jdoEQHByM1atXY8iQIdI8T09P+Pv7Y8KECThx4gSKFy8OmUyGPn36oF69ejm1G0T5BnMWMWNlLGNNmjQJ+vr6CsswYzFj5YeMtWTJEly5coUZiyiHMGMRwJzFtqxUzFnaY85izqIcIHxloqOjBQBCdHR0usvGxcUJt2/fFuLi4jJczv379zNTvXxbhoODgwBA8Pf317icm5ubAEDw9fWVpk2cOFGoWLGiMG3aNCEiIkLtugAEdafs7du3BS8vL8He3l4wNDQULC0thcaNGwu///67yn3x9fWVtpeVH/n9TUlJEebMmSO4uroKhQsXFiwsLIQGDRpIdVBVf/F1y8jP1q1bpfW9vLyU5uvp6QnW1tZCs2bNFPZfG/7+/gIAoWPHjukuK5ad9pirmy56/PixAECws7NTOV+bYyny8/MTAAitW7dWua1hw4YpnW/yWrVqJQAQ/Pz8lOaFhYUJAwYMEMqXLy8YGxsLpqamQrly5YQWLVoIfn5+Qnh4uCAIiudVQkKCsHr1aqFhw4aCpaWlUKhQIcHe3l5o3ry5sHLlSpV1kH9NHBwcVM4XyxDfP/I/+vr6QokSJQQPDw/h+PHjSuumpKQIGzduTPe8zM7PE/G8lnf79m3ByMhIkMlkQkhIiMb1AwMDBQCCmZmZ8OjRI4V569evF2rUqCGYmpqqfB9u3bpVACB4eXll1+4oyYnP3pwqpyCUkZSUJFy6dElISkrSaTmkSF1GYs7K/jKYsXIuYwUHB0v7oquM5eXlle5xz2rGcnBwUFlGdmYs8TjrMmMJwn/nlq4ylliGLjOW/H5klbqMZWxsrPOMFRwcrPOMJQh557OXZaRizsodzFk5VwZzFtuy0psuysm2LOYs5ixdySufvSwjYxkrI9/pvNinAcMRG7XVEb/Q0oaAjJbh4OAguLm5abWsGF7kA5Ku5LfjwTLyVhmqAlJ2l6EOL/Z9fWWwESp3sBGKZeiqjNzMWPIX+3SJZbCMzFKXsbKzDHXYCPV1lsGclTuYs1iGrspgW1b+KCOnymEZipizWEZOlqGri325OmYfEREREREREREREREREWVero7ZR5RfFS1aFHPnzoWrq2uWtrNo0SIULlxYq2UbNGgAf39/lCtXLktlEhEREeVVuZmxKlasiE+fPmWpXCIiIqK8im1ZREQFGy/2EWWChYWF0oDHmdG5c2etl3VycoKTk5PKwZmJiIiICoLczFgAeLGPiIiICiy2ZRERFWzsxpOIiIiIiIiIiIiIiIgon+KTfURElK1GjRqFDx8+5ErZdnZ28PX1RfXq1XOlfCIiIiJdyc2M5ejoiGHDhqFp06a5Uj4RERGRLjFnUUHAi31ERJStRo0alWtl29vbY/r06blWPhEREZGu5GbGcnR0xIgRI1C+fPlcqwMRERGRrjBnUUHAbjyJiIiIiIiIiIiIiIiI8ile7CMiIiIiIiIiIiIiIiLKp3ixj4iIiIiIiIiIiIiIiCif4sU+IiIiIiIiIiIiIiIionyKF/uIiIiIiIiIiIiIiIiI8ile7CMiIiIiIiIiIiIiIiLKp3ixj4iIiIiIiIiIiIiIiCif4sU+IiIiIiIiIiIiIiIionzKILcrUBA8e/YMb9++VZr26dMnnZeb2TJsbGxQpkyZbK4RERERUfbKbzmLGYuIiIjyC+YsIiKigoMX+7Lo2bNnqFSpEmJjY3O7KhliamqKO3fuMCQRERFRnpUfcxYzFhEREeUHzFlEREQFC7vxzKK3b98iNjYW27Ztw5UrV6Sfffv2KfyelZ/NmzfDzMwM1apVw19//ZXlMrZt24bY2Filu7eywtHRETKZTOuf6dOnZ1vZlL2mT58OZ2dnBAQEKEyPiIhAsWLFIJPJ8Ntvv6ldPyQkBHp6ejA1NcX9+/e1LjcgIAAymQze3t4q6ySTyZTqRESZJ5PJ0LhxY6Xpvr6+kMlkqFq1Kr58+aJyXUEQ0LRpU8hkMvTt2zfDZYvv96x8F3Ts2BEmJiZ48eKF0jyZTAZHR0el6breN/G78MmTJwCAVq1aQSaT4fHjx2rX8fLygkwmQ4sWLdQuEx8fj2+++QYymQwzZ87MUJ0AzZ+hzZo1g7m5OV6/fp3h7eaEnMhZ6n4yUwYzFmkivhf37t2rMF3XGUsknktElD3U5Zm4uDi0aNECMpkMc+bMUbv+3bt3YWJiAj09PZw+fVrrckNCQiCTydCrVy+t65QReSljvXr1Cnp6enBzc1O7TF79OzWvZyxANzlLXfsVcxYRke5pyiYVK1aEs7OzTrKJyN3dHc7OzlKbSG5T9z2dF7LD5s2btd5eRvDJvmxSqVIl1KhRQ/q9SJEiKF++fJa3e/HiRQwfPhzffvstjh07hiJFimR7Gdmpfv36cHJyUjv/2LFjePPmTQ7WiLJL8eLFsXr1anTp0gXDhw9H48aNUapUKYVlPn36BG9vbwiCgLlz58LZ2TmXaktEmTVt2jQcPHgQ169fh6+vL+bOnau0zPLly3Hq1Ck4ODjg119/VZjn6OiIp0+f4vHjxyobg7LDiRMnsH//fowbNw729vaIjIzUar2s7ltGeXp64tixY9i7dy/Gjh2rcplly5bh5MmTOH78ONauXYuBAwcqLTNlyhTcuXMHtWrVwuTJkxXmiQ33giBkqo7z5s2Ttuvv75+pbeQEXeUsTfJazmLGKriymrECAgLg4+MDLy8v3hhFlAeYmJhgwYIF6NatG2bMmAEPDw9UrVpVYZnk5GR4eXkhPj4eo0aN0ngxKyelzVjJyclaraer/FiqVCnUq1cPoaGhiIiIQPHixZW2m1f/Ts0vGQvIvpylqf0qLeYsIqKcY2Jigs2bN6N+/fqZyiYhISFo3Lgx3NzcEBISksO1z37aZIfPnz/nyzbuPPNk37x58yCTyTBq1Ci1yyQmJuKXX37B//73PxgbG0sBoqC6ePEimjdvjipVqqQblPKKfv36ISAgQO1PxYoVc7uKlAWdO3dGt27dEBUVhf79+yvNHz16NJ4+fQp3d3eMGDEiF2pIRFllaGiILVu2oFChQli4cCHOnz+vMP/BgweYPHkyZDIZNm3aBHNz8xyv4+jRo2FsbIxJkyZlaL2c3rcOHTpAX18fe/bsUbuMpaUlNm7cCAAYN26c0lOAf/31F5YtWwZjY2Ns3rwZBgaZv0/Lx8dHKWfVrFkTbdu2xebNm3H58uWvKmflN8xYBRszFlHB8u2332L8+PH48uULevfujcTERIX5c+fOxcWLF1GhQgWNd9jntLyYsTw9PZGSkoL9+/erXSa3P0OPHDmi1J4ln7Fu3LhR4Nuz8mP7lTzmLCIq6OrUqYO+ffvmu2yiK+llhzlz5uTLv7/yxMW+S5cuYe3atahWrZrG5aZNm4a1a9di+fLluH37NgYNGoSOHTvi2rVrOVTTnJPfgxIVXCtXrkTJkiVx5MgRbNq0SZp+9OhRbNy4EUWKFIG/vz+7iSLKx6pWrYrp06dLd3bFxcUB+O9Or9jYWAwdOhRNmjTJ8boFBQXh1q1b6NChA6ytrTO8fk7um42NDRo2bIjz58/j5cuXapdr0aIFBgwYgM+fP8PHx0d6Sk/8PSUlBbNmzUKlSpUyVY/w8HAAQOnSpVXO79u3LwRBgI+Pz1eTs4jyImYsooJlxowZqFKlCq5fv67QDfeNGzfwyy+/QF9fH1u2bIGJiUku1vI/eTVjderUCQA03jwF5O5naEhIiMr2LDFjLVu2rEC3Z7H9iogofxgxYkS+yia6pik77N69O1/+/ZXrF/s+f/6Mnj17Yv369ShatKjGZbdu3YopU6agdevWKFeuHAYPHozWrVtj8eLFOVTbnPE1ByVx/AFNP6rcvXsXPj4+cHBwgJGREaysrNC0aVPs3LlT5fJi/7iq+lvX1K/ukydP1I5TEBkZiS1btqB169YoW7YsTExMYG5ujpo1a2L+/PmIj4/XuO/e3t4a91tVfcR1crLLJisrK6xbtw5A6h2Sz58/x/v379GvXz8AwOLFi9V23ZeUlISlS5eiatWqqFKlCooVKwZPT0+EhYXppK6bNm1CkyZNYG9vLx2PSpUqYfTo0SrH0Hr69Cnmz5+PJk2aoEyZMjAyMoKlpSUaNGiAtWvXIiUlJcN10HTeimNbaDqGp06dwogRI2Bvbw8jIyMUK1YMtWrVgq+vL969eyctp+m8DQoKgqmpKczMzHDq1CmV5TRu3Fjj+Ze2furOvY8fP2L69OmoXr06ChcuDGNjY5QvXx4jR45U2e2JpnoDymOgyUtKSsKGDRvg7u4OKysrGBkZoUmTJhg8eDCeP3+utLz4+eLu7q6yLCC1f3GZTKbULYG66QAQHBys8X0KAPfv38fAgQOlO3ktLCzQqFEjbNu2TW09nJ2dpbufVXn27BkMDAw0nmNZMWHCBNSuXRv379/HlClTAAALFy7EuXPn4OTkhPnz5yssLx7Lp0+fAgDKli0LmUwm7Ud2dfWwYsUKAFD7Wmsjo/sm7/bt2+jSpQtsbGxgYmKCKlWqYNGiRWq7ufL09IQgCNi3b5/GOi1atAiOjo44ffo0/Pz8AKQ+6ffo0SM0aNAAo0ePVlhe/B4TpX3Piu+Zz58/S+ODmZqaqiy7TZs2sLGxwa1btzBy5MgCn7O+VsxYBTNjOTo6wsfHBwCwefNmaZ+cnZ01ft9pKyoqCl5eXnBxcUGxYsVQqFAhlCxZEvXr18eOHTtUjs114sQJDB8+HNWrV4eNjQ2MjIxgb2+Prl274tKlSxmug6bzJiEhQfqeUXcOx8bGYunSpWjQoAGKFi0KIyMjODg4wMPDQ2mMDnXf94IgYMCAAZDJZKhbty6io6OVytH0HhPrmJa6el+7dg29evVSyKP169fHunXrVH7fiLlB1Xdtevnn5cuXGDNmDCpVqgRTU1MUKVIEtWrVwooVK5CUlKS0fHrvDXXvZU3vceC/MWzV7QcA7N69Gy1btpTORTs7O/Tq1Qu3b99WWw+ZTIYiRYrg48ePKrc5e/bsdHNcZhUqVAhbtmyBoaEh5s6diytXrijcTT9x4kTUrl1b7fpbtmxBrVq1YGpqCisrK7Rs2RJnzpzJ1jrKy42MpS4/ij8hISFwcHCAq6srgoOD8eHDB7VlZ9ffqcbGxlr/nSp+Bnp7e6tszxIz1o4dO7B58+YC2Z71NbdfyWPOyt2cJe77xIkT1S6jrm3h9u3b8PX1Rf369WFnZ4dChQrB2toazZo1U3scNJH//knvR93+nzx5EkOHDkWpUqVQqFAhFC9eHB07dsS5c+dULi9/jq1fvx6urq4wMzODpaUlWrdurfS0tTxV7Sply5ZV264iCg8Px/jx41G1alUUKVIEZmZmcHZ2hre3N/7++2+l5ePi4rB48WLUrVsXlpaWMDY2RoUKFTBhwgSFti2RpjaY3Mg2zs7Omc42umhjyqzMZBN3d3c0btwYAHD69GmFczi7hm7R1PYnXmxT99mXFbmRHXQt18fsGzp0KNq0aYNmzZph1qxZGpdNSEiAsbGxwjQTExOEhoZqXCchIUH6XV3IzysYlFKVKFECLVu2VJimbuDKI0eOoHPnzoiPj0eFChXQqVMnRERE4PTp0zh16hQCAwOlLtJ0KTAwELNmzYKdnR2cnJxQt25dREZG4sKFC5g0aRIOHDiA4OBgGBkZadxO2r7i//33X5w9e1bX1c8QDw8PeHt7IyAgAH369EGxYsXw6tUrtGzZUuWjzwCQkpKCLl26YP/+/ShUqBBq164NOzs7XLhwAbVr10afPn2yvZ4nTpxAVFQUqlWrBktLS8TFxeHChQtYunQpNm3aJD2eLtq6dSt++uknlC1bFs7Ozqhfvz5evXqFc+fO4ezZszh+/Dh2796dLRdWHj58qPGCApB6x83y5csBANWrV0fDhg0RHR2Ne/fu4ZdffkHjxo3TbcgLCgpC+/btIZPJcPjwYekLWh1PT08ULlxY+j00NBQPHz7Uap/evHmDRo0a4f79+zA2Noa7uzssLCzw999/w8/PD1u3bsWJEycUxoPIrE+fPqFdu3YICQlB4cKF4erqimLFiuHKlStYs2YNdu3ahaCgILi4uGS5LE0SExMxdOhQjcvs2rULvXv3Rnx8PCpWrIjWrVsjOjoaFy5cwI8//ohTp06pvaAHpI5vour9sWLFCq3HUckMfX19bN68GS4uLli2bBnKly8PX19f6OnpYfPmzUoXjpycnODl5YXdu3cjJiZGOpc+fvwIc3NzlCxZMst1io+PR2BgIAwNDdGoUaNMbyej+yYKDQ1Fy5YtERMTg3LlyqF58+Z4+/YtpkyZovYPqI4dO2LEiBHYs2ePxnNFvGOsSZMmmDx5MvT19bF27VqYmZkhICAAenqK92dVr14dXl5e0nejl5eXwnzxfTx06FCUL18eFy5cUFu2oaEh3N3dsXv3bvz7778K87TJWfKN/Xk9ZxEzVkHLWJ07d8b58+dx9uxZ/O9//0ODBg0ApL4XNV1E0FZUVBR27tyJqlWron79+jAzM8Pr168RGhqKv//+G+fOncOff/6psM6gQYPw/PlzVK5cGfXr14eBgQHu3r2LnTt3Yu/evfj999/h6emZ5boBqRcRHjx4oHb+8+fP0bJlS9y+fRumpqaoX78+rK2tER4ejjNnziAsLAxBQUEayxAEAQMHDsT69etRt25dBAYGauyCMCPvMVV27tyJXr16ITExEaVLl0aHDh3w6dMnBAcH4++//8bevXtx8OBBFCpUSOttqvPXX3+hQ4cOeP/+PRwdHdG8eXMkJCRI424dOnQIhw8fhqGhYZbL0iQ0NBRbtmxROz8pKQk9e/bEzp07YWRkBFdXV9jZ2eH+/fvYvn079u7di7179yq97qLPnz9j06ZNSl1ZJyYmYtWqVdm5K0pcXFwwdepUTJ8+Hb1790arVq1w8+ZNVKtWDb6+vmrXGzlyJPz8/KCnp4cGDRrA1tYWN2/ehLu7O4YPH57t9cytjKUuP4rE/Ojp6YkrV67g4MGD6N27t9rys+PvVHd3dxQtWlSrv1OPHj0KAKhcubLKmxnkM5aBgUGm2rPycs5i+5Uy5qy8nbNUWbJkCTZu3IiKFSuiatWqsLS0xLNnzxAcHIyTJ0/i/PnzWLJkSYa3a2Zmhs6dO6ucp6mdZdy4cVi8eDH09PRQs2ZNNGzYEM+ePcOBAwdw6NAhrF+/XrrRK60xY8Zg6dKlqF+/Ptq3b4+wsDD8+eefCAoKws6dO9GxY0eF5T9//ozmzZsrtauEhYVpbFc5efIkOnfujA8fPqB48eJo2rQpChUqhCdPnkg3UtWrV09a/uXLl2jZsiXCwsJgZWWFWrVqoUiRIrh69SoWLlyIXbt2STd3ZFV+yTbqaNPGlFUZzSYtW7aEsbExAgMDlT7jbGxsdFrX9+/fa7yInx3UZYeGDRvqJDvoWq5e7Pv9999x9epVre/wbNGiBZYsWYJGjRrhf//7H06ePIm9e/dqbOycO3cuZsyYoTS9a9eu6b6xra2tpav7+vr6Kpd59uyZ9K98sImNjdX4h6cqN27cgI+PD5ydnbFixQq8fv0ar1+/Vrt8ZsrQVOeslCHeGfHmzRuNy4tdebx7905hObEc8Y4+R0dHTJ06VWFdMSDJr/f27Vt0794d8fHxGD16NAYNGiRdiAkLC0OfPn2wadMmlC1bFh4eHtK64l0jaesh7gOQGqTTznvx4oW0v2nnWVtbY8uWLahbt67C9OjoaIwePRqhoaH4+eefpbsD0hLvUvTw8JC6KgGAvXv34uzZs1J95I+JGPbTe90zQnxt0tvm8OHDERgYiBMnTgAAzM3NMWXKFLXrbNu2Dfv374eNjQ22bNkCW1tbmJqaIikpCbNmzZL+0Fb1umtbp7RWrVoFS0tLhWnJycmYMGECDh06hIULFyp8aVSqVAmHDx9WGnT1zZs36N+/P/bu3Yvly5ejVatW0jxt3yNpl+nXrx8SEhJga2uLly9fKu3bli1bsHz5clhaWmLhwoUKA+MCqZ8Xenp60jqqztuzZ89i8ODBkMlkWLt2Lezt7dXWVXwPDxs2DHZ2dtL0iRMn4uHDh0r1U3Xu9e/fH/fv34e9vT0CAgJQpkwZAKlhxdfXF7t370b79u1x7NgxqYFK0/tNvl6PHz9W6E987Nix0gDBc+bMkboaio2Nxc6dOzFnzhx06tQJf/75p/T5Lb5/4+Li1L4O4mfUixcvFJaRn160aFFp3vr163Hnzh3pOKbdj3v37qFXr16QyWRYvnw5WrRoIc0LDw/HoEGD4O/vj4oVKyoEb7G8unXr4vz58/jtt99Qq1Ythfnr1q3Dd999J93dl5nPgJSUFI3r6evrY/To0Zg7d64UOPv164dixYoprVeiRAlMnToVJ06cQExMDIYOHQp7e3vExsZKDTtpz1dVn8Ga/P3330hISEDVqlWl4yl2eZlRFStWxJw5czBmzBhp38aPH6/wR4m8+Ph49OjRAzExMRg1ahQWLVoknVs3b95E06ZN8fbtW6X17OzsULduXfz11194+/atxjAsNuD5+flJDXkLFizA//73P6VlO3TogA4dOkjfjaruQhRzVvv27TVe7ANS/xjbvXs3du3ahfHjx2udsxYuXIjZs2crTc+LOSujMlNGRjKWtmUwY+VcxpJ/vXSZsRISErItYw0cOBDFihXD2bNnUa1aNenYip+98uuI51JG9ic5ORlXr15VGi/05cuX6NixI44dO4ajR4+ifPny0rwxY8agdu3asLCwUFgnKCgII0eORL9+/eDs7KzU6K1KbGys2vPmxYsXmD17tvQdnHbfUlJS0LlzZ9y+fRsNGjTAokWLYGVlJc1PSEjAuXPnFN6HaXOAIAj46aefsHPnTlSvXh2rVq3CmzdvVPZWkNH3mDxx+suXL+Hl5YXExET88MMP8PX1lT5Lnz17Bm9vbwQGBmLkyJEYM2aMtL66/CJOE5eRnxcZGYn27dsjOjoa06dPR7du3aQbS96/f4+RI0fi+PHjGDduHIYNGyYdj/TeG+rey+qmJyUloV+/ftDX14e1tTUiIiKU9mPJkiXYuXMnvv32WyxZskShW+pjx45h9OjR6NatG06ePCldiBXLs7W1haGhIZYuXYrWrVtDJpNJx/zw4cN4+fKllKfU5VF1NOUZ+fPqhx9+wK5du/DPP//g9u3bMDQ0xMyZM6VzJq3g4GD4+fnB1NQU69evV8iAa9askRqdk5OT1X7OZkfGAjKXszKSsRo0aIAGDRogJCQEMTExUk8HaXl6emLKlCnYs2ePxot9ALB06VKcPHlS+gy1tLTEhg0b1C6/evVq7N+/HyVKlEBwcLDUbXpSUhJGjBih9oLw77//jlevXmmsC/BfxipevHiG27Pycs7KaPtVWsxZX1/O0mVblrjvqvZPpK5toXHjxujevbvUfiF69OgRvL298euvv6JevXr49ttvAaR/XomvtaWlpdK5IFLXzvLHH39g8eLFcHBwwMKFC1G9enVp3qVLlzBgwAAMHDgQ9vb2Kj8rV69ejYCAAHz33XfStA0bNmDBggXw8vJCqVKlFLppnjp1qsp2FSD170tV7SqvXr1Cx44d8enTJwwYMAAjRoxQuAHp3bt3ePz4sbRfMTEx6NatG8LCwtC5c2dMmTJFuqkjKSkJixYtwqZNm9CtWzeFi2MZyTbiMclMtgHSPx91kW1U7V9sbCymTp2qsY0pPenlAPG1ykg28fT0hL29PQIDA+Hg4KB0Xqvar7Tvs/Soe39Onz4dkZGR0ush7pe23yFZaeOeNm2a1m3c4o0OGWnjjoiISLf+mSLkkmfPngnFixcXbty4IU1zc3MTRo4cqXadiIgIoX379oKenp6gr68vODs7C0OGDBGMjY3VrhMfHy9ER0dLP8+fPxcACNHR0enWMS4uTrh9+7YQFxendpkrV64IAIQrV64oTL9//36625d34cIFwdzcXKhXr57w8eNHrdbJaBkidXXOShkODg4CAMHf31/jcm5ubgIAwdfXV2U5f/75pwBAaN68udK6AIS0p+zMmTMFAIKrq6vK8hYtWiQAEMqXL6+wL76+virrIQiC4O/vLwAQvLy8lOY9fvxYACA4ODioLE/d63Xv3j0BgFCrVi2V8wVBELp06SIAELZt26axPvJleHl5afW6Z4T42mizzXnz5knHxc/PT+OyTk5OAgBh9erVgiAo7kdcXJxQsmRJta97RuokT9XxSElJEX788UcBgDBhwgSttxUYGCgAELp06ZJuGfJUnbd79+4VAAgeHh4qj2FiYqJQrFgxAYCwZ88erd6Hac+T48ePCyYmJoKZmZkQEhKS7vo2NjYCACE8PFxhurpzLO30Bw8eSPu6d+9epe3HxMRIZWzfvl2avmPHDgGA0KZNG5X1Ej9bHj9+LE27ffu2IJPJBFtbW6XPS/G1at26tQBAOHTokDQvODhYACC4ubmpfR3Ez6jg4GC108Uynj9/LpiZmQm2trbC8uXLVZ6/Xbt2FQAIixYtUlnexYsXVX6GieX98ccfgpGRkeDp6akwf/Xq1QIA4cCBAyrPMW0AEOzs7NJdLj4+XrCwsBAACLa2tkJ8fLzG5dMeM1Xnr3i+qvoM1mThwoUCAKF3797StKSkJOHSpUtCUlKSNE3T57S8jOzbtm3bBABC6dKlhS9fvijN//XXX6VjIX++ytd7/fr16dYpPDxc0NPTk86LlJQUjcurO/7yOUv8DK1QoYLanCV+xllYWGiVs8SM9OHDh3yRszIjM2VkJGNpWwYzluJ+pJWdGUu+HF1mrHnz5qW7bEYylqb9kCeeS9khPDxcsLKyEgAIt2/f1nq97t27CwCEI0eOaLX8/fv31Z437dq1k7KSqnN4//79AgChVKlSwqdPnzSWIZL/vk9JSRH69+8vABC+++67dD/XMvoeUzV96tSpAgChZMmSQmxsrNLyu3fvFgAIRYoUUfjsbNGihQBA2LVrl9I66vLPxIkTBQDCsGHDVO7PixcvBENDQ6FYsWLSd9H9+/fTfW+oey+rm75kyRIBgDB8+HCVOezdu3eCiYmJYGxsLLx48UJlmUOGDBEACMuXL1dZ3rJlyxRyoXjM69SpI5QsWVJYu3at2s8mTTTlmbTvwd9//1063mPGjNG43WbNmgkAhIkTJ6qcX716dQGAULt27QzVSRNVGUsQlHOWLjKWIKjO/GlVrlxZMDY21vh+FmXl71R56v5OFXPWoEGDpPeDuvYsMWNVqVJF6/asvJ6zMtN+lRZz1teXs3TZliWW1bFjR7XLaPM5k5b4/TB+/HhpWnrnVXqvtSCo3v/k5GTB1tZWACBcvnxZZTkLFiwQAAhjx45VmC6eY6NGjVJZXs2aNQUAwuzZs6VpmtpVRKraVUaNGiUAqe1Z2tiwYYMAQKhevbqQmJioND85OVmoUqWKAEAICwuTpmck24ivVWayjSCkfz5md7YRBNVtT3/99Ve6bUzpSS8HyJ9XGckm2rSnCcJ/+5WR95kgqH5/Xr58WdDT0xNcXFyEadOmKeyXtt8hWWnj1lRGZrJD2jpt3LhRqS1LHW2+00W5NmbflStXEBERgRo1asDAwAAGBgbSODUGBgYq724qVqwY9u/fj5iYGDx9+hR3795F4cKFUa5cObXlGBkZwdzcXOEnr2HXB/8R7wBIr3sAkdi3cdruy0R9+/YFkHqXgao7cLNbcnIyTp48iZkzZ2LIkCHw8fGBt7e3dDfevXv31K4bExMDQP2YSnlNREQEFi1aJP2+c+dOtWPahYeHS13D9erVS2m+sbExfvjhB91UFMCMGTPg7e0NT09PODo6YuvWrShZsiSGDBmitGxCQgIOHTqEn3/+GYMGDZKO4dq1awFoPobaiI2NxejRo2FiYoJly5apXObKlSuIjIyEjY2NUjcL2hC77oyLi8O2bduUngpUReyHX9v3nmjDhg3w9vbGwIEDAQAWFhbo0KGD0nKmpqZo06YNgNS7lUUVK1YEkPpeVtU3typHjx6FIAho1aqV2s9LsXtTVX3FZ5fRo0cjJiYGixcvVuhuSJSSkiJ1bda1a1eV26hZsyYKFy6Ma9euqRwLoXjx4ujWrRv279+v0F++n58fypUrh7Zt22bT3qg3e/ZsaWyily9f4vTp0zovUx3xc1z+jsOsyMi+id83P/zwg8o7qdV9DwGQuqsTx87TZNKkSdJnaVhYGP75559011FFPmf98ssvAFI/v9TlLPE1NTMzK3A5i1IxYxXMjJVTwsPD4e3tjd69e6NFixZwcnJCVFQUunfvLj0FI+/ly5dYv349xo4di379+sHb2xve3t7SZ1pW89SRI0dw8OBBtGjRQuEpAnnHjh0DAPTo0UPl97QmglzXnaVLl063604g4+8xeeLrs3XrVgCp3zUmJiZKy3Xq1AlFixbFp0+fcOXKFWm6mKe2bNmidRffR44cAaA+o9jZ2aF8+fKIjIzU2ZPUr169wvTp01GiRAnMnDlT5TLBwcGIi4uTxlJSJb3c5+PjgyJFikhj4gLAhQsXcOHCBQwcODBbukTVJC4uTqFbrIMHDyI2NlblsklJSVK3jqr+bgKQ7pNtmZGbGUtbnp6eiI+Pl7rOVCcn/k4Vc5b4N2Lfvn3VtmeJr2lUVFSBaM9i+5VqzFn5J2ep8vnzZ+zatQtTpkzBgAEDpO/lPXv2AMh6btHGtWvX8PLlS/zvf/+Dq6urymXS+75Tdz6J3xvy48Nltl1FzFcDBgxQuy/yxDI9PT2VeooAAD09Pan7aPlyCnK2UWfOnDka25iyU0aySW5ISUnBkCFDIAgCVq5cqfYJ9eySn9q405Nr3Xg2bdpUacBCHx8fVKxYERMnTtR4EI2NjWFnZ4fExETs2bMnV1/ArGJQUiQ+yqpqcGtVwsPDAaQO5K2KpaUlrKysEBUVlaEuJTLjwYMHaNeuncYvDE197Iv7kpk/sHx8fKQ+u/X19VG0aFG4uLigX79+Ont/DBw4EG/fvkWHDh1w48YNhIaGYunSpQpdConER9ttbGzUfmGpO4bZ4dChQwoNIu7u7tiyZYtCF0AAcP78eXTt2lXqHkSVrI6TMGvWLDx9+hQzZsxQu8/iY/MVKlTI8PiAly9fxs6dO6U/NrZt26by4pu8xMREfP78GXp6ekpdbqXn7NmzCv3wi4PqqiK+3uK5DqSOO9a8eXMEBQWhevXqcHd3V+h6VVW3iI8ePQIAbNy4Md0xDCIjI5WmiQMKZ4U4fmOTJk3QrVs3lV0ovnv3Tjpf0p5rqrx7905lI9bIkSOxefNmrFy5EvPmzcPx48dx584dqR9/Xbp8+TLmzp0LQ0NDDBgwACtXrkS/fv0QFhaW4XMlO4iNRtnR0JHRfRM/x9S9b4sWLQoLCwupjvLKli0LFxcXnDx5EtHR0WpfuwMHDmDr1q2wtLREhw4dEBAQAC8vL1y4cEHlH0aayOesVatWYfXq1XB0dESDBg1U5izxNX3//n2Byln0H2asgpmxcsr79+8VxhwyNDTE0KFDpbGF5c2YMQOzZ8/W2HVPVvJUfHw8RowYASMjI5Xli8Q8JTYWZcSECRNw+fJlAKnj/oWEhMDDw0PjOhl9j8lLO56TuvedTCZD2bJl8f79e4U8NWTIEKxfvx6HDh1ClSpVUKNGDenGFHXvTzFPNWzYMN36RUZGKnVzL//eyKyxY8fi48ePWL58udrvRrGeJ0+eTDe/qcp9QOq4uD4+Pli+fDnu3LkDAwMDLFu2DIUKFcKgQYOkhktdmTx5Mu7du4fvvvsOgiDg/PnzmDRpksLFR9G7d++kG8DUnQe6+LspNzOWtjw9PfHLL7+km01y4u9UMWeJGWvGjBk4cOCAyvYs+YwF5O/2LLZfqceclTdy1r59+zL8t/6hQ4fg4+MjHUNVcmK8TPH77uHDh5n+vkvve0O+m+bMtqtkNF+JNy3/9NNP+Omnn7QuZ8iQIdiwYUOBzDaqHD9+HMeOHdPYxpSdMpJNcsOGDRtw8eJF+Pj44LvvvkNgYKBOy1OVHQICAjB37lylZXO7jTs9uXaxr0iRIqhSpYrCNDMzM1hbW0vTe/fuDTs7O+mFvXDhAsLDw1G9enWEh4dj+vTpSElJwYQJE3K8/tmBQUmZGBJsbW1zuSYZ17lzZzx48ABt27bFhAkT8M0338Dc3ByGhob48uWLxju8UlJS8PjxYwCZ+0CQHwg5Pj4ed+/eRVBQEIKCgnDv3r10v1AzauvWrdi/fz+KFy+O9evXIywsDE2bNsW0adPQtm1bpS/M3CY21kRGRiI4OBijRo2Cm5sbAgMDpTFmYmNj0aFDB7x58wY+Pj4YPHgwnJycYG5uDn19fdy/fx8VKlTI9PhgAHD//n0sXrwYTk5OOhtg9p9//oGpqSmOHj2KSZMmYc+ePdi4caN0Z6Aq4jg3xYoVy/AFBX9/f+mON3WDT6dn3759+Pnnn/H777/j4MGD6b7G4t011atXl/rNF338+FGhkaJOnTpK66saNF107NixdO+c/PLlC4YPHw5DQ0OsWLEi3XoCmp/6Eqn7jHBxcUHDhg2xYcMGTJ8+HcuWLYOZmZnGY5odEhIS4OXlhaSkJPzyyy+YNm0abt++jeDgYIwZMyZHBotPS7wQnNU/tnJj3zw9PXHt2jUcOnRI5d1fb9++le6O9PPzQ5cuXXD+/HlcvXoVc+fOzfDnuHzOKl68OIDUc0xdzhIb+YyNjfHo0aMCkbNIETMWM1ZWVKlSBYIgICkpCc+ePcOaNWuwcOFCfPz4EZs3b5Yapfbu3Yvp06ejcOHCWLFiBZo0aQJbW1uYmJhAJpNhypQpmDt3bpby1Lx58/Do0SNMmzZNYazA7HT58mXUqVMHP/30E9q3b4++ffvi5s2bKFmypNp1svIeE18PDw8PHD58OMPrOzs747fffsOaNWtw5swZ3L17N911xJzSuXNnmJmZaVxWVQOu/HtD3ufPn6UnITQJCQnBjh070LBhQ41Pqon1dHJyQv369TVuU1PD4/Dhw7F8+XKsWLEC3bt3x+7du/HDDz9oPKbZQXzay8TEBAEBAUhJSYGLiwtWrFgBT09PrXrgyAn5IWNVq1YNTk5OOHr0KOLj41WO+5lTn6FizhIzlr29vdr2LLGHBzMzM+zduzfftmflhfYr8QmyvIg5K2/krDJlyqBx48Yq5+3evVvpHAoPD0fXrl0RFxeHCRMmoGfPnnB0dEThwoWhp6eH48ePo0WLFlnKLdoSv+9KliyJFi1aKLVtyNM0Drwm8vuhqV0lLVXtKtoSy2nQoIHKsejlVa5cWfq/s7MzQkNDMXny5AKXbdLSto0pu+T1bPLu3TtMmTIFRYsWxfz583VenrrssHTpUmls2vwk1y72aePZs2cKTy3Ex8dj2rRpePToEQoXLozWrVtLd8DnN3khKOVFt2/fBqD4Aa+JnZ0d7t69K929kVZ0dDSioqIApDbw68rdu3dx8+ZNWFtbY9++fUoXTNJ7PPzOnTv4+PEjSpQoodUTQGmJ3SPJW7t2LQYNGoT58+dj0qRJ6Q7gra3w8HCMGDFCKsPGxgaNGzfGkCFDsHLlSvj4+ODMmTMK713xaaW3b9/i8+fPKu980LYLx6woVqyY1C1Su3btMHHiRKlbvb/++gtv3rxBjRo1sGnTJqV1s+MR/2HDhuHLly/w8/PTGJjFgaHv37+f4VBpamqKQ4cOoUmTJnBwcICrqytGjhyJRo0aqW0Qy+j7ThXxvH3y5AkEQVB5J5p490vap9fMzMywePFiLF68WGkdR0dHpQGCxbLq16+vFIQePHiQbsNfxYoV1d4l5e7unu7Fvo0bN+L+/fuYMGGCyq7LRDY2NjAxMUFcXBwWLVqU6UAOACNGjECXLl0wffp0/Pnnnxg0aJDOn6wTG2dcXV0xefJkyGQybNq0CVWrVsWmTZvQpUsXtRdNdUVsUNF016U2MrNv4nmr7rPqw4cPKp/qE3Xq1AnTpk3Dnj17VF7sGzJkCCIiItC+fXv8+OOPAFIHRa9fvz5mzpyJ9u3bo1q1apncY9Xkc5b4msbFxeGbb77J9zmLlDFjFcyMldMMDAxQrlw5LFiwADdu3MDWrVvRuXNntGvXDkBqlzdAahd+qrp3ymqeevToEebPnw9HR0dMmTJF47JintKmcSitOnXqIDAwEBYWFpgyZQpmzpwJb29v/Pnnn2rvts/OPKXufQdAalRNm6e++eYbqftweSEhISobPkuXLo0HDx5g4sSJqFmzZobrquq9AaR+T6bXIJaYmIihQ4fCwMAAK1eu1Lis+JpUqFAhS3e5Ozk5oXXr1tiyZQs+ffqExMRE6f2mK58/f4aPjw8EQcCcOXOkxqKZM2di/Pjx6NOnD27evKnQIGltbQ0jIyMkJCTgyZMnKs8nXfzdlJsZKyM6deqEBQsWIDAwEO3bt1eYl9f+ThVzlviaWlpa5tv2rLzQfvXp0ycMGzYsx8vVFnNW3shZrq6uar8rQkJClC72HTp0CHFxcejYsaPKiwq66upRFfH1s7a2RkBAgFZtG2k9fvwY1atXV5oufo7Z29srlaeqXUWTMmXK4N69e7h7967KC2NplSpVCgDQvn17jBs3TutygNQLkQUx26S1cOFC3L9/H/3799fYxpQdYmJiMpxNctqkSZPw7t07rFq1CsWKFdNpWXktO2SH3PtLUYWQkBAsXbpU4Xf5D2k3Nzfcvn0b8fHxePv2LbZs2ZIv75rJC0EpL0pMTJTG8mrQoIFW64j9R6ft+kYkXrQpX768Tu/aFENY8eLFVT4ZtW3bNo3ri18aLVq0yLY6iY3FMTExKrtCzKy+ffviw4cP6NWrl0L3kPPnz0e5cuXw999/Y8mSJQrr2NvbS2MR/Pbbb0rbTEhIwK5du7KtjukRvyzu3LkjTROPodgwlFZ6xzA9u3btQlBQEDp06IBWrVppXLZmzZqwsbFBZGQk9u/fn6FyOnfujCZNmgBIbfRZtGgRYmJi0KNHD7XdaR0/fhyA9u87VVxcXFC0aFFER0dj3759SvPj4uKk/tPF+mWW+PodPHhQ5Th3uvT06VOsWbMG9vb2+PnnnzUuq6+vj+bNmwP4r/Ezszp27IgyZcpg/vz5EAQBw4cPz9L20nP27FksWbIERkZG2Lx5s/S55ujoiIULFwJIDcKqLm6J494kJSVle71q1KgB4L8/pjMjs/sm3t22c+dOle+lLVu2aCy3UqVKqFSpEgIDA5X+yNyxYwd27doFa2traewXILWxedy4cUhMTIS3t7fKcsU/frV5vSdNmqQ2Z926dQtAap/z+T1nkTJmrIKbsQDdfu5qYmVlBUB1nnJwcFBaPiIiAkFBQVkqc8SIEYiPj8fSpUtVjmknT7ygsGPHjgw/DTJ37lzpppqff/4ZdevWRWBgoNrxljPzHlNFzEjyXbLL27dvH96/fw9zc/NMNWLJE/NUVjNKZixduhS3b9/GsGHDULVqVY3LNm3aFIUKFUJISAgiIiKyVO7IkSPx+fNnbN26FXXq1EHt2rWztL30jB07Fo8fP0ajRo0wcuRIafqYMWNQr149PHr0SKm3DwMDA+kJxu3bt6vcrji2Y3bKzYwFaP85pmkc5Nz+O1Vde5aYsdzd3fNle1ZeaL/69OkTWrZsiYcPH+Z42dpgzsofOUsVTblFEASVnwu6UqtWLdjY2OD27duZHrdd3feDOF0874DMt6uI+Wr9+vVaLS+Ox7dr1y6dPyGZX7KNvKdPn2LOnDmwt7fH0KFDdVjDVPPmzctwNgFy7u+NixcvYuPGjXB1dcXAgQN1WhagOTuULl06X7Rxp5WnLvZ9DfJCUMqLXR98+fIFI0aMQGRkJNzd3bV+/L9///4wNzfH1atXMWfOHIUvjmvXrmHWrFkAgPHjx+uk3iJnZ2epq0f5AW+B1DuFfv31V7XrPn/+XBpvZPDgwdlWJ3HgcjMzsyw9USRv3bp1CAwMhK2trVI/zmZmZvD394dMJsNPP/2kNIDxqFGjAADTp09XuMM6OTkZ48aNk7qSzC7v3r1T+cfqu3fvMGnSJACpF8NE4t0zJ0+eVFpv3bp1+OOPP7JUnzFjxsDU1FThD0B1DAwMMHXqVACpgx5funRJaZlLly4p9LcuSnu3+dChQ9GmTRtcvnxZ5cWp48ePY82aNTA0NFT5tJG2DA0NpaAwbtw46a5zIPWPn5EjRyIyMhLlypWT/kjPLBcXF3h6euL58+fo1KmTyjtmYmJisH379mwfzHzatGmIi4vDkiVLtLrTydfXF4UKFcL48eOxefNmlQP83rp1S2WDhTx9fX3MnDkTbdq0wejRo3V6t1dsbCy8vb2RkpKCGTNmKN2dOnDgQDRt2hTh4eHS+1qeeLdgZv9A0aRevXowMjLCjRs3VDaCpicr+9a5c2fY2dnh2bNnmDx5ssKxvHXrlvR9o4mnpyfi4uIU7k58/fq1dJfyypUrle7cnTFjBr755htcu3YNc+bMUdpmdr3e4mDoWb0YT3kPM1bBz1ji50BWGunVuX79usonfYKDg3Ho0CEAqvPUunXr8OXLF2l6dHQ0vLy8ND4BnZ6TJ0/iyJEjaN26tdITPaq0a9cOLi4uePnyJbp06aK0H/Hx8SrvFgcU85SBgQG2b9+OIkWKYNKkSbh586bCspl9j6nSvn17lC9fHm/evMHIkSMVbvJ4/Pgxxo4dCwDSmIVZMX78eFhaWmLJkiVYvHixwvGSLzOrN7ylFR0djV9++QWlSpXCjBkz0l2+RIkSGD58OGJiYuDh4SGNRysvISEBBw8eTPcpzubNm6N3795wd3dP96atrDpz5gzWrVun8P4V6enpwd/fHyYmJli1apXSZ5uYQZYvXy59P4sWLFiAq1evZnt9czNjAdrnmVq1aqF06dI4ePCgwvsjL/+dmp8zVl5ovxIv9N26dQurVq3K8fLTw5yVP3KWOmJu2b17N169eiVNT05Oxs8//6z0GaxLhoaG8PX1hSAI6NixozQcjbzk5GScOnUK58+fV7mN1atXKx3HX3/9FRcvXkSRIkUUhgJxcXFBixYtMtyuMmbMGBQpUgQHDx7EtGnTlG5IjYiIQGhoqPR7s2bNUKtWLWn8NVXjDb5//x5r1qzJ8oWk/JJt5E2bNg2xsbFYsmQJTE1Ns7VeaQUGBuKPP/7IVDYRv6cfPHigcVzurBKz7sqVK3Xem0l62WHevHl5po07I/J0N575ifwdrUBqlw2fPn1SmHbr1i0MGTIE//vf/zBv3rwsPw6uqoz0xMTE6Hycp4zauHEjJk+ejMjISNjZ2Sk81ZCeEiVKYPv27ejSpQumTp2KrVu3wsXFBRERETh9+jSSkpLg4+OD/v37q3y9T5w4oXQHi/gH5JUrV6SLQiKxgeL9+/eYNGkSunTpAldXV9jY2GDYsGFYtmwZmjZtioYNG8LW1hb37t3D1atXMW3aNJUNwePGjYO/vz+ioqJgZmaGNWvWYM2aNQrL/PvvvwCA0NBQeHt7o1u3bkqP8u/atUv6cElISMDdu3elp7UmTpyYLd1LPXnyRPrQXbduncqBpxs1aoThw4fDz88P3t7eOHv2rPThPHToUAQFBeHQoUP49ttvUadOHdjZ2eHChQt49eoVBg8ejNWrV2e5nqLnz5+jQ4cO+N///gcnJydYWVnhzZs3+PvvvxEfHw8bGxuFY+Li4oL27dvjwIEDcHFxgbu7O6ysrHD9+nXcu3cPU6ZMwezZszNdnxcvXmDWrFkq7xhTZeTIkbh37x7WrFmDnj17YtGiRahQoQI+fvwodfcRHBys0A2DOps2bUK1atWwYMECtGzZEm5ubnj69Ck8PT1x5coV6OnpYcqUKVke92bKlCk4d+4cAgMD8c0336Bx48YwNzfHuXPn8OzZM1hZWWHPnj3SHUFZ4e/vjw8fPuDPP/9EhQoV8O2336Js2bL49OkT3r59ixs3buDLly+4c+dOtnZ78uLFC9SvXx9dunTRavkaNWpg27Zt8Pb2hre3N6ZNm4ZvvvkGxYoVQ1RUFMLCwvDixQt07doVnTp10rit3r17Z6jf98yaMGEC/v33X9StW1dlNxsymQwbN25E1apVERAQgC5duqB169bSfE9PTwQHB6NXr174/vvvoaenBwsLC4wfPx4VKlTIUt2MjY3RokULHDx4ECEhIek+JZud+2ZiYoLt27ejdevWWLx4Mfbv349atWrh3bt3CAkJgYeHB65cuaLU7aw8T09PzJo1S2GMy/79+yMqKgpdunRB165dldYxMjJCQEAAvvvuO8yePRsdOnRQGFPB09MTixYtQrNmzdCkSROpEWb+/PkqxyFQJTExEX/99Zf0+uZF2uSs7JaZMtLWM7cxY2UsY02aNAn6+voKy+SHjFW3bl3Y2tri2rVrqFGjBqpWrYrY2FjUrl07y42EAQEBWLVqFapXrw57e3upQVC84NW2bVu0adNGWn7UqFHYsmULjh49inLlyqFu3bpITEzE6dOnYWpqij59+qjsLl0bL168gLGxsdIf4+ro6elh3759aNGiBf7880+UKVMGDRo0gLW1NcLDw3Hjxg1YWlpq9bRhuXLlsGLFCnh5eaFHjx64fPkyjI2NsXHjRkybNg2vX7/O8HtMFUNDQ/zxxx9o3rw51q9fj8DAQHz33Xf49OkTTp06hfj4eLRu3TpbLlTZ29vjwIED8PT0xLhx47BgwQJUqVIFpUqVQnR0NO7cuYOHDx+iTp06WbohLK0PHz4AANasWaN2LKK05s2bh1evXuG3336TxhYqV64cDAwM8OLFC1y/fh0xMTH4888/NY7bB6Q+RZOZrtEy4sOHD9KNewsWLJDu/pbn7OyM2bNnY8yYMejTpw/CwsKkG8k8PDwwdOhQrFy5Eg0bNkSjRv/H3r/HR1nf+f//MxwSQiAECIcQIaFFIIoBObUpWLFAiyhod+1+tFHE1u4q7Gexh63Lp7pChUJb7ao/t6z1vAI/epNtXY8gsASWVCUhBlFS8JBJkARCIGeGSUiu7x/DZBJyTuaa6z2Tx/1289YmTK7nFV5MeHE9k7m+qYSEBH300UfKy8vTqlWr2vwp0+5ycseSWu6Pvq+Dl++PERER+pu/+Rs9+eST+p//+R995zvfCfi/U2+44QYNHTo0IP9ODYUdS2p9z3rvvfcCev3qcp3Zs2pqavSP//iP+vzzz/X73/++xd/RTmPPCo1rWe1ZsmSJZsyYoUOHDmnixIm6/vrrFRMTow8++EBFRUV68MEHg3LPMJ9//Md/VGFhoX7729/q+9//vtavX68JEyYoOjpap06dUm5ursrLy7Vp0yZ9/etfb/Hx//AP/6Bvfetbuu6665SYmKiPP/5YR44cUd++ffXCCy+0+CnRDRs26OLFiy2uq1iWJZfL1ep1lXHjxmn79u267bbbtH79ej333HNKS0tT//79VVBQoA8//FDf//73G3/KtU+fPnrttdd000036eWXX9b27ds1depUjRs3TrW1tfriiy905MgR1dfXa/ny5a3+hGlnhdJu4/Pll19q4cKF+t73vmfry8aWl5fr3nvvldS93WTcuHGaOXOmsrOzdc0112jmzJkaMGCA4uPjtXHjxoCd55dffql77723R/eJ7IzO7A6zZs1yZHfoMauXqaiosCRZFRUVHT7W7XZbR48etdxud5uPKSgosAYOHGhJCqn/Bg4caBUUFHT4e3D8+PFO/b4mJSVZkqwXX3yx3cddf/31liTrkUceaXzfgw8+aE2ePNl66KGHrJKSkjY/1nfurTl69Kh19913W1dccYXVv39/Ky4uzrrhhhusbdu2tfq5PPLIIwH5fWz6+TY0NFi/+tWvrBkzZliDBg2yhgwZYs2dO7fxHFo7f9/vW1f+e+WVVxo//u67727x63369LGGDx9uLViwoNnn31m+35vLP7d58+ZZkqx77rmn3Y+vqamxJkyYYEmyfv3rXzf7tbq6Ouvxxx+3rrrqKisyMtIaPny4dcstt1i5ubnWiy++aEmy7r777k6dU0fOnDlj3XXXXdb06dOt4cOHW3379rUGDRpkTZ061fr5z39uFRUVtfiY2tpa67e//a11zTXXWAMHDrSGDRtmffvb37beffddKz8/35JkJSUlNfuYjp4jvrlceeWVlsfjafHrvhm29bm988471vz5861Ro0ZZ/fv3t0aMGGHNnj3bWrt2rXX27NnGx7X3++c7TkREhDV27Fjr3LlzVm5urjVu3Djr9ttvtzIzM9v8PNo6v7beX1dXZ/37v/+79bWvfc0aNGiQFRUVZU2YMMFatWqVdeDAgTZ/n9rie47k5+e3+LX6+npr69at1uLFixt/f+Li4qwpU6ZY99xzj/XnP//Zqq2tbXz83r17LUnW9ddf32ae72vU3r17W31/ZGSktWPHjhYf19Hvf35+vvXjH//YmjJlihUTE2MNGDDASkpKsubNm2dt3LjR+uyzzzp1Hq1p72tjRx+XmJjY7H179uyxIiIirOjoaOuvf/1rux//zDPPWJKsMWPGWGVlZY3vr6+vtzZs2GBdffXV1oABAxrPr+nn4vv9avp3QWe9++67liTr7/7u7yzLsqyLFy9aWVlZ1sWLF5t9bpc/VwPxuVmWZR05csT6m7/5G2vYsGFWVFSUlZKSYm3YsMGqq6tr98+rz1e+8hVr8ODB1oULF6wXXnjBkmSNHDnSOnPmTLvntHr1akuSNXXq1GZ/rt1ut/Xzn//cmjBhghUZGdn4+930HDr6GvqnP/2pU1/fm2prR2LP6vyOZVmd27PYsYK3Y+3du7fxc7Fzx9q4cWOzzy0QO9aRI0espUuXWiNGjLD69OnT6t93vt+Trti1a5f1d3/3d9ZXvvIVKyYmxurXr581cuRIa+HChdaGDRuafe31yc/Pt9LT061x48ZZUVFRVlJSknXfffdZp06davw96OzX/+PHjzf+nSHJ+td//ddWH9fen+Gqqirr17/+tTVr1ixr8ODBjee0dOlSa9u2bc3+/Hb09+/tt99uSbJWrlxpWZb3OTZ16tRuP8faev+JEyesFStWWOPHj7ciIyOtwYMHW3PmzLH+8Ic/tPp7blltfz3paP85ffq09fDDD1vTp0+3Bg8ebEVGRlpXXHGF9Y1vfMN65JFHrI8++qhZRke7a1s7s+/97Z1LR7//b7/9tvU3f/M3VmJiYuPXo5SUFOv222+3tm7datXU1HR4Hr7Po6mO9ri2tLXPLFu2zJJkzZ8/32poaGjz4+vr6625c+dakqz777+/xa+/8MIL1owZM6wBAwZYQ4YMsRYsWGDt3bu3caazZ8/u9Dl1xuU7lmW13LPs2rE6sz/67Nu3z5Jk/ehHP7Ll36lRUVEB+3dqd3Ysy2LPYs8Kzz3LzmtZvufpd7/73TYf09a/1aqqqqz/9//+nzVp0iRrwIAB1siRI61bb73Vys7ObvXv0I7+XLX3949PR3+XZmZmWkuXLrWSkpKsqKgoa/DgwdbEiROtW2+91Xruueesc+fONXt80xlt2rTJmjZtmhUdHW3FxsZaixYtsjIzM1vNOX78eKvXVYYPH97mdRWfgoICa9WqVY2/b4MGDbImTpxo/eAHP7Dee++9Fr9fFy5csP7jP/7DuuGGG6zhw4c37pTTpk2zVq5cae3cubO939ZmLp/L5TPpym5jWR3Pw47dpuk1Jt/fnU0/D7t2k7S0tG7vJgUFBdb3v/99KyEhwerXr1+rvye+z6u9ayKt8T0/hw0bZpWWlrb49cv/DdHZvqIn17iPHz9u6+7w/PPPt7iW1ZbO/J3uE2FZNr9grmEqKys1ZMgQVVRUdNi2X7hwQfn5+Ro/frwGDBjQ5uMKCwtbvI50YWFhm/f+CpSeZMTHx3fqY+3+rsdg5gQyw+Vyafz48XrxxReb3by1qxnJyclKTk5u8ePRrXnppZd0zz336JVXXgnod6Bcbs2aNVq7dm2Lzy3QuvJ71d1zCrU/V2SQEcyciIgIJSYmtvpysIHU2ufh+3r2yCOPaM2aNV06nmVZSk1N1aeffqovv/xSQ4cO1Ycffqhrr7228bt9IyIilJSU5OhNkdvyz//8z3rsscf0xhtv6Oabbw5KZkdfQ5csWaK33npLOTk5rd7QvTVt7UjsWZ3fsaTw+ZoVLjvW3r17lZiYaNvvl++5uHHjxlbvhRFIrf1+JScnq6CgIGD3Swm1P1tkkBHojPb2Gac+j0DuWPHx8aqvr2+2Z5mwYzU0NGjMmDGyLEvFxcW2v8xXe+zYsST2rPawZ/VMOF/LkkJvHoHK8b0cY1d3vHD5/SLDr6M9wO7PY968edq3b5/y8/OVnJxsW05nP4+eXOO26/fKd07PP/+8UlNTm13Laktn/06XeBnPgBg3blyLZWPw4MG2fxEIRgYAACaJiIjQ7373O33729/Wxo0bg/qyKoHwox/9SDExMT2+11KgZGVl6c0339Ty5cu7dBEqmNizAACw3+U71mOPPeb0KbWqT58+euqpp3T06FGdPXtWI0aMcPqUWhUKO5bEngUAQDih7AO6YejQodqwYYNmzJjRo+M89thjGjRoUKceO3fuXL344outvq4yAPQmCxcu1K233qp///d/1//9v//X6dPpkokTJ3b5O+3ttHr1ag0ePFgbNmxw+lQASc7uWJMnT7b9XpAAYLKmO9YDDzyghIQEp0+pVX/3d3/n9Cl0iB0LJuJaFgCEN8o+oBuGDBnS4obH3XHbbbd1+rETJkzQhAkTbL1hKwCEij//+c+SpPr6ep05c8bhswldu3fvdvoUgGac3LEkUfYB6PV8O5bk3bPQPexYMBHXsgAgvFH2AQAAAAAAAAAQYgJ1P2YAoY+yD0Az8+bN09mzZ426r8C8efMkyahzAkLdI488orq6Okeyp02bpkceeaTxuR1ojzzyiOLi4mw5dijiayhgBt9zcfLkyY7kP/DAAyovL3ckGwhHdu8z3cGOFVzsWAAAkzi9myxfvlzXXHONMbuCiX9P+85p6tSpthT1lH0Ampk3b54SExONuln2vHnzjPpHNBAO1qxZ49hLqUybNs3WZcuke+KZgK+hgBl8z0WnvvY+8MADjuQC4crufaY72LGCix0LAGASp3eT5cuXa86cOUaVfab9Pe07p/r6en344YcBP36fgB8RAAAAAAAAAAAAQFBQ9gEAAAAAAAAAAAAhirKvE7jRKQAAgF8gdyP2LAAAAD/2LAAA4NOVv8sp+9rRr5/3loYej8fhMwEAADBHXV2dJKlv377dPgZ7FgAAQEuB2LN8H+s7FgAACE1d2Qso+9rRr18/xcTE6Ny5c6qvr3f6dAAAABxnWZYqKioUFRWl/v37d/s47FkAAADNBWrP6t+/v6KiolRRUcFP9wEAEKK6uhf0C8I5hbT4+HidOHFC+fn5GjJkiKKjo9W3b19FRES0+3H19fW6cOGCrecWLhnByiGDDDLICJWMYOWEQ4avJLpw4UKPvvsZHbMsS3V1daqoqFB1dbUSExN7fEz2LDJMyghWDhlkkEFGKGVI7FnBYNeedfLkSX355ZcaMmSI+vfv3+GOJYXXn18yyAjFjGDlkEEGGc5ldLRjdXcvoOzrwMCBAzV+/HiVlJSorKxMpaWlnfq4kpIS2797KlwygpVDBhlkkBEqGcHKCYeMhoYGlZaWyuVyqU8fXrAgGKKiopSYmKjY2NgeH4s9iwyTMoKVQwYZZJARKhnsWcEXyD3Ld4zS0lKdPHmy0x8XLn9+ySAjVDOClUMGGWQ4l9HZHaure0GE1ct+nr+yslJDhgxRRUVFl5cnX6Pa0NDQ4WPvv/9+bdq0qbun2SnhkhGsHDLIIIOMUMkIVk44ZFRXV2vmzJnKzs7WoEGDbMuBV9++fdt96Qj2LDJCOSNYOWSQQQYZoZLBnhVcdu5ZdXV1nX7Z9HD580sGGaGaEawcMsggw7mMzuxYHe0FreEn+7ogIiJCkZGRnXrs2bNnNWDAAFvPJ1wygpVDBhlkkBEqGcHKCYeM2tpaFRQUKDIyMihzgX3Ys8hwOiNYOWSQQQYZoZLBnhU++vfv3+kLhuHy55cMMkI1I1g5ZJBBhnMZdu1YvA4DAAAAAAAAAAAAEKKMKfs2btyoiIgIPfDAA+0+7oknntCkSZMUHR2tsWPH6sc//nFQbowKAAAQqtizAAAA7MGeBQAATGDEy3hmZWXpmWeeUWpqaruP27p1q/7lX/5FL7zwgr7xjW/o+PHjWr58uSIiIvS73/0uSGcLAAAQOtizAAAA7MGeBQAATOH4T/ZVV1crPT1dzz77rIYOHdruY//yl79ozpw5+v73v6/k5GR9+9vf1h133KGDBw8G6WwBAABCB3sWAACAPdizAACASRwv+1auXKmbbrpJCxYs6PCx3/jGN3To0KHGZeiLL77Q22+/rcWLF7f5MR6PR5WVlc3+AwAA6A3YswAAAOzBngUAAEwSYVmW5VT4tm3btH79emVlZWnAgAGaN2+epk2bpieeeKLNj3nqqaf0s5/9TJZl6eLFi7rvvvu0adOmNh+/Zs0arV27tsX7Fy1apP79+wfi02jVwYMHNXv2bNuOH04ZwcohgwwyyAiVjGDlhENGXV2dduzYoYqKCsXGxtqWE4rYs8ggw8wcMsggg4xQyWDPaht7FhlkkBHqOWSQQYZzGbbtWJZDCgsLrZEjR1qHDx9ufN/1119vrVq1qs2P2bt3rzVq1Cjr2WeftT766CPrT3/6kzV27Fjrl7/8ZZsfc+HCBauioqLxvxMnTliSrIqKikB+Oi0sWbLE1uOHU0awcsgggwwyQiUjWDnhkFFRURGUv9dDDXsWGWSYm0MGGWSQESoZ7FmtY88igwwywiGHDDLIcC7Drh2rX+Bqw645dOiQSkpKNH369Mb31dfXa//+/Xr66afl8XjUt2/fZh/z8MMP66677tK9994rSbrmmmtUU1Ojv//7v9cvfvEL9enT8lVJo6KiFBUVZe8nAwAAYBD2LAAAAHuwZwEAABM5VvbNnz9fR44cafa+e+65R5MnT9aDDz7YYjGSpPPnz7dYgHyPs5x7NVIAAACjsGcBAADYgz0LAACYyLGyb/DgwZoyZUqz98XExGj48OGN71+2bJkSExO1YcMGSdKSJUv0u9/9Ttdee62+9rWv6bPPPtPDDz+sJUuWtLpMAQAA9EbsWQAAAPZgzwIAACZyrOzrjMLCwmbf+fTQQw8pIiJCDz30kE6ePKkRI0ZoyZIlWr9+vYNnCQAAEHrYswAAAOzBngUAAILNqLIvIyOj3bf79eunRx55RI888kjwTgoAACAMsGcBAADYgz0LAAA4reUdgAEAAAAAAAAAAACEBMo+AAAAAAAAAAAAIERR9gEAAAAAAAAAAAAhirIPAAAAAAAAAAAACFGUfQAAAAAAAAAAAECIouwDAAAAAAAAAAAAQhRlHwAAAAAAAAAAABCiKPsAAAAAAAAAAACAEEXZBwAAAAAAAAAAAIQoyj4AAAAAAAAAAAAgRFH2AQAAAAAAAAAAACGKsg8AAAAAAAAAAAAIUZR9AAAAAAAAAAAAQIii7AMAAAAAAAAAAABCFGUfAAAAAAAAAAAAEKIo+wAAAAAAAAAAAIAQRdkHAAAAAAAAAAAAhCjKPgAAAAAAAAAAACBEUfYBAAAAAAAAAAAAIYqyDwAAAAAAAAAAAAhRxpR9GzduVEREhB544IF2H1deXq6VK1cqISFBUVFRmjhxot5+++3gnCQAAEAIYs8CAACwB3sWAAAwQT+nT0CSsrKy9Mwzzyg1NbXdx9XW1mrhwoUaOXKktm/frsTERBUUFCguLi44JwoAABBi2LMAAADswZ4FAABM4XjZV11drfT0dD377LNat25du4994YUXdO7cOf3lL39R//79JUnJyclBOEsAAIDQw54FAABgD/YsAABgEsfLvpUrV+qmm27SggULOlyOXn/9daWlpWnlypX67//+b40YMULf//739eCDD6pv376tfozH45HH42l8u7KyMqDnD6B7ysrKtGXLFlszCgoKwiKjrKzM1uMDCF/sWUDv5Ha7lZOTY2tGWVlZWGS43W5bjw8gfLFnAb1PMHYsiT0LQPdEWJZlORW+bds2rV+/XllZWRowYIDmzZunadOm6Yknnmj18ZMnT5bL5VJ6erpWrFihzz77TCtWrNA//dM/6ZFHHmn1Y9asWaO1a9e2eP+iRYsav5vKDgcPHtTs2bNtO344ZQQrhwxzMsrKynTgwAHbjh+O5s6dq6FDh9p2/HD4cxVOGcHKCYeMuro67dixQxUVFYqNjbUtJxSxZ5FBhpk5dme43W7t3r3btuOHowULFig6Otq244fDnysyemcGe1bb2LPIIKP3ZbBjdQ97FhlktGTXjuVY2XfixAnNnDlTu3btanxt846Wo4kTJ+rChQvKz89v/M6n3/3ud/rtb3+r4uLiVj+mte+EGjt2rO3L6tKlS/X666/bdvxwyghWDhnmZGzZskV33nmn7p+ZrDnjhnfrGK/lFWl7XrFuS0nQrSljWvz6izkF2uMq1W0pY3RrSkJPT7lVT773ubKKyzU8ur82Lrha0f1b/47MnsgsPKtN2S5t3rxZ6enpAT++Tzj8uQqnjGDlhENGZWWlhgwZwkWoy7BnkUGGuTl2Z+Tk5GjGjBna/N0ZShkx2JaMtz89rYf35oV8Rt6ZKt3550M6dOiQpk+fbkuGFB5/rsjonRnsWa1jzyKDjN6ZEYwdS2LP6qpw+LNFRu/LsGvHcuxlPA8dOqSSkpJmT/b6+nrt379fTz/9tDweT4uXMkhISFD//v2bvT8lJUWnTp1SbW2tIiMjW+RERUUpKirKvk8EQLfNGTdc6deM7fLHrdt/TNvzivXoDSl66JuTWn1MZuFZ7XGVauroId3K6MjBk2XKPV0uSbp/5njdOz054Bk+m7Jdth0bQHhizwKQMmKwpifE2XLsvNKqsMgAgO5gzwJ6N7t3E/YsAN3lWNk3f/58HTlypNn77rnnHk2ePLnN1yyfM2eOtm7dqoaGBvXp00eSdPz4cSUkJLS6GAEIP+v2H9PDe/PaLfrsdvBkmRa+kqlh0ZE6XVOrqH6B/4k+AOgJ9iwAAAB7sGcBAAAT9XEqePDgwZoyZUqz/2JiYjR8+HBNmTJFkrRs2TKtXr268WPuv/9+nTt3TqtWrdLx48f11ltv6Ve/+pVWrlzp1KcBIIhMKvqmjIzVzRNHO3IOANAR9iwAAAB7sGcBAAATOfaTfZ1RWFjY+B1PkjR27Fjt3LlTP/7xj5WamqrExEStWrVKDz74oINnCSAYTCv6dqSn6cHdnzhyHgAQCOxZAAAA9mDPAgAAwWZU2ZeRkdHu25KUlpam999/PzgnBMAIJhZ9g6P6O3IeANBd7FkAAAD2YM8CAABOc+xlPAGgMyj6AAAAAAAAAABoG2UfAGNR9AEAAAAAAAAA0D7KPgBGoujzctfVBz0TAAAAAAAAABA6KPsAGIeiz6vKU6ffZH4a9FwAAAAAAAAAQOig7ANgFIo+rypPnRZteU8nKt1BzwYAAAAAAAAAhA7KPgDGoOjz8hV9H5dUavXciUHPBwAAAAAAAACEDso+AEag6PNqWvTtumuOvjosJujnAAAAAAAAAAAIHZR9ABxH0ed1edE3O3Fo0M8BAAAAAAAAABBaKPsAOIqiz4uiDwAAAAAAAADQHf2cPgEAvddreUXanldM0UfRBwAAAAAAAADoJn6yD4BjKPoo+gAAAAAAAAAAPUPZB8Axt6UkUPRR9AEAAAAAAAAAeoCyD4Bjbk0Z40guRR8AAAAAAAAAIFxQ9gHoVSj6AAAAAAAAAADhhLIPQK9B0QcAAAAAAAAACDeUfQB6BYo+AAAAAAAAAEA4ouwDEPYo+gAAAAAAAAAA4YqyD0BY+7LSTdEHAAAAAAAAAAhblH0AwtpLuQUUfQAAAAAAAACAsEXZByAsna7xSJJGxkRR9AEAAAAAAAAAwpYxZd/GjRsVERGhBx54oM3HvPTSS4qIiGj234ABA4J3kgBCwsGTZXrjWLEk6e6p4yj6APR67FkAAAD2YM8CAAAm6Of0CUhSVlaWnnnmGaWmpnb42NjYWB07dqzx7YiICDtPDUCIOXiyTAtfydSw6EidrqlVVL++QT8Hij4AJmHPAgAAsAd7FgAAMIXjP9lXXV2t9PR0Pfvssxo6tOML4hERERo9enTjf6NGjQrCWQIIBb6ib8rIWN08cbQj50DRB8Ak7FkAAAD2YM8CAAAmcfwn+1auXKmbbrpJCxYs0Lp16zp8fHV1tZKSktTQ0KDp06frV7/6la6++uo2H+/xeOTxeBrfrqysDMh5A+GsrKxMW7Zsse34mZmZkqTX8oqVX3Y+IMf8stKtl3ILNDImSt9KjtfOz0skSRmuMwE5fmuyi8qbZXgu1uvlw4UqqfFo+bQkvft5id69dB7ddfhUhST/75ldysrKbD0+AGewZwHmcbvdysnJse34eXl53v89U2Vbhm9/C/UM37F9v2d2cbvdth4fgDPYswCzhMOOJbFndRV7FuAXYVmW5VT4tm3btH79emVlZWnAgAGaN2+epk2bpieeeKLVx7/33nv69NNPlZqaqoqKCj322GPav3+/PvnkE11xxRWtfsyaNWu0du3aFu9ftGiR+ve37z5eBw8e1OzZs207fjhlBCuHjM4pKyvTgQMHbDs+zDV37txOfUdqd4XD8yNYGcHKCYeMuro67dixQxUVFYqNjbUtJxSxZ5FBhnk5brdbu3fvtu34MNeCBQsUHR1t2/HD5XlIhlkZ7FltY88igwyzMtixejf2LDJCLcOuHcuxsu/EiROaOXOmdu3a1fja5h0tR5erq6tTSkqK7rjjDj366KOtPqa174QaO3as7cvq0qVL9frrr9t2/HDKCFYOGZ2zZcsW3Xnnnbp/ZrLmjBve7mNfyyvS9rxi3ZaSoFtTxnQ648WcAu1xlWrWmDjNHBPXo/M9XePRG8eKNSw6UjdPHK3Ivt5XJ97nKtXR0uqAZLTFlzF99BCdrHLrnLtWSyYlaFRMVMAzbksZo1tTEtp9bHfnkVl4VpuyXdq8ebPS09N7esptCofnR7AygpUTDhmVlZUaMmQIF6Euw55FBhlm5uTk5GjGjBna/N0ZShkx2JaMtz89rYf35unRG1I0fuhAWzJ8u0O4ZNg5j7wzVbrzz4d06NAhTZ8+3ZYMKXyeh2SYlcGe1Tr2LDLIMC8jXHYsiT2rK9izyAjVDLt2LMdexvPQoUMqKSlp9kSsr6/X/v379fTTT8vj8ahv377tHqN///669tpr9dlnn7X5mKioKEVFBe7CO9BbzBk3XOnXjG3z19ftP6btecV69IYUPfTNSV06dmbhWe1xlWrppIQuf2xTvnv0zUocph3paRoc5f/uxhVv5epoaXWPM9rjyzhz3iP3xQYd+MH1Ab9Hny9j6ughts1DkjZlu3pwlgBMw54FmC1lxGBNT4iz5dh5pd6XTFp85SjbMiTv7hAuGXbOA0D4Yc8CzBUOO5bEngWgexwr++bPn68jR440e98999yjyZMn68EHH+xwMZK8y9SRI0e0ePFiu04TQCvW7T/W+N1MdhVpHfEVfVNGxrYo+oKltr5BklRS49H+e74Z8KKvs0yYBwCzsGcBAADYgz0LAACYyLGyb/DgwZoyZUqz98XExGj48OGN71+2bJkSExO1YcMGSdIvf/lLff3rX9eECRNUXl6u3/72tyooKNC9994b9PMHeisTiiUTir4qT53ePH5KkrR8WhJFHwCjsGcBAADYgz0LAACYyLGyrzMKCwvVp0+fxrfLysr0ox/9SKdOndLQoUM1Y8YM/eUvf9FVV13l4FkCvYcJxZIpRd+iLe/pnLtWknRFrH03AW6PCfMAELrYswAAAOzBngUAAILNqLIvIyOj3bf/7d/+Tf/2b/8WvBMC0MiEYsmkou/jkkotmZSgP+UVB/0cJDPmASC0sGcBAADYgz0LAAA4rU/HDwHQ25lQLJlW9O26a45GxThzs3QT5gEAAAAAAAAAMANlH4B2mVAsmVj0cY8+AAAAAAAAAIAJKPsAtMmEYomiz8+EeQAAAAAAAAAAzGLUPfsAmOO1vCJtzyum6DOk6MtwndGe/FKKPgAAAAAAAABAM/xkH4BWUfSZU/RJougDAAAAAAAAALSKsg9Aq25LSaDoM6Doyy4qlyTNHx9P0QcAAAAAAAAAaIGyD0Crbk0Z40guRZ/fuv3HlHWp7JuXPMKRcwAAAAAAAAAAmI2yD4AxKPr81u0/pof35mnWmDhH8gEAAAAAAAAAoYGyD4ARKPr8fEXfozekaCZlHwAAAAAAAACgHZR9ABxH0efXtOjjHn0AAAAAAAAAgI5Q9gFwFEWfH0UfAAAAAAAAAKCrKPsAOObLSjdF3yUUfQAAAAAAAACA7qDsA+CYl3ILKPpE0QcAAAAAAAAA6D7KPgBBd7rGI0kaGRNF0WdA0ff5uRpHcgEAAAAAAAAAPUfZByCoDp4s0xvHiiVJd08dR9HncNF38GSZNhw47kg2AAAAAAAAAKDnKPsABM3Bk2Va+EqmhkVHSpKi+vUN+jlQ9Pn55jE2NtqRfAAAAAAAAABAz1H2AQgKX7E0ZWSsbp442pFzoOjzazqPn8+50pFzAAAAAAAAAAD0HGUfANs1LZZ2pKcpsm/wv/RQ9PldPo/o/sH/CUsAAAAAAAAAQGBQ9gGw1eXFEvfoM6voc2IeAAAAAAAAAIDAMabs27hxoyIiIvTAAw906vHbtm1TRESEbr31VlvPC0D3mVAseS7WU/RdYsI8ADiDPQsAAMAe7FkAAMAE/Zw+AUnKysrSM888o9TU1E493uVy6Wc/+5muu+46m88MQHeZUiy9fLhQFZ6LFH2GzANA8LFnAQAA2IM9CwAAmMLxn+yrrq5Wenq6nn32WQ0d2vGF+Pr6eqWnp2vt2rX6yle+EoQzBNBVJhRLtfUNkqSSGg9FnwHzAOAM9iwAAAB7sGcBAACTOP6TfStXrtRNN92kBQsWaN26dR0+/pe//KVGjhypH/7wh/rf//3fDh/v8Xjk8Xga366srOzR+QJOKysr05YtW2w7fmZmpiTptbxi5Zed7/LHf1np1ku5BRoZE6VvJcfryQ++aPGY7KJySVKG60yPzrUtnov1+uPHJyVJ14wconc/L9G7n5cEPKejzyPDdUZ78ks1f3y8JG/xF+iMjnRmHodPVUjyz94uZWVlth4fQEvsWUDXuN1u5eTk2Hb8vLw87/+eqbItw7e/kdH5jLc/Pa28UntyGjPefrtx/nZgzwKCjz0L6Dx2LLNygpnxXI5LYwZH25JRVOX2Zjz3nMaMGWNLhiQVFxfbdmwgkCIsy7KcCt+2bZvWr1+vrKwsDRgwQPPmzdO0adP0xBNPtPr4AwcO6Pbbb1dubq7i4+O1fPlylZeX67XXXmszY82aNVq7dm2L9y9atEj9+9v30y0HDx7U7NmzbTt+OGUEKyccMsrKynTgwAHbjg/Ybe7cuZ36rtfuCofneTBzwiGjrq5OO3bsUEVFhWJjY23LCUXsWWSQ0TVut1u7d++2NQOwE3sWGYHGntU29iwyyOg8diyEg5kzZyohIcG244fDc52MzrNrx3LsJ/tOnDihVatWadeuXRowYECHj6+qqtJdd92lZ599VvHx8Z3OWb16tX7yk580vl1ZWamxY8fqj3/8o63L6tKlS/X666/bdvxwyghWTjhkbNmyRQcOHND9M5M1Z9zwxve/llek7XnFui0lQbem9Ow7WV7MKdAeV6lmjYnTzDFxnf640zUevXGsWMOiI3XzxNGK7Nv2qwTvc5XqaGl1lzM6UlvfoDePn9I5d60SY6PlKncHPKOptj6P7KJyZRWVByR7v6tUn5RWK+GqOxWXMLNnJ9yG8uJsFR/drJT5Tyhm6ARbMmrKPlPengd03333KT093ZYMKTye58HMCYeMyspKDRkyxLbjhyr2LDLI6LqcnBzNmDFDm787QykjBtuS8fanpxtf3nv80IG2ZGQWntWmbBcZneDboe3cgUoL9sqV9Th7FhkhmcGe1Tr2LDLI6Bp2LPNygpHhu7445uo7NWR029ez3JUFKszZpMhBo5U07T716dfx11Wf4r++qvKTmYr/ymKNGP/tbp9rw8ULKsj9D9VWn9K46fcrOjap8dcqTmWr6JPNuuWWW/TQQw91O6Mj4fBcJ6Pz7NqxHCv7Dh06pJKSEk2fPr3xffX19dq/f7+efvppeTwe9e3bt/HXPv/8c7lcLi1ZsqTxfQ0N3nty9evXT8eOHdNXv/rVFjlRUVGKioqy8TMBgm/OuOFKv2asJO9LQ27PKw7YPeEyC89qj6tUSycldPp4vnvCzUoc1ql7wq14K1dHS6u7lNGRKk+dFm15T+6LDTrwg+v1Um6BNmW7AppxudY+j3X7jymryBWweax4K1eflFYrLmGmRk/8bo+P15bio5sVM3SCBo+4xrYMAMHDngV0X8qIwZqeEGfLsX0vFbn4ylG2ZUjSpmwXGZ2QX3Ze2/OKbd2Baso+kyT2LCCMsGcB3cOOZVaO3Rm+64tDRrd9PavydK6O/+/DGjTiak296T/VL3JQlzLKi7NVfjJTg4andPua2cXaah1+a5nq3Gd17S1/VOyoaS0eU/TJ5m4dGwg2x8q++fPn68iRI83ed88992jy5Ml68MEHmy1GkjR58uQWj3/ooYdUVVWlJ598UmPHjrX9nAHTrNt/rPE7l+wqtDriK/qmjIztVNFnB1/R93FJpXbdNUezE4fqpdyCoJ+HCfMAAIk9CwAAwC7sWQDQc5Wnc5X75p2KGTaxW0VfIPiKvppzxzXt5s2tFn1AKHGs7Bs8eLCmTJnS7H0xMTEaPnx44/uXLVumxMREbdiwQQMGDGjx+Li4OElq8X6gNzChWDK16HOCCfMAAB/2LAAAAHuwZwFAz1D0AfZwrOzrjMLCQvXp0/Z9v4Deynd/EYo+M4q+DNcZ7ckvpegDEFLYswAAAOzBngUAraPoA+xjVNmXkZHR7tuXe+mll2w7F8BkFH3mFH2SKPoAhAT2LAAAAHuwZwFAxyj6AHvxbUZACLotJYGiz4CiL7uoXJI0f3w8RR8AAAAAAADQCoo+wH6UfUAIujVljCO5FH1+6/YfU9alsm9e8ghHzgEAAAAAAAAwGUUfEByUfQA6haLPb93+Y3p4b55mjYlzJB8AAAAAAAAwnbuygKIPCBLKPgAdoujz8xV9j96QopmUfQAAAAAAAECrCnM2UfQBQULZB6BdFH1+TYs+7tEHAAAAAAAAtC1y0GiKPiBIKPsAtImiz4+iDwAAAAAAAOi8pGn3UfQBQULZB6BVX1a6KfouoegDAAAAAAAAuqZPvwFBz6ToQ29F2QegVS/lFlD0iaIPAAAAAAAACAUUfejNKPsANHO6xiNJGhkTRdFnQNHnmwcAAAAAAACA1lH0obej7APQ6ODJMr1xrFiSdPfUcRR9Dhd93nmcciQbAAAAAAAACAUUfQBlH4BLDp4s08JXMjUsOlKSFNWvb9DPgaLPzzeP4ZfmAQAAAAAAAKC5hvpaij5AlH0A5C+WpoyM1c0TRztyDhR9fk3ncdPEUY6cAwAAAAAAAGC608f/i6IPEGUf0Os1LZZ2pKcpsm/wvyxQ9PmZMA8AAAAAAADAZFZDnSSp9nwpRR8gyj6gV7u8WOIefWYVfU7MAwAAAAAAADDZxdpqnS3YI0kaPek2ij5AlH1Ar2VCseS5WE/Rd4kJ8wAAAAAAAABMdrG2WoffWqa6C+WSpKhBCc6eEGAIyj6gFzKlWHr5cCFFn8yZBwAAAAAAAGAqX9FXc+644pMWOH06gFEo+4BexoRiqba+QZJUUuOh6DNgHgAAAAAAAIDJmhZ9027erP4D450+JcAolH1AL2JCsVTlqdObx09JkpZPS6Loo+gDAAAAAAAA2nR50cc9+oCWKPuAXsKEYqnKU6dFW97TOXetJOmK2Oign4NE0QcAAAAAAACEAoo+oHMo+4BewIRiyVf0fVxSqSWTnLtxLkUfAAAAAAAAYD6KPqDzjCn7Nm7cqIiICD3wwANtPubZZ5/Vddddp6FDh2ro0KFasGCBDh48GLyTBEKQCcVS06Jv111zNComKujnIFH0Aei92LMAAADswZ4FAPag6AO6xoiyLysrS88884xSU1PbfVxGRobuuOMO7d27V++9957Gjh2rb3/72zp58mSQzhQILSYUS5cXfdyjj6IPQHCxZwEAANiDPQsA7GFK0Xcmf6cjuUB3OF72VVdXKz09Xc8++6yGDm2/BNiyZYtWrFihadOmafLkyXruuefU0NCgPXv2BOlsgdBhQrFE0ednwjwA9D7sWQAAAPZgzwIAe5hS9LkOPaXSL95xJBvojn5On8DKlSt10003acGCBVq3bl2XPvb8+fOqq6vTsGHD2nyMx+ORx+NpfLuysrLb5wp0pKysTFu2bLHt+JmZmZKk1/KKlV92vs3HfVnp1ku5BRoZE6VvJcfryQ++6HRGdlG5JCnDdaZH5+q5WK+XDxeqpMaj5dOS9O7nJXr385KAZrTHl/HihwX6ovy85o+Pl+Qt/gKd0dHn0ZN5HLqU4a48oaozR7p7qu1yV56QJNWUfWbL8Zse2/dn2C5lZWW2Hh8INexZCBdut1s5OTm2ZuTl5Xn/90yVbRm+/S1cMt7+9LTySu3JySw8a3vG4VPlkuzdgdizgPDFnoVwYfeexY7VvZznclwaMzjalgzfDmRnRvZJb8aZ/Hcb96HOaKiv1enj/6Xa86UaPek2nT2xX2dP7G/1sb7rZOVF7ys/u8en3Ex50fsqP5mpgUOv1PmyT5WRkRHYgMsUFxfbenz0DhGWZVlOhW/btk3r169XVlaWBgwYoHnz5mnatGl64oknOvXxK1as0M6dO/XJJ59owIABrT5mzZo1Wrt2bYv3L1q0SP372/eTNQcPHtTs2bNtO344ZQQrx+6MsrIyHThwwLbjA6Guf3S8YkdOszXjbMFuzZ07t8PvrO0Jvi6alVFXV6cdO3aooqJCsbGxtuWEIvYsMsIlw+12a/fu3bYdHwgH7Flk2IE9q23sWWSESwZ7FmCOmTNnKiEhwbbjh8PXrHDJsGvHcuwn+06cOKFVq1Zp165dbS427dm4caO2bdumjIyMdj9+9erV+slPftL4dmVlpcaOHas//vGPti6rS5cu1euvv27b8cMpI1g5dmds2bJFBw4c0Owxcfqnr3/VlowXcwq0x1WqWWPiNHNMXItfP13j0RvHijUsOlI3TxytyL5df6Xefa5SHS2tbjOjI7X1DXrz+Cmdc9dqyaQEjYqJCnhGZ2w/elJnztcp4ao7FZcw05aM8uJsFR/drORZP1V07FgyOsiorTml1MXP23J8n72bknTfffcpPT3dtgy+LpqVUVlZqSFDhth2/FDFnkVGOGXk5ORoxowZ2vzdGUoZMdi2nLc/Pd34st/jhw60JSOz8Kw2ZbtCPuO1vCJtzytWyvwnFDN0gi0ZpQV75cp6PCgZ7FmdEy57Fhmdx57VOvYsMsIpIxh7FjtW1/iu/Y25+k4NGW3P9aziv76q8pOZiv/KYo0Y/225KwtUmLNJkYNGK2naferTr+tf29rKGDRiqgaPuKbDx1sNdTpbsEd1F8oVn7RA/QfGd/gx5UUfyF3+aaczOqPqzBFVnznceExfxvjZP9XwcTcEJONyNWWfKW/PA7rlllv00EMP2ZIhhcfXrHDJsGvHcqzsO3TokEpKSjR9+vTG99XX12v//v16+umn5fF41Ldv31Y/9rHHHtPGjRu1e/fuDm+CHBUVpaiolmUDYJd/+vpXlX6NPf+Qzyw8qz2uUi2dlNDi3nO+e8LNShzWo3vCrXgrV0dLq1vN6IjvHn3uiw068IPr27xHX08yOmPd/mM6c75OkhSXMFOjJ3434Bk+xUc3Kz7phoAtFeGcUfLZm7YdG0Bz7FkIRykjBmt6Qpxtx/e9VOTiK0fZmrMp2xXyGfll57U9r1gxQyfYtjv4XpoyGBnsWQC6gj0L4cjOPYsdq2t81/6GjLbvelZ5cba3iBueooFDxuv4/z6sQSOu1tSb/lP9IgcFNCM+eYHGz/yndh/ru0dfQ71HM777X52+R99f9/1C7vJPO5XRGa5DT6n46GaNn/1TJc/4p2YZAwaPtXWXAwLBsbJv/vz5OnKk+f2n7rnnHk2ePFkPPvhgm4vRb37zG61fv147d+7UzJn2fHcDEGp8Rd+UkbE9Kvp6wlf0fVxSqV13zWmz6LPbuv3H9PDePM0aE6esS/e7A4Dehj0LAADAHuxZAMKFp7pYuW/eqZhhEwNa9HWFr+irOXdc027e3OmiL9Bch55S/sHHmxV9QKhxrOwbPHiwpkyZ0ux9MTExGj58eOP7ly1bpsTERG3YsEGS9Otf/1r/+q//qq1btyo5OVmnTp2SJA0aNEiDBgX/ixFgAoo+P1/R9+gNKSqqclP2Aei12LMAAADswZ4FIFycOrZdg0deQ9FH0Ycw0fUbegVRYWGhiouLG9/etGmTamtrddtttykhIaHxv8cee8zBswScQ9Hn17Tos+OlQQEg3LBnAQAA2IM9C4DJ6s6XSpIiB8ZT9BlQ9NWcPe5ILsKPYz/Z15qMjIx233a5XEE7F8B0FH1+FH0A0DH2LAAAAHuwZwEIFZWnc1VasFuSNGri31L0OVz0VZ7O1bH/fciRbIQfo3+yD0Drvqx0U/RdQtEHAAAAAAAAtK/ydK5y37xT/QfESZL69I0M+jlQ9Pn55hE9JMmRfIQfyj4gBL2UW0DRJ4o+AAAAAAAAoCO+Yilm2EQNT5rvyDlQ9Pk1ncfEub905BwQfij7gBByusYjSRoZE0XRR9EHAAAAAAAAtKtpsTT1pv9URJ/gX0+k6PO7fB59+0c7ch4IP5R9QIg4eLJMbxzz3uD77qnjKPoo+gAAAAAAAIA2XV4scY8+s4o+J+aB8EXZB4SAgyfLtPCVTA2L9r6WdlS/vkE/B4o+AAAAAAAAIDSYUCw11NdS9F1iwjwQ3ij7AMP5ir4pI2N188TRjpwDRR8AAAAAAAAQGkwplk4f/y+KPpkzD4Q3yj7AYE2Lvh3paYrsG/ynLEUfAAAAAAAAEBpMKJashjpJUu35Uoo+A+aB3oGyDzDU5UUf9+ij6AMAAAAAAADaYkKxdLG2WmcL9kiSRk+6jaKPog9BQtkHGMiEos9zsZ6iDwAAAAAAAAgBJhRLF2urdfitZaq7UC5JihqUEPRzkCj60DtR9gGGMaHok6SXDxdS9AEAAAAAAACGM6FY8hV9NeeOKz5pQdDzfSj60FtR9gEGMaHoq61vkCSV1Hgo+gAAAAAAAACDmVAsNS36pt28Wf0Hxgf9HCSKPvRulH2AIUwo+qo8dXrz+ClJ0vJpSRR9AAAAAAAAgKFMKJYuL/q4Rx9FH5xB2QcYwJSib9GW93TOXStJuiI2OujnIFH0AQAAAAAAAB0xoVii6PMzYR7o3Sj7AIeZVPR9XFKpJZOcuXGuRNEHAAAAAAAAdMSEYsmUoq+86H2KPkCUfYCjTCv6dt01R6NiooJ+DhJFHwAAAAAAANARE4olU4o+SSo/mUnRB4iyD3CMiUUf9+gDAAAAAAAAzGRCsWRK0Vd15ogkKS5xDkUfIMo+wBEUfX4UfQAAAAAAAED7TCiWTCn6XIeeUvWZw5KkuDFfd+QcTJgH0FQ/p08A6G0o+vwyXGe0J7+Uog8AAAAAAABogwnFkklFX/7BxzVoxNTGwi/YTJgHcDl+sg8IIoq+5ij6AAAAAAAAgLaZUCyZVvSNn/1TDR5xjSPnYMI8gNZQ9gFBQtHnl11ULkmaPz6eog8AAAAAAABohQnFkolFH/foA1oypuzbuHGjIiIi9MADD7T5mE8++UR/+7d/q+TkZEVEROiJJ54I2vkBPUHR57du/zFlXSr75iWPcOQcAKC3Yc8CAACwB3sWALuYUCxR9PmZMA+gPUaUfVlZWXrmmWeUmpra7uPOnz+vr3zlK9q4caNGjx4dpLMDeoaiz2/d/mN6eG+eZo2JcyQfAHoj9iwAAAB7sGcBsIu7ssDxYomiz8+EeQAdcbzsq66uVnp6up599lkNHdp+ATFr1iz99re/1e23366oqKggnSHQfRR9fr6i79EbUjSTsg8AgoI9CwAAwB7sWQDsVJiziaJPZhR9kvPzADqjn9MnsHLlSt10001asGCB1q1bF/DjezweeTyexrcrKysDnoHQUFZWpi1btth2/MzMTEnSa3nFyi87ry8r3Xopt0AjY6L0reR4PfnBFz3O8N3rLsN1plOP91ys18uHC1VS49HyaUl69/MSvft5SUAzOiPDdUZ78ks1f3y8bRmXO3Qpo7w427YM37Fryj6zLcNdeSKsMgAEF3sWgsHtdisnJ8e24+fl5Xn/90yVbRmSlF923vaccMkoqnJLCp/9JFwyAAQXexaCIRz2rHDZf4KRIUlnarzP+76Rg5Uw6Xsqde0KeIa7Il+SVF70vvJbuWzWUF+r08f/S7XnSzV60m06e2K/zp7Y36WMqjNH2s3ojPKi91V+MlNxiXNkWVJ+9lMBz+jMOUj2zuNCFbscAiPCsizLqfBt27Zp/fr1ysrK0oABAzRv3jxNmzatU69dnpycrAceeKDd10SXpDVr1mjt2rUt3r9o0SL172/fT1kdPHhQs2fPtu344ZQRjJyysjIdOHDAtuMDMEdqaqqSkpJsO364fF0Ml4y6ujrt2LFDFRUVio2NtS0nFLFnkRGMDLfbrd27d9t2fABmCYc9i4zOY89qG3sWGcHIYM8CepcJEyYoJSXFtuOHw9fFcMmwa8dy7Cf7Tpw4oVWrVmnXrl0aMGCAbTmrV6/WT37yk8a3KysrNXbsWP3xj3+0dVldunSpXn/9dduOH04ZwcjZsmWLDhw4oPtnJmvOuOG2ZLyYU6A9rlKlxA/SZ+eqNSw6UjdPHK3IvoF7tdx9rlIdLa3WrDFx7b4UZm19g948fkrn3LVaMilBo2I6/zIhnc3ojOyicmUVlbc4ViAz2uLLuCp+kD49V6Ph0ZG6aeKogM5jv6tUn5RWK+GqOxWXMDNgx22qvDhbxUc3K3nWTxUdO5aMdrgrT8iV9bh+/vOfKz093ZYMKXy+LoZLRmVlpYYMGWLb8UMVexYZwcrIycnRjBkztPm7M5QyYrAtGW9/errxpcDHDx1oS4YkZRae1aZsl6054ZZx/8xkjRkcbUtGRv4Z7XGVhvx+Ei4Z4bRnkdF57FmtY88iI1gZ4bJnhdv+E6yd9LaUBI3owvW8rvBdM4tLnKPoIeMb32811OlswR7VXShXfNIC9R8Y3+2M8qIP5C7/VINGTNXgEdd06WOrzhxR9ZnDHX5sTzI6Une+VKUFuxXRp5+s+gu2ZPi4K/JVfjJTd999tx566CFbMqTw+LoYLhl27ViOlX2HDh1SSUmJpk+f3vi++vp67d+/X08//bQ8Ho/69u3b45yoqCheDx2N5owbrvRr7PkHcGbhWe1xleqLshrNShxmyz36VryVq6Ol1Vo6KUEPfXNSq4/x3aPPfbFBB35wfZfv0deZjM5Yt/+Ysoq8S9DlxwlURnt8GZ+X1WhW4lDb5vFJabXiEmZq9MTvBvTYTRUf3az4pBtsWyrCJaPqzBG5sh635dhAqGHPQrCljBis6Qlxthw7r9T7UkmLrxxlW4bPpmyX7TnhlHHv9GRbM/a4SkN+PwmXDPYswI89C8EWDntWOO0/wdpJV183ybYc3zWzhMnfa7ye5btHX0O9RzO++189vkffX/f9Qu7yTxWfvEDjZ3b+XnuuQ0+p+OjmTt2jr7sZHak8navcN+9U7KipGhg3Qaf++seAZzR16vifVX4y05Zjo3dxrOybP3++jhw50ux999xzjyZPnqwHH3wwIIsREEynL72m9siYKFuKpc7wFX0fl1Rq111zulz0Bcq6/ccavzPMrjKvIybMAwCcwp4FAABgD/YsAOHGV/TVnDuuaTdv7nHR112uQ08p/+DjnSr67OIr+mKGTdTUm/5Tn723wZHzALrDsbJv8ODBmjJlSrP3xcTEaPjw4Y3vX7ZsmRITE7Vhg/dJVVtbq6NHjzb+/5MnTyo3N1eDBg3ShAkTgvsJAE0cPFmmN44VS5LunjqOos/hos+EeQCAk9izAAAA7MGeBSCcUPT5XV709Ysc5Mh5AN0VuJtX2aCwsFDFxcWNbxcVFenaa6/Vtddeq+LiYj322GO69tprde+99zp4lujtDp4s08JXMjUsOlKSFNUv+N/FR9HnZ8I8ACAUsGcBAADYgz0LQChouHiBou8Sij6EA8d+sq81GRkZ7b6dnJwsy7KCd0JAB3zF0pSRsUqJH6TnPywM+jlQ9PmZMA8AMBV7FgAAgD3YswCEooLc/1Cd+yxFH0UfwoTRP9kHmKxpsbQjPU2RfYP/dKLo8zNhHgAAAAAAAEAoqK0+RdFnQNHXcPFC0DMRnrgaDnTD5cUS9+gzq+jjHn0AAAAAAABA28ZNv5+iz+Gi72JttQpy/yPouQhPlH1AF5lQLHku1lP0XWLCPAAAAAAAAIBQEh2b5EguRZ/XxdpqHX5rmWqrTwU9G+GJsg/oAlOKpZcPF1L0yZx5AAAAAAAAAGgfRZ+Xr+irOXdc46bfH/R8hCfKPqCTTCiWausbJEklNR6KPoPmAQAAAAAAAKBtFH1eTYu+aTdvduwnLBF+KPuATjChWKry1OnN494f614+LYmiz4B5vHX8dNBzAQAAAAAAgFBC0ed1edHn1D0TEZ4o+4AOmFIsLdryns65ayVJV8RGB/0cJIo+H988zl6aBwAAAAAAAICWKPq8KPpgN8o+oB0mFUsfl1RqyaSEoOf7UPR5NZ/H6KDnAwAAAAAAAKGgvOh9ij5R9CE4KPuANphWLO26a45GxUQF/Rwkij4fU+YBAAAAAAAAmK78ZCZFH0UfgoSyD2iFicUS9+hjHgAAAAAAAIDpqs4ckSTFJc6h6KPoQ5BQ9gGXoVjyo+jzMmUeAAAAAAAAgMlch55S9ZnDkqS4MV935Bwo+tAb9XP6BACTUCz5ZbjOaE9+KUWfIfMAAAAAAAAATOY69JTyDz6uQSOmNhZ+wUbRh96Kn+wDLqFYao6iz6x5AAAAAAAAAKbyFX3jZ/9Ug0dc48g5UPShN6PsA0Sx1FR2Ubkkaf74eIo+A+YBAAAAAAAAmKxp0cc9+ij64AzKPvR6FEt+6/YfU9alsm9e8ghHzoF5AAAAAAAAAKGBos+Log9Oo+xDr0ax5Ldu/zE9vDdPs8bEOZIvMQ8AAAAAAAAgVJhQ9Hmqiyn6AFH2oRejWPLzFX2P3pCimQ6VfcwDAAAAAAAACA0mFH2SdOrYdoo+QJR96KUolvyaFn3co8/5eQAAAAAAAAAmM6HoqztfKkmKHBhP0QeIsg+9EMWSH0WflynzAAAAAAAAAExmQtFXeTpXpQW7JUmjJv4tRR8gyj70Mp+fq6FYusSEou/LSjfzAAAAAAAAAEKAKUVf7pt3qv+AOElSn76RQT8Hij6YqNNlX1FRkZ3noY0bNyoiIkIPPPBAu4979dVXNXnyZA0YMEDXXHON3n77bVvPC+Flw4HjFEsyo+iTpJdyC5gHAIg9CwAAwA5271gSexaA3sOkoi9m2EQNT5rvyDlQ9MFUnS77rr76am3dutWWk8jKytIzzzyj1NTUdh/3l7/8RXfccYd++MMf6sMPP9Stt96qW2+9VR9//LEt54XwMzY2utcXSyYUfadrPJKkkTFRvX4eACCxZwEAANjBzh1LYs8C0HuYVvRNvek/FdEn+NcTKfpgsk6XfevXr9c//MM/6Hvf+57OnTsXsBOorq5Wenq6nn32WQ0d2v7F9ieffFKLFi3SP//zPyslJUWPPvqopk+frqeffjpg54Pw9vM5V/bqYsmEou/gyTK9caxYknT31HG9eh4A4MOeBQAAEHh27VgSexaA3sPEoo979AEt9evsA1esWKEbb7xRP/zhD3XVVVfp2Wef1ZIlS3p8AitXrtRNN92kBQsWaN26de0+9r333tNPfvKTZu/7zne+o9dee63Nj/F4PPJ4PI1vV1ZW9uh8YY+ysjJt2bLFtuNnZmZKknZ+VqJT1Z4OHt092UXlkqQM15lm7/dcrNfLhwtVUuPR8mlJevfzEr37eUlAMzojw3VGe/JLNX98vCRv8RfojI58WenWS7kFiurbV3UN9Xrvy3NtnkdPBWMehy5luCtPqOrMkZ6cbpvclSckSTVln9ly/HDK8B3b93y3S1lZma3HR+/EngW7uN1u5eTk2Hb8vLw87/+eqbItI7/svO0ZwcoJt4y3Pz2tvFJ7cg6fKpcU+vtJuGT4jp2fn2/r1xS3223bsdE72bVjSexZYM8iw96c53JcGjM42paM7JPlkqQz+e827hFtKS96X+UnMxWXOEeWJeVnP9WpDN91svKi95Wf3aPTlae6WKeObVfkwHjFjfmGTnz0QsAz2uLLOPflARXn/f9Ve75UoyfdprMn9uvsif0Byag+632uFxUVsWehRyIsy7K6+kFPP/20fvzjHyslJUX9+jXvC7vyB3Lbtm1av369srKyNGDAAM2bN0/Tpk3TE0880erjIyMj9fLLL+uOO+5ofN/vf/97rV27VqdPn271Y9asWaO1a9e2eP+iRYvUv799P1F08OBBzZ4927bjh1NGWVmZDhw4YGsGAATS3LlzO/zu3Z4Kl6/xdmfU1dVpx44dqqioUGxsrG05wcSe1bFw+LMbjAy3263du3fbdnwAsMOCBQsUHW3PxU0pPL6+Bysj3PasQO1YEnsWGexZAEITe5YZGXbtWJ3+yT6fgoIC/elPf9LQoUN1yy23tFiQOuvEiRNatWqVdu3apQEDBnTrGJ2xevXqZt89VVlZqbFjx+qPf/yjrcvq0qVL9frrr9t2/HDK2LJliw4cOKD7ZyZrzrjhATnm5+dqtOHAcY2NjdbP51ypbUe+1B5XqWaNidPMMXEBybjcPlepjpZWN2bU1jfozeOndM5dqyWTEjQqJirgGZ2RXVSurKLyTn9MdzI6crrGozeOFWtYdKRunjha7504F/CMy+13leqT0molXHWn4hJm2pJRXpyt4qOblTzrp4qOHUuGIRm3pYzRrSkJnfqY1/KKtD2vWLelJOjWlDEdPj6z8Kw2Zbt03333KT09vaen3K5w+Rpvd0ZlZaWGDBli2/GDjT2rc8Lhz24wMnJycjRjxgxt/u4MpYwYbEvG25+ebnyJ8PFDB9qS4fvaa2dGsHLCJcP392fK/CcUM3SCLRmlBXvlyno8bPaTUM9wV56QK+txPXpDihZfOcqWjLwzVbrzz4f061//WtOnT7clQwqPr+/ByginPStQO5bEnkWGF3sWGXZ5MadAe1yliojor6SZ/6jo2KSAZxT/9VWVn8zUoBFTNXjENa0+purMEVWfOdzuY9pTXvSB3OWfdvvjJanufKlKC3ar/4A4DU+a3+IefYHI6EhZ0Xu6UP65pD6KT/62+g+MD3iGuyJf5Sczdf/MZN07PTngx5fYs0zLsGvH6tJ28+yzz+qnP/2pFixYoE8++UQjRozodvChQ4dUUlLS7A9XfX299u/fr6effloej0d9+/Zt9jGjR49u8R1Pp0+f1ujRo9vMiYqKUlRUz0sW2G/OuOFKv6bn/zg9eLJMK946rOkJcdqRnqbBUf2VU1yuPa5SLZ2UYNu96la8laujpdVaOilBq772FS3a8p7cFxt04AfXB+yecE0zOvN5rNt/TFlFri7do6+rGR05eLJMC1/J1KzEYY3zCHRGa1a8latPSqsVlzBToyd+15YMSSo+ulnxSTfYtlSQ0fWMqaOHdOprybr9x7Q9r7jL97DclO3qwRkCbWPPgl1SRgzW9IQ4W47tewnHxVeOsi1D8n7ttTsjWDnhkJFfdl7b84oVM3SCbX+v+142Mlz2k1DPqDpzRK6sxzV+6EDbn4dAoAVyx5LYs9AcexYZgZZZeFZ7XKVKmvmPGj/zAVsyyouzVX4yU/HJCzR+Zst78LkOPaXio5t7dI++v+77hdzln7aZ0RHfPfpiR01t8x59Pc3oyMXaar2/9XpJUkLK7Zo8b0PAMyTp1PE/q/xkpsYMjmbPQo90uuxbtGiRDh48qKefflrLli3rcfD8+fN15Ejze1zdc889mjx5sh588MEWi5EkpaWlac+ePXrggQca37dr1y6lpaX1+HwQHnzF0pSRsY3FUrB5LtZr0Zb39HFJpXbdNSdgRV9Xrdt/rPE7wOwq1DpiwjyA1pjw/ACaYs8CAAAIvEDvWBJ7FoDgsOMn+jrDdegp5R98vEdFX0/5ir6YYRPbLPrsdrG2WoffWqa6C+WSpKhBnXsFKcBJnS776uvr9dFHH+mKK64ISPDgwYM1ZcqUZu+LiYnR8OHDG9+/bNkyJSYmasMGb2u+atUqXX/99Xr88cd10003adu2bcrOztYf/vCHgJwTQpspxdLLhwtV4blI0WfIPIDLmfD8AC7HngUAABB4gd6xJPYsAOGLos/LV/TVnDuu+KQFKnXtCPo5AN3Rp7MP3LVrV0CXo84oLCxUcXFx49vf+MY3tHXrVv3hD3/Q1KlTtX37dr322mstliz0PiYUS7X1DZKkkhoPRZ9B8wCaMuH5AbSGPQsAACDwnNixJPYsAKGHos+radE37ebNttyjD7BL9+9IbIOMjIx235ak733ve/re974XnBNCSDChWKry1OnN46ckScunJVH0GTCPt46f7viB6FVMeH4ATmLPAgAAsAd7FoBQRtHndXnRFztqmor++mrQzwPork7/ZB9gIlOKpUVb3tM5d60k6YrY6KCfg2RGkWHSPM5emgcgmfH8AAAAAAAAMAlFn1drRR8Qaij7ELJMKpY+LqnUkknO3ajVhCLDvHmMDno+zGTC8wMAAAAAAMAk5UXvU/SJog/hg7IPIcm0YmnXXXM0KiYq6OcgmVFkMA+YyoTnBwAAAAAAgGnKT2ZS9FH0IYxQ9iHkmFgscY8+5gHzmPD8AAAAAAAAMEnVmSOSpLjEORR9BhR9Z/J3OpKL8EPZh5BCseRnQpHBPGAqE54fAAAAAAAAJnEdekrVZw5LkuLGfN2Rc6Do83MdekqlX7zjSDbCTz+nTwDoLIolvwzXGe3JL6XoM2QeMIsJzw8AAAAAAACTuA49pfyDj2vQiKmNhV+wUfT5+eYR/5UbKfwQEPxkH0ICxVJzThcZzAMmc/r5AQAAAAAAYBJfsTR+9k81eMQ1jpwDRZ9f03mMGP8dR84B4YeyD8ajWPLLLiqXJM0fH0/RZ8A8YCYnnx8AAAAAAAAmaVoscY8+s4o+p+aB8ETZB6NRLPmt239MWZfKvnnJIxw5B+aBUODU8wMAAAAAAMAkJhRLFH1+JswD4YuyD8aiWPJbt/+YHt6bp1lj4hzJl5gHAAAAAAAAECpMKJY81cUUfZeYMA+EN8o+GIliyc9X9D16Q4pmOlT2MQ8AAAAAAAAgNJhSLJ06tp2iT+bMA+GNsg/GoVjya1r0cY8+5+cBAAAAAAAAmMyEYqnufKkkKXJgPEWfAfNA70DZB6NQLPlR9HmZMg8AAAAAAADAZCYUS5Wnc1VasFuSNGri31L0UfQhSCj7YIzPz9VQLF1iQtH3ZaWbeQAAAAAAAAAhwIRiqfJ0rnLfvFP9B8RJkvr0jQz6OVD0obei7IMxNhw4TrEkM4o+SXopt4B5AAAAAAAAAIYzoVjyFX0xwyZqeNJ8R86Bog+9GWUfjDE2NrrXF0smFH2nazySpJExUb1+HsDlPj9X4/QpAAAAAAAANDKhWGpa9E296T8V0Sf41xMp+tDbUfbBGD+fc2WvLpZMKPoOnizTG8eKJUl3Tx3Xq+cBXO7gyTJtOHDc6dMAAAAAAACQZEaxdHnRxz36KPrgDMo+GCO6f9+gZ5pSLJlS9C18JVPDor2vpR3Vr/fOA7ic7/kxNjba6VMBAAAAAAAwolgyoehrqK+l6ANE2YdezJRiyaSib8rIWN08cbQj52DKPIDLNX1+/HzOlU6fDgAAAAAA6OVMKJZMKPok6fTx/6LoA0TZh17KlGLJtKJvR3qaIvsG/8uCKfMALnf588OJn0AGAAAAAADwMaFYMqHosxrqJEm150sp+gA5XPZt2rRJqampio2NVWxsrNLS0vTOO++0+zFPPPGEJk2apOjoaI0dO1Y//vGPdeHChSCdMcKBKcWSiUUf9+gD/Ex4fgDdxY4FAABgD/YsAE4yoVgyoei7WFutswV7JEmjJ91G0QdI6udk+BVXXKGNGzfqyiuvlGVZevnll3XLLbfoww8/1NVXX93i8Vu3btW//Mu/6IUXXtA3vvENHT9+XMuXL1dERIR+97vfOfAZINR4LtYbUSxR9HmZMg/gciY8P4CeYMcCAACwB3sWAKeYUCyZUvQdfmuZ6i6US5KiBiUE/RwkM+YBNOVo2bdkyZJmb69fv16bNm3S+++/3+qC9Je//EVz5szR97//fUlScnKy7rjjDn3wwQdBOV+EvpcPF6rCc5Giz5Aiw4R5AJcz5fkB9AQ7FgAAgD3YswA4wYRiyaSir+bcccUnLVCpa0fQz0EyYx7A5Rwt+5qqr6/Xq6++qpqaGqWlpbX6mG984xvavHmzDh48qNmzZ+uLL77Q22+/rbvuuqvN43o8Hnk8nsa3KysrA37uCIzX8oqVX3belmN/8GWZJKmo6oLunZ6sdz8v0buflwQ0I7uoXJKU4TrT5mMyXGe0J79U88fHS/IWf4HO6MiXlW69lFugkTFR+lZyvJ784IuAZ3QkGPM4dOnzKC/ODuhxm/Idu6bsM9sy3JUnwiqjtGCvbTm+edj5/Dh8qqJH5wg4wa4dS2LPChV5Z6psO7Zvdwv1jGDlhEtGUZVbUvjsJ2R0zHfs/LLzyikutyXD7uc4YAf2LIT63+lkmJUhSWdqvM/7ilP+61ln8neq9It3FP+VGzVg8FidOv7nHmW4K/IlSeVF7yu/k5fNPNXFOnVsuyIHxituzDd04qMX2n181ZkjXc7oSEN9rU4f/y/Vni/V6Em3qar0k4BnXM73eVSfzWv8fQ/0PHyzLqpys2ehRyIsy7KcPIEjR44oLS1NFy5c0KBBg7R161YtXry4zcc/9dRT+tnPfibLsnTx4kXdd9992rRpU5uPX7NmjdauXdvi/YsWLVL//vb9tIZvibNTuGQUFBToo48+sjUDAAIpNTVVSUlJtmaEy9d4uzPq6uq0Y8cOVVRUKDY21racUGT3jiWxZ5meUVZWpgMHDth2fACww9y5czV0qH2v+hEOX9+DlcGe1Tb2LDLYswCEIvYsMzLs2rEcL/tqa2tVWFioiooKbd++Xc8995z27dunq666qsVjMzIydPvtt2vdunX62te+ps8++0yrVq3Sj370Iz388MOtHr+174QaO3as7cvq0qVL9frrr9t2/HDK2LJli+68807NT47XxPjA/vh3bX2D3jx+SiU1tbIkzRoTp5lj4gKa4bPPVaqjpdWtZmQXlSurqLzH+e1ldOR0jUdvHCvWsOhI3TxxtCL79gl4RkecmMfsMXGaYdM89rtK9UlptRKuulNxCTN7dsJtKC/OVvHRzUqe9VNFx44N+YxgzMPO58fx0mrtcZVq8+bNSk9P7/a5dka4fI23O6OyslJDhgzhIlQr7N6xJPYs0zNycnI0Y8YMPXpDisYPHWhLRmbhWW3KdoV8RrBywi3j/pnJGjM42paMjPwz2uMqDZsdyM4Md+UJubIe120pCZo6Os6WjMOnyrU9r9jWP1f5Zef18N48HTp0SNOnT7clQwqPr+/BymDPaht7FhnsWWTYxZdzW0qCRsRE2ZLhu2YWlzhH0UPGt/vYuvOlKi3Yrf4D4jQ8ab4i+nTumw3Kiz6Qu/xTDRoxVYNHXNOj87Ua6nS2YI/qLpQrPmmB+g+MD3hGW9wV+So/malZCXGamRhnS4bvWhN7Vu/JsGvHcvxlPCMjIzVhwgRJ0owZM5SVlaUnn3xSzzzzTIvHPvzww7rrrrt07733SpKuueYa1dTU6O///u/1i1/8Qn36tLw4GxUVpagoe74wIrDumZ6k9GsC9w/gKk+dFm15T+6LDfpuSoL+lFespZMSbLtP3oq3cnW0tLpFxrr9x5RV5ArIPfrayuiI7x5ksxKHdXgPsu5mdMSpeSyxeR6flFYrLmGmRk/8bk9PuU3FRzcrPukG2xaXYGYEYx52Pj+2HDmhPa7SHp0nECx271gSe1aoWHzlKE1PiLPt+JuyXWGREayccMq4d3qyrRl7XKVhswPZmVF15ohcWY/r1pQxAf33VFNbjpzQ9rxiW/9c5RSX6+G9ebYcGwg09iz4hMvf6WSYk+HLWX3dJNtyfNfMEiZ/r93rWb579MWOmtrle/T9dd8v5C7/VPHJCzR+Zvfvaee7R19DvUczvvtfih01LeAZ7Tl1/M8qP5mppZPtu4bpu9bEnoWean2jcFBDQ0Oz71xq6vz58y2WoL59+0qSHP4BRRjGVyx9XFKpXXfN0SibvhOmI+v2H9PDe/MCUmR0l6/ImDIytsMiwy7MA60xYR4mPD+AYGHHAgAAsAd7FoBw4yv6YoZN7HLRFyi+oq/m3HFNu3lzs6IPQEuO/mTf6tWrdeONN2rcuHGqqqrS1q1blZGRoZ07d0qSli1bpsTERG3YsEGStGTJEv3ud7/Ttdde2/jSBw8//LCWLFnSuCgBlxdLsxOH6qXcgqCfB0WGF/NAa0yYhwnPD8Au7FgAAAD2YM8CEO4o+vzO5O90JBfoDkfLvpKSEi1btkzFxcUaMmSIUlNTtXPnTi1cuFCSVFhY2Oy7nx566CFFRETooYce0smTJzVixAgtWbJE69evd+pTgGFaK5acQJHhxTzQGhPmYcLzA7ATOxYAAIA92LMAhDOKPj/XoadU+sU7jmQD3eFo2ff888+3++sZGRnN3u7Xr58eeeQRPfLIIzaeFUKVKcVShuuM9uSX9voig3mgNSbMw4TnB2A3diwAAAB7sGcBCFcUfX6uQ08p/+Djiv/KjRR+CBnG3bMP6A5TiiVJFBliHmib0/Mw4fkBAAAAAABgEoo+P1/RN372TzVi/HccOQegOyj7EPJMKZayi8olSfPHx/fqIoN5oD29/fkBAAAAAABgEoo+v6ZFX/KMf3LkHIDuouxDSDOlWFq3/5iyLpVL85JHOHIOJhQZzAMd6c3PDwAAAAAAAJNQ9PlR9CHUUfYhZJlULD28N0+zxsQ5ki+ZUWQwD5jKhOcHAAAAAACASdyVBRR9l1D0IRxQ9iEkmVYsPXpDimY6VC6ZUGQwD5jKhOcHAAAAAACAaQpzNlH0iaIP4YOyDyHHxGKpN9+DjHnAVCY8PwAAAAAAAEwUOWg0RR9FH8IIZR9CCsWSnwlFBvOAqUx4fgAAAAAAAJgqadp9FH0UfQgjlH0IGRRLfl9Wuh0vMpgHTGXC8wMAAAAAAMBkffoNCHomRR9gH8o+hASKpeZeyi2g6JM584BZnH5+AAAAAAAAoDmKPsBelH0wHsWS3+kajyRpZEwURZ9B84AZTHh+AAAAAAAAoDmKPsB+lH0wGsWS38GTZXrjWLEk6e6p4yj6jJjHKUey0ZIJzw8AAAAAAAA0R9EHBAdlH4xFseR38GSZFr6SqWHRkZKkqH59g34OzMPPN4/hl+YBZ5nw/AAAAAAAAEBzDfW1FH1AkFD2wUgUS36+ImPKyFjdPHG0I+fAPPyazuOmiaMcOQf4mfD8AAAAAAAAQEunj/8XRR8QJJR9MA7Fkl/TImNHepoi+wb/Kcs8/EyYB/yYBwAAAAAAgHmshjpJUu35Uoo+IEi4MgqjUCz5XV5kcI8+5gE/5gEAAAAAAGCei7XVOluwR5I0etJtFH1AkFD2wRjuunqKpUtMKDI8F5mHjwnzgB/zAAAAAAAAMM/F2modfmuZ6i6US5KiBiU4ch4UfeiNKPtgjN9kfkqxJHOKjJcPFzIPmTMPeDEPAAAAAAAA8/iKvppzxxWftMCx86DoQ29F2QdjnKh0UywZUGTU1jdIkkpqPMzDgHnAz4R5uOvqg54JAAAAAABgsqZF37SbN6v/wHhHzoOiD70ZZR+MsXruRIolA+7R9+bxU5Kk5dOSmAdFnzFMmEeVp06/yfw06LkAAAAAAACmurzo4x59gDMcLfs2bdqk1NRUxcbGKjY2VmlpaXrnnXfafPy8efMUERHR4r+bbropiGcNu3x1WIwjuRRLXlWeOi3a8p7OuWslSVfERgf9HCTmgZZMmIfv+XGi0h30bKC72LMAAAACjx0LAPwo+gBz9HMy/IorrtDGjRt15ZVXyrIsvfzyy7rlllv04Ycf6uqrr27x+D/96U+qra1tfPvs2bOaOnWqvve97wXztBFGKJa8fEXGxyWVWjIpQX/KKw76OUjMAy2ZMI+mz4/VcyfqkYy/Bv0cgO5gzwIAAAg8diwA8DKl6Csvel/lJzMp+tDrOVr2LVmypNnb69ev16ZNm/T++++3uiANGzas2dvbtm3TwIEDWZDQLRRLXk2LjF13zdFLuQVBPweJeaAlE+Zx+fPj03PVQT8HoLvYswAAAAKPHQsAzCn6JFH0AZc4WvY1VV9fr1dffVU1NTVKS0vr1Mc8//zzuv322xUT0/bLP3o8Hnk8nsa3Kysre3yuvUlZWZm2bNlia0ZmZqYk6bW8YuWXnbclI7uoXJKU4TrT+L978ks1f7z3ZrHr9h8LeEZHvqx066XcAo2MidK3kuP15AdfBDyjI56L9Xr5cKFKajxaPi1J735eEvCM1oTLPA5dyigvzu7uaXbId+yass9sy3BXnghaRqg/Pw6fqgjIsYFgY88yk9vtVk5Ojm3Hz8vL8/7vmSrbMny7W6hnBCuHjM4rqvK+dHa47EB2ZviOnV92XjnF5bZkBGPmdj/HATvYtWNJ7Fk9xZ5FRihmBCvnTI33a0vFqe5dz2q4eEEFuf+h2upTGjf9fp2vyNf5ivxmj3Fferu86H3l23TZrNS1W5IUNXicLEvKz34q4BnVZ73P9aIqN3sWjBdhWZbl5AkcOXJEaWlpunDhggYNGqStW7dq8eLFHX7cwYMH9bWvfU0ffPCBZs+e3ebj1qxZo7Vr17Z4/6JFi9S/v30/JXLw4MF2zysUMsrKynTgwAHbjg8AoSo1NVVJSUm2ZoTD3yPByKirq9OOHTtUUVGh2NhY23JCFXuWuRlut1u7d++27fgAEKrmzp2roUOH2nb8cPg7JFgZ7Flts3vHktizeoI9CwBax55lRoZdO5bjZV9tba0KCwtVUVGh7du367nnntO+fft01VVXtftx//AP/6D33ntPH330UbuPa+07ocaOHWv7srp06VK9/vrrth0/GBlbtmzRnXfeqftnJmvOuOE9Opa7rl6/yfxUJyrdWj13or46zP8dbC/mFGiPq1SzxsRp5pi4Hp516/a5SnW0tFqJgwboZPUFW7J8GR0d+3SNR28cK9aw6EjdPHG0Ivv2CXhGR2rrG/Tm8VM6567VkkkJGhUTFfCM9oTbPGaPidOMHs7jreOnddZdqyWTRjebx35XqT4prVbCVXcqLmFmtzPaU16creKjm5U866eKjh1ra0aoPz+Ol1Zrj6tUmzdvVnp6erczOiMc/h4JRkZlZaWGDBnCRag2sGeZm5GTk6MZM2Zo83dnKGXEYFsy3v70dONLZI8fOtCWjMzCs9qU7Qr5jGDlkNH1jPtnJmvM4GhbMjLyz2iPqzQoO5CdGe7KE3JlPR6Qf7e1JRgzzy87r4f35unQoUOaPn26LRlSePwdEqwM9qy22b1jSexZPcGeRUaoZgQrx5dxW0qCRjS55hFIvms0cYlzFD1kfECPXXXmiKrPHFa/AcN18cJZDRoxVYNHXBPQDB93Rb7KT2bqtpQE3ZoyxpYM9qzel2HXjuX4y3hGRkZqwoQJkqQZM2YoKytLTz75pJ555pk2P6ampkbbtm3TL3/5yw6PHxUVpagoe75o9RZzxg1X+jXd/4ep755Xp2s82rf8Os1ObP7dA5mFZ7XHVaqlkxJsu1fbirdydbS0WierL9h2TzhfRnufh+8eZLMSh3XrHmSdyeiIbx7uiw068IPrW8wjEBkdCbd5LAnAPM5frNeBH3yz1Xl8UlqtuISZGj3xu93K6Izio5sVn3SDbcuRLyPUnx9bjpzQHldpt44NOIE9y3wpIwZrekKcLcfOK/W+VMviK0fZliFJm7JdYZERrBwyupZx7/RkWzP2uEqDsgPZmVF15ohcWY/3+N9tHbF75jnF5Xp4b54txwYCze4dS2LPCgT2LDJCMSNYOZuyXVp93STbMnzXaBImfy+g17Nch55S8dHNGj/7p7pQfdq7ZyUv0PiZ9tyv79TxP6v8ZKamjo5jz4LxOv8jE0HS0NDQ7DuXWvPqq6/K4/HozjvvDNJZobt8F84/LqnUrrvmtLhwHiy+e3nNHx9vW4HVEV+RMWVkbLeKjEBgHn7MwyzMAwgO9iwAAIDAY8cCAPu5Dj2l/IOPa/zsnyp5hj3lHhDKHP3JvtWrV+vGG2/UuHHjVFVVpa1btyojI0M7d+6UJC1btkyJiYnasGFDs497/vnndeutt2r4cHteogSBYcqF83X7jynrUrk0L3mEI+dAkeHHPLxMmYcJmAdgD/YsAACAwGPHAoDgo+gDOuZo2VdSUqJly5apuLhYQ4YMUWpqqnbu3KmFCxdKkgoLC9WnT/MfPjx27JgOHDigd99914lTRieZcuF83f5jenhvnmaNiWssmIKNIsOPeXiZMg8TMA/APuxZAAAAgceOBQDBRdEHdI6jZd/zzz/f7q9nZGS0eN+kSZNkWZZNZ4RAMOXCua9YevSGFBVVuR0plygy/JiHlynzMAHzAOzFngUAABB47FgAEDwUfUDnGXfPPoQ2Uy6cNy2WuCcc85CYh2mYBwAAAAAAANpiQtHnrixwJBfoDso+BIwpF84plryYhx/zMAvzAAAAAAAAQFtMKPoqT+eqMGeTI9lAd1D2ISBMuXBuQrH0ZaWbIuMS5uFlyjxMwDwAAAAAAADQFlOKvtw371TkoNGO5APdQdmHHjPlwrkJxZIkvZRbQJEh5uFjyjxMwTwAAAAAAADQGpOKvphhE5U07T5HzgHoDso+9IgpF85NKJZO13gkSSNjonp9kcE8vEyZh0mYBwAAAAAAAC5nWtE39ab/VJ9+Axw5D6A7KPvQbaZcODehWDp4skxvHCuWJN09dVyvLjKYh5cp8zAN8wAAAAAAAEBTJhZ9/SIHOXIeQHdR9qFbTLlwbkqxtPCVTA2LjpQkRfXrG/RzYB5+zMNszAMAAAAAAAA+FH1AYFD2octMuXBuUrE0ZWSsbp7ozA1bmYcf88DlmAcAAAAAAICZKPqAwKHsQ5eYcuHctGJpR3qaIvsG/+nEPPyYBy7HPAAAAAAAAMxE0QcEFmUfOs2UC+cmFku9+R5kzMPLlHnAi3kAAAAAAACYiaIPCDzKPnSKKRfOKZa8PBfrmcclzAOXYx4AAAAAAABmougD7NHP6ROA+dx1Zlw4p1jye/lwoSo8F5kH80ArmAcAAAAAAIB5KPoA+1D2oUO/yfxUp2s8FEsGFEu19Q2SpJIaj/bf803mwTzQBPMAAAAAAAAwE0UfYC/KPnToRKVb+5ZfR7FkwD3h3jx+SpK0fFoS82AeaIJ5AAAAAAAAmImiD7Af9+xDh1bPnUixZECxtGjLezrnrpUkXREbHfRzkJiHjynzgBfzAAAAAAAAMBNFHxAclH3o0FeHxTiSS7Hk5SsyPi6p1JJJCUHP92EeXqbMA17MAwAAAAAAwExn8ndS9AFBQtkHI1EseTUtMnbdNUejYqKCfg4S8/AxZR7wYh4AAAAAAADmKv3iHYo+IEgo+2AciiWvy4sMXkqVecCPeQAAAAAAAJgt/is3UvQBQULZB6NQLHmZUmQwDy9T5gEv5gEAAAAAAGC+EeO/40guRR96o35OnwDgk+E6oz35pRRLhhQZzMPLlHnAi3kAAAAAAACgLRR96K0c/cm+TZs2KTU1VbGxsYqNjVVaWpreeeeddj+mvLxcK1euVEJCgqKiojRx4kS9/fbbQTpj2Iliyawig3mYNQ8wD6Ar2LEAAADswZ4FAOai6ENv5uhP9l1xxRXauHGjrrzySlmWpZdfflm33HKLPvzwQ1199dUtHl9bW6uFCxdq5MiR2r59uxITE1VQUKC4uLjgnzwCJruoXJI0f3w8xZIBRQbz8DJtHr2dKfN4La/IkVygq9ixAAAA7MGeBQBmouhDb+do2bdkyZJmb69fv16bNm3S+++/3+qC9MILL+jcuXP6y1/+ov79vRf/k5OTg3GqsMm6/ceUdanMmJc8wpFzoFjyYx5eJs6jNzNpHtvzih3JBrqKHQsAAMAe7FkAYB6KPsCge/bV19fr1VdfVU1NjdLS0lp9zOuvv660tDStXLlS//3f/60RI0bo+9//vh588EH17du31Y/xeDzyeDyNb1dWVtpy/k4oKyvTli1bbDt+ZmamJOm1vGLll50P+PF994RLHDRAJ6svKMN1JuAZPr6fjro848tKt17KLdDImCh9KzleT37wRcAzOuK5WK+XDxeqpMaj5dOS9O7nJXr385KAZnQG8/Aybh6Do3SyyqPy4uyAZ/j4jl1asFc1ZZ/ZmhHq87h6xGB9cqYq4McH7GTXjiWF957ldruVk5Nj2/Hz8vK8/2vj1xTf/kaGOTlkmJVRVOWWJNv2H0lyV56wPcN37Pyy88opLrclIxjzsPs5DtiBPat72LPIIMPZnGBknKnxfv2qOGXf9Sx3Rb4kqfzkX1SY8++KHDRaCZO+p1LXroBl+M6/qMrNngXjRViWZTl5AkeOHFFaWpouXLigQYMGaevWrVq8eHGrj508ebJcLpfS09O1YsUKffbZZ1qxYoX+6Z/+SY888kirH7NmzRqtXbu2xfsXLVrU+B1Vdjh48KBmz55t2/HLysp04MAB244PAGhbamqqkpKSbM2w+++RcMmoq6vTjh07VFFRodjYWNtyQpHdO5YUvnuW2+3W7t27bTs+AKBtc+fO1dCh9r2SQzjsP8HKYM9qG3tW97FnAYBz2LPMyLBrx3K87KutrVVhYaEqKiq0fft2Pffcc9q3b5+uuuqqFo+dOHGiLly4oPz8/Mbvfvrd736n3/72tyoubv2l1Vr7TqixY8favqwuXbpUr7/+um3H37Jli+68807dPzNZc8YN79THuOvq9ZvMT3Wi0q3Vcyfqq8Ni2n38izkF2uMq1awxcZo5Ji4AZ+2VXVSurKLyxuPuc5XqaGl1wHOaujzjdI1Hbxwr1rDoSN08cbQi+/YJeEZHausb9ObxUzrnrtWSSQkaFRMV8IzOYB5eps9j9pg4zbBpHvtdpfqkSYZ3Hqc0PDpSN00cFZB5+DJCfR7HS6u1x1WqzZs3Kz09PSAZbbH775FwyaisrNSQIUO4CNUKu3csKXz3rJycHM2YMUObvztDKSMG25Lx9qen9fDePD16Q4rGDx1oS0Zm4VltynaRYVAOGWZm3D8zWWMGR9uScfhUubbnFQclI9TnkV92Xg/vzdOhQ4c0ffp0WzKk8Nh/gpXBntU29qzuY88igwznc4KZcVtKgkZ04ppOd/iu0QQjI9TnwZ5lVoZdO5bjL+MZGRmpCRMmSJJmzJihrKwsPfnkk3rmmWdaPDYhIUH9+/dv9jIHKSkpOnXqlGpraxUZGdniY6KiohQVZc+T3QRzxg1X+jVjO3yc755Xp2s82rf8uk7d8yqz8Kz2uEq1dFKCHvrmpECc7qV7kHm/ePmOueKtXB0trQ5ozuWaZnz7qyO18JVMzUocFtB7wnXl8/DNw32xQQd+cH2n70EW6N8r5uEVCvNYYvM8PrmU4Z/H0IDP45MwmMeWIye0x1Xa42MDwWD3jiWF/56VMmKwpifE2XLsvFLvy6gsvnKUbRmStCnbRYZhOWSYl3Hv9GTbMrYcOaHtecVByQj1eeQUl+vhvXm2HBsINPasnmPPIoMMZ3OClbH6ukm27kB7XKVByQj1ebBn9Q49/3GNAGtoaGj2nUtNzZkzR5999pkaGhoa33f8+HElJCS0uRzBf+H845JK7bprTqcvnAfauv3HGr+zyq7SoiNfVrq18JVMTRkZG9AioyuYhx/z8GMeXswDsA87FgAAgD3YswAAgNMcLftWr16t/fv3y+Vy6ciRI1q9erUyMjIaXxpt2bJlWr16dePj77//fp07d06rVq3S8ePH9dZbb+lXv/qVVq5c6dSnYDwunDf3Um4BRYaYhw/zaI55eJkyD6An2LEAAADswZ4FAABM5OjLeJaUlGjZsmUqLi7WkCFDlJqaqp07d2rhwoWSpMLCQvXp4+8jx44dq507d+rHP/6xUlNTlZiYqFWrVunBBx906lMwGhfO/U7XeL/DbmRMFEUG85DEPJpiHn4mzAMIBHYsAAAAe7BnAQAAEzla9j3//PPt/npGRkaL96Wlpen999NodTkAAFcuSURBVN+36YzCBxfO/Q6eLNMbx7w3vb576jiKDObBPJpgHn4mzAMIFHYsAAAAe7BnAQAAExl3zz70HBfO/Q6eLNPCVzI1LNr7OvhR/fp28BGBxzz8mIcf8/BiHgAAAAAAAADQM5R9YYYL536+ImPKyFjdPHG0I+fAPPyYhx/z8GIeAAAAAAAAANBzlH1hhAvnfk2LjB3paYrsG/w/6szDj3n4MQ8v5gEAAAAAAAAAgUHZFya4cO53eZHBPciYB/PwYx5+JswDAAAAAAAAAHqKsi8McOHcz4Qiw3Oxnnlcwjz8mIcX8wAAAAAAAACAwOrn9AmgZ9x1XDj3MaHIkKSXDxeqwnOReTCPRszDj3kAAAAAAAAAQGBR9oW432R+qtM1nl5/4dyEIqO2vkGSVFLj0f57vsk8mIck5uHDPAAAAAAAAADAHpR9Ie5EpVv7ll/Xqy+cm1BkVHnq9ObxU5Kk5dOSmAfzkMQ8fJgHAAAAAAAAANiHe/aFuNVzJ/bqC+emFBmLtrync+5aSdIVsdFBPweJefgwDz/m4WfCPAAAAAAAAADADpR9Ie6rw2IcyTXhwrlJRcbHJZVaMikh6Pk+zMOLefgxDz8T5gEAAAAAAAAAdqHsQ5eZcOHctCJj111zNComKujnIDEPH+bhxzz8TJgHAAAAAAAAANiJsg9dYsKFcxOLDF5KlXlIzMOHeQAAAAAAAABA8FD2odNMuHBOkeHHPLyYhx/z8DNhHgAAAAAAAAAQDP2cPgGEBhMunFNk+GW4zmhPfinzYB6NmIefCfMAAAAAAAAAgGCh7EOHTLhwTpHRHPNgHk0xj+acngcAAAAAAAAABBMv44kOOX3hnCLDL7uoXJI0f3w882AekphHUybMAwAAAAAAAACCjbIPbTLhwjlFht+6/ceUdWkm85JHOHIOzMOPeXgxDwAAAAAAAABwFmUfWmXChXOKDD/fPRNnjYlzJF9iHk0xDy/mAQAAAAAAAADOo+xDCyZcOKfI8PPN49EbUjTToZkwDz/m4cU8AAAAAAAAAMAMlH1oxoQL5xQZfk3nwUupMg+JeTRlwjwAAAAAAAAAwGmOln2bNm1SamqqYmNjFRsbq7S0NL3zzjud+tht27YpIiJCt956q70n2YuYcOGcIsOPeXgxDz/m4WfCPADTsWcBAAAEHjsWAAAwkaNl3xVXXKGNGzfq0KFDys7O1re+9S3dcsst+uSTT9r9OJfLpZ/97Ge67rrrgnSm4c+EC+dfVropMi5hHl7Mw495+JkwDyAUsGcBAAAEHjsWAAAwkaNl35IlS7R48WJdeeWVmjhxotavX69Bgwbp/fffb/Nj6uvrlZ6errVr1+orX/lKEM82fJly4fyl3AKKDDEPH+bRHPPwMmUeQChgzwIAAAg8diwAAGCifk6fgE99fb1effVV1dTUKC0trc3H/fKXv9TIkSP1wx/+UP/7v//b4XE9Ho88Hk/j25WVlQE5346UlZVpy5Ytth0/MzNTkvRaXrHyy853+zgZrjPak1+q+ePjJXkvpPtkF5U3PsZOGa5SSdKAfn31reR4PfnBFwHP6Ohz8Vys18uHC1VS49HyaUl69/MSvft5SUAzOqO9eQQqo+NzYB4+zMOLefjtzfce2/c12E5lZWW2Z6D3CLc9y+12Kycnx7bj5+Xlef/3TJVtGb79jQwzMoKVQwYZZLTNd2zf12C7uN1uW4+P3sWuHUtiz+qJcPm6SEbvywhWDhm9L4M9q3eIsCzLcvIEjhw5orS0NF24cEGDBg3S1q1btXjx4lYfe+DAAd1+++3Kzc1VfHy8li9frvLycr322mttHn/NmjVau3Zti/cvWrRI/fvb89MxZWVlOnDggC3HBgD0HnPnztXQofb9FOXBgwc1e/Zs244fjIy6ujrt2LFDFRUVio2NtS0nVIXjnuV2u7V7925bjg0AcNaomCjbX0HijeOntGDBAkVHR9uWEQ47lsSe1R67dyyJPQsAEFjsWeZk2LVjOV721dbWqrCwUBUVFdq+fbuee+457du3T1dddVWzx1VVVSk1NVW///3vdeONN0pSpxak1r4TauzYsbYuq1u2bNGdd96p+2cma8644c1+zV1Xr99kfqoTlW6tnjtRXx0W062MF3MKtMdVqllj4jRzTFyXPz67qFxZReXtfvw+V6mOllZ3O6Mjp2s8euNYsfr16SP3xQbbcqS2P5fa+ga9efyUzrlrtWRSgkbFRAU8ozM6M4+eZnSEefgxDy/m4Xf5PB69IUWLrxwV0Iym8s5U6c4/H9LmzZuVnp5uW87SpUv1+uuv23b8YGRUVlZqyJAhXIRqQzjuWTk5OZoxY4Y2f3eGUkYMtiXj7U9PN75k8PihA23JyCw8q03ZLjIMyQhWDhlkkNF+xpeVF/T6HV+35fg+EWtf06FDhzR9+nTbMsJhx5LYs9pj944lsWf1RDh9XSSjd2UEK4eM3pnBnmVOhl07luMv4xkZGakJEyZIkmbMmKGsrCw9+eSTeuaZZ5o97vPPP5fL5dKSJUsa39fQ0CBJ6tevn44dO6avfvWrLY4fFRWlqKjuX6DuiTnjhiv9mrGNb/vueXW6xqN9y6/rUZOeWXhWe1ylWjopocv3rVq3/5iyilwd3vNqxVu5Olpa3a2Mjhw8WaaFr2RqVuIwpcQP0vMfFtqS49Pa5+Kbh/tigw784Poef2dDd3+/OjuPnmR0hHn4MQ/mcbnW5jF+6EBNT4gLWAZgl3Des1JGDLbteZhX6n2Jk8VXjrL1ub4p20WGQRnByiGDDDLa9sePT9p2bCCQ7N6xJPasngqXr4tk9L6MYOWQ0fsy2LPCXx+nT+ByDQ0Nzb5zyWfy5Mk6cuSIcnNzG/9bunSpbrjhBuXm5mrs2LGtHM0cvgvnH5dUatddc2z/kdm2rNt/rPE7qOwqDjriu3A+ZWSsdqSnKbJv8P8YMg8/5uHHPLyYh58J8wACKVz3LAAAACexYwEAAKc5+pN9q1ev1o033qhx48apqqpKW7duVUZGhnbu3ClJWrZsmRITE7VhwwYNGDBAU6ZMafbxcXFxktTi/abhwrnf5RfOB0fZ8zrz7WEefszDj3l4MQ8/E+YB9ERv2bMAAACCiR0LAACYyNGyr6SkRMuWLVNxcbGGDBmi1NRU7dy5UwsXLpQkFRYWqk+f0P4pCi6c+5lw4dxzsZ55XMI8/JiHF/PwM2EeQE/1hj0LAAAg2NixAACAiRwt+55//vl2fz0jI6PdX3/ppZcCdzI2cNdx4dzHlAvnLx8uVIXnIvNgHo2Yhx/z8DJhHjW1F4OeifAT7nsWAACAE9ixAACAiRwt+8LdbzI/1ekaDxfODbhwXlvvvQF2SY1H++/5JvNgHpKYhw/z8DNhHlWeOv3jOx8FPRcAAAAAAABAaKLss9GJSrf2Lb+OC+cGXDh/8/gpSdLyaUnMg3lIYh4+zMPPlHks2vKePj9XE/RsAAAAAAAAAKGJFxG30eq5E7lwbsiF83PuWknSFbHRQT8HiXn4MA8/5uHHPLya3uP19zdNDXo+AAAAAAAAgNBE2Wejrw6LcSSXC+deTS+cL5mUEPR8H+bhxTz8mIcf8/BqOo9dd83RlJGxQT8HAAAAAAAAAKGJsi/McOHc6/IL56NiooJ+DhLz8GEefszDj3l4XT4Pp34iHAAAAAAAAEBoouwLI1w49zLlwjnz8GIefszDj3l4mTIPAAAAAAAAAKGLsi9McOHcy5QL58zDi3n4MQ8/5uFlyjwAAAAAAAAAhLZ+Tp8Aeo4L516mXDjPcJ3RnvxS5sE8GjEPP+bhZco8AAAAAAAAAIQ+yr4Qx4VzL5MunDMP5tEU82iOeZg1DwAAAAAAAAChj5fxDHFcODfnwnl2Ubkkaf74eObBPCQxj6aYh5cp8wAAAAAAAAAQPij7QhQXzr1MuXC+bv8xZV2aybzkEY6cA/PwYx5ezMOPeQAAAAAAAAAIV5R9IYgL516mXDj33TNx1pg4R/Il5tEU8/BiHn7MAwAAAAAAAEA4o+wLMVw49zLlwrlvHo/ekKKZDs2EefgxDy/m4cc8AAAAAAAAAIQ7yr4QwoVzL1MunDedBy+lyjwk5tEU8/AyZR4AAAAAAAAAwhdlX4jgwrmXKRfOmYcX8/BjHn7Mw8uUeQAAAAAAAAAIb5R9IYAL516mXDg3YR5fVrqZxyXMw4t5+DEPAAAAAAAAAL0JZZ/huHDuZcqFcxPmIUkv5RYwDzEPH+bRHPMAAAAAAAAA0JtQ9hmMC+deplw4N2Eep2s8kqSRMVHMg3lIYh5NMQ8AAAAAAAAAvRFln6G4cO5lyoVzE+Zx8GSZ3jhWLEm6e+o45sE8mEcTzAMAAAAAAABAb0XZZyAunHuZcuHclHksfCVTw6IjJUlR/foG/RyYhx/z8GMeXqbMAwAAAAAAAEDv42jZt2nTJqWmpio2NlaxsbFKS0vTO++80+bj//SnP2nmzJmKi4tTTEyMpk2bpldeeSWIZ2w/Lpx7mXLh3KR5TBkZq5snjnbkHJiHH/PwYx5epswDuBx7FgAAQOCxYwEAABM5WvZdccUV2rhxow4dOqTs7Gx961vf0i233KJPPvmk1ccPGzZMv/jFL/Tee+/po48+0j333KN77rlHO3fuDPKZ24ML516mXDg3bR470tMU2Tf4T1nm4cc8/JiHlynzAFrDngUAABB47FgAAMBE/ZwMX7JkSbO3169fr02bNun999/X1Vdf3eLx8+bNa/b2qlWr9PLLL+vAgQP6zne+Y+ep2s7EC+cP7m59UbWTKRfOTZwHL6XKPJiHH/MAOsaeBQAAEHjsWAAAwESOln1N1dfX69VXX1VNTY3S0tI6fLxlWfqf//kfHTt2TL/+9a/bfJzH45HH42l8u7KyUpL0xz/+UQMHDuz5ibciMzNTkvRaXrHyy853+PgM1xntyS/V/PHxkrwX0juSXVTe+LGB8GWlWy/lFmhkTJS+lRyvJz/4IuAZbfHl7P6iRH84lK+SGo+WT0vSu5+X6N3PSwKa0ZnPpTvz6GpGR1qbR6Az2sI8WmIefszDm7E3/4zWZvxVJyrdWj13oj49V61Pz1UHLKczf3cAXRHsPSs3N1eDBg3q+Ym3Ii8vz/u/Z6psOb7kfw6S0XsygpVDBhlkdJwBhBK7diyJPYsMMnpjRrByyOi9GQhvEZZlWU6ewJEjR5SWlqYLFy5o0KBB2rp1qxYvXtzm4ysqKpSYmCiPx6O+ffvq97//vX7wgx+0+fg1a9Zo7dq1dpw6AAC2Sk1NVVJSkm3HP3jwoGbPnm3b8YORUVdXpx07dqiiokKxsbG25YQq9iwAAFqaO3euhg6171UZwmHHktiz2mP3jiWxZwEAQhN7Vsfs2rEcL/tqa2tVWFioiooKbd++Xc8995z27dunq666qtXHNzQ06IsvvlB1dbX27NmjRx99VK+99lqLl0Xwae07ocaOHasRAyNVVXtRq+dO1FeHxQT0c3oxp0B7XKWaNSZOM8fEtfm47KJyZRWVd/i41uxzlepoaXW3Prap0zUevXGsWMOiI3XzxNHN7nkVqIyO7M0v1V/PVquPpFtTEjQqJirgGZ35XHoyj85mdKS9eQQqoyPMw495+DEPr2DMQ5KOl1Zrj6tUmzdvVnp6ui0ZkrR06VK9/vrrth0/GBmVlZUaMmQIF6Ha4NSe9Yebp2mGTc/Dtz893fhSwuOH2vQqDYVntSnbRUYvyghWDhlkkOFsRn7ZeT28N0+HDh3S9OnTbcmQwmPHktiz2mP3jiWxZ5FBRm/MCFYOGWTYgT2r8+zasRx/Gc/IyEhNmDBBkjRjxgxlZWXpySef1DPPPNPq4/v06dP4+GnTpikvL08bNmxoc0GKiopSVFTLi7GVnjrtv+ebttxjKbPwrPa4SrV0UkKb97Nat/+Ysopc3b7n1Yq3cnW0tLrdjI747nk1K3FYq/e8CkRGR6o8dbry/7dLkvSjGcn6j5un2ZLT0efS03l0JqMjHc0jEBkdYR5+zMOPeXgFax6StOXICe1xldp2fPQeTu1Zk+IHaXpCXEA+h8vllXpf2mTxlaNsy5CkTdkuMnpZRrByyCCDDOcycorL9fDePFuOjd7F7h1LYs8ig4zemhGsHDLICDT2LOf16fghwdXQ0NDsO5cC/Xifn6RNsKXo64x1+481fqeUXSVaR3wXzqeMjG3zwrndqjx1WrTlPZ1z10qSroiNDvo5SMzDh3n4MQ8/5uFlyjyAngrWngUAANCbsGMBAACnOfqTfatXr9aNN96ocePGqaqqSlu3blVGRoZ27twpSVq2bJkSExO1YcMGSdKGDRs0c+ZMffWrX5XH49Hbb7+tV155RZs2bepy9vihgX3pzs7iwrmX78L5xyWVWjIpQX/KKw76OUjMw4d5+DEPP+bhZco8gK5ycs8CAAAIV+xYAADARI6WfSUlJVq2bJmKi4s1ZMgQpaamaufOnVq4cKEkqbCwUH36+H/4sKamRitWrNCXX36p6OhoTZ48WZs3b9b/+T//x6lPoUu4cO7V9ML5rrvm6KXcgqCfg8Q8fJiHH/PwYx5epswD6I7etmcBAAAEAzsWAAAwkaNl3/PPP9/ur2dkZDR7e926dVq3bp2NZ2QfLpx7XX7hfHbiUEcunjMPL+bhxzz8mIeXKfMAuqs37VkAAADBwo4FAABMZNw9+8IRF869Wrtw7gTm4cU8/JiHH/PwMmUeAAAAAAAAANARR3+yrzfgwrmXKRfOM1xntCe/lHkwj0bMw495eJkyDwAAAAAAAADoDMo+G3Hh3MukC+fMg3k0xTyaYx7mzOO1vCJHcgEAAAAAAACEHl7G00ZcODfnwnl2Ubkkaf74eObBPCQxj6aYh5cp81i3/5i25xU7kg0AAAAAAAAg9FD22YAL514mXTjPujSTeckjHDkH5uHHPLyYhx/z8PO99PNtKQmO5AMAAAAAAAAIPZR9AcaFcy/TLpzPGhPnSL7EPJpiHl7Mw495+DW9x+utKWMcOQcAAAAAAAAAoYeyL4C4cO5l4oXzmQ7NhHn4MQ8v5uHHPPyazsOpnwgHAAAAAAAAEJoo+wKEC+deXDj3Yx5+zMOLefgxDz8T5gEAAAAAAAAgdFH2BYAJF2q5cO7HPLyYhx/z8GMeXswDAAAAAAAAQLig7OshEy7UcuHcz4R5fFnpZh6XMA8v5uHHPPxMmAcAAAAAAACA0EfZ1wMmXKjlwrmfCfOQpJdyC5iHmIcP82iOeXiZMg8AAAAAAAAAoY+yr5tMuVDLhXMvE+ZxusYjSRoZE8U8mIck5tEU8/AzYR4AAAAAAAAAwgdlXzeYcKGWC+d+Jszj4MkyvXGsWJJ099RxzIN5MI8mmIefCfMAAAAAAAAAEF4o+7rIhAu1XDj3M2UeC1/J1LDoSElSVL++QT8H5uHHPPyYhxfzAAAAAAAAABDOKPu6wIQLtVw49zNpHlNGxurmiaMdOQfm4cc8/JiHF/MAAAAAAAAAEO4o+zrJhAu1XDj3M20eO9LTFNk3+E8n5uHHPPyYhxfzAAAAAAAAANAbUPZ1ggkXarlw7mfiPHgpVebBPPyYh58J8wAAAAAAAAAQ3ij7OmDChVounPsxDy/PxXrmcQnz8GMeXswDAAAAAAAAQG/Sz+kTMJkJF2q5cO7HPPxePlyoCs9F5sE8GjEPP+YBAAAAAAAAoDeh7GuDCRdquXDuxzy8ausbJEklNR7tv+ebzIN5SGIePswDAAAAAAAAQG/k6Mt4btq0SampqYqNjVVsbKzS0tL0zjvvtPn4Z599Vtddd52GDh2qoUOHasGCBTp48GDAz8uEC7WmXTin6HN+HlWeOr15/JQkafm0JObBPCQxDx/mAbRk6p4FAAAQytixAACAiRwt+6644gpt3LhRhw4dUnZ2tr71rW/plltu0SeffNLq4zMyMnTHHXdo7969eu+99zR27Fh9+9vf1smTJwN2TiZcqOXCuR/z8PLdM/Gcu1aSdEVsdNDPQWIePszDj3n4mTAPoCkT9ywAAIBQx44FAABM5GjZt2TJEi1evFhXXnmlJk6cqPXr12vQoEF6//33W338li1btGLFCk2bNk2TJ0/Wc889p4aGBu3Zsycg52PChVounPsxDy/fPD4uqdSSSQlBz/dhHl7Mw495+JkwD+Bypu1ZAAAA4YAdCwAAmMiYe/bV19fr1VdfVU1NjdLS0jr1MefPn1ddXZ2GDRvW5mM8Ho88Hk/j25WVlZKkt46d0ulq//szXGe0J79U88fHS/JeuO2u7KLyxmN2xZeVbr2UW6CRMVH6VnK8nvzgi4BndMRzsV4vHy5USY1HE4YNUl5pdcAzLtfa5xLIebSV0ZGuzKO7GR1pOo/l05KUUxz4jMsxj7YxDz/mYd88JOnwqYoeHwNoKth71rHSag2KtGfNzC87L0nKO1Nly/HJ6J0ZwcohgwwynM2w++sIeh+7diyJPYsMMnpjRrByyCDDDuxZzouwLMty8gSOHDmitLQ0XbhwQYMGDdLWrVu1ePHiTn3sihUrtHPnTn3yyScaMGBAq49Zs2aN1q5dG8hTBgAgKFJTU5WUlGTb8Q8ePKjZs2fbdvxgZNTV1WnHjh2qqKhQbGysbTmhij0LAICW5s6dq6FD7btVRTjsWBJ7Vnvs3rEk9iwAQGhiz+qYXTuW42VfbW2tCgsLVVFRoe3bt+u5557Tvn37dNVVV7X7cRs3btRvfvMbZWRkKDU1tc3HtfadUGPHjtX144bpqpGxyi4qV1ZRuWaNidPMMXEB+Zz2uUp1tLS608c8XePRG8eKNSw6UjdPHK3Ivh2/umpXMzpSW9+gN4+f0jl3rZZMStComKiAZ7SlaY6kgM/j8oyOjtudeXQ1oyOtzSPQGW1hHi0xDz/mYf88JOl4abX2uEq1efNmpaenB/TYTS1dulSvv/66bccPRkZlZaWGDBnCRag2OLVn/eK6iUoZMThgn0dTmYVntSnbpUdvSNH4oQPJICOkcsgggwxnM/LLzuvhvXk6dOiQpk+fbkuGFB47lsSe1R67dyyJPYsMMnpjRrByyCDDDuxZnWfXjuX4y3hGRkZqwoQJkqQZM2YoKytLTz75pJ555pk2P+axxx7Txo0btXv37g6Xo6ioKEVFRbV4f/rUcTpd7VFWkSvg91ha8VaujpZWa+mkhA6P67vn1azEYV2651VXMjriu+eV+2KDDvzges1OHBrwjPb4cmKj+mlPfqkt97zq7OfS3Xl0JaMjbc0jkBntYR7NMQ8/5hGceUjSliMntMdVGvDjovdxas/69ldH6ptJ8T07+XZsynZp8ZWjND0hjgwyQi6HDDLIcC4jp7hcD+/Ns+XY6F3s3rEk9iwyyOitGcHKIYOMQGPPcp7jZd/lGhoamn3n0uV+85vfaP369dq5c6dmzpzZ7Zy3jhXrv4+ftu1CbWf4LpxPGRnb5QvngeK7cP5xSaV23TWn2YXzYLPzwnlnMI/mmAfzaIp5NOf0PIDuCtaeBQAA0JuwYwEAAKc5WvatXr1aN954o8aNG6eqqipt3br1/2vvzsOjrO/1j98hmEVIAhwIhBDCUkCogOWA/iIUFAR7RJb2aNVSELX2iKGXrYdTUaCg0uKxrVW7UI9F8RIp7hbZKRKQRSAIiEATRWIUCIuSBEKYLHx/f4yTJwmZZGYyyzMz79d15Q/izNzPeMPkc32+yUQ5OTlau3atJGnKlClKT0/XggULJEn/+7//q1/96ldaunSpunXrpqKiIklS69at1bp1a6+yOeizz+I891ixJGlU9/b0QR+S6KM2+nCiD8B7oZyzAAAAIhUzFgAAsKOQHvadPHlSU6ZM0fHjx5WSkqIBAwZo7dq1Gj16tCSpsLBQLVpYvw9q4cKFqqio0C233FLncebOnat58+Z5lT2hd0cW5zZYnM/fnKdd3yzPr+vWISTXQB8W+nCiDwt9WOzQB+CNUM5ZAAAAkYoZCwAA2FFID/sWLVrU6H/Pycmp8+eCggK/ZY/tk+a3x/IGi3PL/M15mrPxkIZ0blOzQA82+rDQhxN9WOjDYoc+AG+Fcs4CAACIVMxYAADAjlo0fRP4C4tzi2tx/vj1fTW4c5uQXAN9WOjDiT4s9GGxQx8AAAAAAAAA4A6HfUHC4txSe3HOW6nSh0QftdGHE30AAAAAAAAAgGc47AsCFucWOyzO6cNCH070YaEPix36AAAAAAAAAICmcNgXYCzOLXZYnH9ZWk4f36APJ/qw0IfFDn0AAAAAAAAAgCc47AsgFucWuyzOF+/9nD5EHy70URd9ONmhj8Nfl4UkFwAAAAAAAED44bAvgFicO9lhcX6izCFJSm0VTx/0IYk+aqMPix362Hn0jBZsyQ9JNgAAAAAAAIDww2FfALA4t9hlcf5u3nFJ0p0Du9IHfdBHLfRhsUsfo1/eqozkxJDkAwAAAAAAAAg/HPb5GYtzi50W5+0S4yRJ8S1jg34N9GGhDwt9ONGHpfbveP3l0F4huQYAAAAAAAAA4YfDPj9icW6x2+L85t6dQnIN9GGhDwt9ONGHpXYfayZlKfGy4H/9AAAAAAAAABCeOOzzExbnFjsuzuNig/9XnT4s9GGhDyf6sNTvIxQ/EQ4AAAAAAAAgfHHY5wcszi0szp3ow0IfFvpwog+LHfoAAAAAAAAAEN447GsmOyxqWZxb7NCHo6qaPr5BHxb6cKIPix36AAAAAAAAABD+Wob6AsKZHRa1LM4tduhDkl7aV6gSRxV90EcN+rDQh5Nd+gAAAAAAAAAQ/jjs85FdFrUszp3s0EdF9UVJ0skyhzbfNZw+6EMSfbjQh8UOfQAAAAAAAACIHLyNpw/ssKitvTjnoC/0fZx1VGpFfpEkaepVmfRBH5Low4U+LHboAwAAAAAAAEBk4bDPS3ZY1LI4t9ilj++9sl1fl1dIkrokJwb9GiT6cKEPC31Y6AMAAAAAAABApOKwzwt2WNSyOLfYqY+PT5ZqXJ+0oOe70IcTfVjow0IfAAAAAAAAACIZh30essOilsW5xW59rJ88VB1bxQf9GiT6cKEPC31Y6AMAAAAAAABApOOwzwN2WNSyOLfYsQ/eSpU+JPpwoQ+LHfoAAAAAAAAAENlCeti3cOFCDRgwQMnJyUpOTlZWVpZWr17d6H1ef/11XXHFFUpISFD//v21atWqgF6jHRa1LM4t9GGhDyf6sNCHhT6A8JizAAAAwg0zFgAAsKOQHvZ16dJFTzzxhHbv3q3c3FyNHDlSEyZM0IEDBxq8/bZt23THHXfonnvu0Z49ezRx4kRNnDhRH3/8cUCuzw6LWhbnFvqw5BScog/RR230YaEPwMnucxYAAEA4YsYCAAB2FNLDvnHjxummm25Sr1691Lt3b/36179W69at9cEHHzR4+2eeeUbf+9739D//8z/q27evHn/8cQ0aNEh/+tOf/H5tdljUsji30EddG46cpg/6qEEfddEH4GTnOQsAACBcMWMBAAA7ahnqC3Cprq7W66+/rrKyMmVlZTV4m+3bt+vBBx+s87kbb7xR77zzjtvHdTgccjgcNX8uLS2VJK3MK9KJc44G7/NlabkW7/1cqa3iNbJbez2z4zOvnkvusWJJzkMyXzmqqvXSvkKdLHNo6lWZWnf4pNYdPunXjKa4MjYcOa1R3dtLcv6EX6By3D2X5vbhSUZTmurDHxmeWP6vIklSjzaXS6IP+qCP2oLZx76iEr2y/4tL/vvhr8u0YEu+MpITdddVXbU8v8innK2FXzXnMoFLBHvOyjt9Tq3jAjNmHjlzXpJ06NTZgDw+GdGZEawcMsggI7QZgX4dQfQJ1IwlMWeRQUY0ZgQrhwwyAoE5K/RijDEmlBewf/9+ZWVl6cKFC2rdurWWLl2qm266qcHbxsXF6aWXXtIdd9xR87m//OUvevTRR3XixIkG7zNv3jw9+uijAbl2AAACadiwYWrbNnA/Jblz505dffXVAXv8YGRUVlZqzZo1KikpUXJycsBywhVzFgAAl7rhhhuUmJgYsMePhBlLYs5qTKBnLIk5CwAQnpizmhaoGSvkP9nXp08f7d27VyUlJXrjjTd05513atOmTerXr59fHv/hhx+u8x1UpaWlysjI0Iiu7dQvte7/yBNlDr2bd1ztEuN0c+9Oiov17V1ONxWc1sHT5zSkcxsN7tzGq/tWVF/UivwifV1eoXF90tSxVbzfMzyRe6xYu775CZZAZbi4ey7+6qOxjKZ42kdzMjzh6qNDYpxOlVcEtBP6aBp9OEVjH/mnz2lDwWlNmzZNQ4cODUiGy1//+le9//77Ac0YP368li9fHtYZpaWlSklJCdjjh7tQzVmzvttbfTsk+SWjvq2FX2lhboEev76vure9nAwywiqHDDLIcO/ImfOas/GQlixZor59+wYkQ5IeeughrV+/PmCPL0XGjCUxZzUm0DOWxJxFBhnRmBGsHDKiL4M5y14ZgZqxQn7YFxcXp29961uSpH//93/Xrl279Mwzz+i555675LadOnW65LueTpw4oU6dOrl9/Pj4eMXHX7qAnjSwq+4d1K3mz67fsTQkvV2zf8fS/Sv36uDpcxrfJ82r3xnl+p1X5VUXteXuEY3+zitfMzwxf3Oedh0r0JDObbTrWHFAMmpr6Ln4sw93GU3xpg9fMzzh6uPx6/vq2NlyLcwtCGgn9NE4+nCK1j5e2f+FNhSc1tChQzVp0qSAZLi8+uqrAX18RIdQzVljeqZqeGb7Zl69ewtzC3RTr44alNaGDDLCLocMMsho2IfHizVn4yH17dtXgwYNCkiGpIB+pzmiR6BnLIk5iwwyojUjWDlkRFcGc1Z08P1HQQLk4sWLdd6TvLasrCxt2LChzufWr1/v9n3RPeVanF+ZmuyXxbkvXIvzj0+Wav3koU0uzgNl/uY8zdl4SI9f3zegP83XGPqw1O4jkAeujaEPC3040QcQvkIxZwEAAEQ6ZiwAABBqIf3Jvocfflj/8R//oa5du+rs2bNaunSpcnJytHbtWknSlClTlJ6ergULFkiSHnjgAY0YMUK///3vNXbsWC1btky5ubn6v//7P5+vgcW5pf7i/P6Ve4N+DfRhscNBBn1Y6MOJPoDwYYc5CwAAINIwYwEAADsK6WHfyZMnNWXKFB0/flwpKSkaMGCA1q5dq9GjR0uSCgsL1aKF9cOH1157rZYuXarZs2frkUceUa9evfTOO+/oyiuv9CmfxbnFDovzL0vL6eMb9OFEHxb6sNihDyAchHrOAgAAiETMWAAAwI5Ceti3aNGiRv97Tk7OJZ+79dZbdeuttzY7+8iZMs1Y9zGLc9lncb547+f6985t6YM+JNFHffThZJc+gHAQyjkLAAAgUjFjAQAAO7Ld7+wLlqe2f8pBn+yxOD9R5nxf+9RW8fRBH5Loozb6sNihj8Nfl4UkFwAAAAAAAADcidrDvvTkRBbnNlic7zx6Ru/mHZck3TmwK33QB33UQh8Wu/SxYEt+SLIBAAAAAAAAwJ2oPez7+TU9WZzbYHE++uWtapcYJ0mKbxkb9GugDwt9WOjDiT4srj4ykhNDkg8AAAAAAAAA7kTtYV/CZSzO7bA4vzI1WTf37hSSa6APC31Y6MOJPiy1+/jl0F4huQYAAAAAAAAAcCdqD/uCjcW5pfbifM2kLMXFBv+vIX1Y6MNCH070YanfR2IIvlEEAAAAAAAAABrDYV8QsDi31F+c81aq9EEfFvqw0AcAAAAAAAAAeIbDvgBjcW6xw+LcUVVNH9+gDwt9ONGHxQ59AAAAAAAAAIAnWob6AiIZi3OLXRbnL+0rVImjij7oowZ9WOjDyS59AAAAAAAAAIAnOOwLIBbnTnZYnFdUX5QknSxzaPNdw+mDPiTRhwt9WOzQBwAAAAAAAAB4g7fxDIDai3MO+kK/OD/rqNSK/CJJ0tSrMumDPiTRhwt9WOzQBwAAAAAAAAB4i8M+P2NxbrHD4tz1OxO/Lq+QJHVJTgz6NUj04UIfFvqw0AcAAAAAAAAA+I7DPj9icW6xw+Lc1cfHJ0s1rk9a0PNd6MOJPiz0YaEPAAAAAAAAAGgeDvv8hMW5xQ6L89p9rJ88VB1bxQf9GiT6cKEPC31Y6AMAAAAAAAAAmo/DPj9gcW6xw+K8fh+8lSp9SPThQh8WO/QBAAAAAAAAAM3FYV8zsTi32GFxTh8W+rDQhxN9WOzQBwAAAAAAAAD4Q8tQX0A4Y3FuscPi3C595BSc0oYjp+mDPmrQh4U+AAAAAAAAAMC/OOzzEYtzix0W53bpQxJ9iD5qo4+66AMAAAAAAAAA/Iu38fQBi3OLHRbndukj91ixJGlU9/b0QR+S6KM2+gAAAAAAAACAwOCwz0sszi12WJzbpY/5m/O065tOruvWISTXQB8W+nCiD4sd+gAAAAAAAACAQOCwzwsszi12WJzbqY85Gw9pSOc2IcmX6KM2+nCiD4sd+gAAAAAAAACAQAnpYd+CBQs0ZMgQJSUlKTU1VRMnTlReXl6j96msrNRjjz2mnj17KiEhQQMHDtSaNWsCfq0szi12WJzbrY/Hr++rwSHqhD4s9OFEHxY79AGEQjjNWAAAAOGEOQsAANhRSA/7Nm3apOzsbH3wwQdav369KisrNWbMGJWVlbm9z+zZs/Xcc8/pj3/8ow4ePKj77rtP3//+97Vnz56AXSeLc4sdFud27IO3UqUPiT5qow8gtMJlxgIAAAg3zFkAAMCOWoYyvP53MS1evFipqanavXu3hg8f3uB9Xn75Zc2aNUs33XSTJGnatGn65z//qd///vdasmSJ36/Rrovz+1fuDfo12GFxbtc+QoE+LPThRB8WO/QBhFI4zFgAAADhiDkLAADYUUgP++orKSmRJLVr187tbRwOhxISEup8LjExUVu2bHF7e4fDUfPn0tJSSdLKvCKdOOdo8D41962q1kv7CnWyzKGpV2Vq3eGTWnf4ZJPPI/eb36eXU3Cqydt6IqfglDYcOa1R3dtLci7S/Z3RkNoZX5aWa/Hez5XaKl4ju7XXMzs+C0hOY3ztw5sMTzTUh78z3HFl/ONfxzV/87/oQ/ThQh/B6WNfUYnfHgsIpkDMWK77NDRn5Z0+p9ZxgRkzj5w5L0k6dOpsQB6fjOjMCFYOGWSQ4V6g/40DgcKcRQYZZIRbDhnRl8GcFR1ijDEm1BchSRcvXtT48eNVXFzc6LDzox/9SPv27dM777yjnj17asOGDZowYYKqq6vrDEEu8+bN06OPPhrISwcARJkBAwYoMzMzoBk7d+7U1VdfTUYTKisrtWbNGpWUlCg5OTlgOeEsUDOWxJwFAPC/YcOGqW3bwL1DRSTMP8HKYM5qGnMWACCcMGfZIyNQM5ZtDvumTZum1atXa8uWLerSpYvb2506dUr33nuv3n33XcXExKhnz5664YYb9MILL6i8vPyS2zf0nVAZGRka0bWd+qU2/D+yovqiVuQX6evyCo3rk6aOreK9ei6bCk7r4OlzGtK5TbN+t17usWLtOlbc4OP4K6MxrowWkjq0itPNvTspLtb/v+axqefS3D48yfBEY334K6Mpqz89oYLicrW+LFa3XZlOH/RBH7UEo4/80+e0oeC0lixZokmTJvn98WsbP368li9fTkYTSktLlZKSwhKqEYGasST3c9as7/ZW3w5Jfn8ukrS18CstzC3Q49f3Vfe2l5NBRljlkEEGGe4dOXNeczYe0u7duzVo0KCAZEiRMf8EK4M5q2nMWWSQQUY45pARfRnMWfbKCNSMZYu38Zw+fbpWrFihzZs3NzocSVKHDh30zjvv6MKFC/rqq6/UuXNnzZw5Uz169Gjw9vHx8YqPv3T5PWlgV907qNsln3f9zqvyqovacvcIn37n1f0r9+rg6XMa3yfN599XNX9znnYdK3D7O6/8kdGU/3xthw6ePqf05AQduH9UwH7nVWPPxR99NJXhiab68EdGU3YePaO/fVggSfr5/+upx0f283uGRB+eog9LNPXxyv4vtKHgdEAeGwiEQM5Ykvs5a0zPVA3PbN/s63dnYW6BburVUYPS2pBBRtjlkEEGGQ378Hix5mw8FJDHBgKBOYsMMsgI5xwyoiuDOSs6+P/HHrxgjNH06dP19ttv67333lP37t09vm9CQoLS09NVVVWlN998UxMmTGj29bgW5x+fLNX6yUN9Xpw31/zNeZqz8VCji/NA23n0jN7NOy5JunNg14Ad9DWGPiw7j57R6Je3ql1inCQpvmVs0K+BPiz0YaEPwJ7sNmMBAABECuYsAABgRyE97MvOztaSJUu0dOlSJSUlqaioSEVFRXXewmDKlCl6+OGHa/68Y8cOvfXWW/rss8/0/vvv63vf+54uXryoX/7yl826FhbnFjsszunD4urjytRk3dy7U0iugT4s9GGhD8C+7DRjAQAARBLmLAAAYEchPexbuHChSkpKdN111yktLa3m49VXX625TWFhoY4fP17z5wsXLmj27Nnq16+fvv/97ys9PV1btmxRmzZtfL4OFucWOyzO6cNSu481k7IC8jvImkIfFvqw0Adgb3aZsQAAACINcxYAALCjkP7OPmNMk7fJycmp8+cRI0bo4MGDfrsGFueW+ovzh/55IOjXQB+W+n3wVqr0QR8WO/QB2JkdZiwAAIBIxJwFAADsKKp/DILFucUOi3NHVTV9fIM+LPThRB8WO/QBAAAAAAAAAHYR0p/sC6ULlSzOXeyyOH9pX6FKHFX0QR816MNCH0526QMAAAAAAAAA7CJqD/ue3nFYp89XsDi3weK8ovqiJOlkmUOb7xpOH/QhiT5c6MNihz7KK6uDngkAAAAAAAAAjYnat/E8WlrOQZ8NFudnHZVakV8kSZp6VSZ90Ick+nChD4td+nhy6ydBzwUAAAAAAACAxkTtYd+DWd9icW6Dxfn3Xtmur8srJEldkhODfg0SfbjQh4U+LPTh5Orji9LyoGcDAAAAAAAAQGOi9rCve9tWIcllce7kWpx/fLJU4/qkBT3fhT6c6MNCHxb6cKrdx8PDegc9HwAAAAAAAAAaE7WHfaHA4typ9uJ8/eSh6tgqPujXINGHC31Y6MNCH071++jZLjTfKAIAAAAAAAAA7nDYFyQszp3qL855K1X6kOjDhT4s9AEAAAAAAAAAnuGwLwhYnDvZZXFOH070YaEPC3042aUPAAAAAAAAAGhKy1BfQKRjce5kl8V5TsEpbThymj7oowZ9WOjDyS59AAAAAAAAAIAnOOwLIBbnTnZanNMHfdRGH3XRh736AAAAAAAAAABP8DaeAcTi3D6L89xjxZKkUd3b0wd9SKKP2ujDyS59AAAAAAAAAIA3OOwLABbnTnZZnM/fnKdd33RyXbcOIbkG+rDQhxN9WOgDAAAAAAAAAHzHYZ+fsTh3ssvi3PU7E4d0bhOSfIk+aqMPJ/qw0AcAAAAAAAAANA+HfX7E4tzJLotzVx+PX99Xg0PUCX1Y6MOJPiz0AQAAAAAAAADNx2Gfn7A4d7LL4rx2H7yVKn1I9FEbfTjZpQ8AAAAAAAAAaA4O+/yAxbmTXRbn9OFEHxb6sNCHk136AAAAAAAAAIDm4rCvmVicO9llcW6HPr4sLaePb9CHE31Y6AMAAAAAAAAA/IvDvmZgce5kl8W5HfqQpMV7P6cP0YcLfdRFHwAAAAAAAADgXxz2+YjFuZNdFud26ONEmUOSlNoqnj7oQxJ91EYfAAAAAAAAABAYIT3sW7BggYYMGaKkpCSlpqZq4sSJysvLa/J+Tz/9tPr06aPExERlZGToF7/4hS5cuBCEK3Zice5kl8W5HfrYefSM3s07Lkm6c2BX+qAP+qiFPoDgC9cZCwAAwO6YswAAgB2F9LBv06ZNys7O1gcffKD169ersrJSY8aMUVlZmdv7LF26VDNnztTcuXN16NAhLVq0SK+++qoeeeSRoFwzi3MnuyzO7dLH6Je3ql1inCQpvmVs0K+BPiz0YaEPJ7v0AQRTOM5YAAAA4YA5CwAA2FHLUIavWbOmzp8XL16s1NRU7d69W8OHD2/wPtu2bdPQoUP1ox/9SJLUrVs33XHHHdqxY0fAr9dui/MTZRVRvTi3Ux9Xpiarb/vWWrSnMOjXQB8W+rDQh5Nd+gCCLdxmLAAAgHDBnAUAAOwopId99ZWUlEiS2rVr5/Y21157rZYsWaKdO3fq6quv1meffaZVq1Zp8uTJDd7e4XDI4XDU/Lm0tFSStDKvSCfOORq8T0NyCk5pw5HTGtW9vSTnIt2d3GPFNffxpy9Ly7V47+dKbRWvDpfH60RZhd8zamvoeTiqqvXSvkKdLHNo6lWZWnf4pNYdPun3nKZ404evGU2p3cfIbu219pv/D8HshD4s9GGhj8D1sa+opLmXCYREIGYsyf2cte7wSX1RWu6nq69ra+FXkqRDp84G5PEl6ciZ82REWUawcsgggwz3Av1vHAiUYM9ZeafPqXVcYNZ5kfJ6QgYZ4ZoRrBwyoi+DOSs6xBhjTKgvQpIuXryo8ePHq7i4WFu2bGn0ts8++6xmzJghY4yqqqp03333aeHChQ3edt68eXr00UcDcckAgCg1YMAAZWZmBjTDtQggo3GVlZVas2aNSkpKlJycHLCccBaoGUtizgIA+N+wYcPUtm3g3o0hEuafYGUwZzWNOQsAEE6Ys+yREagZyzaHfdOmTdPq1au1ZcsWdenSxe3tcnJydPvtt2v+/Pm65ppr9Omnn+qBBx7Qvffeqzlz5lxy+4a+EyojI0MjurZTv9Sm/0fmHivWrmPFGtK5jQZ3buPRc9lUcFoHT5/z6j6NOVHm0Lt5x9UuMU439+6kuNgWfs9oSO2MAR2TtSK/SF+XV2hcnzR1bBUfkJymnosvfXib0ZSG+vB3hjuujEGdUnT0bDl9iD5qo4/A95F/+pw2FJzWkiVLNGnSJL89bkPGjx+v5cuXk9GE0tJSpaSksIRqRKBmLMn9nDWhdycNDtDb5rp+enna4G4a2vXfApKxtfArLcwt0OPX91X3tpeTEQUZwcohgwwy3Dty5rzmbDyk3bt3a9CgQQHJkCJj/glWBnNW00IxZ836bm/17ZDk9+ciRc7rCRlkhGtGsHLIiL4M5ix7ZQRqxrLF23hOnz5dK1as0ObNmxsdjiRpzpw5mjx5sn7yk59Ikvr376+ysjL99Kc/1axZs9SiRYs6t4+Pj1d8/KWL3kkDu+reQd0azZq/OU+7jhV4/Tuv7l+5VwdPn9P4PmnN/l1Zrt95NSS9ndZMylJS/GV+z3DHlXFjz1S9V3Ba5VUXteXuEX7/nVeePhdf+/Amoynu+vBnRmNcGafOO+hD9FEbfQSnj1f2f6ENBaf9+phAIAVyxpLcz1lj+3Rqcs5qjg1HTmto13/TpP4ZActYmFugm3p11KC0NmRESUawcsggg4yGfXi8WHM2HgrIYwOBEKo5a0zPVA3PbO+fJ9GASHg9IYOMcM4IVg4Z0ZXBnBUdQnrYZ4zRz372M7399tvKyclR9+7dm7zP+fPnLxmCYmNjax7PX+ZvztOcjYd8Wpz7i2txfmVq8iWL82B6aV+hShxVWj95qN8X556iD6eK6ouSpJNlDm2+azh90Ick+nCxSx+AHdh5xgIAAAhnzFkAAMCOQnrYl52draVLl+of//iHkpKSVFRUJElKSUlRYmKiJGnKlClKT0/XggULJEnjxo3TU089pe985zs1b30wZ84cjRs3rmZQai4W5052WZzTh9NZR6VW5Dv/jUy9KpM+6EMSfbjYpQ/ALuw6YwEAAIQ75iwAAGBHIT3sc/0i4uuuu67O51988UVNnTpVklRYWFjnu59mz56tmJgYzZ49W0ePHlWHDh00btw4/frXv/bLNbE4d7LL4pw+nM46KvW9V7br6/IKSVKX5MSgX4NEHy70YaEPwJ7sOGMBAABEAuYsAABgRyF/G8+m5OTk1Plzy5YtNXfuXM2dO9fv18Pi3Mkui3P6cHL18fHJUo3rk6a3Dh0P+jVI9OFCHxb6AOzLbjMWAABApGDOAgAAdnTpbwCOUizOneovzkOFPpxq97F+8lB1bHXpL+cOBvpwog8LfQAAAAAAAACAPXDYJxbnLnZZnNOHU/0+eCtV+pDow8UufQAAAAAAAABAqEX9YR+Lcye7LM7pw4k+LPRhoQ8nu/QBAAAAAAAAAHYQ0t/ZF2oszp3ssjjPKTilDUdO0wd91KAPC3042aUPAAAAAAAAALCLqD3sW5l3XP/IP8Hi3EaLcw4y6KM2+qiLPuzVBwAAAAAAAADYRdS+jScHffZZnOceK5Ykjerenj7oQxJ91EYfTnbp451Dx0KSCwAAAAAAAADuRO1h34TeHVmc22BxPn9znnZ9c5hxXbcOIbkG+rDQhxN9WOjDMn9znt44dDwk2QAAAAAAAADgTtQe9o3tkxaSXBbnFtfvTBzSuU1I8iX6qI0+nOjDQh8WVx+39A3N1w4AAAAAAAAAcCdqD/tCgcW5xbU4f/z6vhocosMM+rDQhxN9WOjDUruPiX07h+QaAAAAAAAAAMAdDvuChMW5pfbinLdSpQ+JPmqjDyf6AAAAAAAAAADPcNgXBCzOLXZYnNOHhT6c6MNCHxY79AEAAAAAAAAATeGwL8BYnFvssDj/srScPr5BH070YaEPix36AAAAAAAAAABPcNgXQCzOLXZZnC/e+zl9iD5c6KMu+nCySx8AAAAAAAAA4AkO+wKIxbmTHRbnJ8ockqTUVvH0QR+S6KM2+rDYoQ8AAAAAAAAA8AaHfQHA4txih8X5zqNn9G7ecUnSnQO70gd90Ect9GGxQx8AAAAAAAAA4C0O+/yMxbnFDotz1+9MbJcYJ0mKbxkb9GugDwt9WOjDiT4AAAAAAAAAoHk47PMjFucWOyzOXX1cmZqsm3t3Csk10IeFPiz04UQfAAAAAAAAANB8HPb5CYtzix0W57X7WDMpS3Gxwf+rTh8W+rDQhxN9AAAAAAAAAIB/cNjnByzOLXZYnNfvg7dSpQ/6sNCHxQ59AAAAAAAAAEBzcdjXTCzOLXZYnNuhD0dVNX18gz4s9OFEHwAAAAAAAADgXyE97FuwYIGGDBmipKQkpaamauLEicrLy2vyfsXFxcrOzlZaWpri4+PVu3dvrVq1KghXXBeLc4sdFud26EOSXtpXSB+ij9row0IfQHCE+4wFAABgV8xZAADAjlqGMnzTpk3Kzs7WkCFDVFVVpUceeURjxozRwYMH1apVqwbvU1FRodGjRys1NVVvvPGG0tPT9fnnn6tNmzZBvXY7Lc5LHFVRvzi3Qx8V1RclSSfLHNp813D6oA9J9OFCH0BwhfOMBQAAYGfMWQAAwI5Ceti3Zs2aOn9evHixUlNTtXv3bg0fPrzB+7zwwgv6+uuvtW3bNl12mXNh3a1bt0Bfah0szi12WJzboY+zjkqtyC+SJE29KpM+6EMSfbjQBxB84TpjAQAA2B1zFgAAsKOQHvbVV1JSIklq166d29ssX75cWVlZys7O1j/+8Q916NBBP/rRj/TQQw8pNjb2kts7HA45HI5LMt7//LRP13jkTJme2v6p0pMTdfu307XswNFLbnPwZKkkKffoGT3/YYFPOY25UFmt17/JvSa9rfadKNG+EyV+z2nqeazMO65/5J/QhN4d1bF1vM/PtTn/vzzpo7kZTblQWa2ndxzWqbIKSVLR2QsB6V1q/HnQhxN9WOjD4q8+dnz5tSTp/PnzKi0tbc7lNqmyspIMD7ge2xgTsIxIEIgZS/L/nOWJ3KNnJEmHTp3V5gDlHDp1VpK0+1ixzlVUkREFGcHKIYMMMtzLO31OknTu3LmAzg6RMP8EK4M5yzPBnrP2Hvf//sclUl5PyCAjXDOClUNG9GUwZ9krI2AzlrGJ6upqM3bsWDN06NBGb9enTx8THx9v7r77bpObm2uWLVtm2rVrZ+bNm9fg7efOnWsk8cEHH3zwwQcfEfzxxRdfBGI8iQiBmrGMYc7igw8++OCDj2j4YM5yjzmLDz744IMPPvjw9cPfM1aMMfb4Fq1p06Zp9erV2rJli7p06eL2dr1799aFCxd05MiRmu9+euqpp/Tb3/5Wx48fv+T29b8Tqri4WJmZmSosLFRKSor/n4icJ7MZGRn64osvlJycTIYNcsgggwwywiUjWDmRkmGM0dmzZ9W5c2e1aNEiIBnhLlAzlsScRUbkZAQrhwwyyCAjXDIk5ixPMGeRQQYZ4ZhDBhlkhDYjUDOWLd7Gc/r06VqxYoU2b97c6HAkSWlpabrsssvqvM1B3759VVRUpIqKCsXFxdW5fXx8vOLj4y95nJSUlIC+MEtScnIyGTbLIYMMMsgIl4xg5URCRqCWHZEgkDOWxJxFRuRlBCuHDDLIICNcMpiz3GPOIoMMMsI9hwwyyAhdRiBmrJB+a5YxRtOnT9fbb7+t9957T927d2/yPkOHDtWnn36qixcv1nwuPz9faWlpDQ5HAAAA0YYZCwAAIDCYswAAgB2F9LAvOztbS5Ys0dKlS5WUlKSioiIVFRWpvLy85jZTpkzRww8/XPPnadOm6euvv9YDDzyg/Px8rVy5Ur/5zW+UnZ0diqcAAABgO8xYAAAAgcGcBQAA7Cikb+O5cOFCSdJ1111X5/Mvvviipk6dKkkqLCys876lGRkZWrt2rX7xi19owIABSk9P1wMPPKCHHnrIo8z4+HjNnTu3wbdC8Bcy7JdDBhlkkBEuGcHKiZQMNCwUM5YUOX+vyIi+jGDlkEEGGWSESwbcY84igwwyAilSngsZZJARfDHGGBPqiwAAAAAAAAAAAADgvZC+jScAAAAAAAAAAAAA33HYBwAAAAAAAAAAAIQpDvsAAAAAAAAAAACAMMVhHwAAAAAAAAAAABCmIu6wb/PmzRo3bpw6d+6smJgYvfPOO03ex+FwaNasWcrMzFR8fLy6deumF154wa8Zr7zyigYOHKjLL79caWlpuvvuu/XVV181eNsFCxZoyJAhSkpKUmpqqiZOnKi8vLwmM15//XVdccUVSkhIUP/+/bVq1apGb+9LzvPPP6/vfve7atu2rdq2basbbrhBO3fu9GtGbcuWLVNMTIwmTpzo94zi4mJlZ2crLS1N8fHx6t27t9v/Z75mPP300+rTp48SExOVkZGhX/ziF7pw4YLfMiorK/XYY4+pZ8+eSkhI0MCBA7VmzRq3t1+4cKEGDBig5ORkJScnKysrS6tXr3Z7+wMHDug///M/1a1bN8XExOjpp59u8jl7m/HWW29p8ODBatOmjVq1aqWrrrpKL7/8sl8zFi9erJiYmDofCQkJfs247rrrLsmIiYnR2LFj/Zbhbd8NeeKJJxQTE6Of//znbm/jS+/eZnj7WuJLRm2evJb4muHNa4mvGd68lkjSvHnzLvm7eMUVVzSa4e3XEG8zmts57IE5y7N/I8xY9pqxfM1hzmLOYs5yn1FbNM1ZwZixfMlhzgp/kTBjScxZLtE0Z0XKjOVLDnNW8OasYMxYnuYwZ3mXYbc5K9JnrIg77CsrK9PAgQP15z//2eP7/PCHP9SGDRu0aNEi5eXl6e9//7v69Onjt4ytW7dqypQpuueee3TgwAG9/vrr2rlzp+69994Gb79p0yZlZ2frgw8+0Pr161VZWakxY8aorKzMbca2bdt0xx136J577tGePXs0ceJETZw4UR9//LHb+/iSk5OTozvuuEMbN27U9u3blZGRoTFjxujo0aN+y3ApKCjQjBkz9N3vfrfR2/mSUVFRodGjR6ugoEBvvPGG8vLy9Pzzzys9Pd1vGUuXLtXMmTM1d+5cHTp0SIsWLdKrr76qRx55xG8Zs2fP1nPPPac//vGPOnjwoO677z59//vf1549exq8fZcuXfTEE09o9+7dys3N1ciRIzVhwgQdOHCgwdufP39ePXr00BNPPKFOnTq5vY7mZLRr106zZs3S9u3b9dFHH+muu+7SXXfdpbVr1/otQ5KSk5N1/Pjxmo/PP//cr8/jrbfeqvP4H3/8sWJjY3Xrrbf6LcPbvuvbtWuXnnvuOQ0YMKDR2/nSu7cZ3r6W+JLh4ulriS8Z3r6W+JLh7WuJy7e//e06fye3bNni9ra+fA3xNqM5ncM+mLM8+zfCjGWvGcvXHOYs5izmrKZF45wVjBnL2xzmrPAXCTOWxJwlRd+cFSkzli85zFnBmbOCMWN5k8OcFf5zVkTPWCaCSTJvv/12o7dZvXq1SUlJMV999VXAMn7729+aHj161Pncs88+a9LT0z3KOHnypJFkNm3a5PY2P/zhD83YsWPrfO6aa64x//Vf/+VRhqc59VVVVZmkpCTz0ksv+TWjqqrKXHvtteZvf/ubufPOO82ECRM8viZPMhYuXGh69OhhKioqPH5cbzOys7PNyJEj63zuwQcfNEOHDvVbRlpamvnTn/5U53M/+MEPzKRJkzzKMMaYtm3bmr/97W9N3i4zM9P84Q9/8Phxfclw+c53vmNmz57tt4wXX3zRpKSkePV43mbU94c//MEkJSWZc+fO+S2jOX2fPXvW9OrVy6xfv96MGDHCPPDAAx5djze9+5phjOevJd5m+PJa4k2Gr68l3mT48loyd+5cM3DgQI+vx5evId5m1Oft1w/YD3OW53MWM5bngjFjeZrDnOVZBnMWc1Y0zVnBmLF8yamPOSu8RcqMZQxzVjTOWZE0Y3mT48Kc5d85KxgzVnNyjGHOCrc5K9JnrIj7yT5vLV++XIMHD9aTTz6p9PR09e7dWzNmzFB5ebnfMrKysvTFF19o1apVMsboxIkTeuONN3TTTTd5dP+SkhJJzu8YcWf79u264YYb6nzuxhtv1Pbt2z2+Tk9y6jt//rwqKys9vo+nGY899phSU1N1zz33eHwt3mQsX75cWVlZys7OVseOHXXllVfqN7/5jaqrq/2Wce2112r37t01P9r72WefadWqVX7t3eFwXPLj+4mJiY1+R4JLdXW1li1bprKyMmVlZXl0Td7yNsMYow0bNigvL0/Dhw/3a8a5c+eUmZmpjIyMJr9rqrnPQ5IWLVqk22+/Xa1atfJbRnP6zs7O1tixYy95nfCn5mR4+lribYYvryXeZPj6WuJNhq+vJZ988ok6d+6sHj16aNKkSSosLHR7W1+/hniTUZ+3Xz8QnpizPM+ojxkrcDOWpznMWcxZzFmNi9Y5Kxgzlrc59TFnRb5wmLEk5ixvRMqcFQkzli85zFmBmbOCMWM1N4c5yz27zlkRPWOF8qQx0OTBdyrdeOONJj4+3owdO9bs2LHDrFy50mRmZpqpU6f6LcMYY1577TXTunVr07JlSyPJjBs3zqOT8+rqajN27Ngmv4PmsssuM0uXLq3zuT//+c8mNTW1yQxvcuqbNm2a6dGjhykvL/dbxvvvv2/S09PNqVOnjDHGq++G8jSjT58+Jj4+3tx9990mNzfXLFu2zLRr187MmzfPbxnGGPPMM8+Yyy67rKb3++67z6/P44477jD9+vUz+fn5prq62qxbt84kJiaauLg4t/f56KOPTKtWrUxsbKxJSUkxK1eu9OiavPmuGG8ziouLTatWrUzLli1NfHy8WbRokV8ztm3bZl566SWzZ88ek5OTY26++WaTnJxsvvjiC78+D5cdO3YYSWbHjh1+fR6+9G2MMX//+9/NlVdeWfPvNBDfDdWcDGM8ey3xNsOX1xJvM3x5LfHl/5W3ryWrVq0yr732mtm3b59Zs2aNycrKMl27djWlpaUN3t6XryHeZtTnzdcP2BNzlmdzFjOWvWYsb3KYs5izmLPcZ0TrnBWMGcuXnPqYs8JbJMxYxjBnReOcFe4zli85zFmBm7OCMWM1N8cY5qxwm7MifcaK+sO+0aNHm4SEBFNcXFzzuTfffNPExMSY8+fP+yXjwIEDJi0tzTz55JM1f5H69+9v7r777iYf/7777jOZmZlNvog397DP05zaFixYYNq2bWv27dvnt4zS0lLTrVs3s2rVqprPeTMgefo8evXqZTIyMkxVVVXN537/+9+bTp06+S1j48aNpmPHjub55583H330kXnrrbdMRkaGeeyxx/yWcfLkSTNhwgTTokULExsba3r37m3uv/9+k5CQ4PY+DofDfPLJJyY3N9fMnDnTtG/f3hw4cKDJa/LmC6W3GdXV1eaTTz4xe/bsMb/73e9MSkqK2bhxo18zaquoqDA9e/Zs8q0VfM346U9/avr37+/RtXiT4UvfhYWFJjU1tc6/U38PSM3N8OS1xNsMX15LfHke3r6W+JLRnNcSlzNnzpjk5GS3b6nR3K8hnmTU5u3XD9gTc5Zn/0aYsew1Y3mTw5zFnMWc1XAGc5YlGDOWJzm1MWeFv0iYsYxhzorGOSvcZyxfcpizAjNnBWPG8kcOc1b4z1mRNmNF/WHflClTTM+ePet87uDBg0aSyc/P90vGj3/8Y3PLLbfU+dz7779vJJljx465vV92drbp0qWL+eyzz5q8joyMjEtexH71q1+ZAQMGNHlfb3Jcfvvb35qUlBSza9cuj27vacaePXuMJBMbG1vzERMTY2JiYkxsbKz59NNP/fI8hg8fbkaNGlXnc6tWrTKSjMPh8EvGsGHDzIwZM+p87uWXXzaJiYmmurraLxku5eXl5ssvvzQXL140v/zlL02/fv08vu+oUaPMT3/60yZv15z3Ofc0w+Wee+4xY8aMCWjGLbfcYm6//Xa/Z5w7d84kJyebp59+2qvH9ibDm77ffvvtS/5NSar5N1X7i3pDPOm9ORmevpZ4m+HLa4kvz8Pb1xJfMnx9Lalv8ODBZubMmQ3+t+Z8DfE0w8Xbrx+wL+aspv+NMGM52WXG8jbHhTmLOcsd5izmLGOCM2M1lePCnBUZwn3GMoY5KxrnrEicsbzJcWHO8s+cFYwZq7k5zFmRM2dF0owV9b+zb+jQoTp27JjOnTtX87n8/Hy1aNFCXbp08UvG+fPn1aJF3f/VsbGxkpzv6VyfMUbTp0/X22+/rffee0/du3dvMiMrK0sbNmyo87n169c3+n7MvuRI0pNPPqnHH39ca9as0eDBgxu9rbcZV1xxhfbv36+9e/fWfIwfP17XX3+99u7dq4yMDL88j6FDh+rTTz/VxYsXaz6Xn5+vtLQ0xcXF+SUjGL27JCQkKD09XVVVVXrzzTc1YcIEj+978eJFORwOj2/vC28zfLkmb+5TXV2t/fv3Ky0tze8Zr7/+uhwOh3784x979djeZHjT96hRoy75NzV48GBNmjRJe/furfk72Ry+ZnjzWuJthi+vJb48D29fS3zJ8Pa1pCHnzp3T4cOH3f6d9+VriLcZknedIzJE65zFjGWvGcvXHBfmLOYsd5izmLOCMWN5kiMxZ0UbO85Yrs8zZ0XXnBXJM5YvOcxZ/pmzgjFjNSeHOSty5qyIm7GCdKgYNGfPnjV79uypOQV/6qmnzJ49e8znn39ujDFm5syZZvLkyXVu36VLF3PLLbeYAwcOmE2bNplevXqZn/zkJ37LePHFF03Lli3NX/7yF3P48GGzZcsWM3jwYHP11Vc3+PjTpk0zKSkpJicnxxw/frzmo/ZbMUyePLnOifPWrVtNy5Ytze9+9ztz6NAhM3fuXHPZZZeZ/fv3u30evuQ88cQTJi4uzrzxxht17nP27Fm/ZdTX1I8q+5JRWFhokpKSzPTp001eXp5ZsWKFSU1NNfPnz/dbxty5c01SUpL5+9//bj777DOzbt0607NnT/PDH/7QbxkffPCBefPNN83hw4fN5s2bzciRI0337t3NmTNnGsyYOXOm2bRpkzly5Ij56KOPzMyZM01MTIxZt25dg4/vcDhq/q6npaWZGTNmmD179phPPvmkwcf3JeM3v/mNWbdunTl8+LA5ePCg+d3vfmdatmxpnn/+eb9lPProo2bt2rXm8OHDZvfu3eb22283CQkJjb6FgbcZLsOGDTO33Xab28dtToa3fbtT/8fs/dG7txnevpb4klGfN2+j4mmGt68lvmR4+1pijDH//d//bXJycsyRI0fM1q1bzQ033GDat29vTp482WCGL19DvM3wR+cIPeYsz/6NMGPZa8byNYc5izmLOct9Rn3RMmcFY8byJYc5K/xFwoxlDHNWbdEyZ0XKjOVLDnNWcOesYMxYnuQwZ3meYcc5K9JnrIg77Nu4caORdMnHnXfeaYxx/uMYMWJEnfscOnTI3HDDDSYxMdF06dLFPPjgg42+x7kvGc8++6zp16+fSUxMNGlpaWbSpEnmyy+/bPDxG3psSebFF1+suc2IESNq8lxee+0107t3bxMXF2e+/e1vN/nLV33JyczMbPA+c+fO9etzqa2pFzRfM7Zt22auueYaEx8fb3r06GF+/etfu/3xbF8yKisrzbx580zPnj1NQkKCycjIMPfff7/bL2S+ZOTk5Ji+ffua+Ph482//9m9m8uTJ5ujRo27/X919990mMzPTxMXFmQ4dOphRo0bVfCFu6PGPHDnS4DXV//vdnIxZs2aZb33rWyYhIcG0bdvWZGVlmWXLlrl9fF8yfv7zn5uuXbuauLg407FjR3PTTTeZDz/80K8Zxhjzr3/9y0iqczt/Znjbtzv1vxj7o3dvM7x9LfEloz5/DEfNfS3xJcPb1xJjjLnttttMWlqaiYuLM+np6ea2226r81YP/vga4m2GPzpH6DFnefZvhBnLXjOWrznMWcxZzFnuM+qLljkrGDOWLznMWeEvEmYsY5izaouWOStSZixfcpizgjtnBWPG8iSHOcvzDDvOWZE+Y8UY4+F7gAEAAAAAAAAAAACwlaj/nX0AAAAAAAAAAABAuOKwDwAAAAAAAAAAAAhTHPYBAAAAAAAAAAAAYYrDPgAAAAAAAAAAACBMcdgHAAAAAAAAAAAAhCkO+wAAAAAAAAAAAIAwxWEfAAAAAAAAAAAAEKY47AMAAAAAAAAAAADCFId9AAAAAAAAAAAAQJjisA9AxKiurta1116rH/zgB3U+X1JSooyMDM2aNStEVwYAABC+mLEAAAACgzkLgL/EGGNMqC8CAPwlPz9fV111lZ5//nlNmjRJkjRlyhTt27dPu3btUlxcXIivEAAAIPwwYwEAAAQGcxYAf+CwD0DEefbZZzVv3jwdOHBAO3fu1K233qpdu3Zp4MCBob40AACAsMWMBQAAEBjMWQCai8M+ABHHGKORI0cqNjZW+/fv189+9jPNnj071JcFAAAQ1pixAAAAAoM5C0BzcdgHICL961//Ut++fdW/f399+OGHatmyZagvCQAAIOwxYwEAAAQGcxaA5mgR6gsAgEB44YUXdPnll+vIkSP68ssvQ305AAAAEYEZCwAAIDCYswA0Bz/ZByDibNu2TSNGjNC6des0f/58SdI///lPxcTEhPjKAAAAwhczFgAAQGAwZwFoLn6yD0BEOX/+vKZOnapp06bp+uuv16JFi7Rz50799a9/DfWlAQAAhC1mLAAAgMBgzgLgD/xkH4CI8sADD2jVqlXat2+fLr/8cknSc889pxkzZmj//v3q1q1baC8QAAAgDDFjAQAABAZzFgB/4LAPQMTYtGmTRo0apZycHA0bNqzOf7vxxhtVVVXFWyAAAAB4iRkLAAAgMJizAPgLh30AAAAAAAAAAABAmOJ39gEAAAAAAAAAAABhisM+AAAAAAAAAAAAIExx2AcAAAAAAAAAAACEKQ77AAAAAAAAAAAAgDDFYR8AAAAAAAAAAAAQpjjsAwAAAAAAAAAAAMIUh30AAAAAAAAAAABAmOKwDwAAAAAAAAAAAAhTHPYBAAAAAAAAAAAAYYrDPgAAAAAAAAAAACBMcdgHAAAAAAAAAAAAhKn/D4ErFd+YHxScAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 