{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "1 пункт" ], "metadata": { "id": "n2S-d-dy1com" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EfImqmoI0eWN" }, "outputs": [], "source": [ "import os\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks/IS_LR3')" ] }, { "cell_type": "code", "source": [ "# импорт модулей\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.metrics import ConfusionMatrixDisplay" ], "metadata": { "id": "VBMRl6Iw1eqz" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "2 пункт" ], "metadata": { "id": "LnvGg6FZ1mDT" } }, { "cell_type": "code", "source": [ "# загрузка датасета\n", "from keras.datasets import cifar10\n", "\n", "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" ], "metadata": { "id": "90-GJpwO1k0u" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "3 пункт" ], "metadata": { "id": "ArL8T5q32POX" } }, { "cell_type": "code", "source": [ "# создание своего разбиения датасета\n", "from sklearn.model_selection import train_test_split\n", "\n", "# объединяем в один набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# разбиваем по вариантам\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 50000,\n", " random_state = 19)" ], "metadata": { "id": "I9pe41Ni1kvJ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ], "metadata": { "id": "m-KhW4L93B9o" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод 25 изображений из обучающей выборки с подписями классов\n", "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", " 'dog', 'frog', 'horse', 'ship', 'truck']\n", "\n", "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(X_train[i])\n", " plt.xlabel(class_names[y_train[i][0]])\n", "plt.show()" ], "metadata": { "id": "p6RhtysM3Fol" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "4 пункт" ], "metadata": { "id": "ZtUEifrW31w4" } }, { "cell_type": "code", "source": [ "# Зададим параметры данных и модели\n", "num_classes = 10\n", "input_shape = (32, 32, 3)\n", "\n", "# Приведение входных данных к диапазону [0, 1]\n", "X_train = X_train / 255\n", "X_test = X_test / 255\n", "\n", "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", "# размерность (высота, ширина, количество каналов)\n", "\n", "\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X test:', X_test.shape)\n", "\n", "# переведем метки в one-hot\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ], "metadata": { "id": "_1EvYA5C31oT" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "5 пункт" ], "metadata": { "id": "HiZ1igLn4ZvE" } }, { "cell_type": "code", "source": [ "# создаем модель\n", "model = Sequential()\n", "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(128, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(128, activation='relu'))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "model.summary()\n" ], "metadata": { "id": "szeMGpaW31it" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "batch_size = 512\n", "epochs = 15\n", "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" ], "metadata": { "id": "CMUVJn2v3bx_" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "6 пункт" ], "metadata": { "id": "CTohcQAy7JGG" } }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "ag1rP16A4oJC" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "7 пункт" ], "metadata": { "id": "lWZIle5r96tj" } }, { "cell_type": "code", "source": [ "# ПРАВИЛЬНО распознанное изображение\n", "n = 0\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "\n", "plt.imshow(X_test[n])\n", "plt.show()\n", "\n", "print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n", "print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])" ], "metadata": { "id": "b8gAO65m9yZG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# НЕВЕРНО распознанное изображение\n", "n = 9\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "\n", "plt.imshow(X_test[n])\n", "plt.show()\n", "\n", "print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n", "print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])" ], "metadata": { "id": "gZiOC9Ke-BCz" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "8 пункт" ], "metadata": { "id": "MaamG6bP_xsp" } }, { "cell_type": "code", "source": [ "# истинные метки классов\n", "true_labels = np.argmax(y_test, axis=1)\n", "\n", "# предсказанные метки классов\n", "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", "\n", "# отчет о качестве классификации\n", "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", "\n", "# вычисление матрицы ошибок\n", "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", "\n", "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,\n", " display_labels=class_names)\n", "display.plot(xticks_rotation=45)\n", "plt.show()\n" ], "metadata": { "id": "Ix27-pKH_yG-" }, "execution_count": null, "outputs": [] } ] }