7.714285714285714\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.11475409836065575\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "yOLwh85tbchO", + "outputId": "f8290b15-322b-4807-9fdf-2681a935bc26" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m229/229\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc7pJREFUeJzt3Xl8VPW9//H3mcnGkoQAISEhJOwKChbaKliLFigi4kLd0FtQwWJdilZxV0D0gtu9dakWwa1XFOva6k9rARW1oEVRWVQWJSEQSFgT1iwz5/fH5Exmz2Sdk+T1fDxSyOTMme/MZKjv8/l+P1/DNE1TAAAAAAAg5hyxHgAAAAAAAPAgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAYsowDM2ePTvWw2hznn/+eRmGofz8/Drf96OPPpJhGProo48afVytXV5eni6//PJYD8PP7NmzZRiG9uzZE+uh1IsdX1MAaAhCOgDU05NPPinDMHTyySc3+FzvvvsuQbUZHThwQElJSTIMQ999913IYy6//HIZhhHyKykpyXvc999/r1tuuUUnnXSSkpOT1b17d40fP15ffPFFvcZ2+umnh31c3y9+Xxpu5cqVmj17tg4cONDgc/3www+aPn26evfuraSkJKWkpOjUU0/Vo48+qqNHjzZ8sACANiMu1gMAgJZq8eLFysvL03/+8x9t2bJFffv2rfe53n33Xf35z38meDWTV199VYZhKDMzU4sXL9Z9990X8rjExEQtWrQo6Han0+n9+6JFi/TMM8/oN7/5ja655hqVlpZqwYIFOuWUU/TPf/5To0ePrtPY7rzzTk2bNs37/erVq/XYY4/pjjvu0PHHH++9ffDgwXU6b6Df/va3uuSSS5SYmFjn+/7yl7/U0aNHlZCQ0KAxxNrKlSs1Z84cXX755erUqVO9z/P//t//04UXXqjExERNnjxZJ5xwgioqKvTpp59q5syZ2rBhg55++unGGzgAoFUjpANAPWzdulUrV67UG2+8oenTp2vx4sWaNWtWrIfV5h07dkwJCQlyOCJPFHvxxRd11llnKTc3Vy+99FLYkB4XF6f/+q//iniuSZMmafbs2erYsaP3tiuvvFLHH3+8Zs+eXeeQPmbMGL/vk5KS9Nhjj2nMmDE6/fTTw97v8OHD6tChQ9SP43Q6/S421IXD4fCbTdCWbd26VZdccolyc3P1wQcfqHv37t6fXXvttdqyZYv+3//7fzEcIeoi2n9DAKAp8S8QANTD4sWLlZaWpvHjx+uCCy7Q4sWLg44Jt243Pz9fhmHo+eefl+SZVv3nP/9ZkvymM1sOHz6sm266STk5OUpMTNSAAQP08MMPyzTNoMd88cUXNWzYMLVr106dO3fWJZdcosLCQr9jTj/9dJ1wwgn69ttvdcYZZ6h9+/bKzs7Wgw8+GHS+Y8eOafbs2erfv7+SkpLUvXt3TZw4UT/88EOdx1deXq4bb7xR6enpSk5O1jnnnKPt27eHfH137NihK6+8UhkZGUpMTNSgQYP07LPPhnx9lyxZorvuukvZ2dlq3769ysrKQp7Tsm3bNn3yySe65JJLdMkll3gvuNTXsGHD/AK6JHXp0kWnnXZa2Kn0DWWtIf7222916aWXKi0tTb/4xS8kSWvXrtXll1/unXadmZmpK6+8Unv37vU7R6g16Xl5eTr77LP16aef6uc//7mSkpLUu3dv/fWvf/W7b6jf7br8XhUUFOicc85Rhw4d1K1bN9144416//33o1rnfvDgQd1www3Ky8tTYmKiunXrpjFjxmjNmjV+x33++ec688wzlZqaqvbt22vkyJH697//7fcazpw5U5LUq1cv7+eurmv0H3zwQR06dEjPPPOMX0C39O3bVzNmzAh7/3379unmm2/WiSeeqI4dOyolJUXjxo3TN998E3Ts448/rkGDBql9+/ZKS0vTT3/6U7300kt1fm3C2bNnjy666CKlpKSoS5cumjFjho4dO+Z3TFVVlebOnas+ffooMTFReXl5uuOOO1ReXu53XLglGYHrx63fw3//+9/64x//qPT0dHXo0EHnn3++du/e7Xdf0zR13333qUePHmrfvr3OOOMMbdiwIegxon1Nw/0b8vXXX8swDP3v//5v0LlXrlwpwzD08ssv1/ZyAkC9UUkHgHpYvHixJk6cqISEBE2aNElPPfWUVq9erZ/97Gd1Ptf06dNVVFSkpUuX6v/+7//8fmaaps455xx9+OGHmjp1qk466SS9//77mjlzpnbs2OH3H5H333+/7r77bl100UWaNm2adu/erccff1y//OUv9dVXX/lN592/f7/OPPNMTZw4URdddJFee+013XrrrTrxxBM1btw4SZLL5dLZZ5+t5cuX65JLLtGMGTN08OBBLV26VOvXr1efPn3qNL5p06bpxRdf1KWXXqoRI0bogw8+0Pjx44Nej+LiYp1yyikyDEPXXXed0tPT9d5772nq1KkqKyvTDTfc4Hf83LlzlZCQoJtvvlnl5eW1TsF++eWX1aFDB5199tlq166d+vTpo8WLF2vEiBEhjw/VTCshIUEpKSkRH2fXrl3q2rVrxGMa6sILL1S/fv303//9396LIkuXLtWPP/6oK664QpmZmd6p1hs2bNBnn33mdwEolC1btuiCCy7Q1KlTNWXKFD377LO6/PLLNWzYMA0aNCjifaP5vTp8+LB+9atfaefOnZoxY4YyMzP10ksv6cMPP4zqOV999dV67bXXdN1112ngwIHau3evPv30U3333XcaOnSoJOmDDz7QuHHjNGzYMM2aNUsOh0PPPfecfvWrX+mTTz7Rz3/+c02cOFGbNm3Syy+/rP/93//1vlfp6elRjcPy9ttvq3fv3mF/f2rz448/6q233tKFF16oXr16qbi4WAsWLNDIkSP17bffKisrS5K0cOFC/eEPf9AFF1zgDc9r167V559/rksvvTTq1yaSiy66SHl5eZo3b54+++wzPfbYY9q/f7/fRZpp06bphRde0AUXXKCbbrpJn3/+uebNm6fvvvtOb775Zr1eA0m6/vrrlZaWplmzZik/P19/+tOfdN111+mVV17xHnPPPffovvvu01lnnaWzzjpLa9as0a9//WtVVFTU6zW1BP4bctxxx+nUU0/V4sWLdeONN/odu3jxYiUnJ+vcc8+t93MFgFqZAIA6+eKLL0xJ5tKlS03TNE2322326NHDnDFjht9xH374oSnJ/PDDD/1u37p1qynJfO6557y3XXvttWaof5LfeustU5J53333+d1+wQUXmIZhmFu2bDFN0zTz8/NNp9Np3n///X7HrVu3zoyLi/O7feTIkaYk869//av3tvLycjMzM9P8zW9+473t2WefNSWZ//M//xM0LrfbXafxff3116Yk85prrvE77tJLLzUlmbNmzfLeNnXqVLN79+7mnj17/I695JJLzNTUVPPIkSOmada8vr179/beFo0TTzzRvOyyy7zf33HHHWbXrl3NyspKv+OmTJliSgr5NXbs2IiP8fHHH5uGYZh333131OMK59VXXw36PZo1a5YpyZw0aVLQ8aFei5dfftmUZH788cfe25577jlTkrl161bvbbm5uUHHlZSUmImJieZNN93kvS3U73a0v1ePPPKIKcl86623vLcdPXrUPO6440J+XgKlpqaa1157bdifu91us1+/fubYsWO9v6em6XldevXqZY4ZM8Z720MPPRT0GtRFaWmpKck899xzo75Pbm6uOWXKFO/3x44dM10ul98xW7duNRMTE817773Xe9u5555rDho0KOK5a3ttwrF+n8455xy/26+55hpTkvnNN9+YplnzOZ42bZrfcTfffLMpyfzggw+8twV+ri2Bz9/6PRw9erTf+3XjjTeaTqfTPHDggGmant/DhIQEc/z48X7H3XHHHaaker2mkf4NWbBggSnJ/O6777y3VVRUmF27dvV7LABoCkx3B4A6Wrx4sTIyMnTGGWdI8kzrvPjii7VkyRK5XK5Gfax3331XTqdTf/jDH/xuv+mmm2Sapt577z1J0htvvCG3262LLrpIe/bs8X5lZmaqX79+QVXKjh07+q21TkhI0M9//nP9+OOP3ttef/11de3aVddff33QuKxqbLTje/fddyUp6LjAqrhpmnr99dc1YcIEmabp91zGjh2r0tLSoKm7U6ZMUbt27UK/gAHWrl2rdevWadKkSd7bJk2apD179uj9998POj4pKUlLly4N+po/f37YxygpKdGll16qXr166ZZbbolqXPV19dVXB93m+1ocO3ZMe/bs0SmnnCJJUU17HjhwoE477TTv9+np6RowYIDf70Y40fxe/fOf/1R2drbOOecc721JSUm66qqraj2/JHXq1Emff/65ioqKQv7866+/1ubNm3XppZdq79693t+fw4cPa9SoUfr444/ldrujeqzaWEsrkpOT632OxMRE7/pnl8ulvXv3qmPHjhowYIDf+9WpUydt375dq1evDnuu2l6b2lx77bV+31uffevza/35xz/+0e+4m266SZIatPb+d7/7nd8sj9NOO00ul0sFBQWSpGXLlqmiokLXX3+933GB/4ZI0b+mllD/hlx00UVKSkryW8r0/vvva8+ePbX2qQCAhmK6OwDUgcvl0pIlS3TGGWdo69at3ttPPvlkPfLII1q+fLl+/etfN9rjFRQUKCsrKygEWF2+rf+A3bx5s0zTVL9+/UKeJz4+3u/7Hj16BE17TktL09q1a73f//DDDxowYIDi4sL/X0W04ysoKJDD4VCfPn38jhswYIDf97t379aBAwf09NNPh+2GXVJS4vd9r169wo4v0IsvvqgOHTqod+/e2rJliyRPQMzLy9PixYuDpt87nc46NX47fPiwzj77bB08eFCffvpp0Fr1xhbque/bt09z5szRkiVLgl6r0tLSWs/Zs2fPoNvS0tK0f//+Wu8bze9VQUGB+vTpE3RctLsjPPjgg5oyZYpycnI0bNgwnXXWWZo8ebJ69+4tyfNZkDzBK5zS0lKlpaVF9XiRWEseDh48WO9zuN1uPfroo3ryySe1detWvwt9Xbp08f791ltv1bJly/Tzn/9cffv21a9//WtdeumlOvXUU73H1Pba1Cbw348+ffrI4XB41+lbn+PA9yozM1OdOnXyft7rI/D3znp/rN8769yBY0xPTw96L6N9TS2hPkedOnXShAkT9NJLL2nu3LmSPBdos7Oz9atf/aquTw8A6oSQDgB18MEHH2jnzp1asmSJlixZEvTzxYsXe0N6uLW/jV1tlzz/UWoYht57772QHbsDw2K4rt5miGZ0zcmqcP7Xf/1X2JAVuPVYtFV00zT18ssv6/Dhwxo4cGDQz0tKSnTo0KF6B+uKigpNnDhRa9eu1fvvv68TTjihXuepi1DP/aKLLtLKlSs1c+ZMnXTSSerYsaPcbrfOPPPMqCrIDfndaI7fq4suukinnXaa3nzzTf3rX//SQw89pAceeEBvvPGGxo0b532ODz30kE466aSQ52isiycpKSnKysrS+vXr632O//7v/9bdd9+tK6+8UnPnzlXnzp3lcDh0ww03+L1fxx9/vDZu3Kh33nlH//znP/X666/rySef1D333KM5c+ZIqv21qatw/4bV1tcgknD//jXm7060r6kl3L8hkydP1quvvqqVK1fqxBNP1D/+8Q9dc801dH4H0OQI6QBQB4sXL1a3bt283dh9vfHGG3rzzTf1l7/8Re3atfNWdw4cOOB3XKhqU7j/6M3NzdWyZct08OBBv2r1999/7/25JG8Tt169eql///71em6B+vTpo88//1yVlZVBlfi6ji83N1dut9tbnbds3LjR73xW53eXy1Xnrctqs2LFCm3fvl333nuv337jkqda97vf/U5vvfVWvaayut1uTZ48WcuXL9ff/vY3jRw5srGGXSf79+/X8uXLNWfOHN1zzz3e263qsh3k5ubq22+/lWmafr/31syGaHTv3l3XXHONrrnmGpWUlGjo0KG6//77NW7cOO9sjZSUlFp/hxoSNi1nn322nn76aa1atUrDhw+v8/1fe+01nXHGGXrmmWf8bj9w4EBQ48EOHTro4osv1sUXX+y9KHT//ffr9ttv926JF+m1qc3mzZv9qspbtmyR2+1WXl6epJrP8ebNm/0+Q8XFxTpw4ID38y55KuGB//ZVVFRo586dUb0ugaxzb9682W9mwO7du4NmedTlNY3kzDPPVHp6uhYvXqyTTz5ZR44c0W9/+9t6jR8A6oJLgQAQpaNHj+qNN97Q2WefrQsuuCDo67rrrtPBgwf1j3/8Q5LnPyqdTqc+/vhjv/M8+eSTQee29rcO/I/as846Sy6XS0888YTf7f/7v/8rwzC8/+E9ceJEOZ1OzZkzJ6jyZJpm0PZb0fjNb36jPXv2BD22dc66jM/687HHHvM77k9/+pPf906nU7/5zW/0+uuvh6xOBm7JVBfWVPeZM2cGvXdXXXWV+vXrF3IrvWhcf/31euWVV/Tkk09q4sSJYY/bs2ePvv/+ex05cqS+TyMiqxoZ+DsQ+DrH0tixY7Vjxw7v50TyrJ1fuHBhrfd1uVxBU/a7deumrKws7xZgw4YNU58+ffTwww/r0KFDQefw/R0K97mTPFv1WRebIrnlllvUoUMHTZs2TcXFxUE//+GHH/Too4+Gvb/T6Qx6v1599VXt2LHD77bAz3BCQoIGDhwo0zRVWVkZ1WtTm8CLj48//rikms/vWWedJSn49+l//ud/JMlvuUifPn2C/u17+umn6z2TaPTo0YqPj9fjjz/u93qF+t2O9jWtTVxcnCZNmqS//e1vev7553XiiScGzeQBgKZAJR0AovSPf/xDBw8e9Gt45euUU07xVl0uvvhipaam6sILL9Tjjz8uwzDUp08fvfPOO0HrhCVPsJA8jdXGjh0rp9OpSy65RBMmTNAZZ5yhO++8U/n5+RoyZIj+9a9/6e9//7tuuOEGb9WwT58+uu+++3T77bcrPz9f5513npKTk7V161a9+eab+t3vfqebb765Ts938uTJ+utf/6o//vGP+s9//qPTTjtNhw8f1rJly3TNNdfo3HPPjXp8J510kiZNmqQnn3xSpaWlGjFihJYvXx6yejp//nx9+OGHOvnkk3XVVVdp4MCB2rdvn9asWaNly5Zp3759dXoekmeP9tdff11jxozxVhwDnXPOOXr00UdVUlKibt26SfLsCf3iiy+GPP78889Xhw4d9Kc//UlPPvmkhg8frvbt2wcdbx0nSU888YTmzJmjDz/8UKeffnqdn0dtUlJS9Mtf/lIPPvigKisrlZ2drX/9619+/RNibfr06XriiSc0adIkzZgxQ927d9fixYu970uk6vbBgwfVo0cPXXDBBRoyZIg6duyoZcuWafXq1XrkkUckSQ6HQ4sWLdK4ceM0aNAgXXHFFcrOztaOHTv04YcfKiUlRW+//bakms/dnXfeqUsuuUTx8fGaMGGCOnTooMmTJ2vFihW1Trfu06ePXnrpJV188cU6/vjjNXnyZJ1wwgmqqKjQypUr9eqrr/rtCx7o7LPP1r333qsrrrhCI0aM0Lp167R48eKgdeS//vWvlZmZqVNPPVUZGRn67rvv9MQTT2j8+PFKTk7WgQMHan1tarN161adc845OvPMM7Vq1SrvlolDhgyRJA0ZMkRTpkzR008/rQMHDmjkyJH6z3/+oxdeeEHnnXeet5mm5Nmq7eqrr9ZvfvMbjRkzRt98843ef//9em9LmJ6erptvvlnz5s3T2WefrbPOOktfffWV3nvvvaBzRvuaRmPy5Ml67LHH9OGHH+qBBx6o19gBoM6atZc8ALRgEyZMMJOSkszDhw+HPebyyy834+PjvduH7d692/zNb35jtm/f3kxLSzOnT59url+/PmgLtqqqKvP6668309PTTcMw/LZjO3jwoHnjjTeaWVlZZnx8vNmvXz/zoYce8tuGyPL666+bv/jFL8wOHTqYHTp0MI877jjz2muvNTdu3Og9ZuTIkSG3cpoyZYqZm5vrd9uRI0fMO++80+zVq5cZHx9vZmZmmhdccIH5ww8/1Hl8R48eNf/whz+YXbp0MTt06GBOmDDBLCwsDLlVU3FxsXnttdeaOTk53scdNWqU+fTTT3uPsbZPevXVV8O+H76viyTzmWeeCXvMRx99ZEoyH330Ue/roTBbsMln265ojzPNmq2uattmzFekLdh2794ddPz27dvN888/3+zUqZOZmppqXnjhhWZRUVHQ6xxuC7bx48cHnXPkyJHmyJEjvd+H24It2t+rH3/80Rw/frzZrl07Mz093bzpppu879Fnn30W9rUoLy83Z86caQ4ZMsRMTk42O3ToYA4ZMsR88skng4796quvzIkTJ5pdunQxExMTzdzcXPOiiy4yly9f7nfc3LlzzezsbNPhcPi9HtaWctHatGmTedVVV5l5eXlmQkKCmZycbJ566qnm448/bh47dsx7XKgt2G666Saze/fuZrt27cxTTz3VXLVqVdBrvmDBAvOXv/yl9/n06dPHnDlzpllaWlrn1yaQ9fv07bffmhdccIGZnJxspqWlmdddd5159OhRv2MrKyvNOXPmeP9NyMnJMW+//Xa/52iapulyucxbb73V7Nq1q9m+fXtz7Nix5pYtW8JuwbZ69Wq/+4f6HXO5XOacOXO8r9Xpp59url+/vt6vabT/hgwaNMh0OBzm9u3ba30tAaAxGKYZ4y5BAACgzfvTn/6kG2+8Udu3b1d2dnashwN4/eQnP1Hnzp21fPnyWA8FQBvBmnQAANCsjh496vf9sWPHtGDBAvXr14+ADlv54osv9PXXX2vy5MmxHgqANoQ16QAAoFlNnDhRPXv21EknnaTS0lK9+OKL+v777+vduA9obOvXr9eXX36pRx55RN27d9fFF18c6yEBaEMI6QAAoFmNHTtWixYt0uLFi+VyuTRw4EAtWbKEIATbeO2113TvvfdqwIABevnll8M2nASApsCadAAAAAAAbII16QAAAAAA2AQhHQAAAAAAm2hza9LdbreKioqUnJwswzBiPRwAAAAAQCtnmqYOHjyorKwsORyRa+VtLqQXFRUpJycn1sMAAAAAALQxhYWF6tGjR8Rj2lxIT05OliTd8e8vldSxY4xHAwAAAABo7Y4dOqT/PnWYN49G0uZCujXFPaljRyVF8QIBAAAAANAYollyTeM4AAAAAABsgpAOAAAAAIBNENIBAAAAALCJNrcmHQAAAADQeJymWwlutwyZsR5KTJgyVGUYqjQcUiNs801IBwAAAADUS0pVhY4/WqaERginLZlpmtrriNMP7ZJV4XA26FyEdAAAAABAnTlNt44/Wqb05GR17NxZaqs53ZRclZVqv3evOh4+oC86dpbZgIsWhHQAAAAAQJ0luN1KMAx17NxZ8UlJsR5OTMUnJckRF6ejhYVKcrt01Fn/qE3jOAAAAABAnXnXoLfVCnoAw+F5IRq6Np+QDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAALQ5Jbt26c4bb9DJxw1QbkqyhvXpo8kTz9cnH3wgSfq/RYs0ccwY9Uvvqu5JiSo9cKBZxkVIBwAAAAC0KYX5+Ro7Yrg+/egj3T1vvj748ku99PbbGjFypG6/YYYk6ejRIzrj17/WH265tVnHxhZsAAAAAIA25bYZf5BhGHrv03+rfYcO3tsHDByoSVMulyT97vo/SJJWrljRrGOjkg4AAAAAiDmXq3keZ/++ffrwX//S5dOv9gvoltROnZpnIGEQ0gEAAAAAMbNlkzTypDj16JCgkSfFacumpn28/B9+kGma6jtgQNM+UD0R0gEAAAAAMTP1ojj9sNmQJP2w2dDUi5p2VbZpmk16/oZiTToAAAAAICZcLmnT9w6f7w1t+t6QyyU5nU3zmL369pVhGNqycWPTPEADUUkHAAAAAMSE0yn1P84tp9Os/t6s/r7pHjOtc2edPmaMnl/wFx05fDjo58211Vo4hHQAAAAAQMw887cq9ennCel9+pl65m9VTf6Y8/70qFwul8b94lS98+ab+nHLZm36/jst+vMTOnvkLyV59lFf/8032vrDD5Kk79av1/pvvtH+ffuadGxMdwcAAAAAxEzf/tKKr6uadIp7oNzevfWvVZ/p0Qfma86tt6pk1051SU/X4J/8RA889rgk6a8LF+qR++/z3uf80aMkSX96eqEunjy5ycZmmHZfNd/IysrKlJqaqnu/2aik5ORYDwcAAAAAWqT2rkoNO1qm7Nyeik9MivVwYq6y/Jh2FGzTl+1SdMQZ7/ezYwcP6p4hA1RaWqqUlJSI52G6OwAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAOrMlGH9BZL3dfC+LvVESAcAAAAA1FmVYcg0TbkqK2M9FFuoPHpUbtNUhaNhMZt90gEAAAAAdVZpOLTXEaf2e/fKERcnw9GwCnKLZXoC+t49u7U9LlEug5AOAAAAAGhuhqEf2iWr4+EDOlpYGOvRxJTbNLU9LlEFSR0bfC5COgAAAACgXiocTn3RsbOS3C4ZbXRxuilDFQ5HgyvoFkI6AAAAAKDeTMPQUSfRsrHQOA4AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJuIaUifPXu2DMPw+zruuOMi3ufVV1/Vcccdp6SkJJ144ol69913m2m0AAAAAAA0rZhX0gcNGqSdO3d6vz799NOwx65cuVKTJk3S1KlT9dVXX+m8887Teeedp/Xr1zfjiAEAAAAAaBoxD+lxcXHKzMz0fnXt2jXssY8++qjOPPNMzZw5U8cff7zmzp2roUOH6oknnmjGEQMAAAAA0DRiHtI3b96srKws9e7dW5dddpm2bdsW9thVq1Zp9OjRfreNHTtWq1atCnuf8vJylZWV+X0BAAAAAGBHMQ3pJ598sp5//nn985//1FNPPaWtW7fqtNNO08GDB0Mev2vXLmVkZPjdlpGRoV27doV9jHnz5ik1NdX7lZOT06jPAQAAAACAxhLTkD5u3DhdeOGFGjx4sMaOHat3331XBw4c0N/+9rdGe4zbb79dpaWl3q/CwsJGOzcAAAAAAI0pLtYD8NWpUyf1799fW7ZsCfnzzMxMFRcX+91WXFyszMzMsOdMTExUYmJio44TAAAAAICmEPM16b4OHTqkH374Qd27dw/58+HDh2v58uV+ty1dulTDhw9vjuEBAAAAANCkYhrSb775Zq1YsUL5+flauXKlzj//fDmdTk2aNEmSNHnyZN1+++3e42fMmKF//vOfeuSRR/T9999r9uzZ+uKLL3TdddfF6ikAAAAAANBoYjrdffv27Zo0aZL27t2r9PR0/eIXv9Bnn32m9PR0SdK2bdvkcNRcRxgxYoReeukl3XXXXbrjjjvUr18/vfXWWzrhhBNi9RQAAAAAAGg0hmmaZqwH0ZzKysqUmpqqe7/ZqKTk5FgPBwAAAADQyh07eFD3DBmg0tJSpaSkRDzWVmvSAQAAAABoywjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGATtgnp8+fPl2EYuuGGG8Ie8/zzz8swDL+vpKSk5hskAAAAAABNKC7WA5Ck1atXa8GCBRo8eHCtx6akpGjjxo3e7w3DaMqhAQAAAADQbGJeST906JAuu+wyLVy4UGlpabUebxiGMjMzvV8ZGRnNMEoAAAAAAJpezEP6tddeq/Hjx2v06NFRHX/o0CHl5uYqJydH5557rjZs2BDx+PLycpWVlfl9AQAAAABgRzEN6UuWLNGaNWs0b968qI4fMGCAnn32Wf3973/Xiy++KLfbrREjRmj79u1h7zNv3jylpqZ6v3Jychpr+AAAAAAANKqYhfTCwkLNmDFDixcvjrr52/DhwzV58mSddNJJGjlypN544w2lp6drwYIFYe9z++23q7S01PtVWFjYWE8BAAAAAIBGFbPGcV9++aVKSko0dOhQ720ul0sff/yxnnjiCZWXl8vpdEY8R3x8vH7yk59oy5YtYY9JTExUYmJio40bAAAAAICmErOQPmrUKK1bt87vtiuuuELHHXecbr311loDuuQJ9evWrdNZZ53VVMMEAAAAAKDZxCykJycn64QTTvC7rUOHDurSpYv39smTJys7O9u7Zv3ee+/VKaecor59++rAgQN66KGHVFBQoGnTpjX7+AEAAAAAaGy22Cc9nG3btsnhqFk2v3//fl111VXatWuX0tLSNGzYMK1cuVIDBw6M4SgBAAAAAGgchmmaZqwH0ZzKysqUmpqqe7/ZqKTk5FgPBwAAAADQyh07eFD3DBmg0tJSpaSkRDw25vukAwAAAAAAD0I6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJuw9RZsAAAAaFr5+fmxHkJYeXl5sR4CADQ7QjoAAEAblZ+fr6r95Tp//4FYDyXIm2mdlK98gjqANoeQDgAA0MZY1fMJPxarbHexctplx3ZAIYzavVHL+w9QvvIlUVUH0HYQ0gEAANoQ3+p5zqE4VeyTitxLYz2sIP0cA6VNG5WSnkFVHUCbQkgHAABoAwKr5xn7pCL3tyo6VKT0Lu1jO7gQ1u5dpsEarYR2cX5VdYI6gNaOkA4AANDKhaqery1bpvQu7VV+RHp5aN9YDzHIacvXam3ZMmW5s/yr6vvLFZeWSFgH0GoR0gEAAFopq3petb9cozZtVE67bBUVLlXRoSKVO2rC+dCUi2M4ytA+GeX5c9KaLVTVAbQphHQAAACbaOzt0KzqednuYvXbJ31R9oK3ev7JqMG2DOcWa2wvD30lbFX97Tqcj0APoKUgpAMAANhAU2yHZnVuL9rzrda2gOp5KENTLtYnozzT3ysTD/hV1Ud+vlYp6Rm1nsNqPCcR1gHYHyEdAAAghppyOzSrc3tl4oEWUT0PZ2jKxTp8/sV6uSy4qp7Qrvb/nP3DoUMq3H+ALvEAWgRCOgAAQIxY1XNrvXhjb4dmdW5vadXzcEJV1bPcWVHdNydnDHuvA2gRCOkAAADNLLB63q86nDf2dmhW5/aWHs59WUFdqgnr0SgqXMre6wBaBEI6AABAM2ru7dBaU0C3WM/JCuvROG35WhW5i5TlzlJWu2yq6gBsi5AOAADQQHXpyt4St0Ozq7q8Vr7T5MNV1aNBmAfQ1AjpAAAA9eS7D3m0Xdmt6nlL2g6tNfCdJh9q7/VousRL0pv7yxWXlkhYB9BkCOkAAAD14DttvS5d2amex06kvdej6RIvyW+aPEEdQFMgpAMAANSBb/W8Pl3ZW/p2aK1BqKp6tF3ifafJv119G2EdQGMipAMAAEQpsHpe167s2/cf0SfDB0uieh5rgVX1aLvE+06Tn/BjMV3iATQ6QjoAAEAUQu1pbnVlX1YdvKNBOLcX36p6NHynyWc4BmpU52Kq6gAaFSEdAAAggkh7mlvrygneLVt9u8RTVQfQFByxHgAAAIBdWdXzkZ+vVc6hOPWrrp5XJh5QuaPlrSt3u1rGOe3MU3kfrJeH9lW5w/P7UFS4VDmH4jRq00ZV7S9Xfn5+nbblAwBfVNIBAAACRFs9HxrbYUatpDBez83JUvG2RGX0LNcVs4rULafSdudsKawLM75V9S++e0GDU0YH7b1OVR1AXVFJBwAA8GFVzyf8WNwqqueS9NycLO3eniBJ2r09Qc/Nia6TeXOfs6UJVVVP2/MtVXUADUIlHQAAQMHV84x9UpH72xa/p7nbJRVvS6z53m2oeFui3C7J4bTPOVuqUFX1osKlflu1UVUHUBeEdAAA0Ob5bq2WcyjOr3N7S9/T3OGUMnqWa/f2BLndhhwOU+k9KhoUppvinA0V6wsEvl3iT1u+VkXuIm9TuVG7N2p5/wHKV74kOsADiIzp7gAAoM2ypiJ7t1Y7FKeiwqVaW7bMWz1vyQHdcsWsIqX3qJAkpfeo0BWzimx5zvooKYzXA9NydfO4/npgWq5KCuNjMg7JE9StKfDlDmln/EpPVX2fNGrTRk34sdg7BR4AwjFM0zRjPYjmVFZWptTUVN37zUYlJSfHejgAACBGfKvnVnM4q3q+ff+RVhHOAzVFtTnWFewHpuUGVfRvXVQQuwFVW1P2iiRp0pot2r33iAanjFZCdrY2HN2h5f0HKC4tkYo60IYcO3hQ9wwZoNLSUqWkpEQ8lunuAACgTbGqmN7qebtsFe35Vmtb+NrzaDQkTIcL47Ge4m7XtfHW78/LQ1/RacvXam3ZMmW5s/zXqu8vJ6wDCEJIBwAAbUao6nmRe6mnc3sLX3veVOy81Zod18YH8l2rPmnNFq3duyzkWnWCOgALa9IBAECrF2rtue/Waq1l7XlTsPtWa3ZZGx+JtVbdd6u2wLXqbNUGwEIlHQAAtGoRq+fV09sJ56HZeTq5pVtOpW5dVGCrMYVjVdWtrdp8q+ojP19LVR2AJEI6AABoxfyq5+2y/bZWa81rzxuLHaaTRxu+7R7QLYFbtYVaq/529bGEdaBtIqQDAIBWKT8/XxN+LJYkT3O4wqWS5A3ohPPoXDGryLsmPb1Hhabc3TzTye28Fr6hrN+9T0Z51qlX6oD2lH+rQe3GSIekCT8W6+3eGTEeJYBYYU06AABo1Yb3/In37yfl9lP+hSfHcDQt256ieD14Va9m2Y/c7mvhG4vv72NpVmkMRwLALgjpAAAACMs3LLuqDElNH5qttfBut+fxfNfCA0BrR0gHAABASIFhWao9NFu3NSRQ7ymKlzPO7f3eMExl9CxvMevOAaAhWJMOAACAkAIbx0mmpNAN5HzXkDvj3HJVOeq9lvy5OVk+FwYkh9PUFbOKGtTBvSV0fwcAiUo6AAAAIvDdh9wZZ0oKvR95bdPio6msu1011XvTJ6S7qhx6bk6Wbh7Xv87r4UsK4/XAtNx63RcAYoFKOgAAaNW2f7vO+/fVu1ZLonFcNNwuz7RzqzreLadcV84uUtesyqCKdOB+6oHT4udPzVVJYegu7YGPk9GzXF26V2h/cbx32zfDYQY1kYt2b/RQDehuXVTQ4Nensaz6Ya/ywvwsP58904G2iJAOAABalfz8fEmebazKdherYp+0x/2tig4VqfyIJxRJTH8OJ3DautvlXxUPFXAjTYs3HKb27AgOyZEeJy2jUuk9KlS8LVFdsytUUlhzASCa4O89NuDige9aeju890NTLtaasle0ff8R9UiTDn/+H7VzDFRZZ2mCpDfTOilfBHWgrWG6OwAAaDXy8/NVtb9cE34sVs6hOPXbJ60tW6bKxAMqd0ifjBqsHqX/paV/vIXpzwGsqeb+09YdMk1PeDZNT8DdVRD69Zpyd+hp8a4qR8gu7eEex+02tHdngmYuKNDD723Sbc8UeJrGOTzndDhMOePcQcE/FOvige99G9qArrE7zA9NuVifjBqsl4f21dYjRVpbtkxpe75VzqE4jdq0UVX7y5Wfn++9+ASg9TNM0zRjPYjmVFZWptTUVN37zUYlJSfHejgAAKARWAGman+5Rm3aqEHtslVUuNRTPa8O55InED0wLddb8bUaoNlh+nOsqrslhfFaeFe29u5MiOJoUxk9/V8v34p4Rs9yTbm7SJm5ld7n47kQkuAN4Q6nW53Sq7RvV+jHC/WeBD6G/9R6j4ff2xTy9Qu8b30a2TXmeSJZU/aKTlu+Vj3S2iu+vJO6OgZqc2cpJT1Db6Z1UlxaIlV1oIU6dvCg7hkyQKWlpUpJSYl4LCEdAAC0aFb1/Pz9B5RzKE4VO3ZobdkypXdpr+37j+iTUYM1NOViSZ4gfPO4/kHnCBfwmkNzhL9IHpiWq+JtCbLWkXumqsvn+2C3LNyqzNxK7/0DL3rMXFDgfT1LCuP10PRcuapCTeA0Ax7X8Av6gXYVxOuFuVnVId2/03xtF1oaehGkuS7urCl7RZI0ac0W7d57RINTRishO1sbju7Q8v4DFJfmuUBBWAdalrqEdKa7AwCAFsmaAmxVz3MOxamocKnWli1TuUN6eWhfv4AuNc3052hEmiIdqrFZc42hZs22byA3FCmgS6ZemFvTsd13H3VrOvvN4/pXrxmPV+eMyjAB3Xqs4L8/eFWvkEsRXphb81pZQnWaD6WhU9xDPc/GnvoueWZ7DE25WC8P7atyh2e5RlHhUvXbJ43atFETfiz2ToEH0DoR0gEAQIvju/Z81KaN6rdPKipc6rf23Ao7gXy3FIs24NVXbdt/NUf4izQG66JFTfVckjxrviVV/xk46dK/+VpGz3LJ8L+/53ETNX9qnm45u7/3fKGZPn8Gd3G3BL5WVqifuaAg6pkH9X1dY3Fxx1qrvmzMYFUmHtDasmXqt09Ba9UBtD6EdAAA0KJYwcSa3j6oXbb2uL9VZeIB5V94clD1PFC3nErdusjTlOzWRdEHvPqorUreHOEv0hjcLs9Fiy7da14Dh9P0dlr3r4DXhOku3SvkcHouAFRVGpIZuiLuuxVbcNgPPN5TwQ93wSLa1ypUEG+MvdKb8+KOxbeqnt6lvWeXgsKlGtQuW+fvP6ALdIygDrRChHQAANDiXKBj3r+XZpXW6xzNMcU9mip5NOGvqqJ+Y6g4GnoMuwpqQutzc7I08boSdcsprx53Tad1D0MOZ3Al3FprHk3DOdMdPIXe00Cuwhu6rUq6z72CQnik1ypSEG+MJQXNeXEnnJNy+zX7YwJofuyTDgAAUA+1NSIL3DvcajYWeB8r/IU633er2+vZWVlyVTnkjHPryjlFOv5nR2od03er2+uZe7Lkdjnk2wjOGoPv2u7d2xP07Kys6iAt+Tdzs87rW9fxbJH2TPW4IrPO5duMrvo205AzTj77oAeugzc05W7/EG412OuWE9xgL1QQt17Xxtwr3Q77qwNo3aikAwAA1EFdpk7XZYp0qPDnCejW1HNDz84KXQH2HdP9U/K08M7sgGAt7xim3F0UVF333cs8fNM40+/P3duDt0Gzfm5V3q390v2b0fnvh15S6Olq36V7TVXdMDxVdN8O774hfM+OyOvVA4N4fZcU1HcGAwA0BJV0AACAOghXsQ0lUpU8kpLC+BCVakOuKkNFW+OV1avS71jfLc727oxXqHXh6T1qqs+BFX7DYcp0Gz5rx33/DCfw59YWap6LEW639Py9WSopTJTD6a5e5x54fs/4ircleNbCV4fszpmVfhc0aquG1zZr4YpZRd4qfDTryes6gwEAGhOVdAAAgCjVtxt7NM3NfD03J0t7i6y13v7rtP/vfv8K8rOzg8N8KL7V58AK/8TrSmQ4gru4h/4+dMX9loX5mv/3TZq5oEBut/TI73Orp7HL24gu+Hw157Iq/4ZhKi7eDFrz7VsNtyrt0a5Xr+t68mhnMABAU6CSDgAAWpzyH2uaxR3+/D/ev6/6YW+TPm6068zD8V1XndEzeF21FFw1DqyKW43fXpibFXCcr+AquGnWXFDomlWpmQsKvM/pgWm5crmime4eXGl3OEyldKnUI7/PrfN+6CEfxWece4pqXq9O6ZUyqx/TNA2VH3WopDBeXbMq5XBGN2sh2inuoWYwVFVIcbX3yGtSq3etVrw6eb8v/7FU6p0UuwEBaBJU0gEAQIth7Y9etrtYOYfiVLFjh4oOFaky8YBeHtpXkiJuv9YYGrIVV21dxkOtofbtem6tp/Zt/BbYFd3hdPttqearc2aF5l2Zp5vH9dfN4/pr3pV52lUQ7wn7ZuTwHK6Cnt6jQmX74ryV5/DCbcHmz3fN+HNzslRS6HmeB3bH+TS383z/0PTg3gC+Qdx3xkK0e6THJQTuD+/ZNz7WAf3loX21ff8RFR0qUlHhUmVsLFbZ7mLvfulsxQa0HoZpmtH9i9lKlJWVKTU1Vfd+s1FJycmxHg4AAIiCFUAm/OgJJv32ybNn9KEilTtU697oTaGu68zdLunmcf2Dbn/4vU1+FWNnnNu7FtpV5VCX7p4LAnt3JiijZ7n+69YiPXJtr5CP0S2nXFfO9lTn50/N1e4dCX7B1nNO32nmpjJ6es5fl6q8r/l/36Tbzg1+XrULfd7OmRX63f075HZLD14V+nkGsmY0WL0BfGcsBL5+V8wq8lbfw7HrmvQ1Za/otOVr1SOtvXbvPaLBKaOVkJ2two5VejOtk+LSEpWXlxfrYQII4djBg7pnyACVlpYqJSUl4rFMdwcAALZmVc9HbdqonHbZqtgnrS1bpvQu7VV+JDYBXar7VlyRpsr7Vth910I7nG5vuLzgD7v05pPdqgO6WT3jvOY8Nz1Z4FftvXJ2TbM0KxAHT0f3TC2/ZeFWPXx1bsiO8L6BPlSo3rMrXHd73+NDbMEWhrUe/YFpuRHO4S+wkZzv6+lppOdRUpjgbbIXbrmBJB3/syN66N0ttpji7mtoysX6ZJTn76ctX6u1ZcuU5c5STs4Yjdq9Ucv7D1C+8iWJsA60YEx3BwAAtmRN4Z3wY7FGbdqofvukosKlWlu2TOUOz/Tfw+ffH5OAXl+BU+Wn3F0U1IwuVDO13dsT9NpjGf5Tyqsza1pGpaoqDd1ytv+07245lT77jIdfZ+6Mc+uFuVlhAnqNbjkV3vv43v9/r80NebzD53SGw1SHTlVBzy+UksJEVVVYlf3Atezhn4c1RT706+n5u2nWXKgItdwgkBXQo50q3xyGplxcHdYHq9whVSYe0BffvaB++6RRmzZqwo81U+ABtEyEdAAAYDtW9XzCj5615/2qq+eViQdiNr29MVjNzW5ZuFWSZzr3Q9Nz/fYID8UTOAP3Gjc0/++bFBdvan+xJ5gHBs8X5mYp8lpwT2gtLgy9vr2GqZLCRKVlVCgwOIdrFud2+9zbbejwgXgFBnz/P2u6tu8rjq9eFx4tQ7+9w3NBItKafv/x1d6Z33f/ed8LIHZgBfWXh/ZVucPz+Ujb861yDsVp1KaNrFUHWjCmuwMAANuwAoU1vT1jn1Tks/a8uZrDNRVrOrZv47fibQmSDE8odQdOB4803dvUvpL4sPuHe84dap15iOnmZuTqtnW752JA+Gnn/ucP1dE9+DaHU0pOq1DpngR1y6nw7mkeetu2cI8nZfX2TFsvKYxX+VHDW0l3OE2ldK7Sgd0Jcsa55XYbMqPszB+q0Z+17t0OrM/BJ6M8098rEw+oqHCp+jkGSps2KiU9Q2+mdVK+8pn+DrQghHQAAGArE34s1vCeP9H2dodU5F6qk3L7qXKXp3t7Sw3nvo3MuuWUe/cP96jec91lKKVLpcr2xgf9LPjvHi/MzQq7zt3t8l8DHzo8B6otgEcTnA117FSpQwfiojjelNtlKKm9qekLtyoztzLEFnS1P54k7SqIV2ZupZ6dnaUDu2teQ7fLoYP743TLwq1yOOR9H2rrzB84jsB173ZirVUf3qeL8l79XHvKv9WgdmPUo+eJ0rav9HZaRqyHCKAOCOkAAABNzLciu2eHp6Jrug2fddOe9dKegB65sVqNmqZvz9yTrb07PWG8/Kih+6fkae/OBHXpXqFO3Sq1b1dClOdsDKYOBU1tD8czpuJtCXrmnmzd+UK+HE6pS/eK6oZv4RrNBc8qeOaebMXFmwEXQDxcVQ49f2+WbnumwG8v9UhT3SM1+gOApsSadAAAgCYU2MjM7fas47YayPnuge4RaRq5//cZPcuVmVupuHhThuH5+YHd8d6O5vuL4xWfYIZYox1ObZX2aESaOh/usQ3t3ZmgDZ+3DxOcA+8XPJ1+786EgL3j/ZUU1iwD2FMU3VrzwEZ/kSrvANBYCOkAAABNKLCRmcNhqltOubeBnLVPeXqPiuo9vcMHWV/OOFPnTN/tvQhg+q0rr7kgULwtUWdftdvnokBdQ3g0FfHoZPSskOFwhz3nM3dn6+Zx/bV3p2/l339f99Bj8/wZ3CHf/7iHpudqV0F8yLXmoXTN8jT6e/i9Tbp1UUHI7doAoLER0gEAAJqYb0XWcHimZD8wLVcOhzRzQU0InHrvDkUbot1uQ/9YkO69CGBV0oO7mZt6Z2G6Zi6ob8OzhlbWTXXpXqGH39ukmQsKZLodEc5p+N2v9rGEDuWGw/OY3XLK/W4v3pagB6/qFTSzIbDLe2BX9z1F0XV1b+yt2uy09RuA5kNIBwAAaGLW1msZPctlVofDku0Jemi6JwhaFd7M3MqAqenhmdXhsmhrvCorDG8lPbVrpQKnglshNKNnuRqzMl7LCL2PL0kb17TXQ9ND76keWl0uDvhfmHA4TF113w7d8rR1YSIwzNcc73DU7LFuibbSbmnsrdrsvPUbgKZHSAcAAGgGuwri/Sq4prtmj3GrwvvAtFydM71marrDGX5quOXh6b2qG8NJnqZtcd6/S56qsjPOrVvO7l9dEa7b1mb1ldy5Skb1xYa9OxO08M7s6u3mmoL/GnVXlUNdsypVlB8u3NYcH7jWPFQPgdr2U69rqK9NY58PQMtCd3cAAIBm8MLcLIXv3F5dXS9M0D8WpOvWRQXaVRCvB6/KC3N8OIZcVf7HOxym97bAnwUL10m97uvYD+4LDMhN0V3eGltN1d7hMJWWUal5V+ZVr20PPt7q1D5zQUFQt/a6dnVv7K3aWtLWbwCaBpV0AACAJlYTvAKCquFfrTbNmkD2/L1ZwcfXiRXMfdeA13a+UPuy12cMjRHIo+1Gb/1ZU/k+sDvO2+E+1PGGw9N0L1zojaaru1VZD9UYMHD6fF009vkAtDyEdAAAgCbmcErdcmqCl2F4Gptl5PhvwyZ5pqZLCrnfd+1812ab1dPlm0pTrm33rd77VsoDjzFDfu9/YSKYq8rTdE+qCdu+09mtHgK+Xd2tn4daL97YW7Wx9RvQtjHdHQAAoAmVFHq2/CopTPQEcLehbjme4NU1q1I3j+sv30DqqjJUsj1ezji3d826hynDIW/judD8f+Z2NaQeU9s096aYvh7uccMtETBrOSYcz4yF+VNzve+Lq8qhjJ7lumJWkXerNYez5v0r3paojJ7lqqo0tL/YU6W31ovfuqhAty4qiHpKem3HWRcJmOIOtE1U0gEAAJqQbxMw020oo2e5357b/tunSc44txbdne2z57engVyX7pU+MTSwihxKQ0N0U4Xwhjxu4HOuSxM8/6q7M86tPTs874u1Vt+3SZtVOfd9/0oKE7R3Z0LYpnK1Beq6dm0noANtE5V0AACAJhKuCdiugni9MNdTne3SvUIOp39zt5pu7dZ5HAFN0JojQNevYVzdgnP0x6ZlVGp/cX27wwdX5v2b6PmH7gem5Xor577vn7XNncNhRtVULlCoru23Lqrv/vUAWivbVNLnz58vwzB0ww03RDzu1Vdf1XHHHaekpCSdeOKJevfdd5tngAAAAHUUrgnYC3Nrwtq+XfEB09p99/JWwN+ba49z33E01X1CH+twhnqOhk9AD/x5Xb/3eSyH/+vqqN6uzjdIO+Pcfu9fl+4V9VovXp+t3QC0TbYI6atXr9aCBQs0ePDgiMetXLlSkyZN0tSpU/XVV1/pvPPO03nnnaf169c300gBAADqJrAJ2JS7i/z3S6+uzhpGpKncDem0Ho5vQA11QSDw703N81huV6jnWFuH90hr08Nf9LD2cXfGef7sml0hV5XDL0i7qhzqml3z/l11346gpnKWSIGbru0AohXz6e6HDh3SZZddpoULF+q+++6LeOyjjz6qM888UzNnzpQkzZ07V0uXLtUTTzyhv/zlLyHvU15ervLycu/3ZWVljTd4AADQptSnkVeoJmCB+3CnZVQqLt6snlrtu/d3uFBesy943aelW8eHC/6hLg7Udq7GEGl/9trGZKhbTrkuv6dIj/w+N2BmQqj7VV8g8ekRYL0/D0zLDdojPfD9C/w9CGwu59t8ztcVs4q8x9G1HUA4Ma+kX3vttRo/frxGjx5d67GrVq0KOm7s2LFatWpV2PvMmzdPqamp3q+cnJwGjxkAALQtdW34VZspd/tX163q7C0Ltyqjp+d2q7rr4T8tO6NnhW57Jl9ds8tV95AcWFmuX7XccLhl1DufR/OY4S9QhNparqQwUc/fmxWmEh/6cX2nnFuhO9z2Z1an91C/B6HWmocSams3AAgU00r6kiVLtGbNGq1evTqq43ft2qWMjAy/2zIyMrRr166w97n99tv1xz/+0ft9WVkZQR0AANRJQxp++VZZu3T3hL+9OxOU0bNctyzcqszcmqCWmVtTdZekku3xevjqXL+t1DpneoLjs7OztGdHNHuph6t2N2wKvemOttYTzcyAujB0xewden5OlrdibjhMdetR4dfkLdx9A8eW0dO/8Vuk7c9C/R7MXFAQsjlgpFkXTHEHEEnMQnphYaFmzJihpUuXKikpqckeJzExUYmJ0fwfGAAAQLBwHdqjnfruG+z27qypwO/enqAX5gaHfd9Q74xzB+x17un87gnovo3U6rOfuW94DjwumkAd6n6RHr8u0+gje/2xDF05p0hvPNFNe3cmyHQb2r3Dem1DXRQIf6Fiyt2hp5w7nAqa4h7q90AKXr5Ql47vABAoZtPdv/zyS5WUlGjo0KGKi4tTXFycVqxYoccee0xxcXFyuYI7b2RmZqq4uNjvtuLiYmVmZjbXsAEAQBvTkIZfgR29fdeCh+ruXVIYrweuyvWGv1BrqztnVqikMPCc0QjXmM53fXrgzyIJdb+m4j/2A7vj9ewsz5Ryq+FezTT3SBcFaprkWe+j70wGS6hp7ZF+D66YVaS0DM953G5DVZVGg5dEAGi7YhbSR40apXXr1unrr7/2fv30pz/VZZddpq+//lpOZ/D/8w0fPlzLly/3u23p0qUaPnx4cw0bAAC0QeHWKdcmMNj5hk3D8A/7JYXxemh6bi3TyE0Zhuecwd3gg48Nvfa7odu5VXdGr/XxG0P4ar2ryrN3vNUdP3TjuUA1FxYMh6lzpu8O+ajh1piH+z3oluNp/Ge9JvuL48OuSweA2sRsuntycrJOOOEEv9s6dOigLl26eG+fPHmysrOzNW/ePEnSjBkzNHLkSD3yyCMaP368lixZoi+++EJPP/10s48fAAC0HZHWKdfGt6O3L4fT9Av7z/mssQ7P0N6dCZo6d3v1muxIa73DVccD/6zrWnHPsWkZlSrdE1c9hqaqqDfkvJ77OuPcAWP0PF9XlaE3nuimO1/I97tXpOUN4X4PGrokAgB8RV1JLypq/i0itm3bpp07d3q/HzFihF566SU9/fTTGjJkiF577TW99dZbQWEfAACgKdQncHXLqdTMBda685rQ6apyqGtW9RTpgJAXrKb67Yxz652F6dXB0/+c/sdHW+muXxA+sDuu+qJCXe9flxkAkar+tT1H07Mt26wihdtzfu/OBL/lBlao7pYTeXlD4O8Be6ADaExRV9IHDRqkP//5z7r00kubbDAfffRRxO8l6cILL9SFF17YZGMAAABobFaIC9dczPp5+KBeEyxdVUY9upg3PrfLIYczsLGdr2gq/KGOCb6PM86Uq8qQ4XD7LAeI/BwdTlPnXr1b/1iQHmEsHoHN+lxVDjnj3JLbiHp5A3ugA2gsUVfS77//fk2fPl0XXnih9u3b15RjAgAAaJHcwX1vvUKtZ/Y9/opZRZ5g6CdcRTlUtTnwfoH7rDf+GvLwAV2Kvvlc7T+3muSZ7mjOWf08TUN//0t69QWN0LMNunT3XChZeFe2ird51qBbMxRMt6GMnuVR72fOHugAGkvUIf2aa67R2rVrtXfvXg0cOFBvv/12U44LAADAtgLDeKhu4IF8Q5xVdfU93poW3y2nXJLkcPoG9lDryT1/79K9UsmdAwNhfTu2+4pmWno0xzX0cXzDefTB3+02VFKYKIfT7dPkzvReCMnoWaGr7tsht8uzb33gaxyq+340mOIOoKHq1DiuV69e+uCDD/TEE09o4sSJOv744xUX53+KNWvWNOoAAQAA7MJ3WnRGz3JdMatI3XIqQ3YDD9z/3OJweprElRQGH98tp1K3PO1pTHbL2f1rHU96j3Lt3u4ZS0JihfYXx3un07vdodZh10V99j+XgvcpjzTVPLqmdYZh+nRxr+08/ud0uwzvdPmMnp4ZDF2zKr1huqoi/DkzerLfOYDmV+fu7gUFBXrjjTeUlpamc889NyikAwAAtFahwvjMBQV16uy9qyA+5PG7CuL1wtyaddEe4QKvKYfT1J4dNWNJy6hUeo8K75ro8qOGDuyOV/PtZR6otsc1ddsz+Z4LFtsTwkxl9zxfh9MM2cneWj8eujFczfeuKkPz/75JCe1qbvW94BJ6bb2hKXezrhxA86tTwl64cKFuuukmjR49Whs2bFB6enpTjQsAAMBWwm2zJUVuChfohblZCqz8ZvSs0Atzay4A1HRut/hXrTtnVmrfrgS/sezdmaCMnuUB94m2+hzqZ4rwc9/7B54n2mn2hv5yWw9Jpjegd+leofOuKdHbT6erpLDmtbbWh/s2Z/P93nrtQ4/JlDPO1G3n9g87+8F0h74A4Ih6YSgANJ6o/+k588wzdeutt+qJJ57QG2+8QUAHAABtSqRttkI1hQulJuj7h9rf3lnkqb4Hrb32ncLt+dPhdCs+IbgxnDPO7Q2dJYUJ1VX0SCIF8Gj2Pg81zb1uDuyO847TWjfuH9AD1ocH9tWT/2sfijXVXaqZ/WC9D96GdKbn+fr2AXC7DD03J6vOzwkAGirqkO5yubR27VpNnjy5KccDAABgO1bzsHBhPNrO3oFB3zA8QT+rV6Xf7cGBtya0u12OkEHfVeUICJ3hRNvpPdq9yevS1C1QzcUA0/TMBqgJ6DWPZV0Q8Z1tYAXubjmVuvHxwH3oPX/OeHSr33T4wNkPgRdcfKe8m2b9GscBQENFHdKXLl2qHj16NOVYAAAAbCWwa7ukiGE8miZjU+4uUlqG536maaiq0lBJYXxARTjSNPTgoOyMc6tL94qg20OLpkoebgyBe5w3VKSt5GrGmd6jQlPu9p9tYAXuB6bl6rZz+4c4l6lHZ/RS4IwDa9u1UBdcuuWEnikBAM2Jrm8AAMBW3u6dIf34lcqOFqufY6C+LvhWSpROW75Wn4yShqZc3GxjCde1vT7BzbdRmTPOLcPhWYu9vzjee95bF3k6uz80PddnnbWv0OE6eJp8U7DWbDfmY9XWgd7zmFWVhp65J9vvNofDlOEwve+PYUhmyOsG/o9hHWPNfnC7pD1F8dUd96ub9rkNdc0Ov2yhocI1FQQAqQ6VdAAAgKaWl5cnyRPUl/cfoM2dpaycMepeOUKJbk9QX1P2itaUvdLkYwlct1zffbMtvoHfVeXwNksLPG9gldfT6T1y1dqsbhznv7e696cKrCaHPiYajVE996jpYB+J5zXauzNBe3f6r7Hvml0RYoq/of9+Y5MizRbYtyvB+1pbYXnhXdkq3lbTtM8Z51ZJYWJ1cK9tbX/0AmdmNOa5AbQehHQAAGAreXl5ysvLU1xaopb3H6DCjlXa3FkanDJavdpnadKaLd6wXpuGrCeO1CiurgIDv9/jhDiv7xr3G/9coGi2M3PGueV2hTjO8P6P7w2hDqpFtNPka8YU6e/BHeyjefyaPy+/p8gv6BvVr6PvNmtBZ6juAbCnqCYsz5+aq707E/zO71nHXjN7orGEmpkBAIEI6QAAwJasoB5YVY8v71RrVb2xKpbRdm2vTaiGcVbADDyvdWGhpDBe867M08PTe1X/JFIV2wixX3j1fcI2kYu2gVyIRzNCr42XPGE5cpU8/HR5h9MMMxvAl+cxH7wqzxumJc9sguJtiZp3ZZ46pfuuzzdlODzn7JZT4bdtmyTvXvOhNHT2hN+5GnlmBoDWizXpAADAtqzp7/nK1/L+A5Sy/4Bycsao644dWlu2TJPWbNH2/UeC1qqHW0teV77rlgMr6HVdV+y7x7cVFjtnVCquOiP6rlnP6FmuqkojaIp3OBk9y2Wa8ttb3CP8Ou/wP6+daZoKV+txOEy/8Gw9zoPvbNLt5/WtrqCH3tPc7ZZk1lZDijz2vTvj1aV7pTJ6VlS/lp7XumtWpRzO0PvdVz8rn3PWrHuPtOd9XVgXaqxeA415bgCtCyEdAADYXl5envKVr7fTMlS1v1yjjko/zZ6iosKlSnQf8TaVk6STOlwcFMKsimV9A5Hv/QLDtKcreOgt13yFalTme47ACwvhm8b5hknP2m6rEj9/ap5qD94NCeimnHGehneh9iyXPOvtHU63dzszw2GqW3UY9Q/vIcZhBj5HM/iYWnnW5z/83iZJwe95qLCcllFZPeXdf2xpGZWN2jzO90JNQ2ZmAGjdmO4OAABaBN+16inpGSrsWKWsnDHK6pilRLc0ac0WSdLXh19ptLXkoURaVxzN1GWHM/gcz87OCpoK7RFqOnpNYO2WU169Zl3V4/ANtvWfzl4j+P6+zdpCHe8J6DU/NwxTV8wq0p6i+FqbxTkcgdPd67oO3jMG6/0O954HLmO46r4dyuhZrsDnu3dnghbeld1oDd58ew2E2sKvofJe/Vy79x7xfr9q21eNen4AzYOQDgAAWpzE3qnev3c4+efK6ugJysP7dJHUeGvJA4VbV7yrIPo18KHOUVKYGLRm3SN8o7mpc7dr7854PTy9l+ZPzfN2Jzccql6DbcjhrC2k1/bzSNX8YJ0zK6sr6DX3c7sc6ppVqefmZAU0tqu5mGAF8/QeFUH3r53/WLp0r736HSosT7m7KOTj7t0ZH9TgraHryBtzirvVl2HSmi3avfeIBqeMVlbOGG04ukNvpnXS270zvMtGALQMTHcHAACtTqS15A0Rbl3xC3OjXwMf7hyBa9Z377C2CvOf9m0d+9D0XJ8O6TXh0rO1W/UFgFDd3r3jcGvqvUVadHeWTHdd6zbBDeq65VTo5qcKdMvZ/YOO3rUt3m8Jgu85rDXj1vr8B6b57hHvP7U/0lgyepZryt1FyswNX50O/H3w/XtmbqW65ZSHXNdvLZcItUyhsavhdbGm7BWdtnyteqS1V3x5Jw1OGaHNnaWUjlVanjNAcWmJBHSgBSKkAwCAVqspmnIFriuecneRHryql/fn0ayBD7U22ffCgiTdPM437HqC6IPvbFJcglRVEbi+O5zwAdftcugfC9LrEdClwKZvXbpXylVlVAf0wGBt6v/uz1Kn9Aod2B3vvV+n9Erd9df8oOB7zvTd+vtf0qvDcu1bz2X0rNDMBQUR3+to+whcOdu6+OH7mngeI9Qyhfo2JGwoa0eD05avVaJbii/v5K2eL+/vCedxEgEdaKEI6QAAAHUQqkpf167dkSr9VgfyUKxj4xI8DeNqOqXXRU1Vfvf2BDnj3NWN4KKpXAf+3FCX7p5lBfuLw03xN6qr6P73Pbg/Lij4lmxP0LOzsqpDcnDYDzX93jNNvUao1zTacN0tp1IzFxRo4V3Z3kZy1vT5UF3hG9qQsD78qufts9TVMVCbO0suqudAq0FIBwAAqAffYFbfrt3hwt2eoni/DumSqS7dK/2Ov3JOUXWg9YRrw5DMsHuie84R2IjN7TYktxFimnfgdmRSqCnukqH9xfEBjeSCj3PGBW7LZshVZajiqH/wNd2GXGGa0jmcZsjp+y/M9bzu1sWCvTsT/KrldQ3X3XIqdecL+d4LJb7HxHILNarnQNtB4zgAAIAGauyu3c/NyQoK3Ht3Jvg1pTv+Z0f00Ltb9OA7m3TbM/neRnn+jdT8O7x3zqwI2fn+lqetqnKo7dmMELf7rHuP2Inec2yoqfkOp1sJ7eQ3nsD7+XrwnS3VQbym4Zwzzu2tkO/dGe/dV754m6cru+dxVK9u/6G6wzdVQ8LaWNXzSWu2KNEtb3O4wo5V3oBu7X4AoOUjpAMAADSS+lZVfae3W5VfM0R12tquzdfmb9rroem5KilMlMPp1oU3FKtbTrnP/WqC9b5dCZpyd5E6dfNcRHC7DZUfNTTvyrzqY2qCrDPO7dNlPtyf1t9DVd49XeozepYro2e5z7k8x0y91xNwfYOvZ4s2/8BuncPhVPVWaZ5ju+VUBGwH5/9c9+5M8L6ujRWum3oLtUh6pLXXzzJ/pqyOWUrIzlZhxyol9k5lejvQCjHdHQAAIEZCNTTrmlXpN63al7Vd2wPTcr3TuWumvHu6ub/xRDc99O4WuV3SQ9Nz/aZnp2VU6oW5Wdq3K0FWsPY0c/NnOIKnp0uqnrYeuA4+1LZqHg6n6Q3Ez87OUklhorrllOvK2TWN23zX5+8pig/oWu9/jsC1/P6d4MNr7G7/zbkGHUDbQyUdAAAgRvyaphUm6KHpnr3WqyoNpWV4QmyoirbV/Kymy3tNBdlV5VBVhSdIBlaQrftax9b86T+d3VVlyBnn9psi3i2nXA+8vaWWZ+Qf4D2Vbs/ztPaC9w3ovhxOqWtWZdDUeFeVZ5/1wGOlSFV4U126B68XJ1wDaAkI6QAAADFgTWu3qsCmWbN2e39xvOLiTT383ibNXFDgs968Zh148bZEOZzB4dQZ51ZcdQ73nZ49c0GBZwp4LVVn63FcVQ51za4J+FfOLvKu7w6//tyXZyyh9pAPp67rxwOfnzUVPqNnha66b0cUYwQA+yGkAwAAxIDDKXXLCd00zQrhkieI3vZMQdjweuWcIjnjPLc740xdOSd4vbXVBM2/SVuo9eU1nHFuXTm7yLv+2qpmX3ZbkaLb9s0T9H0vRPh2Vg+nPuvHPa9l7NaLA0BjYk06AABAM7PWopcUJnoq4W7P9HK325AZZnuvcNu8WV3eqyrkraD78l2H7XsOa315zTpz/33I3W5Dz83JCriP22cPc1UfH3q7Nus5SGq0PeSjwZR2AC0dIR0AALQ4rylJE1SqDUd3aFBRtg5X35736udaNbRvTMcWDd+16Kbb8DaNi7TXem3hNTCgh2pKF67xWihmddX72dlZ2rPDc4zV0M2zJ7vnOGecqctn7dCAnxzR5m/aexvZGQ5T50zfrS6ZlQ3eQ76xGr61RNb2a0prr68LNqurY6D3Z68pKYYjA9BUCOkAAKBFycvLU35+vt7unaGqtE7Spo0alDNGFTt2aG3ZMk1as0UvD31FkjQ05eLYDjYEay269/vqMNw1K7oKcqifhbqP74UAay34rYsKvOfYVRDvNw6rGu5wmH5V71DHWHu4z//7JiW0q/npPxake7eOM92G/rEgXbcuKqhXZdzq9h7qQkNbYQX0RLcUX95JXR0DtbmzlNKxSm/3zpAktl8DWiFCOgAAaHGsYJKvfC3vP0Ap+w+orLM0WKO1p/xbTVqzRdv3H9Eno+wX1K214eGmgNclyIarloe7EOAblF+Ym6XAqepdulcqLt70q3pbYd+zrtxzvDVm34Be22NG+7x8n5O1BEAKvtDQmq0p81xkmrRmi3a7pcEpo5WQna0NR3doef8B7I0OtHI0jgMAAC1WXl6e4tIS9XbvDC3vP0CbO0tZOWMUX95JiW7ptOVrtabsFW/osYsrZhV5t1hzuw1VVRoqKQzer7w2oarlUu1d0msCtf9+51Pv3aGZC/ybr/lvc+Y5X6hp63XtzB7Nc3JVObyV+cCmc5Gaz7VkVvV89NK1ii/vpMEpo7W5s1TYsYqADrQRVNIBAECLFrKq3nWgBjsGao/7W/WwYVW9W46nYm0YpkzT0P7i+DpXiWurXEda4x5YzTcMU50zK/XC3OCqfOA69kjT1mtbV1/X5+TLqt631inw0VTP+xLOgTaBkA4AAFqFvLw85Stfb6f5rFVvN0ZFhUuV6D6i05av1SejPMfGOqxHMx29NrVNm6+t0dw503fr2VlZktuQw2nKVSXtLw69ht16PN8/Q2mMzuyBFw88Y3METb8PN86WyKqe90hrX109H+Fde748h+o50NYQ0gEAQKsRqqqekzNGXX2aytmhql5bwI5WNJXrcOcMbPJ2YHdNl/f6XDSI5jGj4fucuuV4nlPXrEpvFb+hFzfsJLB63r1yhBJy/KvncaI5HNDWENIBAECr41dV31+uUUdrmso1RVW9PiGxoVPDGyJU2JXknX4fzUWDwOfcWEE5UjW+sS5u2AHVcwDhENIBAECrFLKqfii7Uavq4bqrR6OhU8OlyNusRRIq7KZlBHd2DyXwOZ8zfbf+sSC90deIN9W691izque+W6tl5Yyheg7AyzBN04z1IJpTWVmZUlNTde83G5WUnBzr4QAAgGaQn58vSZrwY7HKdher3z5pj/tbFR0qUrlD+mTU4HoF9Qem5QZVdZtrfbTbJd08rn/Q7Q+/tymq0B9p+7ZI9w98zobDlOk2mv01aIlT3H2r57v3HvF2bk9Jz9CbaZ2ongOt2LGDB3XPkAEqLS1VSkpKxGOppAMAgFbPCj5vS35N5fyr6nfWKazHen10Q6d+h6vk1zbFPWiavNvw+765XoOWFNBDVc9/evyFVM8BhMQ+6QAAoM2w9lVfcfJgFXas0ubOnq2uAvdVj0Zj7QveEL57mNd36nddxhvqOTvj3DF9DezOqp5PWrNFidVbq2XljAna95yADsDCdHcAANAm5efne5rKbdqoQe2yVVFdVU/v0l4vD+0rqfa16g1Zk96YmnPqd3OtSW/pAqvnWR2z1NUx0Du9/e3eGZKongNtRV2muxPSAQBAm2UF9fP3H2jQWvWWuD66oZqqu3trEGrteUJ2tgo7VrH2HGijWJMOAAAQhby8PClPejs/P+xa9ZeHeiqikcJ6WwynobZHQ01At9ae+26t9nbvDNaeA6gVIR0AALR51r7q1lZtZZ1r9lVvjK3a0Pp5156ntdfu6rXnCdnZfs3hCOcAokFIBwAAUE1Qfzstw6+qXrFjh3a7l+m05Wv1ySjPsYR1+IpUPV8xeDDVcwB1QkgHAACoZgWpkFV197fqQVUdPqzmcJPWbKF6DqDRENIBAAAChKuqFxUuVaL7CFV1+FfPO2b5Vc+X5xDQAdQfIR0AACCEUFX1nBz/pnJU1dueaKrnTG8H0BCEdAAAgAj8qur7yzXqqPTT7ClU1dsg363VAteeUz0H0FgI6QAAALWgqt62WdVz3+ZwWTljqJ4DaBKEdAAAgCj5VtUn/Fjst1UbVfXWya963j5LXR0Dtbmz5KJ6DqCJENIBAADqwApkb0t+TeWoqrcuVM8BxAohHQAAoB6sqvqKkwcrJUJVnaDe8vhWz32bwxVSPQfQDAjpAAAA9RRNVf3loZ6KLGE9PLdLcjhjPYrQ1fOfHn+hp3qe05HqOYBmQUgHAABoIKuqbjWV862qj166VuUOUVUPoaQwXs/NyVLxtkRl9CzXFbOK1C2nMiZjoXoOwC4M0zTNWA+iOZWVlSk1NVX3frNRScnJsR4OAABoZfLz8z1btW3aqEHtslVRXVVP79Je2/cfieocn4wa3CYC/QPTcrV7e4LcbkMOh6n0HhW6dVFBo53ftzIejUS3lNWxpjlcSnqG3u6dIYnqOYCGOXbwoO4ZMkClpaVKSUmJeCyVdAAAgEYUqareq32nWu9fdKioTXSJd7uk4m2JNd+7DRVvS2y0qe9WZdwK3tHo6hiohOxsv+ZwhHMAzY2QDgAA0Mh8t2rzXasejdbSJb62sO1wShk9y4Mq6XUN6IGPY1XPJ63Z4jdtPRobju5QSscqrRg8mLXnAGKGkA4AANAErIDnW1WPRlln6afZU1RUuLRF7r1el3XmV8wq8h6b3qNCV8wqatDjbE99sWZP8/JOGpwywjNtvWNVVOdk7TkAO2BNOgAAQBPLz8+P+tiq/eU6f/8B5RyKC1rP3hLWqtdnnXl9prj7Po7hcCsla68enHCNEn2q577T1qNFQAfQFFiTDgAAYCN1CX7eafL7yzXqaOi91yV7VtXru868PlPcfR/HdDtUuj1dPZOylRF3vLd6TmUcQEtESAcAALCRUNPkcw5lh1yrbkepPa5WWVEXmW6Ht8L99eFXmvRxHIZLPTqXKCd3tF/1nHXlAFoiQjoAAIAN+Tafm/BjsV+X+ET3EU1asyXWQwzptPEP677X/6DCPdnq0Xmn7hr/mHqs2dWkj5PXuVTXT1mhwo5JVM8BtHisSQcAALC5UHuv73F/G+thReRyG3I6mv4/MzOyx+j7cv+15wR0AHbDmnQAAIBWxKqqrzh5sFKqq+rRbunW2hV2rNLyNKrnAFoPQjoAAEALYAXQtyVVpXWKeku31u7t3hmsPQfQqhDSAQAAWhDfteognANofQjpAAAALQzBFABaL0esBwAAAAAAADwI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADYR05D+1FNPafDgwUpJSVFKSoqGDx+u9957L+zxzz//vAzD8PtKSkpqxhEDAAAAANB04mL54D169ND8+fPVr18/maapF154Qeeee66++uorDRo0KOR9UlJStHHjRu/3hmE013ABAAAAAGhSMQ3pEyZM8Pv+/vvv11NPPaXPPvssbEg3DEOZmZnNMTwAAAAAAJqVbdaku1wuLVmyRIcPH9bw4cPDHnfo0CHl5uYqJydH5557rjZs2BDxvOXl5SorK/P7AgAAAADAjmIe0tetW6eOHTsqMTFRV199td58800NHDgw5LEDBgzQs88+q7///e968cUX5Xa7NWLECG3fvj3s+efNm6fU1FTvV05OTlM9FQAAAAAAGsQwTdOM5QAqKiq0bds2lZaW6rXXXtOiRYu0YsWKsEHdV2VlpY4//nhNmjRJc+fODXlMeXm5ysvLvd+XlZUpJydH936zUUnJyY32PAAAAAAACOXYwYO6Z8gAlZaWKiUlJeKxMV2TLkkJCQnq27evJGnYsGFavXq1Hn30US1YsKDW+8bHx+snP/mJtmzZEvaYxMREJSYmNtp4AQAAAABoKjGf7h7I7Xb7Vb4jcblcWrdunbp3797EowIAAAAAoOnFtJJ+++23a9y4cerZs6cOHjyol156SR999JHef/99SdLkyZOVnZ2tefPmSZLuvfdenXLKKerbt68OHDighx56SAUFBZo2bVosnwYAAAAAAI0ipiG9pKREkydP1s6dO5WamqrBgwfr/fff15gxYyRJ27Ztk8NRU+zfv3+/rrrqKu3atUtpaWkaNmyYVq5cGdX6dQAAAAAA7C7mjeOaW1lZmVJTU2kcBwAAAABoFnVpHGe7NekAAAAAALRVhHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsImYhvSnnnpKgwcPVkpKilJSUjR8+HC99957Ee/z6quv6rjjjlNSUpJOPPFEvfvuu800WgAAAAAAmlZMQ3qPHj00f/58ffnll/riiy/0q1/9Sueee642bNgQ8viVK1dq0qRJmjp1qr766iudd955Ou+887R+/fpmHjkAAAAAAI3PME3TjPUgfHXu3FkPPfSQpk6dGvSziy++WIcPH9Y777zjve2UU07RSSedpL/85S9Rnb+srEypqam695uNSkpObrRxAwAAAAAQyrGDB3XPkAEqLS1VSkpKxGNtsybd5XJpyZIlOnz4sIYPHx7ymFWrVmn06NF+t40dO1arVq0Ke97y8nKVlZX5fQEAAAAAYEcxD+nr1q1Tx44dlZiYqKuvvlpvvvmmBg4cGPLYXbt2KSMjw++2jIwM7dq1K+z5582bp9TUVO9XTk5Oo44fAAAAAIDGEvOQPmDAAH399df6/PPP9fvf/15TpkzRt99+22jnv/3221VaWur9KiwsbLRzAwAAAADQmOJiPYCEhAT17dtXkjRs2DCtXr1ajz76qBYsWBB0bGZmpoqLi/1uKy4uVmZmZtjzJyYmKjExsXEHDQAAAABAE4h5JT2Q2+1WeXl5yJ8NHz5cy5cv97tt6dKlYdewAwAAAADQksS0kn777bdr3Lhx6tmzpw4ePKiXXnpJH330kd5//31J0uTJk5Wdna158+ZJkmbMmKGRI0fqkUce0fjx47VkyRJ98cUXevrpp2P5NAAAAAAAaBQxDeklJSWaPHmydu7cqdTUVA0ePFjvv/++xowZI0natm2bHI6aYv+IESP00ksv6a677tIdd9yhfv366a233tIJJ5wQq6cAAAAAAECjsd0+6U2NfdIBAAAAAM2pRe6TDgAAAABAW0dIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYRFysB9DcTNOUJB07dCjGIwEAAAAAtAVW/rTyaCSGGc1Rrcj27duVk5MT62EAAAAAANqYwsJC9ejRI+IxbS6ku91uFRUVKTk5WYZhxHo4rVJZWZlycnJUWFiolJSUWA8HzYj3vm3j/W+7eO/bLt77tov3vu3iva8f0zR18OBBZWVlyeGIvOq8zU13dzgctV65QONISUnhg9tG8d63bbz/bRfvfdvFe9928d63Xbz3dZeamhrVcTSOAwAAAADAJgjpAAAAAADYBCEdjS4xMVGzZs1SYmJirIeCZsZ737bx/rddvPdtF+9928V733bx3je9Ntc4DgAAAAAAu6KSDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOmok3nz5ulnP/uZkpOT1a1bN5133nnauHFjrfd79dVXddxxxykpKUknnnii3n333WYYLRpTfd77559/XoZh+H0lJSU104jRmJ566ikNHjxYKSkpSklJ0fDhw/Xee+9FvA+f+9ahru89n/vWa/78+TIMQzfccEPE4/jstz7RvPd89luH2bNnB72Pxx13XMT78JlvfIR01MmKFSt07bXX6rPPPtPSpUtVWVmpX//61zp8+HDY+6xcuVKTJk3S1KlT9dVXX+m8887Teeedp/Xr1zfjyNFQ9XnvJSklJUU7d+70fhUUFDTTiNGYevToofnz5+vLL7/UF198oV/96lc699xztWHDhpDH87lvPer63kt87luj1atXa8GCBRo8eHDE4/jstz7RvvcSn/3WYtCgQX7v46effhr2WD7zTcQEGqCkpMSUZK5YsSLsMRdddJE5fvx4v9tOPvlkc/r06U09PDShaN775557zkxNTW2+QaFZpaWlmYsWLQr5Mz73rVuk957Pfetz8OBBs1+/fubSpUvNkSNHmjNmzAh7LJ/91qUu7z2f/dZh1qxZ5pAhQ6I+ns9806CSjgYpLS2VJHXu3DnsMatWrdLo0aP9bhs7dqxWrVrVpGND04rmvZekQ4cOKTc3Vzk5ObVW39AyuFwuLVmyRIcPH9bw4cNDHsPnvnWK5r2X+Ny3Ntdee63Gjx8f9JkOhc9+61KX917is99abN68WVlZWerdu7cuu+wybdu2LeyxfOabRlysB4CWy+1264YbbtCpp56qE044Iexxu3btUkZGht9tGRkZ2rVrV1MPEU0k2vd+wIABevbZZzV48GCVlpbq4Ycf1ogRI7Rhwwb16NGjGUeMxrBu3ToNHz5cx44dU8eOHfXmm29q4MCBIY/lc9+61OW953PfuixZskRr1qzR6tWrozqez37rUdf3ns9+63DyySfr+eef14ABA7Rz507NmTNHp512mtavX6/k5OSg4/nMNw1COurt2muv1fr16yOuU0HrFO17P3z4cL9q24gRI3T88cdrwYIFmjt3blMPE41swIAB+vrrr1VaWqrXXntNU6ZM0YoVK8KGNbQedXnv+dy3HoWFhZoxY4aWLl1KA7A2pj7vPZ/91mHcuHHevw8ePFgnn3yycnNz9be//U1Tp06N4cjaFkI66uW6667TO++8o48//rjWq6OZmZkqLi72u624uFiZmZlNOUQ0kbq894Hi4+P1k5/8RFu2bGmi0aEpJSQkqG/fvpKkYcOGafXq1Xr00Ue1YMGCoGP53LcudXnvA/G5b7m+/PJLlZSUaOjQod7bXC6XPv74Yz3xxBMqLy+X0+n0uw+f/dahPu99ID77rUOnTp3Uv3//sO8jn/mmwZp01Ilpmrruuuv05ptv6oMPPlCvXr1qvc/w4cO1fPlyv9uWLl0acT0j7Kc+730gl8uldevWqXv37k0wQjQ3t9ut8vLykD/jc9+6RXrvA/G5b7lGjRqldevW6euvv/Z+/fSnP9Vll12mr7/+OmRI47PfOtTnvQ/EZ791OHTokH744Yew7yOf+SYS6851aFl+//vfm6mpqeZHH31k7ty50/t15MgR7zG//e1vzdtuu837/b///W8zLi7OfPjhh83vvvvOnDVrlhkfH2+uW7cuFk8B9VSf937OnDnm+++/b/7www/ml19+aV5yySVmUlKSuWHDhlg8BTTAbbfdZq5YscLcunWruXbtWvO2224zDcMw//Wvf5mmyee+Navre8/nvnUL7PDNZ7/tqO2957PfOtx0003mRx99ZG7dutX897//bY4ePdrs2rWrWVJSYpomn/nmwnR31MlTTz0lSTr99NP9bn/uued0+eWXS5K2bdsmh6NmksaIESP00ksv6a677tIdd9yhfv366a233orYcAz2U5/3fv/+/brqqqu0a9cupaWladiwYVq5ciVrmFugkpISTZ48WTt37lRqaqoGDx6s999/X2PGjJHE5741q+t7z+e+beGz33bx2W+dtm/frkmTJmnv3r1KT0/XL37xC3322WdKT0+XxGe+uRimaZqxHgQAAAAAAGBNOgAAAAAAtkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAYblcLo0YMUITJ070u720tFQ5OTm68847YzQyAABaJ8M0TTPWgwAAAPa1adMmnXTSSVq4cKEuu+wySdLkyZP1zTffaPXq1UpISIjxCAEAaD0I6QAAoFaPPfaYZs+erQ0bNug///mPLrzwQq1evVpDhgyJ9dAAAGhVCOkAAKBWpmnqV7/6lZxOp9atW6frr79ed911V6yHBQBAq0NIBwAAUfn+++91/PHH68QTT9SaNWsUFxcX6yEBANDq0DgOAABE5dlnn1X79u21detWbd++PdbDAQCgVaKSDgAAarVy5UqNHDlS//rXv3TfffdJkpYtWybDMGI8MgAAWhcq6QAAIKIjR47o8ssv1+9//3udccYZeuaZZ/Sf//xHf/nLX2I9NAAAWh0q6QAAIKIZM2bo3Xff1TfffKP27dtLkhYsWKCbb75Z69atU15eXmwHCABAK0JIBwAAYa1YsUKjRo3SRx99pF/84hd+Pxs7dqyqqqqY9g4AQCMipAMAAAAAYBOsSQcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAm/j/j5asM5mvKe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 21\n", + "amount_ae: 30\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA68tJREFUeJzs3Xd4VEXbBvD7ZBPSGyGBkARC772JCAkQBcFQpAZeutKbigIKBhRfiiBIkSpFPikiRWwgIh0koQcQgqHXJEga6bvz/ZF3j9nsbrKbbEnC/fPaCzM7Z545Z0smzzlnRhJCCBARERERERERERGZmI21O0BERERERERERESlE5OPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmYWvtDhBR8fb48WMcP34cT548QVxcHOLj4/H++++jcuXK1u4aERERERERERVzvPKRiHSKjo5Gp06d4Ofnhz59+mD8+PGYPXs2Vq5ciSNHjli7e0RkgNu3b0OSJMyaNcsi8WbNmgVJknD79m2LxCMiIiIiouKPyUcyOfUfu4Y8Ro8ebe3ukg7R0dFo3bo1/vjjD0ydOhU3btyASqWCEAJKpRKDBw+2dheJqAiWLVsGSZL0fpafPXsGPz8/ODk5ITo6Wi4PDAxEYGCghXpJRERERGRagYGBCA4ONnsc9Un5w4cP6yx/0U7W87ZrMptq1arhP//5j87nbt++jU2bNlm4R2SoESNGIDk5GT/99BM6depk7e4QkYmNHz8eu3btwubNm9GrVy90795d4/lx48bh4cOH+PLLL1GzZk0r9ZKISoLbt2+jSpUqBtUdNWoUVq1aZeYekTUFBwfjyJEjEEJYuytERAY7d+4cWrVqhapVq+LChQtwdHTUqtOlSxf8+uuv2Lx5s948B+nH5COZTfXq1fXe6nf48GEmH4upqKgoHD9+HO+99x4Tj0SllCRJ2LBhAxo0aICRI0eiTZs2KFeuHADg+++/x9atW9G+fXtMmDDByj0lopKCJ52JiKikatq0KT766CPMnj0b06dPx5IlSzSeX7NmDX799Vf07NmTicdC4m3XVCwFBgbqvVV748aNWvU3bNiAVq1awcXFBS4uLmjVqpXOeocPH9Y7/5kkSTovvw4ODoYkSVrlhw4dwvDhw1GrVi05bvPmzbFmzZpC71veS7KHDh1qskuyL1++jL59+8LHxwf29vaoUqUKJk+ejKdPn2rUO3nyJACgVq1aCAsLQ/ny5VGmTBlUrlwZY8aMwaNHj+S6KpUKlStXhpeXFzIyMnTGbdeuHWxtbXH//n0A+o+n+nb9oUOHapQbe5x13Rb6+PFjjB07FlWqVEGZMmVQtmxZvPHGGzh16pTW9voujy/MewcALl26hP79+8PX11c+jhMmTNA67gVNV7Bu3TqN+oa+nvlRv79sbGxw69YtreePHTsmx8+73/nts75jCBj+Wd28eTNsbGzQv39/jasn9L1PIiIi4OLigqZNmyI5OVnjueTkZISHh6NevXpwdHSEh4cHOnXqhOPHj+vsf3JyMmbPno2GDRvCyckJ7u7uaNKkCWbOnImsrCyjppZQf3bVx0T9sLGxga+vL7p27Sp/5nLbvXs3wsLCUL16dbkPbdu2xc6dO3X2uTACAwOxaNEixMbGYsyYMQCAJ0+eYMyYMXB1dcWGDRvkz6p6n+/cuYM7d+5o7Iul5pMkouJNfdJZ1yPvdzYREVFx89FHH6FJkyZYunSpxhoHt27dwnvvvQdvb2+sXr3aij0s2Zh8pGLL3d0d4eHh8iPvbYFqEydOxPDhw/HgwQOMGDECI0aMwIMHDzBs2DBMmjTJbP2bP38+jh49ihYtWmD8+PH4z3/+g/j4eIwaNQrvvfdevtvm3begoCCz9RMAjh8/jlatWmH37t3o2LEj3n33XVSuXBlffvklWrVqhfj4eLluXFwcAGDMmDHYsWMHgoOD8d5776FOnTpYtWoVmjdvjjt37gAAbGxs8NZbb+Gff/7RmRS5fv06jh07hs6dO8Pf379QfS/KcQaAhw8fokWLFli5ciXKli2Ld999F927d8cff/yBdu3aYdeuXYXqlyH27t2Lli1bYu/evQgODsbkyZPRoEEDLF++HK1bt8azZ8+0tmnUqJHGe0P9aNq0qVzHmNfTEDY2Njp/ka5cuRIKhcL4HdfDmM/qoEGDMH/+fGzfvh3vvPNOvu1GR0eja9eu8PHxwa+//gpXV1f5uX/++QetW7fGJ598Ak9PT4wePRq9evXC2bNn0b59e+zZs0ejrdjYWLRs2RKzZs2CQqHAmDFjMHz4cFSoUAHz58/H8+fP4eHhofX6uLu7a32uw8PD4eHhodH+kCFDEB4ejo8++ghBQUE4cOAAQkJCcO3aNY1606dPx5UrV/DKK69g0qRJ6NOnD65fv47evXtj2bJlxh98PUaOHIlOnTrJVzuOHDkS8fHxWLJkicaK9up91rWflpgzh4hKN550zmHKk86598XQ4yqEwPr169GmTRu4ubnByckJzZs3x/r163W2Hx0djZCQEDg5OaF27drYt2+f/FxMTAyCg4Ph6OiIunXrYseOHTrbuHPnDkaMGAE/Pz+UKVMG/v7+GDFiBO7evat3f9LT0zFt2jRUqlQJDg4OqFOnDpYtW6Z1q/fGjRvz3d/nz5/D3d1d53tB3/vgwoULUCgUWm3mPjl65coVdO3aFR4eHnBxccFrr72Gs2fPmmz/1Y8yZcogMDAQb731llb9zMxMLFu2DJ06dUJAQADs7e3h4+ODN998E+fPn9dqW32sdB0nQPfJ/fzer/pOFgPGnUDP7/OT9+qz+Ph4TJ48GVWqVJH3t2/fvrh8+bLOfdLFHO8ZIP/vohMnTqBr164oW7YsHBwcULt2bYSHhyM1NVWjXlRUFDw9PVGnTh2tY6Xr9Xn69Cnq1KkDT09PREVFaTxn7GddCIENGzagbdu28PDwgJOTE2rUqIFRo0bJ7738Xitd3z3qY5L7UbZsWbRq1QrffPONVh/Onj2L8ePHo379+nB3d4ejoyMaNGiAefPmISsrS2e/jWVnZ4dvvvkGdnZ2GDZsGFJSUqBSqTB06FCkpKRg9erV8Pb21tru3r17CAsLQ9myZeHi4oKgoCAcPXrUJH0qVQSRid26dUsAEJ06ddJb59ChQwKAGDVqlM7n/fz8RGBgoEbZhg0bBACxYcMGuezIkSMCgKhTp45ISEiQy//55x9Rs2ZNAUAcPXpUK254eLhWTAAiKChIqzwoKEjo+qjcvHlTqywrK0u8+uqrQqFQiDt37ujcN39/f619Cw8PFwDEoUOHNMqHDBkiAIhbt27pbMsQSqVSVKtWTQAQ+/bt03ju/fffFwDE8OHDtfoCQPz8888a9RcuXCgAiDfeeEMue/DggbC1tRXBwcFasadMmSIAiD179shlwcHBAoBQqVQaddXvmyFDhmiUG3ucK1euLCpXriz/3K9fPwFADBw4UCPmuXPnRJkyZYSnp6dISkrS2v+8r4Wx7534+Hjh5uYm/Pz8xO3btzWe27p1qwAgxo8fX+D+52Xs65kf9fure/fuwtvbW2RkZMjPxcbGijJlyogePXro3G99nxchdB9DYz+rau+8844AIObNmyeE0D5ODx8+FIGBgcLb21tER0drbT9gwAABQKxdu1aj/MmTJyIgIEB4e3uLtLQ0ubxXr14CgPjwww+12nr8+LHIysrSuc9533eGHBMhhFixYoUAIJYsWaJRHhMTo9VGcnKyaNCggXB3dxfPnz/XGys39fHS9b5Vu3//vvDw8BD29vZan++8DN3PonxnEVHJYopxX+XKlYW7u7sIDw+XH927d9ca9wkhxIQJEwQA4efnJyZOnCgmTpwo/Pz8BAAxceJEnXFNMe7r1KmTqFatmhg4cKCYOnWqGDVqlKhcubIAIN599129+65r39QxzDHu07UvhhxXlUolwsLCBABRo0YNMWrUKDFhwgRRu3ZtAUC89957GvWfPHkifH19hSRJomfPnmLcuHHCy8tLVKpUSQAQNWvWFL179xYjR44UZcuWFZIkiZ07d2q0cf36deHt7S0AiNDQUDFt2jTxxhtvCADC29tbXL9+Xef+hIaGCn9/fzFp0iQxadIk4e/vr/N1UP/toFAoRKtWrbSOz+rVq4VCodD5XtD3Pmjbtq08Ts59DNWfg7Zt2wp3d3fRvn17MW3aNBEWFiZsbW2Fk5OT+PPPP02y/+rXctq0aaJ9+/bya5Z7jPLo0SNhY2MjgoKCxMiRI8XUqVNFnz59hL29vXBwcBARERE6j1Xe94Wart//+b1f9Y1rjx07JpycnIStra3o37+/mDZtmrxf1apVE3FxcVpx835+1I/c76fY2Fh5fBwcHCymTZsm+vXrJxQKhXBychLHjh3TuV95meM9I4T+76LvvvtO7uOwYcPE1KlTRZMmTQQA0apVK40xqhA542kHBwfRunVrkZqaqnGccr8+z58/Fy+99JKwt7cXR44c0WjD2M+6UqkUvXv3lr93R48eLT744APRt29f4eHhIXbv3i2EEGLx4sUar0+jRo0EADFp0iSN8vPnz2sck6CgIPm5UaNGCS8vLwFAbNy4UaMfo0aNEhUrVhT9+/cX77//vhg3bpyoV6+eACDefPNNncddn8qVK+v9O0YIIebOnSsAiJEjR4pFixYJAGLQoEE66z58+FD+HdSpUycxffp00aNHD1GmTBnRqVMnnd/1L+p4mclHMjlTDEJ9fHxErVq1NMp0/VIcPny4ACC2b9+u1ca3336rlYgx5SBUn507d+r8wlTz8vISNWvW1CgzZ/Lx6NGjAoB4/fXXtZ5LTk4WZcuWFQ4ODnLiSd0XXa9fVlaWqFKlipAkScTGxsrlPXv2FJIkiRs3bshlmZmZwsfHR/j6+moMhvr27atznwxNvqnpO865f/mmp6cLOzs7YWdnJ+7du6fVxttvvy0AiM2bN8tlpko+fvHFFwKA+Oabb3T2v2nTpqJcuXLyz4buv7GvZ37U769ff/1VABDffvut/NzcuXOFk5OT2L17t0mSj8Z+VtVUKpWcQNy0aZPGcUpMTBSNGjUSzs7OWoNoIYSIi4sTCoVCdOjQQWc/ly5dKgCIH3/8UQiRM1CXJElUq1ZNZGZm6txGn8ImH7/88kt53wyhHgAdPnzYoPqGJB+FEGLGjBkCgLCzsxMPHz7UW4/JRyLKiyedi9dJ59xeeeUVrX3Rl2Ras2aNACCGDRum8TswIyNDhIaGCgDizJkzcvnEiRMFALFixQq57MSJE/KJrIULF8rlN27cEK6ursLf319kZ2fL5erE2erVqzX6oj4xl/f3t/q1qVWrlsbrn5CQIGrVqiUkSRKRkZFa+6pOuJ47d06jvcaNG8snWQ1JJG3btk0AEM2aNdObfAQgpk2bprHdvn37BADRoEEDjfLC7n9effr0EQDEhQsX5LL09HRx//59rbqXL18WLi4uIiQkRKPcEsnHwpxAL2jcoTZs2DABQEyfPl2j/OeffxYARPXq1YVSqSywHVO/Z9R0fRclJiYKd3d3YW9vLy5evCiXK5VK+eKJTz75RKutXbt2CYVCId544w3585T7OGVlZYmuXbsKGxsbrYS/EMZ/1pctWyYAiI4dO2okPIUQIjU1VTx9+lTnPhf0fabv+/nKlSsCgOjRo4dG+Z07dzS+P4TI+TtB/TfG8ePHdcbRpaDkY3Z2tmjVqpUAIMqUKSP8/f3Fs2fPdNZV7+ecOXM0ylevXi1/JzD5mIO3XVOxlJSUBAcHhwLrqW8b0HXbTPv27QHk3B5hDup55Bo1agQXFxf5cvFevXoByLndNy+VSoXExEQ4OTkZFWvJkiWYNWsWPvnkE6xcuRIHDx6ESqUyaNv8jpH6lqH09HRcv35d4zn18cvN1tYWbdu2hRACFy9elMtHjRoFIYTGvIR79+5FbGwshg0bBlvbf9e2atWqFQDggw8+wJMnTwrsf2GOs3pOOgcHB2RlZaF69eo6b/s253vkzz//BACcPn1a5/xX6enpiI+PN/oW6cK+nvmpXbs2OnToIK9AqlKpsHr1aoSFhWndNpzb7du3de6brrkeC/tZlSQJ7777LoCcVdjVt3RlZGSgR48euHjxItq1a4cWLVpobRsZGQmlUomMjAyd/VS/Rupbns+cOQMhBNq3bw87Ozu9+10UGzduxKxZszBz5kz069cPU6ZMQefOndG3b1+NerGxsXj33XdRp04dODk5ye979VQDut73hRUbGyvfdp+VlYWffvrJZG0TERkiKysL9vb2BdZTL1oza9YsuLu7y+Wenp4IDw8HAL23jRaVrhW9bW1tMXr0aCiVShw6dEjndmlpaShTpoxZ+lQQY2IvX74czs7OWLFihcbvwDJlyuCzzz4DAGzdulUu//777+Hp6YlRo0bJZS+//DJeeuklANCYGqd69ero27cv7t+/L//uvXv3Lg4dOoS6devi7bff1ujL6NGjUbt2bfzxxx+4d++eVl9nzpyp8fq7u7tjxowZEELoXNgoNDQU/v7+WLlypVz2559/4sKFC/KcxwVJS0vD+++/j7p162L06NF663l4eOCjjz7SKOvUqRM6duyIqKgo+fbroux/XtnZ2XJsNXt7e/j5+WnVrVevHtq3b4+jR4+a7FZVQ504cQIxMTF4/fXXtRa1/Pjjj1G2bFls2bIFmZmZRrWbmZmJrVu3wsvLCzNmzNB4rkuXLnj11Vfx999/48SJEwa3aYr3TEF++OEHJCYmYvjw4WjYsKFcbmNjgwULFsDW1lbn91nPnj2xYsUK/PTTTxqfP7WRI0fi559/xvLly/Hmm29qPW/sZ/2rr76CQqHAypUrtVaAdnR0RNmyZY3e9/yo38+enp4a5ZUqVdKaDkqSJIwbNw4A8Pvvv5usDwqFQj4WmZmZWLJkic6/iTIzM7F9+3b4+PhoTQf21ltvoUaNGibrU2nA1a6p2ElNTUV6errO+RTySkpKgo2Njc665cuXhyRJSEpKMnkfMzMzERwcjHPnzqFJkyYYNGgQvLy8YGtrK6/oqGsBlidPniA7OxsVK1Y0Kt6XX36pVVazZk3s2bMHderUyXdb9f6XL19e5/O+vr4a9dSJwgoVKuRbPzExUS577bXXUKVKFWzatAlz5syBra0t1q1bB0mSMGLECI3tx40bh927d2PHjh165/9RK+xxdnd3x+TJk5GUlITFixcXuO+598VU/vnnHwDAihUr8q33/PlzeZVhQxj7ehpqzJgx6NOnD65cuYLbt2/j9u3bGDNmjNbiLbnduXMHs2fPNrjfhfmsKpVKjB49Gm5ubqhatSrGjx8PANixYwdUKhXatm2LX3/9FXv27EGPHj00tlW/BidOnMh3wPn8+XMA/74PdA3WTSXvH0XlypVDs2bNNOYI+ueff9CiRQvcvXsXbdq0QUhICDw8PKBQKHDhwgX88MMPehd4KozRo0cjLi4O8+bNw8KFC+WV7itVqmSyGERE+UlKSpJ/f+XH2iedFy5ciD179iAmJkb+3aGW30nngIAAo2Kp/9BV/96sWbMm2rdvDxsb464befbsmUEnvFNTUxEVFYWKFSti/vz5Ws+rk1Tqk3WJiYl4+PAhWrdubfDc0A0aNAAAXLlyBW3atJFfp6CgIK158mxsbNCuXTtcu3YNFy5c0Dp+bdu21WpfXaZrPkOFQoGRI0di/vz5WLhwIdzc3PDVV1+hevXqePXVVw3q//z583Hv3j389ttvePDggd56TZo0gYuLi87+HTx4EOfPn0ezZs2KtP/qeQMzMjJw6tQpnDx5Eh999JHGXM1AzmdhwYIFOH78OB4/fqyVbIyPj9f63O3Zs0fnHI4JCQl6T0jrSswkJCRo1TPkBPpvv/2G69evy+8XQ1y7dg3p6elo3769zvd7+/btceDAAVy4cEHne0eXorxndM3rqOuY5nc8KlWqhKpVqyI6OhrJycka85kDOXOjh4eH4+uvv9b4m+2jjz7Chg0b4O3tjcGDB2u1a+xnPSUlBX/99ReqV69utkTa4cOH5WP26NEj7NixAzVr1sT06dM16mVmZmL58uXYtm0brl27hpSUFI15Xk15Yl4IgTlz5sg/79q1S77wJbfr168jPT0dHTp00LpwysbGBm3atMGNGzdM1q+SjslHKnZiYmIAQGvSXF3c3NygUqkQFxcHHx8fjediY2MhhICbm5vJ+/jDDz/g3LlzGDFihNYqxNu2bdN51hX4d0Bcs2ZNo+LdunULgYGBEELg4cOHWLBgAZYuXYoJEyYUeJZHvf/6rjJ8/PixRj312St1ub76uc84S5KEkSNHYvr06fjxxx/lwUPHjh1RtWpVje3t7e1x5MgR/Prrr4iKikJ6ejqAnEFK3iRrYY+zh4cHZs2aheTkZCxevLjAfc+9L6aiPp5RUVGoX7++yds19PU0VI8ePeDr64uVK1fi9u3baNGiBZo1a6bzKka1oKAgnc/PmjVLKylZ2M/qF198gTNnzmDVqlXo0aMHXn75Zdy8eRNKpRILFy7EmDFjUL9+fYwdOxbBwcEag191e++99x4WLlxY4DFQb5vfHxVFdejQIXmQGRcXh40bN2Lq1KmIiYmRzzJ//fXXuHv3Lj799FOtM/jz5s3DDz/8YLL+bN68Gbt378Ybb7yBqVOnIjAwEP3798eIESNw4MABk8UhItKHJ521FeWks5p6zJh3HKbLs2fPIITAgwcP8j2pqE64qk9M6kqy6aOuq359inIyVdc26jJ9J5TfeustfPLJJ9i8eTP69++PHTt2YM6cOXoXCMnt7t27WLBgAbp164ZXX30136tr9e1P3v4VZf/zvkZ16tRB9erVNcpOnjyJDh06AMi5SKBGjRryHUR79uzBxYsXdb5nf/jhB73jDH3JR13vV13MdQLdXO0W9j1jzIl5IP9+R0dHIykpSSv5+NFHH+HJkydo164dPvvsM/kkwH//+1+0a9cOR48exYcffqj12hj7WbfEifkjR45orCxtZ2eH0NBQrURy79698eOPP6JmzZro168ffHx8YGdnJ/8NacoT80uXLsXhw4cxaNAg3L17F1u2bEGfPn20LnRQH5+8f9uo6XttX1S87ZqKHfXtGM2bNy+wbpMmTQBAZwJEXda4cWNTdU2mTpDqWoH72LFjerdTJwrbtWtXqLiSJMHPzw9LliyBu7s7zpw5U+A2+R2j58+f48yZM3B0dEStWrUAQF5VWVd9pVKJ48ePQ5IkreM6bNgw2NnZYd26dVi/fj1UKpXWbSRqNjY26Nq1K6ZNmybfAjt58mSteoU9zmqurq6oXr06/v77b50JJXO+R9S3l586dcqk7Rr7ehrK1tYWb731FjZt2oRff/3VZLeUqBXms/r3338jPDwc7dq1w8iRI1G+fHls374dANC1a1e89957cHJywpo1a/Do0SNMmTJFY/sWLVpAkiSDX4PmzZvDxsYGhw4dssitSN7e3nj//ffRoEED7NixQ07EF/V9b6gHDx5g4sSJKFu2rLxaa79+/dC7d2/8/vvvOldAVygUUCqVJusDEVFhTzrnZamTzufOncPKlSsxZ84czJo1C507d9a7XVFOOgshoFKpcP/+fUycOBHR0dGYMGGCwW2orwYzJLb6mDVr1gwiZ00AnQ/1reXOzs4Acq6KMpS6rjoJWZSTqbq2UZfpO6Hs6+uLHj16YNWqVdiwYQOAnLGrId5//32oVCp88cUXBdbVtz95+1eU/Ve/HtnZ2YiJiUHTpk0xbNgwjd/bn332GTIyMvD7779j7969WLRoEWbPno1Zs2bpvbsJyFlJXtdrn/eqytzU79fcj1u3bmnVM9cJdHO1W9j3TH6fHVP0+/Tp01i6dCn69++PP/74A927d4dSqYRSqUT37t3xxx9/oF+/fli+fLn8d3XemIZ+1tXvV3OemA8PD5fjJiUlYefOndi7dy/atWuHtLQ0ADlTKf3444/o1KkTrl69irVr1+Kzzz7DrFmz0L9/f5P2Jzo6GtOnT4e/vz+WLVuG9evXw9nZGaNHj9ZaZVx9fGJjY3W2ZcgUYy8SJh+pWElMTMTSpUthZ2eHbt26FVh/yJAhAHLOMOU+m5WYmCifzVHXMSX1L+Djx49rlB85cgRr167VuU18fDw2b96MsmXL4vXXXy9S/EePHiElJUVrLgxd2rRpg2rVquHXX3/Vukpyzpw5ePr0KcLCwuQ5gVq1aoWaNWti37598vx6asuWLUNMTAxCQ0O1bhUuX748evTogX379mHlypUoV66c1tkhYxXmOOc1bNgwZGVlYfr06RqX5l+6dAkbN26Ep6dnkfupL66rqys++ugjXLlyRev51NRUrQGBIYx9PY0xcuRIeHp6onr16ib/RW7sZ1UIgbffflueS1R9lln9vsv9/gsJCcGwYcPw9ddf448//pDLK1SogL59++LkyZP4/PPPNV5/tdOnTyM1NRVAznu4V69eiImJ0Xk2ODY2Vp6HxlSePXuGBw8eaJxF1/e+37JlC3755ReTxR4xYgQSEhKwfPlyjduuvvrqKzkxeufOHY1typYti/j4eDlRSkRUVDzprF9hTjoXJrarqyvq1KmDv/76S+ftsnl5enqifPnyuHbtmsEnpC5fvgwA8pWb6tfp6NGjWr+fhRA4evSoRr3cdB1zdZn6PaLLmDFjcPnyZXz66afo27evQXPVHTt2DN999x3eeecdVKtWrcD658+f15mUzdu/ouy/mkKhQNWqVbFs2TIAOXczqMXExKBs2bJ45ZVXNLZJTU3FuXPnCtwPczDXCfTatWvDwcEBkZGR8pgut6J8NxTmPWOo/I7HvXv3EBMTg6pVq2pc9ZiZmYkRI0bA09MTS5cuhUKhwNatW1GuXDmUK1cOW7duhUKhwNKlS+Hh4YERI0ZozKFp7GfdxcUFdevWxa1btyxy+7CrqytCQ0MxePBg3Lx5U542Sf0d3LVrV62pHkx5Yl6pVGLIkCFIS0vDunXr4O7ujqpVq2L+/Pl48uSJPP2TWs2aNeHg4IAzZ85ojY1VKhVOnjxpsr6VBkw+UrExZ84c1KpVC5cvX8Ynn3xi0Nw/7dq1w4QJE3D16lXUr18f77zzDiZPnoz69evj2rVrmDhxos5Bl/o2ztwPIGeuiLzl6vkjVq1aJQ/6QkNDERgYiAULFqBr166YOnUqevTogY4dO+ocmG7cuBGtW7dGXFwcKlWqhHnz5ulcoGPjxo3Ys2eP1vbffvstVq1ahZUrV2LmzJlo3bo1lEolRo4cWeAxsrGxwcaNG+Hk5IQuXbpg4MCB+PDDD9G+fXvMmzcP1apVw7x58+T6kiTh66+/hqOjI0JDQ9G/f398+OGHeP311/HOO+/Az88Py5cv1xlr9OjRUKlUePLkCYYMGVLkCdaNPc66vPfee2jVqhU2b96Mli1bYtq0aRg+fLh8DNetW6fztqG9e/dqvA/27t0LoOD3jvr94u3tja1btyIlJQWNGjXCG2+8gSlTpmDChAkIDQ1FhQoVdM4JUxBjX09j+Pv74+7du7h+/brWhNJFZexndc2aNfIcMIbMMbNo0SJUqFABI0eO1Bh4fvXVV2jcuDE++OADNGrUCKNGjcLUqVMxYMAA1KxZEy+99JJGMvSrr75CnTp18Nlnn6Fp06aYMmUK3nvvPYSGhiIgIMCoqzx0US84M2vWLIwfPx4NGzbE06dPMWjQIHmumEGDBsHd3R0TJkxA37598f777+O1117DoEGDdE4cXhirV6/G/v370bt3b4SFhWk85+3tjZUrVyI5ORnDhw/X+KOoQ4cOSE9Px+uvv46PP/4Yc+bMkf9AIiIyFk86G8aYk84AkJ6ejq+++gq2trbo16+fQdtMnDgRqampePvtt7XmswRyrm7LPW9djx498OzZM41pcU6dOiUnkxctWiSX37x5E9999x3Kly+Pl19+GUDOnHbt27fHlStXsH79eo1Ya9aswV9//YUOHTronC/z008/1bi9OjExUb4dNr/Xv0OHDnj55Zfh6uqKsWPHFnBEckycOBG+vr5ai8jok5CQIC9UobZ//34cPHgQ9evXR7NmzQAUbf/zioqK0iqrXLkynj17pnECXKlUYsqUKTqvHLYEc51AL1OmDMLCwhAfH4+5c+dqPLdv3z7s378f1atXR5s2bYzuc2HeM4bq3r073N3dsWHDBo3XSQiBqVOnIjs7G0OHDtXY5rPPPsOVK1ewePFiefoJR0dHODs7w9nZWR6/+/j4YPHixbh69arW+9HYz/q4ceOgVCoxduxY+UpEtfT0dHmOdVMRQsgnK9T0fQdfuXJF6zUvigULFuDPP//EyJEjNRZFGjt2LDp06IBt27Zh165dcrm9vT369u2L2NhYje88AFi3bh2io6NN1rdSwWTrZhP9z61btwQA0alTJ711Dh06JACIUaNGyWVBQUEiJCRE/PDDDzq32bBhgwAgNmzYoPXc+vXrRYsWLYSTk5NwcnISLVq0EOvXr9cbt7CP8PBwua2bN2+KXr16CW9vbznmtm3b5Bi56wYFBRkcY8iQIfJ2Q4YM0Xre29tbtGnTRmzevFn/i6DDpUuXRO/evUW5cuWEnZ2dqFy5spg0aZKIi4vTWf/ixYsa9QMCAsTYsWPFo0eP9MZQqVSiUqVKAoD466+/jOqf+n2Te/+FMO44CyFE5cqVReXKlTXKkpOTxYcffiiqV68uypQpIzw9PcUbb7whTp48qdWP8PDwIr1HDh06pNHetWvXxIgRI0TlypXl2A0aNBATJ04UERERBe6/Psa+nrqo31+3bt3SW0ffcQYggoKCdG6jPoZ5j4UQhn1W79+/L9zc3ESTJk1EVlaWxnP5Hafvv/9eABDvvvuuRnlqaqpYsGCBaNasmXB2dhaOjo6iSpUqokePHuKbb77RipGYmChmzpwpateuLezt7YW7u7to3Lix+Pjjj0VmZqbOfdb1vtN1THI/PD09RbNmzcSyZcu0+nDhwgXx2muvCU9PT+Hq6iqCgoLE77//nu/3oC7q45X3u8vFxUX4+Pjk+34JCwsTAMSKFSvksuTkZPH2228LX19foVAotNpW72d+7ykiKl0KO+779NNPRfny5QUAMXfuXK1t9H3fTZgwQQAQAQEBYvLkyWLSpEnC399fABATJ07UGbdr165i5cqVGg8AokaNGlrlNWrUEADEypUrRWRkpBAi57svMDBQABBdunQRH3zwgejevbtQKBSid+/eWt+FGzZsENWrVxcAROPGjUV4eLjGQz0uHDJkiNi9e7e8nfr38pw5c8TKlSvFV199JWbMmCGPrf773/8W+Hrs3r1bNG3aVAAQgYGBWrG7d+8uAIju3btrHFuVSiXH9/X1FYMGDRJTp04VQ4cOFS+99JKQJEls3bpVrn///n1Rrlw5IUmS6NWrlxg/frzw9vYWlStXFgBE3bp1RZ8+fcSoUaOEl5eXACC+/fZbjb5eu3ZNbqN79+5i+vTpolu3bvJ49/r16xr11cctNDRU+Pv7i0mTJmm8/nl//xv6O1PXmCb32H3Tpk0Ftqv+HLRt21a4u7uL9u3bi+nTp4uwsDBha2srHB0dxZ9//mmS/Ve/ljNmzBCDBw8Wzs7OWv388ccfBQDh4eEhRo4cKSZOnCgaNmwovLy8RHBwsNbv6oKOla5xTn7jSH3jtWPHjgknJydhZ2cnBgwYIKZPny73p1q1aiI2NrbAuLrExsaKqlWrCgCiQ4cOGsfeyclJHDt2rMA2hDDNe0YXfePp7777TigUCuHs7CyGDx8upk6dKpo1ayYAiJYtW4q0tDS5blRUlLCzsxOdO3fWal/fcerUqZOws7MTUVFRcpmxn3WVSiX69u0rAAg/Pz8xZswYMXXqVBEWFibKli2r8R2WW0F/Z6iPSVBQkPyefu+99+T9r127tkhPTxdCCJGdnS1atmwpf8bef/990a9fP+Ho6Ch/Bxv6N5T6eOV9/S5duiTKlCkjqlSpIpKTk7W2uXXrls7x88OHD4Wfn58AIDp37iymT58uevToIcqUKSNee+01nX8TvajjZSYfiQxUuXJlrV8YhgoKCjLoC9HQesXVw4cPha2trWjbtq21u2Jx6kGWroQbkbXoSj6a04s6mCJ6kfGkc/E66ayrDX0PXScRt2/fLkJCQoSnp6ews7MTfn5+Ijg4WCxatEjrhNWVK1dE+/bthYODg6hVq5bYt2+fvO8xMTEiKChI2Nvbi5o1a2olHtVu374thg0bJnx9fYWtra3w9fUVw4YNE7dv39aqq247LS1NfPDBByIgIECUKVNG1KpVSyxdulSoVCqN+qZIJLVq1cqgdnMn2y5fviy6dOki3NzchLOzswgJCRFnzpwx2f6rHzY2NqJChQoiJCRE/PTTT1r1v//+e9G0aVPh5OQkypUrJ/r27StiYmJ0JoUslXwUwrgT6IYmH4UQIi4uTkycOFFUrlxZ2NnZiXLlyonevXtrJN4KYunkoxBCHD16VLz++uvCw8NDlClTRtSsWVPMnDlTpKSkyHXUyTcXFxdx584drTb0Hafbt28LFxcX0bJlS5Gdna3xnDGfdZVKJdatWydeeukl4ezsLJycnESNGjXE6NGjxd27d3Xus6HJx9wPZ2dnUatWLTF16lStRHRsbKwYPny4qFixonBwcBANGjQQK1asEDdv3ixy8jEzM1M0btxYSJKU799yq1evFgBEnz59NMrv3Lkj+vXrJzw8PISTk5No27atOHLkiN4LMl7U8bIkhI5JsIhIS2BgIIYOHVqoW2WDg4MRGBiY7+p4xtQrrqZOnYoFCxZgy5YtWrdylna3b99GlSpVNFYzJrI29fsyPDy8UN9dxlKvdH7r1i2DFo8gIiquSuq4b+jQobh9+7bOeeQKU89YwcHBOHLkiM55lotz20Wl/n07ZMiQEjuOJ3pRBAYGIjAw0OTff4Z6UcfLttbuAFFJMXDgQIMmQ9dl6NCh8PDwMFm94iQxMRErV67EnTt3sG7dOtStWxd9+/a1drcsztXVFaNGjULFihWt3RUiIiIiIiKiYoPJRyID5Z2s1xh5Jwsuar3i5NmzZ5g+fTocHBzwyiuvYNWqVVqrkL0IvLy85MVniIiIqGQrqSede/ToYdAqtobWIyIiMgUmH4moSAIDA4vl7S9EBHh4eCA8PNxiUwGo45S0K7iJiPIqqSede/ToYdJ6REREpsA5H4mIiIiIiIiIqNRbsmQJPDw8rHbX4eHDh3H48GFMnjz5hTphz+QjERERERERERERmYWNtTtAREREREREREREpdMLN+ejSqXCw4cP4erqCkmSrN0dIiIiIqMJIZCcnIyKFSvCxobnkksijkmJiIioJDNmPPrCJR8fPnyIgIAAa3eDiIiIqMju3bsHf39/a3eDCoFjUiIiIioNDBmPvnDJR1dXVwA5B8fNzc0iMfv164ft27dbJJa1YjJeyY5njZiMx3jFPSbjlex41ohpyXhJSUkICAiQxzVU8rwIY1LGK/kxGY/xintMxivZ8awRk/FMx5jx6AuXfFTf1uLm5maxgZ6dnZ3FYlkrJuOV7HjWiMl4jFfcYzJeyY5njZjW2EferltyvQhjUsYr+TEZj/GKe0zGK9nxrBGT8UzPkPEoJwkiIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCxeuAVnjKVUKpGVlVWkNry8vJCenm6iHhXPmIxXsuNZI2ZJjWdrawuFQsFFHoiIyGJMMR4FSu7vXsazXkzGYzxrxrSzs4NCoTBJW0RkXUw+6iGEwOPHj5GQkFDktoYOHYpbt24VvVPFOCbjlex41ohZkuMpFAr4+PjA3d2dSUgiIjIbU45HgZL9u5fxrBOT8RjP2jE9PDxQoUIFjrmJSjgmH/VQD/R8fHzg5ORUpC87SZIQGBhous4Vw5iMV7LjWSNmSYwnhEB2djaSkpLw6NEjpKWlwdfX1zQdJCIiysOU41GgZP7uZTzrxmQ8xrNWTCEEUlNTERsbCwAccxOVcEw+6qBUKuWBnpeXV5HbUygUcHBwMEHPim9MxivZ8awRsyTHc3V1hb29PeLj4+Hj48PbQYiIyORMPR4FSvbvXsazTkzGYzxrxnR0dAQAxMbGcsxNVMJxwRkd1HPqODk5WbknRFRcOTs7Qwhhkjm4iIiI8uJ4lIjo3+9AjrmJSjYmH/PBeSWISB9+PxARkSXw9w0Rvcj4HUhUOjD5SERERERERERERGbB5CMVyvPnz3Hv3j08e/bM2l0hIiIiIiIiIqJiislHMtiOHTvQsWNHuLq6wsXFBZUqVcKCBQus3S0iIiIiIiIiIiqmmHx8QV25cgX/+c9/4OfnB3t7e1SsWBEDBw7ElStXdNafNm0a+vbtC1dXV6xduxYHDhzA77//jrFjx1q450RERERUkm3cuBGSJMkPBwcH1KxZE+PHj8eTJ0+s3T2yoJYtW0KSJKxcuVLn83nfK3kff/75JwDg6dOn+Pzzz9GuXTt4e3vDw8MDL730ErZv327J3SEiIj1srd0Bsrxdu3YhLCwMZcuWxYgRI1ClShXcvn0bX3/9Nb7//nts27YNPXv2lOsfOXIE8+fPx9y5czFt2jQr9pyIiIiISotPPvkEVapUQXp6Oo4fP46VK1fil19+weXLl7nK9wvgxo0biIyMRGBgIL799luMGTNGb131eyWv6tWrAwBOnTqFjz76CF26dMGMGTNga2uLnTt3on///rh69Spmz55ttv0gIqKCMfn4gomJicGgQYNQtWpVHD16FN7e3vJzkyZNQtu2bTFo0CBcunQJVatWBQAsXLgQL7/8MhOPRERERGQyr7/+Opo3bw4AeOutt+Dl5YUvvvgCP/zwA8LCwqzcOzK3//u//4OPjw8WLVqE3r174/bt23rr5n6v6FKvXj3cuHEDlStXlsvGjh2LkJAQzJ8/Hx988AGcnZ1N2X0iIjICb7t+wXz++edITU3FmjVrNBKPAFCuXDmsXr0az58/15jL8c8//0T9+vXRv39/lC1bFo6OjmjRogX27Nkj13n+/DmcnZ0xadIkrZj379+HQqHA3LlzAQBDhw5FYGCgVj1JkjBr1iz55zt37mDs2LGoVasWHB0d4eXlhT59+mgNTA4fPgxJknD48GG5LDIyEq+++ipcXV3h7OyM4OBgHDt2TGM79W0cZ86ckcvi4+O1+gEAI0eO1Nnn06dPo3PnznB3d4eTkxOCgoJw4sQJrXoPHjzA8OHDUb58edjb26NevXpYv369Vj1d1LeVLFmyROu52rVrQ5IkjB8/Pt/9ym/fzp8/j9dffx1NmjSBi4sLOnbsKN/CorZ69WrY2Nhgx44dctnt27chSRI2btwol0VHR6Ns2bIYMGCAxvYJCQmYPHkyAgICYG9vj+rVq2PNmjVQqVQa9VQqFb788ks0aNAADg4O8Pb2RufOneV9ye+2G0mSEBwcDODf94T6YW9vj9deew1z586FEELn/ru5uendfyIiIjK/Dh06AABu3boFAPjnn38wZcoUNGjQAC4uLnBzc8Prr7+Oixcvam2bnp6OpUuXombNmnBwcICvry/efPNNxMTEAPh33FLQGEItNjYWI0aMQPny5eHg4IBGjRph06ZNGnVu3ryJDh06oEKFCrC3t0dAQABGjx6Nf/75R66jHpN8//33Wn12cXHB0KFD5Z8N3V9j2izsuFA9Lho8eLDOcZGusd38+fO1xnb52bJlC3r37o033ngD7u7u2LJli8Hb5lWlShWNxCOQM27s0aMHMjIycPPmzXy3zz12vHDhgsZzDx48gEKh0DrmQ4cOhYuLi1Zb33//vdbfJkDO/Pk9e/aEo6MjypUrh//85z948OCBRp0BAwbAy8sLN27ckMvUr2Huv4F27NgBGxsbrF69WmP7a9euoXfv3ihbtiwcHBzw5ptvYu/evVp9TEhIwDvvvIPAwEDY29vD398fgwcPRnx8vNY4WtdD/b6ZNWuWRrmrqyt69eql8Xdi7j43a9Ys3/0notKLVz6+YH788UcEBgaibdu2Op9v164dAgMD8fPPP8tlT58+xZo1a+Di4oKJEyfC29sb//d//4c333wT3377LcLCwuDs7IyePXti+/bt+OKLL6BQKOTtt27dCiEEBg4caFRfIyMjcfLkSfTv3x/+/v64ffs2Vq5cieDgYJ2/RNX+/vtvBAcHw8nJCe+//z6cnJywdu1ahISE4MCBA2jXrp1R/dDnjz/+wOuvv45mzZohPDwcNjY22LBhAzp06IBjx46hZcuWAIAnT57gpZdekpOE3t7e+PXXXzFixAgkJSVh8uTJBcZycHDAhg0bNOqePHkSd+7cKdI+XLlyBW3btoWbmxvefvttVKhQAatXr0ZwcDCOHDmCVq1aAQBGjRqF69evY8iQIQgMDESLFi202vrnn3/wxhtvoE6dOtiwYYNcnpqaiqCgIDx48ACjRo1CpUqVcPLkSSxatAhZWVkaSdURI0Zg48aNeP311/HWW28hOzsbx44dw59//onmzZtj8+bNct1jx45hzZo1WLx4McqVKwcAKF++vEafPvzwQ9SpUwdpaWnYsGEDPvzwQ/j4+GDEiBFa+//BBx/Azs5O5/4TERGR+akThV5eXgByknt79uxBnz59UKVKFTx58gSrV69GUFAQrl69iooVKwIAlEol3njjDRw8eBD9+/fHpEmTkJycjAMHDuDy5cuoVq2aHCMsLAxdunTRiDt9+nSNn9PS0hAcHIy///4b48ePR5UqVbBjxw4MHToUCQkJ8sn2tLQ0+Pv7IzQ0FG5ubrh8+TJWrFiBBw8e4McffzR6/w3dX3PRNS5avny51rhI39hu+vTpePTokc4T5nmdPn0af//9NzZs2IAyZcrIf1f06dNHZ/3ExETEx8drlEmSJL9X9Hn8+DEAyGPFgqjH3F9++aVctmnTJpQpUwbp6ekGtaHLxo0bMWzYMDRo0ABz587FkydP8OWXX+LEiRM4f/48PDw8AADr169Hhw4d0LVrV5w+fRqenp5abUVERGDIkCF45513MGrUKLn8ypUraNOmDfz8/DBt2jQ4Oztj06ZN6NGjB3bu3ClPq5WSkoK2bdvir7/+wvDhw9G0aVPEx8dj7969uH//PurUqaMx5l6zZg3++usvLF68WC5r2LChRp/U9ePj4/Hll1+iT58+uHz5MmrVqqWx/y1atMh3/4moFBMvmMTERAFAJCYm6q2TlpYmrl69KtLS0kwSMzo62iTtFDVmQkKCACC6d++e77bdunUTAERSUpIQQggAAoA4fPiwXCc1NVXUqVNHVKhQQWRmZoro6Gixf/9+AUD8+uuvGu01bNhQBAUFyT8PGzZMVKpUSSsuABEeHq4RI69Tp04JAGLBggVy2aFDhwQAcejQISGEEL169RIKhUJcvnxZrhMfHy+8vLxEs2bN5LINGzYIACIyMlIui4uL0+qHEEIEBweLypUryz+rVCpRo0YN0alTJ6FSqTT6XKVKFfHqq6/KZSNGjBC+vr4iPj5eo83+/fsLd3d3nfuZ+/UDIHr37i1sbW3FmTNnNNodMGCAACDGjRuX737p27cePXqIMmXKiJiYGDnmw4cPhaurq2jXrp3G9kqlUoSGhgpfX19x7949cevWLQFAbNiwQWRmZorg4GBRpUoVERsbq7Hdp59+KpydnbXekyNHjhQKhULcvXtXCCHEH3/8IQCIiRMnah2P3Mc4737eunVL67m87wkhhLh8+bKwsbERY8eO1bn/avr2P6+CvidCQ0Pz3d7USns8a8RkvJIdzxoxLRnPkPEMFW8FvYamHo8KkTO+SE0V4osvhBg/PudfHcMQk8bTRf07/PfffxdxcXHi3r17Ytu2bcLLy0s4OjqK+/fvCyGESE9PF0qlUmPbW7duCXt7e/HJJ5/IZevXrxcAxPTp07ViqccQ6nHL559/rlWnXr16GmPVJUuWCADi//7v/+SyzMxM0bp1a+Hi4iKPkXXt39ixY4WLi4v8s3pMsmPHDq26zs7OYsiQIfLPhuxvdHS0UW0Wdlyodvz4ca1xkb6x3bRp0zTGdvkZP368CAgIkF+f3377TQAQe/bs0ain7r+uh729fb4xnj59Knx8fETbtm311lHvg/qYhoWFCS8vL5GRkSHXqVGjhjzmzn3MhwwZIpydnbXa3LFjh8Y4NDMzU/j4+Ij69euLqKgoud5PP/0kAIiPP/5YY/snT56IwMBA0b59e5GZmakx5r17966oUKGC6Natm9Z7pWPHjqJBgwYiPT1dLrt+/bp4+eWXRY0aNeSyjz/+WAAQu3bt0uq7rjH3kCFDNP4Oyi08PFzkTSmo+/vdd99p7X/u7zN9+58Xx9ylO541YjKe6RgzHrXqbdd5L9OWJAm1a9fWW3/t2rVo27YtPD094enpiZCQEERERFiwx0WTkZaFPYv/xKoJ+7Bn8Z/ISMuyaPzk5GQAgKura7711M8nJSXJZS1atEBQUJD8s6OjI8aOHYvHjx/j3LlzAICQkBBUrFgR3377rVzv8uXLuHTpEv7zn//IZT4+PoiNjUVmZma+/XB0dJT/PysrC0+fPkX16tXh4eGBq1evatVPTExEbGwsDhw4gE6dOqFevXryc15eXhg6dCjOnj1rklUUL1y4gBs3bmDAgAF4+vQp4uPjER8fj+fPn6Njx444evQoVCoVhBDYuXMnQkNDIYSQ68XHx6NTp05ITEyUj19+ypcvj65du8pXFKampuK7777DsGHD9G6jPkOsfuS+BQjIuUrgt99+Q48ePeT5PQHA19cXAwYMwPHjxzXeAzY2Nti6dSu8vLwQGhqK58+fy8+NGTMGERER+Omnn7Ru59+xY4f8uc3dn5dffhlKpRJHjx4FAOzcuROSJCE8PFxrXyRJKvAY5XcM7t69i7Vr10KlUsm3dBm7/0REVDq9SOPR9HQJbdoAU6YAq1fn/NumDZCWZp3+hISEwNvbGwEBAejfvz9cXFywe/du+Pn5AQDs7e1hY5Pz54pSqcTTp0/h4uKCWrVqaYyfdu7ciXLlymHQoEFaMQozhvjll19QoUIFjXkn7ezsMHHiRKSkpODIkSMa9RMTE/HkyRMcPHgQP//8s867bJKTkzXGQXmv4jNmf41pM3cfCzMu9PHx0RoX6RvbhYSEaIzt9MnOzsb27dvRr18/+fXp0KEDfHx89F4xumLFChw4cEDj8euvv+qNoVKpMHDgQCQkJGDZsmX59ie30NBQSJIk32V17Ngx3L9/H/369dO7Td7XQP03l9qZM2cQGxuLsWPHwt7eXi7v2rUrateurXHHGZBzzH/++WecPn0aY8eOlctTUlIQGhqKcuXKYcuWLfJ7Bci5A+mPP/5A3759Nd4Xz549Q6dOnXDjxg35FuedO3eiUaNGGguMqhV2zK2O99dff2Hr1q1wdnbGSy+9pLX/Dg4OBe4/EZVOVr/tul69evj999/ln21t9Xfp8OHDCAsLw8svvwwHBwfMnz8fr732Gq5cuSIPUoqrjLQsfNBmI25efAIbhQSVUuDQ5igsODEU9o52FumDOqmY9xdiXrqSlLoG4XXq1AGQM4dO2bJlYWNjg4EDB2LlypVITU2Fk5MTvv32Wzg4OGjcQvHyyy9j/vz5mDFjBiZOnKjxSyi3tLQ0zJ07Fxs2bMCDBw805urTtQ89evSQ/199ib++/ua9PddY6nlYhgwZordOYmIisrKykJCQgDVr1mDNmjU668XGxhoUc9iwYRg2bBgWLVqEHTt2wNPTU06k6RISEpJve3FxcUhNTdV7rFQqFe7du6eRxFUqlYiPj8fjx4/lxOdXX32FyMhISJKk83W5ceMGLl26pJWUVFPvf0xMDCpWrIiyZcvm229j5H5P2NjYYMaMGejVqxeAwu0/ERGVTi/KeHTrVndcvAioVDkPALh4EVi1CnjnHcv3Z8WKFahZsyZsbW1Rvnx51KpVSyOhop4L+quvvsKtW7egVCrl53LfbhsTE4NatWrl+7oZ486dO6hRo4ZGX4B/x5J5p73p1KkTTp8+DQDo3Lkztm/frtXm8OHDC4xr6P4a06aaKceFho7t9Pntt98QFxeHli1b4u+//5bL27dvj59++gkqlUrr2Lds2TLfBWfymjBhAvbt24dvvvkGjRo1Mng7Ozs7/Oc//8H69evRu3dvrF+/Hr169YKbm5vO+s+fP9d7HNTU7xddx7Z27do4fvy4VnlSUhLS0tKwbt06ec7P4cOH4+LFi/D19dV4bwA5004JITBz5kzMnDlTZz9iY2Ph5+eHmJgYeTxsKrmPgYuLC7799lsEBAQAKNz+E1HpY/Xko62tLSpUqGBQ3dxX1AHAunXrsHPnThw8eBCDBw82R/dM5tdVZ3Hz4hMIlYBSlZNEu3nxCX5ddRY93nnJIn1wd3eHr68vLl26lG+9S5cuwc/PT/4lm/sKxIIMHjwYn3/+Ofbs2YOwsDBs2bJFnkRarVu3bhg+fDg+//xzfP7553rbmjBhgjzPYevWreHu7g5JktC/f3+dk1kvXLgQNWrUQPfu3Q3ub2Gp43/++edo3LixzjouLi54+vQpAOA///mP3kRl3jlT9OnatSvKlCmDPXv2YMOGDRgyZIjWwCw39YBeLSkpqcgDjZkzZyI9PR179+6VzwBHRkZi6dKl2Lp1K8aOHYvIyEitPxxeffVVfPDBBxpt3b9/H/7+/hp9NLWFCxeiUaNGyMrKwr59+zB//nzY2trqvLqSiIheXC/KePTePTsoFP8mHgFAoQAKWIvDbApKKP33v//FzJkzMXz4cHz66afyye7JkycbtbCJuS1btgzx8fG4evUq5s6di9GjR+P//u//NOp8/PHHWnOuh4aGavxs7P4a0qaaKceF+sZ2agWN7dSfob59++p8/siRI2jfvn2h+gYAs2fPxldffYV58+bpvBq2IMOHD0eTJk1w/fp17NixI9+55h0cHLSu1jx27Bg++eQTo+OqKZVKjB07Fq1bt0a/fv3kOUYvX76MvXv3YtCgQfj444815tZUvz+mTJmCTp06yeXq8TYAVK9evdB9KsiBAwcA5CRjN2zYgL59++Knn37Cq6++araYRFSyWD35eOPGDVSsWBEODg5o3bo15s6di0qVKhm0bWpqKrKyskx6pZS5PL6ZABuFJCceAcBGIeHxzQSL9uONN97A2rVrcfz4cbzyyitazx87dgy3b9/WmLy4SpUquH79ulbda9euAYDGKtD169dHkyZN8O2338Lf3x93797VeavD119/jY8//hgxMTHyL8u8v5y+//57DBkyBIsWLZLL0tPTkZCQoHPfmjVrhqCgILi4uBjc38JST1zu5uaW75lkb29vuLq6QqlUFnjGuSC2trYYNGgQPvvsM1y5cqXA1bLzDujz3orj7e0NJycnvcfKxsZGPmMJ5NxqvmLFCnz55ZcIDQ3FunXrMHDgQLz99tuYMGEC2rZti+bNm+Orr77SWH27WrVqSElJ0dr/GzduoEaNGhr19u/fj3/++cdkn+lmzZrJq1dWr14d6enpmD9/PmbOnGn0/hMRUen1ooxHAwKykOeCKSiVQK67bIuV77//Hu3bt8fXX3+tUZ6QkKCxgEi1atVw+vRpZGWZZkqjypUr49KlS1pX4KnHknlXVVYvxPf666/Dx8cHgwcPxkcffSRfKQkADRo00BoL5V6gETB8f41pU82U40J9YztDPH/+HD/88AP69euH3r17az0/btw4fPvtt4VOPq5YsQKzZs3C5MmTMXXq1EK10aBBAzRp0gR9+/aFt7c32rdvr3WrvZpCodA6Dnn/VlG/X65fv641trx+/brW++mrr77CpUuXcPbsWTRq1AiXL1/G2rVrsW7dOoSGhmLOnDmYPHkyhg0bJl/Vqb5V3s7OTqM/ecfbQM7rd/nyZQOPhmFyx6xbty7++usvLFy4EK+++qrG/ue9a0vX/hNR6WTVOR9btWqFjRs3Yt++fVi5ciVu3bqFtm3bFnhbsNrUqVNRsWLFfH/xZWRkICkpSeNhDRWqekClFBplKqVAhaoeFu3H+++/D0dHR4waNUq+Kk/tn3/+wejRo+VVotW6dOmCiIgInDx5Ui5LT0/HypUrUaFCBTRr1kyjnUGDBuG3337DkiVL4OXlhddff11nXypXrowOHTogJCRE52uoUCg0brUGcs4s573NIDdJkvDaa69h//79+OuvvzT2bdOmTWjevHmRb7kGcpJa1apVw8KFC5GSkqL1fFxcnLwPvXr1ws6dO3X+klfXM9Tw4cMRFRWFdu3aaczHUxgKhQKvvfYafvjhB9y+fVsuf/LkCbZs2YJXXnlFvvpVCIGxY8eiUaNGGDNmDICc2+dz/9u4cWOMGzcOM2bM0JhXs2/fvjh16hT279+v1YeEhARkZ2cDAHr16gUhBGbPnq1VL+/7oLDS0tKQnZ2N7Oxso/afiIhKL0uMR4HiMSYNC0tEo0aAjQ1gZ5fzb+PGwOjRFu+KQXSNBXfs2CHPXafWq1cvxMfHa11tCBRuDNGlSxc8fvxY4/bp7OxsLFu2DC4uLhrzoOelTuplZGQYHdfQ/TUHfeOi+Ph4rXGRoWM7XXbv3o3nz59j3Lhx6N27t9YjODgYO3fuLNTx2759OyZOnIiBAwfiiy++MHr73IYPH45Lly5h6NChhZ4HUa158+bw8fHBqlWrNOa8//XXX/HXX3+ha9euctmTJ08wc+ZMjB8/Xk4s5h1zjxkzBo0aNcLYsWPl94uPjw+Cg4OxevVqPHr0SKsPuf/m6NWrFy5evIjdu3dr1TPFmFupVCIzM1N+DXPvf+7XVdf+E1HpZdUrH3MnpRo2bIhWrVqhcuXK+O677zBixIh8t503bx62bduGw4cP650zEADmzp2rM5nRr18/2NnpnmtRvTiJJEl6zx4aIzU1FTVC3FGxtgce/vVMnvOxYm0P1Ahxl+cPNKXU1FS97c6bNw9TpkxB3bp10bt3b/j7++PBgwfYsWMHnj17hi+++AIqlUrevnfv3vjmm2/QqVMnDB48GJ6envjhhx9w9epVLFq0CLdu3dKIp55cePfu3RgwYIDGAKYgT58+ldtp164dNm/eDCEEqlWrhgsXLuDkyZPw8PBAdna2XO/+/fvyvzdu3MBbb72Fffv24ZVXXsGgQYPg4OCA7777DgkJCViyZIm8nTpB9sMPP8hzqagTiefPn9c46xwfH4+UlBR8/fXX8iTis2bNwltvvYVatWrhzTffRPny5fHkyROcPn0aLi4uWL16NQBg5MiROHDgAFq2bIm+ffuiWrVqSExMxNWrV3Hy5ElERkYW+PolJCTgxo0bsLW1xenTp+Hg4KDz+dz7dffuXY3b3dUTi+c+xm+//TZ+++03vPTSS+jTpw8cHR2xbds2pKenY8KECXK9HTt24PTp09i+fTtiYmI0jvuTJ0/kekOHDsXWrVsxatQo+Zb6nj17YseOHXjjjTfQs2dP1K9fH6mpqbh69SoOHjyIP/74A2XLloW/vz+6d++OpUuX4sKFC2jXrh1UKhXOnDmDVq1aad02o97PW7duaV3poO7b9u3bcebMGWRnZ+PcuXPYuXMnOnToIM89k3v/BwwYAFtbW537r4tSqURsbCwWLFiglcgHgIiICHTr1k3v9qZW2uNZIybjlex41ohpyXimusKLLDMeBYwfk5p6PAoAKlUqNm36G1u3uuPePTsEBGQhLCwR9++b5iRfXvrGo/rGKnm1bt0aK1asQK9evdCkSRNER0fjxx9/REBAANLS0uS2W7dujVatWmHu3Lm4dOkSmjdvjrS0NJw8eRIDBgxASEiIPDaIj4/X6lNmZqZGex06dEC1atUwZMgQ/P777/Dz88P+/fsRERGBjz76CI8fP8bjx4+xePFi/PPPP6hRowbKlCmDq1evYufOnahVqxYcHR1x48YNOe6jR4+04gohkJSUpLEfBe1vamqqUW0WdlyoHhdt3bpVa1ykb2wXHR2N/fv3y2M7XdasWQMPDw94e3vrfG+88sor+O6777B27Vp06tRJ7v///d//4fDhw1r1mzRpgkqVKuHixYsYNGgQPDw8UL9+fY07p3LXy0v9Hs17TIODg/Hnn3/C1dVV7+uYlJQEIYTWfqiTf+q/TQDg3XffxbRp0xAWFoZu3bohPj4e33zzDfz9/dGtWze53pQpU2Bvb48hQ4ZovYa5x7zTp09H3759MW/ePPkK0g8++ABhYWGoW7cu+vbti4CAADx+/BiXL1/G48eP5dvDe/bsiS1btqBPnz7o1asX6tevj4SEBPzxxx+YPXu2xhW76v3M/bdXbuox8MKFCwHknOjfv38/bt++jYEDB2rtf6tWrfDGG2/o3X9dOOYu3fGsEZPxTMeo8ajpF9sumubNm4tp06blW+fzzz8X7u7uIjIyssD20tPTRWJiovy4d+9egUuBp6WliatXr4q0tDSj+69LdHR0Tl9SM8XuL06JleN/Fbu/OCXSUzNN0n5+MfW5dOmSCAsLE76+vsLOzk5UqFBBhIWFiaioKJ31Y2JiRO/evYW7u7twcHAQLVq0EHv27NEbr0uXLgKAOHnypMF9BiDCw8Pln589eyaGDRsmypUrJ1xcXESnTp3EtWvXROXKlUXPnj3leocOHRIAxKFDh+Sys2fPitdee024uLgIJycn0a5dO3HkyBGNeBs2bBAAjH7kdv78efHmm28KLy8vYW9vLypXriz69u0rDh48qFHvyZMnYty4cSIgIEA+3h07dhRr1qzReSxyH08AYty4cfket9zPq/cr7+cjLi5O6xgLIcS5c+dEp06dhLOzs3BychLt27fXeN2ePn0qypUrJ0aOHKmx3a1btwQAsWHDBo3yb7/9VgDQON7Jycli+vTponr16qJMmTKiXLlyomnTpmLhwoUiM/Pfz0F2drb4/PPPRe3atUWZMmWEt7e3eP3118XZs2e19lu9n7du3dJ6Tv2eUD9sbW2Fn5+fmDhxonj27JnO/Ve/V/Luvz4FfU+EhoYW2IYplfZ41ojJeCU7njViWjJeYmJigeMZKjxTj0eFMH5MaurxqBAFjw9NTV88fWOVvNLT08V7770nfH19haOjo2jTpo04deqUCAoKEkFBQRp1U1NTxZgxY0SVKlXksVbv3r1FTEyMEOLfccvnn3+uFadevXpa7T158kQeh5YpU0Y0aNBAa8yzbNky0aJFC+Hm5iYcHR1F9erVxXvvvSfi4uLkOuoxyY4dO7TiOjs7iyFDhhi1v9HR0Ua1WdhxoXpc9NJLL+kcF+ka27388staY7u8x9TW1lYMGjRI5/NC5PyN4uTkJI/1Cxqvq18TQ+vlpX6P5ndM9T0/ZMgQ4ezsrFV3x44dWn+bCCHE9u3bRd26dYW9vb0oW7asGDhwoLh//778/OHDhwUAsWXLFo3t9I153377bVGuXDnx9OlTuSwmJkYMHjxYVKhQQdjZ2Yny5cuLN954Q3z//fca2z59+lSMHz9e+Pn5iTJlygh/f38xZMgQER8fr7U/Q4YMEZUrV9Z5XMLDwzWOs/pzsHjxYqFSqbT2v0mTJnr3Xx+OuUt3PGvEZDzTMWY8WqySj8nJycLT01N8+eWXeuvMnz9fuLm5iVOnThUqhiEHx1zJR0uy9uCyR48eolq1ahaLZ27R0dHyoNVS8SzN2u+ZkhaPAyEOTBiveMezRsziOtgj41hiPCpEwa9haU4+Ml7Jicl4jGftmBxzl+541ojJeKZjzHjUqnM+TpkyBUeOHMHt27dx8uRJ9OzZEwqFAmFhYQByVk6ePn26XF+9UMT69esRGBgo3/Kga849sp5Hjx7h559/LtTqckRERESWxPEoERERkXlZdc7H+/fvIywsDE+fPoW3tzdeeeUV/Pnnn/D29gaQMzdJ7hXmVq5ciczMTK2V0cLDwzFr1ixLdp10uHXrFk6cOIF169bBzs5OY8Xs0sDR0RGdOnWydjeIiIjIhDgeJSIiIjIvqyYft23blu/zeScVNmbhErK8I0eOYNiwYahUqRI2bdqEChUqWLtLJlW+fHns27fP2t0gIiIiE+J4lIiIiMi8rJp8pNJl6NChGDp0qLW7QURERERERERExYRV53wkIiIiIiIiIiKi0ovJRyIiIiIiIiIiIjILJh/zIYSwdheIqJji9wMREVkCf98Q0YuM34FEpQOTjzrY2uZMhZmdnW3lnhBRcZWVlQUAUCgUVu4JERGVRnZ2dgCA1NRUK/eEiMh61N+B6u9EIiqZuOCMDgqFAgqFAklJSXB1dbV2d4iomBFCIDExEfb29hwIERGRWSgUCnh4eCA2NhYA4OTkBEmSitSmUqlEenq6KbrHeFaIZ42YjMd41oophEBqaipiY2Ph4eHBE/5EJRyTjzpIkgQfHx88evQI9vb2cHZ2LtJgryR/6TPeixHPGjFLYjwhBLKyspCYmIiUlBT4+fmZqHdERETaKlSoAAByArKoYmNjLXoLI+OV/JiMx3jWjunh4SF/FxJRycXkox7u7u5IS0tDfHw84uLiitRWafjSZ7zSHc8aMUtyPHt7e/j5+cHNzc0k7REREekiSRJ8fX3h4+MjT/dRFAsWLMDKlStN0DPGs0Y8a8RkPMazZkw7Ozte8UhUSjD5qIcpB3sl/Uuf8Up/PGvELKnxFAoFb7UmIiKLUk8JVFRPnz6Fg4ODCXrEeNaIZ42YjMd4JSEmERV/TD4WwBSDvRfhS5/xSnY8a8Qs7fGIiIiIiIiIiKtdExERERERERERkZkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGZh1eTjrFmzIEmSxqN27dr5brNjxw7Url0bDg4OaNCgAX755RcL9ZaIiIiIShuOR4mIiIjMy+pXPtarVw+PHj2SH8ePH9db9+TJkwgLC8OIESNw/vx59OjRAz169MDly5ct2GMiIiIiKk04HiUiIiIyH6snH21tbVGhQgX5Ua5cOb11v/zyS3Tu3Bnvv/8+6tSpg08//RRNmzbF8uXLLdhjIiIiIipNOB4lIiIiMh+rJx9v3LiBihUromrVqhg4cCDu3r2rt+6pU6cQEhKiUdapUyecOnXK3N0kIiIiolKK41EiIiIi87G1ZvBWrVph48aNqFWrFh49eoTZs2ejbdu2uHz5MlxdXbXqP378GOXLl9coK1++PB4/fqw3RkZGBjIyMuSfk5KSTLcDRERERFSiWWI8CnBMSkRERC8uSQghrN0JtYSEBFSuXBlffPEFRowYofV8mTJlsGnTJoSFhcllX331FWbPno0nT57obHPWrFmYPXu2Vnnnzp1hZ2dnus7nIyIiAi1btrRILGvFZLySHc8aMRmP8Yp7TMYr2fGsEdOS8bKysrBv3z4kJibCzc3NIjFfFOYYjwIv5piU8Up+TMZjvOIek/FKdjxrxGQ80zFqPCqKmebNm4tp06bpfC4gIEAsXrxYo+zjjz8WDRs21Nteenq6SExMlB/37t0TAERiYqIpu52v0NBQi8WyVkzGK9nxrBGT8RivuMdkvJIdzxoxLRkvMTHR4uOZF4mpx6NCvJhjUsYr+TEZj/GKe0zGK9nxrBGT8UzHmPGo1ed8zC0lJQUxMTHw9fXV+Xzr1q1x8OBBjbIDBw6gdevWetu0t7eHm5ubxoOIiIiISBdzjEcBjkmJiIjoxWXV5OOUKVNw5MgR3L59GydPnkTPnj2hUCjk21gGDx6M6dOny/UnTZqEffv2YdGiRbh27RpmzZqFM2fOYPz48dbaBSIiIiIqwTgeJSIiIjIvqy44c//+fYSFheHp06fw9vbGK6+8gj///BPe3t4AgLt378LG5t/86Msvv4wtW7ZgxowZ+PDDD1GjRg3s2bMH9evXt9YuEBEREVEJxvEoERERkXlZNfm4bdu2fJ8/fPiwVlmfPn3Qp08fM/WIiIiIiF4kHI8SERERmVexmvORiIiIiIiIiIiISg8mH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyi2CQf582bB0mSMHnyZL11srKy8Mknn6BatWpwcHBAo0aNsG/fPst1koiIiIhKNY5JiYiIiEyrWCQfIyMjsXr1ajRs2DDfejNmzMDq1auxbNkyXL16FaNHj0bPnj1x/vx5C/WUiIiIiEorjkmJiIiITM/qyceUlBQMHDgQa9euhaenZ751N2/ejA8//BBdunRB1apVMWbMGHTp0gWLFi2yUG+JiIiIqDTimJSIiIjIPKyefBw3bhy6du2KkJCQAutmZGTAwcFBo8zR0RHHjx83V/eIiIiI6AXAMSkRERGRedhaM/i2bdtw7tw5REZGGlS/U6dO+OKLL9CuXTtUq1YNBw8exK5du6BUKvVuk5GRgYyMDPnnpKSkIvebiIiIiEoPjkmJiIiIzEcSQghrBL537x6aN2+OAwcOyPPqBAcHo3HjxliyZInObeLi4vD222/jxx9/hCRJqFatGkJCQrB+/XqkpaXp3GbWrFmYPXu2Vnnnzp1hZ2dnsv3JT0REBFq2bGmRWNaKyXglO541YjIe4xX3mIxXsuNZI6Yl42VlZWHfvn1ITEyEm5ubRWKWVhyTMl5JiWeNmIzHeMU9JuOV7HjWiMl4pmPUeFRYye7duwUAoVAo5AcAIUmSUCgUIjs7W++2aWlp4v79+0KlUokPPvhA1K1bV2/d9PR0kZiYKD/u3bsnAIjExERz7JZOoaGhFotlrZiMV7LjWSMm4zFecY/JeCU7njViWjJeYmKixcczpRXHpIxXUuJZIybjMV5xj8l4JTueNWIynukYMx612m3XHTt2RFRUlEbZsGHDULt2bUydOhUKhULvtg4ODvDz80NWVhZ27tyJvn376q1rb28Pe3t7k/WbiIiIiEoPjkmJiIiIzMtqyUdXV1fUr19fo8zZ2RleXl5y+eDBg+Hn54e5c+cCAE6fPo0HDx6gcePGePDgAWbNmgWVSoUPPvjA4v0nIiIiopKPY1IiIiIi87LqgjMFuXv3Lmxs/l2QOz09HTNmzMDNmzfh4uKCLl26YPPmzfDw8LBeJ4mIiIioVOOYlIiIiKjwilXy8fDhw/n+HBQUhKtXr1quQ0RERET0wuGYlIiIiMh0bAquQkRERERERERERGQ8Jh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMotgkH+fNmwdJkjB58uR86y1ZsgS1atWCo6MjAgIC8M477yA9Pd0ynSQiIiKiUo1jUiIiIiLTsrV2BwAgMjISq1evRsOGDfOtt2XLFkybNg3r16/Hyy+/jOjoaAwdOhSSJOGLL76wUG+JiIiIqDTimJSIiIjI9Kx+5WNKSgoGDhyItWvXwtPTM9+6J0+eRJs2bTBgwAAEBgbitddeQ1hYGCIiIizUWyIiIiIqjTgmJSIiIjIPqycfx40bh65duyIkJKTAui+//DLOnj0rD+xu3ryJX375BV26dDF3N4mIiIioFOOYlIiIiMg8rHrb9bZt23Du3DlERkYaVH/AgAGIj4/HK6+8AiEEsrOzMXr0aHz44Yd6t8nIyEBGRob8c1JSUpH7TURERESlB8ekREREROYjCSGENQLfu3cPzZs3x4EDB+R5dYKDg9G4cWMsWbJE5zaHDx9G//79MWfOHLRq1Qp///03Jk2ahLfffhszZ87Uuc2sWbMwe/ZsrfLOnTvDzs7OZPuTn4iICLRs2dIisawVk/FKdjxrxGQ8xivuMRmvZMezRkxLxsvKysK+ffuQmJgINzc3i8QsrTgmZbySEs8aMRmP8Yp7TMYr2fGsEZPxTMeo8aiwkt27dwsAQqFQyA8AQpIkoVAoRHZ2ttY2r7zyipgyZYpG2ebNm4Wjo6NQKpU646Snp4vExET5ce/ePQFAJCYmmmW/dAkNDbVYLGvFZLySHc8aMRmP8Yp7TMYr2fGsEdOS8RITEy0+nimtOCZlvJISzxoxGY/xintMxivZ8awRk/FMx5jxqNVuu+7YsSOioqI0yoYNG4batWtj6tSpUCgUWtukpqbCxkZzmkp1PaHnAk57e3vY29ubqNdEREREVJpwTEpERERkXlZLPrq6uqJ+/foaZc7OzvDy8pLLBw8eDD8/P8ydOxcAEBoaii+++AJNmjSRb3GZOXMmQkNDdQ4MiYiIiIjywzEpERERkXlZdcGZgty9e1fjrPKMGTMgSRJmzJiBBw8ewNvbG6Ghofjss8+s2EsiIiIiKs04JiUiIiIqvGKVfDx8+HC+P9va2iI8PBzh4eGW6xQRERERvVA4JiUiIiIyHZuCqxAREREREREREREZj8lHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIisyg2ycd58+ZBkiRMnjw533oJCQkYN24cfH19YW9vj5o1a+KXX36xTCeJiIiIqFTjmJSIiIjItGyt3QEAiIyMxOrVq9GwYcN862VmZuLVV1+Fj48Pvv/+e/j5+eHOnTvw8PCwTEeJiIiIqNTimJSIiIjI9KyefExJScHAgQOxdu1azJkzJ9+669evxz///IOTJ0/Czs4OABAYGGiBXhIRERFRacYxKREREZF5WP2263HjxqFr164ICQkpsO7evXvRunVrjBs3DuXLl0f9+vXx3//+F0qlUu82GRkZSEpK0ngQEREREeXGMSkRERGReVj1ysdt27bh3LlziIyMNKj+zZs38ccff2DgwIH45Zdf8Pfff2Ps2LHIyspCeHi4zm3mzp2L2bNna5X369dPPlNtbhEREejWrZtFYlkrJuOV7HjWiMl4jFfcYzJeyY5njZiWjJeVlWWROC8KjkkZryTEs0ZMxmO84h6T8Up2PGvEZDzTMWo8Kqzk7t27wsfHR1y8eFEuCwoKEpMmTdK7TY0aNURAQIDIzs6WyxYtWiQqVKigd5v09HSRmJgoP+7duycAiMTERJPshyFCQ0MtFstaMRmvZMezRkzGY7ziHpPxSnY8a8S0ZLzExESLj2dKK45JGa+kxLNGTMZjvOIek/FKdjxrxGQ80zFmPGq1Kx/Pnj2L2NhYNG3aVC5TKpU4evQoli9fjoyMDCgUCo1tfH19YWdnp1Fep04dPH78GJmZmShTpoxWHHt7e9jb25tvR4iIiIioxOKYlIiIiMi8rJZ87NixI6KiojTKhg0bhtq1a2Pq1KlagzwAaNOmDbZs2QKVSgUbm5zpKqOjo+Hr66tzkEdERERElB+OSYmIiIjMy2oLzri6uqJ+/foaD2dnZ3h5eaF+/foAgMGDB2P69OnyNmPGjME///yDSZMmITo6Gj///DP++9//Yty4cdbaDSIiIiIqwTgmJSIiIjIvqy44U5C7d+/KZ5MBICAgAPv378c777yDhg0bws/PD5MmTcLUqVOt2EsiIiIiKs04JiUiIiIqvGKVfDx8+HC+PwNA69at8eeff1qmQ0RERET0wuGYlIiIiMh0rHbbNREREREREREREZVuTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZRbFJPs6bNw+SJGHy5Ml662zcuBGSJGk8HBwcLNdJIiIiIirVOCYlIiIiMi1ba3cAACIjI7F69Wo0bNiwwLpubm64fv26/LMkSebsGhERERG9IDgmJSIiIjI9q1/5mJKSgoEDB2Lt2rXw9PQssL4kSahQoYL8KF++vAV6SURERESlGcekREREROZh9eTjuHHj0LVrV4SEhBhUPyUlBZUrV0ZAQAC6d++OK1eu5Fs/IyMDSUlJGg8iIiIiotw4JiUiIiIyD0kIIawVfNu2bfjss88QGRkJBwcHBAcHo3HjxliyZInO+qdOncKNGzfQsGFDJCYmYuHChTh69CiuXLkCf39/ndvMmjULs2fP1irv3Lkz7OzsTLk7ekVERKBly5YWiWWtmIxXsuNZIybjMV5xj8l4JTueNWJaMl5WVhb27duHxMREuLm5WSRmacYxKeOVhHjWiMl4jFfcY0acOI6W9WpZLt6V65aNF32L7xnGK7bxjBmPWi35eO/ePTRv3hwHDhyQ59UpaKCXV1ZWFurUqYOwsDB8+umnOutkZGQgIyND/jkpKQkBAQEWHax369YNe/futUgsa8VkvJIdzxoxGY/xintMxivZ8awR05LxkpKS4O7uzuSjCXBMynglJZ41YjIe4xX3mN3atcbeL7RP7Jgt3rvhlo33yXK+Zxiv2MYzZjxqtQVnzp49i9jYWDRt2lQuUyqVOHr0KJYvX46MjAwoFIp827Czs0OTJk3w999/661jb28Pe3t7k/WbiIiIiEoPjkmJiIiIzMtqyceOHTsiKipKo2zYsGGoXbs2pk6dWuAgD8gZGEZFRaFLly7m6iYRERERlWIckxIRERGZl9WSj66urqhfv75GmbOzM7y8vOTywYMHw8/PD3PnzgUAfPLJJ3jppZdQvXp1JCQk4PPPP8edO3fw1ltvWbz/RERERFTycUxKREREZF5WSz4a4u7du7Cx+XdB7mfPnuHtt9/G48eP4enpiWbNmuHkyZOoW7euFXtJRERERKUZx6REREREhVesko+HDx/O9+fFixdj8eLFlusQEREREb1wOCYlIiIiMh2bgqsQERERERERERERGY/JRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCxsrd0BIiIiIiIiIiJzSEu3wapd/rj5wAlV/VIx+s37cHRQ6SwHkG/dqBgXLN5SKd82HB1UVt5jouKHyUciIiIiIiIiKnXS0m3Q5q2WuBjtCoVCQKmUsPmXivh9xRmEjGuuUb7pp4qABETd0F9XwAFTltTS28bmXyrixLoIJiCJ8uBt10RERERERERU6qza5Y+L0a5QCQlZ2TZQCQkXo10x/NN6WuWXbrjiUgF1hZDybeNitCtW7fK39m4TFTtMPhIRERERERFRqXPzgRMUCqFRplAIneWSlPMwpG5B5USkiclHIiIiIiIiIip1qvqlQqnUzCgqlZLOciFyHobULaiciDQVm+TjvHnzIEkSJk+ebFD9bdu2QZIk9OjRw6z9IiIiIqIXB8ekRESlx+g376NRzWTYSAJ2tirYSAKNayZj/cwrWuWNaiSjYQF1JUnk20bjmsnywjVE9K9iseBMZGQkVq9ejYYNGxpU//bt25gyZQratm1r5p4RERER0YuCY1IiotLF0UGFE+sidK5Irasc0L3atbru0u3pmNjver5tcLEZIm1Wv/IxJSUFAwcOxNq1a+Hp6VlgfaVSiYEDB2L27NmoWrWqBXpIRERERKUdx6RERMVPWhqweDEwYULOv2lpmuVRMS5YvKUS0tJtkJZug8VbKmHC57XlMqv0WU8/ikv/iKzB6lc+jhs3Dl27dkVISAjmzJlTYP1PPvkEPj4+GDFiBI4dO1Zg/YyMDGRkZMg/JyUlFam/RERERFT6cExKRFS8pKUBbdoAFy8CCgWgVAKbNwO//w6EhOSUC+GAKUtqYdNPFQEJiLrhCoVCQKmUsPmXivh9xRmEjGuOi9EFlxvShkBOvKK0kbv8xLoIXilJLwRJiLxTqlrOtm3b8NlnnyEyMhIODg4IDg5G48aNsWTJEp31jx8/jv79++PChQsoV64chg4dioSEBOzZs0dvjFmzZmH27Nla5Z07d4adnZ2J9iR/ERERaNmypUViWSsm45XseNaIyXglO97xk6dRt35zi8UDgKuXz1g05t/Xzpbq17C0x7NGTEvGy8rKwr59+5CYmAg3NzeLxCzNOCZlvJIQzxoxGY/xjI554jha1qtlkrZuPnDElZsuWuUVvDLw+Km9OiIA/fuoWbfg8oLb+Dde4dv4V72qKajql6Z3u4gr1012PA0REX2L32uMZzBjxqNWu/Lx3r17mDRpEg4cOAAHB4cC6ycnJ2PQoEFYu3YtypUrZ3Cc6dOn491335V/TkpKQkBAALZv326xwXq3bt2wd+9ei8SyVkzGK9nxrBGT8Up2vFeCu2LB0h0WiwcAH0zsY9GY82b0L9WvYWmPZ42YloyXlJQEd3d3i8Qq7TgmZbySEs8aMRmP8YyO2a419n6hfaKlMCZ8XhvRd/2Rlf3v7cl2tip4ez7H00Tn/5V3A7AXNlLONVUqIeVTN/9yw9rIiVe0Nv4tb9/8Ppa9f03vMej2brjJjqchun2ynN9rjGcwY8ajVks+nj17FrGxsWjatKlcplQqcfToUSxfvhwZGRlQKBTyczExMbh9+zZCQ0PlMpUq5/JkW1tbXL9+HdWqVdOKY29vD3t7w85GEBEREdGLhWNSIqLiqapfKpRKSaNMqZRQ1S8VV2I0r4jUdT+nvrrFrQ2iF4HVZjjt2LEjoqKicOHCBfnRvHlzDBw4EBcuXNAY5AFA7dq1tep369YN7du3x4ULFxAQEGClPSEiIiKikopjUiKi4mn0m/fRqGYybCQBO1sVbCSBxjWTsX7mFblckgRsJIFGNZLRsIC6BZUb0oY6XlHayF2uXmGbqLSz2pWPrq6uqF+/vkaZs7MzvLy85PLBgwfDz88Pc+fOhYODg1Z9Dw8PANAqJyIiIiIyBMekRETFk6ODCifWRWDVLn/cfOCEqn6pGP3mfY3ypdvTMbHfdTmJl19dQ8oLaiN3vMK2kbec6EVg9dWu83P37l3Y2HD5eSIiIiKyHo5JiYisw9FBhXcG3NVbfuhMisbz+dU1tNyYeIVpg+hFVKySj4cPH87357w2btxotr4QERER0YuJY1IiIvNJS7fReQWgrnJA91WE6rpRMS5YvKWSQXVNHa+wbRjTj7zxiEqqYpV8JCIiIiIiIqLSKS3dBm3eaomL0a5QKASUSgmbf6mI31ecQci45hrlm36qCEhA1A39dQUcMGVJLYPqmjJeUdowph+5451YF8EEJJVYTD4SERERERERkdmt2uWPi9GuUAkJquyclawvRrti+Kf1tMov3XAFAAjorwtIEJAMqmvKeEVpw5h+5I63apc/b9umEouT1xARERERERGR2d184ASFQmiUKRRCZ7kk5TxMXbckt0FUUjH5SEREJpOVnoWIzWexf+5BRGw+i6z0LLNsQ0REREQlT1W/VCiVmpk1pVLSWS5EzsPUdUtyG0QlFZOPRERkElnpWfhmyDYcXHQE57+/hIOLjuCbIdvyTSYWZhsiIiIiKplGv3kfjWomw0YSsLNVwUYSaFwzGetnXtEqb1QjGQ0LqCtJwuC6poxXlDaM6UfueOqFaIhKIs75SEREJnF+xyXEXo+DEAIiO+d0bez1OJzfcQktBzUz2TZEREREVDI5OqhwYl2EzlWfdZUDuleOVtdduj0dE/tdN6iuqeMVtg1j+pE3HlFJxeQjERGZxLP7CZAUkpxEBABJIeHZ/QSTbkNERERExV9auo3OZBsVHo8plVRMPhIRkUl4+ntAKDUnqBFKAU9/D5NuQ0RERETFW1q6Ddq81RIXo12hUAgolRI2/1IRv684g5BxzQ0q3/RTRUACom7oryvggClLahlU15TxitKGMf0oKN7mXyrixLoIJiCp2GPykYiITKJJn4aI+ukqYq/H5VzNqBTwqe2NJn0amnSbgmSlZ+H8jkt4dj8Bnv4eaNKnIewc7ArdHhEREREZZ9Uuf1yMdoVKSFBl5yyocjHaFcM/rWdw+aUbrgAAAf11AQkCkkF1TRmvKG0Y04+C4l2MdsWqXf54Z8Bdk712RObA5CMREZmEnYMdBm/qb1TirzDb5Ee9gE3uZGbUT1cxeFN/JiCJiIiILOTmAycoFEJOkgGAQiGMKpf+97+5V342Rd3S2AZRccfVromIyGTsHOzQclAzdJreES0HNTMo4VeYbfTJvYCNKlsFIYS8gA0RERERWUZVv1QolZJGmVIpGVUuhGYCzlR1S2MbRMUdk49ERGRxWelZiNh8FvvnHkTE5rPISs8ySbvqBWxy4wI2RERERJY1+s37aFQzGTaSgJ2tCjaSQOOayVg/84rB5Y1qJKNhAXUlSRhc15TxitKGMf0oKF7jmsny6thExRlvuyYiIosy563RXMCGiIiIyPocHVQ4sS5C58rMxpQDyLfu0u3pmNjvukF1TR2vsG0Y0w9D4nGxGSoJmHwkIiKLyn1rtMjOSRSqb41uOahZkdo2xwI2RERERGQ8RweVzoVQjC3Pr+6hMykaz1s6XmHaMKYfhsYjKu6YfCQiIotS3xqtTjwCprs12tQL2BARERFRwdLSgFWrgKgYFyzeUinfKwDT0m0MLi+oDWvGK2wbxvSjKPGIihMmH4mIyKJMeWt0VnqWzkRjUa+gJCIiIiLDpKUBbdoAFy8CQjhgypJa2PRTRUACom64QqEQUColbP6lIn5fcQYh45rjYnTB5Ya0IWCdeEVpw5h+FDbeiXURTEBSsVJsFpyZN28eJEnC5MmT9dZZu3Yt2rZtC09PT3h6eiIkJAQRERGW6yQRERVZkz4N4VPLG5IkwcbWBpIkFerWaPXckQcXHcH57y/h4KIj+GbINpMtXkNELyaOSYmIjLNqVU7iUaUChJCgEhIu3XDFpWhXqISErGwbqISEi9GuGP5pPVw0sNyQNqwVryhtGNOPwsZbtcvf2m8LIg3FIvkYGRmJ1atXo2HD/P/wPHz4MMLCwnDo0CGcOnUKAQEBeO211/DgwQML9ZSIiEyhbqdaqNiwAlzLu6Bigwqo+1oto9vIPXekKlsFIYQ8dyQRUWFwTEpEZLybNwGFQrNMknIeuSkUAjcfOEGhEAaVG9OGpeMVlzbyq0tUnFg9+ZiSkoKBAwdi7dq18PT0zLfut99+i7Fjx6Jx48aoXbs21q1bB5VKhYMHD1qot0REVBTqqxUPLz2GBxcfIfFBEh5ceoRDXx4z+qpF9dyRuZlq7kgievFwTEpEVDhVqwJKpWaZEDmP3JRKCVX9UqFUSgaVG9OGpeMVlzbyq0tUnFg9+Thu3Dh07doVISEhRm+bmpqKrKwslC1bVm+djIwMJCUlaTyIiMg6/r1aUfs5Y69adCvvClW25lw2hZ07koiIY1IiosIZPRpo1AiwsQEkScBGEmhUIxkNaybDRhKws1XBRhJoXDMZ62deQSMDyw1pw1rxitKGMf0obDz1QjRExYUkhK4/AS1j27Zt+OyzzxAZGQkHBwcEBwejcePGWLJkiUHbjx07Fvv378eVK1fg4OCgs86sWbMwe/ZsrfLOnTvDzs4yq59GRESgZcuWFollrZiMV7LjWSNmaY93/ORp1K3f3GLxrl4+UyLixd2IR+KjJOj61SNJEtzKu0CZpUJWehbsHOzgU8sbCjuFVkyhUuHeuQfIeJ6p0Ya9cxkENPWDZFP0c2uWPqZ/Xztbqj8T/F4zraysLOzbtw+JiYlwc3OzSMzSjGNSxisJ8awRk/FKeLwTx9GynvFT2xSGUgXceeSImw+iUNWvASr7pgHIKXueroCzgxKVfdOgsPm3riHlBbVhzXiFbcOYfhQlXmFERN/i9xrjGcyY8ajVVru+d+8eJk2ahAMHDugdpOVn3rx52LZtGw4fPpzv9tOnT8e7774r/5yUlISAgABs377dYoP1bt26Ye/evRaJZa2YjFey41kjZmmP90pwVyxYusNi8T6Y2KdExIvYfBYHFx2BgI7zXgKwibf592rG54DtWVuM/20knDwcNWJGbD6Lg8e126nerCp6fv4G7Bw0/5DXtyq2OfaxsObN6F+qPxP8XjOtpKQkuLu7WyRWaccxKeOVlHjWiMl4JTxeu9bY+4X2SQ9zSEu3wapd/li6fQJGdF8mX3m3apc/bj5wQlW/VIx+8z4cHVRyXUPKC2rDmvEK24Yx/ShKvMLo9slyfq8xnsGMGY9aLfl49uxZxMbGomnTpnKZUqnE0aNHsXz5cmRkZECRd9ba/1m4cCHmzZuH33//vcAJwe3t7WFvb2/SvhMRUeE06dMQUT9dRez1WK1br8u4lEFmiuaVjNkZ2fg5fD/6fNlDo1w936PI1mzk76M38c2QbRi8qb+cXFTPMxl7PS5nG6VA1E9XNeoQ0YuLY1IioqJJS7dBm7da4mK0KwQcMGVJLWz6qSIgAVE3XKFQCCiVEjb/UhG/rziDkHHNcTG64HJD2rBWvKK0YUw/ChvvxLqIQicgiczBasnHjh07IioqSqNs2LBhqF27NqZOnap3kLdgwQJ89tln2L9/P5o3t9ztcEREVHR2DnYIW90bP4fvz1kYRgB+DX3hXa0cLuyJQvzfT7W2uXf+ASI2n4VQqeQrGJ9cj4VKqXtApZ47suWgZgA0V8VWJyvz1iGiFxfHpERERbNqlz8uRrtCJSQAEgQkXLrhCgAQkKDKzlkk5WK0K4Z/Wk+uW1C5IW1YK15R2jCmH4WNt2qXP94ZcLeIryyR6Vgt+ejq6or69etrlDk7O8PLy0suHzx4MPz8/DB37lwAwPz58/Hxxx9jy5YtCAwMxOPHjwEALi4ucHFxsewOEBGRUbLSs3Bm63n8ufEM0hLSclaqVgEKOwVem9YBd87c05l8TE9Kx+8LD+N2mbtY3mkN0hLSc5ZL0zdjsQRc/OEygJwrLXVdJclVsYlIjWNSIqKiufnACQqFkJNfACD9739z3+miUAiddfWVG9OGpeMVlzbyq0tUnFh9tev83L17F48ePZJ/XrlyJTIzM9G7d2/4+vrKj4ULF1qxl0RE1pOVnoWIzWcRdyMeEZvPIis9y9pd0kl96/OhL48hLSFnYmyhFBBC4Mm1WJzfcQldZ3eCrb2Oc2L/G0xlZypzEo8AkM9dJEIlEB/zFAcXHcE3Q7bBrYIrhFIzU8lVsYnIGByTEhHpV9UvFUqlpFEmBLSm2FEqJZ119ZUb04al4xWXNvKrS1ScFKvk4+HDhzVWFTx8+DA2btwo/3z79u2c2+byPGbNmmXxvhIRWZs6oXdw0REkPkqSk23FKQGZlZ6FUxsisObNjXhyLVbv1YqP/nqMyz9eRb0udVCumhfs3QybF01SSHD0dIQkSZBs/h2MCVXO74fY63GAAHxqeUOSJNjY2kCSJPjU9kaTPrrnZyspCV0iMh+OSYmIDDf6zftoVDMZNpKAJAnYSAKNaiSj4f/K7GxVsJEEGtdMxvqZV+S6BZUb0oa14hWlDWP6Udh46oVoiIoLq912TURERaMxl+H//jPVXIaFWR1aVxubBm/NSQAW4K9913H1l+vygjDO5ZyQgYwCtxNKgZcG58y1FvHtOTyPf67xvKSQkPQkGYM39Tdof3IvTpOInIQuF6chIiIi0s/RQYUT6yL+tzpzOib2u57vKszquoaUF9SGNeMVtg1j+lGUeETFCZOPREQllLnmMjTV6tDnd1xCbHTBiUcAUP3vtmj1vqTEPc+vuszO0Q5KpRLXDtzA86fa26hvr7ZzsDMoIWvOhC4RERFRaeXooMI7A+7i0JkUjYVOdC16oq5raHl+da0drzBtGNOPosQjKk6YfCQiKqE8/T3MMpdhUVaHzn3F5JPrcZCgf10YU8hOz8LR5Sf1Pp/f7dW6cHEaIiIiIv3S0m10XmWnLo+KccHiLZXyvSKvoDYMuaqvOMQrbBvG9MMc8YisgclHIqISqkmfhoj66WrOFYr/+8/YZJuu26sLm4DLe8WkKtv8g5u8E2yrSZIEv8YVEbaql1FXa5oroUtERERU0qWl26DNWy1xMdoVCoWAUilh8y8V8fuKMwgZ1xwXo10h4IApS2ph008VAQmIuqG/bkHlhrRhrXhFacOYfpg63ol1EUxAklUw+UhEVELZOdjJcxlGb/kRHQcEGTU3o77bq+t2rlWoBJyuKyatqXbHGhrHwpB5LE2R0CUiIiIqjVbt8sfFaFeohARVds5CfxejXTH803pyOSBBQMKlG64AAAH9dQsqN6QNa8UrShvG9MPU8Vbt8uct2mQVTD4SEZVg6rkMv48sZ/SchPpur67bqRZ8anlrJCULSsBlpWfh2sFoiLw3WUuAZCNpJTPNRZIkCAiUq+4FZZYS++cehKe/B+qH1sXWUd8XOI9lURO6RERERKXVzQdOUCiEnMwCAIVC6CyX/ve/ue9S0VfXFG1YOl5xaaMw8YisgclHIqIXlL7bq/OuDu1WwRXKLCW2jv4egIQaQVUhVDm3a2SlZ+HM1vM4tSES6Ynp2kEELJJ4VCcUBQQggH/uPMPhpccgKWwglAKnvzmD5NiUnC4VMI9lURK6RERERKVVVb9UKJWSRplSKaGqXyquxLholOuaGkdfXVO0Yel4xaWNwsQjsgYba3eAiIjMKys9CxGbz2L/3IOI2HwWWelZAPKf31CdgOvwTjtc+eUajq44ifvnH+L++Qc4tOQY7p17gNSENHwzZBsOLTmmO/FoKVKuBOf//lFmKiEEoMpWQQiB5NgUSDaag2UuJENERERkuNFv3kejmsmwkQTsbFWwkQQa10zG+plX5HJJErCRBBrVSEbDAuoWVG5IG9aKV5Q2jOmHqeOpF6ghsjRe+UhEVIrpm9dx8Kb+mvMb6rm9+szW84iNjtNqN+N5Jn6auQ9PrsVacnd0E/+7tVul/wpLXc/nnscyNSENP4fvR8KDRHj4uaPr7E7m7DERERFRiePooMKJdRE6V1BWly/dno6J/a7nuwpzQW0YspJzcYhX2DaM6Yc54hFZA5OPRESlmL55HdW3G+e+vTrvIixZ6Vn4c+MZvW3f+vOORfahIC7eznge/zz/SkLAxccFz+OeayVaUxPSsPy1NcjOyAYAxN2Ix/LX1kDZTGmB3hMREREREZVuTD4SEZVi+uZ1VN9urL69WpfzOy4hLSFNb9vKzOKRnPOp6Y1HWSqkJaTJiUVbe1soM7PlOR99ansjbFVvXP7xqlaidc/Un+XEo1p2RjZir2tf8UlERET0okpLt0Gbt1riYrQrFAoBpVLC5l8q4vcVZxAyrjkuRrtCwAFTltTCpp8qAhIQdUN/3YLKDWnDWvGK0oYx/TB1vBPrInj1I1kFk49ERKVYfvM65paVnqV1BaScuCzCgjHuFd2Q+DCp0Nsb4uaJ27Cx/XcKYzdfNzTsVhd2DnZIepKskWjUlWhNeJCos1313JhERERElHNr78VoV6iEJK+ifDHaFcM/rSeXAxIEJFy64QoAENBft6ByQ9qwVryitGFMP0wdb9Uuf7wz4G6h3wNEhcXkIxFRKWbIvI765oWs1bFGvvMoGiKloNuhTUSVnXMGVygFkh4l4fjqP+Hi7Yy3vh8CJw/HfLf18HNH3I14rXL17edEREREBNx84ASFQsjJLABQKITOcul//5t7NWZ9dU3RhqXjFZc2ChOPyBq42jURUSlm52CHwZv6o+N7QWjSuyE6vheEwRv7ayTWcs8LqV4d+sm1WPy5MVJePbqwrHlrdkrcc3zd5xukJqTh1PoIfDN0KzYN3orvJuzGr3MOyCt/d53dCbb2mufibO1t4VPL20o9JyIiIip+qvqlQqmUNMqUSklnuRCaCbH86pqiDUvHKy5tFCYekTUw+UhEVMqpbzfuNL0jWg5qpnVFn/r26rwyn2dqldnoqAcA5ap5maazJpYcm4J1vTfh0JfHcP/8Qzy4+BB/H72J8zsu4eCiw/hmyDbYOdhi/G8jUSO4GrxrlEON4GoY/9tIKOwU1u4+ERERUbEx+s37aFQzGTaSgJ2tCjaSQOOayVg/84pcLkkCNpJAoxrJaFhA3YLKDWnDWvGK0oYx/TB1PPXq2ESWxtuuiYhecLrmhdRHpaOeo6cj6r5eC2e3XcDz+OJ3NjUlTvet30Jorvzd58selu0YERERUQni6KDCiXURWLXLHzcfOKGqXypGv3lfo3zp9nRM7HddTnLlV9eQ8oLasGa8wrZhTD/MEY/IGorNlY/z5s2DJEmYPHmy3jpXrlxBr169EBgYCEmSsGTJEov1j4iotGrSpyF8anlDkiSNhVsMlZGcgWMrTuL50+KXeCxI7pW/s9KzELH5LPbPPYiIzWchVBycEb2IOCYlIspZ2XrxlkqY8HltLN5SCWnpxSZ1QEXE15asoVhc+RgZGYnVq1ejYcOG+dZLTU1F1apV0adPH7zzzjsW6h0RUemmnhfyzJbzuHE0BslPUoxaoVq92EtJpF75W9eiO/ecHyIrPYsLzxC9QDgmJSLKSU61easlLka7QqEQUColbP6lIn5fcQYh45rnWy7ggClLamHTTxUBCYi6YXwb6nJD2rBWvKK0YUw/LBFv8y8VcWJdBK+KJLOyevIxJSUFAwcOxNq1azFnzpx867Zo0QItWrQAAEybNs0S3SMiemFc3X8dsddjtSatLvFsAOgYS0kS5JW/cy+6I7JzDkBmSoZ8SzYRlX4ckxIR5Vi1yx8Xo12hEpK8WvLFaFcM/7RegeWABAEJl264AgAEjG9DXW5IG9aKV5Q2jOmHJeJdjHbFql3+eGfA3UK8W4gMY/Xra8eNG4euXbsiJCTELO1nZGQgKSlJ40FERP/KSs/Cnqk/48m1Uph4BLQSj3ZOdmjUswE6vhcsr/ytc9Ed6d9bsomo9OOYlIgox80HTlAoNAeFCoUwqlySch6WasPS8YpLG6aIpy4nMierXvm4bds2nDt3DpGRkWaLMXfuXMyePVurvF+/frCzs8ytdBEREejWrZtFYlkrJuOV7HjWiFna4/197SzmzehvsXhXL5/BBxP7GL2dUKlw7/xDZKRkGLVdAu4jEt8aHa8oTBYzFbh01Bm2p21ht9sW7hXdkPgwCfHZT5F7KJYg7mNn5DwcnLiq6DEN8Pe1s6X6M8HvNdPKysqySJwXBcekjFcS4lkjJuOV8HhXrqPbu+FGb3fzgSOysl00yrKygbhnGcjKti+gPAJAN6h0nNA2vI0chrVhnXhFa8OYfpg/XlY2cOhMCrq9m4aI6Fv8XmM8gxkzHrVa8vHevXuYNGkSDhw4AAcHB7PFmT59Ot59913556SkJAQEBGD79u1wc3MzW9zcunXrhr1791oklrViMl7JjmeNmIxnWq8Ed8WCpTuM3i5i81kcPH4EAsZd8hiJb9ECA42OVxQmjfkUsLG1gVAK+Nh5I2x9b2wd9b3GnI8XnXdgxZZfLDbn47wZ/Uv1e5Tfa6aVlJQEd3d3i8Qq7TgmZbySEs8aMRmvhMdr1xp7v9A+6VEQXXM+Nq6ZjAM65gvMWy7QDRJ+QMPqyRB55iI0tA11uSFtWCteUdowph+WiNe4ZjKO/2/Ox26fLOf3GuMZzJjxqNWSj2fPnkVsbCyaNm0qlymVShw9ehTLly9HRkYGFApFkePY29vD3t6+4IpERC8g9e3G6nkOXyTqhXJir8fh8o9XMXhTf5zfcQnP7ifA098D/5w+wcVmiF4AHJMSEWlydFDhxLoIrNrlj5sPnFDVLxWj37xvUPnS7emY2O86Rr95HwAK1Ubu8oLasGa8wrZhTD8sFY+LzZC5WS352LFjR0RFRWmUDRs2DLVr18bUqVNNMsgjIqL8efp7QCi1E49OZZ2Q+k+qFXpkeZJCwtPb/2gkHpv0aYjvI60+LTIRWQDHpERE2hwdVDoXICmo/NCZFI3nC9NGXsU5XmHaMKYfloxHZE5WSz66urqifv36GmXOzs7w8vKSywcPHgw/Pz/MnTsXAJCZmYmrV6/K///gwQNcuHABLi4uqF69umV3gIioFGjSpyEu7b2C2Og4jXJnLydICgnP455bqWeWo8pW4e+jN3FhZ5R8y3XUT1chvHkGmOhFwDEpEZG2tHQbnVfHFVQeFeOCxVsq5XtFnjFtF9SGNeMVtg1j+mGpeLzykczNqgvOFOTu3buwsfn3ypOHDx+iSZMm8s8LFy7EwoULERQUhMOHD1uhh0REJZudgx3qdamN2BtxyD3tY9yNeFRtE4i7yRnITs+2XgctwMXbGSlxKRAC8u3nsdfjkJiVsxJtVnqW1lWR+d2ObWx9Iir+OCYloheJrjkfN/9SEb/rmC8wb7mAA6YsqYVNP1UE8sxFaGgb6nJD2rBWvKK0YUw/LBFv8y8VceJ/cz4SmUuxSj7mHazl/TkwMBBCvHjzkhERmVPS42TYKGzkORDVbp64jTLOpT9p5l7RDanP0iBy7b+kkJCVlo2s9Cx8M2SbxkI0UT/lzA+pK6FobH0iKp44JiWiF9mqXf64GO0KlZCgypYAABejXTH803oFlgMSBCRcuuEKABAwvg11uSFtWCteUdowph+WiHcx2hWrdvnzVmwyK05oRUT0gnOr4KqVeFTLfJ5l4d5Ylo2tDSQbSWveS6EUsHO0xfkdlxB7PQ5CCKiyVRBCIPZ6HM7vuKSzPWPrExERERU3Nx84QaHQHBspFMKocknKeViqDUvHKy5tmCKeupzInJh8JCJ60b3AF++oslWo0a4afGp5Q5KknGSkJMGntjfcK7rJq4HnJikkPLufoLM9Y+sTERERFTdV/VKhVGqOZ5RKyahyIXIelmrD0vGKSxumiKcuJzInJh+JiF5wSU+StRJmLwoXb2c0H9AEgzf1R8f3gtCkd0N0fC8IYat6I/FhEp5cj9O6KlQoBTz9PXS2p2v18PzqExERERU3o9+8j0Y1k2EjCdjZqmAjCTSumYz1M68UWC5JAjaSQKMayWhYyDbU5Ya0Ya14RWnDmH5YIl7jmsnywjVE5lKs5nwkIiLLcyvvqpUwe1FkpmZi6+jvUaNdNTQfkLN4xJkt57G6xwbEPXuKh7aP5LqSQgJUgE9tbzTp01Bne036NETUT1c15nzMrz4RERFRcePooMKJdRE6V0QuqHzp9nRM7Hc931WYjWm7oDasGa+wbRjTD0vF42IzZG5MPhIRvcCy0rNwZd81a3fDajKfZ+H++Ye4f/4hLv/8FySFhNjrcfLz8lWPEuDX0Be1O9aUV6/Wt6r14E39udo1ERERERHR/zD5SET0Aju/4xLiouO1n5Dwws0FGfe3juPwPzYKG5Sv5YOWg5oBKHhVa3U9IiIiopImLd0Gbd5qiYvRrlAoBJRKCZv/v727D4+qutf/f+/JM+QBEKKQIBQkIGjAiviLtGoFFPFEOH6lPlCjVdui8ZTaclqoWEClcFq14tECR1ApbYqForUUQaUGC4gBGkkMNUFQeRCMVUlCICGZWb8/MJEhk2QmmT17Jnm/rmuuY1bWrHuNjZPP+WT2Xuv66PWnd2hs7sgWx43iNf2JwVq+to9kScV7Al+jYdyfNZzKa88agewjFHkr1vXRlqUFfPoRtqL5CACdWMMBKab+jE5jJ2s8tubM+zaefqp1w7+7hlOtaTwCAIBItnhNunaVJcljLHnqT90XfFdZku58eFir45IlI0tFe5IkSUaBr9Ew7s8aTuW1Z41A9hGKvF1lSVq8Jl3337q/DT8tgH84cAYAOjFfB6TgDFbT+zxyqjUAAOio9h3qoqgo7/owKsoENG5Zpx6hWiPUeeGyRjDyGsYBO9F8BIBO7KLJmUod3MvpbYSfL4u4hO4Juvze0Rp69WD9/TdvqmDFTtXV1HGqNQAA6LAGpB2X2+3d0XK7rYDGjTn1CNUaoc4LlzWCkdcwDtiJ5iMAdGINB6QMunKg01sJH5aUPqKPeg08Sz946bsq3bhH+U9uVuHqIm18bJN+d/tKXZA9VKmDe8myLLmiXbIsi1OtAQBAhzD1hoManlEll2UUE+2RyzIakVGlZx8saXXcsoxcltHwQVXKbOMaDeP+rOFUXnvWCGQfocgbkVHVeGo2YBfu+QgAnVxMfIwm/c91XgeoeOo9slyWjKeTXJJtnTpUxriNUof00o1PTNLmO5/V6h+9pE9KyyUjr3s7vvvX3ZxqDQAAOqSEeI+2LC3Q4jXp2neoiwakHdfUGw76Nf7kCzX64U2ljc2stqxx+nhraziZ19Y1AtlHqPI4bAZ2o/kIAB1YXU1diw2y078/eMwgJfbqqsojVeqWlqIxP7lCv7/rTzpWfszBVxACLil9eB+dPThV3dO76YLsofrjD1br33s/00Hr4yaH7zTc25FTrQEAQEeVEO/xeQBJa+Nv7Djm9f22rHGmcM5ryxqB7COUeYCdaD4CQAdVV1Pn9WlG4zYqXnvqE3sx8TFNvu+pP/UXTyvK0r/f/0yVR6p0x+9v1R9/sFqfffC5w6/GRh5pyJiMxkZiwYqdp06ylnye+s29HQEAQEd3osbl89NxrY0X703Ub/LObfETeYGs3doaTua1dY1A9hGqPD75CLvRfASADqpwVdGpJpoxXpcMF64q0qjbLvb5fUmNB6mUl5bruSl/UPWn1Y7sv10s+Wwc+pLQPcH3Sdb1Zyz55VGC3NsRAAB0ZCdqXBp99yjtKktSVJSR221pxbo+ev3pHRqbO7LFcaN4TX9isJav7SNZUvGewNdoGPdnDafy2rNGIPsIRd6KdX20ZWkBDUjYiuYjAHRQDU200xuLDZcMN/f90xkpMhuPkt+NR0n6/24fKenUJx6/OHhUlUeqGj8FerrkPklKSk3UoMs5nAcAAHRci9eka1dZkjzGkqf+1B9fd5Ul6c6Hh7U6LlkyslS0J0mSZBT4Gg3j/qzhVF571ghkH6HI21WWpMVr0rkUG7ai+QgAHVT39G6Nn2JscPolw76+7z3Zxs2Fiei4aA2bcP4Zl6d7FB0XLdVKrmiXPPWnvq78uFJVnxzToXcOa/eG0sbL1wEAADqSfYe6KCrKNDanJCkqygQ0/uUFIzKn1ZN2rhHqvHBZIxh5DeOAnVz+Tvz444/t3IcWLFggy7L0ox/9qMV5q1at0pAhQxQfH68LL7xQ69ats3VfABCpLpqcqdTBvWRZllzRLlmW5XXJcMP3ZbWyUAdWX1uvDb/c2Hj5uafeI2Mk98l6JZ7VVRfdmKlBVw6U+2S9jNGX3zeNl68DCC2761GJmhQABqQdl9vtXSC63VZA48Z4N8TsXiPUeeGyRjDyGsYBO/ndfBw2bJjy8vJs2cT27du1ZMkSZWa2fA+trVu36pZbbtFdd92lwsJCTZo0SZMmTdK7775ry74AIJLFxMcoZ/nNGvOTK3TRjZka85MrlPP8V5/Wa/h++og+nboB2XiPx9NYUS5Fx0XrmpljlHxOkqwo1xnf/+rydQChY2c9KlGTAoAkTb3hoIZnVMllGcVEe+SyjEZkVOnZB0taHbcsI5dlNHxQlTLbuEbDuD9rOJXXnjUC2Uco8kZkVDUeXAPYxe/LrufNm6cf/OAHevHFF7VkyRL16NEjKBs4duyYpkyZomeeeUaPPPJIi3MXLlyo8ePH67//+78lSQ8//LBee+01PfXUU1q8eHFQ9gMAHUlMfEzjKc7NfX/ImAwdeuewTGe4ztqHE1+caHKPR+M2ikk49SuytcvXAYSOXfWoRE0KAA0S4j3asrTA54nIrY0/+UKNfnhTaYunMAeydmtrOJnX1jUC2Ueo8jhsBnbz+5OP9957r4qKivTZZ59p6NCh+utf/xqUDeTm5uq6667T2LFjW5371ltvNZl3zTXX6K233mr2ObW1taqsrPR6AAC+4uvy7IbGW2dQ/VnTy0xSh/RSSp9kSa1fvg4gdOyqRyVqUgAAALtYxpx5h4DWPfXUU7r//vt1/vnnKzra+/9B/ec//+n3OitXrtS8efO0fft2xcfH68orr9SIESP0xBNP+JwfGxur5cuX65Zbbmkc++1vf6u5c+fqk08+8fmcOXPmaO7cuU3Gx48fr5iY0BwUUFBQoFGjRoUky6lM8iI7z4nMjp63eevbGnrByJDl7X53R7vyjMejio8rVXeiXjEJ0fK4jT778PNm5x/VQXVTepvz2iJUma4ol/pfeq5KSwsb/52e+e8npU+yLJfff7/zy/vv7ezQ/03wvhZcdXV1Wr9+vSoqKpScnBySzHATrHpUoiYlLzLynMgkL8LztmzWqGGDA36e2yNtfqe7KqujZVlGxlhK7lqvyzKPamtRtxbHpQJJo5TctV6S2rTG6eOtreFkXlvXCGQfocr7xogvFOWSCso+4H2NPL8FUo8G/NGWjz76SGvWrFH37t01ceLEJsWevw4cOKBp06bptddeU3x8fJvW8MfMmTP14x//uPHryspK9e3bVy+88ELIivXrr79eL7/8ckiynMokL7LznMjs6HnfuPI6/erJVSHL++kPJ/udV1dTp8JVRfri4FF1T++miyZnNt4HsuF7n334ufZU79WxT6t9rrFdf9AlmhK0/fsjZJluaexlV2p1zIKQ/m+4YNbNHfq/Cd7XgquyslIpKSkhyQpHwapHJWpS8iInz4lM8iI87/Isvfx40z96tOY3eedq/dbBkqzGw0yOHTeKiy3XseOpLY5L10t6WVXVDZ9xCnyNhnF/1nAqrz1rBLKPUOQdO240dlSp7r91v65/6Cne18jzWyD1aECV2jPPPKOf/OQnGjt2rEpKStSrV682bVCSdu7cqfLycn39619vHHO73XrzzTf11FNPqba2VlFRUV7POeecc5r8NfmTTz7ROeec02xOXFyc4uLi2rxPAIh0pzcbk89JUsm69/Tpnn/LirJk3EbFa3crZ/nNkqTf3b5S5aWfyoqy5Kn3KDYxViePnXT4FQRfQvcEJaTE6/MPv/D5fQ6TAcJXMOtRiZoUAM6071AXRUUZeeq/OpAvKsoENG59+Y+nX2dp5xqhzguXNYKR1zAO2Mnva8bGjx+vn/3sZ3rqqae0Zs2adhd6Y8aMUXFxsd55553Gx8iRIzVlyhS98847TYo8ScrKytLGjRu9xl577TVlZWW1ay8A0FHV1dTpd7ev1MbHNqlwdZHeWPgPlZd9KmOMPPUeGWNUXvqpClcVaUdeoT55r7zxe5I6ZOMxJS1FP3jpu3KfdDc7h8NkgPAU7HpUoiYFgDMNSDsut9vyGnO7rYDGjfFuiNm9RqjzwmWNYOQ1jAN28rv56Ha7VVRUpJycnKAEJyUl6YILLvB6dO3aVWeddZYuuOACSVJOTo5mzpzZ+Jxp06Zp/fr1euyxx/Tee+9pzpw52rFjh+67776g7AkAOprCVUUqL/2q2ejrQGsrytJnH32ubb/bEfoNBpPV+hRJksco73urVPGx78MeYhJiOEwGCFPBrkclalIAONPUGw5qeEaVXJZRTLRHLstoREaVnn2wpNVxyzJyWUbDB1Ups41rNIz7s4ZTee1ZI5B9hCJvREZV46nZgF38vuz6tddes3MfPu3fv1+u027of9lllykvL0+zZs3Sz3/+cw0aNEgvvfRSY2EIAPD2xcGjpy6vrm/+bDHjNjr2abVOHD0Rwp3ZwEg9B56lf+/9rMVpFYcrpcPNf39UzsWN98AEEF6cqEclalIAnUtCvEdblhZo8Zp07TvURQPSjmvqDQf9Gn/yhRr98KbSxmZWW9Y4fby1NZzMa+sagewjVHkJ8Z6Q/oyh82n73bltkJ+f3+LXkjR58mRNnjw5NBsCgAjXPb2bjNt349EV7ZJxG6UO6aXEnl3linI1Xm4diawoS3FdY+WKcclT1/bXseeNvbrsztCe8gcgvFCTAujsEuI9uv/W/QGPv7HjmNf327LGmcI5ry1rBLKPUOYBdgqr5iMAIDgaT63+6HN17dVVx8qPNTYbe2X01LDxQ1T5SVXjadeFq4qabVJGCuM2OlR82Oel5YH4dM+/VbiqKDibAgAAiEAnalw+Px3X2njx3kT9Ju/cFj+RF8jara3hZF5b1whkH6HK45OPsBvNRwDoYBoOmWk4tdq4PUpKTdR5lw/QWf176KLJmU0uK74ge6i2/W6HjpUfO3XvRKOv/m8kCXC/lmXJnHGXbivK4rRrAADQaZ2ocWn03aO0qyxJUVFGbrelFev66PWnd2hs7sgWx43iNf2JwVq+to9kScV7Al+jYdyfNZzKa88agewjFHkr1vXRlqUFNCBhK5qPANDBnH7ITMO9Ho99Wq2z+vfQqNsubjK/rqZOf/zB6lONR+mrBl6kNR4D1KN/d7nrPKo4VOE1btzm1GnXLdwXEgAAoKNavCZdu8qS5DGWPPWnTvTbVZakOx8e1uq4ZMnIUtGeJEmSUeBrNIz7s4ZTee1ZI5B9hCJvV1mSFq9J51Js2Mrv064BAJGh4ZCZ07X0ab6GZmVnU/FxZZPGoyT1yujp12nXdTV1KlixUxvmb1TBip2qq6mzY5sAAAAhte9QF0VFef8VOirKBDRuWaceoVoj1HnhskYw8hrGATvRfASADsbXITONn+bzwVezsoEVZSlteG/FJHS805/dJ91tfm7Dpe0bH9ukwtVF2vjYJv3u9pU0IAEAQMQbkHZcbrd3beh2WwGNG3PqEao1Qp0XLmsEI69hHLATzUcA6GAumpyp1MG9ZFmWXNEuWZal1CG9mv00X0snYssjZXzrPKVm9LRxx+Hl07LWD5w5/dJ2T71HxhiVl37KQTUAACDiTb3hoIZnVMllGcVEe+SyjEZkVOnZB0taHbcsI5dlNHxQlTLbuEbDuD9rOJXXnjUC2Uco8kZkVDUeXAPYhXs+AkAEaTjF+ouDRxtPqj7z8JiY+BjlLL+51XkNLpqcqeK1u/XJe+Ve45Z16hLkknXvqbys81yW7c+BMw2fFm24p6a/zwMAAAh3CfEebVla4PNE5NbGn3yhRj+8qbTFU5gDWbu1NZzMa+sagewjVHkcNgO70XwEgAjR9BRro+K1u5Wz/OYmc2PiY3weLuPL6c3Kzz78XMf+Xa3EXl3VLS1F+3ce1N5/fBDsl+KIrmd10XlXDFDxy7vlqW++wPLUe1o9cCbQS9sBAAAiSUK8hwNIAAQNzUcAiBC+TrH291Lf1j4xGRMfo4smZ6pwVZFc0S4ln52kklfe61AH0XTp0UW9BvRs/hLzL1lRli7IHqrV25uf0/Bp0dMbwS1d2g4AABDpTtS4NPruUdpVlqSoKCO329KKdX30+tM7NDZ3pHaVJckoXtOfGKzla/tIllS8p/m5rY37s4ZTee1ZI5B9hCJvxbo+2rK0gE8/wlY0HwEgQrT1Ut+WPjHZ0IA8c05Lnww8XUyXaNUdr2/zawqlbmkpXk1DWZLxNG1EGrfRrheLW1wr0EvbAQAAIt3iNenaVZYkj7HkqT91aMmusiTd+fCwxnHJkpGloj1JkiSj5ue2Nu7PGk7ltWeNQPYRirxdZUlavCadT7rCVjQfASBCtHipbwuXCPv6xOQn75XrpZ/9TZP+5zrFxMf4nNOa6Lgoefyc6zTLZem6udd4X2L+0ecqfnm36mubNk/fem67TGbLDdhALm0HAACIdPsOdVFUlGlsWklSVJTxOW59+Y+nn8Tc3NxgrBHqvHBZIxh5DeOAnTjtGgAiRKCnWDdo+MTkmfbk79Xvbl+pupq6Zue0pL7WLfdJd0DPcco377lMXbolSPqqaXjtrHHqf+m5PufXVNToyO5ybZi/UQUrdqqupi6U2wUAAAg7A9KOy+32rhfdbsvnuDHeDbGW5gZjjVDnhcsawchrGAfsRPMRACJEw6f2xvzkCl10Y6bG/OQK5Tx/c6uX+vr6xGSDhntGtjQn3HQ9K7C/zJ59fqouzblYdTV1Klix06uhmHR2YrPPO/ZZtQpXF2njY5sam7QAAACd1dQbDmp4RpVcllFMtEcuy2hERpWefbCkcdyyjFyW0fBBVcpsZW5r4/6s4VRee9YIZB+hyBuRUdV4ajZgFy67BoAI0pZLfRvuc/jJe+VNvtdwz8ir7r+8yQEqvTJ6qraqVhUfVwZr+0FR/bn/f5ntOfAs5Tx/6jRwX/e9HDp+cIvPb7j3ZUOTlsusAQBAZ5UQ79GWpQVavCZd+w510YC045p6w0Gv8SdfqNEPbyptbGa1NNef8dbWcDKvrWsEso9Q5XHYDOxG8xEAOriGT0y+9LO/aU/+Xq/vNdwzsrkDVPK+tyrsmo8K4AOadSdO6vVf5+vYv6sbm6+nnxQ+9JrBSh3cq9VTvf052AcAAAAIdwnxHg6XQcjRfASATiAmPkaT/ue6Jp/+O/2ekWd+qrKupk4Vh8Os8Rigio+rVLi6yOf3rChLlZ9U6fbf3aIdfyzUnk37JBnFJcZp7z8+8JrbeLAPAABAJ3WixqXRd4/SrrIkRUUZud2WVqzro9ef3qGxuSO1qyxJRvGa/sRgLV/bR7Kk4j3Nz21t3J81nMprzxqB7CPYeVuWFvApRzjC0Xs+Llq0SJmZmUpOTlZycrKysrL0yiuvtPicJ554QoMHD1ZCQoL69u2r+++/XzU1NSHaMQBErkDvGVm4qkjV/65uMh7bNUb9RvZVbNdYu7dsq9M/9Zn13VHKef5m5Tx/i254NFtnD0mVJQV0sA+AyEQ9CgD+WbwmXbvKkuQxlurqXfIYS7vKknTnw8Max42x5DGWivYkqaiVua2N+7OGU3ntWSOQfQQ7b/GadKd/jNBJOfrJx/T0dC1YsECDBg2SMUbLly/XxIkTVVhYqGHDhjWZn5eXpxkzZujZZ5/VZZddprKyMt1xxx2yLEuPP/64A68AACJLIPeMPHUCtkum3vuvoyer63TkX59o6DlJ+vfez1pexFJAl0mHgiva1eRTn6draNK+fevvdNElmY2XoLd2sA+AyEQ9CgD+2Xeoi6KijDz1X52WHBVlfI5bX/7j6ScxNzc3GGuEOi9c1mhLHuAER5uP2dnZXl/PmzdPixYt0rZt23wWe1u3btXo0aN16623SpL69++vW265RW+//XZI9gsAnUFdTZ0KVxXpk9Jyedy+L8uorT7ZeuNRCnrj0XJZMh7fi3bt1VXd+iTrUNHhZnN7DjxL/S7p22pDMSY+Rt3Su+mamWOCtXUAYYp6FAD8MyDtuNxuy2vM7bY0IO24SvYmeo0bH7VYc3ODsUao88JljbbkAU5w9LLr07ndbq1cuVLV1dXKysryOeeyyy7Tzp07VVBQIEnat2+f1q1bpwkTJjS7bm1trSorK70eAADf6mrq9LvbV2rjY5t0cNfHbWseBvk3S1xSnLr27KquPbood/33lJia6HPeqClf163/N1lnD05tdq2+X0/TNTPHaNRtF/NJRgBN2FWPStSkACLf1BsOanhGlVyWUUy0Ry7LaERGlZ59sKRx3LKMXJbR8EFVymxlbmvj/qzhVF571ghkH8HOazgdGwg1yxhfvfLQKS4uVlZWlmpqapSYmKi8vLwWi7cnn3xS06dPlzFG9fX1mjp1qhYtWtTs/Dlz5mju3LlNxsePH6+YmND8P54FBQUaNWpUSLKcyiQvsvOcyCQvuDZvfVtDLxjZ7nWOHjyqf+/9rNWe41EdVDc1vWdMTHy0omOjdaIyePc+a/j7ekXUx/r6ZaP16fufqfJwpdceLctSSu9k9RrUU8bj0ZHd5Tr2WXWTdXoOPEvd/Dw45v33dnbon5mOnudEZijz6urqtH79elVUVCg5OTkkmR2Z3fWo1DlrUvIiP5O8CM/bslmjhg0O6ppuj/TR4QRV10Spa7xb/XqfUJTrq/F9h4o1IO1C9et9QlLLc/0Zb20NJ/PaukYg+7Ajr8WfmbIPeF8jz2+B1KOONx9Pnjyp/fv3q6KiQqtXr9bSpUu1adMmDR06tMnc/Px83XzzzXrkkUd06aWX6v3339e0adP0ve99Tw8++KDP9Wtra1VbW9v4dWVlpfr27RvSYv3666/Xyy+/HJIspzLJi+w8JzLJC65vXHmdfvXkqnavs2H+RhWuLpKnvuVT8LbrD7pEU5qMf2vaN1X5SZV2vvBO0C+53qE/aMb0ZyRJGx/bpNN/fVmWpTE/uaLxfpYNn+A882Tvlg7YOdOCWTd36J+Zjp7nRGYo8yorK5WSkkLzMUjsrkelzlmTkhf5meRFeN7lWXr58aZ/9LA188ezQ5pJXpDzHnqK9zXy/BZIPeroPR8lKTY2Vuedd54k6eKLL9b27du1cOFCLVmypMncBx98ULfddpvuvvtuSdKFF16o6upqff/739cDDzwgl6tpGz8uLk5xcXH2vggA6ADqaupUeaSq+cZjK4fHpA7upZG3XqTCVUV+NR7jkuNUW1nb+sTGfEtfHDyqq+6/XMVrdzdpLJ5+eEzDoTGFq4r0xcGjHBoDoEV216MSNSmAjuFEjUuL16Rr36EuGpB2XFNvOKiEeE/jePHeRP0m79zGy3tbmuvPeGtrOJnX1jUC2YcdeYATHG8+nsnj8Xj9Vfh0x48fb1LQRUVFSZIc/gAnAES0rz4pWN7sHEtS19REVX9aLUuWLEmJvRJ13uUDdFb/Ho3NvYsmZ6roryUqL/20xcyAGo+SZIy6p3fzu7EYyMneAHA66lEAaOpEjUuj7x6lXWVJiooycrstrVjXR68/vUNjc0dqV1mSjOI1/YnBWr62j2RJxXuan9vauD9rOJXXnjUC2Uew87YsLaABCUc42nycOXOmrr32Wp177rmqqqpSXl6e8vPztWHDBklSTk6O0tLSNH/+fEmnTiN8/PHHddFFFzVe5vLggw8qOzu7segDAASucFWRyks/9Xliniva1fjpwlsW36h3/7pbZXl/1Zhbr2xs+jWckN3QDLz1/yZr7YPr9f6b+9q9t4b82K5xjZ9upLEIIFioRwHAP4vXpGtXWZI8xpKn/tRduXeVJenOh4c1jkuWjCwV7UmSJBk1P7e1cX/WcCqvPWsEso9g5y1ek677b93f5p8BoK0cbT6Wl5crJydHhw8fVkpKijIzM7VhwwaNGzdOkrR//36vvyzPmjVLlmVp1qxZOnTokHr16qXs7GzNmzfPqZcAAB3CFwePnrqEuf60+yhGWUrL7K2zB6d6fbpw1G0Xa/X2ni3eX7F47W6dMzRVlsuS8fj3SaCo2Ci5T7qbjPe5sLeGjBmkz9/e0uTTjWc2Pbm0GkCgqEcBwD/7DnVRVJRpbGZJUlSU8TluffmPp/9hu7m5wVgj1HnhskZb8gAnONp8XLZsWYvfz8/P9/o6Ojpas2fP1uzZs23cFQB0Pt3Tu8m4z2gSeqQhYzJ8fsLQeDwqWLFTXxw8qsojVSovLZcxamxelpeW64uDR/1uPEpSfHK8Thw94XXPSVe0S2cP7vVlw/Or/+e/rqZOO/IKte13O3Ti6Am5olyNTc+c5f4fKgMA1KMA4J8BacfldlteY263pQFpx1WyN9Fr3NfVNM3NDcYaoc4LlzXakgc4oZWD1gEAncFFkzOVOriXLEuyXKeKysReXXVBdtOTXutq6nSg8GNtfGyTClcXaU/+3qaFj2Xp5LGTAe2h99CzmzRAjfvUfR7PzP/d7Sv1xsJ/6MQXJyQjeeo9MsaovPTTUwfeAAAAIKim3nBQwzOq5LKMYqI9cllGIzKq9OyDJY3jlmXksoyGD6pSZitzWxv3Zw2n8tqzRiD7CHZewwE1QKiF3YEzAIDQi4mP0S1LbtTSyb/TsfJjslyWqsqP6Y8/WN3kk4SFq4p08litjIzXZdqnMx7j85Lr+OR4pQ/vo6MfV+jf+z6TJUtGRqkZvfQfD4/XH3+wusVTrBvymzvMxoo6dSI2AAAAgish3qMtSwt8nqDcMP7kCzX64U2lLZ7C3Noa/pzkHA55bV0jkH3YkQc4geYjAECS9O5fd6v602pJamwaNnyS8PRLr784ePTUDWZaOJwmsVdXVZUfa/L92mO12rv5A/Ua1FPfmvZNVR6p8rpXoz+nWPu6P2UDj9ujT0rLVbBiJ/d/BAAACLKEeA8HlkQI/rdCOKH5CACQ1PyhM2d+krB7ejefN5gZdOVAJZ+TpO7p3XRB9lDlfW+Vysu8P6HY0NT8dM+/FRUdpWtmjvH6vj+nWPu8P2VjgHSo6LAOvXOY+z8CAACEwIkal0bfPUq7ypJkFK/pTwzW8rV9JEsq3pOkqCgjt9vSinV99PrTOzQ2d6R2lbU+7s8aTuW1Z41A9tHWvC1LC/iUI8IKzUcAgCTfTT1f91y8aHKmYhfHyaq2vC6PnvQ/1zU2+upq6iRLpx4++oTtuTz6osmZKl67+9Sl165Te4xJiFHdibrGPUu+P7UJAACA4Fq8Jl27ypLkMaeKPyNLRXuSJElGVuOJy7vKknTnw8Ma57Y27s8aTuW1Z41A9tHWvMVr0vnUI8IKzUcAgCTvpl5L91yMiY9RWmZvnRc7QEcPVahbWoqum3tNk/tCflr2b5+NR8l3U9Nfvi7P/uzDz7XrpXe9Tsrm/o8AAAD223eoi6KiTGPzSzp1hx7J+2KZqCjjc25z44GsEeq8cFmjpblAOKH5CACdRF1NXYv3U/T3not1NXU6VHRY71fvkxVl6d/vf9bkYJpm78toSZasxqZmw54+++hzHfu0Wok9u+qs/j1avV/jmZdnF6zY6denNgEAABBcA9KOy+22vMZ83KFHbrelAWnHVbI30a/xQNYIdV64rNHSXCCcuJzeAADAfnU1dfrd7Su18bFNKlxdpI2PbdLvbl956vLo0zQ09a6ZOUajbrvYZwOw8bRrY+Sp98gY03iJcwOf92W0pPQRfTTmJ1co5/mbJenLPeWrcFWR9uTvVeHqIr3+aL7PvbXkosmZSh3cS5ZlyRXtkmVZPj+1CQAAgOCaesNBDc+okssysiwjl2U0fFCVMr8ci4n2yGUZjcio0rMPljTObW3cnzWcymvPGoHso615DadgA+GCTz4CQCdQuKpI5aWfyhjT+GnEtt4T0ddp12de4tzcJdy3LL6xsaFZsGLnl3tqmhHo3vz91CYAAACCKyHeoy1LC7R4TbqefKFGP7yptLH5tXhNuvYd6qIBacc19YaDXnP9GW9tDSfz2rpGIPtoTx4QTmg+AkAn4O9J1v7wddr1mZc4+9MMbPbS7DbuzZ+TsgEAABB8CfEe3X/rfr2x45jXQSe+Dj1pmOvveEtznc5ryxqB7KM9eUA4ofkIAJ2AvydZ+6O50659HUzTUjPQ56XZ7dwbAAAAwsOJGpfPT+QFMi75/lRfw9zivYn6Td65fs0Ndl5b1whkH/7k8SlHRAKajwDQCfh7krU/YuJj1PeiPhpz6RXtusT5qz2VN7n0mvs1AgAARK4TNS6NvnuUdpUlKSrKyO22tGJdH73+9A6NzR3p1/jytX0kSyre0/xco3hNf2KwX3ODmdeeNQLZR2t5K9b10ZalBTQgEfZoPgJAJxDseyJaLle7L3E+fU+BnnYNAACA8LV4Tbp2lSXJYyx56k+dhL2rLEl3PjzM7/GiPUmSJKPm50qWjCy/5gYzrz1rBLKP1vJ2lSVp8Zp0LrtG2KP5CACdRDjeEzEc9wQAAID22Xeoi6KiTGOTTJKiokxA49aX/3j6FTLBmNsR1wDCncvpDQAAAAAAgI5jQNpxud2W15jbbQU0bkyTMw6DMrcjrgGEO5qPAAAAAAAgaKbecFDDM6rksoxioj1yWUYjMqr07IMlfo8PH1SlzFbmWpbxe24w89qzRiD7aC1vREZV4wE1QDhz9LLrRYsWadGiRfrwww8lScOGDdMvfvELXXvttT7nX3nlldq0aVOT8QkTJuhvf/ubnVsFAABAB0Q9CgDBlxDv0ZalBT5PZg5kXPJ9cnTD3CdfqNEPbyr1a26w89q6RiD78CePw2YQCRxtPqanp2vBggUaNGiQjDFavny5Jk6cqMLCQg0bNqzJ/DVr1ujkyZONX3/22WcaPny4Jk+eHMptAwAAoIOgHgUAeyTEezgIJcj4d4pI5WjzMTs72+vrefPmadGiRdq2bZvPYq9Hjx5eX69cuVJdunSh2AMAAECbUI8CQOicqHFp9N2jtKssSVFRRm63pRXr+uj1p3dobO5Ir/Hla/tIllS8p/m5RvGa/sRgv+YGM689awSyj9Pztiwt4FOOiFhhc9q12+3WqlWrVF1draysLL+es2zZMt18883q2rVrs3Nqa2tVW1vb+HVlZWW79woAAICOx656VKImBQDp1KXEu8qS5DFW46nNu8qSdOfDw5qMF+1JkiQZNT9XsmRk+TU3mHntWSOQfZyet3hNOp96RMSyjDnzHKXQKi4uVlZWlmpqapSYmKi8vDxNmDCh1ecVFBTo0ksv1dtvv61Ro0Y1O2/OnDmaO3duk/Hx48crJiamXXv3V0FBQYt77AiZ5EV2nhOZ5EV23uatb2voBSNDlidJu9/dEdLM99/b2aH/N+zoeU5khjKvrq5O69evV0VFhZKTk0OS2ZHZXY9KnbMmJS/yM8kjL+DMLZs1atjgZr9fvDdRHx2OlzFfndpsWUaJCW4dOxHlNe5L07kFkny/xubWDUZe+9YIZB9f5fXrXaMLBx5rMau9Cso+4H2NPL8FUo863nw8efKk9u/fr4qKCq1evVpLly7Vpk2bNHTo0Baf94Mf/EBvvfWWioqKWpzn66/Mffv2DWmxfv311+vll18OSZZTmeRFdp4TmeRFdt43rrxOv3pyVcjyJOmnP5wc0swFs27u0P8bdvQ8JzJDmVdZWamUlBSaj0Fidz0qdc6alLzIzySPvIAzL8/Sy483/UNLg9/knavpTwz+8lOEp7gso+zLy/XXN1O9xi2dalWc+gRgc3Ovl/Syn3ODl9e+NQLZx1d5j/6o1PZPPl7/0FO8r5Hnt0DqUVdIdtSC2NhYnXfeebr44os1f/58DR8+XAsXLmzxOdXV1Vq5cqXuuuuuVtePi4tTcnKy1wMAAABoYHc9KlGTAoAkTb3hoIZnVMllGcVEe+SyjEZkVOnZB0uajA8fVKXMVuZalvF7bjDz2rNGIPs4Pa/hFGwgEoXNPR8beDwer78K+7Jq1SrV1tbqO9/5Toh2BQAAgM6CehQA7JEQ79GWpQVavCZd+w510YC045p6w8FmxyW1OPfJF2r0w5tK/Zob7Ly2rhHIPs7MAyKVo83HmTNn6tprr9W5556rqqoq5eXlKT8/Xxs2bJAk5eTkKC0tTfPnz/d63rJlyzRp0iSdddZZTmwbAAAAHQT1KACEVkK8x+flw82NtzT3jR3HvL4fyLrByGvLGoHs48w8IFI52nwsLy9XTk6ODh8+rJSUFGVmZmrDhg0aN26cJGn//v1yubyvDC8tLdXmzZv16quvOrFlAAAAdCDUowAQHk7UuPz+FGHD3OK9ifpN3rl+zfVnPJC8tq7h7zjQkTjafFy2bFmL38/Pz28yNnjwYDl8Rg4AAAA6COpRAHDeiRqXRt89SrvKkhQVZeR2W1q+to9kScV7vhpbsa6PXn96h8bmjtSusiQZxWv6E4P9mtvaeCB57VnDn/EtSwtoQKJDCbt7PgIA4IvxeFSwYqe+OHhU3dO76aLJmYqJj3F6WwAAAGinxWvStassSR5jyVN/6uTnoj1Jkk6d+twwtqssSXc+PKxx7qmzoS2/5rY2Hkhee9bwZ3zxmnQut0aHQvMRABD26mrqdKDwY23cvElWlCXjNipeu1s5y2+mAQkAABDh9h3qoqgo09iAkyTry388/YPmUVGm3XPDfY2GcaAjcbU+BQAAZxWuKtLJY7UyxshT75ExRuWln6pwVZHTWwMAAEA7DUg7Lrfb8hozxruJJ0lut9XuueG+RsM40JHQfAQAhL0vDh796k/JX7KirFPjAAAAiGhTbzio4RlVcllGMdEeuSyj4YOqlHnG2IiMKj37YEnjXMsyfs9tbTyQvPas4c94w8E1QEfBZdcAgLBSV1OnwlVFXvd27J7ercmfkY3bnBpv5blclg0AABDeEuI92rK0wO+ToxvmPvlCjX54U6lfc/0ZDySvrWv4Ow50JDQfAQBho66mTr+7faXKSz/1urfjLUtuVOziOFnVVuN46pBeumhyZqvP5b6QAAAA4S8h3uPzkJWOcvBKc6+vuXGgI6H5CAAIG4WrilRe+qmMMTL1pz7pWF76qd796271vaiPxlx6RbOfamzuuYWrijTqtosdeT0AAAAIrhM1Lo2+e5R2lSXJKF7Tnxis5Wv7SJZUvCdJUVFGbrelFev66PWnd2hs7kjtKmt93J81GvICXWPL0gI+zYhOjeYjACBsfHHw6KlPLdZ/dYl1w70dLZerxSZiS88FAABAx7B4Tbp2lSXJYyxJlowsFe1JkiQZWY0nR+8qS9KdDw9rnNvauD9rNOQFusbiNel8uhGdGgfOAADCRvf0bjLu1u/tGOznAgAAIDLsO9RFUVHeNZ9lNTmbUFFRxufc5sbtXgPozGg+AgDCxkWTM5U6uJcsy5Ir2iXLsprc29GO5wIAACAyDEg7Lrfbu8NnTJOzCeV2Wz7nNjdu9xpAZ8Zl1wCAsBETH6Oc5Te36cTq9jwXAAAAkWHqDQe1Yl2fL+/BaGTJKPO8Kpkz7rU4IqNKzz5YorG5CV73ZWxu3J81GvICXaPhFGygs6L5CAAIKzHxMW0+IKY9zwUAAED4S4j3aMvSAi1ek64nX6jRD28qbWzuLV6Trn2HumhA2nFNveGg11x/xltb4/S8QNcAOjOajwAAAAAAIGIkxHt0/6379caOY14Hufg61KVhrr/jLc09My+QNYDOjHs+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWjjYfFy1apMzMTCUnJys5OVlZWVl65ZVXWnzO0aNHlZubq969eysuLk4ZGRlat25diHYMAACAjoR6FAAAwF6OHjiTnp6uBQsWaNCgQTLGaPny5Zo4caIKCws1bNiwJvNPnjypcePGKTU1VatXr1ZaWpo++ugjdevWLfSbBwAAQMSjHgUAALCXo83H7Oxsr6/nzZunRYsWadu2bT6LvWeffVaff/65tm7dqpiYGElS//79Q7FVAAAAdEDUowAAAPYKm3s+ut1urVy5UtXV1crKyvI55+WXX1ZWVpZyc3N19tln64ILLtAvf/lLud3uZtetra1VZWWl1wMAAAA4k131qERNCgAAOi/LGGOc3EBxcbGysrJUU1OjxMRE5eXlacKECT7nDhkyRB9++KGmTJmie++9V++//77uvfde/fCHP9Ts2bN9PmfOnDmaO3duk/Hx48c3/rXabgUFBRo1alRIspzKJC+y85zIJI+8cM8kL7LznMgMZV5dXZ3Wr1+viooKJScnhySzI7O7HpU6Z01KXuRnkkdeuGeSF9l5TmSSFzwB1aPGYbW1tWbPnj1mx44dZsaMGaZnz56mpKTE59xBgwaZvn37mvr6+saxxx57zJxzzjnNrl9TU2MqKioaHwcOHDCSTEVFRdBfS3Oys7NDluVUJnmRnedEJnnkhXsmeZGd50RmKPMqKipCXs90ZHbXo8Z0zpqUvMjPJI+8cM8kL7LznMgkL3gCqUcdveejJMXGxuq8886TJF188cXavn27Fi5cqCVLljSZ27t3b8XExCgqKqpx7Pzzz9eRI0d08uRJxcbGNnlOXFyc4uLi7HsBAAAAiGh216MSNSkAAOi8wuaejw08Ho9qa2t9fm/06NF6//335fF4GsfKysrUu3fvZgs9AAAAIBDUowAAAMHjaPNx5syZevPNN/Xhhx+quLhYM2fOVH5+vqZMmSJJysnJ0cyZMxvn33PPPfr88881bdo0lZWV6W9/+5t++ctfKjc316mXAAAAgAhGPQoAAGAvRy+7Li8vV05Ojg4fPqyUlBRlZmZqw4YNGjdunCRp//79crm+6o/27dtXGzZs0P3336/MzEylpaVp2rRp+tnPfubUSwAAAEAEox4FAACwl6PNx2XLlrX4/fz8/CZjWVlZ2rZtm007AgAAQGdCPQoAAGCvsLvnIwAAAAAAAICOgeYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFo42HxctWqTMzEwlJycrOTlZWVlZeuWVV/x67sqVK2VZliZNmmTvJgEAANBhUY8CAADYy9HmY3p6uhYsWKCdO3dqx44duuqqqzRx4kSVlJS0+LwPP/xQ06dP1ze/+c0Q7RQAAAAdEfUoAACAvRxtPmZnZ2vChAkaNGiQMjIyNG/ePCUmJmrbtm3NPsftdmvKlCmaO3euBgwYEMLdAgAAoKOhHgUAALBX2Nzz0e12a+XKlaqurlZWVlaz8x566CGlpqbqrrvu8mvd2tpaVVZWej0AAACAM9lVj0rUpAAAoPOyjDHGyQ0UFxcrKytLNTU1SkxMVF5eniZMmOBz7ubNm3XzzTfrnXfeUc+ePXXHHXfo6NGjeumll5pdf86cOZo7d26T8fHjxysmJiZYL6NFBQUFGjVqVEiynMokL7LznMgkj7xwzyQvsvOcyAxlXl1dndavX6+KigolJyeHJLMjs7selTpnTUpe5GeSR164Z5IX2XlOZJIXPAHVo8ZhtbW1Zs+ePWbHjh1mxowZpmfPnqakpKTJvMrKStO/f3+zbt26xrHbb7/dTJw4scX1a2pqTEVFRePjwIEDRpKpqKgI9ktpVnZ2dsiynMokL7LznMgkj7xwzyQvsvOcyAxlXkVFRcjrmY7M7nrUmM5Zk5IX+ZnkkRfumeRFdp4TmeQFTyD1aLT9vdCWxcbG6rzzzpMkXXzxxdq+fbsWLlyoJUuWeM3bu3evPvzwQ2VnZzeOeTweSVJ0dLRKS0s1cODAJuvHxcUpLi7OxlcAAACASGZ3PSpRkwIAgM7L8ebjmTwej2pra5uMDxkyRMXFxV5js2bNUlVVlRYuXKi+ffuGaosAAADowKhHAQAAgsfR5uPMmTN17bXX6txzz1VVVZXy8vKUn5+vDRs2SJJycnKUlpam+fPnKz4+XhdccIHX87t16yZJTcYBAAAAf1CPAgAA2MvR5mN5eblycnJ0+PBhpaSkKDMzUxs2bNC4ceMkSfv375fLFTYHcgMAAKCDoR4FAACwl6PNx2XLlrX4/fz8/Ba///zzzwdvMwAAAOh0qEcBAADsxZ9xAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWjjYfFy1apMzMTCUnJys5OVlZWVl65ZVXmp2/Zs0ajRw5Ut26dVPXrl01YsQIrVixIoQ7BgAAQEdCPQoAAGCvaCfD09PTtWDBAg0aNEjGGC1fvlwTJ05UYWGhhg0b1mR+jx499MADD2jIkCGKjY3V2rVr9d3vflepqam65pprHHgFAAAAiGTUowAAAPZytPmYnZ3t9fW8efO0aNEibdu2zWexd+WVV3p9PW3aNC1fvlybN2+m2AMAAEDAqEcBAADsFTb3fHS73Vq5cqWqq6uVlZXV6nxjjDZu3KjS0lJdfvnlzc6rra1VZWWl1wMAAAA4k131qERNCgAAOi/LGGOc3EBxcbGysrJUU1OjxMRE5eXlacKECc3Or6ioUFpammpraxUVFaXf/va3uvPOO5udP2fOHM2dO7fJ+Pjx4xUTExOU19CagoICjRo1KiRZTmWSF9l5TmSSR164Z5IX2XlOZIYyr66uTuvXr1dFRYWSk5NDktmR2V2PSp2zJiUv8jPJIy/cM8mL7DwnMskLnoDqUeOw2tpas2fPHrNjxw4zY8YM07NnT1NSUtLsfLfbbfbs2WMKCwvNo48+alJSUswbb7zR7PyamhpTUVHR+Dhw4ICRZCoqKmx4Nb5lZ2eHLMupTPIiO8+JTPLIC/dM8iI7z4nMUOZVVFSEvJ7pyOyuR43pnDUpeZGfSR554Z5JXmTnOZFJXvAEUo86es9HSYqNjdV5550nSbr44ou1fft2LVy4UEuWLPE53+VyNc4fMWKE/vWvf2n+/PlN7r/TIC4uTnFxcbbsHQAAAJHP7npUoiYFAACdV9jc87GBx+NRbW2tbfMBAACAllCPAgAABI+jn3ycOXOmrr32Wp177rmqqqpSXl6e8vPztWHDBklSTk6O0tLSNH/+fEnS/PnzNXLkSA0cOFC1tbVat26dVqxYoUWLFjn5MgAAABChqEcBAADs5Wjzsby8XDk5OTp8+LBSUlKUmZmpDRs2aNy4cZKk/fv3y+X66sOZ1dXVuvfee3Xw4EElJCRoyJAh+v3vf6+bbrrJqZcAAACACEY9CgAAYC9Hm4/Lli1r8fv5+fleXz/yyCN65JFHbNwRAAAAOhPqUQAAAHuF3T0fAQAAAAAAAHQMNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2cLT5uGjRImVmZio5OVnJycnKysrSK6+80uz8Z555Rt/85jfVvXt3de/eXWPHjlVBQUEIdwwAAICOhHoUAADAXo42H9PT07VgwQLt3LlTO3bs0FVXXaWJEyeqpKTE5/z8/HzdcssteuONN/TWW2+pb9++uvrqq3Xo0KEQ7xwAAAAdAfUoAACAvaKdDM/Ozvb6et68eVq0aJG2bdumYcOGNZn/hz/8wevrpUuX6s9//rM2btyonJwcW/cKAACAjod6FAAAwF6ONh9P53a7tWrVKlVXVysrK8uv5xw/flx1dXXq0aNHs3Nqa2tVW1vb+HVlZWW79woAAICOx656VKImBQAAnZdljDFObqC4uFhZWVmqqalRYmKi8vLyNGHCBL+ee++992rDhg0qKSlRfHy8zzlz5szR3Llzm4yPHz9eMTEx7dq7vwoKCjRq1KiQZDmVSV5k5zmRSR554Z5JXmTnOZEZyry6ujqtX79eFRUVSk5ODklmR2Z3PSp1zpqUvMjPJI+8cM8kL7LznMgkL3gCqkeNw2pra82ePXvMjh07zIwZM0zPnj1NSUlJq8+bP3++6d69u9m1a1eL82pqakxFRUXj48CBA0aSqaioCNZLaFV2dnbIspzKJC+y85zIJI+8cM8kL7LznMgMZV5FRUXI65mOzO561JjOWZOSF/mZ5JEX7pnkRXaeE5nkBU8g9ajjl13HxsbqvPPOkyRdfPHF2r59uxYuXKglS5Y0+5xHH31UCxYs0Ouvv67MzMwW14+Li1NcXFxQ9wwAAICOw+56VKImBQAAnZfjzcczeTwer/vhnOlXv/qV5s2bpw0bNmjkyJEh3BkAAAA6A+pRAACA4HG0+Thz5kxde+21Ovfcc1VVVaW8vDzl5+drw4YNkqScnBylpaVp/vz5kqT/+Z//0S9+8Qvl5eWpf//+OnLkiCQpMTFRiYmJjr0OAAAARCbqUQAAAHs52nwsLy9XTk6ODh8+rJSUFGVmZmrDhg0aN26cJGn//v1yuVyN8xctWqSTJ0/qxhtv9Fpn9uzZmjNnTii3DgAAgA6AehQAAMBejjYfly1b1uL38/Pzvb7+8MMP7dsMAAAAOh3qUQAAAHu5Wp8CAAAAAAAAAIGj+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALCFo83HRYsWKTMzU8nJyUpOTlZWVpZeeeWVFp+zatUqDRkyRPHx8brwwgu1bt26EO0WAAAAHQ31KAAAgL0cbT6mp6drwYIF2rlzp3bs2KGrrrpKEydOVElJic/5W7du1S233KK77rpLhYWFmjRpkiZNmqR33303xDsHAABAR0A9CgAAYC9Hm4/Z2dmaMGGCBg0apIyMDM2bN0+JiYnatm2bz/kLFy7U+PHj9d///d86//zz9fDDD+vrX/+6nnrqqRDvHAAAAB0B9SgAAIC9wuaej263WytXrlR1dbWysrJ8znnrrbc0duxYr7FrrrlGb731VrPr1tbWqrKy0usBAAAAnMmuelSiJgUAAJ1XtNMbKC4uVlZWlmpqapSYmKgXX3xRQ4cO9Tn3yJEjOvvss73Gzj77bB05cqTZ9efPn6+5c+c2Gb/pppsUExPTvs37qaCgQNdff31IspzKJC+y85zIJI+8cM8kL7LznMgMZV5dXV1IcjoLu+tRqXPWpORFfiZ55IV7JnmRnedEJnnBE1A9ahxWW1tr9uzZY3bs2GFmzJhhevbsaUpKSnzOjYmJMXl5eV5jTz/9tElNTW12/ZqaGlNRUdH4OHDggJFkKioqgvo6WpKdnR2yLKcyyYvsPCcyySMv3DPJi+w8JzJDmVdRURHyeqYjs7seNaZz1qTkRX4meeSFeyZ5kZ3nRCZ5wRNIPer4Jx9jY2N13nnnSZIuvvhibd++XQsXLtSSJUuazD3nnHP0ySefeI198sknOuecc5pdPy4uTnFxccHdNAAAADoMu+tRiZoUAAB0XmFzz8cGHo9HtbW1Pr+XlZWljRs3eo299tprzd6TBwAAAAgU9SgAAEDwOPrJx5kzZ+raa6/Vueeeq6qqKuXl5Sk/P18bNmyQJOXk5CgtLU3z58+XJE2bNk1XXHGFHnvsMV133XVauXKlduzYof/7v/9z8mUAAAAgQlGPAgAA2MvR5mN5eblycnJ0+PBhpaSkKDMzUxs2bNC4ceMkSfv375fL9dWHMy+77DLl5eVp1qxZ+vnPf65BgwbppZde0gUXXODUSwAAAEAEox4FAACwl6PNx2XLlrX4/fz8/CZjkydP1uTJk23aEQAAADoT6lEAAAB7hd09HwEAAAAAAAB0DDQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtnC0+Th//nxdcsklSkpKUmpqqiZNmqTS0tIWn1NXV6eHHnpIAwcOVHx8vIYPH67169eHaMcAAADoSKhHAQAA7OVo83HTpk3Kzc3Vtm3b9Nprr6murk5XX321qqurm33OrFmztGTJEv3v//6vdu/eralTp+o///M/VVhYGMKdAwAAoCOgHgUAALBXtJPhZ/6F+Pnnn1dqaqp27typyy+/3OdzVqxYoQceeEATJkyQJN1zzz16/fXX9dhjj+n3v/+97XsGAABAx0E9CgAAYC9Hm49nqqiokCT16NGj2Tm1tbWKj4/3GktISNDmzZubnV9bW9v4dWVlZRB2CgAAgI7Ijnq04TnUpAAAoDOyjDHG6U1Iksfj0fXXX6+jR4+2WLjdeuut2rVrl1566SUNHDhQGzdu1MSJE+V2u70KugZz5szR3Llzm4yPHz9eMTExQX0NzSkoKNCoUaNCkuVUJnmRnedEJnnkhXsmeZGd50RmKPPq6uq0fv16VVRUKDk5OSSZnYFd9ajUOWtS8iI/kzzywj2TvMjOcyKTvOAJqB41YWLq1KmmX79+5sCBAy3OKy8vNxMnTjQul8tERUWZjIwMc++995r4+Hif82tqakxFRUXj48CBA0aSqaiosONl+JSdnR2yLKcyyYvsPCcyySMv3DPJi+w8JzJDmVdRURHyeqYzsKseNaZz1qTkRX4meeSFeyZ5kZ3nRCZ5wRNIPerogTMN7rvvPq1du1ZvvPGG0tPTW5zbq1cvvfTSS6qurtZHH32k9957T4mJiRowYIDP+XFxcUpOTvZ6AAAAAKezsx6VqEkBAEDn5Wjz0Rij++67Ty+++KL+/ve/62tf+5rfz42Pj1daWprq6+v15z//WRMnTrRxpwAAAOiIqEcBAADs5eiBM7m5ucrLy9Nf/vIXJSUl6ciRI5KklJQUJSQkSJJycnKUlpam+fPnS5LefvttHTp0SCNGjNChQ4c0Z84ceTwe/fSnP3XsdQAAACAyUY8CAADYy9Hm46JFiyRJV155pdf4c889pzvuuEOStH//frlcX31As6amRrNmzdK+ffuUmJioCRMmaMWKFerWrVuIdg0AAICOgnoUAADAXo42H40fB23n5+d7fX3FFVdo9+7dNu0IAAAAnQn1KAAAgL3C4sAZAAAAAAAAAB0PzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtHG0+zp8/X5dccomSkpKUmpqqSZMmqbS0tNXnPfHEExo8eLASEhLUt29f3X///aqpqQnBjgEAANCRUI8CAADYy9Hm46ZNm5Sbm6tt27bptddeU11dna6++mpVV1c3+5y8vDzNmDFDs2fP1r/+9S8tW7ZML7zwgn7+85+HcOcAAADoCKhHAQAA7BXtZPj69eu9vn7++eeVmpqqnTt36vLLL/f5nK1bt2r06NG69dZbJUn9+/fXLbfcorffftv2/QIAAKBjoR4FAACwV1jd87GiokKS1KNHj2bnXHbZZdq5c6cKCgokSfv27dO6des0YcIEn/Nra2tVWVnp9QAAAAB8saMelahJAQBA52UZY4zTm5Akj8ej66+/XkePHtXmzZtbnPvkk09q+vTpMsaovr5eU6dO1aJFi3zOnTNnjubOndtkfPz48YqJiQnK3ltTUFCgUaNGhSTLqUzyIjvPiUzyyAv3TPIiO8+JzFDm1dXVaf369aqoqFBycnJIMjsDu+pRqXPWpORFfiZ55IV7JnmRnedEJnnBE1A9asLE1KlTTb9+/cyBAwdanPfGG2+Ys88+2zzzzDOmqKjIrFmzxvTt29c89NBDPufX1NSYioqKxseBAweMJFNRUWHHy/ApOzs7ZFlOZZIX2XlOZJJHXrhnkhfZeU5khjKvoqIi5PVMZ2BXPWpM56xJyYv8TPLIC/dM8iI7z4lM8oInkHrU0Xs+Nrjvvvu0du1avfnmm0pPT29x7oMPPqjbbrtNd999tyTpwgsvVHV1tb7//e/rgQcekMvlfSV5XFyc4uLibNs7AAAAIp+d9ahETQoAADovR5uPxhj913/9l1588UXl5+fra1/7WqvPOX78eJOCLioqqnE9AAAAwF/UowAAAPZytPmYm5urvLw8/eUvf1FSUpKOHDkiSUpJSVFCQoIkKScnR2lpaZo/f74kKTs7W48//rguuugiXXrppXr//ff14IMPKjs7u7HoAwAAAPxBPQoAAGAvR5uPDTflvvLKK73Gn3vuOd1xxx2SpP3793v9ZXnWrFmyLEuzZs3SoUOH1KtXL2VnZ2vevHmh2jYAAAA6COpRAAAAezl+2XVr8vPzvb6Ojo7W7NmzNXv2bJt2BQAAgM6CehQAAMBeTe+GDQAAAAAAAABBQPMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC0ebj/Pnz9cll1yipKQkpaamatKkSSotLW31eUePHlVubq569+6tuLg4ZWRkaN26dSHYMQAAADoS6lEAAAB7RTsZvmnTJuXm5uqSSy5RfX29fv7zn+vqq6/W7t271bVrV5/POXnypMaNG6fU1FStXr1aaWlp+uijj9StW7fQbh4AAAARj3oUAADAXo42H9evX+/19fPPP6/U1FTt3LlTl19+uc/nPPvss/r888+1detWxcTESJL69+9v91YBAADQAVGPAgAA2MvR5uOZKioqJEk9evRods7LL7+srKws5ebm6i9/+Yt69eqlW2+9VT/72c8UFRXVZH5tba1qa2ubZFRWVgZ5982rq6sLaZ4TmeRFdp4TmeSRF+6Z5EV2nhOZocxryDHGhCSvM7GjHpU6Z01KXuRnkkdeuGeSF9l5TmSSFzwB1aMmTLjdbnPdddeZ0aNHtzhv8ODBJi4uztx5551mx44dZuXKlaZHjx5mzpw5PufPnj3bSOLBgwcPHjx48OhwjwMHDthRlnVadtWjxlCT8uDBgwcPHjw65sOfetQyJjz+ZH7PPffolVde0ebNm5Went7svIyMDNXU1OiDDz5o/Mvy448/rl//+tc6fPhwk/ln/pX56NGj6tevn/bv36+UlJTgv5AzVFZWqm/fvjpw4ICSk5Ntz3Mik7zIznMikzzywj2TvMjOcyIz1HnGGFVVValPnz5yuRw9P7BDsaselTpfTUpe5GeSR164Z5IX2XlOZJIXXIHUo2Fx2fV9992ntWvX6s0332yx0JOk3r17KyYmxuuSlvPPP19HjhzRyZMnFRsb6zU/Li5OcXFxTdZJSUkJ2X9QkpScnBzSPCcyyYvsPCcyySMv3DPJi+w8JzJDmReKhlVnYmc9KnXempS8yM8kj7xwzyQvsvOcyCQvePytRx39U7kxRvfdd59efPFF/f3vf9fXvva1Vp8zevRovf/++/J4PI1jZWVl6t27t89CDwAAAGgO9SgAAIC9HG0+5ubm6ve//73y8vKUlJSkI0eO6MiRIzpx4kTjnJycHM2cObPx63vuuUeff/65pk2bprKyMv3tb3/TL3/5S+Xm5jrxEgAAABDBqEcBAADs5ehl14sWLZIkXXnllV7jzz33nO644w5J0v79+72uHe/bt682bNig+++/X5mZmUpLS9O0adP0s5/9zK/MuLg4zZ492+dlL3YIdZ4TmeRFdp4TmeSRF+6Z5EV2nhOZTrxGBIcT9ajU8X9GyYv8TPLIC/dM8iI7z4lM8pwTNgfOAAAAAAAAAOhYOB4RAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFh2u+fjmm28qOztbffr0kWVZeumll1p9Tm1trR544AH169dPcXFx6t+/v5599lnb8v7whz9o+PDh6tKli3r37q0777xTn332mV958+fP1yWXXKKkpCSlpqZq0qRJKi0tbfV5q1at0pAhQxQfH68LL7xQ69atsy3vmWee0Te/+U11795d3bt319ixY1VQUGDr62uwcuVKWZalSZMm2Zp39OhR5ebmqnfv3oqLi1NGRoZf/07bmvfEE09o8ODBSkhIUN++fXX//ferpqbGttdYV1enhx56SAMHDlR8fLyGDx+u9evX+5W3aNEiZWZmKjk5WcnJycrKytIrr7zS7PySkhL9v//3/9S/f39ZlqUnnnjCr5y25q1Zs0YjR45Ut27d1LVrV40YMUIrVqywLe/555+XZVlej/j4eNvyrrzyyiZ5lmXpuuuusy2zPT8vZ1qwYIEsy9KPfvSjZue092emLZnteV9rS97pAn1fa2teW9/X2prXnve1OXPmNPkZHzJkSIvPaevvwbbkBfPnBZGJetQ36tHgZ0ZKTUo96q299WhbMiOtJnWyHpVCX5NSj55CPRq8vHCrRztc87G6ulrDhw/X008/7fdzvv3tb2vjxo1atmyZSktL9cc//lGDBw+2JW/Lli3KycnRXXfdpZKSEq1atUoFBQX63ve+59fzN23apNzcXG3btk2vvfaa6urqdPXVV6u6urrZ52zdulW33HKL7rrrLhUWFmrSpEmaNGmS3n33XVvy8vPzdcstt+iNN97QW2+9pb59++rqq6/WoUOHbMlr8OGHH2r69On65je/2erc9uSdPHlS48aN04cffqjVq1ertLRUzzzzjNLS0mzJy8vL04wZMzR79mz961//0rJly/TCCy/o5z//uW2vcdasWVqyZIn+93//V7t379bUqVP1n//5nyosLGw1Lz09XQsWLNDOnTu1Y8cOXXXVVZo4caJKSkp8zj9+/LgGDBigBQsW6JxzzvHrNbUnr0ePHnrggQf01ltvqaioSN/97nf13e9+Vxs2bLAlT5KSk5N1+PDhxsdHH31k2+tbs2aNV9a7776rqKgoTZ482bbM9vy8nG779u1asmSJMjMzW5zX3p+ZtmS2532tLXkN2vK+1pa89ryvtSWvve9rkjRs2DCvn/XNmzc3O7c9vwfbkhesnxdELurRpqhHg58ZSTUp9ai39tajbcmUIqsmdaoelUJfk1KPnkI9Gty8sKtHTQcmybz44ostznnllVdMSkqK+eyzz0KS9+tf/9oMGDDAa+zJJ580aWlpbcosLy83ksymTZuanfPtb3/bXHfddV5jl156qfnBD35gS96Z6uvrTVJSklm+fLltefX19eayyy4zS5cuNbfffruZOHFiwFn+5i1atMgMGDDAnDx5sk0Zgebl5uaaq666ymvsxz/+sRk9erRtmb179zZPPfWU19gNN9xgpkyZ0qbM7t27m6VLl7Y6r1+/fuY3v/lNmzLaktfgoosuMrNmzbIl77nnnjMpKSltXjvQvDP95je/MUlJSebYsWO2ZQbj56WqqsoMGjTIvPbaa+aKK64w06ZN8+t57fmZaWumMW17Xws0r73va4HkBeN9LZC89r6vzZ492wwfPtzvvbX392CgeWdqz+9BRD7q0VOoR4OfGck1KfVoU+2tR1vL7Ag1qd31qDGhr0mpR79CPRrcvDM5XY92uE8+Burll1/WyJEj9atf/UppaWnKyMjQ9OnTdeLECVvysrKydODAAa1bt07GGH3yySdavXq1JkyY0Kb1KioqJJ3661lz3nrrLY0dO9Zr7JprrtFbb71lS96Zjh8/rrq6uoCeE2jeQw89pNTUVN11110BZwSa9/LLLysrK0u5ubk6++yzdcEFF+iXv/yl3G63LXmXXXaZdu7c2fgR6X379mndunW2/szU1tY2uQwjISGhxb+s+OJ2u7Vy5UpVV1crKysr8M0GKNA8Y4w2btyo0tJSXX755bblHTt2TP369VPfvn1b/Yt0MPJOt2zZMt18883q2rWrbZnB+HnJzc3Vdddd1+S9yk7tyWzL+1qgee19XwskLxjva4HkBeN9bc+ePerTp48GDBigKVOmaP/+/c3ODcbvwUDyztSe34PoHKhHg593pkiqR/3NjOSalHr0K+2tRwPJjNSaNFT1qBT6mpR69CvUo8HNO5Pj9agjLc8QkR9/+b3mmmtMXFycue6668zbb79t/va3v5l+/fqZO+64w5Y8Y4z505/+ZBITE010dLSRZLKzs9vU3Xe73ea6665rtTMfExNj8vLyvMaefvppk5qaakveme655x4zYMAAc+LECVvy/vGPf5i0tDTz6aefGmNMm//S7G/e4MGDTVxcnLnzzjvNjh07zMqVK02PHj3MnDlzbMkzxpiFCxeamJiYxp+ZqVOnBpQVaOYtt9xihg4dasrKyozb7TavvvqqSUhIMLGxsX7lFBUVma5du5qoqCiTkpJi/va3v/n1vLb+xTDQvKNHj5quXbua6OhoExcXZ5YtW2Zb3tatW83y5ctNYWGhyc/PN//xH/9hkpOTzYEDB2zJO93bb79tJJm3337b76y2ZLb35+WPf/yjueCCCxrfI0LxV+b2ZBoT+PtaoHntfV8LNK+972tt+ffZnve1devWmT/96U9m165dZv369SYrK8uce+65prKy0uf89v4eDDTvTG39PYiOgXr0FOrR4GdGak1KPXpKe+vRQDMjsSYNZT1qTOhrUupRb9Sjwc07k9P1aKdvPo4bN87Ex8ebo0ePNo79+c9/NpZlmePHjwc9r6SkxPTu3dv86le/avyhufDCC82dd94ZUJYxxkydOtX069ev1V8YwSr2/M073fz580337t3Nrl27AsryN6+ystL079/frFu3rnGsrcWev69v0KBBpm/fvqa+vr5x7LHHHjPnnHOOLXlvvPGGOfvss80zzzxjioqKzJo1a0zfvn3NQw89FFBeIJnl5eVm4sSJxuVymaioKJORkWHuvfdeEx8f71dObW2t2bNnj9mxY4eZMWOG6dmzpykpKWn1eW0t9gLNc7vdZs+ePaawsNA8+uijJiUlxbzxxhu25Z3u5MmTZuDAgQFdVtPWvO9///vmwgsv9DunrZnt+XnZv3+/SU1N9XqPsLvQa29moO9rgea1932tLa+vPe9rbckL5vuaMcZ88cUXJjk5udlLsYL1e9DfvNO15/cgOgbq0VOoR4ObaUzk1qTUo6e0tx5tS+bpIqEmDVU9akzoa1Lq0aaoR4Obd7pwqEc7ffMxJyfHDBw40Gts9+7dRpIpKysLet53vvMdc+ONN3qN/eMf/zCSzMcff+x3Vm5urklPTzf79u1rdW7fvn2bvBH+4he/MJmZmbbkNfj1r39tUlJSzPbt2/1+TqB5hYWFRpKJiopqfFiWZSzLMlFRUeb9998Pap4xxlx++eVmzJgxXmPr1q0zkkxtbW3Q877xjW+Y6dOne42tWLHCJCQkGLfb7VdeoJkNTpw4YQ4ePGg8Ho/56U9/aoYOHer3c083ZswY8/3vf7/VecG6x46/eQ3uuusuc/XVV4cs78YbbzQ333yzrXnHjh0zycnJ5oknnmhzTqCZbfl5efHFF5v8Nyyp8b/h04sPX9ryM9OezLa8rwWa1973tba8vva8r7UlL1jva6cbOXKkmTFjhs/vBeP3YCB5DdrzexAdB/XoKdSjwc00JjJrUurR5rW3Hm1LZqTVpHbVo8aEvialHqUeNaZz1aOd/p6Po0eP1scff6xjx441jpWVlcnlcik9PT3oecePH5fL5f2vPSoqStKp+320xhij++67Ty+++KL+/ve/62tf+1qrz8nKytLGjRu9xl577TW/70ESaJ4k/epXv9LDDz+s9evXa+TIkX49py15Q4YMUXFxsd55553Gx/XXX69vfetbeuedd9S3b9+gv77Ro0fr/fffl8fjaRwrKytT7969FRsbG/Q8J35mGsTHxystLU319fX685//rIkTJ/r93NN5PB7V1ta26bmhyGvv/gJ5vtvtVnFxsXr37m1r3qpVq1RbW6vvfOc7bc4JNLMtPy9jxoxp8t/wyJEjNWXKFL3zzjuNP+vB1NbMtr6vBZrX3ve1try+9ryvtSWvve9rZzp27Jj27t3b7H9X7fk92JY8qe0/L+icqEeDnydFTj3alkwpsmpS6tHgz2/vGpFYk9pVj0qhr0mpR6lHpU5Wj4a622m3qqoqU1hY2Nipf/zxx01hYaH56KOPjDHGzJgxw9x2221e89PT082NN95oSkpKzKZNm8ygQYPM3XffbUvec889Z6Kjo81vf/tbs3fvXrN582YzcuRIM2rUKL/y7rnnHpOSkmLy8/PN4cOHGx+nX5Jz2223eXW/t2zZYqKjo82jjz5q/vWvf5nZs2ebmJgYU1xcbEveggULTGxsrFm9erXXc6qqqmzJO1MgHwdvS97+/ftNUlKSue+++0xpaalZu3atSU1NNY888ogtebNnzzZJSUnmj3/8o9m3b5959dVXzcCBA823v/1t217jtm3bzJ///Gezd+9e8+abb5qrrrrKfO1rXzNffPFFq3kzZswwmzZtMh988IEpKioyM2bMMJZlmVdffdVnVm1tbeN/Q7179zbTp083hYWFZs+ePX69vkDzfvnLX5pXX33V7N271+zevds8+uijJjo62jzzzDO25M2dO9ds2LDB7N271+zcudPcfPPNJj4+3u9LYgLNa/CNb3zD3HTTTX5ltDezPT8vvpx5iUSwf2baktme97W25J2pvaemtpbXnve1tuS1933tJz/5icnPzzcffPCB2bJlixk7dqzp2bOnKS8v95nXnt+DbckL9s8LIg/1KPVooO/bHb0mpR4Nbj3alsxIq0mdrkeNCX1NSj1KPRrMvHCrRztc8/GNN94wkpo8br/9dmPMqf9grrjiCq/n/Otf/zJjx441CQkJJj093fz4xz/2+/46bcl78sknzdChQ01CQoLp3bu3mTJlijl48KBfeb6yJJnnnnuucc4VV1zRmN/gT3/6k8nIyDCxsbFm2LBhft8cuC15/fr18/mc2bNn2/b6ThfIm2Jb87Zu3WouvfRSExcXZwYMGGDmzZvX6kfx25pXV1dn5syZYwYOHGji4+NN3759zb333uv3L9K2ZObn55vzzz/fxMXFmbPOOsvcdttt5tChQ37l3XnnnaZfv34mNjbW9OrVy4wZM6axSPCV9cEHH/jc35n/3QQr74EHHjDnnXeeiY+PN927dzdZWVlm5cqVfmW1Je9HP/qROffcc01sbKw5++yzzYQJE8w///lP2/KMMea9994zkrzmBSLQzPb8vPhyZqEQ7J+ZtmS2532tLXlnCnaxF8z3tbbktfd97aabbjK9e/c2sbGxJi0tzdx0001el/8E8/dgW/KC/fOCyEM9Sj0a6Pt2R69JqUeDW4+2JTPSalKn69GGjFDWpNSj1KPBzAu3etQypg2fJwUAAAAAAACAVnT6ez4CAAAAAAAAsAfNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AkAQuN1uXXbZZbrhhhu8xisqKtS3b1898MADDu0MAAAAnQH1KIBwZRljjNObAICOoKysTCNGjNAzzzyjKVOmSJJycnK0a9cubd++XbGxsQ7vEAAAAB0Z9SiAcETzEQCC6Mknn9ScOXNUUlKigoICTZ48Wdu3b9fw4cOd3hoAAAA6AepRAOGG5iMABJExRldddZWioqJUXFys//qv/9KsWbOc3hYAAAA6CepRAOGG5iMABNl7772n888/XxdeeKH++c9/Kjo62uktAQAAoBOhHgUQTjhwBgCC7Nlnn1WXLl30wQcf6ODBg05vBwAAAJ0M9SiAcMInHwEgiLZu3aorrrhCr776qh555BFJ0uuvvy7LshzeGQAAADoD6lEA4YZPPgJAkBw/flx33HGH7rnnHn3rW9/SsmXLVFBQoMWLFzu9NQAAAHQC1KMAwhGffASAIJk2bZrWrVunXbt2qUuXLpKkJUuWaPr06SouLlb//v2d3SAAAAA6NOpRAOGI5iMABMGmTZs0ZswY5efn6xvf+IbX96655hrV19dzuQsAAABsQz0KIFzRfAQAAAAAAABgC+75CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGCL/x/d1Ib+AtHfrgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUFNffBvBnKdIUELABCvqzxkqwxQa2WLGhsUbA3nvXBI3GrlHsFWzR2LsiKhgxVjSKsRF7B0URaVLm/YN3JrtsYSlL8/mcw1F2yvfO7uzuw5R7ZYIgCCAiIiIiIiIiIiIiIiKifEcvtxtARERERERERERERERERJnDk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERER5UHJyMpYvX466devC3NwcMpkMMpkMnTp1AgAEBQVJjwUFBWVrbV2um4iIiCg/Y04ioryIJ/uI8ij54KDtz5gxY3K72ZSOpk2bSq/X999/r/Vyrq6uGd4fPn78qLSeO3fuYNGiRWjfvj0cHR1hbGwMU1NTlC1bFj169MDx48ezcWuJiIjyNnV5y8DAAFZWVihbtiyaNGmCsWPHYt++ffjy5UuOtq9nz54YM2YMrl69iujo6BytnV8wWxEREeW+L1++YOfOnejbty8qV64Ma2trGBoawsbGBs7Ozhg6dChOnz6NlJSU3G4qZaMtW7ZIOUlfXx8vXrzQajk/P78M57Bly5YprScqKgo7duyAl5cXatasCQsLCxgaGqJYsWJo2rQplixZojK/ERVUBrndACKir8XTp09x7tw56fczZ87g1atXsLW1zZH6Hh4e2Lp1q8ppT548wZMnT/DHH3+gVatW2LVrFywtLXOkXURERHlNcnIyPnz4gA8fPuDJkyc4f/48li1bhmLFimHUqFGYMmUKDAx0+6fUX3/9hT179gAA2rVrhzFjxqBEiRKQyWQwNzfXaW1tzJw5E7NmzQIACIKQK21gtiIiIsp9+/fvx/jx4/HkyROlae/fv8f79+9x/fp1rF27FhUrVsTSpUvRrl27nG9oOp48eYKyZcsCAHx9feHp6Zm7DcoHtmzZIv0/JSUF27dvx5QpU3Kk9okTJ9C5c2ckJCQoTXv37h2CgoIQFBSExYsX4/fff0fTpk1zpF1EuYkn+4jygaFDh2LYsGHpzmdjY5MDraHM2rZtGwRBgJGREZKTk5GUlITt27dj0qRJGVpPaGioVvOlPRD48uVLAICVlRW6du0KV1dXODo6wsDAADdu3MDSpUtx//59+Pv7w83NDefOnYOeHm8AJyKir0PavPX582d8+PABt27dwpkzZ3D69GlERETgp59+wpEjR3D06FEUK1ZMZ+05ffo0AEBfXx+///67yhN8rq6uOjvRpst1ZxdmKyIiotw1e/Zs/Pzzz9LvLVu2RIcOHfDNN9/A0tISkZGRuH//Po4cOYKAgAA8ePAA06dPz5Mn+zIiP+QkXXv+/LnUhWnhwoXx+fNnbNu2LcMn++bMmYOOHTumO1+pUqUUfn///j0SEhKgp6eHli1bonXr1qhZsyYsLS3x4sUL7NixA3/88QfevHmD9u3b48KFC6hVq1aG2kaU3/BkH1E+ULx4cVSrVi23m0FZtG3bNgBA+/btERcXh+PHj2Pbtm0ZPiCV2X2hdOnSWLduHTw8PGBkZKQwrU6dOujTpw9atWqF4OBgBAcHY/v27ejbt2+mahEREeU36vJWmzZtMHnyZNy5cwd9+vTBjRs3cOXKFXTu3Blnz55FoUKFdNIe8URSiRIl8sSdfHkRsxUREVHu8fX1lU70FS9eHLt374aLi4vSfC1atMDw4cNx+/ZtjB07FhERETndVNIB8aIrQ0NDLF68GEOGDMGdO3dw7do11K5dW+v12NnZZSqLGRoaYvDgwZg2bRrKlCmjMM3JyQlubm5o2LAhRo0ahdjYWIwbNw5nz57NcB2i/ISXFRIR5YBLly7hwYMHAIDevXujT58+AIDbt2/j+vXrOdIGX19fDBo0SOlglMjU1BRr1qyRft+7d2+OtIuIiCg/+Oabb3DhwgU4OTkBAC5cuIBVq1bprJ7YJZGhoaHOauRnzFZERES55+XLlxgxYgQAwMzMDOfOnVN5ok9etWrV4O/vjwkTJuREE0nHxIuu2rRpAw8PD1hYWACA2i7Os1v37t2xdu1apRN98kaOHCmdeDx37hzevXuXI20jyi082UdUQAmCgFatWkEmk8HAwAAXL15UO6+Pj4804K23t7fKeaKjo7FkyRI0a9YMJUuWRKFChWBubg4nJyeMHDkSFy5cULv+5ORkbNmyBe3bt4etrS2MjIxgbW2NRo0aYenSpYiLi9O4LSEhIejfvz8qVqwIMzMzGBsbo3Tp0nB2dsbw4cNx+PBhld0nxMfHw8fHB66urihWrBgMDQ1hZWWFSpUqoU2bNli6dKnKPuV1QQw7RYsWRbt27dCpUycUKVJEYVpeUK1aNak72IcPH+Zya4iIiPIWExMTbNu2DTKZDACwePFiJCYmqp3/zZs3mD59OmrXrg0rKysYGRmhdOnS+OGHH6RuOtMSM5k4BsrTp0+lx8QfUVBQkPSY2I2SOsePH0efPn1Qrlw5KU+VLVsW7u7u8PPzQ2xsrML86tbt5+cHmUwmjdcn32b5H11nLGYrIiKi3PPbb79J2eGXX35B5cqVtVpOT09PukBHleDgYPz4449wdHSEsbExLC0t4eTkhBkzZqR7R+Dr16+xevVqdO3aFRUqVICZmRmMjIxgZ2eHjh074o8//kBKSorKZWUymTReHwB4eXkpZZuZM2dK09PLYJ6enpDJZHB0dAQAfPz4ET///DOqVq0KMzMzWFpaokmTJtixY4fGbRIdOXIErVu3RrFixWBqaoqKFSti4sSJePPmDQDA0dERMpksx8YZvHLlCu7duwcA6NOnD4yNjdG1a1cAwK5duzTm45zm6uoKIHVMwcePH+duY4h0TSCiPCkwMFAAIAAQvL29M7WOV69eCdbW1gIAoVy5csKnT5+U5rl9+7ZgbGwsABDq1asnJCYmKs0TEBAg2NjYSO1R96PK06dPhZo1a2pcrnz58sL9+/dVLr906VJBT08v3drR0dFK2/7NN9+ku9z48eMz8cxmTEJCgmBlZSUAEAYNGiQ97uHhIQAQihcvrvJ5l+fi4qLxec5O5ubmAgChevXqOq9FRESUmzKbt77//ntpuQsXLqicZ/v27YKZmZnGHNK/f3+lDJBedpHPAvLtDwwMVNmOd+/eCc2bN093nb6+vmqfG/l1+/r6atXGx48fa/18ZhSzFRERUe5JSUmRjhGZmZmpPNaUUcnJycLw4cM1ZgsLCwvh1KlTKpdPSkrS6thRy5YtlY4fCYJ2+Us+K6aXwcRM4uDgINy7d09wdHRUu97hw4drfG6GDRumdtmSJUsK169fFxwcHAQAgoeHR0ae9kwTXysLCwshLi5OEATF5+TQoUMal5fPk2kzaHYbOXKkVCskJESntYhyG+/sIyrASpUqhY0bNwIAHj16hFGjRilMT0hIQK9evRAfHw8zMzNs374dBgaKQ3kGBgaiTZs2ePfuHfT19eHp6YkDBw4gJCQEFy5cwIYNG9ClSxeVXUy9f/8ejRo1ws2bN2FkZIQRI0Zgz549uHr1KgIDAzF16lSYmpri33//RZs2bRAVFaWw/K1btzBhwgSkpKSgbNmyWLJkCc6cOYMbN27gzz//xIYNG9CrVy+YmZkp1R45ciTu3LkDIPUqo/379+PSpUu4evUqDh8+jJ9//hk1a9bM0vOrraNHjyIyMlJqi0j8f3h4OE6ePJkjbUnPjRs38OnTJwBAlSpVcrk1REREeVOLFi2k/58/f15p+u7du/Hjjz8iJiYG5cqVw9KlS3Hy5EmEhIRg3759aNu2LQBg06ZNSuPLhYaGIjQ0FB07dgQA2NraSo+JP9qKjY1F06ZNcebMGQCAs7Mz1q1bhwsXLuDatWs4cOAAxo4dC1tbW63X2alTJ4SGhmLo0KFKbZb/sbOz03qdGcVsRURElHv++ecfqTvExo0bS3fWZ8WUKVOk7tHLli2LtWvX4sqVKwgMDMTYsWNhaGiIqKgotG/fHjdv3lRaXvj/3p6aNWuGRYsWSbkrKCgImzdvxnfffQcACAgIwPDhw5WWDw0Nhb+/v/T7nDlzlLLNsGHDMrxdsbGxcHNzw/v37zFjxgwEBQXh2rVr2LBhA+zt7QEAq1atUqgtb+HChVi9ejWA1LGCV61ahcuXL+PPP//E9OnTERUVha5duyr10KBLiYmJ2LVrFwDA3d0dxsbGAAAXFxeULl0aQN7qZeHcuXMAUrvGL1++fC63hkjHcvtsIxGpJn9FzNChQ4XQ0NB0f758+aJyXQMGDJDWtWfPHunxcePGSY9v2LBBabm4uDjB1tZWACCYmpqqvWJcEATh2bNnSo/16tVLupLp0aNHKpe7fv26dNX7tGnTFKb99NNP0pVib968UVv748ePQnJyskK7DQ0Ntbpz7/379xqnZ4eOHTsKAARHR0chJSVFejw5OVl6frt166ZxHfJXn2uzL7x48SJTbe3atatUZ+/evZlaBxERUX6R2Tv7Tp8+LS3Xr18/hWkRERGChYWFNE3dHWbTpk0TAAh6enrCvXv3lKbLXxGuTftV5bSxY8cqXDUun0PkJSQkKGWt9Nbt7e2dY3fGpcVsRURElHu2b98ufbdNnz49y+u7deuWdFdetWrVhA8fPijNc+LECWmeunXrKk1PSUkRwsLCNNb5+eefBQCCTCYTHjx4oDT98ePHWt9tpu2dffj/u99u376tNE9YWJjU01aHDh2Upr9+/VqaXr58eSEiIkJpngsXLgiFChWSauXEnX0HDhyQ6p09e1Zh2uTJkwUAgpGRkRAZGal2HfJ39s2ZM0erLJYZR48eleq0b98+U+sgyk94so8oj5IPDtr+qOsu6fPnz0KFChUEAIKVlZXw4sULISAgQJDJZAIAoVOnTiqXW7dunbTuZcuWZaj9jx8/FvT19QUAwpEjRzTOO2nSJAGAYGtrq/D4wIEDBQCCk5NThmq/fPlS664DdO3du3fSice0JzMFQRAmTJggABCMjY1VBlqR/AEpbX4yE/D27t0rLe/s7Kz2gCAREVFBkdmTfTdu3JCW69y5s8K0X375RQAg2NnZCfHx8WrXkZiYKNjZ2anNCFk92ffhwwfB1NRU+l5PSkrSevvSW7cg5N7JPmYrIiKi3LV8+XLp+2358uVZXt/QoUOl9V26dEntfPIXsl+5ciXDdZKSkqTuRxcvXqw0XVcn+3x8fNSup0ePHtKxurTmz58vrePo0aNq1yF/cVdOnOzr3LmzAECwt7dXyja3b9+W2rJmzRq169C2W3j5n4x6//691L2pvr6+cP369Qyvgyi/YTeeRF8B+S46IyMj0atXL3h6ekIQBJQqVQobNmxQudzRo0el5QcOHJihmseOHUNycjJMTU3Rpk0bjfM2adIEAPDq1Ss8e/ZMerxUqVIAgDt37uDKlSta17a2tkahQoUAANu2bUNSUlKG2p6ddu7cKQ1MrGoQavGx+Ph47NmzJ0fbJu/u3bvw8vICAJiYmGDbtm2QyWS51h4iIqK8rHDhwtL/o6OjFaYdPnwYANC+fXsYGRmpXYeBgYHUpdTFixezvY1nz56VunQaNWoU9PX1s71GbmC2IiIiyl3y2UfVsCoZdfr0aQBA1apVUa9ePbXzyR+XEpdRJyUlBa9evcL9+/dx+/Zt3L59G3fv3pW6zlTVFaguyGQy9OrVS+10Z2dnAEBkZCQ+fvyoME3cRhsbG43H1fr27Zv1hmopMjISx44dAwD06tVLKdtUrVoVtWrVApB6PC63JCcno3fv3nj69CkAYMaMGXBycsq19hDlFJ7sI8oHvL29IaTeiavxx9HRUe066tatC29vbwDAn3/+iZcvX0Imk8HX1xc2NjYql7lx4waA1PBhamqaoTZfu3YNQGr/5AYGBpDJZGp/2rdvLy335s0b6f89e/aEoaEhEhIS0LBhQ7i5uWHt2rW4ffu21B+7KkZGRujevTsAYO/evShfvjwmTZqE48ePK4UnXduyZQsA4Ntvv1U5TkvNmjVRrVo1ANr3aa7NvuDn56d1G1+9eoW2bdsiOjoaMpkMmzdv5pgyREREGsgf5DI3N5f+n5ycjL///hsAsG7dOo35RyaTYe/evQAU8092EXMckDqeTkHBbEVERJS75Mfoi4mJydK6EhISEBYWBgAaT/QBgJOTEwwNDQEAt2/fVpouCAK2b9+Opk2bonDhwrCzs0PlypVRvXp16UfMaeKYg7pmY2MDa2trtdOtrKyk/6e9gEzcxlq1akFPT/0h/OrVq0sXvOvazp078eXLFwCqL7qSf/yvv/7Cw4cP012nr6+vVlksI4YNGyaN39y+fXv89NNPGVqeKL/iyT6ir8jUqVNRrlw56fcBAwagVatWaucXw494h11GhIeHZ7yBgMKgwpUrV8bOnTtRtGhRJCUl4ejRoxg6dCiqV6+O4sWL48cff8T58+dVrmflypVwc3MDADx9+hSLFi1Cu3btYG1tjTp16mDRokWIiorKVBu1dffuXemkp7oQBAA//vgjAODChQt4/PixTtuUVmRkJL7//ns8efIEALBixQr06NEjR9tARESU38gfIJI/SBMZGZmpHgXk8092kW9jZrJcXsRsRURElPvkT169ffs2S+v68OGD9P/ixYtrnNfQ0FCqHRkZqTAtPj4e7dq1w48//oigoCDExcVpXFd607NLehfOy5/ES05OVpgmPjfFihXTuA59fX2FPKpL4oVUNWrUQPXq1VXO06tXL6lHCW0vvMpOU6dOxfr16wGkXvC2e/fuAtPDBVF6DHK7AUSUc44dO4ZHjx5JvwcHByMuLg4mJibZXksMKTY2NggMDNR6ubJlyyr87u7ujhYtWuCPP/6Av78/zp8/j4iICLx79w7bt2/H9u3b4eHhgc2bNyuEJHNzcxw+fBhXrlzB7t27ERQUhL///hvJycm4du0arl27hsWLF+PgwYNSF1rZTT7UjBs3DuPGjdM4vyAI2Lp1q3QHpq5FR0ejdevW+OeffwAAs2fPxvDhw3OkNhERUX4mf9dcpUqVpP/LH6QZMGAARo8erdX6cupq7PyO2YqIiCj31axZU/r/9evXs229Wenu+tdff8WJEycAAC4uLhg+fDi+/fZblCxZEiYmJtLxoiZNmuD8+fMZvlOMgPv370tD7Ny6dUur12v79u2YOXNmjnVlvmDBAsyfPx9Aai8QR48e1ckxT6K8iif7iL4Sb9++xYABAwCkngj79OkT7t69i4kTJ2LlypUql7GxscGLFy/w+vXrDNcTr7aKjo5GlSpVsnQVjYWFBQYNGoRBgwYBSL2q+9ChQ1ixYgVevXqFLVu2wMnJSeUBtbp166Ju3bpSW4KCguDn54f9+/cjPDwc7u7uePjwYbZ/+aekpGDHjh0ZXm7btm05ckAqLi4Obm5uuHr1KgBg4sSJmDFjhs7rEhERFQQBAQHS/xs1aiT9X/6qakEQpO4kc4N8N+2vX79WuqAqv2G2IiIiyhuqVq0KGxsbvHv3DufPn8enT58UujXPiKJFi0r/T+8uwaSkJLx//x6AcubauHEjgNQ7uc6ePau228u0dwTmZUWLFsWbN28QERGhcb7k5GSFOyR1JTN36T169AjBwcE50qX86tWrMWXKFABAlSpV4O/vn+n9kii/4sk+oq9Ev379EBERAT09PRw9ehTLly/Hvn37sGrVKrRv3x6tW7dWWubbb7/FixcvcO3aNcTGxmZo3D4nJyf8/vvvSEhIwLVr19Ltez0jqlSpgipVqqB3796oUqUKYmJisHv37nSvni9SpAjc3Nzg5uaG0aNHw8fHB69fv0ZwcDBatmyZbe0DgMDAQDx//hwAMHLkSDRo0EDj/JcvX8ayZcvw8OFDXLhwAQ0bNszW9shLTEyEu7s7zp07BwAYMmQIFi5cqLN6REREBcnt27dx5swZAEDp0qVRu3ZtaVqhQoVQtWpV/PPPP7hw4UJuNRFAao4T/fnnn9l+si+nrtAWMVsRERHlDTKZDB4eHliyZAliYmKwcePGdO+2V8fIyAgVKlRAWFgYLl++rHHeGzduIDExEQAULqiKjIyUxj/u1q2b2hN9nz9/xv3799WuP6ezTXqqVq2KN2/e4O+//0ZKSora7QoNDUVCQoJO2yKOhwikduE5derUdOfv168f4uPjsXXrVp2f7Nu2bRtGjBgBAChXrhxOnz6tcOEb0deCJ/uIvgKrV6/G8ePHAQCTJ09G48aNUbVqVVy6dAkvX76El5cXQkNDlb4I3dzccPjwYcTGxmL9+vUYM2aM1jXd3NwwadIkCIKAZcuWYefOndm5SQBSD7BVrFgRN27cyPDgys2bN4ePjw8A3QzMLF7xpK+vjxkzZqTb93yLFi2wcuVKJCUlYevWrTo7IJWcnIxevXpJ3Vv8+OOPWL16tU5qERERFTRxcXHo27ev1PXThAkTYGCg+CdVhw4d8M8//+DevXvw9/fXOD6yLjVt2hRmZmaIiYnBihUr0KdPn2wdr8TY2Fj6f0JCAoyMjLJt3aowWxEREeUdY8eOxZo1axAbG4uff/4Zbdu2ReXKldNdLiUlBTt37kTv3r2lx1q0aIGwsDD8888/uHLlitQ7U1ri3XviMiL58ZJjYmLU1t64caPGsZXTZpvc1rx5c5w5cwbv3r3DiRMn0K5dO5Xz5cS4eEFBQXj27BkAoG/fvlqNR/zHH3/g0KFD2LNnD1asWKHw/Gan/fv3w8vLC4IgwN7eHmfOnIGtra1OahHldaovCSCiAuP+/fuYOHEiAMDZ2RmzZs0CkNrlgZ+fH2QyGd68eSN1kSmvT58+sLOzAwBMnz5dulpZlRcvXij8XqlSJXTr1g0AsGvXLixdulRjOx8/fqx0QvDgwYP4+PGj2mWeP3+Oe/fuAVAc6+/Ro0ca2woAp06dkv6f9kr3oKAgyGQyyGQyeHp6alyPKjExMdi/fz+A1C4k0jsYBaR2teXi4gIA2L17t06CpSAIGDhwIPbu3QsgdTxEX1/fPHf1GhERUV50584dNGrUSBqvz8XFBUOHDlWab/To0ShcuDAAwMvLSxq/TZ1jx47h1q1b2d5eS0tLDB48GAAQEhKCMWPGqB2fJjExEeHh4Rlaf6lSpaT/P3z4UOO8zFZEREQFi52dnTQkTExMDFxcXNI9DnPnzh20bt0aixYtUnh86NCh0l1rgwYNwqdPn5SWPXXqFDZt2gQgdbiWOnXqSNOKFSsGS0tLAMDOnTtVfudfvXoVP/30k8b2WVtbS+Mop5dtcoKHh4d0MdWYMWNUXqh+8eJFrFq1Kt11OTo6SlksM+RPKLq7u2u1TNeuXQEAUVFROHToUKbqpufUqVPo2bMnkpOTUbx4cZw+fRqOjo46qUWUH/DOPqJ8IDw8HLdv3053PhMTE/zvf/+Tfk9MTETv3r0RGxsLExMTbN++HYaGhtL0Fi1aYPTo0Vi2bBkOHDiAzZs3o1+/ftJ0Y2NjbNu2Dd9//z1iY2PRokUL/Pjjj+jUqRPs7e2RkJCAe/fu4fjx4zh8+LBSoFqzZg2uXbuGR48eYfz48Th06BD69u2LqlWrwsjICO/fv8fNmzdx8uRJnD17Fp07d0bPnj2l5ZctW4bevXujXbt2aNasGapUqQILCwt8+PAB165dw4oVKxAXFwcgtbsk0bNnz9C0aVN888036Ny5M2rXri2dtHz+/Dn++OMP7N69GwBQq1atbO1iFEi9qujz588AtA9B4rxnzpzBx48fcfjwYelkaVra7AsA4ODggCJFiki/T5gwAb6+vgBSu7yYNm0a7t69q3EduTnWEBERUU5Km7diYmLw4cMH3Lp1C2fOnEFAQIB0sqx+/frYu3evQq4SlShRAlu2bEHXrl3x+vVr1K5dG56enmjTpg3s7e2RmJiIFy9e4MqVK9i7dy8ePXqEI0eOoEaNGtm+TbNnz0ZAQABCQ0OxcuVKXLx4EYMHD0b16tVRqFAhvHjxAufPn8fOnTsxZ86cDJ2Ik+9Gc+zYsZg+fTpKlSolHURydHRUuusxs5itiIiI8h4vLy+8ePECP//8M8LDw+Hq6orvv/8eHTt2RJUqVWBpaYnIyEg8ePAAx44dw8mTJ5GcnIyaNWsqrKd69eoYP348Fi1ahJs3b+Lbb7/F5MmT4eTkhJiYGBw5cgQ+Pj5ITk5GoUKFsG7dOoXl9fT00Lt3b6xatQq3bt1Co0aNMG7cOFSoUAFRUVE4fvw4Vq9ejcKFC8PW1hYPHjxQuT0GBgaoU6cOLly4gM2bN8PJyQm1atWS8p6VlZXCWIG6ZmtrC29vb0ybNg3//vsvnJ2dMWXKFNSuXRsJCQnw9/fHkiVLYGtri5iYGEREROjkgqPY2Fjs27cPQOpNBNqeTHNzc0OhQoXw5csXbN26Fd27d1c538uXL7XKYubm5ihTpoz0+6VLl9C5c2d8+fIFhoaG+O2335CYmKhxXfb29tKJYaICSSCiPCkwMFAAkKGfmjVrKqxj6tSp0rRVq1aprBMfHy9Uq1ZNACAULlxYePjwodI8J0+eFIoWLZpufVVev34tNG7cWKv2e3l5KSzr4uKS7jJ6enrC7NmzM/XcVa5cWXj06JHG597Dw0PDq6RaixYtBACCTCYTXr58qfVyb968EfT09AQAQvv27TP8XKT9OXDggMI6HBwcMrwOIiKigiyjeatYsWLCr7/+KiQmJqa77sOHDwtWVlZaZZmzZ88qLe/h4SEAEBwcHLRqf2BgoMp5IiIihCZNmqTbDl9f3wyv+4cfflC7vsePH6tcF7MVERFRwbJv3z7B0dFRq+/BqlWrCv7+/krrSE5OFoYNG6ZxWQsLC5XLCoIgfPz4UahVq5baZa2srIRz585J3/8uLi4q13P06FFBJpOpXIe3t7c0X3o5SZscJwiC4OvrqzI7iVJSUoTBgwer3S4bGxvh6tWrQunSpQUAwpAhQ1TWkc8sGbV9+3Zp2Xnz5mVo2bZt2woABAMDA+HNmzfS4/Lbre1Px44dFdbt7e2d4XWkzbtEBQ278SQqoIKDg7FgwQIAQNu2bTFs2DCV8xkZGWHHjh0wMjLC58+f0adPHyQnJyvM06pVKzx69Ahz585FgwYNYG1tDX19fZibm+Pbb7/FmDFjcOXKFZXrL1myJP78808cPXoUvXv3Rrly5WBqagpDQ0MUK1YMDRo0wPjx43Hu3Dls3rxZYdmdO3di/fr16NWrF2rVqoWSJUvCwMAAhQsXRtWqVTF06FDcuHEDM2bMUFiucePGCAoKwtSpU9G0aVOUL18eRYoUgaGhIUqUKIHvv/8ea9euxd9//63UhWdWvXz5EmfPngUAfPfddxnqJ7xEiRLSeDInT55EREREtraNiIiItKOnpwcLCwuUKVMGjRs3xpgxY7Bv3z68ePEC06ZN0+qONTc3Nzx+/BiLFy9Gs2bNUKJECRgaGsLExARly5ZF+/btsXTpUjx58gRNmzbV2bbY2Njg3Llz2L9/P7p27Qp7e3sYGRnB2NgY5cqVQ7du3bBjxw6F3hW0tX37dixcuBB169aFhYWF1AVXdmK2IiIiytu6dOmC+/fvY8eOHejTpw8qVaqEokWLwsDAAFZWVvj2228xbNgwnD17FqGhofj++++V1qGnp4dVq1bhzz//RO/evVGmTBkYGRnB3NwctWrVwrRp0xAWFqZyWQCwsLDAhQsXMHv2bFSvXh3GxsYoXLgwqlSpggkTJuDmzZto0qRJutvSrl07nDlzBh07doStra3KXhxykkwmw9q1a3Ho0CF8//33sLKygrGxMcqXL49Ro0bhxo0bqF27ttT1qYWFRba3ITNdeKadPykpCb///nu2touIlMkEQc3ADURERERERERERERElCe9ePECpUuXBgBs3LgR/fv3z+UWEVFu4Z19RERERERERERERET5zM6dO6X/169fPxdbQkS5jXf2ERERERERERERERHlITExMfj06RNKlSqlcvqNGzfg4uKC6OhoODs749q1azncQiLKS9IfbIKIiIiIiIiIiIiIiHJMREQEqlSpgk6dOqF169aoVKkSjIyM8OrVK5w8eRKbNm1CXFwcZDIZli5dmtvNJaJcxjv7iIiIiIiIiIiIiIjykCdPnqBs2bIa5ylUqBA2bNiAvn375lCriCiv4sk+IiIiIiIiIiIiIqI8JDExEQcOHMDJkydx9epVREREIDIyEqampnB0dESLFi0wcuRIODg45HZTiSgP4Mk+IiIiIiIiIiIiIiIionzqqxuzLyUlBa9evUKRIkUgk8lyuzlERESUBYIgIDo6Gra2ttDT08vt5nz1mLOIiIgKDuasvIU5i4iIqGDQVcb66k72vXr1CqVLl87tZhAREVE2ev78Oezt7XO7GV895iwiIqKChzkrb2DOIiIiKliyO2N9dSf7ihQpAiD1iTQ3N9dZne7du+OPP/7Q2foLUo2cqsMarMEarJFfauRUnYJQ49OnTyhdurT0/U65izmLNfJzjZyqwxqswRqskV9qMGflLcxZrMEaX0eNnKrDGqzBGrlXQ1cZ66s72Sd2dWBubq7TcGRoaKjT9RekGjlVhzVYgzVYI7/UyKk6BaUGAHZllEcwZ7FGfq6RU3VYgzVYgzXySw0Rc1bewJzFGqzxddTIqTqswRqskbs1gOzPWOx0nYiIiIiIiIiIiIiIiCif4sk+IiIiIiIiIiIiIiIionyKJ/uIiIiIiIiIiIiIiIiI8ime7CMiIiIiIiIiIiIiIiLKp3iyj4iIiIiIiIiIiIiIiCif4sk+IiIiIiIiIiIiIiIionyKJ/uIiIiIiIiIiIiIiIiI8imD3G5AfiIIAhITE5GSkpLuvNbW1oiPj9dpewpKjZyqwxqswRqskV9q5FSdglDjy5cvcHBwwJcvX3Lkdfna6evrw9DQUCfrZs5ijdyukVN1WIM1WIM18ksN5qycpcuclZiYiOTkZK3mLSj7L2uwRn6tkVN1WIM1WCP3amiTsTKTC2SCIAjZ0cD84tOnT7CwsEBUVBTMzc21WubLly8IDw9HbGys1uEoPDwcxYsXz0pTv5oaOVWHNViDNVgjv9TIqToFoUZKSgqeP3+O0qVLQ0+PHRbkBCMjI9jY2KjMUcxZrJGfa+RUHdZgDdZgjfxSgzkr52V3zvr06RPevXuHhIQErdtQUPZf1mCN/Fojp+qwBmuwRu7V0DZjacoFqvDOvnTExsbi+fPn0NfXR9GiRWFiYgJ9fX3IZDKNy8lkMjg6Ouq0bQWlRk7VYQ3WYA3WyC81cqpOQaiRnJyMuLg4ODo6Ql9fX2d16L8776KiovDy5UsA0DpwqsOcxRp5qUZO1WEN1mAN1sgvNZizco4uctanT5/w8uVLFC5cGDY2NjA0NEw3YwEFZ/9lDdbIrzVyqg5rsAZr5F6N9DJWZnMBT/al4927dzA0NISDg0OGwq2+vj6MjY112LKCUyOn6rAGa7AGa+SXGjlVpyDUEO8EMzY25kGoHGBiYoIiRYrgxYsXePfuXZYPQjFnsUZeqpFTdViDNViDNfJLDeasnKWLnFW4cGHY29trdZJPVFD2X9ZgjfxaI6fqsAZrsEbu1dAmY2UmF7AfBg2SkpIQExMDKysrBlsiIiIipF7hZmFhgYSEBCQmJmZ6PcxZRERERIqyK2clJiYiISEBFhYWGTrRR0RERHlHRnMBT/ZpkJSUBCC1b1QiIiIiSiUOEq3tGHuqMGcRERERKcuOnCUuK66LiIiI8qeM5AKe7NMCr4IiIiIi+k92ZiPmLCIiIqL/MGcRERGRKCPf5TzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+ZRBbjegQJjZWemhCjlQNks1Zh7IrmYQERER6U5+y1nMWERERJRfMGcREREVGLyzj7KFo6MjZDKZ1j8zZ87M7SYTURbIZDI4OjoqPe7t7Q2ZTIbq1avjy5cvKpcVBAHNmzeHTCZD//79M1RX/Kx58uSJyjY1bdo0Q+sjIsrrmLGIvi55NWOpahMRUX7HnEX0dWHOooKOd/ZRtmrYsCHKly+vdvrJkyfx9u3bHGwREeWkGTNm4PDhw/j777/h7e2NefPmKc2zYsUKnD17Fg4ODvjtt99yoZVERPkPMxbR140Zi4hId5iziL5uzFlUUPBkH2WrAQMGwNPTU+10V1dXBiSiAszQ0BBbt25F7dq1sWjRInTs2BH169eXpoeFhWHq1KmQyWTYvHkzzM3Nc7G1RET5BzMW0dctvYz15MkTZiwiokxiziL6ujFnUUHBbjyJiChbVa9eHTNnzkRycjI8PDwQFxcHANLvsbGxGD58OJo1a5bLLSUiIiLKPzRlrMmTJzNjEREREWUScxYVBDzZR3lKUFBQun2kq3Lv3j14eXnBwcEBRkZGsLKyQvPmzbF7926V88+cOVNtf+t+fn6QyWQqr+p68uSJ2r6UIyIisHXrVrRt2xZly5aFiYkJzM3NUbt2bSxYsADx8fEat93T01Pjdqtqj7iMn5+fxnVrS9z2ihUrokmTJmrna9mypdSutLXTa5P4HKobWy0jr2VKSgp69OgBmUyGXr16ISUlRWG6j4+Pytc5JSUFvXr1gkwmQ8+ePZWWA4CQkBD07t0bZcqUkdrRqlUrHD9+XO3zkpSUhM2bN6NFixawsbGBkZER7O3t0aJFC6xYsUKaLyNjAsi/7q6urkrTixQpgsqVK2Ps2LF49uyZUpsiIiLg4+OT6f0ysyZNmoS6deviwYMHmDZtGgBg48aNuHjxIsqXL48FCxaoXfbOnTvo1q0bbGxsYGJigmrVqmHx4sVITk7WSVuJiL4GzFh5I2OJmUWd7MhY6sb8yM6MNXPmTFSsWJEZK49krEWLFuHGjRvMWEREuYQ5K2/krIJyLIs5izmLKLPYjSflSSVKlEDr1q0VHtuyZYvKeY8dO4auXbsiPj4elSpVQpcuXRAeHo5z587h7Nmz8Pf3x6ZNm3TeZn9/f8yZMwd2dnYoX7486tevj4iICFy+fBlTpkzBoUOHEBgYCCMjI43rSdtX/L///osLFy7ouvlKzp8/j7///hu1atVSePyff/7B6dOndVIzo6+lnp4etm3bhpiYGOzcuRPm5uZYu3ZtunWGDh2KnTt3on379ti2bRv09BSve1i+fDnGjRuHlJQU1KpVC/Xq1cObN28QFBSEU6dOYdasWfj5558VlomKikL79u0RHBwMQ0NDNGjQALa2tnjz5g1u3bqFM2fOYOTIkQAADw8PhWU/f/6Mffv2wczMDF27dlWY1qhRI6X2t2rVCiVLlgQAfPz4EefPn8eyZcuwY8cO3Lp1S5oGpO6Xo0ePTne/zG76+vrYsmULnJycsHz5clSoUAE+Pj7Q09PDli1bYGpqqnK54OBgtG7dGjExMShXrhxatmyJd+/eYdq0abh06VK2t5OI6GvDjJX7GevatWvMWF9Rxkpvv8woVRnL29ubGYuIKA9gzsr9nMVjWcxZWcGcRfldrp7smzlzJmbNmqXwWKVKlXDv3j2V82/YsAFbt27F7du3AQDOzs6YO3cu6tatq/O2Us4Qr3aoUqWK0tU0qgLS27dv0bt3b8THx2POnDmYNm2adMXUtWvX8P3332Pz5s2oX78+XF1dddp2Z2dn7N69G926dVN4/MOHD+jRowdOnToFHx8fTJw4UeXy4hU5afuK9/Pzy/GAVLduXYSEhMDHxwebN29WmObj4wN9fX00btwYQUFB2VYzI6/lwIEDpeUMDQ2xZ88etG3bFuvWrYO5uTkWLlyots7EiROxfv16NGvWDHv27IGBgeLHoL+/P8aOHQtra2vs27dP4aqw0NBQtG3bFt7e3nBxcYGLi4s0rV+/fggODoaTkxP279+vcMVcUlISjh07Jv2edt9+8uQJ9u3bBxsbG5VXkYWFhSn8PmXKFIX9OSYmBi4uLggJCcHevXsxYsQIaZqzszMuXryo0Nc4oLxfdurUSd1TlmmVK1fG3LlzMW7cOAwfPhxA6vPfoEEDlfPHx8ejV69eiImJwZgxY7B48WLo6+sDAG7duoXmzZvj3bt32d5OooKKOYvkMWPljYzl4uKC4OBgZqw8krHS0kXGUrdfZoWqjDVgwABmLKIcwoxFaTFn5Y2cxWNZzFnZgTmL8rNc78azatWqeP36tfQTHBysdt6goCD07NkTgYGBuHjxIkqXLo3vv/8eL1++zMEWky4lJiYCSP3S08aGDRsQFRUFZ2dnTJ8+XaFrhNq1a2P69OkAUm+51rUqVaooXTkEAEWLFpVue9+zZ4/a5cVb0LXddl2ys7NDhw4dsHPnToUvpMjISGzfvh0dOnSAg4NDttbMymtpbGyMw4cPo169eli0aBF+/fVXlTXmzJmDxYsXo379+jh06BCMjY2V5vH29oYgCFi7dq1S9w/Vq1fH0qVLAUChK4ObN29i//79MDY2xpEjR5S6xjAwMEDHjh21eyIywczMDN999x0AKHXjUKVKFaVwBGi/X2bVsGHDYGFhAQAoXrw4Zs+erXbeffv24fnz5yhdujQWLlwohSMAqFGjhrQPEJH2mLNIxIyVNzKWo6MjmjVrxoylZca6e/cuM5Ya8hnL1tYWY8aMUTsvMxZR9mPGInnMWXkjZ/FYFnNWdmHOovwq17vxNDAwULhNV5MdO3Yo/L5x40bs27cPZ86cQd++fXXRPMph4uCn2t6GLV6Nk/ZWclH//v0xYcIEhIWF4e3bt6hQoUK2tFOd5ORknDlzBn/99Rdev36NuLg4CIIAQRAAAPfv31e7bExMDACovSU8p40aNQoHDhzA+vXrpX6qN2zYgNjYWIwaNSrb+lYXZeS1fPXqFWxtbRWmFy5cGCdOnMD//vc/zJgxQ/pSFq1YsQI//fQTihYtiuPHj6Nw4cJKNd69e4crV67AxMQEbm5uKtshXoX0119/SY+dPHkSANCuXTvY2dlptb3ZJSoqCidOnMDWrVthamqqst3JyckICgrK1H6ZVb/++iuioqIAQOrG4vvvv1c5r7gP/PDDDyr/UPDw8MDYsWN11laigog5i0TMWHknY/Xt2xcBAQHMWGmoyljnz58HwIylinzGevXqFa5cuYKqVauqnJcZiyj7MWORPOasvJOzeCyLOSs7MGdRfpXrJ/vCwsJga2sLY2NjfPfdd5g3bx7KlCmj1bKxsbFITEyElZWV2nkSEhKQkJAg/f7p06cst5l05/379wBSr9TQhnglXNmyZVVOt7S0hJWVFSIjI/HmzZvsaaQaYWFh6NChg1KXi/I07X/itlhbW2e4tpeXF7y8vACk9i9dtGhRODk5YcCAAfjhhx8yvD4gNQjUqFEDa9aswaRJkwAAq1atQo0aNeDq6ppuQJJvkzYy8lq+ePFCKSABqf2kf/jwAUBqwKtcuTIA4ODBg7h16xaA1Fv+jx8/jt69eyst//jxYwiCgLi4uHRDekREhPT/p0+fAoBUT9dUDQjt7OwMX19fpecvLCwMnTt3xj///KN2fbr6XLx27RrmzZsHQ0NDDBo0CKtWrcKAAQMQGhqqFGAB4MWLFwDU7wNFixaFhYWFFLiIKH05kbO+fPki/c6clXcxY+WdjFWvXr18n7Fq1qwJQPcZ69WrVwCYsdJSlbGmT5+OLl26MGMR5RBdZyyAOSs/Yc7KOzmrIBzLYs5iziLKrFw92VevXj34+fmhUqVKeP36NWbNmoXGjRvj9u3bKFKkSLrLT548Gba2tmjRooXaeebNm6fUlzoAdO/ePd1bzK2treHp6QmZTKZwC25aur2+Rjc0fYnLi42N1WrepKQkAKl9VWuaX7za6f379wrziXXELzFjY2O165F/XAy+r169Uju/eCt4fHy8NI8YxNK2Q9wGIPVLI+008QM8KSlJaZqbmxvCwsLQtGlTDBgwAOXLl0fhwoVhaGiIL1++oFq1akrtl2/jw4cPVW5j2vbIvybiF9u3334rdUWQkJCAR48eISAgAAEBAfjrr7+kPqbTI9YSt69Hjx6YNm0aVq9eDQB4/vw5Bg8ejLCwMKl22tdcVZvkxcbGwt/fHykpKZl+LZ89e6YUot++fYsRI0bA1NQU69atw6RJk3D37l0Aqd1s2traYv78+RgyZAiGDx8OBwcHlChRQmEd4kk7MzMztXefyRNfD/ELOzIyUuv3ljxN+xXw3/tDfP80btwYNjY2AFL363v37iEkJAQ//PAD1q5dqxAe3dzccP/+/XT3S23f6/LUtRdIfT179uyJpKQkjB49GsOGDcOVK1dw9epVDBgwAHPnzlVaRrwiMDw8PN194PHjx1JXKWmnZ+Y1yIjMPFd5tU5BqCFe1UfKciJnqetu5mvOWRnZ37V5fzBj5VzGAv57vnSVsT59+oTY2FidZqykpCSFfUsXGevvv/8GoNuMBfzXLZquMhaQ+rzpMmOlze/ayGjGCgkJwaVLl3SasdLuV7rCGnmrBnOWajmRsQDmLFWYs/JvzuKxLOYs5izmLNb4j64yVq6e7GvTpo30/xo1aqBevXpwcHDA7t270b9/f43Lzp8/H7t27UJQUJDKvopFU6dOxbhx46TfP336hNKlS+OPP/6Aubm5xhrx8fF4/PgxHB0dNdbIj7TtAiAsLEyrecWBYUuUKKFxfhMTEwCpwVN+PrGO+AXduHFjteuRf7xs2bJ49OgR4uPjVc4fFRWFjx8/AgAcHBykecQrjtK2Q9wGADA3N1eaJgZqAwMDhWn37t3D/fv3YW1tjVOnTikNlCt/JYqqdv7zzz/4/PkzSpQoodS3dtr2yL8m4j48cuRIhYGQAWDdunUYMmQINm7ciEWLFmnVf7pYS9y+sWPHYunSpVI/2NbW1hg3bhxMTEyk2mlfc01tAlIH8C1btiz09PQy/Vp+9913Sl0MjB49GlFRUVi9ejX69OmDunXrokGDBnj//j1KlCiBoKAgVKhQAdHR0Rg+fDjmzZunMNAwkBqMAEBPTw979+6Fnl76w5qGhYWhevXqAFK/2DPTvYa6/Uq+RoUKFaT3zy+//KI0SLe3tzd++eUXLFq0CEePHgXw335ZvHjxdPdLU1PTDLddXXuB1MGj//33Xzg7O2Px4sUwMDDAggUL0KFDB+zduxf9+/dH69atFZapWLEizp8/j9jYWJXr/fjxI6KjowGk7i9p+5MHoLRf6YK2n4v5oU5BqJGcnIwbN27obP35WU7krIkTJ0pXzALMWYD2GQvQ7v3BjJVzGQv47/nSVcYyNzeHqampTjOWgYGBwve6LjJW48aNER4ertOMBUC6S0ZXGQtIfc11mbHS5ndtZDRj7dy5E9WqVdNpxkq7X+lKQcgmBakGc5ZqOZGxAOYsVZiz8m/O4rEs5izmLOYs1viPrjKWdu/+HGJpaYmKFSvi33//1Tjf4sWLMX/+fJw6dQo1atTQOK+RkRHMzc0VfihvSkxMRGBgIACgUaNGWi0jfkls2bJF5fTNmzcDSP3w17Y//cyIjIwEABQvXlzpSwgAtm/frnH5ffv2AQBatWqVbW368ccfAaReYSI/MHFGGBsbY9CgQQgODkZwcDAGDBggfUlnt4y8lmnD0YYNG3DixAm0aNECQ4YMAZD6ZdujRw8AwODBg6UP6KFDh6J58+Y4fvw4Nm7cqLAeW1tb1KhRA9HR0dI4fNoQv+iPHz8udYOQ07p37w4AOHfunPSYuF/a2tpmar/MrAsXLmDp0qUwMjLCli1bpNr29vbSoNQDBgxQ6sLAxcUFALB7926VVzpt3bpVJ+0l+lowZ329mLGYsYDszVji/3WdsRo3bgyAGUukLmM5OjpKJwSYsYhyni4yFsCclV8wZzFnAcxZmcWcRZS98tTJvs+fP+Phw4coVaqU2nkWLlyI2bNn4+TJk6hdu3YOto506cuXLxg1ahQiIiLg6uqqtp/jtAYOHAhzc3Ncv34dc+fOVbgF9saNG5gzZw6A1CszdKlixYrQ19fHgwcPpIFZRUeOHMFvv/2mdtnnz59jxYoVAFK/vLPL8ePHAaRe4SPeJp8Zw4YNQ7t27dCuXTutu1DIjMy+lk+fPsX48eNhbm6OTZs2QSaTSdPE/6d9bPPmzTA3N8e4ceOk7g5EYh0vLy8cOXJEqZ2CIODy5cs4deqU9FitWrXQsWNHxMXFoWPHjnj27JnCMklJSTh8+HCGno+M2rVrFwAovNbifhkaGprh/TKzYmNj4enpiZSUFMyaNUtpAOPBgwejefPmePnyJcaMGaMwrWvXrrCzs8OzZ88wdepUqZsDALh9+7b02hBR5jBnfZ2YsZix8nPG+uabb5ix/l96GatHjx7MWES5hBnr68WcxZzFnJU1zFlE2StXu/GcMGEC3Nzc4ODggFevXsHb2xv6+vro2bMnAKBv376ws7PDvHnzAAALFizAzz//jN9//x2Ojo7SILWFCxdG4cKFc207KGs2bdqEqVOnIiIiAnZ2dli3bp3Wy5YoUQI7duxAt27dMH36dGzbtg1OTk4IDw/HuXPnkJSUBC8vLwwcOFBlP7unT59GfHy8wmOhoaEAgJCQEEyZMkVhmnj1xocPHzBlyhR069YNzs7OsLGxwYgRI7B8+XI0b94cjRs3hq2tLe7fv4/r169jxowZKj/cJ0yYAF9fX0RGRsLMzAxr167F2rVrFeYRrw4MDg6Gp6cnevTooXQb8Z49e3Dv3j0Aqf2c37t3T/oCnzx5slbdHqhjZ2cn3UqvSxl5LUWCIMDLywvR0dHYtGmT1gOilylTBkuXLsWAAQPQr18/nD59WgpRbm5uWL58OcaPH48OHTqgfPnyqFSpEiwsLBAREYGbN28iPDwckydPVugL3dfXF23btsWlS5dQoUIFNGjQALa2tnjz5g1CQ0MRERGRbf0xz58/XxpUOjY2FqGhodLr/9NPP0nzZXa/zIpJkybh33//Rf369TFhwgSl6TKZDJs2bUL16tXh5+eHbt26oW3btgBSu0bZsWMH2rZtiyVLluDgwYOoU6cO3r9/j6CgILi5uSEkJEQp1BKRasxZxIyVsYw1ZcoUpXGNmLGYsZixiCgtZiwCmLN4LCsVc5b2mLOYsygHCLmoe/fuQqlSpYRChQoJdnZ2Qvfu3YV///1Xmu7i4iJ4eHhIvzs4OAgAlH68vb21rhkVFSUAEKKiotKdNy4uTrhz544QFxeXkc0SBEEQHjx4kOFl8nMN8bXx9fXVOJ+Li4vSazZ58mShcuXKwowZM4Tw8HC1y4qvtyp37twRPDw8BHt7e8HQ0FCwtLQUmjZtKuzatUvltnh7e6vclzL6I7+9KSkpwty5cwVnZ2ehcOHCgoWFhdCoUSOpDarar26f1vSzbds2aXkPDw+l6Xp6eoK1tbXQokULhe3Xhq+vrwBA6Ny5c7rzirXTvubqHhc9fvxYACDY2dmpnK7Nayny8fERAAht27ZVua4RI0Zo/Ixo06aNAEDw8fFRmhYaGioMGjRIqFChgmBsbCyYmpoK5cqVE1q1aiX4+PgIL1++FARBcb9KSEgQ1qxZIzRu3FiwtLQUChUqJNjb2wstW7YUVq1apbIN8s+Jg4ODyuliDfH9I/+jr68vlChRQnBzcxNOnTqltGxKSoqwadOmdPfLjH6eqGrvmTNnBJlMJpiYmAj37t1Tux2CIAjr1q0TAAi2trbChw8fFOYLDQ0VunTpIlhZWQlGRkZClSpVhHnz5gmJiYnSe+bx48cq26Ruv8pOOfHZm1N1CkKNpKQk4erVq0JSUpJO6+RHusxZ6jISc1b212DGyrmMFRgYKG2LrjKWh4dHuq97VjOWg4ODyhrZmbHE11mXGUsQ/tu3dJWxxBq6zFjy26GNzGQs+Rq6yljq9qvsxhp5qwZzlmq6PpbFnJVzNZizeCwrvcdFOXksizmLOUtXWCPv1MhIxsrId3qunuzLDQxHea9GTtXJzhriF1raEJDRGg4ODoKLi4tW84rhRT4g6Up+ez1YI+drpBfosqNGRmkK3tmJn4t5qwYPQuUOHoRiDV3VyM2MJX+yT5dYgzU0yUzGymiNjOJBqK+3BnNW7mDOYg1d1eCxrPxRI6fqfI01mLNYI6/U0NXJvjw1Zh8RERERERERERERERERaS9Xx+wjyq+KFi2KefPmwdnZOUvrWbx4sdZ99Ddq1Ai+vr4oV65clmoSERER5VW5mbEqV66M6OjoLNUlIiIiyqt4LIuIqGDjyT6iTLCwsFAa8DgzunbtqvW85cuXR/ny5VUOzkxERERUEORmxgLAk31ERERUYPFYFhFRwcZuPImIiIiIiIiIiIiIiIjyKd7ZR0REGebt7Q1LS8vcboYCb29vJCYm5nYziIiIiDItr2asvNYmIiIioozKi5kmL7aJ8i+e7CMiogybOXNmbjdBycyZM9k1CBEREeVreTVjAWDOIiIionyNOYsKOnbjSURERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRP8WQfERERERERERERERERUT7Fk31ERERERERERERERERE+RRP9hERERERERERERERERHlUzzZR0RERERERERERERERJRPGeR2AwqCZsOeqXjUCICqx7NT5mucXV0mW1vi6OiIp0+faj2/t7c3Zs6cma1tIKK8Qfw8EARB4fF9+/Zh6tSpKFmyJP755x9YWVmpXN7Lywt+fn5o3rw5AgICIJPJtK59+fJlVKxYER4eHvDz88vKZhBRHpHfchYzFhHpirqM5evri379+uk0YwUFBaFp06bMWEQFDHMWcxYRpWLOooKAJ/soWzVs2BDly5dXO/3kyZN4+/ZtDraIiPIKd3d3BAcH49ixYxg+fDh27typNM+RI0fg5+cHc3NzbN68WSEcubq64ty5cwgMDISrq2sOtpyIKPcxYxGROl5eXti6dSuCgoKYsYiIMoE5i4jUYc6i/IQn+yhbDRgwAJ6enmqnu7q6MiARfcU2bNiAatWqYdeuXXB3d0fXrl2lae/fv8fAgQMBAMuWLUOZMtl71SYRUX7GjEVEmsyZMwcdOnRgxiIiygTmLCLShDmL8guO2UdERDmmVKlSWLlyJQBg6NChCA8Pl6YNGzYMb9++hZubG7y8vHKriURERET5TvHixZmxiIiIiHSAOYvyi1w92Tdz5kzIZDKFn8qVK2tcZs+ePahcuTKMjY1RvXp1HD9+PIdaSzkhKChIaZ9I+6PKvXv34OXlBQcHBxgZGcHKygrNmzfH7t27Vc4v7nuq+lr38/ODTCZTeVXXkydPIJPJ4OjoqDQtIiICW7duRdu2bVG2bFmYmJjA3NwctWvXxoIFCxAfH69x2z09PTVut6r2iMtkV3/O4rZXrFgRTZo0UTtfy5YtpXalrZ1em8TnsGnTpiqnZ+S1TElJQY8ePSCTydCrVy+kpKQoTPfx8VH5OqekpKBXr16QyWTo2bOn0nIAEBISgt69e6NMmTJSO1q1aqXxMycpKQmbN29GixYtYGNjAyMjI9jb26NFixZYsWKFNF96+7i6193V1VVpepEiRVC5cmWMHTsWz54pj3kQEREBHx+fTO+XutCzZ0+4u7vj3bt3GDx4MABg165d2L17N6ysrLB+/XqF+cXPhXPnzgEAmjZtqvAcsD9zItWYs0geM1beyFhiZlEnOzKWqucQyN6MNXPmTFSsWJEZixmL6KvEjEVpMWfljZxVUI5lMWcxZxFlVq5341m1alWcPn1a+t3AQH2T/vrrL/Ts2RPz5s1D+/bt8fvvv6NTp064fv06qlWrlhPNpRxSokQJtG7dWuGxLVu2qJz32LFj6Nq1K+Lj41GpUiV06dIF4eHhOHfuHM6ePQt/f39s2rRJ52329/fHnDlzYGdnh/Lly6N+/fqIiIjA5cuXMWXKFBw6dAiBgYEwMjLSuJ60fcX/+++/uHDhgq6br+T8+fP4+++/UatWLYXH//nnH4X3bHbK6Gupp6eHbdu2ISYmBjt37oS5uTnWrl2bbp2hQ4di586daN++PbZt2wY9PcXrHpYvX45x48YhJSUFtWrVQr169fDmzRsEBQXh1KlTmDVrFn7++WeFZaKiotC+fXsEBwfD0NAQDRo0gK2tLd68eYNbt27hzJkzGDlyJADAw8NDYdnPnz9j3759MDMzU+gKAAAaNWqk1P5WrVqhZMmSAICPHz/i/PnzWLZsGXbs2IFbt25J04DU/XL06NHp7pc5bc2aNTh//jwOHjyIRYsWYf78+QCAVatWKbQfAEqWLAkPDw9pnAT57QegcWwFoq8dcxalxYyV+xnr2rVrzFhfUcZKb7/MbsxYRDmDGYtUYc7K/ZzFY1nMWbrEnEV5Xa6f7DMwMFB6M6izfPlytG7dGhMnTgQAzJ49GwEBAVi5cqVWH4qU9yUnJwMAqlSponSFg6qA9PbtW/Tu3Rvx8fGYM2cOpk2bJl0xde3aNXz//ffYvHkz6tevD1cdD4Lq7OyM3bt3o1u3bgqPf/jwAT169MCpU6fg4+Mj7b9piVfkpO0r3s/PL8cDUt26dRESEgIfHx9s3rxZYZqPjw/09fXRuHFjBAUFZVvNjLyWYl/YAGBoaIg9e/agbdu2WLduHczNzbFw4UK1dSZOnIj169ejWbNm2LNnj9IfZf7+/hg7diysra2xb98+havCQkND0bZtW3h7e8PFxQUuLi7StH79+iE4OBhOTk7Yv3+/whVzSUlJOHbsmPR72n37yZMn2LdvH2xsbFRe2RMWFqbw+5QpUxT255iYGLi4uCAkJAR79+7FiBEjpGnOzs64ePEi6tevr7COtPtlp06d1D1lOlGsWDGsXbsWXbp0waRJkwAA3bp1Q48ePZTmrVy5Mvz8/OD6/+MkpN1+IlKPOYtEzFh5I2O5uLggODiYGSuPZKy0dJGx1O2XusKMRZQzmLFIHnNW3shZPJbFnKVrzFmU1+X6mH1hYWGwtbVFuXLl0Lt3b5W37oouXryIFi1aKDzWqlUrXLx4Ue0yCQkJ+PTpk8IP5V2JiYkAUr/0tLFhwwZERUXB2dkZ06dPV+gaoXbt2pg+fToAYNGiRdnf2DSqVKmidOUQABQtWlS67X3Pnj1qlxdvQdd223XJzs4OHTp0wM6dO/Hu3Tvp8cjISGzfvh0dOnSAg4NDttbMymtpbGyMw4cPo169eli0aBF+/fVXlTXmzJmDxYsXo379+jh06BCMjY2V5vH29oYgCFi7dq1S9w/Vq1fH0qVLAUChK4ObN29i//79MDY2xpEjR5S6xjAwMEDHjh21eyIywczMDN999x0AKHXjUKVKFaVwBGi/X+pS586dpe5ujIyMsHr16lxpB1FBxpxFImasvJGxHB0d0axZM2YsLTPW3bt3mbEygRmLSPd0nbEA5qz8hDkrb+QsHstizsoJzFmUl+XqnX316tWDn58fKlWqhNevX2PWrFlo3Lgxbt++jSJFiijN/+bNG5QoUULhsRIlSuDNmzdqa8ybNw+zZs1Serx79+7pfhFZW1tLfTbr6+trmDNnbxnODmnvFFInNjZWq3mTkpIApF7Romn+uLg4AMD79+8V5hPrPHz4UFqfuvXIPy72Od2mTRuV84tXTISFheHJkyfS4+/fv1fZDnEbAODTp09K0168eKGxfdHR0diyZQtu3LiBiIgIxMfHQxAECIIAIPWLVN12iYO7fvz4UWGetO2Rf03EsJ/e864tsVZSUhJ++OEHHDhwAHPnzsXQoUMBAOvXr0dsbCy6dOmC/fv3q6ydXpvE5zAlJSXTr2VwcLDSZwEArFy5Ei1atMCMGTOQkJAgBe7379/jp59+wpw5c2BhYYEVK1bg9evXSstHRkbiypUrMDY2RuXKlVW2o0yZMgBSu4YQX4/t27cDSL1aX9v3jLz09itxneL758WLF9J80dHROHfuHPz8/GBiYoJq1aoprSM5ORmXL1/WuF9mpt3qiJ8HadeXtsbevXtx7949AKl/yK5Zs0bl1VAiVduflviHhqr3b3bJzucqt+sUhBrifkzKciJnqfuj9GvOWRnZ37V5fzBjpcqJjAX893zpKmN9+vQJP/zwAwICAnSWsZKSkhT2LV1krA8fPgDQbcYCgLNnzwLQXcYCUl9zXWastPk9K9RlLHE7xMd1kbHE51KXGQsoGNmkINVgzlItJzIWwJylCnNW/s1ZPJbFnMWcxZzFGv/RVcbK1ZN9bdq0kf5fo0YN1KtXDw4ODti9ezf69++fLTWmTp2KcePGSb9/+vQJpUuXxh9//AFzc3ONy8bHx+Px48dwdHRUedXEf9RfwZVXVahQQav5wsLCtJpXvH28RIkSGuc3MTEBkBo85ecT64iDltrb26tdj/zj4hdgvXr11M5vZWWFyMhIREVFSfNYW1urbIe4DQBgbm6uNE0M1AYGBkrTwsLC0KNHD40fBJ8/f1bbzo8fPwJIveJGfp607ZF/TcR9eMqUKZgyZQoAQF9fH0WLFoWTkxMGDBiAH374QW170hJrGRgYoE+fPli0aBH27NkjdSXwxx9/oEaNGujTp4/U13na11xVm1TR09PL9GtZqFAhlfNs374dUVFRAFKvfBKvtDl//jxu3boFILU/8vv376N3795Ky1+9ehWCICA+Pj7dsRMiIyOl1yMmJgZA6lVb2r635Gnar4D/3h/i++fHH39UmsfZ2Rm+vr6oXr260rJdu3bFP//8o7b+58+fYWpqmqm2qyJ+Hqh6j4iPPXv2TOrbfMyYMVi2bBkWLVqEvn37qr3STtx+TZ8Ply9fBqD6/ZtdtP1czA91CkKN5ORk3LhxQ2frz89yImdNnDhR6r4EYM4CtM9YgHbvD2asnMtYYq0KFSroLGOZm5vDxcUFNWrU0FnGMjAwUPhe10XGqlmzJgDdZiwAiIiIAKC7jAWkvua6zFhp83tWqMtYYnsqVKigs4z18uVLALrNWEDByCYFqQZzlmo5kbEA5ixVmLPyb87isSzmLOYs5izW+I+uMlauj9knz9LSEhUrVsS///6rcnrJkiWlqzVEb9++1dhPupGRUY4P1kmZJ3642dra5nJLMq5r164ICwtD+/btMWnSJHzzzTcwNzeHoaEhvnz5onE/TElJwePHjwEAZcuWzXBt+YGQ4+Pjce/ePQQEBCAgIAD379/HTz/9lKltGj16NPr3748DBw4AAJ4/f640mK82bZInDuCb3V69eoVRo0bBzMwMR48eRd++fXH37l0Aqd1slilTBn5+fnBzc8PIkSPRtGlTpf1M7DagcOHCcHd3z/Y2Zhf5QX1jY2Nx69YthISE4Mcff8Thw4elK7YASOEoM/ulrgiCgH79+uHTp0/o168ffvvtN3z8+BF+fn7o378/AgICFLq+IKLsoaucpfkAEuUVzFjMWJmlKmP9/fffAJixmLGICNBNxgKYs/IT5izmrMxizmLOIspOeepk3+fPn/Hw4UOVZ/oB4LvvvsOZM2cwZswY6bGAgACpf1/K/+7cuQMAqFq1qlbz29nZ4d69e3j06JHK6VFRUYiMjAQAlbfKZ5d79+7h1q1bsLa2xoEDB5QGyk3vtt+7d+/i06dPKFGiBEqXLp3h+mkHQgaAdevWYciQIViwYAGmTJmSqf7Te/XqhcmTJ8PHxwdA6tVjqq4i0rZNwH8D+KaVkdfSzs5OZb0PHz5g9erVcHV1xenTp9GgQQO8f/8eJUqUwOnTp1GhQgUsXLgQw4cPx8CBAxUGGgYgPfcymQybN2+Gnp52w5qKgUS8jV/XVA3q6+3tjV9++QXDhg3D0aNHpfbcunULxYsXz9R+qSurV6/GmTNnULp0afz2228AgN9++w0BAQE4c+aMtO8SUfZizvq6MWMxY2VnxmrcuDHCw8N1nrFKlSoFgBlLW8xYRLmDGYuYs5izmLPSx5xFpHvavft1ZMKECTh37hyePHmCv/76C507d4a+vj569uwJAOjbty+mTp0qzT969GicPHkSS5Yswb179zBz5kxcu3YNI0aMyK1NoGyUmJiIwMBAAECjRo20Wkb8ktiyZYvK6Zs3bwaQegt2elfNZYX4xV28eHGlLyEA0phu6oiBoVWrVtnWJvEPjZiYGIWBiTPC2NgYgwYNQnBwMIKDgzFgwADp9vPslpHXMm1A2rBhA06cOIEWLVpIX6wVK1aU+swePHiwdOv10KFD0bx5cxw/fhwbN25UWI+trS1q1KiB6OhonDx5Uuu2t27dGkBqX+2vXr3Serns1L17dwCQug8B/tsvbW1tM7Vf6sLDhw8xefJkKYSKXWVYWlpiw4YNAFK7q5Efl0BUqFAhAP/1o05EmjFnkYgZixkLyN6MJf5f1xmrcePGAJixtPHs2TNmLKIcwoxF8pizmLMA5qzMYs4iyl65erLvxYsX6NmzJypVqoQffvgB1tbWuHTpEooVKwYg9Y0kP/BogwYN8Pvvv2P9+vWoWbMm9u7di4MHD6bbHzHlfV++fMGoUaMQEREBV1dXrW//HzhwIMzNzXH9+nXMnTtXYXDLGzduYM6cOQBSP3B1qWLFitDX18eDBw8QFBSkMO3IkSPSFR+qPH/+HCtWrAAAafDg7CAOEmxmZgYbG5tMr2fYsGFo164d2rVrh+HDh2dX85Rk9rV8+vQpxo8fD3Nzc2zatEnhlnnx/2kfE7+Yx40bh6dPnyqsT6zj5eWFI0eOKLVTEARcvnwZp06dkh6rVasWOnbsiLi4OHTs2BHPnimOe5CUlITDhw9n6PnIqF27dgGAwmst7pehoaEZ3i91ISUlBZ6enoiJicHgwYPRokULhelt2rRBv3798PnzZ/Tr109psFp7e3sA0NhnOxH9hzmLAGYsZqz8nbG++eYbZiwtpKSkYPLkycxYRDmEGYtEzFnMWcxZWcOcRZS9crUbT/ENrU7aNzQAdOvWDd26ddNRiyg3bNq0CVOnTkVERATs7Oywbt06rZctUaIEduzYgW7dumH69OnYtm0bnJycEB4ejnPnziEpKQleXl4YOHCgytu8T58+jfj4eIXHQkNDAQAhISFKg/KKA+Z++PABU6ZMQbdu3eDs7AwbGxuMGDECy5cvR/PmzdG4cWPY2tri/v37uH79OmbMmCF98cqbMGECfH19ERkZCTMzM6xduxZr165VmEfs9z84OBienp7o0aOH0gChe/bskW67T0hIwL1796Qv8MmTJ2eq2wORnZ2ddCu9LmXktRQJggAvLy9ER0dj06ZNCv17a1KmTBksXboUAwYMQL9+/XD69GkpRLm5uWH58uUYP348OnTogPLly6NSpUqwsLBAREQEbt68ifDwcEyePBnff/+9tE5fX1+0bdsWly5dQoUKFdCgQQPY2trizZs3CA0NRUREhNIXfmbNnz8ffn5+AFL7OQ8NDZVef/k+7TO7X+qKr68vgoODUbZsWSxatEjlPGIXCIGBgVizZg2GDRsmTXN3d4evry8mTZqE06dPo3jx4pDJZOjXrx8aNGiQU5tBlG8wZxEzVsYy1pQpU6Cvr68wDzMWM1Z+yFhLly5FSEgIMxZRDmHGIoA5i8eyUjFnaY85izmLcoDwlYmKihIACFFRUenOGxcXJ9y5c0eIi4vLcJ0HDx5kpnn5toaDg4MAQPD19dU4n4uLiwBA8Pb2lh6bPHmyULlyZWHGjBlCeHi42mUBCOp22Tt37ggeHh6Cvb29YGhoKFhaWgpNmzYVdu3apXJbvL29pfVl5Ud+e1NSUoS5c+cKzs7OQuHChQULCwuhUaNGUhtUtV983jLys23bNml5Dw8Ppel6enqCtbW10KJFC4Xt14avr68AQOjcuXO684q1077m6h4XPX78WAAg2NnZqZyuzWsp8vHxEQAIbdu2VbmuESNGKO1v8tq0aSMAEHx8fJSmhYaGCoMGDRIqVKggGBsbC6ampkK5cuWEVq1aCT4+PsLLly8FQVDcrxISEoQ1a9YIjRs3FiwtLYVChQoJ9vb2QsuWLYVVq1apbIP8c+Lg4KByulhDfP/I/+jr6wslSpQQ3NzchFOnTiktm5KSImzatCnd/TI7P0/E/VrenTt3BCMjI0EmkwlBQUEal/f39xcACGZmZsKjR48Upm3YsEH49ttvBVNTU5Xvw23btgkABA8Pj+zaHCU58dmbU3UKQo2kpCTh6tWrQlJSkk7rkCJ1GYk5K/trMGPlXMYKDAyUtkVXGcvDwyPd1z2rGcvBwUFljezMWOLrrMuMJQj/7Vu6ylhiDV1mLPntyCp1GcvY2FjnGSswMFDnGUsQ8s5nL2ukYs7KHcxZOVeDOYvHstJ7XJSTx7KYs5izdCWvfPayRsYyVka+03myTwOGIx7UVkf8QksbAjJaw8HBQXBxcdFqXjG8yAckXclvrwdr5K0aqgJSdtdQhyf7vr4aPAiVO3gQijV0VSM3M5b8yT5dYg3WyCx1GSs7a6jDg1BfZw3mrNzBnMUauqrBY1n5o0ZO1WENRcxZrJGTNXR1si9Xx+wjIiIiIiIiIiIiIiIioszL1TH7iPKrokWLYt68eXB2ds7SehYvXozChQtrNW+jRo3g6+uLcuXKZakmERERUV6VmxmrcuXKiI6OzlJdIiIioryKx7KIiAo2nuwjygQLCwulAY8zo2vXrlrPW758eZQvX17l4MxEREREBUFuZiwAPNlHREREBRaPZRERFWzsxpOIiIiIiIiIiIiIiIgon+KdfURElK3GjBmDjx8/5kptOzs7eHt7o1atWrlSn4iIiEhXcjNjOTo6YsSIEWjevHmu1CciIiLSJeYsKgh4so+IiLLVmDFjcq22vb09Zs6cmWv1iYiIiHQlNzOWo6MjRo0ahQoVKuRaG4iIiIh0hTmLCgJ240lERERERERERERERESUT/FkHxEREREREREREREREVE+xZN9RERERERERERERERERPkUT/YRERERERERERERERER5VM82UdERERERERERERERESUT/FkHxEREREREREREREREVE+xZN9RERERERERERERERERPkUT/YRERERERERERERERER5VMGud2AguDZs2d49+6d0mPR0dE6r5vZGjY2NihTpkw2t4iIiIgoe+W3nMWMRURERPkFcxYREVHBwZN9WfTs2TNUqVIFsbGxud2UDDE1NcXdu3cZkoiIiCjPyo85ixmLiIiI8gPmLCIiooKF3Xhm0bt37xAbG4vt27cjJCRE+jlw4IDC71n52bJlC8zMzFCjRg38+eefWa6xfft2xMbGKl29lRWOjo6QyWRa/8ycOTPbalP2mjlzJipWrAg/Pz+Fx8PDw1GsWDHIZDL8/vvvapcPCgqCnp4eTE1N8eDBA63r+vn5QSaTwdPTU2WbZDKZUpuIKPNkMhmaNm2q9Li3tzdkMhmqV6+OL1++qFxWEAQ0b94cMpkM/fv3z3Bt8f2ele+Czp07w8TEBC9evFCaJpPJ4OjoqPS4rrdN/C588uQJAKBNmzaQyWR4/Pix2mU8PDwgk8nQqlUrtfPEx8fjm2++gUwmw+zZszPUJkDzZ2iLFi1gbm6ON2/eZHi9OSEncpa6n8zUYMYiTcT34v79+xUe13XGEon7EhFlD3V5Ji4uDq1atYJMJsPcuXPVLn/v3j2YmJhAT08P586d07puUFAQZDIZ+vTpo3WbMiIvZazXr19DT08PLi4uaufJq3+n5vWMBegmZ6k7fsWcRUSke5qySeXKlVGxYkWdZBORq6srKlasKB0TyW3qvqfzQnbYsmWL1uvLCN7Zl02qVKmCb7/9Vvq9SJEiqFChQpbXe+XKFYwcORI1a9bEyZMnUaRIkWyvkZ0aNmyI8uXLq51+8uRJvH37NgdbRNmlePHiWLNmDbp164aRI0eiadOmKFWqlMI80dHR8PT0hCAImDdvHipWrJhLrSWizJoxYwYOHz6Mv//+G97e3pg3b57SPCtWrMDZs2fh4OCA3377TWGao6Mjnj59isePH6s8GJQdTp8+jYMHD2LChAmwt7dHRESEVstlddsyyt3dHSdPnsT+/fsxfvx4lfMsX74cZ86cwalTp7Bu3ToMHjxYaZ5p06bh7t27qFOnDqZOnaowTTxwLwhCpto4f/58ab2+vr6ZWkdO0FXO0iSv5SxmrIIrqxnLz88PXl5e8PDw4IVRRHmAiYkJFi5ciB49emDWrFlwc3ND9erVFeZJTk6Gh4cH4uPjMWbMGI0ns3JS2oyVnJys1XK6yo+lSpVCgwYNEBwcjPDwcBQvXlxpvXn179T8krGA7MtZmo5fpcWcRUSUc0xMTLBlyxY0bNgwU9kkKCgITZs2hYuLC4KCgnK49dlPm+zw+fPnfHmMO8/c2Td//nzIZDKMGTNG7TyJiYn45Zdf8L///Q/GxsZSgCiorly5gpYtW6JatWrpBqW8YsCAAfDz81P7U7ly5dxuImVB165d0aNHD0RGRmLgwIFK08eOHYunT5/C1dUVo0aNyoUWElFWGRoaYuvWrShUqBAWLVqES5cuKUwPCwvD1KlTIZPJsHnzZpibm+d4G8eOHQtjY2NMmTIlQ8vl9LZ16tQJ+vr62Ldvn9p5LC0tsWnTJgDAhAkTlO4C/PPPP7F8+XIYGxtjy5YtMDDI/HVaXl5eSjmrdu3aaN++PbZs2YJr1659VTkrv2HGKtiYsYgKlpo1a2LixIn48uUL+vbti8TERIXp8+bNw5UrV1CpUiWNV9jntLyYsdzd3ZGSkoKDBw+qnSe3P0OPHTumdDxLPmPdvHmzwB/Pyo/Hr+QxZxFRQVevXj30798/32UTXUkvO8ydOzdf/v2VJ072Xb16FevWrUONGjU0zjdjxgysW7cOK1aswJ07dzBkyBB07twZN27cyKGW5pz8HpSo4Fq1ahVKliyJY8eOYfPmzdLjx48fx6ZNm1CkSBH4+vqymyiifKx69eqYOXOmdGVXXFwcgP+u9IqNjcXw4cPRrFmzHG9bQEAAbt++jU6dOsHa2jrDy+fkttnY2KBx48a4dOkSXr16pXa+Vq1aYdCgQfj8+TO8vLyku/TE31NSUjBnzhxUqVIlU+14+fIlAKB06dIqp/fv3x+CIMDLy+uryVlEeREzFlHBMmvWLFSrVg1///23QjfcN2/exC+//AJ9fX1s3boVJiYmudjK/+TVjNWlSxcA0HjxFJC7n6FBQUEqj2eJGWv58uUF+ngWj18REeUPo0aNylfZRNc0ZYe9e/fmy7+/cv1k3+fPn9G7d29s2LABRYsW1Tjvtm3bMG3aNLRt2xblypXD0KFD0bZtWyxZsiSHWpszvuagJI4/oOlHlXv37sHLywsODg4wMjKClZUVmjdvjt27d6ucX+wfV1V/65r61X3y5InacQoiIiKwdetWtG3bFmXLloWJiQnMzc1Ru3ZtLFiwAPHx8Rq33dPTU+N2q2qPuExOdtlkZWWF9evXA0i9QvL58+f48OEDBgwYAABYsmSJ2q77kpKSsGzZMlSvXh3VqlVDsWLF4O7ujtDQUJ20dfPmzWjWrBns7e2l16NKlSoYO3asyjG0nj59igULFqBZs2YoU6YMjIyMYGlpiUaNGmHdunVISUnJcBs07bfi2BaaXsOzZ89i1KhRsLe3h5GREYoVK4Y6derA29sb79+/l+bTtN8GBATA1NQUZmZmOHv2rMo6TZs21bj/pW2fun3v06dPmDlzJmrVqoXChQvD2NgYFSpUwOjRo1V2e6Kp3YDyGGjykpKSsHHjRri6usLKygpGRkZo1qwZhg4diufPnyvNL36+uLq6qqwFpPYvLpPJlLolUPc4AAQGBmp8nwLAgwcPMHjwYOlKXgsLCzRp0gTbt29X246KFStKVz+r8uzZMxgYGGjcx7Ji0qRJqFu3Lh48eIBp06YBABYtWoSLFy+ifPnyWLBggcL84mv59OlTAEDZsmUhk8mk7ciurh5WrlwJAGqfa21kdNvk3blzB926dYONjQ1MTExQrVo1LF68WG03V+7u7hAEAQcOHNDYpsWLF8PR0RHnzp2Dj48PgNQ7/R49eoRGjRph7NixCvOL32OitO9Z8T3z+fNnaXwwU1NTlbXbtWsHGxsb3L59G6NHjy7wOetrxYxVMDOWo6MjvLy8AABbtmyRtqlixYoav++0FRkZCQ8PDzg5OaFYsWIoVKgQSpYsiYYNG2Lnzp0qx+Y6ffo0Ro4ciVq1asHGxgZGRkawt7dH9+7dcfXq1Qy3QdN+k5CQIH3PqNuHY2NjsWzZMjRq1AhFixaFkZERHBwc4ObmpjRGh7rve0EQMGjQIMhkMtSvXx9RUVFKdTS9x8Q2pqWu3Tdu3ECfPn0U8mjDhg2xfv16ld83Ym5Q9V2bXv559eoVxo0bhypVqsDU1BRFihRBnTp1sHLlSiQlJSnNn957Q917WdN7HPhvDFt12wEAe/fuRevWraV90c7ODn369MGdO3fUtkMmk6FIkSL49OmTynX++uuv6ea4zCpUqBC2bt0KQ0NDzJs3DyEhIQpX00+ePBl169ZVu/zWrVtRp04dmJqawsrKCq1bt8b58+eztY3yciNjqcuP4k9QUBAcHBzg7OyMwMBAfPz4UW3t7Po71djYWOu/U8XPQE9PT5XHs8SMtXPnTmzZsqVAHs/6mo9fyWPOyt2cJW775MmT1c6j7tjCnTt34O3tjYYNG8LOzg6FChWCtbU1WrRoofZ10ET++ye9H3Xbf+bMGQwfPhylSpVCoUKFULx4cXTu3BkXL15UOb/8PrZhwwY4OzvDzMwMlpaWaNu2rdLd1vJUHVcpW7as2uMqopcvX2LixImoXr06ihQpAjMzM1SsWBGenp7466+/lOaPi4vDkiVLUL9+fVhaWsLY2BiVKlXCpEmTFI5tiTQdg8mNbFOxYsVMZxtdHGPKrMxkE1dXVzRt2hQAcO7cOYV9OLuGbtF07E882abusy8rciM76Fquj9k3fPhwtGvXDi1atMCcOXM0zpuQkABjY2OFx0xMTBAcHKxxmYSEBOl3dSE/r2BQSlWiRAm0bt1a4TF1A1ceO3YMXbt2RXx8PCpVqoQuXbogPDwc586dw9mzZ+Hv7y91kaZL/v7+mDNnDuzs7FC+fHnUr18fERERuHz5MqZMmYJDhw4hMDAQRkZGGteTtq/4f//9FxcuXNB18zPEzc0Nnp6e8PPzQ79+/VCsWDG8fv0arVu3VnnrMwCkpKSgW7duOHjwIAoVKoS6devCzs4Oly9fRt26ddGvX79sb+fp06cRGRmJGjVqwNLSEnFxcbh8+TKWLVuGzZs3S7eni7Zt24affvoJZcuWRcWKFdGwYUO8fv0aFy9exIULF3Dq1Cns3bs3W06sPHz4UOMJBSD1ipsVK1YAAGrVqoXGjRsjKioK9+/fxy+//IKmTZumeyAvICAAHTt2hEwmw9GjR6UvaHXc3d1RuHBh6ffg4GA8fPhQq216+/YtmjRpggcPHsDY2Biurq6wsLDAX3/9BR8fH2zbtg2nT59WGA8is6Kjo9GhQwcEBQWhcOHCcHZ2RrFixRASEoK1a9diz549CAgIgJOTU5ZraZKYmIjhw4drnGfPnj3o27cv4uPjUblyZbRt2xZRUVG4fPkyfvzxR5w9e1btCT0gdXwTVe+PlStXaj2OSmbo6+tjy5YtcHJywvLly1GhQgV4e3tDT08PW7ZsUTpxVL58eXh4eGDv3r2IiYmR9qVPnz7B3NwcJUuWzHKb4uPj4e/vD0NDQzRp0iTT68notomCg4PRunVrxMTEoFy5cmjZsiXevXuHadOmqf0DqnPnzhg1ahT27duncV8Rrxhr1qwZpk6dCn19faxbtw5mZmbw8/ODnp7i9Vm1atWCh4eH9N3o4eGhMF18Hw8fPhwVKlTA5cuX1dY2NDSEq6sr9u7di3///VdhmjY5S/5gf17PWcSMVdAyVteuXXHp0iVcuHAB//vf/9CoUSMAqe9FTScRtBUZGYndu3ejevXqaNiwIczMzPDmzRsEBwfjr7/+wsWLF3HixAmFZYYMGYLnz5+jatWqaNiwIQwMDHDv3j3s3r0b+/fvx65du+Du7p7ltgGpJxHCwsLUTn/+/Dlat26NO3fuwNTUFA0bNoS1tTVevnyJ8+fPIzQ0FAEBARprCIKAwYMHY8OGDahfvz78/f01dkGYkfeYKrt370afPn2QmJiI0qVLo1OnToiOjkZgYCD++usv7N+/H4cPH0ahQoW0Xqc6f/75Jzp16oQPHz7A0dERLVu2REJCgjTu1pEjR3D06FEYGhpmuZYmwcHB2Lp1q9rpSUlJ6N27N3bv3g0jIyM4OzvDzs4ODx48wI4dO7B//37s379f6XkXff78GZs3b1bqyjoxMRGrV6/Ozk1R4uTkhOnTp2PmzJno27cv2rRpg1u3bqFGjRrw9vZWu9zo0aPh4+MDPT09NGrUCLa2trh16xZcXV0xcuTIbG9nbmUsdflRJOZHd3d3hISE4PDhw+jbt6/a+tnxd6qrqyuKFi2q1d+px48fBwBUrVpV5cUM8hnLwMAgU8ez8nLO4vErZcxZeTtnqbJ06VJs2rQJlStXRvXq1WFpaYlnz54hMDAQZ86cwaVLl7B06dIMr9fMzAxdu3ZVOU3TcZYJEyZgyZIl0NPTQ+3atdG4cWM8e/YMhw4dwpEjR7BhwwbpQq+0xo0bh2XLlqFhw4bo2LEjQkNDceLECQQEBGD37t3o3LmzwvyfP39Gy5YtlY6rhIaGajyucubMGXTt2hUfP35E8eLF0bx5cxQqVAhPnjyRLqRq0KCBNP+rV6/QunVrhIaGwsrKCnXq1EGRIkVw/fp1LFq0CHv27JEu7siq/JJt1NHmGFNWZTSbtG7dGsbGxvD391f6jLOxsdFpWz98+KDxJH52UJcdGjdurJPsoGu5erJv165duH79utZXeLZq1QpLly5FkyZN8L///Q9nzpzB/v37NR7snDdvHmbNmqX0ePfu3dN9Y1tbW0tn9/X19VXO8+zZM+lf+WATGxur8Q9PVW7evAkvLy9UrFgRK1euxJs3b/DmzRu182emhqY2Z6WGeGXE27dvNc4vduXx/v17hfnEOuIVfY6Ojpg+fbrCsmJAkl/u3bt36NmzJ+Lj4zF27FgMGTJEOhETGhqKfv36YfPmzShbtizc3NykZcWrRtK2Q9wGIDVIp5324sULaXvTTrO2tsbWrVtRv359hcejoqIwduxYBAcH4+eff5auDkhLvErRzc1N6qoEAPbv348LFy5I7ZF/TcSwn97znhHic5PeOkeOHAl/f3+cPn0aAGBubo5p06apXWb79u04ePAgbGxssHXrVtja2sLU1BRJSUmYM2eO9Ie2qudd2zaltXr1alhaWio8lpycjEmTJuHIkSNYtGiRwpdGlSpVcPToUaVBV9++fYuBAwdi//79WLFiBdq0aSNN0/Y9knaeAQMGICEhAba2tnj16pXStm3duhUrVqyApaUlFi1apDAwLpD6eaGnpycto2q/vXDhAoYOHQqZTIZ169bB3t5ebVvF9/CIESNgZ2cnPT558mQ8fPhQqX2q9r2BAwfiwYMHsLe3h5+fH8qUKQMgNax4e3tj79696NixI06ePCkdoNL0fpNv1+PHjxX6Ex8/frw0QPDcuXOlroZiY2Oxe/duzJ07F126dMGJEyekz2/x/RsXF6f2eRA/o168eKEwj/zjRYsWlaZt2LABd+/elV7HtNtx//599OnTBzKZDCtWrECrVq2kaS9fvsSQIUPg6+uLypUrKwRvsV79+vVx6dIl/P7776hTp47C9PXr1+O7776Tru7LzGdASkqKxuX09fUxduxYzJs3TwqcAwYMQLFixZSWK1GiBKZPn47Tp08jJiYGw4cPh729PWJjY6UDO2n3V1WfwZr89ddfSEhIQPXq1aXXU+zyMqMqV66MuXPnYty4cdK2TZw4UeGPEnnx8fHo1asXYmJiMGbMGCxevFjat27duoXmzZvj3bt3SsvZ2dmhfv36+PPPP/Hu3TuNYVg8gOfj4yMdyFu4cCH+97//Kc3bqVMndOrUSfpuVHUVopizOnbsqPFkH5D6x9jevXuxZ88eTJw4UeuctWjRIvz6669Kj+fFnJVRmamRkYylbQ1mrJzLWPLPly4zVkJCQrZlrMGDB6NYsWK4cOECatSoIb224mev/DLivpSR7UlOTsb169eVxgt99eoVOnfujJMnT+L48eOoUKGCNG3cuHGoW7cuLCwsFJYJCAjA6NGjMWDAAFSsWFHpoLcqsbGxavebFy9e4Ndff5W+g9NuW0pKCrp27Yo7d+6gUaNGWLx4MaysrKTpCQkJuHjxosL7MG0OEAQBP/30E3bv3o1atWph9erVePv2rcreCjL6HpMnPv7q1St4eHggMTERP/zwA7y9vaXP0mfPnsHT0xP+/v4YPXo0xo0bJy2vLr+Ij4nzyE+LiIhAx44dERUVhZkzZ6JHjx7ShSUfPnzA6NGjcerUKUyYMAEjRoyQXo/03hvq3svqHk9KSsKAAQOgr68Pa2trhIeHK23H0qVLsXv3btSsWRNLly5V6Jb65MmTGDt2LHr06IEzZ85IJ2LFera2tjA0NMSyZcvQtm1byGQy6TU/evQoXr16JeUpdXlUHU15Rn6/+uGHH7Bnzx78888/uHPnDgwNDTF79mxpn0krMDAQPj4+MDU1xYYNGxQy4Nq1a6WDzsnJyWo/Z7MjYwGZy1kZyViNGjVCo0aNEBQUhJiYGKmng7Tc3d0xbdo07Nu3T+PJPgBYtmwZzpw5I32GWlpaYuPGjWrnX7NmDQ4ePIgSJUogMDBQ6jY9KSkJo0aNUntCeNeuXXj9+rXGtgD/ZazixYtn+HhWXs5ZGT1+lRZz1teXs3R5LEvcdlXbJ1J3bKFp06bo2bOndPxC9OjRI3h6euK3335DgwYNULNmTQDp71fic21paam0L4jUHWf5448/sGTJEjg4OGDRokWoVauWNO3q1asYNGgQBg8eDHt7e5WflWvWrIGfnx++++476bGNGzdi4cKF8PDwQKlSpRS6aZ4+fbrK4ypA6t+Xqo6rvH79Gp07d0Z0dDQGDRqEUaNGKVyA9P79ezx+/FjarpiYGPTo0QOhoaHo2rUrpk2bJl3UkZSUhMWLF2Pz5s3o0aOHwsmxjGQb8TXJTLYB0t8fdZFtVG1fbGwspk+frvEYU3rSywHic5WRbOLu7g57e3v4+/vDwcFBab9WtV1p32fpUff+nDlzJiIiIqTnQ9wubb9DsnKMe8aMGVof4xYvdMjIMe7w8PB0258pQi559uyZULx4ceHmzZvSYy4uLsLo0aPVLhMeHi507NhR0NPTE/T19YWKFSsKw4YNE4yNjdUuEx8fL0RFRUk/z58/FwAIUVFR6bYxLi5OuHPnjhAXF6d2npCQEAGAEBISovD4gwcP0l2/vMuXLwvm5uZCgwYNhE+fPmm1TEZriNS1OSs1HBwcBACCr6+vxvlcXFwEAIK3t7fKOidOnBAACC1btlRaFoCQdpedPXu2AEBwdnZWWW/x4sUCAKFChQoK2+Lt7a2yHYIgCL6+vgIAwcPDQ2na48ePBQCCg4ODynrqnq/79+8LAIQ6deqonC4IgtCtWzcBgLB9+3aN7ZGv4eHhodXznhHic6PNOufPny+9Lj4+PhrnLV++vABAWLNmjSAIitsRFxcnlCxZUu3znpE2yVP1eqSkpAg//vijAECYNGmS1uvy9/cXAAjdunVLt4Y8Vfvt/v37BQCCm5ubytcwMTFRKFasmABA2Ldvn1bvw7T7yalTpwQTExPBzMxMCAoKSnd5GxsbAYDw8uVLhcfV7WNpHw8LC5O2df/+/Urrj4mJkWrs2LFDenznzp0CAKFdu3Yq2yV+tjx+/Fh67M6dO4JMJhNsbW2VPi/F56pt27YCAOHIkSPStMDAQAGA4OLiovZ5ED+jAgMD1T4u1nj+/LlgZmYm2NraCitWrFC5/3bv3l0AICxevFhlvStXrqj8DBPr/fHHH4KRkZHg7u6uMH3NmjUCAOHQoUMq9zFtABDs7OzSnS8+Pl6wsLAQAAi2trZCfHy8xvnTvmaq9l9xf1X1GazJokWLBABC3759pceSkpKEq1evCklJSdJjmj6n5WVk27Zv3y4AEEqXLi18+fJFafpvv/0mvRby+6t8uzds2JBum16+fCno6elJ+0VKSorG+dW9/vI5S/wMrVSpktqcJX7GWVhYaJWzxIz08ePHfJGzMiMzNTKSsbStwYyluB1pZWfGkq+jy4w1f/78dOfNSMbStB3yxH0pO7x8+VKwsrISAAh37tzRermePXsKAIRjx45pNf+DBw/U7jcdOnSQspKqffjgwYMCAKFUqVJCdHS0xhoi+e/7lJQUYeDAgQIA4bvvvkv3cy2j7zFVj0+fPl0AIJQsWVKIjY1Vmn/v3r0CAKFIkSIKn52tWrUSAAh79uxRWkZd/pk8ebIAQBgxYoTK7Xnx4oVgaGgoFCtWTPouevDgQbrvDXXvZXWPL126VAAgjBw5UmUOe//+vWBiYiIYGxsLL168UFlz2LBhAgBhxYoVKustX75cIReKr3m9evWEkiVLCuvWrVP72aSJpjyT9j24a9cu6fUeN26cxvW2aNFCACBMnjxZ5fRatWoJAIS6detmqE2aqMpYgqCcs3SRsQRBdeZPq2rVqoKxsbHG97MoK3+nylP3d6qYs4YMGSK9H9QdzxIzVrVq1bQ+npXXc1Zmjl+lxZz19eUsXR7LEmt17txZ7TzafM6kJX4/TJw4UXosvf0qvedaEFRvf3JysmBraysAEK5du6ayzsKFCwUAwvjx4xUeF/exMWPGqKxXu3ZtAYDw66+/So9pOq4iUnVcZcyYMQKQejxLGxs3bhQACLVq1RISExOVpicnJwvVqlUTAAihoaHS4xnJNuJzlZlsIwjp74/ZnW0EQfWxpz///DPdY0zpSS8HyO9XGckm2hxPE4T/tisj7zNBUP3+vHbtmqCnpyc4OTkJM2bMUNgubb9DsnKMW1ONzGSHtG3atGmT0rEsdbT5Thfl2ph9ISEhCA8Px7fffgsDAwMYGBhI49QYGBiovLqpWLFiOHjwIGJiYvD06VPcu3cPhQsXRrly5dTWMTIygrm5ucJPXsOuD/4jXgGQXvcAIrFv47Tdl4n69+8PIPUqA1VX4Ga35ORknDlzBrNnz8awYcPg5eUFT09P6Wq8+/fvq102JiYGgPoxlfKa8PBwLF68WPp99+7dase0e/nypdQ1XJ8+fZSmGxsb44cfftBNQwHMmjULnp6ecHd3h6OjI7Zt24aSJUti2LBhSvMmJCTgyJEj+PnnnzFkyBDpNVy3bh0Aza+hNmJjYzF27FiYmJhg+fLlKucJCQlBREQEbGxslLpZ0IbYdWdcXBy2b9+udFegKmI//Nq+90QbN26Ep6cnBg8eDACwsLBAp06dlOYzNTVFu3btAKRerSyqXLkygNT3sqq+uVU5fvw4BEFAmzZt1H5eit2bquorPruMHTsWMTExWLJkiUJ3Q6KUlBSpa7Pu3burXEft2rVRuHBh3LhxQ+VYCMWLF0ePHj1w8OBBhf7yfXx8UK5cObRv3z6btka9X3/9VRqb6NWrVzh37pzOa6ojfo7LX3GYFRnZNvH75ocfflB5JbW67yEAUnd14th5mkyZMkX6LA0NDcU///yT7jKqyOesX375BUDq55e6nCU+p2ZmZgUuZ1EqZqyCmbFyysuXL+Hp6Ym+ffuiVatWKF++PCIjI9GzZ0/pLhh5r169woYNGzB+/HgMGDAAnp6e8PT0lD7Tspqnjh07hsOHD6NVq1YKdxHIO3nyJACgV69eKr+nNRHkuu4sXbp0ul13Ahl/j8kTn59t27YBSP2uMTExUZqvS5cuKFq0KKKjoxESEiI9LuaprVu3at3F97FjxwCozyh2dnaoUKECIiIidHYn9evXrzFz5kyUKFECs2fPVjlPYGAg4uLipLGUVEkv93l5eaFIkSLSmLgAcPnyZVy+fBmDBw/Oli5RNYmLi1PoFuvw4cOIjY1VOW9SUpLUraOqv5sApHtnW2bkZsbSlru7O+Lj46WuM9XJib9TxZwl/o3Yv39/tcezxOc0MjKyQBzP4vEr1Ziz8k/OUuXz58/Ys2cPpk2bhkGDBknfy/v27QOQ9dyijRs3buDVq1f43//+B2dnZ5XzpPd9p25/Er835MeHy+xxFTFfDRo0SO22yBNruru7K/UUAQB6enpS99HydQpytlFn7ty5Go8xZaeMZJPckJKSgmHDhkEQBKxatUrtHerZJT8d405PrnXj2bx5c6UBC728vFC5cmVMnjxZ44tobGwMOzs7JCYmYt++fbn6BGYVg5Ii8VZWVYNbq/Ly5UsAqQN5q2JpaQkrKytERkZmqEuJzAgLC0OHDh00fmFo6mNf3JbM/IHl5eUl9dmtr6+PokWLwsnJCQMGDNDZ+2Pw4MF49+4dOnXqhJs3byI4OBjLli1T6FJIJN7abmNjo/YLS91rmB2OHDmicEDE1dUVW7duVegCCAAuXbqE7t27S92DqJLVcRLmzJmDp0+fYtasWWq3WbxtvlKlShkeH/DatWvYvXu39MfG9u3bVZ58k5eYmIjPnz9DT09Pqcut9Fy4cEGhH35xUF1VxOdb3NeB1HHHWrZsiYCAANSqVQuurq4KXa+q6hbx0aNHAIBNmzalO4ZBRESE0mPigMJZIY7f2KxZM/To0UNlF4rv37+X9pe0+5oq79+/V3kQa/To0diyZQtWrVqF+fPn49SpU7h7967Uj78uXbt2DfPmzYOhoSEGDRqEVatWYcCAAQgNDc3wvpIdxING2XGgI6PbJn6OqXvfFi1aFBYWFlIb5ZUtWxZOTk44c+YMoqKi1D53hw4dwrZt22BpaYlOnTrBz88PHh4euHz5sso/jDSRz1mrV6/GmjVr4OjoiEaNGqnMWeJz+uHDhwKVs+g/zFgFM2PllA8fPiiMOWRoaIjhw4dLYwvLmzVrFn799VeNXfdkJU/Fx8dj1KhRMDIyUllfJOYp8WBRRkyaNAnXrl0DkDruX1BQENzc3DQuk9H3mLy04zmpe9/JZDKULVsWHz58UMhTw4YNw4YNG3DkyBFUq1YN3377rXRhirr3p5inGjdunG77IiIilLq5l39vZNb48ePx6dMnrFixQu13o9jOM2fOpJvfVOU+IHVcXC8vL6xYsQJ3796FgYEBli9fjkKFCmHIkCHSgUtdmTp1Ku7fv4/vvvsOgiDg0qVLmDJlisLJR9H79++lC8DU7Qe6+LspNzOWttzd3fHLL7+km01y4u9UMWeJGWvWrFk4dOiQyuNZ8hkLyN/Hs3j8Sj3mrLyRsw4cOJDhv/WPHDkCLy8v6TVUJSfGyxS/7x4+fJjp77v0vjfku2nO7HGVjOYr8aLln376CT/99JPWdYYNG4aNGzcWyGyjyqlTp3Dy5EmNx5iyU0aySW7YuHEjrly5Ai8vL3z33Xfw9/fXaT1V2cHPzw/z5s1Tmje3j3GnJ9dO9hUpUgTVqlVTeMzMzAzW1tbS43379oWdnZ30xF6+fBkvX75ErVq18PLlS8ycORMpKSmYNGlSjrc/OzAoKRNDgq2tbS63JOO6du2KsLAwtG/fHpMmTcI333wDc3NzGBoa4suXLxqv8EpJScHjx48BZO4DQX4g5Pj4eNy7dw8BAQEICAjA/fv30/1Czaht27bh4MGDKF68ODZs2IDQ0FA0b94cM2bMQPv27ZW+MHObeLAmIiICgYGBGDNmDFxcXODv7y+NMRMbG4tOnTrh7du38PLywtChQ1G+fHmYm5tDX18fDx48QKVKlTI9PhgAPHjwAEuWLEH58uV1NsDsP//8A1NTUxw/fhxTpkzBvn37sGnTJunKQFXEcW6KFSuW4RMKvr6+0hVv6gafTs+BAwfw888/Y9euXTh8+HC6z7F4dU2tWrWkfvNFnz59UjhIUa9ePaXlVQ2aLjp58mS6V05++fIFI0eOhKGhIVauXJluOwHNd32J1H1GODk5oXHjxti4cSNmzpyJ5cuXw8zMTONrmh0SEhLg4eGBpKQk/PLLL5gxYwbu3LmDwMBAjBs3LkcGi09LPBGc1T+2cmPb3N3dcePGDRw5ckTl1V/v3r2Tro708fFBt27dcOnSJVy/fh3z5s3L8Oe4fM4qXrw4gNR9TF3OEg/yGRsb49GjRwUiZ5EiZixmrKyoVq0aBEFAUlISnj17hrVr12LRokX49OkTtmzZIh2U2r9/P2bOnInChQtj5cqVaNasGWxtbWFiYgKZTIZp06Zh3rx5WcpT8+fPx6NHjzBjxgyFsQKz07Vr11CvXj389NNP6NixI/r3749bt26hZMmSapfJyntMfD7c3Nxw9OjRDC9fsWJF/P7771i7di3Onz+Pe/fupbuMmFO6du0KMzMzjfOqOoAr/96Q9/nzZ+lOCE2CgoKwc+dONG7cWOOdamI7y5cvj4YNG2pcp6YDjyNHjsSKFSuwcuVK9OzZE3v37sUPP/yg8TXNDuLdXiYmJvDz80NKSgqcnJywcuVKuLu7a9UDR07IDxmrRo0aKF++PI4fP474+HiV437m1GeomLPEjGVvb6/2eJbYw4OZmRn279+fb49n5YXjV+IdZHkRc1beyFllypRB06ZNVU7bu3ev0j708uVLdO/eHXFxcZg0aRJ69+4NR0dHFC5cGHp6ejh16hRatWqVpdyiLfH7rmTJkmjVqpXSsQ15msaB10R+OzQdV0lL1XEVbYl1GjVqpHIsenlVq1aV/l+xYkUEBwdj6tSpBS7bpKXtMabsktezyfv37zFt2jQULVoUCxYs0Hk9ddlh2bJl0ti0+UmunezTxrNnzxTuWoiPj8eMGTPw6NEjFC5cGG3btpWugM9v8kJQyovu3LkDQPEDXhM7Ozvcu3dPunojraioKERGRgJIPcCvK/fu3cOtW7dgbW2NAwcOKJ0wSe/28Lt37+LTp08oUaKEVncApSV2jyRv3bp1GDJkCBYsWIApU6akO4C3tl6+fIlRo0ZJNWxsbNC0aVMMGzYMq1atgpeXF86fP6/w3hXvVnr37h0+f/6s8soHbbtwzIpixYpJ3SJ16NABkydPlrrV+/PPP/H27Vt8++232Lx5s9Ky2XGL/4gRI/Dlyxf4+PhoDMziwNAPHjzIcKg0NTXFkSNH0KxZMzg4OMDZ2RmjR49GkyZN1B4Qy+j7ThVxv33y5AkEQVB5JZp49Uvau9fMzMywZMkSLFmyRGkZR0dHpQGCxVoNGzZUCkJhYWHpHvirXLmy2qukXF1d0z3Zt2nTJjx48ACTJk1S2XWZyMbGBiYmJoiLi8PixYszHcgBYNSoUejWrRtmzpyJEydOYMiQITq/s048OOPs7IypU6dCJpNh8+bNqF69OjZv3oxu3bqpPWmqK+IBFU1XXWojM9sm7rfqPqs+fvyo8q4+UZcuXTBjxgzs27dP5cm+YcOGITw8HB07dsSPP/4IIHVQ9IYNG2L27Nno2LEjatSokcktVk0+Z4nPaVxcHL755pt8n7NIGTNWwcxYOc3AwADlypXDwoULcfPmTWzbtg1du3ZFhw4dAKR2eQOkduGnqnunrOapR48eYcGCBXB0dMS0adM0zivmKW0ODqVVr149+Pv7w8LCAtOmTcPs2bPh6emJEydOqL3aPjvzlLr3HQDpoGraPPXNN99I3YfLCwoKUnngs3Tp0ggLC8PkyZNRu3btDLdV1XsDSP2eTO+AWGJiIoYPHw4DAwOsWrVK47zic1KpUqUsXeVevnx5tG3bFlu3bkV0dDQSExOl95uufP78GV5eXhAEAXPnzpUOFs2ePRsTJ05Ev379cOvWLYUDktbW1jAyMkJCQgKePHmicn/Sxd9NuZmxMqJLly5YuHAh/P390bFjR4Vpee3vVDFnic+ppaVlvj2elReOX0VHR2PEiBE5XldbzFl5I2c5Ozur/a4ICgpSOtl35MgRxMXFoXPnzipPKuiqq0dVxOfP2toafn5+Wh3bSOvx48eoVauW0uPi55i9vb1SPVXHVTQpU6YM7t+/j3v37qk8MZZWqVKlAAAdO3bEhAkTtK4DpJ6ILIjZJq1FixbhwYMHGDhwoMZjTNkhJiYmw9kkp02ZMgXv37/H6tWrUaxYMZ3WymvZITvk3l+KKgQFBWHZsmUKv8t/SLu4uODOnTuIj4/Hu3fvsHXr1nx51UxeCEp5UWJiojSWV6NGjbRaRuw/Om3XNyLxpE2FChV0etWmGMKKFy+u8s6o7du3a1xe/NJo1apVtrVJPFgcExOjsivEzOrfvz8+fvyIPn36KHQPuWDBApQrVw5//fUXli5dqrCMvb29NBbB77//rrTOhIQE7NmzJ9vamB7xy+Lu3bvSY+JrKB4YSiu91zA9e/bsQUBAADp16oQ2bdponLd27dqwsbFBREQEDh48mKE6Xbt2RbNmzQCkHvRZvHgxYmJi0KtXL7XdaZ06dQqA9u87VZycnFC0aFFERUXhwIEDStPj4uKk/tPF9mWW+PwdPnxY5Th3uvT06VOsXbsW9vb2+PnnnzXOq6+vj5YtWwL47+BnZnXu3BllypTBggULIAgCRo4cmaX1pefChQtYunQpjIyMsGXLFulzzdHREYsWLQKQGoRVndwSx71JSkrK9nZ9++23AP77YzozMrtt4tVtu3fvVvle2rp1q8a6VapUQZUqVeDv76/0R+bOnTuxZ88eWFtbS2O/AKkHmydMmIDExER4enqqrCv+8avN8z1lyhS1Oev27dsAUvucz+85i5QxYxXcjAXo9nNXEysrKwCq85SDg4PS/OHh4QgICMhSzVGjRiE+Ph7Lli1TOaadPPGEws6dOzN8N8i8efOki2p+/vln1K9fH/7+/mrHW87Me0wVMSPJd8ku78CBA/jw4QPMzc0zdRBLnpinsppRMmPZsmW4c+cORowYgerVq2uct3nz5ihUqBCCgoIQHh6epbqjR4/G58+fsW3bNtSrVw9169bN0vrSM378eDx+/BhNmjTB6NGjpcfHjRuHBg0a4NGjR0q9fRgYGEh3MO7YsUPlesWxHbNTbmYsQPvPMU3jIOf236nqjmeJGcvV1TVfHs/KC8evoqOj0bp1azx8+DDHa2uDOSt/5CxVNOUWQRBUfi7oSp06dWBjY4M7d+5ketx2dd8P4uPifgdk/riKmK82bNig1fzieHx79uzR+R2S+SXbyHv69Cnmzp0Le3t7DB8+XIctTDV//vwMZxMg5/7euHLlCjZt2gRnZ2cMHjxYp7UAzdmhdOnS+eIYd1p56mTf1yAvBKW82PXBly9fMGrUKERERMDV1VXr2/8HDhwIc3NzXL9+HXPnzlX44rhx4wbmzJkDAJg4caJO2i2qWLGi1NWj/IC3QOqVQr/99pvaZZ8/fy6NNzJ06NBsa5M4cLmZmVmW7iiSt379evj7+8PW1lapH2czMzP4+vpCJpPhp59+UhrAeMyYMQCAmTNnKlxhnZycjAkTJkhdSWaX9+/fq/xj9f3795gyZQqA1JNhIvHqmTNnzigtt379evzxxx9Zas+4ceNgamqq8AegOgYGBpg+fTqA1EGPr169qjTP1atXFfpbF6W92nz48OFo164drl27pvLk1KlTp7B27VoYGhqqvNtIW4aGhlJQmDBhgnTVOZD6x8/o0aMRERGBcuXKSX+kZ5aTkxPc3d3x/PlzdOnSReUVMzExMdixY0e2D2Y+Y8YMxMXFYenSpVpd6eTt7Y1ChQph4sSJ2LJli8oBfm/fvq3ygIU8fX19zJ49G+3atcPYsWN1erVXbGwsPD09kZKSglmzZildnTp48GA0b94cL1++lN7X8sSrBTP7B4omDRo0gJGREW7evKnyIGh6srJtXbt2hZ2dHZ49e4apU6cqvJa3b9+Wvm80cXd3R1xcnMLViW/evJGuUl61apXSlbuzZs3CN998gxs3bmDu3LlK68yu51scDD2rJ+Mp72HGKvgZS/wcyMpBenX+/vtvlXf6BAYG4siRIwBU56n169fjy5cv0uNRUVHw8PDQeAd0es6cOYNjx46hbdu2Snf0qNKhQwc4OTnh1atX6Natm9J2xMfHq7xaHFDMUwYGBtixYweKFCmCKVOm4NatWwrzZvY9pkrHjh1RoUIFvH37FqNHj1a4yOPx48cYP348AEhjFmbFxIkTYWlpiaVLl2LJkiUKr5d8zaxe8JZWVFQUfvnlF5QqVQqzZs1Kd/4SJUpg5MiRiImJgZubmzQerbyEhAQcPnw43bs4W7Zsib59+8LV1TXdi7ay6vz581i/fr3C+1ekp6cHX19fmJiYYPXq1UqfbWIGWbFihfT9LFq4cCGuX7+e7e3NzYwFaJ9n6tSpg9KlS+Pw4cMK74+8/Hdqfs5YeeH4lXii7/bt21i9enWO108Pc1b+yFnqiLll7969eP36tfR4cnIyfv75Z6XPYF0yNDSEt7c3BEFA586dpeFo5CUnJ+Ps2bO4dOmSynWsWbNG6XX87bffcOXKFRQpUkRhKBAnJye0atUqw8dVxo0bhyJFiuDw4cOYMWOG0gWp4eHhCA4Oln5v0aIF6tSpI42/pmq8wQ8fPmDt2rVZPpGUX7KNvBkzZiA2NhZLly6FqalptrYrLX9/f/zxxx+Zyibi93RYWJjGcbmzSsy6q1at0nlvJullh/nz5+eZY9wZkae78cxP5K9oBVK7bIiOjlZ47Pbt2xg2bBj+97//Yf78+Vm+HVxVjfTExMTofJynjNq0aROmTp2KiIgI2NnZKdzVkJ4SJUpgx44d6NatG6ZPn45t27bByckJ4eHhOHfuHJKSkuDl5YWBAweqfL5Pnz6tdAWL+AdkSEiIdFJIJB6g+PDhA6ZMmYJu3brB2dkZNjY2GDFiBJYvX47mzZujcePGsLW1xf3793H9+nXMmDFD5YHgCRMmwNfXF5GRkTAzM8PatWuxdu1ahXn+/fdfAEBwcDA8PT3Ro0cPpVv59+zZI324JCQk4N69e9LdWpMnT86W7qWePHkifeiuX79e5cDTTZo0wciRI+Hj4wNPT09cuHBB+nAePnw4AgICcOTIEdSsWRP16tWDnZ0dLl++jNevX2Po0KFYs2ZNltspev78OTp16oT//e9/KF++PKysrPD27Vv89ddfiI+Ph42NjcJr4uTkhI4dO+LQoUNwcnKCq6srrKys8Pfff+P+/fuYNm0afv3110y358WLF5gzZ47KK8ZUGT16NO7fv4+1a9eid+/eWLx4MSpVqoRPnz5J3X0EBgYqdMOgzubNm1GjRg0sXLgQrVu3houLC54+fQp3d3eEhIRAT08P06ZNy/K4N9OmTcPFixfh7++Pb775Bk2bNoW5uTkuXryIZ8+ewcrKCvv27ZOuCMoKX19ffPz4ESdOnEClSpVQs2ZNlC1bFtHR0Xj37h1u3ryJL1++4O7du9na7cmLFy/QsGFDdOvWTav5v/32W2zfvh2enp7w9PTEjBkz8M0336BYsWKIjIxEaGgoXrx4ge7du6NLly4a19W3b98M9fueWZMmTcK///6L+vXrq+xmQyaTYdOmTahevTr8/PzQrVs3tG3bVpru7u6OwMBA9OnTB99//z309PRgYWGBiRMnolKlSllqm7GxMVq1aoXDhw8jKCgo3btks3PbTExMsGPHDrRt2xZLlizBwYMHUadOHbx//x5BQUFwc3NDSEiIUrez8tzd3TFnzhyFMS4HDhyIyMhIdOvWDd27d1daxsjICH5+fvjuu/9j79+jq6rv/PH/FSAEBALIRRG5aBGhKlJAWrxUWtFSLWpndKaKRW07Myr9fLSXqWWKA7RSaKv9qF871LG2dqr86NJW67QKVSsy3spFUUapaOUmBgElCSCEGPbvD5tIIIEA2eeWx2Ots5bnZO/9fJ8ckrw8z3POHhXTp0+PCy+8sN45Ff7+7/8+brrpphgzZkx8+tOfrnsS5gc/+EGD5yFoSHV1dSxYsKDu+5uLmjJnNbeDydhzndlmxjqwGevb3/52tG7dut42+TBjfeITn4ijjjoqXnjhhRg2bFicdNJJ8d5778XIkSMP+UnCu+++O/7jP/4jhg4dGkcffXTdE4K1hdfnPve5OO+88+q2v+666+K//uu/4uGHH45jjz02PvGJT0R1dXU8+eSTcdhhh8WXvvSlBj8uvSnefPPNaNeu3V7/M96YVq1axQMPPBCf+cxn4pFHHom+ffvG6aefHt26dYt169bFiy++GF26dGnSuw2PPfbYuP322+Pyyy+PSy+9NBYvXhzt2rWLu+66KyZPnhzr168/4J+xhhQXF8evf/3rOPvss+POO++MefPmxahRo2LLli3xpz/9KXbs2BHnnntusxRVRx99dPzud7+Lv//7v49vfvOb8cMf/jBOPPHE6NWrV1RUVMTy5cvjr3/9a3z84x8/pBeE7am8vDwiIn760582ei6iPc2cOTPKyspi9uzZdecWOvbYY6NNmzbx5ptvxtKlS2Pbtm3xyCOP7PO8fREfvIvmYD4a7UCUl5fXvXDvhz/8Yd2rv3c3cODAmD59enz961+PL33pS7Fs2bK6F5KNGzcuJk6cGD/5yU/ijDPOiE9+8pPRq1eveOmll2L58uVx7bXXNvou04OVzRkrYu/5sfb34J7zY1FRUfzd3/1d3HrrrfGnP/0pPvOZzzT7/6d+6lOfiq5duzbL/6fmw4wV0fCc9eyzzzbr81d7asqctW3btvjqV78af/3rX+M//uM/9vobnW3mrPx4Lmtfxo0bF8OHD48lS5bEwIED48wzz4wOHTrEn//853jrrbfi+uuvz8g5w2p99atfjTVr1sSPfvSjuPTSS2P69OkxYMCAaN++faxfvz6WLl0a5eXlMWvWrPjEJz6x1/7/8i//Ep/+9KfjjDPOiN69e8f//u//xrJly6J169bx85//fK93ic6YMSPef//9vZ5XSZIkVq1a1eDzKn379o37778/Lrroopg+fXr87Gc/i1GjRkVxcXGsXr06Xnjhhbj00kvr3uXaqlWrePDBB+O8886LX/7yl3H//ffHySefHH379o2dO3fGG2+8EcuWLYuampq44oorGnyHaVPl02xT680334yzzz47Lr744lQ/Nra8vDy+8pWvRMTBzSZ9+/aNESNGxOLFi+Okk06KESNGRLt27aJ79+4xc+bMZlvnm2++GV/5ylcO6TyRTdGU2eGUU07JyuxwyJIWpqKiIomIpKKiYr/bbt++PXnllVeS7du3N7rN6tWrk8MOOyyJiLy6HHbYYcnq1av3+z1YsWJFk76v/fr1SyIi+cUvfrHP7c4888wkIpIpU6bU3Xb99dcngwYNSiZPnpxs2LCh0X1r196QV155Jbn88suTo48+OikuLk66dOmSfOpTn0rmzJnT4H2ZMmVKs3wfd7+/u3btSr7//e8nw4cPTzp27Jh07tw5Of300+vW0ND6a79vB3L51a9+Vbf/5ZdfvtfXW7VqlXTr1i0ZM2ZMvfvfVLXfmz3v2+jRo5OISK688sp97r9t27ZkwIABSUQkP/jBD+p9rbq6Orn55puTj370o0nbtm2Tbt26JRdccEGydOnS5Be/+EUSEcnll1/epDXtz8aNG5MvfvGLybBhw5Ju3bolrVu3Tjp27JicfPLJybe+9a3krbfe2mufnTt3Jj/60Y+Sk046KTnssMOSww8/PDnnnHOSP/7xj8nKlSuTiEj69etXb5/9/YzUPi7HHXdcUlVVtdfXax/Dxu7bI488kpx11lnJEUcckRQXFyc9evRIRo4cmUybNi1555136rbb1/ev9jhFRUVJnz59knfffTdZunRp0rdv3+QLX/hC8vTTTzd6PxpbX2O3V1dXJz/5yU+Sj3/840nHjh2TkpKSZMCAAcm1116bPPXUU41+nxpT+zOycuXKvb5WU1OTzJ49Ozn33HPrvj9dunRJTjzxxOTKK69MHnjggWTnzp112z/xxBNJRCRnnnlmo3m1v6OeeOKJBm9v27ZtMnfu3L3229/3f+XKlcnXvva15MQTT0w6dOiQtGvXLunXr18yevToZObMmcnrr7/epHU0ZF+/G/e3X+/evevd9vjjjydFRUVJ+/btk7/85S/73P+OO+5IIiI56qijks2bN9fdXlNTk8yYMSM54YQTknbt2tWtb/f7Uvv92v1vQVP98Y9/TCIi+Yd/+IckSZLk/fffTxYtWpS8//779e7bnj+rzXHfkiRJli1blvzd3/1dcvjhhyclJSXJ4MGDkxkzZiTV1dX7/Pda69hjj006deqU7NixI/n5z3+eRETSs2fPZOPGjftc06RJk5KISE4++eR6/663b9+efOtb30oGDBiQtG3btu77vfsa9vc79Le//W2Tfr/vrrEZyZzV9BkrSZo2Z5mxMjdjPfHEE3X3Jc0Za+bMmfXuW3PMWMuWLUvOP//8pEePHkmrVq0a/HtX+z05EI8++mjyD//wD8mxxx6bdOjQIWnTpk3Ss2fP5Oyzz05mzJhR73dvrZUrVybjx49P+vbtm5SUlCT9+vVLrrrqqmT9+vV134Om/v5fsWJF3d+MiEj+/d//vcHt9vVveMuWLckPfvCD5JRTTkk6depUt6bzzz8/mTNnTr1/v/v7+/uFL3whiYhk4sSJSZJ88DN28sknH/TPWGO3r127NrnmmmuSY445Jmnbtm3SqVOn5LTTTkv+8z//s8HveZI0/vtkf/PP22+/ndxwww3JsGHDkk6dOiVt27ZNjj766OTUU09NpkyZkrz00kv1MvY3uzY2M9fevq+17O/7//DDDyd/93d/l/Tu3bvu99HgwYOTL3zhC8ns2bOTbdu27Xcdtfdjd/ub4xrT2DwzYcKEJCKSs846K9m1a1ej+9fU1CSnn356EhHJ1VdfvdfXf/7znyfDhw9P2rVrl3Tu3DkZM2ZM8sQTT9Q9piNHjmzymppizxkrSfaes9KasZoyP9Z68sknk4hI/umf/imV/08tKSlptv9PPZgZK0nMWeaswpyz0nwuq/bn9POf/3yj2zT2/2pbtmxJ/u3f/i05/vjjk3bt2iU9e/ZMLrzwwmTx4sUN/g3d37+rff39qbW/v6VPP/10cv755yf9+vVLSkpKkk6dOiUDBw5MLrzwwuRnP/tZ8u6779bbfvfHaNasWcnQoUOT9u3bJ6WlpcnYsWOTp59+usGcFStWNPi8Srdu3Rp9XqXW6tWrk2uvvbbu+9axY8dk4MCByZe+9KXk2Wef3ev7tWPHjuSnP/1p8qlPfSrp1q1b3Uw5dOjQZOLEicm8efP29W2tZ8/HZc/H5EBmmyTZ/+ORxmyz+3NMtX87d78fac0mo0aNOujZZPXq1cmll16a9OrVK2nTpk2D35Pa+7Wv50QaUvvzefjhhyebNm3a6+t7/j9EU/uKQ3mOe8WKFanODnfddddez2U1pil/02sVJUnKH5ibYyorK6Nz585RUVGx37Z9x44dsXLlyjjmmGOiXbt2jW63Zs2avT5Hes2aNY2e+6u5HEpG9+7dm7Rv2q96zGROc2asWrUqjjnmmPjFL35R7+StB5rRv3//6N+//15vj27I3XffHVdeeWX86le/atZXoOxp6tSpMW3atL3uW3M7kO/Vwa4p3/5dyZCRyZyioqLo3bt3gx8H25wauh+1v8+mTJkSU6dOPaDjJUkSQ4YMiddeey3efPPN6Nq1a7zwwgvxsY99rO7VvkVFRdGvX7+snhS5Mf/6r/8aN910U/z3f/93fO5zn8tI5v5+h44bNy7+8Ic/xPPPP9/gCd0b0tiMZM5q+owVUTi/swplxnriiSeid+/eqX2/an8WZ86c2eC5MJpTQ9+v/v37x+rVq5vtfCn59m9LhozmztjXPJOt+9GcM1b37t2jpqam3pyVCzPWrl274qijjookSaKsrCz1j/nalzRmrAhz1r6Ysw5NIT+XFZF/j0dz5dR+HOOBzniF8v2S8aH9zQFp34/Ro0fHk08+GStXroz+/funltPU+3Eoz3Gn9b2qXdNdd90VQ4YMqfdcVmOa+jc9wsd4Nou+ffvuNWx06tQp9V8CmcgAgFxSVFQUP/7xj+Occ86JmTNnZvRjVZrDP/3TP0WHDh0O+VxLzWXRokXx+9//Pq644ooDehIqk8xZAJC+PWesm266KdtLalCrVq3itttui1deeSXeeeed6NGjR7aX1KB8mLEizFkAUEiUfXAQunbtGjNmzIjhw4cf0nFuuumm6NixY5O2Pf300+MXv/hFg5+rDNCSnH322XHhhRfGT37yk/g//+f/ZHs5B2TgwIEH/Er7NE2aNCk6deoUM2bMyPZSICKyO2MNGjQo9XNBAuSy3Wes6667Lnr16pXtJTXoH/7hH7K9hP0yY5GLPJcFUNiUfXAQOnfuvNcJjw/GRRdd1ORtBwwYEAMGDEj1hK0A+eKBBx6IiIiamprYuHFjlleTvx577LFsLwHqyeaMFRHKPqDFq52xIj6Yszg4ZixykeeyAAqbsg8AAAAAAPJMc52PGch/yj6gntGjR8c777yTU+cVGD16dERETq0J8t2UKVOiuro6K9lDhw6NKVOm1P1sN7cpU6ZEly5dUjl2PvI7FHJD7c/ioEGDspJ/3XXXRXl5eVayoRClPc8cDDNWZpmxAMgl2Z5NrrjiijjppJNyZlbIxb/TtWs6+eSTUynqlX1APaNHj47evXvn1MmyR48enVP/Ew2FYOrUqVn7KJWhQ4emOmzl0jnxcoHfoZAban8Ws/W797rrrstKLhSqtOeZg2HGyiwzFgC5JNuzyRVXXBGnnXZaTpV9ufZ3unZNNTU18cILLzT78Vs1+xEBAAAAAACAjFD2AQAAAAAAQJ5S9jWBE50CAHyoOWcjcxYAwIfMWQBArQP5W67s24c2bT44pWFVVVWWVwIAkDuqq6sjIqJ169YHfQxzFgDA3ppjzqrdt/ZYAEB+OpC5QNm3D23atIkOHTrEu+++GzU1NdleDgBA1iVJEhUVFVFSUhLFxcUHfRxzFgBAfc01ZxUXF0dJSUlUVFR4dx8A5KkDnQvaZGBNea179+6xdu3aWLlyZXTu3Dnat28frVu3jqKion3uV1NTEzt27Eh1bYWSkakcGTJkyMiXjEzlFEJGbUm0Y8eOQ3r1M/uXJElUV1dHRUVFbN26NXr37n3IxzRnyciljEzlyJAhQ0Y+ZUSYszIhrTlr3bp18eabb0bnzp2juLh4vzNWRGH9+5UhIx8zMpUjQ4aM7GXsb8Y62LlA2bcfhx12WBxzzDGxYcOG2Lx5c2zatKlJ+23YsCH1V08VSkamcmTIkCEjXzIylVMIGbt27YpNmzbFqlWrolUrH1iQCSUlJdG7d+8oLS095GOZs2TkUkamcmTIkCEjXzLMWZnXnHNW7TE2bdoU69ata/J+hfLvV4aMfM3IVI4MGTKyl9HUGetA54KipIW9n7+ysjI6d+4cFRUVBzw81Taqu3bt2u+2V199dcyaNetgl9kkhZKRqRwZMmTIyJeMTOUUQsbWrVtjxIgRsXjx4ujYsWNqOXygdevW+/zoCHOWjHzOyFSODBkyZORLhjkrs9Kcs6qrq5v8semF8u9Xhox8zchUjgwZMrKX0ZQZa39zQUO8s+8AFBUVRdu2bZu07TvvvBPt2rVLdT2FkpGpHBkyZMjIl4xM5RRCxs6dO2P16tXRtm3bjDwupMecJSPbGZnKkSFDhox8yTBnFY7i4uImP2FYKP9+ZcjI14xM5ciQISN7GWnNWD6HAQAAAAAAAPJUzpR9M2fOjKKiorjuuuv2ud0tt9wSxx9/fLRv3z769OkTX/va1zJyYlQAgHxlzgIASIc5CwDIBTnxMZ6LFi2KO+64I4YMGbLP7WbPnh3f/va34+c//3mceuqpsWLFirjiiiuiqKgofvzjH2dotQAA+cOcBQCQDnMWAJArsv7Ovq1bt8b48ePjzjvvjK5du+5z22eeeSZOO+20uPTSS6N///5xzjnnxCWXXBILFy7M0GoBAPKHOQsAIB3mLAAgl2S97Js4cWKcd955MWbMmP1ue+qpp8aSJUvqhqE33ngjHn744Tj33HMb3aeqqioqKyvrXQAAWgJzFgBAOsxZAEAuKUqSJMlW+Jw5c2L69OmxaNGiaNeuXYwePTqGDh0at9xyS6P73HbbbfHNb34zkiSJ999/P6666qqYNWtWo9tPnTo1pk2bttftY8eOjeLi4ua4Gw1auHBhjBw5MrXjF1JGpnJkyJAhI18yMpVTCBnV1dUxd+7cqKioiNLS0tRy8pE5S4aM3MyRIUOGjHzJMGc1zpwlQ4aMfM+RIUNG9jJSm7GSLFmzZk3Ss2fP5MUXX6y77cwzz0yuvfbaRvd54oknkiOOOCK58847k5deein57W9/m/Tp0yf57ne/2+g+O3bsSCoqKuoua9euTSIiqaioaM67s5dx48alevxCyshUjgwZMmTkS0amcgoho6KiIiN/1/ONOUuGjNzNkSFDhox8yTBnNcycJUOGjELIkSFDRvYy0pqx2jRfbXhglixZEhs2bIhhw4bV3VZTUxMLFiyI22+/PaqqqqJ169b19rnhhhvii1/8YnzlK1+JiIiTTjoptm3bFv/8z/8c3/nOd6JVq70/lbSkpCRKSkrSvTMAADnEnAUAkA5zFgCQi7JW9p111lmxbNmyerddeeWVMWjQoLj++uv3GowiIt577729BqDa7ZLsfRopAEBOMWcBAKTDnAUA5KKslX2dOnWKE088sd5tHTp0iG7dutXdPmHChOjdu3fMmDEjIiLGjRsXP/7xj+NjH/tYfPzjH4/XX389brjhhhg3blyDwxQAQEtkzgIASIc5CwDIRVkr+5pizZo19V75NHny5CgqKorJkyfHunXrokePHjFu3LiYPn16FlcJAJB/zFkAAOkwZwEAmZZTZd/8+fP3eb1NmzYxZcqUmDJlSuYWBQBQAMxZAADpMGcBANm29xmAAQAAAAAAgLyg7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8pewDAAAAAACAPKXsAwAAAAAAgDyl7AMAAAAAAIA8lTNl38yZM6OoqCiuu+66fW5XXl4eEydOjF69ekVJSUkMHDgwHn744cwsEgAgD5mzAADSYc4CAHJBm2wvICJi0aJFcccdd8SQIUP2ud3OnTvj7LPPjp49e8b9998fvXv3jtWrV0eXLl0ys1AAgDxjzgIASIc5CwDIFVkv+7Zu3Rrjx4+PO++8M2688cZ9bvvzn/883n333XjmmWeiuLg4IiL69++fgVUCAOQfcxYAQDrMWQBALsn6x3hOnDgxzjvvvBgzZsx+t33ooYdi1KhRMXHixDjiiCPixBNPjO9///tRU1PT6D5VVVVRWVlZ7wIA0BKYswAA0mHOAgBySVbf2Tdnzpx4/vnnY9GiRU3a/o033og//elPMX78+Hj44Yfj9ddfj2uuuSaqq6tjypQpDe4zY8aMmDZt2l63/+M//mPdq6nSsHDhwjj//PNTO34hZWQqR4YMGTLyJSNTOYWQUV1dndqx8505S4aM3MyRIUOGjHzJMGc1zpwlQ4aMfM+RIUNG9jJSm7GSLFmzZk3Ss2fP5MUXX6y77cwzz0yuvfbaRvc57rjjkj59+iTvv/9+3W0333xzcuSRRza6z44dO5KKioq6y9q1a5OISCoqKprlfjRm3LhxqR6/kDIylSNDhgwZ+ZKRqZxCyKioqMjI3/V8Y86SISN3c2TIkCEjXzLMWQ0zZ8mQIaMQcmTIkJG9jLRmrKy9s2/JkiWxYcOGGDZsWN1tNTU1sWDBgrj99tujqqoqWrduXW+fXr16RXFxcb3bBw8eHOvXr4+dO3dG27Zt98opKSmJkpKS9O4IAECOMWcBAKTDnAUA5KKslX1nnXVWLFu2rN5tV155ZQwaNCiuv/76vQajiIjTTjstZs+eHbt27YpWrT443eCKFSuiV69eDQ5GAAAtkTkLACAd5iwAIBe1ylZwp06d4sQTT6x36dChQ3Tr1i1OPPHEiIiYMGFCTJo0qW6fq6++Ot5999249tprY8WKFfGHP/whvv/978fEiROzdTcAAHKOOQsAIB3mLAAgF2XtnX1NsWbNmrpXPEVE9OnTJ+bNmxdf+9rXYsiQIdG7d++49tpr4/rrr8/iKgEA8o85CwAgHeYsACDTcqrsmz9//j6vR0SMGjUqnnvuucwsCACgQJizAADSYc4CALItax/jCQAAAAAAABwaZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkKWUfAAAAAAAA5CllHwAAAAAAAOQpZR8AAAAAAADkqZwp+2bOnBlFRUVx3XXXNbrN3XffHUVFRfUu7dq1y9wiAQDykDkLACAd5iwAIBe0yfYCIiIWLVoUd9xxRwwZMmS/25aWlsarr75ad72oqCjNpQEA5DVzFgBAOsxZAECuyPo7+7Zu3Rrjx4+PO++8M7p27brf7YuKiuLII4+suxxxxBEZWCUAQP4xZwEApMOcBQDkkqy/s2/ixIlx3nnnxZgxY+LGG2/c7/Zbt26Nfv36xa5du2LYsGHx/e9/P0444YRGt6+qqoqqqqq665WVlc2yboBM2bx5c9x7772pZqxevTr1jM2bN6d6fGBv5iyAfdu+fXs8//zzqWZs3rw59Yzt27enenxgb+YsgH0zZ0FmFSVJkmQrfM6cOTF9+vRYtGhRtGvXLkaPHh1Dhw6NW265pcHtn3322XjttddiyJAhUVFRETfddFMsWLAgXn755Tj66KMb3Gfq1Kkxbdq0vW4fO3ZsFBcXN+fdqWfhwoUxcuTI1I5fSBmZypEhIx8zNm/eHE899VRqx8+0008/vUmvej1YhfCYZzKnEDKqq6tj7ty5UVFREaWlpanl5CNzlgwZuZkjI3cytm/fHo899lhqx8+0MWPGRPv27VM7fiE85jIOjDmrceYsGTJk5HuOOevAmLNkNKe0ZqyslX1r166NESNGxKOPPlr32eb7G472VF1dHYMHD45LLrkkvve97zW4TUOvhOrTp0/qw+r5558fDz30UGrHL6SMTOXIkJGPGffee29cdtllcfWI/nFa32773PbB5W/F/cvL4qLBveLCwUc1OeMXz6+Ox1dtiosGHxUXDu51SOv967vbYsZTK6JPafv41mnHRfvi1hER8fSad2LW4lVxzz33xPjx4w8pY18K4THPZE4hZFRWVkbnzp09CbUHc5YMGbmbIyN3Mp5//vkYPnx43PP54TG4R6dUMh5+7e244YnlqWYs37glLntgSSxZsiSGDRuWSkZEYTzmMg6MOath5iwZMmSkrRDuiznrwBTCYy6j6dKasbL2MZ5LliyJDRs21PshqampiQULFsTtt98eVVVV0bp1630eo7i4OD72sY/F66+/3ug2JSUlUVJS0mzrBsiG0/p2i/En9Wn06zcueDXuX14W3/vU4Jj8yeMP6NhPr3knHl+1KU4+svM+M/Zn4brNcc0fXoxhvbrE3PGjolNJ/Vebzlq86qCPDRwYcxZA0w3u0SmG9eqSyrGXb9qSegaQWeYsgKYzZ0HmZK3sO+uss2LZsmX1brvyyitj0KBBcf311+93MIr4YJhatmxZnHvuuWktEyDn3bjg1bjhieUHVfQ1l4XrNsfZv3o6TuxZ2mDRB2SWOQsAIB3mLAAgF2Wt7OvUqVOceOKJ9W7r0KFDdOvWre72CRMmRO/evWPGjBkREfHd7343PvGJT8SAAQOivLw8fvSjH8Xq1avjK1/5SsbXD5ALFH1AQ8xZAADpMGcBALkoa2VfU6xZsyZatWpVd33z5s3xT//0T7F+/fro2rVrDB8+PJ555pn46Ec/msVVAmSHog84FOYsAIB0mLMAgEzLqbJv/vz5+7z+//7f/4v/9//+X+YWBJCjFH3AgTJnAQCkw5wFAGRbq/1vAkAuUfQBAAAAAFBL2QeQRxR9AAAAAADsTtkHkCcUfQAAAAAA7CmnztkHQMMeXP5W3L+8TNEHAAAAAEA93tkHkAcUfQAAAAAANETZB5AHLhrcS9EHAAAAAMBelH0AeeDCwUdlJVfRBwAAAACQ25R9ADRI0QcAAAAAkPuUfQDsRdEHAAAAAJAflH0A1KPoAwAAAADIH8o+AOoo+gAAAAAA8ouyD4CIiHizcruiDwAAAAAgzyj7AIiIiLuXrlb0AQAAAADkGWUfQAv39raqiIjo2aFE0QcAAAAAkGeUfQAt2MJ1m+O/Xy2LiIjLT+6r6AMAAAAAyDPKPoAWauG6zXH2r56Ow9u3jYiIkjats7wiAAAAAAAOlLIPoAWqLfpO7Fkanxt4ZLaXAwAAAADAQVL2AbQwuxd9c8ePirat/SkAAAAAAMhXnuEFaEH2LPqcow8AAAAAIL/lTNk3c+bMKCoqiuuuu65J28+ZMyeKioriwgsvTHVdAIVC0QctlzkLACAd5iwAIBfkRNm3aNGiuOOOO2LIkCFN2n7VqlXxzW9+M84444yUVwZQGBR90HKZswAA0mHOAgByRdbLvq1bt8b48ePjzjvvjK5du+53+5qamhg/fnxMmzYtjj322AysECC/5ULRt726JuOZgDkLACAt5iwAIJe0yfYCJk6cGOedd16MGTMmbrzxxv1u/93vfjd69uwZX/7yl+N//ud/9rt9VVVVVFVV1V2vrKw8pPUC7G7z5s1x7733pnb8p59+OiIiHlxeFis3v3fA+79ZuT3uXro6enYoiU/37x63/vmNvbZZ/FZ5RETMX7XxkNbamKr3a2LW4pUR8eH9ScvmzZtTPT7kG3MWkM+2b98ezz//fGrHX758eUREPPza27F805ZUMp5e807qGbUzYu39Scv27dtTPT7kG3MWkM8yNWf97PlVcVSn9qlkvLi+PPWMt7Z8MP+Ys8gHRUmSJNkKnzNnTkyfPj0WLVoU7dq1i9GjR8fQoUPjlltuaXD7p556Kr7whS/E0qVLo3v37nHFFVdEeXl5PPjgg41mTJ06NaZNm7bX7WPHjo3i4vTe3bJw4cIYOXJkascvpIxM5ciQ0dw2b94cTz31VGrH5+CcfvrpTXpl7cHyezG3Mqqrq2Pu3LlRUVERpaWlqeXkI3OWDBm5mSOjabZv3x6PPfZYascvRGOO7RHt27RO7fj/vWJ9jBkzJtq3T+fJtIjC+LdbSBnmrMaZs2TIkJHPOeasA3d6n8Oja/u2qR3fnNWyMtKasbL2zr61a9fGtddeG48++mi0a9duv9tv2bIlvvjFL8add94Z3bt3b3LOpEmT4utf/3rd9crKyujTp0/8+te/TnVYPf/88+Ohhx5K7fiFlJGpHBkymtu9994bTz31VFw9on+c1rdb3e0PLn8r7l9eFhcN7hUXDj7qkDJ+8cLqeHzlpuj10cuiS68Rh7rkBpWXLY6yV+6J/qd8I9qX9kk143ufGhznHndEKhnLN26Jyx5YEldddVWMHz8+lYwIvxdzLaOysjI6d+6c2vHzlTlLhozczZHRNM8//3wMHz487vn88Bjco1MqGT97flXMWrwqBp91S3ToOiCVjE2rn4hVi25ONWPb5tdj+ePXxQ/GnBDDenVJJSMiomjag/GDH/wghg0bllpGIfzbLaQMc1bDzFkyZMhIWyHMWTP+59W4f3lZHHXCZdH5yMafz9peuTrWPD8r2nY8MvoNvSpatdn/79VaZX+5L8rXPR3djz03ehxzzkGvddf7O2L10p/Gzq3ro++wq6N9ab+6r1WsXxxvvXxPXHXKMTH+pHSeM4swZ7W0jLRmrKyVfUuWLIkNGzbU+wdcU1MTCxYsiNtvvz2qqqqidesPX5X417/+NVatWhXjxo2ru23Xrl0REdGmTZt49dVX4yMf+cheOSUlJVFSUpLiPQFautP6dqv7g3/jgg+Gme99anBM/uTxh3zsp9e8E4+v3BRdeo2IIwd+/pCP15iyV+6J7v0+FZ16nJRqxjFdD0v1SSjgA+YsoFAM7tEptdmh9uOeOnQdkNoMtG3z66lnAJllzgIKRZpzVo8OH/z+6nxk489nVb69NFb8zw3RsccJcfJ5/xVt2nY8oIzyssVRvu7p6Nht8EE/Z/b+zq3x4h8mRPX2d+JjF/w6So8Yutc2b718z0EdGzIta2XfWWedFcuWLat325VXXhmDBg2K66+/vt5gFBExaNCgvbafPHlybNmyJW699dbo0ye9Zh2gKW5c8Grc8MTyZiv6AA6WOQsAIB3mLIBDV/n20lj6+8uiw+EDD6roaw61Rd+2d1fE0M/d02DRB/kka2Vfp06d4sQTT6x3W4cOHaJbt251t0+YMCF69+4dM2bMiHbt2u21fZcuXSIi9rodINMUfUAuMWcBAKTDnAVwaBR9kI6slX1NsWbNmmjVqlW2lwGwT7Xn6FP0AfnEnAUAkA5zFkDDFH2Qnpwq++bPn7/P63u6++67U1sLQFMp+oB8YM4CAEiHOQtg/xR9kC4vMwI4RBcN7qXoywE/e35VtpcAAAAAwB4UfZA+ZR/AIbpw8FHZXkKLd+OCV2PW4lXZXgYAAAAAu1H0QWYo+wDIazcueDVueGJ5XD2if7aXAgAAAMDfbK9creiDDFH2AZC3aou+731qcHxlWP9sLwcAAACAv1nz/CxFH2SIsg+AvLR70eeciQAAAAC5pW3HIxV9kCHKPgDyjqIPAAAAILf1G3qVog8yRNkHQF5R9AEAAADkvlZt2mU8U9FHS6XsAyBvKPoAAAAAaIiij5ZM2QeQw97eVpXtJeQMRR8AAAAADVH00dIp+wBy1MJ1m+O/X12f7WXkBEUfAAAAAA1R9IGyDyAnLVy3Oc7+1dPRrX3bbC8l6xR9AAAAADRkV81ORR+Esg8g59QWfSf2LI3zBh6R7eVklaIPAAAAgMa8veI3ij4IZR9ATtm96Js7flS0bd1yf00r+gAAAABoSLKrOiIidr63SdEHoewDyBl7Fn2dSoqzvaSsUfQBAAAA0JD3d26Nd1Y/HhERRx5/kaIPQtkHkBMUfR9S9AEAAADQkPd3bo0X/zAhqneUR0REScde2V0Q5AhlH0CWKfo+pOgDAAAAoCG1Rd+2d1dE935jsr0cyCnKPoAsUvR9SNEHAAAAQEN2L/qGfu6eKD6se7aXBDlF2QeQJYq+Dyn6AAAAAGjInkWfc/TB3pR9AFmg6PuQog8AAACAhij6oGmUfQAZpuj7kKIPAAAAgIYo+qDpcqbsmzlzZhQVFcV1113X6DZ33nlnnHHGGdG1a9fo2rVrjBkzJhYuXJi5RQIcIkXfhxR9kDnmLACAdJizANKh6IMDkxNl36JFi+KOO+6IIUOG7HO7+fPnxyWXXBJPPPFEPPvss9GnT58455xzYt26dRlaKcDBU/R9SNEHmWPOAgBIhzkLIB25UvRtXDkvK7lwMLJe9m3dujXGjx8fd955Z3Tt2nWf2957771xzTXXxNChQ2PQoEHxs5/9LHbt2hWPP/54hlYLcHAUfR9S9EHmmLMAANJhzgJIR64UfauW3Bab3ngkK9lwMNpkewETJ06M8847L8aMGRM33njjAe373nvvRXV1dRx++OGNblNVVRVVVVV11ysrKw96rUB+2bx5c9x7772pHf/pp5+OiIgHl5fFys3vNbrdm5Xb4+6lq6Nnh5L4dP/uceuf32hyxpK3yiMiYnvl2tiycdkhrbcx2yvXRkTEts2vp3L83TNu+/NfY+G68rhocK84puthce+ytc2Wsa/HAFoqcxaQlrTnrJUrV0ZExMOvvR3LN21JJePF9eURkZkZKM2M2mOn9X0CGmbOAtJSVlZ2wL9XDsRbb70VERE/e35VHNWpfSoZi9eVR0TExpV/rJuHmmJXzc54e8VvYud7m+LI4y+Kd9YuiHfWLmhw29rnycrfei5WLj7kJddT/tZzUb7u6Tis63Hx3ubX4uk17zRvAKSgKEmSJFvhc+bMienTp8eiRYuiXbt2MXr06Bg6dGjccsstTdr/mmuuiXnz5sXLL78c7dq1a3CbqVOnxrRp0/a6fezYsVFcnN47axYuXBgjR45M7fiFlJGpHBktK2Pz5s3x1FNPpXZ8cteQIUOiX79+qR3f78Xcyqiuro65c+dGRUVFlJaWppaTj8xZMmTkZk4hZJizck9x++5R2nNoqhnvrH4sRowYEb169UotoxB+Pgopw5zVOHOWDBky0lJWVhaLFzdzc0VeKITns2Q0TVozVtbe2bd27dq49tpr49FHH210sNmXmTNnxpw5c2L+/Pn73H/SpEnx9a9/ve56ZWVl9OnTJ37961+nOqyef/758dBDD6V2/ELKyFSOjJaVce+998ZTTz0Vg8+6JTp0HZBKxqbVT8SqRTdH/1O+Ee1L+6SSUV62OMpeuacgMnZUrIqPjPp2Ksevtfj+z8W3vvWtGD9+fGoZfi/mVkZlZWV07tw5tePnK3OWDBm5m1MIGZmcs8xyTcvYuW19DDn3rlSOX+uJWf3iuuuuy/s5S0bTmbMaZs6SIUNGmm688cZYvHhxHHXCZdH5yBGpZJT95b4oX/d0dD/23OhxzDmxvXJ1rHl+VrTteGT0G3pVtGpz4L/bGsvo2OPk6NTjpP1un+yqjndWPx7VO8qje78xUXxY9/3uU/7Wn2N7+WtNzmiKLRuXxdaNL9YdszbjmJHfiG59P9UsGXvatvn1WP74dXHxxRfH5MmTU8mIKJyfkULISGvGylrZt2TJktiwYUMMGzas7raamppYsGBB3H777VFVVRWtW7ducN+bbropZs6cGY899th+T4JcUlISJSUlzbp2IH906Dqg2f7g76n2I5O69/tUahkREWWv3FMQGRu2rU/1+MCHzFlAJmRizjLLNc2G13+f2rGB+sxZQCZ0PnJEHDnw86kcu7xs8QdFXLfBcVjnY2LF/9wQHXucECef91/Rpm3HZs3o3n9MHDPi/+5z29pz9O2qqYrhn/9Nk8/R95cnvxPby19rUkZTrFpyW5S9ck8cM/Ib0X/4/62X0a5TH89pkfOyVvadddZZsWxZ/fNPXXnllTFo0KC4/vrrGx2MfvjDH8b06dNj3rx5MWJEOq9uAADIZ+YsAIB0mLOAQlG1tSyW/v6y6HD4wGYt+g5EbdG37d0VMfRz9zS56Gtuq5bcFisX3lyv6IN8k7Wyr1OnTnHiiSfWu61Dhw7RrVu3utsnTJgQvXv3jhkzZkRExA9+8IP493//95g9e3b0798/1q9fHxERHTt2jI4dM//LCAAgF5mzAADSYc4CCsX6V++PTj1PUvQp+igQrbK9gH1Zs2ZNlJWV1V2fNWtW7Ny5My666KLo1atX3eWmm27K4ioBAPKPOQsAIB3mLCCXVb+3KSIi2h7WXdGXA0XftndWZCWXwpO1d/Y1ZP78+fu8vmrVqoytBQCgkJizAADSYc4C8kXl20tj0+rHIiLiiIF/r+jLctFX+fbSePV/Jmclm8KT0+/sAwAAAAAADk3l20tj6e8vi+J2XSIiolXrthlfg6LvQ7WPR/vO/bKST+FR9gEAAAAAQIGqLZY6HD4wuvU7KytrUPR9aPfHY+Dp383KGig8yj4AAAAAAChAuxdLJ5/3X1HUqjjja1D0fWjPx6N1cfusrIPCo+wDAAAAAIACs2ex5Bx9uVX0ZePxoHAp+wAAAAAAoIDkQrG0q2anou9vcuHxoLC1yfYCAAAAAACA5pErxdLbK34T7+/coujLkceDwqbsAwAAAACAApALxVKyqzoiIna+tymGXXifok/RRwb4GE8AAAAAAMhzuVAsvb9za7yz+vGIiDjy+IsUfYo+MkTZBwAAAAAAeSwXiqX3d26NF/8wIap3lEdEREnHXhlfQ4Sij5ZJ2QcAAAAAAHkqF4ql2qJv27sronu/MRnPr6Xoo6VS9gEAAAAAQB7KhWJp96Jv6OfuieLDumd8DRGKPlo2ZR8AAAAAAOSZXCiW9iz6nKNP0Ud2KPsAAAAAACCP5EKxpOj7UC48HrRsbbK9AAAAAAAAoGlyoVjKlaKv/K3nonzd04o+Wjzv7AMAAAAAgDyQC8VSrhR9EaHog79R9gEAAAAAQI7LhWIpV4q+LRuXRUREl96nKfoglH0AAAAAAJDTcqFYypWib9WS22LrxhcjIqLLUZ/Iyhpy4fGA3Sn7AAAAAAAgR+VCsZRLRd/KhTdHxx4nZyU/IjceD9iTsg8AAAAAAHJQLhRLuVb0HTPyG9Gpx0lZWUMuPB7QEGUfAAAAAADkmFwolnKx6HOOPthbzpR9M2fOjKKiorjuuusa3ebll1+Ov//7v4/+/ftHUVFR3HLLLRlbHwBAvjJnAQCkw5wFpCUXiiVF34dy4fGAfcmJsm/RokVxxx13xJAhQ/a53XvvvRfHHntszJw5M4488sgMrQ4AIH+ZswAA0mHOAtKyvXJ11oslRd+HcuHxgP3Jetm3devWGD9+fNx5553RtWvXfW57yimnxI9+9KP4whe+ECUlJRlaIQBAfjJnAQCkw5wFpGnN87MUfZEbRV9E9h8PaIo22V7AxIkT47zzzosxY8bEjTfe2OzHr6qqiqqqqrrrlZWVzZ4B5K5Nq5+IbZtfT+XY5WWLIyJSO35ExPbKtQWVAWSWOQtIU6HMJ4WSAWSWOQtIU+u2naLX8RfHplWPNvuxt1esjIiI8reei5WL9/76rpqd8faK38TO9zbFkcdfFO+sXRDvrF1wQBlbNi7bZ0ZTlL/1XJSvezq69D4tkiRi5eLbmj2jKWuISPfx2LHFLEfzKEqSJMlW+Jw5c2L69OmxaNGiaNeuXYwePTqGDh3apM8u79+/f1x33XX7/Ez0iIipU6fGtGnT9rp97NixUVxcfJAr37+FCxfGyJEjUzt+IWVkKkdGy8pYvXp1vPTSS6kdn9w1ZMiQ6NevX2rH93sxtzKqq6tj7ty5UVFREaWlpanl5CNzlgwZuZlTCBllZWWxeHFKz6iQ0wphzpLRdOasxpmzZMiQkRbPZ7VcAwYMiMGDB6d2/EL5GSmEjLRmrKy9s2/t2rVx7bXXxqOPPhrt2rVLLWfSpEnx9a9/ve56ZWVl9OnTJ37961+nOqyef/758dBDD6V2/ELKyFSOjJaVce+998Zll10WI3p1iRffrohu7dvGeQOPiLatm+/Tixes2hQvb9oavT56WXTpNaLZjru78rLFUfbKPdH/lG9E+9I+MvZhe+XaWLXo5vjWt74V48ePTyUjwu/FXMuorKyMzp07p3b8fGXOkiEjd3MKIeP555+P4cOHx9Uj+sdRndqnkjF/5cZ4fNWmvJ9PCiWjkOYsGU1nzmqYOUuGDBlpqp2zLhrcK3p0SOdjf59ctSle2bQ1uvQ+Ldp3Pqbu9mRXdbyz+vGo3lEe3fuNieLDuh90Rvlbf47t5a9Fxx4nR6ceJx3Qvls2LoutG1/c776HkrE/1e9tik2rH4uiVm0iqdmRSkat7RUro3zd03H55ZfH5MmTU8mIKJyfkULISGvGylrZt2TJktiwYUMMGzas7raamppYsGBB3H777VFVVRWtW7c+5JySkhKfhw4t2P9urIxTeneNueNHRaeS5n314zV/WBovb9oaXXqNiCMHfr5Zj727slfuie79PpXaUFEoGVs2LotVi25O5diQb8xZQCZ8ZVj/GNarS2rHf3zVpryfTwolw5wFHzJnAZkw6YzjU5uzrvnD0nhl09boNejiuuezas/Rt6umKoZ//jeHfI6+vzz5ndhe/lp07z8mjhnR9HPtrVpyW5S9ck+TztF3sBn7U/n20lj6+8ui9IiT47AuA2L9X37d7Bm7W7/igShf93Qqx6ZlyVrZd9ZZZ8WyZcvq3XbllVfGoEGD4vrrr2+WwQigT2n7VIo+gFxmzgIASIc5Cyg0tUXftndXxNDP3XPIRd/BWrXktli58OYmFX1pqS36Ohw+ME4+77/i9WdnZGUdcDCyVvZ16tQpTjzxxHq3dejQIbp161Z3+4QJE6J3794xY8YHP1Q7d+6MV155pe6/161bF0uXLo2OHTvGgAEDMnsHgLzwrdOOU/QBLY45CwAgHeYsoJAo+j60Z9HXpm3HrKwDDlbWyr6mWLNmTbRq9eH5td5666342Mc+Vnf9pptuiptuuinOPPPMmD9/fhZWCOS69sVeVQnQEHMWAEA6zFlAPtj1/g5F398o+igEOVX27Tng7Hm9f//+kSRJ5hYEAFAgzFkAAOkwZwH5aPXSn0b19ncUfYo+CkROlX0AAAAAAEC6dm5dHx+74NeKviwXfbve35HxTApTq/1vAgAAAAAAFIq+w65W9GW56Ht/59ZYvfSnGc+lMCn7AAAAAACgBWlf2i8ruYq+D7y/c2u8+IcJsXPr+oxnU5iUfQAAAAAAQKoUfR+oLfq2vbsi+g67OuP5FCZlH8BB2lmzK9tLAAAAAICcp+j7wO5F39DP3ZO1d1hSeJR9AAdhS1V1/GHF29leBgAAAADkNEXfB/Ys+rJ1zkQKk7IP4ABtqaqOsfc+G+9s35ntpQAAAABAzlL0fUDRR9qUfQAHoLbo+98NlTHu+COzvRwAAAAAyEnlbz2n6AtFH5mh7ANoot2Lvke/eFoc0aEk20sCAAAAgJxUvu5pRZ+ijwxR9gE0wZ5F38jeXbO9JAAAAADIOVs2LouIiC69T1P0KfrIEGUfwH4o+gAAAABg/1YtuS22bnwxIiK6HPWJrKxB0UdLpOwD2AdFHwAAAADs36olt8XKhTdHxx4nZ20Nij5aKmUfQCMUfQAAAACwf7VF3zEjvxGdepyUlTUo+mjJlH0ADVD0AQAAAMD+7V70OUefoo/sUPYB7EHRBwAAAAD7p+j7gKKPbFP2AexG0QcAAAAA+5cLRV/V1jJFH4SyD6COog8AAAAA9i8Xir6IiPWv3q/og1D2AUSEog8AAAAAmiIXir7q9zZFRETbw7or+iCUfQCKPgAAAABoglwo+irfXhqbVj8WERFHDPx7RR+Esg9o4RR9AAAAALB/uVL0Lf39ZVHcrktERLRq3Tbja1D0kYuaXPa99dZbaa4jZs6cGUVFRXHdddftc7v77rsvBg0aFO3atYuTTjopHn744VTXBRQuRR+QK8xZAADNL+0ZK8KcBbQcuVT0dTh8YHTrd1ZW1qDoI1c1uew74YQTYvbs2aksYtGiRXHHHXfEkCFD9rndM888E5dcckl8+ctfjhdeeCEuvPDCuPDCC+N///d/U1kXULgUfUAuMWcBADS/NGesCHMW0HLkWtF38nn/FUWtijO+BkUfuazJZd/06dPjX/7lX+Liiy+Od999t9kWsHXr1hg/fnzceeed0bXrvp9sv/XWW2Ps2LHxr//6rzF48OD43ve+F8OGDYvbb7+92dYDFD5FH5BrzFkAAM0vrRkrwpwFtBy5WPQ5Rx/srU1TN7zmmmvis5/9bHz5y1+Oj370o3HnnXfGuHHjDnkBEydOjPPOOy/GjBkTN9544z63ffbZZ+PrX/96vds+85nPxIMPPtjoPlVVVVFVVVV3vbKy8pDWC+SXB5eXxcrN79Vdr3q/Jn754prYsK0qrhjaL/741w3xx79uOKhjL3mrPCIitleujS0blzXHcveyvXJtRERs2/x6KscvpIw0jw1pM2cB+ejh196O5Zu2pHLsF9eXR0T+zyeFkmHOIl+lNWNFmLOAdP3s+VVxVKf2qRx78bryiIjYuPKPdXNEY8rfei7K1z0dXXqfFkkSsXLxbU3KqH2erPyt52Ll4kNablRtLYv1r94fbQ/rHl2OOjXWvvTzZs9oTG3Gu28+FWXL/3+x871NceTxF8U7axfEO2sXNEvG1neWN8txoChJkuRAd7r99tvja1/7WgwePDjatKnfFz7//PNNPs6cOXNi+vTpsWjRomjXrl2MHj06hg4dGrfcckuD27dt2zZ++ctfxiWXXFJ323/8x3/EtGnT4u23325wn6lTp8a0adP2un3s2LFRXJzeW30XLlwYI0eOTO34hZSRqRwZLStj9erV8dJLL6V2fHLXkCFDol+/fqkd3+/F3Mqorq6OuXPnRkVFRZSWlqaWk0nmrP0rhH+7MnIvI1M5hZBRVlYWixen9IwKOa0Q5iwZTVdoc1ZzzVgR5iwZMmSkx/NZLdeAAQNi8ODBqR2/UH5GCiEjrRmrye/sq7V69er47W9/G127do0LLrhgrwGpqdauXRvXXnttPProo9GuXbuDOkZTTJo0qd6rpyorK6NPnz7x61//OtVh9fzzz4+HHnooteMXUkamcmS0rIx77703Lrvssuh/yjeifWmfVDLKyxZH2Sv3yMiRjO2Va2PVopvjW9/6VowfPz6VjAi/F3Mto7KyMjp37pza8TPNnNU0hfBvV0buZWQqpxAyaueswWfdEh26DkglY9PqJ2LVopvzfj4plIxCmrNkNF0hzVnNNWNFmLNkyJCRbsaNN94YL730UhQVFUe/EV+N9qXN/yKbsr/cF+Xrno6OPU6OTj1OanCbLRuXxdaNL+5zm30pf+vPsb38tYPePyKi+r1NsWn1Y1Hcrkt063fWXufoa46M/dn81rOxo/yvEdEquvc/J4oP697sGdsrVkb5uqfj8ssvj8mTJzf78WsVys9IIWSkNWMd0HRz5513xje+8Y0YM2ZMvPzyy9GjR4+DDl6yZEls2LAhhg0bVndbTU1NLFiwIG6//faoqqqK1q1b19vnyCOP3OsVT2+//XYceeSRjeaUlJRESUnJQa8TyG/d+30qtT/4ERFlr9wjI0cytmxcFqsW3ZzKsSETzFlAvunQdUBqf9drPzYy3+eTQskwZ5HPmnPGijBnAZnRb8RX45gR16Vy7PKyxVG+7uno3n9MHDNi73PwrVpyW5S9cs8hnaPvL09+J7aXv9Zoxv7UnqOv9IiTGz1H36Fm7M/7O7fGc7PPjIiIXoO/EINGz2j2jIiI9SseiPJ1T6dybFqWJpd9Y8eOjYULF8btt98eEyZMOOTgs846K5Ytq3+OqyuvvDIGDRoU119//V6DUUTEqFGj4vHHH4/rrruu7rZHH300Ro0adcjrAQDIFnMWAEDza+4ZK8KcBWRGGu/oa4pVS26LlQtvPqSi71DVFn0dDh/YaNGXtvd3bo0X/zAhqneUR0REScdeGV8DHKgml301NTXx0ksvxdFHH90swZ06dYoTTzyx3m0dOnSIbt261d0+YcKE6N27d8yY8UFrfu2118aZZ54ZN998c5x33nkxZ86cWLx4cfznf/5ns6wJACAbzFkAAM2vuWesCHMWULgUfR+oLfq2vbsiuvcbE5tWzc34GuBgtGrqho8++mizDkdNsWbNmigrK6u7fuqpp8bs2bPjP//zP+Pkk0+O+++/Px588MG9hiwAgHxizgIAaH7ZmLEizFlA/lH0fWD3om/o5+5J5Rx9kJaDPyNxCubPn7/P6xERF198cVx88cWZWRAAQIEwZwEApMOcBeQzRd8H9iz6So8YGm/95b6MrwMOVpPf2QcAAAAAABQGRd8HGir6IN/k1Dv7AAAAAACAdJW/9VyUr3ta0afoo0B4Zx8AAAAAALQgij5FH4VF2QcAAAAAAC3Alo3LIiKiS+/TFH05UPRtXDkvK7kUHmUfAAAAAAAUuFVLboutG1+MiIguR30iK2tQ9H1o1ZLbYtMbj2Qlm8Kj7AMAAAAAgAK2asltsXLhzdGxx8lZW4Oi70O1j0f3Yz+blXwKj7IPAAAAAAAKVG2xdMzIb0SnHidlZQ2Kvg/t/nj0OOYzWVkDhUfZBwAAAAAABWj3Ysk5+nKr6MvW40FhUvYBAAAAAECByYViSdH3oVx4PChcyj4AAAAAACgguVAsVW0tU/T9TS48HhQ2ZR8AAAAAABSIXCmW1r96v6IvcufxoLAp+wAAAAAAoADkQrFU/d6miIhoe1h3RV8OPB60DMo+AAAAAADIc7lQLFW+vTQ2rX4sIiKOGPj3ij5FHxmi7AMAAAAAgDyWC8VS5dtLY+nvL4vidl0iIqJV67YZX4Oij5ZK2QcAAAAAAHkqF4ql2qKvw+EDo1u/s7KyBkUfLZmyDwAAAAAA8lAuFEu7F30nn/dfUdSqOONrUPTR0in7AAAAAAAgz+RCsbRn0eccfYo+skPZBwAAAAAAeSQXiqVcKPp21exU9EFEtMn2AgAAAAAAgKbJhWIpF4q+iIi3V/wm3t+5RdFHi6fsAwAAAACAPJALxVIuFH3JruqIiNj53qYYduF9ij5avKx+jOesWbNiyJAhUVpaGqWlpTFq1Kh45JFH9rnPLbfcEscff3y0b98++vTpE1/72tdix44dGVoxAEDuM2MBAKTDnAVkUy4US7lQ9L2/c2u8s/rxiIg48viLFH0QWX5n39FHHx0zZ86M4447LpIkiV/+8pdxwQUXxAsvvBAnnHDCXtvPnj07vv3tb8fPf/7zOPXUU2PFihVxxRVXRFFRUfz4xz/Owj0AAMg9ZiwAgHSYs4BsyYViKVeKvhf/MCGqd5RHRERJx14ZX0NEbjwesLusln3jxo2rd3369Okxa9aseO655xockJ555pk47bTT4tJLL42IiP79+8cll1wSf/7znzOyXgCAfGDGAgBIhzkLyIZcKJZyqejb9u6K6N5vTGxaNTfja4jIjccD9pQz5+yrqamJ++67L7Zt2xajRo1qcJtTTz017rnnnli4cGGMHDky3njjjXj44Yfji1/8YqPHraqqiqqqqrrrlZWVzb52IHdtWv1EbNv8eirHLi9bHBGR2vEjIrZXri2ojDQfj9oMoL60ZqwIcxa0dOaslpOR5rEhn5mzgLRUrF9c998bV86LTW88Et2P/Wy069Qn1q944JCOvb1iZURElL/1XKxcvJ+N/6Zqa1msf/X+aHtY9+hy1Kmx9qWf73P7LRuXHXDG/uyq2Rlvr/hN7HxvUxx5/EWxZdPLzZ6xp9r7sfWd5XXf9+Z+PHZ/rOFQFCVJkmRzAcuWLYtRo0bFjh07omPHjjF79uw499xzG93+tttui29+85uRJEm8//77cdVVV8WsWbMa3X7q1Kkxbdq0vW4fO3ZsFBcXN8t9aEjtEJemQsnIVI6MlpWxevXqeOmll1I7PrlryJAh0a9fv9SO7/dibmVUV1fH3Llzo6KiIkpLS1PLyUdpz1gR5iwZhZWRqZxCyDBntVwjRoyIXr3S+6isQvj5KKQMc1bjzFkyZMhIizmr5SqE57NkNE1aM1bWy76dO3fGmjVroqKiIu6///742c9+Fk8++WR89KMf3Wvb+fPnxxe+8IW48cYb4+Mf/3i8/vrrce2118Y//dM/xQ033NDg8Rt6JVSfPn1SH1bPP//8eOihh1I7fiFlZCpHRsvKuPfee+Oyyy6Ls47pHgO71f9YgcVvlceit8rjlKO6xIijuhx0xoJVm+LlTVuj10cviy69RhziihtWXrY4yl65J/qf8o1oX9on7zNGHtUlhu/xPW+ux2PFO1vj8ZWb4p577onx48cf2oL3we/F3MqorKyMzp07exKqAWnPWBHmLBmFlZGpnELI2Nec1VzMWU23vXJtrFp0c1w0uFecfGSXVDLe2rI9Zi1eFUuWLIlhw4alkhFRGD8fhZRhzmqcOUuGDBlpef7552P48OFx0eBe0aNDSSoZT67aFK9s2hpdep8W7Tsfs89tq9/bFJtWPxbF7bpEt35nRVGrpr3YoPytP8f28teiY4+To1OPkw5pvcmu6nhn9eNRvaM8uvcbE8WHdW/2jMZsr1gZ5euejlN6dYkRvbukkrFxW1Xcv7zMnNWCMtKasbL+MZ5t27aNAQMGRETE8OHDY9GiRXHrrbfGHXfcsde2N9xwQ3zxi1+Mr3zlKxERcdJJJ8W2bdvin//5n+M73/lOtGrVaq99SkpKoqQknV+MQO678mP9YvxJHz6xcuOCV2PRW6vie58aHJM/efwhHfuaPyyNlzdtjS69RsSRAz9/qEttVNkr90T3fp9KbXDJZMa443vV+7435+Nx77K18fjKTYe6TCgYac9YEeYsaOn2nLOakzmr6bZsXBarFt0cFw4+KrXH4/my8pi1eFUqx4Z8ZM4C0jbpjONjWK8uqRz7mj8sjVc2bY1egy7e55xVe46+0iNOPuBz9P3lye/E9vLXonv/MXHMiIM/p13tOfp21VTF8M//JkqPGNrsGfuyfsUDUb7u6Th/UK9Dft6qMc+Xlcf9y8tSOTYtS8MTRRbt2rWr3iuXdvfee+/tNQS1bt06IiKy/AZFIA/cuODVuOGJ5c1SLHHoPB6QWWYsAIB0mLOAQlNb9HU4fOABF33Npbbo2/buihj6uXvqFX3A3rL6zr5JkybFZz/72ejbt29s2bIlZs+eHfPnz4958+ZFRMSECROid+/eMWPGjIiIGDduXPz4xz+Oj33sY3UffXDDDTfEuHHj6gYlgIYolnKLxwPSZcYCAEiHOQsodIq+D21cOS8ruXAwslr2bdiwISZMmBBlZWXRuXPnGDJkSMybNy/OPvvsiIhYs2ZNvVc/TZ48OYqKimLy5Mmxbt266NGjR4wbNy6mT5+erbsA5AHFUm7xeED6zFgAAOkwZwGFTNH3oVVLbotNbzySlWw4GFkt++666659fn3+/Pn1rrdp0yamTJkSU6ZMSXFVQCF5cPlbcf/yMsVSjpi/amM8vnKTxwNSZsYCAEiHOQsoVIq+D61aclusXHhzdD/2swo/8kbOnbMPoDkp+nKLog8AAAAgtyj6PlRb9B0z8hvR45jPZGUNcDCUfUBBu2hwL8VSDjnrmO4eDwAAAIAcoej70O5FX//h/zcra4CDpewDCtqFg4/K9hLYzej+PbK9BAAAAABC0bc7RR/5TtkHAAAAAAAtyPbK1Yq+v1H0UQiUfQAAAAAA0IKseX6Woi8UfRQOZR8AAAAAALQgbTseqehT9FFAlH0AAAAAANCC9Bt6laJP0UcBUfYBAAAAAEAL0qpNu4xnKvogPco+AAAAAAAgNYo+SJeyD+Agvb2tKttLYDd/fXdbtpcAAAAAwB4UfZA+ZR/AQVi4bnP896vrs70M/mbhus0x46kV2V4GAAAAALtR9EFmKPsADtDCdZvj7F89Hd3at832UogPH48+pe2zvRQAAAAA/mZXzU5FH2SIsg/gANQWSyf2LI3zBh6R7eW0eLs/Ht867bhsLwcAAACAv3l7xW8UfZAhyj6AJtq9WJo7flS0be1XaDbt+Xi0L26d7SUBAAAAtHjJruqIiNj53iZFH2SIZ6oBmmDPYqlTSXG2l9SieTwAAAAAcs/7O7fGO6sfj4iII4+/SNEHGaLsA9gPxVJu8XgAAAAA5J73d26NF/8wIap3lEdEREnHXllZh6KPlkjZB7APiqXc4vEAAAAAyD21Rd+2d1dE935jsrYORR8tlbIPoBGKpdzi8QAAAADIPbsXfUM/d08UH9Y9K+tQ9NGSKfsAGqBYyi0eDwAAAIDcs2fR5xx9kB1ZLftmzZoVQ4YMidLS0igtLY1Ro0bFI4880uj2o0ePjqKior0u5513XgZXDRQ6xVJu8XjAwTFnAQA0PzMWwIcUfZA72mQz/Oijj46ZM2fGcccdF0mSxC9/+cu44IIL4oUXXogTTjhhr+1/+9vfxs6dO+uuv/POO3HyySfHxRdfnMllAwVMsZRbPB5w8MxZAADNz4wF8IFcKfrK33ouytc9reijxctq2Tdu3Lh616dPnx6zZs2K5557rsEB6fDDD693fc6cOXHYYYcZkIBmoVjKLR4PODTmLACA5mfGAsidoi8iFH3wN1kt+3ZXU1MT9913X2zbti1GjRrVpH3uuuuu+MIXvhAdOnRodJuqqqqoqqqqu15ZWXnIawXyx9Nr3mnSdn99d1vMeGpF9CltH1cO7RsPrVi/331WvLM1IiLKyxYf0hr3pfbY2za/nlrG9sq1GcuYv2pjk7Z/s3J73L10dfTsUBKf7t89bv3zG/vd58X1FYe0Rihk5iwgDU2dsw5G7Zy1vXJtbNm4LJWMTM5AaWbUHnvl5vfi+bLyVDKWb9ySynEh36U1Y0WYs6ClS/Nv78ZtH/xuqVh/cM9n7Xp/R6xe+tPYuXV99B12dbxXsTLeq1hZb5vtf7te/tZzsTKlp802rXosIiJKOvWNJIlYufi2Zs/Y+s7yiIh4a8t2cxY5ryhJkiSbC1i2bFmMGjUqduzYER07dozZs2fHueeeu9/9Fi5cGB//+Mfjz3/+c4wcObLR7aZOnRrTpk3b6/axY8dGcXF67xJZuHDhPtclI/M5MlpWxubNm+Opp55K7fjkriFDhkS/fv1SO77fi7mVUV1dHXPnzo2KioooLS1NLSdfmbNkyMi9nELIMGe1XKeffnp07do1teMXws9HIWWYsxqX9owVYc6SIaOlZmzfvj0ee+yxVDPITeaslpOR1oyV9bJv586dsWbNmqioqIj7778/fvazn8WTTz4ZH/3oR/e537/8y7/Es88+Gy+99NI+t2volVB9+vRJfVg9//zz46GHHkrt+IWUkakcGS0v44wzzoirrroqteM//fTTMWvWrDjrmO4xsFvHgz7Ozppd8YcVb8c723fGuOOPjCM6lNR9bcGqTfHypq3R66OXRZdeI5pj2XspL1scZa/cE/1P+Ua0L+2TasYpR3WJEUd1aXS7t7dVxX+/WhaHt28bnxt4ZLRt3arJGSs2bY3HV22Ke+65J8aPH98Mq26Y34u5lVFZWRmdO3f2JFQjzFkyZOReTqFkpD1nrVy5Mm644Ya4ekT/OKpT+1Qy5q/cGI+v2pSRGSjNjO2Va2PVopvj6hH947S+3VLJWLn5vbjhieWxZMmSGDZsWCoZEYXz81EoGeasxqU9Y0WYs2TIaKkZERFnn312/OAHP0jt+MuXL4/LLrssLhrcK3rs9hxUc3py1aZ4ZdPW6NL7tGjf+ZhmPfaWjcti68YXo027bvH+jneiY4+To1OPk5o1o9b2ipVRvu7puGhwr7hw8FGpZJizWl5GWjNW1j/Gs23btjFgwICIiBg+fHgsWrQobr311rjjjjsa3Wfbtm0xZ86c+O53v7vf45eUlERJSTq/tIDc1rVr11RLn4iIWbNmxZUf6xfjTzq4J2+2VFXH2Hufjffer4mnvvTJGNm7/it4rvnD0nh509bo0mtEHDnw882x5AaVvXJPdO/3qdSGo9qM84/vFZM/eXyDX689R98pvQ8/qHP03btsbTy+alNzLBUKhjkLSEvac9bzzz8fN9xwQ3xlWP8Y1qtLajmPr9qUkRkozYwtG5fFqkU3x2l9ux30TLo/z5eVxw1PLE/l2JCP0p6xIsxZ0JK1b98+1dKn1qQzjk9tzrrmD0vjlU1bo9egi5v1+axVS26LslfuiWNGfiN2bH37gzmr/5g4ZkQ65+tbv+KBKF/3dJx8ZBdzFjmv6W+ZyJBdu3bVe+VSQ+67776oqqqKyy67LEOrAmh+tUXf/26ojEe/eNpeRV9LUlv0ndiz9KCKPqBpzFkAAM3PjAWQvlVLbouVC2+OY0Z+I/oPT6fcg3yW1Xf2TZo0KT772c9G3759Y8uWLTF79uyYP39+zJs3LyIiJkyYEL17944ZM2bU2++uu+6KCy+8MLp1S+cjSgDSpuj7kKIP0mHOAgBofmYsgMxT9MH+ZbXs27BhQ0yYMCHKysqic+fOMWTIkJg3b16cffbZERGxZs2aaNWq/psPX3311Xjqqafij3/8YzaWDHDIFH0fUvRBesxZAADNz4wFkFmKPmiarJZ9d9111z6/Pn/+/L1uO/744yNJkpRWBJAuRd+HFH2QLnMWAEDzM2MBZI6iD5ou587ZB1CoFH0fUvQBAAAA0JhcKPq2V67OSi4cDGUfQAYo+j6k6AMAAACgMblQ9FW+vTTWPD8rK9lwMJR9AClT9H3ozcrtij4AAAAAGpQrRd/S318WbTsemZV8OBjKPoAUKfrqu3vpakUfAAAAAHvJpaKvw+EDo9/Qq7KyBjgYyj6AlCj69tazQ4miDwAAAIB6cq3oO/m8/4pWbdplZR1wMJR9AClQ9DXs8pP7KvoAAAAAqJOLRV+bth2zsg44WMo+gGam6GtcSZvW2V4CAAAAADlC0QfNQ9kH0IwUfQAAAACwf4o+aD7KPoBmougDAAAAgP1T9EHzUvYBNANFHwAAAADsn6IPmp+yD+AQba+uUfQBAAAAwH4o+iAdbbK9AIB898OnX4u3t1Up+gAAAACgEYo+SI+yD+AQra3cHk9ecYaiL8u2V9dkewkAAAAANEDRB+nyMZ4Ah2jS6QMVfVm2pao6fvj0a9leBgAAAAB7UPRB+pR9AIfoI4d3yPYSWrQtVdUx9t5nY23l9mwvBQAAAIDdKPogM5R9AOSt2qLvfzdUxqTTB2Z7OQAAAAD8zcaV8xR9kCHKPgDy0u5F36NfPM07LAEAAAByyKY3HlH0QYYo+wDIO3sWfc6ZCAAAAJBbuh/7WUUfZIiyD4C8ougDAAAAyH09jvlMVnIVfbREyj4A8oaiDwAAAIDGKPpoqbJa9s2aNSuGDBkSpaWlUVpaGqNGjYpHHnlkn/uUl5fHxIkTo1evXlFSUhIDBw6Mhx9+OEMrBiBbFH3QdGYsAIB0mLMAcpeij5asTTbDjz766Jg5c2Ycd9xxkSRJ/PKXv4wLLrggXnjhhTjhhBP22n7nzp1x9tlnR8+ePeP++++P3r17x+rVq6NLly6ZXzxABix+qzzbS8gJij44MGYsAIB0mLMAcpOij5Yuq2XfuHHj6l2fPn16zJo1K5577rkGB6Sf//zn8e6778YzzzwTxcXFERHRv3//TCwVIONuXPBqLFL2KfrgIJixAADSYc4CyD2KPshy2be7mpqauO+++2Lbtm0xatSoBrd56KGHYtSoUTFx4sT43e9+Fz169IhLL700rr/++mjdunWD+1RVVUVVVVXd9crKylTWD7RcT695p9mP+eDyt+L+5WVxbJfD4o3y92J75drYsnFZs+dERGyvXBsREds2v57K8XfPeHF9Rdy7bG3T96uuiR8+/Vqsrdwek04fGK+9uzVee3drg9um8ThAIUhrxoowZwHpW75xS2rHfmvL9ojIzAyUZkbtsVdufi+eLytPJSPNxwHymTkLyGdp/n3fuO2D318V6xenlrG9YmVERJSveybWPP+TaNvxyOh1/MWxadWjzZZRu/63tmw3Z5HzipIkSbK5gGXLlsWoUaNix44d0bFjx5g9e3ace+65DW47aNCgWLVqVYwfPz6uueaaeP311+Oaa66J//t//29MmTKlwX2mTp0a06ZN2+v2sWPH1r2iKg0LFy6MkSNHpnb8QsrIVI4MGc1t8+bN8dRTT6V2fA7O6aefHl27pvfuP78Xcyujuro65s6dGxUVFVFaWppaTj5Ke8aKMGfJKKyMTOXIaJrt27fHY489ltrxOThjxoyJ9u3bp3b8Qvi3W0gZ5qzGmbNkyJCRzznmrNxkzmo5GWnNWFkv+3bu3Blr1qyJioqKuP/+++NnP/tZPPnkk/HRj350r20HDhwYO3bsiJUrV9a9+unHP/5x/OhHP4qysrIGj9/QK6H69OmT+rB6/vnnx0MPPZTa8QspI1M5MmSk4Ywzzoirrroq1Ywf/vCH8a1vfUtGE/z0pz+N//mf/0k1w+/F3MqorKyMzp07exKqAWnPWBHmLBmFlZGpHBlNd/bZZ8cPfvCDVDP+5V/+Ja677rpUMzIxA91yyy1xxx13pJpx/fXXx6OPNt8r5RtSKP92CyXDnNU4c5YMGTLyPScTc9aVV14ZF198caoZv/zlL+Pyyy9PNeO+++6LX/ziF6lmmLNaVkZaM1bWP8azbdu2MWDAgIiIGD58eCxatChuvfXWBv9HpVevXlFcXFzvYw4GDx4c69evj507d0bbtm332qekpCRKSkrSuwNAi9a1a9cYP358qhm//vWvZRxABvCBtGesCHMWkK727dvHsGHDUs3o1atXwcxAaX+v0nylOeQbcxaQ7zIxZ/Xr1y8mT56casbChQszkmHOIh+0yvYC9rRr1656r1za3WmnnRavv/567Nq1q+62FStWRK9evRodjgAAMGMBAKTFnAUAZFtWy75JkybFggULYtWqVbFs2bKYNGlSzJ8/v+5VjxMmTIhJkybVbX/11VfHu+++G9dee22sWLEi/vCHP8T3v//9mDhxYrbuAgBAzjFjAQCkw5wFAOSirH6M54YNG2LChAlRVlYWnTt3jiFDhsS8efPi7LPPjoiINWvWRKtWH/aRffr0iXnz5sXXvva1GDJkSPTu3TuuvfbauP7667N1FwAAco4ZCwAgHeYsACAXZbXsu+uuu/b59fnz5+9126hRo+K5555LaUUAAPnPjAUAkA5zFgCQi3LunH0AAAAAAABA0yj7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE9lteybNWtWDBkyJEpLS6O0tDRGjRoVjzzySJP2nTNnThQVFcWFF16Y7iIBAPKQOQsAoPmZsQCAXJTVsu/oo4+OmTNnxpIlS2Lx4sXx6U9/Oi644IJ4+eWX97nfqlWr4pvf/GacccYZGVopAEB+MWcBADQ/MxYAkIuyWvaNGzcuzj333DjuuONi4MCBMX369OjYsWM899xzje5TU1MT48ePj2nTpsWxxx6bwdUCAOQPcxYAQPMzYwEAuShnztlXU1MTc+bMiW3btsWoUaMa3e673/1u9OzZM7785S836bhVVVVRWVlZ7wIA0JKYswAAml9aM1aEOQsAODBFSZIk2VzAsmXLYtSoUbFjx47o2LFjzJ49O84999wGt33qqafiC1/4QixdujS6d+8eV1xxRZSXl8eDDz7Y6PGnTp0a06ZN2+v2sWPHRnFxcXPdjb0sXLgwRo4cmdrxCykjUzkyZMiQkS8ZmcophIzq6uqYO3duVFRURGlpaWo5+cqcJUNG7uXIkCFDRr5kmLMal/aMFWHOkiGjpWZkKkeGDBnZy0htxkqyrKqqKnnttdeSxYsXJ9/+9reT7t27Jy+//PJe21VWVib9+/dPHn744brbLr/88uSCCy7Y5/F37NiRVFRU1F3Wrl2bRERSUVHR3HelnnHjxqV6/ELKyFSODBkyZORLRqZyCiGjoqIiI3/X85U5S4aM3MuRIUOGjHzJMGc1Lu0ZK0nMWTJktNSMTOXIkCEjexlpzVhtmq82PDht27aNAQMGRETE8OHDY9GiRXHrrbfGHXfcUW+7v/71r7Fq1aoYN25c3W27du2KiIg2bdrEq6++Gh/5yEf2On5JSUmUlJSkeA8AAHKTOQsAoPmlPWNFmLMAgAOT9bJvT7t27Yqqqqq9bh80aFAsW7as3m2TJ0+OLVu2xK233hp9+vTJ1BIBAPKSOQsAoPmZsQCAbMtq2Tdp0qT47Gc/G3379o0tW7bE7NmzY/78+TFv3ryIiJgwYUL07t07ZsyYEe3atYsTTzyx3v5dunSJiNjrdgCAls6cBQDQ/MxYAEAuymrZt2HDhpgwYUKUlZVF586dY8iQITFv3rw4++yzIyJizZo10apVq2wuEQAgL5mzAACanxkLAMhFWS377rrrrn1+ff78+fv8+t133918iwEAKCDmLACA5mfGAgBykZcaAQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeymrZN2vWrBgyZEiUlpZGaWlpjBo1Kh555JFGt//tb38bI0aMiC5dukSHDh1i6NCh8atf/SqDKwYAyA/mLACA5mfGAgByUZtshh999NExc+bMOO644yJJkvjlL38ZF1xwQbzwwgtxwgkn7LX94YcfHt/5zndi0KBB0bZt2/j9738fV155ZfTs2TM+85nPZOEeAADkJnMWAEDzM2MBALkoq2XfuHHj6l2fPn16zJo1K5577rkGB6TRo0fXu37ttdfGL3/5y3jqqacMSAAAuzFnAQA0PzMWAJCLcuacfTU1NTFnzpzYtm1bjBo1ar/bJ0kSjz/+eLz66qvxyU9+stHtqqqqorKyst4FAKAlMWcBADS/tGasCHMWAHBgipIkSbK5gGXLlsWoUaNix44d0bFjx5g9e3ace+65jW5fUVERvXv3jqqqqmjdunX8x3/8R3zpS19qdPupU6fGtGnT9rp97NixUVxc3Cz3oSELFy6MkSNHpnb8QsrIVI4MGTJk5EtGpnIKIaO6ujrmzp0bFRUVUVpamlpOvjJnyZCRezkyZMiQkS8Z5qzGpT1jRZizZMhoqRmZypEhQ0b2MlKbsZIsq6qqSl577bVk8eLFybe//e2ke/fuycsvv9zo9jU1Nclrr72WvPDCC8lNN92UdO7cOXniiSca3X7Hjh1JRUVF3WXt2rVJRCQVFRUp3JsPjRs3LtXjF1JGpnJkyJAhI18yMpVTCBkVFRUZ+buer8xZMmTkXo4MGTJk5EuGOatxac9YSWLOkiGjpWZkKkeGDBnZy0hrxsrqOfsiItq2bRsDBgyIiIjhw4fHokWL4tZbb4077rijwe1btWpVt/3QoUNj+fLlMWPGjL0+A71WSUlJlJSUpLJ2AIBcZs4CAGh+ac9YEeYsAODA5Mw5+2rt2rUrqqqqUtseAKClMmcBADQ/MxYAkG1ZfWffpEmT4rOf/Wz07ds3tmzZErNnz4758+fHvHnzIiJiwoQJ0bt375gxY0ZERMyYMSNGjBgRH/nIR6Kqqioefvjh+NWvfhWzZs3K5t0AAMg55iwAgOZnxgIAclFWy74NGzbEhAkToqysLDp37hxDhgyJefPmxdlnnx0REWvWrIlWrT588+G2bdvimmuuiTfffDPat28fgwYNinvuuSf+8R//MVt3AQAgJ5mzAACanxkLAMhFWS377rrrrn1+ff78+fWu33jjjXHjjTemuCIAgMJgzgIAaH5mLAAgF+XcOfsAAAAAAACAplH2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ7Katk3a9asGDJkSJSWlkZpaWmMGjUqHnnkkUa3v/POO+OMM86Irl27RteuXWPMmDGxcOHCDK4YACA/mLMAAJqfGQsAyEVZLfuOPvromDlzZixZsiQWL14cn/70p+OCCy6Il19+ucHt58+fH5dcckk88cQT8eyzz0afPn3inHPOiXXr1mV45QAAuc2cBQDQ/MxYAEAuapPN8HHjxtW7Pn369Jg1a1Y899xzccIJJ+y1/b333lvv+s9+9rP4zW9+E48//nhMmDAh1bUCAOQTcxYAQPMzYwEAuSirZd/uampq4r777ott27bFqFGjmrTPe++9F9XV1XH44Yc3uk1VVVVUVVXVXa+srDzktQIA5BNzFgBA80trxoowZwEAB6YoSZIkmwtYtmxZjBo1Knbs2BEdO3aM2bNnx7nnntukfa+55pqYN29evPzyy9GuXbsGt5k6dWpMmzZtr9vHjh0bxcXFh7T2fVm4cGGMHDkyteMXUkamcmTIkCEjXzIylVMIGdXV1TF37tyoqKiI0tLS1HLylTlLhozcy5EhQ4aMfMkwZzUu7RkrwpwlQ0ZLzchUjgwZMrKXkdqMlWRZVVVV8tprryWLFy9Ovv3tbyfdu3dPXn755f3uN2PGjKRr167Jiy++uM/tduzYkVRUVNRd1q5dm0REUlFR0Vx3oUHjxo1L9fiFlJGpHBkyZMjIl4xM5RRCRkVFRUb+rucrc5YMGbmXI0OGDBn5kmHOalzaM1aSmLNkyGipGZnKkSFDRvYy0pqxsv4xnm3bto0BAwZERMTw4cNj0aJFceutt8Ydd9zR6D433XRTzJw5Mx577LEYMmTIPo9fUlISJSUlzbpmAIB8YM4CAGh+ac9YEeYsAODAZL3s29OuXbvqfSb5nn74wx/G9OnTY968eTFixIgMrgwAIL+ZswAAmp8ZCwDItqyWfZMmTYrPfvaz0bdv39iyZUvMnj075s+fH/PmzYuIiAkTJkTv3r1jxowZERHxgx/8IP793/89Zs+eHf3794/169dHRETHjh2jY8eOWbsfAAC5xpwFAND8zFgAQC7Katm3YcOGmDBhQpSVlUXnzp1jyJAhMW/evDj77LMjImLNmjXRqlWruu1nzZoVO3fujIsuuqjecaZMmRJTp07N5NIBAHKaOQsAoPmZsQCAXJTVsu+uu+7a59fnz59f7/qqVavSWwwAQAExZwEAND8zFgCQi1rtfxMAAAAAAAAgFyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgTyn7AAAAAAAAIE8p+wAAAAAAACBPKfsAAAAAAAAgT2W17Js1a1YMGTIkSktLo7S0NEaNGhWPPPLIPve57777YtCgQdGuXbs46aST4uGHH87QagEA8oc5CwCg+ZmxAIBclNWy7+ijj46ZM2fGkiVLYvHixfHpT386Lrjggnj55Zcb3P6ZZ56JSy65JL785S/HCy+8EBdeeGFceOGF8b//+78ZXjkAQG4zZwEAND8zFgCQi7Ja9o0bNy7OPffcOO6442LgwIExffr06NixYzz33HMNbn/rrbfG2LFj41//9V9j8ODB8b3vfS+GDRsWt99+e4ZXDgCQ28xZAADNz4wFAOSinDlnX01NTcyZMye2bdsWo0aNanCbZ599NsaMGVPvts985jPx7LPPNnrcqqqqqKysrHcBAGhJzFkAAM0vrRkrwpwFAByYNtlewLJly2LUqFGxY8eO6NixYzzwwAPx0Y9+tMFt169fH0cccUS924444ohYv359o8efMWNGTJs2ba/b//Ef/zGKi4sPbfH7sHDhwjj//PNTO34hZWQqR4YMGTLyJSNTOYWQUV1dndqxC4E5S4aM3MuRIUOGjHzJMGc1Lu0ZK8KcJUNGS83IVI4MGTKyl5HajJVkWVVVVfLaa68lixcvTr797W8n3bt3T15++eUGty0uLk5mz55d77af/OQnSc+ePRs9/o4dO5KKioq6y9q1a5OISCoqKpr1fuxp3LhxqR6/kDIylSNDhgwZ+ZKRqZxCyKioqMjI3/V8Zc6SISP3cmTIkCEjXzLMWY1Le8ZKEnOWDBktNSNTOTJkyMheRlozVtbf2de2bdsYMGBAREQMHz48Fi1aFLfeemvccccde2175JFHxttvv13vtrfffjuOPPLIRo9fUlISJSUlzbtoAIA8YM4CAGh+ac9YEeYsAODA5Mw5+2rt2rUrqqqqGvzaqFGj4vHHH69326OPPtro56IDAPAhcxYAQPMzYwEA2ZbVd/ZNmjQpPvvZz0bfvn1jy5YtMXv27Jg/f37MmzcvIiImTJgQvXv3jhkzZkRExLXXXhtnnnlm3HzzzXHeeefFnDlzYvHixfGf//mf2bwbAAA5x5wFAND8zFgAQC7Katm3YcOGmDBhQpSVlUXnzp1jyJAhMW/evDj77LMjImLNmjXRqtWHbz489dRTY/bs2TF58uT4t3/7tzjuuOPiwQcfjBNPPDFbdwEAICeZswAAmp8ZCwDIRVkt++666659fn3+/Pl73XbxxRfHxRdfnNKKAAAKgzkLAKD5mbEAgFyUc+fsAwAAAAAAAJpG2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5StkHAAAAAAAAeUrZBwAAAAAAAHlK2QcAAAAAAAB5Kqtl34wZM+KUU06JTp06Rc+ePePCCy+MV199dZ/7VFdXx3e/+934yEc+Eu3atYuTTz455s6dm6EVAwDkPjMWAEA6zFkAQC7Katn35JNPxsSJE+O5556LRx99NKqrq+Occ86Jbdu2NbrP5MmT44477oj/7//7/+KVV16Jq666Kj7/+c/HCy+8kMGVAwDkLjMWAEA6zFkAQC5qk83wPV/FdPfdd0fPnj1jyZIl8clPfrLBfX71q1/Fd77znTj33HMjIuLqq6+Oxx57LG6++ea45557Ul8zAECuM2MBAKTDnAUA5KKsln17qqioiIiIww8/vNFtqqqqol27dvVua9++fTz11FONbl9VVVV3vbKyshlWCgCQP9KYsWr3MWcBAC2ZOQsAyAVFSZIk2V5ERMSuXbvi/PPPj/Ly8n0OO5deemm8+OKL8eCDD8ZHPvKRePzxx+OCCy6ImpqaekNQralTp8a0adP2un3s2LFRXFzcrPdhdwsXLoyRI0emdvxCyshUjgwZMmTkS0amcgoho7q6OubOnRsVFRVRWm8U+zQAAB/NSURBVFqaWk4+S2vGijBnySisjEzlyJAhQ0a+ZJiz9s+cJUOGjHzNkSFDRvYyUpuxkhxx1VVXJf369UvWrl27z+02bNiQXHDBBUmrVq2S1q1bJwMHDkyuueaapF27dg1uv2PHjqSioqLusnbt2iQikoqKijTuRp1x48alevxCyshUjgwZMmTkS0amcgoho6KiIiN/1/NZWjNWkpizZBRWRqZyZMiQISNfMsxZ+2fOkiFDRr7myJAhI3sZac1YrZqvNjx4X/3qV+P3v/99PPHEE3H00Ufvc9sePXrEgw8+GNu2bYvVq1fHX/7yl+jYsWMce+yxDW5fUlISpaWl9S4AAC1BmjNWhDkLAGi5zFkAQC7JatmXJEl89atfjQceeCD+9Kc/xTHHHNPkfdu1axe9e/eO999/P37zm9/EBRdckOJKAQDyhxkLACAd5iwAIBe1yWb4xIkTY/bs2fG73/0uOnXqFOvXr4+IiM6dO0f79u0jImLChAnRu3fvmDFjRkRE/PnPf45169bF0KFDY926dTF16tTYtWtXfOtb38ra/QAAyCVmLACAdJizAIBclNWyb9asWRERMXr06Hq3/+IXv4grrrgiIiLWrFkTrVp9+AbEHTt2xOTJk+ONN96Ijh07xrnnnhu/+tWvokuXLhlaNQBAbjNjAQCkw5wFAOSirJZ9SZLsd5v58+fXu37mmWfGK6+8ktKKAADynxkLACAd5iwAIBdl9Zx9AAAAAAAAwMFT9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeUvYBAAAAAABAnlL2AQAAAAAAQJ5S9gEAAAAAAECeymrZN2PGjDjllFOiU6dO0bNnz7jwwgvj1Vdf3e9+t9xySxx//PHRvn376NOnT3zta1+LHTt2ZGDFAAC5z4wFAJAOcxYAkIuyWvY9+eSTMXHixHjuuefi0Ucfjerq6jjnnHNi27Ztje4ze/bs+Pa3vx1TpkyJ5cuXx1133RW//vWv49/+7d8yuHIAgNxlxgIASIc5CwDIRW2yGT537tx61+++++7o2bNnLFmyJD75yU82uM8zzzwTp512Wlx66aUREdG/f/+45JJL4s9//nPq6wUAyAdmLACAdJizAIBclFPn7KuoqIiIiMMPP7zRbU499dRYsmRJLFy4MCIi3njjjXj44Yfj3HPPbXD7qqqqqKysrHcBAGhJ0pixIsxZAADmLAAgFxQlSZJkexEREbt27Yrzzz8/ysvL46mnntrntrfddlt885vfjCRJ4v3334+rrroqZs2a1eC2U6dOjWnTpu11+9ixY6O4uLhZ1t6QhQsXxsiRI1M7fiFlZCpHhgwZMvIlI1M5hZBRXV0dc+fOjYqKiigtLU0tJ5+lNWNFmLNkFFZGpnJkyJAhI18yzFn7Z86SIUNGvubIkCEjexmpzVhJjrjqqquSfv36JWvXrt3ndk888URyxBFHJHfeeWfy0ksvJb/97W+TPn36JN/97ncb3H7Hjh1JRUVF3WXt2rVJRCQVFRVp3I0648aNS/X4hZSRqRwZMmTIyJeMTOUUQkZFRUVG/q7ns7RmrCQxZ8korIxM5ciQIUNGvmSYs/bPnCVDhox8zZEhQ0b2MtKasbJ6zr5aX/3qV+P3v/99LFiwII4++uh9bnvDDTfEF7/4xfjKV74SEREnnXRSbNu2Lf75n/85vvOd70SrVvU/mbSkpCRKSkpSWzsAQK5Kc8aKMGcBAC2XOQsAyCVZLfuSJIn/83/+TzzwwAMxf/78OOaYY/a7z3vvvbfXENS6deu64wEAtHRmLACAdJizAIBclNWyb+LEiTF79uz43e9+F506dYr169dHRETnzp2jffv2ERExYcKE6N27d8yYMSMiIsaNGxc//vGP42Mf+1h8/OMfj9dffz1uuOGGGDduXN2gBADQkpmxAADSYc4CAHJRVsu+2hMRjx49ut7tv/jFL+KKK66IiIg1a9bUe/XT5MmTo6ioKCZPnhzr1q2LHj16xLhx42L69OmZWjYAQE4zYwEApMOcBQDkoqx/jOf+zJ8/v971Nm3axJQpU2LKlCkprQoAIL+ZsQAA0mHOAgBy0d5nAAYAAAAAAADygrIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8pSyDwAAAAAAAPKUsg8AAAAAAADylLIPAAAAAAAA8lRWy74ZM2bEKaecEp06dYqePXvGhRdeGK+++up+9ysvL4+JEydGr169oqSkJAYOHBgPP/xwBlYMAJD7zFgAAOkwZwEAuahNNsOffPLJmDhxYpxyyinx/vvvx7/927/FOeecE6+88kp06NChwX127twZZ599dvTs2TPuv//+6N27d6xevTq6dOmS2cUDAOQoMxYAQDrMWQBALspq2Td37tx61+++++7o2bNnLFmyJD75yU82uM/Pf/7zePfdd+OZZ56J4uLiiIjo379/2ksFAMgbZiwAgHSYswCAXJTVsm9PFRUVERFx+OGHN7rNQw89FKNGjYqJEyfG7373u+jRo0dceumlcf3110fr1q332r6qqiqqqqr2yqisrGzm1ddXXV0tI8dyZMiQISNfMjKVUwgZtcdOkiS1jEKQxowVYc6SUVgZmcqRIUOGjHzJMGc1jTlLhgwZ+ZgjQ4aM7GWkNmMlOaKmpiY577zzktNOO22f2x1//PFJSUlJ8qUvfSlZvHhxMmfOnOTwww9Ppk6d2uD2U6ZMSSLCxcXFxcXFpYAva9euTWM8KQhpzVhJYs5ycXFxcXFpCRdzVuPMWS4uLi4uLi4He2nuGasoSXLjJVpXX311PPLII/HUU0/F0Ucf3eh2AwcOjB07dsTKlSvrXv304x//OH70ox9FWVnZXtvv+Uqo8vLy6NevX6xZsyY6d+7c/HckPmhm+/TpE2vXro3S0lIZOZAjQ4YMGfmSkamcQslIkiS2bNkSRx11VLRq1SqVjHyX1owVYc6SUTgZmcqRIUOGjHzJiDBnNYU5S4YMGfmYI0OGjOxmpDVj5cTHeH71q1+N3//+97FgwYJ9DkcREb169Yri4uJ6H3MwePDgWL9+fezcuTPatm1bb/uSkpIoKSnZ6zidO3dO9RdzRERpaamMHMuRIUOGjHzJyFROIWSk9WRHIUhzxoowZ8kovIxM5ciQIUNGvmSYsxpnzpIhQ0a+58iQISN7GWnMWFl9aVaSJPHVr341HnjggfjTn/4UxxxzzH73Oe200+L111+PXbt21d22YsWK6NWrV4PDEQBAS2PGAgBIhzkLAMhFWS37Jk6cGPfcc8//v737D6qqzv84/r6CcNGA6Ad2gxsG+SNLqRm2BrUsMZ2RSrc1fwxppv3QaMd+MBulE2atOeZurluZg2RNs+r6c6dZSTETKjV/hUpoYGiZ/bJps0QMBd/fPxr4epEr55x7uHAuz8cMf3g857zO4dz7Oa+Zz70HWbp0qURHR8v3338v33//vZw6dapxnQkTJsgzzzzT+O+pU6fK//73P5k2bZpUVlbKunXrZPbs2ZKdnd0WpwAAANDu0LEAAABaBz0LAAC0R236GM+FCxeKiMhtt93ms3zJkiUyceJEERE5cuSIz3NLvV6vbNiwQZ544gnp16+fJCQkyLRp0+Tpp582lBkZGSl5eXnNPgrBLmS0vxwyyCCDDKdkBCsnVDLQvLboWCKh87oio+NlBCuHDDLIIMMpGfCPnkUGGWS0plA5FzLIICP4XKqqbX0QAAAAAAAAAAAAAMxr08d4AgAAAAAAAAAAALCOyT4AAAAAAAAAAADAoZjsAwAAAAAAAAAAAByKyT4AAAAAAAAAAADAoUJusu/DDz+Uu+66S6688kpxuVzyn//8p8VtamtrZfr06ZKUlCSRkZHSvXt3efPNN23N+Ne//iWpqanSpUsX8Xg8MmnSJPnpp5+aXfell16SP/zhDxIdHS3x8fEycuRIqaioaDFj5cqV0rt3b3G73dK3b18pLCy84PpWcvLz8+WWW26RuLg4iYuLkyFDhsiOHTtszTjX8uXLxeVyyciRI23POH78uGRnZ4vH45HIyEjp2bOn39+Z1Yz58+dLr169JCoqSrxerzzxxBPy22+/2ZZx5swZmTVrlqSkpIjb7ZbU1FRZv3693/UXLlwo/fr1k5iYGImJiZH09HR57733/K5fXl4uf/rTn6R79+7icrlk/vz5LZ6z2Yw1a9ZIWlqaXHzxxdK1a1e54YYb5J133rE146233hKXy+Xz43a7bc247bbbzstwuVySmZlpW4bZ692cOXPmiMvlkscff9zvOlauu9kMs2OJlYxzGRlLrGaYGUusZpgZS0REZs6ced5rsXfv3hfMMHsPMZsR6DVH+0DPMvYeoWO1r45lNYeeRc+iZ/nPOFdH6lnB6FhWcuhZzhcKHUuEntWgI/WsUOlYVnLoWcHrWcHoWEZz6FnmMtpbzwr1jhVyk30nT56U1NRUee211wxvM3r0aNm0aZMUFBRIRUWFLFu2THr16mVbxpYtW2TChAkyefJkKS8vl5UrV8qOHTvkoYceanb9kpISyc7Olk8++UQ2btwoZ86ckaFDh8rJkyf9ZmzdulXGjRsnkydPltLSUhk5cqSMHDlSPvvsM7/bWMkpLi6WcePGyebNm2Xbtm3i9Xpl6NCh8s0339iW0eDLL7+UnJwcueWWWy64npWM06dPyx133CFffvmlrFq1SioqKiQ/P18SEhJsy1i6dKnk5uZKXl6eHDhwQAoKCuTf//63PPvss7ZlzJgxQxYtWiT//Oc/Zf/+/TJlyhT54x//KKWlpc2un5iYKHPmzJHdu3fLrl27ZPDgwTJixAgpLy9vdv2amhpJTk6WOXPmyBVXXOH3OALJuOSSS2T69Omybds22bdvnzzwwAPywAMPyIYNG2zLEBGJiYmR7777rvHnq6++svU81qxZ47P/zz77TMLCwuTee++1LcPs9W5q586dsmjRIunXr98F17Ny3c1mmB1LrGQ0MDqWWMkwO5ZYyTA7ljS47rrrfF6TH3/8sd91rdxDzGYEcs3RftCzjL1H6Fjtq2NZzaFn0bPoWS3riD0rGB3LbA49y/lCoWOJ0LNEOl7PCpWOZSWHnhWcnhWMjmUmh57l/J4V0h1LQ5iI6Nq1ay+4znvvvaexsbH6008/tVrGyy+/rMnJyT7LFixYoAkJCYYyjh07piKiJSUlftcZPXq0ZmZm+iy7+eab9ZFHHjGUYTSnqbq6Oo2Ojta3337b1oy6ujrt37+/Ll68WO+//34dMWKE4WMykrFw4UJNTk7W06dPG96v2Yzs7GwdPHiwz7Inn3xSBwwYYFuGx+PRV1991WfZPffco1lZWYYyVFXj4uJ08eLFLa6XlJSkr7zyiuH9WslocOONN+qMGTNsy1iyZInGxsaa2p/ZjKZeeeUVjY6O1urqatsyArneJ06c0B49eujGjRt10KBBOm3aNEPHY+a6W81QNT6WmM2wMpaYybA6lpjJsDKW5OXlaWpqquHjsXIPMZvRlNn7B9ofepbxnkXHMi4YHctoDj3LWAY9i57VkXpWMDqWlZym6FnOFiodS5We1RF7Vih1LDM5DehZ9vasYHSsQHJU6VlO61mh3rFC7pt9Zr377ruSlpYmc+fOlYSEBOnZs6fk5OTIqVOnbMtIT0+Xr7/+WgoLC0VV5YcffpBVq1bJ8OHDDW3/yy+/iMjvnxjxZ9u2bTJkyBCfZcOGDZNt27YZPk4jOU3V1NTImTNnDG9jNGPWrFkSHx8vkydPNnwsZjLeffddSU9Pl+zsbOnWrZtcf/31Mnv2bKmvr7cto3///rJ79+7Gr/YeOnRICgsLbb3utbW15319Pyoq6oKfSGhQX18vy5cvl5MnT0p6erqhYzLLbIaqyqZNm6SiokJuvfVWWzOqq6slKSlJvF5vi5+aCvQ8REQKCgpk7Nix0rVrV9syArne2dnZkpmZed44YadAMoyOJWYzrIwlZjKsjiVmMqyOJQcPHpQrr7xSkpOTJSsrS44cOeJ3Xav3EDMZTZm9f8CZ6FnGM5qiY7VexzKaQ8+iZ9GzLqyj9qxgdCyzOU3Rs0KfEzqWCD3LjFDpWaHQsazk0LNap2cFo2MFmkPP8q+99qyQ7lhtOdPY2sTAJ5WGDRumkZGRmpmZqdu3b9d169ZpUlKSTpw40bYMVdUVK1boRRddpOHh4SoietdddxmaOa+vr9fMzMwWP0HTuXNnXbp0qc+y1157TePj41vMMJPT1NSpUzU5OVlPnTplW8ZHH32kCQkJ+uOPP6qqmvo0lNGMXr16aWRkpE6aNEl37dqly5cv10suuURnzpxpW4aq6j/+8Q/t3Llz43WfMmWKrecxbtw47dOnj1ZWVmp9fb0WFRVpVFSURkRE+N1m37592rVrVw0LC9PY2Fhdt26doWMy86kYsxnHjx/Xrl27anh4uEZGRmpBQYGtGVu3btW3335bS0tLtbi4WO+8806NiYnRr7/+2tbzaLB9+3YVEd2+fbut52HlequqLlu2TK+//vrG92lrfBoqkAxVY2OJ2QwrY4nZDCtjiZXfldmxpLCwUFesWKF79+7V9evXa3p6ul511VX666+/Nru+lXuI2YymzNw/0D7Rs4z1LDpW++pYZnLoWfQsepb/jI7as4LRsazkNEXPcrZQ6Fiq9KyO2LOc3rGs5NCzWq9nBaNjBZqjSs9yWs8K9Y7V4Sf77rjjDnW73Xr8+PHGZatXr1aXy6U1NTW2ZJSXl6vH49G5c+c2vpD69u2rkyZNanH/U6ZM0aSkpBYH8UAn+4zmnOull17SuLg43bt3r20Zv/76q3bv3l0LCwsbl5kpSEbPo0ePHur1erWurq5x2d/+9je94oorbMvYvHmzduvWTfPz83Xfvn26Zs0a9Xq9OmvWLNsyjh07piNGjNBOnTppWFiY9uzZUx999FF1u91+t6mtrdWDBw/qrl27NDc3Vy+77DItLy9v8ZjM3CjNZtTX1+vBgwe1tLRU582bp7Gxsbp582ZbM851+vRpTUlJafHRClYzHn74Ye3bt6+hYzGTYeV6HzlyROPj433ep3YXpEAzjIwlZjOsjCVWzsPsWGIlI5CxpMHPP/+sMTExfh+pEeg9xEjGuczeP9A+0bOMvUfoWO2rY5nJoWfRs+hZzWfQs/5fMDqWkZxz0bOcLxQ6lio9qyP2LKd3LCs59KzW6VnB6Fh25NCznN+zQq1jdfjJvgkTJmhKSorPsv3796uIaGVlpS0Z9913n44aNcpn2UcffaQiot9++63f7bKzszUxMVEPHTrU4nF4vd7zBrHnnntO+/Xr1+K2ZnIavPzyyxobG6s7d+40tL7RjNLSUhURDQsLa/xxuVzqcrk0LCxMv/jiC1vO49Zbb9WMjAyfZYWFhSoiWltba0vGwIEDNScnx2fZO++8o1FRUVpfX29LRoNTp07p0aNH9ezZs/qXv/xF+/TpY3jbjIwMffjhh1tcL5DnnBvNaDB58mQdOnRoq2aMGjVKx44da3tGdXW1xsTE6Pz5803t20yGmeu9du3a895TItL4njr3pt4cI9c9kAyjY4nZDCtjiZXzMDuWWMmwOpY0lZaWprm5uc3+XyD3EKMZDczeP9B+0bNafo/QsX7XXjqW2ZwG9Cx6lj/0LHqWanA6Vks5DehZocHpHUuVntURe1YodiwzOQ3oWfb0rGB0rEBz6Fmh07NCqWN1+L/ZN2DAAPn222+lurq6cVllZaV06tRJEhMTbcmoqamRTp18f9VhYWEi8vsznZtSVXnsscdk7dq18sEHH8jVV1/dYkZ6erps2rTJZ9nGjRsv+DxmKzkiInPnzpUXXnhB1q9fL2lpaRdc12xG7969paysTPbs2dP4c/fdd8vtt98ue/bsEa/Xa8t5DBgwQL744gs5e/Zs47LKykrxeDwSERFhS0YwrnsDt9stCQkJUldXJ6tXr5YRI0YY3vbs2bNSW1treH0rzGZYOSYz29TX10tZWZl4PB7bM1auXCm1tbVy3333mdq3mQwz1zsjI+O891RaWppkZWXJnj17Gl+TgbCaYWYsMZthZSyxch5mxxIrGWbHkuZUV1dLVVWV39e8lXuI2QwRc9ccoaGj9iw6VvvqWFZzGtCz6Fn+0LPoWcHoWEZyROhZHU177FgNy+lZHatnhXLHspJDz7KnZwWjYwWSQ88KnZ4Vch0rSJOKQXPixAktLS1tnAX/+9//rqWlpfrVV1+pqmpubq6OHz/eZ/3ExEQdNWqUlpeXa0lJifbo0UMffPBB2zKWLFmi4eHh+vrrr2tVVZV+/PHHmpaWpjfddFOz+586darGxsZqcXGxfvfdd40/5z6KYfz48T4zzlu2bNHw8HCdN2+eHjhwQPPy8rRz585aVlbm9zys5MyZM0cjIiJ01apVPtucOHHCtoymWvqqspWMI0eOaHR0tD722GNaUVGh//3vfzU+Pl5ffPFF2zLy8vI0Ojpaly1bpocOHdKioiJNSUnR0aNH25bxySef6OrVq7Wqqko//PBDHTx4sF599dX6888/N5uRm5urJSUlevjwYd23b5/m5uaqy+XSoqKiZvdfW1vb+Fr3eDyak5OjpaWlevDgwWb3byVj9uzZWlRUpFVVVbp//36dN2+ehoeHa35+vm0Zzz//vG7YsEGrqqp09+7dOnbsWHW73Rd8hIHZjAYDBw7UMWPG+N1vIBlmr7c/Tb9mb8d1N5thdiyxktGUmceoGM0wO5ZYyTA7lqiqPvXUU1pcXKyHDx/WLVu26JAhQ/Syyy7TY8eONZth5R5iNsOOa462R88y9h6hY7WvjmU1h55Fz6Jn+c9oqqP0rGB0LCs59CznC4WOpUrPOldH6Vmh0rGs5NCzgtuzgtGxjOTQs4xntMeeFeodK+Qm+zZv3qwict7P/fffr6q/vzkGDRrks82BAwd0yJAhGhUVpYmJifrkk09e8BnnVjIWLFigffr00aioKPV4PJqVlaVHjx5tdv/N7VtEdMmSJY3rDBo0qDGvwYoVK7Rnz54aERGh1113XYt/fNVKTlJSUrPb5OXl2Xou52ppQLOasXXrVr355ps1MjJSk5OT9a9//avfr2dbyThz5ozOnDlTU1JS1O12q9fr1UcffdTvjcxKRnFxsV577bUaGRmpl156qY4fP16/+eYbv7+rSZMmaVJSkkZEROjll1+uGRkZjTfi5vZ/+PDhZo+p6es7kIzp06frNddco263W+Pi4jQ9PV2XL1/ud/9WMh5//HG96qqrNCIiQrt166bDhw/XTz/91NYMVdXPP/9cRcRnPTszzF5vf5rejO247mYzzI4lVjKasqMcBTqWWMkwO5aoqo4ZM0Y9Ho9GRERoQkKCjhkzxudRD3bcQ8xm2HHN0fboWcbeI3Ss9tWxrObQs+hZ9Cz/GU11lJ4VjI5lJYee5Xyh0LFU6Vnn6ig9K1Q6lpUcelZwe1YwOpaRHHqW8Yz22LNCvWO5VA0+AwwAAAAAAAAAAABAu9Lh/2YfAAAAAAAAAAAA4FRM9gEAAAAAAAAAAAAOxWQfAAAAAAAAAAAA4FBM9gEAAAAAAAAAAAAOxWQfAAAAAAAAAAAA4FBM9gEAAAAAAAAAAAAOxWQfAAAAAAAAAAAA4FBM9gEAAAAAAAAAAAAOxWQfAAAAAAAAAAAA4FBM9gEIGfX19dK/f3+55557fJb/8ssv4vV6Zfr06W10ZAAAAM5FxwIAAGgd9CwAdnGpqrb1QQCAXSorK+WGG26Q/Px8ycrKEhGRCRMmyN69e2Xnzp0SERHRxkcIAADgPHQsAACA1kHPAmAHJvsAhJwFCxbIzJkzpby8XHbs2CH33nuv7Ny5U1JTU9v60AAAAByLjgUAANA66FkAAsVkH4CQo6oyePBgCQsLk7KyMvnzn/8sM2bMaOvDAgAAcDQ6FgAAQOugZwEIFJN9AELS559/Ltdee6307dtXPv30UwkPD2/rQwIAAHA8OhYAAEDroGcBCESntj4AAGgNb775pnTp0kUOHz4sR48ebevDAQAACAl0LAAAgNZBzwIQCL7ZByDkbN26VQYNGiRFRUXy4osviojI+++/Ly6Xq42PDAAAwLnoWAAAAK2DngUgUHyzD0BIqampkYkTJ8rUqVPl9ttvl4KCAtmxY4e88cYbbX1oAAAAjkXHAgAAaB30LAB24Jt9AELKtGnTpLCwUPbu3StdunQREZFFixZJTk6OlJWVSffu3dv2AAEAAByIjgUAANA66FkA7MBkH4CQUVJSIhkZGVJcXCwDBw70+b9hw4ZJXV0dj0AAAAAwiY4FAADQOuhZAOzCZB8AAAAAAAAAAADgUPzNPgAAAAAAAAAAAMChmOwDAAAAAAAAAAAAHIrJPgAAAAAAAAAAAMChmOwDAAAAAAAAAAAAHIrJPgAAAAAAAAAAAMChmOwDAAAAAAAAAAAAHIrJPgAAAAAAAAAAAMChmOwDAAAAAAAAAAAAHIrJPgAAAAAAAAAAAMChmOwDAAAAAAAAAAAAHIrJPgAAAAAAAAAAAMCh/g9vgY8bCaj9lwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 0.42857142857142855\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.7000000000000001\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nx46pWeWbwsb", + "outputId": "afb41ee6-cdeb-4a0a-ac50-b7e50f5f6cf0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUDJJREFUeJzt3Xt8U/X9P/DXSZqk9EopvdALLZdypyDosEwGDBwyrAJesLIVERxOdLiJMAQHqAwmuu/c3BC5jgHiFd32AxkiIAyUcpHbbOXWG6UXoHcgbZPz+yOcNGmTNmmTnOTk9Xw88oCcnCafsPXt+7zP5/P+CKIoiiAiIiJSCJXcAyAiIiJyJSY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY35FcEQcCSJUvkHgYR+RjGDt/C5MZH/O1vf4MgCBg2bFi732vHjh38JfWgiooKBAYGQhAEfPfddzbPeeKJJyAIgs1HYGCg1bnLli3DAw88gJiYGAZcahVjh+9yZezIzs7GvHnzMHjwYISGhqJLly6YMGECjh496qmv41EBcg+AHLNlyxYkJyfjyJEjOH/+PHr27Nnm99qxYwf++te/Mkh5yIcffghBEBAbG4stW7bgtddes3meTqfD2rVrmx1Xq9VWzxctWoTY2Fjccccd2LVrl1vGTMrB2OG7XBk71q5di3Xr1uGhhx7CM888g8rKSqxevRp33303Pv/8c4wdO9Zt30MOTG58wKVLl3Do0CF88sknmDVrFrZs2YLFixfLPSy/d+vWLWi1WqhULRdAN2/ejJ/+9KdISkrC1q1b7QaogIAA/OxnP2v1cy9duoTk5GRcvXoVUVFRbRo7+QfGDu8kR+zIyMjAkiVLEBISYj725JNPom/fvliyZInikhvelvIBW7ZsQUREBCZMmICHH34YW7ZsaXbOvn37IAgC9u3bZ3U8NzcXgiBg48aNAEwlzL/+9a8AYFW+lNTW1uKFF15AYmIidDodevfujTfeeAO2No/fvHkzhg4dig4dOqBTp0547LHHUFBQYHXOqFGjMGDAAPzvf//D6NGjERQUhPj4eLz++uvN3u/WrVtYsmQJevXqhcDAQHTp0gWTJ0/GhQsXnB6fXq/Hr3/9a0RFRSE0NBQPPPAACgsLbf77Xr58GU8++SRiYmKg0+nQv39/rF+/3ua/77Zt27Bo0SLEx8cjKCgIVVVVNt9Tkp+fjwMHDuCxxx7DY489Zv6PTXskJye36+fJfzB2MHZIhg4dapXYAEBkZCRGjBhh95aXL2Plxgds2bIFkydPhlarRUZGBlatWoWsrCzcddddTr/XrFmzUFRUhN27d+Mf//iH1WuiKOKBBx7A3r17MWPGDAwePBi7du3Ciy++iMuXL+P//u//zOcuW7YML7/8Mh599FHMnDkTZWVl+Mtf/oIf/ehHOHHiBDp27Gg+t7y8HPfddx8mT56MRx99FB999BHmz5+PgQMHYvz48QAAg8GA+++/H3v27MFjjz2GOXPmoLq6Grt378aZM2fQo0cPp8Y3c+ZMbN68GY8//jiGDx+OL7/8EhMmTGj271FSUoK7774bgiDg2WefRVRUFHbu3IkZM2agqqoKzz//vNX5r776KrRaLebOnQu9Xg+tVtviv/d7772H4OBg3H///ejQoQN69OiBLVu2YPjw4TbPv3r1arNjWq0WYWFhLX4OkS2MHYwdrcWO4uJidO7cucVzfJJIXu3o0aMiAHH37t2iKIqi0WgUExISxDlz5lidt3fvXhGAuHfvXqvjly5dEgGIGzZsMB+bPXu2aOt/+k8//VQEIL722mtWxx9++GFREATx/PnzoiiKYm5urqhWq8Vly5ZZnXf69GkxICDA6vjIkSNFAOKmTZvMx/R6vRgbGys+9NBD5mPr168XAYh//OMfm43LaDQ6Nb5vv/1WBCA+88wzVuc9/vjjIgBx8eLF5mMzZswQu3TpIl69etXq3Mcee0wMDw8Xb9y4IYpi479v9+7dzcccMXDgQHHq1Knm5y+99JLYuXNnsb6+3uq8adOmiQBsPsaNG2fzvcvKypp9HyIJYwdjh73YIfnqq69EQRDEl19+2eFx+QrelvJyW7ZsQUxMDEaPHg3AVA6eMmUKtm3bBoPB4NLP2rFjB9RqNX71q19ZHX/hhRcgiiJ27twJAPjkk09gNBrx6KOP4urVq+ZHbGwsUlJSsHfvXqufDwkJsbofrNVq8YMf/AAXL140H/v444/RuXNnPPfcc83GJZW+HR3fjh07AKDZeU2vpERRxMcff4z09HSIomj1XcaNG4fKykocP37c6memTZuGDh062P4HbOLUqVM4ffo0MjIyzMcyMjJw9epVmxOBAwMDsXv37maPFStWOPR5RJYYOxg7WoodpaWlePzxx9GtWzfMmzfPoXH5Et6W8mIGgwHbtm3D6NGjcenSJfPxYcOG4c0338SePXvwk5/8xGWfl5eXh7i4OISGhlod79u3r/l1ADh37hxEUURKSorN99FoNFbPExISrO7NA0BERAROnTplfn7hwgX07t0bAQH2/y/p6Pjy8vKgUqnQo0cPq/N69+5t9bysrAwVFRV499138e6779r8zNLSUqvn3bp1szu+pjZv3ozg4GB0794d58+fB2AKQsnJydiyZUuzUrdarVbcpD6SB2NH28bnL7GjtrYW999/P6qrq3Hw4MFmc3GUgMmNF/vyyy9x5coVbNu2Ddu2bWv2+pYtW8wBqmkAkLj6Cg0AjEYjBEHAzp07my1TBtDsF8XWOQBsTjT0JKPRCAD42c9+hmnTptk8JzU11eq5o1deoijivffeQ21tLfr169fs9dLSUtTU1CgyqJD8GDvcy5djR11dHSZPnoxTp05h165dGDBgQJvex9sxufFiW7ZsQXR0tHmFgqVPPvkE27dvxzvvvIMOHTogIiICgKnpkyXpisSSvWCWlJSEL774AtXV1VZXONnZ2ebXAZgn6HXr1g29evVq03drqkePHvjmm29QX1/f7OrN2fElJSXBaDSar+gkOTk5Vu8nrYYwGAwur5js378fhYWFeOWVV8xXh5Ly8nL84he/wKeffurQ0m8iZzF2tG18So8dRqMRmZmZ2LNnDz744AOMHDnSVcP2Pp6f5kOOuHHjhhgaGio++eSTNl//73//KwIQt23bJoqiKFZUVIhqtVr89a9/bXXeQw891GxS4Pz580UAYnl5udW50qS73//+91bHp0yZYjXp7vz586JarRYff/xx84Q9idFotJpgN3LkSLF///7Nxj9t2jQxKSnJ/NyZSYGtje/EiRMOTwp84oknRK1WK54+fbrZ55aWlpr/Lk0K/PDDD5udZ8uMGTPE4OBg8ebNmzZfT0lJEe+77z7z82nTponBwcEOvbeEE4rJFsYO6/d0ZnxKjx3PPPOMCEBcvXq1Q+f7MlZuvNQ///lPVFdX44EHHrD5+t13342oqChs2bIFU6ZMQXh4OB555BH85S9/gSAI6NGjB/797383u+8LmPodAKZJc+PGjYNarcZjjz2G9PR0jB49GgsXLkRubi4GDRqE//znP/jss8/w/PPPm+9D9+jRA6+99hoWLFiA3NxcTJw4EaGhobh06RK2b9+OX/ziF5g7d65T3zczMxObNm3Cb37zGxw5cgQjRoxAbW0tvvjiCzzzzDN48MEHHR7f4MGDkZGRgb/97W+orKzE8OHDsWfPHvO9a0srVqzA3r17MWzYMDz11FPo168frl+/juPHj+OLL77A9evXnfoegKlPxscff4x777232dYJkgceeABvvfUWSktLER0dDQBoaGjA5s2bbZ4/adIkBAcHAwD+8Y9/IC8vDzdu3AAAfPXVV+bmXj//+c/NV6Hknxg7GDssSbHjT3/6E/72t78hLS0NQUFBzc63jDGKIHd2Rbalp6eLgYGBYm1trd1znnjiCVGj0ZivdsrKysSHHnpIDAoKEiMiIsRZs2aJZ86caXb11dDQID733HNiVFSUKAiC1dLO6upq8de//rUYFxcnajQaMSUlRVy5cmWzqyxRFMWPP/5YvOeee8Tg4GAxODhY7NOnjzh79mwxJyfHfI6jV1+iaLriXLhwoditWzdRo9GIsbGx4sMPPyxeuHDB6fHdvHlT/NWvfiVGRkaKwcHBYnp6ulhQUGCz0lFSUiLOnj1bTExMNH/umDFjxHfffdd8jjNXXx9//LEIQFy3bp3dc/bt2ycCEN966y3zvwfsLOcEIF66dMn8s9ISWVuPpst5yf8wdjB22IodzsQYJRBEUeaZWUREREQuxD43REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFMXvmvgZjUYUFRUhNDTUbitxInIvURRRXV2NuLg4qFS+cY3F2EEkL2fiht8lN0VFRUhMTJR7GEQEoKCgAAkJCXIPwyGMHUTewZG44XfJjbRp2kv/PYZA7shMJItbNTX4/Q+HWm1i6O0YO4jk5Uzc8LvkRionB4aEINCHAiuREvnS7R3GDiLv4Ejc8I2b3UREREQOYnJDREREisLkhoiIiBTF7+bcELmbWjRCazRCgCj3UGQhQkCdSgWDwGsnIkcJoohAo4Fxw0Vxg8kNkauIIpJu1SChQQ+VD02UdQejKKIwQIe8wBDAz/8tiFqjMxqQWluBQD//VXFl3GByQ+QiSbdq0M1Yh8joaGg6dAD8NVCJQP3Nm9BcLQNu1SCvA1cWEdkliuh+sxoROi0iYmIgqPw0cLg4bjC5IXIBtWhEQoMekdHRCIqIkHs4stMEBgIA6ktLUSgG8xYVkR0a0YhIYwPCI6Oh7dBB7uHIypVxgxGHyAW0RiNUgmCq2BAAQNOhA1SCAK3RKPdQiLxWgChCEASoNRq5h+IVXBU3mNwQuYB5EqCfVpRtEqQ//HOCJJEjGDuacFHcYHJDREREisLkhoiIiBSFyQ0RobS4GAt//TyG9emNpLBQDO3RA5mTJ+HAl18CAP6xdi0m33svUqI6o0ugDpUVFfIOmIi8grfGDiY3RH6uIDcX44an4eC+fXh5+Qp8eewYtv7rXxg+ciQWPD8HAHDz5g2M/slP8Kt582UeLRF5C2+OHVwKTuTnfjvnVxAEATsP/hdBwcHm47379UPGtCcAAL947lcAgEP798sxRCLyQt4cO1i5IfJCBoNnPqf8+nXs/c9/8MSsp62CkyS8Y0fPDISIXIKxw4TJDZEXOf89MHJwABKCtRg5OADnv3fv5+VeuABRFNGzd2/3fhARuRVjhzUmN0ReZMajAbhwztTo4cI5ATMede+dY1FkDxoiJWDssMY5N0RewmAAvs9WWTwX8H22AIMBUKvd85ndevaEIAg4n5Pjng8gIrdj7GiOlRsiL6FWA736GKFWi7efi7efu+8zIzp1wqh778XG1e/gRm1ts9e55JvI+zF2NMfkhsiLrPugAT1STAGqR4qIdR80uP0zl//pLRgMBoy/54f49/btuHj+HL7P/g5r//o27h/5IwCmXhZnTp7EpQsXAADfnTmDMydPovz6dbePj4hax9hhjbeliLxIz17A/m8b3FpObiqpe3f85/DXeOsPK7B0/nyUFl9BZFQUUu+4A3/4818AAJvWrMGby14z/8yksWMAAH96dw2mZGZ6ZqBEZBdjhzVB9PZZQS5WVVWF8PBwvHIyB4GhoXIPhxQiyFCPoTerEJ/UFRpdoNzD8Qr1+lu4nJePYx3CcENtvePxrepq/G5Qb1RWViIsLEymETqHsYPcgbHDmqviBm9LERERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ2RC4gQpL+QRJT+EOQdB5EXY+xowkVxg8kNkQvUqVQwiiLqb96Ueyheo/7mTRhFEXUqhhkiexoEAaIowlBfL/dQvIKr4gb73BC5gEFQoTBAB83VMgCApkMH+G3BQjQFqGtXy1AYoINBYHJDZE+9oMI1VQCCrl2DKiAAgspPA4eL4waTGyIXyQsMAW7VoL60FCrBTwPUbUZRRGGAzvRvQkT2CQIudAhFSG0FbhYUyD0aWbkybjC5IXIVQUBeh1AUisHQGo0Q/PQmuggBdSoVKzZEDqpTqXE0pBMCjQbGDRfFDVmjz5IlSyAIgtWjT58+Lf7Mhx9+iD59+iAwMBADBw7Ejh07PDRaIscYBBVuqgNwQ63xy8dNdYBbExvGDVIiURAYN1wYN2S/tOrfvz+uXLlifhw8eNDuuYcOHUJGRgZmzJiBEydOYOLEiZg4cSLOnDnjwRETkdwYN4ioJbInNwEBAYiNjTU/OnfubPfct956C/fddx9efPFF9O3bF6+++iqGDBmCt99+24MjJiK5MW4QUUtkT27OnTuHuLg4dO/eHVOnTkV+fr7dcw8fPoyxY8daHRs3bhwOHz5s92f0ej2qqqqsHkTk29wdNwDGDiJfJmtyM2zYMGzcuBGff/45Vq1ahUuXLmHEiBGorq62eX5xcTFiYmKsjsXExKC4uNjuZyxfvhzh4eHmR2Jioku/AxF5lifiBsDYQeTLZE1uxo8fj0ceeQSpqakYN24cduzYgYqKCnzwwQcu+4wFCxagsrLS/Cjw86V2RL7OE3EDYOwg8mVetRS8Y8eO6NWrF86fP2/z9djYWJSUlFgdKykpQWxsrN331Ol00Ol0Lh0nEXkPd8QNgLGDyJfJPufGUk1NDS5cuIAuXbrYfD0tLQ179uyxOrZ7926kpaV5YnhE5IUYN4ioKVmTm7lz52L//v3Izc3FoUOHMGnSJKjVamRkZAAAMjMzsWDBAvP5c+bMweeff44333wT2dnZWLJkCY4ePYpnn31Wrq9ARB7GuEFErZH1tlRhYSEyMjJw7do1REVF4Z577sHXX3+NqKgoAEB+fj5UFptnDR8+HFu3bsWiRYvw0ksvISUlBZ9++ikGDBgg11cgIg9j3CCi1giiKPpVr+eqqiqEh4fjlZM5CAwNlXs4RH7pVnU1fjeoNyorKxEWFib3cBzC2EEkL2fihlfNuSEiIiJqLyY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkUJkHsARO2Rm5uLhnK9Q+f2vKO3m0dDRETegMkN+bSGcj3GfJ+D/h3iWzxvZSdTIpScnOyZgRERkWyY3JBP09fWIOU6UGTc3eJ540oTsS/4TiDZM+MiIiL5MLkhn3X+RA7GZWfjVNU3iIoMavHcumtFuFXendUbIiI/wOSGfJa+tgadKw3YdG9qq+eO2HMKo899h8MRnVi9ISJSOCY35LVyc3NbfF2sq0N2zWEMCXu91fc6MAbI3BsAfW1Ni+/Lqg4Rke/zmqXgK1asgCAIeP755+2es3HjRgiCYPUIDAz03CDJoxrK9Rj5zSm7jxmnL0IXpHHovYaETcEl41GMOnvS7vvVFl5rNaEi78PYQURNeUXlJisrC6tXr0Zqauu3F8LCwpCTk2N+LgiCO4dGMpImC181/s/m6ycr8tAwtfWqjeTAmFT84F9ZiG9Isvn6uOpqTjr2MYwdRGSL7JWbmpoaTJ06FWvWrEFERESr5wuCgNjYWPMjJibGA6MkTzt/Igejzp7EFc0h1OsqbD4crdpIhoRNgS5IY/f96q59g1vl11m98RGMHURkj+yVm9mzZ2PChAkYO3YsXnvttVbPr6mpQVJSEoxGI4YMGYLf//736N+/v93z9Xo99PrGJm9VVVUuGTe5l762BvE1Adg0umeL5w1x8n0PjLF/hc9Jx76FsYOI7JE1udm2bRuOHz+OrKwsh87v3bs31q9fj9TUVFRWVuKNN97A8OHDcfbsWSQkJNj8meXLl2Pp0qWuHDa5iWXFxJnJws4YEjbF7mv2Jh1zkrH3YewgopYIoiiKcnxwQUEB7rzzTuzevdt8v3zUqFEYPHgw/vSnPzn0HvX19ejbty8yMjLw6quv2jzH1tVXYmIiXjmZg8DQ0HZ/D3KN3Nxc1BZew08vXwYARBRWYNPouhaTEXcI3r4Q2rDBCOrYGQCwp1dvbtvgBreqq/G7Qb1RWVmJsLAwp36WsYPIPzkTN2Sr3Bw7dgylpaUYMqTxxoLBYMBXX32Ft99+G3q9Hmq1usX30Gg0uOOOO3D+/Hm75+h0Ouh0OpeNm9yjoVyPcdnZiNAXAACya/JcXrVxRNNJx7eiotj4z8swdhBRa2RLbsaMGYPTp09bHZs+fTr69OmD+fPntxqcAFNAO336NH7605+6a5jkIfraGsTXAjXBFQAAXZAGDTKMwzTp+BTqdaZxcA6O92HsIKLWyJbchIaGYsCAAVbHgoODERkZaT6emZmJ+Ph4LF++HADwyiuv4O6770bPnj1RUVGBlStXIi8vDzNnzvT4+Ml1cnNzMS47GycrDuLIiKEAWp4b426Wk45/8K8s3Crvy+qNF2HsIKLWyL5aqiX5+flQqRpXq5eXl+Opp55CcXExIiIiMHToUBw6dAj9+vWTcZTUFpYTdmsLr6FzpQE70ofKmtRILMegC2pcQZWLXACcYOwLGDuI/JtsE4rlUlVVhfDwcE4KlNn5EzmYVF4BACi/eB5XLx90qiGfpxyveh+Ze7UoT+iIsKgYbI/oiIAIHROcdmrPhGK5MHYQycuZuCF7Ez/yT/raGsTklCAmpwTxtXC6IZ+nSNs2pFwHYnJKMOrYUTSU61v/QSIiko1X35YiZWrsPvw9AKCw5gZqJy2TeVT2HRiTCuz5AgkRQai7dgO3yrtzDg4RkRdjckMeZ6v7sLOdhj1pSNgUHBhj+ju7GBMReT8mN+QRnug+7E7SJGPLLsZERC1xZp86VoJdi8kNeURDuR6TyitQVVZi6j6cPtSrqzX2mObgLMSosw04HBzC7sVEZJcU91qzPaIjK8EuxuSG3O78iRyM+T4HiR3iUXcdOOhjVZumDoxJZfWGiFqUm5sLfW0NEmta/8+sXstY4mpMbsjt9LU1iC2uxtFbfwcgX/dhVxkSNgXZNfMg1qVwYjER2dRQrseosydxtOLbVs8d1XEwK8EuxuSG3Mqq+3C6/N2HXeVI+lBk7j2HLVotwOSGiJowL5y4N7XVc1kJdj0mN+RW3tZ92FVYvSEiSdOJw1LV5pLxWwwJa73NhWUskTCmtA+TG3Kb3Nxcn1wZ5ShdkIbLwon8nGW3dUlVWQkiagKwaUyqQwsnpEpweVmZuRN6LnjR1B7sUExu01Cux+hz33lt9+H2qp20DNXFWbhVft2pJZ9EpBzSpGHLR8p13L6oc6xabaoEH0bKdSCxJgBjvs9hJ/R2YuWG3CI3Nxe3yq+jujjLK/eMchVWb4j8l1SdPvrde1bHq27V44iT7S50QRqcqvoCqAK6BQ6DPp5zcNqDyQ25hVS1qfPxlVGt4bJwIv9VW3gNPztxzuakYWfnGNZOWoYDVe8DAH7wr4MYlw3s4wqqNmNyQy5jeWvGvFLAwXvOvqppU7+ACB0ATgYkUip3dluXEqIj6UDmXgP0tTXmz2NMcQ6TG3IZy26cxefOOrxSwNdJ1Zsx3+dwMiCRwlnHOfdUp6XVmOOy1YioM+3Bt71czyqOEzihmFzCshtnYk0A4msCTLtp+wFOBiTyD7m5uaZu6zUBiMkpQXVxFmonuecCThekQXwtzDGVt76dw8oNuURDuR7jsrNRpC8AAGTX5Cly+bc9R9KHAv/aiT7GJEQA0MfHs/8NkcLUFl5DynWgyLgbRTVFbu22XjtpGU5umYc+BaaYOq40kXNwnMDkhtpNWhl19fJBVN9e9u3sSgFfNyRsCnRBp3DpRhEAYNTZkzgc/EOuoCJSCGll1MHSnab2FirTLWl3xjldkMYcU7rdimP1xglMbqjdLFdGSSVaf0psJNJ3P171PldQESlMQ7keM05fRLYH45zlLa/sLeyI7gzOuaF2k1ZGKXWOjdHg2DGJNAdnXHY2zp/Icd/AiMgjpOr0yYqDTs2xcTZ2tORI+lD87MQ51BZea9sb+BlWbqhdzp/IcWoPFV9SWqDBhqVxKMnXIaarHtMXm8rDTY9FJ9Y3+1lTO3UDqzdECuBs3672xA57uJ+dc1i5oXZRctVmw9I4lBVqAQBlhVpsWBpn85gtUvVGrKvj1gxEPs7ZONee2NESqSM6V2O2jskNtZn1xpjK2fEbMJWOS/J1MBoF03OjgJJ8nc1j9krPuiANZpy+yEBE5MMaq9NHHYpzrogd9nA/O8cxuaE2qy28hhmnL5qWQSuMSg3EdNVDpRJNz1UiYrrqbR5TqRt/rrRAgz/MTMLc8b3wu/+3Gf/Ju8hAROTDnK3auCJ2/GFmEkoLbG84zOqNY5jcUJtIVZuTFQcVV7WRTF9chKiEOgBAVEIdpi8uwvTFRegcb33MUtPS8/r9CxiIiHxUbm4uxmVnO12dthU7pr3c/JglR29bHRiTing29WsVJxRTm/jDxpjRifWYvzYPRoPpakyaJFhaYHtCoFSONj83CrhSnojKomPQ1w7iJEAiH1NbeA2dKw3Y4WTfLsvYcbXIenLxvDWXEJtkPZHYVuyQbltZVneA5vvZsamfbazckNOkZZHubD3uTaTg0tqVlb1ydIcQNUadPcnqDZEPccWcQpW6edz4+6vNKzL2YkfTxEbC6k3rmNyQ06SqjS7I9j1hJbI3SbDp5D9bpWcGIiLf44o452jcMBps38qyh6sxW8fbUuQ0aYLdJje3Hvcm0pVVWaEWRqMAlUpEVEKd+cqqaV8Ly9JzNBp3+OXeMETez7I63TC17XvkORs3pi8uQue4ersVG0tH0ofiqQMXsV6rBXi7uxlWbsgp50/kYFx2tsPLIpXkR5PLYTSa/m40mp5LWis9H0kfis6VbOpH5Cvuu3jRJdXpB2aVQbh9u8loFKC/KZhXQtm61e1IYgOYqjcnKw62e3xKxeSGnKKvrUHnSoMim/a15pO3o62ef/Rn03NHSs8sIxP5p3+ujoKhQTA/ryjTYN3iOIdvWVHbMLkhhym5aV9rGuoAQ4MKgBSkBIhGFV78aU/kHA9CZJc6AOLt10REdjGVni0DFZv6EfmXxlVQgsVRAWWFOsxP74nQCNtxQ/pZajsmN+QwJTfta02AFlAHGGEZiADA0CBg/eKmqx8ElJdqsGxaslVDrtpJy3Cy4iCb+hH5CWnOTWPcACxjR3W55W0vARVlAfguK8ihZn7UMiY35BB/aNrXktICDUIjGmBZuZH+NDSocO2KFpZXZ0aDgGtXTEHJctk4u4sS+ZcHZpVBpbZMbixjiADLuGFoUGH94vbvQUVMbqgVubm5yM3N9fnl3+0t8a5ZFI+KMsvv3vxKrLnm99IPjElF0o3A9g2GiNyqoVwPvcF0AdKe2FFaoMG638XBaJD+UyvCfrwwMTSobM7DsTcOzuOzjUvByS4pqZlUXoGqshKUFGfhiJOdOuVma6mlZVdhS7a6gQLA2W+CbldmLAl2/m5JBNC4/PNqkQb/Wvw0NhdGoeP2WszcWIvo7ryxTuRt9LU1MBZEY95Xf0Plqqg2xY7SAg1WzkqySGwA+7HCkpT8mGJHREw9Vs5KshnDpErw4YhOQLKz31LZWLkhu2oLr+Hpr3MQk1OC2OJq6II0PndLypH9WlrbsG5jm8vCpkAmNeTasDQOVUWRAIDKoiBsejqije9LRO4i7QK+aOd9qC7qDKBtsWP9krjbixCc1XirSmrqZy+GsUGofUxuyCZpjs2pqi9wRXMI2XXf+Nzyb0eXWtpLgEoLNFj+ZFIbAxQAiIhO1GP+2jx0jqtHSb4OotH0XqJRQOl5DVdEEHkZfW0NYqs0uFKe2GLsMBpsx47SAg1WzEhCaYHO1ts7QIQ6wIg3dn6PF1fn4doVrd1xmPaZOopRZ0/i/Imctn5lReJtKbJJmmOjVwHvDekJAD5XtXGkO+j6JXFWQcgyeGxYGodrRdLtKNMtJucIeOJ3ReaSdUxXPUoLNRCNKggqEVHdGxxu2EVE7idd1J27cchu7LC81W1Jih3rl8Th6uX2xQ1DgwCjwbRKs6UYBpiqN5l7Wb1pipUbaqbpxphDwqb4XGIjaWm/lg1LmwYh04Z10YmmiYSWVR/nA5Tp/d78ZWPJ+oFZZQiLuwYACIutQeY75S29ARF5WEO53tzuwl7ssKzWWE4QFm5vdlla0J64IREx7/7GuNHSnlNSg1CyxsoNNSNVbeqCNGiQezDtFJ1Yj/lr85pN+GuoQ5MrL6nsC5QWmBpsQTACorP5v/WVmtSZtKxQi8/eicLi9Xno8PGzCOyYisOVP0Q0uM8UkTeyFTsam/JJGn/XRaOAsssahEbU3e5f09bEplFZoRb/XB2FF1fnAbC94IFsY+WGmpE2xvS1OTYtsbwV9YeZSZh3fy+oA4zmPV9UKuslmoYGoQ2JDWCrDw5gKlmXFujwh5lJ2NFvJCcBEvkIy9ixclbS7aNN48btvaMMgosSG+s5NnPH98LKWWzo5wwmN2RFWimg1I0xLUvKRoNwOzgB4VH1sG6o1f6rLhPrjsYl+VocWjGT+0wR+Rjr21EmkXF1aB43XBE7LONGY+xYsyjeBe/tH5jckBUlVm0kTVdPiaKpu3BUgh7lJVq01lzLObev7NSNPSukP69d0eLrn96Jn504h9rCay78TCJyh6axQ/p9LivUwZHGfI4zvY86wDJuWMcOrrB0DJMbMlP6xpjSiiWVxa0odYDRYlKxq6o1pvcK7VSP5/+SZ/PVIWGPsnpD5COaxg7rhMZV1RrpvUQ8sbgIKz773qmfHJedzVhigckNmdUWXsPPTpxT9MaYTVdAGBpUEEVXJjWNqq8H4I/PdLv9rPnOv9xnish7SKtE7e2fZxk7XJvQNCVg3csJ+O2DvW4/t71ruKUj6UMRXwtWgi0wuSEAyq/aSKQVEG/s/B7z1+bZ2LHXlZoHv5iudXjqtcsAgNpJy1BdnMVdwom8QGv751nGjuZVHPezjB1NDQmbgpMVB1kJtsDkhgC0/outNNLVz7SXi+C+KzBLps8oydeZu5gCrN4QeQtH5xuq1KYqTud4yyqOO0lzBFs+i7HEGpMbata0z5+oVIBKbfTAJzXeo7fc4oF7wxDJz9lVotGJ9Uj/RZkHRgZIcePqZdv7W0lYCbbG5Ib8rmojsb1rr7s03qO33OKBe8MQeYfut3QOrxItLdBg3cueWpbd8t54lnRBGtx38aKHxuXdmNyQopd/t6Ttu/a2kdC4Siumq958a4zVGyLfsn5JHDxzOxuwbBhoGTeoZUxu/JzSm/bZYzSgHbv2to36ds+bpvvDSHvDcDIgkfeTI3YAtveVIvuY3Pg5f63aSH0rPLXSAYBVlcjYZJrPkfShyDh2nks5ibycSg1EdqmD52KHdYXI1m0pNvZrjhtn+jHr5d+vyz0cj5u+uAgrZyWZN7d0P9OmmiX5Wrz+VDfEdNWbr8R2L52Hzfk6hH9ahbrlF3DHj2I9NCYi8gWlhdrb8UplFTs2LI1DSb4OMV31eGZ4HEIjZB6ol2Dlxo/5Q9O+lnSOq/fsnJsm+1aVFphWP1juWVNdHIKdi3rZ+XkikpvRAFy7ooXn5tyYiEbBHK+kFZeWsaOsUIt3ds316Ji8GSs3fsrfqzae13SPKdPeViX51vfujaIKFYXBMBqqOHGQyAup1IA6wOihC6PmcQNoXDnV9NiV8kSL/a/8G5MbPyUt/64L0qBB7sH4BQGCygjRIvAIgojoRFMjsLJCLYxGASrBiLD4m0xsiLyU0QAPVnwtExXR/Nxm7FCJiAkvtOic7N94W8oP+XPTPktXizQeauBnIhqtf91UahHTFxdh2suNe9YkRlzHT+ad8diYiMg5np9QDFgmNqYxiJj2clGzvfKeHveGB8fk3bwmuVmxYgUEQcDzzz/f4nkffvgh+vTpg8DAQAwcOBA7duzwzAAVxF+b9jW1YWmcVSXF0wwNKmxYGofXnzJtrnn//63Cpp9vRMf4m7KNyRcxdpDyWccpQ4MKrz/VDRuWxmH64iLzXnmxEVwqLvGK5CYrKwurV69GamrLy5EPHTqEjIwMzJgxAydOnMDEiRMxceJEnDnDK11n+Ovyb0tGg2mfJ3ftCO4IdYDRajLggTcflm0svoqxgzxNrgnF1qy3cuFt7OZkT25qamowdepUrFmzBhERLa9he+utt3DffffhxRdfRN++ffHqq69iyJAhePvttz00Wt/nr037mmrscyMPQWWakChN/jMaBVQWRuFGnZGdih3E2EFykDt2mDi+JYO/kj25mT17NiZMmICxY8e2eu7hw4ebnTdu3DgcPnzY7s/o9XpUVVVZPfwZqzaNDa+mLy6COsBzc24siUYV1AFGCCrr1ur5yOI+Uw5i7CBPkz92iFZ/cksG+2RNbrZt24bjx49j+fLlDp1fXFyMmJgYq2MxMTEoLi62+zPLly9HeHi4+ZGYmNiuMfsy6+Xf/le1KS3Q4A8zkzB3fC/8YWYSAODJpUWA4Mkg1TgJ0dAgmFc2SK3Vuc+UYxg7yJOaxo5rxRqEd5Z/nSm3ZLBPtqXgBQUFmDNnDnbv3o3AwEC3fc6CBQvwm9/8xvy8qqrKb4OU1LRvU/pQDJF7MDJo2vBqzaJ4VJQFAKKU41uvSHAPwervhgYBr//7ewSYhoVoTEF2zTyIdSnIzc1FcnKym8fjexg7yNMsY0dpgRZrFsaj8XfZE3FDYt0I9MXVeaza2CFbcnPs2DGUlpZiyJDG/8waDAZ89dVXePvtt6HX66FWW/+vFhsbi5KSEqtjJSUliI2136pep9NBp/P8Jmfext+b9kkTiM3PjcLtSYGWPBGgrAOhOsCI6yUaRCfWm48dSR+KzL3nsEWrBZjcNMPYQZ7UNHY0X4TgyYnFUvwQEdmlnolNCxy+LVVU5NrS15gxY3D69Gl8++235sedd96JqVOn4ttvv20WnAAgLS0Ne/bssTq2e/dupKWluXRsSpKbm4vc3Fy/X/4tTQKUbgMJgnc0ujIaBGxYGmd1TEm7hFeW2L/t01aMHeRJTWMH+QaHk5v+/ftj69atLvvg0NBQDBgwwOoRHByMyMhIDBgwAACQmZmJBQsWmH9mzpw5+Pzzz/Hmm28iOzsbS5YswdGjR/Hss8+6bFxKkpubi5HfnMLIb05h1LGjft+0z7LhVXRi3e0JgZ4OWNZXedIWDE1XO+iCNBh97js0lMu9KqN9/jhuNE589olL35OxgzzNMnbIEzckjbelrl3RcpVUCxxObpYtW4ZZs2bhkUcewfXr1905JrP8/HxcuXLF/Hz48OHYunUr3n33XQwaNAgfffQRPv30U3NAI2u1hdeQch2IuPo/1F37xm+rNpLoxHrMX5uHN3Z+jxdX591uoe7pXhUi1AFG81WgvdUOtZOWobo4C7fKr/t09WbcC/Px8aL5+MfsX+BGRbnHPpexg1zJMna8sCoP8vS4EcFVUo5zeM7NM888g/Hjx2PGjBno168f1qxZg/T0dJcOZt++fS0+B4BHHnkEjzzyiEs/V4mkOTanqr5AVGQQ9DeAA2NS/XIicVNSQIjpqjfvy+JJQaENCAoVUZKva3G1g1S9ORzRCUj26BBdZvjPn0CfUT/Gh799AW/8ZBQeXr4S/cb8xOWfw9hBnqBSA7FJ9YjpqkdpgdbjTUA7RtWjokzLVVIOcGpCcbdu3fDll1/i7bffxuTJk9G3b18EBFi/xfHjx106QGobaY6NXgW8N6QnAPjl8m9bSgs0WL8kDqUFOlOJ2aPJjYDqci0Wb/0eAFq88jowJhWZe31/WXinxK6YteVD/HfTemz65UxE90iBIJj+zUeMGAG1Ws24QT6hOE+Dv78ah5J83e2dwT0bO3QdRLyx83tWbBzg9GqpvLw8fPLJJ4iIiMCDDz7YLLkh+VlujNkw9XVWayyUFmiwclaSeVdfU3Dy5FLORq0FKNPE4nn46eWOyMNQzwzKTcovF+LMrp3oEB6O/veOg9FgwJXs/2HChAlckURer7RAgw1L426vmjLdGpIjdliu2qKWOZWZrFmzBi+88ALGjh2Ls2fPIioqyl3jonaQqjZ1QRrI32bKu2xYGmdObEzk3B/GP3yzbQv+/fulSBk+Ai98vg8hkZG4VV2Nvav+gt/+9rcICwuTe4hELbLsc9O014wnRSdyno2jHE5u7rvvPhw5cgRvv/02MjMz3Tkmaidpi4VNnGNjpWm/Cs+xvLoT0TGqwW8C1NonHkfByW8xcckyDJ3M+S7ke+zHDc9WbVRqI55cwnk2jnI4uTEYDDh16hQSEhLcOR5qp8aNMb/FkDD/XfZti9SvoqRAC3h0IqB1V2KV2n/6ZYgGA3694wt07BLX+slEXkiKG40TiKWkxtOTiRusmn1SyxxObnbv3u3OcZCLsGpjX2mBBg31gjmx6RhVh8prARCNnt1i7XqxqT+FP1RvnvrH+3IPgahdpLghrYyK7FKPhnqg8qoGnkxw/CluuILsu4KT6/j7xpit2bA0DuUlpl4/KpWI6vIAiB5eBm5qm15nFaBaasSlC9LAUF3NXcKJ3OxioB4j9pxqdrxp3AjQiAiQoWWYSm3E1aLGD2YDv5YxuVEQaWPMI+m+vbLGlaQAIN03l3raGI2CTE38GjXdabi0oHnEPDAmFZ0rDT6/HJzImwVE6LA3pS/0Nxpv+xgNtuNGSb7u9r50no0d0lYtjsQNYnKjGKzaWGsaAK4Waaz2h1GpRNm2X5DapjfdpbzpHlOAsvaZIvJWycnJELRa9AlJw97vvjDHjpWzkkyV1iYdxWO66iFH7CjJ12H9ktbjBjG5UQx/3xizKVuJg+X+MFEJdXhyaREiu3h6gp6UVNm+IrRVaj6SPhQzTl9EbeE1Tw6UyK8EJ0Ri8x0pyPrd/VaxA4BV3Jj2chGmL5YndpgmNjsWN/wdkxsFsGza588bY0rslZI7x9Vj+uIiRCfqUZKvw2fvRGHys6VQqY0eHJ1g7rPTtJJkb6+YIWFTcLLiIKs3RG6UnJwMMUCL4squVrHj2hUtXlydh3lrLgEAXn+qG9YvicPkZ0shqDwbO+5/qszhuOHvmNwoAKs21qSlm7YCgGVFp7RAhzUL42E0yPNr0LSS1NJeMbogDe67eNFTQyPySx1CQ5DU6ao5abGMHX9/NQ6lBdaxw9MrLbf/NbrFuKG/UY/Pu3f36Ji8FfdOUAAu/25u+uIic7t0KQDYbsbl3kmBKrXRZvL0+i+S8OSSIsxfm8flnURe5LX7P8OzXz6AysIoGWOHCJUKzTb1vV6shdEIm3HjeNX7yAxJwzGtFsnJyW4cm29gcuPj2LTPtujEepsBIDrRdM/aU8I7N6C8RNvsuDQPaP7aPCY2RF6ka0Q50v/0DgYHT5Exdggw2rnjtfGVOPx2XfO4MWLPKVwOGwxdcIj7h+cDeFvKx0lVmwNjUuUeildqGgCeXFJkntALAIIgWj13Nak/RtOVFaLIiYBE3kzu2GHSfEVWaUHzuHG86n10U92Jff0Hoecdvd08Jt/A5MaHcfm386IT6/Hi6rzbSzmB6MQ6vLg6z43LwptusseJgES+yF7sMC1IcNeycOvbUoJgO26M2HMKl0MaWLWxwNtSPkxq2rcpfSjn2jih6S0rowFNdgp3PUEQERFTD41WtJoH5Ay9QY+Gcj2Q7J4xElHLbMUO9y5IEBHZpR7qABGlBTpEJ9qOG/ob9fjv0L4IiZBjY2DvxOTGR1lXbV6Xezg+Sbr6uVqkgTrA6NYEJyqhDk8uKUJ0Yn2bJhAfGJOKzL0B7FRM5AVUalOj0DWL4t36OdGJjscNgROJrTC58VHS8u+6IA0a5B6Mj9uwNA6GBnetfDBdef12XZ75SFtuRQ0Jm4JLxoUYdbYBh4NDeF+dSGYblsbh2hV3td8Q0TGqod1xw59xzo0PYtM+12lc4uma5EYQTBtjSvflY7rW4anXLrvkvQ+MSUV8Das3RHJzddwAAEHVOEE5pmsdnl5R6LL39kes3PggVm1cx/4tKRGmwCX92RrTedI98bbefmqJaZ+peRDrUpCbm8sSNJFMVGogskvd7cqN5WIBW39vmRR/om/Pw+scV88qjQswufFBbNrnOhuWxjVrlAUA4Z3rEaDB7d1/W2IKYjFd6/Dzl4oQm9QYmNwRoI6kD8VTBy5iS0QnTiwmcoPLwabVR7WT2rYCNSKmDqJRQEWZI7esRLy4Og+dYkxxg0mN6zC58TFs2uc6truOWjbrcmR5pykxqq8T8MbT3QCYruieeu0yohM9vbEeEbVHQIQOn3fvjjsPHGzxPKPB1oWP4GTsMP3Muwvjcb3Y9F5tiR3B2xeiT8d7cMzhn/APnHPjY9i0z3Wk0nJjIDLd85b2nrJdVhat/lTdvk9+vbjxKu3aFQ02LI1z06iJyF2Sk5MRGNEJobF3IXj7QrvntS12wHwu4LrYob9Rj3UDuyM4IdKpn1M6Jjc+hE373M/QoIIothSYrF+LSqi7PV9HsDqnJF+H4jxuZErkawIidNib0hf6G85VXluPHSbqAFNy44rYcbzqffQJSeMycBuY3PgQqWnfkfShcg9FERpLy9ZdhKXdxJtWaaS/Ryfq8cf/nMMbO7/H/LVSx9KmZWgRf3+V1RsiX5OcnAxBq0WfkDQcr3rf5jntiR0rd5x3WewYsecUroar2ZnYBiY3PoJVG/eI6ao3BySVyrSMOyqh7vZrdQjvXIemV1alBTo01DUemb64CJFdml7lce8oIl8VnBCJzXek4Af/aj6TRVoF2Z7YIU0cbk/skPaT2tWnD/te2cDkxkdIy791QbzV0V6lBRr8YWYS5o7vhYZ6ARExpuASlWCazGdayq1HSb4OlVebr5ZSqY2Yd38vzB3fC8umJQMAFv49F9GJeggC944i8nW2qjeWceMPM5PwwKwyczITlVCHyc+Wmn9eFGEzdgDAvPtNcaO0QIPoxPo2xw7uJ9UyJjc+gE37XGvD0jjzxL/yEg0CNKK5TBydWI8NS+Nw9bIUmEQ0LS0bDY1XY5YTAE1t0huDnbN7RxGR99AFh+BySANG7DkFwDpulBVq8c/VUZi/Ns8cO/65Osr8+tXLWqgDjBBU1rFD0nTisLOx43jV+9DfqMfelL4I4H5SNnEpuA9g0z7Xabr822gUrJ83Wx7emMg0LvOE1etSCbnppnpE5Lt63tEb+2prMPWbAGws/wAl+YvMr0lxw3IDzaZxBUYBMV31FsebTxyWft7Z2DFizyloY+9CYEQnTiS2g5UbH8Dl365j6165ZQnY3utv7Pwev11nawJg8xIyExsiZZCqNyP3nWxT3JAqO47EDel9HMGqTeuY3Hi5xqZ9RzmR2EWmLy6yulfetARs63V7EwAju9Tz9hORQlkuC29L3ABMCYsr48bxqvcxqOM9XP7dCt6W8nLcasH1WisBt/S6NAFQWsng6SrNkLApOFkxD7fKu3N/KSI3S05OxvlyPUJj70K3o/Mwf+0y2ePGD/51DOtGZCKETftaxMqNF+Pyb/dqLcC09Lqc+8DogjQYfe47NJTr5RkAkR9p2tRPzrjBpn2OY3Ljxdi0j2w5MCYV8TUB0NfWyD0UIsVzpKmfp7Bpn+OY3HgpVm3IniFhU3DJeBSjzp7E+RM5cg+HSPFaaurnKWza5xwmN16KTfuoJazeEHmON1Rv2LTPOUxuvBCb9lFrhoRNQXbNYbmHQeQ3mjb18zQu/3YOkxsvxKoNEZF36XlHb+zrPwjdVHd6vHoTvH0hQtm0zylMbrwQm/YREXkfuao3rNo4j8mNl2HTPiIi79R0WbgnsGlf2zC58TKs2vgmqTkXESlXcnIyAiM6ITT2LgRvX+iS92wtdvzgX8ewbmB3BLNpn1PYodiLWC//fl3u4ZADSgtMu/uW5OsQ01WP6YuLEJ3ouas6IvIsqXpz54Esq7k3zlbaW4odlu+bGZKGY6zaOI2VGy/Cpn2+Z8PSOJQVagEAZYVabFgaJ/OIiMidpGXhgzreg4zj55Fx/Hyb5uC0FDtG7Dllfm8u/24bJjdegk37fI/RAJTk62A0CqbnRsH03MDbVERKFpwQiXUDu0Oj7wiNvqPTc3Aa6mzHjoY608oonRHQ6DuiS/1w7Os/iE372oC3pbyEtPy7LkiDBrkHQ62SSsomIgABKpWIiJh6rJyVxNtURAqWnJyMs4XXUN65HwAgNCAaddsXttqXzPJWlDrACKNRgGgUIKhEqFQi5t3fC7Hhb2LuY7vRoXMDygFWbdqIyY0XsGza1zCVc218gWVJWRKVUIeGeqFZqXn+2jw5hkhEbhScEIn9tyf51ly8gjsPZLX6M5Zxw2gQoFKLMBhNF0ZGg6mKU1qVgFf/9Simbj4DgP+Rbiv+u3kBVm18i3Q7qpEpKL3wtzzMu79X43kWt6nctYO4WFeH3NxcTjYk8jDL37mzhdcwqOM9WNNCcz+jQUBJ/iLzc1EUYGgQ8OiW3+ODqS81nieqUFkUiq6JyW6LG/6AyY0XkJZ/bxqTiiFyD4ZapVIDMV31KCvUwnj7qisqoQ4BWtvH3RWgdEEajD73HQ5HdAKS3fMZRNS64IRIrKvrjrG730NUZJDd8w50vozL12JhFNVQCQbERxZj2tkcHLY4LqiMiOpuYGLTTpxQLDM27fNN0xcXISqhDoDpdtT0xUUtHneH2knLUF2chVvl15Gbm+u2zyGilkkrqFLDxponGdt6LEnfiIROpQCAhE6lWJK+sdnx8LibyHynXM6vowis3MiMVRvfFJ1Yj/lr85rdcrJ33F1YvSHyDrrgEJzrBAD97J4T0hlYOfef5sou0Bnl6Gw+/u8u8Rj4I7YCcQUmNzJi0z7fZy+B8VRJ+cCYVGTuDYC+tsYzH0hENvW8ozf2t3Pvp1AXjYWY3MhKatq3KX0oqzbUJkPCpuCScSHGZatxMCGSE4uJZMTfP+/BOTcyYdM+IiIi92ByIxNp+bcuSCP3UIiIiBSFt6VkwKZ9RERE7sPKjQxYtSEiInIfJjcykJZ/HxiTKvdQiIiIFIfJjYexaR8REZF7yZrcrFq1CqmpqQgLC0NYWBjS0tKwc+dOu+dv3LgRgiBYPQIDAz044vZj1YaoffwxbhCRc2SdUJyQkIAVK1YgJSUFoiji73//Ox588EGcOHEC/fv3t/kzYWFhyMnJMT8XBMFTw203Nu0jaj9/ixtE5DxZk5v09HSr58uWLcOqVavw9ddf2w1SgiAgNjbWE8NzOTbtI2o/f4sbROQ8r5lzYzAYsG3bNtTW1iItLc3ueTU1NUhKSkJiYiIefPBBnD17tsX31ev1qKqqsnrIgU37iFzPXXED8J7YQUTOkz25OX36NEJCQqDT6fD0009j+/bt6NfP9sZjvXv3xvr16/HZZ59h8+bNMBqNGD58OAoLC+2+//LlyxEeHm5+JCYmuuurtIjLv4lcx91xA/Ce2EFEzhNEURTlHEBdXR3y8/NRWVmJjz76CGvXrsX+/fvtBipL9fX16Nu3LzIyMvDqq6/aPEev10Ov15ufV1VVITExEa+czEFgqGe2KcvNzUXNxSu488AmNu0jlwvevhChEcNwcOwPfWZvm1vV1fjdoN6orKxEWFiY0z/v7rgBeEfsIKJGzsQN2TsUa7Va9OzZEwAwdOhQZGVl4a233sLq1atb/VmNRoM77rgD58+ft3uOTqeDTte+nVrbS6ra1AVp0CDrSIiUwd1xA/CO2EFEbSP7bammjEaj1dVSSwwGA06fPo0uXbq4eVTtw+XfRO6lxLhBRG0na+VmwYIFGD9+PLp27Yrq6mps3boV+/btw65duwAAmZmZiI+Px/LlywEAr7zyCu6++2707NkTFRUVWLlyJfLy8jBz5kw5v0aLGpv2fYshYcvkHg6Rz/OHuEFE7SNrclNaWorMzExcuXIF4eHhSE1Nxa5du3DvvfcCAPLz86FSNRaXysvL8dRTT6G4uBgREREYOnQoDh065NB9drlIVZtNY1K5/JvIBfwhbhBR+8g+odjTqqqqEB4e7pFJgZxITJ7gjxOK5eDJ2EFEzTkTN7xuzo2SSE37jqQPlXsoREREfoPJjZuwaR8REZE8mNy4CZv2ERERyYPJjRvk5ubiVvl1VBdnoXYSV0iR++kNejSUO7YUmohI6ZjcuAGrNuRJB8akoro4C7fKryM3N1fu4RARyY7JjRuwaR950pCwKdAFaTD63Hes3hARgcmNyzU27TvKicTkMQfGpCK+JgD62hq5h0JEJDsmNy7Gqg3JYUjYFFwyHsW47GycP5Ej93CIiGTF5MaFuPyb5HRgTCria+UeBRGR/JjcuBCb9hEREcmPyY2LsGpDRETkHZjcuAiXfxMREXkHWXcFVwrLpn3cIJOIiEherNy4AKs2RERE3oPJjQtw+TcREZH3YHLTTmzaR0RE5F2Y3LQTqzZERETehclNO3D5NxERkfdhctMGubm5yM3NRW3hNcw4fZFN+4iIiLwIl4I76fyJHEwqrwAAlF88j5MVBzEkjMu/iYiIvAWTGyfpa2uQWGP6ZwuqBaqDNGiQeUxERETUiMmNE6Q5Nke/ew8AUHWrnk37iIiIvAyTGydIG2NuurdxZdQQGcdDREREzTG5cZD1yihWa4iIiLwVV0s5iFssEBER+QZWbhzAjTGJiIh8Bys3DmDVhoiIyHcwuXEAt1ggIiLyHUxuWsGNMYmIiHwLk5tWsGpDRETkW5jctIAbYxIREfkeJjctkJr2cWNMIiIi38Hkxg5WbYiIiHwTkxs7uPybiIjIN7GJnw1s2kdEROS7WLmxgVUbIiIi38XkxgYu/yYiIvJdTG6aYNM+IiIi38bkpglWbYiIiHwbkxsLXP5NRETk+5jcWGDTPiIiIt/H5OY2Vm2IiIiUgcnNbVz+TUREpAxs4gc27SMiIlISVm7Aqg0REZGSMLkBl38TEREpid8nN2zaR0REpCx+n9ywakNERKQsfp3ccPk3ERGR8vh1csOmfURERMrjt8lNfn4+qzZEREQK5LfJTUMFl38TEREpkd828btVUc6mfURERArkt5WbH13IYdWGiIhIgfw2uelSy+XfRERESuS3yU2e8QQnEhMRESmQ3yY3h0b2l3sIRERE5AZ+m9wMDn1I7iEQERGRG8ia3KxatQqpqakICwtDWFgY0tLSsHPnzhZ/5sMPP0SfPn0QGBiIgQMHYseOHR4aLRF5A8YNImqNrMlNQkICVqxYgWPHjuHo0aP48Y9/jAcffBBnz561ef6hQ4eQkZGBGTNm4MSJE5g4cSImTpyIM2fOeHjkRN5nxJ5TuBiol3sYbse4QUStEURRFOUehKVOnTph5cqVmDFjRrPXpkyZgtraWvz73/82H7v77rsxePBgvPPOOw69f1VVFcLDw/H77ccQGBzisnETyel41fvI3KvFlmH90f8e799O5FZ1NX43qDcqKysRFhbW7vdzd9wAGmPHKydzEBga2u4xE5FznIkbXjPnxmAwYNu2baitrUVaWprNcw4fPoyxY8daHRs3bhwOHz5s9331ej2qqqqsHkRKM2LPKVwOaYDOzxJ2d8UNgLGDyJfJntycPn0aISEh0Ol0ePrpp7F9+3b069fP5rnFxcWIiYmxOhYTE4Pi4mK77798+XKEh4ebH4mJiS4dP5E30N+ox96UvgiI0Mk9FI9wd9wAGDuIfJnsyU3v3r3x7bff4ptvvsEvf/lLTJs2Df/73/9c9v4LFixAZWWl+VFQUOCy9ybyBsHbF2JQx3sQGNEJycnJcg/HI9wdNwDGDiJfJvveUlqtFj179gQADB06FFlZWXjrrbewevXqZufGxsaipKTE6lhJSQliY2Ptvr9Op4NO5x9Xs+S/LgfDb6o2gPvjBsDYQeTLZK/cNGU0GqHX217xkZaWhj179lgd2717t9177UTkHxg3iMiSrJWbBQsWYPz48ejatSuqq6uxdetW7Nu3D7t27QIAZGZmIj4+HsuXLwcAzJkzByNHjsSbb76JCRMmYNu2bTh69CjeffddOb8GEXkQ4wYRtUbW5Ka0tBSZmZm4cuUKwsPDkZqail27duHee+8FAOTn50OlaiwuDR8+HFu3bsWiRYvw0ksvISUlBZ9++ikGDBgg11cgIg9j3CCi1nhdnxt3Y58bUprg7QsRGjEMB8f+0GcmFLu6z40nsM8Nkbx8ss8NERERkSswuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEPmw41XvQ3+jHrv69JF7KEREXiNA7gEQUduN2HMK2ti7oAsOQXJystzDISLyCqzcEPkw/Y167E3pi4AIndxDISLyGkxuiHxU8PaFGNTxHghaLas2REQWmNwQ+Sj9jXqsG9gdwQmRcg+FiMirMLkh8mGs2hARNcfkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSHyQcer3kefkDS5h0FE5JWY3BD5oBF7TuFySAN0wSFyD4WIyOswuSHyQfob9dib0hcBETq5h0JE5HUC5B4AETknePtCaGPvQmBEJyQnJ8s9HCIir8PKDZGPYdWGiKhlTG6IfIg0kVjQalm1ISKyg8kNkY/RBag5kZiIqAVMboiIiEhRmNwQERGRojC5ISIiIkXxu6XgoigCAG7dqJF5JETOq7txC7V6AXU3anGrulru4bTZrRrT75/0++gLzLGjhrGDSA7OxA1B9KXo4gKFhYVITEyUexhEBKCgoAAJCQlyD8MhjB1E3sGRuOF3yY3RaERRURFCQ0MhCILL3reqqgqJiYkoKChAWFiYy97Xm/njdwb4vV3xvUVRRHV1NeLi4qBS+cbdcXfEDv5/id9b6eSKG353W0qlUrn1SjEsLMxv/k8r8cfvDPB7t1d4eLgLRuM57owd/P+Sf/HH7+3puOEbl0xEREREDmJyQ0RERIrC5MZFdDodFi9eDJ3Of/b78cfvDPB7+9v3did//Tfl9/af7y3Xd/a7CcVERESkbKzcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyU07LF++HHfddRdCQ0MRHR2NiRMnIicnR+5hud2qVauQmppqbsqUlpaGnTt3yj0sj1qxYgUEQcDzzz8v91DcasmSJRAEwerRp08fuYfl8xg7GDsYO9yLyU077N+/H7Nnz8bXX3+N3bt3o76+Hj/5yU9QW1sr99DcKiEhAStWrMCxY8dw9OhR/PjHP8aDDz6Is2fPyj00j8jKysLq1auRmpoq91A8on///rhy5Yr5cfDgQbmH5PMYOxg7/IGssUMklyktLRUBiPv375d7KB4XEREhrl27Vu5huF11dbWYkpIi7t69Wxw5cqQ4Z84cuYfkVosXLxYHDRok9zAUj7GDsUNp5I4drNy4UGVlJQCgU6dOMo/EcwwGA7Zt24ba2lqkpaXJPRy3mz17NiZMmICxY8fKPRSPOXfuHOLi4tC9e3dMnToV+fn5cg9JcRg7GDuUSM7Y4XcbZ7qL0WjE888/jx/+8IcYMGCA3MNxu9OnTyMtLQ23bt1CSEgItm/fjn79+sk9LLfatm0bjh8/jqysLLmH4jHDhg3Dxo0b0bt3b1y5cgVLly7FiBEjcObMGYSGhso9PEVg7GDsUCK5YweTGxeZPXs2zpw54zfzEXr37o1vv/0WlZWV+OijjzBt2jTs379fsUGqoKAAc+bMwe7duxEYGCj3cDxm/Pjx5r+npqZi2LBhSEpKwgcffIAZM2bIODLlYOxg7FAiuWMHt19wgWeffRafffYZvvrqK3Tr1k3u4chi7Nix6NGjB1avXi33UNzi008/xaRJk6BWq83HDAYDBEGASqWCXq+3ek3J7rrrLowdOxbLly+Xeyg+j7GDsYOxwz1YuWkHURTx3HPPYfv27di3b5/fBifAVFrX6/VyD8NtxowZg9OnT1sdmz59Ovr06YP58+f7TXCqqanBhQsX8POf/1zuofg0xo5GjB2MHe7A5KYdZs+eja1bt+Kzzz5DaGgoiouLAQDh4eHo0KGDzKNznwULFmD8+PHo2rUrqqursXXrVuzbtw+7du2Se2huExoa2mw+RHBwMCIjIxU9T2Lu3LlIT09HUlISioqKsHjxYqjVamRkZMg9NJ/G2MHYwdjhXkxu2mHVqlUAgFGjRlkd37BhA5544gnPD8hDSktLkZmZiStXriA8PBypqanYtWsX7r33XrmHRi5WWFiIjIwMXLt2DVFRUbjnnnvw9ddfIyoqSu6h+TTGDsYOpZM7dnDODRERESkK+9wQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNyQTzAYDBg+fDgmT55sdbyyshKJiYlYuHChTCMjIm/FuOG/2KGYfMb333+PwYMHY82aNZg6dSoAIDMzEydPnkRWVha0Wq3MIyQib8O44Z+Y3JBP+fOf/4wlS5bg7NmzOHLkCB555BFkZWVh0KBBcg+NiLwU44b/YXJDPkUURfz4xz+GWq3G6dOn8dxzz2HRokVyD4uIvBjjhv9hckM+Jzs7G3379sXAgQNx/PhxBARwc3siahnjhn/hhGLyOevXr0dQUBAuXbqEwsJCuYdDRD6AccO/sHJDPuXQoUMYOXIk/vOf/+C1114DAHzxxRcQBEHmkRGRt2Lc8D+s3JDPuHHjBp544gn88pe/xOjRo7Fu3TocOXIE77zzjtxDIyIvxbjhn1i5IZ8xZ84c7NixAydPnkRQUBAAYPXq1Zg7dy5Onz6N5ORkeQdIRF6HccM/Mbkhn7B//36MGTMG+/btwz333GP12rhx49DQ0MAyMxFZYdzwX0xuiIiISFE454aIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKP8fsFNXsLbsNQsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lib.plot2in1(data, xx, yy, Z1, Z2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "grtL7WrBePEo" + }, + "source": [ + "Создали тестовый набор для теста энкодеров" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9e_7wvKlcfAV" + }, + "outputs": [], + "source": [ + "test_data = np.array([[3.5, 4.2], [3.2, 4], [4.1, 3], [3.5,3.5], [3, 4], [3.5, 4.5]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "S5qqvBX6eYYn", + "outputId": "17289839-1751-43f3-fab4-40fe513d2ba3" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.5, 4.2],\n", + " [3.2, 4. ],\n", + " [4.1, 3. ],\n", + " [3.5, 3.5],\n", + " [3. , 4. ],\n", + " [3.5, 4.5]])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AvLSqStAeabQ", + "outputId": "254664c6-adbb-4b3f-95ee-dffcb93d66d8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n" + ] + } + ], + "source": [ + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, test_data, IREth1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "id": "jQuw0fktemKe", + "outputId": "a2785c0e-3969-4d7d-8e27-69506997a75c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Аномалий не обнаружено\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAllJJREFUeJzs3Wd0VNXbhvF7UggEEooRgkjvHQQCCAKKELAiwh8pCiiKAgKiICjSFBGlCthLQMUuRUCagFQpIr1J7x0SQkmd98N+k0kIJYRJzpnk+q11lpk9ZybPxJyQ3PPsvR1Op9MpAAAAAAAAALAJL6sLAAAAAAAAAICkCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAA3Gj79u3q1q2bKlSooICAADkcjsRj//79VpcHAAAAeARCSwAAcNsaNWqUGMwNGTLkuuclDfCuPry9vZUnTx6VLl1arVu31hdffKHIyMg01XCrR6dOnW7/iyBp5syZql69uj7++GNt3779luoHsrqBAwcmuy5feumlW36O9Po54HQ6tXPnTn377bfq1auX7r33Xvn7+yc+tlixYml/4QAA4JoILQEAgC3Ex8crPDxcu3fv1i+//KLnn39exYsX17Rp06wuLVUiIyPVqVMnRUVFSZIKFiyo1q1bq1u3burevbu6d++uwMBAi6tMuyFDhqQqmPYEnTp1SnwtYWFhVpeTIfbv32/rgM3pdOqbb75JNvbjjz8mXk9WWrdunfLkyaNy5crp6aef1ocffqhVq1bp8uXLVpcGAECm5mN1AQAAIGtq0aKFChUqlHg7Pj5ep0+f1qpVq3T48GFJ0unTp9WqVSv98ssveuKJJ1L93LVq1VJISEiqz69Tp07qC7+OWbNm6dy5c5KkihUrau3atcqRI8dtPy+QFSxevFgHDx5MNnbu3DnNnDlTrVu3TtNzuuvnQGRkpCIiItJUAwAASDtCSwAAYIlevXqpUaNGKcbj4+M1efJkvfTSS4qKilJ8fLxeeuklhYaGyt/fP1XP/dBDD2V4N+D69esTP27bti2BJXALJk+enPhxjhw5ErsYJ0+enObQ0t0/B/LmzauaNWuqVq1aqlWrlnbu3Kn+/fu77fkBAEByTA8HAAC24uXlpc6dO+v9999PHDtx4oSmT59uXVGpkNBlKZmp4QBSJzIyUr/++mvi7TFjxiR+PG/ePJ04ccKKshJVrVpV//33n86ePav58+dr+PDhatGihQoUKGBpXQAAZHaElgAAwJa6du2q7NmzJ95eunSphdXcXExMTOLHXl78igWk1q+//qqLFy9KkooXL66uXbuqWrVqkqTY2Fh99913FlZnOixLlSplaQ0AAGRF/EYNAABsyc/PT+XLl0+8ffToUQurubakm9Mknd7auXPnFDsTX2/Dl8jISH344YcKDQ3V3XffrezZsytv3ryqVKmSevToodWrV6eqlqSfK8HGjRvVq1cvVapUSfny5ZPD4VCLFi1u6TUm7MY8dOjQxLGhQ4emaffladOmqWPHjipTpoxy586t7Nmzq3DhwmrRooUmT56s2NjYVNW0Y8cO9evXT3Xq1FFQUJCyZcum7NmzK3/+/KpRo4Y6d+6syZMnJ+t+laRixYql6v+VOzYbSmuN1xITE6NvvvlG//vf/1SiRAkFBAQoZ86cKl68uNq2batp06bJ6XRe87FhYWFyOBwqXrx44tiBAweuu4O2FZL+/+jQoYMcDoeefvrpa94PAACyDta0BAAAtpV0XcgrV65YWEn6mDVrlp5//nkdP3482XhUVJTOnz+vrVu3atKkSWrXrp0+//zzVK/pKZlA9Z133lFcXJy7y75lmzZtUseOHbVhw4YU9x0+fFiHDx/WjBkzNGLECP3222+qUKHCdZ/rRq/r1KlTOnXqlNavX6+wsDC1b99e3377rTtfSqq4s8YlS5aoS5cu2rNnT4r79u/fr/379+uHH35QnTp19MsvvyTb3MoTHDhwQEuWLEm83aFDB0lSu3bt1K9fP8XFxWnTpk3asGFDYvclAADIGggtAQCAbSXtrrTj+nEhISHq3r27JOnPP//Ujh07JEmNGzdWuXLlkp2btGtUkn788Ue1b98+Mdjy9vZW/fr1VapUKUVGRmrZsmWJr3/q1Knat2+fFi1alGzK/PV88MEHiZ2RJUuWVEhIiPz9/bV//375+vre0mt84oknVKlSJa1Zs0Zr166VdP1dma+1+/LSpUv16KOPJu6+7Ovrq1q1aql06dLy9fXV/v37tXz5cl25ckU7d+7Uvffeq1WrVqX4eknS+PHjk3V8BgUFqU6dOipYsKAcDofOnj2rHTt2aPv27dcMDDt27KgzZ87c9P+VpFvaddqdNSb1888/q3379olLD+TIkUN16tRRsWLF5OXlpV27dmnVqlWKjY3V33//rbp162rt2rXJrpXy5cure/fuunDhgqZMmSJJCggI0DPPPJOm1+du33zzTWKXaO3atVWmTBlJUnBwsJo0aaK5c+dKMt2WhJYAAGQxTgAAgNvUsGFDpySnJOfgwYOve17COZKcixcvvuFz7ty5M9n5EydOdEsN6aVjx46Jn//rr7++4bm7d+925sqVK/H8kJAQ53///ZfsnLi4OOfo0aOdXl5eiee9/PLL133OpF8rHx8fZ+7cuZ3Tpk1Lcd6VK1fS8vKcgwcPvuWv77Fjx5z58+dPfNwzzzzjPHr0aIrzjh8/7nziiScSz6tcubIzNjY22TkxMTHOoKCgxHNGjBjhjI6OvubnPXPmjPOrr75yjhw58pr338r/q1vhzhq3bNnizJEjh1OS0+FwOF977TXnuXPnUpy3Z88eZ/369RM/Z/Pmza/5fPv27Us8p2jRoml9iW5XunTp617j3333XeJ9+fPnd8bExNz0+TLy58DXX39ty68pAACZBZ2WAADAdmJjY9WrV6/E24GBgXrqqadS/fg5c+bo9OnTqT5/2LBhypcv3y3VeDuGDRumyMhISVKpUqU0f/585c6dO9k5Xl5e6tOnjxwOh/r06SNJmjRpkl555ZVk6xNeS3x8vGbOnKkGDRqkuM/Pz89Nr+Lm3nzzTZ08eVKS1LNnT40fP/6a5xUoUEA///yzmjZtqkWLFmnz5s365Zdf1KZNm8RzduzYkfj/tF69eurfv/91P2++fPnUuXNnN76S1HFnjT179tTly5clSaNHj9Yrr7xyzfNKlCihuXPnKiQkRNu2bdMff/yh1atXq3bt2rfxSjLGypUr9d9//0kyHbhJ/39LUosWLZQrVy5FRkbq5MmT+uOPP/Too4+m+vnt/nMAAADcGKElAACwhfj4eJ0+fVorVqzQe++9pzVr1kiSfHx89NVXX+mOO+5I9XOtXbs2cSpzarz22msZFlacP39eP/74Y+Lt999/P0VgmVSvXr305ZdfauvWrYqPj9dnn32mESNG3PBztGrV6pqBZUY6depU4lqNwcHBGjly5A3P9/b21vDhw1W3bl1J0nfffZcsxEqYXi5Jd955ZzpUfPvcVePGjRu1aNEiSVL16tXVu3fvG56fM2dOvfXWW2rbtq0k87XzhNAy6QY7zZs3V1BQULL7/f399eSTTyaeN3ny5FsKLe38cwAAANwcu4cDAABL3H///cl2Lfb29laBAgXUsmXLxMCybNmymj59up588kmLq3WflStXKioqSpJZ7/BmIYyXl5eeffbZxNuLFy++6ee4la7U9LJw4UJFR0dLklq2bJmqtThr166tnDlzSpKWL1+e7L7ChQsnfrx48WLt2rXLjdW6h7tqnDNnTuLHbdu2TdWu3g888EDix1d/7ezoypUr+umnnxJvJ90tPKmka2/+/vvvOnv2bLrXBgAA7IFOSwAAYEsFChTQlClT0rQhyuDBgzVkyBD3F+UG//77b+LHISEh8vG5+a9j9erVS/Z4p9N5wyCrRo0at1ekG6xatSrx402bNqlHjx639Phz587p4sWLiSFm4cKFVadOHf39998KDw9XjRo19PTTT+uJJ55QvXr1bmln9fTirhqTfu0WL16sAwcO3PQxzv/fzEaSDh06dOvFZ7AZM2bo/PnzkqQ8efJcN7xv1KiR7r77bh0+fFjR0dH64Ycf1K1bt1R9Djv/HAAAADdHaAkAACzRokULFSpUKPH2mTNntGfPnsTpnCdOnNB9992nX3/9VY888ohVZbrdqVOnEj8uWrRoqh5TrFixxI+jo6N14cIFBQYGXvd8O0yfTrrz+/Lly9PU/Xfu3LnE0FKSvvzySz3wwAM6ceKEIiMj9fHHH+vjjz+Wj4+PqlWrpgYNGig0NFSNGzeWt7e3W17HrXJHjUm/dn/88cct13Du3Lk0159Rkk4Nb9269XXXWvXy8lL79u0TlxeYPHlyqkNLAADg2ZgeDgAALNGrVy9NnDgx8fj++++1Zs0abdy4UVWrVpVkArq2bdtqz549FlfrPgkb8EhKFsjdyNXnXbhw4Ybn58iR49YLc7Pw8PDbfo7Y2NhktytUqKCNGzfq5ZdfTrYOaGxsrNatW6cxY8YoNDRURYsW1RdffHHbnz8t3FHj7X7t4uLibuvx6e348eOaP39+4u0OHTrc8PykU8fXrFmjHTt2pFttAADAPggtAQCArVSpUkXz589P7MKMjIxUly5dLK7KfXLlypX48cWLF1P1mKvPCwgIcGtN6SFp0DpmzBg5nc5bPpJ2mCYoUKCAPvzwQ504cUJLlizR22+/rebNmyfrPD1y5Iief/559ezZMyNeqttrTPq1++2339L0tbOzb7/9Nlmw2rBhw2Tr2159VKpUKdnjk3ZpAgCAzIvQEgAA2E7+/Pk1YcKExNtLlizR7NmzLazIfZJO3T548GCqHrN///7Ej7Nly+YRoWWBAgUSPz5+/Ljbn9/Pz08NGzbUwIEDNWfOHJ0+fVp//PGH6tevn3jOhAkTbmn3aLvUmN5fO6vdbuj47bffKj4+3k3VAAAAuyK0BAAAtpSweUmCgQMHWliN+1SvXj3x4zVr1qRqKu/KlSuTPT41u0m7261+ztq1ayd+vGLFCneXk4Kvr6+aNWumhQsXJuvM+/3331Oca8XXT0p9jenxtbPqNV9t/fr12rJlS+LtWrVqqXbt2qk6EjatOnz4sP7880+rXgIAAMgghJYAAMC2ku78u2HDBs2cOdO6Ytzk3nvvTdx05NSpUzftII2Pj9fXX3+dePuBBx5I1/quJ3v27Ikfx8TE3PT80NDQxJBp5cqV2rhxY7rVlpSfn5+aNm2aePvEiRMpzrnV1+JuN6sx6cZTv/322zVfw62y+jUnSNplWblyZa1Zs0Z///13qo5mzZpd83kAAEDmRGgJAABs68EHH9S9996bePudd96xsBr3yJMnj9q0aZN4u2/fvjfcWGfixInavHmzJLOT8gsvvJDuNV7LHXfckfjxkSNHbnp+oUKFEjdYcTqdeuaZZxQREZGqzxUfH59sl3XJ7Iid2inBhw4dSvw4f/78Ke6/1deSWu6qMSQkRI0aNZIkXb58WU8//bSio6NT9bzR0dHX3D08T5488vIyv/qfOnXKkuAyJiZGU6dOTbx9sw14rpb0/GnTpt10QyoAAODZCC0BAICtDRo0KPHjtWvXau7cuRZW4x6DBg1K3JBn165dCg0N1d69e5OdEx8fr/Hjx6tPnz6JY927d7/m5jQZIel05vnz56dqh+vhw4erYMGCkqRNmzYpJCQk2a7RVzt8+LDGjh2rsmXL6scff0x234wZM1SmTBmNGjUq2RqfSUVFRWnixIn65ZdfEseaN29+w9cyY8aMVAeCN+POGidMmJD4PbJgwQI1aNBAq1evvu7n3rVrl95++20VK1bsmlPK/fz8VLp0aUkmPJw+fXqqXlOnTp0SN8S53e+9hHU9JTNdvW3btrf0+MceeyxxPddLly7p559/vq16AACAvflYXQAAAMCNhIaGqnbt2omBzdtvv51smui1JA1HUsPf31/vv//+bdV5K0qWLKkvvvhC7du3V1xcnFatWqWyZcvqvvvuU8mSJRUZGally5Yl6wKsU6dOhtZ4tZCQEBUuXFiHDh3SsWPHVK5cOTVt2lRBQUGJ6yXWqlUrWRfpXXfdpRkzZuihhx7S6dOntXPnToWGhqpQoUIKCQnRnXfeqZiYGJ0+fVpbtmzRvn37bljDnj171LdvX/Xt21dFihRRlSpVErsUjx8/rr///ltnz55NPL99+/bJOnUTNG/eXDly5NDly5e1YcMGlS9fXo0aNVKePHkSX0vTpk2TTeFOLXfVWKlSJX3//fdq06aNLl26pNWrV6tOnToqWbKk7rnnHuXLl09XrlzRyZMntWnTplR1jD755JN69913Ez9vWFiYSpUqJV9f38RzRo0adcuvObWSTulu0KCBChcufEuPz5Ejh5544glNmTIl8fmeffbZ657vzp8DXbp00bp165KNJf3/ePToUVWrVi3F47744gvVrFkz1TUAAIAknAAAALepYcOGTklOSc7Bgwdf97yEcyQ5Fy9enOrnnz17drLHLly48IY13OqRO3fuW3/RV+nYsWPi83399depeszvv//uLFCgwE3ra9u2rfPixYs3fK6k56eX33//3ZktW7br1tmxY8drPm7//v3Oxo0bp/r/R4ECBZxz585N9hw///yz0+FwpOrxXl5ezm7dujmjo6Ov+1o+/vjjGz7fjb6Pr8fdNTqdTueGDRucNWrUSPXXrlixYs5///33ms91/vx5Z7ly5W74+Ksl/b4uWrToLX9NEpw+fTrZ987nn3+epueZP39+4nM4HA7n3r17k92fXj8H0vq8t/JzDgAAJEenJQAAsL2HHnpINWvWTOx0GjZsmBo3bmxxVbfvkUce0e7du/XVV19p1qxZ2rp1q06fPq0cOXLorrvu0v33369nnnkm2W7SVnrkkUe0bt06TZo0ScuXL9fBgwcVGRkpp9N5w8cVLVpUCxcu1KpVq/Tzzz9r6dKlOnTokM6dOycfHx/dcccdKl26tGrWrKmmTZuqUaNGiZv4JGjVqpWOHTum+fPna8WKFdq4caP27t2r8+fPS5Jy586tMmXKqH79+nrmmWdUoUKFG9b04osvqnLlyvr000+1evVqHTlyRJcuXbrpa7kRd9coSVWrVtW6des0f/58TZ8+XStWrNDRo0d1/vx5+fn56c4771TZsmVVu3ZthYaGqm7dutfdKTx37txau3atPvroI82ePVvbt2/X+fPnM2R9y++//z5xGr6fn59atWqVpud54IEHVLBgQR07dkxOp1OTJ09OtmEXAADIPBzO2/nNDAAAAAAAAADcjI14AAAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBUfqwvwFPHx8Tp69KgCAgLkcDisLgcAAAAAAADwKE6nUxcuXNBdd90lL68b91ISWqbS0aNHVbhwYavLAAAAAAAAADzaoUOHdPfdd9/wHELLVAoICJBkvqiBgYEWV5M+YmJiNH/+fDVt2lS+vr5WlwNkOVyDgPW4DgFrcQ0C1uIaBKyX2a/DiIgIFS5cODFnuxFCy1RKmBIeGBiYqUNLf39/BQYGZsoLA7A7rkHAelyHgLW4BgFrcQ0C1ssq12Fqll5kIx4AAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK34WF1AVuB0OhUTE6P4+HirS7mhmJgY+fj46MqVK4qLi7O6nEzN29tbvr6+VpcBAAAAAABgS4SW6Sg6OlonT57UpUuXPCIEdDqdCg4O1qFDh+RwOKwuJ9Pz8/NTUFCQAgMDrS4FAAAAAADAVggt08mlS5d06NAheXt7K2/evMqRI4e8vb1tHQbGx8crMjJSuXLlkpcXKwekl4TO2/DwcB05ckSSCC4BAAAAAACSILRMJ6dPn5avr6+KFi0qb29vq8tJlfj4eEVHRyt79uyEluksR44cCggI0OHDh3X69GlCSwAAAAAAgCRIptJBbGysLl68qHz58nlMYImM53A4lDt3bkVFRSkmJsbqcgAAAAAAAGyD0DIdxMbGSjJrFgI3krAZjyeseQoAAAAAAJBRCC3TkZ3Xr4Q98D0CAAAAAACQEqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BKWKlasmBwOh8LCwhLHwsLC5HA4kh1eXl4KDAxU9erVNWDAAJ06deq6z3n1Y693LFmyJP1fIAAAAAAAAG6Zj9UFANeTM2dOtWrVSpLZXfvAgQNatWqVNmzYoK+//lrLli1T6dKlr/v40NBQBQcHX/f+G90HAAAAAAAA6xBawraCgoKSdWBK0tatW9WwYUOdOHFCvXv31uzZs6/7+P79+6tRo0bpWyQAAAAAAADcjunh8CgVK1ZUnz59JEkLFixQVFSUxRUBAAAAAADA3Qgt4XGqVKkiSYqJidHZs2ctrgYAAAAAAADuRmgJjxMRESFJ8vb2VlBQkMXVAAAAAAAAwN0ILeFxEtaxbNasmXx9fS2uBgAAAAAAAO7GRjxWqVlTOn7c6iqScUgKdDrlcDhufGJwsLRuXYbUlCBh9/DPPvtMU6dOVdGiRfXhhx/e8DH333//de/LnTu3zp8/7+YqAQAAAAAA4A6EllY5flw6csTqKpJx/P9hFwcOHLhmgBoSEqL58+crd+7cN3x8aGiogoODr3mfv7+/W2oEAAAAAACA+xFaWuU6YZqVnJKc/99pecPwMoNqz5kzp1q1aiVJioqK0vbt27Vx40atWbNGXbt21Q8//HDDx/fv31+NGjXKgEoBAAAAAADgToSWVsng6dWp4YyPV0REhAIDA+Xwsn6506CgIIWFhSUb++2339SmTRv9+OOPatCggbp162ZNcQAAAAAAAEg31idTwC1o2bKl+vfvL0kaNGiQwsPDLa4IAAAAAAAA7kZoCY8zYMAAFSxYUGfOnNGYMWOsLgcAAAAAAABuRmgJj+Pv76+33npLkjRu3DidO3fO4ooAAAAAAADgTqxpCY/UpUsXjR49Wnv27NGoUaM0fPjwFOe89957KdbETKpdu3Zq2rRpOlYJAAAAAACAtCC0hEfy9fXVO++8o7Zt22rChAnq06eP7rjjjmTnzJs374bPUa1aNUJLAAAAAAAAGyK0hKX279+fYqxTp07q1KnTTR/71FNP6amnnkox7nQ63VAZAAAAAAAArMKalgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElLFWsWDE5HA6FhYUljoWFhcnhcCQ7vLy8FBgYqOrVq2vAgAE6derUdZ/z6sde71iyZMkt1ZpQV6dOndL2YgEAAAAAAJAqPlYXAFxPzpw51apVK0lSXFycDhw4oFWrVmnDhg36+uuvtWzZMpUuXfq6jw8NDVVwcPB177/6PofDIUlyOp1uqB4AAAAAAABpRWgJ2woKCkrWgSlJW7duVcOGDXXixAn17t1bs2fPvu7j+/fvr0aNGqVvkQAAAAAAAHA7pofDo1SsWFF9+vSRJC1YsEBRUVEWVwQAAAAAAAB3I7SEx6lSpYokKSYmRmfPnr3t5xsyZEji1HAp5ZqY+/fvT/GYixcvasCAASpVqpT8/PwUHBysjh076siRI7ddDwAAAAAAQFbH9HB4nIiICEmSt7e3goKCbvv5qlWrpo4dO2ry5MmSpI4dOya7P1euXMluh4eH695779XBgwd13333qVKlSlq1apWmTJmiv/76Sxs3blTu3Llvuy4AAAAAAICsitASHidhHctmzZrJ19f3tp+vRYsWatGiRWJoefU6mlebPn26QkNDtWzZMgUGBkqSzp07pwceeEAbNmzQRx99pAEDBtx2XQAAAAAAAFkVoaVFatasqePHj1tdRgpOpzPZVOlrCQ4O1rp16zKoIiNh9/DPPvtMU6dOVdGiRfXhhx/e8DH333//de/LnTu3zp8/n6ZacubMqa+//joxsJSkvHnzqn///nrqqae0cOFCQksAAAAAAIDbQGhpkePHj7P+4U0cOHDgmgFqSEiI5s+ff9Mp2KGhoQoODr7mff7+/mmuq2bNmipYsGCK8fLly0sS/18BAAAAAABuE6GlRa4XplkttZ2WGSFnzpxq1aqVJCkqKkrbt2/Xxo0btWbNGnXt2lU//PDDDR/fv39/NWrUyO11FSlS5JrjCZ2XV65ccfvnBAAAAAAAyEoILS2S0dOrUyM+Pl4REREKDAyUl5f1G8sHBQWlWF/yt99+U5s2bfTjjz+qQYMG6tatW4bXZYevDQAAAAAAQGZG+gKP0rJlS/Xv31+SNGjQIIWHh1tcEQAAAAAAANyN0BIeZ8CAASpYsKDOnDmjMWPGuO15E3Yij42NddtzAgAAAAAA4NYRWsLj+Pv766233pIkjRs3TufOnXPL8959992SpK1bt7rl+QAAAAAAAJA2rGkJj9SlSxeNHj1ae/bs0ahRozR8+PAU57z33nsp1sRMql27dmratGni7SeffFKjRo3Sgw8+qAceeEABAQGSpJEjR+qOO+5w+2sAAAAAAADAtRFawiP5+vrqnXfeUdu2bTVhwgT16dMnRbA4b968Gz5HtWrVkoWWb7/9try8vPTbb79p+vTpio6OliQNHDiQ0BIAAAAAACADEVrCUvv3708x1qlTJ3Xq1Ommj33qqaf01FNPpRh3Op1pqiV79uwaOXKkRo4cec37b1ZXsWLF0vy5AQAAAAAA4MKalgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0TEdOp9PqEmBzfI8AAAAAAACkRGiZDry8zJc1Li7O4kpgdwnfIwnfMwAAAAAAACC0TBe+vr7y9fVVZGSk1aXA5i5fvixvb2/5+vpaXQoAAAAAAIBteGRoOWLECNWqVUsBAQHKnz+/WrRooZ07d970cT///LPKlSun7Nmzq3LlypozZ0661OdwOBQQEKDw8HBdvnw5XT4HPF9cXJzCw8Pl7+8vh8NhdTkAAAAAAAC24WN1AWnx119/qXv37qpVq5ZiY2P1xhtvqGnTptq2bZty5sx5zcesXLlSbdu21YgRI/TII49o6tSpatGihdavX69KlSq5vcagoCBdvnxZBw8eVGBgoAICAuTt7W3rcCo+Pl7R0dG6cuUK05XTkdPpVFRUlM6ePav4+Hjlz5/f6pIAAAAAAABsxSNDy7lz5ya7HRYWpvz58+uff/5RgwYNrvmY8ePHq1mzZurbt68k6e2339aCBQs0ceJEffLJJ26v0dvbW4ULF9bp06d14cIFnT9/3u2fw92cTqcuX76sHDly2DpczSxy5syp4OBgZcuWzepSAAAAAAAAbMUjQ8urhYeHS5Ly5ct33XNWrVqlPn36JBsLDQ3V9OnTr3l+VFSUoqKiEm9HRERIkmJiYhQTE5Pq2vLly6e8efMqNjZW8fHxtt4tOjY2VitXrtS9994rH59M8a1hSw6HQ97e3olf41v5fkLmlvC9wPcEYB2uQ8BaXIOAtbgGAetl9uvwVl6XxydT8fHx6t27t+rVq3fDad7Hjx9XgQIFko0VKFBAx48fv+b5I0aM0NChQ1OMz58/X/7+/rdXtM0tXbrU6hKALG3BggVWlwBkeVyHgLW4BgFrcQ0C1sus1+GlS5dSfa7Hh5bdu3fXli1btHz5crc+74ABA5J1ZkZERKhw4cJq2rSpAgMD3fq57CImJkYLFixQkyZN2M0asADXIGA9rkPAWlyDgLW4BgHrZfbrMGEmc2p4dGjZo0cPzZo1S0uXLtXdd999w3ODg4N14sSJZGMnTpxQcHDwNc/38/OTn59finFfX99M+U2TVFZ4jYCdcQ0C1uM6BKzFNQhYi2sQsF5mvQ5v5TV55BbRTqdTPXr00LRp07Ro0SIVL178po+pW7eu/vzzz2RjCxYsUN26ddOrTAAAAAAAAABp4JGdlt27d9fUqVM1Y8YMBQQEJK5LmTt3buXIkUOS9Mwzz6hQoUIaMWKEJKlXr15q2LChRo8erYcfflg//PCD1q1bp88++8yy1wEAAAAAAAAgJY/stPz4448VHh6uRo0aqWDBgonHjz/+mHjOwYMHdezYscTb9957r6ZOnarPPvtMVatW1S+//KLp06ffcPMeAAAAAAAAABnPIzstnU7nTc9ZsmRJirHWrVurdevW6VARAAAAAAAAAHfxyE5LAAAAAAAAAJkXoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCs+VhcA+6hTp44OHDig7NmzW10KkGVduXKFaxCwGNchYC2uQcBaXIOA9a5cuaKiRYvqn3/+sboUSxFaItGJEyd05swZq8sAAAAAAADI0njzgNASSRQoUIB31QCLcQ0C1uM6BKzFNQhYi2sQsN6VK1dUoEABq8uwHKElEv3999+aM2eOHnroIfn6+lpdDpDlxMTEcA0CFuM6BKzFNQhYi2sQsF7S6zCrYyMeAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAW/HI0HLp0qV69NFHddddd8nhcGj69Ok3PH/JkiVyOBwpjuPHj2dMwQAAAAAAAABSzSNDy4sXL6pq1aqaNGnSLT1u586dOnbsWOKRP3/+dKoQAAAAAAAAQFr5WF1AWjRv3lzNmze/5cflz59fefLkcX9BAAAAAAAAANzGI0PLtKpWrZqioqJUqVIlDRkyRPXq1bvuuVFRUYqKikq8HRERIUmKiYlRTExMutdqhYTXlVlfH2B3XIOA9bgOAWtxDQLW4hoErJfZr8NbeV0Op9PpTMda0p3D4dC0adPUokWL656zc+dOLVmyRDVr1lRUVJS++OILffPNN1q9erXuueeeaz5myJAhGjp0aIrxqVOnyt/f313lAwAAAAAAAJIk3wsXFHDwoM5WrGh1Keni0qVLateuncLDwxUYGHjDc7NEaHktDRs2VJEiRfTNN99c8/5rdVoWLlxYp0+fvukX1VPFxMRowYIFatKkiXx9fa0uB8hyuAYB63EdAtbiGgSsxTUIWCg+Xo7Jk+X9xhuKiY5W7JYt8i1Y0Oqq3C4iIkJBQUGpCi2z1PTwpEJCQrR8+fLr3u/n5yc/P78U476+vpn+h3dWeI2AnXENAtbjOgSsxTUIWItrEMhg//4rdesm/f23JCmbJO8RI+T98cfW1pUObuVni0fuHu4OGzZsUMFMmFgDAAAAAADAA5w/L738slSzZmJgKUmH77tP8a+/bl1dNuGRnZaRkZHavXt34u19+/Zpw4YNypcvn4oUKaIBAwboyJEjmjJliiRp3LhxKl68uCpWrKgrV67oiy++0KJFizR//nyrXgIAAAAAAACyIqdTmjJF6tdPOnnSNV6unGLHjdM/V67ooUKFrKvPJjwytFy3bp3uv//+xNt9+vSRJHXs2FFhYWE6duyYDh48mHh/dHS0Xn31VR05ckT+/v6qUqWKFi5cmOw5AAAAAAAAgHS1aZPUvbuUdMlCf39p0CDplVfkdDikOXOsq89GPDK0bNSokW60f1BYWFiy2/369VO/fv3SuSoAAAAAAADgGiIipMGDpQkTpLg413irVtKYMVLhwuZ2TIw19dmQR4aWAAAAAAAAgO05ndL330uvviodP+4aL13aBJihodbVZnOElgAAAAAAAIC7bd1qpoL/9ZdrLEcO6c03pddek/z8rKvNAxBaAgAAAAAAAO5y4YI0bJg0bpwUG+sab9FCGjtWKlbMosI8C6ElAAAAAAAAcLucTunnn6U+faQjR1zjJUpIH34oPfywdbV5IEJLAAAAAAAA4Hbs2CG9/LK0cKFrzM9PGjBAev11KXt262rzUISWAAAAAAAAQFpcvCi98440enTynb8ffth0V5YoYV1tHo7QEgAAAAAAALgVTqc0bZrUu7d06JBrvGhRE1Y++qjkcFhWXmZAaAkAAAAAAACk1n//mang8+a5xrJlk/r1M9PB/f2tqy0TIbQEAAAAAAAAbubSJWnECOn996XoaNd4aKg0YYJUurR1tWVChJYAAAAAAADAjcycKfXqJe3f7xq7+25p3DipZUumgqcDL6sLAAAAAAAAAGxp716zPuXjj7sCS19fqX9/s2P4k08SWKYTOi0BAAAAAACApK5ckUaONNPBo6Jc4w88IE2aJJUrZ11tWQShJQAAAAAAAJBgzhyz0c7eva6xu+6Sxo6VWremszKDMD0cAAAAAAAA2L9feuIJ6eGHXYGlj4/02mtmKvj//kdgmYHotAQAAAAAAEDWFRUljRolDR8uXb7sGm/Y0EwFr1jRutqyMEJLAAAAAAAAZE3z50s9ekj//ecaCw42IWa7dnRWWojp4QAAAAAAAMhaDh0y61OGhroCS29vqXdvMxW8fXsCS4vRaQkAAAAAAICsITrabKgzbJh06ZJrvF49MxW8alXrakMyhJYAAAAAAADI/BYtkrp3N52UCe68U/rgA+mZZ+istBmmhwMAAAAAACDzOnJEattWatzYFVh6eZkAc9cuqWNHAksbotMSAAAAAAAAmU9MjDRhgjR4sBQZ6RqvU8dMBb/nHutqw00RWgIAAAAAACBzWbrUdFJu2eIau+MOaeRIqXNn02kJW+P/EAAAAAAAADKH48elp5+WGjZ0BZYOh9S1q5kK/txzBJYegk5LAAAAAAAAeLbYWOmjj6S33pIiIlzjNWua8Vq1rKsNaUJoCQAAAAAAAM+1YoXUrZu0aZNrLG9eacQIqUsXydvbutqQZvTDAgAAAAAAwPOcPGnWp6xfP3lg+dxzZip4164Elh6MTksAAAAAAAB4jrg46dNPpTfflM6fd41Xr26mgtepY1lpcB9CSwAAAAAAAHiG1avNVPD1611juXNLw4dLL75IZ2UmwvRwAAAAAAAA2Nvp09Lzz5suyqSBZceO0s6dUvfuBJaZDJ2WAAAAAAAAsKf4eOmLL6QBA6SzZ13jVapIkyaZ9SyRKRFaAgAAAAAAwH7WrTNTwdeudY0FBEhvv206K32ItTIzpocDAAAAAADAPs6elV56SQoJSR5Ytm9vpoL36kVgmQXwfxgAAAAAAADWi4+XwsKk1183a1gmqFDBTAVv1MiqymABQksAAAAAAABYa8MGMxV81SrXWK5c0pAhUs+ekq+vVZXBIoSWAAAAAAAAsMb589KgQaaTMj7eNd6mjTR6tFSokGWlwVqElgAAAAAAAMhYTqf0zTdS377SyZOu8bJlpYkTpQcftK422AKhJQAAAAAAADLO5s1mKvjy5a4xf3/TcfnKK1K2bNbVBtsgtAQAAAAAAED6i4iQBg+WJkyQ4uJc408+KY0ZIxUpYl1tsB1CSwAAAAAAAKQfp1P6/nvp1Vel48dd46VKmQCzWTPraoNtEVoCAAAAAAAgfWzbJnXvLi1Z4hrLnl16802znqWfn2Wlwd4ILQEAAAAAAOBekZHSsGHS2LFSbKxr/LHHpPHjpWLFLCsNnoHQEgAAAAAAAO7hdEq//GI21DlyxDVevLj04YfSI49YVxs8CqElAAAAAAAAbt/OnVKPHtLCha4xPz+pf3/p9delHDmsqw0eh9ASAAAAAAAAaXfxojR8uDRqlBQT4xp/6CHTXVmypHW1wWMRWgIAAAAAAODWOZ3S9OlS797SwYOu8aJFzbqVjz0mORxWVQcP52V1AQAAAAAAAPAw//1nOilbtnQFltmymV3Bt22THn+cwBK3hU5LAAAAAAAApM7ly9KIEdLIkVJ0tGu8aVNpwgSpTBnrakOmQmgJAAAAAACAm/v9d6lnT2n/ftfY3XdL48aZjks6K+FGTA8HAAAAAADA9e3bJz36qFmjMiGw9PExO4Jv3y49+SSBJdyOTksAAAAAAACkdOWK9P77Zjr4lSuu8QcekCZOlMqXt642ZHqElgAAAAAAAEjujz+kl1+W9uxxjd11lzRmjPS//9FZiXTH9HAAAAAAAAAYBw5ITzxhdgZPCCy9vaVXX5V27JDatCGwRIag0xIAAAAAACCri4qSRo+W3nnH7BCeoEEDadIkqVIl62pDlkRoCQAAAAAAkJUtWCD16CHt2uUaK1BAGjVKat+ezkpYgunhAAAAAAAAWdHhw2Z9yqZNXYGll5fUq5e0c6fUoQOBJSxDpyUAAAAAAEBWEh0tjR8vDR0qXbzoGr/3Xumjj6SqVa2rDfh/hJYAAAAAAABZxeLFUvfu0vbtrrE775Tef1965hnTaQnYAN+JAAAAAAAAmd3Ro1K7dtIDD7gCSy8vE2Du3Cl16kRgCVuh0xIAAAAAACCziomRJkyQBg+WIiNd47Vrm6ng99xjXW3ADRBaAgAAAAAAZEZLl5pOyi1bXGN33CG995707LN0VsLW+O4EAAAAAADITI4fN+tTNmzoCiwdDumFF8xU8C5dCCxhe3RaAgAAAAAAZAaxsdLHH0sDB0oREa7xGjXMVPCQEOtqA24RoSUAAAAAAICnW7nSTAXfsME1ljev9O670vPPS97elpUGpAW9wAAAAAAAAJ7q5EmzPmW9eskDy2efNVPBX3yRwBIeiU5LAAAAAAAATxMXJ332mfTGG9L5867xatXMVPC6da2qDHALQksAAAAAAABPsmaN1K2b9M8/rrHcuaV33jGdlT7EPfB8TA8HAAAAAADwBGfOmB3A69RJHlg+84yZCt6jB4ElMg2+kwEAAAAAAOwsPl768kupf3/p7FnXeOXK0qRJ0n33WVcbkE7SFFpGRERIkgIDA2/rk0dGRmrRokWSpMcee+y2ngsAAAAAACDT+ecfMxV8zRrXWECANGwYnZXI1NL0nZ0nTx55eXlp06ZNqlChQor7jx49qoEDB8rhcOjLL7+87vMcOHBALVq0kJeXl2JjY9NSCgAAAAAAQOZz7pz05pvSJ59ITqdrvF076YMPpLvusq42IAOkOY53Jr1grnLu3DmFhYXdNLRMzXMBAAAAAABkGfHx0uTJUr9+0unTrvEKFcxU8EaNLCsNyEhsxAMAAAAAAGAHGzaY9SmffdYVWObMaTorN2wgsESWwsIHAAAAAAAAVgoPl956y3RSxse7xv/3P2n0aOnuu62rDbAIoSUAAAAAAIAVnE7p22+lvn2lEydc42XKSBMnSk2aWFcbYDFCSwAAAAAAgIy2ebPUvbu0bJlrLEcO03HZp4/k52ddbYANEFoCAAAAAABklIgIaehQafx4KS7ONd6ypTR2rFSkiHW1ATZCaAkAAAAAAJDenE7phx+kV1+Vjh1zjZcsaaaCN2tmXW2ADRFaAgAAAAAApKdt26QePaTFi11j2bNLb7xh1rPMnt262gCbuq3Q0uFwuKsOAAAAAACAzCUyUnr7bWnMGCk21jX+2GPSuHFS8eKWlQbY3W2FlpUqVbrufQmBpre39+18CgAAAAAAAM/idEq//CK98op05IhrvHhx6cMPpUcesa42wEPcVmjpdDrdVQcAAAAAAIDn27lTevllacEC15ifn/T661L//maHcAA3labQskGDBkwNBwAAAAAASHDxovTuu9IHH0gxMa7x5s1Nd2WpUtbVBnigNIWWS5YscXMZAAAAAAAAHsjplGbMkHr1kg4edI0XKSKNHy89/rhE4xdwy7ysLgAAAAAAAMAj7d4tPfyw9MQTrsDS19fsCr5tm9SiBYElkEa3taYlAAAAAABAlnP5svTee9LIkVJUlGu8SRNp4kSpTBnragMyCcs7LS9duqTRo0dbXQYAAAAAAMDNzZolVawoDRvmCiwLFZJ+/lmaN4/AEnATy0LLCxcuaPjw4SpWrJj69etnVRkAAAAAAAA3t2+f9Nhj0qOPmo8lycdH6tdP2rFDatWKqeCAG2X49PCzZ89q7NixmjRpksLDw+V0OtmJ3A7GjpX3r7+qTLFiUsGCUs2akpfljbgAAAAAAFjryhWzI/i775qPE9x/vzRpklS+vHW1AZnYbaVSBw4cUM+ePVWhQgUFBAQoX758uueeezRixAiFh4cnOzcyMlKDBw9WsWLF9O677+r8+fNyOp0KCgrSO++8c1svAm7w++/yWrFC5b/7Tr61a0t33SV17Cj98IN09qzV1QEAAAAAkPHmzpUqV5YGDXIFlgULSt9/L/35J4ElkI7S3Gm5YMECPfnkk7p48aIkyel0SpI2btyojRs3asqUKVq8eLGCg4O1YsUKtW/fXocOHUo8r1ChQnrttdf0wgsvKEeOHG54KUizuDjp9OnkYydOSFOmmMPLSwoJkZo3N0eNGnRhAgAAAAAyr4MHpVdekX77zTXm7S316iUNHiwFBlpXG5BFpCl5OnXqlNq2bavIyEg5nU45nU7lzJlTuXPnTry9a9cude/eXUuXLtWDDz6YGFgWL15cn376qfbu3atevXoRWNqBt7e0aZNidu7Uxq5dFf/ww1LOnK774+Olv/82P5hDQqQCBaQOHaTvvpNOnbKubgAAAAAA3Ck6WhoxQipXLnlged990r//SqNHE1gCGSRNoeXnn3+us2fPyuFwqFWrVtq9e7cuXLigc+fO6ejRo+rRo4ckacaMGerQoYOioqKUK1cuTZgwQTt37tTzzz8vX19ft74QuEHx4trfvLnipk2TzpyRFi6UXn3V7IqW1OnTJrDs0MEEmCEhJtBctcp0bQIAAAAA4GkWLpSqVJHeeEO6fNmMFSggffON9NdfZpo4gAyTpunh8+fPlyTVqVNHP/30U7L7goOD9eGHH+rChQuaPHmyDh8+rDx58mjZsmWqeHX4Bfvy85MaNzbHqFGmNX7uXHMsXChduGDOczqltWvNMWyYlC+f1LSp1KyZOQoUsPZ1AAAAAABwI4cPS336SD//7Brz8pJ69JCGDpXy5LGsNCArS1On5Y4dO+RwONStW7frntOzZ09JksPhUM+ePQksPV2RItILL5j2+NOnpcWLpddfN+9CJXX2rNm8p1MnKTjYrH/55pvS8uVSbKwlpQMAAAAAkEJMjNkVvFy55IFl3brSP/9I48cTWAIWSlNoee7cOUlSqVKlrntO6dKlEz++77770vJpYFfZskmNGknvvSdt3GjelfryS6lVKyl37uTnrl8vvfuuWf8jKEhq3Vr66ivp6FFLSgcAAAAAQIsXS9WqSf36Sf+/wbCCgszfq8uXm/sAWCpNoWVMTIwkKSAg4Lrn5MqVK/Hj4ODgtHwaeIpChaRnnzXvTJ06JS1datYAqV49+Xnh4dIvv0jPPWceU7Wq1L+/WRvk/7+nAAAAAABIN8eOSe3aSQ88IG3bZsYcDumll6Rdu6TOnc3UcACWy5Ar0eFwZMSngR34+pquyuHDTZflsWNSWJjUpo2UN2/yczdtkkaONF2bd9whtWwpff65dOiQFZUDAAAAADKr2Fhp7FipbFnp++9d4yEhZo+Gjz5K+TcrAEulaSMeINWCg6WOHc0RG2v+MfjjD7Ohz7p1ZiMfyWzsM22aOSSzY3nz5mYzn/r1zcZAAAAAAADcqmXLpO7dpc2bXWP58pklz557js5KwKZuK7Ts3LmzcubMedvnORwO/fnnn7dTCjyBj49Z0LhuXbPT+MmT0vz5JsCcN89s8JNg61ZzjBol5cxpdjFPCDGLFbPsJQAAAAAAPMSJE2bNyilTXGMOh9SlizRihJnxB8C2biu0XLdu3Q3vT5gWfqPznE4n08ezqvz5pQ4dzBEXZ3ZnmzvXdGKuXu3qwrx4UZo50xyS2dktIcBs0EDKnt261wAAAAAAsJfYWOmTT6SBA83eCglq1JAmTZJq17auNgCplubQ0pkQKAHu4O1t1hIJCZEGDZLOnHF1Yc6da7oyE+zYYY6xYyV/f+n++02A2by5VLKkda8BAAAAAGCtVaukbt2kDRtcY3nySO++K73wgvnbE4BHSFNoGR8f7+46gOTuuENq29Yc8fHSv/+6ujBXrTJjknTpkjR7tjkkqVQpE142by41bGhCTQAAAABA5nbqlNS/v/TVV8nHO3c2G8Deeac1dQFIM1abhf15eZk2/jfflJYvN2tf/vST+cenYMHk5+7eLU2YID30kAk+mzWTxo+Xdu1yTTcHAAAAAGQOcXFmKnjZsskDy6pVpRUrzBiBJeCRCC3hefLmlVq3Nv/4HDli2v5HjDDrW/okaR6+csVs8NO7t/kHrGRJs2PcrFlmnUwAAAAAgOdau1aqU0d66SXp3DkzFhgoffihtG6ddO+91tYH4LYQWsKzORzmHbT+/aW//jJdmL/+anaDu/vu5Ofu2yd99JH06KNSvnxSkybSmDHStm10YQIAAACApzhzRura1Wyok3Tj36eflnbulF5+OXlDCwCPlKareNiwYe6uQ4MGDXL7cyILyp1batnSHE6ntHWrWQdz7lxp2TIpJsacFx0tLVxojldflYoUce1I3rixFBBg7esAAAAAACQXH29m3PXvb4LLBJUqmV3BGzSwrjYAbpem0HLIkCFyOBxuLYTQEm7ncJh/vCpVkvr2lS5ckBYtcm3oc+CA69yDB6VPPzWHr69Uv75rR/JKlcxzAQAAAACssX692RV89WrXWK5c0rBhUo8e5u84AJlKmvulnW6cTuvuABS4poAA6fHHzeF0Sjt2uALMv/4y3ZeS6cZcvNgcr78uFSrkCjAffNB0cwIAAAAA0t+5c9LAgdLHHydf1qttW2nUKOmuu6yrDUC6SlNouXjxYnfXAWQsh0MqX94cr7xiNuZZssQEmH/8Ie3d6zr3yBHpyy/N4e1tFnNu3twcVavShQkAAAAA7hYfL02ZIvXrJ5065RovX95MBb//futqA5Ah0hRaNmzY0N11ANbKmVN6+GFzOJ3S7t2uAHPJErMTuSTFxZm1MZctk954QwoOdnVhNmlidjYHAAAAAKTdxo1S9+7SihWusZw5pcGDpV69pGzZrKsNQIZhOy3gag6HVLq0OXr2lC5fNtPHEzb02bXLde7x41JYmDm8vKQ6dVwb+txzjxkDAAAAANxceLg0aJA0caLptEzQurU0Zox0993W1QYgwxFaAjeTI4cJIZs1M7f37nUFmIsWSZcumfH4eGnlSnO89ZaUP78UGmoe17SpFBRk3WsAAFxbXJy0Z4+0aZO0ebO8jh1TcFCQeQMKAABkDKdT+u476bXXpBMnXONlykgTJpi/pwBkOYSWwK0qUcJMVeje3UwbX7bMtaHP9u2u806elL75xhwOhxQS4ppKXrOmWR8TAJBxTp6UNm9ODCi1ebO0davpqP9/3pJqS4r/91+zXlaJEpaVCwBAlrBli/nbaulS11iOHKYRpE8fyc/PutoAWIrQErgd2bObtSybNJFGj5b275fmzTMB5p9/SpGR5jynU1q92hxDh0p33OHqwgwNNV2ZAAD3uHxZ2rbNFUwmhJRJOzduwmvuXKliRbNb6Wuv8QcTAADuduGCNGSINH68mfmQ4IknpLFjpaJFLSsNgD0QWgLuVKyY1LWrOaKjzcLRCRv6bNniOu/MGWnqVHNIpvMyoQszJETy4dIEgJuKjzdvFiXtnNy0Sfrvv+TrYF2PwyGVKiVVrixVqSJVrqzYCxcU8+qrynHmjOmmHzjQdMx//DG7lAIA4A5Op/Tjj9Krr0pHj7rGS5Y0U8FZogXA/yMZAdJLtmzmD9z775fef186fNg1jXzhQikiwnXuunXmeOcdswN5kybmH+vQUKlgQeteAwDYxdmzKTsnt2xxdbTfTFBQYjCZ+N8KFcxOpEk4Y2K0yM9Pzf7+W94TJ5rOj507pQcekDp0kEaNkgoUSIcXCABAFrB9u9Sjh9kbIEH27NIbb0h9+5qPAeD/EVoCGeXuu6UuXcwREyOtWuXqwty40XXeuXPSTz+ZQ5KqVXPtSF63ruTra0n5AJAhoqKkHTtSBpRHjqTu8X5+JoxMCCYTQsoCBUxnZSrE5sih+A8+kHfnztKLL0p//23u+PZbadYs6b33pOefl7y80vgiAQDIYiIjpbffNjuAx8a6xh95xEwPZw1pANdAaAlYwddXatDAHCNGmGkRCWthLlggnT/vOnfDBnOMGCEFBpouzITdzO++26IXAAC3yemUDh1KHkxu2mS6GpP+MXMjxYsn75ysXFkqXdp9S2xUrWqW+fjiC6l/f/Om0vnzJsj8+mszZbx6dfd8LgAAMiOnU/r1V+mVV8zMswTFikkffig9+qhlpQGwP0JLwA7uukvq3NkcsbFmw54//jDTyf/5x3VeRIT5R//XX83typVda2HWq2empAOA3YSHm6ncV+/cHR6eusfnyZOyc7JSJSkgIF3LlmS6KV94QWrRwkxbmzLFjK9ebdYj7tlTGjYsY2oBAMCT7NolvfyyNH++ayxbNun116UBA8wO4QBwA4SWgN34+JgAsl49s8bliRPmH/o//jDdmGfPus5N+MP/gw+kXLmkBx90hZhFilj3GgBkTbGx5g+UpJ2TmzdLBw6k7vG+vlK5cikDykKFUj21O93kzy9NnmzeXHrpJTOFPT5eGjfOLOcxfrz05JPW1wkAgNUuXZLefdf8jRId7Rpv1sxstFOqlHW1AfAohJaA3RUoID39tDni4syGPQlrYa5da6ZcSGadmOnTzSGZNd0SAsz77jPrvAGAOzid0rFjKTsnt21L/sfJjRQunDyYrFxZKlvW/h3jjRqZdYhHjzYdlleumCU+Wrc2P3MnTjS7nwIAkNU4ndKMGVLv3snfsCxSxLzJ16IFb+4BuCWEloAn8faWatc2x5Ah0unTybswT51ynbttmznGjJH8/c3Ot82bm6N4ccteAgAPc/Hitad2nzmTuscHBLjCyaRTu/PmTd+601O2bGZa21NPmR1Q58wx43Pnmtf25ptmKjlvFgEAsoo9e8ySKQn/JkpmBsVrr5l/F3PmtK42AB7LI0PLpUuX6oMPPtA///yjY8eOadq0aWrRosUNH7NkyRL16dNHW7duVeHChTVw4EB16tQpQ+oF0k1QkNSunTni46X1611dmKtXmzHJTNGYNcscklSmjCvAbNCA9WQAmE7uPXuSB5ObNkl797o6um/E29v8bEnaOVmlilS0aObtqihe3PxcnTZN6tXLbDBw5Yr01ltmp/GPPjJvGAEAkFldviyNHCm9954UFeUaf/BBM/ugbFnragPg8TwytLx48aKqVq2qZ599Vi1btrzp+fv27dPDDz+sF198Ud99953+/PNPdenSRQULFlRoaGgGVAxkAC8vsylEzZrmD+azZ81O5Akb+pw44Tp31y5zjB9vAstGjUyA2ayZ2XkXQOZ28mTKzsmtW80fHqlRsGDKqd3ly0vZs6dv3XbkcEgtW0pNmpgO+PHjTQC8c6fUuLHUvr2ZSl6ggNWVAgDgXrNmme7KfftcY4UKSWPHSq1aZd43LQFkGI8MLZs3b67mzZun+vxPPvlExYsX1+jRoyVJ5cuX1/LlyzV27FhCS2Re+fJJbdqYIz7erMGWEGCuXGn+qJZMSJHQnSmZtdgSAsz77zdTywF4psuXzTIRSTsnN29O/ibGjfj7SxUrJu+crFzZdHkjuYAAE04+84zZqGfVKjP+3Xfmj7oRI8wu5N7e1tYJAMDt2rfPrFs5c6ZrzMdHeuUVadAgs0EoALiBR4aWt2rVqlV68MEHk42Fhoaqd+/e131MVFSUopK0t0dEREiSYmJiFBMTky51Wi3hdWXW15flVapkjr59pfPn5fjzT3nNny/HvHlyHD3qOm/PHjOVY+JEOf385GzQQM6mTRUfGmqmd/COabrhGkSaxcdL+/fLsXmzHFu2mGPzZmn3bjkSlom4AafDIZUsKWelSnJWrpz4X5UoYbq4r5aJv0dv+zqsUEFavFiOr7+W9xtvyHHunBQeLnXrpvivv1bcxIlS9epurBjIXPi3ELDWDa/BK1fkNWaMvN57T44rVxKH4xs2VNz48ebfQPPgjCgVyLQy+7+Ft/K6HE5nahaqsi+Hw3HTNS3LlCmjzp07a8CAAYljc+bM0cMPP6xLly4pxzXW8xsyZIiGDh2aYnzq1Knyp/MMmYnTqcADB5R//XrlX79ed2zfLq+ELsyrXMyfXyfvuUcn77lHpypXVhxrYQIZzvfCBQUeOGCO/fsVePCgAg8ckE+SPx5uJCowUBFFi5qjWDFFFC2qC4ULKy4rTu1OZ9nCw1UxLExFFi9OHHN6eWnvQw9pR7t2iuX3CQCAh7jz339V5bPPlOvYscSxK3nzakvnzjpy3300NgBItUuXLqldu3YKDw9XYGDgDc/NEp2WaTFgwAD16dMn8XZERIQKFy6spk2b3vSL6qliYmK0YMECNWnSRL6+vlaXA4vERUQofvFiOebNk9e8eXIcOpR4X86TJ1V87lwVnztXTl9fOevXlzM01HRhVqjALyu3iWsQyURHSzt2JO+e3LJFjiNHUvVwp5+fVL58ss5JZ6VK8ipQQHkcDuVJ3+o9ltuvw7ZtFbt0qbx79JBjxw454uNVctYslfjnH8WNGiUna34ByfBvIWCtFNfgwYPyfu01eU2fnniO09tb8T16yPutt1Q1MFBVrSsXyJQy+7+FCTOZUyNLhJbBwcE6cdX6XSdOnFBgYOA1uywlyc/PT35+finGfX19M+U3TVJZ4TXiBu64wyyc3aqV2TF4+3bXmpfLlpkgRZIjJkaOxYulxYvl3b+/VLiwWQezeXOz+UQmDfczAtdgFuN0SocOJV9zctMms5FLbGzqnqN48RS7djtKlZJ8fEQcljZuvQ4bNzbrCo8ZIw0bJl2+LMexY/Jp316aMkWaNMmsJwwgEf8WAtbydTrlO3q09Pbb0qVLrjvq15dj0iR5V6kiVmkG0ldm/bfwVl5Tlggt69atqzlz5iQbW7BggerWrWtRRYCHcDhMB2WFCtKrr0qRkdLixa4Qc/9+17mHDkmff24OHx+pXj3Xhj5VqtBJBEhSRETKTXE2bzZrHqZGnjwpN8WpVMlsAgN7y5ZN6t9feuop6eWXzeY8kjRvntns6M03pX79pGu8YQoAQEYK2rhRPv36Sbt2uQbz55dGjZI6dOD3egAZxiNDy8jISO3evTvx9r59+7Rhwwbly5dPRYoU0YABA3TkyBFNmTJFkvTiiy9q4sSJ6tevn5599lktWrRIP/30k2bPnm3VSwA8U65c0qOPmsPpNL/IJOxIvmSJlLB5VWys9Ndf5ujfX7rrLhNeNmsmNWlighcgM4uNNddH0s7JzZulAwdS93hfX6lcuZQBZaFC/KHg6YoVM7utzphhwsvDh83PzkGDpG+/lT76yHRmAgCQ0bZvl/eAAao3Y4ZrzMtL6tbNdFzyOzyADOaRoeW6det0//33J95OWHuyY8eOCgsL07Fjx3Tw4MHE+4sXL67Zs2frlVde0fjx43X33Xfriy++UGhoaIbXDmQaDofZTbxsWal3bzNtZMkSE2D+8YeU5I0FHT0qffWVOby9pbp1XVPJq1W79u7EgCdwOqVjx1J2Tm7blriUwk0VLpxiarfKlDGdecicHA6pRQvpwQeloUOlsWOluDgTdD/4oNSunTR6tBQcbHWlAICs4NAhacgQKSxMXvHxrvG6dc0SJtWrW1YagKzNI0PLRo0a6UabnoeFhV3zMf/++286VgVkcf7+0kMPmUMyoWVCgLl4sXT5shmPi5OWLzfHwIFSgQJSaKgJMJs2lfLls+41ADdy8aK0ZUvKgPLMmdQ9PiDAhJJXT+3Omzd964Z95colffCB9PTT0osvSqtWmfGpU6XZs6V335W6djVv9gAA4G5nzph/ayZNcs2YktkV3GfkSPk89xzNBQAs5ZGhJQAPUKqU1KOHOS5fNpv4JKyFuXOn67wTJ8xGFFOmmF+KQkJMgNm8uVSjBr8oIePFxUl79iQPJjdtkvbuNZ2VN+PtbTolr57aXbQoU7txbVWqmDdyvvpKev116exZs85p9+5SWJj0ySfSPfdYXSUAILOIjJTGjTNvnCXdxTd3bsX17auFpUoptGVLfg8HYDlCSwDpL0cO00XZtKmZBrlvn6sLc9Ei08EmSfHx0t9/m2PwYCkoKHkX5p13Wvs6kPmcPJmyc3LrVldn8M0ULJg8mKxcWSpfXsqePX3rRubj5SV16SI9/rjZkCdh1sjatVKtWibAfPttKXduS8sEAHiw6Gjps8/MvycnT7rGs2eXevaUXn9d8QEBirtqE1sAsAqhJYCMV7y49NJL5oiKMh1GCRv6bN3qOu/0aem778zhcEg1a7q6MGvVYsokUu/yZWn79pQb45w4kbrH+/ubqdxXB5RBQelbN7KeO++Uvv5a6tzZ/Izcts28oTNhgvTLL+aNn//9j65dAEDqxcdL338vvfWWaR5I4O0tPfec2QyuUCEzFhNjTY0AcA2ElgCs5edndspt3FgaNUo6eNCEl3PnSgsXShcumPOcTtNxtHatNGyYWfuyaVMTYIaGmrUxgfh4af/+5MHkpk3Sf/+Z+27G4TBLGyQNJqtUkUqUYIoUMlaDBtK//5qQcuhQE7wfOyY99ZSZRj5pkvleBQDgepxOac4c6Y03zO9DSbVubTouy5a1pjYASAVCSwD2UqSI9MIL5oiOllaudE0lT/rL1tmz0g8/mEMy670l7Ehep47kw4+3TO/s2eRrTm7ebDbKiYxM3eODgkwgmTSgrFjRdFUCdpAtm1njsk0bM23v99/N+Pz5pvP3jTfM/X5+1tYJALCfFSukAQPMuvJJNWliNt+pWdOaugDgFvBXPQD7ypZNatTIHO+9Jx05Is2bZwLMBQvMRhUJ1q83x7vvmjXfmjQxAWazZtJdd1n1CuAO0dHSjh0pp3YfOZK6x/v5mTDy6p27CxRgii08Q7Fi0syZ0owZ0ssvS4cOmaU1Bg+Wvv1W+ugj6cEHra4SAGAHmzdLb77peqMrQc2a5vfpxo2tqQsA0oDQEoDnKFRIevZZc8TEmA17Erow//3XdV54uFn77ZdfzO0qVVxrYd57r+Tra039uDGn04QxV0/t3rlTio1N3XMUL548mKxSxUyhpfMWmcHjj5s/NocNk8aMMTvd//efeZOmbVszFhxsdZUAACvs32/ezPrmG/M7VYKyZaXhw6WWLXmzFoDH4a84AJ7J11e67z5zDB8uHT/u6sKcP186d8517qZN5hg5UgoIMB1JCV2YhQtb9xqysoiIlFO7N29O3j17I3nyJA8mK1c202UDAtK1bMByuXJJ778vPf202ahnxQoz/v330uzZptv8xRfZqAwAsoqTJ83vwh9/nHwTnUKFpCFDpE6dePMWgMfipxeAzCE4WOrY0RyxsWbDnoQdydetc73jfOGCNG2aOSQzbTihC7NePdaGc7fYWGnXrpRTuw8cSN3jfX2lcuVSBpSFCtEtgKytcmVp6VKz03i/fmaN14gIqUcPKSxM+uQTqUYNq6sEAKSXiAjTYT96dPL1vPPmNWsed+8u5chhXX0A4AaElgAyHx8fqW5dcwwbZt6Bnj/fBJjz5kmnT7vO3brVHKNGSTlzmqmXCV2YxYpZ9hI8jtNpdja+unNy2zazJmVqFC6ccmp3mTJmbVMAKXl5Sc89Z6aNv/662VVcMm/UhIRI3bpJ77xj1vkFAGQOUVGmq3L48OS/0/r7S717S337mhkpAJAJEFoCyPzy55c6dDBHXJz0zz+uLszVq11dmBcvms0uZs40t8uVcwWYDRpI2bNb9xrs5OJFs0v31dO7z5xJ3eMDAlJuilOpkukMAHDrgoKkL7+UOnc2U8O3bpXi46WJE83avmPHmh3I6U4GAM8VF2c2Xxs0SDp40DXu4yO98II0cKBUsKB19QFAOiC0BJC1eHubDqSQELNY+Zkzri7MuXNNV2aCHTvMMXaseff6/vtNgNm8uVSypHWvIaPExUl79qTcGGfv3uQLvF+Pt7fplLx6anfRooQnQHqoX99sSjZ2rDR0qHTpklnvt21bE2p+9JFUurTVVQIAboXTad5Qf+MNM4MlqbZtpbffzhq/lwLIkggtAWRtd9xhfuFr29Z0Jv37r2tH8lWrzJhk/vifPdsckvnDPyHAbNTI89cMOnkyZefk1q3S5cupe3zBgsmDycqVpfLl6U4FMpqvr1njsk0bqWdPV+f4woXmuhwwwEwl59oEAPtbulTq39/8TppU8+Zm47Vq1SwpCwAyCqElACTw8jIbV9SoIb35ptmBfOFC11TyY8dc5/73nzkmTDB//Dds6NrQp3Rp+3YSXr4sbd+ecmOcEydS93h/fzOV++qAMigofesGcGuKFpVmzDCh5csvm6mEUVFmJ9lvvzVdl02aWF0lAOBaNmwwnZV//JF8vE4d6b33zO+dAJAFEFoCwPXkzSu1bm0Op9MEfH/8YY6VK83O2JJ05YrZ4GfePLMAevHirgDz/vvNBj8ZLT5e2r8/5dTu//5zdY/eiMMhlSqVPJisUkUqUcKEuwA8w2OPmQ3Ghg0zu8zGxkq7d0tNm0pPPWXGWAMNAOxhzx6zZuXUqcnHK1QwnZWPPWbfN8YBIB0QWgJAajgcUtWq5ujfXwoPl/7809WFefiw69x9+0wX00cfmZ2vGzRwbehTvrz7f9k8ezbl1O4tW6TIyNQ9PijIBJJJA8qKFU1XJQDPlzOnNHKk9PTT0ksvScuXm/EffpDmzDE70L70klmHFgCQ8Y4fN2tTfvaZ601xSSpSxLzp1KEDP6MBZEmElgCQFrlzSy1bmsPpNOs/JgSYy5ZJMTHmvOhoM8V84ULp1VfNL58JAWbjxmYn7dSKjjYbA109tfvIkdQ93s/PhJFX79xdoADv2gNZQaVK0l9/SWFhZt3LM2ekiAgzfTwsTPrkE6lmTaurBICsIzxc+uADs4HapUuu8aAgs1TRiy+yBjGALI3QEgBul8NhwoBKlaS+faULF6RFi1wb+hw44Dr34EHp00/N4etrdvtNCDHLljXnOJ3mvKundu/cmfzd9xspXjzl1O5SpSQffuwDWZqXl/Tss2aKYf/+ZldxSfrnHykkROrWzXRe5s5tbZ0AkJldvixNmiSNGGFmzCTIlcu8yd2njxQYaF19AGAT/PUKAO4WECA9/rg5nE7THZkQYP71l+mYlEw35uLF5ujXTz6FCql+YKB8OnY077ynRt68KTsnK1W6tQ5OAFlPUJD0xRdS586mk2fLFvPzatIk6ddfzVqXTz1FFzYAuFNsrDR5stkULenSQr6+ZpmON9+U8ue3rDwAsBtCSwBITw6HWceyfHnplVekixelJUtcG/rs3es69cgR3XG9qd6+vuY5rg4oCxUiVACQdvXqSevXS+PGmT+iL10ya6u1ayd99ZUJMcuUsbpKAPBsTqf0228mlNy50zXucJj1hocOlYoVs6w8ALArQksAyEg5c0oPP2wOp9Ps4vv/AaZzyRI5rlyRs3BhOZIGk1WqmNAgWzarqweQGfn6mqUt2rSRevaUZsww4wsXmp9B/ftLAwawrhoApMWiRebn6Nq1yccffdQsx1G5sjV1AYAHILQEAKs4HFLp0ubo2VOxkZGaP2uWmj75pHx9fa2uDkBWU6SINH269PvvZnOeAwfMchbDhklTp5quy6ZNra4SADzDP/+YN3wWLEg+Xr++9N57ptMdAHBDXlYXAAD4f35+is2Rw+oqAGR1jz4qbd0qvf66a/Ou3bul0FCzzuXRo9bWBwB2tmuX6VyvWTN5YFm5sjRrlrR0KYElAKQSoSUAAACSy5nTdAJt2CDdd59r/McfpXLlpAkTpLg4y8oDANs5ckTq2lWqUEH66SfXePHi0rffmp+nDz/MWuQAcAsILQEAAHBtFStKf/0lff21dMcdZuzCBbP2ZUhIyjXaACCrOXfOrFlZqpT02WeuN3Ty5zdv8OzYIbVvL3nxpzcA3Cp+cgIAAOD6HA6pUyez422XLq7x9eul2rWl7t2l8+etqg4ArHHpkulIL1FCGjlSunLFjAcEmLWA9+yRevRgI0UAuA2ElgAAALi5O+6QPv9cWr7ctdut0yl99JGZMj51qrkNAJlZTIz06aems3LAANebNtmySX36SHv3Sm+9JeXKZWmZAJAZEFoCAAAg9erVM7vijhpl1r6UpBMnzPTHJk3MJhQAkNnEx5t1fStUkF58UTp2zIx7eUmdO0v//SeNHi0FBVlbJwBkIoSWAAAAuDW+vtKrr0rbtkktWrjG//zTdGEOGiRdvmxZeQDgNk6nNH++VKuW9NRT0u7drvueeELavFn66iupSBHragSATIrQEgAAAGlTpIg0bZo0c6ZUtKgZi46W3n7bhJfz5llbHwDcjtWrpcaNpdBQs45vgkaNpFWrpN9+M52XAIB0QWgJAACA2/Poo9LWrWYHXR8fM7Znj9SsmdSmjXT0qLX1AcCt2L5datlSqlNHWrzYNV69ujR3rrRokbkPAJCuCC0BAABw+3LmlEaMkDZskBo0cI3/9JPZqOfDD6XYWMvKA4CbOnRIeu45qVIl00WeoFQp6YcfpHXrTNelw2FdjQCQhRBaAgAAwH0qVpSWLJHCwlwbUly4IPXqJYWESGvWWFkdAKR05oxZp7d0abM+ZXy8GQ8Olj7+2Kzf26aN2XQHAJBh+KkLAAAA93I4pI4dpR07pOefd43/+6+ZUtmtm3T+vGXlAYAkKTJSeucdqUQJacwYKSrKjOfObTrHd+82O4X7+lpbJwBkUYSWAAAASB933CF99pm0YoVUpYoZczpN51LZstJ335nbAJCRoqOliROlkiWlt96SIiLMePbsUr9+0t69Zo3enDmtrRMAsjhCSwAAAKSve++V/vlHGj3aFQKcPCl16CA9+KC0c6e19QHIGuLjzZsl5cpJL79sfg5Jkre39MILprNy5EgpXz5r6wQASCK0BAAAQEbw8ZH69HHtyptg0SLThfnWW9Lly9bVByDzcjql2bPN7t8dOkj79rnua91a2rpV+vRTqVAh62oEAKRAaAkAAICMU7iw9Ouv0qxZUrFiZiw62qwrV6mSNHeupeUByGRWrJAaNpQeeUTatMk13qSJtHat9NNPZrkKAIDtEFoCAAAg4z38sOluGjDAtcnF3r1S8+am8+nIEWvrA+DZNm+WHntMql9fWrbMNV6zprRwoTR/vvkYAGBbhJYAAACwhr+/9O670saNphMqwS+/mDXnxo+XYmOtqw+A59m/X+rYUapaVfr9d9d42bLmZ8uaNVLjxpaVBwBIPUJLAAAAWKt8eWnxYmnyZOnOO81YZKTUu7dUq5a0erWl5QHwACdPSr16SWXKSFOmmHUsJbNO5eefS1u2SE8+KTkc1tYJAEg1QksAAABYz+GQnnlG2rHD7OKbYMMGqW5d6aWXpHPnLCsPgE1FREhDhkglS0offijFxJjxvHmlDz6Q/vtP6tLFbAYGAPAohJYAAACwj3z5zC6+K1eaXcUl0zH1ySdmyvi337o6qABkXVFR0rhxJqwcOtR0Z0tm2Yk33jBr5L72mpQjh6VlAgDSjtASAAAA9lO3rvTPP9KYMVKuXGbs5Enp6afNenQ7dlhbHwBrxMWZpSTKlJFeeUU6fdqM+/hI3bpJu3dLw4dLefJYWiYA4PYRWgIAAMCefHxMKLF9u1mLLsHixaYLc+BA6fJl6+oDkHGcTmnmTLPBTqdO0sGDrvvatjVvZEyaJBUsaFmJAAD3IrQEAACAvd19t9n1d/ZsqXhxMxYTY7qpKlWS/vjD2voApK+lS6V69aTHH5e2bnWNN28u/fuvNHWqmSYOAMhUCC0BAADgGR56yOwA/MYbkq+vGdu714y3aiUdPmxtfQDca+NGc303bCitWuUar1NHWrJEmjNHqlbNquoAAOmM0BIAAACew9/fdFhu3Cg1auQa//VXqXx5aexYKTbWsvIAuMGePVL79iaQTNpJXaGCNH262airYUOrqgMAZBBCSwAAAHie8uWlRYukKVOkO+80Y5GRUp8+Us2a0t9/W1sfgFt3/LjUvbtUrpyZ8p2gSBEpLEzatMlMEXc4LCsRAJBxCC0BAADgmRwOs5v4zp1S166uIGPjRunee6UXX5TOnbO2RgA3Fx5uNtYqWVL66CNXt3RQkOme3rlT6thR8va2tk4AQIYitAQAAIBny5tX+uQTM2W0alUz5nRKn34qlS0rffONuQ3AXi5flkaNkkqUMMs+XLpkxnPlkgYPNtPEe/eWsme3tEwAgDUILQEAAJA51KkjrVtnOrNy5TJjp05JzzwjPfCAtH27tfUBMGJjpS+/lMqUkfr2lc6eNeO+vlLPniasHDJECgy0tEwAgLUILQEAAJB5+PiYzqwdO8yO4gmWLDFdmG++6ermApCxnE6zaValSlKXLtLhw2bc4TBvLuzaJY0fL+XPb22dAABbILQEAABA5lOokPTzz9KcOVLx4mYsJkZ6910TmMyZY219QFazaJFUu7Z5M2HnTtf4o4+adWgnT5aKFbOsPACA/RBaAgAAIPNq3lzautVs8uHra8b27ZMeftiEJwmdXgDSxz//SE2bSo0bS2vXusbr15eWL5dmzpQqV7auPgCAbRFaAgAAIHPLkUN6+21p0yapUSPX+K+/SuXLS2PGuHYrBuAeu3ZJbdpINWtKCxa4xitXlmbNkpYulerVs64+AIDtEVoCAAAgayhXzkxR/eYb15p5kZHSq6+aYGXVKmvrAzKDI0ekrl2lChWkn35yjRcvLn37rbRhg+l0djgsKxEA4BkILQEAAJB1OBxShw5mo54XX3QFJxs3Svfea8KWhJ2MAaTeuXNS//5SqVLSZ59JcXFmPH9+acIEc821by958ScoACB1+BcDAAAAWU/evNLHH5vuymrVXOOffWY6MqdMMTsdA7ixS5ek996TSpSQRo6Urlwx4wEBZlmGPXukHj2kbNmsrRMA4HEILQEAAJB11a5tNgcZN07KlcuMnToldewo3X+/tG2bpeUBthUTI336qemsHDBAOn/ejPv5SX36SHv3mg2wEq4rAABuEaElAAAAsjYfH6lXLzN9tXVr1/hff0lVq0pvvGG6yQBI8fHSjz+aNStffFE6dsyMe3lJzz5rNuAZPVoKCrK2TgCAxyO0BAAAACSpUCGzccgff5iprpLZVXzECKliRWn2bGvrA6zkdErz50u1aklPPSXt3u2674knpC1bpC+/lIoUsa5GAECmQmgJAAAAJNWsmQlg3npL8vU1Y/v3S488IrVsKR06ZGl5QIZbvVpq3FgKDZXWr3eNN2ok/f239NtvUvnylpUHAMicCC0BAACAq+XIIQ0bJm3eLD3wgGt82jQTzowebdb0AzKz7dtNUF+njrR4sWu8enVp3jxp0SKzLiwAAOmA0BIAAAC4nrJlpYULpW+/lfLnN2MXL0qvvSbVrCmtXGltfUB6OHRIeu45qVIlE9QnKFVK+uEHad06qWlTyeGwrkYAQKZHaAkAAADciMMhtW8v7dwpdevmCmo2bZLq1ZOef146c8baGgF3OHNGevVVqXRp6auvzKY7klSwoPTJJ9K2bVKbNmbTHQAA0hn/2gAAAACpkSePNGmSWcOvenXX+BdfSOXKSZMnm81KAE8TGSm9847ZgGrMGCkqyoznzm02otq9W+ra1bXGKwAAGYDQEgAAALgVISHSmjXS+PFSQIAZO31a6tTJbEyybZuV1QGpFx0tTZwolSxpNp6KiDDj2bNLr78u7d0r9e8v+ftbWycAIEsitAQAAABulY+P1LOntGOH9L//ucaXLpWqVpUGDJAuXbKuPuBG4uOl774zHcIvvyydPGnGvb2lF14wnZXvvSfly2dtnQCALI3QEgAAAEiru+6SfvzR7KRcsqQZi401gU+FCtKsWdbWByTldEqzZ5vlDTp0kPbtc933v/+ZLuFPP5UKFbKuRgAA/h+hJQAAAHC7mjaVNm+WBg2SsmUzYwcOSI8+Kj3xhHTwoLX1AStWSA0bSo88YjaRStCkibR2rQnfy5Sxrj4AAK5CaAkAAAC4Q44c0tChJrxs3Ng1Pn266bocNUqKibGsPGRRW7ZIjz0m1a8vLVvmGq9VS1q4UJo/X6pZ07r6AAC4DkJLAAAAwJ3KlJEWLDBrBhYoYMYuXpT69pVq1JBWrrS2PmQN+/dLHTtKVapIv//uGi9bVvrlF2n16uThOgAANkNoCQAAALibwyG1a2c26une3dyWTBdmvXpSly7SmTPW1ojM6eRJqXdvE05OmWLWsZTMOpWff246L5980vU9CQCATRFaAgAAAOklTx5p4kTT1XbPPa7xL780odLXX7tCJeB2RERIQ4aYDaHGj5eio8143rzSBx9I//1nwnIfH0vLBAAgtQgtAQAAgPRWq5a0Zo304YdSQIAZO3NGevZZsznK1q3W1gfPFRVlQsqSJc2aqpGRZtzfX3rjDWnvXum118yaqwAAeBBCSwAAACAjeHtLL79spoy3aeMaX7ZMqlZN6t/frH0JpEZcnDR5sllDtXdv6fRpM+7jI3XrJu3eLQ0fbrp9AQDwQISWAAAAQEa66y7phx+kefOkUqXMWGysNHKkVLGiNHOmtfXB3pxO8z1StarUqZN08KDrvrZtTSg+aZJUsKBlJQIA4A6ElgAAAIAVmjY1G/MMHixly2bGDhyQHn9catEieRgFSNLSpWYjp8cfT76kQPPm0r//SlOnmmniAABkAoSWAAAAgFWyZzebp2zeLD34oGt8xgypfHmzgUpMjGXlwSY2bpQeesisf7pqlWu8Th1pyRJpzhyzxAAAAJkIoSUAAABgtTJlpPnzpe+/l4KDzdilS1K/fmbX8RUrrK0P1tizR2rf3gSSf/zhGq9QQZo+XVq50gSZAABkQoSWAAAAgB04HNJTT5k1CXv0MLclacsWqX59qUsXs+M4Mr/jx6Xu3aVy5cyU7wRFikhhYdKmTWaKeML3CAAAmRChJQAAAGAnuXNLEyZIa9ZINWq4xr/8UipbVvrqKyk+3rr6kH7Cw6WBA826lB99ZDZokqSgIGnsWGnnTqljR7MTPQAAmRyhJQAAAGBHNWtKq1dLEydKgYFm7MwZ6bnnzJTgLVusrQ/uc/myNGqUVKKENHy4WRpAknLlMhs17dkj9e5t1kAFACCLILQEAAAA7Mrb20wT3rHDTB1PsHy5VL269Prr0sWL1tWH2xMbazpoy5SR+vaVzp41476+Us+eJqwcMsQVWgMAkIUQWgIAAAB2V7Cg2aRn/nypVCkzFhsrvf++2ZRl5kxr68OtcTqlX3+VKlUya5UePmzGHQ7pmWekXbuk8eOl/PmtrRMAAAsRWgIAAACeokkTafNm033n52fGDh40m7I8/rh04ICl5SEVFi2SateWWrUya1QmePRRaeNGafJkqVgxy8oDAMAuCC0BAAAAT5I9u1nncPNmE2ImmDnTdF2+/74UE2Ndfbi2f/6RmjaVGjeW1q51jdevb6b7z5wpVa5sXX0AANgMoSUAAADgiUqXlubNk374QQoONmOXLpl1LqtXl5Yts7Y+GLt2SW3amI2VFixwjVeuLM2aJS1dKtWrZ119AADYFKElAAAA4KkcDhOI7dghvfyy5PX/v95v3So1aCA9+6x0+rS1NWZVR45IXbua7teffnKNFy8uffuttGGD9PDD5v8hAABIgdASAAAA8HS5c0sffiitWWM6+hJ8/bVUtqzZoTo+3rr6spJz56T+/c2GSZ99JsXFmfH8+aUJE0zA3L69K2AGAADXxL+UAAAAQGZRo4b099/SpElSYKAZO3vW7FDdoIFZBxPp49Il6b33pBIlpJEjpStXzHhAgPT229KePVKPHlK2bNbWCQCAhyC0BAAAADITb2+pWzezM3W7dq7xFSvMWpd9+0qRkdbVl9nExEiffmo6KwcMkM6fN+N+flKfPtLevdLAgVKuXJaWCQCApyG0BAAAADKj4GDpu+/M5i+lS5uxuDhp1CizzuKMGdbW5+ni46UffzRfyxdflI4dM+NeXmYt0V27pNGjpaAga+sEAMBDEVoCAAAAmdmDD0qbNklDh5ruP0k6dEhq0UJ67DHpwAFLy/M4Tqc0f75Uq5b01FPS7t2u+554QtqyxawhWqSIdTUCAJAJEFoCAAAAmV327NKgQSZQa9rUNf7771L58mYNxuho6+rzFKtXS40bS6Gh0vr1rvFGjcxaor/9Zr6eAADgthFaAgAAAFlFqVLS3LlmWnPBgmbs8mWz23X16tLSpdbWZ1fbt0stW0p16kiLF7vGq1eX5s2TFi2Sate2rj4AADIhQksAAAAgK3E4pP/9T9qxQ+rZ06zBKEnbtkkNG0qdO0unTllbo10cOiQ995xUqZI0bZprvFQp6YcfpHXrTOeqw2FdjQAAZFKElgAAAEBWFBgojR8vrV1r1mdMEBYmlSsnffGF2WwmKzpzRnr1VbOB0Vdfub4OBQtKn3xiAt42bVyBLwAAcDv+lQUAAACysnvukVatkiZNknLnNmNnz0rPPy/dd5+0ebO19WWkyEjpnXekEiWkMWOkqCgznju3NGKE2XSna1fJ19faOgEAyAIILQEAAICszttb6tbNTBlv3941vnKlWbfxtddMoJdZRUdLEydKJUtKb70lRUSY8ezZpddfl/buNet++vtbWycAAFkIoSUAAAAAIzhY+vZbaeFCqUwZMxYXJ40ebXbFnjZNcjqtrdGd4uOl774z0+Ffflk6edKMe3tLL7xgOivfe0/Kl8/aOgEAyIIILQEAAAAk17ixtGmTNGyY5Odnxg4fNjtoP/aYtH+/peXdNqdTmjPHdJF26CDt2+e673//M2tWfvqpVKiQdTUCAJDFEVoCAAAASMnPz0yV3rpVatbMNT5rllShgulAjI62rr60WrnS7JL+8MMmmE3QpInZlOjHH11dpgAAwDKElgAAAACur2RJ05X400/SXXeZscuXpQEDTKfiX39ZW19qbdkiPf64VK+etGyZa7xWLTMdfv58qWZN6+oDAADJEFoCAAAAuDGHQ2rdWtq+XerVS/L6/z8jtm2TGjWSOnWSTp2yssLr279f6thRqlJFmjnTNV62rPTLL9Lq1WY6PAAAsBVCSwAAAACpExgojRsnrVsnhYS4xidPNiHg55+bzW3s4ORJqXdvU9eUKa4NhAoVkr74wnRePvmkCWQBAIDtEFoCAAAAuDXVq5u1IT/+WMqTx4ydO2d23K5fP/lakRktIkIaMsRMax8/3rXuZt680gcfSP/9Jz33nOTjY12NAADgpggtAQAAANw6b2/pxRelHTvMDtwJVq2S7rlHevVV6cKFjKsnKsqElCVLSkOHSpGRZtzfX3rzTWnvXum116QcOTKuJgAAkGaElgAAAADSrkAB6ZtvpD//NFOxJSkuThozxuwy/ttvrqnZ6SEuzkxPL1PGTAc/fdqM+/hI3bpJe/ZI77zj6ggFAAAegdASAAAAwO174AFp40YTEGbPbsYOHzbrRj76qLRvn3s/n9NpNtapWtVsBHTwoOu+du1MB+ikSVJwsHs/LwAAyBCElgAAAADcw8/PTMXeskVq1sw1Pnu2VLGiNGKEa43J27F0qVSvnvT449LWra7x5s2lf/+VvvvOTBMHAAAei9ASAAAAgHuVLCnNmSP9/LN0111m7PJl6Y03pGrVpL/+StvzbtwoPfSQ1LChWTszQd260pIl5nNWq3abxQMAADsgtAQAAADgfg6H1KqVmabdu7fk9f9/emzfLjVqJHXsKJ08mbrn2rNHat/eBJJ//OEar1hRmjFDWrHCBJkAACDTILQEAAAAkH4CAqSxY6V166TatV3jU6ZI5cpJn30mxcdf+7HHj0vdu5vzpk51jRcpIoWFmc7Lxx4zASkAAMhUCC0BAAAApL/q1aWVK6VPPnHt5H3unNS1q1mfcuNG17nh4dLAgWaa+UcfSbGxZjwoSBo3Ttq1y3Rqentn9KsAAAAZxMfqAgAAAABkEV5eJqRs0ULq21f65hsz/vffUo0a8urRQyXDw+Xz7LPS2bOux+XKJb36qtSnjxQYaEnpAAAgYxFaAgAAAMhYBQqY6eGdO0vdupl1L+Pi5D1+vColPc/X19z/xhtS/vxWVQsAACzA9HAAAAAA1rj/fjMtfPhwKXv2xGGnwyE984yZBj5uHIElAABZEKElAAAAAOtky2Y6KbduVXyHDjrUqJFi162TJk+WihWzujoAAGARpocDAAAAsF6JEor76iutnzNHD1WubHU1AADAYnRaAgAAAAAAALAVjw4tJ02apGLFiil79uyqXbu21qxZc91zw8LC5HA4kh3Zk6ybAwAAAAAAAMAePDa0/PHHH9WnTx8NHjxY69evV9WqVRUaGqqTJ09e9zGBgYE6duxY4nHgwIEMrBgAAAAAAABAanhsaDlmzBg9//zz6ty5sypUqKBPPvlE/v7++uqrr677GIfDoeDg4MSjQIECGVgxAAAAAAAAgNTwyI14oqOj9c8//2jAgAGJY15eXnrwwQe1atWq6z4uMjJSRYsWVXx8vO655x69++67qlix4jXPjYqKUlRUVOLtiIgISVJMTIxiYmLc9ErsJeF1ZdbXB9gd1yBgPa5DwFpcg4C1uAYB62X26/BWXpfD6XQ607GWdHH06FEVKlRIK1euVN26dRPH+/Xrp7/++kurV69O8ZhVq1bpv//+U5UqVRQeHq5Ro0Zp6dKl2rp1q+6+++4U5w8ZMkRDhw5NMT516lT5+/u79wUBAAAAAAAAmdylS5fUrl07hYeHKzAw8IbnemSnZVrUrVs3WcB57733qnz58vr000/19ttvpzh/wIAB6tOnT+LtiIgIFS5cWE2bNr3pF9VTxcTEaMGCBWrSpIl8fX2tLgfIcrgGAetxHQLW4hoErMU1CFgvs1+HCTOZU8MjQ8ugoCB5e3vrxIkTycZPnDih4ODgVD2Hr6+vqlevrt27d1/zfj8/P/n5+V3zcZnxmyaprPAaATvjGgSsx3UIWItrELAW1yBgvcx6Hd7Ka/LIjXiyZcumGjVq6M8//0wci4+P159//pmsm/JG4uLitHnzZhUsWDC9ygQAAAAAAACQBh7ZaSlJffr0UceOHVWzZk2FhIRo3Lhxunjxojp37ixJeuaZZ1SoUCGNGDFCkjRs2DDVqVNHpUqV0vnz5/XBBx/owIED6tKli5UvAwAAAAAAAMBVPDa0bNOmjU6dOqVBgwbp+PHjqlatmubOnasCBQpIkg4ePCgvL1cj6blz5/T888/r+PHjyps3r2rUqKGVK1eqQoUKVr0EAAAAAAAAANfgsaGlJPXo0UM9evS45n1LlixJdnvs2LEaO3ZsBlQFAAAAAAAA4HZ45JqWAAAAAAAAADIvQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAAA2AqhJQAAAAAAAABbIbQEAAAAAAAAYCuElgAAAAAAAABshdASAAAAAAAAgK0QWgIAAAAAAACwFUJLAAAAAAAAALZCaAkAAAAAAADAVggtAQAAAAAAANgKoSUAAAAAAAAAWyG0BAAAAAAAAGArhJYAAAAAAAAAbIXQEgAAAAAAAICtEFoCAAAAAAAAsBVCSwAAAAAAAAC2QmgJAAAAAAAAwFYILQEAAAAAAADYCqElAAAAAAAAAFshtAQAAAAAAABgK4SWAAAAAAAAAGyF0BIAAAAAAACArRBaAgAAAAAAALAVQksAAAAAAAAAtkJoCQAAAAAAAMBWCC0BAAAAAAD+r717D9KqvO8A/l1ZbiKIIiCIotR6By9oFDFBlKjoWKkoiaKAjZemWAUmxsFG0WBCWmO93zBR06ixKqCmgxpEQY14AS8FrbGJaGIEiaIGMCKwb/+wvNmV3RUI8h6yn8/Mzpw9z/Oc83v3PWeG+fKc8wCFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQtmkQ8vrrrsuO+64Y1q1apUDDzwwzz77bKP977nnnuy2225p1apVevbsmalTp26kSgEAAACAtbXJhpb/+Z//mTFjxmTcuHF5/vnns/fee+fII4/MokWL6u3/1FNP5aSTTso3vvGNvPDCCxk0aFAGDRqUefPmbeTKAQAAAIDGbLKh5b//+7/njDPOyGmnnZY99tgjN954YzbffPPccsst9fa/6qqrctRRR+W8887L7rvvnvHjx2e//fbLtddeu5ErBwAAAAAaU13pAtbHJ598kjlz5mTs2LHlfZtttlkGDBiQWbNm1Ttm1qxZGTNmTJ19Rx55ZO677756+y9fvjzLly8v//7hhx8mSRYvXpwVK1b8hZ+gmFasWJGPPvoo7733Xpo3b17pcqDJcQ9C5bkPobLcg1BZ7kGovL/2+3DJkiVJklKp9Ll9N8nQ8t13382qVavSuXPnOvs7d+6cV199td4xCxcurLf/woUL6+0/YcKEXHLJJWvs32mnndazagAAAABgyZIl2XLLLRvts0mGlhvD2LFj68zMrKmpyeLFi9OhQ4dUVVVVsLIvzh//+Mdsv/32+d3vfpd27dpVuhxoctyDUHnuQ6gs9yBUlnsQKu+v/T4slUpZsmRJunbt+rl9N8nQcptttkmzZs3yzjvv1Nn/zjvvZNttt613zLbbbrtO/Vu2bJmWLVvW2de+ffv1L3oT0q5du7/KGwM2Fe5BqDz3IVSWexAqyz0IlffXfB9+3gzL1TbJhXhatGiR3r17Z/r06eV9NTU1mT59evr06VPvmD59+tTpnyTTpk1rsD8AAAAAUBmb5EzLJBkzZkyGDx+e/fffP1/60pdy5ZVXZtmyZTnttNOSJMOGDct2222XCRMmJEnOPffc9OvXL5dffnmOOeaY3HXXXZk9e3YmTpxYyY8BAAAAAHzGJhtafu1rX8sf/vCHXHTRRVm4cGH22WefPPTQQ+XFdn77299ms83+PJH04IMPzp133pnvfOc7ueCCC/K3f/u3ue+++7LXXntV6iMUTsuWLTNu3Lg1HosHNg73IFSe+xAqyz0IleUehMpzH/5ZVWlt1hgHAAAAANhINsl3WgIAAAAAf72ElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitCSPP/54jj322HTt2jVVVVW57777Kl0SNCkTJkzIAQcckLZt26ZTp04ZNGhQfvWrX1W6LGgybrjhhvTq1Svt2rVLu3bt0qdPnzz44IOVLguarB/84AepqqrKqFGjKl0KNBkXX3xxqqqq6vzstttulS4LmpTf//73OeWUU9KhQ4e0bt06PXv2zOzZsytdVkUJLcmyZcuy995757rrrqt0KdAkzZw5MyNHjszTTz+dadOmZcWKFTniiCOybNmySpcGTUK3bt3ygx/8IHPmzMns2bNz2GGH5bjjjsvLL79c6dKgyXnuuedy0003pVevXpUuBZqcPffcMwsWLCj/PPnkk5UuCZqM999/P3379k3z5s3z4IMP5pVXXsnll1+erbbaqtKlVVR1pQug8gYOHJiBAwdWugxosh566KE6v992223p1KlT5syZk6985SsVqgqajmOPPbbO79/73vdyww035Omnn86ee+5Zoaqg6Vm6dGmGDh2am2++OZdeemmly4Emp7q6Ottuu22ly4Am6V//9V+z/fbb59Zbby3v22mnnSpYUTGYaQlQMB9++GGSZOutt65wJdD0rFq1KnfddVeWLVuWPn36VLocaFJGjhyZY445JgMGDKh0KdAk/e///m+6du2aHj16ZOjQofntb39b6ZKgyXjggQey//7758QTT0ynTp2y77775uabb650WRVnpiVAgdTU1GTUqFHp27dv9tprr0qXA03G3Llz06dPn3z88cfZYostMmXKlOyxxx6VLguajLvuuivPP/98nnvuuUqXAk3SgQcemNtuuy277rprFixYkEsuuSRf/vKXM2/evLRt27bS5cFfvddffz033HBDxowZkwsuuCDPPfdczjnnnLRo0SLDhw+vdHkVI7QEKJCRI0dm3rx53iEEG9muu+6aF198MR9++GHuvffeDB8+PDNnzhRcwkbwu9/9Lueee26mTZuWVq1aVbocaJJqvy6sV69eOfDAA9O9e/fcfffd+cY3vlHByqBpqKmpyf7775/vf//7SZJ999038+bNy4033tikQ0uPhwMUxNlnn53/+q//ymOPPZZu3bpVuhxoUlq0aJGdd945vXv3zoQJE7L33nvnqquuqnRZ0CTMmTMnixYtyn777Zfq6upUV1dn5syZufrqq1NdXZ1Vq1ZVukRoctq3b59ddtklv/71rytdCjQJXbp0WeM/y3ffffcm/5oGMy0BKqxUKuWf//mfM2XKlMyYMcMLl6EAampqsnz58kqXAU3C4Ycfnrlz59bZd9ppp2W33XbL+eefn2bNmlWoMmi6li5dmt/85jc59dRTK10KNAl9+/bNr371qzr7XnvttXTv3r1CFRWD0JIsXbq0zv+gzZ8/Py+++GK23nrr7LDDDhWsDJqGkSNH5s4778z999+ftm3bZuHChUmSLbfcMq1bt65wdfDXb+zYsRk4cGB22GGHLFmyJHfeeWdmzJiRhx9+uNKlQZPQtm3bNd7j3KZNm3To0MH7nWEj+da3vpVjjz023bt3z9tvv51x48alWbNmOemkkypdGjQJo0ePzsEHH5zvf//7GTJkSJ599tlMnDgxEydOrHRpFSW0JLNnz07//v3Lv48ZMyZJMnz48Nx2220VqgqajhtuuCFJcuihh9bZf+utt2bEiBEbvyBoYhYtWpRhw4ZlwYIF2XLLLdOrV688/PDD+epXv1rp0gBgo3jrrbdy0kkn5b333kvHjh1zyCGH5Omnn07Hjh0rXRo0CQcccECmTJmSsWPH5rvf/W522mmnXHnllRk6dGilS6uoqlKpVKp0EQAAAAAAq1mIBwAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAA2QTvuuGOqqqoyYsSISpcCALDBCS0BANbRWWedlaqqqlRVVeXRRx9dp7G/+MUvymPPPffcL6hCAADYtAktAQDW0bBhw8rbt99++zqN/elPf1rvcSplxowZ5RB1xowZlS4HAACSCC0BANZZ37598zd/8zdJkkmTJuVPf/rTWo1btmxZpkyZkiTZc88907t37y+sRgAA2JQJLQEA1sOpp56aJPnjH/+Y+++/f63GTJ48OcuWLaszHgAAWJPQEgBgPZx66qmpqqpKsvaPiK9+NHyzzTbLKaec8oXVBgAAmzqhJQDAeujRo0f69u2bJHn44YezaNGiRvu//fbbmT59epLksMMOy3bbbbdGn/vuuy8nnnhidthhh7Rq1Srt27fP/vvvn0suuSTvv//+WtU1derUnHLKKenRo0fatGmTVq1aZaeddsrgwYNz22235aOPPkqSvPHGG6mqqkr//v3LY/v3719+v+Xqn9tuu22Nc3zyySe5/vrr079//3Ts2DEtWrTItttum6OPPjq33357ampqGqxvxIgRqaqqyo477pgkWbBgQc4///zsueeeadu27Tq/W7O+d3LefffdOfzww9OxY8e0bt06u+66a7797W9n8eLFDR7n0EMPTVVVVQ499NBGz3fxxReXz1ef1W0XX3xxkuSxxx7LoEGD0rVr17Ru3Tq77757xo8fX55xu9rUqVNz9NFHl/vtsccemTBhQj755JO1/ls899xzOemkk7L99tunVatW2X777XPaaafl1VdfXavxv/71rzN69Oj07NkzW265ZVq3bp0ePXpkxIgRmT17doPjPvsd1NTU5JZbbkn//v3TuXPnbLbZZlY4BwDWXQkAgPUyceLEUpJSktJVV13VaN/LLrus3Pc//uM/6rQtXry4dNhhh5Xb6/vp1KlTadasWQ0e/9133y0dfvjhjR4jSenWW28tlUql0vz58z+3b+3+q82fP7+02267NTrmkEMOKb333nv11jl8+PBSklL37t1Ls2bNKm2zzTZrjH/sscc+92+/2mOPPVYeN3369NIpp5zSYF0777xzacGCBfUep1+/fqUkpX79+jV6vnHjxpWPV5/VbePGjStNmDChVFVVVW8tBx98cGnp0qWlmpqa0jnnnNNgzUcddVRp5cqV9Z6re/fupSSl4cOHl3784x+Xqqur6z1Gy5YtS3fffXejn+uyyy4rNW/evME6qqqqShdeeGG9Y2t/Bw8++GBpwIABa4wfPnx4o+cHAPgsMy0BANbTkCFD0qpVqyR1VwWvz+r2LbbYIscff3x5//LlyzNgwIA8+uijadasWU499dT87Gc/y9NPP50nnngi3/ve99KhQ4csWrQoRx99dN588801jv3RRx+lf//+5ZmcvXv3zk033ZRf/vKXmT17dqZMmZLRo0ena9eu5THbbbdd5s6dm1tuuaW875ZbbsncuXPr/AwaNKjcvnTp0hx++OHlmXuDBg3KAw88kNmzZ+eee+5Jv379kiRPPvlkjj322KxatarBv8fSpUszePDgfPzxx/mXf/mXzJgxI88++2x+/OMfp0uXLo3+LRty4YUX5vbbb8+gQYMyefLkzJkzJ1OnTs0xxxyT5M8zCTeGBx98MGPHjs1BBx2UO++8M7Nnz85DDz2UgQMHJkmeeuqpTJgwIVdccUWuvvrqDBw4MJMmTcqcOXNy//3356CDDkqSPPTQQ7n55psbPdeLL76Yf/zHf0ynTp1yzTXX5JlnnsnMmTNz/vnnp2XLllm+fHmGDh3a4GzJyy67LOedd15WrFiRXr165YYbbsgjjzyS2bNn54477kifPn1SKpUyfvz4XH311Y3Wcv755+eRRx7J3/3d39X5DlZ/bgCAtVbp1BQAYFM2ZMiQ8myyV199td4+L730UrnPsGHD6rRdcMEFpSSl9u3bl2bPnl3v+DfeeKPUpUuXUpLSySefvEb76NGjy8cfOXJkqaampt7jLF++vLRw4cI6+2rPkvu8GY7f+ta3yn2/853vrNFeU1NTGjp0aLnP9ddfv0af1TMtk5S22GKL0osvvtjoOT9P7fqTlC699NJ66zriiCNKSUrV1dWlRYsWrdFnQ8+0TFIaPHjwGrMkV65cWTrooINKSUpt27YttWrVqjRq1Kg1jrNs2bLyTMpevXrVe67V7fn/mav1zSJ99NFHyzMwDzjggDXaX3755fIMy3HjxtV77axatao8g3WLLbYoLV68uE77Z7+D+q4NAIB1ZaYlAMBfYNiwYeXthmZb1t5fu//SpUtz3XXXJUnGjx+f3r171zu+e/fuufDCC5Mk99xzT533IX7wwQe56aabknw6w/Kqq65q8H2LLVq0SOfOndfmY61h+fLl+dGPfpQk2XPPPcvvbKytqqoq119/fTp06JAkufbaaxs95re//e3svffe61VPfXr37p0LLrig3rrGjBmTJFm5cmVmzZq1wc7ZkM033zwTJ05Ms2bN6uxv1qxZzjzzzCTJkiVL0rFjx/zbv/1bveOHDx+eJPnv//7vfPjhh42e7/LLL8+22267xv7+/fvnjDPOSPLpOy8/O9vy8ssvz4oVK7L//vtn3Lhx9V47m222Wa655pq0bNkyS5cuzb333ttgHbvssku91wYAwLoSWgIA/AWOPPLIchB4xx13pFQq1WmvqanJnXfemSTp1q1bnYVvZs6cWQ6jTjjhhEbP85WvfCVJsmLFisyZM6e8/9FHHy0vrnPOOeesEZJtKHPmzMkHH3yQ5NPFdBo6T7t27TJkyJAkySuvvJIFCxY0eMyhQ4du0BpPPvnkBgPb2oHw66+/vkHPW5+vfvWr2Xrrrettqx3UHn/88WnevPnn9ps/f36D59pqq61y3HHHNdj+D//wD+XtRx55pE7bz3/+8yTJ4MGDG/zbJUn79u3Ts2fPJGk09P3a1772hV2DAEDTIrQEAPgLVFdX5+STT07y6YrcTz75ZJ326dOn5+23307yaUi32WZ//udX7VlvXbp0WWPl7to/e+21V7nvwoULy9svvPBCefvLX/7yhv1wtcybN6+8feCBBzbat3Z77XG1bbHFFunRo8eGKe7/7bbbbg221Q4QlyxZskHPW59ddtmlwbb27duvc7/Gat53331TXV3dYPs+++yTFi1aJEnmzp1b3v/mm2/mD3/4Q5Jk7NixjV5/VVVV5eu19vX3Wb169WqwDQBgXQgtAQD+Qo09It7Qo+FJsmjRovU63+qZlUny7rvvlrfXdwGbtbF48eLydqdOnRrtW/sx5drjaqsdyG0om2++eYNttcPixhYI2ti1bIiaP+/7qK6uLoe2tb+PDXH9fdZWW221XscEAPishv9LFgCAtbLPPvukZ8+emTt3bu65557y+/+WLVuWyZMnJ/n08eQ99tijzrjaQdTzzz/f4GPCn9WtW7cNV/x6aOwx4rXlEeINZ32/j9rX30UXXZQTTzxxrca1adOmwTbfKwCwoQgtAQA2gGHDhuW8887LBx98kJ///Oc54YQTMmXKlPKiOZ+dZZmkvGBNknTs2HG9wshtttmmvL1gwYLstNNO61H956v9ePU777zT6GPNtR8fbui9jkWzelZjTU1No/1qL4JUFO+8806j7StXrizPsKz9fdS+/po3b17nFQQAAJXm8XAAgA1g6NCh5Vlmt99+e5I/PxrevHnznHTSSWuM2Xfffcvbv/zlL9frvPvtt195+/HHH1/n8Ws7S692oPXMM8802vfZZ5+td1yRtW3bNkny/vvvN9rvtdde2xjlrJMXX3wxK1eubLD9pZdeyieffJKk7vfRo0ePbLnllknW//oDAPiiCC0BADaALl26ZMCAAUmSqVOnZt68eZk+fXqS5KijjkrHjh3XGDNgwIDyOw2vvvrqNVYeXxv9+/cvP657zTXXrPP7Glu1alXeXr58eYP9evfuXX4P5U9+8pMGZyQuWbIkd999d5Jkjz32+ELfs7khrZ6h+tprrzW46M27776badOmbcyy1srixYvLq4DX55Zbbilvr75Gk08f5T766KOTJL/4xS/yP//zP19ckQAA60hoCQCwgax+BHzFihX5+te/Xg4Q63s0PPl0MZqzzz47SfLUU09l9OjRjT6e/M477+RHP/rRGsc466yzkiRz5szJqFGjGgw/V6xYscbiK7VDxd/85jcNnrtly5Y5/fTTk3y6Ivj48ePX6FMqlXL22WeXFwda/dk2Bf369UuSfPLJJ7nmmmvWaF+xYkVOP/30/OlPf9rYpa2VMWPG1PuY+MyZMzNx4sQknwbPBxxwQJ32sWPHplmzZqmpqckJJ5yQt956q8FzrFq1KnfccUejfQAANhTvtAQA2ED+/u//Pm3bts2SJUvy8ssvJ/l0NeVjjz22wTHf/e53M3PmzDzzzDO56qqrMmPGjJxxxhnZZ5990qZNm7z//vt5+eWX88gjj+TBBx9Mz549y+HhauPHj8+0adMyd+7cXHvttZk1a1bOOuus9OzZMy1atMhbb72VJ554Ij/72c9y6aWXZsSIEeWxO+ywQ7p165a33norP/zhD9OtW7fsuuuu5UfdO3fuXH50+qKLLsrkyZPz+uuv5+KLL87cuXNz2mmnpUuXLpk/f36uvfbazJgxI0nSp0+fnHnmmRvwr/vFOuaYY9K9e/e8+eabufDCC/Puu+/m+OOPT6tWrfLyyy/n6quvzgsvvJCDDjooTz/9dKXLrWPvvffOK6+8kt69e2fs2LH50pe+lOXLl2fq1Km54oorsnLlylRXV+e6665bY2zPnj3zwx/+MKNHj84rr7ySvfbaK2eeeWYOO+ywdO7cOR9//HHeeOONzJo1K/fee28WLFiQuXPnVnwxKADgr5/QEgBgA2ndunVOOOGE3HrrreV9Q4YMScuWLRsc07Jly0ybNi0jRozI5MmT89JLLzU6Q7Fdu3Zr7Nt8883z6KOPZvDgwXn88cczZ86cdQoML7jggvzTP/1T5s+fn+OOO65O26233loOOdu2bZvp06dn4MCBefXVVzNp0qRMmjRpjeP17ds3DzzwwCa1knSLFi1y++2356ijjsqyZctyxRVX5Iorrii3N2vWLFdeeWUWL15cuNByn332ydlnn51vfvOb9V47LVq0yE9+8pMceOCB9Y4fNWpU2rRpk1GjRuXDDz/MZZddlssuu6zevi1atKjzSgEAgC+Kx8MBADag4cOH1/m9oUfDa2vbtm0mTZqUJ554Iqeffnp23XXXtG3bNtXV1dl6661zwAEHZOTIkZk6dWqD71TcZpttMnPmzEyePDknnHBCunXrlpYtW6ZVq1bp0aNHTjzxxNxxxx31Lgj0zW9+M5MmTcoRRxyRTp06pbq64f/X3nHHHfPSSy/l2muvTb9+/dKhQ4c0b948nTt3zlFHHZWf/vSnefzxxzeZVcNrO+SQQzJnzpyceuqp6dq1a5o3b54uXbqUw+Bzzjmn0iU26PTTT88TTzyRIUOGpGvXrmnRokW22267DBs2LC+88EK+/vWvNzr+jDPOyOuvv55LLrkkffv2zTbbbJPq6uq0adMmu+yySwYPHpwbb7wxv//977PzzjtvpE8FADRlVaX1eeM7AAAAAMAXxExLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUyv8Bu6Z6ve7s/PcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE1\n", + "lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)\n", + "lib.ire_plot('test', ire1, IREth1, 'AE1')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IQ5H5q4qetns", + "outputId": "1a1ee95a-f1d7-46bd-d05e-1cafe60a7358" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step\n" + ] + } + ], + "source": [ + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, test_data, IREth2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 900 + }, + "id": "2vQM2NaBe1-x", + "outputId": "33ebbd38-8fe2-4a93-fb46-5a10aaa5b997" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] [0.54] 0.4 \n", + "1 [1.] [0.8] 0.4 \n", + "2 [1.] [1.] 0.4 \n", + "3 [1.] [0.7] 0.4 \n", + "4 [1.] [1.] 0.4 \n", + "5 [1.] [0.71] 0.4 \n", + "Обнаружено 6.0 аномалий\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApVdJREFUeJzs3Xd0VFXXx/HfpJAEJCBSpQXpSO9Y6EVUFBQfmlIUVASlPErxUYoiCAoqiAUVAZWiiKKCFBGkKqA0kd67dAgldd4/9juZjBQDJLmT5PtZKwvm3DuTPcncmdx9z9nb5Xa73QIAAAAAAAAAPxHgdAAAAAAAAAAAkBhJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAgGS0adMmPfPMMypTpoyyZs0ql8uV8LV7926nwwMAAADSBJKWAADghtWtWzchMTdo0KAr7pc4gffPr8DAQGXPnl3FixfXI488oo8//liRkZHXFcO1fnXs2PHGfwiSvvvuO1WqVEnvv/++Nm3adE3xAxndSy+95HNcdu3a9ZofI6XeBw4fPqzPPvtMTzzxhKpWrapbbrlFwcHByp49u0qVKqUOHTro+++/V3x8/A38BAAAQGIkLQEAgF+Ij4/X6dOntX37dk2fPl1dunRRkSJF9M033zgdWpJERkaqY8eOioqKkiTly5dPjzzyiJ555hl169ZN3bp1U3h4uMNRXr9BgwYlKTGdFnTs2DHhuUyYMMHpcFLF7t27E55zRESE0+Fcwu1267PPPvMZmzZtWsLx5JS9e/eqfv36yp8/v9q3b6/x48fr999/14kTJxQbG6vTp09ry5YtmjRpkh544AFVrlxZGzZscDRmAADSiyCnAwAAABlT8+bNlT9//oTb8fHxOnbsmFasWKH9+/dLko4dO6aWLVtq+vTpatGiRZIfu1q1aqpevXqS969Zs2bSA7+CH374QSdPnpQk3X777Vq1apXCwsJu+HGBjGDhwoXau3evz9jJkyf13Xff6ZFHHrmux0yO94GDBw9q4cKFPmOFCxdWxYoVlTt3bp07d06rVq3Stm3bJEnr1q3TnXfeqQULFqhatWrXFTcAADAkLQEAgCN69OihunXrXjIeHx+viRMnqmvXroqKilJ8fLy6du2qJk2aKHPmzEl67HvvvTfVZwP+8ccfCf9v06YNCUvgGkycODHh/2FhYbpw4ULC+PUmLZPzfeDWW2/V448/rg4dOqhYsWKXbJ85c6Y6d+6sY8eO6ezZs3rkkUe0adMm3gcAALgBLA8HAAB+JSAgQJ06ddKIESMSxo4cOaJvv/3WuaCSwDPLUrKl4QCSJjIyUl9//XXC7VGjRiX8f+7cuTpy5IgTYUmSwsPDNWrUKO3YsUOvvvrqZROWkvTggw9q9uzZCgwMlCTt2bNHkyZNSs1QAQBId0haAgAAv/TUU08pNDQ04fbixYsdjObfxcTEJPw/IIA/sYCk+vrrr3Xu3DlJUpEiRfTUU0+pYsWKkqTY2Fh98cUXjsVWpkwZ9erVy+e96EqqVaumhx9+OOH2rFmzUjI0AADSPf6iBgAAfikkJESlS5dOuH3w4EEHo7m8xM1pEi9v7dSp0yWdia/U8CUyMlKjR49WkyZNVKBAAYWGhurmm29W2bJl1b17d/32229JiiXx9/JYt26devToobJlyypHjhxyuVxq3rz5NT1HTzfmwYMHJ4wNHjz4mrsvu91uffPNN+rQoYNKlCihbNmyKTQ0VAULFlTz5s01ceJExcbGJimmzZs3q0+fPqpZs6Zy5sypTJkyKTQ0VLlz51aVKlXUqVMnTZw40Wf2qyRFREQk6XeVHM2GrjfGy4mJidFnn32m//znP7rtttuUNWtWZcmSRUWKFFGbNm30zTffyO12X/a+EyZMkMvlUpEiRRLG9uzZc8UO2k5I/Pt49NFH5XK59Nhjj112u7+78847E/6/e/du5wIBACAdoKYlAADwW4nrwV28eNHBSFLGDz/8oC5duujw4cM+41FRUTp16pQ2btyosWPHqm3btvroo4+SXNNTsoTqkCFDFBcXl9xhX7P169erQ4cOWrt27SXb9u/fr/3792vmzJkaNmyYZsyYoTJlylzxsa72vI4ePaqjR4/qjz/+0IQJE9SuXTt9/vnnyflUkiQ5Y1y0aJE6d+6sHTt2XLJt9+7d2r17t6ZOnaqaNWtq+vTpPs2t0oI9e/Zo0aJFCbcfffRRSVLbtm3Vp08fxcXFaf369Vq7dm3C7Et/ljjx6w/HHgAAaRlJSwAA4LcSz67MkyePg5FcXvXq1dWtWzdJ0oIFC7R582ZJUoMGDVSqVCmffRPPGpWkadOmqV27dgmJjcDAQN11110qVqyYIiMjtWTJkoTnP3nyZO3atUs///xzkpapvvHGGwkzI4sWLarq1asrc+bM2r17t4KDg6/pObZo0UJly5bVypUrtWrVKklX7sp8ue7LixcvVrNmzXTmzBlJUnBwsKpVq6bixYsrODhYu3fv1tKlS3Xx4kVt2bJFd9xxh1asWHHJz0uS3nnnHZ8Znzlz5lTNmjWVL18+uVwunThxQps3b9amTZsumzDq0KGDjh8//q+/K0nX1HU6OWNM7KuvvlK7du0SSg+EhYWpZs2aioiIUEBAgLZu3aoVK1YoNjZWv/76q2rVqqVVq1b5HCulS5dWt27ddPbs2YQai1mzZlX79u2v6/klt88++yxhlmiNGjVUokQJSVLevHnVqFEjzZkzR5LNtkwLScsNGzYk/L9gwYIORgIAQDrgBgAAuEF16tRxS3JLcg8cOPCK+3n2keReuHDhVR9zy5YtPvu/++67yRJDSunQoUPC9//000+vuu/27dvdN910U8L+1atXd2/bts1nn7i4OPfIkSPdAQEBCfs9++yzV3zMxD+roKAgd7Zs2dzffPPNJftdvHjxep6ee+DAgdf88z106JA7d+7cCfdr3769++DBg5fsd/jwYXeLFi0S9itXrpw7NjbWZ5+YmBh3zpw5E/YZNmyYOzo6+rLf9/jx4+7x48e7hw8fftnt1/K7uhbJGeOff/7pDgsLc0tyu1wu9/PPP+8+efLkJfvt2LHDfddddyV8z6ZNm1728Xbt2pWwT+HCha/3KSa74sWLX/EY/+KLLxK25c6d2x0TE/Ovj+fk+8DZs2fdN998c8L3f+ONN1L1+wMAkN4w0xIAAPid2NhY9ejRI+F2eHi4WrduneT7z549W8eOHUvy/q+88opy5MhxTTHeiFdeeUWRkZGSpGLFimnevHnKli2bzz4BAQHq3bu3XC6XevfuLUkaO3asevXq5VOf8HLi4+P13XffqXbt2pdsCwkJSaZn8e/+97//6e+//5YkPffcc3rnnXcuu1+ePHn01VdfqXHjxvr555+1YcMGTZ8+Xa1atUrYZ/PmzQm/0zvvvFP9+vW74vfNkSOHOnXqlIzPJGmSM8bnnntOFy5ckCSNHDlSvXr1uux+t912m+bMmaPq1avrr7/+0o8//qjffvtNNWrUuIFnkjqWL1+ubdu2SbIZuIl/35LUvHlz3XTTTYqMjNTff/+tH3/8Uc2aNUvy46f2+8CgQYMSapTedNNN6tChw3U/FgAAYHk4AADwE/Hx8Tp27JiWLVum119/XStXrpQkBQUFafz48brllluS/FirVq1KWMqcFM8//3yqJS1PnTqladOmJdweMWLEJQnLxHr06KFPPvlEGzduVHx8vMaNG6dhw4Zd9Xu0bNnysgnL1HT06NGEWo158+bV8OHDr7p/YGCgXnvtNdWqVUuS9MUXX/gksTzLyyUpV65cKRDxjUuuGNetW6eff/5ZklSpUiX17NnzqvtnyZJFL7/8stq0aSPJfnZpIWmZuMFO06ZNlTNnTp/tmTNn1sMPP5yw38SJE68paZma7wMLFizQ22+/nXC7f//+fvs6BQAgraB7OAAAcES9evV8uhYHBgYqT548euihhxISliVLltS3336rhx9+2OFok8/y5csVFRUlyeod/lsSJiAgQI8//njC7YULF/7r97iWWakp5aefflJ0dLQk6aGHHkpSLc4aNWooS5YskqSlS5f6bEtcH3DhwoXaunVrMkabPJIrxtmzZyf8v02bNknq6l2/fv2E///zZ+ePLl68qC+//DLhduJu4Yklrr35/fff68SJEyke27Xas2ePWrdunVCj9K677lLfvn0djgoAgLSPmZYAAMAv5cmTR5MmTbquhigDBw7UoEGDkj+oZLBmzZqE/1evXl1BQf/+59idd97pc3+3233VRFaVKlVuLMhksGLFioT/r1+/Xt27d7+m+588eVLnzp1LSGIWLFhQNWvW1K+//qrTp0+rSpUqeuyxx9SiRQvdeeed19RZPaUkV4yJf3YLFy7Unj17/vU+7v9vZiNJ+/btu/bgU9nMmTN16tQpSVL27NmvmLyvW7euChQooP379ys6OlpTp07VM888k6TvkRrvA8ePH1fTpk0TlqEXKFBAU6ZMUWBgYIp+XwAAMgKSlgAAwBHNmzdX/vz5E24fP35cO3bsSFjOeeTIEd199936+uuvdf/99zsVZrI7evRowv8LFy6cpPtEREQk/D86Olpnz55VeHj4Fff3h2WpiTu/L1269Lpm/508eTIhaSlJn3zyierXr68jR44oMjJS77//vt5//30FBQWpYsWKql27tpo0aaIGDRo4ljRKjhgT/+x+/PHHa47BU1fRnyVeGv7II49csdZqQECA2rVrl1BeYOLEiUlOWqa0yMhI3Xvvvdq0aZMk6ZZbbtHcuXNVoEABhyMDACB9YHk4AABwRI8ePfTuu+8mfE2ZMkUrV67UunXrVKFCBUmWoGvTpo127NjhcLTJx9OAR5JPQu5q/rnf2bNnr7p/WFjYtQeWzE6fPn3DjxEbG+tzu0yZMlq3bp2effZZnzqgsbGxWr16tUaNGqUmTZqocOHC+vjjj2/4+1+P5IjxRn92nmXK/urw4cOaN29ewu1HH330qvsnXjq+cuVKbd68OcViS6qLFy/qgQceSChlkTVrVv34448qU6aMw5EBAJB+kLQEAAB+pXz58po3b17CLMzIyEh17tzZ4aiSz0033ZTw/3PnziXpPv/cL2vWrMkaU0pInGgdNWqU3G73NX8lnmHqkSdPHo0ePVpHjhzRokWL9Oqrr6pp06Y+M08PHDigLl266LnnnkuNp5rsMSb+2c2YMeO6fnb+7PPPP/dJrNapU8envu0/v8qWLetz/8SzNJ0QExOjhx9+OKG+bFhYmL7//ntVq1bN0bgAAEhvSFoCAAC/kzt3bo0ZMybh9qJFizRr1iwHI0o+iZdu7927N0n32b17d8L/M2XKlCaSlnny5En4/+HDh5P98UNCQlSnTh299NJLmj17to4dO6Yff/xRd911V8I+Y8aMuabu0f4SY0r/7Jx2o0nHzz//XPHx8ckUzbWJi4tT27ZtE5olBQcHa/r06apTp44j8QAAkJ6RtAQAAH7J07zE46WXXnIwmuRTqVKlhP+vXLkySUt5ly9f7nP/pHSTTm7X+j1r1KiR8P9ly5YldziXCA4O1j333KOffvrJZ2be999/f8m+Tvz8pKTHmBI/O6ee8z/98ccf+vPPPxNuV6tWTTVq1EjSl6dp1f79+7VgwYJUjz0+Pl4dO3bU9OnTJUmBgYGaPHmy7r333lSPBQCAjICkJQAA8FuJO/+uXbtW3333nXPBJJM77rgjoenI0aNH/3UGaXx8vD799NOE2/Xr10/R+K4kNDQ04f8xMTH/un+TJk0SkkzLly/XunXrUiy2xEJCQtS4ceOE20eOHLlkn2t9Lsnt32JM3HhqxowZl30O18rp5+yReJZluXLltHLlSv36669J+rrnnnsu+zip5emnn9bnn38uyZLA48ePV8uWLVM9DgAAMgqSlgAAwG81bNhQd9xxR8LtIUOGOBhN8siePbtatWqVcPuFF164amOdd999Vxs2bJBknZSffPLJFI/xcm655ZaE/x84cOBf98+fP39CgxW326327dvrzJkzSfpe8fHxPl3WJeuIndQlwfv27Uv4f+7cuS/Zfq3PJamSK8bq1aurbt26kqQLFy7oscceU3R0dJIeNzo6+rLdw7Nnz66AAPvT/+jRo44kLmNiYjR58uSE2//WgOefEu//zTff/GtDquTUu3dvffTRRwm3x44dq/bt26fa9wcAICMiaQkAAPzagAEDEv6/atUqzZkzx8FokseAAQMSGvJs3bpVTZo00c6dO332iY+P1zvvvKPevXsnjHXr1u2yzWlSQ+LlzPPmzUtSh+vXXntN+fLlkyStX79e1atX9+ka/U/79+/XW2+9pZIlS2ratGk+22bOnKkSJUrozTff9KnxmVhUVJTefffdhOW7ktS0adOrPpeZM2cmOSH4b5IzxjFjxiS8RubPn6/atWvrt99+u+L33rp1q1599VVFRERcdkl5SEiIihcvLsmSh99++22SnlPHjh0TGuLc6GvPU9dTspmKbdq0uab7P/DAAwn1XM+fP6+vvvrqhuJJqoEDB+qtt95KuD1ixAh17do1Vb43AAAZWZDTAQAAAFxNkyZNVKNGjYSEzauvvuqzTPRyEidHkiJz5swaMWLEDcV5LYoWLaqPP/5Y7dq1U1xcnFasWKGSJUvq7rvvVtGiRRUZGaklS5b4zAKsWbNmqsb4T9WrV1fBggW1b98+HTp0SKVKlVLjxo2VM2fOhHqJ1apV85lFeuutt2rmzJm69957dezYMW3ZskVNmjRR/vz5Vb16deXKlUsxMTE6duyY/vzzT+3ateuqMezYsUMvvPCCXnjhBRUqVEjly5dPmKV4+PBh/frrrzpx4kTC/u3atfOZqevRtGlThYWF6cKFC1q7dq1Kly6tunXrKnv27AnPpXHjxj5LuJMquWIsW7aspkyZolatWun8+fP67bffVLNmTRUtWlSVK1dWjhw5dPHiRf39999av359kmaMPvzwwxo6dGjC950wYYKKFSum4ODghH3efPPNa37OSZV4SXft2rVVsGDBa7p/WFiYWrRooUmTJiU83uOPP37F/ZPjfWD27Nl65ZVXEm7nyZNHe/bsUffu3ZP0mK+88opy5MiR5BgAAEAibgAAgBtUp04dtyS3JPfAgQOvuJ9nH0nuhQsXJvnxZ82a5XPfn3766aoxXOtXtmzZrv1J/0OHDh0SHu/TTz9N0n2+//57d548ef41vjZt2rjPnTt31cdKvH9K+f77792ZMmW6YpwdOnS47P12797tbtCgQZJ/H3ny5HHPmTPH5zG++uort8vlStL9AwIC3M8884w7Ojr6is/l/fffv+rjXe11fCXJHaPb7XavXbvWXaVKlST/7CIiItxr1qy57GOdOnXKXapUqave/58Sv64LFy58zT8Tj2PHjvm8dj766KPrepx58+YlPIbL5XLv3LnTZ3tyvw98+umn1/14kty7du26rucJAADcbmZaAgAAv3fvvfeqatWqWr16tSSbvdSgQQOHo7px999/v7Zv367x48frhx9+0MaNG3Xs2DGFhYXp1ltvVb169dS+fXufbtJOuv/++7V69WqNHTtWS5cu1d69exUZGSm3233V+xUuXFg//fSTVqxYoa+++kqLFy/Wvn37dPLkSQUFBemWW25R8eLFVbVqVTVu3Fh169ZNaOLj0bJlSx06dEjz5s3TsmXLtG7dOu3cuVOnTp2SJGXLlk0lSpTQXXfdpfbt26tMmTJXjenpp59WuXLl9OGHH+q3337TgQMHdP78+X99LleT3DFKUoUKFbR69WrNmzdP3377rZYtW6aDBw/q1KlTCgkJUa5cuVSyZEnVqFFDTZo0Ua1ata7YKTxbtmxatWqV3nvvPc2aNUubNm3SqVOnUqW+5ZQpUxKW4YeEhFx3A5v69esrX758OnTokNxutyZOnOjTsAsAAKQfLveN/GUGAAAAAAAAAMmMRjwAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FeCnA4grYiPj9fBgweVNWtWuVwup8MBAAAAAAAA0hS3262zZ8/q1ltvVUDA1edSkrRMooMHD6pgwYJOhwEAAAAAAACkafv27VOBAgWuug9JyyTKmjWrJPuhhoeHOxxNyoiJidG8efPUuHFjBQcHOx0OkOFwDALO4zgEnMUxCDiLYxBwXno/Ds+cOaOCBQsm5NmuhqRlEnmWhIeHh6frpGXmzJkVHh6eLg8MwN9xDALO4zgEnMUxCDiLYxBwXkY5DpNSepFGPAAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArQU4HkBG43W7FxMQoPj7e6VCuKiYmRkFBQbp48aLi4uKcDiddCwwMVHBwsNNhAAAAAAAA+CWSlikoOjpaf//9t86fP58mkoBut1t58+bVvn375HK5nA4n3QsJCVHOnDkVHh7udCgAAAAAAAB+haRlCjl//rz27dunwMBA3XzzzQoLC1NgYKBfJwPj4+MVGRmpm266SQEBVA5IKZ6Zt6dPn9aBAwckicQlAAAAAABAIiQtU8ixY8cUHByswoULKzAw0OlwkiQ+Pl7R0dEKDQ0laZnCwsLClDVrVu3fv1/Hjh0jaQkAAAAAAJAImakUEBsbq3PnzilHjhxpJmGJ1OdyuZQtWzZFRUUpJibG6XAAAAAAAAD8BknLFBAbGyvJahYCV+NpxpMWap4CAAAAAACkFpKWKcif61fCP/AaAQAAAAAAuBRJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCUdFRETI5XJpwoQJCWMTJkyQy+Xy+QoICFB4eLgqVaqk/v376+jRo1d8zH/e90pfixYtSvknCAAAAAAAgGsW5HQAwJVkyZJFLVu2lGTdtffs2aMVK1Zo7dq1+vTTT7VkyRIVL178ivdv0qSJ8ubNe8XtV9sGAAAAAAAA55C0hN/KmTOnzwxMSdq4caPq1KmjI0eOqGfPnpo1a9YV79+vXz/VrVs3ZYMEAAAAAABAsmN5ONKU22+/Xb1795YkzZ8/X1FRUQ5HBAAAAAAAgORG0hJpTvny5SVJMTExOnHihMPRAAAAAAAAILmRtESac+bMGUlSYGCgcubM6XA0AAAAAAAASG4kLZHmeOpY3nPPPQoODnY4GgAAAAAAACQ3GvE4pWpV6fBhp6Pw4ZIU7nbL5XJdfce8eaXVq1MlJg9P9/Bx48Zp8uTJKly4sEaPHn3V+9SrV++K27Jly6ZTp04lc5QAAAAAAABIDiQtnXL4sHTggNNR+HD9/5e/2LNnz2UTqNWrV9e8efOULVu2q96/SZMmyps372W3Zc6cOVliBAAAAAAAQPIjaemUKyTTnOSW5P7/mZZXTV6mUuxZsmRRy5YtJUlRUVHatGmT1q1bp5UrV+qpp57S1KlTr3r/fv36qW7duqkQKQAAAAAAAJITSUunpPLy6qRwx8frzJkzCg8PlyvA+XKnOXPm1IQJE3zGZsyYoVatWmnatGmqXbu2nnnmGWeCAwAAAAAAQIpxPjMFXIOHHnpI/fr1kyQNGDBAp0+fdjgiAAAAAAAAJDeSlkhz+vfvr3z58un48eMaNWqU0+EAAAAAAAAgmZG0RJqTOXNmvfzyy5Kkt99+WydPnnQ4IgAAAAAAACQnaloiTercubNGjhypHTt26M0339Rrr712yT6vv/76JTUxE2vbtq0aN26cglECAAAAAADgepC0RJoUHBysIUOGqE2bNhozZox69+6tW265xWefuXPnXvUxKlasSNISAAAAAADAD5G0hKN27959yVjHjh3VsWPHf71v69at1bp160vG3W53MkQGAAAAAAAAp6TJmpaLFy9Ws2bNdOutt8rlcunbb79N8n2XLVumoKAgVaxYMcXiAwAAAAAAAHD90mTS8ty5c6pQoYLGjh17Tfc7deqU2rdvrwYNGqRQZAAAAAAAAABuVJpcHt60aVM1bdr0mu/39NNPq23btgoMDLym2ZkAAAAAAAAAUk+aTFpej08//VQ7d+7U559/riFDhvzr/lFRUYqKikq4febMGUlSTEyMYmJirnrfmJgYud1uxcfHKz4+/sYCT0WeWpCe2JHy4uPj5Xa7FRMTo8DAQKfDgcM87y3/9h4DIOVwHALO4hgEnMUxCDgvvR+H1/K8MkTSctu2berXr5+WLFmioKCkPeVhw4Zp8ODBl4zPmzdPmTNnvup9g4KClDdvXkVGRio6Ovq6YnbS2bNnnQ4hw4iOjtaFCxe0ePFixcbGOh0O/MT8+fOdDgHI8DgOAWdxDALO4hgEnJdej8Pz588ned90n7SMi4tT27ZtNXjwYJUoUSLJ9+vfv7969+6dcPvMmTMqWLCgGjdurPDw8Kve9+LFi9q3b59uuukmhYaGXnfsqc3tduvs2bPKmjWrXC6X0+FkCBcvXlRYWJhq166dpl4rSBkxMTGaP3++GjVqpODgYKfDATIkjkPAWRyDgLM4BgHnpffj0LOSOSnSfdLy7NmzWr16tdasWaPu3btL8i7JDQoK0rx581S/fv1L7hcSEqKQkJBLxoODg//1RRMXFyeXy6WAgAAFBKSdXkeeJeGe2JHyAgIC5HK5kvS6QsbB6wFwHsch4CyOQcBZHIOA89LrcXgtzyndJy3Dw8O1YcMGn7H33ntPP//8s6ZPn64iRYo4FBkAAAAAAACAy0mTScvIyEht37494fauXbu0du1a5ciRQ4UKFVL//v114MABTZo0SQEBASpbtqzP/XPnzq3Q0NBLxgEAAAAAAAA4L00mLVevXq169eol3PbUnuzQoYMmTJigQ4cOae/evU6FBwAAAAAAAOAGpMmkZd26deV2u6+4fcKECVe9/6BBgzRo0KDkDQoAAAAAAABAsqDbCgAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0hKMiIiLkcrl86pBOmDBBLpfL5ysgIEDh4eGqVKmS+vfvr6NHj17xMf953yt9LVq06Jpi9cTVsWPH63uyAAAAAAAASJI02YgHGUOWLFnUsmVLSVJcXJz27NmjFStWaO3atfr000+1ZMkSFS9e/Ir3b9KkifLmzXvF7f/c5nK5JOmqTZ4AAAAAAACQ8khawm/lzJnzkk7wGzduVJ06dXTkyBH17NlTs2bNuuL9+/Xrp7p166ZskAAAAAAAAEh2LA9HmnL77berd+/ekqT58+crKirK4YgAAAAAAACQ3EhaIs0pX768JCkmJkYnTpy44ccbNGhQwtJw6dKamLt3777kPufOnVP//v1VrFgxhYSEKG/evOrQoYMOHDhww/EAAAAAAABkdCwPR5pz5swZSVJgYKBy5sx5w49XsWJFdejQQRMnTpQkdejQwWf7TTfd5HP79OnTuuOOO7R3717dfffdKlu2rFasWKFJkybpl19+0bp165QtW7YbjgsAAAAAACCjImmJNMdTx/Kee+5RcHDwDT9e8+bN1bx584Sk5T/raP7Tt99+qyZNmmjJkiUKDw+XJJ08eVL169fX2rVr9d5776l///43HBcAAAAAAEBGRdLSIVWrVtXhw4edDuMSbrfbZ6n05eTNm1erV69OpYiMp3v4uHHjNHnyZBUuXFijR4++6n3q1at3xW3ZsmXTqVOnriuWLFmy6NNPP01IWErSzTffrH79+ql169b66aefSFoCAAAAAADcAJKWDjl8+DD1D//Fnj17LptArV69uubNm/evS7CbNGmivHnzXnZb5syZrzuuqlWrKl++fJeMly5dWpL4vQIAAAAAANwgkpYOuVIyzWlJnWmZGrJkyaKWLVtKkqKiorRp0yatW7dOK1eu1FNPPaWpU6de9f79+vVT3bp1kz2uQoUKXXbcM/Py4sWLyf49AQAAAAAAMhKSlg5J7eXVSREfH68zZ84oPDxcAQHON5bPmTPnJfUlZ8yYoVatWmnatGmqXbu2nnnmmVSPyx9+NgAAAAAAAOkZ2RekKQ899JD69esnSRowYIBOnz7tcEQAAAAAAABIbiQtkeb0799f+fLl0/HjxzVq1Khke1xPJ/LY2Nhke0wAAAAAAABcO5KWSHMyZ86sl19+WZL09ttv6+TJk8nyuAUKFJAkbdy4MVkeDwAAAAAAANeHmpZIkzp37qyRI0dqx44devPNN/Xaa69dss/rr79+SU3MxNq2bavGjRsn3H744Yf15ptvqmHDhqpfv76yZs0qSRo+fLhuueWWZH8OAAAAAAAAuDySlkiTgoODNWTIELVp00ZjxoxR7969L0kszp0796qPUbFiRZ+k5auvvqqAgADNmDFD3377raKjoyVJL730EklLAAAAAACAVETSEo7avXv3JWMdO3ZUx44d//W+rVu3VuvWrS8Zd7vd1xVLaGiohg8fruHDh192+7/FFRERcd3fGwAAAAAAAF7UtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWmZgtxut9MhwM/xGgEAAAAAALgUScsUEBBgP9a4uDiHI4G/87xGPK8ZAAAAAAAAkLRMEcHBwQoODlZkZKTTocDPXbhwQYGBgQoODnY6FAAAAAAAAL9B0jIFuFwuZc2aVadPn9aFCxecDgd+Ki4uTqdPn1bmzJnlcrmcDgcAAAAAAMBvBDkdQHqVM2dOXbhwQXv37lV4eLiyZs2qwMBAv05OxcfHKzo6WhcvXmS5cgpyu92KiorSiRMnFB8fr9y5czsdEgAAAAAAgF8haZlCAgMDVbBgQR07dkxnz57VqVOnnA7pX7ndbl24cEFhYWF+nVxNL7JkyaK8efMqU6ZMTocCAAAAAADgV0hapqDAwEDlyZNHuXPnVkxMjOLj450O6apiYmK0ePFi1a5dmxqLKSwoKEhBQRx+AAAAAAAAl0PWJBW4XK40MZsuMDBQsbGxCg0NJWkJAAAAAAAAx1C4EAAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPArJC0BAAAAAAAA+BWSlgAAAAAAAAD8CklLAAAAAAAAAH6FpCUAAAAAAAAAv0LSEgAAAAAAAIBfIWkJAAAAAAAAwK+QtAQAAAAAAADgV0haAgAAAAAAAPAraTJpuXjxYjVr1ky33nqrXC6Xvv3226vuP2PGDDVq1Ei5cuVSeHi4atWqpblz56ZOsAAAAAAAAACuSZpMWp47d04VKlTQ2LFjk7T/4sWL1ahRI82ePVu///676tWrp2bNmmnNmjUpHCkAAAAAAACAaxXkdADXo2nTpmratGmS93/77bd9bg8dOlQzZ87U999/r0qVKiVzdAAAAAAAAABuRJpMWt6o+Ph4nT17Vjly5LjiPlFRUYqKikq4febMGUlSTEyMYmJiUjxGJ3ieV3p9foC/4xgEnMdxCDiLYxBwFscg4Lz0fhxey/Nyud1udwrGkuJcLpe++eYbNW/ePMn3GTFihF5//XVt3rxZuXPnvuw+gwYN0uDBgy8Znzx5sjJnzny94QIAAAAAAAAZ0vnz59W2bVudPn1a4eHhV903wyUtJ0+erC5dumjmzJlq2LDhFfe73EzLggUL6tixY//6Q02rYmJiNH/+fDVq1EjBwcFOhwNkOByDgPM4DgFncQwCzuIYBJyX3o/DM2fOKGfOnElKWmao5eFTp05V586d9dVXX101YSlJISEhCgkJuWQ8ODg4Xb5oEssIzxHwZxyDgPM4DgFncQwCzuIYBJyXXo/Da3lOabJ7+PWYMmWKOnXqpClTpui+++5zOhwAAAAAAAAAV5AmZ1pGRkZq+/btCbd37dqltWvXKkeOHCpUqJD69++vAwcOaNKkSZJsSXiHDh30zjvvqEaNGjp8+LAkKSwsTNmyZXPkOQAAAAAAAAC4vDQ503L16tWqVKmSKlWqJEnq3bu3KlWqpAEDBkiSDh06pL179ybsP27cOMXGxqpbt27Kly9fwlePHj0ciR8AAAAAAADAlaXJmZZ169bV1foHTZgwwef2okWLUjYgAAAAAAAAAMkmTc60BAAAAAAAAJB+kbQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL9C0hIAAAAAAACAXyFpCQAAAAAAAMCvkLQEAAAAAAAA4FdIWgIAAAAAAADwKyQtAQAAAAAAAPgVkpYAAAAAAAAA/ApJSwAAAAAAAAB+haQlAAAAAAAAAL+SJpOWixcvVrNmzXTrrbfK5XLp22+//df7LFq0SJUrV1ZISIiKFSumCRMmpHicAAAAAAAAAK5dmkxanjt3ThUqVNDYsWOTtP+uXbt03333qV69elq7dq169uypzp07a+7cuSkcKQAAAAAAAIBrFeR0ANejadOmatq0aZL3/+CDD1SkSBGNHDlSklS6dGktXbpUb731lpo0aZJSYQIAgLTkxAm5li1T8NmzTkcCAIAzTp5UrjVrpLvvlnLkcDoaABlcmkxaXqsVK1aoYcOGPmNNmjRRz549r3ifqKgoRUVFJdw+c+aMJCkmJkYxMTEpEqfTPM8rvT4/wN9xDAIOiIqS68cfFfDFF3LNnq2gmBg1ypxZ7l27FNOjhxQW5nSEQIbCZyHgkAsXFDB2rIKGD9cdp0/LPXas4vr1U/yTT0qhoU5HB2Qo6f2z8FqeV4ZIWh4+fFh58uTxGcuTJ4/OnDmjCxcuKOwyJyTDhg3T4MGDLxmfN2+eMmfOnGKx+oP58+c7HQKQoXEMAinM7dbNW7ao4KJFyr90qYIjI302B58/Lw0YoAvvvKNN7dppX506UmCgQ8ECGROfhUAqiYtTwcWLVeqLL5T52LGEYdexYwp8/nlFvf66trRurX316snNZyGQqtLrZ+H58+eTvG+GSFpej/79+6t3794Jt8+cOaOCBQuqcePGCg8PdzCylBMTE6P58+erUaNGCg4OdjocIMPhGARS2M6dCvjiCwVMmSLX9u2XbHbnzau4ypUVOGeOXPHxCjt+XJVHj1alhQsVN2yY3I0aSS6XA4EDGQefhUDqcc2fr8ABA+Ravz5hzO1y6UTJkrpl82ZJUuZjx1Tp3XdVcf58xQ0aJPdDD/FZCKSw9P5Z6FnJnBQZImmZN29eHTlyxGfsyJEjCg8Pv+wsS0kKCQlRSEjIJePBwcHp8kWTWEZ4joA/4xgEktHJk9KXX0qffSYtW3bp9rAwqUULqX17uRo0kNvt1sIPPlDdOXMUMHu2JMm1YYOC7r9fathQGjFCqlQplZ8EkPHwWQikoDVrpL59pX/O4rr3XsW++qqW7tune/PnV/CgQdKsWZIk15YtCmrTRqpaVRo61D4TSV4CKSq9fhZey3NKk93Dr1WtWrW0YMECn7H58+erVq1aDkUEAABSTHS0NHOm1LKllDev9PTTvglLl0uqX1+aMEE6ckT64gupSRMpyK7lni1USHHffistXGgnZx4//SRVriw99pi0Z0+qPiUAAG7Ynj32GValim/CsnJlacECS1CWK2djFSpIP/wgLVki3XWXd9/Vq6XGjaUGDaTffkvd+AFkOGkyaRkZGam1a9dq7dq1kqRdu3Zp7dq12rt3ryRb2t2+ffuE/Z9++mnt3LlTffr00ebNm/Xee+/pyy+/VK9evZwIHwAAJDe3206eunWTbr1Vat5c+vprS2B63H679Prr0t69dnLWoYOUNeuVH7NuXXvMqVOlIkW8459/LpUoIb3wgs3kBADAn508aZ9ZJUrYZ5jbbeMREdLkydKqVXYx73LuuktavNgSmhUqeMcXLpRq1rTP240bU/oZAMig0mTScvXq1apUqZIq/f/yrN69e6tSpUoaMGCAJOnQoUMJCUxJKlKkiGbNmqX58+erQoUKGjlypD7++GM1adLEkfgBAEAy2bVLevVVqVQpO3l67z3p+HHv9ty5pZ49pT/+kDZssOVwBQok/fEDAqRWraRNm6S335ZuucXGo6OlN9+UbrvN/r14MTmfFQAAN+7iRWnkSKloUfus8lzIu/lmadQoafNmqU0b+6y7GpdLuvde+yydPNkez2PmTJud2aGDtHt3ij0VABlTmqxpWbduXbk9V4cuY8KECZe9z5o1a1IwKgAAkCpOnZK++srqVC5Zcun20FCb+dG+vdSoUcKy7xsSEiL16GEnZcOHWwLz4kWL5YUXpDFjpNdek9q2/feTPwAAUlJ8vDRlivS///mWM/F8lvXrZ4nLaxUQYEnOli2l8eOlV16RDh60mZuTJtn3fOop6aWXpDx5ku/5AMiw+KsaAAD4v5gY6fvvpUcesTqVTz55acKyXj07iTpyxE6cmjZNnoRlYtmzS8OGSVu3Sp06eZsQ7N1rdcKqVrXalwAAOOGnn+yz6NFHvQlLl8suum3dahferidhmVhwsCUnt2+3BnWex4uJkd5912ZivvSSdPr0jX0fABkeSUsAAOCf3G6rs/Xss1an8oEHpOnTpago7z6lS1sX0z17pJ9/tkRieHjKx1awoCVI16615KjHmjU2u/Oee6R161I+DgAAJPvMuece+wxKvMKwSRO7PWGCVKhQ8n7PsDBbbbBzp83qzJzZxs+ds9UHRYpYUvP8+eT9vgAyDJKWAADAv+zZYyc7pUtL1avbrI1jx7zbc+WSnnvOOphu3Cj175/8J2JJVb68NHu2t7O4x9y5UqVKNrMlUZ1tAACS1b59UseO9pkzd653vGJFad48ac4c3wY6KSF7dmnIEEtePvuszcSUrAFQ375S8eLShx/aTEwAuAYkLQEAgPNOn5Y++cQ6dkdE2LKyLVu820NCrCHODz9IBw5I77wjVaniXZ7ttAYNbFboF19IhQvbmKfGV4kSdtJ26pSjIQIA0pFTp6w2ZfHi0sSJ3o7ghQpZzefff7dZl6kpTx5p9Gj7/G7f3vsZffCg9PTTUpkyVr4lPj514wKQZpG0BAAAzoiJkWbNsmRk3rxS587SL7/47lOnjvTxx1ancupU6b77vDM4/E1AgDXi2bLFurV6anxFRdnyuKJFpbfe8l3eDgDAtYiKss+SokWtPqXnMyV7dusQvmWL1bN0silckSKWSN2wwRrjeWzfbp+TlSvbKoWrNNcFAImkJQAASE1uty3r7tFDyp9fuv9+6csvrRO3R8mStsxs1y5p0SLpiSekbNkcC/mahYRIvXtLO3ZIffrYbUk6ccLGS5VipgkA4Np4OoKXKmWfJSdO2HimTNLzz9tnzn//K4WGOhtnYrffLn3zjbRihTXL81i3zi5C1q4tLV3qXHwA/B5JSwAAkPL27rWu27ffLlWrZsvHjh71bs+ZU+reXVq5Utq0yQr6R0Q4Fm6yuPlmmwWzdavvMrndu22mSfXq1jwIAICrWbjQPjPatrXPEI9HH7WZlW+8IeXI4Vh4/6pmTWnBAquxWaWKd3zpUunuuy2BSfM6AJdB0hIAAKSMM2ekTz+12RUREdKLL1pC0iMkRHrkEem776ze1ZgxltD0lzqVyaVQIVsm98cfUuPG3vHff7damPfea0voAABI7M8/LaFXv759Zng0aGC3P/ss7Vzgc7msxuaqVdL06TZj1GP2bGsc1LatLSEHgP9H0hIAACSf2Fjpxx+lNm2sIP/jj9sS78R1q+6+Wxo3Tjp82JaGN2vmv3Uqk1PFitbZde5c306uP/5otx9/XNq/37HwAAB+4sABK41SoYIl9DzKl7du4PPnW13ItMjlkh5+2C7WffKJVLCgd9uUKVLp0ta05+BB52IE4DdIWgIAgBvjdtsswl69pAIFbObg1Km+dSqLF5deeUXauVNavFjq0sWaBmREjRvbz2vSJO/Jmttts1KLF7cZqadPOxsjACD1nT5t5VGKF5fGj/fWPi5YUJowwT47mjRJHysSgoLsYt3WrdZYKGdOG4+NlT78UCpWTOrb11u7E0CGRNISAABcn/37rWZjuXJWo+rtt63Lt0eOHFK3btKvv1rNrZdfto6isK6ujz1mJ2tvvOFN4F68aLU/ixa1up/R0Y6GCQBIBdHRViKlWDFp6FDpwgUbz5bNPme3bJE6dJACA52NMyWEhko9e9pFzUGDpKxZbfzCBWnECOm226TXXpMiI52MEoBDSFoCAICkO3vW6jM2aGC1Gvv1kzZu9G7PlMmWfX37rXTokPTuu1KNGuljVkhKCA317fqaKZONHz9uHdZLl7Yl9ImX1wMA0ge3297jy5SRnntOOnbMxoODbfXCjh1Snz5SWJizcaaGrFmlgQMtedm7t9W9lmz26Usv2cW8d9/lYh6QwZC0BAAAVxcbazW02rWzOpUdO1rX68SJtDvvlD74wOpUTp8uPfigNwGHf5cjh/Tmmzabpl077/jOnVKrVpb4/eUX5+IDACSvxYutq3arVpac9GjTxj4LRo2SbrnFufickjOnNHKktG2b1fUM+P+Uxd9/S88+K5UsaeVV4uKcjRNAqiBpCQAALuV2S2vX2uy/ggWlpk2lyZO9S9Ykm/UwaJB1+ly6VHrqKenmm52KOH2IiJA+/9y6wtav7x1ftUqqW9eaFiWe2QoASFv++kt64AGpTh1p5UrveL169l4/eTKlVCT72+Pjj+3n9cgj3vHdu22pfIUKtqqDlQhAukbSEgAAeB04YDUWy5eXKlWymR6HD3u333yz1LWrtHy5zYIYONCSl0helStLP/1kncXLlfOO//CD/W66dKGzKgCkJQcPSk8+ae/p33/vHS9b1jqEL1ggVa3qXHz+qmRJW0K/erU1svPYuFFq0UKqVUtauNC5+ACkKJKWAABkdJGR0mefSY0a2cyGPn2kP//0bg8OthODGTOsTuV779lJAnUqU5bLJd1zj7RmjXUWL1DAxuPjbfZJsWLW3OjMGWfjBABc2Zkz9l5dvLj00UfejuD581uH8LVrbTUDn6lXV6WKNHeuJShr1vSO//abrUxo3NgSmwDSFZKWAABkRHFx0rx51sE6Tx6pfXub2Zd4mVWtWpagPHTIEpYtWngL4yP1BAZaHdGtW6XXX5fCw238wgVpyBBLXo4dK8XEOBomACCRmBh7by5WzN6rz5+38axZrUP41q1Sp07psyN4Sqpb11Z7fPutdPvt3vH586Vq1Wwp+ebNTkUHIJmRtAQAICNZv1564QXr/N2kidVP9JxISdJtt9mS723b7KSga9eM2QjAH4WFSX37WsOGnj1tBqwkHT0qde9uJ2/Tp1PfCwCc5HZLX39t78ndu9t7tGTv2c89Z+/h/ftLmTM7G2da5nJZw79166wpT0SEd9v06fazf+IJae9ex0IEkDxIWgIAkN4dOmSdOCtUsK833/Sth5g9uzXRWbrUmuoMGmQzQ+CfcuaU3nrLZpK0bu0d37bNZpjccYf9LgEAqWvpUnsPbtnS3pM9/vMfadMm6Z13pFy5nIsvvQkMtBUjW7ZI775rK0ckW4I/frwtye/d25s4BpDmkLQEACA9OnfOZlE2aWK1EJ9/3mZZegQH2yyF6dMtqfnBB9Kdd1JTKy257TZpyhTrPlu3rnf811+lu++WmjdniRwApIbNm62Eyt1323uwR+3aVnNx2jSa1qWkTJmkbt1sFutrr0nZstl4dLRd5LvtNrsgSw1oIM0haQkAQHoRF2d1KTt0sNkGjz1mdSs9Rf8lqUYNm41w8KDVg3r4YSk01LGQkQyqVZN+/lmaNcu3vtfMmdaV9umnfTvAAwCSx+HDVkalbFn7TPUoXdo6hC9aJFWv7lR0GU+WLNKLL0o7d1o5lbAwG4+MlAYPtsTxW29JFy86GyeAJCNpCQBAWvfnn/bHeeHC1gF80iSbaekREWGdS7dssRkg3brZEmOkHy6XdO+9Vt/rk0+kW2+18bg46cMPbbn/oEHS2bOOhgkA6UJkpLeUygcf2HutJOXLZx3C16+X7r+f1QtOyZHDGtdt324X7oKCbPzYMVsuXqKEfVbGxjobJ4B/RdISAIC06PBhadQoqVIlqVw5acQI6cAB7/Zs2aQuXaTFi2251Cuv2B/pSN8CA6XHH7daaq+9Zl1qJUtiDx5s9b0++IBO4wBwPWJi7D20WDF7T/VcILzpJunVV+29t3Nnb5IMzrr1Vun9962eaNu23iTyvn32eypblgZ2gJ8jaQkAQFpx/rw0ebLUtKmUP7/03/9Ka9d6twcFSc2aSV9+aUnNceOsvlYAH/cZTubMtkRuxw7p2We9J9BHjniXMn7zDSdqAJAUbrct/y5Xzt5Djxyx8aAgby3Fl16y5cnwP8WKSV98Ia1ZI913n3d8yxZrYFetmpXT4TMR8DucxQAA4M/i461eYadOVqeyXTtpzhzfOpXVqkljxlidyu++sz/AqVMJybrUjh5ts0weecQ7vnWr9NBD0l13ScuXOxcfAPi7FSvsAmCLFpbk8mjZUvrrL6sTnTu3c/Eh6SpUkH74QVqyxH6nHr//bo0L69f3baQEwHEkLQEA8EcbN0r9+lmdygYNpAkTrIaWR6FC0v/+Z8molSul7t0tQQVcTrFiNgPX01ncY/ly6xr/8MOWyAQAmK1b7b3xjjukZcu8456LPV99ZSU3kPbcdZf0yy/S7NlSxYre8UWLpFq1pObNrV44AMeRtAQAwF8cOSK9/bZUpYot3x0+XNq/37s9PFx64gn7o3rXLmnIEKlUKaeiRVpUo4adqH33nXW39ZgxQypTxpY5epY9AkBGdOSIvReWKWPvjR4lS9oS8cWLLbGFtM3lsnI7v/8uTZliF/c8Zs6UypeX2re3v7cAOIakJQAATrpwQZo61Wos5c8v9eol/fGHd3tgoG2bOtXqVH78sVSnDnUqcf1cLqt9un691T3Nm9fG4+Kk996zE7dXXvGd2QsA6d25c9ZMp1gxey/0dATPk8ea7/z5p/Tgg3QET28CAqTWrW2p/4cfWvMeyepbfvaZJauffZYLeoBDOOMBACC1xcfbbMknnrCToTZtbImS5wRJstmW77xjdSp/+EFq1UoKC3MsZKRDQUHWYX77dktS3nSTjUdGSgMH2rLHceOk2Fhn4wSAlBQbK330kSUrBwzwXrDJksU6hG/fLj31FB3B07vgYOnJJ+33PWKElCOHjcfEWN3S226zsjynTjkaJpDRkLQEACC1bNpkHZ2LFJHq1ZPGj5fOnvVuL1hQ6t/frvavXi099xzF/ZHysmSRXn7ZTtSeecZ7Yn74sJ2olytny8npqgogPXG77b2tfHlLVh0+bOOBgdYhfPt2S2J6LuggYwgLk154Qdq507cj/Pnz0tChlrwcPtxuA0hxJC0BAEhJf/9t3ZurVbP6WMOGSXv3erdnzWqdwX/+Wdq92/4gTlxrEEgtefJIY8daE6iHH/aOb95sSyLr1JF++825+AAgufz2m72nPfigXVD0aNHC3gPfe89bOgMZU7ZsVi5gxw5bHh4cbOMnT1qjxGLFrGxATIyzcQLpHElLAACS24UL1qm5WTOrjdSjh82c9AgMtOLvU6bYzI7x423mJXUq4Q9KlJCmT7duuXfe6R1fskSqWVP6z39sBhIApDXbt9t7WM2a9p7mUauWtHSpNd4pWdK5+OB/8uSxi89bt0odOnj/Vjt0yGbkli4tTZ5spX8AJDvOjgAASA7x8dZRtHNnm53RqpXVokxcp7JyZemtt6QDB6yGZevWUubMzsUMXM0dd9hJ/TffWCLT46uv7CTt2Welo0ediw8AkuroUSu5Urq0vYd5FC8uff31pRdpgH+KiJAmTLAmds2be8d37JDatbO/8WbNopQKkMxIWgIAcCO2bLGaR7fdZkvNPvlEOnPGu71AAalvX+s6+vvvUs+edtUeSAtcLjs5+/NP6f33va/d2FhrTFC0qJU0oLYXAH/kqUNYtKg0Zoy3sVju3N5yGA89REdwJN3tt9vFvF9/lerX946vWyfdf79Uu7bvLF4AN4SkJQAA1+rYMUvY1KghlSolvfaatGePd/tNN9kSop9+sjqVr79uf+QCaVVwsPT007a0cuBAb2OCs2etm2rx4pawTzyzGACcEhdnpVeKF7f3KE/Tu8yZrbmOp/GYp04hcK1q1JAWLJDmz5eqVvWOL11qicv77pPWrnUsPCC9IGkJAEBSXLxodf4eeEDKl8+Wxq5c6d0eECA1aSJ98YXVqZwwQWrQwOpXAunFTTdJgwZJ27ZZZ3HP6/vgQSuNUKECy+MAOMfttvIrFSpITzxh702SfUY/+aQlKwcPtiZ4QHJo2ND+Hpw+3S5ke8yeLVWqJLVpQx1o4AaQtAQA4Ercbrti/uSTVqfykUek77/3Li+TpIoVpZEjpf37pTlzpLZtvbPQgPQqXz7rmvrnn761vTZutOVx9etLq1Y5Fh6ADGj1anvvue8+ey/yeOABe6/68EN77wKSm8slPfywtGGDzfAtWNC7bepUS2Y+/bTVNAdwTUhaAgDwT9u22fKxokWlu++WPvpIOn3au/3WW6UXXrBi7GvWSL17cyKEjKlUKavt5eks7rFokVS9us0w2bnTsfAAZAA7d9p7TbVq9t7jUb269Msv0syZ1oAHSGlBQVKnTtZp/K23pJw5bTwuzpLmxYpJffpIx487GyeQhpC0BABAsj8g33tPqlXLOiW/+qq0a5d3e5Ys0mOPWe2ivXulESOkcuWcixfwJ3fdJS1fbsvjihXzjntmmPTsabVgASC5HD8u9epl7zFTp3rHixa1DuG//mq1BYHUFhpqn3s7d/qWI7h4UXrjDWveOGSIFBnpaJhAWkDSEgCQcUVFSTNm2PLWfPmkbt3sJMcjIEBq1Ej67DOrUzlpktUuok4lcCnP8ri//rJGVbly2XhMjPTOO5ZIeP116cIFZ+MEkLZduCANH27vKW+/be8xks1qGzPG3oNatqQjOJyXNaut3Nm5U/rvf6WQEBs/c0Z6+WVvV/uoKGfjBPwYSUsAQMbidtuMsKeftkTlww/b0jHPSY8klS9vV8L37ZPmzZMefdQakAD4d8HBdgFg+3bppZesW69kJ2n9+9tM5gkT6DQO4NrExdl7R4kSUr9+3rItYWHWIXzHDql7dylTJkfDBC6RM6f05ptWfqhzZ+/F77//lp57TipZ0i6M87kIXIKkJQAgY9ixw7oeFy8u3Xmn1RY6edK7PV8+uwq+dq20bp30/PNWuxLA9QkPtzIL27ZJXbrYzGXJmlZ16mRdVefModM4gKtzu+29olIle+/Yv9/GAwKsQ/i2bbbUNjzc2TiBf1OwoNVJ37hR+s9/vON79kgdOljX+2+/5XMRSISkJQAg/Tpxwjoc33GH1dkbPNiSlx6ZM0vt2klz59qsyjfftD8YASSfW2+Vxo2zrqrNmnnHN2yQmja1Egx//OFcfAD81x9/2HtE06b2nuFx3312gfHjj6X8+Z2LD7geJUtK06ZJv/8uNWniHd+4UWrRwuqr//yzc/EBfoSkJQAgfYmOtqvUDz1ksye7dpVWrPBud7msLuXEiVan8vPPpcaNqVMJpLQyZaTvvrPuvtWqeccXLJCqVLELCLt3OxUdAH+ye7eVZqlSxd4jPKpWtWTODz9IZcs6Fh6QLCpXtlnEixZZotLjt9+kBg3s79PVqx0LD/AHJC0BAGmf222JyWeesURlixbSN99YAtOjbFkr3L93r3UAb9/e280RQOqpU8dOyKZNsw6qHpMn2+yT//7XZkkDyHhOnLDyLCVLSl984R0vUkSaMsXeO+rVcy4+ICXUqSMtW2Y11hMn4+fPt4t8LVtKmzc7Fx/gIJKWAIC0a+dO6ZVXrCj/HXdI77/vm+zIk0fq1Utas0Zav17q00cqUMC5eAEYl8vqeW3aJI0eLd1yi41HR0ujRllH1TfekC5edDZOAKnj4kUr0VK0qDRypPeiY44c1iF80yapdWtvbVwgvXG5pAcesNrqn31miXqPr7+Wbr9devxxu/gOZCC86wMA0paTJ60+3l132cnNwIHWpdgjLExq00b68Ucr1j9qlFSxov0xCMC/ZMokPfus1Zp98UUpNNTGT52yiwwlS9rJW3y8o2ECSCHx8XaMlywpvfCCHfuSvRf062fvDT16SCEhjoYJpJrAQCuNsHmz9O67dgFesmPl00+toWSvXtLRo87GCaQSkpYAAP8XHW218Fq2lPLmlZ56ypbReLhcUv369sfc4cO2zPSee6SgIOdiBpB02bJJr71mXYAff9x7kWHvXivlULmyLZMDkH7Mn281K9u3984ec7mkjh2lrVulYcOk7NmdjBBwTqZMUrdulrgfOtQ+JyX7m/jtt628ysCB0pkzjoYJpDSSlgAA/+R2W+2q7t2t+/CDD9rymMR1KsuUsZOaPXusUH/HjlJ4uGMhA7hBBQpIn3xiXYHvvdc7vm6dNSRo3NiWzgFIu9autY7J/zyemza1259+KhUs6FBwgJ/JkkXq399KIvXtayuKJCky0kok3XabrSqinArSKZKWAAD/snu3NGSIVKqUVLOmNHasdPy4d3vu3LZUbPVq6c8/bfkYJzdA+lKunDRrlrezuMf8+Tbrsn17u1gBIO3Yu1fq0MGO4XnzvOOVK0s//STNni2VL+9cfIA/y5FDev11m3nZtat3NdHx49bArnhx6eOPpdhYZ+MEkhlJSwCA806dsj+0ate2wuMvv2xLwzxCQ60A/6xZVqfy7bctkUGdSiB9q19fWrnSSj54mhK43d4aeH36WJ1bAP7r5Ek7VkuUkCZNsmNYkgoXtg7hq1ZJDRo4GyOQVuTLJ733ntW8bNfO+7fw/v1Sly7WsOerr6gFjXSDpCUAwBkxMdL331sH4bx57Q+tJUt896lb15aKHj4sTZliy0WDgx0JF4BDAgKsudamTdJbb9lsE0mKirIO40WL2tK4qChn4wTgKyrKjs2iRe1Y9RyjN99sHcK3bJHatqUjOHA9ihaVPv/cSircf793fOtW+9u6WjVp7lzvRQIgjeITAgCQetxum1Hx3HNS/vzSAw/Y1eDEyYZSpawhx+7d0sKF1pTDU3wcQMYVEiL17GlL4/r29XYTPnnSlsaVKmWztphdAjgrPt5mR5cqZcemZzZ0SIh1CN+xQ+rdm47gQHIoX94mASxdKt19t3f8jz+sKWX9+tKvvzoXH3CDSFoCAFLenj2WiCxdWqpeXRozRjp61Ls9Z07p2WctofnXX9KLL9qyMQD4p+zZra7X1q1WH8+zNG73bunRR6WqVa0WJoDU9/PPNsOrXTs7JiU7Rtu3t2N2xAibaQkged15p/TLL1YbtmJF7/iiRVKtWtbQ8s8/nYoOuG4kLQEAKeP0aVvaXbeuFBEhvfSSLQXzCAmx5Svffy8dPCiNHm3JBupUAkiKQoWkCROkNWusE7HHmjVSw4bWiXj9esfCAzKUDRushEuDBjbDy6NxY7s9caIdswBSjstln32//y5NnWrNeTy++85mZT72mHUiB9IIkpYAgOQTE2PNclq3tjqVnTvbVd/EateWPvrI6lROm2Z1eKhTCeB6VaggzZljncUrVfKOz5ljs006dZL27XMsPCBd27/fjrEKFaQff/SOV6hg9fTmzvWd9QUg5QUESK1aSRs3SuPGSbfeauNut9XBLFVK6t7d/hYH/BxJSwDAjXG77Ypuz55Wp/L++y0ZefGid58SJaRXX5V27bIkZufOtsQTAJJLw4bS6tV2QuaZ0eV222zMEiWk/v1tBjiAG3f6tB1TxYvbMeZp9lGwoHUI/+MPm2UJwDnBwdbocvt2a4blaWQXEyONHWvNfF58UTp1ytEwgashaQkAuD779lldudtvt2Xd77zjW6fyllvsKu5vv0mbN9vy8IgIx8IFkAEEBFgtvS1bpDff9F4cuXjR3q+KFrX3KjqNA9cnOtqOoaJF7ZjyXKDMls3qVW7dastP6QgO+I+wMOn5521Z+MsvS1my2Pj589KwYdJtt0nDh9ttwM/waQIASLozZ6RPP7VOhIUL2yyLTZu82zNlklq2lGbOtDqVY8ZY4x3qVAJITaGh1rV4xw47UcuUycaPH7dZ4aVL24xwOo0DSeN22zFTurQdQ8eP23imTHas7dxpncFDQx0NE8BVZMsmvfKKHa/PPef9bDx5UurXTypWTHr/fZuJCfgJkpYAgKuLjbU6VW3bWp3Kxx+XFi70LgWTpLvukj780GrjfPWV9MAD3j+EAMApOXLYkrgtW6yzuMeuXVZ7t0YN66wK4MoWLbJjpXVr3wYeiWc1e5adAvB/uXPbjOmtW6WOHb0zow8dkp55xmpeTp7MhT34BZKWAIBLud3WgbdXL6lAAesIOmWKdOGCd59ixaTBg20m05Il0pNPSjff7FzMAHAlERHSZ59Znb0GDbzjq1dL9epZLd6NGx0LD/BLGzdKzZrZMbJqlXe8fn1v/VjKvgBpV+HCtoJqwwapRQvv+M6ddlGiUiXphx98JyoAqYykJQDAa/9+q2lTrpxUubL09tvSkSPe7Tly2BXYFSvs6uyAAVYHBwDSgkqVrMv4nDlS+fLe8Vmz7HbnztKBA87FB/iDAwfsWChf3hIWHuXK2cqLn36SqlRxLj4AyatMGWnGDKtDn/jC3vr1duHi7rulxYudiw8ZGklLAMjozp6VJk60zruFCllNm8QzjjJlkh56SPrmG1s2MnasVLMmdSoBpE0ul9Skic26nDjRuh1Ltgzuk0+sG/JLL1kNXyAjOXPGXvvFi9ux4FkaWqCAzcZas0a65x4+/4H0qnp1uygxf75UrZp3fNkyqU4dW3m1dq1j4SFjImkJABlRbKw0d67VeMub1+rZLFjgu/zjjjusGPehQ9LXX0vNm1OnEkD6ERgotW9vNfmGD7cGBZKVwXjtNeuOPGaMdUsG0rPoaOndd+01/9pr3lIw4eHWIdxT9y4w0NEwAaSShg1t1uXXX1vzLY8ff7QVC61bS9u2ORcfMhSSlgCQkaxbZ510Cxa02RJffCGdP+/dXrSoNGiQtH27XVV9+mmK6wNI38LCpD59rD5vr15ScLCNHztm3VXLlLEGY9T0QnrjdkvTp0u33y49+6y95iU7Bnr2tGOib187RgBkLC6XrbRav14aP95WY3lMm2bJzKeeoqQKUhxJSwBI7w4etO655ctLFStKI0dal2+Pm2+25OSyZXbVdOBAS14CQEZyyy3SqFE287JNG+/4jh3Sf/4j1apFTS+kH0uW2Gv6kUfsQqVH69bS5s3SW29JOXM6Fx8A/xAUJHXqZDOu335bypXLxuPipHHjrDHnCy9Ix487GibSL5KWAJAeRUZap9zGjW1WZZ8+1hnQIzjYlnt//bUt/37/fVsOTp0qABldkSLS5MnezuIev/1mNb0efFDatMm5+IAbsWmTvYZr17bXtEfdutLKldKUKTTYA3CpkBCpRw+7kDd4sJQ1q41fvCi9+aa9bwwZYucgQDIiaQkA6UVcnBXOfuwxq1PZvr3d9hTSl6yBznvvWaLym29s2UdIiHMxA4C/qlLFav3Oni2VLesd/+47u/3UU/ZeCqQFhw7Za7ZsWXsNe9x+uzRrlvTzz76NNwDgcrJmlQYMkHbulP77X+95xJkz0ssv22qt0aOlqChn40S6QdISANK6DRtsWUahQjaz8vPPpXPnvNuLFLE/LrZulVaskLp2tWWQAICrc7mkpk2tW+r48VL+/DYeH+9dFjdggHT2rKNhAld09qyVfSlWzF6znguZt95qHcLXrbOOwKy0AHAtcua0GZbbt0tdungbdf39t83ILFlSmjjRJlUAN4CkJQCkRYcOWW3KihWtVuWbb1rtSo/s2aUnn7SaVZ5lHMWLOxUtAKRtgYHeml5Dh1pXZckamb36qiWE3ntPiolxNk7AIybGSr8UKya98oq36V7WrNYhfNs26fHH6QgO4MYUKGAXRP76y+o/e+zZI3XsaOcp33xDMztcN5KWAJBWnDtn3b7vucf+QHj+eZsh4REUJD3wgHW5PXRI+vBD6a67mD0BAMklc2apf3+7GNSjh7fT+N9/S9262VLbGTM4OYNz3G5LEJQtKz3zjL02Jfsb4dln7bX74ov2WgaA5FKihHUV//13O1fx+OsvK0dVs6aVoQCuUZpNWo4dO1YREREKDQ1VjRo1tHLlyqvu//bbb6tkyZIKCwtTwYIF1atXL128eDGVogWA6xQXZzXVOnSwOpWPPirNnetbp7J6denddy1ROXOm1LKlFBrqXMwAkN7lzGldVDdtklq18o5v2yY9/LB0553SsmWOhYcMatkyu1j50EM2K9jjkUfstTp6tLfzLwCkhMqVpR9/lBYtkmrV8o6vXCk1aCA1aiStWuVYeEh70mTSctq0aerdu7cGDhyoP/74QxUqVFCTJk30t+dK4j9MnjxZ/fr108CBA7Vp0yZ98sknmjZtml588cVUjhwAkujPP6W+faXChaWGDaVJk3y78UVESC+9JG3ebN0/u3Wzk2gAQOopWlSaOtXeh2vX9o6vWOFNHm3Z4lx8yBi2bLHX2l13ScuXe8fvvlv69Vfpyy9tmTgApJY6dexCynffSeXKecd/+skmXDz8sF1MAf5Fmkxajho1Sl26dFGnTp1UpkwZffDBB8qcObPGjx9/2f2XL1+uO++8U23btlVERIQaN26sNm3a/OvsTABIVUeO6LbvvlNQ9er24T5ihHTggHd7tmxS587SL7/Y8q5XX7Ui1wAAZ1WvbrNKvv9eKlPGO/7NN7ZkvGtX6fBhx8JDOnXkiC0Bv/12e615lC5tiYJffpFq1HAuPgAZm8slNWsmrVljjUKLFPFumzHDylg8/ri0d69zMcLvBTkdwLWKjo7W77//rv79+yeMBQQEqGHDhlqxYsVl73PHHXfo888/18qVK1W9enXt3LlTs2fP1mOPPXbF7xMVFaWoqKiE22fOnJEkxcTEKCadFln3PK/0+vwAv7VjhwJGjlTQpEkqFx3ts8kdFCR348aKf/RRue+/37vsOy6ObnxACuCzEDekSROpQQO5Jk1S4ODBch06ZO/VH3wg92efKb53b8X36iXddJPTkfotjsEkiIxUwNtvK2DkSLnOnUsYdufNq7iBA+Xu0MFqWMbGOhgk0iqOQaSI//xHat5cAePHK2DoULkOH7ZyV59+KvcXXyj+qacU37evlDu305H6hfR+HF7L83K53WmrUvjBgweVP39+LV++XLUS1Ujo06ePfvnlF/3222+Xvd/o0aP1/PPPy+12KzY2Vk8//bTef//9K36fQYMGafDgwZeMT548WZkpXA0gGYTv3q3iX3+t/MuWyZW4RqWkk8WKaV/dujpw992KzpbNoQgBANcr8OJFFf3uOxX75hsFX7iQMH4xe3ZtbtNGexs2lJvOzbgGrrg4FfrpJ5WaOlWhJ08mjMeGhmpbixba8eCDiqOmNQA/F3jxom6bNUvFZsxQpkQXXmJDQ7X9wQe148EHFUvOJV07f/682rZtq9OnTys8PPyq+2aIpOWiRYvUunVrDRkyRDVq1ND27dvVo0cPdenSRS+//PJlv8/lZloWLFhQx44d+9cfaloVExOj+fPnq1GjRgr2dMMEkOxcy5crYMQIBcye7TPuzppV2xs0UIEBAxRUtqxD0QEZG5+FSHZ//62AoUMVMG6cXIlmvrlLlFDc0KFyN2tmS+ggiWPwstxuub7/XoH/+59ciWqkuoOCFN+5s+L/9z8pTx4HA0R6wjGIVHPypALefFMB774rV6KLe+5bblF8nz6Kf/ppKSzMwQCdk96PwzNnzihnzpxJSlqmueXhOXPmVGBgoI4cOeIzfuTIEeXNm/ey93n55Zf12GOPqXPnzpKkcuXK6dy5c3ryySf1v//9TwEBl5b2DAkJUUhIyCXjwcHB6fJFk1hGeI5AqnO7rev30KHSkiW+23LmlHr2VOyTT+qv5csVUbYsxyDgMD4LkWzy55fGjpV69pRefFGaPl2S5Nq6VUEtW1rzlDfekGrWdDZOP8Mx+P9+/VV64QVp6VLf8YcflmvoUAWWKCHm6yIlcAwixeXObTX8e/WShgyRxo2TYmPlOn5cgX37KnD0aGngQKlTJyt5kQGl1+PwWp5TmmvEkylTJlWpUkULFixIGIuPj9eCBQt8Zl4mdv78+UsSk4H/vxwnjU00BZDWxMVZ184qVaSmTX0TlgULSu+8I+3ZI/3vf1L27I6FCQBIYcWLS199Zd2d77rLO750qVSrltSypbRtm3Pxwb9s2yY98oi9NhInLO+80zryTp8ulSjhXHwAkFzy5bOLe5s3S+3aeVcfHDggPfmkNRv78kurgYkM57qSlmfOnEloTHMjIiMj9d133+m77767pvv17t1bH330kSZOnKhNmzapa9euOnfunDp16iRJat++vU+jnmbNmun999/X1KlTtWvXLs2fP18vv/yymjVrlpC8BIBkFR0tffKJdfBs1cq65nmULCl9+qm0fbv03HMSNVsAIOOoVUtavFj69lv7PPD4+mvrPN69u/T3346FB4f9/bf07LP2Wvj/WbmSLEH5zTd28fOOO5yLDwBSStGi1mV83TrrOu6xdaudT1WtKs2ZYyvYkGFc1xzb7NmzKyAgQOvXr1eZMmUu2X7w4EG99NJLcrlc+uSTT674OHv27FHz5s0VEBCg2GvobteqVSsdPXpUAwYM0OHDh1WxYkXNmTNHef6/lsvevXt9ZlZ6YnnppZd04MAB5cqVS82aNdNrr712Dc8aAJLg3Dlb2jBypF0dTKxKFal/f6l5c4kLJgCQcblc0oMPSvfdZxe4Bg6Ujhyxbs9jx0oTJ0p9+9qSuSxZnI4WqeHcOentt6Xhw6WzZ73juXNLgwdLTzwhpcMlggBwiXLlpO++s5UJ/fvbhT7JJoE0bSrVqSMNG2YXAZHuXffy8Kstqz558qQmTJigCRMm3PBjXUn37t21Z88eRUVF6bffflONGjUSti1atMjnewcFBWngwIHavn27Lly4oL1792rs2LHKzlJMAMnlxAnplVekwoWl3r19E5b16knz5kmrVkkPP0zCEgBggoKkp56ymfeDB3sTlJGR0ssv25Lyjz+2ZCbSp9hY+x0XLy699JI3YZkliyWzt2+Xnn6ahCWAjOeOO6RFi6Qff5QqVfKO//KLbXvgAWnDBsfCQ+pIczUtAcCvHDwoPf+8JSsHDpSOH/due+ABacUK6eefpUaN6A4LALi8m26SBgywBFXXrt6LW4cOSV26SBUqSN9/z5K49MTtln74wX63XbrY71qy3/1TT1lNy0GDpKxZHQ0TABzlckn33COtXi1NnWoXeDy+/97eQx99VNq507kYkaJIWgLA9dixw04qihSxpeCRkTYeGGgfnBs2SDNn0g0WAJB0efNK770nbdwotWjhHf/rL7sQVq+etHKlc/EheaxaZb/LZs3sd+vRvLn055/SBx9YYwoAgAkIsLqWGzdaKa78+W3c7Za++MJqRHfr5r0AhHSDpCUAXIv166U2bawg/rhx1nBHkkJCbHbMtm3SZ59JZcs6GycAIO0qWVKaMcPbWdzjl1+kGjXsxG3HDufiw/XZsUNq3VqqXt1+lx41a1qDnW++kUqVci4+APB3wcE2O33bNunNN6UcOWw8NtYu+hUtKr34onTypLNxItmQtASApFi2TLr/fluCMHWqFB9v41mzWrOE3bvtg7JIEUfDBACkI3feaZ8/X3/tuyTuyy+l0qWlHj2kY8eciw9Jc+yY1LOn/c6mTfOOFytmHcKXL5fuusux8AAgzQkLk/77X1sW/vLL3prQFy5Yk57bbpNef106f97ZOHHDSFoCwJW43Vb4uXZtO5mYNcu7LWdOacgQae9e+0DMm9e5OAEA6ZfLJT30kC2JGzvWuklLUkyMNHq0zSoZNowTM390/rz9booWld55x35nkpQrl/Tuu7Y0/OGHqXkNANcrWzZrhrpzp13Iy5TJxk+dss7jRYtK77/vXR2HNIekJQD8U1yczWKpXFm6915bsuVRsKCdJO7ZI/3vf1L27I6FCQDIQIKDpWeesWY9AwZImTPb+JkzthSuRAnp00/tMwzOiouz30WJEva7OXPGxjNntg7h27db7TU6ggNA8sidW3r7bWnrVqlTJ6uBKUmHD9tnZ+nSVvvSs1oOaQZJSwDwiIqSPv7YPtRatZLWrvVuK1XKTkC2b5eefdZ7sggAQGrKmlUaPNg+j5580ntiduCA9PjjUsWK0uzZdBp3gmeFRsWK9rs4cMDGAwK8NdhefVUKD3c0TABItwoXlsaPt6aoDz3kHd+505qlVqwo/fADn5FpyA0lLV0sZQCQHkRGSm+9ZcsHPCcVHlWrWi2xjRuljh29Sw4AAHBSvnzShx9at+kHHvCO//mndN99UoMG0urVzsWX0fz+u9Swoa3Q+PNP73izZnbyPG6cdOutzsUHABlJmTJ2Dvfbb/Z56LFhg70v33WXtHixc/EhyW4oaVm2bFkFBgZe8lW+fPmEhObltifeDwAcc+KEzVYpXFjq3ds7I0KS6tWT5s2TVq60q3QBTEwHAPih0qWlmTOtG3X16t7xhQulatWktm2lXbuciy+927VLatfOLnL+/LN3vFo1adEi6bvv7OQZAJD6qleXfvrJvqpV844vXy7VqSM1bSqtWeNcfPhXN3QW7na7b/gLAFLdwYPS889LhQpJgwZZ8tLjwQelFSvsxKNRI4rjAwDShtq1pV9/lb76ylYOeEyZIpUsaRfnjh93Lr705vhx+5mWKiVNnuwdv+026xD+2292QgwAcF6DBva+PGOGXezzmDPH+hi0bu272g5+I+h67lS7dm2WhgNIe7Zvl0aMkCZO9O0gFxgotWkj9e0rlS3rXHwAANwIl0tq2dKWi48bZ6sJjh2zrtVvvWV1vvr3l557TgoLczratOnCBWnMGGnoUOn0ae/4LbdIAwdKTz1FKRkA8Ecul9SihX1GfvaZvWfv3Wvbpk2Tpk+3esQDBkgFCjgbKxJcV9Jy0aJFyRwGAKSgdeuk11+3juCJO8aFhEhPPGGzLosUcS4+AACSU6ZMUvfuUvv2drFu1ChLtp0+LfXrJ737rjRkiDUlCAx0Otq0IS7OOs++9JK0b593PDTUZlz26SNly+ZcfACApAkMtF4FbdpYbeghQ6SjR+19/qOPpEmTrPFqv352QQqOokgbgPRr6VJrRlCxojR1qjdhmTWrzarcvVsaO5aEJQAgfQoPt5OxbdvsIp2nPvP+/XbCVrmyNHcuXVT/zbx5UpUqUocO3oSly2UzcrZtk157jYQlAKQ1ISG28mDHDumVV+wzU5KioqQ337RyH6++ak1b4RiSlgDSF7db+vFHq+11993S7Nnebbly2YnF3r028zJvXufiBAAgteTPL338sbR+vXT//d7x9eule+6RGjemEcHlrFljP5smTWzVhse999rtTz5hCSEApHVZs0ovvyzt3Gkr8EJDbfzMGVsqfttt0jvvWDITqc7xpOX58+c1cuRIp8MAkNbFxVktksqV7WRiyRLvtkKFpNGjbWbliy9K2bM7FSUAAM65/Xbp+++ts3jVqt7xn36yz8/HHpP27HEuPn+xZ4/9LKpUkebP945XqSItWCDNmiWVK+dcfACA5HfLLdIbb9gM+i5dvOVTjh6VevaUSpSQJkyw806kGseSlmfPntVrr72miIgI9enTx6kwAKR1UVE2e6R0aev6tnatd1upUvbBsn271SXJnNmpKAEA8B9161oX1alTfUukfP65nZS98IJ08qRj4Tnm5El77iVK2M/Cs2y+SBHrEL5ypVS/vrMxAgBSVoEC1szur7+kVq2843v3Sp062UWrGTMorZJKUj1peeLECb388ssqXLiwBgwYoGPHjqV2CADSg8hIayxw2212JWzbNu+2qlWlr7+WNm60+lPBwc7FCQCAPwoIsJOxTZukt9+WcuSw8ehoby2vN9+ULl50NMxUcfGiNHKkVLSoPefoaBvPkcO6rm/aZA0bAhxfpAYASC0lStjFvT/+sFIqHps2SQ8/LNWoYbPvkaJu6JN3z549eu6551SmTBllzZpVOXLkUOXKlTVs2DCdPn3aZ9/IyEgNHDhQERERGjp0qE6dOiW3262cOXNqyJAhN/QkAGQgJ05IgwdLhQtL//2vdPCgd1v9+raMa+VK6aGHOLkAAODfhIRIPXpYI4J+/by1vE6dslmHJUvarENPM7v0JD7eOoKXKmV1zDyzS0NCrGHfjh22JDAkxNEwAQAOqlTJeib88ot0xx3e8VWrpIYN7WvVKufiS+eu+4x+/vz5KleunMaOHastW7bo3LlzOnXqlNatW6eXXnpJNWvW1OHDhyVJy5YtU9myZTVkyBBFRkbK7XYrf/78euutt7Rnzx71798/2Z4QgHTqwAFLUhYqJA0aZMlLjwcflH791a50NWxoHT0BAEDSZc8uDRsmbd1qncU9n6V791p9x6pVrfZlevHTT/acHn3UW8fT5bIVGlu3WsM+amADADxq15aWLrXa0InrGi9YIFWvbpNm/vrLufjSqetKWh49elRt2rRJSEC63W5lyZJF2bJlS7i9detWdevWTYsXL1bDhg21b98+ud1uFSlSRB9++KF27typHj16KCwsLLmfE4D0ZPt26cknbZnaqFHSuXM2HhhoJ1F//il9+61NzwcAADemYEHp00+tRnTTpt7xNWukRo1siVziTtppzbp19hwaNfLtmN6kid2eMMEukAIA8E8ul3T//fYZ+fnndo7q8c03lszs1ImmdsnoupKWH330kU6cOCGXy6WWLVtq+/btOnv2rE6ePKmDBw+qe/fukqSZM2fq0UcfVVRUlG666SaNGTNGW7ZsUZcuXRRMjTkAV7NunTXWKVlS+ugjb32pkBDpmWeshuWkSdYJFQAAJK/y5aXZs72dxT3mzrWlch07Svv2ORbeNdu3z2KuVMmeg0elSlZaZs4cqUIFx8IDAKQhAQFSu3ZW3/K996S8eW08Pt4ufpUoYaVX/v7b0TDTg+tKWs6bN0+SVLNmTX355Ze6LVF2OW/evBo9erTat2+v+Ph47d+/X9mzZ9fy5cvVrVs3BQUFJU/kANKnpUul++6TKlaUpk3z1tAKD7daW3v2SGPH+nY7BQAAKaNBA6vV9cUXVk9aso6pEydKxYtb7cdTpxwN8apOnbK/H0qUsJg93V4LF7ZZMqtXW2kZAACuVaZMUteutjpw2DBvWZHoaGn0aJuJOWCA9I+eL0i660pabt68WS6XS88888wV93nuueckSS6XS88995xuZzYUgCtxu6248d1329fs2d5tuXJJr71mycphw6Q8eZyLEwCAjCggQGrbVtqyxbps33yzjUdFSSNGWNftt96y2/4iKsq6ohctKg0f7u2Cnj27dQjfvNlmydC0DwBwo7JksQtkO3dK/ftLmTPb+Llz0quvWvLyzTelCxecjTMNuq5P6ZP/31mvWLFiV9ynePHiCf+/++67r+fbAEjv4uJsNmXlytK999osS49ChaQxY6Tdu6UXX6QYPgAATgsJkXr3tq7aL7zg7ap94oSNlyolTZnibKfx+HiLoXRpqVcvb+O+TJmsQ/iOHdbYz9MlHQCA5HLzzdLQofZZ062b5FlpfOKEfW4WL26lz2JjnY0zDbmupGVMTIwkKWvWrFfc56abbkr4f17P+n4AkGz2w8cf28lN69ZWyNijVCmrA7J9u9S9u/cqFQAA8A8332wzLLduldq393Ya373bZmRWry4tXJj6cS1caN+7bVtp1y7v+KOPWqxvvCHlyJH6cQEAMpa8eaV337UVCo8+6v2cPHDAmsyWKeNbCg1XlCrrIVyeXxCAjC0y0jqA33ab1KWLJSY9qlWTZsyQNm6UOnSQaNYFAIB/K1TI6kT+8YfUuLF3/Pffpfr1rUb1hg0pH8eff9r3ql/fvrdHw4YW22efeetxAgCQWm67zT6D1q2THnjAO75tm03eqVrVGsF56i3jEhRxAZDyjh+XBg2yE4b//lc6eNC7rX5969r5229SixbUlgIAIK2pWNE6cs+d69uBe/Zsu/3449L+/cn/fQ8ckJ54wr5H4nrY5ctbLPPnW3dwAACcVK6cNHOmtHy5VKeOd3zNGqlpU6luXduGS9xQK+9OnTopS5YsN7yfy+XSggULbiQUAP7owAGbWfnhh1aEOLHmza1YcY0ajoQGAACSWePGNrvxiy+k//1P2rfPZo98+qnVmezVy7qNZ8t2Y9/n9Glbnv7WW75NDQoWlIYMsQY7gYE39j0AAEhutWpZKZN586xvwx9/2PjixdKdd0r3329NaEuXdjZOP3JDScvVq1dfdbtnWfjV9nO73SwfB9KbbdvsZGLSJCk62jseGGh1pvr2lW6/3bn4AABAyggIkB57THrkEWuo99prlmS8eFEaNkwaN04aMEB6+mlrjnMtoqPtQugrr0jHjnnHs2Wzk79nn5XCwpL3+QAAkJxcLqlJE6lRI+nrr6WXXrK6y5L0ww/SrFkKbN1amRPPyMzArnsdptvtTpYvAOnI2rVWm6NUKWu040lYhoZKzzxjNSwnTSJhCQBAehcaap1Sd+600jCeBOXx41KPHjaL5Msvk1bHy+22fcuUkZ57zpuwzJTJZm/u2CH16UPCEgCQdgQE2AW+jRuto3iBAjbuditgyhQ16NZNASNHOhujH7iupGV8fHyyfsXFxSX38wKQmpYske691+pGJe6CFh5uS8B375bGjpUiIpyMEgAApLYcOaQ337QOqu3aecd37pRatbIyMb/8cuX7L14s1axp++7Y4R1v21bavNnK0NxyS8rFDwBASgoKkjp3ttWKI0cmfKYFxMXJXaqUw8E5j44XAK6P221F7+++W6pdW/rxR++2XLmkoUOlvXttKViePM7FCQAAnBcRIX3+ubR6tTXh81i1yhoQNGtms008/vrLOq3WqSOtXOkdr1fPHuOLL6QiRVIregAAUlZoqNS7t7Rzp+L+9z8dqVRJ7nvvdToqx91QTUsAGVBcnPTVV9Lrr0vr1vluK1TIloI9/riUObMz8QEAAP9VpYr000/W3btPH2nDBhv/4Qdp9mwFduyoCvv2KWjBAu/KDUkqW9bqZd9zj9UDAwAgPQoPV/zAgfq1alXdy+cdMy0BJFFUlNXaKFVKatPGN2FZurQ0caLVrOzenYQlAAC4MpfLko9r1lhncU8dr/h4BYwfr4j58+XyJCzz55fGj7e62U2bkrAEAGQMfN5Jus6Zlq+88kpyx6EBAwYk+2MCSAaRkdbpc+RI6eBB323Vqkn9+0sPPmiFhAEAAJIqMFDq2NHqVY4ebaVlzpyRJLnDw+Xq398a73AxFACADOm6kpaDBg2SK5mzviQtAT9z/Lg0Zox9nTjhu61+fenFF+1frgABAIAbERYm9e0rPfGE4t55R9u2bVPRUaMUfOutTkcGAAAcdN01Ld1ud7IFkdwJUAA34MAB68T54YfSuXO+25o3t5mV1as7EhoAAEjHcuZU/IAB2jJ7tormyuV0NAAAwGHXlbRcuHBhcscBwGnbtlmB+4kTpZgY73hgoNSunc2AKFPGufgAAAAAAECGcV1Jyzp16iR3HACcsnatNGyYNH26b5fO0FDpiSek55+XIiKcig4AAAAAAGRA1708HEAat2SJJSt//NF3PDxc6tZN6tFDypPHmdgAAAAAAECGRtISyEjcbktSDh0qLVvmuy1XLqlXL+mZZ6Rs2ZyJDwAAAAAAQCQtgYwhLk766ivp9deldet8txUuLL3wgvT449a9EwAAAAAAwGEkLYH0LCpKmjRJGj5c2rHDd1vp0lK/flKbNlJwsDPxAQAAAAAAXAZJSyA9ioyUPvxQGjVKOnjQd1u1atKLL0oPPCAFBDgTHwAAAAAAwFWQtATSk+PHpTFjpNGjpZMnfbc1aCD17y/Vry+5XM7EBwAAAAAAkAQkLYH04MABaeRIadw46dw5323Nm1uysnp1R0IDAAAAAAC4ViQtgbRs2zZpxAhp4kQpJsY7HhgotWsn9e0rlSnjXHwAAAAAAADXgaQlkBatXSsNGyZNny7Fx3vHQ0OlJ56Qnn9eiohwKjoAAAAAAIAbQtISSEuWLJGGDpXmzPEdDw+XunWTevSQ8uRxJjYAAAAAAIBkQtIS8HdutzR7ts2sXLbMd1vu3FLPntIzz0jZsjkSHgAAAAAAQHIjaQn4q9hYW/49bJi0fr3vtsKFpRdekB5/XAoLcyY+AAAAAACAFELSEvA3UVHWWGfECGnHDt9tpUtbJ/DWraXgYGfiAwAAAAAASGEkLQF/cfasNG6cNHKkdOiQ77bq1S1Z+cADUkCAM/EBAAAAAACkEpKWgNOOH5dGj5bGjJFOnvTd1qCB9OKLUr16ksvlTHwAAAAAAACpjKQl4JT9+6VRo6QPP5TOn/fd1qKFzaysVs2Z2AAAAAAAABxE0hJIbdu2ScOHS5MmSTEx3vHAQKldO6lvX6lMGefiAwAAAAAAcBhJSyC1rFkjvf669NVXktvtHQ8NlTp3lp5/3rqCAwAAAAAAZHAkLYGUtmSJNHSoNGeO73h4uNStm9Szp5Q7tyOhAQAAAAAA+COSlkBKcLul2bOlYcOkZct8t+XOLfXqJXXtKmXL5kx8AAAAAAAAfoykJZCcYmNt+ffrr0vr1/tuK1xY6tNH6tRJCgtzJj4AAAAAAIA0gKQlkByioqSJE63Bzs6dvtvKlJH69ZNat5aCg52JDwAAAAAAIA0haQnciLNnpQ8/lEaNkg4d8t1Wvbr04otSs2ZSQIAz8QEAAAAAAKRBJC2B63H8uDR6tDRmjHTypO+2hg2l/v2levUkl8uZ+AAAAAAAANIwkpbAtdi/Xxo5Uho3Tjp/3ndbixaWrKxWzZnYAAAAAAAA0gmSlkBSbN0qjRghTZokxcR4x4OCpHbtpL59pdKlnYsPAAAAAAAgHSFpCVzNmjXSsGHS9OmS2+0dDw2VOneWnn/euoIDAAAAAAAg2ZC0BP7J7ZaWLLFk5Zw5vtuyZZO6dZN69JBy53YmPgAAAAAAgHSOpCXg4XZLs2ZZsnL5ct9tuXNLvXpJXbta4hIAAAAAAAAphqQlEBsrffWVJSs3bPDdFhEhvfCC1KmTFBbmSHgAAAAAAAAZDUlLZFwXL0oTJ1qDnZ07fbeVKWOdwFu1koKDnYkPAAAAAAAggyJpiYzn7Fnpww+lUaOkQ4d8t9WoYcnKZs2kgABn4gMAAAAAAMjg0mxWZuzYsYqIiFBoaKhq1KihlStXXnX/U6dOqVu3bsqXL59CQkJUokQJzZ49O5WihV84dkwaMMC6fb/wgm/CsmFD6eefpRUrpAcfJGEJAAAAAADgoDQ503LatGnq3bu3PvjgA9WoUUNvv/22mjRpoi1btij3ZTo6R0dHq1GjRsqdO7emT5+u/Pnza8+ePcqePXvqB4/Ut3+/NHKkNG6cdP68d9zlklq0kPr1k6pVcy4+AAAAAAAA+EiTSctRo0apS5cu6tSpkyTpgw8+0KxZszR+/Hj169fvkv3Hjx+vEydOaPny5Qr+//qEERERqRkynLB1qzR8uPTZZ1JMjHc8KEhq107q21cqXdq5+AAAAAAAAHBZaS5pGR0drd9//139+/dPGAsICFDDhg21YsWKy97nu+++U61atdStWzfNnDlTuXLlUtu2bdW3b18FBgZe9j5RUVGKiopKuH3mzBlJUkxMjGISJ8DSEc/zSvPPb80aBY4YIdeMGXK53QnD7rAwxT/+uOJ79rQl4pJvMhNwWLo5BoE0jOMQcBbHIOAsjkHAeen9OLyW55XmkpbHjh1TXFyc8uTJ4zOeJ08ebd68+bL32blzp37++We1a9dOs2fP1vbt2/XMM88oJiZGAwcOvOx9hg0bpsGDB18yPm/ePGXOnPnGn4gfmz9/vtMhXDu3W7f89ZeKT5+uPGvW+GyKyZxZu+69Vzvuv1/R2bNLGzfaF+Cn0uQxCKQzHIeAszgGAWdxDALOS6/H4fnEZfv+RZpLWl6P+Ph45c6dW+PGjVNgYKCqVKmiAwcO6I033rhi0rJ///7q3bt3wu0zZ86oYMGCaty4scLDw1Mr9FQVExOj+fPnq1GjRgnL6P2e2y3X7NkKGDFCAf+YaevOk0fxzz0nPfmkimTLpiIOhQgkVZo8BoF0huMQcBbHIOAsjkHAeen9OPSsZE6KNJe0zJkzpwIDA3XkyBGf8SNHjihv3ryXvU++fPkUHBzssxS8dOnSOnz4sKKjo5UpU6ZL7hMSEqKQkJBLxoODg9PliyaxNPEcY2Olr76Shg2TNmzw3RYRIfXpI1fHjgoMC9PlCwAA/itNHINAOsdxCDiLYxBwFscg4Lz0ehxey3MKSME4UkSmTJlUpUoVLViwIGEsPj5eCxYsUK1atS57nzvvvFPbt29XfHx8wtjWrVuVL1++yyYs4ccuXpQ+/FAqWVJq29Y3YXn77dZ0Z9s2qWtXKSzMuTgBAAAAAABw3dJc0lKSevfurY8++kgTJ07Upk2b1LVrV507dy6hm3j79u19GvV07dpVJ06cUI8ePbR161bNmjVLQ4cOVbdu3Zx6CrhWZ89Kb7whFSkiPf20tHOnd1uNGtLMmdL69dKjj1p3cAAAAAAAAKRZaTK706pVKx09elQDBgzQ4cOHVbFiRc2ZMyehOc/evXsVEODNxxYsWFBz585Vr169VL58eeXPn189evRQ3759nXoKSKpjx6TRo6UxY6RTp3y3NWok9e8v1a0ruVxORAcAAAAAAIAUkCaTlpLUvXt3de/e/bLbFi1adMlYrVq19Ouvv6ZwVEg2+/ZJI0dKH30kJe4s5XJJLVpYsrJqVefiAwAAAAAAQIpJs0lLpFNbt0rDh1ttypgY73hQkC397ttXKlXKufgAAAAAAACQ4khawj/88Yd1Av/6a8nt9o6HhUmdO0vPPy8VKuRcfAAAAAAAAEg1JC3hHLdbWrzYkpVz5/puy5ZN6t5d6tFDypXLmfgAAAAAAADgCJKWSH1ut/TDD5asXLHCd1uePFKvXlLXrlJ4uDPxAQAAAAAAwFEkLZF6YmOlL7+UXn9d2rDBd1tEhNSnj9Sxoy0JBwAAAAAAQIZF0hIp7+JFacIE6Y03pJ07fbfdfrt1Am/VyprtAAAAAAAAIMMjS4SUc/as9MEH0qhR0uHDvttq1rRk5f33SwEBzsQHAAAAAAAAv0TSEsnv2DHpnXekd9+VTp3y3daokfTii1KdOpLL5Uh4AAAAAAAA8G8kLZF89u2TRo6UPvpIOn/eO+5ySQ89JPXrJ1Wt6lx8AAAAAAAASBNIWuLGbdkiDR8uff65FBPjHQ8Kkh59VOrbVypVyrn4AAAAAAAAkKaQtMT1++MPadgw6euvJbfbOx4WJnXpIv33v1KhQs7FBwAAAAAAgDSJpCWujdstLV4sDR0qzZvnuy1bNql7d6lHDylXLmfiAwAAAAAAQJpH0hJJEx8vzZplMytXrPDdlieP1Lu39PTTUni4M/EBAAAAAAAg3SBpiauLjZW+/NKSlX/+6butSBHphRekTp2k0FBn4gMAAAAAAEC6Q9ISl3fxojRhgvTGG9LOnb7bypa1TuCtWlmzHQAAAAAAACAZkXGCj6ALFxQwcqT0zjvS4cO+G2vWlPr3l+6/XwoIcCZAAAAAAAAApHskLWGOHlXAW2+p0ejRCjx3zndb48aWrKxTR3K5nIkPAAAAAAAAGQZJS0inT0tFiyrw7FkFesZcLumhhyxZWaWKk9EBAAAAAAAgg2GNL6Rs2aRmzSRJ8YGBiu/QQfrrL2n6dBKWAAAAAAAASHXMtITp109xOXJoQYUKqtehgwKCg52OCAAAAAAAABkUMy1hypVT/KhRupArl9ORAAAAAAAAIIMjaQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CskLQEAAAAAAAD4FZKWAAAAAAAAAPwKSUsAAAAAAAAAfoWkJQAAAAAAAAC/QtISAAAAAAAAgF8haQkAAAAAAADAr5C0BAAAAAAAAOBXSFoCAAAAAAAA8CtpOmk5duxYRUREKDQ0VDVq1NDKlSuTdL+pU6fK5XKpefPmKRsgAAAAAAAAgGuWZpOW06ZNU+/evTVw4ED98ccfqlChgpo0aaK///77qvfbvXu3nn/+ed19992pFCkAAAAAAACAa+Fyu93/1969R2lV1nsA/w4MzIiAqNwFUeooqSAGikRlKHldFidvGQpSWqckU1blwZOiUWGZeU/TUjupmealOgtJREEtvIDiQT3WKTWzuIioXKxhZN7zh4c3RmZGIOTdOJ/PWrPW+z77efb+7XnfZ61Z33n23qVKF7Ephg0bln333TeXX355kqShoSF9+/bNF7/4xfz7v/97k2PWrFmTD3/4w/n0pz+dBx54IK+++mruvPPOJvvW1dWlrq6u/H758uXp27dvli5dms6dO2/28ymCYcOG5YUXXkhNTU2qqqoqXQ60OqVSKXV1deYgVJB5CJVlDkJlmYNQeWvn4c4775yHH3640uVsdsuXL0/Xrl3z2muvvW2+Vr2FatqsVq9enXnz5mXSpEnltjZt2mTUqFGZM2dOs+O+/vWvp3v37vnMZz6TBx54oMVjTJ06Needd9567XfffXc6dOiw6cUX2AsvvJCXX3650mUAAAAAtHrTpk2rdAmb3euvv77BfbfK0HLp0qVZs2ZNevTo0ai9R48eeeaZZ5oc8+CDD+ZHP/pR5s+fv0HHmDRpUiZOnFh+v3al5cEHH/yuXWm58847J4n/qkGF+M82VJ55CJVlDkJlmYNQeeuutDz88MMrXc5mt3z58g3uu1WGlhtrxYoVOfHEE3PNNdeka9euGzSmpqYmNTU167W3a9cu7dq129wlFsLDDz+cadOm5fDDD3/XniMUWX19vTkIFWYeQmWZg1BZ5iBU3rt9Hm7MOW2VoWXXrl3Ttm3bLF68uFH74sWL07Nnz/X6//GPf8zzzz+fI488stzW0NCQJKmurs7vfve7vOc973lniwYAAAAANshW+fTw9u3bZ8iQIZk5c2a5raGhITNnzszw4cPX6z9gwIAsWLAg8+fPL/987GMfy8iRIzN//vz07dt3S5YPAAAAALRgq1xpmSQTJ07MuHHjMnTo0Oy33365+OKLs2rVqowfPz5JMnbs2Oy0006ZOnVqamtrs9deezUa36VLlyRZrx0AAAAAqKytNrQ87rjj8tJLL+Wcc87JokWLMnjw4EyfPr38cJ4XXnghbdpslQtJAQAAAKBV22pDyySZMGFCJkyY0OS2WbNmtTj2+uuv3/wFAQAAAAD/NEsRAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFC26tDyiiuuyC677JLa2toMGzYsjzzySLN9r7nmmnzoQx/K9ttvn+233z6jRo1qsT8AAAAAUBlbbWj5s5/9LBMnTszkyZPz2GOPZe+9984hhxySJUuWNNl/1qxZOf7443Pfffdlzpw56du3bw4++OD85S9/2cKVAwAAAAAt2WpDy+9973s55ZRTMn78+Oyxxx656qqr0qFDh1x77bVN9r/xxhvzhS98IYMHD86AAQPywx/+MA0NDZk5c+YWrhwAAAAAaEl1pQvYFKtXr868efMyadKkclubNm0yatSozJkzZ4P28frrr6e+vj477LBDk9vr6upSV1dXfr98+fIkSX19ferr6/+J6otr7Xm9W88Pis4chMozD6GyzEGoLHMQKu/dPg835ry2ytBy6dKlWbNmTXr06NGovUePHnnmmWc2aB9nnnlmevfunVGjRjW5ferUqTnvvPPWa7/77rvToUOHjS96KzJjxoxKlwCtmjkIlWceQmWZg1BZ5iBU3rt1Hr7++usb3HerDC3/Weeff35uvvnmzJo1K7W1tU32mTRpUiZOnFh+v3z58vJ9MDt37rylSt2i6uvrM2PGjHz0ox9Nu3btKl0OtDrmIFSeeQiVZQ5CZZmDUHnv9nm49krmDbFVhpZdu3ZN27Zts3jx4kbtixcvTs+ePVsc+93vfjfnn39+7rnnngwaNKjZfjU1NampqVmvvV27du/KL826WsM5QpGZg1B55iFUljkIlWUOQuW9W+fhxpzTVvkgnvbt22fIkCGNHqKz9qE6w4cPb3bcd77znUyZMiXTp0/P0KFDt0SpAAAAAMBG2ipXWibJxIkTM27cuAwdOjT77bdfLr744qxatSrjx49PkowdOzY77bRTpk6dmiT59re/nXPOOSc33XRTdtlllyxatChJ0rFjx3Ts2LFi5wEAAAAANLbVhpbHHXdcXnrppZxzzjlZtGhRBg8enOnTp5cfzvPCCy+kTZt/LCS98sors3r16hx99NGN9jN58uSce+65W7J0AAAAAKAFW21omSQTJkzIhAkTmtw2a9asRu+ff/75d74gAAAAAOCftlXe0xIAAAAAePcSWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgUISWAAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAoQksAAAAAoFCElgAAAABAoQgtAQAAAIBCEVoCAAAAAIUitAQAAAAACkVoCQAAAAAUitASAAAAACgUoSUAAAAAUChCSwAAAACgULbq0PKKK67ILrvsktra2gwbNiyPPPJIi/1vvfXWDBgwILW1tRk4cGCmTZu2hSoFAAAAADbUVhta/uxnP8vEiRMzefLkPPbYY9l7771zyCGHZMmSJU32/+1vf5vjjz8+n/nMZ/L4449n9OjRGT16dJ588sktXDkAAAAA0JKtNrT83ve+l1NOOSXjx4/PHnvskauuuiodOnTItdde22T/Sy65JIceemi+8pWv5H3ve1+mTJmS97///bn88su3cOUAAAAAQEuqK13Apli9enXmzZuXSZMmldvatGmTUaNGZc6cOU2OmTNnTiZOnNio7ZBDDsmdd97ZZP+6urrU1dWV37/22mtJkmXLlqW+vv6fPINiqq+vz+uvv56XX3457dq1q3Q50OqYg1B55iFUljkIlWUOQuW92+fhihUrkiSlUult+26VoeXSpUuzZs2a9OjRo1F7jx498swzzzQ5ZtGiRU32X7RoUZP9p06dmvPOO2+99l133XUTqwYAAAAAVqxYke22267FPltlaLklTJo0qdHKzIaGhixbtiw77rhjqqqqKljZO2f58uXp27dv/vznP6dz586VLgdaHXMQKs88hMoyB6GyzEGovHf7PCyVSlmxYkV69+79tn23ytCya9euadu2bRYvXtyoffHixenZs2eTY3r27LlR/WtqalJTU9OorUuXLpte9Fakc+fO78qJAVsLcxAqzzyEyjIHobLMQai8d/M8fLsVlmttlQ/iad++fYYMGZKZM2eW2xoaGjJz5swMHz68yTHDhw9v1D9JZsyY0Wx/AAAAAKAytsqVlkkyceLEjBs3LkOHDs1+++2Xiy++OKtWrcr48eOTJGPHjs1OO+2UqVOnJkm+9KUv5YADDsiFF16YI444IjfffHPmzp2bq6++upKnAQAAAAC8xVYbWh533HF56aWXcs4552TRokUZPHhwpk+fXn7YzgsvvJA2bf6xkPQDH/hAbrrppnzta1/LWWedlX/5l3/JnXfemb322qtSp1A4NTU1mTx58nqXxQNbhjkIlWceQmWZg1BZ5iBUnnn4D1WlDXnGOAAAAADAFrJV3tMSAAAAAHj3EloCAAAAAIUitAQAAAAACkVoCQAAAAAUitCS3H///TnyyCPTu3fvVFVV5c4776x0SdCqTJ06Nfvuu286deqU7t27Z/To0fnd735X6bKg1bjyyiszaNCgdO7cOZ07d87w4cNz1113VbosaLXOP//8VFVV5fTTT690KdBqnHvuuamqqmr0M2DAgEqXBa3KX/7yl5xwwgnZcccds80222TgwIGZO3dupcuqKKElWbVqVfbee+9cccUVlS4FWqXZs2fn1FNPzUMPPZQZM2akvr4+Bx98cFatWlXp0qBV6NOnT84///zMmzcvc+fOzYEHHpiPf/zjeeqppypdGrQ6jz76aH7wgx9k0KBBlS4FWp0999wzCxcuLP88+OCDlS4JWo1XXnklI0aMSLt27XLXXXfl6aefzoUXXpjtt9++0qVVVHWlC6DyDjvssBx22GGVLgNarenTpzd6f/3116d79+6ZN29ePvzhD1eoKmg9jjzyyEbvv/nNb+bKK6/MQw89lD333LNCVUHrs3LlyowZMybXXHNNvvGNb1S6HGh1qqur07Nnz0qXAa3St7/97fTt2zfXXXdduW3XXXetYEXFYKUlQMG89tprSZIddtihwpVA67NmzZrcfPPNWbVqVYYPH17pcqBVOfXUU3PEEUdk1KhRlS4FWqX//d//Te/evdO/f/+MGTMmL7zwQqVLglbjl7/8ZYYOHZpjjjkm3bt3zz777JNrrrmm0mVVnJWWAAXS0NCQ008/PSNGjMhee+1V6XKg1ViwYEGGDx+ev//97+nYsWPuuOOO7LHHHpUuC1qNm2++OY899lgeffTRSpcCrdKwYcNy/fXXZ/fdd8/ChQtz3nnn5UMf+lCefPLJdOrUqdLlwbves88+myuvvDITJ07MWWedlUcffTSnnXZa2rdvn3HjxlW6vIoRWgIUyKmnnponn3zSPYRgC9t9990zf/78vPbaa/n5z3+ecePGZfbs2YJL2AL+/Oc/50tf+lJmzJiR2traSpcDrdK6twsbNGhQhg0bln79+uWWW27JZz7zmQpWBq1DQ0NDhg4dmm9961tJkn322SdPPvlkrrrqqlYdWro8HKAgJkyYkP/6r//Kfffdlz59+lS6HGhV2rdvn/e+970ZMmRIpk6dmr333juXXHJJpcuCVmHevHlZsmRJ3v/+96e6ujrV1dWZPXt2Lr300lRXV2fNmjWVLhFanS5dumS33XbLH/7wh0qXAq1Cr1691vtn+fve975Wf5sGKy0BKqxUKuWLX/xi7rjjjsyaNcsNl6EAGhoaUldXV+kyoFU46KCDsmDBgkZt48ePz4ABA3LmmWembdu2FaoMWq+VK1fmj3/8Y0488cRKlwKtwogRI/K73/2uUdvvf//79OvXr0IVFYPQkqxcubLRf9Cee+65zJ8/PzvssEN23nnnClYGrcOpp56am266Kb/4xS/SqVOnLFq0KEmy3XbbZZtttqlwdfDuN2nSpBx22GHZeeeds2LFitx0002ZNWtWfv3rX1e6NGgVOnXqtN59nLfddtvsuOOO7u8MW8iXv/zlHHnkkenXr1/++te/ZvLkyWnbtm2OP/74SpcGrcIZZ5yRD3zgA/nWt76VY489No888kiuvvrqXH311ZUuraKElmTu3LkZOXJk+f3EiROTJOPGjcv1119foaqg9bjyyiuTJB/5yEcatV933XU56aSTtnxB0MosWbIkY8eOzcKFC7Pddttl0KBB+fWvf52PfvSjlS4NALaIF198Mccff3xefvnldOvWLR/84Afz0EMPpVu3bpUuDVqFfffdN3fccUcmTZqUr3/969l1111z8cUXZ8yYMZUuraKqSqVSqdJFAAAAAACs5UE8AAAAAEChCC0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAALAV2mWXXVJVVZWTTjqp0qUAAGx2QksAgI30uc99LlVVVamqqsq99967UWPvvvvu8tgvfelL71CFAACwdRNaAgBspLFjx5Zf33DDDRs19ic/+UmT+6mUWbNmlUPUWbNmVbocAABIIrQEANhoI0aMyHve854kyW233Za//e1vGzRu1apVueOOO5Ike+65Z4YMGfKO1QgAAFszoSUAwCY48cQTkyTLly/PL37xiw0ac/vtt2fVqlWNxgMAAOsTWgIAbIITTzwxVVVVSTb8EvG1l4a3adMmJ5xwwjtWGwAAbO2ElgAAm6B///4ZMWJEkuTXv/51lixZ0mL/v/71r5k5c2aS5MADD8xOO+20Xp8777wzxxxzTHbeeefU1tamS5cuGTp0aM4777y88sorG1TXtGnTcsIJJ6R///7ZdtttU1tbm1133TVHHXVUrr/++rz++utJkueffz5VVVUZOXJkeezIkSPL97dc+3P99devd4zVq1fn+9//fkaOHJlu3bqlffv26dmzZw4//PDccMMNaWhoaLa+k046KVVVVdlll12SJAsXLsyZZ56ZPffcM506ddroe2s2dU/OW265JQcddFC6deuWbbbZJrvvvnu++tWvZtmyZc3u5yMf+UiqqqrykY98pMXjnXvuueXjNWXttnPPPTdJct9992X06NHp3bt3ttlmm7zvfe/LlClTyitu15o2bVoOP/zwcr899tgjU6dOzerVqzf4d/Hoo4/m+OOPT9++fVNbW5u+fftm/PjxeeaZZzZo/B/+8IecccYZGThwYLbbbrtss8026d+/f0466aTMnTu32XFv/QwaGhpy7bXXZuTIkenRo0fatGnjCecAwMYrAQCwSa6++upSklKS0iWXXNJi3wsuuKDc9z//8z8bbVu2bFnpwAMPLG9v6qd79+6lOXPmNLv/pUuXlg466KAW95GkdN1115VKpVLpueeee9u+6/Zf67nnnisNGDCgxTEf/OAHSy+//HKTdY4bN66UpNSvX7/SnDlzSl27dl1v/H333fe2v/u17rvvvvK4mTNnlk444YRm63rve99bWrhwYZP7OeCAA0pJSgcccECLx5s8eXJ5f01Zu23y5MmlqVOnlqqqqpqs5QMf+EBp5cqVpYaGhtJpp53WbM2HHnpo6Y033mjyWP369SslKY0bN670ox/9qFRdXd3kPmpqakq33HJLi+d1wQUXlNq1a9dsHVVVVaWzzz67ybHrfgZ33XVXadSoUeuNHzduXIvHBwB4KystAQA20bHHHpva2tokjZ8K3pS12zt27JhPfOIT5fa6urqMGjUq9957b9q2bZsTTzwxP/3pT/PQQw/lgQceyDe/+c3suOOOWbJkSQ4//PD86U9/Wm/fr7/+ekaOHFleyTlkyJD84Ac/yG9+85vMnTs3d9xxR84444z07t27PGannXbKggULcu2115bbrr322ixYsKDRz+jRo8vbV65cmYMOOqi8cm/06NH55S9/mblz5+bWW2/NAQcckCR58MEHc+SRR2bNmjXN/j5WrlyZo446Kn//+9/zH//xH5k1a1YeeeSR/OhHP0qvXr1a/F025+yzz84NN9yQ0aNH5/bbb8+8efMybdq0HHHEEUn+sZJwS7jrrrsyadKk7L///rnpppsyd+7cTJ8+PYcddliS5Le//W2mTp2aiy66KJdeemkOO+yw3HbbbZk3b15+8YtfZP/990+STJ8+Pddcc02Lx5o/f37+7d/+Ld27d89ll12Whx9+OLNnz86ZZ56Zmpqa1NXVZcyYMc2ulrzgggvyla98JfX19Rk0aFCuvPLK3HPPPZk7d25uvPHGDB8+PKVSKVOmTMmll17aYi1nnnlm7rnnnnzsYx9r9BmsPW8AgA1W6dQUAGBrduyxx5ZXkz3zzDNN9nniiSfKfcaOHdto21lnnVVKUurSpUtp7ty5TY5//vnnS7169SolKX3qU59ab/sZZ5xR3v+pp55aamhoaHI/dXV1pUWLFjVqW3eV3NutcPzyl79c7vu1r31tve0NDQ2lMWPGlPt8//vfX6/P2pWWSUodO3YszZ8/v8Vjvp11609S+sY3vtFkXQcffHApSam6urq0ZMmS9fps7pWWSUpHHXXUeqsk33jjjdL+++9fSlLq1KlTqba2tnT66aevt59Vq1aVV1IOGjSoyWOt3Z7/X7na1CrSe++9t7wCc999911v+1NPPVVeYTl58uQmvztr1qwpr2Dt2LFjadmyZY22v/UzaOq7AQCwsay0BAD4J4wdO7b8urnVluu2r9t/5cqVueKKK5IkU6ZMyZAhQ5oc369fv5x99tlJkltvvbXR/RBfffXV/OAHP0jy5grLSy65pNn7LbZv3z49evTYkNNaT11dXX74wx8mSfbcc8/yPRvXVVVVle9///vZcccdkySXX355i/v86le/mr333nuT6mnKkCFDctZZZzVZ18SJE5Mkb7zxRubMmbPZjtmcDh065Oqrr07btm0btbdt2zaf/exnkyQrVqxIt27d8p3vfKfJ8ePGjUuS/Pd//3dee+21Fo934YUXpmfPnuu1jxw5MqecckqSN+95+dbVlhdeeGHq6+szdOjQTJ48ucnvTps2bXLZZZelpqYmK1euzM9//vNm69htt92a/G4AAGwsoSUAwD/hkEMOKQeBN954Y0qlUqPtDQ0Nuemmm5Ikffr0afTgm9mzZ5fDqKOPPrrF43z4wx9OktTX12fevHnl9nvvvbf8cJ3TTjttvZBsc5k3b15effXVJG8+TKe543Tu3DnHHntskuTpp5/OwoULm93nmDFjNmuNn/rUp5oNbNcNhJ999tnNetymfPSjH80OO+zQ5LZ1g9pPfOITadeu3dv2e+6555o91vbbb5+Pf/zjzW7/9Kc/XX59zz33NNr2q1/9Kkly1FFHNfu7S5IuXbpk4MCBSdJi6Hvccce9Y99BAKB1EVoCAPwTqqur86lPfSrJm0/kfvDBBxttnzlzZv76178meTOka9PmH39+rbvqrVevXus9uXvdn7322qvcd9GiReXXjz/+ePn1hz70oc17cut48skny6+HDRvWYt91t687bl0dO3ZM//79N09x/2/AgAHNbls3QFyxYsVmPW5Tdtttt2a3denSZaP7tVTzPvvsk+rq6ma3Dx48OO3bt0+SLFiwoNz+pz/9KS+99FKSZNKkSS1+/6qqqsrf13W/f281aNCgZrcBAGwMoSUAwD+ppUvEm7s0PEmWLFmyScdbu7IySZYuXVp+vakPsNkQy5YtK7/u3r17i33XvUx53XHrWjeQ21w6dOjQ7LZ1w+KWHhC0pWvZHDW/3edRXV1dDm3X/Tw2x/fvrbbffvtN2icAwFs1/y9ZAAA2yODBgzNw4MAsWLAgt956a/n+f6tWrcrtt9+e5M3Lk/fYY49G49YNoh577LFmLxN+qz59+my+4jdBS5cRbyiXEG8+m/p5rPv9O+ecc3LMMcds0Lhtt9222W0+VwBgcxFaAgBsBmPHjs1XvvKVvPrqq/nVr36Vo48+OnfccUf5oTlvXWWZpPzAmiTp1q3bJoWRXbt2Lb9euHBhdt11102o/u2te3n14sWLW7ysed3Lh5u7r2PRrF3V2NDQ0GK/dR+CVBSLFy9ucfsbb7xRXmG57uex7vevXbt2jW5BAABQaS4PBwDYDMaMGVNeZXbDDTck+cel4e3atcvxxx+/3ph99tmn/Po3v/nNJh33/e9/f/n1/fffv9HjN3SV3rqB1sMPP9xi30ceeaTJcUXWqVOnJMkrr7zSYr/f//73W6KcjTJ//vy88cYbzW5/4oknsnr16iSNP4/+/ftnu+22S7Lp3z8AgHeK0BIAYDPo1atXRo0alSSZNm1annzyycycOTNJcuihh6Zbt27rjRk1alT5noaXXnrpek8e3xAjR44sX6572WWXbfT9Gmtra8uv6+rqmu03ZMiQ8n0of/zjHze7InHFihW55ZZbkiR77LHHO3qfzc1p7QrV3//+980+9Gbp0qWZMWPGlixrgyxbtqz8FPCmXHvtteXXa7+jyZuXch9++OFJkrvvvjv/8z//884VCQCwkYSWAACbydpLwOvr6/PJT36yHCA2dWl48ubDaCZMmJAk+e1vf5szzjijxcuTFy9enB/+8Ifr7eNzn/tckmTevHk5/fTTmw0/6+vr13v4yrqh4h//+Mdmj11TU5OTTz45yZtPBJ8yZcp6fUqlUiZMmFB+ONDac9saHHDAAUmS1atX57LLLltve319fU4++eT87W9/29KlbZCJEyc2eZn47Nmzc/XVVyd5M3jed999G22fNGlS2rZtm4aGhhx99NF58cUXmz3GmjVrcuONN7bYBwBgc3FPSwCAzeRf//Vf06lTp6xYsSJPPfVUkjefpnzkkUc2O+brX/96Zs+enYcffjiXXHJJZs2alVNOOSWDBw/Otttum1deeSVPPfVU7rnnntx1110ZOHBgOTxca8qUKZkxY0YWLFiQyy+/PHPmzMnnPve5DBw4MO3bt8+LL76YBx54ID/96U/zjW98IyeddFJ57M4775w+ffrkxRdfzHe/+9306dMnu+++e/lS9x49epQvnT7nnHNy++2359lnn825556bBQsWZPz48enVq1eee+65XH755Zk1a1aSZPjw4fnsZz+7GX+776wjjjgi/fr1y5/+9KecffbZWbp0aT7xiU+ktrY2Tz31VC699NI8/vjj2X///fPQQw9VutxG9t577zz99NMZMmRIJk2alP322y91dXWZNm1aLrroorzxxhuprq7OFVdcsd7YgQMH5rvf/W7OOOOMPP3009lrr73y2c9+NgceeGB69OiRv//973n++eczZ86c/PznP8/ChQuzYMGCij8MCgB49xNaAgBsJttss02OPvroXHfddeW2Y489NjU1Nc2OqampyYwZM3LSSSfl9ttvzxNPPNHiCsXOnTuv19ahQ4fce++9Oeqoo3L//fdn3rx5GxUYnnXWWfnCF76Q5557Lh//+McbbbvuuuvKIWenTp0yc+bMHHbYYXnmmWdy22235bbbbltvfyNGjMgvf/nLrepJ0u3bt88NN9yQQw89NKtWrcpFF12Uiy66qLy9bdu2ufjii7Ns2bLChZaDBw/OhAkT8vnPf77J70779u3z4x//OMOGDWty/Omnn55tt902p59+el577bVccMEFueCCC5rs2759+0a3FAAAeKe4PBwAYDMaN25co/fNXRq+rk6dOuW2227LAw88kJNPPjm77757OnXqlOrq6uywww7Zd999c+qpp2batGnN3lOxa9eumT17dm6//fYcffTR6dOnT2pqalJbW5v+/fvnmGOOyY033tjkA4E+//nP57bbbsvBBx+c7t27p7q6+f9r77LLLnniiSdy+eWX54ADDsiOO+6Ydu3apUePHjn00EPzk5/8JPfff/9W89TwdX3wgx/MvHnzcuKJJ6Z3795p165devXqVQ6DTzvttEqX2KyTTz45DzzwQI499tj07t077du3z0477ZSxY8fm8ccfzyc/+ckWx59yyil59tlnc95552XEiBHp2rVrqqurs+2222a33XbLUUcdlauuuip/+ctf8t73vncLnRUA0JpVlTblju8AAAAAAO8QKy0BAAAAgEIRWgIAAAAAhSK0BAAAAAAKRWgJAAAAABSK0BIAAAAAKBShJQAAAABQKEJLAAAAAKBQhJYAAAAAQKEILQEAAACAQhFaAgAAAACFIrQEAAAAAApFaAkAAAAAFIrQEgAAAAAoFKElAAAAAFAo/wfCr2q32PwOoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lib.ire_plot('test', ire2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "v2XXEddTe7LU", + "outputId": "20e92094-6e06-40f9-836c-ee377de89cdf" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVtZJREFUeJzt3Xt8U/X9P/DXSdKmF9pSIG0pDS33mxaBOS2TISsOEZCLU0BmAVFxokOnwhAdoDKY6Py66RC5Ti1WUZHNH8gQgcFAuUq5y603Si9A79C0yTm/P0LSpE3atE1ykpPX8/HIA3JykrxT7Zt33udzESRJkkBERESkECq5AyAiIiJyJxY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3FFAEQcDChQvlDoOI/Axzh39hceMn/vGPf0AQBNxxxx2tfq3Nmzfzl9SLSktLERISAkEQcOrUKYfnTJs2DYIgOLyFhITYnbt48WLcf//9iI2NZcKlJjF3+C935o7Tp09jzpw5uO222xAREYGOHTti1KhROHjwoLc+jldp5A6AXJOeno6kpCTs378f586dQ/fu3Vv8Wps3b8Z7773HJOUlGzZsgCAIiIuLQ3p6Ol5//XWH52m1WqxatarBcbVabXf/5ZdfRlxcHAYMGICtW7d6JGZSDuYO/+XO3LFq1SqsXr0aDzzwAJ566imUlZVhxYoVuPPOO/HNN99g+PDhHvsccmBx4wcuXryIvXv34ssvv8TMmTORnp6OBQsWyB1WwKuurkZwcDBUqsYboB9//DHuu+8+JCYmYv369U4TlEajwW9/+9sm3/fixYtISkrClStXoNPpWhQ7BQbmDt8kR+6YPHkyFi5ciDZt2liPPfroo+jTpw8WLlyouOKGl6X8QHp6OqKjozFq1Cj85je/QXp6eoNzdu7cCUEQsHPnTrvjWVlZEAQB69atA2BuYb733nsAYNe+tKiqqsLzzz8PvV4PrVaLXr164c0334SjzeM//vhjDBo0CKGhoWjXrh0mTZqE3Nxcu3Puvvtu3HLLLTh58iSGDRuGsLAwdOrUCW+88UaD16uursbChQvRs2dPhISEoGPHjpgwYQLOnz/f7PgMBgOee+456HQ6RERE4P7770deXp7Dn++lS5fw6KOPIjY2FlqtFv369cOaNWsc/nwzMjLw8ssvo1OnTggLC0N5ebnD17TIycnB7t27MWnSJEyaNMn6j01rJCUlter5FDiYO5g7LAYNGmRX2ABA+/btMWTIEKeXvPwZOzd+ID09HRMmTEBwcDAmT56M5cuX48CBA7j99tub/VozZ85Efn4+tm3bho8++sjuMUmScP/992PHjh2YMWMGbrvtNmzduhUvvvgiLl26hLffftt67uLFi/HKK6/goYcewmOPPYbi4mL8/e9/xy9/+UscOXIEbdu2tZ5bUlKCe++9FxMmTMBDDz2Ezz//HHPnzsWtt96KkSNHAgBMJhNGjx6N7du3Y9KkSZg9ezYqKiqwbds2HD9+HN26dWtWfI899hg+/vhjPPzwwxg8eDC+++47jBo1qsHPo7CwEHfeeScEQcDTTz8NnU6HLVu2YMaMGSgvL8ezzz5rd/5rr72G4OBgvPDCCzAYDAgODm705/3JJ58gPDwco0ePRmhoKLp164b09HQMHjzY4flXrlxpcCw4OBiRkZGNvg+RI8wdzB1N5Y6CggJ06NCh0XP8kkQ+7eDBgxIAadu2bZIkSZIoilJCQoI0e/Zsu/N27NghAZB27Nhhd/zixYsSAGnt2rXWY7NmzZIc/af/6quvJADS66+/bnf8N7/5jSQIgnTu3DlJkiQpKytLUqvV0uLFi+3OO3bsmKTRaOyODx06VAIgffjhh9ZjBoNBiouLkx544AHrsTVr1kgApL/+9a8N4hJFsVnx/fjjjxIA6amnnrI77+GHH5YASAsWLLAemzFjhtSxY0fpypUrdudOmjRJioqKkq5fvy5JUt3Pt2vXrtZjrrj11lulKVOmWO+/9NJLUocOHaTa2lq786ZOnSoBcHgbMWKEw9cuLi5u8HmILJg7mDuc5Q6L//73v5IgCNIrr7ziclz+gpelfFx6ejpiY2MxbNgwAOZ28MSJE5GRkQGTyeTW99q8eTPUajV+//vf2x1//vnnIUkStmzZAgD48ssvIYoiHnroIVy5csV6i4uLQ48ePbBjxw6757dp08buenBwcDB+/vOf48KFC9ZjX3zxBTp06IBnnnmmQVyW1rer8W3evBkAGpxX/5uUJEn44osvMGbMGEiSZPdZRowYgbKyMhw+fNjuOVOnTkVoaKjjH2A9mZmZOHbsGCZPnmw9NnnyZFy5csXhQOCQkBBs27atwW3p0qUuvR+RLeYO5o7GckdRUREefvhhdOnSBXPmzHEpLn/Cy1I+zGQyISMjA8OGDcPFixetx++44w689dZb2L59O37961+77f2ys7MRHx+PiIgIu+N9+vSxPg4AZ8+ehSRJ6NGjh8PXCQoKsrufkJBgd20eAKKjo5GZmWm9f/78efTq1QsajfP/JV2NLzs7GyqVCt26dbM7r1evXnb3i4uLUVpaig8++AAffPCBw/csKiqyu9+lSxen8dX38ccfIzw8HF27dsW5c+cAmJNQUlIS0tPTG7S61Wq14gb1kTyYO1oWX6DkjqqqKowePRoVFRXYs2dPg7E4SsDixod99913uHz5MjIyMpCRkdHg8fT0dGuCqp8ALNz9DQ0ARFGEIAjYsmVLg2nKABr8ojg6B4DDgYbeJIoiAOC3v/0tpk6d6vCc5ORku/uufvOSJAmffPIJqqqq0Ldv3waPFxUVobKyUpFJheTH3OFZ/pw7ampqMGHCBGRmZmLr1q245ZZbWvQ6vo7FjQ9LT09HTEyMdYaCrS+//BIbN27E+++/j9DQUERHRwMwL/pky/KNxJazZJaYmIhvv/0WFRUVdt9wTp8+bX0cgHWAXpcuXdCzZ88Wfbb6unXrhh9++AG1tbUNvr01N77ExESIomj9Rmdx5swZu9ezzIYwmUxu75js2rULeXl5ePXVV63fDi1KSkrwxBNP4KuvvnJp6jdRczF3tCw+pecOURSRlpaG7du347PPPsPQoUPdFbbv8f4wH3LF9evXpYiICOnRRx91+Pj//vc/CYCUkZEhSZIklZaWSmq1WnruuefsznvggQcaDAqcO3euBEAqKSmxO9cy6O7Pf/6z3fGJEyfaDbo7d+6cpFarpYcfftg6YM9CFEW7AXZDhw6V+vXr1yD+qVOnSomJidb7zRkU2FR8R44ccXlQ4LRp06Tg4GDp2LFjDd63qKjI+nfLoMANGzY0OM+RGTNmSOHh4dKNGzccPt6jRw/p3nvvtd6fOnWqFB4e7tJrW3BAMTnC3GH/ms2JT+m546mnnpIASCtWrHDpfH/Gzo2P+te//oWKigrcf//9Dh+/8847odPpkJ6ejokTJyIqKgoPPvgg/v73v0MQBHTr1g1ff/11g+u+gHm9A8A8aG7EiBFQq9WYNGkSxowZg2HDhmH+/PnIyspC//798Z///AebNm3Cs88+a70O3a1bN7z++uuYN28esrKyMG7cOERERODixYvYuHEjnnjiCbzwwgvN+rxpaWn48MMP8Yc//AH79+/HkCFDUFVVhW+//RZPPfUUxo4d63J8t912GyZPnox//OMfKCsrw+DBg7F9+3brtWtbS5cuxY4dO3DHHXfg8ccfR9++fXHt2jUcPnwY3377La5du9aszwGY18n44osvcM899zTYOsHi/vvvxzvvvIOioiLExMQAAIxGIz7++GOH548fPx7h4eEAgI8++gjZ2dm4fv06AOC///2vdXGvRx55xPotlAITcwdzhy1L7vi///s//OMf/0BKSgrCwsIanG+bYxRB7uqKHBszZowUEhIiVVVVOT1n2rRpUlBQkPXbTnFxsfTAAw9IYWFhUnR0tDRz5kzp+PHjDb59GY1G6ZlnnpF0Op0kCILd1M6Kigrpueeek+Lj46WgoCCpR48e0rJlyxp8y5IkSfriiy+ku+66SwoPD5fCw8Ol3r17S7NmzZLOnDljPcfVb1+SZP7GOX/+fKlLly5SUFCQFBcXJ/3mN7+Rzp8/3+z4bty4If3+97+X2rdvL4WHh0tjxoyRcnNzHXY6CgsLpVmzZkl6vd76vqmpqdIHH3xgPac5376++OILCYC0evVqp+fs3LlTAiC988471p8HnEznBCBdvHjR+lzLFFlHt/rTeSnwMHcwdzjKHc3JMUogSJLMI7OIiIiI3Ijr3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlKUgFvETxRF5OfnIyIiwulS4kTkWZIkoaKiAvHx8VCp/OM7FnMHkbyakzcCrrjJz8+HXq+XOwwiApCbm4uEhAS5w3AJcweRb3AlbwRccWPZNO2l/x1CCHdkJpJFdWUl/vyLQXabGPo65g4ieTUnbwRccWNpJ4e0aYMQP0qsRErkT5d3mDuIfIMrecM/LnYTERERuYjFDRERESkKixsiIiJSlIAbc0PkaWpJRLAoQoAkdyiykCCgRqWCSeB3JyJXCZKEENHEvOGmvMHihshdJAmJ1ZVIMBqg8qOBsp4gShLyNFpkh7QBAvxnQdQUrWhCclUpQgL8V8WdeYPFDZGbJFZXootYg/YxMQgKDQUCNVFJQO2NGwi6UgxUVyI7lDOLiJySJHS9UYFobTCiY2MhqAI0cbg5b7C4IXIDtSQiwWhA+5gYhEVHyx2O7IJCQgAAtUVFyJPCeYmKyIkgSUR70Yio9jEIDg2VOxxZuTNvMOMQuUGwKEIlCOaODQEAgkJDoRIEBIui3KEQ+SyNJEEQBKiDguQOxSe4K2+wuCFyA+sgwADtKDskWP4IzAGSRK5g7qjHTXmDxQ0REREpCosbIiIiUhQWN0SEooICzH/uWdzRuxcSIyMwqFs3pE0Yj93ffQcA+GjVKky45x700HVAxxAtykpL5Q2YiHyCr+YOFjdEAS43KwsjBqdgz86deGXJUnx36BDW//vfGDx0KOY9OxsAcOPGdQz79a/x+zlzZY6WiHyFL+cOTgUnCnB/nP17CIKALXv+h7DwcOvxXn37YvLUaQCAJ575PQBg765dcoRIRD7Il3MHOzdEPshk8s77lFy7hh3/+Q+mzXzSLjlZRLVt651AiMgtmDvMWNwQ+ZBzPwFDb9MgITwYQ2/T4NxPnn2/rPPnIUkSuvfq5dk3IiKPYu6wx+KGyIfMeEiD82fNCz2cPytgxkOevXIsSVyDhkgJmDvsccwNkY8wmYCfTqts7gv46bQAkwlQqz3znl26d4cgCDh35oxn3oCIPI65oyF2boh8hFoN9OwtQq2Wbt6Xbt733HtGt2uHu++5B+tWvI/rVVUNHueUbyLfx9zREIsbIh+y+jMjuvUwJ6huPSSs/szo8fdc8n/vwGQyYeRdv8DXGzfiwrmz+On0Kax6712MHvpLAOa1LI4fPYqL588DAE4dP47jR4+i5No1j8dHRE1j7rDHy1JEPqR7T2DXj0aPtpPrS+zaFf/Z9z3e+ctSLJo7F0UFl9Fep0PygAH4y9/+DgD4cOVKvLX4detzxg9PBQD83wcrMTEtzTuBEpFTzB32BMnXRwW5WXl5OaKiovDq0TMIiYiQOxxSiDBTLQbdKEenxM4I0obIHY5PqDVU41J2Dg6FRuK62n7H4+qKCvypfy+UlZUhMjJSpgibh7mDPIG5w5678gYvSxEREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNkRtIECx/IQvJ8ocgbxxEPoy5ox435Q0WN0RuUKNSQZQk1N64IXcoPqP2xg2IkoQaFdMMkTNGQYAkSTDV1sodik9wV97gOjdEbmASVMjTaBF0pRgAEBQaioBtWEjmBHX1SjHyNFqYBBY3RM7UCipcVWkQdvUqVBoNBFWAJg435w0WN0Rukh3SBqiuRG1REVRCgCaom0RJQp5Ga/6ZEJFzgoDzoRFoU1WKG7m5ckcjK3fmDRY3RO4iCMgOjUCeFI5gUYQQoBfRJQioUanYsSFyUY1KjYNt2iFENDFvuClvyJp9Fi5cCEEQ7G69e/du9DkbNmxA7969ERISgltvvRWbN2/2UrRErjEJKtxQa3BdHRSQtxtqjUcLG+YNUiJJEJg33Jg3ZP9q1a9fP1y+fNl627Nnj9Nz9+7di8mTJ2PGjBk4cuQIxo0bh3HjxuH48eNejJiI5Ma8QUSNkb240Wg0iIuLs946dOjg9Nx33nkH9957L1588UX06dMHr732GgYOHIh3333XixETkdyYN4ioMbIXN2fPnkV8fDy6du2KKVOmICcnx+m5+/btw/Dhw+2OjRgxAvv27XP6HIPBgPLycrsbEfk3T+cNgLmDyJ/JWtzccccdWLduHb755hssX74cFy9exJAhQ1BRUeHw/IKCAsTGxtodi42NRUFBgdP3WLJkCaKioqw3vV7v1s9ARN7ljbwBMHcQ+TNZi5uRI0fiwQcfRHJyMkaMGIHNmzejtLQUn332mdveY968eSgrK7PecgN8qh2Rv/NG3gCYO4j8mU9NBW/bti169uyJc+fOOXw8Li4OhYWFdscKCwsRFxfn9DW1Wi20Wq1b4yQi3+GJvAEwdxD5M9nH3NiqrKzE+fPn0bFjR4ePp6SkYPv27XbHtm3bhpSUFG+ER0Q+iHmDiOqTtbh54YUXsGvXLmRlZWHv3r0YP3481Go1Jk+eDABIS0vDvHnzrOfPnj0b33zzDd566y2cPn0aCxcuxMGDB/H000/L9RGIyMuYN4ioKbJelsrLy8PkyZNx9epV6HQ63HXXXfj++++h0+kAADk5OVDZbJ41ePBgrF+/Hi+//DJeeukl9OjRA1999RVuueUWuT4CEXkZ8wYRNUWQJCmg1nouLy9HVFQUXj16BiEREXKHQxSQqisq8Kf+vVBWVobIyEi5w3EJcweRvJqTN3xqzA0RERFRa7G4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESmKRu4AiFojKysLxhKDS+d2H9DLw9EQEZEvYHFDfs1YYkDqT2fQL7RTo+cta2cuhJKSkrwTGBERyYbFDfk1Q1UlelwD8sVtjZ43okiPneE/A5K8ExcREcmHxQ35rXNHzmDE6dPILP8BuvZhjZ5bczUf1SVd2b0hIgoALG7IbxmqKtGhzIQP70lu8twh2zMx7Owp7Itux+4NEZHCsbghn5WVldXo41JNDU5X7sPAyDeafK3dqUDaDg0MVZWNvi67OkRE/s9npoIvXboUgiDg2WefdXrOunXrIAiC3S0kJMR7QZJXGUsMGPpDptPbjGMXoA0Lcum1BkZOxEXxIO4+cdTp61XlXW2yoCLfw9xBRPX5ROfmwIEDWLFiBZKTm768EBkZiTNnzljvC4LgydBIRpbBwlfEk3bHVbVGJGQeQ3VBHnoOnYRMQzVM2qb/odqdmoyf//sAOhkTHT4+oqKCg479DHMHNYem+gb6p3+EtrnZKNUn4uiUR2AMCZU7LPIA2YubyspKTJkyBStXrsTrr7/e5PmCICAuLs4LkZGczh05g7tPHMXloJ/sjqtqjfj5p98gsugaREGAcGYp+mzfhE/f/qTJAmdg5ERowzJRqy11+DgHHfsX5g5qDk31DTz84FjoTp6EpFZBMIno99XnWL9hEwscBZL9stSsWbMwatQoDB8+3KXzKysrkZiYCL1ej7Fjx+LEiRONnm8wGFBeXm53I99nqKpEp0oNPhnY3e52tegaIopKIEiAWpSgkiTozp9C8tcZLr3u7tTkBq9puRlUwLCzp1xeFJDkxdxBzdE//SPoTp6EShKhNhqhkkToTp5E//SP5A6NPEDWzk1GRgYOHz6MAwcOuHR+r169sGbNGiQnJ6OsrAxvvvkmBg8ejBMnTiAhIcHhc5YsWYJFixa5M2zyENvxLs4GC/ct/QmSSg2YjHXnqtSIKsh16T0GRk50+pizQcfs4vge5g5qrra52ZDUKsAoWo9JahXa5mbLGBV5imzFTW5uLmbPno1t27a5PLAvJSUFKSkp1vuDBw9Gnz59sGLFCrz22msOnzNv3jz84Q9/sN4vLy+HXq9vXfDkdllZWajKu4r7Ll0CAETnleLDMYMwsN55ZXF6CKLJ7pggmlAW1/r/puZBx/Nx9wkjwi51AABs79mLY3B8DHMHtUSpPhGCSbQ7JphElOodj8Ej/ybbZalDhw6hqKgIAwcOhEajgUajwa5du/C3v/0NGo0GJpOpydcICgrCgAEDcO7cOafnaLVaREZG2t3I9xhLDBhx+jSir5xE9JWTN7s2DbssmaMnobhbH4iCAJNaA1EQUNytDzJHT3JLHLtTk1FRcMAaR3XJNc6g8jHMHdQSR6c8guK+fSEKKpg0GoiCCkV9++HolEfkDo08QLbOTWpqKo4dO2Z3bPr06ejduzfmzp0LtVrd5GuYTCYcO3YM9913n6fCJC8xVFWiUxVQGV4KANCGBcHo4DyTNgSfvv0Jkr/OQFRBLsri9MgcPcml2VKuqD/omAv/+R7mDmoJY0go1m/YxNlSAUK24iYiIgK33HKL3bHw8HC0b9/eejwtLQ2dOnXCkiVLAACvvvoq7rzzTnTv3h2lpaVYtmwZsrOz8dhjj3k9fnKfrKwsjDh9GkdL92D/kEEAGh8bY9KG4MgD0zwWz+7UumnFP//3AVSX9OEMKh/C3EEtZQwJxaEZT8gdBnmB7FPBG5OTkwOVqu7KWUlJCR5//HEUFBQgOjoagwYNwt69e9G3b18Zo6SWsL3UU5V3FR3KTNg8ZlCjRY232MagDavbtiELWQA4wNgfMHcQBTZBkiRJ7iC8qby8HFFRUXj16BmERETIHU7AOnfkDMaXlAIASi6cw5VLe2Cc0vQ2Ct52uPxTpO0IRklCW0TqYrExui000VoWOK1UXVGBP/XvhbKyMr8Zy8LcQSSv5uQN2de5ocBkqKpE7JlCxJ4pRKcquLyNgrdZtm3ocQ2IPVOIuw8d5Do4REQ+zqcvS5Ey1V99OK/yOqrGL5Y5Kud2pyYD279FQnQYaq5e5yrGREQ+jsUNeZ1l9eEPh3W3Hqu/no0vGRg5EbtTzX8fsj2TM6iIiHwcixvyCldWH/ZllkHGtqsYExE1pjlrZLET7F4sbsgrjCUGjC8pRXlxodPVh/2B7SrG+8LboPuAXnKHREQ+ypL3mrIxui07wW7G4oY87tyRM0j96Qz0oZ1Qcw3Y42ddm/p2pyaze0NEjcrKyoKhqhL6yqb/mTUEM5e4G4sb8jhDVSXiCipwsPqfAJyvPuwvBkZOxOnKOZBqenBgMRE5ZCwx4O4TR3Gw9Mcmz7277W3sBLsZixvyKLvVh8c0vfqwv9g/ZhDSdpxFenAwwOKGiOqxTpy4J7nJc9kJdj8WN+RRvrb6sLuwe0NEFvUHDlu6NhfFHzEwsullLmxziQVzSuuwuCGPycrK8suZUa7ShgVxWjhRgLNdbd2ivLgQ0ZUafJia7NLECUsnuKS42LoSehb4pak1uEIxeYyxxIBhZ0/57OrDrVU1fjEqCg6guuRas6Z8EpFyWAYN2956XMPNL3WudavNneB96HEN0FdqkPrTGa6E3krs3JBHZGVlobrkGioKDvjknlHuwu4NUeCydKcPnvrE7nh5dS32N3O5C21YEDLLvwXKgS4hd8DQiWNwWoPFDXmEpWtT4+czo5rCaeFEgasq7yp+e+Ssw0HDzR1jWDV+MXaXfwoA+Pm/92DEaWAnZ1C1GIsbchvbSzPWmQIuXnP2V/UX9dNEawFwMCCRUnlytXVLQbR/DJC2wwRDVaX1/ZhTmofFDbmN7WqcBWdPuDxTwN9ZujepP53hYEAihbPPc57pTltmY444rUZ0jXkPvo0lBnZxmoEDisktbFfj1Fdq0KlSY95NOwBwMCBRYMjKyjKvtl6pQeyZQlQUHEDVeM98gdOGBaFTFaw5lZe+m4edG3ILY4kBI06fRr4hFwBwujJbkdO/ndk/ZhDw7y3oLSYiGoChUyeuf0OkMFV5V9HjGpAvbkN+Zb5HV1uvGr8YR9PnoHeuOaeOKNJzDE4zsLihVrPMjLpyaQ8qbk77bu5MAX83MHIitGGZuHg9HwBw94mj2Bf+C86gIlIIy8yoPUVbzMtbqMyXpD2Z57RhQdac0qU6nt2bZmBxQ61mOzPK0qINpMLGwvLZD5d/yhlURApjLDFgxrELOO3FPGd7yet0OldEbw6OuaFWs8yMUuoYG9Hk2jELyxicEadP49yRM54LjIi8wtKdPlq6p1ljbJqbOxqzf8wg/PbIWVTlXW3ZCwQYdm6oVc4dOdOsPVT8SVFuENYuikdhjhaxnQ2YvsDcHq5/LEZf2+C55uXUTezeEClAc9ftak3ucIb72TUPOzfUKkru2qxdFI/ivGAAQHFeMNYuind4zBFL90aqqeHWDER+rrl5rjW5ozGWFdE5G7NpLG6oxew3xlTOjt+AuXVcmKOFKArm+6KAwhytw2POWs/asCDMOHaBiYjIj9V1pw+6lOfckTuc4X52rmNxQy1WlXcVM45dME+DVhiVGojtbIBKJZnvqyTEdjY4PKZS1z2vKDcIf3ksES+M7Ik//b+P8Z/sC0xERH6suV0bd+SOvzyWiKJcxxsOs3vjGhY31CKWrs3R0j2K69pYTF+QD11CDQBAl1CD6QvyMX1BPjp0sj9mq37rec2ueUxERH4qKysLI06fbnZ32lHumPpKw2O2XL1stTs1GZ24qF+TOKCYWiQQNsaM0ddi7qpsiCbztzHLIMGiXMcDAi3taOt9UcDlEj3K8g/BUNWfgwCJ/ExV3lV0KDNhczPX7bLNHVfy7QcXz1l5EXGJ9gOJHeUOy2Ur2+4O0HA/Oy7q5xg7N9RslmmRnlx63JdYkktT36yctaND26hx94mj7N4Q+RF3jClUqRvmjX++1rAj4yx31C9sLNi9aRqLG2o2S9dGG+b4mrASORskWH/wn6PWMxMRkf9xR55zNW+IJseXspzhbMym8bIUNZtlgN2HHl563JdYvlkV5wVDFAWoVBJ0CTXWb1b117WwbT3HoG6HX+4NQ+T7bLvTxikt3yOvuXlj+oJ8dIivddqxsbV/zCA8vvsC1gQHA7zc3QA7N9Qs546cwYjTp12eFqkkv5xQAlE0/10Uzfctmmo97x8zCB3KuKgfkb+498IFt3Sn759ZDOHm5SZRFGC4IVhnQjm61O1KYQOYuzdHS/e0Oj6lYnFDzWKoqkSHMpMiF+1rypfvxtjd//xv5vuutJ7ZRiYKTP9aoYPJKFjvlxYHYfWCeJcvWVHLsLghlyl50b6mGGsAk1EFwJKkBEiiCi/e1x1nDoehfccaANLNxyS072huPdsmKi7qRxRY6mZBCTZHBRTnaTF3THdERDvOG5bnUstxzA25zLJo38pmTot0N7WhGslfZyCqIBdlcXpkjp4EkzbEo++pCQbUGvHmNzAB5oQkwGQUsGZBPNrqbCfECygpCsLiqUm4ejm4btr4+MU4mj4H1SVdOS2cSAaa6hvon/4R2uZmo1SfiKNTHoExJNRj72cZc1OYE4y6Aqcud1SU2F72ElBarMGpA2H41wpdi/egIjMWN+QS+0X7Wj7ArrXUhmpMfG4ydOdPQVKpIYgm9Nm+CZ++/YlHC5yi3CBERBtRWhx880hdB8dkFHD1crDd+aJJwNXL5sRluZY+d1W2dXXRfdHtgCSPhUtE9Wiqb+DhB8dCd/IkJLUKgklEv68+x/oNmzxa4Nw/sxir/xQP0VSXM+z/rGMyqrBmQTykm5eqbHMHNQ8vS1GjsrKykJWV5TPTv5O/zoDu/CmoJAlqkxEqSYLu/Ckkf53R6PNa2+Jd+XInlBbbfnbJyd9tNbyWvjs1GYnXPdtlIqKG+qd/BN3Jk1BJItRGI1SSCN3Jk+if/lGDc40lBhhM5svHrckdRblBNwsbyz+1EpznCzOTUeVwHI6zODiOzzF2bsgpS1EzvqQU5cWFKCw4gP0yX5KKKsiFpFIDprrLQJJKjaiCXIfnO5pq6azF62g1UAA48UNYg85M/Wvojpnbz5bpn1fyg/DvBU/i4zwd2m6swmPrqhDTlRfWibyhbW42JLUKMIrWY5Jahba5DbsihqpKiLkxmPPff6Bsua5FuaMoNwjLZibaFDaA81xhy1L8mHNHdGwtls1MdJjD2Al2jp0bcqoq7yqe/P4MYs8UIq6gAtqwINkHEpfF6SHU+wojiCaUxekdnu/Kfi1NbVi3zskeL00zJzLLglxrF8WjPL+9+XPkh+HDJ6Nb+LpE1Fyl+kQIJtHumGASUapPtDtm2QX85S33oiK/A4CW5Y41C+NvTkJoLsu4PlgX9XOWw7hAqHMsbsghyxibzPJvcTloL07X/OAT078zR09Ccbc+EAUBJrUGoiCguFsfZI6e1OBcV6daOiuAinKDsOTRxBYmKACQEKM3YO6qbHSIr0VhjhaSaH4tSRRQdC6IMyKIvOTolEdQ3LcvREEFk0YDUVChqG8/HJ3yiN15hqpKxJUH4XKJvtHcIZoc546i3CAsnZGIolwtWkaCWiPizS0/4cUV2bh6OdhpHOZ9pg7i7hNHce7ImRa+nzLxshQ5ZBljY1ABnwzsDgCyd20AwKQNwadvf+LSbClXVgddszDeLgnZJo+1i+JxNd9yOcp8ial5BEz7U761ZR3b2YCivCBIogqCSoKuq9HlBbuIqHWMIaFYv2FTo7OlLF/qzl7f6zR32F7qtmXJHWsWxuPKpdblDZNRgGgyz9JsLIcB5u5N2g52b+pjcUMN1F963Ne2WDBpQ3DkgWkunWu5HFSYo22wX8vaRQ2TkEoloUMncyvYPnk1N0GZX++t35k7P7GdDbh/ZjE+W65FWZ4OkXGVSHv/RjNfk4hawxgSikMznnD+eInButzF9F86zh223Rrb8TGCSkJMQk0r84aFhDmje1rzhmVquKM9p8wLhM4B0K+F76VMLG6oAUvXpiYsCMamT/dpMfpazF2V3WDAn7HGcfEiikBRrnmBLQgiIDX3kpT9NzXLyqTFecHY9L4OC9ZkI/SLpxHSNhn7yn6BGHCfKSJf5Ch31C3KZ1H3uy6JAoovBSEiuubm+jUtLWzqFOcF418rdHhxhXnQMzu9ruOYG2rAsjGmL4yxcRfbS1F/eSwRc0b3hFojWvd8Uansp2iajEILChug4RoWddfKi3K1+MtjidjcdygHARL5CdvcsWymZfBx/bxxc+8ok+CmwsZ+jM0LI3ti2cyGkx3IORY3ZMcyU0CpG2PatpRFk3AzOQFRulrYzlJwx7cuM8nuz8KcYOxd+hj3mSLyM/aXo8zax9egYd5wR+6wzRt1uWPly53c8NqBgcUN2VFi18ai/uwpSRJgMqqgSzCgpDAYTS2u1Tw3v9mp667JW/68ejkY39/3M/z2yFlU5V1143sSkSfUzx2W3+fiPC1cWZjPdebXUWts84Z97uAMS9ewuCErpW+MaZmxpLK5FKXWiDaDit3VrTG/VkS7Wjz7d8fLpg+MfIjdGyI/UT932Bc07urWWF5LwrQF+Vi66admPXPE6dPMJTZY3JBVVd5V/PbIWewfM0juUDxm+oJ868JYuoQamIwqSJI7i5o6Fdc0+OtTXW7ea7jzr2V1Ue4STiQ/yyxR8/55Db/c2eYO9xY09QlY/UoC/ji25837jncNt7V/zCB0qgI7wTZY3BAA5XdtLCwzIN7c8hPmrspGbGcD3Hs5ylbD5BfbuQaPv34JAFA1fjEqCg6guuQav3ERyayp/fNsc0fDLo7n2eaO+gZGTsTR0j3sBNtgcUMAmv7FVhrLt5+pr+TDc9/AbJnfozBHa13FFGD3hshXuDreUKU2d3Es62F5Pn9Yxgg2fhZziT0WN2S3aF/V+MVyh+NVKhWgUotNn9hqddfobbd44N4wRPJr7izRGH0txjxR7IXIAEveuHLJ8f5WFuwE22NxQwHXtbFwvGuvp9Rdo7fd4oF7wxD5hq7VWpdniRblBmH1K96alt343ni2tGFBuPfCBS/F5dtY3JCip383puW79raQUDdLK7azwXppjN0bIv+yZmE8vHM5G7BdMNA2b1DjWNwEOKUv2ueMaEIrdu1tGfXNNW/q7w9j3huG08KJ/IEcuQNomDeocSxuAlygdm0s61Z4a6YDALsukVhvmM/+MYMw+dA5TuUk8nEqNdC+Yw28lzvsO0SOLktxYb+GuHFmALOf/v2G3OF43fQF+Vg2M9G6uaXnmTfVLMwJxhuPd0FsZ4P1m9i2RXPwcY4WUV+Vo2bJeQz4ZZyXYiIif1CUF3wzX6nscodl5/LYzgY8NTgeEdEyB+oj2LkJYIGwaF9jOsTXenfMTb19q4pyzbMfbPesqShogy0v93TyfCKSm2gCrl4OhvfG3JhJomDNV5YZl7a5ozgvGO9vfcGrMfkydm4CVKB3bbyv/h5T5r2tCnPsr92LkgqleeEQTeUcOEjkg1RqQK0RvfTFqGHeAOpmTtU/drlEb7P/VWBjcROgLNO/a8KCYJQ7mIAgQFCJkGwSjyBIiNGbFwIrzguGKApQCSIiO91gYUPko0QTvNjxtS1UJOt9h7lDJSE2Ks9m5eTAxstSASiQF+2zdSU/yEsL+JlJov2vm0otYfqCfEx9pW7PGn30Nfx6znGvxUREzeP9AcWAbWFjjkHC1FfyG+yV9+SIN70Yk2/zmeJm6dKlEAQBzz77bKPnbdiwAb1790ZISAhuvfVWbN682TsBKkigLtpX39pF8XadFG8zGVVYuygebzxu3lxz9NvL8eEj69C20w3ZYvJHzB2kfPZ5ymRU4Y3Hu2DtonhMX5Bv3SsvLppTxS18org5cOAAVqxYgeTkxqcj7927F5MnT8aMGTNw5MgRjBs3DuPGjcPx4/ym2xzumP6tNlRjwBfrcPd7r2HAF+ugNlR75DmeIprM+zx5akdwV6g1ot1gwN1v/Ua2WPwVc4f/0VTfwKDVHyB14XwMWv0BNNWNF/PNPd/T5BpQbM9+Kxdexm5I9jE3lZWVmDJlClauXInXX3+90XPfeecd3HvvvXjxxRcBAK+99hq2bduGd999F++//743wvV7dYv2/YiBkS27JKU2VGPic5OhO38KkkoNQTShz/ZN+PTtT2DShrjtOZ5kWeem/qA8bxFUYr11bwSU5elwvUbkSsUuYu7wP5rqG3j4wbHQnTwJSa2CYBLR76vPsX7DJhhDQlt9vjfInTvMGm7JwALHnuydm1mzZmHUqFEYPnx4k+fu27evwXkjRozAvn37nD7HYDCgvLzc7hbI3NG1Sf46A7rzp6CSJKhNRqgkCbrzp5D8dYZbn+MplgWvpi/Ih1rjvTE3tiRRBbVGhKCyX1o9Bwe4z5SLmDv8T//0j6A7eRIqSYTaaIRKEqE7eRL90z9yy/meJn/ukOz+5JYMzsla3GRkZODw4cNYsmSJS+cXFBQgNjbW7lhsbCwKCgqcPmfJkiWIioqy3vR6fati9mf2079bvtVCVEEupHq/TZJKjaiCXLc+x92KcoPwl8cS8cLInvjLY4kAgEcX5QOCN5NU3SBEk1GwzmywLK3OfaZcw9zhn9rmZkNS2/+zI6lVaJub7ZbzPaV+7rhaEISoDvLPM+WWDM7JdlkqNzcXs2fPxrZt2xAS4rnLEvPmzcMf/vAH6/3y8vKATVKWRfs+HDMIA1vxOmVxegj11vsWRBPK4pz/XFvyHHerv+DVypc7obRYA0iW5Gk/I8EzBLu/m4wC3vj6J2jMYSEGE3G6cg6kmh7IyspCUlKSh+PxP8wd/qtUnwjBZP9lQjCJKNUnuuV8T7HNHUW5wVg5vxPqfpe9kTcs7BcCfXFFNrs2TsjWuTl06BCKioowcOBAaDQaaDQa7Nq1C3/729+g0WhgMjXcLCMuLg6FhYV2xwoLCxEX53ypeq1Wi8jISLtbIHJX1wYAMkdPQnG3PhAFASa1BqIgoLhbH2SOnuTW57iTZQCxZYErURRw9XJwvfUqvJGg7KePqjUirhXaz1rbP2YQfnvkLPeZcoK5w38dnfIIivv2hSioYNJoIAoqFPXth6NTHnHL+Z5QP3eYJyHYf0nxnrrLUu071rCwaYTLnZv8/HzEx8e77Y1TU1Nx7Ngxu2PTp09H7969MXfuXKjVDf+rpaSkYPv27XZTPrdt24aUlBS3xaU0ll2m3blon0kbgk/f/gTJX2cgqiAXZXF6ZI6e1OjA4JY8x50sgwAtC14JgiTrTCkL0SRg7aJ4zF1V12Y37xKujO5NWWEBomLdu08Wc4f/MoaEYv2GTeif/hHa5majVJ+Io1MecTo4uLnne0L93EH+weXipl+/fnjvvffw8MMPu+WNIyIicMstt9gdCw8PR/v27a3H09LS0KlTJ+t19dmzZ2Po0KF46623MGrUKGRkZODgwYP44IMP3BKT0mRlZWHoD5kAAFNFBa4UHIBxinu2WjBpQ3DkgWkef447TV+Qb91kLkZfgyv5QTc3zfRmwrJ/L8sWDPVnO2jDgjDs7Cnsi24HJHkxPDf764hhGLdoMQaMneC212Tu8G/GkFAcmvGEx873BNvcYd56wdt5w6LustTVy8GcJdUIly9LLV68GDNnzsSDDz6Ia9eueTImq5ycHFy+fNl6f/DgwVi/fj0++OAD9O/fH59//jm++uqrBomOzKryrqLHNSD6yknUXP0h4Bfti9HXYu6qbLy55Se8uCL75iUpbycoCWqNaB1I7Gy2Q9X4xagoOIDqkmvW7ps/GvH8XHzx8lx8NOsJXC8t8dr7MneQO9nmjueXZ0OewkYCZ0m5zuXOzVNPPYWRI0dixowZ6Nu3L1auXIkxY8a4NZidO3c2eh8AHnzwQTz44INufV8lsoyxySz/Frr2YTBcB3anJrdqILFSWBKCXK3msAgjwiIkFOZoG53toITuzeBHpqH33b/Chj8+jzd/fTd+s2QZ+qb+2u3vw9xB3qBSA3GJtYjtbEBRbrDXL2231dWitDiYs6Rc0KzZUl26dMF3332Hd999FxMmTECfPn2g0di/xOHDh90aILWMZYyNQQV8MrA7ALR6ILFSFOUGYc3CeBTlmlvM8GpxI6CiJBgL1v8EoPGW8u7UZKTt8P9p4e30nTEzfQP+9+EafPi7xxDTrQcEwfwzHzJkCNRqNfMG+YWC7CD887X6l6e8RYA2VMKbW35ix8YFzZ4Knp2djS+//BLR0dEYO3Zsg+KG5Ge7MaZxyhvs1tgoyg3CspmJ1llS5uTkzamcdZpKUJaBxfddaotsDPJOUB5ScikPx7duQWhUFPrdMwKiyYTLp09i1KhR0GrlXOmVqGlFuUHWMTeWS0Ny5A55V0X2L82qTFauXInnn38ew4cPx4kTJ6DT6TwVF7WCO2dGKc3aRfEyTP8ObD9kpOPrPy9Cj8FD8Pw3O9GmfXtUV1Rgx/K/449//COnWJPPs13npv5aM94Uo+c4G1e5XNzce++92L9/P959912kpaV5MiZqJcsWCx9yjI0dy3oV3mf77U5CW50xYBLUqmkPI/fojxi3cDEGTeB4F/I/zvOGd7s2KrWIRxdynI2rXC5uTCYTMjMzkZCQ4Ml4qJXcsTGmUlk3vMsNBrw6ENB+wS+VWnJ6ptJIJhOe2/wt2nZ03xpZRN5kyRt1A4gtRY23BxMbEaOv9ep7+jOXi5tt27Z5Mg5yE3ZtnCvKDYKxVrAWNm11NSi7qoEkeneh7msFgbM+xeMffSp3CEStYskblplR7TvWwlgLlF0JgjcLnEDKG+4g+67g5D7u3GJBidYuikfJza0OVCoJFSUaSF5fcbThsuliw90CrLRhQTBVVHCXcCIPuxBiwJDtmQ2O188bmiAJGhmWDFOpRVzJr3vjxvIGsbhRFMvGmPvH+PfMGneyJABHe0vJs4hfnfo7DRflNsyYu1OT0aHM5PfTwYl8mSZaix09+sBwve6yj2hynDcKc7S4ejkY3s4dlq1aXMkbxOJGMdi1sVc/AVzJDzKv6GmzMrBaI6L+RpaeV7dsev1dytcuajguxTwdfB+kmhq/XqmYyJclJSVBCA5G7zYp2HHqW2vuWDYz0dxprbeieGxnA+TIHYU5WqxZ2HTeIBY3imGZ/h3oWyxYOCocpi/Ihy6hBgCgS6jBo4vy0b6jtwfoWYoqx98IHbWa948ZhBnHLnCXcCIPCk9oj48H9MCBP422yx0A7PLG1FfyMX2BPLnDPLDZtbwR6FjcKIDton1V4zlDylkruUN8LaYvyEeM3oDCHC02va/DhKeLoFKLXoxOsK6zU7+T5GyvmIGRE3G0dA+7N0QelJSUBEkTjIKyzna54+rlYLy4IhtzVl4EALzxeBesWRiPCU8XQVB5N3eMfrzY5bwR6FjcKAC7NvYsUzcdJQDbjk5RrhYr53eCaJLn16B+J6mxvWK0YUG498IFb4VGFJBCI9ogsd0Va9Fimzv++Vo8inLtc4e3Z1pufC+m0bxhuF6Lb7p29WpMvop7JygAp383NH1BvnW5dEsCcLwYl2cHBarUosPi6Y0nEvHownzMXZXN6Z1EPuT10Zvw9Hf3oyxPJ2PukKBSocGmvtcKgiGKcJg3Dpd/irQ2KTgUHIykpCQPxuYfWNz4OS7a51iMvtZhAojRm69Ze0tUByNKCoMbHLeMA5q7KpuFDZEP6RxdgjH/9z5uC58oY+4QIDq54rXu1Xj8cXXDvDFkeyYuRd4GbXgbz4fnB3hZys9Zuja7U5PlDsUn1U8Ajy7Mtw7oBQBBkOzuu5tlfYz6MyskiQMBiXyZ3LnDrOGMrKLchnnjcPmn6KL6GXb264/uA3p5OCb/wOLGj3H6d/PF6Gvx4orsm1M5gRh9DV5cke3BaeH1N9njQEAif+Qsd5gnJHhqWrj9ZSlBcJw3hmzPxKU2RnZtbPCylB+zLNr34ZhBHGvTDPUvWYkm1Nsp3P0EQUJ0bC2CgiW7cUDNYTAZYCwxAEmeiZGIGucod3h2QoKE9h1rodZIKMrVIkbvOG8Yrtfif4P6oE20HBsD+yYWN37Kvmvzhtzh+CXLt58r+UFQa0SPFji6hBo8ujAfMfraFg0g3p2ajLQdGq5UTOQDVGrzQqErX+7k0feJ0bueNwQOJLbD4sZPWaZ/14QFwSh3MH5u7aJ4mIyemvlg/ub1x9XZ1iMtuRQ1MHIiLorzcfcJI/aFt+F1dSKZrV0Uj6uXPbX8hoS2OmOr80Yg45gbP8RF+9ynboqne4obQTBvjGm5Lh/buQaPv37JLa+9OzUZnSrZvSGSm7vzBgAIqroByrGda/Dk0jy3vXYgYufGD7Fr4z7OL0lJMCcuy59NMZ9nuSbe0stPjTHvMzUHUk0PZGVlsQVNJBOVGmjfseZm58Z2soCjvzfOkn9ibo7D6xBfyy6NG7C48UNctM991i6Kb7BQFgBEdaiFJgg3d/9tjDmJxXauwSMv5SMusS4xeSJB7R8zCI/vvoD06HYcWEzkAZfCzbOPqsa3bAZqdGwNJFFAabErl6wkvLgiG+1izXmDRY37sLjxM1y0z30crzpqu1iXK9M7zYVRbY2AN5/sAsD8je7x1y8hRu/tjfWIqDU00Vp807UrfrZ7T6PniSZHX3yEZuYO83M+mN8J1wrMr9WS3BG+cT56t70Lh1x+RmDgmBs/w0X73MfSWq5LROZr3pa9pxy3lSW7P1U3r5NfK6j7lnb1chDWLor3UNRE5ClJSUkIiW6HiLjbEb5xvtPzWpY7YD0XcF/uMFyvxepbuyI8oX2znqd0LG78CBft8zyTUQVJaiwx2T+mS6i5OV5HsDunMEeLgmxuZErkbzTRWuzo0QeG683rvDadO8zUGnNx447ccbj8U/Ruk8Jp4A6wuPEjlkX79o8ZJHcoilDXWrZfRdiym3j9Lo3l7zF6A/76n7N4c8tPmLvKsmJp/Ta0hH++xu4Nkb9JSkqCEByM3m1ScLj8U4fntCZ3LNt8zm25Y8j2TFyJUnNlYgdY3PgJdm08I7azwZqQVCrzNG5dQs3Nx2oQ1aEG9b9ZFeVqYaypOzJ9QT7ad6z/LY97RxH5q/CE9vh4QA/8/N8NR7JYZkG2JndYBg63JndY9pPa2rs3171ygMWNn7BM/9aG8VJHaxXlBuEvjyXihZE9YawVEB1rTi66BPNgPvNUbgMKc7Qou9JwtpRKLWLO6J54YWRPLJ6aBACY/88sxOgNEATuHUXk7xx1b2zzxl8eS8T9M4utxYwuoQYTni6yPl+S4DB3AMCc0ea8UZQbhBh9bYtzB/eTahyLGz/ARfvca+2ieOvAv5LCIGiCJGubOEZfi7WL4nHlkiUxSajfWhZNdd/GbAcAmpdJr0t2zd07ioh8hza8DS61MWLI9kwA9nmjOC8Y/1qhw9xV2dbc8a8VOuvjVy4FQ60RIajsc4dF/YHDzc0dh8s/heF6LXb06AMN95NyiFPB/QAX7XOf+tO/RVGwv99genhdIVM3zRN2j1tayPU31SMi/9V9QC/srKrElB80WFfyGQpzXrY+Zskbthto1s8rEAXEdjbYHG84cNjy/ObmjiHbMxEcdztCottxILET7Nz4AU7/dh9H18ptW8DOHn9zy0/442pHAwAbtpBZ2BApg6V7M3Tn0RblDUtnx5W8YXkdV7Br0zQWNz6ubtG+gxxI7CbTF+TbXSuv3wJ29LizAYDtO9by8hORQtlOC29J3gDMBYs788bh8k/Rv+1dnP7dBF6W8nHcasH9mmoBN/a4ZQCgZSaDt7s0AyMn4mjpHFSXdOX+UkQelpSUhHMlBkTE3Y4uB+dg7qrFsueNn//7EFYPSUMbLtrXKHZufBinf3tWUwmmscfl3AdGGxaEYWdPwVhikCcAogBSf1E/OfMGF+1zHYsbH8ZF+8iR3anJ6FSpgaGqUu5QiBTPlUX9vIWL9rmOxY2PYteGnBkYOREXxYO4+8RRnDtyRu5wiBSvsUX9vIWL9jUPixsfxUX7qDHs3hB5jy90b7hoX/OwuPFBXLSPmjIwciJOV+6TOwyigFF/UT9v4/Tv5mFx44PYtSEi8i3dB/TCzn790UX1M693b8I3zkcEF+1rFhY3PoiL9hER+R65ujfs2jQfixsfw0X7iIh8U/1p4d7ARftahsWNj2HXxj9ZFuciIuVKSkpCSHQ7RMTdjvCN893ymk3ljp//+xBW39oV4Vy0r1m4QrEPsZ/+/Ybc4ZALinLNu/sW5mgR29mA6QvyEaP33rc6IvIuS/fmZ7sP2I29aW6nvbHcYfu6aW1ScIhdm2Zj58aHcNE+/7N2UTyK84IBAMV5wVi7KF7miIjIkyzTwvu3vQuTD5/D5MPnWjQGp7HcMWR7pvW1Of27ZVjc+Agu2ud/RBNQmKOFKArm+6Jgvm/iZSoiJQtPaI/Vt3ZFkKEtggxtmz0Gx1jjOHcYa8wzo7QiEGRoi461g7GzX38u2tcCvCzlIyzTv2vCgmCUOxhqkqWlbCYBEKBSSYiOrcWymYm8TEWkYElJSTiRdxUlHfoCACI0MajZOL/JdclsL0WpNSJEUYAkChBUElQqCXNG90Rc1Ft4YdI2hHYwogRg16aFWNz4ANtF+4xTONbGH9i2lC10CTUw1goNWs1zV2XLESIReVB4QnvsujnIt/LCZfxs94Emn2ObN0STAJVagkk0fzESTeYuTlF5Al7790OY8vFxAPxHuqX4c/MB7Nr4F8vlqDrmpPT8P7IxZ3TPuvNsLlN5agdxqaYGWVlZHGxI5GW2v3Mn8q6if9u7sLKRxf1Ek4DCnJet9yVJgMko4KH0P+OzKS/VnSepUJYfgc76JI/ljUDA4sYHWKZ/f5iajIFyB0NNUqmB2M4GFOcFQ7z5rUuXUANNsOPjnkpQ2rAgDDt7Cvui2wFJnnkPImpaeEJ7rK7piuHbPoGufZjT83Z3uIRLV+MgSmqoBBM6tS/A1BNnsM/muKASoetqYmHTShxQLDMu2uefpi/Ihy6hBoD5ctT0BfmNHveEqvGLUVFwANUl15CVleWx9yGixllmUCVHDrcOMnZ0WzhmHRLaFQEAEtoVYeGYdQ2OR8XfQNr7JXJ+HEVg50Zm7Nr4pxh9Leauym5wycnZcU9h94bIN2jD2+BsOwDo6/ScNh2AZS/8y9rZBTqgBB2sx7/u2Am3/pJLgbgDixsZcdE+/+esgPFWS3l3ajLSdmhgqKr0zhsSkUPdB/TCrlbu/RThpliIxY2sLIv2fThmELs21CIDIyfiojgfI06rsSehPQcWE8mIv3++g2NuZMJF+4iIiDyDxY1MLNO/tWFBcodCRESkKLwsJQMu2kdEROQ57NzIgF0bIiIiz2FxIwPL9O/dqclyh0JERKQ4LG68jIv2EREReZasxc3y5cuRnJyMyMhIREZGIiUlBVu2bHF6/rp16yAIgt0tJCTEixG3Hrs2RK0TiHmDiJpH1gHFCQkJWLp0KXr06AFJkvDPf/4TY8eOxZEjR9CvXz+Hz4mMjMSZM2es9wVB8Fa4rcZF+9xDbahG8tcZiCrIRVmcHpmjJ8Gk5T9WgSLQ8ga5j6b6Bvqnf4S2udko1Sfi6JRHYAwJlTss8gBZi5sxY8bY3V+8eDGWL1+O77//3mmSEgQBcXFx3gjP7bhoX+upDdWY+Nxk6M6fgqRSQxBN6LN9Ez59+xMWOAEi0PIGuYem+gYefnAsdCdPQlKrIJhE9Pvqc6zfsIkFjgL5zJgbk8mEjIwMVFVVISUlxel5lZWVSExMhF6vx9ixY3HixIlGX9dgMKC8vNzuJgcu2uceyV9nQHf+FFSSBLXJCJUkQXf+FJK/zpA7NJKBp/IG4Du5g9yjf/pH0J08CZUkQm00QiWJ0J08if7pH8kdGnmA7MXNsWPH0KZNG2i1Wjz55JPYuHEj+vZ1vPFYr169sGbNGmzatAkff/wxRFHE4MGDkZeX5/T1lyxZgqioKOtNr9d76qM0itO/3SOqIBdSvY2bJJUaUQW5MkVEcvB03gB8J3eQe7TNzYaktv8nT1Kr0DY3W6aIyJNkL2569eqFH3/8ET/88AN+97vfYerUqTh58qTDc1NSUpCWlobbbrsNQ4cOxZdffgmdTocVK1Y4ff158+ahrKzMesvN9f4/graL9lWNX+z191eSsjg9BNFkd0wQTSiL4z88gcTTeQPwjdxB7lOqT4RgEu2OCSYRpfpEmSIiT5K9uAkODkb37t0xaNAgLFmyBP3798c777zj0nODgoIwYMAAnDt3zuk5Wq3WOqvCcvM2dm3cJ3P0JBR36wNREGBSayAKAoq79UHm6Elyh0Ze5Om8AfhG7iD3OTrlERT37QtRUMGk0UAUVCjq2w9Hpzwid2jkAT63/YIoijAYDC6dazKZcOzYMdx3330ejqp1LNO/P0xN5kDiVjJpQ/Dp259wthTZUWLeIPcyhoRi/YZNnC0VIGQtbubNm4eRI0eic+fOqKiowPr167Fz505s3boVAJCWloZOnTphyZIlAIBXX30Vd955J7p3747S0lIsW7YM2dnZeOyxx+T8GI2qW7TvRwyM5CUpdzBpQ3DkgWlyh0EyCYS8QZ5hDAnFoRlPyB0GeYGsxU1RURHS0tJw+fJlREVFITk5GVu3bsU999wDAMjJyYFKVXflrKSkBI8//jgKCgoQHR2NQYMGYe/evU4HEvoCdm2I3CsQ8gYRtY4gSZIkdxDeVF5ejqioKLx69AxCIiI8+l5ZWVmovHAZP9v9IXf/Jo8J3zgfEdF3YM/wXyApKUnucFxSXVGBP/XvhbKyMr8Zy+LN3EFEDTUnb8g+oFjJLIv27R8zSO5QiIiIAgaLGw/hon1ERETyYHHjIZz+TUREJA8WNx7ARfvI2wwmA4wlrk2FJiJSOhY3HsCuDXnT7tRkVBQcQHXJNWRlZckdDhGR7FjceIBl+vfu1GS5Q6EAMDByIrRhQRh29hS7N0REYHHjdnWL9h3kQGLymt2pyehUqYGhqlLuUIiIZMfixs3YtSE5DIyciIviQYw4fRrnjpyROxwiIlmxuHEjTv8mOe1OTUanKrmjICKSH4sbN+KifURERPJjceMm7NoQERH5BhY3bsLp30RERL5B1l3BlcJ20T5ukElERCQvdm7cgF0bIiIi38Hixg04/ZuIiMh3sLhpJS7aR0RE5FtY3LQSuzZERES+hcVNK3D6NxERke9hcdMCWVlZyMrKQlXeVcw4doGL9hEREfkQTgVvpnNHzmB8SSkAoOTCORwt3YOBkZz+TURE5CtY3DSToaoS+krzjy2sCqgIC4JR5piIiIioDoubZrCMsTl46hMAQHl1LRftIyIi8jEsbprBsjHmh/fUzYwaKGM8RERE1BCLGxfZz4xit4aIiMhXcbaUi7jFAhERkX9g58YF3BiTiIjIf7Bz4wJ2bYiIiPwHixsXcIsFIiIi/8HipgncGJOIiMi/sLhpArs2RERE/oXFTSO4MSYREZH/YXHTCMuifdwYk4iIyH+wuHGCXRsiIiL/xOLGCU7/JiIi8k9cxM8BLtpHRETkv9i5cYBdGyIiIv/F4sYBTv8mIiLyXyxu6uGifURERP6NxU097NoQERH5NxY3Njj9m4iIyP+xuLHBRfuIiIj8H4ubm9i1ISIiUgYWNzdx+jcREZEycBE/cNE+IiIiJWHnBuzaEBERKQmLG3D6NxERkZIEfHHDRfuIiIiUJeCLG3ZtiIiIlCWgixtO/yYiIlKegC5uuGgfERGR8gRscZOTk8OuDRERkQIFbHFjLOX0byIiIiUK2EX8qktLuGgfERGRAgVs5+aX58+wa0NERKRAAVvcdKzi9G8iIiIlCtjiJls8woHEREREChSwxc3eof3kDoGIiIg8IGCLm9siHpA7BCIiIvIAWYub5cuXIzk5GZGRkYiMjERKSgq2bNnS6HM2bNiA3r17IyQkBLfeeis2b97spWiJyBcwbxBRU2QtbhISErB06VIcOnQIBw8exK9+9SuMHTsWJ06ccHj+3r17MXnyZMyYMQNHjhzBuHHjMG7cOBw/ftzLkRPZUxuqMeCLdbj7vdcw4It1UBuqvR7DkO2ZuBBi8Pr7ehvzBimJpvoGBq3+AKkL52PQ6g+gqb4hd0iKIEiSJMkdhK127dph2bJlmDFjRoPHJk6ciKqqKnz99dfWY3feeSduu+02vP/++y69fnl5OaKiovDnjYcQEt7GbXFT4FIbqjHxucnQnT8FSaWGIJpQ3K0PPn37E5i0IV6J4XD5p0jbEYz0O/qh312+v51IdUUF/tS/F8rKyhAZGdnq1/N03gDqcserR88gJCKi1TETaapv4OEHx0J38iQktQqCSURx375Yv2ETjCGhcofnc5qTN3xmzI3JZEJGRgaqqqqQkpLi8Jx9+/Zh+PDhdsdGjBiBffv2OX1dg8GA8vJyuxuROyV/nQHd+VNQSRLUJiNUkgTd+VNI/jrDazEM2Z6JS22M0AZYwe6pvAEwd5Dn9U//CLqTJ6GSRKiNRqgkEbqTJ9E//SO5Q/N7shc3x44dQ5s2baDVavHkk09i48aN6Nu3r8NzCwoKEBsba3csNjYWBQUFTl9/yZIliIqKst70er1b4yeKKsiFpFLbHZNUakQV5HotBsP1Wuzo0QeaaK3X3lNOns4bAHMHeV7b3GxIavt/hiW1Cm1zs2WKSDlkL2569eqFH3/8ET/88AN+97vfYerUqTh58qTbXn/evHkoKyuz3nJzvfcPDgWGsjg9BNFkd0wQTSiL884/huEb56N/27sQEt0OSUlJXnlPuXk6bwDMHeR5pfpECCbR7phgElGqT5QpIuWQvbgJDg5G9+7dMWjQICxZsgT9+/fHO++84/DcuLg4FBYW2h0rLCxEXFyc09fXarXWWRWWG5E7ZY6ehOJufSAKAkxqDURBQHG3PsgcPclrMVwKR8B0bQDP5w2AuYM87+iUR1Dcty9EQQWTRgNRUKGobz8cnfKI3KH5PZ/bOFMURRgMjmd8pKSkYPv27Xj22Wetx7Zt2+b0WjuRN5i0Ifj07U+Q/HUGogpyURanR+boSV4bTEzMG+SfjCGhWL9hE/qnf4S2udko1Sfi6JRHOJjYDWQtbubNm4eRI0eic+fOqKiowPr167Fz505s3boVAJCWloZOnTphyZIlAIDZs2dj6NCheOuttzBq1ChkZGTg4MGD+OCDD+T8GEQwaUNw5IFpcocREJg3SEmMIaE4NOMJucNQHFmLm6KiIqSlpeHy5cuIiopCcnIytm7dinvuuQcAkJOTA5Wq7srZ4MGDsX79erz88st46aWX0KNHD3z11Ve45ZZb5PoIRORlzBtE1BSfW+fG07jODSlN+Mb5iIi+A3uG/8JvBhS7e50bb+A6N0Ty8st1boiIiIjcgcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3BAREZGisLghIiIiRWFxQ0RERIrC4obIjx0u/xSG67XY2ru33KEQEfkMjdwBEFHLDdmeieC426ENb4OkpCS5wyEi8gns3BD5McP1Wuzo0QeaaK3coRAR+QwWN0R+KnzjfPRvexeE4GB2bYiIbLC4IfJThuu1WH1rV4QntJc7FCIin8LihsiPsWtDRNQQixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGiIiIFIXFDRERESkKixsiIiJSFBY3REREpCgsboiIiEhRWNwQERGRorC4ISIiIkVhcUNERESKwuKGyA8dLv8UvdukyB0GEZFPYnFD5IeGbM/EpTZGaMPbyB0KEZHPYXFD5IcM12uxo0cfaKK1codCRORzNHIHQETNE75xPoLjbkdIdDskJSXJHQ4Rkc9h54bIz7BrQ0TUOBY3RH7EMpBYCA5m14aIyAkWN0R+RqtRcyAxEVEjWNwQERGRorC4ISIiIkVhcUNERESKEnBTwSVJAgBUX6+UORKi5qu5Xo0qg4Ca61WorqiQO5wWq640//5Zfh/9gTV3VDJ3EMmhOXlDkPwpu7hBXl4e9Hq93GEQEYDc3FwkJCTIHYZLmDuIfIMreSPgihtRFJGfn4+IiAgIguC21y0vL4der0dubi4iIyPd9rq+LBA/M8DP7Y7PLUkSKioqEB8fD5XKP66OeyJ38P8lfm6lkytvBNxlKZVK5dFvipGRkQHzP61FIH5mgJ+7taKiotwQjfd4Mnfw/6XAEoif29t5wz++MhERERG5iMUNERERKQqLGzfRarVYsGABtNrA2e8nED8zwM8daJ/bkwL1Z8rPHTifW67PHHADiomIiEjZ2LkhIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLm1ZYsmQJbr/9dkRERCAmJgbjxo3DmTNn5A7L45YvX47k5GTrokwpKSnYsmWL3GF51dKlSyEIAp599lm5Q/GohQsXQhAEu1vv3r3lDsvvMXcwdzB3eBaLm1bYtWsXZs2ahe+//x7btm1DbW0tfv3rX6Oqqkru0DwqISEBS5cuxaFDh3Dw4EH86le/wtixY3HixAm5Q/OKAwcOYMWKFUhOTpY7FK/o168fLl++bL3t2bNH7pD8HnMHc0cgkDV3SOQ2RUVFEgBp165dcofiddHR0dKqVavkDsPjKioqpB49ekjbtm2Thg4dKs2ePVvukDxqwYIFUv/+/eUOQ/GYO5g7lEbu3MHOjRuVlZUBANq1aydzJN5jMpmQkZGBqqoqpKSkyB2Ox82aNQujRo3C8OHD5Q7Fa86ePYv4+Hh07doVU6ZMQU5OjtwhKQ5zB3OHEsmZOwJu40xPEUURzz77LH7xi1/glltukTscjzt27BhSUlJQXV2NNm3aYOPGjejbt6/cYXlURkYGDh8+jAMHDsgditfccccdWLduHXr16oXLly9j0aJFGDJkCI4fP46IiAi5w1ME5g7mDiWSO3ewuHGTWbNm4fjx4wEzHqFXr1748ccfUVZWhs8//xxTp07Frl27FJukcnNzMXv2bGzbtg0hISFyh+M1I0eOtP49OTkZd9xxBxITE/HZZ59hxowZMkamHMwdzB1KJHfu4PYLbvD0009j06ZN+O9//4suXbrIHY4shg8fjm7dumHFihVyh+IRX331FcaPHw+1Wm09ZjKZIAgCVCoVDAaD3WNKdvvtt2P48OFYsmSJ3KH4PeYO5g7mDs9g56YVJEnCM888g40bN2Lnzp0Bm5wAc2vdYDDIHYbHpKam4tixY3bHpk+fjt69e2Pu3LkBk5wqKytx/vx5PPLII3KH4teYO+owdzB3eAKLm1aYNWsW1q9fj02bNiEiIgIFBQUAgKioKISGhsocnefMmzcPI0eOROfOnVFRUYH169dj586d2Lp1q9yheUxERESD8RDh4eFo3769osdJvPDCCxgzZgwSExORn5+PBQsWQK1WY/LkyXKH5teYO5g7mDs8i8VNKyxfvhwAcPfdd9sdX7t2LaZNm+b9gLykqKgIaWlpuHz5MqKiopCcnIytW7finnvukTs0crO8vDxMnjwZV69ehU6nw1133YXvv/8eOp1O7tD8GnMHc4fSyZ07OOaGiIiIFIXr3BAREZGisLghIiIiRWFxQ0RERIrC4oaIiIgUhcUNERERKQqLGyIiIlIUFjdERESkKCxuiIiISFFY3JBfMJlMGDx4MCZMmGB3vKysDHq9HvPnz5cpMiLyVcwbgYsrFJPf+Omnn3Dbbbdh5cqVmDJlCgAgLS0NR48exYEDBxAcHCxzhETka5g3AhOLG/Irf/vb37Bw4UKcOHEC+/fvx4MPPogDBw6gf//+codGRD6KeSPwsLghvyJJEn71q19BrVbj2LFjeOaZZ/Dyyy/LHRYR+TDmjcDD4ob8zunTp9GnTx/ceuutOHz4MDQabm5PRI1j3ggsHFBMfmfNmjUICwvDxYsXkZeXJ3c4ROQHmDcCCzs35Ff27t2LoUOH4j//+Q9ef/11AMC3334LQRBkjoyIfBXzRuBh54b8xvXr1zFt2jT87ne/w7Bhw7B69Wrs378f77//vtyhEZGPYt4ITOzckN+YPXs2Nm/ejKNHjyIsLAwAsGLFCrzwwgs4duwYkpKS5A2QiHwO80ZgYnFDfmHXrl1ITU3Fzp07cdddd9k9NmLECBiNRraZicgO80bgYnFDREREisIxN0RERKQoLG6IiIhIUVjcEBERkaKwuCEiIiJFYXFDREREisLihoiIiBSFxQ0REREpCosbIiIiUhQWN0RERKQoLG6IiIhIUVjcEBERkaKwuCEiIiJF+f+Xek6dJNb5swAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# построение областей аппроксимации и точек тестового набора\n", + "lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, test_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SJp3OZO9R99K" + }, + "source": [ + "**Задание 2**\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "nuBl5GGrfs--" + }, + "outputs": [], + "source": [ + "# загрузка многомерной обучающей выборки\n", + "train = np.loadtxt('letter_train.txt', dtype=float)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2xDolaRzSXCF", + "outputId": "15d3d01c-c943-4709-8354-80567271860f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходные данные:\n", + "[[ 6. 10. 5. ... 10. 2. 7.]\n", + " [ 0. 6. 0. ... 8. 1. 7.]\n", + " [ 4. 7. 5. ... 8. 2. 8.]\n", + " ...\n", + " [ 7. 10. 10. ... 8. 5. 6.]\n", + " [ 7. 7. 10. ... 6. 0. 8.]\n", + " [ 3. 4. 5. ... 9. 5. 5.]]\n", + "Размерность данных:\n", + "(1500, 32)\n" + ] + } + ], + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(train)\n", + "print('Размерность данных:')\n", + "print(train.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2FGQM-u6VcxO", + "outputId": "45474032-2ec6-4f8e-9c2c-2672c6d373a9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 35 28 21 14 7 14 21 28 35\n", + "\n", + "Epoch 1000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 2000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 3000/100000\n", + " - loss: 6.0089\n", + "\n", + "Epoch 4000/100000\n", + " - loss: 3.0102\n", + "\n", + "Epoch 5000/100000\n", + " - loss: 1.9365\n", + "\n", + "Epoch 6000/100000\n", + " - loss: 1.6535\n", + "\n", + "Epoch 7000/100000\n", + " - loss: 1.2880\n", + "\n", + "Epoch 8000/100000\n", + " - loss: 0.9965\n", + "\n", + "Epoch 9000/100000\n", + " - loss: 0.8667\n", + "\n", + "Epoch 10000/100000\n", + " - loss: 0.7913\n", + "\n", + "Epoch 11000/100000\n", + " - loss: 0.7403\n", + "\n", + "Epoch 12000/100000\n", + " - loss: 0.6898\n", + "\n", + "Epoch 13000/100000\n", + " - loss: 0.6478\n", + "\n", + "Epoch 14000/100000\n", + " - loss: 0.6166\n", + "\n", + "Epoch 15000/100000\n", + " - loss: 0.5921\n", + "\n", + "Epoch 16000/100000\n", + " - loss: 0.5718\n", + "\n", + "Epoch 17000/100000\n", + " - loss: 0.5587\n", + "\n", + "Epoch 18000/100000\n", + " - loss: 0.5409\n", + "\n", + "Epoch 19000/100000\n", + " - loss: 0.5349\n", + "\n", + "Epoch 20000/100000\n", + " - loss: 0.5182\n", + "\n", + "Epoch 21000/100000\n", + " - loss: 0.5090\n", + "\n", + "Epoch 22000/100000\n", + " - loss: 0.5011\n", + "\n", + "Epoch 23000/100000\n", + " - loss: 0.4904\n", + "\n", + "Epoch 24000/100000\n", + " - loss: 0.4827\n", + "\n", + "Epoch 25000/100000\n", + " - loss: 0.4767\n", + "\n", + "Epoch 26000/100000\n", + " - loss: 0.4691\n", + "\n", + "Epoch 27000/100000\n", + " - loss: 0.4649\n", + "\n", + "Epoch 28000/100000\n", + " - loss: 0.4628\n", + "\n", + "Epoch 29000/100000\n", + " - loss: 0.4562\n", + "\n", + "Epoch 30000/100000\n", + " - loss: 0.4492\n", + "\n", + "Epoch 31000/100000\n", + " - loss: 0.4447\n", + "\n", + "Epoch 32000/100000\n", + " - loss: 0.4428\n", + "\n", + "Epoch 33000/100000\n", + " - loss: 0.4394\n", + "\n", + "Epoch 34000/100000\n", + " - loss: 0.4350\n", + "\n", + "Epoch 35000/100000\n", + " - loss: 0.4343\n", + "\n", + "Epoch 36000/100000\n", + " - loss: 0.4290\n", + "\n", + "Epoch 37000/100000\n", + " - loss: 0.4292\n", + "\n", + "Epoch 38000/100000\n", + " - loss: 0.4245\n", + "\n", + "Epoch 39000/100000\n", + " - loss: 0.4286\n", + "\n", + "Epoch 40000/100000\n", + " - loss: 0.4191\n", + "\n", + "Epoch 41000/100000\n", + " - loss: 0.4171\n", + "\n", + "Epoch 42000/100000\n", + " - loss: 0.4190\n", + "\n", + "Epoch 43000/100000\n", + " - loss: 0.4138\n", + "\n", + "Epoch 44000/100000\n", + " - loss: 0.4127\n", + "\n", + "Epoch 45000/100000\n", + " - loss: 0.4110\n", + "\n", + "Epoch 46000/100000\n", + " - loss: 0.4101\n", + "\u001b[1m47/47\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE3 (100000 эпох)\n", + "patience= 5000\n", + "ae3_trained, IRE3, IREth3= lib.create_fit_save_ae(train,'out/AE3.h5','out/AE3_ire_th.txt', 100000, False, patience)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "mse_stop_ae3 = 0.4101" + ], + "metadata": { + "id": "XO4KnMXJbOqR" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3, IREth3, 'AE3')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "id": "eAGwr2_mb54w", + "outputId": "29b2f1b8-a806-4bc2-ed1c-cf409c1530c1" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FOXZx/HfOYeOgiIqqNiNGuxBTMSCBVGiBqNR0SiYWBI1FtQovnZN7L3EWCKWiBoLNizYsVEUUBFRqnTph3ra7vvHuntm98zMTp/ZPd/PdXGxZ3d25tnZqffe9/NUpNPptAAAAAAAAAAgBpVxNwAAAAAAAABA80WAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAJSsyZMn6+yzz9Yvf/lLrb/++qqoqMj9mzlzZtzNa5aGDh2a+w4GDRoU6bKN3z8AAABKBwFKAABKTO/evXNBmGuuucZyOmOwpvBfVVWVNthgA+2www76wx/+oEceeUSrVq3y1Aa3/4IKWr3yyivac8899a9//UuTJ0921X4AeOedd/KOTTvvvLPreVxzzTWej4Vbb7216Tzr6ur02Wef6Y477tDAgQO1zz77qGvXrmrbtq1atmypzp07q0ePHjr77LM1atQon2sBAIBkaBF3AwAAQPRSqZRWrFihFStWaOrUqXr++ec1ZMgQPfTQQzrmmGPibl5Rq1at0qBBg1RTUyNJ6tq1q/bbbz9tvPHGuey5Dh06xNlEX6655hpde+21kqSrr77aNhANJNXWW2+tWbNmSZJmzJhhGZCLy+OPP57393fffacxY8aoZ8+eMbUo4+WXX9Yf/vAHy9eXLFmiJUuW6IsvvtC//vUvHXLIIfrPf/6jLbfcMsJWAgAQLAKUAAA0A/3799fmm2+e+zuVSmnx4sX67LPPNGfOHEnS4sWLddxxx+n55593FaTce++9Xd3Q//rXv3becAuvvfaali1bJknq3r27xo4dq7Zt2/qeL4DmYeXKlXrxxRebPP/44497DlButtlmro6dG220UdFpWrVqpZ133lnbb7+9OnXqpHQ6rQULFujzzz/X4sWLJUnvvvuu9ttvP3388ccEKQEAJYsAJQAAzcD555+v3r17N3k+lUrp8ccf11//+lfV1NQolUrpr3/9q/r27at27do5mne/fv0iz/D78ssvc48HDBhAcDJBBg0aFHnfk1npdDqW5aL0PP/881qzZo0kqW3btlq7dq0k6ZlnntGdd96pVq1auZ7nDjvsoPvuu89327p27aorrrhChx9+uHr06KHWrVs3maa+vl5PPPGEzj33XK1du1azZ8/W2Wefrddee8338gEAiAN9UAIA0IxVVlbqtNNO0y233JJ7buHChRo+fHh8jXIgmz0pZW7mAcANY3n3pZdeqk033VSStHTpUr366qtxNUuS1KtXL11//fXq1auXaXBSklq0aKE//elPevDBB3PPjRgxIpcRDwBAqSFACQAAdNZZZ6lNmza5vz/66KMYW1NcXV1d7nFlJZczAJybOXNm7hhXUVGhgQMHasCAAbnXC/umTDJjBnk6ndaECRPibRAAAB5xRQ8AANS6deu8EWznzZsXY2vMGUfLNQYQTjvttCaj4w4dOtR0HqtWrdI999yjvn37aosttlCbNm204YYbapdddtG5556r0aNHO2qLcVlZEydO1Pnnn69ddtlFnTp1UkVFhfr37+/qM2ZHR88OkCNJ1157raPR0AcNGtTk8y9fvlx33323DjjgAG2++eZq0aKFKioqtHz58rz3/vTTT3rsscc0cOBA7bnnnurUqZNatmypDTbYQDvttJNOO+00vfXWW44+w9ChQ4uO2P7BBx/kpjF2PfDee+/pxBNP1Lbbbqs2bdpoo4020gEHHKD77rsvLyhtxex7KbT11lvnppk5c6Ykac6cObryyiu1++67a4MNNlD79u2100476W9/+1tukBenRo4cqRNPPFFbbrml2rRpo65du2r//ffX/fffr9WrV0vK35aD6h5h8eLFuu2223TooYdqs802U5s2bXLfYffu3XXcccfpjjvu0IwZMxzN791339Vf/vIXde/eXZ06dVLr1q212WabqW/fvrrvvvtyJdGFZs6cmftsxnW3zTbbmG7HH3zwQRAf35Unnngi1x3Afvvtp6233lqnnHJK7vU33nhDP/30U+Tt8qJly5bq2LFj7u+VK1fG2BoAALyjD0oAACBJef04rlu3LsaWhOO1117TGWecoQULFuQ9X1NTo+XLl2vSpEm6//77ddJJJ+nhhx923AenlAk43XDDDWpoaAi62Z598sknGjBggGbPnm073T333KPBgwebtj070vuUKVM0dOhQHXzwwXruueccDe7hRm1trc4991w9/PDDec/X1NRo1KhRGjVqlB577DG99dZb6ty5c6DLHj58uAYNGqQVK1bkPT9lyhRNmTJFjz76qP73v//pt7/9bdHP8Oc//1lPPfVU3vMLFizQggUL9PHHH+v+++/XSy+9FGj7pcyoz6eddlpe1wdZ2e/w22+/1QsvvKA77rjDtgx49uzZOvXUU00Dh/Pnz9f8+fP19ttv68Ybb9Qzzzyj/fffP8iPEoknnngi9zgbmNxrr73UvXt3TZo0SfX19Xr66ad1wQUXxNRC5xYvXqxFixbl/k7aSOkAADhFgBIAAEjKz5rM9seWJD179tQ555wjKZPd9d1330mSDjnkEO2000550xqzQSXp2Wef1cknn5wLwlVVVWm//fbT9ttvr1WrVmnUqFG5z//0009rxowZeu+99/LK3q3ceuutuYzH7bbbTj179lS7du00c+ZMtWzZ0tVnPOaYY7TLLrtozJgxGjt2rCTrUdLtRkOfOnWqLrjgAq1YsULrr7++DjjgAG222WZatmxZk/L9efPm5dbLtttuq5133lkbb7yx2rRpo+XLl+vrr7/WpEmTJGUyHA899FB9/vnnln3jeXHmmWfq8ccfV2VlpfbZZx/ttNNOSqVS+vzzzzVlyhRJmYGRTj31VI0YMSKw5b7zzjv6y1/+ooaGBm255Zb6zW9+ow4dOmjGjBn64IMPVF9fr7Vr1+r444/XN998o2222cZyXgMGDMgbFbpTp07q3bu3OnXqpNmzZ+vDDz/U5MmT9dvf/lZHH310YJ9h3LhxOu6441RfXy8p80PDr3/9a2299dZq3bq1qqurNW3aNH399de5QWGsTJ48WYcccojmz58vKZORutdee+mXv/yl2rZtq7lz5+qjjz7SypUrNW/ePPXp00dvvPGGDjrooNw8OnTokNtPn3jiiVxG36mnnqr111+/yTI333zzQNaDUx9//LGmTZsmKZM5/oc//CH32imnnKLLLrtMUqbMO+kBynQ6rb///e+5/XfLLbfU3nvvHXOrAADwKA0AAErKgQcemJaUlpS++uqrLafLTiMp/f7779vOc8qUKXnT33fffYG0ISwDBw7MLf+xxx6znXbq1Knp9dZbLzd9z5490z/88EPeNA0NDenbb789XVlZmZvub3/7m+U8jeuqRYsW6Y4dO6ZfeumlJtOtW7fOy8dLX3311a7Xr3GdtGjRIi0pfc4556RXrlyZN11tbW26oaEh9/ejjz6avvfee9Nz5syxnPfEiRPTPXr0yM3/+uuvt5z2sccey003cOBA02nef//93DStW7dOS0rvvffe6cmTJ+dNl0ql0nfddVfe+v7www8tl22czspWW22Vt+z27dunn3zyyXQqlcqb7ptvvklvvvnmuWlPO+00y3k+8sgjecu+6KKLmnz3CxcuTB9xxBF5nzmI/ad///65eR177LHppUuXmk63du3a9Ouvv54+66yzTF9ftWpVeuedd87N64gjjkhPnTq1yXQrVqxI//Wvf81N17Vr1/Ty5ctN52lc1zNmzPD8GYN0+umn59p03HHH5b02e/bsvGPAxIkTi87PuK8eeOCBIbW6UV1dXXru3LnpF154Ie843LJly/Trr78e+vIBAAgLGZQAADRz9fX1Ov/883N/d+jQQSeeeKLj948YMUKLFy92PP11112nTp06uWqjH9ddd51WrVolSdp+++319ttv5/XZJmUG2hk8eLAqKio0ePBgSdL999+vCy+80DZrTpJSqZReeeUVHXDAAU1eCzLL0I36+nqdfvrpuu+++5q8VpjV+ac//ano/HbbbTe988472mmnnbRgwQI98MADGjJkiKqqqny3taamRjvssIPee+89rbfeenmvVVRU6Pzzz9fHH3+s559/XpI0bNgw03XtRW1trYYPH67DDz+8yWvdu3fXv//9bx155JGSpP/973966KGH1KJF/uVzQ0ODrr766tzfZ511lm677bYm89tkk000fPhw7bfffrns2CCMGjVKUmZbGzp0aJN1mNWmTRv169dP/fr1M339jjvu0OTJkyVlMnmff/550wGoOnTooAceeEBr1qzR448/rvnz5+vBBx/UpZdeGtAnCs/atWv13HPP5f429jspSVtssYV69+6t9957T1Imi/L22293PP8ffvhB5557ruPpTznlFO2zzz5Fp9t+++1zWZ9munbtqmHDhunAAw90vGwAAJKGACUAAM1QKpXS4sWL9cknn+imm27SmDFjJEktWrTQf/7zH1d9DI4dO9ZVwOXiiy+OLEC5fPlyPfvss7m/b7nllibBSaPzzz9fjz76qCZNmqRUKqWHHnpIN954o+0yjjvuuMACZkFp06aNbrnllkDn2bFjRx1zzDH617/+pfnz5+vbb7/VrrvuGsi8b7rpJsvAmpQJomYDlNltNQhHHnmkaXAyq1+/furSpYsWLFigVatWafLkyU0+85tvvqm5c+dKktq3b6+bbrrJcn6tWrXSbbfdFmggqbq6WpLUrl0723Vop66uLhfMbt26tR588EHT4KTRP//5z9xgM//9739LIkA5fPjw3PraaKONdMQRRzSZ5pRTTskFKP/73//q5ptvbhKUtjJv3jzdf//9jtvTo0cPRwFKO3/+85919913q3379r7mAwBA3AhQAgDQDBj7iLOy44476vbbby86GEgp+fTTT1VTUyNJ6ty5s4466ijb6SsrK/WnP/1JF110kSTp/fffL7oMN9mmUTnssMO04YYbun7fTz/9pM8//1yTJ0/WsmXLtHr16txox1Kmv8OsCRMmBBKgbNOmTdHvZc8998w9zo68HQRj/4NmKioqtPvuu+cGVpo5c2aTz2wcTOa3v/2tNthgA9t5HnDAAdpyyy31448/empzoW7dumn69OlatmyZnn32WZ1wwgmu5zFu3LjcqNWHHHKINtlkk6Lv2WyzzbTTTjtp8uTJ+uabb7RixQrb4H8SPP7447nHJ554omkfsccdd5zOOeccrVmzRgsXLtRbb70V+zHxlFNOyQ2Es27dOs2bN0+jR4/W0qVL9eijj2rEiBG6+eabm2SEAgBQSghQAgAAbbrppnriiSdMB2Mp5uqrr9Y111wTfKMCMH78+Nzjnj17OsqE6tWrV9770+m0KioqLKf/1a9+5a+RIXDbpm+//VaXXnqp3njjDccjkbsp67ez4447Fh1MyJjRm82AC4KTAGuxZU+YMCH32Gk2XM+ePQMLUB5//PG5rM0BAwbkgpQHHXSQo0CjJH322We5x3PmzHFcprx8+XJJmcFa5syZk+gA5bx58/TOO+/k/rYK5q233nrq37+/nn76aUmZoKbTAOWBBx5oOvq5X8YuBLJqa2v15JNP6qKLLtL8+fN16qmnaubMmbryyisDXz4AAFEgQAkAQDPQv3//vNFylyxZomnTpuVKsxcuXKj9999fL7zwQq7PvXKQzTqSpK222srRe7beeuvc49raWq1cuVIdOnSwnH7jjTf23L6wuGnTW2+9pd/97ne5TFOnsqMz++UkqGUMYGZHq45j2XV1dU1eN25j3bp1c7TcLbbYwtF0TlxxxRX64IMP9PnnnyudTuull17SSy+9JEnaYYcdtP/+++uQQw7RUUcdZTqKtqTcCPaS9NVXX+mrr75y3Y5ly5Z5+wAReeqpp3LB9x122ME2mHzKKafkApSvvPKKli1b5ikjOUytWrXSn//8Z+26667ab7/9VFdXp6uvvloHH3xw3o8sAACUCvvOZQAAQFk4//zzdd999+X+DRs2TGPGjNHEiRO1++67S8oE4wYMGGA7GEOpyQ6OI8lxH22F0xULxLVt29Z9w0LmtE2LFi3SCSeckAtObrXVVrrxxhv18ccfa968eVqzZo1SqZTS6bTS6XReJlcqlQqkrXbZqWELYtnGbaxdu3aO3uO1r0gz7du314cffqhbb701L7guZQZt+c9//qOTTz5ZXbp00d///netXbu2yTxWrFjhux1BBo7DYCzv/uMf/2g7bZ8+fdSlSxdJmUGcjP3YJk3Pnj116qmnSspkst55550xtwgAAG8IUAIA0Izttttuevvtt3PZlatWrdLpp58ec6uCYwwErV692tF7CqezyjorBw8//HAuOLX77rvrq6++0mWXXaZevXqpa9euatu2bV4QL6isyXJi3MbWrFnj6D1Ot0WnWrVqpYsvvljTp0/XhAkTdM899+jEE0/My5pes2aNbr31Vh100EFNgpTGoPx5552XC0i7+de7d+9AP1OQxo0bp2+//Tb399VXX62KigrLfy1atMj1OyrlBzeTqE+fPrnHn3zySYwtAQDAOwKUAAA0c5tssonuvffe3N8ffPCBXn/99RhbFBxjqbPTPv+Mg7C0atWqrAOU7777bu7xFVdcYVvKLkmzZs0Ku0klp3PnzrnHc+bMcfQep9O5lR3U529/+5uGDRumOXPm6Msvv9Rpp52Wm2b06NFNRpredNNNc4+Ngbly4TfA+Pnnn+v7778PqDXBM5afL1myJMaWAADgHX1QAgAAHXPMMerVq1cu++aKK66IfeTaIBhHfx4zZowaGhpUVVVl+55PP/007/1xlCBHtUxj34PFBoxpaGggO8vEHnvskQv0jh492tF7xowZE2aT8uy55576z3/+o6qqKj3yyCOSMv0qXnzxxblpjP0xfvrpp0UHhnIqzvL9rNraWg0bNiz394477lh0pPWsH374QUuXLpWUCXL+4x//CKOJvs2fPz/3uFOnTjG2BAAA78igBAAAkpQ3EveECRP0yiuvxNeYgOy7775q3bq1pEx/i8UyQ1OplB577LHc3wcffHCo7bPSpk2b3GOzgVmCUlnZeClYrDx5+PDhZZld55extPn1118v2p/jxx9/HEsm6tFHH517vHDhwrzXevXqlQvazZkzR6+++mogy4xqO7bz+uuv57IKW7RooY8++kiff/65o3+XX355bj5PPvlkYP2uBu21117LPd55551jbAkAAN4RoAQAAJKkQw89VPvuu2/u7xtuuCHG1gRjgw020AknnJD7+5JLLrHtR/G+++7T119/LSkTvDvzzDNDb6OZjTbaKPd47ty5oS1n2223zT22C0gvWrRIF154YWjtKGWHH364NttsM0mZPlyNQa1CtbW1eZmLftXU1OQN0mNn9uzZucebbLJJ3mutW7fWBRdckPv77LPPdrXdFQY8s6Laju0Yy7v79OnT5LPbGTBgQC6IP3v2bL3//vuBt69QfX29q0GLRowYoRdeeCH397HHHhtGswAACB0BSgAAkHPVVVflHo8dO1ZvvvlmjK0JxlVXXZUbyOT7779X3759NX369LxpUqmU7r77bg0ePDj33DnnnNNkVOSo7LLLLrnHb7/9diCjLJs56qijco9vvPFGPfXUU02m+fLLL3XggQdq9uzZjkdCb05atGiRl338wAMP6NJLL1VtbW3edIsWLdKxxx6r0aNH57J6/Zo/f766deumiy++WOPGjbOcbuTIkXkjsB9xxBFNprnooovUvXt3SZlgYo8ePfS///3PMmtw8eLFeuihh7TXXnvp1ltvNZ3GuB3/73//c/SZhg4dmjdgjbFPWLcWL16sESNG5P4++eSTXb1/s80200EHHZT7O4rBclatWqVtttlGV111laZMmWI53bJly3TDDTfo97//vdLptCRp++231xlnnBF6GwEACAN9UAIAgJy+fftqn332yfWld/311+vwww+3fc+IESO0ePFix8to166dbrnlFl/tdGO77bbTI488opNPPlkNDQ367LPPtOOOO2r//ffXdtttp1WrVmnUqFF5GV6//vWvI21joZ49e6pbt26aPXu25s+fr5122kmHHXaYOnfunOvXb++9987LDvVi4MCBuv322/X999+rpqZGp5xyiv75z39q9913V5s2bfTNN9/kAl+77767+vbtG+t6SarTTz9dr7/+ul5++WVJ0i233KJHH31UvXv3VqdOnTRnzhy9//77Wrdunbbddlv97ne/05133ikpv8zei+XLl+v222/X7bffrk6dOmnPPffU5ptvrjZt2uinn37SV199lReQ/8UvfqHzzz+/yXzWW289vfLKKzr00EM1Y8YMLViwQMcff7w6d+6sX//61+rSpYvS6bSWLl2qb7/9Vj/88EMueGnVFcKxxx6rf//735IygdsvvvhCe+21l9q1a5eb5q9//au22247X+vAytNPP50rLW/fvr369+/veh4nn3xyro/RF198UQ888EDeyO1GP/zwg84991xX8x8yZEjeaOtSJvh4/fXX6/rrr9dmm22m3XbbTZtssonatWunVatWaerUqfryyy/zguBdunTRK6+8EljwGwCAqBGgBAAAea666qrcADmffvqp3n33XR1yyCGW048dO1Zjx451PP+OHTtGHuQ64YQT1L59e51++ulauHCh6uvr9f7775uWbA4YMECPPPJIXv95UausrNQDDzygY489VrW1tVqwYIGeeOKJvGkGDhzoO0DZunVrvfrqqzriiCNyQazJkydr8uTJedP16tVLzz77rB5++GFfyytXFRUVevbZZzVo0CA988wzkjKjKRtLb6VM/4AvvfRS3ndZbOR0Oy1btlTr1q1VU1MjSVq6dGneyOyFevfurWHDhllmwm677bYaN26c/vKXv+j5559XOp3W4sWL8/o4LLTBBhtYDrDUp08fDRgwIDdIzejRo5sMJHTkkUeGFqA0Zjz279/fUwbwscceq7PPPlvr1q3T6tWr9fzzz2vQoEGm086bN6/JCOnFnH766XkBysrKSrVo0UL19fW5eRoHszLz+9//Xvfcc0+TQCcAAKWEACUAAMjTr18/9ejRI5c5d91119kGKEvFkUceqalTp+o///mPXnvtNU2aNEmLFy9W27Ztc6Wcp556at6IxnE68sgjNW7cON1///36+OOP9eOPP2rVqlW5cs6g/OIXv9D48eN1//3368UXX9SUKVNUW1urLl26aNddd9VJJ52k448/vujo581d69atNWzYMJ122ml65JFH9Nlnn+mnn37ShhtuqO23314nnniiTjvtNLVv3z43MrQkxyNKm9l88821ZMkSvffeexo1apS++OILTZ06VYsWLVJtba3WX399bbXVVrls20MPPbToPDt16qTnnntO33zzjYYNG6YPPvhAM2bM0JIlS1RZWakNNthA22+/vfbaay8deuih6tOnj20w/7///a+OPPJIDRs2TBMmTNDixYu1bt06z5/ZqW+++UZffvll7m+35d1ZHTp00FFHHZUrUR86dKhlgDIIHTp00JIlS/TOO+/ok08+0fjx4zV9+nQtWrRINTU1at++vTbccEN1795d++yzj0466SRtv/32obUHAICoVKSDvsoFAAAAYKlXr1769NNPJUmff/55YoLiAAAAcSFACQAAAERk1qxZ2m677dTQ0KBWrVppxYoVsXYnAAAAkASM4g0AAABEIJ1O6/zzz1dDQ4Mk6ZhjjiE4CQAAIAKUAAAAgG9XXXWV7r77bssR7WfOnKljjjkmN9J3VVWVLr744iibCAAAkFgMkgMAAAD49OOPP+r666/XxRdfrF133VU77bSTOnbsqFWrVum7777T+PHjc5mTknTFFVeoR48eMbYYAAAgOQhQAgAAAAGpr6/X+PHjNX78eNPX27Ztq+uuu47sSQAAAAMGyQEAAAB8Wr58uV5++WW99957mjRpkhYtWqTFixeroaFBnTp10o477qhDDjlEf/7zn9W1a9e4mwsAAJAoBCgtpFIpzZs3T+uvv74qKiribg4AAAAAAABQUtLptFauXKnNNttMlZXWQ+FQ4m1h3rx56tatW9zNAAAAAAAAAEra7NmztcUWW1i+ToDSwvrrry8pswI7dOgQc2uCV1dXp7fffluHHXaYWrZsGXdzUCbYrhAGtiuEhW0LYWC7QljYthAGtiuEge0KRtXV1erWrVsuzmalJAOUH330kW699VZ98cUXmj9/vl566SX1799fUmZHuOKKKzRixAhNnz5dHTt21KGHHqqbbrpJm222meNlZMu6O3ToULYBynbt2qlDhw4cMBAYtiuEge0KYWHbQhjYrhAWti2Ege0KYWC7gpli3SdaF38n2OrVq7X77rvr/vvvb/LamjVr9OWXX+rKK6/Ul19+qRdffFFTpkzR0UcfHUNLAQAAAAAAANgpyQzKI444QkcccYTpax07dtTIkSPznrvvvvvUs2dP/fjjj9pyyy2jaCIAAAAAAAAAB0oyQOnWihUrVFFRoQ022MBympqaGtXU1OT+rq6ulpRJTa6rqwu7iZHLfqZy/GyID9sVwsB2hbCwbSEMbFcIC9sWwsB2hTCwXcHI6XZQkU6n0yG3JVQVFRV5fVAWWrdunXr16qWddtpJ//3vfy3nc8011+jaa69t8vzTTz+tdu3aBdVcAAAAAAAAoFlYs2aNTjrpJK1YscJ2jJeyDlDW1dXp2GOP1Zw5c/TBBx/YrgizDMpu3bpp8eLFZTtIzsiRI9WnTx86rUVg2K4QBrYrhIVtC2Fgu0JY2LYQBrYrhIHtCkbV1dXq3Llz0QBl2ZZ419XV6fjjj9esWbP03nvvFQ0ytm7dWq1bt27yfMuWLct6hyr3z4d4sF0hDGxXCAvbFsLAdoWwsG0hDGxXCAPbFSQ53gbKMkCZDU7+8MMPev/997XRRhvF3SQAAAAAAAAAJkoyQLlq1SpNnTo19/eMGTM0YcIEderUSV27dtVxxx2nL7/8Uq+99poaGhq0YMECSVKnTp3UqlWr0NtXV1enhoaG0JfjR11dnVq0aKF169Ylvq2lrrKyUi1btlRFRUXcTQEAAAAAAEickgxQjhs3TgcddFDu78GDB0uSBg4cqGuuuUavvPKKJGmPPfbIe9/777+v3r17h9au6upqLV68OK8vy6RKp9Pq0qWLZs+eTeAsAlVVVWrXrp022WSTSILkAAAAAAAApaIkA5S9e/eW3dg+cYz7U11drblz52q99dZT586dE58xl0qltGrVKq233nqqrKyMuzllK51Oq6GhQWvXrtWKFSs0c+ZMbbHFFowMDwAAAAAA8LOSDFAm0eLFi7Xeeutpiy22SHRgMiuVSqm2tlZt2rQhQBmB9dZbT506ddKsWbO0ePFibbnllnE3CQAAAAAAIBGITAWgrq5ONTU16tixY0kEJxGPqqoqderUSatXr1Z9fX3czQEAAAAAAEgEApQByA4y43TodDRfrVu3liQClAAAAAAAAD8jQBkgsidRDNsIAAAAAABAPgKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUpEZuutt1ZFRYWGDh2ae27o0KGqqKjI+1dZWakOHTpozz331JAhQ7Ro0SLLeRa+1+rfBx98EP4HBAAAAAAAgGst4m4AIEnt27fXcccdJykzKvqsWbP02WefacKECXrsscc0atQo7bDDDpbv79u3r7p06WL5ut1rAAAAAAAAiA8BSiRC586d8zIrJWnSpEk68MADtXDhQl1wwQV6/fXXLd9/2WWXqXfv3uE2EgAAAAAAAIGjxBuJ1b17dw0ePFiSNHLkSNXU1MTcIgAAAAAAAASNACUSbbfddpMk1dXVaenSpTG3BgAAAAAAAEEjQIlEq66uliRVVVWpc+fOMbcGAAAAAAAAQSNAiUTL9jt5+OGHq2XLljG3BgAAAAAAAEFjkJyo9OghLVgQdytyKiR1SKdVUVFhP2GXLtK4cZG0KSs7ivdDDz2kp59+WltttZXuuece2/ccdNBBlq917NhRy5cvD7iVAAAAAAAACAIByqgsWCDNnRt3K3Iqfv6XFLNmzTINlvbs2VNvv/22OnbsaPv+vn37qkuXLqavtWvXLpA2AgAAAAAAIHgEKKNiETyLS1pS+ucMSttAZUTtbt++vY477jhJUk1NjSZPnqyJEydqzJgxOuuss/TMM8/Yvv+yyy5T7969I2gpAAAAAAAAgkSAMioRl0kXk06lVF1drQ4dOqiiMv6uSDt37qyhQ4fmPffiiy/qhBNO0LPPPqsDDjhAZ599djyNAwAAAAAAQGjij0wBFn7/+9/rsssukyRdddVVWrFiRcwtAgAAAAAAQNAIUCLRhgwZoq5du2rJkiW644474m4OAAAAAAAAAkaAEonWrl07XXnllZKku+66S8uWLYu5RQAAAAAAAAgSfVAi8U4//XTdfvvtmjZtmm677Tb94x//aDLNTTfd1KQPS6OTTjpJhx12WIitBAAAAAAAgBcEKJF4LVu21A033KABAwbo3nvv1eDBg7XRRhvlTfPWW2/ZzmOPPfYgQAkAAAAAAJBABCgRmZkzZzZ5btCgQRo0aFDR95544ok68cQTmzyfTqcDaBkAAAAAAADiQh+UAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUis/XWW6uiokJDhw7NPTd06FBVVFTk/ausrFSHDh205557asiQIVq0aJHlPAvfa/Xvgw8+cNXWbLsGDRrk7cMCAAAAAADAkRZxNwCQpPbt2+u4446TJDU0NGjWrFn67LPPNGHCBD322GMaNWqUdthhB8v39+3bV126dLF8vfC1iooKSVI6nQ6g9QAAAAAAAPCKACUSoXPnznmZlZI0adIkHXjggVq4cKEuuOACvf7665bvv+yyy9S7d+9wGwkAAAAAAIDAUeKNxOrevbsGDx4sSRo5cqRqampibhEAAAAAAACCRoASibbbbrtJkurq6rR06VLf87vmmmty5d1S0z4sZ86c2eQ9q1ev1pAhQ7T99turdevW6tKliwYOHKi5c+f6bg8AAAAAAEBzR4k3Eq26ulqSVFVVpc6dO/ue3x577KGBAwfq8ccflyQNHDgw7/X11lsv7+8VK1Zo33331Y8//qj9999fu+yyiz777DM98cQT+vDDDzVx4kR17NjRd7sAAAAAAACaKwKUSLRsv5OHH364WrZs6Xt+/fv3V//+/XMBysJ+LwsNHz5cffv21ahRo9ShQwdJ0rJly3TwwQdrwoQJeuCBBzRkyBDf7QIAAAAAAGiuCFBGpEePHlqwYEHczciTTqfzyp3NdOnSRePGjYuoRRnZUbwfeughPf3009pqq610zz332L7noIMOsnytY8eOWr58uae2tG/fXo899lguOClJG264oS677DKdeOKJeueddwhQAgAAAAAA+ECAMiILFiygz0Ibs2bNMg2W9uzZU2+//XbRMuq+ffuqS5cupq+1a9fOc7t69Oihrl27Nnl+5513liS+UwAAAAAAAJ8IUEbEKngWJ6cZlFFo3769jjvuOElSTU2NJk+erIkTJ2rMmDE666yz9Mwzz9i+/7LLLlPv3r0Db9eWW25p+nw2o3LdunWBLxMAAAAAAKA5IUAZkajLpItJpVKqrq5Whw4dVFkZ/2DunTt3btIf5IsvvqgTTjhBzz77rA444ACdffbZkbcrCesGAAAAAACgnBF9QWL9/ve/12WXXSZJuuqqq7RixYqYWwQAAAAAAICgEaBEog0ZMkRdu3bVkiVLdMcddwQ23+yI4PX19YHNEwAAAAAAAO4RoESitWvXTldeeaUk6a677tKyZcsCme8WW2whSZo0aVIg8wMAAAAAAIA39EGJxDv99NN1++23a9q0abrtttv0j3/8o8k0N910U5M+LI1OOukkHXbYYbm/jz32WN1222069NBDdfDBB2v99deXJN18883aaKONAv8MAAAAAAAAMEeAEonXsmVL3XDDDRowYIDuvfdeDR48uEkQ8a233rKdxx577JEXoLz++utVWVmpF198UcOHD1dtba0k6YorriBACQAAAAAAECEClIjMzJkzmzw3aNAgDRo0qOh7TzzxRJ144olNnk+n057a0qZNG9188826+eabTV8v1q6tt97a87IBAAAAAADQiD4oAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAZoHQ6HXcTkHBsIwAAAAAAAPkIUAagsjKzGhsaGmJuCZIuu41ktxkAAAAAAIDmjihJAFq2bKmqqiqtXbs27qYg4VauXKmWLVuqZcuWcTcFAAAAAAAgEQhQBqCiokLt2rXTihUryKKEpbVr16q6ulrrr7++Kioq4m4OAAAAAABAIrSIuwHlYpNNNtHMmTM1a9YsderUSa1bt050ECqVSqm2tlbr1q2j3DhE6XRaDQ0NWrlypaqrq9W6dWt17tw57mYBAAAAAAAkBgHKgLRq1UpbbLGFFi9erPnz58fdnKLS6bTWrl2rtm3bJjqQWi5atmypDTbYQJ07d1ZVVVXczQEAAAAAAEgMApQBateunbbcckvV19ervr4+7ubYqqur00cffaQDDjiA/hBDVllZqZYtWxIIBgAAAAAAMEGAMgQtWrRQixbJXrVVVVWqr69XmzZtCFACAAAAAAAgNnQ+CAAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJTkgHKjz76SEcddZQ222wzVVRUaPjw4Xmvp9NpXXXVVeratavatm2rQw89VD/88EM8jQUAAAAAAABgqSQDlKtXr9buu++u+++/3/T1W265Rffcc48efPBBjR49Wu3bt1ffvn21bt26iFsKAAAAAAAAwE6LuBvgxRFHHKEjjjjC9LV0Oq277rpLV1xxhX73u99Jkp544gltuummGj58uE488UTT99XU1Kimpib3d3V1tSSprq5OdXV1AX+C+GU/Uzl+NsSH7QphYLtCWNi2EAa2K4SFbQthYLtCGNiuYOR0O6hIp9PpkNsSqoqKCr300kvq37+/JGn69OnabrvtNH78eO2xxx656Q488EDtscceuvvuu03nc8011+jaa69t8vzTTz+tdu3ahdF0AAAAAAAAoGytWbNGJ510klasWKEOHTpYTleSGZR2FixYIEnadNNN857fdNNNc6+ZGTJkiAYPHpz7u7q6Wt26ddNhhx1muwJLVV1dnUaOHKk+ffqoZcuWcTcHZYLtCmFgu0JY2LYQBrYrhIVtC2Fgu0IY2K5glK1QLqbsApRetW7dWq1bt27yfMuWLct6hyr3z4d4sF0hDGxXCAvbFsLAdoWwsG0hDGxXCAPbFSQ53gZKcpAcO126dJEkLVy4MO/5hQsX5l4DAAAAAAAAkAxlF6DcZptt1KVLF7377ru556qrqzV69Gj95je/ibFlAAAAAAAAAAqVZIn3qlWrNHXq1NzfM2bM0IQJE9SpUydtueWWuuCCC3TDDTdohx120DbbbKMrr7xSm222WW4gHQAAAAAAAADJUJIBynHjxumggw7K/Z0d3GbgwIEaOnSo/v73v2v16tU688wztXz5cu23335688031aZNm7iaDAAAAAAAAMBESQYoe/furXQ6bfl6RUWFrrvuOl133XURtgoAAAAAAACAW2XXByUAAAAAAACA0kGAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEBsClAAAAAAAAABiQ4ASAAAAAAAAQGwIUAIAAAAAAACIDQFKAAAAAAAAALEhQAkAAAAAAAAgNgQoAQAAAAAAAMSGACUAAAAAAACA2BCgBAAAAAAAABAbApQAAAAAAAAAYkOAEgAAAAAAAEBsCFACAAAAAAAAiA0BSgAAAAAAAACxIUAJAAAAAAAAIDYEKAEAAAAAAADEhgAlAAAAAAAAgNgQoAQAAAAAAAAQGwKUAAAAAAAAAGJDgBIAAAAAAABAbAhQAgAAAAAAAIgNAUoAAAAAAAAAsSFACQAAAAAAACA2BCgBAAAAAAAAxIYAJQAAAAAAAIDYEKAEAAAAAAAAEJsWcTcA0Vu9erVeeeUVjR8/XmvWrFGLFmwGCEZ9fT3bFQLHdoWwsG0hDGxXCIunbWvxYqmmRtp883Abh5LFMQthYLtyr2XLlurfv3/czYgVW0oztHjxYp100klxNwMAAAAAAKDZ23DDDZt9gLIsS7wbGhp05ZVXaptttlHbtm213Xbb6frrr1c6nY67aQAAAAAAAAAMyjKD8uabb9a//vUvPf744+revbvGjRun0047TR07dtR5550Xd/Nit+GGG+qWW27R5MmTtfPOO6uqqiruJqFMNDQ0sF0hcGxXCAvbFsLAdoWwuN62nnlGGjs287hNG+kf/wi3gShJHLMQBrYr99q0aRN3E2JXlgHKTz/9VL/73e/029/+VpK09dZba9iwYRozZkzMLUuGDh066IILLtCIESPUr18/tWzZMu4moUzU1dWxXSFwbFcIC9sWwsB2hbC43ra++64xQFlZKQ0eHG4DUZI4ZiEMbFfwoiwDlPvuu68eeughff/99/rFL36hiRMn6uOPP9Ydd9xh+Z6amhrV1NTk/q6urpaU2bHq6upCb3PUsp+pHD8b4sN2hTCwXSEsbFsIA9sVwuJ226qsrFQ2byldV6d6tkmY4JiFMLBdwcjpdlCRLsOOGVOplC6//HLdcsstqqqqUkNDg/7xj39oyJAhlu+55pprdO211zZ5/umnn1a7du3CbC4AAAAABGqXRx7Rdq+9JklKV1TolZdeirlFAIDmaM2aNTrppJO0YsUKdejQwXK6sgxQPvPMM7rkkkt06623qnv37powYYIuuOAC3XHHHRo4cKDpe8wyKLt166bFixfbrsBSVVdXp5EjR6pPnz6kXCMwbFcIA9sVwsK2hTCwXSEsbretyksvVdWddza+v7Y2zOahRHHMQhjYrmBUXV2tzp07Fw1QlmWJ9yWXXKLLLrtMJ554oiRp11131axZs3TjjTdaBihbt26t1q1bN3m+ZcuWZb1DlfvnQzzYrhAGtiuEhW0LYWC7Qlgcb1sF9zZsj7DDMQthYLuC5Pz8UxlyO2KxZs0aVVbmf7SqqiqlUqmYWgQAAAAAESIoAAAoIWWZQXnUUUfpH//4h7bcckt1795d48eP1x133KE//elPcTcNAAAAAMJHgBIAUELKMkB577336sorr9TZZ5+tn376SZtttpnOOussXXXVVXE3DQAAAADC16Isb/UAAGWqLM9a66+/vu666y7dddddcTcFAAAAAKJHBiUAoISUZR+UAAAAANCsEaAEAJQQApQAAAAAUG4IUAIASggBSgAAAAAoNwQoATRHr74q3X67tHp13C2BS2XZByUAAAAANGtVVXG3AACi9f330tFHZx4vXCjdcku87YErZFACAAAAQLlJp+NugXdLl0p33CGNHRt3SwCUktdfb3x8663xtQOekEEJAAAAAOWmlAOUZ5whvfhi5vHq1VK7dvG2B0BpqKiIuwXwgQxKAAAAACg3pRygzAYnJWnWrPjaAaC0EKAsaQQoAQAAAKDclHKAEgDQ7BCgBAAAAIByUy4BSjKiAKBZIEAJAAAAAOWmXAKUAOAUP2iUNAKUAAAAAFBuyiVAScABAJoFApQAAAAAUG5SqbhbAADR4geNkkaAEgAAAADKTblkUAIAmgUClAAAAABQbgoDlA0N8bQDaE6+/1565x0ymONCBmVJI0AJAAAAAOWmMEBZWxtPO4DmYskSqXt3qU8f6amn4m5N80SAsqQRoAQAAACAclMYoKyri6cdfhFwQKl49FGpvj7zeODAeNsClCAClAAAAABQbsolg5IAJUoF22r8+A5KGgFKAAAAACg35RKgBEoFwTHAFwKUAAAAAFBuCFAC0aokvAL4wR4EAAAAAOWGACUQLTIo48d3UNIIUAIAAABAuWGQHCBaZFDGj+NFSWMPAgAAAIByQwYlEC0ClPEjQFnS2IMAAAAAoNyUSwYlytOsWdLJJ0v33Rd3S4LjJjg2d660dGl4bQFKEAFKAAAAACg3hQHKwr+BOJ1wgvT009Lf/iZNmRJ3a4LhNED55ZfSVltJ3bpJCxaE26bmhgzKkkaAEgAAAADKTbkEKEu13bA3enTj48mT42tHkJwGx04+WWpokNaska64Itw2ASWEACUAAAAAlBsClCgV5fIdO+2DcvnyxserVoXSFKAUEaAEAAAAgHJTGPRJpeJph1/lErwqRaNGSWecIY0fH3dLSoPTAKVxOrbvYFHiXdJaxN0AAAAAAEDAyKCEXwcckPn/kUf4HpxwGhwzBihL9YeDpCJAWdLIoAQAAACAckOAEqWiXL5jLxmUBCiDRYCypBGgBAAAAIByQ4k3EC0yKAFfCFACAAAAQLkhgxKloly+YwKUgC8EKAEAAACg3BQGPgiEIKkIUCIoSSzxTqeltWvjbkVJIEAJAAAAAOWGDEqUinL5jumDEoXSaenww6WNNpJeey3u1iQeo3gDAAAAQLkhQAlEiwBl/JKWQfnll9Lbb2ceH3UUx7MiyKAEAAAAgHLDIDlAtCjxjl/SApTV1XG3oKQQoAQAAACAckMGJUpFuXzHZFACvhCgBAAAAIByQ4ASpaJcvmOn2XvG6QhQBitpGZTlsm1HhAAlAAAAAJQbSryBaHnJoGT7Lm98v64QoAQAAACAckMGJUpFuXzH9EEZPzIoSxoBSgAAAAAoN+USoAzSggXSI49k/kdylMu2SR+UKFQu23ZEWsTdAAAAAABAwCjxbuqII6QJE6Q99pDGjw9uvoBEBmUSJC2DEq6QQQkAAAAA5aZcMiiDbPeECfn/w1qpbi+lgEFywpO0ACX7kSsEKAEAAACg3BCghB9Rrvdy+Y6dfg4yKJuHjz+WPvww7laUFEq8AQAAAKDcUOJd3OrV0u9/LzU0SC++KHXoEN6ySg0ByvAQoAxPUjIoR4+W9t8/7laUHDIoAQAAAKDckEFZ3LXXSm+/Lb37rnT55eEtpxSV6vYSJzIovRk5MtMv7F13+Z9XUrbbiy+OuwUliQAlAAAAAJQbApTFjR7d+Pizz8JbTimKMnBWqttmIS8BynL57H4cdpg0caJ04YWZbGY/WJ8ljQAlAAAAAJQbSrwz1qzJZEmuXRv8vMsZ68Y9Mij987s+krLdJqUdJYYAJQAAAACUm3LJoPTr5JOlvn2lU06xny4pfdclBduPe07XEaN4W2N9NGsEKAEAAACg3JRLgMlvu4cPz/z/wgu+m9KsRLn9lOq2WYgSb//IoGzWCFACAAAAQLmhxBt+RLn9NLfvuJRKvH/8Ufrhh+iWVy4BSnhCgBIAAAAAyg0ZlPCjMFBEgLK4cuuDcuZMadttpV/8Qho7NpplMkhOs0aAEgAAAADKDQFK+FEuGbhRKrcA5WWXNQYM//jHaJZZLhmUSWlHiSFACQAAAADlJsoMuDBxox8PApTulVuAsra28fG6ddEskwzKZo0AJQAAAACUGzIo4513qaMPSvfKLUAZx8j25ZJBCU8IUAIAAABAuSmXDDgCDvEol+0nSuUWoDSKaj8slfWBUBCgBAAAAIByUy4ZlFGJI1ssyRgkJzylEqA07hNRfUeUeDdrBCgBAAAQvHnz/N9oAPCuXAKUpdruUkeJt3vllkFJibd3SWlHiSFACQAAgGA9/ri0xRZSr15cpANxKZcSXfqgjAcBSvfKLUBpRAYlIkCAEgAAAMEaNChzkzB6tDRpUtytAZonMijdzZcS73wEKN1z+jmM21qSA5RxlHiTQdmsEaAEAABAeOrq4m4B0DwRoIxnvuWCPijd85JBmeTPTok3IkaAEgAAAADKDSXe8cy3XES5/ZTqtukVJd7W4irxXrtWqq31t2z4RoASAAAAAMqN2wzKDz+UhgyR5swJr01ehBUYSaXKN0i5erX/eRCgdK/c+qBsLiXe06Zl+s3eemtpyRJ/y4cvBCgBAAAAoNy4CVDW1Ei9e0s33ST17x9mq5KjXPugfPxxacMNpQED/M2HPijdK+cAZVT8ZlB68ec/S0uXSvPnS1dcEf3ykUOAEgAAAADKjZsA07JljY+/+CKc9ngVZgZlORo0KNP37zPP5H+vbpFB6V65DZJjVM4ZlLNmNT6eP9/f8v20AwQoAQAAAKDshD1ITn19sPOz4qfddu8tDISUY0DBTzZalIPklEqQrhin25BxuiR/9jhKvOPog7JcsqfLAAFKAACA5iSdjqeECkC03AQo3d7UP/mk1LGjdM457tvlVlgBynIMSAaJDEr3nO5zBCitlcso3klpR4khQAkAANBc1NdLvXpJ3bpJX38dd2sAhCnMANOpp0pr1kgPPBD+yLdRZVCSRZWPPij9I0DpXtwBynLdFksEAUoAAIDmYuhQ6bPPMn0sRTUQBjf9QDzCLvHOCjvA4qfddm1rDoEIP8dfMijdc7rOSjFAGRVKvJs1ApQAAADNxZw5jY+nT49mmc0hCAAkUZgl3lGKKoMS+QhQulduAUqj5pJBGZSktKPEEKAEAAAAgHLjJsAUVhAwCGFlUKZS5R9E8JMZFuUgOeXyPRR+DqtsQOO6THKAshQHyfGrXLbFEkWAEgAAAADKTVQZlEEHWIIMELj5zJR55iOD0j0vGZRJDojFsU/EkUEZRyAWpghQAgAAAEC5iaoPyqDnWxigCDODMummTZN23VU68khvmWVBZsYSoMx8By+/LH3+ufnrlHj7F3eAErEiQAkAAAAA5SaqEt2wMyibc4DyxBOlb76RXn9devJJ9+8nQBmsYcMyA8z95jfS1KnFp7cKKpdiBmWplHgneX2iKAKUAAAAzQUX7kDz4SbQ5ydAlOQAZbES76QfE8eNa3zsJCBWyO7zLVokPfectHKls/fSB6V0yimNj++/v+nrXjIo3frrX6Xdd5cmTvQ+D6eaS4l3GJLSjhJDgBIACtXUSEcdJfXuLS1eHHdrAAAA3IsqQBn0jXhcGZTlWOZpt+4OPVQ64QRVnXGG+etRDpJTKhmUVVWNj80y/cIOUI4eLT34oPTVV1KfPt7m4VVzyaAksBgrTwHK6upqVVdX+174qlWr9Morr+iVV17xPS8ACMztt0uvvSZ9+KF0wQVxtwYAAMC9qEbxLuUMynJn9xm/+kqSVPnii87eS4AyP0BZX9/09bADlHPnNj5etMjbPNyIo8S7XPqgbA7HlxC08PKmDTbYQJWVlfrqq6/0y1/+ssnr8+bN0xVXXKGKigo9+uijlvOZNWuW+vfvr8rKStWb7eAAEIcvvmh8/OGH8bUDAIIWxwVzOWYlAaWgVEu8GSTHnJf1UCp9UJZKMKdFC6m2NvPYSYDSSR+UblRGXABbiiXeKGmet/C0zU61bNkyDR06VEOHDvU9LwAAAACAS24CTM21xLvc70Pdfr7x46Xvvzd/LxmUxUu8CwWdQWlcftSaS4k3YkUflAAAAM0FF+5A81GqGZRBHqfKqcQ75AzKik8+kfbaS9ppJ2nGjKbf67Bh0v77SyNGuG9HMeUSoAy7xDvqAGVzLPEO6nOW2vElIQhQAkChOE7GAAAAQXIToCzXPiiLZVCWexcULtZd1amnNr5nyJCm733gAenjj6Xf/jbABv6MAKUzzaHEO44MSu79EoMAJQAU4iQFoFzFcbPBcRSIR1Ql3kkOUJZTBqUXbj6jsU/FdDra9VMq34XbAKVVsM3rPkMGZXGlsi3BFAFKAACA5oILd6D5iKrEO+jjSpSD5JTSMTHIEm+z543PVVREu25KJYOyhWGM4ThG8Y4zQBnVdxR3gLKUjglliAAlAAAAAJQbSrzdZY2WY7m31bor9p0RoDQXVom303VNiXdxfku8ESsClAAAAABQbijxpsTbTQZloSiDhqXyXbgdxdtqGq8jpDeHUbxLJVhdTKls0wlDgBIAAKC54IIZaD5KtcQ7rgzKpPOyHqw+o9nzQa53t0rluwgrg9Jp1mDUmX5x9EEZdAYl1z0lxVeAsoJUWABovpYsyfwDAADJE1WAMujgUpB9UBbLoCz34AUl3sGKO0AZ9fYaR7wn6D4o3a6zoNZxuR9bQtKi+CTWdtllF8vXssHLqjjTkAEA4Zg+XerePfN40iRp223jbQ8AZ+K4YOYiHYiHmzLSJPdB6Uc59UEZ5CA5ZFB6E9YgOUkNUMax7DgClEnf95sRXxmU6XTa9z8ASDSOU+bOOUdaty7z7+yz424NgCTjOArEgxLv8D5zqfDaB2XUGZSlcp5wm0HptA9KpwHKqLfZchgkpzns52XEUwblAQccQHk3kimdln76Sdp007hbglLG8a245csbH69YEVszAJSAUrnxBMpNqZZ4R9UHJSXe9tNGGdgplSBS3CXeca6ncs6g9DM9AuUpQPnBBx8E3AwgIH/8o/T009KNN0qXXRZ3a1AOOEkBgD8cR5EUjzwi/fCDdPnlUseOcbcmfOVS4h3VIDlJ/4E67BLvIJbnVbkEKAuVeol3cxkkJ47PCVOM4o3y8vTTmf+HDIm3HShtSb9ABYBSwsU+kmDcOOmMM6RbbpEuuSTu1kSjVEu8oxwkp9y5KfE2PscgOebCKvF2uq6bQ4l32INumQnjczaH40sIyjZAOXfuXP3xj3/URhttpLZt22rXXXfVuHHj4m4WAABAUytWSFddJT3zTNwtCR4X6UiC995rfPzww/G1I0qUeLvLoEz6sSrKDEr6oDRnHCTHT4l34fNO9yEGySkuzsGe4FvsAco1a9bo9ttvD3Sey5YtU69evdSyZUu98cYb+vbbb3X77bdrww03DHQ5AAAAgbjkEun666UBA6Rvvw1vOYzijeaqhaeerUqbmxLvcg1QltMgOVGXeCepD8p0WvrXv6TbbjMfPTsqxgzKIEfxdrqu48ygLNUSb7frjGuWWMV2pl65cqXuuece3X333VqyZIkuuuiiwOZ98803q1u3bnrsscdyz22zzTaBzR8AACBQxoyu99+XfvnL+NoSNC72EYW1a6X77pM231w66aSmrxsDC82FmwzBsIKAQcwvzEFyjMqxix8/g+QkqcT7rbeks8/OPG7VSjrvPG/LWbdOatPG23ul4DIoKfG2Vi4ZlFz7eBJ5gHLp0qW68847df/992vFihVKp9OBjwj+yiuvqG/fvvrDH/6gDz/8UJtvvrnOPvtsnXHGGZbvqampUU1NTe7v6upqSVJdXZ3q6uoCbV8SZD9TWX22dFotDX+W1WcrEeWyXVWlUrn08rSk+hL/PGEwrqNUOq2GENdRuWxXSJ4kbVvG81dDfb1SIbWpsr5exjBNWJ/d+Hnq6+uVTsA6jkqStqvmpPLGG1V1/fWSpPqttlK6Z8/81ysqItn2w+R22zKeqyWpoaHB8thSUVubd2NYbBl519y1tVKQ67O2Nv8Y0tDg/RhSU5M3L6P62lpVptORXc94kXduSKUcnRscfTcF61hSXkAllU4rVVdnGSwIYv8xLj/V0GC77quGDm28Nr/+etX/9a+ul1f54IOqvOgipc44Q6m77nL9fkmqqqxsbEddXZN7hMJzbH1Njem2W7hv1tXUONqHKgq+k7CPY5WpVO7zpNNpV/dEbo5Xedt5ba2va6Am1zkOjk8tJGUjUkEdB1qk0zKLcpXiuScITj+3rwDlrFmzdPvtt+udd97R7Nmz1bJlS2299db6wx/+oLPPPlsdDaPjrVq1SrfeeqvuvPNOrV69WumfD4CdO3fWhRde6KcZTUyfPl3/+te/NHjwYF1++eUaO3aszjvvPLVq1UoDBw40fc+NN96oa6+9tsnzb7/9ttq1axdo+5Jk5MiRcTchOKmUfmf4c8SIEbE1pbkr9e2qx/z52vznxzU1NXqLbamJ/ZcvV6efHy9fvlyjIlhHpb5dIbmSsG0Zz1+TJk3SjJD2qZ2nT9cvDH+Hda40fp5PP/1Uy5YuDWU5SZaE7ao5+d3PwUlJmnHbbfp20KC817f67jvtYfi7lK8TnW5b+y1Zoo0Mf/84c6a+svjcG0+cqH0NfxdbP3n7+KhRWr5ggaM2OdF24UIdZvj764kT9aPH76vj9OnqbfHaZ59+ql1WrFC2E7Bly5bp44RtF8b1PGP6dE1y0D7je0Z99JFWzprVZJrWS5fq8ILn6urq1Ornx3PnztWPn3+uXhbLCGL/MbZz7uzZ+tJmnrutWKFsPWR62TJPy//dz1mXVQ88oNcOO6zI1OZ+vXSpNv358arqar1X0I5f/PCDdjb8Pebzz7Vo7dom8yncN99/912t3WSTosvfdMwY/drwd9jHsV1mztR2Pz+uSKc9Lc/J8cq4LUyZPFk/+Phcv5w2TTsY/n77zTdVv956tu85aOVKdfj58eLFi/VZAOv1oOrq3DyNSvnc48eaNWscTec5QDly5Egde+yxWr16tSTlAo4TJ07UxIkT9cQTT+j9999Xly5d9Mknn+jkk0/W7Nmzc9Ntvvnmuvjii3XmmWeqbdu2XpthKpVKqUePHvrnP/8pSdpzzz31zTff6MEHH7QMUA4ZMkSDBw/O/V1dXa1u3brpsMMOU4cOZptWaaurq9PIkSPVp08ftWxp9btiiSlIs+/Xr19MDWm+ymW7qvrvf3OPW7dqxbZkourn46skbbDhhqGuo3LZrpA8Sd22unfvrp1D2qcqP/kk7+8ojm/7/vrXSu+7b/EJy0RSt6vmZNutttLWBdt2RUEArRTP7W63rapbbsn7e8tu3bSFxeeuaNUq728366fXvvsqvffejqcvasaMvD933XVX7eL1+/ryS8uXfrPPPqp8/vnc3xuGdT2zdq0qH3tM6e23V9pjYEzKdFm2lcv27b/fftKuuzZ9Ye7cJk8Zt6nNN99cXQuykI2CXk+bd+2qLjbzrPzkE+nNNzOPGxp8L9/r+6seekgaP16StF6bNk3mU/nFF3l/9+zRQ+k+fZrOp2DfPOjAAyUHXdJVFPR7GfZxrNI4uJjL5Xk9F+64/fbawcfnqhw1Ku/vw/r0kYqMRdLi//4v97jzRhsFsl6N8zQqxXNPELIVysV4ClAuWrRIAwYM0KpVq3LPtW/fXi1atNCKFSskSd9//73OOeccnX/++erbt69qa2uVTqe1zTbb6LLLLtOgQYNCu2jr2rWrflnQd9POO++sF154wfI9rVu3VuvWrZs837Jly7K+uCznz1eun6sUlPx2VdlYdFEhtiVThq45KisqVBnBOir57QqJlbRtq6qqSlVhtacyf3zEKD53i6oqKUHrNypJ267KnmHU4ap0uuk+VHCdX8rfjddtq6qiwvrY4uPY0KKyMth9vGBAI1/zt+l7tEVlZf71TGVlONcz11wjZX/YnTpV2m4728mt2H5/Flq2aGG+7swGjTKUeFdWVamy0no83aD3n0rJft136pT3p9/le36/Yb1VNDQ0nU/BOnO67bZ0ep4s2J5btmgRbj+RhcvzsN7cHq+8bOf5Myhos5N1a/jeim6LTll8L6V87vHD6ef2NIr3ww8/rKVLl6qiokLHHXecpk6dqpUrV2rZsmWaN2+ezj33XEnSyy+/rD/+8Y+qqanReuutp3vvvVdTpkzRGWecEeoX06tXL02ZMiXvue+//15bbbVVaMtEAtARLQAAycP5GVEw3pSaDV7BKN7NcxRvN4Pk2FmzRnroIenTT923wVB1otdfd/9+P7yO4m0I+Eei2LKSUtFY7DhT+DmsRqQOapCcsEc0by6D5JTjAFklytOZ+u2335Yk/frXv9Zzzz2X91qXLl10zz33aOXKlXr88cc1Z84cbbDBBho1apS6d+/uv8UOXHjhhdp33331z3/+U8cff7zGjBmjhx56SA899FAky0dMuAFCUIwnKbYrAOUkjotwjqOIQlVV4826WVCgOY7i7eZGPUmjeLsZfdztvJy+Vujaa6VsWe6CBdKmm9pPbyXqY3C5jOJd0AWBb+m0t+/CbYDS6SjeTrdFswBlmBl5cVwzWAV1nUrKKN7wxFMG5XfffaeKigqdffbZltOc93MntBUVFTrvvPMiC05K0t57762XXnpJw4YN0y677KLrr79ed911l04++eTI2oAYBP3rLQAA5SaOC3VuDhAFMiibIoPS/r2plPN5G/sMfOcd7+1JcoDSKOoMymLtCXsbc6rYccbpcrwGKAvfF3YGZRyCzqB0O7+gtnuufTzxdKZetmyZJGn77be3nGaHHRrHTtp///29LMaXI488UkceeWTky0WMOAgAAJA8nJ8RBQKUTbkJ9JVrgNJNibfT4KFN34xF+QlQelkPTgNkZs8lqcQ76G0slfL2PSYxgzJMzSWDkhLvxPB0dK2rq5Mkrb/++pbTrGcYyr1Lly5eFgO4QwYlgDjMmyf96lfSIYdINTVxtwblIMybQjIoUa6KBQ4o8XYXoHzySWn2bG/L8SvI+YURlPUTzPAT3JwxQ9p9d+nII50HcfxkUEZ5b+U2g9Lv9ZbXbcz4Q4dZcNDpPue1G4PC6X6Oy4SmHPqgJEZQUnwcIZ2rICKNKHADBCAOf/ub9OWX0nvvSbffHndrmrd0Wjr1VGm33aRJk+JuDbI4PyMKxQKUzfF+xM2NeuG0p54q/eY3zpZTLhmUTsUVoHz5ZemrrzID7TzxhLP3lEsflIX79M8VnZ6FVeLtdB2WSgZlHOIYJCcMXPt4EkmAEogEBwEEhUFyimO9NPrss8bHEyfG1w5I776byfr5+mupX7+4WwMgSsUCB+WWRbN2rXT44dIBB0hLlphP47fEe+5cZ+f7MMpvjZLQB6WRnwBlUIHyqVOdTeemxNso6X1Q+g1Qet1mjeukOZR4R6Hw2tlviXcht9sx9zix8tUZy2mnnab27dv7nq6iokLvvvuun6YA5XfhiWCNHZs5iTvNBgCcMo4sSYl3vGbNanz844/xtSPJKPFGuXKb2VTqbrpJeuutzOMLLzTPqAuiD8pUqnh5fKlmUJZCibdVoNDpfLyWeNu9Nwxu+6Bcuzbc5Tl5XxwZlFGXeIe9Dfz4o7THHvnPxVHiHUaGfbmdcyLiK0A5btw429ezpd1206XTaUrAEQwOAu6MHCldeqk0aJB03nlxtyZcX30l9eyZefzJJ9K++8bbHpSX1q0bHxOgjBfngWQqx+/lttukYcMy3Tr07h13ayA1vwDlF180Pv7kE/Np/JR4ZzU0FA9Qht0HZZgl3l7uQ5OQQem0T1U/Jd5J7oPSb2AurAxKu+ntnk9qBmXYx8277276XByD5PiZXsq0+Z13pO7dpS22cP9+5Hgu8U6n04H8AwLD9uTOYYdJ48dL559f/utu8ODGx2edFV87ygk/LDUyBihra+NrB5BU5XaOWbtWuuSSTN+zBx0Ud2uQ1dxKvI2szslBZFA6CRYkOYMyjEFyohzF22r6sAOUfku8J0zIJAg4bZfbAKXfwFwQGZROBslxWuLttD3lFqA0m3/cGZRePvPdd2e63NhzT5IVfPKUQZkq5xM8ShfbpXdef0EuFcYR95xcaJfzugjDZ59lbtjbto27JfEwlngToEQQyi2gV26fh5uPZGpuGZROEKAsnkFZqn1Q+i3xdvK5va73L7+UfvWrzOOvvpJ23bX4vN2WeEcZoJw/XzrtNKlbt/x2mM2DEm//8y/FQXIuuijz/+LF0kcfSX36hL/MMsUgOSgfzfHCMyjlvu6MAUq3FzTlvm6CcvLJcbcgPvRBCdjjOIooEKBsyk0QxE2AMuwAQJSD5Bg5DR7GNYq3URgZlE7fW8yZZzY+PvdcZ/OOOoPSTRDszDMz/b0+8kimaw87YQcoyy2D0kyYJd5//7vUt680c2b+NEEmp5Do4gsBSpSPUrrwrKuTPv44OcGMUlp3Xhgv4sphtLskeumluFsQH/qgRCkplUFyXn1VOvjgzP+AE825xNuKm0CiXR+UxaYNO4PSj6QNkhNUibdVoNPpdx5mibeT9xUuv9h3Ubgd+s0cdPPZXnut8XGxdnot8faaQVlqAcqJE6UFC+ynCavE+8MPpVtvld5+WzrhBH/L8NIOOEKAEuWjlC48//xnaf/9pQED4m5JRrkfQP1kUALFUOIN2PNyjjn6aOn99zP/J025nDNvukk66ihp6tS4WxKM5pZB6aVEN6gS76gDlGGWeHuRhAxKvwHKYuXJFRXBfK9BZRDGmUHpRtQZlGGXeAdp+PDMiN077CAtX555zmz9+M2gLJRdxrffNj43Zkzx6b0ig9IXT31QXnfddUG3Q1dddVXg80QzU0oXnk8+mfk/KVlnpbTuvPDTB2W5rxv4R4AyOdhfk6ncvpdy+DzffisNGZJ5PGOG9M038bYnCM0tQGlkvG5Zs0b6/ntp991Lt8Q7ykFykt4HpdtBcvxkUBYuN8wAbin1QRnGcprjIDnHHJP5f9Uq6d//li691Hy6uAfJCUo5n3NC5ClAec0116gi4C+RACV84yAAK5R4B4/9rREl3ghamPsX+65/YWXevPiiNHRoJnD4m9+Es4ysKVMaH0+aFO6yotKcA5RZ6bTUs2fmO739dnd9Obop8XZbnutWkH1QusmgdHp/G+Uo3m7b4HTdhdkHpZN5RJ1BGdXAKV4DxM2lxDvLLvOzFAfJMSKD0hdPAUpJSgf4RQcd7EQzVUol3klT7hftlHgjTAQoAXvldo4J63rj2GMz/7/6avjrLOgSuiRw2wdlQ4PzgUZKxZQpjQHniy6Sdtop//XmWOLt5TMXk4QS7zAyKINa714yKN0GKN2WNhdux1GVeAfdB2XUJd5hnYuynyOMEu+wj08IlacA5fvvvx90OwD/yu0GKErlvu7clngDblDijaCV2w+35XaOKYebnaScC+vqpFmzpO239z8vtxmUdXXlF6Aslj0XVIl3kBmOZqLqg7IcB8lx+t0UW6d+SrydiLrEu3A7jjuDMqgAZalmUIaxX2b5PX4E1QdluV37RMRTgPLAAw8Muh2Af+VwwxCXcj2AzpkjXXWV9Nhjjc+RQYmgEaBE0MrtmMznKS7qa5gkBCjTaemAA6TPP5fuvFO64AJ/8/MSoGzTxt8yk6YwaMUgOcVLvKPugzIpg+Q4yaAsp0Fy/GRQugnWhh2gLJcS7ygzKJ18BsYfSAxG8Ub54GDiXbmuu5NOyg9OSgQoETxKvAF75XaOCSOYGHXAMAnnwrlzM8FJSbrwQmfveeUV6bTTpMmTm77mtsS7lEa/NWO2XxUGztzcqLvpg7KUApRugrJOA49RZrm7HSQnqD4owx4kx64PxvnzpbPOkh5+uPG5wu0wKRmUbgOrVsv3OkhOqZd4u33NibgHySm3KpiIEaBE+Si3G6Aoleu6GzWq6XNuR/EGijFmUJbrvlQqWP/FxbGOyu17CSNAGXXAMAkZlG7bUFsr/e53mYGEevdu+rqXDMpykb1uKRagzG67w4dLZ54pTZvW9LVCcZR4B7mPuRkkJ4pjVVDL8NsHpZN2xDFITkODdMQR0kMPZbbR7IBecfZBaXdfUNgOSrydCTNAWajcrkHKHAFKlA9KvL1rTgduJydy0vzhBgFtwF65HUcJUAbD7bFz7drGxz/91PT15hygzHKSQblqlXTMMZnstCOPbHytXEu8wxgkJ6z2uBF0ibdZubuXjFvJ2yA52eX/5jfSxImNz0+YkPnfb2DOT1Ddriw/2+7sMclvgHLo0ExG+eLFzt5XqgHK7HyTOEhOUH1QwhMClCgf5XYDFCXWnbXmvG7GjpXOPbfx4hDm+HEEsFdux9FyCFAmocTbrWI3fQQonQUojYGP776znjbLSQZlkgOUYWRqhdUeM1GVeBcGKCsq3GWfulX4/i++kI49NnPtaSbOQXLsjj2plDRggLTpptIttzgPjplNN3lypguLu+6S/vpX6+XZzSdoYc0/+32Yzd/JPjJ9unTeedLbbzd9zW8flEEpt2ufiBCgRPngIOAd6w5mevaU7r9f2nPPuFuSbOw/CFqY2xQl3v6VQ4AyqhFtg+Q3QFlufVCacVLi7bZPQifB3qC3n6gyKAtfcxqk8HMMiDqg5CZAWWxeTl9zMp3Z8y+91PS57HcS9yA5VlIp6dlnM48vvdR7BmU6LX32WePfzz/v7H1h/0geR4m3kwzKI46Q7r1X6tu36QCVcXTdYFTsOFIK59sYEaBE+SCLyTsOlHCLbaYR6wKwV277SDkGKPfbL3k3cYWKtY8MSmcZlGEEKMmgdC6odeUn8GjyvOne6CZAme0+wCmn69AqQOm3D8qgjnfF5uumxNtJm8olg9Jv1wvff9/4uHC7S0qJt5vgPHIIUKJ8sLN7x7oDvOPHESBYST8nhdG+uEu8P/20cUTtpCp2rG1uAcrCctzC58z+TqWstzWr9Ws2fdgl3kEGYYoFKL3MO8oMSqtAvpvMPDNOSrydBihTKWnffaWNN5beesv6PXbLdzu92XaZTkuPPirddlvTrLqwMiiLZfu5KfH2EqAs9QxKryXeRoV9hJJBWdIIUKJ8sLN7x7oDvCuX/WfaNOnKK6Ptc/S55zJ9Nq1ZE90ym7tSKPFOetC/HDMoJWn16mjb4JbfDMrmUOJd7MY8nW4auLGaNosSb3fzLCao44fVfILsg9Lpunv33cwPHOvWSYcf7m2QnGIKt0OzY+bIkdLpp0uXXJIp/7V7v5vl2w2S4zWD0izQ6KRNUQffgpy/cbuwC1DGMUhOlAPblMt9Q0haxN0AIDBJv6EBUJ7K5ULjoIOk2bOlG26I5jNNmCCdcELm8YoV0j/+Ef4yURoByiSMMG2nHAKUSRgkx+0NIRmUxfkJULop8WaQHG/v8/LeMDIo6+qke+7JX4zZvJwOklNdbT2dk/fbcVPi/eSTjY9vukm66KLGv8MaJKfwWOqnxNuJUs6grKxs/B789kFpVGwduP0Mfj9zsfeXy31DSMigRPlgZ/eOdZcvyl/Rsurr+R5KVeH3loQbfy9mz452ecbO8P/5z2DmyT5UXCkEKJP+g2M5BCiTEAQO+qYxiABlqR6/s4plz6VS1oHZJPdBGda8vAZCkzBIjp8A5YMPNh392Gw6N+vO7XR+zwtJGSSnWIDSaYl3YQarlVIPUGbZtTvoEdqdfAbjd+z3MwcdMG1mCFCifLCze8e6yxd1gPLbb6Vu3aS997bObEByFV6IrFsXTztKTdT7WUODNHSo9MwzyT/mhdk+PzczUWUbEaAMn5OgU9iC3i78lni/+KK04YbSaae5a1eEKkaP1nYvvywtX24+gZMMSqtzlNMS74kTM11zGJVLH5R+g25+2xPEfJysu2uuafqcWYDMa4AyjBJvvwHKsAaXiXqQnLj7V/TDGKDMfn9WGb5uOPlhppggr0mzyw8qON/MUOKNaKXT4d2UJv2GJsk4UFqLYt0ce6y0YEHm34MPSuedF/4yEZzCbYQgszN2fTrV1UlPPZXpcP/II4NZ3rBhjYGHjTaS+vQJZr6lxusx7eWXpUGDMserRx4Jd5lJyO6zUw4BSqsBJqIUdIDSOD8vGZTHHpv5f+jQTHnoppu6a1/YqqvVYv/9tYukVF1d0/4CpeLBi48/lnr3Np+/kwzKVEraY4+m0yS5D0o3Jd5RBCiTUOJtMs8mzxTL6Isqg9KqxDvKDEq765UgS7zjzKBMp6UXXsj8gHHSSY2fOawMyocekg491Hy6oIPPUZ/byKD0hQxKROfJJ6VOnaT/+79w5s/O7h3rzloU6+a77xofz58f/vKCEEcZfFKFXepWruwu+B95RPrTn6SjjpK++CKY5V17bePjgr63mhWvx7T+/TNZW48+mvkxJcxlJn0fKocAZRKCwEGXeLsNUNqtgyT+0PTVV7mHlU89ZT6NnywxJwFKqwHNktwHZdJKvIMMKDmZv9l0ZuffwoBksYCZ3wxKv6N4u82yi6oPykJhZ1AGtT299570hz9Ip5ySGcDQanl+FG53xx9vPp3b8+HixdJ990nffJP5O+7rcgKUvhCgRHROPTVzcxNUX2OF2Nm9Y90lRykH/prrdhRW2VC5s9vWBw9ufPzww42PGxqkZ59t2neWW835OzJur16PN2vXupu+3DIow9h+mmOA0m+AopDbAKXd/Izl4knhJGjqJ7DnpMTbartJcoAyrgzKoMo7rY7Tbvo2LGQVoCz82+kgOV7EnUEZVoDS6XEmqAzKoM5Hd9zR+Piqq4Kfv+Rsu5PcB59PO03629+kXXc179M/+7fTa56gtm1KvD0hQInykfSMiyTjQJkcdlllSWK2zTTX7SjuX2pLlZfg2NNPSyeeKPXtK40fH/7yylEQ+6nbdUkGZXGUePufvliA0k1pZHMMUDrJoLTaTpNc4l0sC9D4elAByvPOk7bYwvzHtCRkUJZSiXdW4T6dlEFyguqD0mv2blDbUwtDz3/GdRt2gNKM2+/WWGmzdKn1uvWb9esUGZS+lMidMOBAqe7scbTb7qS4YkWm/6WZM6NsEbJKOYiS9KBCWMoxQBnFcclLMP7ccxsf33tv09eTfB5YskR67DFp3rzi04b5OQhQ+lcOAcokZFAGvV0EmUGZRE4ClGGXeLsdAdyrKAfJ8bIcu3nOn585P82bl/kxrVBQx3c/GZRmx/CoS7xLKYPSTtR9UIZ1HCvlAGXhMtyso9WrM93QTZnifZmFyKD0hQAlykepXWhmJS1A+Ze/ZFLl99qrdNdpKSvlAGU5nHBvvFHadltp+HDn7yn1m14zUXyXXrZ14w1GEjOc7Bx3XKZfzYMOircdQZR4h32cSkLwzE65BiijPoYnucQ7icdxLxmUTj5H9j1OApRWbSjlEm/j8czp57Brz4oV3ttjJqJBcpROq6IwmzRJGZRB90EZ1SA5pVLiHUWA0my7+/e/mz7n9rs1sisjN1v+3/+e6YZuyRLvyyyU/Y6cfvfIQ4AS8QhjxyzVnT2Odtud3J55JvP/smXu+xmDfwQo45NOS5dfLs2YIR1zjPP3lWMflIWfYdasTKfpQR4T4gxQxvEdffBB5v/vvy8+bZjHATIo/SvXAGXUwizxNvuO3JRGJnEbLAwOGj+v01G8zWS3PatpnWRQhl3i7VZNjfT889LUqdGXeEdV3umnxNtpH5RJyKDMSmoflMUCn0FnUFLiXZxVkNjsszzwQPH3e10+GZSeEKBEPAhQNkpagNJuuuYiziBhqfRBaabUtxev+2I5ZlAaP0NDQyaj+oQTMr80B8VuP3MyKIDbAKVxnkk/X4TZviC2z6ADS4W83kjOmiW99FL4IzCXQ4Ay6uWZCbPE28nrpR6gNOPlB7Ns0DFJJd5+MyhvuCEzIvGuu1qPPC41DQoFUeJdbF0Eta4CLvE27YMyiEFypk2TXn656bYTdYm3nx+T3QySUyyj0qo9zaHE2+l1m5/zk9l6DPuaxawNdvNJ+jVozEr4ThglLYwdM4kXk07EcZByevNXquvUrzgDGUnJoPTyuUv9hOs1o6jcA5Rz5mQ6HZek++4LbhlegvHGdpVyMD9OQeynYV/se8kQqa2V9thD+v3vM8GJMJVDgDIJJd5JDlAm8XwW1iA52fmWW4BSktatk8aMsV+Ose1BZFAWu5ZIQgalVR+UhfMJosR76VKpf//8UaKz83cj6AzKoAbJKWxH4T7iJ5BspnB+M2ZIb7zh/xwSVIDyhhsy5+JRo5q+5vQep1iJt5usaOP0Ud1jZZdHibcnXN0jHmRQNoojmOF0mUkoAWtukhJ08bJdluo+mOV1Xwyr3CZOXm7Y3PJb4u2kRM3t8mbPlkaOjP/YF+a+FMS83W7jUWRQTpggLV+eeXz99e6W51YY308SApRRC3o7KvZ6uZV4m/ES9MgGA5yUeFu1Ieh9IspBcuwyKL/9Vtp3X+nCC523p1jb3X6WMPqgDLvE28xll/l7f9B9UAa1zRbO12mmqNcS78JpHn5Y6tfP/w/IQQQoly2TrrxSmjhROuCApq8HVeJtd/4yW4/FMhoLkUEZq4TcCaPZCePCr1R2dr8XKkFweuE3alTprNdykZQApZfvPYk3dG4ElUFZDvtMFN+l0wCl1c2jWamQn4vPtWulPfeUDjvMvE+iKEVV4u01myDsAGXS+3UNo31JKPEmg9L5suJQU2P/+g8/NA0KNNcSb6fvLRag/O1vpc8+k+66q+n7rBTL1AtqkByr+XjMoDQt8Q4yQClJPXtm+rN28/5sWwvXa5QZlG4GyQk7QGnV7sIgultOA5R2bVy1yn4ZTu9xigWf7V4PosTbLzIofUnInTCaneZc4p2EGy+nbejf391oxqXCzbbSXEu8yaB0rhxLvO1u2JYtk957z38Glt9gvNsAZbF96623GkdxPO887+0KQpjbUClkUHo5T0Z5/AkjazoJGZRJD1D6zaAs9QClXQZlRUVmcLd16/KfJ0BZvJTf7nw3c6b1+5wuL6zMPT8ZlGbnQ7PjmtduEKzOt2PHZvqzLvZ+M0kdJCeoEu9i67vY/PwKIkBZrI9Jp9d9DQ32y7H77u0yKAu/xwULnLXHLTIofSFAiXg05xLvuH/Vkdzd/P3+9+G2JQ5JGBzASlIyKL1kqiTxhs6NUghQXn+9dOih0uTJ4S1Dsi/x7tVLOuQQ6Zpr/C0jjACln3Xv5b033phZF9984325ZqLKoIxqHn5LvJ0sjwBlspdnxm8fdIXKPUBZLDNr0qSm7wk6QBlViXeUGZRB90FZuB6zP3xZve5VwCXevjIovXw/Tt+TXV+l2gdl4ef8+utMv5FBlXgHxRigtPtu7ZZf7LrOzXWf3Y/gdhmUZu3LPlf42r77Om+PG1bLK3wdphJyJ4xmhwCl9d9RCOvX3FLhtt+aKNldBI0dK/XpI/373+G3I8yLzaTymhEYVR+UU6ZIV10lvfuudPjhzt5TWyuddpo0YEDx0hsju8+QDY76HYjES4m3kdmFbpQByunTpcsvz2ST9unjfblBtMUN4/ospxLvqI4/c+dmbjCNSjFAGXUflPX10hlnSMcf39hXaNgl3sUCkqU2SE6xEm8zTj5HbW2m/12rH1qizKBMp6XPP5dWrGj6vJ952r3mJdDmpsS7Z0/n7XEj4BJv0/3HaYAyzKobqwDl1KnSkUdm+jx0Iq4MSuNyRo2SdttN2mEHafVqb+2JIoPSyM0PO8XOK24ClHb3al4zKAvNmGH+vN991GqbDWr+Zc5iSwRCRol3o6RnUJajJAco7U7e2Yvcd96R/vhHqX378NpBibdzUf3oYCw1+/FHZ++55x5p6NDM4803l267zdn7ojiehlEi7if7xe1nnj278XHQZUJh7ktBzLuhQRo3TtppJ2m99fzPz2z+Rk7aHMU2+9NP0nbbNQ0UBRHsS0KAMszt7uGHpUceyTzu1El68MHwS7xTqfxM61LPoHQySE4hJ+t49mzp6KOt5x9lgPKmmzI//ATJrm21tZlAV1YYGZRz5jhvj5kwBskJehTvwuOJkx+/nK6H7HIKp1+8WHr99cy/fv2k3/zG3fKCOt4VGyTHuNzjjzd/T3a6OM91VgFKN8sv1jY3P4ranRPd9kFpVeIdFjIofSGDEvEI4+BaKjt7EjIom3uAstiNYJz9QDpd9po14bbDyzaRxBs6N4IaJGfatHD6tfHynbz7buPj1193/j4vJW9u2W0vTvYDtyXexeYZ1E1jEKIq8fb6GW66Sdp7b2mffcLJbkxqBuVNN5lnsZViBmXUy/vww8bHL7+c+T/IEu///ld67bX85wq/qzIKUKb9ZqAb3XqrffDTSYAyqP3PKjgZVgZl4Y92QQQoi11LuP0spTBIjpfrJ78ZlEbfflt8PkkYJMduP0tSibfd8vxs+24yKO3OUXavmW23xfqEDBoZlL4QoEQ8mnOJdxKCg0loQ5zcZFBGvW6cnrzDDqKSQelc4ec++mhpq60ypaBx8/qdRPFdhpFB6SeoENRNYxCiKvH2+j2//37m/2+/zWSxuFmmE0ntgzLM7LGoA4ZmnyXqY3hQGZT19ZmqgkKFAUo3Jd5Ov9NJk6S1a51N65chuFGRTksjRxZ/TxAZWU76oAw7oOtn23TTtjBKvP20x46fDEonFQjptPNuEAqnc3J+DDJA6WReYZV4F8ugdPM5k5hBGWSJd7FBdIzs7tXcZlC6vd70ey486aRMN0BkUHpCgBLxaM4l3m4O9GGhD8q4W2DNadAjzODIunXS2We7f1+pb0dB9UEpZW7i/u///LWnkN/1a5eFccklTZ8LarlW/AYo3Y7iXYzb9pRqBmUQ8zYGKZystygyKKPgNpPJjSQEKMPkpKS0GKv1bPVZ3GRQerk2u+8+aZddMtnEUVzLFRvF24yTdrVrZ/96HKN4F0pagNJuumL7clDHM6v5xNEHZRQZlH6vGZIySI6VYus7q5QDlH5KvJctk/70p0yfo2GXeAexj/bvTwalRwQoEY/mnEFJiXf8klzinYRRvG++OVMu51ap/EhgJagMyqx167y3JUpDhzYtc4u7D8owSryNzL4zSrydM94cJCVAGed5rBQDlFEvL4h9zu124SZA6eWH27/9LfP/pElNB04Kg5c+KJ3sn23bOp9H2CXeVsIq8fY6rZ8AZVDnV6fBD68ZlG76oAwzgzI7nd/1FtcgOU7bnUr5P5+ecIL00UfOllfIKrvRzX1rsc/qp8T7ooukxx7LDNA4fLh9G+Iu8ZYy5wSr5Z1wQmaAxawlSzJ9XEMSAUrEJYoMyqQG3ZLQziS0IU5kUNp77jlv7yv17SjoAGUS1oeTNrzxRtPn4u6D0gk/fVCafabmWOLtVbEMSr8/xHm5kYxifyv3DMqojlkVFVJ1tfsbMqubTqv17yZAWbj+3X6nXoKHboUVoGzd2vk8SjGD0s173QSTrASdQel2kJzm2AelE0kYxdtOKuXsM9pN89xz0oEHOlueU0FmUPoZxfuxxxofG4N7hczWt58+5u1KtZ2838yoUdIhh2Qez54tdeuWGcjSSV+qzQABSsQjikFykhAcMJOEdpZ6pptfbm4Eo/5+kpBB6TXwktR9zqkgS7yl4NdHWOu3WLAuqSXefkbxNhPlcbFYO6PKoHTq/vvz/zbeOJgdT/2e58igDP/zOPnewrJ4ceaG7Oij3b3Pqg9Jq/VfmMVu1wel3wBlECO5FxPWKN7FfrQt9T4o3Xw3SSzxjmsU77ADlG6DwUEHKJNW4h1EBqUfTq9lowpQev3RLsgS79NOk7bbLpO96bUtxVxxRaYf4/p66dRTvS2nzCTgThjNUhQl3kkNliShnW5+RYyz3DksSQ7QRtk/ip82BFGulzRBZ1AmgbFtbrK/jM+F9b06vaGxWr9uB8lJ0ijexbaZqDIonXyGMWOkc8/Nf8544xBEBmV9vbRwofU8kzJITpQZlGEfT82CUlEdw+vqMhmUbhV+x9ntxOpY4iaD0mtZZlYUGbBmI8hHMV+nJd5vvSWdcUY4WUB+9u8wBkYs9RJvJwHKYhl9SSrxzk5jN89yKfEO6zjtJ+CdFWSJt9dqN7sApVuPP575/847vb3fyTZmHGRt/nxvyykzBCgRD0q8GyUhg9KuDUnI6AtaFJkOXjld33EHKM0kdZ9zyk8JiJvnkybpAUorpdwHZbFlhbntuJ33u+/av+43QJlKSXvtJW22mfTii43POX2/m2nCUooZlFEHKIP4PG4zKKMs8Y7iusIukOjneFRsFHLjurEKGjQ0SIcfLj3yiHTAAd7b4lV9vbRokfVrTrktO/ayvKD2bUq83bHLoC4mqFG8i63POAOUYWRQFr43igxKs+02266orxOcfFfGPoDXrAmvLSWkDCMPKAlkUFr/HQU3N3/NMYMyzs9cKhmUZtOQQens+bi4KROLIkAZRVcfRnFmULo97kdV4u3kM6xaZf+63xLv997LdCafSknHHpt5Lql9UFoJIjgVdQZlnCXeVoYOtX/db4AyzBLvKDIowxp4rdh8nZR4G4MyS5b4b1OhYseQLbbI/MjxyitNX1+8OJjlOJ2uFDIonXSR4iZA6eUzhRGgdBNIDCqD0k2A0k45lngX7gt+RvF2yi6DMur7FCfflTFAWezHomaCACXiQYDS+u8oNPcAZRj9EQUlqABlKiWtXOm/PW4kdZ9zKug+KIMW5UWp8bmwlus3qBN0NwNhfo9uMwKTlMlWLEDp93s0C46QQVl+GZROnHaaNGGC9etuS7wLty27G+3CoJrb9R93ibefa7UgSrzDHnzQ7vs47LBMFxH19dKrrzZ9febMYJZTOF11tfk+E3cflE6On0GP4h1FBqXfc00SSrzt5lOspN5sfkEKo8S7cF3EXeIdxA8QbqZ3G6AMqxuPEkOAEvEI4+CahNJpJ/yUGASFPiiDmce990rXXVf8F681a5wvM4gAZV2dtNtu0qabSh984Gx+Xtrgpk2Fli2TrrpKeuEFb8sKQ7lnUFox+9x+MyOc8HuzUazdQcwvqOndnp+SVOK9enXx14sF19yeY7ycJ6PY3+iDMnzvv2/9Wlgl3qefLu26q/2yiomixDsJGZRJDFAa2+c3UOz0ODJyZOYa61e/klasyH8t6AzKiAbJMS3xdtoHZZgByux0fo9PVn0b19cXv44PapCcYsG9oEq8gxy0yE8GZWHGtVnXPFbs9qNi6zHqAKXVOnFb4g1JBCgRFzIorf+OAn1Q2r/u5DsZPVo67zzp6qulP/zBeroxY6QuXaRddnE2AmcQfVA+84w0aVLmgqtfP2fzM/IaoHRz8Xj++dL110vHHSdNn+5teUGXQpRjgNJJG8w+9/ffS5deKo0da79e/HwHdvuhk22wWOannSCyL0s1QOn2cxbLoOzVS9pmm8yPDlluznNmx7xSK/EuxQxKs5u/JAQoi2UYmf1dbJCcdeukW25pWkKeff+jjxZfVjF+AmN1dc4CfGFl15R6gNLI7zbsdDlvv51ZbxMmSBtsID33XONrUfVB6TQo4jBAGWiJd5CD5Dgpz3UyL7PzyurV0o47Sl27ZroaseImQOn1Pi/IEm8n9xtO5+vm8xQrd4+ixPvmmzM/IJi1K+7+O81eb9cu+PaUuDKMPKAkEKC0/jsKzb3Eu9gJymx9TJ+eyfjLlp8ZR1p7/XVpxgzzeR1xRKbUevJk85ugQkFkUC5Y0PjYSwApigzKJ59sfPzpp+6Xde+9UocOTUcX9iPoEu+g920v8/Ma2DnnnMwNfc+e9uulQwfpr3913y7Jf9a72yBj0H1Qupne7ajUpVTiLUlz5mR+rLFaht8MSq+B9qiUYgal2X6dhAClHasSb6t2ZwNvt9yS+cHFGES3e1+x18x4vZlesEDaemtpq63yz91BLqOYoPugNJNO+wuwOj1uhdF1iBMnnND4OKo+KAPOoPQVoAwyY89qujAyKO++O3N9v2JF5gdzK24ClIXc/HAaVAallwCl3wzKJ55oOtq1l3Zk2R1T7LbL//2v6XNuMyjd8ppBmUqRQWmCACXiEcYBolRLvJMeoCSDMuPggzMZf3vumfm7cB1a3VgsXWr+2M2yzYSV1SY5u3A143Vbrq6Wbr1VeuMN5+8577zMReH993tbppmgMyiTxk156qxZjY+//956nvX10oMPemtP4U2x1X7ptJ8tu2mdCKqkx8m05ZRBmTVnTuNjvwFKLxmUUQTXoizxDvu44mT09Th4yaAsVuJtDJ7bzc/pa2a8Bg8vvFCaNy/zo+f553tfhp8fk8PIoDRuS3V1mVLorl2lceOavvenn6R//EP67DPrNiQtg9JO0BmUbqs0girxdtMHZZgZlG5KvO3Kqc3OK8YBlOyudfwEKLPt+Oqrpj+SGAWZQeklo9np9mT2Pbz7rjRwoDR8uH073Gz7duvVbeAzrhLvYhoapDZtvL23jLWIuwEoI/X1UguHm1QUGZRJVWoZlOUYoPSSQWkM2JjNI6jvMYiTZ1gByqAz0LIuu6xxQJ8ZMzLZJHHwkgFQXx9dibff+XkNrnz+efF5O9k+jJ56Snr44fzn3JxDssss5OfmtLmUeBvnHcQo3lnGm4mgMyjD6nMrKHFnULrdd8yW53aZbgWxTVvdKBcr8baSSgWXAe91+zNeWxQbzCWsbbxYMMNJgLIwYLBuXWNm0OOPS+PHZx4fdVR+BYok/fGPTUsyCzn9oSquDEqjqAKUfkq8gx7FO4pBcsLIoGzZ0tl73YziXSj7OXff3X46u+NR4XTFBJFB2dBg3mek2fdW2H2GVTuCClC67Y83rhLvYurry7NS0acyjDwgFv/+t9Sxo3T55c6mD+MAkYTAnxNJaGdzHyQniFG83ZZs+l2em+n8dqQfdQalcbTx997zNo8guP0OX3pJ6tQp88uxmSQeg8xuOIq100mA0u26O+WUps8ZL0bLrQ9KtxmBSQoUFRskJ8trgNLsRjmpJd5Jy6BMpaRDDslkpjnZT42SWuLtJoOy2E2nnwCl23XhtQ9G4+ct9p0nOUBZ+PyaNY2PFy5sfGxWbVIsOOm0bVJpZFC6baPfDMr77296Xeg0QOm2DNsNtwFKu+0/O41xfyo8lpgdY53+sOMnQOlmHcZZ4l34fWTn4SSD0uq7tBvRvBi745Lb+5zsdx91iXcxDQ3JOO8mDAFKBOMvf8lcjNx4o7PpKfFulPQMynIMUHrJoCw2j6RmUHopHXDaN1GhIE6ycZ6o3d78/f73+cHVpFuxIjNS7XbbZUoKs4qtc7uyp6wg+kZzOw+zbdDpsSzqAGWSMiiNbUlCBmVQg+Q0xz4oR4zI/KizeLF00EHulpfUAKUdq8xaq2O3k9Jlq/dGFaA0KoUApdM+KI0ByiDabbVuCveb5pRB6TSz8ttvMwOHGJmVeJsForxmUEZd4l3sez/rrEw3AoXzDSKDMqjvO8gS7yAyKLP7tJMApdN2BJVB6bZS7P/+T3rkkWQGKJMar4gRAUrEI4oS76Tu8Elop5sDaTkGKIMYxdvLDXQYF2xmjCduL50vR51BaVTqQQajsPftf/xD+vFH52348cfM6O4zZkinn974fLHP7SRwGMQNqNVy3JS3JanE25it6rZkOUkZlEko8Ta+f+7czCBZhdu+3TY4caL0r39lgvR+WB3Dw9j+nXxPxv7TvJa8GSU9QGl1o5ykDMp0Wnr22UyGfVDXBVl2x2I/55swSryN1yFRBihnzJDuucf7csL4scHvMtxuo2br6ppr8v82C1CaHXdLpcTbbp0vWiQ99JD5fIPIoAwqQJlOl0YGpYtjTYWfvpWDzKCUpDPOcFdl46atXo9x9fXJP+/GgAAl4tGcMyj9/BIVFPqgtH/duD6cBkeSVOLtN4PS7fLcTBPFPLwq9h02NGRuPN95x9n8gv4shfO74grzUmknPvnEer6FnAQow8ygdHNzZvcdRjmK98qV0t57S7vskilvdPuDxn33uRs0yo04ApR23GZQ9u2bGSTrwAPzp7H6PtaulfbYQzr77Mz7whBXBqWfHxDN9rcwj79O5x11iXdQGZTZm/kXXpBOPDGTYW836EtWUCXefr67YjfXfku8g9g/nJaQTphQfLAhL8txI2kZlGa8BCife856+V7K1t2Wj3vNoDRui4VtiCKDslgmqnG6oAKUXjK6/WRQhlHiHWQflFluguJu9tMgS7yTGr+IUBlGHlASmnMGZdgHoro6adgwafRo62nog9L+9XIq8Y4ygzKuEu+g1n2x7eLJJzM3nn36ZEZjjKpddj76yNv7qqsbHzsJzBYTRIaM1QW1m9G9/ew/brc9u8987bXSF19kSuvOO8/b8aJfP3ftccptibfT9WJcH0FnUBr/njQp83/hgCJW38e0aY2Pn3jCuh1+lFqA0m1G1htvSK++Gv91ldWNchIGyckevy68sPG5224r/r6gApRh/tjtt8Q7zABlED+OFS7nzTf9be9R9UHpZ9t1EqAsDNJss430pz+ZL6dw23RynR1VBqXd+osqgzLIAGVYJd5OMyjjKPEufF/YAUq3GZRBlngXO281A4zijXgEeSGVSknHHCO98kr+83FfSFsJM5A6bZp03HGZX5AlafZsaYstmk5HH5T2r5d6ibfxxF1qJd5e5pFKmY806GU+dv7618bH//pX8fkl4RgURGA57hLvqDIo3X4Gu2V9803j46++StYv5E4yxI0qK52ds5PaB6XXc9jHH2dKqI8+unglQRgByqDLg43cZA1++GFjsPyddzKD8njhtK1uMiiLBS6K3cQGWeKdvRFfvrzxuQ03LP4+NwFKu2NxVAFKpxmUcZV4+zV/vnTEEZnHI0Z4m0fcGZROj+sFTDMoC3/QstpeC98bVNDOuByvGZR26ymqPiid7J92x6PC6YoJsw9KP2XaXt9bOB+vAUo3Jd5m5xurawGvx1+zEu/Vq4OrfitRZFAiHkHenL3wQtPgZNDLCFJYAcr6+swAGNngpJQpRzXT3Eu8/WZQmp24Jk+WdttN+sMf/F00uv1F2Uxz64MyqgxK40VoEAFRt8I6pkXR55afeViVcQaRBelk+VbslmV8rbLSW8AtLEFl7xQKsn+8wjbutJN05pnu3pPl5Rw2aZK0//6ZHz//97/G58McxdvLaMSF7Rk82Nuy7JY5ZIj5Y7fCOD8Uy6B89tniWYdu1kU2u+7jj5u+lg0IGLtE2GAD62VnGbdPP9nsSQtQlmoGpdGll3p7X9yjeHtd38VKvO0ClIXbZpABSr8l3qUSoEynm36OqVPNpysmqRmUXku8CwOSXn/0cLPN2VVymE3vhVkG5erV3uZVRsow8oDYRRXIyLIaJCKpAcqwMmnmz3c+qhkBSn/vN7uIOPdc6euvpeefz3SO72fefqejxDucZRu/cycByqCPQUGvm0WLik/jVNAZlMZtMDtvJyWwhZ9l8WKpV69MWb5xvzD7zE4/w3nnZfqWtOtGwzh/swzEMIMJxRTecBbjtK1eMyidBJobGqSHH5bGjbOej9X35yXL8M47Gx+fcUbx6ePKoCw8P995pzRrlvtlZZl9DuONYRRZHXbfV+E6KdYH5cqV0tNPW8/vvvusz9dm8xwxIpNdt//+Tbv5MAvcBZlBWSzIQYAyOYLOoHSb5evxeq1oiXfcAUq7c7SX7OKgSryLXTs4Ld02m2633ZqW/EaVQZlti58ApZ8MSuN3GlTZs58S7zB+IDLrg5IAJSXeCIGTcssgb9xbtQp/GUEKs8TbqebeB6XfEu9iNwozZpg/T4l3xmWX+Z+HUVA3Zm62CycXtUkIUNr53e+kTz8NJ/vLi2JBEycBysLnLrgg8xn9LN/o668zI0hLjX0hmiksiyvlEm8vGZR+A5RW29P8+dbzCTKD0rh84/uTnkEpZUqMt9rK3bKyzL4Lvz94BcltibckXX21/TytAtBm8zzrrMbH11+f/5pZQMBJBqXTAGWx7SGqAKXVcuxG8Q6zbV4GA3HK63G6FDIonQQoC4M0lZXBlXgXBj/t+C3xtjveOa2G8ROgdFPiXTivtWul776Tdt89f7piFi3KJEwceqiz41C2nUZWAUqz783qu6ytzb9P91ri7bWku5CfEu8wApT19daZq81YGaZGIXZRZ1BapecnNUCZhBtVN20oxwCl3xJvp/3EeBF0BqVVAN9OmBmUM2ZIN9/sbx6FoirxNiqVDEo72RFmS6XE20mGWeFnMSvFtOLk+58zx9m8Cku8k3DczzK2xcmPMU55DVA6CTQ7mY/V9+clQFn4/bmZ3iuzHw5/+kk66KDMiNB1dZkbl1dflebNs56Pk3O2m7Jmvz94ueWlD0q7fdesH24nih1fCrcLs0CZk/OE0wBl0Fl5bjgJUJJB2agU+qA0mcZXH5SF+2CxwLHToJ3kv8Tb7sdPp99FVH1Qmn2OwmONkzYPHJjpcuqEE4pPa1y+kVWA0s21clCjeAcVoHRzjxVVibebQGgzQYASwfP4y51nXgIwcUpCBqXVzbJZW8qxxNtNppzVL4VhnUCCCFAabwy8bF9OApRufkE1ypYVW0lSBqVdW+Log9JPOZeX+boRZgalnxJvrwE2K06zdQoDGUnqg9JNBmUUAUo3GZRebhDc/si2bl0mCJhl3NfDzKA0277/9jfpgw8yZcj33y/dcENm0J59981Mb3Z+DjpAafzBy0+JdxDbvNsSbyk/88iNYseXwnVvlvXiNgvWSwDe6bKc9rVXbN5W7bALUFplJLtRVye99Za0YEH+82EGKIPMoNxss8bHr7/edHtpaJBOPlk6+OCmmeJuMyW9ZlCaHbedlni7zaD0UuJt97myy3NzPnETJPUToHSa1GA1XeGy3Zxv3n7b+bRWpdxxlnj/8IM0apTzLsyKcbPNRZFBadYHZRJ/dIlYGUYeEDsnO2lzzqD0c6B3y+nNlF2AsrlnUFoF4rx8b3GUeHsJHDFITvG2RBGg/OqrTF9nV12V+dtPOZedpGdQWpV4p9OZPgmnTGk6rXEaM2bPO/kMTj9nkjMo3QQo3Wwbxv3H7Eb36aelffaRhg8vvgynwXi7DB6r9xTzt79Jy5Y1/u0koBJEgN4siD1yZOPfEyY0lhXPmiV9/735sTrMAGUpZlC2bu2tHcW2S7MMSi+ZMFEFKPff3/sP+sZ5+y3x9nrufOYZ6fDDM8cQ43G4VAKUxu1w4cKmXQ88/njmGPn++9I55zhrh58MSifH3cIMwyD7oHSTvegmg9LNud3Ntbzf7Gan98Zm+7mfAKUbTjMonfw4/LMKPwHKOXMy/X0fcIA0bJjz99lxc4/lJnPUT4k3GZRNEKBE8KIOUJZaH5Rh3ai6CSRaZfOUS4By+PDMwBhW3GRQWr0/yRmUYfT9FFSJd7HtKc4AZdAZlH7b1adPpkT5+uszQTirdeN19ORsNlQQ6y+KDMrCC93335f23lv65S8b+311mrnnJsvCyGkGZWGmVZIClG5KvL2WY5l9DyefLI0ZkxkZu/C1Qk4DaE5KT90eUx55JP/vqPqgNMugLAwOGNXWej8/J3mQHDtWN8p269/rvuY2QFlbK61YUXwehaIKULZq5bw/Xrtl+y3x9vvj3o8/St9+2/h3ErONzNpUuO/cdFP+31980fj4tdfyX3NbPeHxeq3C7N4grAClmwzK7HROMiiN09TUSCeemOmH0YzTzEZjG+yWbfder4PkSE2P82FdPzjNoCxs41tvZX5AMFNbq3YLFkjjx+fP04mHH2784aNwf/HKzfdNiXdsCFAieAQo7fkpQQyK1c2y2XdXiiXexxxjfyHutw9KrxmUTgRxsWTMZAgr09NMEFmWYZd4//hj5kLJSVDEbr5RDJLz00+Nj3/80VuA0o7dDxNuWe1TH38s9e4tXXttJvvlT3+y7kvIahRvqwzK7A1dKtWYjeJnv/Rb4m11s2ZW4h1m5nwxVhmU6bQ0eLD029829rUZVIm3HT8ZlE4CJ363bycBlTC6SSh2A19XF3wGpdnyjOcTP2XCTrnJoMx+jjAyW4ptl2YB4yVL3C87qD4oiy2rokLadNPi7Sk2b6cBSqv3BH1NWSqD5LjJ5HUakAq6xNvs3qDwx7aklnibdfewcqX07LP5GfGFbSi2rsaPz5wP/f544PQ7cdIHZdwZlIVtPPxwy1lWPPmk+vzlL2q5zz7Su+/Gf2/uJihOiXdsGMUbwXOS+u33ALV2babcqWfP0i/xTkKA0u75UsygLCaIDMqwLhCCyKA0osS70aJF0i9+kflV/bXXMoEYu2X7LfEOct82KwMxvualDU4u+p2yasP++2f+//DDxueqq93Nw6oPSrP3+slUdLKv2LVhyRKpc+em7SiVDMq33pLuvDPzeODAzM1EkBmUVsxec3qOMn5nXvqtdCKuQXKKZVCGEaAs9jmiuHHyUuIdVwZlRUXj/Ovq8rMGpWhLvIt9zsLsNzeMn9vpNYXVe4IIUBo/axJv5p1kUBZye4z08ryRkwBl4bVu0IPkuAlQFpversTbbr52x47XXpOOOirz3W28sfV0YQ+SYzZdGKwCkW5KnQtUfvll4x8nnSR16OCxcQFxu80ZUeIdmRJMjULime38VmnjXvXtm+kk/u9/t77YSWqAMgk3qm4yKMvxQOn3Mzkt1/A6byec7kNe9jWzfaqwXWY3OkFcNHnZH5y+58knM8FJSTryyKavJ63E28isDCTL6w1akAFKN/vDCy+YP+8nQGmVDermBs4qg9PI7qZrxx0bs82SXOJtlfXy1VeNj997r+m0xQQ5irfTDL8wSrwLRRWgLDZKvdMApRNOApTptDRxYv7rZgPBRMlLibfX76bYtWxlZf55oLbW3Y9cWVGVePsJUDrZz+zaE2YGZSn2QVmM020i6AxKs+O20xJvtxmUZgEgK04CfFY/UvqZ71FHZf5ft06aPdt6Oic/Hjj9TpxUFPi9frjjjsxnM/bfbbYcqzZ7vf8Js/rMKTdVam4Ch17XiVkGZTned7tEgBLBiyKDctSozP933BFeWVdYwsqg/O4759NaneyclL2WAzIo7YWZQRlGH5RO37PeevavJ22QHCOvGZR24gpQWil2s+WkvNrPZ3GS5WPXhqVLG0fMLMw6KdVRvJOWQWnXz1lQg+QUimoU72IZlIWs+qB00hYnfVD+5z/SHnvkvx5mOW2WmwzKceMyPzrZHX/CzKA0dvWR9EFyqqqCyaD0G6AM4twZVQalm+tqI6cZlNkfTKWm3/0ll2QyzpYutV6OnwxKk2mKlngH3Qelm22p2LRmJd7FBBUwC2oUb6vkBy8/fJiZPl361a+kiy7KZIf269d0+UYBZFDmadUq/ntzP0HxMH4IM0s+SGJWeMQIUCJ4YQco/WTIJEHQAcqhQzMXyX36OH+P1c2yk1/uykEQfVAGFfhzu2y303n5/sIMUAYZEHGzXEnaZBN3y7ZrSxR9UBp5zaAsVvo4YEBmNGC/grigKhaUcpJB6SfTwDh/swDl/Pn2WRRS475TGMhIUgal2xs4p6LIoCx8PooMyqT0QVl4XK6pMd9Ozdpy552ZwSJmzTJfltl7Tz+96et+MiiD2OYL53HxxdJhh4Vz41jseqiiItoMSr99UBb2H+hGkAHKwm3Wb9VEEm/mnWZQWvWNWFMj3XZbZuTiwhG9jazWndcMSrPtN6wMSrcl3mFkUJrN18u1fdiD5AT1A+cxx0jGkuvp05su3+zvoAKUrVvHf2/uJ0AZVok3GZRNEKBE8MJOT3c6r7gPglaCXBcrVkinneb+YGbVBjc3iqUs7AxKP/12hhGgXL1a+utfM10iuL1hcrO8IG7SjctZskSaNy+a5UruLgKjClpkec2gLLb/Wo286FaYGZR+Sry9ZgAW7gNTp0pbbll8JMnsdlGYMRRUBkQQrIKHfrtt8JrF5iaDsnAbiLoPyqhH8TYqXPbatcW/s6lTpd12ywx+9OyzmSCl5D3bNIoMSrfB7I8+sg+cer3GOvNM6bLLrANtFRX5P1QlvcS7stJ7ebWT/czuPXYBSr8Bxii2SbecZlDaZUdmPfus9Wt+KsicBCgLg4h2g+S4zaAsliFeOG1UGZRefoQJuw/KoK4fjN24mHGaQTl5srflt2oVf9KLmx9Y3AQOg8ygLMf7bpcIUCJ4UWdQ+jlBx8HPDXQhJxc3Zpp7gNJNBqXZdlTsYiPI7dvtdGYn1Ouukx58ULr1Vunxx4vP20mA0mq9+JWdx4IFmYDQlltmRlF08p5iCr/3wtGk3VwEOglQBrnv2AUow+gXx62gA5RmmRleMijdnB/sSrzPOcfZjXQ2YFEYyIi6xHvuXGnVKvPX/GY3WomixNsuQFnuGZSFCo9fZm056ijp668b//78c/Nlmb3XTBTBIC/ZkGHcOErSzTdLTz/d+HdhsKawxNtvJoyfAGWxY4rTDMpBg5o+5zeD0u7Y6iVAWY4ZlH4zSZ08b+Q0maTwXBbHIDlOAnxeApRmgU9j2b1TQZV4hx2gdLJ8I6sA5YUXSvfc437+xgzKoPuidSqJJd6FbUriMS1iBCgRPCeBCz8H11LPoAy6xNuO02wPq+wjKZkBytpaac4c7+93k0FpdfMcVIm314xap9t9KiU99VTj32+8UXzecWZQZudx5ZWZEVEbGtTilFPs3+M1QFm4Dbnpg9JJiXeQFxlmFzFOlhPV/ht0ibdZxo6TUnY/v0Qb518YlFq50tk8zAKUUZd4f/hhJrC/9dbm7XbTFq/tdHPOd/PDmJcSb7/r2kkGZRD7mVkGpV2J99q1xYMMVn3oOemD0kwUg+R4+fHPyY8XXmX7lS2cV2Vl/t9BZFDaCSKD0smyzM5tfgOUhRnlRn7PHUm8mfdb4u1U2CXeZt1MOC3xLrbfuQlQ3n23dMgh9tMENUiOl2NckIPkhFniXYzVedtseeef737+xj4onVxDh8FPgPK996Q//lH67LOm03u9/2EUb1MEKBG85pZBuWJF5p9TQd6oBjWCp10GZdzp+IUaGjIla1tuKT33nPd52HFyYWW3Xqy+FyeZQmEEKP2UnBdbnttpismuD2Ngpbra2XuKKfze5861n4/d53GyTqPKoExCgDLoDEqzx05KiP38GGacv9d9JgkBysMPzyxvyRLp/vubvh5WBqXdPN2Wf1sttzArx8kgOX7PYUGN4p1KuRsJtnC9FG6T69Z5/1ExjgxKN+Wcbl9zMoCWV8bvvzCbzPi32SA5bgOUdm312wel01G8zQIHXkq8rY7nQZd4l0qA0qzE2xig9HKc8nP/4yRAafYjidMMSifLd7Nvjh5t/3qSMyidBihff12aNKnp834zKL0ee60yKL0ylnjHFaB08wNL4ec++2zpv/+V9t3X+3wLMYq3KQKUCJ7TsoGg5h9npuT06dJmm0lbbCH9+KOz90SZQWnFah26yWSJy1tvSVOmZNp8wgne5uEmg9Lq/UGtF6+/jDr95dzL/MMcJMfpPOwyh7wut1gJkpuLQCfLDHLfcTpIzrhx0hlnSJ9+Gnwb7MSdQRlEiXexQXKcaNmy6XIrK73v514ueo2lv2vXFp9nti1e93szbi643Zx34i7x9tMH5e9/b9+PqdtRvJ1kUFopFqA0ljUbxZ1B6eVHmiAD1HY/PJhlUDo5/lrNv1BUfVCGnUFJiXcjY4DSS2AsyRmUxTgN2jmVXeduzllBZVAGNUiOFTfVPVbL9zKdXQalF8YS7+y1UtSC7FbAyE+AsvC9STymRYwAJfxzkrESZFDOzw1o0M46K1OGumqVdNFFzt4T5LoIYkRGYxtKIUDpJlvVit/P5PXCKsgSb6c3414yKJNQ4l2sPUZeA5TFgih+A5RBXmQ4zaDce2/pkUekXr2Cb4OdMDMowwhQFiuj8hqgzG6rhaWgXjMg/K5Xs88RRwal2xJcp4GoqAfJsVJsGamU9PLLmcdDhphPU/jZzIIDRj/9lLn+cNsWyX6QnLlzpZNPNn897j4orbbVMDMojQFqu/3a7EYzyAzKcinxLtyfvGxTxnVRyoPkGCtFrPqUtZNOZwbCOucc664I7N5bwDRAWfjdGbehzz7LDMA4fry3/laDvE8LapAcL4FiJ/umn/OQ0/uEHXc0f95L1rPxfVbLM/sB1E6pl3jb8fr9UuJtigAl/HNyQRZmibfTUtcwLFjQ+Hj5cmfvCTID1Ot7rdrg5kYxLl4uHgoFkUEZ1HoJOoOy2A8GSc+gDLLMqVCxAKSbdRV1BmVzK/E2y4zzUuLtJmhll0Hp9oeDwnJxr8d9v8c7J/tytm1+R/G2W0acGZRBlvh6zVhyEkQpdnwq/H7uuEM69VT3bZHs+6C0G6G18HPU1EirVxdfnhulmkFZLgFKs0GhnOxndu0JepAc47yTmG1k9l2ZZVAa9ycvAcpUSjrsMOmBB6S+fRvnF1QGZWEWd2EG5aWXZgZg3Guv0gxQml3LxzmKtxWnx5VLL3X2fitW522rAVnnz3c236zWrRvbkvQSb7fbp58MSkq8myBACf+8BCijOFBHEaA0npScHmzdBGvTafv+94p9xksuMS89d3PTnrQDpZeLuEJB9EEZdYm30+3G7Jc4pzdAWXEGKGtqMr/Kui3TcSLIDEo/QQAvnJZ4m70vCkGWeBdeGIaRQRl2gLIwkFFs27PLiPBTVmuW/Rd0IN7J+4Lqg7JwG4i6D0o325ORkxFtzb4XL+vfTwZlsfcat8WFCzPd22y+eaa7m6B4yaC0Ozb4zbCzCuoV/vBgdox2cvwNqg/KYttKUBmUTs8pVkHNIAbJMc47SQHKdFq67z7phx+avmaWQek3QJlOSzNmNJ2Hx4oX1yXeReZXdPlB3qcFNUhOnH1QWinc56wSYtq3d/Z+K2bXT9dc07S/9iy3AUpjBmXSS7zdJqL4CVAWvjdJx7SYEKCEf04CLEFmDTqdV9QByjfflL75pvh73AQoDz9c2mgj6ZlnzF8vdtJpaJCOPrrp82brcNWq0ghQlnIGpdmF3UcfOVu20+3e7AKjlEq8774706+r8QK/WPvDyqD0cqNstzw/mlMGpdVNvt0yGhoy5a5+ApTG+Xs9f9x9t3T77fk3nlVVxfdfq+XNm2d9/HeiFEq8zb4zq+UWBmuj7oMyrAxKs23bLHvJCb+D5Ngtx/g5LrlEWrw40+3Kuec6a5sTXn4Yslu/fvvNtCrxLww6lEIGpZPuCswCB8Z5O92fjD+uF/5gY1ROAcpXX5X+9jfz18LKoHTzfJFpfAUoyyWDMowApdd7BuP7s55/PnPcNWMVoLRbtnEbNPth8dprrd87f767z5WEEm83GZRu7gG8fr/19WRQmiBACf+8ZFAGWdaclAxKKVPmUIzTC9hp0zJ9ytTXSwMGOJuXmYkTmz5XeDH/739LG2xgXi7mdDlRCSJA6SaD0mw7CiqDMpVqGkAOI4PSyfuM4syglDK/Dk+Y4Hz6oDIo3dxc+slS8qI5Byizf9t9zhEjpI03lj780Fm7imVQej3mPfecdPHF0pw5jc85KfG224ZXrfLWFsldgDKIQXKs+qxy0wdlQ4P19+YlQBlkiXdYGZRmn9csOOCE3wxKu+UY1/+sWY2P3WbS2ElagNKs5FlqGpAMO4PSb+WH01G8gyrxfuUV6aSTmr4n6BLvJPVB+dRT1q+FlUFp9rfXH5TNromMz9ll4bo9ZyYhQGkWhKqvd/9dONk3gxok5w9/sJ6udevi+28hYz/Gbn9gmT/f3ecylnhbHVfD5rS9xQKUhcetIDMoCVASoEQAog5QOt2R4whQOrlQcrouwspYW7NGuvzy/OdeeimzHt9/P7jlhKXYhUMQ681JiXcQ68TsxslvBqXZBWYYGZRuyjL9CmuQHD/BXCfLjLvE+8Ybpdmzg2uDnSA+q9UNhpMMSilzbCscNMRrBmWQ27KTQXLstic/pVB+B+Zyux6y50A3GQFm37eXDEqnwWi3nymKPijN9h+vGZROPp/V/ppOO8+gNP5YaJYdZjZvJ7xkrocZoGxoyGRGP/540+eTlEFZTNSD5EjSsGGZgWCC7oMyqRmUdt9fGBmUVsfZIEu8je0KMoPSb1ZhIS8l3jU1Tdt9yCGZKp6vvnK/bCt+7xmcvreyUmrb1t37jQPduM3kW7PGfYAyuwyvAxH65SZAabcfFZ5X/AQo3fyg20zElF+LshJ3BqXVxWccAUonnKyLujpnF/xeLlifeML9exoa4kvHL1Qsg9LJSeI//5G22046/XTzX/HCKvEuZHZTFXaJt9f9IqgMSi/LL7wg9lpaEWQGZRwl3laBKqvjUOEPEWEKMoOycF5O+qD0uiwjuwxKP+cTP31QSv6OvW5+bAhikJy6ukymUJIyKM0CoG5ujoznCKtlFNv+yyWD0k+A0ikvGZR225ffAOXjj5uPlh51gNLv8S/qPiizCrP/C6+5/I7i7Wa9bLmldP75mfX8+OPS11+7X7Ydu+87jAxKs2NbXZ33Eu/C7/bHH/P7sa+qst6G3H6PYWVQupnnddeZP79smXTBBe6XbSXIEm872QBlYdWF1wzKYgOg1da62/+qquyvN6Lgpj9Ou/VeU5NZ1488kjlmdunirT2M4m0qIREHlDQnF2R+Mxjs3htngNLLQaTYje/xx0tvvCHdfLP7eTlh/LXMqXHjpF693L8vDEEEKJcskf7yF6lDB/Py+ahKvM1O7GGUeBsDW6VQ4u12OVbfUSqVfzPkNoPSb4l30BmUViUxSfi1NchBcqzOF0FetBXLoAxyWzbLnnATZPcToIx6kJyaGmn99Zs+7yaD0u7GoPB872WQnMJjYjFRZFAG2QdlVCXecQQorda/3fHHb7cwZsFJyfyHlCBLvNPpTMnw1KmZvtus+pdzymkflEFmUEpNj39xjuJdWSkNHpx5PGyY++UWE3cG5RNPSFdc4ew636StTTIoC9kFKK32E7vlB3me9ZJBacfYhYVffjMonV77+M2gLJxu2TL75dXWursuM66HpAcoi31nNTWZbizOOivz98CB3ttDBmUTBCjhn5ObnTBLvMspg3LKFOl//8s8Puec4vPycsO++ebu37PffpnPGlefIUbGmw2zi2036+SWW6z797QTZgal0ywgq+miKvE242SdBLFfFjuerFsn7btvZpTZ997LjIQsuc+g9Bu4CTqD0ipQlYSLmaAyKBctku6913zepZpBaXa8iCqD0k0flEF025Bdh8UuuI2lxGFnULotWysURR+UViXeZm0ptqyoBslxE6B0sx15+WEozBJvK4XLNNvP/WRQvvqqdb/gXjjNoCx2XeX2mFC4XuIs8TYuO4zr2bgDlBdd5Py9Jt/j9sOH27+nRQvrbahYtl2hoAOUq1ZJ998vjR4dzPy22kqaPj2YeQVZ4l1RYb3eKiuldu2aPu80g7Jwvk4ClG72P+OPbnGVeDttb7Hts6ZGuuOOxr8LuwBxij4oTdEHJfyjxNsdu3XhdjAELyc8rze7QQxOEwTjRZzZBZ+bdWKVkVBs2/GaQVl4YRdVibeT9xmFmUEZRIl3sc/4wAPS+PGZEZCznfRL0WdQJmGQnKg0NEjffJPpq81qhMliUqnMDfn11zd9PruMoLgNUPphFnBzc0700wel0wDlCy+Y39y63V+tApR2n79wXdtt60H0Qel2f4lrFG+zEm8nASY/2d1eMyi//jrzw8KKFU3f8/nn0iabSMWCH8Y2uH0tzBJvK4XfqdcSbyPj9228+Q2CkwClVYacnwzKwv056AClm9Ji42dLWoDSyzV2wGXDLYtlXtplULoNUKZS+d/9AQe4e3+hH36Qzj3X3zyMvCRzWAmyxHvjja2ns8ugtNo2/WRQmvXhacd4TktKBqXV+iwWVK6ttf8unLrvPmnUqPznCFASoEQAnNzUx5FBGQW/pSmStxIuq3k5UeoHvmJZG1EEKMPMoAw6QNnQ4L4PyjADlEGst2LHE+MIyl9+2fjYLIvLrm3Gv70cw4IMHNr1K5WEAGVtbaYbiAsukAYN8jaPVEp6882mz0eVQRlWibffDEo/N9JO+pVMpaTjjjN/v9v91ekgOXbdaGy8sfVouIU38V77oHQjrlG8zUq8nbTdz48nxbZ7q4DKrFnSeedJF17Y9D0nn5zpVsUpLyXecWRQmgXLvWxrVueZoK/VgghQesl6q69PziA5YQco7bZds+tV4zYURAalG16uxYIMUKbT+e/xet0QFrM+Q73y2y2U8b1eApTZvknNRJ1BmbQS7+7dpaFDm05X7D6vpkbq3Nl/e2bNkr7/Pv+5JFzTx4wAJfxz8otxkOVyScqg9HLC8RqsNZvOy/K9niSDzCjyw3hTZHYBEVUGZdQBSqfbjdn+WG4l3sWOJ1ZZwn5KvIsFN50sz4+kByhXrpSqqzOPX3/d2zysPp/TUbz9LivKEm838/fzud2UeJsJKoOycBv1mpFl1wellwDlt99KDz/cuO2aiWsU72LHJyt+ApTFbspSqcb3mmV8PfZY0+fclkkGnUEZVvVHUBmUVgHKoK+5KiqKl1VaBTGz37nXH8Xtvp8o+6CMM4PSLBP+pZcyfYym04nIoCzKrsTb7fe40075A9F06OC+PWFy26emnSBLvO36oq2oMA9QvvSS9fZll0G5dKl9u9wGKI0/cCSlxLuiQurUqel0Tkq8gwhQmin1RKIANIsA5U033aSKigpd4GZELjjnpcQ7yJNqUAHKdDozQM1222XKQ52wOjAvXy716CH96ldND/B268sukGRWehFlBmVSApRRl3hb9cuW1BJvP/0qZpV6ibfTAKWbEm+z/saK8Rs4NH6O2tpkByiDHCTH6vmgBx0qZAxSRV3ibbe8OAOUYWVQ2mUn23FT4m3Vt+aqVZl+lXfaKZM9ceaZmew/K8bjT9QZlMWmMfPSS9Lbb7tfXnaZTkckd5KZGHTQpRxLvI3TLFkibbGF9NFHwf/I7jSD0m5gLS/Hxfr6/O9nzBjp4osb/45yFO+kBSgl6eCDvWVPFlteMV6+S6f9mHphNrhanNxmhNrxW3XlpCsTyTqD8oILrH849ptB6eb6xFgVEFcG5Tvv5P9t1XVKsaCy1YCAQSBAWf4ByrFjx+rf//63dtttt7ibUr68BCijKPF2u4x33skMUDN9utS3r7e2ZF16qfTFF5ny0iuvtG+X03aanSzLKUC5Zk2mrK8w1b1QHCXeZn/bLcfqxFs4nzhKvJ1IWol3YXuKfT9BZVDaZWlEkUFp/BxJz6AsPA57OcbHmUG5Zo39hbofb74pzZ2b/5yb84Cfz+2kxDvIAKWXDMqgApRWn6vw+X/+U/rkk8ygdFl2Hdw7aWux9VQsSBZkBuV//5u5hvn8c3fLkzLr4dNP7eefPW85CT5++23xaQqVSol34TLNyji9lOTPnSv961/BX3MFUeIdRIBSkm6/vbHsv5xKvL0EKGfPtt9XvS6vGLffZXbbCCuwtN564czXqyADlEFmUBq39w02yJ/OKkApSX//u/nzxuuewjY66YOy1Eq8CzNjrTLLnfRBGdZ9cRKu6WNW1qN4r1q1SieffLIefvhh3XDDDbbT1tTUqMZwsVX9cyZFXV2d6rz8updw2c9k+tnq6lTx6qtK77hjJrugmJoaGU+79XV1ShfOt7a2+DROFcyrYe1amV1m1NXWuvpltmLmzMYdYtEiR9+72eVGXV2dWowereyhN/XNN2owzKuiri5vx8tbF/X1pvOUpLrly5ucjCpqahztxMbPUlFb62nHd7I+bberIiovu0xV996rdKtWql+yxHJU0Kp163K/rKRbt1Z94bIKtkc7DW3bKmXS1qpUqnEZkuoL5llXU6OqujrLX3ga6utz883bVhsa8pZXsXZtk++icJocp/tQQVvTP59Ac9tjKpW3PZqpSqebfLbC779FOq3Cy4v62tqi+3Xh9u9E+ueL8Nx2ZfJ9GNtWWVGRd0zIvq+ytjbv+cL2VtbV5b/P+JnXrMn/LgumNdXQkJmHxwuxFlVVjd9bTY3SFstsqKkx3d6i1FBTk7/uFi2SNtzQVXus1mm6oUH1dXWqLFiGH+lUSvWG83v9woX5bU2l8o5jxmOCJ1ddlfdnk/23YP/Om3bdOlfny7ztNJ1ucjwp3HfrLJZdV1dn2y4zdWvXZvaZgvelCo6XdbNnq+LTT5U+4ogm+52dVE1N3nzqf94vJDU5JtfV1EgtWjQ556UmTDD9Luvq6qR0usnnTTU05I6ZlfX15vtgXV3eei48FxYe65ucI9eta7Lc+sJ225xzzKSuvdbycxYeC/MU/qha+P41a6Q2bayvVYznuO++c328N54/C1ltK6na2rzPmq6oUMXP5410bW2Tc1UQCpcpSfUF33Oqvr74+ba+vsl80u+8o/TWWweaRZI9Ftjtz+nKSqVSqabrOJXKnMtMttOiy33lFVV9/XWT5+vmz5c6dFDFunWutxHjubuq4JhgJy3lrhmrKisDz9JJ2Zwn6mR9fm544QVP57ZUQ4Orz2DcN82u4eykq6oy52Gz7SMAdTbHlDikVq8ObPtIpVJKebz3kiSdcorqdt5Z2m03taivV4WkdPv2UmVl/rm8oUFVrVubtju9dq3p9228fiy8zkkvW2a7jaQnT1bqiSecn78bGlTx83aXrqgI5bjsViqdViqVMv1uCs/Bea+tXq0Ku/OoD4XXE+XEaXygrAOU55xzjn7729/q0EMPLRqgvPHGG3Xttdc2ef7tt99Wu3btwmpi7EaOHNnkue2GD9cuP3cYO+Kpp1RX5FetdgsXqo/h708//ljLCkZxbfvTTzrM8Pe4sWO10OMvf+3mz89b3pxp07SVyXQfjxql6tmzHc2z07ffav/LL897bsSIEUXf9zuT50aMGKGDlyxRNvF7cXW1PjPMq8vYsdrHMP3YMWP008+/BneYPl0HWSxr1JtvauWWW+Y9t9HXX2u/oq3M/yxbTpigPR28p9DIt95SncM+Ysy2q2J+d++9kjIB1I8feUTV22xjOt3+CxYo21vI8nXr9FHB99Rq+XId4XCZU+fO1Xcm33OvJUtk7FnkjREjdLTh749HjdLOCxeqi8V8J0+erGk/z9e4jUz+7rvc85K04ZQpOqDgvTOmTdMkkza1Xr5chxv+HjNmjBaZHOjbLlyYt6+l6uq0ds0aZffinxYu1Ogi23aP+fNVOH7hRx9+qFXTpuX+PrC6WhsUTDNxwgTN6djRdt6dv/5avWynaGrtz90bZLerFmvW6LeG1z8eNUrVhgy1HaZN0y8Nr2e3/+5Tp2p7m/buNmOGjFvdxx99pOqfB9xpvWxZ3vr/fsoU7eyg7SNee81zpkY/Q7Bk/o8/as3atdrBZLpvv/pK0022tyj9OHVq3rr76PnntWrzzV21Z8rkyXnfW1a6oUEjRozQLyZPdrTOnahZu1ZvGfaD0a+/rt4F04x4/fVccPnAFSuabO9+fPrpp1pm6P6jxapVedu00dcTJujHjTZyPG/jOv960iTNKtjf+xUED9995528bTtrxIgR6jBjhuU5ycxnH32kjv/5j3Z/6KG855ctXizjJ1h3yCFaf84c/bTHHprfs6d2dzj/6kWL8r6H8V98oXk/Z4z0mDcv77j1xogRSrdooa5ffKGehudXLloks6PUiBEjpFSqyTa7aOFCff7zOtx91ixtbfLeHz/5RIsvv1wLe/RQg6Fv5JFvvaUet92mzQuyEvOuL9JpHXT++U1uzseOGaPfGP6ePXOm6bWOlSVz58psOIURI0Zo26+/1q4u5mX07htvqGbDDS33beNn22L0aP3K5fxnTpumbyzOUTtPnapfmDy/YPZsbWYxvwaTHwKDsOynn1S4V349fnze9dWCefM0tsj5tueCBepa8Ny8X/xC7RcuDPSYM33mTH07YoTtMbm2oUHfTZpkuj+OeP11VdXU6EiXy62yyNz69K23tHzaNG0+bpx6uJznV+PHa/bPP9jv9eOP6ubwfatWr9Z7P38f+yxZYnkN59Win37SphavffDxx3n3Lka1zzwji7w3W8uWLGmyDdox7ptHWvzYYqWhoiJzHv7hh8DOw0bvf/FF3rVr3FbOn296nvCietkyfTd6tH7tYx4Nffrorcce08ErVmh9SfXptFL19TKmcnz86afaetEimd09NaxaZXocnPTVV5rx83bRa/HivHufiiJZ8hVff23644OVObNna4tUShWSVpjcQ8RhyeLF+mHcOO1r8trnn3xieY/9xaefquP06dophDbNmjZNXzuIQZSiNQ77di3bAOUzzzyjL7/8UmPHjnU0/ZAhQzR48ODc39XV1erWrZsOO+wwdUhax71+zZypFj17qr62VhXHHaf0I4/kvdyyf//c48Nqa5Xu189+flOn5v25769/rfS+Bbv6zJl5f/b41a+Kz9fh8rptan45sF+vXtLuzm57jJ85q5/H9vXr108tWrXK/d15iy3y5lVRUG60d48eSh/xc0htwgTL+R7Qo4fSPfIv4yocjjJnXH5lYamhQ30OOSR/9LhFi1QxapTSffvmSqXr6uo0cuRI9enTRy2tylkc2O/AA6VddjF9rcU11+Qed9xkk6bf04IFjpez/bbbaluT77nq9tvz/j7i8Pzb9/323VdVb71lOd9dHntMv/zuOzUMG5b3/M4776wdjduCybFlm2220VZm2978+Xl/9vzVr5Q+3CSsUDAgQaWk9oZS9k3M1lmBqv/+t8lzB+y/v7Rz42Wp8XvI2n3XXbVbkXlXWJWf2Gj7849Eue1q+fK81/fr1Uvas/G2sHLSpLzXs5+38t13bdtb+dpr1vM1jgwu6Rc7mIUKm+rXt69kOB640aJt21w5SteNNlJ6661Np/vlL36hnbweTwOy1Wb54YEDd95Z6f2K/3yS3nhjVSxaJEna0WKdVqRS6tevnyq/+MJ/Q3/WumVL9evXL3fM+vX22zeZpt8RR+RKf1qY/IDpx7777KN0L0Oo3qaUatfu3bWLx+93l913V/eC97YoCJgfcvDBpu896vnnVfHss66Wt+/ee6uFSUBio8mT8/5e/+f9aZMJE7SRi9FbOxYcP/bcZRft8fPnqyoYifOIvn2l1q1VUdB/cweL/bFfv36mpVUbb7RR7hhS9fLLpu/d5s03tc2bb6rhjDOUuv/+3HZ1+OLFam1SMp13TTB8uFr8+GOTafb+VX5or9vmhT8b2dvIon+sfv36qdJY3u7SIQccIHWzDgnlfTYX5+OsrbfaSltabO+Vn3xi+nyXwsEKKipy5a9hZLhI0oYmP97vtlP+7WqXjTcufr4tCOZLUtdNNmmy3fq17fbba+sibWnVtq12segSq9/hhwc6cEiv3XZTundvVRQrIzWx2y67aNfsPvnUU47ft9766zfuy48+6nq5xWxs80NS70MPtXytrZtR7g023HBDV9Pn3Qu4XFZVq1aZY8dXX7l8pzMHHX10pj/ghOhg1VWQBx07dFCPvfbyNY82y5Zl7i9/vu9r0bZt5sdvQ9/Z+x1wgCpnzJBM7k+qLLq66L7zzto5u0/cdpuvNhazxWab5TLb/7+98w6Xmlq7+Jo5M+fQe+9gQUEUBFRERQFR4arYUETE3rCgnw3vtRdU7L2LXuyKHQsCYrnYQBRFsYBYEFARKSqcku+PmDOZzE6yk+yUOWf9noeHOTMpO8lOsrOy3vdtZA1Pj4nmLVui6Y47Cn/bqX9/2/n6brNNaA7Qzh06oGPMY/qwWOtUkNBEjRQof/jhB5xxxhmYMWMG6kgKOGVlZSgThJRms9lAQksi+ecBPwug6u+/kXbYvswxxwCPPgo8+SRgdyO0POxk0unCXCuWC71wGlks60vb5GrIZjL+1wH4Pu7ZbDYv4XW6Xr38fWzdXyUluXY6HYuNGwt/l6yCpqIPZ83tBPQcV599BowbB1geDIOeN9k6dez3hekmm85kCvuvh8pwJQBKXNqZ0jS9L5nbl8m45h5Jz52L9Jln5q+vpCR/fQIXcUkqJW6T9RyyHo/cSvLbb6ninQYcz3nRMgDB+SQIW7ZtkxkflftS/6yrul9Zj4d1vZZreXVftOxvt/YWLNdEiWTYdjaVUnKtSzvkMivRNL3PqC6q4AFr+zKrV9vnAjWR2mkn4MUXAejhRcJpjHNQ4falqqryrlEZi+gN/HP8jW1QnC+poO85uGwzmua7D2VE90HLfrRe3wzSHh78q9fneQ491FKWlDVc3Xx+ibYrmy245liXUT29zTmU1rTcNdOlH5Tce2+e4JSxEQLz7o9LlwqnsQrJaY/5rtI2D6R22ylL1qU/5m2bj1xajvdlm/1v3Tcp03SpkPJ5ia7JJZb9KnW/FS0bUH49L8lm3cc76TRKbK4H2XRaaeXdzJ9/6v3Ix3bmnfceCjGl0ulc/wzh2c5p72Qln0c9rc/jvss7Nz1eT1IlJcLxlyqyCRGsDFIKc1Cm8M9zb0Cy2Wz1NTUlOA7ZsjLb3Popm+Od98wR8hjSfF1Lh5ED1gfpVAppm5eWGYf7fcZc8Ecx1WP6GoisNlAji+TMmzcPq1atwvbbb49MJoNMJoM5c+bglltuQSaTQWVtr45kvkjK3KDeeAM45xz732WK5FjcE4kskqMSc0U+66DEqUCB08NP0orkfPaZ/r+luEDn115DZocdACd7+oMP6hXOX3hB/LvTjcu8b+0qbMtity9kiqfIrOfNN/P/jqKKt0yRnHff1Ys42SFTJEe0/riqePstkuN27XKq4i27HUHuN7JFcox1hF3IygnrdXjlSrn2mAeGTo4hmerCXrAKGiIHS5j7M6oiOSKs2/WPg9WVIUPcp/GTN8nLfvZSJMeusIeToOF2T/FbNMgJ2Wu5133rtJ1B+pSXdvgpUKOiSI55nBtWwYH5893b4adIjvGd6uuPzEsWuyI5YbTpjz/0/4MWyVm+XH6+OIvkhCHsRVkkJ6SXddXLLi2Nr3CKiCQVyTFjnC+ZTOELA6ciOXaYz6Wwn5uTUMVbhJ147HT93rgxvGrbtV2nQg0VKIcMGYKFCxdiwYIF1f/69euHMWPGYMGCBShJiGofG14FSgCYPdv+Nzex4McfgREjnKfxgnVerwLlXXcBvXsDzzzjvw1umEU0qzNXZRVvPxcxFQKlQ5t733knUgsWFB5zM8ccow/u97fJhuQ0kDPvW7uBvSx208pU8ZbZj9aBwv/9H/D227m/wxAo3dr+xhvALrsA/fsDzz0ntwyZ5YraKLtsN7wKlHbrcKvi7SRgOlUhdiLIw7H5XiVTxTtOgdLal3/5Ra495repTg8ElZVqhYaqKqCiAqlZs1C2Zg1gyZsMINzBelQCpcy5vJs1E64NMmMnP8dIVRVv63668kr9WvfRR/nfOwl3bvcUr30iSKJ7awhqUgTKf86dwG1wWr7X36ztievh13qMRO3dsEEPwTReyEQlUMo4uJwEyooKwEM6BldUCZRe0haZ94H1eqYinZfT9SFqQdRtPq/zGu0P49xq0MC+mnJcrFunblkqz2fjfCkpUSNQBnkB5xXz8pMiUDpVpo9LoGQV75oZ4t2wYUNsY8lfV79+fTRv3rzg+1qJ+USUvRh5GTBa/7788sJ54nRQ/uc/wG+/AQcfDCxcaJvrMBDmQbnVQenmzrMjSQ5K2eOnaf5uQk7zqBQoZR2UomMmsx7RQGG33XLLcxMof/hBz6nZr5+8oCFql3laY52aBhxwgP63VRD2K1DK9AsVAyC3c8ju5u7VQSnab3ZtsCOIQGE+Lps2FZdAuWGD3LXG7KBcv95+uvfeAyZP9tc2EVVVwPXXI3P++RjUrBlSBxwgniYsvAiUxvGtrNRzdK1cqbvQzTmBZdcj+s4QCtyQcQBF7aA0n+vW5Vx1lf6/NW9hEIFS8iVM+tRTsdNHHyFlyc1qN72Qf1IfVJMkgVI2P2JcDsokC5SHH65Hjxx0EPD00+JpKivjESjTaft9d//9gCVPcyCMtBp+HsaNfVNerl8PZXFyUKpwODodszAESr99xM8zWJgOSiOfa1JEK0DtC0pZU4MMZgel9fgXg4PSIEliNB2UiSNBvYNEhvlElL0YBREoZcJFvRDUQWkO5fvvf/23wwnzxcXqoJR1wllJkoNSdlAkyOvmeV1mNC1/mXEJlH4dlFacBMrVq4Hu3YEddgCef95/iLfddwai8M4wBUo/535lJXrfdhtKRo3Si4m47QtZgdKLg9KvQBmkqID5Wp10B6W1eMj69XLtMV8fnRyUgwb5a5cdVVXA+ecDAOquXo3UBx+IpzFQPXCXSY1iYPTLhx4CHngAePllwJLf1pbx44H99ssvHua3nxSbg1J2GWZUOCiffBIl99yD1vPnFxTeCoRKgTKIQ6OyUj780Y+D0mkfF5uDUtQnjdQ2RhRP0hyUdtM5FAb0RRCB0tivK1Z4u344CZQqcr4VS4i3n74VtoMyrGUngShDvAX1NByJ0kFpvh4m6Vj7ESg3baJAGSI10kEp4k1rLrjajJ8Qby8DRpllBrkIeskn5Tavk2PH67IMrPvKzUFp/ttpP4sequJyUMqu97vv7IsrOWG3H9audX9YjEqg9OugNOMkUN55Z86lcsABBdXrpUO8Ae8hcwkL8U599x06f/ed/kfz5oWubL8OSplco3bLlO1ndtcYTdNDT7t3tw8tszo4kyxQWtmwQa49ZgelypxPboicB07TqBYo/YR4z52b+84uPYOV8nLdiXfSSbl5/G5LEhyU1vu9Uw5KO5zaqMJBaQ0pF2GOLgjLjR2mg1LWGRlViHcxOSitJE2gtNt3P/+stj0qBEov4d1A+A7KqEO8vfYR47qTNAelUdglSaKVSlSez0bfFwmUfooyhjnOsWI+15NyrBninUjooKyN+BEoZdwdXpYZV4i3dbAc5IZht17rMlUJlEHFuCDzWOeTPX7Llvlbv9001kIWUTkoRcKVCoFSdBMy1u3mEvQb4m1FtA+SHOIt4ya1O65u1yonAdNN3LTDTnS76SbdHbv99vb7xOrgLCaBUtZBaRYog7hNvWIVEkRCyl9/6TnXjj7an9DihJ8Qb/M0dgNqS9GyaswOV7/9ROYBPk4HpYr+r8JB6bUwjgphVURYAuX8+fJtjirEW5WD8qKL/M1n4CZQyo7jqqrUiwVBQ7w/+URte4LkoDT2mVeB0kwYAqXTeZWEHJRBCupF4aCUDftNUniwDGE5KK3HIp32LlBWVgLffw8sWRL+GJIh3nLQQUmBslYSdoi3dZmqQrwffxzYd1/g/ffzv7cbtIvWYR0sB7kY2w3+rcu0Dnqc9pdX50DSQryt+9xwvZmRGYzGLVBa8RvivXix8+9ODkqvhWHsprP7zuv0MToo80ilwgvxdnJQ+nGKA/YOyrPO0v//9lv7Bz9z+zZtcn84//FHuTZFgZ8clFE6KGUEyuuv1wW/KVOAL75Qu34/DkpznxPdVzdtkiti4fcclHnADttB6fRSQcWgXoWDUmYfmNsaVj5HuzFK0Hxoxx0H3HZbsDY48eCD9tfEsEO8g4b5uoV4y0bCxJWD0slBqZo4HJTmfWAdm4ctUIYR4v3xx96mN/qUn76VpByUYexLVYiMCV9+GU4OSlGIt9dr2JdfAt26AZtt5r0/eaUmhXhv3Bie05ECZe0J8SYm/BTJCRLirUKgrKwERo/WP1tzOsXloJQVKGXChe1+c1qu3XduRClQigQTr+4SM1aBMqoQb78OSrfk7U4CpfWGKSuQqRAok5aD0owoPMlviLfbPnVyTsluh0waCbuBmhcH5bffAj16yLUpCvw4KKMUKK2Yi28ZPPtseOsLKlCKBtSy4mCYId5+HHMTJ3qfx8CpSI4fonJQmpcpK1B6FX/t7m9VVcEfrK6/Xm46v87jXXfVU7pYCTvEO6jw4ZYKRHSsowrxltknUQqUhoMyyIt2s0DZpk1+rl0RYeegjNpB6ZWkOii9hnhns/7uNVHQqJH4PDdeSgdFtYPy8cdzn8MO8U6iQOk3xPuTT4BmzcJpE0O86aCslbg5KEUXNy8Ch1cXlabpb3CcTkirMGXGi0AZhYPSiyBp/TvJDkqZdlq/v/56YOrU/O+COChXr3afzsv2yQqUIuedijdcogdOY5usN0xZQcOrcFhsId6iZbg5KBctEn8vc5wNvvzSeV47ZARKu7e3XnJQnnGGXHuiQjYHpfl+kzSBMswQJC/3TdkQ77BfEMg8YIvSeoTJV1/lUgOE5aDcuDHnhpfp0zL3OD8OSj/uVLt1R+XQ8CsirFsn/j7sEG/VDko3gdJOiAxDoJQN8Y4q9NLYV376oijEu2NH9/mcBEqv1Y9FOG1LEgQZo33W8YwMYQqUxovKmuCgtKb1MvBbNNTMX3/lroGqHJRRYj4/ij3E+403gCefDKc9dFBSoKyVuOWgNDtaDFQ7KM3TXHopsPXWwIgR9usQVRo2kBUKRdNG4aB0+7smOShF348dm3tTDqh1UIYV4u0mXKl6eEhqiLdfgTKqEG+3tliPV8+ewKRJ/h2U110HnHii87R2qHJQVlQ4C5RR5m+UYf167yHecW6D6Hoe5gOlHwelm0Aps7+DDHxlHgqvusr/8v3w4IO6c3jjxvAclJ99Bmy1FXDttXLXr99/97aesEK87diwAbj9djXLckN17takOyjdQrytx9ruxVNVVTw5KCsqohPSjH2jykHZqZP7fE4CpQqHY9KFhaoq4MYbgX79vM8bZoi3sWxZ0SrJAqXXKtpe6N0797mkRCxQip7hk0ISHZSAP4EyTJJ+HYkACpS1ETeBUvT2xelkCeqgvPRS/f/XX7cfkDkJlHE5KO3cDF4ESevvKnIFuhFliLeBWVgUCZR33WW/LmO5S5cmJ8Q7aMLrF14Axo0T59kqZoEyihBvwP0cE/WxCy5wz0FpJ2Cec07h8qJwUHoRKJM02APooHQjqEApalsSBMo4WLZMD8cPy0FpcN55cn162jT3aeJ0UFqjGsJEdRimrIPS77mrWqB0c1Bu2mQfCRKHg3LlyuIQKC++WA/nNgTKhg2Bxo3d5wtboFR9zFRTWek/1DiIg9JtHq/iZ1LvRYCcQOm3/V99lb8MFSHeUZJEgTKVSp5AyRBvCpS1EjuBcsUKfXAVdYi3zPeqBEqVDkpZF2GYOSiTViRHRri0DuAXLQJOPtl+egA4/ng9ibMhZjutLwqBsqoq2I1r//2Bhx8G/vtf+3Vbb5jWNq1aJV62V9G22EK8ZRyUYeSgtCK7HTKiW9AQ7/Ly5Az2DNavByZPdp/OfL+J0UGZEu3bpAiUoirtRts++ww45hjg1VfDFyiTkEPNjvffD89BaUaVqy1OB+VTT6lZjgxBHJRVVYVFUJxe0phJkoPy+++BE04AHn1UXqCMK8T7l1+KQ6AE9H1q9I/27eVD2A2s1zOZvnrllc6/J11YUPGCyk//eP994O231S3biwiXSunj7aiQcTCqcDkyxFsdfnJQhgkdlBQoayWiIjnPPaff4Hv1Ej+EeMlhZ53WS64su5MyiQ5K2YGyF0elmyDy11/54WNhOijHji1cv9t6ZQRK6/4RVY2zLuf+++XXF0WId1AHpROyDsrTTgNmzy6c34+DctWq/GmSHOItWo+MgxLwXsXbqa1JclAm0bWxbh1w003u0yV5MB3mw6Zb3zPjFOK95556mPM++8hd24NsU5JdKzfdBMyfH3w5bueSqnMtTgfllluqWY4MQQTKvfYCOnTIrxguG+LtlzAclIccAtx7LzBmTGGO1qQJlF6mC4pxDvi9Jr34Yu6lVvv2hc8uJ5xQOI+Tg9LtPOzXDzj3XOdpklq4xSBIn/L7gmrwYKB/f2CXXYDzzxdPY4wDwnBQ1qmjP88cf7z8PEGQER9VjHuKXaBM0kt1OigTBwXK2oioSM4BB+g3rsWLxVXwgjgovQiUduspJgel1QWkqkjO8uX6IKxDB2DhQvfp7ZC94G61FXDSSeK2eQ3x/u47XVB76aXCC6/XnKdu0xWDg9IJWYESAIYOLfxONmTb4OGH9eqXu+ySmy7JId6plLuQ6NdB6fa70zrtkBEo7TCv38lBWVmZrMGeF5KcL8mcO1c1qnJQmu/XMn2tpjooVeF2XqtyUN58c+6zrHNYlQgnEwobBPM+CiLYvPGG/v9ppwGnnKK/kJMN8Qb8CW1hFMn54IPc3+YQTSBagVL2HlEsDkozIgfl4Yc7z+NVoKyqct83SRco43BQmqe3mzfMHJRG8aOo+rVMiLcqByVDvIOTxBBvOigpUNZK3HJQiqisBG64Abj8cncXoswyvTqBnARKL2KZSgel3QXEGtLpJeTb6eHnvvt09+Sff+r5d5za4ITsPOl0/iAgiINy//11F8S++xYWEBDdqGWPS1gOSrdlRuGgdAvxFrXLy3QG11+vzzN3rh4uareMYgrxtjuufnNQipDdDhnRSNZ5XBMFyiQPplVU3bTDi1tXFOItOt4yxVlqYg5Klbid16oEiCuuyAlwUYd4y67PL+Y+pqpIzp136k4sWQelpvm7JoZdJMd6X9+0SXzuV1bKi+GyYoes+FOMAmWjRnI5JYM4KGu7QOk3B6W539n1wTBzUBpVtVUXnbKDDkp7RGlq3GjRIpy2mLHrd3E5GSlQohaMNkkBfgTKP/8E/u//9M9lZflhDn4ESqPCq3WA4Eeg9EIUDkqrIOEljNTL8fAyvRkvAqVdXxGt95FHkH7vPfGyzA4Ra04przlP3aaLykEZd4i3HUH2ifFwJSN81sQQbzf3s9Oy7AgiUFrPOSfhtVgFyiQ7KMMUcvw4KN0G9zICZZABd21wULpdw1avVreul17SXfBRh3iLCkKppKIiJyCoruJttw/sHJReH/TCLpJjFbBUOCjr1JETxsIUKNNp72MilQKlaB+4CZRW3M4Lmfus6v6uGhUh3m77oKwsfz94cVCGKVBGhR8HZd263scbIoEylUq2QOnHQbnttsAOOwBXXx1Om5wclBdeGM463WCINx2UtRI/AqWZG27I/9tPiPdppwE9e8oLhr/+6q2NQHw5KK03GVUOSjNbbKH/H6aD0nrRdhIoP/0UOOIIlJhzRcmuP0iId5w5KJMQ4i3Ca4i3UxucvoszxDusIjnr1jn/7rQsO2SK5Mi6wO0eQotZoEzyYDpMjGP7xx968a8nn7Sf1inE2wwdlMGQccarFCiN+2vUAmXYDkrz9Ve1o8wuHF50zY/DQemWg9z6wkqFQGmEsLohI1AecIC//ebnvq5SoCwrEzsorfeXU0/NfbaeB3RQOiMrIjZokP+3ud/FIVDKnh+qkBEorf3Sj4hajCHe5uuj7LEuKZHbp0GwuzaGfa+0gw5KOihrJaIiOV7wKsDZXYQWL9aT+zsty8DPG/+wc1DaXUCsbfUiUMq2p2lTb9ObCcNBaYSq+Vm/m4PSax5ALxf2JDsoZUK8RQQRbY1zNczwbRUh3qpyUFrn8yJQRhHi7ea+MShmgTLJDsowMfre+ecDd93lPK3Rn80Cleh4y4SkBxn4JvnBRwWVlckWKFU9tEThoDRQ7SiTzdfpN8RbdQ5K6zGzvrBKmkB52216xeUokCmSc911wNlnuy+rTp3Cfl1SohdhfOQR/T7cowcwalTud+t55+ZaOuMM93bUZIFS1kHZoAHw22+5v72EeMu6fL2cp1ELlH5CvOvWlXvBaKakpHaEeGcy4UdvJKmiOECBEhQoay1aKoWUpvl762kdIPoJ8TYw38Ts5t20yd/JamxfeXnuhhGFg9I6SJIRu+ymtUOUk0yWMARKLxd3t5xMQP5+cHKN0EFpP7+feZ2WkRQHJeB+zZHNQenmbklSiDdg/7AvSpdRLCR5MB0mRt9yEyeBXF8zH3+/Id4skmOPjEDp9SHSCeMaH7VLwzxGETnSgxKmg9LLvvLz0Bl2DkpZgVKmLxrIuq/c9sc22wDt2iUnB+Xxx+uppWQFSuv1KZPRI7Wuuko8j7kv1atnL37vuCNw2GHA0Ue7t0OVyzksgjzzyLoc69fP/zspId5R5aD0E+Lt10FZbAKlnxDvkpJwxx6pVPJe8DPEmyHetRbjoubnZmU9cbwUlrDiJt6dfLKe/NrPG93ycn1g0apVbn5ZB6XMxUpWoAzDQWkcAz8Pm7LrSKft3bYqBUo3kdHpQh1UoJQNra0tOSi9OChrQoi3Nb1CGCHeMm4lhnjXPrxcPx5/HFi1So1AGWTgW9NDvJ0KUYWBVwelKszrC+OYhumglEmZASSnSI5V9LK+sPr77+Q4KI1rcVJCvK1ClxN16hRun5uoYT4PnPbh+PHAhAk14/oX5AWVsX+d+kdJSaHYFneId9Q5KGUclKoEymIL8fYjUGYy4Z97YTsozz/fW7QQHZQUKGst/5yMKRWDcT85KA2chKCKCt1d4neA++KLwIcf6jm+hg7Vv5N1UMpcrGRDvL0UyQnTQek134/VQekkpHp5u+WWo8m6Lqc30kHdgn5DvKOo4m09b4KEeEeVg7KqCnjnHb0yuF24aRgh3ta//eSg/Osvb25w2fNI5vqlwkFJgbK48HpOHn20feEBA5nwYzoo7fHiWlNBOp2L8ogS8xgljPMvCSHeQDIclNaXBlaBddgwYOXKwuVUVclfI2TFDbd7hFeRKChuY1Ivx6+sLDyBsljvrSJUOJqd9kc2W9gfZRyUXsXxYhcordddP6luitFB+e23uc+y53fYDkovbfHLyJH6S+a775abngIlBcpaSxAHpZUgId5O8wZtm/lNtfFZ1kEpc7GK00FpDIJlL2InnaTnrXzqqXCK5HgZwFkHSHZCl7GOMB2UsvsijhBvax+MIsRbxkFpLEs0zerVwK676iFZEybIt88LYTkoRaHYKkK8zdecNWuAm24CPvhAbj2yOSirqpKXQ0eW2p6DUpbp0/P7kqiPh52D0uqqr2nE4aCM40HELMyELVDGGeKdhByU1vNUdJ8RfefFQakqxLuYBUpRiLebqGEWu+MQKI86So/wihIVbm2n/ZHJFIY4JyUHZVT92k+RHNH27Lmn8zKKUaA040WMFqVvUNmOsPtGNgs0bizfvxniTYGy1mKcjElzUJoHKkHb1qRJ4XcqHZR+c1CqqOLt1UF59916+OqoUfHnoJQ5Bq+9pg/cxo5NRg7K2hLibW2D9bsDDgDatAHefls8zQ035D4/9JD8sr2iqkiOeTnW8G7RepyWZYdZVDrjDODMM/XUEzLrsW4XHZQ1Bz/ngfneIhJ+wg7xtr60qmnE4aA039969y4sHBgGUTkoKyvVC7BeiuQkwUFpRTZE3UtfVBXi7VUkCopqgTIsB2VY++O663TzQJSIzh+v2+cmUNb2EG9VAqXbtVkU4p1KFc+YyksOSuvxVl3VO+xrnvEiXnab6aCkQFlrMU7GKMQCvyHeQR8URCe49QHfbvvDdFA67S+vOSiTUiTHi/1exsU6aZJeQGnqVOCzz+yXFWeId9gOStnvrajIQSma/u23geeeA375BRg82P+1Q8U1x+34yBbJMS8nCoHy4YfF08iGeJvDY/y0JYkUy2BaNX7OA3Nf8itQBnVQ1mSBMmoHZSqVLxi3aBFNxdmoHJSqw7sBbyHeSXBQWpEpmgbEk4PSEAGiqnrsVsXby/ErK/PuoDz00Nzno46yny6sl38lJdFHEIjOH6/hs14dlHEXyTH6c1RFcvzkoBRtj4xAKTqniyUVi+xYIp0u3CbV503Y4xqvKQyKeUyviBqQ8Zf4whrinc36z4MUVoh30BNU5GSMIwellxBv2Ruo1xBvM3E7KGXD7A2sld7d5q0pDkq3NtgRJAel3boB4Oefc58rKvwP9sLIQSnroHTKf+o1xFt2O4LkoJTdx0EdlEOGADNn+p8/CLVVoPRzHlgFSmv/oEAZDD8Oyvr15V1xVqwOymw2mv1rHqOEWSRHdXg3UPwOSqcQ25ISoHVrYPlyxzGGlskgZb6XqQrxNq7FjRrJLS8oRp7NsByUbvvl2GOBZcv0Npx2GvDyy+L7YG0QKL08/3nNQeklxLu2OCitx100DnLbRjuBsliiaWTbmUqFK1BGERnStm1uXTIwxJsOylqLVaAMcrIHESivuMJ+3qBChlUo/O03sTgmWo+1OMyYMcBmmwEffeTeviAh3klyUHrJQak6xNtperd5wxAoRc67sAVKv+dVkLfETgKlrPtYdh1BUBXiHYWDUibMUdZB6bSOIIPSOEWnqB7QkuYqCOqgLC8v7OdhC5QM8S6kYUP/60un84+hKGQvDMxjlDDOP0PsCEOg9EIcVbzdHiyd9knHjjlxw+klqFVwUe2gjEqgBPRtDCsHpVt+x2xWj9a5+mp926dMEU9XkwRKkUCu2kFp3SYvDkrZY+7HQRkGbdsWCpIy61MR4l1SUjxipAgvAmXYId5h70fjmipzrg0aBOyyS7jtKQJq8EiTOCJyUPrFKa8b4O3EVylQWgWVww4Ti2OiwZH5JvnOO8CjjwJLluihrW7tc3MIqigMlDQHZZAiOW7tcXKgiR7y3ZZ3yCHu08o4KMOy4BvrchPh3OYPsm7RumSKG8kQRpEc6zarEii//94+l6aX4+/mogziejXa4uUc9JqrK0yiclCqHtAGxc958Msvuc+bNhW6Xv74w30ZQd7Mp9PhOO6Sgp8Q76ACZRwOSvO1LswQ77hdIHEIlG5ONCeB0jzmclqO9VqmykFp3AeiFCidXuAFdVB6PZc6dACuvbbw+7DEi0wm+giCKEK8rQJlTc5BmU7ruYMNmjYF6tVzn09VDspifmGYTgOvv64f86ZN7acL20FptMULhx3mb9ws0+433wReeMH7smsYRdyzSSCsuebCdFD6FSiDCkBWUWDmzMJwYRmB0hzaah7Y27XP+oYyCUVyzIQhUHp52LYeF7f2qHRQNm4MPPlk7mYYJAdlUh2UQdoVhYMyihBvu+NqPpetbRGFeF90kX1uKrd+26BB7nPSBEqnEKyoUf2AduWVwMSJhd/XBIHSitu9RkRQB2VNrrpeWen9uAQRKAHg+edzn7PZ6B0xYYZ4x5lHyy3Ee/PNxTmB4xYojYdep3uGX4HSrW/5FShHj/Y2vRkngdJo70svuS+nrAxYu9Z/OwxExz+s+2OSQry9EGYV72ITKKuq9DQfBk2ayI1pZARKvyHeMsye7W8+laRSeqXyb78Fli51ns7aR72O5yZPdl6+1/3Ytq3+QkOGHj1yn6NON1DEUKCsrViL5KgUKIM8eIXpoAQKXVIyAqXdDdNvkZxiCfH2IlB6cUpYB+hBQqK8CpTGb8bNzm+Id9gOytdeA+bPL/xeBhXnX5IdlKJlyIZ4Oy1H5KB0wu14NG6c++wW6mhd1m+/AY8/Lt8Wr33ROrgL6qAM8lCv+gGtZ898cTis9QRl3Lh8R6QfvBQMMQiagzJp+1ElfhyUor4my7PPAuPH5/6OwxETxvEsBgdlKiU+F8IukuN0LzA/KDtN5yekFHDvW8bvssvLZvX0R7feKje9CBkH5YgR7mJAnTrADz/k/vZ7XvoRivwSx/XUi0DZuXP+38Z4yS0HpZ8Qb69FRLycp0Gu0QCw7bb2v2la/jNf48ZybVNVJMdvIbDttvM+n2qMtnftmj9etiKK3PAqULpd+7zux1RKTmwsKckfyyftRXmCoUBZWwkqUJoHT0FyUFoJs0gOUOg4iUKglHHj2U1rRxQh3l5yUBaLQGnsXzeB0opbGoOgmF04zz0H7L13YWhx3CHebv1aFhUh3m7XHNn+aJ7Pq0Dp1nfMAy43B6V1nxx4oP7g56UtcToog7wVVu2gTKfF+yKJxXhOPz3Y/MuWeZ8naIh3TRYo/eSgDNL3rS+haoqD8thjnYufRIGbgzKdFrcv7ByUTgKm+aWw03Ks56CqEG/jd9k+OGkSMHUq0Ly53PQiKivtt9VriLdZoOzY0V97rPeJNm2Affbxtyw3RI70sM9/LwLlCy+IheEwQ7xV56Bs2tS5QrsMt9/u/Ls5tUqjRnJtkymSE1aId1SpRNyQbYPIQel1PCd77fOyPJnr7jffAL165f6mg1KaBPRQEgvWHJReb4rmqpVhhXiH4aBUKVCGUcW7WB2UXioAes1B6SRQisSuMByUQQRZGZzeHtq1Ieh0TvOK9qs1BDqMEO/99gOaNXOeX5SDUoWD0qm6qgi3ftukSe6z1xDvt97y1paqqngFSr9vhc0hjaqwqzSdRGFt1qxg8++6q/d5GOJtjx8HpUqBL+oHx7CKLHz9tX4Ni1OgBPw5KGWPZ7du/trkhN21y0pYDkqv12IVfVVlDsohQ3J/H3aYv/ZYhY9Fi8K95sk46VTiRaC0+75YclBusQXw1Vc5B+XOO8st20qzZrpQLULT8lMLyDooVYV4+3VQJkGgDFLFW1ag3HNPYM4c5+31E+ItK1B26ZL/Nx2U0iSgh5JYsAqUXgeSMgLll18C773nbblhVvEGonFQuhXJKaYclOZtVyVQWvdPEh2UUQuUMjmf7LarXz/g1Vfdp5MhCoHSaT4ZwSosB6XoeiE7r4ggAqVXgjoog4qEft8Kl5SoHyinUuJ9kcSBYRxVjhnibY8fB6VKQSGqKt4GYRbHWrw4/hBvt4dSt7GfEzNm+GuTE5IvbLSwqnh7vRar6D8yOShlKCvTHemjRgFjxwLnn++vPdbz2al4hx9OOkn/f9Ag/X8ZoUolXgRKu/7gVaA033ujzEHZvz/QokXu73HjgBNPBIYOlVuHQZMm9u3WtHwHpUqBMiwHZWlpvIURDYJU8ZY5/oMH60V4dttN/bUvlfI3pqSDUpoaXI6ROGItkuN1IOkmUH7/vZ4LrKoqv8KZG+aBiuoiOUChyBKGQOlWuMBJsExyFW+ndsbloKwpAqWMg9JO2Js3Tw9BcipwI4tdBXGgMAQ6LIFSZqDgt0iOU1u8CpRhOii94lWgtD7QxhXiHYZAWUwOSrd+EQZ0UNpT2xyUYTocN26MP8Tb6ZqYTouPtey9PQynm18HpeoQb1mS5qCsUwd44olg7Qn7/LvlFuDQQ3XxDCgUiuJwUNpd0+0c1tbv2rUDli/XP2ezzv3Tq4MykxGfkzIioChS5K679H1gLmzjRpMmzoLegQcCU6bonwcP9hfiLToGNT3EO4iDUmYfm5evOgelrIPSShJflCeUBPRQEgtBHZTmm5woP9+ll+aWvWCB/HLDdlCa33QZ63ATKO0ubGEUyYnCQSk7j5cclF6cQAzxLiSIg9LvdE7zivarKoHSqX0yD2gqQ7zNbfEqFhWzQJkUByUQjkAp2hdJFNbiECiZg9KeuB2U2az6/MZOhCkgrllTnA5KLwViVCMrUFqvt0kQKP/1L2/zGqgSKFU9+IftLMtmgd13zwlkQXPreeXRRwu/s7umyzoozS5F0T3Ci0BpXafd+Shz3bXrE/XqATfcoId8jxzpvpy6dZ0dlJMmAcOGAUcfrbs0/RTJGTOmcFvdttFvio5sVtzPo87THXYOSpnneGP5YYV4W6GDUhoKlLUVa5EcrwNJpyI5mqZGvAgjB+WaNYXrCzsHpZuY4mebjeMVpYMyLIGyGEK8rdPVxhyUUTgoRQMR0TSqQryDOCjd9rO58JEXgTLMc9ogKUVy3ApZiNhjD73qox2pVP6+NwhTWJM5f0U49SG/+bLcoIPSnrgdlHZuoTAJWrTMjp9/Lr4clNdeK38uh+FCkhUoreegrKjqJmYEyUF59926e2zcOG/uNBUCZWmputQIUTvLrOsL20EpwslBKcK6r83Tie4RQUK8gwiUTuOSM88E3n03F2rvhJOApWl6fsrXXgMeeECfzk+Id5MmwOefO09jRbWD0vxSPUn4DfGWFShlfhe1iQ7KUKFAWVuxOii9DorNIb1JquJ93HG5zyLBQeRuDLuKt9v+CVLFuxiL5MSZg1KVg1L1g5eMg1K2b6gI8RYtw3zc0ul4Q7zDcFCqDvE2D168CJReziVzW4rVQen1wXL4cOcH8nRaXME1zIHhhReqXd7WWwMvvaR2mcZ+Zg5Ke/w4KEtKcnnlgoob2Wz8rkNVLF8e77a4hXiLBMpzzpFfflgCpcy12Hotk3U+qX5IN9OuHTBzZi7UVRanKt6y9waVrqSoc/NF7aAUEdRB6bY8GQelsd1RCZQGbvcz41yz6xei8axM26zHuaSksKBK1AKl3xetduy1FzBwIKqOOQYbRc84svcHvyHeXgTKMEK899678DsKlNJQoKytBA3xdnJQqhIo/SzHfBGTERyiKJLjJqbUtireKgRKqwPYjNP2GdMb869bB+y7L/DFF+LpDE4+Of9vPyKSE8XgoDSTzYYX4u3HQZnEHJTmgYgXgdJP4ZSgAmWcDkqvA8PycvfcciKBMswHvz591C5vv/3UF2cwYIi3PX4dlNdfD0ybBsyeHWz9cTgowyrKkwQHpdN1LZ3W3X7GNPffn/ttxx3dl+1XHHDCb4i3rKjmtmzzcmRyx6tIRyDroHQab6gUKMNyUNqdZ1HnoBRhJ5r4qeItclAGyUFpJ1D6yUEpwk0wMsbmXvqFnxBvUbi223K6d/cf4i0qJuhFoOzfHzjkEOdpttgCeOcdVN51FzTR/kuKQBlGiPczzwCPP174PUO8paFAWVsJ6qCMQqD0M7g1X2Rk8nvZCZTffgv89JPuyDzttPzf/voLOOGEnGvCiqhSuBkVAmUcRXLiykEpOo7GzUmUTsCLgxLQnUp77unchl9+yf9bdfXdYshBaSZIGocwiuSoCPFWnYPSPAA1lm03GDa3w69AGSRfV5wOSq+Ul7sPNkUCZZjCmsz564UwKzkzxNsevzko69UDDjgAaNs22PqzWfUvv9yIKsQ7auFFxkHZsiXw6afAyy/rYqXBiy+6F1uxy+MmS/36QKtW+d/5LZIje+334qB85hmgb1/n6e3OFS99SkWIdzE4KGUFymJ0UFqPd5AiOdZ11qvnPL0TMm41t/uZEfbsFOJtxU+It2h7nLZx0CBghx2A1q3d12W3bus2yYZ4P/EEMH06cN99zueLNfTfiuxYJI4QbxnHpfW6Y/TVa6/VCyeJBF86KKWhQFnbCctBGVcOSvNFRUaksBMoAaBDB/2t+nff5X9/9dXAvffK56AMI8Q7CgellyI5Qap4W/evFZGzzXxz8iJQGlhvqj/9pK/niy+Ar78uzLdoRXVxC5Uh3lEIlJs2hZeDsqaEeJsHIkaftxucBA3xrqoqXgelVzZudHdQNm5cmIcyTGHN7iHKL2EIlMZLBYZ42xM0B2VQEa4mhXj/8AOwbFnu7zj6jduLDADo2VNPG2EeE7RsCYwaJc5laxA0xDuTEV+HJZapRSFQdusGfPQRcMcd9tNH6aB0uiaqfOgPy0Fpt9wkOChlc1Aa92uvId5JzEFp4HZdcnNQ+g3xFjkorTgJnUbUhiiM2A1judZ1yjooR43SCyM1agQcdpj9dKbla6I+I3uvE0VWhR3iPXgwMGKE87Kt151584CnngLOOMN+vjheQBQpFChrK2EXyfGLSoFSdn1eH9imTXP+3WuRnCAh3sXooLSKe7ff7jy9SDgyX+T9OHhFg4H+/YEePYAttyys9m5FtYNSZYh3WDkorfh1+oQR4m3+24sIE2aRHFGIt4xA6ddB6QXVOSijfCu8aZN76CYAdOqU/71TYZ2ghBHqGQZOYoAMdFAWYj53gp5HmYzcdXXUqGDriQqzKzGOfuP2IsMN1WGBZkpKxAKlnxyUsi80/OSglEmZI/u9iKDXJEC+SJAMYTko7fZ9TSiSYz7eUYV4RyVQGq5CL/3Cj4PSq0BpbNvgwfLtsi7X2vf85KB02i9uLxiChHirruJtbV8qBUyd6rxsaxu22go4+GDnPhVmdEwNgwJlbcUc4u3HVWF+iLbOG2eIt9fBhR+B0g2rAOclxLs2FMnxKsBE4aAEgM8+k2+TaoHSyalhkKQQb8D/Pgga4p1KOZ9DXs7nMByU7drpA5uoBUovAx/roD+oIOZXfPAjpsuEeAO6A97M0KH62/7NNgO23977ep1QLSiGNYitqGAOSieKwUE5aJDu+is2ou43miZ3nXAizKIyARyUBftSth1u2+w1T5wqB6XdOmTv5SoFytqYg1JlkZwkCZQyL05lc1B6KZLjNwelFadtNPZLvXp6DuQ2bYC77nJfr7l91nXKPIdYcTpfVDkoVYR4+xlTOa1D1CaiFAqUtRWzQOlnkBFFFe+kOijdsF503QS02lYkR7VAabTlxx/1dvgVKL2gWqCUedMru49VnH8qHjzsUCFQOp1DXs5n1TkojzxSTxcwZox/gbIYq3hHKVBu2iTnjKpfP//7khLgsceAb77x5zpwImqB0rptslRUJD/Ee7PNwl2+E5WV3vukaoHS7fwvLY2+0rAK4ghtczqPGjRwnz9MgbKkRJxLUmaZ1uOfTgM77+w+n2oHpYpxwpFHAqtWiX+TFTCK2UGZ5ByUforkiJZnHm+4hXhbf0+Kg1J1iLeMg9KpL5q37ayz9Jy/J56Y+85aO0G0bvM2lZX5i4QJkoMyyiI5XnETIEUOSqIUCpS1FbNA6cdRUQxVvGUImpNLhqoqPaehETbsJFh6zUHpp+2yAoiXHJRBiuS4IRKOrCHejz2mh3T27i23fUEHoapzUMrcbGWPW1Qh3kHXIUI2xM3pHPrzT39tUeGgNA/CRAKl3cA+7hDvuByUfujcWS7E2+kBQDYZvCxRC5R+nA6AmhDvsF0Dxx8f7vKduPVW7+MOcz9TEeLdpk3u77ZtgXfeyZ+mtDQ8l1dQ7rgDGDhQ/FvSHJQy4YxuxzPI8Q7ioBQVdHjmGeC224ClS+XnsyLaHj8CpZfxw8KF9r/F4aCMW6AsdgclUCh0mf9OWhXvoDkoRagK8XZap1ufnzTJvsq2SKCsW9df35MUKGN3ULrlvpdZp3XZFChDJaGjHBI6xgnp10EYlkBpbkvQKt4yhOGgtPL993rYZ/v2wJIlaqt4+9nXsuJaOp1/4VbloPQq7lmrogOFId6HH67/v2gRMGOG+zKT5qBUIVAa/SiqEG+/BC2S4+ag/P13f22JQqC0OzZBBUrA24smNwflaad5q0gcpYPy9NPdQ8yAmiFQPvCA+He/VcOtId5PPglcd538/LIvEIIQ56D/3Xe9pfoA8veHCgflQQfpDt927YBXXikU/Pw6KCdMCNY2Gbp0sT9+SctBKXMO+RH0ZBHloBQ5hURYtyud1oXt8eP1Y2BHVDkoVRGHg7JZM3XLMlOMId4lJUCvXrm/u3XT/3er4u0nxNu4biQtxPvoo/X/VVfxtu4j0fY4na9u4mv9+sBxx4l/E4V4l5X5u/cWi4PS67XK7VqcSlGgDBkKlLUVc5Ec1Q7KOIvkJCEHpZX584H164ENG4BTT1VbxTuouOxEWEVywgrxNrALFzKTNIFS5kbnJlAafaGYBUpZAUSVQGlejlfhXLSf/QqU5vb7LT7kZT43B+X22+spE+wEMitRiQ8zZugPLH4clOZ5vBbMcXOMqM4ZabT16KOBk08u/D2IQGm+Z2Qy3gbZsgJKEOLO6/Txx96mN7dXhYOypASYOVOvgr3ddoXT+HVQqhRxROy9t/6vWARKGQdlUnNQihyUMkQV4q1q/GB+NnFapsq+3bu3XuiiaVPg9dfF02y5pf6/TJoAA9kiOUkK8U6n9byGXbroeW8vukj/vlhyUAZxUI4Zo78gMvL9eslBqaqKt9P9RKbP252fdiHefvqezFgMChyUcQiUbqmE4h6r1HAoUNZWwg7x9jtACVokJwoHZZCH0V9+UVvFO0wHZTZrf4GPOwelUxVvGYEqaQKlCgdlkD5hkASB0u0c1jTnEO84HZTmtpsHoFE4KIMIlHbhRbLXU78PVX7z/cnkoHRyUO69NzBkiLyT0u1hIMwQb9E+UhXiXVLibZDtpU/4JW5XQosW3qY/6KDcZxUOSgO7/VxWplagVHGtv+su/WHeKSyuGEO8k5qDUuSglKHYBMo4QrwB4Kmn9LH6nnuKf3/9dT2Edt488cuuK68Ebr5Zj5oyKMYQ75ISoGNH4Ntv9VB8474TZg7KqAVKu/vNSSfp4wQD1Q7KoCHeMttmd40zjo95naWlzi917ZCt4u21AJcZvyHebuMo0XRO35lhiHfoUKCspWhmgTKoCy+sKt5JLZIjypnTt6/cvCUl6hyUmuZvH8muo6QknCI5XtvsJlBat2fNGvdlFmMOSrebuXEMgjwcGPOqesAQHWu3HJRu57CosJe5vatXe29fVZV3YTBpId4qHZTG/pR9GROV+GCXSN+M0WbrOWU+59Np4I03gF9+gWat9i2iXj3739wEIyNEzAt2qTUM/AqUIgell3O9Njgovdyfnn8e2Gab3N8qBUo7/IZ4O/XhoJjbXSwOShUh3m6/77ij/W+ZTKH44leglL1O+9mesKt4O2Fet9M2huEOdjrHOncGzj9fd1LOmlW439q311ORDBmS+042xDtpDkrjf3P7vQqUXnJQWvelnRAXtkApKkQlwq9AKfuS2A6ZPr/TTsBee9nPa32hbt2nMg7hIDkoZZ+9w3ZQ+hEoVYV4z50rX329lkGBsrYS1EGZ1CrecYV4y9wIAb19KhyUQPCCB25kMuGEeHvFa4j3hg3uy0yag1JFiHcSHZSia0vQEG9Rpd2gDko/grObQGk+pm7HJmgVb/M6ZJCt4i3K/yrCT/VHwHs/M9oZtEiOQSaDSpnBoVPV7Hr1nNvjZxDrJlCqykFZUuLtHhJFDsq4BUov14L99sv/W0WItxt+Q7ztHjZVpCewu+6ZiUOgVFkkRzT95ps7z++0zSUlhaKx7PnlN8Tb7Vh7LZJTE3NQeqVLF+DCC/O/M5z55mu3Kgdlw4Z6v7r/fnH6Dz/YrVO2SI61H1jHA0FCvO3GFqpyUNpdr2TPMT8h3ul04T1ctHzZKt52pFLAq68Wpiow5rUKlNZ94TTukWmjWw5KLwVbres54AD3+czXLj8h3k6oCvEuL6cT0wYKlLWVf06+VBg5KP/+u2aHeIuQvcC4CZRe9lt5ebhvsJMiUIoeGK0CpdeHrGJ0ULrt4yCFkwxUC5SicytokRw3B6WfHJTm4yn7IC3az+a2m/uYsR/srjVJc1AarF8vt7yoHZRBQ7xNaDLudyf3Wf364QqUrVsX/q4yxNvL9SKKEG/ZQX/37uGsP8i9LKjYJ+ugVClQqrjWm9tjtw1RP4RpWnAHpXn+LbYAzjhDP2cmT9a/u/9+55QATgJJSUmhAFBTQrxVUQwCJVC435o21f83X7uNAjNWvDooH3wQ+OMP4Jhj5I0RbtiNh+3OnyA5KN1ycaoUKGX2j91yrPvESw5K6zZaxxiNGhWuV7RP02ngk0+ACy4A3nwz/zcvx946fpEVKIM6KFXloBSJgb17A088oadaGD9ePJ95/BqGQKninlZeHv6YqkjhXqmtmE8I1QLl/fcDX33lr13FEOItQvahKp12Fle8bHNFRXIESr+uL79YQ7y9PrAnzUGpIsTb+F1FkaowHZRhh3j7cVCaXbqyDztuDkrzMXUrYBS3QGl3PiRVoJQJ8ZYUKAtEAtHA1EmgdCva42ffmJd37rl6HjAzqorkiF6YORFFiLfsoN+vSOuG6pdPXvBT/VUW0cPmK6/4W5YVGYEyaQ5KmXPIfE2tVw+46SZdHDr7bP27rl31YmLl5cC0aYXb7rTNmUzxC5R2145iz0HpFet+M/rWhRcCHTrojsr//lduXhn3nXH/VnUt9vrcFEYVb7vfnfJjuhFEoLTuE6/7+thj9WXcdJMuopkRCZR2bdh2Wz2n6dZb5//mpc9b12XsF/Nx8ytQOvUdNwdlkBBvABg1Sk+1YOf0lBUojbZ5OcaqQrw3bQp/TFWkUKCsrZgvKn4eiJ1yUALAe+95XyYQnUBp3PTiEChVhXhbHzZVIxIoFyzQb5Y//pg/bZgOShFWB6XXB/ZiFCjdBCiVDkpVwvcllwCLF+d/FzTEW1SEK2iIt1mglM3V5iZQmrcjihBvL/OJijOIkBUoo3JHGfvUj4PSqeiIG04POt26ObfHjzBjXl6jRsCSJfm/B8lBaX5pkMl4D/FOioNSdeV0g6jvZWZkQ7z9bLv1unbzzflFIIJg92LGTBxFcpz2k8zDt/m+YDwEWx+Gy8r0bT7ggEIhwum6GMRBaZ0mzByUDPF2x66wS+PG+rV7+XJ7x7dXB6V5elXChtfriVeBUiYHpYG1D9rdn2XOkyD39iA5KAHgvvv0fPhnnFF4TWzcWO7YmaexExllsM5r9E/zue03xNvKccflPg8eXP0xkINyxAjn/WXXp9aty32WeaYxb79MP5UtsuhEeTkFShsoUNZWzBdbPw/E5kG8HwemHUFDvGVPdCOfUNQCpcixYt7mJId4V1YCffoA//mP/s/aligx7+85cwoFUzeKUaB0W2cSc1DecAOwww753wWt4l1Zqb5IjvlBVObB1TyvGTuBMmkOSqcCMkBuf5oHeE6oFCjPO8/+NxkHpccQb9eHLcD+YaBRI+Duu9U7KK1tsh4vvw7KoCHeSSiSk0oBjz8enkBZUx2U1vmaNfO3HBGqHJR+HoidcDovZUR+ry+urIKI0/G0c1DKnF/Wvi8rVvgRKPfdN/f5nHOA007L/T1smHg5YUZgiIhboLTuN3N7slnn9nnNQRmGQBnUQWn9zdrvzX+7rUs2xFvm+i9zXjRrpucSdnMlexUogdw1xq9AaV6nncgog/V4GPvFfH6JBMouXdyXbR0/TJ4MTJwIPPyw7v408CpQnnOO/px5773AwIH+8j16DfH2KlAOHao/E2cywAsvyLfrX//Kfd52WwqUNlCgrK2odFCGJVCG6aCMS6BUHeIdpYPyzz/tp40zxHvUKO/zF6NAKVPFe+ZM4I47/LdDtUAJAGvXitchQkYA+eEHXfg0EzTE2yxKyD4ki849uwGlm0B5yy254k5RCJSyg2/zw6kTKgVKp4cKmSI5XkO8/bbpxhuBn3/WK7qqzkHp5vzwW5FZFOKtskjOrbf6a5cZp2vhNdcAv/wCHHooBUo3rAVcnESDoKgSKN99Fxg3Tk2bAOc+IiNQmouEydwXvAiUdkVy/IR4y14P/AiUgwfr5/UFFwAXX6xH0Jx/vl55duBA8XJqu0Dpxd1WEwVKpyrzqkK8VTkoAeC55/T7ihlZB6UM1v7ZqFFwgTKIg9JOoLROd9117i5B65i2SRPgqquAsWPzvvbsoGzQALj88pwjM6iDUibE24tAaeTL/+gjYOVK+bEyoKfBO/NM4LHH9PEjBUohFChrK+aTz4+4ZJ7Hr0BpuYAByH9YCstBaX6jmbQQby8Du6hzUDoJP1GHxQV9uAoappjEEO8lS/Q3eitW+G9HEIGyVSv732T7uOwD2hdf5P9tPg9kXX/m+cJ2UD7xBPDxx/bXmiVLcq5k0XE+5BD39ni5DsvmVxo+XBeFzjvP2dmocoDl9FARQpEcKUQPAw0b5oQB1QKlyLlw2WX6/4cc4v/6ZxUoMxn7/n7NNXoiejNuRayOOspfu8w4XQuzWaB5c/1zWKHmxRDiLUPPns7zqQy5lqniLdNne/QApkzRH9qComnBc1Car6l+BEqn4xkkB6WTY8/LfFbsrpGnnqoLk/Xr69e9SZOAE0+UW2cQiiUHpV9HK+BdCEu6QBl0XlmBUqYNXtKFGPcVA9kxksxYuW3b/L8bN5Zrm1OItwoHpVuId+vWenqCGTPsly37DOpVoLTu1zAFSgOvDkrjf6/RCK1a6SaLww7LXxbJg3ultmI+IUaO9D6/Cgel6AIbhYOyYcPcdEkI8fbroAwa4u12AbYKlGvW2E8bZw5KPyTNQSnTHrd1Pv988HYEESidjkmHDsDBB+vLVSFQWjEv08sLF1EOyiBhhua2W4/p9tvnXJIibrpJ/190nGWcAG7bvfvu+v/jxsk7KFMpvUjL1Vc7P3QFPR/NyAiUKkO8rbRrV/idaNvNbVAd4i2q+Hrhhbp7+Ikn/AuUlZX59+uSEj2Zf5s2hdOee6744VmyaqdvnLZNdp8HIU6BUtZBaXfvHjNG//+00wrPI2s/TKKD0lhOjx7B2wTY76fBg51fqInwE+LtdF1UWcVb1kHpNf9f3AwfLjdd3AKlX8FYNK8Xl6vMPe2AA9ynUZ2DMsi6rNsfxEEZhKA5KM2Yq7kD/hyU1unDcFCKrt116zq7KOMQKK0vl+z6lNcQby9jNZX9jw5KIQm7G5HIMJ9cfhxX5kG83/Be0cUgqEApc6I3aqReoJQd7ItyfgVxUAZpu0wybvOF38lBGWcOyjjmVx0GaN3XItxeBKhwxAQRKJ360/LlwDPPAG+/7V7F28/N2q9AabTFfDxlHZQizPtA1Mdk9qtIIJG5vrht9w03AEuXAg8+6L1yKOB83FQKlDIh3k7rCxrifcwxzlVIDWTFMj9CUNeu4u87dNC3z7r9sg+YohDvevV0B6+osJ3o4VlGHA6C07E1L78mhngHcVCm03ql4G+/1QvguIV0q3RQqhIojWO6xRbB2yQqktOmDfDdd8Drr3tfnuoQb785KLfd1n9Isdv5ufPOcsuJgmOOkYscAJInUHq5HwZxUIqmveSS/L+ffhp4+WXnZUbpoLSua/RofVxot2w/OSiHDPF3jptR6aBUkYNStniQzPpFRXKyWfvrlVP/kHxO10TL8Br189JLwJFH6qlAzNj1BfPynY6TMeY3b79b21SOP5L2YighcK/UVoKeEK++qju2qqr8OyhFF8OgRXLiclDKPvy+8IKet8yMXwfl/fcX5vfzgtsDgxcHZdQCZdA3TkHdI2E4KN1ueG77OG6BUmZQvnJlOA5Kv1WwVTsozf3Kbx8VtV+mv7pdh0tK9NBhUZiuNR+b6Bg5HTeVb4BlnJpOg/OgDsqSEl3gcWtTWAJl69buIrl1mUb4txvl5YUCJaA/sIico9btcssRq6IfyDo0a2IVb5m+4lTVNpXKVZV3EySN353O6zlz3NtjrNsgSBVv45iqEpxEIoPfnF9ROCizWedrScOGer48pxx/ToiWfe65ep63668HBgyQW44bKnJQXnaZ/HbFLVD6PR6A2hDv++8HLrqocHmbbeatDW5Yt8/I6Q/kxhKzZxeKj6J5p04FdtnF/ndrLt3Ro/WQY6f9NHUqsOee9r/LoDIHpZV69bxX8Q7Sx2SL5Nhdr5zWZR57e91HXrWDESOAhx4Cttkm/3u79pm3x+6aVK+enr4CyN9Pbs8RKvsDBUoh3Cu1FRU5+EaO1AU3vwKl6GIYhYMyzhBvQBd3zfh1UE6eDHz1lfz0VtwehrwIlCoLJckQ9OE0qEAZh4OyJgiUVVXuyar9XJsuuyxXyd1LXwySg1KEm4PSoGdPoGPHwu81TSyQyFzX3PqH02BXpmCE03GLykFprMepr9sJlLL9auPGQqHBTaB0One9npei8G4r1m2Treq9YkX++WE+bqL9I3JQOokBKgbabi8wDGqigzJIkRzr/pAVKO3o2RPYbTf39ljXrcJBqcrdad0nQQT0MHJQWkXP1q2dz6GHHtLd1X77vmjZrVrplXLPOsvfMkWoECi9HKu4Bcog1z3rdrodWyeBslcvfX5DnLvgAvF0VoKGeN97r76ObFYXugE9pcyjj+aLj6J5RS/BzLRtqwuvo0cDX3+tL3PoUOc2h/GiLEiIt5W//pIbM6kSruxCvN1yUBq0b5/7bM0PbH5Od9jvwiI5TtfUIGkDWrTQ/zenvRItr0UL/bnBCMGPS6AMayxT5FCgrK2oOiFOOSU8B2Ux5aAMInj5dVAGxatA6aU6ctgEvTmozL+lgkzG/Zx0c/aoEImN/uenH8rs06qqcEK8AWCvvfSqeE5CuhWRg1KVQOm0HfXqAXfeWfj96tXi4yzT370MqKzLkxG4kuCgNNbj5KA0ziProFy2jRs3yoV4u4XaGXgVW/r1c5/Geq7JCMyAHv4rclBaPxuIHh6POAJo2VL/e+hQ5+n94HQ/ruk5KIOGeDsty06gtLvveAkhVBXi7bYMr8iGacogI4IFdVC2bSvXr92meecdPffgHXd4my9J1FaBMoiD0hC8X34ZWLgQuOIK/W+360rQftGzJ/D993qOZFGBNy/rEt1zjjlGFybNbkqn5agYj6gM8baybp33EO8g2DkozZSW5r8cNafZaNUKuO8+PeXCa6/lz2cezzs8w6Ss+ymVAp56yqXhkljX+803+j9zDtvtty+cr3NnoGnT3N/me5TbeFqlqEiBUkgR3a2IUlRd+Kqq/If3ujkowwzxNl8QVAg7QRxE5m32++bZz/H0KlCuWuV9HWERtP+qzL+lAhUOSrPI5pe4HZR+Q7wBYNEi4PDDdZHPWJZMe4B811QUId5GOKaVn38WH2cVAqWToBamg3LYMODoo92XbyBTJMePg9LheFSZf/PjoFQZ4j12rPs0fh2US5bYC5SyDsp69XQny5dfAgcemP+7ioG2bK5T2cIgXikGB6VoP1uPlVsOSgO789pL8cSkCpRubi0v+BEonbZDJFC2a+d83zCOldt5NnAgMG0asP/++d9HJVDWNgelyqrW1mMkylNqYCdQZrN6GKyxbLd92bevXFsNRNfodu0Ki8GI8FrF2256p+WoiOhQHeJ90km5z7vuKtdnVL34lakAns3qOa5vv11/ufHii/m/H3ss8OSTQPfu+d+bz3WHfZQy95mtttIFxF13zZ/IXNBphx1sl+VK48aFaQ123hm4/PL875yiCtxeVNJBGToUKGsrqk4ITUtWiLdXByUQnkApe3NR4aD0I7h5FSiTRNwh3qqRESjdHpxvuy14O8IWKGWqeKsalMk4gMLMQenmnhGdW8uXJ8NB6TUHpdO29uql5w6SJYYclFXmaVULlF4elnbdNVwHpVWgNLdNxkFp/N24sf6gsu22ud+soXx+cboHNm+e+3zTTbn2yITFyxK2QDlkSLD57e5dXkO8Rfu5Xz/drXTMMXpuQllkQry93HOT6KCUKUTjNcTbr4NSdvxjXX9Sx3MivFw34xYow8xHZ+0jMg5KK277cuBA4OKLUSVT8RsIJkB7FSjt9m2xOSivvho47DBg/Hhg1Ch/bdhvP/1/Ly98ATkHpdFHTjlFf7lhFSLtMI8nnI6JeT+1aiW+Z991l75vzjsv3/3ohuz18D//yb8POr3EYw7K2FGYOIoUFSodlH4FPtFDplkgmTXL2/JkL1L16+dvv4oCL6KBoGx7VAiU2ax3B51MFe+kXjhrWoi3zL6OIvQwrCreBprm3Mf95qAUUVam5/pxaw+gLsTbTfAxsHOKrlolPs4y15I4HZRO21q3ru60mzBBDwFr2BCYMsV+eifx0ViPYgdlZTaLjNEHRAKlqE2y+RBl+3Pdunponsyx9uug/PbbXH4mwLuD0tq2gQOBCy8EPvkEuOUWuTa44dTPzALlFlvkQtbPPlsXX4uBVq3sf5MRWuzSgbg5KK3njGg/l5Xp+d68oqpIjp9pnVCZg1K1QFlSUni83QRKI8RVdpzoNb+hKg45JHj4prXtTuOLuAXKMCv6NmiQH73kR6CU6feXXILK8nKkZc69IKmoonBQJjEHZePGegoiL1jX+dRTwLx5QP/+3pZjl4PSjN99JlkkJyUzXatWwBNPeG+Dl/PPWhjIjBeBkiHeoZNQ9YGEThIEStGN0LiIPfss8Mgj3paXSsmd6KWl+du/fLm39YgQCZSy+9i4wS1cCHz4ob/1+xHc3AYiKsUi1dQ0gVKm70YReljMId5WZByUYRbJcTp/7LZz0yb/Id5uDw1h5qB0OvZ16+r74sYbgaefdhZogOAOSuM8CuKglMlBKdtPZacbNEjeCWnd37Lz/fwz8Oefub+95qAUbctll+nJ6K3J8/0yaBDQpo3++eST838zi6uAnu9ss83UhJRGhV0/vOMOOfe2bKVV2RBvFcQR4v3ww+5u47gdlE7bIYpQEQmUZ5yh51e+9NKcY1l2LCDjoAzj4fi22/Tw8pNP9r9867EyngfSaf3FiJm4BUoVeewNRAKlmTAclF4Jcr31moPSz3RhOCjDeBYaPFj///jj5dpQWgoMGOD9eFqX4+Sg9IpsFW9zn1GZs9wr5vYyxDvRJFR9IKGj6oRQLVAaN/qDDvK+PDvXovU768DQqDoXhKAOykWL9MGnV9eoQRgh3kDNFSiTloMScO8vKnJMuhG2g1JGoIwyxPurr4D33gsnByVgvy12AmV5uf8QbzecBEoZUTaIg9KMWz+XCd9WnYPSLcQ7yAOw7LHz0u+t2+alzxrV7q3r9OOgDIPSUuDTT/VCH+PH5/9mFSjDxgilC3JNsCI6zpdcUijG2iErUFqnS6WAyZP1z+3bi104KqpDRyVQdukCvPSS8zRx56B0c1BasUb3AMDWWwOvvgpcdFHuO7fIALv1RzWea9UKeO45XXSXDRu2Yt0/Awbo14XFiwvzy8U9TlX58jhIiLfdPUS1IBSlg9LPdGE4KMMQ1V54AZg5U8/7KCKs+61KgVI2B6XkdL7wu59kHJR2oj8FytBJqPpAQkfVyaVp/kOknRyUfrBzoVnXE0ZuxSAOyo0bgyUEBvy5I2RuSHEP/OyoaTkogeIXKGUGcDJVvKN0UC5bpj/4PPpo7jtVDkrAn0Apup6qGMA4iVGy7lc7nOa3DvDctkXm3PSTg9KhX1VZB6YyOShliUKg9CL+/PBD7rPfHJRh07Kl7pKyrs9ccdNMWA7K0aOBd98FPv9cfp7TT3f+XfTysm1b+eXLPkiKzqOzzgJmzwbmz1d7D5TJQenlAVimP9ep494fkxzibfy27776/0Z+OWsbRcuQHQskIQflHXcAe+8NjBvnrTK86Fj16qWHucfpwBIRpkDpxcA054cAAGEeSURBVEFpR5IclFEIlKpf6KpappX69XUXZdTPI6KXLX7PKckclFIh3n4JU6B85x09v/YRR6hZpwgKlEISqj6Q0ElCiLdTDko/2LkWrRehMHIrBhEo770X2LAh2PrpoPRGMQqUsq6JIBgDzziL5EQpUBosXZr7rNJBabdP7K5BmzaJw8XCdlBaUVkkx6uDUraSsR12Id4O2/zxaafl/rjmmsK+Y3XsmNfjhupQcEC+n4lYty73OYkOSqf1221nWAJlSYle/dNL+PrkycArr0Dr1ct5uWbatZNfvuw+EJ1H6TSw++75aRbuuCP32W8eURkHpZc+KnMNEAmUzZrZtwsIJmyFUcUb0F+OvfQSMHWq/rdMn1cZ4h02rVsDr7yi5x32sv6wQ3hVEqWD0st93MC6v446ynbSX3v00D+MHWu/vKDPaU6ovq/6JQoHpRth3W9F16WQQ7yLQqA0/20IlH36AG+/DVx8cf60Krchqc/ZMcO9UltJgkAZlYNS9FY7CoEyyoc5P4IbBcpkUVsclE7LTqWiDfEWEVWIt+h4l5eLBUrRtPvso+cnk8VNjHJDVYi3GzIOVj8OSofz6/fu3VHxzjvARx/pLh3r8rfbDjjnHPd2Wdljj2gclG4PF1bhRrTOJDkoDeJ2FvjZ3tJSYO+9odnldRXlpvXioMxm/RVSsqN/f+CDD/S+36dP4e9GNdUBA+yXYd4eu77o1p7WreWnBcQCpZG71MAt7N2NCy7Q/+/YMVegxgkvDkrjXtugATBiRC6PrIxAaR4LOO0rmfM3ynNs6FDx98cdl8uvKUPSxqXF5qDcc0/bST+44AJUPPOMXlHZjjBDvGWPbdj9Nu57HxDeizfRvvM77pYN3U6iQOmlineYL3viHucklIRd5Ulk1ESB0u6hX/QwZ7f9fkP5gjgoVRCWQJnUC6dMu3bc0f63YsxBGYWD0jj//JyHMgMctyreDRrE46A0U7eu/zbICkdOId4yDsorrgCmT9crQ8piXoaor3XrlvvcpUvh76oclFtvnfu8yy76/2+8AWyzDTBpkpxA6ScHpQvaDjsAffuKl59OA9dem/+d0/n63//qBYGmTUuGQNmxo/h783bKOCijfkiTHVvY9U1rDkuvBLn/2RXOEL2E8SpQipBxUNrRv3+u71t59NFcX7ZDRYi3V4GyrMxd6LX+7jWH6UUX6QUb//c/OXFTJjzbwK5/SAiUKfNYwGnMKlsROSruvjt3zTdz773A3Lnyy0mag9KtoIYXwhAoPVREL2/QANq++9rn3gOSkYMyagdl0kRx1fh1UG63Xe7zoEG2k6XCLJITpoPSQJTTWRVxX5cTSg0/44gtSS2SE3cOSr/FEEThhFFedPzcXGREuqTelGXadeutuSp5VorRQamyUqQdYVfx/ukn4Lvv7H/v2FGdeOxXoKxTx/9gLWgOyk2bxNdTu4dWLwM987QiN+6LLwK9e+vhXyKniyqBcswY4OCD9Qq8Dz+sfzdkCLBwIXD++XLntp8q3l7w23cM2rTRC701aZJcgbKsLPkh3r//LjeduW9uvrkuKM2eDVx5ZbD1B7n/ueXaNUil3Cvbm5EN8VaVd65xY70v27lwAbkQb7fz0ex+9JuD0s1Baf3djbIyYORIoEMHb/MZ+BEoveag9DJmjXs817atHi75wAOFv3m5tiRNoDQ7KIOOLd1CvP1su8pcrEDyc1CqIO6Xc0DynyEBPYpnn330VCi33WY/XZhFcszudrNg6oaXKt50UEZOQtUHEjoqHZR+i+QkMQdlsToo/dxcanqId/v2eoW8++4r/K0YBcooCDvE+/LLdeHAjtouUMqGeBvr8fKgYV6f6DrXowfw8cfAgw+K+6LfEG+rEyOdBp56CvjwQ6BrV+d22iHjoAwi0AQVKM3716/Lxcu0btvaqVPhd04OGYO4H9K23z7nEp44UX6+AQP0XIuNG+vVhP0SZHtlHZStW7sfP8MJWr++2N0sQvU9zmlfqMhBaRYP/YZ4t2xp3y7rOqLA6ZwO4KDMEyi9jFmTMp4TPTN4aZt53yVhLGcWKIPeO7w4KP2GlmcywBZb6J+NIk1eqA05KFXmr00C99+vR8nce6/4d7/bV1amR/O8+67ji7ZQc1AefLD+b9tt9bGlLDJFcgzCFCiTcl1OGNwrtRVVJ0R5ue6KArw/ENo5KP06xVTkoPTroIw7B6Wfm0sxC5Qy+9Z4sJUJ+08CxS5QqnDsJEGgtDrLvBBViLcfgdI8bYcO+pvvbt2cBWMzqhyUbshsk58clF5QKVDKXkO9XGu9OihFDw4igfKqq/SCME8/LW6T12vUjBneprdSt64e+vnII3q4rR3mvhmkQraVAMXrUk4CpXm/yohm11yjpw1YsMA+B2WQEG8ZnM5LmRDvKHJQuuWdNa8jLG69VX8hMGWK8/liF3kkIVBq3bvn/nDKDeq2bCCecYcoJNrL9c88f9BrtQrM7Qk6fvFSJCeIQDl7NvDQQ7koBi+E6aCMMwfltGn6/e+KKwp/S+qzkCzHHAN8+62e71VEyAJsqCHexkvvTz7JCe8yOAmU1uszHZSRU+RnHPFNGBdbrwMF0Y38p5+AtWv9rV/WQRmVQEkHZXjItMt4AJfpE0kgCTepuAXKRo3UPXD4PcZROCiDVvE22ufl/LROe9NN+oB1993l5o+qSE5QB6WKEG+ZvuN0vvoRKL0M2hs21Iv2tG+vVwB2eyGWzRY6rUQC5cSJegqGgw7S/w7qoJSZ3i18duutgcMPd3aKhSVQeincYcXpRav54Ucmj2z9+sARR+RC2WRcT6oFSqf+pcJB2bu3+zLMyBQLisNBeeqpwLJlwLhxzu2TdVAK9kXVuedidffu0LbbThdEZUnCGAMQOyi9tE2lIKiCYnNQlpTo944jj9TTkHilpuagPOAA/f73738X/nbssbnPXnJ/ByHpJhcPhOqg9IuTQGmFOSgjJyG9hEROUgXKe+4BXn7Z3/rtTnK/AmX37sD++8utmwJltMi0y+gPomlVPrypWlYSblJhh3jLoOqBw885kUrpx1OVQOnHQSly1vgJ8X7++fy/w8w7pdJBGTQHpQoHpcy+ilOgBPSiPT/+qFcABpyPQSZTeBxkqtWHLVBecIFzTloV+BWlJkxwntcQce1weog3h+jKhNpbadMGeO8952lU5aCUwXyc7dbr1J4RI4DDDsv9LfuCoKwsJ0D/61/uRWGiDvH2I1DKpG9o2BBvX3MNKj78sDCsvRgwnztXX63/79dBmQSB8swzc5+vvz7YsrwIlKJc0jIEvTYEcVCqCvGOmi23BObM0YuGHX98NOuUKRioirDvFzVNoFS5DU75nWsxCeklJHLCuAl4HSjYTT92rL/1y4Z4y+agTKXkL9pxh3hToLQn7BBvVQPkJAzM4nZQAur2p59jXKeOt/PebZ2qclD6KZJjPYZBz2UnwUWlQClDCFW8lRKFQGnFTaCUcVBaCRri7bbtTvdiLzg5KP32gz33tP+tdWv7XF4GTiHe5pcQMkKxiB13BEaNyv3955/5vwcREbwSxEH5yis5F7DbMqykUsCsWXpxhilTxL+biSLE22n9ZoLkoCx2OnXSxZ4HH9RfBADeri1m52ASBMqddtL78GOPAYceGmxZUeWgDEISHJRxsNtuwOjR4Z6Tr76qp2Q5/ng93DwqQr7OpMIskuMX630mLoGye3e9OGXr1sAbb6hbbpFTA+98RAYtCQ5K1bljVIR4WwVK2YdG0cUrygeE2lbF28sgJmyBkg5KnSACS9Omep45IF4HpXFNikKgFB1vuxBvPw5K1QKlE16K5Mhw/vnAnXcCN9+sD9yshF3FOyhJFCitQnEURXJkBErV1z3R8nr0ABYt0n+TvbY57Z9TTtGvWU7I5tL2c34YOIXHRzn+MO9zu+Npdz6K+r2Xc3errfR/Iqz9L2qB0omkCJRxjTt2203/56cdSctBCeSc7EFJp4E99sjlhhYV+TQw9+fNNpNfR5KreMveY6K8vlkJ85zZay9gxYroz8soc1Am5bnSi4PSun9UH58HH9T7dBKeAxNCQnoJiZwkCJSq33zaOShlBUrr93RQJudGYiVI7j3Aue95FTZUHeck3JjiECi32gr49Vdgn330v+N2UALqBEq7Y1qMDkq/Id5eqswaTJoErF6t53ETURMFyqDHJ6kOyksvtf9d1UOR2/Xq1Vf1kHgv7gQn56/MfrBzGVnn9eugBPSiYklApu+GJVA6Yd3XUYZMitZvJikCZZxCj1+SFuKtknRaDyO+7jrgs88Kzw9z/zjySGCHHfTUBc89J7+OOB2UqkK8a6pAGcXyRbRoEe7yzX0mKRXRvQiU1mMSxrNxEp4BE0RC1QcSOnYnV5CTLm6BUtZBaRdWVlZWGCoWxEHJHJThEWaIt1dHi6p9lISbkzGI8DMADTLoNe9DVY6IIAKlqiredoNou2uQXQ5KOyebUzv9JL93wqlPWNtx2WW6wHPqqf73pdN5FXaRHAC48kq9Pxg50uzWIyJuB6X1XBQJlFHloLzoIj3PZKdOuSIvdu30i1OIN6ALeeecA2yzjf0yrNvmdB+QuVY7hXjLrscNJ4EyrhBvu/U2auQ+r4GqsWHQ/huUsHJQ1nZqukDZpg3wf/8H9OxZ2GfN/aO0VM9F++OPztc2K0H71KBBuc8nneRtXlUh3jVZoIyK2bP1ceLee+cf0xAoiiI5Xq4lSdmGGgz3cG1FdRVrIH6BUjYHpZ2Dsk4dtQJllPgZcMjMk9SLsNsAwZzH1GuRHC/nwOzZyXBQ/utfatoQh4PSut1xhnirdlDa7UevDkq7t7d2+3zwYPnq3LJ4qeJ9zDHAH394qzDrhjmMU+ZeE/S8vOACYO1a4LzzvM9r7j9O11DzdCJh2gvmYyC656kI8fabg7JzZ2DJEmDx4vzfVTkpTjkl9/mcc+ync3LzWvdZUAelbIh3WA7KuEK87ejcWZyfT2URO7ciOUkiKQ7KJO8jO5KWg1Il1uNhvUaKQk29XkeDXnc7dABefx2YPFl3pnvBrb/JVsiOU6A0h9YnxcXuh913B1at0vMAh3wdyAvxTqqD0su1pBivm0VGQtUHEjp2J1eQt/nFlIPSTsi03vRkL6TWAXU6Lf+AogI6KHPfX3EFcNNNue+8Oii9hKT26ZMMgVLVID0OgdK6rjhDvFXnoLTDTqC0y0Fp5wQS9dV27YCZM9UPoJz6hEhAVRWmOX8+cPHFepiuQVQPpV5CfuxwOi/Mx++vv+SWZ4e5z1r7haoQ7yA5KEWuYVUPKvvtB9x3H3D77XrYox1OYw7rsaaDUh7zce3aVTxNKgU8/jhwwAH534cZ4h33+CUJId433KAvw1xputhJYg5KVbhdI1X0aRWi9557AmefDTRs6G0+t+vS0KFqlhMmJ5ygO1abNgWefz6+dqggqlQ4xeCg9LIvkrINNRjGDtRW7E6uIDd7VVW8/eIlB6UIUYi37I1cNIgIkqfFK34e9GqiQDlkCPDvf+d/J9MnzHhxUDoVXPKKX0EpnU6GQJm0Kt5JKJLjx0EpE+Jt9JU2bQqn9ZPzUQYvfULldaNPH/2fmWJ6KHXaF3XrAuvX659VCpRhOShVF8kpL/e2PDtSKeDYY92n85J7OGj1eVmBMoiD0qnoS1wCZaNG+guSOXP0VA9WrH1TpYPSStwuFz8CpfX637x5sDaceaYehmvXn+PeR36oySHeUeS6i9PB5vZcNHiw3HLiFCjLyoBPP9X7YTGNRWIkkSHe1vvMHnvkPh93nPO8SdmGGgz3cG0lCTkoVb+58ZKDUjQ4DJKDUvQgl3QHpczALqmDV7t2iQYtXh+AvAg82ay6feT33GveXN0gqSYJlEkokmOHqhDvdu3Eyw4DL0nUwx68yfaR007T991VV4XbHkB3eaZSeu4wM24CpUHUDko/OSj9hnjbYYizUeHUfi8OShlkX1AGWU86DZx8sr5dV16Z/9tOO+U+H364/3XIYN2vgwfbF0eScdH6vQdEIe54wam/HXOM+zzZrJrK40HF9qg46SR9+ydPdp6uJguUfqO4vBBnXlO3sWW9erm0KhMm+F9O2KRSFCc9UBRVvDffHHj6aT1vtts1KKnPxjWIhPQSkhiCXDi8ijWqT3AvOShFIoD1AS6oQBmlgzLpId6vv65mOQZ27RLt8zBDvO3SBfjB73KaNVProLz4Yudp7PqaqoG0qkFfENFeVZEcO4KGeBt9pW1b92lVMXGiLog2bOgueIQ9AJXtI7fcAqxZo7ddNVZh6ZJL9HVdd13+97IC5d9/B2uPm4My7hBvEevWeVtemJj3XyolV4jJiSgclABwxx16v7vggvzvu3YFnnpK7/u33BJsHW4EKVpXkx2U/fuLv7/wQmD0aPFvw4fr9/TGjfX0FrWJO+/U+/LZZztPN3587vO4caE2KXKswlsY99I4BUqZ56Krr9b7wY032k9jTm/RsmXgZpFwKQqBEgAOOkh/ueZWZDIp21CD4R6urdjdJIIM6LLZeE9aLzko6aCMTqAcOxbo0SP4cszYtUuFg1LWbZBKqa3WHoZA2aWLt2VVVYnD8gyyWft9VxMclMa6ww7xLikRH29ZB6Xxd5MmciGTKmjcGFi6FFi+3P18ToqDErCvHuyHZ5/V+0bfvsBuu8mty2lfRJmDMs4iOWYaNMh9TpJAaT5369Ur3FbzPpUp5BBFDkoDuz5+8MG6ezhomLAbdn3ceNl1/PG579yKgNh9J4NTkZw4nHZduwJPPFFYuOm88+z3WZcuwLJl+nXWS2XmmoLM9frkk4HLLweuvx445JDw2xQnYTgo4wzxlnU+ul1jGzcGXn5ZT2Hw9NPB20VCJS/EOylFcoK8CKNAGTrcw7UVO4EyyEmXycR74fGSgzIKgZIOSvXLcVueaPATVg5KY/8l2UH51FPeluXWZ0tLw3dQFnMOStn5VOWgTKUKXZRhuoZKS3WBye0hI+zBW1z3mZEjgRUrgA8+kN/GqARK83qS4qAU9UWzQGmEeJ96qv6/NTw+bMznq/l+KLoHvPaa3v87d7YPzzUTRRXvpGDXLy65RK8Se889ue9kHJSqrmHmYxBXKPCoUYWVjt3uEw0aqBGuZYjbZeqH0lLgP/8BzjqrONvvRBQh3sUgUMowfLheBEqU6oYkl6SIe0FMFTXtupNAEtJLSOSE4aCMW6C0u+jJ5qCsU6fw5il7ARMNuilQql+OQZg5KGUFSmOfx+2g7NLF/uGrbVv9AUkWt8FjNmvf1+igLDyGXovkeK3iDRQOzs2/GYKPW8Jvr8QtUMZJ8+beti+qHJTmfhOWg1LFOW6u8myIc7feCvz8c2F4fNjMm6e7+958M3/bRPtmt910V9tXX8mlAYnSQRk3Tvcua/hlWJXcgfyKwg0bJrfac1SVc2UolvyUtYUoQrzjvD+H8VwU5bMWCU5SxodBxjNJ2YYaDPdwbSUsB2WcJ23QHJS1LcRbRghKqkAZ1EHpdFy9CpRxOigbNNBdKnYPX40aedv3td1BGVSglCVokRzz31YHpXm5110HfP99voNJBUkQKN94Azj6aOCVV8JfVxCiykFp7jfW60FJiRoHpQq335Qp+nlWv35+OglRRfqw2XZb/dwYNCh/2+z6d/Pm8ten2iRQqs5B6ZfTTgNatdKv39OnJ7eYStwPt6++qrehY0c9BQ9JDlE4KOMkDDEx7oI5xBtJ6dNB2hH3NbwWwD1cW2GId+F0DPEuRNVFWHW/CCpQOiFbJCcJId4//aRXV7b28aFD9dxXDRuqFSidHJR+j7H1mMVZJCdoiLcVrw5KO4HSOq15H1lzdlmn7dhRfThKEgTKIUOABx4Att8+/HUFwWlftGqV+2x2f/nB3G+s56IoxFumKnvQHJSifrLllrpb8ocfgA4dvC1PBR9+CBxxBDBjRv73222X+/zDD8HXI/uCspgcbKecov+/77753ydFoGzQQM+T+8MPwC67ABs35n5LkkAZN3vtBfz4o+4GTpKzlETjoIyTMMRECpTFRVL6dJDnUoZ4h05CegmJmlQYAmVNKJJjpSY7KGtziLcTxRTibYga1j7+3//mQrujEiiTFuLtZ9AatIq3bBtKSuxDvO1yUD70kP55iy3yC7RYz+MorsFu/STK+0BSBrt2OPWlSZP0600mA9x7b7D1mPuN9VwUhXi3b+++zLD2bbNmQNOm4SzbjX799Ovj0KH53ysWulOyDkrZF2JJ4LbbdFHrwQfzv/dy71IR4u3Ud+rVy7lxkxrinQTati2uvldbUTUWMb+QkinyFRYUE0lSxmwM8U403MO1lThyUDZp4n/ZMsg6KGVzUKZS4gtY/frAhAn534XpoJQRbGqbQBnEseGG7KA9CSHexjyiPm7gZV+JxDEzTiHeSRMo/Zx/SQ7xPvJI4JtvgE8/zT++cQiUSXBQxrEuP7RpA3Tvrn8+9tj839q21Z1My5YFF8i8OijjCKlOMr17R7OeYhYoUyn9BYm1f0XloGzQQJ//+eflpk9qiDchdoQV4v3mm8ChhwKPPhpvYa4wIsvMkQjWlDckeSRlzMYiOYkmIb2ERI7oJtG9e7gCZdgXJTsHpeoclO3aAQMH5n8nGnSreFM4f75eqc4NP4MYmYtzsQmUUTookxDibSByCRt42f7ycuffwwjxtmLzIPnb1luj6rDD5JeTBIHSKcRbdLzdQrw326xQ0KBAGd26/JBO61W/FywAJk4s/L1ZMzVVSL06KGX6+IYNuc9+zu9icsvssAPQq5f++aqrAi9Oc7qPGLk3d9hBLtQ+aQQRGa3zyvarpk11IX/JEmDXXeXmoUBJio2wQrx79gQefxwYPVrN8vwSxv26WTPg/vuBgw4CZs5Uv3yilqSM2YKM84tpbFOkJKSXkMixPryPHKm/lQ6zSE7YORntHJTWB3jZEG87gbJp00L3iVOVXb/Mmwf06VO4rGuuKZw26Q5K1Tko7Sre7rNP4Xdehb9iCvE2EInwBlEJlCE7KNe3b4/Khx+2r0puDfvzc71RnYPSDjsH5dq14nY7nasM8Y5uXX5p1EjPcRjmoNbNQemnT//xR+5znGGBUVBSAvzvf8DHHwPnnx94cZXPPAMA0KxupVQK+M9/9PXMmVOcTowguUn9ipvPPqsLEV26yK+LAiUpNmp6kZxddwU6d9Y/3323uuUecwzw9NPA1lurWyYJhzj7dLNmuc8tW/pfDivHh04RjOxJKJhPrubN9cFf9+7hFskJI6zAKsQEyUEpCvEWbc/IkUDr1vnfhSFQGgNx67IGDQLOPDP/u7CqeKdShW5RP6gWEX75pfC7PfcEzj47+LqLKcTbQFWIt/mBzm49YTsobcS4cqPard16vvwy/28/OWCjdFB6OS5Og+44BEo3ohRdkrC9soQpULo5KM1ioyzmeazFmGoiDRrood4K+q82dChm3nYbKhYvLvwxldLXU0zh3WaCjHf85KBcvFgf93iFOShJsVHTi+RkMnqamgULgOOPj7s1JA7i7NOzZulRiXfemS9WeoUCZejUsCsfkcZ8cpkH40GL5LgJlHffDQwbplfS9IN1+eaH86A5KEUh3tYHvV131UWwMByU1ocVYxmiZYseQL0i46AECqud+kHlDemee4BVqwq/f+gh8UOI3cPm2LHi772GeCfBQekU4u1FOExCiLfN/qxwEyjNeYiAYCHeYRfJ8SpQ9uxp/5v12CchxDtKislhEqeD8u+/vS9z7drc55ruoAyB9R066Nelgw/Ofdm/f3wNUkWQ8Y6sg/LUU/X/d9tNr/zuhyRV8T7gAP3/ww+Ptx2kuCim+5ssRkRBMbrHSXDi7NPbbQe8/DJw0knBlhNlEdxaCgXK2or54d08QAyag9JpoJpOAyecALz2ml5J0+867P5WnYMSKLyQTpmiizQNGuR/H4ZAaWyLKJxK9ADqFatAaX4IGDEi97luXXkx0w4VoslOOwHvvw8cd5xYoLTbB3Z9+v779RC7W2/N/95riLfXc8Yuf1axOyhDDot2dVBaqawEzjhD/7zjjnLzBAnxPuEE+Wntqnjb4eS0SkqI95w5usvJWuE3bIrJYRLmW3c3B+XYsbl+NG2a3DL9OCgnTdL/79YN6NFDbp6azu23A/vtB5x8MuAlj25SUSlQ2l3Pb7wReOst4JVXvLXNTJIEysce06+RUV8fSXFR00O8CSmmMZsdFChDpwb0EuKLsARKp5upW4VgN559Vo2DMpMRt0WmSI6xr1KpnIh38ME1w0F5+OHAiSfqeRzvvdf78pxQcUNq1UovKpBKATvvXPi7Xd+zW3c2q7szrNXlwxYor78eGDCg8HuVAqV5m5NeJEfCVaY1aoTvhwzxtp6qKuC66/SQDlkXsN8Q72OOKRS6ATUOSrciGkkpkrPbbnql0KOOCn/9ZoppsBunQNmypZ4G4f339TQlMvhxUJ57ri7EfPghH64NWrXSc3zfcUfNcA1FkYMyk9Ff5hkvpvyQpBDvsjL9Ghm3UEqSTU0P8Sa1kg+N9Fv16tWM0H6GeIdOjbzyTZo0Cf3790fDhg3RqlUrjBw5EotFeYBqM+aTy6/byoqbQGlX2ESGl14C9t+/cPnmwZ5d21XmoDSv47HH9Lf7Dz9c+ECo0kEpGtCHIVDWrQvcdRcwfTrQtq335Tmh4qHMfCzOOqvwd68OSgPrg4tsXjC/Id6lpcDuuxd+r7JIjt+0DW4OymzWXsQMS4x44w1UzJ+PCiOHrdN6dtkl97lHD71P7LEH0LCh3Lr8CpRDhnh78JQVKAcO1F1ETiTFQRkXxfQAF5VAaeew79w595JHBrMDTdZBmU7rQkyQ/E4k2QSp4m29v4YpYrNIDik26KAkNZDlAwei4s03gUWLCgtaFgtm80qQAjtEiiIa2cszZ84cjB8/Hu+99x5mzJiB8vJyDBs2DBs2bIi7acnBzkEZ5GGvXTvn+f/80/+yBw4UC4ZmYUY2xNspB6UZN4GyYUNg7731i5YKgdLq3LNzUIpyY1r/lgmLsgobTsKcTO40UXVxQJ1jxLrvX3gh/3e7gVy7drnPIjeGdbvbt5drj18HpV3fUOmglFmfCDcHZWkp8Pvv4t/8hni7bffgwUCnTrm/nbZn6lRdHDn2WGDffb23xW+It58+4HZcRowA3nnHvSplUhyUcUGBUsd8T1PxAgvQ02AA+j6+7DJ/yyA1jyARI9aIhTDPXwqUpNigg5LURFIpaDvvnKvgXoy8846eLuqii4CuXeNuTY2nRl75Xn31VRx11FHo2bMntttuO0yZMgXff/895s2bF3fTkkMYRXL22sv5bV8QgdhYrnn5mUz+Mps1C1bFW6ZIjlM4ktN0zZuL5zMTNMTbSL7eu7cunF53nfP6rPslaEXRc88Vf69KzLD2LWt77R7Ct9gCOP98Pe+pyI1mXU6nTsDFF7vn3fQrUKZS4n2SBIFSxkH522/i38J60y+bswzQBz9z5gD33edvf/otkmO3j51CvN3aJ9uG2i5QFlPI7NZb54o5TZyodtnmY6IiRzGg39PnzAE+/hjYbDP/bSM1C+s55+UcjFKgTFIOSkJkoIOSkGSy/fbAe+8Bl14ad0tqBeFWNUgIf/yT6L2ZQ8jRxo0bsdE0mFn7T+6l8vJylLu5ioqQVFVVtTqtpdOo+GcbS+BftS5v2hSZdBq2Q9VNmwr2pWzplfLKSqC8HJmSkurla9ks8Pvv1X9XNWuGqsrKgk5dnk7nradc05CpqChoZ0Umg7Rpv1QBqNK0vOWVV1TYuszM66hC/n6sPO00pN5+G+mZM223saqsLG8eY13WY1JeWYl0KgXzsKVC06DdfjtS++0HbbfdgPJypKuq4DS0Kbe0uSKTgWazbRlNsz+uxvLKy4XHs6qqCpU2v3mhKpVCpal9qWw2/9hUVdk7AC+7LOcAskyTymTyl1NZCfz738ABByDbu7d9e9JpVJaXo6ROHU/nTHllJdIVFXnHpry8HJlUynUfFyzL2JZUKr+Pm7YxDTj2gzyWLHH8uaqkBOk1a4S/VQjOPRm0qqrq64+BdVuM7SkvLy/o+wBQecopqHK5Tsv0v4p0GprNOhznq6wUnjsZQHhMKwFUVVY6tsna3+1IpdN5+112viCkKysL+m+c2PV9Gcx9KxLmzkVq/nxo++zj7lj2gHkfVFr6b7mm+V+XkS+3Bo6DwiTyfhUxeefcP+MzGVINGsjftwOS2bSp+vpbmc263iOKhZret2obedfuior8fmoZJ4R5zNmvSBiwXxEzsv2gxguUVVVVmDBhAgYOHIhtttnGdrpJkybhUoEq/vrrr6NekCTdCWWHFStgZBn886+/8Mb06QCAgWvWwKUkQx5fjxyJth98gAUnn4zfpk/HoPXr0cRh+un/rMdgf8n1vPr666gqK8Ne5eUw/G4VqRSyJifk0nXrsPy992CukVxerx7e+PBD7GNuw+uvY89162A9qh8tXIit1qypbv/q1avx3cKFMNcbnzl7NjZaHQAAMuvXw1T3Git/+QXmLI5fLlmCym7dsK2DQPnbhg0wZ7V45bXXoGUy6P3TTzCb4t9+5x20/Oor9DJ99/HChVjeuLHuBvzgAwBAty+/zJtGS6WQMr2dnfnWW9jbvIwvvsByy/Ex2E/CMTV9+nTh8fzpp58w3+Y3L/y0YgXmm9rX+JtvsLt5/a+95stN1eTrrzHI9PfrM2eiol49NPjxRwxxmO+3lSvxv+nTsWNlJdp4WN9bb7+NTt9+iy1M302fPh2D1q2zPXeWDRmCzoK+Y5xPDb//HoMF3wNAj6VL89YVhB9WrYJdgMYHH34IQekiVzZs2ICZln7X7pxzsPUjj2DJiBFYavptxowZ2Ob772H2cn14zjlY0a8fqmz6roFM//vwk0+wKpvFVt99h+4etuHjBQuw3MiRaWLPP/8suM4AwKIvv8SSV17Ja9OvPXuixeefV//98y+/4COXbQKADp9/jr6mv3/59Ve8JzFfELZZsiTvGFiv61Fj3o9+2zJDtpCSCrJZ4I03lC7SvA++XbYMW5r+fm3mTFQGdcgTX0TaryLE3N9eff11VEk6FFt/8w128jmvV3bu0QMtP/0UAPBZVRW+i/k6pZqa2rdqG+Zz6csvv8Q3pn6a+euvvGeLKO617FckDNivCAD8KZnur8YLlOPHj8dnn32Gd955x3G6iRMn4ixT4Y21a9eiY8eOGDZsGBrJJocvItJ33VX9uV7Dhhg+fDgAoOSGG1znrTzrLKRfeAGVd92FLrvtBgDY8Z/fSi67DFi61HZeYz1e2Xv4cKCsDJn69atz4GXq1s3La9mlXz90tlR3zmyxBYbutVd+G/71L2QEFR37DRyIkpdfrv67WfPmaNK3b940Q/bcU5wcd/36vD9bt8mXrLbq2dO1OnTz9u2BhQur/95n+HAgk0HJiy/mTbfroEFIW3KZ9enfH70t+zb97bf5K2jYsLoqq5ZOY8jQofnLGDCgYBlesDu27Tt0QJvhw6FttRVSX37pe/ntO3ZEG/M6Fi3KX/+IEfCFaZ8DwLB99gHq1we++spxtuZNm2L48OEomTYN+Ogj6dXttvvuSFvOkeHDhyNzySW283SwyXdSvc+/+Ub8PYD0u+/m/VZ1+OFILViAqpEjUXLVVdLtdmoHAOzQv7/r/FrDhkitW5f3Xf369Qv7zvDhwJVXYmsAW0N/4zZjxgzsueeeKJszJ2/S3ldeKdt8V/rvsgu0wYOR9pgOpM/22wvPnYyNKNRjm22wlWX6Zm3aACaBsm2HDlLXy5Tl2tOydWvf11lZzE5wLZUKfX1e8NoWc9/KuqV1KBI223LLvL/3Gj48eAoP4oma2K/s2HuffaSrZKcaNQJM1+y9R4xwT6fil549oR1yCLR27dDjxhvRw2+qg4RRm/pWbUDbemukvvgCANB92DBsab6H/f133rRh3mvZr0gYsF8RM0aEshs1425tw6mnnoqXXnoJb731Fjp06OA4bVlZGcoEA6xsNlsjTyizvJUqKclto0Q+oJLrrweuv17ceVzypUjvy+23B+bPz81XVqYPYk3LT1mWVdK6dcFDWGrzzfV5rW0Q5KDMWBxQ6XQaacvyqtthxSI+pi0D4ZJs1jUHUtqyjGxZmTDfZLasrOBhIFOnTmG7LPOlGjWqFihTjRoha2lPpkGDQA8Kdsc2nUohnc0CM2fKF6ARLSeb1ZdjYHlx4Ps8bdAgfznGvnR54EpXVentMXLKSZItLdXzYhrssIPedvO5l83qgvLq1cABB6DEpu9Ub7Ol7+btC8t+ST/yCACg5MknPbUbAEocRI6M28PfwQcjtXAhsHhx3tepVEr62GWzWZRYzweF1+dMvXr6/vLoms/88Yenc6ckm9WvCSbSlv5W0N/tsLQ1XVIiN58ivBy/KPDblqK/1/fpo+eKBFBiESizovsDiYSi71cS2I6LRLTIj9HJlpWFl2dv882Bjz9GCjUz4X5t6Fu1gmefBQ48ENhyS2RGjy4cC154IfDww8Ctt0ZyvNmvSBiwXxFAfoxeE+/Z0DQNp556Kp599lnMmjULXVltqRDZIjkdO+oFV2SxDjT97vtGjfSbdrt2ej5Ao0Obl2/t5C1aAD17Fq5fJLredFPhd1bxxa2Ktxm3QhUlJe6DcNH6RcuSqeItmq9hw9xnkSs4aBVvN8zVtP3gViTHL3bFidyOV0WF/n8Ll6QIV1xRuPzjjgOGDgW22gp49FH9e/N5WFqquzLvu0+vpOvWFj9FckSFotwwhFM/lJT4L9ZhXU5YGPvRa9+yc407FcmxW7dBsRTJKaYiNTWZxx7TX3zsvTcwdiwwbZp+zf3PfyhOknBJahVvQoqB7t316IlnnxWfD5ddBnz3HbDvvpE3jRBC4qBGjgzGjx+PqVOn4tFHH0XDhg2xYsUKrFixAn/99VfcTUsO5gdM8w3R/LC5zTbAsmXAEKdMfBasD9Vu4o1dpelGjYCRI4Eff8wXeJwEyubNC8WTunXFN/yDDwauvTb/O1EVb+v22D2MiyptW/+2Lsvq0LMTKK3ChV0VbyvWtpq3rVGjwt8lQ7Q8o0rAsO5Tl5B5aaz73ThObg9OhsDn1sdFFU8zGWDGDD1M3aiOaxUou3YFjj0WaNrUfR/6ESgNgdUL2Szw8su68DFmTP5vDkXIABSHQGmcA17PhbFjxd/36SP+XnRMXBzQtlCg1ENGW7YEpkyJuyXx0b277k5+5RX9HDngAP3+efnlcbeM1HSCCJRJuH4QQgghJDHUSIHyzjvvxB9//IHdd98dbdu2rf73xBNPxN205GB2T5kHl+bPVVVikc4J60C1eXPn6U87TX+onDUrX+Bo3Fj/3zp4dRIomzbV/7/33tx3Bxwgbn86DRx2WP53MgKl3UDc2k4ZB6UltNjWtaVKoDRVqRcKlGE7KINi3X9hCZTGsZMVKN36uBW7FwJWgdJMGALlsGHOy7Rbz6676sLH1KnAW28BbdoAhx4KuOWgLClR4+QK84FW1kF51ln6+bv77sBLLxU6tw3uvFMsdoquSXRQ+ueCC4CVK4Fx4+JuSbyIXoYQEjZe+pl13EMIIYQQYqJG5qDUkiCmJB1ziLf5QdgqUFp/d8M6rZt4U1qae6j844/c93aFiczLtz7QG2/mjzlG/79ZM93BZBbmzFhFvTp1CoU4WYHSishBaf2ufn3gt9/y1y/CKnDICpTW9W3alPvsVaAMglXM8Ht+Wo+Fqsqf5u1OpexD663IhnhbkRG5RaK0E34EytatdYHxs8+AU05xXr6BIYYZbd11V2D5crkHVFG/9UOY13djP7o5KK+/Xnd/u213+/bA118DnTrlf88Qb/UkpR2EEHt4nhJCCCHEgRrpoCTuVJ1+eu6P88/PfT7jjNznf/9b/z9MgdJMr165z5Yk/9WYBY5sVk8sbWDkODRy/Bm/2T2wW8USkYPSOo1fgVLkoLQ6AO0cgSI3nVVACdtBue229r9FhSgXpwqy2dyyzMfIrd/LhnhbsWt3EAelkzPRqc/uuitw8snOy3Zbj+xxsAvx9io4WirYK8VLDkrZ7ZZ5eQAU7ttiESiZQ44QQgghhBCiAD5Z1FK0ESMw74wzUHHPPcCoUbkf9t5bD9287z5g9Gj9uyAh3l7EmylT9DxiffoAJ54onsYa4n3nncCkScCHH9q7yOweoEU5If2GeLutU0agtHNtidx0u+7qPA1QKKD8+Wfus1eB8vHHdcedHRMn2v9mF8bslbByD6ZSuW23cxOL8CtQyjgoraKT235z+l2lgOTmWr3mGvt+pMpBGaZA6TcHpRN2KSasWPet3xyUKvaxG3ZF1gghxA3jBXS9evG2gxBCCCGJgwJlbSWVwo977AHtqKMKc+KNGaMX5zAerIM4KL2IN9ttB/z0EzBvnr1AYBYQs1mgVSvdAdqvn/1yvTgozagUKEVFcqyDczthQRTi3bw58MIL+jJ69RI7HK1tCCJQbr018MMPwA035H///PP6d//5j/28qsJBRU67+vX1/1u29L9cILeP/QiUXnNQyjgovQqUAHDmmbrIddtt+d+rFCjdckieey6wdq34t6qq4gnxVpnuQFagVOWgjCLH2xFH5D5femn46yOE1Bxef12/brz3XtwtIYQQQkjCqJE5KIliggiUbdp4W5ebAGJ27siKHXbijkyIt2wVbysiB6VbFWq7/WwX7rvvvsDvv4vdmaK2brYZ8O23+ucuXbznoMxmC8Wh/fZznsetTV4wF3Yy+PBD4LHHgMMP979cILftdgWjnNqTSgEjRujVrWWwW655+/wIlDfcoLuJRYK2KmTyftqdwxUVwULEDZIS4i2L6Ny0fte0qf8clNb5ohAod91Vd9r/8ou3FAGEENK5M3DRRXG3ghBCCCEJhA5K4k6QEO9u3YCDD9bFwIceCt4Wu+I+frDOn8mEl4NS5KCUFSidBKfSUvv5rG149FGgYUPdDXnCCYXCkIz45Me9pirEWyRMbb01cNllwFZb+V8uIA7xdutfRpEcAHjgAaBjR7l12e2DRYtyn418qm7zWJGtGO2XIFW4KyvV5KBU7aDs3Dn32egHYYd4G8fzk0/09Ahz56orkhNVldwxY4AJE9TuK0IIIYQQQkithQ5K4k4QB2XdusBTTwHr16t5cDaLVEGdYTJiSZg5KK0h3rIOStk2WEWtHXYAVqzQRZh0Or+qt2h6EUHFIdUCpSq6dgW++y5fZJR1UAJ6qoGlS+VcvXbLHTYMmDZN/2wNmQ+y31Q6KIPkDLMTKL2iuh+8/DLw8MPAv/6VOwfDdlAaot622+bSM/jNJRmXQEkIIYQQQgghCqFASdwJIlAagoaqh2aVAqVo/rBCvGUclHbb47Wis9N0ZoHJj+jlRxySFTUvvRS4+GL730Uh3qq49Va9MJQ5VNyLQAnInyd2+33yZKBtWz10f8cd5eaRQaVA2bWr/3mTKlB27aoX9zETtoNStPxic1ASQgghhBBCiEIY4k3cCRLibRXhgmIWhbwIL+PG6f9fcUXuO5Ho4yZQyiIjUFpdWn5CvL20wYof0SssB+Vvv7nnpApToOzZE7jxRqB//9x3bvvPa35Vt+V266YXuNlrr8LfggiUMvOedJLcsrp189+Oigo1Id4qXlK0apX7LBILo3JQmqFASQghhBBCCKnFUKAk7qhwUKrCrzjx4IPAqlXAv/8tP48oB6UsMkVyjArU5mlEqArxVoHqHJSZDDB9OtCsmftywgzxFuHU7+vW1cOCZbBusx9RLWwH5Z136rkQ3QhSLb2yEvjpJ//zG6ioCj9rFnDKKXo1WdFxDlugFC1fVYi39bpCCCGEEEIIIUUABUriThAHpcoHfcC/QJlKyYkrUToore1Jp4Fzz9U/H3107nur20pWlHFzHEYV4m23zmOOAZYvB/bZJ5p1e0XUv+65B9iwQW93r17+lutnvwcRKGX7sLlYTBjtqKxUEzqtwkHZvTtw++3AnnuKf1cZ4p1KFe43OigJIYQQQgghJA8KlMSdIA5K1S4+lVW8AeCww/T/DWEwiEDp5BQUFcmxCpQlJXouvO+/B+6/P/e9XweltQiOU3tl8ZPD0s7xVlLizZEXZoi3COt+PvFE4Pjj9X3QpIm65cog2tdO+TrNyLqYVadjsFJRARx3XOH3XvuhXwflVVfp/w8f7u5OVP1ixS29A0CBkhBCCCGEEFKroUBJ3AnioFSNWaBUIX4++ijw7bfA1VeLf/crzlZVAQMG5P7eems5gRLQK0mbty0sgdIPxx+vtzud1sNjoyRqgdLav2REK2v1bZnl+mnLkiXAJZfIzXvooUCHDvoyXnjBfjq77TPyTj7yiNz67KioAEaN0qul77Zb7vuoclBOnKjvtxdfdJ/WKvoFxXruixyU1nXKXnusYisFSkJI2Jx6qv7/2LHxtoMQQgghNQpW8SbueBHp1q7NfW7bVn1bVFbxBnTRxlz4I4iD0tyeqirg8ceBCy8EBg7U17FqVf705kId1vnN+A3xdhMozcKGrGOsfn1d5FmzRhe9ZLBzlgYRpqLAj0B52WXAkUcCW25pP40KB6WXatplZcBXXwG//AJ06mQ/nZ2D8rPPgJUrgS5d5NcpwhCYO3cGGjXyv5wg1wDZ/aba+e3HQSmbg9LaVgqUhJCwueUW4LTTgC22iLslhBBCCKlBUKAk7ngR6ZYvz31u3159W8yiVhhuTatA6aVIjrk9lZW6GPTQQ7nvZB2UVvw6KMvLnX/PZoEnngCeftpb8aAGDbyJIGaBtZgESisyAmUq5f7AFnUOSkAXH53EScB+++rWDS5OAuocsGFfA8IgTAelFQqUhJCwSaWcX8QRQgghhPigSJ7uSKx4EQHMVXrbtVPfFtUOSitW0SyIg9KKX4HSKmaoDPEeNQp48klgu+3klulC5ZVX5v5IpfS2X3pp/ncGXgXKqEO8rajK0Rh1FW9ZRALlf/+rbvmqjp/qNA8y7LJLsPmt+1ZlkRwrFCgJIYQQQgghRQgFSuKOFxEgbAdl2AKlWTgoKwuWg9LpdwBo2DD/b7vtSVIOSheqzj4bs2+4AeV//AF88w2wbFl+qH9Nd1DK4EdUi8IpaBVgL70UOOIIdcuvqMh9Nvdpa/92w+w0lC0AFJSHHw42f/36+X+rLJJjJexiR4QQQgghhBASAhQoiTt+xZGOHdW2A8h3YYUh2hiOsZIS4Npr/TsoRW4xtwrnsiHeqnJQhkEqhbXduukiSbduQOvWBb878uyz9r/F7aBUJVD66beqi7aIsG5fr15ql28+ftddl9sPXsW/iy7K7Y+nnlLTNjf8ioUGVlejSJRVFeIdlauUEEIIIYQQQhRCgZK44+WBd+pU/f8mTYCTTlLflrAdlP36AYsX65W9u3Txn4NS5PZza28cId5xInJQjhypVzwXUawCpfX88dNvTzop58KbNs1fO9ywOu+89H0ZzMeva1e92NLixUDfvt6W066dPu+iRcCuu6ptox1B94XZQZnJiPuAVbQMI0UGIYQQQgghhCQUFskh7ngRKEePBjbfXH+4btpUfVvCFiiB/MTvYYZ4y/6uwkGpWmzyi0yI95QpwI476p9LSnLCVtwh3qpCZ/043Jo00Stxr1gBbL+9mnZYsQqwQV2DVqzb3bmz/2XJVpBXhUoHpV0/tp7nAwbIL/+FF4DJk4EJEzw3jRBCCCGEEEKSQEJUC5JovAqB/fuH0w4gGoHSjMoQb7eq2nbbIyqoIYNZyNp/f3/LUI2MQLnDDsCnn+rbfdttwK236t8PHBh++5yIMwcloIv+YbrqrNunWtS++261y4uSoO5ds4PSTqC0rsOao9aJfffV/xFCCCGEEEJIkUKBkriTpJxm5od71Q4vESqreG/Y4G9dfrdz3Dhg9mxg1Srgjjv8LUM1skVyjPyHV1wBLF2qi5Vnnx1u29yIW6AMG6tDNMj5deutwGmnAc2aAa+9poudvXsHal7knH22nitz662Du8FlKmv37Ak0bgz88Qdwww3B1kcIIYQQQgghRQYFSuJOkgSVqB2UXrbdLcS7Tx+9aMzKlcCkSc7zq6CkJFf0p1hp1Ah48cW4W6ETRKB8/XXg/POBo49W1x7VqHRQnnwysNVWQPfu4RTLioIrrwT22EN39AY9N61VvO2mWbAA+PJLYM89g62PEEIIIYQQQooMCpTEnSiEQFmiFii94OagLC0FPvxQD18eNsx5/tqAk4MyiQTJQbnnnskXnaz9L4goV1ICDB0arD1xU1oKDB+uf66oCLYsGYES0AtzdekSbF2EEEIIIYQQUoRQoCTu1GYHpRfcclACupvMzlEWRch63MiGeCcRVSHexUJSCislgaDXQJkQb0IIIYQQQgipxSRM4SGJJElCoFmgTJJwCriHeLuRpP0cFrVRoExaP5WlNgjmsgQ9N2ubuE0IIYQQQgghHqkFiggJTJIElmJxUPoRKINWCi4GaqNAWazQQZkj6DUwm1XTDkIIIYQQQgipoSRM4SGJJEkC5c475z5vsUV87RAhE+LtBAXKZBMkB2UxQgelOij2EkIIIYQQQogjFCiJO0lyKj70kF4dePBg4KSTolnnjTcCbdoA993nPF3QEG8ngXLKFL0N117rfblJIklit1e8OCgnT859PvRQ9W2JAopq6uC+JIQQQgghhBBH+NRE3Nlyy9zno46KrRkAgG7dgEWLohW6JkwAzjjDfZ1BQ7ydKgWPGwcceWRxC3xWis1B6UWgPP10oHVroGvX4q3KXJP6mgrq1gX++gvYbTfv81KgJIQQQgghhBBH+NRE3KlXD/j4Y2DuXGDMmLhbE49wIrPOsEO8a4JgVMwh3l5EptJSYOzY8NoSBU6CeW3kk0+AV1/154ilQEkIIYQQQgghjvCpicjRu7f+j9jDIjnubLMNsGKF/rlYnYW1hfLyuFuQLLbYwn/e27Ztc58bN1bTHkIIIYQQQgipQSQouSAhRU7QHJS1Qbi47z6gUydg662B//wn7ta4c/vtuoP43/+OuyXRU9uKAoXJiBF63tzmzYFXXom7NYQQQgghhBCSOOigJEQVfkK833wT2H9/oG9fXcCo6XTuDCxZou+rYghZP+UU4IQTak+I7ksvAYcdBuy5py4iEzWk08DMmXrYfG3pS4QQQgghhBDiAT4pEaKKCROAI47QP592mtw8gwYBv/wCZLOhNStxmJ2mxUBtEpRGjAB++03PoUnUU5v6EiGEEEIIIYR4gE9LhKhi9Ghg7VrdGXjIIfLz1SZxkiQfipOEEEIIIYQQQiKGAiUhqkingZNPjrsVhBBCCCGEEEIIIUUFi+QQQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJio0YLlLfffju6dOmCOnXqYMcdd8QHH3wQd5MIIYQQQgghhBBCCCEmaqxA+cQTT+Css87CxRdfjPnz52O77bbDXnvthVWrVsXdNEIIIYQQQgghhBBCyD/UWIHyhhtuwPHHH4+jjz4aPXr0wF133YV69erhgQceiLtphBBCCCGEEEIIIYSQf8jE3YAw2LRpE+bNm4eJEydWf5dOpzF06FDMnTtXOM/GjRuxcePG6r//+OMPAMDq1atRXl4eboNjoLy8HH/++Sd+++03ZLPZuJtDagjsVyQM2K9IWLBvkTBgvyJhwb5FwoD9ioQB+xUxs27dOgCApmmO09VIgfLXX39FZWUlWrdunfd969at8eWXXwrnmTRpEi699NKC77t27RpKGwkhhBBCCCGEEEIIqQ2sW7cOjRs3tv29RgqUfpg4cSLOOuus6r+rqqqwevVqNG/eHKlUKsaWhcPatWvRsWNH/PDDD2jUqFHczSE1BPYrEgbsVyQs2LdIGLBfkbBg3yJhwH5FwoD9ipjRNA3r1q1Du3btHKerkQJlixYtUFJSgpUrV+Z9v3LlSrRp00Y4T1lZGcrKyvK+a9KkSVhNTAyNGjXiBYMoh/2KhAH7FQkL9i0SBuxXJCzYt0gYsF+RMGC/IgZOzkmDGlkkp7S0FH379sXMmTOrv6uqqsLMmTMxYMCAGFtGCCGEEEIIIYQQQggxUyMdlABw1llnYdy4cejXrx922GEH3HTTTdiwYQOOPvrouJtGCCGEEEIIIYQQQgj5hxorUB566KH45ZdfcNFFF2HFihXo3bs3Xn311YLCObWVsrIyXHzxxQVh7YQEgf2KhAH7FQkL9i0SBuxXJCzYt0gYsF+RMGC/In5IaW51vgkhhBBCCCGEEEIIISQkamQOSkIIIYQQQgghhBBCSHFAgZIQQgghhBBCCCGEEBIbFCgJIYQQQgghhBBCCCGxQYGSEEIIIYQQQgghhBASGxQoayG33347unTpgjp16mDHHXfEBx98EHeTSIKZNGkS+vfvj4YNG6JVq1YYOXIkFi9enDfN33//jfHjx6N58+Zo0KABDjroIKxcuTJvmu+//x4jRoxAvXr10KpVK5xzzjmoqKiIclNIgrn66quRSqUwYcKE6u/Yr4hffvrpJxxxxBFo3rw56tati169euGjjz6q/l3TNFx00UVo27Yt6tati6FDh+Lrr7/OW8bq1asxZswYNGrUCE2aNMGxxx6L9evXR70pJCFUVlbiwgsvRNeuXVG3bl1sttlmuPzyy2GuNcl+RWR46623sO+++6Jdu3ZIpVJ47rnn8n5X1Y8+/fRT7LrrrqhTpw46duyIa6+9NuxNIzHi1K/Ky8tx3nnnoVevXqhfvz7atWuHI488EsuXL89bBvsVseJ2vTJz0kknIZVK4aabbsr7nv2KeIECZS3jiSeewFlnnYWLL74Y8+fPx3bbbYe99toLq1atirtpJKHMmTMH48ePx3vvvYcZM2agvLwcw4YNw4YNG6qnOfPMM/Hiiy/iqaeewpw5c7B8+XIceOCB1b9XVlZixIgR2LRpE/73v//hoYcewpQpU3DRRRfFsUkkYXz44Ye4++67se222+Z9z35F/PD7779j4MCByGazeOWVV7Bo0SJcf/31aNq0afU01157LW655RbcddddeP/991G/fn3stdde+Pvvv6unGTNmDD7//HPMmDEDL730Et566y2ccMIJcWwSSQDXXHMN7rzzTtx222344osvcM011+Daa6/FrbfeWj0N+xWRYcOGDdhuu+1w++23C39X0Y/Wrl2LYcOGoXPnzpg3bx4mT56MSy65BPfcc0/o20fiwalf/fnnn5g/fz4uvPBCzJ8/H9OmTcPixYux33775U3HfkWsuF2vDJ599lm89957aNeuXcFv7FfEExqpVeywww7a+PHjq/+urKzU2rVrp02aNCnGVpFiYtWqVRoAbc6cOZqmadqaNWu0bDarPfXUU9XTfPHFFxoAbe7cuZqmadr06dO1dDqtrVixonqaO++8U2vUqJG2cePGaDeAJIp169ZpW2yxhTZjxgxt0KBB2hlnnKFpGvsV8c95552n7bLLLra/V1VVaW3atNEmT55c/d2aNWu0srIy7bHHHtM0TdMWLVqkAdA+/PDD6mleeeUVLZVKaT/99FN4jSeJZcSIEdoxxxyT992BBx6ojRkzRtM09iviDwDas88+W/23qn50xx13aE2bNs27F5533nla9+7dQ94ikgSs/UrEBx98oAHQli1bpmka+xVxx65f/fjjj1r79u21zz77TOvcubN24403Vv/GfkW8QgdlLWLTpk2YN28ehg4dWv1dOp3G0KFDMXfu3BhbRoqJP/74AwDQrFkzAMC8efNQXl6e16+22mordOrUqbpfzZ07F7169ULr1q2rp9lrr72wdu1afP755xG2niSN8ePHY8SIEXn9B2C/Iv554YUX0K9fPxxyyCFo1aoV+vTpg3vvvbf696VLl2LFihV5fatx48bYcccd8/pWkyZN0K9fv+pphg4dinQ6jffffz+6jSGJYeedd8bMmTPx1VdfAQA++eQTvPPOO9hnn30AsF8RNajqR3PnzsVuu+2G0tLS6mn22msvLF68GL///ntEW0OSzB9//IFUKoUmTZoAYL8i/qiqqsLYsWNxzjnnoGfPngW/s18Rr1CgrEX8+uuvqKyszHuYB4DWrVtjxYoVMbWKFBNVVVWYMGECBg4ciG222QYAsGLFCpSWllYPcAzM/WrFihXCfmf8Rmonjz/+OObPn49JkyYV/MZ+RfyyZMkS3Hnnndhiiy3w2muv4eSTT8bpp5+Ohx56CECubzjdC1esWIFWrVrl/Z7JZNCsWTP2rVrK+eefj8MOOwxbbbUVstks+vTpgwkTJmDMmDEA2K+IGlT1I94fiRN///03zjvvPIwePRqNGjUCwH5F/HHNNdcgk8ng9NNPF/7OfkW8kom7AYSQ4mH8+PH47LPP8M4778TdFFLk/PDDDzjjjDMwY8YM1KlTJ+7mkBpEVVUV+vXrh6uuugoA0KdPH3z22We46667MG7cuJhbR4qVJ598Eo888ggeffRR9OzZEwsWLMCECRPQrl079itCSNFQXl6OUaNGQdM03HnnnXE3hxQx8+bNw80334z58+cjlUrF3RxSQ6CDshbRokULlJSUFFTBXblyJdq0aRNTq0ixcOqpp+Kll17C7Nmz0aFDh+rv27Rpg02bNmHNmjV505v7VZs2bYT9zviN1D7mzZuHVatWYfvtt0cmk0Emk8GcOXNwyy23IJPJoHXr1uxXxBdt27ZFjx498r7beuut8f333wPI9Q2ne2GbNm0KisdVVFRg9erV7Fu1lHPOOafaRdmrVy+MHTsWZ555ZrUDnP2KqEBVP+L9kYgwxMlly5ZhxowZ1e5JgP2KeOftt9/GqlWr0KlTp+qx/LJly/B///d/6NKlCwD2K+IdCpS1iNLSUvTt2xczZ86s/q6qqgozZ87EgAEDYmwZSTKapuHUU0/Fs88+i1mzZqFr1655v/ft2xfZbDavXy1evBjff/99db8aMGAAFi5cmHeDMgZGViGB1A6GDBmChQsXYsGCBdX/+vXrhzFjxlR/Zr8ifhg4cCAWL16c991XX32Fzp07AwC6du2KNm3a5PWttWvX4v3338/rW2vWrMG8efOqp5k1axaqqqqw4447RrAVJGn8+eefSKfzh80lJSWoqqoCwH5F1KCqHw0YMABvvfUWysvLq6eZMWMGunfvjqZNm0a0NSRJGOLk119/jTfeeAPNmzfP+539inhl7Nix+PTTT/PG8u3atcM555yD1157DQD7FfFB3FV6SLQ8/vjjWllZmTZlyhRt0aJF2gknnKA1adIkrwouIWZOPvlkrXHjxtqbb76p/fzzz9X//vzzz+ppTjrpJK1Tp07arFmztI8++kgbMGCANmDAgOrfKyoqtG222UYbNmyYtmDBAu3VV1/VWrZsqU2cODGOTSIJxVzFW9PYr4g/PvjgAy2TyWhXXnml9vXXX2uPPPKIVq9ePW3q1KnV01x99dVakyZNtOeff1779NNPtf3331/r2rWr9tdff1VPs/fee2t9+vTR3n//fe2dd97RtthiC2306NFxbBJJAOPGjdPat2+vvfTSS9rSpUu1adOmaS1atNDOPffc6mnYr4gM69at0z7++GPt448/1gBoN9xwg/bxxx9XV1NW0Y/WrFmjtW7dWhs7dqz22WefaY8//rhWr1497e677458e0k0OPWrTZs2afvtt5/WoUMHbcGCBXnjeXPlZPYrYsXtemXFWsVb09iviDcoUNZCbr31Vq1Tp05aaWmptsMOO2jvvfde3E0iCQaA8N+DDz5YPc1ff/2lnXLKKVrTpk21evXqaQcccID2888/5y3nu+++0/bZZx+tbt26WosWLbT/+7//08rLyyPeGpJkrAIl+xXxy4svvqhts802WllZmbbVVltp99xzT97vVVVV2oUXXqi1bt1aKysr04YMGaItXrw4b5rffvtNGz16tNagQQOtUaNG2tFHH62tW7cuys0gCWLt2rXaGWecoXXq1EmrU6eO1q1bN+3f//533sM9+xWRYfbs2cJx1bhx4zRNU9ePPvnkE22XXXbRysrKtPbt22tXX311VJtIYsCpXy1dutR2PD979uzqZbBfEStu1ysrIoGS/Yp4IaVpmhaFU5MQQgghhBBCCCGEEEKsMAclIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIYQQQgghJDYoUBJCCCGEEEIIIYQQQmKDAiUhhBBCCCGEEEIIISQ2KFASQgghhBBCCCGEEEJigwIlIYQQQgghhBBCCCEkNihQEkIIIYQQQgghhBBCYoMCJSGEEEIIIUVAly5dkEqlcNRRR8XdFEIIIYQQpVCgJIQQQghx4cQTT0QqlUIqlcKsWbM8zfv6669Xz3vGGWeE1EJCCCGEEEKKFwqUhBBCCCEuHHnkkdWfp06d6mne//73v8LlxMWbb75ZLZi++eabcTeHEEIIIYQQCpSEEEIIIW4MHDgQm222GQDgmWeewV9//SU134YNG/Dss88CAHr27Im+ffuG1kZCCCGEEEKKFQqUhBBCCCESjB07FgCwdu1aPP/881LzTJs2DRs2bMibnxBCCCGEEJIPBUpCCCGEEAnGjh2LVCoFQD7M2wjvTqfTOOKII0JrGyGEEEIIIcUMBUpCCCGEEAm6deuGgQMHAgBee+01rFq1ynH65cuXY+bMmQCAwYMHo3379gXTPPfcczjkkEPQqVMn1KlTB02aNEG/fv1w6aWX4vfff5dq1/Tp03HEEUegW7duqF+/PurUqYOuXbvioIMOwpQpU/Dnn38CAL777jukUinsscce1fPuscce1fkojX9TpkwpWMemTZtwxx13YI899kDLli1RWlqKNm3aYPjw4Zg6dSqqqqps23fUUUchlUqhS5cuAICff/4Z5513Hnr27ImGDRt6zoUpyqH55JNPYsiQIWjZsiXq1q2L7t2749xzz8Xq1attl7P77rsjlUph9913d1zfJZdcUr0+EcZvl1xyCQBg9uzZGDlyJNq1a4e6deti6623xuWXX17tpDWYPn06hg8fXj1djx49MGnSJGzatEl6X3z44YcYPXo0OnbsiDp16qBjx444+uij8eWXX0rN/8033+DMM89Er1690LhxY9StWxfdunXDUUcdhY8++sh2PusxqKqqwgMPPIA99tgDrVu3RjqdZqVxQgghhHhDI4QQQgghUtxzzz0aAA2AdvPNNztOO3ny5OppH3744bzfVq9erQ0ePLj6d9G/Vq1aaXPnzrVd/q+//qoNGTLEcRkAtAcffFDTNE1bunSp67Tm6Q2WLl2qbbXVVo7z7LLLLtpvv/0mbOe4ceM0AFrnzp21uXPnai1atCiYf/bs2a773mD27NnV882cOVM74ogjbNu1+eabaz///LNwOYMGDdIAaIMGDXJc38UXX1y9PBHGbxdffLE2adIkLZVKCduy8847a+vXr9eqqqq0008/3bbNe++9t1ZRUSFcV+fOnTUA2rhx47T7779fy2QywmWUlZVpTz75pON2TZ48Wctms7btSKVS2oUXXiic13wMXnnlFW3o0KEF848bN85x/YQQQgghZuigJIQQQgiRZNSoUahTpw6A/OrcIozfGzRogAMPPLD6+40bN2Lo0KGYNWsWSkpKMHbsWDz22GN477338Pbbb+PKK69E8+bNsWrVKgwfPhzLli0rWPaff/6JPfbYo9qh2bdvX9x9991499138dFHH+HZZ5/FmWeeiXbt2lXP0759eyxcuBAPPPBA9XcPPPAAFi5cmPdv5MiR1b+vX78eQ4YMqXbkjRw5Ei+88AI++ugjPPXUUxg0aBAA4J133sG+++6LyspK2/2xfv16HHTQQfj777/x73//G2+++SY++OAD3H///Wjbtq3jvrTjwgsvxNSpUzFy5EhMmzYN8+bNw/Tp0zFixAgAOYdgFLzyyiuYOHEidtppJzz66KP46KOP8Oqrr2KfffYBAPzvf//DpEmTcOONN+KWW27BPvvsg2eeeQbz5s3D888/j5122gkA8Oqrr+Lee+91XNeCBQtw0kknoVWrVrj11lvx/vvvY86cOTjvvPNQVlaGjRs3YsyYMbYuyMmTJ+Occ85BeXk5tt12W9x5551444038NFHH+GRRx7BgAEDoGkaLr/8ctxyyy2ObTnvvPPwxhtvYL/99ss7BsZ2E0IIIYRIEbdCSgghhBBSTIwaNaraJfbll18Kp/nkk0+qpznyyCPzfrvgggs0AFqTJk20jz76SDj/d999p7Vt21YDoB1++OEFv5955pnVyx8/frxWVVUlXM7GjRu1FStW5H1ndr+5ORfPPvvs6mn/85//FPxeVVWljRkzpnqaO+64o2Aaw0EJQGvQoIG2YMECx3W6YW4/AO2KK64QtmvYsGEaAC2TyWirVq0qmEa1gxKAdtBBBxW4HysqKrSddtpJA6A1bNhQq1OnjjZhwoSC5WzYsKHaIbntttsK12X8jn8cqSJ36KxZs6qdlf379y/4/fPPP692Tl588cXCvlNZWVntTG3QoIG2evXqvN+tx0DUNwghhBBCvEAHJSGEEEKIB4488sjqz3YuSvP35unXr1+P22+/HQBw+eWXo2/fvsL5O3fujAsvvBAA8NRTT+XlL1yzZg3uvvtuALpz8uabb7bNj1haWorWrVvLbFYBGzduxH333QcA6NmzZ3WORTOpVAp33HEHmjdvDgC47bbbHJd57rnnYrvttvPVHhF9+/bFBRdcIGzXWWedBQCoqKjA3Llzla3Tjnr16uGee+5BSUlJ3vclJSU44YQTAADr1q1Dy5Ytce211wrnHzduHADg008/xR9//OG4vuuvvx5t2rQp+H6PPfbA8ccfD0DPUWl1UV5//fUoLy9Hv379cPHFFwv7Tjqdxq233oqysjKsX78eTz/9tG07ttxyS2HfIIQQQgjxAgVKQgghhBAP7LXXXtWi3yOPPAJN0/J+r6qqwqOPPgoA6NChQ15Rmjlz5lQLTwcffLDjenbbbTcAQHl5OebNm1f9/axZs6oL35x++ukFgpgq5s2bhzVr1gDQC93YradRo0YYNWoUAGDRokX4+eefbZc5ZswYpW08/PDDbcVZs/i7ZMkSpesVseeee6JZs2bC38yi7IEHHohsNus63dKlS23X1bRpU+y///62vx9zzDHVn994442831588UUAwEEHHWS77wCgSZMm6NWrFwA4CryHHnpoaH2QEEIIIbUHCpSEEEIIIR7IZDI4/PDDAeiVsd95552832fOnInly5cD0AW5dDo33DK72dq2bVtQQdv8b5tttqmedsWKFdWfP/744+rPu+66q9qNM/HZZ59Vf95xxx0dpzX/bp7PTIMGDdCtWzc1jfuHrbbayvY3s1i4bt06pesVseWWW9r+1qRJE8/TObW5T58+yGQytr/37t0bpaWlAICFCxdWf79s2TL88ssvAICJEyc69r9UKlXdX839z8q2225r+xshhBBCiCwUKAkhhBBCPOIU5m0X3g0Aq1at8rU+wzEJAL/++mv1Z7/FZWRYvXp19edWrVo5TmsONTbPZ8YsvqmiXr16tr+ZhWGn4j1Rt0VFm92ORyaTqRZozcdDRf+z0rRpU1/LJIQQQggxY//qlRBCCCGECOnduzd69eqFhQsX4qmnnqrO17dhwwZMmzYNgB5i3KNHj7z5zKLT/PnzbUN9rXTo0EFd433gFAosC8OA1eH3eJj730UXXYRDDjlEar769evb/sbjSgghhBAVUKAkhBBCCPHBkUceiXPOOQdr1qzBiy++iIMPPhjPPvtsdUEbq3sSQHUxGQBo2bKlL+GxRYsW1Z9//vlndO3a1Ufr3TGHSK9cudIxNNkcAmyXhzFpGG7Fqqoqx+nMBYqSwsqVKx1/r6ioqHZOmo+Huf9ls9m8NAKEEEIIIXHCEG9CCCGEEB+MGTOm2j02depUALnw7mw2i9GjRxfM06dPn+rP7777rq/1br/99tWf33rrLc/zy7rvzOLV+++/7zjtBx98IJwvyTRs2BAA8PvvvztO99VXX0XRHE8sWLAAFRUVtr9/8skn2LRpE4D849GtWzc0btwYgP/+RwghhBASBhQoCSGEEEJ80LZtWwwdOhQAMH36dHz22WeYOXMmAGDvvfdGy5YtC+YZOnRodQ7CW265paACuAx77LFHdcjtrbfe6jm/Yp06dao/b9y40Xa6vn37VueNfOihh2ydhuvWrcOTTz4JAOjRo0eoeTFVYjhPv/rqK9uCNL/++itmzJgRZbOkWL16dXU1bhEPPPBA9WejjwJ6OPbw4cMBAK+//jq++OKL8BpJCCGEEOIBCpSEEEIIIT4xwrjLy8tx2GGHVYuFovBuQC8Uc+qppwIA/ve//+HMM890DDFeuXIl7rvvvoJlnHjiiQCAefPmYcKECbZCZ3l5eUFhFLOA+O2339quu6ysDMcddxwAvTL35ZdfXjCNpmk49dRTqwv3GNtWDAwaNAgAsGnTJtx6660Fv5eXl+O4447DX3/9FXXTpDjrrLOEod5z5szBPffcA0AXmfv375/3+8SJE1FSUoKqqiocfPDB+PHHH23XUVlZiUceecRxGkIIIYQQFTAHJSGEEEKITw444AA0bNgQ69atw+effw5Ar2q877772s5z2WWXYc6cOXj//fdx8803480338Txxx+P3r17o379+vj999/x+eef44033sArr7yCXr16VQuFBpdffjlmzJiBhQsX4rbbbsPcuXNx4oknolevXigtLcWPP/6It99+G4899hiuuOIKHHXUUdXzdurUCR06dMCPP/6I6667Dh06dED37t2rw9Vbt25dHf580UUXYdq0aViyZAkuueQSLFy4EEcffTTatm2LpUuX4rbbbsObb74JABgwYABOOOEEhXs3XEaMGIHOnTtj2bJluPDCC/Hrr7/iwAMPRJ06dfD555/jlltuwccff4yddtoJ7733XtzNzWO77bbDokWL0LdvX0ycOBE77LADNm7ciOnTp+PGG29ERUUFMpkMbr/99oJ5e/Xqheuuuw5nnnkmFi1ahG222QYnnHACBg8ejNatW+Pvv//Gd999h7lz5+Lpp5/Gzz//jIULF8ZeqIkQQgghNRsKlIQQQgghPqlbty4OPvhgPPjgg9XfjRo1CmVlZbbzlJWVYcaMGTjqqKMwbdo0fPLJJ47Ow0aNGhV8V69ePcyaNQsHHXQQ3nrrLcybN8+TOHjBBRfglFNOwdKlS7H//vvn/fbggw9WC5oNGzbEzJkzsc8+++DLL7/EM888g2eeeaZgeQMHDsQLL7xQVBWdS0tLMXXqVOy9997YsGEDbrzxRtx4443Vv5eUlOCmm27C6tWrEydQ9u7dG6eeeipOPvlkYd8pLS3FQw89hB133FE4/4QJE1C/fn1MmDABf/zxByZPnozJkycLpy0tLc1LC0AIIYQQEgYM8SaEEEIICcC4cePy/rYL7zbTsGFDPPPMM3j77bdx3HHHoXv37mjYsCEymQyaNWuG/v37Y/z48Zg+fbptDsQWLVpgzpw5mDZtGg4++GB06NABZWVlqFOnDrp164ZDDjkEjzzyiLBYz8knn4xnnnkGw4YNQ6tWrZDJ2L+z7tKlCz755BPcdtttGDRoEJo3b45sNovWrVtj7733xn//+1+89dZbRVO928wuu+yCefPmYezYsWjXrh2y2Szatm1bLfyefvrpcTfRluOOOw5vv/02Ro0ahXbt2qG0tBTt27fHkUceiY8//hiHHXaY4/zHH388lixZgksvvRQDBw5EixYtkMlkUL9+fWy55ZY46KCDcNddd+Gnn37C5ptvHtFWEUIIIaS2ktL8ZGcnhBBCCCGEEEIIIYQQBdBBSQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNigQEkIIYQQQgghhBBCCIkNCpSEEEIIIYQQQgghhJDYoEBJCCGEEEIIIYQQQgiJDQqUhBBCCCGEEEIIIYSQ2KBASQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNigQEkIIYQQQgghhBBCCIkNCpSEEEIIIYQQQgghhJDYoEBJCCGEEEIIIYQQQgiJDQqUhBBCCCGEEEIIIYSQ2KBASQghhBBCCCGEEEIIiQ0KlIQQQgghhBBCCCGEkNj4f6Ss92SM/BnFAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "IREth3" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nBma50PudXII", + "outputId": "74947ac3-2873-459c-f41f-a459e2a755c0" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "np.float64(8.08)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "test = np.loadtxt('letter_test.txt', dtype=float)\n", + "\n", + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(test)\n", + "print('Размерность данных:')\n", + "print(test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eTRv1t1ldZdc", + "outputId": "77da3446-25a5-4391-a3f5-b397d7f45aaa" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходные данные:\n", + "[[ 8. 11. 8. ... 7. 4. 9.]\n", + " [ 4. 5. 4. ... 13. 8. 8.]\n", + " [ 3. 3. 5. ... 8. 3. 8.]\n", + " ...\n", + " [ 4. 9. 4. ... 8. 3. 8.]\n", + " [ 6. 10. 6. ... 9. 8. 8.]\n", + " [ 3. 1. 3. ... 9. 1. 7.]]\n", + "Размерность данных:\n", + "(100, 32)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#тестирование АE3\n", + "predicted_labels3, ire3 = lib.predict_ae(ae3_trained, test, IREth3)\n", + "\n", + "lib.anomaly_detection_ae(predicted_labels3, ire3, IREth3)\n", + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3, IREth3, 'AE3')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "JUDXD96Bh7V0", + "outputId": "fba6cef6-a2a2-4add-c768-8cba808d7e55" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n", + "\n", + "i Labels IRE IREth \n", + "0 [1.] [8.21] 8.08 \n", + "1 [1.] [8.11] 8.08 \n", + "2 [1.] [21.57] 8.08 \n", + "3 [1.] [10.96] 8.08 \n", + "4 [1.] [13.73] 8.08 \n", + "5 [1.] [18.86] 8.08 \n", + "6 [1.] [9.99] 8.08 \n", + "7 [1.] [14.7] 8.08 \n", + "8 [1.] [10.12] 8.08 \n", + "9 [1.] [8.5] 8.08 \n", + "10 [1.] [8.54] 8.08 \n", + "11 [1.] [23.98] 8.08 \n", + "12 [1.] [11.08] 8.08 \n", + "13 [1.] [15.61] 8.08 \n", + "14 [1.] [17.03] 8.08 \n", + "15 [1.] [19.87] 8.08 \n", + "16 [1.] [14.7] 8.08 \n", + "17 [1.] [19.34] 8.08 \n", + "18 [1.] [8.91] 8.08 \n", + "19 [1.] [11.21] 8.08 \n", + "20 [0.] [6.66] 8.08 \n", + "21 [0.] [6.11] 8.08 \n", + "22 [1.] [15.71] 8.08 \n", + "23 [1.] [11.59] 8.08 \n", + "24 [1.] [8.59] 8.08 \n", + "25 [0.] [6.51] 8.08 \n", + "26 [1.] [9.] 8.08 \n", + "27 [0.] [6.58] 8.08 \n", + "28 [1.] [10.06] 8.08 \n", + "29 [1.] [15.31] 8.08 \n", + "30 [1.] [19.46] 8.08 \n", + "31 [1.] [16.36] 8.08 \n", + "32 [1.] [22.98] 8.08 \n", + "33 [1.] [9.48] 8.08 \n", + "34 [1.] [8.98] 8.08 \n", + "35 [1.] [16.78] 8.08 \n", + "36 [1.] [11.85] 8.08 \n", + "37 [1.] [16.4] 8.08 \n", + "38 [1.] [9.8] 8.08 \n", + "39 [1.] [16.85] 8.08 \n", + "40 [1.] [13.35] 8.08 \n", + "41 [1.] [15.94] 8.08 \n", + "42 [1.] [16.8] 8.08 \n", + "43 [1.] [21.08] 8.08 \n", + "44 [0.] [6.86] 8.08 \n", + "45 [0.] [6.58] 8.08 \n", + "46 [0.] [6.67] 8.08 \n", + "47 [1.] [16.87] 8.08 \n", + "48 [1.] [8.74] 8.08 \n", + "49 [1.] [15.99] 8.08 \n", + "50 [1.] [17.04] 8.08 \n", + "51 [1.] [9.3] 8.08 \n", + "52 [0.] [5.44] 8.08 \n", + "53 [0.] [8.04] 8.08 \n", + "54 [1.] [17.42] 8.08 \n", + "55 [0.] [8.01] 8.08 \n", + "56 [1.] [19.94] 8.08 \n", + "57 [1.] [10.37] 8.08 \n", + "58 [1.] [13.31] 8.08 \n", + "59 [1.] [13.22] 8.08 \n", + "60 [1.] [16.56] 8.08 \n", + "61 [0.] [6.8] 8.08 \n", + "62 [1.] [20.66] 8.08 \n", + "63 [1.] [17.57] 8.08 \n", + "64 [0.] [6.42] 8.08 \n", + "65 [1.] [19.49] 8.08 \n", + "66 [1.] [18.69] 8.08 \n", + "67 [0.] [6.21] 8.08 \n", + "68 [0.] [6.48] 8.08 \n", + "69 [1.] [8.4] 8.08 \n", + "70 [1.] [15.84] 8.08 \n", + "71 [1.] [9.87] 8.08 \n", + "72 [1.] [14.28] 8.08 \n", + "73 [1.] [8.48] 8.08 \n", + "74 [1.] [13.11] 8.08 \n", + "75 [1.] [10.2] 8.08 \n", + "76 [0.] [6.42] 8.08 \n", + "77 [1.] [8.2] 8.08 \n", + "78 [1.] [10.06] 8.08 \n", + "79 [1.] [16.75] 8.08 \n", + "80 [1.] [11.04] 8.08 \n", + "81 [0.] [5.49] 8.08 \n", + "82 [1.] [9.63] 8.08 \n", + "83 [0.] [5.43] 8.08 \n", + "84 [0.] [5.02] 8.08 \n", + "85 [1.] [23.79] 8.08 \n", + "86 [1.] [10.32] 8.08 \n", + "87 [1.] [28.27] 8.08 \n", + "88 [1.] [9.9] 8.08 \n", + "89 [1.] [9.96] 8.08 \n", + "90 [1.] [8.23] 8.08 \n", + "91 [1.] [13.01] 8.08 \n", + "92 [0.] [4.92] 8.08 \n", + "93 [1.] [17.82] 8.08 \n", + "94 [1.] [10.09] 8.08 \n", + "95 [1.] [19.41] 8.08 \n", + "96 [1.] [16.23] 8.08 \n", + "97 [1.] [13.8] 8.08 \n", + "98 [1.] [8.55] 8.08 \n", + "99 [1.] [21.5] 8.08 \n", + "Обнаружено 81.0 аномалий\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYG+W99vFb2uZdr3fdvTZugA3GgOk2phiHYgMBApgcQkgoSUjBEAJvcgI5kEACIeQkkALhhIRDOYQUCL3aFFNtMCQuFAO2ccPdXm+xt2h39f4xHs1IK2lHo5FmtPp+rsuXR1pp9KxWM5q55/c8TygajUYFAAAAAAAAAD4I+90AAAAAAAAAAMWLgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAMClDz/8UJdeeqkmTpyofv36KRQKxf6tWrXK7+YBAAAABYGAEgAAZGT69OmxEO76669P+Th7WJf4r6SkRP3799f48eP1xS9+UX/+85/V3Nzsqg2Z/rvooouyfxMkPfHEEzrkkEN055136sMPP8yo/UCxu/baa+O2y+985zsZryMX+4HGxkY999xzuuGGG3TOOefooIMO0qBBg1ReXq4+ffqorq5O06dP17XXXqtPPvkky3cBAACYCCgBAEDedXV1qaGhQcuXL9fDDz+sSy65RHvuuaceffRRv5vmSHNzsy666CK1tbVJkoYPH64vfvGLuvTSSzV79mzNnj1bNTU1PrfSveuvv95RCF0ILrrootjvcu+99/rdnLxYtWpV7HceO3as383pJhqN6v/+7//i7vv73/8e25789KMf/UinnHKKrr/+ev3zn//UkiVLtH37dkUiEbW1tWnTpk165ZVXdNNNN2nChAm67LLL1Nra6nezAQAoeKV+NwAAAPR+Z555pvbYY4/Y7a6uLm3dulXz58/XunXrJElbt27VOeeco4cfflhnnXWW43UfccQRmjx5suPHH3nkkc4bnsJTTz2l+vp6SdL++++vhQsXqrKyMuv1AsXg5Zdf1po1a+Luq6+v1xNPPKEvfvGLrtaZi/1AbW2t9ttvP+25556qqalRe3u7Pv30Uy1YsECtra3q6urSHXfcoWXLlum5555TaSmnVgAAuMW3KAAAyLkrrrhC06dP73Z/V1eX7rvvPn3nO99RW1uburq69J3vfEczZ85UVVWVo3Wfeuqpea/y+9e//hVbPu+88wgngQzcd999seXKykq1tLTE7ncbUHq1Hzj00EN16623asaMGZo4caJCoVC3xzQ2Nur666/XbbfdJkl68cUX9Zvf/Ebf//73s359AACKFV28AQCAb8LhsC6++GL98pe/jN23adMmPfbYY/41ygGzelIyuncDcKa5uVn//Oc/Y7dvvfXW2PLzzz+vTZs2+dGsmK997Wu68sortf/++ycNJyWppqZGt956qy6++OLYfX/84x/z1UQAAHolAkoAAOC7b33rW+rTp0/s9quvvupja3oWiURiy+Ewh1OAU//85z+1c+dOSdKee+6pb33rWzr44IMlSR0dHfrLX/7iY+sy87WvfS22vHz5cibKAgAgCxxRAwAA31VUVGi//faL3V6/fr2PrUnOPnGMvYvqxRdf3G2G4FSTsTQ3N+t3v/udZs6cqZEjR6pPnz4aMGCADjjgAF122WV66623HLXF/lqmxYsX64orrtABBxyggQMHKhQK6cwzz8zodzRnRb7hhhti991www0Zz4YejUb16KOP6sILL9Q+++yj2tpa9enTR6NGjdKZZ56p++67Tx0dHY7atGzZMv3nf/6njjzySA0ePDg2m/LQoUN12GGH6eKLL9Z9990XV9UqSWPHjnX0t/JiIiC3bUwmEono//7v//Qf//Ef2muvvdSvXz/17dtXe+65p8477zw9+uijikajSZ977733KhQKac8994zdt3r16pQzWfvB/vf4yle+olAopK9+9atJfx50Q4YMibvd1NTkU0sAACh8jEEJAAACwT6OY2+cFfepp57SJZdcoo0bN8bd39bWph07duj999/XHXfcoS9/+cv605/+5HgMTskIT2+88UZ1dnZ63eyMLVmyRBdeeKEWLVrU7Wfr1q3TunXr9Pjjj+vmm2/WI488ookTJ6ZcV7rfa8uWLdqyZYv+9a9/6d5779X555+vBx54wMtfxREv2zhv3jx94xvf0IoVK7r9bNWqVVq1apX+9re/6cgjj9TDDz8cN/FUIVi9erXmzZsXu/2Vr3xFkvTlL39Z//mf/6nOzk4tWbJEixYtilVVBtkHH3wQW66qquoWWAIAAOcIKAEAQCDYqyaHDRvmY0uSmzx5smbPni3JmBRj2bJlkqQTTjhBEyZMiHusvRpUkv7+97/r/PPPj4VYJSUlOuaYYzRu3Dg1Nzfrtddei/3+Dz74oD799FO99NJLcd3eU/nv//7vWMXj3nvvrcmTJ6uqqkqrVq1SWVlZRr/jWWedpQMOOEBvv/22Fi5cKCn17MjJZkF+9dVXdfrpp6uxsVGSVFZWpiOOOELjx49XWVmZVq1apddff12tra366KOPdNRRR2n+/Pnd3i9J+u1vfxtXyTl48GAdeeSRGj58uEKhkLZv365ly5bpww8/TBoOXnjhhdq2bVuPfytJGc3+7GUb7R566CGdf/75seEDKisrdeSRR2rs2LEKh8P6+OOPNX/+fHV0dGjBggWaOnWqFi5cGLet7Lfffpo9e7aampp0//33S5L69eunCy64wNXv57X/+7//i1V/TpkyRfvss48kqa6uTieddJKee+45SUYVZdADSnOiHNOZZ57JLN4AAGQjCgAAkIHjjjsuKikqKfqTn/wk5ePMx0iKvvzyy2nX+dFHH8U9/vbbb/ekDbly4YUXxl7/nnvuSfvY5cuXR6urq2OPnzx5cvSTTz6Je0xnZ2f017/+dTQcDsced/nll6dcp/29Ki0tjdbW1kYfffTRbo9rbW118+tFf/KTn2T8/m7YsCE6dOjQ2PMuuOCC6Pr167s9buPGjdGzzjor9rgDDzww2tHREfeYSCQSHTx4cOwxN998c7S9vT3p627bti36v//7v9Fbbrkl6c8z+Vtlwss2vvfee9HKysqopGgoFIp+//vfj9bX13d73IoVK6LHHHNM7DVPOeWUpOv79NNPY48ZM2aM21/Rc+PHj0+5jf/lL3+J/Wzo0KHRSCTS4/ryvR9obW2NfvLJJ9H/+Z//ie61116x166rq4uuWbMm568PAEBvxmU+AADgq46ODl1xxRWx2zU1NfrSl77k+PnPPPOMtm7d6vjxP/3pTzVw4MCM2piNn/70p7HJM8aNG6c5c+aotrY27jHhcFhXXXWVQqGQrrrqKknSHXfcoSuvvDJuPMFkurq69MQTT2jatGndflZRUeHRb9Gz//qv/9LmzZslSd/97nf129/+Nunjhg0bpoceekgzZszQSy+9pKVLl+rhhx/WueeeG3vMsmXLYn/To48+WldffXXK1x04cGDcbMr54mUbv/vd76qlpUWS9Otf/1pXXnll0sfttddeeu655zR58mR98MEHevbZZ/XWW29pypQpWfwm+fHmm2/qk08+kWRU1tr/3pJRgVhdXa3m5mZt3rxZzz77rE4//XTH68/FfmDdunUaNWpU2sdMmTJFDz30UI+PAwAA6RFQAgCAvOvq6tLWrVv1xhtv6Be/+IXefvttSVJpaan+93//V4MGDXK8roULF8a6Izvx/e9/P28B5Y4dO/T3v/89dvuXv/xlt3DS7oorrtDdd9+t999/X11dXbrrrrt08803p32Nc845J2k4mU9btmyJja1YV1enW265Je3jS0pKdNNNN2nq1KmSpL/85S9xgZXZRVzqPhFJUHjVxsWLF+ull16SJB1yyCH63ve+l/bxffv21XXXXafzzjtPkvHeFUJAaZ/85pRTTtHgwYPjfl5VVaVZs2bFHnffffdlFFDmez9QWVmpX/ziF/rud7/reh0AAMDCLN4AACDnPve5z8XNHlxSUqJhw4bp7LPPjoWT++67rx577DHNmjXL59Z6580331RbW5skY3zCngKXcDisr33ta7HbL7/8co+vkUm1aa688MILam9vlySdffbZjsbOnDJlivr27StJev311+N+Zq9Ge/nll/Xxxx972FpveNXGZ555JrZ83nnnOZpd+/jjj48tJ753QdTa2qp//OMfsdv2Wbvt7GNlPvnkk9q+fXvO25ZOdXW1Zs+eHft3wQUX6Nhjj1WfPn3U0tKiK664QoceemhGwSgAAEiOCkoAAOC7YcOG6f7773c1WclPfvKTuMkqguTf//53bHny5MmOJtE4+uij454fjUbThlaHHXZYdo30wPz582PLS5Ys0WWXXZbR8+vr67Vz585YYDlq1CgdeeSRWrBggRoaGnTYYYfpq1/9qs466ywdffTRGc1wnitetdH+3r388stavXp1j8+J7p5oRpLWrl2beePz7PHHH9eOHTskSf37908Z1E+fPl0jR47UunXr1N7err/97W+69NJLHb1GLvYD/fv31+23397t/u3bt+uWW27Rf//3f+vf//63pk2bpieeeEInnXSSp68PAEAxIaAEAAA5d+aZZ2qPPfaI3d62bZtWrFgRqzzatGmTjj32WP3zn//Uaaed5lczPbdly5bY8pgxYxw9Z+zYsbHl9vZ2NTU1qaamJuXjg9AF2j4D++uvv+6qqq++vj4WUErS3XffreOPP16bNm1Sc3Oz7rzzTt15550qLS3VwQcfrGnTpmnmzJk64YQTVFJS4snvkSkv2mh/75599tmM21BfX++6/fli7979xS9+MeXYqOFwWOeff35siID77rvPcUCZTwMHDtQtt9yiuro6XXXVVWptbdX555+v5cuXp91WAQBAanTxBgAAOXfFFVfo9ttvj/3761//qrfffluLFy/WQQcdJMkI48477zytWLHC59Z6x5wcR1Jc+JZO4uOamprSPr6ysjLzhnmsoaEh63V0dHTE3Z44caIWL16syy+/PG7czo6ODr3zzju69dZbNXPmTI0ZM0Z//vOfs359N7xoY7bvXWdnZ1bPz7WNGzdqzpw5sdtf+cpX0j7e3v377bff1rJly3LWtmxdccUVGj9+vCTjYsT999/vc4sAAChcBJQAAMA3kyZN0pw5c2LVlc3NzfrGN77hc6u8U11dHVveuXOno+ckPq5fv36etikX7KHqrbfeqmg0mvE/e+WoadiwYfrd736nTZs2ad68efrZz36mU045Ja5K7bPPPtMll1zi22Ql2bbR/t498sgjrt67IHvggQfiQtTjjjsubjzaxH8HHHBA3PPt1ZdBEw6HdcIJJ8Ruv/HGGz62BgCAwkZACQAAfDV06FD9/ve/j92eN2+enn76aR9b5B179+s1a9Y4es6qVatiy+Xl5QURUA4bNiy2vHHjRs/XX1FRoeOOO07XXnutnnnmGW3dulXPPvusjjnmmNhjfv/73/s6WYnbNub6vfNbtgHjAw88oK6uLo9a470BAwbElrdt2+ZjSwAAKGwElAAAwHfmxCKma6+91sfWeOeQQw6JLb/99tuOuuO++eabcc93Mquz1zJ9zSlTpsSW81FFVlZWppNPPlkvvPBCXMXdk08+2e2xfrx/kvM25uK98+t3TvSvf/1L7733Xuz2EUccoSlTpjj6Z04otW7dOr344ot+/Qo92rBhQ2x54MCBPrYEAIDCRkAJAAACwT4D76JFi/TEE0/41xiPHHXUUbEJQbZs2dJjZWhXV5fuueee2O3jjz8+p+1LpU+fPrHlSCTS4+NnzpwZC5TefPNNLV68OGdts6uoqNCMGTNitzdt2tTtMZn+Ll7rqY32SaEeeeSRpL9Dpvz+nU326skDDzxQb7/9thYsWODo38knn5x0PUHS3t4eN77mfvvt52NrAAAobASUAAAgEE488UQdddRRsds33nijj63xRv/+/XXuuefGbv/gBz9IO+nN7bffrqVLl0oyxrf75je/mfM2JjNo0KDY8meffdbj4/fYY4/Y5CfRaFQXXHCBGhsbHb1WV1dX3GznkjEztdNuvWvXro0tDx06tNvPM/1dnPKqjZMnT9b06dMlSS0tLfrqV7+q9vZ2R+ttb29POot3//79FQ4bh/lbtmzxJaSMRCJ68MEHY7d7mhwnkf3xjz76aI+TRXmhoaEho0mHrrvuurhZ2M8+++xcNAsAgKJAQAkAAALjxz/+cWx54cKFeu6553xsjTd+/OMfxybL+fjjjzVz5kytXLky7jFdXV367W9/q6uuuip23+zZs5NOHJMP9i7Jc+bMcTTT9E033aThw4dLkpYsWaLJkyfHVZclWrdunW677Tbtu++++vvf/x73s8cff1z77LOPfvWrX8WNyWnX1tam22+/XQ8//HDsvlNOOSXt7/L44487Dv964mUbf//738c+I3PnztW0adP01ltvpXztjz/+WD/72c80duzYpN3CKyoqYrNLRyIRPfbYY45+p4suuig2WU22nz1zHE7J6HJ+3nnnZfT8M844Izb+6q5du/TQQw9l1R4nXn75Ze2///668847u4XmditXrtRXv/pV/fKXv4zd95WvfEUHHnhgztsIAEBvVep3AwAAAEwzZ87UlClTYuHMz372s7iunsnYgxAnqqqq4oKFXNt777315z//Weeff746Ozs1f/587bvvvjr22GO19957q7m5Wa+99lpcdd+RRx6Z1zYmmjx5skaNGqW1a9dqw4YNmjBhgmbMmKHBgwfHxjc84ogj4qpDR4wYoccff1ynnnqqtm7dqo8++kgzZ87UHnvsocmTJ2vIkCGKRCLaunWr3nvvPX366adp27BixQr94Ac/0A9+8AONHj1akyZNilUfbty4UQsWLND27dtjjz///PPjKnBNp5xyiiorK9XS0qJFixZpv/320/Tp09W/f//Y7zJjxoy4bthOedXGAw44QH/961917rnnateuXXrrrbd05JFHau+999ahhx6qgQMHqrW1VZs3b9aSJUscVYLOmjVLP//5z2Ove++992rcuHEqKyuLPeZXv/pVxr+zU/Zu2dOmTdOoUaMyen5lZaXOOuss3X///bH1fe1rX0v5eK/2Ax999JEuvfRSXXbZZRo3bpwmTpyogQMHqqysTPX19Xr//ff1/vvvxz3n6KOP1h/+8AfHrw0AAJKIAgAAZOC4446LSopKiv7kJz9J+TjzMZKiL7/8suP1P/3003HPfeGFF9K2IdN/tbW1mf/SCS688MLY+u655x5Hz3nyySejw4YN67F95513XnTnzp1p12V/fK48+eST0fLy8pTtvPDCC5M+b9WqVdETTjjB8d9j2LBh0eeeey5uHQ899FA0FAo5en44HI5eeuml0fb29pS/y5133pl2fek+x6l43cZoNBpdtGhR9LDDDnP83o0dOzb673//O+m6duzYEZ0wYULa5yeyf67HjBmT8Xti2rp1a9xn509/+pOr9cyZMye2jlAoFF25cmXcz73eDzzzzDMZraO8vDx6zTXXRHft2uXq9wMAABYqKAEAQKCceuqpOvzww/XOO+9Ikn7605/qhBNO8LlV2TvttNO0fPly/e///q+eeuopvf/++9q6dasqKys1YsQIfe5zn9MFF1wQN6uzn0477TS98847uuOOO/T6669rzZo1am5uVjQaTfu8MWPG6IUXXtD8+fP10EMP6dVXX9XatWtVX1+v0tJSDRo0SOPHj9fhhx+uGTNmaPr06bEJdkznnHOONmzYoDlz5uiNN97Q4sWLtXLlSu3YsUOSVFtbq3322UfHHHOMLrjgAk2cODFtm7797W/rwAMP1B//+Ee99dZb+uyzz7Rr164ef5d0vG6jJB100EF65513NGfOHD322GN64403tH79eu3YsUMVFRUaMmSI9t13X02ZMkUzZ87U1KlTU87YXVtbq4ULF+oPf/iDnn76aX344YfasWNHXsaj/Otf/xrrSl9RUaFzzjnH1XqOP/54DR8+XBs2bFA0GtV9990XN5mW10455RStXbtWc+bM0YIFC7R06VJ9+umn2rFjhzo7O9WvXz8NHTpUBx10kI477jide+65cWOcAgAA90LRbI7MAAAAAAAAACALTJIDAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElAAAAAAAAAB8U+p3A4Kqq6tL69evV79+/RQKhfxuDgAAAAAAAFBQotGompqaNGLECIXDqeskCShTWL9+vUaNGuV3MwAAAAAAAICCtnbtWo0cOTLlzwkoU+jXr58k4w2sqanxuTXORCIRzZkzRzNmzFBZWZnfzQGKGtsjEAxsi0BwsD0CwcH2CARHb98eGxsbNWrUqFjOlgoBZQpmt+6ampqCCiirqqpUU1PTKz/UQCFhewSCgW0RCA62RyA42B6B4CiW7bGn4ROZJAcAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAbwgoAQAAAAAAAPiGgBIAAAAAAACAb0r9bkBvFIlE1NnZ6cvrlpaWqrW11ZfXR3LhcFhlZWUKhUJ+NwUAAAAAACBwCCg91NjYqK1bt6qtrc2X149Go6qrq9PatWsJwwKmpKREVVVVGjp0qMrLy/1uDgAAAAAAQGAQUHqksbFRn332maqrqzV48GBfKua6urrU3Nys6upqhcP03g+CaDSqzs5OtbS0qKGhQatWrdLIkSNVVVXld9MAAAAAAAACgYDSI1u3blV1dbVGjhzpW/ViV1eX2tvb1adPHwLKgKmurtbAgQO1evVqbd26VaNHj/a7SQAAAAAAAIFAiuWBSCSitrY21dbW0rUaKZWUlGjgwIHauXOnOjo6/G4OAAAAAABAIBBQesCckKasrMznliDoKioqJImAEgAAAAAAYDcCSg9RPYme8BkBAAAAAACIR0AJAAAAAAAAwDcElAAAAAAAAAB8Q0AJAAAAAAAAwDcElMibsWPHKhQK6d57743dd++99yoUCsX9C4fDqqmp0SGHHKJrrrlGW7ZsSbnOxOem+jdv3rzc/4IAAAAAAADIWKnfDQAkqW/fvjrnnHMkGbOir169WvPnz9eiRYt0zz336LXXXtP48eNTPn/mzJmqq6tL+fN0PwMAAAAAAIB/CCgRCIMHD46rrJSk999/X8cdd5w2bdqk733ve3r66adTPv/qq6/W9OnTc9tIAAAAAAAAeI4u3gis/fffX1dddZUkae7cuWpra/O5RQAAAAAAAPAaASUCbdKkSZKkSCSi7du3+9waAAAAAAAAeI2AEoHW2NgoSSopKdHgwYN9bg0AAAAAAAC8RkCJQDPHnTz55JNVVlbmc2sAAAAAAADgNSbJyZfDD5c2bszpS4Qk1USjCoVC3q20rk565x3v1ueAOYv3XXfdpQcffFBjxozR7373u7TP+dznPpfyZ7W1tdqxY4fHrQQAAAAAAIAXCCjzZeNG6bPPcvoSod3/CtHq1auTBquTJ0/WnDlzVFtbm/b5M2fOVF1dXdKfVVVVedJGAAAAAAAAeI+AMl9ShGdeikqK7q6g9CyozEO7Jalv374655xzJEltbW368MMPtXjxYr399tv61re+pb/97W9pn3/11Vdr+vTpeWgpAAAAAAAAvERAmS956CYd7epSY2OjampqFAoX1vCigwcP1r333ht33yOPPKJzzz1Xf//73zVt2jRdeuml/jQOAAAAAAAAOVNYKVYSv/jFLxQKhfS9730vdl9ra6tmz56tQYMGqbq6WrNmzdKmTZv8ayRcOfvss3X11VdLkn784x+roaHB5xYBAAAAAADAawUdUC5cuFB//OMfNWnSpLj7r7zySj355JN66KGH9Morr2j9+vU6++yzfWolsnHNNddo+PDh2rZtm2699Va/mwMAAAAAAACPFWxA2dzcrPPPP19/+tOfNGDAgNj9DQ0Nuvvuu3Xrrbfq+OOP12GHHaZ77rlHb775phYsWOBji+FGVVWVrrvuOknSb37zG9XX1/vcIgAAAAAAAHipYMegnD17tj7/+c/rxBNP1I033hi7/91331UkEtGJJ54Yu2/ChAkaPXq05s+fryOPPDLp+tra2tTW1ha73djYKEmKRCKKRCJp2xKJRBSNRtXV1aWurq5sfq2sRKPR2P9+tqMn9vfJ3s5Ubf7a176mX//611qxYoX++7//O+7vbbr55pt1zz33pHzN8847TzNmzMiy5dnr6upSNBpVJBJRSUmJ381BDpn7jZ72HwByi20RCA62RyA42B6B4Ojt26PT36sgA8q//e1v+te//qWFCxd2+9nGjRtVXl6u/v37x90/bNgwbdy4MeU6b775Zt1www3d7p8zZ46qqqrStqe0tFR1dXVqbm5We3u7s18ih5qamvxuQlJmANna2hoLgFtbW2M/M+9L5pprrtE3vvEN3X777frGN76hgQMHxv18zpw5aV97woQJKcPpfGpvb1dLS4teffVVdXR0+N0c5MHcuXP9bgIAsS0CQcL2CAQH2yMQHL11e9y1a5ejx4WiZtldgVi7dq0OP/xwzZ07Nzb25PTp03XwwQfrN7/5jR588EFdfPHFcdWQkjR58mR97nOf0y233JJ0vckqKEeNGqWtW7eqpqYmbZtaW1u1du1ajR07Vn369MnyN3QvGo2qqalJ/fr1UygU8q0dSK21tVWrVq3SqFGjfP2sIPcikYjmzp2rk046SWVlZX43ByhabItAcLA9AsHB9ggER2/fHhsbGzV48GA1NDSkzdcKroLy3Xff1ebNm3XooYfG7uvs7NSrr76q22+/Xc8//7za29u1Y8eOuCrKTZs2qa6uLuV6KyoqVFFR0e3+srKyHj8gnZ2dCoVCCofDCof9G9bTrFA024LgCYfDCoVCjj5X6B34WwPBwLYIBAfbIxAcbI9AcPTW7dHp71RwAeUJJ5ygpUuXxt138cUXa8KECfrhD3+oUaNGqaysTC+++KJmzZolSfroo4+0Zs0aTZ061Y8mAwAAAAAAAEih4ALKfv366YADDoi7r2/fvho0aFDs/q9//eu66qqrNHDgQNXU1Ojyyy/X1KlTAzEGIQAAAAAAAABLwQWUTtx2220Kh8OaNWuW2traNHPmTP3hD3/wu1kAAAAAAAAAEvSKgHLevHlxt/v06aM77rhDd9xxhz8NAgAAAAAAAOAIM6kAAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJQAAAAAAAADfEFACAAAAAAAA8A0BJfJm7NixCoVCuvfee2P33XvvvQqFQnH/wuGwampqdMghh+iaa67Rli1bUq4z8bmp/s2bNy+jtprtuuiii9z9sgAAAAAAAHCk1O8GAJLUt29fnXPOOZKkzs5OrV69WvPnz9eiRYt0zz336LXXXtP48eNTPn/mzJmqq6tL+fPEn4VCIUlSNBr1oPUAAAAAAABwi4ASgTB48OC4ykpJev/993Xcccdp06ZN+t73vqenn3465fOvvvpqTZ8+PbeNBAAAAAAAgOfo4o3A2n///XXVVVdJkubOnau2tjafWwQAAAAAAACvEVAi0CZNmiRJikQi2r59e9bru/7662Pdu6XuY1iuWrWq23N27typa665RuPGjVNFRYXq6up04YUX6rPPPsu6PQAAAAAAAMWOLt4ItMbGRklSSUmJBg8enPX6Dj74YF144YW67777JEkXXnhh3M+rq6vjbjc0NOioo47SmjVrdOyxx+qAAw7Q/Pnzdf/99+uVV17R4sWLVVtbm3W7AAAAAAAAihUBJQLNHHfy5JNPVllZWdbrO/PMM3XmmWfGAsrEcS8TPfbYY5o5c6Zee+011dTUSJLq6+t1/PHHa9GiRfrDH/6ga665Jut2AQAAAAAAFCsCyjw5/PDDtXHjxpy/TjQajevCnK26ujq98847nq3PCXMW77vuuksPPvigxowZo9/97ndpn/O5z30u5c9qa2u1Y8cOV23p27ev7rnnnlg4KUkDBgzQ1VdfrS996Ut64YUXCCgBAAAAAACyQECZJxs3bmTMwjRWr16dNFidPHmy5syZ02M36pkzZ6quri7pz6qqqly36/DDD9fw4cO73b/ffvtJEn9TAAAAAACALBFQ5kmq8MxruaigzIe+ffvqnHPOkSS1tbXpww8/1OLFi/X222/rW9/6lv72t7+lff7VV1+t6dOne96u0aNHJ73frKhsbW31/DUBAAAAAACKCQFlnuSjm3RXV5caGxtVU1OjcLiwJmgfPHhwt/EgH3nkEZ177rn6+9//rmnTpunSSy/Ne7sK7X0EAAAAAAAoNKQvCKyzzz5bV199tSTpxz/+sRoaGnxuEQAAAAAAALxGQIlAu+aaazR8+HBt27ZNt956q2frNWcE7+jo8GydAAAAAAAAyBwBJQKtqqpK1113nSTpN7/5jerr6z1Z78iRIyVJ77//vifrAwAAAAAAgDuMQYnA+8Y3vqFf//rXWrFihX71q1/ppptu6vaYX/ziF93GsLT78pe/rBkzZsRuz5o1S7/61a904okn6vjjj1e/fv0kSbfccosGDRrk+e8AAAAAAACA5AgoEXhlZWW68cYbdd555+n3v/+9rrrqqm4h4vPPP592HQcffHBcQPmzn/1M4XBYjzzyiB577DG1t7dLkq699loCSgAAAAAAgDwioETerFq1qtt9F110kS666KIen/ulL31JX/rSl7rdH41GXbWlT58+uuWWW3TLLbck/XlP7Ro7dqzr1wYAAAAAAICFMSgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaAEgAAAAAAAIBvCCgBAAAAAAAA+IaA0kPRaNTvJiDg+IwAAAAAAADEI6D0QDhsvI2dnZ0+twRBZ35GzM8MAAAAAABAsSMl8UBZWZlKSkrU0tLid1MQcE1NTSorK1NZWZnfTQEAAAAAAAgEAkoPhEIhVVVVqaGhgSpKpNTS0qLGxkb169dPoVDI7+YAAAAAAAAEQqnfDegthg4dqlWrVmn16tUaOHCgKioq8h5CdXV1qb29Xa2trXQhDohoNKrOzk41NTWpsbFRFRUVGjx4sN/NAgAAAAAACAwCSo+Ul5dr5MiR2rp1qzZs2OBLG6LRqFpaWlRZWUmFXsCUlZWpf//+Gjx4sEpKSvxuDgAAAAAAQGAQUHqoqqpKo0ePVkdHhzo6OvL++pFIRK+++qqmTZvGGIcBEg6HVVZWRmgMAAAAAACQBAFlDpSWlqq0NP9vbUlJiTo6OtSnTx8CSgAAAAAAABQEBioEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+IaAEAAAAAAAA4BsCSgAAAAAAAAC+KciA8s4779SkSZNUU1OjmpoaTZ06Vc8++2zs59OnT1coFIr79+1vf9vHFgMAAAAAAABIptTvBrgxcuRI/eIXv9D48eMVjUZ133336Qtf+IL+/e9/a//995ckXXLJJfrpT38ae05VVZVfzQUAAAAAAACQQkEGlKeffnrc7Ztuukl33nmnFixYEAsoq6qqVFdX50fzAAAAAAAAADhUkAGlXWdnpx566CHt3LlTU6dOjd3/l7/8RQ888IDq6up0+umn67rrrktbRdnW1qa2trbY7cbGRklSJBJRJBLJ3S/gIbOdhdJeoDdjewSCgW0RCA62RyA42B6B4Ojt26PT3ysUjUajOW5LTixdulRTp05Va2urqqur9eCDD+rUU0+VJN11110aM2aMRowYoSVLluiHP/yhJk+erEceeSTl+q6//nrdcMMN3e5/8MEH6R4OAAAAAAAAZGjXrl368pe/rIaGBtXU1KR8XMEGlO3t7VqzZo0aGhr08MMP689//rNeeeUVTZw4sdtjX3rpJZ1wwglavny59t5776TrS1ZBOWrUKG3dujXtGxgkkUhEc+fO1UknnaSysjK/mwMUNbZHIBjYFoHgYHsEgoPtEQiO3r49NjY2avDgwT0GlAXbxbu8vFzjxo2TJB122GFauHChfvvb3+qPf/xjt8dOmTJFktIGlBUVFaqoqOh2f1lZWcF9QAqxzUBvxfYIBAPbIhAcbI9AcLA9AsHRW7dHp79TOMftyJuurq64Cki7RYsWSZKGDx+exxYBAAAAAAAA6ElBVlBec801OuWUUzR69Gg1NTXpwQcf1Lx58/T8889rxYoVsfEoBw0apCVLlujKK6/UtGnTNGnSJL+bDgAAAAAAAMCmIAPKzZs364ILLtCGDRtUW1urSZMm6fnnn9dJJ52ktWvX6oUXXtBvfvMb7dy5U6NGjdKsWbN07bXX+t1sAAAAAAAAAAkKMqC8++67U/5s1KhReuWVV/LYGgAAAAAAAABu9ZoxKAEAAAAAAAAUHgJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4hoAQAAAAAAADgGwJKAAAAAAAAAL4pyIDyzjvv1KRJk1RTU6OamhpNnTpVzz77bOznra2tmj17tgYNGqTq6mrNmjVLmzZt8rHFAAAAAAAAAJIpyIBy5MiR+sUvfqF3331X77zzjo4//nh94Qtf0Pvvvy9JuvLKK/Xkk0/qoYce0iuvvKL169fr7LPP9rnVAAAAAAAAABKV+t0AN04//fS42zfddJPuvPNOLViwQCNHjtTdd9+tBx98UMcff7wk6Z577tF+++2nBQsW6Mgjj/SjyQAAAAAAAACSKMiA0q6zs1MPPfSQdu7cqalTp+rdd99VJBLRiSeeGHvMhAkTNHr0aM2fPz9lQNnW1qa2trbY7cbGRklSJBJRJBLJ7S/hEbOdhdJeoDdjewSCgW0RCA62RyA42B6B4Ojt26PT36tgA8qlS5dq6tSpam1tVXV1tR599FFNnDhRixYtUnl5ufr37x/3+GHDhmnjxo0p13fzzTfrhhtu6Hb/nDlzVFVV5XXzc2ru3Ll+NwHAbmyPQDCwLQLBwfYIBAfbIxAcvXV73LVrl6PHFWxAue+++2rRokVqaGjQww8/rAsvvFCvvPKK6/Vdc801uuqqq2K3GxsbNWrUKM2YMUM1NTVeNDnnIpGI5s6dq5NOOkllZWV+NwcoamyPQDCwLQLBwfYIBAfbIxAcvX17NHso96RgA8ry8nKNGzdOknTYYYdp4cKF+u1vf6tzzz1X7e3t2rFjR1wV5aZNm1RXV5dyfRUVFaqoqOh2f1lZWcF9QAqxzUBvxfYIBAPbIhAcbI9AcLA9AsHRW7dHp79TQc7inUxXV5fa2tp02GGHqaysTC+++GLsZx999JHWrFmjqVOn+thCAAAAAAAAAIkKsoLymmuu0SmnnKLRo0erqalJDz74oObNm6fnn39etbW1+vrXv66rrrpKAwcOVE1NjS6//HJNnTqVGbwBAAAAAACAgCnIgHLz5s264IILtGHDBtXW1mrSpEl6/vnnddJJJ0mSbrvtNoXDYc2aNUttbW2aOXOm/vCHP/jcagAAAAAAAACJCjKgvPvuu9P+vE+fPrrjjjt0xx135KlFAAAAAAAAANzoNWNQAgAAAAAAACg8BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAAMA3BJQAAAAAAAAAfENACQAAAAAAkAvvvSetW+d3K4DAI6AEAAAAAADw2osvSgceKI0bJ23c6HdrgEAjoAQAAAAAAPDayy8b/7e1SW+95W9bgIAjoAQAAAAAAPDazp3JlwF0Q0AJAAAAAADgNQJKwDECSgAAAAAAAK8RUAKOEVACAAAAAAB4jYAScIyAEgAAAAAAwGsElIBjBJQAAAAAAABea262lgkogbQIKAEAAAAAALxGBSXgGAElAAAAAACA1wgoAccIKAEAAAAAALxGQAk4RkAJAAAAAADgNQJKwDECSgAAAAAAAC9FowSUQAYIKAEAAAAAALzU0mKElCYCSiAtAkoAAAAAAAAvJQaSu3b50w6gQBBQAgAAAAAAeCkxoKSCEkiLgBIAAAAAAMBLBJRARggoAQAAAAAAvJQsoLSPSQkgDgElAAAAAACAl5qb429Ho1Jrqz9tAQoAASUAAAAAAICXknXppps3kBIBJQAAAAAAgJcIKIGMEFACAAAAAAB4iYASyAgBJQAAAAAAgJcIKIGMEFACAAAAAAB4iYASyAgBJQAAAAAAgJcSZ/GWCCiBNAgoAQAAAAAAvEQFJZARAkoAAAAAAAAvEVACGSGgBAAAAAAA8FKyMHLXrvy3AygQBJQAAAAAAABeooISyAgBJQAAAAAAgJeYJAfICAElAAAAAACAl6igBDJCQAkAAAAAAOAlAkogIwSUAAAAAAAAXiKgBDJCQAkAAAAAAOAlM4wsK+t+H4BuCCgBAAAAAAC8ZIaRQ4d2vw9ANwSUAAAAAAAAXunqssLIIUOs+wkogZQIKAEAAAAAALzS0mItDxgglZQYywSUQEoElAAAAAAAAF6xB5F9+xr/Eu8HEIeAEgAAAAAAwCv2ILK6moAScICAEgAAAAAAwCtUUAIZI6AEAAAAAADwSqqActcuf9oDFAACSgAAAAAAAK80N1vL9oCyvV3q6PCnTUDAEVACAAAAAAB4JVUFZeLPAMQQUAIAAAAAAHgl1SQ5iT8DEENACQAAAAAA4BUqKIGMFWRAefPNN+uII45Qv379NHToUJ155pn66KOP4h4zffp0hUKhuH/f/va3fWoxAAAAAAAoCgSUQMYKMqB85ZVXNHv2bC1YsEBz585VJBLRjBkztDNhQ7/kkku0YcOG2L9f/vKXPrUYAAAAAAAUhVST5EgElEAKpX43wI3nnnsu7va9996roUOH6t1339W0adNi91dVVamuri7fzQMAAAAAAMWKCkogYwUZUCZqaGiQJA0cODDu/r/85S964IEHVFdXp9NPP13XXXedqqqqkq6jra1NbW1tsduNjY2SpEgkokgkkqOWe8tsZ6G0F+jN2B6BYGBbBIKD7REIDrbH3Ao3Nalk93JHRYVCffpYtxsaFOV9h01v3x6d/l6haDQazXFbcqqrq0tnnHGGduzYoddffz12/1133aUxY8ZoxIgRWrJkiX74wx9q8uTJeuSRR5Ku5/rrr9cNN9zQ7f4HH3wwZagJAAAAAABgd/Dtt2vMCy9Ikl767W81ZOlSHfjnP0uS3v3e97Ru+nQfWwfk165du/TlL39ZDQ0NqqmpSfm4gg8ov/Od7+jZZ5/V66+/rpEjR6Z83EsvvaQTTjhBy5cv1957793t58kqKEeNGqWtW7emfQODJBKJaO7cuTrppJNUVlbmd3OAosb2CAQD2yIQHGyPQHCwPeZWyVe+ovA//iFJinz0kULz5qn0W9+SJHXecYe6LrnEz+YhYHr79tjY2KjBgwf3GFAWdBfvyy67TE899ZReffXVtOGkJE2ZMkWSUgaUFRUVqqio6HZ/WVlZwX1ACrHNQG/F9ggEA9siEBxsj0BwsD3mSEtLbLGsf3/JFsqUtLaqhPccSfTW7dHp71SQAWU0GtXll1+uRx99VPPmzdOee+7Z43MWLVokSRo+fHiOWwcAAAAAAIoWs3gDGSvIgHL27Nl68MEH9fjjj6tfv37auHGjJKm2tlaVlZVasWKFHnzwQZ166qkaNGiQlixZoiuvvFLTpk3TpEmTfG49AAAAAADotewhZGVlfEC5a1f+2wMUgIIMKO+8805J0vSEgWXvueceXXTRRSovL9cLL7yg3/zmN9q5c6dGjRqlWbNm6dprr/WhtQAAAAAAoGiYAWVVlRQOU0EJOFCQAWVP8/qMGjVKr7zySp5aAwAAAAAAsJsZQlZXG/8TUAI9CvvdAAAAAAAAgF7DDCHNYJKAEugRASUAAAAAAIBXCCiBjBFQAgAAAAAAeKGry5oIh4AScIyAEgAAAAAAwAv2WbrNYLKy0rqPgBJIioASAAAAAADAC/YA0pwkJxw2ZvRO/DmAGAJKoJhEo363AAAAAAB6L3sAae/abS4TUAJJEVACxeLOO6WhQ6XbbvO7JQAAAADQO6UKKKmgBNIioASKxa9+JW3dKv3yl363BAAAAAB6p+Zma5kKSsAxAkqgWGzfbvy/dStdvQEAAADA1NgorVvnzbp66uK9a5cx0zeAOASUQDGIRqWmJmO5o0NqafG3PQAAAAAQBDt2SGPHSqNHS/PmZb++ngJKSWptzf51gF6GgBIoBq2tUmendXvHDt+aAgAAAACBsWCBVF9vFHU880z260s2i7cUH1DSzRvohoASKAZm9aSpocGfdgAAAABAkNjDwsZGb9eXqoKSgBLohoASKAaJASUVlAAAAAAQHxZ6UchBQAm4QkAJFAMqKAEAAACgu127rGUvzpN6msVbIqAEkiCgBIoBFZQAAAAA0B0VlEAgEFACxYAKSgAAAADojoASCAQCSqAYUEEJAAAAAN153cWbWbwBVwgogWJAQAkAAAAA3VFBCQQCASVQDOjiDQAAAADd2cPCpiapszO79TFJDuAKASVQDKigBAAAAIDuEsPCxHOnbNZnDyWrqlK/JgACSqAoUEEJFK4dO6S775aWL/e7JQAAAL2PfQxKKftzJTN8DIWkykrrfioogbQIKIFiQAUlULh+8APpG9+QZs6Uurr8bg0AAEDvkhgWNjZ6s76+fY2Q0kRACaRFQAkUAyoogcL1xhvG/ytXZn/ADAAAgHiJYaFXFZT2QDLxdmLVJgACSqAoUEEJFKZoVFqzxrrNxQUAAABv5aqLd7qAkgpKoBsCSqAY2GeSkwg5gEJRXx9/AMu2CwAA4C2vKyjNcy8CSiAjBJRAMUisoGxuljo6/GkLAOdWr46/TUAJAADgLS8Dys5OqbXVWCagBDJCQAkUg8SAUiLoAAqBvXu3xHYLAADgNS+7eNvXRUAJZISAEigGBJRAYUoMKJkkBwAAwDvRqLcVlPZ1VVfH/6yszPiX+DgAkggogeKQLKBkohwg+OjiDQAAkDutrUZIaedVQJlYQWm/j4AS6IaAEujtotHuk+RIBB1AIaCLNwAAQO4kdu+WCCgBnxBQAr3dzp3drwpKVFAChYCAEgAAIHeSBYXZHG/ZC0MIKIGMlLp5UuPuMbBqamqyevHm5ma99NJLkqQzzjgjq3UBSCFZ926JoAMoBHTxBgAAyB2vA0oqKAHXXAWU/fv3Vzgc1pIlSzRx4sRuP1+/fr2uvfZahUIh3X333SnXs3r1ap155pkKh8Pq6Ohw0xQAPbEHlGVlUiRiLFNBCQRbW5u0cWP8fQSUAAAA3kkWFGYzKaHTgLKjQ2pvl8rL3b8W0Mu47uIdTdZldLf6+nrde++9uvfee7NeF4As2QPKPfawlgk6gGBbt677fWy3AAAA3snlGJSJs3hLUlVV8scCYAxKoNezB5SjRlnLVFACwZbYvVvK7oo+AAAA4vnVxTvVawNFjIAS6O3sAeXIkdYyASUQbIkT5EhUUAIAAHgpVRdvt708nU6SIyWv3gSKGAEl0NulqqAk6ACCjYASAAAgt5KFhF1d8UFjJqigBFwjoAR6OyoogcJEQAkAAJBbqUJCt8dcBJSAawSUQG9nDyjr6qSSEmOZoAMINvsYlHvvbfyfTZcjAAAAxLOHhP36WcteBJTJJskhoARSIqAEejt7QNmvn9S/v7FMBSUQbGYFZXW1NHassZxNlyMAAADEs3fxHj7cWqaCEsg7AkrkBhU+wZEqoKSCEgiuaNQKKEePlmprrZ+x7QIAAHjDHhKOGGEtE1ACeZdVQBkKhbxqB3qL5mZp8mRp0iRp0ya/WwOpe0BpBh07dhAkA0G1ZYvU2mosjx4t1dRYPyOgBAAA8IbXAWUms3gTUEIyqni7uvxuRSCUZvPkAw44IOXPzPCyxBzvDsXhqaekhQuN5X/8Q7r8cn/bg9QVlJ2dxs4w2RcnAH/ZJ8gZM0bq08e63diY//YAAAD0Rqm6eLs93qKCEpk69liV/vvfOrlfP6NIoYhlFVBGqb5Coq1brWUqKIMhVQWlZFRRElACwWMPKEePltrarNtUUAIAAHjDHhJ6OQZlKBR/gdlEQIlEDQ0KRaNG78Yi76XsKqCcNm0a3buRnH1Hvm2bf+2AJVUFpWQElHvske8WAeiJfQbv0aOlzZut2wSUAAAA3sjVGJTV1cnDJgJKJNo9eW1HVZXK/W2J71wFlPPmzfO4Geg1CCiDxwwoy8qkigom2wAKARWUAAAAuZerWbxT9VIjoIRdNBr7rEX69i36gJJZvOEtAsrgMQPKfv2M/xMrKAEET+IYlFxYAAAA8J49JKyrs5ZzFVBWVSV/bRSnXbukjg5JRkBZ7Ago4S37YMIElMGQGFASdADBZ3bxDoeN7kZstwAAAN4zQ8KqqvhCjmxn8aaCEk7YPmcElAEIKHft2qVf//rXfjcDXqGCMniooAQKj1lBOWKEMTxDTY31MwLK3m/TJumEE6SvflXq7PS7NQAA9F72isdsLwh3dlrD8jgJKO3dy1GcbOfjHfbq2iLlW0DZ1NSkm266SWPHjtV//ud/+tUMeM2+I9++3b92wNDRIbW0GMtUUAKFoaVF2rLFWB4zxvjfvt3aK9XRO91+u/TSS9IDD0ivv+53awAA6L3MkLBvX2PW7bIy47ab8yR7RSQVlHCCCso4ribJycb27dt122236Y477lBDQ4Oi0Sgzgvcm9h35rl1Sa6uxo4c/zC4GEhWUQKFInCBH4sJCsXn3XWt50yb/2gEAQG9n7+IdChnHXFu3Zh9QVlcnf0xlpfE60SgBJeLOxyNUUGZXQbl69Wp997vf1cSJE9WvXz8NHDhQhx56qG6++WY1JGzQzc3N+slPfqKxY8fq5z//uXbs2KFoNKrBgwfrxhtvzOqXQIAk7sjp5u0vs3u3lDygJOgAgoeAEkuWWMtUzAIAkBvRaHwFpWQdc+WqgjIUsibKIaAEFZRxXFdQzp07V7NmzdLO3RtVNBqVJC1evFiLFy/W/fffr5dffll1dXV64403dP7552vt2rWxx+2xxx76/ve/r29+85uqrKz04FdBICQLKPfYw5+2IHlAaQ86qKAEgidxBm/JuNpeWmoM20BA2btt2yZ99pl1m4ASAIDcaG01Qkqpe0DZ2Gj8LJPenvbea+nCpr59jXCSgBL2MSgJKN1VUG7ZskXnnXeempubFY1GFY1G1bdvX9XW1sZuf/zxx5o9e7ZeffVVnXjiibFwcs8999Qf//hHrVy5UldccQXhZG/S2RkfiElUUPqtpwpKAkogeMwZvCWrgtLsciQRUPZ2ixfH3yagBAAgN+wBoVnVaE5MaB/L3836egooEx+P4kQFZRxXAeWf/vQnbd++XaFQSOecc46WL1+upqYm1dfXa/369brsssskSY8//ri+8pWvqK2tTdXV1fr973+vjz76SJdcconKzMFn0XskhpMSAaXfkgWUzAYMBFuyLt4SAWWxIKAEcu/Xv5bOOSd+fwug+CQLFLMZVoeAEpliDMo4rrp4z5kzR5J05JFH6h//+Efcz+rq6vS73/1OTU1Nuu+++7Ru3Tr1799fr732mvbff//sW4zgSrYDJ6D0V7KAsrTUGLS5uZkKSiCIknXxlqyLCw0NmXc5QuEgoARya9066fvfN5b79pXuu8/f9gDwjzn+pJQ6oBw+3Pn6nEySY3+tlhapq0sKZzU1CAoZFZRxXG0Jy5YtUygU0qWXXpryMd/97nclSaFQSN/97ncJJ4sBAWXwJAsoJSqxgCAzA8ra2viKZ3O7ddPlCIWDgBLIrfXrreUXXrDGnwNQfJJ18c5nBaUUH5Ki+FBBGcdVQFlfXy9JGjduXMrHjB8/PrZ87LHHunkZFBoCyuBJFVCa41BSQQkES1eXtHatsWzv3i3FHzATWvVOkYj0wQfx9/G3Brxl36bWr5c++cS/tgDwl99dvBOfg+JDBWUcVwFlJBKRJPWzBx4Jqm0lzXV1dW5eBoUm2UkUAaW/eqqg3LXLOCEGEAybNknt7cayvXu3lN0BMwrDsmXW39/E3xrwVuI29fLL/rQDgP+cdPHORCazeJsIKIubfRZvKijdBZSZCjFOVnGggjJ4eqqglDj5BYIk1QQ5EgFlMUjs3i1RQQl4LXGbIqAEipdfXbztQRQBZXHb/RmL9u2raKmrKWJ6FUZjhXeS7cC3b89/O2AhoAQKy+rV1jIBZfFZsqT7fQSUgLcS95/z5jEOJVCs6OINv5kVlPbPXRHLKqK9+OKL1ddBP/meHhcKhfTiiy86ft2bb75ZjzzyiJYtW6bKykodddRRuuWWW7TvvvvGHtPa2qr/9//+n/72t7+pra1NM2fO1B/+8AcNGzbM8esgQ1RQBk9PXbwlxqEEgiTVDN4SAWUxsFdQ1tYaf2cCSsBbidvUpk3Shx9KEyf60x4A/vG6i3ems3gntgHFx/yMEVBKyjKgfOedd9L+3Ozane5x0Wg04y7gr7zyimbPnq0jjjhCHR0d+tGPfqQZM2bogw8+iAWhV155pZ5++mk99NBDqq2t1WWXXaazzz5bb7zxRkavhQwQUAaPkwpKAkogOOjiXdzMgHLQIGmvvaSFC439eFeXFKbTC+CJZPvPl18moASKUU9dvDO9SEgFJTLR0REbtzRKQCkpi4Ay6mNXiOeeey7u9r333quhQ4fq3Xff1bRp09TQ0KC7775bDz74oI4//nhJ0j333KP99ttPCxYs0JFHHulHs3s/+wFfaamxwW3fzomVn5xUUBJ0AMGRrot3TY21zHbb+2zaZPyTpIMOsr43o1Hj5CXNxIQAMpAscHj5ZWn27Py3BYC/kgWK2RxvEVAiE/bvI3sBURFzFVB2dXV53Y6sNOzecQwcOFCS9O677yoSiejEE0+MPWbChAkaPXq05s+fnzSgbGtrU1tbW+x24+4PSyQSic1aHnRmO/1qb0l9fWxQ0+iYMQqtWCF1dSmydas0YIAvbSp2JY2Nsb9JpKIiNmN3uF8/ley+v2PbNkUL5DNeSPzeHlGYSlevVkhStLRUHYMHx7ZZSQr17Rv70u6sr1cXny1HCmVbDL37rvX3PfBAhVavtvbf27ZJffr41TT0Bh98YITco0b52owgbI9xx6vhsEJdXYrOm6eOtjYuqKOoBGF79Fu4sdE6J6qoMM6JqqpUtvu+rvp6dWbw/pQ0NVnf3eXlccdxdqE+fWLf+R2NjZyLFastW6zP2u4hAXrr9uj09yr4aYK6urr0ve99T0cffbQOOOAASdLGjRtVXl6u/gkp9LBhw7Rx48ak67n55pt1ww03dLt/zpw5qiqw6d7nzp3ry+tOWb5cdbuXt1RXa+ju5VceeUQ7hw/3pU3F7nPr16tGUkd5uZ6ZMyd2/x4rV+rw3csfLliglUOHJn1+EFRu3qyS9nY1jxzpd1Nc8Wt7RGE6ZeVKlUvaNXCgXnj++bifDVi2TNN2L69avFjvPfNM3ttXyIK+LY579FHtv3t5cTSqwY2NMmtoX33qKTX7HCyhcA1aulTHXHedOktL9cL//I9aBw/2u0m+bo9Hrlwpc0T6bfvtp8Hvv6/Qtm16/X/+R41jx/rWLsAvQf9+zKUDly3TXruX31i0SDuam1XS0qLTdt+3beVKvZnB8dbRa9fK3MM+99pr6iovT/q4kZ98osN2L3+4cKFWMk9GUapduVLTdy+v3d3Vu7duj7scjrVa8AHl7Nmz9d577+n111/Paj3XXHONrrrqqtjtxsZGjRo1SjNmzFCNvcw7wCKRiObOnauTTjpJZWVlPT/BYyX//d+x5cGHHx4bS2v6gQcqOnly3tsDqfSKKyRJJf3769RTT43dHyopkX79a0nSxOHDNcH2s0D5+GOVnnuuQm1t6njpJUWPOcbvFjnm9/aIAtTcrLLdwzJU7rtv3DYryZg05+qrJUl7Dhyo0UHdbgOmULbFkr//PbZ84PnnK/x//ye99JIk6biDD1Z0yhS/moYCF377bUlSSUeHTigvV9THfUcQtseSm2+OLQ+44ALphz+UJE3r7FQX+1UUkSBsj34reeSR2PJRJ55ojEUbjSpaUqJQZ6cGlZV1Px5Lt76f/lSSUZ198he+IKWYayMUiUi33SZJmjhmTHDPxZBToXnzYssjJ07UEqnXbo+NDsdzLeiA8rLLLtNTTz2lV199VSNt1VV1dXVqb2/Xjh074qooN23apLq6uiRrkioqKlRRUdHt/rKysoL7gPjWZvNDV1GhsO3vUdrQIBXYe9hr7A47Qv36xX8mBg2KLZY0N6skqH+fhx+Wdg+9UPr889LnPudzgzJXiPsQ+GTDhthieMwYhRM/N7aqp3BTU/efI63Ab4tLlxr/l5aq7KCDpCefjP2odNcuvkfhnu2koLS+PhCfJV+3R3N87r59VTJzZiygLHn1VZXYihWAYhH478dcammJLZb172/tH2tqpPp6hRsbMzve2l0lFqquVlmK6klJcfMBlLS2BvdcDLllG380vHu4wt66PTr9nVwFlD/dfWXASz/+8Y8dPzYajeryyy/Xo48+qnnz5mnPPfeM+/lhhx2msrIyvfjii5o1a5Yk6aOPPtKaNWs0depUT9sNG3MQ4dpaafcGJomZvP1kHoQnTq5QKLN427ql66OP/GsHkA/2GbzHjOn+cya36r3a2qRly4zlCROkiorsZhEF7Ozf81u3+taMwDD3nzU10oEHGhdtt22TXnlF6uyUSkrSPx9A72HvdmqfuKa2Vqqvdz9JTroJchJ/ziQ5xcv+/cws3pJcBpTXX3+9QinKld3KJKCcPXu2HnzwQT3++OPq169fbFzJ2tpaVVZWqra2Vl//+td11VVXaeDAgaqpqdHll1+uqVOnMoN3LpknULW1cRV6BJQ+aWuzBmZOF1AGNejYsUN66y3rNgElert0M3hLUnW10VUoGg3udgt3PvxQ6ugwlg86yPjfPrwMASWyUV9vLW/Z4l87gsJ+vBoOS8cdJz3yiHHcsXixdOihvjYPQB7Zw0H7vBNmWJTp8dbucQQJKOGI7fMVJaCUJLmeqi4ajXr2L1N33nmnGhoaNH36dA0fPjz27++28Ztuu+02nXbaaZo1a5amTZumuro6PWIbYwIei0YJKIPGrJ6UugeU9h1gUCsoX3zRqGQwLV9uncADvZG9gjJZQBkKWaEVAWXvsnvMZkkElPAeAaWls9M6PjK3MfvwMS+/nP82AfCPGQ6GQlJlpXW/ea7U3i61tma+PgJKOEEFZTeuKihf9vnL20mo2adPH91xxx2644478tAiqLlZ6uoylhMDyu3b/WlTsUsXUFZWGmOsRCLBDSjt3bslo62rVknjxvnSHCCtaNSo+B06VNprr54fn0xPXbwlY//a0EBA2dsQUCKXCCgtZnWTZJ0MJgaU/+//5a89Dz0k/eUv0pVXGpWcAPLL7OJdVRU/oU3isDp9+vS8ro4OI9CUCCjhjP14vn//+O/rIuUqoDyOL1Aksm9cVFAGQ7qAMhQy/k5btwYz6IhGpeef737/xx8TUCKYHn5Y+o//MA44ly2TbBOFOWYPKEeNSv4Y84CZwKp3IaBELhFQWuzbkrmNTZxoXFzavFl67TUjZCjNwzyiXV3SN79pXCh+7jnpiSekGTNy/7oALGY4aO/eLXX/Dh42zPm6JGNYnnTsr0dA6Z3OTum3vzX24ZdfnnIW9cCwFQpFd0/MVOxcd/EG4hBQBk+6gFKyxqEMYgXlxx9b4/GFbbspL8eh3LVL+vnPjeoFIFuPP278v3OncZLphvmZHzgw9YGtGVC2tlpX6VHYolEroBw2zDoJIqCEVwgoLYnHq5JxAjt9urHc2Cj9+9/5aUtzs3UM1tYmfeEL0ksv5ee1ARhSdcl2MzGhPWikgtIfzzxjVMFfcYX02GN+t6ZniRWUIKCERxIP+GpqrKvPBJT+6CmgtA/+7GIs2Jyyd+8+6yxr2cuA8ve/l/7rv6Rzz5VWrvRuvShOixZZy26GQenslNatM5ZTde+WmMm7N1q/3vqeNKsnJQJKeKO11Qi/TNu2xY/vXGySVVBK/oxDmbgPb22VTj9devXV/Lw+AKuLd74DytJSqbw8vg3I3gcfWMvPPutfO5xiDMpuCCjhjcSAMhQyqoAkAkq/OK2g7OqKH5MpCOzduy+/3Fr2MqB84w3j/2iUGcKRnZYWo1u3ad68zEP/DRus0CDZBDkmAsrex969e9Ika9kenvC3hluJ3cWi0eIeGzxZBaXkT0BpPzEtKTH+37VLOvVU6xgFQO5Eo/FjUNq5Od6yn0/1FFDaH0MFpXc2b7aW583zrRmOmZ+tkhJnn5kiQEAJb9h33OZJldnNm4DSH04rKKVgnfy2tVknB3V10rRp0uDBxm0vg8T337eW+YwiG++9F1+RtHVr/OfLCbN7t0RAWWySjT8pxe+3qaCEW8nGsyrmbt6pKij32UcaPtxYfu01Y2K+XLPvw7/9bSOYlIyw4pRTpAULct8GoJi1tFgXlPNdQWl/DAGld+zfb598YhQABJl5ocos8AIBJTyS7Iq0GVDu3BnfvQj54bSCUgrWOJRvvmldzZwxw9hZ77uvcXvDBm9O1HfujO/WTUCJbNi7d5syrcBxMoO3RFVdb5QqoCwrsyo6CCjhFgFlvFQVlKGQVUW5c6f0zjv5bcvQodI//2lNktPUJM2cmZ92AMXK3rWagLJ3sFdQStIrr/jTDqfMzxbjT8YQUMIb6QJKiQDID5kElEEKOuzdu2fONP43A0rJuBqWrQ8/jL/N5xPZ8DqgpIKyuCxZYvxfXi5NmBD/MzOQJqCEWwSU8VJVUEr57+adOPZYnz7GpA7HH2/c19gonXRS/ibtAYpNukAx24Cyp1m87a+5c2fw5gMoVInfb0EOKKPR+ApKSCKghFcIKIMnky7eQaqgtAeUJ51k/G8PKL3o5p3Y/Xbr1uzXieJlP3k0t7VXXjHGd3XKTRdvQqvC19Ji7dMmTjSqJu0IKJGtZN/vxRxQJhuSyJTvgDLZ7K2VldITTxjD20jG3++kk6SlS3PfHqDY2ANFL8agdFtB2dkptbc7ew2kV0gVlC0tUkeHsUwFZQwBJbxhP3kyd+jmJDmSPwHlww9L110XrPAtnwqxi/emTVY12qGHSkOGGMu5DigJ0OFWZ6dVAbfnntIJJxjL27dndkLptIs3FZS9y/vvW0G2vXu3yR5QUl0BN6igjJfseNW0117SqFHG8htv5H54olTdzfv2lZ5+Wjr6aOP2tm3Gd4t9dloA2fO6gtLtJDmJbYE70Wj377cPP+weWgYFM3gnRUAJbwStgnLVKuncc6Ubb5R+97v8vnZQFOIkOXPnWstm927J+4DyvffibxNQwq0VK6yDyoMPdl+BYwaU5eXGWGSpBHG7hXupxp80mQFlV1f8WFmAUwSU8dJVUNrHoWxpkd5+O7dtsZ+cJlbPVFdLzzwjHXmkcXvLFqPr97JluW0TUEyCMgZl4nPhTlNT8gtLr76a/7Y4kayKHgSU8EhPAeX27fltz7vvWlUpmc6m21sUYgVlsvEnJaOqoaTEWKaCEkFi7959yCHxAeW8ec7XY3bxHjVKCqf5aiag7F2cBpQS3bzhDgFlvHQVlJI0fbq1nOtu3qkqKE01NdJzz0mHH27c3rTJCCm9GIsbQPou3m6+fwko/WX/brPnEEHt5k0FZVIElPBG0Coo7SFWUMu6c63QKii7uqwKyupqaepU62fl5Ub3WUn6+OPsujo2NcV3p5UYgxLu2SfIOfhgaf/9rX3fK68YXcB70tBgHfymG39SCt52i+zYA8pJk7r/nIAS2SKgjJeuglLK7ziUPQWU5v1z5hgXwCRpwwbp1FOtccsAuJcuUOzXz6iqlqigLBT2c/7TT7cu+Ac1oKSCMikCSnjD3MDKyoxZCKXgBJSbNuX3tYPCDChDoeRfkkGroFyyxPpbfe5zRihpZ3bz3rVL+uwz96+TbAwnKijhVmJAGQ5bFTg7dsQHUKk4HX9SIqDsTaJR6/MxYoQ0eHD3x9gDFP7ecIOAMp4Z9IdCyWfZHTvW+CdJ8+dLra25a0u6Lt52AwYYF3AnTjRuL1/efagaAJlL18U7HLYKPHI9i3fic+GO/btt3DhjPgPJGBM+iMUoVFAmRUAJb5g77tpa62pTUALKYq+grK62/iZ2QQs65syxlu3du01ejUOZrMt/S4vxD8iU2cV70CBp5EhjOdMKHKczeEsEVr3JmjXW3zBZ926JCkpkz34CZIbgxRxQmttcTU3yYyPJ2oe3tRkhZa7bYrYnnUGDjIogU7LgGUBm0nXxlqxzpVxVUNpfk4Aye/Zz/iFDpOOOs26/9lr+29MTKiiTIqCEN+wBpcmvgDIajQ+wtm2TIpH8vX5QmAFlsu7dUvAqKO3jT86Y0f3nXgWU9qoD+3tAFSUytXGjVfV78MHWyW6m41DaKygJKItHT+NPSvHfqQSUcMMMsvr0sS6ibN1avLPCm9tRumqVfHXzNo+9+vaVSkt7fnzQjtuAQtdToJhpQMks3v6yB5RDh8YHlEHs5k0FZVIElMheNBp/RdrkV0C5ZUv3A7dirBboKaAMUtCxc6f0+uvG8p57GmX5ifbZx1r2qoLy2GOt5SCW/iPYErt3m/bbz5qJ+9VXex4rLJMu3iUlVrchAqvCtmSJtUwFJXLFDCgHDDAqSiRjn1SsAVey49VE+QoozbY4rZwhoAS8la6Lt2SFRi0tzopdshmD0t4WuGM/3x8yxDjPM4sHghhQUkGZFAElsrdrlzURhD39Ly+3TqTzGVAmC6+KrZt3NGpdxUsVUJaUWD/z+0D3lVek9nZjeebM5N2uvO7iPWCAMaGJiQpKZCpxBm9TKGSNQ9nYGP+4ZDLp4i1lfkUfweSkgpKAEtlKFlBKxXnhtr3dGlMyXbXKyJHWhdK33spdcJCs91E6AwZYy34ftwG9gdMu3pKzYy4myfFXYgVl//7W8dXixcEbGoMKyqQIKJG9dLMQmlWUfgeUxTZRzq5dxqzYUuqAUrKu1vh9oNtT925JqquzfpePP3b3Ojt2WBPsHHBA/KQUBJTIVKoKSimzbt72CspRo3p+XQLK3sEMKPv0kcaPT/4YAkpkIxKxTnoJKOO3oZ7GfDT34ZGI9Oab3rfF/rdxemJKBSXgLaddvKXMAsrS0u6TfSZDQOmtxApKyermHY1avfWCggrKpAgokT0nAeX27fkb74iA0ureLaUPKIMSdJgBZUmJdPzxyR8TCllVlKtWuZtZ0969e//9/Z3ICYXPrIzs0ye+wleyKiilnrsImgHl0KFSZWXPr2tutzt39tx9HMG0c6cxE69kXCxJNf4cASWyYQ+xCCjjt6GeQsFcd/O2t4Uu3oA/nHbxljILKPv2TT0Jlx0BpbfMCsqyMutvF+RxKKmgTIqAEtlLd8BnBkCdnfkLwZYt635fsXXxdhpQmge7LS1WF+t8W73aCpWnTk2/gzZDoGjUOrnPRLqAkjEokYmmJuszeOCB3QOmffc1qn4lY+bAVGMXRSLS+vXGspPu3RITp/QGS5daF+0mTUr9OAJKZMPenY2AMrMKykwuMrmR7uJ+KgSUgLd6qqDMdLx+e0DpBAGlt8zvtSFDrIDYPt9A0AJKN98DRYCAEtlLt3ENHGgt56tCjQrKzCsoJf+qKOfMsZZTde82ZTsOJRWU8Io9YErs3i0ZB0ZmBU5zs/Tuu8nX89ln1nAMTgPKIE1wBXecjD8pEVAiO/aAsn9/AspMTgaHD5cmTDCWFy6Mn53XC24qZwgoAW9lMgalk+9gcz9BQJl/0aj1vWZOVCkZw3kdcICx/K9/BetYytyPV1UZVZ+QREAJLzjp4i0Z3bxzrb1dWrnSWLbv9KmgTC4IB7v28Sdnzkz/2Gxn8rYHlIxBiWzYJ75JFlBKzsahzGQGb1MQLiwgO24CSv7WyBQVlPEyqaCUrH14R4f3Y5e5GXvMvu8noASyl6sxKAko86+hweqtZP+uk6yK+K6uYI1DaX6mGH8yDgElsuc0oMxHALRypTWj+NFHW/dTQZmc30FHR4f04ovG8sCB0mGHpX98thWU771n/D9kiPGPCkq4ZZ8gxz6Dt52TLoL2gJIu3sXDHlDSxRu5QkAZL9PudLkch9JN174+fYx/EgEl4AVzDMpQyNq27DI5T4pErICMgDL/EmfwtgvqOJTmfpzu3XEIKJG9IAWU9tBqyhRrXDgCyuT8rqBcuNB63RNPNCbJScc+022mM3lv22Z9Dvbf3/i/f39rjBLGoEQmzIAyFDLGoExm3Dhpjz2M5ddfTz7O6+rV1rKbgJKqusLT1SUtWWIsjx5tBEeplJdbJ00ElMgUAWW8TCsoczkOpf2YK5PqGfOxBJRA9sxQsKoq+aQ2mRxv2QPG6mpnr1/MAeUbb0j/8z/xExVlI9kM3qZp06zloASUHR3WkABUUMYhoET2ghpQTphgXUGhi3dy9h2iH0FHJt27JeOLfNQoY/mjjzKbGT5x/EnJCETNcIAKSjgViRhjUErGsAOpDkTt41Du2mUE8ono4l18Vq2yDkrTde82mUEKASUylTiLd//+1oXAYgwoM61aHDLEGrvs3Xe93d+6nRyBgBLwTk9dst0GlFRQprdtm1GY8p3vSL/9rTfrTFdBOXSotN9+xvI773g/prAb6SYZLnIElMheUAPKffeVhg0zljdvtiaiKAZuunj7cbCbyQQ5JrObd319ZlWPieNPmszPKAElnProI6mtzVhONf6kyV6Bk2wcymy7eBNQFh6n40+aCCjhVuIkOeGwNfZyMQaUmVZQStZFpq4u6bXXvGtLtgFlY6M1pBEAd8zqPS8CSnvo5TSgrKgw9stScQWUy5dLra3GcrKL926kq6CUrG7enZ3Sm29685rZcDMOcZEgoET27BtY4gGfnwHlPvtYV1A6OuIP1Hu7QujiXV8vvfWWsTxxojRypLPnuZ0oxxx/UrIqKCXrZM0+uDKQjn38yZ4Cyp7GMDO7eFdWxk/alA4BZWHLJqDMpGocSOziLVknblu2FN/nyU0omKtu3tl28ZbY/wPZsnfxTibXFZShkPXaxRRQ2vd/69d7s850FZRS8MahtL8HVFDGIaBE9oJUQblsmfH/iBFGMGdWUErF1c27ECbJefFFq6rVSfduk9uJcpJ18ZbyP9M8Cp99Bu9UE+SY9tzTqox84w2r8lIywgGzgnL06OTjHyXDzM6FzW1A2dFhVRwATiQLKM0LIW1txXVCLLmroDzuOGvf7GVAmW0FpUQ3byAbXV3eVlC6CSjtjy2m/bH9vfQqoLRXUBZCQEkFZUoElMheUALKbdus1zBDLHtAWUwT5RRCBaW9e7fbgDKTiXLMgLKuzpgx3MRM3shUJhWUoZBVgdPaKr39tvWz+nrrgNRp926JCspCZwaUVVXSXnv1/Hhm8oZb6SoopeLr5u0mFBw0yJoIbdEi73paEFAC/rJf8EsVKNrPoXIdUHo1WUwhsO+7NmzwZhg2eyFSsi7ew4dbk62+/bb/7zcVlCkRUCJ75g67pKT7Drm21hqQPdfhT+L4k1L8FRQqKLvzK+iIRq0JcioqpGOPdf5cNxWUmzdb41Xax5+UCCiRmWjUCijr6uIvgqSSqpu3mxm8JQLKQtbYKH36qbF84IHW92M6BJTF4ze/kS6/3LvgyVxPWZnVjbCYA0o3FZSStX+ORr3/20iZVc+YQXPiOgBkxh4opuriXVpqndvmYhZviQrKjo7M5hRIpacu3pJVRRmJSAsWZP+a2aCCMiUCSmTPPOCrqeneRTEUsqrV8hlQTphg/E8FZTArKD/6yOraOm1a6gODZEaPNkJNcz1OpBp/Uoof94+AEj1Zu9YaCqCn7t2mVAGlmwlypPiAksCqsCxZYi076d4t0aW/WCxZIl15pXT77dJdd3mzTrOCcsAA6/ismANKc/spL5f69HH+PHuvC6+GgjHbEg5nFmZQQQl4w2nFo3nM1dPxVrYVlK2txTPxVeK+y4tu3ub3WUVF6n1qkLp5U0GZEgElsmceZKXauPI1S3KyCkoCymBWULqZvdsUDlsl+itWGFfeepJq/EkpvoLSiyt46N0y6d5tGjPGGItSkubPt7oV2QPKMWOct4EKysKV6fiTEhWUxeKTT5IvZ8MMKO2hVjEHlPYL6pnIZUCZ7OJ+OgSUgDfsXXydBJS5mMU78bF+dzvOl8T30ouA0qygHDo09T7VHlDOm5f9a2aDCsqUCCiRvZ4CSvPArrlZam/PXTvo4m0xA8rSUqvaMJk+fYxKAim/B7pm924ps/EnTebfNxKxukum4zSgpIISPXETUErWOJRtbVa3ErddvMvKjFm/JQLKQuMmoKRitjjYw0IvgsPOTmv/YO8WXMwBZU/Hq6nkIqA0j7kyPTEloAS84aSLt2TtL5qb01c4ZltBmbiO3szrCsquLqvIJNn4k6ZRo6yxv996y9+JB6mgTImAEtlpbbVCx54qKKXczpJsBpQVFdbJfrFXUPbrl/7KfChkHezmK+hoa7OuWg0f3n1MSCcyHYeSgBJeyWQGb7tk3bzddvGWnF/RR7DYu3hPmuTsOVRQFgf7RVQvLqja9w0ElMb4kUGpoIxG3YelBJSANzLt4i2l/w4moHQu8dh1w4bs1ldfb4XHqcafNJlVlG1tRkjpFyooUyKgRHaczEKYjwCoo0NavtxYHj/emnjAPr5gMVZQpuvebTL/bvk60H3jDasLw4wZmXVtMmUyk3c0agWUI0d2/5wyBiUyYVZQVldLe+/t/HlmBaXUPaAMhYzPZibME2wCysLR2SktXWos77WXs/2zREDp1saNxv6/UHhdQZlsBm+peAPKlhZrSBi/A0onF/dTIaAEvJFpF28p/TFXtpPkJK6jN/O6gtL+XZauglIKzjiUVFCmRECJ7AQloPz0U6O7rxQfXpWVWa9frBWUPbFXUHZ15axJMc89Zy276d4tZVZBuWGDdaKWWD0pUUEJ53bskFatMpYPOsgYD9WpUaOsQPOtt4wDYzOgrKtLPxRDMub+tqkpP9stsrdihXVC5LR7t0RA6cYVVxgV+l/6kt8tcc5+EdWL4NB+8kNAGb/t+N3FO5vKGQJKwBtuKiidBpRUUKbndUDpZAZvU1ACSiooUyKgRHaCElAmG3/SZHbzLpaAsrPTOgnOpIIyGo0f4DkXtm+X/vQnYzkclk480d169tnHWu4poEzXvVtikhw453b8SZPZzbu93TgoMru0ZNq9W4rfbu2TYiG47ONPOu3eLRFQZuq++6Tf/c5Y/sc/jG5chcAeFjY0ZN9uewWl/eTH/p1XTAGl/XjV7wpKJ8fOqRBQAt7IdAxKiYDSK15PkpNJBeXYsdZx9/z5uZ0fIx1z/11SktnnpQgQUCI7Tg74/A4ozSspu3YVx47fHjJmUkEp5f5g98Ybrde44IKev0RSGTDAem4mAWWy8S7Ly62uGFRQIh2vAkpJuv9+azmTGbxNTJzi3OrV2uO11/zf/7uZIEcqrIDyhRekr35Vevddf17/gw+kSy+Nv2/jRn/akqnEsDDbC2apuniXllqBWzEFlEGqoMyma5/98QSUgHteV1B6MYu338cp+eJnBaVkVVG2tEgLF2b32m6Zn6WaGnfDnfViBJTIThArKCdMiP9ZsU2UY6+myqSCUsrteHYrV0q3324sV1ZKP/tZduszg+iNG9OftPdUQSlZ41ASUCIde0CZyQQ5Jvs4lI89Zi1nU0Ep5W8cyo4O6amnpGXL8vN6XujsVOlJJ+nwX/9a4Wuu8bctxRBQXnyx9MAD0ve+l//X3rVL+o//iB9XTMr+xCdfEsfJzjY8TBVQStYFvmIKKINaQZlp176KCuMYSor/GwPIjNMxKO37Cyoos9fZ2b3nz8aN6WdI70kmFZRSMLp5myEt3bu7IaBEdoIYUKbq4i0RUCaTrwrKH/3IGif0qqsynxQkkdOJct57z1qeODH5Y8zP6PbtjOeH1MwZvEtKUofd6YwYYQ1P0Npq3V8oAeUf/yidfro0ZUrhhPmffabQ7nFDw08+6V87Xn5ZmjPHWO7Xz+hi5JTTkyO/tbVJ69YZyz1VtufCd78bf0HKVAgBZVdX94rJbCf2cxJQNjfH74t6s2wqKGtrrQoXv7t4S9ZxGxWUyMbixSqdMEFH3HJLcR770sXbH8kutHZ1Zfed57aCUvInoIxGrc8SE+R0Q0CJ7AQtoBw2rHs77DuqYpjJO4gVlG+9Jf3978bykCHSf/5n9ut0MlFONGp0+ZOMbrSpZtUzP6OdncEOAOCftjbrs7TfflKfPu7WY+/mbcq2i3e+PrOvvWb839hobNOFwAzMJIU++0xauzb/bfj3v6UvfMEa5+gb38hsgqVCqaC0f79v2WJdkMqHBx6Q7r7bWO7b17ggZiqEgDLZxbF8VFB68TqFwr7tZFpBGQ5b76HXXbzdVM8QUMILd96p0MqVGjF/vkLvvON3a/LPTRfvdN/B5vrKyozho5yyh6PFEFCmOmbN5rs60wrKvfeW9tjDWH7jjfwer0hG13LzNamg7IaAEtlxckU61wFlQ4NVGZlYPSlRQdmTXFdQRqPS979v3b7++sxPDpJxElCuW2d9RpONP2liJm/05P33jS7Okrvu3aZkAWWhVFDaDx4LpZt3YiD55pv5ff0VK6RTTrH2y5//vHTLLZmto08f62QnyAGl1xWATi1bJn3729btO++M384KIaBMFhJmGxymmsVbKpyAsqvL2Iai0ezXlW3VotnNO0gVlM3N1vcSkKndvQskSZ984lszfOO0i3emFZSZTnhif3ziECW9UapzzWy+qzOtoAyFrCrKnTvzP252tt8BvRwBJbIThArKdN27JSooe5LroOPxx6XXXzeW991XuuQSb9brZCZvJ+NPStYYlBIBJZLLdoIck71biclNQOlHt19z1nFJ+vDD/LxmtmwVlJKMGRvzZeNGacYM68LYUUcZs0qXlWW+LvPvHeSAMnHfaf+85EpLizHupHliePHFxiQ9I0ZYjynUgNLLLt6JFRqFElB++cvSuHHejGmaTQWlZAWU9fXZd4fN9uTUHjjT6wNurVkTWwytXOljQ3zidRdvc5KcbALKYqugtO/LvKigrKpy/v772c072yr6Xo6AEtlxcpBVUWHtLLy48pyop4CSCsr0cllBGYnEd+e+5RZ3J+fJ7LWXMRaglDqgtI8/mS6gpIISPfEqoKyrM7qIm6qru1c3OZHvCspoNP7gsVACysQKynwFlA0NRuWkedK3//7Sk0+mPwlKpxACysQKynwElN/7nrR0qbE8caL0+98by4UWUCYLI4u9i3dDgxHoS9Kjj3qzPlM2FZT2scPc8qqLd+K6AKeiUQJKr2fx9qKCshgCSvs+yz43gBcVlE66d5v8DCipoEyLgBLZcbqBmQd2uQh/7F0NCSiDFVDedZfVbeTYY6UzzvBu3eXlRkgpGZPkJKtocFpBaQ8oE0+yAcmaIEfKLqCU4rufjh5tTb6QiXwHlI2N8V2PvO7i/eSTxvv6xz96u97ECsp//9uousul1lZjzEkz1B49Wnr++fiZgDNViAHlxo25fb2//c34jpGMWY3/8Q/rRK+21prpuBACylx08TYDynC4+7FAIQSU8+dbXbu3bMm+m7dXFZRS9hfbveriLRFQwp36+vgwbMUK/9rilyB28S62gNJ+wd7td3Vnp3X84aR7t2mffayM4PXX8ztcBhWUaRFQIjtOD7LMAGjbNm/GErKji3e8oHTxbmgwxps0/epX7oKYdMy/d0uL9Nln3X9uBpShUPyXYCIqKJFOV5e0eLGxPHp0dkGT1D2gdMPpoO1eSTxw3LbN22Dj6quN9/gHP/D2OyKxgjISye1YQ52d0vnnW1fjBw0ywklzMHa3zEClvd2YsCmI8tnF+5NP4ocLueOO+ItQoZBVRVkIAWWyYxOvunj37999UqZCCCjNoWEkI/TPdmw2ryooJQJKFD5b9aREBWXWXbzb262Ai4AyPft76EUF5fbt1nFjJhWU9nEom5rie0rlGhWUaRFQIjvmBhYKpZ4hWbICoI6O+ADNC2ZAWVYm7bln959XVVlto4Kyu1wd6N5yi3VF60tfkiZP9m7dpnQT5XR1WbMu77VX+oMPAkqk8+mn1naVbfWkJB1/vLXdHX20u3Xku4IyWdjkVTfv1larIrOpydvAJLGCUspdN+9oVLr0UumRR4zbfftKzzwjTZiQ/boLYSbvfHXxbm01xp00x/v66leliy7q/jgzoNyxI/dVs9nK5SQ5yYaQKLSAUsq+nUGqoKSLN/yWGFBu3uz9+VnQmWFgKGRMRpdKWZlVkZ/qeMseLKY7H06m2AJK+z5r3DiptNRYdhtQZjpBjp1f3bypoEyLgBLZMXfUNTXdr9Db5SoA6uy0uhDbd3KJzBJuAsruchF0rF0r3XabsVxeLv38596sN1G6gHL1auuLPl33bolJcpCevXt3NjN4mwYONE6+//pXo2LQjXwHlMkOHL3q5r1sWfwQDatXe7PeSCQWkrXbTwByFVD++MdWl+OyMiOo9OrCTCEGlLnq4n3VVValw4QJ0h/+kLw63z4OZT7Gw8yGPXyrqOh+X6aiUesEKNnJT9ADyvZ26a234u/LdvgV+37S74DSbEt5efpgJBUCSmQrIaCUZI2ZXCzMquy+fXvu4WXuM5wElFRQppc4Sc7w4cay24DS/h2WSQWlFB9Qvvyyu9d3gwrKtAgokR17QJlOrgLKNWus7m7JunebzCsq9fXGgW9vlmlAWVNjfTF7daB73XVGlYskXXZZ8spWL6Sbydvp+JMSY1AiPa8myLHbf3+jstgMIzIVhIDSqwpK+2RWUvITJzc2bIh1+9l2wAGKmu/Zm296P9TI738v3Xijdfu++4wZvL3ix6ztmcpHF+9//EO6805juU8f43aqapVCmijHXgFiVtw2NLjvzt/UZFzAlZJXUNovygUxoPzXv6xjCJNXFZRVVakvZqeTi4DS7YkpASWylex7ttjGocxkzEhzW031/WtW9Dtdn529h1cxBJSJ1YPmd/XmzcaF5UxlU0E5caIVkL7wQvzfMZeooEyLgBLZcXqQlauAsqfxJ032iXKCeDDupUwDSvsA+l6c+C5aJN1/v7E8YID0X/+V/TpTSVdBaQ8oDzgg/Xro4o107AGlFxWUXqioMKr0pMLv4p0YUHpVQWnr3r1ryBBFzWrGTZukVau8eQ3JmKzliius27/9rXTeed6tXyrMCkqvA8oVK6RvfMO6/bvfSQcemPrxhRRQmscllZXS2LHW/W4vmKWbwVsy9h/mZyqIx0SJ3bsl7yoo3YaCueji7fbElIAS2SKgtMLAdENAmcz9RlNT8kk5s6mgLCmxKqmLIaBMrB60f1e76XmRTQVlKCSdeaax3NZmDMuTD1RQpkVACffa260r3EEPKItpopxMA0rJOtjN9kA3Go2f5OLaa7OfUCSdYcOsk6xsKij79jW6WkkElOjO7OLdv7/7SW28Fgr1fEXfS4VYQWmbIKd10CBFjzzS+plX3bznzpUuuMDa5/3Xf0nf/a4367bL96RIbiTr4u1VpWpXl1FxbH6/nXdefFiZTCEFlOZxyZAh8ccrbsPDngJK87WyeY1ceu217vd5VUHppnu35F1A2dVltcWLCkr73xpwioAyvot3T8xtNRpNXmWXTUBpf04xBJSpKigld9/V2VRQStKsWdayOYZ4rlFBmRYBJdzLJP33O6C0V1D29nEo3QSUXgUdzz9vlMhLRrfu2bOzW19PQiHr775mTfxECGboEQ6n/2yY6zG7vBFQwm7zZuuA6eCDvZ+JPht+BZQHHWT8v2aNNwfTuQoobRWULYMHxweUb76Z/frXr5fOPtvqknTJJdLPfpb9epMphArKxH1ne7t34cnSpdI77xjL48dLf/xjz9tioQSUXV3WezdkSHwFiNsLqpkElDt2uOtWlytdXdIbb3S/P5sKyq4u69jI7wrK5marAosu3vDL7u/ZqL16cPlynxrjg64udwGllPyYK5tJcuxtKIaA0nz/wmHjvcr2uzqbCkrJGIfS3L8//XT34UVygQrKtAgo4Z79JMmvgNI+SQMBpcE8CO/Tx/k4S+bBbmur+x1zZ2f8hB833+x+fL1MmH/3aNQ6uOrstKq7xo1zNgi9+RndutX78elQuBYvtpaD0r3bZO53Gxtz/5k1Dxr795cOPdS6P7FyOVONjd27dHvVxdtWQdkyaJDRxdsMtbyooPzHP6xKii98IfVkLV4IekDZ1pZ8BlivunnbPxNf+Yqzi2+FElBu324FVkOHejOBjT206imglII19vJHH1nHifaK9WwqKJubrX2k3xWU9hPTYuniff/90he/KH3wgd8tgWRckNi9T4zut58iZkhZTBWU9oKGTLp4Sz0HlFRQpmfus2prjWMmvysoS0uNYzjJ+K6YMyfzdWTKvt8moOyGgBLuBamCctCg+NdIVIxdvJ1WT0rxB7tuq7HuvdeqhJo8WfqP/3C3nkwlmyjn00+toLWn8SdN5uenrc26qgrYZ/D2aoIcr5j73c7O3H5mo1EraBoxwprEQ8q+m3eyE9YcVVCqttYa7mHx4uxPBJ580lr++c/dTbzhVNADylTf617N5G37W2rkSGfPMQe+l4IdUNqPSXLRxTtVCBbUmbzt40+edZa1nE0bvahWsQe9XgWUbttif17QA8qmJumb35Qeflj68Y/9bg0k6bPPrMB+9GjtNPeVa9b0/olETZkGij0FlNlMkiNZIemuXb2/SMIeUEr+V1BK+e/mbX6GKiutIcYQQ0AJ99wGlNkOLm5qarJ2ZD114S3GCspMAspsZwTeudOYudv0q1/lrytssolyMhl/0tQbJ8r54APp2GOlH/7Q75YUrlzM4O2VfM3k3dBgVRsMHy7tt5/1M3sVuxtLl3a/b+tWb6oIdldQRkMhtZrVT1OnGv93dkoLF7pf944d0quvGst77RX/nuRCoQaUXlVQfvaZtbzHHs6e06+f9T0Y5IDSfnKVWEGZjy7eiW3wmz2gNKtapOyqPO3bjNsKytJS6/OUzXGsF5Uz5eVWoBH0gHLNGms2evuxGfxjuwgYHT1aO+vqjBtdXd71YAg6+0Vdr7t4Z1NB2dVlbS+9UTRqvX/mxTOvKiirq43Az40TT7T27088kfthT7KdKK2XI6CEe35XUH78sbVMQGnJtoLSzcHurbdaJ6Jf+IIRiuVLsoDSPqad04DSHINS6j0B5e9+Z5zs/fKX3cf5gzNmQFlenvsQKlP5CijtB4wjRsS/D9lWUNo/l/bgydY92zWz6q6uTlGzutEMKKXsunk/95zU0WEsn3FG7i/IBD2gtIdH9lmovQoo3VRQSlYVZaEElIljUOZjkpxsXicXzICyokI66ihvZhv3arwv80KH31287c8NekBpv7jw6afJZ0BGftl7KYwaZQWUUvF087YHikHq4p24rt6mpcUK/7wKKM3vBjfdu00VFdJppxnL9fXSvHnu1+WE+Rmie3dSBJRwL5MDvtpaYzBcybvwxz72mb3LYTLF0sW7vd3qnpGvCspdu4wATJJKSqRbbsns+dkaP95aNkPrbCsogzQeVzbsIY85wQSc27XL2s8ccIBUVuZvexLZQ6t8BpR77ml1SfEyoDzlFGs5227ekUgsHIvag8+jjrKWswkon3jCWj79dPfrcaqQAkr7sBp+dvGWrBOfpqbkY2QGQa67eBdSQLl+vbRypbE8ebJx0mhePPS7glKKDyjddsP0Kiw1/66FFFC2tXl30QLu2SsoCSidBYo9HW8RUDqTbP83YIA1Z0Gm+4eOjvhJ5rJx9tnW8j//md260unstI5HqKBMioAS7mVykBUOWwdTuQgoe6qg7N/fChd6cwWlmxm8pewqKJcutcZeOffcnv8WXquqsgbS/+gj46TBDChLS+PHqEynN3bxtp902rsqw5mlS61qj6B175byV0FpP2AcMcK4EGFuV598YlUSumEGlMOGSYcdZt2fbTezDRusAMEeaO2zjxUyzJ/vLmSIRKRnnzWWa2vzUzGerzDaLfs+88ADrWWvu3j37ZtZwGSvzAhqMJLYxdtezZ+vSXKCElDaZ+8+5hjjf7Od27e739d4XUHZ0RE/5lwm7H8bLyood+4M1izsiRIroj791J92wGK/AGjv4i0VT0CZyy7e2czinbiu3ibZ/s8+UU6mFZT2Y49sKigl4yK52UX8sceMIDEXMplkuEgRUMK9TA/4zADIj4AyFLJ2XL25gtJtQJlN0GGvgJo8ObPnesX8++/YYVTsmOPi7bOP88GHe3tAaZ/sBc7YQ92gzeAt+dPF2+wya3bzjkSsiqdMbd5s7Y8POEAaM8b6WbYVlLbq4ag9oAyFpCOPNJa3bpWWL8983a+/bh1kn3JKfiprC7WC0otQMBq1KihHjsysO30hzOSdWEFZXm5t216MQelkkpyg9Bqwjz+ZGFBK7rtWe11BmU1bvApLvZjcMB/sFZSS++8LeCddBaWb78RCRBdvf6Ta/5nf1du2ZTYGZ+L3Zzb69pVOPtlY3rRJevPN7NaXilcXqXoxAkq4Z9/JODngMwOgxkZvrvaaAWVJiTFJQU/McSg3b+69Y+D4UUFpDyidzpjtNXuV5NNPW93cnXbvlnrnGJSJFZS99XOfK0GewVvybwxKyZtxKO1DMRxwgFUJLWVfQZmuS3C23bzts3efcUbmz3ejstKaJTzoAeXYsdbJlhcBZUODdcKWSfduqTACysQKSvv/xTaLtxlQhkLWdupFRalXFStBDSiD3M07MaCkgtJ/ZkBZUSENGaLWQYMUNbvYFksFZdBm8S6WgDJVOGde/JYyO26wB5TZVlBK+enm7dV3QC9GQAn33FZQStnP5N3VZQWUe+3lrErODCg7O72bSTxo/KigtM/C61dAaa+gfeQRazmTgLK3jUHZ0hJ/kNPYyIlBpuwVlAcd5FszUrJvt7kMrRK7eEvx4/66DSgTL27YA0ovKygTZ322T5ST6RXyaNQaf7KkxLranmuhkHUhMIgBpf2izqBB1smGF2NQ2gOO3h5QmqGh+X9Dg3XBLRNmQFlTY3xOkwlaQNnUZO1zDzzQOnn1op2ZXlBPxYuA0usu3onrDBoqKIMlGrUuAI4ebXy3hMPG2NKS8fcphovZQZ3FO3FdvU1PFZRSZt/Vyb4/s3HaaVavmEcecT/WcDpUUPaIgBLuZRNQZluhtm6dEcBIzsc8LIaJcvysoBwyJH629HyyfwZeeMFaziQw7W1dvJOdyDEOpXPRqPXZ3muvzLanfAlCF2/JGlIhU4kBZb9+1nh52QaU9grKUaPifzZ5sjVpW6YVlMuWWRUm06alHt8vF4IcUNov6gwebH1OGhqs72q37H/LxLC5J4UQUJrHI5WV1klqtqGcGVCm+3xWVVnjbQUhoJw/3wpGzO7dUnwFpduLh729izcBJZxqaLCq/WwXBaNmT7TW1uCO1+ulbLp4J/sOJqB0JlU45/a72usKyv79pRNOMJbXrs3NBKNUUPaoIAPKV199VaeffrpGjBihUCikxx57LO7nF110kUKhUNy/k/NV5VBM/AwoMxl/0mQPz3rrRDn5Dii3bLHeS7+qJ6X4z4B9+AC3FZS9IaBMdiLHOJTOrV9vHSTaw7ggyXdAOWCA1KePsbzPPtZYgF5UUE6caPxvnjCtXZvdAOXpKiirq6VJk6w2ZBL45Xv2brtCCCjDYeP7xD6mWbYnu25n8JYKa5Ic+8lVNjN5R6POAkrJCkKDEFAmG39S8r6Cki7e+ROJdD/epieHvxImyDFF997bur8Yunl73cWbgNIZ+74qiBWUkjRrlrVs75XnFSooe1SQAeXOnTt10EEH6Y477kj5mJNPPlkbNmyI/fvrX/+axxYWiUyvSPsdUNoP+Ako47kNOoIw/qRkVEiZwYmpvFwaN875Ovr3t6qqekNAmexEjoDSuY8/tpadzgSfb/kIKKNR62DRfgBZVWVNavPhh5l3g7FXqI4ZY32HmOvs6Miue7AZatlnh7Qzu3l3dUlvv+18vX6MP2ky36PWVnfdfnPJ3GcOHGh0KbaPJ5VtN+9sunjb2xHECsrOTivctZ9cZRPKtbRYF+qcBpTbtvnfrTNVQNnbKihTnaBnyn5iax9zNEg2buz+3fDZZ8Y+DP5IEVDGjeVfDAFlpl28+/SxhhNLF1CWl7ubOK9YAkr7exfECkpJ+sIXrPPBf/7T+27eVFD2qCADylNOOUU33nijzjrrrJSPqaioUF1dXezfgHx2wyoW5gZWXZ16jCO7XAWU9rHQ0rFXUNLFO559B5nJlXh7QHnggc6f57VwWBo/Pv6+ffe1JpVwug7z5KO3BpR08XauEAJK+4l2rgLKHTusGRUTgz6zsrSpKfPqtLVrrdDAvu/waqIcs4Kyri75yYJ9HEqn3by3bLHGrNxvP8lecZIP9r+3fV8fBGZwZH7Pux3wPplsunhXVVknQUEMKLdvt05+7CdX9oAy0+MVJxPkJL5OV5e/Y3NHItKCBcby6NHxwzL01grKvn0zO0ZJVAgVlIndu02rVuW1GbBJVUFZbAGlm4pHc9+RLqB0Uz2Z+LzeHFB63cU7FxWUQ4YYQ/hI0iefxE/o6AUqKHuUxTdjsM2bN09Dhw7VgAEDdPzxx+vGG2/UIHtAlqCtrU1ttmntG3efOEUiEUW8mHE6D8x25qu9pQ0NCkmK1taqw8FrhmprYx+4zi1b1JVFO0uWLYul65G99nI0K3ho0CDr9devz+r1gyq8Y4fMqLijslJRp79jSYlKKyoUamtTdMcOR39PSQovWWK93oQJzl8vB0rGj1fYNmFP18SJ6sywPaUDByq0dauiW7c6fg9Syff2mCi8caO6XTZYv16Rzz7z7ipjLxZetsz6bO+1l6+f7ZSqqmRGb107dmT8eXdk9WrrNYYNi3uN8L77quTZZyVJHUuXKprBwWFo0SJrf7zffrH9cXjkSOt9X7lS0SOOyLzNkYhKN25USFLXHnsk3xaPOML6vd5809F7F3riCZXuDpM6P//5vH+HlFRXW99727ZlVwnmpfZ2le0OTLsGDVJnJKLQkCHW33fduuy+79eutX7vYcMcfd/blQ4frtCOHYquX6+O9nZraIIgWL/e+hzufu8kKTRwoPX+bdyY2fu3ebO1ztratJ/tkkGDrPd2/fq8VHMk2x5DCxeqdPdYpV1HHRXf5tpa6/fZvNnVfq6koUFhSdFQSB3l5Rl/hmL69bPasnWrq7ZkeuycSqi62vqMbNsWyGPa0OrVsTZG+/RRaHflZMcnn8R3KUbehD/91PqOHTHC2h5Hj479rbo+/jg3xxMBEm5qir0PEYf7hNLaWoW2bFG0oaHbtlva3Gxs1337utquQxUV1vbc2BjI7dkLJfX11ndOVZX1vg8ZYu1bP/vM8eevZNMma339+7vftycIn3mmSubNkyR1/uMf6nLaW9PJuuvrrW2wb9+48wu/zx1zzenv1SsDypNPPllnn3229txzT61YsUI/+tGPdMopp2j+/PkqSVHpd/PNN+uGG27odv+cOXNU5WTw3ACZO3duXl7n89u3q1RSUzisl595psfHD16+XEfvXl65cKE+cPCcVE5avFhVktr79tWzCxc6OuGo+fRTfW738tp//UuLs3j9oJq4eLHMOsK3PvhAW51Utu42s7JSfdra1LJxo+Y6fG+Oef11mbH/8+vWqcPH93RCSYnsXx8flZbq4wzbc0w4rEGSQk1NevbxxxV1000jQb62x0T7LVggs+6vYcwY1e6uRlv4pz9pyyGH+NKmQjLl9ddljqL34rp1ag3i/iIa1enhsMJdXWpcs0av5KCNQxYt0lG7l5e3tOhD22uMjkRkfpI++Oc/9WkG3fbGPfKIzBFiF3V0aN3u9Y7YulVmJPnR3Lla7mJyosotWzRjd5C4sbRUC3dvg3HbYjSqk2trVdHQoI7XXtOzTz1ldelJ4Yg//1nmNf43Bw3S9jx/Jg7asUNjdy+//vTTarRXvPioYvt2maN8b+ro0NvPPKMha9dan5s33tCysWNdr3/6hx+qVlJnaameefvtHv9OiaaWl2uopNCuXZrz8MPqcFvhkgODli6V2Zl5RVNT7LhoyKefxt6/FQsW6MMMhisZ+P77Onb38sr6er2f5nO6f1OTzDW/9dRT2pbH8QHt2+Pejz8uc5CYpbW1WmVrc+nOnfr87uWty5Zpvovt7oT161Ut48LtM88957rNfbZv18zdy5s+/FBvu2jL57dtM46dS0ocHTun0n/5ch23e3nNkiVaEsDvqL1eeEFmffy2vffW4N2VSB889ZQ+9XtIgSJ12FtvyRwoY97Kldq5uzjnheXLdVoopFA0qoZ//1uvBvDz5KVDPv5YZv3oq++8o2YHQ5Ec19Wl/pKiDQ165umn4849T21oUJmk5mhUL7l47wa9/37su2Dl++9ndY4cZFM++SR2bP3CO++o3eytFI3q8xUVKm1r086PP3b8Hp6wapWqZYSdz7z4omft7NOvX2xf33z//Zp32GGerfvgpUu1ezAjvbpkiZqSVOT6de6Ya7vsQyuk0SsDyi996Uux5QMPPFCTJk3S3nvvrXnz5ukEc2amBNdcc42uuuqq2O3GxkaNGjVKM2bMUE1QqhR6EIlENHfuXJ100kkq8yBYSaujQ6W7T0ar99hDp556as/PGTlSuu46SdLe/ftrrJPnJLNrl8p2l3SX7r+/Tv3853t4wm4bN0pXXilJGl1erj3cvn6AhW0H3lNOPFHRDHaopUOGSDt2qLK93dnfMxpV6QUXGIujR2vGOedk3F4vhbZvlx56KHZ7/JlnalyGf+OSP/0pNiPxKVOmxE/0kKG8bo9JlNgm86g++2zpttskSVPKytTVCz/7Xiv9/vclSdGqKh3/la8Eq+rKJlRbK9XXqzYcdrbdZrp+25hvex9zjPa0vUaotlbaPRb0/iUl2i+D1y+xbauTvvxlTTroIGOdgwZJv/qVJGlCVZX2cfE7hcxu2JKGHX64TjrppKTbYsm0adKTT6p8506duvfe6SdDam1V6fnnS5KigwfryO99z9nQJh4Kv/qqNGeOJOnYgw5S9Nhje3hGntgq14dNnGh8DkeOlHZf9B3ft6/2yuKzWfq1r0kyqmtPPe20jJ9f8vDD0uLFkqQZBxwQqEmvQraD9b2mTLGOi0aMkK6/XpI0rqYmbrvrcZ22yaX2PPRQjUnz3PB778Umfjpy770VzcN3Q7LvxpJ77on9fOI3v6mJ9mEfolFFL7pIoUhEQyRX+7nS3WFY6aBB2e0nW1qk3Z/HYeXlma/LzbFzKsuXS7u/p8bU1mpkAL/Xw6+9FlsecMYZsa6S+/ftm9H3BbxT8stfxpaP+8pXFCkt1dy5c3XCqacaQyusWaP+27bl5HgiSEruvz+2PO2UU+KHlUj1nN/8Rlq5UuGuLp163HHGEGeScT60O+itHjrU3XtXVyf9139JkvYaNsz9OXLA2T9/J86aFTcET8moUdLy5apuanL8Hpbu/g4tHTHC889s1113KfzWW6pdvVqnjh/ffSgxl0ruuy+2fOxpp8V99vw+d8y1RoeTPPbKgDLRXnvtpcGDB2v58uUpA8qKigpVVFR0u7+srKzgPiB5abNt/Ktw//4KO3k9W9gTrq939pxkbGPXhCdMcL6e4cONkCEaVXjLFvevLxljPJWUBKeLnck2bknpgAGZDdS8e5zWUGOjykpKeq5SWbMmNoZc6MAD/d9OEmbsLj3ooMwHqrZ1fS5rbHR0wNIT3/YhtnE0S04+ORZQlixdqhK//1ZBF4nEZhoN7bOPysyB0YNod0AZamjIzefMNr5PyahR8Z8dW4hQ8vHHmX2uPvhg9xNLVHbAAda2auv2V7JunbvPqq0SomTMmNj70m1bPPro2KQ3Ze+8Y83sncyLL8b2r6HPf15liZNy5YNtLO3SXbvcDcSfC7ar/+GhQ43vVtvYZuFNm9x/3+7aFRvrLzRypLvPuG3cyrItW9L/nfPNNo5hSV2d9Xm3tTm8bVtm719zs7XOwYPTb0O247LS+vq8fqZi22M0ao3tWlursoMP7n78MXiwtGGDQlu3uvsM7P6Mhmprs9tPlpVJlZVSS4u741jbyZnjY+dUbENqhBsbs1tXrtj3xccdJ918s7G8ahXHIX4xx2ceMkRlNTWxLrFlZWUKjRsnrVmjUH29ypqbe55kq5DtHlJCkspqa53t+2zjBZbt2mW9P21txoRnkkL9+rnbx9iG1yhpaem924d5vFBVpbLEHqojRkjLlxvHs+3tPY/n2d4eG88xNGSI98fAs2ZJb70lSSp78knphz/0Zr2274GyIUOSfvYKMX9ywunvVJCT5GRq3bp12rZtm4bbB21HdtwMOG4fXDybSUh2V7hJcj6Dt2QMRm6OQ5rNJDkffmiEnSNGZDeJQy64nSRHsv6O0aizCRiCMoO3yT6RSZ8+8TMSOmUfp9btbKFBYR84+phjJPMCDDN59+zTT2MHm4GdIMeUbtB2L9gHK0/8Dh00yDpJ/vBD5+vs7LQCyvHjje3VNGyYNVOm2/2reQImpZ/12T5Rjq3qMik/Z+822S+IObwKnRf273NzxuVBg6wJQLKZxTubGbxNbgffzwf7fto+NrB95upMJ4axT5LjdBZvN6/jlU8+sV776KOTXxw127llS+YzqkYiVhjhxUVl81jWzSQ5qWawdaPQJsmZPNnaJ6xc6U97il1Hh/U3sU9IZ7KPC9rbJ8rJZpIcKX5bdrOuRMUySY75viXLDuzf1U4m17Ofp+VibP1Zs6zlRx7xbr3mexAOW1W4iFOQAWVzc7MWLVqkRbtnpP3000+1aNEirVmzRs3NzfrBD36gBQsWaNWqVXrxxRf1hS98QePGjdPMmTPTrxjO2XfMTg/4KiuNf1J2AaV9Bu9MB601Z/LetCnzg1zTQw8ZV8t27pQee8zdOnIlm4Ay04NdW7e+QASU/ftLEycay0cd5a77pZczzfvNPOGrrTVmsjX/Rp98EldhgyQKYQZvk3mQ194uZTAGpGP2QCdxFm9JmjDB+H/DBuch6YoV1szgifuOcNiqXLbPNpoJ+6zP6aqgDz/cOmFON5N3NGoFlOXl0owZ7tqVraAGlPaTBHMfGg5b37fZzOJtDzgyncHbVCgBpT0sLC+3tu18zOKd2JZ8ev11aznVsAVmYNvenvn3l31b8WISIK8CymzbUlpqndwGPaCsrjbC8jG7R1779FP3x+Bwb/16yRz7s9gDSnN4jXDYuoDfk1QBpX2fRECZnrmvSvbdlOl3daoLfF7Zay/p4ION5bffjr/4nQ3zPaitDezwUX4ryIDynXfe0SGHHKJDdk/0cNVVV+mQQw7Rj3/8Y5WUlGjJkiU644wztM8+++jrX/+6DjvsML322mtJu3DDJbcHWebJi18BpbkDa2lxH9LsHkNHUnwVYRDYA8pMvyQzDSjtv7t9vCg/PfywdNNN0t13u3t+bwwozRM7c2KcaFRassSfNhWKbPYx+WYPrXJRRWkPl5L1QrCP52evbk+np+pr88SpocHd7+S0grKqyjr4/OCD1Pu9xYutdR5/vH9XvAshoLRX/pmfl82brYrkTNnD5t5YQWkPH+1hoWQdr/T2Ckp7QHnMMckfk0077duKlxWUra1x3UQdse9jvAhLzeO2IAaU0agVUJoXF8yeLY2N7gJeZMd+0a/YA0ozBKyqch4S2bdZ+36FCkpnOjqsc++eKiidfFen+/70ytlnW8uPPurNOtNVkUJSgQaU06dPVzQa7fbv3nvvVWVlpZ5//nlt3rxZ7e3tWrVqle666y4NM6/kwxteBJRur56a4UEoJGUws6Ukq6JDct/N2+yaKAU3oKyuznim05RXBlMxf/eSkuCEOPvtJ/3oR5LbGWPtJ9eFHFBGItYJi/mlbZ+5m27e6RViBaWUm4DSPEgcNCh5lYE9oHTazbun6mv7iZObKkoz1AqFkld92tm7eS9YkPwxtgmndPrpmbfHK0ENKJN18Zas8Q27utyHX709oExVQWm/3dBgVA46VagBZXm5UdWcjP1zlenwK15WLUrxwxVlGrJ52cXbvo4gBpQNDVaVmhlQ7rmn9fM8zhiP3TIJKJcvz317/GSGgJkEirns4l1ebvX86q0Bpf24pRAqKKX4bt7//Gf264tG01eRQlKBBpQIgGwDykjEXQVjNGoFlHvuGT92mRP2gHLTpsxfPxKJr656//1gdVMxA8pMu3dLmVVQdnRYYUTiGHKFrLeMQWkPDMwTULNSTCKg7Ik9oPRo1r6cyWVAGY1aB4mpxnA2u3hLzgPKnqqvzW6AkruA0qx2rKvreeD7o46yllN187aPP0lA2V2yLt5S/GfGbTdvL7p429sRtIDSvFBaVdX9xNZteJhJQFlTY20jfgSUGzcaw45I0hFHpD6WCGIFpZRdQOllBeWuXZmF2PmQbNu1jw3OOJT5RwWlxQzPgxJQhkLWc3trQGk/t/QioMxHBeV++1lFOK+95i47sGttjU1MRQVlagSUcMftmD7ZdqHdsMEKNt1U7dmvsLipoFy+3NqxSEYg6NWYFF7IJqDMJOhYvtwaQy4o3bu90Fu6eCerypk0yerGsnv8XqRgBpRDhgR/FstcBpTbt1snvakqEbPp4l1REX9CZLKfOGU6UU4kYk3Kkm78SZO9gjJZQLl+vfTOO8bywQc7W2euFEJAmayLt+Q+oPSigrKiwtq3By2gNPfVyU6u7McrmYRyPZ0E2oVC8RPQ5Nsbb1jLqbp3S72ngjKTv40T9nXkaqI0t/IVUHZ1WcejSK+ngLKmxtrWentAae/i7ZSTgDKbIWB6e0DZ0744m4AyVxWUoZBVRRmNSo8/nt36vP4O6KUIKOFOthWUkrsAKNux4bKtoLR37zYFpZu3ffbtXFdQBm0Gb6/05oCyutrqrrx0aXzQDktzs3VgFJShC9JJNSaSF+yhUqqActQo6wDfSQVla6tVMTVxYvLJrLKpoFy/3qpqdxJojR5tBWkLFnQfK/Gpp6xlv2bvNuV6vFG3zH1lOBz/PWJ28Zbcz+RtBpThcPz6MmV+fu2fD791dlrvXbKTq2wrKKuqjG6DPTFfZ+vW/L83TsaflKigTMW+vdkrZ4MgWUDpdRfvxkbje3r48OAciwdZTwGlZF00/OyzzMdYLRRdXdbvlknFY6rvYC8qKO3P7a0BZU/hXKa9HdINkeIl+ziU2Xbz9vo7oJcioIQ7XgSUbgbI9jugtE+QYwrKQVFLizU7X64rKAkogy3Vl7Y5DmV7u/PuuMWmkMaflHJbQWk/QEzVxTsctvbF9tm5U/noIysETLXvyGYMSqczeJtCIaubd1NT94tQQRl/Ugp+BeWAAfGBs5ddvIcN67m7fjpmQNneHpwgxz4Wd7KTK/t9mfT4MH8/p9Xf5utEIvkPvu0BpX24hUT296KQKyhzGVAGbRzKfFRQPvWU0aOnvl564IHs19fbmd+n5eWpK87sY/v31nFC7cGrF128vZjF2/7c3hpQ9rT/q662jnOCUkEpSYceas1t8NJL2R1DUEHpCAEl3PGrgtLehdCPLt5BrqC0z+Cd6wrKnia5KFRlZdaXYyGPQZkqoGQcyp4RUFrsB4jpJpsxu3l3dVnVkak4ubhhDxYz7eLtdAZvu1TdvHfulF580VgeMcI4SPVT377W5GdBDCjt3XCl7ANKe3d9t927TUGcKKenAf7ddvF2G1Bm+jrZam62vof23z8++Etk/2wVcgVlLrt4F0JAOWCA9TfwIqC0H4sypmXPzIBy1KjUE2kWwziUbiseczkGpf257e3GWP+9jZP9Xya9HezfBYnHH14Khawqyo6O+HHJM0UFpSMElHCnWLt4mxWUpaXWl3uyqko/ZBtQuqmg7NMn+Rhyhcw+03yh6qmCUmIcylQKLaDMZbdfJ128pczGoXQSUFZWWuFMNhWUbgLKN9+0ll94weiSLkmnnZb6hC5fQiHr7x2UgLK93fruSTxByLaL94YNmXXXTyeIAWVPA/y7CQ7b2qzqoIAHlKG337aqqdN175a86+JNBWX+JAsoQyGrinLNmuxDmCVLrOXeGqZ5paHB+vyl6t4tFV9A6fUYlF4ElInr7C2c7P/M7+qdO+PPa5Mxv0MHDMiuh4UT9m7ejzzifj1UUDpCQAl3/A4oq6tTdzlMx16RkGlAaZ/Be999rdl9P/ig+7hlfshXBWVLi9GlRko9hlwhMz+j9fVWl/lCQwWle4UWUAapglLqeegAp8NDmCdQ69dnNl6qvYLS6YQ2hx5qjdVnr6C0XyX3e/xJU9ACSvv3uP37XYoPKN1UUHoxg7cpiAFlT+Nnuenibf/uDnpA6XSCHCn+s5VNF2+/KyiLMaAMh+OLA8yAsqMj/oKSG/YKyhUrgjO+bBDZvxudBpTmsX5vY87gLQWrgtIeltrb2FtkUkEp9XzckG6SOa9NnWod0zz/fHy3/kxQQekIASXccXvAl01A2doqrVplLO+7rzUjcSYqK63wLtMu3itWWCfKEydaJ9etrcHoWpKvgHLZMiu4603du01mFVBXV/AO+J1KdeI7dKj15b9oEQfzyZgXIUKh+LGYgsrvMSglacIEa9lpQNmvX/oA0Zwop6srPqjqiZsKyj59rO7bH39sfDd1dVkT5FRWSscf77wNuRS0gDLVDN6SMXu2Gea4CSi9mMHbFPSA0qtJcuxjYwU9oLRXKx97bPoHl5VZxyiFXEFpHlOEw9nN9msqhICyrs7odWTyaqKc+vr40K2hITjjywaRkwlypOKroMwkUKyqsooycjmLd+I6e4tMKiil9N/VbW3Wvj2X40+awmHprLOM5dZW6Zln3K2HCkpHCCjhjrmTqazMrKzafmCXaUC5fLkVqGQzu655JTfTCkp7V+79948P54IwDmW2AWV1tRX6pgs67FesDzww89cJumwqNYIi3bgsZjfvhgYr8IchGrUqKMeONQKWoMtXQJluBuXx462D9nRdvJuarM/cAQekv8jkdqIc84Q1FEpf9ZnI3s17wQJp4ULrO2LGDOO7LgjMgHLXrmCMUWX/Hk82BpT5udm4MfMLIr09oMxFF297QOP05MeHgDLU2anQggXGjZEj0wcmJvPz1RsqKGtqvBkyIqgBZSRifb4Tq5+9mign2XF3bw3UvGAfzznd9jZsmBWU9db3020X71DIOuayX/igi7czTsI5pzN552sGb7tZs6xlt928qaB0hIAS7pgbWKYbVzYVlPbxJ+0VO5kyr7Ts2GGMn+WUfYKciRONkNLUGwLKcNj6e6Y70O2tM3ibesNM3uYJXGVl94Ml+ziUdPOOt3mzddBZCN27pfh9sNdVdWbV2+DB6cPa8nKr6sJeYZ3IfpGnp32H/QQqk4lyzFCrri6zi2f2GYTffDNYs3fb2QOWnsZnygd7WJTYxVuyTjZaWjL/fNorZ7MNKJ2e9ORTTxWU5eXW9u20x0eBVFDWfPqpQuYJ+DHHOOsRY7Zzx47Mhn3wuoKyb19r3+I2oPTqxNT+Nw5SQGkfPzYxoLRXUGYTUNrHn/Rifb2d0wpK+zihq1YFYwgrr2UTKJrbbi5n8ZaKN6B0ejExXzN42x13nHWB6umnrTHKM0EFpSMElHDH7UFW//7WgWg2AaUXFZRSZt28e3sFpZT8izcRAWXwpRuXhYAytUIbf1IytnUnlc+Zikatg0MnlYjmRaOWltQVj/Z9R0/V12YXb8l5BaV91men40+aEmfyto8/+fnPZ7auXLIHlEHo5p2ui7eU3Uze9grKbMegtFcAByWg7KmC0n5/L+viPcg+FERP40+a7J+vTL6bzf1iWZk3VfGhkHWS6raLt1cnpkGtoEw3fqy9gjKbLt723jym3lrx5wWnAaVkDW8TicR3o+8t3I5BKcWfJ5khPBWUznjZxduPCsrSUut4sLk5+T6oJ1RQOkJAicx1dlphWKYbV0mJddCcafhjn7xg4sTMnmvndiZv+wze48cbX+DmxApBmMnbi4DSPNhNd6Br7pD798/+pDGI3J4EBUVXl9XuZF/aTJSTmj2gzOYiSD6Fw9b27mVAuW2bVaXkZEIyJzN5Z3Jxw00F5fr17md93mMPK9R84w1rPzdlSvru7fmWy1nb3XDaxVvKfCZvLwPKsjKryiIoAaWTEyyzzQ0Nznp8FEhAOdBNQOm2nWaQX1vrbuzyZNwElK2t1t/QqxPTQgwox4yx/g5eV1ASUKZmDyh7uoDX28ehdNvFW7K23UjEqqAjoHTG3EeVlKR+n4JcQSlJkyZZy/ZzBqeooHSEgBKZs5eyuznIMivUMgl/2tqkl14yluvq4rtXZ8q+I3NaQdnRYVVw7rOPcbJTVmZVDX30UWbdxXPBywrK9vbkpes7dlgnjT2NIVeoCn0Myvp6q0tOspPePfe0/s6LFuWtWQXBXqVdKBWUkrPK50w5ncHb5GQm70wCSjcVlPZAK9MKSsnq5m3flwepe7cU7ArKdF28pcwrKM2QY9Agb8YANT/HGzakHoYgn8yQrW/f1CfJmYZybmbxHjDAGkM2HwFlNKpB5pA5NTXOe2K4DSjt4z56xQwom5udH/vlonLG/jsVSkDZp4+1LboNKLu6rO8T+4URuninZn6PDhrUc4hWTAFlpoFisouEBJTO2Htfpjp/dDMGZT4DSvu5gZuAkgpKRwgokblsNy7zJKahwfkg/6+9ZpXkz5yZXTDmpoJy+XKrmsgejpoH1h0d7nZUXvKyglJKfrCbyRhyharQu3j3VJUTCllVlJ99ltdZWwOvELt4S9YBs5cBpT1MyqSLt9RzQDl0aM9dcuyhlNOA0t4Vzc2YhfZu3qYzzsh8PbmUyzFH3chVF2/77O1eVeqbn+OOjmBcfDIvkKbbFjIN5dxMkhMOW997+fg+WLFCfczji6OOssLRntg/X07/ftFofAWlV+wT5TidOToXlTOlpdbxXpACSnuwkGz7Nbt5b9kSX/Tg1OrV1jHv1KnW57c3hmle6Oiw9qdOJqSyB5TLl+emTX7yoou31D2grKiIn7E+U709oHQyxEVlpXVxzWkFZb66eEvZB5Tme1BZafXCRDcElMicVwGl5PzA7rnnrOVTTsn8Ne3sV1qcBpSJE+SYgjRRjpcVlFLysKO3jz8p9f6AUqKbdyrmwUZFhbsKPL+Y221LS2aTR6RjPzB00sW7p4ByyxZrf+tk3xEKWSdSq1c7mwE62wrKxIByzJjg7eeCVkGZqy7eW7ZYn+VsJ8gxBWkm785Oq3twuuoP+88yDSidVlBK8WNdZjrbeoZCb75p3XDavVtyV0HZ2mp9jnJRQSk57+adq8oZJ0Pz5Fu6Ckop+3Eo7WO/TZpkrW/dOqPHFeJt2GD1rMk0oOyNoa8XXbwla5s2Q/ZsqicTn9/bAspo1Pn8FeZ3tX3YnkR+VVDutZd1Uc3e68oprydK66UIKJE5LwNKpwGQGVCGw9JJJ2X+mnZuJslJnCDHFKSJcvJRQWk/KOxpkotCVQwBpX2iHLp5Gzo7rUqB8eONfU2h6OnCghuZdvGurbUel2wMSjfV12Y37127nIUA2VZQHnyw0f3QdMYZwRvGImgBpVnJFgolr4pwW0Hp5QzepiAFlNu2WSdeTisonRyvZBtQtra6OzHOINQMv/GGdSOTgNJNBaV9G/E7oLQfU+UioHR6wT8fegoo7TN5uwko7eNPHnigFahFo8bM04iXyQQ55mPMSsDeHlB6WUFJQJnarl1Wr8meKsjN7+rW1tQXXvyqoCwvt/ZfH3+c+QU9rydK66UK6AwMgZHvgHLtWuvkdsqU+ANDN9x08XYSUPo9UU4+Akp7CJvNOKBB5uYkKEgyDSipoDSsWmVV2hTKBDmmXASUmXbxlqxxKLdu7b7tuKm+znSinGwrKMvLpcMPt24HbfxJKbgB5cCBybvqug0ovZwgxxSkgNLpyVU2XbzdBJROX8fumWeMCpb+/Y1qts9/XvrOd6Sf/1x64AHplVeMEGr3WI2h3QFltKxMmjw5t23MVdVithWUXp6cmutqbU0+drgfzICyX7/kx6P2Cko340YmVlDaK/4Yh7K7TAPK0lLrAuGKFTmvqs67XHXxJqBMLZN9sZPvavM7NBRKPv51LpndvHfuzOy4JptJhosMASUyl++A0t69++STM3+9RG4myTG7eJeWGrN3m8aOtboH9IYKynRBRzRq/Y7D/3979x0nVXX3D/wzO1uB3aXvsnREQBABwYINUaKi8RF7F00sMRhFfkmMSWyPJkZNYuxo8lgSNZbYE01EEJQICCgICipVkbLUhaVsm/v743D2nJmdmb393pn5vF8vXlx2Z2cus3Pb536/53Tz/4DglzZtVBVVpldQJmu5BESQJMc+YUApZOr4k4A34xJaraAE0rd56xeUVisoAXPjUMoKykjEXFt6MlddJX5+xAjg+OPtPYeXwhZQyn1kqn1NWZnan9oNKLOxgtJse5rdFu+iImsTC+nhn9Ubc3fcIX6mpkZs52+/DUydCvzqV8Cll4rtqF8/8Tno1g2R/ftaY+RIa+uY6RWUXrd4J75GUAyj9fFj9QpKO4GirKAsKhIdD3rgmY0Vf05ZDSgBFfrW1mbfWOVuVlAaBgNKM6yMwWvmWC0/kx07Ohv30w6741DqxyNWUKbFgJKs8zugfOcdtex0/ElArLMMZ8xUUCbO4K0PapuXpyoJV66MvyvnNxlQRqPxbYpWpKug3LRJ/b6ytb1bsjPTfFiYqaAsKFAh0Vdf2RukPttkS0DpRYu3XnWejj6Td2Kbt53qa/1CykxAKUOtbt3EZ9yOyy4TYyXOn2//ObwUpoCyvl6tQ6obVnpYbGUMSq9bvK3OKO42OxWUZm6oyuO2lerJxNexEkZs3w4sWCCWCwvTbzOGEfcZMI46yvt1DFMFpReT5CQ+VxjGoaypUefCqQJKJ2NQ7tunjteDB4twwqsxE/ftExN2ZTo7AaVejJFtoa9bY1Du3CnGPJWfkXbtnK0XA0rBSgWln+NPSnYDSs7gbRoDSrJO38Ds3JG2ElA2NADvvSeWO3cGRo60/nqJIhF1wW0moFy5srk1KW6CHElebBtG6tlr/SADytJS++OmpQs67FRAZSo9oMy01ha9siTdha9s8zaM+N9trmJAGU+eFHbpYn6mQT2g1PeFevV1797mjxt6BWVrLd719Sr8cBpode1qfmZhv4UpoGxtghxJBpTbtpmfwCLbW7zNVlDabfG2GoDZDShnzlQX5z/+sQh0NmwAPv4Y+Mc/gPvvB6ZMAc45RwzRU1UFIxLBvg4dELv6amvr2K6dqJgDWEGpC1tA2dr4k4CYPEveSLdaQfnFF+ozJ2+WO20ZT2bhQnGtMHhw8Ptap5xUUALZN5O3my3eTqoxE+lhaZAFL15ws8V7zx71vvs5/qSkXyNYmSjHq5tUWcjnmljKCk5PsvQTu9YCyo8+UsHbSSe5N3FF166iHXDzZnGik+55U40/KSVOlONGiGqHHlDale5ENxdm8JbkxXZ9vTgIOr0r6iczFZRAy3EoE2cwzjV6QJlpY1DqF95uBJSxmAr7zLZ3A6lbvNetUxd4VvYdViooN2xQNxPcqrgLI7d/105YDSgB8bnSg+dUvGjx7tpVHOtjsXAFlG6NQdnYqM4D/KqglDeQAWDcOPH+VlaKP4cdlnw19+zBf959F6fqoZIZkYj4nH33XWZWUDKgVPLyxBBJy5eLCkrDMH9jPXH8Sfk6RUXiBohb1X5PPy2OWzt3Aq+9Bkyc6M7zBkEePwsKxLZpRjbP5O1mi7fegZSNLd5z5wJ//ztw9dXO5h5ws4IyqBm8Jf0agRWUnmAFJVnnZ4u3Pv6kG+3dkqygjMVaXwerAWVQ3Ago01Vi6f+3XGnxBjJvohx54C4oSL99Dh+uljkOpboL2rFj5o2v6nYF5datasIgKwFlt24qQNMDSrs3N7p3VxetrVVQ6jN425kgJ1OEqYJS3zem22b0C2Kzbd4y5GjXzr3Kt2hUrUvQAaXZFu/CQrV9t9birV8A+hVQTpsm/s7PB447ztzPFBTY7/KQ67lli7nuhjBVUOZKi7eZgBJQVY9795qfsBJoOYM3IAJPOa7lqlXudL7oxy35Oc9UMqDs0cN8oUcuBJR5eeY7RKTEm4RuVlCGLaA0DOCCC4AHHwQmTXL2XG5WUJq9weeVqipV7WoloGQFpWkMKMk6PwNKffzJk06y/lqp6HdcWjsxkhPkAMlbvMMwk3cspg5mXlVQyrvWkUh8K2c2sjpOapjIA3fnzukvAocNU99ftMjz1Qq1PXtUwJVp7d2A+wGlfkJoZbIZfd+wdq1qUbIbUBYWqhPV1ioovai4C6N27dR2G6aA0mwFpZmxHw1D/T71kNoN+niYTU3uPa9VVipA5AVYa8Gh3Rm89dcw8zrS2rXA11+L5dGjnZ17mCU/Zw0N5j7/uVBBqf+uMymgtDtRTrIKSiA+8LQy3m0q+vn8e+9l3nA/0s6d6nNhtr0byO6Jh+S5Sdu21o8vfrV4hyGgrK5WN4f1a2E7rIRz+k3NZAGlfrMuiArKvDwxORcg9l3yhn5rWEFpGgNKsk4/KfQyoFy/Hli8WCyPGuXuTkif9KG1qgR5kpKfr3ZIuqoqtbMNqoJSbzHwooIyFlPvQ79+zg/CYZepAaVhqIvL1u4qtmunPs9Llpg/wGYjfXwlBpT2ZvCW9DZvWZXqZHgIeUG1aZMY3y6VXKmgzMtT+/igA0o7Ld5mAkr9os/tsFl+nmMxc5POeMVsBSWgzn1qatR42Mk4qaDUf39mA8rp09XyuHHWXs8uq0GqVxWUZWWqEi3ogDLTKygBaxPlyArKzp3jz+XdrPirro7/fG3alLljdevHRisBZZs2at+dbQGlk1m3vQwo8/KAkhKxHIaAUg8lN292dp1gZf9XWKj29WGsoATUtUJjo/n9FysoTWNASdY5Pclq00YNjp0u/PnPf9TyKadYf5109JOadBWU+gzeBx6YvBUgElGt399+G8y4YLK9G3AvoNR3pGvWqDuO2d7eDcRfrGVSQLlrl7qANXPQlm3edXUtZ13OJZk8QQ7QclZJp/QQyWpAmWyiHBlQ5uXFB5hm6OMV6hdaiXKlghJQQUvQAaXZCkqrLd5ezOAthWWiHHmB1batuiBNxWwop1dQWr340W/KmQ0oE8ef9IP+OTMz/IpXoWBengqBrbZ4Fxaqc2A3ZENAabaCsrpanbMfckh89ZubE+Uk64bK1DZvOxPkSDL0ra6Ov87IdDL8szqDNxDfxZAYULoxXr0MOcMWUALWhmJIZDWck8fqDRvUpFhS0BWUgL1xKFlBaRoDSrJObmBFRWpGRavkyXC6Ezuvxp8E4ndo6aoo9Bm80w0OHHSbt1sBZVGRuljSDya5NEEOkLljUFq9q6hPlJPLbd76LHyZNkEOEK4KSj2gXL5ctNHKk9wDD7R+YW52opxcqaAEwhlQphuD0moFpRczeEthCyjNXFzZCSitVlAWFKifMRNQxmIqoCwtBQ4/3Nrr2RWWCkpAtXlbraAsL3d32IKwBpTRaHwxQCI7Ld56FWPizXI3KygZUAr6e+rW7Ohh4KSCMi9P7UvcrqDUnyOMAaWZ43cqVsM5eaxuaGhZKBKmCkrAfEDJCkrTGFCSdfpJll3yYmbr1uTjujQ2qpOB9u3dP/k1W0HZ2gQ5UtAT5bgVUALq96ofTPSTwlwLKDOpgtJJQJnLE+VkUwVlkGNQAi0rKFeuVK3ZdvYd+gVVuolyZKgViVhf50wjL45qa4MdR9GrFm8vq2HDEFA2Nqr3zsx+Wg8xvQoo9XUxE/wtWaIeN3asGALHD1YrKJ0OSZSODCh37DC3Hbpx7pxMWAPKykoRUqaiB5RmWyRTjT8JuBum6efxMkz+4IP0w4yElZOAsn9/tawPhZPJYjH1e7QbKOrXSW7O4q0/R7YFlHYrKIGWx+owVFDaCShZQWkaA0qyzs2Asq5OtQ7rPv5YnWyfdJL7J79mA8rWJsiRsqWCElAHDlZQCpkaUKYLDCTO5C3oJxf6CXmm0Ld5NwJKJy3effuqoTCWLXO+79BbvM1UUHbrJqrBspleCaZfHPnNbIt3ly5qvD62eMcfU6xWUKbr+HAroNy1S5ybpRNEezdgvYJS3x+6PYmPPlFOa8GgYah1cbtyRn8+/TMQhIYG9Rltrfq5rEyda5kNFJPN4C3pgaebFZT/8z/i7717gY8+cva8QXCrgjJbxqHUrznttHgD8QGlVxWUe/YEPzFTYkDpZPIpfR9ppYISaHmstjLJnFf0OSlYQek6BpRkjWGoO9JuBJRA8gBIb+92e/xJwHyLt9kKSv172VJBuWuXqgqQ/6eCgsysMLMqU8egtFpBWVGhqpsWLQr+ZCgo8uSiZ0/7J6xBKihQ6+1mBWUkkr5FLxl9MrGvv44fOsBpBWWqgLK+Xt1oyvbxJ4H4gDLINm8ZUEYi6U+2o1F1zGWLt7UJchIf40cFZWuvA8S3uwYVUFqpoGzTxv0bF1Zm8q6tVeOouV05o+8Pgq6g3LBBnUeY2XbluJHr1rUeigOqglIf+10qKVHbt5MwzTDUuX/37sC556rvZWKbt37ctDr8STYGlG4EinIbrquL3++6GVAahgjFg7JlS8vrYzdavNu2NVd0ZKaCMi8vfj/sp44d1bWiPkxUOqygNI0BJVmjn2Q5Gc+ntYDynXfU8skn23+dVDp3Vm0bZiooU83gLXXpoi7AMj2g1C80d+4UF/9yApVBg7K/OgnI3DEo9XU1Oy6LbPPesSN9C2222rpVXVxm4viTUrKhGeySJ4Ndutjb3mWbd3098NZb6ut2JtjSKyhTfT71i+JsH38SiD/2BjEpmyT3Nx07pm/lBNSNkE2bWg54nyjbW7yt3kgy2+LtZBbvxHVJ9zp1daLdFRABjtWJr5ywOtu43D7cHn8SsBZQenlhGo2q/1/QAaVe/Wym+l4GlIaRvkIeEDfM5fl1//7JbybK56uutl9dvmGDCp0OPjg+gM/kgLJDB+vXB9kYUOoVlE4DSiA+tHNzkhwg2DZvOcmhzo0Wb7OVg2YqKDt3Vt0ZQZDXDOvXm9vfyPcgL8+dz0oWY0BJ1rh1kpUuoKyuBhYsEMvDhllvMTQjGlUnuqkCysZGFcylmsFbJ6uDqqvTV2V6wYsKSkD8vr/6SrwXQG60dwPiPZAX3NlcQQlwHEr9zmcmVwe7FVDGYqqNx+6+Vw8sZAVlUVH8xY5Z5eXq4jvVBaw+QQ4rKP0j941mhpOQM3nr4y+mIkOOwkJzz21F586qeiMMAaVXLd522sfMBpRz5qjKnnHj3J3wpTV2J8nxolrFSkDpdWtfsqF5gmB2Bm/JykQ5+njGieNPSm6MQ5nYOVVRoV7vk08y65ywqUnd8LHa3g2Iz7jcdrIloNRDP7sdM/oxWP/Mu1lBCQQbUCa2dwPuVFCa3RenGrvaMNRxMKgJciT9muHrr1t/vH7DLMhgNQPw3SFr/Ago331XLXvR3i3J1sXq6uStrWZn8JaCHIfSqwrKHTviK0LtVEBlokhEXXxk0smonYAy18ehzPQJciS5P3Y6ccqWLeqGhN2AUp8oR/+a3bGE5YXVN98kr77TK+5yoYJSP/YGFVDW16vXTjeDt2Rlohz5++ze3f2T+Lw8tS5s8bb3OkGNPwnEh4KtdTfEYuozms0VlEDmBpSy4hFofaKcdONPSl4ElADwve+Jvw0DmD7d3vMGYeNGdTy3E1BGIuo9/eYbdU2Uydxs8QbijyMMKJNraFD/F6cVlLt3qxtkQY0/KVmdKMdqFWkOY0BJ1rh1kqWf2CUGQPr4k+PH23+N1siAct+++IBPMjtBjhTkTN5eVlDm2gQ5kj7TfKZwWkGpjxeYK7ItoASS78/M0k8E3Qwonew7ZJt3fX3yCjJWUPrP7AzektmAcs8eFfa4Pf6kJD/X1dXiwslvTioozQSU0ai99jGzr6O3uZ54ovXXcSI/X50/tlZBuXu3uvkcpgpKLwPKurpgZ5r2soIy3Qzekh542q34S3bOKwNKILPavJ1MkCPJgDIWy45hgNxu8XY7oNSrOpNNIusX/Rq4qEj8bXeSHP08xez+r6JCVefr77Gd6xyvWA0o3ZhkOEcwoCRrvK6gjMWA//xHLJeWAkcdZf81WtPaRDlmJ8iRsrWCUj8pzKWAUl5019aaG7w9DOSBW68AbU3fvirwYAVlcOvhVOKNBbv0E0E9VLIi2fvoZN+hX1glu0DKtQrKTAwoZYs3kP4ix8sZvCU9eE83BrVXrFZQFhaq7dtMi3eHDvbars0ElNu3qyF4Dj7Y/j7CCfl5a62CUt8PhqmC0ssWbyDYKkonFZStBZRWKyjtBpT6+bssTjj2WDXM07RpmTOhoJsBJQCsWOFsfcLA7QpK/RiSjRWUHTuqYXs2brT32bczxEV+viok0s9L9WNgmCooW5soZ98+VYHMgLJVDCjJGjt3QZJJFVAuXKhOOseN83ZCFn122mQXKfrdIzMBpV5lmS0VlHqLd7t28RNWZLvWJnIKI3lR2alT65NWSHl5YqxXQAQ9mTQpkBvkSUVBAdCnT6Cr4ogXAaXdCsq2bVvuK9yooASSj0PJCkr/6fsJN1u8/Q4og2jztlMBIh9nZpIcO+3dieuS6nVmzlTDLPjd3i3J9dy5M/3NQ7fOV1MJY4s3kFkBZc+e6lyltRZvebO8TZv4YFNnJfBMRp/Bu3dvVYncpg1wzDFiee3azAnq3Ago+/dXy9kwDqUbY1Dq27A+7Ey2BJQ7dqhj4+DB6vjd0GDvesju/k8eqzduVEMXhamCsn9/dTOwtQpKr8chzjIMKMkaryso9dm7vRx/Eoi/85IsoJQnKa3N4C2Vl6vqnaVL/b3D6lUF5fr16iRvyJDcGtQ3kwNKqwftXJ0oJxZTA1v3728+1A0jt2Z21sMjJxOUJbZ5u1VBmSyglBWUkUgwFV1+C1tA6WaLt14N63WLN5A5AaU8X6mpST4OXCzmfHwrMwFlkONPSvrnLd2xOUwVlH5NkpP4Wn6TAWVpqblz0YICdd6cLlCsrVXh2MEHpz4X7dJFhYp2wrRvv1Xn04nHrExs83a7gjIbAkq3W7x12RJQ6jN46wElYG8cSrv7P3msbmpSx6QwVVAWF6sb6F99lf663+ubVFkmh9IGcoUXAaV+YqePP+l1QKlXUCa2TVmdwVuSJzQ1NfF3kr3mVUD50UdqOZfau4HMCyj37lUnM04Cylwah/Lbb1UFTia3dwPhqqAE4gPKdu3sXxwBrbd4ywrKbt28rboPizAElF61eOsBpVcVlPrFVhABpTzfaNcOKCkx9zOthYc7d6qLIy8rKGUwk58PHHecvddxyuxYmblUQan/zoMKKA1Dnfdaubkgqx537Iif6Emnt12nGn8SiJ/UZc0a6xPGpRvaiQFldgSUbrd4S8XF7tzkDkNAmTgHQ9ABJaCO1WGqoATUtUNNjbkOB4AVlCYwoCRr3DrJ0sdIkhc627YB8+aJ5cGDnV3QmpGuxXvVKlWlYGaCHCmoiXK8avH+73/Vcq4FlPpFdya0PesHRjOBgS5XKyizZfxJIFxjUAJqzCJA7DvsjIknpWvxrq9X++9caO8GwhFQssXbPrmvtlL90Voo53QGb0BMhCDPH5K9xtq1quJ89Gjn5xp2mQ0ova6g1C8ygw4ow1BBuWOHml3XSkCpT5STqs3bzPiTkgw8Gxvjh/8wI11AOWKE2te9/76aHTvM5PEyGrV/PO/eXU2Skm0BpRst3pIb1ZOJzxPGgNLORDlOW7wBdawOUwUlYH4cSlZQWsKAkqxxawOLRtUJlQwop01TY3l4XT0JpG/xtjpBjhR0QFlU5LyCSD/R1S96WjspzDaZVkHp5K7iQQepz02uBpQDBwa3Hm5wK6CU4VEkEn8Txyp9v+l039Gtm6jYAlpWUK5fryrHcmGCHMC9dn4nrLZ4l5Soz2gut3g3NKgwy8p+2o+AUn+dZK8xfbpaDqq9GzB/89DrCsr8fPW8bPG2Pv6kZGbcSDMzeEtOKv6SzeAt5eWpWetratRkUWEmA8oePexX9+XlqRB51ar4MRczkVct3tkcUOodEKygjKdfO6Qbh5IVlJYwoCRr3LwDIAMgGf7o7d3jxzt7bjPStXhbnSAn2WP9nMlbBpRuVDSk+r3mWgVlpgWU+oWa1YN2YaH6/X75ZbAzB/pJv9uZTRWUTqrq5ElgRYUKBe0YPRo45xxx8nb99fafBxAXVrKaLrGC0o+W4LAJQwWl1RZvQF3kmGnxzsuLvyhyU5ABpf6+WdlP6zdU/Qgot28XYaouDONPAuGpoARUmzcrKN0JKN2soASsT5Qjz9sjkfguACmT2rxra9Xn0mlHmgx99+2zF1CFiVct3tkYUJaVieOl0xbvXKmgTBdQsoLSEgaUZI2bJ3wyANqxQ7RKyICyTRvg2GOdPbcZZisorbR4H3SQamUMooLSjYAy2Z2dzp3DcSDwU6YFlE7vKso2b8OIr1bIZmzxjtfUpMIjp5PN5OUBL78sxvJ14+aGvMDatk1ceEl6C1+uVFDq+/lMafEG1Geqtjb+d6iTIUdlpXfjiXbsqMaV9jug1PfTdlu8E2+oAvGhlBsBJRB/3IvFVEBZWgocdpj913AqLBWUQHxAma6yzM9281TjOHrNbkCpt3gnCxT1c5Kqqtb3N3YrKGMxFcz065e8/TeTAkr92OhWQAlkzgzmqbjR4p1sG86WgHLXLnUjePDglpMPhqWCUu/EDJLZgJIVlJYwoCRrvKigNAxg5kx1YXzCCWq8Ey8VF6uDTOIJvwwoo1FrwUWbNupA/vnn/rVCuBlQtmvXcobEoUOdjSGXiTJ5DEo7AeXw4Wo5V9q85clEWVnmB/BuBJSbN6tJBZxMkOOFVDN552IFZTSqZqoNOqCMRMwHYq1d5DQ0qPMAr9q7AbHO8vPtd0Cpn2t41eLt5OIn1essWaL+PXZssJNRhbGCMhaLHws8kbw4bdvWm/cuWyookwWU69erSkAzw4XoYZqVCso1a1T7b6qbar17i4kzAWDOnPS/86C5MUGO1L+/Ws70cSjdqKBMtj+Rx2Sngg4o5QSxgCrQCWMFZZcuLa9Vg9Czp8osWEHpmhD8ZimjyA0sP9/87JOp6HdBn3tOLfsx/qQk27z1CsrGRtX6aWUGb0me2Ozdm7pdxU0NDWomYjcCykik5c4z19q7gdyroDz0ULU8Z47z9Qm7ujpxQQKImxCZHsC7MS6hfuIZtoAy1UQ5uVhBCajfd9At3h07mh/brLWB9jdsUOOJeh02y8/31q3q+OkHuxWUfrd4J75OWNq7gXBWUALp27zlPtmr9QhDQKmH/VYCys6dVSiT7JzZyviTgAjj5D7JSphmdux5WUXZ2AjMmmX++f3mZkCZTTN5uzEGpX6T0OlzJQo6oEwcfxKIH0PaziQ5dqsHu3RR27Icb9zOJHNeikZVgL9ihbrJn4gVlJYwoCRr9JMspxf0egD0yitq2c+AUu7gamrE2CqAuOMqL1isjD8p+T1RjpszeEsMKOMvPHIhoBw1St10mD5dBQXZasUK9X/M9AlyAHcqKPULzLAFlPoFlj5RTi5WUALBB5QyGDLb3g20PtC+HzN4S/rn288x1dyooEzW4p1LAWUYKygBBpR2KygjEVVFuWZNywt8K+NPAqJCVR4vVq40fy5jNaAEwt3mzYAyOTdavIGW23I2B5SAOn77WUGZl6dubK5fL6535fV5GCbIkeQ1RH19y4kcJVZQWsKAkqxx8yRLP7GTIduBB8YfCL2mT5QjT3TtTpCT7Gf8mCjHi4Ay8e5Ors3gDcTP0JkLAWVRkRr7df36+AlkslE2jT8JuB9QOh2D0m2tVVDqJ7K5QAYuu3b5P6tqfb0KRs1OkAO03ibmxwzeUlAT5djdT+vvs98VlHV1qlKsqir55CF+atNGDNEDmK+gDDKgbGxUY656VTlTVqaKBoIOKKPR+HNrM2RA2dAQH3QC1isoAXUdUVNjfkzOdDN468aOVVVduRJQ9umjPl/ZFFA6CRVzLaA0M4Z0KnKflJ9vPRSWx+rq6vhjdVgqKAFz41CygtISBpRknmGoEz43AspklRd+Vk8C8SdRss3b7gQ5UjZUUCbuPO0EtdlAXhRm2hiUVkID3YknquUZM5ytT9hlW0BZVKTGwcnGFu/WxqD0clKVMJKBi2H4fxGjBzFeBZR+VlAGFVBaucAqKlLnXckCSi8myZGvM2eOGLIGENVjQQ+HEYmo9UxXQSnPVyMR98aHS2QmoPSj1TwvT+0Tgg4oKyvND/sg6RPlJLZ5ywrKaNR8OK6Pa2k2UNPHnk/XVVFeDhx+uFhetix+vxUmbgaURUVqCJVMDyhli3c0an0IL50fAaXeju4XGVC2bRs/bI6TcSjlPql9e+vHD3msTpzAM0wVlGYCSlZQWsKAkszbu1fcCQa8CyjHj3f+vFYkm8nbbJtHKgMGiLtEQOYGlPrvt1cv76oPwk6faT7VuCLJbNmCvEcfRbvESgAvyQu18nL7J116QDl9uvN1CrNsCygBtd3mSot3fb3ab+fS+JNA/D7Z7zZvOzN4A/Et3snGsQqqxdvPgNJui7f++NZavN2eJCdM7d2SXM8tW1JXEMv9YGmpd5MpmAko/bowlb/3IALKhgb1ubRT/ZxqopyGBhECAiKcNDuBptWJcpqa1Ov079/66+ht3vr2ESYyoCwvd+ccXr6n27enH84g7OQNvbZtnd1sSdyW3boJUlCgriH9vvm4Z4+6QXDQQfH7TScBpZPuS/1YvWiRWs7UCsriYn8mAs5wDCjJPLdPshIvbIqKgDFjnD+vFXoFpTy5knePolE1W58VhYXq7uvy5eIEy0teV1Dm4viTkj7TvNk2IQC48kpEJ0/G6Ntv96/9Ul5M2q2eBMRM3rL65v33rYWymSabA0q7gVWYA8q2bdX2KC+85KDpQG6NPwm4MymSXXpAyRZva5wMxSEfX1MjwnmdPD4lm+TOzmsAyQNK/SZWkOTnrqkp9effzY6fVMwElH619ukBpd9jSOsTXNnZdlNVUH75pTqHtjLUkNUKypUr1dh2Zs55wz4OZSymhj9xWj0pZcs4lDL0czL+JOBdBaX+XH4HlF9+qbbjxA7C1ia5S8Uw1D7azv5PP1YvXqyWw1pBmWp4LK/HIc4yDCjJPK8DyuOPd37AsCqxxbupSYSKgAgn7d7lkCc4DQ3A1187W8fWeF1BmYvjT0p2ZvKurgbeegsA0Gbz5vg2G680NKiLICcH7WhUbIeAuODV71ZmG3kSUVXlXfuf3/SA0s4Fqgxq8vLCdXdakhda69aJan490GIFpX/0faGVgLJDB1XdHaaA0s9JcmToV1qqxlE0S98mE4cdkQFlebmzakH9+LFli3je+fPFvw8+ODzjvJqZKEees3rZARLGCsr6ejXpo1/sTpAjpaqgtDP+JGA9TLPaOXXEEep8+733/B8HuDWbNqlglwFlPNk27TRQzMaAMtX4k0Drk9ylsnu3KnbI1grKzp1VcUdrFZQcf9IUBpRkntcBpd/jTwLxO7jqauczeEv6z3rd5u1FQKmPYZXLFZT6xbfZgPKVV+JOViN+TJSkr5vTu4q50Oa9fbu6qM2W6klAXYjHYtYHMQfUSWdFhfUxxPwgJ8ppahLrKitEgNyroNSPwZnS4h2JqIucdC3enToBJSX2188MPWgLosXbzn463UzeMqB0Mv4kIC6M5Xu/eTMwc6Y6noWlvRuIPzYnGyO6sVEFEWGqoPRyXfTfvd9t3k4Dyj591LIeUFqdwVtKFXimYjWgLChQN3Orq+OD1DBwc/xJqX9/tZzJAaXe4u1E4o2PbA8o7bZ4O60g1wNKfT8TpgrKSERdS3zzjRqzWYrF1LU6KyhNYUBJ5nkdUPo9/iTQsoLS6QQ5kh7qeR1QeRFQTpggqsq6dwdOO82d58xE+mfU7EQ5L7wQ909fAkqnM3jrciGg1KuasymgdDKTd1OTCo3C1t4tJU6U4+ekKmETljEorQ4pIS9yNm+OH/4kFlMXH15XTwJiW5FBnF8BZUODChLtVH+kqhrUhyBxGlDqr7N5czjHnwRar6D0YwZvwHoFpR8t3kDmBZRt2qibF3qLt90KyvJydf5mJkwzO4O3Lsxt3l4ElHoF5YoV7jyn35qaVHUxW7xb8iKgdJodpDofDVMFJRB/LZG4fehdTaygNIUBJZmn72TcOOFr00Y9T58+wQQFiZPkOJ0gR/JzJm8vAsrhw8VF25o17lzwZCqrLd7r1wMffhj3pYgfEyW5GVAOHKhOCD78UFUUZ5NsHH8ScBZQVlerSqmwtHEmkhWUgJgoR6+gZIu3f+y2eAPxny05wREQH1j6ETZHImo/51dAqQe7dvbT+vmKvs/XW+jcDCi3bAHefVcs5+cDxx3n/Lnd0loFpR8zZwPx73dYWryBzAsoAVX1uHGjqn6VFZTl5db38TJQW7eu9fMYee5fUGB+7PlcDigztYJSr2zLhBbvhgbv5zHQyYCyuDi+qhkIRwWlLkwVlED6cSg5g7dlDCjJPLc3sEgEuOceYNgw4MEHnc2mZldZmRpnsro6/d0jK/r1U+NLZWJAKZ9LziSXq6wGlC+/3GLsv4yroIxEVBXl3r3A3LnOni+M9JMHOaFVNnASUIZ5ghyJFZRKWCoorbR4A6ln8vZzBm9Jfs537FCBiJec7qdTtXi7NYN34uvEYqoSZPRod88vnGqtgtLtG+qpFBWpMCEsk+QA1ib1c4MbAaU+Uc6aNeJ9kzehhg61fo0gA0/DEM+XSkODOicYMECElGYMHKj2VR984P+4n+l4EVCWlambJJlaQalXJLodULo5lrm+bn5VUdbVqd/roEEth/lp315dL1uZJMdpdtCxoxq7WiooCF/Ql24mb7+OAVmEASWZ58UdgB/9SAx6e/rp7jyfVZGIavPWKyijUWeVVdGoCjhXrGg5HoWbvAooyXpA+eKLzYuGPAjps1B6xc2AEohv854xw/nzhQ0rKFvS74hnQkCpV1Dm5YW36tMrYQkonVRQ6p+5IMJmvyfK0ffTbrZ462GUmxWUujC1dwMtJ/NJ5FcFJaDavFlBKTitoATEuJF6e7edyRrNVvx9/bU6R7My5nokoqoo9+0D/vtf6+voFS8CSkBVl27Y4H/7sRv0dc6EFm/Av/f5q69UF02yAh19DGk/KygjkZbnd126BFPUlI5e7JAYULKC0jIGlGRetm5g8kJhyxZ3ZvCW5IlOLKae1wsMKL3TWhuZbu1aYM4csTx0KIz9F3SR+nrv7zZ7GVBm4ziU8uQhGo2v2sh0TiZOyYQKSr3FW6+grKw0X/WSLcLQ4h2JWA/EzASUfoxBCcR/zv1o89arHt1s8c7FgFI/NgdZQQnEB5QJHRQt1iXbA8qyMvuVZOkCSivjT0p6QJluohwnQzuFtc1bBpR5ee4ez/WJcjKxilKvlM+EFm/Av4DSTAehPH5v2QLU15t7XjfG4E38DIdt/EkgfttgBaVjDCjJvGwNKGUFZSymxqlx0t4t6Sc6Xrb5MqD0jpUKypdeUsvnnw/Dz5nc3Q4oe/RQlYXz5tmbETqsDEOdPPTrl13Bllst3mGtRuzSRd04WrFCjWGYa+NPAuGooOzQwfps72Fs8Qb8CSjdrKBM1eLtRUBZWgocdpjz53WTlUly/KqgrK9PPlRAEC3efgaUhuHOBFf6zcLVq+3P4C3pgWe6CkonAaV+MzeMAWX37u4O1ZTpAaWXLd65FFAC8WNIp6Pvi+zuizMhoGzbVp27sILSMQaUZJ6fJ3x+0mfylpxMkCP5NVEOA0rvWAkotfbujA8oAXXi3dgoxlfKFuvXq4vIbBp/EogPrbKxxTsvT7WrffWVqlbKtfEnAWe/a6dkQGm1vRsIb4t3JlRQpqoa9DqgHDs2fDdyOnRQLX7JuhuCqKAEkrd5Z3sF5Y4dahgjJwFlugpKK63XktkKSjszeEtdu4pJJQHg009b77Txw549aj3cbO8GsiugZIt3PKsBpdk2bzdu0CSek4ZtghxJFnZs3Rp/zcgKSssYUJJ52XoHINmdGDcqKIMIKN0cpJmAkhLxB0gfUK5YASxcKJYPPRTo3x+GnzO56xerdkKDZE44QS1nU5u3PkFONo0/CWT/JDlA8gsuVlD697oNDer1vAoos7XF2+mNpKIitY3rz+X2xU/i7zVs7d2AqNyVNxDDUkEJpA8oIxFvz9GCCijdGH8SENujDMJXrlQBZe/e9n6HVVWq4t5MBWVRUXyoaZZs8zaMcJwrybGZAQaUiVhBmZoMKAsKUm8H+vHb7EQ5bmQHmVBBCaQehzJb8xMPMaAk87J1A/OqgrJnT1XR6EdA2batqDAid8mLtXR3xvXqyQsuEH/37YtGOfOc1wGlXLeSEvdOksaOVRUqYTjpdku2TpADuBNQRqPhvTsNJL/gyvUKSj8DSv1GjZ2AsmtXtV9J1uLdrp33FW9SprV4A2rb9LPFO4wBJZD+2BymCkoZFpaXe3uOlukBZTQK9Okjlr/4Qp3b2hl/EhDvtWwbX7Uq+figdXVikhwAOOgg60NWAOEbh9KrCXKAzA8o3RyDMnG/4rQiU6evW7JhI9zW0KC2g4EDUw8LoA/RwgrKllLN5M0KSsuYZpB58oQvGnX3TlHQEi8UnM7gLUUiqopy7VrvLiLlSRzbu70hqzS2bk1+ggvEB5TnnSf+jkZRKyu7vJ7JXV74unnQ7tRJtS4tXpy8SiUTMaBMTgY0FRX2LtL8ok+UI+ViBWV+vrog8jOg1MMgfQgMswoKVLAkL3AMQ1VQ9ujh3+ycejVIJrR46z9XU6MmKfAyoKyqAgYNcv6cXpDrWVsrZlHWhbGC0uv1yPSAElBt3vq5lp3xJyVZCbZ3b/KKry+/BJqaxLLdwoRjjlGVmtOmpT5P9IuXAWX79mr/nYkBpZsVlAUFqsOqpMTd8yY97PSjgnLlSjWTfboOQjst3rlUQZkqoMzWAi8PMaAk8+QGVlbm3wWEHxIrKPv3dz6Dt6Sf8Ojje7iJAaW35EV4Y2N8O720bJlqRTryyLgAZac8OYzFxOO8EIupqia37yrqA8C//767zx0U/aQh28agtBtQNjaq8CTM7d0AKyh1soIjkyooAXWRs3GjuJivqVEXYX61dwPimCmPm35WUJaV2T/H0C/MZFjsdkDZq5d6nfPOC+/5nv75S6yiDFMFpV8BZWmp+l1lakCpT5Qj2a2gBFqfKMfJBDlSSYkIKQERDspKtKB4GVACqopy3Tp/qvvc5OYYlIC6KeD20A1+t3ibGX8ScD4Gpd19MSsocw4DSjLPr5MsvyUGlG60d0v6OIRezORtGAwovdbaRDkJk+PodurVXl61eW/frioAvAwos6XNW45B2bZteGertstuQFldLYJuIPwBJSsolSACSj0IshtQyjax+nqx/wpiBm9Jft79rKB0sp9ONpO32wFlUZGYGO2ZZ4C77nL+fF5JN5N3WCoo9+0TbcSA9xemeXnq/5qpAaUeKEpuVFACySfK0c/L7UzEI4WpzduvgBJIP/lQGLnZ4g2oc/5zz3X+XLpsCijluWi7dvZnlM+UCso+fdQ4uvp496ygtCwjA8oPPvgAp59+OqqqqhCJRPD666/Hfd8wDNx6663o1q0bSkpKMG7cOHwd9B2tbKBXUGaTxB2dGxPkSF5PlLJvnwqnGFB6I12VhmEAL7wgliORFicpu/STQ68CSi9m8JaOPVYdbGfMcPe5g1BfD6xeLZYHDAhvZZBdJSXqBNBKaKWHM2EPbRMvuPLy4sdFyiV6QOlXW6HTFm+g5UVOEDN4S/LCp7Y2eYW8WxoaVGjkVkAp9/1eVGcMHAhcdlm4h/NJF1CGpYLS7wtTGVBnakCZWEFZWOhsKJbWKij18zInxQl6QDlzpv3ncYOfAWWmtXm72eINAPffL86fHnnE+XPpwhpQdu2qxtG1WkHp5NhUXq7a6YHwVlDm56ubIl9/rW78y/cgEuG1ukkZGVDu3r0bw4YNwyMpdgj33nsvHnzwQUydOhXz5s1D27ZtcfLJJ2Nf4hg1ZN6+fWq8o2xL/zt1ih+43KsKyvffd/8iUr+g4k7PG+kqKD/7TN0lO/bYFifnOzM9oGzbVrStA+JEVD/xzUSrV6tAP9vGnwTEyY/cP1upoMyUGbyBlgFWZaUK0XONDF5iMf9a7dxs8QZaBpR+tngnWxev6MGuk+oP/Wflvl9WUDqpUMlE6W4eyhs0BQVAcbG36xGmgFKGADt2+HfTQgaU0ajzyqbECsrBg519pvUKynQt3m3aqAl67Bg2TIVK8+fbfx43yPO00lJvPnPZElC6NamNFzd1gwooo1HgwANTP06fRNHqLN5OAspIJP7cNKwVlIC6tti3T53b6AVenMzWlIw8kxk/fjzGjx+f9HuGYeBPf/oTfv3rX+OMM84AAPz1r39FRUUFXn/9dVwgZ9hNUFdXhzrZhgFg5/6Tm4aGBjTIgWNDTq6nJ+u7ZQvkJWCstBRNGfKemJXfpQsimzYBABoGDFCDBTvVsSOihx6KvE8+ARYvRuO//gXj5JPdeW4A2LZN/V7ats2630sY5LVvDzn0deOmTTC09zjv+eebv9d0zjmIad9raGjAvk6dYJSXI1JTA2PpUjR68PuJbNjQvCNv6tgxbh3ckHf88Yh++CEAoPHdd2FMnOjq8/spsnixeq8OOMD19yoM8svKENm6FUZNjenPW966deozXlER9xkPnWgU+ZWViOw/OY716NHqfs/TY2OAou3aNd9lbti6VVQbeSyvulp9Vtq3t/VZyevSRT3HunWIfPON+ndlpa+fv7zKSvXa33wDI9kYeG747jt1rO7UyfaxOtKhg9qHbdiAWEMD8rdvRwSA0aGDJ8cYt7m1Pca9Fxs3xu3P82tqxHtSVobGxkZHr9Oq0lL1u92yJe53G9myRa1jWZnnx5xoebnYJzQ0oKGmxpcK2PzvvhPvdWUlGmMxVTVkR8+e0G83xQ4+2Nl5bY8e6nezcmX8c+3Zg/yVKxEBEDvoIDQ1NakbmDZEDz0UeR9+CKxdi4bvvgsmRKmuRv6aNeL30auXqc++1e0x0qeP+kx/9VVGnUfl1dY27+8bCgvdu9ZzWaSoSL3Hu3Ylf4/37BE3ZrZuRWTrVqC2Fsbo0S2HLWtNUxPyly8Xn5n+/dEYiaR9X/IrKxHZtAnGxo1orKtLH7jV16Ng/83TWFmZo205euihyFu5EsYBB6CxqCi0v7u8/v3VOcUXX8Do1g35O3aI97d9+1aP0dl6viqZ/X9lZECZzurVq7Fx40aMGzeu+Wvl5eU44ogjMGfOnJQB5d1334077rijxdffffddtHHrLotPpnkw/knb776DfEe/270bn7z9tuuvEaQxbduiPYBYNIp/r1qF2Lffuvbc3b73PRz+yScAgJqf/QyzGxtday0tW7UKY/cvf7N9OxZn2e8lDHp8+y1G7l9eNns2Vsm7gIaBcc88g7YAjLw8TCsrQ13i+x+JYFtVFTrV1CDy7bd49+WX0ejyBUPvmTMxfP/yZxs24BuXPwMdS0pw7P7lDc8+i0/C2lphwuC//x3y3vACw8DGLNxexgBoD8DYsQNv/+tfpvY1Az/4AHKe3vnr1qE65O/LcaWl6LA/oNwYjWK+yfX14tgYpBG7dkHWaH/w1luo9aE9+tDFiyFH/Jy1dClqbbSSVm3YgMP2L385cybarl+PPvv/PXvNGtT4+Pnrt2MH5Ah3i95+G995VK3SZfFiHLV/ecXOnVhm8//YZfXq5udZOXculvXvj+9v3YoogJ3RKGaGfNvVOd0e9fdixdy5WK5Vy52yZQuKAOzJz8d7Hr8n0bo6fH//8tYVK/CR9npdFi1S67h5M5Z7vC6H7dsHWWc049VXsc/uMAwmRRoa8D/7x0Ld0aYNPnDh/ze+bVsU7t8Ov8jPx0qHz3lSx44o2bYN9cuW4T/ac5WvXInj91eZrisrw6cOX2dIx46QtYULp07FplGjHD2fHQe+/DIG7w8lVxx4IL6w8H8yuz0W7NqFU/cvb5s3L+7zHnaHfvWVOn4tWIDdXlbNO1D6zTc4Yf/ynjfeQM1nn6Fo504U7NrV/He+7GrU7O7aFe8/9BCaLEzC1nbDBozbX6C1oUOHVs+njoxGUQEg0tiI9158EfVpqnQLa2ogy8mq6+sxz8Fnpei009C9tBTVI0ag9p13bD+P13rv29d8TfbFa69hdV0dvr99uzhGRyKmj9HZdr4q7THZ7ZN1AeXG/RctFQl3ECoqKpq/l8zNN9+MKVOmNP97586d6NmzJ0466SSUZciYiw0NDZg2bRq+973vocDllrfIggXNy1UHHYTKU09N8+jME9m1C8ZNN8G4+mqcsr/y1jWnnALjzTcRWbYMnZYvx2nt2sEYM8aVp47Mnt283HPIEHTPst9LGESiUeBPfwIADO7aFYP2v8eRhQuRv7/q1hg7FidedFHcz8ntseyoo5pn8D65Rw9xh9NFeYsWNS8PPeEEHOz2Z2DcOBh33YXInj3o8eWXqBw/PmPHbozee2/z8qGTJoW7TcSm6B//CKxejbymJpw6dqypNqbom282L486/XRgxAgvV9Gx6N/+1jxTasVhh+HUVj7zXh4bg5T37rti6BAAY0aMgHHYYa38hHPRxx9vXj7urLNstXlHysqA3/8eADCoffvm7gUAOPq883zdLiO1tcCTTwIARlRUYJhHx9CI1up7wJFHoq/d16mqAvbfTO9fXo6+Y8ciur8iobRXr1a3hTBwbXvs1k29F+3bo5/2f8/fP6RTm8pK798Tw4BRVIRIXR06RyJxrxfRLsb6H3po3Dp6Ifraa8DcuQCAEw491N0hi5JZu7Z5sXzwYFfe6/wBA4BPPwUADDr3XAzUx3e0ITp4MDB7NopranDqccc1z7gcefbZ5sd0P+kkdHO47pHaWuCNNwAAhwGI+b0tNjYi/7rrAABGJII+99yDPiYqwu1sj8b11yOyfTs679iREfscKfr0083LY8aP93/MY7PWrGleLP3uO5Tq47ym0ba6GuM3b0bs6qtNv1TkrbealyvGjm319xl9/XVgf9HNuCFDgEMOSf1gbQiArv37O/+sXHRR8830sIq0awc8+igAYEhhIQ464QR1jO7ZM2fPV6WdJsfHz7qA0q6ioiIUJbnjUFBQkHEfEE/WWTvJinbogGiGvSetuuQS4JJLEAWaS7Nd9etfAxdfDADI/93vAK3C15G9e5sXo+Xl2fd7CQPtZkd0xw71Hv/jH81fz7vgAuSleO/ztIN3/vLlwHHHubt+2phX+V6Mx1dQINb53/9GZONGFKxY4e5EUn6prwcWLhTL/fujwO+x7vyijfNTsGePuTGotICooHfv8I/pqI0VFu3Vy/R+LxOP52lpMzbn79njz+9NjkEZiaCga1cxJpVV2qzr0epqNQZqYSEKunXzd4wmbZzg6KZN3h1DtZm2o5WV9l9HG4crb8sW5NXWqn937JjyOBRGjrdHbXKs6LZt6j3VxkyPtG/vzzbfsSOwYQMi27fHv55WkRvt1Mn7czRtPMyC3bu93yfImeQB5PXs6c7n75BDRECZn4/8UaOc/x8OOADYfzO/4NtvVaCyfHnzQ6LDhjn/3Wg3n6OffOL/+fhbbzWPeRf5/vdRYHGcbUvbY//+wPz5iHz7LQqamrwf59Ut2lwUBe3bh/dcp18/YNCguM8oALG+nTqJG4Py786dxfv/wAMAgOgDDyD6ox+ZPzZ/9VXzYnTo0NY/t9q5c8GWLenfQ23/l2nHJ9u0m0LRFSsQ1fKTvPbtTb8HWXe+up/Z/1PWjdRZuf+EZZN2wSX/XZmrM326we+BvrPNeeepgaWnT2++w+0YJ8nxXrJJcmIx4KWXxHJ+PnDWWSl/3NArGLyYKEefHMCr9usTT1TL06d78xpe+/RTQI4z7HIVa6jo+2ezE+XIgEgfAD3M9IB8UNjvp3tI7+6wMmu7E3J/06GDvXASiJ91XZ8kp3t3/weQ1wfe1yeLcps+mZmTClG9YnXz5vjZmrXAOickvheSvi341QElg8GwTJID+DOTt5szeEu33QZMnAg89ZQ71dSpJsqRE+QA7lSa9u2rzhfnz/dvkiLp4YfV8v5KSs/I6xnDEJMPZgq3Z/H2SjQqbqjPmAF8/DGwapXYl9TViWPmkiVitvh//AOYOlV0eZ2wvyn8669FWG2W2Rm8Jf343dpEObmYHVRUqOvxr76K3w87mSgox2RdQNm3b19UVlZiunYRvXPnTsybNw+js/mi1Gu5uJNxU34+8ItfqH//5jfuPC8DSu8lCyjnzgXkOKXf+178LJ4JDP2A70VA6eUs3lI2BJQffaSWjzoq9eMynb5/NhtayWDG7+o1uy66CJg0Cfj5z4EUE+blhCACSrkPtDuDNyBaLPe3WWLVKhXqBFHVrM/A6mVAqVWaOdpPFxWpbXzz5rjKzJy7+GnTRg1hod+oC+J8VZ4D7NkTV6Xl+8VpNgSUffsCTz8tOpvcoAeUq1apZRlQlpbGVXXbFokActzJzZvVbNp++OKL5uE+cOCB7nVppeL2TN6GAfzf/wHPPef8udKRAWU0Gt7qSalNG2DsWOCww8Q2UVaWfniln/5ULf/hD+ZfRwaUeXlqBup09GNma2N45mI4F4mo93HNmvhjP/MT0zLgSqSl2tpaLFq0CIv2j722evVqLFq0CN988w0ikQgmT56Mu+66C2+++SaWLFmCyy67DFVVVZgwYUKg653RGFA6d+ml6iTon/9sHmPHEQaU3isrEwEzoC6CXnxRfT/FxFvNOndWdxyXLHH/rroMKAsKvNs2hw1TQe3MmYDXs6J6IRcDSjMVlI2N6gRKP/EMs+JiUS1yzz2ZEah6xe+AsqFBfaacBJSA+qzpF/FBjAfWpo26cMqECkpABZzV1fEBZa5VUALqvQhLBSUQ/zthBWXw+vVTy7KCsrZWjfM3ZIh742rr4wDPn+/Oc5rxyCNqedIk74+LbgeUr70GXHmlCKVl0OoFGVC2bZuxY6mndMopqgJy9mxznXqxWPMY+ejXDygpaf1nrASUuZodyIAyFmserxNA7oS0LsjIM/sFCxZgxIgRGLF/IP8pU6ZgxIgRuPXWWwEAP//5z/GTn/wEV199NQ477DDU1tbi3//+N4ozZYyMMMrVnYybCguBm25S//7tb50/JwNK70UiKpzbuhVoalLt3YWFgJlJlQ4+WPy9ZUv83TQ3yAuzzp29O+HKyxN3cgGxL3AjXPeTYaiAsrTU+4kDgqRfkJsJKDdtUqG53u5K4ed3QCmrJ4H4ynI7kg25E9SEBfJzv369d22Z+n7fabgrQ7mamvjnzeWAcutWcTEIxO/3gggo9TbvbA8o9VA/rAFlsgpKva3VzfOBIALKmhrgmWfEctu2oj3eawceqJbdCChnzFDLM2c6f75U5HiAYW7vtisSsV5F+c036j0xO7Y8KyhbN3CgWv74Y7XM/MS0jAwojz/+eBiG0eLP0/tn54pEIvjf//1fbNy4Efv27cN7772HARYHC6YEDCjd8YMfqAuzV16JP0mygwGlP/SA8sMP1bgr48eb2x5kQAm42+ZtGCqg9HrswExu8/72W3UhdcQR9sfOywT653HqVDUUQSr6BSYDyswSZEDpVgWlLqiAQ37u9+41P26rVXI/XVYm2rSd0Pf12gQHORlQys9hLKYqF/Vtwe8WbyA+oGSLd/A6d1ZDSsgKSrfHn5SCCCj/+ldVGXjppf58ztyuoNzfEQkAWLzY+fOlIt8nOTREtrnoInWN+eqr8WOuJmN1/Emg5RjS6ejH01wKKPXMSQ8oc+k9cCgjA0oKQBB3pLNRSYm6w2UYwN13O3s+BpT+kAHlnj3qTjUAnH++uZ/3KqDctat5tlIGlGnkSns3INrxpenTxUnnww+Lyt9k9IAyU1q8SfA7oNTH+fMioAy6ghLwrs1bBpRuTPqhP0euB5T6cU++x6ygFPwMKMvKVAgYNpGIqqJcs0YMa6Kfh+nnZ05166aC2oULVVWvV2Kx+MlxJk3y9vWkzp3VtvX1186eKxaLDyX1sNJteot3NioqAq6/XizHYmLynHTsBJQlJWpf1tokOfo+KJeKm/SAUg/wc+k9cIgBJZnDCkr3XHONCryef771O1zpMKD0h97O+MIL4u+SEuD00839vFcBpR8T5Ej9+6sxVGfPjp8IIOzmzFHL2T5Z2pFHivGc5F3u2lrgJz8Bjjkm+WePFZSZy2o7v1N6QJmNLd6ANwFlfb26UHNjP60/hx4O5GJ1hh6Uy89nmCoo5XZZUCDGzvWanwGlYaiAMqzVk5IMKBsbgXXrvKugBFQV5c6d8TcQvDB9unqN4493N2xNJxJRVZRr16ob5XasXCnOU6S1a+PHcXVLU5OYBRvI3oASENeY8v/35JPxnQ+J7ASUgLrByBbv5PQhEHS59B44xICSzGFA6Z527YAbbxTLsZiY6MEuBpT+0C+CZDD3/e+brxjwaiZvPwPKSAQ44QSxvG9ffOgXdnoF5ZFHBrcefpkwQQx8fvXV6mtz5wKHHgrcemt8uKyfYDKgzCzZ1uIdhoBy7Vr3n18Pdt2ooEwVULKCUvwdpgpKeYHevr0/k3LonwGvA8odO8SwCED4A8rEiXJkQNm+vfudA362eevVk9dd5+1rJZIBZSymJhyyI1nFpBdt3nKsRSC7A8qOHYEf/lAs79kjhvpJRQ8oBw0y/xpym9m9O/46NFGuZgdlZclvwubSe+AQA0oyR+5kIhEGYW6YNEmdOD/9dOvjxKXCgNIfyaqFzLZ3A+J306ePWF661L2JGPwMKIHMbPPes0edAA8Zkjt3MNu3Bx5/HJg1S7WbNDQAd94JDB8uxlIFWEGZybKpxTsvL/kJvR/0CiovJgDTJ7JxYz+th5yyIgjIzYAyUyoo/VqPdu3UDM5eB5SZMP6kpE+U88knoooSEBWHbgfHhx+ulr0MKNesAd56Syz36GFuwkY3uTUOZbJ9rhdt3rK9G8jeMSilyZPVfuChh5J3PBmGCij79LEW2pqdKCdXKyiB+IlypFx7DxxgQEnmyJOs0lK10yP72rcXbZeACA3uu8/e88iAMi9PtByTNxIDynbtgFNPtfYcQ4eKv2trxcx5btADSqeBgRmZGFAuWCDauoDsb+9O5rjjRDXCr38N5OeLr335pfj6NdfEt6BxDMrMUlio2kb9DijdbvGurFSfT78deqhaXrDA/ed3+0ZSqufIxYAyzBWUhuF/QBmJqItgL9pkdZkUUOoVlP/8p1p2u70bAEaNUsteBpRTp6qb3T/6kf/7T7dm8mYFpfv69gXOOUcsb9oEPPdcy8d89526hrTS3g2YDyj9HuIiTJJNzswKStOYNJE58uKHG5d7Jk9Wd/H+/OfWBxtORh5cSkv9aR/KVYkX42ecYT0Q9mIcSj0w8KOCsqpKtYHMn+9dKLJ2rRhH0Y1xLnNpgpxUiotF5eQnn4hZzKUnnlCVlPn5/oTc5C4ZwGR6i3dQ7d2ACHTkxfaiReKmoZv0gNLtFm+ppMT57OCZKMwVlLW1apIUPytn5GuxglLRKyhnz1bLXgSU+v7k00+djc+Yyt69wF/+IpYLCoArr3T/NVrjdgVleTkQjYplrysosz2gBNSErADwhz+0nLDJ7viTQPwNxnTXrn4PcREmDCgdYUBJ5vh9FzgXdO4MXHutWN63D/jjH60/hx5QkncSL8attHdLXgSUfrd4A6qKsqlJtA+7be9e4OijgbPOAn7xC+fPx4BSGToU+O9/gQceaHmC3q0bq+MzkZ8BpZst3p06xVf8BB1wyKqnurr4CTTc4GWLt5SL1ZNAuCsogxp/TQ8o3RpOJplMCih79VLhlx7UeDWpjByHsq7O3XHHpRdfVDeMzjsPqKhw/zVaoweUdmfy3rhRBVwjR6q22M8/dz/YzaUWb0B8Bo87TiwvWwa88078950ElFYrKHMxO0gMKIuKcq+K1AFejVDrGhrUQNi5uJPx0v/7f6rq4dFH08+2lgwDSn/oFZTl5cBJJ1l/Dv1EeMkS5+sEBBtQAsCMGe4//7Rp6sLnr391Vs1kGGoyn44dk9/RzDXRKHD99eLk9LTT1NcPOii4dSL79IDSyzACUAFlJOI8EMvLi7+oDrKCEohvy3S7zdvt/XSycDhXx7ZKFlDqYb1fAWVpqQrAwhJQNjXFhzJuy6SAsqBAhJSJvKigBLydKMcwxLiCkt+T40gVFepGp90KSr1ScsQIMT42IM77li1zsnYt5VKLt6RXUf7+9/Hf8zqg1Ie4yMXjU+L1Ri6+Bw4woKTW5eosXH7o1k21ZuzeDTz4oPmfjcVECxHAgNJrffuq6rJzz7XXSjdwoLqAyeQKyuOPV++FF+NQvvaaWt6+HZg50/5zrVihQpXRo3OvxSSdXr3EAPuvvirGw33ggaDXiOyQAUxjoztDIqQjb6B16KD2ZU7oFzm5ElC60eJdVNQyeMvVCsr27dVnUe7r5TlrSYkIpvwQiagqShlQBjVBhP5aXrZ5Z1JACcS3eQMi6Hdje0zGy4By3jwxXAsgqg71YVv8FImoKso1a+zdTNYDyuHDVUAJuD8OZa61eAPiJrSsSp05M/7YpgeUVm9QmwkogxriIiz69Ys/T2J+YgkDSmodA0pv/fznqtXtwQfj3+909IMtA0pvVVWJ2dZ/8hPgnnvsPUdRkbqjtmyZmrjFCXnhq18cea1DBzWpxJIl8e2LTjU2qlkppVdesf98snoSYHt3MpEIcOaZYr8jxxalzOLnTN4yAHJrrFL9IifogGPECHUDw+2A0u0Wb6BlsJKrAWVenupwSKyg9Pt8NTGgDLqCEvAnoIxGvQv63KRPlAN4194NiP2JDCfcDigfflgtX3ddsDdeZUDZ2Ghv8kd9Bm+9ghJwfxzKXGvxBsT+8f/9P/XvP/xB/K3P4N2jh/VKczMBpb7vycXsoLBQFLdIuRjSOsCAklrHgNJbvXoBl10mlnfsEK3eZsj2boABpR8uvVQEOU6CQHlCXF/vbFBxSV6QderkTkWTWV61ec+e3XKYg9deE61qdujjT+biDN6U/fQLC7M3t+xoaFDP73QGbylMFZSlparS5LPPxNhxbvGi0j3xeXI1oARUYJ5YQelXe7ckzw127ozfXoDsrqDs1s3f8w+7EisovWrvBkQAJp//88/j24ud2LQJeOklsdypk73x0N3kdCZvGUIWFYn977BhLb/nllxs8QbEtYu8gfDyy6LaddMm0aEEWG/vBkQWIDvJUk2SE1QFeZjobd7MTyxhQEmtC2LA8Vzzi1+ottk//tHcuEEMKDOP2xPlyAtfv9q7pRNOUMtutnm//rpalgfz6moxsYsdMqCMRuNbroiyhV8VlLIqDHCvgvLCC8Wg8YMHA0ce6c5zOiHbvBsa3BsnGFAVlOXloqrCDQwoFfle7Nkjzp2CrqAExMV5UBVEfgSU9fXqcx109bNZfgaUgDrnaGqKrxR04i9/Ua3UV14phjEIkpOZvGtr1eQ6Q4eKTrKuXdWNq0WL3B1XORdbvAFxjJXjlDY1ieF8nIw/CYiqXfl7SlVByeKm+IAyV0NamxhQUuu4k/HegQcCF1wglrdsAe6+G/jwQ+Dtt8VsfX/5C3D//cD//i/ws58BP/oRMGWK+nkGlJnBzYBy7151wuV3QHnMMepC+9133TmJNAw1/mRBAfCb36jv2Wnz3rlTvcfDhgHt2jlfR6Kw0Y/JXgaUbs7gLR1/vAg5PvvM3ri+bvNqHEovbiQlttTm8sWP/nlcu1Ydj4KqoAREoJ/NLd56KJEpAaWfLd6A++NQNjYCjz0mlvPyxHVA0JwElJ99prbVESPU12Wb9/btwLp1jlYvTi62eEvXXqvC7D//Of6mv52AElAB5datyWdcZwWl6soAmJ9YlB/0ClAGYEDpj1/+Enj+ebH8m9/EBzStydWdf6ZxM6AMYoIcqU0bES68+64Yd+jDD4HjjnP2nJ9+qsYwOuEE4OKLgRtvFNUCr74qAvo8C/fU5s1TJ79s76Zs5VcFpR5QutXiDYTr5poXAWV9vTqHcnOcPlZQKvp7sXKlWg6ygnLbtuyeJCfTJsgBWgaUflVQAu4ElG+8od73008H+vRx/pxO6QGlrIY0K3GCHH35nXfUY3r2tLduiXK1ghIQN3GuuEIMIbZ7N3Dvvep7TgNKQLR59+oV/31mB/HvbUVFcOuRgVhBSa3jTsYfQ4YAZ59t/ee6dROtchR+Bxwg2i0AdwNKtyqarJg4US0//bTz59PbuydMEBdZ48aJf69bZ/0EXx9/khPkULbyK6DUx4YNYn/jh+HD1U0QtwJKr24kMaBU9M+jXsXFCkoGlLrychUSdO/u/cSCQ4eqynA3AsrEyXHCoFs3VZlntYIycYIcyauJcnJ1DErpxhvVhEq1terrVmfwlior1XKyNm9WUIpusyuuAI4+GvjhD4Nem4zCCkpqHQNK/zz+ONC7tzh4lJa2/FNW1vJrHTuqWcAp3KJRcUftk0/E3eZ9+1RgaZVe0eR3BSUgQsSyMhGKvPSSmEDISRu1bO8GgDPOEH+ffba6k/7KK8ARR5h/Ps7gTbkgiArKbA0o27YV++elS8WfvXudj/GmB5RuVlByFm8lrBWU2RxQfv65Ws6UgBIAfvc74L77gJtv9v61CgpE8DZ3rjjf27HDflCzdCkwc6ZYHjgwfqLCIOXliRvvS5cCq1aJMQ7NTpgkw8dIRIS5klcT5eRyBSUgql0nTIg/166stB/UJ1ZQJmJ2ILaPJ58Mei0yElONXGXlxFu/6MnVnYxfOnUC/vCHoNeCvHTwwSKgjMWAZcvi7xxbEWSLNyDavM8/X4xns3u3CBD1qkorVqxQFaVHHqlOfM44A7jmGnHS+8orwD33qDvA6cRiKqCsrBShP1E2yvQW77AZNUrsi5qagMWLnU/eIycSAVhB6ZVUAWXQFZRBVRDpnwU5U6+bmpqAp54Sy5EIcOyx7r+GVy6/XPzxy2GHiYASEFXZsivEqkceUcuTJpk7D/LLgQeKfWZDA/Dtt+Zaz/WJyAYMiL+53b+/OL/cs8e7gDLXxqCUfvrT+IDSbns3EB9QsoKSXMYW71xUXy8OBl27ioqk888Xs0hPnQr85z/AV1+Jyi6Jd0GI3OPWOJRBB5SAaF2QnLR56+3dZ56pljt3BsaMEcurVolB1c344gsV1hx1VLhO5oncxBZvd7k9DiVbvL2nfx7DWkHpZ1jqdQXlO++o8aJPPZU3ANNxYxzKHTuAv/5VLLdrZ/9GsFfsTJTz5ZdAXZ1Y1lu6AVGBecghYnnVKveOa7ne4g2I82F9THYvA0p9/8eAkixiBWUu+uYbUWG0ebP48/HHyR9XVSXuhMkTEYABJZFT2RRQHnmkaDf68kvRfrRqVcuB6M3Q7+hOmBD/vbPPBmbMEMuvvBLf/pMK27spV7DF2116QLlwofPn86vFO5cvAPXj35o1ajnoCkp5gd6mjWj39YvXAeXUqWo5DDNJh5keUKa61mrNU0+pcO2yy/z/XLcmMaA0UyWaavxJafhwVXn62WdiLD+ncr3FW/rFL9QwSk7Oj61UUDI7IIsihiGnOSXdzp07UV5ejpqaGpSF7WCQQkNDA95++22ceuqpKEh3MvT55xh15JHYuHevaNWwols3azPpEuWwffv2oThxjMmmJjVeS3Gx/XbJ7dvVSWvXrv5eAOl27VLBiBwn1YpYTJ3c5Oe3nOlOf7+SfT8Z/b3p0gUoLLS2TpR1km6L2aCxEdi0SSyXlHg38cPWraqzIpvPAwwDWL9eLJvd36Szc6fYRwIi2JWTZrhBn6ikqiqjKsVd3R71Y4SuY0fnY4hakbgt1tWJ41teXvzFvB/kZ6OgwN1gXH+vo9H4iTIoufXrxX7F7udg40Z1rVZR4cmY8462x7o6dQOrXTtzYVRNjZqoJdl+cfduFXC1b+9OoLh5s+ggBDJr3FQv7N0r9k1O3lf93D3ZtcyWLapKNsOOT0Hbt28fevfujYVu3CQNGbP5GgPKFLI6oATQo0cPfKef3BIRERERERERUSC6d++OdevWBb0arjObr7HFO0dVmr3raRjizl1Tk6hC4h0QItNS3pXW7+TavbMYprvB+p1Sq1VC+s+mqgStrVXtcnIm+1T0u7qFhcG1v1OoZG0FJaCqpbz8vMsqnkhE7LOymZsV2Hr1k9tVJNXVYrIJNyo9feb69iir1HRBVM/rlYsNDWI5iOOQV9vrhg3iGAtkdyW1m/RqwU6dRLWZWfp5ntsV2BrH26P83JvdF7VWVapXsrtVBbxpk6hyzoVjmF/k/iDZ75Hvt2379u1DRYYd011nUFI1NTUGAKOmpiboVTGtvr7eeP311436+vqgV4Uo56XdHq++2jDEKZhhfPSRvRc48EDx8+XljtbTFS+8oP4/l15q/udqagyjsFD8XI8ehhGLJX/c6tXq+UeMSP+cb72lHjtlivl1oayV9cdGuQ0NH+7da5SXi9cYMMC71wiLqVPVPuRPf7L/PEuWqOcZN8699ZNmzzaM8883jPfec/+5PeTJ9ti3r3qv5Z+lS917frM6dBCv3bGjWo9TTvF/PUaOFK+dl5f6uGrViy+q/9O557rznLng5ZfV+/brX5v/ufnz1c8NHuze7zGBK9vj4MFiPYuKDKOpKf1j16xR/69TT039uIED1XM2NNhfN6lHD/F83bo5fy4SRowQ72l+fsvfe2Wl+F7PnsGsW4bK9vNVs/kab30REfnNjYly5OQLYZiw4owz1MD8//iH+ck63nlHVQdMmJC6uqhPH2DkSLH86adiMp5UPvpILXOCHMoFsk3Gq0lyGhpUBbPdMXMziVszeb/1llo+/XT7z5PK0UcDL7wAnHii+8+daZJVKAYxMYMcA3bbtmDXQx6PYzFVvefUY4+p5Wuvdec5c4Hdmbzvv18tT54c7g42OVFOXV382LjJLFqklhNn8NbJ79XViYkYnZJV8bk8QY7bZNVkY2P8RHpA/BiiRBYxoCQi8tvQoWrZTkDZ0KAO/mFoYS4uBi68UCzv3Qu8/LK5n9Nn7z7zzPSPPftstfzqq6kfp8/gPXq0ufUgymReB5R62BKGGyJeO/hg1RrsJKB880217EVASUqyz2UQ48cnm6QqyIAScGcm72XLgJkzxfLAgcDxxzt/zlzRq5c6T5s/v+VQBMl89x3w0ktiuXNn4JJLvFs/NyTO5J2OPoN3uoBy2DC1rIeadslZvBlQukcfLk6fybuuTk2qxxm8yQYGlEREfhsyRC3bCSi3blXLYQgoAeCKK9Ty00+3/vi6OuDtt8Vyhw7Ascemf7weUL7ySvLHNDQAH38slnv35rg3lBu8Dij1yohcCCiLioBDDhHLX35p732trgbmzRPLQ4YAffu6t37UUuJxMBIRMwr7LVlAGUQFkdsB5eOPq+Uf/Sjc1XxhE4kAhx8ulrdtA1avbv1nHnlEVKUB4v32czZ6O/SA8uuv0z9WDxtHjEj9OD28dBpQNjWpsc7btHH2XKTo407qAaXsuABYQUm2MKAkIvJbly5qIPElS6z/vGzvls8VBqNGAYMHi+XZs1s/SZ0xA9i1SyyffnryyXF0Awao1vi5c4Fks9t99plq42F7N+UKGVDW16uLMDfpN0RyocUbUG3ehhFf8WPWv/6lKqVYPem9xOC8tDSYCVyysYJyzx7gmWfEcnExcNllzp4vF1lp896zRwXCBQXAj3/s3Xq5xUoFpQwbS0uBfv1SP04PKBcvtrtmgjwvBFhB6SY9oNy4US0zoCSHGFASEQVBhm2bN4tqGyvCGFBGIvFVlPKCJhW9vXvCBHOvoVdR6j8v6e3dDCgpV+itrPqFgVtyrYIScD4OpdfjT1K8xONgEO3dQHZWUL74onqOCy5I/n+k9KwElH/9qxpW44ILks9yHTZmA8pt24C1a8XysGHpbyJUVqrZuxctMtcan4ps7wYYULopVQWlvs9hizfZwICSiCgITibKCWNACYhxkqJRsfzMM6KtJpmmJuCNN8RySQlw8snmnr+1Nm99ghyOP0m5Qg9jvGjzZkBp7Wf37QPefVcsd+kCHHGEe+tFySV+LoO6KM7GCkp9cpwf/cjZc+UqswFlLAY88ID69403erdOburVS3XBpAso9UrIdONPAuKmt3zM5s3xAZhVDCi9wRZv8ggDSiKiIGRjQFlZCYwfL5bXrRNt3MnMnauqRk8+2fyYQAcfDBx4oFj+8MOWlacyoGzTRo0hR5TtvA4oc7HFe/Bg0c4KWA8oZ85UF8SnnaZu2pB3wlxBGURA2aGDWt6+3f7zLFyoArURI9RYimRNly5iXGxAvKepbt7+5z/A8uViecyY9GM0hkk0qtq1V6xIXe2oD5dh5v/m1kQ5ekDJMSjdk2qSHFZQkkMMKImIgpCNASUAXH65Wk41WY6d9m5A3FGXVZSxmKrCBID161Xr0OGHtz6mJVG20C8AWEHpjoICVb2zYoW1kIezd/svzBWUmdziPXWqWubkOM7IKsrdu1UImej++9Xy5Mmer5KrZJv33r2pqx31kLG1CsrExzgZh5JjUHrDTIs3KyjJBgaURERBkBPKANkVUJ5+uqqyevXVlhdHhgG8/rpYjkaB73/f2vOfdZZa1tu89fEn2d5NuYQt3t7Q27w/+cTczxgG8M9/iuXCQuCkk9xfL2qJFZTx3Agoa2qA558Xy6WlwEUXOV2r3Ka3eX/8ccvvL10KTJsmlvv1y7ybG2bGoZQVlPn5wJAhrT+nWzN5s8XbG8XFal+TapIcVlCSDQwoiYiCUFamWn6WLrU2AHiYA8rCQnUhs28f8NJL8d9fuhRYuVIsH3ec9ZbRUaPEeEcAMH26qmzSx5/kBDmUS9ji7Q0741AuXgx8+61YHjsWaNfO/fWilhKPg2GqoMzUgPJvf1OVZ5deys+yU62NQ6mPPXnDDZk3NIQeUH79dcvv79sHLFsmlgcPBoqKWn/OAQPUUBts8Q4nWUW5YYO6jmEFJTnEgJKIKCiyzXvXLnVRa4YeUIaxokmfzfupp+K/J6snAeDMM60/dySiqigbG9VsuXoF5ZFHWn9eokzlVwVlJBI/tl22sxNQcvbuYJSXi6osKUwVlJnY4m0Y8e3d117rdI1o5EjVIp8YUG7eLAJhQHx29XOoTNFaBeXSpWrsTbNja+bnq/Pkr7+ODxqtYIu3d2RAuWePuJYBWEFJjjGgJCIKytChatlKm7cMKEtKwnmyNXy4mqRm7tz48Zb08SfPOMPe8yfO5r1vnxh4HhB33MMY2hJ5xa+AskOH+BAo2w0apKptGFCGWyQSv98PSwVlJBJM5aHTgHL2bODzz8XyMcfEj5lN9pSVAQMHiuXFi4G6OvW9qVPVv6+8UrTUZxo5gSGQPKC0Ov5k4mMNA1iyxMaKgS3eXko2UQ4rKMkhBpREREHRT/qtnHjJwCBs7d1SJBJfASAny1mzRo1BNHKkatW26qij1EnRf/4DfPABUF+vvkeUS/xq8c6l9m5AtFgeeqhYXrMmfizOZNavV5VRw4bZ37+RPXpAGVQFZWKFcVkZkBfApVabNupmgp2AMnFyHHKHbPNuaAA++0ws19UBjzwilvPygJ/8JJh1c6p3b/WZSxZQWp3BW3JjHEq2eHsn2UQ5egUlA0qygQElEVFQ7MzkHYupwCCsASUgxqGUJ6t/+5to7dFn3bbT3i3l5amfr6sDbrlFfY8BJeUaPYzRLwzc0NCgAo5crEzW27xllXYq//qXWmb1pP/042FQFZQFBfHVb0FdnEci6rWtBpSbNwP/+IdY7twZOOccN9cstyUbh/LFF4FNm8TyWWcBffr4vlquyM9X675iRctx1fVwcdgw88/rRkDJFm/v6AGlnChH3+ewxZtsYEBJRBSUgQPVQOhmA8rt29U4PmEOKLt2BU47TSyvXy9mp9TbuydMcPb8epu3PiMmZ/CmXKMHlH/9K/CDHwAzZqj9hBPbtqnlXA8oW2vzZnt3sMJQQQnEV1EGeXFuN6B86inVkXDFFeYmMyFzDj9cLc+fL0K8++9XX5s82fdVcpUch7K2FqiuVl+PxURbOwD07WstuJfDBQHuVFAyoHRXugrKoiI1yRGRBQwoiYiCUlysxu1ZtkxM+tKaMM/gnUhv8/7974EPPxTLBx4oZnF0YsyYli2nZWXOn5co0/TsqQKZ2loRMJx4omgx/tnPxEVdYjWLWbk6g7dkNqDcuxd47z2xXFkZ/3PkjzBUUALx41CGIaCsqREBkRmxGPD44+rf11zj+mrltGHDVGfJ/IarkRMAACvKSURBVPnArFkqdDvssMzvAEk1k/eKFSoktDL+JCAqkg84QCx/9pm9G29s8fZOsoBS3hRh9STZxICSiChIss27rg5YubL1x2dSQHnqqWodp09XF0kTJqjZLO3Kz285yc7o0cGM90UUpJISEf5PnBg/Icf69eLGwIgRYkKuu+8G1q5t/fl27QK++EKM7/rcc+rruVhBeeCBqmU3XUA5fboIKQHg+9/nfigI48aJv9u1U2OHBkEPKIMcf02+diwmblyYMW0asGqVWD7pJBUMkTuKi1VF4BdfAHfdpb53443Oz4uClmomb7sT5CT+zN69yce3bA1bvL2TbpIcjj9JNvEMiogoSPo4lDfdFF+xlEwmBZQFBcAll7T8upPxJ3V6mzfA9m7KXYccIiaj2rQJeOEF0WKsz7j9+efAL38pxgg77jgxCcbf/gb89rfAtdeK4RgOOUS0p5aVAUOGAKecIr4v5WIFZV6emNALANatU2NsJWJ7d/DOPFNMxPH11y0nq/FT2CooAfNt3o89ppavvdbNtSFJjkNpGOLGBgB0754dY32mmsnb7gQ5ktNxKNni7Z3ECspYTE3WxwpKsokBJRFRkE4/XVXbvPGGqHR6993Uj8+kgBIALr88/t+VlcARR7jz3CeeGD/WWKa3RxE51aYNcP75wJtviouFRx9tuV18+KEIHy67DPjVr0RY+fbbwJIlqYOMoiJg/HjPVz+UWpsoJxZTAWVxsarkI/8NHx5f0ROEMAaU27e3/vh169TnuHt3UQlM7tMnypGuu07c0M10XldQJj6XWWzx9k55uRpncuNG0YEhh5RhBSXZxICSiChIhx4KvPyyuqjZsAE4+WTghhtUy6Au0wLKQw6Jb7c74wz32h+LikQYA4iTpCOPdOd5ibJB584iiPzvf8XwEXfeCQwalPrxBQVAv35ifNdLLhEVl489Bvzzn8CaNdZmXs0mrY1D+cknqrXtxBN5AZzrwtLirVeRtlZBuWSJaDGWw7BcdVV8BTa5JzGgbNMGuPrqYNbFbX36qPO7ZBWUnToBPXpYf1792GMnoGSLt3ciEVVFuWGDmiAHYAUl2cajDxFR0M46S4Rrl18uxoACgAcfFJMuPPdc/N1jPaDMlDHhrrlGDbZ/4YXuPvfvfy/a5I86So0VR0Tx+vUDfv1rUTH56adifMmSEjHBTq9e4u+uXTl2YjKtBZRs7yZdGCsokwWUX38NvPiiGBLi88/V16NR4MorvV673DV4sNj3yhvQEyfGf2YyWWEh0Ls3sHq1CCgNQww7smmT+P7w4fbG2ezRQ7xH27ap2cCtYIu3t7p1E7/zbdvU7xpgBSXZxoCSiCgMqqqAf/8bePhh4Oc/F5PmfPEFcPjhYiD1//f/xIVDplVQAupip0MHUZ3lprIy4Prr3X1OomwViYiK5iAnEck0/fqJC60dO0RAaRjxF9l6QMm2WNIrxKqqgluPZAHlt9+qUDLZcAV5eeImRvfufqxhbsrPF1WUH3wg/n3DDcGuj9v69xdhVU2NGFPd6fiTgNjfDh8OzJghqvQ2bQIqKsz/vAwoCwqyo5U+bPRhNb78Ui0zoCSbeKuciCgs8vJE2LZwoaqabGgQk+eceKKYgXfLFvX4TAko8/JEC9O55wa9JkRE1kQiqopy40YxO7q0bp26AB85ksEOicl6LrxQDD9y1lnBrYceDrz0EnDssaJa+mc/axlOHn20uDm6fj1wxx2+rmZO+u1vgWOOAe6/Hxg4MOi1cZc+DuXXXzsffzLZz1qtopQBJYff8IY+Uc7y5WqZLd5kEysoiYjCZsgQYO5c4LbbgHvvFRU7s2aJ8Rzl3d+CAh78iYj8MGqUGHIDEFWUMoj85z/VY9jeTYCYMOL554Nei/iA8u23W35/5EjggguA884TwSX55+ijxWRl2ShxJm83KiiBlhPlnHSS+Z+VY1CyvdsbqQJKVlCSTaygJCIKo6Ii4He/A95/X1087NwpWmYAMf6knbF8iIjImlTjUL75plpmQElh0rVry68NHiwmy/rqK/E5/ulPGU6SuxJn8pYVlMXFwIAB9p/XyUQ5soKSAaU39IBy2TK1zCIKsokVlEREYTZmDPDZZ8B11wHPPqu+nint3UREmS5ZQLl7txgTDRAVlU6qg4jcduihwCWXiAlwxo8X1ZIHH8wbm+QtPaD89FPR5g2IDiAnM8MPGiQm4amvZ4t32OgBpfx9A6ygJNsYUBIRhV15OfC3vwGnnQZce60Y8P6444JeKyKi3NCrl6ha37JFTZQzbZqYzAwQk+Mw+KEwycsT5w1EfurbV+wLDQN49131dSfjTwIinBwyRISey5eLWdBLSlr/ucZGEWoCrKD0ij5JTkODWmYFJdnEFm8iokxxwQWiZWb6dDG4OhEReU+fKGfLFuCbb+Jn7/6f/wlmvYiIwqS4GOjZUyzLGziAOxXmMuSMxYClS839jBx/EmBA6RW9glLHCkqyiQElEVEm6dQJOOEEZ60yRERkjd7m/fHHwL/+JZbbtBH7ZCIiim/zlpxWUAL2xqGU7d0AW7y90qWLqNhOxApKsokBJRERERFROnpA+dhjwKZNYvl73xNVQ0REFD+TNyDCq0MOcf68eshpdhxKVlB6LxoFKipafp0VlGQTA0oiIiIionT0gPL999UyZ+8mIlISKygHDHCnetFpBSUDSu8ktnlHIkBpaTDrQhmPASURERERUTpVVfGTAUinneb/uhARhVViQOlGezcgKvL69BHLixeLsShbwxZvfyQeG8vKkrd9E5nATw4RERERUTr6RDnS4YcnDy2JiHJVYkDpxgQ5kgw7a2uBVatafzxbvP2RWEHJ9m5ygAElEREREVFrEgNKzt5NRBSvX7/4f7tVQQnEt3mbGYeSLd7+SAwoOUEOOcCAkoiIiIioNYkBJcefJCKK16YN0L27+rebAaX+XJ980vrjGVD6gxWU5CIGlERERERErdEDyl69gKFDg1sXIqKwOvlk8ffo0UDXru49rx5Q3nMPcPXVwLffpn48x6D0BysoyUUMKImIiIiIWlNRAVx2GVBQAPz612JcSiIiivfoo8C0acA777j7vL17qxtFTU3An/8MHHggMGUKsHlzy8dzDEp/JI7FzApKcoABJRERERGRGc88IyZouOqqoNeEiCicioqAcePcr6SLRID33wfuvFPMFA0AdXXA/feLsS9vvRWoqVGPZ4u3P1hBSS7KyoDy9ttvRyQSifszaNCgoFeLiIiIiDJdYWHQa0BElJvatRMV7KtXAzfdBJSUiK/X1orgsm9f0f69Zw9bvP3CCkpyUVYGlAAwZMgQbNiwofnP7Nmzg14lIiIiIiIiInKiY0fgd78DVq4EJk0SQ28AwPbtwC9+ARxwQHyLOSsovVNcDHTooP7NgJIcyNqAMj8/H5WVlc1/OnfuHPQqEREREREREZEbunUDHn4Y+PJLYOJEIG9/vLFxY/xM3wwovaW3ebPFmxzID3oFvPL111+jqqoKxcXFGD16NO6++2706tUr5ePr6upQV1fX/O+dO3cCABoaGtDQ0OD5+rpBrmemrC9RNuP2SBQO3BaJwoPbI1F4ZNX22KOHmDTnxhsRveMO5L32Wty3GwoLgWz4f4ZUtKICeV98AQBobNcOBt9ry7Jqe0zC7P8rYhiG4fG6+O6dd95BbW0tBg4ciA0bNuCOO+7Ad999h6VLl6K0tDTpz9x+++244447Wnz9+eefRxuOWUFEREREREQUeu1XrMCg555DxaefoqZPH8z84x9VdSW57tD770fPWbMAAB/dfjs2Dx8e7ApR6OzZswcXXXQRampqUCYnuUoiKwPKRDt27EDv3r3xxz/+ET/84Q+TPiZZBWXPnj2xZcuWtG9gmDQ0NGDatGn43ve+hwI5DgcRBYLbI1E4cFskCg9uj0ThkRPb46ZNYnxETm7mqbz77kP0V7+CEYmgcflyMVkRWZLt2+POnTvRuXPnVgPKrG3x1rVv3x4DBgzAihUrUj6mqKgIRUVFLb5eUFCQcR+QTFxnomzF7ZEoHLgtEoUHt0ei8Mjq7bFHj6DXIDf85CdAfT0iAweiYMCAoNcmo2Xr9mj2/5QTdc61tbVYuXIluumDtxIRERERERERkX2lpcDttwMXXhj0mlCGy8qA8qc//SlmzZqFNWvW4KOPPsKZZ56JaDSKC7nBEBERERERERERhUpWtnivW7cOF154IbZu3YouXbrgmGOOwdy5c9GlS5egV42IiIiIiIiIiIg0WRlQvvDCC0GvAhEREREREREREZmQlS3eRERERERERERElBkYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgGFASERERERERERFRYBhQEhERERERERERUWAYUBIREREREREREVFgsjqgfOSRR9CnTx8UFxfjiCOOwMcffxz0KhEREREREREREZEmawPKF198EVOmTMFtt92GTz75BMOGDcPJJ5+M6urqoFeNiIiIiIiIiIiI9svagPKPf/wjrrrqKlxxxRUYPHgwpk6dijZt2uDJJ58MetWIiIiIiIiIiIhov/ygV8AL9fX1WLhwIW6++ebmr+Xl5WHcuHGYM2dO0p+pq6tDXV1d879ramoAANu2bUNDQ4O3K+yShoYG7NmzB1u3bkVBQUHQq0OU07g9EoUDt0Wi8OD2SBQe3B6JwiPbt8ddu3YBAAzDSPu4rAwot2zZgqamJlRUVMR9vaKiAsuXL0/6M3fffTfuuOOOFl/v27evJ+tIRERERERERESUC3bt2oXy8vKU38/KgNKOm2++GVOmTGn+dywWw7Zt29CpUydEIpEA18y8nTt3omfPnvj2229RVlYW9OoQ5TRuj0ThwG2RKDy4PRKFB7dHovDI9u3RMAzs2rULVVVVaR+XlQFl586dEY1GsWnTprivb9q0CZWVlUl/pqioCEVFRXFfa9++vVer6KmysrKs/FATZSJuj0ThwG2RKDy4PRKFB7dHovDI5u0xXeWklJWT5BQWFmLkyJGYPn1689disRimT5+O0aNHB7hmREREREREREREpMvKCkoAmDJlCiZOnIhRo0bh8MMPx5/+9Cfs3r0bV1xxRdCrRkRERERERERERPtlbUB5/vnnY/Pmzbj11luxceNGDB8+HP/+979bTJyTTYqKinDbbbe1aFUnIv9xeyQKB26LROHB7ZEoPLg9EoUHt0chYrQ2zzcRERERERERERGRR7JyDEoiIiIiIiIiIiLKDAwoiYiIiIiIiIiIKDAMKImIiIiIiIiIiCgwDCiJiIiIiIiIiIgoMAwos8QjjzyCPn36oLi4GEcccQQ+/vjjoFeJKOvdfffdOOyww1BaWoquXbtiwoQJ+PLLL+Mes2/fPkyaNAmdOnVCu3btcPbZZ2PTpk0BrTFRbvjd736HSCSCyZMnN3+N2yKRf7777jtccskl6NSpE0pKSjB06FAsWLCg+fuGYeDWW29Ft27dUFJSgnHjxuHrr78OcI2JslNTUxNuueUW9O3bFyUlJTjggANw5513Qp8nl9sjkTc++OADnH766aiqqkIkEsHrr78e930z2962bdtw8cUXo6ysDO3bt8cPf/hD1NbW+vi/8BcDyizw4osvYsqUKbjtttvwySefYNiwYTj55JNRXV0d9KoRZbVZs2Zh0qRJmDt3LqZNm4aGhgacdNJJ2L17d/NjbrzxRrz11lt4+eWXMWvWLKxfvx5nnXVWgGtNlN3mz5+Pxx9/HIccckjc17ktEvlj+/btOProo1FQUIB33nkHX3zxBf7whz+gQ4cOzY+599578eCDD2Lq1KmYN28e2rZti5NPPhn79u0LcM2Jss8999yDxx57DA8//DCWLVuGe+65B/feey8eeuih5sdweyTyxu7duzFs2DA88sgjSb9vZtu7+OKL8fnnn2PatGn45z//iQ8++ABXX321X/8F/xmU8Q4//HBj0qRJzf9uamoyqqqqjLvvvjvAtSLKPdXV1QYAY9asWYZhGMaOHTuMgoIC4+WXX25+zLJlywwAxpw5c4JaTaKstWvXLuPAAw80pk2bZowZM8a44YYbDMPgtkjkp5tuusk45phjUn4/FosZlZWVxn333df8tR07dhhFRUXG3//+dz9WkShnnHbaacYPfvCDuK+dddZZxsUXX2wYBrdHIr8AMF577bXmf5vZ9r744gsDgDF//vzmx7zzzjtGJBIxvvvuO9/W3U+soMxw9fX1WLhwIcaNG9f8tby8PIwbNw5z5swJcM2Ick9NTQ0AoGPHjgCAhQsXoqGhIW77HDRoEHr16sXtk8gDkyZNwmmnnRa3zQHcFon89Oabb2LUqFE499xz0bVrV4wYMQJ//vOfm7+/evVqbNy4MW57LC8vxxFHHMHtkchlRx11FKZPn46vvvoKALB48WLMnj0b48ePB8DtkSgoZra9OXPmoH379hg1alTzY8aNG4e8vDzMmzfP93X2Q37QK0DObNmyBU1NTaioqIj7ekVFBZYvXx7QWhHlnlgshsmTJ+Poo4/GwQcfDADYuHEjCgsL0b59+7jHVlRUYOPGjQGsJVH2euGFF/DJJ59g/vz5Lb7HbZHIP6tWrcJjjz2GKVOm4Je//CXmz5+P66+/HoWFhZg4cWLzNpfs3JXbI5G7fvGLX2Dnzp0YNGgQotEompqa8Jvf/AYXX3wxAHB7JAqImW1v48aN6Nq1a9z38/Pz0bFjx6zdPhlQEhG5YNKkSVi6dClmz54d9KoQ5Zxvv/0WN9xwA6ZNm4bi4uKgV4cop8ViMYwaNQq//e1vAQAjRozA0qVLMXXqVEycODHgtSPKLS+99BKee+45PP/88xgyZAgWLVqEyZMno6qqitsjEYUOW7wzXOfOnRGNRlvMRLpp0yZUVlYGtFZEueW6667DP//5T7z//vvo0aNH89crKytRX1+PHTt2xD2e2yeRuxYuXIjq6moceuihyM/PR35+PmbNmoUHH3wQ+fn5qKio4LZI5JNu3bph8ODBcV876KCD8M033wBA8zbHc1ci7/3sZz/DL37xC1xwwQUYOnQoLr30Utx44424++67AXB7JAqKmW2vsrKyxcTHjY2N2LZtW9ZunwwoM1xhYSFGjhyJ6dOnN38tFoth+vTpGD16dIBrRpT9DMPAddddh9deew0zZsxA3759474/cuRIFBQUxG2fX375Jb755htun0QuOvHEE7FkyRIsWrSo+c+oUaNw8cUXNy9zWyTyx9FHH40vv/wy7mtfffUVevfuDQDo27cvKisr47bHnTt3Yt68edweiVy2Z88e5OXFX/JHo1HEYjEA3B6JgmJm2xs9ejR27NiBhQsXNj9mxowZiMViOOKII3xfZz+wxTsLTJkyBRMnTsSoUaNw+OGH409/+hN2796NK664IuhVI8pqkyZNwvPPP4833ngDpaWlzWOBlJeXo6SkBOXl5fjhD3+IKVOmoGPHjigrK8NPfvITjB49GkceeWTAa0+UPUpLS5vHfpXatm2LTp06NX+d2yKRP2688UYcddRR+O1vf4vzzjsPH3/8MZ544gk88cQTAIBIJILJkyfjrrvuwoEHHoi+ffvilltuQVVVFSZMmBDsyhNlmdNPPx2/+c1v0KtXLwwZMgSffvop/vjHP+IHP/gBAG6PRF6qra3FihUrmv+9evVqLFq0CB07dkSvXr1a3fYOOuggnHLKKbjqqqswdepUNDQ04LrrrsMFF1yAqqqqgP5XHgt6GnFyx0MPPWT06tXLKCwsNA4//HBj7ty5Qa8SUdYDkPTPU0891fyYvXv3Gj/+8Y+NDh06GG3atDHOPPNMY8OGDcGtNFGOGDNmjHHDDTc0/5vbIpF/3nrrLePggw82ioqKjEGDBhlPPPFE3PdjsZhxyy23GBUVFUZRUZFx4oknGl9++WVAa0uUvXbu3GnccMMNRq9evYzi4mKjX79+xq9+9Sujrq6u+THcHom88f777ye9Vpw4caJhGOa2va1btxoXXnih0a5dO6OsrMy44oorjF27dgXwv/FHxDAMI6BslIiIiIiIiIiIiHIcx6AkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiygB9+vRBJBLB5ZdfHvSqEBEREbmKASURERFRK6655hpEIhFEIhHMmDHD0s++++67zT97ww03eLSGRERERESZiwElERERUSsuu+yy5uVnn33W0s/+7W9/S/o8QZk5c2ZzYDpz5sygV4eIiIiIiAElERERUWuOPvpoHHDAAQCAV155BXv37jX1c7t378Zrr70GABgyZAhGjhzp2ToSEREREWUqBpREREREJlx66aUAgJ07d+KNN94w9TOvvvoqdu/eHffzREREREQUjwElERERkQmXXnopIpEIAPNt3rK9Oy8vD5dccoln60ZERERElMkYUBIRERGZ0K9fPxx99NEAgP/85z+orq5O+/j169dj+vTpAIATTjgB3bt3b/GY119/Heeeey569eqF4uJitG/fHqNGjcIdd9yB7du3m1qvt99+G5dccgn69euHtm3bori4GH379sXZZ5+Np59+Gnv27AEArFmzBpFIBGPHjm3+2bFjxzaPRyn/PP300y1eo76+Ho8++ijGjh2LLl26oLCwEJWVlTj11FPx7LPPIhaLpVy/yy+/HJFIBH369AEAbNiwATfddBOGDBmC0tJSy2NhJhtD86WXXsKJJ56ILl26oKSkBAMHDsTPf/5zbNu2LeXzHH/88YhEIjj++OPTvt7tt9/e/HrJyO/dfvvtAID3338fEyZMQFVVFUpKSnDQQQfhzjvvbK6kld5++22ceuqpzY8bPHgw7r77btTX15t+L+bPn48LL7wQPXv2RHFxMXr27IkrrrgCy5cvN/XzK1aswI033oihQ4eivLwcJSUl6NevHy6//HIsWLAg5c8l/g5isRiefPJJjB07FhUVFcjLy+NM40RERGSNQURERESmPPHEEwYAA4DxwAMPpH3sfffd1/zYv/71r3Hf27Ztm3HCCSc0fz/Zn65duxpz5sxJ+fxbtmwxTjzxxLTPAcB46qmnDMMwjNWrV7f6WP3x0urVq41Bgwal/ZljjjnG2Lp1a9L1nDhxogHA6N27tzFnzhyjc+fOLX7+/fffb/W9l95///3mn5s+fbpxySWXpFyv/v37Gxs2bEj6PGPGjDEAGGPGjEn7erfddlvz8yUjv3fbbbcZd999txGJRJKuy1FHHWXU1tYasVjMuP7661Ou8ymnnGI0NjYmfa3evXsbAIyJEyca//d//2fk5+cnfY6ioiLjpZdeSvv/uu+++4yCgoKU6xGJRIxbbrkl6c/qv4N33nnHGDduXIufnzhxYtrXJyIiItKxgpKIiIjIpPPOOw/FxcUA4mfnTkZ+v127djjrrLOav15XV4dx48ZhxowZiEajuPTSS/H3v/8dc+fOxYcffojf/OY36NSpE6qrq3Hqqadi7dq1LZ57z549GDt2bHOF5siRI/H444/jv//9LxYsWIDXXnsNN954I6qqqpp/pnv37liyZAmefPLJ5q89+eSTWLJkSdyfCRMmNH+/trYWJ554YnNF3oQJE/Dmm29iwYIFePnllzFmzBgAwOzZs3H66aejqakp5ftRW1uLs88+G/v27cOvfvUrzJw5Ex9//DH+7//+D926dUv7XqZyyy234Nlnn8WECRPw6quvYuHChXj77bdx2mmnAVAVgn545513cPPNN+PII4/E888/jwULFuDf//43xo8fDwD46KOPcPfdd+P+++/Hgw8+iPHjx+OVV17BwoUL8cYbb+DII48EAPz73//Gn//857SvtWjRIvzoRz9C165d8dBDD2HevHmYNWsWbrrpJhQVFaGurg4XX3xxyirI++67Dz/72c/Q0NCAQw45BI899hjee+89LFiwAM899xxGjx4NwzBw55134sEHH0y7LjfddBPee+89/M///E/c70D+v4mIiIhMCTohJSIiIsok5513XnOV2PLly5M+ZvHixc2Pueyyy+K+98tf/tIAYLRv395YsGBB0p9fs2aN0a1bNwOAcdFFF7X4/o033tj8/JMmTTJisVjS56mrqzM2btwY9zW9+q21ysWf/vSnzY/99a9/3eL7sVjMuPjii5sf8+ijj7Z4jKygBGC0a9fOWLRoUdrXbI2+/gCMu+66K+l6nXTSSQYAIz8/36iurm7xGLcrKAEYZ599dovqx8bGRuPII480ABilpaVGcXGxMXny5BbPs3v37uYKyUMOOSTpa8nvY39FarLq0BkzZjRXVh522GEtvv/55583V07edtttST87TU1NzZWp7dq1M7Zt2xb3/cTfQbLPBhEREZEVrKAkIiIisuCyyy5rXk5VRal/XX98bW0tHnnkEQDAnXfeiZEjRyb9+d69e+OWW24BALz88stx4xfu2LEDjz/+OABROfnAAw+kHB+xsLAQFRUVZv5bLdTV1eEvf/kLAGDIkCHNYyzqIpEIHn30UXTq1AkA8PDDD6d9zp///OcYNmyYrfVJZuTIkfjlL3+ZdL2mTJkCAGhsbMScOXNce81U2rRpgyeeeALRaDTu69FoFFdffTUAYNeuXejSpQvuvffepD8/ceJEAMBnn32GmpqatK/3hz/8AZWVlS2+PnbsWFx11VUAxBiViVWUf/jDH9DQ0IBRo0bhtttuS/rZycvLw0MPPYSioiLU1tbiH//4R8r1GDBgQNLPBhEREZEVDCiJiIiILDj55JObQ7/nnnsOhmHEfT8Wi+H5558HAPTo0SNuUppZs2Y1B0/nnHNO2tc57rjjAAANDQ1YuHBh89dnzJjRPPHN9ddf3yIQc8vChQuxY8cOAGKim1SvU1ZWhvPOOw8A8MUXX2DDhg0pn/Piiy92dR0vuuiilOGsHv6uWrXK1ddN5nvf+x46duyY9Ht6KHvWWWehoKCg1cetXr065Wt16NABZ5xxRsrv/+AHP2hefu+99+K+99ZbbwEAzj777JTvHQC0b98eQ4cOBYC0Ae/555/v2WeQiIiIcgcDSiIiIiIL8vPzcdFFFwEQM2PPnj077vvTp0/H+vXrAYhALi9PnW7p1WzdunVrMYO2/ufggw9ufuzGjRublz/99NPm5WOPPdbd/5xm6dKlzctHHHFE2sfq39d/TteuXTv069fPnZXbb9CgQSm/p4eFu3btcvV1kxkwYEDK77Vv397y49Kt84gRI5Cfn5/y+8OHD0dhYSEAYMmSJc1fX7t2LTZv3gwAuPnmm9N+/iKRSPPnVf/8JTrkkENSfo+IiIjILAaURERERBala/NO1d4NANXV1bZeT1ZMAsCWLVual+1OLmPGtm3bmpe7du2a9rF6q7H+czo9fHNLmzZtUn5PD4bTTd7j97q4sc6t/T7y8/ObA1r99+HG5y9Rhw4dbD0nERERkS71rVciIiIiSmr48OEYOnQolixZgpdffrl5vL7du3fj1VdfBSBajAcPHhz3c3ro9Mknn6Rs9U3Uo0cP91behnStwGaxDdg9dn8f+ufv1ltvxbnnnmvq59q2bZvye/y9EhERkRsYUBIRERHZcNlll+FnP/sZduzYgbfeegvnnHMOXnvtteYJbRKrJwE0TyYDAF26dLEVPHbu3Ll5ecOGDejbt6+NtW+d3iK9adOmtK3JegtwqnEYw0ZWK8ZisbSP0ycoCotNmzal/X5jY2Nz5aT++9A/fwUFBXHDCBAREREFiS3eRERERDZcfPHFzdVjzz77LADV3l1QUIALL7ywxc+MGDGiefm///2vrdc99NBDm5c/+OADyz9vtvpOD6/mzZuX9rEff/xx0p8Ls9LSUgDA9u3b0z7uq6++8mN1LFm0aBEaGxtTfn/x4sWor68HEP/76NevH8rLywHY//wREREReYEBJREREZEN3bp1w7hx4wAAb7/9NpYuXYrp06cDAE455RR06dKlxc+MGzeueQzCBx98sMUM4GaMHTu2ueX2oYcesjy+YnFxcfNyXV1dyseNHDmyedzIZ555JmWl4a5du/DSSy8BAAYPHuzpuJhukpWnX331VcoJabZs2YJp06b5uVqmbNu2rXk27mSefPLJ5mX5GQVEO/app54KAHj33XexbNky71aSiIiIyAIGlEREREQ2yTbuhoYGXHDBBc1hYbL2bkBMFHPdddcBAD766CPceOONaVuMN23ahL/85S8tnuOaa64BACxcuBCTJ09OGXQ2NDS0mBhFDxBXrlyZ8rWLiopw5ZVXAhAzc995550tHmMYBq677rrmiXvk/y0TjBkzBgBQX1+Phx56qMX3GxoacOWVV2Lv3r1+r5opU6ZMSdrqPWvWLDzxxBMARMh82GGHxX3/5ptvRjQaRSwWwznnnIN169alfI2mpiY899xzaR9DRERE5AaOQUlERERk05lnnonS0lLs2rULn3/+OQAxq/Hpp5+e8mf+93//F7NmzcK8efPwwAMPYObMmbjqqqswfPhwtG3bFtu3b8fnn3+O9957D++88w6GDh3aHBRKd955J6ZNm4YlS5bg4Ycfxpw5c3DNNddg6NChKCwsxLp16/Dhhx/i73//O+666y5cfvnlzT/bq1cv9OjRA+vWrcPvf/979OjRAwMHDmxuV6+oqGhuf7711lvx6quvYtWqVbj99tuxZMkSXHHFFejWrRtWr16Nhx9+GDNnzgQAjB49GldffbWL7663TjvtNPTu3Rtr167FLbfcgi1btuCss85CcXExPv/8czz44IP49NNPceSRR2Lu3LlBr26cYcOG4YsvvsDIkSNx88034/DDD0ddXR3efvtt3H///WhsbER+fj4eeeSRFj87dOhQ/P73v8eNN96IL774AgcffDCuvvpqnHDCCaioqMC+ffuwZs0azJkzB//4xz+wYcMGLFmyJPCJmoiIiCi7MaAkIiIisqmkpATnnHMOnnrqqeavnXfeeSgqKkr5M0VFRZg2bRouv/xyvPrqq1i8eHHaysOysrIWX2vTpg1mzJiBs88+Gx988AEWLlxoKRz85S9/iR//+MdYvXo1zjjjjLjvPfXUU82BZmlpKaZPn47x48dj+fLleOWVV/DKK6+0eL6jjz4ab775ZkbN6FxYWIhnn30Wp5xyCnbv3o37778f999/f/P3o9Eo/vSnP2Hbtm2hCyiHDx+O6667Dtdee23Sz05hYSGeeeYZHHHEEUl/fvLkyWjbti0mT56Mmpoa3HfffbjvvvuSPrawsDBuWAAiIiIiL7DFm4iIiMiBiRMnxv07VXu3rrS0FK+88go+/PBDXHnllRg4cCBKS0uRn5+Pjh074rDDDsOkSZPw9ttvpxwDsXPnzpg1axZeffVVnHPOOejRoweKiopQXFyMfv364dxzz8Vzzz2XdLKea6+9Fq+88gpOOukkdO3aFfn5qe9Z9+nTB4sXL8bDDz+MMWPGoFOnTigoKEBFRQVOOeUU/O1vf8MHH3yQMbN364455hgsXLgQl156KaqqqlBQUIBu3bo1B7/XX3990KuY0pVXXokPP/wQ5513HqqqqlBYWIju3bvjsssuw6effooLLrgg7c9fddVVWLVqFe644w4cffTR6Ny5M/Lz89G2bVsMGDAAZ599NqZOnYrvvvsO/fv39+l/RURERLkqYtgZnZ2IiIiIiIiIiIjIBaygJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLAMKAkIiIiIiIiIiKiwDCgJCIiIiIiIiIiosAwoCQiIiIiIiIiIqLA/H/mcXHz52CFTAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "predicted_labels3.sum()/predicted_labels3.shape[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ct8sXWouiWqt", + "outputId": "8437e250-7629-49d1-bfa1-21a81ff49758" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "np.float64(0.81)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "ZEGW4yEdkJHC" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/labworks/LW2/lab02_lib.py b/labworks/LW2/lab02_lib.py index ec90383..2a0d382 100644 --- a/labworks/LW2/lab02_lib.py +++ b/labworks/LW2/lab02_lib.py @@ -29,12 +29,14 @@ from pandas import DataFrame from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation +from tensorflow.keras.callbacks import Callback visual = True verbose_show = False + # generate 2d classification dataset def datagen(x_c, y_c, n_samples, n_features): @@ -91,8 +93,27 @@ class EarlyStoppingOnValue(tensorflow.keras.callbacks.Callback): ) return monitor_value + +class VerboseEveryNEpochs(Callback): + def __init__(self, every_n_epochs=1000, verbose=1): + super().__init__() + self.every_n_epochs = every_n_epochs + self.verbose = verbose + + def on_epoch_end(self, epoch, logs=None): + if (epoch + 1) % self.every_n_epochs == 0: + if self.verbose: + print(f"\nEpoch {epoch + 1}/{self.params['epochs']}") + if logs: + log_str = ", ".join([f"{k}: {v:.4f}" for k, v in logs.items()]) + print(f" - {log_str}") + + #создание и обучение модели автокодировщика -def create_fit_save_ae(cl_train, ae_file, irefile, epohs, verbose_show, patience): +def create_fit_save_ae(cl_train, ae_file, irefile, epohs, verbose_show, patience, **kwargs): + verbose_every_n_epochs = kwargs.get('verbose_every_n_epochs', 1000) + early_stopping_delta = kwargs.get('early_stopping_delta', 0.01) + early_stopping_value = kwargs.get('early_stopping_value', 0.0001) size = cl_train.shape[1] #ans = '2' @@ -140,22 +161,28 @@ def create_fit_save_ae(cl_train, ae_file, irefile, epohs, verbose_show, patience optimizer = tensorflow.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False) ae.compile(loss='mean_squared_error', optimizer=optimizer) - error_stop = 0.0001 epo = epohs - early_stopping_callback_on_error = EarlyStoppingOnValue(monitor='loss', baseline=error_stop) + + verbose = 1 if verbose_show else 0 + + early_stopping_callback_on_error = EarlyStoppingOnValue(monitor='loss', baseline=early_stopping_value) early_stopping_callback_on_improving = tensorflow.keras.callbacks.EarlyStopping(monitor='loss', - min_delta=0.0001, patience = patience, - verbose=1, mode='auto', + min_delta=early_stopping_delta, patience = patience, + verbose=verbose, mode='min', baseline=None, - restore_best_weights=False) + restore_best_weights=True) history_callback = tensorflow.keras.callbacks.History() - verbose = 1 if verbose_show else 0 + history_object = ae.fit(cl_train, cl_train, batch_size=cl_train.shape[0], epochs=epo, - callbacks=[early_stopping_callback_on_error, history_callback, - early_stopping_callback_on_improving], + callbacks=[ + early_stopping_callback_on_error, + history_callback, + early_stopping_callback_on_improving, + VerboseEveryNEpochs(every_n_epochs=verbose_every_n_epochs), + ], verbose=verbose) ae_trainned = ae ae_pred = ae_trainned.predict(cl_train) @@ -538,4 +565,4 @@ def ire_plot(title, IRE_test, IREth, ae_name): plt.gcf().savefig('out/IRE_' + title + ae_name + '.png') plt.show() - return \ No newline at end of file + return diff --git a/labworks/LW2/report.md b/labworks/LW2/report.md new file mode 100644 index 0000000..138cf93 --- /dev/null +++ b/labworks/LW2/report.md @@ -0,0 +1,325 @@ +# Отчет по лабораторной работе №2 +Артюшина Валерия, Хохлов Кирилл, А-01-22 + +## Подготовка к работе +Номер бригады k = 4 +N = 4 mod 3 = 1 +Набор данных Letter + +# Задание 1 + +## 1. В среде GoogleColab создали блокнот(is_lab2.ipynb). +``` py +import os +os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2') +``` + +* импорт модулей +``` py +import numpy as np +import lab02_lib as lib +``` + +## 2. Генерация набора двумерных данных +``` py +data = lib.datagen(4, 4, 1000, 2) + +# вывод данных и размерности +print('Исходные данные:') +print(data) +print('Размерность данных:') +print(data.shape) +``` +![alt text](ex1_p2.png) +``` +Исходные данные: +[[3.89754058 4.00467196] + [4.00996996 4.00696404] + [4.13181175 4.19264161] + ... + [3.90249897 3.8890494 ] + [3.98817291 4.05824572] + [3.95966561 3.94263676]] +Размерность данных: +(1000, 2) +``` + +## 3. Создание и обучение автокодировщика AE1 +``` py +patience = 100 +ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt', +500, True, patience) +``` +> Параметры архитектуры +``` +Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1 +Задайте количество скрытых слоёв (нечетное число) : 3 +Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 3 1 3 +``` +## 4. Результаты обучения +Ошибка MSE, на которой обучение завершилось: +``` +mse_stop_ae1 = 3.0205 +``` +``` py +# Построение графика ошибки реконструкции +lib.ire_plot('training', IRE1, IREth1, 'AE1') +``` +![alt text](ex1_p4.png) +Порог ошибки реконструкции: +``` +IREth1 +np.float64(2.8) +``` + +## 5. Создание и обучение автокодировщика AE2 +``` py +ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt', +2000, True, patience) +lib.ire_plot('training', IRE2, IREth2, 'AE2') +``` + +## 6. Результаты обучения +Ошибка MSE, на которой обучение завершилось: +``` +mse_stop_ae2 = 0.0121 +``` +``` py +# Построение графика ошибки реконструкции +lib.ire_plot('training', IRE2, IREth2, 'AE2') +``` +![alt text](ex1_p6.png) +Порог ошибки реконструкции: +``` +IREth2 +np.float64(0.47) +``` + +## 7. Характеристики качества обучения +``` py +# построение областей покрытия и границ классов +# расчет характеристик качества обучения +numb_square = 20 +xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True) +``` +![alt text](ex1_p7_1.png) +amount: 21 +amount_ae: 294 +![alt text](ex1_p7_2.png) +![alt text](ex1_p7_3.png) +Оценка качества AE1 +``` +Оценка качества AE1 +IDEAL = 0. Excess: 13.0 +IDEAL = 0. Deficit: 0.0 +IDEAL = 1. Coating: 1.0 +summa: 1.0 +IDEAL = 1. Extrapolation precision (Approx): 0.07142857142857144 +``` +``` py +# построение областей покрытия и границ классов +# расчет характеристик качества обучения +numb_square = 20 +xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True) +``` +![alt text](ex1_p7_4.png) +amount: 21 +amount_ae: 39 +![alt text](ex1_p7_5.png) +![alt text](ex1_p7_6.png) +Оценка качества AE2 +``` +IDEAL = 0. Excess: 0.8571428571428571 +IDEAL = 0. Deficit: 0.0 +IDEAL = 1. Coating: 1.0 +summa: 1.0 +IDEAL = 1. Extrapolation precision (Approx): 0.5384615384615385 +``` +``` py +# сравнение характеристик качества обучения и областей аппроксимации +lib.plot2in1(data, xx, yy, Z1, Z2) +``` +![alt text](ex1_p7_7.png) + +* Вывод: при увеличении количества скрытых слоев - показатели качества улучшаются. Таким образом, для качественного обнаружения аномалий стоит использовать автокодировщик AE2. + + +## 9. Создание тестовой выборки +``` py +test_data = np.array([[3.5, 4.2], [3.2, 4], [4.1, 3], [3.5,3.5], [3, 4], [3.5, 4.5]]) +``` +``` +test_data +array([[3.5, 4.2], + [3.2, 4. ], + [4.1, 3. ], + [3.5, 3.5], + [3. , 4. ], + [3.5, 4.5]]) +``` + +## 10. Применение автокодировщиков к тестовым данным +``` py +# тестирование AE1 +predicted_labels1, ire1 = lib.predict_ae(ae1_trained, test_data, IREth1) + +lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1) +lib.ire_plot('test', ire1, IREth1, 'AE1') +``` +Аномалий не обнаружено +![alt text](ex1_p10_1.png) +``` py +# тестирование AE2 +predicted_labels2, ire2 = lib.predict_ae(ae2_trained, test_data, IREth2) + +lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2) +lib.ire_plot('test', ire2, IREth2, 'AE2') +``` +i Labels IRE IREth +0 [1.] [0.5] 0.47 +1 [1.] [0.73] 0.47 +2 [1.] [0.94] 0.47 +3 [1.] [0.6] 0.47 +4 [1.] [0.93] 0.47 +5 [1.] [0.71] 0.47 +Обнаружено 6.0 аномалий +![alt text](ex1_p10_2.png) + +## 11. Построение областей аппроксимации и точек тестового набора +``` py +lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, test_data) +``` +![alt text](ex1_p11.png) + +## 12. Результаты исследования + +Табл. 1 Результаты задания №1. +![alt text](tab1.png) + +## 13. Выводы о требованиях + +Для успешного обучения автокодировщика для задачи одноклассовой классификации должны быть соблюдены следующие требования: + +* Данные для обучения: данные должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение. Данные должны соответствовать одному классу и в пространстве признаков образовывать сплошной кластер +* Архитектура автокодировщика: автокодировщик должен содержать более одного внутреннего слоя. Архитектура автокодировщика имеет форму «бабочки» +* Количество эпох обучения: количество эпох обучения должно быть порядка тысяч. В рамках данного набора данных оптимально использовать 3000 с patience 300 эпох +* Ошибка MSE_stop: оптимальная ошибка для остановки обучения составляет 0,01 (для предотвращения переобучения) +* Ошибка реконструкции: должна быть минимальной +* Характеристики качества обучения EDCA: Excess не больше 0.5, Deficit = 0, Coating = 1, Approx не меньше 0.7 + +# Задание 2 + +## 1. Набор данных Letter +Набор предназначен для распознавания черно-белых пиксельных прямоугольников как одну из 26 заглавных букв английского алфавита, где буквы алфавита представлены в 16 измерениях. (32 признака, 1600 примеров - 1500 нормальных, 100 аномальных) + +## 2. Загрузка многомерной обучающей выборки +``` py +train = np.loadtxt('letter_train.txt', dtype=float) +``` + +## 3. Вывод данных и размерности +``` py +print('Исходные данные:') +print(train) +print('Размерность данных:') +print(train.shape) +``` +``` +Исходные данные: +[[ 6. 10. 5. ... 10. 2. 7.] + [ 0. 6. 0. ... 8. 1. 7.] + [ 4. 7. 5. ... 8. 2. 8.] + ... + [ 7. 10. 10. ... 8. 5. 6.] + [ 7. 7. 10. ... 6. 0. 8.] + [ 3. 4. 5. ... 9. 5. 5.]] +Размерность данных: +(1500, 32) +``` + +## 4. Создание и обучение автокодировщика AE3 (100000 эпох) +``` py +patience= 20000 +ae3_trained, IRE3, IREth3= lib.create_fit_save_ae(train,'out/AE3.h5','out/AE3_ire_th.txt', 100000, False, patience, early_stopping_delta = 0.001) +``` +> Параметры архитектуры +``` +Задайте количество скрытых слоёв (нечетное число) : 9 +Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 64 48 32 24 16 24 32 48 64 + +``` + +## 5. Результаты обучения +Ошибка MSE, на которой обучение завершилось: +``` +mse_stop_ae3 = 0.1056 +``` +``` py +# Построение графика ошибки реконструкции +lib.ire_plot('training', IRE3, IREth3, 'AE3') +``` +![alt text](ex2_p5.png) +Порог ошибки реконструкции: +``` +IREth3 +np.float64(3.64) +``` + +## 6. Вывод о пригодности автокодировщика +Нейронная сеть обучена оптимально и порог обнаружения аномалий адекватно описывает границу области генеральной совокупности исследуемых данных. + +## 7. Загрузка тестовой выборки +``` py +test = np.loadtxt('letter_test.txt', dtype=float) + +# вывод данных и размерности +print('Исходные данные:') +print(test) +print('Размерность данных:') +print(test.shape) +``` +``` +Исходные данные: +[[ 8. 11. 8. ... 7. 4. 9.] + [ 4. 5. 4. ... 13. 8. 8.] + [ 3. 3. 5. ... 8. 3. 8.] + ... + [ 4. 9. 4. ... 8. 3. 8.] + [ 6. 10. 6. ... 9. 8. 8.] + [ 3. 1. 3. ... 9. 1. 7.]] +Размерность данных: +(100, 32) +``` + +## 8. Применение автокодировщика к тестовым данным +``` py +#тестирование АE3 +predicted_labels3, ire3 = lib.predict_ae(ae3_trained, test, IREth3) +#вывод результатов классификации +lib.anomaly_detection_ae(predicted_labels3, ire3, IREth3) +# Построение графика ошибки реконструкции +lib.ire_plot('test', ire3, IREth3, 'AE3') +``` +``` +Обнаружено 98.0 аномалий +``` +![alt text](ex2_p8.png) + +## 10. Результаты обнаружения аномалий + +Обнаружено более 70% аномалий, результаты удовлетворены. + +## 10. Результаты исследования + +Табл. 2 Результаты задания №2. +![alt text](tab2.png) + +## 11. Выводы о требованиях + +для качественного обнаружения аномалий в случае, когда размерность пространства признаков высока. + +* Данные для обучения: должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение +* Архитектура автокодировщика: многомерный автокодировщик должен иметь достаточно большое количество внутренних слоев (в данном датасете не менее 7) и нейронов в них. Размеры определяются размерностью исходных данных. +* Количество эпох обучения: в рамках данного набора данных оптимальное кол-во эпох 100000 с patience 5000 эпох +* Ошибка MSE-stop: оптимальная ошибка MSE-stop 0.001 +* Ошибка реконструкции: значение ошибки реконструкции должно как можно меньше \ No newline at end of file diff --git a/labworks/LW2/tab1.png b/labworks/LW2/tab1.png new file mode 100644 index 0000000000000000000000000000000000000000..054abbc8ab7c54f3da5430252e3461996de385fe GIT binary patch literal 23157 zcmeFZbx@pNvo1Qg1Pku&5C|^8-Q6v?yK8WF3-0djPVnHt-5r8kkUJ##>f674Ywvyk zJm=g~1;aa2!>ae`)!nQ6>FzgFPDT_S78@1-0Kkij2`K;o;N`&UO=wWytGQHb7w`{= zgMz34pmH4d5cme%gkPE;0H}$6_oN2_d=FzQrtSa$AUnSOf~*-6xB>tgu;N1eO0GJm z8LNr3O*Q3JG_`!_lb~*VP^KUsVn7&uCQLqHcQ;)LKuywLt|! zl6MBH2YM4;7Qxm9Prv@EVi>?Qh+r5rLYOa~bgxJd_T*()`{lz)TZn8 z<&(vz_{r&i11x~4)<(5sBB>+m%Ogxv&u8yvv>Vqo^D&P9>A$w4lIVP!U!I??CS3X8 zj~*u=$v?Dhf+mu%y254Jgl~QRIW~`n&uMnljcIbeUtR=^GQ8gFS-1w3e%Ld z7n;p9w+fpjJ{axs>FQ_h?QM9?Mn_FAjh@Br0BoAfLc`ab)LNsZMR=P*yk4xuA7n_p z(Ptbd!`AKA{cTv?tKuxFDj3wW)y3~{D8O4SF4l<{V)~o2n(6SjxMS|5B4+tkF68=T z>*t0!#7pNZ>#b(;hPV%=hYCslCq&2Aq`{!8s-{V?qiY2qHy*75pkdoNS3ve>dRQcEh zvk_Xsj|wsL${=~XU?ME7HkV4I=Ny#(CrK1Z>b9fy^A^o~2=7;YA&U__dZzYWT*%P@ z-5wCj3q8;hP2!s?5}qxUzC^tr-lF^eu!#qq7*(9Db-=qM#J`WQz_gZY)i={X=Pz~J zLQbZ$449W;IYdugz#S~U7 zgQXL+O?M#ZqBRak#2mThKqN=v$wd?2Wvj5_O~q)ZMV!-e(r>&U6;Ic3zsiKQnX(5B ztOJ=)M-hivWGtkzP3Y+27#Ax<`Mj&~2neT4zsZT~Od7>d_`TO0{Tz1CR*N^XI`4IO z9a)Im3-XB=K2?h}H849=Y>r9He3E^fS?DOnFPsXzvzVjxd4G;A zQ=dp~pm3Q;i(xw`DX~-A_%OvC_RY7dbbue-O%<~J=UXY%2Hr~MgWME>CE$kQ;vIYM z`WjUi%Ci$xk5Wk?dJC+a;&TU~4yGmOlZe!nkn23qD{NX4JGcEBthv2#nS(CM^yMxdA(o}`#hOybmmVr1YV7X>KQb z)UKoR#Ewv;sZdmpv-+@x9k(pBCHaX|MWrJG#UduLu^AXdkT$61%rB&#;ue_5J&_#P znFLc={Z{qwRqmxYzZ^Breu4N;h;Bb*c;@5eb9s%C>a*=xI2xny$D1!;RYNBvsVgDR zVHhqy3L0k}MV?>{p$i0MDN{#Mb1o;$$TpM^qmQAWpTjzhRG%dz5OFV4oxwq566h4Kkg$KMhpPKSbNOqw? zy&r;qb(u<_-}+I(mf<5BHZ1Nm^b_jRk&nBx+<*#vxE*h~o(~gRwZjr(S^|_0r)ltx zseDE_mSCQ1n09Dp_V3fiAKwRj;k5(tC@Q~zjt-;F?Z4w4Hqag>cEM_^Hp z)nCQ=QDf1!BFqcIUI1qfVR$OnvSP3g%)+r!wfH}qcr;*#kPJIU0h1;XJn=B5R1NH- zf0(7Rcef3;&r0y-h@BnL4akvPolZbXJ^5qbS&*;Fd%Fpz_$8unv|nyEYbu+VJX44_ z&QRs@vR+W6vSnw~`-7I0m+GAwzv?hE9=IQnE#~^rERd&|32*Y-4a-`Iz{EF`%fU5` zqJ)@(g9vs7(NWB~qyKo4uR2?B#1J7o05SJ@nlFixpWiQWE%D$aoS``-~ZwMt4eD!a+ob4Yz>yH(4p(#e97W(iZ zGkjg-uaNK$HGiK9FbzT0Jss6&hEj#19RXnnE5;G|F?EamSN(=JEkZ!%01z140Vh`W7h(&K z%309QuH&ifHjcvmo#Qlav+#)JIU6-#nX?kyG_@f@b8s3;hs8ignkwkA7sf(By?g-8 zu$nPwqw^!Q%ISl!(5OMF5-LE1rfsuG1I;A_Pg+4xvu1z?dp3mLIpiV@6rDGEPtGO93Vq|w30`HbolAt#DcnATDre$6!R1)unmCWK|CCg?SRi8B@iX*02b17fiyTEHK6Q9@2 zg5wZXCD9+&2c35^B)J`P-)StN6eZ0>BA{44OAIB_*oYJH*}fhMsVGuVVPLX&l?@_< z{#|vNZD+t6@bxP^&rGIY>&!1t#(~@$e$1Y=kuBeCoAlJEhivvbu07nL>qL(oJ##kP z2PxkjMq;khJcrP8#H=~w-6PP!hbvyKM#m-E`W;CtC$AOY3dn+8SPUk&vAZVyO%J?{ zU!R-=q{8o?^rxj@X3}@?R>-|(j+!LiZ8Li@d?su5WYGq5f_m;fG)6!76 zC7Wy)Q^s6Fdxo8GWPLSX<_hq4`B(m9a{HOyS1f_SCRNm~6VuPAE1CYi*6S8jW2sNA z;{3Y)M%+VY7uf>>-Kk{u19fTdc_rqOJ!`cxmIEl%&wr(<6DM6dpz;pak{4Ou*6+%? z7O-JWC0;)U-aX$sf+_k|*pfJfyrO0oK7Ma+hJ8zi&cEBxc#`Aso}G?%g?ApXx-=|3 zLO6(JIp#8dOBzcIawS(3)ApgsBU?Ei&C5Qd=@oF+K`V^UkSlWQ za&urOqDGn8T;vg(BSZz&X|5tq9sWa%Ro%uyn-sl4(lED%Y~*>#>;M6ImefW_CX0ki za~Z=(&`)O+mEpmdW$6S4EJ*L8i1RvR#>Ex5_o0?pkK}jo6Brj9`;M*S>m|}i8KGRr zcB2g=G-@ETnZmT_oI^MrdZ}61mom|fpsW%r;$p89_4p*YBY#}?dxmaY!*?S|QsVD^ zDdh;WK;O31@Dm>63+_Xjtp>~5jU3hn!H)}OB3>AIT;1jh({_KO8S2s2q!Ak8YTz)J zd>(v-$x#YOVjhp33h(fA;Td7B5_J+vuFeqD^UxZ!Jhe;7$FkV#a1nMx3MLK3-mRZve9pm~uQ}&h;8OO!|i)q_#aA@o+iZi+* z1XBU|5?PCaodMq!z^`h-a#a-c)m0|b2xQS4+;9~x0~jvR8=o*U$S1>C1Ab2JzMi(f z+1x$TucUR7FQ}xjGQNEJDB)oQhVXL$(kKyjGf2m8bz!N#Am!Lrklc$zMwH{-XtOEO ziOekv+De0}H27-Y9F)C?tJ)&_Htmk~7WtQTY1ptnZL2Hxa~Gu=Nxbea-It+h6?%9>R{2H>Q(OHW9sBp>6P8x2<8ev41)j+&W=0-A!?D%s= z&m~LC4`pCir;o1VjW9W*9_o$`c;2Ro$m!fM^a>HVVQhs^ zQ5jP;v|2=wc(vq9>@o{ncGZPV~gNgfo569YO7+8%)h6>e2{WR^VQ5rzD!L zmcnwbp23y&$zYc(|5N>GOsIGaTxs^yl}C15Owr%geEf9Pavep^VE75Ef-{sRx5jlK}eeBn7YIBp?@odzbac!4arp@TP z`1f!NkFd^Wpu3-k;cWbVOMvDp$aa%4oG}<-l0ocdm7)DkjOZbRDRgRbr^0?KRyTG5 zi7`bt7N5aO-|Fs+ukdieqCVZM%$D_{FUykJs?^eOiu}z+K;ksiq(Z4-EaC~Si7x!F zz8_@n;PmL+m&8A!|HMp7CbzOhP!S@v%7KU^-Oze$K`5G76Q;uP#yzl2f^If-6x ze1dfP9me4J;j{*9U@OG}WO(Rd7OVQ3!zg~mkBdM*rjhR0c<2ZGZ(I+Vo}uHi2VZ;y z50zrM2o{`t*3dpF$c|KCf$aR#!lHBH9S-zlN3XWlheeP`6 zzu)F)P{A&dk~Ebpxw3xLhu;WW0>mSljsnjREl+g=e6GR81WEN7;{^(tko|gPm9>HA zb*^F%&ow-<<`j)8!A%h1di|?uaKxo9;~2B)bWcdjNKf%|{Z%VpoTcQJxWD2$eWqC; zh6~y$4;keQAQDycS3&@@n>H-+C)Mkp@3K`UJWK z(L~pfPyuxT+=8S85w#T7uLH#K*|Jiht}-y^l+rbfcE%jY!ny+_W=!QPBLsG(c(q_z zAO#^zfYUB+YG*?62Um1!umeHga1+hx4TB)%(TV98-!Zqs}9CEuB* zJaD_q(!fVyzfKeNtrX>BV|bIe_Y_b)w2l8OQ5L1&En9*MZi4tjOr;H+O^ymrJCMp z2;tG(3?ip+vXPgi&C&Ly{F3`0M4@&2L4s!z$IE$OWL)X{Or9(!D@XxF>DV~n<^+(; zoMOJn+ql;H>ch0*djn?YemG_u_^`J7T}|dYd3KZiqj}PL?GQa6cb=6*nCbkT4<07; z36ekPfui6#lva2m9Q;6380-M1w4kXbQ>eNuY%zX={_7GfC0ABql7dN! z_*L}+W*{-a^d18aTZ!U^FEDsAeN82TpQ${6@#)u2kCmc0YgKV{LRH-I%c?VOLc6#$ zFdUMfUB*iEG>+GYD(3wrYB!=X7HwS)qL%U9jARN$>;q4JNmx4D=ins-Jg1|8(#dxLfYH=Zw<=GV77e6u7)wR5c4V&A7^yKQ z6(6^SE1i?vlK7H6VUZDmb9Upbb1H?|8YWrP5y#h0IUYl`0n*uL!NTg1qw zcJmGT$v&7uu(PWww)4v@V32bvG3Lxfzx+`@^W_9XSx1x=Wft!orNbs#8pUn4sv%66 z=%Y)Qb6|t2efvN*ZJR3rH|2)&yL{#$V<&^_XGGAeIXr${B;?F?cYy|~rWBk!!z}(d zjUD*h&Sro%_e%_5`7Or#1 zOS6UfTH8K~0i9#VJ#lD56|S^-z4_bKwCH|0AByZBRvoZ1<_!rjDP zvj5sZ^o+Vkrj^bCdrM*YoE){vwQ+2bLHROsb9+EJzbscC*loAFFZLe%ZJ$Q@VyX@0 zyP6>knAl2gAnVpJdzUw=x>U;#?f5Zh--!T!|wg{Ch1{0s+N3}=>pAgM))z9bi_LY_S46&$7RZI2r*jfJVHxIWZV zEkXIllWVA6cF1ssWX8*-JnRmzV{VSN-PjS4!an=VTBZ}aWt@fob|^qYT9a@tQg)G=Fe1-p*N5@ zPl^Tw`M1@uhBdOpCm-hXX~?&lXB1Z$mu=OFP@6T2iEuDcTj>n(X+F%MEE{l#F^-(U zmFs13D)+z9{goCBQm7S|Cg@n~q7^KnWHzeR283b2;}fE!i(KlW_}<7GwN&&KGn9qe z0=^C&|11+UAAW|&hXwPyK5kqP3YVaoRYaQEpF-a6;tr5mG%yl9lE3BuV#uTaK7H70 zGu`rkxWz%SR=6w+_XPu{?ayNwg|p6>$n7T5F(=eO65C9o5@3tU5|m;)MF$RH3E-hARj|4Rd!9Oq$7eJ;mL%J&>5MMX<}_$(LE z(0aGnzQKV>MbU3hOKHX%hd#FiO&|-c;cslC_I#Ww(_<9!ytTzx`UyZy373fTy!@jf zjhuH-bZ%&c-?A?4yNYq$88vJAQ*dCGF_ZZdh&H=Y5MWU+jt-K^!X-Xv@}X!>`ya}v z*L*UPNw~MDhG=egjL})+b94g=Fr(GYBH|)#p6*x}n~?|UZ6cQogYpbKACot!Tp>@6 zb{Qg_ddAjS4FbD?r7#OR0Fo8(OV|g3VM@maz04*b>`Q^C9hNYp+499ZDs#+Z#f@qO zBEjeF`kKU%A}mr552YgjbIi$Ov`o)|%%G@zS`QefseHCL_4h6}JI`V3%AI_RDPeI~ z@M@M7)BFZ)8&xvSzWgK&#d?*GxL%FD`%j_zk-M$v3nOfkAS@;_vE)_#%ykQRQBDou z_z4QoCd&nXbadpBy*b=C(hYn>S5x%0n+w`3h{+ z`=mC=KiQAEre0xlD(e_TdyB%SiMLem5qs3c#X^)r#UUZMyNK0iRO z$zC*hwSw0&K3gMZZ2vkrK!%oU;qCy;l``E8{7EV2RMZF_sjO1pxjM|7e+GR3-TlSf z$=pTpxA^olhXwT8Z)6k&_@FZUL1dziSaGPga;_v{Yfds}o=JI05?}kneZ%#mMKlhu zrK9~VR1ZWGVKn>#Rz<;lMQL-UaVkmZeG!I{yB4~h^4Dp8ZuaKD%Emb?3(pRbD4=%5 z0U8J9I3g9#Yw|@9wYZ}kmrVoPB#MJ|AgG4HSMU{|kk=Q0Tpjmnw=LdB>z^Fs-!sQ4 zuOB@6=6*t2#IdLIv-S$Qhaa@N?!oaT5+2HpMfz&y_>9fGEDNzs3y251e!cR3X7s3+ z8AS2>2G3XjbI#Txm&O`?_cJK}H>{88UOP<(xL3nis3eZM)`XALA$B#&tCJc_Fd-EE zOrO#R{|F0R1+#^r)3#{|QD1SCgC)@KKEkjc0m#^k**zI5j7a}9Rq<@8%{Wkw%WQ~9fO^T|3F#DmTkY-~9C5gk$$nx1CS3HBJlz1;CrPQuf*F8=0?O@_h7a*M z$4EbRbs|`5mc1S-h4`^PnzPt5iY2Hf2WH4sHl<{S-mPgy6a{#&k(m}Yb~QArm*%&9 zq=izR;wfLZ1tC?F3!+yL%v>dZlX5?-?r1k&lMl*UAi}McG>ob)n$rk+`Zwh9xKu|=;R3ex&>}HnOH8hR9wv{azSp&K zP>wk&D6Kiur6;f$nE97$QBlS;3rGRyO%X|EB^fEEvM4DUU<3m*o=Kit0I@}m*tNZ# zQPQG8nAs_wneUhQH*xYx_NyvIAm0XWHw5~VX>(^iJNV2F*$hWP;$x(6)FTQ$xaBTR z>d`xGxoI zHjy2XTZp?0-XRRTSI?f2fnTpISqts=oU09Q2`2FY6WB1Gg}yO|AGEezy_ zV}hEse+UF+G?l$jn2$!tM#Je4|PLzjOIdHhHLiXNz-H&QBl6?4+&!Lt-PZTAaV z?3xitdE!w&Mna&mEMr){V-!`M0KM!pUdkce8{ZSKQQe8lXEzAfEzvDO2qm*wMF}|a zH&Z8x?tO|DaZJauZ0J|Dz$`?XGzKyUBlaxRIDd674wl5A54^a(WJSO{NZe-nF?CL9 zB%Zb~iILo}qp>D!%zRoC=HFa+m*Hz<^d;u4CqRNBAW?!wf>Ja~lv+PC)oVz;Rs30b zr)g=5KLPee{EirLSZ88LU!pH}ike2qK~7m=UP0DLlDZ`1E`XB)gYqy%r4 zwGuhr@+qJCI6$wFAqFpjDe*uJoOVD6D#0?bz@<)obRW^E zh3X%sQ{|(2hIFARngZHK&pJn0VH)z7zY~~6o6Eyf#}s;Ot;}Zby~iJu31JKv30j(^ z;Ue`|tpi^i%a5$sBDD15Nkuo!9MGWk%U4Ke;;Bo-omFM35i<#y0R7cNdAgb7GJG=? z=HM0jO=<+_Ae(h*z)iw~jNxM%&mVRue1J6h4|}E4P`90P_>YOWiF6eu%_`|BdLdb~ z)Zl6}#=xv#zM~=K8N!el$WqQJVv3iL!|$OZIh5$^N~F)GH;6uI&=vi67;e`J;|!Q3PTxo%`Ceod0tn6n$?n+cFaDM<)BsCtM$ zG1HD6%_mOUW@^59202>p0!*FNowC5OH~tVi$xd&NA$Ly%EhTrO$EL*~A=63tZVFa;+l6YRSXWpfcXvk%58flp5*J{E;!bwNcUuUg^HyEC5eSzn= zR!QXGTpQZ%q86O;%OdN(!Qj#4kk=^gwVr14&y%7*gDQ@KxIT=vhkrHo3Ec32O}Q7? z;t{_d0DgQ6wnIIYa`=GA@ax@>5M8x#L}0}cBneIHSzI|P{UJBy@+|2vTQjmME@ph( zkwI`WW>YC*Bk-g|0AG@Qs+I7F%0jQ(R(jg)%kN_=r1$+i@#*CCD}3iX#?^9bB+q-5 zk@4K7lgZOj?X6!QJ={-3+rh1sW%UA8w?HlMwLw92dOE@BfW2xLTNqRDV>UGuw$x`J zcyU_JqJK*oUEf~lSB9zZFO@X1q)K}xjXY9H!G*72CuUEXUz~Eyt zExE7DdvXi}*zRz%18pFPXy4eVcbj_ECd_XMW-nM-dmlxQ}hH zEh+jeyiisslsEzb8$f@iFSDHYQqadu|CRlN4gC`7<|knV1IsXo(wwVH=+DS<`)DCr zNc2<9##)m;r(77edyynF^yqyjrapR(A6!b<~$-&K| z4GJ%d=Dho!a^ad?6Cn6jc#5ARt`|O!qkO|9Es{t>we4j_VxijAZ}v>gue-jT_#26R zyX#WF@z1-i$NYK7isa4o4NCJHbvxZBqnsp0ChDf#q13!N0usq_qte97M@aoxnAneq z`uJQ-X0`Y$k1wD1A8S<+c8@fo>iQ8@Y*!~7MicSLdf#hyC5h7yneK|3QI>DpepzI8 zBeYncc2I@t_Sac+Tsqj)k~{-vXVR5VGb=~<$b=zaf$hhmC7ILLQGz3C77q~it69P^ zHlQ&9OBTh^h0ij=0NP}0P2pK&e-LOYDRoRUp-#PWcJ4TtBVQ)8a5p(&>_vCxw8YhR zis;@Bu0VWE=4~!VF%0<>S4J`oi5HPQuYjPCspxy|#q>?=`LG&)-5v)xEcF!rBHf6+ zJxUSWU-K&2uBz2wWMP<%8VPO4$wXFyGRkZN#JcaZnJm~Vo)mG8|FUrjHfbn>`isHm zxhE3Nw2X+LePr+xxN6@*2P{(jFWE^cO#}$Esc zW@=-%_-y3F#@z8MZLe~^CTca*TWi*QGrE7sMgK=|3F|O*k$S(3XJ2HD;9`G9z@Aj- zJA)tfK9WpFij1hmyh|db^7eoe!1Q5#Swgt`Ka)}Vk#Xj}KB$D2I71j3MP%9&X9IyTr?f#kYf|@Gv&{?z~&HURGAk@!#lNv&+gcq{Izr0zeZ1CVux6~lUsbD&dXO&{1v@#H;PY*U;wqEnl-cof zjWzNO<5U%5O+@g!QRaltX^aCBhKu6UG?np(nTc{`C}Ej`~>)9sT=+v6KB8$jdZ>=PZ*G8fDbfs z>`2qIo;%M2dHJRva8{bctY<_jt;}uiVxK)$3>Kc)>K*qLl9n2mFM=nV4`5DgX5ULL zUA*8)neE7@q>l!_s2%&}3Tn$YT`;py+C0{{X~nHcOiLE9BMX$f!(sO6-gZ>ARRxyW zsP`W2y}VjMd70acFaMYXIok9!iPsQ(AbadQE$WoOJ#vrkKkAU zmEx@H3=;Y*zwZQGp__tyDCozS_Z6Zk@He8%a_}2_iRcR;re(N+!|GBTrBMHQ>!bo7 zujN(r(G94%%*kAh$s8=eoPSudM1peHiD$IPW+!A!U!Sqo>qRVSpTPhdvCJs7*2g@j zMh<3W&%4KmfjYvR*dBQHAzH!$1pU}p$scNt6sV!m{`HQj`=-s#Q3%-YNI`YS!aX9V2xGmRJ3EZ`_YQ_#m`c-ilAiV$SDThJ@I-Ko(r9_|0AX@#b% zm6t7s zLikUlttV1~Qh`zm3}g+OFp7rTf-x(`kJldx(uW=r^+1ki)x}e|K{)GzI8>=H9csaJ z;VI;Mm7~5O04Yjr*zX7RRPBMn51Hn<`{(@lz1TP4_N71{P1B09*Y0Ga?W+cMFsw$? zc!mH13w|cuS!#<^z79)J%l!dFFxs>Ov|Xq}O^vgJ zlJ&-7ubebAjw^btOuAG7c)*s{+yo#{ zjHL0Iy{AMQK)WdSl&;2YtU9Gt2_FoZxi<#;D#3*4 zr%9(4w~~Y$m14AHJ|k~X>R<~pyPbT?pqL~&gY8oURATP;2-ry`GJyngOwb@5V$%=L zwdrOZP(hgU=mm3X&hX-^9KI6`vW^pW=HF*mzV^j`YhKgZ)(9iy>g(=tkYH?RmbN=5 z0>QkGP!}Rjo8}tTu2BF35dq=OqauR^|56c3g)xDt{A2vq(Vyw=pBB2t?@WGNQO)_= zkIseH-O*g>UqkrIEtMkpfV%uj4_>GH%&yn}r{bhHukp92-Hzw-Mh$@(4epb8_uMuR z6xu}nM&Gqh7Sk2H7ke`y{aN_uhEx0X|7!-~jkTv-e0{qA#mVLU5PbN_fcK}g;O0*^ zn4R_an-nr$*Q!Z2;eTpY|L%{!_x-hBWhws1xMu!N^J>2fbD(Kl_b%sJZF|6Ig)R^_KviEyFdTSg}?NxjG zp**EH{}Gv-Dhqmna(d~@5pc`}Bp6U{z7!7Z2KcWAVgzri!dIq@vh84YIuNoE!&+}@ zx{UYGVl$kY^iXVgT3f64`{80U_7kzuSPCSw>!+PG*f`N2;M7(+z|G?ZAl=_O(f*5Z zrr?vV7eU2bJD8ap5^YeohRM9+mQ+Tew=*v0f;$Q|nJGaG#Nu_*PC zh^QKj<1qj@N5vbG=NLJaNS~87nivtMeaF^YCn<&QwvN&od5j>g29wWPf$p@|Z$q=f zSSQ4BGu)2>*-EOCDJLoh&srZ+y1~Uz1M7i(g{1+-=3aN6un@ZF}huueKyB!^KU&p61ue5dcqm&5MW4%{?e zpw^M2YUxT!vMTCT{hKx?*uV6>s;fl2UvK?0HJP1QUNdy5)> zPCCNTxD57aqEi=3U~T2Iu4Q?uHgcQ&|G4kDSy@pz~k4L0{^Enqo(eNpJ!4^2GutM~7 zSMa=EDdhoMG^3BR=)-7ZT+_l7|eh&xDIwdH|P3>V#^Q|fdhT#JhcSFAuiMOT~D=WJpSZxp+7%%cHFO6 zLe^_lQ;BjB86{sIES$`UYT`UxP<0G9~+F{+6Sl_^z7nID5mPOie5;u(g zJ789YLktc|h`b}{1xQmU?muM4y5ZezMORey1E*WO40+?;(|>@p_q=-VsgO-Y4r_=w zv!NWk?|e*IiTadpQoB5rv1#_)-w(oQK<=wAuJdJi6%F2*zp3IJgh%Kcp&tXrlFdv9 z8MvcEZWO^z_wew`z7@{6@PRerxYRm08^y)^$u_&)tK;lWT=bWa8YwhqQNmF7Ozqf+ z4 z1H<-TL!C4vwIBkRH{eJS zZHHqC;}Wbv+d7klwHdgnn&n#y!S)+&2np(HjQUI1UoX=!D?6-cC!It|>*6%?A7TmG znxn&*BQ?6Zia9%4(BsWle@s`cH*y!0qkD>Y^HeyCHrs4=dpHsyTW;vfuK4iPx)zgKMcQuJ53K?C|4j_ESyDz zdi;=cWlNU_YZTa!G9kyh&$sT)=l)6%0GOW2x?s`~zJEW|9$+?=gAH1doJH`pZ60%m z0*F<0rUuPW1}|p59W}AIN5j>$jOg4g0_$S{6fbe5=AzZ=>`^@CB3=u)epc#V(V z293sLkF#?~A-xVDHiBvD0X5j=8x{+&_#@+7I0#zseiHwk@&$lxk2ixzajM{k-b_yU zY;0UKh>vZ}u+bin7sqi{NprLSJ|`?RxQtzt3!R(-Ya7QTVQ-TkOLNp3+g2f8c4Zy{ zp>Xluar?k{rsx#%>i591Lr}1vZApdg)kkR9S4o6c8pjTrxcxVfj4nc5>Ciyudl&m0 z5itbmYDQH&MR1z=B=#RzEf7)g!8^|&!gEc7mu!kP ziR-~n`a%|P=*a+SctP97C6L5n+*2nKCri)@_8XOEe(!ERL*0XJUizIPOU+2=y&Y1~ zvUw+xQx&8J&Z;0aLNo%9!+f}$Z9FV}=eJ6Z*ZBENeH`&7QO?9&#OQJJC>~3jwC`_| z{GuSzPL4Ly9HR@J1w*k3QMk$(Mgzf1Le(|U*b9H)j~%f(lEqQg#ahof zF)`dIs3$HzZWJ|a=~;zhsjTqdfWV8a*Bby1RF%rEU&Nek6Tp{_GZ&R--c<2cX$5d3 zj^$@EbB^7G|K?tJ^jwEjU#FsZio7GpQCr{J#9nceTyfHEF+J=G0cUdCqfaP|gyLo? z7*Xsz<1glOJrf%>MePbUOh_wIKMvxr3XUJs(;>vTF~RsG%Q?}cZyW$~K%0g(0?(hr zv@l1N@p&*_#P?@VuFbT}&SsPmd;>X1Gnx~HT$AP#HPSQH(Btt`+PC|48hD&}ohA1MP=#q*Te zd*RDU;rp-^SSZ~kiZy?mULaPfax&cnmug8(y#OXZ4WbG9RoCMCl{2k)u(;4#Q4iXH zunIu`s;-`Zg(1!;uHx73V)Ll@xWkgq$KAV%fQ{YLfEbRw;x>>xl1D;%^0a0Ca`9O8aoK+FzLuQ7Z?;iT}{A} zEd>x`4j{^tv3(u>x1o8dijb=W@#^>vwNS|u3KQ~XBkPT0n0P8SY6jaDY_!EOGUS@k zczfE)89w#Z1+^FRF0P93l8=#22EWpwPKiRU$K4MT`|e@-J?3+i`}mdzoSr`&NS=GS zUV)Rz3}}Emg8-e2Rp6$uEkyupW(w|>D6ecq`s5j$w}{E(M_gpY1HyT$=ze6&em{#IenFQNxlWzxV7` zhZ%w&EUGn4xvQ2jnG2Ci_fu@HQ#0=5pk>N`E4=wF7@}|AAad|}u2ek09_%cd-+P=P z!^aFzlcej33>s~r{5&^z13m%<81!`zkucJ(aTfOt(&=zqC{x5>EkM!FEaj}abI(Js z#Ux~5cpkqi2}p96%BMf#CFL_7C4I^)=38DMN`;g@5u8EkZZ6-M*V(2yeRjJ7hro|y z@y#?VC0bF&%z9a%hzcU@rb+LfvhBvai5v&8JT*WRALeqaRH((?#Z+uEF++W+4Y9_B zIFGSD6v7J`h`VhSH9+%+ao!;3(9@8?EdiNAnr|9*25kpMKQ|F76cv2NQvHa&0aD&U zL{TTrkiU6h>-$~2yT2V~|EK0M|GPYN=f6qE{x5|89iE*OzV@$2Mim33iP_q5T5X|`En%y_H z6MvG5zS^4k_y{B$WSb}FY(XO-x?Ub>3|FwneH%7(ZR>bnpB&0K2WgHw?brG~x&B(+ ze!5+@k;4Qg!5P40UdOB>^E zD9Mi&NcN=rMK`3O_D#apN@3+LJ+ZR_-})gwGjmPD)_;1;FH|I_4;U$)Lc#>VU|$U( zQz)XP%-C&OA@Os$Q(%q%sNK#8xY~+`7Tx;}9`T9w|!xU&2c9}1ZtcjR6Fc?6LqXjMJJCUy@2r)wKiCXURSHD2x;KtiN! zQc?lxZZP23b_fReyMTVMR(?+|ORFXv!u%lZ^N2K*?QQH1s6 zsT6ir$Y03mZ~}sZ6;D{jUCUwa*pSoPr$Z8eU=eTjI~AUuh^RCfZW7t=FTZ|v4gSR0 zs|5z5eGXD??E&c%cHk-R^A5gHxEZagj%#9_ot|!Y*W|#Vu8lMy0Lw2LqISL;h@j_&@ScFz2t?R1Od8d7UjgsPqCTuY-v zC)Gr4B{gWTr3*ST4Q*Y@w1O&$CDazTMUd=9l>gzOUyw&*z-yIp=)OJI1uY<7s#-uDq<;=00HDHR4$F=HN

mS(?v5X{%=fXEKAZ6GAFWx#6Pe1)y;8I^BIbz&`tLn~Fa7FUesjw1{WQT ze%vHW!Z@(IfmUbAMt`)?fdj_;Crw?@rMR)a9d`zXB<`2=HJW*F#J96?@XQ0*edp0P zuU_pO3Pam3T3-W6a-s|}8Q*vR5}s-1V?Vs0E^n7In3o=Od_6lkym}smv21&>MWw|E zxRTEId4WJ~Z?@e&x6U_U(ADsLqY|I?^dmD=F9(C|lg=pwz_fYi)ne|7vYnqf{W+^# zbdU$Kfmz(OkbBMrc$(IX_+mN|k)cQp{JTxzQdLU~=X6Bps5JHC3~Sht4@qx`)t-5K z&&%2vr;VMmlurPQ7Ek$&YTUKVwgQ((c>4wGo1jXzX_F7b!Km}70$j+D$U2(U@K0bW zXUeBho$c$?DOF2Lg<}qh*RSkv;=R65x5LjyDowgiqA^-P0!)!XMf>?X6~fO_AfA--PU(rAsCJxgAl4Q3gDo)sE=7dF0R8zNm`F*XW2V9Ol;p| zK=u{0g^65SViFq=oNJ2KbOoD=)`w!oRyZsPeK2a|pmxae z+auT1wC@QDjJB6HtX&h-j?lMv$LJ6_t z4yR7XpqcY&kF|=iZiq0qz$l3lR!QS-E*+53r+UZYP1e2f;GpPF7LX8!D8JpdMw-X$ zkj?JeJLCK(R1yUURDH31UlNk3|0AQGFmz0}x$T}R6j>VowM&%cw4I~d(0fJpxg^Dy z<^&=?A`g&}-eUl2^!AuL#6C; zusZ1^=Y8TO|GV_Ys;}^$s55k`r6zIwhrWaWo<~+?P1+0yh^_n&y)P|7es$Qbl{Y)< zuGXfXC>`~?hW_z-R7oFG}tr_e*4GeajN4^DOa*?;93Iu>1h4N)x&qux#x;XOL5E zh&M%=;GiE4!|_I?a!>y({1S*T62lJor)={IN|yM4!wiu7QYPwO6=`{Pl#b)dnoYLz z+i&;L#hRDXWFfoU6MMw#Qu6YL&9*(sh1MC<+>|Bq%x#x)H(SY2^N{NO5b2WB#HBq@Tir2gXe%C3jL{GnU%0L~+{Zto z07#t}2Ri_x7M;+#bW}ezKM4!3fRHo_@OjBBJII)~)%$fJ8Z0>C=nKpB9lVlTfkjLb zbvxbp%e?R*eyPY)E122#Vb~Fl-Kl27GQ$c9p(44r zSYBWNnS@-dhs{6Z)hxdZBe>NM>8s(U~3`{zD-hIAO#xs?vN*} z*d=nC8}B>rpYIfNJ$Sv>CH?7LFMmy%X&gd6?L1B;)EAO_(SPhi+r=dXVflq=&}*?m zZ{jn9-kklM98{E?4ODM3K>y<*GTy3=!`ZEzCo28GW~#Di z@L_MLw^qL@x2ad*f#*Oy{mcbe(Ex>ZtozvmU=KNBNoE-)!?A(4Q?s*Q!M`c8E}$f3 zi*%>kG8=zbCS#3DOnGZMnQR%(M5kjLWT0Ht=Xbx0iflFv{)UQGXjvOx#Ce7x50Xd) zIO)Hjs+GG8Zhs|8p3PL`;#QxZQU zoGDkoRWTeC(jN#OTLLZ-6@gT|`zcp}(rk=I(KD@9f$pYFuOD>VXiI$|eA*|-i5oz; za-Eu`FmG{1umMIQd(}xl_Er!0LlAg~VPY$xh9xyZ-2 zu(uyx#>I;;fMG4hvvqd|+`?LYQYMH`gO~B2M@AB=W{)Szj=1B}RXeN_>V-FqaM+ie zePG0E+H+_a`B&=6L@=@6aRcaYSqeXN;e9oB3_gpF{P*P3|NA`y;FSV3u&bW~i2nJ3 z4$VJp@Wm{P}{T$|Dy%JStb* zH~zTgWp_NhE&IC)ceLG6OUKW#+Bzq~dlRcQ17krX?gn;tq-IPa(IRKqP30V^Ty1>0sXJnvLB5_0@3s&PM-*|Le<-v>nOA`G0;LiEtv4qyNvZ zwbp2?>;L18Jsre8UbA~ z@#gav0t4>7<;P_6@h(;VPB~mE?wvTZb*HPRhq6bnPuC_+M*X}tyCrK@mfRP= zlw0;BWh-B^>{_dp5>Lk~cwFz#r}gpO`%0JJD~w@w==vM0*lV6!R_29{Qw?I`g#KK} z_!8UUjW{i}{ngXsIyxS%B|Sm?604?Q%IekHYCJx*d%Tw^T%RO4DZSxV4KQ)iY=~^0 zZVq#(JKm|;9Y2I`0kwN7Z309ecv9T`gOep4P@4DV&X>K?dT?|5bWipq%5)UVhd7o! zesHR_UN8J|dvVZUQTFu6W!*`x{_$ML+tYQ~lh)~10di-`)zjqy;kSmb&jyVKKR+sl z-@PXzB**s&F8BLP9{!wPvvtN8+n&?qy5sWGqtsKE z^*eGVlcz_rr@g0he*4Do&KoaJ7f%oBV$s5>dlM(+r^|k)@P7Z?Ro%(p=>hJgxPK;x zKUoLYNx`~GH^J*q@*yaxiQ%8=aUzUfsGzQ|s-UWVv3o3FIXo5u21w9OrPzh#%&400RPeu1Nc|DPLm4x7bn zM$Td`5tFqe(GTEQso&l+LexNHTXw%^@!gy9J0&~M;@anXxIBnK(#<~#^4OeTF7CZW zmCPt=-nKj8cbSgcmJ1&8HvHq~uom_)Sl4m*mP=>zSl9@`y*E+aBIa~E-_OIS&e!KH zzm9Fj;cA`V>Ua&r$fnfc-`xBZua(MT%kICwDmP_M)}uyBZJuONl~J`L>8`}0dv3tn zm;bxO*VFsp_V*RwY!e1_AJuHhp6>T5MKC&b9xj((MzBn%_#JN#!fp8t<{2e#2X)`t z?7H^wvmPay^MAa{#08As{v7&Rj}*sdeO8+uuz zwS3rO^7*wTm065Poq_d6KVk5{>)0vu@9nDbiosIc!Yu>7Nhj9zSKBdU1C-|iCf;VY zokDmWlAz6C-k5b(^3Sw8ugdI3YmawEog^BKo{#C2+mFEl8w9~)CHtN1(^03RYCMhM zxz3WyIDS*4OMX7?(fwZh#^UE<{c`)8Prvgfa73A=ddw$Cj=N{VIbq~}04I5*#Mp0yMLe*I|@IP#t>|f03PI=v!=i(RHh1PmM6ScZ|=As?X4$$kx{U6ILXBApUvL|~PVZtLWy*KCfVK0B?8~4V+&syOlxNcDu9NhD2?~1oi zHhX3BQ8fo_ubE9#A&Q=vS3sPR-`wh}JK4^MMEY#+cy}Vzwg2w7pl_MV)rQlrFZ;HA z?Ei^ffe;k1fQWz1;`UA^f=SY{4Rf?N6V(_*HskO>YAPV%+LL?P#&xxgXq4w&v)ZE# zVei;{t}7!rzh zSVV6~X8~s#Xx$gMRo^GULGVUUNakZV?m2y&xavIH2H^rZpzuNJ zt&5L_LoV@%;eipDMUTkMTEb1TYM$uk>g3X*MxKU{`W)_%A$-Q34N5N!<{SUW z(a9uhd`cu!?xbwg{>>YQs2fwidsB^zEmirLy-J?!EDeW?HTo@J(6nzguKy2t*T6Aq z7qZ1ZWLT8%{v7r4$>FMBkM!@)`lUHi#*}&!70dgPH&z_ml5ZXS$;66e-_I#h|E0*VzQ4`j!3@o9OCQs%tWPgjaYf_=@P`?aF?QLdOQgnY z_XJk2=tfPo>q5iXRYzutUxGae2#?-a%a zGT&3%A2~k==?wddERb#^I+dt{{okpB?y5Kce#(>@-|V>&CBoflk6l-?W4i9jyW7d5 zWo`5GbBHK%@_Ee`{&{A{Urw#bz6T4xQ~geGN#$>LmhaX#<;&h{FG(R()VKfs@K~@P zt75R@o5E~|y+-h7y8aK(S@sp_(gP*uU_Q~ozG{J+HI`>qgGcqfcGC8s@oMd%{Yr^x zbLjAH|0VAGlbGSj`d8ob7g3#u|~=&MI|1M!8P~Dq6$=y!d}T zwU(aN3~Epc*7|)8w)UsP5S$z3GEV_D?vKI-Td=wxY%M%VenxxQ9Wd~XSxjpa-$d5dH8eykDaXeFEVl z&Kh@l%@@kU0ZsSMz_$Vq^H4P-*?^B7j?(2DXs-ZVG|O7+ACkWsPt`wBK0HY`vPTTZ`DX1Apwk;G}J z<4#yQBUehZ_Kq^^ftESRG1oU*Gp$kiP$e73YrJIFn=Xl}c(2y%(%a58!rh&8BI;Dk zM=E#gj+Y&}6D5ry^^FbG`W&wH?~Xk;&fYbvUi(r$-cRo#H3UdZwx8!gN>}yMqq{uG zAAkt#nL&sYS2w{Mj&nrGI74XK{Hj>bPz>9ehQ($Uvr<<|-kk5ADfd`7N5&|#{aq`D zeq{?7)eX24GXJl-rMlaz6BAQYuP={(xO=HzmGwZrCg}(uNSY&S3d7^=u+U-7j-7re z03C4teAepEw|>D#k&Qw6JzQ%f&(%J^TD2%lc5*mz>bq3f`u^j@aRsM|3joXULM`_N z*#6L4Yz$Kuf=Lqb-8Mqgl0u823ewN>{bySu)Gm9>#*|O^Rs*Kmq1Jk}misW@-sWq> zLS{=h4w?oA*{xvCUu4$HREmIe_=I}-Z9o{p_m4oo8ub!9w)O-RfSH^Cmhk_=V<=Dc zG8F!{26!QBp%9q>E@&2UY%i8Orl+zyN%~sS)hW$fT_G_A@r`!e+j4e3dXlVYmEzcN z!8N=QAmQ(=fd{RIip`flm;A_mSnPlQF(?1dcdZ9=y)K*KEH@+$7oOd&DSp!1v*FlN zS#Af#FuCpr>oVsPqm-K(%uqO+7IRc=qHe5Im^20{B5Jed1MG(*Go=9#jnks(z%QVWR==BR2nyY)L7tlJ&5 zgy;MhlK6YJx+Sp|+_6caXDnX)dX2$PV6qGDbg^?w3U%#^tq{7J<3hinuDupy%iljz zA(O_y_{M_QsZ86pXB7iD^pdj-R_yJiS4V)3wwFiIkvLlC6hS&x{rrKcPvSpGrz z+{t?DM zh&@_+rZL0Ct*l;xoBd&Qh@M-$IHvj$yCv~x)4;H8C%D2c_{(~~%kLgsd8V*r*5r^6 zB4vw{ZUm^d2j4^MsS+y%-^PPzxPYlz4XL3HAZBs_*t##!q1^9uKbi`d`x$X_r zr|xKjgpnt&C=tK2CGx}1Gg<3)03m^o0!0yo+KP)is{HDes#`t>3PFYhjgidKvEH)4 z7@5SMx(=vHe%arZy>WW5nE!1+`ghVmg_D_q%D_ie11LL17M-+0`i4%;G(X!R+3`20 z4+0QOEXV#%@nTPG!oda0WHD<^z#Z?!ZMeT>+vL}{^`+erRn~ZVS;SPK>?~08Cmq^@ zkk^>VeaRJUp7f^p{Lp!r{OsqW_um1?;E>`$X4I`5JtM3B5ABL{MjwXeyA!Joqk!3M z!mZ-2nS1jTr;vusnZ96+3> z!a4I%Et$WV(6645PG+NxBYql4sO4~2J`j6FiQpeMfG-YbP^@n+JCFx);wyFoisz-O zKh!%K|K+ng7L)b3P#ncL73c05ee(WHapobLn!2hw!>!8MSfnSQQ_!LIauubHw+3d? z6CYoX9?H&22}M(k0rFRyZOXoIiMzyZRAPvnBwb6|B22DpaBqF4c)=a2!Dj-k7oVr+ zT^=vdSmk8~KT`fMNVnpqpDc^>&qDs_Cul)--*P=%c z)oP$V$5ashn*$oLC02ij3TK)^F3kjWklv~MJ_x*;>#JhIpu4lG8?7yV8-Y0TK>g`wfNANe4t7_g{&1eVl%sf-ng7m|19ttK(C9`p=W>stHVb=v)=8 zmNN2%M?oM(45$b*7&Iz}p~?PNeV(_$dr3I5wg6%tNY7ETo2zTr^-iQ2LwB<-;_4Tj+<2pFTPu(q?i1g5yL_JOpUO(&wQ$+*C?@IpmCqjta0dTv8`MmIFMiC+RvY459g zW)p89MdY$h)7y4u``)dkf<{A32Auz!a2DkBCLLcmdDNTQU|la<$pg|iBQljrHumA} zn@E5iAkDIP{z-4?4mNoOmEj$qbOiqwKBna!OJg|2*u`iz`5aJp41}wfims3ykRh3& z$PeYibw3DIksN3S@4pA-vtS}Ozc%##-=AM{^WaF+>a-Xmok!LyD7q|Hg2%0H0jHAl#fYz`Derc!rW?G~Y&Y!rKM(ifjXO)~pj= zTs(-`K12xZFv!(&5waD;0k9a?V+BQ&j^HhY{Fqh35rq@LyUfsNNo`qA}j)83mE{^C|^wK^CfEBG75K$vvFkoiN z@QhbkEBOF$!w-vHwkkct>FA01(FI;CrO;GcFndaZW552GcIVnuBV};JSK-V+)Q`j6 zx>J^rcH6|qAy2yAnVfE)t7N-tYa7Lp;TX9xnebSGDdA#@`*g^ARrJ#rLQE!4k0g%7 zRsT`zfCkX|wIK&2h4f3VRIih;KL1k8ML*$tJ9QbDE_Io_=4a4FRHCaw5hZ7l@q(47 zCxs#QZz!{VwnN-W<7BZBBD|3s7F@SdwJ6t; z9=O-e{`|Q9{NJc-M5@#Py4;kBc_8E(=S9x=H7Ud-_0tO626R?#gQ%1?t+A*u_| zAEg!Iw}AdgmtYCMy*$s_R;d^S{4d2N^DBLU;|tEPcT_$J?P9kAzJWNSmLOfS!N;He z9J0K{L^JzUKCp$6{>-G4z4-pg$@-Fn&2 zup^X4px~05c!-jy#Jv-Sx&Dvqtz^O?${%BABKX{do-r*cpHva+bYxOYOSSC)B;fH@ zy>z0HpYa_zmh){GLha2=v#smXU#_=lJ05%RN*k!~B13K6+o#~D2$7cR;gpb&)T6Ws zx8;%Sw%9kO7Z%)SS|VIh9~bTan^}!S+OM$7Cv>BBfQjJ>a)pSIun^X*KMrw4#K zOq%^_;1twp`gK-QQl@AFraS-zu>6l7*M~ir4zm}DoaW6iit>4U8pta56VFW^{yFEr*O*>S|uHvnjeM z@4)f=;_x9)s<-AjX4U@YM+NyRQ~>Qz7sjbN-wFWxgnWSKRbPo>8@K zo*{#{*QM&P;~>Qev#6W4{1@%6NsuzERQ_gV>aB2^dHVg6Mxm*q!TVx;D7^(h;St8Q zzfABfB(3`Jl*_HY$yqmN*PYzs=Km0YzWDZj*fnWJX`chv#8hrvigY7-ID9eU1F9*t z{B0;sgf<#NrUH&TQwaq3bDTU{FYk;x?**~WJ*dO%-&6$HE?w5pko8v);-pL9a&*7e zq4e&xK zBh(=(q}dd2j!hLY z3zG4FuYLiI^t_AHA*SuAwJA*Ro^4}GiXxs?k{JY*wGN2cpNk}Bn~y(y5=3NBPzCdl_<}thQK|RniS8!*?TPMk~Tl@FMpEW?Ejv_&8Ivi z%zWMT(-)G_5nsVJCI@Vcu)?sRQ%EY0#ZVkNUKU#t(PuAa(h!iFS9R~l2t{4+PrM#O zgc#FUE3Ii%+;nUhqPF7GJI#M8d9J55`(0c8XwdLN4-4sp^v$=4DT?mr^L^+-8uU8- zZZmMGvCu)XZL5fQr~zgui(m{}75OCDuN)qIYl=KQ06qSwfNXXBV^Lq^aACZo_AmO7 z^X}H0rqQ6m(?r=a_2>>hDyp^G(@TF9#(nMKa$# zOaZZ1LuDSbj|$*xrmlmyCCbg-Q5`gN zi4b+E0gg7YB!>)J`4AOT);t*t!nc(B9yv6v0^}NZYFiUyQba8}0GwtE#-IvKn;~vW zrL-uSi5)q^1*8l(kKk>SA%!>We=hFncov26v`%Lv=Gp9jXRXFh?~I)$0%kZ$==)6#){42Ab#@a+$Rk)My(#gdKvT#Thxu_z#x_Dg5!e za*f#AVz*^|vDbrZf{7g$=za^F5fNf~A9>o^gDoNBVC|rp%s5ZZ%4}@%b_zqIIIZQb zUF$5yF^GI68Z$XB}uLLR!M*eRb+O?J6tfKk%^ep^+5N+}bc*2_5IZwWW= zWD!8a@r@5qAyc&;sTooSTQ(f|gfa?rFbhZ(5+QcCr$Qt|@TZJ?RtfJDvw!G*EQ;}L znDRM2DKX#~wV|YlF9aqV{Yb>yznI_MiF7D^*K1xIkPWCoEWo4}nc{U&0uVg&C4hWDsT(h3mx9wFEB@`2fqUf7H z9et4#MT})VNS(Apr$Vo(#JMwGsPOWa?D(~QnSznUAGujv!D>RVdx6@yy34@zQlY!` z0{^Ue=XU>C)w4^8oR-ZF4Rk1x@wgX>{ifPK(i_x4i7TwoNaOlrdraAUe+lxz!=%-6 z2cH;egz96shlR?z^6-ps?1aE;EVN&3@+y_;9O>%IEKt|ghF!&$u$w(vbe08nUku9a0gJmy zCb<9q}xhj1v3~syF=nF4xe&lydlh6@TTfB;) zH1swRhay6-3m~0HGu8>r0IpaW3wP_1HnveF-F(y-5K1bPK9b$#D;o=f{G=OOa&r>Y zllsan5kDqrwm9}}Yn}la{k{|Gtb3qzd|^4 zAXviIpu-WIdq&$K#LfQVKWKaj55aPZ=%$&upUznbuSu|)a&OM&1%iYy7XBPBWYB^{ zPDM031PkQLxV1cn6)d~dh%B^8avQPkXy5K{>%v5!3(P zUE4^sQeOadOL#A#{A;HMJ<$@;RXXV@U`{vZ-R=Qq2nD52Bzp^lqbNqi=}Lv{Tt{5ku0Ox^w+Gh%FFMmQ6sFGdLO*! z6Q0~U9KFO{cknki<)&ALvsxOkt+sNg!|PGhy4fTyb;v0)QG{JZs8$$O>@_p0%J1}K zJx!FXk5Vpr=b6>nTTs5Ad3=3=KZTKBO@U71I`68c#>E=3?i#{fe|y;_LDUE%E!EApPc&d4gQe^~KNb!gv*&dnPs~tk$h&HdryrhNc!CpT~F2WV9Z;h5rDe zM}eHj+--C($T*HsB|~&eoUe@e=AH@8i71(k;A{nTtW6$T7{4DXH|Q7-UK_N$T(8I2 zI5~JTha6Kc+5+p6OVRwnNQ+`jw&yMXb7H40XdvS(*RJ`U3Uys@7gQTY*)eSm8Cy9- zG@ErTp`-!#e*~-d0iWP9?hEQycr!qPWjCVN1$V-(lG@Hj3zGwN%9)7Iv2xUbHPov( z@QZ8n+?+XpADs*j)92Ru+t{?bW4Vyf_wSCetm~^Mox(6l+B275iYIR3CFiG?aW9a^ zkG$<)+V^lLIKgSAC7s1Vp-{Ey5tV@6ncwc0>f9o6O?FP1pK`J< zT^>^rs>5B*iQ6#EmZ-}Poj765JgpTD-Di&$9{a2jZYVI+6bv6Hj^4g#>br~zd*izw z_@PJPZi8+{8n(pxN9-@You_2xooR;Ywg|i1SE;v^egvXZq?}B>DPQj4T39kF8b3Zi za)Ep$+KSgdfL+IlXPibz%~YtRqy-|YKff>)nNepKfTYM~dl+M+HxRNBL6k zPe6D5hT9T-U|i_(Z%kOl@&uc4=PlE#laBo#?gCRlCh-$M^u9MRGYepAm(zm`ePdYi z<^7^7MN(|>Zz^~0Z8_f4))#a}!!6g7F-e4{{%*g7($AozD5FYX7rc`>>x(x_#h@bj zQi%+4T*qZgVC$YRahDGb>&?>g->(5OszYDAJ?DC9sl zQsn*{OP|D11A+^sD|AVSv%b)tld?QrE}w|((p8DWbCvEt8J#!@!oziI6qF4+GH+_z zzHiMi_X>%r@fYPa^y@qIy3xn%1!)p8}Z0crL@rC!>^cpa%J1TbPN1wT&JafzL}bg+1cq)3;jX1 zT^(BhARb6eGp+SF!b$hpkQvFXx>0KAsuO-F6E`3E%+^V={?N=1N zNJe-D)d>Z02XZD73Qd9!8_V+BA&(Lryc{+j$y;soK5k7C?`V zg!pKmK(AZxh?UMXH9BZ|vFlpz?0rssJapqF9hB;zBOP^9mXwH)4dUh6a;TuZ;d01!Zfe z2Hv=yvtp-9<0JX*f=d4I*ZAZnoV5VhXzPg*{^`%Vr^AWpos*mS@J6kJl|R0ITEk1w zi&b>M+q4+eI7;;nCp$N!$`s`2l0qY_d*Ql*Rm;ywdWI$ywSdJpt%3xq3<;Oir0VI3 z-S*AS&5?64;`?t=HyjHaly&+4x{5x}{Mi3qu;K|8Y7VihF55j0JNd7Did}X9kY4%a zJj`c3)sr8LU2qE7vAXu?vJ7*Yx=|R@!m}^2>@Kg)ksWL={#F;#6imULA_>Bxfssn^ z`Y0;q@!$ED7^PXW70z%i_ylZEpr;~VeR-luCjEO{ATGKf8G5fFfPj_l&KZVITqMkc`HJuZC8?XTPzc*?w9#=}+Q3;{-kG zku*n|cKNa9F_9O{Es-oXr~FUb&MglDSWEkill{(g{pks;`2KVLrm#_w`Q13Y4>7Hg9Zi zvG3Q_Ub(YPADceiL?IOv*l?hN{ww_v*((DvB2!t(*@zEY^bA>YZ<=^tlDwifqFT73 zPi8&q^hJwHLhEftHLt{m9+OCxaF>+s6bgeR)$Hi_PFmVV!KL!BTAv!O{Wq41hEIlZ zMh8<#LnCg7RL?>Cf{!s#!cIR+jfLtL#ZAC&AULEIv{yo5L?0OW$TgHTNbL6eD~6k= zQ?J$pm9;lqQg|~I?nrBq9(bmnRO5<%u(Mq2z2_2|Sbl|Beu;Oo{cP{?H9yR})Rez# zR+NhkJ(#|v*dvgqL)hQu_VPCOn0Ef$iF!XToFfpPT?ob7_;(G=EUDyp*cWdp0w|6>OKSRjzM<{CSrD%T5N*1)Mj z&M1a6CXM6VasaooL}xn7m$Xt^Lf@WULj(&c} zQeXP3uJPv}l0k+Z-kpU9f9T&e;xcMiuE?%n^DrNE)Af&fx8pvUWQ11m8~JA(iS+Xf~jlHVumw zsA9KpD+B>&;~k#3K!4M7YYfzV5ZtBXa0jY4Q8Hg@H^1%{tX}`KN^mwfRiEJe3c&jp z-&29#2(u0@MX^VS#9HM-(7xZO4l*}@d(`w)!Uwwcy*ynOdX1y78uVl?F<;06!B|lS zh$=7iCu0dnw@C>CdP~>S~4-nqQj|rdLB#@XOx9KH!;H z*b5+z!4&}q#|#`WjqX{=Zu;K0-jT4mfL@9-CW(TTs42ElNVsqatDi@ZYZ3L}^X)KN zr}nhKJ63nNe+@#ZwTHxKTOU>pE|)mFi}#$~{?V)Tt~^)qvj}?30Sy+#lR^zvT{uq@ zj2~nR5Eu3kQZ_h+VwJv4i|h^>GUh9Z2`F84N$Mc$6;j&Y>UWC=TW1PrZD2)w0Jtbp zdj1`3`ja|;VV?g)VWw!ci8mh^R!pM_c^S?Zh=2!Ge|AaS^bT+Qy=}aOw-U=UKuW~v z^>r0ia;xdmgA$v;i=&eihI9)rCNc=}?-;|_0JU(a+^pYJAYGA{p?G^K)m-l*C&cynHvChIQ4;Ta2D@>%#jRWffLj7RGPj}6naFF&lvuw@{K z{T7_mR7vvovEI;_3aNrkvQ9P0Hhaf$mV9=Ux0 z*sgyAyv#$~sP{J%2S5)bPKMr&fc>L781VVh4f*$~M0i%ti=>v{pp^EP0;{4kYMDT! z5AMlQW$Hr;;BeT@F(}WYIyo4ut1<^8;SL__i{t3&A1fHzMk|#0)ol&Ju7qo?_Zc3T zS!Igy1&N(Bex;RyC*IqY4K!eqkUq=RY;wQwxSeqTF**eOqP*m@=PzPGJ;kL_{?<%x z;M^9%UH;i|tgIgadT!X5mu1?D;Ow)u@`#99wVT`8-`Gk5Nn-_XtuvXcqX|8ROkO|o z0_io3=i%MLs|q;t=qc!w$sjnl-J8_IfFC_LtMr1rz@?k9EFUiHxX^!pebfD_(|VNO zk-W4r%QI@HyU$>a!r3{wbY4$DZ&)`|iA+h6Ov!P70Ow=C?78mW#<|6_QB?%v zzK3?BB9APPrN3KvPC&j;fle0X#i@X9kj5Fdo`ETqjf;ubG$g~_1c^2{AL(4{`TOsdlU#bzCzeK>Yk?6^h=1cj zq{WmI26mGLYgU3)j2L83h05FsKc|H$c2!L$k` z<^yVdff-KgN6^>WE)E8iv$1~@E;GGV{9sU>{-^Js^w-!dA`xoFhWX*&<~!#?GUE10 zks&YCg=&@N)|*LA=2{E*j~P!D8h#g-ZhR6ZA}Z93rmD<#&*49(LCKXPGK8O5=of&< z)3|aWj82_tpXt^cwz|JLxfBC@SxHnAMHw>G3(ovM0~ud@#!WjcH>vv_j!wiyZRrR# z^NLLU;j8^TX&KQ17J%82U*vT69y5*4L10;dEibDkO5F%h*GN-fwUlR3ESPe-Qe`>n5}dhw{T$E9Z5<&uy0aK_rn}y} zzB3V$E6}^&c`;Xa{3B&~vyCIl^)2C~Bbaw{g86=ix0%iTi4ks+JW2{L{<{obdh-J7 zDbInNs)~q)mdCHnZ0~>foK9<vPNU~>+3|4UtA{s2pwZj>u4x7h>nrOpF4IA<{x_T2ZsxBzc}&ZB;@k7q z7h(>E^6MR!zX+O0=ap+>)lHv&%-)V9M14`z(L|I&>;*_E9r5A*G} zOJwe5r=kUx>X%htVlql`wjm&n9ORfUoh|%WPvKRre}|$T5h1$yDE*r*n^N_E@|d}N zX(N{i16riWdsrK@DMQ{X-<)>1$ftrSrxzc^F#A(IcPWmU0xz#(w>v?EvuTnL+b1%j z4CsW!L=5VLU3K%=GcO4=p1qU5Zq5D|ow|SLiR}k!^w3%8X-5ugkX~5%yujnP-VEuY zyJv2E{|NjcX|iq?7w1lP$*~}9XQld9X@Ln^!<+7orq-vC7bDE2sluFtNS6UmqdjMxs*o%tCKLjY6OZTYq(Xe`BX>Kcp^Tq3?C-!gcuqKECT{5-S!4w;Lv zoqe9MGhB%2lSd1xd+;i-FK=~M4G)vc!)-X>D+~grxf3L6??z+b(b02l%mx2coLno#|zK#%z_MCoskmb|>?7%>{&=q*Dd- zcKKZ6@S}Rqd{z6!+nj zQ82WKCOGo=ot!l{lrY>_nIy|zfZtc7D2{G|&Q&08?r?|x=Ce=u!w+xv-Z~U4UDme| zsGXbtBogzDXohZBq6K6MBFg=dq#^xR+1-^W{oOf{a8KOiAbks*$QtPJD|HQbA&sAp zJtHnm7$&zZ`Dkl~u-h>!o{IlMEAaA5^VmT@3`S>0UcdJPyzikFxB=%INeXWkuWt6w zZ$Swf(7*Kkqbd{H9Hk$no$e;ja@k|(f+1Jb@-<&Si+COWD7O){&lr$At%V#`mvlh` zJJTew)gNF49Pf*{O)ZFg!>xV{e`F{*na!_!C<{R=*}Nm}#Zi~%?VvQ^=Zet3at&M6 znf^`xw_k>@$$lPVZOHb5MtbxU`>RQ+FQV#6dTn0I4>eZG%EjT#{WA(|2BTEFUUD~X zxTsi!Xw3`N>VI{hf5F9ph^bU zWHS6(kNe!)hqEUA{==e(oLdfnm+^B3IB%_TVlPB39WIk5&S3VZTzaIHpO?f-yeV>B z=-*i$Wx9Jtbmd(qwnXMbn%cLAq?JzJ?b-j#e~7aArRNbx0b{&e}GFS-_m z^w}I|R7`WbVU%qa7{K^A8nx)@n1>eA#I?m8+KNc`y z*!@9(>mf-8>VjvLdERpYjNay{so9<`STQ+;^$IGcX+mL=eM=OhBeAI|iG?mv@5j3% zuzj|j5dzA&)PWv^vK=;~WkU9v$fKc;7M<~x-f>|Q+x_nYoTyQtRpnQlvuobXI|vpq z%3Xb@NK9iBC2~c0I0iMcH`?fmGykkR$^T?I8ZR)BpUKx5;f|7EVmE_5OrB%jdU)j* zu+{ZpM+VgUj@5yzsM_3bDd`B9U-j9WrQ}d*il;^CPkn4Ona33W1VSRNpXg!DaVfRu zz3Ji0xGrSprQO2U=%4f~gB&FCY;N49?DG~jV7S47BWw1M=%TNJNQz{?$ z?gtPa+F{UTlh)$zNjq^v!5K=Hq}=Sm+Rxe_`*m#hZ%{OWORlhw1feR+0$$dU$Jb_T zf4uAL!WY#L`rChXUlC`_G=LH9%}CK&bk7SiceW4I`klUv#uBD@GFR3=Wkwb`jO53> zYBWT!6l{~zU;WB=nEmk3c^*?pp>zApl#+c!BiM>~iMzM^KVJ#GeWL?C;ENmb&byBU zv(#nO_3v>)<0}tTvlV^KVF-^#&Q_fd%52P79rT`rP4-0*K4AO~x)qbBtU)=&)7awt z9JX>e?K)u&m#;W%+(PKvSP$#rF2ZmoNwq1qXU^%NFs(efPfzR;^Y2jk6mD4g$D@YP zf_GAlOi$Xi?;}~#J!ujuy0`ibZ{FmtqkV7Hh@@kn&4=byw`Iadp+;mQ7zM|`V=`cl zxORs#-V!&H1I={;;DaOy==o^0kiiZR1{f*s=EXA(<~qks(md7pnggK#x1=9UcJ}^X zIlkM!Rg|=Jqz>YS z(cSSW*G8QTzO@W>d0{iFpxwf-Z8ZxDWK=lHYgs%g*b&}gi2^>3p{3=XWFzFx;9dol z;XPIdmnY=c>PD<>1glm~$+-g1Ej>XZ_UA)YH4uPPKbAgU9WP3#2h7#=!hmVL#x)O} zr&pMPoaVWnfR^C+CShqdSwK1mO;)nD z{ityh+-2$LvRFP9xhDTs&V-=O+aB6E+85GeIN(H*y)Ax=(x2>ep*I7r9-g-rCv9K7 z#@O*W0ImBFyrJ!)qGE@r15liBQ+1#&e0C$f23Rq}Q{u|^oSk5)i{5R~Y{Ha}+L5bQ zCpFEh#b>qN;nbxeW`x}`*x7Gl#quUUM^jDEd%kcGoMCl1+{WpHS+d6=ioRy%UWQIYKS90M)RB5`H&kG9BnU3Kk)TZ&jr3m*q0sb@7gwY>R7ugyQBQ9G z1zLsiKueLU7JZRkxZeu!ctN%GTWa<4MM2JS@I4?GKW}}Fx}Ng&lYK%8zf-b+XDaDbj(`+9j^5S>YW%A zj6DhVM~hec^NAvEdTf|C3GvMEU+fh;bCW-d>~@MMR%{|rsqictui|4gKq%@6y#}Pq z;5(vh%G&jH6BP!60PL-!wMKV>yefLERAN2bQ6Ab2<~q8e)ANi^reNjujyN~(5Zhex zB4(YV+UiMvc82M_dWbP4Q6&R3()Be%!58OBrS`I{ZYnz?tmJw`agi6cRC-0QV0UQq z{v!s|$QlaJT2V513_a~+jJ=ji!PKgYeD}8tIm%QNKkK;wz9xmxg~g%5Oh_9->f0)X z3FulF&zKXTyQmX)j2gi;!D|fH=Q7BVmDoS)UhKk~{e@T>#gTp`DbCG)n5U$R!i_D;2R=dJn&ZaR zZeJ=cS#)Tt5M;LLW8IzBvUVm}w(Dahc{k~=!H4q#H3uiXgqXH~_DlYxF7=HmKG;lnKIO-Pd|-RMi# zX3O4!%i}%W4MrdOFOaJH8?75JJ&@4=+i`Lgv}m($jcKGQ**`=WiE*C#sd&KTDsDLQ zS0oQL5iTVLU-(AEUqbVq{F7Krh~}N|Y-uW4EP-4HUVttLIXhg0*n*=7uFW)+L7$Z5 zuys|8z|Y6+8D zg7fhBrOPPisEy)ex3nvPnmC(sy)AU6R(AXKY89S~$zP60ES!60mrAAD1f$V4kIL;? z7NUgh@YcmdL!j^f(4Q~t!Tl@PlE_h+Jqnkbz@7KMBvkkr2yJXF4G$QW*pGR_2Ow~N zi)=n?z@$MmlATifw^oLOBH~cTA-a4wPHR=}@ z1tg`rq`Nx=r3FE0kdSUfIz^xz2mls~+`?OI%~8#-M7N(4`c#;0uot42=p#wOZdk+@*C zR4rNDWnoGow_jn)S7f~Aw|WTZ(>iG_WN&}VE&zFyqX9a$B)XgXfzO~q%QJq}Mi|K- zLOK8df45z9^f)HD&ytFj9=zmZmnUQnfk%Am_eoRSeZ4H2kxY{)x3lh+8`>!4^1-kE zu&p#H_}=E?0%j1;wgWtJp!e^gi)ZqP$5Os_G+-Fk2G|?*0(W|Ju+!`7hEL;I`>oE4 zST5Y9NBct&$2yWq@qtt?I!u(8Nu{J1tY5+p6Ej%~{th0s#SL#|j8Di{5L5!g@Ij?u zGHh{jO{Kp$^OYgC)@bXf0Qs{`Q8p2xC}X3#`xL%o$9;G&g+OP;$;Bg}Zw^r&tme(; z;AS)k?`sx!U(eS`Agwgc>j!0X;mT5x-N%LhXp%Sd+DUP-zzMBiLc z^V28)$7)clh}9g$q}6zStO|C3YqtW?kO5V=SwUC@XNMB_c_I2qkz|VS5Aa`@Js7W%wJK(^8{$sCZY8$~Qczbk9>W9yJUq z=luT26TQG}-Etj;bCtVE#}YO@o3d0Z9ZR=R{E_|>dyb|(oz?N)oOi%1&{B$Q;_v8c z7ULJNl+IH`;!x@+v6sq6es3INjH`a|Mjo%%f4muVE-TF4KplCvulYVBC5l=@EX??r z4_OFWg@rRL)#8^{e<2Eao$4%(OPH@MKi`<5I<^$tBW4uTlhSv`;nyT@KTNTo9gMpZ z#!D$+#CV_(S$+b zOl{_y6eO2$NjK@)Hjos-ifr846fD|ED6xa9NMAfz8f5n*JI3F zOK78$UfjQ=+o;tgc1_n^qRrW;_FKPt=57+kwj%qNVTfC@-kQGTMY494iZ(!xjGc?7 zM0Nv}TJMJa7@u-pnojca_GK*IVn-oL>YF=iFGQA@*kIhG3suzC$0qc1|djy6}12(uDg!Ky!v3Jp-VI!H91ayYm?wZ#& zJ%<;{jM&0^Jge?vpSq8vv6EbW;kjU)#G|aHtR==eM`3&%qpv}}$>UMH4P%z+L0lN$ zcw@dCi=y%LQtm;mQiiINY4|ou)Up^f4uD(+(kGe3SM}(aj(o=YFI-HwTWpHaH<(Ul zJ*HspIqz}&U8=us4sCrbc(m7B?oH>e6%B1>z0_xs;VF6MM~r`qq90{E+1cN#DqqRR zdUHQQw3(3BPa2h9)YK8d6LYllo5z_eF=3(1v4ZrTp&{RJW(^H__H9|MBl#K}k)0HL zEp{Di%(ryEXiF+pn7ZGw2Rl$yT3s(8bT12H^-93)kn894G%WWviY(VH@bKj#+M!9r zq`+E{t$9S4Bq!opS)|_o#g!a|$8En*JU+8^=1`yW_DW=WHbc0QrrL-=|GBWBv+#vZ zdLQ+dN}RI1R>uIb`3uxy?VIb}5g83BZR?sf1G#cQV1vcNRoppLLtNaCkdqulh3ocQ z8O@j3wKGzi^RJY;JqzmcqXtxmVuzxF(kf`&lhH_fBWO=SOv=u7ecba%ii)PKFiU_U za%#sdzV7?9_6Evtyq_c(&K}cap9NnPX1)QpO_Wbr!t3V)$EWsCc*+=Av363tbS z(vy+N1$L_%EncSLL3#drpc1(NY4;b1v`Us%IKSo^B0DzRDIMurgTYNfNA=pgW~||_ z^KCFUgf`3uIN=CB9v2?!g7;(K_A3^=Ax#7+hS(DX%Yb3!#p_e&dL(P-ynW~h7=%#{ z?}OI&$6w}aK;Z_Gnpindv=pQxsL=NhPpqaNJ3fUMH=DH^_$%8y5j&0G&DY>DL~P73 z@#_pD+uiw(cR^d8DnN*9{fK)m4z_hmh#C;ao6=-u`MMAog>ePjwipejodhNY3uP&M z!=s;jvxvhJM%%dSFB8c^Am^j*M<{XgN5C=vf|y!rzB|azD1hP`gxMt2Y^TnEHQj$P zIVAwZ=CI*Q*bb-QaIxF^T^cDmMC=ykGv-pD2$0&j=Y)s@VXV#+d>{|{lxPv@DGSfd^N>PW)9-wvr+1)+$1ZoqeygiU2rsnL!q}g%-o`v#{_4&hj zN@RORdQdQ*vD;^s*s@W6ENXGSyX* z+p#Df+Dkq|awfzQG%<08g?#sot-^9{eT=DJebp05t@!b0*v%&Q$Cy?5isS5x-ysvA z0~A`VY7ucRG{eR4STH!LsT?ihxN?~>zg%FuuRgcM71=?#vdH(ab0>3=Pr1=G8}pA# z-TigIR1yTHI+|xnow;|_pOI6H7d;S3pcZC1Wmmynu0I3CLoRyS-@A-5_!op1IR$Kc z6!YJ<0scJdE*p>DBq>oylb;&1$Red$61`KAwNip7e0XY1qosJx#47IR)2e_TLdJt^ zRu-j^F`}(uEr%2OAE-R&D{Lhfzgu(B3;u=lgge)^jA^%H4%~JC-7h3uI>F2N0a>7 z2=UHB2qtXJh*r;E%oU`Un6061bCo2`RD%)!`YF&{)=#;Wz$kD#9X5o1w{>!L09FR# zh3XAz79b-+Ead#;-E!t7saRgEH4)|SiLMNRLl+tOU;4&Q^j?I` z6v841&~cRt#dOa=JXL9~p0>0KuIfi{si=|62vdZCpE^_`HQ~6l6@FYJ3ff07H7;rF zJHiKT7(e;t0-hopTO8@&7)gTinsn9br8V-M<>pBlUf+Cz`!&R76;;_<%wlCmrJqUv z8YEfIKU|rS{k|oMg~)~>VsCN>1vg31W~hB4(ab%@9+z9mHp3Z;GT^Wy|L zm7>v}{eFSQVf(JXD_%!lZ)QfQ5DFf2_JZaw#V)SYgE!xpJSFWQ&p)o7CZGa>IZcoA zf4~H6OUy@~D$pQ9o-9Y5U~9E9+<_x(d0$G{TD`VYLjwQ-BH4YRjXrm>o4Rm{P)hJ! z1Ys}oWZlzQ^4qG_mm9gwC0&NU^_^f+;a_l`$i~iJ7`pGC>*T-#g|@&$83R&pZ*hPY zHe^ojRCMAnja$j*dM1s($$yB`o)x=JGn0F(njXaKUBPFz-eV!}w zwr^%`S;j;WI{AT4pq)7PFkGt15&(x*DFvlyp7=H^kvnWs+VCi^`2^4#kNs(uR zky2@khjdIASayLHa|)&r49|P1mP6ZUGh3^qw|*;blEG;=9$`vXn&W?-EHL$6i*hIi zoh=UCib=|Rsv6^-qH4NtN%|(4>2X?_8V+9zwNWd%-52?|DIU{g0_9xwA)dzM$|OG( zKQYtb$Zz*CRbmZb#H>6b^oJiZ$Kq9N?;HNWauK6?de)nXSG~fDr$`gufESb@b5W{< zn1*X`zf*BJIaf#*9CZn8R<~S)$?YIM>3^Q%F$$P#SgmUlA;TGj@IXjxJHhL{^&krl z&}P{3=Axe7ly=xoD&W>$T?5I-$y?Gltn&N&iVi4C-I6B&1UmveYDB6i`YIsvGcf$$I4@I&>Nyw2RZwh2GvO&Qs3`}05mus75Wed;|Og?iu z);zC?rxY3AJwne&Qm)nT$%$utv%)uRaTEr5ax5PgMeBpvQ8L8|KZi!E-gGEplH4MYNlCOilE zG9-UuYRnmU$D=E59i(;rhHy)jFF8XrqW0M&MgvcTqb4MhA#qW3Z#M}i>1a>8>**;t zz|)P{fS#(L9l1A{$Mt;%72hMNwk!6mtVk9e%Vxz;sAGSR`!$@kI#W%TCp z{&5+OzR0wx=kkwV8n?C4i8&HqBa6i2qLh>m?r(>?HN8l07~G%?4-9{Q|4{g>1=-r(m>1xGQVyvWIvcfi>o+P_CMCu)-agR@EY^Z^%_J zU~~sH2mW%dU2k@{`yDZn7S`k15?DG|MIrW6xJ(4~b3*5o}u z=*4wDD|dx-reqmvzR0@P`2YZzS9OGIK+v(wYOfhq-s=hbQ?^?eeVH!EDJ}p4v^*AA zAO)2NOToGyr{)`=>~Y5sB+=jn=b~6&><1yykeGL4KvmDTIO&~ptDNJFT(@E)R@M1f zsP|K0TYnT}t=EM_1wrWl)yN_M>zUuTRT@qQ3tHoc^pU3fI58?O2^6WF)S`eneGs}r zo=*{r#FB)t&|NQFlxpc`L_0c;3M;mnuYuB^Tg zY$I6v{Ipf0Yb;@*SF=>Mv0hAfqK03|0sPC3%D)>k9~Xm$9fmZ44OI902RmP7NA30# zm5wRAKcNaHXk$6Mhn!C1P#b;Eaw6K~V3s*BFmcEnPO6a)7(d9i}>(WRW!0_Z9sHgG;?<7b! zI-aIqZx$Z^HPdwpUfywe#aDoW=Ffg^huXhO9E)s5HYE@1BS6#$+Lknt{blz(Hd%Hv=LT8sOS#GPhrA`cEwk>0SYni}*Fp8zpjf|j9WT0Fgd;{8(C!ge|+T9-zs*2oCasb0x z(t5xz*mR3Z4`+Hfvo%l_865uxE$+8*DZBh}n+J7A>(UPP&`z9){F2s90GF2+HN!9D z58qx{9B=Ucwkj=>mH6NGgCyMH&1znK>3a~@>fyNR-6Cy4>#pHJ5tc;f-wXMy63wd) z`iqPm50|*~FQ?D&%j;bFPv8%`5s0L&fmt=F7|7KY6#?Q+t6}&hqnd9Eq(fd@vaN;8 z_D6u5&8u`#iQQt-BA~@NNG1L4Pj(l`>;NEun;S;wg*z=|l#9vZ9I}4S;Eb9ChzKH~ zOuHQcVtjL1avLb8ukhwvqZL!f#U5g3qP*cI+y?}7^v{%e*tA`?Cz2Y0sKS`(f~ile zQZb$W?rbMKQxr&4_p3GlBfcyLgF;AroE>7MHDW8yE-|?01k8ep=H%BFu&!Xv6Sw$- zDX^hE%p(dnegS^okM5taA4KwOIh;-Ywa7iUe4bj|Z+QeE2iT2D8<27-|C{l9NBcJj zL@o+Lm>$ADuB%_;^wt-Hm<^+{J}DL$kW7wTd?XfhO1t!)C#eNk3Fl7JZ6wKzOWJH882Vj>O&F(52|hvVR^sN z!k_P@<`0GOVny{9^wv<;;mmBsT?JTQ zlR(L>JHjmO3CjcnOdW%qA*wZyOAwqJmHJ>iHxAQ%b-%s1{6m-6=kfNTt@@MC=JSwT zY-Hx4g3`#)@OLVC1O$s!c%LR&R=-&8m-qEd7;dE8WBa8yl+{9ca+n7F(Y766xCD$_ z5-y|~Mdp^)D*b6d-@iVBG?hx&u?z)Pg9Qm;23ip8_6Kz}OQaBkuysF}4Nbv9P{-2V z!uHz!U6&Xdxb3^L2V$pm#UsaH3o84d$+@2ZpOKcQ&5!r-tI zGhVfd&=eJ%xC#l`S)^N^r+|OGVy(s8gs_>+npD<`_4d}VjVB!uIvu}iPFSpN*)yd9C1RMCb<`TQPLOrG&#t&zWz2D`j{7^JGpl({Pt z*SnyHBn$hW(QZj!mM~QP3t)+;4z>34R$tsmst0vbT)`hLfF`|W$9jX7^}h7W;kHK` zig;-}CHcdw+}>r2+o(Ko7geX*+?a4CKL_d;yOg0??4dj4tH(Z_|1g+H=kR8!G}gqV zk8Tc$kg@4Cj#`RxD11yQnCeZ=!%4s~{c%gcQ*>X<&II`Fgy<%Ek#6O-03?^w(NR=3 z_~bB~qy9dMa1#4HfHI03V!I$R(woxXeocJrGa}OWhpT+C@cjSWZP-`Hf&SePT$0uHT2#8h3 zP8nFysHvUCF2N%}oqrBjTdc`>15A^UJU@`i*#|!`6h~Y+NGM{ZV6H-~FJ=Ul=bgd0s@sYCzN9$y|0L zf{eVRS%7n9%E*83+uEz41Bs8_a=BD~noDc<3d?CRwOZeB^~ZRO4ND8;NVw73IbQj- zejPIv36MUELqS^m|2>wZES8UqA=4EcbGol^9BD^3`-_~s-TQ9#2T?uUw2ji~B2SOI z>1MQ)7z2U#v3+oVmcWp8Oh;#M&O$2=$IF^VTM+kCZIzCGrbz?!#c(d>HxQ1w+~)AP z%}=*cVgNSyzz;y+c68QYCR`$VYdr#CH8)=2M`u1B8c;!^GCPnH3Z$f2>0kvE%1^$r z5>;m#a{Vptp&|xr)fdutCu;#Z_bhS;{sP?DY3A7zJS|}O3j_jNE1@t+&G62tMqp3C z;ZFD^!e$yvb1kf0Xfy9B4c`geSaGd@-1LZ~s0FgYX^<|FrWS`EsdOS{?Fh%ztAn;Y ztfEJ$M*y_-=We`!sO(c5B_k)(;1dep7$SXb*n;KpD|JzEyR%u9_=^quPxg-D z5nRo}ds;;XA6tt&8)t1v=%{pzU-eEsM>nR#1B8B5NU7}J+ppy5%+u?;rY4f$SUtimU|9HMIxIUDSNA=|qs6<^m zXBZ*zG`9TaCvcbn7hq7)`U20O8c(?9=9hX4a0pn_E)8X)FMUn`ffKoOI-pPW%U;QE8xgu8Jqz8wb*~>?ds#~yedL(tA@IVU6`V`m)&qEG z#~KZds!I?UeBZGMiRWEy;uKPTO5HdKF6{zWZ7lp73Hhu=nDK98i^v`#30K)^IMz9z zHn6uiuCrYI7j1e0ID8U#AOei-#-XF*E(_|-`Ho<<%{9B>u9g(4Gp+awBX>YxZ1Ke{ zm1Hk&q~L}m-Nk-tPE}W}S0Ae4h=Bip&9||2cF8$f9_VwOK6A*F`sUNibFk9x!2j#= zp4FRsc5s*8fWKT^>g4J6RBOT|aZ`NpeF)6MVIdc)LVILd+mb+`@K=235HWLt^V)73>|vY}4=ya!{o+ zErCH)xR%%z4zG)hWn7{cpVOFlh{o0J_%%8FMC0SjY?N&j-_lzdj8x+EE<3}0`SYG_ zJPj2|C$oL4?T0H!2D5G)PhlzME4Q-QC+UXd0_MzU;Wxtu9ppySl4gbPxy)E9HBsy8 zsYo`U!;Mivu!p;Tfjga!Vfq3VKbDeRdFo(>VrACm>DjN;k~z)wwNGg!424f#jK0qN z2h&TLde#Z-@&nt0#ojc--;A-5b0xc#r);Yw+hfPJ{gw=SvvRXwbI#2DD=)aLcJ49e z$4ZwzsxRluTM7-BW2;Cf@;4|6{G}qAPTyRvyVPXm0V}wHj;w$9Qy*!b%M&qASokP* zrZnk3pIp?zb0RE`ixoM6o}uYax5Qmg@!mw8^t%(snqcR0iuh9`ld`H};yWAY_iJ|9 ze`vC1*5TMJi@Aj%FqKa8yV=%aIWBF8vYy3Zpr{$`VIcsw_X{Z47>I8ENEr9%wm#3m zx55#AtT;!$AvYDg3*1;N$W-ejm|=g}-)mTKpemhe@}@#E2EYvCHTDRM(o}^fgkbU8gF6W@F-YIGY|C+o5oC0WAmh|t zh3*X`C3pV^eg#7Bz@-e#dU)#P{A1W+D-J=Y&-448=>BV1P^_EdliO(#Col+sl!~aB zz8jMlWvx?3HW>QdNIyWeh_5SWc*Nz+(!cTEk8Ksw7a{`g@2j^O#c2ZG&of##~x ze`ps)8gjIF6f6QcdntqV;Lh{~wWo(Ex6LYK0z zyjrwD`n)ZN{^Zrt=*Ptm-M;TtH~jY|dVtuvEB|Nva0cxWfQv++nw7Bso>C&}hOBq^ z16w&Kkzx=nuiwY?n2KrP<_>^Me~?TT8Dt?PYg*Z&i9>J1>rL{wQ-vgY48L`b9%UWYcTrU-td)&=M>Nu?osZwV4!aUvNuWNEh)`N?Ra{c8V4c3 zyO8~U&`d^=actf{5*wu0i~o3r68Vj;fd&jRL@q+FT$6$|*!|^Rxs+Y&6Sx4u@AGrH zTq_S8!f*5iC!$SVm$af@G|gE2J7_F~umu23_)-tL0CK>LX-G_;=tl%2V($Y{`Vd;g z(?M=c^Wz+;o;pSv2rdhKGre-q(yM}6Z2TzN_Mp)^QZZlAEZY}CgnG3kq7D58FdlM% zsPMl+G%k0GW#11FM}Qz~GwLTTv)a7HHnGoO8lS;F4m@=Ow+OR)mw<7@^<7#?B=w;9 z1`aOmrPLXTqp66cHPsl}9m=XG9sR3+)a1CHE#K-*jUM&nPr}M_7`%W=6B+<@(x-GR zU5a$<%2kKc_TLk}V)SJZbVDD~vN%G!T$OR7HK>;FXvrxtUwP*VkLcJVNNEBs`rpzI z&$m+UT^`YNzjD0_cKdd4-x#itsL|iLb)-K7>Cv~o9KehUsU}juzSb_oq2dd8x-BoR zi_hS*uTFYl2G1eYs~&_nh?>B&Y_85UtCI)P{hoUqjc}5=osT0<@5+6ntNMJGy8%Ny z2Ae&)$XK(G{YN0MvS8lPmJXu8z#4zJ;|Tb9v_=tSzHfZ}Djq~CYT15x)JNE13FAgBq@UNR zTt)g6!XJ(Cx7#WRa$_(wViQ!M#XLYMBZ&j;T7Mx{;($;_vbIwi>u!WJZhDqeZ${`~$TR$pkgw`~kdT0FuN> zxBfH1o+j{FGUOLpX`pFW^mKpC51E3X^ zb7Ug^akRmgD@LPWao?dt;OLzR%`HjmD@>bWc~a}oA%p$J@E>3RY@QHttD7RdR_J?n zd{qBzRktBJ_6GRf?l=;y3J_fwarA`0>mz-3mvpE2H%=aSJZY}(l{VCUlFAegn z%|P~!gPcAik8=qYiQPVk+{=S|ah$Q~e;#;#^*-3&iU~N7nP{9qa=3NS1e=>N56Tf7 z@a~SnWF`bCM}PmiK5&a=4j{xdVLeLEYw|_wocC~iwzpGbWE6aU>pe(p5`S?WrJ3Nu zH-8Ea&d#r}#tNLCz^T3Behm&Y5V75e(>;TKb;AY;WD>Jk?H7F=;ep{M5AXf_Pj(*` zABDPR$Em+_h`;HZh4Y4gkm=VQ8tRD?mH36-|jQ!VfGP=tTEb`NdJLtNg9)t z?@IP4bqV$2rLo6=h6!JZW(?%YW5zNVP$Gd_jO=U{(1{76Xd;p*xV*|zH$rmo&T<|< z)SmvpnI6h8w(nSx6G#4YNGRef^z6NZm_xqi{rH|$j*O>Bg_P+QiV5=j;oY(U3;G{p zr-&*&!!b}i(3Q7mt!yLMv3OwM0lEU0FS*gUW`>V707id=E zq=wDH$UD$6xbz7|OuX}*u`JV>;l!GE59O2|1EAmRV3&;7KH|jLO2uDB(%7io374l} zI?LO;GJ9+ZPiNQ10%XvifJgkF_Ds(mlv4wk>pljjL*EbK%dpDkVh3lTHcw3T%EfO8 z_bhQ6?+d~ylC)CLox>sZVVco4O|hXHKbFM-j^uaH0p~TCKtmVDyJ=w>E(a%1e~Da! z+-}l#sauP3$g!*l$dpeID{A2y0vM6U@Ly7ywTB9oq`XhQ8}4OSWZ&Od$6djLvz9;b z_cwEt21Uz2fDBvR;UtC1KlJb)q(q58XgUCba5kh!58+||jrem4Afyx_C8wAKsXp<4 zBl*VWW+FR(MSWU2xYCc?WIDBoyvRFQ4+i}`~HJZhR zyK)u#X20n8l9pQM3H(eD#2dW{BdAj_k~gESr6%PNw!%R&YlT_1C=KW2F`Q00E?Lma zF`FRtWdnu#dy#Qp?3m(tK04+gksm?dcZ3C(zDtW{_apN0F0p@wEBd_s<#x{M=c}fF zd$yO)f40Mz_g^ib^EG3f`9_&hK5d@BlM0gsy9x*jvCp6^Ty*^}!iiS!26Tbckdv6G z8xH8GF|gz1=K`&dMaiVF!kEvqfx03_=AQ7oH|{%lPhmhFdzcA+*-woZ+;706ZTjWT z2@^XKU1LO!!~1hU2qY6{F#aUv5e%67J88-U9cK&4K~ig(-|kcoGe+Dc)Kmca&opS{ zD$y+JuJ%Mi4%3Nm8H4r_icodb9<&$#`>esNHE+=!7=SX4qWFs|-B7i}@ct>xC5xlV zZ5~SZg7HcJ-HGCaH-$MGn&V1t_&Y6!-@#i~Z8)LN`2eMxba*_Y<@A^W75qx0Fa=X% z+tYoQR$(1@fdP+V@=+`c0sVggR}3y!r?roi{-C}znnMFKQV!eQ+5vCElKw)Zn}GHy zVNRC4Z0t0sP?Ev*2?;a<6<)*^xgLp%oAFbJGa#YElK^v|_Ibu!h6lxeqacGW8J{m@&D%lc`W2E6pt(ta9LV4qB=bb`~6~Bqjy<7cW6?w{weC%2uyShv$FiKO+lT zai8z&Yk5y7{w^i2<+t2)Id^M2Qv&Q%+RMIjXtF@IRD(~(|IjkJ(_&ebIKdBA1VGG? znMX&{7ObHGpX5C>a=@(5=`*#DM6$(#hwW`2>D6oW*=t1V&vULDtl(6ptFN{KvWXP$ zn#Pk#NKxfvsal=H1cLC#{M^JE_my!8v0LfC2Da2?n3GRvy!@TgBeI2xE}QFu_-Q7^ zbIn>%i;EX8y~;KkjP3@;Jz4=yG4HO&4g(zKT9X<9W46o-^wKa0?d(8?+(~x_I~=Jw zC`hX#5M(e_C&1}pcs%|v`V))9@eGn(2I`pGNsw{xy6*l2KslKrxAJ#pDQA;ldbE!3 z_SR=;V9n)VWIZ*l&cbGJ$egoV(2#2hKuX>)ta-b=hfCom{RV;78z`5#%IQWMH5cxO z5l<8UBZ;{ApQa3i`Dj*-*lQsIKlI8TEyvh6R z6uwT3&<`#>lMQ74fX}xKoalo2x@SnTL}S*smG*i$mT!=7cCPfs`1b#?hnJrFJN?v@ z=>OjKh*raOsR^}4&s*|g^}~Cxqg9dXKAk4~3g0~==oeU28k8AQ>6a97rgJ(CEQjHu zFTO|c1m;d<7D27AFS}s;Yl~IapBzqQRcbxnn{}}1Z2kIw3Ygm|sR`eMeX}aU=jpg6 zS#Eax2(#pLoFx1BczKuDT`5@REc*^;D&yA8J3ZO!E1mB|Pd9m*U!zl4=G@d!`#}M580YJbLHd$#^VKq)z;u~cYe?u8X_B9Dt03ELF$z{ z-Lc!>YJROZu&vM+|5cv?TFowa&Z3e!bweQX2!3|wtfd&cyK?Jy{yVHWES5)=xfcjB zZ(?Ov69^^-u-Ug?!xrNCs}Eh{u({m`@q;`?Rc>S@J(stG8$O%=_22b7*KeBf>~;-4 zyQcZqf|kLc*4V>FFi|^JC)M=J@0kr$=ccgDVEQS|YB@YJ|5MNV2R#E2t zJhTif;;V@^S@13)9pUc$h}dK~No32`a}OJiqoIK+IIdc~86O8gs~^qcX0Wt{%)=ZG zNu=yylgMBqTbQ-X&EM%flG2FkZ#{vGo`}Rg2)mIwB8!*(-%*l7nq;Yxe~*);U>+Lm z#PNWbGl&pZtg^VzYQFgTanON|4S2ma8=Xy)p>GZR7KC=SV@Sb)1-0&Ih|M?q24LR_ zXcBO*m?_GDr4m@*d?Bk|n64e7@1-X?0E#l*W+v#iKF@^)jt-ay#=e|2mW%+WQu250 zwmcAMTt7tP^n%I#24w<9rxl*K5=sy7dQsy$A%fZq%VKbkMIDq%N=bJZR+ zjG_YfU?g;)9gDE8TNQu9{gIN_ge#z)zBT?;M~>NQf#)c993Abwe+(sgrtwgP6~kc@B&50ewApn@ z)^$RP zh^oX5Hgh)5-k*hS*d*3+LwO%+ zpwl_9QRwr#!P%_z8WB;FS~bjwF9fBT9rW`So+Io}cE|Fytnj23Y2S_dt|AVD$_h zU!Tq_2K~u7Q23dR0xvd|pv8CtQhVs|JfK|q@*1Cf)*&6N!=fnHGU6nqQuv%)$fu!! zj8}+~xt~en7IbxO*+`8UC+;S>lB%U92F5dK4<#}`h08=+!+&q}>ZA=@4TA|GwUDKk zx>6{`U3isSZbvm*{-{zISAl&DbemeBXvQ5ESh*vb&v-WO_ljz^E2Nz+3NW&y|PL?ku zbrJ^n#ENl_c!L?!;mLsWL1Y$~DSUB0xw_ozg?LYOQsc~2Pek7iFFCpEakhc!O%Uga znMwmhTar%h12LWhhG`V7@o>{HBtt&V0hE%*IbdKS`PDTyz7eent6K!Rpn(J?yRkuH zr<>SuB^7OXayeu1M@KGbDKVL7h8906a~iB>#6hMIPM+dTo81bSm5 zmdSV1phPbvqs?}y%URmW`LnNKPMK)bPD?jT){VA~$&5E(OE-Y|#FmFh{B{F8Wv@&} zk^z`RwBZQI{I!zszKSv3KWOB+T_d#tP3PPav7}S#QGeixhdu7`ugQ;ecULl|7lwdM zTX~N9ntnOwZra+C(lzObo01?=BF^v%xt^u&HVyGQ;2 zR^>L|1AW2oEjb5#M!>4lnwTg;69mRr#{gq$cpCah^`%TWl0-yT0jFRex_=oTipyVu zp9jH}`E1zifA@-Jl8xPm9(ma%05L2v5XVUQyQW&billiLR58^m@(NCS^)|x@U!uC1 zEo`Gf_>Pn~&GrGziD({YT`Hs63GJ$}qXkz@mE@>v473jduS@o@W6nk9s0_ix4{&PX zAffyQiaqY(T7M92dGbq}N1Lp5|N9D92aq~#X^-;f0rG!~25 zwcGp6bw}am>zb_dh={jrrDxg)+%cP9iR)_xvGJ1zeAMVY`YDXegh8_hs1}s17B7N$ zQ|zH=Mg`vtqV0!Q(J~5C3ofut?c>;C6qtKY21M5E^m2 z^yHM5cSfaHj+;`xFx60dmr{o;nQ)mswd-fn5R4v)bo{+jBS`Y7pUM#8)THsf1bDrK zP=F%?W571aPpU#<#6|>o2-^dS zJY)WCcmSvc&k%cDu9(vdXcvwVFzW}fq({%<5-)GOj~d}=CaQO-PZNBnj0J@KPj4P#k?Phi)g*i26|f4H!n zPF*Oe#u^{D`lycmCkVxipWWX~;q-IMycLvPGJzIt=DbZy3iJCfV6oWiMRk%{o_{dRr9p9;cE&80_Fm1W zN`I@_VdJL1lc^v|3XUV1oA>xEy8M6SaKfGa-`RY1e;G~kC9bD)aBFYurKDv9IhQ=N6}c8z%qDnrskf&+>5V2~6Yf7?Kq{ zDc)uLemDcI(>!SN1>fA(bL%00C%QktTYwFvIkEk~t%FBGe0Zk);KW_q$y9HP^21hl zbLsvq-ZNMKJvg(@;1T4+h}UZ;&w~l(O^U>uh&r0Y2>!vOpELcN<|F=^Xj;{M-2B08{LfD;L+bOTE68vp}9REWb; z1Q+DM2fm&elqLjE`~ywLM-6JoaSZPJ2k{+*O!8)vNN5*0vqytLk7j$bHn)!6y$ld= zd$4_>uZO>d{hdWebkp#&I-;{PBQ=1u=mmCg10G_NmplS`|JQq%Dyub0S@?5g{a#4w zq*97Fd8p;LGQZISj_8exL78d*y*7xLd7r$~d)WPR;Vlo+H@6yqR18v9Jmeldu?U2) zP0F%Xt7E3eKXqzkC`0GPpIn?Le!m(3;d+>n1fmX;3C(TQd$Scofk_ln5OTpgYJzn? zq_dqAY3YV48{L9m`v#NhSC39%?uw19AjXQrcV|&aMAR5B9PaRPaT{0RZPIuWd(21Ga5(%u&vX zS)9upZ&Sk`kwwiQ8SO|B?9=hYd-iX+0rp#ac( z?r7BJd{9=$>O#sd>sNpZo`?5J0giYKz&b=ki`p+dknS?!Z2&Jx$sr_ybpl~=X9>{W z4`sK>NS;eKnp3QdYO>m?E=wSplx64O>hUc{#^+psM9=b=)0z;|L@}OgbKVRJmi0)-hf`>=PAfZ1E9290|>!Q z*pDeB|M3#;`R&c@q$pj3?#PS)Z?`*}kcI_SaS6aREAdC<$_@Vo{6(jpWQy^WbUNsl zMGg^D~qvzcSoqe@AIk0X1G> zxQ}1%I&kM*uA_f*d&%(TMP|ewaS!B<2NxtAQQrq^kXq&>!Xl?rlNo_!&#?Tk?&crC zj*pkA?0s`jEaSALHX>lc8)<5{%(fL74nw4Ze6IK$<4=NDC%>D+&NC_pU0q6ebnJce zl{%$>0@k2_!~;^%ANsL2xv$Kn^=YUy9Ks)PHpjuO#>DQj0Utk2k{>J(CYtH?=}2@+ zi)#SVkeBOb#RPiG(Z(|Vphhove(45bbvgrzLH{E_QdK?aFXy2WPU|t^WEzNl_=ouCO3W&#s2w=pk?hlX6juSM7F$&&9lMGX#q$qy zZ}hhZG#!5X=W(+}ee=xN1l>ebeJ$SOIfgsxT3?dLSuJl`-w1}wjxvv{;zHxAS;@AN6A~Zke!v>*m{urW#Bz)JiR~l>TUuHm=_)zwkr_65zg0(} zIafVk_8ZO`vxRC^C2`@P7prOl_0t&CN5^QuSX7PGpC$Y7oXJuANfHQ*dp!~U8WDa0 zTQhuO#P;@6uF-hO*pB(;DIX{g zJSVe-`xKkx!5eL3mqw+0TTaUlIFq?hEG2AojqY$d>|u+n>6R{S*E_!fLzAioIL(H@ zc8-isbwe7d3xTmAcQ2BcpG?j+=+7&y@vMX$xz*U~*cXjO_cK`H+biDe6n8F_!5Qen zufU;_+(kkza?f67%w-_4H25`#aJQm(zf2ad(2ms{12!~+uEEFY@2qoD!6*smTTVQ1>BjN7@@kiZsnF%}@qXc}M>K5ztuKIPjsn^NDS`^V2XO$;oUs z_pgF=uc7r&kdsHWP-EurHhphS`-5v9l-V;UFCT(N=->Hgg~oiWP#zMFr$h|FH#@~O?6ZZ%%BWw5VtZ|bB^ zIii-a6B0(?do!5PV~oPJS@}ph+}K6C zY+p7fVlnxxZsZ3+eEX4*Wea5j%K{IRD?)HYthnsfy8_O6S`(w7!hmyCgQZkIJu%EK zTh>qDGpiEpl}cn&s{%t6Kdl>t))YXKOcZzV?~WM}lRUl4k1Jrs2ya!kmUy^I-FPHg z`%3N@TZBPvjO@YB&Ike97wdsv`J?G$n!CgbHi&Ud=9e1x#n7e?>DTH^CC}m%V>IIy zlGu~UEy8qC)t*$jansT}GZuIz`(EyP^GjiGsjBHvC83mx-ZgtIzremoMI4&g^ z*(SS9?;ENt_5$5>0%KNI1<0ILsQzk1B3KIS+GLj(&XHb`9^*o`ux20!?GyQ2$Le9< z-j2sw0y<)%;c%0a06ZabaH!T<-DeZKT1sbe|2d)0`6;hYuM$tr#~4m3=Mh+BN$L{i z!jdXb?>31$9zFv`X{piXbw)0RXc(}5}G^tletxZNq|!*Jhcnj-EC)C z_vhf1+ixbVw_jR*WO(Lt3?^&IJ?P~9T3ak34+0QAs)Iv#*?z3&2EfV8j}#6sj`nYe z)o>s{3&e!^oxS&w0S|1dWhvtklA)8%3MR;;=OmJ@xbi!c0}7g6nHY3~KTt@xB1i-Dutx@ls6XbOd_oC}>#DZWpTUygMh86Jlu!`q0hf}$(}d+#0lVY@ees;; zuNlzAH*lDPxs<)Dr5s`^;?j-CmnQBX5}bDyfULp%3dA6cq{9lyv(Msg(}*x5yHmy2 z_{~4%L=}ZdIgCA@*RhAsq)vEDu&YHAiR7gLSBu{N$KG3pRk?n9qbeOrBQ0IRq#F^D zE=dKXQv@U>6(mF&q+5xJ*pxKVB_KLM1qtbHkdk=EKF3BK{{8jYynGMW_D}T{=^XXdQA%?Vko8 zyVH$eT=)iDhQorDt?pb1dgd9WXq1Zt3 zsA*#8$bN$Zm-#AbI~=YQqVV~{VC;HTX(rzu6giJkqxM;U1sJmSe8 z#l+n@qPJ+?#Pn){wX?C8OsnPQ}m?gLuyeKC^=z zzXs1F8m;Pc6M@T3ngU#U>UW_1d&i-m>?HA<@dvf9Ba>n2@U$CrKFw>N>`B+4mP5D& zSYa72i3Hw4>T+1OOdh4Vbd_4xIy%;NzXQhbPCY|r4O*ryp(o)CP$2_TmD6Z-X+Go! zWnG&Suk1o1e=e74%FSAW~*EEP}WJK4QUoQLjSRTZo+c&d{d0^dl+V>>=uT)w{}3hj43arAGg9+c9Dd4 z|FR8HjXj4#__6~~k=~-efj(jsw#C2qLo7>m3o~*NdHcZq8#%vTN4qod!lEj5;U0rT z@S%@{@gUKY8^BPHD?%aC4~J>MwbfW1P=; zuXO4nJVj#V;V~30TNV=3}QI)W+OE>2?Ahr z2H=JJuyoQ?%-|)IxnFcR3^g|qM-$xOW5Jb}MT5m7_eyDSX;l9@;i!iGvyNuM&2c`F zZY95HA&(hVQ}qeDUej02`FaUlh9*-1j?>8Ym3mG1`ZFt!^_NRu9p^Hv07tfOlis}B zRwicY`?btXaN5~>_v<`D$PqjaXIw|OGk&6~+^oOX8$Sj5gJLE%YkP+AIv>{q*lt}P zuKi`#(^B#Fl$pF791yhPE06gH4xst)ttwrAnbW|u@nou{qKG>zuXxrr!L9wvcRCgX z*xMNKI#5Cs?(H?6n&H7r=@UQ;U}U({jgr)Sux;3iXn_VE0uMu=O~Q$WTcgwpWIbKq zK|~cE(-SBV`@0aNs2KWWf4FUQkHD?G8Q|CJI8lL6D8!E5dv7u(=PvjsZo%V8WtLmDGe_;O}N0;?#1t%1F{)nf1O z7}b_~DSQUT!<8^0i6BIlkY2_4b&J_&{ABfX(sY4OuHq*6xe+rue7drk1@g?$ID(6J z<3UwZZl6HOs;YiuZW86?fOb9#SOk5h5wBcPO<+upEY8 zT7!H-Q8s2XC4ZJS@O!1cekUx@w-$A?vTuRFQwl)xbi=9xbLq8BPNDO1DkkA+-*Z7E ztmX&%$%jy&p?Qw_e2$pSM~|TV7zdb?{1C>}EM+zWPjFd8%aIkC^)zdF6_SF)L#>8^ z)6Ti8yHi}>1Xgm>$6(MKZH)DBR0;hKVTh^pW5ylSG2xpV>BIQ*fw|Q=fHH!+59$ru z$FqRHv#Poa+jnHZS{t)9tcz8tw*h3blQskg-|y)zTu>Y+~F0-xUCNpsla$a zA-WH^#N}@q+asd6E+LLTh>zl1TQv$Is&D^+_Fwl0)GW0y3k6tt7ht=88rONd^d;qQ zR=+k7c-x~rEcE-9E(B-egY=;Uu>vEpf|<9g-SRxRr+qayAy86&F@Ma`ZQ`Aj1FoU= z6Uo8xCX>z}W4oqT2!A!VI$Z9s%P~|`vgujR(+G<8T>r|Twu?Rh1VXmZ3kA)j^c3-9 zhV_yiZ+t@$rl=I|_SB|;CwlSozM;L~jA=a)7oi=zOmaU!xh5!X?_Dr>VZttWlHbUl zlK}e8*?ShKh)SA5qiz6bFJQH1P?}X)4L=ES_XZ1aUO)?!^8U?AN@*%us`j7|>8CH#vIQSw$Ac(Wc~rHgHryp-C7t`%k6>9&oTY*4d{go76Ak=)89{P1};!} zO~UdygACp~l7rj0qzqTIsz=eI9#hCr}+np=h8N^id1=R1yH6n{kFCZ-gi)D>TAT_U6 zE6OBHy~y&fdDk#q#3xEHQTvP|LAh;;veXJK`aTc@9c2#J96o2$+A|3Y@EbwVTm;O& ze*uG8glmsyp0u8(k?)XMxEguJai}Cux6FcG8lx37O>Z9x<^e3SyXS5?6j?M3Ewb$!(3!vgHqd;F6Pz}UiI_5pm!3jCL=kaxkO{~kgk z18?#4g|OFw^62}%ZRe6dP!=g~P;8OrNLrq+r0ixC!OM{zR9&y3*xffV(fR5>rP5RLOhS`#`}0NZ1b7T?j~b?tKuQ?*PQ^bC`{)TSmu7mC z8IdqbmN0d&V*Up|(==~%n~^5ynbplc21fUU-n zQC2!xFe9e^I*)r2BcKG>%6o>20@macP)#T3{d^P$d>Bvt%$ppriJ;0tyW;0_q7()( zK>KzeDb}1D6%@%a4@3njnbcQc3|?si%CwqvdJ+F-RRFo~;pOt$!nW_!W<&pB(cku4 zJaaudqT71#D)23uaSoPP)%vtxg;VK%yez-qPR&P7srJo1wZQ{Fp@ccXyiRapU04v%1+^uHda_7ij)ce%*g5Qpr-~_B?G^8#`Q^{MuTj*s` z?aN@wMTjpj(;0L>?fm)OVDT%>dvLI6KKNAE{;vTFeTj?!DcQ?X*MCDY2g&!o|BUCO zcj`UICf3quobbsf5@$Nukn+;r12Bm}h+)bUB_0(Ck>!h;=Mi-8#~m!_wu`Zo+8Jhx zTReW_78-Q`Lv?q}rudEKeYGn8$duk~r@{nXUp`0IuJzK%H@ckZzDkxome{PA2M zX1xP=k}tCp`@#<(5GZGz-tu;lEShuO$X(IN0LXd{*fq*!QrjeaWy4}RQl|INHbWVX zBFlS+`9%{Jq0_nrJqM4}QsSD&t;LVT7d~7fbG$419@{%6O}rjAN&nk5t#evpp}*6&0GTDQTW7sREGoYOUd;5CZ{TP$Q`P5@i^OJvm>#Ma69yUCiyWc=?4t*<@Is7^e4!&=FZnU+bNAF7^1AZknWm9>y@$G=pV ztMTc(-skV{vX1B{;L?4?%@D)Iy38Q(QkP)sPEEPGo4C^p|I&22%Z<5R-mBs1iPL9Otas1kDt1vQ0eI$Bdkru z{P&ClAtht^2*Kl$!d8uS=$R15{D73A=TYPK0^O!*p={~mB(9IY|u!Y4g zg%F|KKseD4wO7jgdHAjM1H29qZGb}1 zR|r!BuH-6ALjhrl`BB5JI39l;vRbe9k24La0jLJS^hgu_9_BjJ!Rc}14XAqITo?Tg z%W4NW+xZjL9l)+wwF+g3%KG?PAT%cHcrJGyp(UnAq~3$5&5FQcG9evwH<`o&^Rl&z zfUfI!P;#3cp!NbUuS<^kQ%0o0#EqP50YH?-ByM&$5Phu&j=s}4)ZU=nO7zj76~1Ka zN3TUao-OXeHWL37`=b0AZd-6_=tfv0F_EyTyFS>PN~1qoHiv+x`_sw_Xg(PCJlA|F zL(&jS^Cj@sG(-hHa~3Vb6G*uY-^2&VDE=Qvg5*^yB>fO9KFDBVjnSVCJrjU=EsRvH z0}bma3aImMFp240;MgqyZfzE3r%FTACZGXjpi6a*UoBFM9ic+}Q82lNk`B5;81O88 zwPaSGe3QKws+)DNfFe4>XTtPSa6+*~ov7>#vKqWI&0v0Q@DlUu^kfeTan*1Li=Bmv z)Cm#^orT>l!q8`ekyJ;qTo8Yf)8 z1E3>>N012JizEF&70@U4Bl+<0D(Xx&!j%(h=KS`DOjOWo<%N}-!5Iy8my0q0a!nrX zFJ<_V9rm|CgUVYDwD5r?pw68B{HXN(1qe}V(h+jZ(6=6kd915I&PiS9ro0z*hyIGc zSD_#V*k&MU*g!_Gz5(ChjUJltJ^b36t_@IbZaLQ<0+KY5kUj#<$gllXS6&cCeUiPL zwCvf%Q+oI37myh+ZV%S!J@pYdhO-6HY6czjSm1wzvv~nR<@QVfd9H&IKxUB5Jd^0dGHm|wpCap;Wv{Kx5iv#C0B6YF=a0pu z#ESMHCO|BWPKdD#keqdq#^cDIxT7_W>%pVbW=E(zd}PJh{hBt@){(=4WTkrOO~Vur z5e!I~=g$J#hEPHlr-!#t%OC<^RzyZufRi+%01{l(W)8qk=~szFPfX%mG;O*EenWF{ zk|*FYT7^GJ4ikfqAw7X7_^jM)vVL(bNSb$HYfpc{C1L74%7%r7h!Thald+L>a7b|j zBPO?2lse-H_yHkOvy|Tq7W0FXaNh0U`hZ24WerZxCtqQWyuLo|d9;z4G467D3Ad2jNAIV8}~5 zs32j&Tf5cQFiJLI82(p5WjFL56q;Dj&5Xgdsgw&KD-(o)&as}ToWS${JwE!uc^ESZ zL0VuBD{zZ^*8p0PZQtpKaLS(p-MZgjMe6_a@F6j(^>RE~mlC+*KGml8Oj*A&&3+!% z#LwBDM% zwTzBEKqem(3Altr=}WZ0r-37_4h-jr4czb@++hR)4G?#%8u`oYMy~7u9G9YV(4xw~ zUeh`YxF}+D>ohwAn6ej&#PVOx^Ehya{k<#y%|U~7F<+pIL7XjqP0*kp?ymOiZRrAD zE%5DQStr681HLp}5|%di1eSK$<{m~5^zE{6q#`&v=w*?)yU4-?mAu<}Su--x>-&{I z=9$b1+{kPa3rLCvdv=Pi$L~1B@y0YHboH`9u^SASCWx6TWSt2VxZ*k23#@cNIsDHd zRkaRYr{gj-GbtMw09G@%N3a?W^a}dSvKR|o$N|7tE&#*h+~6=Y5M_t$Tw8zrk^j7n zw7-|k-+~*^fd`-wk)1%i`yevp5zLLH{CxaTccj{MZ5d=R<`s9yUQ;hlq7O>l?tpyg zDh{ejKJXbxcb1t`^+u8y8ZblaP0CLC*WQ78*z4k1mi+)(_9Q$u}#4-24zur4OnouwVf5oJ1sC z4|X)a`T?2$X;EG^s`uS=e364}EO%=p{gZMPQK}%YGFT0f8yb3HP^Qd5lrU@1F2nk! z(v8)*O(U@%fB=65t5JS3ywU>*eV85Qypd}PT5|eG1iw(qL99WNrGRd`xkCZC6}Z1K zxyi5&Aznq?f8N9K2|Aiq#NY|I!~F7%nC&$*BJBjgnHKx{MUts-xG09d5TpeCsR{!B z z`o+Bw{@e(hyuSRNUm(5=strDqiUo*86`Y9K1cz89WD0e7fKFe9>Ns9VL?3Q`C^T;p z_%}O3`u1};;Z~mAGIxTvjwvAg>;lff>|9=hw(M>D-d9LUIXM?nJY6n_O#$+lI+zK7 zj02xVG6SIa=l{($Dsu*w61?Rekj&b=fmsS9fkRFHL6FFSq#KWJ1>-Sw?WrRH$jWre zttUV7Pmd8Nl5#wg%f|UJmn!6nx1WgZ6SmeKq@jNvE_`oPs=$=i zIb#k%dG&kHSD|1j0q}O1tgoE`P8awbW{@8CVFm1+Mf;nbmq>1W1S-?(EbJ%b#{0*O z`L{;>#~PV)148|Lpg@=P1oIbiTdAm-mRMec@yAldpeOpw(vL)K{4x%M#J1>5bDdG| z#x0MK5$#Ox;ftI5m25Pf@`gx2KQvqQXK($zyx~URX4VL>X=6}Pyb6b>T2l|Bf`HW9 z2!vajKI$_C)Z$o>!H}^jbT51sWXXSk`QShqm)XLj?^uHC%<~RAGWkt>q@G5Z4XLo8 z=#aGAnD5KtQknxn0na^rl60AjzI^~%`c8nVE>6w&8#;TF|GFF% z^8V#c1IoYdQQElS|M+zO$*uX{-}2AKh0f?-tL}fF%YVHa|Nr+~oKw@r+i!LNCfTcT z3MWl_Cjm|zjdlGj4>LL$YHqL4CL+@)p*#s>nSLhUu)CO5|2&OCag4V z_I87w4JylT?UgkK0>@WRI!`BL`QyxRgANCt?Q}V9x+}0)UA*mFM~)e!q&t}oI*LEt zbv?cLAR&R|=*8*IGdB4-b^0K0+sBk~B-fi3GO@RQAozFs<)5AXVq>2iZD; zP~P$cY`hOTe!VZ5XNknL75&nf+zEh70@Mh3Ul8x(nspqH zm8VYNvn#3pTp)j`y#MA7&Yeawy81U!Muqdf7nw1h_1kef4D0{lzFCwSM_Mf|N>YRf zMhvhB@&~ov--*-zu^apU;F;zUh#64(o5Vbzw9MLzDNmiHzT#OJ(75+U4Xux(gDZw@Hncz%nZ+N%U`6%gKup;DV5;De_IS#5tA#M6lp z@>c?k-RASd*>ioo0ck&{reUfQG{Q&+1~X%j49nrE!T-01ap7+ykF0$!&C`A8JS0sk zos9vr$dqu^7F7=4dc-(`_A5jJt3a?VGaVxWvy9BMGebd0wFsrZI4zLuWYcEZCWx{1 zE?81QOV10wK`>4PLeW%oSIq{_~FyC9-F!VN31K(LnRO!)$#}F5}>RHc39)&fL_ffhAz=BWx~B#7#H`#Jjvz>v~< z7#@Pepah)M1f8BBjv*L^u6~qe=!-y{L&;E>7kHE11z{%4jQ|G&rNiMK@c2IfqxrkJ z{_7~fVg0Cc z4fnjcf6s3FIh8;du5Bw(iT-rh7nW}w5*2?cS=n3be3kNJ8p;Z-PWR|I3o5S^v^#zY*^(#NKnNsBawlNSjtOR&o-xxq<5Z?|^#x@3y zC&)ThKptY8`5^*z$og);c_L@s7QxbJ1r0C=Zd<_}3;3zlb&Kr#1N}^wv1W%gY{K}5 zE)rex+rgw~noHy=Q$3+3TL~HxmU$c2`-6(>_?mOZ{o!}qZUS2LwA)jm7*fy7)sIED zCuYo9+jXvQZo1ZOQLhxq5Q7VvKEu>MGFVucV@HR;`LnOdH#A|6>C>G$ii-(vS9YDb zR$iI^e6)Ov_`aq@`tzxQEP3(vBAyEcVUl&xd1o5aE)UB46HQe>(^i)*~6P_U{?!(vI#l5ymv52yaS|C;hm>5cyL6YJ_M4^RUmPI&ch>O zjGUW*#FJ~$07rvH$FmWR>rcXX5paUFHB4oNf=Hj}H#}h)6SaO+;BiFetT>`zp!b6HLE^xy;&wc{y85cQbz%J2|wGr1Nt zl%B=MON=fdZO6-!e-LBH`lWE@@^|qLkhaZ)+CJa+9SBX0wk#iQcO~_x!hPW}%|W_1 zmdt#EJB3~%T!**$$#d4yjFgNT{m7^1cCJVI+f1nsF8mZO68?Q>dP@QiIsO5)=JahN zQ-Rsco`4%X-3M`;7~l;c3&{R^-I$yIOh;_M2wTz-6odn0eh}RMvA@CZ$2N=H*`Te8 zp$3pOH6UIBpcxW?j~S+O`t+YeZ2(3r9^UsbQz1;I3+wvZ(WB z;q%|*y>VZtQtFOZd@0M);#|JrY90*>MC*H!%D6{96jBx&DRJ4RC-Km zG;kU!nS>lD*6V&v-kT7<3#T~E7&su|uG2uMSvlP>C?eAPfb%f{hyMN~un`_QV7hc1 zsayqo)s-t%;dyVS*fKc4tWuDg4Aw0G<8Ss4ErP_XraR-`8<)>rJ=u&0#|c6YaeOR8 z(bsjX!-Sf;KU1GWj!w*_FIx3iK2j6G{&Vq?Go#z_x=GqOAb5x_@Hj$%#@ByC~!F(c4g< zL1>C7yR1|EV|VZIo3^l@xlttE{44e5Ke3G~?EXx0-<|%z$g=1RLA;Pn=1(Ly9i8%w zOq;pmMa+lTHe2o#t{|Vxvh`aM4iyFYqjM~pJT=rpwFxrQ*Rtk(^e@S~#tatpU6b1R zi&Q}cl0FZeRSBX}mjmVrmzbsm%CRYi*)t>U8i3q10A>qTiT8lwfpJFT%^-*~wuU;6 z5n>O>4kS<)%uS&}_r5%DhONFh2uQzIi>o9Q&wvVzffNStsbb`*u8ud<=|h_F8UP*WNRI~ z;)A9aRW?=mN`pG>3C26c8P+|mE~li|y}U^2T>^U@m%UBh9m84DKJ8fKfitkKZHhY( zOTf0kT$QjI1yxE9Cu=$Bv;aBGB9FZ~^wX|H#NRQPM|6hgw@j^Ry3DZng>U$!{2MeQ zShpw8Vod69x+lqC5b zZGTL|qCWAzdR`LR;6<$4#C-c%JC}G%YV3>GZ+1tm3lfAm@7c6T(CAFPS`FKpMz4zP zIBhl;U7MhTFJG?l$%tJ>##>q-2S>YUh4LBq`7FY3LqEg~+b?gj-(_jLOon$@zGd~(0>Ut|XRM?TaM0ys(44V}MXVdkp`!V6J^1s{qTxK%Xh~_6`Z` zdsmYw1YEqm%G(s335Pprvx2%mN961bzsrQ5Ro`-=|Qa9hgZxwFsD}V^c~IpLlRjQ`~*bxydZ~wmd4z zL)Td6+D%F&c_S)CqbdA5+1%WpSSPq8&YBrui;lCW=+HO zvl(%eaU|-0#bcLkVn=Ue!NJotQRZ#i{(HnmThj(}O*MGocQ@+v_AOmHR08MYLxRZU zYSFh8y3g(~DmZYW9IUn^oP@cTelZd0+u=!3DOh7tx<-=y1fsc8P0gg8r}8_xhy(hQ zAM74FiFp=H%>P)}HfEZ_cjC0yi1X;r5I$@F(uMXO=VZt&r4b=wbYAf0on0K3v?7`( z>2IdL{@d5kK4*x0jVr&>!b_+`SDBh z%EST7(%w@ZjtO6_$gj;9JnOYo6z7~|Rd2;&^H%E{0mKIn8EI<^h{j0^TO{3jkIe{PwG0?x&X+ZA>K0PgX_PD2xf;{n@j8?A zjv;87I&luv^nzBA{`5k6mYkz0Ae=YDW*T}evJmfiR! z-SwLA!HC8>xAYQbQPE7A#h?a7jdQa`^vjKw{3G6{v%~DKv{IJz28@<5d{KM>YdGmH zsYd3%6q=_j;Z<^3CLy*+%zWLMV-vlg&^&AcNwk90T?5d2;% z+NbysgBm1Re#ZCgNUZL%Rg8}E_^y4{A=jdL&$UeD)EnALIZxiUrRvb6r4~PZl|&n^ zZX=_U@yK6f5g+!5NpPjxG|x@DR^8m!I*)qXsmy8YTCB?`v_s6Kbqehwy2Vp8iE4i^ z{yeA2ie+~v$9Mi6U5i3m(YF4`$w~jh^E6DRu-hHQQ+74Z&JZ<+2~v-t_R8K0sfH@O zftg9nAhF?OuGLJ(*!P+BA$Fc=^FuqRH?0B#t9{(F4wexPQ(Bx%@ZLO6oBvtrT(`^6hRf&4-Cz?~8=1Lb!~G z!-}4^tbMzc@BzCelP|xPk|yhFTIyr!J9G}F`%g0qXuJnx z*I+`O$7rAfizU`Rd;U0yJD;4#{z1_pwdQh(ICm4uXJ$f$n(wp4Z1r3mxvZ2Z%1%{J(s^!BM%ehPPMS8?5~dxGLNR68`YCyVM!B>w znZ{dTA`$(7Ii1A8%E9_>!fUB#CG1sjb?rX0In`V;Hkpw(*GsRZOrJXZ=%pU9N$aYl zTBs52jNRg4Lug2CGbg%8ta)>*1FwrO%}LON&uG8K>t|O#I@p{y+Id2OVW@PmLpwp9 zghWK>yU%B5a=GfY_gJk;Ml{T-e3RH`@{>KDQd(b13s5dBOPJE6{a;M_Ejnp&IrU~Hx_9ya z9zk!7!j4h=u5p=)VjK0Z?_OQPQ0JoLc;_Nx8=@Y{!0Fx)$>TvK&H5f$6fbV^~h6_1NGI$@#R)lG|Iyzkg9K8PNOtgWyn zQ`&rpoQ8itWC1G2WDsqmVrEi${@*@eZN-OTjoWZ-trTm#puWF2q?>lr`TF1edzm^9 z<--5pe`xq~(f|DqUc!9;-ye%SdRPVj?L#(L#Q<-tZQkF6hD2L?@+h&DvAT9X60d3;U9kkzi3FfC#ifg9o8PQw-bJc+RQw18Y#y?~0fv10dEiXh9;f?|R5?6JH zf;(0I832-bxTTJvJQ2#5V94y(Ir%ggH1nQERD!1$z8rvpqhA5A8y2sL!s!Jt6f~8m zdqJlXAWR1^XLyE}8sRsbK(X9-yz1)6mV|EW0}OW@yc|TRYD*X}#Hqo<7ZVMlfNXFD zIH&V*FbXb6do8#Dt+Tig9lf=+1&VznSQ?}UqQ+6=m$6k5@w02-Hhrw6KF(`-$h2Fp z-_|bZ@~| z-yR45&6@sj#AZ=3sPlFy{(VO$-Ly*5zuOEVtub(Xyd4Vv*V&?A_7k=zKU4v5Ht0wH z-IA9p^H4e3a8yL=q*YSicO?3|zZVDpIY**gVAE2-c4r+#zg05(sqlAqOT&(av!KG7 z9%_n0dDKI`R7opWJPsNye!Ty zI7IQ^SGc13SalD7<-V29{=(OSZ&FxYJCk33?JQZTfq+&3%Ooc-!%EnSn@6v)bEPhr_ECu*Rq zZUI)<^XU_y)3)A+gTb?ou+!~(C{+7}5@2^rrw_4PRc9Md~7_uBe znpJDld7+#Q`(`Z;5j9XRDj|dyApL$G2+!VoJvwmyvT>la6r~}Gm~|EUc@V^Wo;hT` zYX)K^ND#daxf*2JFt_8!x5$mRXnE8zC}^P3KW}&fkxxe^3VnKwU?09SRKk+SLas2{ z2x1Qq6ha682c9VpKmRe1W!#ZTvLJGyX@OVU8B6a2C=Dy(-e&%irmw^TPqNk*;z-PZ z<9y={ikw?ZQFJ18(Fu2JcVH<2&1SBr*FydWwmAutY`S}3C!^1oI?c#eO|_5_5!8%x zaTLa?d6hr_&R0hmTKWOTa_O_4+u23DmB3Fbha;!nv;J;$O*Blk-GFzQmxO3c0Y~FF zs|B<$==SOL^LYb-#sYFUIVFYPxNHWz`tZW(t2Q7E%g}*P|KFG0Zk^~&%@WWmlaTR( zawq~nSSM<>d*woi{4&UCmI1uLrh>e02ynQ!d)-u08^SzkvM=7D=adxma_ZHH_K(NQFfupZ05WSXd4dTOK83$!u|vDH9M0P zh+1}-f`UNApY2lBy`L44B460=h_{2DZ4BIG1KKj@_YzukRl_xG9^#Kc5-bUWr2KEh zrXV*mAbKxAwS^;l_34S9!I_~2!I{=C z#_D_orrX(tU4^`0y#cqlgdu>E=3mH#>P~i=T(0`bE#;Q3iz{Z4N zfn*v7ckVC^*Rk3Ug@rQ^<@EGLHSA24H?F&eAvpY|)nBGDO{Jf)Y9U9i*@1g8FfDmD z4^TSb&V&~6*_+TWqY$YoFqRAFE0xb{W{UD0iZp%K(@NVN0OOxm=0K*GA#>BoUE7)Y zNerB0H2|D$xh+OT5%$ZR3zLJWlw3)7>j@D?!!20VUk&X)XB+248UFhw6R$(AO+Ocq z*5400b^$;f4vaeh$--N|TV_gX@cb8mkQcU(AdKr9m^460_7J#s`>K>;jmwo!Ez`y! zumO0IUSVQ3+ax)N?$#4pR4LwR=;t@~?h%OiPiW3m z0K4453y)4TDAm?)&cfpDdv^5~d&tBLGO1_2ylsWO6}|W!48*=*$62qQjsx&mEsfth zM-D0=D33sq3en;~l}Z@qJGcJX@fGgJ*mIOnMB{mCUAnIBx{&;-5V7gMAHX z_Ra&WwC89z4?y7Bv&Fw`UD#pfk3^=1pTB-EWM9T4>+1&A$s+BXrHtq8=$Csy*&a<_ zI!%8%31k@T&UwJtHS?I)K>LlsV6x>zG&@AbFYJpfTL62TDeiIzOt#S<5f)uZ7Suyn zn_wroKqCmB3Kve0Rj|M-tqcG0c=8Th7r(ekDtsk%QGKg|wC*w|FQm%K;gQ103jNFVbbPk*F5x< zRDVZ=$Z!#LuJ=9+*kZzId8cCq7~EEcHm6`2?N(QqZkNs&9qxq zXO6#Cz)4Qoizc|v(PDYb)+KM;yh5asPZ253p1qYN`1E{c4uQtGo0mQ%^)u(kU`sy| z$r?*ZX#HUO{%ZA0U8LrmMU4Tg04?l3IH0@LzzN^cVpYb+R*O99U=bODUL|PCwN=k@ z3S}&FH|4wT+D&-OPz*$6b)&lpCX45zxEa6pxoFpB#KBBjRS|oSK0}3b*Fy8=4ev4@){;(}aNap=T z(0D*<%o6Boj-evkG?#y?D_7+Ev-P;KXsq8i>kTm+tOS326uow!o^S(gK+Q+TOx3h- zSomNST>+h~@FMFBw%l}I6BH%Ckzuh=h(YZOO4llT6n#96m9{5bvO`?4}T9!CQe`dspv6 zQ)+ipdu~CtSo-;X>q`QU-5u{f;ysu2?m>W@h8q@Z|Gjl|I2IOV!jc%l#WvA3<-8Lf z+~Bv&E{xQr-$)5O7a>_gXWoFVZ#AetU%ik3P%Hl5PN6u>8={Y+D0+icV59oVzPDaKaUv_moTG0fOP)_Vax}oZ7pCe1)J=T zd?liD&hZ+c9SVRX>1rg*RO=@0Jngz^qnM+V*fIu*-*`d{uhp(s9?m%k{%?V$v%5AH z0J7nt>>l)S<1}N$5s7)PY<#B=z)}&vV3QaPHpcs$GczeJF0O`ye{mL$dUSUb?g^;p zr=VzH*5K;Z{%w{iQV-WOh`G|$ZiONlrEsqR7udc2@GQImyR-IIN#`wF8>r7+zLeO? zswJl}{k}YYJrsXePxzzfsviH}*8yM`!X(Jqu z=E?4;->}*UyQW}dgqtnpe5>y%ds-@Pe$8+ZU5$Xf;4l@A6oaO8s3_s;a=0?Ke*T@( zQ8Zkj#;}5b!p(Zq>l(kAnbDVzNAO0DgM*`e4Rg?E*%bE7PHs~Gd&lL*X&OVn;gNtc zGsO()>3xo?b>8Rj!gDU|#BF^nSh?t-`bwj~q#A}8%T{4(DictXrbDgUy7gzw z`78xua5o0F*evsj#=s<^7lXro_E@cq-kdmT0<`YizUyiwooIq#<8Rq1H?lLxR?QQK zvj~2aKO|*2n>zB{NdL;$ln0;Z-gK_ypJ`{Om4RIl;>z1hp{#l|>0@>+w{O=VSv0s# zmtn@4^C{Hp?)2Q*qL3O1p z?}W*~<5~yG8qgR}1DMNsd)(kbrpWSLF)?Mi4m{V3>& zDMWlSlv0hQnh_S}=4(EVFCYGlTti*`qpXhvBxIX@$4b1=$V3{9T`l^pMHZ&VG+D6)>X;gceZmH#ixe*6UyO?XWxi+ zt1ANfD2zsEzOLcu-Bjsc(zsnhE$z-elKj-=+UIEo4(~~0pBm|m+!AIK;WTDcK!=_) z=NfBX(>|`PfJma+twbsPCSJDYR5e>A)1Qut5*}aANoZM{W_D~1=7z=Ro?OChXP?1I zN+AfjGKM=-u_pOJ6}pRzgDRJi@9=OC1=hhj6BJ?`Pik}to8Y|2=1R%7Q}TYwuCw;- z^$$3E(2pJ~dO0qpO7&SX>o;J1pI`62XC#+SD9f0Y5q1AbD=o9LCvIZyi)W9_vMu6L zy1!f@AHMuLxr>+On zxcwZ9Vhxz|XBKJfQ^2lJ;XLdCXjE>{pUg9NKcR2EHEHLQg=@FAsN3V(6U6fd&KVyN za)9R{G#eTqwjs^v9s5dj`lDEitKEA)gw84t0-PXX_bK@WZwBb$U{#v?FLLl$a1gjH zg1DIU`hf4&x5r=@9rYT}0{!5wf!SAGt+W#;SZci%g<(>kU-;Ynd}|Qa!8lc~k0QG; zks}VO#6{*6yw&2Sixv;ajuDw249!tnv_wYA!tPzDSh16Yi?k3b^cAtruo8H>(2q#C z{M-Shg!`|rfVXuIwwlU9|B`fHR#Mhx5|%b%SFS%3yo?AXvX{U&Y2^wB8)OFGiIZXq zzYd{mpq6C`jUHF%MaIz1@?$KwUE_ti1@kkcHKkkd$lfI9UYGyw{9RWqs?smjEz!2D zEYs@^WfPh}rrJVqQN55!mTH0d>65F6-Pt_yK4?cx*2@*zMzcK{ThHp1)xtG;@V6v_ zZT%H)Tm^gXhvc+gL7JPyHC~1jBH{boOORiE7wL3#SpK8;b78jTr3S{6Ha|YIEB4`89WfjLn&c zgd_~C%VbYHYnr~caoAd&%OD=xrm358OXVLXIu6O*KV#f}@A>L&tUq-WiST8^(QDJ47dg)CWM&59eVYN){35v|3p zwamE@=#4vFS6AYVU_Mp71NLI;p>{eXz!J}7u$dd7Ft=e*<-7|~BKqt+0v2oQI? z2Ad@fTc~XOuguEWyS1VsmX3~&P*DjELD*u#Sy`Vo(@ixiIK(K6K^p=+8JutPHAwc! z7kg=%oPk9%`GaUwt?JElQzWd!9_f^lSquwjX#=MsxfZHKNpq4uYE44>sJ&}l>2+%t zQ9yl;nU5``EWx6}BX}~c;!+@)t@^XZK+R|L1+8(BF#F-|a15jJD3oal zdjn%3$EZG52TY1kgTu?D3AI$);m;?{FW+qDqHle_@15~?8O;VZ12arW{2K42bkI(c zl>P~-FIZ7fv`Xz#d_DVVw^Oohbwx$lsdAxN*{zphd1YEw39Et-l|)YSnVM0&u3`fk zbXiy~d}sM0pkwlfebbf{{J|BTBOfWCEvY2$jDI5OC;&5tR)Ye`yv+nsFe{7;S)w#F ze(n17tcaxJDG<5y2l>q(DNM*bj3FzR>6+b8+f$#p$^ zWeCPE`(*f8A}o)&QQS|?W3^)b+kgtd;M9;TH8Ypd>Zf2g?$5T6`{nGy>W01$Qqf3RYY&`?)y7 zu=Zfp52|=mJAme4O-;=tF1qb3=;Go(@ioWNk=kk&mT0Gicr%f}Bj3+_c(n%r3sw7E zn3S!56crV9H%b)ft1V6m5g3fHfB#A^oou(snnkWiXNKXkl<{G2x0`lJaVh7jD=4he zy*TtTP9)f{w}$C&HkRn$V-j^55{ zJ`z0biXt5fsEK;RGeIk`Vm&p*O{_&&ZKkcgOsz`mwdTj?Mx$P2L1g#%lbk(H0~_*w zxq2Q)RFkh@nnYXbSvL8bO9E1vtL>IHY=!$t2ZV8isz_-@uD+g8f$$#}5jgq_;cEXJ zN1^-%e2Ac1#eb1RLH6QkYqkeKY>#6H=ZS19NI(D-uO*v!5dDN9;xr?$>nao+33igQjT3qOF<^vcWu{c8Yh9zxhArVaJKx8rue`7FoC#yh z5Wz9X5q+W-)<)BY5^aC*81JJi8;xzXCsZZ^1FBl)3n8< z9$HAhpyea=>*47kX5*Y=Qc}shcKV{#5DY<;%{>c-}z);FTvaD zz1k%b!&RxU7EAJLqTS2CZjM9((E_cLtbK{REiTbf??CWy(-m%`JF?rMd^d#8OKTX? zY-M77urQAa>QxU^+#Zw(S@EG%9(w$56sy=O2AZBf;HUpSyLDPByE5L8B@*^fUz!k* zlT$DSD1~nSG03oy3Von2J^M_fe6Ez+U(W3euB7b&b4a7J!|6n_Nck#3<;>WfQ~ygu zP%M-2$Lo+ic+@z@_%HQExT4-S&dE^ecveeH5&3JX81{!2KQGCA@{9>KR3FeEr%>0U z(QJ95SZsW#>7EB9GntumBW*89xsG?^xgud|x}+|4T18IXNRct22k9SVyPi+8JNN8Q z)g~rM{baWJoZFs?>mE>LdKsabTZC* zvHXkMR(xezTV2wJHtsb#H`bGt#eGRpRj(39>XUJ~@jW$v1?)sydyBV3%2uXyGjH); z(yrwQMyM)y6RhMvnr|TZq?1VVSUOFDQ})sp5&0ppHlL89%Qa&Dbm_Sq{9 zX)M>zax#1sj5_Eki58wIPh%gTyvW*l<%{gb|C!W|EmO)D?3v@f?r5k7Tc44kv)`jg znXi2w&&u5c^`0z1nhabWGwbR({Yz^)&Uu~Di zqmT4?Gd5N{lF0Nj7ZMe1 zII?34k3c!M*VF(K? zD3&xmxb4$FBL}tJDN;}JBMjMR3jH;f_`H12L)JST)lY>|I(8P`Uj`Zk5_#&x2VUnC z1)d7sczkJOLu7fQ=q=vnTYDwEb5y+by^XvT+E3`Q7oA9tP1%^z_+<{`jiaYdRrxb+ z+sSoO=XFM-<`Qr1MwMer9orgO_8eJ|Gg)~zOVJ#rMi0ix7IIC2$0mBJFah0p^5jy{ zr3^^(qeq3Ni|w2`;VyGn4p*qtg?`=BdjHu46}WWOd44~bqJ66RxyWI5iz9C~FaULX zPVznsJO$)*!ouyw1%Kp)C!Rc;R;k~~d{CvYo%yf2P8ODR6cImeCwBp3T;;Mngz zU>|S>a0LOdX}Jz~522?T_`%=`#o^51-P{Q z?xaJZ;jveNGo`?53O-EFoxD1N;Vf`^h=10xC8F62GOND5`MG`nU*Gl~+Y;bmIKVmR z>+$ur(x9arR(e6)&3y~qGnOpY*OMrz|NA-~IH|LKvHwPvU5i*Y-ckoH*ip#|D{v+dS(CqUdaFip00i_>zopr0F1$} ARsaA1 literal 0 HcmV?d00001